

TRI-STATE GENERATION & TRANSMISSION, INC.

December 16, 2021

Prepared by:

Fox Run Substation Drainage Report

TRI-STATE GENERATION & TRANSMISSION, INC.

FOX RUN SUBSTATION DRAINAGE REPORT

ENGINEER'S CERTIFICATION

I hereby certify that this drainage report for the drainage design of the Fox Run Substation was prepared by me (or under my direct supervision) in accordance with the common engineering practices for the owners thereof. I understand that El Paso County does not and will not assume liability for drainage facilities designed by others, including the designs presented in this report.

David Schieldt Registered Professional Engineer State of Colorado No. 47195

TABLE OF CONTENTS

1.0 General Location and Description	1-1
1.1 Site Location	1-1
1.2 Site Description	1-1
2.0 Drainage Basins and Sub-Basins	2-1
2.1 Existing Drainage Sub-Basins	2-1
2.2 Proposed Drainage Sub-Basins	2-1
3.0 Drainage Design Criteria	3-1
3.1 Methodology	3-1
3.2 Land Cover Hydrologic Properties	3-1
3.3 Weighted Design Values	3-1
4.0 Drainage Facility Design	4-1
4.1 Historical Drainage	4-1
4.2 Proposed Drainage	4-1
5.0 Conclusions	5-1
5.1 Drainage Concept	5-1
5.2 Compliance with Common Practices	5-1
6.0 References	6-1

Appendix A – Site Maps & Design Drawings

Appendix B – Yeh and Associates Geotechnical Engineering Study

Appendix C – Site Specific Physical Design Properties

Appendix D – SWMM Modeling Results

Submit Appdx B GEOTECH report as a separate document and reference in the drainage report

1.0 General Location and Description

Tri-State Generation and Transmission (TSGT) in coordination with Del-Mont Consultants, Inc. (DMC) is in the process of designing a new substation yard. The scope of work includes the construction of the substation yard & retaining walls, driveway, detention pond and swales, installation of new perimeter fence, and the addition of high voltage electrical equipment and facilities. The purpose of this report is to present the findings from the hydrologic and hydraulic analyses that were performed on the existing property as well as present the results from a detailed analysis performed on the proposed improvements to the property.

1.1 Site Location

The proposed substation yard is located on a 14.92-acre parcel owned by TSGT, situated in the NW ¼ of Section 21, Township 11 South, Range 66 West, 6th Principal Meridian in El Paso County, Colorado. The substation site is accessed from Shahara Road.

1.2 Site Description

The site naturally drains to the northeast and is currently covered in various grasses. There are currently no features on the site to provide water quality or quantity treatment for discharge from the site. Site layout details will be discussed in more detail in **Section 2**.

There are developments on the properties to the south and the west of the site. MVEA Substation located on the neighboring property to the south, and Jackson Ranch Subdivision to the west. No wetlands are present on the site and the site is not located within a floodplain.

Reference should be made to major drainageway planning studies; Such as Drainage Basin Planning Studies; Flood Hazard delineation reports, and flood insurance studies or maps if available.

2.0 Drainage Basins and Sub-Basins

The property functions overall as one large basin, flowing to the northeast into a drainage on the east edge of the property. Proposed conditions produce several smaller sub-basins and will be discussed in detail in the following sections.

2.1 Existing Drainage Sub-Basins

The existing site was analyzed as one basin. A small portion of the existing site was unanalyzed as it did not affect the majority of the site. A map illustrating the delineation of the existing property can be found in **Appendix A**. There are developments on the properties to the south and the west of the site. MVEA Substation located on the neighboring property to the south, and Jackson Ranch Subdivision to the west. **Table 2-1** presents the existing basin and its corresponding acreage. The existing member substation was not analyzed as a part of this project.

Table 2-1: Existing Basin Acreages

Sub-Basin	Total Area (Acres)	
Existing	14.38	
Unanalyzed	0.54	

2.2 Proposed Drainage Sub-Basins

The proposed conditions will produce several different sub-basins. The proposed site is divided into three different sub-basins; Yard Area, Proposed North, and Proposed South. A map illustrating the delineation of the sub-basins can be found in **Appendix A**. The Yard Area contains the entirety of the yard and the detention pond. The Proposed North and Proposed South areas contain swales that will route any run-on around the substation site, returning to historical discharge patterns. **Table 2-2** presents the proposed sub-basins and their corresponding acreages.

Table 2-2: Proposed Sub-Basin Acreages

Sub-Basin	Total Area (Acres)
Yard Area	5.23
Proposed North	6.70
Proposed South	2.44

Provide discussion of offsite drainage flow patterns and their impact on the development and show on an existing conditions drainage map

3.0 Drainage Design Criteria

Revise design method to Rational Method

3.1 Methodology

Design rainfall

to use DCM

Vol I Update

and Fig 6-5

Chpt 6 Section 3.3 The El Paso County Drainage Criteria Manual calls for use of the rational method on sites under 100 acres. However, in the Volume One Update, Chapter 6, 1.4, the EPA SWMM method is noted to be better suited to more complex systems. Due to the complex nature of the drainage system, the hydrologic/hydraulic analysis of the site was performed using the Autodesk Storm and Sanitary analysis utilizing the SWMM engine platform model for a 10year, 24-hour rainfall event of 3.01 total inches and a 100-year, 24-hour rainfall event of 5.15 total inches. The Curve Number method of determining rainfall losses due to infiltration was used. Runoff for all site conditions was computed for both the 10-year and 100-year, 24hour storms. Rainfall depths were obtained for the region from NOAA Atlas 14, Volume 8, Version 2 and rainfall distribution curves were developed using a 24-hour rainfall distribution. Modeling results are presented in **Appendix D**.

The Mile High Flood District *Detention Basin Design Workbook* was utilized to determine the required water quality capture volume (WQCV) and to aid in the design the outlet structure. The spreadsheets/worksheets can be found in **Appendix C** and are discussed in more detail in **Section 4.0**. WQCV and flood

control detention

Soil data was obtained from a USDA Soils Report and gives a myorologic soil group B for the site. The soils report is included in **Appendix B**.

The described methods/tools used in the analysis, are in accordance with common engineering practices and guidelines.

3.2 Land Cover Hydrologic Properties

Curve numbers and corresponding Manning's N values, for hydrologic soil group B, were assigned to the various land cover types found on the project, both existing and proposed, and are presented in **Table 3-1**.

Land Cover Type	Curve Number	Manning's N	
Pasture or Range Land, Poor	60	0 15	
Condition (Existing Site)	03	0.15	
Open Graded Aggregate Topping	85	0.024	
Over Compacted Base (Yard)	00	0.024	
Compacted Base Material	95	0.024	
(Driveways)	00	0.024	
Pavement/Concrete	98	0.015	

Table 3-1: Land Cover Hydrologic Properties

3.3 Weighted Design Values

Utilizing the land cover hydrologic properties presented above, a weighted curve number and Manning's N value was calculated for each of the sub-basins, presented in **Section 2.0** to be used for analysis. **Table 3-2** presents the weighted design values for existing

conditions and **Table 3-3** presents the weighted design values for proposed conditions. Detailed calculations can be found in **Appendix C**.

Sub-Basin	Sub-Basin Total Area (Acres)		Weighted Curve Number
Existing	14.38	0.150	69

Table 3-3: Proposed Sub-Basin Weighted Design Values

Sub-Basin	Total Area (Acres)	Weighted Manning's N	Weighted Curve Number
Yard Area	5.23	0.058	84.59
Proposed North	6.70	0.15	69
Proposed South	2.44	0.146	69.52

Fox Run Substation Drainage Report

4.0 Drainage Facility Design

4.1 Historical Drainage

Per common practice, the 100-year historical discharge value for the site shall be used to determine the allowable discharge from the site for the proposed conditions. Values presented in **Table 3-2** were used in the model to calculate a historic sexisting property. **Table 4-1** presents the discharge rate for the exist only requires minor storm to be analyzed with the 5-year design

Table 4-1: Existing Property Discharge Values

kisting roperty bisen			statement to explain
Sub-Basin	10-Year 100-Year Discharge Discharge (CES) (CES)		design to the 10-yr storm.
Existing	20.08	53.82	

4.2 Proposed Drainage

Values presented in **Table 3-3** were utilized in the model to calculate the runoff for the proposed conditions. The Mile High Flood District *Detention Basin Design Workbook* was utilized to determine the WQCV in conjunction with the model to size the detention pond. Once the pond was sized, the Mile High Flood District *Detention Basin Design Workbook* was utilized to estimate required orifice sizes in the outlet structure to provide water quality treatment. The model was then used to verify all design elements of the pond and the outlet structure to ensure the pond not only retained the correct WQCV but to also discharge at or less than the required 100-year historic discharge rate presented in **Table 4-1** as well as drain the pond in less than the allowable time per State Requirements. The spreadsheet showing the detailed calculations can be found in **Appendix C.** The design of the outlet structure is detailed in the grading drawings.

The proposed detention pond was designed to provide water quality treatment as well as detain the 100-year storm event while maintaining the required 1-foot of freeboard. The proposed detention pond stage-storage curve is presented in **Table 4-2**.

Elevation	Surface Area (Sq. Ft.)
7444	0
7445	20,284
7446	23,645
7447	26,149
7448	28,766

Table 4-2: Detention Pond Stage-Storage Table

The model of the proposed site conditions was utilized to calculate discharge flow rates from the outlet structure in order to size the pond discharge culvert. **Table 4-3** presents the hydraulic capacity of the culvert and the required capacity to discharge flow from the outlet structure for the 100-year event. Detailed design of the pipe is provided in **Appendix A**.

storm. Provide a

		1 / 3 / 3	/	
Drainage Feature	Pipe Diameter	Total Capacity	Required Flow	Remaining
Dramagereature	(in)	(cfs)	Capacity (cfs)	Capacity (cfs)
Pond Outlet	12 2	2.73	1.84	0.89

Table 4-3: Outlet Pipe Hydraulic Capacity (100-year event)

Table 4-4 presents the discharge rates for the proposed sub-basins for both the 25-year and 100-year 1-hour storm events prior to detention. This discharge value represents the flow rate that the pond is receiving. The discharge from the pond and other basins (total discharge from site) is summarized in **Table 5-1**.

Table 4-4: Proposed Sub-Basin Discharge Values (Pre-Detention)

Sub-Basin	10-Year Discharge (CFS)	100-Year Discharge (CFS)
Yard Area	14.07	28.42
Proposed North	10.03	26.75
Proposed South	5.58	12.04

Utilizing the flow rates presented above, the model was utilized to analyze the flow path of water through the piping and pond system. With the installation of the outlet structure, the pond was designed to pass both the 10-year and 100-year events, treat the required WQCV, and slowly release the water in the required length of time after the end of an event set forth by the State. The entire substation drains to the pond and the discharge rate leaving the pond is presented in **Table 5-1**.

Provide and explain Four Step Process

- 1. Runoff reduction proposed
- 2. Stabilization of drainage ways proposed/discussed
- 3. Proposed Stormwater Quality Capture Volume (WQCV) proposed

4. Identify Best Management Practices (BMP's) to be used to control industrial and commercial pollutants

A floodplain statement shall be provided indicating whether any portion of the development is in a designated floodplain as delineated on the current FEMA mapping.

5.0 Conclusions

5.1 Drainage Concept

The drainage design has been prepared using sound engineering judgement and practices and will provide an effective means of controlling runoff on the project site as well as protect the site from damage. The design has been completed according to common engineering practices and will result in no downstream impacts to any people or structures. Historic flow paths, discharge rates, and water quality have been maintained or improved.

5.2 Compliance with Common Practices

Per common practices, the historical discharge rate from the 100-year – 24-hour storm shall be utilized to determine the allowable discharge rate for the proposed improvements. To demonstrate compliance with this requirement, both the existing and proposed conditions were combined into one overall sub-basin. **Table 5-1** presents the overall discharge rates for the overall basin as well as the individual basins.

Basin	10-Year Discharge (CFS)		100-Year (Cl	Discharge ⁻ S)
	Existing	Proposed	Existing	Proposed
Yard Area (Pond Outlet)	20.08	0.30		1.84
North		10.03	53.82	26.75
South		5.58		12.04
Total	20.08	15.91	53.82	40.63

Table 5-1: Overall Sub-Basin Discharge Values (Post Detention)

The pond outlet structure was sized according to common practices so that the proposed condition 100-year discharge rate is less than the required discharge rate from the 100-year, 24-hour storm event, resulting in compliance with common practices.

The detention pond was also sized according to UDFCD requirements to treat the WQCV, detain the 100-year event, maintain 1 foot of freeboard, and maintain historical discharge patterns resulting in no downstream impacts.

Inspections of the pond and outlet structure will be conducted by the owner on an annual basis as well as after large storm events. If deficiencies are identified or if maintenance is required, maintenance of the outlet structure will be performed by the owner of the property in an effort to return the structure to its original level of functionality. Maintenance may involve cleaning of sediment and debris from the facility, maintaining vegetation growth around the structure, and performing any additional maintenance required.

Delete	

6.0 References

NOAA Atlas 14, Volume 8, Precipitation-Frequency Atlas of the United States. U.S. Department of Commerce, 2013.

United States Department of Agriculture Natural Resources Conservation Service. Web Soil Survey

Mile High Flood District and Flood Control District. *Detention Basin Design Workbook,* Version 4.04, February 2021.

Urban Drainage and Flood Control District. *Urban Storm Drainage Criteria Manual,* Volume *1-3*, June 2001.

El Paso County, Colorado, Drainage Criteria Manual, Volume 1-2, October 31, 2018

Provide drainage ditch calculations and riprap outlet protection calculations

include MHFD BMP Spreadsheet for forebay, trickle channel, and micropool calculations.

Appendix A Site Maps & Design Drawings

Remove Geotech report from the drainage report and submit as a separate document on eDARP.

Appendix B Geotechnical Engineering Study

Include a section in the geotech report addressing the following section of the Drainage Criteria manual.

Geotechnical Engineering Study

11.2.2 Detention Facility Construction

The construction of detention facilities which multi-use benefits can provide significant benefits when properly planned and designed. Controlled outlets for flood surcharge storage should be provided, and it is required that such outlets be designed to release at a rate that does not exceed the peak rate estimated under natural conditions for the design storms, or other discharge established by policy and/or the drainage basin planning study.

Adequate safety measures shall be provided with all detention facilities. A minimum 15-foot maintenance easement shall be provided around the perimeter of the impoundment and embankment areas. Access to the bottom of the pond from a public road shall be provided via a minimum 15-foot wide ramp at a slope no greater than twelve (12) percent.

The geologic conditions of the site shall be investigated in sufficient detail to determine the suitability for impoundment of surface water. Ground water level increases downstream of the geologic investigation should be consistent with the class of structure and the complexity of the local site geology.

Guidelines for conducting geotechnical investigations for State of Colorado jurisdictional dams are presented in the draft "Design Review Manual" for dams and dam safety (Colorado Office of the State Engineer, July 31, 1986).

A design engineer check list for State of Colorado jurisdictional dams is included as Attachment A of this chapter. For non-jurisdictional dams i.e., those that do not or would not fall under State of Colorado purview, the designer must evaluate the appropriate factors identified, in the engineer check list, for the hazard rating presented as Attachment A and as otherwise required by the City/County.

9/30/90

11.3.3 Embankment Structures

Yeh and , July under antip Design Nothods

The width of the top of the embankment structure shall be a minimum of 12 feet for embankments less than 25 feet in height. Also, side slopes on embankment structures will vary with materials types used and shall be designed to produce a stable and easily maintained structure. A slope stability analysis shall be required on all Class 1 structures.

An allowance for settlement shall also be factored into the design for all embankment structures. Consideration shall also be given to limiting excessive seepage through the embankment and foundation that may lead to embankment erosion and structure instability for all Class 1 structures.

A geotechnical analysis and report prepared by a Colorado Professional Engineer with recommendations for the foundation preparation and embankment construction shall be submitted to the City/County Engineer with the complete design analysis for all permanent detention facilities.

Geotechnical • Geological • Construction Services

Geotechnical Engineering Study

Fox Run Substation

Monument, Colorado

Yeh Project No.: 221-290

November 11, 2021

Prepared by:

Brett Lykins Staff Engineer

Independent Review By:

towood amel

Samantha C. Sherwood, PE Project Manager

Table Of Contents

1.	PUF	RPOSE AND SCOPE OF STUDY	1
	1.1	PROJECT UNDERSTANDING	2
2.	SUE	BSURFACE EXPLORATION	3
	2.1	FIELD EXPLORATION	3
	2.2	LABORATORY TESTING	3
3.	SITI	E AND SUBSURFACE CONDITIONS	4
	3.1	SITE CONDITIONS	4
	3.2	GEOLOGIC SETTING	7
	3.3	SUBSURFACE CONDITIONS	8
	3.4	GROUNDWATER	8
4.	GE	OLOGIC HAZARDS	8
5.	COI	NSTRUCTION RECOMMENDATIONS	9
	5.1	SITE PREPARATION AND GRADING	10
	5.2	EXCAVATION AND TRENCH CONSTRUCTION	11
	5.3	STRUCTURAL FILL REQUIREMENTS	11
	5.4	COMPACTION REQUIREMENTS	12
	5.5	UTILITY TRENCH BACKFILL	13
	5.6	DRAINAGE CONSIDERATIONS	13
	5.7	CONSTRUCTION IN WET OR COLD WEATHER	13
	5.8	CHEMICAL SULFATE SUSCEPTIBILITY AND CONCRETE TYPE	14
	5.9	CORROSION POTENTIAL	14
6.	FOL	UNDATION DESIGN RECOMMENDATIONS	15
	6.1	SPREAD FOOTINGS	15
	6.2	DRILLED SHAFT FOUNDATION SYSTEM	16
		6.2.1 Axial Capacity	16
		6.2.2 Lateral Capacity	18
7.	SEI	SMICITY	19
8.	IN-S	SITU SOIL RESISTIVITY TESTING	19
9.	LIM	IITATIONS	21

List Of Figures

FIGURE 1. PROJECT LOCATION	1
FIGURE 2. GEOLOGIC SETTING	7

List Of Tables

TABLE 5-1 IMPORTED STRUCTURAL FILL CRITERIA	. 12
TABLE 5-2 SUBGRADE PREPARATION AND FILL PLACEMENT CRITERIA	. 13
TABLE 5-3. ANALYTICAL TEST RESULTS	. 14
TABLE 5-4. RESISTIVITY AND CORROSIVITY CATEGORIES	. 15
TABLE 6-1. ALLOWABLE DRILLED SHAFT AXIAL CAPACITY	. 17
TABLE 6-2. MFAD PARAMETERS FOR DESIGN OF DRILLED SHAFT FOUNDATIONS	. 18
TABLE 6-3. LPILE PARAMETERS FOR DESIGN OF DRILLED SHAFT FOUNDATIONS	. 18
TABLE 7-1. SEISMIC DESIGN PARAMETERS	. 19
TABLE 8-1 FIELD RESISTIVITY RESULTS	. 20

List Of Appendices

FIGURE A-1 EXPLORATION LOCATION PLAN	A
FIGURE A-3 TO A-6 SUBSURFACE PROFILES	A
KEY TO BORING LOGS	В
30RING LOGS	В
PRESSUREMETER TEST RESULTS	В
ELECTRICAL RESISTIVITY TEST RESULTS	В
ABORATORY TEST RESULTS	C

1. PURPOSE AND SCOPE OF STUDY

This report presents the results of Yeh and Associates, Inc. (Yeh) geotechnical engineering study for the proposed Fox Run substation in Monument, Colorado. Figure 1 shows the approximate location of the project site.

Figure 1. Project Location

The purpose of our study was to evaluate the subsurface conditions at the project site and provide geotechnical engineering recommendations for design and construction of the proposed substation project.

This report has been prepared in general accordance with our proposal for geotechnical engineering services, dated June 30, 2021. Our scope of services consisted of the following:

- Review available mapped geology at the site.
- Conduct a site observation and subsurface exploration to evaluate the existing subsurface conditions. The subsurface exploration included 16 geotechnical borings, 6 pressuremeter tests, and 1 soil electrical resistivity test performed at the approximate locations shown on Figure A-1 in Appendix A. The plans provided by Del-Mont Consultants, Inc. are included in Appendix A and present surveyed elevation data and northing and easting coordinates.
- Perform one Wenner 4-point resistivity test with an "a" spacing up to 500 feet
- Perform laboratory testing on soil samples obtained during the subsurface exploration to evaluate the engineering characteristics.
- Prepare a report that presents the results of our geotechnical engineering analyses, encountered site and subsurface conditions, recommendations for the foundation design, LPile and MFAD parameters, and earthwork recommendations.

The conclusions and recommendations presented herein are based on our limited site explorations and the subsurface conditions encountered at our boring locations during the time of our exploration. Our findings, conclusions, and recommendations should not be extrapolated to other areas of the site or used for other projects without our prior review. Additionally, they should not be used if the site has been altered or if more than two years has elapsed since the date of our final report without our prior review to determine if they remain valid.

1.1 Project Understanding

Based on the information provided, it is our understanding that the proposed project is for the design and construction of a new substation, Fox Run Substation, just north of the existing Monument Substation. The project is located in Monument, Colorado. We anticipate that site grading (cut and fill) of up to 2 feet will be required to achieve the final grade.

If the proposed construction is different than as described above, we should be contacted and provided the opportunity to evaluate our recommendations presented herein and evaluate if they remain valid based on the proposed construction.

2. SUBSURFACE EXPLORATION

2.1 Field Exploration

Our field exploration program consisted of advancing 16 borings to 30 feet below ground surface (BGS), one test pit, one electrical resistivity test, and 6 pressuremeter tests at the approximate locations shown on Figure A-1 in Appendix A. The boring locations were staked on site prior to the start of drilling operations. The plans provided by Del-Mont Consultants, Inc. are included in Appendix A and present surveyed elevation data and northing and easting coordinates. The borings were advanced with a truck-mounted drill rig equipped with both 4-inch diameter solid stem and 6-inch diameter hollow stem, continuous flight augers. Borings were advanced to an approximate depth of 30 feet below the existing ground surface (BGS). For each boring, 4 samples were collected within the upper 10 feet, and then at 5 feet intervals to the terminal depth. Samples were collected by driving either a standard penetration test (SPT) or Modified California (MC) split barrel sampler into the strata with a 140-pound hammer falling 30-inches. Pressuremeter tests were performed within the vicinity of Borings B-1, B-8, B-13, B-16, and the test pit location at selected depths to test the different strata encountered.

The SPT is a 2.0-inch O.D., 1.375-inch I.D. standard split barrel sampler following ASTM D1586. The Modified California (MC) Sampler is a 2.5-inch O.D., 2.0-inch I.D. (1.95-inch I.D. with liners), split barrel sampler with internal liners, following ASTM D3550. The blows required to drive the SPT sampler the final 12-inches is known as the SPT N-value. The MC Sampler "Penetration Resistance" refers to the sum of all blows required to drive the sampler the drive length of 12 inches or portion thereof. The SPT N-value and the MC penetration resistance represent the consistency or relative density the strata.

The boring logs and key to the boring logs are presented in Appendix B.

2.2 Laboratory Testing

Representative soil samples were selected for laboratory testing that was completed following industry standards and consistent with local practice. Laboratory soil testing included the following:

- Natural moisture-density;
- gradation analysis;
- Atterberg limits;
- Swell analysis testing;
- Analytical tests including water soluble sulfates and chlorides, soil resistivity, and pH.

Results of the laboratory tests are shown on the boring logs and are presented in the Laboratory Summary in Appendix C.

3. SITE AND SUBSURFACE CONDITIONS

3.1 Site Conditions

The proposed Fox Run substation project site is located northwest of the intersection of Higby Road and Shahara Road in Monument, Colorado. The project site is bounded to the south by the existing Monument Substation. The area surrounding the project site primarily consists of single-family housing and undeveloped lots. Vegetation consists of native grasses, weeds, and sparse pine trees. The project site is currently undeveloped and grades down from west to east.

Photographs 1 through 5 show the site conditions at the time of our exploration.

Photograph 1. Looking northeast from the southwest corner of proposed substation

Photograph 2. Looking southeast from Boring B-13

Photograph 3. Looking northwest from Boring B-16

Photograph 4. Looking south from Boring B-4

Photograph 5. Looking west from Boring B-12

3.2 Geologic Setting

Review of the "Geologic Map of the Monument Quadrangle, El Paso County, Colorado, Thorson, J.P., and Madole, R.F., Colorado Geological Survey, 2004" indicates that the geology at the project sites consists of the Dawson Formation. This unit consists of alluvial fan and fluvial deposits containing sands, gravels and varying amounts of clay that accumulated at the foot of the growing Rocky Mountain Front Ranges. This unit is characterized by white to light-tan, fine-to-medium grained sandstone that is poorly sorted with high clay content and is known to contain interbeds of thin to very thinly bedded gray claystone and sandy claystone. The geologic units mapped at the project site are presented in Figure 2.

Figure 2. Geologic Setting

3.3 Subsurface Conditions

The subsurface soils encountered in our borings are generally consistent with the mapped geology. Sand, silt, and clay soils were encountered from the surface and extended to the termination depths of approximately 30 feet BGS in the borings. The sand soils encountered were tan, light brown to brown, white, and pale red with a loose to dense relative density. The silt and clay soils were white to tan, moist to dry, and soft to very stiff.

The boring logs in Appendix B present detailed results of our subsurface exploration.

3.4 Groundwater

Groundwater was not observed during drilling operation. Groundwater observations are representative of conditions at the time of our field exploration, and therefore may not be indicative of groundwater levels at other times of the year or at other locations across the site. Groundwater conditions may fluctuate with seasonal precipitation, site grading and improvements, and water level in the nearby drainage ditch and creek.

4. **GEOLOGIC HAZARDS**

The geologic hazards at the site have been evaluated based on the results of the subsurface exploration and laboratory testing, review of pertinent information and publications available for the site. The geologic hazards that are addressed as part of this report include the following items:

Expansive/Collapsible soil and expansive bedrock: Based on the results of the field investigation and laboratory testing, the soils encountered in the borings do not have a swell or collapse potential.

Unstable or potentially unstable slopes: The project site grades from west to east. No unstable slope was observed.

Landslide areas or potential landslide areas: The terrain at the project site and in the vicinity grades down from west to east. No landslide or potential landslide area was observed.

Debris fans: The site is not located on a debris fan and is not subject to debris flow.

Rockfall: The site is not located in a rockfall area.

Subsidence: The site is outside the limits of the known subsidence risk area. There was no underground mining operation identified in this area.

Shallow groundwater tables: Groundwater was not encountered to the termination depth of 30 feet BGS in the test borings. These observations represent groundwater conditions at the time of subsurface exploration and may not be indicative of other times or other locations.

Groundwater springs or seeps: No evidence of springs or seeps was observed on the site during our field exploration.

Flood prone areas: Flood mapping is not available at the time of this report. The project site is not included in current mapping for the 100-year flood hazard map from Federal Emergency Management Agency (FEMA). A 100-year flood has a 1% chance of occurring every year and 39% chance every 50 years.

Collapsing Soils: Laboratory testing did not show the encountered soils having a high collapse potential.

Faults: There are no known faults mapped in the vicinity of the project site.

Steeply dipping bedrock: Based on the map of steeply dipping bedrock prepared by Colorado Geologic Survey in 1999, the site is not within mapped zone of susceptible to differential heave from expansive, steeply dipping bedrock.

Elevated radioactivity: No radon testing was performed on site. However, the proposed development is a substation and has no enclosed building.

Conclusion: Based on the information presented above, the project site is considered to possess a low potential for geologic hazards for the proposed development.

5. CONSTRUCTION RECOMMENDATIONS

Site preparation and earthwork operations should be performed in accordance with applicable codes, safety regulations and other local, state, or federal guidelines. Earthwork on the project should be observed and evaluated by Yeh. The evaluation of earthwork should include observation and testing of engineered fills, subgrade preparation, foundation bearing soils, and other geotechnical conditions exposed during the construction of the project.

5.1 Site Preparation and Grading

Site preparation should begin by stripping and removal of existing vegetation, topsoil, and other deleterious materials from proposed structure areas. Stripped materials consisting of vegetation and organic materials should be wasted from the site or used to revegetate landscaped areas after completion of grading operations. All exposed surfaces should be free of mounds and depressions, which could prevent uniform compaction.

Following initial stripping and grading, all exposed areas which will receive fill or support structures, once properly cleared, should be scarified to a minimum depth of 8 inches, moisture conditioned, and compacted according to Section 5.4 of this report. Following any required undercutting and moisture conditioning, and prior to placement of structural fill, it is recommended that the exposed soil subgrade be proofrolled. Proofrolling of the subgrade aids in identifying soft or disturbed areas. Unsuitable areas identified by the proofrolling operation should be undercut and replaced with structural fill. Proofrolling can be accomplished through use of a fully-loaded, tandem-axle dump truck or similar equipment providing an equivalent subgrade loading.

Suitable structural fill should be placed to design grade as soon as practical after reworking the subgrade to avoid moisture changes in the underlying soils. Any fill materials should be placed on a horizontal plane and placed in loose lifts not to exceed 8-inches in thickness, unless otherwise accepted by Yeh. The moisture content and compaction of subgrade soils and structural fill should be maintained until slab construction or placement of pavement structures.

Based upon the subsurface conditions encountered, subgrade soils exposed during construction are anticipated to be relatively stable. However, the stability of the subgrade may be affected by precipitation, repetitive construction traffic and other factors. If unstable conditions are encountered or develop during construction, stability may be improved by scarifying and drying the subgrade soils. Over excavation of wet zones and replacement with structural fill or crushed rock may be necessary. If areas found to be unsuitable for re-work, additional stabilization will be required. If additional stabilization is required, Yeh should be contacted to evaluate the conditions in field, and a suitable stabilization method can be provided. In addition, any soft and/or wet areas exposed during the excavation may need to be stabilized prior to the placement of new fill and pavement sections to create a stable, firm construction platform. A typical stabilization method may include utilizing gravel with the combination of geo-grid (e.g. Tensar TX160) to create a stable base. Other stabilization methods may also be appropriate.

5.2 Excavation and Trench Construction

Excavations into the on-site soils will encounter a variety of conditions. All excavations must comply with the applicable local, State, and Federal safety regulations, and particularly with the excavation standards of the Occupational Safety and Health Administration (OSHA). Construction site safety, including excavation safety, is the sole responsibility of the Contractor as part of its overall responsibility for the means, methods, and sequencing of construction operations. Yeh's recommendations for excavation support is provided for the Client's sole use in planning the project, in no way do they relieve the Contractor of its responsibility to construct, support, and maintain safe slopes. Under no circumstances should the following recommendations be interpreted to mean that Yeh is assuming responsibility for either construction site safety or the Contractor's activities.

We believe the overburden soil encountered above groundwater level on this site will classify as a Type C material, using OSHA criteria. OSHA requires that unsupported cuts be no steeper than 1½:1 for Type C for unbraced excavations up to 20 feet in height. In general, we believe that these slope ratios will be temporarily stable under unsaturated conditions. Flattened slopes will be required if excavations extended below groundwater, or the slopes will be exposed for an extended period of time. Please note that the Contractor's OSHA-qualified "competent person" must make the actual determination of soil type and allowable sloping in the field.

The soils encountered by the proposed excavations may vary significantly across the site. The preliminary classifications presented above are based solely on the materials encountered in our exploratory test borings. The contractor should verify that similar conditions exist throughout the proposed area of excavation.

As a safety measure, it is recommended that all vehicles and soil piles be kept to a lateral distance equal to at least the depth of the excavation from the crest of the slope. The exposed slope face should be protected against the elements and monitored by the contractor on at least a daily basis.

5.3 Structural Fill Requirements

Based on our laboratory test results, the on-site sand and silt soils may be utilized as structural fill. Additional imported structural fill, if required, should consist of non-expansive granular material meeting the criteria presented in Table 5-1. The onsite sandy soils encountered are suitable for reuse as structural fill.

Gradation Requirements			
Standard Sieve Size	Percent Passing		
2 inch	100		
No. 200	10 - 30		
Plasticity Requirements (Atterberg Limits)			
Liquid Limit	30 or less		
Plasticity Index	6 or less		

We recommend that a qualified representative of Yeh visit the site during excavation and during placement of the structural fill to verify the soils exposed in the excavations are consistent with those encountered during our subsurface exploration and that proper foundation subgrade preparation and placement is performed.

All fill placed on this site should be compacted according to the recommendations in Section 5.4 of this report. Fill to be placed at this site during leveling/grading operations should be placed under controlled conditions. A sample of any imported fill material, if required, should be submitted to our office for approval and testing at least 3 days prior to stockpiling at the site.

5.4 Compaction Requirements

Much of the sand, silty sand, and clayey sand soils encountered during our exploration are suitable for use as structural fill materials provided organics and other deleterious material are removed following section 5.1 above. Table 5-2, below, presents the fill placement criteria.

Structural fill should be placed in level lifts not exceeding 8-inches in loose thickness and compacted to the specified percent compaction to produce a firm and unyielding surface. If field density tests indicate the required percent compaction has not been obtained, the fill material should be reconditioned as necessary and re-compacted to the required percent compaction before placing any additional material.

Fill Location	Material Type	Percent Compaction (ASTM Method)	Moisture Content
Foundation Subgrade Soils	On Site Sandy Soils	95 minimum (ASTM D698)	±2 % of OMC1
	Imported Structural Fill	95 minimum (ASTM D1557)	±2 % of OMC 1
Trench Backfill On Site Sandy Soils		90 minimum (ASTM D698)	0 to +2 % of OMC

Table 5-2 Subgrade Preparation and Fill Placement Criteria

1.OMC = Optimum Moisture Content determined from Proctor Test

5.5 Utility Trench Backfill

On-site soils may be utilized as backfill material in utility trenches provided the backfill is essentially free of plant matter, organic soil, debris, trash, other deleterious matter, and rock particles larger than 2-inches in diameter. Backfill should be placed in lifts of 8-inches or less and compacted with appropriate trench equipment. Utility trench backfill should be compacted as recommended in Section 5.4 of this report.

5.6 Drainage Considerations

Positive drainage should be provided during construction and maintained throughout the life of the proposed project. Proper design of drainage should include prevention of ponding water on or immediately adjacent to the structures. Surface features that could retain water in areas adjacent to the structures should be sealed or eliminated. Backfill against any kind of structure and in utility line trenches should be well compacted and free of all construction debris to reduce the possibility of moisture infiltration and migration. Concentrated runoff should be avoided in areas susceptible to erosion and slope instability. Slopes and other stripped areas should be protected against erosion by re-vegetation or other methods.

5.7 Construction in Wet or Cold Weather

Grading fill, structural fill, or other fill should not be placed on frosted or frozen ground, nor should frozen material be placed as fill. Frozen ground should be allowed to thaw or be completely removed prior to placement of fill. A good practice is to cover the compacted fill with a "blanket" of loose fill to help prevent the compacted fill from freezing.

Concrete structures should not be constructed on frozen soil. Frozen soil should be completely removed from beneath the concrete elements, or thawed, scarified and re-compacted. The amount of time passing between excavation or subgrade preparation and placing concrete should be minimized during freezing conditions to prevent the prepared soils from freezing. Blankets, soil cover, or heating as required may be utilized to prevent the subgrade from freezing.

5.8 Chemical Sulfate Susceptibility and Concrete Type

The concentration of water-soluble sulfates measured in samples obtained from the borings was observed to be from less than 0.001% to .006%. This concentration of water-soluble sulfates represents a Class 0 degree of sulfate attack on concrete exposed to the soils tested. The degree of attack is based on a range of Class 0 (negligible) to Class 3 (very severe) as described in the American Concrete Institute (ACI) Standard 201.2R, "Guide to Durable Concrete".

Sulfate resistant cement in accordance with Section 601.04 of the 2021 CDOT Standard Specifications for Road and Bridge Construction should be utilized for all concrete elements on this project.

5.9 Corrosion Potential

Analytical testing was completed on representative samples from the geotechnical borings. Test results are presented in Table 5-3.

Sample Location	Soil Type	Water Soluble Chlorides (%)	рН	Resistivity (ohm-cm)	Water Soluble Sulfates (%)
B-3 @ 4 ft	Silty Sand	0.0002	7.0	9,308	<0.001
B-6 @ 4 ft	Silty Sand	0.0006	7.2	5,435	0.006
B-11 @ 4 ft	Silty Sand	0.0004	7.1	9,223	<0.001

Corrosion of buried metal is an electrochemical process in which the amount of metal loss due to corrosion is directly proportional to the flow of electrical current (DC) from metal into the soil. As resistivity decreases, the corrosivity of the soil increases. The following table provides a correlation between soil resistivity and corrosivity towards ferrous metal, as recommended by "Underground Corrosion, NBS Circular 579", Melvin Romanoff, 1957.

Resistivity in Ohm-centimeters	Corrosivity Category	
0 to 1,000	Severely Corrosive	
1,000 to 2,000	Corrosive	
2,000 to 10,000	Moderately Corrosive	
Greater than 10,000	Mildly Corrosive	

Table 5-4. Resistivity and Corrosivity Categories

Based on the resistivity test results, the existing soils are anticipated to be moderately corrosive to unprotected iron or steel structures. A qualified corrosion engineer should review this data to determine the appropriate corrosion protection measures at the site.

6. FOUNDATION DESIGN RECOMMENDATIONS

The site appears suitable for the proposed construction based upon geotechnical conditions encountered in the borings. Based on the geotechnical engineering analyses, subsurface exploration, and laboratory test results, we recommend that the structures be supported on a spread footing or a mat foundation system bearing on properly prepared on-site soils, or properly compacted imported structural fill. Design details for shallow foundations are provided following Allowable Stress Design (ASD).

6.1 Spread Footings

The proposed structures may be supported on shallow spread footings or mat foundations, that are founded on properly prepared and compacted structural fill or native sand and clayey sand soils. Footings placed on properly prepared subgrade soils may be designed as follows.

- 1. The maximum allowable bearing pressure for spread footings founded on properly prepared subgrade soils is 3,500 pounds per square foot (psf). The allowable bearing pressure is based on a factor of safety (F.O.S.) of approximately three with respect to shear failure of the foundation bearing materials. A one third increase in the allowable bearing pressure may be used for the maximum allowable bearing pressure for temporary loading conditions including wind or seismic conditions.
- 2. Lateral capacity of the footings may be derived from passive resistance along the vertical face of the footings, and friction between the bottom of the footings and the foundation soils. An allowable passive resistance using an equivalent fluid pressure of 185 pcf (F.O.S. of 2) may be used to calculate passive earth pressure. Passive pressure should be ignored in the upper 30-inches below exposed ground surface. An allowable coefficient of friction of 0.32 (F.O.S. of 1.5) between the bottom of the footings and the on-site/ /structural fill may be used for the sliding resistance.

- 3. For the uplift capacity, it is recommended that the combined weight of the footing plus the soil immediately above it exceeds twice the maximum uplift forces. The weight of the soil immediately above the footings may be designed using a unit weight of 125 pcf.
- 4. All footings should be founded a minimum of 30-inches below the final grade to provide protection against frost penetration. Isolated spread footings should have a minimum width of 18 inches.

Footings should be proportioned to reduce differential foundation movement. Proportioning on the basis of equal total movement is recommended; however, proportioning to relative constant dead load pressure will also reduce differential movement between adjacent footings. Total vertical movement is estimated to be on the order of 1-inch or less. Differential settlement is anticipated to be on the order of ½ to ¾ of the estimated total vertical movement. Additional foundation movements could occur if water from any source infiltrates the foundation soils, therefore, proper drainage should be provided in the design and during construction.

If the soil conditions encountered differ significantly from those presented in this report, supplemental recommendations will be required.

An allowable modulus of subgrade reaction, K_{V1} , of 100 pounds per cubic inch may be used for design of mat foundations. K_{V1} refers to a 1-foot square plate and should be adjusted for actual foundation dimensions using the following equation (B is foundation width in feet):

$$K_{v} = K_{v1} \left(\frac{B+1}{2B}\right)^{2}$$

Footings and foundations should be reinforced as necessary to reduce the potential for distress caused by differential foundation movement. Foundation excavations should be observed by the geotechnical engineer. If the soil conditions encountered differ significantly from those presented in this report, supplemental recommendations will be required.

6.2 Drilled Shaft Foundation System

We understand support towers may be founded on drilled shaft foundations. Tri-State uses the software package MFAD and LPile for foundation analysis and design.

6.2.1 Axial Capacity

The design criteria presented below are recommended for a straight-shaft pier foundation system.

1. Drilled piers founded a minimum of 15 feet below existing ground surface may be designed for an allowable end bearing pressure and side skin friction as presented in Table 6-1.

Matarial	Allowable End Bearing	Allowable Side Skin Friction ^{2,3}		
Material	Capacity (ksf) ¹	Compression (ksf)	Uplift (ksf)	
Sand	6.8	0.85	0.62	
Clay	6.0	0.65	0.55	
Dawson Formation	8.8	0.96	0.77	

Table 6-1. Allowable Drilled Shaft Axial Capacity

¹ Factor of Safety (FOS)= 3

² FOS= 2.5

³ Upper 5 feet should be ignored for side friction.

- 2. For drilled foundations constructed in accordance with the recommendations presented in Table 6-1, total foundation settlement should be less than 1-inch.
- 3. A minimum pier diameter of 18 inches is recommended to facilitate proper cleaning and observation of pier hole. Piers should be spaced apart at least 3 pier diameters from center to center. Piers should be reinforced for their full length designed to resist the deficit between the design dead load on the pier and the uplift pressures acting on the pier perimeter.
- 4. In our experience, the onsite soils can be vulnerable to caving, especially if groundwater is present. The contractor should plan on temporary casing being required to complete the pier holes.
- 5. Pier holes should be properly cleaned prior to placement of concrete. Concrete should be placed in piers the same day they are drilled. Failure to place concrete the day of drilling will normally result in a requirement for lengthening the pier penetration. The presence of groundwater or caving soils may require that concrete be placed immediately after the pier hole drilling is completed. The Contractor should take care to prevent enlargement of the excavation at the tops of piers, which could result in mushrooming of the pier top.
- 6. Concrete utilized in the piers should be a fluid mix with sufficient slump so that it will fill the void between reinforcing steel and the pier hole wall. We recommend the concrete have a minimum slump in the range of 5 to 7 inches. For dry excavation, concrete can be placed by either tremie or free fall methods using hopper or other approved equipment. Wet excavated shafts will require concrete placement using tremie or pumping methods. The tremie pipe should be clean and have a suitable inside diameter for use with the specific concrete mix, but not less than 8 inches. The discharge end of the tremie should allow free radial flow of the concrete and be immersed in concrete and maintain a positive pressure differential at all times during placement to prevent water or slurry intrusion.
- 7. The pier drilling Contractor should mobilize equipment of sufficient size and operating capability to achieve the required penetration into the very dense, cemented sand soils. If refusal is encountered in these materials, the Geotechnical Engineer should evaluate the conditions to establish that true refusal has been met with adequate drilling equipment. A representative of the Geotechnical Engineer should be retained to observe pier drilling operations on a full-time basis.

6.2.2 Lateral Capacity

We understand that computer programs MFAD and LPILE will be used for the design of the drilled pier foundation systems. The following tables present the recommended soil engineering properties for use with MFAD and LPILE. Figure A-3 to A-6 presents a subsurface profile along the Fox Run Substation and the MFAD parameters for each layer. The lateral resistance of the soil should be ignored within the upper 5 feet of the ground surface.

MFAD Parameter Designation	Materials	Total Unit Weight (pcf)	Deformation Modulus, E _P	Ultimate Rock Concrete Bond Strength (ksf)	Friction Angle (°)	Cohesion (psf)
A	Silty SAND	125	1,339 psi	30	0	
В	Clayey SAND	125	1,341 psi	N/A	32	0
С	Sandy Lean CLAY	120	3,114 psi	N/A	0	2,000
D	Sandy SILT	120	850 psi	N/A	0	500
E	Poorly Graded SAND w/ Silt	125	1,068 psi	N/A	32	0

Table 6-2. MFAD Parameters for Design of Drilled Shaft Foundations

Table 6-3. LPILE Parameters for Design of Drilled Shaft Foundations

Materials	Soil Model	Total Unit Weight (pcf)	Soil Modulus K (pci)	Strain Factor, ₅50	Friction Angle (°)	Cohesion (psf)
Sandy Soils	Sand (Reese)	125	90	N/A	32	0
Silty Sand	Sand (Reese	125	25	N/A	30	0
Clay	Stiff Clay	120	N/A	0.007	0	2,000
Silt	Soft Clay	120	N/A	.020	0	500

7. SEISMICITY

No current active faults are known to exist in the immediate vicinity of the proposed project location. Based on the site class definitions from IBC 2015, this site can be categorized as a Site Class D. The project site can be categorized as Risk Category I.

The peak ground acceleration and the short- and long- period spectral acceleration coefficients for a Site Class B (reference site class), site factors for site class D, and site-specific elastic response coefficients were determined using the seismic design maps from the USGS website. The seismic design parameters for the reference site and site class D are shown below.

Ss	Fa	S_{MS} (S_{MS} = $F_a S_{s}$)	S _{DS} (S _{DS} = 2/3 S _{MS})								
0.182	1.6	0.291	0.194								
S ₁	Fv	S _{M1} (S _{M1} = F _v S ₁₎	S _{D1} (S _{D1} = 2/3 S _{M1})								
0.06	0.06 2.4 0.143 0.096										
 The mapped spectral accelerations for short periods (U.S. Geological Survey Web Page, 202 Site coefficient from Table 1613.5.3(1), 2015 IBC 											

Table 7-1. Seismic Design Parameters

S_{MS} = The maximum considered earthquake spectral response accelerations for short periods

S_{DS} = 5-percent damped design spectral response acceleration at short periods

S₁ = The mapped spectral accelerations for 1-second period (U.S. Geological Survey Web Page, 2021)

 F_v = Site coefficient from Table 1613.5.3(2), 2015 IBC

= S_{M1} The maximum considered earthquake spectral response accelerations for 1-second period

5-percent damped design spectral response acceleration at 1-second period

8. IN-SITU SOIL RESISTIVITY TESTING

Field soil resistivity test was performed at the project site of the proposed substation by Mapes In-Situ, Inc. using the Wenner four-point method in accordance with ASTM G57-06. The equipment used was a Terrameter SAS 1000, manufactured by ABEM.

The Wenner method uses four equally-spaced metal probes or electrodes driven into the ground, along a straight line. An alternating current is applied across the outer two probes, and voltage is measured across the inner probes. Using Ohm's Law (R=V/I), the resistance value is calculated. The apparent soil resistivity is the average resistance of the soil mass along the electrical field lines from the ground surface to a depth approximately equal to the distance between probes, and calculated as following:

$\rho = A 2 \pi R$

Where: ρ = apparent soil resistivity (ohm-cm)

A = distance between the electrodes (cm)

R = measured resistance (ohms)

 π = constant pi (3.1416)

Resistance measurements were conducted with probe spacings of 2, 3, 5, 7, 10, 20, 30, 50, 70,100, 200, 300, and 500 feet in the NW-SE and NE-SW orientations. The probes used in the field soil resistivity tests are metal probes with a diameter of 0.375-inch, and height of 18-inch. The probes were driven into the ground with a penetration of 1.5, 3, 6, 9, and 12 inches, depending on the "A" spacing length. The Terrameter SAS 1000 resistivity meter emits a 200 mA direct current four (4) separate times to produce 4 readings during the measurement and the averaged values are recorded. The results of the field resistivity tests are presented in the table below and in Appendix B.

"~~" ~~ `	NW-SE	Line	NE-SW Line				
"A" Spacing (feet)	Field Resistance (ohm)	Apparent Resistivity (ohm-cm)	Field Resistance (ohm)	Apparent Resistivity (ohm-cm)			
2	78.996	30,255	72.614	27,811			
3	44.925	25,809	43.917	25,230			
5	19.364	18,800	19.396	18,572			
7	15.529	16,795	12.230	16,394			
10	7.950	15,223	7.709	14,764			
20	3.354	12,844	3.220	12,333			
30	2.119	12,173	2.029	11,654			
50	1.387	13,277	1.347	12,896			
70	1.082	14,503	1.071	14,354			
100	0.840	16,093	0.815	15,616			
200	0.422	16,161	0.431	16,508			
300	*	*	0.225	12,950			
500	*	*	*	*			

Table 8-1 Field Resistivity Results

* Obstructed by property fence line

9. LIMITATIONS

The findings and recommendations presented in this report are based upon data obtained from borings, field observations, laboratory testing, our understanding of proposed construction, and other sources of information referenced in this report. It is possible that subsurface conditions may vary between or beyond the locations explored. The nature and extent of such variations may not become evident until construction. If during construction conditions appear to be different from those described herein, Yeh should be advised and provided the opportunity to observe and evaluate those conditions and provide additional recommendations, as necessary. Yeh should also be contacted if the scope of construction changes from that generally described within this report. The conclusions and recommendations contained in this report shall not be considered valid unless Yeh reviews all proposed construction changes and either verifies or modifies the conclusions of this report in writing.

This report was prepared in in a manner consistent with that level of care and skill ordinarily exercised by other members of the profession practicing in the same locality, under similar conditions and at the date the services are provided. Yeh makes no other representation, guarantee, or warranty, express or implied, regarding the services, communication (oral or written), report, opinion, or instrument of service provided.

This report may be used only by the Client and the registered design professional in responsible charge and only for the purposes stated for this specific engagement within a reasonable time from its issuance, but in no event later than two (2) years from the date of the report.

Appendix A

FIGURE A-1 EXPLORATION LOCATION PLAN

FIGURE A-3 TO A-6 SUBSURFACE PROFILES

Point Table											
Point #	Northing	Easting	Elevation	Raw Description							
25000	1455857.301	3203913.800	7466.83	BH1							
25001	1455857.301	3204003.800	7462.87	BH2							
25002	1455857.301	3204093.800	7457.02	BH3							
25003	1465857.301	3204183.800	7450.52	BH4							
25004	1455782.301	3203913.800	7468.15	BH5							
25005	1455782.301	3204003.800	7463.54	BH6							
25006	1455782.301	3204093.800	7457.10	BH7							
25007	1455782.301	3204183.800	7451.11	BH8							
25008	1455707.301	3203913.800	7469.08	6H9							
25009	1455707.301	3204003.800	7464.01	BH10							
25010	1455707.301	3204093.800	7457.65	BH11							
25011	1455707.301	3204183.800	7451.81	BH12							
25012	1455632.301	3203913.800	7469.07	BH13							
25013	1455632.301	3204003.800	7463.92	BH14							
25014	1455632.301	3204093.800	7457.96	BH15							
25015	1455632.301	3204183.800	7451.19	BH16							
25016	1455707.301	3204048.800	7460.50	TEST PIT							

POINT FILE ~SO21036_2021-07-21_BH_TMC.txt

Appendix B

KEY TO BORING LOGS BORING LOGS PRESSUREMETER TEST RESULTS ELECTRICAL RESISTIVITY TEST RESULTS

Dry Density Sand/Fines Content

Atterberg Limits AASHTO Class.

Notes

ASTM D4318 AASHTO M145 ASTM D3282 ASTM D2487 USCS Class. ASTM D2487 (Fines = % Passing #200 Sieve Sand = % Passing #4 Sieve, but not passing #200 Sieve)

Water-Soluble Sulfate Content (AASHTO T290-91, ASTM D4327) Water-Soluble Chloride Content (AASHTO T291-91, ASTM D4327) S/C UCCS Swell/Collapse (ASTM D4546) Swein/Collapse (ASTM D4546) Unconfined Compressive Strength (Soil - ASTM D2166, Rock - ASTM D7012) Resistance R-Value (ASTM D2844) Direct Shear cohesion (ASTM D3080) Direct Shear friction angle (ASTM D3080) Electrical Resistivity (AASHTO T288-91) Point Load Strength Index (ASTM D5731) **R-Value** DS (C) DS (phi)

1. Visual classifications are in general accordance with ASTM D2488, "Standard Practice for Description and Identification of Soils (Visual-Manual Procedures)".

Chl

Re PtL

2. "Penetration Resistance" on the Boring Logs refers to the uncorrected N value for SPT samples only, as per ASTM D1586. For samples obtained with a Modified California (MC) sampler, drive depth is 12 inches, and "Penetration Resistance" refers to the sum of all blows. Where blow counts were > 50 for the 3rd increment (SPT) or 2nd increment (MC), "Penetration Resistance" combines the last and 2nd-to-last blows and lengths; for other increments with > 50 blows, the blows for the last increment are reported.

3. The Modified California sampler used to obtain samples is a 2.5-inch OD, 2.0-inch ID (1.95-inch ID with liners), split-barrel sampler with internal liners, as per ASTM D3550. Sampler is driven with a 140-pound hammer, dropped 30 inches per blow.

4. "ER" for the hammer is the Reported Calibrated Energy Transfer Ratio for that specific hammer, as provided by the drilling company.

Yeh and Associates, Inc.								ProjectTri-State Fox Run SubstationPAGEName:1 of 1								PAGE 1 of 1			
	Geo	otechni	cal	 Geological 	 Const 	ructio	n Services	Project Numbe	r: 221-2	90			Bo	ring l	Vo.:	B-01			
Boring	Began	: 8/3	/20	21				Total Depth: 30.5	5 ft						١	Neath	er Notes:	Sunny/	64°F
Boring	Compl	eted	: 8/	/3/2021				Ground Elevation: 7466.8 ft						I	nclinat	ion from I	loriz.:	Vertical	
Drilling	Metho	d(s):	So	lid-Stem Aug	ger			Coordinates: N: 1	Coordinates: N: 1455857.3 E: 3203913.8										
	Location: Substation														1	Night V	Vork: 🗌		
Driller:	Drilling	g Eng	line	ers, Inc.									(<u>Groun</u>	dwate	· Levels: N	lot Obs	erved	
Drill Rig	9: CME	E 75 -	Tru	ck				Logged By: B. Ly	kins					Sym	bol oth	-		-	-
Hamme	er: Auto	omati	c (ł	nydraulic), E	R: 80%	6		Final By: J. McCa	all					Da	te	-		-	-
		epth	q	Soil Samp	les							¥	t	it	Atte Lin	rberg nits			
t)	f 5	e/De	etho	Blows	ы С	gy				ure (%)))	ontei	nten	nten			AASHTO	Fiel	d Notes
fee	Jepi	Typ	ک N	per	trati stan	hold	Μ	laterial Descripti	on	oistu	Der	©©(%)	d Co (%)	s Cc (%)	uid nit	ticity ex	& USCS Classifi-	Oth	and her Lab
Ш		mple	<u>lili</u>	6 in / Recoverv	ene	Ľ				ZoZ	Dry	Grav	San	Fine	Lig	Plast	cations	7	Fests
		Sa		recovery	ሻ ሌ							<u> </u>							
-	_		K				0.0 - 0.4 f ∖ (5 in) , da	It. Poorly graded SA rk brown, moist, loos	ND (SP) se.										
7465	_		Ķ	2-3	5		0.4 - 30.5	5 ft. Silty SAND (SM)	, light m dense										
	_						brown, m		in dense.										
	-																		
	5 -		۱J	6-5 ∖ 70% /	11														
	-		ĸ																
- 7460	-		K																
	-		K	7-12 ∖ 70% /	19														
	-		K														A-2-4 (0)		
	10-		Ŵ	9-12 ∖70%	21					1.8		5.0	67.0	28.0	NV	NP	SM	<u>_</u>	
-	-																		
- 7455	-		N																
5-	-		ß																
	-	\mathbf{k}	łţ																
	15-	igtarrow	K	11-11-10 100%	21														
	-		K																
- 7450	-		K																
	-																		
	-	\searrow	1	6.0.7	40														
	20-	\square	1)}	<u> </u>	13														
7445	-		ß																
/445	-		ĸ																
	-		K																
		\bigtriangledown	K	6-6-4	10					7 Q		50	67 0	28.0	NV	NP	A-2-4 (0)	
	25-	\bowtie	K	100%						1.5		0.0	57.0	20.0			SM	-	
7440	-	1																	
	-	1					,												
5	-		}																
	20-	\mathbb{N}	[[]	7-7-10	17														
	30-	\mathbb{Z}	Ľ	L100%			Bo	ottom of Hole at 30.5	ō ft.										
- 7435							Pressure BGS witil	meter test performed	d at 24 ft										
5 <u> </u>	L																		

		Y	eh	ar	nd Asso	ocia	tes,	, Inc. Project Tri-	-Sta	ite F	ox F	Run	Sub	stati	ion		PAGE 1 of 1	
		Geo	otechn	ical	Geological	 Const 	ruction	Project Number: 221-29	90			Bo	ring l	No.:	B-04	L I		
	Boring	Began	: 8/4	/20	21			Total Depth: 30.5 ft						١	Weather Notes: Overcast/57°F			
	Boring	Compl	leted	: 8/	/4/2021			Ground Elevation: 7450.5 ft	Ground Elevation: 7450.5 ft Inclination from Horiz.: Vertical						oriz.: Vertical			
	Drilling	Metho	d(s):	So	lid-Stem Auç	ger		Coordinates: N: 1455857.3 E:	Coordinates: N: 1455857.3 E: 3204183.8									
								Location: Substation	Location: Substation					1	Night V	Vork: 🗌		
	Driller:	Drilling	g Eng	jine	ers, Inc.								Groundwater L			r Levels: No	ot Observed	
	Drill Rig	: CME	E 75 ⁻	Tru	ck			Logged By: B. Lykins					Der	oth	-			
	Hamme	er: Auto	omati	c (ł	nydraulic), El	R: 80%	6	Final By: J. McCall					Da	te			-	
			epth	p	Soil Samp	les			-		ŧ	ıt	Ħ	Atte Lir	rberg nits			
	t) t	fi ti	e/D	ethc	Blows	ce o	gy		ure : (%)))	ontei	nten	nter			AASHTO	Field Notes	
	fee	Jep fee	Typ	D D	per	trat stan	hold	Material Description	oistu	Del (pcf	©(%)	d Cc (%)	S S S S S S	nid nit	ticity	& USCS Classifi-	Other Lab	
	Щ́		mple	<u>lili</u>	6 in /	ene	Lit		Cor⊠	D V	Grav	San	Fine	Lig	last	cations	Tests	
			Sai		recovery	ደ ሌ												
	7450	_		K				4 0.0 - 0.4 ft. Silty SAND (SM) (5 in), dark brown, moist, loose.										
		_	\mathbb{N}]]}	2-2-2	4		0.4 - 23.0 ft. Silty SAND (SM), light										
		_	\vdash	1)}				brown, moist, loose to medium dense.										
ЧЦ Н		_		ß														
		5 -	\mathbb{N}	K	2-2-3	5												
	7445		\vdash	K														
		_		K														
		_		K	5-11	16		·]	6.4			83.0	16.0	NV	NP	A-2-4 (0) SM		
		_			/													
ц Ц Т		10-	\mathbb{N}	115	10-8-8	16												
	7440		\vdash	٢ļ														
2		_		K														
		_		K														
3-		_		K														
		15-	\mathbb{N}	W	3-4-4	8												
	7435		\vdash	1)}			•											
- 5		_		ß														
		_		K														
g		_		K														
		20-	\mathbb{N}	K	5-7-9	16												
פ צר	7430		<u> </u>	H				1										
		_		W														
		_																
		_		ß				23.0 - 30.5 ft. Silty SAND with gravel (SM) (Dawson Formation),										
Š-		25-		K	7-13-20	33	· · · · ·	white-brown with reddish brown, moist, dense.	3.6		8.0	78.0	14.0	NV	NP	A-1-b (0)		
	7425		\vdash	K	100%			+ +										
<u>-</u>		_		K														
3-		_		K			<u> </u>											
5_ -		-		#			<u> </u>											
ם בחק		30-	X		15-21-26	47												
2	7420		~ `	ac I	L100%	I		Bottom of Hole at 30.5 ft.			1			I	1	1		

Geotechnical · Geological · Construction Services Project Number: 221-290 Boring Boring Began: 8/4/2021 Total Depth: 30.5 ft Construction Services	g No.: B-0	8				
Boring Began: 8/4/2021 Total Depth: 30.5 ft		-				
	Weather Notes: Overcas					
Boring Completed: 8/4/2021 Ground Elevation: 7451.1 ft	Ground Elevation: 7451.1 ft Inclination from Horiz.: Vertica					
Drilling Method(s): Solid-Stem Auger Coordinates: N: 1455782.3 E: 3204183.8	Coordinates: N: 1455782.3 E: 3204183.8					
Location: Substation	Night	Night Work: 🔲				
Driller: Drilling Engineers, Inc.	Groundwate	er Levels: Not Observed				
Drill Rig: CME 75 Truck Logged By: B. Lykins Sr	ymbol					
Hammer: Automatic (hydraulic), ER: 80% Final By: J. McCall	Deptin - Date -					
듚 Soil Samples	Atterberg					
	Limits	Field Notes				
A starting		& USCS and				
	, inuit astic	cations Tests				
brown, moist, loose to medium dense.						
$\begin{bmatrix} 5 \\ 100\% \end{bmatrix}$ 2-2-3 5						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.0 21 8	<u>SC</u>				
Image: Second state						
23.0 - 30.5 ft. Sandy lean CLAY (CL)						
25-27-29 56 with reddish brown, moist, stiff. 14.3 1.0 35.0 64	.0 40 26	A-6 (14)				
Bottom of Hole at 30.5 ft.						
Pressuremeter test nerformed at 0 ft						
24 ft BGS within 5 ft radius of B-8						

Orestedial Constraint Project Number: 221-290 Boring No: B-13 Boring Bogan: 83/321 Total Depth: 30.6 ft Weather Notes: Surrey@PT Boring Bogan: 83/321 Ground Eldevation: 7469.1 ft Weather Notes: Surrey@PT Drilling Mitchold): Solid-Starn Ager Coordinates: N: 1455922.5 E: 320313.8 Not! Note: Surrey@PT Driller: Drilling Mitchold): Solid-Starn Ager Logard By: B. Lykins Coordinates: N: 1455922.5 E: 320313.8 Not! Work: Classes Driller: Drill Rig: CME 76 Truck Logard By: B. Lykins Engent Data Asstrop Field N Harmer: Autorbarg Boring Not: Barg Boring Not: Barg Asstrop Field N Diff. Big: Solid Sammer, Solid Sammer, Solid Sammer, N: 145592.5 E: 320313.8 Location: Substation Not! More Classes Not! More Classes Diff. Big: Solid Sammer, So			Y	eh	ar	nd Asso	ocia	tes	, Inc.	Project Name:	Tri	-Sta	ite F	ox F	Run	Sub	stati	on		PAGE 1 of 1
Boring Begar: 8/32021 Total Depth: 30.5 ft Weather Notes: Summission Boring Complete: 8/32021 Ground Elevator:: 7489.1 ft Inclination from Hotz:: Vet Drilling Method(s): Solid-Stem Auger Coordinates:: 1/489.1 ft Inclination from Hotz:: Vet Drilling Method(s): Solid-Stem Auger Coordinates:: 1/489.2 ft Ground Elevator:: 2489.1 ft Inclination from Hotz:: Vet Drilling Engineera, Inc. Drilling Method(s): Solid-Stem Plan Logged By: B. Lykins Inclination from Hotz:: Vet Hammer: Automatic (hydraulic): ER: 00% Final By: J. McCall Inclination from Hotz:: Vet Up (g) Group By: B. Lykins Inclination from Hotz:: Vet Inclination from Hotz:: Vet Image: Solid-Samples Inclination from Hotz:: Vet Inclination from Hotz:: Vet Image: Solid-Samples Inclination from Hotz:: Vet Inclination from Hotz:: Vet Image: Solid-Samples Inclination from Hotz:: Vet Inclination from Hotz:: Vet Image: Solid-Samples Inclination from Hotz:: Vet Inclination from Hotz:: Vet Image: Solid-Samples <			Geo	techn	ical	 Geological 	 Const 	ructio	n Services	Project Number: 22	1-29	90			Во	ring l	No.:	B-13	3	
Borng Complexe: Borng Comp		Boring	Began	: 8/3	/20	21				Total Depth: 30.5 ft							١	Neath	er Notes: S	Sunny/66°F
Drilling Method(s): Solid-Stem Auger Coordinates: N: 1458023 E: 3203913.8 Driller: Drilling Engineers, Inc. Location: Substation Ingel Work: Ingel Wor		Boring	Compl	eted	: 8/	/3/2021				Ground Elevation: 7469.1 ft Inclination from Horiz.: Vertic						oriz.: Vertical				
Location: Substation Material Driller: Driller: <t< td=""><td>1</td><td>Drilling</td><td>Metho</td><td>d(s):</td><td>Sol</td><td>lid-Stem Au</td><td>ger</td><td></td><td></td><td>Coordinates: N: 1455632</td><td>2.3 E:</td><td>3203</td><td>913.8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1	Drilling	Metho	d(s):	Sol	lid-Stem Au	ger			Coordinates: N: 1455632	2.3 E:	3203	913.8							
Drilling: CME 75 Truck Logged By: B. Lykins Groundwater Levels: Not Observe 900 Billing: CME 75 Truck Logged By: B. Lykins Symbol Delivery 100 Billing: CME 75 Truck Logged By: B. Lykins Symbol Delivery Delivery Symbol Delivery Delivery <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Location: Substation</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>Night V</td><td>Vork: 🗌</td><td></td></t<>										Location: Substation							1	Night V	Vork: 🗌	
Drift Rg: CMC 25 Truck Logged By: L lykins Daritie Daritie Daritie Hammer: Automatic (hydraulic), ER: 80% Final By: J. McCall Daritie Darit Daritie Darit		Driller:	Drilling	g Eng	jine	ers, Inc.										(Groun	dwate	r Levels: No	ot Observed
Hammer: Automatic (typeratic), EX 80% Enal By: J. McLail Date - - 0<		Drill Rig: CME 75 Truck Logged By: B. Lykins Symbol Hammer: Automatic (bydraulic) EB: 80% Einal By: L McCall Depth -																		
Sold Samples Sold Samples Sold Samples Address Sold Samples Blows Egg brief Material Description Image brief Image brief Image brief ASHTO Field N AASHTO Field N AASHTO Image brief		Hamme	er: Auto	omati	c (h	nydraulic), E	R: 80%	6 		Final By: J. McCall				1		Da	te	-		
000000000000000000000000000000000000				epth	g	Soil Samp	les					-		ŧ	ţ	Ŧ	Atte Lir	rberg nits		
⁶ 0 0 ⁶ 0		tion (†	도 도 도	D/ec	letho	Blows	ion Ce	ogy				ure t (%)	nsity)	onte))	onter)			AASHTO	Field Notes
III III III IIII IIII IIIII IIIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		eva (fee	Jep (fee	Type	ng N	per	etrat star	tho	N	Material Description		loist nten	/ De (pcf	el C %	Ŭ⊗ ₽	ss Co	nit uid	ticit) lex	Classifi-	Other Lab
7465 5 6.5 11 8.0 - 13.0 ft. Stardy SAND (SM), light brown, moist, loose. 11.7 10 40.0 59.0 NV NP A-4 (0) ML 7465 5 6.5 10 8.0 - 13.0 ft. Sandy SILT (ML), light brown, moist, loose. 11.7 10 40.0 59.0 NV NP A-4 (0) ML 7465 5 6.5 10 8.0 - 13.0 ft. Sandy SILT (ML), light brown, moist, medium dense. 11.7 10 40.0 59.0 NV NP A-4 (0) ML 7455 15 8.40.10 18 113.0 - 29.5 ft. Clayey SAND (SC), light brown, moist, medium dense. 11.7 10.0 40.0 59.0 NV NP A-4 (0) ML 7455 15 8.40.12 12.0 - 29.5 ft. Clayey SAND (SC), light brown, moist, medium dense. 11.7 10.0 40.0 59.0 NV NP A-4 (0) ML 7450 20 8.10.12 22 - with gravel below 20 ft. 4.9 3.0 77.0 20.0 32 21 A-2-6 (1) SC 7440 25 5.6.7 13 - with gravel below 20 ft. 4.9 3.0 77.0 20.0 32 21 A-2-6 (1) SC 7440 4.3.4 <t< td=""><td></td><td>Ē</td><td></td><td>mple</td><td>Drilli</td><td>6 IN / Recoverv</td><td>ene</td><td><u> </u></td><td></td><td></td><td></td><td>≥ ° C</td><td>D</td><td>Grav</td><td>San</td><td>Fine</td><td>Li</td><td>Plas</td><td>cations</td><td>Tests</td></t<>		Ē		mple	Drilli	6 IN / Recoverv	ene	<u> </u>				≥ ° C	D	Grav	San	Fine	Li	Plas	cations	Tests
7465 5 8 100% 10 0.1 - 3.0 ft. Sinty SAND (SM), light 7465 5 6.5 11 100% 11 8.0 - 13.0 ft. Sandy SILT (ML), light 7460 10 3.5-8 13 8.0 - 13.0 ft. Sandy SILT (ML), light 11.7 7460 10 3.5-8 13 13.0 - 29.5 ft. Clayey SAND (SC), light brown, moist, medium dense. 11.7 7455 15 8-8-10 18 13.0 - 29.5 ft. Clayey SAND (SC), light brown, moist, medium dense. 11.7 7450 20 8-10-12 22 - with gravel below 20 ft. 4.9 3.0 77.0 20.0 32 21 A-26 (1) 7445 25 5-6-7 13 - with gravel below 20 ft. 4.9 3.0 77.0 20.0 32 21 A-26 (1) 7440 - 4.3.4 7 28.5 9.5 ft. Lean Cl AV (1) crew 4.9 3.0 77.0 20.0 32 21 A-26 (1) 7440 - 4.3.4 7 28.5 9.5 ft. Lean Cl AV (1) crew 4.9 4.9 4.9 4.9 4.9 4.9 <td< td=""><td>2</td><td></td><td></td><td>Sa</td><td></td><td>,</td><td>מ מי</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	2			Sa		,	מ מי													
7465 2-3-5 8 1 0.4-8.0 ft. Sity SAND (SM), light brown, moist, loose. 7465 5 -			-		KI			<u>Ì</u>	brown, m	moist, loose.										
7465 5 10 10 8.0 - 13.0 ft. Sandy Sil.T (ML), light brown, moist, medium dense. 7460 10 3-5-8 13 100% moist, medium dense. 11.7 7455 15 8-8-10 18 13.0 - 29.5 ft. Clayey SAND (SC), light brown, moist, medium dense. 11.7 7455 15 8-8-10 18 13.0 - 29.5 ft. Clayey SAND (SC), light brown, moist, medium dense. 11.7 7456 20 8-8-10 18 190% moist, medium dense. 11.7 7457 15 8-8-10 18	רנ - פרנ		-	Х	K	2-3-5	8		0.4 - 8.0 f brown, m) ft. Silty SAND (SM), light moist, loose.										
7466 5 6.5 11 7460 6.5 10 8.0 - 13.0 ft. Sandy SiLT (ML), light brown, moist, medium dense. 7460 10 3.5.8 13 7455 15 8.8-10 18 11.7 1.0 4.0 59.0 NV NP 7455 15 8.8-10 18 13.0 - 29.5 ft. Clayey SAND (SC), light brown, moist, medium dense. 11.7 1.0 4.0 59.0 NV NP A-4 (0) 7450 20 8.8-10-12 22 - with gravel below 20 ft. 4.9 3.0 77.0 20.0 32 21 A-2.6 (1) 7440 25 5.6-7, 13 - with gravel below 20 ft. 4.9 1.0			-		N															
5		7465	-)}	0.5														
7460			5 -)}	6-5 ∖70%/	11													
7460 4-5-5 10 10 3-5-8 13 10 3-5-8 13 10 3-5-8 13 10 4-5-5 10 10 3-5-8 13 100% 10 10.00% 11.7 10.00% 11.7 11.7 10.00% 10.00% 15 8-8-10 18 100% 18 100% 100% 18 100% 100% 18 100% 100% 18 100% 100% 18 100% 100% 18 100% 100% 18 100% 100% 18 100% 100% 18 100% 100% 18 100% 100% 18 100% 100% 100% 10 100% 10 10 100% 10 10 100% 10 10 100% 10 10 100%	- 6		-		ß															
-7460 -4.5.5 10			-		ſ															
7460 10 3-5-8 13 100% 13 100% 11.7 10 40.0 59.0 NV NP A-4 (0) 7455 15 8-8-10 18 13.0 - 29.5 ft. Clayey SAND (SC). 100% 14 10.0 <td< td=""><td>707</td><td></td><td>- </td><td>Х</td><td>K</td><td>4-5-5 100%</td><td>10</td><td></td><td>8.0 - 13.0</td><td>.0 ft. Sandy SILT (ML), light</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	707		-	Х	K	4-5-5 100%	10		8.0 - 13.0	.0 ft. Sandy SILT (ML), light	_									
10-3 3-5-8 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14		7460	-		K				brown, m	moist, medium dense.	ŀ								A-4 (0)	
7455 15 18 13.0 - 29.5 ft. Clayey SAND (SC), light brown, moist, medium dense. 7450 20 8-8-10, 100% 18 8-8-10, 100% 18 - with gravel below 20 ft. 4.9 3.0 77.0 20.0 32 21 A-2-6 (1) - with gravel below 20 ft. - with gravel below 20 ft.	5-		10-	\land	K	3-5-8 100%	13					11.7		1.0	40.0	59.0	NV	NP	ML	
7455 15 13.0 - 29.5 ft. Clayey SAND (SC), light brown, moist, medium dense. 7450 8-8-10 18 15 8-8-10, 18 100% -with gravel below 20 ft. -with gravel below 20 ft. 3.0 7445 25 25 5-6-7 13 -with gravel below 20 ft. -7440 -with gravel below 20 ft.			-		K															
7455 15 18 13.0 - 29.5 ft. Clayey SAND (SC), light brown, moist, medium dense. 7450 20 8-8-10 18 8-8-10 18	-		-		}															
7455 15 15 8-8-10 18 7450 20 8-10-12 22 8-10-12 22 - with gravel below 20 ft. 4.9 7445 25 5-6-7 13 7440 - - - 7440 - - - 7440 - - - 7440 - - - 7440 - - - 7440 - - - 7440 - - - 7440 - - - 7440 - - - 7440 - - - 7440 - - - 7440 - - - 100% - - - - 100% - - - - 100% - - - - 100% - - - - 100% - - - -			-						13.0 - 29.	9.5 ft. Clayey SAND (SC),										
15 100% 10 7450 20 8-10-12 22 - 7450 20 3.0 77.0 20.0 32 21 A-2-6 (1) - 7445 25 5-6-7 13 100% 13 100% 14 100% 14 - 7440 -	-	7455	-	\bigtriangledown	1	8 8 10	19		light brov	own, moist, medium dense.										
-7450 = -7450 = -7445 = -7445 = -7440 = -740 = -7440			15-	\square	{}	<u>100%</u>	10													
-7450 20 -7450 -7445 25 -7440 -7440 -7440 	 -		-		K															
-7450 20 -7445 25 -7440 -7440 -7440 -7440 -7440 -7440 -7440 -7440 -7440 -7440 -7440 -7440 -7440 -7440 -7440 -7440 -7445 -7445 -7445 -7445 -7445 -7445 -7445 -74	5		-		K															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		-		K															
- 7445 - 7440 - 7445 - 745 - 74		7450		\mathbf{N}	171	8-10-12	22				ſ	4.9		3.0	77.0	20.0	32	21	A-2-6 (1)	
7445 = 25 = 5.6.7 = 13 $5.6.7 = 13$ $7440 = 4.34 = 7$ $29.5 = 30.5 ft lean CLAY (CL) grav$			20-	\succ	Y	100%			- with gra	avel below 20 ft.	ŀ								SC	
7445 $25 - 5-6-7$ 13 100% $100%$ $10%$ $10%$ $100%$ $10%$ $10%$ $100%$ $10%$ $100%$ $100%$ $10%$																				
7445 25 - 13 5-6-7 13 100% 7440 4-34 7 29.5 - 30.5 ft Leen CLAY (CL) gray					1															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7115	_		ß															
	5	7445	25-	\mathbb{N}	K	5-6-7	13													
				\sim																
7440 - 7440			-		KI				1											
			-		K															
		7440	-	\vdash	JY.															
	102 51		30-	X	JV	4-3-4	7		29.5 - 30.	0.5 ft. Lean CLAY (CL), gray,	,									
2 Bottom of Hole at 30.5 ft.				<u> </u>					B	Bottom of Hole at 30.5 ft.				•			•			
Pressuremeter test performed at 13 ft BGS within 5 ft radius of B-13									Pressure BGS with	emeter test performed at 13 thin <u>5 ft rad</u> ius of B-13	ft									

		PRESS	JREMETER	RTEST		
Project:	Fox Run Substation	Boring ID:		BH-1	Test Depth (ft):	25.0
City, State:	Monument, CO	Mapes In-Situ No:	P2	021024	Client:	Yeh & Associates, Inc.
8/4/21	Calibration	date:	8/4/21	Pressure Ca	libration ID:	PMT CAP - 17(1)
001A17002	Probe body	/ SN:	001 17017	Volume Cali	ibration ID:	PMT CAV - 17(1)
TEXAM ^e	Probe size	(mm):	70	Calibration	coefficient, a (cm ³ /kPa):	0.011733
Mud/Wash Rotar	y Calibration	tube I.D. (mm):	76.2	Calibration	coefficient, b (cm ³ /kPa):	6.91E-05
0.33	Calibration	tube O.D. (mm):	101.6	Calibration	coefficient, c (cm ³ /kPa):	0.011664
1/V vs. P Tubing len		gth (m): 50		Initial volum	ne of probe, V ₀ (cm ³):	1703
	Project: City, State: 8/4/21 001A17002 TEXAM ^e Mud/Wash Rotar 0.33 1/V vs. P	Project: Fox Run Substation City, State: Monument, CO 8/4/21 Calibration 001A17002 Probe body TEXAM ^e Probe size Mud/Wash Rotary Calibration 0.33 Calibration 1/V vs. P Tubing lenge	Monument, CO Boring ID: 8/4/21 Calibration date: 001A17002 Probe body SN: TEXAM ^e Probe size (mm): Mud/Wash Rotary Calibration tube I.D. (mm): 0.33 Calibration tube O.D. (mm): 1/V vs. P Tubing length (m):	Project: Fox Run Substion Boring ID: City, State: Monument, CO Mapes In-Situ No: P2 8/4/21 Calibration date: 8/4/21 001A17002 Probe body SN: 001 17017 TEXAM ^e Probe size (mm): 70 Mud/Wash Rotary Calibration tube I.D. (mm): 76.2 0.33 Calibration tube O.D. (mm): 101.6 1/V vs. P Tubing length (m): 50	Project: Fox Run Subston Boring ID: BH-1 City, State: Monument, CO Mapes In-Situ No: P2021024 8/4/21 Calibration date: 8/4/21 Pressure Calibration date: 001A17002 Probe body SN: 001 17017 Volume Calibration Mud/Wash Rotary Mud/Wash Rotary Calibration tube I.D. (mm): 76.2 Calibration calibration tube 0.D. (mm): 101.6 Calibration calibration calibration calibration calibration calibration calibration calibration tube 0.D. (mm): 50 Initial volum	Project: Fox Run Substation Boring ID: BH-1 Test Depth (ft): City, State: Monument, C Mapes In-Situ No: P2021024 Client: 8/4/21 Calibration date: 8/4/21 Pressure Calibration ID: 001A17002 Probe body SN: 001 17017 Volume Calibration ID: TEXAM ^e Probe size (mm): 70 Calibration coefficient, a (cm ³ /kPa): Mud/Wash Rotary Calibration tube I.D. (mm): 76.2 Calibration coefficient, b (cm ³ /kPa): 0.33 Calibration tube O.D. (mm): 101.6 Calibration coefficient, c (cm ³ /kPa): 1/V vs. P Tubing length (m): 50 Initial volume of probe, V ₀ (cm ³):

ſ

ſ

¹ Ultimate Pressure, P_L, is interpreted by extrapolating the data points in the plastic phase of the curve to 2 times the initial volume of the test zone, and reading the corresponding pressure. Accordingly, caution must be used in regards to the use of Ultimate Pressure values, particularly when a small quantity of data points are collected in the plastic phase, or when deformation is minimal due to the stiffness of the material.

		PRESS	JREMETEI	R TEST		
Project:	Fox Run Substation	Boring ID:		BH-8	Test Depth (ft):	9.0
City, State:	Monument, CO	Mapes In-Situ No:	P2	2021024	Client:	Yeh & Associates, Inc.
8/4/21	Calibration	date:	8/4/21	Pressure Ca	libration ID:	PMT CAP - 17(1)
001A17002	Probe body	/ SN:	001 17017	Volume Cali	bration ID:	PMT CAV - 17(1)
TEXAM ^e	Probe size	(mm):	70	Calibration	coefficient, a (cm ³ /kPa):	0.011733
Shelby Tube Samp	ling Calibration	tube I.D. (mm):	76.2	Calibration	coefficient, b (cm ³ /kPa):	6.91E-05
0.33	Calibration	tube O.D. (mm):	101.6	Calibration	coefficient, c (cm ³ /kPa):	0.011664
1/V vs. P Tubing le		gth (m):	50	Initial volum	ne of probe, V ₀ (cm ³):	1703
	Project: City, State: 8/4/21 001A17002 TEXAM ^e Shelby Tube Samp 0.33 1/V vs. P	Project: Fox Run Substation City, State: Monument, CO 8/4/21 Calibration 001A17002 Probe body TEXAM ^e Probe size Shelby Tube Sampling Calibration 0.33 Calibration 1/V vs. P Tubing leng	Project: Fox Run Substation Boring ID: City, State: Monument, CO Mapes In-Situ No: 8/4/21 Calibration date: 001A17002 Probe body SN: TEXAM ^e Probe size (mm): Shelby Tube Sampling Calibration tube I.D. (mm): 0.33 Calibration tube O.D. (mm): 1/V vs. P Tubing length (m):	Project: Fox Run Substation Boring ID: City, State: Monument, CO Mapes In-Situ No: P2 8/4/21 Calibration date: 8/4/21 001A17002 Probe body SN: 00117017 TEXAM ^e Probe size (mm): 70 Shelby Tube Sampling Calibration tube LD. (mm): 76.2 0.33 Calibration tube O.D. (mm): 101.6 1/V vs. P Tubing length (m): 50	Project: Fox Run Substation Boring ID: BH-8 City, State: Monument, CO Mapes In-Situ No: P2021024 8/4/21 Calibration date: 8/4/21 Pressure Calibration 8/4/21 Calibration date: 8/4/21 Volume Calibration TEXAM ^e Probe body SN: 001 17017 Volume Calibration Shelby Tube Sampling Calibration tube I.D. (mm): 70. Calibration 0.33 Calibration tube O.D. (mm): 101.6 Calibration 1/V vs. P Tubing length (m): 50 Initial volum	PRESSUREMETER TESS Project: Fox Run Substation Boring ID: BH-8 Test Depth (ft): City, State: Monument, CO Mapes In-Situ No: P2021024 Client: 8/4/21 Calibration date: 8/4/21 Pressure Calibration ID: 001A17002 Probe body SN: 001 17017 Volume Calibration ID: TEXAM ^e Probe size (mm): 70 Calibration coefficient, a (cm ³ /kPa): Shelby Tube Sampling Calibration tube I.D. (mm): 76.2 Calibration coefficient, b (cm ³ /kPa): 0.33 Calibration tube O.D. (mm): 101.6 Calibration coefficient, c (cm ³ /kPa): 1/V vs. P Tubing length (m): 50 Initial volume of probe, V ₀ (cm ³):

Raw Te	est Data	Pressure (Calibration	Volume C	alibration	(Corrected Dat	a		
Volume	Pressure	Volume	Pressure	Volume	Pressure	Volume	$\Delta R/R_{\circ}$	Pressure	1000	
cm ³	kPa	cm ³	kPa	cm ³	kPa	cm ³	%	kPa		
0.0	-25	0.0	-3	0.0	8	0.0	0.00	1		
83.5	-18	81.2	6	369.1	505	83.7	2.43	-1	900	////////////////////////////////////
161.5	-11	161.1	12	390.6	1017	161.6	4.64	0	-	
240.9	-1	240.8	17	402.6	1516	240.9	6.84	5	008	
280.5	9	320.8	19	411.7	1962	280.4	7.92	14	-	
320.7	21	400.6	23	422.0	2512	320.5	9.01	25	-	
360.6	39	480.3	25	430.2	3000	360.1	10.07	41	- 100	
400.6	65	560.2	26	437.7	3498	399.9	11.12	65	-	
440.5	99 14E	722.4	27	444.0	3999	439.3	12.10	98	-	
 	145	722.4 902 E	29	450.9	4337	478.9 E17.7	14.10	145	600	
559.9	256	882.6	31	460.8	5505	556.9	15 20	253	<u>a</u>	
600.9	319	963.0	32	465.4	6000	597.2	16.22	316	Υ ×	·····
641.2	380	1043.6	33			636.7	17.21	376	sure sure	
681.9	439	1122.6	34			676.7	18.21	434	Pres	1
721.9	493	1205.3	34			716.2	19.19	487	004	
761.8	541	1282.3	35			755.5	20.15	535	1	*
802.0	585	1362.6	36			795.1	21.12	578]	
882.4	662	1442.7	37			874.6	23.03	654	300	
962.6	727					954.1	24.91	718		
1042.1	780					1033.0	26.75	770		
1122.2	828					1112.5	28.58	817	200	
1202.7	867					1192.6	30.40	856		
1282.1	901					1271.6	32.17	889	00	Corrected Data
									100	
									-	Elastic Boundaries
									- 0	
									-	0 200 400 600 800 1000 1200 1400
									1	Volume (cm³)
									_	Interpreted Test Results
									Defermetic	
									Deformatio	n Modulus, E _p 9,245 KPa 1,341 psi
									Reload Mod	dulus, E _R n.a. kPa n.a. psi
									- Viold Dra	
									- TIEIU Pressu	ure, r _F 570 Kra 55 PSI
									Ultimate Pr	ressure, P _L ¹ 1,112 kPa 161 psi
									E _P / P _L	8.3
									P _L / P _F	3.0

Test performed in a dry borehole.

5

¹ Ultimate Pressure, P_L is interpreted by extrapolating the data points in the plastic phase of the curve to 2 times the initial volume of the test zone, and reading the corresponding pressure. Accordingly, caution must be used in regards to the use of Ultimate Pressure values, particularly when a small quantity of data points are collected in the plastic phase, or when deformation is minimal due to the stiffness of the material.

APES	PRESSUREMETER TEST										
SJ -	Project:	Fox Run Substation	Boring ID:		BH-8	Test Depth (ft):	24.0				
TIN-SITU	City, State:	Monument, CO	Mapes In-Situ No:	P	2021024	Client:	Yeh & Associates, Inc.				
Test date:	8/4/21	Calibration	date:	8/4/21	Pressure Ca	libration ID:	PMT CAP - 17(1)				
Pressuremeter SN:	001A17002	Probe body	/ SN:	001 17017	Volume Cal	ibration ID:	PMT CAV - 17(1)				
Pressuremeter model:	TEXAM ^e	Probe size	(mm):	70	Calibration	coefficient, a (cm ³ /kPa):	0.011733				
Test zone drilling method:	Mud/Wash Rotar	y Calibration	tube I.D. (mm):	76.2	Calibration	coefficient, b (cm ³ /kPa):	6.91E-05				
Poisson's Ratio of soil/rock:	0.33	Calibration	tube O.D. (mm):	101.6	Calibration	coefficient, c (cm ³ /kPa):	0.011664				
Method for estimating $P_{L}\!\!:$	1/V vs. P	Tubing leng	gth (m):	50	Initial volun	ne of probe, V ₀ (cm ³):	1703				

ſ

5

¹ Ultimate Pressure, P_U is interpreted by extrapolating the data points in the plastic phase of the curve to 2 times the initial volume of the test zone, and reading the corresponding pressure. Accordingly, caution must be used in regards to the use of Ultimate Pressure values, particularly when a small quantity of data points are collected in the plastic phase, or when deformation is minimal due to the stiffness of the material.

PRESSUREMETER TEST										
Project:	Fox Run Substation	Boring ID:		BH-13	Test Depth (ft):	9.0				
City, State:	Monument, CO	Mapes In-Situ No:	P.	2021024	Client:	Yeh & Associates, Inc.				
8/4/21	Calibration	date:	8/4/21	Pressure Ca	libration ID:	PMT CAP - 17(1)				
001A17002	Probe body	/ SN:	001 17017	Volume Cal	ibration ID:	PMT CAV - 17(1)				
TEXAM ^e	Probe size	(mm):	70	Calibration	coefficient, a (cm ³ /kPa):	0.011733				
Shelby Tube Samp	ling Calibration	tube I.D. (mm):	76.2	Calibration	coefficient, b (cm ³ /kPa):	6.91E-05				
0.33	Calibration	tube O.D. (mm):	101.6	Calibration	coefficient, c (cm ³ /kPa):	0.011664				
1/V vs. P	Tubing leng	gth (m):	50	Initial volun	ne of probe, V ₀ (cm ³):	1703				
	Project: City, State: 8/4/21 001A17002 TEXAM ^e Shelby Tube Samp 0.33 1/V vs. P	Project: Fox Run Substation City, State: Monument, CO 8/4/21 Calibration 001A17002 Probe body TEXAM ^e Probe size Shelby Tube Sampling Calibration 0.33 Calibration 1/V vs. P Tubing leng	Project: Fox Run Substation Boring ID: City, State: Monument, CO Mapes In-Situ No: 8/4/21 Calibration date: 001A17002 Probe body SN: TEXAM ^e Probe size (mm): Shelby Tube Sampling Calibration tube I.D. (mm): 0.33 Calibration tube O.D. (mm): 1/V vs. P Tubing length (m):	Project: Fox Run Substation Boring ID: City, State: Monument, CO Mapes In-Situ No: P 8/4/21 Calibration date: 8/4/21 001A17002 Probe body SN: 00117017 TEXAM ^e Probe size (mm): 70 Shelby Tube Sampling Calibration tube I.D. (mm): 76.2 0.33 Calibration tube O.D. (mm): 101.6 1/V vs. P Tubing length (m): 50	Project: Fox Run Substation Boring ID: BH-13 City, State: Monument, CO Mapes In-Situ No: P2021024 8/4/21 Calibration date: 8/4/21 Pressure Calibration 001A17002 Probe body SN: 001 17017 Volume Calibration TEXAM ^e Probe size (mm): 70 Calibration Shelby Tube Sampling Calibration tube I.D. (mm): 76.2 Calibration 0.33 Calibration tube O.D. (mm): 101.6 Calibration 1/V vs. P Tubing length (m): 50 Initial volum	PRESSUREMETER TESS Project: Fox Run Substation Boring ID: BH-13 Test Depth (ft): City, State: Monument, CO Mapes In-Situ No: P2021024 Client: 8/4/21 Calibration date: 8/4/21 Pressure Calibration ID: 001A17002 Probe body SN: 001 17017 Volume Calibration ID: TEXAM ^e Probe size (mm): 70 Calibration coefficient, a (cm ³ /kPa): Shelby Tube Sampling Calibration tube I.D. (mm): 76.2 Calibration coefficient, b (cm ³ /kPa): 0.33 Calibration tube O.D. (mm): 101.6 Calibration coefficient, c (cm ³ /kPa): 1/V vs. P Tubing length (m): 50 Initial volume of probe, V ₀ (cm ³):				

Raw Te	est Data	Pressure (Calibration	Volume C	Calibration	(Corrected Dat	a		
Volume	Pressure	Volume	Pressure	Volume	Pressure	Volume	$\Delta R/R_{\circ}$	Pressure	700	
cm ³	kPa	cm ³	kPa	cm ³	kPa	cm ³	%	kPa]	
0.0	-24	0.0	-3	0.0	8	0.0	0.00	2		
81.5	-15	81.2	6	369.1	505	81.7	2.37	2		
161.6	-4	161.1	12	390.6	1017	161.6	4.64	7	600	
201.5	2	240.8	17	402.6	1516	201.5	5.75	11		
242.2	13	320.8	19	411.7	1962	242.0	6.87	19		/
281.2	27	400.6	23	422.0	2512	280.8	7.93	32		
320.9	43	480.3	25	430.2	3000	320.3	9.00	47	500	
361.4	64	560.2	26	437.7	3498	360.6	10.08	66		
401.0	90	642.0	27	444.6	3999	399.9	11.12	90		*
440.8	118	722.4	29	450.9	4557	439.5	12.16	117	-	
480.6	151	802.5	30	456.1	5006	478.8	13.19	149	400	
520.5	186	882.6	31	460.8	5505	518.3	14.21	184	(kPa	1
560.2	224	963.0	32	465.4	6000	557.6	15.22	221	rre	
601.7	261	1043.6	33			598.7	16.26	258	essi	
641.5	299	1122.6	34			638.0	17.25	295	a 300	• →
682.1	339	1205.3	34			678.1	18.25	334	-	
722.2	380	1282.3	35			717.8	19.23	374	-	
/61.8	417	1362.6	36			756.9	20.19	411	-	y
801.7	455	1442.7	37			796.4	21.15	448	200	
041.0	490					030.1	22.11	465		
022.0	522					016.0	23.07	514	-	*
962.5	573					910.0	24.01	564		✓
1002.0	580					005.2	24.55	580	100	
1042.0	616					1034.8	26.80	606	1	Corrected Data
1092.0	633					1074.9	20.00	623	1	Elastic Boundaries
1122.0	648					1114.4	28.63	637	1	
1162.5	660					1154.8	29.54	649	• •	
1202.8	671					1195.0	30.45	660	1	Volumo (cm ³)
1281.3	689					1273.3	32.20	677	1	volume (cm)
										Interpreted Test Results
									-	
									Deformatio	ion Modulus, E _p 5,862 kPa 850 psi
									Reload Mo	odulus. En n.a. kPa n.a. psi
										·····γ κ · · · · · · · · · · · · · · · ·
									Yield Press	sure, P _F 448 kPa 65 psi
									Ultimate P	Pressure, PL ¹ 792 kPa 115 psi
									E _P / PL	7.4
									P _L / P _F	1.8

Test performed in a dry borehole.

1

¹ Ultimate Pressure, P_U is interpreted by extrapolating the data points in the plastic phase of the curve to 2 times the initial volume of the test zone, and reading the corresponding pressure. Accordingly, caution must be used in regards to the use of Ultimate Pressure values, particularly when a small quantity of data points are collected in the plastic phase, or when deformation is minimal due to the stiffness of the material.

	PRESSUREMETER TEST										
3	Project:	Fox Run Substation	Boring ID:		BH-16	Test Depth (ft):	14.0				
TIN-SITU	City, State:	Monument, CO	Mapes In-Situ No:	P2	2021024	Client:	Yeh & Associates, Inc.				
Test date:	8/4/21	Calibration	date:	8/4/21	Pressure Ca	libration ID:	PMT CAP - 17(1)				
Pressuremeter SN:	001A17002	Probe body	y SN:	001 17017	Volume Cal	ibration ID:	PMT CAV - 17(1)				
Pressuremeter model:	TEXAM ^e	Probe size	(mm):	70	Calibration	coefficient, a (cm ³ /kPa):	0.011733				
Test zone drilling method:	Shelby Tube Samp	ling Calibration	tube I.D. (mm):	76.2	Calibration	coefficient, b (cm ³ /kPa):	6.91E-05				
Poisson's Ratio of soil/rock:	0.33	Calibration	tube O.D. (mm):	101.6	Calibration	coefficient, c (cm ³ /kPa):	0.011664				
Method for estimating $P_{L}\!\!:$	1/V vs. P	Tubing len	gth (m):	50	Initial volun	ne of probe, V ₀ (cm ³):	1703				

Test performed in dry borehole.

ſ

¹ Ultimate Pressure, P_L, is interpreted by extrapolating the data points in the plastic phase of the curve to 2 times the initial volume of the test zone, and reading the corresponding pressure. Accordingly, caution must be used in regards to the use of Ultimate Pressure values, particularly when a small quantity of data points are collected in the plastic phase, or when deformation is minimal due to the stiffness of the material.

	PRESSUREMETER TEST										
	Project:	Fox Run Substation	Boring ID:		TP-1	Test Depth (ft):	6.0				
TIN-SITU	City, State:	Monument, CO	Mapes In-Situ No:	P2	2021024	Client:	Yeh & Associates, Inc.				
Test date:	8/4/21	Calibration	date:	8/4/21	Pressure Ca	libration ID:	PMT CAP - 17(1)				
Pressuremeter SN:	001A17002	Probe body	/ SN:	001 17017	Volume Cal	ibration ID:	PMT CAV - 17(1)				
Pressuremeter model:	TEXAM ^e	Probe size	(mm):	70	Calibration	coefficient, a (cm ³ /kPa):	0.011733				
Test zone drilling method:	Shelby Tube Samp	ling Calibration	tube I.D. (mm):	76.2	Calibration	coefficient, b (cm ³ /kPa):	6.91E-05				
Poisson's Ratio of soil/rock:	0.33	Calibration	tube O.D. (mm):	101.6	Calibration	coefficient, c (cm ³ /kPa):	0.011664				
Method for estimating $P_{L}\!\!:$	1/V vs. P	Tubing len	gth (m):	50	Initial volun	ne of probe, V ₀ (cm ³):	1703				

Test performed in dry borehole.

5

¹ Ultimate Pressure, P_L, is interpreted by extrapolating the data points in the plastic phase of the curve to 2 times the initial volume of the test zone, and reading the corresponding pressure. Accordingly, caution must be used in regards to the use of Ultimate Pressure values, particularly when a small quantity of data points are collected in the plastic phase, or when deformation is minimal due to the stiffness of the material.
Test ID ER - 1

Project Date	Fox Run Substation 8/4/2021	Instrument Serial No.	ABEM Terrameter SAS 1000 2000542	ES HES	(
Weather / Temp	Sunny / warm, 75°F	100 Ω Resistor Check	100.2	A	
Recent Weather	Rain			2	
Terrain	Rolling hills generally sloping down toward the east	and south.		1111-	
Soil Conditions	Surface soil was moist. Very good electrode contact	t.			

			NW-SE							
Electrode Spacing (A) [feet]	Electrode Depth (in) ¹	Current Injected (I) (mA)	Measured Resistance (Ω)	Std. Deviation (%)	Apparent Resistivity (Ω-cm)					
2	2	50	78.996	0.037	30,255					
3	3	50	44.925	0.019	25,809					
5	6	50	19.634	0.029	18,800					
7	8	100	12.529	0.011	16,795					
10	12	100	7.950	0.009	15,223					
20	12	100	3.354	0.004	12,844					
30	12	100	2.119	0.013	12,173					
50	12	200	1.387	0.010	13,277					
70	12	100	1.082	0.025	14,503					
100	12	200	0.840	0.000	16,093					
200	12	200	0.422	0.092	16,161					
300	* Obstructed by property fence and Shahara Rd near the SE corner of the site.									
500	* Obstructed by property fence and Shahara Rd pear the SE corner of the site									

 $\ensuremath{^*}$ Obstructed by property fence and Shahara Rd near the SE corner of the site.

	INE-SW													
Electrode Spacing (A)	Electrode Depth (in) ¹	Current Injected (I) (mA)	Measured Resistance	Std. Deviation (%)	Apparent Resistivity									
licetj			(12)		(12 cm)									
2	2	50	72.614	0.016	27,811									
3	3	100	43.917	0.045	25,230									
5	6	50	19.396	0.039	18,572									
7	8	100	12.230	0.003	16,394									
10	12	100	7.709	0.018	14,764									
20	12	100	3.220	0.002	12,333									
30	12	200	2.029	0.007	11,654									
50	12	100	1.347	0.063	12,896									
70	12	100	1.071	0.000	14,354									
100	12	200	0.815	0.052	15,616									
200	12	100	0.431	0.018	16,508									
300	12	200	0.225	0.005	12,950									
500		* Obstructed by pr	operty fence near the NE	* Obstructed by property fence near the NE corner of the site.										

Appendix C

LABORATORY TEST RESULTS

Yeh and Associates, Inc.

Geotechnical • Geological • Construction Services

Colorado Springs Lab

Summary of Laboratory Test Results

Project No: 221-290

Project Name:

Tri-State Fox Run Substation

Date: 09-03-2021

Sample	e Location		Natural	Natural	0	Gradati	on	At	tterbe	erg		Water	Water		Swell (+) /	Linconf	Standard	Classifi	cation
Boring No.	Depth (ft)	Sample Type	Moisture Content (%)	Dry Density (pcf)	Grave >#4 (%)	Sand (%)	Fines < #200 (%)	LL	PL	PI	pН	Soluble Sulfate (%)	Soluble Chloride (%)	Resistivity (ohm-cm)	Collapse (-) (% at Load in psf)	Comp. Strength ()	Proctor T99 (A)	AASHTO	USCS
B-01	9.0	MC	1.8			72.0	28.0	NV	NP	NP								A-2-4 (0)	SM
B-01	24.0	SPT	7.9			72.0	28.0	NV	NP	NP								A-2-4 (0)	SM
B-02	7.0	MC	7.7			43.0	57.0	23	16	7								A-4 (1)	CL-ML
B-02	24.0	SPT	4.1		6.0	74.0	20.0	33	18	15								A-2-6 (0)	SC
B-03	4.0	SPT	8.9		0.0	80.0	20.0	NV	NP	NP	7.0	<0.001	0.0002	9308				A-2-4 (0)	SM
B-04	7.0	MC	6.4			84.0	16.0	NV	NP	NP								A-2-4 (0)	SM
B-04	24.0	SPT	3.6		7.0	79.0	14.0	NV	NP	NP								A-1-b (0)	SM
B-05	7.0	SPT	7.4			54.0	46.0	23	16	7								A-4 (0)	SC-SM
B-05	19.0	SPT	2.7		11.0	74.0	15.0	NV	NP	NP								A-1-b (0)	SM
B-06	4.0	MC	6.4			84.0	16.0	NV	NP	NP	7.2	0.006	0.0006	5435				A-2-4 (0)	SM
B-07	7.0	SPT	5.3			82.0	18.0	NV	NP	NP								A-2-4 (0)	SM
B-07	14.0	МС	11.2			45.0	55.0	26	13	13								A-6 (4)	CL
B-08	9.0	МС	9.1			51.0	49.0	21	13	8								A-4 (1)	SC
B-08	24.0	SPT	14.3			36.0	64.0	40	14	26								A-6 (14)	CL
B-09	9.0	SPT	4.5			70.0	30.0	18	14	4								A-2-4 (0)	SC-SM
B-09	24.0	SPT	3.1			80.0	20.0	NV	NP	NP								A-1-b (0)	SM
B-10	4.0	SPT	5.2		0.0	79.0	21.0	NV	NP	NP								A-2-4 (0)	SM
B-11	4.0	SPT	6.2			83.0	17.0	NV	NP	NP	7.1	<0.001	0.0004	9223				A-2-4 (0)	SM
B-11	14.0	SPT	11		0.0	47.0	53.0	24	17	7								A-4 (1)	CL-ML
B-12	4.0	MC	5.5			82.0	18.0	NV	NP	NP								A-2-4 (0)	SM

Yeh and Associates, Inc. Geotechnical • Geological • Construction Services

Colorado Springs Lab

Summary of Laboratory Test Results

Project No: 221-290 Project Name:

Tri-State Fox Run Substation

Date: 09-03-2021

Sample L	ocation		Natural	Natural	G	Gradati	on	A	tterbe	rg		Water	Water		Swoll (+) /	Unconf	Standard	Classifi	cation
Boring No.	Depth (ft)	Sample Type	Moisture Content (%)	Dry Density (pcf)	Gravel >#4 (%)	Sand (%)	Fines < #200 (%)	LL	PL	PI	pН	Soluble Sulfate (%)	Soluble Chloride (%)	Resistivity (ohm-cm)	Collapse (-) (% at Load in psf)	Comp. Strength ()	Proctor T99 (A)	AASHTO	USCS
B-13	9.0	SPT	11.7			41.0	59.0	NV	NP	NP								A-4 (0)	ML
B-13	19.0	SPT	4.9			80.0	20.0	32	11	21								A-2-6 (1)	SC
B-14	4.0	SPT	6.5			82.0	18.0	NV	NP	NP								A-2-4 (0)	SM
B-14	14.0	SPT	10.4			48.0	52.0	23	19	4								A-4 (0)	CL-ML
B-15	29.0	SPT	5.9		13.0	72.0	15.0	NV	NP	NP								A-1-b (0)	SM
B-16	4.0	SPT	7.5			88.0	12.0	NV	NP	NP								A-2-4 (0)	SP-SM
B-16	19.0	SPT	4.5		8.0	78.0	14.0	NV	NP	NP								A-1-b (0)	SM
TP-1	2.5	BULK	7.8		0.0	69.0	31.0	NV	NP	NP								A-2-4 (0)	SM
TP-1	7.5	BULK	4.7			68.0	32.0	NV	NP	NP								A-2-4 (0)	SM

Y	eh and Ass otechnical • Geologica	sociate al • Construc	s, Inc.	SIEVE ANALYSIS	FIGURE
Project No. Report By: Checked By:	221-290 D. Gruenwald	Date: Yeh Lab:	09-02-2021 Colorado Springs	Tri-State Fox Run Substation Monument, Colorado	C- 1

	eh and Ass	sociate al • Construc	s, Inc.	SIEVE ANALYSIS	FIGURE
Project No.	221-290	Date:	09-02-2021	Tri-State Fox Run Substation	C_2
Report By:	D. Gruenwald	Yeh Lab:	Colorado Springs	Monument, Colorado	0-2
Checked By:	J. McCall				

 Project No.
 221-290
 Date:
 09-02-2021
 Tri-State Fox Run Substation
 C-3

 Report By:
 D. Gruenwald
 Yeh Lab:
 Colorado Springs
 Monument, Colorado
 C-3

 Checked By:
 J. McCall
 Venture
 Venture

221-290

J. McCall

Date:

D. Gruenwald Yeh Lab: Colorado Springs

09-02-2021

Tri-State Fox Run Substation

Monument, Colorado

C-4

03 GRAIN SIZE YEH FOX RUN SUBSTATION_GINT LOGS_DRAFT.GPJ 2021 YEH COLORADO TEMPLATE.GDT 2021 YEH COLORADO LIBRARY.GLB 9/2/21

		n sanara			
Project No.	221-290	Date:	09-02-2021	Tri-State Fox Run Substation	C E
Report By:	D. Gruenwald	Yeh Lab:	Colorado Springs	Monument, Colorado	C- 5
Checked By:	J. McCall				

	eh and As	SOCIAte	es, Inc.	ATTERBERG LIMITS	FIGURE
Project No. Report By: Checked By:	221-290 D. Gruenwald J. McCall	Date: Yeh Lab:	09-02-2021 Colorado Springs	Tri-State Fox Run Substation Monument, Colorado	C - 7

	eh and As	sociate al • Construc	es, Inc.	ATTERBERG LIMITS	FIGURE
Project No. Report By: Checked By:	221-290 D. Gruenwald J. McCall	Date: Yeh Lab:	09-02-2021 Colorado Springs	Tri-State Fox Run Substation Monument, Colorado	C - 8

Appendix C Site Specific Physical Design Properties

Fox Run Substation Drainage Design

Existing Conditions

Total Area										
Area Name	(sf)	(acres)	Flow Length	Width (A/L)	Slope (%)					
Existing	626336.77	14.38	150	4175.57844	7					

Land Cover Type (Soil Group B)	Curve Number	Mannings N	D-Store Pervious
Pasture or Range Land, Fair Condition	69	0.15	0.15
Open Graded Aggregate Topping Over			
Compacted Base	85	0.024	0.1
Compacted Base Material	85	0.024	0.05
Pavement/Concrete	98	0.015	0.05

Roughness Coefficient and Curve Number Analysis

Existing					
Description	<u>Total Area (ac)</u>	<u>Manning's 'n'</u>	<u>A*n</u>	<u>CN</u>	<u>A*CN</u>
Native	14.38	0.15	2.1568	69	992.1312
		sum	2.1568		992.1312
Total Area (ac)	14.38	Weighted	0.15		69
Weighted Manning's 'n'	0.150				
Weighted Curve Number	69				
Dstore Pervious (in)	0.15				

Fox Run Substation Drainage Design Proposed Conditions

Area Name	(sf)	(acres)	Flow Length	Width (A/L)	Slope (%)
Yard	228010.3171	5.23	150	1520.1	1.0
North	292051.9481	6.70	100	2920.5	6.0
South	106271.1511	2.44	50	2125.4	7.0

Land Cover Type	Curve Number	Mannings N	D-Store Pervious		
Pasture or Range Land, Good Condition	69	0.15	0.15		
Open Graded Aggregate Topping Over					
Compacted Base	85	0.024	0.1		
Compacted Base Material	85	0.024	0.05		
Pavement/Concrete	98	0.015	0.05		

Roughness Coefficient and Curve Number Analysis

Yard					
Description	<u>Total Area (ac)</u>	Manning's 'n'	<u>A*n</u>	<u>CN</u>	<u>A*CN</u>
Substation Yard/Driveway	3.83	0.024	0.0919	85	325.5500
Native	0.75	0.15	0.1122	69	51.6095
Pond Area	0.66	0.15	0.0985	100	65.6433
		sum	0.3026		442.8028
Total Area (ac)	5.23	Weighted	0.057805993		84.59481311
Weighted Manning's 'n'	0.058				
Weighted Curve Number	84.59				
Dstore Pervious (in)	0.15				
North					
Description	Total Area (ac)	Manning's 'n'	A*n	CN	A*CN
Driveway/County Road	0.00	0.024	0.0000	85	0.0000
Native	6.70	0.15	1.0057	69	462.6167
		sum	1.0057		462.6167
Total Area (ac)	6.70	Weighted	0.15		69
Weighted Manning's 'n'	0.150				
Weighted Curve Number	69				
Dstore Pervious (in)	0.15				
South					
Description	<u>Total Area (ac)</u>	Manning's 'n'	<u>A*n</u>	<u>CN</u>	A*CN
Driveway/County Road	0.08	0.024	0.0019	85	6.8000
Native	2.36	0.15	0.3539	69	162.8158
		sum	0.3559		169.6158
Total Area (ac)	2.44	Weighted	0.14586826		69.52466544
Weighted Manning's 'n'	0.146				
Weighted Curve Number	69.52				
Dstore Pervious (in)	0.15				

DETENTION BASIN STAGE-STORAGE TA<u>BLE BUILDER</u>

MHFD-Detention, Version 4.04 (February 2021)

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

	DE	TENTION	BASIN OU⁻	FLET STRU	CTURE DES	SIGN					
Project:	Fox Run Substatio	MHI on	FD-Detention, Ver.	sion 4.04 (Februar	ry 2021)						
Basin I D:	Detention Pond										
		~		Estimated	Estimated	Outlet Type					
			Zone 1 (WQCV)	0.67	0.074	Orifice Plate	1				
	100-YEAR		Zone 2 (100-year)	1.58	0.323	Weir&Pipe (Circular)					
PERMANENT ORIFICES	O a sefi a secto a sec		Zone 3								
Example Zone Configuration (Retention Pond) Total (all zones) 0.398											
User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP). Underdrain Orifice Invert Denth = N/A ft (distance below the filtration media surface) Underdrain Orifice Area = N/A ft ²											
Underdrain Orifice Diameter = N/A inches Underdrain Orifice Centroid = N/A feet											
Liser Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WOCV and/or ELIPV in a sodimentation RMP)											
Invert of Lowest Orifice =	Unite visit of Lowest Orlifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) WO Orlifice Area per Row = $1.222F-02$ ft ²										
Depth at top of Zone using Orifice Plate =	2.00	ft (relative to basir	n bottom at Stage =	= 0 ft)	Ellij	ptical Half-Width =	N/A	feet			
Orifice Plate: Orifice Vertical Spacing =	6.00	inches sa inches (diamet	ar = 1.1/2 inchas)		Ellipti	ical Slot Centroid =	N/A	feet			
Office Plate. Office Area per Now –	1.70	sq. incries (diamet	ei – 1-1/2 inches)		L	niptical Slot Area -	N/A	lu			
User Input: Stage and Total Area of Each Orifice	e Row (numbered f	Pow 2 (optional)	Pow 3 (optional)	Pow 4 (optional)	Pow 5 (optional)	Pow 6 (optional)	Pow 7 (optional)	Pow 8 (ontional)	1		
Stage of Orifice Centroid (ft)	0.00	0.50	1.00	1.50	Kow 5 (optional)	Row o (optional)	Kow 7 (optional)	Row 8 (optional)			
Orifice Area (sq. inches)	1.76	1.76	1.76	1.76							
	Pow 9 (optional)	Pow 10 (optional)	Pow 11 (optional)	Pow 12 (ontional)	Pow 13 (ontional)	Pow 14 (optional)	Pow 15 (ontional)	Pow 16 (optional)	1		
Stage of Orifice Centroid (ft)	Kow y (optional)	Row To (optional)	Row IT (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 18 (optional)			
Orifice Area (sq. inches)											
User Innut: Vertical Orifice (Circular or Rectangular)											
	Not Selected	Not Selected]				Not Selected	Not Selected			
Invert of Vertical Orifice =			ft (relative to basin	h bottom at Stage =	= 0 ft) Ver	tical Orifice Area =			ft ²		
Vertical Orifice Diameter =			inches	i bollom al Slage =	= UTL) Vertical	i Onnice Centrola =			reet		
		•	_								
Lines Lanut, Quarflow Wais (Dranhow with Elat as Clanad Crate and Quillet Dise OD Destangular (Transported Wais (and No Quillet Dise)											
ose mpar. Overnow weir (bropbox with har o	Zone 2 Weir	Not Selected			lilet hpe <u>y</u>		Zone 2 Weir	Not Selected			
Overflow Weir Front Edge Height, Ho =	0.55		ft (relative to basin I	oottom at Stage = 0 f	t) Height of Grate	e Upper Edge, $H_t =$			feet		
Overflow Weir Front Edge Length =			feet H-V	Gr	Overflow W ate Open Area / 10	/eir Slope Length =			feet		
Horiz. Length of Weir Sides =			feet	0	verflow Grate Open	Area w/o Debris =			ft ²		
Overflow Grate Type =				C	overflow Grate Oper	n Area w/ Debris =			ft ²		
Debris Clogging % =			%								
User Input: Outlet Pipe w/ Flow Restriction Plate	e (Circular Orifice, R	estrictor Plate, or R	Rectangular Orifice)		Ca	Iculated Parameter	s for Outlet Pipe w/	Flow Restriction P	late		
	Zone 2 Circular	Not Selected					Zone 2 Circular	Not Selected	2		
Depth to Invert of Outlet Pipe = Circular Orifice Diameter =			tt (distance below be inches	asin bottom at Stage	= 0 ft) Outlet	t Orifice Centroid =			ft² feet		
			Interles	Half-Cent	ral Angle of Restric	tor Plate on Pipe =	N/A	N/A	radians		
Heer Japuit, Emergeneu Celliusu (Destangular er	Transadidal		Input w	ith spillwa	l y		Coloulated Darama	tors for Colliner			
Spillway Invert Stage=	Trapezoidar)	ft relative to basir	desian.		lway D	esign Flow Depth=	Calculated Parame	feet			
Spillway Crest Length =		feet			Juge at T	Top of Freeboard =		feet			
Spillway End Slopes =	-	H:V			Basin Area at T	Fop of Freeboard =		acres			
Freeboard above Max Water Surface =		reet			Basin volume at 1	op of Freeboard =		acre-m			
Routed Hydrograph Results	The user can over	ride the default CU.	HP hvdroaranhs an	d runoff volumes hi	i enterina new valu	ies in the Inflow Hv	drographs table (Cr	olumns W through	AF).		
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year		
One-Hour Rainfall Depth (in) =	N/A	N/A 0.208	0.92	1.21	1.47	1.86	2.18	2.53	3.43		
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.122	0.185	0.262	0.427	0.543	0.693	1.040		
CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A N/A	N/A N/A	0.1	0.9	2.5	6.1	8.5	11.6	18.1		
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.02	0.18	0.51	1.24	1.73	2.34	3.65		
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	N/A 0.1	N/A 0.1	2.8	4.5	6.5 0.1	10.8	0.2	17.2	25.4		
Ratio Peak Outflow to Predevelopment $Q =$	N/A	N/A	N/A	0.1	0.1	0.0	0.0	0.0	0.0		
= Structure Controlling Flow Max Velocity through Grate 1 (fps)		N/A	N/A	N/A	N/A	N/A	N/A	N/A	Plate N/A		
Max Velocity through Grate 2 (fps) =	N/A	N/A 26	N/A 28	N/A	N/A	N/A	N/A	N/A 61	N/A 70		
Time to Drain 97% of Inflow Volume (hours) =	21	38	20	33	41	55	60	66	78		
Maximum Ponding Depth (h)	0.67	1.09	0.80	0.99	1.18	1.59	1.86	2.20	2.95		
Maximum Volume Stored (acre-ft) =	0.24	0.209	0.29	0.168	0.243	0.399	0.509	0.653	0.47		

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.01	0.28
	0:15:00	0.00	0.00	0.24	0.54	0.77	0.61	0.83	0.87	1.33
	0:20:00	0.00	0.00	1.21	1.66	2.05	1.44	1.75	1.98	3.13
	0:25:00	0.00	0.00	2.61	3.96	5.92	3.39	4.38	5.32	10.31
	0:30:00	0.00	0.00	2.84	4.4/	6.51	10.82	12.22	17.00	25.38
	0:40:00	0.00	0.00	1.66	2.42	3.46	8.73	10.92	13.77	19.78
	0:45:00	0.00	0.00	1.15	1.74	2.50	6.37	7.99	10.76	15.49
	0:50:00	0.00	0.00	0.81	1.29	1.72	5.07	6.36	8.31	11.93
	0:55:00	0.00	0.00	0.59	0.91	1.22	3.30	4.18	5.97	8.64
	1:00:00	0.00	0.00	0.50	0.74	1.02	2.28	2.95	4.60	6.80
	1:10:00	0.00	0.00	0.47	0.69	0.97	1.82	2.41	4.04	6.05 4.10
	1:15:00	0.00	0.00	0.35	0.59	0.94	1.10	1.45	1.86	3.09
	1:20:00	0.00	0.00	0.33	0.52	0.82	0.84	1.09	1.19	1.97
	1:25:00	0.00	0.00	0.32	0.48	0.66	0.71	0.92	0.84	1.37
	1:30:00	0.00	0.00	0.31	0.46	0.56	0.57	0.70	0.62	1.02
	1:35:00	0.00	0.00	0.30	0.44	0.51	0.49	0.60	0.53	0.86
	1:45:00	0.00	0.00	0.30	0.36	0.46	0.46	0.54	0.50	0.80
	1:50:00	0.00	0.00	0.30	0.32	0.46	0.43	0.50	0.50	0.78
	1:55:00	0.00	0.00	0.24	0.31	0.44	0.43	0.50	0.50	0.78
	2:00:00	0.00	0.00	0.20	0.28	0.38	0.43	0.50	0.50	0.78
	2:05:00	0.00	0.00	0.11	0.15	0.21	0.23	0.27	0.27	0.43
	2:10:00	0.00	0.00	0.06	0.09	0.11	0.13	0.15	0.15	0.23
	2:20:00	0.00	0.00	0.01	0.04	0.02	0.03	0.03	0.03	0.05
	2:25:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	2:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021) Summary Stage-Area-Volume-Discharge Relationships

The user careate a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							from the S-A-V table on
							Sheet 'Basin'.
-							Also include the inverts of all
							outlets (e.g. vertical orifice,
							overflow grate, and spillway, where applicable)
-							
-							
							1
]
							4
							4
							1
			-	-	-		
-							
-							
							1
]
							1
							1
							4
							1
							4
							1
							4
							1
							4
							1
							4
							1
							1
]

Appendix D SWMM Modeling Results

Replace with Rational Method

Project Description

File Name 21036-Fox Run Drainage.SPF

Project Options

Flow Units	CFS
Elevation Type	Elevation
Hydrology Method	EPA SWMM
EPA SWMM Infiltration Method	SCS Curve Number
Link Routing Method	Kinematic Wave
Enable Overflow Ponding at Nodes	YES
Skip Steady State Analysis Time Periods	NO

Analysis Options

Start Analysis On	00:00:00	0:00:00
End Analysis On	00:00:00	0:00:00
Start Reporting On	00:00:00	0:00:00
Antecedent Dry Days	0	days
Runoff (Dry Weather) Time Step	0 01:00:00	days hh:mm:ss
Runoff (Wet Weather) Time Step	0 00:05:00	days hh:mm:ss
Reporting Time Step	0 00:05:00	days hh:mm:ss
Routing Time Step	30	seconds

Number of Elements

	Qty
Rain Gages	1
Subbasins	4
Nodes	6
Junctions	2
Outfalls	3
Flow Diversions	0
Inlets	0
Storage Nodes	1
Links	9
Channels	0
Pipes	2
Pumps	0
Orifices	5
Weirs	2
Outlets	0
Pollutants	0
Land Uses	0

Rainfall Details

SN	Rain Gage	Data	Data Source	Rainfall	Rain	State	County	Return	Rainfall	Rainfall
	ID	Source	ID	Туре	Units			Period	Depth	Distribution
								(years)	(inches)	
1	Rain Gage-01	Time Series	10yr-24hr	Cumulative	inches	Colorado	El Paso	10.00	3.01	SCS Type II 24-hr

Subbasin Summary

SN Subbasin	Area	Impervious	Weighted	Average	Equivalent	Impervious	Pervious	Total	Total	Total	Total	Peak	Time of
ID		Area	Curve	Slope	Width	Area	Area	Rainfall	Infiltration	Runoff	Runoff	Runoff	Concentration
			Number			Manning's	Manning's				Volume		
						Roughness	Roughness						
	(ac)	(%)		(%)	(ft)			(in)	(in)	(in)	(ac-in)	(cfs)	(days hh:mm:ss)
1 Existing	14.38	10.00	69.00	7.0000	4175.58	0.0150	0.1500	3.01	1.7700	1.19	17.13	20.08	0 00:29:07
2 Proposed-North	6.70	10.00	69.00	6.0000	2920.50	0.0150	0.1500	3.01	1.7680	1.19	8.00	10.03	0 00:23:54
3 Proposed-South	2.44	25.00	69.52	7.0000	2125.40	0.0150	0.1500	3.01	1.4560	1.51	3.67	5.58	0 00:13:30
4 Yard	5.23	40.00	84.59	1.0000	1520.10	0.0150	0.1500	3.01	0.7800	2.18	11.40	14.07	0 00:40:55

Node Summary

SN Element	Element	Invert	Ground/Rim	Initial	Surcharge	Ponded	Peak	Max HGL	Max	Min	Time of	Total	Total Time
ID	Туре	Elevation	(Max)	Water	Elevation	Area	Inflow	Elevation	Surcharge	Freeboard	Peak	Flooded	Flooded
			Elevation	Elevation				Attained	Depth	Attained	Flooding	Volume	
									Attained		Occurrence		
		(ft)	(ft)	(ft)	(ft)	(ft²)	(cfs)	(ft)	(ft)	(ft)	(days hh:mm)	(ac-in)	(min)
1 Pipe-Out	Junction	7443.22	7445.19	0.00	7446.00	0.00	0.30	7443.44	0.00	1.75	0 00:00	0.00	0.00
2 Pond-Out	Junction	7443.42	7447.00	0.00	7447.00	0.00	0.30	7443.64	0.00	3.78	0 00:00	0.00	0.00
3 Existing-Out	Outfall	7435.00					20.08	7435.00					
4 Out-North	Outfall	7435.00					10.23	7435.00					
5 Out-South	Outfall	7435.00					5.58	7435.00					
6 Pond	Storage Node	7444.00	7448.00	0.00		0.00	14.07	7445.89				0.00	0.00

Fox Run Substation 10Yr-24Hr

SN Element	Element	From	To (Outlet)	Length	Inlet	Outlet	Average	Diameter or	Manning's F	Peak	Design Flow	Peak Flow/	Peak Flow	Peak Flow	Peak Flow	Total Time Reported
ID	Туре	(Inlet)	Node		Invert	Invert	Slope	Height	Roughness F	low	Capacity	Design Flow	Velocity	Depth	Depth/	Surcharged Condition
		Node			Elevation	Elevation						Ratio			Total Depth	
															Ratio	
				(ft)	(ft)	(ft)	(%)	(in)		(cfs)	(cfs)		(ft/sec)	(ft)		(min)
1 Out-Pipe	Pipe	Pond-Out	Pipe-Out	40.00	7443.42	7443.22	0.5000	12.000	0.0120	0.30	2.73	0.11	2.28	0.22	0.22	0.00 Calculated
2 Out-Swale	Pipe	Pipe-Out	Out-North	326.18	0.00	0.00	0.0000	0.000	0.0150	0.30	0.00	0.11	0.00	0.22	0.22	0.00 Calculated
3 Orifice-01	Orifice	Pond	Pond-Out		7444.00	7443.42		1.500	(80.0						
4 Orifice-02	Orifice	Pond	Pond-Out		7444.00	7443.42		1.500	(80.0						
5 Orifice-03	Orifice	Pond	Pond-Out		7444.00	7443.42		1.500	(0.06						
6 Orifice-04	Orifice	Pond	Pond-Out		7444.00	7443.42		1.500	(0.05						
7 Orifice-05	Orifice	Pond	Pond-Out		7444.00	7443.42		1.500	(0.02						
8 Spillway	Weir	Pond	Pond-Out		7444.00	7443.42			(0.00						
9 Weir	Weir	Pond	Pond-Out		7444.00	7443.42			(0.00						

Subbasin Hydrology

Subbasin : Existing

Input Data

Area (ac)	14.38
Impervious Area (%)	10
Weighted Curve Number	69
Conductivity (in/hr)	0.15
Drying Time (days)	7
Average Slope (%)	7
Equivalent Width (ft)	4175.58
Impervious Area	
Manning's Roughness	0.015
Pervious Area	
Manning's Roughness	0.15
Curb & Gutter Length (ft)	0
Rain Gage ID	Rain Gage-01

Composite Curve Number

32	Area	Soil	Curve
Soil/Surface Description	(acres)	Group	Number
50 - 75% grass cover, Fair	14.38	В	69
Composite Area & Weighted CN	14.38		69

Subbasin Runoff Results

Total Rainfall (in)	3.01
Total Runon (in)	0
Total Evaporation (in)	0
Total Infiltration (in)	1.77
Total Runoff (in)	1.19
Peak Runoff (cfs)	20.08
Weighted Curve Number	69
Time of Concentration (days hh:mm:ss)	0 00:29:07

Subbasin : Existing

Runoff Hydrograph

Subbasin : Proposed-North

Input Data

Area (ac)	6.7
Impervious Area (%)	10
Weighted Curve Number	69
Conductivity (in/hr)	0.15
Drying Time (days)	7
Average Slope (%)	6
Equivalent Width (ft)	2920.5
Impervious Area	
Manning's Roughness	0.015
Pervious Area	
Manning's Roughness	0.15
Curb & Gutter Length (ft)	0
Rain Gage ID	Rain Gage-01

Composite Curve Number

32	Area	Soil	Curve
Soil/Surface Description	(acres)	Group	Number
-	6.7	-	69
Composite Area & Weighted CN	6.7		69

Subbasin Runoff Results

Total Rainfall (in)	3.01
Total Runon (in)	0
Total Evaporation (in)	0
Total Infiltration (in)	1.768
Total Runoff (in)	1.19
Peak Runoff (cfs)	10.03
Weighted Curve Number	69
Time of Concentration (days hh:mm:ss)	0 00:23:54

Subbasin : Proposed-North

Runoff Hydrograph

Rainfall Intensity Graph

Subbasin : Proposed-South

Input Data

Area (ac)	2.44
Impervious Area (%)	25
Weighted Curve Number	69.52
Conductivity (in/hr)	0.15
Drying Time (days)	7
Average Slope (%)	7
Equivalent Width (ft)	2125.4
Impervious Area	
Manning's Roughness	0.015
Pervious Area	
Manning's Roughness	0.15
Curb & Gutter Length (ft)	0
Rain Gage ID	Rain Gage-01

Composite Curve Number

32	Area	Soil	Curve
Soil/Surface Description	(acres)	Group	Number
-	2.44	-	69.52
Composite Area & Weighted CN	2.44		69.52

Subbasin Runoff Results

Total Rainfall (in)	3.01
Total Runon (in)	0
Total Evaporation (in)	0
Total Infiltration (in)	1.456
Total Runoff (in)	1.51
Peak Runoff (cfs)	5.58
Weighted Curve Number	69.52
Time of Concentration (days hh:mm:ss)	0 00:13:30

Subbasin : Proposed-South

Runoff Hydrograph

Rainfall Intensity Graph

Subbasin : Yard

Input Data

Area (ac)	5.23
Impervious Area (%)	40
Weighted Curve Number	84.59
Conductivity (in/hr)	0.15
Drying Time (days)	7
Average Slope (%)	1
Equivalent Width (ft)	1520.1
Impervious Area	
Manning's Roughness	0.015
Pervious Area	
Manning's Roughness	0.15
Curb & Gutter Length (ft)	0
Rain Gage ID	Rain Gage-01

Composite Curve Number

32	Area	Soil	Curve
Soil/Surface Description	(acres)	Group	Number
50 - 75% grass cover, Fair	5.23	В	84.59
Composite Area & Weighted CN	5.23		84.59

Subbasin Runoff Results

Total Rainfall (in)	3.01
Total Runon (in)	0
Total Evaporation (in)	0
Total Infiltration (in)	0.78
Total Runoff (in)	2.18
Peak Runoff (cfs)	14.07
Weighted Curve Number	84.59
Time of Concentration (days hh:mm:ss)	0 00:40:55

Subbasin : Yard

Rainfall Intensity Graph

Runoff Hydrograph

Junction Input

SN Element	Invert	Ground/Rim	Ground/Rim	Initial	Initial	Surcharge	Surcharge	Ponded	Minimum
ID	Elevation	(Max)	(Max)	Water	Water	Elevation	Depth	Area	Pipe
		Elevation	Offset	Elevation	Depth				Cover
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft²)	(in)
1 Pipe-Out	7443.22	7445.19	1.97	0.00	-7443.22	7446.00	0.81	0.00	0.00
2 Pond-Out	7443.42	7447.00	3.58	0.00	-7443.42	7447.00	0.00	0.00	0.00

Junction Results

SN Element	Peak	Peak	Max HGL	Max HGL	Max	Min	Average HGL	Average HGL	Time of	Time of	Total	Total Time
ID	Inflow	Lateral	Elevation	Depth	Surcharge	Freeboard	Elevation	Depth	Max HGL	Peak	Flooded	Flooded
		Inflow	Attained	Attained	Depth	Attained	Attained	Attained	Occurrence	Flooding	Volume	
					Attained					Occurrence		
	(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(days hh:mm)	(days hh:mm)	(ac-in)	(min)
1 Pipe-Out	0.30	0.00	7443.44	0.22	0.00	1.75	7443.32	0.10	0 17:26	0 00:00	0.00	0.00
2 Pond-Out	0.30	0.00	7443.64	0.22	0.00	3.78	7443.52	0.10	0 17:25	0 00:00	0.00	0.00
Pipe Input

SN Element	Length	Inlet	Inlet	Outlet	Outlet	Total	Average Pipe	Pipe	Pipe	Manning's	Entrance	Exit/Bend	Additional	Initial Flap	No. of
ID		Invert	Invert	Invert	Invert	Drop	Slope Shape	Diameter or	Width	Roughness	Losses	Losses	Losses	Flow Gate	Barrels
		Elevation	Offset	Elevation	Offset			Height							
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(%)	(in)	(in)					(cfs)	
1 Out-Pipe	40.00	7443.42	0.00	7443.22	0.00	0.20	0.5000 CIRCULAR	12.000	12.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1
2 Out-Swale	326.18	0.00	-7443.22	0.00	-7435.00	0.00	0.0000 Dummy	0.000	0.000	0.0150	0.5000	0.5000	0.0000	0.00 No	1

Pipe Results

SN Element	Peak	Time of	Design Flow	Peak Flow/	Peak Flow	Travel	Peak Flow	Peak Flow	Total Time	Froude Reported
ID	Flow	Peak Flow	Capacity	Design Flow	Velocity	Time	Depth	Depth/	Surcharged	Number Condition
		Occurrence		Ratio				Total Depth		
								Ratio		
	(cfs)	(days hh:mm)	(cfs)		(ft/sec)	(min)	(ft)		(min)	
1 Out-Pipe	0.30	0 17:26	2.73	0.11	2.28	0.29	0.22	0.22	0.00	Calculated
2 Out-Swale	0.30	0 17:26	0.00	0.11	0.00		0.22	0.22	0.00	Calculated

Storage Nodes

Storage Node : Pond

Input Data

Invert Elevation (ft)	7444
Max (Rim) Elevation (ft)	7448
Max (Rim) Offset (ft)	4
Initial Water Elevation (ft)	0
Initial Water Depth (ft)	-7444
Ponded Area (ft ²)	0
Evaporation Loss	0

Storage Area Volume Curves Storage Curve : Detention-Pond

Stage	Storage	Storage
	Area	Volume
(ft)	(ft²)	(ft³)
0	0	0
0.5	8482	2120.5
1	20284	9312
1.5	22437	19992.25
2	23645	31512.75
2.5	24883	43644.75
3	26149	56402.75
3.5	27443	69800.75
4	28766	83853

Storage Area Volume Curves

Storage Node : Pond (continued)

Outflow Weirs

SN Element	Weir	Flap	Crest	Crest	Length	Weir Total	Discharge
ID	Туре	Gate	Elevation	Offset		Height	Coefficient
			(ft)	(ft)	(ft)	(ft)	
 1 Spillway	Trapezoidal	No	7447.00	3.00	10.00	1.00	3.37
2 Weir	Rectangular	No	7446.50	2.50	4.00	1.00	3.33

Outflow Orifices

	SN	I Element	Orifice	Orifice	Flap	Circular	Rectangular	Rectangular	Orifice	Orifice
		ID	Туре	Shape	Gate	Orifice	Orifice	Orifice	Invert	Coefficient
						Diameter	Height	Width	Elevation	
						(in)	(in)	(in)	(ft)	
_	1	Orifice-01	Side	CIRCULAR	No	1.50			7443.67	0.61
	2	2 Orifice-02	Side	CIRCULAR	No	1.50			7444.17	0.61
	3	8 Orifice-03	Side	CIRCULAR	No	1.50			7444.67	0.61
	4	Orifice-04	Side	CIRCULAR	No	1.50			7445.17	0.61
	Ę	5 Orifice-05	Side	CIRCULAR	No	1.50			7445.67	0.61

Output Summary Results

Peak Inflow (cfs)	14.07
Peak Lateral Inflow (cfs)	14.07
Peak Outflow (cfs)	0.3
Peak Exfiltration Flow Rate (cfm)	0
Max HGL Elevation Attained (ft)	7445.89
Max HGL Depth Attained (ft)	1.89
Average HGL Elevation Attained (ft)	7444.65
Average HGL Depth Attained (ft)	0.65
Time of Max HGL Occurrence (days hh:mm)	0 17:25
Total Exfiltration Volume (1000-ft ³)	0
Total Flooded Volume (ac-in)	0
Total Time Flooded (min)	0
Total Retention Time (sec)	0

Project Description

File Name 21036-Fox Run Drainage.SPF

Project Options

Flow Units	CFS
Elevation Type	Elevation
Hydrology Method	EPA SWMM
EPA SWMM Infiltration Method	SCS Curve Number
Link Routing Method	Kinematic Wave
Enable Overflow Ponding at Nodes	YES
Skip Steady State Analysis Time Periods	NO

Analysis Options

Start Analysis On	00:00:00	0:00:00
End Analysis On	00:00:00	0:00:00
Start Reporting On	00:00:00	0:00:00
Antecedent Dry Days	0	days
Runoff (Dry Weather) Time Step	0 01:00:00	days hh:mm:ss
Runoff (Wet Weather) Time Step	0 00:05:00	days hh:mm:ss
Reporting Time Step	0 00:05:00	days hh:mm:ss
Routing Time Step	30	seconds

Number of Elements

	Qty
Rain Gages	1
Subbasins	4
Nodes	6
Junctions	2
Outfalls	3
Flow Diversions	0
Inlets	0
Storage Nodes	1
Links	9
Channels	0
Pipes	2
Pumps	0
Orifices	5
Weirs	2
Outlets	0
Pollutants	0
Land Uses	0

Rainfall Details

SN	Rain Gage	Data	Data Source	Rainfall	Rain	State	County	Return	Rainfall	Rainfall
	טו	Source	U	туре	Units			(years)	(inches)	Distribution
1	Rain Gage-01	Time Series	100yr-24hr	Cumulative	inches					User Defined

Subbasin Summary

SN Subbasin	Area	Impervious	Weighted	Average	Equivalent	Impervious	Pervious	Total	Total	Total	Total	Peak	Time of
ID		Area	Curve	Slope	Width	Area	Area	Rainfall	Infiltration	Runoff	Runoff	Runoff	Concentration
			Number			Manning's	Manning's				Volume		
						Roughness	Roughness						
	(ac)	(%)		(%)	(ft)			(in)	(in)	(in)	(ac-in)	(cfs)	(days hh:mm:ss)
1 Existing	14.38	10.00	69.00	7.0000	4175.58	0.0150	0.1500	5.15	2.3100	2.79	40.16	53.82	0 00:23:29
2 Proposed-North	6.70	10.00	69.00	6.0000	2920.50	0.0150	0.1500	5.15	2.3080	2.80	18.74	26.75	0 00:19:17
3 Proposed-South	2.44	25.00	69.52	7.0000	2125.40	0.0150	0.1500	5.15	1.8950	3.21	7.83	12.04	0 00:10:53
4 Yard	5.23	40.00	84.59	1.0000	1520.10	0.0150	0.1500	5.15	0.9070	4.20	21.95	28.42	0 00:33:00

Fox Run Substation 100Yr-24Hr

Node Summary

SN Element	Element	Invert	Ground/Rim	Initial	Surcharge	Ponded	Peak	Max HGL	Max	Min	Time of	Total	Total Time
ID	Туре	Elevation	(Max)	Water	Elevation	Area	Inflow	Elevation	Surcharge	Freeboard	Peak	Flooded	Flooded
			Elevation	Elevation				Attained	Depth	Attained	Flooding	Volume	
									Attained		Occurrence		
		(ft)	(ft)	(ft)	(ft)	(ft²)	(cfs)	(ft)	(ft)	(ft)	(days hh:mm)	(ac-in)	(min)
1 Pipe-Out	Junction	7443.22	7445.19	0.00	7446.00	0.00	1.84	7443.82	0.00	1.37	0 00:00	0.00	0.00
2 Pond-Out	Junction	7443.42	7447.00	0.00	7447.00	0.00	1.84	7444.02	0.00	3.40	0 00:00	0.00	0.00
3 Existing-Out	Outfall	7435.00					53.82	7435.00					
4 Out-North	Outfall	7435.00					27.02	7435.00					
5 Out-South	Outfall	7435.00					12.04	7435.00					
6 Pond	Storage Node	7444.00	7448.00	0.00		0.00	28.42	7446.73				0.00	0.00

Fox Run Substation 100Yr-24Hr

Link Summary

SN Element	Element	From	To (Outlet)	Length	Inlet	Outlet	Average	Diameter or	Manning's	Peak	Design Flow	Peak Flow/	Peak Flow	Peak Flow	Peak Flow	Total Time Reported
ID	Туре	(Inlet)	Node		Invert	Invert	Slope	Height	Roughness	Flow	Capacity	Design Flow	Velocity	Depth	Depth/	Surcharged Condition
		Node			Elevation	Elevation						Ratio			Total Depth	
															Ratio	
				(ft)	(ft)	(ft)	(%)	(in)		(cfs)	(cfs)		(ft/sec)	(ft)		(min)
1 Out-Pipe	Pipe	Pond-Out	Pipe-Out	40.00	7443.42	7443.22	0.5000	12.000	0.0120	1.84	2.73	0.67	3.73	0.60	0.60	0.00 Calculated
2 Out-Swale	Pipe	Pipe-Out	Out-North	326.18	0.00	0.00	0.0000	0.000	0.0150	1.84	0.00	0.67	0.00	0.60	0.60	0.00 Calculated
3 Orifice-01	Orifice	Pond	Pond-Out		7444.00	7443.42		1.500		0.10						
4 Orifice-02	Orifice	Pond	Pond-Out		7444.00	7443.42		1.500		0.10						
5 Orifice-03	Orifice	Pond	Pond-Out		7444.00	7443.42		1.500		0.09						
6 Orifice-04	Orifice	Pond	Pond-Out		7444.00	7443.42		1.500		0.07						
7 Orifice-05	Orifice	Pond	Pond-Out		7444.00	7443.42		1.500		0.06						
8 Spillway	Weir	Pond	Pond-Out		7444.00	7443.42				0.00						
9 Weir	Weir	Pond	Pond-Out		7444.00	7443.42				1.43						

Subbasin Hydrology

Subbasin : Existing

Input Data

Area (ac)	14.38
Impervious Area (%)	10
Weighted Curve Number	69
Conductivity (in/hr)	0.15
Drying Time (days)	7
Average Slope (%)	7
Equivalent Width (ft)	4175.58
Impervious Area	
Manning's Roughness	0.015
Pervious Area	
Manning's Roughness	0.15
Curb & Gutter Length (ft)	0
Rain Gage ID	Rain Gage-01

Composite Curve Number

32	Area	Soil	Curve
Soil/Surface Description	(acres)	Group	Number
50 - 75% grass cover, Fair	14.38	В	69
Composite Area & Weighted CN	14.38		69

Subbasin Runoff Results

Total Rainfall (in)	5.15
Total Runon (in)	0
Total Evaporation (in)	0
Total Infiltration (in)	2.31
Total Runoff (in)	2.79
Peak Runoff (cfs)	53.82
Weighted Curve Number	69
Time of Concentration (days hh:mm:ss)	0 00:23:29

Subbasin : Existing

Rainfall Intensity Graph

Runoff Hydrograph

Subbasin : Proposed-North

Input Data

Area (ac)	6.7
Impervious Area (%)	10
Weighted Curve Number	69
Conductivity (in/hr)	0.15
Drying Time (days)	7
Average Slope (%)	6
Equivalent Width (ft)	2920.5
Impervious Area	
Manning's Roughness	0.015
Pervious Area	
Manning's Roughness	0.15
Curb & Gutter Length (ft)	0
Rain Gage ID	Rain Gage-01

Composite Curve Number

32	Area	Soil	Curve
Soil/Surface Description	(acres)	Group	Number
-	6.7	-	69
Composite Area & Weighted CN	6.7		69

Subbasin Runoff Results

Total Rainfall (in)	5.15
Total Runon (in)	0
Total Evaporation (in)	0
Total Infiltration (in)	2.308
Total Runoff (in)	2.8
Peak Runoff (cfs)	26.75
Weighted Curve Number	69
Time of Concentration (days hh:mm:ss)	0 00:19:17

Subbasin : Proposed-North

Runoff Hydrograph

Rainfall Intensity Graph

Subbasin : Proposed-South

Input Data

Area (ac)	2.44
Impervious Area (%)	25
Weighted Curve Number	69.52
Conductivity (in/hr)	0.15
Drying Time (days)	7
Average Slope (%)	7
Equivalent Width (ft)	2125.4
Impervious Area	
Manning's Roughness	0.015
Pervious Area	
Manning's Roughness	0.15
Curb & Gutter Length (ft)	0
Rain Gage ID	Rain Gage-01

Composite Curve Number

32	Area	Soil	Curve
Soil/Surface Description	(acres)	Group	Number
-	2.44	-	69.52
Composite Area & Weighted CN	2.44		69.52

Subbasin Runoff Results

Total Rainfall (in)	5.15
Total Runon (in)	0
Total Evaporation (in)	0
Total Infiltration (in)	1.895
Total Runoff (in)	3.21
Peak Runoff (cfs)	12.04
Weighted Curve Number	69.52
Time of Concentration (days hh:mm:ss)	0 00:10:53

Subbasin : Proposed-South

Runoff Hydrograph

Rainfall Intensity Graph

Subbasin : Yard

Input Data

Area (ac)	5.23
Impervious Area (%)	40
Weighted Curve Number	84.59
Conductivity (in/hr)	0.15
Drying Time (days)	7
Average Slope (%)	1
Equivalent Width (ft)	1520.1
Impervious Area	
Manning's Roughness	0.015
Pervious Area	
Manning's Roughness	0.15
Curb & Gutter Length (ft)	0
Rain Gage ID	Rain Gage-01

Composite Curve Number

32	Area	Soil	Curve
Soil/Surface Description	(acres)	Group	Number
50 - 75% grass cover, Fair	5.23	В	84.59
Composite Area & Weighted CN	5.23		84.59

Subbasin Runoff Results

Total Rainfall (in)	5.15
Total Runon (in)	0
Total Evaporation (in)	0
Total Infiltration (in)	0.907
Total Runoff (in)	4.2
Peak Runoff (cfs)	28.42
Weighted Curve Number	84.59
Time of Concentration (days hh:mm:ss)	0 00:33:00

Subbasin : Yard

Rainfall Intensity Graph

Runoff Hydrograph

Junction Input

SN Element	Invert	Ground/Rim	Ground/Rim	Initial	Initial	Surcharge	Surcharge	Ponded	Minimum
ID	Elevation	(Max)	(Max)	Water	Water	Elevation	Depth	Area	Pipe
		Elevation	Offset	Elevation	Depth				Cover
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft²)	(in)
1 Pipe-Out	7443.22	7445.19	1.97	0.00	-7443.22	7446.00	0.81	0.00	0.00
2 Pond-Out	7443.42	7447.00	3.58	0.00	-7443.42	7447.00	0.00	0.00	0.00

Junction Results

SN Element	Peak	Peak	Max HGL	Max HGL	Max	Min	Average HGL	Average HGL	Time of	Time of	Total	Total Time
ID	Inflow	Lateral	Elevation	Depth	Surcharge	Freeboard	Elevation	Depth	Max HGL	Peak	Flooded	Flooded
		Inflow	Attained	Attained	Depth	Attained	Attained	Attained	Occurrence	Flooding	Volume	
					Attained					Occurrence		
	(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(days hh:mm)	(days hh:mm)	(ac-in)	(min)
1 Pipe-Out	1.84	0.00	7443.82	0.60	0.00	1.37	7443.36	0.14	0 13:08	0 00:00	0.00	0.00
2 Pond-Out	1.84	0.00	7444.02	0.60	0.00	3.40	7443.56	0.14	0 13:08	0 00:00	0.00	0.00

Pipe Input

SN Element	Length	Inlet	Inlet	Outlet	Outlet	Total	Average Pipe	Pipe	Pipe	Manning's	Entrance	Exit/Bend	Additional	Initial Flap	No. of
ID	-	Invert	Invert	Invert	Invert	Drop	Slope Shape	Diameter or	Width	Roughness	Losses	Losses	Losses	Flow Gate	Barrels
		Elevation	Offset	Elevation	Offset			Height							
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(%)	(in)	(in)					(cfs)	
1 Out-Pipe	40.00	7443.42	0.00	7443.22	0.00	0.20	0.5000 CIRCULAR	12.000	12.000	0.0120	0.5000	0.5000	0.0000	0.00 No	1
2 Out-Swale	326.18	0.00	-7443.22	0.00	-7435.00	0.00	0.0000 Dummy	0.000	0.000	0.0150	0.5000	0.5000	0.0000	0.00 No	1

Pipe Results

SN Element	Peak	Time of	Design Flow	Peak Flow/	Peak Flow	Travel	Peak Flow	Peak Flow	Total Time	Froude Reported
ID	Flow	Peak Flow	Capacity	Design Flow	Velocity	Time	Depth	Depth/	Surcharged	Number Condition
		Occurrence		Ratio				Total Depth		
								Ratio		
	(cfs)	(days hh:mm)	(cfs)		(ft/sec)	(min)	(ft)		(min)	
1 Out-Pipe	1.84	0 13:08	2.73	0.67	3.73	0.18	0.60	0.60	0.00	Calculated
2 Out-Swale	1.84	0 13:08	0.00	0.67	0.00		0.60	0.60	0.00	Calculated

Storage Nodes

Storage Node : Pond

Input Data

Invert Elevation (ft)	7444
Max (Rim) Elevation (ft)	7448
Max (Rim) Offset (ft)	4
Initial Water Elevation (ft)	0
Initial Water Depth (ft)	-7444
Ponded Area (ft ²)	0
Evaporation Loss	0

Storage Area Volume Curves Storage Curve : Detention-Pond

Stage	Storage	Storage
	Area	Volume
(ft)	(ft²)	(ft³)
0	0	0
0.5	8482	2120.5
1	20284	9312
1.5	22437	19992.25
2	23645	31512.75
2.5	24883	43644.75
3	26149	56402.75
3.5	27443	69800.75
4	28766	83853

Storage Area Volume Curves

Storage Node : Pond (continued)

Outflow Weirs

	SN Element	Weir	Flap	Crest	Crest	Length	Weir Total	Discharge
	ID	Туре	Gate	Elevation	Offset		Height	Coefficient
				(ft)	(ft)	(ft)	(ft)	
-	1 Spillway	Trapezoidal	No	7447.00	3.00	10.00	1.00	3.37
	2 Weir	Rectangular	No	7446.50	2.50	4.00	1.00	3.33

Outflow Orifices

SN	l Element	Orifice	Orifice	Flap	Circular	Rectangular	Rectangular	Orifice	Orifice
	ID	Туре	Shape	Gate	Orifice	Orifice	Orifice	Invert	Coefficient
					Diameter	Height	Width	Elevation	
					(in)	(in)	(in)	(ft)	
 1	Orifice-01	Side	CIRCULAR	No	1.50			7443.67	0.61
2	Orifice-02	Side	CIRCULAR	No	1.50			7444.17	0.61
3	8 Orifice-03	Side	CIRCULAR	No	1.50			7444.67	0.61
4	Orifice-04	Side	CIRCULAR	No	1.50			7445.17	0.61
5	orifice-05	Side	CIRCULAR	No	1.50			7445.67	0.61

Output Summary Results

Peak Inflow (cfs)	28.42
Peak Lateral Inflow (cfs)	28.42
Peak Outflow (cfs)	1.84
Peak Exfiltration Flow Rate (cfm)	0
Max HGL Elevation Attained (ft)	7446.73
Max HGL Depth Attained (ft)	2.73
Average HGL Elevation Attained (ft)	7444.99
Average HGL Depth Attained (ft)	0.99
Time of Max HGL Occurrence (days hh:mm)	0 13:08
Total Exfiltration Volume (1000-ft ³)	0
Total Flooded Volume (ac-in)	0
Total Time Flooded (min)	0
Total Retention Time (sec)	0