

Preliminary and Final Drainage Report Meadowbrook Crossing El Paso County, Colorado

Prepared for: Meadowbrook Crossing LLC 90 South Cascade Ave, Suite 1500 Colorado Springs, Colorado 80903

1604 South 21st Street Colorado Springs, Colorado 80904 Ph: (719)630-7342

Kiowa Project No. 16039

May 2, 2017

TABLE OF CONTENTS

Table (of Contents	.i
Statem	nents and Approvals	ii
I.	General Location and Description	1
II.	Major Drainage Basins and Subbasins	1
III.	Drainage Design Criteria	3
IV.	Drainage Facility Design	3
	A. StormWater Quality Design	6
	B. East Fork Sand Creek Improvements	7
	C. Cost of Proposed Drainage Facilities	9
	D. Drainage and Bridge Fees	9
۷.	Conclusions	9
VI.	References1	0
Apper	ndix Table of Contents	1

STATEMENTS AND APPROVALS

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City/County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Kiowa Engineering Corporation, 1604 South 21st Street, Colorado Springs, Colorado 80904

Matthew W. Erichsen, P.E. (PE #36713) For and on Behalf of Kiowa Engineering Corporation

DEVELOPER'S STATEMENT:

I, the Developer, have read and will comply with all of the requirements specified in this drainage report and plan.

By: _____

Date

Date

Meadowbrook Crossing LLC

Print Name: _____

Address: <u>Meadowbrook Crossing LLC</u> <u>90 South Cascade Avenue, Suite 1500</u> <u>Colorado Springs, Colorado 80903</u>

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 & 2, El Paso County Engineering Criteria Manual, and Land Development Code, as amended.

Jennifer Irvine, P.E. El Paso County Engineer/ECM Administrator

Date

I. GENERAL LOCATION AND DESCRIPTION

The Meadowbrook Crossing subdivision will be developed as a single-family residential subdivision located in El Paso County. The subject property is located to the northwest of Meadowbrook Parkway and US Highway 24, east of Peterson Road. The site is located in the south half of Section 8, Township 14 South, Range 65 West of the 6th Principal Meridian, in El Paso County, Colorado. The site is bounded to the west by the East Fork Sand Creek, Cimarron Southeast Filing No. 1 (undeveloped), to the south and east by Meadowbrook Parkway and 24/94 Business Park Filing No. 1 (undeveloped) and to the north by Claremont Business Park Filing No. 2 (commercial property) and Cimarron Hills Filing No. 4 (residential property). The East Fork Sand Creek crosses through the northwest portion of the site from northeast to southwest. The property covers approximately 32.89 acres and is currently undeveloped. A vicinity map of the site is shown on Figure 1 included in the Appendix.

The existing vegetative cover within the development is in fair condition with grasses throughout the site. The existing ground slopes within the property range from 1 to 6 percent typical with areas of vertical slopes along the edge of the drainageway. Soils within the subject site are classified to be within Hydrologic Soils Group A and B as shown in the El Paso County Soils Survey, see Appendix for the Soil Map. Specifically the site includes Blakeland loamy sand (Soil Group A), Blendon sandy loam (Soil Group B) and Ellicott loamy coarse sand (Soil Group A) which is mainly located along the existing drainageway. For the purposes of computing the existing and proposed hydrology for the site, Hydrologic Soil Group B was used.

There are no active irrigation ditches or facilities within or adjacent to the site.

II. MAJOR DRAINAGE BASINS AND SUBBASINS

The site lies within the East Fork Sand Creek drainage basin. The majority of the site drains by sheet flow west/northwest into the East Fork Sand Creek. The Meadows Crossing area was studied as a part of the Sand Creek Drainage Basin Planning Study (DBPS). The DBPS shows drainageway improvements adjacent to the site for East Fork Sand Creek. Those improvements include channelizing the existing creek into a trapezoidal channel section with an 80-ft bottom width, 100 year riprap bank lining on both sides of the creek to a depth of 5-feet (depth to be determined by 100 year water surface elevation) and two drop structures. In the existing condition, a concrete vertical check structure is located upstream of the site and grouted sloping boulder drops are used further upstream to provide grade control of the creek. The vertical check structure is exposed to a depth greater than the design likely intended. The proposed drainageway improvements will raise the channel bottom to decrease the exposed height of this check structure to a more manageable height along with flattening the downstream slope to minimize the chance of this check being further exposed in the future. The proposed improvements include construction of a trapezoidal channel section with soil riprap bank lining on both sides and installation of two grouted sloping boulder drops to provide grade control and flatten the longitudinal slope of the creek. The DBPS shows a longitudinal slope of 1.0%, the proposed design will result in a slope of roughly 0.5% to reduce the chance of future erosion. Refer to the East Fork Sand Creek Improvements section for additional information.

The subject property is located within a Zone AE FEMA regulated floodplain based on Flood Insurance Rate Map 08041C0752F, effective dated March 17, 1997. A copy of the FIRM panel is provided in the Appendix. The planned improvements to East Fork Sand Creek will modify the existing floodplain. A Conditional Letter of Map Revision (CLOMR) has been submitted to FEMA for approval of the floodplain modifications. The proposed 100 year floodplain will be contained within the proposed channel section and will not extend into the proposed lots.

In the existing condition, the majority of the site drains by sheet flow to the East Fork Sand Creek, refer to the Existing Conditions Drainage Plan. <u>Basin EX-A</u>: The basin is located along the north and northwest sides of the property including the East Fork Sand Creek. The runoff from this basin will sheet flow to the East Fork Sand Creek. <u>Basin EX-B</u>: The basin is located along the southeast and south sides of the property. The runoff sheet flows west-southwest towards the southwest corner of the property, leaving the site before draining into the creek.

Following is a description of the off-site drainage basins in the existing condition, refer to the Drainage Facility Design section for the proposed condition basin descriptions. Refer to the Proposed Condition Drainage Plan for the basin locations. <u>Basin OS-A</u>: The basin is located along the east side of the development and includes half of existing Meadowbrook Parkway. The gutter of Meadowbrook Parkway carries off site flows from the north to southwest. These off-site flows enter the property at the west end of Meadowbrook Parkway where the street ends. The FDR for 24/94 Business Park shows a proposed 10-ft Type R on the east corner of the intersection (by Others). however not on the north corner within Basin OS-A. <u>Basin OS-B</u>: The basin is located along the south side of the development, west of the Meadowbrook Parkway intersection in proposed Tract H which is the future ROW for the Meadowbrook Parkway extension. In the existing condition, this basin is part of Basin EX-B and runoff sheet flows west to the East Fork Sand Creek. <u>Basin OS-C</u>: The basin is located along the northeast half of Meadowbrook Parkway between Highway 24 and the intersection of Meadowbrook Parkway. The runoff from the basin will sheet flow to the gutter which directs the flows northwest to the existing drain pan at Meadowbrook Parkway which conveys the flows southwest into Basin OS-D. Basin OS-D: The basin is located along the southwest half of Meadowbrook Parkway between Highway 24 and the intersection of Meadowbrook Parkway. The runoff from the basin will sheet flow to the gutter which directs the flows northwest and around the curb return into Basin OS-E. Basin OS-E: The basin is located to the south of the site and will include the south half of the future Meadowbrook Parkway extension west of Newt Drive. In the existing condition, the runoff sheet flows west to East Fork Sand Creek.

An existing 18-inch storm sewer outfalls into the site near the intersection of Meadowbrook Parkway. This pipe carries flows from the east side of Meadowbrook Parkway (24/94 Business Park Filing No. 1). In the proposed condition, this pipe will be abandoned in place and capped (see below for description of proposed 42-inch storm sewer-by others). Off site flows also drain onto the subject site by sheet flow from a landscaped area to the north of the property (Claremont Business Park). This area is small with a minimal amount of runoff. In the proposed condition, the lots are planned to have swales along the lot lines to capture and convey flows from the back of the lots to the front. These swales will be used to convey off site flows.

<u>24/94 Business Park FDR and 42-inch storm sewer by Others</u>: The 24/94 Business Park FDR shows future curb inlets along the future Meadowbrook Parkway extension on the south and west corners of the intersection to capture runoff from Basins OS-A, OS-C and OS-D (The inlet on the west corner will be shifted to the north corner to capture flows before the intersection and to be located over the 42-inch storm sewer). These inlets will connect to the 42-inch RCP storm sewer (described below) from the 24/94 Business Park Filing No. 1 property and be constructed when the street is extended.

The development of the 24/94 Business Park to the south of the site will include the installation of a 42-inch RCP storm sewer system which will cross through the Meadowbrook Crossing site, outfalling into the East Fork Sand Creek. The proposed and future inlets along Meadowbrook Parkway at Newt Drive will be connected to this storm sewer. The portion of pipe crossing under Meadowbrook Parkway was installed when the street was constructed. This storm sewer will be separate from the drainage improvements on the subject site. No on-site stormwater connections are planned into this storm sewer from Meadowbrook Crossing. The construction of this storm sewer will be performed by others. In the event, the development of the 24/94 Business Park does not occur prior to

construction of Meadowbrook Crossing, the 42-inch storm sewer will be constructed through the Meadowbrook Crossing for future connection and conveyance of stormwater from that site.

III. DRAINAGE DESIGN CRITERIA

Hydrologic and hydraulic calculations for the site were performed using the methods outlined in the *El Paso County Drainage Criteria Manual*. Topography for the site is presented on the Drainage Plan. The hydrologic calculations were made for the existing and proposed site conditions. The Drainage Plan presents the drainage patterns for the site, including the sub-basins. The peak flow rates for the sub-basins were estimated using the Rational Method. The 5-year (Minor Storm) and 100-year (Major Storm) recurrence intervals were determined. The one-hour rainfall depth was determined from Table 6-2 of the *Drainage Criteria Manual*. These depths are shown in the runoff calculations spreadsheet. The peak flow data generated using the rational method was used to verify street capacities and to size inlets and storm sewers within the subdivision. The drainage basin area, time of concentration, and rainfall intensity were determined for each of the sub-basins within the property. The onsite soils were assumed to be Hydrologic Soil Group B, based on the *Soil Survey*.

The onsite hydraulic structures were sized using the methods outlined in the *El Paso County Drainage Criteria Manual*. The hydraulic capacities of the streets and curb inlets were determined using the UD-Inlet spreadsheet developed by the UDFCD, considering the County criteria for the Minor (5-year) and Major (100-year) storms. Colorado Department of Transportation (CDOT) Type R curb inlets will be used within the site. Ramp curbs will be used throughout the development, except along Newt Drive and between curb returns and at curb inlets, where a 6-inch vertical curb will be used. Storm sewer pipes were initially sized based on their full-flow capacity using the Manning's equation. The UDSewer program was then used to verify storm sewer pipe sizes and perform hydraulic grade line (HGL) and energy grade line (EGL) calculations for the 5-year and 100-year storm events. Hydraulic calculations are provided in the Appendix for the proposed street, inlet and pipe capacities, pipe outlet erosion protection and open channel.

Stormwater detention will not be required on the site, due to the close proximity of the site to a major drainageway, refer to the Stormwater Quality Design section. Stormwater quality improvements will be required and will be provided in a modified Extended Detention Basin at the downstream end of the site. The UD-FSD spreadsheets created by UDFCD were used to size and design the water quality area and outlet structure. The supporting calculations are included in the Appendix of this report.

IV. DRAINAGE FACILITY DESIGN

The drainage of the site will be accomplished through a combination of sheet flow, gutter flow and storm sewer flow. Curb inlets will be placed along the street at locations where needed to decrease the amount of gutter flow for the minor and major storms and at the low point in the street to capture the developed runoff. The captured runoff will be conveyed to the proposed water quality basin for water quality treatment before being discharged to the East Fork Sand Creek. The primary stormwater conveyance facility will be a storm sewer system ranging in size from an 18-inch diameter reinforced concrete pipe (RCP) to a 36-inch RCP conveying the on-site runoff to the water quality basin. The proposed drainage patterns for the site are shown on the Drainage Plan (Exhibit A) provided in the map pocket at the end of this report. The hydrologic and hydraulic calculations are provided in the Appendix.

The County requires a Four Step Process "for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways and implementing long-term source controls". In this development following are the steps taken to meet this process. Step 1-Employ Runoff Reduction Practices: The building roof downspouts will typically be directed to the landscaped areas, swales between lots or grassed areas to both convey flows and

allow infiltration. Step 2-Implement BMPs that Provide a WQCV with Slow Release: An extended detention basin will be used to provide water quality treatment for most of the runoff from the site. The extended detention basin will release the WQCV over 40 hours. The runoff from the back half of the lots adjacent to the creek will sheet flow over the grass (grass buffer water quality treatment) before reaching the creek. Step 3-Stabilize Drainageways: The proposed development includes stabilizing the existing creek with grade control structures and soil riprap bank lining. Step 4-Implement Site Specific and Other Source Control BMPs: The potential pollutant sources for a residential development like this one include parked vehicles, deicing chemicals, waste storage/disposal practices, landscapes (fertilizers, herbicides, pesticides, excessive irrigation) and pets. Since this is a residential development with public streets, most of the source control BMPs are not easily controlled. No vehicle maintenance is allowed on the streets. No deicers are planned for the sidewalks and streets, however the street deicing will be dependent on the public plowing.

Following is a description of the on-site storm sewer system:

The system will begin with two 10-ft curb inlets at the southwest side of the intersection of Boreal Drive and Newt Drive. An 18-inch storm sewer will connect the two inlets (Inlets C and D) and a 24-inch storm sewer will continue out from the second inlet northwest along Newt Drive. The storm sewer will continue to the intersection of Newt Drive and Preble Drive where two more 10-ft curb inlets will be located on the downstream side of the intersection. Those inlets will connect to this storm sewer. The storm sewer size will increase to 30-inch RCP downstream of the inlets and continue southwest along Preble Drive and south along Boreal Drive to the low point in the southwest corner of the site. Two 20-ft curb inlets will be installed at the low point to capture the developed runoff and transfer the flows into the storm sewer. At the inlets and low point the storm sewer will exit the street section and into a drainage easement between the lots, heading southwest. The storm sewer will be routed through the water quality basin to the outlet structure. A pipe will outlet from the outlet structure into the creek. Riprap outlet protection will be placed at the end of the water quality basin outlet pipe to reduce erosion. Refer to the Stormwater Quality Design section for a description of the water quality area design.

Following is a description of the proposed condition off-site drainage sub-basins, refer to the Major Drainage Basins and Subbasins section for the existing condition description:

<u>Basin OS-A</u>: Two proposed street connections to Meadowbrook Parkway are located within the basin. Cross pans will be installed along with a high point west of the intersections to minimize the chance of off-site flows entering the site. A proposed 10-ft Type R curb inlet will be installed upstream of the intersection with Newt Drive along the 42-inch storm sewer (by Others) to capture a majority of the gutter flows. The 24/94 Business Park FDR shows this inlet on the west corner of the intersection, however it will be shifted to the north corner to capture flows prior to the intersection and to be located over the proposed 42-inch storm sewer. Flows in excess of the capacity of the inlet will continue along the future layout of Meadowbrook Parkway to East Fork Sand Creek. When Meadowbrook Parkway is extended, the flows bypassing the inlet on the north corner of the intersection will continue in the gutter into Basin OS-B.

<u>Basin OS-B</u>: The basin includes the northern half of the future Meadowbrook Parkway extensions. Runoff from this basin will sheet flow onto the gutter which will convey the flows to the west. A curb inlet will capture the gutter flows and a storm sewer will convey those flows to the Meadowbrook Crossing Water Quality Area. The Water Quality Area has been designed to treat the flows from Basin OS-B. The pipe will be required to outlet into a forebay, either enlarge the existing forebay or construct a forebay for this pipe within the water quality area <u>Basin OS-C and OS-D</u>: The drainage patterns for these two basins will be similar in the existing and proposed conditions. In the future condition, when Meadowbrook Parkway is extended a curb inlet will be installed at the south corner of the intersection to capture flows from the two basins.

<u>Basin OS-E:</u> The drainage patterns for the basin will be similar in the existing and proposed conditions. In the future condition, when Meadowbrook Parkway is extended, the runoff from the basin will sheet flow to the south gutter of Meadowbrook which will convey the flows west to the property line. This basin is not designed to drain into the Meadowbrook Crossing water quality area.

Following is a description of the on-site drainage sub-basins:

<u>Sub-basin A:</u> The sub-basin is located along the north and northwest side of Preble Drive, including half of Preble Drive and residential lots. The northern lots (where the back of the lots abut adjacent property) have been graded for runoff to sheet flow from the back of the lots to the street section. The northwestern lots that abut the open space will include a high point in the center of the lots to drain half of the lots to the street by sheet flow. The runoff from this basin that sheet flows to the street will flow to the gutter which will convey the flows west/southwest to the on grade 10-ft curb inlet (Inlet A) downstream of the intersection of Newt Drive and Preble Drive. Flows in excess of the inlet capacity will continue southwest along Preble Drive into Basin E. Minor amounts of off-site flow will enter the site from the north (Claremont Business Park) via sheet flow. The Claremont Business Park FDR shows the area to the north of the site and Basin A to drain west into the existing 30-inch storm sewer which outfalls into the creek. Individual lots will include drainage swales along the lot lines between lots to convey the on-site and off-site runoff to the street.

<u>Sub-basin B:</u> The sub-basin is located along the south and southeast side of Preble Drive, between Boreal Drive and Newt Drive. The basin includes residential lots and half the street section. The runoff from this basin will sheet flow to the street gutter which will convey the flows southwest to the on grade 10-ft curb inlet (Inlet B) downstream of the intersection of Newt Drive and Preble Drive. Flows in excess of the inlet capacity will continue southwest along Preble Drive into Basin F.

<u>Sub-basin C:</u> The sub-basin is located along the north/northwest side of Boreal Drive, between Preble Drive and Newt Drive. The basin includes residential lots and half the street section. The runoff from this basin will sheet flow to the street gutter which will convey the flows southwest to the on grade 10-ft curb inlet (Inlet C) downstream of the intersection of Newt Drive and Boreal Drive. Flows in excess of the inlet capacity will continue southwest along Boreal Drive into Basin G.

<u>Sub-basin D:</u> The sub-basin is located along the south/southeast side of Boreal Drive, between Preble Drive and Newt Drive and to the northwest of Meadowbrook Parkway. The basin includes residential lots and half the street section. The lots in this area have been graded to drain to the front of the lot by sheet flow to the street gutter. The gutter will convey the flows southwest to the on grade 10-ft curb inlet (Inlet D) downstream of the intersection of Newt Drive and Boreal Drive. Flows in excess of the inlet capacity will continue southwest along Boreal Drive into Basin H. At the two interior street connections to Meadowbrook Parkway, a crosspan will installed along with a high point along the interior drive to minimize the chance of off-site gutter flows entering the site.

<u>Sub-basin E:</u> The sub-basin is located along the north side of Preble Drive and west side of Boreal Drive, including half of the street section and residential lots. The lots will include a high point in the center of the lots to drain half of the lots to the street by sheet flow. The back of the lots will drain to Basin J. The runoff from sub-basin E will sheet flow to the street gutter which will convey the flows west/south to the sump 20-ft curb inlet (Inlet 1) at the low point in the site along Boreal Drive. The inlets at the low point have been sized to capture the 100 year developed flow and convey into Storm 1. If the inlets become clogged or a flow in excess of the 100 year event occurs, the runoff will overtop the curb and drain between the lots in a swale (Section A-A) to the water quality area. The entire

street section will convey the major storm event to the proposed inlets at the low point. For that reason, the total flow was split between the two inlets to determine curb inlet capacity.

<u>Sub-basin F:</u> The sub-basin is located along the south side of Preble Drive and east side of Boreal Drive, including half of the street section and residential lots. The lots will be graded to drain from the back of the lot to the front by sheet flow to the street gutter. The street gutter will convey the runoff west/south to the sump 20-ft curb inlet (Inlet 2) at the low point in the site along Boreal Drive. The inlets at the low point have been sized to capture the 100 year developed flow and convey it into Storm 1. If the inlet becomes clogged or a flow in excess of the 100 year event occurs, the runoff will overtop the street centerline and flow to Inlet 1, refer to the Sub-basin E description. The entire street section will convey the major storm event to the proposed inlets at the low point. For that reason, the total flow was split between the two inlets to determine curb inlet capacity.

<u>Sub-basin G:</u> The sub-basin is located along the north side of Boreal Drive, including half of the street section and residential lots. The lots will be graded to drain from the back of the lot to the front by sheet flow to the street gutter. The street gutter will convey the runoff west to the sump 20-ft curb inlet (Inlet 2) at the low point in the site along Boreal Drive. The inlets at the low point have been sized to capture the 100 year developed flow and convey it into Storm 1. Refer to the Sub-basin F description.

<u>Sub-basin H:</u> The sub-basin is located along the south side of Boreal Drive, between Preble Drive and the low point in Boreal Drive; to the northwest of future Meadowbrook Parkway. The basin includes residential lots and half the street section. The lots in this area have been graded to drain to the front of the lot by sheet flow to the street gutter. The gutter will convey the flows west to the sump condition 20-ft curb inlet (Inlet 1) at the low point in the site along Boreal Drive. Refer to the Sub-basin E description for additional information on the inlet and overflow.

<u>Sub-basin I:</u> The sub-basin is located along the back of the lots on the west side of Boreal Drive and the proposed water quality area. The lots will include a high point in the center of the lots to drain half of the lots to the water quality area by sheet flow. Refer to the Stormwater Quality Design section for a description of the water quality area.

<u>Sub-basin J</u>: The sub-basin is located along the northwest side of the site including the East Fork Sand Creek, the back half of the lots along Preble Drive and the open space to the north of the creek. These areas will sheet flow to the creek which will convey the flows from the northeast corner of the site to the south/southwest. Drainageway improvements are planned for the East Fork Sand Creek within the development that will impact the FEMA regulated 100 year floodplain. Refer to East Fork Sand Creek section for a detailed description of the improvements. The owner is considering making the overbank section on the north side of the creek a dog park. Any impacts associated with the dog park will be limited by management of the area by the HOA including limiting the loss of vegetation within the area.

A. STORMWATER QUALITY DESIGN

Storm water quality measures are required by the County as part of the development of the property, however no stormwater detention is required due to the proximity of the site to a major drainageway. The proposed outfall for the site is well downstream of the centroid of the East Fork Sand Creek basin, so the peak flow from the site will flow into the creek well ahead of the peak for the basin. In addition, stormwater detention has not been required or included in any of the existing adjacent developments. The water quality measures to be instituted for the development will include:

1. Construction of an extended detention basin at the downstream end of the property for site runoff to drain through. The water quality enhancements to be included in the water

quality basin are a presedimentation forebay on-site storm sewer outlet into the water quality area, minimal sloped low flow channel, outlet structure with an internal micropool, water quality orifice plate to reduce the release rate to a drain time of nearly 40 hours for the Water Quality Capture Volume (WQCV) and a well screen across the orifice plate to minimize the chance of debris blocking the orifice plate.

The water quality basin has been sized based on the required water quality capture volume (WQCV) and a 40-hour maximum drain time. The outlet structure will include an overflow grate for flows in excess of the WQCV. The grate has capacity up to roughly the 5-year storm event before the flows will overtop the spillway crest and flow down the spillway into the creek. The water quality area will be a private facility and will be maintained by the Homeowner's Association.

B. EAST FORK SAND CREEK IMPROVEMENTS

The East Fork Sand Creek courses through the site from the northeast to southwest. The existing channel exhibits a moderate amount of degradation and erosion of the main channel and side slopes adjacent to the site. This degradation is most apparent at the existing check structure upstream of the site which is exposed to a depth of roughly 5-ft and the vertical banks in areas along the creek. The proposed improvements will include stabilization of the existing degraded channel by constructing two grouted sloping boulder drops to provide grade control and to lessen the longitudinal slope of the channel to a more stable slope. The creek will be channelized and soil riprap bank lining will be installed on both sides of the creek to minimize the chance of further erosion and creek migration. The design is based on the channel and drop criteria described in the Urban Drainage and Flood Control District's Urban Storm Drainage Criteria Manual (USDCM).

The existing check structure upstream of the site will set the invert elevation at the upstream end. A portion (approximately 2-ft vertical) of the check will be filled in naturally to reestablish the invert that has degraded, leaving the top approximately 3-ft vertical of the check exposed. The sill of the downstream drop structure will set the downstream channel invert and a sustainable longitudinal slope. The channel section will be a trapezoidal section constructed of a soil riprap (65% riprap/ 35% topsoil by volume) mixture along both side slopes. This soil riprap mixture will be buried with topsoil to promote vegetation. The soil riprap will be constructed on 4:1 typical side slopes extending 5-ft below the channel invert to provide toe protection and 1.0-foot minimum above the 100-year floodplain to provide freeboard. The riprap was sized using the criteria contained in the USDCM. The riprap size will vary along the channel reach depending on the flow velocities. The soil riprap will be placed directly on the subgrade without bedding material or geotextile fabric (USDCM Figure 8-34). Granular bedding will only be used if a section of riprap does not include soil mixed into the voids. The typical channel bottom will consist of a native sand and cobble mixture.

The proposed channel alignment/centerline includes two large radius bends. The channel hydraulics at these bends were reviewed to determine the potential for erosion. In both cases, the centerline radii will be greater than 2.0 times the top width, however erosion protection will be installed up to the superelevated 100-year water surface elevation plus 0.5-ft of freeboard at a minimum, along the outside bends. Storm sewer pipe outfalls into the channel will be at least 1-foot (preferably 2-feet) above the channel invert. A concrete cut off wall and riprap pad will be constructed at the pipe outlets.

Based upon the hydraulic analysis discussed above, the project design criteria is as follows:

• $Q_{100} = 5,330 \text{ cfs}$

- Typical channel longitudinal slope: 0.3% 0.5%
- Channel section type: Trapezoidal section with natural bottom and soil riprap bank lining with toe protection
- Channel centerline radius: 300-ft and 500-ft (minimum is 2x channel top width)
- Typical 100-year water surface depth: 4.7-feet
- Soil riprap thickness to be $2xD_{50}$ of riprap minimum and buried with 4-6 inch thick topsoil in areas outside of channel bottom.
- Bottom width: 120-ft typical. Downstream of the lower drop structure the bottom width will gradually transition to approximately 300-ft to match existing grades.
- Side Slopes: 4:1 typical

Grouted Sloping Boulder Drop Design

The Grouted Sloping Boulder Drop (GSBD) design follows the criteria included in UDFCD's USDCM. Two GSBD's between 2.4 to 3.6-feet high are planned for this section of East Fork Sand Creek. The location of the proposed drops is based on the preferred longitudinal slope of the channel and protecting the proposed development. As recommended by the USDCM, the drops will not be located on a curve.

The longitudinal slope of the drop face is designed at 6:1 (USDCM Criteria 4:1 maximum). Calculations were performed to determine the boulder size within the grouted sloping boulder drops. The minimum boulder size for the drop structures will be 30-inches. These boulders must be carefully placed to create a stepped appearance which helps to increase roughness. The boulders will be placed on undisturbed soil or compacted subgrade. Full penetration of grout around the lower one-half of the rock is essential for successful grouted boulder performance. The grout should be injected to a depth equal to one-half of the boulders being used and keep the upper one-half ungrouted and clean. Typically, the grout will not extend to the top of the boulders.

A vertical cutoff will be located at the upstream face of the crest to minimize seepage from occurring under the structure and possible uplift forces. The cutoff wall will be installed to the specified depth below the proposed channel invert. The vertical cutoff wall will be constructed of sheet pile. A grouted boulder sill will be installed at the downstream end of the drops. The upstream drop will not include a downstream cut off wall, the downstream drop will include a downstream cut off wall to protect against further erosion of the channel downstream of the site. A 0.5% slope was extended from a point downstream of the site near Peterson Road to determine the depth of this downstream cutoff wall. This estimated longitudinal slope represents the maximum downstream channel degradation assuming no future channel stabilization improvements will be constructed between the proposed lower drop structure and Peterson Road. Weep drains will be installed in the drops to release hydrostatic pressure from under the drops and reduce the uplift forces on the grouted channel lining.

HEC-RAS and specific force calculations were used to determine the hydraulic jump location along the drops, the stilling basin length and depth. Riprap will be placed downstream of the sill for a distance of 10-feet to minimize erosion that may occur due to secondary currents.

Based upon the hydraulic calculations and USDCM, the following design criteria have been established for the grouted sloping boulder drops.

• Drop height (H_d)(elevation difference between crest and top of sill): One 2.4-ft and one 3.6-ft

- Typical trapezoidal channel section to continue through drop. Grouted boulders to extend to 1.0-ft vertically above the 100-year water surface elevation.
- Drop face slope: 6:1
- Boulder size: 30-inch minimum, with randomly placed 30-inch to 48-inch feature boulders/boulder islands to help split low flows and dissipate energy. 36-inch minimum for sill.
- Grouted boulder bedding: Undisturbed soil or compacted subgrade.
- Approach length: 10-ft grouted boulders followed by 10-ft type M soil riprap (2.0-ft thick), not buried along the channel bottom.
- Upstream cutoff wall depth: 6.5-ft to 8.5-ft. Cut off material to be steel PZ-22 sheet Pile with a steel reinforced concrete cap.
- Downstream cutoff wall depth: Downstream drop only. 9.0-ft steel PZ-22 sheet pile with a steel reinforced concrete cap.
- Weep drain system: Yes
- Stilling basin depth: 1.5-ft
- Stilling basin length: 20-ft
- Downstream length of riprap protection: 10-ft type M soil riprap (2.0-ft thick), not buried along channel bottom.

Refer to Appendix for Channel design and Grouted Sloping Boulder Drop Design Calculations and additional design information.

The proposed improvements to the East Fork Sand Creek will result in a modification to the existing floodplain. A Conditional Letter of Map Revision has been submitted to FEMA for the floodplain impacts associated with the drainageway improvements. Refer to the CLOMR for detailed information and calculations related to the floodplain modification.

C. COST OF PROPOSED DRAINAGE FACILITIES

Table 2 presents a cost estimate for the construction of drainage improvements (public and private) for development. The public drainageway improvements have been separated since the cost of these improvements will be credited toward the Drainage Fees.

D. DRAINAGE AND BRIDGE FEES

The site lies within the Sand Creek Drainage Basin. The current drainage basin fee is \$15,720 per impervious acre and the current bridge fee is \$4,762 per impervious acre. The Meadowbrook Crossing subdivision encompasses 32.89 acres. Table 1 details the fees due as part of this development. The public drainageway improvement expenses will be credited toward the Drainage Fees. Table 1 includes a calculation of the Reimbursable Drainage Expenses, based on the Table 2 cost estimate and the DBPS cost estimate for this section of East Fork Sand Creek. The developer will follow the procedures for drainage improvement credits and reimbursements as outlined in EPC DCM Chapter 3, Section 3.3 to determine the final reimbursement. Refer to the Appendix for Section 3.3 of the EPC DCM.

V. CONCLUSIONS

Meadowbrook Crossing will be a single-lot family residential subdivision covering approximately 32.89 acres. On-site drainage will include the use of curb inlets and storm sewers to route the runoff from the site to the water quality basin at the downstream end of the site. No stormwater detention improvements will be required of this development. The treated runoff from the site will be conveyed from the water quality basin to the East Fork Sand Creek. Improvements will be constructed along the East Fork Sand Creek including channelization of the creek with soil riprap

bank protection and grade control of the creek invert with two grouted sloping boulder drop structures. A Conditional Letter of Map Revision has been submitted to FEMA for the floodplain impacts associated with the drainageway improvements. The development of the Meadowbrook Crossing property will not adversely impact or deteriorate improvements or natural drainageways downstream of the property.

VI. REFERENCES

- 1) <u>Meadowbrook Crossing Conditional Letter of Map Revision</u>, prepared by Kiowa Engineering Corporation, dated December 13, 2016.
- 2) <u>Central Marksheffel Metropolitan District, FEMA Floodplain Letter of Map Revision</u>, prepared by Matrix Design Group, Inc., dated January 2006.
- 3) <u>Sand Creek Drainage Basin Planning Study, Preliminary Design Report, prepared by Kiowa</u> Engineering Corporation, dated January 1993 (Revised March 1996).
- 4) <u>Final Drainage Report, Lot 1 24/94 Business Park Filing No. 1</u>, prepared by Core Engineering Group, dated July 14, 2016.
- 5) <u>Final Drainage Report, Claremont Business Park Filing No. 2</u>, prepared by Matrix Design Group, dated November 2006.
- 6) <u>City of Colorado Springs and El Paso County Flood Insurance Study</u>, prepared by the Federal Emergency Management Agency, dated March 1997.
- 7) <u>El Paso County Drainage Criteria Manual (Volumes 1 and 2) and Engineering Criteria Manual</u>, current editions.
- 8) <u>Urban Storm Drainage Criteria Manual (USDCM) Volumes 1, 2 and 3</u>, Urban Drainage and Flood Control District, Current Editions
- 9) <u>Soil Survey of El Paso County Area, Colorado</u>, prepared by United States Department of Agriculture Soil Conservation Service.

APPENDIX TABLE OF CONTENTS

APPENDIX

Figure 1: Vicinity Map Soils Map FEMA Flood Insurance Rate Map Table 1: Impervious Area and Drainage Basin & Bridge Fee Calc Table 2: Opinion of Cost – Drainage Facilities EPC DCM Section 3.3: Procedures for Drainage Improvement Credits... Table VIII-8: Sand Creek DBPS Drainage Basin Fee Estimation Table VIII-2: Sand Creek DBPS Drainageway Conveyance Cost Estimate

APPENDIX A

Hydrologic Calculations Runoff Coef, Time of Concentration and Runoff Calcs

APPENDIX A.1

Supporting Tables and Figures

APPENDIX B

Water Quality Area Calculations Water Quality Area Sizing Outlet Structure Calculations Forebay, Low Flow Channel and Spillway Calculations

APPENDIX B.1

Supporting Tables and Figures

APPENDIX C

Hydraulic Calculations Inlet Summary – UD-Inlet Inlet Capacity Calculations – UD-Inlet Pipe Sizing Calculations UDSewer Plan Schematic UDSewer Input and Output Tables: 5-year and 100-year Storm Events Swale Calculations

APPENDIX D

Drainageway Calculations Riprap and Boulder Sizing Calculations Hydraulic Jump and Basin Length Calculations Seepage Calculations Supporting Figures CLOMR Appendix D: Proposed Conditions HEC-RAS Model Pages from Sand Creek DBPS

APPENDIX E

Exhibit A: Drainage Plan – Existing Conditions Exhibit B: Drainage Plan – Proposed Conditions

APPENDIX

Figure 1: Vicinity Map Soils Map FEMA Flood Insurance Rate Map Table 1: Impervious Area and Drainage Basin & Bridge Fee Calc Table 2: Opinion of Cost – Drainage Facilities EPC DCM Section 3.3: Procedures for Drainage Improvement Credits... Table VIII-8: Sand Creek DBPS Drainage Basin Fee Estimation Table VIII-2: Sand Creek DBPS Drainageway Conveyance Cost Estimate

SCALE: NTS

FIGURE 1 VICINITY MAP MEADOWBROOK CROSSING

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Hydrold	ogic Soil Group— Summa	o County Area, Colorado	(CO625)	
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	2.7	8.3%
10	Blendon sandy loam, 0 to 3 percent slopes	В	15.8	48.2%
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	A	14.3	43.5%
Totals for Area of Intere	est	32.8	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

TE SCALE IN FEET	
LOOD INSURANCE PROGRAM	
ISURANCE RATE MAP	
SO COUNTY, ADO AND PORATED AREAS	
OF 1300 Dex for panels not printed)	
NUMBER PAREL SUFFA GS, CITY OF 080060 0752 F D ABEAS 080059 0752 F	
3	
MAP NUMBER 08041C0752 F	
EFFECTIVE DATE: March 17, 1997	
nergency Management Agency	
on of the above referenced flood map. It ine. This map does not reflect changes been made subsequent to the date on the	MEADOWBROOK SUBDIVISION CLOMR ANNOTATED FIRM
t information about National Flood Insurance EMA Flood Map Store at www.msc.fema.go	

Meadowbrook Crossing Drainage Basin and Bridge Fees

Table 1: Impervious Area and Drainage Basin & Bridge Fee Calculation

Mead	lowl	orook	Crossing	

Total Site/Platted Area =	32.885 ac							
Tract H Area =	1.241 ac	Future Meadowbrook Pkwy	,					
Developed Area =	20.358 ac	Residential lots and streets						
Total Undeveloped Area =	11.286 ac	Undeveloped Tract Area						
		[Table 6-6: Drai	nage Criteria				
Developed Area =	20.358 ac		Manı	ıal				
Total Lots =	Total Lots = 114 lots							
Lots/Acre =	5.60 lots/ac		4 lots/ac	40%				
Developed Area: % Impervious =	50.00 %		5.60 lots/ac	50.00%				
Tract H Area =	1 241 ac							
Tract H Area: % Impervious =	82.17 %	=						
	02117 70							
Total Undeveloped Area =	11.286 ac	_						
Undeveloped Area: % Impervious =	0.00 %	-						
Total Site/Platted Area =	32.885 ac							
Effective % Impervious =	34.05 %							
				L				
Sand Creek Drainage Basin: Drainage Basin	Fee and Bridge Fe	e Calculations	# 4 5 6 006 00					
Drainage Basin Fee =	\$15,/20/ac	Drainage Basin Fee =	\$ 176,036.90 \$ 52,226,10					
Druge ree –	\$4,702 / ac	Druge ree -	\$ 33,320.19					
Current Drainage Basin Fee (2017) =	\$15,720 / ac							
DBPS Drainage Basin Fee (Original 1996) =	\$6,115 / ac	Table VIII-8: Sand Creek	Drainage Basin F	Planning Study				
Percent increase =	257.07%	-						
Drainageway Conveyance Cost Estimate		1 082lf channel improve	at \$268/lf + 200	lfgrade				
based on DBPS Table VIII-2 (Original 1996)	\$ 320.976	control at \$155/lf (Table	VIII-2 Sand Crk	DBPS:				
=	<i>+ 0 - 0,977 0</i>	Segment 4 East Fork San	d Creek)					
Cost Percent Increase (1996 DBPS to 2017)	257 07%	0	5					
=	237.0770	=						
Drainageway Conveyance Cost Estimate	\$825,142							
(DBPS) updated to 2017 prices =								
Reimbursable Drainage Expenses associated	d with drainageway	¢ 025 056 25						
improvements	(refer to Table 2) =	\$ 733,930.23						
Updated DBPS Drainage Fee (subject section 1	East Fork Sand Crk)	\$ 825,141.90						
(see c	calculation above) =							
Reimbursable Drainage Expenses (Smaller of T	able 2 and Undated							
DE	\$ 825,141.90							
D	rainage Basin Fee =	\$ 176,036.90						
Remaining Reimbursable Drain	ageway Expenses =	\$649,105.00						
Total Fees Due]						

Total Fees Due	
Drainage Basin Fee =	\$ 0.00
Bridge Fee =	\$ 53,326.19

*Reimbursable Expenses applied to drainage fees due

Meadowbrook Crossing Table 2: Opinion of Cost

Table 2a: Opinion of Cost - On Site Public Drainage Facilities

Item	Quantity	Unit	Unit Cost	Item Total		
18" Reinforced Concrete Pipe	80	LF	\$ 69	\$ 5,520.00		
24" Reinforced Concrete Pipe	256	LF	\$84	\$ 21,504.00		
30" Reinforced Concrete Pipe	1,038	LF	\$ 94	\$ 97,572.00		
36" Reinforced Concrete Pipe	188	LF	\$ 124	\$ 23,312.00		
36" Flared End Section (FES) CSP	1	EA	\$ 1,100	\$ 1,100.00		
End Treatment - Cutoff Wall	1	EA	\$ 500	\$ 500.00		
Curb Inlet (Type R) L =10', Depth < 5 feet	2	EA	\$ 5,528	\$ 11,056.00		
Curb Inlet (Type R) L =10' , 5'-10' Depth	2	EA	\$ 6,694	\$ 13,388.00		
Curb Inlet (Type R) L =20' , 5'-10' Depth	2	EA	\$ 8,830	\$ 17,660.00		
	Estir	mated Storm Draina	age Facilities Cost	\$ 191,612.00		

Engineering 10% \$ 19,161.20 Contingency 5% \$ 9,580.60

Total Estimated Cost \$220,353.80

Table 2b: Opinion of Cost - Public Drainageway Improvements - Reimbursable

Item	Quantity	Unit	Unit Cost	Item Total		
30" (B30) Grouted Boulders	1,448	CY	\$ 155	\$ 224,440.00		
36" (B36) Grouted Boulders	117	CY	\$ 165	\$ 19,305.00		
30" to 48" (B30 to B48) Grouted Feature Boulders	128	CY	\$ 190	\$ 24,320.00		
30" to 48" (B30 to B48) Ungrouted Feature Boulders	85	CY	\$130	\$ 11,050.00		
Type L Soil Riprap (d50 = 9")	2,142	CY	\$ 60	\$ 128,520.00		
Type M Soil Riprap (d50 = 12")	2,039	2,039 CY \$70				
Type H Soil Riprap (d50 = 18")	2,032	CY	\$ 162,560.00			
Steel Sheetpile Cutoff (PZ 22)	3,626	SF	\$ 25	\$ 90,650.00		
Sheetpile Concrete Cap	515	LF	\$ 20	\$ 10,300.00		
	Esti	mated Storm Draina	age Facilities Cost	\$813,875.00		
			\$ 81,387.50			
			\$ 40,693.75			
		Tota	l Estimated Cost	\$ 935.956.25		

Table 2c: Opinion of Cost - On Site Private Drainage Facilities

Item	Quantity	Unit	Unit Cost	Item Total	
Channel Lining, Concrete (Low Flow Channel)	10	CY	\$ 450	\$ 4,500.00	
Presedimentation Forebay	1	EA	\$ 5,500	\$ 5,500.00	
Water Quality Outlet Structure	1	EA	\$ 8,000	\$ 8,000.00	
Emergency Spillway (Cutoff Wall)	3	CY	\$450	\$ 1,350.00	
Gravel Maintenance Access Trail	243	SY	\$ 20	\$ 4,860.00	
Type II Bedding (Low Flow Channel)	15	15 CY \$35			
24" Reinforced Concrete Pipe	40	LF	\$84	\$ 3,360.00	
24" Flared End Section (FES) RCP	1	EA	\$ 900	\$ 900.00	
	Esti	mated Storm Draina	age Facilities Cost	\$ 28,995.00	
			Engineering 10%	\$ 2,899.50	
			Contingency 5%	\$ 1,449.75	
		Tota	l Estimated Cost	\$ 33,344.25	

Sand Creek Drainage Basin Planning Study Drainage Basin Fee Estimation

Reimbursable Drainageway Improvements		Construction Costs
Lower and Upper Sand Creek		\$15,560,220
Center Tributary Sand Creek		\$984,500
West Fork Sand Creek		\$1,004,400
East Fork Sand Creek		\$15,674,470
East Fork Sub-Tributary		\$6,227,600
East and West Bierstadt Creeks		\$6,688,270
Toy Ranch Tributary		\$4,398,550
Tributary Drainageways	Sand Creek	\$7,420,650
Tributary Drainageways	East Fork Sand Creek	\$16,917,940
Roadway Culverts	Sand Creek	\$1,111,000
Roadway Culverts	East Fork Sand Creek	\$2,201,500
Habitat Mitigation	Sand Creek	\$263,200
Miscellaneous Improvements		\$65,000
Total Reimbursable Improvements 10% Engineering 5% Contingency		\$78,517,300 \$7,851,730 \$3,925,865
Total Drainageway Costs Study Costs Existing basin outstanding claims (ci Existing basin outstanding claims (co	ity) ounty)	\$90,294,895 \$139,000 \$1,392,635 \$376,913
Total		\$92,203,443
Unplatted Acreage Unplatted Acreage	City of CS El Paso County	11312 7497
City drainage fee County drainage fee with detention f	facilities	\$4,902 \$6,115

85

TABLE VIII-2: SAND CREEK DRAINAGE BASIN PLANNING STUDY DRAINAGEWAY CONVEYANCE COST ESTIMATE WITH SELECTED DETENTION ALTERNATIVES

SEGMENT NUMBER	REACH NUMBER	SEGMENT LENGTH (FT)	IMPROVEMENT TYPE	IMP. LENGTH (FT)	UNIT COST (\$/LF)	NUMBER OF GRADE CONTROLS	GRADE CONTROL LENGTH (FT)	TOTAL REIMBURSABL COSTS	TOTAL COST
EAST FORK	SAND CREE	K							
122	EF-1	4650	100-YR RIPRAP	4650	268	10	1200	0	\$1,432,200
1	EF-2	6750		5950	268	12	1440	\$1,817,800	\$1,817,800
2	**	3400	H	3400	268	7	2000	\$1,221,200	\$1,221,200
3	*	2350	**	2350	268	1	100	\$645,300	\$645,300
4	11	3350	10-YEAR RIPRAP	3350	268	4	400	\$959,800	\$959,800
5	"	4270	T	4270	268	3	270	\$1,186,210	\$1,186,210
14		3250	w	3250	268	5	450	\$940,750	\$940,750
116	EF-3	2000	W	2000	268	5	450	\$605,750	\$605,750
18	EF-4	3900	"	2250	185	5	450	\$486,000	\$486,000
24	"	2250	"	2250	185	2	140	\$437,950	\$437,950
25		2530	m	2230	185	7	700	\$521,050	\$521,050
26		1520	-	1020	185	2	160	\$ 213,500	\$213,500

Channel Improvements: \$268/lf Grade Control: \$155/lf

.

- 2. All petitioners for Drainage Board items will be notified by the staff prior to the meeting. They will be informed of the staff's recommendation concerning their item(s) and whether their item is included on that particular agenda.
- All petitioners will be provided with the Board's decision concerning their agenda item and advised of their appeal right following each Board meeting.
- All administrative items shall be directed to the staff prior to scheduling for the Board.

3.3 Procedures for Drainage Improvement Credits and Reimbursements

In order for a developer to obtain reimbursement or credit for drainage costs, certain procedures must be followed. Prior to construction, the developer must:

- 1. Obtain through the subdivision process, an approved drainage report showing the facilities required and the estimated cost of those facilities, and indicate the drainage basin and fee for the acreage shown on the drainage plan. (Copies of the current per-acre fee can be obtained from the Public Works Department.) All drainage basins are identified and fees established each year. Letters of credit are to be posted with the City/County in accordance with the Subdivision Ordinance or Regulations.
 - Obtain three (3) sealed bids for constructing the facilities. If the lowest bid exceeds the Engineer's estimated costs as indicated in the drainage report, the City Engineer must review and give approval (or disapproval) before proceeding.
- 3. If it is not possible to receive three bids, the developer must obtain the City/County Engineer's approval before proceeding with construction, and the cost and credits shall be determined at that time.
- 4. The developer proceeds with construction according to the approved plans and any changes during construction shall be discussed with the City/County Engineer.
- 5. Upon completion of the construction of facilities, the developer shall obtain a certification from a Colorado Registered Professional Engineer that the facilities inspected are constructed in accordance with the approved plans. A written request for the City/County inspection of facilities must be submitted to the City/County Engineer. The assurance for facilities may be released after inspection by the City/County.

9/30/90

3-3

- 6. The developer then submits this certification along with records of the cost of construction, i.e., a copy of the three bids (including the low bid), as-paid bills, a copy of the City/County's inspection and cover letter of request for cash reimbursement or credits. This request must be submitted by the third Thursday of the month to be considered at the <u>next</u> month's Drainage Board Meeting.
- 7. The City/County Engineer will review the request, and after verification of the costs, will place the request on the Drainage Board Agenda for formal review.
- 8. The Drainage Board meets on the third Thursday of each month and reviews the requests for reimbursement after hearing from both the City/County and the Developer.
- 9. If the request is approved, the item is then forwarded to City Council/County Commissioners for final approval of reimbursement after hearing from the City/County and the developer.
- 10. If the request is not approved, the Drainage Board will set the amount of reimbursement and the developer has the right to appeal to City Council or the County Commissioners.
- 11. Reimbursements are made twice a year: on the first of June and the first of December. Items to be heard for June disbursement must be approved by the Drainage Board by April 1. Items to be heard for December disbursement must be approved by the Drainage Board no later than October 1.
- 12. If the Drainage Basin account has insufficient funds for reimbursement, the developer is placed on a priority list and is paid when revenue within the fund is sufficient. Partial reimbursements are made until the developer is fully reimbursed.
- 13. If the proposed estimated facilities are less than the fees, the difference will be a cash payment by the developer if he has no available credits in the basin. The assurances will not be released until the final paid bills have been submitted to Land Development to verify costs. If any additional fees are due, they will be payable prior to release of assurances.
- 14. If an overpayment of fees has occurred, the request for cash reimbursement must be submitted to the City/County Engineering Division for approval. Upon approval, the request shall be placed on first priority for immediate refund dependent upon funds available in the Basin Account.

- 15. If the proposed estimated facilities are equal to the <u>fees</u>, assurances will not be released until the final paid bills have been submitted to verify costs. If any fees are due, they will be payable prior to release of assurances.
- 16. Basin funds are not transferable among basins.
- 17. Any dispute over bidding or fees may be heard by the Drainage Board and City Council or County Commissioners.
- 18. The developer should be aware that all drainage basin fees are finally computed to the time that bids are taken and not at the time of platting.
- 19. Fees on all basins are adjusted by City/County each year at their first meeting of the year and at other intervals as needed.

For the purpose of arterial bridge reimbursement from the City Bridge Fund (City Code 15-3-1003), the bridge width shall be measured perpendicular to the ROW and the bridge width will be limited to the ROW dimension. (See definition Section 2.3.1) Box culverts, arch pipe culverts, and similar structures will be considered drainage facilities and included in the drainage basin fee computation.

3.4 Drainage Basin Layout

County Basin Code

A basin numbering system has been implemented to provide an orderly system of identifying and indexing County basins. Each basin number is an eight digit alpha-numeric identifier composed of four designators as shown below:

> <u>A</u> <u>B</u> <u>C</u> <u>D</u> 00 -00 -00 -00

Designator A - The first two digits signify the major basin designation. El Paso County has thirteen major basins, each tributary to either the South Platte (on the north) or the Arkansas (on the south) Rivers in the State of Colorado. Figure No. 3-1 shows the major basins and the major streams in the County. Thirteen major basins and their two digit codes are listed below:

- 1. Beaver Creek (BE)
- 2. Big Sandy Creek (BG)
- 3. Bijou Creek (BI)
- 4. Chico Creek (CH)

9/30/90

3-5

APPENDIX A Hydrologic Calculations

Runoff Coef, Time of Concentration and Runoff Calcs

Meadowbrook Crossing Runoff Coeficient and Percent Impervious Calculation

				LA	Area 1	Land	Use	US1	Area 2	Land	Use	PV	Area 3	Area 3 Land Use		Area 3 Land Use DR Area 4			Land	Use	HI	Area 5	Land	Use			
Basin /	Basin or D (DP contri	P Area ibuting	il Type	Imperv	Use Area) Area	Land Use 6 Imp	Imperv	Use Area) Area	Land Use 6 Imp	Imperv	Use Area	, Area	6 Imp	Imperv	Use Area) Area	Land Use 6 Imp	Imperv	Use Area	, Area	ل Land Use ۱mp	ısin % Aperv	Ba Rui Coeff	sin noff icient	
51	basin	s)	Soi	%	Land	%	Comp %	%	Land	%	Comp 9	%	Land	%	Comp %	%	Land	%	Comp 9	%	Land	%	Comp 9	Ba In	C ₅	C ₁₀₀	
EX-A	773,660 sf	17.76ac	В	0%		0%	0%	50%		0%	0%	100%		0%	0%	90%		0%	0%	2%	17.76ac	100%	2%	2.0%	0.08	0.36	
EX-B	632,160 sf	14.51ac	В	0%		0%	0%	50%		0%	0%	100%		0%	0%	90%		0%	0%	2%	14.51ac	100%	2%	2.0%	0.08	0.36	
OS-A	56,070 sf	1.29ac	В	0%	0.23ac	18%	0%	50%		0%	0%	100%	1.06ac	82%	82%	90%		0%	0%	2%		0%	0%	82.2%	0.62	0.72	
OS-B	67,370 sf	1.55ac	В	0%	0.28ac	18%	0%	50%		0%	0%	100%	1.27ac	82%	82%	90%		0%	0%	2%		0%	0%	82.2%	0.62	0.72	
OS-C	35,300 sf	0.81ac	В	0%		0%	0%	50%		0%	0%	100%	0.81ac	100%	100%	90%		0%	0%	2%		0%	0%	100%	0.90	0.96	
OS-D	24,100 sf	0.55ac	В	0%	0.09ac	17%	0%	50%		0%	0%	100%	0.46ac	83%	83%	90%		0%	0%	2%		0%	0%	83.4%	0.64	0.73	
OS-E	53,800 sf	1.24ac	В	0%	0.32ac	26%	0%	50%		0%	0%	100%	0.91ac	74%	74%	90%		0%	0%	2%		0%	0%	74.0%	0.53	0.65	
А	122,179 sf	2.80ac	В	0%	0.00ac	0%	0%	50%	2.80ac	100%	50%	100%		0%	0%	90%		0%	0%	2%		0%	0%	50.0%	0.35	0.52	
В	71,386 sf	1.64ac	В	0%	0.00ac	0%	0%	50%	1.64ac	100%	50%	100%		0%	0%	90%		0%	0%	2%		0%	0%	50.0%	0.35	0.52	
С	58,008 sf	1.33ac	В	0%	0.00ac	0%	0%	50%	1.33ac	100%	50%	100%		0%	0%	90%		0%	0%	2%		0%	0%	50.0%	0.35	0.52	
D	108,668 sf	2.49ac	В	0%	0.00ac	0%	0%	50%	2.49ac	100%	50%	100%		0%	0%	90%		0%	0%	2%		0%	0%	50.0%	0.35	0.52	
Е	78,540 sf	1.80ac	В	0%	0.00ac	0%	0%	50%	1.80ac	100%	50%	100%		0%	0%	90%		0%	0%	2%		0%	0%	50.0%	0.35	0.52	
F	105,199 sf	2.42ac	В	0%	0.00ac	0%	0%	50%	2.42ac	100%	50%	100%		0%	0%	90%		0%	0%	2%		0%	0%	50.0%	0.35	0.52	
G	110,318 sf	2.53ac	В	0%	0.00ac	0%	0%	50%	2.53ac	100%	50%	100%		0%	0%	90%		0%	0%	2%		0%	0%	50.0%	0.35	0.52	
Н	134,423 sf	3.09ac	В	0%	0.00ac	0%	0%	50%	3.09ac	100%	50%	100%		0%	0%	90%		0%	0%	2%		0%	0%	50.0%	0.35	0.52	
Ι	45,746 sf	1.05ac	В	0%	0.67ac	64%	0%	50%	0.35ac	34%	17%	100%		0%	0%	90%	0.02ac	2%	2%	2%		0%	0%	18.8%	0.19	0.44	
J	485,500 sf	11.15ac	В	0%	9.59ac	86%	0%	50%	1.55ac	14%	7%	100%		0%	0%	90%		0%	0%	2%		0%	0%	7.0%	0.12	0.39	
DD1	FC	4.05	р	00/	0.00	00/	00/	F.00/	405	1000/	F.00/	1000/		00/	00/	0.007		0.07	00/	20/		00/	0.07	F0.00/	0.25	0 52	
	F,G	4.9580	В	0%	0.00ac	0%	0%	50%	4.95ac	100%	50%	100%		0%	0%	90%		0%	0%	2%		0%	0%	50.0%	0.35	0.52	
DPZ	E,H	4.89ac	В	0%	0.00ac	0%	0%	50%	4.89ac	100%	50%	100%		0%	0%	90%		0%	0%	2%		0%	0%	50.0%	0.35	0.52	
DP3	A to H	18.11ac	В	0%	0.00ac	0%	0%	50%	18.11ac	100%	50%	100%		0%	0%	90%	0.02	0%	0%	2%		0%	0%	50.0%	0.35	0.52	
DP4	A to I	19.16ac	В	0%	0.6/ac	4%	0%	50%	18.46aC	96%	48%	100%	1 274 -	0%	0%	90%	0.02ac	0%	0%	2%		0%	0%	48.5%	0.34	0.52	
DP4A	A to I, US-B	20.70ac	В	0%	0.95ac	5%	0%	50%	18.46aC	89%	45%	100%	1.2/ac	6%	6%	90%	0.02ac	0%	0%	2%	0.00-	0%	0%	50.8%	0.35	0.53	
DP5	A to J, US-B	31.85ac	В	0%	10.54ac	33%	0%	50%	20.01ac	63%	31%	100%	1.2/ac	4%	4%	90%	0.02ac	0%	0%	2%	0.00ac	0%	0%	35.5%	0.28	0.48	
DP10	OS-C, OS-D	1.36ac	В	0%	0.09ac	7%	0%	50%	0.00ac	0%	0%	100%	1.27ac	93%	93%	90%	0.00ac	0%	0%	2%	0.00ac	0%	0%	93.3%	0.78	0.85	

Meadowbrook Crossing Runoff Coeficient and Percent Impervious Calculation

Basin Runoff Coefficient is based on UDFCD % Imperviousness Calculation								Ī	
Runoff Coefficients and Percents Impervious									1
Hydrologic Soil Type:	В			Runoff (Coef C	alc Me	ethod	%Imp	
Land Use	Abb	%	C ₂	C ₅	C ₁₀	C ₂₅	C ₅₀	C ₁₀₀	Weighter
Commercial Area	CO	95%	0.79	0.81	0.83	0.85	0.87	0.88	%Imp
Drives and Walks	DR	90%	0.71	0.73	0.75	0.78	0.80	0.81	Α
Streets - Gravel (Packed)	GR	40%	0.23	0.30	0.36	0.42	0.46	0.50	В
Historic Flow Analysis	HI	2%	0.03	0.08	0.17	0.26	0.31	0.36	С
Lawns	LA	0%	0.02	0.08	0.15	0.25	0.30	0.35	D
Off-site flow-Undeveloped	OF	45%	0.26	0.32	0.38	0.44	0.48	0.51	
Park	PA	7%	0.05	0.12	0.20	0.29	0.34	0.39	
Streets - Paved	PV	100%	0.89	0.90	0.92	0.94	0.95	0.96	
Roofs	RO	90%	0.71	0.73	0.75	0.78	0.80	0.81	
Residential: 5.6 Lots/Acre	US1	50%	0.29	0.35	0.40	0.46	0.50	0.52	
Residential: 8 Lots/Acre	US2	65%	0.41	0.45	0.49	0.54	0.57	0.59	
Residential: 4 Lots/Acre	US3	40%	0.23	0.30	0.36	0.42	0.46	0.50	

 Equations (% Impervious Calculation):
 $K_A = C_A = K_A + (1.31 i^3 - 1.44 i^2 + 1.135 i - 0.12)$ [Eqn RO-6]
 K_A
 $C_{CD} = K_{CD} + (0.858 i^3 - 0.786 i^2 + 0.774 i + 0.04)$ [Eqn RO-7]
 K_A
 $G_B = (C_A + C_{CD}) / 2$ K_A
 M_B I = % imperviousness/100 as a decimal (See Table RO-3)

 A $C_A =$ Runoff coefficient for NRCS Type A Soils

 B $C_B =$ Runoff coefficient for NRCS Type C and D Soils

$$\begin{split} & K_A = \text{Correction Factor for NRCS Type A Soils - Table RO-4} \\ & K_A (2-yr) = 0 \\ & K_A (5-yr) = -0.08i + 0.09 \\ & K_A (10-yr) = -0.14i + 0.17 \\ & K_A (25-yr) = -0.19i + 0.24 \\ & K_A (50-yr) = -0.22i + 0.28 \\ & K_A (100-yr) = -0.25i + 0.32 \\ & K_{CD} = \text{Correct Factor for NRCS Type C \& D Soils-Table RO-4} \\ & K_{CD} (2-yr) = 0 \\ & K_{CD} (2-yr) = 0 \\ & K_{CD} (5-yr) = -0.10i + 0.11 \\ & K_{CD} (10-yr) = -0.18i + 0.21 \\ & K_{CD} (25-yr) = -0.28i + 0.33 \\ & K_{CD} (50-yr) = -0.33i + 0.40 \\ & K_{CD} (100-yr) = -0.39i + 0.46 \end{split}$$

Residentia	l Percent Imperv	vious	Calculcati	on		
Total Lot and Street Area:	20.358-ac			8 lots/ac	65%	
Total Lots:	114 lots			4 lots/ac	40%	
Lots/Acre:	5.60 lots/ac		Actual:	5.60 lots/ac	50.00%	Us
Acre/Lot:	0.179-ac/lot					

Meadowbrook Crossing Time of Concentration Calculation

	Sub-Basin Data			Time of Concentration Estimate										Min. To	: in Urban	
Pagin /	Contributing			Initial/	Overland	d Time (t _i)			Trave	el Tin	ne (t _t)		Comp.	Tc Chee	Tc Check (urban)	
Design Point	Basins	Area	C 5	Length	Slope	t _i	Length	Slope	Land Type	Cv	Velocity	t _t	t _c	Total Length	t _c Check	i intii t _e
EX-A		17.76ac	0.08	300lf	3.3%	21.7 min.	1900lf	1.3%	SP	7	0.8 ft/sec	39.7 min.	61.4 min.			61.4 min.
EX-B		14.51ac	0.08	300lf	2.3%	24.5 min.	1600lf	1.6%	GW	15	1.9 ft/sec	14.1 min.	38.5 min.			38.5 min.
OS-A		1.29ac	0.62	40lf	2.0%	4.4 min.	1310lf	1.9%	PV	20	2.8 ft/sec	7.9 min.	12.3 min.	1350lf	17.5 min.	12.3 min.
OS-B		1.55ac	0.62	35lf	2.0%	4.1 min.	1270lf	1.3%	PV	20	2.3 ft/sec	9.3 min.	13.4 min.	1305lf	17.3 min.	13.4 min.
OS-C		0.81ac	0.90	10lf	2.0%	0.9 min.	570lf	2.5%	PV	20	3.2 ft/sec	3.0 min.	5.0 min.	580lf	13.2 min.	5.0 min.
OS-D		0.55ac	0.64	20lf	2.0%	3.0 min.	470lf	2.5%	PV	20	3.2 ft/sec	2.5 min.	5.5 min.	490lf	12.7 min.	5.5 min.
OS-E		1.24ac	0.53	20lf	2.0%	3.7 min.	1380lf	1.5%	PV	20	2.4 ft/sec	9.4 min.	13.1 min.	1400lf	17.8 min.	13.1 min.
А		2.80ac	0.35	100lf	2.5%	10.1 min.	970lf	2.2%	PV	20	3.0 ft/sec	5.4 min.	15.6 min.	1070lf	15.9 min.	15.6 min.
В		1.64ac	0.35	100lf	2.0%	10.9 min.	580lf	1.0%	PV	20	2.0 ft/sec	4.8 min.	15.7 min.	680lf	13.8 min.	13.8 min.
С		1.33ac	0.35	100lf	2.0%	10.9 min.	390lf	0.9%	PV	20	1.9 ft/sec	3.4 min.	14.3 min.	490lf	12.7 min.	12.7 min.
D		2.49ac	0.35	100lf	2.0%	10.9 min.	660lf	0.9%	PV	20	1.9 ft/sec	5.8 min.	16.7 min.	760lf	14.2 min.	14.2 min.
Е		1.80ac	0.35	70lf	2.0%	9.1 min.	1020lf	0.6%	PV	20	1.5 ft/sec	11.0 min.	20.1 min.	1090lf	16.1 min.	16.1 min.
F		2.42ac	0.35	100lf	2.0%	10.9 min.	960lf	0.6%	PV	20	1.5 ft/sec	10.3 min.	21.2 min.	1060lf	15.9 min.	15.9 min.
G		2.53ac	0.35	100lf	2.0%	10.9 min.	930lf	0.7%	PV	20	1.7 ft/sec	9.3 min.	20.2 min.	1030lf	15.7 min.	15.7 min.
Н		3.09ac	0.35	100lf	2.0%	10.9 min.	990lf	0.7%	PV	20	1.7 ft/sec	9.9 min.	20.8 min.	1090lf	16.1 min.	16.1 min.
Ι		1.05ac	0.19	60lf	1.5%	11.3 min.	30lf	1.0%	PV	20	2.0 ft/sec	0.3 min.	11.5 min.	90lf	10.5 min.	10.5 min.
J		11.15ac	0.12	100lf	2.0%	14.3 min.	1400lf	0.8%	GW	15	1.3 ft/sec	17.4 min.	31.7 min.	1500lf	18.3 min.	18.3 min.
DP1	F,G	4.95ac	0.35	100lf	2.5%	10.1 min.	960lf	0.8%	PV	20	1.8 ft/sec	9.1 min.	19.2 min.	1060lf	15.9 min.	15.9 min.
DP2	E,H	4.89ac	0.35	100lf	1.5%	12.0 min.	1030lf	0.8%	PV	20	1.8 ft/sec	9.6 min.	21.6 min.	1130lf	16.3 min.	16.3 min.
DP3	A to H	18.11ac	0.35	100lf	3.0%	9.5 min.	1830lf	0.9%	PV	20	1.9 ft/sec	16.1 min.	25.6 min.	1930lf	20.7 min.	20.7 min.
DP4	A to I	19.16ac	0.34	100lf	3.0%	9.7 min.	1900lf	0.9%	PV	20	1.9 ft/sec	16.7 min.	26.3 min.	2000lf	21.1 min.	21.1 min.
DP4A	A to I, OS-B	20.70ac	0.35	100lf	3.0%	9.5 min.	1900lf	0.9%	PV	20	1.9 ft/sec	16.7 min.	26.2 min.	2000lf	21.1 min.	21.1 min.
DP5	A to J, OS-B	31.85ac	0.28	100lf	3.0%	10.5 min.	1900lf	0.9%	PV	20	1.9 ft/sec	16.7 min.	27.2 min.	2000lf	21.1 min.	21.1 min.
DP10	OS-C, OS-D	1.36ac	0.78	20lf	2.0%	2.1 min.	470lf	2.5%	PV	20	3.2 ft/sec	2.5 min.	5.0 min.	490lf	12.7 min.	5.0 min.

Equations:

 t_i (Overland) = 0.395(1.1-C₅)L^{0.5} S^{-0.333} C₅ = Runoff coefficient for 5-year

tc Check = (L/180)+10 (Developed Cond. Only)

L = Length of overland flow (ft)

S = Slope of flow path (ft/ft)

Velocity (Travel Time) = CvS^{0.5}

Cv = Conveyance Coef (see Table RO-2)

S = Watercourse slope (ft/ft)

Table RO-2

Type of Land Surface	Land Type	Cv
Grassed Waterway	GW	15
Heavy Meadow	HM	2.5
Nearly Bare Ground	NBG	10
Paved Area	PV	20
Riprap (Not Buried)	RR	6.5
Short Pasture/Lawns	SP	7
Tillage/Fields	TF	5

L = Overall Length

Meadowbrook Crossing **Runoff Calculation**

Basin /	Contributing Paging	Drainage			Time of					Pacin / DP
DP	Contributing Dashis	Area	C ₅	C ₁₀₀	Concentration	i ₅	i ₁₀₀	Q_5	Q ₁₀₀	Dasiii / Dr
EX-A		17.76 ac	0.08	0.36	61.4 min.	1.4 in/hr	2.4 in/hr	2.0 cfs	15.2 cfs	EX-A
EX-B		14.51 ac	0.08	0.36	38.5 min.	2.1 in/hr	3.5 in/hr	2.5 cfs	18.6 cfs	EX-B
OS-A		1.29 ac	0.62	0.72	12.3 min.	3.8 in/hr	6.4 in/hr	3.0 cfs	5.9 cfs	OS-A
OS-B		1.55 ac	0.62	0.72	13.4 min.	3.7 in/hr	6.2 in/hr	3.5 cfs	6.9 cfs	OS-B
OS-C		0.81 ac	0.90	0.96	5.0 min.	5.2 in/hr	8.7 in/hr	3.8 cfs	6.7 cfs	OS-C
OS-D		0.55 ac	0.64	0.73	5.5 min.	5.0 in/hr	8.4 in/hr	1.8 cfs	3.4 cfs	OS-D
OS-E		1.24 ac	0.53	0.65	13.1 min.	3.7 in/hr	6.3 in/hr	2.4 cfs	5.0 cfs	OS-E
А		2.80 ac	0.35	0.52	15.6 min.	3.5 in/hr	5.8 in/hr	3.4 cfs	8.6 cfs	А
В		1.64 ac	0.35	0.52	13.8 min.	3.6 in/hr	6.1 in/hr	2.1 cfs	5.3 cfs	В
С		1.33 ac	0.35	0.52	12.7 min.	3.8 in/hr	6.3 in/hr	1.8 cfs	4.4 cfs	С
D		2.49 ac	0.35	0.52	14.2 min.	3.6 in/hr	6.0 in/hr	3.1 cfs	7.9 cfs	D
Е		1.80 ac	0.35	0.52	16.1 min.	3.4 in/hr	5.7 in/hr	2.2 cfs	5.4 cfs	Е
F		2.42 ac	0.35	0.52	15.9 min.	3.4 in/hr	5.8 in/hr	2.9 cfs	7.3 cfs	F
G		2.53 ac	0.35	0.52	15.7 min.	3.5 in/hr	5.8 in/hr	3.1 cfs	7.7 cfs	G
Н		3.09 ac	0.35	0.52	16.1 min.	3.4 in/hr	5.7 in/hr	3.7 cfs	9.3 cfs	Н
Ι		1.05 ac	0.19	0.44	10.5 min.	4.1 in/hr	6.8 in/hr	0.8 cfs	3.1 cfs	Ι
J		11.15 ac	0.12	0.39	18.3 min.	3.2 in/hr	5.4 in/hr	4.1 cfs	23.4 cfs	J
DP1	F,G	4.95 ac	0.35	0.52	15.9 min.	3.4 in/hr	5.8 in/hr	5.9 cfs	15.0 cfs	DP1
DP2	E,H	4.89 ac	0.35	0.52	16.3 min.	3.4 in/hr	5.7 in/hr	5.8 cfs	14.6 cfs	DP2
DP3	A to H	18.11 ac	0.35	0.52	20.7 min.	3.0 in/hr	5.1 in/hr	19.2 cfs	48.4 cfs	DP3
DP4	A to I	19.16 ac	0.34	0.52	21.1 min.	3.0 in/hr	5.0 in/hr	19.6 cfs	50.2 cfs	DP4
DP4A	A to I, OS-B	20.70 ac	0.35	0.53	21.1 min.	3.0 in/hr	5.0 in/hr	22.1 cfs	55.1 cfs	DP4A
DP5	A to J, OS-B	31.85 ac	0.28	0.48	21.1 min.	3.0 in/hr	5.0 in/hr	26.3 cfs	77.7 cfs	DP5
DP10	OS-C, OS-D	1.36 ac	0.78	0.85	5.0 min.	5.2 in/hr	8.7 in/hr	5.5 cfs	10.1 cfs	DP10

Equations (taken from Fig 6-5, City of Colorado Springs DCM):

i_2 =-1.19 ln(T _c) + 6.035	Q = CiA	WQCV	0.60 in
$i_5 = -1.50 \ln(T_c) + 7.583$	Q = Peak Runoff Rate (cubic feet/second)	2 yr	1.19 in
i_{10} =-1.75 ln(T _c) + 8.847	C = Runoff coef representing a ration of peak runoff rate to ave rainfall	5 yr	1.50 in
i_{25} =-2.00 ln(T _c) + 10.111	intensity for a duration equal to the runoff time of concentration.	10 yr	1.75 in
i_{50} =-2.25 ln(T _c) + 11.375	i = average rainfall intensity in inches per hour	25 yr	2.00 in
i_{100} =-2.52 ln(T _c) + 12.735	A = Drainage area in acres	50 yr	2.25 in
		100 yr	2.52 in

P1

Inches 0.60 in

APPENDIX A.1 Supporting Tables and Figures

Land Line on Cunfess	Demonst	Runoff Coefficients											
Characteristics	Impervious	2-y	ear	5-y	ear	10-year		10-year 25-y		50-year		100-year	
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Lindovalanad Areas													
Uistoria Flow Analysia													
Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when	45												
landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas. For Colorado Springs and much of the Fountain Creek watershed, the 1-hour depths are fairly uniform and are summarized in Table 6-2. Depending on the location of the project, rainfall depths may be calculated using the described method and the NOAA Atlas maps shown in Figures 6-6 through 6-17.

Return	1-Hour	6-Hour	24-Hour
Period	Depth	Depth	Depth
2	1.19	1.70	2.10
5	1.50	2.10	2.70
10	1.75	2.40	3.20
25	2.00	2.90	3.60
50	2.25	3.20	4.20
100	2.52	3.50	4.60

 Table 6-2. Rainfall Depths for Colorado Springs

Where Z= 6,840 ft/100

These depths can be applied to the design storms or converted to intensities (inches/hour) for the Rational Method as described below. However, as the basin area increases, it is unlikely that the reported point rainfalls will occur uniformly over the entire basin. To account for this characteristic of rain storms an adjustment factor, the Depth Area Reduction Factor (DARF) is applied. This adjustment to rainfall depth and its effect on design storms is also described below. The UDFCD UD-Rain spreadsheet, available on UDFCD's website, also provides tools to calculate point rainfall depths and Intensity-Duration-Frequency curves² and should produce similar depth calculation results.

2.2 Design Storms

Design storms are used as input into rainfall/runoff models and provide a representation of the typical temporal distribution of rainfall events when the creation or routing of runoff hydrographs is required. It has long been observed that rainstorms in the Front Range of Colorado tend to occur as either short-duration, high-intensity, localized, convective thunderstorms (cloud bursts) or longer-duration, lower-intensity, broader, frontal (general) storms. The significance of these two types of events is primarily determined by the size of the drainage basin being studied. Thunderstorms can create high rates of runoff within a relatively small area, quickly, but their influence may not be significant very far downstream. Frontal storms may not create high rates of runoff within smaller drainage basins due to their lower intensity, but tend to produce larger flood flows that can be hazardous over a broader area and extend further downstream.

• **Thunderstorms**: Based on the extensive evaluation of rain storms completed in the Carlton study (Carlton 2011), it was determined that typical thunderstorms have a duration of about 2 hours. The study evaluated over 300,000 storm cells using gage-adjusted NEXRAD data, collected over a 14-year period (1994 to 2008). Storms lasting longer than 3 hours were rarely found. Therefore, the results of the Carlton study have been used to define the shorter duration design storms.

To determine the temporal distribution of thunderstorms, 22 gage-adjusted NEXRAD storm cells were studied in detail. Through a process described in a technical memorandum prepared by the City of Colorado Springs (City of Colorado Springs 2012), the results of this analysis were interpreted and normalized to the 1-hour rainfall depth to create the distribution shown in Table 6-3 with a 5 minute time interval for drainage basins up to 1 square mile in size. This distribution represents the rainfall

Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$I_{100} = -2.52 \ln(D) + 12.735$
$I_{50} = -2.25 \ln(D) + 11.375$
$I_{25} = -2.00 \ln(D) + 10.111$
$I_{10} = -1.75 \ln(D) + 8.847$
$I_5 = -1.50 \ln(D) + 7.583$
$I_2 = -1.19 \ln(D) + 6.035$
Note: Values calculated by equations may not precisely duplicate values read from figure.
APPENDIX B

Water Quality Area Calculations Water Quality Area Sizing Outlet Structure Calculations Forebay, Low Flow Channel and Spillway Calculations

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Project: Meadowbrook Crossing

Basin ID	: water Qua	llity Area (DP	4A)
ZONE 3	2 20HE 1		

T COME 1	1	-											
VOLUME, EUNY WOOV	1	-	-										
	100-YEA	un		D		l.							
ZONE 1 AND 2	ONFICE			Depth Increment =		tt Optional				Ontional			
Example Zone Configurat	tion (Reter	ntion Pond)		Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
				Description	(ft)	Stage (ft)	(ft)	(ft)	(ft/2)	Area (ft/2)	(acre)	(ft/3)	(ac-ft)
Required Volume Calculation	-			Micropool		0.00			-	0	0.000		
Selected BMP Type = EDB				0.68		0.68			-	140	0.003	48	0.001
Watershed Area = 20.70	acres			1.68		1.68				3,700	0.085	1,968	0.045
Watershed Length = 1,750	ft			2.68		2.68				10,300	0.236	8,968	0.206
Watershed Slope = 0.015	ft/ft			3.68		3.68				12,200	0.280	20,218	0.464
Watershed Imperviousness = 50.80%	percent			4.68		4.68				14,100	0.324	33.368	0.766
Percentage Hydrologic Soil Group A = 0.0%	percent			5.68		5.68				16,100	0.370	48,468	1,113
Percentage Hydrologic Soil Group B = 100.0%	nercent			6.18		6.18				17 200	0.395	56 793	1.304
Percentage Hydrologic Soil Groups C/D = 0.0%	percent												
Desired WOCV Drain Time - 40.0	hours												
Location for 1 br Rainfall Donths - Licor Input	nouro												
Water Quality Capture Volume (VOC)0 = 0.360	acro foot												
Excess Lithan Runoff Volume (WGCV) = 0.000	acre-feet	1-hr Precipita	ation		-								
2 and Runoff Victures (P4 + 4.40 in) 0.025	acre-leet	4.40											
2-yr Runoll Volume (P1 = 1.19 III.) = 0.935	acre-leet	1.19	inches										
5-yr Ruhol Volume (P1 = 1.5 III.) = 1.432	acre-leet	1.50	Inches										
10-yr Runoff Volume (P1 = 1.75 In.) = 1.849	acre-teet	1.75	inches										
25-yr Runoff Volume (P1 = 2 In.) = 2.440	acre-teet	2.00	inches										
50-yr Kunor Volume (P1 = 2.25 in.) = 2.929	acre-teet	2.25	incries		-		-						
100-yr Runott Volume (P1 = 2.52 in.) = 3.487	acre-feet	2.52	inches										
500-yr Runoff Volume (P1 = 3.29 in.) = 4.855	acre-feet	3.29	inches										
Approximate 2-yr Detention Volume = 0.884	acre-feet												
Approximate 5-yr Detention Volume = 1.310	acre-feet												
Approximate 10-yr Detention Volume = 1.434	acre-feet												
Approximate 25-yr Detention Volume = 1.502	acre-feet												
Approximate 50-yr Detention Volume = 1.680	acre-feet												
Approximate 100-yr Detention Volume = 2.030	acre-feet												
									-				
Stage-Storage Calculation									-				
Zone 1 Volume (WQCV) = 0.360	acre-feet								-				
Zone 2 Volume (User Defined - Zone 1) = 0.255	acre-feet	Total detent	tion volume						-				
Select Zone 3 Storage Volume (Optional) =	acre-feet	is less than	100-year						-				
Total Detention Basin Volume = 0.615	acre-feet	volume.											
Initial Surcharge Volume (ISV) = user	ft/3												
Initial Surcharge Depth (ISD) = user	ft												
Total Available Detention Depth (Htotal) = user	6												
Depth of Trickle Channel (H _{TC}) = user	6												
Slope of Trickle Channel (Srr) = user	ft/ft												
Slopes of Main Basin Sides (S) = user													
Basin Length-to-Width Ratio (B. a.) = user	11.0												
Initial Surcharge Area (A) =													
Surcharge Volume Length (1,) = user	6				-								
Surcharge Volume Length (L _{SV}) = User	π.				-				-				
Donth of Bosin Floor /H) = usor	π.				-				-				
Loooth of Basin Floor (1) = usor	π.				-				-				
Midth of Desis Floer (M) = user	π.												
Area of Pasis Floor (A) -	π				-		-		-				
Alea of Basili Floor (A _{FLOOR}) = User	11/2								-				
Volume or Basin Floor (V _{FLOOR}) = user	#13				-	-	-		-				
Depth or Main Basin (H _{MAIN}) = user	n				-		-		-				
Length or Main Basin (L _{MAIN}) = user	n				-		-		-				
Width of Main Basin (W _{MAIN}) = user	ft				-				-				
Area of Main Basin (A _{MAIN}) = user	ft*2								-				
Volume of Main Basin (V _{M4IN}) = user	ft/3												
Calculated Total Basin Volume (V _{total}) = user	acre-feet												
									-				
									-				
									-				
									-				
							-						
					-		-	-	-				
							-						
					-		-	-	-				
					-	-	-		-				
					-		-		-				
					-			-	-			-	
									-				
					-			-	-				
											_		
					-	-	-		-				
					-		-		-				

Detention Basin Outlet Structure Design										
Project: Meadowbrook Crossing										
Basin ID:	Water Quality Area									
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type	_			
			Zone 1 (WQCV)	3.30	0.360	Orifice Plate				
ZONE 1 AND 2	100-YEA ORIFICE	R	Zone 2 (User)	4.20	0.255	Weir&Pipe (Circular)				
PERMANENT ORIFICES POOL Example Zone	Configuration (Re	etention Pond)	Zone 3		0.615	Total]			
User Input: Orifice at Underdrain Outlet (typically us	sed to drain WQCV ir	a Filtration BMP)			0.015	Calculate	ed Parameters for Ur	derdrain		
Underdrain Orifice Invert Depth =	N/A	ft (distance below th	e filtration media sur	face)	Unde	erdrain Orifice Area =	N/A	ft ²		
Underdrain Orifice Diameter =	N/A	inches			Underdra	ain Orifice Centroid =	N/A	feet		
User Input: Orifice Plate with one or more orifices of	r Elliptical Slot Weir	(typically used to dra	in WQCV and/or EUF	RV in a sedimentatior	n BMP)	Calcu	lated Parameters for	Plate		
Invert of Lowest Orifice =	0.00	ft (relative to basin b	ottom at Stage = 0 ft)	WQ OI	rifice Area per Row =	7.222E-03	ft ²		
Depth at top of Zone using Orifice Plate =	3.25	ft (relative to basin b	ottom at Stage = 0 ft)	E	lliptical Half-Width =	N/A	feet		
Orifice Plate: Orifice Area per Row =	1.04	sq. inches (diameter	= 1-1/8 inches)		Liii	Elliptical Slot Area =	N/A	ft ²		
		•								
User Input: Stage and Total Area of Each Orifice	Row (numbered fro	m lowest to highest	1							
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)		
Stage of Orifice Centroid (ft)	0.00	1.00	2.00							
Orifice Area (sq. inches)	1.04	1.04	1.04						l	
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)]	
Stage of Orifice Centroid (ft)										
Orifice Area (sq. inches)									l	
User Input: Vertical Orifice (Cire	cular or Rectangular)					Calculated	d Parameters for Ver	ical Orifice		
	Not Selected	Not Selected					Not Selected	Not Selected		
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin b	oottom at Stage = 0 ft)	v	ertical Orifice Area =	N/A	N/A	ft ²	
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin b	oottom at Stage = 0 ft)	Vertio	cal Orifice Centroid =	N/A	N/A	feet	
	N/A	N/A	inches							
User Input: Overflow Weir (Dropbox) and G	irate (Flat or Sloped)	Net Celested	1			Calculated	Parameters for Ove	rflow Weir	1	
User Input: Overflow Weir (Dropbox) and O	Grate (Flat or Sloped) Zone 2 Weir 3.33	Not Selected	ft (relative to basin bo	ttom at Stage = 0 ft)	Height of Gr	Calculated	Zone 2 Weir 4.33	rflow Weir Not Selected	feet	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Trate (Flat or Sloped) Zone 2 Weir 3.33 4.00	Not Selected N/A N/A	ft (relative to basin bo feet	ttom at Stage = 0 ft)	Height of Gr Over Flow	Calculated rate Upper Edge, H _t = Weir Slope Length =	Zone 2 Weir 4.33 4.12	rflow Weir Not Selected N/A N/A	feet feet	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope =	Trate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00	Not Selected N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl	ttom at Stage = 0 ft) at grate)	Height of Gr Over Flow Grate Open Area /	Calculated rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area =	Zone 2 Weir 4.33 4.12 3.67	rflow Weir Not Selected N/A N/A N/A	feet feet should be≥4	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00	Not Selected N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet	ittom at Stage = 0 ft) at grate)	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Zone 2 Weir 4.33 4.12 3.67 11.54	rflow Weir Not Selected N/A N/A N/A N/A	feet feet should be ≥ 4 ft ²	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debric Florging *	Strate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00 70% 5.0%	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t «	ttom at Stage = 0 ft) at grate) otal area	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 2 Weir 4.33 4.12 3.67 11.54 5.77	rflow Weir N/A N/A N/A N/A N/A N/A	feet feet should be≥4 ft ²	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00 70% 50%	Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet % grate open area/t %	ttom at Stage = 0 ft) at grate) total area	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Parameters for Ove Zone 2 Weir 4.33 4.12 3.67 11.54 5.77	rflow Weir N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ²	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Cit	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00 70% 50% rular Orifice, Restrict	Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectang	ft (relative to basin bo feet H:V (enter zero for fl feet % grate open area/t % ular Orifice)	ttom at Stage = 0 ft) at grate) otal area	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter	Parameters for Ove Zone 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat	feet feet should be ≥ 4 ft ² ft ²	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Cit	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00 70% 50% rcular Orifice, Restric Zone 2 Circular	Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected	ft (relative to basin bo feet H:V (enter zero for fl feet % grate open area/t % ular Orifice)	ttom at Stage = 0 ft) at grate) otal area	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter	2 Parameters for Ove Zone 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ Zone 2 Circular	rflow Weir N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected	feet feet should be ≥ 4 ft ² ft	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Circular Orifice Diameter =	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00 70% 50% rcular Orifice, Restrict Zone 2 Circular 0.33 24.00	Not Selected N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A	ft (relative to basin bo feet H:V (enter zero for fl feet % grate open area/t % ular Orifice) ft (distance below bas inches	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 f	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t)	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Anterial =	Parameters for Ove Zone 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ Zone 2 Circular 3.14 1.00	rflow Weir Not Selected N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A	feet feet should be ≥ 4 ft^2 e ft ² ft ²	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Circular Orifice Diameter =	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00 70% 50% rcular Orifice, Restrict Zone 2 Circular 0.33 24.00	Not Selected N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below bas inches	ttom at Stage = 0 ft) at grate) total area in bottom at Stage = 0 f Half-1	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out	Calculated rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	2 Parameters for Ove 2 One 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ 2 One 2 Circular 3.14 1.00 N/A	rflow Weir N/A N/A N/A N/A N/A Flow Restriction Plat N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ² ft ² feet radians	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Cr Depth to Invert of Outlet Pipe = Circular Orifice Diameter =	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00 70% 50% rcular Orifice, Restrice Zone 2 Circular 0.33 24.00	Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches	ttom at Stage = 0 ft) at grate) total area in bottom at Stage = 0 f Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out th Central Angle of Restu	Calculated rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	2 Parameters for Ove 2 One 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ Zone 2 Circular 3.14 1.00 N/A	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ² e ft ² feet radians	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectand	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00 70% 50% rcular Orifice, Restric Zone 2 Circular 0.33 24.00 gular or Trapezoidal)	Not Selected N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below bas inches	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 f Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Restr	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula	2 Parameters for Ove 2 One 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ 2 One 2 Circular 3.14 1.00 N/A steel Parameters for S	rflow Weir Not Selected N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A	feet feet should be \geq 4 ft ² ft ² ft ft feet radians	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway Invert Stage=	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00 70% 50% rcular Orifice, Restrice Zone 2 Circular 0.33 24.00 gular or Trapezoidal) 4.68 3.00	Not Selected N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches ottom at Stage = 0 ft	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 f Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (tt) Out Central Angle of Restr Spillway	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	2 Parameters for Ove 2 One 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ Zone 2 Circular 3.14 1.00 N/A neted Parameters for S 0.89 6.07	rflow Weir Not Selected N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A pillway feet feat	feet feet should be \geq 4 ft ² ft ² ft ft feet radians	
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway Crest Length = Spillway Crest Length =	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00 70% 50% rcular Orifice, Restrice Zone 2 Circular 0.33 24.00 gular or Trapezoidal) 4.68 22.00 4.00	Not Selected N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below bas inches ottom at Stage = 0 ft	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 f Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (tt) Out Central Angle of Rest Spillway Stage a Basin Area a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	2 Parameters for Ove 2 One 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ Zone 2 Circular 3.14 1.00 N/A neted Parameters for S 0.89 6.07 0.39	rflow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet acres	feet feet should be \geq 4 ft ² ft ² ft ² feet radians	
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Cr Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Enest Length = Spillway Enest Length = Spillway Enest Length = Spillway Enest Surght	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00 70% 50% rcular Orifice, Restrice Zone 2 Circular 0.33 24.00 gular or Trapezoidal) 4.68 22.00 4.00 0.50	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below bas inches ottom at Stage = 0 ft	ttom at Stage = 0 ft) at grate) total area in bottom at Stage = 0 f Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	2 Parameters for Ove 2 One 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ 2 One 2 Circular 3.14 1.00 N/A ted Parameters for S 0.89 6.07 0.39	rflow Weir N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet feet acres	feet feet should be ≥ 4 ft ² ft ft feet radians	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Cri Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00 70% 50% rcular Orifice, Restrice Zone 2 Circular 0.33 24.00 gular or Trapezoidal) 4.68 22.00 4.00 0.50	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches ottom at Stage = 0 ft	ttom at Stage = 0 ft) at grate) total area in bottom at Stage = 0 f Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out t Central Angle of Rest Spillway Stage a Basin Area a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Zone 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ Zone 2 Circular 3.14 1.00 N/A ted Parameters for S 6.07 0.39	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet feet acres	feet feet should be ≥ 4 ft ² ft ft feet radians	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan) Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Ed Stores Freeboard above Max Water Surface =	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00 70% 50% rcular Orifice, Restric Zone 2 Circular 0.33 24.00 gular or Trapezoidal) 4.68 22.00 4.00 0.50	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches ottom at Stage = 0 ft	ttom at Stage = 0 ft) at grate) iotal area in bottom at Stage = 0 f Half-()	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Restu Spillway Stage a Basin Area a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = an Area w/o Debris = been Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calculated Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	2 Parameters for Ove 2 One 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ 2 One 2 Circular 3.14 1.00 N/A sted Parameters for S 0.89 6.07 0.39	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians	
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan) Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Ed Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00 70% 50% rcular Orifice, Restric Zone 2 Circular 0.33 24.00 gular or Trapezoidal) 4.68 22.00 4.00 0.50	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches ottom at Stage = 0 ft <u>2 Year</u> 1.19	ttom at Stage = 0 ft) at grate) total area in bottom at Stage = 0 f Half-0) 5 Year 1.50	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00	Zone 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ Zone 2 Circular 3.14 1.00 N/A And Parameters for S 0.89 0.39 50 Year 2.25	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be \geq 4 ft ² fe feet radians 500 Year 3.29	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan) Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Ore-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Overfile Pundf Vicence Const	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00 70% 50% rcular Orifice, Restric Zone 2 Circular 0.33 24.00 gular or Trapezoidal) 4.68 22.00 4.00 0.50 WQCV 0.53 0.360	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 1.126	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches ottom at Stage = 0 ft <u>2 Year</u> 1.19 0.935	ttom at Stage = 0 ft) at grate) total area in bottom at Stage = 0 f Half-0) <u>5 Year 1.50 1.432</u>	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 1.849	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.440	Zone 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ Zone 2 Circular 3.14 1.00 N/A ted Parameters for S 6.07 0.39 50 Year 2.25 2.929	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be \geq 4 ft ² fe feet radians 500 Year 3.29 4.855	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Circular Orifice Diameter = Spillway Invert Stage= Spillway Crest Length = Spillway Cres	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 70% 50% rcular Orifice, Restric Zone 2 Circular 0.33 24.00 gular or Trapezoidal) 4.68 22.00 4.00 0.50 WQCV 0.53 0.360 0.359	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 1.126 1.124	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches ottom at Stage = 0 ft 2 Year 1.19 0.935 0.934	ttom at Stage = 0 ft) at grate) iotal area in bottom at Stage = 0 f Half-0) 5 Year 1.50 1.432 1.431	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 1.849 1.848	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = 1 Top of Freeboard = 25 Year 2.00 2.440 2.438	Zone 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ Zone 2 Circular 3.14 1.00 N/A ted Parameters for S 6.07 0.39 50 Year 2.25 2.929 2.927	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat N/A N/A N/A N/A N/A N/A ipillway feet feet acres 100 Year 2.52 3.487 3.484	feet feet should be \geq 4 ft ² ft ² feet radians 500 Year 3.29 4.855 4.852	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Cri Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Ed Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) =	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 70% 50% rcular Orifice, Restrice Zone 2 Circular 0.33 24.00 gular or Trapezoidal) 4.68 22.00 4.00 0.50 WQCV 0.53 0.360 0.359 0.00	Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A It (relative to basin b feet H:V feet H:V 1.07 1.126 0.00	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches ottom at Stage = 0 ft 2 Year 1.19 0.935 0.934 0.01	ttom at Stage = 0 ft) at grate) iotal area in bottom at Stage = 0 f Half-0) 5 Year 1.50 1.432 1.431 0.15	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 1.849 1.848 0.30	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.440 2.438 0.70	Parameters for Ove Zone 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ Zone 2 Circular 3.14 1.00 N/A ted Parameters for S 6.07 0.39 50 Year 2.25 2.929 2.921 0.91	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet acres 100 Year 2.52 3.487 3.484 1.17	feet feet should be \geq 4 ft ² ft ² feet radians 500 Year 3.29 4.855 4.855 4.852 1.66	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Cri Depth to Invert of Outlet Pipe = Circular Orifice Diameter = Spillway Invert Stage= Spillway Crest Length = Spillway Ed Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Row, q (cfs/acre) = Peak Inflow Origeta	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 70% 50% rcular Orifice, Restrice Zone 2 Circular 0.33 24.00 gular or Trapezoidal) 4.68 22.00 4.00 0.50 WQCV 0.53 0.360 0.359 0.00 0.0 6.6	Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A It (relative to basin b feet H:V feet H:V 1.07 1.126 0.00 0.0 0.0 0.0 20 6	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches ottom at Stage = 0 ft 2 Year 1.19 0.935 0.934 0.01 0.2 17 2	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 f Half-0) 5 Year 1.50 1.432 1.431 0.15 3.1 2 f 2	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 1.849 1.848 0.30 6.3 33.8	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parametel Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.440 2.438 0.70 14.6 44 7	Parameters for Ove Zone 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ Zone 2 Circular 3.14 1.00 N/A ted Parameters for S 0.89 6.07 0.39 50 Year 2.25 2.929 2.927 0.91 18.9 5.3 8	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet acres 100 Year 2.52 3.487 	feet feet should be ≥ 4 ft ² fe feet radians <u>500 Year</u> <u>3.29</u> <u>4.855</u> <u>4.855</u> <u>4.852</u> <u>1.66</u> <u>3.44</u> <u>89</u> 6	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Circular Orifice Diameter = Spillway Invert Stage= Spillway Crest Length = Spillway Crest = Spillway Crest Length = Spillway Crest = Spi	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 70% 50% rcular Orifice, Restrice Zone 2 Circular 0.33 24.00 gular or Trapezoidal) 4.68 22.00 4.00 0.50 WQCV 0.53 0.360 0.359 0.00 0.0 6.6 0.2	Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A It (relative to basin b feet H:V feet 1.126 1.124 0.00 20.6 9.7	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches ottom at Stage = 0 ft 2 Year 1.19 0.935 0.934 0.01 0.2 17.2 6.7	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 f Half-0) 5 Year 1.50 1.432 1.431 0.15 3.1 26.2 14.8	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 1.849 1.848 0.30 6.3 33.8 2.1.4	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.440 2.438 0.70 14.6 44.7 35.0	Parameters for Ove Zone 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ Zone 2 Circular 3.14 1.00 N/A ted Parameters for S 0.89 6.07 0.39 50 Year 2.25 2.929 2.927 0.91 18.9 53.8 45.0	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 3.487 	feet feet should be ≥ 4 ft ² fe feet radians	
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Circular Orifice Diameter = Spillway Invert Stage Spillway Crest Length = Spillway Crest	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00 70% 50% rcular Orifice, Restrice Zone 2 Circular 0.33 24.00 gular or Trapezoidal) 4.68 22.00 4.00 0.50 WQCV 0.53 0.360 0.359 0.00 0.0 6.6 0.2 N/A 5'	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A It (relative to basin b feet H:V feet H:V feet It.126 0.00 0.00 20.6 9.7 N/A	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches ottom at Stage = 0 ft 2 Year 1.19 0.935 0.934 0.01 0.2 17.2 6.7 N/A	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 f Half-0) 5 Year 1.50 1.432 1.431 0.15 3.1 26.2 14.8 4.8 0.25	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 1.849 1.848 0.30 6.3 33.8 2.1.4 3.4	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.440 2.438 0.70 14.6 44.7 35.0 2.4 4.7	Parameters for Ove Zone 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ Zone 2 Circular 3.14 1.00 N/A ted Parameters for S 0.89 6.07 0.39 50 Year 2.25 2.929 2.927 0.91 18.9 53.8 45.0 2.4	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 3.487 	feet feet should be \geq 4 ft ² ft ² feet radians 500 Year 3.29 4.855 - 4.855 - 1.66 34.4 89.6 86.0 2.5 - - -	
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Nufflow Q (cfs) = Peak Nufflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00 70% 50% rcular Orifice, Restrice Zone 2 Circular 0.33 24.00 gular or Trapezoidal) 4.68 22.00 4.00 0.50 WQCV 0.53 0.360 0.359 0.00 0.0 6.6 0.2 N/A Plate N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Itor Plate, or Rectang Not Selected N/A N/A It (relative to basin b feet H:V feet 1.126 1.124 0.00 20.6 9.7 N/A Overflow Grate 1 0.83	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches ottom at Stage = 0 ft 2 Year 1.19 0.935 0.934 0.01 0.2 17.2 6.7 N/A Overflow Grate 1 0.57	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 f Half-O) 5 Year 1.50 1.432 1.431 0.15 3.1 26.2 14.8 4.8 Overflow Grate 1 1.3	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 1.849 1.848 0.30 6.3 33.8 21.4 3.4 Spillway 1.8	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.440 2.438 0.70 14.6 44.7 35.0 2.4 Spillway 2.3	Parameters for Ove Zone 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ Zone 2 Circular 3.14 1.00 N/A red Parameters for S 0.89 6.07 0.39 50 Year 2.25 2.927 0.91 18.9 53.8 45.0 2.4 Spillway 2.5	rflow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 3.487 	feet feet should be ≥ 4 ft ² fe feet radians	
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Nufflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 4.00 70% 50% rcular Orifice, Restrice Zone 2 Circular 0.33 24.00 gular or Trapezoidal) 4.68 22.00 4.00 0.50 WQCV 0.53 0.360 0.359 0.00 0.00 0.0 6.6 0.2 N/A Plate N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Intro Plate, or Rectang Not Selected N/A N/A Intro Plate, or Rectang Intro Selected N/A Intro Selected N/A Intro Selected N/A EURV 1.07 1.126 1.124 0.00 20.6 9.7 N/A Overflow Grate 1 0.83	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches ottom at Stage = 0 ft 2 Year 1.19 0.935 0.034 0.01 0.2 17.2 6.7 N/A Overflow Grate 1 0.57 N/A	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 f Half-O) 5 Year 1.50 1.432 1.431 0.15 3.1 26.2 14.8 4.8 Overflow Grate 1 1.3 N/A	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (Contral Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 1.849 1.848 0.30 6.3 3.3.8 2.1.4 3.4 Spillway 1.8 N/A	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.440 2.438 0.70 14.6 44.7 35.0 2.4 Spillway 2.3 N/A	Parameters for Ove Zone 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ Zone 2 Circular 3.14 1.00 N/A ted Parameters for S 0.89 6.07 0.39 50 Year 2.25 2.927 0.91 18.9 53.8 45.0 2.4 Spillway 2.5 N/A	rflow Weir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ² feet radians	
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (acre 1) finder Volumg (acre 1) (fps) = Time to Drain 97% of Inflow Volume (Circs) =	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 70% 50% rcular Orifice, Restrici Zone 2 Circular 0.33 24.00 gular or Trapezoidal) 4.68 22.00 4.00 0.50 WQCV 0.53 0.360 WQCV 0.53 0.360 0.00 0.00 0.0 0.2 N/A Plate N/A N/A 39 **	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Intro Plate, or Rectang Not Selected N/A N/A Intro Plate, or Rectang Intro Selected N/A Intro Selected N/A Intro Selected N/A EURV 1.07 1.126 Intro Selected 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.020.6 9.7 N/A 0.83 N/A 39 4/1	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches ottom at Stage = 0 ft 2 Year 1.19 0.935 0.034 0.01 0.2 17.2 6.7 N/A Overflow Grate 1 0.57 N/A 40	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 f Half-O) 5 Year 1.50 1.432 1.431 0.15 3.1 2.62 14.8 4.8 Overflow Grate 1 1.3 N/A 38 4.2	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (Contral Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 1.849 1.848 0.30 6.3 3.3.8 2.1.4 3.4 Spillway 1.8 N/A 36 4.7	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.440 2.438 0.70 14.6 44.7 35.0 2.4 Spillway 2.3 N/A 33 4*	Parameters for Ove Zone 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ Zone 2 Circular 3.14 1.00 N/A ted Parameters for S 0.89 6.07 0.39 50 Year 2.25 2.927 0.91 18.9 53.8 45.0 2.4 Spillway 2.5 N/A	rflow Weir N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ² feet radians	
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, g (cfs/acre) Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 70% 50% rcular Orifice, Restrici Zone 2 Circular 0.33 24.00 gular or Trapezoidal) 4.68 22.00 4.00 0.50 WQCV 0.53 0.360 WQCV 0.53 0.360 0.359 0.00 0.00 6.6 0.2 N/A Plate N/A Plate N/A 319	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Itor Plate, or Rectang Not Selected N/A N/A It (relative to basin b feet H:V feet H:V feet 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.020.6 9.7 N/A 39 44 4.72	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches ottom at Stage = 0 ft 2 Year 1.19 0.935 0.01 0.2 17.2 6.7 N/A Overflow Grate 1 0.57 N/A 40 40 44	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 f Half-O) 5 Year 1.50 1.432 1.431 0.15 3.1 26.2 14.8 4.8 Overflow Grate 1 1.3 N/A 38 4.3 4.45	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (Contral Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 1.849 1.848 0.30 6.3 3.3.8 2.1.4 3.4 Spillway 1.8 Spillway 3.8 S	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.440 2.438 0.70 14.6 44.7 35.0 2.4 \$pillway 2.3 N/A 33 41	Parameters for Ove Zone 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ Zone 2 Circular 3.14 1.00 N/A ted Parameters for S 0.89 6.07 0.39 50 Year 2.25 2.927 0.91 18.9 53.8 45.0 2.4 Spillway 2.5 N/A 31 40 5.05	rflow Weir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be \geq 4 ft ² ft ² feet radians	
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, g (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q (cfs) = Max Velocity through Grate 1 (fps) =	irate (Flat or Sloped) Zone 2 Weir 3.33 4.00 4.00 70% 50% rcular Orifice, Restrici Zone 2 Circular 0.33 24.00 9 0.33 24.00 0.33 24.00 0.50 0.00 0.00 0.00 0.0 0.	Not Selected N/A It (relative to basin b feet H:V feet 1.07 1.126 0.00 0.00 20.6 9.7 N/A Overflow Grate 1 0.83 N/A 39 44 4.22 0.30	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below bas inches ottom at Stage = 0 ft (11) 2 Year 1.19 0.935 0.934 0.01 0.2 17.2 6.7 N/A Overflow Grate 1 0.57 N/A 40 44 4.06 0.30	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 f Half-O) 5 Year 1.50 1.432 1.431 0.15 3.1 26.2 14.8 4.8 Overflow Grate 1 1.3 N/A 38 43 43 4.45 0.31	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op C Spillway Stage a Basin Area a Basin Area a Basin Area a 10 Year 1.75 1.849 1.848 0.30 6.3 3.3.8 21.4 3.4 Spillway 1.8 3.6 4.69 0.32	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.440 2.438 0.70 14.6 44.7 35.0 2.4 Spiillway 2.3 N/A 33 41 4.92 0.33	Parameters for Ove Zone 2 Weir 4.33 4.12 3.67 11.54 5.77 rs for Outlet Pipe w/ Zone 2 Circular 3.14 1.00 N/A ted Parameters for S 0.89 6.07 0.39 50 Year 2.25 2.927 0.91 18.9 53.8 45.0 2.4 Spillway 2.5 N/A 31 40 5.05 0.34	rflow Weir Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A ipillway feet feet feet acres 100 Year 2.52 3.487 	feet feet should be \geq 4 ft ² ft ² feet radians 500 Year 3.29 4.855 	

Meadowbrook Crossing Water Quality Area Calculations

C = 3.0

Flow = $(1.49/n)AR_n^{2/3} S^{1/2}$

Presedementation / Forebay Sizing

			Total Req'd		% Total	Required				Discharge	Calc'd Open	
	100 Yr	Detention	Forebay Vol	Tributary	Trib	Forebay	Fo	orebay De	esign	Design Flow	Width	Design
Forebay	Flow	WQCV	3.0% WQCV	Area	Area	Volume	Area	Depth	Volume	2.0% 100yr	(1" min)	Width
1	48.4cfs	14,022cf	421cf	19.16ac	100.0%	421cf	290sf	1.50-ft	435 cf	0.97 cfs	5.7-inch	6.0-inch
2					0.0%							
Totals		14,022cf	421cf	19.16ac	100.0%							

Opening Width Equation for Rectangular Opening

L = Q / (CH^{1.5}) x 12 + 0.2xHx12 (UD-BMP Spreadsheet -- EDB tab)

Forebay Overflow Calculation

Forebay	Water Surf Elev	Crest Elev	Crest Length	Flow Depth	Calc'd Flow
1	6,303.31	6,302.81	8.0 ft	0.50 ft	8.5 cfs

Weir Equation:

 $Q = CLH^{1.5}$

C = Weir coefficient (dimensionless), C = 3.0 (most cases)

L = Length of weir at Crest, in ft. Not including sideslopes.

Low Flow Channel Calculation

Location	100yr Flow	Req'd Flow 2.0% 100yr	Bottom Width	Flow Depth	Side Slope	Slope	Manning 'n'	Top Width	Flow Area	Wetted Perimeter	Hydraulic Radius	Flow Velocity	Capacity
WQ Area	50.2cfs	1.0cfs	2.0 ft	0.50 ft	0.0:1	0.5%	0.013	2.0 ft	1.00 sf	3.0 ft	0.33 ft	3.9 ft/sec	3.9 cfs

Equations:

Area (A) = $b(d)+zd^2$ Perimeter (P) = $b+2d^*(1+z^2)^{0.5}$ b = widthz = side slope

d = depth Hydraulic Radius = A/P

Velocity = $(1.49/n)R_n^{2/3}S^{1/2}$

S = Slope of the channel

n = Manning's number

R_n = Hydraulic Radius (Reynold's Number)

Spillway Calculation

Detentio n Area	100-yr Flow	120% 100yr Flow	Water Surf Elev	Crest Elev	Crest Length	Z	С	Flow Depth (H)	Calc'd Flow
WQ Area	55.1 cfs	66.1 cfs	6,305.9	6,305.0	22 ft	4:1	3.0	0.92 ft	66 cfs

C = 3.0

Broad Crested Weir Equation (USDCM Eqn 12-20 and 12-21):

 $Q = CLH^{1.5} + 2x((2/5)CZH^{5/2})$

C = Weir coefficient, C = 3.0 (most cases)

H = Head above weir crest, in ft

Z = Side slope (horizontal:vertical)

L = Length of weir at Crest, in ft. Not including sideslopes.

APPENDIX B.1 Supporting Tables and Figures

Kiowa Engineering Corporation

	On-Site EDBs for Watersheds up to 1 Impervious Acre ¹	EDBs with Watersheds between 1 and 2 Impervious Acres ¹	EDBs with Watersheds up to 5 Impervious Acres	EDBs with Watersheds over 5 Impervious Acres	EDBs with Watersheds over 20 Impervious Acres
Forebay Release and Configuration		Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch or berm/pipe ² configuration
Minimum Forebay Volume	EDBs should not be used for watersheds with less than	1% of the WQCV	2% of the WQCV	3% of the WQCV	3% of the WQCV
Maximum Forebay Depth	1 impervious acre	12 inches	18 inches	18 inches	30 inches
Trickle Channel Capacity		≥ the maximum possible forebay outlet capacity	≥ the maximum possible forebay outlet capacity	≥ the maximum possible forebay outlet capacity	≥ the maximum possible forebay outlet capacity
Micropool		Area $\geq 10 \text{ ft}^2$	Area $\geq 10 \text{ ft}^2$	Area $\geq 10 \text{ ft}^2$	Area $\geq 10 \text{ ft}^2$
Initial Surcharge Volume		$\begin{array}{l} \text{Depth} \geq 4\\ \text{inches} \end{array}$	$\begin{array}{l} \text{Depth} \geq 4\\ \text{inches} \end{array}$	$\begin{array}{l} \text{Depth} \geq \ 4 \text{ in.} \\ \text{Volume} \geq \\ 0.3\% \text{ WQCV} \end{array}$	$\begin{array}{l} \text{Depth} \geq 4 \text{ in.} \\ \text{Volume} \geq \\ 0.3\% \text{ WQCV} \end{array}$

 Table EDB-4.
 EDB component criteria

¹ EDBs are not recommended for sites with less than 2 impervious acres. Consider a sand filter or rain garden.

² Round up to the first standard pipe size (minimum 8 inches).

APPENDIX C

Hydraulic Calculations Inlet Summary – UD-Inlet Inlet Capacity Calculations – UD-Inlet Pipe Sizing Calculations UDSewer Plan Schematic UDSewer Input and Output Tables: 5-year and 100-year Storm Events Swale Calculations

Worksheet Protected

INLET NAME	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	On Grade	On Grade
Inlet Type	CDOT Type R Curb Opening			

USER-DEFINED INPUT

User-Defined Design Flows										
Minor Q _{Known} (cfs)	3.4	2.1	1.8	3.1						
Major Q _{Known} (cfs)	7.0	7.0	6.15	6.15						

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received			
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Minor Total Design Peak Flow, Q (cfs)	3.4	2.1	1.8	3.1
Major Total Design Peak Flow, Q (cfs)	7.0	7.0	6.15	6.15
Minor Flow Bypassed Downstream, Qb (cfs)	0.0	0.0	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	1.0	1.1	0.6	0.7

Worksheet Protected

INLET NAME	<u>E</u>	<u> </u>	G	H
Site Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET	STREET
Hydraulic Condition	On Grade	On Grade	On Grade	On Grade
Inlet Type				

USER-DEFINED INPUT

User-Defined Design Flows				
Minor Q _{Known} (cfs)	2.2	2.9	3.1	3.7
Major Q _{Known} (cfs)	5.4	7.3	7.7	9.3

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	A	В	С	D
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	1.0	1.1	0.6	0.7

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design eterm return rened, rr (Jeare)		
One-Hour Precipitation, P ₁ (inches)		

Minor Total Design Peak Flow, Q (cfs)	2.2	2.9	3.1	3.7
Major Total Design Peak Flow, Q (cfs)	6.4	8.4	8.3	10.0
Minor Flow Bypassed Downstream, Qb (cfs)				
Major Flow Bypassed Downstream, Q _b (cfs)				

Worksheet Protected

INLET NAME	<u>DP1</u>	DP2	Inlet 53
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	In Sump	In Sump	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows			
Minor Q _{Known} (cfs)	5.9	5.8	3.0
Major Q _{Known} (cfs)	15.0	14.6	5.9

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	User-Defined	User-Defined	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	1.7	1.7	0.0

Watershed Characteristics

Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		

Watershed Profile

Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Major Storm Rainfall Input

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		

Minor Total Design Peak Flow, Q (cfs)	5.9	5.8	3.0
Major Total Design Peak Flow, Q (cfs)	16.7	16.3	5.9
Minor Flow Bypassed Downstream, Qb (cfs)	N/A	N/A	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	0.7

Worksheet Protected

INLET NAME	Inlet 52	Inlet 61
Site Type (Urban or Rural)		
Inlet Application (Street or Area)	STREET	STREET
Hydraulic Condition	On Grade	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening

USER-DEFINED INPUT

User-Defined Design Flows		
Minor Q _{Known} (cfs)	5.5	3.5
Major Q _{Known} (cfs)	10.1	6.9

Bypass (Carry-Over) Flow from Upstream

Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.7

Watershed Characteristics

Subcatchment Area (acres)	
Percent Impervious	
NRCS Soil Type	

Watershed Profile

Overland Slope (ft/ft)	
Overland Length (ft)	
Channel Slope (ft/ft)	
Channel Length (ft)	

Minor Storm Rainfall Input

Design Storm Return Period, T _r (years)	
One-Hour Precipitation, P ₁ (inches)	

Major Storm Rainfall Input

One Hour Presinitation D (inches)	orm Return Period, T _r (years)
One-Hour Precipitation, P ₁ (inches)	Precipitation, P ₁ (inches)

Minor Total Design Peak Flow, Q (cfs)	5.5	3.5
Major Total Design Peak Flow, Q (cfs)	10.1	7.6
Minor Flow Bypassed Downstream, Q _b (cfs)	0.3	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	2.6	1.3

Design Information (Input)	MINOR	MAJOR	
Type of Inlet Type R Curb Opening Type	= CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a') al OCAL	= 3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening) No	= 1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	= 10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width) Wo	= N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Cr-G	= N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) C_{f} -C	= 0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management) Q _o	= 3.4	7.0	cfs
Water Spread Width T	= 10.7	14.4	ft
Water Depth at Flowline (outside of local depression) d	= 4.3	5.2	inches
Water Depth at Street Crown (or at T _{MAX}) d _{CROWN}	= 0.0	0.0	inches
Ratio of Gutter Flow to Design Flow E_{\circ}	= 0.379	0.274	
Discharge outside the Gutter Section W, carried in Section T_x Q_x	= 2.1	5.0	cfs
Discharge within the Gutter Section W Q _w	= 1.3	1.9	cfs
Discharge Behind the Curb Face Q _{BACK}	= 0.0	0.0	cfs
Flow Area within the Gutter Section W A _W	= 0.32	0.41	sq ft
Velocity within the Gutter Section W V _W	= 4.0	4.7	fps
Water Depth for Design Condition dLOCAL	= 7.3	8.2	inches
Grate Analysis (Calculated)	MINOR	MAJOR	
Total Length of Inlet Grate Opening	= N/A	N/A	ft
Ratio of Grate Flow to Design Flow E _{o-GRATE}	= N/A	N/A	1
Under No-Clogging Condition	MINOR	MAJOR	-
Minimum Velocity Where Grate Splash-Over Begins V _o	= N/A	N/A	fps
Interception Rate of Frontal Flow R _f	= N/A	N/A	1
Interception Rate of Side Flow R _x	= N/A	N/A	
Interception Capacity Qi	= N/A	N/A	cfs
Under Clogging Condition	MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet GrateCoef	= N/A	N/A	7
Clogging Factor for Multiple-unit Grate Inlet GrateClog	= N/A	N/A	1
Effective (unclogged) Length of Multiple-unit Grate Inlet	= N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins Vo	= N/A	N/A	fps
Interception Rate of Frontal Flow R _f	= N/A	N/A	1
Interception Rate of Side Flow R _x	= N/A	N/A	1
Actual Interception Capacity Q _a	= N/A	N/A	cfs
Carry-Over Flow = $Q_o - Q_a$ (to be applied to curb opening or next d/s inlet) Q_b	= N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	MINOR	MAJOR	
Equivalent Slope Se (based on grate carry-over) Se	= 0.147	0.112	ft/ft
Required Length L _T to Have 100% Interception L _T	= 8.78	14.34	ft
Under No-Clogging Condition	MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L _T)	= 8.78	10.00	ft
Interception Capacity Q	= 3.4	6.1	cfs
Under Clogging Condition	MINOR	MAJOR	
Cloaging Coefficient CurbCoef	= 1.25	1.25	ן ר
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	= 0.06	0.06	1 1
Effective (Uncloaded) Length	= 8.75	8.75	ft
Actual Interception Capacity Q.	= 3.4	6.0	cfs
Carry-Over Flow = Q _{b/(GRATE)} -Q _a	= 0.0	1.0	cfs
Summary	MINOR	MAJOR	
Total Inlet Interception Capacity	= 34	6.0	cfs
Total Inlet Carry-Over Flow (flow hypassing inlet)	= 0.0	1.0	cfs
Capture Percentage = $Q_a/Q_a = C\%$	= 100	86	%

Design Information (Input)	MINOR MAJOR	
Type of Inlet CDOT Type R Curb Opening Type	= CDOT Type R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	= <u>3.0</u> <u>3.0</u>	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	p = 1 1	
Length of a Single Unit Inlet (Grate or Curb Opening)	a = 10.00 10.00	ft
Width of a Unit Grate (cannot be greater than W. Gutter Width)	a = N/A N/A	ft
Clogging Eactor, for a Single Unit Grate (typical min, value = 0.5)	$\beta = N/A$ N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) $C_{\rm F}$	C = 0.10 0.10	-
Street Hydraulics: OK - O < Allowable Street Capacity'	MINOR MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	= 2.1 7.0	cfs
Water Spread Width	Γ = 8.7 14.4	ft
Water Depth at Flowline (outside of local depression)	d = 3.8 5.2	inches
Water Depth at Street Crown (or at T _{MAX}) d _{CROM}	N = 0.0 0.0	inches
Ratio of Gutter Flow to Design Flow	= 0.472 0.274	
Discharge outside the Gutter Section W, carried in Section T,	x = 1.1 5.0	cfs
Discharge within the Gutter Section W	u = 1.0 1.9	cfs
Discharge Behind the Curb Face Q _{BAC}	к = 0.0 0.0	cfs
Flow Area within the Gutter Section W A	v = 0.27 0.41	sq ft
Velocity within the Gutter Section W V	y = 3.6 4.7	fps
Water Depth for Design Condition d _{LOC}	L = 6.8 8.2	inches
Grate Analysis (Calculated)	MINOR MAJOR	
Total Length of Inlet Grate Opening	= N/A N/A	ft
Ratio of Grate Flow to Design Flow E	= N/A N/A	
Under No-Clogging Condition	MINOR MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	a = N/A N/A	fps
Interception Rate of Frontal Flow	$R_f = N/A$ N/A	
Interception Rate of Side Flow	x = N/A N/A	
Interception Capacity	a N/A N/A	cfs
Under Clogging Condition	MINOR MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet GrateCo	f = N/A N/A	
Clogging Factor for Multiple-unit Grate Inlet GrateClo	g = N/A N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	e N/A N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	a N/A N/A	fps
Interception Rate of Frontal Flow	e _f = N/A N/A	- ·
Interception Rate of Side Flow	x = N/A N/A	
Actual Interception Capacity	a = N/A N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	_b = N/A N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	MINOR MAJOR	
Equivalent Slope Se (based on grate carry-over)	e = 0.179 0.112	ft/ft
Required Length L _T to Have 100% Interception	т = 6.28 14.34	ft
Under No-Clogging Condition	MINOR MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L = 6.28 10.00	ft
Interception Capacity	a = 2.1 6.1	cfs
Under Clogging Condition	MINOR MAJOR	
Clogging Coefficient CurbCo	f = 1.25 1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet CurbClo	g = 0.06 0.06	
Effective (Unclogged) Length	e = 8.75 8.75	ft
Actual Interception Capacity	a = 2.1 6.0	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	ь = 0.0 1.0	cfs
Summary	MINOR MAJOR	
Total Inlet Interception Capacity	Q = 2.1 6.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	b = 0.0 1.0	cfs
Capture Percentage = Q _a /Q _o = C	6 = 100 86	%

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W_ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	1.8	6.2	cfs
Water Spread Width	Т =	8.3	14.0	ft
Water Depth at Flowline (outside of local depression)	d =	3.7	5.1	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.494	0.282	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.9	4.4	cfs
Discharge within the Gutter Section W	Q _w =	0.9	1.7	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.26	0.40	sq ft
Velocity within the Gutter Section W	V _W =	3.4	4.4	fps
Water Depth for Design Condition	d _{LOCAL} =	6.7	8.1	inches
Grate Analysis (Calculated)	-	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	-
Minimum Velocity Where Grate Splash-Over Begins	V. =	N/A	N/A	fps
Interception Rate of Frontal Flow	Rr =	N/A	N/A	
Interception Rate of Side Flow	R _v =	N/A	N/A	
Interception Capacity	Qi =	N/A	N/A	cfs
Under Clogging Condition	· · ·	MINOR	MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V. =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	- ⁻
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.186	0.115	ft/ft
Required Length L_T to Have 100% Interception	L _T =	5.67	13.23	ft
Under No-Clogging Condition	· •	MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L. L_T)	L =	5.67	10.00	ft
Interception Capacity	Q: =	1.8	57	cfs
Under Clogging Condition	G -	MINOR	MAJOR	0.0
	CurbCoof -	1 25	1.25	-
Clogging Eactor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Linclogged) Length		8.75	8.75	ft
Actual Intercention Canacity	<u> </u>	1.8	55	ofs
Carry-Over Flow = $O_{\rm Logarding}$	Q	0.0	0.6	ofs
		MINOR	MALOR	010
Total Inlet Intercention Canacity	o - F	18	55	cfe
Total Inlet Carry-Over Flow (flow bynassing inlet)		0.0	0.5	cfs
Capture Percentage = Q./Q. =	с% –	100	90	%
	U /3 -	100		

Design Information (Input)			MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	ר ר
Local Depression (additional to cont	tinuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (C	Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate	or Curb Opening)	L ₀ =	10.00	10.00	ft
Width of a Unit Grate (cannot be gre	eater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit G	Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Cu	urb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allow	vable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Stre	et (from Sheet Inlet Management)	Q ₀ =	3.1	6.2	cfs
Water Spread Width		T =	10.6	14.0	ft
Water Depth at Flowline (outside of	local depression)	d =	4.3	5.1	inches
Water Depth at Street Crown (or at	T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	V	E _o =	0.386	0.282	
Discharge outside the Gutter Sectio	on W, carried in Section T _x	Q _x =	1.9	4.4	cfs
Discharge within the Gutter Section	W	Q _w =	1.2	1.7	cfs
Discharge Behind the Curb Face		Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section	W	A _W =	0.32	0.40	sq ft
Velocity within the Gutter Section W	I	V _W =	3.8	4.4	fps
Water Depth for Design Condition		d _{LOCAL} =	7.3	8.1	inches
Grate Analysis (Calculated)			MINOR	MAJOR	
Total Length of Inlet Grate Opening		L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow		E _{GRATE} =	N/A	N/A	1
Under No-Clogging Condition		000012	MINOR	MAJOR	
Minimum Velocity Where Grate Spl	lash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow		R _f =	N/A	N/A	
Interception Rate of Side Flow		R. =	N/A	N/A	
Interception Capacity		Qi =	N/A	N/A	cfs
Under Clogging Condition			MINOR	MAJOR	
Clogging Coefficient for Multiple-un	it Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Eactor for Multiple-unit Gr	ate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Mul	Itiple-unit Grate Inlet	L. =	N/A	N/A	ft
Minimum Velocity Where Grate Spl	lash-Over Begins	V. =	N/A	N/A	fps
Interception Rate of Frontal Flow		R, =	N/A	N/A	
Interception Rate of Side Flow		R. =	N/A	N/A	
Actual Interception Capacity		Q. =	N/A	N/A	cfs
Carry-Over Flow = QQ_ (to be ap	oplied to curb opening or next d/s inlet)	Q, =	N/A	N/A	cfs
Curb or Slotted Inlet Opening An	alvsis (Calculated)	.0	MINOR	MAJOR	
Equivalent Slope S ₂ (based on grate	e carry-over)	S. =	0 150	0 115	ft/ft
Required Length L _T to Have 100% I	Interception	L _T =	8 26	13.23	ft
Under No-Clogging Condition		'	MINOR	MAJOR	
Effective Length of Curb Opening o	or Slotted Inlet (minimum of L L -)	1 =	8 26	10.00	ft
Interception Consoity			3.1	5.7	ofo
Under Clagging Condition		Q _i =	J. I	5.7	CIS
		CurkCoof		IVIAJOK 4.05	-
Clogging Coefficient	et Os esis e o Olette d'Islet	Curbcoer =	1.25	1.25	
Clogging Factor for Multiple-unit Cu	ard Opening or Slotted Inlet		0.06	0.06	
Actual Intercention Conseit:		L _e =	8.75 31	8./5 EE	il afa
		Qa =	3.1	5.5	uis efe
Summary $Q_{b(GRATE)} = Q_{b(GRATE)} - Q_{a}$		Q _b =			uis
			MINOR	MAJOR	7.4
	how and the later)	Q =	3.1	5.5	CTS
I otal Inlet Carry-Over Flow (flow	bypassing inlet)	Q _b =	0.0	0.6	CIS
Capture Percentage = Q _a /Q _o =		C% =	100	90	%

INLET IN A SUMP OR SAG LOCATION

Type + Init CDDT Type R Curb Cpenning Type + Curb Common Cace Depresent of contraves and references in 'from 'Q-Mow') Non- + 1 1	Design Information (Input)		MINOR	MAJOR	
number of Unit Integration (scatter starter starter stress) number of Unit Integration (scatter starter starte	Tupe of Inlet CDOT Type R Curb Opening	Turpo -	CDOT Type F	Curb Opening	7
Construct (base) (base) (base) (base) (base) (base) Construct (base) <thconstruct (base)<="" th=""> Construct (base)<</thconstruct>	Local Depression (additional to continuous dutter depression 'o' from 'O Allow')	Type =	2.00		inchoo
Number (spatial or Out) Market (spatial or Out) Opening) Pounding Deptin x 0 7.0 Andree Largin of a Uhit Crace NA	Local Depression (additional to continuous guiter depression a from Q-Allow)	a _{local} =	3.00	3.00	inches
Nied Legin 1 Floate (Using 1 Floate (Control to Depression) Provide (Septem - 4.3) Inc. Inc. Languh 2 In Un Gase NNA MADOR PC Override Depression Area Comming Ratio for a Grade (typical values 0.55-0.00) A_as = NNA Hold Area Comming Ratio for a Grade (typical values 0.55-0.00) A_as = NNA Hold Carlo Order (typical values 0.55-0.00) A_as = NNA Hold Carlo Order (typical values 0.55-0.00) A_as = NNA Hold Carlo Order (typical values 0.55-0.00) C. (6) = NNA Hold Carlo Order (typical values 0.55-0.00) C. (6) = NNA Hold Carlo Order (typical values 0.55-0.00) C. (6) = NNA Hold Carlo Order Throns in Horders H _{as} = 63.00 E0.00 Hold order Kingh of Throns in Horders H _{as} = 63.00 E0.00 Hold order Sele Visith or Depression Fin Horders H _{as} = 63.00 E0.00 Hold order Cold Order Throns in Horders H _{as} = 63.00 E0.00 Hold order C	Number of Unit Inlets (Grate of Curb Opening)	NO =	1	1	
Grade Information MNCK MAUCH Vice mice Deptins Carego of a funct Grade L, (G) = NA NA NA NA Wath of a funct Grade L, (G) = NA NA NA NA Asso Opening Rate for a Grade (typical values 0.15.0.00) Auge NA NA NA Cardo Densing Internet (typical values 0.15.0.00) C. (G) = NA NA NA Cardo Densing Internet (typical values 0.0.2.0.00) C. (G) = NA NA NA Cardo Densing Internet (typical values 0.0.2.0.00) C. (G) = NA NA NA Langth of a funct Coopening Internet Ha_me = 6.6.00 6.000 notes Analysis Version Single Cool Copening Internet Ha_me = 6.6.00 6.000 notes Sing With rob Denseson Pain (typical value 0.3.0.70) C. (C) = 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.9	7.0	inches
Langh of Luft Grae $V_{\rm N}$ (a) $V_{\rm N}$ (b) $V_{\rm N}$ (c) $(0) = V_{\rm N}$ (c) (0)	Grate Information		MINOR	MAJOR	Override Depths
Witch of bulk Grate Work N/A N/A Inva Teel Anaco Opening Reader for a Single Otto Pointel Visite 0.15-0.80) Cr (0) N/A N/A N/A Changing Factor for a Single Otto Pointel (typical value 0.50 - 0.70) Cr (0) N/A N/A N/A Grate Orifice Coefficient (typical value 0.50 - 0.80) Cr (0) N/A N/A N/A Langth of a Unit Curb Opening in Inches H _{Lan} 6.00 6.00 inches Algeid of Vincit Gued Trotatin Inches H _{Lan} 6.00 6.00 inches Algeid of Vincit Gued Trotatin Inches H _{Lan} 6.00 6.00 inches Side Vithin In Depression Pan (typical) the guter value 0.10) Cr (1) 0.10 0.10 0.00 Curb Opening Vincit Coefficient (typical value 0.0-0.70) Cr (1) 0.80	Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Area Opening Ratio for a Carled (typical values 05-0.70) Cp (1) NA NA Grate Wird Coefficient (typical values 05-0.70) Cp (1) NA NA Grate Wird Coefficient (typical values 05-0.70) Cp (1) NA NA Curb Opening Information MINOR MAUOR Turning n d 1 bit Coefficient (typical values 05-0.80) Cp (2) NA NA State Mired Coefficient (typical values 05-0.80) Cp (2) NA NA Mindo Curb Opening Information Lp (2) State 05-0.00 robust Megid Curb Coefficient (typical value 0.40 - 2 feet) Wire 1 State 05-0.00 robust Clopping Pactor for a Single Curb Opening (typical value 0.40 - 0.70) Cp (0) 0.71 Good 6.00 robust Colopping Coefficient (typical value 0.80 - 0.70) Cp (0) 0.87 7.07 Good 7.07 7.07 Good 7.07 7.07 7.07 7.07 7.07 7.07 7.07	Width of a Unit Grate	W _o =	N/A	N/A	feet
Cloggin grader for a Single Garden (typical value 2.65 - 0.70) C, (G) NA NA Grade Orlife Coefficient (typical value 2.5 - 3.60) C, (G) NA NA End Weit Coefficient (typical value 0.60 - 0.80) C, (G) NA NA Langth of a Uhit Cub Opening in Inches H, (G) 2000 2000 Feet Height of Vinctio Cub Opening in Inches H, (G) 2000 2000 Feet Height of Vinctio Cub Opening in Inches H, (G) 2000 2000 Feet Height of Vinctio UBCMF Figure 3T-51 Side With for Depression Part (typical value 0.23.37) C, (G) 1010 0.101 Cub Opening With Coefficient (typical value 0.23.37) C, (G) 2007 C, (G) 2007 C, (G) 2007 C, (G) 2007 C, (G) 2007 C, (G) 2007 C, (G) 2007 C, (G) 2007 C, (G) 2007 C, (G) 2	Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Grate Wird Coefficient (typical value 0.9 0.80) Cc (0) NA NA Curb Opening Information MNOR MA/OR Heigh of Uncontrol Trobatin Inches H _{uman} 6.00 0.00 Heigh of Uncontrol Trobatin Inches H _{uman} 6.00 0.00 Heigh of Uncontrol Trobatin Inches H _{uman} 6.00 0.00 Sold Windh for Depensing Information Cc (0) 0.00 0.00 Clopping Pactor for a Single Curb Opening (typical value 0.10) Cc (0) 0.01 0.10 Clopping Pactor Conflicient (typical value 0.20.70) Cc (0) 0.07 0.07 Clopping Pactor Conflicient (typical value 0.20.70) Cc (0) 0.07 0.07 Clopping Pactor Conflicient (typical value 0.20.70) Cc (0) 0.07 0.07 Clopping Pactor Conflicient (typical value 0.20.70) Cc (0) 0.07 0.07 Clopping Pactor Conflicient (typical value 0.20.70) Cc (0) 0.07 0.07 Clopping Pactor Conflicient (typical value 0.20 MA MA MA Clopping Pactor Conflicient (typical value 0.20 MA MA MA	Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	1
Grate Direct Continue (Lipped) value 0.60 - 0.80) C_ (G) = N/A N/A Length of Variation (Lipped) value 0.60 - 0.80) C_ (G) = 20.00 feet Length of Variation (Lipped) value 0.80 - 0.80) C_ (G) = 0.00 6.00 inches Angel of Those (use USDCM Figure Valth of 2 feet) W ₊₊ 6.00 6.00 inches Side With for Depresion Pan (plocally the guter with of 2 feet) W ₊₊ 1.17 1.17 feet Cato Denning With Conflicient (typical value 0.80 - 0.70) C_ (G) = 0.60 0.60 inches Cato Denning With Conflicient (typical value 0.80 - 0.70) C_ (G) = 0.67 0.87 0.87 Cato Denning Onlice Conditiont (typical value 0.80 - 0.70) C_ (G) = 0.87 0.87 0.87 Cato Denning Onlice Conditiont (typical value 0.80 - 0.70) C_ (G) = 0.87 0.87 0.87 Cato Denning Without Clogging Cato Mixed Mixed Machine MEC22 Method) Mixed Machine Mac	Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Curb Opening Information MNOR MAJOR Height of Vertical Curb Opening In Inches H _{ware} 6.00 6.00 inches Height of Vertical Curb Opening In Inches H _{ware} 6.00 6.00 inches Angint of Throat (ince USDCM Figure S1-5) Thema 6.03.0 6.00 inches Side With for Depreson Pan (typical value 0.10) C, (C) 0.10 0.10 eet Curb Opening Other Coefficient (typical value 0.3.3.7) C, (C) 0.67 0.07 eet Cogging Coefficient Coefficient (typical value 0.60.0.70) C, (C) 0.67 0.07 eet Cogging Coefficient Coefficient (typical value 0.60.0.70) C, (C) 0.67 0.07 eet Cogging Coefficient (typical value 0.60.0.70) C, (C) 0.67 0.07 eet Cogging Coefficient (typical value 0.60.0.70) C, (C) 0.67 0.07 eet Cogging Coefficient (typical value 0.60.0.70) C, (C) 0.67 N/A N/A Cogging Coefficient (typical value 0.70) C, (C) 0.67 N/A N/A Tinterco	Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	1
Langh of sufa (Un Opening Inches) Height of Variat (sub Opening Inches) Height of Varia (sub USCM Pigurs ST-5) Strong of Threat (sub USCM Pigurs ST-5) Card Opening Varia (Conficient (typical value 0.10) Card Opening Varia (Conficient (typical value 0.3.7) Card Opening Varia (Conficient (typical value 0.3.7) Card Opening Varia (Conficient (typical value 0.60 - 0.70) Card Depaning Varia (Conficient (tor Multiple Units) Cool of a NNA Card Depaning Varia (Conficient (tor Multiple Units) Cool of a NNA Crate Capacity as a Varia (Depand on Modified HEC22 Method) microspion with Coogning Card Capacity as a Varia (Depand on Modified HEC22 Method) microspion with Coogning Card Capacity as a Varia (Depand on Modified HEC22 Method) microspion with Coogning Card Capacity as Mixed Flow Crate Capacity as Mixed Flow Crate Capacity as Mixed Flow Card Capacity as Mixed Flow Crate Capacity (Sasumes clogged condition) Capar = NNA Capacity Capacity (Sasumes clogged condition) Capar = NNA Card Capacity (Sasumes clogged condition) Capar = NNA Card Multipe Units Cool = 1.33 1.33 Card Opening Capacity (Sasumes clogged condition) Capar = NNA Card Multipe Units Cool = 1.33 1.33 Card Opening Capacity (Sasumes clogged condition) Capar = NA MINOR MAJOR MINOR MAJOR MINOR MAJOR MINOR MAJOR Card Depaning Capacity (Sasumes clogged condition) Capar = NA NA NA Card Depaning Capacity (Sasumes clogged condition) Capar = NA NA NA Card Depaning Capacity (Sasumes clogged condition) Capar = NA NA NA Card Depaning Capacity (Sasumes clogged condition) Capar = NA NA NA NA Capar = NA NA NA C	Curb Opening Information		MINOR	MAJOR	-
Height of Varical Curb Opening in Inches	Length of a Unit Curb Opening	$L_{\alpha}(C) =$	20.00	20.00	feet
$ \begin{array}{c} eq: 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.$	Height of Vertical Curb Opening in Inches	(-)	6.00	6.00	inches
Indig of Thore (use USDCH Figure ST-6) Inclusion Inclusion Side Vindin for Depression Pain (typically the guter with of 2 feet) Theta = 0.3.0 0.00 Inclusion Side Vindin for Depression Pain (typically the guter with of 2 feet) Vi, = 1.7.7 1.7.7 Feet Cub Opening Other Coefficient (typical value 0.3.3.4) Copression Paint (typical value 0.3.4) Copression Paint (typical value 0.3.4) <td>Height of Vertical Outb Opening in Inches</td> <td>- ver –</td> <td>6.00</td> <td>6.00</td> <td>inches</td>	Height of Vertical Outb Opening in Inches	- ver –	6.00	6.00	inches
$ \begin{array}{c} raige or (nrate (see USLOW) right = 0 = 1 \\ (Georging Patter for a Single Cub Opening (typical value 0.10) \\ Cho Opening With Coefficient (typical value 0.23.7) \\ Cub Opening With Coefficient (typical value 0.23.7) \\ Cysical Coefficient (typical value 0.23.7) \\ Cysical Coefficient (typical value 0.23.7) \\ Cysical Coefficient (typical value 0.200.70) \\ Coefficient (typical value 0.200.70) \\ Cysical C$	And a Carb Onnee Thioat in Inches	Throat -	8.00	0.00	incries
Side Wind for Depresson Pain (typically) the guter with of 2 (teq) $V_{p} = 1.17$ [17] [17] [17] [16] Curb Opening Other Coefficient (typical value 3.3.47) Curb Opening Other Coefficient (typical value 3.47) Coefficient of Multiple Units Coefficient of Multiple Units	Angle of Throat (see USDCM Figure ST-5)	i neta =	63.40	63.40	degrees
Clogging Pattor for a Single Curb Opening (Wincel Value 0.50) $C_1(0) = 0.10$ 0.10 Curb Opening Wince Coefficient (typical Value 0.53.7) $C_1(0) = 0.67$ 0.67 Curb Opening Value Coefficient (typical Value 0.60 - 0.70) $C_1(0) = 0.67$ 0.67 Clogging Coefficient for Multiple Units Clogging Coefficient for Multiple Units Crade Capacity as a Weir (Dased on Modified HEC22 Method) Interception with Clogging Carte Copacity as a Weir (Dased on Modified HEC22 Method) Interception with Clogging Carte Copacity as a Weir (Dased on Modified HEC22 Method) Interception with Clogging Carte Copacity as a Weir (Dased on Modified HEC22 Method) Interception with Clogging Carte Copacity as a Weir (Dased on Modified HEC22 Method) Interception with Clogging Carte Copacity as Mixed Flow Interception with Clogging Carte Copacity (assumes clogged condition) Curb Opening as a Wirt (Dased on Modified HEC22 Method) Interception without Clogging Carte Copacity (assumes clogged condition) Curb Opening as a Wirt (Dased on Modified HEC22 Method) Interception without Clogging Interception wit	Side Width for Depression Pan (typically the gutter width of 2 feet)	VV _p =	1.17	1.17	feet
Curb Opening Weit Coefficient (typical value 0.8 - 0.70) Curb Opening Oritice Coefficient (typical value 0.8 - 0.70) Crist Enzo Analysis (Calculated) Cogging Centificat for Multiple Units Cogging Centificat for Multiple Units Cogging Centificat for Multiple Units Crist Enzo Analysis (Calculated) Crist Enzo Analysis (Calculated) Crist Cogging S Crist Cr	Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70) Cirat: Elox Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Clogging Classes a Orifice (based on Modified HEC22 Method) Interception with Clogging Classes a Orifice (based on Modified HEC22 Method) Interception with Clogging Classes a Orifice (based on Modified HEC22 Method) Interception with Clogging Classes a Orifice (based on Modified HEC22 Method) Interception with Clogging Classes a Orifice (based on Modified HEC22 Method) Interception with Clogging Classes a Orifice (based on Modified HEC22 Method) Interception with Clogging Classes a Orifice (based on Modified HEC22 Method) Clogging Caefficient for Multiple Units Clogging Caefficient for Multiple Units Clo	Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Grate End Analysis (Calculated) MINOR MAJOR Clogging Certification for Multiple Units Clog = N/A N/A Clogging Certification for Multiple Units Clog = N/A N/A Grate Capacity as a Weir (based on Modified HEC22 Method) MINOR MAJOR Interception without Clogging Q _a = N/A N/A Grate Capacity as a Orifice (based on Modified HEC22 Method) MINOR MAJOR Interception without Clogging Q _a = N/A N/A Interception with Clogging Q _a = N/A N/A Clogging Catcritic (task with Clogging Q _a = N/A N/A Clogging Catcritic (the Mathite) Units Clog = 0.0.3 0.0.3 Curb Opening as a Weir (based on Modified HEC22 Method) MINOR MAJOR	Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Clogping Coefficient for Multiple Units Clogping Tracer for Multiple Units Clogping Tracer for Multiple Units Clogping Tracereption without Clogging Tracereption without Clogging T	Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Factor for Multiple Units Grate Capacity as Weir (based on Modified HEC22 Method) Interception without Clogging Grate Capacity as a Orffice (based on Modified HEC22 Method) Interception without Clogging Grate Capacity as Mixed Flow Interception without Clogging Grate Capacity as Mixed Flow Interception without Clogging Grate Capacity as Mixed Flow Interception without Clogging Grate Capacity (assumes clogged condition) Curb Depring Grate Capacity (assumes clogged condition) Curb Opening S a Weir (based on Modified HEC22 Method) Interception without Clogging Grate Capacity (assumes clogged condition) Curb Depring Factor for Multiple Units Clogging Continent for Multiple Units Club Depring Capacity as Mixed Flow Interception without Clogging Mixer Powning Capacity as Mixed Flow Interception without Clogging Club Depring Capacity as Mixed Flow Interception without Clogging Club Chopening Capacity as Mixed Flow Interception without Clogging Club Depring Capacity as Mixed Flow Interception without Clogging Club Depring Capacity as Mixed Flow Interception without Clogging Club Depring Capacity as Mixed Flow Interception without Clogging	Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Grae Capacity as a Weir (based on Modified HEC22 Method) Interception without Clogging Interception without Clogging Interception with Clogging Grae Capacity as a Office (based on Modified HEC22 Method) Interception with Clogging Grae Capacity as Mixed Flow Interception With Clogging G	Clogging Factor for Multiple Units	Clog =	N/A	N/A	-
Interception without Clogging $Q_{uv} =$ N/A	Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	-
Interception with Clogging 0	Interception without Clogging	0.=	N/A	N/A	cfs
$ \frac{1}{164 \text{Capacity}} = \frac{1}{164} \frac{1}{164}$	Interception with Cleaging	~~~_ 	N/A	N/A	ofo
$ \begin{array}{c} \text{rate copion withou Clogging} \\ \text{interception with Clogging} \\ \text{interception with Clogging} \\ \text{interception with Clogging} \\ \text{interception with Clogging} \\ \text{Carb Opening Rew Analysis (Calculated)} \\ \text{Clogging Ration of Multiple Units} \\ \text{Clogging Ration Clogging } \\ \text{Uniterception withou Clogging } \\ \text{Curb Opening as a Weir (based on Modified HEC22 Method) } \\ \text{Interception withou Clogging } \\ \text{Curb Opening Capacity as Mixed Flow } \\ \text{Interception with Clogging } \\ \text{Curb Opening Capacity as Mixed Flow } \\ \text{Interception with Clogging } \\ Interception wit$	Crete Consoity as a Orifice (based on Medified HEC23 Method)	⊲wa =	MINOR	IN/A	us
Interception without Clogging Interception without Clogging Grate Capacity as Mixed Flow Interception without Clogging Interception without Clogging Interception without Clogging Came NVA NVA efs Resulting Crate Capacity (assumes clogged condition) Cogning Carlier Calculated) Clogging Coefficient for Multiple Units Clogging Coefficient for Multiple Units Curb Opening as an Orifice (based on Modified HEC22 Method) Interception with Clogging Curb Opening Capacity as Mixed Flow Interception with Clogging Curb Opening Capacity as Mixed Flow Interception with Clogging Curb Opening Capacity (assumes clogged condition) Queue = 6.6 17.4 Resultant Street Conditions Total Intel Length Resultant Street Crown Combination Inter Parformance Reduction Factor for Long Inlets Curb Opening Weir Equation Combination Interception Reduction Factor for Long Inlets Grade The Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Carb Opening Mixies Carb Opening Capacity (assumes clogged condition) Queue = 0.0 1.4 Carb Dept for Grate Reduction Factor for Long Inlets Carb Opening Multiper Capacity (assumes clogged condition) Queue = 0.0 1.4 Curb Opening Capacity (assumes clogged condition) Curb Opening Capacity (assumes clogged condition) Curb Opening Capacity (assum	Grate Capacity as a Office (based off Modified HEC22 Method)	o I	WINOR	WAJOK	٦.
Interception with Clogging Grate Capacity (assumes clogged condition) Resulting Crate Capacity (assumes clogged condition) Crub Opening Flow Analysis (Calculated) Clogging Coefficient for Multiple Units Clogging Coefficient for Multiple Units Clogging Coefficient for Multiple Units Clogging Coefficient for Multiple Units Clogging as a Work (based on Modified HEC22 Method) Interception with Clogging Interception with Clogging Interception with Clogging Curb Opening as a Work (based on Modified HEC22 Method) Interception with Clogging Curb Opening as an Orifice (based on Modified HEC22 Method) Interception with Clogging Curb Opening as an Orifice (based on Modified HEC22 Method) Interception with Clogging Curb Opening Capacity as Mixed Flow Interception with Clogging Curb Opening Capacity as Mixed Flow Interception with Clogging Curb Opening Capacity as Mixed Flow Interception with Clogging Curb Opening Capacity (assumes clogged condition) Curb Advision Clogging Curb Opening Capacity (assumes clogged condition) Curb Advision Clogening Capacity (assumes clogged condition) Curb Capacity Cint Minor and Major Storms/co PEAK)	Interception without Clogging	Q _{oi} =	N/A	N/A	cts
MINOR MAJOR Interception with OLogging MINOR MAJOR Interception with OLogging One in a flow Analysis (Calculated) Courb Opening Flow Analysis (Calculated) Courb Opening Flow Analysis (Calculated) Opening Flow Analysis (Calculated) Courb Opening Flow Analysis (Calculated) Courb Opening as a Writ (Dased on Modified HEC22 Method) Interception with OLogging Opening as a Writ (Dased on Modified HEC22 Method) Interception with Clogging Opening as an Orifice (based on Modified HEC22 Method) Interception with Clogging Opening Capacity as Mixed Flow MINOR MALOR Interception with Clogging Opening Capacity as Mixed Flow Interception with Clogging Opening Capacity as Mixed Flow MINOR MALOR Interception with Clogging Opening Capacity as Mixed Flow Interception with Clogging Opening Capacity as Mixed Flow MINOR MALOR	Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Interception without Clogging $Q_{ma} = N/A$ N/A dfs Resulting Grate Capacity (assumes clogged condition) $Q_{ma} = N/A$ N/A dfs Resulting Grate Capacity (assumes clogged condition) $Q_{ma} = N/A$ N/A dfs Resulting Grate Capacity (assumes clogged condition) $Q_{ma} = N/A$ N/A dfs Resulting Grate Capacity (assumes clogged condition) $Q_{ma} = 0.03$ 0.03 Curb Opening as a Weir (based on Modified HEC22 Method) MINOR MAJOR Interception with Out Clogging $Q_{ma} = 6.8$ 18.0 dfs Interception with Out Clogging $Q_{ma} = 6.8$ 17.4 dfs Curb Opening as a Orifice (based on Modified HEC22 Method) MINOR MAJOR Interception with Out Clogging $Q_{ma} = 6.8$ 18.0 dfs Interception with Out Clogging $Q_{ma} = 6.8$ 17.4 dfs Curb Opening as an Orifice (based on Modified HEC22 Method) MINOR MAJOR Interception with Out Clogging $Q_{ma} = 34.3$ 40.6 dfs Interception with Out Clogging $Q_{ma} = 14.4$ 25.6 dfs Interception with Out Opening Capacity (assumes clogged condition) $Q_{curb} = 6.8$ 17.4 dfs Curb Opening Capacity (assumes clogged condition) $Q_{curb} = 6.8$ 17.4 dfs Resultant Street Flow Spread (based on sheet Q-Allow geometry) $T = 13.3$ 22.0 ffs-T-Crown Resultant Street Flow Spread (based on sheet Q-Allow geometry) $T = 13.3$ 22.0 ffs-T-Crown Resultant Street Flow Spread (based on sheet Q-Allow geometry) $T = 13.3$ 22.0 ffs-T-Crown Resultant Street Flow Spread (based on sheet Q-Allow geometry) $T = 0.24$ 0.0.42 fft Depth for Grate Midwidt Depth for Grate Midwidt Dept	Grate Capacity as Mixed Flow	-	MINOR	MAJOR	-
Interception with Clogging $Q_{max} = N/A = N/A$	Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition) $Q_{Grats} =$ N/A N/A efs Curb Opening Flow Analysis (Caluted) MINOR MAJOR MINOR MAJOR Clogging Centro from Multiple Units Clog = 0.03 0.03 0.03 Curb Opening as a Weir (based on Modified HEC22 Method) MINOR MAJOR MAIOR Interception without Clogging $Q_{ut} =$ 6.6 17.4 cfs Interception without Clogging $Q_{ut} =$ 35.5 42.0 cfs Interception with Clogging $Q_{ut} =$ 35.5 42.0 cfs Interception with Clogging $Q_{ut} =$ 14.4 25.6 cfs Resultant Street Conditions MINOR MAJOR minore 14.3 22.0 fts Resultant Street Flow Spread (based on sheet O-Allow geometry) T = 13.3 22.0 fts 15.5	Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
MINOR MAJOR Clogging Coefficient for Multiple Units Coef = 1.33 1.33 Clogging Factor for Multiple Units Clog = 0.03 0.03 Curb Opening as a Weir (based on Modified HEC22 Method) MINOR MAJOR Interception with Clogging Q_{ei} = 6.8 18.0 cfs Interception with Clogging Q_{ei} = 6.6 17.4 cfs Curb Opening as an Orifice (based on Modified HEC22 Method) MINOR MAJOR MAJOR Interception with Clogging Q_{ei} = 35.5 42.0 cfs Interception with Clogging Q_{ei} = 34.3 40.6 cfs Interception with Clogging Q_{ei} = 14.4 25.6 cfs Interception with Clogging Q_{min} = 14.4 25.6 cfs Resultant Street Flow Spread (based on sheet Q-Allow geometry)	Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Clogging Coefficient for Multiple Units Coef = 1.33 1.33 Clogging Factor for Multiple Units Coof = 0.03 0.03 Curb Opening as a Weir (based on Modified HEC22 Method) MINOR MAJOR Interception with Clogging Q_{eff} 6.8 18.0 cfs Curb Opening as an Orifice (based on Modified HEC22 Method) Q_{eff} 6.6 17.4 cfs Interception with Clogging Q_{eff} 5.5 42.0 cfs Interception without Clogging Q_{eff} 35.5 42.0 cfs Interception without Clogging Q_{eff} 34.3 40.6 cfs Interception without Clogging Q_{eff} 34.3 40.6 cfs Interception without Clogging Q_{eff} 14.4 25.6 cfs Interception without Clogging Q_{eff} 14.0 24.7 cfs Resultant Street Conditions MINOR MAJOR MINOR MAJOR Resultant Street Conditions MINOR MAJOR method 16.6 17.4 cfs Resultant Street Flow Spread (based on sheet Q-Allow geometry) T	Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Factor for Multiple Units Clog = 0.03 0.03 Curb Opening as a Weir (based on Modified HEC22 Method) MINOR MAJOR Interception with Ologging $Q_{ait} =$ 6.8 18.0 cfs Curb Opening as an Orifice (based on Modified HEC22 Method) $Q_{ait} =$ 6.6 17.4 cfs Interception with Ologging $Q_{ait} =$ 35.5 42.0 cfs Curb Opening Capacity as Mixed Flow MINOR MAJOR dfs Interception with Ologging $Q_{ait} =$ 14.4 25.6 cfs Interception with Clogging $Q_{mit} =$ 14.4 22.6 cfs Interception with Clogging $Q_{mit} =$ 14.0 24.7 cfs Resultant Street Conditions MINOR MAJOR dfs Resultant Street Conditions MINOR MAJOR defs Resultant Flow Depth at Street Crown $C_{accover} =$ 0.0 1.4 0.0 1.4 Depth for Grate Mowidth Depth or Grate Mowidth $C_{accover} =$ 0.0 1.4 1.4 0.24 0.42 0.24 0.42 <td>Clogging Coefficient for Multiple Units</td> <td>Coef =</td> <td>1.33</td> <td>1.33</td> <td>7</td>	Clogging Coefficient for Multiple Units	Coef =	1.33	1.33	7
Curb Opening as a Weir (based on Modified HEC22 Method) MINOR MAJOR Interception without Clogging $Q_{ut} =$ 6.8 18.0 cfs Curb Opening as an Orifice (based on Modified HEC22 Method) MINOR MAJOR discontrol Interception with Clogging $Q_{ut} =$ 6.6 17.4 cfs Curb Opening as an Orifice (based on Modified HEC22 Method) MINOR MAJOR discontrol Interception with Clogging $Q_{ut} =$ 35.5 42.0 cfs Curb Opening Capacity as Mixed Flow MINOR MAJOR discontrol discontrol Interception with Clogging $Q_{ut} =$ 14.4 25.6 cfs Interception with Clogging $Q_{un} =$ 14.4 25.6 cfs Resultant Street Conditions MINOR MAJOR discontrol discontrol Total Inlet Length L = 20.00 20.00 feet Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 13.3 22.0 ft.>T-Crown Resultant Flow Depth at Street Crown dCaree = N/A N/A N/A Depth for Curb Opening Weir Equation </td <td>Clogging Factor for Multiple Units</td> <td>Clog =</td> <td>0.03</td> <td>0.03</td> <td></td>	Clogging Factor for Multiple Units	Clog =	0.03	0.03	
Interception without Clogging Interception without Clogging Interception with Clogging Curb Opening as an Orffice (based on Modified HEC22 Method) Interception with Clogging Curb Opening Capacity as Mixed Flow Interception with Clogging Curb Opening Capacity as Mixed Flow Interception with Clogging Curb Opening Capacity (assumes clogged condition) Resultant Street Conditions Total Inlet Length Low Head Performance Reduction Factor for Long Inlets Curb Opening Ver Factor for Long Inlets Curb Ver Factor for Long Inlets Curb Ver Factor for Long Inlets	Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	-
Interception with Clogging m_{m} 0.0 10.0 0.0 Interception with Clogging Q_{m} 6.6 17.4 cfs Curb Opening as an Orifice (based on Modified HEC22 Method) Q_{cd} 6.6 17.4 cfs Interception with Clogging Q_{cd} 35.5 42.0 cfs Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception with Clogging Q_{mi} 14.4 25.6 cfs Curb Opening Capacity (assumes clogged condition) Q_{curb} 6.6 17.4 cfs Resultant Street Conditions MINOR MAJOR $MAJOR$ $fest$ Total Inlet Length $L =$ 20.00 20.00 fest Resultant Flow Depth at Street Crown $d_{crown} =$ 0.0 1.4 inches Low Head Performance Reduction Factor for Long Inlets $RF_{combinetion} =$ 0.46 0.66 Curb Opening Performance Reduction Factor for Long Inlets $RF_{curb} =$ 0.71 0.84 Grated Inlet Performance Reduction Factor for Long Inlets $RF_{curb} =$ 0.71 0.84 <td< td=""><td>Interception without Clogging</td><td>Q =</td><td>6.8</td><td>18.0</td><td>cfs</td></td<>	Interception without Clogging	Q =	6.8	18.0	cfs
The reception with outgoing as an Orifice (based on Modified HEC22 Method) Interception with Ologging as an Orifice (based on Modified HEC22 Method) Interception with Ologging $Q_{ci} = 35.5$ 42.0 cfs MINOR MAJOR Interception with Ologging $Q_{ci} = 35.5$ 42.0 cfs MINOR MAJOR Interception with Ologging $Q_{ci} = 14.4$ 25.6 cfs Interception with Ologging $Q_{ci} = 13.3$ 22.0 th cfs Resultant Street Conditions Total Inlet Length Resultant Street Flow Spread (based on sheet <i>Q-Allow</i> geometry) $T = 13.3$ 22.0 th ct-T-Crown Resultant Street Flow Spread (based on sheet <i>Q-Allow</i> geometry) $T = 13.3$ 22.0 th ct-T-Crown Resultant Street Flow Spread (based on sheet <i>Q-Allow</i> geometry) $Q_{ci} = 0.0$ 1.4 inches Low Head Performance Reduction (Calculated) Depth for Grate Midwidth $Q_{cinate} = NIA$ N/A N/A ft Depth for Grate Midwidth $Q_{cinate} = 0.71$ 0.84 Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Cinate} = 0.71$ 0.84 Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Cinate} = 0.71$ 0.84 MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) NINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) Inter Capacity IS GOOD for Minor and Major Storms(>Q PEAK) $Q_{PEAK REQUIRED} = 5.9$ 116.6 cfs	Interception with Clogging	0 =	6.6	17.4	cfe
Cut D opening as Online (pased on Module PLC22 Method) mitror (MAJOR) Interception without Clogging $Q_{cl} = 35.5$ 42.0 Interception without Clogging $Q_{cl} = 34.3$ 40.6 Cut D opening Capacity as Mixed Flow MINOR MAJOR Interception with Clogging $Q_{ml} = 14.4$ 25.6 cfs Interception with Clogging $Q_{ml} = 14.4$ 25.6 cfs Interception with Clogging $Q_{ma} = 6.6$ 17.4 cfs Resultant Street Conditions MINOR MAJOR Total Inlet Length L = 20.00 20.00 feet Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 13.3 22.0 ft.5-Crown Resultant Flow Depth at Street Crown dcrown = 0.0 1.4 inches Low Head Performance Reduction (Calculated) MINOR MAJOR Depth for Grate Midwidth dcrown = 0.0 1.4 inches Curb Opening Weir Equation RF _{Curb} = 0.24 0.42 ft Corbonation Inlet Performance Reduction Factor for Long Inlets RF _{Curb} = 0.71 0.84 Grated Inlet Performance Reduction Factor for Long Inlets RF _{Curb} = 0.71	Curb Opening as an Orifice (based on Medified HEC22 Method)	∽wa –	MINOR	MA IOP	015
Interception without Clogging $G_{cas} = 33.5$ 42.0 cfs Interception with Clogging $G_{cas} = 34.3$ 40.6 cfs Curb Opening Capacity as Mixed Flow $MAJOR$ Interception with Clogging $G_{ma} = 14.4$ 25.6 cfs Interception with Clogging $G_{ma} = 14.4$ 25.6 cfs Interception with Clogging $G_{ma} = 14.4$ 25.6 cfs Resulting Curb Opening Capacity (assumes clogged condition) $G_{curb} = 6.6$ 17.4 cfs Resultant Street Conditions $MAJOR$ Total Inlet Leard Mixed Flow Spread (based on sheet <i>Q-Allow</i> geometry) $T = 13.3$ 22.0 ft.>T-Crown Resultant Street Flow Spread (based on sheet <i>Q-Allow</i> geometry) $T = 13.3$ 22.0 ft.>T-Crown Resultant Street Conditions $MINOR$ $MAJOR$ Resultant Street Crown $d_{CROWN} = 0.0$ 1.4 inches Low Head Performance Reduction (Calculated) Depth for Grate Midwidth $d_{Cartate} = 0.24$ 0.42 ft Combination Inlet Performance Reduction Factor for Long Inlets $RF_{Combination} = 0.466$ 0.66 Curb Opening Performance Reduction Factor for Long Inlets $RF_{Cartate} = 0.71$ 0.84 $RF_{Cartate} = NIA$ N/A N/A Total Inlet Interception Capacity (assumes clogged condition) NIA N/A MAJOR	Curb Opening as an Ormice (based on Modified HEC22 Method)	o - F	MINOR	MAJOR	
Interception with Clogging $Q_{cm} = 34.3$ 40.6 cfs Curb Opening Capacity as Mixed Flow MAJOR Interception with Clogging $Q_{mi} = 14.4$ 25.6 cfs Interception with Clogging $Q_{ma} = 14.0$ 24.7 cfs Resulting Curb Opening Capacity (assumes clogged condition) $Q_{curb} = 6.6$ 17.4 cfs Resultant Street Conditions Total Intel Length $L = 20.00$ 20.00 feet Resultant Street Crown $d_{CROWN} = 0.0$ 1.4 inches Low Head Performance Reduction (Calculated) Depth for Grate Midwidth $d_{Grate} = N/A N/A$ ft Depth for Grate Midwidth $d_{Grate} = 0.74 0.84$ Curb Opening Performance Reduction Factor for Long Inlets $RF_{Grate} = 0.71 0.84$ Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Grate} = 0.71 0.84$ MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) $Q_a = \frac{6.6 17.4 \text{ cfs}}{6.6 17.4 \text{ cfs}}$	Interception without Clogging	Q _{ol} =	35.5	42.0	cis
Curb Opening Capacity as Mixed Flow MINOR MAJOR Interception without Clogging $Q_{mi} =$ 14.4 25.6 cfs Interception with Clogging $Q_{mi} =$ 14.4 25.6 cfs Resulting Curb Opening Capacity (assumes clogged condition) $Q_{ourb} =$ 6.6 17.4 cfs Resultant Street Conditions MINOR MAJOR L = 20.00 20.00 feet Total Inlet Length L = 20.00 20.00 feet t.s.T-Crown Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 13.3 22.0 t.s.T-Crown Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 13.3 22.0 t.s.T-Crown Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 13.3 22.0 t.s.T-Crown Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 13.3 22.0 t.s.T-Crown Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 13.3 22.0 t.s.T-Crown Resultant Street Flow Spread (based on sheet Crown $G_{otate} =$ N/A N/A t.s.T-Crown <t< td=""><td>Interception with Clogging</td><td>Q_{oa} =</td><td>34.3</td><td>40.6</td><td>cts</td></t<>	Interception with Clogging	Q _{oa} =	34.3	40.6	cts
Interception without Clogging $Q_{ma} = 14.4$ 25.6 cfs Interception with Clogging $Q_{ma} = 14.4$ 25.6 cfs Resulting Curb Opening Capacity (assumes clogged condition) $Q_{uub} = 6.6$ 17.4 cfs Resultant Street Conditions $MAJOR$ Total Inlet Length $L = 20.00$ 20.00 feet Resultant Street Flow Spread (based on sheet <i>Q-Allow</i> geometry) $T = 13.3$ 22.0 ft.>T-Crown Resultant Street Flow Spread (based on sheet <i>Q-Allow</i> geometry) $T = 13.3$ 22.0 ft.>T-Crown Resultant Street Crown $d_{CROWN} = 0.0$ 1.4 inches Low Head Performance Reduction (Calculated) Depth for Grate Midwidth $d_{Catale} = \frac{NIA}{0.24}$ 0.42 ft Combination Inlet Performance Reduction Factor for Long Inlets $RF_{Combination} = 0.46$ 0.66 Curb Opening Performance Reduction Factor for Long Inlets $RF_{Catale} = \frac{NIA}{N/A}$ N/A N/A It ft the formance Reduction Factor for Long Inlets $RF_{Catale} = \frac{NIA}{N/A}$ N/A N/A N/A It ft the formance Reduction Factor for Long Inlets $RF_{Catale} = \frac{NIA}{N/A}$ N/A $N/$	Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	-
Interception with Clogging $Q_{ms} =$ 14.0 24.7 cfs Resulting Curb Opening Capacity (assumes clogged condition) $Q_{curb} =$ 6.6 17.4 cfs Resultant Street Conditions MINOR MAJOR Total Inlet Inerception Queue for Stormance Reduction Factor for Long Inlets $P_{curb} =$ 0.0 1.4 inches Low Head Performance Reduction Factor for Long Inlets MINOR MAJOR MINOR MAJOR Combination Inlet Performance Reduction Factor for Long Inlets $RF_{combination} =$ 0.46 0.66 17.4 ft Combination Inlet Performance Reduction Factor for Long Inlets $RF_{combination} =$ 0.71 0.84 0.46 0.66 Curb Opening Performance Reduction Factor for Long Inlets $RF_{curb} =$ N/A N/A N/A Grated Inlet Performance Reduction Factor for Long Inlets $RF_{curb} =$ N/A N/A N/A Total Inlet Interception Capacity (assumes clogged condition) $Q_{PEXX REQUIRED =$ 5.9 16.6 cfs	Interception without Clogging	Q _{mi} =	14.4	25.6	cfs
Resulting Curb Opening Capacity (assumes clogged condition) $Q_{Curb} =$ 6.6 17.4 cfs Resultant Street Conditions MINOR MAJOR Total Inlet Length L = 20.00 20.00 feet Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 13.3 22.0 ft.sT-Crown Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 0.0 1.4 inches Low Head Performance Reduction (Calculated) MINOR MAJOR 0.0 1.4 inches Depth for Grate Midwidth dGrate = N/A N/A ft ft Depth for Curb Opening Weir Equation 0.46 0.66 17.4 cfs Curb Opening Performance Reduction Factor for Long Inlets RF _{Curb} = 0.71 0.84 RF Grate = N/A N/A Grated Inlet Performance Reduction Factor for Long Inlets RF Grate = N/A N/A N/A Interception Capacity (assumes clogged condition) Ref Grate = N/A N/A N/A Stress = Stres = Stress =	Interception with Clogging	Q _{ma} =	14.0	24.7	cfs
MINOR MAJOR Total Inlet Length Lew Head Performance Reduction (Calculated) MINOR MAJOR Resultant Street Crown Lew Head Performance Reduction (Calculated) Depth for Grate Midwidth Combination Inlet Performance Reduction Factor for Long Inlets Depth for Grate Midwidth MINOR MA N/A Combination Inlet Performance Reduction Factor for Long Inlets RF _{combination} O.46 O.46 O.46 O.46 OVA NIA NIA NIA Total Inlet Interception Capacity (assumes clogged condition) Q PEAK REQUIRED O.9 16.6 cfs Intel Capacity IS GOOD for Minor and Major Storms(>Q PEAK) Q PEAK REQUIRED S.9 16.6 cfs	Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	6.6	17.4	cfs
Total Inlet Length L = 20.00 20.00 feet Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 13.3 22.0 ft.sT-Crown Resultant Flow Depth at Street Crown $d_{CROWN} =$ 0.0 1.4 inches Low Head Performance Reduction (Calculated) MINOR MAJOR Depth for Grate Midwidth $d_{Crate} =$ N/A N/A Depth for Curb Opening Weir Equation $d_{Curb} =$ 0.24 0.42 ft Combination Inlet Performance Reduction Factor for Long Inlets RF _{Combination} 0.46 0.66 0.66 Grated Inlet Performance Reduction Factor for Long Inlets RF _{Curbe} = 0.71 0.84 0.42 Total Inlet Interception Capacity (assumes clogged condition) Q = 6.6 17.4 cfs Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) Q PEAK REQUIRED = 5.9 16.6 cfs	Resultant Street Conditions		MINOR	MAJOR	
Resultant Street Flow Spread (based on sheet Q-Allow geometry) T = 13.3 22.0 ft.>T-Crown Resultant Flow Depth at Street Crown $d_{CROWN} =$ 0.0 1.4 inches Low Head Performance Reduction (Calculated) MINOR MAJOR Depth for Grate Midwidth $d_{Grate} =$ N/A N/A Depth for Curb Opening Weir Equation $d_{Grate} =$ 0.24 0.42 Curb Opening Performance Reduction Factor for Long Inlets $RF_{Combination} =$ 0.46 0.66 Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Combination} =$ N/A N/A Total Inlet Interception Capacity (assumes clogged condition) $Q_{PEXX REQUIRED =$ 5.9 16.6 cfs	Total Inlet Length	L =	20.00	20.00	feet
Resultant Flow Depth at Street Crown dcrown 0.0 1.4 inches Low Head Performance Reduction (Calculated) MINOR MAJOR Depth for Grate Midwidth dcrown 0.24 0.42 Depth for Curb Opening Weir Equation 0.46 0.66 Curb Opening Performance Reduction Factor for Long Inlets RF _{Combination} 0.71 0.84 Grated Inlet Performance Reduction Factor for Long Inlets RF _{Combination} 0.46 0.66 Curb Opening Performance Reduction Factor for Long Inlets RF _{Combination} 0.71 0.84 Grated Inlet Performance Reduction Factor for Long Inlets RF _{Grate} N/A N/A Total Inlet Interception Capacity (assumes clogged condition) Q _a = 6.6 17.4 cfs Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) Q _{PEAK REQUIRED} = 5.9 16.6 cfs	Resultant Street Flow Spread (based on sheet Q-Allow geometry)	Т =	13.3	22.0	ft.>T-Crown
Low Head Performance Reduction (Calculated) MINOR MAJOR Depth for Grate Midwidth $d_{Grate} = N/A$ N/A N/A Depth for Curb Opening Weir Equation $d_{Curb} = 0.24$ 0.42 ft Combination Inlet Performance Reduction Factor for Long Inlets $RF_{Curb} = 0.71$ 0.84 Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Curb} = 0.71$ 0.84 Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Grate} = N/A$ N/A Total Inlet Interception Capacity (assumes clogged condition) $Q_{PEXX REQUIRED} = 5.9$ 16.6 cfs Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) $Q_{PEXX REQUIRED} = 5.9$ 16.6 cfs	Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	1.4	inches
Low Head Performance Reduction (Calculated) MINOR MAJOR Depth for Grate Midwidth $d_{Grate} = \frac{N/A}{MAJOR}$ ft Depth for Curb Opening Weir Equation $d_{Curb} = 0.24$ 0.42 ft Combination Inlet Performance Reduction Factor for Long Inlets $RF_{Combination} = 0.71$ 0.84 0.84 Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Grate} = N/A$ N/A N/A Total Inlet Interception Capacity (assumes clogged condition) $Q_{a} = \frac{6.6}{17.4}$ 17.4 cfs Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) $Q_{PEAX REQUIRED} = 5.9$ 16.6 cfs				-	-
Depth for Grate Midwidth dirate = N/A N/A ft Depth for Curb Opening Weir Equation dirate = 0.24 0.42 ft Combination Inlet Performance Reduction Factor for Long Inlets RF _{Combination} = 0.46 0.66 Curb Opening Performance Reduction Factor for Long Inlets RF _{Curb} = 0.71 0.84 Grated Inlet Performance Reduction Factor for Long Inlets RF _{Grate} N/A N/A N/A Total Inlet Interception Capacity (assumes clogged condition) Qa = 6.6 17.4 cfs Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) QPEAK REQUIRED = 5.9 16.6 cfs	Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Curb Opening Weir Equation C_{urb} 0.24 0.42 tt Combination Inlet Performance Reduction Factor for Long Inlets $RF_{combination} =$ 0.46 0.66 Curb Opening Performance Reduction Factor for Long Inlets $RF_{Curb} =$ 0.71 0.84 Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Grate} =$ N/A N/A Total Inlet Interception Capacity (assumes clogged condition) $Q_{a} =$ 6.6 17.4 cfs Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) $Q_{PEAX, REQUIRED} =$ 5.9 16.6 cfs	Depth for Grate Midwidth	domin =	N/A	N/A	ft
Combination Inlet Performance Reduction Factor for Long Inlets RF 0.41 0.42 0.42 Combination Inlet Performance Reduction Factor for Long Inlets RF 0.46 0.66 Curb Opening Performance Reduction Factor for Long Inlets RF 0.71 0.84 Grated Inlet Performance Reduction Factor for Long Inlets RF 0.71 0.84 Total Inlet Interception Capacity (assumes clogged condition) Qa = 6.6 17.4 cfs Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) Q PEAK REQUIRED = 5.9 16.6 cfs	Depth for Curb Opening Weir Equation	-Grate -	0.24	0.42	ft
Curb Opening Performance Reduction Factor for Long Inlets RF _{curb} = 0.71 0.84 Grated Inlet Performance Reduction Factor for Long Inlets RF _{curb} = 0.71 0.84 Total Inlet Interception Capacity (assumes clogged condition) Q _a = 6.6 17.4 cfs Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) Q _{PEAK REQUIRED} = 5.9 16.6 cfs	Combination Inlet Performance Reduction Factor for Long Inlets	REcontract =	0.46	0.66	1
Grated Inlet Performance Reduction Factor for Long Inlets N Cub - 0.71 0.04 Grated Inlet Performance Reduction Factor for Long Inlets RF _{Grate} = N/A N/A Total Inlet Interception Capacity (assumes clogged condition) Qa = 6.6 17.4 cfs Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) Q PEAK REQUIRED = 5.9 16.6 cfs	Curb Opening Performance Reduction Factor for Long Inlets	RF	0.40	0.94	4
Oracle interference reduction actor for Long milets N Grade – IV/A IV/A MiNOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) Qa = 6.6 17.4 cfs Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) Q PEAK REQUIRED = 5.9 16.6 cfs	Grated Inlet Performance Reduction Factor for Long Inlets	RF	0.7 i	N/A	4
MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) Qa = 6.6 17.4 cfs Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) Q PEAK REQUIRED = 5.9 16.6 cfs	orace milet renormance reduction ractor for Long milets	Grate =	IN/A	IN/A	4
Total Inlet Interception Capacity (assumes clogged condition) Qa = 6.6 17.4 cfs Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) QPEAX REQUIRED = 5.9 16.6 cfs		_	MINOR	MAJOR	_
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) Q PEAK REQUIRED = 5.9 16.6 cfs	Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.6	17.4	cfs
	Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	5.9	16.6	cfs

INLET IN A SUMP OR SAG LOCATION

Design Information (Input)	_	MINOR	MAIOR	
Ture of Inlet	- T//00 -	CDOT Type F		7
Local Depression (additional to continuous autter depression 'a' from 'Q-Allow')	a -	3.00	3.00	inches
Number of Unit Inlate (Crete or Curb Opening)		3.00	3.00	inches
Number of Unit mets (Grate of Curb Opening)	INU =	1	7.0	la alta a
Crete Information	Ponding Depth =	4.9 MINOR	7.0	Inches
	L (G) -	IVIINOR	WIAJOK	V Overnue Depuis
		N/A	IN/A	leet
Width of a Unit Grate	vv _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	20.00	20.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W ₀ =	1.17	1.17	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{u}(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{-}(C) =$	0.67	0.67	4
Grate Flow Analysis (Calculated)	5 ₀ (0) -	MINOR	MAIOP	
Cleasing Coefficient for Multiple Units	Conf -	N/A	IVIAJOR	7
Clogging Eactor for Multiple Units	Clea =	N/A	N/A	-
Crote Canacity as a Wair (based on Medified HEC22 Method)	Clog =	IN/A MINOR	IN/A	
Grate Capacity as a weil (based on Modified HEC22 Method)	0 -	IVIINOR	IVIAJOR	
Interception without Clogging	Q _{wi} =	N/A	N/A	cis
Interception with Clogging	Q _{wa} =	N/A	N/A	cts
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	-
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.33	1.33	
Clogging Factor for Multiple Units	Clog =	0.03	0.03	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	6.8	18.0	cfs
Interception with Clogging	Q _{wa} =	6.6	17.4	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	-4
Interception without Cloaging	Q _{oi} =	35.5	42.0	cfs
Interception with Clogging	Q ₀₉ =	34.3	40.6	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	14.4	25.6	cfs
Interception with Clogging	0 -	14.0	24.7	cfe
Reculting Curb Opening Conseits (common classed condition)	Qma =	6.6	17.4	ofo
Resultant Street Can ditions	Curb –	MINOD	17.4	615
Tetel lefet Legeth		MINOR	IVIAJOR 20.00	
Total Inlet Length	L = -	20.00	20.00	reet
Resultant Street Flow Spread (based on sneet Q-Allow geometry)	= 	13.3	22.0	rt.>I-Crown
Resultant Flow Depth at Street Crown	u _{CROWN} =	0.0	1.4	inches
Low nead renormance Reduction (Calculated)		MINOR	MAJOR	4
Depth for Grate Midwidth	U _{Grate} =	N/A	N/A	
Depth for Curb Opening Weir Equation	d _{Curb} =	0.24	0.42	n -
Combination inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.46	0.66	4
Curb Opening Performance Reduction Factor for Long Inlets	KF _{Curb} =	U./1	0.84	4
Grated The Performance Reduction Factor for Long Inlets	KF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.6	17.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	5.8	16.2	cfs

Design Information (Input)	CDOT Type R Curb Opening	T		MINOR	MAJOR	_
Type of Inlet			Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continu	ous gutter depression 'a')		a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Gra	te or Curb Opening)		No =	1	1	
Length of a Single Unit Inlet (Grate or	Curb Opening)		L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be great	er than W, Gutter Width)		W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grat	te (typical min. value = 0.5)		C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb	Opening (typical min. value = 0.1)		C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowab	le Street Capacity'		_	MINOR	MAJOR	
Total Inlet Interception Capacity			Q =	5.2	7.5	cfs
Total Inlet Carry-Over Flow (flow by	passing inlet)		Q _b =	0.3	2.6	cfs
Capture Percentage = Q _a /Q _o =			C% =	94	74	%

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.0	5.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.7	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	88	%

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.5	6.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	83	%

Meadowbrook Crossing **Pipe Diameter Calculations**

Pipe #	5yr Flow	100yr or Design Flow	Contributing Flows	Manning 'n'	Pipe Slope	Calculated Pipe Diameter	Pipe Diameter	Minimum Slope of Pipe	Full Pipe Flow Velocity	Head above Pipe Flowline	Н	Pipe Inlet Control Capacity	Mannings Pipe Capacity	Capacity Check
S10	3.1 cfs	5.5 cfs	Inlet D (Basin D)	0.013	0.50%	16-inch	18-inch	0.27%	4.2 ft/sec				7.4 cfs	OK
S11	4.9 cfs	11.0 cfs	Inlets C, D	0.013	0.50%	21-inch	24-inch	0.24%	5.1 ft/sec				16.0 cfs	ОК
S12	10.4 cfs	23.0 cfs	Inlets A,B,C,D	0.013	0.50%	28-inch	30-inch	0.31%	5.9 ft/sec				29.1 cfs	ОК
S13	16.3 cfs	39.7 cfs	Inlets A,B,C,D,1	0.013	0.50%	34-inch	36-inch	0.35%	6.7 ft/sec				47.3 cfs	ОК
S14	19.2 cfs	48.4 cfs	DP 3	0.013	0.60%	35-inch	36-inch	0.53%	7.3 ft/sec				51.8 cfs	ОК
S15	19.6 cfs	16.0 cfs	WQ Outlet & DP 4	0.013	0.50%	24-inch	24-inch	0.50%	5.1 ft/sec	5.26 ft	4.3 ft	33.8 cfs	16.0 cfs	ОК
S20	3.4 cfs	6.0 cfs	Inlet A (Basin A)	0.013	0.50%	17-inch	18-inch	0.33%	4.2 ft/sec	5.77 ft	5.0 ft	20.7 cfs	7.4 cfs	ОК
S30	5.9 cfs	16.7 cfs	Inlet 1 (DP 1)+Carry Ov	0.013	0.50%	24-inch	30-inch	0.17%	5.9 ft/sec	5.34 ft	4.1 ft	51.8 cfs	29.1 cfs	ОК
S52	5.5 cfs	10.1 cfs	Inlet 52 (DP 10)	0.013	0.50%	20-inch	24-inch	0.20%	5.1 ft/sec				16.0 cfs	ОК
S61	3.5 cfs	6.9 cfs	Inlet 61 (OS-B)	0.013	1.00%	15-inch	18-inch	0.43%	6.0 ft/sec				10.5 cfs	ОК

Equations:

- Pipe Dia= $((2.16Qn)/(S^{0.5}))^{0.375}$
- Q = Discharge in cubic feet per second
- n = Manning's roughness coefficient
- RCP=0.013, CMP=0.024, HDPE (smooth)=0.012
- S = Slope of the pipe
- R_h = Hydraulic Radius

Flow Velocity = $(1.49/n)R_h^{2/3}S^{1/2}$ $R_h = A_w/W_h^{1/2}$ Pipe Capacity = $(1.49/n)AR_h^{2/3}S^{1/2}$ $A_w = p(d^2)$ A = Cross-sectional area of pipe $A=p(D^{2}/4)$

D = Inside Diameter of Pipe

$$A_{\rm w} = p(d^2/4)$$

A_w = Water Cross Sectional Area d = Water (Flow) Depth Within Pipe W_p = pd (For Capacity Calculation) W_p=Wetted Perimeter of Pipe

Orifice Equation:

 $Q = CA(2gH)^{0.5}$

C = Orifice coefficient (dimensionless)

$$C = 0.65$$

A = Cross-sectional area of opening, in sf

g = Gravitational accel constant, 32.2 ft/sec²

H = Head above centerline of pipe, ft

Program: UDSEWER Math Model Interface 2.2.1.2 Run Date: 5/2/2017 3:14:06 PM

UDSewer Results Summary

Project Title: Meadowbrook Crossing **Project Description:** 5 yr Storm Event

System Input Summary

Rainfall Parameters

Rainfall Return Period: 5 **Rainfall Calculation Method:** Formula

One Hour Depth (in): Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 6303.50

Manhole Input Summary:

		Given Flow		Sub Basin Information									
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Runoff Coefficient	5yr Coefficient	Overland Length (ft)	Overland Slope (%)	Gutter Length (ft)	Gutter Velocity (fps)			
OUTFALL 1	6305.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
S14-1	6307.80	19.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			

S14-2	6308.78	19.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S13	6308.83	16.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S30	6309.15	5.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S12-1	6310.05	10.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S12-2	6312.37	10.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S12-3	6314.24	10.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S12-4	6314.53	10.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S12-4	6315.79	10.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S20	6315.79	3.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S11-1	6315.86	4.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S11-2	6315.92	4.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S11-3	6315.96	4.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S10	6315.96	3.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

		Loc	al Contrib	ution			Total D	esign Flow		
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
OUTFALL 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
S14-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	19.20	
S14-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	19.20	
S13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	16.30	
S30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.90	
S12-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.40	
S12-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.40	
S12-3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.40	
S12-4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.40	
S12-4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.40	
S20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.40	
S11-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.90	
S11-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.90	
S11-3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.90	
S10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.10	

Sewer Input Summary:

		Ele	Loss C	oeffici	ents	Given Dimensions				
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
S14-1	51.11	6301.75	0.60	6302.06	0.013	0.03	0.00	CIRCULAR	36.00 in	36.00 in
S14-2	125.28	6302.26	0.60	6303.01	0.013	0.14	0.00	CIRCULAR	36.00 in	36.00 in

S13	24.42	6303.04	0.50	6303.16	0.013	0.13	0.00	CIRCULAR	36.00 in	36.00 in
S30	29.47	6303.66	0.50	6303.81	0.013	0.05	0.42	CIRCULAR	30.00 in	30.00 in
S12-1	210.90	6303.66	0.50	6304.71	0.013	0.20	0.00	CIRCULAR	30.00 in	30.00 in
S12-2	317.04	6305.01	0.50	6306.60	0.013	1.00	0.00	CIRCULAR	30.00 in	30.00 in
S12-3	317.04	6306.69	0.50	6308.28	0.013	0.05	0.00	CIRCULAR	30.00 in	30.00 in
S12-4	50.11	6308.48	0.50	6308.73	0.013	0.06	0.00	CIRCULAR	30.00 in	30.00 in
S12-4	104.14	6308.93	0.50	6309.45	0.013	0.07	0.00	CIRCULAR	30.00 in	30.00 in
S20	29.34	6310.45	0.50	6310.60	0.013	0.05	0.25	CIRCULAR	18.00 in	18.00 in
S11-1	25.56	6309.95	0.50	6310.08	0.013	0.05	0.00	CIRCULAR	24.00 in	24.00 in
S11-2	209.01	6310.38	0.50	6311.43	0.013	0.84	0.00	CIRCULAR	24.00 in	24.00 in
S11-3	25.33	6311.72	0.50	6311.85	0.013	0.80	0.00	CIRCULAR	24.00 in	24.00 in
S10	29.34	6312.35	0.50	6312.50	0.013	0.82	0.00	CIRCULAR	18.00 in	18.00 in

Sewer Flow Summary:

	Full Flo	w Capacity	Critic	al Flow		Noi	rmal Flow	/			
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
S14-1	51.80	7.33	16.86	5.91	15.17	6.78	1.22	Supercritical	19.20	0.00	
S14-2	51.80	7.33	16.86	5.91	15.17	6.78	1.22	Supercritical	19.20	0.00	
S13	47.29	6.69	15.47	5.61	14.58	6.07	1.12	Supercritical	16.30	0.00	
S30	29.08	5.92	9.64	4.33	9.17	4.64	1.10	Supercritical	5.90	0.00	
S12-1	29.08	5.92	12.94	5.13	12.40	5.43	1.09	Supercritical	10.40	0.00	
S12-2	29.08	5.92	12.94	5.13	12.40	5.43	1.09	Supercritical	10.40	0.00	
S12-3	29.08	5.92	12.94	5.13	12.40	5.43	1.09	Supercritical	10.40	0.00	
S12-4	29.08	5.92	12.94	5.13	12.40	5.43	1.09	Supercritical	10.40	0.00	
S12-4	29.08	5.92	12.94	5.13	12.40	5.43	1.09	Supercritical	10.40	0.00	
S20	7.45	4.21	8.44	4.18	8.54	4.12	0.98	Subcritical	3.40	0.00	
S11-1	16.04	5.11	9.35	4.32	9.10	4.49	1.05	Supercritical	4.90	0.00	
S11-2	16.04	5.11	9.35	4.32	9.10	4.49	1.05	Supercritical	4.90	0.00	
S11-3	16.04	5.11	9.35	4.32	9.10	4.49	1.05	Supercritical	4.90	0.00	
S10	7.45	4.21	8.04	4.06	8.10	4.02	0.99	Subcritical	3.10	0.00	

• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.

• If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

		Existing		Calculated						
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
S14-1	19.20	CIRCULAR	36.00 in	36.00 in	27.00 in	27.00 in	36.00 in	36.00 in	7.07	

S14-2	19.20	CIRCULAR	36.00 in	36.00 in	27.00 in	27.00 in	36.00 in	36.00 in	7.07	
S13	16.30	CIRCULAR	36.00 in	36.00 in	27.00 in	27.00 in	36.00 in	36.00 in	7.07	
S30	5.90	CIRCULAR	30.00 in	30.00 in	18.00 in	18.00 in	30.00 in	30.00 in	4.91	
S12-1	10.40	CIRCULAR	30.00 in	30.00 in	21.00 in	21.00 in	30.00 in	30.00 in	4.91	
S12-2	10.40	CIRCULAR	30.00 in	30.00 in	21.00 in	21.00 in	30.00 in	30.00 in	4.91	
S12-3	10.40	CIRCULAR	30.00 in	30.00 in	21.00 in	21.00 in	30.00 in	30.00 in	4.91	
S12-4	10.40	CIRCULAR	30.00 in	30.00 in	21.00 in	21.00 in	30.00 in	30.00 in	4.91	
S12-4	10.40	CIRCULAR	30.00 in	30.00 in	21.00 in	21.00 in	30.00 in	30.00 in	4.91	
S20	3.40	CIRCULAR	18.00 in	1.77						
S11-1	4.90	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
S11-2	4.90	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
S11-3	4.90	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
S10	3.10	CIRCULAR	18.00 in	1.77						

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevatior	(ft):	6303.5	50
---------------------	--------------	--------	----

	Invert Elev.		Downstream Manhole Losses		HG	L	EGL			
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)	
S14-1	6301.75	6302.06	0.00	0.00	6303.50	6303.50	6303.73	0.28	6304.01	
S14-2	6302.26	6303.01	0.02	0.00	6303.52	6304.41	6304.24	0.72	6304.96	
S13	6303.04	6303.16	0.01	0.00	6304.72	6304.72	6304.97	0.05	6305.02	
S30	6303.66	6303.81	0.00	0.07	6305.02	6305.02	6305.09	0.02	6305.12	
S12-1	6303.66	6304.71	0.01	0.00	6304.73	6305.79	6305.15	1.05	6306.20	
S12-2	6305.01	6306.60	0.07	0.00	6306.05	6307.68	6306.51	1.58	6308.09	
S12-3	6306.69	6308.28	0.00	0.00	6307.73	6309.36	6308.19	1.58	6309.77	
S12-4	6308.48	6308.73	0.00	0.00	6309.51	6309.81	6309.97	0.25	6310.22	
S12-4	6308.93	6309.45	0.00	0.00	6309.96	6310.53	6310.42	0.52	6310.94	
S20	6310.45	6310.60	0.00	0.06	6311.16	6311.32	6311.43	0.15	6311.58	
S11-1	6309.95	6310.08	0.00	0.00	6310.71	6310.86	6311.02	0.13	6311.15	
S11-2	6310.38	6311.43	0.03	0.00	6311.14	6312.21	6311.46	1.04	6312.50	
S11-3	6311.72	6311.85	0.03	0.00	6312.48	6312.63	6312.79	0.13	6312.92	
S10	6312.35	6312.50	0.04	0.00	6313.02	6313.18	6313.28	0.15	6313.43	

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * V_fi $^2/(2*g)$

- Lateral loss = V_fo $^2/(2*g)$ Junction Loss K * V_fi $^2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:

		Downstream			Upstream							
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
S14-1	51.11	4.00	6.00	6.67	0.00	4.45	0.28	9.48	6.57	2.41	69.64	Sewer Too Shallow
S14-2	125.28	4.00	6.00	6.67	9.08	6.38	2.21	9.54	6.60	2.44	208.91	
S13	24.42	4.00	6.00	6.67	9.48	6.58	2.41	9.34	6.50	2.34	41.14	
S30	29.47	3.50	6.00	6.08	8.83	5.96	2.38	9.18	6.13	2.55	42.48	
S12-1	210.90	3.50	6.00	6.08	8.85	5.97	2.38	9.18	6.13	2.55	304.26	
S12-2	317.04	3.50	6.00	6.08	8.57	5.83	2.24	10.04	6.56	2.98	474.53	
S12-3	317.04	3.50	6.00	6.08	9.85	6.47	2.88	10.42	6.75	3.17	520.55	
S12-4	50.11	3.50	6.00	6.08	10.02	6.55	2.97	10.10	6.59	3.01	81.54	
S12-4	104.14	3.50	6.00	6.08	9.70	6.39	2.81	11.18	7.13	3.55	177.50	
S20	29.34	2.50	4.00	4.92	10.17	5.88	3.63	9.88	5.73	3.48	38.11	
S11-1	25.56	3.00	4.00	5.50	10.68	6.42	3.59	10.56	6.36	3.53	39.48	
S11-2	209.01	3.00	4.00	5.50	9.95	6.06	3.23	7.98	5.07	2.24	262.09	
S11-3	25.33	3.00	4.00	5.50	7.39	4.78	1.95	7.22	4.69	1.86	25.21	Sewer Too Shallow
S10	29.34	2.50	4.00	4.92	6.71	4.15	1.90	6.42	4.00	1.75	22.52	Sewer Too Shallow

The trench side slope is 1.0 ft/ft The minimum trench width is 2.00 ft

Total earth volume for sewer trenches = 2308 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.
Program: UDSEWER Math Model Interface 2.2.1.2 Run Date: 5/1/2017 6:05:35 PM

UDSewer Results Summary

Project Title: Meadowbrook Crossing **Project Description:** 100 year Storm Event

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100 Rainfall Calculation Method: Formula

One Hour Depth (in): Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 6303.50

Manhole Input Summary:

		Gi	ven Flow	Sub Basin Information									
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Runoff Coefficient	5yr Coefficient	Overland Length (ft)	Overland Slope (%)	Gutter Length (ft)	Gutter Velocity (fps)			
OUTFALL 1	6305.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
S14-1	6307.80	48.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			

S14-2	6308.78	48.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S13	6308.83	39.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S30	6309.15	16.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S12-1	6310.05	23.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S12-2	6312.37	23.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S12-3	6314.24	23.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S12-4	6314.53	23.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S12-5	6315.79	23.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S20	6315.79	6.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S11-1	6315.86	11.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S11-2	6315.92	11.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S11-3	6315.96	11.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S10	6315.96	5.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

		Loc	al Contrib	ution			Total D	esign Flow		
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
OUTFALL 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
S14-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	48.40	
S14-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	48.40	
S13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	39.70	
S30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	16.70	
S12-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	23.00	
S12-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	23.00	
S12-3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	23.00	
S12-4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	23.00	
S12-5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	23.00	
S20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.00	
S11-1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.00	
S11-2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.00	
S11-3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.00	
S10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.50	

Sewer Input Summary:

		Ele	evation		Loss C	oeffici	ents	Given Dimensions				
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	ents Lateral Loss 0.00 0.00	Cross Section	Rise (ft or in)	Span (ft or in)		
S14-1	51.11	6301.75	0.60	6302.06	0.013	0.03	0.00	CIRCULAR	36.00 in	36.00 in		
S14-2	125.28	6302.26	0.60	6303.01	0.013	0.14	0.00	CIRCULAR	36.00 in	36.00 in		

S13	24.42	6303.04	0.50	6303.16	0.013	0.13	0.00	CIRCULAR	36.00 in	36.00 in
S30	29.47	6303.66	0.50	6303.81	0.013	0.05	0.42	CIRCULAR	30.00 in	30.00 in
S12-1	210.90	6303.66	0.50	6304.71	0.013	0.20	0.00	CIRCULAR	30.00 in	30.00 in
S12-2	317.04	6305.01	0.50	6306.60	0.013	1.00	0.00	CIRCULAR	30.00 in	30.00 in
S12-3	317.04	6306.69	0.50	6308.28	0.013	0.05	0.00	CIRCULAR	30.00 in	30.00 in
S12-4	50.11	6308.48	0.50	6308.73	0.013	0.06	0.00	CIRCULAR	30.00 in	30.00 in
S12-5	104.14	6308.93	0.50	6309.45	0.013	0.07	0.00	CIRCULAR	30.00 in	30.00 in
S20	29.34	6310.45	0.50	6310.60	0.013	0.05	0.25	CIRCULAR	18.00 in	18.00 in
S11-1	25.56	6309.95	0.50	6310.08	0.013	0.05	0.00	CIRCULAR	24.00 in	24.00 in
S11-2	209.01	6310.38	0.50	6311.43	0.013	0.84	0.00	CIRCULAR	24.00 in	24.00 in
S11-3	25.33	6311.72	0.50	6311.85	0.013	0.80	0.00	CIRCULAR	24.00 in	24.00 in
S10	29.34	6312.35	0.50	6312.50	0.013	0.82	0.00	CIRCULAR	18.00 in	18.00 in

Sewer Flow Summary:

	Full Flo	w Capacity	Critic	al Flow		Nor	mal Flow				
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
S14-1	51.80	7.33	27.18	8.45	27.58	8.33	0.97	Subcritical	48.40	0.00	
S14-2	51.80	7.33	27.18	8.45	27.58	8.33	0.97	Subcritical	48.40	0.00	
S13	47.29	6.69	24.61	7.71	25.25	7.49	0.95	Subcritical	39.70	0.00	
S30	29.08	5.92	16.58	6.00	16.30	6.13	1.03	Pressurized	16.70	29.47	
S12-1	29.08	5.92	19.58	6.78	20.13	6.57	0.95	Subcritical Surcharged	23.00	52.66	
S12-2	29.08	5.92	19.58	6.78	20.13	6.57	0.95	Subcritical	23.00	0.00	
S12-3	29.08	5.92	19.58	6.78	20.13	6.57	0.95	Subcritical	23.00	0.00	
S12-4	29.08	5.92	19.58	6.78	20.13	6.57	0.95	Subcritical	23.00	0.00	
S12-5	29.08	5.92	19.58	6.78	20.13	6.57	0.95	Subcritical	23.00	0.00	
S20	7.45	4.21	11.35	5.11	12.24	4.69	0.86	Subcritical	6.00	0.00	
S11-1	16.04	5.11	14.27	5.65	14.60	5.50	0.96	Subcritical	11.00	0.00	
S11-2	16.04	5.11	14.27	5.65	14.60	5.50	0.96	Subcritical	11.00	0.00	
S11-3	16.04	5.11	14.27	5.65	14.60	5.50	0.96	Subcritical	11.00	0.00	
S10	7.45	4.21	10.85	4.94	11.51	4.61	0.89	Subcritical	5.50	0.00	

• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.

• If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	sting	Calcı	lated				
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment

S14-1	48.40	CIRCULAR	36.00 in	7.07						
S14-2	48.40	CIRCULAR	36.00 in	7.07						
S13	39.70	CIRCULAR	36.00 in	7.07						
S30	16.70	CIRCULAR	30.00 in	30.00 in	27.00 in	27.00 in	30.00 in	30.00 in	4.91	
S12-1	23.00	CIRCULAR	30.00 in	4.91						
S12-2	23.00	CIRCULAR	30.00 in	4.91						
S12-3	23.00	CIRCULAR	30.00 in	4.91						
S12-4	23.00	CIRCULAR	30.00 in	4.91						
S12-5	23.00	CIRCULAR	30.00 in	4.91						
S20	6.00	CIRCULAR	18.00 in	1.77						
S11-1	11.00	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	
S11-2	11.00	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	
S11-3	11.00	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14	
S10	5.50	CIRCULAR	18.00 in	1.77						

• Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.

• Sewer sizes should not decrease downstream.

• All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 6303.50

	Invert	Elev.	Downstre L	eam Manhole Josses	HG	L	EGL				
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)		
S14-1	6301.75	6302.06	0.00	0.00	6304.02	6304.38	6305.13	0.31	6305.44		
S14-2	6302.26	6303.01	0.10	0.00	6304.52	6305.34	6305.63	0.75	6306.39		
S13	6303.04	6303.16	0.06	0.00	6305.95	6306.02	6306.45	0.08	6306.53		
S30	6303.66	6303.81	0.01	0.41	6306.77	6306.82	6306.95	0.05	6307.00		
S12-1	6303.66	6304.71	0.07	0.00	6306.25	6306.82	6306.59	0.65	6307.24		
S12-2	6305.01	6306.60	0.34	0.00	6307.18	6308.23	6307.58	1.36	6308.94		
S12-3	6306.69	6308.28	0.02	0.00	6308.33	6310.00	6309.04	1.59	6310.63		
S12-4	6308.48	6308.73	0.02	0.00	6310.11	6310.43	6310.82	0.26	6311.08		
S12-5	6308.93	6309.45	0.02	0.00	6310.56	6311.16	6311.27	0.53	6311.80		
S20	6310.45	6310.60	0.01	0.30	6311.93	6312.00	6312.11	0.08	6312.19		
S11-1	6309.95	6310.08	0.01	0.00	6311.55	6311.59	6311.81	0.07	6311.88		
S11-2	6310.38	6311.43	0.16	0.00	6311.75	6312.62	6312.07	1.05	6313.11		
S11-3	6311.72	6311.85	0.15	0.00	6312.91	6313.08	6313.41	0.13	6313.54		
S10	6312.35	6312.50	0.12	0.00	6313.37	6313.47	6313.66	0.13	6313.79		

• Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.

- Bend loss = Bend K * $V_{fi} \wedge 2/(2*g)$
- Lateral loss = $V_{fo} \wedge 2/(2*g)$ Junction Loss K * $V_{fi} \wedge 2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:

The trench side slope is 1.0 ft/ft The minimum trench width is 2.00 ft

					Do	ownstrea	m	l	J pstrean	n		
Element Name	Length (ft)	Wall (in)	Bedding (in)	Bottom Width (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Top Width (ft)	Trench Depth (ft)	Cover (ft)	Volume (cu. yd)	Comment
S14-1	51.11	4.00	6.00	6.67	0.00	4.45	0.28	9.48	6.57	2.41	69.64	Sewer Too Shallow
S14-2	125.28	4.00	6.00	6.67	9.08	6.38	2.21	9.54	6.60	2.44	208.91	
S13	24.42	4.00	6.00	6.67	9.48	6.58	2.41	9.34	6.50	2.34	41.14	
S30	29.47	3.50	6.00	6.08	8.83	5.96	2.38	9.18	6.13	2.55	42.48	
S12-1	210.90	3.50	6.00	6.08	8.85	5.97	2.38	9.18	6.13	2.55	304.26	
S12-2	317.04	3.50	6.00	6.08	8.57	5.83	2.24	10.04	6.56	2.98	474.53	
S12-3	317.04	3.50	6.00	6.08	9.85	6.47	2.88	10.42	6.75	3.17	520.55	
S12-4	50.11	3.50	6.00	6.08	10.02	6.55	2.97	10.10	6.59	3.01	81.54	
S12-5	104.14	3.50	6.00	6.08	9.70	6.39	2.81	11.18	7.13	3.55	177.50	
S20	29.34	2.50	4.00	4.92	10.17	5.88	3.63	9.88	5.73	3.48	38.11	
S11-1	25.56	3.00	4.00	5.50	10.68	6.42	3.59	10.56	6.36	3.53	39.48	
S11-2	209.01	3.00	4.00	5.50	9.95	6.06	3.23	7.98	5.07	2.24	262.09	
S11-3	25.33	3.00	4.00	5.50	7.39	4.78	1.95	7.22	4.69	1.86	25.21	Sewer Too Shallow
S10	29.34	2.50	4.00	4.92	6.71	4.15	1.90	6.42	4.00	1.75	22.52	Sewer Too Shallow

Total earth volume for sewer trenches = 2308 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.

Meadowbrook Crossing Swale and Channel Capacity Calculations

ſ				Cha	nnel									Channel
		Design	Bottom	Side	Slope	Flow	Channel	Manning	Тор	Channel	Wetted		Flow	Flow
	Description	Flow	Width	Left	rigii +	Depth	Slope	"n"	Width	Area	Perimeter	Rn	Velocity	Capacity
	Section A-A	48.4 cfs	10.0 ft	4:1	4:1	1.00 ft	1.0%	0.035	18.0 ft	14.00 sf	18.2 ft	0.77 ft	3.6 ft/sec	50.0 cfs

Equations:

Area (A) = $b(d)+zd^2$ b = width d = depth

Perimeter (P) = $b+2d^{*}(1+z^{2})^{0.5}$ z = side slope Hydraulic Radius = A/P

Velocity = $(1.49/n)R_n^{2/3}S^{1/2}$

S = Slope of the channel

n = Manning's number

 R_n = Hydraulic Radius (Reynold's Number) Flow = (1.49/n)AR_n^{2/3} S^{1/2}

TYPICAL CROSS SECTION

These charts shall only be used for the standard street sections as shown. The capacity shown is based on ½ the street section as calculated by the UD-Inlet spreadsheets. Minor storm capacities are based on no crown overtopping, curb height or maximum allowable spread widths. Major storm capacities are based on flow being containing within the public right-of-way, including conveyance capacity behind the curb. The UDFCD Safety Reduction Factor was applied. An 'nstreet' of 0.016 and 'n_{BACK}' of 0.020 was used. Calculations were done using UD-Inlet 3.00.xls, March, 2011.

APPENDIX D

Drainageway Calculations Riprap and Boulder Sizing Calculations Hydraulic Jump and Basin Length Calculations Seepage Calculations Supporting Figures CLOMR Appendix D: Proposed Conditions HEC-RAS Model Pages from Sand Creek DBPS

Meadowbrook Subdivision Riprap and Boulder Design Calculation

		Piprap or	Straight or	Flow	Channel	For	Curved	Sections	Velocity	Super-	Pock Sizing	Calculated	Calculated	Riprap or	
Station	Description	Boulder	Curved Section	Velocity	Slope	rc	Т	Va	for Calc	elevation dY	Parameter	Riprap Type	Boulder Size	Boulder Classification	Note
22+03	Toe Protection	Riprap	Curve	10.2ft/sec	0.50%	600ft	149ft	16.2ft/sec	16.2ft/sec	0.40ft	4.9	Н		Н	
19+83	Upstream of Drop Crest	Riprap	Straight	8.2ft/sec	0.50%				8.2ft/sec		2.5	VL		М	1
19+10	Downstream of Drop Sill	Riprap	Straight	7.8ft/sec	0.40%				7.8ft/sec		2.3	VL		М	2
18+35	Toe Protection, Outside Bend	Riprap	Curve	8.2ft/sec	0.40%	300ft	158ft	15.5ft/sec	15.5ft/sec	0.55ft	4.6	М		М	
18+35	Toe Protection	Riprap	Straight	8.2ft/sec	0.40%				8.2ft/sec		2.4	VL		L	3
14+45	Upstream of Drop Crest	Riprap	Straight	8.1ft/sec	0.40%				8.1ft/sec		2.4	VL		М	1
13+79	Downstream of Drop Sill	Riprap	Straight	7.3ft/sec	0.30%				7.3ft/sec		2.0	VL		М	2
13+25	Toe Protection, Outside Bend	Riprap	Curve	10.3ft/sec	0.30%	500ft	158ft	17.6ft/sec	17.6ft/sec	0.52ft	4.9	Н		Н	
13+25	Toe Protection	Riprap	Straight	10.3ft/sec	0.30%				10.3ft/sec		2.9	VL		L	3
19+73	Upper Drop Structure	Boulder	Straight	10.5ft/sec	16.67%				10.5ft/sec		5.8		B30	B30	
14+35	Lower Drop Structure	Boulder	Straight	10.5ft/sec	16.67%				10.5ft/sec		5.8		B30	B30	

Equations:

Rock Sizing Parameter = $VS^{0.17}/(G_s-1)^{0.66}$

V = Mean channel flow velocity for Riprap Sizing

V = Critical Velocity for Grouted Boulder Sizing

S = Longitudinal channel slope

 G_s = Specific Gravity of stone (minimum G_s = 2.50)

G_s = 2.55 (UDFCD Recommended)

 $G_s = 2.55$

Equations taken from UDFCD USDCM (Eqn MD-13 & HS-9) and City of Colorado Springs & El Paso County Drainage Criteria Manual

 $v_a = (-0.147 r_c/T + 2.176)V$ (Eqn UDFCD MD-10)

V_a = Adjusted channel velocity for riprap sizing along outside of channel bends

 r_c = channel centerline radius

T = Top width of water during the major design flood

Superelevation (dY) = $V^2T/2gr_c$ (Eqn UDFCD MD-9)

V = Mean channel flow velocity

T = Top Width of the channel under design flow conditions

g = Gravitational constant = 32.2 ft/sec²

r_c = channel centerline radius

Notes:	1. Type M Riprap is minimum size recommended for areas immediately upstream of drop structures (water surface drawdown area).	
	2. Type M Riprap is minimum size recommended for areas immediately downstream of drop structures (hydraulic jump area).	
	3. Type L Riprap is minimum size recommended for bank lining/toe protection.	

Boulder

Riprap

Straight

Curve

Rock Para	Sizing neter	Riprap Type	D50			
0.00	3.29	VL	6 inches			
3.30 3.99		L	9 inches			
4.00	4.59	М	12 inches			
4.60	5.59	Н	18 inches			
5.60	6.40	VH	24 inches			

VL L

M H

				B18
ock : arai	Sizing meter	Grouted Boulder Classification	Grouted Boulder Min. Dimension	B24
00	4.49	B18	18 inches	B30
4.50 4.99		B18	18 inches	B36
00	5.59	B24	24 inches	B42
60	6.39	B30	30 inches	B48
40	6.99	B36	36 inches	
00	7.49	B42	42 inches	
50	8.00	B48	48 inches	

16039 Riprap & Drop Calcs.xlsx Riprap & Boulder Design

Meadowbrook Subdivision Hydraulic Jump and Basin Length Calculations

Upper Drop Structure (Crest Station 19+73)

Hec Ras Mixed Flow Analysis (100-year)				Supercritical Analysis							Subcritical Analysis				
	River Sta	Q Total	Min Ch El	W.S. Elev	Crit W.S.	Vel Chnl	Froude # Chl	Max Chl Dpth	Specif Force	W.S. Elev	Crit W.S.	Vel Chnl	Froude # Chl	Max Chl Dpth	Specif Force
		(cfs)	(ft)	(ft)	(ft)	(ft/s)		(ft)	(cu ft)	(ft)	(ft)	(ft/s)		(ft)	(cu ft)
Drop Crest	1973	5330	6309.73	6313.50	6313.50	10.48	1.00	3.77	2656.70	6313.50	6313.50	10.48	1.00	3.76	2656.70
	1971.09	5330	6309.41	6312.72	6313.17	12.09	1.23	3.31	2706.63	6313.18	6313.18	10.47	1.00	3.77	2656.70
	1969.18	5330	6309.08	6312.52	6312.84	11.57	1.15	3.44	2681.33	6312.85	6312.85	10.48	1.00	3.76	2656.70
	1967.27	5330	6308.76	6312.22	6312.52	11.50	1.14	3.46	2678.22	6312.53	6312.53	10.47	1.00	3.77	2656.70
	1965.36	5330	6308.44	6312.13	6312.20	10.73	1.04	3.69	2658.32	6312.21	6312.21	10.48	1.00	3.76	2656.70
	1963.45	5330	6308.11	6311.87	6311.87	10.49	1.00	3.76	2656.71	6311.88	6311.88	10.47	1.00	3.77	2656.70
	1961.54	5330	6307.79	6311.10	6311.55	12.10	1.23	3.31	2706.74	6311.56	6311.56	10.48	1.00	3.76	2656.70
	1959.63	5330	6307.46	6310.88	6311.22	11.65	1.17	3.42	2684.58	6311.23	6311.23	10.47	1.00	3.77	2656.70
Jump Begins	1958.68	5330	6307.30	6311.07	6311.07	10.47	1.00	3.77	2656.70	6311.32	6311.06	9.74	0.91	4.02	2669.18
	1956.77	5330	6306.98	6310.29	6310.75	12.09	1.23	3.31	2706.52	6311.45	6310.74	8.64	0.77	4.47	2749.99
	1954.86	5330	6306.66	6310.10	6310.43	11.60	1.16	3.43	2682.55	6311.54	6310.42	7.83	0.67	4.88	2879.22
	1952.95	5330	6306.33	6310.00	6310.10	10.79	1.05	3.67	2659.12	6311.60	6310.09	7.16	0.59	5.27	3050.32
	1951	5330	6306.00	6309.76	6309.78	10.61	1.02	3.76	2664.71	6311.65	6309.79	6.68	0.53	5.65	3238.94
	1949	5330	6305.67	6309.51	6309.51	10.57	1.00	3.84	2679.66	6311.68	6309.51	6.33	0.49	6.01	3431.43
	1947	5330	6305.34	6309.23	6309.23	10.62	1.00	3.89	2695.30	6311.70	6309.23	6.04	0.46	6.36	3636.49
	1945	5330	6305.00	6308.95	6308.95	10.68	1.00	3.95	2711.62	6311.72	6308.95	5.77	0.43	6.72	3859.51
Drop Toe	1943	5330	6304.67	6308.27	6308.67	12.09	1.19	3.60	2763.68	6311.74	6308.67	5.54	0.40	7.07	4085.22
	1941	5330	6304.67	6308.27	6308.67	12.11	1.19	3.59	2764.70	6311.73	6308.67	5.54	0.40	7.06	4081.18

Jump begins at Sta. 19+58.68 which is on the drop face, 16' upstream of the drop toe (Sta. 19+43). Calculate minimum drop basin length starting from drop toe: Hydraulic Jump Length, Figure 15-4 (Chow)

$F_1 =$	117	$L/Y_2 =$	33		
- 1 V (h)		-/-2	0.0		
$Y_2(\pi)=$	7.07	L (ft)=	23.33		
		60%L (ft)=	14.00		
(Minim	um requ	ired length from toe for	r protectio	n, minimum Basin Length) = 14.0'	use 20'

Froude No. at beginning of hydraulic jump

Specific Force (cu ft) at beginning of hydraulic jump (at location where Specific Force (subcritical) > Specific Force (supercritical)) Maximum Channel Depth (ft) at approximate downstream end of hydraulic jump

Meadowbrook Subdivision Hydraulic Jump and Basin Length Calculations

Lower Drop Structure (Crest Station 14+35)

Iec Ras Mixed Flow Analysis (100-year)						Superci	ritical Analy	/sis		Subcritical Analysis					
	River Sta	Q Total	Min Ch El	W.S. Elev	Crit W.S.	Vel Chnl	Froude # Chl	Max Chl Dpth	Specif Force	W.S. Elev	Crit W.S.	Vel Chnl	Froude # Chl	Max Chl Dpth	Specif Force
		(cfs)	(ft)	(ft)	(ft)	(ft/s)		(ft)	(cu ft)	(ft)	(ft)	(ft/s)		(ft)	(cu ft)
Drop Crest	1435	5330	6304.22	6307.98	6307.98	10.49	1.00	3.76	2656.71	6307.99	6307.99	10.47	1.00	3.77	2656.69
	1433.13	5330	6303.90	6307.21	6307.66	12.10	1.23	3.31	2707.18	6307.67	6307.67	10.48	1.00	3.76	2656.70
	1431.26	5330	6303.59	6307.03	6307.35	11.57	1.15	3.44	2681.33	6307.36	6307.36	10.47	1.00	3.77	2656.69
	1429.4	5330	6303.27	6306.73	6307.03	11.50	1.14	3.46	2678.43	6307.10	6307.03	10.28	0.98	3.83	2657.42
	1428.46	5330	6303.11	6306.42	6306.88	12.10	1.23	3.31	2707.29	6307.20	6306.87	9.57	0.88	4.09	2676.28
Jump Begins	1427.53	5330	6302.95	6306.64	6306.71	10.74	1.04	3.68	2658.40	6307.26	6306.71	9.00	0.81	4.31	2713.68
	1425.66	5330	6302.63	6306.39	6306.39	10.49	1.00	3.76	2656.71	6307.37	6306.39	8.10	0.70	4.73	2827.78
	1423.8	5330	6302.32	6306.08	6306.08	10.49	1.00	3.76	2656.71	6307.43	6306.08	7.42	0.62	5.11	2975.69
	1421.93	5330	6302.00	6305.31	6305.76	12.10	1.23	3.31	2707.07	6307.49	6305.77	6.84	0.55	5.49	3159.08
	1420	5330	6301.67	6305.16	6305.46	11.52	1.14	3.49	2685.72	6307.52	6305.46	6.41	0.50	5.85	3360.75
	1418	5330	6301.34	6304.94	6305.18	11.36	1.11	3.60	2693.36	6307.55	6305.18	6.09	0.47	6.21	3563.99
	1416	5330	6301.00	6304.82	6304.89	10.86	1.04	3.82	2697.28	6307.57	6304.89	5.81	0.44	6.57	3784.75
	1414	5330	6300.67	6304.60	6304.62	10.73	1.01	3.93	2711.50	6307.59	6304.62	5.57	0.41	6.92	4011.21
Drop Toe	1412	5330	6300.33	6304.34	6304.34	10.73	1.00	4.01	2728.19	6307.60	6304.34	5.35	0.38	7.27	4253.02
	1410	5330	6300.33	6304.33	6304.33	10.74	1.01	4.00	2728.17	6307.60	6304.33	5.35	0.39	7.27	4248.55

Jump begins at Sta. 14+27.53 which is on the drop face, 15.5' upstream of the drop toe (Sta. 14+12). Calculate minimum drop basin length starting from drop toe: Hydraulic Jump Length, Figure 15-4 (Chow)

 $F_1 =$ 1.23 $L/Y_2 =$ 3.3 Y_2 (ft) =7.27L (ft) =23.9960%L (ft) =14.39

(Minimum required length from toe for protection, minimum Basin Length) = 14.4' use 20'

Froude No. at beginning of hydraulic jump

Specific Force (cu ft) at beginning of hydraulic jump (at location where Specific Force (subcritical) > Specific Force (supercritical))

Maximum Channel Depth (ft) at approximate downstream end of hydraulic jump

Meadowbrook Subdivision Hydraulic Jump and Basin Length Calculations

Hydraulic jump locations were calculated using criteria from the Urban Storm Drainage Criteria Manual Vol. II, Hydraulic Structures section 2.3.4 Hydraulic jump lengths were calculated using criteria from the Urban Storm Drainage Criteria Manual Vol. II, Hydraulic Structures section 2.3.5 and from Open Channel Hydraulics by Ven Te Chow

HEC-RAS was used for the frontwater (supercirtical profile analysis) and for the backwater (subcritical profile analysis)

To determine the location of the hydraulic jump, a tailwater elevation has to be established by water surface profile analysis that starts from a downstream control point and works upstream to the drop basin. This backwater analysis is based upon entire cross sections for the downstream waterway. The hydraulic jump, in either the low-flow, trickle channel, or the main drop, will begin to form where the unit specific force of the downstream tailwater is greater than the specific force of the supercritical flow below the drop. Special consideration must be given to submerged hydraulic jumps because it is here that reverse rollers are most common. For submerged jumps, the resulting downstream hydraulics should be evaluated (Cotton 1995).

The determination of the jump location is usually accomplished through the comparison of specific force between supercritical inflow and the downstream subcritical flow (i.e., tailwater) conditions:

$$F = \left(\frac{q^2}{gv}\right) + \left(\frac{y^2}{2}\right) \tag{HS-6}$$

in which:

- $F = \text{specific force (ft}^2)$
- q = unit discharge (determined at crest, for low-flow, trickle, and main channel zones) (cfs/ft)
- y = depth at analysis point (ft)
- g = acceleration of gravity = 32.2 ft/sec²

The depth, y, for downstream specific energy determination is the tailwater water surface elevation minus the ground elevation at the point of interest, which is typically the main basin elevation or the trickle channel invert (if the jump is to occur in the basin). The depth, for the upstream specific energy (supercritical flow), is the supercritical flow depth at the point in question.

FIG. 15-4. Length in terms of sequent depth y_2 of jumps in horizontal channels. (Based on data and recommendations of U.S. Bureau of Reclamation [34].)

Figure 15-4 (Chow), Used to determine the length of the hydraulic jump

108 16039 - MEADOWEROOK SUBDIV. 2 KIOWA ENGINEERING CORPORATION DATE 11/07/16 arc CALCULATED BY_ CHECKED BY SCALE DETERMINE BASIN LENGTH FOR EA. DROP STRUCTURE - FROM HEC-RAS UPPER DROP (CREST STA. 19+73) : APPROX. 2-4R. FLOW (201 10 4R. OF 1,940 CFS = 970 CFS) -JUMP OCCURS AT STA- 19+52 (ON FACE, 21' D/S OF CREST, 9'U/S OF TOE CRI251 5TA. = 19+73 TOE STA- = 19 + 50 43 $F_{r.} = 2.30$ Y_ = 3.62 FT. L ≈ 4.7 (FIG. 15-4, CHOW - HYD. JUMP LENOTH) L= 4.7 (3.62 FT.) = 17.0 FT. BASIN LENGTH = 60% L = 0.6 L = 0.6 (17.0) = 10.2 FT. 10-YR. FLOW (Q=1,940 CFS) -JUMP STA. = 19+51 (ON FACE, 22'D/S OF CREET, 8'U/S OF TOE) CREST STA- = 19+73 TOE STA. = 19+43 Fr. = 2.28 Y = 4.64 FT. L = 4.7 L= 4.7 (4.64 FT.) = 21.8 FT. BASIN LENGTH = 60% L = 0.6L = 0.6(21.8 FT.) = [3.1 FT.* 100-NR. FLOW (Q=5,330 CFS) -JUMP STA. = 19+59 (ON FACE, 14'D/S OF CREST, 16'U/S OF TOE) Fr. = 1.17 42 = 7.07 FT. L ≈ 3.3 USE L= 3.3 (7.07 FT.) = 23.3 FT. BASIN LENGTH = 60% L = 0.6 (23.3 FT.) = 14.0 FT. 20.0

D PRODUCT 207

Meadowbrook Subdivision Seepage Analysis and Cutoff Wall Calculations

Seepage Analysis (Lane's Weighted Creep Method Calculation)

Location	C _w	Weep Drain System	Cw	Hs	Drop Height	L _a	L _f	L _s	L _H	Required L _{v-calc}	L _{V-Struct}	L_{v} Difference $L_{v\text{-calc}}$ and $L_{v\text{-Struct}}$	Additional Calculated Cut off Wall Depth	Additional Cutoff Wall Depth ¹
Sta. 19+73.04	7.0	No	7.0	5.6 ft	3.6 ft	10.0ft	30.4ft	23.0ft	63.4 ft	18.1 ft	6.5 ft	11.6 ft	5.8 ft	6 ft
Sta. 14+35	7.0	No	7.0	3.5 ft	2.4 ft	10.0ft	23.3ft	23.0ft	56.3 ft	5.7 ft	6.5 ft	0.0 ft	0.0 ft	4 ft

 $L_{H} = L_{a} + L_{f}$

 L_a = Approach Length

Drop Height = Difference between Crest and Sill

 L_s = Length of stilling basin (Toe to Sill)

L_f = Drop Face Length (Crest to Toe)

 $L_{\rm H}$ = Sum of the Horizontal Creep Distances (Less than 45 degrees)

 L_v = Sum of the Vertical Creep Distances (Steeper than 45 degrees)

Additional Calculated Cutoff Wall Depth = Half of L_v Difference if Sheet Pile

L_{v-Struct} = Vertical creep distances of structure w/o cut off wall

Equations:

 $C_w = [(L_H/3) + L_v] / H_s$ (USDCM Eqn 9-5)

C_w = Lane's Weighted Creep Ratio

Table 9-3: Lane's Weighted Creep Recommended Ratios (USDCM)

 $C_w = 8.5$ Very fine sand or silt

 $C_w = 7.0$ Fine Sand

C_w = 6.0 Medium Sand

 $C_w = 5.0$ Coarse Sand

 $C_w = 4.0$ Fine Gravel

C_w = 3.0 Coarse gravel including cobbles or Soft Clay

 $C_w = 2.0$ Medium Clay

Weep Drain System: 10% Reduction is C_w if weep drain system is used

H_s = Head Differential between analysis points -- Taken from HEC-Ras

Yes

No

¹ 4.0 ft minimum recommended for Additional Cutoff Wall Depth.

RIPRAP DESIGNATION	% SMALLER THAN GIVEN SIZE BY WEIGHT	INTERMEDIATE ROCK DIMENSION (INCHES)	D ₅₀ * (INCHES)
TYPE VL	70 - 100 50 - 70 35 - 50 2 - 10	12 9 6 2	6
TYPE L	$70 - 100 \\ 50 - 70 \\ 35 - 50 \\ 2 - 10$	15 12 9 3	9
TYPE M	$70 - 100 \\ 50 - 70 \\ 35 - 50 \\ 2 - 10$	21 18 12 4	12
TYPE H	70 - 100 50 - 70 35 - 50 2 - 10	30 24 18 6	18
*D ₅₀ = MEAN ROCK SIZ	Έ		

Figure 8-34. Riprap and soil riprap placement and gradation (part 1 of 3)

APPENDIX D

PROPOSED CONDITIONS HEC-RAS MODEL SAND CREEK EAST FORK

Theory Proof Point Proof Point Po	HEC-RAS Pla	an: Proposed	River: Sand Cre	ek Reach: Ea	st Fork								
Image Image <th< td=""><td>Reach</td><td>River Sta</td><td>Profile</td><td>Q Total</td><td>Min Ch El</td><td>W.S. Elev</td><td>Crit W.S.</td><td>E.G. Elev</td><td>E.G. Slope</td><td>Vel Chnl</td><td>Flow Area</td><td>Top Width</td><td>Froude # Chl</td></th<>	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
Bar Bar, Bar Bar				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Bar Rev Bar Rev <t< td=""><td>East Fork</td><td>2529</td><td>10 yr</td><td>1940.00</td><td>6315.56</td><td>6317.36</td><td>6317.36</td><td>6318.21</td><td>0.010874</td><td>7.47</td><td>264.75</td><td>157.62</td><td>1.00</td></t<>	East Fork	2529	10 yr	1940.00	6315.56	6317.36	6317.36	6318.21	0.010874	7.47	264.75	157.62	1.00
Barton SEB DES DES <thdes< th=""> <thdes< t<="" td=""><td>East Fork</td><td>2529</td><td>50 yr</td><td>4180.00</td><td>6315.56</td><td>6318.51</td><td>6318.51</td><td>6319.89</td><td>0.009018</td><td>9.55</td><td>454.04</td><td>168.43</td><td>0.99</td></thdes<></thdes<>	East Fork	2529	50 yr	4180.00	6315.56	6318.51	6318.51	6319.89	0.009018	9.55	454.04	168.43	0.99
Bar Fox Bar Fox <t< td=""><td>East Fork</td><td>2529</td><td>500 yr</td><td>8120.00</td><td>6315.50</td><td>6320.06</td><td>6320.06</td><td>6322.02</td><td>0.00627</td><td>10.35</td><td>721.20</td><td>171.20</td><td>0.99</td></t<>	East Fork	2529	500 yr	8120.00	6315.50	6320.06	6320.06	6322.02	0.00627	10.35	721.20	171.20	0.99
Face Face Step 1940.00 693.91 6117.91 612.00 691.92 0.00000 2.68 7.74 617.91 0.00000 4.77 610.0000 4.77 610.0000 4.77 610.0000 4.77 610.0000 4.77 610.000 610.00<	Lastion	2323	1000 yr	0120.00	0313.30	0320.00	0320.00	0322.10	0.007071	11.00	721.20	177.45	0.33
Carl Dec. Bays Start Control Control <thcontrol< th=""> <thcontre< th=""> <thcontr< td=""><td>East Fork</td><td>2509</td><td>10 vr</td><td>1940.00</td><td>6309.93</td><td>6315.57</td><td>6312.08</td><td>6315.67</td><td>0.000299</td><td>2.62</td><td>774.85</td><td>155.71</td><td>0.20</td></thcontr<></thcontre<></thcontrol<>	East Fork	2509	10 vr	1940.00	6309.93	6315.57	6312.08	6315.67	0.000299	2.62	774.85	155.71	0.20
Sart Jone	East Fork	2509	50 yr	4180.00	6309.93	6317.53	6313.30	6317.78	0.000477	4.07	1089.67	164.92	0.27
Bar Fach Sym Boy Bit Sym Bit S	East Fork	2509	100 yr	5330.00	6309.93	6318.24	6313.83	6318.57	0.000566	4.71	1207.04	168.24	0.29
Ear Fax. 294 Uny 196.00 COD1.1 613.00	East Fork	2509	500 yr	8120.00	6309.93	6319.71	6314.99	6320.24	0.000734	6.01	1459.63	175.59	0.34
Bar Feb. 294 10 yr 19400 60013 60134 0.000707 10.70 10.70 601.70 701.70 701.70													
Ber Fok 2994 99.0 408.00 600714 601754 0.007151 72.3 408.10 158.55 0.000 Care Fox 2004 00070 10.2 000701 10.2 000701 10.2 000701 10.2 000701 10.2 000701 10.2 000701 10.2 000701 10.2 000701 10.2 000701 10.2 000701 10.2 000700 10.2 000701 10.2 000701 10.2 000701 10.2 000701 10.2 000701 10.2 000702 10.2 000702 10.2 000702 10.2 000702 10.2 000702 10.2 000702 10.2 000702 10.2 000702 10.2 <	East Fork	2394	10 yr	1940.00	6309.13	6313.69	6313.69	6315.41	0.009070	10.78	190.40	57.12	1.01
Europa, 2294 100, 2000 600, 3 636, 3 636, 638, 5357 633, 0 0,00015 67, 7 67, 7 64, 7 64, 7 7, 6 113, 7 6, 6 7 6, 6 7 6, 6 7 6, 6 7 6, 7 6,	East Fork	2394	50 yr	4180.00	6309.13	6316.35	6316.06	6317.54	0.007487	8.93	481.81	158.55	0.90
Barl Fox 2394 500 µ 61200 6373 P 6313 P 2000 P 1138 7402 166.2 138 Sarl Fox 2200 00 y 4196.00 6000 P 6113.2 000020 713.5 727.1 735.5 727.2 737.5 727.2 737.5 727.2 737.5 727.2 737.5 727.2 737.5 727.2 737.5 727.2 737.5 727.2 737.5 727.2 737.5 727.2 737.5 727.7 737.5 737.7 138.67 2000 600075 6113.2 6114.2 6114.2 6114.2 6114.2 6114.2 6114.2 6114.2 6114.2 6114.2 6114.2 6114.2 6114.2 6114.2 611	East Fork	2394	100 yr	5330.00	6309.13	6316.89	6316.57	6318.30	0.007151	9.73	568.07	161.19	0.91
Ear Firsh 203 By Head 203 Ear Firsh 207 Ear Firsh <	East Fork	2394	500 yr	8120.00	6309.13	6318.00	6317.67	6319.91	0.006831	11.38	749.42	166.62	0.93
Bart Pok 2000 10/00 10/000 50/07 50/14/2 60/14/2 00/14/2 00/00 60/07 10/14/2 00/00 60/07 10/14/2 00/00 10/14/2	East East	0000	10	4040.00	0007.07	0040.07	0040.00	0040 70	0.005000	7.55	057.40	70.05	0.71
Same Free 2000 NOV 12000 0007 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 0100000 0100000 01000000	East Fork	2203	10 yr	1940.00	6307.97	6312.07	6312.00	6313.70	0.005206	10.30	207.12	13.20	0.71
East Park 203 000 yr 1900 000 yr 1900 yr 1900 000 yr	East Fork	2203	100 yr	5330.00	6307.97	6315.20	6315.20	6316.05	0.006800	11.01	430.30 534.57	145.48	0.84
Sub Color Sub Color <t< td=""><td>East Fork</td><td>2203</td><td>500 yr</td><td>8120.00</td><td>6307.97</td><td>6316 39</td><td>6316 39</td><td>6318 56</td><td>0.000750</td><td>12 47</td><td>717 43</td><td>149.92</td><td>0.84</td></t<>	East Fork	2203	500 yr	8120.00	6307.97	6316 39	6316 39	6318 56	0.000750	12 47	717 43	149.92	0.84
Bart Pox 2077 0 yr 19400 800.13 831.28 631.32 631.31 600.2266 46.00 46.00 600.2076 Bart Pox 2077 50 yr 4160.00 600.13 61.61 61.12 61.15 0.00276 7.34 7.30 195.33 0.05 Bart Pox 207 500 yr 410.00 600.73 611.40 617.60 0.002266 4.07 196.40 0.002 Bart Pox 198.3 50 yr 410.00 600.70 611.42 611.22 611.42 0.00246 5.77 196.40 0.00246 5.77 196.40 0.00246 5.77 196.40 0.00246 5.77 196.40 0.00246 5.77 196.40 0.00246 5.77 196.40 0.00246 5.77 196.40 0.00276 7.4 337.8 196.3 100.77 196.40 196.3 100.77 196.40 196.3 100.77 196.40 196.3 100.77 196.70 197.7 196.70 197.7 1	Lustron	2200	000 91	0120.00	0001.01	0010.00	0010.00	0010.00	0.007104	12.47	717.40	100.07	0.00
Eart Prix 2077 50 yr 44000 631.46 671.22 671.51 10002891 652.51 145.08 052.51 145.08 052.51 145.08 052.51 155.35 155.55 157.65 157.55 157.65 157.75 157.65 157.75	East Fork	2077	10 yr	1940.00	6308.13	6312.83	6311.37	6313.19	0.002246	4.80	403.95	132.73	0.49
East Fox 2077 100 yr 633.00 630.10 631.51 631.53 631.54 631.54 631.54 631.54 631.54 631.54 631.54 631.54 631.54 631.55 631.54 631.55<	East Fork	2077	50 yr	4180.00	6308.13	6314.45	6312.92	6315.13	0.002661	6.63	632.51	148.04	0.56
Ear Drag 207 80 yr 49 100 6310.3 6316.40 6317.65 0.00254 8.7 7.80.40 101.10 0.002 Cast Print 103 10yr 1940.00 6507.90 6512.95 0.00256 4.07 450.00 40.00 6.00.00 6512.90 0.00256 5.70 7.72 193.00 4.00.01 6.00.00 7.60 6.00.00 7.60	East Fork	2077	100 yr	5330.00	6308.13	6315.10	6313.51	6315.94	0.002788	7.34	731.09	153.31	0.58
Ear Prot. 199 1940.00 5007.00 5512.7 5510.8 5512.80 0.00256 4.00 4486.61 146.2 Gas Fork. 1993. 60 yr 4100.00 6507.90 6511.23 6512.20 0.00256 4.00 0.434.31 1655.60 0.00277 6.33 0.004.41 1655.00 0.00276 6.34 0.00426 7.24 1000.44 1053.41 0.055 Gas Fork 1983. G0 yr 1940.00 6502.76 6512.32 6511.71 6512.80 0.00467 7.44 1000.44 0.055 Gas Fork 1983. G0 yr 4100.00 6502.76 0.514.47 0.014.40 0.014.40 0.00750 8.10 0.00750 8.10 0.00750 8.10 0.00750 8.10 0.00750 8.10 0.00750 8.10 0.00750 8.10 0.00750 8.10 0.00750 8.10 0.00750 8.10 0.00750 8.10 0.00750 8.10 0.00750 8.10 0.00750 8.10 0.00750	East Fork	2077	500 yr	8120.00	6308.13	6316.48	6314.69	6317.65	0.002964	8.67	950.49	164.18	0.62
Fish Tex 196 19y 19yo 19yo 19yo 63070 6312.7 6110.8 612.25 0.00256 4.00 486.61 448.24 0.032 East Fint 195 00yr 6330.00 6307.90 6314.20 612.00 600.007 651.40 0.00278 6.3 40.34 465.50 0.057 East Fint 195 00yr 4310.00 630.7 612.20 601.77 0.00407 7.4 100.44 103.5 100.77 100.44 103.5 100.77 100.44 103.5 100.77 100.44 103.5 100.77 100.44 103.5 100.77 100.44 103.5 100.77 100.47 100.75 100.77													
East Fox 1990 4180.00 6307.30 6314.32 6372.27 6314.32 6.70 722.70 199.80 0.44 East Fox 1992 100 yr 6300.00 6307.30 6314.40 6315.61 0.004027 6.34 400.34 405.50 0.55 East Fox 1893 100 yr 1940.00 6507.70 6314.40 6317.71 6314.60 0.004027 7.40 100.04 193.44 635.60 0.05 631.41 631.40 631.41 631.46 0.004027 7.40 100.04 193.44 0.004027 6.11 100.20 0.77 East Fox 1977 10 yr 194.00 6203.77 631.46 631.42 631.42 631.42 631.42 10.27 10.22	East Fork	1993	10 yr	1940.00	6307.90	6312.71	6310.98	6312.95	0.002596	4.00	485.61	146.24	0.39
East Fork 1980 100 yr 553.00 6307.30 6514.96 6517.27 600.0002 7.40 600.00 100	East Fork	1993	50 yr	4180.00	6307.90	6314.32	6312.27	6314.82	0.003453	5.70	732.70	159.90	0.47
Beak Fork 1995 500 yr 812.00 6307.00 6314.00 6314.20 6314.20 6314.20 6314.21 0.004627 7.49 1080.46 198.44 0.55 Eak Fork 1883 100 yr 1940.00 6300.77 6312.30 6314.41 6314.42 0.008467 7.48 1080.42 167.01 0.07 Eak Fork 1893 000 yr 1812.00 6300.77 6314.41 6315.43 0.008467 7.48 1086.21 161.02 0.07 Eak Fork 1873 100 yr 1940.00 6300.73 6311.41 6314.41 6314.20 0.021344 7.69 252.16 133.50 1.00 Eak Fork 1873 100 yr 1940.00 6300.77 6314.40 6314.20 0.021344 7.69 252.16 1.01 1.02 0.02134 7.69 245.17 1.01 1.02 0.02134 1.14 1.03.12 1.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 <td>East Fork</td> <td>1993</td> <td>100 yr</td> <td>5330.00</td> <td>6307.90</td> <td>6314.98</td> <td>6312.83</td> <td>6315.61</td> <td>0.003726</td> <td>6.34</td> <td>840.34</td> <td>165.50</td> <td>0.50</td>	East Fork	1993	100 yr	5330.00	6307.90	6314.98	6312.83	6315.61	0.003726	6.34	840.34	165.50	0.50
East Frank 1883 10 yr 1940.00 6300.78 6312.32 6311.71 6312.82 0.008477 5.7.2 337.88 1443.65 0.05 East Frank 1883 50 yr 4100.00 6500.77 6312.96	East Fork	1993	500 yr	8120.00	6307.90	6316.40	6314.00	6317.27	0.004027	7.49	1090.46	193.44	0.53
Bail Fork Yes Op/ 144.00 Count Count <t< td=""><td></td><td>1000</td><td>10</td><td>1010.00</td><td>0000 70</td><td></td><td>0011 71</td><td></td><td>0.000.007</td><td></td><td>007.00</td><td></td><td></td></t<>		1000	10	1010.00	0000 70		0011 71		0.000.007		007.00		
Date Fork Tests Doty Tests Doty Tests Doty Dots	East Fork	1983	10 yr	1940.00	6309.78	6312.32	6311.71	6312.83	0.008467	5.74	337.88	143.65	0.66
Case Infort 188 0.00 yr 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 0.01 z 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 200000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 2000000 20000000000000 2000000000000000000000000000000000000	East Fork	1963	100 yr	5330.00	6309.78	6314.41	6313.48	6315.43	0.008167	7.40	656 31	161.02	0.70
Link Fork Display	East Fork	1983	500 yr	8120.00	6309.78	6315.77	6314.63	6317.08	0.000107	9.12	886.72	101.02	0.71
East Fork 1973 10 yr 194000 633973 631166 631256 00.71830 769 92216 118.89 100 East Fork 1973 500 yr 61300 633973 6311291 631421 631421 631321 631421 631321 6314251 631437 631521 6017313 10.42 611427 1000 East Fork 1972 104000 6309.73 6314.46 6316.72 0.017311 10.42 6417.7 147.56 10.00 East Fork 1952 500 yr 4180.00 6306.17 6310.67 6308.40 6308.40 6302.61 6316.62 0.004460 6.66 778.40 167.05 0.64 East Fork 1952 500 yr 6306.47 6303.3 6306.73 6306.48 6312.37 0.004460 6.68 778.40 167.2 0.37 6314 0.001237 3.22 60133 147.64 0.22 6317.7 6308.46 6312.47 0.002457 3.22 60133	Lustron	1500	000 91	0120.00	0000.70	0010.77	0014.00	0017.00	0.007032	0.10	000.72	130.23	0.71
East Fork 1973 50 yr 4190.00 6309.73 6312.21 6312.21 6314.27 0.01303 9.69 431.30 144.83 10.0 East Fork 1973 500 yr 8120.00 6309.73 6314.46 6313.44 6313.41	East Fork	1973	10 vr	1940.00	6309.73	6311.66	6311.66	6312.58	0.021384	7.69	252.16	138.59	1.01
East Fork 1973 100 yr 5330.00 6308.72 6314.40 6313.44 6313.12 0.017513 0.0.2 611.74 113.00 6830.0 114.27 10.01 East Fork 1952 10 yr 1940.00 6309.72 6304.56 6314.56 6314.57 0.016341 11.80 682.00 114.27 10.01 East Fork 1952 10 yr 1940.00 6306.17 6310.97 6309.20 6311.51 60.00.04433 641.68 10.92 0.05 0.55 East Fork 1952 500 yr 4120.00 6306.17 6511.61 6311.03 6314.68 0.004466 7.70 1056.17 206.27 0.55 East Fork 1943 10 yr 1940.00 6304.67 6311.61 6314.22 0.001287 3.22 691.33 167.75 0.33 East Fork 1943 100 yr 5300.00 6304.67 6313.60 6302.20 0.002245 6.42 120.83 0.43 East Fork 1943 <td>East Fork</td> <td>1973</td> <td>50 yr</td> <td>4180.00</td> <td>6309.73</td> <td>6312.91</td> <td>6312.91</td> <td>6314.37</td> <td>0.018303</td> <td>9.69</td> <td>431.30</td> <td>148.93</td> <td>1.00</td>	East Fork	1973	50 yr	4180.00	6309.73	6312.91	6312.91	6314.37	0.018303	9.69	431.30	148.93	1.00
East Fork 1973 500 yr 8120.00 6300.73 6314.56 6316.72 0.016341 11.00 688.20 11.427 1.01 East Fork 1982 10 yr 1940.00 6300.17 6309.20 6308.10 6300.60 0.00440 6.13 6611.60 1612.20 0.53 East Fork 1982 100 yr 8330.00 6330.617 6311.61 6311.63 6314.67 0.00440 6.68 77.0 1058.17 206.27 0.55 East Fork 1982 500 yr 8120.00 6304.67 6309.33 6306.40 0.00446 6.88 7.00 1058.17 206.27 0.55 East Fork 1983 500 yr 4120.00 6304.67 6309.33 6303.40 0.001287 3.22 601.30 0.47 0.33 East Fork 1983 500 yr 8120.00 6304.67 6310.26 6312.21 0.00247 5.40 0.83 0.43 East Fork 1924 100 yr 5330.00 <t< td=""><td>East Fork</td><td>1973</td><td>100 yr</td><td>5330.00</td><td>6309.73</td><td>6313.44</td><td>6313.44</td><td>6315.12</td><td>0.017513</td><td>10.42</td><td>511.74</td><td>153.35</td><td>1.00</td></t<>	East Fork	1973	100 yr	5330.00	6309.73	6313.44	6313.44	6315.12	0.017513	10.42	511.74	153.35	1.00
East Fork 1952 0 yr 19400 6306.17 6308.10 6308.60 0.00432 4.64 417.75 147.56 0.46 East Fork 1952 600 yr 5330.00 6306.17 6309.30 6311.56 0.004430 613 691.66 167.05 0.055 East Fork 1952 600 yr 6330.00 6306.17 6311.66 6312.37 0.004456 7.70 1056.17 206.27 0.55 East Fork 1943 10 yr 1400.00 6304.67 6309.33 6306.40 0.001287 3.22 601.83 147.64 0.22 East Fork 1943 600 yr 4180.00 6304.67 6313.26 0.001287 3.22 601.83 147.64 0.22 East Fork 1943 600 yr 4180.00 6304.67 6309.40 0.001287 3.22 601.83 147.64 0.22 East Fork 1943 600 yr 4180.00 6304.67 6313.61 0.002654 6.52 125.18 <t< td=""><td>East Fork</td><td>1973</td><td>500 yr</td><td>8120.00</td><td>6309.73</td><td>6314.56</td><td>6314.56</td><td>6316.72</td><td>0.016341</td><td>11.80</td><td>688.20</td><td>164.27</td><td>1.01</td></t<>	East Fork	1973	500 yr	8120.00	6309.73	6314.56	6314.56	6316.72	0.016341	11.80	688.20	164.27	1.01
East Fork 1952 10 yr 1940.00 6320.617 6309.26 6309.60 0.00432 4.44 417.75 147.56 0.0432 East Fork 1952 100 yr 5330.00 6306.17 6310.37 6309.35 6311.56 0.004480 6.13 681.68 1671.65 0.55 East Fork 1952 500 yr 8120.00 6306.17 6313.16 6311.31 6314.20 0.004486 7.70 1058.17 208.27 0.55 East Fork 1943 10 yr 1940.00 6304.67 6310.63 6307.42 0.001287 3.22 601.83 147.64 0.22 East Fork 1943 100 yr 5330.00 6304.67 6310.26 0.002247 5.40 987.37 167.54 0.33 East Fork 1924 100 yr 1530.00 6304.67 6310.29 0.002245 6.52 155.38 0.43 East Fork 1924 600 yr 4180.00 6304.67 6311.29 0.002146 6.59													
East Fork 1952 60 yr 4180.00 6326.17 6309.35 6311.56 0.00440 6.13 681.68 161.32 0.03446 East Fork 1952 600 yr 6320.00 6308.17 6309.89 631.37 0.004466 6.68 798.49 167.05 0.54 East Fork 1952 600 yr 8120.00 6304.67 6311.67 6309.49 6311.42 0.004456 7.70 1058.17 0.026 East Fork 1943 100 yr 1340.00 6304.67 6311.17 6308.64 6311.42 0.001287 3.22 691.93 147.64 0.02 East Fork 1943 600 yr 8120.00 6304.67 631.17 6308.64 631.22 0.002217 5.40 987.37 167.54 0.32 East Fork 1944 10 yr 1940.00 6304.67 631.94 631.94 60.001389 3.32 683.68 144.69 0.22 East Fork 1924 60 yr 1940.00 6304.67	East Fork	1952	10 yr	1940.00	6306.17	6309.26	6308.10	6309.60	0.004332	4.64	417.75	147.56	0.49
East Fork 1952 100 yr 6330.00 6306.17 6311.68 6308.89 6312.37 0.004469 7.00 1058.17 206.27 East Fork 1943 100 yr 1940.00 6330.47 6331.61 6311.03 6331.48 0.004469 7.70 1058.17 206.27 East Fork 1943 500 yr 4180.00 6330.47 6331.01 6330.04 6311.22 0.001385 4.81 889.52 161.72 0.33 East Fork 1943 500 yr 6120.00 6330.47 6330.80 631.22 0.002217 5.40 897.37 167.74 0.33 East Fork 1924 50 yr 4180.00 6330.47 6310.39 6308.46 6313.27 0.002159 4.47 840.79 155.28 0.33 East Fork 1924 50 yr 4180.00 6330.47 6330.81 6313.85 0.002759 4.47 840.79 155.28 0.33 East Fork 1924 500 yr 4180.00 6330.67 <td>East Fork</td> <td>1952</td> <td>50 yr</td> <td>4180.00</td> <td>6306.17</td> <td>6310.97</td> <td>6309.35</td> <td>6311.56</td> <td>0.004440</td> <td>6.13</td> <td>681.68</td> <td>161.32</td> <td>0.53</td>	East Fork	1952	50 yr	4180.00	6306.17	6310.97	6309.35	6311.56	0.004440	6.13	681.68	161.32	0.53
East Fork 1952 500 yr 8120.00 6306.17 6313.16 6311.03 6314.06 0.004456 7.70 1058.17 206.27 0.55 East Fork 1943 10 yr 1940.00 6304.67 6309.33 6306.73 6309.40 0.001287 3.22 601.93 147.64 0.23 East Fork 1943 500 yr 4180.00 6304.67 6311.77 6308.64 6311.22 0.002217 5.40 987.37 167.54 0.33 East Fork 1943 500 yr 8120.00 6304.67 6313.26 6309.41 6313.27 0.002245 6.52 121.83 216.83 0.44 East Fork 1924 10 yr 1940.00 6304.67 6313.47 0.002416 5.59 953.90 155.28 0.03 155.28 0.038.01 6313.17 0.002416 5.59 953.90 155.28 0.038.01 6313.17 0.002416 5.59 953.90 155.28 0.038.01 6313.14 630.047 6313.14 <td< td=""><td>East Fork</td><td>1952</td><td>100 yr</td><td>5330.00</td><td>6306.17</td><td>6311.68</td><td>6309.89</td><td>6312.37</td><td>0.004469</td><td>6.68</td><td>798.49</td><td>167.05</td><td>0.54</td></td<>	East Fork	1952	100 yr	5330.00	6306.17	6311.68	6309.89	6312.37	0.004469	6.68	798.49	167.05	0.54
East Fork 1943 10 yr 1940.00 6309.47 6309.33 6309.49 0.001287 3.22 601.93 147.64 0.22 East Fork 1943 100 yr 6330.06 6304.67 6311.06 6308.04 6311.22 0.001287 4.81 889.52 111.72 0.33 East Fork 1943 500 yr 8120.00 6304.67 6313.26 6309.81 6313.32 0.002247 5.40 987.37 167.54 0.33 East Fork 1924 10 yr 1940.00 6304.67 6309.29 6306.76 6309.46 0.01388 3.32 583.68 144.69 0.22 East Fork 1924 50 yr 4160.00 6304.67 6313.41 6309.86 6313.17 0.002146 5.59 653.00 163.38 0.44 East Fork 1824 100 yr 1820.00 6301.17 6308.30 6303.41 6309.36 6313.41 6309.49 7.09 584.47 634.40 0.64 East Fork 1823	East Fork	1952	500 yr	8120.00	6306.17	6313.16	6311.03	6314.08	0.004456	7.70	1058.17	206.27	0.56
East Fork 1943 10 yr 1940.00 6304.87 6309.33 6308.73 6309.83 0.001287 3.22 601.93 147.64 0.22 East Fork 1943 500 yr 4180.00 6304.67 6311.02 0.001285 4.81 685.52 161.72 0.33 East Fork 1943 500 yr 8120.00 6304.67 6311.26 6309.81 6313.22 0.002245 6.52 1251.83 216.83 0.44 East Fork 1924 500 yr 4180.00 6304.67 6309.29 6306.76 6309.48 0.002155 4.97 440.79 155.28 0.32 East Fork 1924 100 yr 5330.00 6304.67 6311.99 6308.68 6312.17 0.002155 5.97 293.32 20.113 0.44 East Fork 1823 50 yr 4180.00 6306.17 6310.47 6309.38 6312.27 0.002155 5.37 391.53 142.00 0.55 East Fork 1823 50 yr													
East Fork 1943 50 yr 4 18000 63/8.04 63/1.142 0.00/950 4.81 69/9.52 161.72 0.03 East Fork 1943 600 yr 63/30.00 63/04.67 63/17.71 63/08.61 63/12.23 0.00/217 6.62 125/18.8 216.83 0.43 East Fork 1924 10 yr 1940.00 63/04.67 63/09.91 63/08.76 63/09.84 0.00/2169 4.97 84/0.79 168.28 0.44 East Fork 1924 10 yr 1940.00 63/04.67 63/09.92 63/06.76 63/09.46 0.00/1389 3.32 58/3.68 144.69 0.22 East Fork 1924 100 yr 418/0.00 63/04.67 63/08.46 63/08.46 63/08.46 63/08.47 63/08.47 63/08.46 63/08.47 60/07.47 8/0.02 158.40 0.44 East Fork 1924 100 yr 194/0.00 63/06.17 63/08.93 63/08.14 63/09.38 0.00/0876 5.37 36/15.31 142.09	East Fork	1943	10 yr	1940.00	6304.67	6309.33	6306.73	6309.49	0.001287	3.22	601.93	147.64	0.28
East Fork 1943 100 yr 5330.00 6304.67 6511.77 6308.61 6312.23 0.002217 5.40 397.37 107.34 0.03 East Fork 1943 500 yr 120.00 6304.67 6310.26 6309.81 6313.22 0.002245 6.52 1251.83 218.83 0.42 East Fork 1924 10 yr 1440.00 6304.67 6310.99 6308.10 6311.37 0.002416 5.59 953.30 168.89 0.43 East Fork 1924 100 yr 5330.00 6304.67 6311.49 6308.80 6311.87 0.002416 5.59 953.30 168.89 0.41 East Fork 1924 500 yr 4120.00 6306.17 6310.47 6309.48 6313.80 0.002676 7.71 123.83 201.13 0.46 East Fork 1923 500 yr 4180.00 6306.17 6310.47 6309.49 6313.80 0.006786 7.71 1651.61 0.66 East Fork 1923	East Fork	1943	50 yr	4180.00	6304.67	6311.06	6308.04	6311.42	0.001985	4.81	869.52	161.72	0.37
Last Fork 1924 10 yr 19400 6304.67 6303.21 6313.21 60002 6007<	East Fork	1943	500 yr	8120.00	6304.67	6313.26	6300.01	6313.02	0.002217	5.40	1251.83	216.83	0.39
East Fork 1924 10 yr 1940.00 6304.67 6309.29 6306.76 6309.49 0.001389 3.32 583.68 144.69 0.225 East Fork 1924 100 yr 5330.00 6304.67 6311.99 6308.10 6301.99 6308.17 0.002159 4.97 840.79 155.28 0.38 East Fork 1924 500 yr 8120.00 6304.67 6311.31 6309.48 6313.85 0.002807 6.77 1203.63 201.13 0.45 East Fork 1923 10 yr 1940.00 6306.17 6309.38 6312.04 0.006766 7.71 691.59 159.61 0.65 East Fork 1923 100 yr 5330.00 6306.17 6311.24 6309.38 6312.04 0.006776 8.77 191.59 159.61 0.65 East Fork 1923 500 yr 4180.00 6306.12 6309.34 6311.08 0.006776 8.77 191.54.40 0.66 East Fork 1910 10 yr	Lastroik	1343	500 yi	0120.00	0304.07	0313.20	0303.01	0313.32	0.002343	0.52	1201.00	210.00	0.43
East Fork 1924 50 yr 4180.00 6304.67 6310.99 6308.60 6311.37 0.002155 4.97 840.79 1158.2 0.32 East Fork 1924 100 yr 5330.00 6304.67 6311.69 6308.60 6311.37 0.002155 4.97 1203.63 201.13 0.44 East Fork 1924 500 yr 8120.00 6304.67 6313.14 6309.89 6313.85 0.0022607 6.77 1203.63 201.13 0.45 East Fork 1923 10 yr 1940.00 6306.17 6310.47 6309.39 6311.20 0.006786 7.71 691.59 159.61 0.65 East Fork 1923 100 yr 5330.00 6306.17 6311.42 6309.38 6312.04 0.006786 7.71 691.59 159.61 0.65 East Fork 1923 500 yr 4180.00 6306.12 6308.80 6309.28 0.007754 5.54 350.37 141.45 0.62 East Fork 1910	East Fork	1924	10 yr	1940.00	6304 67	6309.29	6306 76	6309.46	0.001389	3 32	583.68	144 69	0.29
East Fork 1924 100 yr 5330.00 6304.67 6311.69 6308.68 6312.17 0.002416 5.59 953.90 163.89 0.41 East Fork 1924 500 yr 8120.00 6304.67 6313.14 6309.89 6313.85 0.002807 6.77 1203.63 201.13 0.44 East Fork 1923 10 yr 1940.00 6306.17 6308.93 6311.26 0.006695 5.37 361.53 142.09 0.55 East Fork 1923 100 yr 5330.00 6306.17 6310.47 6309.39 6312.40 0.006796 7.71 691.59 155.61 0.66 East Fork 1923 500 yr 8120.00 6306.12 6308.80 6308.99 6309.28 0.007354 5.54 350.37 141.45 0.62 East Fork 1910 10 yr 1940.00 6306.12 6310.32 6307.79 6308.86 6311.33 0.007384 5.54 350.37 141.45 0.62 East Fork	East Fork	1924	50 yr	4180.00	6304.67	6310.99	6308.10	6311.37	0.002159	4.97	840.79	158.28	0.38
East Fork 1924 500 yr 8120.00 6304.67 6313.14 6309.89 6313.85 0.002807 6.77 1203.63 201.13 0.45 East Fork 1923 10 yr 1940.00 6306.17 6309.39 6311.25 0.006666 5.37 361.53 142.09 0.55 East Fork 1923 50 yr 4180.00 6306.17 6310.47 6309.39 6311.25 0.006794 7.09 589.47 154.40 0.64 East Fork 1923 500 yr 8300.00 6306.17 6311.42 6310.89 0.006776 8.87 914.96 170.45 0.66 East Fork 1910 10 yr 1940.00 6306.12 6308.80 6309.28 0.007354 5.54 350.37 141.45 0.62 East Fork 1910 10 yr 1940.00 6306.12 6310.32 6307.39 0.007331 7.27 574.99 153.63 0.067 East Fork 1910 500 yr 8120.00 6305.82	East Fork	1924	100 yr	5330.00	6304.67	6311.69	6308.68	6312.17	0.002416	5.59	953.90	163.89	0.41
Last Fork 1923 10 yr 1940.00 6306.17 6308.93 6309.38 0.006665 5.37 361.53 142.09 0.55 East Fork 1923 100 yr 5330.00 6306.17 6310.47 6309.39 6311.25 0.006796 7.09 589.47 154.40 0.64 East Fork 1923 100 yr 5330.00 6306.17 6311.42 6309.39 6312.04 0.006776 7.71 691.59 159.61 0.65 East Fork 1923 500 yr 8120.00 6306.12 6310.80 6314.99 0.006776 8.87 914.96 170.45 0.66 East Fork 1910 10 yr 1940.00 6306.12 6310.32 6309.34 6311.14 0.007354 5.54 350.37 141.45 0.62 East Fork 1910 100 yr 5330.00 6306.12 6310.32 6331.90 0.007785 7.89 675.60 158.79 0.67 East Fork 1910 500 yr 8120.00	East Fork	1924	500 yr	8120.00	6304.67	6313.14	6309.89	6313.85	0.002807	6.77	1203.63	201.13	0.45
East Fork 1923 10 yr 1940.00 6306.17 6308.83 6308.14 6309.38 0.006665 5.37 361.53 142.09 0.55 East Fork 1923 50 yr 4180.00 6306.17 6310.47 6309.39 6311.25 0.006794 7.09 589.47 154.40 0.64 East Fork 1923 500 yr 8120.00 6306.17 6311.24 6311.08 6312.04 0.006776 8.87 914.96 170.45 0.66 East Fork 1910 10 yr 1940.00 6306.12 6310.32 6309.38 6311.41 0.007354 554 350.37 141.45 0.66 East Fork 1910 100 yr 5330.00 6306.12 6310.32 6309.38 6311.33 0.007285 7.89 675.60 158.79 0.67 East Fork 1910 500 yr 4180.00 6305.82 6308.30 6307.79 6308.86 0.003648 6.03 321.73 139.83 0.77 East Fork													
East Fork 1923 50 yr 4180.00 6306.17 6310.47 6309.39 6311.25 0.006794 7.09 589.47 154.40 0.64 East Fork 1923 500 yr 8120.00 6306.17 6311.42 6309.33 6312.04 0.006776 7.71 691.59 159.61 0.66 East Fork 1910 10 yr 1940.00 6306.12 6308.80 6309.28 0.007354 5.54 350.37 141.45 0.62 East Fork 1910 100 yr 4180.00 6306.12 6310.32 6309.34 6311.14 0.007354 5.54 350.37 141.45 0.62 East Fork 1910 100 yr 533.00 6306.12 6310.32 6313.35 0.007354 7.59 675.60 158.79 0.67 East Fork 1910 500 yr 8120.00 6306.82 6309.30 6317.74 0.003674 7.68 543.97 152.01 0.72 East Fork 1835 100 yr 5330.00	East Fork	1923	10 yr	1940.00	6306.17	6308.93	6308.14	6309.38	0.006665	5.37	361.53	142.09	0.59
East Fork 1923 100 yr 5330.00 6306.17 6311.12 6399.33 6312.04 0.006786 7.71 691.59 155.61 0.06 East Fork 1923 500 yr 8120.00 6306.17 6311.24 6311.08 6313.69 0.006776 8.87 914.96 170.45 0.68 East Fork 1910 10 yr 1940.00 6306.12 6309.34 6311.41 0.007354 5.54 350.37 141.45 0.62 East Fork 1910 50 yr 4180.00 6306.12 6310.32 6309.34 6311.43 0.007354 5.54 350.37 141.45 0.62 East Fork 1910 500 yr 8120.00 6306.12 6312.32 6311.33 0.007285 7.89 675.60 158.79 0.67 East Fork 1835 10 yr 1940.00 6305.82 6309.82 6308.86 0.003848 6.03 321.73 139.83 0.77 East Fork 1835 100 yr 5330.00	East Fork	1923	50 yr	4180.00	6306.17	6310.47	6309.39	6311.25	0.006794	7.09	589.47	154.40	0.64
East Fork 1923 500 yr 8120.00 6306.17 6312.47 6311.08 6313.69 0.006776 8.87 914.96 170.45 0.68 East Fork 1910 10 yr 1940.00 6306.12 6308.80 6308.09 6309.28 0.007354 5.54 350.37 141.45 0.66 East Fork 1910 100 yr 5330.00 6306.12 6310.32 6309.34 6311.14 0.007354 7.59 675.60 158.79 0.67 East Fork 1910 100 yr 8120.00 6306.12 6311.97 6309.88 6311.93 0.007285 7.89 675.60 158.79 0.67 East Fork 1910 500 yr 8120.00 6305.82 6308.30 6307.79 6308.86 0.003848 6.03 321.73 139.83 0.70 East Fork 1835 100 yr 1940.00 6305.82 6309.82 6301.74 0.003654 8.29 642.83 157.12 0.72 East Fork 1835	East Fork	1923	100 yr	5330.00	6306.17	6311.12	6309.93	6312.04	0.006786	7.71	691.59	159.61	0.65
East Fork 1910 10 yr 1940.00 6308.80 6308.80 6309.28 0.007354 5.54 350.37 141.45 0.62 East Fork 1910 50 yr 4180.00 6306.12 6310.32 6309.34 6311.14 0.007354 5.54 350.37 141.45 0.62 East Fork 1910 100 yr 5330.00 6306.12 6310.97 6309.88 6311.93 0.007285 7.89 675.60 158.79 0.67 East Fork 1910 500 yr 8120.00 6306.12 6312.32 6311.03 6313.59 0.007190 9.05 896.94 169.58 0.68 East Fork 1835 10 yr 1940.00 6305.82 6309.82 6309.44 6310.74 0.003674 7.68 543.97 152.01 0.72 East Fork 1835 100 yr 6330.00 6305.82 6311.79 6310.73 6313.18 0.003644 8.29 642.83 157.12 0.72 East Fork 1835	East Fork	1923	500 yr	8120.00	6306.17	6312.47	6311.08	6313.69	0.006776	8.87	914.96	170.45	0.68
East Fork 1910 10 yr 1440.00 6306.12 6308.09 6308.28 0.007354 5.54 350.37 141.45 0.02 East Fork 1910 100 yr 5330.00 6306.12 6310.32 6309.34 6311.41 0.007331 7.27 574.99 153.63 0.66 East Fork 1910 100 yr 5330.00 6306.12 6310.37 6311.93 0.007384 50.97 7.89 675.60 158.79 0.67 East Fork 1910 500 yr 8120.00 6306.12 6312.32 6311.03 6313.59 0.007190 9.05 896.94 169.58 0.68 East Fork 1835 10 yr 1940.00 6306.82 6309.82 6309.79 6308.86 0.003848 6.03 321.73 139.83 0.70 East Fork 1835 50 yr 4180.00 6305.82 6310.46 6309.58 6311.53 0.003654 8.29 642.83 157.12 0.72 East Fork 1835 500 yr 4180.00 6305.82 6310.73 6318.78 0.003664 8.29 </td <td></td> <td>1010</td> <td>10</td> <td>1010.00</td> <td></td> <td></td> <td></td> <td></td> <td>0.007054</td> <td></td> <td>050.07</td> <td></td> <td></td>		1010	10	1010.00					0.007054		050.07		
East Fork 1910 50 yr 4180.00 6306.12 6310.37 6310.43 6311.14 0.007331 7.27 574.39 153.63 0.06 East Fork 1910 500 yr 6320.00 6306.12 6310.97 6309.88 6311.93 0.007285 7.89 675.60 158.79 0.67 East Fork 1910 500 yr 8120.00 6305.82 6310.97 6309.88 6311.93 0.007285 7.89 675.60 158.79 0.67 East Fork 1835 10 yr 1940.00 6305.82 6309.82 6309.79 6308.86 0.003848 6.03 321.73 139.83 0.77 East Fork 1835 100 yr 5330.00 6305.82 6310.46 6309.58 6311.73 0.003674 7.68 543.97 152.01 0.72 East Fork 1835 500 yr 4180.00 6305.82 6311.79 6310.73 6313.18 0.003674 5.48 354.14 141.73 0.61 East Fork	East Fork	1910	10 yr	1940.00	6306.12	6308.80	6308.09	6309.28	0.007354	5.54	350.37	141.45	0.62
East Fork 1910 100 yr 533.00.0 6306.12 6310.37 6309.36 6311.33 0.007255 7.89 673.60 135.79 0.07 East Fork 1910 500 yr 8120.00 6306.12 6312.32 6311.03 6313.59 0.007190 9.05 896.94 169.58 0.66 East Fork 1835 10 yr 1940.00 6305.82 6309.32 6309.04 6310.74 0.003674 7.68 543.97 152.01 0.77 East Fork 1835 100 yr 5330.00 6305.82 6309.04 6310.74 0.003674 7.68 543.97 152.01 0.72 East Fork 1835 500 yr 4180.00 6305.82 6310.73 6313.78 0.003654 8.29 642.83 157.12 0.72 East Fork 1835 500 yr 4180.00 6304.91 6307.79 6308.08 0.002874 5.48 354.14 141.73 0.61 East Fork 1609 10 yr 1940.00	East Fork	1910	50 yr	4180.00	6306.12	6310.32	6309.34	6311.14	0.007331	7.27	574.99	153.63	0.66
Last fork 101 302 00 yr 3020 0 000 r/2 3020 0 000 r/2 3010 0 000 r/2 3010 0 000 r/2 3010 0 000 r/2 3010 0 0 000 r/2 3010 0 0 000 r/2 3010 0 0 0 000 r/2 3010 0 0 0 0 0 0 0 000 r/2 3010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	East Fork	1910	500 yr	8120.00	6306.12	6312.32	6311.03	6313.50	0.007265	7.09	896.94	156.79	0.67
East Fork 1835 10 yr 1940.00 6305.82 6308.30 6307.79 6308.86 0.003848 6.03 321.73 139.83 0.77 East Fork 1835 50 yr 4180.00 6305.82 6309.82 6309.04 6310.74 0.003674 7.68 543.97 152.01 0.72 East Fork 1835 100 yr 5330.00 6305.82 6310.46 6309.58 6311.53 0.003654 8.29 642.83 157.12 0.72 East Fork 1835 500 yr 8120.00 6305.82 6310.74 6310.73 6313.8 0.003644 9.44 859.87 167.80 0.72 East Fork 1609 10 yr 1940.00 6307.62 6306.87 6308.08 0.002874 5.48 354.14 141.73 0.61 East Fork 1609 10 yr 1940.00 6304.91 6309.77 6308.68 6310.73 0.003060 7.22 578.98 153.93 0.66 East Fork 1609	Lastroik	1310	1500 yi	0120.00	0300.12	0312.32	0311.03	0313.39	0.007130	3.05	030.34	103.50	0.03
East Fork 1835 50 yr 4180.00 6305.82 6309.82 6309.04 6310.74 0.003674 7.68 543.97 152.01 0.72 East Fork 1835 100 yr 5330.00 6305.82 6310.46 6309.58 6311.53 0.003654 8.29 642.83 157.12 0.72 East Fork 1835 500 yr 8120.00 6305.82 6311.79 6310.73 6313.18 0.003654 8.29 642.83 157.12 0.72 East Fork 1835 500 yr 8120.00 6305.82 6311.79 6310.73 6313.18 0.003649 9.44 859.87 167.80 0.74 East Fork 1609 10 yr 1940.00 6304.91 6309.14 6308.13 6309.95 0.003060 7.22 578.98 153.93 0.66 East Fork 1609 100 yr 5330.00 6304.91 6309.77 6308.68 6310.73 0.003135 7.86 677.77 158.99 0.67 East Fork	East Fork	1835	10 vr	1940.00	6305.82	6308.30	6307.79	6308.86	0.003848	6.03	321.73	139.83	0.70
East Fork 1835 100 yr 5330.00 6305.82 6310.46 6309.58 6311.53 0.003654 8.29 642.83 157.12 0.72 East Fork 1835 500 yr 8120.00 6305.82 6311.79 6310.73 6313.18 0.003654 8.29 642.83 157.12 0.72 East Fork 1835 500 yr 8120.00 6305.82 6311.79 6310.73 6313.18 0.003649 9.44 859.87 167.80 0.74 East Fork 1609 10 yr 1940.00 6304.91 6309.14 6308.13 6309.95 0.002874 5.48 354.14 141.73 0.61 East Fork 1609 50 yr 4180.00 6304.91 6309.77 6308.68 6310.73 0.003135 7.86 677.77 158.99 0.67 East Fork 1609 50 yr 8120.00 6304.91 6306.23 6307.41 0.007459 5.52 351.55 144.22 0.62 East Fork 1455	East Fork	1835	50 yr	4180.00	6305.82	6309.82	6309.04	6310.74	0.003674	7.68	543.97	152.01	0.72
East Fork 1835 500 yr 8120.00 6305.82 6311.79 6310.73 6313.18 0.003649 9.44 859.87 167.80 0.74 East Fork 1609 10 yr 1940.00 6304.91 6307.62 6306.87 6308.08 0.002874 5.48 354.14 141.73 0.61 East Fork 1609 50 yr 4180.00 6304.91 6309.14 6308.13 6309.95 0.003060 7.22 578.98 153.93 0.66 East Fork 1609 100 yr 5330.00 6304.91 6309.77 6308.68 6310.73 0.003135 7.86 677.77 158.99 0.67 East Fork 1609 500 yr 8120.00 6304.91 6311.10 6309.82 6312.37 0.00323 9.06 897.12 183.30 0.68 East Fork 1455 10yr 1940.00 6306.94 6306.23 6307.41 0.007493 5.52 351.55 144.22 0.62 East Fork 1455	East Fork	1835	100 yr	5330.00	6305.82	6310.46	6309.58	6311.53	0.003654	8.29	642.83	157.12	0.72
East Fork 1609 10 yr 1940.00 6304.91 6307.62 6308.68 0.002874 5.48 354.14 141.73 0.61 East Fork 1609 50 yr 4180.00 6304.91 6309.14 6308.13 6309.95 0.003860 7.22 578.98 153.93 0.66 East Fork 1609 100 yr 5330.00 6304.91 6309.77 6308.68 6310.73 0.003135 7.86 677.77 158.99 0.67 East Fork 1609 500 yr 8120.00 6304.91 6309.82 6312.37 0.003223 9.06 897.12 183.30 0.66 East Fork 1455 10 yr 1940.00 6304.30 6306.94 6306.23 6307.41 0.007459 5.52 351.55 144.22 0.62 East Fork 1455 50 yr 4180.00 6304.30 6308.43 6307.47 6309.25 0.007493 7.26 575.41 156.51 0.67 East Fork 1455 100 yr	East Fork	1835	500 yr	8120.00	6305.82	6311.79	6310.73	6313.18	0.003649	9.44	859.87	167.80	0.74
East Fork 1609 10 yr 1940.00 6304.91 6307.62 6306.87 6308.08 0.002874 5.48 354.14 141.73 0.61 East Fork 1609 50 yr 4180.00 6304.91 6309.14 6308.13 6309.95 0.003060 7.22 578.98 153.93 0.66 East Fork 1609 100 yr 5330.00 6304.91 6309.77 6308.68 6310.73 0.003135 7.86 677.77 158.99 0.67 East Fork 1609 500 yr 8120.00 6304.91 6309.77 6308.68 6310.73 0.003135 7.86 677.77 158.99 0.67 East Fork 1609 500 yr 8120.00 6304.91 6309.27 0.003223 9.06 897.12 183.30 0.66 East Fork 1455 10 yr 1940.00 6306.94 6306.23 6307.41 0.007459 5.52 351.55 144.22 0.62 East Fork 1455 50 yr 4180.00													
East Fork 1609 50 yr 4180.00 6304.91 6309.14 6308.13 6309.95 0.003060 7.22 578.98 153.93 0.66 East Fork 1609 100 yr 5330.00 6304.91 6309.77 6308.88 6310.73 0.003135 7.86 677.77 158.99 0.67 East Fork 1609 500 yr 8120.00 6304.91 6309.77 6308.88 6310.73 0.003135 7.86 677.77 158.99 0.67 East Fork 1609 500 yr 8120.00 6304.91 6309.77 6308.88 6310.73 0.003135 7.86 677.77 158.99 0.67 East Fork 1455 10 yr 1940.00 6304.30 6306.94 6306.23 6307.41 0.007459 5.52 351.55 144.22 0.62 East Fork 1455 50 yr 4180.00 6304.30 6309.04 6308.01 6310.01 0.007453 7.91 673.43 161.60 0.68 East Fork	East Fork	1609	10 yr	1940.00	6304.91	6307.62	6306.87	6308.08	0.002874	5.48	354.14	141.73	0.61
East Fork 1609 100 yr 5330.00 6304.91 6309.77 6308.68 6310.73 0.003135 7.86 677.77 158.99 0.67 East Fork 1609 500 yr 8120.00 6304.91 6311.10 6309.82 6312.37 0.003135 7.86 677.77 158.99 0.67 East Fork 1455 10 yr 1940.00 6304.91 6306.94 6306.23 6307.41 0.007459 5.52 351.55 144.22 0.62 East Fork 1455 50 yr 4180.00 6304.30 6308.43 6307.47 6309.25 0.007493 7.26 575.41 156.51 0.67 East Fork 1455 100 yr 5330.00 6304.30 6309.04 6308.01 6310.01 0.007533 7.91 673.43 161.60 0.68 East Fork 1455 500 yr 8120.00 6304.30 6309.16 6310.01 0.007533 7.91 673.43 161.60 0.68 East Fork 1455	East Fork	1609	50 yr	4180.00	6304.91	6309.14	6308.13	6309.95	0.003060	7.22	578.98	153.93	0.66
East Fork 1609 500 yr 8120.00 6304.91 6311.10 6309.82 6312.37 0.003223 9.06 897.12 183.30 0.66 East Fork 1455 10 yr 1940.00 6304.30 6306.94 6306.23 6307.41 0.007493 5.2 351.55 144.22 0.66 East Fork 1455 50 yr 4180.00 6304.30 6308.43 6307.47 6309.25 0.007493 7.26 575.41 156.51 0.66 East Fork 1455 100 yr 5330.00 6304.30 6309.04 6310.01 0.007533 7.91 673.43 161.60 0.66 East Fork 1455 500 yr 8120.00 6304.30 6310.40 6309.15 6311.66 0.007162 8.99 914.58 228.27 0.66	East Fork	1609	100 yr	5330.00	6304.91	6309.77	6308.68	6310.73	0.003135	7.86	677.77	158.99	0.67
Last Fork 1455 10 yr 1940.00 6304.30 6306.94 6306.23 6307.41 0.007459 5.52 351.55 144.22 0.62 East Fork 1455 50 yr 4180.00 6304.30 6308.43 6307.47 6309.25 0.007493 7.26 575.41 156.51 0.67 East Fork 1455 100 yr 5330.00 6304.30 6309.04 6308.01 6310.01 0.007533 7.91 673.43 161.60 0.68 East Fork 1455 500 yr 8120.00 6304.30 6310.40 6309.15 6311.66 0.007162 8.99 914.58 228.27 0.68	East Fork	1609	500 yr	8120.00	6304.91	6311.10	6309.82	6312.37	0.003223	9.06	897.12	183.30	0.69
Least Fork 1455 10 yr 1940.00 6304.30 6306.94 6306.23 6307.41 0.007459 5.52 351.55 144.22 0.62 East Fork 1455 50 yr 4180.00 6304.30 6308.43 6307.47 6309.25 0.007493 7.26 575.41 156.51 0.67 East Fork 1455 100 yr 530.00 6304.30 6309.04 6308.01 6310.01 0.007533 7.91 673.43 161.60 0.68 East Fork 1455 500 yr 8120.00 6304.30 6310.40 6309.15 6311.66 0.007162 8.99 914.58 228.27 0.68		1.155	10										
Least Fork 1455 100 yr 5330.00 6304.30 6309.04 6308.01 6310.01 0.007433 7.26 575.41 155.51 0.67 East Fork 1455 100 yr 5330.00 6304.30 6309.04 6308.01 6310.01 0.007533 7.91 673.43 161.60 0.68 East Fork 1455 500 yr 8120.00 6304.30 6310.40 6309.15 6311.66 0.007162 8.99 914.58 228.27 0.69	East Fork	1455	10 yr	1940.00	6304.30	6306.94	6306.23	6307.41	0.007459	5.52	351.55	144.22	0.62
Last Fork 1455 500 yr 8120.00 6304.30 6310.40 6309.15 6311.66 0.007162 8.99 914.58 228.27 0.68	East Fork	1455	100 yr	4180.00	6304.30	6308.43	6307.47	6309.25	0.007522	7.26	5/5.41	156.51	0.67
	East Fork	1455	500 yr	8120.00	6304.30	6310 40	6300.01	6311 66	0.007533	7.91 8.00	013.43	101.60	0.68
	Last FUIK	1400	1300 yi	0120.00	0304.30	0310.40	0309.15	0311.00	0.007162	0.99	914.08	220.27	0.69

HEC-RAS Pla	an: Proposed	River: Sand Cre	ek Reach: Ea	st Fork (Continu	ued)							
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
East Fork	1445	10 yr	1940.00	6304.26	6306.81	6306.19	6307.32	0.008325	5.71	339.56	143.59	0.65
East Fork	1445	50 yr	4180.00	6304.26	6308.30	6307.43	6309.16	0.008029	7.43	562.75	155.94	0.69
East Fork	1445	100 vr	5330.00	6304.26	6308.92	6307.97	6309.93	0.008001	8.07	660.42	161.05	0.70
East Fork	1445	500 yr	8120.00	6304.26	6310.29	6309.10	6311.58	0.007418	9.12	901.10	235.71	0.70
Fast Fork	1435	10 yr	1940.00	6304 22	6306 15	6306 15	6307.07	0.021555	7 72	251 43	138 42	1.01
East Fork	1435	50 yr	4180.00	6304 22	6307.39	6307.39	6308.86	0.018407	9.71	430.34	148 74	1.01
East Fork	1435	100 yr	5330.00	6304.22	6307.93	6307.93	6309.62	0.017525	10.42	511.43	153 19	1.01
East Fork	1435	500 yr	8120.00	6204.22	6300.06	6300.06	6211.21	0.016102	11.72	690.02	163.19	1.01
Edst FUIK	1435	500 yi	8120.00	0304.22	0309.00	0309.00	0311.21	0.010192	11.77	009.92	103.00	1.01
Foot Fork	1404	10.10	1040.00	6204.02	6204.02	6202.76	6205.26	0.004222	4.64	44.0.20	140.00	0.40
East Fork	1421	TO yr	1940.00	6301.63	6304.92	6303.76	6305.20	0.004333	4.04	410.39	146.20	0.49
East Fork	1421	50 yi	4160.00	6301.63	6306.63	6305.01	6307.21	0.004446	0.12	707.07	102.39	0.53
East Fork	1421	100 yr	5330.00	6301.83	6307.32	6305.54	6308.01	0.004518	6.68	797.87	168.18	0.54
East Fork	1421	500 yr	8120.00	6301.83	6308.75	6306.68	6309.69	0.004602	7.75	1048.00	186.19	0.56
East Fork	1412	10 yr	1940.00	6300.33	6304.99	6302.40	6305.15	0.001294	3.22	602.72	148.79	0.28
East Fork	1412	50 yr	4180.00	6300.33	6306.71	6303.72	6307.07	0.001991	4.80	871.74	163.19	0.37
East Fork	1412	100 yr	5330.00	6300.33	6307.41	6304.28	6307.87	0.002237	5.39	988.05	169.04	0.39
East Fork	1412	500 yr	8120.00	6300.33	6308.86	6305.48	6309.52	0.002625	6.54	1242.82	195.93	0.44
East Fork	1393	10 yr	1940.00	6300.33	6304.95	6302.42	6305.12	0.001388	3.32	584.54	145.15	0.29
East Fork	1393	50 yr	4180.00	6300.33	6306.64	6303.76	6307.02	0.002161	4.97	841.51	158.80	0.38
East Fork	1393	100 yr	5330.00	6300.33	6307.33	6304.34	6307.81	0.002441	5.60	951.95	164.32	0.41
East Fork	1393	500 yr	8120.00	6300.33	6308.73	6305.55	6309.45	0.002915	6.82	1191.57	183.06	0.46
East Fork	1392	10 yr	1940.00	6301.83	6304.59	6303.79	6305.04	0.006645	5.36	362.06	142.30	0.59
East Fork	1392	50 yr	4180.00	6301.83	6306.12	6305.05	6306.90	0.006843	7.10	588.50	154.60	0.64
East Fork	1392	100 yr	5330.00	6301.83	6306.73	6305.59	6307.67	0.006983	7.77	685.61	159.58	0.66
East Fork	1392	500 yr	8120.00	6301.83	6308.00	6306.74	6309.28	0.007273	9.08	894.28	169.80	0.70
East Fork	1379	10 yr	1940.00	6301.80	6304.44	6303.76	6304.93	0.007737	5.62	345.18	141.59	0.63
East Fork	1379	50 vr	4180.00	6301.80	6305.95	6305.03	6306.79	0.007664	7.36	567.74	153.91	0.68
East Fork	1379	100 yr	5330.00	6301.80	6306.55	6305.56	6307.56	0.007789	8.05	662.19	158.85	0.69
East Fork	1379	500 yr	8120.00	6301.80	6307 78	6306 71	6309.15	0.008082	9.39	864 58	168.94	0.73
Luot i on	1010	000 j.	0120.00	0001100	0001.10	0000.11	0000.10	0.000002	0.00	001.00	100.01	00
Fast Fork	1325	10 yr	1940.00	6301.63	6303 64	6303 53	6304 44	0.006933	7 19	269.84	142 64	0.92
East Fork	1325	50 yr	4180.00	6301.63	6304 75	6304 75	6306.20	0.0005330	9.64	433.51	151.65	1.01
East Fork	1325	100 yr	5330.00	6301.63	6305.27	6305.27	6306.20	0.007352	10.38	513 55	155.88	1.01
East Fork	1325	500 yr	9120.00	6201.63	6206.40	6206.40	6209 52	0.007332	11.50	604.02	165.00	1.01
Lastroik	1323	500 yi	0120.00	0301.03	0300.40	0300.40	0300.32	0.000372	11.00	034.33	103.00	1.00
Foot Fork	1005	10.1/2	1040.00	6201.24	6202.15	6202.04	6202.76	0.005726	6.22	211.00	190.24	0.02
East Fork	1225	10 yr	1940.00	6301.34	6303.15	6302.94	6303.76	0.005726	0.22	311.90	160.24	0.83
East Fork	1225	50 yr	4180.00	6301.34	6303.99	6303.99	6305.24	0.007609	8.97	466.06	187.93	1.00
East Fork	1225	100 yr	5330.00	6301.34	6304.45	6304.45	6305.89	0.007360	9.65	552.17	192.16	1.00
East Fork	1225	500 yr	8120.00	6301.34	6305.41	6305.41	6307.27	0.006995	10.94	742.46	201.32	1.00
East Fork	1025	10 yr	1940.00	6300.45	6301.78	6301.78	6302.29	0.009390	5.71	339.84	340.55	1.01
East Fork	1025	50 yr	4180.00	6300.45	6302.46	6302.46	6303.28	0.008056	7.27	574.82	355.38	1.01
East Fork	1025	100 yr	5330.00	6300.45	6302.75	6302.75	6303.70	0.007725	7.85	678.82	361.75	1.01
East Fork	1025	500 yr	8120.00	6300.45	6303.40	6303.40	6304.60	0.007073	8.80	922.65	386.42	1.00
East Fork	416	10 yr	1940.00	6288.90	6291.89	6290.55	6291.98	0.000608	2.41	803.56	379.37	0.29
East Fork	416	50 yr	4180.00	6288.90	6292.94	6291.28	6293.13	0.000741	3.46	1216.45	406.98	0.34
East Fork	416	100 yr	5330.00	6288.90	6293.41	6291.57	6293.64	0.000755	3.82	1410.69	419.23	0.36
East Fork	416	500 yr	8120.00	6288.90	6294.19	6292.19	6294.54	0.000905	4.75	1745.52	439.53	0.40

Reach	River Sta	Profile	Top Wdth Act	Area	Vel Total	W.S. Elev	Base WS	Prof Delta WS
			(ft)	(sq ft)	(ft/s)	(ft)	(ft)	(ft)
East Fork	2529	100 yr	171.26	536.56	9.93	6319.00	6319.00	
East Fork	2529	Floodway	148.00	508.29	10.49	6319.06	6319.00	0.06
East Fork	2509	100 yr	168.24	1207.04	4.42	6318.24	6318.24	
East Fork	2509	Floodway	168.24	1207.29	4.41	6318.24	6318.24	0.00
East Fork	2394	100 yr	161.19	568.07	9.38	6316.89	6316.89	
East Fork	2394	Floodway	161.21	570.19	9.35	6316.90	6316.89	0.01
East Fork	2203	100 yr	149.92	534.57	9.97	6315.20	6315.20	
East Fork	2203	Floodway	149.83	532.22	10.01	6315.18	6315.20	-0.02
East Fork	2077	100 yr	153.31	731.09	7.29	6315.10	6315.10	
East Fork	2077	Floodway	153.30	731.24	7.29	6315.10	6315.10	0.00
East Fork	1993	100 yr	165.50	840.34	6.34	6314.98	6314.98	
East Fork	1993	Floodway	165.50	840.51	6.34	6314.98	6314.98	0.00
	4000	400	101.00	050.04	0.10		004444	
East Fork	1983	100 yr	161.02	656.31	8.12	6314.41	6314.41	
East Fork	1983	Floodway	161.02	656.39	8.12	6314.41	6314.41	0.00
Feet Feels	4070	100	450.05	F44 74	10.40	C242.44	6242.44	
East Fork	1973	Tuu yr	153.35	511.74	10.42	6313.44	6313.44	0.00
East FOIK	1973	Floodway	155.55	511.30	10.42	0313.44	0313.44	0.00
East Fork	1052	100 yr	167.05	708.40	6 68	6311.68	6311.68	
East Fork	1952	Floodway	167.05	790.49	6.68	6311.68	6311.68	0.00
Lastion	1952	Tibbuway	107.05	7 90.49	0.00	0311.00	0311.00	0.00
East Fork	1943	100 vr	167.54	987.37	5.40	6311.77	6311.77	
East Fork	1943	Floodway	167.55	987.53	5.40	6311.78	6311.77	0.00
East Fork	1924	100 yr	163.89	953.90	5.59	6311.69	6311.69	
East Fork	1924	Floodway	163.90	954.14	5.59	6311.69	6311.69	0.00
East Fork	1923	100 yr	159.61	691.59	7.71	6311.12	6311.12	
East Fork	1923	Floodway	159.60	691.36	7.71	6311.12	6311.12	0.00
East Fork	1910	100 yr	158.79	675.60	7.89	6310.97	6310.97	
East Fork	1910	Floodway	158.78	675.52	7.89	6310.97	6310.97	0.00
East Fork	1835	100 yr	157.12	642.83	8.29	6310.46	6310.46	
East Fork	1835	Floodway	157.12	642.76	8.29	6310.46	6310.46	0.00
East Fork	1609	100 yr	158.99	677.77	7.86	6309.77	6309.77	
East Fork	1609	Floodway	159.00	677.84	7.86	6309.77	6309.77	0.00
East Fork	1455	100 yr	161.60	673.43	7.91	6309.04	6309.04	
East Fork	1455	Floodway	161.62	673.66	7.91	6309.04	6309.04	0.00
East Fork	1445	100 yr	161.05	660.42	8.07	6308.92	6308.92	
East Fork	1445	Floodway	161.07	660.73	8.07	6308.92	6308.92	0.00
F	4.405	100		 ,		000-0-	0007-0-	
East Fork	1435	100 yr	153.19	511.43	10.42	6307.93	6307.93	
East Fork	1435	Floodway	153.17	511.05	10.43	6307.93	6307.93	0.00
Foot Fork	1421	100 \r	160.40	707 07	6.00	6207.00	6207.20	
East Fork	1421	Floodwou	100.18	191.81	80.0	6307.32	6207.02	0.00
East FORK	1421	Floodway	168.16	/9/.55	6.68	0307.32	0307.32	0.00

HEC-RAS P	Plan: Proposed Fldwy	River: Sand Creek	Reach: East Fork
-----------	----------------------	-------------------	------------------

		. ,			,			
Reach	River Sta	Profile	Top Wdth Act	Area	Vel Total	W.S. Elev	Base WS	Prof Delta WS
			(ft)	(sq ft)	(ft/s)	(ft)	(ft)	(ft)
East Fork	1412	100 yr	169.04	988.05	5.39	6307.41	6307.41	
East Fork	1412	Floodway	169.03	987.89	5.40	6307.41	6307.41	0.00
East Fork	1393	100 yr	164.32	951.95	5.60	6307.33	6307.33	
East Fork	1393	Floodway	164.31	951.87	5.60	6307.32	6307.33	0.00
East Fork	1392	100 vr	159.57	685 45	7.78	6306.73	6306 73	
East Fork	1392	Floodway	159.57	685.37	7.78	6306.73	6306.73	0.00
East Fork	1379	100 yr	158.84	662 11	8.05	6306 55	6306 55	
East Fork	1379	Floodway	158.83	661.96	8.05	6306.55	6306.55	0.00
East Fork	1325	100 yr	155.88	513.62	10.38	6305.27	6305.27	
East Fork	1325	Floodway	155.88	513.77	10.37	6305.28	6305.27	0.00
East Fork	1225	100 yr	192.17	552.26	9.65	6304.45	6304.45	
East Fork	1225	Floodway	192.13	551.51	9.66	6304.44	6304.45	0.00
East Fork	1025	100 yr	361.72	678.29	7.86	6302.74	6302.74	
East Fork	1025	Floodway	361.72	680.59	7.83	6302.75	6302.74	0.01
East Fork	416	100 vr	419.23	1410.69	3.78	6293.41	6293.41	
East Fork	416	Floodway	388.48	1601.00	3.33	6293.96	6293.41	0.55

HEC-RAS Plan: Proposed Fldwy River: Sand Creek Reach: East Fork (Continued)

APPENDIX E Exhibit A: Drainage Plan – Existing Conditions Exhibit B: Drainage Plan – Proposed Conditions

Markup Summary

dsdparsons (1) Subject: Callout See prelim/final plat drainage report since they are Page Label: 1 combined Lock: Unlocked Status: Checkmark: Unchecked Author: dsdparsons Date: 6/5/2017 12:40:39 PM Color: merichsen (4) Subject: Polygon Page Label: 20 Lock: Unlocked Status: Checkmark: Unchecked Author: merichsen Date: 4/18/2017 9:44:39 AM Color: Subject: Text Box SITE Page Label: 20 Е Lock: Unlocked Status: Checkmark: Unchecked Author: merichsen Date: 4/18/2017 9:45:24 AM Color: Subject: Rectangle A 10 MAR AND DO IN THE Page Label: 24 Lock: Unlocked Status: Checkmark: Unchecked Author: merichsen Date: 3/28/2017 10:13:21 AM Color: Subject: Text Box Channel Improvements: \$268/lf Page Label: 24 Grade Control: \$155/lf Lock: Unlocked Channel Improvements: \$268/lf Grade Control: \$155/lf Status: Checkmark: Unchecked Author: merichsen Date: 3/28/2017 10:21:58 AM Color: