

Solace Apartments Filing No 2 El Paso, County

Prepared for:

CS POWERS & GALLEY, LLC
Dane Olmstead
510 S Neil Street
Champaign, IL 61820
(734) 216-2577
dolmstead@jacksondearborn.com

Prepared by:

KIMLEY-HORN AND ASSOCIATES, INC. Eric Gunderson, P.E. 2 N Nevada Ave Suite 900 Colorado Springs, Colorado 80903 (719) 453-0182

PCD File No: SF2232 & PPR2252

Project #: 19614002

Prepared: February 2023 Recorded: July 2023

CERTIFICATION

Conditions:

DESIGN ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparation of this report.

		49487 7 49487 7 507/10/23		
SIGNATURE (Affix Seal): Colorado P.I	E. No. 49487	ONAL	Date	_
			2 3.13	
OWNER/DEVELOPER'S STATEM				
I, the developer, have read and will Drainage Report and Plan.	I comply with	all of the	requirements specified	l in this
<u>CS Powers & Gallery, LLC</u> Name of Developer				
Dane Olmstead	7/11/2023			
Authorized Signature	Date			
Dane Olmstead				
Printed Name				
Partner - Development				
Title				
404 S Wells St, 4th Floor, Chicago, IL 6	80622			
Address:				
EL PASO COUNTY				
Filed in accordance with the requiremed Paso County Engineering Criteria Man				nd 2, El
Joshua Palmer, P.E. Interim County Engineer/ ECM Admini	strator	Date		

TABLE OF CONTENTS

CERTIFICATION	2
DESIGN ENGINEER'S STATEMENT	
OWNER/DEVELOPER'S STATEMENT	
EL PASO COUNTY	
TABLE OF CONTENTS	3
INTRODUCTION	4
PURPOSE AND SCOPE OF STUDY	
LOCATION	4
DESCRIPTION OF PROPERTY	
DRAINAGE BASINS	
MAJOR BASIN DESCRIPTIONSPROPOSED RATIONAL SUB-BASIN DESCRIPTIONS	4
Sub-Basin A	
Sub-Basin B	
Sub-Basin C	5
Sub-Basin D	
Sub-Basin E Sub-Basin F	
Sub-Basin G	
Sub-Basin OFF1 & OFF5	<i>6</i>
Sub-Basin OFF2	
Sub-Basin OFF3 & OFF4	
DRAINAGE DESIGN CRITERIA	
DEVELOPMENT CRITERIA REFERENCE	
HYDROLOGIC CRITERIA HYDRAULIC CRITERIA	
THE FOUR STEP PROCESS	
DRAINAGE FACILITY DESIGN	9
GENERAL CONCEPT	
SPECIFIC DETAILS	
DRAINAGE & BRIDGE FEES	_
SUMMARY	10
REFERENCES	10
APPENDIX	11
APPENDIX A: FIGURES	12
APPENDIX B: HYDROLOGY	_
APPENDIX C: HYDRAULICS	14 15
V PPEVI 11 V T I. T ID V IVIVI = P WIV D	16

INTRODUCTION

PURPOSE AND SCOPE OF STUDY

The purpose of this Final Drainage Report (FDR) is to provide the hydrologic and hydraulic calculations and to document and finalize the drainage design methodology in support of the proposed Solace Apartments Filing No 2 ("the Project") for Jackson Dearborn Partners. The Project is located within the jurisdictional limits of El Paso County ("the County"). Thus, the guidelines for the hydrologic and hydraulic design components were based on the criteria for the County and City of Colorado Springs, described below.

LOCATION

The Project is a single Tract consisting of 7.685 AC in the NW corner of the Solace Apartments Filing No 1. The development is bound to the North by OK Subdivision Block 2, to the east by Paonia Street, to the south by Lot 1 of Solace Apartments Filing No. 1, and to the west by CDOT Parcel EA-20 Project No C R200-142. Filing No 1 is generally located at the northwest corner of Paonia Street and Galley Road, and it includes Tract A which is the extent of Filing No 2. A vicinity map has been provided in the **Appendix A** of this report.

DESCRIPTION OF PROPERTY

The Project is Phase II of a Final Drainage Report prepared for "Solace of Colorado Springs SDP" (SF-20-032 / PPR-20-47 / CON-2165). The report considered the development in two phases; Phase I included 234 multifamily units, and Phase II included 114 multifamily units combining for a total of 348 units. This Final Drainage Report is regarding the development of Solace Apartments Filing No. 2 (the "Project"), also referred to as Filing No 2. The Project is 7.685 acres and will include five – three story buildings, uncovered surface parking, indoor/outdoor recreation amenities, and open spaces.

DRAINAGE BASINS

MAJOR BASIN DESCRIPTIONS

The Site improvements are located in Zone X, as determined by the Flood Insurance Rate Map (FIRM) number 0800600752G and 0800590752G effective date, December 7, 2018 (see **Appendix A**). Filing No 2 lies within the Final Drainage Report for "Solace Apartments Filing No 1" prepared by JR Engineering November 2021. Filing No 2 lies within two separate drainage basins, Pond A and Pond B. Pond A and Pond B are full spectrum EDB ponds that were designed with Filing No 2 fully developed. The two ponds outfall into the Sand Creek Center Tributary to the east of the site.

PROPOSED RATIONAL SUB-BASIN DESCRIPTIONS

Sub-Basin A

Sub-Basin A consists of Building Q and the landscaped areas around it. Runoff from this basin will be directed into a private storm system through roof drains, vegetated swales, area drains, and private storm sewer systems that then connect to an existing downstream inlet that drains to Design Point B. Design Point B will then be routed to the full spectrum EDB Pond B via existing private storm sewer systems. This sub-basin has an area of 0.53 acres. The impervious value for this sub-basin is 44%. The basin will generate 1.00 cfs and 2.57 cfs in the minor and major storm events, respectively.

Sub-Basin B

Sub-Basin B consists of Building N and the landscaped areas around it. Runoff from this basin will be directed into a private storm system through roof drains, vegetated swales, area drains, and private storm sewer systems, that then connect to an existing downstream inlet that drains to Design Point B. Design Point B will then be routed to the full spectrum EDB Pond B via existing private storm sewer systems. This sub-basin has an area of 1.07 acres. The impervious value for this sub-basin is 34%. The basin will generate 1.55 cfs and 4.32 cfs in the minor and major storm events, respectively.

Sub-Basin C

Sub-Basin C consists of Building P and the landscaped areas around it. Runoff from this basin will be directed into a private storm system through roof drains, vegetated swales, area drains, and private storm sewer systems, that then connect to an existing downstream inlet that drains to Design Point B. Design Point B will then be routed to the full spectrum EDB Pond B via existing private storm sewer systems. This sub-basin has an area of 0.23 acres. The impervious value for this sub-basin is 90%. The basin will generate 0.82 cfs and 1.66 cfs in the minor and major storm events, respectively.

Sub-Basin D

Sub-Basin D consists of Building M and the landscaped areas around it. It also includes landscaped areas to the north of the development along with uncovered parking north of building M. Runoff from this basin will be directed into a private storm system through roof drains, vegetated swales, area drains, roadway pans, existing private grate inlets and private storm sewer systems, then drains to Design Point A. Design Point A will then be routed to the full spectrum EDB Pond A via existing private storm sewer systems. This sub-basin has an area of 0.80 acres. The impervious value for this sub-basin is 71%. The basin will generate 3.39 cfs and 7.35 cfs in the minor and major storm events, respectively.

Sub-Basin E

Sub-Basin E consists of Building L and the landscaped areas around it. Runoff from this basin will be directed into a private storm system through roof drains, vegetated swales, area drains, and private storm sewer systems, that then connect to an existing downstream inlet that drains to Design Point A. Design Point A will then be routed to the full spectrum EDB Pond A via existing private storm sewer systems. This sub-basin has an area of 0.39 acres. The impervious value for this sub-basin is 59%. The basin will generate 1.34 cfs and 3.13 cfs in the minor and major storm events, respectively.

Sub-Basin F

Sub-Basin F consists of landscaped areas to the north of the development along with uncovered parking north of Building P, Building Q, and the drainage in Solace Pond VW. Runoff from this basin will be directed to into a private storm system through roadway pans, grated inlets, and private storm systems, then connect to an existing downstream inlet that drains to Design Point B. Design Point B will then be routed to the full spectrum EDB Pond B via existing private storm sewer systems. This sub-basin has an area of 2.20 acres. The impervious value for this sub-basin is 50%. The basin will generate 4.53 cfs and 11.00 cfs in the minor and major storm events, respectively.

Sub-Basin G

Sub-Basin G consists of landscaped areas to the north of the development along with the uncovered separated parking north of the site. Runoff from this basin will be directed into a private storm system through an existing private grate inlet, private storm sewer systems, then drains to Design Point A. Design Point A will then be routed to the full spectrum EDB Pond A via existing private storm sewer systems. This sub-basin has an area of 0.63 acres. The impervious value of this sub-basin is 57%. The basin will generate 2.29 cfs and 5.30 cfs in the minor and major storm events, respectively.

Sub-Basin OFF1 & OFF5

Sub-Basin OFF1 and OFF5 consists of landscaped areas that, due to existing grading, drain offsite. Runoff from these basins will be bypassing both ponds. The Final Drainage Report for Filing No 1 considered these areas as offsite bypass flow and thus this report is matching those assumptions. These sub-basins have an area of 1.19 acres. The impervious value for this basin is 2%. The basin will generate runoff of 0.74 cfs and 5.20 cfs in the minor and major storm event, respectively.

Sub-Basin OFF2

Sub-Basin OFF2 consists of landscaped area that, due to the grading in Filing No 1, sheet flows to an existing downstream inlet that drains to Design Point B. Design Point B will then be routed to the full spectrum EDB Pond B via existing private storm sewer systems. The Final Drainage Report for Filing No 1 considered this area as sheet flow and this design is matching those assumptions. This sub-basin has an area of 0.12 acres. The impervious value for this basin is 7%. The basin will generate runoff of 0.11 cfs and 0.58 cfs in the minor and major storm event, respectively.

Sub-Basin OFF3 & OFF4

Sub-Basin OFF3 and OFF4 consist of landscaped areas that, due to the grading in Filing No 1, sheet flow to an existing downstream inlet that drains to Design Point A. Design Point A will then be routed to the full spectrum EDB Pond A via existing private storm sewer systems. The Final Drainage Report for Filing No 1 considered this area as sheet flow and this design is matching those assumptions. These sub-basins have an area of 0.58 acres. The impervious value for these basins is 3%. The basin will generate runoff of 0.42 cfs and 2.60 cfs in the minor and major storm event, respectively.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

The proposed storm facilities are designed to be in compliance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)" dated October 2018 ("the MANUAL"), El Paso County "Engineering Criteria Manual" ("the Engineering Manual"), Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014 ("the Colorado Springs MANUAL").

The Final Drainage Report for "Solace of Colorado Springs SDP" (SF-20-032 / PPR-20-47 / CON-2165) was designed with fully development conditions of Solace Apartments Filing No 2 considered. The Solace of Colorado Springs SDP was therefore used as a master plan for Solace Apartments Filing No 2.

HYDROLOGIC CRITERIA

The 5-year and 100-year design storm events were used in determining rainfall and runoff for the existing and proposed drainage analysis per the MANUAL. The rainfall depths for site were determined from equation 6-1, equation 6-2 utilizing Figures 6-6, 6-11, 6-12, and 6-17 from the MANUAL. Refer to **Table 1** below for the rainfall depths utilized for the site and **Appendix B** for the hydrologic calculations for the site.

 Storm Event
 1 HR

 5 Year
 1.43

 100 Year
 2.60

Table 1: Rainfall Depths

Calculations for the runoff coefficients and percent impervious are included in the **Appendix B**. Rational method was used to determine the peak flows for the project. These flows were used to determine the size of the proposed inlets and storm drain systems.

The proposed impervious values in Table 6-6 of the DCM were utilized in this report for the final design. Refer to **Appendix B** of this report for Table 6-6.

Filing No 1 is providing two full spectrum detention ponds. The Project is maintaining the historic drainage patterns as much as possible.

There are no additional provisions selected or deviations from the criteria in both the MANUAL and Colorado Springs MANUAL.

HYDRAULIC CRITERIA

Refer to the Final Drainage Report "Solace of Colorado Springs SDP" (SF-20-032 / PPR-20-47 / CON-2165) for hydraulic sizing of the two fully spectrum EDB ponds. Filing No 2 is in conformance with the hydraulic design of Filing No 1 and therefore does not need to provide additional detention or studying of the downstream Sand Creek Tributary.

Proposed drainage features on-site have been analyzed and sized for the following design storm events:

Major Storm: 100-year Storm Event

Two full spectrum detention ponds are proposed in Filing No 1 in order to maintain historic flows and water quality. The detention ponds are known as Pond A and Pond B. Pond A is in the northeast corner of Filing No 1 with a proposed volume of 1.292 ac-ft and designed for the 100-year storm event. The pond has a discharge rate of 3.2 cfs in the 100-year condition. Water from Pond A ultimately outfalls to Sandy Creek Tributary. Pond B is in the southeast corner of Filing No 1 with a proposed volume of 2.659 ac-ft and designed for the 100-year storm event. The pond has a discharge rate of 3.3 cfs in the 100-year condition. Water from Pond B ultimately outfalls to Sandy Creek Tributary. Pond A and Pond B calculations are provided in the Final Drainage Report of "Solace of Colorado Springs SDP" (SF-20-032 / PPR-20-47 / CON-2165).

Curb and gutter, inlets, grass lined swales, and storm drain pipes are designed to carry flows to Design Point A and Design Point B. From there they connect to existing private storm provided by Filing No 1. The storm drain pipe calculations for Filing No 2 are provided in the **Appendix C** and the design points are provided in the Proposed Subbasin Drainage Map located in **Appendix D**.

THE FOUR STEP PROCESS

The Project was designed in accordance with the four-step process to minimize adverse impacts of urbanization, as outlined in the County's "Four-Step Process" for selecting structural BMPs (ECM Section I.7.2 BMP Selection).

Step 1. Employ Runoff Reduction Practices- The Project is draining to a full spectrum EDB pond that was sized for fully developed conditions of Filing No 2 with Filing No 1. The EDB will be used to capture stormwater and maintain flows discharging off site at or below historic levels. See the Final Drainage Report for "Solace of Colorado Springs SDP" (SF-20-032 / PPR-20-47 / CON-2165) for pond sizing and design.

Step 2. Stabilize Drainageways– Filing No 2 connects to the existing private storm developed in Filing No 1. Filing No 1 has implemented additional stabilization measures for the Sand Creek Tributary to prevent ay negative impacts. The channel has been improved with concrete paving as well to avoid erosion along Filing No 1. These measures were designed with the Filing No 2 assumed fully developed conditions. Filing No 2 is in conformance with those assumptions and should not require additional measures.

Step 3. Provide Water Quality Capture Volume (WQCV) –Permanent water quality measures and detention facilities will be provided with Filing No 1 for the fully developed conditions of Filing No 2.

Step 4. Consider Need for Industrial and Commercial BMPs – The proposed project is proposing a multifamily development, with parking and amenity spaces; therefore, covering of storage/handling areas and spill containment and control will not need to be provided.

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

The proposed drainage patterns will match the historic patterns and conform to the design from Filing No 1. To maintain historic flows, two full spectrum detention ponds are being proposed with Filing No 1 and will capture and control the flows from the proposed development Filing No 2 to convey flows with a series of swales, parking lot sheet flow, and a storm drain system.

Provided in the **Appendix B** are hydrologic calculations utilizing the Rational method for the existing and proposed conditions. As previously mentioned, the existing drainage map and proposed drainage map can be found in **Appendix D**.

SPECIFIC DETAILS

The existing conditions of the Site prior to Filing No 1 have flows conveying from the northwest to the southeast corner and spill into the Sandy Creek Tributary. Filing No 1 has provided two full spectrum EDBs to collect fully developed runoff for Filing No 1 and Filing No 2. Runoff conditions for the Site were developed utilizing the Rational Method described in the Hydrologic Criteria section of this report.

The hydrologic calculations, hydraulic calculations, and Drainage Maps are included in the **Appendix B, Appendix C,** and **Appendix D** of this report for reference.

The Site will disturb more than 1 acre and will require a Colorado Discharge Permit System (CDPS) General Permit for Stormwater Discharge Associated with Construction Activities from the Colorado Department of Public Health and Environment (CDPHE).

DRAINAGE & BRIDGE FEES

2021 DRAINAGE AND BRIDGE FEES – SOLACE APARTMENTS FILING NO 1						
Impervious Acres (AC)			Solace Bridge Fee			
11.67	\$20,387	\$8,339	\$237,916*	\$97,316**		

The impervious acreage calculated with Filing No. 1 included the impervious area of Filing No. 2. After the construction of the channel improvements are complete, the developer will follow the procedures listed in Chapter 3 of the Drainage Cristeria Manual to obtain the appropriate reimbursement.

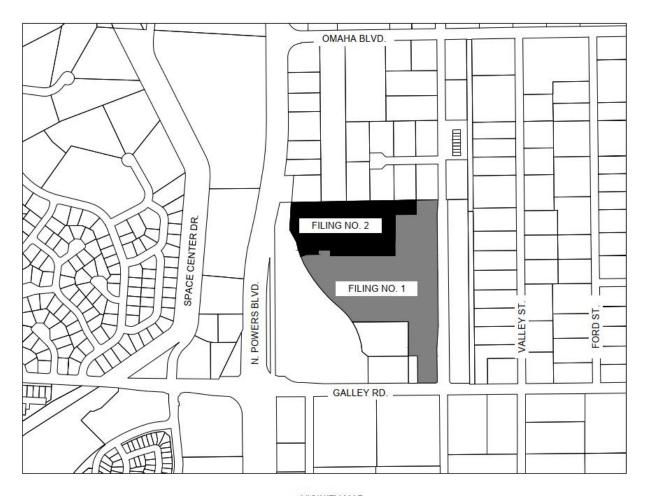
SUMMARY

The proposed drainage design is to maintain the historic drainage patterns, the overall imperviousness and release rates as described in Filing No 1 Final Drainage report. Runoff from the Project will flow through an existing storm drain system to an existing El Paso County drainage basin: The Sand Creek Tributary. The drainage design presented within this report conforms to the criteria presented in both the MANUAL and the Colorado Springs MANUAL. Additionally, the Site runoff and storm drain facilities will not adversely affect the downstream and surrounding developments, including Sand Creek Tributary.

REFERENCES

- 1. City of Colorado Springs "Drainage Criteria Manual (DCM) Volume 1", dated May, 2014
- 2. El Paso County "Drainage Criteria Manual", dated October 31, 2018
- 3. El Paso County "Engineering Criteria Manual" Revision 6, dated December 13, 2016
- 4. Chapter 6 and Section 3.2.1. of Chapter 13-City of Colorado Springs Drainage Criteria Manual, May 2014.
- 5. Urban Drainage and Flood Control District Drainage Criteria Manual (UDFCDCM), Vol. 1, prepared by Wright-McLaughlin Engineers, June 2001, with latest revisions.
- 6. Flood Insurance Rate Map, El Paso County, Colorado and Incorporated Areas, Map Number 0800600752G and 0800590752G effective date, December 7, 2018, prepared by the Federal Emergency Management Agency (FEMA).
- 7. JR Engineering "Solace of Colorado Springs SDP" (SF-20-032 / PPR-20-47 / CON-2165) dated November 2021

^{*}Sand Creek DBPS estimates \$323,500 channel improvements. These improvements were constructed with Filing No. 1. Solace Drainage Fee for Filing No. 1 was offset (not paid) by construction of channel improvements.


^{**} Solace Bridge Fee was paid as part of Filing No. 1.

APPENDIX

APPENDIX A: FIGURES

VICINITY MAP

FINAL DRAINAGE REPORT FOR SOLACE APARTMENTS FILING NO. 1

Prepared For: CS Powers and Galley, LLC 510 S Neil St Champaign, IL 61820 (734) 216-2577

> November 11, 2021 Project No. 25174.00

Prepared By: JR Engineering, LLC 5475 Tech Center Drive Colorado Springs, CO 80919 719-593-2593

PCD File No. PPR-20-047 PCD File No. SF2032

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Mike Bramlett, Colorado P.E. # 32314
For and On Behalf of JR Engineering, LLC

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:

CS Powers and Galley, LLC

By:

MEMBER

Address:

S10 S Neil St

Champaign, IL 61820

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

APPROVED
Engineering Department

11/30/2021 11:05:30 AM
dsdnijkamp

Jennifer Irvine, P.E.

County Engineer/ ECM Administrator

APPROVED
Engineering Department

11/30/2021 11:05:30 AM
dsdnijkamp
EPC Planning & Community
Development Department

Conditions:

CONTENTS

PURPOSE	1
GENERAL LOCATION AND DESCRIPTION	1
LOCATION DESCRIPTION OF PROPERTY FLOODPLAIN STATEMENT	2
DRAINAGE BASINS AND SUB-BASINS	2
Existing Major Basin Descriptions. Existing Sub-basin Drainage Proposed Sub-basin Drainage Existing Major Drainageway – Sand Creek	3 5
DRAINAGE DESIGN CRITERIA	13
DEVELOPMENT CRITERIA REFERENCE HYDROLOGIC CRITERIA HYDRAULIC CRITERIA	13
DRAINAGE FACILITY DESIGN	14
GENERAL CONCEPT SPECIFIC DETAILS Four Step Process to Minimize Adverse Impacts of Urbanization Water Quality Erosion Control Plan Operation & Maintenance Drainage & Bridge Fees Construction Cost Opinion	
SUMMARY	
REFERENCES:	20

APPENDICES

- A. Figures and ExhibitsB. Hydrologic/Hydraulic CalculationsC. Detention and Water Quality Calculations
- D. Reference Materials
- E. Drainage Maps

PURPOSE

This document is the Final Drainage report for the Solace Apartments. The purpose of this report is to:

- 1. Identify on-site and off-site drainage patterns.
- 2. Design storm water facilities to collect and convey storm runoff from the proposed development to appropriate discharge and/or detention locations.
- 3. Design water quality and detention facilities to control discharge release rates to below historic.
- 4. Demonstrate compliance with surrounding major drainage basin planning studies, master development drainage plans and flood insurance studies.

GENERAL LOCATION AND DESCRIPTION

Location

The proposed Solace Apartments, known as "Solace" from herein, is a parcel of land located in Section 7, Township 14 South, Range 65 West of the 6th Principal Meridian in El Paso County, Colorado. Solace is a 28.83 acre, urban, multifamily-development and is comprised of 16 apartment dwellings and associated infrastructure. Solace will be split into two phases for construction, lot 1 (phase 1) contains most of the site with lot 2 (phase 2) containing the northern most section of the development. See appendix A for a site plan exhibit showing the Solace phasing. Solace is bound by existing industrial developments to the North and vacant land to the West. Galley Road bounds the property to the south and existing light industrial businesses to the east. A vicinity map of the area is presented in Appendix A.

Currently, there is one major Drainageway that runs along Solace: Sand Creek (Center Tributary) Drainageway. This Drainageway was analyzed, both hydrologically and hydraulically, in the following reports:

- Sand Creek Drainage Basin Planning Study (KEC), January 1993.
- Flood Insurance Study– El Paso County, Colorado & Incorporated Areas Vol 7 of 8, December 2018.
- Sand Creek Center Tributary Channel Analysis Report for Solace Apartments (JR), June 2020
- LOMR- Case No. 05-08-0368P Federal Emergency Management Agency, May 23, 2007.

The impact of this Drainageway and planning studies on the proposed development will be discussed later in the report.

Description of Property

Solace is currently unoccupied and undeveloped. The existing ground cover is sparse vegetation and open space, typical of a Colorado rolling range land condition. In general, Solace slopes from northwest to southeast.

Per an NRCS web soil survey of the area, Solace is made up of Type B soils with a very small percentage of Type A in the northwest corner of the property. This Type B soil is a Blendon sandy loam. This soil type has a moderate infiltration rate when thoroughly wet. It also consists of moderately deep or deep, moderately well drained or well drained soil. A soil survey map has been presented in Appendix A.

Floodplain Statement

Based on the FEMA FIRM Maps number 08041C0751G and 08041C0752G, dated December 7, 2018, a portion of the existing drainageway lies within Zone AE and Zone X. Zone AE is defined as area subject to inundation by the 1-percent-annual-chance flood event. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. The FIRM Maps have been presented in Appendix A.

DRAINAGE BASINS AND SUB-BASINS

Existing Major Basin Descriptions

Solace lies within Sand Creek Drainage Basin based on the "Sand Creek Drainage Basin Planning Study" prepared by Kiowa Engineering in January 1993.

The Sand Creek Drainage Basin covers approximately 54 square miles in unincorporated El Paso County, CO. The Sand Creek Drainage Basin is tributary to Fountain Creek. In its existing condition, the basin is comprised of rolling rangeland with fair to good vegetative cover associated with Colorado's semi-arid climate. The natural Drainageway within the site limits is typically deep and narrow with a well-defined flow path in most areas. Anticipated land use for the basin includes multifamily residential and open space.

As part of its drainage research, JR Engineering reviewed the following drainage studies, reports and LOMRs:

- Sand Creek Drainage Basin Planning Study prepared by Kiowa Engineering Corporation in January 1993.
- Flood Insurance Study– El Paso County, Colorado, & Incorporated Areas Vol 7, December 2018.
- LOMR- Case No. 05-08-0368P Federal Emergency Management Agency, May 23, 2007.
- Sand Creek Center Tributary Channel Analysis Report for Solace Apartments (JR), June 2020

• Preliminary Drainage Report For Solace Apartments (JR), September 3, 2020

The Sand Creek Drainage Basin Planning Study was used to establish a stormwater management plan for the existing and future stormwater infrastructure needs within the Sand Creek Drainage Basin. Based on provided drainage maps and analysis, in its existing condition, the Sand Creek Center Tributary Drainageway contains a 100-year flow of 820-1100 cfs along Solace's east property line. The major Sand Creek Drainageway conveys the stormwater south along the eastern property line where it ultimately outfalls into the Fountain Creek. JR Engineering has performed checks on these flow rates to verify their validity. Basin calculations show that the 820-1100 cfs are still valid for this existing condition.

FEMA prepared a revised FIS for El Paso County Colorado, Volume 7 of 8, dated December 7, 2018. The effective floodplain for the site is shown on the FIRM 08041C0752G, revised to reflect LOMR, dated December 7, 2018. The study area of the FIS where the Sand Creek Drainageway crosses Galley Road, was found to overtop the culverts and flow onto the road. According to the FIS, this crossing has a 10% annual chance of flooding and is located in Zone AE of the FIRM. The *Sand Creek Drainage Basin LOMR* was executed on May 23, 2007. The LOMR revised the flood zone or the area south of Galley Road. See FIRM Map Panel 08041C0752G for limits of LOMR study and revised flood zones, presented in Appendix D.

Existing Sub-basin Drainage

On-site, existing basin drainage patterns are generally from northwest to southeast by way of on-site swales. Existing on-site areas flow directly into the Sand Creek Drainageway. For this development, the existing onsite drainage has been broken into Basin A and Basin B. All existing basins that are offsite are represented by Basin OS. All basin delineation for the existing condition can be found in the existing drainage map located in Appendix E.

Basin A contains a total of 23.98 acres and is broken down into three sub-basins: A1, A2, and A3. This basin represents a majority of the proposed development and is comprised solely of undeveloped land. Flows from this basin are tributary to the Sand Creek Center Tributary Drainageway in the existing condition.

Sub-basin A1 (Q_5 =3.1 cfs, Q_{100} =21.0 cfs) is 14.75 acres of undeveloped land, and represents the easternmost portion of the site that is adjacent to the Sand Creek Center Tributary Drainageway. Storm runoff from this sub-basin flows southeast, via overland flow, directly into the Sand Creek Center Tributary Drainageway at Design Point 1.

Sub-basin A2 (Q_5 =0.9 cfs, Q_{100} =6.2 cfs) is 3.79 acres and represents the undeveloped land in the center of the development. Storm runoff from this sub-basin flows south (Design Point 2), via overland flow, directly onto Galley Road. From here, flows are conveyed east in the existing curb and gutter into the Sand Creek Center Tributary Drainageway.

Sub-basin A3 (Q_5 =1.4 cfs, Q_{100} =9.5 cfs) is 5.44 Acres and represents the undeveloped land on the southern property line of the development. Storm runoff from this sub basin flows south (Design Point 3), via overland flow, directly onto Galley Road. From here, flows are conveyed east via the existing curb and gutter to the Sand Creek Center Tributary Drainageway.

Sub-basin B1 (Q_5 =1.3 cfs, Q_{100} =9.0 cfs) Sub-basin B1 consists of 4.84 acres of undeveloped land that drains overland to the southwest (Design Point 4) and offsite where it ultimately outfalls into an existing retention pond on the northeast corner of the intersection of Galley Road and Powers Blvd. This basin represents the westernmost portion of the site.

Basin OS consists of Sub-Basins OS1-OS2 combining for a total of 26.66 acres. This basin represents the developed land located to the north of the proposed development's property line, where the site ties in to Paonia Street. These sub-basins are primarily light industrial sites, and stormwater runoff is conveyed via overland flow and local roads.

Sub-basin OS1 (Q_5 =36.7 cfs, Q_{100} =73.1 cfs) consists of the existing Paonia Street and the existing light industrial properties located just north of the site. In the existing condition, a portion of runoff from this sub-basin is captured by an existing concrete line channel along the north boundary of the site. The remaining runoff flows south onsite into the second drainageway where it ultimately outfalls into Sand Creek Center Tributary Drainageway at Galley Road. In the proposed condition, the runoff will be captured by the existing concrete channel and a proposed overflow channel at the north property line (Design Point 5 in the existing condition and Design Point 43 in the proposed condition) to prevent any offsite flows from entering the property. Once this existing flow has been captured, the runoff will be conveyed directly into the existing Sand Creek Center Tributary Drainageway at Design Point 1.1. Capturing this flow and draining it directly into the Sand Creek Center Tributary Drainageway will cause a slight change in the existing drainage patterns. A portion of this flow will no longer enter the existing second drainageway along the proposed Paonia Street alignment. Instead, this entire flow will enter the Sand Creek Center Tributary Drainageway near the north property line at Design Point 1.1. In order to accommodate this change, combination of rip rap and concrete lining shall be utilized in the overflow channel to prevent channel erosion. The Sand Creek Drainageway channel shall be modified to give the drainageway adequate capacity to contain the 100 year water surface and protect against erosive velocities in the channel. A typical cross section of the channel can also be found on the Channel Improvement Plans in Appendix E, for further detail of channel improvements see the JR Engineering Sand Creek Center Tributary Channel Improvements Letter. Channel analysis and weir calculations can be found in the Sand Creek - Center Tributary Channel Analysis Report for Solace Apartments, prepared by JR Engineering in May 2020.

Sub-basin OS2 (Q_5 =21.3 cfs, Q_{100} =42.5 cfs) consists of the existing Ainsworth Street and the existing light industrial properties located just east of Ainsworth Street. Runoff from this sub-basin is captured by an existing swale along N. Powers Boulevard. The Solace Apartment site has a 5' berm that is proposed along the northern property line. This berm will prevent any drainage from this

basin to reach the site, and will utilize an onsite conveyance swale located at the toe of the berm to convey the flow to the western property line (Design Point 6 in the existing condition and Design Point 44 in the proposed condition). This proposed berm will slightly modify the existing drainage patterns, as it will prevent offsite flows from entering the northwestern corner of the site. To route flows offsite, an 18" depth swale with a 2' bottom is present at the bottom of the berm which will route flows to the west and outfall into the CDOT right-of-way located to the west of the site. According to UDFCD Chapter 8, figure 8-22, protection for this swale shall be Type VL riprap, see appendix B for this table.

Flows within the Sand Creek Drainageway are represented by Design Points 1.0-1.3 in the existing condition, and Design Points 5.0-5.3 in the proposed condition. Flows for these design points were taken directly from modeling date used by FEMA for the determination of the flood plain extents shown in FEMA FIRM 08041C0752G. These flows were used in the development of the HEC-RAS model to show the 100-year capacity of the drainageway in its proposed condition. Design Point 1.0 in the existing condition and 5.0 in the proposed condition (Q_{100} =820 cfs) represents the flows in the drainageway prior to entering the site boundary. Design Point 1.1 in the existing condition and 5.1 in the proposed condition (Q_{100} =820 cfs) represents the flow in the drainageway after the flows from Basin OS1 enter the channel. Design Point 1.2 in the existing condition and 5.2 in the proposed condition (Q_{100} =1037 cfs) represents the area where flows enter the drainageway from developments and roads located to the east of the site. Design Point 1.3 in the existing condition and 5.3 in the proposed condition (Q_{100} =1100 cfs) represents the flows at the Galley Road crossing. This flow was used to analyze the overtopping of Galley Road and the existing weir structure on the south side of the road.

Proposed Sub-basin Drainage

The proposed Solace basin delineation is as follows;

Sub-basin A1 (Q_5 =1.7 cfs, Q_{100} =3.3 cfs) contains a total of 0.50 acres. This basin represents the north eastern portion of the proposed Phase 1 development. This basin is primarily multi-family residential and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured via a series of on-grade and sump inlets (Design Point 4). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A2 (Q_5 =1.6 cfs, Q_{100} =3.1 cfs) contains a total of 0.47 acres. This basin represents the eastern portion of the proposed along the Phase 1 development phase line. This basin is primarily multi-family residential and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured via a series of on-grade and sump inlets (Design Point 5). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A3 (Q_5 =1.6 cfs, Q_{100} =3.1 cfs) contains a total of 0.45 acres. This basin represents the center portion of the proposed development along the Phase 1 development phase line. This basin is primarily parking lot with garages and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by an area inlet (Design Point 6). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A4 (Q_5 =0.6 cfs, Q_{100} =1.0 cfs) contains a total of 0.15 acres. This basin represents a northern half of a proposed building and is comprised solely of proposed roof. Stormwater runoff from this basin is captured by proposed roof drains and conveyed to the proposed storm sewer infrastructure (Design Point 2.1). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A5 (Q_5 =0.5 cfs, Q_{100} =1.0 cfs) contains a total of 0.13 acres. This basin represents a northern half of a proposed building and is comprised solely of proposed roof. Stormwater runoff from this basin is captured by proposed roof drains and conveyed to the proposed storm sewer infrastructure (Design Point 2.3). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A6 (Q_5 =3.2 cfs, Q_{100} =7.0 cfs) contains a total of 1.51 acres. This basin represents the central portion of the proposed Phase 1 development. This basin is primarily multi-family residential and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by a sump inlet (Design Point 10). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A7 (Q_5 =1.0 cfs, Q_{100} =2.4 cfs) contains a total of 0.58 acres. This basin represents the northwestern portion of Paonia Street and minor open. This basin is primarily minor open space with some asphalt paving and concrete sidewalks. Stormwater runoff from this basin is conveyed via curb & gutter, where it is captured by an on-grade inlet (Design Point 11). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A8 (Q_5 =0.8 cfs, Q_{100} =1.7 cfs) contains a total of 0.30 acres. This basin represents the northeastern portion of Paonia Street. Half of this sub-basin is comprised of asphalt paving, while the second half is open space. Stormwater runoff from this basin is conveyed via curb & gutter, where it is captured by an on-grade inlet (Design Point 12). Runoff from this sub-basin ultimately

outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A9 (Q_5 =0.4 cfs, Q_{100} =2.9 cfs) contains a total of 1.33 acres. This basin represents the northeastern portion of the development. This basin is primarily open space and Pond A. Stormwater runoff from this basin is conveyed via overland flow, where it is captured by Pond A (Design Point 6A). From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin B1 (Q_5 =1.6 cfs, Q_{100} =2.8 cfs) contains a total of 0.37 acres. This basin represents the western portion of the proposed Phase 1 development along the phase line. This basin is primarily parking lot and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by an on-grade inlet (Design Point 14). Runoff from this sub-basin, ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B2 (Q_5 =1.4 cfs, Q_{100} =2.7 cfs) contains a total of 0.35 acres. This basin represents a small western portion of the proposed Phase 1 development along the phase line. This basin is primarily parking lot and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by an area inlet (Design Point 15). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-basin B3 (Q_5 =1.2 cfs, Q_{100} =2.4 cfs) contains a total of 0.35 acres. This basin represents the northwestern portion of the proposed Phase 1 development along the phase line. This basin is primarily parking lot and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by an area inlet (Design Point 16). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-basin B4 (Q_5 =0.1 cfs, Q_{100} =0.2 cfs) contains a total of 0.03 acres. This basin represents a western portion of a proposed building and is comprised solely of proposed roof. Stormwater runoff from this basin is captured by proposed roof drains and conveyed to the proposed storm sewer infrastructure (Design Point 3.2). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B5 (Q_5 =1.0 cfs, Q_{100} =1.8 cfs) contains a total of 0.26 acres. This basin represents a eastern portion of a proposed building and a small western portion of an adjacent building. This sub-basin is comprised solely of proposed roof. Stormwater runoff from this basin is captured by proposed roof drains and conveyed to the proposed storm sewer infrastructure (Design Point 3.3).

Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B6 (Q_5 =1.9 cfs, Q_{100} =4.1 cfs) contains a total of 0.73 acres. This basin represents the western drive aisle of the proposed Phase 1 development. This basin is primarily parking lot with garages and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by an area inlet (Design Point 19). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B7 (Q_5 =0.8 cfs, Q_{100} =2.0 cfs) contains a total of 0.47 acres. This basin represents a proposed building and open space in the center of the development. This sub-basin is comprised primarily of proposed roof and open space. Stormwater runoff from this basin is captured by proposed roof and area drains. Runoff is then conveyed to the proposed storm sewer infrastructure (Design Point 3.5). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B8 (Q_5 =0.9 cfs, Q_{100} =1.7 cfs) contains a total of 0.25 acres. This basin represents an eastern portion of a proposed building and a small western portion of an adjacent building. This sub-basin is comprised solely of proposed roof. Stormwater runoff from this basin is captured by proposed roof drains and conveyed to the proposed storm sewer infrastructure (Design Point 3.6). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B9 (Q_5 =0.7 cfs, Q_{100} =1.3 cfs) contains a total of 0.19 acres. This basin represents a eastern portion of a proposed building and is comprised solely of proposed roof. Stormwater runoff from this basin is captured by proposed roof drains and conveyed to the proposed storm sewer infrastructure (Design Point 3.7). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B10 (Q_5 =1.0 cfs, Q_{100} =2.2 cfs) contains a total of 0.38 acres. This basin represents the clubhouse parking area and open space. This basin is primarily parking lot with open space. Stormwater runoff from this basin is conveyed curb and gutter, where it is captured by an on-grade inlet (Design Point 23). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B11 (Q_5 =1.0 cfs, Q_{100} =2.6 cfs) contains a total of 0.74 acres. This basin represents a proposed building and open space in the center of the development. This sub-basin is comprised primarily of proposed roof and open space. Stormwater runoff from this basin is captured by proposed roof and area drains. Runoff is then conveyed to the proposed storm sewer infrastructure (Design Point 4.0). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B12 (Q_5 =2.7 cfs, Q_{100} =5.6 cfs) contains a total of 1.08 acres. This basin represents the drive aisle just west of the clubhouse of the Phase 1 development. This basin is primarily parking lot with garages and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by a sump inlet (Design Point 27). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B13 (Q_5 =1.5 cfs, Q_{100} =3.2 cfs) contains a total of 0.48 acres. This basin represents the drive aisle and open space in the center of Basin B. This basin is primarily parking lot with open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by an area inlet (Design Point 25). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B13A (Q_5 =0.5 cfs, Q_{100} =1.6 cfs) contains a total of 0.58 acres. This basin represents a northern portion of a proposed building and the southern portion of another, the middle portion of the basin is comprised of minor open space. Stormwater runoff from this basin is captured by proposed roof and area drains. Runoff is then conveyed to the propose storm sewer infrastructure (Design Point 3.9). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B14 (Q_5 =1.3 cfs, Q_{100} =2.6 cfs) contains a total of 0.49 acres. This basin represents the western portion of the clubhouse and associated parking and drive aisle. This basin is primarily roof, parking lot, and open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by a sump inlet (Design Point 28). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B15 (Q_5 =0.9 cfs, Q_{100} =1.8 cfs) contains a total of 0.27 acres. This basin represents the eastern portion of the clubhouse and associated parking and drive aisle. This basin is primarily roof, parking lot, and open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by a sump inlet (Design Point 30). Runoff from this sub-basin ultimately outfalls into

the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B16 (Q_5 =0.4 cfs, Q_{100} =0.8 cfs) contains a total of 0.15 acres. This basin represents a southern portion of a proposed building and a small open space area. Stormwater runoff from this basin is captured by proposed roof drains and an area inlet. Runoff is then conveyed to the proposed storm sewer infrastructure (Design Point 4.3). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B17 (Q_5 =1.8 cfs, Q_{100} =4.5 cfs) contains a total of 0.99 acres. This basin represents the northwestern portion of Paonia Street within Basin B. This basin is primarily road paving and open space. Stormwater runoff from this basin is conveyed via curb & gutter, where it is captured by an on-grade inlet (Design Point 31). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-basin B18 (Q_5 =1.1 cfs, Q_{100} =2.4 cfs) contains a total of 0.47 acres. This basin represents the northeastern portion of Paonia Street within Basin B. This basin is primarily road paving and minor open space. Stormwater runoff from this basin is conveyed via curb & gutter, where it is captured by an on-grade inlet (Design Point 32). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-basin B19 (Q_5 =2.1 cfs, Q_{100} =5.7 cfs) contains a total of 1.92 acres. This basin represents the southern half of the clubhouse and patio area, along with the southwestern portion of Paonia Street within Basin B. This basin is primarily road paving, open space, and roof. Stormwater runoff from this basin is conveyed via overland flow and curb & gutter, where it is captured by an on-grade inlet (Design Point 33). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-basin B20 (Q_5 =0.6 cfs, Q_{100} =1.4 cfs) contains a total of 0.26 acres. This basin represents the southeastern portion of Paonia Street within Basin B. This basin is primarily road paving and minor open space. Stormwater runoff from this basin is conveyed via curb & gutter, where it is captured by an on-grade inlet (Design Point 34). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-basin B21 (Q_5 =0.5 cfs, Q_{100} =3.6 cfs) contains a total of 2.46 acres. This basin represents the northeastern portion of the development. This basin is primarily open space and Pond B. Stormwater runoff from this basin is conveyed via overland flow, where it is captured by Pond B

(Design Point 37). From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-Basin C1 (Q_5 =0.8 cfs, Q_{100} =2.2 cfs) contains a total of 0.74 acres. This basin represents the southernmost portion of the proposed development. This basin is primarily proposed roadway and minor open space. Stormwater runoff from this basin is conveyed via proposed curb and gutter to a proposed crosspan (Design Point 40) at the intersection of Paonia Street and Galley Road. Runoff is then conveyed east by the existing curb and gutter in Galley Road to the Sand Creek Center Tributary Drainageway, per historic conditions.

Sub-Basin C2 (Q_5 =0.3 cfs, Q_{100} =2.3 cfs) contains a total of 0.80 acres. This basin represents the westernmost portion of the proposed Phase 1 development. This basin is solely comprised of open space. Stormwater runoff from this basin follows historic drainage patterns and sheet flows offsite (Design Point 41).

Sub-Basin D1 (Q_5 =0.7 cfs, Q_{100} =2.6 cfs) contains a total of 0.95 acres and represents the northern most portion of Paonia Street and the site. This basin is comprised primarily of proposed roadway and open space. Runoff from this basin is conveyed via emergency overflow channel to the Sand Creek Center Tributary Drainageway (Design Point 42) per historic conditions. See the *Sand Creek-Center Tributary Channel Analysis Report for Solace Apartments*, prepared by JR Engineering October 15th, 2020 for overflow channel details.

Sub-Basin F1 (Q_5 =2.2 cfs, Q_{100} =4.7 cfs) contains a total of 0.92 acres and represents the northwestern most portion of the Pond A tributary. This basin is comprised primarily of future parking areas, open space, and a future building. Runoff from this basin will be captured by future storm sewer infrastructure (Design Point 1). The proposed storm sewer infrastructure for the Phase 1 improvements have been sized to account for the future flows from this sub-basin. The future flows have also been analyzed in the Storm CAD model to ensure ultimate build out conditions have been accounted for. Runoff from this sub-basin will ultimately outfall into the proposed onsite Pond A. The proposed Pond A has also been sized to account for these future flows. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-Basin F2 (Q_5 =0.5 cfs, Q_{100} =1.0 cfs) contains a total of 0.14 acres and represents the future parking spaces along the drive aisle of the northernmost site access location. This basin is comprised solely of future parking. Runoff from this basin will be captured by the existing storm sewer infrastructure (Design Point 4). The proposed storm sewer infrastructure for the Phase 1 improvements have been sized to account for the future flows from this sub-basin. The future flows have also been analyzed in the Storm CAD model to ensure ultimate build out conditions have been accounted for. Runoff from this sub-basin will ultimately outfall into the proposed onsite Pond A. The proposed Pond A has also been sized to account for these future flows. From the detention pond,

the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-Basin F3 (Q_5 =2.1 cfs, Q_{100} =4.4 cfs) contains a total of 0.73 acres and represents the eastern portion of the future parking spaces along the north property line of the site. This basin is comprised primarily of future parking and open space. Runoff from this basin will be captured by future storm sewer infrastructure (Design Point 3). The proposed storm sewer infrastructure for the Phase 1 improvements have been sized to account for the future flows from this sub-basin. The future flows have also been analyzed in the Storm CAD model to ensure ultimate build out conditions have been accounted for. Runoff from this sub-basin will ultimately outfall into the proposed onsite Pond A. The proposed Pond A has also been sized to account for these future flows. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-Basin F4 (Q_5 =0.8 cfs, Q_{100} =2.3. cfs) contains a total of 0.68 acres and represents a portion of the Phase 2 improvements located in the center of the site. This basin is comprised primarily of future open space and a future building. Runoff from this basin will be captured by future storm sewer infrastructure (Design Point 7). The proposed storm sewer infrastructure for the Phase 1 improvements have been sized to account for the future flows from this sub-basin. The future flows have also been analyzed in the Storm CAD model to ensure ultimate build out conditions have been accounted for. Runoff from this sub-basin will ultimately outfall into the proposed onsite Pond A. The proposed Pond A has also been sized to account for these future flows. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-Basin F5 (Q_5 =5.7 cfs, Q_{100} =14.7 cfs) contains a total of 3.88 acres and represents the western portion of the future parking spaces along the north property line of the site, the future buildings on the northwest portion of the site, and the open space associated with these improvements. This basin is comprised primarily of future parking, future buildings, and open space. Runoff from this basin will be captured by future storm sewer infrastructure (Design Point 3.0). The proposed storm sewer infrastructure for the Phase 1 improvements have been sized to account for the future flows from this sub-basin. The future flows have also been analyzed in the Storm CAD model to ensure ultimate build out conditions have been accounted for. Runoff from this sub-basin will ultimately outfall into the proposed onsite Pond B. The proposed Pond B has also been sized to account for these future flows. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-Basin F6 (Q_5 =0.2 cfs, Q_{100} =1.0 cfs) contains a total of 0.35 acres. This basin represents the westernmost portion of the proposed Phase 1 development. This basin is solely comprised of open space. Stormwater runoff from this basin follows historic drainage patterns and sheet flows offsite (Design Point 41).

Sub-Basin F7 (Q_5 =0.2 cfs, Q_{100} =1.5 cfs) contains a total of 0.53 acres. This basin represents the westernmost portion of the proposed Phase 1 development. This basin is solely comprised of open space. Stormwater runoff from this basin follows historic drainage patterns and sheet flows offsite (Design Point 41).

All calculations and stormwater routing can be found in Appendix B.

Existing Major Drainageway - Sand Creek

The Sand Creek channel conveys an existing 820-1100 cfs along the sites eastern property line. In order to maintain the drainage patterns on the site, 2 detention ponds have been proposed to release developed flows, at or below historic rates. Based on the results of the Sand Creek - Center Tributary Channel Analysis Report for Solace Apartments, prepared by JR Engineering in May 2020, the existing channel sections will need protection from erosion as a result of the Solace development. This report analyzed the existing conditions to ensure that the Sand Creek channel is stable and velocities do not exceed allowable limits. Based on the results of this report, it was found that the channel in its current conditions is inadequate, as velocities in the channel exceeded allowable limits and overtopping occurs at the Galley Road. The report recommended several improvements to ensure channel stability, including channel lining such as riprap or concrete to protect from the high velocities, widening the channel to increase capacity and decrease velocity & adding check/ drop structures to reduce velocities. The report also indicates that improvements will be necessary to address the overtopping at the Galley Road crossing. An existing overflow structure is currently in place to convey any overtopping flows, but does not have adequate capacity. Analysis of the proposed improvements to the channel can be found in the Sand Creek Center Tributary Channel Improvements Letter. Channel hydraulic analysis sheets are presented in Appendix B of the aforementioned report and Channel Plans for the proposed improvements can be found in Appendix E. A drainage map for the Solace site can be found in Appendix E.

DRAINAGE DESIGN CRITERIA

Development Criteria Reference

Storm drainage analysis and design criteria for the project were taken from the "City of Colorado Spring/El Paso County Drainage Criteria Manual" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "Urban Storm Drainage Criteria Manual" Volumes 1 - 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual (CCSDCM), dated May 2014, as adopted by El Paso County.

Hydrologic Criteria

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. Rational Method calculations were prepared, in accordance with

Chapter 6, Section 3.0 of the EPCDCM, for the sub-basins that directly impact the sizing of the proposed storm sewer outfalls. Rational method calculations are presented in Appendix B.

Mile High Flood District's MHFD-Detention, Version 4.03 workbook was used for pond sizing. Required detention volumes and allowable release rates were designed per USDCM and CCS/EPCDCM. Pond sizing spreadsheets are presented in Appendix C.

Hydraulic Criteria

GeoHECRAS was used as the primary analysis method for the site in the *Sand Creek – Center Tributary Channel Analysis Report for Solace Apartments* and the *Sand Creek Center Tributary Channel Improvements Letter*. GeoHECRAS was used to model existing flows within the Sand Creek Drainageway in its existing and proposed conditions. This model was used to verify flood plains and analyze any overtopping that may occur within the project site. The 100-year water surface profiles for the model were analyzed form the north property line of the site to the area just south of the Galley Road Crossing.

Using StormCAD V8i, a modeling program for stormwater drainage, the hydraulic grade lines and energy grade lines were determined for the storm sewer network. Manhole and pipe losses for the model were obtained from the *Urban Storm Drainage Criteria Manual*, Mile High Flood District. Model results for the project site have been included in Appendix B.

DRAINAGE FACILITY DESIGN

General Concept

The proposed stormwater conveyance system was designed to convey the developed Solace runoff to two proposed full spectrum water quality and detention ponds via private storm sewer. The proposed pond bottoms are approximately 1.5 feet higher than the existing channel bottom. This allows adequate drainage from the ponds to outfall into the channel without the need for backflow prevention measures. The proposed ponds were also designed to release at less than historic rates to minimize adverse impacts downstream. Treated water will outfall directly into the Sand Creek Drainageway, where it will eventually outfall into Fountain Creek. The current site will be constructed in 2 phases. Both of the proposed ponds will be designed and constructed with the Phase 1 improvements along with the storm sewer within Paonia Street. Proposed drainage maps are presented in Appendix E, showing locations of the pond and channel outfall locations and improvements.

Specific Details

Four Step Process to Minimize Adverse Impacts of Urbanization

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four step process to minimize adverse impacts of urbanization. The four step

process includes reducing runoff volumes, stabilizing drainageways, treating the water quality capture volume (WQCV), and consider the need for Industrial Commercial BMP's.

Step 1, Reducing Runoff Volumes: The development of the project site is a proposed multi-family development with open spaces and lawn areas interspersed within the development which helps disconnect impervious areas and reduce runoff volumes.

Step 2, Stabilize Drainageways: Solace utilizes private storm sewer throughout the project site. This private storm sewer directs the on-site development flows to the multiple detention ponds within the project that release at or below historic rates into the Sand Creek Drainageway. Sand Creek (Center Tributary) Drainageway is stabilized downstream of the development, however additional stabilization measures shall be implemented to prevent any negative impacts to the drainageway. Drop structures have been added in order to reduce the slope of the channel. The channel shall also utilize concrete paving to avoid any erosion of the channel along the site.

Step 3, Provide WQCV: Runoff from this development is treated through capture and slow release of the WQCV in multiple full spectrum water quality and detention ponds that are designed per current El Paso County drainage criteria for Extended Detention Basins (EDB). These ponds will facilitate pollutant removal for the site, while also reducing peak stormwater rates into the Sand Creek Drainageway.

Step 4, Consider the need for Industrial and Commercial BMP's: No industrial or commercial uses are proposed within this development. However, a site specific storm water quality and erosion control plan and narrative have been prepared in conjunction with this final drainage report. Site specific temporary source control BMPs as well as permanent BMP's are detailed in this plan and narrative to protect receiving waters.

Water Quality

In accordance with Section 13.3.2.1 of the CCS/EPCDCM, full spectrum water quality and detention are provided for all developed basins. Outlet structure release rates shall be limited to less than historic rates to minimize adverse impacts to downstream stormwater facilities. Complete pond and outlet structure designs can be found in the appendix C. See Table 3 below for the proposed pond parameters.

Tributary Sub-Basin	Pond Name	Tributary Acres	Comp. % Imperv.	WQ Volume (ac-ft)	Total Detention Volume (ac-ft)	Provided Volume (ac-ft)
Α	POND A	7.89	49.43	0.135	0.732	1.292
В	POND B	17.50	40.6	0.264	1.412	2.659

Table 3: Pond Summary

Per Section I.7.1.B.7 of the ECM – Stromwater Quality Policy and Procedures, sites with land disturbance to undeveloped land (land with no human-made structures such as buildings or pavement) that will remain undeveloped after the site, may be excluded from the water quality requirements set for in Section 1.7. Per this section, we respectfully request that Basins C2, F6, and F7 be excluded from permanent stormwater quality management. Due to existing topography and design constraints, Basins C1 and D1 could not be captured and routed to a permanent full spectrum water quality and detention pond. Per Section I.7.1.C.1 of the ECM – Stormwater Quality Policy and Procedures, the County may exclude up to 20%, not to exceed 1 acre, of the applicable development site, from the WQCV standard. Basin C1 & D1 contain approximately 0.32 acres of pavement, equal to approximately 1.11% of the total development site. Per this section, we respectfully request that Basin C1 & D1 be excluded from the permanent stromwater quality management.

Erosion Control Plan

The El Paso County Drainage Criteria Manual specifies an Erosion Control Plan and associated cost estimate must be submitted with each Final Drainage Report. The Erosion Control Plan for Solace has been submitted with this report.

Operation & Maintenance

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. All proposed drainage structures within the any platted County ROW will be owned and maintained by El Paso County. All proposed drainage structures within the property or tracts will be owned and maintained by the property owner. Vegetation in the natural and improved portions of Sand Creek Drainageway is the responsibility of El Paso County. This includes all mowing, seeding and weed control activities. An Inspection & Maintenance Plan has been submitted concurrently with this report that details the required maintenance activities and intervals to ensure proper function of all stormwater infrastructure in the future. The full spectrum detention ponds will be owned & maintained by the property owner.

Drainage & Bridge Fees

The site lies within the Sand Creek Drainage Basin.

2021 DRAINAGE AND BRIDGE FEES – Solace Apartments						
Impervious Acres (ac)	Drainage Fee (Per Imp. Acre)	Bridge Fee (Per Imp. Acre)	Solace Drainage Fee	Solace Bridge Fee		
11.67	\$20,387	\$8,339	\$237,916	\$97,316		

The Solace development will receive full credit for any channel improvements indicated in the Sand Creek DBPS. From the Sand Creek DBPS, the channel improvements estimated for this reach of the tributary was estimated to be \$323,500. The table regarding these costs can be found in the Appendix. From the *Sand Creek (Center Tributary) Channel Analysis*, by JR Engineering, the estimated channel improvements will cost \$554,950. Per the Sand Creek Drainage Basin Planning Study, the Center Tributary has proposed crossing improvements at Terminal Avenue and Omaha

Boulevard. Both of these crossing were estimated to be \$72,000. Crossing improvements were also proposed at W. Frontage Road for \$106,200, US 24 Bypass for \$211,500, E. Frontage Road for \$84,600, Bijou Street for \$84,600, Platte Avenue for \$169,200, & Galley Road for \$90,000. These estimates provide costs for the storm sewer required to replace the existing infrastructure at these locations. The Galley Road crossing estimate reflects upsizing the existing culverts to 5'x 8' concrete box structures. These estimates can be found in Appendix D. Based on these estimated costs, it is presumed that no drainage basin fees will be necessary.

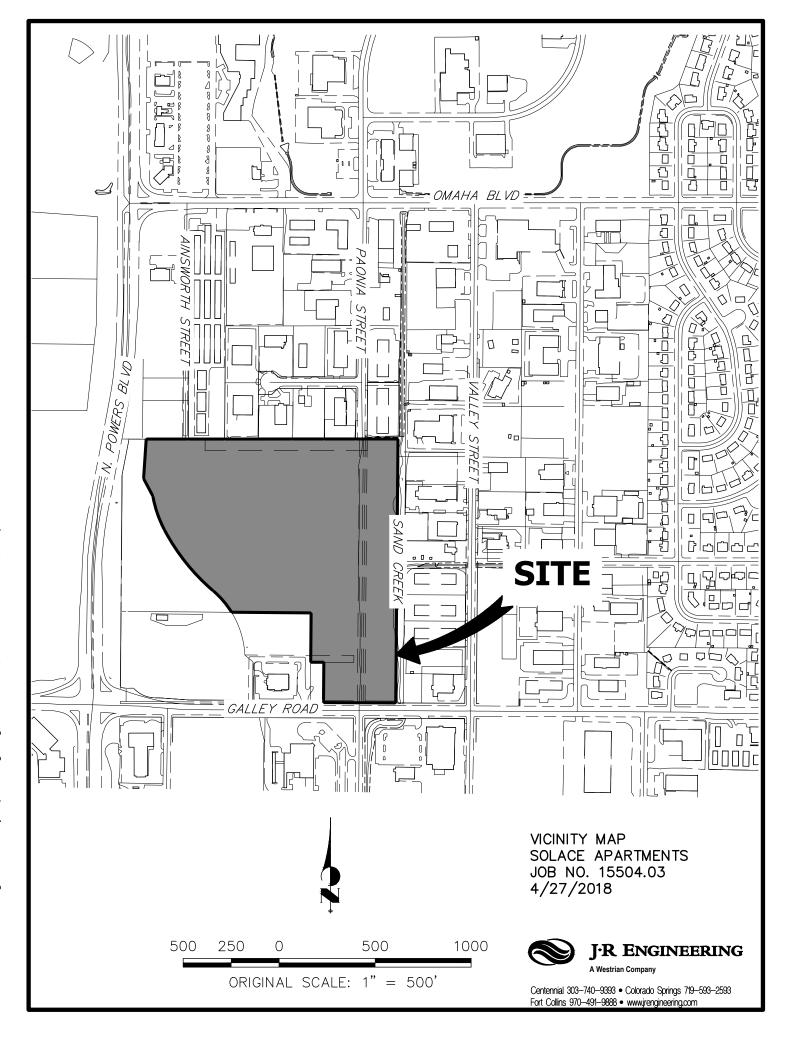
Construction Cost Opinion

El Paso County specifies a cost estimate of proposed drainage facility improvements be submitted with the Final Drainage Report. A construction cost opinion for both public and private drainage improvements have been provided below. Please note that the following cost estimate does not include channel improvements.

PUBLIC DRAINAGE FACILITIES				
Item	Quantity	Unit	Unit Price	Extended Cost
18" RCP	93	LF	\$65.00	\$6,045.00
24" RCP	41	LF	\$78.00	\$3,198.00
36" RCP	188	LF	\$120.00	\$22,560.00
42" RCP	31	LF	\$160.00	\$4,960.00
5' Type R Inlet	2	EA	\$6,200.00	\$12,400.00
10' Type R Inlet	4	EA	\$7,600.00	\$30,400.00
15' Type R Inlet	2	EA	\$12,000.00	\$24,000.00
Storm Sewer Manhole (Box Base)	2	EA	\$11,627.00	\$23,254.00
			Sub-Total	\$126,817.00
	10% Eng. And Contingency			\$12,681.70
			Grand Total	\$139,498.70

PRIVATE DRAINAGE FACILITIES				
Item	Quantity	Unit	Unit Price	Extended Cost
18" RCP	1,254	LF	\$65.00	\$81,510.00
24" RCP	763	LF	\$78.00	\$59,514.00
30" RCP	464	LF	\$97.00	\$45,008.00
36" RCP	327	LF	\$120.00	\$39,240.00
42" RCP	44	LF	\$160.00	\$7,040.00
18" FES	2	EA	\$390.00	\$780.00
24" FES	1	EA	\$468.00	\$468.00
5' Type R Inlet	8	EA	\$6,159.00	\$49,274.00
Type 13 Valley Inlet	7	EA	\$4,640.00	\$32,480.00
Storm Sewer Manhole (Slab Base)	18	EA	\$6,395.00	\$115,110.00
Storm Sewer Manhole (Box Base)	3	EA	\$11,627.00	\$34,881.00
Pond Grading	3,682	CY	\$20.00	\$73,640.00
Pond Spillway	2	EA	\$7,500.00	\$15,000.00
Pond Outlet Structure	2	EA	\$25,000.00	\$50,000.00
Pond Forebay	4	EA	\$12,000.00	\$48,000.00
2' Concrete Trickle Channel	728	LF	\$75.00	\$54,600.00
Maintenance Trail (Asphalt)	2486	SY	\$90.00	\$223,740.00
Rip Rap	198	CY	\$112.00	\$22,176.00
			Sub-Total	\$952,461.00
	10% Eng. A	and Conting	gency	\$95,246.10
			Grand Total	\$1,047,707.10

SUMMARY


The proposed development remains consistent with pre-development drainage conditions with the construction of the recommended drainage improvements, including storm sewer, detention ponds and existing drainageways. The proposed development will not adversely affect the offsite major drainageways or surrounding development. In order to safely convey flows through the Sand Creek Drainageway, channel improvements will be necessary to ensure channel stability and prevent channel degradation. Concrete paving will be required to armor the channel and stabilize the slopes during a major storm event. These improvements will ensure the drainageway functions properly as

a primary drainage conveyance system for the Solace Apartments. These improvements to the Sand Creek Center Tributary Drainageway are discussed in the *Sand Creek Center Tributary Channel Improvements Letter*. This report meets the latest El Paso County Drainage Criteria requirements for this site.

REFERENCES:

- 1. <u>El Paso County Drainage Criteria Manual Volume 1</u>, El Paso County, CO, 1994.
- 2. <u>Urban Storm Drainage Criteria Manual Volumes 1-3</u>, Mile High Flood District, Latest Revisions.
- 3. <u>Flood Insurance Study- El Paso County, Colorado & Incorporated Areas Vol 7 of 8</u>, Federal Emergency Management Agency, December 7, 2018.
- 4. Sand Creek Drainage Basin Planning Study, Kiowa Engineering, January 1993.
- 5. Sand Creek Drainage Basin LOMR, Federal Emergency Management Agency, May 23, 2007.
- Sand Creek Center Tributary Channel Analysis Report for Solace Apartments, JR Engineering, May, 2020
- 7. Preliminary Drainage Report for Solace Apartments, JR Engineering, September 3, 2020
- 8. El Paso County Engineering Criteria Manual, El Paso County, Latest Revision (2020)
- 9. <u>City of Colorado Springs Design Criteria Manual Volume 1,</u> City of Colorado Springs, Latest Revision (2014)

APPENDIX A FIGURES AND EXHIBITS

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Please rely on the bar scale on each map sheet for map Soils D measurements. Soil Rating Polygons Not rated or not available Α Source of Map: Natural Resources Conservation Service Web Soil Survey URL: **Water Features** A/D Coordinate System: Web Mercator (EPSG:3857) Streams and Canals В Maps from the Web Soil Survey are based on the Web Mercator Transportation projection, which preserves direction and shape but distorts B/D Rails --distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more Interstate Highways accurate calculations of distance or area are required. C/D **US Routes** This product is generated from the USDA-NRCS certified data as D Major Roads of the version date(s) listed below. Not rated or not available -Local Roads Soil Survey Area: El Paso County Area, Colorado Soil Rating Lines Survey Area Data: Version 17, Sep 13, 2019 Background Aerial Photography Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. A/D Date(s) aerial images were photographed: Aug 19, 2018—Sep 23, 2018 B/D The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor C/D shifting of map unit boundaries may be evident. D Not rated or not available **Soil Rating Points** A/D B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	373.7	35.4%
10	Blendon sandy loam, 0 to 3 percent slopes	В	321.4	30.5%
11	Bresser sandy loam, cool, 0 to 3 percent slopes	В	31.9	3.0%
12	Bresser sandy loam, cool, 3 to 5 percent slopes	В	69.8	6.6%
13	Bresser sandy loam, cool, 5 to 9 percent slopes	В	41.4	3.9%
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	A	96.1	9.1%
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	В	3.7	0.3%
70	Pits, gravel	A	10.3	1.0%
94	Travessilla-Rock outcrop complex, 8 to 90 percent slopes	D	51.5	4.9%
95	Truckton loamy sand, 1 to 9 percent slopes	A	35.7	3.4%
96	Truckton sandy loam, 0 to 3 percent slopes	А	19.7	1.9%
Totals for Area of Inter	rest		1,055.2	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

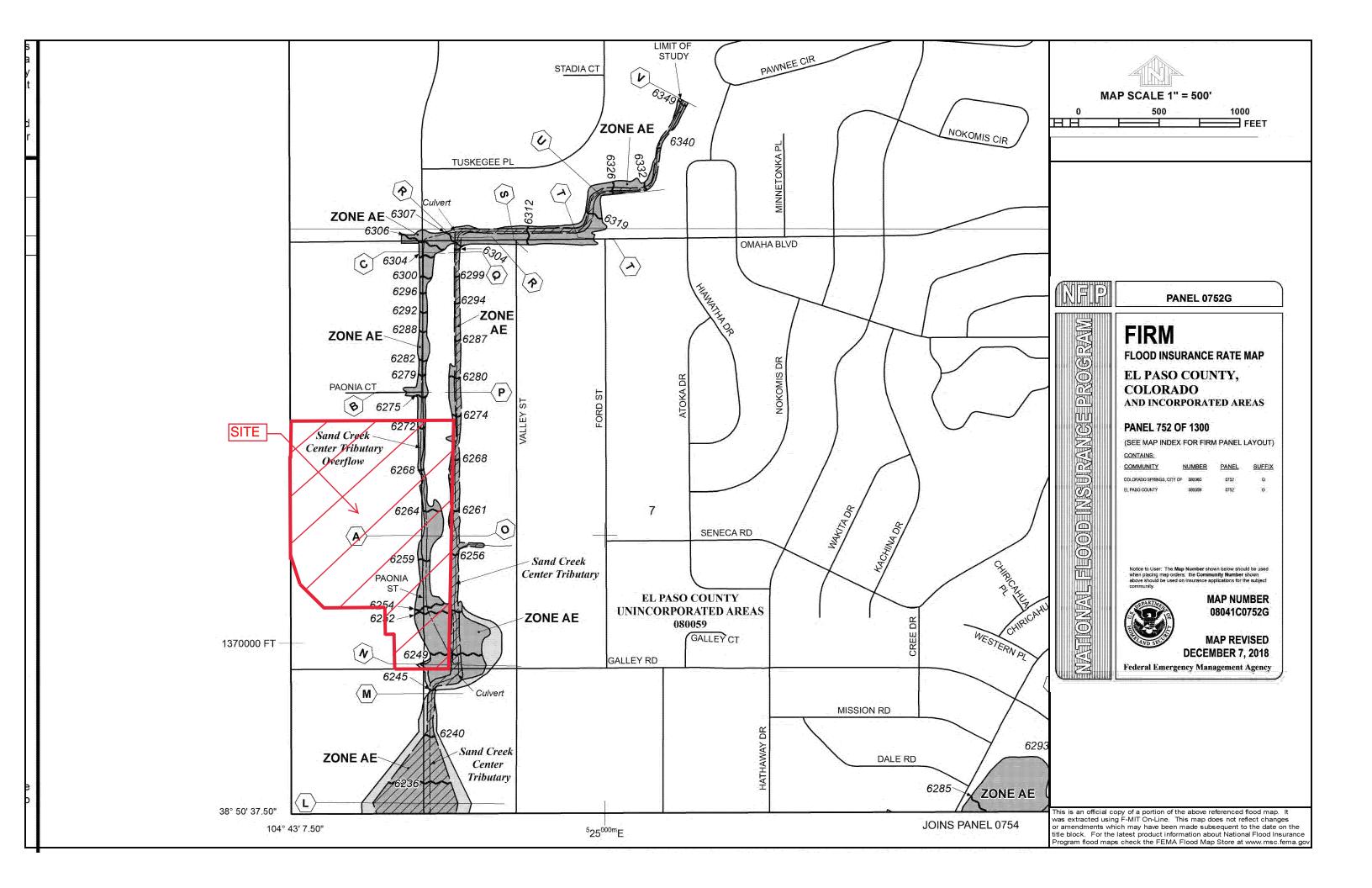
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The **community map repository** should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control structures**. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The **projection** used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The **horizontal datum** was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the **North American Vertical Datum of 1988 (NAVD88)**. These flood elevations must be compared to structure and ground elevations referenced to the same **vertical datum**. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management, National Oceanic and Atmospheric Administration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date **stream channel configurations and floodplain delineations** than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

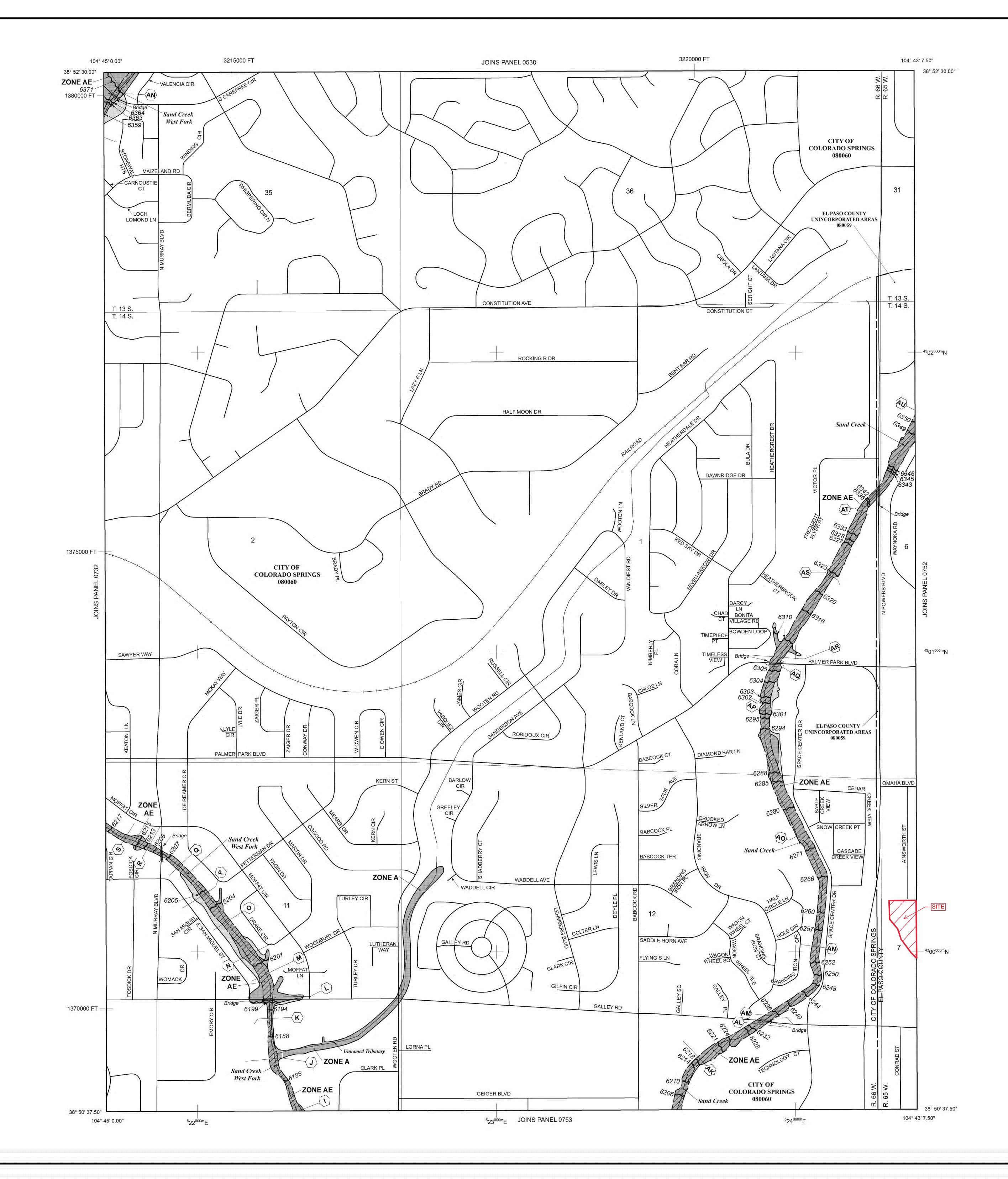
Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located

Contact **FEMA Map Service Center** (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

El Paso County Vertical Datum Offset Table Vertical Flooding Source

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION


Panel Location Map

Vertical Datum

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

LEGEND

SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD

Elevation is the water-surface elevation of the 1% annual chance flood.

The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood

IE A No Base Flood Elevations determined.

ZONE AE
Base Flood Elevations determined.

Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined.

Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also determined.
 ZONE AR Special Flood Hazard Area Formerly protected from the 1% annual chance

indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood.

ZONE A99 Area to be protected from 1% annual chance flood by a Federal flood

flood by a flood control system that was subsequently decertified. Zone AR

protection system under construction; no Base Flood Elevations determined.

V Coastal flood zone with velocity hazard (wave action); no Base Flood

ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood Elevations determined.

FLOODWAY AREAS IN ZONE AE

The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights.

OTHER FLOOD AREAS

Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.

OTHER AREAS

00000000000

Areas determined to be outside the 0.2% annual chance floodplain.

Areas in which flood hazards are undetermined, but possible.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

OTHERWISE PROTECTED AREAS (OPAs)

CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas.

Floodplain boundaryFloodway boundaryZone D Boundary

Boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities.

CBRS and OPA boundary

* Referenced to the North American Vertical Datum of 1988 (NAVD 88)

Cross section line

Transect line

97° 07' 30.00" Geographic coordinates referenced to the North American Datum of 1983 (NAD 83)

4275^{000m}N 1000-meter Universal Transverse Mercator grid ticks, zone 13

6000000 FT 5000-foot grid ticks: Colorado State Plane coordinate system, central zone (FIPSZONE 0502),

this FIRM panel)

DX5510 Lambert Conformal Conic Projection

Bench mark (see explanation in Notes to Users section of

M1.5 River Mile

MAP REPOSITORIES
Refer to Map Repositories list on Map Index
EFFECTIVE DATE OF COUNTYWIDE

MARCH 17, 1997

EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL

DECEMBER 7, 2018 - to update corporate limits, to change Base Flood Elevations and Special Flood Hazard Areas, to update map format, to add roads and road names, and to

FLOOD INSURANCE RATE MAP

incorporate previously issued Letters of Map Revision.

For community map revision history prior to countywide mapping, refer to the Community

Map History Table located in the Flood Insurance Study report for this jurisdiction.

To determine if flood insurance is available in this community, contact your insurance agent or call the National Flood Insurance Program at 1-800-638-6620.

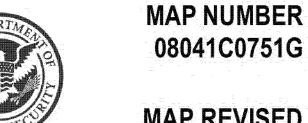
MAP SCALE 1" = 500'
250 0 500 1000
HHH HHH FEET

PANEL 0751G

RM

FLOOD INSURANCE RATE MAP
EL PASO COUNTY,
COLORADO
AND INCORPORATED AREAS

PANEL 751 OF 1300


(SEE MAP INDEX FOR FIRM PANEL LAYOUT)

<u>CONTAINS:</u>

COMMUNITY NU

COLORADO SPRINGS, CITY OF 06

Notice to User: The **Map Number** shown below should be used when placing map orders: the **Community Number** shown above should be used on insurance applications for the subject community.

MAP REVISED DECEMBER 7, 2018

Federal Emergency Management Agency

APPENDIX B HYDROLOGIC/ HYDRAULIC CALCULATIONS

COMPOSITE % IMPERVIOUS & COMPOSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision:	Solace (Existing Condition)	Project Name: Solace Apartments
Location:	El Paso County	Project No.: 25174.00
		Calculated By: JBP
		Checked By:
		Date: 6/29/20

	Total	Str	eets (10	0% Impe	rvious)	R	oofs (90	% Imper	vious)	Light I	ndustria	I (80% In	npervious)	Unde	eveloped	d (2% Imp	pervious)	Basins	Total	Basins Total
Basin ID	Area (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	Weigh C ₅		Weighted % Imp.
	(ac)			(ac)	76 IIIIp.	U ₅	C ₁₀₀	imp.												
A1	14.75	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	14.75	2.0%	0.09	0.36	2.0%
A2	3.79	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	3.79	2.0%	0.09	0.36	2.0%
A3	5.44	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.07	0.36	5.44	2.0%	0.07	0.36	2.0%
B1	4.84	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	4.84	2.0%	0.09	0.36	2.0%
OS1	17.73	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.59	0.70	17.73	80.0%	0.09	0.36	0.00	2.0%	0.59	0.70	80.0%
OS2	8.93	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.73	0.81	8.93	90.0%	0.09	0.36	0.00	2.0%	0.73	0.81	90.0%
TOTAL (A1-B1)	28.82										•	•	•							2.0%
TOTAL (OS1-OS3)	26.66																			83.3%
TOTAL	55.48																			41.1%

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Solace (Existing Condition)	Project Name: Solace Apartments
Location: El Paso County	Project No.: 25174.00
	Calculated By: JBP
	Checked By:
	Date: 6/29/20

		SUB-I	BASIN			INITI	AL/OVER	LAND			TRAVEL TII	ME					
		DA	ATA				(T_i)				(T _t)			(U	IRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C_5	C ₁₀₀	L	S_o	t _i	L_t	S_t	Κ	VEL.	t _t	COMP. t_c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
A1	14.75	В	2%	0.09	0.36	100	2.4%	13.7	1119	2.0%	7.0	1.0	18.8	32.5	1219.0	39.9	32.5
A2	3.79	В	2%	0.09	0.36	100	2.0%	14.5	611	1.8%	7.0	0.9	10.8	25.4	711.0	33.8	25.4
A3	5.44	В	2%	0.09	0.36	100	1.8%	15.0	444	1.9%	7.0	1.0	7.7	22.7	544.0	31.4	22.7
B1	4.84	В	2%	0.09	0.36	100	3.0%	12.7	351	1.2%	7.0	0.8	7.6	20.3	451.0	31.4	20.3
OS1	17.73	В	80%	0.59	0.70	100	1.9%	7.5	1236	1.8%	20.0	2.7	7.7	15.1	1336.0	20.0	15.1
OS2	8.93	В	90%	0.73	0.81	100	2.1%	5.2	415	1.9%	15.0	2.1	3.3	8.6	515.0	13.0	8.6
							·	·					•				
	_	_		•		_						_				_	

NOTES:

$$t_c = t_i + t_t \qquad \text{Equation 6-2} \qquad t_i = \frac{0.395(1.1 - C_5)\sqrt{L_t}}{S_o^{0.33}} \qquad \text{Equation 6-3}$$
Where:
$$t_t = \text{computed time of concentration (minutes)} \qquad \text{Where:}$$

$$t_t = \text{overland (initial) flow time (minutes)} \qquad t_t = \text{overland (initial) flow time (minutes)} \qquad C_5 = \text{runoff coefficient for 5-year frequency (from Table 6-4)} \qquad L_i = \text{length of overland flow (ft)} \qquad S_o = \text{average slope along the overland flow path (ft/ft)}.$$

$$t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t} \qquad \text{Equation 6-4} \qquad t_t = (26-17i) + \frac{L_t}{60(14i+9)\sqrt{S_t}} \qquad \text{Equation 6-5}$$

Table 6-2. NRCS Conveyance factors, K

Type of Land Surface	Conveyance Factor, K
Heavy meadow	2.5
Tillage/field	5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

Where:

 t_t = channelized flow time (travel time, min) L_t = waterway length (ft) S_o = waterway slope (ft/ft)

 V_t = travel time velocity (ft/sec) = K $\sqrt{S_o}$ K = NRCS conveyance factor (see Table 6-2).

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1.

 L_t = length of channelized flow path (ft)

i = imperviousness (expressed as a decimal) S_t = slope of the channelized flow path (ft/ft).

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

	Project Name: Solace Apartments
Subdivision: Solace (Existing Condition)	Project No.: 25174.00
Location: El Paso County	Calculated By: JBP
Design Storm: 5-Year	Checked By:
· · · · · · · · · · · · · · · · · · ·	Date: 6/29/20

				DIRE	CT RUI	NOFF			TOTAL RUNOFF				STREET/SWALE			LE PIPE			TRAV	EL TIN	ИE		
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	A1	14.75	0.09	32.5	1.33	2.36	3.1					3.1	1.33	0.7								Surface runoff from existing basin A1, Surface flow into Sand Creek Drainageway at DP 1
	2	A2	3.79	0.09	25.4	0.34	2.73	0.9					0.9	0.34	2.0								Surface runoff from Basin A2 Surface flow offsite to the south at DP 2
	3	A3	5.44	0.09	22.7	0.49	2.90	1.4					1.4	0.49	2.5								Surface runoff from Basin A3 Surface flow offsite to the south at DP 3
	4	B1	4.84	0.09	20.3	0.44	3.07	1.3					1.3	0.44	1.0								Surface runoff from Basin B1 Surface flow offsite to the southwest at DP 4
	5	OS1	17.73	0.59	15.1	10.46	3.51	36.7					36.7	10.46	1.78					200	2.0		Surface runoff from Basin OS1, captured by existing concrete channel at DP 5 Channel conveyance to Sand Creek at DP 1.1
	6	OS2	8.93	0.73	8.6	6.52	4.36	28.4					28.4	6.52	3.2					147	2.7	0.9	Surface runoff from Basin OS2 diverted to swale west of site at DP 6
	1.0		-		-	-	-	-															5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.
	1.1		-	-	-	-	-	-															5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.
	1.2	-	-	-	-	-	-	-															5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.
	1.3		-		-	-	-	-															5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.
	1.4	-	-	-	-	-	-	-															5-Year Flows were not analyzed as part of the LOMR for Sand Creek Center Tributary.
	1.5	-	-	-	-	-	-	-															5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.
	1.6	-	-		-	-	-	-															5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.

Street and Pipe C*A values are determined by Q/I using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

	Project Name: Solace Apartments	
Subdivision: Solace (Existing Condition)	Project No.: 25174.00	
Location: El Paso County	Calculated By: JBP	
Design Storm: 100-Year	Checked By:	
<u>-</u>	Date: 6/29/20	

				DIF	RECT RU	JNOFF			1	OTAL F	RUNOFF	STF	EET/S\	NALE		Р	IPE		TRAV	EL TIM	ΙE	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	O (cfs)	tc (min)	C*A (ac)	l (in/hr) Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	A1	14.75	0.36	32.5	5.31	3.96	21.0				21	0 5.3	1 0	.7							Surface runoff from existing basin A1, Surface flow into Sand Creek Drainageway at DP 1
	2	A2	3.79		25.4			6.2					2 1.3									Surface runoff from Basin A2 Surface flow offsite to the south at DP 2
	3	A3	5.44	0.36	22.7	1.96	4.87	9.5					5 1.9									Surface runoff from Basin A3 Surface flow offsite to the south at DP 3
	4	B1	4.84	0.36	20.3	1.74	5.15	9.0					0 1.7									Surface runoff from Basin B1 Surface flow offsite to the southwest at DP 4
	5	OS1	17.73	0.70	15.1	12.41	5.89	73.1			573			1.7	8				200			Surface runoff from Basin OS1 & DP 1.4, captured by existing concrete channel at DP 5 Street conveyance to DP 5, flow split to DP 1.5 & DP 1.6
	6	OS2	8.93	0.81	8.6	7.23	7.32	52.9				52	9 7.2	3 3	2				147	2.7		Surface runoff from Basin OS2 diverted to swale west of site at DP 6
	1.0		-	-		-	-	820.0				820	.0									Flow taken directly from the Sand Creek Drainage Basin Planning Study
	1.1		_				-	820.0				820	.0									Flow taken directly from the Sand Creek Drainage Basin Planning Study
	1.2	_	_	_			-	1037.0				1037	0									Flow taken directly from the Sand Creek Drainage Basin Planning Study
	1.3	-	-	-	-	-	-	1100.0				1100	.0									Flow taken directly from the Sand Creek Drainage Basin Planning Study
	1.4	-	-				-	500.0				500	.0									Flow taken directly from the LOMR for Sand Creek Center Tributary Street conveyance to DP 5
	1.5										244	.0 244	0									Second Draiangeway Channel conveyance to Sand Creek at DP 1
	1.6										42	.1 42	.1									Existing Concrete Channel Channel conveyance to Sand Creek at DP 1.1

Notes: Street and Pipe C*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

Page 1 of 1 3/11/2021

COMPOSITE % IMPERVIOUS & COMPOSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision:	Solace	Project Name: Solace Apartments
Location:	El Paso County	Project No.: 25174.00
		Calculated By: AAM
		Checked By:
		Date: 3/12/21

	Total	Str	eets (10	0% Impe	ervious)	R	oofs (90	% Imper	vious)	Light Industrial (80% Impervious)			L	awns (0	% Imper	vious)	Basins Total		Basins Total	
Basin ID	Area	C_5	C ₁₀₀	Area	Weighted	C ₅	C ₁₀₀	Area	Weighted	C ₅	C ₁₀₀	Area	Weighted	C_5	C ₁₀₀	Area	Weighted	3	nted C	Weighted %
	(ac)			(ac)	% Imp.			(ac)	% Imp.			(ac)	% Imp.			(ac)	% Imp.	C ₅	C ₁₀₀	lmp.
A.1	0.50	0.00	0.07	0.00	F0.00/	0.70	0.01	0.11	10.00/	0.50	0.70	0.00	0.00/	0.00	0.05	0.10	0.00/	0.70	0.01	77.00/
A1	0.50	0.90	0.96	0.29	58.0%	0.73	0.81	0.11	19.8%	0.59	0.70	0.00	0.0%	0.08	0.35	0.10	0.0%	0.70	0.81	77.8%
A2 A3	0.47	0.90	0.96	0.36	76.6% 77.8%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.11	0.0%	0.71	0.82	76.6% 77.8%
A3 A4	0.45	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	90.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.10	0.0%	0.72	0.81	90.0%
A4 A5	0.13	0.90	0.96	0.00	0.0%	0.73	0.81	0.13	90.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.73	0.81	90.0%
A5 A6	1.51	0.90	0.96	0.53	35.1%	0.73	0.81	0.13	22.6%	0.59	0.70	0.00	0.0%	0.08	0.35	0.60	0.0%	0.73	0.61	57.7%
A0 A7	0.58	0.90	0.96	0.33	41.4%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.34	0.0%	0.33	0.60	41.4%
A8	0.30	0.90	0.96	0.16	53.3%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.14	0.0%	0.52	0.68	53.3%
A9	1.33	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	1.33	0.0%	0.08	0.35	0.0%
B1	0.37	0.90	0.96	0.29	78.4%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.08	0.0%	0.72	0.83	78.4%
B2	0.35	0.90	0.96	0.33	94.3%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.02	0.0%	0.85	0.93	94.3%
B3	0.35	0.90	0.96	0.25	71.4%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.10	0.0%	0.67	0.79	71.4%
B4	0.03	0.90	0.96	0.00	0.0%	0.73	0.81	0.03	90.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.73	0.81	90.0%
B5	0.26	0.90	0.96	0.00	0.0%	0.73	0.81	0.26	90.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.73	0.81	90.0%
B6	0.73	0.90	0.96	0.43	58.9%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.30	0.0%	0.56	0.71	58.9%
В7	0.47	0.90	0.96	0.00	0.0%	0.73	0.81	0.21	40.2%	0.59	0.70	0.00	0.0%	0.08	0.35	0.26	0.0%	0.37	0.56	40.2%
B8	0.25	0.90	0.96	0.00	0.0%	0.73	0.81	0.25	90.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.73	0.81	90.0%
В9	0.19	0.90	0.96	0.00	0.0%	0.73	0.81	0.19	90.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.00	0.0%	0.73	0.81	90.0%
B10	0.38	0.90	0.96	0.21	55.3%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.17	0.0%	0.53	0.69	55.3%
B11	0.74	0.90	0.96	0.00	0.0%	0.73	0.81	0.29	35.3%	0.59	0.70	0.00	0.0%	0.08	0.35	0.45	0.0%	0.33	0.53	35.3%
B12	1.08	0.90	0.96	0.66	61.1%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.42	0.0%	0.58	0.72	61.1%
B13	0.58	0.90	0.96	0.33	56.9%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.25	0.0%	0.55	0.70	56.9%
B13A	0.48	0.90	0.96	0.00	0.0%	0.73	0.81	0.11	20.6%	0.59	0.70	0.00	0.0%	0.08	0.35	0.37	0.0%	0.23	0.46	20.6%
B14	0.49	0.90	0.96	0.29	59.2%	0.73	0.81	0.05	9.2%	0.59	0.70	0.00	0.0%	0.08	0.35	0.15	0.0%	0.63	0.76	68.4%
B15	0.27	0.90	0.96	0.19	70.4%	0.73	0.81	0.02	6.7%	0.59	0.70	0.00	0.0%	0.08	0.35	0.06	0.0%	0.71	0.81	77.0%
B16	0.15	0.90	0.96	0.00	0.0%	0.73	0.81	0.11	66.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.04	0.0%	0.56	0.69	66.0%
B17	0.99	0.90	0.96	0.40	40.4%	0.73	0.81	0.01	0.9%	0.59	0.70	0.00	0.0%	0.08	0.35	0.58	0.0%	0.42	0.60	41.3%
B18	0.47	0.90	0.96	0.24	51.1%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.23	0.0%	0.50	0.66	51.1%

	Total	Str	eets (10	0% Impe	rvious)	R	oofs (90	% Imper	vious)	Light I	ndustria	I (80% In	npervious)	L	awns (0	% Imper	/ious)	Basins	Total	Basins Total
Basin ID	Area (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	Weigl C ₅	nted C C ₁₀₀	Weighted % Imp.
B19	1.92	0.90	0.96	0.44	22.9%	0.73	0.81	0.16	7.5%	0.59	0.70	0.00	0.0%	0.08	0.35	1.32	0.0%	0.32	0.53	30.4%
B20	0.26	0.90	0.96	0.13	50.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.13	0.0%	0.49	0.66	50.0%
B21	2.46	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	2.46	0.0%	0.08	0.35	0.0%
C1	0.74	0.90	0.96	0.19	25.7%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.55	0.0%	0.29	0.51	25.7%
C2	0.80	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.80	0.0%	0.08	0.35	0.0%
D1	0.95	0.90	0.96	0.13	13.7%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.82	0.0%	0.19	0.43	13.7%
F1	0.92	0.90	0.96	0.33	35.9%	0.73	0.81	0.21	20.5%	0.59	0.70	0.00	0.0%	0.08	0.35	0.38	0.0%	0.52	0.67	56.4%
F2	0.14	0.90	0.96	0.11	78.6%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.03	0.0%	0.72	0.83	78.6%
F3	0.73	0.90	0.96	0.44	60.3%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.29	0.0%	0.57	0.72	60.3%
F4	0.68	0.90	0.96	0.02	2.9%	0.73	0.81	0.21	27.8%	0.59	0.70	0.00	0.0%	0.08	0.35	0.45	0.0%	0.30	0.51	30.7%
F5	3.88	0.90	0.96	0.79	20.4%	0.73	0.81	0.66	15.3%	0.59	0.70	0.00	0.0%	0.08	0.35	2.43	0.0%	0.36	0.55	35.7%
F6	0.35	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.35	0.0%	0.08	0.35	0.0%
F7	0.53	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	0.53	0.0%	0.08	0.35	0.0%
OS1	17.73	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.59	0.70	17.73	80.0%	0.08	0.35	0.00	0.0%	0.59	0.70	80.0%
OS2	8.93	0.90	0.96	0.00	0.0%	0.73	0.81	0.00	0.0%	0.59	0.70	8.93	90.0%	0.08	0.35	0.00	0.0%	0.59	0.70	90.0%
TOTAL (A1-D1)	21.18																			40.9%
TOTAL (F1-F7)	7.23																			36.8%
TOTAL (OS1-OS2)	26.66																			83.3%
TOTAL	55.07					•														60.9%

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision:	Solace
Location:	FL Paso County

Project Name: Solace Apartments

Project No.: 25174.00

Calculated By: AAM
Checked By:

Date: 3/12/21

		SUB-l	BASIN			INITIA	AL/OVER	LAND										
		DA	ATA				(T_i)				(T_t)			(L	JRBANIZED B <i>A</i>	ASINS)	FINAL	
BASIN	D.A.	Hydrologic	Impervious	C_5	C ₁₀₀	L	S_o	t_i	L_t	S_t	K	VEL.	t_t	COMP. t_c	TOTAL	Urbanized $t_{\it c}$	t_c	
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)	
A1	0.50	В	78%	0.70	0.81	48	2.0%	4.0	212	1.1%	20.0	2.1	1.7	5.7	260.0	14.5	5.7	
A2	0.47	В	77%	0.71	0.82	78	2.5%	4.6	207	1.2%	20.0	2.2	1.6	6.2	285.0	14.6	6.2	
A3	0.45	В	78%	0.72	0.82	54	1.3%	4.7	185	1.5%	20.0	2.4	1.3	5.9	239.0	14.0	5.9	
A4	0.15	В	90%	0.73	0.81	20	1.0%	3.0	120	1.0%	20.0	2.0	1.0	4.0	140.0	11.6	5.0	
A5	0.13	В	90%	0.73	0.81	20	1.0%	3.0	120	1.0%	20.0	2.0	1.0	4.0	140.0	11.6	5.0	
A6	1.51	В	58%	0.53	0.68	110	1.9%	8.8	217	1.2%	20.0	2.1	1.7	10.5	327.0	18.2	10.5	
A7	0.58	В	41%	0.42	0.60	86	2.2%	8.8	261	1.5%	20.0	2.4	1.8	10.6	347.0	21.4	10.6	
A8	0.30	В	53%	0.52	0.68	20	2.0%	3.7	316	1.5%	20.0	2.4	2.2	5.9	336.0	19.5	5.9	
A9	1.33	В	0%	0.08	0.35	152	7.0%	11.9	194	1.3%	15.0	1.7	1.9	13.9	346.0	29.2	13.9	
B1	0.37	В	78%	0.72	0.83	56	2.3%	3.9	171	1.3%	20.0	2.3	1.3	5.1	227.0	13.9	5.1	
B2	0.35	В	94%	0.85	0.93	44	1.9%	2.4	215	1.9%	20.0	2.8	1.3	3.7	259.0	11.1	5.0	
В3	0.35	В	71%	0.67	0.79	33	2.3%	3.4	140	1.0%	20.0	2.0	1.2	4.6	173.0	15.1	5.0	
B4	0.03	В	90%	0.73	0.81	20	1.0%	3.0	40	1.0%	20.0	2.0	0.3	3.3	60.0	11.0	5.0	
B5	0.26	В	90%	0.73	0.81	20	1.0%	3.0	120	1.0%	20.0	2.0	1.0	4.0	140.0	11.6	5.0	
B6	0.73	В	59%	0.56	0.71	70	3.6%	5.3	222	1.2%	20.0	2.1	1.7	7.1	292.0	18.0	7.1	
В7	0.47	В	40%	0.37	0.56	88	7.3%	6.4	54	1.0%	15.0	1.5	0.6	7.0	142.0	19.8	7.0	
B8	0.25	В	90%	0.73	0.81	20	1.0%	3.0	120	1.0%	20.0	2.0	1.0	4.0	140.0	11.6	5.0	
В9	0.19	В	90%	0.73	0.81	20	1.0%	3.0	120	1.0%	20.0	2.0	1.0	4.0	140.0	11.6	5.0	
B10	0.38	В	55%	0.53	0.69	43	3.2%	4.6	111	1.9%	20.0	2.8	0.7	5.2	154.0	17.4	5.2	
B11	0.74	В	35%	0.33	0.53	140	5.0%	9.6	130	1.0%	15.0	1.5	1.4	11.1	270.0	21.6	11.1	
B12	1.08	В	61%	0.58	0.72	71	2.3%	6.0	418	1.2%	20.0	2.1	3.2	9.2	489.0	19.3	9.2	
B13	0.58	В	57%	0.55	0.70	87	4.9%	5.5	192	3.4%	20.0	3.7	0.9	6.4	279.0	17.4	6.4	
B13A	0.48	В	21%	0.23	0.46	60	3.9%	7.8	197	1.0%	20.0	2.0	1.6	9.4	257.0	25.3	9.4	
B14	0.49	В	68%	0.63	0.76	195	2.1%	9.2	23	1.0%	20.0	2.0	0.2	9.4	218.0	14.6	9.4	
B15	0.27	В	77%	0.71	0.81	117	2.5%	5.7	6	1.0%	20.0	2.0	0.1	5.7	123.0	13.0	5.7	
B16	0.15	В	66%	0.56	0.69	20	1.0%	4.4	120	1.0%	20.0	2.0	1.0	5.4	140.0	15.9	5.4	
B17	0.99	В	41%	0.42	0.60	32	3.0%	4.8	494	1.5%	20.0	2.4	3.4	8.2	526.0	23.5	8.2	
B18	0.47	В	51%	0.50	0.66	20	2.0%	3.9	494	1.5%	20.0	2.4	3.4	7.2	514.0	21.5	7.2	
B19	1.92	В	30%	0.32	0.53	250	3.0%	15.5	178	1.0%	20.0	2.0	1.5	16.9	428.0	23.1	16.9	
B20	0.26	В	50%	0.49	0.66	20	2.0%	3.9	280	1.0%	20.0	2.0	2.3	6.3	300.0	20.4	6.3	

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Solace	Project Name:	Solace Apartments
Location: El Paso County	Project No.:	25174.00
	Calculated By:	AAM
	Checked By:	
	Date:	3/12/21

		SUB-E	BASIN			INITI	AL/OVERI	LAND			TRAVEL TI	ME			tc CHECK		
		DA	TA				(T _i)				(T_t)			(U	RBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C_5	C ₁₀₀	L	S_o	t _i	L _t	S_t	Κ	VEL.	t _t	COMP. t_c	TOTAL	Urbanized t_c	t_c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
B21	2.46	В	0%	0.08	0.35	250	2.5%	21.5	736	1.0%	15.0	1.5	8.2	29.7	986.0	39.6	29.7
C1	0.74	В	26%	0.29	0.51	153	2.0%	14.4	95	1.8%	20.0	2.7	0.6	15.0	248.0	22.6	15.0
C2	0.80	В	0%	0.08	0.35	30	5.0%	5.9	30	5.0%	7.0	1.6	0.3	6.3	60.0	26.2	6.3
D1	0.95	В	14%	0.19	0.43	83	2.0%	11.9	155	3.3%	15.0	2.7	0.9	12.8	238.0	25.0	12.8
F1	0.92	В	56%	0.52	0.67	112	5.5%	6.3	196	1.8%	20.0	2.7	1.2	7.5	308.0	17.9	7.5
F2	0.14	В	79%	0.72	0.83	30	4.0%	2.4	257	1.1%	20.0	2.1	2.1	4.4	287.0	14.7	5.0
F3	0.73	В	60%	0.57	0.72	66	13.5%	3.3	331	1.5%	20.0	2.4	2.3	5.5	397.0	18.3	5.5
F4	0.68	В	31%	0.30	0.51	173	6.0%	10.5	97	1.0%	20.0	2.0	0.8	11.3	270.0	22.0	11.3
F5	3.88	В	36%	0.36	0.55	115	5.0%	8.5	283	1.7%	20.0	2.6	1.8	10.3	398.0	22.5	10.3
F6	0.35	В	0%	0.08	0.35	30	8.0%	5.1	30	8.0%	7.0	2.0	0.3	5.3	60.0	26.2	5.3
F7	0.53	В	0%	80.0	0.35	20	25.0%	2.8	516	2.0%	15.0	2.1	4.1	6.9	536.0	32.8	6.9
OS1	17.73	В	80%	0.59	0.70	100	1.9%	7.5	1236	1.8%	20.0	2.7	7.7	15.1	1336.0	20.0	15.1
OS2	8.93	В	90%	0.59	0.70	100	2.1%	7.2	425	1.9%	15.0	2.1	3.4	10.6	525.0	13.1	10.6

NOTES:

Where:

$$t_c = t_i + t_t$$

Where:

 t_c = computed time of concentration (minutes)

 t_i = overland (initial) flow time (minutes)

 t_t = channelized flow time (travel time, min)

 t_l = chalmenzed now time (awer time, min) L_r = waterway length (ft) S_0 = waterway slope (ft/ft) V_t = travel time velocity (ft/sec) = K $\sqrt{S_0}$ K = NRCS conveyance factor (see Table 6-2).

 t_t = channelized flow time (minutes).

$$t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$$

 t_i = overland (initial) flow time (minutes) C_3 = runoff coefficient for 5-year frequency (from Table 6-4) L_i = length of overland flow (ft) C_3 = average slope along the overland flow path (ft/ft).

 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_t}}{S_o^{0.33}}$

 $t = (26 - 17i) + \frac{L_t}{60(14i + 9)\sqrt{S_t}}$

Equation 6-4

Equation 6-2

Where:

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1.

Equation 6-3

Equation 6-5

 $L_t =$ length of channelized flow path (ft)

i = imperviousness (expressed as a decimal) S_t = slope of the channelized flow path (ft/ft).

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of

Table 6-2. NRCS Conveyance factors, K

Type of Land Surface	Conveyance Factor, K
Heavy meadow	2.5
Tillage/field	5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Location: El Paso County sign Storm: 5-Year	ubdivision:	Solace	
sign Storm: 5-Year	Location:	El Paso County	
	ign Storm:	5-Year	

Project Name: Solace Apartments
Project No.: 25174.00
Calculated By: AAM
Checked By: Date: 3/12/21

				DIRE	CT RU	NOFF			T(OTAL RL	JNOFF		STREE	T/SW/	ALE		PIF	Έ		TRAV	EL TIN	ΛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	O (cfs)	tc (min)	C*A (ac)	l (in/hr)		Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	F1	0.92	0.52	7.5	0.48	4.56	2.2								2.2	0.48	1.0	18	320	4.6	1.2	Future on-grade inlet Future pipe conveyance to DP 1.0
	2	F2	0.14	0.72	5.0		5.17	0.5					0.5	0.10	2.18					33		0.2	Future overland flow to DP 4 Infrastructure to South Detention Pond at DP 2
												T				0.4	0.40		4.0				Future sump inlet
-	3	F3	0.73	0.57				2.1				+	0.1	0.03	1.5		0.42		18	64 300	1.8	2.7	Future pipe conveyance to DP 1.0 On-grade inlet, Carryover flow to DP 11
	4	A1	0.50	0.70	5.7	0.35	4.97	1.7				-				1.6	0.32	1.5	18	8	4.9	0.0	Piped to DP 1.0 Sum of DP 1, DP 2, DP 3, & DP 4
	1.0								8.7	1.32	1.35	5.7	E 7	1 22	0 E	5.7	1.32	2.1	36	221 185			Piped to DP 4P Pond A Forebay
	4P								8.7	1.32	1.35	5.7		1.32									Trickle channel conveyance to DP 6P
	5	A2	0.47	0.71	6.2	0.33	4.85	1.6					0.6	0.12	1.2	1.0	0.21	2.0	18	290 33	4.6	0.1	No. 16-valley inlet, Carryover flow to DP 10 Piped to DP 2.2
	6	A3	0.45	0.72	5.9	0.32	4.92	1.6					0.6	0.12	1.5	1.0	0.20	1.0	18	321 0	1.8	2.9	No. 16-valley inlet, Carryover flow to DP 10 Piped to DP 2.0
	7											T											Future roof drains and area inlets
		F4	0.68	0.30	11.3	0.21	3.95	0.8				1				8.0	0.21				3.5		Future pipe conveyance to DP 2.0 Sum of DP 6 & DP 7
-	2.0								11.4	0.41	3.93	1.6				1.6	0.41	1.0	18	14	4.3	0.1	Piped to DP 2.1 Roof drains
	8	A4	0.15	0.73	5.0	0.11	5.17	0.6				4				0.6	0.11	1.0	15	105	3.1	0.6	Piped to DP 2.1 Sum of DP 8 & DP 2.0
	2.1								11.4	0.52	3.93	2.1				2.1	0.52	1.0	18	101	4.6	0.4	Piped to DP 2.2
	2.2								11.8	0.73	3.88	2.8				2.8	0.73	1.0	24	105	4.9	0.4	Sum of DP 5 & DP 2.1 Piped to DP 2.3
	9	A5	0.13	0.73	5.0	0.09	5.17	0.5								0.5	0.09	1.0	15	7	3.0	0.0	Roof drains Piped to DP 2.3
	2.3								12.2	0.82	000	3.1				3.1	0.82	1.3	24	11/	5.4		Sum of DP 9 & DP 2.2 Piped to DP 2.4
			4.54	0.50	40.5	0.00	4.07																Sump Inlet. Sum of Carryover flows from DP 5, DP 6, and Sub-Basin A6
	10	A6	1.51	0.53	10.5	0.80	4.06	3.2	10.5			4.2				4.2	1.04		24	0			Piped to DP 2.4 Sum of DP 9 & DP 2.2
	2.4								12.5	1.86	3.79	7.1				7.1	1.86	2.0	30	31	8.0	0.1	Piped to DP 2.5 On-grade Inlet, Sum of carryover from DP 4 and Sub-Basin A7
	11	A7	0.58	0.42	10.6	0.24	4.05	1.0	10.6	0.27	1.05	1.1				1.1	0.27	2.0	30	0	4.5	0.0	Piped to DP 2.5 Sum of DP 11 & DP 2.4
	2.5								12.6	2.13	3.78	8.1				8.1	2.13	2.0	36	44	8.0	0.1	Piped to DP 2.6
	12	A8	0.30	0.52	5.9	0.16	4.92	0.8								0.8	0.16	2.0	30	0	4.0	0.0	On-grade inlet Piped to DP 2.6
	2.6								12.7	2.29	3.77	8.6				8.6	2.29	2.4	36	55	8.8	0.1	Sum of DP 12 & DP 2.5 Piped to DP 5P
	5P									2.29		8.6	8.6	2.29	0.5					45			Pond A Forebay Trickle channel conveyance to DP 6P
			4.0-	0.0-	40 -	0.4.	0.4		12.7	2.21	,,,,	5.0	0.4	0.11	2.18								Overland Flow
	6P	A9	1.33	0.08	13.9	0.11	3.64	0.4				+											Pond Conveyance to DP 6P Pond outlet Structure
	6P								13.9	3.72	3.64 1	3.5											Release detained flows into Sandcreek Drainageway
													3.4	0.82	1.2					170	1.3	2.2	Future Phase 2 developed flows minus roof drains and future area inlet flows
	13	F5	3.88	0.36	10.3	0.82	4.09	3.4					3.4	0.02	1.2					170	1.3		Pan conveyance to DP 14

STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

ubdivision: Solace Location: El Paso County sign Storm: 5-Year

Project Name: Solace Apartments
Project No.: 25174.00
Calculated By: AAM
Checked By: 3/(3/04)

Date:	3/12/21

				DIRE	CT RUI	NOFF			T	OTAL F	RUNO	FF	STRE	ET/SWA	4LE		PIF	PΕ		TRAV	EL TIN	ΛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	O (cfs)	tc (min)	C*A (ac)	I (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	14	B1	0.37	0.72	5.1	0.27	5.13	1.4	12.4	1.09	3.80	4.1	2.4	0.64	1.1	1.7	0.45		18	89 0		0.9 0.0	Sum of carryover flows from DP 13 and Sub-Basin B1, No. 16-valley inlet, Carryover flow to DP 16 Piped to DP 3.0
	3.0								12.4	1.68	3.80	6.4				6.4	1.68	1.0	18	89	6.2	0.2	Flows captured by No. 16-Valley inlet and future building and area drains connecting directly to inlet. Piped to DP 3.1
	15	B2	0.35	0.85	5.0	0.30	5.17	1.6								1.6	0.30	2.0	18	75	5.4	0.2	On-grade inlet Piped to DP 3.1
	16	В3		0.67		0.23	5.17	1.2	13.4	0.87	3.69	3.2				3.2	0.87	1.0	18	0	5.2	0.0	Sum of carryover flow from DP 14 and Sub-Basin B3,On-grade inlet. Carryover flow to DP 19 Piped to DP 3.1
	3.1									2.85						10.5	2.85				5.4		Sum of DP 14, DP 15 & DP 16 Piped to DP 3.2
	17	В4	0.03	0.73	5.0	0.02	5.17	0.1	13.4	2.00	0.07	10.0				0.1	0.02				1.9		Roof drains Piped to DP 3.2
	3.2		0.00	0.70	0.0	0.02	0.17	0.1	13.5	2.87	3 68	10.6					2.87				5.4		Sum of DP 17 & DP 3.1 Piped to DP 3.3
	18	B5	0.26	0.73	5.0	n 10	5.17	1.0	13.3	2.07	3.00	10.0					0.19				3.8		Roof drains Piped to DP 3.3
	3.3	55	0.20	0.73	5.0	0.17	3.17	1.0	14.0	3.06	2 62	11 1					3.06						Piped to DP 3.4 Piped to DP 3.4
	19	В6	0.72	0.56	7.1	0.41	4.65	1.9	14.0	3.00	3.03	11.1	0.8	0.17	1.1	1.1	0.24			445	1.6	4.7	No. 16-valley inlet, Carryover flow to DP 27 Piped to DP 3.4
		В0	0.73	0.56	7.1	0.41	4.00	1.9			2 / 1	11.0											Sum of DP 19 & DP 3.3
	3.4								14.1	3.29	3.61	11.9				11.9					7.2		Piped to DP 3.5 Roof drains
	20	В7	0.47	0.37	7.0	0.17	4.66	0.8								8.0	0.17						Piped to DP 3.5 Sum of DP 20 & DP 3.4
	3.5								14.2	3.46	3.60	12.5				12.5					5.7		Piped to DP 3.6 Roof drains
	21	B8	0.25	0.73	5.0	0.18	5.17	0.9								0.9	0.18				3.6		Piped to DP 3.6 Sum of DP 21 & DP 3.5
	3.6								14.6	3.64	3.56	13.0				13.0	3.64	0.5			5.8		Piped to DP 3.7 Roof drains
	22	В9	0.19	0.73	5.0	0.14	5.17	0.7								0.7	0.14	1.0	15	15	3.4	0.1	Piped to DP 3.7 Sum of DP 22 & DP 3.6
	3.7								15.2	3.78	3.50	13.3				13.3	3.78	0.5	30	101	5.8	0.3	Piped to DP 3.8 Sump Inlet
	23	B10	0.38	0.53	5.2	0.20	5.10	1.0								1.0	0.20	2.0	18	15	4.7	0.1	Piped to DP 3.8 Sum of DP 23 & DP 3.7
	3.8								15.5	3.98	3.48	13.8				13.8	3.98	0.5	36	46	5.8	0.1	Piped to DP 4.2 Roof drains
	24	B13A	0.48	0.23	9.4	0.11	4.22	0.5					0.6	0.13	3.0	0.5	0.11	1.0	15	47 40	3.0 2.6	0.3	Piped to DP 3.9 No. 16-valley inlet, Carryover flow to DP 28
	25	B13	0.58	0.55	6.4	0.32	4.80	1.5					0.0	0.10	0.0	0.9	0.19	2.0	18			0.0	Piped to DP 3.9
	3.9								9.7	0.30	4.18	1.2				1.2	0.30	2.0	18	41	4.9	0.1	Piped to DP 4.1 Roof drains
	26	B11	0.74	0.33	11.1	0.25	3.98	1.0								1.0	0.25	1.0	15	39	3.7	0.2	Fliped to DP 4.0 Sump Inlet, sum of carryover from DP 19 and Sub-Basin B12
	27	B12	1.08	0.58	9.2	0.63	4.25	2.7	11.8	0.80	3.89	3.1				3.1	0.80	1.0	18	0	5.2	0.0	Piped to DP 4.0
	4.0								11.8	1.05	3.89	4.1				4.1	1.05	1.0	18	32	5.6	0.1	Sum of DP 26 & DP 27 Piped to DP 4.1
	28	B14	0.49	0.63	9.4	0.31	4.22	1.3	9.4	0.44	4.22	1.9				1.9	0.44	1.2	18	12	4.8	0.0	Sump Inlet, sum of carryover from DP 25 & Sub-Basin B14 Piped to DP 4.1

STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

ubdivision: Solace	
Location: El Paso County	
sign Storm: 5-Year	•

Project Name: Solace Apartments
Project No.: 25174.00
Calculated By: AAM
Checked By: Date: 3/12/21

				DIRE	CT RU	NOFF			TO	TAL F	RUNOI	FF	STRE	ET/SW	/ALE		PIF	Έ		TRAV	EL TIN	ΛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	4.1								11.9	1.79	3.87	6.9				6.9	1.79	1.0	24	44	6.3	0.1	Sum of DP 28, DP 3.9, & DP 4.0 Piped to DP 4.2
	4.2								15.6	5.78	3.46	20.0				20.0	5.78	0.5	36	158	6.4	0.4	Sum of DP 3.8 & DP 4.1 Piped to DP 4.4
	29	B16	0.15	0.56	5.4	0.08	5.06	0.4								0.4	0.08	1.0	15	47	2.8	0.3	Roof drains Piped to DP 4.3
	30	B15	0.27	0.71	5.7	0.19	4.96	0.9								0.9	0.19	2.0	18	0	4.6	0.0	Sump Inlet Piped to DP 4.3
	4.3								5.7	0.27	4.96	1.3				1.3	0.27	2.0	18	34	5.1	0.1	Sum of DP 29 & DP 30 Piped to DP 4.4
	4.4								16.0	6.05	3.42	20.7				20.7	6.05	0.8	36	311	7.7	0.7	Sum of DP 4.2 & DP 4.3 Piped to DP 4.5
	31	B17	0.99	0.42	8.2	0.41	4.43	1.8								1.8	0.41	2.0	18	13	5.6	0.0	On-grade inlet Piped to DP 4.5
	4.5								16.7	6.46	3.36	21.7				21.7	6.46	0.5	42	32	6.5	0.1	Sum of DP 31 & DP 4.4 Piped to DP 2.6
	32	B18	0.47	0.50	7.2	0.23	4.62	1.1								1.1	0.23	0.5	42	0	2.7	0.0	On-grade inlet Piped to DP 4.6
	4.6								16.8	6.69	3.35	22.4				22.4	6.69	0.5	42	52			Sum of DP 32 & DP 4.5 Piped to DP 35
	35								16.8	6.7	3.35	22.4	22.4	6.69	0.5					336	1.1	5.3	Pond B forebay Trickle channel conveyance to DP 37
	33	B19	1.92	0.32	16.9	0.62	3.34	2.1								2.1	0.62	1.0	18	55	4.5	0.2	On-grade Inlet Piped to DP 4.7
	34	B20	0.26	0.49	6.3	0.13	4.83	0.6								0.6	0.13	1.0	24	0	3.1	0.0	On-grade Inlet Piped to DP 4.7
	4.7								17.1	0.75	3.32	2.5				2.5	0.75	1.0	24				Sum of DP 33 & DP 34 Piped to DP 2.6
	36								17.1	0.8	3.32	2.5		0.75						106	1.1	1.7	Pond B forebay Trickle channel conveyance to DP 37
	37	B21	2.46	0.08	29.7	0.20	2.50	0.5					0.5	0.20	2.18								Overland Flow Pond Conveyance to DP 37
	37								22.0	7.64	2.94	22.5											Pond outlet Structure Release detained flows into Sandcreek Drainageway
	38	F6	0.35	0.08	5.3	0.03	5.07	0.2					0.2	0.03	5.0					0	4.5	0.0	Future overland flow Sheet flow offsite per historic condition
	39	F7	0.53	0.08	6.9	0.04	4.69	0.2					0.2	0.04	2.0					0	2.8		Future overland flow Existing swale conveyance offsite per historic condition
	40	C1	0.74	0.29	15.0	0.22	3.52	0.8					0.8	0.22	1.0					183	2.0	1.5	Future overland flow to DP 40 Existing swale conveyance offsite per historic condition
	41	C2	0.80	0.08	6.3	0.06	4.83	0.3						0.06						0			Overland flow Sheet flow offsite per historic condition
	42	D1	0.95	0.19	12.8	0.18	3.76	0.7						0.18						0			Overland flow Overflow channel to the Sandcreek Drainageway
	43	OS1	17.73	0.59	15.1	10.46	3.51	36.7						10.46						225			Surface runoff from Basin OS1, captured by existing channel and proposed overflow channel at DP 43 Channel conveyance to Sand Creek at DP 5.1
	44	OS2	8.93	0.59	10.6	5.27	4.04	21.3					21.3	5.27	3.2					147	2.7	0.9	Surface runoff from Basin OS2 Diverted to swale west of site at DP 44
	5.0	-	-	-	-	-	-	-															5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.
	5.1	-	-	-		-	-	-															5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.

Page 3 of 4 3/11/2021

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

	Project Name: Solace Apartments	
ubdivision: Solace	Project No.: 25174.00	
Location: El Paso County	Calculated By: AAM	
sign Storm: 5-Year	Checked By:	
	Date: 3/12/21	
sign Storm: 5-Year	Date: 3/12/21	

				DIRE	CT RU	NOFF			T(OTAL F	RUNOF	F	STRE	ET/SWA	LE	PIP	E		TRAV	EL TIN	1E	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street/swate} (cfs)	A (ac	Slope (%)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	5.2	-	-	-	-	-	-	-														5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.
	5.3	-	-	-	-	-	-															5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.

Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

Page 4 of 4 3/11/2021

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision:	Solace
Location:	El Paso County
Design Storm:	100-Year

 Project Name:
 Solace Apartments

 Project No.:
 25174.00

 Calculated By:
 AAM

 Checked By:
 Date:

 Jate:
 3/12/21

									_									Jale:					
				DIRE	CT RL	JNOFF	-		T	OTAL F	KUNOF	·ŀ	STREE	EI/SW	ALE	—	PII	Έ		TRAV	EL TIN	/IE	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	(in/hr)	Q (cfs)	tc (min)	C*A (ac)	(in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	F1	0.92	0.67	7.5	0.62	7.66	4.7								4.7	0.62		18				Future on-grade inlet Future pipe conveyance to DP 1.0
	2	F2	0.14	0.83	5.0	0.12	8.68	1.0					1.0	0.12	2.18					33	3.0	0.2	Future overland flow to DP 4 Infrastructure to South Detention Pond at DP 2
	3	F3	0.73	0.72	5.5	0.52	8.43	4.4					1.0	0.10	1.5	4.4	0.52	1.9	18			0.2	Future sump inlet Future pipe conveyance to DP 1.0 On-grade inlet, Carryover flow to DP 11
	4	A1	0.50	0.81	5.7	0.40	8.35	3.3					1.0	0.12	1.5	2.3	0.28	1.5	18	300 8		0.0	Piped to DP 1.0
	1.0								8.4	1.54	7.36	11.3	11.0	1.54	0.5	11.3	1.54	2.1	36	221 185		0.4	Sum of DP 1, DP 2, DP 3, & DP 4 Piped to DP 4P Plond A Forebay
	4P								8.4	1.54	7.36	11.3		0.20						290			Forum A Forebay Trickle channel conveyance to DP 6P No. 16-valley inlet, Carryover flow to DP 10
	5	A2	0.47	0.82	6.2	0.38	8.14	3.1						0.20		1.5	0.18	2.0	18	33	5.2	0.1	Piped to DP 2.2 No. 16-valley inlet, Carryover flow to DP 10
	6	А3	0.45	0.82	5.9	0.37	8.26	3.1					1.0	0.19	1.5	1.5	0.18	1.0	18			0.0	Piped to DP 2.0 Future roof drains and area inlets
	7	F4	0.68	0.51	11.3	0.35	6.63	2.3								2.3	0.35	1.0	15	27	4.8	0.1	Future pipe conveyance to DP 2.0 Sum of DP 6 & DP 7
	2.0								11.4	0.53	6.61	3.5				3.5	0.53	1.0	18	14	5.3	0.0	Piped to DP 2.1 Roof drains
	8	A4	0.15	0.81	5.0	0.12	8.68	1.0								1.0	0.12	1.0	15	105	3.9	0.5	Fiped to DP 2.1 Sum of DP 8 & DP 2.0
	2.1								11.4	0.65	6.60	4.3				4.3	0.65	1.0	18	101	5.6	0.3	Piped to DP 2.2 Sum of DP 5 & DP 2.1
	2.2								11.7	0.84	6.54	5.5				5.5	0.84	1.0	24	105	5.9	0.3	Piped to DP 2.3 Roof drains
	9	A5	0.13	0.81	5.0	0.11	8.68	1.0								1.0	0.11	1.0	15	7	3.7	0.0	Piped to DP 2.3 Sum of DP 9 & DP 2.2
	2.3								12.0	0.95	6.47	6.1				6.1	0.95	1.3	24	114	6.6	0.3	Piped to DP 2.4 Sump Inlet. Sum of Carryover flows from DP 5, DP 6, and Sub-Basin A6
	10	A6	1.51	0.68	10.5	1.03	6.82	7.0	10.5	1.41	6.82	9.6				9.6	1.41	1.3	24	0	7.6	0.0	Piped to DP 2.4 Sum of DP 9 & DP 2.2
	2.4								12.3	2.36	6.41	15.1				15.1	2.36	2.0	30	31	9.8	0.1	Piped to D 2.5 On-grade Inlet, Sum of carryover from DP 4 and Sub-Basin A7
	11	A7	0.58	0.60	10.6	0.35	6.79	2.4	10.6	0.47	6.79	3.2				3.2	0.47	2.0	30	0	6.4	0.0	Piped to DP 2.5 Sum of DP 11 & DP 2.4
	2.5								12.3	2.83	6.40	18.2				18.2	2.83	2.0	36	44	10.2	0.1	Piped to DP 2.6 On-grade inlet
	12	A8	0.30	0.68	5.9	0.20	8.27	1.7			\sqcup					1.7	0.20	2.0	30	0	5.2	0.0	Fliped to DP 2.6 Sum of DP 12 & DP 2.5
	2.6								12.4	3.03	6.39	19.4	19.4	3.03	0.5	19.4	3.03	2.4	36	55 45	11.2 1.1		Piped to DF 5P Pond A Forebay
	5P								12.4	3.03	6.39	19.4		0.47						73	1.1	0.7	Trickle channel conveyance to DP 6P Overland Flow
	6P	A9	1.33	0.35	13.9	0.47	6.11	2.9					2.7	0,	20								Pond Conveyance to DP 6P Pond outlet Structure
	6P								13.9	5.04	6.11	30.8											Release detained flows into Sandcreek Drainageway
											\vdash		8.3	1.18	1.2					170	1.3	2.2	Future Phase 2 developed flows minus roof drains and future area inlet flows
	13	F5	2.00	0.59	9.7	1.18	7.00	8.3				_		1.07						89			Pan conveyance to DP 14 Sum of carryover flows from DP 13 and Sub-Basin B1, No. 16-valley inlet, Carryover flow to DP 16
	14	B1	0.37	0.83	5.1	0.31	8.61	2.7	11.9	1.49	6.50	9.7	,.5	,		2.7	0.42	1.0	18			0.0	Piped to DP 3.0 Flows captured by No. 16-Valley inlet and future building and area drains connecting directly to inlet.
	3.0								11.9	1.40	6.50	9.1				9.1	1.40	1.0	18	89	6.7	0.2	Piped to DP 3.1

X:(2510000.all/2517400)Excel/Drainage_Cales_Template_v2.xlsm

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision:	Solace
Location:	El Paso County
Design Storm:	100-Year

Project Name: Solace Apartments
Project No.: 25174.00
Calculated By: AAM
Checked By: Date: 3/12/21

				DIR	ECT R	UNOFF			TO	OTAL R	UNOF	F	STREE	T/SW/	ALE		PIF	PΕ		TRAV	EL TIN	ΛE	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	O (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	15	B2	0.35	0.93	5.0	0.32	8.68	2.8								2.8	0.32	2.0	18	75	6.4	0.2	On-grade inlet Piped to DP 3.1
										4.05	. 04	0.5	0.3	0.05	1.1					89	1.6	0.9	Sum of carryover flow from DP 14 and Sub-Basin B3,On-grade inlet. Carryover flow to DP 19
	16	B3	0.35	0.79	5.0	0.28	8.68	2.4	12.8			8.5				8.2			18	0			Piped to DP 3.1 Sum of DP 14, DP 15 & DP 16
	3.1								12.8	3.02	6.31	19.0			_	19.0	3.02	0.5	30	30	6.3	0.1	Piped to DP 3.2 Roof drains
	17	B4	0.03	0.81	5.0	0.02	8.68	0.2								0.2	0.02	1.0	8	40	2.3	0.3	Piped to DP 3.2
	3.2								12.9	3.04	6.29	19.1				19.1	3.04	0.5	30	163	6.3	0.4	Sum of DP 17 & DP 3.1 Piped to DP 3.3
	18	B5	0.26	0.81	5.0	0.21	8.68	1.8								1.8	0.21	1.0	8	40	5.2	0.1	Roof drains Piped to DP 3.3
	3.3								13.3	3.25	6 21	20.2				20.2			30		10.4		Sum of DP 18 & DP 3.2 Piped to DP 3.4
													2.5	0.33	1.1					445	1.6	4.7	No. 16-valley inlet, Carryover flow to DP 27
	19	B6	0.73	0.71	7.1	0.52	7.81	4.1	8.0	0.57	7.50	4.3			-	1.8	0.24	1.0	18	13	4.4	0.0	Piped to DP 3.4 Sum of DP 19 & DP 3.3
	3.4								13.5	3.49	6.19	21.6				21.6	3.49	1.0	30	29	8.5	0.1	Piped to DP 3.5 Roof drains
	20	В7	0.47	0.56	7.0	0.26	7.83	2.0								2.0	0.26	1.0	15	60	4.6	0.2	Piped to DP 3.5
	3.5								13.5	3.75	6.17	23.2				23.2	3.75	0.5	30	143	6.6	0.4	Sum of DP 20 & DP 3.4 Piped to DP 3.6
	21	B8	0.25	0.81	5.0	0.20	8.68	1.7								1.7	0.20	1.0	15	10			Roof drains Piped to DP 3.6
		БО	0.23	0.01	3.0	0.20	0.00	1.7		2.05	/ 11	24.1											Sum of DP 21 & DP 3.5
	3.6									3.95	0.11	24.1				24.1			30	191			Piped to DP 3.7 Roof drains
	22	B9	0.19	0.81	5.0	0.15	8.68	1.3								1.3	0.15	1.0	15	15	4.0	0.1	Piped to DP 3.7 Sum of DP 22 & DP 3.6
	3.7								14.4	4.10	6.02	24.7				24.7	4.10	0.5	30	101	6.7	0.3	Piped to DP 3.8 Sump Inlet
	23	B10	0.38	0.69	5.2	0.26	8.56	2.2								2.2	0.26	2.0	18	15	5.9	0.0	Piped to DP 3.8
	3.8								14.6	4.36	5.98	26.1				26.1	4.36	0.5	36	46	6.9	0.1	Sum of DP 23 & DP 3.7 Piped to DP 4.2
	24	B13A	0.48	0.46	9.4	0.22	7.08	1.6								1.6			15	47			Roof drains Piped to DP 3.9
													1.7	0.21	3.0				10	40	2.6	0.3	No. 16-valley inlet, Carryover flow to DP 28
	25	B13	0.58	0.70	6.4	0.40	8.06	3.2				_				1.5	0.19	2.0	18	0	5.2	0.0	Piped to DP 3.9 Sum of DP 24 & DP 25
	3.9								9.6	0.41	7.04	2.9			_	2.9	0.41	2.0	18	41	6.4	0.1	Piped to DP 4.1 Roof drains
	26	B11	0.74	0.53	11.1	0.39	6.68	2.6								2.6	0.39	1.0	15	39	4.9	0.1	Piped to DP 4.0
	27	B12	1.08	0.72	9.2	0.78	7.13	5.6	12.7	1.11	6.33	7.1				7.1	1.11	1.0	18	0	6.4	0.0	Sump Inlet, sum of carryover from DP 19 and Sub-Basin B12 Piped to DP 4.0
	4.0								12.7	1.50	6.33	9.5				9.5	1.50	1.0	18	32	6.7	0.1	Sum of DP 26 & DP 27 Piped to DP 4.1
	28	R1/	0.40	0.76	9.4	0.37	7.08	2.6				4.1				4.1			18				Sump Inlet, sum of carryover from DP 25 & Sub-Basin B14 Piped to DP 4.1
		014	0.49	0.70	7.4	0.31	7.00	2.0							_								Sum of DP 28, DP 3.9, & DP 4.0
	4.1								12.8	2.49	6.31	15.7			\dashv	15.7	2.49	1.0	24	44	7.8	0.1	Piped to DP 4.2 Sum of DP 3.8 & DP 4.1
	4.2								14.7	6.85	5.96	40.8			_	40.8	6.85	0.5	36	158	7.5	0.4	Piped to DP 4.4 Roof drains
	29	B16	0.15	0.69	5.4	0.10	8.49	0.8								0.8	0.10	1.0	15	47	3.6	0.2	Piped to DP 4.3

X:\2510000.all\2517400\Excel\Drainage\2517400_Drainage_Calcs_Template_v2.xlsm Page 2 of 3 3/11/2021

STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision:	Solace
Location:	El Paso County
Design Storm:	100-Year

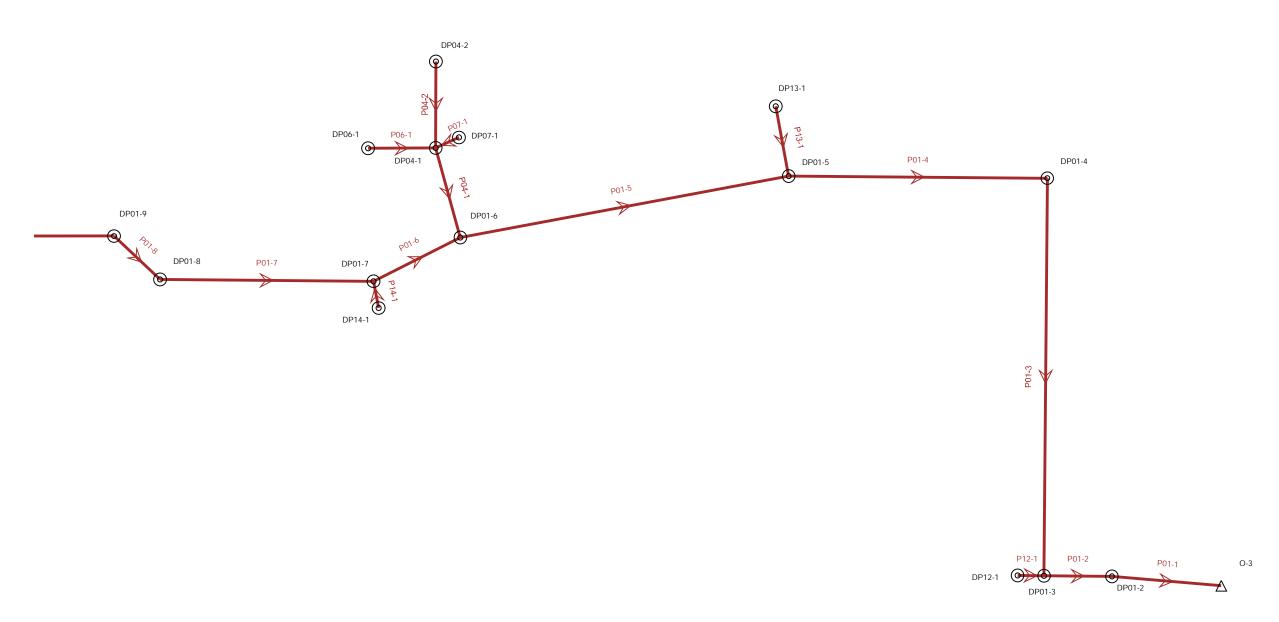
Project Name: Solace Apartments
Project No.: 25174.00
Calculated By: AAM
Checked By: Date: 3/12/21

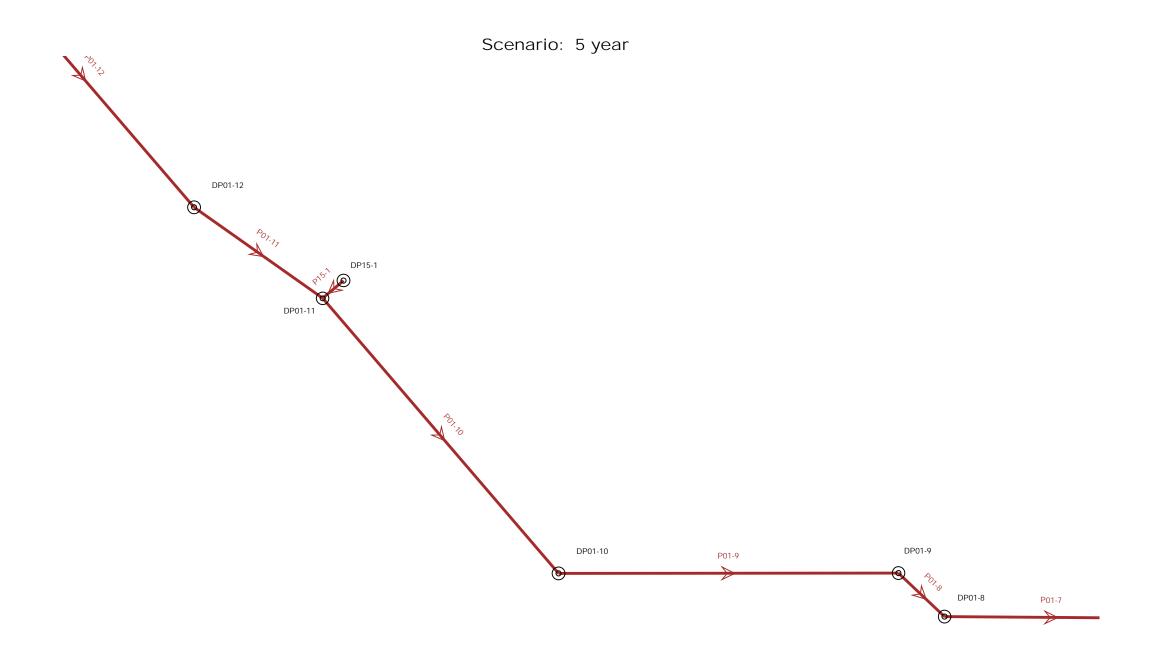
				DIR	ECT R	UNOFF			TC	TAL RUNC	OFF	STRE	ET/SW	/ALE		PIF	PE		TRAV	EL TIN	ΛE	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac) I (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	30	B15	0.27	0.81	5.7	0.22	8.33	1.8							1.8	0.22		18	0	5.6	0.0	Sump Inlet Piped to DP 4.3
	4.3								5.7	0.32 8.33	2.7				2.7	0.32	2.0	18	34	6.4	0.1	Sum of DP 29 & DP 30 Piped to DP 4.4
	4.4								15.1	7.17 5.90	42.3				42.3	7.17	0.8	36	311	9.1	0.6	Sum of DP 4.2 & DP 4.3 Piped to DP 4.5
	31	B17	0.99	0.60	0.2	0.60	7.43	4.5	10.1	7.17		0.2	0.02	1.0	4.3	0.58		18	292	1.5	3.2	On-grade finlet, carryover flow to DP 33 Piped to DP 4.5
		DII	0.77	0.00	0.2	0.00	7.43	4.5	1													Sum of DP 31 & DP 4.4
	4.5								15.6	7.75 5.81	45.0				45.0	7.75		42	32			Piped to DP 2.6 On-grade inlet
	32	B18	0.47	0.66	7.2	0.31	7.75	2.4							2.4	0.31	0.5	42	0	3.4	0.0	Piped to DP 4.6 Sum of DP 32 & DP 4.5
	4.6								15.7	8.06 5.80	46.7	4/ 7	0.07	0.5	46.7	8.06	0.5	42				Piped to DP 35
	35								15.7	8.1 5.8	46.7	46.7	8.06	0.5					336	1.1	5.3	Pond B forebay Trickle channel conveyance to DP 37
	33	B19	1.92	0.53	16.9	1.01	5.60	5.7	16.9	1.03 5.60	5.8				5.8	1.03	1.0	18	55	6.0	0.2	Sum of carryover from DP 31 and Sub-basin B19,On-grade Inlet Piped to DP 4.7
	34	B20	0.26	0.66	6.3	0.17	8.12	1.4							1.4	0.17	1.0	24	0	3.9	0.0	On-grade Inlet Piped to DP 4.7
		520	0.20	0.00	0.5	0.17	0.12	1.4														Sum of DP 33 & DP 34
	4.7								17.1	1.20 5.58		6.7	1.20	0.5	6.7	1.20	1.0	24	52 106			Piped to DP 2.6 Pond B forebay
	36								17.1	1.2 5.6	6.7	3.6	0.86	2.18								Trickle channel conveyance to DP 37 Overland Flow
	37	B21	2.46	0.35	29.7	0.86	4.19	3.6														Pond Conveyance to DP 37 Pond outlet Structure
	37								21.0	10.12 5.06	51.3											Release detained flows into Sandcreek Drainageway
	38	F6	0.35	0.35	5.3	0.12	8.52	1.0				1.0	0.12	5.0					0	4.5		Future overland flow Sheet flow offsite per historic condition
	39	F7	0.53	0.35	6.9	0.19	7.87	1.5				1.5	0.19	2.0					0	2.8		Future overland flow Existing swale conveyance offsite per historic condition
	40	C1	0.74	0.51		0.37	5.91	2.2				2.2	0.37	1.0					183	2.0	1.5	Existing swale conveyance offsite per historic condition Future overland flow to DP 40 Existing swale conveyance offsite per historic condition
									Н			2.3	0.28	4.57					0	4.3	0.0	Overland flow
	41	C2	0.80				8.12	2.3	\vdash			2.6	0.41	3.3	\vdash			\dashv	0	3.6	0.0	Sheet flow offsite per historic condition Overland flow
	42	D1	0.95	0.43	12.8	0.41	6.31	2.6					12.41					_	225			Overflow channel to the Sandcreek Drainageway Surface runoff from Basin OS1, captured by existing channel and proposed overflow channel at DP 43
	43	OS1	17.73	0.70	15.1	12.41	5.89	73.1	Ш													Channel conveyance to Sand Creek at DP 5.1
	44	OS2	8.93	0.70	10.6	6.25	6.78	42.4					6.25	3.2					147	2.7	0.9	Surface runoff from Basin OS2 Diverted to swale west of site at DP 44
	5.0	-	-	-	_	-	-	820.0				820.0										Flow taken directly from the Sand Creek Drainage Basin Planning Study
	5.1	-	-	-	-	-	-	820.0				820.0										Flow taken directly from the Sand Creek Drainage Basin Planning Study
	5.2	-	-	_	-	-	-	1037.0				1037.0										Flow taken directly from the Sand Creek Drainage Basin Planning Study
	5.3		-	-	-	-	-	1100.0				1100.0										Flow taken directly from the Sand Creek Drainage Basin Planning Study
	0.0							1.00.0														
L																						

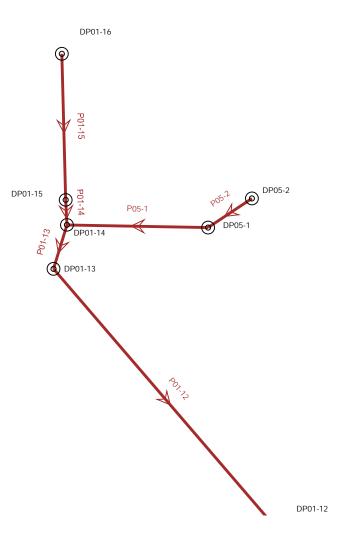
Notes: Street and Pipe C*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

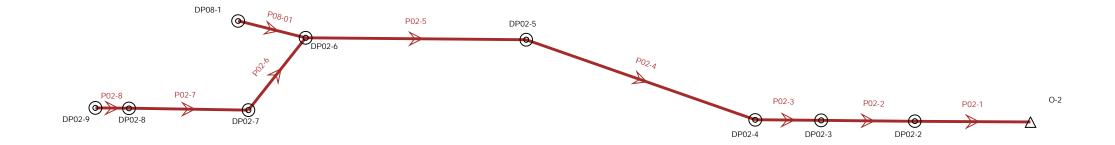
X:\2510000.all\2517400\Excel\Drainage\2517400_Drainage_Calcs_Template_v2.xlsm Page 3 of 3 3/11/2021

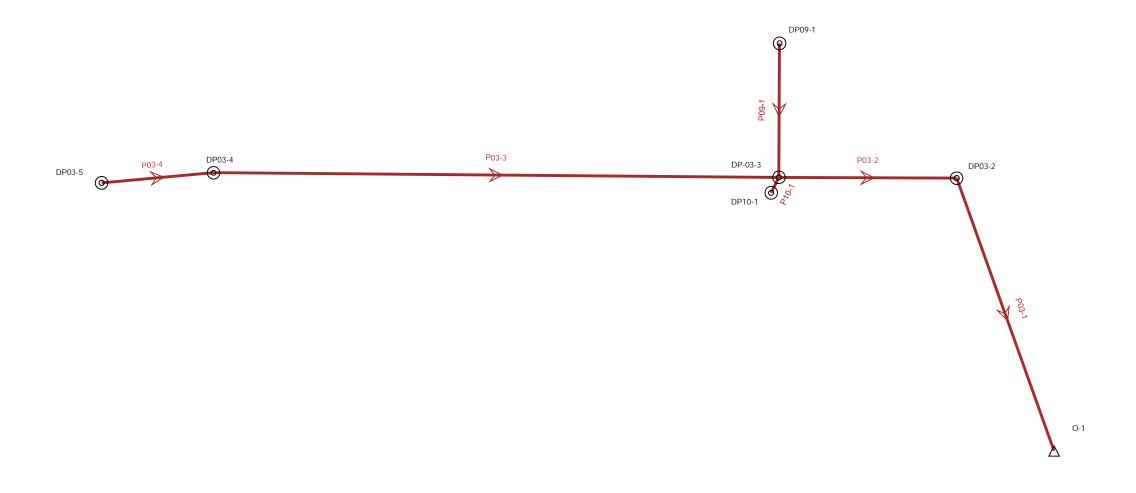
Scenario: 5 year Current Time Step: 0.000 h Conduit FlexTable: Combined Pipe/Node Report


Upstream Structure	Label	Flow (cfs)	Diameter (in)	Slope (Calculated) (ft/ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Velocity (ft/s)	Upstream Structure Headloss Coefficient	Length (User Defined) (ft)
DP09-2	CO-1	2.10	12.0	0.010	6,263.75	6,263.66	6,267.82	6,268.25	6,264.37	6,264.34	6,264.63	6,264.55	4.76	1.000	8.8
DP09-1	CO-2	2.10	12.0	0.010	6,263.46	6,262.84	6,268.25	6,267.71	6,264.08	6,263.91	6,264.34	6,264.02	4.71	1.000	62.5
DP01-2	P01-1	22.40	42.0	0.005	6,246.24	6,245.98	6,252.97	6,249.87	6,247.69	6,247.33	6,248.24	6,248.00	6.55	0.050	52.0
DP01-11	P01-10	11.90	30.0	0.010	6,255.56	6,253.84	6,262.02	6,260.91	6,256.72	6,255.06	6,257.16	6,255.45	7.24	1.020	171.7
DP01-12	P01-11	11.10	24.0	0.010	6,256.81	6,256.06	6,264.38	6,262.02	6,258.00	6,257.05	6,258.50	6,257.85	7.18	0.050	74.6
DP01-13	P01-12	10.60	24.0	0.010	6,258.65	6,257.01	6,265.62	6,264.38	6,259.82	6,257.97	6,260.30	6,258.75	7.09	0.640	163.6
DP01-14	P01-13	10.50	24.0	0.010	6,259.07	6,258.85	6,265.81	6,265.62	6,260.23	6,260.13	6,260.71	6,260.51	7.09	1.020	21.8
DP01-15	P01-14	9.60	18.0	0.010	6.259.32	6,259.20	6,265.70	6,265.81	6,260.82	6.260.72	6,261.28	6,261.18	6.74	0.050	11.8
DP01-16	P01-15	6.40	18.0	0.010	6.260.28	6.259.59	6.265.15	6.265.70	6,261.26	6.260.84	6,261.69	6.261.10	6.23	0.000	69.2
DP01-3	P01-2	21.70	42.0	0.005	6.246.60	6.246.44	6,252.79	6,252.97	6,248.03	6,247.78	6,248.57	6,248,42	6.48	1.020	32.2
DP01-4	P01-3	20.70	36.0	0.007	6,248.21	6.246.80	6,255.53	6,252.79	6,249.67	6.248.58	6,250.24	6,248.93	7.49	1.320	188.4
DP01-5	P01-4	20.70	36.0	0.005	6.249.02	6.248.41	6,257.20	6,255.53	6.250.48	6,250.42	6.251.05	6.250.69	6.44	1.020	122.5
DP01-6	P01-5	20.00	36.0	0.005	6,250.01	6,249.22	6,257.99	6,257.20	6,251.45	6,251.06	6,252.00	6,251.36	6.40	1.020	158.1
DP01-7	P01-6	13.80	36.0	0.010	6,250.87	6,250.41	6,258.31	6,257.99	6,252.05	6,252.01	6,252.49	6,252.21	7.44	1.020	46.0
DP01-8	P01-7	13.30	30.0	0.005	6,251.88	6,251.37	6,259.77	6,258.31	6,253.11	6,252.56	6,253.59	6,253.08	5.80	0.400	101.1
DP01-9	P01-8	13.00	30.0	0.005	6.252.23	6,252.08	6,258.40	6.259.77	6,253.44	6,253.30	6,253.91	6,253.76	5.75	0.400	30.0
DP01-10	P01-9	13.00	30.0	0.008	6,253.64	6,252.43	6,260.91	6,258.40	6,254.85	6,253.48	6,255.32	6,254.17	6.68	0.450	161.0
DP02-2	P02-1	8.60	24.0	0.030	6,255.29	6,253.65	6,262.08	6,256.99	6,256.34	6,254.31	6,256.75	6,255.72	9.98	0.050	54.9
DP02-3	P02-2	8.10	24.0	0.010	6,256.39	6,255.94	6,262.08	6,262.08	6,257.40	6,256.78	6,257.80	6,257.43	6.64	0.050	44.3
DP02-4	P02-3	7.10	18.0	0.010	6,257.20	6,256.89	6,262.72	6,262.08	6,258.23	6,257.81	6,258.70	6,258.42	6.36	0.100	31.2
DP02-5	P02-4	3.10	18.0	0.010	6,258.54	6,257.40	6,264.18	6,262.72	6,259.21	6,258.28	6,259.47	6.258.41	5.18	0.100	113.6
DP02-6	P02-5	2.80	18.0	0.010	6,259.78	6,258.74	6.266.02	6,264.18	6,260.42	6,259.27	6,260.66	6.259.66	5.02	0.520	104.5
DP02-7	P02-6	2.10	18.0	0.010	6,260.42	6,259.98	6,265.64	6,266.02	6,260.97	6,260.54	6,261.17	6,260.73	4.66	0.400	43.6
DP02-8	P02-7	2.10	18.0	0.010	6.261.19	6.260.62	6.267.06	6.265.64	6.261.74	6.261.07	6.261.94	6.261.41	4.65	0.050	56.6
DP02-9	P02-8	1.60	18.0	0.010	6,261.55	6,261.39	6,266.82	6,267.06	6,262.02	6,261.79	6,262.20	6,262.07	4.30	0.000	15.9
DP03-2	P03-1	4.30	18.0	0.031	6,259.72	6,255.40	6,267.19	6,258.76	6,260.52	6,255.89	6,260.83	6,257.03	8.58	0.400	137.2
DP-03-3	P03-2	4.30	18.0	0.010	6,261.36	6,260.52	6,266.61	6,267.19	6,262.16	6,261.19	6,262.47	6,261.68	5.64	1.520	84.2
DP03-4	P03-3(1)	2.20	18.0	0.010	6,264.44	6,262.84	6,269.46	6,267.71	6,265.00	6,263.91	6,265.21	6,263.95	4.70	0.050	160.0
MH-5	P03-3(2)	4.30	18.0	0.010	6,262.64	6,261.56	6,267.71	6,266.61	6,263.44	6,262.64	6,263.75	6,262.79	5.72	1.500	104.2
DP03-5	P03-4	2.20	18.0	0.010	6,265.17	6,264.64	6,270.32	6,269.46	6,265.73	6,265.11	6,265.94	6,265.45	4.69	0.000	53.3
DP04-1	P04-1	6.90	24.0	0.010	6,251.65	6,251.21	6,256.47	6,257.99	6,252.58	6,251.98	6,252.94	6,252.58	6.32	1.520	44.0
DP04-2	P04-2	1.20	18.0	0.010	6,252.26	6,251.85	6,257.41	6.256.47	6,253.13	6,253.13	6,253.15	6,253.14	3.95	0.000	41.0
DP05-1	P05-1	1.60	18.0	0.015	6.261.02	6.260.02	6.265.37	6.265.81	6,261.50	6,260.72	6,261.67	6.260.78	4.95	0.400	66.9
DP05-2	P05-2	1.60	18.0	0.020	6,261.70	6,261.22	6,266.72	6,265.37	6,262.18	6,261.56	6,262.35	6,262.00	5.49	0.000	24.1
DP06-1	P06-1	4.10	18.0	0.020	6,252.49	6,251.85	6,257.48	6,256.47	6,253.27	6,253.13	6,253.57	6,253.23	7.18	0.000	32.0
DP07-1	P07-1	1.90	18.0	0.020	6.252.09	6,251.85	6,256.68	6,256.47	6,253.12	6,253.13	6,253.15	6,253.15	5.76	0.000	12.1
DP08-1	P08-01	1.00	18.0	0.020	6.261.57	6.260.91	6.266.14	6.266.02	6.261.94	6.261.17	6.262.08	6.261.53	4.79	0.000	33.0
DP10-1	P10-1	0.00	18.0	0.050	6,261.97	6,261.60	6,266.90	6,266.61	6,262.64	6,262.64	6,262.64	6,262.64	0.00	0.000	7.4
DP11-2	P11-1	2.50	18.0	0.007	6,245.02	6,244.65	6,250.01	6,246.66	6,245.75	6,245.77	6,245.88	6,245.82	4.38	0.050	49.8
DP11-3	P11-2	2.10	18.0	0.007	6.245.65	6.245.22	6.249.80	6.250.01	6,246.20	6,245.70	6.246.40	6.245.99	4.26	0.000	54.4
DP11-3 DP12-1	P12-1	1.80	18.0	0.008	6,248.05	6,247.80	6,252.95	6,252.79	6,248.55	6,248.58	6,248.74	6,248.64	5.68	0.000	12.6
DP13-1	P13-1	1.30	18.0	0.020	6,251.86	6,250.52	6,256.31	6,257.20	6,252.29	6,251.06	6,252.44	6,251.14	6.59	0.000	33.6
DP13-1 DP14-1	P14-1	1.00	18.0	0.040	6,252.89	6,252.37	6,257.83	6,258.31	6,253.26	6,252.60	6,253.40	6,253.11	6.12	0.000	12.9
DP15-1	P15-1	1.10	18.0	0.040	6,257.43	6,256.56	6,261.74	6,262.02	6,257.82	6,257.17	6,257.96	6,257.21	7.52	0.000	13.0
Structure - (81) (STORM		2.70	36.0	0.007	6.243.00	6,242.44	6,247.85	6,245.78	6,243.51	6,242.85	6,243.69	6,243.18	4.61	0.000	56.3
Structure - (93) (STORM		1.30	36.0	0.010	6,250.10	6,249.18	6,257.50	6,252.53	6,250.45	6,249.47	6,250.57	6,249.68	3.71	0.000	92.0


X:\2510000.all\2517400\StormCAD\Solace.stsw


Scenario: 100 year Current Time Step: 0.000 h Conduit FlexTable: Combined Pipe/Node Report


Upstream Structure	Label	Flow (cfs)	Diameter (in)	Slope (Calculated) (ft/ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Velocity (ft/s)	Upstream Structure Headloss Coefficient	Length (User Defined) (ft)
DP09-2	CO-1	4.40	12.0	0.010	6,263.75	6,263.66	6,267.82	6,268.25	6,266.76	6,266.62	6,267.25	6,267.11	5.60	1.000	8.8
DP09-1	CO-2	4.40	12.0	0.010	6,263.46	6,262.84	6,268.25	6,267.71	6,266.14	6,265.18	6,266.62	6,265.67	5.60	1.000	62.5
DP01-2	P01-1	46.70	42.0	0.005	6,246.24	6,245.98	6,252.97	6,249.87	6,248.37	6,248.05	6,249.27	6,249.02	7.89	0.050	52.0
DP01-11	P01-10	21.60	30.0	0.010	6,255.56	6,253.84	6,262.02	6,260.91	6,257.14	6,255.65	6,257.82	6,256.15	8.47	1.020	171.7
DP01-12	P01-11	20.20	24.0	0.010	6,256.81	6,256.06	6,264.38	6,262.02	6,258.42	6,257.83	6,259.28	6,258.56	8.16	0.050	74.6
DP01-13	P01-12	19.10	24.0	0.010	6,258.65	6,257.01	6,265.62	6,264.38	6,260.22	6,258.42	6,261.03	6,259.43	8.08	0.640	163.6
DP01-14	P01-13	19.00	24.0	0.010	6,259.07	6,258.85	6,265.81	6,265.62	6,260.79	6,260.74	6,261.47	6,261.33	8.10	1.020	21.8
DP01-15	P01-14	17.30	18.0	0.010	6,259.32	6,259.20	6,265.70	6,265.81	6,261.80	6,261.48	6,263.29	6,262.97	9.79	0.050	11.8
DP01-16	P01-15	9.10	18.0	0.010	6,260.28	6,259.59	6,265.15	6,265.70	6,262.40	6,261.88	6,262.81	6,262.29	5.15	0.000	69.2
DP01-3	P01-2	45.00	42.0	0.005	6,246.60	6,246.44	6,252.79	6,252.97	6,248.69	6,248.47	6,249.57	6,249.41	7.81	1.020	32.2
DP01-4	P01-3	42.30	36.0	0.007	6,248.21	6,246.80	6,255.53	6,252.79	6,250.33	6,249.58	6,251.31	6,250.18	8.92	1.320	188.4
DP01-5	P01-4	42.30	36.0	0.005	6,249.02	6,248.41	6,257.20	6,255.53	6,252.11	6,251.62	6,252.67	6,252.17	5.98	1.020	122.5
DP01-6	P01-5	40.80	36.0	0.005	6,250.01	6,249.22	6,257.99	6,257.20	6,253.27	6,252.68	6,253.79	6,253.20	5.77	1.020	158.1
DP01-7	P01-6	26.10	36.0	0.010	6,250.87	6,250.41	6,258.31	6,257.99	6,253.87	6,253.80	6,254.08	6,254.01	8.86	1.020	46.0
DP01-8	P01-7	24.70	30.0	0.005	6,251.88	6,251.37	6,259.77	6,258.31	6,254.45	6,254.08	6,254.84	6,254.48	5.03	0.400	101.1
DP01-9	P01-8	24.10	30.0	0.005	6,252.23	6,252.08	6,258.40	6,259.77	6,254.71	6,254.61	6,255.08	6,254.98	6.61	0.400	30.0
DP01-10	P01-9	24.10	30.0	0.008	6,253.64	6,252.43	6,260.91	6,258.40	6,255.31	6,254.86	6,256.05	6,255.24	7.78	0.450	161.0
DP02-2	P02-1	19.40	24.0	0.030	6,255.29	6,253.65	6,262.08	6,256.99	6,256.87	6,255.46	6,257.70	6,256.11	12.42	0.050	54.9
DP02-3	P02-2	18.20	24.0	0.010	6,256.39	6,255.94	6,262.08	6,262.08	6,257.93	6,257.31	6,258.69	6,258.29	8.06	0.050	44.3
DP02-4	P02-3	15.10	18.0	0.010	6,257.20	6,256.89	6,262.72	6,262.08	6,259.00	6,258.30	6,260.13	6,259.49	8.54	0.100	31.2
DP02-5	P02-4	6.10	18.0	0.010	6,258.54	6,257.40	6,264.18	6,262.72	6,259.49	6,259.11	6,259.91	6,259.30	6.18	0.100	113.6
DP02-6	P02-5	5.50	18.0	0.010	6,259.78	6,258.74	6,266.02	6,264.18	6,260.68	6,259.51	6,261.06	6,260.07	6.00	0.520	104.5
DP02-7	P02-6	4.30	18.0	0.010	6,260.42	6,259.98	6,265.64	6,266.02	6,261.22	6,260.88	6,261.53	6,261.12	5.66	0.400	43.6
DP02-8	P02-7	4.30	18.0	0.010	6,261.19	6,260.62	6,267.06	6,265.64	6,261.98	6,261.29	6,262.30	6,261.79	5.66	0.050	56.6
DP02-9	P02-8	3.50	18.0	0.010	6,261.55	6,261.39	6,266.82	6,267.06	6,262.26	6,262.00	6,262.54	6,262.42	5.36	0.000	15.9
DP03-2	P03-1	11.30	18.0	0.031	6,259.72	6,255.40	6,267.19	6,258.76	6,261.00	6,256.24	6,261.77	6,258.14	11.05	0.400	137.2
DP-03-3	P03-2	11.30	18.0	0.010	6,261.36	6,260.52	6,266.61	6,267.19	6,262.74	6,261.80	6,263.43	6,262.57	6.39	1.520	84.2
DP03-4	P03-3(1)	4.70	18.0	0.010	6,264.44	6,262.84	6,269.46	6,267.71	6,265.37	6,265.18	6,265.63	6,265.29	5.78	0.050	160.0
MH-5	P03-3(2)	9.10	18.0	0.010	6,262.64	6,261.56	6,267.71	6,266.61	6,264.56	6,263.78	6,264.98	6,264.19	5.15	1.500	104.2
DP03-5	P03-4	4.70	18.0	0.010	6,265.17	6,264.64	6,270.32	6,269.46	6,266.00	6,265.34	6,266.34	6,265.86	5.77	0.000	53.3
DP04-1	P04-1	15.70	24.0	0.010	6,251.65	6,251.21	6,256.47	6,257.99	6,254.01	6,253.80	6,254.40	6,254.19	5.00	1.520	44.0
DP04-2	P04-2	2.90	18.0	0.010	6,252.26	6,251.85	6,257.41	6,256.47	6,254.63	6,254.60	6,254.67	6,254.64	1.64	0.000	41.0
DP05-1	P05-1	2.80	18.0	0.015	6,261.02	6,260.02	6,265.37	6,265.81	6,261.66	6,261.48	6,261.90	6,261.52	5.81	0.400	66.9
DP05-2 DP06-1	P05-2 P06-1	2.80	18.0	0.020	6,261.70	6,261.22	6,266.72	6,265.37	6,262.33	6,261.68	6,262.58 6,255.31	6,262.26	6.44	0.000	24.1
DP06-1 DP07-1	P06-1 P07-1	9.50 4.10	18.0 18.0	0.020 0.020	6,252.49 6,252.09	6,251.85 6,251.85	6,257.48 6,256.68	6,256.47 6,256.47	6,254.86 6,254.62	6,254.60 6,254.60	6,254.70	6,255.05 6,254.68	5.38 2.32	0.000 0.000	32.0 12.1
DP07-1 DP08-1	P07-1 P08-01	1.50	18.0	0.020	6,252.09	6.260.91	6.266.14	6,266.02	6,262.03	6,254.60	6,254.70	6.261.68	5.39	0.000	33.0
DP10-1	P10-01	2.30	18.0	0.020	6,261.97	6,261.60	6,266.90	6,266.61	6,263.79	6,263.78	6,263.81	6,263.81	1.30	0.000	7.4
DP10-1 DP11-2	P10-1	6.70	18.0	0.050	6,245.02	6,244.65	6,250.01	6,246.66	6,248.16	6,247.96	6,248.39	6,248.18	3.79	0.000	49.8
DP11-2 DP11-3	P11-1	5.80	18.0	0.007	6,245.02	6.245.22	6,249.80	6,250.01	6,248.34	6,247.96	6,248.51	6.248.34	3.79	0.000	54.4
DP11-3 DP12-1	P11-2 P12-1	4.30	18.0	0.008	6,245.05	6,245.22	6,252.95	6,252.79	6,248.34	6,248.17	6,249.70	6,248.34	2.43	0.000	12.6
DP12-1 DP13-1	P13-1	2.70	18.0	0.020	6,251.86	6,250.52	6,256.31	6,257.20	6,252.58	6,252.68	6,252.74	6,252.71	8.16	0.000	33.6
DP13-1 DP14-1	P13-1	2.70	18.0	0.040	6,252.89	6,252.37	6,257.83	6,258.31	6,254.08	6,254.08	6,254.11	6,254.11	7.72	0.000	12.9
DP14-1 DP15-1	P15-1	1.80	18.0	0.040	6,257.43	6,256.56	6,261.74	6,262.02	6,257.93	6,257.83	6,258.12	6,257.85	8.71	0.000	13.0
Structure - (81) (STORM)	Pipe - (66) (STORM)	3.30	36.0	0.007	6.243.00	6,242.44	6,247.85	6,245.78	6,248.73	6,248.73	6,248.73	6,248.73	0.47	0.000	56.3
Structure - (93) (STORM)	Pipe - (75) (STORM)	3.20	36.0	0.010	6,250.10	6,249.18	6,257.50	6,252.53	6,254.22	6,254.22	6,254.23	6,254.22	0.45	0.000	92.0


X:\2510000.all\2517400\StormCAD\Solace.stsw

Version 4.06 Released August 2018 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Solace Apartments Inlet ID: A1 T. STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} : 5.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} ft/ft 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 24.0 Gutter Width W: 2.00 S_X : Street Transverse Slope 0.025 ft/ft S_W : Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition So 0.010 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} : 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 24.0 24.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes

Minor Storm

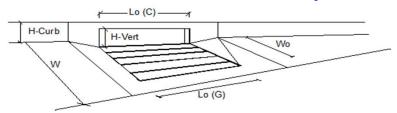
11.9

Major Storm

39.5

cfs

MINOR STORM Allowable Capacity is based on Depth Criterion


MAJOR STORM Allowable Capacity is based on Spread Criterion

inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet M or storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manag

11/24/2020, 11:15 AM UD-Inlet v4.06.xlsm. A1

INLET ON A CONTINUOUS GRADE

Version 4.06 Released August 2018

Design Information (Input) Type of Inlet	CDOT Type R Curb Opening	•	Type =	MINOR CDOT Type R	MAJOR Curb Opening	7
Local Depression (additional to cor	tinuous gutter depression 'a')		a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)		No =	1	1	
Length of a Single Unit Inlet (Grate	or Curb Opening)		L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be gr	eater than W, Gutter Width)		W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit 0	Grate (typical min. value = 0.5)		C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit C	urb Opening (typical min. value = 0.1)		C_f - $C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allov	vable Street Capacity'		_	MINOR	MAJOR	_
Total Inlet Interception Capacity			Q =	1.6	2.3	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)		Q _b =	0.1	1.0	cfs
Capture Percentage = Q _a /Q _o =			C% =	93	71	%

UD-Inlet_v4.06.xlsm, A1 11/24/2020, 11:15 AM

Version 4.06 Released August 2018 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Solace Apartments Inlet ID: T. STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} : Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} ft/ft 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 18.0 Gutter Width W: 2.00 S_X : Street Transverse Slope 0.020 ft/ft S_W : Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.012 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} = 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 18.0 18.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes

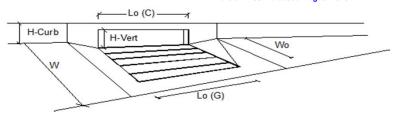
Minor Storm

13.7

Major Storm

13.7

MINOR STORM Allowable Capacity is based on Spread Criterion


MAJOR STORM Allowable Capacity is based on Spread Criterion

inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet M or storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manag

11/24/2020, 11:15 AM UD-Inlet v4.06.xlsm. A2

INLET ON A CONTINUOUS GRADE

Version 4.06 Released August 2018

Design Information (Input)	Denver No. 16 Valley Grate	_	MINOR	MAJOR	_
Type of Inlet	Deriver No. 10 valley Grate	Type =	Denver No. 1	6 Valley Grate	
Local Depression (additional to continu	uous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Gra	te or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or	Curb Opening)	L ₀ =	3.00	3.00	ft
Width of a Unit Grate (cannot be great	er than W, Gutter Width)	$W_o =$	1.73	1.73	ft
Clogging Factor for a Single Unit Gra-	te (typical min. value = 0.5)	C_f - $G =$	0.50	0.50	
Clogging Factor for a Single Unit Curb	Opening (typical min. value = 0.1)	C_f - $C =$	N/A	N/A	
Street Hydraulics: OK - Q < Allowab	le Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity		Q =	1.0	1.5	cfs
Total Inlet Carry-Over Flow (flow by	passing inlet)	$Q_b =$	0.6	1.6	cfs
Capture Percentage = Q _a /Q _o =		C% =	63	48	%

UD-Inlet_v4.06.xlsm, A2 11/24/2020, 11:15 AM

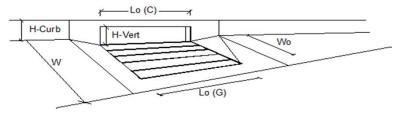
Version 4.06 Released August 2018 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Solace Apartments Inlet ID: Á3 T. STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} : Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} ft/ft 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 18.0 Gutter Width W: 2.00 S_X : Street Transverse Slope 0.020 ft/ft S_W : Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.020 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} = 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 18.0 18.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes

Minor Storm

17.7

Major Storm

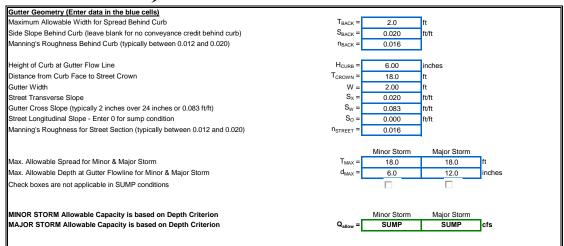
17.7


MINOR STORM Allowable Capacity is based on Spread Criterion

MAJOR STORM Allowable Capacity is based on Spread Criterion

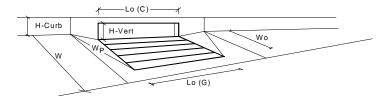
inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet M or storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manag

11/24/2020, 11:15 AM UD-Inlet v4.06.xlsm, A3


Version 4.06 Released August 2018

Design Information (Input)	December 103/4Hz Contr		MINOR	MAJOR	
Type of Inlet	Denver No. 16 Valley Grate	 Type =	Denver No. 1	6 Valley Grate	
Local Depression (additional to co	ontinuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet	(Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Gra-	te or Curb Opening)	L _o =	3.00	3.00	ft
Width of a Unit Grate (cannot be	greater than W, Gutter Width)	W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit	Grate (typical min. value = 0.5)	C_f - $G =$	0.50	0.50	
Clogging Factor for a Single Unit	Curb Opening (typical min. value = 0.1)	C_f - $C =$	N/A	N/A	
Street Hydraulics: OK - Q < Alle	owable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacit	у	Q =	1.0	1.5	cfs
Total Inlet Carry-Over Flow (flo	w bypassing inlet)	Q _b =	0.6	1.6	cfs
Capture Percentage = Q _a /Q _o =		C% =	63	48	%

UD-Inlet_v4.06.xlsm, A3


ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Solace Apartments Inlet ID: A6 Touck Touck

UD-Inlet v4.06.xlsm, A6 11/24/2020, 11:15 AM

INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.7	6.4	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	L ₀ (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.23	0.37	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.45	0.61	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.85	0.96	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a =$	4.3	10.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.2	9.6	cfs

UD-Inlet_v4.06.xism, A6 11/24/2020, 11:15 AM

Version 4.06 Released August 2018 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Solace Apartments Inlet ID: T. STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} : 20.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} ft/ft 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 20.0 Gutter Width W: 2.00 S_X : Street Transverse Slope 0.020 ft/ft S_W : Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition So 0.015 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} : 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 20.0 20.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes

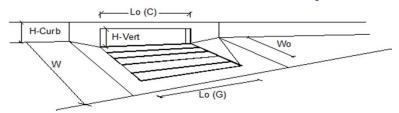
Minor Storm

16.9

Major Storm

20.0

cfs


MINOR STORM Allowable Capacity is based on Depth Criterion

MAJOR STORM Allowable Capacity is based on Spread Criterion

inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet M or storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manag

11/24/2020, 11:15 AM UD-Inlet v4.06.xlsm. A7

Version 4.06 Released August 2018

Design Information (Input) Type of Inlet	CDOT Type R Curb Opening	•	Type =	MINOR CDOT Type R	MAJOR Curb Opening	7
Local Depression (additional to con	tinuous gutter depression 'a')		a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)		No =	1	1	
Length of a Single Unit Inlet (Grate	or Curb Opening)		L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be gr	eater than W, Gutter Width)		$W_o =$	N/A	N/A	ft
Clogging Factor for a Single Unit C	Grate (typical min. value = 0.5)		C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit C	urb Opening (typical min. value = 0.1)		C_f - $C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allov	vable Street Capacity'		_	MINOR	MAJOR	
Total Inlet Interception Capacity			Q =	1.1	3.2	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)		Q _b =	0.0	0.0	cfs
Capture Percentage = Q _a /Q _o =			C% =	100	100	%

UD-Inlet_v4.06.xlsm, A7

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Solace Apartments Inlet ID: A8 Tx STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} : 20.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} ft/ft 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 20.0 Gutter Width W: 2.00 S_X = Street Transverse Slope 0.020 ft/ft S_W : Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083

So

n_{STREET} :

0.015

0.016 Minor Storm

20.0

ft/ft

Major Storm

20.0

inches

cfs

check = yes

Max. Allowable Depth at Gutter Flowline for Minor & Major Storm

Allow Flow Depth at Street Crown (leave blank for no)

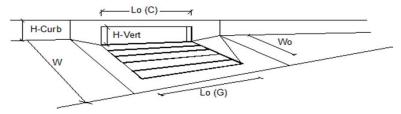
MINOR STORM Allowable Capacity is based on Depth Criterion

MAJOR STORM Allowable Capacity is based on Spread Criterion

MAJOR STORM Allowable Capacity is based on Spread Criterion

Minor Storm MAZ allowable Capacity GOD - greater than the design flow given on sheet 'Inlet Management'

or storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manag


Street Longitudinal Slope - Enter 0 for sump condition

Max. Allowable Spread for Minor & Major Storm

Manning's Roughness for Street Section (typically between 0.012 and 0.020)

UD-Inlet v4.06.xlsm. A8 11/24/2020. 11:15 AM

Version 4.06 Released August 2018

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C_f - $C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	0.8	1.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	100	%

UD-Inlet_v4.06.xlsm, A8 11/24/2020, 11:15 AM

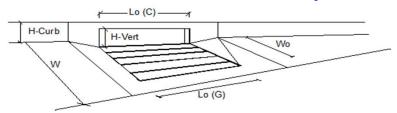
Version 4.06 Released August 2018 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Solace Apartments Inlet ID: В1 T. STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} : Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} ft/ft 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 18.0 Gutter Width W: 2.00 S_X : Street Transverse Slope 0.020 ft/ft S_W : Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition So 0.013 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} : 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 18.0 18.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes

Minor Storm

14.3

Major Storm

14.3


MINOR STORM Allowable Capacity is based on Spread Criterion

MAJOR STORM Allowable Capacity is based on Spread Criterion

inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet M or storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manag

11/24/2020, 11:15 AM UD-Inlet v4.06.xlsm. B1

Version 4.06 Released August 2018

Design Information (Input)	Denver No. 16 Valley Grate	.		MINOR	MAJOR	
Type of Inlet	Bonnor No. 10 valley Grate		Type =	Denver No. 1	6 Valley Grate	
Local Depression (additional to co	ntinuous gutter depression 'a')		a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)		No =	1	1	
Length of a Single Unit Inlet (Grate	or Curb Opening)		L ₀ =	3.00	3.00	ft
Width of a Unit Grate (cannot be g	reater than W, Gutter Width)		$W_o =$	1.73	1.73	ft
Clogging Factor for a Single Unit	Grate (typical min. value = 0.5)		C_f - $G =$	0.50	0.50	
Clogging Factor for a Single Unit 0	Curb Opening (typical min. value = 0.1)		C_f - $C =$	N/A	N/A	
Street Hydraulics: OK - Q < Allo	wable Street Capacity'		_	MINOR	MAJOR	
Total Inlet Interception Capacity			Q =	1.7	2.7	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)		Q _b =	2.4	7.0	cfs
Capture Percentage = Q _a /Q _o =			C% =	42	28	%

UD-Inlet_v4.06.xlsm, B1 11/24/2020, 11:15 AM

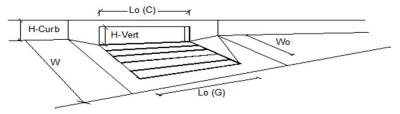
Version 4.06 Released August 2018 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Solace Apartments Inlet ID: B2 T. STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} : Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} ft/ft 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 24.0 Gutter Width W: 2.00 S_X : Street Transverse Slope 0.025 ft/ft S_W : Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.028 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} : 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 24.0 24.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes

Minor Storm

15.7

Major Storm

65.7


MINOR STORM Allowable Capacity is based on Depth Criterion

MAJOR STORM Allowable Capacity is based on Spread Criterion

inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet M or storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manag

11/24/2020, 11:15 AM UD-Inlet v4.06.xlsm. B2

Version 4.06 Released August 2018

Design Information (Input) Type of Inlet	CDOT Type R Curb Opening	•	Type =	MINOR CDOT Type R	MAJOR Curb Opening	1
Local Depression (additional to con	tinuous gutter depression 'a')		a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)		No =	1	1	
Length of a Single Unit Inlet (Grate	or Curb Opening)		L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be gr	eater than W, Gutter Width)		$W_o =$	N/A	N/A	ft
Clogging Factor for a Single Unit C	Grate (typical min. value = 0.5)		C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit C	urb Opening (typical min. value = 0.1)		C_f - $C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allov	vable Street Capacity'		_	MINOR	MAJOR	_
Total Inlet Interception Capacity			Q =	1.6	2.8	cfs
Total Inlet Carry-Over Flow (flow	bypassing inlet)		Q _b =	0.0	0.0	cfs
Capture Percentage = Q _a /Q _o =			C% =	100	100	%

UD-Inlet_v4.06.xlsm, B2 11/24/2020, 11:15 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Solace Apartments Inlet ID: B3 T. STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} : Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} ft/ft 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 24.0 Gutter Width W: 2.00 S_X : Street Transverse Slope 0.020 ft/ft S_W : Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition So 0.013 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} : 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 24.0 24.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes

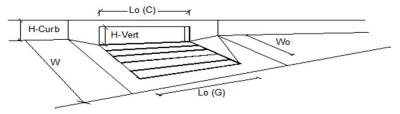
Minor Storm

15.7

Major Storm

30.1

cfs


MINOR STORM Allowable Capacity is based on Depth Criterion

MAJOR STORM Allowable Capacity is based on Spread Criterion

inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manaç ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manag

UD-Inlet v4.06.xlsm. B3 11/24/2020. 11:15 AM

Version 4.06 Released August 2018

Design Information (Input)	DOT Type R Curb Opening	T		MINOR	MAJOR	_
Type of Inlet	.so. Type It dails opening		Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continue	ous gutter depression 'a')		a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate	e or Curb Opening)		No =	1	1	
Length of a Single Unit Inlet (Grate or C	curb Opening)		L ₀ =	15.00	15.00	ft
Width of a Unit Grate (cannot be greate	r than W, Gutter Width)		$W_o =$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate	(typical min. value = 0.5)		C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb	Opening (typical min. value = 0.1)		C_f - $C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable	Street Capacity'		_	MINOR	MAJOR	_
Total Inlet Interception Capacity			Q =	3.2	8.2	cfs
Total Inlet Carry-Over Flow (flow byp	assing inlet)		Q _b =	0.0	0.3	cfs
Capture Percentage = Q _a /Q _o =			C% =	100	96	%

UD-Inlet_v4.06.xlsm, B3 11/24/2020, 11:15 AM

Version 4.06 Released August 2018 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Solace Apartments Inlet ID: B6 Tx STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} : Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} ft/ft 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 18.0 Gutter Width W = 2.00 S_X = Street Transverse Slope 0.020 ft/ft S_W : Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.012 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} : 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 18.0 18.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes

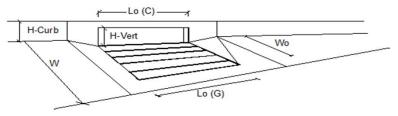
Minor Storm

13.7

Major Storm

13.7

cfs


MINOR STORM Allowable Capacity is based on Spread Criterion

MAJOR STORM Allowable Capacity is based on Spread Criterion

inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet M or storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manag

11/24/2020, 11:15 AM UD-Inlet v4.06.xlsm. B6

Version 4.06 Released August 2018

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 1	6 Valley Grate	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C_f - $G =$	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C_f - $C =$	N/A	N/A	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	1.1	1.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.8	2.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	59	42	%

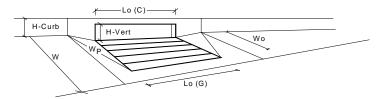
UD-Inlet_v4.06.xlsm, B6 11/24/2020, 11:15 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Solace Apartments Inlet ID: B10 Tx STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} : Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 24.0 Gutter Width W: 2.00 S_X : Street Transverse Slope 0.030 ft/ft S_W : Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} = 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 24.0 24.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 Check boxes are not applicable in SUMP conditions

Major Storm SUMP

Minor Storm

SUMP


MINOR STORM Allowable Capacity is based on Depth Criterion

MAJOR STORM Allowable Capacity is based on Depth Criterion

UD-Inlet v4.06.xlsm. B10 11/24/2020. 11:15 AM

INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	I
Water Depth at Flowline (outside of local depression)	Ponding Depth =	3.5	4.2	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L ₀ (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.13	0.19	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.45	0.54	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.99	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a =$	1.2	2.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.0	2.2	cfs

UD-Inlet_v4.06.xlsm, B10 11/24/2020, 11:15 AM

Version 4.06 Released August 2018 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Solace Apartments Inlet ID: B13 Tx STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} : Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} ft/ft 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 18.0 Gutter Width W = 2.00 S_X = Street Transverse Slope 0.020 ft/ft S_W : Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.034 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} : 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 18.0 18.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes

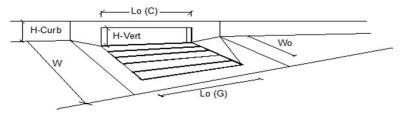
Minor Storm

17.1

Major Storm

23.1

cfs


MINOR STORM Allowable Capacity is based on Depth Criterion

MAJOR STORM Allowable Capacity is based on Spread Criterion

inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet M or storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manag

11/24/2020, 11:15 AM UD-Inlet v4.06.xlsm, B13

Version 4.06 Released August 2018

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 1	6 Valley Grate	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	2.0	2.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	3.00	3.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	1.73	1.73	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C_f - $G =$	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C_f - $C =$	N/A	N/A	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.9	1.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.6	1.7	cfs
Capture Percentage = Q _a /Q _o =	C% =	62	46	%

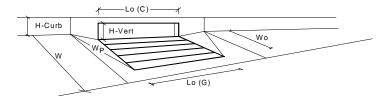
UD-Inlet_v4.06.xlsm, B13 11/24/2020, 11:15 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Solace Apartments Inlet ID: B12 Tx STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} : Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 18.0 Gutter Width W = 2.00 S_X : Street Transverse Slope 0.030 ft/ft S_W : Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} = 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 18.0 18.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 Check boxes are not applicable in SUMP conditions

Major Storm SUMP

Minor Storm

SUMP


MINOR STORM Allowable Capacity is based on Depth Criterion

MAJOR STORM Allowable Capacity is based on Depth Criterion

UD-Inlet v4.06.xlsm. B12 11/24/2020. 11:15 AM

INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.8	6.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.23	0.40	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.62	0.88	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.2	7.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.1	7.1	cfs

UD-Inlet_v4.06.xism, B12 11/24/2020, 11:15 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Solace Apartments Inlet ID: B14 Tx STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} : Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 18.0 Gutter Width W = 2.00 S_X : Street Transverse Slope 0.027 ft/ft S_W : Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020)

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

Max. Allowable Depth at Gutter Flowline for Minor & Major Storm

Max. Allowable Spread for Minor & Major Storm

Check boxes are not applicable in SUMP conditions

Major Storm SUMP Minor Storm SUMP

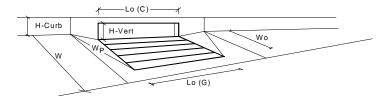
Major Storm

18.0

12.0

0.016 Minor Storm

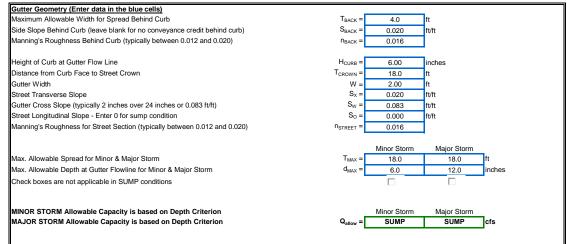
18.0


6.0

n_{STREET} =

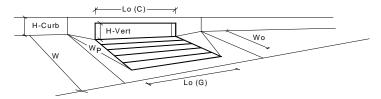
11/24/2020, 11:15 AM UD-Inlet v4.06.xlsm, B14

INLET IN A SUMP OR SAG LOCATION


Version 4.06 Released August 2018

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.7	5.4	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.23	0.28	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.61	0.69	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a =$	3.1	4.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.9	4.1	cfs

UD-Inlet_v4.06.xlsm, B14 11/24/2020, 11:15 AM


ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Solace Apartments B15 Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Allowable Width for Spread Behind Curb Salox Flack = 4.0 ft Slope Behind Curb (leave blank for no conveyance credit behind curb)

UD-Inlet v4.06.xlsm. B15 11/24/2020. 11:15 AM

INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

Design Information (Input)			MINOR	MAJOR	
Type of Inlet	Denver No. 16 Valley Grate	Type =	Denver No. 1	6 Valley Grate	
Local Depression (additional to co	ntinuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Co	urb Opening)	No =	2	2	
Water Depth at Flowline (outside	of local depression)	Ponding Depth =	3.2	4.3	inches
Grate Information			MINOR	MAJOR	Override Depths
Length of a Unit Grate		L ₀ (G) =	3.00	3.00	feet
Width of a Unit Grate		W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (ty	pical values 0.15-0.90)	A _{ratio} =	0.31	0.31	
Clogging Factor for a Single Grate	e (typical value 0.50 - 0.70)	$C_f(G) =$	0.50	0.50	
Grate Weir Coefficient (typical val	ue 2.15 - 3.60)	C _w (G) =	3.60	3.60	
Grate Orifice Coefficient (typical v	alue 0.60 - 0.80)	C _o (G) =	0.60	0.60	7
Curb Opening Information			MINOR	MAJOR	_
Length of a Unit Curb Opening		L ₀ (C) =	N/A	N/A	feet
Height of Vertical Curb Opening in	n Inches	H _{vert} =	N/A	N/A	inches
Height of Curb Orifice Throat in In	ches	H _{throat} =	N/A	N/A	inches
Angle of Throat (see USDCM Figu	ure ST-5)	Theta =	N/A	N/A	degrees
Side Width for Depression Pan (ty	pically the gutter width of 2 feet)	W _p =	N/A	N/A	feet
Clogging Factor for a Single Curb	Opening (typical value 0.10)	$C_f(C) =$	N/A	N/A	
Curb Opening Weir Coefficient (ty	pical value 2.3-3.7)	$C_w(C) =$	N/A	N/A	
Curb Opening Orifice Coefficient	(typical value 0.60 - 0.70)	C _o (C) =	N/A	N/A	
Low Head Performance Reduct	ion (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	<u></u>	d _{Grate} =	0.294	0.381	ft
Depth for Curb Opening Weir Equ	uation	d _{Curb} =	N/A	N/A	ft
Combination Inlet Performance R	eduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
Curb Opening Performance Redu	ction Factor for Long Inlets	RF _{Curb} =	N/A	N/A	
Grated Inlet Performance Reducti	on Factor for Long Inlets	RF _{Grate} =	0.38	0.51	
			MINOR	MAJOR	
Total Inlet Interception Ca	pacity (assumes clogged condition)	Q _a =	0.9	1.8	cfs
Inlet Capacity IS GOOD for Mine	or and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.9	1.8	cfs

UD-Inlet_v4.06.xism, B15 11/24/2020, 11:15 AM

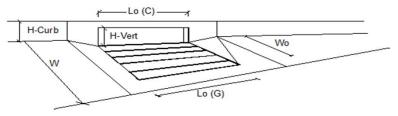
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Solace Apartments Inlet ID: B17 T. STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} : 20.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} ft/ft 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 20.0 Gutter Width W: 2.00 S_X : Street Transverse Slope 0.020 ft/ft S_W : Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition So 0.015 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} : 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 20.0 20.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes

Minor Storm

16.9

Major Storm

20.0


MINOR STORM Allowable Capacity is based on Depth Criterion

MAJOR STORM Allowable Capacity is based on Spread Criterion

inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manaç ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manag

UD-Inlet v4.06.xlsm. B17

Version 4.06 Released August 2018

Design Information (Input) Type of Inlet	CDOT Type R Curb Opening	•	Type =	MINOR CDOT Type R	MAJOR Curb Opening	1
Local Depression (additional to con	tinuous gutter depression 'a')		a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)		No =	1	1	
Length of a Single Unit Inlet (Grate	L _o =	10.00	10.00	ft		
Width of a Unit Grate (cannot be greater than W, Gutter Width)				N/A	N/A	ft
Clogging Factor for a Single Unit C	C _f -G =	N/A	N/A			
Clogging Factor for a Single Unit C	C_f - $C =$	0.10	0.10			
Street Hydraulics: OK - Q < Allov	vable Street Capacity'		_	MINOR	MAJOR	_
Total Inlet Interception Capacity			Q =	1.8	4.3	cfs
Total Inlet Carry-Over Flow (flow		Q _b =	0.0	0.2	cfs	
Capture Percentage = Q _a /Q _o =			C% =	100	96	%

UD-Inlet_v4.06.xlsm, B17 11/24/2020, 11:15 AM

Version 4.06 Released August 2018 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Solace Apartments Inlet ID: B18 T. STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} : 20.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} ft/ft 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 20.0 Gutter Width W: 2.00 S_X : Street Transverse Slope 0.020 ft/ft S_W : Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition So 0.015 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} : 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 20.0 20.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes

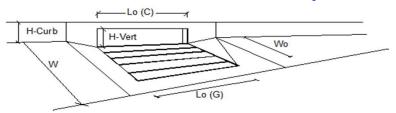
Minor Storm

16.9

Major Storm

20.0

cfs


MINOR STORM Allowable Capacity is based on Depth Criterion

MAJOR STORM Allowable Capacity is based on Spread Criterion

inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet M or storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manag

11/24/2020, 11:15 AM UD-Inlet v4.06.xlsm, B18

Version 4.06 Released August 2018

Design Information (Input)	OOT To a D Comb Consider		MINOR	MAJOR	
Type of Inlet	OOT Type R Curb Opening	 Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuo	a _{LOCAL} =	3.0	3.0	inches	
Total Number of Units in the Inlet (Grate	or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Co	L _o =	10.00	10.00	ft	
Width of a Unit Grate (cannot be greater	W _o =	N/A	N/A	ft	
Clogging Factor for a Single Unit Grate	C_f - $G =$	N/A	N/A		
Clogging Factor for a Single Unit Curb C	pening (typical min. value = 0.1)	C_f - $C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable	Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity		Q =	1.1	2.4	cfs
Total Inlet Carry-Over Flow (flow bypa	assing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q _a /Q _o =		C% =	100	100	%

UD-Inlet_v4.06.xlsm, B18 11/24/2020, 11:15 AM

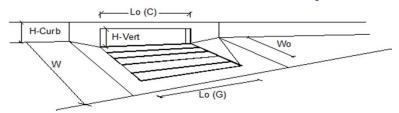
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Solace Apartments Inlet ID: B19 T. STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} : 20.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} ft/ft 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 20.0 Gutter Width W: 2.00 S_X : Street Transverse Slope 0.020 ft/ft S_W : Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition So 0.010 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} : 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 20.0 20.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes

Minor Storm

13.8

Major Storm

16.3


MINOR STORM Allowable Capacity is based on Depth Criterion

MAJOR STORM Allowable Capacity is based on Spread Criterion

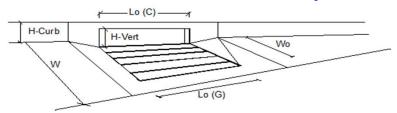
inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet M or storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manag

11/24/2020, 11:15 AM UD-Inlet v4.06.xlsm, B19

Version 4.06 Released August 2018

Design Information (Input)	OOT Type R Curb Opening	T		MINOR	MAJOR	_
Type of Inlet	or type it care opening	_	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuou	s gutter depression 'a')		a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate	or Curb Opening)		No =	1	1	
Length of a Single Unit Inlet (Grate or Cu	rb Opening)		L ₀ =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)				N/A	N/A	ft
Clogging Factor for a Single Unit Grate (C_f - $G =$	N/A	N/A		
Clogging Factor for a Single Unit Curb O	pening (typical min. value = 0.1)		C_f - $C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable	Street Capacity'		_	MINOR	MAJOR	_
Total Inlet Interception Capacity			Q =	2.1	5.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)				0.0	0.0	cfs
Capture Percentage = Q _a /Q _o =			C% =	100	100	%

UD-Inlet_v4.06.xlsm, B19 11/24/2020, 11:15 AM


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Solace Apartments Inlet ID: B20 Tx STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} : 20.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} ft/ft 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 20.0

Gutter Width W: 2.00 S_X = Street Transverse Slope 0.020 ft/ft S_W : Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 1.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} : 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 20.0 20.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion
Minor storm max anowable capacity GOOD - greater than the design flow given on sheet 'Inlet M 6.2 46.5 cfs

or storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manag

UD-Inlet v4.06.xlsm. B20 11/24/2020, 11:15 AM

Version 4.06 Released August 2018

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C_f - $C =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	0.6	1.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	100	%

UD-Inlet_v4.06.xlsm, B20 11/24/2020, 11:15 AM

Chapter 8 Open Channels

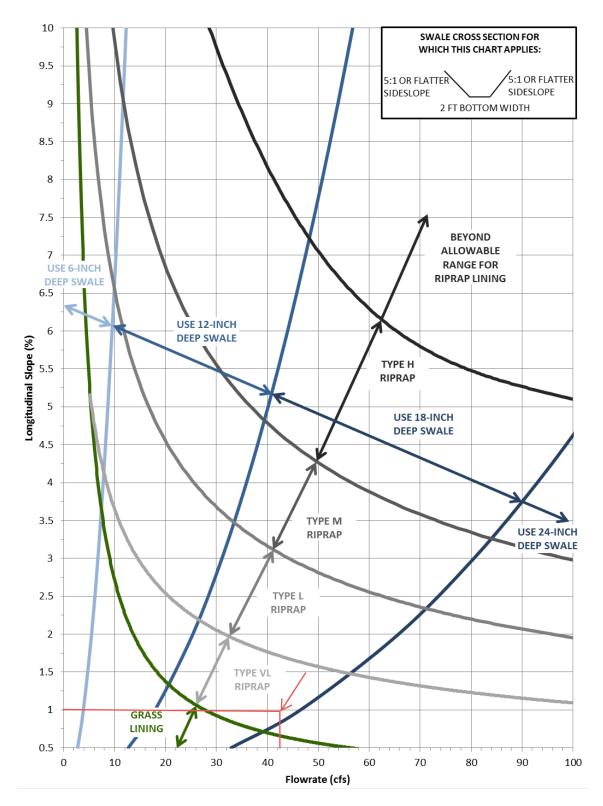
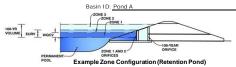



Figure 8-22. Swale stability chart; 2- to 4-foot bottom width and side slopes between 5:1 and 10:1 (Note: Riprap classifications refer to gradation for riprap used in soil riprap or void-filled riprap. See Figure 8-34 for gradations.) (Source: Muller Engineering Company)

APPENDIX C WATER QUALITY AND DETENTION CALCULATIONS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

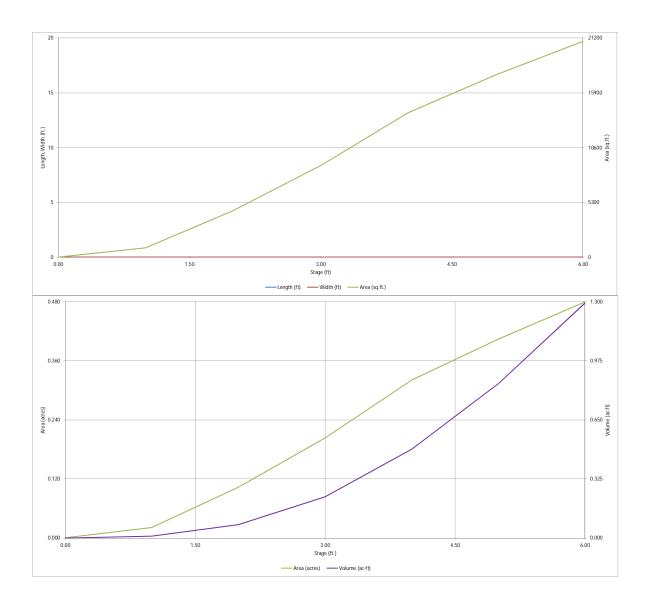
Watershed Information

tershed Information		
Selected BMP Type =	EDB	Ì
Watershed Area =	7.89	acres
Watershed Length =	790	ft
Watershed Length to Centroid =	340	ft
Watershed Slope =	0.020	ft/ft
Watershed Imperviousness =	49.43%	percent
Percentage Hydrologic Soil Group A =	1.0%	percent
Percentage Hydrologic Soil Group B =	99.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Lithan Mydrograph Procedure

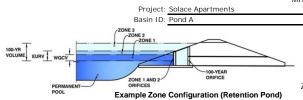
the embedded Colorado Urban Hydrograph Procedure.							
Water Quality Capture Volume (WQCV) =	0.135	acre-feet					
Excess Urban Runoff Volume (EURV) =	0.417	acre-feet					
2-yr Runoff Volume (P1 = 1.19 in.) =	0.382	acre-feet					
5-yr Runoff Volume (P1 = 1.5 in.) =	0.546	acre-feet					
10-yr Runoff Volume (P1 = 1.75 in.) =	0.691	acre-feet					
25-yr Runoff Volume (P1 = 2 in.) =	0.887	acre-feet					
50-yr Runoff Volume (P1 = 2.26 in.) =	1.052	acre-feet					
100-yr Runoff Volume (P1 = 2.52 in.) =	1.247	acre-feet					
500-yr Runoff Volume (P1 = 3.14 in.) =	1.654	acre-feet					
Approximate 2-yr Detention Volume =	0.314	acre-feet					
Approximate 5-yr Detention Volume =	0.430	acre-feet					
Approximate 10-yr Detention Volume =	0.570	acre-feet					
Approximate 25-yr Detention Volume =	0.626	acre-feet					
Approximate 50-yr Detention Volume =	0.657	acre-feet					
Approximate 100-yr Detention Volume =	0.732	acre-feet					

Optio	Optional User Overrides						
		acre-feet					
		acre-feet					
1	1.19	inches					
	1.50	inches					
1	1.75	inches					
- 2	2.00	inches					
- 2	2.26	inches					
- 2	2.52	inches					
		inches					


Define Zones and Basin Geometry

		Jenne Zones and basin decinenty
acre-fe	0.135	Zone 1 Volume (WQCV) =
acre-fe	0.282	Zone 2 Volume (EURV - Zone 1) =
acre-fe	0.315	Zone 3 Volume (100-year - Zones 1 & 2) =
acre-fe	0.732	Total Detention Basin Volume =
ft 3	user	Initial Surcharge Volume (ISV) =
ft	user	Initial Surcharge Depth (ISD) =
ft	user	Total Available Detention Depth (H _{total}) =
ft	user	Depth of Trickle Channel (H _{TC}) =
ft/ft	user	Slope of Trickle Channel (S _{TC}) =
H:V	user	Slopes of Main Basin Sides (Smain) =
1	user	Basin Length-to-Width Ratio (R _{L/W}) =

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (LFLOOR) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L_{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-feet


ELEV:6252 1.00 909 0.021 459 0.011 ELEV:6253 2.00 4,500 0.103 3,164 0.073 ELEV:6254 3.00 8,857 0.203 9,842 0.226 ELEV:6255 4.00 11,769 0.321 21,229 0.404 37,051 0.851 ELEV:6257 6.00 17,609 0.404 37,051 0.851 ELEV:6257 6.00 20,879 0.479 56,295 1.292	/251	Depth Increment = Stage - Storage Description Top of Micropool	Stage (ft)	ft Optional Override Stage (ft) 0.00	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)
ELEVISIS	6251									450	0.011
ELEVISER 1,000 1,0											
RELYC 2556											
RENVOSE 1											
Column											
		ELEV:0257		6.00				20,879	0.479	30,293	1.292
TRISE											
Met											
	rrides										
	-feet										
S	-feet										
S	es.										
State	es.										
S	es.										
	es										
											-
1											
					-						
										<u> </u>	
									-		
										<u> </u>	
									-		
										-	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
										<u> </u>	

MHFD-Detention_v4 03 (Pond A).x/sm, Basin 11/25/2020, 12:02 PM

M#FD-Detention_w4 03 (Pond A).xism, Basin 11/25/2020, 12:02 PM

MHFD-Detention, Version 4.03 (May 2020)

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.49	0.135	Orifice Plate
Zone 2 (EURV)	3.77	0.282	Circular Orifice
Zone 3 (100-year)	4.70	0.315	Weir&Pipe (Restrict)
-	Total (all zones)	0.732	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = Underdrain Orifice Diameter = If (distance below the filtration media surface) inches

0.38

1.00

N/A

Underdrain Orifice Area = Underdrain Orifice Centroid = Interest of Unde

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Orifice Area per Row 3.125E-03 Depth at top of Zone using Orifice Plate ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width 2.49 N/A feet Orifice Plate: Orifice Vertical Spacing N/A Elliptical Slot Centroid inches N/A feet Elliptical Slot Area Orifice Plate: Orifice Area per Row 0.45 sq. inches (diameter = 3/4 inch) N/A

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

Vertical Orifice Diameter

Freeboard above Max Water Surface :

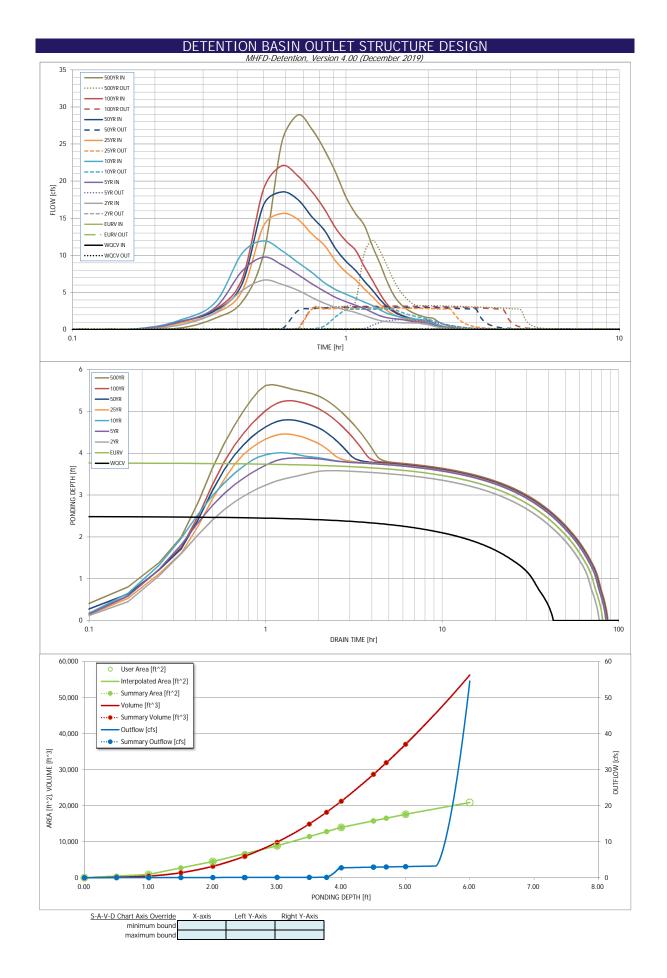
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.70	1.40	2.10				
Orifice Area (sq. inches)	0.45	0.45	0.45	0.45				

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Zone 2 Circular Not Selected Zone 2 Circular Not Selected Invert of Vertical Orifice 2.49 N/A Vertical Orifice Area 0.00 N/A ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Vertical Orifice : 3.77 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid : 0.02 N/A

User Input: Overflow Weir (Dropbox with Flat or	Calculated Parameters for Overflow Weir					
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	İ
Overflow Weir Front Edge Height, Ho =	3.77	N/A	ft (relative to basin bottom at Stage = 0 ft) $\frac{1}{2}$ Height of Grate Upper Edge, $\frac{1}{2}$ Height of Grate Upper Edge, $\frac{1}{2}$	3.77	N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet Overflow Weir Slope Length =	3.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	28.73	N/A	İ
Horiz. Length of Weir Sides =	3.00	N/A	feet Overflow Grate Open Area w/o Debris =	8.40	N/A	ft ²
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area	4.20	N/A	ft ²
Debris Clogging % =	50%	N/A	%			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe 0.00 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area 0.29 N/A Outlet Pipe Diameter 18.00 N/A Outlet Orifice Centroid 0.20 N/A inches Restrictor Plate Height Above Pipe Invert = Half-Central Angle of Restrictor Plate on Pipe = N/A 4.00 0.98 radians inches


User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 5.47 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.31 feet Stage at Top of Freeboard = Spillway Crest Length : 40.00 6.78 feet feet Basin Area at Top of Freeboard Spillway End Slopes 10.00 H·V 0.48 acres

Routed Hydrograph Results 77	he user can ove	rride the default CUF	HP hydrographs and	runoff volumes by	entering new value	s in the Inflow Hyd	rographs table (Coll	lumns W through Al	<i>5).</i>
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.26	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.135	0.417	0.382	0.546	0.691	0.887	1.052	1.247	1.654
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.382	0.546	0.691	0.887	1.052	1.247	1.654
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.9	2.7	4.0	7.2	9.1	11.2	15.7
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.12	0.34	0.51	0.91	1.15	1.42	1.99
Peak Inflow Q (cfs) =	N/A	N/A	6.7	9.8	12.0	15.6	18.5	22.1	28.9
Peak Outflow Q (cfs) =	0.1	0.1	0.1	1.3	2.7	2.9	3.0	3.2	12.0
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.5	0.7	0.4	0.3	0.3	0.8
Structure Controlling Flow =	Plate	Overflow Weir 1	Vertical Orifice 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.1	0.3	0.3	0.3	0.4	0.4
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	37	70	67	72	70	68	67	66	63
Time to Drain 99% of Inflow Volume (hours) =	40	76	72	78	77	76	76	75	74
Maximum Ponding Depth (ft) =	2.49	3.77	3.58	3.89	4.01	4.46	4.80	5.26	5.64
Area at Maximum Ponding Depth (acres) =	0.15	0.29	0.27	0.31	0.32	0.36	0.39	0.42	0.45
Maximum Volume Stored (acre-ft) =	0.135	0.417	0.364	0.450	0.491	0.641	0.768	0.954	1.125

Basin Volume at Top of Freeboard

1.29

acre-ft

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

i								in a separate pro		
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3.00 111111	0:05:00									
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.01	0.24
	0:15:00	0.00	0.00	0.66	1.08	1.34	0.90	1.12	1.10	1.55
	0:20:00	0.00	0.00	2.29	2.99	3.69	2.21	2.58	2.76	3.72
	0:25:00	0.00	0.00	5.25	7.86	10.25	5.16	6.14	6.79	10.27
	0:30:00	0.00	0.00	6.66	9.76	11.95	14.01	16.83	18.97	25.29
	0:35:00	0.00	0.00	6.09	8.72	10.62	15.64	18.54	22.08	28.92
	0:40:00	0.00	0.00	5.30	7.42	9.07	14.86	17.52	20.71	27.03
	0:45:00	0.00	0.00	4.33	6.18	7.70	12.90	15.22	18.61	24.26
	0:50:00	0.00	0.00	3.56	5.17	6.33	11.37	13.40	16.27	21.18
	0:55:00	0.00	0.00	3.00	4.33	5.39	9.24	10.91	13.68	17.88
	1:00:00	0.00	0.00	2.63	3.76	4.77	7.76	9.21	11.94	15.65
	1:05:00	0.00	0.00	2.32	3.29	4.23	6.71	7.99	10.71	14.07
	1:10:00	0.00	0.00	1.90	2.84	3.72	5.49	6.56	8.51	11.25
	1:15:00	0.00	0.00	1.52	2.33	3.25	4.44	5.31	6.64	8.87
	1:20:00	0.00	0.00	1.22	1.86	2.66	3.38	4.03	4.82	6.43
	1:25:00	0.00	0.00	1.05	1.60	2.19	2.55	3.05	3.40	4.58
	1:30:00	0.00	0.00	0.98	1.47	1.90	1.99	2.37	2.55	3.46
	1:35:00	0.00	0.00	0.93	1.39	1.70	1.65	1.95	2.04	2.77
	1:40:00	0.00	0.00	0.91	1.23	1.56	1.42	1.67	1.70	2.30
	1:45:00	0.00	0.00	0.89	1.11	1.47	1.27	1.49	1.46	1.99
	1:50:00	0.00	0.00	0.88	1.02	1.40	1.18	1.36	1.30	1.76
	1:55:00	0.00	0.00	0.76	0.96	1.30	1.11	1.28	1.19	1.61
	2:00:00	0.00	0.00	0.67	0.88	1.16	1.07	1.22	1.13	1.53
	2:05:00	0.00	0.00	0.49	0.64	0.84	0.78	0.89	0.82	1.11
	2:10:00	0.00	0.00	0.36	0.46	0.60	0.56	0.64	0.59	0.80
	2:15:00	0.00	0.00	0.26	0.33	0.43	0.40	0.45	0.43	0.57
	2:20:00	0.00	0.00	0.18	0.23	0.30	0.28	0.32	0.30	0.40
	2:25:00	0.00	0.00	0.12	0.15	0.21	0.19	0.22	0.21	0.28
	2:30:00	0.00	0.00	0.08	0.10	0.14	0.13	0.15	0.14	0.19
	2:35:00	0.00	0.00	0.05	0.10	0.09	0.09	0.10	0.09	0.13
	2:40:00	0.00	0.00	0.03	0.07	0.09	0.09	0.10	0.09	0.13
	2:45:00	0.00	0.00	0.03	0.04	0.03	0.03	0.03	0.03	0.07
	2:50:00	0.00	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.03
	2:55:00	0.00	0.00		0.00		0.00	0.00		
	3:00:00			0.00		0.00			0.00	0.00
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00 3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.03 (May 2020)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description WQCV EURV 100 YR	Stage [ft] 0.00 0.50 1.00 1.50 2.00 2.49 2.50 3.00 3.50 3.77 4.00 4.50 4.70 5.00	Area [ft ²] 10 460 909 2,705 4,500 6,635 6,678 8,857 11,416 12,799 13,976 15,792 16,519 17,609	Area [acres] 0.000 0.011 0.021 0.062 0.103 0.152 0.153 0.203 0.262 0.294 0.321 0.363 0.363 0.379 0.404	Volume [ft ³] 0 117 459 1,363 3,164 5,892 5,959 9,842 14,911 18,180 21,259 28,701 28,701 31,932 37,051	Volume [ac-ft] 0.000 0.003 0.011 0.031 0.073 0.135 0.137 0.226 0.342 0.417 0.488 0.659 0.659 0.733 0.851	Total Outflow [cfs] 0.00 0.01 0.02 0.04 0.05 0.07 0.07 0.08 0.10 0.10 2.75 2.92 2.99 2.99	stag chai fron She Also outl over
Description WOCV EURV	0.00 0.50 1.00 1.50 2.00 2.49 2.50 3.00 3.50 3.77 4.00 4.50 4.70	10 460 909 2,705 4,500 6,635 6,678 8,857 11,416 12,799 13,976 15,792 16,519	0.000 0.011 0.021 0.062 0.103 0.152 0.153 0.203 0.262 0.294 0.321 0.363 0.363 0.379	0 117 459 1,363 3,164 5,892 5,959 9,842 14,911 18,180 21,259 28,701 28,701 31,932	0.000 0.003 0.011 0.031 0.073 0.135 0.137 0.226 0.342 0.417 0.488 0.659 0.659 0.733	[cfs] 0.00 0.01 0.02 0.04 0.05 0.07 0.07 0.08 0.10 0.10 2.75 2.92	stag chai fron She Also outl over
EURV	0.00 0.50 1.00 1.50 2.00 2.49 2.50 3.00 3.50 3.77 4.00 4.50 4.70	10 460 909 2,705 4,500 6,635 6,678 8,857 11,416 12,799 13,976 15,792 16,519	0.000 0.011 0.021 0.062 0.103 0.152 0.153 0.203 0.262 0.294 0.321 0.363 0.363 0.379	0 117 459 1,363 3,164 5,892 5,959 9,842 14,911 18,180 21,259 28,701 28,701 31,932	0.000 0.003 0.011 0.031 0.073 0.135 0.137 0.226 0.342 0.417 0.488 0.659 0.659 0.733	0.00 0.01 0.02 0.04 0.05 0.07 0.07 0.08 0.10 0.10 2.75 2.92 2.92	char from Shee Also outle
EURV	0.50 1.00 1.50 2.00 2.49 2.50 3.00 3.50 3.77 4.00 4.50 4.70	460 909 2,705 4,500 6,635 6,678 8,857 11,416 12,799 13,976 15,792 16,519	0.011 0.021 0.062 0.103 0.152 0.153 0.203 0.262 0.294 0.321 0.363 0.363 0.379	117 459 1,363 3,164 5,892 5,959 9,842 14,911 18,180 21,259 28,701 28,701 31,932	0.003 0.011 0.031 0.073 0.135 0.137 0.226 0.342 0.417 0.488 0.659 0.659 0.733	0.01 0.02 0.04 0.05 0.07 0.07 0.08 0.10 0.10 2.75 2.92 2.92	stag char from Shed Also outle
EURV	1.00 1.50 2.00 2.49 2.50 3.00 3.50 3.77 4.00 4.50 4.50	909 2,705 4,500 6,635 6,678 8,857 11,416 12,799 13,976 15,792 16,519	0.021 0.062 0.103 0.152 0.153 0.203 0.262 0.294 0.321 0.363 0.363 0.379	459 1,363 3,164 5,892 5,959 9,842 14,911 18,180 21,259 28,701 28,701 31,932	0.011 0.031 0.073 0.135 0.137 0.226 0.342 0.417 0.488 0.659 0.659 0.733	0.02 0.04 0.05 0.07 0.07 0.08 0.10 0.10 2.75 2.92 2.92	char from Shei Also outli over whe
EURV	1.50 2.00 2.49 2.50 3.00 3.50 3.77 4.00 4.50 4.50	2,705 4,500 6,635 6,678 8,857 11,416 12,799 13,976 15,792 16,519	0.062 0.103 0.152 0.153 0.203 0.262 0.294 0.321 0.363 0.363	1,363 3,164 5,892 5,959 9,842 14,911 18,180 21,259 28,701 28,701 31,932	0.031 0.073 0.135 0.137 0.226 0.342 0.417 0.488 0.659 0.659	0.04 0.05 0.07 0.07 0.08 0.10 0.10 2.75 2.92 2.92	Also outle
EURV	2.00 2.49 2.50 3.00 3.50 3.77 4.00 4.50 4.70	4,500 6,635 6,678 8,857 11,416 12,799 13,976 15,792 15,792	0.103 0.152 0.153 0.203 0.262 0.294 0.321 0.363 0.363 0.379	3,164 5,892 5,959 9,842 14,911 18,180 21,259 28,701 28,701 31,932	0.073 0.135 0.137 0.226 0.342 0.417 0.488 0.659 0.659 0.733	0.05 0.07 0.07 0.08 0.10 0.10 2.75 2.92 2.92	Also
EURV	2.49 2.50 3.00 3.50 3.77 4.00 4.50 4.70	6,635 6,678 8,857 11,416 12,799 13,976 15,792 15,792 16,519	0.152 0.153 0.203 0.262 0.294 0.321 0.363 0.363	5,892 5,959 9,842 14,911 18,180 21,259 28,701 28,701 31,932	0.135 0.137 0.226 0.342 0.417 0.488 0.659 0.659 0.733	0.07 0.07 0.08 0.10 0.10 2.75 2.92 2.92	outl ove
EURV	2.50 3.00 3.50 3.77 4.00 4.50 4.70	6,678 8,857 11,416 12,799 13,976 15,792 15,792 16,519	0.153 0.203 0.262 0.294 0.321 0.363 0.363 0.379	5,959 9,842 14,911 18,180 21,259 28,701 28,701 31,932	0.137 0.226 0.342 0.417 0.488 0.659 0.659 0.733	0.07 0.08 0.10 0.10 2.75 2.92 2.92	outl ove
	3.00 3.50 3.77 4.00 4.50 4.50	8,857 11,416 12,799 13,976 15,792 15,792 16,519	0.203 0.262 0.294 0.321 0.363 0.363 0.379	9,842 14,911 18,180 21,259 28,701 28,701 31,932	0.226 0.342 0.417 0.488 0.659 0.659 0.733	0.08 0.10 0.10 2.75 2.92 2.92	ove
	3.50 3.77 4.00 4.50 4.50 4.70	11,416 12,799 13,976 15,792 15,792 16,519	0.262 0.294 0.321 0.363 0.363 0.379	14,911 18,180 21,259 28,701 28,701 31,932	0.342 0.417 0.488 0.659 0.659 0.733	0.10 0.10 2.75 2.92 2.92	
	3.77 4.00 4.50 4.50 4.70	12,799 13,976 15,792 15,792 16,519	0.294 0.321 0.363 0.363 0.379	18,180 21,259 28,701 28,701 31,932	0.417 0.488 0.659 0.659 0.733	0.10 2.75 2.92 2.92	
	4.00 4.50 4.50 4.70	13,976 15,792 15,792 16,519	0.321 0.363 0.363 0.379	21,259 28,701 28,701 31,932	0.488 0.659 0.659 0.733	2.75 2.92 2.92	
100 YR	4.50 4.50 4.70	15,792 15,792 16,519	0.363 0.363 0.379	28,701 28,701 31,932	0.659 0.659 0.733	2.92 2.92	
100 YR	4.50 4.70	15,792 16,519	0.363 0.379	28,701 31,932	0.659 0.733	2.92	_
100 YR	4.70	16,519	0.379	31,932	0.733		
100 YR						2.99	\dashv
	5.00	17,609	0.404	37,051	().851	0.00	4
					0.001	3.09	4
							_
							_
							_
							_
							7
							7
							7
							7
							-
							-
							-
							-
							-
							-
							-
							-
							=
							-
							-
							4
							4
							-
							-
							7
							7
							4
							-
							-
							-
							_
							4
							4
							\dashv
							-
							7
							1

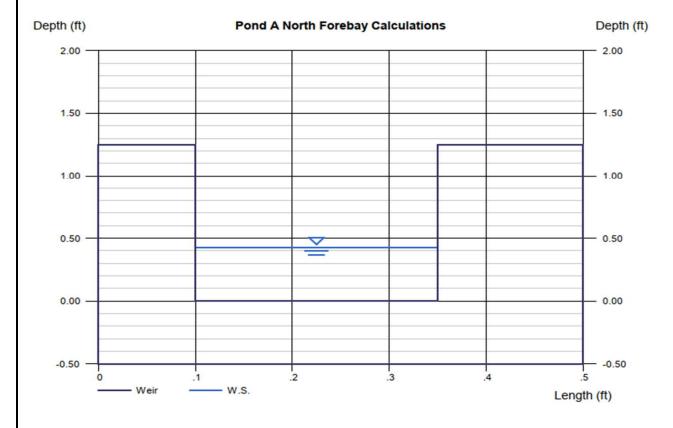
r best results, include the ages of all grade slope langes (e.g. ISV and Floor) om the S-A-V table on neet 'Basin'.

so include the inverts of all utlets (e.g. vertical orifice, verflow grate, and spillway, here applicable).

Detention Pond A North Forebay Calculations

100 YR Discharge 11.3 CFS
WQCV Storage 0.135 AC-FT
Forebay Volume (2% pf WQCV) 0.0027 AC-FT
Forebay Release Volume (2% of 100 YR) 0.226 CFS

Weir Report


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Nov 6 2020

Pond A North Forebay Calculations

Rectangular Weir Highlighted = Sharp Depth (ft) = 0.42Crest Bottom Length (ft) = 0.25Q (cfs) = 0.230Total Depth (ft) = 1.25Area (sqft) = 0.11Velocity (ft/s) = 2.17Top Width (ft) Calculations = 0.25

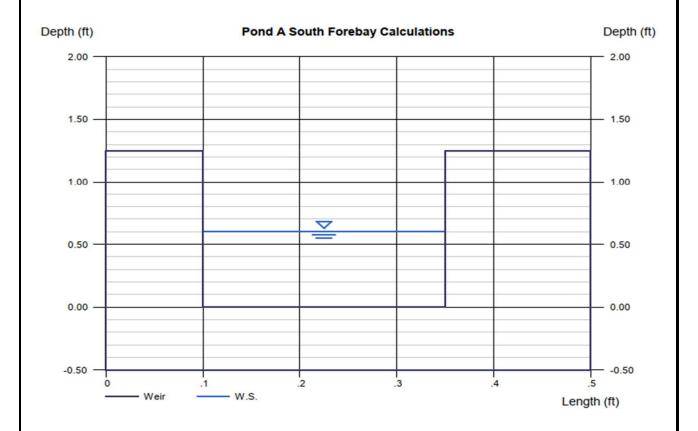
Weir Coeff. Cw = 3.33 Compute by: Known Q Known Q (cfs) = 0.23

Detention Pond A South Forebay Calculations

100 YR Discharge 19.4 CFS
WQCV Storage 0.135 AC-FT
Forebay Volume (2% pf WQCV) 0.0027 AC-FT
Forebay Release Volume (2% of 100 YR) 0.388 CFS

Weir Report

Known Q (cfs)


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

= 0.39

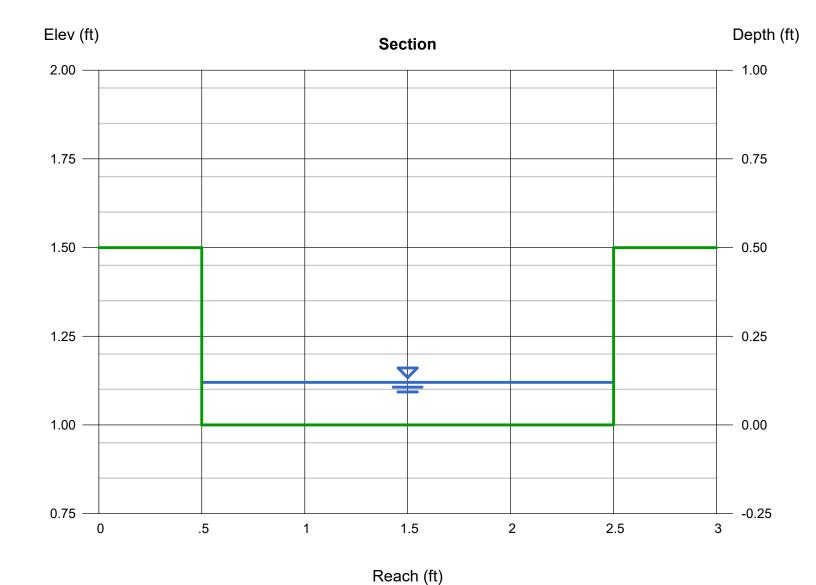
Friday, Nov 6 2020

Pond A South Forebay Calculations

Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.60
Bottom Length (ft)	= 0.25	Q (cfs)	= 0.388
Total Depth (ft)	= 1.25	Area (sqft)	= 0.15
		Velocity (ft/s)	= 2.58
Calculations		Top Width (ft)	= 0.25
Weir Coeff. Cw	= 3.33		
Compute by:	Known Q		

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


= 0.61

Wednesday, Nov 25 2020

Pond A Trickel Channel

Known Q (cfs)

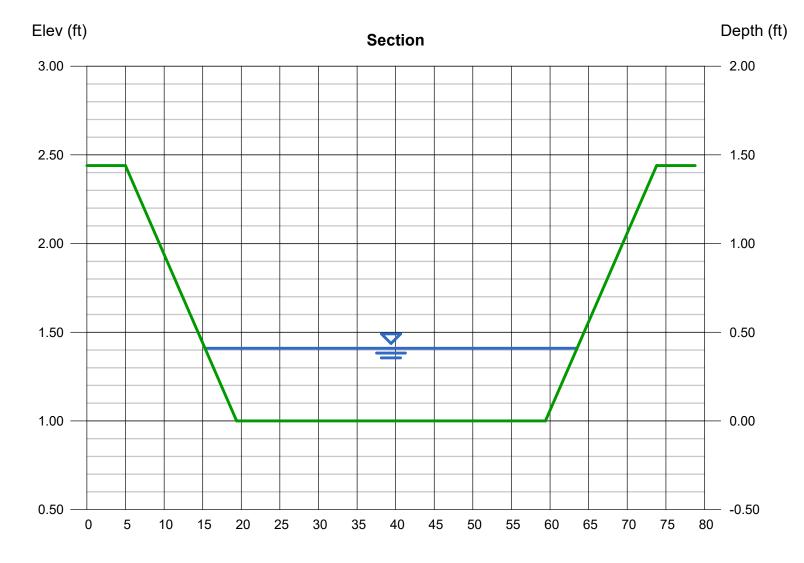
Rectangular		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.12
Total Depth (ft)	= 0.50	Q (cfs)	= 0.610
		Area (sqft)	= 0.24
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 2.54
Slope (%)	= 1.00	Wetted Perim (ft)	= 2.24
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.15
		Top Width (ft)	= 2.00
Calculations		EGL (ft)	= 0.22
Compute by:	Known Q		

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, May 5 2021

Pond A Spillway


Bottom Width (ft) = 40.00 Side Slopes (z:1) = 10.00, 10.00 Total Depth (ft) = 1.44 Invert Elev (ft) = 1.00 Slope (%) = 0.20 N-Value = 0.020

Calculations

Compute by: Known Q Known Q (cfs) = 30.80

Highlighted

Depth (ft) = 0.41Q (cfs) = 30.80Area (sqft) = 18.08Velocity (ft/s) = 1.70 Wetted Perim (ft) = 48.24Crit Depth, Yc (ft) = 0.26Top Width (ft) = 48.20EGL (ft) = 0.46

Reach (ft)

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

Project: Solace Apartments

Basin ID: Pond B

FORM 1 AND 2 TOWN TANK

FORM 1 A

Example Zone Configuration (Retent

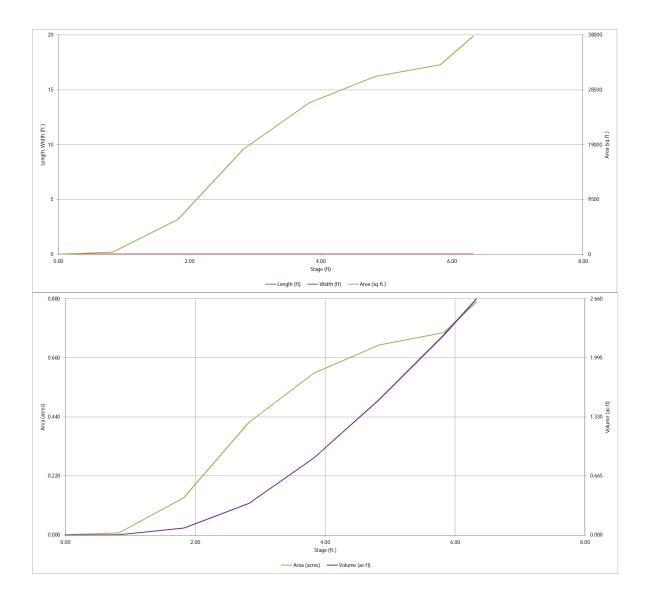
Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	17.50	acres
Watershed Length =	1,631	ft
Watershed Length to Centroid =	740	ft
Watershed Slope =	0.014	ft/ft
Watershed Imperviousness =	40.55%	percent
Percentage Hydrologic Soil Group A =	1.0%	percent
Percentage Hydrologic Soil Group B =	99.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Mydrograph Procedure.

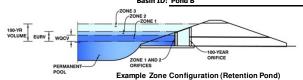
the embedded Colorado Urban Hydro	igraph Procedu	ire.
Water Quality Capture Volume (WQCV) =	0.264	acre-feet
Excess Urban Runoff Volume (EURV) =	0.746	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.729	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	1.088	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	1.408	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	1.872	acre-feet
50-yr Runoff Volume (P1 = 2.26 in.) =	2.246	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	2.702	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	3.634	acre-feet
Approximate 2-yr Detention Volume =	0.550	acre-feet
Approximate 5-yr Detention Volume =	0.767	acre-feet
Approximate 10-yr Detention Volume =	1.052	acre-feet
Approximate 25-yr Detention Volume =	1.176	acre-feet
Approximate 50-yr Detention Volume =	1.240	acre-feet
Approximate 100-yr Detention Volume =	1.412	acre-feet

Optional Use	r Overrides
	acre-feet
	acre-feet
1.19	inches
1.50	inches
1.75	inches
2.00	inches
2.26	inches
2.52	inches
	inches


Define Zones and Basin Geometry

Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.264	acre-fee
Zone 2 Volume (EURV - Zone 1) =	0.482	acre-fee
Zone 3 Volume (100-year - Zones 1 & 2) =	0.666	acre-fee
Total Detention Basin Volume =	1.412	acre-fee
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H_{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (LFLOOR) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =		ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-feet


\rightarrow			1							
	Depth Increment =		ft Optional	I		I	Optional			I
	Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
	Description	(ft)	Stage (ft)	(ft) 	(ft)	(ft ²)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
6243.17	Top of Micropool		0.00				10	0.000		
	ELEV:6244		0.83				332	0.008	142	0.003
	ELEV:6245		1.83				6,042	0.139	3,329	0.076
	ELEV:6246		2.83				18,264	0.419	15,482	0.355
	ELEV:6247		3.83 4.83				26,278	0.603	37,753	0.867
	ELEV:6248 ELEV:6549		4.83 5.83				30,833 32,872	0.708	66,308 98,161	1.522 2.253
	ELEV:6549		6.33				37,812	0.755	115,832	2.659
	ELEV.0349.5		0.33				37,012	0.000	113,032	2.039
Overrides										
cre-feet										
cre-feet										
iches										
ches										
ches										
ches										
iches iches										
iches										
					-					
								<u></u>		
								<u></u>		

M#FD-Detention_w4 03 (Pond B).xism, Basin 11/25/2020, 12:05 PM

M#FD-Detention_w4 03 (Pond B)./sm, Basin 11/25/2020, 12:05 PM

Project: Solace Apartments
Basin ID: Pond B

	Estimated	Estimated	
_	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.60	0.264	Orifice Plate
Zone 2 (EURV)	3.63	0.482	Circular Orifice
Zone 3 (100-year)	4.68	0.666	Weir&Pipe (Restrict)
-	Total (all zones)	1.412	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) N/A Underdrain Orifice Diameter = N/A

<u>Calculated Parameters for Underdrain</u> Underdrain Orifice Area N/A Underdrain Orifice Centroid = N/A

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate = 2.60 ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = 6.00 inches Orifice Plate: Orifice Area per Row = N/A inches

Calculated Parameters for Plate WQ Orifice Area per Row N/A Elliptical Half-Width = N/A feet Elliptical Slot Centroid = N/A feet Elliptical Slot Area : N/A

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.50	1.00	1.50	2.00			
Orifice Area (sq. inches)	0.56	0.56	0.56	0.52	0.52			

	D 0 (ti1)	D 10 (1)	D 11 (D 12 (HI)	D 12 (#1)	D 14 (D 15 (D 16 (
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

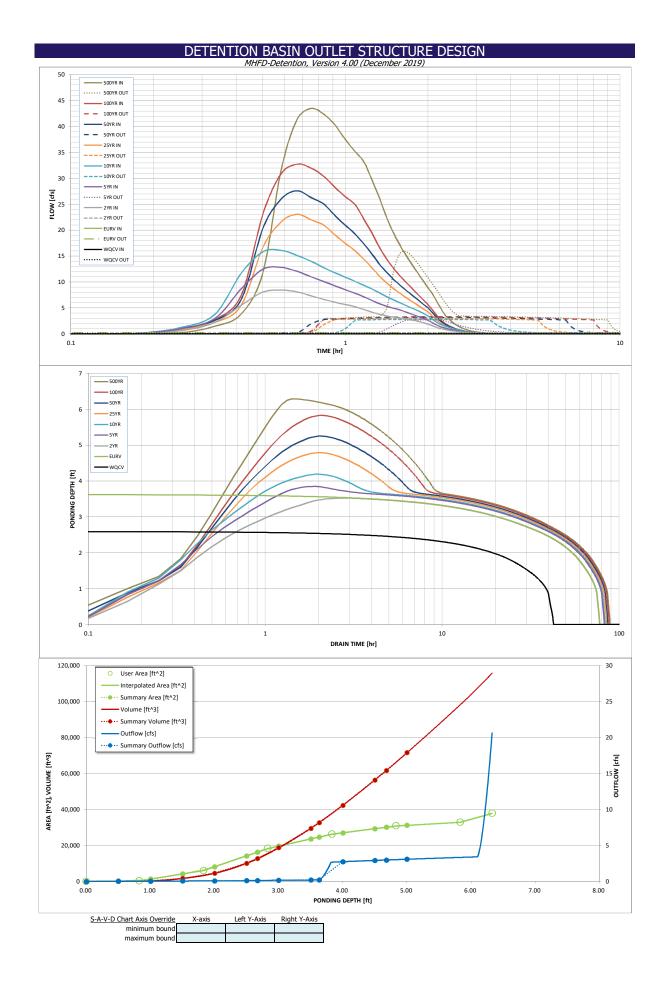
	Zone 2 Circular	Not Selected	
Invert of Vertical Orifice =	2.60	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	3.63	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Diameter =	1.50	N/A	inches

	<u>Calculated Parameters for Vertical Orifice</u>				
	Zone 2 Circular	Not Selected			
Vertical Orifice Area =	0.01	N/A	ft²		
Vertical Orifice Centroid =	0.06	N/A	feet		

Calculated Darameters for Outlet Dine w/ Flow Postriction Dista

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

put: Overflow Weir (Dropbox with Flat or SI	Calculated Parameters for Overflow Weir						
	Zone 3 Weir	Not Selected			Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	3.63	N/A	ft (relative to basin bottom at Stage = 0 ft)	Height of Grate Upper Edge, H_t =	3.63	N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet	Overflow Weir Slope Length =	3.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V Gra	ite Open Area / 100-yr Orifice Area =	28.73	N/A	
Horiz. Length of Weir Sides =	3.00	N/A	feet Ove	erflow Grate Open Area w/o Debris =	8.40	N/A	ft²
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area O	verflow Grate Open Area w/ Debris =	4.20	N/A	ft²
Debris Clogging % =	50%	N/A	%			•	-


User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Triput. Outlet Pipe W/ Flow Restriction Plate (Circulai Office, Resti	ictoi Piate, oi Recta	rigular Office)	Calculated Parameter	s for Outlet Pipe w _/	FIOW RESUICTION PIA	ile
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.29	N/A	ft²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.20	N/A	feet
Restrictor Plate Height Above Pipe Invert =	4.00		inches Half-Central Ang	le of Restrictor Plate on Pipe =	0.98	N/A	radians

User Input: Emer

ut: Emergency Spillway (Rectangular or Tr	Calculated Parameters for Spillwa				
Spillway Invert Stage=	6.10	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	0.34	feet
Spillway Crest Length =	50.00	feet	Stage at Top of Freeboard =	7.44	feet
Spillway End Slopes =	10.00	H:V	Basin Area at Top of Freeboard =	0.87	acres
Freeboard above Max Water Surface =	1.00	feet	Basin Volume at Top of Freeboard =	2.66	acre-ft

Routed Hydrograph Results	The user can overr	ide the default CUHP	hydrographs and ru	noff volumes by ent	ering new values in t	the Inflow Hydrograp	ohs table (Columns V	V through AF).	
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.26	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.264	0.746	0.729	1.088	1.408	1.872	2.246	2.702	3.634
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.729	1.088	1.408	1.872	2.246	2.702	3.634
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	1.4	4.0	6.1	11.3	14.3	18.2	25.4
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.08	0.23	0.35	0.64	0.82	1.04	1.45
Peak Inflow Q (cfs) =	N/A	N/A	8.4	12.8	16.1	23.1	27.6	32.7	43.5
Peak Outflow Q (cfs) =	0.1	0.2	0.2	2.7	2.8	3.0	3.2	3.3	15.8
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.7	0.5	0.3	0.2	0.2	0.6
Structure Controlling Flow =	Plate	Overflow Weir 1	Vertical Orifice 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.3	0.3	0.3	0.3	0.4	0.4
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	70	69	72	71	70	69	68	65
Time to Drain 99% of Inflow Volume (hours) =	40	74	74	77	77	78	78	79	77
Maximum Ponding Depth (ft) =	2.60	3.63	3.52	3.85	4.19	4.79	5.25	5.83	6.29
Area at Maximum Ponding Depth (acres) =	0.35	0.57	0.55	0.60	0.64	0.70	0.73	0.75	0.86
Maximum Volume Stored (acre-ft) =	0.266	0.750	0.689	0.873	1.091	1.494	1.824	2.253	2.616

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

						, ,		CULID		CLILID
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.01	0.22
	0:15:00	0.00	0.00	0.60	0.98	1.22	0.82	1.04	1.00	1.47
	0:20:00	0.00	0.00	2.20	2.93	3.70	2.19	2.59	2.74	3.81
	0:25:00	0.00	0.00	5.52	8.65	11.64	5.47	6.59	7.37	11.75
	0:30:00	0.00	0.00	8.06	12.47	15.81	16.67	20.33	23.06	31.64
	0:35:00	0.00	0.00	8.44	12.83	16.12	21.61	26.01	30.90	41.39
	0:40:00	0.00	0.00	8.09	12.06	15.12	23.06	27.59	32.73	43.47
	0:45:00	0.00	0.00	7.34	11.00	14.00	21.99	26.27	31.95	42.38
	0:50:00	0.00	0.00	6.67	10.11	12.76	20.97	25.04	30.40	40.28
	0:55:00	0.00	0.00	6.11	9.24	11.75	19.06	22.79	28.22	37.47
	1:00:00	0.00	0.00	5.66	8.51	10.92	17.44	20.92	26.44	35.17
	1:10:00	0.00	0.00	5.24 4.70	7.83 7.16	10.14 9.37	16.03 14.37	19.28 17.31	24.94 22.17	33.21 29.63
	1:15:00	0.00	0.00	4.19	6.44	8.65	12.75	15.38	19.40	26.05
	1:20:00	0.00	0.00	3.77	5.78	7.87	11.09	13.38	16.57	22.30
	1:25:00	0.00	0.00	3.46	5.31	7.15	9.78	11.80	14.33	19.34
	1:30:00	0.00	0.00	3.24	4.94	6.52	8.69	10.47	12.60	17.01
	1:35:00	0.00	0.00	3.03	4.60	5.96	7.78	9.36	11.17	15.07
	1:40:00	0.00	0.00	2.84	4.18	5.45	6.97	8.36	9.89	13.34
	1:45:00	0.00	0.00	2.65	3.78	4.96	6.23	7.45	8.73	11.76
	1:50:00	0.00	0.00	2.47	3.38	4.49	5.54	6.60	7.64	10.28
	1:55:00	0.00	0.00	2.18	3.00	3.99	4.87	5.78	6.61	8.88
	2:00:00	0.00	0.00	1.89	2.61	3.44	4.22	4.99	5.64	7.57
	2:05:00	0.00	0.00	1.52	2.09	2.75	3.37	3.97	4.47	5.98
	2:10:00	0.00	0.00	1.19	1.61	2.13	2.56	3.01	3.36	4.49
	2:15:00	0.00	0.00	0.94	1.27	1.71	1.89	2.22	2.45	3.32
	2:20:00	0.00	0.00	0.76	1.04	1.40	1.45	1.70	1.84	2.52
	2:25:00	0.00	0.00	0.63	0.85	1.15	1.13	1.33	1.40	1.93
	2:30:00	0.00	0.00	0.52	0.70	0.94	0.89	1.04	1.07	1.48
	2:35:00	0.00	0.00	0.42	0.57	0.77	0.70	0.82	0.81	1.12
	2:40:00	0.00	0.00	0.35	0.46	0.61	0.55	0.64	0.60	0.84
	2:45:00	0.00	0.00	0.28	0.37	0.48	0.43	0.50	0.45	0.62
	2:50:00 2:55:00	0.00	0.00	0.23	0.29	0.38	0.33	0.38	0.34	0.47
	3:00:00	0.00	0.00	0.18	0.23	0.30	0.26	0.30	0.27	0.37
	3:05:00	0.00	0.00	0.15 0.12	0.18	0.23 0.18	0.21 0.16	0.24	0.22 0.17	0.30
	3:10:00	0.00	0.00	0.12	0.14	0.14	0.13	0.19	0.17	0.24
	3:15:00	0.00	0.00	0.06	0.08	0.10	0.09	0.11	0.10	0.13
	3:20:00	0.00	0.00	0.04	0.05	0.07	0.07	0.07	0.07	0.09
	3:25:00	0.00	0.00	0.03	0.04	0.05	0.04	0.05	0.04	0.06
	3:30:00	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.03	0.03
	3:35:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00 4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.03 (May 2020) Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

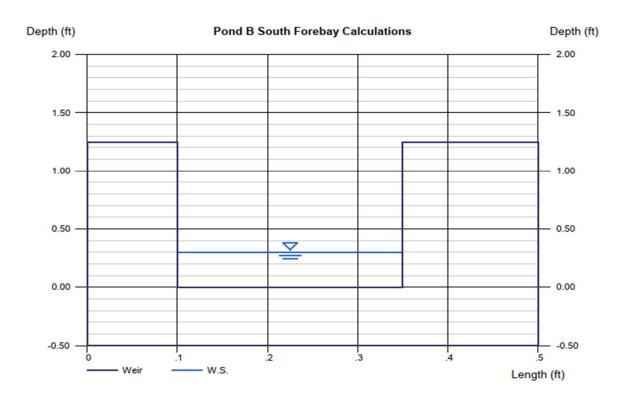
		,					,
Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft²]	[acres]	[ft³]	[ac-ft]	[cfs]	
	0.00	10	0.000	0	0.000	0.00	For be
	0.50	204	0.005	53	0.001	0.01	stage
	1.00	1,303	0.030	281	0.006	0.03	chang
	1.50	4,158	0.095	1,646	0.038	0.05	from t
	2.00	8,120	0.186	4,533	0.104	0.08	Sheet
		14,231	0.327	10,120	0.232	0.11	Ales i
1110.011	2.50						Also ii outlet
WQCV	2.67	16,308	0.374	12,716	0.292	0.12	overfl
	3.00	19,626	0.451	18,702	0.429	0.16	where
	3.50	23,633	0.543	29,517	0.678	0.20	
EURV	3.63	24,675	0.566	32,657	0.750	0.20	
	4.00	27,052	0.621	42,286	0.971	2.75	
	4.50	29,330	0.673	56,381	1.294	2.92	
100-YEAR	4.68	30,150	0.692	61,735	1.417	2.98	
100 12.110	5.00	31,180	0.716	71,579	1.643	3.09	
	5.00	51,100	0.710	71,575	1.015	3.03	-
							-
							_
							_
							-
							_
							-
							-
							_
							_
		1	1	1	1		-
		ļ	-	ļ	1		4
		-	-	1	1		_
							_
							_
							-
							-
							_
		1	1	l	1		1
				1			1
	1			İ		İ	7
				İ		İ	7
							-1
							-

best results, include the ges of all grade slope inges (e.g. ISV and Floor) in the S-A-V table on eet 'Basin'.

include the inverts of all ets (e.g. vertical orifice, rflow grate, and spillway, ere applicable).

Detention Pond B South Forebay Calculations

100 YR Discharge 6.7 CFS
WQCV Storage 0.264 AC-FT
Forebay Volume (2% pf WQCV) 0.00528 AC-FT
Forebay Release Volume (2% of 100 YR) 0.134 CFS


Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Nov 25 2020

Pond B South Forebay Calculations

Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.30
Bottom Length (ft)	= 0.25	Q (cfs)	= 0.134
Total Depth (ft)	= 1.25	Area (sqft)	= 0.07
		Velocity (ft/s)	= 1.81
Calculations		Top Width (ft)	= 0.25
Weir Coeff. Cw	= 3.33	2000 • 12 particular 10 • 10 • 11	
Compute by:	Known Q		
Known Q (cfs)	= 0.13		

Detention Pond B North Forebay Calculations

100 YR Discharge **CFS** 46.7 WQCV Storage 0.264 AC-FT Forebay Volume (2% pf WQCV) 0.00528 AC-FT Forebay Release Volume (2% of 100 YR) 0.934 **CFS**

Weir Report

- Weir

- W.S.

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Nov 25 2020

Length (ft)

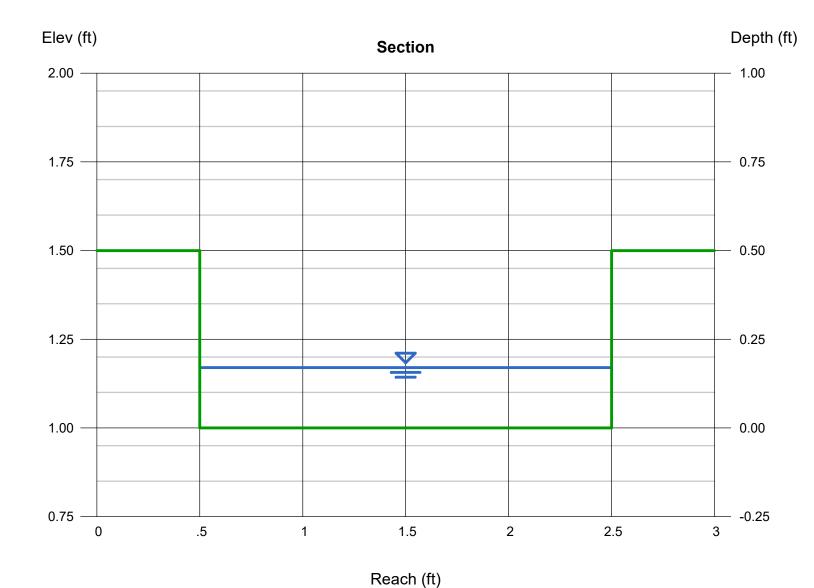
Pond B North Forebay Calculations

Rectangular Weir		Highlighted		
Crest	= Sharp	Depth (ft)	=	1.08
Bottom Length (ft)	= 0.25	Q (cfs)	=	0.930
Total Depth (ft)	= 1.25	Area (sqft)	=	0.27
		Velocity (ft/s)	=	3.46
Calculations		Top Width (ft)	=	0.25
Weir Coeff. Cw	= 3.33			
Compute by:	Known Q			
Known Q (cfs)	= 0.93			

Depth (ft) **Pond B North Forebay Calculations** Depth (ft) 2.00 2.00 1.50 1.50 1.00 -- 1.00 0.50 - 0.50 0.00 -- 0.00 -0.50 -0.50 -

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


= 1.06

Wednesday, Nov 25 2020

Pond B Trickel Channel

Known Q (cfs)

Rectangular		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.17
Total Depth (ft)	= 0.50	Q (cfs)	= 1.060
,		Area (sqft)	= 0.34
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 3.12
Slope (%)	= 1.00	Wetted Perim (ft)	= 2.34
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.21
		Top Width (ft)	= 2.00
Calculations		EGL (ft)	= 0.32
Compute by:	Known Q		

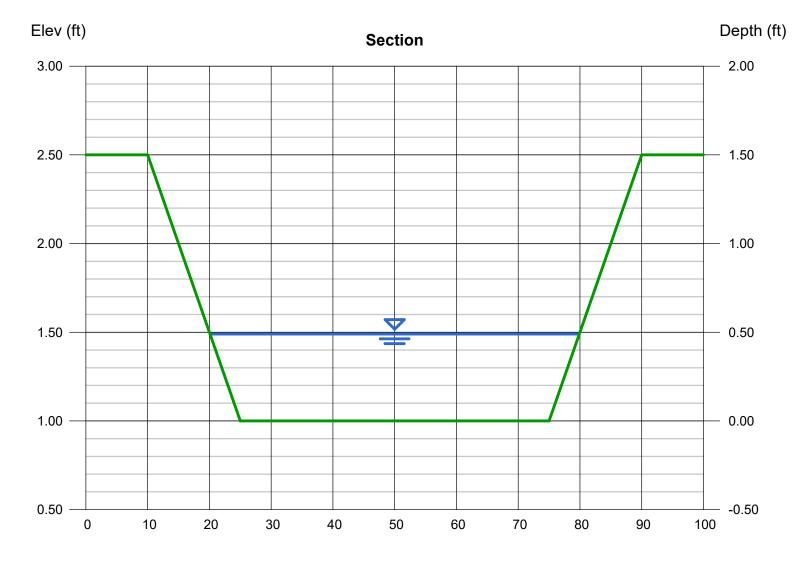
Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Jun 21 2021

Pond B Spillway

Tra	ape	zoi	dal
	•		


Bottom Width (ft) = 50.00 Side Slopes (z:1) = 10.00, 10.00 Total Depth (ft) = 1.50 Invert Elev (ft) = 1.00 Slope (%) = 0.20 N-Value = 0.020

Calculations

Compute by: Known Q Known Q (cfs) = 51.30

Highlighted

= 0.49Depth (ft) Q (cfs) = 51.30Area (sqft) = 26.90Velocity (ft/s) = 1.91 Wetted Perim (ft) = 59.85 Crit Depth, Yc (ft) = 0.32Top Width (ft) = 59.80EGL (ft) = 0.55

Reach (ft)

APPENDIX D REFERENCE MATERIALS

Federal Emergency Management Agency

Washington, D.C. 20472

JAN 3 0 2007

CERTIFIED MAIL RETURN RECEIPT REQUESTED

The Honorable Sallie Clark Chair, El Paso County **Board of Commissioners** 27 East Vermijo Avenue Colorado Springs, CO 80903 IN REPLY REFER TO:

Case No.: 05-08-0368P

Community Name: El Paso County, CO

Community No.: 080059

Effective Date of MAY 2 3 2007

Dear Ms. Clark:

The Flood Insurance Study report and Flood Insurance Rate Map for your community have been revised by this Letter of Map Revision (LOMR). Please use the enclosed annotated map panel(s) revised by this LOMR for floodplain management purposes and for all flood insurance policies and renewals issued in your community.

Additional documents are enclosed which provide information regarding this LOMR. Please see the List of Enclosures below to determine which documents are included. Other attachments specific to this request may be included as referenced in the Determination Document. If you have any questions regarding floodplain management regulations for your community or the National Flood Insurance Program (NFIP) in general, please contact the Consultation Coordination Officer for your community. If you have any technical questions regarding this LOMR, please contact the Director, Federal Insurance and Mitigation Division of the Department of Homeland Security's Federal Emergency Management Agency (FEMA) in Denver, Colorado, at (303) 235-4830, or the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP). Additional information about the NFIP is available on our website at http://www.fema.gov/nfip.

Sincerely,

Patrick, F. Sacbibit, P.E., CFM, Project Engineer

Engineering Management Section

Mitigation Division

For: William R. Blanton Jr., CFM, Chief **Engineering Management Section**

Mitigation Division

List of Enclosures:

Letter of Map Revision Determination Document Annotated Flood Insurance Rate Map Annotated Flood Insurance Study Report

The Honorable Lionel Rivera Mayor, City of Colorado Springs

> Regional Floodplain Administrator Pikes Peak Regional Building Department

J. F. Sato and Associates, Inc.

Engineering and Surveying, Inc.

Effective Date: MAY 2 3 2007 Issue Date: JAN 3 0 2007 Case No.: 05-08-0368P Page 1 of 5 LOMR-APP

Federal Emergency Management Agency

Washington, D.C. 20472

LETTER OF MAP REVISION **DETERMINATION DOCUMENT**

	COMMUNITY AND REVISION	INFORMATION	PROJECT DESCRIPTION	BASIS OF REQUEST					
COMMUNITY	Co	so County olorado oorated Areas)	CHANNELIZATION CULVERT	FLOODWAY HYDRAULIC ANALYSIS NEW TOPOGRAPHIC DATA BASEMAP CHANGES					
	COMMUNITY NO.: 080059								
IDENTIFIER	Sand Creek Center Tributary	and East Fork LOMR	APPROXIMATE LATITUDE & LONGITUDE: 38.846, -104.720 SOURCE: USGS QUADRANGLE DATUM: NAD 27						
	ANNOTATED MAPPING E	NCLOSURES	ANNOTATED S	STUDY ENCLOSURES					
TYPE: FIRM* TYPE: FIRM TYPE: FIRM	NO.: 08041C0752 F NO.: 08041C0753 F NO.: 08041C0754 F	DATE: March 17, 1997 DATE: March 17, 1997 DATE: March 17, 1997	DATE OF EFFECTIVE FLOOD INSUI PROFILE(S): 206P FLOODWAY DATA TABLE: 5	RANCE STUDY: August 23, 1999					

FLOODING SOURCE(S) & REVISED REACH(ES)

Sand Creek Center Tributary - from approximately 1,350 feet upstream of East Frontage Road to just upstream of Galley Road

SUMMARY OF REVISIONS										
Flooding Source	Effective Flooding	Revised Flooding	Increases	Decreases						
Sand Creek Center Tributary	Zone AE	Zone AE	YES	YES						
	Floodway	Floodway	YES	YES						
	BFEs*	BFEs	NONE	YES						
	Zone X (shaded)	Zone X (shaded)	YES	YES						

DETERMINATION

This document provides the determination from the Department of Homeland Security's Federal Emergency Management Agency (FEMA) regarding a request for a Letter of Map Revision (LOMR) for the area described above. Using the information submitted, we have determined that a revision to the flood hazards depicted in the Flood Insurance Study (FIS) report and/or National Flood Insurance Program (NFIP) map is warranted. This document revises the effective NFIP map, as indicated in the attached documentation. Please use the enclosed annotated map panels revised by this LOMR for floodplain management purposes and for all flood insurance policies and renewals in your community.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

> Patrick F. Sacbibit, P.E., CFM, Project Engineer **Engineering Management Section**

Enclosures reflect changes to flooding sources affected by this revision.

* FIRM - Flood Insurance Rate Map; ** FBFM - Flood Boundary and Floodway Map; *** FHBM - Flood Hazard Boundary Map

Page 2 of 5 Issue Date: JAN 3 0 2007 Effective Date: MAY 2 3 2007 Case No.: 05-08-0368P LOMR-APP

Federal Emergency Management Agency

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

OTHER COMMUNITIES AFFECTED BY THIS REVISION

CID Number: 080060 Name: City of Colorado Springs, Colorado

AFFECTED MAP PANELS

AFFECTED PORTIONS OF THE FLOOD INSURANCE STUDY REPORT

NO.: 08041C0753 F

DATE: March 17, 1997

DATE OF EFFECTIVE FLOOD INSURANCE STUDY: August 23, 1999

TYPE: FIRM NO.: 08041C0753 F DATE: March 17, 1997 DATE OF EFFECTIVE FLOOD INSURANCE STATES TYPE: FIRM NO.: 08041C0754 F DATE: March 17, 1997 PROFILE(S): 205P, 206P, 209P, and 210P

FLOODWAY DATA TABLE: 5

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Patrick F. Sacbibit, P.E., CFM, Project Engineer Engineering Management Section

Page 3 of 5 | Issue Date: JAN 3 0 2007 | Effective Date: MAY 2 3 2007 | Case No.: 05-08-0368P | LOMR-APP

Federal Emergency Management Agency

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

COMMUNITY INFORMATION

APPLICABLE NFIP REGULATIONS/COMMUNITY OBLIGATION

We have made this determination pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93-234) and in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65. Pursuant to Section 1361 of the National Flood Insurance Act of 1968, as amended, communities participating in the NFIP are required to adopt and enforce floodplain management regulations that meet or exceed NFIP criteria. These criteria, including adoption of the FIS report and FIRM, and the modifications made by this LOMR, are the minimum requirements for continued NFIP participation and do not supersede more stringent State/Commonwealth or local requirements to which the regulations apply.

We provide the floodway designation to your community as a tool to regulate floodplain development. Therefore, the floodway revision we have described in this letter, while acceptable to us, must also be acceptable to your community and adopted by appropriate community action, as specified in Paragraph 60.3(d) of the NFIP regulations.

NFIP regulations Subparagraph 60.3(b)(7) requires communities to ensure that the flood-carrying capacity within the altered or relocated portion of any watercourse is maintained. This provision is incorporated into your community's existing floodplain management ordinances; therefore, responsibility for maintenance of the altered or relocated watercourse, including any related appurtenances such as bridges, culverts, and other drainage structures, rests with your community. We may request that your community submit a description and schedule of maintenance activities necessary to ensure this requirement.

COMMUNITY REMINDERS

We based this determination on the 1-percent-annual-chance flood discharges computed in the FIS for your community without considering subsequent changes in watershed characteristics that could increase flood discharges. Future development of projects upstream could cause increased flood discharges, which could cause increased flood hazards. A comprehensive restudy of your community's flood hazards would consider the cumulative effects of development on flood discharges subsequent to the publication of the FIS report for your community and could, therefore, establish greater flood hazards in this area.

Your community must regulate all proposed floodplain development and ensure that permits required by Federal and/or State/Commonwealth law have been obtained. State/Commonwealth or community officials, based on knowledge of local conditions and in the interest of safety, may set higher standards for construction or may limit development in floodplain areas. If your State/Commonwealth or community has adopted more restrictive or comprehensive floodplain management criteria, those criteria take precedence over the minimum NFIP requirements.

We will not print and distribute this LOMR to primary users, such as local insurance agents or mortgage lenders; instead, the community will serve as a repository for the new data. We encourage you to disseminate the information in this LOMR by preparing a news release for publication in your community's newspaper that describes the revision and explains how your community will provide the data and help interpret the NFIP maps. In that way, interested persons, such as property owners, insurance agents, and mortgage lenders, can benefit from the information.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Patrick F. Sacbibit, P.E., CFM, Project Engineer Engineering Management Section

Federal Emergency Management Agency

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

We have designated a Consultation Coordination Officer (CCO) to assist your community. The CCO will be the primary liaison between your community and FEMA. For information regarding your CCO, please contact:

Ms. Jeanine D. Petterson
Director, Federal Insurance and Mitigation Division
Federal Emergency Management Agency, Region VIII
Denver Federal Center, Building 710
P.O. Box 25267
Denver, CO 80225-0267
(303) 235-4830

STATUS OF THE COMMUNITY NFIP MAPS

We will not physically revise and republish the FIRM and FIS report for your community to reflect the modifications made by this LOMR at this time. When changes to the previously cited FIRM panel(s) and FIS report warrant physical revision and republication in the future, we will incorporate the modifications made by this LOMR at that time.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Patrick F. Sacbibit, P.E., CFM, Project Engineer Engineering Management Section Mitigation Division

Federal Emergency Management Agency

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

PUBLIC NOTIFICATION OF REVISION

PUBLIC NOTIFICATION

FLOODING SOURCE	LOCATION OF REFERENCED ELEVATION	BFE (FEET	NGVD 29)	MAP PANEL
T EOODING GOOKEE	EGGATION OF REFERENCED ELEVATION	EFFECTIVE	REVISED	NUMBER(S)
Sand Creek Center Tributary	Approximately 1,350 feet upstream of East Frontage Road	6,170	6,165	08041C0753 F
	Just downstream of Terminal Avenue	6,216	6,213	08041C0754 F

Within 90 days of the second publication in the local newspaper, a citizen may request that we reconsider this determination. Any request for reconsideration must be based on scientific or technical data. Therefore, this letter will be effective only after the 90-day appeal period has elapsed and we have resolved any appeals that we receive during this appeal period. Until this LOMR is effective, the revised BFEs presented in this LOMR may be changed.

A notice of changes will be published in the Federal Register. This information also will be published in your local newspaper on or about the dates listed below.

LOCAL NEWSPAPER

Name: El Paso County News

Dates: 02/14/2007

02/21/2007

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Patrick F. Sacbibit, P.E., CFM, Project Engineer Engineering Management Section

CHANGES ARE MADE IN DETERMINATIONS OF BASE FLOOD ELEVATIONS FOR THE CITY OF COLORADO SPRINGS AND THE UNINCORPORATED AREAS OF EL PASO COUNTY, COLORADO, UNDER THE NATIONAL FLOOD INSURANCE PROGRAM

On March 17, 1997, the Department of Homeland Security's Federal Emergency Management Agency identified Special Flood Hazard Areas (SFHAs) in the City of Colorado Springs and in the unincorporated areas of El Paso County, Colorado, through issuance of a Flood Insurance Rate Map (FIRM). The Mitigation Division has determined that modification of the elevations of the flood having a 1-percent chance of being equaled or exceeded in any given year (base flood) for certain locations in these communities is appropriate. The modified Base Flood Elevations (BFEs) revise the FIRM for the communities.

The changes are being made pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (Public Law 93-234) and are in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, Public Law 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65.

A hydraulic analysis was performed to incorporate new topographic data for Sand Creek Center Tributary from just upstream of Airport Road to just upstream of Galley Road and for Sand Creek East Fork from approximately 970 feet downstream of Powers Boulevard to just downstream of Stewart Avenue. This has resulted in a revised delineation of the regulatory floodway, increases and decreases in SFHA width, and increased and decreased BFEs for both aforementioned flooding sources. The table below indicates existing and modified BFEs for selected locations along the affected lengths of the flooding source(s) cited above.

•	Existing BFE	Modified BFE
Location	(feet)*	(feet)*
Sand Creek Center Tributary:		
¹ Approximately 150 feet upstream of Airport Road	6,109	6,108
¹ Approximately 1,250 feet upstream of East Frontage Road	6,168	6,164
² Approximately 1,350 feet upstream of East Frontage Road	6,170	6,165
² Just downstream of Terminal Avenue	6,216	6,213
Sand Creek East Fork:		
¹ Approximately 810 feet downstream of Powers Boulevard	6,099	6,096
¹ Approximately 140 feet downstream of Stewart Avenue	6,206	6,205

^{*}National Geodetic Vertical Datum, rounded to nearest whole foot

Under the above-mentioned Acts of 1968 and 1973, the Mitigation Division must develop criteria for floodplain management. To participate in the National Flood Insurance Program (NFIP), the community must use the modified BFEs to administer the floodplain management measures of the NFIP. These modified BFEs will also be used to calculate the appropriate flood insurance premium rates for new buildings and their contents and for the second layer of insurance on existing buildings and contents.

Upon the second publication of notice of these changes in this newspaper, any person has 90 days in which he or she can request, through the Chief Executive Officer of the community, that the Mitigation Division reconsider the determination. Any request for reconsideration must be based on knowledge of

¹City of Colorado Springs

²Unincorporated areas of El Paso County

changed conditions or new scientific or technical data. All interested parties are on notice that until the 90-day period elapses, the Mitigation Division's determination to modify the BFEs may itself be changed.

Any person having knowledge or wishing to comment on these changes should immediately notify:

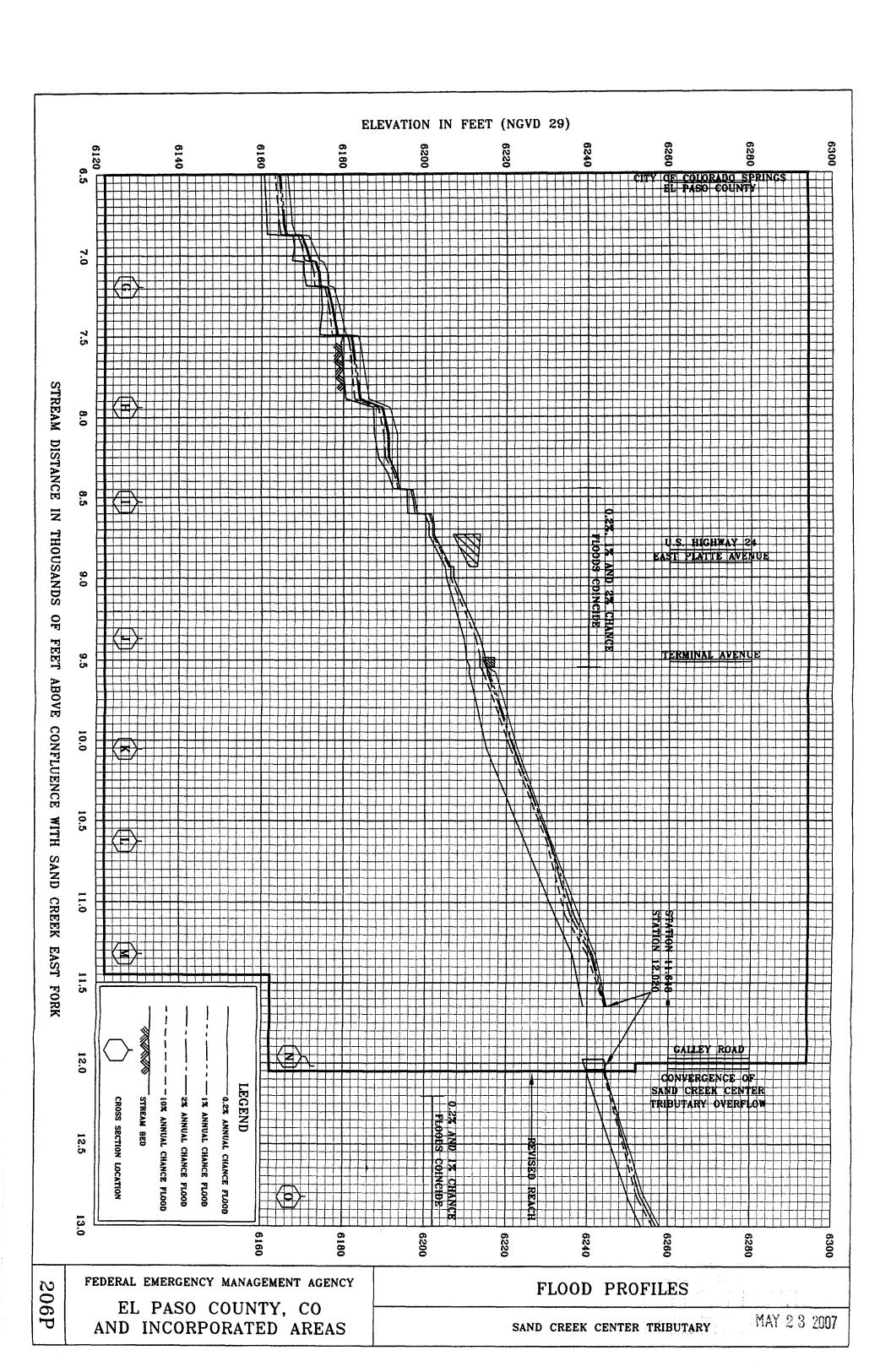
The Honorable Sallie Clark Chair, El Paso County Board of Commissioners 27 East Vermijo Avenue Colorado Springs, CO 80903

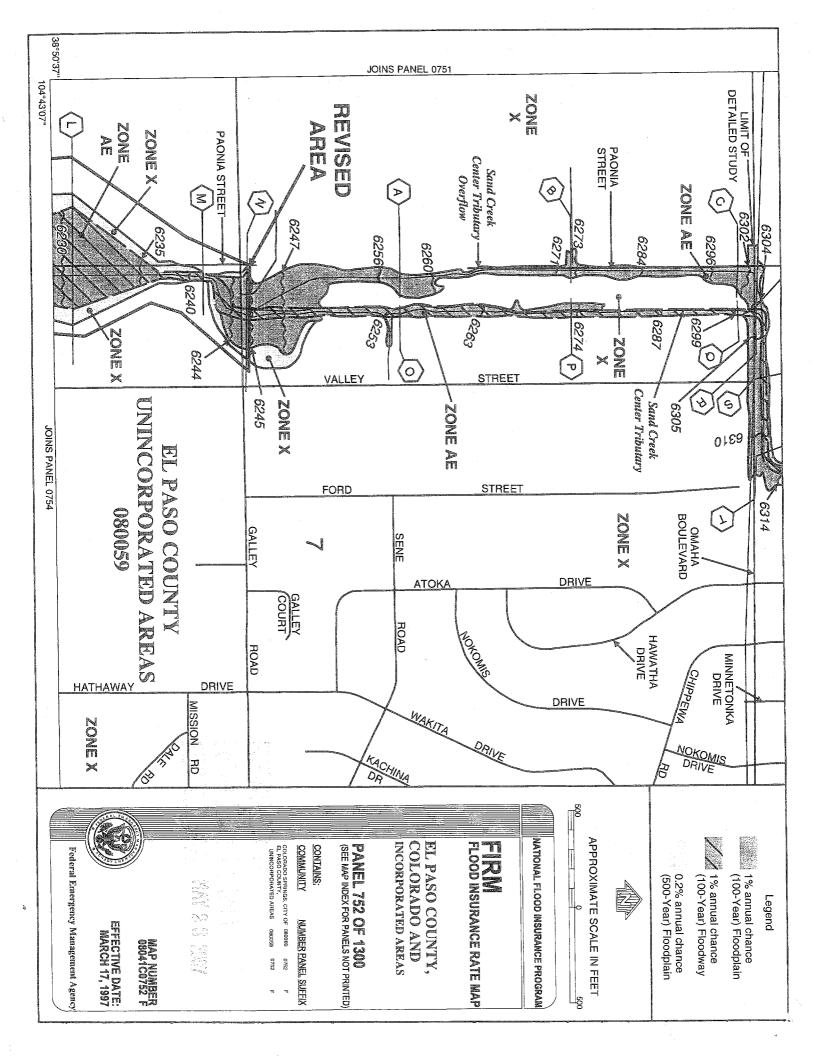
OR

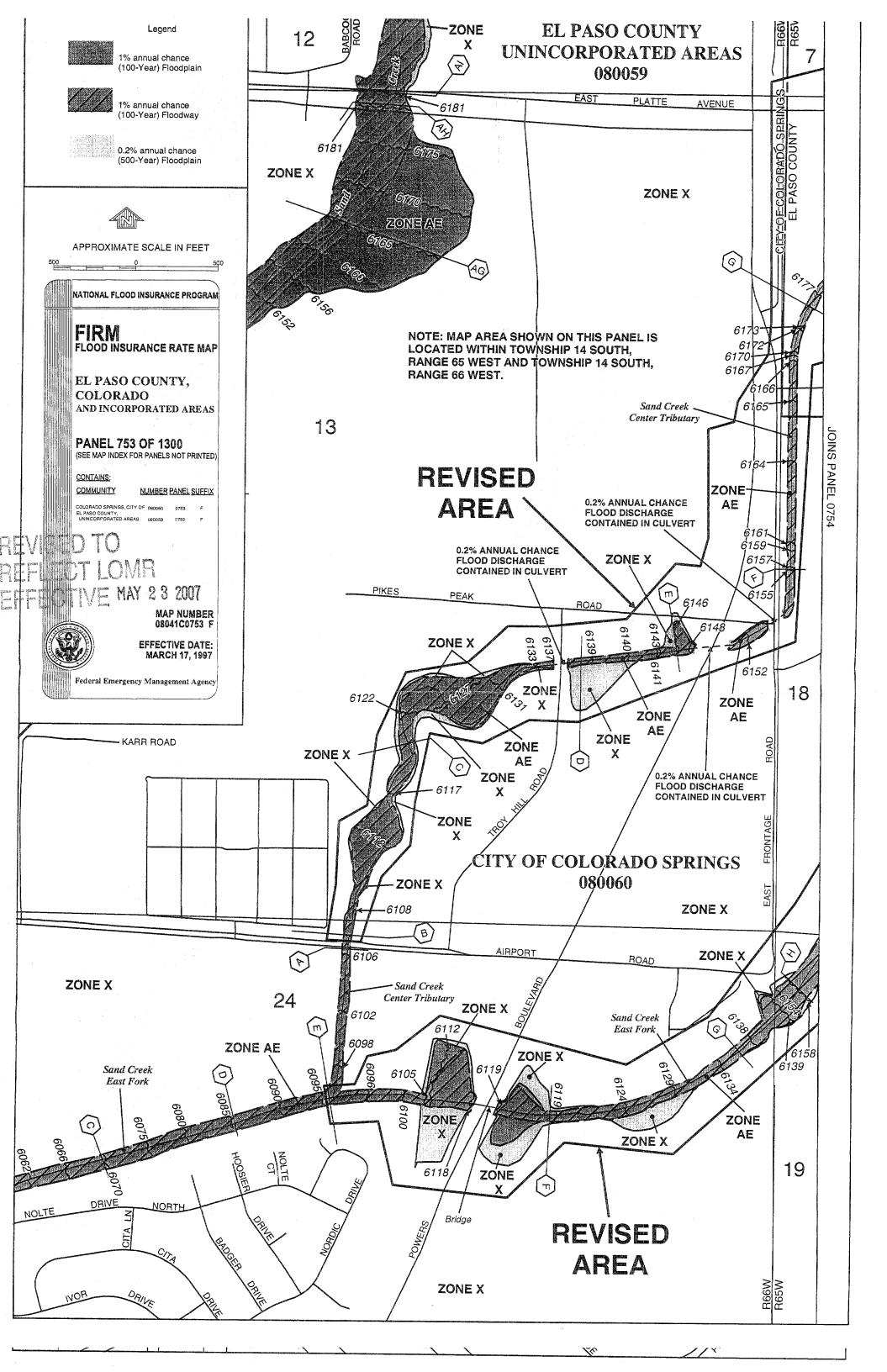
The Honorable Lionel Rivera Mayor, City of Colorado Springs P.O. Box 1575 Colorado Springs, CO 80901

			Revised	Data /	\ \ 	_	*						ī		-				Revised	by LOMR	dated	7007 00 100								
	INCREASE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	000	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.0	0.2	9.0	0.7	0.0 7.0	0.t	0.1	0.0	0.0	0.5			*
I (4. 124 I	WITH FLOODWAY (NGVD)	6,038.7	6,054.3	6,069.9	6,085.1	6,095.1	6,118.5	6,158.0 6,158.8	6 169 0	6,177.0	6,193.3	6,207.3	6,207.9	6,228.9	6,241.7	6,257.9	6,259.9	6,268.7	6,277.5	6,292.0	6,292.1	6,294.0	6,307.0	6,348.8	6,359.9	6,383.7	6,401.5		AY DATA	SAND CREEK EAST FORK
BASE FLOOD WATER SURFACE ELI	WITHOUT FLOODWAY FEET (6,038.7	6,054.3	6.069.9	6,085.1	6,095.1	6,118.5	6,130.0	6,130.0	6.177.0	6,193.3	6,207.3	6,207.9	6,228.8	6,241.7	6,257.9	6,259.9	6,268.7	6,277.3	6,291.4	6,291.4	6,293.4	6,307.2	6,348.7	6,359.9	6,383.7	6,401.0		FLOODWAY DATA	ND CREEK
	REGULATORY	6,038.7	6,054.3	6.690,9	6,085.1	6,095.1	6,118.5	6,130.0	6,130.0	6,177.0	6,193.3	6,207.3	6,207.9	6,228.8	6,241.7	6,257.9	6,259.9	6,268.7	6,277.3	6,291.4	6,291.4	6,293.4	6,307.2	6,348.7	6,359.9	6,383.7	6,401.0			SA
	MEAN VELOCITY (FEET PER SECOND)	11.9	12.2	12.0	12.1	12.0	10.9	13.5	12.0	12.6	12.8	10.1	8.4	9.7	10.0	11.1	8.9	9.5	6.7	7.7	8.0	က ၊	7.8 7.7	9. 9.	7.6	7.4	7.8			
FLOODWAY	SECTION AREA (SQUARE FEET)	455	446	450	449	446	489	396	207	423	415	526	632	669	920	479	601	582	829	069	299	1,598	683 70e	620	206	705	299			
	WIDTH (FEET)	100	100	100	100	102	20	71	148	90	81	166	173	367	188	125	125	228	300	321	326	388	367	255	397	431	353		MENT AGENCY	T, CO AREAS
RCE	DISTANCE	1,100	2,400	3,330	4,240	4,870	6,188	7,403	7,931	0,943 0,666	10,721	11,347	11,375	12,610	13,720	14,805	14,885	15,850	16,325	16,995	17,065	17,915	18,995 20,525	22,323	23,105	24,835	26,505	reek	ENCY MANAGE	EL PASO COUNTY, CO AND INCORPORATED AREAS
FLOODING SOURCE	CROSS SECTION	Sand Creek East Fork A	æ	U	Ω	ш	ш. (თ :	Ľ -		• ≺		Σ	z	0	۵	σ	œ	S	—	⊃	> }	≥ >	< >-	7	Ą	AB	Feet above confluence with Sand Creek	FEDERAL EMERGENCY MANAGEMENT AGENCY	AND INCO
	•																											ָּיָרָ	TA	BLE 5

FLOODING SO	SOURCE		FLOODWAY			WATER SURFACE ELI	124	
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLODMAY WIT	WITH FLOODWAY	INCREASE
Sand Creek				Revised Data				
Center Tributary	Ç	Ç	C	9	3 108 x	7 7 7		
∢	940	40	35	0.0	0,100.3	0,100.5	0,100.5	0:0
Ф	066	40	118	6.7	6,107.2	6,107.2	6,107.2	0.0
C	2 238	91	120	9.9	6.120.2	6,120.2	6,120.2	0.0
Ω	3.948	46	98	8.0	6,138.3	6,138.3	6,138.3	0.0
щ	4.547	170	159	4.8	6,147.4	6,147.4	6,147.4	0.0
: Ц	5.539	52	26	7.8	6,156.8	6,156.8	6,156.8	0.0
ပ	7.191	63	104	7.3	6,176.2	6,176.2	6,176.2	0.0
· I	7.940	52	go i	7 B	6,189.6	6,189.6	6,189.6	0.0
: -	8,527	40	Flow rate	e = 792 cts	6,197.6	6,197.6	6,197.6	0.0
۰	9.366	17	42	9.0	6,213.4	6,213.4	6,213.4	0.0
¥	10,055	232	278	4.0	6,221.9	6,221.9	6,221.9	0.0
_	10,627	539	469	2.4	6,230.6	6,230.6	6,230.6	0.0
Σ	11,321	31	62	9.1	6,241.1	6,241.1	6,241.1	0.0
z	11,648	09	66	7.3	6,244.6	6,244.6	6,245.4	0.8
0	12.840	29	85	9.6	6,253.8	6,253.8	6,253.8	0.0
۵	13,730	27	83	6.6	6,273.6	6,273.6	6,273.6	0.0
Ø	14,592	56	68	9.3	6,299.7	6,299.7	6,299.7	0.0
٣	14,670	40	61	6.9	6,304.2	6,304.2	6,305.2	1.0
တ	15,050	20	63	10.1	6,307.6	6,307.6	6,308.1	0.5
⊢	15,460	25	89	9.5	6,310.8	6,310.8	6,311.4	9.0
D	15,750	20	41	7.8	6,319.6	6,319.6	6,319.6	0.0
>	16,670	20	39	8.1	6,346.0	6,346.0	6,346.0	0.0
			Flow rate	e = 822 cfs				


-


FLOODWAY DATA


Sand Creek Center Tributary

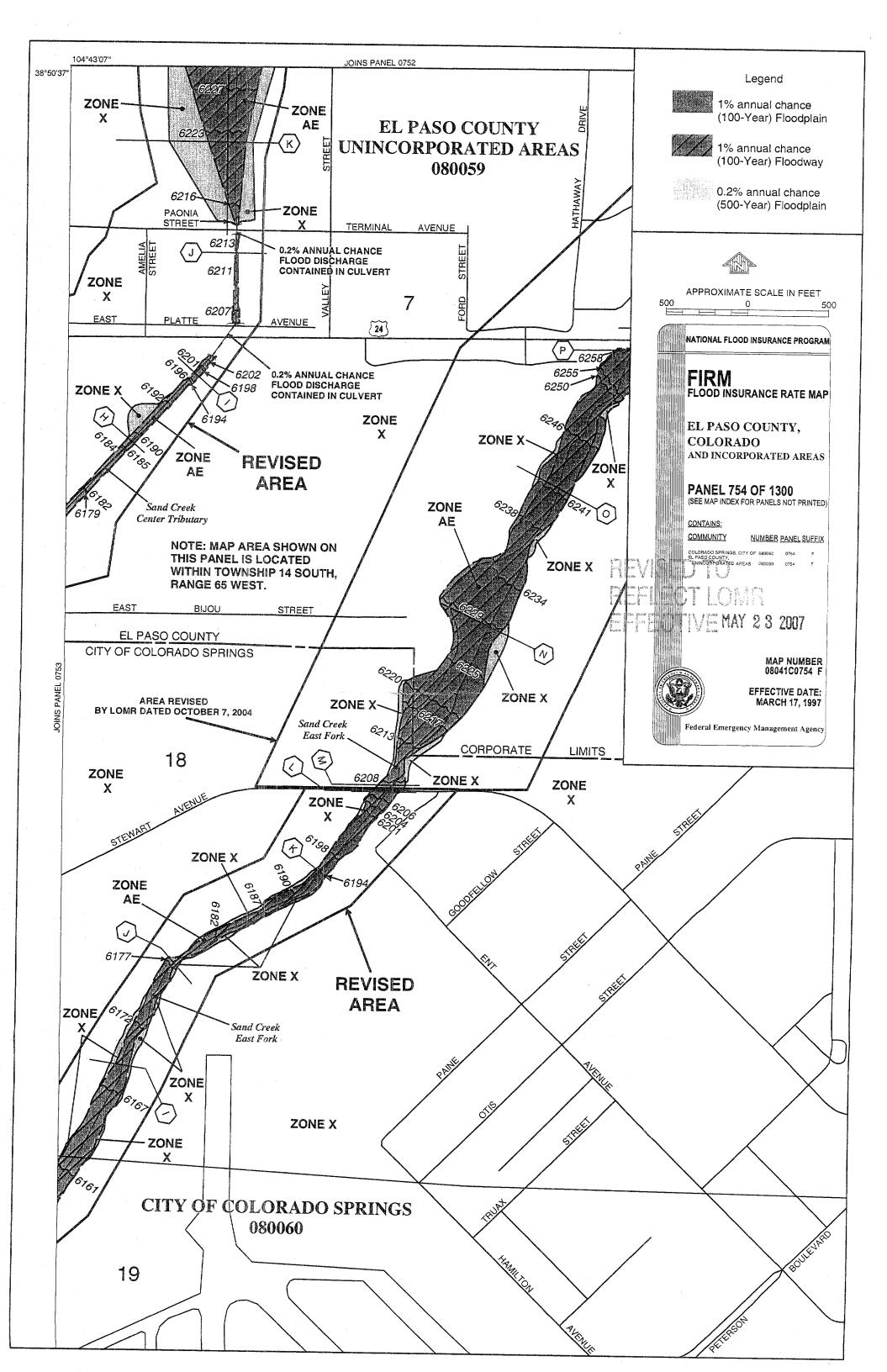
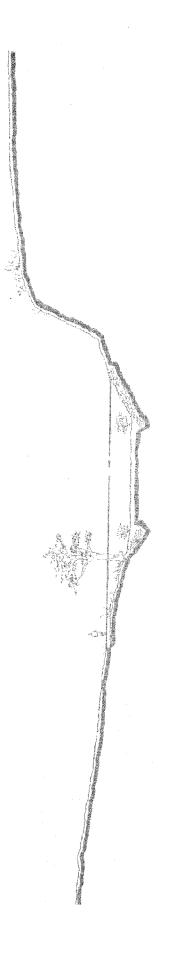

FEDERAL EMERGENCY MANAGEMENT AGENCY
EL PASO COUNTY, CO
AND INCORPORATED AREAS

TABLE 5



SAND CREEK DRAINAGE BASIN PLANNING STUDY

PRELIMINARY DESIGN REPORT

CITY OF COLORADO SPRINGS, EL PASO COUNTY, COLORADO

PREPARED FOR:

City of Colorado Springs
Department of Comprehensive Planning, Development and Finance
Engineening Division
30 S. Nevada
Colorado Springs, Colorado 80903

PREPARED BY:

Klowa Engineering Corporation 1011 North Weber Colorado Springs, CO 80903

SAND CREEK DRAINAGE BASIN PLANNING STUDY PRELIMINARY DESIGN REPORT

Prepared for:

City of Colorado Springs
Department of Comprehensive Planning, Development And Finance
Engineering Division - MAIL CODE 435
P.O. Box 1575
Colorado Springs, CO 80901-1575

Prepared by:

Kiowa Engineering Corporation 1001 North Weber #200 Colorado Springs, CO 80903

KIOWA Project No. 90.04.09 R185 JANUARY 1993
Revised APRIL 1993
Revised FEBRUARY 1995
Revised APRIL 1995
Revised OCTOBER 1995
Revised March 1996

TABLE OF CONTENTS

34	Z	38	34		51	22222	53	54.45		58	280	ì					
Conclusions	VI. DEVELOPMENT OF ALTERNATIVES AND RECOMMENDED PLAN	Channel Alternatives Immart Linon Habitas	Development of Recommended Plan Discussion of Recommended Plan	VII. PRELIMINARY DESIGN	Criteria	Drop Structures and Check Structures Detention Water Quality Trails	Maintenance and Revegetation Right-of-Way Rodur-of-Way	Erosion and Sedimentation Control General	VIII. PLAN IMPLEMENTATION	General Cost Estimate	<u>Unplatted Acreage</u> Drainage and Bridge Fee Calculations	APPENDIX A: Project Correspondence	PRELIMINARY DESIGN DRAWINGS, PLAN, PROFILES AND DETAILS				
	Page	:=	ij∃	iv		77777	m	4 <	144	5		∞∞∞	° × • • • •		18 18 19		33.33.33.33.33.33.33.33.33.33.33.33.33.
TABLE OF CONTENTS		LIST OF TABLES	LIST OF FIGURES	RESOLUTION OF ADOPTION AND ENGINEER'S STATEMENT	I. INTRODUCTION	Authorization Purpose and Scope Summary of Data Obtained Mapping and Surveying Project Coordination	Acknowledgements II. STUDY AREA DESCRIPTION		Soils and Geology Property Ownership and Impervious Land Densities		III. HYDROLOGIC ANALYSIS	Runoff Model Basin Carteristics Descriptor Studies	Levius Sumes Imperious Land Density Design Rainfall Hydrologic Modeling Results	IV. HYDRAULIC ANALYSIS AND FLOOD PLAIN DESCRIPTION	Reach Delineation Flood History Hydraulic Structure Inventory	V. EVALUATION OF CONCEPTUAL ALTERNATIVES	Introduction Evaluation Parameters Evaluation Parameters Environmental Review of Mainstem Sand Creek Basin Environmental Review for the East Fork Sand Creek Drainage Basin Summary of Drainageway Habitat Zones Preliminary Matrix of Conceptual Alternatives Drainageway System Alternatives

	Page		80-81	82	95-04	98	98	87	87											
				Table VIII-6 Miscellaneous Drainageway Cost Estimate		Table VIII-9 City Bridge Fee Calculation	Table VIII-10 County Bridge Fee Calculation	Table VIII-11 Regional Detention Basin Land Fee Calculation	Table VIII-12 Regional Detention Basin Capital Cost Fee Calculation											
		Page	10	Ç	20-25	26-29	35	43	44	45	46	47	48	49	55	56	09	61-71	72-75	
:=	LIST OF TABLES		Percent Impervious Values	Summary of Peak Discharges - 24-Hour Duration Storm, Baseline, Conditions	Summary of Hydraulic Structures - Crossings	Summary of Hydraulic Structures - Channels	Summary of Wildlife Habitat Acreages	Matrix of Channel Alternatives	Evaluation of Conceptual Channel Alternatives Floodplain Preservation	Evaluation of Conceptual Channel Alternatives Channelization	Evaluation of Conceptual Channel Alternatives Selective Drainageway Improvements	Evaluation of Conceptual Channel Alternatives West Fork Sand Creek	Evaluation of Conceptual Channel Alternatives Center Tributary Sand Creek	Matrix of Recommended Channel Alternatives	Summary of Peak Discharges Selected Detention Alternative	Regional Detention Basin Water Quality Storage Requirements	Unit Construction Costs	Drainageway Conveyance Cost Estimate	Tributary Drainageway Conveyance Cost Estimate	
			Table III-1	Table III-2	Table IV-1	Table IV-2	Table V-1	Table VI-1	Table VI-2	Fable VI-3	Fable VI-4	Fable VI-5	Fable VI-6	Fable VI-7	Fable VII-1	Fable VII-2	Fable VIII-1	Fable VIII-2	Fable VIII-3	

囯

LIST OF FIGURES

Page

ν.	9	L	11	Flood Discharge Profile - Mainstern Sand Creek		Flood Discharge Profile - Center Tributary Sand Creek				Creeks				
	Hydrologic Soils Map	Proposed Land Use	Regional Sub-Basins	lood Discharge Profile	Flood Discharge Profile Creek	lood Discharge Profile	lood Discharge Profile	lood Discharge Profile	lood Discharge Profile	Reach Delineations	Detention Basin Alternatives, Sand Creek	etention Basin Alterna	hannel Alternatives, Ea	Water Quality Pond Capture Volumes
Figure II-1 Vicinity Map	Figure II-2 H	Figure II-3 Pr	Figure III-1 R	Figure III-2 FI	Figure III-3 FI	Figure III-4 Fl	Figure III-5 FI	Figure III-6 FI	Figure III-7 FI	Figure IV-1 Ro	Figure V-1 D	Figure V-2 D	Figure VI-1 Cl	Figure VII-1 W

.>

Resolution No. 189-95

A RESOLUTION ADCPTING THE SAND CREEK DRAINAGE BASIN PLANNING STUDY AND ESTABLISHING A DRAINAGE FEE, A DETENTION POND CAPITAL FEE, A DETENTION POND LAND FEE, AND AN ARTERIAL BRIDGE FEE FOR THE BASIN.

WHEREAS, the City Engineering Division of the City of Colorado Springs Department of Planning and Development has reviewed the Sand Creek Drainage Basin Planning Study as prepared by Kiowa Engineering Corporation, Colorado Springs, Colorado dated November 2, 1995, and

WHEREAS, the City/County Drainage Board has recommended approval of the above study at their November 2, 1995, meeting;

WHEREAS, the Sand Creek Drainage Basin includes unplatted land within the City limits;

NOW THEREFORE, BE IT RESOLVED by the City Council of the City of Colorado Springs:

Section 1. That the Sand Creek Drainage Basin Planning Study, dated November 1995, by Kiowa Engineering Corporation is adopted for use. City Engineering will utilize that study to assist in evaluating subdivision drainage reports.

Section 2. That a Sand Creek Drainage Basin Fee be established as \$4,895/acre, that a Sand Creek Detention Pond Capital Fee be established as \$1,213/acre, that a Sand Creek Detention Pond Land Fee be established as \$167/acre, and that a Sand Creek Arterial Bridge Fee be established as \$323/acre, as part of.

Dated at Colorado Springs, Colorado, this 28th November , 1995.

ď

Mayor

TTEST:

Cily Clerk

ENGINEER'S STATEMENT:

The attached SAND CREEK DRAINAGE BASIN PLANNING STUDY report was prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City for drainage reports. I accept responsibility for any liability caused by any negligent acts, errors and omissions on my part in preparing this report.

Kiowa Engine Corporation, 1011 North Weber St., Suite 200, Colorado Springs, CO 80903

1/20/16

I. INTRODUCTION

Authorization

The preliminary design of the drainageway and roadway crossing facilities within the Sand Creek Drainage Basin was authorized under the terms of Agreement Number 90-85 between the City of Colorado Springs (City) and Kiowa Engineering Corporation. The agreement was approved by the Colorado Springs City Council, April 10, 1990. Subsequent to this agreement, a change order to the contract to allow for the inclusion of technical information contained in the draft East Fork Sand Creek Drainage Basin Planning Study was approved July, 1993.

urpose and Scope

The purpose of the study is to identify feasible stormwater management plans to satisfy the existing and future needs within the Sand Creek Drainage Basin. The Sand Creek basin is to be referred to throughout this study and is inclusive of the Sand Creek mainstem and East Fork Sand Creek watersheds. The specific scope of work for this study included the following tasks:

- Meet with the City to: insure compliance with the services required by this agreement, obtain existing data and general information from participating entities, solicit desires of participating entities and other interested agencies or groups in order to develop alternate plans, procure current information relative to development plans in the basin, procure information relative to right-of-way limitations, proposed stormwater projects, potential hazards due to flooding, and avoid duplication of effort whenever possible by utilizing existing information available from other agencies.
- Contact the Civy, County, individuals, and other agencies who have knowledge and/or interest in the study area.
- Utilize City policies and criteria and applicable information wherever possible.
- Perform hydraulic and hydrologic analyses within the study area
- Identify environmental setting of basin.
- Identify existing and potential drainage and/or flooding problems.
- Develop improvement alternatives to reduce existing and potential flooding problems, and to mitigate the impact of stormwater runoff upon environmentally significant areas along the drainageway(s).
- 8. Examine the operation and maintenance aspects of feasible alternatives.

- Conduct an economic analysis of each alternative.
- Recommend and prepare a preliminary design for a selected alternative plan.
- Develop drainage and bridge fees for the basin.
- Prepare a written report discussing all items examined in the study.
- 13. Conduct presentations to public and private entities in order to define project goals, and to involve agencies with specific interest to help define feasible alternatives.

Summary of Data Obtained

Listed below are the technical reports collected for the review as part of preparing this study:

- Soil Survey for El Paso County, Colorado, dated June 1981.
- "City of Colorado Springs/El Paso County Drainage Criteria Manual", prepared by City of Colorado Springs, El Paso County, and HDR Infrastructure, Inc., dated May 1987.
- "Flood Insurance Studies for Colorado Springs, and El Paso County, Colorado", prepared by the Federal Emergency Management Agency (FEMA), revised 1989.
- Flood Insurance Restudy, Hydrology Report and Hydrologic Analyses, prepared by RCI, Inc., 1989.
- Sand Creek Drainage Basin Planning Study prepared by Simons, Li & Associates, Inc., dated July, 1985.
- Flood Hazard Analysis, Sand Creek, City of Colorado Springs and El Paso County, Colorado, prepared by the Soil Conservation Service, dated December, 1973.
- Banning-Lewis Ranch Master Drainage Plan, prepared by MSM Consultants, Inc., dated June 1981.
- Sand Creek Drainage Basin Study, prepared by United Planning and Engineering Company, October, 1977.
- Draft East Fork Sand Creek Drainage Basin Planning Study, prepared by Kiowa Engineering Corporation, January, 1989.
- Drainage Basin Inventory, Sand Creek Drainage Basin, prepared by Oliver E. Watts, P.E., June 1990.

In addition to the above listed reports there were a number of drainage study reports, sketch plans, preliminary and final design drawings, land use and zoning maps, development

•

plans, and existing drainage facility maps that were collected from the City, County, and other local agencies.

Reports which were prepared previous to the preliminary design report include the "Sand Creek Drainage Basin Planning Study Hydrology Report," and the "Sand Creek Drainage Basin Planning Study Development of Alternatives Report." These reports were prepared as part of the overall planning effort and have been referred to throughout this report. The Hydrology Report summarized peak flow data for existing and future basin development conditions without improvements in the basin, and established the base line hydrologic conditions from which the alternative planning then proceeded. The Development of Alternatives report evaluated the various combinations of drainageway improvements for the basin, taking into account environmental, cost, construction, right-of-way, maintenance and implementation factors for each feasible alternate plan. These reports are on file with the City Engineering Division, as well as technical addenda for each report. Both of these reports covered only the mainstem of the Sand Creek Basin. The similar information prepared for the draft East Fork Sand Creek Drainage Basin Planning Study has been summarized in this preliminary design report.

Mapping and Surveving

Mapping used in the planning effort for the mainstem of Sand Creek consisted of USGS 7-1/2 minute quadrangles, and 2-foot contour interval, 1-inch to 200-foot scale planimetric topographic maps. For the area of the basin north of Woodmen Road, aerial topographic mapping was compiled in May 1990. For the balance of the basin, the City of Colorado Springs Department of Public Utilities provided topographic mapping compiled from aerial photographs dated 1989. This mapping has been prepared as part of the Facility Inventory Management System (FIMS). The aerial topographic mapping was used in the drainage inventory, hydrologic/hydraulic analyses, and in the alternative planning phases of this project. All topographic mapping was based upon USGS vertical datum.

For the East Fork Sand Creek basin, mapping from the FIMS office and two-foot contour interval topography prepared in 1987 for the Banning-Lewis Ranch property were used in the preparation of the preliminary design. Where topographic mapping was not available, USGS quadrangle maps were used.

Stream cross-section data was obtained from the aerial mapping described above. These sections were verified against the cross-sections compiled in the 1986 City of Colorado Springs Flood Insurance Study (FIS), wherever possible.

Drainageway site inspections were conducted throughout the study area, and photographs were taken documenting the key drainage features.

The following general conditions have been placed upon the use of the FIMS topographic mapping:

- Use of these products is restricted to the project for which the FIMS products are provided.
- Only the body content found within the neatline of the borrowed maps may appear in any report/publication developed for your study. Also, the labeling that appears on any photographs provided shall not appear in any such report/publication.
- All FIMS' products provided to contractors involved in the subject study shall be retrieved by your department upon conclusion of the study and either returned to FIMS or destroyed.
- The report(s) developed in which the FIMS' products are used shall include the following disclaimer statement:

"The maps and photographs included in this report were developed for purposes of the Colorado Springs Department of Utilities and are for internal use only. The Colorado Springs Department of Utilities makes no warranty, expressed or implied, as to the completeness, accuracy, or content of such products or any reproductions thereof. Any order use is not recommended and occurs at the risk of the user; such user is solely responsible and/or liable for the use of such products.

Original maps and photographs are the property of the Colorado Springs Department of Utilities. All rights are reserved. These maps and photographs or any associated record may not, wholly or in part, be reproduced, stored, or transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the express prior written permission of the Colorado Springs Department of Utilities.

Regardless of the existence of purported copies of these official maps and photographs which may from time to time be made or published, there is only one set of official maps and photographs, which are those kept and maintained by the Colorado Springs Department of Utilities."

Project Coordination

Throughout the course of the study, meetings were held with representatives of City, County. State, and Federal agencies with an interest in drainageway planning in general. The primary reason for the coordination effort was to obtain technical information and to identify concerns with regard to the development of drainageway facilities within the basin. During the course of preparing the Development of Alternatives report, the planning constraints and concepts were discussed with the agencies and interested individuals and their input used to refine the feasible alternatives and to eventually identify a recommended drainageway plan for further design evaluation. The complete mailing list and project correspondence is contained in Appendix A of this report.

က

Coordination with a similar list of agencies and individuals was conducted during the preparation of the draft East Fork Sand Creek Drainage Basin Planning study. This study was authorized and conducted for Aries Properties, Inc. Meetings with state and federal agencies, the City and the County were involved in a series of meetings during the development of the alternative planning concepts and the preliminary design for the East Fork Sand Creek basin.

Acknowledgements

Colorado Division of Wildlife, U.S. Army Corps of Engineers (COE), and various City During the preparation of the study, several government agencies and interested individuals were routinely involved in the coordination activities. Representatives from the Departments provided valuable commentary during the development of the alternative plans. A listing of the individuals and agencies routinely coordinated with during the study has been presented below:

Name

Agency

Rick O'Connor Alan Morrice John Fisher Hugh King Gary Haynes Sue Johnson

Bruce Thorson Ken Sampley Steve Jacobsen Christine Lytle Bruce Goforth Dan Bunting Sarah Fowler John Liou Dave Frick

Bill Noonan

Anita Culp John Maynard John Covert Peter Kernkamp

Diana Medina Jim Rees Fred Mais

Dan Tippie

Russ Nicklin

Wes Tyson

El Paso County Department of Public Works
El Paso County Land Use Department
El Paso County Parks Department
El Paso County Planning Department
City of Colorado Springs Street Division
City Engineering Division
City Engineering Division
City Engineering Division
City Engineering Division
City Engineering Division
City Engineering Division
City Engineering Division
City Engineering Division
City Engineering Division
City Engineering Division
City Engineering Division
City Engineering Division
City Engineering Division
City Engineering Division
City Engineering Division
City Fish and Wildlife
N.S. Army Corps of Engineers
Alken/Audobon Society
Palmer Foundation
City Planning Department
Department of Planning and Development
City Planning Department
City Planning Department
Department of Planning and Development
City Planning Department
City Planning Department
Department of Planning and Development
City Planning Department
City Planning Department
Department of Planning and Development
City Planning Department
Department of Planning and Development
City Planning Department
Department of Planning and Development
City Planning Department
City Planning Department
Department of Planning and Development
City Planning Department
City Planning Department
Department of Planning and Development
City Planning Department
City Planning Department
City Planning Department
Department of Planning and Development

City of Colorado Springs Department of Public Utilities Wastewater Division

City of Colorado Springs Department of Public Utilities Water Division City Attorney's Office

II. STUDY AREA DESCRIPTION

The Sand Creek drainage basin is a left-bank tributary to the Fountain Creek lying in the west-central portions of El Paso County. Sand Creek's drainage area at Fountain Creek is approximately 54 square miles of which approximately 18.8 square miles are inside the City of Colorado Springs corporate limits. The basin is divided into five major sub-basins, the Sand Creek mainstem, the East Fork Sand Creek, the Central Tributary to East Fork, the West Fork, and the East Fork Subrributary. Figure II-1 shows the location of the Sand Creek basin.

Basin Description

The Sand Creek basin covers a total of 54 square miles in unincorporated El Paso County and Colorado Springs, Colorado. Of this total, approximately 28 square miles is encompassed by the Sand Creek basin, and 26 square miles for the East Fork Sand Creek basin. The basin trends in generally a south to southwesterly direction, entering the Fountain Creek approximately two miles upstream of the Academy Boulevard bridge over Fountain Creek. Two main tributaries drain the basin, those being the mainstem of Sand Creek and East Fork Sand Creek. Development presence in most evident along the mainstream. At this time, approximately 25 percent of the basin is developed. This alternative evaluation focuses upon the Sand Creek basin.

The maximum basin elevation is approximately 7,620 feet above mean sea level, and falls to approximately 5,790 feet at the confluence with Fountain Creek. The headwaters of the basin originate in the conifer covered areas of The Black Forest. The middle eastern portions of the basin are typified by rolling range land with fair to good vegetative cover associated with semi-arid climates.

Climate

This area of El Paso County can be described, in general as high plains, with total precipitation amounts typical of a semi-arid region. Winters are generally cold and dry. Precipitation ranges from 14 to 16 inches per year, with the majority of this precipitation occurring in spring and summer in the form of rainfall. Thunderstorms are common during the summer months, and are typified by quick-moving low pressure cells which draw moisture from the Gulf of Mexico into the region. Average temperatures range from about 30°P in the winter

to 75° in the summer. The relative humidity ranges from about 25 percent in the summer to 45 percent in the winter.

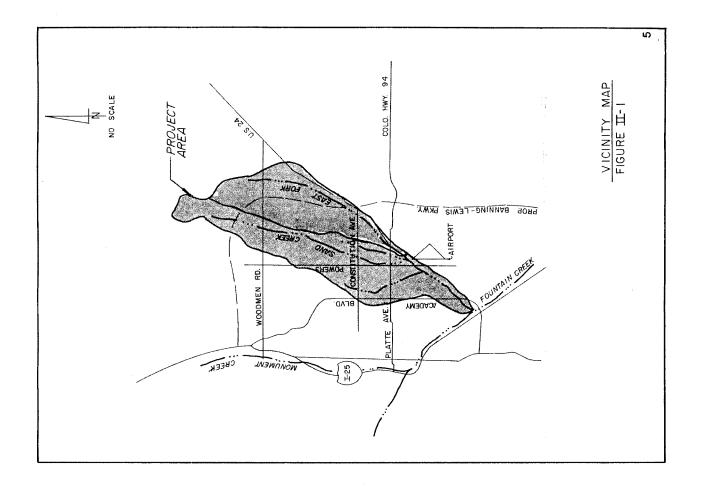
Soils and Geology

Soils within the Sand Creek basin vary between soil types A through D, as identified by the U. S. Department of Agriculture, Soil Conservation Service. The predominant soil groupings are in the Truckton and Bresser soil associations. The soils consist of deep, well drained soils that formed in alluvium and residium, derived from sedimentary rock. The soils have high to moderate infiltration rates, and are extremely susceptible to wind and water erosion where poor vegetation cover exists. In undeveloped areas, the predominance of Type A and B soils give this basin a lower runoff per unit area as compared to basins with soils dominated by Types C and D. Presented on Figure II-2 is the Hydrologic Soil distribution map for the Sand Creek basin.

Property Ownership and Impervious Land Densities

Property ownership along the major drainageway within the Sand Creek basin vary from public to private. Along the developed reaches, drainage right-of-ways and greenbelts have been dedicated during the development of the adjacent residential and commercial land. Where development has not occurred, the drainageways remain under private ownership with no delineated drainage right-of-way or easements. There are several public parks which abut the mainstem of Sand Creek. Roadway and utility easements abutting or crossing the major drainageways occur most frequently in the developed portions of the basin.

Land use information for the existing and future conditions were reviewed as part of the planning effort. This information is used in the hydrologic analysis to predict runoff rates and volumes for the purposes of facility evaluation. The identification of land uses abutting the drainageways is also useful in the identification of feasible plans for stabilization and aesthetic treatment of the creek. Presented on Figure II-3 is the proposed land use map used in the evaluation of impervious land densities discussed in the hydrologic section of this report. Figure II-3 is not intended to reflect the future zoning or land use policies of the City or the Company.


The land use information within the Banning-Lewis Ranch property was obtained from Arics Properties during the time the draft East Fork Sand Creek Drainage Basin Planning Study was being prepared. The land use information was again reviewed with the City of Colorado Springs Department of Planning and was found to be appropriate for use in the estimation of hydrology for the East Fork Basin. The location of future arterial streets and roadways within

4

the Banning Lewis property were obtained from the Banning-Lewis Ranch master plan. The location of roadways offsite from the Banning Lewis-Ranch were obtained from the El Paso County Major Transportation Plan dated 1988.

Park Land and Open Space

An inventory of park land and public open space was prepared. Many times, the combination of the drainageway and adjacent park lands can be used to visually extend the limits of a park or open space. The drainageway can also act to link parks and other land uses within the basin if multiple use trails are incorporated into the channel section(s). The Sand Creek drainageway has been identified as a major trail corridor within the City of Colorado Springs Trails Plan. Park land designated within the Banning-Lewis Ranch master plan were taken into account during the siting of stormwater facilities within the Banning-Lewis property.

419 W Bijou Street BASIN PLANNING STUDY Kiowa Engineering Corporation HYDROLOGIC SOIL GROUP D HYDROLOGIC SOIL GROUP B

HADBOLOGIC SOILS MAP

8061-90608

Colorado Springs, Colorado

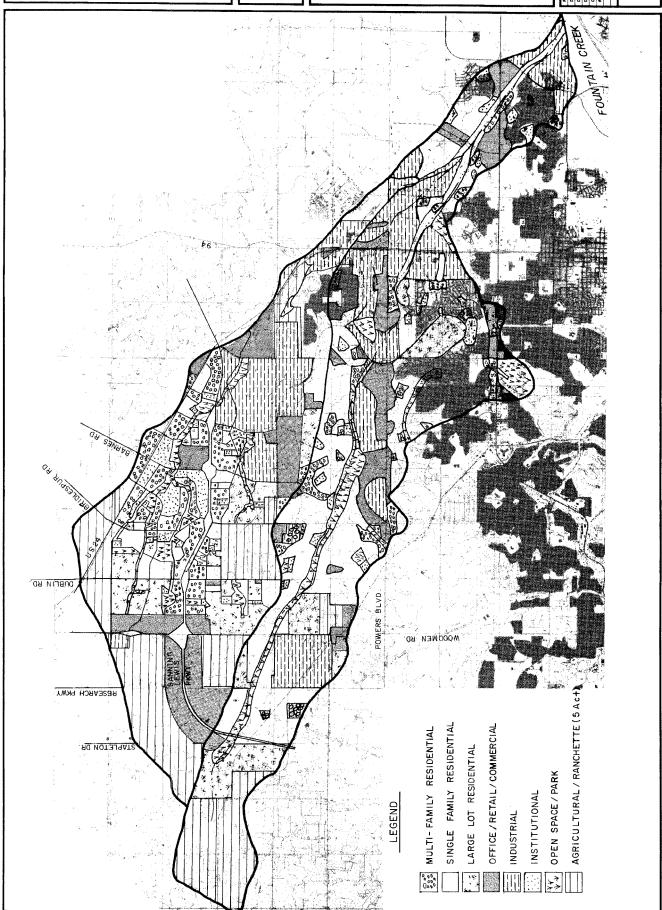
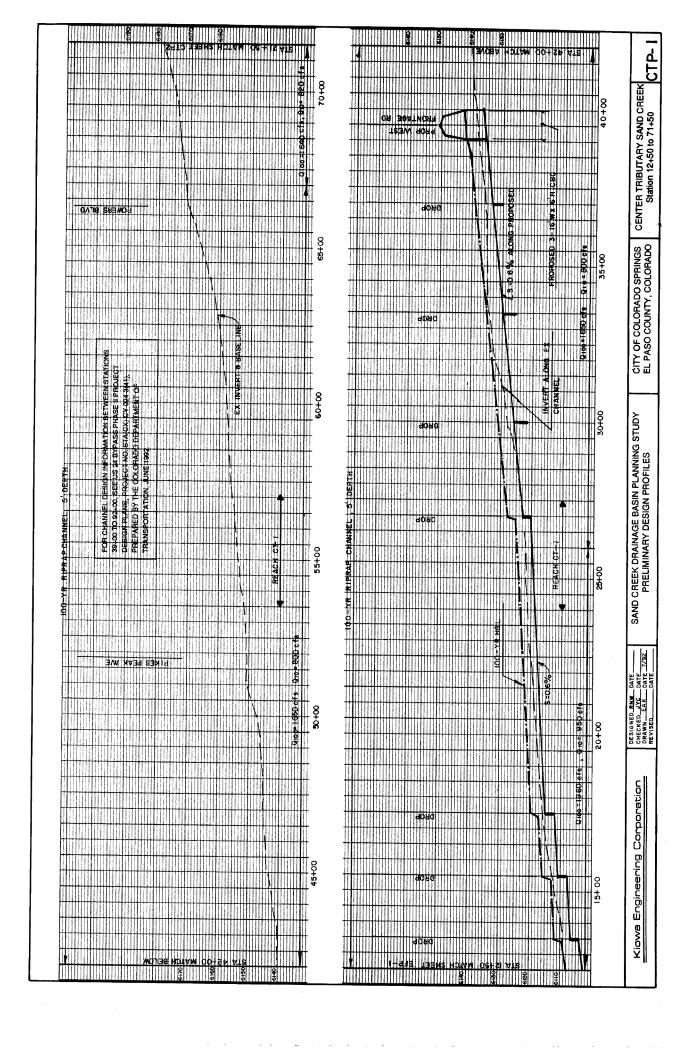
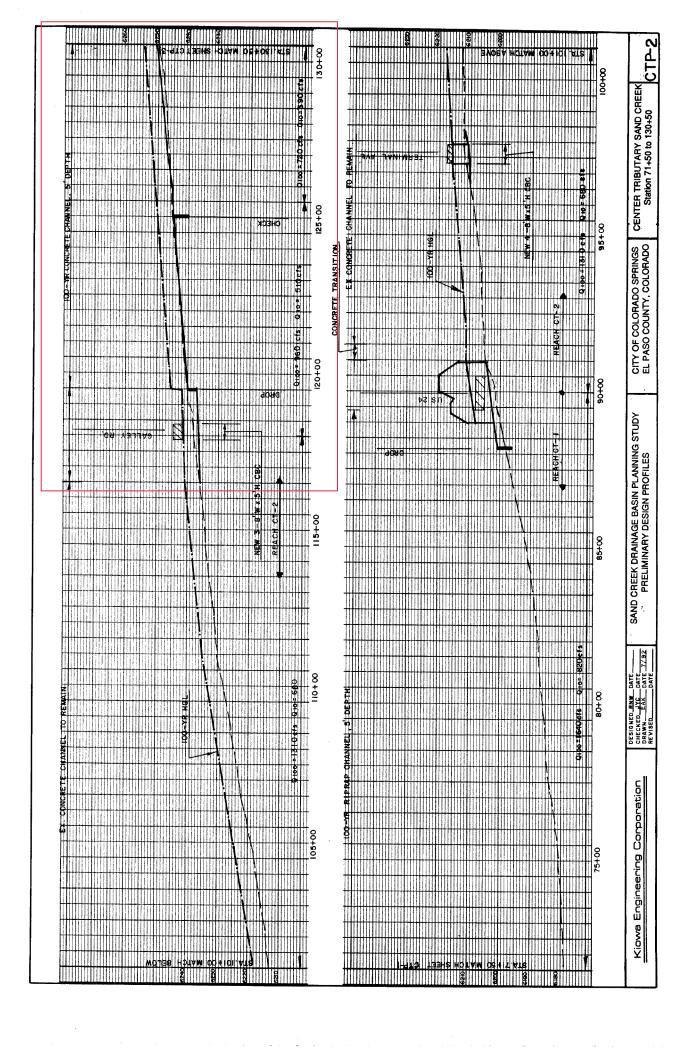

INDAJG DISAB II BANUNA BE BEN GAND USE

FIG. II-3

419 W. Bijou Street Colorado Springs, Colorado 80905-1308


Kiowa Engineering Corporation


YOUTS DNINNAJA NISAB

Colorado Springs, Colorado PASIN PLANNING STUDY 419 W. Bijou Street CT-7 Kiowa Engineering Corporation SAND CREEK DRAINAGE IS A MASTER PLANNING SHEET PRELIMINARY AND CONCEPTUAL IT SHOULD NOT BE USED FOR PURPOSES. 8 EXISTING CHANNEL TO REMAIN 100-YEAR COINC: CHANNEL, DEPTH FOR PROFILE SEE SHEETS CTP-2 AND CTP-3 CHANNEL IMPROVEMENTS MOTTON (FR) HIGH THIS DRAWING IN REPRESENTING PENGINEERING. 1 2 146 146-2 OI-CHA-124 -01-CHA-1243 MATCH CT-8 D. CT - 6 150 SHT MATCH STA 139+60 146-2 971 STA 119+ 60 CENTER TRIBUTARY SAND CREEK 01-CHA-1244 MATCH CHECK EX CHANNEL TO REMAIN STA 132+30 TO 159+60 E250.6 STA 125 + 60 - SAND CHEEK ! IS THE HOTAM

80E1-90608

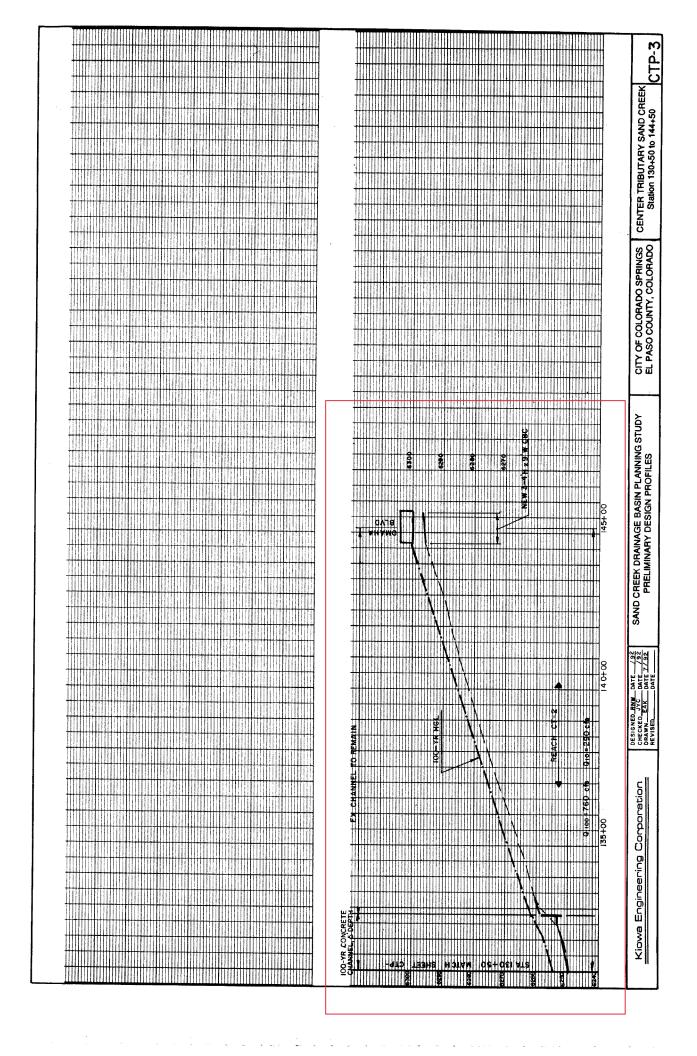


TABLE VIII-4: SAND CREEK DRAINAGE BASIN PLANNING STUDY ROADWAY CULVERT CROSSING COST ESTIMATE SAND CREEK BASINS

ROADWAY	REACH	74/10/14/4	C E SOC E					
		DEALWAGE	CROSSING	LENGIH	CNI	CINI	TOTAL	TOTAL
	NUMBER	SEGMENT	TYPE			COST	COST	REIMBURSABLE
								COST
RANNING-I EWIS PRKW	SC-8-02	981	6'Hx10'W CBC	120	ä	\$390	\$46,800	\$46,800
ARROYO LANE	SC-9	171	6'Hx12'W CBC	8	1	\$510	\$40,800	80
VOLLMER ROAD	SC-8	169	60-INCH CMP	80	Ľ	\$120	89,600	80
	SC-9	173	£	80	Ė	\$120	89,600	80
BURGESS ROAD	SC-9	176	42-INCH CMP	80	1	\$75	\$6,000	\$0
Ŀ	8C-9	178	2-42-INCH CMP	80	ij	\$150	\$12,000	S
		CENTER TRIBUTARY						
TERMINAL A VENUE	CT-2	144	4.5'Hx8'W CBC	38	Ħ	\$1,200	\$72,000	0%
OMAHA BOULEVARD	CT-2	146-2	3-4'Hx9'W CBC	08	ä	2000	\$72,000	S,

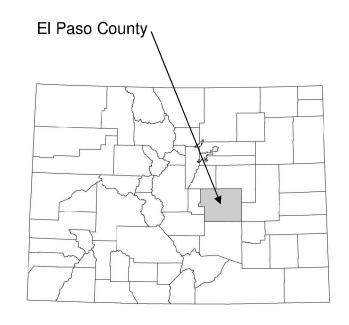
		WEST FORK SAND CREEK	EK					
WOOTEN ROAD	WF-1	153	2-4'Hx6'W CBC	100	4	\$480	\$48,000	∞
EDISON AVENUE	WF-1	153	2-4'Hx6'W CBC	99	4	\$240	\$14,400	9
PALMER PARK BLVD.	WF-1	154-2	2-4"Hx10"W CBC	80	ä	\$540	\$43,200	\$0
CHICAGO RI RR	WF-1	165-1	4'Hx8'W CBC	220	ä	\$270	\$59,400	3
TO THE REAL PROPERTY OF THE PERSON OF THE PE			Dao inio mir	\$	Ē	00	614 400	G.

TOTAL CULVERT CONSTRUCTION COSTS, SAND CREEK

\$1,111,000

Table VIII-7: SAND CREEK DRAINAGE BASIN PLANNING STUDY BRIDGE CROSSING COST ESTIDATE SAND CREEK DRAINAGE BASINS

	NUMBER	SEGMENT	TYPE	JURENIDICIJON CITY COUNTY	SZE	UNIT	COST	TOTAL COST COUNTY	TOTAL COST CITY
		SAND CREEK							
CHELTON ROAD	SC-1	115	210' TWO-SPAN BRIDGE	×	16800	ŧ		;	;
STETSON HILLS BLVD.	SC-6	130	3-8'BA10'W CBC	×	200	5 E	000	3	\$1,344,000
EDEDIAH SMITH RD.	SC-6	137	3-8'Hx10'W CBC	: >	8 5	5 !	\$1,110	8	\$222,000
PETERSON ROAD	SC-6	141	80° CT FAR SPAN BRIDGE	< >	3	<u> </u>	\$1,110	æ	\$66,600
DUBLIN BOTH EVARD	60.7	: 5	The state of the s	c :	9490	FF.	280	8,	\$512,000
MADE SUBSESSED	ີ່ ເ	Ē 9	80 CLEAR SPAN BRILKIE	×	6400	SF	280	æ	\$512,000
DESCRIPTION OF DESIGNATION	្តំខ្ញុំ	Ι <u>ς</u>	3- 10 Halo W CBC	×	80	ä	\$1,260	\$100,800	\$
AND THE COMMENTS	٠ د د	193	4-8-HX10-W CBC	×	80	ť	\$1,560	\$124,800	\$
DALING LEWIS PRAWIT	s S	187	4-8'Hx10'W CBC	×	80	ä	\$1,560	\$124,800	8
		CENTER TRIBUTARY							
W. FRONTAGE ROAD	д .	142	3-6'Ex16'W CBC	×	9	ŭ	200	000,000	
US 24 BYPASS	ij	142	3-6'Ex14'W CBC	×	5	1 1	2 7	0100000	20
E. FRONTAGE RD, US 24	ដី	142	3-6'Hx14'W CBC	: >	3 8	1 !	014.16	0001126	80
BUOU STREET, US 24	1-15	142	2.6'Hr14'W'W'	4 2	3 :	:	51,410	\$84,600	80
PLATTE AVENUE, US 24	CT:3	671	3-670-1470-000	« :	3	ä	\$1,410	\$84,600	ន
GATIEVBOAN	ŧ	! :		*	128	5	\$1,410	\$169,200	S
	†	ŧ	5-5'Htt8'W CBC	×	100	5	\$300	\$90,000	0\$
	æ	WEST FORK SAND CREEK	H						
GALLEY ROAD	WF-2	155	54" CLEAR SPAN BRIDGE	×	\$130	ĸ	000	ā	
PALMER PARK BLVD.	WF-2	156	54' CLEAR SPAN BRIDGE	×	5.13	ı E		3 8	\$410,400
CONSTITUTION AVE.	WF-3	159	40' CLEAR SPANBRIDGE	*		s 8	000	8	\$410,400
MAIZELAND ROAD	WF-3	170	30' CLEAR SPAN BRIDGE	* *	0070	à (200	ន	\$256,000
SO. CAREFREE	WE.3	021	Company Comp	•	8	ķ	280	S	\$192,000
		2.	A-6-HX15-W CBC	×	S	11.		;	


TOTAL BRIDGE CONSTRUCTION COSTS, SAND CREEK

\$1,096,500 \$4,021,400

EL PASO COUNTY, COLORADO, AND INCORPORATED AREAS

COMMUNITY NAME	COMMUNNITY NUMBER
CALHAN, TOWN OF	080192
COLORADO SPRINGS, CITY OF	080060
EL PASO COUNTY	
(UNINCORPORATED AREAS)	080059
FOUNTAIN, CITY OF	080061
GREEN MOUNTAIN FALLS, TOWN OF	080062
MANITOU SPRINGS, CITY OF	080063
MONUMENT, TOWN OF	080064
PALMER LAKE, TOWN OF	080065
RAMAH, TOWN OF	080066

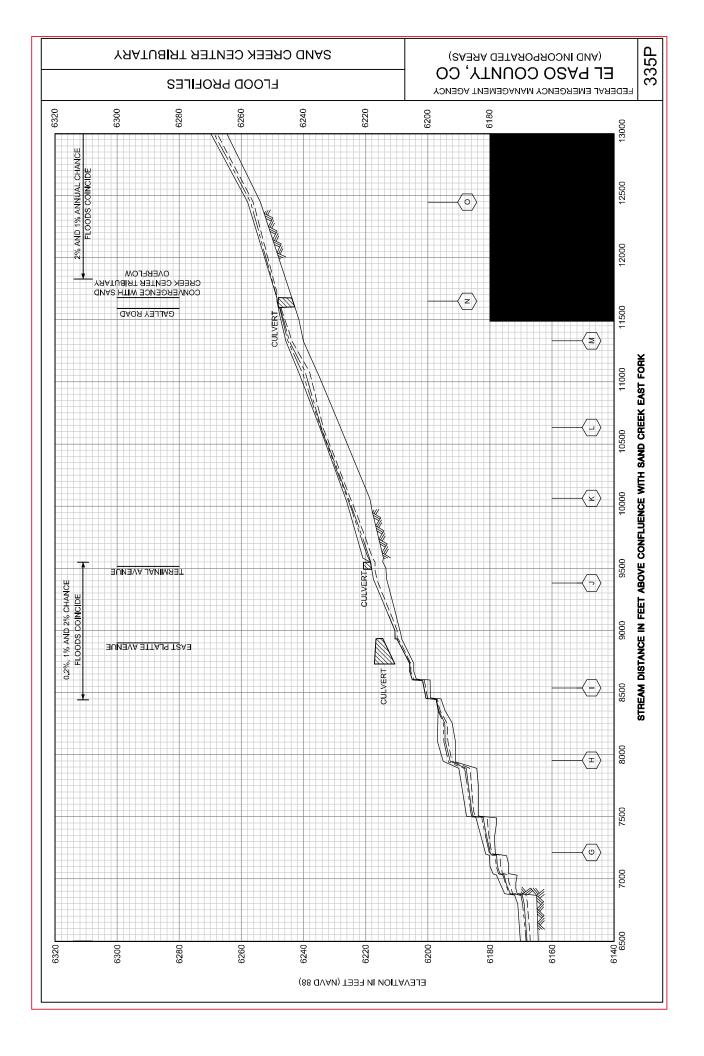
Revised: December 7, 2018

Federal Emergency Management Agency

FLOOD INSURANCE STUDY NUMBER 08041CV007A

NOTICE TO FLOOD INSURANCE STUDY USERS

Communities participating in the National Flood Insurance Program have established repositories of flood hazard data for floodplain management and flood insurance purposes. This Flood Insurance Study (FIS) report may not contain all data available within the repository. It is advisable to contact the community repository for any additional data.


Part or all of this FIS report may be revised and republished at any time. In addition, part of this FIS report may be revised by the Letter of Map Revision process, which does not involve republication or redistribution of the FIS report. It is, therefore, the responsibility of the user to consult with community officials and to check the community repository to obtain the most current FIS report components.

This FIS report was revised on December 7, 2018. Users should refer to Section 10.0, Revisions Description, for further information. Section 10.0 is intended to present the most up-to-date information for specific portions of this FIS report. Therefore, users of this report should be aware that the information presented in Section 10.0 superseded information in Sections 1.0 through 9.0 of this FIS report.

Initial Countywide FIS Report Effective Date: March 17, 1997

First Revised Countywide FIS Report Effective Date: August 23, 1999 - to add base flood elevations, to add special flood hazard areas, and to change special flood hazard areas.

Second Revised Countywide FIS Report Effective Date: December 7, 2018 - to update corporate limits, to change Base Flood Elevations and Special Flood Hazard Areas, to update map format, to add roads and road names, and to incorporate previously issued Letters of Map Revision.

SAND CREEK - CENTER TRIBUTARY CHANNEL ANALYSIS REPORT FOR SOLACE APARTMENTS

Prepared For: Jackson Dearborn Partners 404 S. Wells Street, Suite 400 Chicago, IL 60607 (734) 216-2577

> June 30, 2020 Project No. 25174.00

Prepared By: JR Engineering, LLC 5475 Tech Center Drive Colorado Springs, CO 80919 719-593-2593

PCD File NO. SP201

CONTENTS

OVERVIEW	3
GENERAL LOCATION AND DESCRIPTION	3
LOCATION	3
DESCRIPTION OF PROPERTY	
FLOODPLAIN STATEMENT	3
PREVIOUS SAND CREEK STUDIES	3
DRAINAGE DESIGN CRITERIA	7
DEVELOPMENT CRITERIA REFERENCE	7
Hydrologic Criteria	8
Hydraulic Criteria	
SUMMARY	8
REFERENCES:	9

APPENDICES

- A. Figures and ExhibitsB. Hydraulic CalculationsC. Reference Material

OVERVIEW

This report was prepared to provide design information for the existing Sand Creek -Center Tributary Drainageway as part of the Solace Apartment development. This document is the Channel Analysis report for the Solace Apartments. The Sand Creek-Center Tributary Drainageway has been studied as part of a Flood Insurance Study (FIS) for El Paso County Colorado, Volume 7 of 8, revised December 7, 2018 and Sand Creek Drainage Basin Planning Study, dated January 1993. Existing flow rates from the Sand Creek Planning Study were used as the basis for the design of the existing channel condition.

GENERAL LOCATION AND DESCRIPTION

Location

The proposed Solace Apartments, known as "Solace" from herein, is a parcel of land located in Section 7, Township 14 South, Range 65 West of the 6th Principal Meridian in El Paso County, Colorado. Solace is a 28.99 acre, urban, multifamily-development and is comprised of 16 apartment buildings and associated infrastructure. Solace is bound by existing industrial developments to the North and vacant land to the West. Galley Road bounds the property to the south and existing light industrial businesses to the east. A vicinity map of the area is presented in Appendix A.

Description of Property

Solace is currently unoccupied and undeveloped. The existing ground cover is sparse vegetation and open space, typical of a Colorado rolling range land condition. In general, Solace slopes from northwest to southeast. The existing conditions of the Sand Creek -Center Tributary Drainageway on the site are heavily wooded for the length of the channel throughout the Solace site.

Per an NRCS web soil survey of the area, Solace is made up of Type B soils with a very small percentage of Type A in the northwest corner of the property. This Type B soil is a blendon sandy loam. This soil type has a moderate infiltration rate when thoroughly wet. It also consists of moderately deep or deep, moderately well drained or well drained soil. A soil survey map has been presented in Appendix A.

Floodplain Statement

Based on the FEMA FIRM Map numbers 08041C0751G & 08041C0752G, dated December 7, 2018, a portion of the existing drainageway lies within Zone AE and Zone X. Zone AE is defined as area subject to inundation by the 1-percent-annual-chance flood event and is a flood hazard area. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. The FIRM Map has been presented in Appendix A. Currently a portion of the Solace site lies within Zone AE at the extension of Paonia Street to Galley Road, as seen in FEMA FIRM Map number 08041C0752G.

PREVIOUS SAND CREEK STUDIES

Solace lies within Sand Creek Drainage Basin based on the "Sand Creek Drainage Basin Planning Study" prepared by Kiowa Engineering in January 1993.

The Sand Creek Drainage Basin covers approximately 54 square miles in unincorporated El Paso County, CO. The Sand Creek Drainage Basin is tributary to Fountain Creek. In its existing condition, the basin is comprised of developed land with the exception of the Solace Parcel which is comprised of rolling rangeland with fair to good vegetative cover associated with Colorado's semi-arid climate. The natural Drainageway within the site limits is typically deep and narrow with a well-defined flow path in most areas. Anticipated land use for the Solace parcel includes multifamily residential and open space.

As part of its drainage research, JR Engineering reviewed the following drainage studies, reports and LOMRs:

- Sand Creek Drainage Basin Planning Study prepared by Kiowa Engineering Corporation in January 1993.
- Flood Insurance Study– El Paso County, Colorado & Incorporated Areas Vol 7 of 8, December 2018.
- LOMR- Case No. 05-08-0368P Federal Emergency Management Agency, May 23, 2007.

The Sand Creek Drainage Basin Planning Study was used to establish a stormwater management plan for the existing and future stormwater infrastructure needs within the Sand Creek Drainage Basin. The Sand Creek Drainage Basin Planning Study conducted a hydrologic analysis using a runoff model named the Soil Conservation Service (SCS) Computer Program for the Project Formulation Hydrology (TR20). Based on provided drainage maps and analysis, in its existing condition, the Sand Creek-Center Tributary Drainageway contains a 100-year flow of 720 cfs at upstream station 1053 then jumps to 960 cfs at station 1030 in Sand Creek along Solace's east property line. The flow then changes again at station 1014, to a value of 956 cfs, where the flow from the secondary drainageway on Paonia Street converges with the Sand Creek Drainageway, this flow was based on JR Engineering analysis. These flows were used in the model as they were depicted as being the flows present in the project section of the Sand Creek Tributary Drainageway as called out in Sand Creek Drainage Basin Planning Study. The major Sand Creek-Center Tributary Drainageway conveys the stormwater south along the eastern property line where it ultimately outfalls into the Fountain Creek. JR Engineering also performed a hydrologic analysis to determine the flows in the Sand Creek-Center Tributary Drainageway and arrived at similar results to those shown in the Sand Creek Drainage Basin Planning Study, thus verifying the validity of these flows. These basin calculations show that the 720-960 cfs, based on the Sand Creek Drainage Basin *Planning Study*, are still valid for this existing condition, a summary table of the flows in the Sand Creek Drainageway based on various studies can be found below.

SOLACE A	APARTMENTS	
Sand Creek Center Trib	outary Flow Summary Table	
Report/Study	Location	Flow (cfs)
Sand Creek DBPS, Kiowa Engineering, Rev. March 1996, Table III-2	DP 45, @ Galley Rd. Crossing	1,340
Sand Creek DBPS, Kiowa Engineering, Rev. March 1996, CTP-2	@ STA 125+00	960
Sand Creek DBPS, Kiowa Engineering, Rev. March 1996, CTP-2	@ STA 132+30	720
Flood Insurance Study, El Paso County, Rev. December 7, 2018	Section N, @ Galley Road	723
JR Engineering October 2019	@ Galley Road	956

FEMA prepared a revised FIS for El Paso County Colorado, Volume 7 of 8, dated December 7, 2018. The effective floodplain for the site is shown on the FIRM 08041C0752G, revised to reflect LOMR, dated May 23, 2007. The study area of the FIS where the Sand Creek Drainageway crosses Galley Road, was found to overtop the culverts and flow onto the road. According to the FIS, this crossing has a 10% annual chance of flooding and is located in Zone AE of the FIRM. This location is a Special Flood Hazard Area (SFHA) inundated by the 100-year flood, Zone AE (base flood elevations determined). The *Sand Creek Drainage Basin LOMR* was executed on May 23, 2007. The LOMR revised the flood zone or the area south of Galley Road. See FIRM Map Panel 08041C0752G for limits of LOMR study and revised flood zones, presented in Appendix C.

To the west of the Sand Creek-Center Tributary Drainageway is a secondary Drainageway that captures the flow coming from the west side of Paonia Street. This drainage way is located at the proposed extension of Paonia Street to meet Galley Road. The flows created by the secondary drainageway and the development north of the site will be captured on the Solace site, and transported to the Sand Creek-Center Tributary Drainageway. According to Sand Creek Drainage Basin LOMR, the flow present in this secondary drainageway in a 1-percent-annual-chance flood event is 213 cfs. This was calculated by use of the LOMR maps, and evaluating the difference in flow as the Sand Creek Center Tributary Drainageway splits as it crosses Omaha Boulevard. Section R of the FEMA Map Panel 08041C0752G, shows the split as the flow present in the channel drops to 421 cfs from 634 cfs at section S just upstream. The difference in these flows is 213 cfs this flow is assumed to overtop the road at Omaha Boulevard crossing structure, and travel west to Paonia Street and is routed south in the Sand Creek Center Tributary onto the Solace site. A calculation of the flows present in Paonia was also conducted by Galloway Engineering in the Preliminary Drainage Report and Floodplain Certification for Powers Center Point, dated October 1st, 2007. This report used a similar methodology in calculating the flows; however this analysis was made using LOMR data from 1997 with higher flows thus resulting in a calculated flow of 500 cfs. To be conservative, JR Engineering's design will be based on the 500 cfs specified, rather than the 213 cfs calculated. Additional information has been requested via FEMA FIS data request. When this additional data

can be obtained, a proposed channel improvements report including both main channel and overflow improvements will be updated to reflect the latest available information. At the current point in time, all available published data has been exhausted to prove a reduced flow rate in the overflow channel (Paonia Street).

Just north of the Solace site on Paonia Street a concrete channel exists that diverts a portion of the flows present in Paonia Street back into the Sand Creek-Center Tributary Drainageway. However the size of this channel will not convey all flows present in Paonia, therefore improvements are necessary to mitigate the offsite flows. Potential options to mitigate these flows are discussed below. Each possible alternative has been preliminarily evaluated to ensure feasibility in mitigating the secondary drainageway currently existing in Paonia Street.

The first conceptual option would be to have future Paonia Street continue to maintain an existing super elevation that will direct all flows present on Paonia towards the east side of the road. GIS contours indicate this super elevation exists, as well as confirmation stated by the Galloway Engineering Preliminary Drainage Report. The curb and gutter along the east side of Paonia will be omitted to create a 110 ft weir that will route flows back to the existing Sand Creek-Center Tributary Drainageway. The 110 ft weir would reduce into a 40 ft wide channel as it approaches the existing channel at a 45 degree angle. Flow calculations for this overflow design can be found in Appendix B, along with flow capacity calculations for existing Paonia Street & existing concrete channel north of the site.

A second conceptual option would be to create a low point in Paonia shortly after crossing south onto the subject property, thus creating a sump condition. The sump inlets would capture minor runoff and pipe it to the main channel, while a larger event would behave in a similar manner to the above scenario, routing via the same overflow weir and channel back to the main Sand Creek-Center Tributary Channel. The alternative profile for this scenario can be found in Appendix B, as well as on the preliminary Paonia Street Improvement plans.

Finally, a third option would be to widen the existing concrete channel at the property line to increase capacity enough to accept all flows from the overflow channel.

The first option has been presented in the drainage maps and preliminary plans associated with this report; however no alternative has been definitively selected at this time. One alternative or a combination of these alternatives may be utilized at time of final design to safely and efficiently route the Paonia Street overflow channel back to the main channel near the northern site boundary.

Channel Deficiencies

The Sand Creek Drainage Basin Planning Study performed a hydraulic analysis of the Sand Creek-Center Tributary Drainageway between Galley Road and Paonia Street, and an analysis of the crossing structure for Sand Creek at Galley Road. For the crossing structure at Galley Road they determined that the existing crossing structures were inadequate for the demands of the Drainageway

and would require improvements to expand the capacity of these structures. These results can be seen in Table IV-1 Summary of Hydraulic Structures – Crossings: Sand Creek Drainage Basin Planning Study shown below. The Study proposed improvements to the existing crossing structures by replacing them with 3-8'Wx 5'H Concrete Box Culverts.

TABLE IV-1: SUMMARY (SAND CRE		LIC STRUCTURE GE BASIN PLAN				
LOCATION	REACH #	SIZE	ТҮРЕ	CAPACITY EXISTING	CAPACITY FUTURE (1)	COMMENTS
Airport Road	CT-1	5-6'x8'	BOX CULVERT-	ADEQUATE	ADEQUATE	
Pikes Peak Ave.	CT-1	NONE		INADEQUATE	INADEQUATE	POWERS BLVD. OVERTOPPED FREQUENTLY BETWEEN BUOU ST. AND PIKES PEAK AVE.
Powers Blvd.	CT-1	VARIOUS	METAL PIPE	INADEQUATE	NADEQUATE	
Platte Ave (US 24)	CT-1	8'x4'	BOX CULVERT	INADEQUATE	INADEQUATE	APPROACH CHANNEL IN NEED OF REALIGNMENT
Terminal Avenue	CT-2	2-4'x8'	BOX CULVERT	INADEQUATE	INADEQUATE	
Galley Road	CT-2	3-42"x72"	METAL ARCH PIPE	INADEQUATE	INADEQUATE	
Omaha Boulevard	CT-2	2-36"x57"	METAL ARCH PIPE	INADEQUATE	INADEQUATE	v

The study also found the existing channel for the Sand Creek-Center Tributary Drainageway between Galley Road and Paonia Street to be inadequate for the given flow rate. The report says that the existing channel has limited maintenance access, leading to the channel degrading and being filled with obstructions. Those findings can be seen in Table IV-2 Summary of Hydraulic Structures – Channels: Sand Creek Drainage Basin Planning Study. The Sand Creek Drainage Basin Planning Study recommended improvements to the existing channel by lining the channel with concrete.

TABLE IV-2: S	UMMAR SAND CI	RY OF I	HYDRA DRAIN	AULIC AGE B	STRUCTURES - CHANNELS ASIN PLANNING STUDY			
LOCATION	REACH		DIMENSI		TYPE	CAPAG	CITY (1)	COMMENTS
FROM / TO	#	TW (ft)	SS	DEPTH (ft)		ADQ	INADQ	
CENTER TRIBUTARY						÷		
East Fork Sand Creek to Airport Road	CT-1	45	2:1	6	Riprap lined trapezoidal channel	х	х	Riprap has failed or is non-existent along some portions of this segment of the Center Tributary
Pikes Peak to Bijou St.	CT-1			N/A	Rubble lined disches along Povers Blvd.			Flow passes over and along Powers Blvd. street section on a frequent basis. Road closures common.
Bijou St. to Platte Ave.	CT-1			N/A	Unlined, natural.			Overbanks vegetated, channel dry with sand invert, no. vegetation. Channel eroded at outlet of US24 culvert.
Platte Ave. to Terminal Ave.	CT-2	15-25	1:1	4-6	Trapezoidal concrete lined.	х		Channel has adequate capacity.
Terminal Avenue to Galley Road	CT-2	21	1:1	5	Trapezoidal concrete lined.	х		Channel has adequate capacity.
Galley Road to Paonia Ct. (ext)	CT-2	30-40	varies	4-5	Unimproved segment.		x	Channel is degraded and filled with debris. Poor maintainance access.
Paonia Ct. to Omaha Blvd.	CT-2	21	1:1	5	Trapezoidal concrete lined channel.	х		Maintainence access poor. Debris and trash in channel.

The GeoHecRas model results completed with this report contain similar findings to those in the drainage basin planning study. This model was based on the existing channel conditions; a model will be created for the sites proposed conditions in the final drainage report. Average velocities of 10-12 fps for a majority of the channel reach exceed allowable limits for an unprotected channel. The current Galley road crossing structures lack of capacity also leads to overtopping of the road during these events. This report confirms that both this Sand Creek channel reach and Galley Road crossing structures are inadequate for the 100-yr storm event.

Channel Improvement Recommendations

The Sand Creek Drainage Basin Planning Study (DBPS) concluded that the Sand Creek-Center Tributary Drainageway channel, in its current state, is inadequate to handle the historical flows tributary to the channel. This report falls in line, indicating that improvements shall be made to the channel in order to provide adequate capacity and prevent erosion. In the DBPS improvements are also designated for the crossing structures at Galley Road to provide adequate capacity and prevent overtopping of the road. Upon further investigation, this report found that overtopping of Galley Road appears to be addressed via the overflow structure and associate downstream bank protections shown in Figure 1. This weir was analyzed to determine the effectiveness to safely pass overtopping flows. From the

Figure 1: Existing Drainage Structures at Galley Road (Viewed from South)

HEC-RAS model, it was determined that approximately 581 cfs overtops the roadway during a 100-year event. The weir in its current configuration could only adequately pass approximately 40 cfs of this flow. On the north side of the Galley road crossing, there is a section of roadway without curb & gutter; this allows the water transported along the north half of galley road to directly flow into the Sand Creek Center Tributary Drainageway. A picture of this curb opening is shown below in figure 2.

Figure 2: Curb Opening on North Half of the Galley Road Crossing (Looking to the North)

This analysis notes existing overtopping, further discussion with the county engineer to discuss potential solutions is recommended. One possible solution is that the existing culverts be replaced to prevent overtopping at Galley Road by upsizing to a larger culvert(s). Ultimately, culvert

improvements will be necessary when the County deems the historic overtopping of Galley Road above acceptable tolerance. Currently, no adjacent structures are impacted by this overtopping. Weir calculations can be found in the appendix.

Based upon the findings to the *Sand Creek Drainage Basin Planning Study* and the conforming GeoHecRas modeling contained in this report, potential recommended channel improvements include:

- Widening of the channel west bank to reduce flow depth, thus corresponding velocities
- Lining portions of the channel with riprap or other protective surfaces
- Adding check structures and potentially drop structures to reduce channel grade, a conceptual profile can be seen in Appendix A.
- Replacing existing culverts at Galley Road to prevent roadway overtopping

Stable slopes of 1% were chosen for the channel based on stable slope specified by The Sand Creek Drainage Basin Planning Study (DBPS.)

CONCEPT COST ESTIMATE

Below is Conceptual Cost Estimate for the proposed channel improvements to the Sand Creek-Center Tributary Drainageway.

PUBLIC DRAINAGE FACILITIES				
Item	Quantity	Unit	Unit Price	Extended Cost
Clearing & Grubbing	2	AC	\$5,000.00	\$10,000.00
Channel Widening Earthwork (Cut)	7000	CY	\$3.00	\$21,000.00
Riprap Lining (Type M)	5100	CY	\$85.00	\$433,500.00
Drop Structures	2	EA	\$20,000.00	\$40,000.00
			Sub-Total	\$504,500.00
	10	0% Eng. An	d Contingency	\$50,450.00
			Grand Total	\$554,950.00

Table 3: Cost Opinion-Public Reimbursable

DRAINAGE DESIGN CRITERIA

Development Criteria Reference

Storm drainage analysis techniques were taken from the "City of Colorado Spring/El Paso County Drainage Criteria Manual" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "Urban Storm Drainage Criteria Manual" Volumes 1 - 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual (CCSDCM), dated May 2014, as adopted by El Paso County.

Hydrologic Criteria

The hydrologic analysis for this project is based on the *Sand Creek Drainage Basin Planning Study*. The flow rates for the 100-yr storm event were taken from sheets CTP-2 & CTP-3 of this study. The Baseline Flows from the *Sand Creek Drainage Basin Planning Study* are included in Appendix C.

Hydraulic Criteria

GeoHecRas was used as the primary analysis method for the site. GeoHecRas was used to model existing flows within the Sand Creek-Center Tributary Drainageway. This model was used to verify flood plains and analyze any overtopping that may occur within the project site. The 100-year water surface profiles for the model were analyzed form the north property line of the site to the area 100 feet south of the Galley Road Crossing. Hydraulic computations for the models are contained in Appendix B. In the model the value for the roughness coefficient (n) were based upon those shown in Table 12-2 of the City of Colorado Springs Drainage Criteria Manual, Volume 1. The manning's roughness coefficient for the sides of the channel was evaluated as n = 0.05, as the channel sides are most closely categorized as sluggish reaches with weeds, the minimum value of n was taken. For the bottom of the channel a manning's roughness coefficient value of n = 0.025, as the existing channel bottom being very clear and free of plants or other debris, the minimum value of n was taken. Table 12-2 highlights the manning values used for the model. The channel was analyzed as a winding channel in the GeoHecRas model.

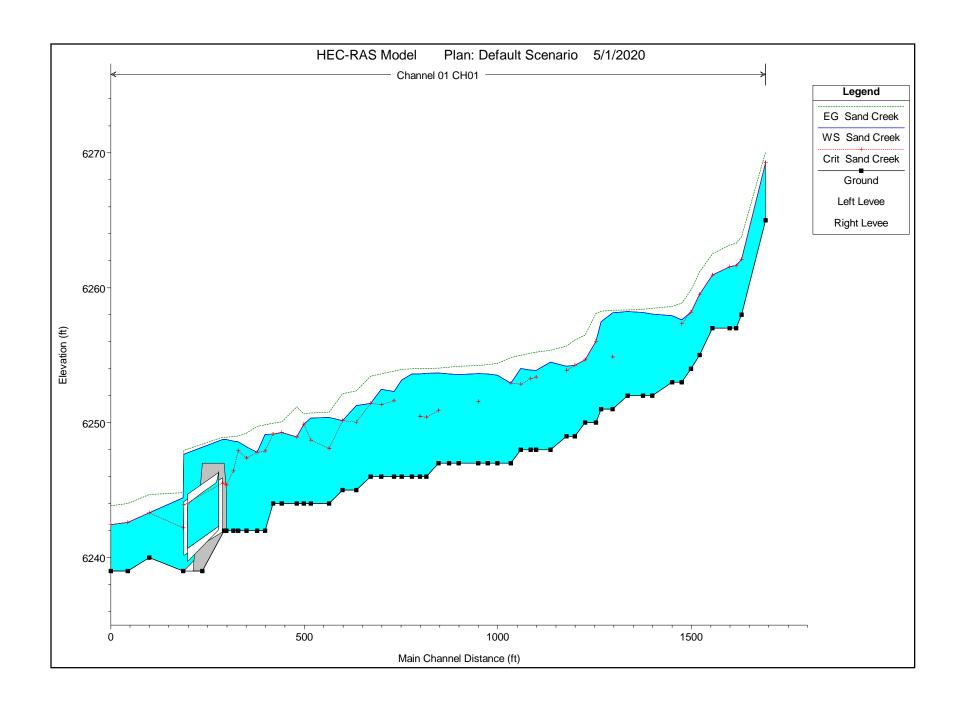
Table 12-2. Roughness Coefficients

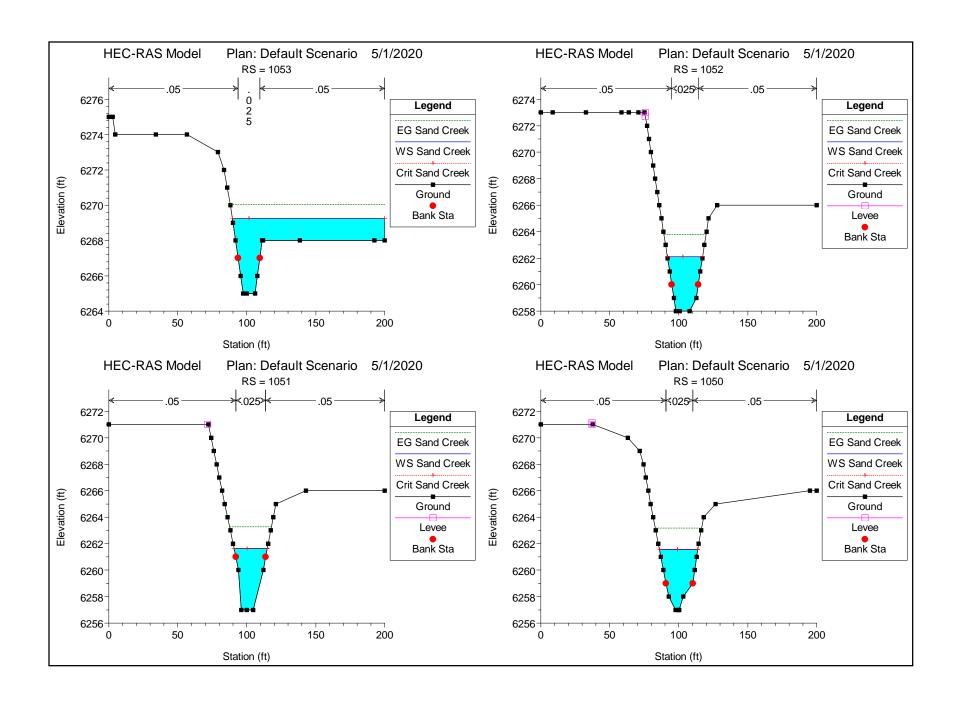
Channel Description	Roughn	ess Coeffici	ent (n)
Channel Description	Minimum	Typical	Maximum
Natural Streams (top width at flood stage <100 feet			
Streams on Plain			
 Clean, straight, full stage, no rifts or deep 	0.025	0.030	0.033
pools			
 Same as above, but more stones and weeds 	0.030	0.035	0.040
 Clean, winding, some pools and shoals 	0.033	0.040	0.045
 Same as above, but some weeds and stones 	0.035	0.045	0.050
 e. Same as above, lower stages, more 	0.040	0.048	0.055
ineffective slopes and sections			
 f. Same as c, but more stones 	0.045	0.050	0.060
 g. Sluggish reaches, weedy, deep pools 	0.050	0.070	0.080
 h. Very weedy reaches, deep pools, or 	0.075	0.100	0.150
floodways with heavy stand of timber and			
underbrush			
Mountain Streams, no vegetation in channel, banks			
usually steep, trees and brush along banks			
submerged at high stages			
 Bottom: gravels, cobbles, and few boulders 	See Jarrett's		
 Bottom: cobbles with large boulders 	equation*		

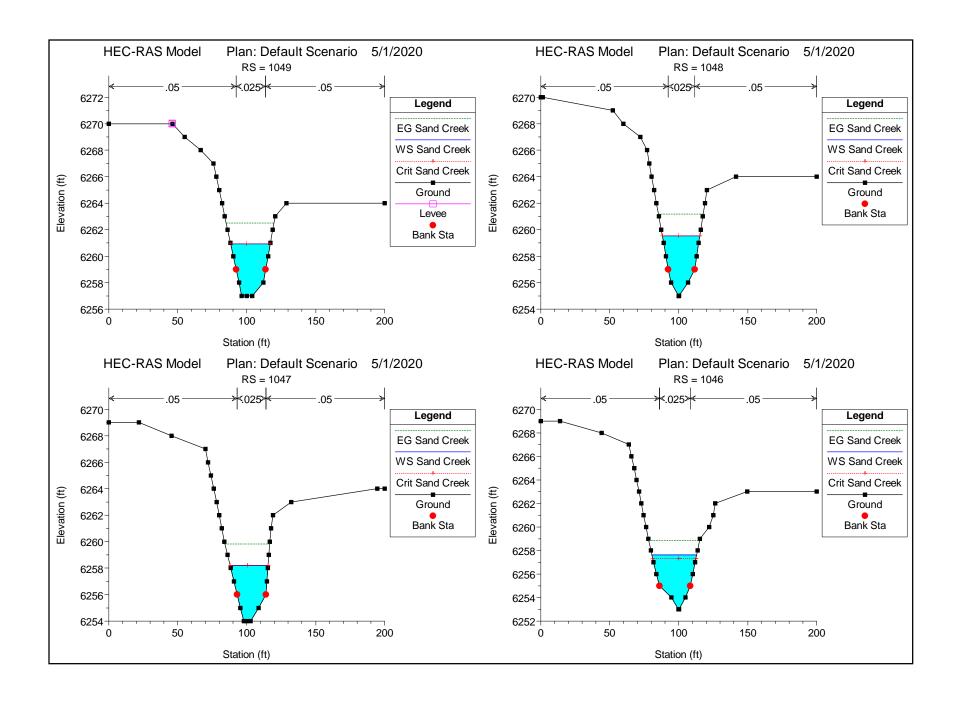
The flows in the channel, upstream and downstream of the Solace site, were determined using the sheet CTP-2 of the *Sand Creek Drainage Basin Planning Study*, with the flow 720 cfs being used at the upstream end of the channel till river station 1031 where the flow changes to 960 cfs, and once again at the Galley Road crossing to 1340 cfs. These can be seen in the GeoHecRas output table. Geometry of the channel and the crossing structure at Galley Road was determined from survey

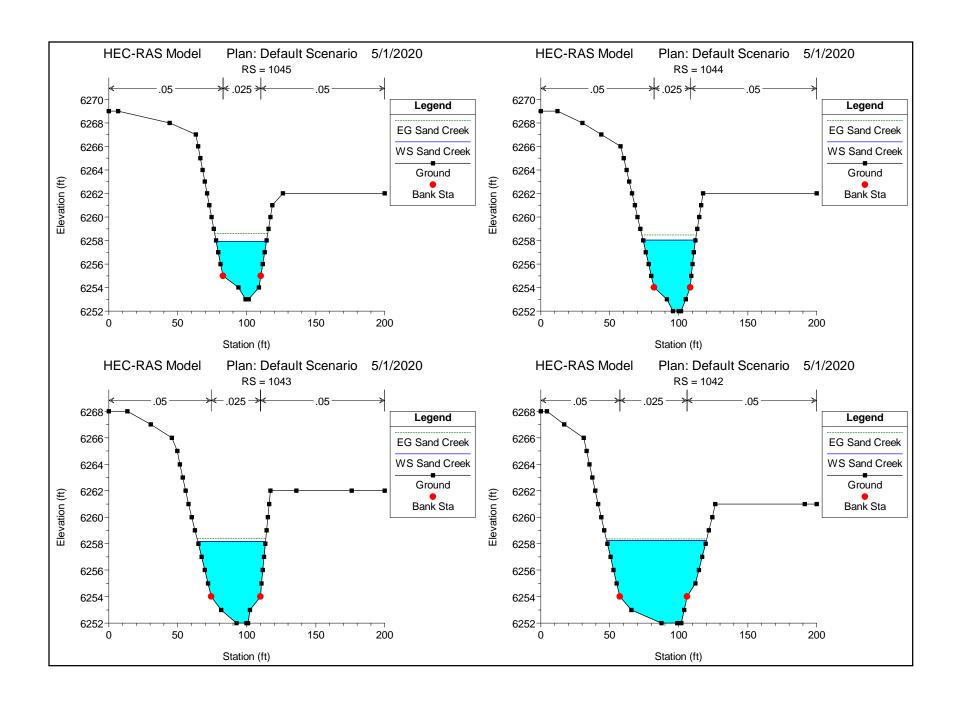
conducted by JR Engineering's internal survey department. The Galley road crossing structure was modeled in the GeoHecRas model; its geometric parameters were determined using survey obtained data to the crossing. The sizes of the 48" CMP culverts in the crossing were also determined from survey data.

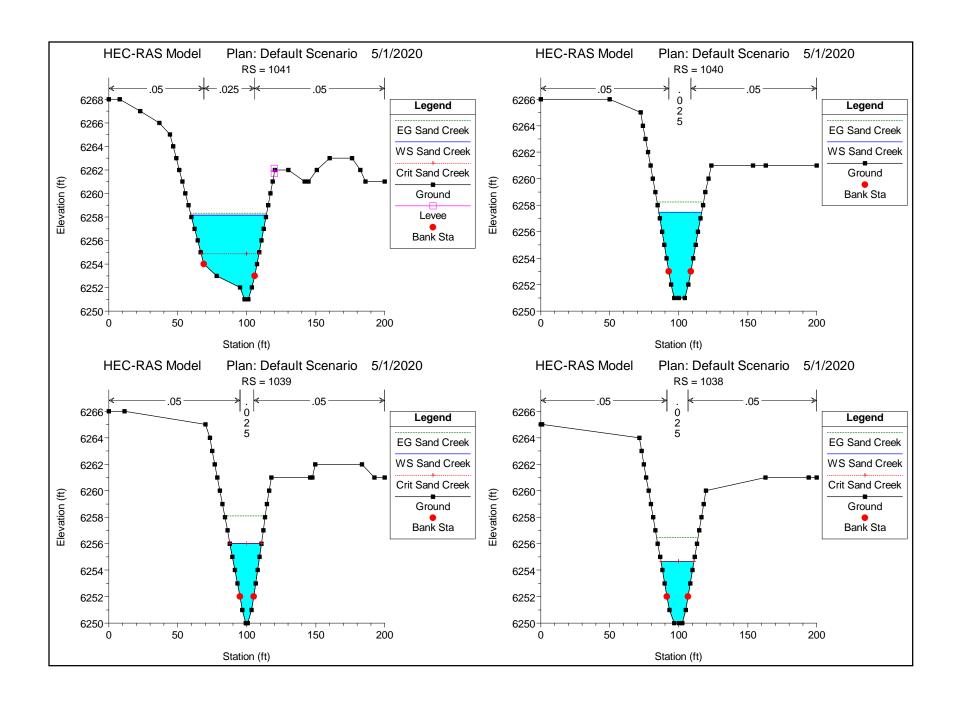
SUMMARY

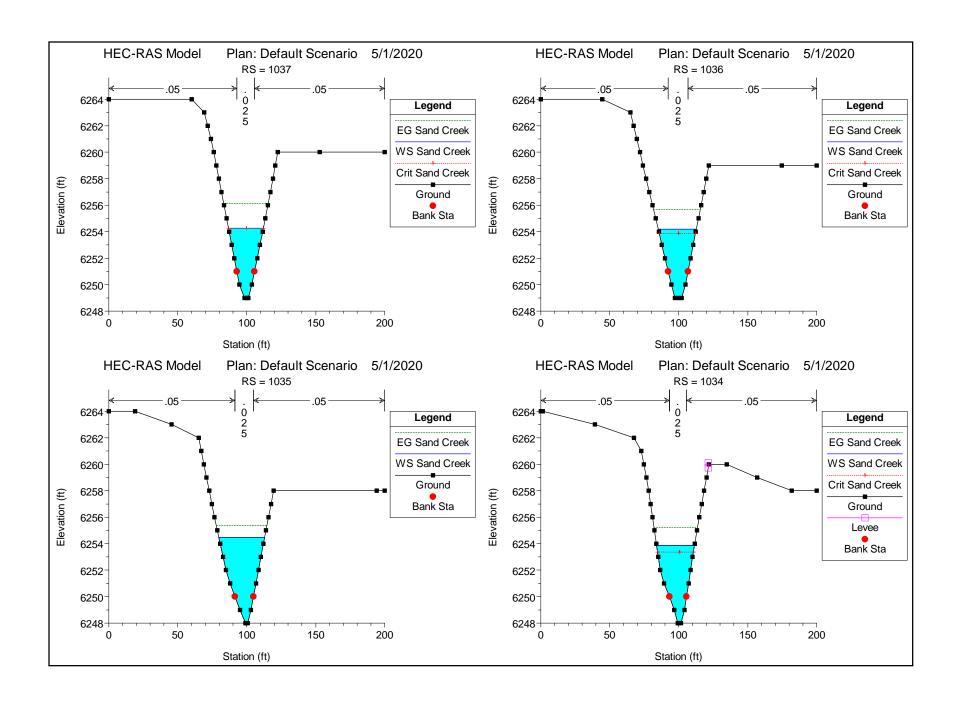

This analysis of the Sand Creek-Center Tributary Drainageway remains consistent with previous studies. Velocities in the drainageway are of concern and require channel improvements, such as widening and riprap lining to ensure the Sand Creek Drainageway remains stable during a 100-yr event. This report meets the latest El Paso County Drainage Criteria requirements for this site. The results of JR Engineering's GeoHecRas model for the channel appear accurate as the water surface elevations of the channel matchup very closely to the elevations called out in the FEMA FIS along the channel. The overtopping elevation at Galley Road shown in the model matches the elevation shown in the FEMA floodplain map of 6249, showing that the GeoHecRas model results are valid.

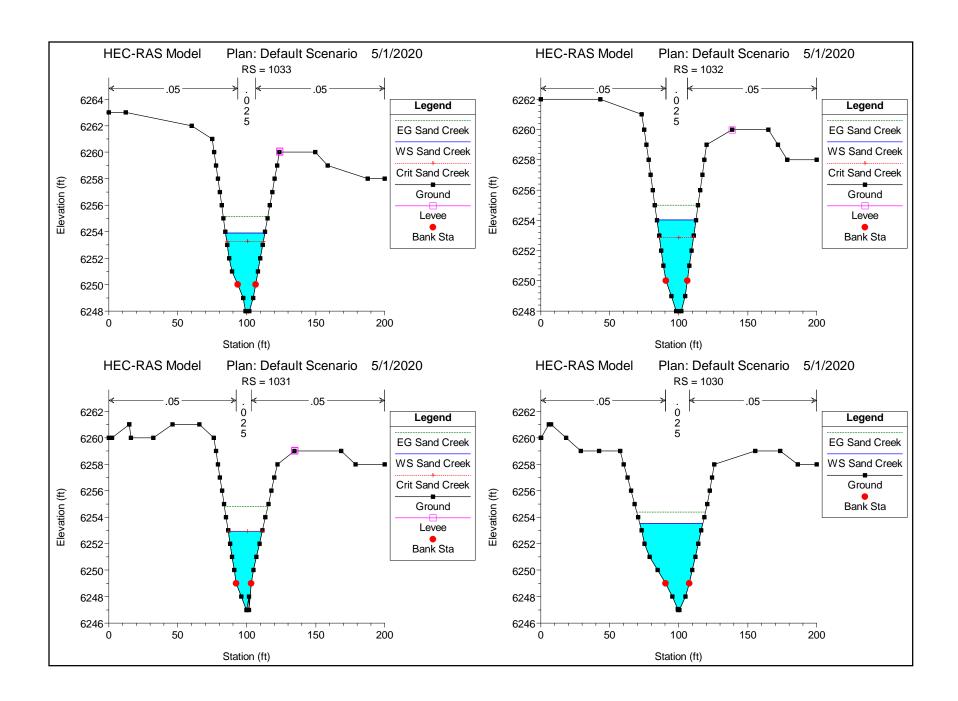

REFERENCES:

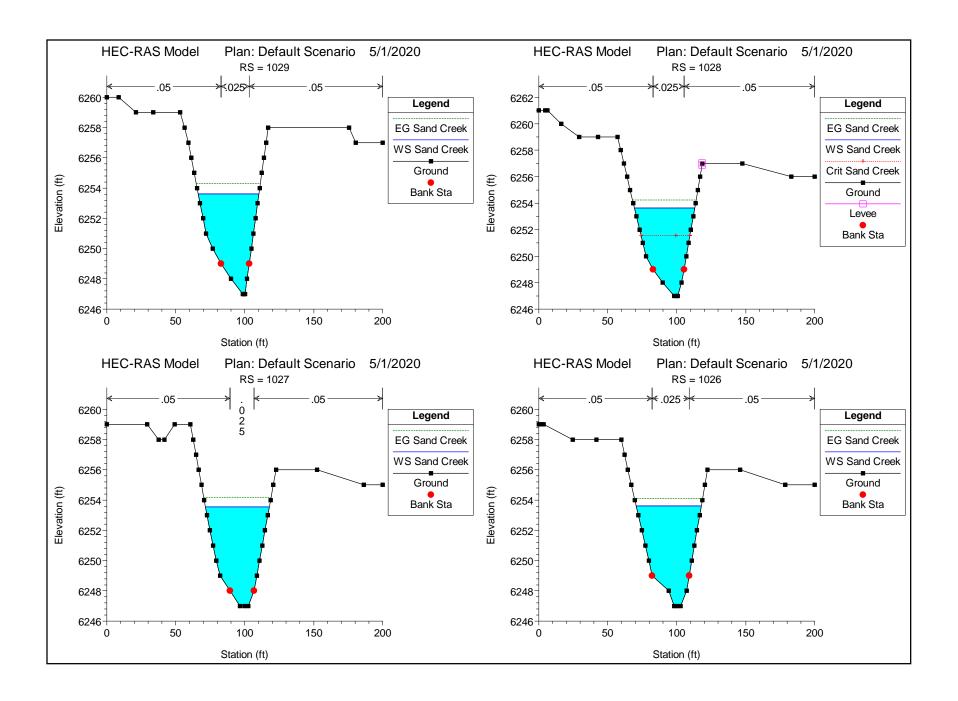

- 1. El Paso County Drainage Criteria Manual Volume 1, El Paso County, CO, 1994.
- 2. Urban Storm Drainage Criteria Manual, Urban Drainage and Flood Control District, Latest Revision.
- 3. <u>Flood Insurance Study- El Paso County, Colorado & Incorporated Areas Vol 7 of 8</u>, Federal Emergency Management Agency, December 7, 2018.
- 4. Sand Creek Drainage Basin Planning Study, Kiowa Engineering, January 1993.
- 5. <u>Sand Creek Drainage Basin LOMR</u>, Federal Emergency Management Agency, May 23, 2007.
- 6. <u>Preliminary Drainage Report and Floodplain Certification for Powers Center Point</u>, Galloway Engineering, October 2007.

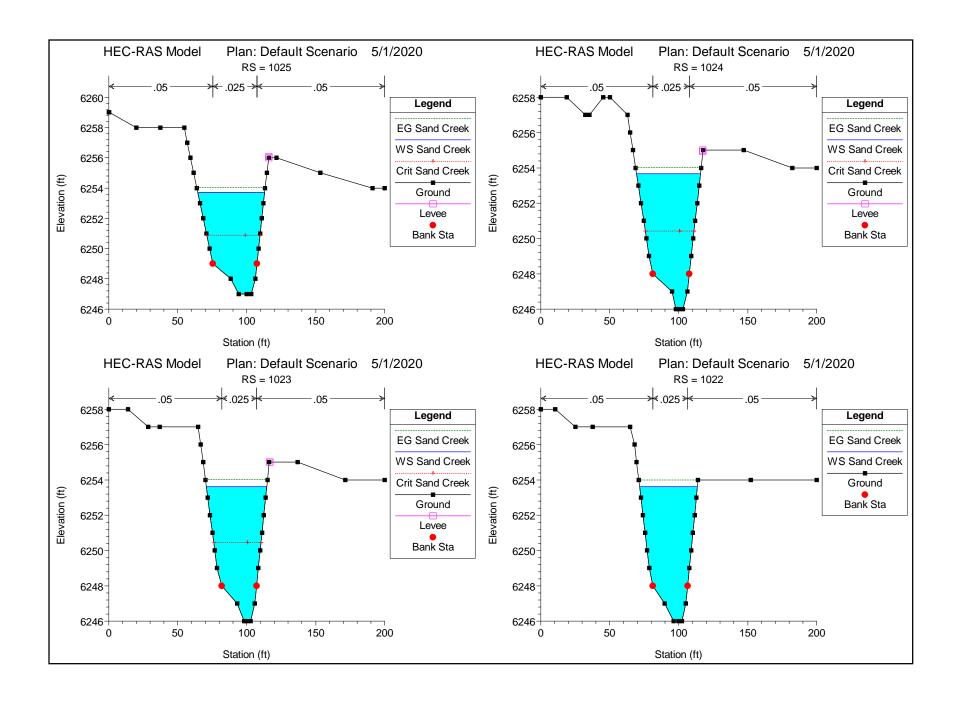

HEC-RAS Plan: Default Scenario River: Channel 01 Reach: CH01 Profile: Sand Creek

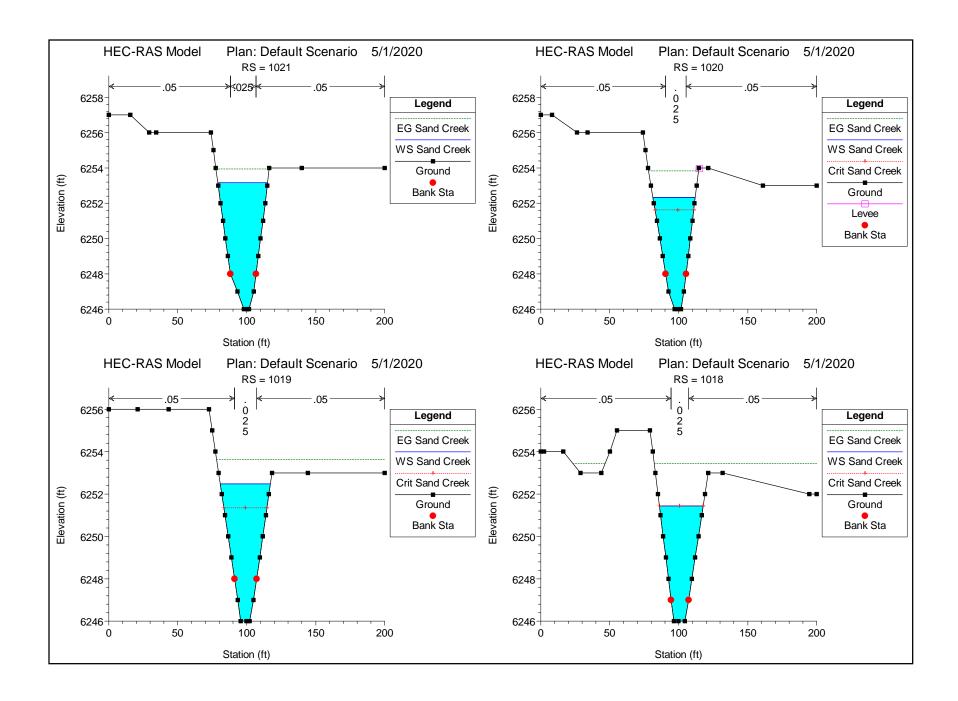

HEC-RAS Plan: Default Scenario River: Channel 01 Reach: CH01 Profile: Sand Creek												
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
CH01	1053	Sand Creek	760.00	6265.00	6269.26	6269.26	6270.04	0.003762	8.51	179.27	110.42	0.77
CH01	1052	Sand Creek	760.00	6258.00	6262.11	6262.11	6263.78	0.005804	10.49	77.83	25.50	0.96
CH01	1051	Sand Creek	760.00	6257.00	6261.64	6261.64	6263.29	0.006883	10.30	74.47	24.12	0.98
CH01	1050	Sand Creek	760.00	6257.00	6261.55	6261.55	6263.17	0.005614	10.36	81.50	27.77	0.96
CH01	1049	Sand Creek	760.00	6257.00	6260.93	6260.93	6262.50	0.005917	10.15	80.51	28.71	0.97
CH01	1048	Sand Creek	760.00	6255.00	6259.52	6259.52	6261.19	0.005730	10.51	80.21	27.19	0.97
CH01	1047	Sand Creek	760.00	6254.00	6258.20	6258.20	6259.83	0.006013	10.34	79.30	27.50	0.98
CH01	1046	Sand Creek	760.00	6253.00	6257.62	6257.33	6258.86	0.004369	9.10	93.85	32.59	0.85
CH01	1045	Sand Creek	760.00	6253.00	6257.94		6258.62	0.002044	6.71	123.65	36.54	0.59
CH01	1044	Sand Creek	760.00	6252.00	6258.04		6258.47	0.000942	5.39	158.77	38.15	0.42
CH01	1043	Sand Creek	760.00	6252.00	6258.17		6258.40	0.000450	3.84	219.34	49.10	0.29
CH01	1042	Sand Creek	760.00	6252.00	6258.25		6258.35	0.000192	2.60	333.13	72.33	0.19
CH01	1041	Sand Creek	760.00	6251.00	6258.15	6254.86	6258.33	0.000342	3.46	250.00	54.53	0.26
CH01	1040	Sand Creek	760.00	6251.00	6257.48		6258.25	0.001509	7.34	129.48	31.17	0.53
CH01	1039	Sand Creek	720.00	6250.00	6256.03	6256.03	6258.09	0.005145	12.17	78.63	22.88	0.93
CH01	1038	Sand Creek	720.00	6250.00	6254.65	6254.65	6256.48	0.005632	11.04	74.30	23.99	0.96
CH01	1037	Sand Creek	720.00	6249.00	6254.26	6254.26	6256.12	0.005266	11.39	78.61	25.24	0.94
CH01	1036	Sand Creek	720.00	6249.00	6254.18	6253.87	6255.67	0.004153	10.16	86.85	27.64	0.84
CH01	1035	Sand Creek	720.00	6248.00	6254.49	0233.07	6255.37	0.0011997	8.12	123.42	33.33	0.60
CH01	1033	Sand Creek	720.00	6248.00	6253.87	6253.37	6255.23	0.001997	9.97	96.29	27.50	0.78
CH01	1034	Sand Creek	720.00	6248.00	6253.90	6253.27	6255.15	0.003330	9.54	100.27	28.48	0.75
CH01	1033	Sand Creek	720.00	6248.00			6254.99	0.003218	8.21		28.30	0.75
					6254.02	6252.85				107.83		
CH01	1031	Sand Creek	720.00	6247.00	6252.93	6252.93	6254.82	0.005902	11.67	81.05	24.65	0.92
CH01	1030	Sand Creek	960.00	6247.00	6253.53		6254.38	0.001956	8.14	169.51	45.64	0.61
CH01	1029	Sand Creek	960.00	6247.00	6253.61		6254.29	0.001452	7.08	180.40	43.93	0.52
CH01	1028	Sand Creek	960.00	6247.00	6253.63	6251.57	6254.24	0.001217	6.58	184.56	43.62	0.48
CH01	1027	Sand Creek	960.00	6247.00	6253.56		6254.17	0.001232	7.01	201.11	46.32	0.50
CH01	1026	Sand Creek	960.00	6247.00	6253.62		6254.11	0.000969	5.82	199.63	47.17	0.43
CH01	1025	Sand Creek	960.00	6247.00	6253.70	6250.88	6254.05	0.000644	4.85	227.01	48.43	0.35
CH01	1024	Sand Creek	960.00	6246.00	6253.67	6250.42	6254.02	0.000576	4.98	235.21	46.35	0.34
CH01	1023	Sand Creek	960.00	6246.00	6253.62	6250.47	6254.01	0.000626	5.21	225.63	43.80	0.35
CH01	1022	Sand Creek	960.00	6246.00	6253.61		6254.00	0.000607	5.19	221.85	41.91	0.35
CH01	1021	Sand Creek	960.00	6246.00	6253.17		6253.94	0.001350	7.37	164.92	36.16	0.51
CH01	1020	Sand Creek	960.00	6246.00	6252.32	6251.61	6253.82	0.003159	10.30	118.91	30.63	0.76
CH01	1019	Sand Creek	960.00	6246.00	6252.49	6251.34	6253.62	0.002313	9.03	140.23	36.35	0.66
CH01	1018	Sand Creek	960.00	6246.00	6251.44	6251.44	6253.45	0.004819	12.21	109.12	31.63	0.94
CH01	1017	Sand Creek	960.00	6245.00	6251.26	6250.03	6252.37	0.002324	8.73	133.16	32.49	0.65
CH01	1016	Sand Creek	960.00	6245.00	6250.14	6250.14	6252.15	0.005299	11.66	96.28	28.21	0.95
CH01	1015	Sand Creek	960.00	6244.00	6250.38	6248.09	6250.77	0.000839	5.11	215.92	53.82	0.39
CH01	1014	Sand Creek	956.00	6244.00	6250.35	6248.71	6250.72	0.000950	5.78	370.06	207.76	0.42
CH01	1013	Sand Creek	956.00	6244.00	6249.89	6249.89	6250.66	0.001931	8.21	274.84	196.01	0.61
CH01	1012	Sand Creek	956.00	6244.00	6248.95	6248.95	6251.16	0.005865	12.67	104.90	38.16	1.02
CH01	1011	Sand Creek	956.00	6244.00	6249.28	6249.28	6250.05	0.002387	8.46	279.17	203.66	0.66
CH01	1010	Sand Creek	956.00	6244.00	6249.16	6249.16	6249.97	0.002504	8.54	254.79	169.44	0.67
CH01	1009	Sand Creek	956.00	6242.00	6249.14	6247.90	6249.85	0.001612	7.93	276.71	166.57	0.55
CH01	1008	Sand Creek	956.00	6242.00	6247.80	6247.80	6249.73	0.004748	11.73	106.54	31.47	0.91
CH01	1007	Sand Creek	956.00	6242.00	6248.22	6247.39	6249.22	0.002263	9.17	222.13	127.82	0.66
CH01	1006	Sand Creek	956.00	6242.00	6248.59	6247.92	6249.01	0.001105	6.67	368.21	181.76	0.46
CH01	1005	Sand Creek	956.00	6242.00	6248.64	6246.43	6248.97	0.000738	5.28	352.19	168.51	0.38
CH01	1004	Sand Creek	956.00	6242.00	6248.76	6245.39	6248.91	0.000242	3.31	399.38	160.30	0.22
CH01	1003.56	22.10 0.00.1	Culvert	32.2.00	02.0.70	02.0.00	02.0.01	0.000242	3.01	555.55	. 55.56	5.22
CH01	1003.50	Sand Creek	956.00	6239.00	6244.43	6242.22	6244.82	0.000233	4.99	191.73	160.51	0.40
CH01	1003	Sand Creek	956.00	6240.00	6243.32	6243.32	6244.68	0.000233	9.35	102.20	38.15	1.01
CH01	1002	Sand Creek	956.00	6239.00	6242.61	6242.61	6244.01	0.001891	9.51	102.20	34.95	0.99
CH01	1001	Sand Creek	956.00			6242.44		0.001808	9.55			1.01
CHUI	1000	Sanu Creek	00.0ce	6239.00	6242.44	0242.44	6243.85	0.001879	9.55	100.10	35.71	1.01

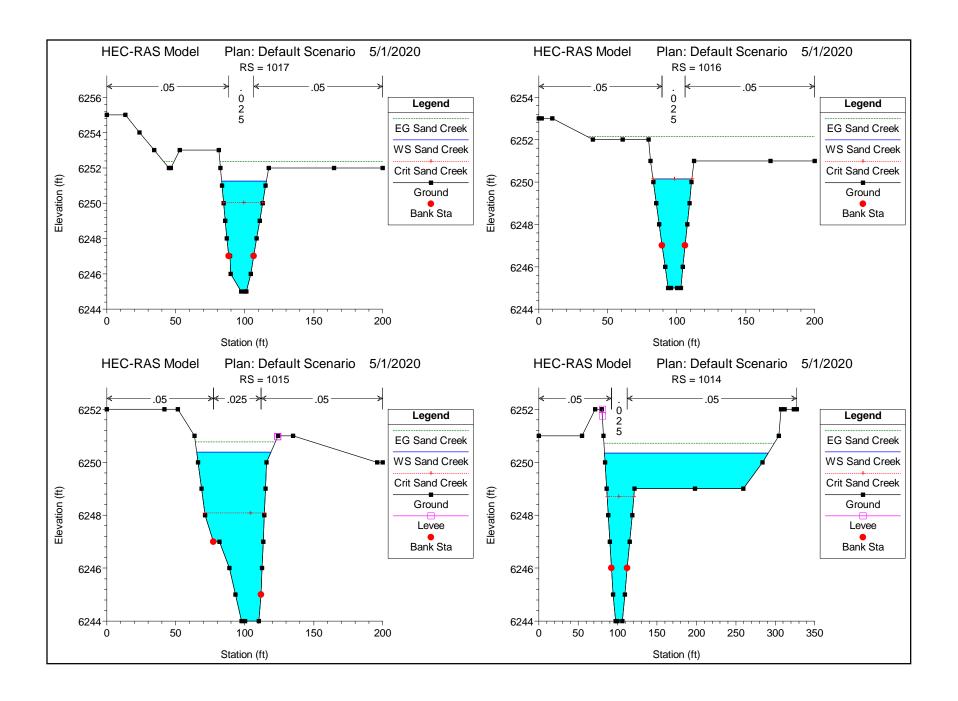


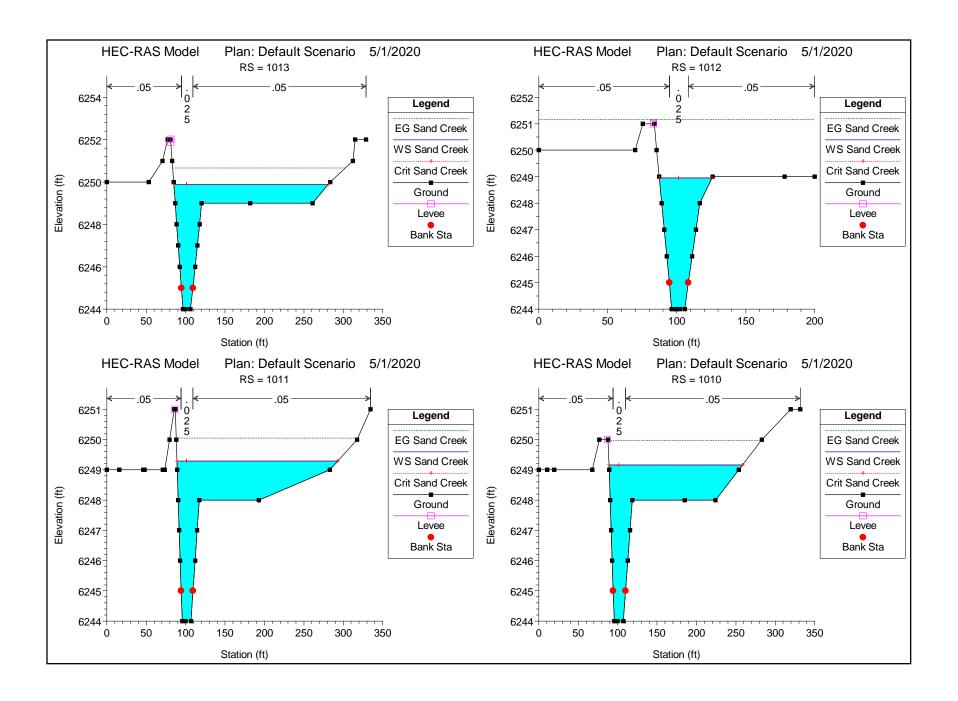


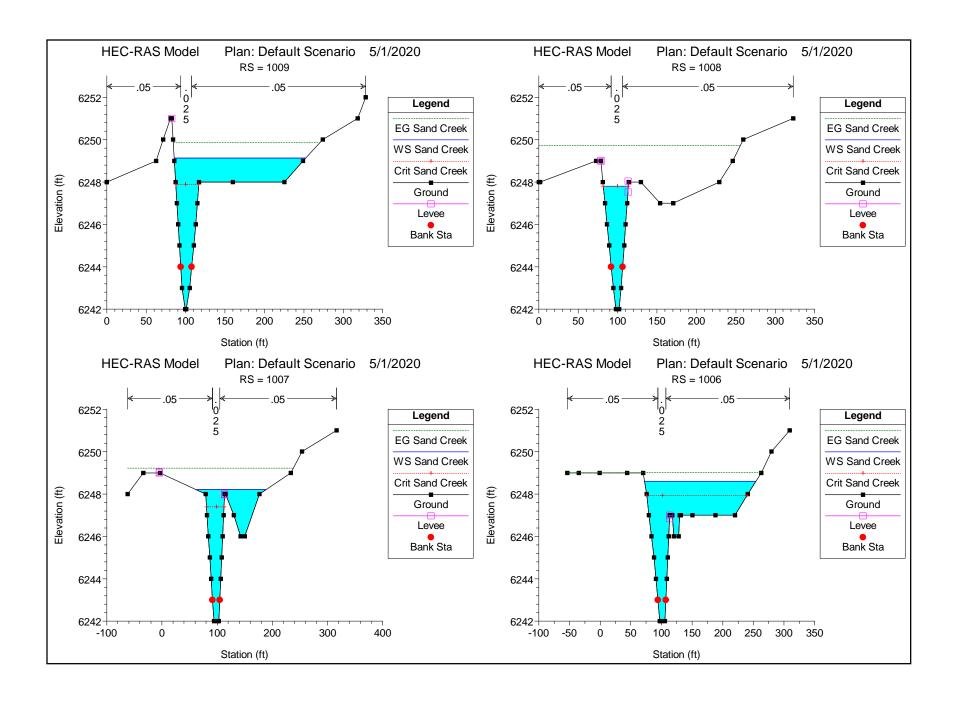


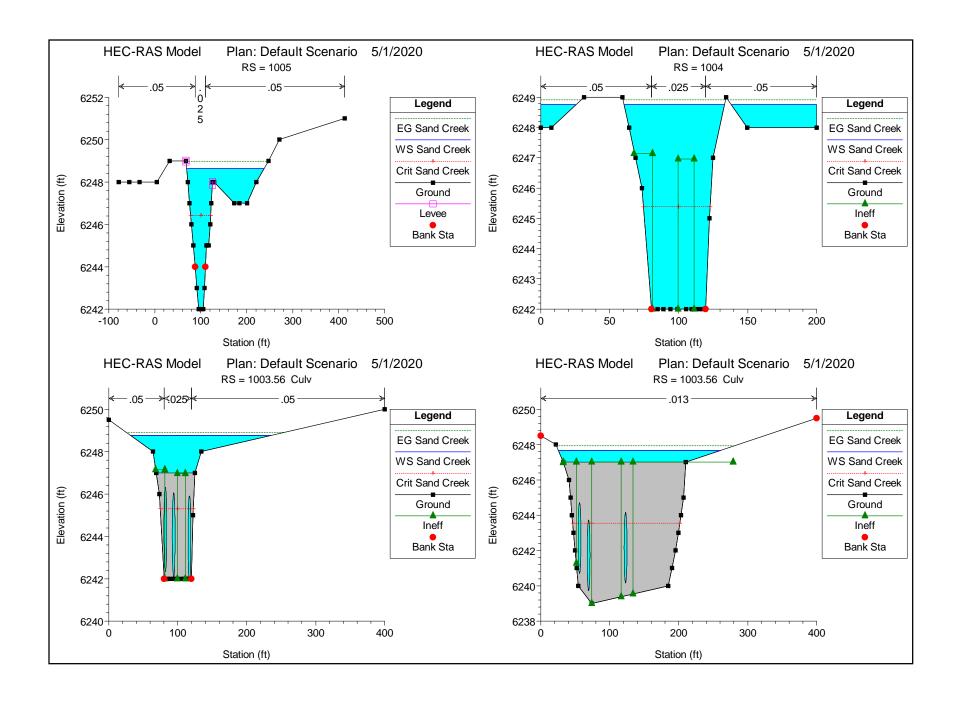


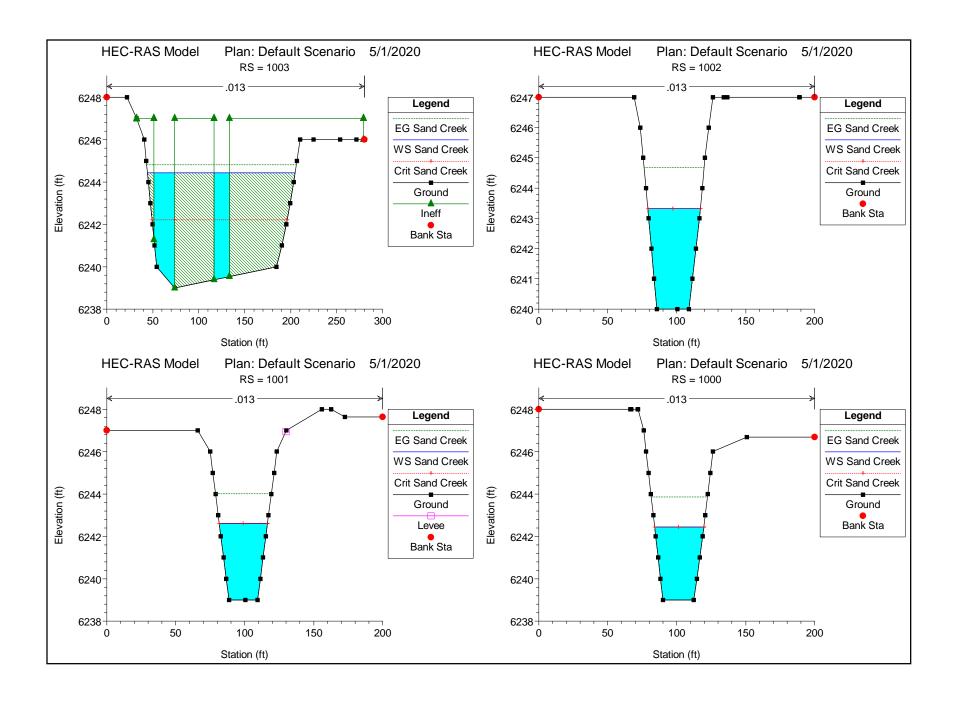


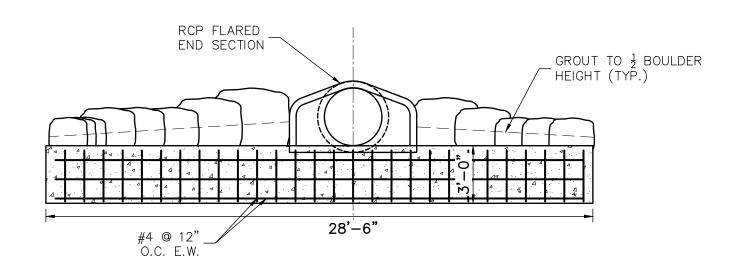


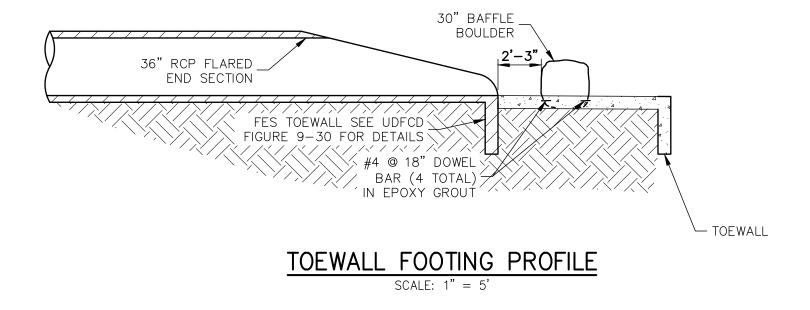


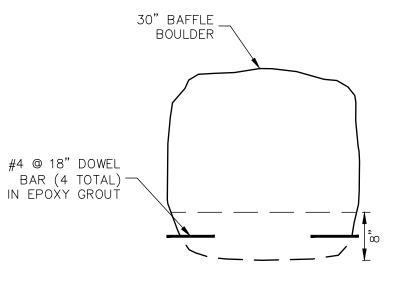











Worksheet for Rectangular Weir - 4' Openings (10)

Project Description			
Solve For	Discharge		
Input Data			
Headwater Elevation		0.50	ft
Crest Elevation		0.00	ft
Tailwater Elevation		0.00	ft
Weir Coefficient		3.10	US
Crest Length		4.00	ft
Number Of Contractions	0		
Results			
Discharge		4.38	ft³/s
Headwater Height Above Crest		0.50	ft
Tailwater Height Above Crest		0.00	ft
Flow Area		2.00	ft²
Velocity		2.19	ft/s
Wetted Perimeter		5.00	ft
Top Width		4.00	ft

36" RCP TOEWALL FOOTING ELEVATION VIEW SCALE: 1" = 5'

BAFFLE BOULDER DETAIL
SCALE: NTS

ENERGY DISSIPATION STRUCTURE SOLACE APARTMENTS JOB NO. 25174.00 5/1/20 SHEET 1 OF 1

Chapter 9 Hydraulic Structures

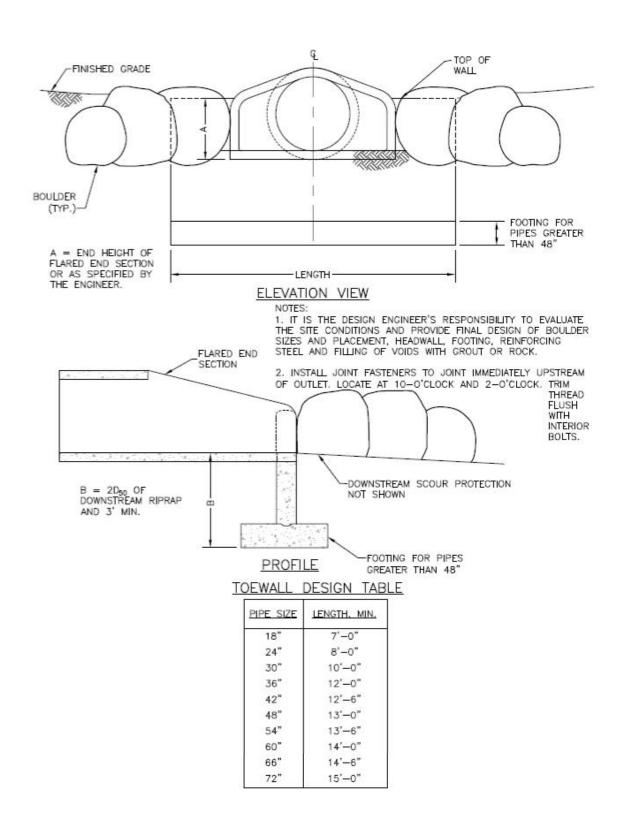


Figure 9-30. Flared end section (FES) headwall concept

Channel Report

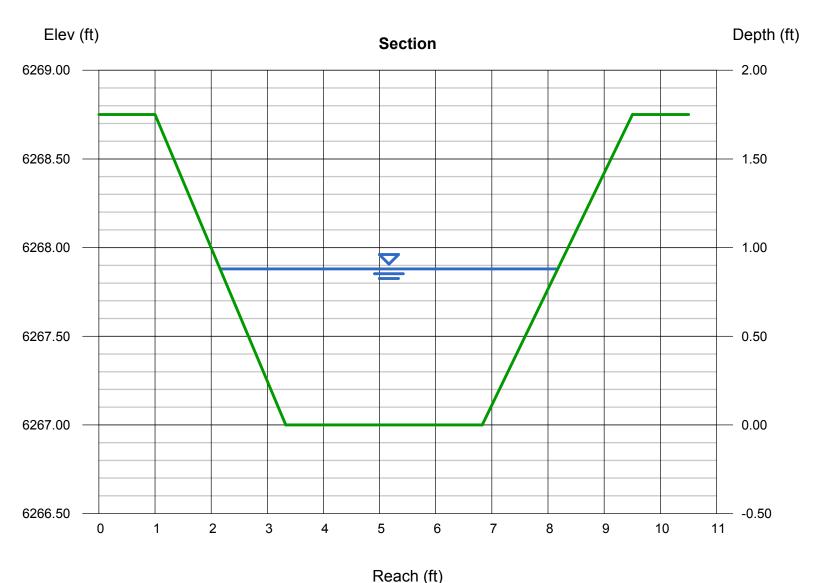
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Jun 25 2020

Ex. Concrete Channel

Trapezoidal

Bottom Width (ft) = 3.50 Side Slopes (z:1) = 1.33, 1.53 Total Depth (ft) = 1.75 Invert Elev (ft) = 6267.00 Slope (%) = 1.41 N-Value = 0.013


Calculations

Compute by: Known Depth

Known Depth (ft) = 0.88

Highlighted

Depth (ft) = 0.88Q (cfs) = 42.08Area (sqft) = 4.19Velocity (ft/s) = 10.05Wetted Perim (ft) = 6.57Crit Depth, Yc (ft) = 1.37Top Width (ft) = 6.02EGL (ft) = 2.45

Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Aug 26 2020

Paonia Street Weir

Compo	ound	Weir
-------	------	------

Crest = Sharp
Bottom Length (ft) = 115.00
Total Depth (ft) = 1.25
Length, x (ft) = 80.00
Depth, a (ft) = 0.50

Highlighted

Depth (ft) = 1.24 Q (cfs) = 439.00 Area (sqft) = 125.10 Velocity (ft/s) = 3.51 Top Width (ft) = 115.00

Calculations

Weir Coeff. Cw = 3.33Compute by: Known Q Known Q (cfs) = 439.00

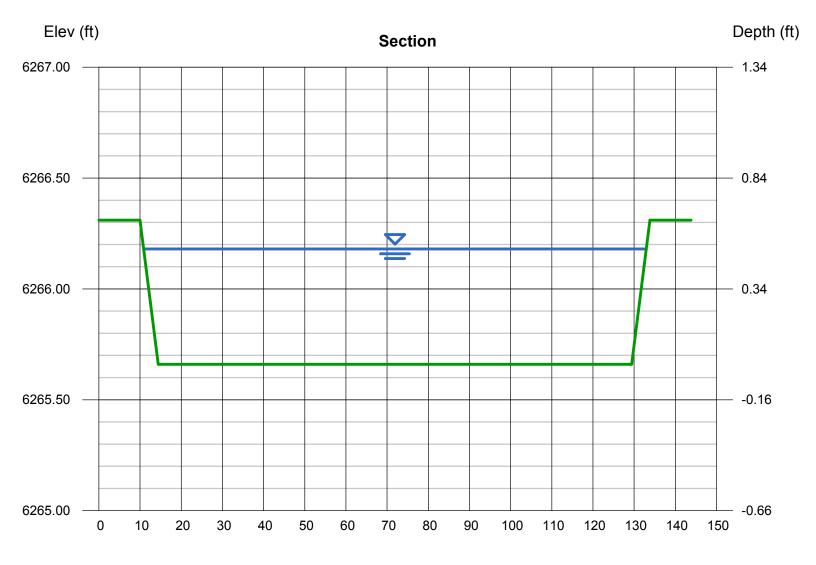
Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Aug 26 2020

Overflow Channel

Trapezoidal


Bottom Width (ft) = 115.00 Side Slopes (z:1) = 6.80, 6.80 Total Depth (ft) = 0.65 Invert Elev (ft) = 6265.66 Slope (%) = 1.68 N-Value = 0.017

Calculations

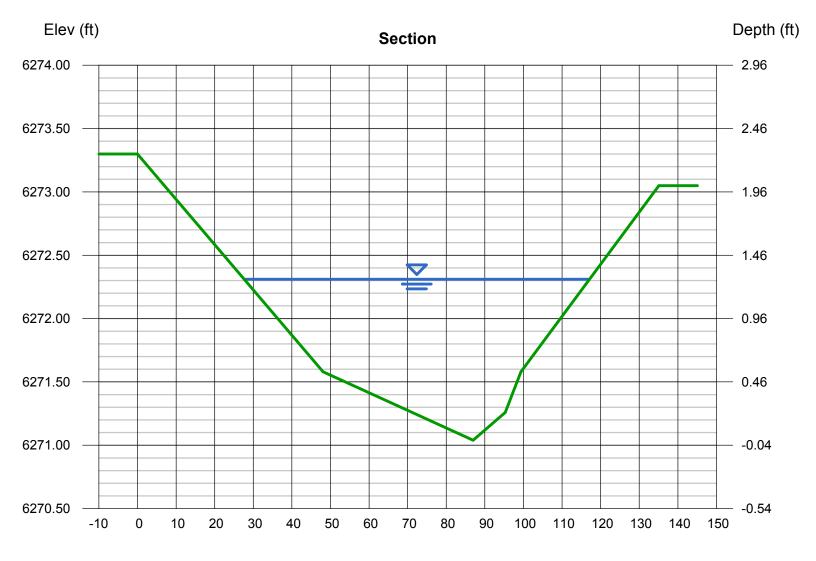
Compute by: Known Q Known Q (cfs) = 439.00

Highlighted

Depth (ft) = 0.52Q (cfs) = 439.00Area (sqft) = 61.64Velocity (ft/s) = 7.12 Wetted Perim (ft) = 122.15Crit Depth, Yc (ft) = 0.65Top Width (ft) = 122.07EGL (ft) = 1.31

Reach (ft)

Channel Report


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Aug 26 2020

Paonia Street Ex.

User-defined		Highlighted	
Invert Elev (ft)	= 6271.04	Depth (ft)	= 1.27
Slope (%)	= 1.00	Q (cfs)	= 500.00
N-Value	= 0.016	Area (sqft)	= 66.09
		Velocity (ft/s)	= 7.57
Calculations		Wetted Perim (ft)	= 89.48
Compute by:	Known Q	Crit Depth, Yc (ft)	= 1.56
Known Q (cfs)	= 500.00	Top Width (ft)	= 89.43
		EGL (ft)	= 2.16

(Sta, EI, n)-(Sta, EI, n)... (0.00, 6273.30)-(48.06, 6271.58, 0.016)-(86.95, 6271.04, 0.016)-(95.27, 6271.26, 0.016)-(99.33, 6271.58, 0.016)-(135.09, 6273.05, 0.016)

To: El Paso County Engineering Division

From: Mike Bramlett, PE

Date: August 27, 2021

Subject: Sand Creek Center Tributary Channel Improvements

The purpose of this letter is to provide design information for the existing conditions of the Sand Creek Center Tributary Drainageway, located east of the Solace Apartments site. This letter will also discuss the proposed improvements for the channel, design methodology, and the modeling results. For further information on the previous evaluation of the channel in its existing conditions and conceptual design, see the *Sand Creek – Center Tributary Channel Analyses Report for Solace Apartments* by JR Engineering. For further information concerning drainage for the Solace Apartments Site, see the *Final Drainage Report for Solace Apartments*, by JR Engineering.

Project General Discussion

The Sand Creek Center Tributary Channel is located in Section 7, Township 14 South, Range 65 West of the 6th Principal Meridian in El Paso County, Colorado. The site is part of the Solace Apartments project and is located on the eastern edge of the project. As part of the proposed improvements for the Solace Apartments Project, this reach of the Sand Creek Center Tributary will also be improved. The sections upstream and downstream of the site have already undergone improvements, and the channel in its current state shows extensive flooding in a 100 year event. In addition to improvements to the Sand Creek Center Tributary Channel, the channels secondary drainageway located to the west of the channel in Paonia Street will also be improved with an overflow channel that will direct flow present in the secondary drainageway into the main channel and avoid further flooding of the Paonia Street extension into the Solace Apartments site.

Channel Flows

Evaluation of the flows present in the Sand Creek Center Tributary and its secondary drainageway were discussed in detail in the Sand Creek – Center Tributary Channel Analysis for Solace Apartments by JR Engineering. Since the initial analysis of the channel took place, JR Engineering was able to acquire the modeling data used by FEMA for determination of flood plain modeling shown in FEMA FIRM 08041C0752G. JR Engineering assumes FEMA's flows to be accurate, and thus utilized these as the basis for our model. The main channel contains 820 cfs of flow and the secondary channel contains 217 cfs. The flow in the main channel then jumps up to 1,037 cfs at the convergence of the secondary drainageway. The convergence of these flows occurs just upstream of the Galley Road crossing, where existing topography directs the secondary drainageway into the main channel. Downstream an existing channel coming from nearby Valley Road (east)

converges with the main channel; we then utilized FEMA's 1,100 cfs to model the remaining portion of the channel.

Existing Channel Conditions

In its existing conditions the Sand Creek Center Tributary Channel along the Solace site consists of a natural channel overgrown with trees and bushes along the sides of the channel with the bottom being relatively clean and free of obstacles. The 1,350 LF reach of the Sand Creek Center Tributary Channel located incorporated with the Solace site is undeveloped, as compared to the majority of channels in the basin which have had some improvement. Downstream and upstream sections of the Sand Creek Center Tributary Channel are concrete lined. The secondary Drainageway located in Paonia Street flows south from Omaha Blvd to the Solace Apartments site where flow splits between an existing concrete channel running east to the main Sand Creek Center Tributary Channel, and a swale flowing south where it eventually rejoins the main channel at the Galley Road crossing. It is anticipated that the concrete channel will divert 42 cfs from the 217cfs present in the secondary drainageway, with 175 cfs flowing south down the existing swale. There is also an existing channel coming from Valley Road to the east. This channel intersects the main channel approximate halfway between the north and south limits of the site, adding 63 cfs to the main channel, as discussed in the Channel Flows section above. In its existing conditions, the Sand Creek Center Tributary Channel FEMA firm panel 08041C0752G, depicts 100 year flooding extending into the adjacent properties to the east and onto Paonia Street improvements to the west. The existing channel currently overtops the Galley Road crossing; primarily due to the capacity of the culverts at the crossing rather than the channel's current conditions.

Proposed Channel Improvements

As determined by the Sand Creek Drainage Basin Planning Study (DBPS) & and JR Engineering Sand Creek – Center Tributary Channel Analysis for Solace Apartments, this section of the Sand Creek Center Tributary will require improvements to ensure adequate capacity in the channel and protection against erosive velocities. In order to be consistent with improvements already made in the surrounding area and to align with the recommendations made by the DBPS, JR Engineering is proposing concrete lining of the channel along the Solace site, along with widening of the existing channel and modification to the channel alignment in this area. JR Engineering is also proposing the addition of a USBR Type III Stilling Basin and 10 foot sloped concrete drop in the channel, in order to force a hydraulic jump in the channel and reduce velocities present in the channel while still matching existing grades for the majority of channel alignment. The design methodology of the sloped drop and USBR Type III Stilling Basin are based on the design procedure for Stilling Basins presented in the Federal Highway Administrations Hydraulic Engineering Circular No. 14, Chapter 8. Calculation for stilling basin and accessories sizing can be found in the Appendix of this letter. The proposed channel section shall be a trapezoidal channel section with a 10' bottom width, with a minimum channel depth of 6.5' and side slopes varying from 3:1 to 2:1 along the channel's alignment. The channel shall be lined with concrete for a depth of 4.5' to protect the channel from the erosive velocities present in the channel, with an average depth of flow in a 100 year event for the proposed channel being approximately 4' this will provide a minimum freeboard of 2' from the top of the channel to the 100 year water surface, adhering to the DCM Volume 1 for minimum freeboard of 1.4'. The concrete section shall typically be a 6" thick concrete apron for the channel, with sections of the section of channel located within the sloped drop and stilling basin being a 12"

thick concrete apron. In accordance with the DBPS the channel shall be designed with a stable slope of 1% for the majority of the channel. For further details please see the Channel Improvement Plans included in the Appendix of this letter. In order to reduce the velocities present in the channel and avoid excessively steep slopes for extended portions of the channel's alignment, a 100' long sloped drop structure, with a total vertical drop of 10', will be placed at the upstream end of the channel. At the base of the drop will be a USBR Type III Stilling Basin that will include chute blocks, baffle blocks and a sill wall to decrease the velocity of the water coming down the sloped drop and force a hydraulic jump. This basin will also include a low flow channel through the sill wall located at the end of the stilling basin to allow water movement through the structure at lower flows and prevent ponding of water in the structure. Further detail for the sloped drop and stilling basin can be found in the channel improvement plans shown in the Appendix.

Paonia Street Secondary Drainageway Improvements

Part of the Sand Creek Center Tributary Improvements also includes the addition of a diversion channel that will direct flows present in the Paonia Street Secondary Drainageway into the main channel. This diversion will be known as the Overflow Channel for the remainder of this letter. Just north of the Overflow Channel, the existing Paonia Street is partially supered in existing conditions routing all flows present in the street to the east side. With major flows present in the existing Paonia Street present on the east side of the road, the Overflow channel will act as a large opening weir and divert flows to the main channel. The Overflow Channel shall be a concrete and riprapped lined channel with varying widths and depths that will convey the flows present in Paonia Street into the main channel. The diversion channel shall be concrete from the edge of Paonia to the right-of-way, after which it will become a riprap trapezoidal channel section with a typical bottom width of 20' and a depth of 2'-3'. The channel will run east from Paonia until it intersects with the proposed Sand Creek Center Tributary Channel alignment, where it will outfall just upstream of the proposed sloped drop in the channel. Just south of the diversion channel opening along Paonia Street will be two 15'type R inlets, that will be used to capture nuisance flows in the curb & gutter and also any flow that may bypass the diversion channel. These inlets are a redundant and not intended to capture any flows present in Paonia as the Overflow Channel is sized and designed to capture all flows present in Paonia; each inlet has a total intercept capacity of 17cfs for a total of 34cfs combined. These inlets will directly outfall into the main channel and will not be detained by any of the onsite detention ponds. For further detail on the diversion channel please see the channel improvement plans, and for detail on the type R inlets see the exert of the Solace Construction Drawings, both shown in the Appendix of this letter.

Modeling Results

The proposed conditions of the channel and its second Drainageway were modeled using GeoHecRas to determine the extents of the 100 year floodplain for the site. Flow rates from the model were used based on those discussed in the Channel Flows section and Existing Conditions section of this letter. The model was run with downstream boundary conditions for each reach using critical depths, and the entirety of the model was ran using steady flow conditions. The model was contains four separate reaches, with the main reach modeling the proposed alignment and conditions for the Sand Creek Center Tributary Channel. The other reaches modeling the Paonia Street Overflow Channel, the existing concrete overflow channel at Paonia and an existing channel that runs east to west from Valley Street and intersects the Sand Creek Center Tributary Channel, each reach

intersection were modeled using the energy equation. The model used manning's values (n) of 0.013 for the concrete lining, 0.033 for the riprap of the overflow channel, and 0.03 for the any location outside of the concrete or riprap extents as they were determined to be most similar to a grassed area with some weeds. The results of the GeoHecRas model show that the proposed improvements to the channel substantially reduce the extents of the flood plain in the channel and contain the 100 year flood plain within the concrete extents of the channel. The results also show a maximum velocity in the channel of 10.32 ft/s in a 100 year event, showing that the concrete lining of the channel will provide sufficient protection from erosive velocities present in the channel. The GeoHecRas model for the proposed conditions also shows overtopping of the channel crossing at Galley Road, which is consistent with the flood data presented by the FEMA FIRM 08041C0752G. Flooding of the roadway is due to the insufficient capacity of the culvert crossing in this area, with the current configuration of three 48" CMP culverts only providing 365 cfs of capacity of the 1,100 cfs flow at the crossing. Flooding of the Galley Road Crossing could be alleviated by upsizing of the culvert(s), these improvements will be necessary when the County deems the historic overtopping of Galley Road to be above acceptable tolerance. The channel improvements did not results in any change to existing overtopping of Galley Road as this is due to insufficient capacity of the culverts at this crossing, which will ultimately be addressed at a later date. Further details on the model results can be found in the Appendix.

Summary

The analysis of the proposed improvements of the Sand Creek Center Tributary Drainageway and its secondary drainageway located in Paonia Street show significant reduction of the flood plain extents, with it now being contained within the channel extents and no longer extensively flooding properties adjacent the proposed Solace Apartment Site. The proposed diversion channel also redirects flow that would otherwise flood the proposed extension of Paonia Street back into the channel, thus alleviating the risk of the roadway flooding in a 100 year event.

Please contact me should you have any questions or concerns regarding this letter at 303-740-9393.

Sincerely,

JR ENGINEERING, LLC

Mike Bunlett

Mike Bramlett, PE

JR Engineering

SOLACE APARTMENTS - SAND CREEK CENTER TRIBUTARY

A PORTION OF SECTION 7, TOWNSHIP 14 SOUTH, RANGE 65 WEST OF THE 6TH P.M. **EL PASO COUNTY, COLORADO**

CHANNEL IMPROVEMENTS

ABBREVIATIONS

CONCRETE THRUST REDUCER

DRAINAGE BASIN PLANNING

DESIGN REVIEW COMMITTEE

DRAINAGE EASEMEN

DUCTILE IRON PIPE

DWELLING UNITS

ENERGY GRADE LINE

EDGE OF ASPHALT

DIP

DR DRC

DU

EGL

ELEC

EOA

EST EX

ESMT

BLOCK

CUBIC YARD

DIAMETER

DRIVE

EACH

ELEVATION

ELECTRIC

EASEMENT

ESTIMATE EXISTING

AC		FDP	
AD	ALGEBRAIC DIFFERENCE	FDR	FINAL DRAINAGE REPORT
	AHEAD	FES	
	ARCHITECT	FG	FINISHED GRADE
ASCE			
A CC !\	ENGINEERS	FL	
	ASSEMBLY	FIL	FILING FIBER OPTIC CABLE
A VE	AVENUE BOX BASE	FO	GRADE BREAK
BB BK	DACK DASE	GB	GAS EASEMENT
	BOUNDARY	CIC	GEOGRAPHIC INFORMATION
BOP		GIS	SYSTEM
BOV	BLOW OFF VALVE	GL	GAS LINE
BFV	BUTTERFLY VALVE	GPS	GLOBAL POSITIONING SYSTEM
BLVD		GV	
BW			HANDICAP
	CURB & GUTTER		HIGH DEFLECTION COUPLING
CATV		HDPE	HIGH DENSITY POLYETHYLEN
CB	CATCH BASIN	HGL	
	CONCRETE BOX CHIVERT	$H \cap \Delta$	HOME OWNERS ASSOCIATION
CDOT	COLORADO DEPARTMENT OF TRANSPORTATION	HP	
			INLET
CDS	CUL-DE-SAC	ΙE	IRRIGATION EASEMENT
CFS	CUBIC FEET PER SECOND	IE INT	INTERSECTION
CL	CENTER LINE	INV	INVERT
CLOMR	CONDITIONAL LETTER OF MAP	IRR	IRRIGATION
	REVISION	KB	KICK (THRUST) BLOCK LANDSCAPE EASEMENT
CLR	CLEAR	LE	LANDSCAPE EASEMENT
CMP	CORRUGATED METAL PIPE	LF	LINEAR FEET
CO		LN	
CONC			LETTER OF MAP REVISION
CR		LP	LOW POINT
CSP		LS	LUMP SUM

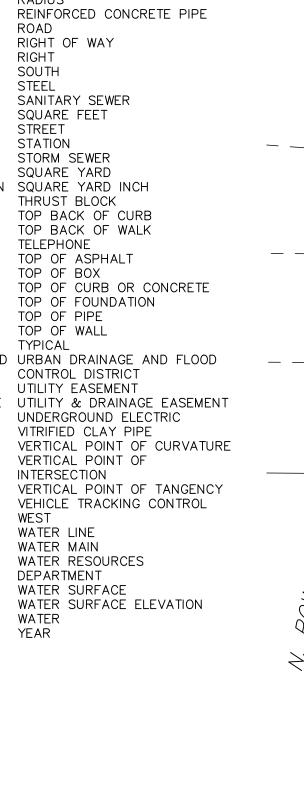
MAX MAXIMUM MDDP MASTER DEVELOPMENT DRAINAGE PLAN NORTH OVERHEAD ELECTRIC OVERHEAD UTILITY POINT OF CURVATURE POINT OF COMPOUND CURVATURE

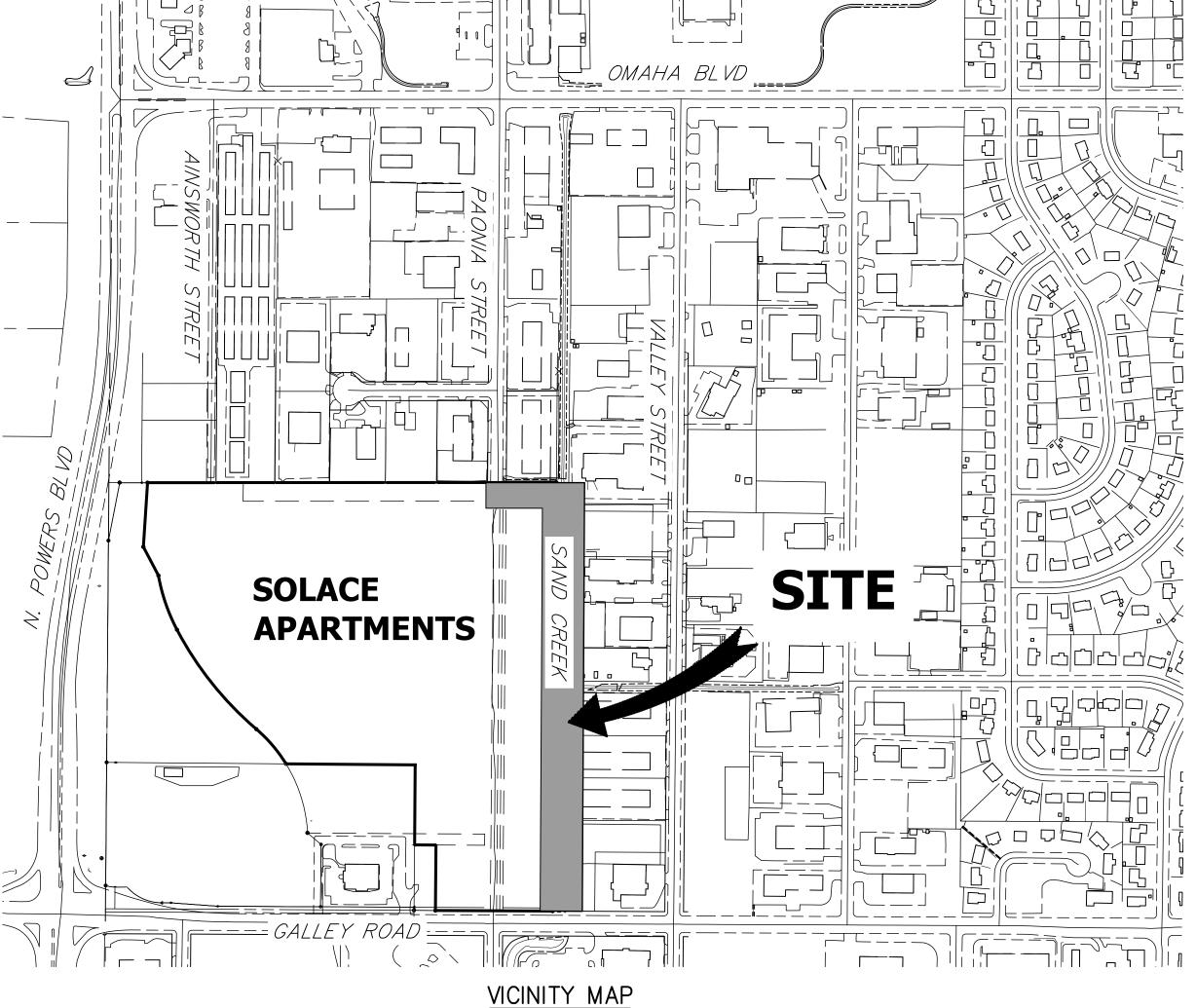
POINT OF CURB RETURN

PROFESSIONAL ENGINEER

PRELIMINARY DEVELOPMENT

POINT OF TANGENCY PLUG VALVE POLYVINYL CHLORIDE RADIUS REINFORCED CONCRETE PIPE ROAD RIGHT OF WAY RIGHT SOUTH STE SAN STEEL SANITARY SEWER STORM SEWER SQUARE YARD SY-IN SQUARE YARD INCH TOP OF ASPHALT TOP OF BOX TOP OF CURB OR CONCRETE TOP OF FOUNDATION TOP OF PIPE TOP OF WALL UTILITY EASEMENT U&DE UTILITY & DRAINAGE EASEMENT UNDERGROUND ELECTRIC VITRIFIED CLAY PIPE VERTICAL POINT OF CURVATURE VERTICAL POINT OF INTERSECTION VERTICAL POINT OF TANGENCY VEHICLE TRACKING CONTROL WATER LINE WATER MAIN WATER RESOURCES


DEPARTMENT


WTR WATER

YR YEAR

PROPOSED

POINT OF REVERSE CURVATURE

APPLICANT/OWNER JACKSON DEARBORN PARTNERS

404 S. WELLS ST. SUITE 400 CHICAGO, IL 60607 P~734.216.2577

CIVIL ENGINEER

JR ENGINEERING 5475 TECH CENTER DR SUITE 235 COLORADO SPRINGS, CO 80919 CONTACT: MIKE BRAMLETT C~719.659.7679

PLANNER

N.E.S. INC. 619 N. CASCADE AVE SUITE 200 COLORADO SPRINGS, CO 80903 CONTACT: TAMARA BAXTER P~719.471.0073

GEOTECHNICAL ENGINEER

CTL THOMPSON, INC 5170 MARK DABLING BLVD COLORADO SPRINGS, CO 80918 P~719.528.8300

J·R ENGINEERING

SHEET INDEX

COVER SHEET GENERAL NOTES SITE AND DEMO PLAN CHANNEL PLAN AND PROFILES CHANNEL DETAILS DROP STRUCTURES PLAN AND PROFILE DROP STRUCTURE DETAIL SHEETS PAONIA STREET OVERFLOW PLAN

BASIS OF BEARINGS

THE EASTERLY LINE OF LOT 2, POWERS & GALLEY PLAZA FILING NO. 1 RECORDED IN PLAT BOOK A-4 AT PAGE 30, SAID LINE BEING MONUMENTED BY A 1-1/4" YELLOW PLASTIC CAP STAMPED "LS 22106" AT THE SOUTH END AND A 1" O.D. PIPE AT THE NORTH END, SAID LINE BEARING NO0°27'47"E AS SHOWN ON SAID PLAT.

BENCHMARK

FIMS MONUMENT F81, BEING MONUMENTED BY A 3-1/4" ALUMINUM CAP IN RANGE BOX WITH NO TOP, LOCATED 900 FEET EAST OF THE INTERSECTION OF É. PLATTE AVENUE AND VALLEY STREET. APPROXIMATLEY 80 FEET NORTH OF THE CENTERLINE OF E PLATTE AVENUE. SAID MONUMENT HAVING A PUBLISHED ELEVATION OF 6275.86 FEET, NAVD88.

THE LOCATIONS OF EXISTING ABOVE GROUND AND UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK. THE CONTRACTOR SHALL BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE CAUSED BY HIS FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL ABOVE GROUND AND UNDERGROUND UTILITIES.

Know what's below. Call before you dig.

OWNER/DEVELOPER STATEMENT

THE OWNER/DEVELOPER HAVE READ AND WILL COMPLY WITH ALL OF THE REQUIREMENTS SPECIFIED IN THESE DETAILED PLANS AND SPECIFICATIONS.

DANE OLMSTEAD

JACKSON DEARBORN PARTNERS 404 S. WELLS STREET, SUITE 400 CHICAGO, IL 60607

EL PASO COUNTY STATEMENT

COUNTY PLAN REVIEW IS PROVIDED ONLY FOR GENERAL CONFORMANCE WITH COUNTY DESIGN CRITERIA. THE COUNTY IS NOT RESPONSIBLE FOR THE ACCURACY AND ADEQUACY OF THE DESIGN, DIMENSIONS, AND/OR ELEVATIONS WHICH SHALL BE CONFIRMED AT THE JOB SITE. THE COUNTY THROUGH THE APPROVAL OF THIS DOCUMENT ASSUMES NO RESPONSIBILITY FOR COMPLETENESS AND/OR ACCURACY OF THIS DOCUMENT.

FILED IN ACCORDANCE WITH THE REQUIREMENTS OF THE EL PASO COUNTY LAND DEVELOPMENT CODE, DRAINAGE CRITERIA MANUAL, VOLUMES 1 AND 2, AND ENGINEERING CRITERIA MANUAL AS AMENDED.

IN ACCORDANCE WITH ECM SECTION 1.12, THESE CONSTRUCTION DOCUMENTS WILL BE VALID FOR CONSTRUCTION FOR A PERIOD OF 2 YEARS FROM THE DATE SIGNED BY THE EL PASO COUNTY ENGINEER. CONSTRUCTION HAS NOT STARTED WITHIN THOSE 2 YEARS, THE PLANS WILL NEED TO BE RESUBMITTED FOR APPROVAL, INCLUDING PAYMENT OF REVIEW FEES AT THE PLANNING AND COMMUNITY DEVELOPMENT DIRECTORS DISCRETION.

JENNIFER IRVINE, P.E.

COUNTY ENGINEER/ECM ADMINISTRATOR ENGINEER'S STATEMENT

STANDARD DETAILS SHOWN WERE REVIEWED ONLY CAS TO THEIR APPLICATION ON THIS PROJECT

32314 MIKE A. BRAMLETT, P.E. COLORADO P.E. 32314 FOR AND ON BEHALF OF JR ENGINEERING ALLONA

CREEK CE TRIBUTARY OVER

AND

SHEET 1 OF 10 JOB NO. **25174.00**

LAYER LINETYPE LEGEND

		EXISTII	V <i>G</i>	PROPO	OSED
MATCH LINE					
SECTION LINE	-				
BOUNDARY LINE					
PROPERTY LINE					-
EASEMENT LINE					
RIGHT OF WAY			-		_
CENTERLINE					
FENCE		×	×	×	×
GUARDRAIL		<u> </u>			
CABLE TV		———— <i>TV</i> ——		TV	TV
ELECTRIC		E	E	——— Е ———	— Е ——
FIBER OPTIC	-		FO	F0	—— FO ———
GAS MAIN		G	G	G	—— G ———
IRRIGATION MAIN		————IRR——		IRR	IRR
OVERHEAD UTILITY		— — — — <i>ОНИ</i> — —	- — — <i>—OHU</i> ———	OHU	ОНU
SANITARY SEWER		s	s		
STORM DRAIN	1010101010				
TELEPHONE		<i>T</i>	<i>T</i>	T	— т ——
WATER MAIN		w $$	w	•	
SWALE/WATERWAY FLOWLINE		-···			
DIVERSION DITCH					-
TOP OF SLOPE					
TOE OF SLOPE				и	i
100 YEAR FLOODPLAIN			100YR	100Y	R —
5 YEAR HGL					- · · · · <u> </u>
100 YEAR HGL					····

STANDARD NOTES FOR EL PASO COUNTY CONSTRUCTION PLANS

- 1. ALL DRAINAGE AND ROADWAY CONSTRUCTION SHALL MEET THE STANDARDS AND SPECIFICATIONS OF THE CITY OF COLORADO SPRINGS/EL PASO COUNTY DRAINAGE CRITERIA MANUAL, VOLUMES 1 AND 2, AND THE EL PASO COUNTY ENGINEERING CRITERIA
- 2. CONTRACTOR SHALL BE RESPONSIBLE FOR THE NOTIFICATION AND FIELD NOTIFICATION OF ALL EXISTING UTILITIES, WHETHER SHOWN ON THE PLANS OR NOT, BEFORE BEGINNING CONSTRUCTION. LOCATION OF EXISTING UTILITIES SHALL BE VERIFIED BY THE CONTRACTOR PRIOR TO CONSTRUCTION. CALL 811 TO CONTACT THE UTILITY NOTIFICATION CENTER OF COLORADO (UNCC).
- 3. CONTRACTOR SHALL KEEP A COPY OF THESE APPROVED PLANS, THE GRADING AND EROSION CONTROL PLAN, THE STORMWATER MANAGEMENT PLAN (SWMP), THE SOIL AND GEOTECHNICAL REPORT, AND THE APPROPRIATE DESIGN AND CONSTRUCTION STANDARDS AND SPECIFICATIONS AT THE JOB SITE AT ALL TIMES, INCLUDING THE FOLLOWING: 3.1. EL PASO COUNTY ENGINEERING CRITERIA MANUAL (ECM)
- 3.2. CITY OF COLORADO SPRINGS/ EL PASO COUNTY DRAINAGE CRITERIA MANUAL, VOLUMES 1 AND 2 3.3. COLORADO DEPARTMENT OF TRANSPORTATION (CDOT) STANDARD SPECIFICATIONS AND BRIDGE CONSTRUCTION
- 3.4. CDOT M&S STANDARDS
- 4. NOTWITHSTANDING ANYTHING DEPICTED IN THESE PLANS IN WORDS OR GRAPHIC REPRESENTATION, ALL DESIGN AND CONSTRUCTION RELATED TO ROADS, STORM DRAINAGE AND EROSION CONTROL SHALL CONFORM TO THE STANDARDS AND REQUIREMENTS OF THE MOST RECENT VERSIONS OF THE RELEVANT ADOPTED EL PASO COUNTY STANDARDS, INCLUDING THE LAND DEVELOPMENT CODE, THE EINGEERI9NG CRITERIA MANUAL, THE DRAINAGE CRITERIA MANUAL, AND THE DRAINAGE CRITERIA MANUAL VOLUME 2. ANY DEVIATIONS FROM REGULATIONS AND STANDARDS MUST BE REQUESTED, AND APPROVED, IN WRITING. ANY MODIFICATIONS NECESSARY TO MEET CRITERIA AFTER-THE-FACT WILL BE ENTIRELY THE DEVELOPER'S RESPONSIBILITY TO RECTIFY.
- 5. IT IS THE DESIGN ENGINEER'S RESPONSIBILITY TO ACCURATELY SHOW EXISTING CONDITIONS, BOTH ONSITE AND OFFSITE, ON THE CONSTRUCTION PLANS. ANY MODIFICATIONS NECESSARY DUE TO CONFLICTS, OMISSIONS, OR CHANGED CONDITIONS WILL BE ENTIRELY THE DEVELOPER'S RESPONSIBILITY TO RECTIFY.
- 6. CONTRACTOR SHALL SCHEDULE A PRE-CONSTRUCTION MEETING WITH EL PASO COUNTY PLANNING AND COMMUNITY DEVELOPMENT INSPECTIONS, PRIOR TO STARTING CONSTRUCTION.
- 7. IT IS THE CONTRACTOR'S RESPONSIBILITY TO UNDERSTAND THE REQUIREMENTS OF ALL JURISDICTIONAL AGENCIES TO OBTAIN ALL REQUIRED PERMITS, INCLUDING BUT NOT LIMITED TO EL PASO COUNTY EROSION AND STORMWATER QUALITY CONTROL PERMIT (ESQCP), REGIONAL BUILDING FLOODPLAIN DEVELOPMENT PERMIT, U.S. ARMY CORPS OF ENGINEERS—ISSUED 401 AND/OR 404 PERMITS, AND COUNTY AND STATE FUGITIVE DUST PERMITS.
- 8. CONTRACTOR SHALL NOT DEVIATE FROM THE PLANS WITHOUT FIRST OBTAINING WRITTEN APPROVAL FROM THE DESIGN ENGINEER AND PCD. CONTRACTOR SHALL NOTIFY THE DESIGN ENGINEER IMMEDIATELY UPON DISCOVERY OF ANY ERRORS OR INCONSISTENCIES.
- 9. ALL STORM DRAIN PIPE SHALL BE CLASS III RCP UNLESS OTHERWISE NOTED AND APPROVED BY PLANNING AND COMMUNITY
- 10. CONTRACTOR SHALL COORDINATE GEOTECHNICAL TESTING PER ECM STANDARDS. PAVEMENT DESIGN SHALL BE APPROVED BY EL PASO COUNTY PCD PRIOR TO PLACEMENT OF CURB AND GUTTER AND PAVEMENT.
- 11. ALL CONSTRUCTION TRAFFIC MUST ENTER/EXIT THE SITE AT APPROVED CONSTRUCTION ACCESS POINTS.
- 12. SIGHT VISIBILITY TRIANGLES ARE IDENTIFIED IN THE PLANS SHALL BE PROVIDED AT ALL INTERSECTIONS. OBSTRUCTIONS GREATER THAN 18 INCHES ABOVE FLOWLINE ARE NOT ALLOWED IN SIGHT TRIANGLES.
- 13. SIGNING AND STRIPING SHALL COMPLY WITH EL PASO COUNTY DEPARTMENT OF PUBLIC WORKS AND MUTCD CRITERIA.
- 14. CONTRACTOR SHALL OBTAIN ANY PERMITS REQUIRED BY EL PASO COUNTY DEPARTMENT OF PUBLIC WORKS, INCLUDING WORK WITHIN THE RIGHT-OF-WAY AND SPECIAL TRANSPORT PERMITS.
- 15. THE LIMITS OF CONSTRUCTION SHALL REMAIN WITHIN THE PROPERTY LINE UNLESS OTHERWISE NOTED. THE OWENER/DEVELOPER SHALL OBTAIN WRITTEN PERMISSION AND EASEMENTS, WHERE REQUIRED, FROM ADJOINING PROPERTY OWNER(S) PRIOR TO ANY OFF-SITE DISTURBANCE, GRADING, OR CONSTRUCTION.

UTILITIES LEGEND

	EXISTING	PROPOSED
STORM SEWER		
MANHOLE	©	
STORM INLET		
AREA INLET — SQUARE		
FLARED END SECTION	D	
RIPRAP	20000	
SANITARY SEWER		
LINE MARKER	Mkr San ^O	
SERVICE MARKER	Ś	
CLEAN-OUT	0-	•-
MANHOLE W/ DIRECTIONAL FLOW ARROW	⑤ ⊲	•4
WATER LINE		
LINE MARKER	Mkr W°	
SERVICE MARKER	\triangle	
FIRE HYDRANT	Q	≪
MANHOLE	W	•
BEND		X
BLOW-OFF VALVE	۶t	\$ -[
WELL	OWELL	●WELL
METER	®	•
VALVE	\bowtie	•
REDUCER		-
CROSS		+
PLUG W/ THRUST BLOCK TEE	Þ[• •
AIR & VACUUM VALVE ASSEMBLY		•
GAS LINE		

GAS LINE

MARKER	Mkr G [○]
SERVICE MARKER	<u>©</u>
METER	©
VALVE	\triangleright
PLUG	Γ
DRY UTILITIES	S

DRY UTILITIES

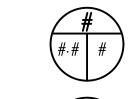
GUY ANCHOR

GUY POLE

CABLE TV MARKER	Mkr TV°
CABLE TELEVISION PEDESTAL	TV
ELECTRIC MARKER	Mkr E ⁰
ELECTRIC SERVICE MARKER	É
ELECTRICAL PEDESTAL	E
ELECTRICAL METER	Ē
ELECTRICAL MANHOLE	E
FIBER-OPTIC MARKER	Mkr FO ^O
IRRIGATION PEDESTAL	Ι
TELEPHONE MARKER	Mkr TO
TELEPHONE PEDESTAL	T
TELEPHONE MANHOLE	T
UTILITY POLE	-0-

MONUMENTATION LEGEND

ALUMINUM CAP - FOUND	●AC
BRASS CAP - FOUND	$ullet_{BC}$
BENCHMARK - FOUND	
CROSS - FOUND	+
MONUMENT - SET	0
MONUMENT — FOUND (DEFAULT)	•
MONUMENT — FOUND (ALTERNATE 1)	
MONUMENT — FOUND (ALTERNATE 2)	
MONUMENT — FOUND (ALTERNATE 3)	
MONUMENT — FOUND (ALTERNATE 4)	
MONUMENT — FOUND (ALTERNATE 5)	•
MONUMENT — FOUND (ALTERNATE 6)	
MONUMENT — FOUND (ALTERNATE 7)	
NAIL & WASHER - FOUND	•NAIL & WAS
PANEL - FOUND	人
PK NAIL - FOUND	•PK N
ROW MONUMENT - FOUND	-
ROW MARKER — FOUND	•
SECTION CORNER - FOUND	+
SECTION CORNER - SET	-
QUARTER-SECTION CORNER - FOUND	▶●<
QUARTER-SECTION CORNER - SET	► ○
SECTION CENTER - FOUND	ledot
SECTION CENTER - FOUND	0
CONTROL/TRAVERSE POINT - SET	\triangle

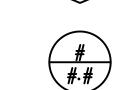

DRAINAGE REPORT PLANS

KEY

BASIN DESIGNATION (1 COEFFICIENT)

BASIN DESIGNATION

(NO COEFFICIENT)


BASIN DESIGNATION (2 COEFFICIENTS)

BASIN DESIGNATION (HISTORIC)

BASIN DESIGNATION

(DEVELOPED)

#.#

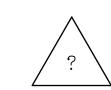
##-#

SUB-BASIN DESIGNATION (DEVELOPED)

DRAINAGE PIPE (##)IDENTIFIER

DRAINAGE POINT IDENTIFIER (HEXAGONAL)

DRAINAGE POINT


IDENTIFIER (TRIANGULAR)

SWMM DESIGNATION 1

SWMM DESIGNATION 2

SWMM DESIGNATION 3

SWMM DESIGNATION 4

LANDSCAPE LEGEND

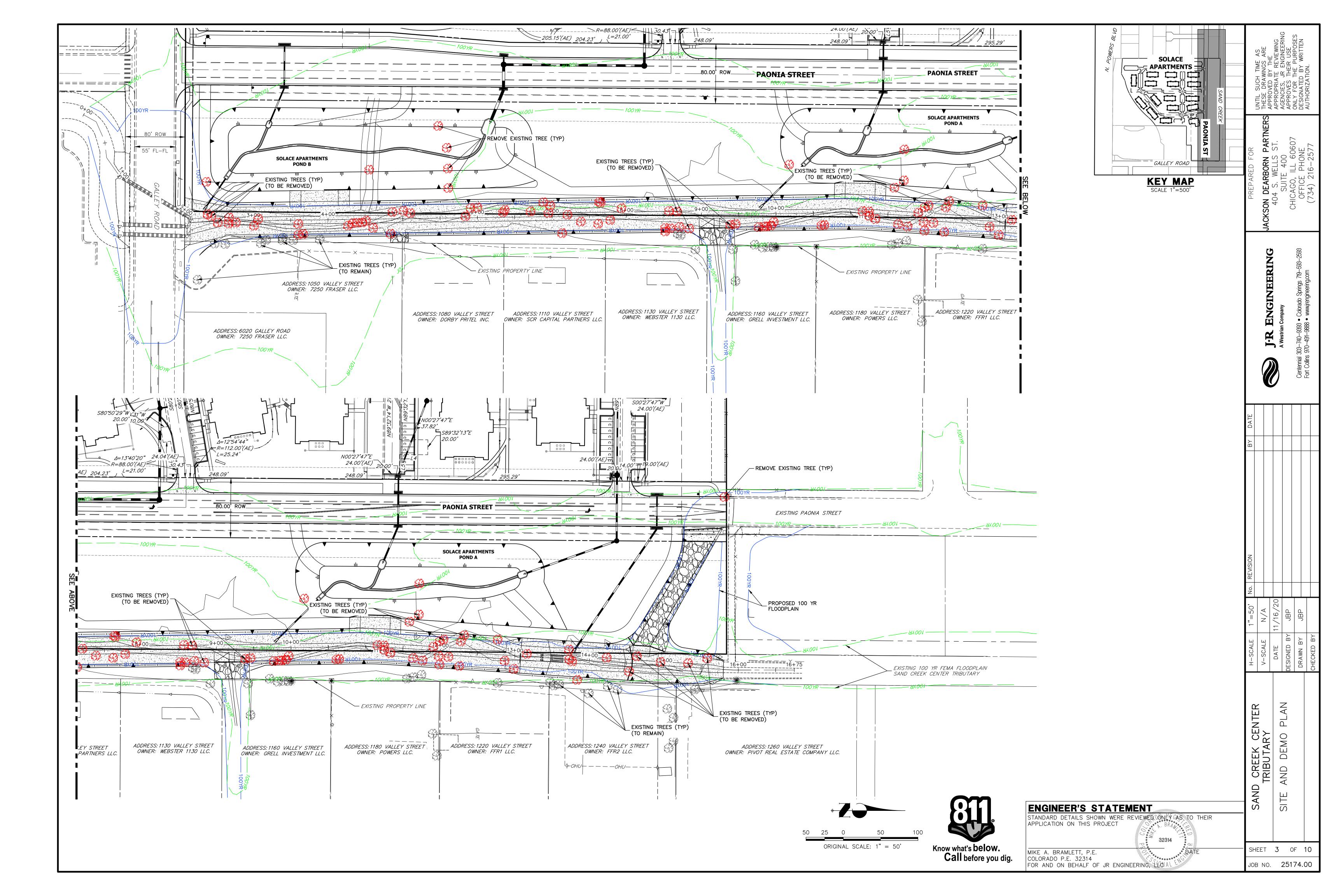
EXISTING TREE - CONIFEROUS TREE - DECIDUOUS SHRUB/BUSH SHRUBS AND BUSHES

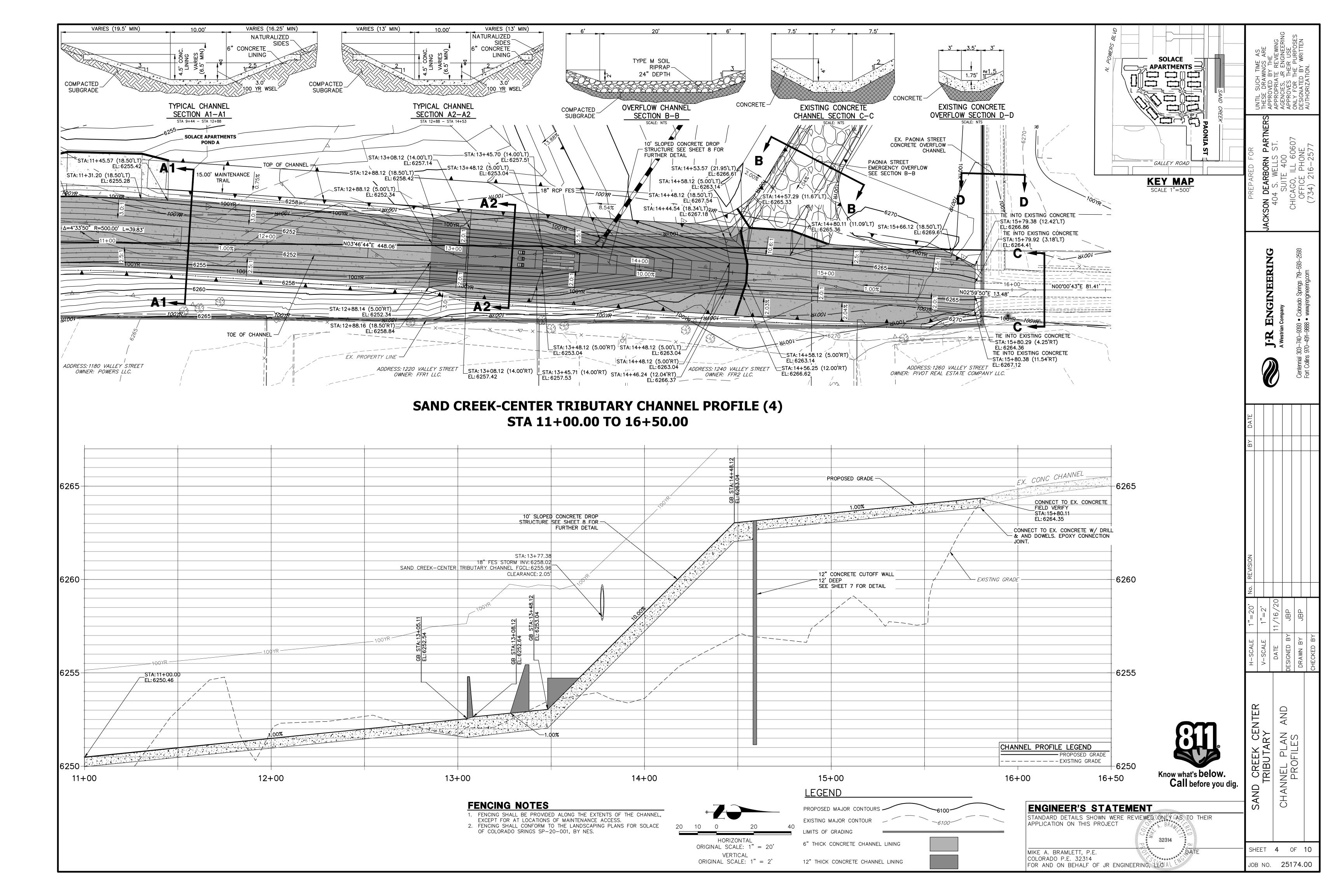
IRRIGATION BOX

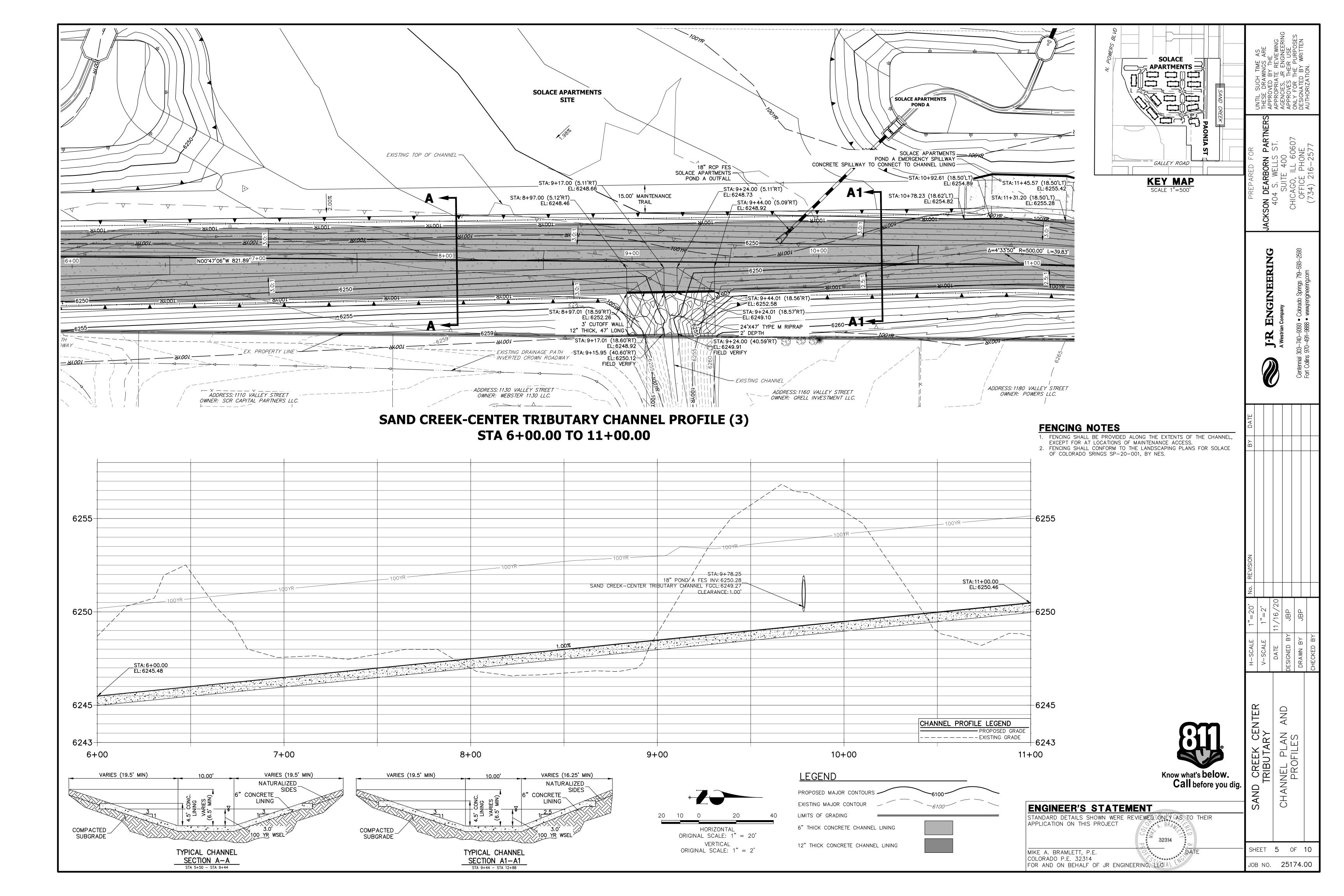
BOLLARD FLAGPOLE

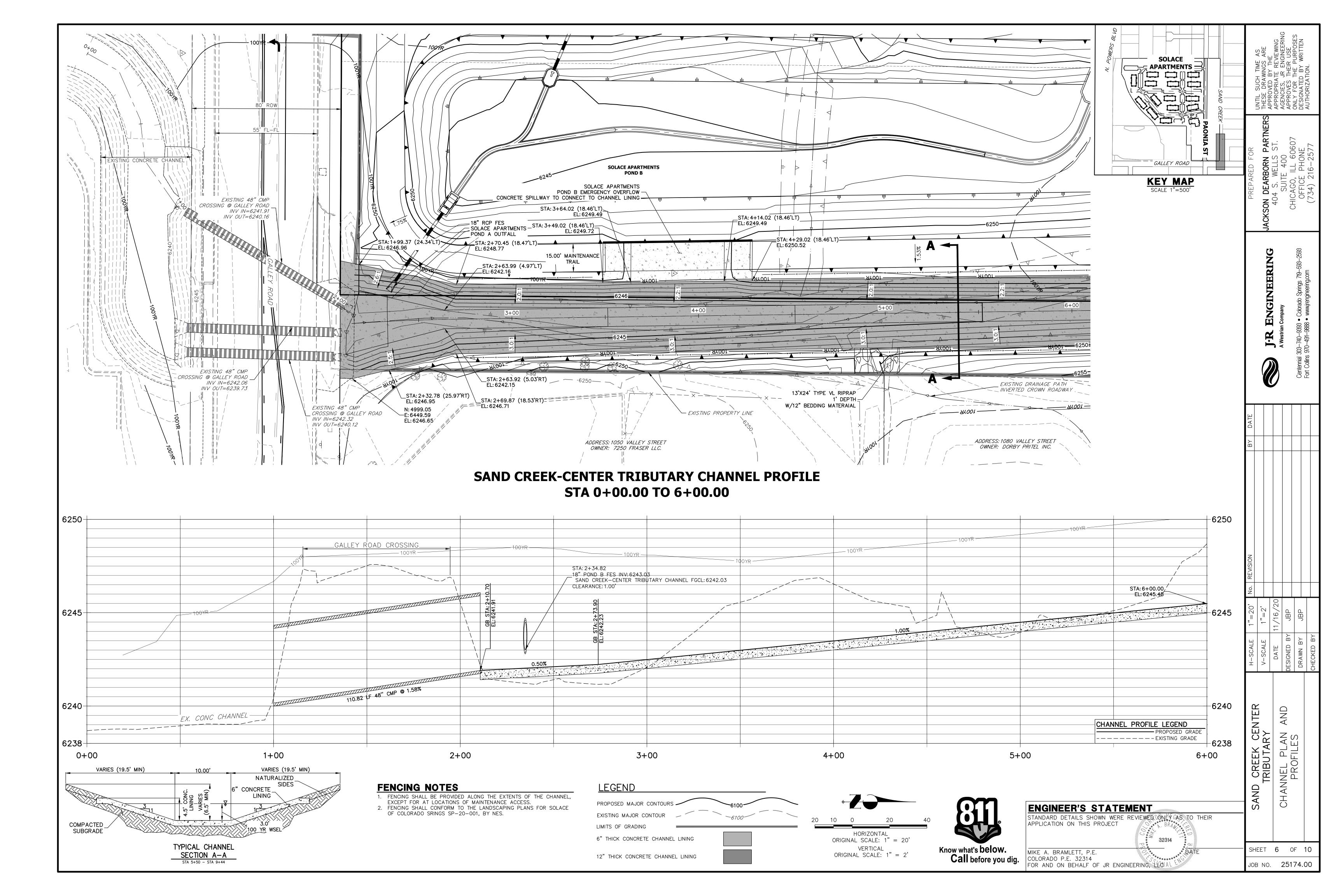
IRRIGATION SPRINKLER IRRIGATION VALVE

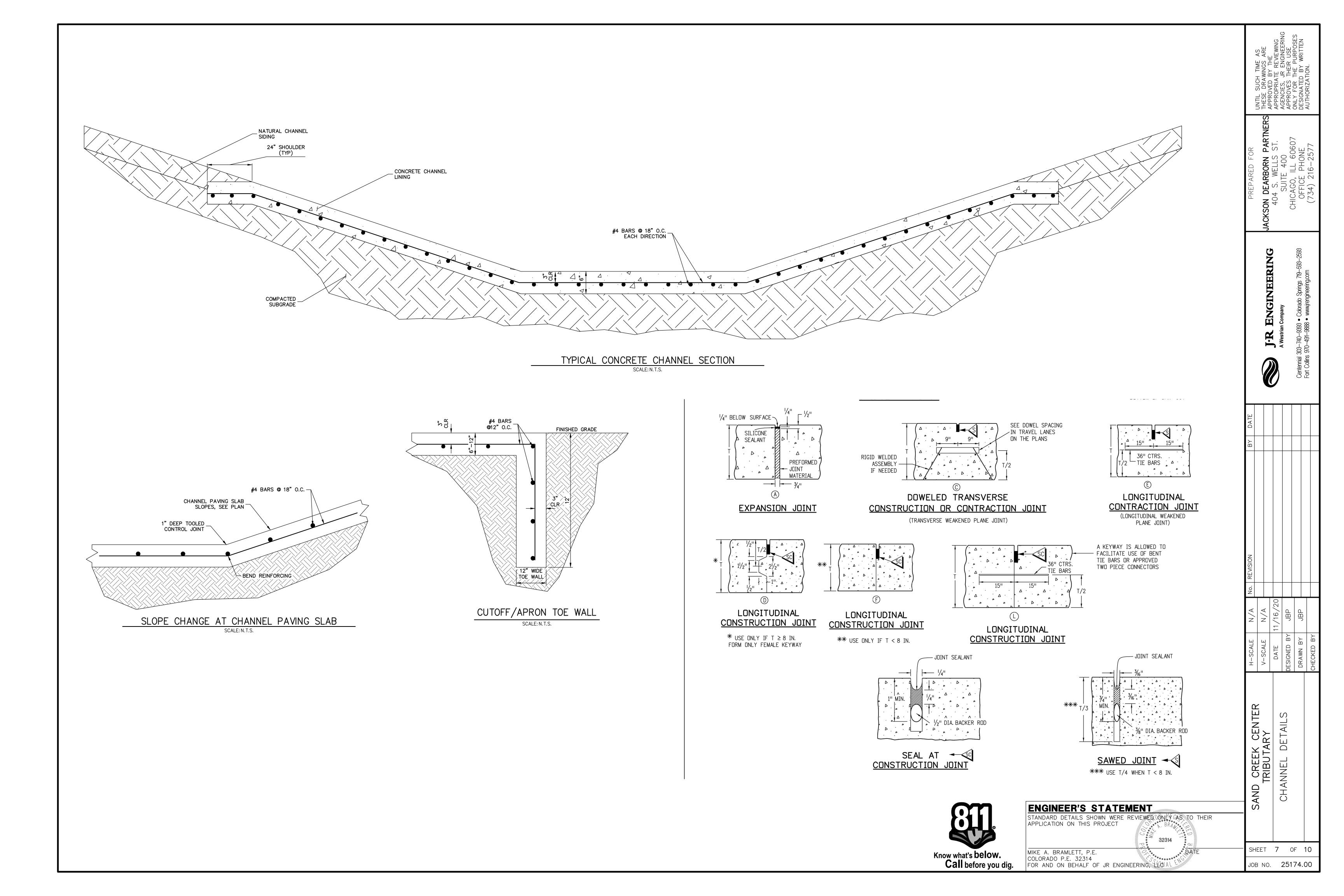
PROPOSED

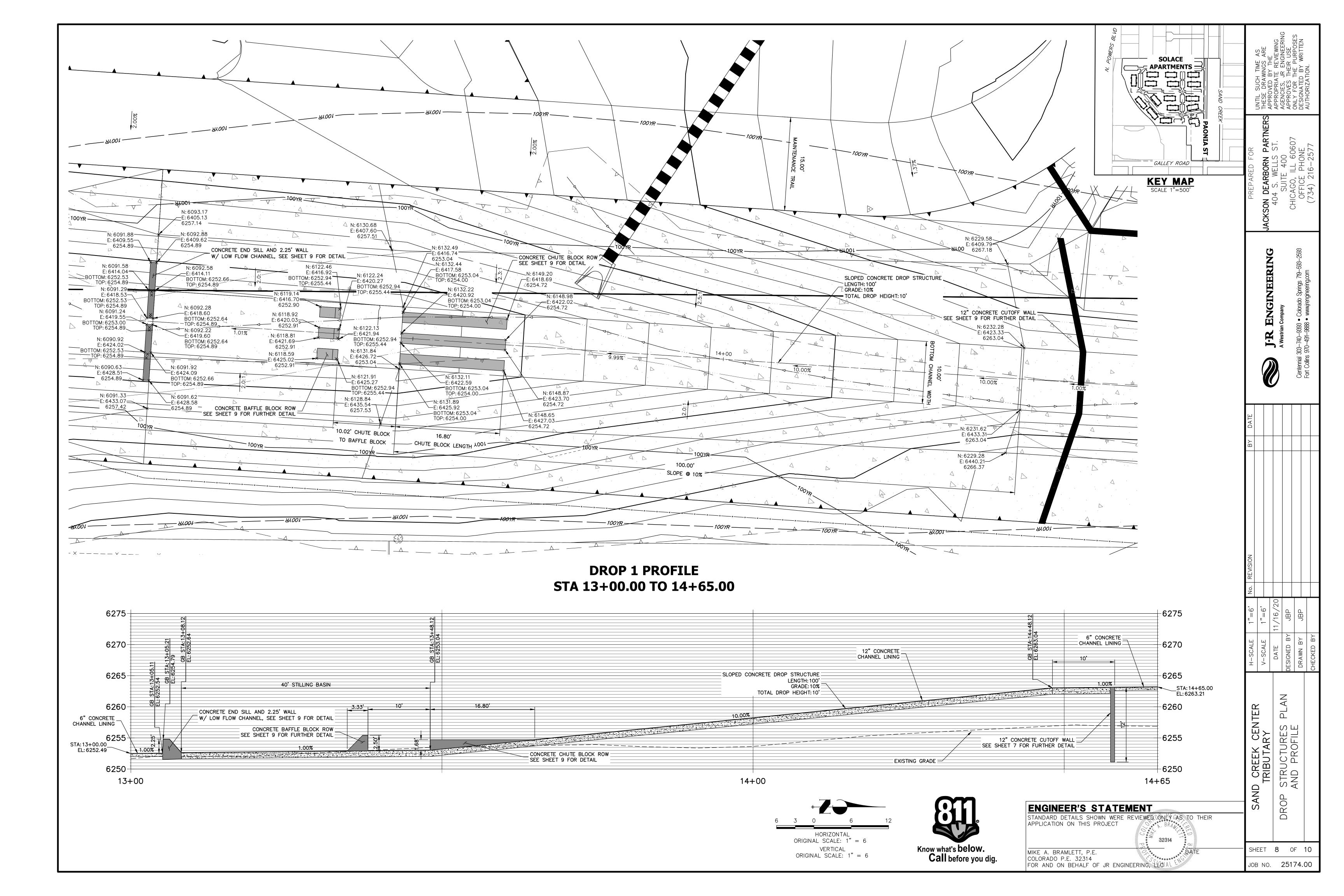

Z AND

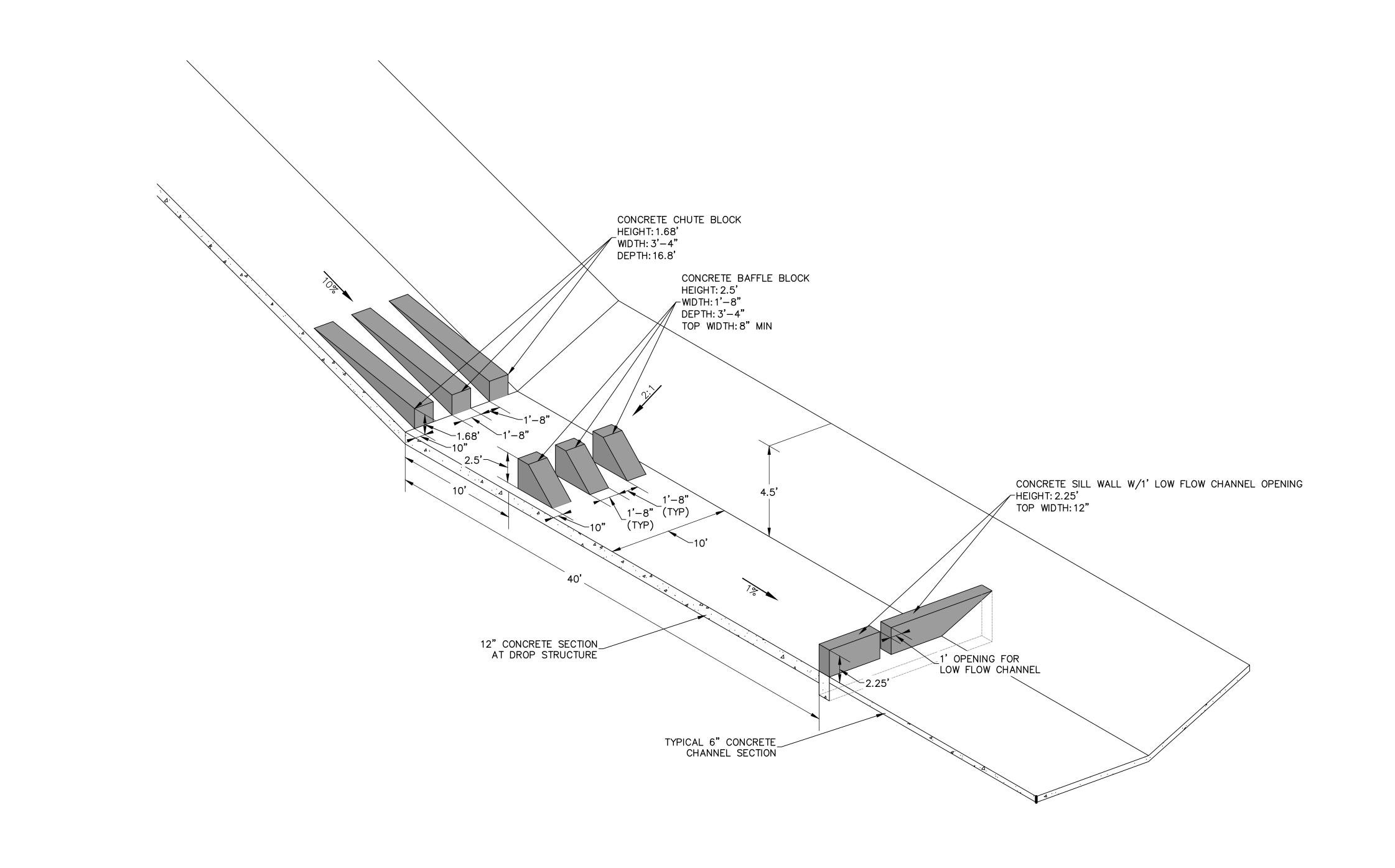

> SHEET 2 OF 10 JOB NO. **25174.00**


Know what's below. Call before you dig.


ENGINEER'S STATEMENT STANDARD DETAILS SHOWN WERE REVIEWED ONLY CAS TO THEIR APPLICATION ON THIS PROJECT 32314


MIKE A. BRAMLETT, P.E. COLORADO P.E. 32314 FOR AND ON BEHALF OF JR ENGINEERING JUDIA





ENGINEER	'S STATE	MENT
STANDARD DETAI APPLICATION ON	LS SHOWN WERE	
MIKE A. BRAMLE COLORADO P.E. S FOR AND ON BEI	32314	DATE COLAL ENGLISH

SAND CREEK CENTER TRIBUTARY	DROP STRUCTURE DETAIL	SHEETS	
SHEET	9	OF	10
JOB NO.	25	174.	00

ENGINEERING

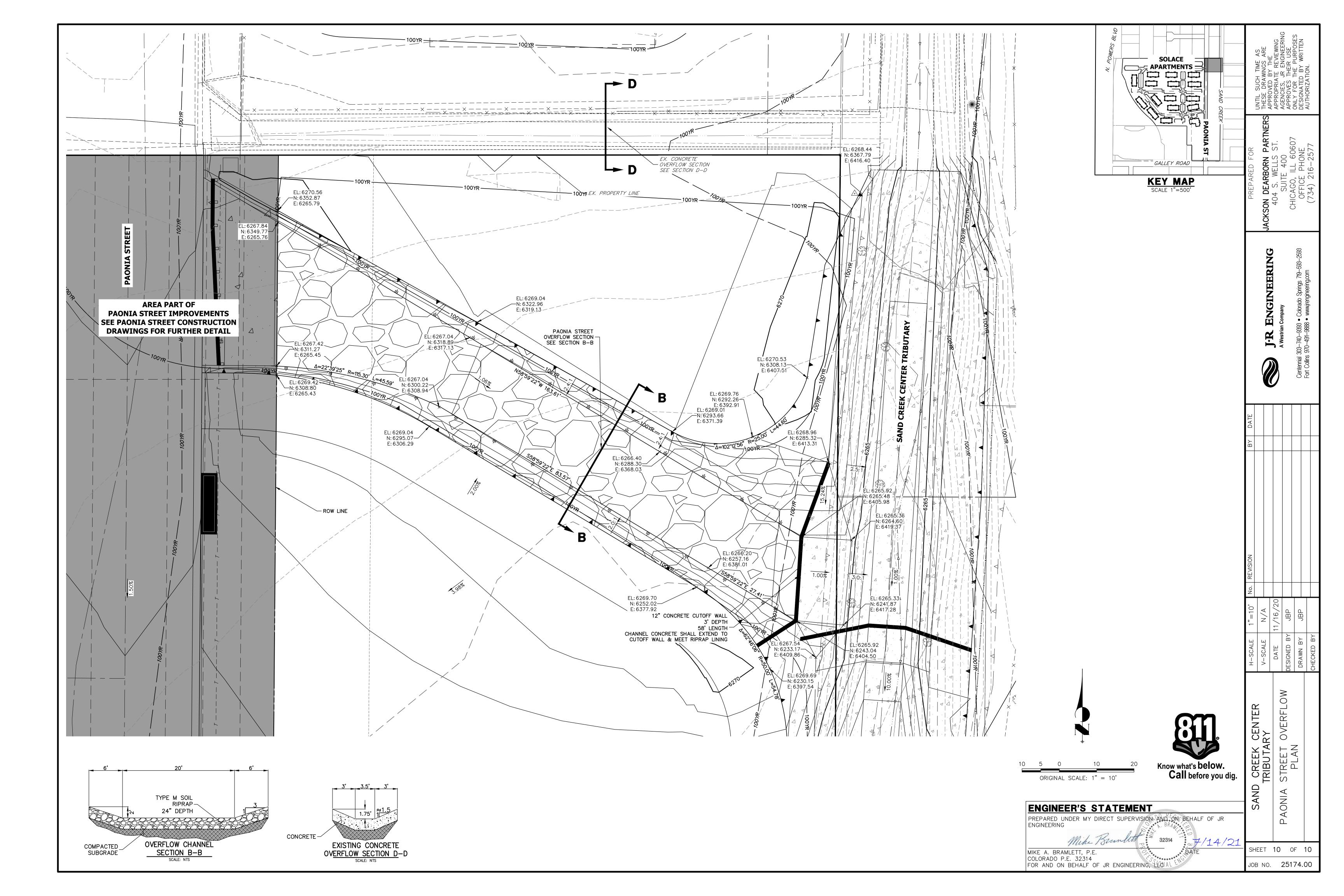
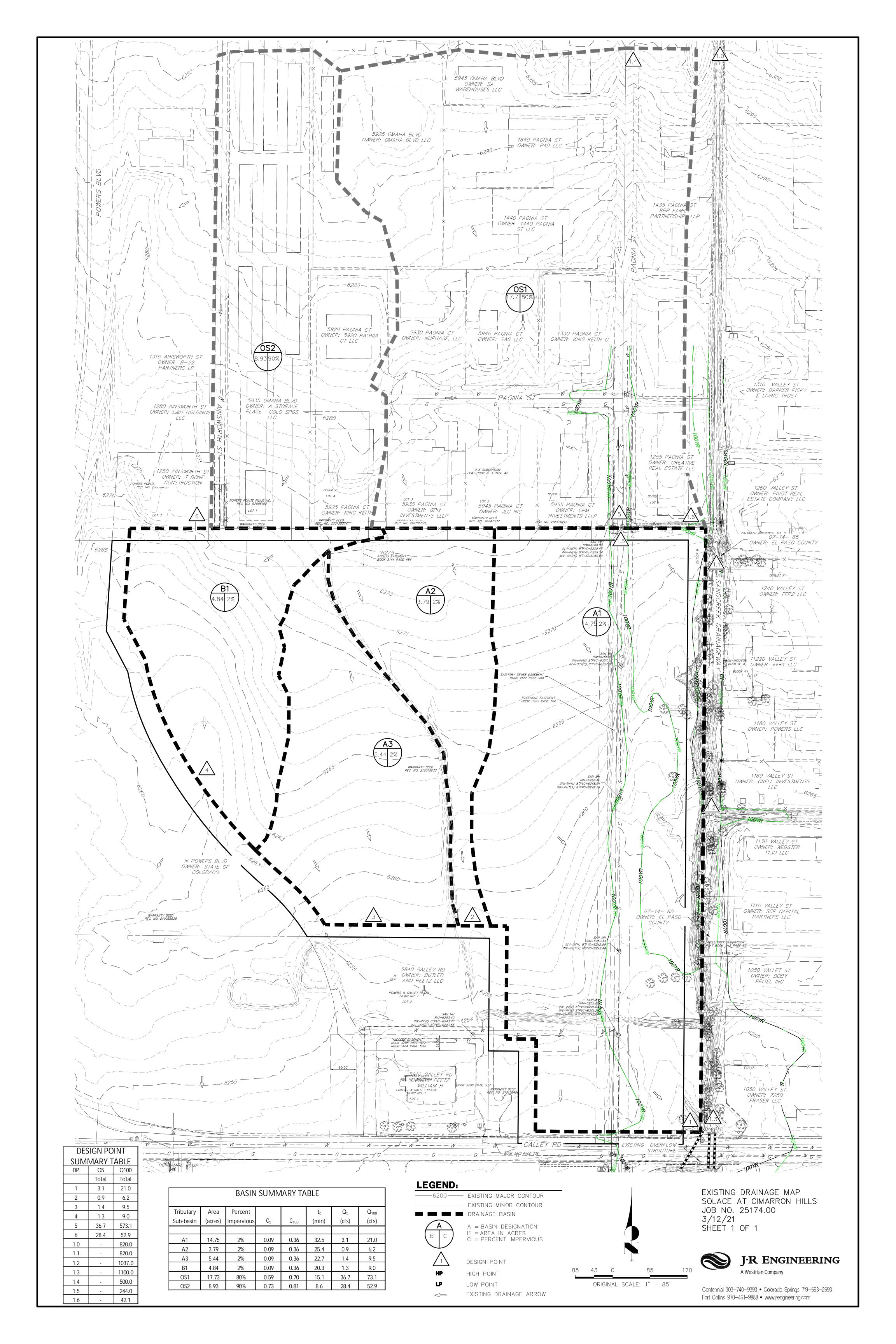
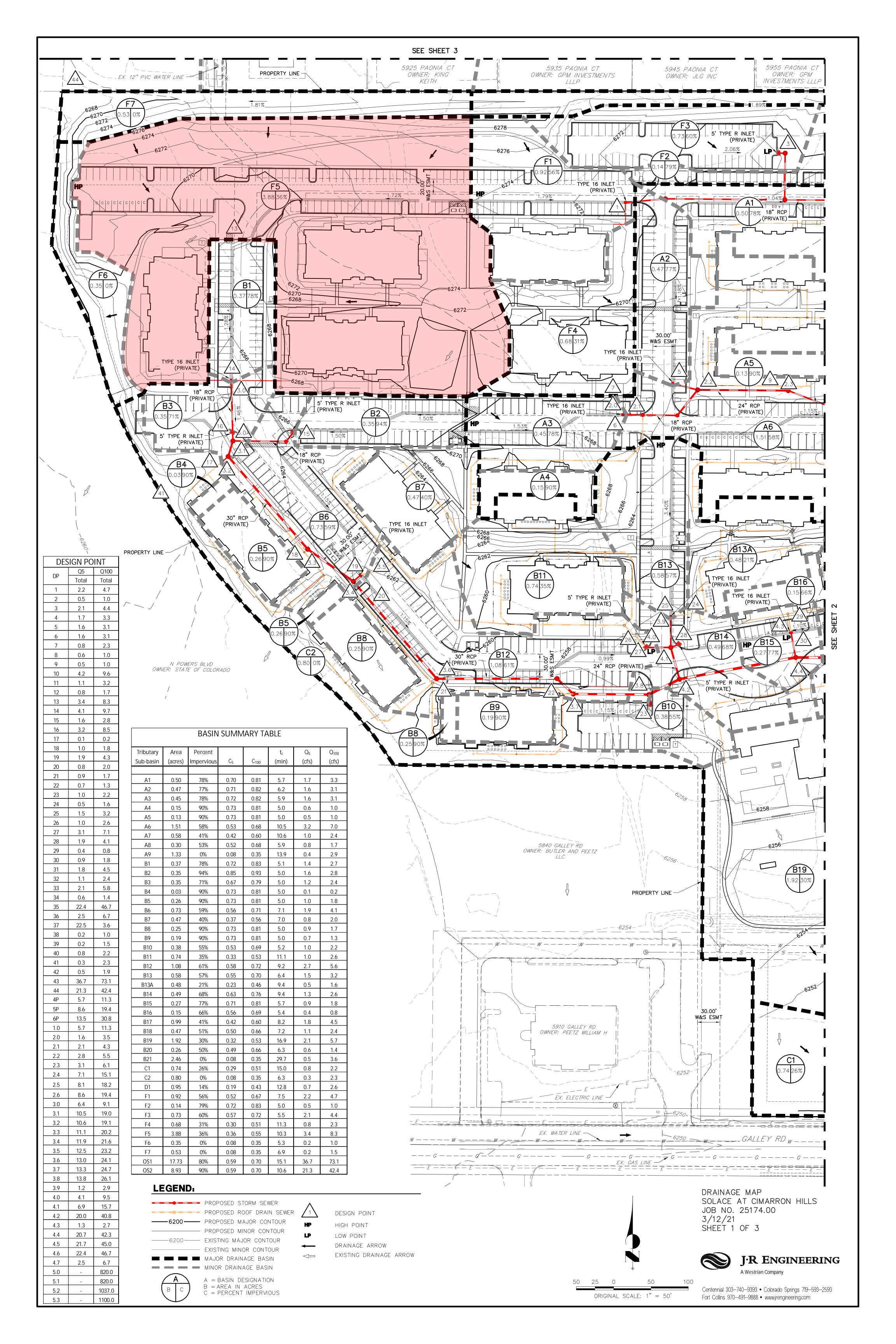


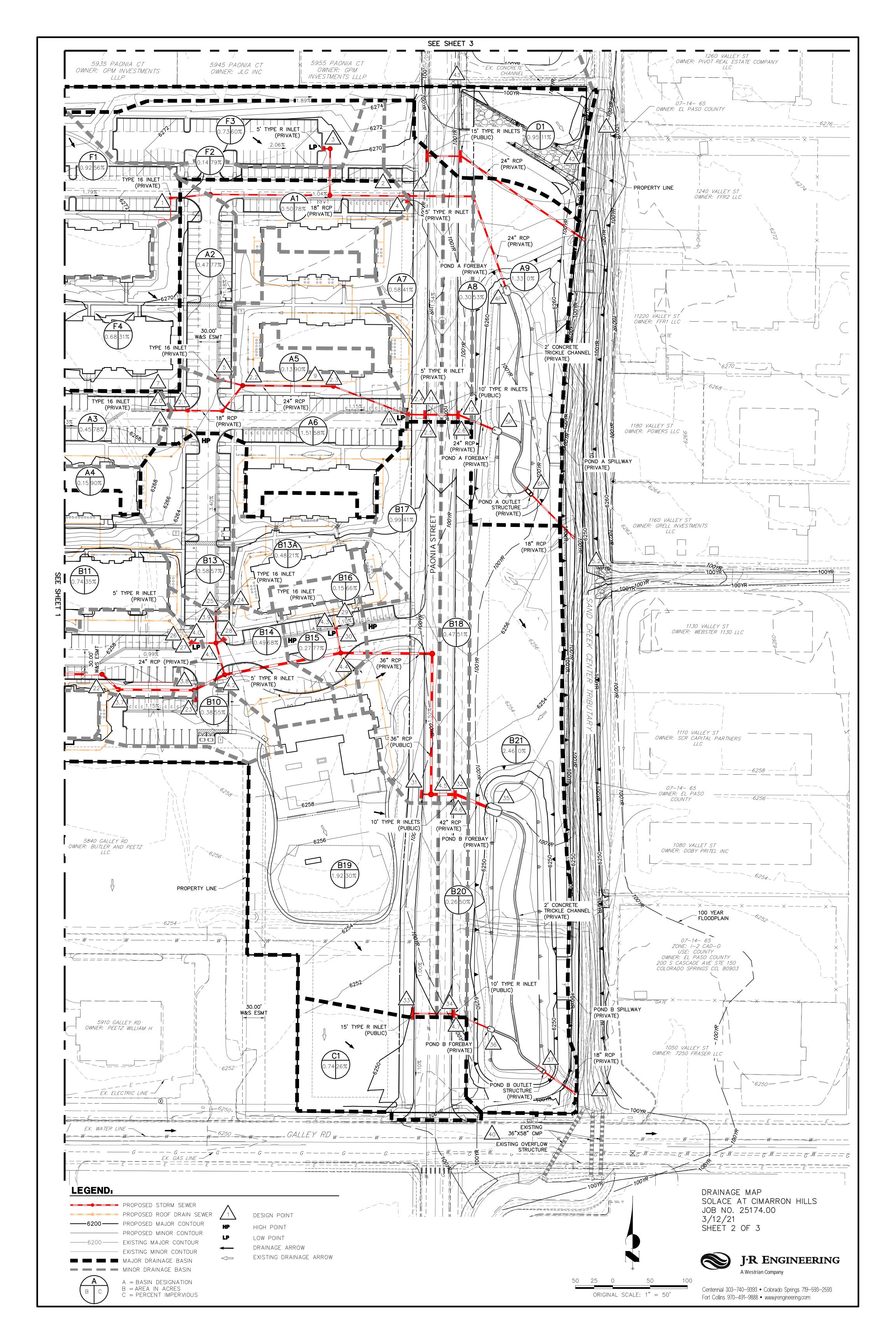
TABLE VIII-2:

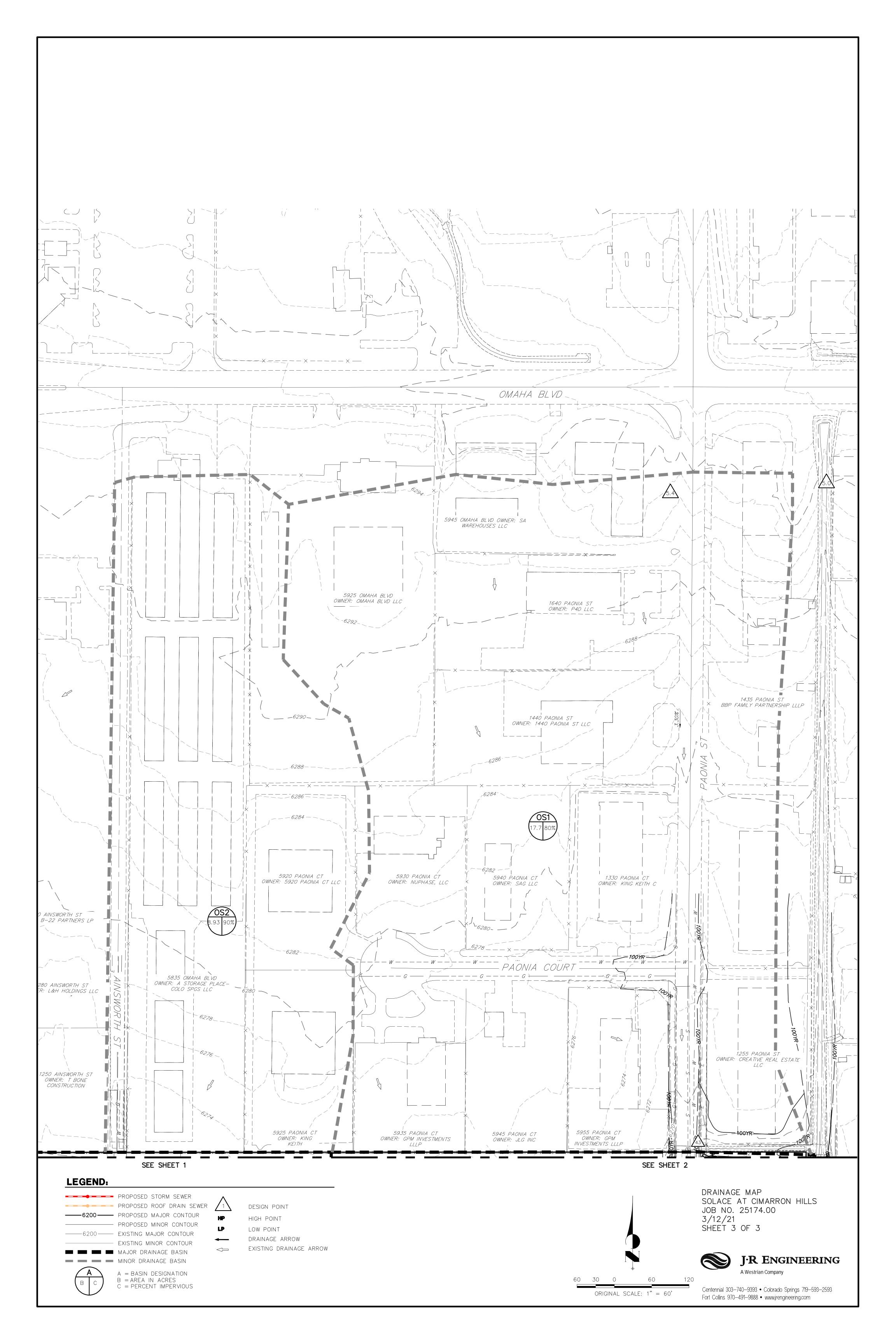
SAND CREEK DRAINAGE BASIN PLANNING STUDY

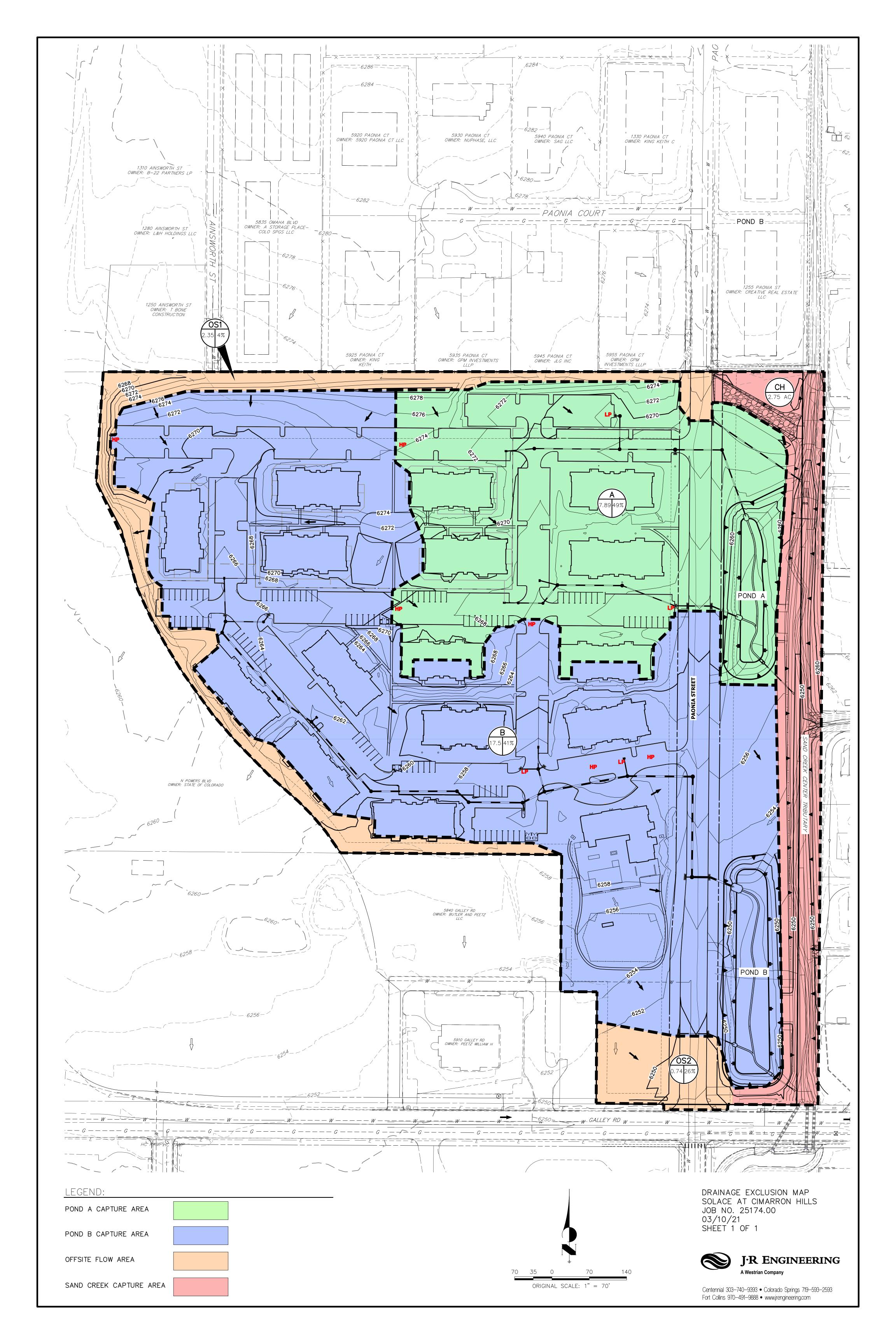
CONT'D


DRAINAGEWAY CONVEYANCE COST ESTIMATE


CENTER TRIBUTARY SAND CREEK


SEGMENT NUMBER	REACH NUMBER	SEGMENT LENGTH (FT)	IMPROVEMENT TYPE	IMPROVEMENT LENGTH (FT)	UNIT COST (\$/LF)	NUMBER OF GRADE CONTROLS	LENGTH OF GRADE CONTROL (FT)	TOTAL REIMBURSABLE COSTS	TOTAL COST
141	CT-1	2600	EX. RIPRAP TO REMAIN	1500	195	5	400	\$338,500	\$338,500
142	**	4100	100-YR RIPRAP (1)	1300	195	10	600	\$322,500	\$322,500
143	"	2300	100-YR RIPRAP (1)	2300	195	8	480	\$0	\$503,700
144	CT-2	2800	EX. CHANNEL TO REMAIN	200	195	0	0	\$39,000	\$39,000
145	н	720	100-YEAR CONCRETE	720	195	2	100	\$151,900	\$151,900
146-1	н	680	н	680	195	0	0	\$132,600	\$132,600
146-2	"	1300	EX. CHANNEL TO REMAIN	1200	0	0	0	\$0	\$0
TOTAL CEN	TER TRIBUT	ARY SAND	CREEK DRAINAGEWAYS			VV. 50		\$984,500	\$1,488,200


⁽¹⁾ A PORTION OF THESE IMPROVEMENTS TO BE CONSTRUCTED AS PART OF THE US 24 BYPASS PROJECT, PHASE IL


APPENDIX E DRAINAGE MAPS & PLANS

APPENDIX B: HYDROLOGY

Kimley»Horn

STANDARD FORM SF-1 RUNOFF COEFFICIENTS - IMPERVIOUS CALCULATION

		KUNUF	F COEFFICIE	N15 - IMP	EKVIOUS (CALCUI	AHON	•			
PROJECT NAME:	Solace Apartments Fil	ling No 2					DATE:	12/12/2022			
PROJECT NUMBER:											
CALCULATED BY: CHECKED BY:	MVZ EJG										
SOIL:	C										
DOIL.	C	ROOF	STREET - PAVED	LANDSCAPE	GRAVEL						
	LAND USE:	<u>AREA</u>	<u>AREA</u>	AREA	AREA	_					
	2-YEAR COEFF.	0.71	0.89	0.02	0.57 0.59						
	5-YEAR COEFF. 10-YEAR COEFF.	0.75	0.92	0.08	0.63	-					
	100-YEAR COEFF.	0.81	0.96	0.35	0.70						
	IMPERVIOUS %	90%	100%	0%	80%						
DEGLON	DEGLON	ROOF	STREET - PAVED	LANDSCAPE	GRAVEL	TOTAL					
DESIGN BASIN	DESIGN POINT	AREA (AC)	AREA (AC)	AREA (AC)	AREA (AC)	AREA (AC)	Cc(2)	Cc(5)	Cc(10)	Cc(100)	Imp %
MAIN		(114)	()	()	(-20)	()	##(<u>=</u>)	23(0)	51(10)	23(233)	
							1				
F1 F2	B B	0.00	0.85 0.25	0.86 0.24	0.00	1.71 0.48	0.45	0.49	0.53 0.55	0.65 0.66	50% 51%
FZ	В	0.00	1.10	1.10	0.00	2.20	0.47	0.30	0.53	0.66	50%
BASIN SUBTOTAL		0%	50%	50%	0%	100%	0.10	0115	0.0.	0.00	2070
STORM A											
	D	0.00	0.02	0.10	0.00	0.21	0.12	0.18	0.24	0.42	120/
A1 A2	B B	0.00	0.02	0.18	0.00	0.21	0.12	0.18	0.24 0.15	0.42	12% 0%
A3	В	0.12	0.00	0.00	0.00	0.12	0.71	0.73	0.75	0.81	90%
A4	В	0.00	0.00	0.04	0.00	0.04	0.02	0.08	0.15	0.35	0%
A5	В	0.12	0.00	0.00 0.27	0.00	0.12 0.53	0.71	0.73 0.40	0.75	0.81 0.58	90% 44%
BASIN SUBTOTAL		0.23 44%	0.02 5%	51%	0.00 0%	100%	0.36	0.40	0.45	0.58	44%
STORM B	lI.										
		0.10		0.00	0.00		0.51	0.50		0.01	00
B1 B2	B B	0.12	0.00	0.00	0.00	0.12	0.71	0.73	0.75 0.32	0.81	90% 22%
B3	В	0.00	0.04	0.31	0.00	0.36	0.21	0.20	0.32	0.43	12%
B4	В	0.12	0.00	0.00	0.00	0.12	0.71	0.73	0.75	0.81	90%
BASIN SUBTOTAL		0.23 22%	0.15 14%	0.69 64%	0.00 0%	1.07 100%	0.29	0.34	0.39	0.54	34%
		22%	14%	04%	0%	100%					
STORM C											
C1	В	0.12	0.00	0.00	0.00	0.12	0.71	0.73	0.75	0.81	90%
C2	В	0.12 0.23	0.00	0.00 0.00	0.00 0.00	0.12 0.23	0.71 0.71	0.73 0.73	0.75 0.75	0.81 0.81	90% 90%
BASIN SUBTOTAL		100%	0%	0%	0%	100%	0.71	0.73	0.75	0.01	90 76
STORM D			•			1	•				
D1 D2	A A	0.12	0.00	0.00	0.00	0.12 0.12	0.71	0.73	0.75 0.75	0.81	90% 90%
D3	A	0.12	0.36	0.00	0.00	0.57	0.71	0.60	0.63	0.73	63%
		0.23	0.36	0.21	0.00	0.80	0.61	0.63	0.67	0.76	71%
BASIN SUBTOTAL		29%	45%	26%	0%	100%]		
STORM E											
E1	A	0.12	0.00	0.00	0.00	0.12	0.71	0.73	0.75	0.81	90%
E2	A	0.00	0.02	0.14	0.00	0.16	0.14	0.19	0.25	0.43	14%
E3	A	0.12 0.23	0.00	0.00 0.14	0.00 0.00	0.12 0.39	0.71 0.48	0.73 0.51	0.75 0.55	0.81 0.66	90% 59%
BASIN SUBTOTAL		59%	6%	35%	0%	100%	0.48	0.51	0.55	0.00	59%
STORM G			<u> </u>	<u>. </u>							
		0.00	0.25	0.25	0.00	0.62	0.50	0.55	0.50	0.50	570/
G1	A	0.00	0.36 0.36	0.27 0.27	0.00 0.00	0.63 0.63	0.52 0.52	0.55 0.55	0.59 0.59	0.70 0.70	57% 57%
BASIN SUBTOTAL		0%	57%	43%	0%	100%	9.02	0.00	0.07	3.78	5,70
OFFSITE			-								
	С	0.00	0.02	0.05	0.00	0.07	0.04	0.10	0.16	0.26	20/
OFF1 OFF2	В	0.00	0.02	0.95 0.11	0.00	0.97 0.12	0.04	0.10	0.16 0.21	0.36 0.40	2% 7%
OFF3	A	0.00	0.02	0.29	0.00	0.31	0.08	0.13	0.20	0.39	6%
OFF4	A	0.00	0.00	0.27	0.00	0.27	0.02	0.08	0.15	0.35	0%
OFF5	С	0.00	0.00	0.22 1.84	0.00 0.00	0.22 1.89	0.02 0.04	0.08 0.10	0.15 0.17	0.35 0.37	0% 2%
BASIN SUBTOTAL		0%	2%	98%	0.00	100%	0.04	0.10	0.17	0.37	470
DESIGN POINT A		0.70	1.28	2.06	0.00	4.03	0.41	0.45	0.50	0.62	47%
ZEDIOI I OHII A	1	0.70	1,20	2.00	0.00	4.05	V.71	0.75	0.50	0.04	7//0

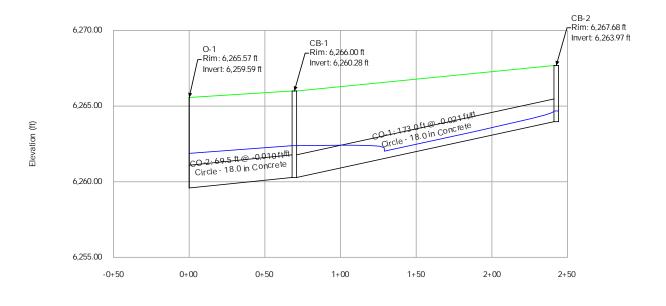
Kimley	»Ho	rn		STANDARD FORM SF-3 STORM DRAINAGE DESIGN - RATIONAL METHOD 5 YEAR EVENT																		
_	ΓNAME: S	Solace Apa	rtments Fili	ng No 2		STO	RM I	DRAI			GN - I		ONAL M	IETH(OD 5	YEAR	EVE	NT	DATE	i: 12/12	2/2022	
CALCULAT		MVZ								11(1-11	our Kam	I 411) =	1.43									
Cinci	LLD DI.	20			DIREC	T RUN	OFF				TOTAL	RUN	OFF	STR	EET]	PIPE		TRAV	EL TI	ME	REMARKS
STORM		DESIGN POINT	DESIGN BASIN	AREA (AC)	RUNOFF COEFF	tc (min)	C*A(ac)	I (in/hr)	Q (cfs)	tc(max)	S(C*A) (ac)	I (in/hr)	O (cfs)	SLOPE (%)	STREET FLOW(cfs)	DESIGN FLOW(cfs)	SLOPE (%)	PIPE SIZE (in)	LENGTH (ft)	VELOCIT Y	tt (min)	
(1)		(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
On-site North Exte	ended Dra	inage Basi	in, Treated																			
			F1	1.71	0.49	8.34	0.83	4.14	3.46				3.46									
			F2	0.48	0.50	6.84	0.24	4.43	1.07				1.07									
			A1	0.21	0.18	8.84	0.04	4.05	0.15				0.15							<u> </u>		
			A2	0.05	0.08	5.00	0.00	4.85	0.02				0.02							 		
 			A3	0.12	0.73	5.00	0.08	4.85	0.41				0.41			ļ				<u> </u>		
 			A4	0.04	0.08	5.00	0.00	4.85	0.01			-	0.01			!		\vdash		+	-	
 			A5 B1	0.12	0.73	5.00	0.08	4.85 4.85	0.41				0.41			<u> </u>				+	-	
			B1 B2	0.12	0.73	10.56	0.08	3.79	0.41				0.41							+	 	
			B3	0.49	0.26	10.78	0.13	3.75	0.48				0.48							1		
			B4	0.12	0.73	5.00	0.08	4.85	0.41				0.41							1		
			C1	0.12	0.73	5.00	0.08	4.85	0.41				0.41							1		
			C2	0.12	0.73	5.00	0.08	4.85	0.41				0.41									
			D1	0.12	0.73	0.00	0.08	6.67	0.56				0.56									
			D2	0.12	0.73	0.00	0.08	6.67	0.56				0.56									
			D3	0.57	0.60	0.00	0.34	6.67	2.27				2.27									
			E1	0.12	0.73	0.00	0.08	6.67	0.57				0.57									
			E2	0.16	0.19	0.00	0.03	6.67	0.21				0.21									
			E3	0.12	0.73	0.00	0.08	6.67	0.57				0.57							<u> </u>		
			G1	0.63	0.55	0.00	0.34	6.67	2.29				2.29									
			OFF1	0.97	0.10	0.00	0.09	6.67	0.62				0.62			ļ				<u> </u>		
			OFF2	0.12	0.14	0.00	0.02	6.67	0.11				0.11			<u> </u>				1		
l			OFF3	0.31	0.13	0.00	0.04	6.67	0.27				0.27			1				+	-	
l			OFF4	0.27	0.08	0.00	0.02	6.67	0.14				0.14			1				+	-	
			OFF5	0.22	0.08	0.00	0.02	6.67	0.12				0.12									

Kimley	/»Hc	rn		STANDARD FORM SF-3 STORM DRAINAGE DESIGN - RATIONAL METHOD 100 YEAR EVENT																		
PROJECT N CALCULA	CT NAME:	Solace Apa 19614002 MVZ	urtments Fili	ng No 2		STOF	KM D	KAIN			3N - R. Iour Rain		2.6	ЕТНО	D 100) YEAR	EVE	ENT	DATE	i: 12/12	2/2022	
					DIREC	T RUN	OFF			,	TOTAL	RUN	OFF	STR	STREET PIPE			TRAV	EL TI	ME	REMARKS	
STORM		DESIGN	DESIGN BASIN	AREA (AC)	RUNOFF COEFF	tc (min)	C*A(ac)	I (in/hr)	Q (cfs)	tc(max)	S(C*A) (ac)	I (in/hr)	(sj3)	SLOPE (%)	STREET FLOW(cfs)	DESIGN FLOW(cfs)	(%)	PIPE SIZE (in)	LENGTH (ft)	VELOCIT Y	tt (min)	
(1)		(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
On-site North Ex	xtended Dra	ninage Basi	in, Treated																			
			F1	1.71	0.65	8.34	1.12	7.53	8.43			1	8.43			1				I		
			F2	0.48	0.66	6.84	0.32	8.05	2.58				2.58									
			A1	0.21	0.42	8.84	0.09	7.37	0.64				0.64									
			A2	0.05	0.35	5.00	0.02	8.82	0.16				0.16									
			A3	0.12	0.81	5.00	0.09	8.82	0.82				0.82									
			A4	0.04	0.35	5.00	0.01	8.82	0.12				0.12									
			A5	0.12	0.81	5.00	0.09	8.82	0.82				0.82									
			B1	0.12	0.81	5.00	0.09	8.82	0.83				0.83									
			B2	0.49	0.49	10.56	0.24	6.88	1.62				1.62									
			B3	0.36	0.43	10.78	0.15	6.83	1.03				1.03							<u> </u>		
			B4	0.12	0.81	5.00	0.09	8.82	0.83				0.83							<u> </u>		
			C1	0.12	0.81	5.00	0.09	8.82	0.83				0.83							<u> </u>		
			C2	0.12	0.81	5.00	0.09	8.82	0.83				0.83			ļ				<u> </u>		
			D1	0.12	0.81	0.00	0.09	12.13	1.13				1.13							 		
-			D2	0.12	0.81	0.00	0.09	12.13	1.13				1.13							1		
\vdash			D3 E1	0.57	0.73	0.00	0.42	12.13 12.13	5.08 1.14				5.08 1.14			-				+	-	
			E1 E2	0.12	0.81	0.00	0.09	12.13	0.85				0.85			1				1		
-			E2 E3	0.16	0.43	0.00	0.07	12.13	1.14				1.14			1				1		
-			G1	0.12	0.70	0.00	0.09	12.13	5.30				5.30							+	 	
			OFF1	0.03	0.76	0.00	0.35	12.13	4.25				4.25	 						1		
-			OFF2	0.12	0.40	0.00	0.05	12.13	0.58				0.58							1		
			OFF3	0.12	0.39	0.00	0.12	12.13	1.47				1.47			1		H		 		
			OFF4	0.27	0.35	0.00	0.09	12.13	1.13				1.13			l				1		
			OFF5	0.22	0.35	0.00	0.08	12.13	0.95				0.95									

APPENDIX C: HYDRAULICS

Solace Apartments Filing No 2 100-YR

Conduit Table - Time: 0.00 hours


Label	Invert (Start) (ft)	Invert (Stop) (ft)	Diamete r (in)	Flow (cfs)	Velocity (ft/s)	Hydraulic Grade Line (In) (ft)
CO-1	6,260.28	6,263.97	18.0	8.98	5.08	6,266.48
CO-2	6,259.59	6,260.28	18.0	23.05	13.04	6,265.22

Hydraulic Grade Line (Out) (ft) 6,265.22 6,261.87

Catch Basin Table - Time: 0.00 hours

Label	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Flow (Additional Subsurface) (cfs)	Inlet Location	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Elevation (Invert Out) (ft)
CB-1	6,266.00	6,260.28	14.07	On Grade	6,265.22	6,265.22	6,260.28
CB-2	6,267.68	6,263.97	8.98	On Grade	6,266.48	6,266.48	6,263.97

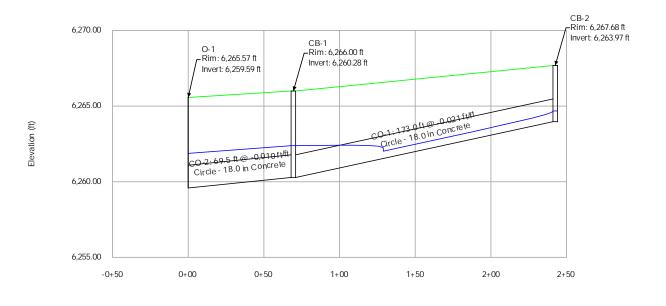
Solace Apartments Filing No 2 100-YR

Station (ft)

Solace Apartments Filing No 2

5-YR

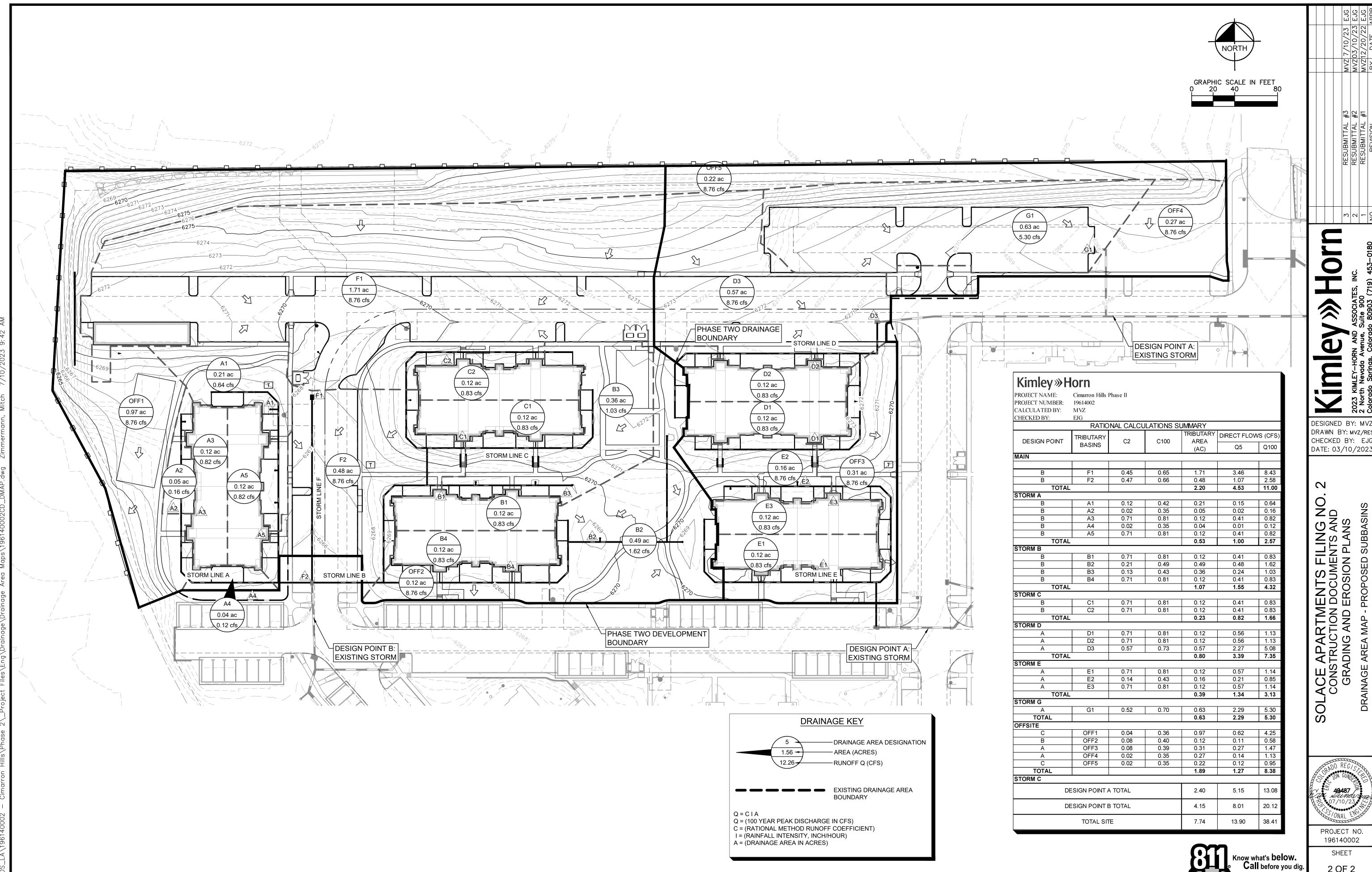
Conduit Table - Time: 0.00 hours


Label	Invert (Start) (ft)	Invert (Stop) (ft)	Diamete r (in)	Flow (cfs)	Velocity (ft/s)	Hydraulic Grade Line (In) (ft)
CO-1	6,260.28	6,263.97	18.0	3.46	7.01	6,264.68
CO-2	6,259.59	6,260.28	18.0	8.99	5.09	6,262.38

Hydraulic Grade Line (Out) (ft) 6,262.38 6,261.87

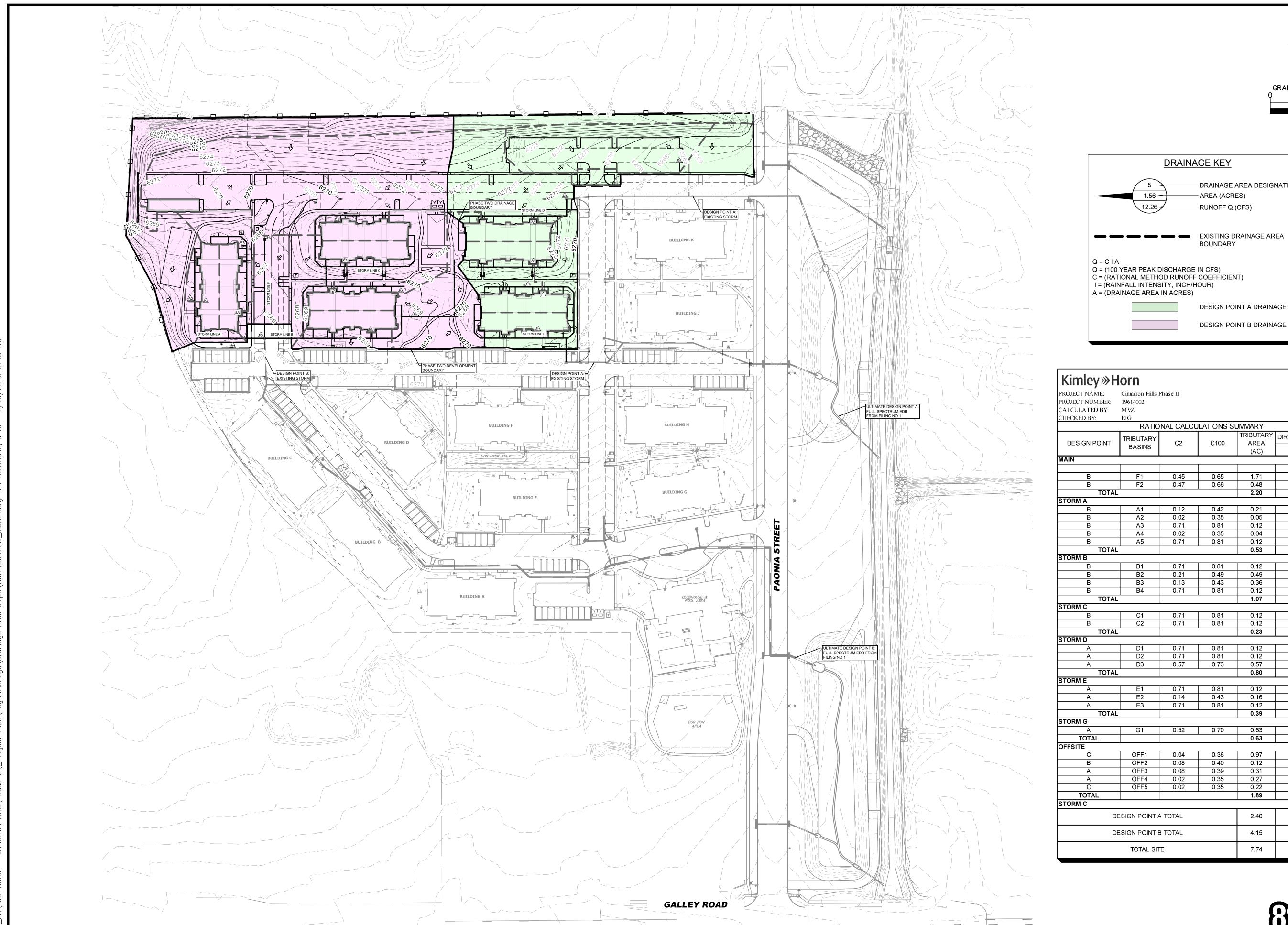
Catch Basin Table - Time: 0.00 hours

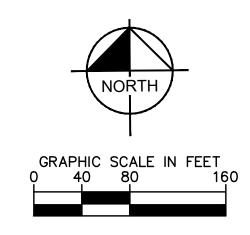
Label	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Flow (Additional Subsurface) (cfs)	Inlet Location	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Elevation (Invert Out) (ft)
CB-1	6,266.00	6,260.28	5.53	On Grade	6,262.38	6,262.38	6,260.28
CB-2	6,267.68	6,263.97	3.46	On Grade	6,264.68	6,264.68	6,263.97


Solace Apartments Filing No 2 5-YR

Station (ft)

APPENDIX D: DRAINAGE MAPS





7 LACE APARTMENTS FILING NO CONSTRUCTION DOCUMENTS AND GRADING AND EROSION PLANS ANINAGE AREA MAP - PROPOSED SUBBASINS

PROJECT NO. 196140002

SHEET 2 OF 2

— DRAINAGE AREA DESIGNATION ----RUNOFF Q (CFS)

BOUNDARY

DESIGN POINT A DRAINAGE

DESIGN POINT B DRAINAGE

CHECKED BY:	EJG					
	RATIO	NAL CALCU	JLATIONS S	UMMARY		
	TRIBUTARY			TRIBUTARY	DIRECT FLOV	VS (CFS
DESIGN POINT	BASINS	C2	C100	AREA		`
	B/ (01140			(AC)	Q5	Q100
MAIN				1		
		0.45		1 74	2.12	0.40
В	F1	0.45	0.65	1.71	3.46	8.43
В	F2	0.47	0.66	0.48	1.07	2.58
TOTAL STORM A				2.20	4.53	11.00
B	A1	0.12	0.42	0.21	0.15	0.64
В	A1 A2	0.12	0.42	0.21	0.13	0.04
В	A3	0.02	0.33	0.03	0.02	0.10
В	A4	0.02	0.35	0.04	0.01	0.02
В	A5	0.71	0.81	0.12	0.41	0.82
TOTAL	7.0	0.71	0.01	0.53	1.00	2.57
STORM B				0.00		
В	B1	0.71	0.81	0.12	0.41	0.83
В	B2	0.21	0.49	0.49	0.48	1.62
В	В3	0.13	0.43	0.36	0.24	1.03
В	B4	0.71	0.81	0.12	0.41	0.83
TOTAL			•	1.07	1.55	4.32
STORM C	·					
В	C1	0.71	0.81	0.12	0.41	0.83
В	C2	0.71	0.81	0.12	0.41	0.83
TOTAL				0.23	0.82	1.66
STORM D						
A	D1	0.71	0.81	0.12	0.56	1.13
Α	D2	0.71	0.81	0.12	0.56	1.13
Α	D3	0.57	0.73	0.57	2.27	5.08
TOTAL				0.80	3.39	7.35
STORM E				1 0.40		1 4 4 4
A	E1	0.71	0.81	0.12	0.57	1.14
A	E2	0.14	0.43	0.16	0.21	0.85
A TOTAL	E3	0.71	0.81	0.12 0.39	0.57 1.34	1.14 3.13
STORM G				0.39	1.34	3.13
A	G1	0.52	0.70	0.63	2.29	5.30
TOTAL	- 01	0.52	0.70	0.63	2.29	5.30
OFFSITE				0.00	2.20	0.00
C C	OFF1	0.04	0.36	0.97	0.62	4.25
В	OFF2	0.08	0.40	0.12	0.11	0.58
A	OFF3	0.08	0.39	0.31	0.27	1.47
A	OFF4	0.02	0.35	0.27	0.14	1.13
С	OFF5	0.02	0.35	0.22	0.12	0.95
TOTAL			•	1.89	1.27	8.38
STORM C				•		•
DE	SIGN POINT A	TOTAL		2.40	5.15	13.08
DE	SIGN POINT B	TOTAL		4.15	8.01	20.12
	TOTAL SIT			7.74	13.90	38.41

PROJECT NO. 196140002

SHEET

0

DESIGNED BY: MVZ DRAWN BY: MVZ/RES CHECKED BY: EJG DATE: 03/10/2023