

FINAL DRAINAGE REPORT

LOT 2 ELM GROVE VILLA SUBDIVISION SMITH PLUMBING & HEATING PCD Filing No.: PPR2143

1875 Main Street, Colorado Springs El Paso County, Colorado

PREPARED FOR: Smith Plumbing 1895 Main Street Colorado Springs, CO 80911

PREPARED BY: Galloway & Company, Inc. 1155 Kelly Johnson Blvd., Suite 305 Colorado Springs, CO 80920

DATE: February 2022

PCD Filing No. PPR2143

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept report bility for any liability caused by any negligent acts, errors or omissions on my part in preparing bis boot / C

omissions on my part in preparing in skeport i Cr		
CHAEL S		
SO XNI BOUCH		
80.8 2.08		
8 :0		
g : 45900 - g		
8 Din Duines		
Scott Brown PE 45900	Data	
SCOIL DIOWII, FE 40900	Dale	
For and on behalf of Galloway & Sonopany, then the		
WAL STOP		
-caaaaaaaa		
02/02/2022		

DEVELOPER'S CERTIFICATION

I, The developer, have read and will comply with all of the requirements specified in this drainage report and plan.

n.OL Bv

2/7/22

Address: Great Dane Ventures, LLC 5903 High Noon Ave Colorado Springs, CO 80923

EL PASO COUNTY CERTIFICATION

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E. County Engineer/ECM Administrator

Date

Conditions:

_

TABLE OF CONTENTS

Appendices:

- A. Exhibits and Figures
- B. Hydrologic Computations
- C. Hydraulic Computations
- D. Drainage Maps

I. Purpose

This document is for the proposed development of Lot 2 Elm Grove Villa Subdivision, located at 1875 Main Street, with the construction of a new 75' x 160' office building with associated parking. The purpose of this Final Drainage Report is to identify on and offsite drainage patterns, locate and identify tributary or upstream drainage features and facilities that impact the site, and to identify which types of drainage facilities will be needed and where they will be located.

II. General Description

Lot 2 of Elm Grove Villa Subdivision is approximately 1.51 acres of undeveloped land, located 1875 Main Street, Colorado Springs within El Paso County, Colorado. The project site is located east of Main Street, which is also designated as Hancock Expressway and south/southwest of Bradley Road. The parcel number for the site is 6501312002 and is currently zoned CC CAD-O. South of the site is multi-family residential development and commercial property is to the west. Canal No. 4 runs parallel and on the opposite side of Bradley Road. A Vicinity Map is included in Appendix A.

The existing site is currently vacant. An existing asphalt access exists, located between two existing commercial properties, off of Main Street. The site generally drains from the northeast to the southwest at approximately 2%.

The existing soil types within the proposed site as determined by the NRCS Web Soil Survey for El Paso County Area consist of Blakeland loamy sand. This soil type is defined as having a hydrologic soil group of A. See the soils map included in Appendix A.

There are no major drainage ways or irrigation facilities located on the site. There is an existing inlet located near the southeast portion of the site. This structure is filled with debris and dirt and no outlet or invert information was able to be determined. A second inlet is located near the northwest section of the site. This structure has an existing pipe entering on the northeast and a pipe releasing flows to the southwest.

III. Previous Reports

The proposed site has been included in a previous drainage report for the Elm Grove Villa Subdivision. A copy of this report has been included in Appendix A.

1. Drainage Report for Elm Grove Villa, by Weiss Consulting Engineers, February 1983 (FDR).

IV. Drainage Criteria

Hydrology calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014 and the El Paso County Engineering Criteria Manual (ECM) as revised in July 2019.

The drainage calculations were based on the criteria manual Figure 6-5 and IDF equations to determine the intensity and are listed in Table 1 below.

Table 1 - Precipitation Data

Return Period	One Hour Depth (in).	Intensity (in/hr)			
5-year	1.50	5.17			
100-year	2.52	8.68			

The rational method was used to calculate peak flows as the tributary areas are less than 100 acres. The rational method has been proven to be accurate for basins of this size and is based on the following formula:

Q = CIA

Where:

Q = Peak Discharge (cfs)
C = Runoff Coefficient
I = Runoff intensity (inches/hour)
A = Drainage area (acres)

The runoff coefficients are calculated based on land use, percent imperviousness, and design storm for each basin, as shown in the drainage criteria manual (Table 6-6). Composite percent impervious and C values were calculated using the streets, roofs, and lawns coefficients found in Table 6-6 of the manual.

The 100-year event was used as the major storm event for pipes and inlets. The 5-year event was used as the minor event.

The UD-Detention spreadsheet was utilized for sizing the water quality orifices on the proposed water quality portion of the regional detention pond. This spreadsheet was also utilized for the design of the proposed water quality pond.

Flow Master was utilized to size drainage swales, curb cuts and other drainage features.

V. Existing Drainage Conditions

The proposed project site is located within the Security Drainage Basin and was studied as part of the Drainage Report for Elm Grove Villa. In this report, there are two major drainage basins (A-6 & A-7) which account for the project site. In this report, each basin was released to the south, at opposite corners of the project site, onto the existing Elm Grove Villas townhome site. As the development site is higher than the development to the south, the flow from Basins A-6 and A-7 were added together to get a total release rate for the site. Basin A-6 had flows of 3.0 and 5.9 cfs for the 5 and 100-year flows and Basin A-7 had flows of 2.7 and 5.4 cfs for the 5 and 100-year flows. Basin A-5 represented the off-site basin, associated with Bradley Road, along the northeast property line. The previous report did not account for any of the off site flow traveling through the site. This gives a combined release rate of 5.7 cfs and 11.3 cfs exiting the project site, with Basin A-6 exiting through the existing inlet and into the concrete channel, and Basin A-7 overland flowing into the Elm Grove Villas townhome site.

This approved report has flows of 20.7 cfs for the minor storm and 32.5 cfs for the major storm from an existing storm system entering just downstream of the site into the existing concrete channel. The existing channel also accepts an assumed flow of 3.4 cfs and 6.7 cfs from Basin A-4 to the west. With these

additional flows and the site flows from existing Basins A-1, A-2, A-3, A-4, and A-6, the existing downstream channel had a flow of 24.3 cfs and 39.4 cfs for the 5 and 100-year storms. An analysis of the channel (6' cross pan with street section) has been included in Appendix C. The channel will have a flow depth of 0.63' and a top width of 25.23'. In the existing conditions, the flow is just short of the existing curb and gutter on the east side but will use the full "roadway" section to convey flows.

An updated existing conditions basin map has been prepared for the development site. An existing drainage map is included in Appendix E and the basins are described below.

Basin OS-1 (0.34 AC, Q5 = 1.0 cfs, Q100 = 2.0 cfs) is associated with the off-site basin encompassing Bradley Road (Cable Lane) along the northeast property line. This accounts for flows which will release directly onto the site.

Basin OS-2 (0.34 AC, Q5 = 1.1 cfs, Q100 = 2.2 cfs) is associated with the off-site basin encompassing the existing Smith Plumbing building and lot within existing Basin A-6. This accounts for flows which will release directly into Basin E-2.

Basin E-1 (0.02 AC, $Q_5 = 0.1$ cfs, $Q_{100} = 0.2$ cfs): is associated with the western most portion of the existing drive access off of Main Street. This basin releases back towards the west into Main Street, where it is intercepted by an existing inlet.

Basin E-2 (0.10 AC, $Q_5 = 0.5$ cfs, $Q_{100} = 0.9$ cfs): is the remainder of the existing drive access. This basin flows directly to the south, remaining in the existing asphalt parking lot. It is assumed that this flow is intercepted by one of the 2 existing storm sewer systems which release into the existing drainage channel south of the site.

Basin E-3 (0.14 AC, $Q_5 = 0.1$ cfs, $Q_{100} = 0.4$ cfs): is a portion of the site, just east of the drive access with a gravel parking area, which flows directly to the existing drainage inlet at the southwest corner at **DP 6**. This intercepted flow will release through an existing 18" RCP to the existing drainage channel in the townhome development to the south.

Basin E-4 (1.19 AC, $Q_5 = 0.5$ cfs, $Q_{100} = 3.5$ cfs): is the bulk of the site which drains towards a local low point with an existing area inlet. This inlet is currently filled with dirt and debris, so no outlet direction or invert information was determined. It was assumed that this flow will combine flow from Basin E-3 at **DP 6.** Flows are released through the existing pipe to the drainage channel to the south.

Basin E-5 (0.02 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.1$ cfs): is along the eastern property line and consists of the area between the existing fence and the property line. There is an existing concrete block wall, which has this basin "sitting" several feet below the overall project site. It is assumed this flow will travel to the south releasing directly offsite.

Basin E-6 (0.05 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.2$ cfs): is located along the southern boundary line and consists of the area between the existing fence and the property line. There is an existing concrete block wall, which has this basin "sitting" several feet below the overall project site. It is assumed this flow will travel to the south, releasing directly offsite.

Total flows leaving the development site at **DP 6** (Basins OS-1, E-3 and E-4) are 1.3 cfs for the 5-year storm and 5.2 cfs for the 100-year storm.

VI. Four Step Process

The Four Step Process is recommended for selecting structural BMP's in developing areas. It used to minimize the adverse impacts of urbanization and is a vital component of developing a balanced, sustainable project. Below identifies the approach to the four-step process:

1. Employ Runoff Reduction Practices

The purpose of this step is to reduce runoff peaks and volumes from urbanizing areas through MDCIA (minimizing directly connected impervious areas). The intent of MDCIA is to reduce impervious area and route runoff from impervious areas through pervious areas to promote infiltration. The proposed development uses Low Impact Development (LID) practices to reduce runoff at the source. Rather than creating point discharges that are directly connected to impervious areas, runoff is routed through pervious areas.

2. Stabilize Drainageways

This step implements stabilization to existing natural channels to accommodate developed flows while protecting infrastructure and controlling sediment loading from erosion in the drainageways. This site releases into an existing concrete drainage swale, there by not needing any additional stabilization or erosion controls.

3. Provide Water Quality Capture Volume (WQCV)

This step utilizes formalized water quality capture volume to slow the release of runoff from the site and provide permanent stormwater quality control measures. The WQCV will release slowly to provide for long-term settling of sediment particles, but in no less than 40 hours. On-site water quality control volume detention ponds will provide water quality treatment prior to the runoff being released into the channel.

4. Consider Need for Industrial and Commercial BMP's

As this site is a commercial development, the area will need to consider the need for Industrial and Commercial BMPs. No industrial uses are proposed for the site, but storage of some equipment and vehicles may be done. Source control BMPs protect the release of pollutants from outdoor storage areas. Trash enclosures will be provided near the building. Drainage flows from this portion of the site will be routed through the water quality pond prior to exiting the site, minimizing contaminants into the downstream system.

VII. Proposed Drainage Conditions

The general overall existing drainage patterns have been maintained, in that the majority of the site is to be detained on site with a proposed water quality facility, releasing through the existing 18" RCP to the concrete channel to the south.

Basins OS-2, E-1 and E-2 have not changed from their descriptions in the existing conditions section. The general location and description of each proposed basin is described below. The major and minor basins and their proposed size, shape, and orientation can be seen on the proposed drainage map found in Appendix D. Hydrology calculations are included in Appendix B

Basin OS-1 (0.34 AC, Q5 = 1.0 cfs, Q100 = 2.0 cfs) is associated with the off-site basin encompassing Bradley Road (Cable Lane) along the northeast property line. In the current conditions, the basin releases directly onsite. In the proposed condition, flow will be directed along the property line to the southeast, as indicated per the Approved Existing Report Basin A-5, reference Appendix A.

Basin E-3 (0.13 AC, $Q_5 = 0.4$ cfs, $Q_{100} = 0.8$ cfs): is a portion of the site, just east of the drive access, consisting of drive aisle and parking as well as some landscaped areas. The basin flows directly to the existing drainage inlet at the southwest corner at **DP 8**. This basin will not be treated by the water quality facility.

Basin E-4 (0.72 AC, $Q_5 = 2.6$ cfs, $Q_{100} = 4.7$ cfs): is the bulk of the site, which will include the proposed building and the majority of the drive aisle and parking lot. A new high point will be located at the southeast corner of the site, with flows being directed back for the north to proposed curb and gutter along the drive aisle. The gutter flow will be directed back towards the west to a proposed concrete cross pan, which will carry flow across the drive aisle to a proposed curb cut at **DP 4**. A riprap swale will direct this flow directly to the proposed water quality pond.

Basin E-5 (0.11 AC, $Q_5 = 0.5$ cfs, $Q_{100} = 0.9$ cfs): is located between the proposed building the water quality pond. The basin consists of proposed parking. Flows will sheet flow across the parking area to a proposed curb cut at **DP 5**. A riprap swale will direct this flow directly to the proposed water quality pond.

Basin E-6 (0.26 AC, $Q_5 = 0.1$ cfs, $Q_{100} = 0.6$ cfs): is representative of the landscape areas around the south, east and west of the proposed site, including Existing Basins E-5 and E-6. Flow from the basin will release directly to the off-site townhome development to the south, with the majority of the basin draining through a Grass Buffer (Reference Appendix C for Grass Buffer and runoff reduction calculations). While there is a negligible increase from the Existing E-5 and E-6 basins (0.3 cfs in the 100-year storm), the proposed runoff is less than the approved design runoff from Approved Existing Report Basin A-7 ($Q_5 = 0.1$ cfs, $Q_{100} = 0.79$ cfs). The townhome development should have sufficient capacity for runoff from Basin A-7, and therefore will have the capacity for the direct runoff from Basin E-6.

Basin E-7 (0.06 AC, $Q_5 = 0.1$ cfs, $Q_{100} = 0.2$ cfs): is the basin associated with the proposed pond.

Basin E-8 (0.12 AC, $Q_5 = 0.3$ cfs, $Q_{100} = 0.6$ cfs): is located north of the proposed water quality pond adjacent to Basin E-3. The Basin consists of drive aisle with parking and landscape area. Flows will sheet flow across the drive aisle to a proposed curb cut at **DP 6**. A riprap swale will direct this flow directly to the proposed water quality pond.

VIII. Proposed Water Quality Detention Ponds

From field observations, the flow exiting the 6' concrete pan is not directed or funneled sufficiently to the curb chase. A suitable conveyance should be implemented to direct flow to concrete chase. See pdf pg 25 below.

One Water Quality Capture Volume Detention Pond will be provided for the project site. The pond will be private and will only provide water quality. Detention for this site is provided by the existing unnamed detention pond which was built as part of the Elm Grove Villa development (PCD Filing No. MS83004) in 1983. The EURV and 100-year volumes will be conveyed via the Modified CDOT Type C Outlet structure to the existing inlet, downstream to the existing concrete flume, and outfalls into the existing 6' concrete valley pan flowing in a southward direction within the townhome site. Per the approved **FDR**, runoff is presently directed to the existing 6' concrete pan ($Q_5 = 23.7$ cfs, $Q_{100} = 38.4$ cfs; see map in Appendix A), where flows are directed downstream via channelized flow within the 6' concrete pan and Elm Grove Drive roadway section with curb & gutter). The proposed development increases runoff by minor amounts ($Q_5 = 24.4$ cfs, $Q_{100} = 39.4$ cfs). Runoff then sheet flows across Elm Grove Drive (to the east) to an existing low point on the existing pond situated to the south of the existing townhomes. Storm events larger than the 100-year storm will overtop the emergency overflow weir and free release into the structures as described below.

Galloway & Company, Inc.

State that this increase in flowrates is negligible and therefore the increase can be sufficiently handled by the conveyance system as intended (if you agree with this statement) The water quality volume release will be controlled with an orifice plate that will release over a period of 40 hours. The water quality pond will release treated flows into the existing flume and existing 6' concrete valley pan within the Elm Grove Villa townhome development to the south as described above. Final design of the pond and its components are provided in Appendix D. According to the approved **FDR**, the proposed site as represented by sub-basins A-1 (2.07 AC, $Q_5 = 1.62$ cfs, $Q_{100} = 2.55$ cfs) & A-6 (0.97 AC, $Q_5 = 1.97$ cfs, $Q_{100} = 3.91$ cfs) along with a conducted field investigation, the existing detention pond was designed to accommodate runoff from this development and is functioning as intended.

There are portions of four basins which are not provided with on-site water quality. Basins E-1 and E-2 are excluded as existing roadway areas per ECM Appendix I.7.1.B. Basin E-3 and a portion of Basin E-6 are unable to be treated due to grading constraints. In order to maintain existing drainage patterns and not alter existing drainage facilities, Basin E-3 shall drain to the existing inlet as it did in the existing conditions. A portion of Basin E-6 will drain through a Grass Buffer along the southwest boundary of the property. The Grass Buffer will provide the water quality for a portion of the basin. The remainder of Basin E-6 along the property lines cannot be treated due to grading constraints and will free release offsite as it does in the existing conditions. The untreated areas within Basins E-3 and E-6 account for 0.28 acres, 18.5% of the project area.

Total area which will not be treated via the on-site facility is less than 1.0 acre, as required.

IX. Channels and Swales

Swales

There are 2 swales associated with the proposed development, at DP 4 and DP 5. The swales have been designed to meet the 100-year design storm. Appendix C contains the design of these facilities.

The swale from DP 4 is located at a proposed 4' curb cut along the drive aisle. The swale will be a vditch, minimum depth of 0.5' and 4:1 side slope. Longitudinal slope will be 10.5%, generating a flow depth of 0.48' and a velocity of 5.183.7 fps. The swale will be lined with Type VL riprap. Flows release directly to the water quality pond.

The swale from DP 5 is located at a proposed 1' curb cut with in the parking area, west of the proposed building. The swale will be a v-ditch with a minimum depth of 1.0' and 4:1 side slope. Longitudinal slope will be 0.5%, generating a flow depth of 0.5' and a velocity of 0.93 fps. The swale will be lined with Type VL riprap. Flows will combine with the swale from DP 4 and release into the water quality pond.

Refer to Appendix C for swale design calculations.

Existing Runoff Conveyance

In the approved Drainage Report for Elm Grove Villa by Weiss Consulting (**FDR**), an existing concrete flume which transitions to a 6' concrete valley pan was designed and built to convey flows from the proposed project site, downstream through the townhome development in a southward direction along the western boundary, ultimately to the existing unnamed detention pond. It was assumed that the existing 6' concrete valley pan had a cross slope of 1" per 1', for a total depression of 3" and a longitudinal slope of 1.3%. This general section was used in Flowmaster to determine the flow through this "channel" section. From the approved Elm Grove Villa Report, flows through the channel was calculated to be 39.4 cfs for the 100-year storm. These flows were determined by using the site flows along with the flows from the two existing storm systems which also release into the channel. Based on this information, the channel

had a flow depth of 0.63' a velocity of 5.80 fps, and a spread of 25.43'. At the depth of 0.63', this existing spread is contained within the Elm Grove Drive access road and does not overtop the adjacent curbs (approximately 5' short horizontally) in the major storm event.

With the proposed flow of 39.4 cfs for the major storm, the flow depth within the concrete valley pan is 0.64', a velocity of 5.83 cfs, and a spread of 25.69'. This is a negligible increase that will not adversely impact the valley pan and present means of conveyance in any way.

Appendix C contains the analysis of the existing "channel" facility based on the design flows from the Elm Grove Villa report and proposed flows with this report.

X. Maintenance

The proposed water quality pond is to be a private facility, which will be maintained by the property owner.

XI. Wetlands Mitigation

No wetlands are located on site.

XII. Floodplain Statement

The project site lies within Zone X, area of minimal flood hazard as defined by the FIRM Map number 08041C0763G effective December 7, 2018. A copy of the FIRM Panel is included in Appendix A.

XIII. Drainage/Bridge Fees and Credits/Reimbursements

The site lies within the Security Drainage Basin and was platted in 1983 prior to the implementation of the EPC drainage basin fee program. The DBPS was approved in 2013 and has bridge fees associated with the basin. Drainage fees are not assessed with the site plan application, and therefore, no drainage fee is due for this project.

The project site has a total area of 1.51 acres.

The percent impervious for the subdivision has been calculated with this report to be approximately 69.6 percent.

1.51 acres x 69.6% = 1.05 Impervious Acres

Below is a cost estimate for the improvements proposed with this filing.

Item	Quantity	Unit	Unit Cost	Cost
WQCV Detention Pond (Private)				
Pond	1	EA	\$ 30,000.00	\$ 30,000.00
Subtotal				\$ 30,000.00
Total				\$ 30,000.00
Contingency			10%	\$ 3,000.00
Grand Total				\$ 33,000.00

XIV. Conclusion

This report for Lot 2 Elm Grove Villa has been prepared using the criteria and methods

Detention for the site is provided in an existing off-site detention pond. Water quality is provided through a proposed on-site WQCV pond and an on-site Grass Buffer. The proposed development will not have any adverse impacts on downstream developments or existing drainageways.

All drainage facilities within this report were sized according to the Drainage Criteria Manuals. This report is in general conformance with all previous approved reports that include the site.

XV. References

- 1. City of Colorado Springs/County of El Paso Drainage Criteria Manual, October 1991.
- 2. Drainage Criteria Manual, Volume 2, City of Colorado Springs, November 2002.
- 3. *Urban Storm Drainage Criteria Manual*, Urban Drainage and Flood Control District, January 2016 (with current revisions).
- 4. Drainage Report for Elm Grove Villa, by Weiss Consulting Engineers, February 1983.

APPENDIX A

Exhibits and Figures

LOT 2 ELM GROVE VILLA

1875 MAIN STREET SCALE: 1"=1,000' VICINITY MAP

NIO			
INU.			

HCI00008.20

TJE

CMD

06/19/2020

Drawn By:

Checked By:

,

Date:

Project

1155 Kelly Johnson Blvd., Suite 305 Colorado Springs, CO 80920 719.900.7220 ∙ GallowayUS.com

Web Soil Survey National Cooperative Soil Survey

	MAP L	EGEND)	MAP INFORMATION
Area of Int Soils Area of Int Soils Soils	MAP L terest (AOI) Area of Interest (AOI) Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Point Features Blowout	EGEND a a a a a b a w water Fea	Spoil Area Stony Spot Very Stony Spot Wet Spot Other Special Line Features atures Streams and Canals	Image: Soil surveys that comprise your AOI were mapped at 1:24,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map
⊠ ※ ◇ ½ ⊹ ◎ ● ◇ ↓ ☆ ● ◇ ♪	Borrow Pit Clay Spot Closed Depression Gravel Pit Gravelly Spot Landfill Lava Flow Marsh or swamp Mine or Quarry Miscellaneous Water Perennial Water Perennial Water Saline Spot Saline Spot Sandy Spot Severely Eroded Spot Sinkhole	Transport	tation Rails Interstate Highways US Routes Major Roads Local Roads Ind Aerial Photography	 Industriction of the balk scale of reaching sheer for high sheer for high measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 16, Sep 10, 2018 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Jun 3, 2014—Jun 17, 2014 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	24.4	100.0%
Totals for Area of Interest		24.4	100.0%

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or loodplain management purposes when they are higher than the elevations shown or this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services

NOAA, N/NGS12 National Geodetic Survey

SSMC-3, #9202 1315 East-West Highway

Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management, National Oceanic and Atmospheric Administration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile elines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

f you have questions about this map or questions concerning the National Flood nsurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

> El Paso County Vertical Datum Offset Table Vertical Datum **Flooding Source**

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION

Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

RECEIVED

di.

El Paso County Planning Department

DRAINAGE REPORT

FOR

ELM GROVE VILLA

SECURITY, COLORADO

N N INC. 1815 North Tejon
 Colorado Springs, CO 80907
 (303) 634-0373 Colorado. and Land Surveyor WEISS CONSULTING ENGINEERS, east for PE-4124 Elm Grove Villa lying south of Bradley Road and of Hancock Road at the north edge of Security, C Report me 1983 call A WELL February 17, Transmitted herewith is a Drainage Weiss please Sincerely, 80903 G. J. you have any questions, Professional Engineer Colorado Administrator County of El Paso 27 East Vermijo Colorado Springs, Dear Mr. Fisher, John Fisher Land Use ЧЧ Mr.

GENERAL

e Southeast quarter of Section 2, Township 15 South, Range t of the 6th P.M. in the Town of Security, Colorado. The ontains 5.225 acres and is planned for a townhouse develop The drainage from the site will flow south through Section Creek. ч О outfall into Fountain quarter Southwest the lies in eventually the Southeast quarter of Grove Villa Security and will site contains Elm and the 66 West ment.

S A soils report for the site was prepared by Summerlee and Associates on July 19, 1973. The soils on the site consist of selty to clayey sands and very sandy clays. The SCS soil class ification is Blakeland, and it falls in Hydrologic Group A. Reference in made to a drainage report for Benchmark Sub-division, which was made for this site in a report dated February 13, 1973 by H. J. Kraettli and Sons.

METHOD OF RUNOFF COMPUTATION

ы. Г S.C.S. method as outlined in the subdivision criteria manual El Paso County and the areawide urban runoff control manual The five computation utilized in this report r.P.A.C.G. The calculations are shown separately. The frequency, 24 hour duration storm was used in the calcoons. The 100 year storm was also calculated. method of runoff P.P.A.C.G. ulations. The year for the for

EXTERIOR FLOWS

Ŋ • – 1 :low. This report
of Hancock will enter it will not east half of Iť as will make ഗ Basins A-l through A-7 discharge flows into the site on the drainage map for a total of 32.6 CFS for the canal. canal that drainage intercepted by the the for his own developed drainage and CFS for the 100 year flow. that developer north of the side but t from the west Drive south, d 57.9 CFS drainage JCK WILL have its assumed that the from Manzana Hancock will have enter the site. year flow and assumes that provisions site shown also the

for sheet Street and their - Street and are undersized to 18 CFS and are undersized to of the catchbasins is graded of the catchbasins is graded into Elm Grove Villa. catchbasins in Main a capacity of about site east The the 5 year storm. The two outfall have to permit flow

INTERIOR FLOWS

ч О flows Basin B has a 5 year flow of 7.8 CFS and a 100 year flow of CFS. The undeveloped flows for this site are 0.8 CFS and CFS respectively. The difference between the 100 year flow 20.8 CFS. The undeve 6.5 CFS respectively. design detention acceptance of the detailed for that required hoped Å the detention facility will be designed upon s report by the County Engineer. It is hoped site. that цо than this report by the County Engineer. storage can be provided for more th detained must be site. which storage can be _I Elm Grove Villa CFS, 14.3 5 ЧO

DRAINAGE FACILITIES

through west, north through the side planned Drainage the east This will be carried 5 carried in or curb be constructed by the owner on the site on the ц Н to the detention pond. site detention pond. this property to prevent it from entering the enter the than the adjacent land and be site from the west will as an overflow. ^T the swales to the street into flow from in the private is lower CMP and Drainage will private streets and that a swale ~~ ~~~~ north site 24" This east. the site existing from and the οĘ

from flooding as possible above and the the developer to damage site relative that the deve as high to prevent any site the low elevation of the perties, it is essential the the buildings on streets and swales the buildings adjacent properties, builder place the bui ţ private Due the

Drive site grading. detention to to construct facilities Leta from the pond across can be prepared until the overall these ility has been designed. The earthwork required detention pond can be done as part of the overal cost estimate for be constructed detailed drainage cost a preliminary facility has been designed. pipe must would make \$6000.00 outfall No the An We be

DRAINAGE REPORT STATEMENTS

ENGINEERS STATEMENT

of my prepared under accordance the best The attached drainage plan and report were prep my direction and supervision and are correct to the knowledge and belief. This report was prepared in a with the El Paso County Subdivision Criteria Manual.

PE-4124 Gerald J. Weiss PE-

OWNERS STATEMENT

the of all comply with drainage report. Will and in this read developer has ints specified requirements The

Developer

Bγ

Title

EL PASO COUNTY

Åpproved By

Date

· ...:

MAJOR BASIN	SUB BASIN	AR Plonim Bead Ar	EA MILE	BAS LENGTH	SIN TC		BASIN LENGTH HEIGHT		т Тс К		DEV. TYPE			FLOW		ą	ofs
Å		2.07	0.003226	500	32	0.09		A		90	54n 1.62	.00 2.55	1000	5.2	6.Z		
	2	2.59	0. ento5	(150)	10	0.04		1.		90	1.62	2,55		6.6	10.3		
	3	3.51	0.00548	480	10	0,06		1.		90	۱.62	2.55	17	8.9	14.0		
	L L	1.10	6.00172	100	4	0.03				94	1.97	3.91		3.4	6.7		
	5	1.85	0.00 2518	Sev	10	0.10		14		80	0.9%	2.55	,, ×	2.8	7.		
	6	0.97	0.00152	(80	2	0.05		in		94	1.47	3.41	ι (3.0	5.9		
	1	0.88	0.06138	260	3	0.04		ı '	. ·	.94	1.97	3.91	tr	2.7	5.4		
						• -											
B		5.22	0.0.82	700	5	0110		it		80	0.94	2.55	ě t	7.8	20.8		
					8												
<u> </u>																	
															-		
			· · · · ·						· · .]		
]		
								14/5	100			050					
H1 PROJ:	YDROLOG	GROVE	VILL	A BASI	C DATA By:	DJureisz 2-16-83	-	CO	NGULTING		2013 4017	ION		ige f	8		
$P = 2.6 \qquad 5 \ YR \qquad 24 \ HR$ $P = 2.6 \qquad 5 \ YR \qquad 24 \ HR$											2						

. •

MAJOR SUB		AREA		BASIN.		Тск	SOIL	DEV.	CURVE	FLO	W	9	
BASIN	BASIN	Read.	MILE	LENGTH	HEIGHT			GROUP	TYPE	NO.	Q	qp	९६५
											3-1 100		
<u></u>													
										ļ		<u></u>	
						. <u></u>							
										· · · ·			
													1
A	(,	0.91	0.00152	150	2		`	Ä		55	0.00.79	1000	0.15 1-20
	-7	0 55	1 6 7 2 2	210	.			11	·				
		0.00	0,00130	240							CHU CH	(())	0.14 1.10
												<u> </u>	
B		5.22	0.0082	700	5			14		17	0.14 0.79	1000	0.82 6.5
													1
												<u> </u>	
										+			
									· · · · · · · · · · · · · · · · · · ·	ļ			
	×					4 3							-
н	YDROLOG			I – BASI	C DATA			WE	221	UNDEN	ELOPED	P	oge Z
PROJ:	ELM	OROVE	VILLA		By: H	Juen		CO	NSULTINO	G C 4	ADITION	4 (of
			-		Date: 2	-21/2-83		EN	GINEERS,	INC.		P	oges Z

-

APPENDIX B

Hydrologic Computations

Existing Computations

COMPOSITE % IMPERVIOUS CALCULATIONS: EXISTING CONDITIONS

Subdivision: Elm Grove Villa

Location: CO, Colorado Springs

Project Name:	Smith Plumbing
Project No.:	HCI000008
Calculated By:	DDJ
Checked By:	GD
Date:	11/12/21

1	2	3	4	5	6	7	8	9	10	11	27
		Pav	ed/Gravel R	oads		Undeveloped	1		Roofs		Basins Total
Basin ID	Total Area (ac)	0/ I	A	Weighted %	0/ I	A	Weighted %	0/ I	A	Weighted %	Weighted %
		% Imp.	Area (ac)	Imp.	% Imp.	Area (ac)	Imp.	% Imp.	Area (ac)	Imp.	Imp.
OS-1	0.34	100	0.20	58.8	2	0.14	0.8	90	0.00	0.0	59.6
OS-2	0.34	100	0.18	52.9	2	0.08	0.5	90	0.08	21.2	74.6
E-1	0.02	100	0.02	100.0	2	0.00	0.0	90	0.00	0.0	100.0
E-2	0.10	100	0.10	100.0	2	0.00	0.0	90	0.00	0.0	100.0
E-3	0.14	100	0.00	0.0	2	0.14	2.0	90	0.00	0.0	2.0
E-4	1.19	100	0.00	0.0	2	1.19	2.0	90	0.00	0.0	2.0
E-5	0.02	100	0.00	0.0	2	0.02	2.0	90	0.00	0.0	2.0
E-6	0.05	100	0.00	0.0	2	0.05	2.0	90	0.00	0.0	2.0

NOTES:

% Impervious values are taken directly from Table 6-6 in the Colorado Springs DCM Vol. 1. CH. 6 (Referencing UDFCD 2001)

COMPOSITE RUNOFF COEFFICIENT CALCULATIONS: EXISTING CONDITIONS

Subdivision: Elm Grove Villa

Location: CO, Colorado Springs

Project Name:Smith PlumbingProject No.:HCI000008Calculated By:DDJChecked By:GDDate:11/12/21

	Total Area (ac)	Paved/Gravel Roads			Lav	wns/Undevelo	oped		Roofs			Composite
Basin ID		C ₅	C ₁₀₀	Area (ac)	C ₅	C ₁₀₀	Area (ac)	C ₅	C ₁₀₀	Area (ac)	Composite C ₅	C ₁₀₀
OS-1	0.34	0.90	0.96	0.20	0.09	0.36	0.14	0.73	0.81	0.00	0.57	0.71
OS-2	0.34	0.90	0.96	0.18	0.09	0.36	0.08	0.73	0.81	0.08	0.67	0.78
E-1	0.02	0.90	0.96	0.02	0.09	0.36	0.00	0.73	0.81	0.00	0.90	0.96
E-2	0.10	0.90	0.96	0.10	0.09	0.36	0.00	0.73	0.81	0.00	0.90	0.96
E-3	0.14	0.90	0.96	0.00	0.09	0.36	0.14	0.73	0.81	0.00	0.09	0.36
E-4	1.19	0.90	0.96	0.00	0.09	0.36	1.19	0.73	0.81	0.00	0.09	0.36
E-5	0.02	0.90	0.96	0.00	0.09	0.36	0.02	0.73	0.81	0.00	0.09	0.36
E-6	0.05	0.90	0.96	0.00	0.09	0.36	0.05	0.73	0.81	0.00	0.09	0.36

NOTES:

C values are taken directly from Table 6-6 in the Colorado Springs DCM Vol. 1. CH. 6 (Referencing UDFCD 2001) Coeffficients use HSG A&B soils - Refer to "Appendix A: Exhibits and Figures" for soil map

STANDARD FORM SF-2: EXISTING CONDITIONS TIME OF CONCENTRATION

Subdivision: Elm Grove Villa

Location: CO, Colorado Springs

Project Name: Smith Plumbing

 Project No.:
 HCI000008

 Calculated By:
 DDJ

 Checked By:
 GD

 Date:
 11/12/21

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
		SUB-B	ASIN			INITIA	AL/OVER	LAND		TR	AVEL T	IME			Te CHECk	<u> </u>	
		DAT	ГА				(T _i)				(T _t)			(UF	RBANIZED BA	ASINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S	Ti	L	S	Cv	VEL.	T _t	COMP. T _c	TOTAL	Urbanized T _c	T _c
ID	(AC)	Soils Group	(%)			(FT)	(%)	(MIN)	(FT)	(%)		(FPS)	(MIN)	(MIN)	LENGTH(FT	(MIN)	(MIN)
OS-1	0.34	A	59.6	0.57	0.71	35	1.2	5.4	0	0.0	15	0.0	0.0	5.4	35.0	10.2	5.4
OS-2	0.34	A	74.6	0.67	0.78	75	2.0	5.4	100	2.0	20	2.8	0.6	6.0	175.0	11.0	6.0
	-	-															
E-1	0.02	A	100.0	0.90	0.96	30	4.5	1.2	0	0.0	20	0.0	0.0	1.2	30.0	10.2	5.0
E-2	0.10	A	100.0	0.90	0.96	30	4.5	1.2	0	0.0	20	0.0	0.0	1.2	30.0	10.2	5.0
E-3	0.14	A	2.0	0.09	0.36	5	4.0	2.6	185	3.3	15	2.7	1.1	3.7	190.0	11.1	5.0
E-4	1.19	A	2.0	0.09	0.36	5	4.0	2.6	375	1.3	15	1.7	3.7	6.3	380.0	12.1	6.3
E-5	0.02	A	2.0	0.09	0.36	5	50.0	1.1	0	0.0	15	0.0	0.0	1.1	5.0	10.0	5.0
E-6	0.05	A	2.0	0.09	0.36	5	50.0	1.1	0	0.0	15	0.0	0.0	1.1	5.0	10.0	5.0

NOTES:

$$\begin{split} T_i &= (0.395^*(1.1 - C_5)^*(L)^{0.5})/((S)^{0.33}), \ S \ in \ ft/ft \\ T_t &= L/60V \ (Velocity \ From \ Fig. \ 501) \\ Velocity \ V &= Cv^*S^{0.5}, \ S \ in \ ft/ft \end{split}$$

Tc Check = 10 + L/180

For Urbanized basins a minimum T_c of 5.0 minutes is required.

For non-urbanized basins a minimum $T_{\rm c}$ of 10.0 minutes is required

Type of Land Surface	Cv
Heavy Meadow	2.5
Tillage/field	5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

STANDARD FORM SF-3: EXISTING CONDITIONS

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision:	Elm Grove Villa
Location:	CO, Colorado Springs

Design Storm: 5-Year

 Project Name:
 Smith Plumbing

 Project No.:
 HCI000008

 Calculated By:
 DDJ

 Checked By:
 GD

 Date:
 11/12/21

				DIR	ECT RU	NOFF			Т	OTAL F	RUNOFI	<u>.</u>	STR	EET		PIPE		TRA	VEL T	IME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	I (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	I (in/hr)	Q (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
	1	OS-1	0.34	0.57	5.4	0.19	5.05	1.0					1.3					350	1.7	3.4	Offsite flows north of property flowing onto site
	2	E-1	0.02	0.90	5.0	0.02	5.17	0.1													Existing basin at entrance which reach Hanock Expressway
	7	OS-2	0.34	0.67	6.0	0.23	4.90	1.1					2					150	2.1	1.2	Offiste flows northwest of property flowing onto site
	3	E-2	0.10	0.90	5.0	0.09	5.17	0.5	7.2	0.32	4.63	1.5									Existing basin through entrace which flows offsite (across existing parking lot)
		E-3	0.14	0.09	5.0	0.01	5.17	0.1													Basin located along western edge of property line, reaches existing inlet
	4	E-4	1.19	0.09	6.3	0.11	4.83	0.5	8.8	0.30	4.32	1.3									Bulk of site which flows towards existing low point on-site (plugged inlet, direction unknown)
	5	E-5	0.02	0.09	5.0	0.00	5.17	0.0					0.5					350	1.1	5.5	Basin along east property line which drains offsite to the east
		E-6	0.05	0.09	5.0	0.00	5.17	0.0					0.5					20	1.1	0.3	Basin along south property line which drains offsite to the south.
	6								8.8	0.31	4.32	1.3									Basins OS-1, E-3 and E-4

STANDARD FORM SF-3: EXISTING CONDITIONS

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision:	Elm Grove Villa
Location:	CO, Colorado Springs

Design Storm: 100-Year

Project Name: Smith Plumbing Project No.: HCI000008 Calculated By: DDJ

	-
Checked By:	GD
Date:	11/12/21

			DIRE	CT RUI	NOFF]	FOTAL	RUNOF	F	STR	EET		PIPE		TRA	VEL T	IME		
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	I (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	I (in/hr)	Q (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
	1	OS-1	0.34	0.71	5.4	0.24	8.48	2.0					1.3					350	1.7	3.4	Offsite flows north of property flowing onto site
	2	E-1	0.02	0.96	5.0	0.02	8.68	0.2													Existing basin at entrance which reach Hanock Expressway
	7	OS-2	0.34	0.78	6.0	0.27	8.22	2.2					2					150	2.1	1.2	Offiste flows northwest of property flowing onto site
	3	E-2	0.10	0.96	5.0	0.10	8.68	0.9	7.2	0.37	7.77	2.9									Existing basin through entrace which flows offsite (across existing parking lot)
		E-3	0.14	0.36	5.0	0.05	8.68	0.4													Basin located along western edge of property line, reaches existing inlet
	4	E-4	1.19	0.36	6.3	0.43	8.11	3.5	8.8	0.67	7.25	4.9									Bulk of site which flows towards existing low point on-site (plugged inlet, direction unknown)
	5	E-5	0.02	0.36	5.0	0.01	8.68	0.1					0.5					350	1.1	5.5	Basin along east property line which drains offsite to the east
		E-6	0.05	0.36	5.0	0.02	8.68	0.2					0.5					20	1.1	0.3	Basin along south property line which drains offsite to the south.
	6								8.8	0.72	7.25	5.2									Basins OS-1, E-3 and E-4

Proposed Computations

COMPOSITE % IMPERVIOUS CALCULATIONS: PROPOSED CONDITIONS

Subdivision: Elm Grove Villa

Location: CO, Colorado Springs

Project Name: Smith Plumbing

Project No.: HCI000008

Checked By:	GD
Datas	11/12/21

Date: <u>11/12/21</u>

		Pav	/ed/Gravel R	oads		Undeveloped	1		Roofs		Basins Total
Basin ID	Total Area (ac)	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	Weighted % Imp.
OS-1	0.34	100	0.20	58.8	2	0.14	0.8	90	0.00	0.0	59.6
OS-2	0.34	100	0.18	52.9	2	0.08	0.5	90	0.08	21.2	74.6
E-1	0.02	100	0.02	100.0	2	0.00	0.0	90	0.00	0.0	100.0
E-2	0.10	100	0.10	100.0	2	0.00	0.0	90	0.00	0.0	100.0
E-3	0.13	100	0.07	51.6	2	0.06	1.0	90	0.00	0.0	52.6
E-4	0.72	100	0.44	61.8	2	0.00	0.0	90	0.27	34.4	96.2
E-5	0.11	100	0.11	96.3	2	0.00	0.0	90	0.00	0.0	96.3
E-6	0.26	100	0.00	0.0	2	0.26	2.0	90	0.00	0.0	2.0
E-7	0.06	100	0.00	0.0	2	0.06	2.0	90	0.00	0.0	2.0
E-8	0.12	100	0.05	44.4	2	0.07	1.1	90	0.00	0.0	45.5

NOTES:

% Impervious values are taken directly from Table 6-6 in the Colorado Springs DCM Vol. 1. CH. 6 (Referencing UDFCD 2001)

COMPOSITE RUNOFF COEFFICIENT CALCULATIONS: PROPOSED CONDITIONS

Subdivision: Elm Grove Villa

Location: CO, Colorado Springs

Project Name:Smith PlumbingProject No.:HCI000008Calculated By:DDJChecked By:GDDate:11/12/21

		Pav	ed/Gravel R	oads	Lav	wns/Undevelo	oped		Roofs			Composito
Basin ID	Total Area (ac)	C ₅	C ₁₀₀	Area (ac)	C ₅	C ₁₀₀	Area (ac)	C ₅	C ₁₀₀	Area (ac)	Composite C ₅	Composite C ₁₀₀
OS-1	0.34	0.90	0.96	0.20	0.09	0.36	0.14	0.73	0.81	0.00	0.57	0.71
OS-2	0.34	0.90	0.96	0.18	0.09	0.36	0.08	0.73	0.81	0.08	0.67	0.78
E-1	0.02	0.90	0.96	0.02	0.09	0.36	0.00	0.73	0.81	0.00	0.90	0.96
E-2	0.10	0.90	0.96	0.10	0.09	0.36	0.00	0.73	0.81	0.00	0.90	0.96
E-3	0.13	0.90	0.96	0.07	0.09	0.36	0.06	0.73	0.81	0.00	0.51	0.67
E-4	0.72	0.90	0.96	0.44	0.09	0.36	0.00	0.73	0.81	0.27	0.84	0.90
E-5	0.11	0.90	0.96	0.11	0.09	0.36	0.00	0.73	0.81	0.00	0.87	0.94
E-6	0.26	0.90	0.96	0.00	0.09	0.36	0.26	0.73	0.81	0.00	0.09	0.36
E-7	0.06	0.90	0.96	0.00	0.09	0.36	0.06	0.73	0.81	0.00	0.09	0.36
E-8	0.12	0.90	0.96	0.05	0.09	0.36	0.07	0.73	0.81	0.00	0.45	0.63

NOTES:

C values are taken directly from Table 6-6 in the Colorado Springs DCM Vol. 1. CH. 6 (Referencing UDFCD 2001) Coeffficients use HSG A&B soils - Refer to "Appendix A: Exhibits and Figures" for soil map

STANDARD FORM SF-2: PROPOSED CONDITIONS TIME OF CONCENTRATION

Subdivision: Elm Grove Villa

Location: CO, Colorado Springs

	8
Project No.:	HCI000008
Calculated By:	DDJ
Checked By:	GD
Date:	11/12/21

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
SUB-BASIN					INITIAL/OVERLAND			TRAVEL TIME									
DATA					(T _i)			(T _t)					(URBANIZED BASINS)			FINAL	
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S	Ti	L	S	Cv	VEL.	Tt	COMP. T _c	TOTAL	Urbanized T _c	T _c
ID	(AC)	Soils Group	(%)	-		(FT)	(%)	(MIN)	(FT)	(%)		(FPS)	(MIN)	(MIN)	LENGTH(FT	(MIN)	(MIN)
OS-1	0.34	A	59.6	0.57	0.71	35	1.2	5.4	0	0.0	15	0.0	0.0	5.4	35.0	10.2	5.4
OS-2	0.34	A	74.6	0.67	0.78	75	2.0	5.4	100	2.0	20	2.8	0.6	6.0	175.0	11.0	6.0
			-														
E-1	0.02	A	100.0	0.90	0.96	30	4.5	1.2	0	0.0	20	0.0	0.0	1.2	30.0	10.2	5.0
E-2	0.10	A	100.0	0.90	0.96	30	4.5	1.2	0	0.0	20	0.0	0.0	1.2	30.0	10.2	5.0
E-3	0.13	A	52.6	0.51	0.67	5	4.0	1.5	185	3.3	20	3.6	0.8	2.4	190.0	11.1	5.0
E-4	0.72	A	96.2	0.84	0.90	100	0.7	5.4	300	0.5	20	1.4	3.5	8.9	400.0	12.2	8.9
E-5	0.11	A	96.3	0.87	0.94	65	1.4	3.0	45	0.5	20	1.4	0.5	3.6	110.0	10.6	5.0
E-6	0.26	A	2.0	0.09	0.36	10	25.0	2.0	450	0.5	15	1.1	7.1	9.1	460.0	12.6	9.1
E-7	0.06	A	2.0	0.09	0.36	10	25.0	2.0	50	0.5	15	1.1	0.8	2.8	60.0	10.3	5.0
E-8	0.12	A	45.5	0.45	0.63	5	2.0	2.1	65	2.0	20	2.8	0.4	2.5	70.0	10.4	5.0

NOTES:

$$\begin{split} T_i &= (0.395*(1.1 - C_5)*(L)^{0.5})/((S)^{0.33}), \ S \ in \ ft/ft \\ T_t &= L/60V \ (Velocity \ From \ Fig. \ 501) \\ Velocity \ V &= Cv^*S^{0.5}, \ S \ in \ ft/ft \\ T_c \ Check &= 10 + L/180 \\ For \ Urbanized \ basins \ a \ minimum \ T_c \ of \ 5.0 \ minutes \ is \ required. \end{split}$$

For non-urbanized basins a minimum T_c of 10.0 minutes is required

Type of Land Surface	Cv
Heavy Meadow	2.5
Tillage/field	5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20
STANDARD FORM SF-3: PROPOSEDCONDITIONS

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision: Location: Design Storm:	Elm G CO, C 5-Yea	rove Villa olorado S r	a prings						-					Pr Ca	oject N Proje Iculate Checke	Name: ct No.: ed By: ed By: Date:	Smith HCI0 DDJ GD 2/2/22	2	oing		
				DIRI	ECT RU	NOFF			1	TOTAL I	RUNOFI	7	STR	REET		PIPE		TRA	VEL T	IME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	I (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	I (in/hr)	Q (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
	1	OS-1	0.34	0.57	5.4	0.19	5.05	1.0													Offsite flows north of property directed southeast per exisitng report
	9	OS-2	0.34	0.67	6.0	0.23	4.90	1.1													Offiste flows northwest of property flowing through site
	2	E-1	0.02	0.90	5.0	0.02	5.17	0.1													Existing basin at entrance which reach Hanock Expressway
	3	E-2	0.10	0.90	5.0	0.09	5.17	0.5													Existing basin through entrace which flows offsite (across existing parking lot)
	8	E-3	0.13	0.51	5.0	0.07	5.17	0.4								1					Basin located along western edge of property line, reaches existing inlet
	4	E-4	0.72	0.84	8.9	0.60	4.30	2.6													Bulk of site which flows towards proposed curb cut-north side pond
	5	E-5	0.11	0.87	5.0	0.10	5.17	0.5								1					Basin along east of pond-releases through curb cut
	6	E-8	0.12	0.45	5.0	0.05	5.17	0.3													Basin along north of pond-releases through curb cut
		E-6	0.26	0.09	9.1	0.02	4.28	0.1								1					Basin along north, east & south property line which drains to the the townhome
		E-7	0.06	0.09	5.0	0.01	5.17	0.1								1					Pond area
	7		1	1		1		1	8.9	0.76	4.30	3.3									All flows entering pond (Basins E-4, E-5, E-7, E-8)
otal Release Into Conc. Pan												24.3				1					EX 23.7 cfs Basin B - 3 cfs (Basin A-6) + DP8 + DP7

STANDARD FORM SF-3: PROPOSED CONDITIONS

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivisio Locatio Design Stor	on: <u>Elm C</u> on: <u>CO, C</u> m: <u>100-Y</u>	rove Vil olorado ear	la Springs											Pr Ca (oject l Proje Iculate Checke	Name: ect No.: ed By: ed By: Date:	Smith HCI0 DDJ GD 2/2/2/	2 Pluml	bing		
				DIRE	CT RU	NOFF			r .	FOTAL	RUNOF	F	STR	REET		PIPF	2	TRA	VEL 1	IME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	I (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	I (in/hr)	Q (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
	1	OS-1	0.34	0.71	5.4	0.24	8.48	2.0													Offsite flows north of property directed southeast per exisitng report
	9	OS-2	0.34	0.78	6.0	0.27	8.22	2.2													Offiste flows northwest of property flowing through site
	2	E-1	0.02	0.96	5.0	0.02	8.68	0.2													Existing basin at entrance which reach Hanock Expressway
	3	E-2	0.10	0.96	5.0	0.10	8.68	0.9									1				Existing basin through entrace which flows offsite (across existing parking lot)
	8	E-3	0.13	0.67	5.0	0.09	8.68	0.8													Basin located along western edge of property line, reaches existing inlet through curb cut
	4	E-4	0.72	0.90	8.9	0.65	7.23	4.7													Bulk of site which flows towards proposed curb cut-north side pond
	5	E-5	0.11	0.94	5.0	0.10	8.68	0.9									1				Basin along east of pond-releases through curb cut
	6	E-8	0.12	0.63	5.0	0.07	8.68	0.6													Basin along north of pond-releases through curb cut
		E-6	0.26	0.36	9.1	0.09	7.18	0.6					1				1				Basin along north, east & south property line which drains to the the townhome property per the exisitng report
		E-7	0.06	0.36	5.0	0.02	8.68	0.2							1		1				Pond area
	7								8.9	0.84	7.23	6.1									All flows entering pond (Basins E-4, E-5, E-7, E-8)
Total Release Into Conc. Pan												39.4									EX 38.4 cfs Basin B - 5.9 cfs (Basin A-6) + DP8 + DP7

APPENDIX C

Hydraulic Computations

Worksheet for Cross Pan to DP 4

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.01600	ft/ft
Left Side Slope	6.00	ft/ft (H:V)
Right Side Slope	6.00	ft/ft (H:V)
Discharge	4.70	ft³/s
Results		
Normal Depth	0.40	ft
Flow Area	0.96	ft²
Wetted Perimeter	4.87	ft
Hydraulic Radius	0.20	ft
Top Width	4.80	ft
Critical Depth	0.52	ft
Critical Slope	0.00393	ft/ft
Velocity	4.90	ft/s
Velocity Head	0.37	ft
Specific Energy	0.77	ft
Froude Number	1.93	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.40	ft
Critical Depth	0.52	ft
Channel Slope	0.01600	ft/ft
Critical Slope	0.00393	ft/ft

Bentley Systems, Inc. Haestad Methods SolBeinthe@eritervMaster V8i (SELECTseries 1) [08.11.01.03]

6/1/2021 4:35:53 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Worksheet for Curb Cut - DP 4

Project Description		
Friction Method	Manning Formula	
Solve For	Bottom Width	
Innut Data		
input Data		
Roughness Coefficient	0.013	
Channel Slope	0.00500	ft/ft
Normal Depth	0.50	ft
Discharge	4.70	ft³/s
Results		
Bottom Width	2.34	ft
Flow Area	1.17	ft²
Wetted Perimeter	3.34	ft
Hydraulic Radius	0.35	ft
Top Width	2.34	ft
Critical Depth	0.50	ft
Critical Slope	0.00499	ft/ft
Velocity	4.02	ft/s
Velocity Head	0.25	ft
Specific Energy	0.75	ft
Froude Number	1.00	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Unstream Denth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.50	ft
Critical Depth	0.50	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.00499	ft/ft

Worksheet for RR Swale-DP 4 to Pond

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Discharge	0.035 0.10500 4.00 4.70	ft/ft ft/ft (H:V) ft/ft (H:V) ft³/s
Results		
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type	0.48 0.91 3.93 0.23 3.81 0.61 0.02758 5.18 0.42 0.89 1.87 Supercritical	ft ft ² ft ft ft ft/ft ft/s ft ft
GVF Input Data		
Downstream Depth Length Number Of Steps	0.00 0.00 0	ft ft
GVF Output Data		
Upstream Depth Profile Description	0.00	ft
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	tt/s
Normal Depth	0.48	ft
Critical Depth	0.61	ft
Channel Slope Critical Slope	0.10500 0.02758	ft/ft ft/ft

Bentley Systems, Inc. Haestad Methods Sol Reinford Operation Master V8i (SELECTseries 1) [08.11.01.03]

11/11/2021 3:35:10 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Worksheet for Curb Cut - DP 5

Project Description		
Friction Method	Manning Formula	
Solve For	Bottom Width	
Input Data		
Developer OperWeised	0.012	
Roughness Coefficient	0.013	£x/£x
Normal Dopth	0.00500	1011 ft
	1.00	ft ³ /c
		1.75
Results		
Bottom Width	0.71	ft
Flow Area	0.35	ft²
Wetted Perimeter	1.71	ft
Hydraulic Radius	0.21	ft
Top Width	0.71	ft
Critical Depth	0.40	ft
Critical Slope	0.00914	ft/ft
Velocity	2.83	ft/s
Velocity Head	0.12	ft
Specific Energy	0.62	ft
Froude Number	0.71	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.50	ft
Critical Depth	0.40	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.00914	ft/ft

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Page 1 of 1

Worksheet for RR Swale-DP 5 to Pond

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.045	
Channel Slope	0.00500	ft/ft
Left Side Slope	4.00	ft/ft (H:V)
Right Side Slope	4.00	ft/ft (H:V)
Discharge	1.00	ft³/s
Results		
Normal Depth	0.52	ft
Flow Area	1.08	ft ²
Wetted Perimeter	4.27	ft
Hydraulic Radius	0.25	ft
Top Width	4.15	ft
Critical Depth	0.33	ft
Critical Slope	0.05604	ft/ft
Velocity	0.93	ft/s
Velocity Head	0.01	ft
Specific Energy	0.53	ft
Froude Number	0.32	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.52	ft
Critical Depth	0.33	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.05604	ft/ft

Bentley Systems, Inc. Haestad Methods SolBeinthe@eritervMaster V8i (SELECTseries 1) [08.11.01.03]

5/26/2021 3:37:01 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Worksheet for Curb Cut - DP 6

Project Description		
Friction Method	Manning Formula	
Solve For	Bottom Width	
Innut Data		
input Data		
Roughness Coefficient	0.013	
Channel Slope	0.00500	ft/ft
Normal Depth	0.50	ft
Discharge	0.40	ft³/s
Results		
Bottom Width	0.37	ft
Flow Area	0.19	ft²
Wetted Perimeter	1.37	ft
Hydraulic Radius	0.14	ft
Top Width	0.37	ft
Critical Depth	0.33	ft
Critical Slope	0.01380	ft/ft
Velocity	2.14	ft/s
Velocity Head	0.07	ft
Specific Energy	0.57	ft
Froude Number	0.53	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Lenath	0.00	ft
Number Of Steps	0	
GVF Output Data		
Linetroom Donth	0.00	f4
Profile Description	0.00	it.
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.50	ft
Critical Depth	0.33	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.01380	ft/ft

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Page 1 of 1

Worksheet for RR Swale-DP 6 to Pond

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.045	
Channel Slope	0.00500	ft/ft
Left Side Slope	4.00	ft/ft (H:V)
Right Side Slope	4.00	ft/ft (H:V)
Discharge	0.40	ft³/s
Results		
Normal Depth	0.37	ft
Flow Area	0.54	ft²
Wetted Perimeter	3.03	ft
Hydraulic Radius	0.18	ft
Top Width	2.94	ft
Critical Depth	0.23	ft
Critical Slope	0.06335	ft/ft
Velocity	0.74	ft/s
Velocity Head	0.01	ft
Specific Energy	0.38	ft
Froude Number	0.30	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.37	ft
Critical Depth	0.23	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.06335	ft/ft

Bentley Systems, Inc. Haestad Methods SolBeinthe@eritervMaster V8i (SELECTseries 1) [08.11.01.03]

6/1/2021 4:37:01 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Worksheet for Ex Pan & Street-Existing Flow

Project Description Friction Method Manning Formula Solve For Normal Depth

Input Data

Channel Slope	0.01300	ft/ft
Discharge	38.40	ft³/s

Section Definitions

Si	ation (ft)	Elevation (ft)
-		
	0+00	1.50
	0+00	0.00
	0+03	-0.25
	0+06	0.00
	0+30	0.48
	0+31	0.52
	0+32	1.02
	0+33	1.02
	0+03 0+06 0+30 0+31 0+32 0+33	-0. -0. 0. 0. 1. 1.

Roughness Segment Definitions

Start Station	E	Ending Station		Roughness Coefficient	
(0+00,	1.50)	(0+	-06, 0.00)		0.012
(0+06,	0.00)	(0+	-30, 0.48)		0.012
(0+30,	0.48)	(0+	-31, 0.52)		0.016
(0+31,	(0+31, 0.52)				0.012
(0+32,	1.02)	(0+	-33, 1.02)		0.012
Options					
Current Roughness Weighted Method	Pavlovskii's Method				
Open Channel Weighting Method	Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Normal Depth		0.63	ft		

Bentley Systems, Inc. Haestad Methods SolBeinthe@eritenvMaster V8i (SELECTseries 1) [08.11.01.03]

2/1/2022 3:47:56 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for Ex Pan & Street-Existing Flow

Results		
Elevation Range	-0.25 to 1.50 ft	
Flow Area	6.65	ft²
Wetted Perimeter	25.43	ft
Hydraulic Radius	0.26	ft
Top Width	25.02	ft
Normal Depth	0.63	ft
Critical Depth	0.79	ft
Critical Slope	0.00302	ft/ft
Velocity	5.77	ft/s
Velocity Head	0.52	ft
Specific Energy	1.15	ft
Froude Number	1.97	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.63	ft
•		
Critical Depth	0.79	ft
Critical Depth Channel Slope	0.79 0.01300	ft ft/ft

2/1/2022 3:47:56 PM

Cross Section for Ex Pan & Street-Existing Flow

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Channel Slope	0.01300	ft/ft
Normal Depth	0.63	ft
Discharge	38.40	ft³/s

Cross Section Image

Worksheet for Ex Pan & Street-Proposed Flow

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Channel Slope	0.01300	ft/ft
Discharge	39.40	ft³/s
Section Definitions		

Station (ft)	Elevation (ft)
0+00	1.50
0+00	0.00
0+03	-0.25
0+06	0.00
0+30	0.48
0+31	0.52
0+32	1.02
0+33	1.02

Roughness Segment Definitions

Start Station	E	Ending Station		Roughness Coefficient	
(0+00,	1.50)	(0+	06, 0.00)	().012
(0+06,	0.00)	(0+	30, 0.48)	0).012
(0+30,	0.48)	(0+	31, 0.52)	C).016
(0+31,	0.52)	(0+	32, 1.02)	C).012
(0+32,	1.02)	(0+	33, 1.02)	().012
Options					
Current Roughness Weighted Method	Pavlovskii's Method				
Open Channel Weighting Method	Pavlovskii's Method				
Closed Channel Weighting Method	Pavlovskii's Method				
Results					
Normal Depth		0.64	ft		

Bentley Systems, Inc. Haestad Methods SolBeinthe@eritenvMaster V8i (SELECTseries 1) [08.11.01.03]

2/1/2022 3:48:29 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for Ex Pan & Street-Proposed Flow

Result	s
resuit	3

Elevation Range	-0.25 to 1.50 ft		
Flow Area		6.78	ft²
Wetted Perimeter		25.69	ft
Hydraulic Radius		0.26	ft
Top Width		25.28	ft
Normal Depth		0.64	ft
Critical Depth		0.80	ft
Critical Slope		0.00300	ft/ft
Velocity		5.81	ft/s
Velocity Head		0.52	ft
Specific Energy		1.16	ft
Froude Number		1.98	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity			
		Infinity	ft/s
Upstream Velocity		Infinity Infinity	ft/s ft/s
Upstream Velocity Normal Depth		Infinity Infinity 0.64	ft/s ft/s ft
Upstream Velocity Normal Depth Critical Depth		Infinity Infinity 0.64 0.80	ft/s ft/s ft ft
Upstream Velocity Normal Depth Critical Depth Channel Slope		Infinity Infinity 0.64 0.80 0.01300	ft/s ft/s ft ft ft/ft
Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope		Infinity Infinity 0.64 0.80 0.01300 0.00300	ft/s ft/s ft ft ft ft/ft

Cross Section for Ex Pan & Street-Proposed Flow

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Channel Slope	0.01300	ft/ft
Normal Depth	0.64	ft
Discharge	39.40	ft³/s

Cross Section Image

Worksheet for Existing Inlet Capacity

Project Description		
Solve For	Discharge	
Input Data		
Headwater Elevation	3.70	ft
Crest Elevation	3.20	ft
Tailwater Elevation	0.00	ft
Weir Coefficient	3.00	US
Crest Length	15.00	ft
Number Of Contractions	0	
Results		
Discharge	15.91	ft³/s
Headwater Height Above Crest	0.50	ft
Tailwater Height Above Crest	-3.20	ft
Flow Area	7.50	ft²
Velocity	2.12	ft/s
Wetted Perimeter	16.00	ft
Top Width	15.00	ft

		on 3.06 November 2016)				
Designer:	DD-BMP (Vers	Sneet 1				
Company:	Galloway					
Date:	November 11, 2021					
Project:	HVI000007					
Location:	1875 Main Street					
1. Design Di	scharge					
A) 2-Year	Peak Flow Rate of the Area Draining to the Grass Buffer	$Q_2 = $				
2. Minimum	Width of Grass Buffer	$W_G = 1$ ft				
3. Length of	Grass Buffer (14' or greater recommended)	$L_{\rm G} = \underline{237}$ ft				
4. Buffer Slo	pe (in the direction of flow, not to exceed 0.1 ft / ft)	$S_{G} = 0.100$ ft / ft				
5. Flow Cha	racteristics (sheet or concentrated)					
A) Does entire	runoff flow into the grass buffer across the width of the buffer?	Ves No				
B) Water	shed Flow Length	F _L =ft				
C) Interfa	ice Slope (normal to flow)	S ₁ =ft / ft				
D) Type (of Flow	SHEET FLOW				
Sheet	Flow: $F_L * S_I \leq 1$ entrated Flow: $F_L * S_I > 1$					
6. Flow Distr	ibution for Concentrated Flows	Choose One None (sheet flow) Slotted Curbing Level Spreader Other (Explain):				
7 Soil Prepa	aration					
(Describe	soil amendment)					
8 Vegetatio	n (Check the type used or describe "Other")	Choose One Existing Xeric Turf Grass Irrigated Turf Grass Other (Explain):				
0.1.1.1						
9. Irrigation (*Select N AND will r	lone if existing buffer area has 80% vegetation not be disturbed during construction.)	Temporary Permanent None*				
10. Outflow Collection (Check the type used or describe "Other")		Choose One Grass Swale Street Gutter Storm Sewer Inlet Other (Explain):				
		Sheet flow offsite per the exisitng drainage report, ultimately ending up in the existing Detention Pond.				
Notes:						

If this what you are trying to use to show Runoff Reduction, it is not sufficient. Please go to MHFD's website and subsequent Software page and use their latest UD-BMP spreadsheet (v3.07). See "Runoff Reduction" tab on that spreadsheet.

Site-Level	Site-Level Low Impact Development (LID) Design Effective Impervious Calculator													
		LID Creat	t by impe	ervious R	eductio	n Factor	(IRF) IVIE	thou						
User Input			UD	-BMP (Version	13.06, Noverr	iber 2016)								
Calculated cells				Designer:	CMD	way 8. Co								
***Design Storm: 1-Hour Rain Depth WOCV Event	0.60	inches		Date:	Febru	way & CO. Jary 1, 2022								
••••Minor Storm: 1-Hour Rain Depth 5-Year Event	1.50	inches		Project:	Lot 2	Fim Grove	Villa - Smith	n Plumbina	- WOCV Po	nd				
Major Storm: 1-Hour Rain Depth 100-Year Event	2.52	inches		Location:	El Pas	o County. C	0							
Optional User Defined Storm CUHP														
(CUHP) NOAA 1 Hour Rainfall Depth and Frequency for User Defined Storm 100-Year Event														
Max Intensity for Optional User Defined Storm 0														
SITE INFORMATION (USER-INPUT)														
Sub-basin Identifier	E-6													
Receiving Pervious Area Soil Type	Sand													
Receiving For House we ability po						L				L				
Total Area (ac., Sum of DCIA, UIA, RPA, & SPA)	0.260					ļ	L			ļ	L	L		
Directly Connected Impervious Area (DCIA, acres)	0.000													
Unconnected Impervious Area (UIA, acres)	0.000													├ ───┤
Receiving Pervious Area (RPA, acres)	0.260													├ ───┤
Separate Pervious Area (SPA, acres)	0.000													
Volume (V), or Permeable Pavement (PP)	v													
CALCULATED RESULTS (OUTPUT)														
Total Calculated Area (ac, check against input)	0.260													
Directly Connected Impervious Area (DCIA, %)														
Unconnected Impervious Area (UIA, %)														
Receiving Pervious Area (RPA, %) 10														
Separate Pervious Area (SPA, %)	0.0%													
A _R (RPA / UIA)	0.000													
I _a Check	1.000													
f / I for WQCV Event:	9.8													
f / I for 5-Year Event:	0.6													
f / I for 100-Year Event:	0.6													
t / I for Optional User Defined Storm CUHP:	0.00								+					
IRF for WQCV Event:	0.00								+					
IRF for 5-Year Event:	1.00								+					┥──┤
IRF for Optional User Defined Option	1.00						1	-	+		-	-		+
Total Site Imperviouspess: 1	0.0%								+			-		
Effective Imperviousness for WOCV Event	0.0%					-			+	-				<u> </u>
Effective Imperviousness for 5-Year Event	0.0%					1	1	1	+	1	1	1		
Effective Imperviousness for 100-Year Event:	0.0%					1				1				
Effective Imperviousness for Optional User Defined Storm CUHP:						1		L			L			
LID / EFFECTIVE IMPERVIOUSNESS CREDITS WOOV Event OPEDIT: Deduce Detention Pro-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
This line only for 10-Year Event	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A
100-Year Event CREDIT**: Reduce Detention By: User Defined CUHP CREDIT: Reduce Detention By:	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Total Site Im	perviousness:	0.0%		Notes:									
Total Site Effective Imne	rviousness for	WQCV Event:	0.0%		[*] Use Green	-Ampt average	e infiltration	rate values fi	rom Table 3-3	3				
Total Site Effective Impe	rviousness for	5-Year Event:	0.0%		** Flood con	trol detention	n volume crec	lits based on	empirical en	Jations from !	Storage Chan	ter of USDCM		
Total Site Effective Imperv	ousness for 10	0-Year Event:	0.0%		*** Method	d assumes that	it 1-hour raini	fall depth is e	equivalent to	1-hour intens	ity for calcula	ition purposed	d	
Total Site Effective Imperviousness for Option	al User Defined	d Storm CUHP:	L											

Pond Calculations

Detention Pond Tributary Areas

Subdivision:Elm Grove VillaLocation:CO, Colorado Springs

Elm Grove Villa
HCI000008
DDJ
GD
11/12/21

Pond		
Basin	Area	% Imp
E-4	0.72	96.2
E-5	0.11	96.3
E-7	0.06	2
E-8	0.12	45.5
Total	1.00	84.6

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

				MHF	D-Detention, Versic	n 4.03 (Ma
Project:	Smith Plum	oing				
Basin ID:	WQCV Pond					
ZONE 3	2					
	ONE 1					
VOLUME EURV Wacv		L				
		100-YEAF	1		Donth Incompant -	
PERMANENT ORIFIC		Depth Increment =				
POOL Example Zone	Configuratio	on (Retentio	n Pond)		Stage - Storage	Stage
					Description	(ft)
Watershed Information		1		5846.17	Top of Micropool	
Selected BMP Type =	EDB			5846.5	Trickle Channel Inv	
Watershed Area =	1.00	acres			5847	
Watershed Length =	430	ft			5847.5	
Watershed Length to Centroid =	170	ft			5848	
Watershed Slope =	0.025	ft/ft			5848.5	
Watershed Imperviousness =	84.60%	percent			5849	
Percentage Hydrologic Soil Group A =	100.0%	percent			5849.5	
Percentage Hydrologic Soil Group B =	0.0%	percent			5850	
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			5850.4	
Target WQCV Drain Time =	40.0	hours				
Location for 1-hr Rainfall Depths =	User Input					
After providing required inputs above inc	luding 1-hour	rainfall				
depths, click 'Run CUHP' to generate run	off hydrograph	s using				
the embedded Colorado Urban Hydro	igraph Procedu	ire.	Optional User	Overrides		
Water Quality Capture Volume (WQCV) =	0.030	acre-feet		acre-feet		
Excess Urban Runoff Volume (EURV) =	0.113	acre-feet		acre-feet		
2-yr Runoff Volume (P1 = 1.19 in.) =	0.076	acre-feet	1.19	inches		
5-yr Runoff Volume (P1 = 1.5 in.) =	0.099	acre-feet	1.50	inches		
10-yr Runoff Volume (P1 = 1.75 in.) =	0.117	acre-feet	1.75	inches		
25-yr Runoff Volume (P1 = 2 in.) =	0.137	acre-feet	2.00	inches		
50-yr Runoff Volume (P1 = 2.25 in.) =	0.157	acre-feet	2.25	inches		
100-yr Runoff Volume (P1 = 2.52 in.) =	0.180	acre-feet	2.52	inches		
500-yr Runoff Volume (P1 = 3.68 in.) =	0.275	acre-feet	3.68	inches		
Approximate 2-yr Detention Volume =	0.074	acre-feet				
Approximate 5-yr Detention Volume =	0.097	acre-feet				
Approximate 10-yr Detention Volume =	0.115	acre-feet				
Approximate 25-yr Detention Volume =	0.136	acre-feet				
Approximate 50-yr Detention Volume =	0.148	acre-feet				
Approximate 100-yr Detention Volume =	0.159	acre-feet				

Total detention volume is less than 100-year volume.

Define Zones and Basin Geometry Zone 1 Volume (WQCV) = 0.030 acre-feet

zone i volume (mgev) -	01050	dere rece
Select Zone 2 Storage Volume (Optional) =		acre-feet
Select Zone 3 Storage Volume (Optional) =		acre-feet
Total Detention Basin Volume =	0.030	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

Depth Increment =		ft				Ontional			
Stage - Storage	Stage	Optional	Length	Width	Area	Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
Top of Micropool		0.00				32	0.001		
Trickle Channel Inv		0.33				32	0.001	11	0.000
E947		0.92				149	0.002	56	0.001
5047		0.05				140	0.005	50	0.001
5847.5		1.33				411	0.009	195	0.004
5848		1.83				566	0.013	440	0.010
5848.5		2.33				759	0.017	771	0.018
5849		2.83				1,016	0.023	1,215	0.028
5849.5		3.33				1,333	0.031	1,802	0.041
5850		3.83				1,729	0.040	2,567	0.059
5850.4		4.23				2,214	0.051	3,356	0.077
								1	
								1	
								-	
								+	
								+	
								1	

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

MHPD-Detention, Version 4.03 (May 2020) WHPD-Detention, Version 4.03 (May 2020) Same 201 Estimated Estimated Estimated Estimated Same 201 Calculated Parameters for Underdrain Calculated Parameters for Underdrain Calculated Parameters for Underdrain Calculated Parameters for Underdrain March 1000000000000000000000000000000000000	MP2-Detention, Version 4.03 (My2 Joss) Provide the transmission of the transmission of the transmission of the transmission of transmissi of transmission of transmission of transmis									
Promitive production of the producting pr	The set in the "QCV read Estimated Stage (f) Volume (ac-ft) Outlet Type Conconfiguration (Retention Point) Conconfiguration (Retention Point) Conconfiguration (Retention Point) Conconfiguration (Retention Point) Conconfiguration (Retention Point) Conconfiguration (Retention Point) Conconfiguration (Retention Point) Conconfiguration (Retention Point) Conconfiguration (Retention Point) Conconfiguration (Retention Point) Conclusted Parameters for Underdrain Underdrain Onfice Network Depth = NNA Conclusted Parameters for Underdrain Underdrain Onfice Network Depth = NNA Conclusted Parameters for Underdrain Marc Induct of Vandor Plate Induct (tyrical) used to drain WOCV and/or EURV in a sedimentation BMP) Conclusted Parameters for Underdrain Underdrain Onfice Network Drifte Plate Induct Stage = 0 ft) Conclusted Parameters for Underdrain Outlies Plate with one or more onfices or Elliptical Stot Wer (tyrical) used to drain WOCV and/or EURV in a set/interaction BMP) Conclusted Parameters for Underdrain Under Induct Stop of Zone using Onfice Plate									
Image: Input: Onfice Plate with one or more offices or Elliptical Sox Weir (typically used to drain WQCV and/or EURV in a sed/metation Office Area per Row = 0.030 Calculated Parameters for Underdrain Underdrain Underdrain Office Plate with one or more offices or Elliptical Sox Weir (typically used to drain WQCV and Xia Stage = 0 ft) Calculated Parameters for Underdrain Underdrain Office Plate with one or more offices or Elliptical Sox Weir (typically used to drain WQCV and Xia Stage = 0 ft) Calculated Parameters for Underdrain Underdrain Office Plate with one or more offices or Elliptical Sox Weir (typically used to drain WQCV and Xia Stage = 0 ft) Calculated Parameters for Underdrain Underdrain Office Area per Row = 0.030 User Input: Onfice Plate with one or more offices or Elliptical Sox Weir (typically used to drain WQCV and Xia Stage = 0 ft) Underdrain Office Area per Row = 0.000 Calculated Parameters for Underdrain Underdrain Office Area per Row = 0.000 User Input: Office Plate: with one or more offices or Elliptical Sox Weir (typically used to drain WQCV and Xia Stage = 0 ft) Elliptical Holf Width = NIA feet Underdrain Office Area per Row = 0.12 2.92 inches (dameter = 3/8 inch) Elliptical Sox Centrod = NIA feet User Input: Stage and Tetal Area of Each Office Row (numbered from Invest to highest) Row 3 (optional) Row 3 (optional) Row 1 (optional) Row 5 (optional) Row 7 (optional) Row 1 (optional)	Image: Stage (h) Stage (h) Outlet Type Stage (h) Volume (a:A) Outlet Type Stage (h) Outlet Type Underdrain Office at Inderdrain Outlet (typically used to drain WQCV) in a filtration BMP Calculated Parameters for Underdrain Underdrain Office Diameter = NA Inderdrain Office Plate with one or more offices or Elliptical Stot Weir (typically used to drain WQCV and/or EURV in a stedimentation BMP) Calculated Parameters for Plate Intervet of Lowest Office = 0.00 ft (relative to basin bottom at Stage = 0 ft) Elliptical Stot Centroid = NA Office Plate: Onfice Vertical Spacing = 0.12 sa, inches (diameter = 3/8 inch) Elliptical Stot Centroid = NA ft et User Input: Stage and Total Area of Each Office Rev (numbered from lowest to highest) Row 1 (optional) Row 1 (optional) <t< td=""></t<>									
Stage (ft) Volume (ac:ft) Outlet Type Junce Zone 1 (WQC) Zone 1 (WQC) Zone 2 (Dot 2) Dot 2) Junce Zone 1 (WQC) Zone 2 (Dot 2) Dot 2) Dot 2) Total (all zones) D.030 Outlet Type Underdrain Onfice Invert Deth NA ft (distance below the filtration media surface) Underdrain Onfice Area (Dot 2) NA ft etc Underdrain Onfice Invert Deth NA ft (distance below the filtration media surface) Underdrain Onfice Area (Dot 2) Calculated Parameters for Underdrain User Input: Onfice Plate with one or more onfices or Elliptical Soc Weit (Opically used to drain WOCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate User Input: Onfice Plate with one or more onfices or Elliptical Soc Weit (Opically used to drain WOCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate Depth at top of Zone using Onfice Plate = 0.00 ft (relative to basin bottom at Stage = 0 ft) Elliptical Soc Arenoid = NA User Input: Stage and Total Area of Each Onfice Row (numbered from lowest to highest) Row 1 (optional) Row 1	Image: Input: Onfice Plate with one or more onfices or Elliptical Slot Veri (hypically used to drain VQCV and Filtration media surface) Image: Input: Onfice Plate with one or more onfices or Elliptical Slot Veri (hypically used to drain VQCV and Filtration media surface) Image: Input: Onfice Plate with one or more onfices or Elliptical Slot Veri (hypically used to drain VQCV and Filtration media surface) Image: Input: Onfice Plate with one or more onfices or Elliptical Slot Veri (hypically used to drain VQCV and Filtration media surface) Image: Input: Onfice Plate with one or more onfices or Elliptical Slot Veri (hypically used to drain VQCV and or EURV in a sedimentation BMP) Calculated Parameters for Underdrain Image: Input: Onfice Plate with one or more onfices or Elliptical Slot Veri (hypically used to drain VQCV and or EURV in a sedimentation BMP) Calculated Parameters for Plate Image: Input: Onfice Plate with one or more onfices or Elliptical Slot Veri (hypically used to drain VQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate Image: Input: Stage and Infe Area per Row = 0.00 110 2.32 110									
violet Cone 1 (WQCV) 2.92 0.030 Onfice Plate violet Example Zone Configuration (Retention Pond) Total (all zones) 0.030 User Input: Onfice Atlanderdina Onfice Invert Depth NA ft (distance below the filtration media surface) Underdrain Onfice Area = NA Underdrain Onfice Diameter NA ft (distance below the filtration media surface) Underdrain Onfice Area = NA ft ² Underdrain Onfice Diameter NA ft (distance below the filtration media surface) Underdrain Onfice Area = NA ft ² Underdrain Onfice Diameter 0.000 ft (relative to basin bottom at Stage = 0 ft) W0 Onfice Area per Row = Calculated Parameters for Plate Depth at top of Zone using Onfice Plate 13.000 inches NA ft (relative to basin bottom at Stage = 0 ft) Elliptical Native Media NA ft efet User Input: Stage of Onfice Read Frace Onfice Row (numbered from lowest to highest) NA ft efet NA ft efet User Input: Stage of Onfice Centrol (ft) 0.00 1.10 2.20 1.32 inches Stage of Onfice Read space Row 1 (optional) Row 1 (optional) Row 1 (optional) Row 1 (optional) <td>View we w</td>	View we w									
Joint Linest Joint Linest <td< td=""><td>Joint 1007 Joint 1007 Joint 1007 Joint 2 Joint</td></td<>	Joint 1007 Joint 1007 Joint 1007 Joint 2 Joint									
Just Mark Joint Mark Joint Mark Joint Mark Light Institution Control of Lample 2 One Configuration (Retention Pond) Total (all zones) 0.030 User Liput: Orfice At Underdrain Orfice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orfice Area = N/A feet User Liput: Orfice Plate with one or more orfifces or Elliptical Slot Veir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Underdrain Underdrain Orfice Plate with one or more orfifces or Elliptical Slot Veir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate Underdrain Orfice Vertical Spacing = 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Orfice Area per Row = 8.33324-04 ft ² Orfice Plate: Orfice Vertical Spacing = 0.12 sq. inches (diameter = 3/8 inch) Elliptical Slot Area = N/A feet User Liput: Stage of Orfice Centroid (ft) 0.12 0.12 0.12 sq. Stage of Orfice Centroid (ft) 0.12 0.12 0.12 0.12 sq. feet Stage of Orfice Area (sq. inches) 10.10 2.20 ft (relative to basin bottom at Stage = 0 ft) Row 14 (optional)	Junction Junct									
Proc. Example Zone Configuration (Retention Pond) Total (all zones) 0.030 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Underdrain Orifice Tower Depth N/A ft ² Underdrain Orifice Tower Depth N/A ft (distance below the filtration media surface) Underdrain Orifice Centroid = N/A ft ² User Input: Orifice Plate with one or more orifices or Elliptical Sid: Weir (typically used to drain WOCV and/or EURV in a sedimentation BMP) WQ Orifice Area per Row = 6.333E-04 ft ² Depth at top of Zone using Orifice Plate 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Orifice Area per Row = 6.333E-04 ft ² Orifice Plate: Orifice Vertical Spacing = 13.00 inches Elliptical Sid: Centroid = N/A ftet Orifice Plate: Orifice Area per Row = 0.12 sq. inches (diameter = 3/8 inch) Elliptical Sid: Centroid = N/A ft ² User Input: Stage of Orifice Centroid (ft) 0.00 1.0 2.30 N/4 (optional) Row 4 (optional) Row 5 (optional) Row 16 (optional) Stage of Orifice Centroid (ft) 0.00 1.0 2.30 N/A ftet Intervention of the Centroid (ft) Row 16 (optional)	Dot Example Zone Configuration (Retention Pond) Total (all zones) 0.030 User Input: Orfice at Inderdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Underdrain Orfice Diameter = N/A inches N/A ft (elative to basin bottom at Stage = 0 ft) Underdrain Orfice Centroid = N/A ft (relative to basin bottom at Stage = 0 ft) WQ Orfice Area per Row = 8.333E-04 ft ² Depth at top of Zone using Orfice Plate = 0.00 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet Orfice Plate: Orfice Vertical Spacing = 13.00 inches Elliptical Slot Centroid = N/A feet Orfice Plate: Orfice Centroid (ft) 0.00 1.10 2.20 nches N/A feet Orfice Plate: Orfice Centroid (ft) 0.012 0.12 0.12 0.12 nches N/A feet User Input: Stage of Orfice Centroid (ft) 0.02 1.00 2.20 nches N/A feet User Input: Stage of Orfice Centroid (ft) 0.12 0.12 0.12 0.12 0.12 nches User Input: Vertical Orf									
User Input: Orifice at Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Area = N/A ft (distance below the filtration media surface) Underdrain Orifice Area = N/A ft (distance below the filtration media surface) Underdrain Orifice Area = N/A ft (distance below the filtration media surface) Underdrain Orifice Area = N/A ft (distance below the filtration media surface) Underdrain Orifice Area = N/A ft (distance below the filtration media surface) Underdrain Orifice Area = N/A ft (distance below the filtration media surface) Underdrain Orifice Area = N/A ft (distance below the filtration media surface) N/A ft (distance below the filtration media surface) Underdrain Orifice Area per Row = 8.333E-04 ft ? Depth at to orifice Plate: Orifice Plate: Orifice Plate: 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Orifice Area per Row = N/A ft ? User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) N/A ft ? User Input: Stage of Orifice Centroid (ft) 0.00 1.10 2.20 ft ? ft ? ft ? User Input: Stage of Orifice Centroid (ft) 0.012 0.12 0.12 ft ? ft	User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Area = N/A ft feet User Input: Orifice Diameter = N/A ft (distance below the filtration media surface) Underdrain Orifice Area = N/A ft feet User Input: Orifice Diameter = 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Orifice Area per Row = 8.333E-04 ft feet Orifice Plate: Orifice Plate: orifice Vertical Spacing = 13.00 inches Elliptical Stot Centroid = N/A ffeet Orifice Plate: Orifice Plate: Orifice Row (numbered from Iowest to highest) Elliptical Stot Area = N/A ffeet User Input: Stage and Total Area of Each Orifice Row (numbered from Iowest to highest) Row 1 (required) Row 1 (optional) Row 1 (optional) Row 3 (optional) Row 1 (optional) Ro									
Underdrain Onfice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Onfice Area = N/A ft ² Underdrain Onfice Nameter = N/A ft (relative to basin bottom at Stage = 0 ft) Underdrain Onfice Centroid = N/A ft ² Underdrain Onfice Nameter = 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Onfice Area per Row = 8.333-604 ft ² Depth at top of Zone using Onfice Plate = 2.92 ft (relative to basin bottom at Stage = 0 ft) WQ Onfice Area per Row = N/A fteet Onfice Plate: Onfice Plate: Onfice Area per Row = 0.12 sq. inches (diameter = 3/8 inch) Elliptical Slot Centroid = N/A fteet User Input: Stage of Onfice Centroid (ft) 0.00 1.10 2.20 normal Row 3 (optional) Row 1 (optional) Row 1 (squined) Row 1	Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Area = N/A ft ² User Input: Orifice Plate with one or more orifices or Elliptical Slot Werl (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Orifice Area per Row = 8.333E-04 ft ² Orifice Plate: Orifice Vertical Spacing = 0.292 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = 8.333E-04 ft ² Orifice Plate: Orifice Vertical Spacing = 0.12 sq. inches (diameter = 3/8 inch) Elliptical Slot Centroid = N/A feet User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 4 (optional) Row 5 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.12									
Underdrain Orifice Diameter = N/A inches Underdrain Orifice Centrold = N/A feet User Input:: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate Invert of Lowest Orifice 2 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Orifice Area per Row = 8.3335-04 h² Depth at top of Zone using Vertical Orifice Row (numbered from lowest to highest) Elliptical Slot Area = N/A feet User Input:: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 4 (optional) Row 5 (optional) Row 7 (optional) Row 7 (optional) Stage of Orifice Centroid (ft) 0.12 0.1	Underdrain Orifice Diameter = N/A inches Underdrain Orifice Centroid = N/A feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate Depth at top of Zone using Orifice Plate = 0.00 ft (relative to basin bottom at Stage = 0 ft) Elliptical Slot Centroid = N/A feet Orifice Plate: Orifice Price Parameters for Plate 0.12 sq. inches Elliptical Slot Centroid = N/A feet User Input: Stage of Orifice Area per Row = 0.12 sq. inches (diameter = 3/8 inch) Elliptical Slot Area = N/A ft ² User Input: Stage of Orifice Centroid (ft) 0.00 1.10 2.20 now 4 (optional) Row 5 (optional) Row 7 (optional) Row 8 (optional) Orifice Area (sq. inches) 0.12 <t< td=""></t<>									
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate Depth at top of Zone using Orifice Plate: 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Orifice Area per Row = 8.333E-04 ft ² Orifice Plate: Orifice Plate: 0.12 sq. inches Elliptical Slot Certroid Plate: N/A feet Orifice Plate: Orifice Area per Row = 0.12 sq. inches Elliptical Slot Certroid Plate: N/A feet User Input: Stage of Orifice Centroid (ft) 0.00 11.00 2.20 ft (relative to basin obtomal) Row 4 (optional) Row 5 (optional) Row 7 (optional) Row 7 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 1.12 0.12	User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate Invert of Lowest Orifice 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Orifice Area per Row = Rev 2,92 Orifice Plate: Orifice Vertical Spacing = 0.12 st. inches Biliptical Slot Centroid = N/A Orifice Plate: Orifice Area per Row = 0.12 st. inches Galameter = 3/8 inch) Elliptical Slot Centroid = N/A User Input: Stage of Orifice Centroid (ft) Row 1 (required) Row 2 (optional) Row 4 (optional) Row 1 (optional)									
User Input: Ontice Plate with one or more onlines or Elliptical Slot Weir (Vipically used to frain WQC) and/or EURV in a sedimentation BMP1 Calculated Parameters for Plate Invert of Lowest Onlice = 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Onlice Area per Row = 8.332-04 ft / elative Depth at top of Zone using Onlice Plate = 13.00 inches Elliptical Slot Centroid = N/A feet Onlice Plate: Onlice Area per Row = 0.12 sq. inches (diameter = 3/8 inch) Elliptical Slot Centroid = N/A ft' User Input: Stage of Onlice Centroid (ft) 0.00 1.10 2.20 ft' ft' Stage of Onlice Centroid (ft) 0.00 1.10 2.20 ft' ft' ft' Stage of Onlice Centroid (ft) 0.00 1.10 2.20 ft' ft' ft' Stage of Onlice Centroid (ft) 0.00 1.10 2.20 ft' ft' ft' Stage of Onlice Centroid (ft) 0.00 1.10 2.20 ft' ft' ft' Onlice Area (sq. inches) 0.12 0.12 0.12 ft' ft' ft' Onlice Centroid (ft) 0.12 0.12 0.12 ft'	User Input: Onlice Plate with one or more onlices or Elliptical Stot Wer (typically used to drain bottom at Stage = 0 ft) WQ Onlice Area per Row = Calculated Parameters for Plate Depth at top of Zone using Onlice Plate = 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Onlice Area per Row = 8.333E-04 ft? Orlice Plate: Onlice Plate: Onlice Area per Row = 0.12 sq. inches (diameter = 3/8 inch) Elliptical Slot Centroid = N/A feet User Input: Stage and Total Area of Each Onlice Row (numbered from lowest to highest) Elliptical Slot Area = N/A ft? Stage of Onlice Area (sq. inches) 0.12 0.12 0.12 0.12 0.12 0.12 0.12 n/A feet Stage of Onlice Centroid (ft) 0.01 1.00 2.20 n/A for N/A feet Orlice Area (sq. inches) 0.12 0.12 0.12 0.12 n/A feet Orlice Area (sq. inches) 0.12 0.12 0.12 n/A feet Orlice Area (sq. inches) 0.12 0.12 0.12 n/A feet User Input: Vertical Onlice Centroid (ft) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 14 (optional) </td									
Invert of Under Storike 2 0.00 If (relative to basin bottom at Stage = 0 ft) WU Ontate Area per Row = 0.3352-V4 ft" Depth at top of Zone using Onfice Plate: Orifice Vertical Spacing = 13.00 inches NA feet Orifice Plate: Orifice Vertical Spacing = 0.12 sq. inches Elliptical Slot Centroid = N/A feet User Input: Stage of Orifice Centroid (ft) 0.00 1.10 2.20 1 Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 1.10 2.20 0.12 <td< td=""><td>Invert of Lowes Office 0.000 It (relative to basin bottom at Stage = 0 ft) WU Office Area per Row = 0.3352-04 ft Depth at top of Zone using Office Plate = 0.92 ft (relative to basin bottom at Stage = 0 ft) Elliptical Slot Centroid = N/A feet Orifice Plate: Orifice Vertical Spacing = 13.00 inches Elliptical Slot Centroid = N/A feet Orifice Plate: Orifice Area per Row = 0.12 sq. inches (diameter = 3/8 inch) Elliptical Slot Area = N/A feet User Input: Stage of Orifice Centroid (ft) 0.00 1.10 2.20 not solution at Stage = 0 for an an</td></td<>	Invert of Lowes Office 0.000 It (relative to basin bottom at Stage = 0 ft) WU Office Area per Row = 0.3352-04 ft Depth at top of Zone using Office Plate = 0.92 ft (relative to basin bottom at Stage = 0 ft) Elliptical Slot Centroid = N/A feet Orifice Plate: Orifice Vertical Spacing = 13.00 inches Elliptical Slot Centroid = N/A feet Orifice Plate: Orifice Area per Row = 0.12 sq. inches (diameter = 3/8 inch) Elliptical Slot Area = N/A feet User Input: Stage of Orifice Centroid (ft) 0.00 1.10 2.20 not solution at Stage = 0 for an									
Deprive roles using the role 13.00 includes 14.00<	$\frac{12.02}{13.00} created = \frac{12.02}{13.00} created = \frac{13.00}{12} created = \frac{13.00}{1$									
Orifice Plate: Orifice Area per Row = 0.12 sq. inches (diameter = 3/8 inch) Elliptical Slot Area = N/A ft ² User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 1.10 2.20 - </td <td>Orifice Plate: Orifice Area per Row = 0.12 sq. inches (diameter = 3/8 inch) Elliptical Slot Area = N/A R² User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Image: Control of the control</td>	Orifice Plate: Orifice Area per Row = 0.12 sq. inches (diameter = 3/8 inch) Elliptical Slot Area = N/A R ² User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Image: Control of the control									
User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Stage of Orifice Centroid (t) Orifice Area (sq. inches) 0.12 0.12 Stage of Orifice Centroid (t) Orifice Area (sq. inches) 0.12 0.12 Stage of Orifice Centroid (t) Orifice Area (sq. inches) 0.12 0.12 User Input: Vertical Orifice Centroid (t) Orifice Area (sq. inches) Invert of Vertical Orifice = Vertical Orifice Diameter = Vertical Orifice Total Orifice Diameter = Vertical Orifice Diameter = Vertical Orifice Diameter = Vertical Orifice Total Orifice Diameter = Ve	User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 1.10 2.20 Image: contrast of the stage of Orifice Centroid (ft) Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft) Image: contrast of the stage of Orifice Centroid (ft) Image: contrast of the stage of Orifice Centroid (ft) Image: contrast of the stage of Orifice Centroid (ft) Image: contrast of the stage of Orifice Centroid (ft) Image: contrast of the stage of Orifice Centroid (ft) Image: contrast of the stage of Orifice Centroid (ft) Image: contrast of the stage of Orifice Centroid (ft) Image: contrast of the stage of Orifice Centroid (ft) Image: contrast of the stage of Orifice Centroid (ft) Image: contrast of the stage of Orifice Centroid (ft) Image: contrast of the stage of Orifice Centroid (ft) Image: contrast of the stage of Orifice Centroid (ft) Image: contrast of the stage of Orifice Centroid (ft) Image: contrast of the stage of Orifice Centroid (ft) Image: contrast of the stage of Orifice Centroid (ft) Image: contrast of the stage of Orifice Centroid (ft) Image: contrast of the stage of Orifice Centroid (ft)									
User Input: Stage and Total Area of Each Orfice Row (numbered from lowest to highest). Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 1.10 2.20 0.12 0.12 0.12 0.12 Orifice Area (sq. inches) 0.12 0.12 0.12 0.12 0.12 0.12 Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Row 10 (optional) Row 11 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) User Input: Vertical Orifice Circular or Rectangular) Invert of Vertical Orifice = Invert of Vertical Orifice = It (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = ft ² Depth at top of Zone using Vertical Orifice = It (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = ft ² Vertical Orifice Diameter = Inches It (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = ft ² User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe). Calculated Parameters for Overflow Weir Not Selected Not Sel	User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 1.10 2.20 -									
User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 1.10 2.20 Image: Control of Centroid (ft) Row 8 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.12 0.12 0.12 0.12 0.12 Image: Control of Centroid (ft) Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft) Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 15 (optional) Row 16 (optional) Orifice Area (sq. inches) Image: Control of fice Not Selected Not Selected Not Selected Not Selected Row 16 (optional)	User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 1.10 2.20 Image: Control of Contr									
Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (t) 0.00 1.10 2.20 -	Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 1.10 2.20 0.12									
Stage of Orifice Centroid (ft) 0.00 1.10 2.20 Image: Control of	Stage of Orifice Centroid (ft) 0.00 1.10 2.20 Image: Control of									
Orifice Area (sq. inches) 0.12	Orifice Area (sq. inches) 0.12 0.12 0.12 0.12 0.12 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (th)									
Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft)	Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (th) Orifice Area (sq. inches) Image: Control of Cont									
Now 12 (dpddial) Now 12 (dpddial) Now 12 (dpddial) Now 13 (dpddial) Not Selected Not	Kow 5 (bpdola) Kow 10 (bpdola) Kow 11 (bpdola) Kow 13 (bpdola) K									
User Input: Vertical Orifice Area (sq. inches) Calculated Parameters for Vertical Orifice User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Invert of Vertical Orifice = Not Selected Not Selected Not Selected Depth at top of Zone using Vertical Orifice = Inches Inches Vertical Orifice Centroid = Inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe). Calculated Parameters for Overflow Weir Not Selected Not Selected Not Selected Not Selected Not Selected Not Selected Not Selected Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe). Calculated Parameters for Overflow Weir Not Selected	Orifice Area (sq. inches) Image: Calculated Parameters for Vertical Orifice User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Invert of Vertical Orifice = Not Selected Depth at top of Zone using Vertical Orifice = ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = Vertical Orifice Diameter = inches									
User Input: Vertical Orifice (Circular or Rectangular) User Input: Vertical Orifice (Circular or Rectangular) Not Selected Not Selected Rectangular) Invert of Vertical Orifice = Not Selected Rectangular) Calculated Parameters for Vertical Orifice Depth at top of Zone using Vertical Orifice = Invert of Vertical Orifice = Invert of Vertical Orifice = Invert of Vertical Orifice = Vertical Orifice Diameter = Invert of Vertical Orifice Centroid =	User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Invert of Vertical Orifice = Not Selected ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area = Not Selected Depth at top of Zone using Vertical Orifice = ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = ft² Vertical Orifice Diameter = inches inches ft²									
User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Invert of Vertical Orifice = Not Selected Not Selected ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area = Not Selected Not Selected ft² Depth at top of Zone using Vertical Orifice Diameter = Invert of Vertical Orifice Centroid =	User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Not Selected Not Selected Rt (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area = Not Selected Rt ² Depth at top of Zone using Vertical Orifice Diameter = Inches Rt (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = Image: Calculated Parameters for Vertical Orifice Rt ² Vertical Orifice Diameter = Image: Calculated Parameters for Vertical Orifice Centroid = Image: Calculated Parameters for Vertical Orifice Rt ² Image: Calculated Parameters for Vertical Orifice Diameter = Image: Calculated Parameters for Vertical Orifice Rt ²									
Not Selected Not Selected Not Selected Not Selected Not Selected Not Selected Invert of Vertical Orifice = Image: Control of Contro	Not Selected Not Selected Not Selected Not Selected Not Selected Not Selected Invert of Vertical Orifice = Image: Control of Selected ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area = ft² Depth at top of Zone using Vertical Orifice Diameter = Image: Control of Selected ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centrol = Image: Control of Selected ft² Vertical Orifice Diameter = Image: Control of Selected Image:									
Invert of Vertical Orifice = ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area = ft² Depth at top of Zone using Vertical Orifice = ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = ft² Vertical Orifice Diameter = inches ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = ft² User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe). Calculated Parameters for Overflow Weir Not Selected Not Selected Not Selected Not Selected Not Selected	Invert of Vertical Orifice = ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area = ft' Depth at top of Zone using Vertical Orifice = ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = feet Vertical Orifice Diameter = inches									
User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe). Calculated Parameters for Overflow Weir Not Selected Not Selected Not Selected	Vertical Orifice Diameter =inches									
User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Not Selected Not Selected Not Selected										
User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow Weir Not Selected Not										
User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Not Selected Not Selected Not Selected										
Not Selected Not Selected Not Selected	User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow Weir									
	Not Selected Not Selected Not Selected									
Overnow weir Front Lage Height, Ho = 3.33 It (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Lage, H _t = 3.33 feet	Or and you White Function Extension 1 and 1 an									
Overflow Weir Front Edge Length = 3.00 Feet Overflow Weir Slope Length = 3.00 Feet	Overnow weir Front Edge Height, Ho = 3.33 T (relative to basin bottom at stage = 0 ft) Height of Grate Upper Edge, $n_t = 3.33$ Teet									
Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Onrice Area = 25.20	Overflow Weir Front Edge Leight, Ho 3.33 Tr (relative to basin bottom at Stage = 0 tr) neight of Grate Opper Edge, $r_i = 3.33$ reet Overflow Weir Front Edge Leight = 3.00 feet Overflow Weir Slope Leight = 3.00 feet									
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$	Overflow Weir Front Edge Leight, Ho 3.33 Tr (relative to basin bottom at Stage = 0 ft) neight of Grate Opper Edge, $r_i = 3.33$ refer Overflow Weir Front Edge Leight = 3.00 feet Overflow Weir Slope Leight = 3.00 feet Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Uberglau Grate Meis Edge 3.00 Feet 0.00 <									
	Overflow Weir Front Edge Length = 3.00 ft (relative to basin bottom at Stage = 0 ft) neight of Grate Opper Edge, rt, = 3.33 fteet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope Length = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area / wo Debris = 6.30 ft ² Overflow (Grate Open Area Weir Forte Area Meir Fort									
	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) neight of Grate Opper Edge, rt = 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope Length = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft ² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft ² Debris Clogqing % = 50% % % ft ² ft ² ft ²									
User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice).	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) neight of Grate Opper Edge, rt = 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope Length = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft ² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft ² Debris Clogging % = 50% %									
	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) neight of Grate Opper Edge, rt = 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 ft² Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area //0 Debris = 6.30 ft² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft² User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate									
Not Selected Not Selected Not Selected	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) neight of Grate Opper Edge, rt = 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Front Edge Length = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 ft² Overflow Grate Open Area / 9 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 ft² Overflow Grate Open Area / 9 70% %, grate open area/total area Overflow Grate Open Area w/o Debris = 6.30 ft² Overflow Grate Open Area / 100-yr Orifice A									
Not SelectedNot SelectedNot SelectedNot SelectedNot SelectedDepth to Invert of Outlet Pipe 2.50 ft (distance below basin bottom at Stage = 0 ft)Outlet Orifice Area = 0.25 ft ²	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) in relative to basin bott									
Not Selected Not Selected Not Selected Not Selected Not Selected Not Selected Depth to Invert of Outlet Pipe = 2.50 ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 0.25 ft ² Circular Orifice Diameter = 18.00 inches Outlet Orifice Centroid = 0.08 feet	Overflow Weir Front Edge Length =3.33referOverflow Weir Front Edge Length =3.00feetOverflow Weir Slope Length =3.00feetOverflow Weir State Slope =0.00H:VGrate Open Area / 100-yr Orifice Area =3.00feetHoriz. Length of Weir Sides =3.00feetOverflow Grate Open Area w/o Debris =6.30ft²Overflow Grate Open Area % =70%%, grate open area/total areaOverflow Grate Open Area w/ Debris =6.30ft²Debris Clogging % =50%%%Calculated Parameters for Outlet Pipe w/ Flow Restriction PlateNot SelectedNot Selectedft²User Input: Outlet Pipe w/ Flow Restriction PlateNot SelectedNot Selectedft (distance below basin bottom at Stage = 0 ft)Outlet Orifice Area =0.25ft²Depth to Invert of Outlet Pipe =18.00inchesOutlet Orifice Area =0.25ft²Outlet Orifice Diameter =18.00inchesOutlet Orifice Area =0.08feet									
Not Selected Not Selected Not Selected Not Selected Not Selected Not Selected Depth to Invert of Outlet Pipe = 2.50 ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 0.25 ft² Circular Orifice Diameter = 18.00 inches Outlet Orifice Centroid = 0.08 feet 2.00 Half-Central Angle of Restrictor Plate on Pipe = N/A N/A radians	Overflow Weir Front Edge Length =3.33referOverflow Weir Front Edge Length =3.00feetOverflow Weir Slope Length =3.00feetOverflow Weir Front Edge Length =0.00H:VGrate Open Area / 100-yr Orifice Area =25.20feetHoriz. Length of Weir Sides =3.00feetOverflow Grate Open Area w/o Debris =6.30ft ² Overflow Grate Open Area % =70%%, grate open area/total areaOverflow Grate Open Area w/ Debris =6.30ft ² Overflow Grate Open Area % =50%%%Calculated Parameters for Outlet Pipe w/ Flow Restriction Plateft ² User Input: Outlet Pipe w/ Flow Restriction PlateNot SelectedNot Selectedft (distance below basin bottom at Stage = 0 ft)Outlet Orifice Area =Not Selectedft ² Depth to Invert of Outlet Pipe =2.50ft (distance below basin bottom at Stage = 0 ft)Outlet Orifice Area =0.25ft ² 2.00Half-Central Angle of Restrictor Plate on Pipe =N/AN/Aradians									
Not Selected Mot Selected <th< td=""><td>Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) Overflow User Grate Opper Edge, $r_{t} =$ 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir State Slope = 0.00 H:V Grate Open Area / 100-yr Office Area = 25.00 ft² Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 6.30 ft² Oberris Clogging % = 50% % % Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Not Selected Not Selected ft² User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Not Selected Not Selected ft² Depth to Invert of Outlet Pipe = 2.50 ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 0.25 ft² 2.00 Half-Central Angle of Restrictor Plate on Pipe = N/A N/A N/A A </td></th<>	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) Overflow User Grate Opper Edge, $r_{t} =$ 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir State Slope = 0.00 H:V Grate Open Area / 100-yr Office Area = 25.00 ft² Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 6.30 ft² Oberris Clogging % = 50% % % Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Not Selected Not Selected ft² User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Not Selected Not Selected ft² Depth to Invert of Outlet Pipe = 2.50 ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 0.25 ft² 2.00 Half-Central Angle of Restrictor Plate on Pipe = N/A N/A N/A A									
Not Selected Rt ² Depth to Invert of Outlet Pipe = 2.50 ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 0.25 ft ² Circular Orifice Diameter = 18.00 inches Outlet Orifice Centroid = 0.08 feet 2.00 Half-Central Angle of Restrictor Plate on Pipe = N/A N/A radians User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage = 3.83 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.24 feet	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) Overflow User Grate Opper Edge, rt = 3.33 refet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir State Slope = 0.00 H:V Grate Open Area / 100-yr Office Area = 25.0 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft² Overflow Grate Open Area % = 50% % % Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = 2.50 ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 0.25 ft² 2.00 Half-Central Angle of Restrictor Plate on Pipe = N/A N/A radians User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Calculated Parameters for Spillway									
Not Selected Rt² Depth to Invert of Outlet Pipe = 2.50 ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 0.25 ft² Circular Orifice Diameter = 18.00 inches Outlet Orifice Centroid = 0.08 feet 2.00 Half-Central Angle of Restrictor Plate on Pipe = N/A N/A radians User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Calculated Parameters for Spillway Spillway Invert Stage = 3.83 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.24 feet Spillway Crest Length = 12.00 feet Stage at Top of Freeboard = 4.07 feet	Overflow Weir Front Edge Height, Ho =3.33If (relative to basin bottom at Stage = 0 ft)Ineight of Grate Opper Edge, $r_{t} =$ 3.33If referOverflow Weir Front Edge Length =3.00feetfeetOverflow Weir Slope Length =3.00feetOverflow Weir Srate Slope =0.00H:VGrate Open Area / 100-yr Orifice Area =25.00ft²Horiz. Length of Weir Sides =3.00feetOverflow Grate Open Area w/o Debris =6.30ft²Overflow Grate Open Area % =70%%, grate open area/total areaOverflow Grate Open Area w/ Debris =3.15ft²Overflow Grate Open Area % =70%%, grate open area/total areaOverflow Grate Open Area w/ Debris =3.15ft²User Input: Outlet Pipe w/ Flow Restriction PlateNot SelectedNot SelectedNot Selectedft (distance below basin bottom at Stage = 0 ft)Outlet Orifice Area =0.25ft²Depth to Invert of Outlet Pipe =2.50ft (distance below basin bottom at Stage = 0 ft)Outlet Orifice Area =0.25ft²2.00Half-Central Angle of Restrictor Plate on Pipe =N/AN/AradiansUser Input: Emergency Spillway Invert Stage =3.83ft (relative to basin bottom at Stage = 0 ft)Spillway Design Flow Depth =0.24feetSpillway Crest Length =12.00feetStage at Top of Freeboard =4.07feet									
Not Selected Mot Selected <th< td=""><td>Overflow Weir Front Edge Height, Ho =3.33TelefOverflow Weir Front Edge Length =3.00feetOverflow Weir Stope Length =3.00feetOverflow Weir Grate Slope =0.00H:VGrate Open Area / 100-yr Orifice Area =25.20feetHoriz. Length of Weir Sides =3.00feetOverflow Grate Open Area / 00-yr Orifice Area =6.30ft²Overflow Grate Open Area % =70%%, grate open area/total areaOverflow Grate Open Area w/ Debris =6.30ft²Overflow Grate Open Area % =70%%, grate open area/total areaOverflow Grate Open Area w/ Debris =3.15ft²Debris Clogging % =50%%%StelectedNot SelectedNot Selectedft²Depth to Invert of Outlet Pipe w/ Flow Restriction PlateNot SelectedNot SelectedNot Selectedft²Circular Orifice Diameter =18.00inchesOutlet Orifice Area =0.25ft²2.00Half-Central Angle of Restrictor Plate on Pipe =N/AN/AradiansUser Input: Emergency Spillway (Rectangular or Trapezoida)feetSpillway Design Flow Depth=0.24feetSpillway Crest Length =12.00feetStage = 0 ft)Spillway Design Flow Depth=0.24feetSpillway End Slope =4.00H:VBasin Area at Top of Freeboard =0.05acres</td></th<>	Overflow Weir Front Edge Height, Ho =3.33TelefOverflow Weir Front Edge Length =3.00feetOverflow Weir Stope Length =3.00feetOverflow Weir Grate Slope =0.00H:VGrate Open Area / 100-yr Orifice Area =25.20feetHoriz. Length of Weir Sides =3.00feetOverflow Grate Open Area / 00-yr Orifice Area =6.30ft²Overflow Grate Open Area % =70%%, grate open area/total areaOverflow Grate Open Area w/ Debris =6.30ft²Overflow Grate Open Area % =70%%, grate open area/total areaOverflow Grate Open Area w/ Debris =3.15ft²Debris Clogging % =50%%%StelectedNot SelectedNot Selectedft²Depth to Invert of Outlet Pipe w/ Flow Restriction PlateNot SelectedNot SelectedNot Selectedft²Circular Orifice Diameter =18.00inchesOutlet Orifice Area =0.25ft²2.00Half-Central Angle of Restrictor Plate on Pipe =N/AN/AradiansUser Input: Emergency Spillway (Rectangular or Trapezoida)feetSpillway Design Flow Depth=0.24feetSpillway Crest Length =12.00feetStage = 0 ft)Spillway Design Flow Depth=0.24feetSpillway End Slope =4.00H:VBasin Area at Top of Freeboard =0.05acres									
Not Selected Mot Selected Met Selected Mot Selected Met Selected Mot Selected Mot Selected Met Selected <th< td=""><td>Overflow Weir Front Edge Length = 3.33 If (relative to basin bottom at Stage = 0 ft) Height of order Dupler Edge, ft, = 3.33 refet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Stope Length = 3.00 feet Overflow Weir Grate Stope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Overflow Grate Open Area % 70% %, grate open area/total area Overflow Grate Open Area w/o Debris = 6.30 ft² Overflow Grate Open Area % 70% %, grate open area/total area Overflow Grate Open Area w/o Debris = 3.15 ft² Overflow Grate Open Area % 50% % State open Area w/o Debris = 6.30 ft² Overflow Grate Open Area % 70% %, grate open area/total area Overflow Grate Open Area w/o Debris = 3.15 ft² Overflow Crate Open Area % 50% % State Open Area w/o Debris = 0.25 ft² User Input: Outlet Pipe w/ Flow Restrictor Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate 0.25 ft² Circular Orifice Diameter = 18.00 inches Outlet Orifice Centroid =<!--</td--></td></th<>	Overflow Weir Front Edge Length = 3.33 If (relative to basin bottom at Stage = 0 ft) Height of order Dupler Edge, ft, = 3.33 refet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Stope Length = 3.00 feet Overflow Weir Grate Stope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Overflow Grate Open Area % 70% %, grate open area/total area Overflow Grate Open Area w/o Debris = 6.30 ft² Overflow Grate Open Area % 70% %, grate open area/total area Overflow Grate Open Area w/o Debris = 3.15 ft² Overflow Grate Open Area % 50% % State open Area w/o Debris = 6.30 ft² Overflow Grate Open Area % 70% %, grate open area/total area Overflow Grate Open Area w/o Debris = 3.15 ft² Overflow Crate Open Area % 50% % State Open Area w/o Debris = 0.25 ft² User Input: Outlet Pipe w/ Flow Restrictor Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate 0.25 ft² Circular Orifice Diameter = 18.00 inches Outlet Orifice Centroid = </td									
Not Selected Rt ² Circular Orifice Diameter 18.00 inches Outlet Orifice Centroid = 0.08 feet 2.00 Half-Central Angle of Restrictor Plate on Pipe N/A N/A N/A radians User Input: Emergency Spillway Invert Stage = 3.83 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.24 feet Spillway End Slopes = 4.00 H:V Basin Area at Top of Freeboard = 0.05 acres Freeboard above Max Water Surface = 0.00 feet Basin Volume at Top of Freeboard = 0.07 acre-ft	Overflow Weir Front Edge Height, ho3.33referOverflow Weir Front Edge Length3.00feet0verflow Weir Slope Length =3.00feetOverflow Weir Grate Slope =0.00H:VGrate Open Area / 100-yr Orffice Area =25.20feetHoriz. Length of Weir Sides =3.00feetOverflow Grate Open Area w/o Debris =6.30ft²Overflow Grate Open Area % =70%%, grate open area/total areaOverflow Grate Open Area w/ Debris =6.30ft²Overflow Grate Open Area % =50%%%Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate, or Rectangular Orffice)Calculated Parameters for Outlet Pipe w/ Flow Restriction Plateft²User Input: Outlet Pipe w/ Flow Restriction PlateNot SelectedNot Selectedft²ft²0.00Half-Central Angle of Restrictor Plate on the same basin bottom at Stage = 0 ft)Outlet Orffice Area =0.25ft²0.00Half-Central Angle of Restrictor Plate on Pipe =0.08feetfeet0.25ft²100Half-Central Angle of Restrictor Plate on Pipe =0.24feet0.24feet0.00Feet12.00feetSpillway Design Flow Depth=0.24feet0.01feetSpillway Crest Length =12.00feetStage at Top of Freeboard =0.07acres0.02feet0.00feetBasin Area at Top of Freeboard =0.07acres0.02feet0.00feetBasin Volume at Top of Free									
Not Selected Not Selected Not Selected Not Selected Not Selected Depth to Invert of Outlet Pipe = 2.50 ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 0.25 ft² Circular Orifice Diameter = 18.00 inches Outlet Orifice Centroid = 0.08 ft² 2.00 Half-Central Angle of Restrictor Plate on Pipe = N/A N/A radians User Input: Emergency Spillway (Rectangular or Trapezoida). Spillway Invert Stage = 3.83 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth = 0.24 feet Spillway Invert Stage = 4.00 H:V Basin Area at Top of Freeboard = 0.05 acres Freeboard above Max Water Surface = 0.00 feet Basin Volume at Top of Freeboard = 0.07 acres Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).	Overflow Weir Profit Edge Height, Ho 3.33 tr (relative to basin bottom at stage = 0 ft) Order Output Output Edge, H ₁ = 0.33 reet Overflow Weir Sides = 0.00 0.00 H:V Grate Open Area / 100-yr Orfice Area = 0.30 3.00 feet Overflow Weir Sides = 0.00 0.00 H:V Grate Open Area / 100-yr Orfice Area = 0.30 6.30 feet Overflow Grate Open Area % = 0.00 70% %, grate open area/total area Overflow Grate Open Area w/o Debris = 0.315 6.30 ft² User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orfice, Restrictor Plate, or Rectangular Orfice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = 2.50 ft (distance below basin bottom at Stage = 0 ft) Outlet Orfice Area = 0.025 Not Selected ft² 2.00 Half-Central Angle of Restrictor Plate on Pipe = 0.025 Not Selected ft² 0.08 feet 2.00 Half-Central Angle of Restrictor Plate on Pipe = 0.025 Not Selected ft² 0.24 feet 3.00 feet Spillway Invert Stage = 0 ft) Spillway Design Flow Depth = 0.24 feet 2.00 Half-Central Angle of Restrictor Plate on Pipe = 0.005 0.024 feet 3.00 feet Stage									
Not Selected Not Selected Not Selected Not Selected Not Selected Depth to Invert of Outlet Pipe = 2.50 ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 0.25 ft² Circular Orifice Diameter = 18.00 inches Outlet Orifice Centroid = 0.08 feet 2.00 Half-Central Angle of Restrictor Plate on Pipe = N/A N/A radians User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Invert Stage = 3.83 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth = 0.24 feet Spillway Crest Length = 12.00 feet Stage at Top of Freeboard = 0.05 acres Spillway End Slopes = 4.00 H:V Basin Area at Top of Freeboard = 0.05 acres Freeboard above Max Water Surface = 0.00 feet Basin Volume at Top of Freeboard = 0.07 acres Design Storm Return Period = WQCV EURV 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year 500 Year	Overflow Weir Front Edge Height, Ho = 3.33 1 If (relative to basin bottom at stage = 01) Predigit of Grade Opper Acidy, Fr, = 3.33 1 If effet Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 1 1 Overflow Weir Grate Open Area % = 0.00 feet Overflow Grate Open Area w/o Debris = 6.30 fr² Overflow Grate Open Area % = 0.00 % grate open area/total area Overflow Grate Open Area w/o Debris = 6.30 fr² Overflow Grate Open Area % = 0.00 % grate open area/total area Overflow Grate Open Area w/o Debris = 6.30 fr² User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Not Selected Not Selected Not Selected Not Selected Not Selected feet Depth to Invert of Outlet Pipe area 18.00 inches Outlet Orifice Centroid = 0.08 feet Super Input: Emergency Spillway (Rectangular or Trapezoidal) th (distance below basin bottom at Stage = 0 ft) Spillway Design Flow Deptn = 0.24 feet 0.05 acres									
Not Selected Not Selected Not Selected Not Selected Not Selected Depth to Invert of Outlet Pipe = 2.50 ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 0.25 ft² Circular Orifice Diameter = 18.00 inches Outlet Orifice Centroid = 0.08 feet 2.00 Half-Central Angle of Restrictor Plate on Pipe = N/A N/A radians User Input: Emergency Spillway (Rectangular or Trapezoidal) Spillway Invert Stage = 3.83 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth = 0.24 feet Spillway End Slopes = 4.00 H:V Basin Area at Top of Freeboard = 0.05 acres Freeboard above Max Water Surface = 0.00 feet Basin Volume at Top of Freeboard = 0.07 acres Design Storm Return Period = MQCV EURV 2 Year 5 Year 10 Year 25 Year 100 Year 500 Year One-Hour Rainfall Depth (in) = N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3.68	Overflow Weir Pront Edge length =3.33referOverflow Weir Front Edge Length =3.00referOverflow Weir Grate Slope =3.00referOverflow Grate Open Area / 100-yr Orifice Area =25.20Overflow Grate Open Area w/o Debris =3.30Overflow Grate Open Area w/o Debris =6.30Overflow Grate Open Area w/o Debris =3.15The Slope and Res Weir State Slope =The Slope and Res Weir State Slope Ength =Overflow Grate Open Area W/o Debris =3.30Debris Clogging %Slope Area %25.20Not SelectedNot SelectedNot SelectedNot SelectedNot SelectedNot Selected <td colsp<="" td=""></td>									
Depth to Invert of Outlet Pipe =Not SelectedNot SelectedNot SelectedNot SelectedDepth to Invert of Outlet Pipe = 2.50 ft (distance below basin bottom at Stage = 0 ft)Outlet Orifice Area = 0.25 ft²Circular Orifice Diameter = 18.00 inchesOutlet Orifice Centroid = 0.25 ft² 2.00 Half-Central Angle of Restrictor Plate on Pipe = N/A N/A N/A radiansUser Input: Emergency Spillway (Rectangular or Trapezoidal)Calculated Parameters for SpillwayCalculated Parameters for SpillwaySpillway Invert Stage = 3.83 ft (relative to basin bottom at Stage = 0 ft)Spillway Design Flow Depth = 0.24 Spillway Crest Length = 12.00 feetStage at Top of Freeboard = 0.05 acresSpillway End Slopes = 4.00 H:VBasin Area at Top of Freeboard = 0.05 acresFreeboard above Max Water Surface = 0.00 feetBasin Volume at Top of Freeboard = 0.07 acresDesign Storm Return Period = N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3.68 CUHP Runoff Volume (acres ft) = N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3.68 CUHP Runoff Volume (acres ft) = N/A N/A 1.19 1.50 1.75 0.180 0.275 Left with degraph (Vance (cres ft) = 0.030 0.113 0.076 0.099 0.117 0.137 0.157 0.180 $0.$	Overflow Weir Profit Edge Fried Edge, $r_1 = 3.33$ relation to chare object Edge, $r_1 = 3.33$ Object In part of									
Depth to Invert of Outlet Pipe = Circular Orifice Diameter =Not Selected 2.50Not Selected the (distance below basin bottom at Stage = 0 ft)Outlet Orifice Area = 0.001Not Selected 0.25ft² feet2.00Half-Central Angle of Restrictor Plate on Pipe =Not A N/Afeet2.00Half-Central Angle of Restrictor Plate on Pipe =Not Selected0.25ft²User Input: Emergency Spillway (Rectangular or Trapezoidal)Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = 0.0003.83 	Overflow Weir Front Edge Height, fro =3.33TeletOverflow Weir Front Edge Length =3.30if (relative to basin bottom at Stage = 0 ft)Overflow Weir Grate Stope =3.33TeletOverflow Weir Grate Stope =3.30TeletOverflow Weir Grate Stope =3.00TeletOverflow Weir Grate Stope Area %25.20Overflow Weir Grate Open Area %25.20Overflow Grate Open Area %Debirs =Overflow Grate Open Area %Debirs =Overflow Grate Open Area %Debirs =Overflow Grate Open Area									
Not Selected Not Selected <th< td=""><td>Overflow Wier Froit Edge Ingth - Froit Edge Length =3.33refetOverflow Weir Grate Slope =3.00feet5.33feetOverflow Weir Grate Slope =0.00H:VGrate Open Area / 100-yr Orlifce Area =25.20feetOverflow Weir Grate Slope =3.00feet0.00ft²Overflow Grate Open Area / 100-yr Orlifce Area =0.00ft²Overflow Grate Open Area / 100-yr Orlifce Area =Overflow Grate Open Area / 100-yr Orlifce Area /Overflow Grate Open Area / 100-yr</td></th<>	Overflow Wier Froit Edge Ingth - Froit Edge Length =3.33refetOverflow Weir Grate Slope =3.00feet5.33feetOverflow Weir Grate Slope =0.00H:VGrate Open Area / 100-yr Orlifce Area =25.20feetOverflow Weir Grate Slope =3.00feet0.00ft²Overflow Grate Open Area / 100-yr Orlifce Area =0.00ft²Overflow Grate Open Area / 100-yr Orlifce Area =Overflow Grate Open Area / 100-yr Orlifce Area /Overflow Grate Open Area / 100-yr									
Depth to Invert of Outlet Pipe = Circular Orifice Diameter =Not SelectedNot SelectedNot Selected 2.50 ft (distance below basin bottom at Stage = 0 ft)Outlet Orifice Centroid = 0.25 ft² 2.00 $1alf$ -Central Angle of Restrictor Plate on Pipe = $Not Selected$ feet 2.00 $1alf$ -Central Angle of Restrictor Plate on Pipe = NA N/A NA N/A N/A N/A N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) $Calculated Parameters for SpillwayradiansSpillway Crest Length Spillway End Stopes =Freeboard above Max Water Surface =4.00H:VBasin Area at Top of Freeboard =0.000.07acresRouted Hydrograph ResultsThe user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).OUHP Predevelopment Peak Q (cfs) =N/AN/AN/A0.070.275Orritowa (creft) =Orritowa (creft) =N/AN/AN/A0.000.00.20.30.510.275OPTIONAL Overide Predevelopment Peak Q (cfs) =N/AN/AN/A0.010.010.020.160.330.541.37Predevelopment Viol (cfs) acreft =N/AN/AN/A0.010.010.020.160.330.541.37Outper Predevelopment Peak Q (cfs) =N/AN/AN/A1.00.170.160.330.541.37OPTION$	Overflow Weir Grate Slope =3.33referOverflow Weir Grate Slope =3.30referOverflow Weir Grate Slope =3.00referOverflow Weir Grate Slope =3.00referOverflow Weir Grate Slope =3.00referOverflow Weir Grate Slope =3.00referOverflow Weir Grate Open Area %State open area/total areaOverflow Weir Grate Open Area %Overflow Weir Grate Open Area %State open area/total areaOverflow Weir Grate Open Area %Overflow Weir Grate Open Area %State open area/total areaOverflow Weir Grate Open Area %Overflow Weir Grate Open Area %State open area/total areaOverflow Weir Grate Open Area %Overflow Weir Grate Open Area %Colspan="2">Overflow Weir Grate Open Area %Overflow Weir Grate Open Area % <th< td=""></th<>									
Not SelectedNot SelectedNot SelectedNot SelectedNot SelectedDepth to Invert of Outlet Pipe = 2.50 ft (distance below basin bottom at Stage = 0 ft)Outlet Orifice Area = 0.25 ft²Circular Orifice Diameter = 18.00 inchesOutlet Orifice Centroid = 0.25 ft² 2.00 Half-Central Angle of Restrictor Plate on Pipe = N/A N/A radiansUser Input: Emergency Spillway (Rectangular or Trapezoidal) $Calculated Parameters for SpillwayradiansSpillway Crest Length =12.00feetSpillway Design Flow Depth=0.24feetSpillway Crest Length =12.00feetSpillway Design Flow Depth=0.05acresSpillway End Slopes =4.00H:VBasin Area at Top of Freeboard =0.07acresRouted Hydrograph ResultsThe user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).Design Storm Return Period =N/AN/A0.0760.0990.1170.1370.1570.1800.275OrtHow Kinfall Depth (in) =N/AN/A0.0760.0990.1170.1370.1570.1800.275OPTIONAL Override Predevelopment Peak Q(cfs) =N/AN/A0.010.010.020.160.330.541.37Predevelopment Veak Rious Q(cfs) =N/AN/A0.661.11.32.02.63.14.7$	Overflow Weir Grate Gige Height =3.3.3The refer to reaction of the dight of value of parts in other and stage = 0 ft)Overflow Weir Grate Slope =3.3.3referOverflow Weir Grate Slope =3.3.3referOverflow Weir Grate Slope =3.3.3referOverflow Weir Grate Slope area %2.5.2.0referOverflow Grate Open Area %2.5.2.0referOverflow Grate Open Area %2.5.2.0referOverflow Grate Open Area %Debris Clogging %Slope3.1.5referOverflow Weir Grate Open Area %Debris Clogging %Slope and the first for Outlet Pipe %Flow Restriction Plate, colspan="2">referOverflow Weir Grate Open Area %Debris Clogging %Slope and the first for Outlet Pipe %Not SelectedNot Selected Not SelectedNot Selected Not SelectedNot Selected Not SelectedOverflow Weir Grate Open Area %Calculated Parameters for Outlet Pipe %/ Flow Restriction PlateNot Selected Not SelectedNot Selected Not SelectedNot Selected Not SelectedNot Selected Not SelectedNot Selected Not Selected Not SelectedNot Selected Not Selec									
$\frac{ \text{Not Selected} }{ \text{Depth to Invert of Outlet Pipe}} = \frac{ \text{Not Selected} }{ 2.50 } \text{ft (distance below basin bottom at Stage = 0 ft)} \text{Outlet Orifice Area} = \frac{ \text{Not Selected} }{ 0.25 } \text{ft}^2 $	Overflow Weir Front Edge (height, Ho 									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Overflow Weir Front Edge Height, no = 3.33 Teter Overflow Weir Grate Edge Length = 3.00 feet Overflow Weir Singe Length = 3.00 feet Overflow Weir Grate Sope = 0.00 H:V Grate Open Area / 100-yr Office Area = 25.20 feet Overflow Grate Open Area % = 20% % grate open Area / 100-yr Office Area = 25.20 feet Overflow Grate Open Area % = 20% % grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft ² User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Office, Restrictor Plate, or Rectangular Office) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Not Selected Not Selected Not Selected Not Selected ft (distance below basin bottom at Stage = 0 ft) Outlet Office Area = 0.02 ft feet Curcular Office Diameter = 2.50 ft (relative to basin bottom at Stage = 0 ft) Outlet Office Area = 0.03 feet Spillway Invert Stage 3.83 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth = 0.00 feet Spillway Indist pase 4.00 feet <									
$\frac{ V }{ V } = \frac{ V }{ V } = $	Overflow Weir Ford: Edge Height, Ho E 3.33 Treet Overflow Weir Grate Edge Length = 3.00 feet Overflow Weir Singe Length = 3.00 feet Overflow Weir Grate Edge Length = 3.00 feet Overflow Weir Singe Length = 3.00 feet Horiz, Length of Weir Sides 3.00 feet Overflow Weir Singe Length = 3.00 feet Overflow Grate Open Area % 70% %, grate open area/total area Overflow Grate Open Area w/ Debris 6.30 ft ² Overflow Grate Open Area % 50% % grate open area/total area Overflow Grate Open Area w/ Debris 3.15 ft ² User Input: Outlet Pipe w/ Flow Restriction Plate Not Selected Not Selected Not Selected Not Selected Not Selected Not Selected ft ² Depth to Invert of Outlet Pipe = 2.50 ft (distance below basin bottom at Stage = 0 ft) Outlet Onfice Cancer area 0.025 ft ² ft ² Spillway Invert Stage 3.83 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth 0.024 feet 0.024 feet 0.026									
Not Selected Not Selected<	Overflow Wer Froit Edge Height, no = 3.33 If (reative to basin bottom at Stage = 0 ft) neight to Usate Uple Fuge, no = 3.33 if refet Overflow Wer Space Length 3.00 if refet Overflow Wer Space Length 3.00 if refet Overflow Wer Space Length 3.00 if refet Overflow Grate Open Area / 100-yr Onfice Area = 25.20 if refet Hortz, Length Of Wer Sides = 3.00 if refet Overflow Grate Open Area / 100-yr Onfice Area = 25.20 if refet Overflow Grate Open Area / 100-yr Onfice Area 25.20 if refet 3.15 if refet Overflow Grate Open Area / 100-yr Onfice Area 70 % verflow Grate Open Area // 100-yr Onfice Area 3.15 if refet User Input: Cutlet Pipe w/ Flow Restricton Plate, or Rectangular Onfice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Not Selected No N/A if eet Spillway Crest Length = 2.00 inches 0.00 feet Spillway Design Flow Depth =									
Mot Selected Not Selected<	Overflow Weir Front Edge Height, no = 3.33 If (relative to basin bottom at stage = 0)f) If edge (n) adde Uple Edge, no = 3.33 If edge Overflow Weir Side Edge Length = 3.00 If edge Overflow Weir Side Edge 3.00 If edge Overflow Weir Side Edge Length = 3.00 If edge Overflow Grate Open Area % 25.20 If edge Overflow Grate Open Area % = 70% 3%, grate open area/total area Overflow Grate Open Area % 5.30 If at an avertlow Grate Open Area % 5.30 If at a avertlow Grate Open Area % 0.15 If at a avertlow Grate Open Area % 0.25 If at avertlow Restriction Plate If									
Depth to Invert of Outlet Pierce Not Selected Not Selected Not Selected Depth to Invert of Outlet Pierce 18.00 inches Outlet Orfice Centrol = 0.08 feet 2.00 Half-Central Angle of Restrictor Plate on Pipe = N/A N/A N/A N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Calculated Parameters for Spillway Spillway Crest Length = 3.83 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth = 0.024 feet Spillway Crest Length = 12.00 feet Stage at Top of Freeboard = 0.07 acres Spillway Crest Length = 0.00 feet Basin Area at Top of Freeboard = 0.07 acres Spillway Inder Sope (or the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). Design Storm Return Period = 0.030 0.113 0.076 0.099 0.117 0.137 0.157 0.180 <	Overflow Weir Fondt Eigle Height, no =3.33freetOverflow Weir Gate Signe =3.00freetOverflow Weir Gate Signe =3.00Initial Colspan="2">Initial Colspan="2">Initial Colspan="2">Initial Colspan="2">Initial Colspan="2">Initial Colspan="2"Overflow Weir Gate Signe =3.00Initial Colspan="2">Initial Colspan="2"Overflow Grate Open Area %=Overflow Grate Open Area %Overflow Grate Open Area %=Overflow Grate Open Area %=Overflow Grate Open Area %=Overflow Grate Open Area %=Overflow Open="2">Overflow Grate Open Area %=Overflow Grate Open Area %=Overflow Open="2">Overflow Open="2"NoNo= <td c<="" td=""></td>									
Not Selected Not Selected Not Selected	User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow Weir									
	Not Selected Not Selected Not Selected									
	Not Selected Not Selected Not Selected Not Selected The Selected Not S									
Livertow were store and Holder Ho -1 2.22	Not Selected Not Selected Not Selected Control Height Selected Set									
Overriow weir Front Edge Height, Ho = 3.33 I III (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H _e = 3.33 [feet	Not Sector									
Overnow weir Front Lage Height, Ho = 3.33 It (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Lage, H _t = 3.33 [feet										
Overnow weir Front Edge Height, Ho = 3.33 It (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H _t = 3.33 feet	Orandiana Water Example 1 July 2020 Architecture (Control January Edge 11 2020) Frank									
Overnow weir Front Edge Height, Ho = 3.33 It (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H _t = 3.33 feet	Our flaw Weig Event Edge Hatel 1 2 22									
Overnow weir Front Edge Height, Ho = 3.33 Tr (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H ₁ = 3.33 Freet										
0 vertice weight four ledge height, no = 3.33 in the transmission outcome is state = 0.17 in registro if one oppen Logg, $h_{\pm} = 3.33$ i.e.t.										
Overflow Weir Front Edge Length = 3.00 feet	UVERTION WEIR FRONT FORE HEIGHT FOR $\pm 1.5.5.5$ I IT (relative to basin bottom at Stage ± 1.00) FROM FROM $\pm 1.5.5.5$ I IT (relative to basin bottom at Stage ± 1.00)									
Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet	Overriew weir Front Edge Height, Ho = 3.33 I III III (relative to basin bottom at Stage = 0 ft) Height of Grate Opper Edge, $\pi_{\rm f}$ = 3.33 I IIII (relative to basin bottom at Stage = 0 ft)									
Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet	Uverflow weir Front Edge Height, Ho = 1 3.33 I III (relative to basin bottom at Stage = 0 ft) \square elyfill of Grate Upper Edge, \square_{t} = 1 3.33 I III (relative to basin bottom at Stage = 0 ft)									
Overnow weir Front Edge Height, Ho = 3.33 Tr (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H ₁ = 3.33 Freet										
Overnow weir Front Lage Height, Ho = 3.33 Tt (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Lage, H _t = 3.33 feet	Outselle Wais Forst Edge Usight Us 2.33 (for the state of									
Overflow Weir Front Edge Height, no = 3.33 It (relative to basin bottom at stage = 0 rt) negrit to Grade Opper Edge, $r_{t} = 3.33$ reet.										
Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet	Overnow weir Front Edge Height, Ho = 3.33 ft (relative to basin bottom at stage = 0 ft) Height of Grate Opper Edge, H_t = 3.33 feet									
Overnow weir Front Edge Length = 3.00 reet Overnow weir Slope Length = 3.00 reet	Overmow Weir Front Edge Height, Ho = 3.33 Tr (relative to basin bottom at Stage = 0 rt) neight of Grate Opper Edge, r_{i} = 3.33 refer									
Overflow Weir Grate Slope = 0.00 H:v Grate Open Area / 100-vr Orifice Area = 25.20	Overflow Weir Front Edge Height, Ho 3.33 If (relative to basin bottom at Stage = 0 ft) Height of Grate Opper Edge, h_t 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet									
Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20	Overflow Weir Front Edge Height, Ho =3.33Tr (relative to basin bottom at Stage = 0 ft)neight of Grate Opper Edge, n_t =3.33referOverflow Weir Front Edge Length =3.00feetOverflow Weir Slope Length =3.00feet									
Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20	Overflow Weir Front Edge Height, Ho = 3.33 Tr (relative to basin bottom at Stage = 0 tr) neight of Grate Opper Edge, $n_i =$ 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet									
Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20	Overflow Weir Front Edge Height, Ho = 3.33 Tr (relative to basin bottom at Stage = 0 tr) neight of Grate Opper Edge, $n_i =$ 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet									
Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20	Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet									
Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orlice Area = 25.20	Overflow Weir Front Edge Leight, Ho = 3.33 Tr (relative to basin bottom at stage = 0 ft) neight of Grate Opper Edge, r_{t} = 3.33 refer Overflow Weir Front Edge Leight = 3.00 feet Overflow Weir Slope Leight = 3.00 feet									
	Overflow Weir Front Edge Length = 3.33 Tr (relative to basin bottom at stage = 0 rt) neight of Grate Opper Edge, r_{i} = 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope Length = 0.00 live Create Opper Verge (100 vr. Origina Arage - 25.20) feet									
	Overflow Weir Front Edge Length = 3.33 Tr (relative to basin bottom at Stage = 0 tr) neight of Grate Opper Edge, $r_{t} = 3.33$ refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope Length = 0.00 H:V Grate Open Area / 100-vr Opifice Area = 25.20									
	Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope Length = 0.00 feet Overflow Weir Slope Length = 3.00 feet									
Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20	Overflow Weir Front Edge Height, Ho = 3.33 If (relative to basin bottom at Stage = 0 ft) relegit of Grate Opper Edge, $n_i = 3.33$ reet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet									
Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-vr Orifice Area = 25.20	Overflow Weir Front Edge Height, Ho 3.33 r (relative to basin bottom at Stage = 0 ft) relegit of Grate Opper Edge, $n_t = 3.33$ reet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet									
Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20	Overflow Weir Front Edge Height, Ho =3.33Tr (relative to basin bottom at Stage = 0 ft)neight of Grate Opper Edge, n_t =3.33referOverflow Weir Front Edge Length =3.00feetOverflow Weir Slope Length =3.00feet									
Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20	Overflow Weir Front Edge Height, Ho =3.33rt (relative to basin bottom at Stage = 0 ft)neight of Grate Opper Edge, $n_t =$ 3.33referOverflow Weir Front Edge Length =3.00feetOverflow Weir Slope Length =3.00feet									
Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20	Overflow Weir Front Edge height, Ho = 3.33 rt (relative to basin bottom at Stage = 0 ft)neight of Grate Opper Edge, $n_i =$ 3.33 referOverflow Weir Front Edge Length = 3.00 feetOverflow Weir Slope Length = 3.00 feet									
Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20	Overflow Weir Front Edge Height, Ho = 3.33 If (relative to basin bottom at Stage = 0 ft) relegit of Grate Opper Edge, $n_i = 3.33$ reet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet									
Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20	Overflow Weir Front Edge Height, Ho = 3.33 Tr (relative to basin bottom at Stage = 0 tr) neight of Grate Opper Edge, $n_i =$ 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet									
	Overflow Weir Front Edge Length = 3.33 Tr (relative to basin bottom at stage = 0 tr) neight of Grade Opper Edge, $r_h = 3.33$ refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope Length = 0.00 live Create Opper Verge Origina Arage = 25.20 feet									
Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 fr ²	Overflow Weir Front Edge Length = 3.33 Tr (relative to basin bottom at Stage = 0 tr) neight of Grate Opper Edge, $r_{t} =$ 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope Length = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20									
Horiz. Length of Weir Sides = 3.00 freet Overflow Grate Open Area w/o Debris = 6.30 free	Overflow Weir Front Edge Height, Ho = 3.33 Tr (relative to basin bottom at Stage = 0 ft) neight of Grate Opper Edge, n _i = 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20									
	Overflow Weir Front Edge Length = 3.00 ft (relative to basin bottom at Stage = 0 ft) neight of Grate Opper Edge, $r_t =$ 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope Length = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz Length of Weir Sidee 3.00 feet Overflow Grate Open Area / 100-yr Orifice Area = 25.20 feet									
Overflow Grate Open Area $\% = \frac{70\%}{100}$ % grate open area/total area Overflow Grate Open Area w/ Debris = 3.15	Overflow Weir Front Edge Length = 3.33 Tr (relative to basin bottom at Stage = 0 tr) negitit of Grate Opper Edge, $r_{t} =$ 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 fr ²									
Overflow Grate Open Area $\% = 70\%$ % or are open area/total area Overflow Grate Open Area $\%$ / Debris = 3.15 ft^2	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) ineight of Grate Opper Edge, $r_{t} =$ 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ff ²									
Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft ²	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) integril to Grate Opper Edge, rt, = 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Stores Longth = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft ²									
	Overflow Weir Front Edge Length = 3.00 fre (relative to basin bottom at Stage = 0 ft) neight of Grate Opper Edge, rt, = 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope Length = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area / no Debris = 6.30 ft ²									
Debris Clogging % = 50% %	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) inegrit of Grate Opper Edge, rt, = 3.33 feet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft ² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft ²									
	Overflow Weir Front Edge Length = 3.00 ft (relative to basin bottom at Stage = 0 ft) neight of Grate Opper Edge, n _i = 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft ² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft ²									
	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) in edgin to Grate Opper Edge, rt, e 3.33 refet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 ft² Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft²									
Debris Clogging % = 50%	Overflow Weir Front Edge Length = 3.00 ft (relative to basin bottom at Stage = 0 ft) neight of Grate Opper Edge, n _i = 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft ² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft ²									
Debris Clogging % = 50% %	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) inequilit of Grate Opper Edge, rt, = 3.33 refet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 ft² Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft²									
Debris Clogging % = 50% %	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) inequilit of Grate Opper Edge, rt, = 3.33 refet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 ft² Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft²									
Debris Clogging % = 50% %	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) inequilit of Grate Opper Edge, rt, = 3.33 refet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 ft² Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft²									
Debris Clogging % = 50% %	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) inequilit of Grate Opper Edge, rt, = 3.33 refet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 ft ² Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft ² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft ²									
Debris Clogging % = 50%	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) inequilit of Grate Opper Edge, rt, = 3.33 refet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 ft ² Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/ Debris = 6.30 ft ² Overflow Grate Open Area w/ = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft ²									
Debris Clogging % = 50% %	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) inequilities of Grate Opper Edge, rt, e 3.33 refet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 ft ² Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft ² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft ²									
Debris Clogging % = 50% %	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) in edgin to Grate Opper Edge, rt, = 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 ft ² Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft ² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft ²									
Debris Clogging % = 50% %	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) in relative to basin bott									
	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) neight of Grate Opper Edge, rt = 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft ² Overflow Grate Open Area % = 70% % grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft ²									
	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) in edgin to Grate Opper Edge, rt, e 3.33 refet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft ² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft ²									
	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) in edgin to Grate Opper Edge, rt, e 3.33 if teet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Stores Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft ² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft ²									
User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate. or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) in relative to basin bott									
User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) neight of Grate Opper Edge, rt = 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft ² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft ² Debris Clogging % = 50% % feet Overflow Grate Open Area w/ Debris = 3.15 ft ²									
User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate	Overflow Weir Front Edge Length =3.33ft (relative to basin bottom at Stage = 0 ft)negitive of Grate Opper Edge, $r_{t} = 3.33$ referOverflow Weir Front Edge Length =3.00feetOverflow Weir Slope Length =3.00feetOverflow Weir Slope =0.00H:VGrate Open Area / 100-yr Orifice Area =25.20feetHoriz. Length of Weir Sides =3.00feetOverflow Grate Open Area w/o Debris =6.30ft²Overflow Grate Open Area % =70%%, grate open area/total areaOverflow Grate Open Area w/ Debris =3.15ft²Debris Clogging % =50%%%Overflow Grate Open Area w/ Debris =3.15ft²									
User Input: Outlet Pipe W/ Piow Restriction Piate (circular Onlice, Restriction Piate, or Restriction Piate)	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) integrit of Grate Opper Edge, rt, e 3.33 if teet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Grate Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft² Debris Clogging % = 50% % South area Overflow Grate Open Area w/ Debris = 3.15 ft²									
	Overflow Weir Front Edge Length = 3.33 Tr (relative to basin bottom at Stage = 0 ft) neight of Grate Opper Edge, rt = 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope Length = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft ² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft ² User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate									
	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) neight of Grate Opper Edge, rt = 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope Length = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 ft² Horiz. Length of Weir Sides = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 6.30 ft² Overflow Grate Open Area % 70% %, grate open area/total area Overflow Grate Open Area w/o Debris = 6.30 ft² Oberis Clogging % = 50% % % Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate									
	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) in relative to basin bottom at Stage = 0 ft) if fet Overflow Grate Open Area % 0.00 H:V Grate Open Area % Open									
	Overflow Weir Front Edge Length = 3.33 ft (relative to basin bottom at Stage = 0 ft) integrit of Grate Opper Edge, rt = 3.33 integrit of Grate Oper Area = 25.20 integrit of Grate Oper Area = 25.20 integrit of Grate Oper Area = 25.20 integrit of Grate Oper Area = 6.30 ift² Overflow Grate Oper Area = 70% %, grate oper area/total area Overflow Grate Oper Area w/ Debrits = 3.15 ift² ift²									
Not Colocted Not Colocted	Overflow Weir Front Edge Length = 3.33 Ift (relative to basin bottom at Stage = 0 ft) Integrit to Grate Opper Edge, rt, = 3.33 Ift (relative to basin bottom at Stage = 0 ft) Integrit to Grate Opper Edge, rt, = 3.33 Ift (relative to basin bottom at Stage = 0 ft) Integrit to Grate Opper Edge, rt, = 3.33 Ift (relative to basin bottom at Stage = 0 ft) <									
Not Colocted Not Colocted	Overflow Weir Front Edge Length = 3.33 Ift (relative to basin bottom at Stage = 0 ft) Integrit to Grate Opper Edge, rt, = 3.33 Ift (relative to basin bottom at Stage = 0 ft) Integrit to Grate Opper Edge, rt, = 3.33 Ift (relative to basin bottom at Stage = 0 ft) Integrit to Grate Opper Edge, rt, = 3.33 Ift (relative to basin bottom at Stage = 0 ft) <									
Not Selected I Not Se	Overflow Weir Front Edge Length = 3.33 If (relative to basin bottom at Stage = 0 ft) If (relative to basin bottom at stage = 0 ft)									
Not Selected I Not Selected I Not Selected I Not Selected	Overflow Weir Front Edge Length = 3.33 If (relative to basin bottom at Stage = 0 ft) If (relative to basin bottom at stage = 0 ft)									
Not Selected Not Selected Not Selected Not Selected Not Selected	Overflow Weir Front Edge Length = 3.33 tr (relative to basin bottom at Stage = 0 tr) neglific of Grate Opper Edge, rt, e 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Store State Slope = 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft ² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/o Debris = 3.15 ft ² Debris Clogging % = 50% % Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate User Input: Outlet Pipe w/ Flow Restriction Plate Not Selected Not Selected Not Selected Not Selected									
Not Selected Not Selected Not Selected	Overflow Weir Front Edge Length = 3.33 If (relative to basin bottom at Stage = 0 ft) Integration Grate Opper Edge, rt, e 3.33 Teet Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Stores Elope 0.00 H:V Grate Open Area / 100-yr Orifice Area = 25.20 feet Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Open Area w/o Debris = 6.30 ft² Overflow Grate Open Area % = 70% %, grate open area/total area Overflow Grate Open Area w/ Debris = 3.15 ft² Debris Clogging % = 50% % Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Not Selected Not Selected Not Selected Not Selected Not Selected Not Selected									
Not Selected Not Selected Not Selected	Overflow Weir Front Edge Length = 3.33 ift (relative to basin bottom at Stage = 0 ft) releft to Grate Opper Edge, rt = 3.33 refer Overflow Weir Front Edge Length = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope I Edge, rt = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Weir Slope I Edge, rt = 3.00 feet Overflow Weir Slope Length = 3.00 feet Overflow Grate Open Area / 100-yr Orifice Area = 25.20 ft² ft² Overflow Grate Open Area / 00-yr Orifice Area = 6.30 ft² Overflow Grate Open Area / 00-yr Orifice Area = 0.00 ft² Overflow Grate Open Area / 00-yr Orifice Area = 0.00 ft² Overflow Grate Open Area / 00-yr Orifice Area = 0.00 ft² Overflow Grate Open Area / 00-yr Orifice Area = 0.00 ft² Overflow Grate Open Area / 00-yr Orifice Area = 0.00 ft² Overflow Grate Open Area / 00-yr Orifice Area = 0.00 ft² User Input: Outlet Pipe w/ Flow Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Not Selected <t< td=""></t<>									
Not Selected Not Selected Not Selected 0.250 Parts of Curlet Orifice Area 0.250 Parts	Overflow Weir Front Edge Height, Ho = 3.33 ift (relative to basin bottom at Stage = 0 ft) ifted to Grate Opper Edge, rt = 3.33 ifted to Grate Opper Edge, rt = 3.33 ifted to Grate Opper Edge, rt = ifted to Grate Opper Edge, rt = 3.33 ifted to Grate Opper Edge, rt = ifted to Grate Oper Area / 100-yr Orifice Area = ifted to Grate Oper Area / 100-yr Orifice Area = ifted to Grate Oper Area / 100-yr Orifice Area = ifted to Grate Oper Area / 100-yr Orifice Area = ifted to Grate Oper Area / 100-yr Orifice Area = ifted to Grate Oper Area / 100-yr Orifice Area = ifted to Grate Oper Area / 100-yr Orifice Area = ifted to Grate Oper Area / 100-yr Orifice Area = ifted to Grate Oper Area / 100-yr Orifice Area = ifted to Grate Oper Area / 100-yr Orifice Are									
Depth to Invert of Outlet Pipe = 2.50 If (distance below basin bottom at Stage = 0.ft) Outlet Orifice Area = 0.25 ft ²	Overflow Weir Front Edge Length = 3.33 If (relative to basin bottom at Stage = 0 ft) If (relatiton basin bottom at Stage = 0 ft)									
Not SelectedNot SelectedNot SelectedNot SelectedDepth to Invert of Outlet Pipe 2.50 ft (distance below basin bottom at Stage = 0 ft)Outlet Orifice Area = 0.25 ft ²	Overflow Weir Front Edge Length = 3.33 ift (relative to basin bottom at Stage = 0 ft) ift (relative to basin b									
Not SelectedNot SelectedNot SelectedNot SelectedDepth to Invert of Outlet Pipe = 2.50 ft (distance below basin bottom at Stage = 0 ft)Outlet Orifice Area = 0.25 ft (distance below basin bottom at Stage = 0 ft) 0 utlet Orifice Area = 0.25 ft^2	Overflow Weir Front Edge Height, Ho = 3.33 ft (relative to basin bottom at Stage = 0 ft) integrit to Grate Opper Edge, rt = 3.33 integrit to Grate Oper Area = 25.20 integrit to Grate Oper Area = 25.20 integrit to Grate Oper Area =									
Not Selected Not Selected Not Selected Not Selected Not Selected Not Selected Depth to Invert of Outlet Pipe = 2.50 ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 0.25 ft² Circular Orifice Diameter = 18.00 inches Outlet Orifice Centroid = 0.08 feat	Overflow Weir Front Edge Length =3.33If (relative to basin bottom at Stage = 0 ft)Neglific to Grate Opper Edge, $r_{t} =$ 3.33referOverflow Weir Front Edge Length =3.00feetOverflow Weir Slope Length =3.00feetOverflow Weir Grate Slope =0.00H:VGrate Open Area / 100-yr Orifice Area =2.5.0ft²Horiz. Length of Weir Sides =3.00feetOverflow Grate Open Area w/o Debris =6.30ft²Overflow Grate Open Area % =70%%, grate open area/total areaOverflow Grate Open Area w/o Debris =3.15ft²Debris Clogging % =50%%%Calculated Parameters for Outlet Pipe w/ Flow Restriction PlateNot SelectedNot Selectedft²Depth to Invert of Outlet Pipe =Not SelectedNot Selectedft (distance below basin bottom at Stage = 0 ft)Outlet Orifice Area =0.25ft²Circular Orifice Diameter =18.00ft (distance below basin bottom at Stage = 0 ft)Outlet Orifice Centroid =0.08ffeet									
Not Selected Not Selected Not Selected Not Selected Depth to Invert of Outlet Pipe 2.50 ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 0.25 ft ² Circular Orifice Diameter = 18.00 inches Outlet Orifice Centroid = 0.08 feet	Overflow Weir Front Edge Height, Ho =3.33If (relative to basin bottom at Stage = 0 ft)Neight of Grate Opper Edge, $r_{t} =$ 3.33referOverflow Weir Front Edge Length =3.00feetOverflow Weir Slope Length =3.00feetOverflow Weir Grate Slope =0.00H:VGrate Open Area / 100-yr Orifice Area =25.20feetHoriz. Length of Weir Sides =3.00feetOverflow Grate Open Area w/o Debris =6.30ft²Overflow Grate Open Area % =70%%, grate open area/total areaOverflow Grate Open Area w/ Debris =3.15ft²Debris Clogging % =50%%%Calculated Parameters for Outlet Pipe w/ Flow Restriction PlateNot SelectedNot Selectedft²Depth to Invert of Outlet Pipe =18.00inchesOutlet Orifice Area =0.25ft²Circular Orifice Diameter =18.00inchesOutlet Orifice Centroid =0.08ft²									

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

	Inflow Hydrog	<u>graphs</u>								
	The user can o	verride the calcu	lated inflow hyd	rographs from t	his workbook wi	th inflow hydrog	raphs developed	in a separate pro	ogram.	CLILID
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	11ME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cts]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.10.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.12
	0:20:00	0.00	0.00	0.10	0.29	0.35	0.24	0.29	0.29	1 10
	0:25:00	0.00	0.00	1.18	1.53	1.81	1.16	1.33	1.42	2.19
	0:30:00	0.00	0.00	1.29	1.63	1.88	2.22	2.55	2.83	4.36
	0:35:00	0.00	0.00	1.13	1.41	1.61	2.28	2.62	3.08	4.70
	0:40:00	0.00	0.00	0.97	1.19	1.37	2.08	2.39	2.79	4.26
	0:45:00	0.00	0.00	0.79	0.99	1.15	1.78	2.04	2.46	3.76
	0:50:00	0.00	0.00	0.66	0.85	0.96	1.54	1.76	2.11	3.22
	1:00:00	0.00	0.00	0.57	0.73	0.84	1.26	1.44	1.//	2.71
	1:05:00	0.00	0.00	0.50	0.65	0.74	0.92	1.25	1.54	2.30
	1:10:00	0.00	0.00	0.34	0.33	0.57	0.75	0.86	1.07	1.63
	1:15:00	0.00	0.00	0.28	0.40	0.51	0.62	0.70	0.84	1.27
	1:20:00	0.00	0.00	0.25	0.36	0.46	0.49	0.56	0.62	0.94
	1:25:00	0.00	0.00	0.23	0.33	0.41	0.42	0.48	0.49	0.73
	1:30:00	0.00	0.00	0.22	0.32	0.37	0.36	0.40	0.41	0.61
	1:35:00	0.00	0.00	0.22	0.30	0.34	0.32	0.36	0.35	0.52
	1:40:00	0.00	0.00	0.21	0.27	0.32	0.29	0.33	0.32	0.47
	1:45:00	0.00	0.00	0.21	0.25	0.31	0.27	0.31	0.29	0.43
	1:55:00	0.00	0.00	0.21	0.23	0.30	0.20	0.29	0.28	0.40
	2:00:00	0.00	0.00	0.10	0.22	0.25	0.25	0.28	0.27	0.35
	2:05:00	0.00	0.00	0.11	0.14	0.18	0.17	0.20	0.19	0.27
	2:10:00	0.00	0.00	0.08	0.10	0.13	0.12	0.14	0.13	0.19
	2:15:00	0.00	0.00	0.05	0.07	0.09	0.09	0.10	0.09	0.13
	2:20:00	0.00	0.00	0.04	0.04	0.06	0.06	0.06	0.06	0.09
	2:25:00	0.00	0.00	0.02	0.03	0.04	0.04	0.04	0.04	0.06
	2:30:00	0.00	0.00	0.01	0.02	0.02	0.02	0.03	0.03	0.04
	2:35:00	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.02	0.02
	2:40:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Stormwater Detention and Infiltration Design Data Sheet

Workbook Protected

Vorksheet Protected

Stormwater Facility Name: Private WQCV Pond - Lot 2 Elm Grove Villa

Facility Location & Jurisdiction: 1895 Main Street; Colorado Springs, CO 80911 Security Basin - El Paso County

Design Storm Return Period =	WQCV	2 Year	5 Year	10 Year	50 Year	100 Year	
One-Hour Rainfall Depth =	0.53	1.19	1.50	1.75	2.25	2.52	in
Calculated Runoff Volume =	0.030	0.078	0.102	0.122	0.164	0.189	acre-ft
OPTIONAL Override Runoff Volume =							acre-ft
Inflow Hydrograph Volume =							acre-ft
Time to Drain 97% of Inflow Volume =							hours
Time to Drain 99% of Inflow Volume =							hours
Maximum Ponding Depth =							ft
Maximum Ponded Area =							acres
Maximum Volume Stored =							acre-ft

Stormwater Detention and Infiltration Design Data Sheet

FOREBAY CALCULATIONS (SMITH PLUMBING)

1) WQCV (inches) = a(.911 ³ - 1.191 ² + .781)	
I = impervious percentage =	85%
a = Coefficient corresponding to WQCV drain tim	ne = 1 (40 hours)
WQCV (inches) = 0.36 inches	
 WQCV (ac-ft) = (WQCV (inches))/12 x A 	
Area = tributary area =	1 acres
WO(1/(2cft) - 0.02)	
WQCV (ac-it) = 0.03 WOCV (cubic feet) = 1.304	
3) Forebay Volume	
Per Table EDB-4, Section T-5 of USDCM Volume	3 - Forebay Volume = 1% of WQCV and be 12" max depth since watershed is between 1 and 2 impervious acres
Forebay Volume = 1% of WQCV =	13 cubic feet
with pond depth at 1.0', Forebay Are	a = 13.0 sq-ft (minimum)
4) Forebay Discharge	
Per Table EDB-4, Section T-5 of USDCM Volume	3 - Forebay Discharge = 2% of 100-yr Flow into pond
Q100 = 6.1 cfs	
Forebay discharge = 0.12 cf	's

Worksheet for Forebay Release Slots

Crest Length		
	0.42	ft ³ /s
	0.75	ft
	0.00	ft
	0.00	ft
	3.00	US
0		
	0.22	ft
	0.75	ft
	0.00	ft
	0.16	ft²
	2.60	ft/s
	1.72	ft
	0.22	ft
	Orest Length	Crest Length 0.42 0.75 0.00 0.00 3.00 0 0 0 0 0 0 0 0 0 0 0 0

Worksheet for Forebay Weir

Project Description			
Solve For	Discharge		
Input Data			
Headwater Elevation		1.00	ft
Crest Elevation		0.75	ft
Tailwater Elevation		0.00	ft
Weir Coefficient		3.00	US
Crest Length		2.92	ft
Number Of Contractions	0		
Results			
Discharge		1.10	ft³/s
Headwater Height Above Crest		0.25	ft
Tailwater Height Above Crest		-0.75	ft
Flow Area		0.73	ft²
Velocity		1.50	ft/s
Wetted Perimeter		3.42	ft
Top Width		2.92	ft

POND RIPRAP EMBANKMENT SIZING

Subdivision: Elm Grove Villa

Location: El Paso County

Project Name:	Smith Plumbing
Project No.:	HCI000008
Calculated By:	CMD
Checked By:	CD
Date:	5/3/21

Pond	Riprap Type	ip Type D50* Slope, S		Concentration Factor	Unit discharge	Spillway Flow***	Spillway Width
		(in) (ft/ft) (1.0 to 3.0)		(1.0 to 3.0)	(cfs/ft)**	(cfs)	(ft)
North Pond	VL	2.8	25.00%	2	0.35	4.2	12

*From DCM Chapter 13 Eqn 13-9

** Spillway Flow/Spillway Width

***Peak Inflow Q100

Worksheet for Trickle Channel

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.50000	ft/ft
Bottom Width	2.00	ft
Discharge	0.42	ft³/s
Results		
Normal Depth	0.03	ft
Flow Area	0.06	ft²
Wetted Perimeter	2.06	ft
Hydraulic Radius	0.03	ft
Top Width	2.00	ft
Critical Depth	0.11	ft
Critical Slope	0.00589	ft/ft
Velocity	7.36	ft/s
Velocity Head	0.84	ft
Specific Energy	0.87	ft
Froude Number	7.69	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.03	ft
Critical Depth	0.11	ft
Channel Slope	0.50000	ft/ft
Critical Slope	0.00589	ft/ft

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Page 1 of 1

Pond Outlet.stsw 5/27/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley StormCAD V8i (SELECTseries 4) [08.11.04.54] Page 1 of 1

Smith Plumbing Pond Outlet Active Scenario: 100 YR

Label	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)
P-1	Pond Outle t	5,843.49	Ex Inlet	5,843.00	36.0	0.014	18.0	0.013	3.00	5.73	12.26	24.5	5,844.15	5,843.51	5,844.40	5,844.01
P-2	Ex Inlet	5,842.60	0-7	5,841.63	20.2	0.048	18.0	0.013	6.00	10.95	23.00	26.1	5,843.55	5,842.22	5,843.95	5,843.54

Smith Plumbing Pond Outlet Active Scenario: 100 YR

Label	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Energy Grade Line (ft)	Flow (Total Out) (cfs)
0-7	5,845.00	5,841.63	Free Outfall		5,842.22	5,842.22	6.00

Pond Outlet.stsw 11/11/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Smith Plumbing Pond Outlet Active Scenario: 5 YR

Label	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)
P-1	Pond Outle t	5,843.49	Ex Inlet	5,843.00	36.0	0.014	18.0	0.013	1.10	4.30	12.26	9.0	5,843.88	5,843.30	5,844.02	5,843.59
P-2	Ex Inlet	5,842.60	0-7	5,841.63	20.2	0.048	18.0	0.013	2.60	8.63	23.00	11.3	5,843.21	5,841.99	5,843.44	5,842.95

Pond Outlet.stsw 11/11/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Smith Plumbing Pond Outlet Active Scenario: 5 YR

Label	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Energy Grade Line (ft)	Flow (Total Out) (cfs)
0-7	5,845.00	5,841.63	Free Outfall		5,841.99	5,841.99	2.60

Pond Outlet.stsw 11/11/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Pond Outlet.stsw 11/11/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

APPENDIX D

Drainage Maps

Project No:	HCI000007		
Drawn By:	DDJ		
Checked By:	GD		
Date:	11/12/2021		

Area	Q 5	Q 100	Design	Q 5	Q100
(acres)	(cfs)	(cfs)	Point	(cfs)	(cfs)
0.02	0.1	0.2	1	1.0	2.0
0.10	0.5	0.9	2	0.1	0.2
0.14	0.1	0.4	3	1.5	2.9
1.19	0.5	3.5	4	1.3	4.9
0.02	0.0	0.1	5	0.0	0.1
0.05	0.0	0.2	6	1.2	5.1
			7	1.1	2.2

RUN	NOFF S TAE	UMM. BLE	DESIGN POINT SUMMARY TABLE			
Basin ID	Area (acres)	Q5 (cfs)	Q100 (cfs)	Design Point	Q5 (cfs)	Q100 (cfs)
OS-1	0.34	1.0	2.0	1	1.0	2.0
OS-2	0.34	1.1	2.2	2	0.1	0.2
E-1	0.02	0.1	0.2	3	0.5	0.9
E-2	0.10	0.5	0.9	4	2.6	4.7
E-3	0.13	0.4	0.8	5	0.5	0.9
E-4	0.72	2.6	4.7	6	0.3	0.6
E-5	0.11	0.5	0.9	7	0.0	6.1
E-6	0.26	0.1	0.6	8	0.4	0.8
E-7	0.06	0.1	0.2	9	1.1	2.2
E-8	0.12	0.3	0.6			

FINAL DRAINAGE REPORT SMITH PLUMBING & HEATING FOR HAMMERS CONSTRUCTION 1875 MAIN STREET COLORADO SPRINGS, # Date Issue / Description _ ____

608

CO

Init.

_ ____ _____ _____ _ ____ _____ _____

Project No:	HCI000007
Drawn By:	DDJ
Checked By:	GD
Date:	11/12/2021
PROPOSED D	RAINAGE MAP

DR-2

DRAINAGE LEGEND

	PROPERTY LINE
 6485	EXISTING MAJOR CONTOUR
 6483	EXISTING MINOR CONTOUR
6485	PROPOSED MAJOR CONTOUR
 6483	PROPOSED MINOR CONTOUR
	BASIN BOUNDARY LINE
	FEMA EFFECTIVE 100-YR FLOODPLAIN
 →···-	CENTERLINE OF STREAM
HP	HICH POINT
LP	LOW POINT
→	DIRECTION OF RUNOFF
	AREA OF OFFSITE FLOWS
	AREA TO BE DETAINED IN PBMP
	AREA TO BE TREATED WITH GRASS BUFFER
	AREA (UNCHANGED) NOT DETAINED IN PBMP PER SECTION 1.7.1.C.1
	AREA (DEVELOPED) NOT DETAINED IN PBMP PER SECTION 1.7.1.C.1 (20% UP TO 1 AC. OF DEVELOPMENT SITE CAN BE EXCLUDED, DUE TO TOPOGRAPHY)
	-BASIN DESIGNATION 5-YEAR RUNOFF IN CUBIC FEET PER SECOND
0.71 1.8	_100-YEAR RUNOFF IN CUBIC FEET PER SECOND
	—BASIN AREA IN ACRES
1	DESIGN POINT

¥ _	Date	Issue / Description	Init.
-			
-			
-			
-			
-			
-			
-			
-			
-			
-			
-			
Pro	oject No:	ł	HCI000007
Dra	awn By:		DDJ
Ch	ecked By:		GD
De	ite:		11/12/2021

719.900.7220 GallowayUS.com _____

COPYRIGHT THESE PLANS ARE AN INSTRUMENT OF SERVICE AND ARE THE PROPERTY OF GALLOWAY, AND MAY NOT BE DUPLICATED, DISCLOSED, OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF GALLOWAY. COPYRIGHTS AND INFRINGEMENTS WILL BE ENFORCED AND PROSECUTED.