Preliminary Drainage Report

> for

The Shire at Old Ranch
PPR2410

Prepared for KESS Properties
February 27, 2024
by
Art of Engineering, Inc.
515 Manitou Ave. \#260
Manitou Springs, CO 80829

TABLE of CONTENTS

PDF	
Page	
1	Cover
2	Table of Contents
3	Introduction
4	Project Overview, General Location, Description of Property
5	Major Basin Description
6	Pre-Development Sub-Basins
7	Historic Runoff Results, Design Criteria, Four Step Process
8	Criteria, Drainage Facility Design Concepts
9	Drainage Facility Design Details
10	Final Drainage Strategies, Calculation Methods, Free Flowing Areas
11	Runoff from Property, Ponded Basins description
$13-36$	Pre Development Hydrographs
36	Basin Map
$38-58$	Basins without Runoff Control, (free range waters ;)
59	Individual Basins
60	Format of Results :
$61-119$	Ponded Basin Calculations, Results and Strategies
120	Pre-Post Summary
121	Large Format Drainage Plan
122	Large Format Drainage Details
123	Constructed Pond Dimensions
$124-126$	Table of Surface Areas
$127-133$	Soils/Perc Test and Report

Verify with the state that they will allow holding the majority of the stormwater onsite. Water rights may be an issue with this approach.

Please submit correspondence from the state that allows the proposed storing/pumping of water.

INTRODUCTION

This drainage report and it's proposed drainage solutions are unconventional versus typical developments. The owners have set intentions for the project that include best practices in water use and management. This drainage report and proposed strategies seek to treat storm water as an asset and intend to have as little stormwater leave the property as possible and prefer infiltrating. Our drainage strategies align with agricultural engineering more so than conventional civil engineering.

Our strategies focus on collecting stormwater from small basins that are adjacent to dedicated infiltration ponds. As such, conveyance needs are minimized and numerous vegetation lined ponds are proposed.

We've discussed our strategies for stormwater infiltration with our water attorney who indicates that pumping 'stored' water to other points on the property would certainly be considered as 'extracting a beneficial use' and would be considered contrary to Colorado water law. However, crops or commercial vegetation that gets 'watered' collaterally would not be a violation. Plantings in and around ponds would be helpful for erosion control and likely increase soil infiltration rates.

Design Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.
[Name, P.E. \#]Date

Owner/Developer's Statement:

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.
[Name, Title]
[Business Name]
[Address]

Date

provide the County standard signature block

El Paso County:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Joshua Palmer, P.E.

Date
County Engineer / ECM Administrator

I PROJECT OVERVIEW

The Shire at Old Ranch is private development by the long time owners with the intent to create an educational and commercial experience focusing on gardening, health and wellness, and community. The project will include a garden center, cafe, meeting house, hand-craft workshops and agricultural endeavors including small animals and classes. The bulk of the land will be used for growing nursery and food crops.

II. GENERAL LOCATION

The project is located east of the intersection of Powers Blvd and Old Ranch Road. It is bounded by Old Ranch Rd to the south, Howells Rd to the west, Ridgeway Ln. to the north and adjacent properties to the east.

Township12S Range 66W SW4SW4 Sec 23 El Paso County, Colorado
These parcels are at the very southwest corner of the Black Forest and located within the Kettle Creek Drainage Basin. Most of the land to the north and east of the Shire has not been developed beyond large-lot residential uses.

There are no drainageways on our property and there are no indications of anything other than sheet flow entering or leaving the property. The North Fork at Briargate to the west of this property has built three detention ponds. \longleftarrow include more discussion of flows Surrounding Platted Developments include: entering the site and locations

1. Several small platted properties to the east
2. Academy High School Filing No. 5 and North Fork at Briargate Filing No. 6 to the west
3. Several Cordera Filings to the south
4. There aren't any new plattings filed to the north.
III.

DESCRIPTION OF PROPERTY

The project is comprised of four contiguous 5 acre parcels, these parcels are at the very southwest corner of the Black Forest.:

3820 Old Ranch Rd \#6226000061
3890 Old Ranch Rd. \#6226000060
10655 Howells Rd. \#6226000059
10755 Howells Rd. \#6226000058
Each of the four properties has a single family residence with wells and individual septic systems. The land hasn't been reshaped over the years and has natural grasses, small trees and shrubs throughout. The land slopes generally to the west at $2-5 \%$. There are three sub-drainages within the 20 acres that flow to the northwest, west and south. The property is bound by Ridgeway Ln to the north, Howells Rd. to the west and Old Ranch Rd. to the south respectively.

The existing vegetation consists of trees (Blue Spruce, Sib Elm, Scrub Oak, Ponderosa, Black Locust...),

$$
\begin{aligned}
& \text { Will these septic systems still be used with the proposed site } \\
& \text { design? For separation requirements from septic systems } \\
& \text { and permanent water quality facilities, see ECM section I.7.6 } \\
& \text { and Colorado's Rules and Regulations for Water Well } \\
& \text { Construction, Pump Installation, and Monitoring and } \\
& \text { Observation Hole/Well Construction. }
\end{aligned}
$$

Shrubs (Juniper, Choke Cherry, Goji, Elderberry, American Plum, Sib. Pea, Currants, Goose Cherry...), all of which will be kept.

Based on geotechnical explorations that have been done, the soils beneath a few inches of top soil are fairly consistent fine sands, SW, SM. Sandstone was hit at 13 ' in just one test hole in the upper reach (east side). All other test bores showed sand/silt down to 20' maximum test depth. Percolation tests have found the soil capable of infiltrating water at 1.18 to 1.67 inches/hour.

USDA identifies this soils as sandy loam with some sand-clay loam (Peyton-Pring). The soil has a hydrologic Group B classification and a capacity of the most limiting layer to be 2.0-6.0 inches/hour. Areas to the east and north have similar soil (Group B) and slopes.

There are no drainageways or structures on the property and there is no sign that anything other than sheet flow may have ever entered the property along the east side or flowed off this property. There are no irrigation systems presently however the project will employ high efficiency irrigation methods when built. The only utilities within the property are those serving the existing residences.

IV. MAJOR BASIN DESCRIPTION

The property is within the area studied by JR Engineering in April 2001 for the Kettle Creek Drainage Basin-Old Ranch Road Tributary Drainage Basin Planning Study and Master Development Plan. This in the first study to to address the entire Kettle Creek Watershed. Our property is within this study area near Basin Identifiers D10 \& D12. The drainage management plan proposed in this study 'calls for the major land owners/developers in the study area to construct the drainage infrastructure required to support the proposed development within the study area' and 'calls for several regional detention facilities'. The study acknowledges that much of the Kettle Creek Watershed is within the city limits of Colorado Springs and they would have jurisdiction. Also, since the watershed flows to the US Air Force Academy property, the City required $2,5,10,25,50$ and 100 year storm events to be analyzed.

Most of the land to the north and east of the Shire has not been developed beyond large lot residential. The Kettle Creek and Old Ranch Road Drainage Basin Planning Studies address drainage for the larger area whereas the a Drainage Report for the new subdivision (North Fork at Briargate Fil 2) is the nearest and most recent drainage study, albeit down stream from our project. Include project number for reference
The property is not within a designated floodplain and FEMA classifies our property as "Area of Minimal Flood Hazard" $\longleftarrow \quad$ Include FIRM grid number
V. SUB-BASIN DESCRIPTION

Historic drainage patterns within the property generally flow to the west. Three sub-basins have been identified: South, Middle and North for the pre-development analysis.

[^0]Analysis of the existing hydrologic conditions reveal a 10 year storm produces 1.27 Acre-Feet of runoff and 1.91 Acre-Feet for a 100 year storm. Flow rates are calculated for each sub-basin along with stormwater volume using the Rational Method. Hydrographs of these basins is found in the Appendix.

The Kettle Creek/ORR/DBPS used 2,5,10,25, 50 and 100 year storm events to be analyzed whereas our Not all of the proposed infiltration ponds appear to be accepting and treating disturbed areas since much of the site is undisturbed. Please clearly identify which VII. FOUR STEP Ponds are required to treat the disturbed areas. Discuss fourth step and applicability on site
Our runoff reduction methods will include : Limiting hardscape to heavy traffic areas, use of permeable pavers in most walkways, rooftop waters directed to ponds*, limited concrete curb and gutter (another hardscape), 'contour plowing' in crop areas, maintain many areas with dense vegetation.

Maintaining/stable drainageways will be simplified by employing ; numerous low volume, low velocity drainageways and allowing historic sheet flow to run directly to dedicated ponds. Some roof waters will be piped out most conveyances will be via small channels.

Our proposed WQCV would include all stormwaters infiltrated into the ground. We will be developing and implementing some unique 'best practices'.

* The term 'Rond' refers to infiltration ponds of various types and sizes, from vegetation lined pits scattered around, grass buffers and constructed basins.

The state must be contacted to verify the acceptability of infiltrating all stormwater.
For full infiltration BMPS, infiltration tests must show a field rate minimum of 2 times that required to drain the WQCV over 12 hours. If the percolation testing results indicate rates slower than 2 times what is required to drain the WQCV over 12 hours then an underdrain is required.

Design Storm for this report is the Rational Method and SCS Type II 24 hour storm for both 10 year and 100 year event. Hydrologic analysis was done using HYDROLOGY STUDIO v3.0.0.26 software. Rainfall data was downloaded from NOAA for Colorado Springs.

To size infiltration ponds, the Pond Design feature was utilized with the outflow volume reduced to 0.0001 cfs . This gives the required size of pond to capture 100% of a given storm flow entirely.

IX. DRAINAGE FACILITY DESIGN CONCEPTS

A major objective of the project is to require the least amount of overlot grading and to maintain the historic drainage patterns. Our Drainage Strategies will reduce overall stormwater from flowing from the property. Using numerous mini-basins, basins will collect and infiltrate their waters 100% and some basins will allow a historic flow to continue. The net off-site flow will be reduced significantly.

The Plan view below shows enumerated surfaces and the general surface type in colors. Areas that will be runoff controlled will have their own pattern of runoff, conveyance and infiltration pond.

Most surface areas would utilize historic sheet flows directed to infiltration ponds (blue). Agricultural areas (green) would utilize strategies such as 'contour plowing'. Roofs are shown in orange color. White colored areas are paved surface (asphalt or gravel). Gray area around building groups is permeable
pavers. Purple areas are depressed gardens which would not contribute to runoff. please provide drainage analysis for any offsite improvements that are necessary. The previous traffic study done with the zoning application identified roadway improvements. These improvements shall be accounted for in your analysis. Coordinate with the developments traffic engineer for the recommended/required roadway improvements.

The spillways and their rundowns shall be contained within the property. Currently some ponds are shown at the property line. Shift the ponds as necessary and provide downstream analysis.

E FACHITY DESIGN-DETAILS

a project guan is to mant water nuwny un property to volumes less than the historic, calculated volume.
Some of the identified mini-basins are easier to achieve that goak without significant disruption to existing landscaping and land use. Throughout the property variouscombinations of strategies for reducing run-off will be used.

All ponds should have an emergency
spillway designed for large storm events so that if the water overtops the ponds are intentionally designed to minimize downstream impacts and erosion.

1. Minimize grading
2. Use heavy vegetation and contour plowing to achieve lower run-of
3. Employ planters and gardens in small depressions to collect and infiltrate on the spot
4. Require the least curb and gutter
5. Maximize sheet flow directly into dedicated infiltration ponds

Different pond styles will be employed, both sloped side basins and some vertical wall ponds to conserve space. Details of the Pond Types is found in the Appendix.

Where curb and gutter is necessary, Owners wish to pursue a less carbon intensive manner as shown below. Uphill edges of roadways and parking would have no curb. Wheel stops would be used in parking areas. The 'barrier' noted in the diagram could be notched to allow water to spill over barrier and through the Gabion basket and then surface flow to it's dedicated pond. A similar detail could be used on the uphill side to route waters to a strategic road crossing.

Our drainage strategies will not adversely affect streets and utilities. Many intentions for the project will result in positive environmental elements that will enhance the visitor experience at the Shire. Since we will infiltrate rather than discharge to other drainage systems, we expect to have a very positive affect on downstream drainage systems.

Our drainage strategies involve numerous small collection and infiltration ponds which take advantage of the existing terrain with limited over-lot grading. The property has been broken into mini-basins that take advantage of proposed roadways, buildings and suffaces to allow waters to flow in small volumes to adjacent ponds. All surfaces have been colored and humbered.

CALCULATION METHODS

For both the pre and post development runoff analysi\&, the contributing surfaces and their coefficient of runoff, slope and time of concentration were calculated.

Coefficients of Runoff used are as follows

Undeveloped Land, Future Agricultural areas	0.2
Asphalt Roads and Parking spaces	0.95
Gravel Roads and Parking spaces, Pavers	0.85
Roofs	0.95
Ponds them selves, assumed full	1.00

The Time of Concentration was typically quite long for pre-development flows and was adjusted for post development flows to find the surface that had the least and longest Tc. In some case's, if an Ag and Paved surface dominated the basin, Tc's for both surfaces were determined to find the largest flow (in cubic feet per second, cfs) to assess channel requirements.

FREE FLOWING AREAS

Provide all calculations used in developing the analysis. Only the outputs have been provided in the tables below.
Some areas were found not to be good candidates for managing stormwater, usually areas at the bottom of the basins or areas with heavy vegetation. These areas are on the south and west sides of the property. Runoff from these areas was calculated for the 10 and 100 year storms to find there rate of flow and total runoff that would be discharged.

This is a summary of those areas which will be allowed to flow off site. Waters from these areas would tend to accumulate in borrow ditches along Old Ranch and Howells Roads. There no indications that anything other than sheet flow has ever occurred in off-site flows.

Include flows at
Basin 72, west side @ 10755 Howells Rd. these locations
Area 20 \& 21, low end of entry driveway, west side
Basin 70 southwest corner, 3820 Old Ranch Rd.
Area 16, 66 \& 67, south entrance driveway, garden and 3890 Old Ranch Road

PONDED BASINS

The bulk of the property has been broken into (20) mini-basins with infiltration ponds dedicated to the runoff in that basin. Ponds are placed where they can collect surface flows without channels as often as possible. Grassed Swales are employed when needed to convey waters.

The ponds are sized based on two parameters : the total volume required to collect storm waters, and the required infiltrative area to 'perc' storm waters into the ground within 40 hours. The width on a horizontal plane at the bottom of the pond was generally used as the 'infiltrative surface area'. The ponds will be maintained as they will also serves other productive purposes such as cash crops, walking paths, wildlife habitat, replanted vegetation and historic vegetation.

Final design and details for the ponds required to provide water quality and flood control shall be provided at this stage. minor changes due to grading the site may happen but generally would
A copy of the Percolation be similar to the final design.

The infiltration ponds are rectangular, oval and triangular and possible organic shapes, geperally with 3:1 side slopes. Drawings attached show their design.

The pond sizes in this report may vary as the infiltration rate may differ, and pond shape maychange as development proceeds, hence we will work with the owner during construction and offer final design afterward. Pond sizes will be larger than the L1 \& L2 specified in this report as a $6 "$ high freeboard is required on all ponds and channels. Owner may ask to use $2: 1$ side slopes with vegetation or riprap.

The next page describes the format of results of the hydrologic analysis and the results.
Following that are individual basin calculations and solutions, beginning with the pre-development hydrology and the basin that will be allowed to flow freely off site. The Appendix includes Percolation Tests and Pond concepts.

The pond sizes shown on subsequent pages are based on full water surface dimensions. A page showing constructed sizes is included at the end of this file and on drawing sheet DR-2. These dimensions include a 6" free board.

Also attached is the spreadsheet of the many surface areas used in the analysis.

The following is the Pre-Develoment Hydrology

Provide an existing map with elements outlined in DCM section 4.4.A. 2

Provide design points for storm runoff for each basin.

PRE DEVELOPMENT RUN OFF

Hydrograph 10-yr Summary
Hydrology Studio v 3.0.0.26
03-29-2023

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	Rational	North SubBasin	1.496	2.07	11,128	----		
2	Reach		0.000	0.00	0.000	1		
3	Rational	Mid SubBasin	3.036	2.22	24,226	----		
4	Reach		0.000	0.00	0.000	3		
5	Rational	South SubBasin	2.303	2.43	20,178	----		
6	Reach		0.000	0.00	0.000	5		

North SubBasin

Hydrograph Type	$=$ Rational
Storm Frequency	$=10-\mathrm{yr}$
Time Interval	$=1 \mathrm{~min}$
Drainage Area	$=3.956$ ac
Tc Method	$=$ User
IDF Curve	$=$ Colorado Spasin area)
Freq. Corr. Factor	$=1.00$

Does not match table, revise (appears to be South basin area)

* Composite C Worksheet		
AREA (ac)	C	DESCRIPTION
0.041	0.95	Roof
0.122	0.85	Road
3.793	0.20	Land
3.956	$\mathbf{0 . 2 3}$	

$0.23 \quad 0$.
$Q p=1.50 \mathrm{cfs}$

Mid SubBasin

Hyd. No. 3

South SubBasin

Hyd. No. 5
Does not match table,

Hydrograph Type	$=$ Rational	_revise (appears to be	Peak Flow	$=2.303 \mathrm{cfs}$
Storm Frequency	$=10-\mathrm{yr}$	North basin area)	Time to Peak	$=2.43 \mathrm{hrs}$
Time Interval	$=1 \mathrm{~min}$		Runoff Volume	$=20,178 \mathrm{cuft}$
Drainage Area	$=6.806 \mathrm{ac}$	Runoff Coeff.	$=0.23^{*}$	
Tc Method	$=$ User	Time of Conc. (Tc)	$=146.0 \mathrm{~min}$	
IDF Curve	$=$ Colorado Springs.idf	Intensity	$=1.47 \mathrm{in} / \mathrm{hr}$	
Freq. Corr. Factor	$=1.00$	Asc/Rec Limb Factors $=1 / 1$		

* Composite C Worksheet

AREA (ac)	C	DESCRIPTION
0.129	0.95	Roof
0.133	0.85	Road
6.544	0.20	Land
6.806	$\mathbf{0 . 2 3}$	

$Q p=2.30 \mathrm{cfs}$

Storm Distribution: NRCS/SCS - Type II, 24-hr

Storm Duration	Total Rainfall Volume (in)								
	1-yr	2-yr	3-yr	5-yr	\checkmark 10-yr	25-yr	50-yr	100-yr	
24 hrs	1.62	1.89	0.00	2.41	2.92	3.72	4.43	5.21	

Incremental Rainfall Distribution, 10-yr									
Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)
11.42	0.005412	11.60	0.016404	11.78	0.042662	11.97	0.040178	12.15	0.008210
11.43	0.005490	11.62	0.018325	11.80	0.048005	11.98	0.028020	12.17	0.008025
11.45	0.005567	11.63	0.020245	11.82	0.053347	12.00	0.015861	12.18	0.007840
11.47	0.005645	11.65	0.022166	11.83	0.058690	12.02	0.010016	12.20	0.007655
11.48	0.005723	11.67	0.024087	11.85	0.064032	12.03	0.009505	12.22	0.007470
11.50	0.005801	11.68	0.026008	11.87	0.069375	12.05	0.009320	12.23	0.007285
11.52	0.006822	11.70	0.027928	11.88	0.074717	12.07	0.009135	12.25	0.007101
11.53	0.008721	11.72	0.029849	11.90	0.080060	12.08	0.008950	12.27	0.006916
11.55	0.010642	11.73	0.031770	11.92	0.085402	12.10	0.008765	12.28	0.006731
11.57	0.012563	11.75	0.033690	11.93	0.055846	12.12	0.008580	12.30	0.006546
11.58	0.014483	11.77	0.037037	11.95	0.052337	12.13	0.008395	12.32	0.006361

Mid SubBasin

Hyd. No. 3

South SubBasin	Does not match table,	Hyd. No. 5	
Hydrograph Type	= Rational	Peak Flow	$=3.461 \mathrm{cfs}$
Storm Frequency	$=100-\mathrm{yr}$	Time to Peak	$=2.43 \mathrm{hrs}$
Time Interval	$=1 \mathrm{~min}$	Runoff Volume	= 30,315 cuft
Drainage Area	$=6.806 \mathrm{ac}$	Runoff Coeff.	$=0.23$ *
Tc Method	= User	Time of Conc. (Tc)	$=146.0 \mathrm{~min}$
IDF Curve	= Colorado Springs.idf	Intensity	$=2.21 \mathrm{in} / \mathrm{hr}$
Freq. Corr. Factor	$=1.00$	Asc/Rec Limb Facto	= $1 / 1$

Composite C Worksheet		
AREA (ac)	C	DESCRIPTION
0.129	0.95	Roof
0.133	0.85	Road
6.544	0.20	Land
6.806	$\mathbf{0 . 2 3}$	

$Q p=3.46 \mathrm{cfs}$

Storm Distribution: NRCS/SCS - Type II, 24-hr

Storm Duration	Total Rainfall Volume (in)								
	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	\checkmark 100-yr	
24 hrs	1.62	1.89	0.00	2.41	2.92	3.72	4.43	5.21	

Equation Coefficients	Intensity = B / (Tc + D)^E (in/hr)								
	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	
B	0.0000	58.1215	0.0000	57.1446	58.8780	63.5498	67.7965	72.2003	
D	0.0000	10.3000	0.0000	10.3000	10.3000	10.4000	10.5000	10.6000	
E	0.0000	0.8106	0.0000	0.7542	0.7303	0.7097	0.6986	0.6898	

Minimum $T c=5$ minutes

Cf $=$ Correction Factor applied to Rational Method runoff coefficient.
Sample IDF Curves

Hydrology Studio v 3.0.0.26 (Rainfall totals in Inches)
03-29-2023

	Active	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Active						\checkmark			\checkmark
SCS Storms	> SCS Dimensionless Storms								
SCS 6hr		1.25	1.41	0	1.77	2.15	2.79	3.38	4.05
Type I, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
Type IA, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
Type II, 24-hr	\checkmark	1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
Type II FL, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
Type III, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
Synthetic Storms	> IDF-Based Synthetic Storms								
1-hr		0	1.85	0	2.31	2.64	3.10	3.47	3.83
2-hr		0	2.24	0	2.90	3.36	4.01	4.51	5.01
3-hr		0	2.48	0	3.27	3.82	4.60	5.20	5.79
6-hr		0	2.89	0	3.96	4.70	5.73	6.53	7.32
12-hr		0	3.33	0	4.75	5.73	7.08	8.13	9.17
24-hr		0	3.82	0	5.66	6.94	8.70	10.07	11.42
Huff Distribution	> 1st Quartile (0 to 6 hrs)								
1-hr		0.79	0.93	0	1.20	1.45	1.83	2.16	2.53
2-hr		0.97	1.13	0	1.44	1.74	2.23	2.65	3.12
3-hr		1.07	1.23	0	1.55	1.88	2.42	2.91	3.46
6-hr		1.25	1.41	0	1.77	2.15	2.79	3.38	4.05
Huff Distribution	> 2nd Quartile (>6 to 12 hrs)								
8-hr		0	0	0	0	0	0	0	0
12-hr		1.42	1.64	0	2.07	2.51	3.24	3.90	4.64
Huff Distribution	> 3rd Quartile (>12 to 24 hrs)								
18-hr		0	0	0	0	0	0	0	0
24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
Custom Storms	> Custom Storm Distributions								
Colorado Springs		0	0	0	0	0	0	0	0
My Custom Storm 2		0	0	0	0	0	0	0	0
My Custom Storm 3		0	0	0	0	0	0	0	0
My Custom Storm 4		0	0	0	0	0	0	0	0
My Custom Storm 5		0	0	0	0	0	0	0	0
My Custom Storm 6		0	0	0	0	0	0	0	0
My Custom Storm 7		0	0	0	0	0	0	0	0
My Custom Storm 8		0	0	0	0	0	0	0	0
My Custom Storm 9		0	0	0	0	0	0	0	0
My Custom Storm 10		0	0	0	0	0	0	0	0

Hydrograph 10-yr Summary

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	Rational	Pre Pre	0.691	1.43	3,567	----		
2	Rational	Post	0.377	1.43	1,944	----		
3	Pond Route	Post \#72 Runs Free	0.000	0.00	0.000	2	101.58	4,458

Hydrograph 100-yr Summary
Hydrology Studio v 3.0.0.26

Hyd.	$\begin{aligned} & \text { Hydrograph } \\ & \text { Type } \end{aligned}$	Hydrograph Name			$\begin{aligned} & \text { Hydrograph } \\ & \text { Volume } \\ & \text { (cuft) } \end{aligned}$	(intow	$\begin{array}{\|l\|l\|} \hline \text { Haximum } \\ \text { (everation } \end{array}$	$\begin{aligned} & \text { maximum } \\ & \text { Suratage } \\ & \text { cout } \end{aligned}$
1	Rational	Pre Pre	1.017	${ }^{1.43}$	5,250	\cdots		
2	Rational	Post	0.555	${ }^{1.43}$	2.861	--		
3	Pond foute	Postifl R funs fiee	0.000	0.00	0.000	2	10208	${ }^{6.563}$

Equation Coefficients	Intensity = B / (C c + D)^E (in/hr)								
	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	
B	0.0000	58.1215	0.0000	57.1446	58.8780	63.5498	67.7965	72.2003	
D	0.0000	10.3000	0.0000	10.3000	10.3000	10.4000	10.5000	10.6000	
E	0.0000	0.8106	0.0000	0.7542	0.7303	0.7097	0.6986	0.6898	

Minimum $T c=5$ minutes

Cf $=$ Correction Factor applied to Rational Method runoff coefficient.
Sample IDF Curves

Hydrology Studio v 3.0.0.26 (Rainfall totals in Inches)

	Active	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Active						\checkmark			\checkmark
SCS Storms	> SCS Dimensionless Storms								
SCS 6hr		1.25	1.41	0	1.77	2.15	2.79	3.38	4.05
Type I, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
Type IA, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
Type II, 24-hr	\checkmark	1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
Type II FL, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
Type III, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
Synthetic Storms	> IDF-Based Synthetic Storms								
1-hr		0	1.85	0	2.31	2.64	3.10	3.47	3.83
2-hr		0	2.24	0	2.90	3.36	4.01	4.51	5.01
3-hr		0	2.48	0	3.27	3.82	4.60	5.20	5.79
6-hr		0	2.89	0	3.96	4.70	5.73	6.53	7.32
12-hr		0	3.33	0	4.75	5.73	7.08	8.13	9.17
24-hr		0	3.82	0	5.66	6.94	8.70	10.07	11.42
Huff Distribution	> 1st Quartile (0 to 6 hrs)								
1-hr		0.79	0.93	0	1.20	1.45	1.83	2.16	2.53
2-hr		0.97	1.13	0	1.44	1.74	2.23	2.65	3.12
3-hr		1.07	1.23	0	1.55	1.88	2.42	2.91	3.46
6-hr		1.25	1.41	0	1.77	2.15	2.79	3.38	4.05
Huff Distribution	> 2nd Quartile (>6 to 12 hrs)								
8-hr		0	0	0	0	0	0	0	0
12-hr		1.42	1.64	0	2.07	2.51	3.24	3.90	4.64
Huff Distribution	> 3rd Quartile (>12 to 24 hrs)								
18-hr		0	0	0	0	0	0	0	0
24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
Custom Storms	> Custom Storm Distributions								
Colorado Springs		0	0	0	0	0	0	0	0
My Custom Storm 2		0	0	0	0	0	0	0	0
My Custom Storm 3		0	0	0	0	0	0	0	0
My Custom Storm 4		0	0	0	0	0	0	0	0
My Custom Storm 5		0	0	0	0	0	0	0	0
My Custom Storm 6		0	0	0	0	0	0	0	0
My Custom Storm 7		0	0	0	0	0	0	0	0
My Custom Storm 8		0	0	0	0	0	0	0	0
My Custom Storm 9		0	0	0	0	0	0	0	0
My Custom Storm 10		0	0	0	0	0	0	0	0

$\begin{array}{ll}\text { Rainfall totals in Inches } & \text { 03-27-2023 }\end{array}$

	Active	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Active						\checkmark			\checkmark
Huff Indiana	> Indianapolis								
30-min		0.61	0.73	0	0.95	1.15	1.44	1.68	1.93
1-hr		0.79	0.93	0	1.20	1.45	1.83	2.16	2.53
2-hr		0.97	1.13	0	1.44	1.74	2.23	2.65	3.12
3-hr		1.07	1.23	0	1.55	1.88	2.42	2.91	3.46
6-hr		1.25	1.41	0	1.77	2.15	2.79	3.38	4.05
12-hr		1.42	1.64	0	2.07	2.51	3.24	3.90	4.64
24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
Huff Indiana	> Evansville								
30-min		0.61	0.73	0	0.95	1.15	1.44	1.68	1.93
1-hr		0.79	0.93	0	1.20	1.45	1.83	2.16	2.53
2-hr		0.97	1.13	0	1.44	1.74	2.23	2.65	3.12
3-hr		1.07	1.23	0	1.55	1.88	2.42	2.91	3.46
6-hr		1.25	1.41	0	1.77	2.15	2.79	3.38	4.05
12-hr		1.42	1.64	0	2.07	2.51	3.24	3.90	4.64
24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
Huff Indiana	> Fort Wayne								
30-min		0.61	0.73	0	0.95	1.15	1.44	1.68	1.93
1-hr		0.79	0.93	0	1.20	1.45	1.83	2.16	2.53
2-hr		0.97	1.13	0	1.44	1.74	2.23	2.65	3.12
3-hr		1.07	1.23	0	1.55	1.88	2.42	2.91	3.46
6-hr		1.25	1.41	0	1.77	2.15	2.79	3.38	4.05
12-hr		1.42	1.64	0	2.07	2.51	3.24	3.90	4.64
24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
Huff Indiana	> South Bend								
30-min		0.61	0.73	0	0.95	1.15	1.44	1.68	1.93
1-hr		0.79	0.93	0	1.20	1.45	1.83	2.16	2.53
2-hr		0.97	1.13	0	1.44	1.74	2.23	2.65	3.12
3-hr		1.07	1.23	0	1.55	1.88	2.42	2.91	3.46
6-hr		1.25	1.41	0	1.77	2.15	2.79	3.38	4.05
12-hr		1.42	1.64	0	2.07	2.51	3.24	3.90	4.64
24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21

$\begin{array}{ll}\text { Rainfall totals in Inches } & \text { 03-27-2023 }\end{array}$

	Active	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Active						\checkmark			\checkmark
NRCS Storms	> NRCS Dimensionless Storms								
NRCS MSE1, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
NRCS MSE2, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
NRCS MSE3, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
NRCS MSE4, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
NRCS MSE5, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
NRCS MSE6, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
NOAA-A, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
NOAA-B, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
NOAA-C, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
NOAA-D, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
NRCC-A, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
NRCC-B, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
NRCC-C, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
NRCC-D, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
CA-1, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
CA-2, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
CA-3, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
CA-4, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
CA-5, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
CA-6, 24-hr		1.62	1.89	0	2.41	2.92	3.72	4.43	5.21
FDOT Storms	> Florida DOT Storms								
FDOT, 1-hr		0	0	0	0	0	0	0	0
FDOT, 2-hr		0	0	0	0	0	0	0	0
FDOT, 4-hr		0	0	0	0	0	0	0	0
FDOT, 8-hr		0	0	0	0	0	0	0	0
FDOT, 24-hr		0	0	0	0	0	0	0	0
FDOT, 72-hr		0	0	0	0	0	0	0	0
SFWMD, 72-hr		0	0	0	0	0	0	0	0
Austin Storms > Austin Frequency Storms	> Austin Frequency Storms								
Austin Zone 1, 24-hr		0	0	0	0	0	0	0	0
Austin Zone 2, 24-hr		0	0	0	0	0	0	0	0

Old Ranch Road

These Areas are have no Drainage Control

We need to know how much of the proposed area of disturbance is treated vs untreated and if there are any exclusions that apply to the untreated areas. So please create a basic overview map (or modify an existing drainage map) with color shading/hatching that shows areas tributary to each PBMP and those disturbed areas that are not treated by a PBMP, with the applicable exclusion labeled (ex: 20\% up to 1ac of development can be excluded per ECM App I.7.1.C. 1 and exclusions listed in ECM App I.7.1.B.\#). Identify all areas that will be undisturbed and don't require a PBMP. An accompanying summary table on this map would also be very helpful (example provided):

Water Quality Treatment Summary Table							
Basin ID	Total Area (ac)	Total Proposed Disturbed Area (ac)	Area Trib to Pond A (ac)	Disturbed Area Treated via Runoff Reduction (ac)	Disturbed Area Excluded from WQ per ECM App 1.7.1.C. 1 (ac)	Disturbed Area Excluded from WQ per ECM App 1.7.1.B.\# (ac)	Applicable WQ Exclusions (App I.7.1.B.\#)
A	4.50	4.50	4.50				
B	1.25	1.25		1.25			
C	6.00	4.00				4.00	ECM App 1.7.1.B. 5
D	2.50	2.50	1.00		0.50	1.00	ECM App 1.7.1.B. 7
E	3.00		3.00				
F	8.25						
Total	25.50	12.25	8.50	1.25	0.50	5.00	
comments		[For each row, the sum of the values in Columns 4-7 must be greater than or equal to the value in Column 3 above.]	IValues in this column can be more than Column 3 if overtreating nondisturbed areas of the same landuse.]	(See RR calc spreadsheet.]	TTotal must be $<20 \%$ of site and <1ac.]		
		Total Proposed Disturbed Area (ac)	Total Proposed Treated Area (ac)		Total Proposed Disturbed Area Excluded from WQ (ac)		Minimum Area to be Treated (ac)
		12.25	9.75		5.50		6.75

what is the area? All disturbed areas require treatment. 20\% up to 1ac of development can be excluded per ECM App I.7.1.C.1, but this needs to be clearly identified.

This drainage area is comprised of asphalt roadway. Some of the flow from \#20 may be collected into the pond \#89. This area will run free.

10 yr Storm		100 yr Storm		typical throughout the drainage plan/report
Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)	
0.93	668	1.28	920	
	120		165	
- Include design points on the map and table to show where these flows leave the project site - Include area in table				

Hydrograph 10-yr Summary

Hydrograph 100-yr Summary
Hydrology Studio v 3.0.0.26

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	Rational	Pre Pre	0.269	0.20	194	----		
2	Rational	Post	1.277	0.20	920	----		

Hydrograph Type	= Rational	Peak Flow	$=1.277 \mathrm{cfs}$
Storm Frequency	$=100-\mathrm{yr}$	Time to Peak	$=0.20 \mathrm{hrs}$
Time Interval	$=1 \mathrm{~min}$	Runoff Volume	$=920 \mathrm{cuft}$
Drainage Area	$=0.16 \mathrm{ac}$	Runoff Coeff.	= 0.95*
Tc Method	= User	Time of Conc. (Tc)	$=12.0 \mathrm{~min}$
IDF Curve	= Colorado Springs.idf	Intensity	$=8.40 \mathrm{in} / \mathrm{hr}$
Freq. Corr. Factor	$=1.00$	Asc/Rec Limb Factors $=1 / 1$	
* Composite C Worksheet			
$\begin{array}{lll} \text { AREA (ac) } & \text { C } & \text { DES } \\ 0.16 & 0.95 & \text { Roac } \\ 0.16 & 0.95 & \text { Ros } \end{array}$	description Road-Asphatt		

Basin 72 dominate

This area will run free.

Clarify if any new
disturbance/development will occur

10 yr		Storm	100 yr		Storm
Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)		
$\mathbf{0 . 8 6}$	$\mathbf{4 , 4 5 8}$	$\mathbf{1 . 2 7}$	$\mathbf{6 , 5 6 3}$		
Infiltration Surface Area Req'd (sf)	801				

Hydrograph 10-yr Summary
Hydrology Studio v 3.0.0.26

Hyd.	${ }_{\substack{\text { Hyper }}}^{\substack{\text { Hyprograph } \\ \text { Typ }}}$		(eamk		$\begin{aligned} & \text { Hydrograph } \\ & \text { Volume } \\ & \text { (cuft) } \end{aligned}$		Maximum Elevation (ft)	$\begin{aligned} & \text { Maximum } \\ & \text { Storage } \\ & \text { (cuft) } \end{aligned}$
1	Raional	Pre Pe	0.691	${ }^{1.43}$	${ }^{3.567}$	-		
2								
	Raional	Post	0.864	1.43	4,458	\cdots		

Hydrograph 100-yr Summary
Hydrology Studio v 3.0.0.26

Hydrograph Type		= Rational	Peak Flow	$=1.272 \mathrm{cfs}$
Storm Frequency		= 100-yr	Time to Peak	$=1.43 \mathrm{hrs}$
Time Interval		$=1 \mathrm{~min}$	Runoff Volume	$=6,563 \mathrm{cuft}$
Drainage Area		$=1.649 \mathrm{ac}$	Runoff Coeff.	$=0.25$ *
Tc Method		= User	Time of Conc. (Tc)	$=86.0 \mathrm{~min}$
IDF Curve		= Colorado Springs.idf	Intensity	$=3.09 \mathrm{in} / \mathrm{hr}$
Freq. Corr. Factor		$=1.00$	Asc/Rec Limb Fact	= $1 / 1$
* Composite C Worksheet				
AREA (ac) C desa		description		
$\begin{aligned} & 0.107 \\ & 1.542 \\ & 1.54 \end{aligned}$	$\begin{array}{cc} 0.95 & \text { Roof } \\ 0.20 & \text { Land- } \end{array}$	$\xrightarrow{\text { Roof }}$ Land-Undevel		
1.1.42 1.649	0.25			

Basin 70

This basin in the SW corner of the project will have no drainage control. Within this basin are infiltration ponds collecting waters from adjacent pavement of other basins. A runoff coefficient of 0.2 , is probably low with extensive scrub oak and accumulated detritus.

Run off will continue in it's historical manner to the borrow ditch.
Are the ponds not drainage control? Clearly identify which sections of this basin do not drain to ponds. Clarify if any new disturbance/development will occur

10 yr Storm		100 yr Storm	
Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
0.86	$\mathbf{4 , 9 0 7}$	$\mathbf{1 . 2 7}$	$\mathbf{7 , 2 5 1}$

Please clearly indicate how flows are being conveyed to the ponds. As stated before all development must be accounted for (i.e. walkways, paths). Developed flows must be treated and increase in flows must be mitigated. Downstream conveyance must also be analyzed.

Hydrograph 10-yr Summary
Hydrology Studio v 3.0.0.26

Hyd.	${ }_{\substack{\text { Hydrograph } \\ \text { Type }}}$		$\begin{array}{\|l\|l} \substack{\text { Peagu } \\ \text { (cos } \\ \text { coss }} \end{array}$				$\begin{aligned} & \text { Maximum } \\ & \text { Elevation } \\ & \text { (ft) } \end{aligned}$	$\begin{aligned} & \text { Maximum } \\ & \text { Storage } \\ & \text { (cuft) } \end{aligned}$
1	Rational	Pre Pre	0.792	${ }^{1.58}$	4,516	--		
2	Rational	Post	0.861	${ }^{1.58}$	4,907	-		

Hydrograph 100-yr Summary
Hydrology Studio v 3.0.0.26

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	Rational	Pre Pre	1.171	1.58	6,672	----		
2		Post	1.272	1.58		----		
	Rational	Post	1.272	1.58	7,251	----		

Hydrograph Type		= Rational	Peak Flow	$=1.272 \mathrm{cfs}$
Storm Frequency		$=100-\mathrm{yr}$	Time to Peak	$=1.58 \mathrm{hrs}$
Time Interval		$=1 \mathrm{~min}$	Runoff Volume	= 7,251 cuft
Drainage Area		$=1.754 \mathrm{ac}$	Runoff Coeff.	= 0.25*
Tc Method		= User	Time of Conc. (Tc)	$=95.0 \mathrm{~min}$
IDF Curve		= Colorado Springs.idf	Intensity	$=2.90 \mathrm{in} / \mathrm{hr}$
Freq. Corr. Factor		$=1.00$	Asc/Rec Limb Fact	= $1 / 1$
* Composite C Worksheet				
area (ac) C desa		description		
$\begin{array}{lll}0.126 \\ 1.628 & 0.95 & \text { Rood } \\ 0.20 & \text { Land }\end{array}$		Land-Undevel		
1.754	0.25			

Basin 92 - Area $16+66+67$ to Free

This drainage area is comprised of asphalt roadway \#16 and undeveloped land \#66 \& 67 in the SE corner of the property. These areas will run free.

Clarify if any new disturbance/development will occur

	10 yr Storm		100 yr Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
	0.818	3044	1.19	4,426
Infiltration				
Infiltration Surface Area Req'd (CF/IR/40hr) = SF				

Hydrograph 10-yr Summary
Hydrology Studio v 3.0.0.26

Hyd.	${ }_{\substack{\text { Hyprograph } \\ \text { Type }}}^{\substack{\text { a }}}$		$\begin{array}{\|l\|l} \substack{\text { Peagu } \\ \text { (cos } \\ \text { coss }} \end{array}$				$\begin{aligned} & \text { Maximum } \\ & \text { Elevation } \\ & \text { (ft) } \end{aligned}$	$\begin{aligned} & \text { Maximum } \\ & \text { Storage } \\ & \text { (cuft) } \end{aligned}$
1	Rational	Pre Pre	0.584	${ }^{1.03}$	2,174	--		
2	Rational	Post	0.818	1.03	3,044	-		

Hydrograph 100-yr Summary
Hydrology Studio v 3.0.0.26

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	Rational	Pre Pre	0.850	1.03	3,161	----		
2	Rational	Post	1.190	1.03		----		
	Rational	Post	1.190	1.03	4,426	----		

Calculations for Areas with Dedicated Infiltration Ponds

[^1]provide analysis of the spillway offsite

Results Format

For each basin analyzed there is generally three pages of output. Below is the results of the Hydrology calculations these pages include.

Shows color coded surfaces and boundaries used for basin analysis

Shows expected total runoff volume in CF and flow in CFS for 10 yr and 100 yr storms Shows the size of the pond required to infiltrate runoff within 40 hours

Shows Basin number and Hydrology file name Shows contributing areas and \#'s
Shows areas, reach, slope and coefficient of runoff
Shows Time of Concentration used for Pre and Post developement or different surface flows
Shows Hydrology output Shows Pond Type
Shows pond size calculation
Shows Volume test as compared to req'd volume Shows infiltrative area test when pond is half full or empty

Shows Grassed Swale location and alignment
Shows Swale Type and size
Shows Pond Type and dimensions
Shows Pond location

Basin 87

Area \#75 in Basin 87 will remain predominantly agricultural use and will be contour plowed to further reduce runoff. Greenhouse roof \#57 is included.

Hydrology Output	10 yr Storm		100 yr Storm	
	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
	1.42	8882	2.11	13,170
Infiltration				
Infiltration Surface Area Req'd (CF/IR/40hr) = SF	Infiltration Surface Area Req'd (sf)	1,596		2,366

Basin 87

Type 2 Triangular Infiltration Pond

Basin 87

provide froude number and identify if the flow is sub or super critical for all the proposed channels. Identify any protection that is needed. Refer to DCMV1 Ch10. for permissible velocities.
clarify whether roof \#56 will be conveyed to pond 87 or 86 as the boundary line for basin 87 does not include roof \#56

,					
Infiltration Pond \#87	Hydrology File		75+56+87 to 87.hys		
,					
,					
Infiltration Test	Entech PH2				
Infiltration Rafe (inches / hour / sf)	1.67				
Infiltration Rate (IR = ft / hour /sf)	0.139166666667				
Receive Flows from:	75, 54, 87				
	Area (ac)	Reach Length (Ft)	Slope	Coeff (C)	Tc (Min)
Roof \# 56	0.0201			0.95	
Roof \#54	0.1096			0.95	
Basin 75	2.4782	453	4.0\%	0.2	103.8
Pond \# 87	0.1410			1	
Total	2.7489				
Flow Coefficient of Runoff	0.2800				
Composite Area	2.7490				
Composite Curve \#					
Hydrology Input	Tc (min)	Composite Curve			
	103.8				
	10 yr St		100 yr	Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)	
	1.42	8882	2.11	13,170	
Infiltration					
Infiltration Surface Area Req'd (CF/IR/40hr) = SF	Infiltration Surface Area Req'd (sf)	1,596		2,366	
Pond Sizing - Truncated Triangular Pyramid					
Full Pyramid (defines top dimensions of pond)					
Side Slope X:1	3				
Base Length (ft)	74	L1			
Base Width (ft)	104.7	L2			
Height	24.7	h0			
Base Area (sf)	7744.2	BA			
Volume (cf)	63668.4	Vol			
Smaller Pyramid					
Depth	3.0	h2 H			
Base Length	56.0	I			
Base Width (ft)	86.7	w			
Top Cone Height (ft)	21.7	h1			
Top Cone Volume (cf) POND Size	35042.3				
Bottom Truncated Cone Volume (cf)	28626.1	Greater Than	13,170		
Base Area (sf)	2426.3	I x w /2			
Water Surface Area - FULL(sf)	3872.1				
Water Surface Area at HALF FULL	3149.2	Greater Than	2,366		
Water Surface Area - EMPTY	2426.3	Greater Than	2,366		

Basin 89

please account for the imperviousness of the proposed path/walkway within this basin
Basin \#89, it's pond and conveyance swales is dedicated to reducing runoff from adversely affecting the OWTS Soil Treatment Area (\#95).

Hydrology Output	10 yr Storm		100 yr Storm	
	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
	0.6	1923	0.87	2,780
Infiltration				
Infiltration Surface Area Req'd (CF/R/40hr) = SF	Infiltration Surface Area Req'd (sf)	345		499

Basin 89

Basin 95 is space reserved for the Soil Treatment Area of the

 OWTS. The uphill side of the STA is protected from runoff by Pond \#89. Swales will be created on the north and west sides to convey water to Pond \#95aaccount for the proposed walkway/path in this basin

Hydrology Output	10 yr Storm		100 yr Storm	
	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
	0.42	1355	0.6	1,960
Infiltration				
Infiltration Surface Area Req'd (CF/IR/40hr) = SF	Infiltration Surface Area Req'd (sf)	243		352

Basin 95

Channel Parameters	
Bottom Width (tt) b	0.50
Side Slope X:1	3.00
Depth (tt) h	1.00
Top Width (tt) T	6.50
Flow Area	
Area (sf)	3.50
Wetted Perimeter	6.82
Hydraulic Radius	0.51
Flow Calc	
Slope (\%)	2.07\%
Mannings (n)	0.03
Velocity (tt/sec)	4.58
Area (sf)	3.50
Flow (cf/sec)	16.03

Swale Type 2 Tapered

Infiltration Pond \#95	Hydrology File		STA 95 to 95a.hys		
Infiltration Test	Entech PH2				
Infiltration Rate (inches / hour / sf)	1.67				
Infiltration Rate (IR = ft / hour /sf)	0.139166667				
Receive Flows from:	STA,95				
	Area (ac)	Reach Length (Ft)	Slope	Coeff (C)	Tc (min)
Roof				0.95	
Roof				0.95	
BasinSTA+95	0.5908	150	5.3\%	0.2	54.2
Pond	0.0280			1	
Total	0.6188				
Flow Coefficient of Runoff	0.2100				
Composite Area	0.6188				
Composite Curve \#					
Hydrology Input	Tc (min)	Composite Curve			
	54.2	0.26			
	10 yr	Storm	100 yr	Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)	
	0.42	1355	0.6	1,960	
Infiltration					
Infiltration Surface Area Req'd (CF/IR/40hr) = SF	Infiltration Surface Area Req'd (sf)	243		352	
Pond Sizing - Truncated Triangular Pyramid					
Full Pyramid (defines top dimensions of pond)					
Side Slope X:1	3.00				
Base Length	38.00	L1			
Base Width	53.74	L2			
Height	12.67	h0			
Base Area (sf)	2042.12	BA			
Volume (cf)	8621.44	Vol			
Smaller Pyramid					
Depth	3.00	h2 H			
Base Length	20.00	I			
Base Width (ft)	35.74	W			
Top Cone Height (ft)	9.67	h1			
Top Cone Volume (cf) POND Size	2303.02				
Bottom Truncated Cone Volume (cf)	6318.42	Greater Than	1,960		
Base Area (sf)	357.40	I x w/2			
Water Surface Area - FULL(sf)	1021.06				
Water Surface Area at HALF FULL	689.23	Greater Than	352		
Water Surface Area - EMPTY	357.40	Greater Than	352		

Pond 94 infiltrates waters from mostly undeveloped land \#73 and roof \#49. Runoff flows via sheet flow to low area of pond.

Hydrology Output	10 yr Storm		100 yr Storm	
	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
	0.53	2798	0.78	4,122
Infiltration				
Infiltration Surface Area Req'd (CF/IR/40hr) = SF	Infiltration Surface Area Req'd (sf)	503		740

Basin 94

Type 1 Rectangular Infiltration Pond

Infiltration Pond \#94	Hydrology File		49+73+94 to 94.hys		
Infiltration Test	Entech PH2				
Infiltration Rate (inches / hour / sf)	1.67				
Infiltration Rate (IR = ft / hour /sf)	0.139166667				
Receive Flows from :	49,73,94				
	Area (ac)	Reach Length (Ft)	Slope	Coeff (C)	Tc (min)
Roof \#49	0.0500			0.95	
Roof				0.95	
Basin \#73	0.7804	270	3.0\%	0.2	88.3
Pond \# 94	0.0550			1	
Total	0.8854				
Flow Coefficient of Runoff	0.2900				
Composite Area	0.8854				
Composite Curve \#					
Hydrology Input	Tc (min)	Composite Curve			
	88.3				
	10 yr	Storm	100 yr	Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)	
	0.53	2798	0.78	4,122	
Infiltration					
Infiltration Surface Area Req'd (CF/IR/40hr) = SF	Infiltration Surface Area Req'd (sf)	503		740	
Trapezoidal Pond Sizing	Input Values				
Side Slope X:1	3				
Pond Top Length (ft)	80	L			
Pond Top Width (ft)	30	W			
Pond Bottom Length (ft)	65	I			
Pond Bottom Width (ft)	15	w			
Depth (ft)	2.5	h			
Infiltation Surface Area - FULL (sf)	2400				
Full Volume (cf)	4,125	Greater Than	4,122		
Water Surface Area - FULL (sf)	2400				
Water Surface Area at HALF FULL	1687.5	Greater than	740		
Water Surface Area - EMPTY (sf)	975	Greater than	740		
NOTES					

Basin 86

Pond 86 infiltrates waters from the gravel roadway \#1 and a small shed \#56. Runoff flows via sheet flow to pond \#86.

Hydrology Output	10 yr Storm		100 yr Storm	
	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
	2.49	3432	3.49	4,821
Infiltration				
Infiltration Surface Area Req'd to drain within 40 hrs $(C F / I R / 40 h r)=S F$	Infiltration Surface Area Req'd (sf)	617		866

Basin 86

Infiltration Pond \#86	Hydrology File		1+56+86.hys		
Infiltration Test	Entech PH2				
Infiltration Rate (inches / hour / sf)	1.67				
Infiltration Rate (IR = ft / hour /sf)	0.139166667				
Receive Flows from:	1, 56, 86				
	Area (ac)	Reach Length (Ft)	Slope	Coeff (C)	Tc (min)
Roof					
Roof \#56	0.02			0.95	
Roads Gravel \#1	0.507	313	4.5\%	0.85	23.1
Roads Asphalt				0.95	
Land		313	4.5\%	0.2	83.0
Pond \# 86	0.094			1	
Total	0.621	ac			
Flow Coefficient of Runoff	0.880				
Composite Area	0.621				
Composite Curve \#					
Hydrology Input	Tc (min)				
	23.1				
	10 yr	Storm	100 yr	Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)	
	2.49	3432	3.49	4,821	
Infiltration					
Infiltration Surface Area Req'd to drain within 40 hrs $(\mathrm{CF} / \mathrm{IR} / 40 \mathrm{hr})=\mathrm{SF}$	Infiltration Surface Area Req'd (sf)	617		866	
Pond Sizing - Truncated Rectangular Pyramid					
Side Slope X:1	3				
Pond Top Length (ft)	200	L			
Pond Top Width (ft)	20	W			
Pond Bottom Length (ft)	176	1			
Pond Bottom Width (ft)	9.5	W			
Depth (ft)	1.75	h			
Infiltation Surface Area - FULL (sf)	4000				
Full Volume (cf)	4,890	Greater than	4,821		
Water Surface Area - FULL (sf)	4000				
Water Surface Area at HALF FULL	2836	Greater than	866		
Water Surface Area - EMPTY (sf)	1672				

Basin 58

Pond 58 collects waters from paved area $\# 5$ and landscaped area \#76 via grassed swales and sheet flow from land. The six small buildings are earth sheltered and their area has been included as roofs.

	10 yr Storm		100 yr Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
From \#5 only	1.67	1304	2.31	1801
From \#76 only	0.81	4418	1.19	6517
Aggregate	2.48	5,722	3.5	8,318
Infiltration				
Infiltration Surface Area Req'd (CF/IR/40hr) = SF	Infiltration Surface Area Req'd (sf)	1,028		1,494

Basin 58

Pond 58 infiltrates waters and is generally trapezoidal with the dimensions

 shown. Both swales are Type 2 which begin a minimum of 2 ' wide and finish with the dimensions shown.| Channel Parameters | | Channel Parameters | |
| :---: | :---: | :---: | :---: |
| Bottom Width (tt) b | 1.5 | Bottom Width (tt) b | 1 |
| Side Slope X:1 | 3 | Side Slope X:1 | 3 |
| Depth (ft) H | 0.75 | Depth (ft) H | 1 |
| Top Width (ft) W | 6 | Top Width (ft) W | 7 |
| Flow Area | | Flow Area | |
| Area (sf) | 2.8125 | Area (sf) | 4 |
| Wetted Perimeter | 6.24341649 | Wetted Perimeter | 7.32455532 |
| Hydraulic Radius | 0.450474513 | Hydraulic Radius | 0.546108238 |
| Flow Calc | | Flow Calc | |
| Slope (\%) | 3.0\% | Slope (\%) | 4.2\% |
| Mannings (n) | 0.3 | Mannings (n) | 0.3 |
| Velocity (tt/sec) | 0.505789734 | Velocity (tt/sec) | 0.683753708 |
| Area (sf) | 2.8125 | Area (sf) | 4 |
| Flow (ct/sec) | 1.422533627 | Flow (cf/sec) | 2.735014831 |

Infiltration Pond \#58	Hydrology File		5+58+76 to	58.hys	
Infiltration Test	Entech PH2				
Infiltration Rate (inches / hour / sf)	1.67				
Infiltration Rate ($\mathrm{IR}=\mathrm{ft} / \mathrm{hour} / \mathrm{sf}$)	0.139166667				
Receive Flows from:	5, 58,76				
	Area (ac)	Reach Length (Ft)	Slope	Coeff (C)	Tc (min)
Roof \# ElH's	0.0663			0.95	
Roof				0.95	
Roads Gravel				0.85	
Roads \#5 Asphalt	0.299	245	3.5\%	0.95	13.3
Land \#76	0.866	305	3.3\%	0.2	90.8
Pond \# 58	0.141			1	
Total	1.372				
Flow Coefficient of Runoff	0.40				
Composite Area	1.372				
Composite Curve \#					
Hydrology Input	Tc (min)				
	70.6				
	10 yr	Storm	100 yr	Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)	
From \#5 only	1.67	1304	2.31	1801	
From \#76 only	0.81	4418	1.19	6517	
Aggregate	2.48	5,722	3.5	8,318	
Infiltration					
Infiltration Surface Area Req'd (CF/IR/40hr) = SF	Infiltration Surface Area Req'd (sf)	1,028		1,494	
Pond Sizing - Truncated Rectang	ular Pyramid				
Side Slope X:1	3				
Pond Top Length (ft)	200	L			
Pond Top Width (ft)	30	W			
Pond Bottom Length (ft)	176	1			
Pond Bottom Width (ft)	15	w			
Depth (ft)	2.5	h			
Infiltation Surface Area - FULL (sf)	6000				
Full Volume (cf)	8,350	Greater than	8,318		
Water Surface Area - FULL (sf)	6000				
Water Surface Area at HALF FULL	4320	Greater than	1,494		
Water Surface Area - EMPTY (sf)	2640	Greater than	1,494		

Basin 85

Pond \#85 collects waters from mostly gravel road area \#24. Waters sheet flow to pond.

Hydrology Output	10 yr Storm		100 yr Storm	
	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
	2.42	1343	3.07	1,842
Infiltration				
Infiltration Surface Area Req'd (CF/IR/40hr) = SF	Infiltration Surface Area Rea'd (sf)	241		331

Basin 85

Infiltration Pond \#85	Hydrology File		$24+85$ to 85.hys		
Infiltration Test	Entech PH2				
Infiltration Rate (inches / hour / sf)	1.67				
Infiltration Rate (IR = ft / hour /sf)	0.139166667				
Receive Flows from:	24,85				
	Area (ac)	Reach Length (Ft)	Slope	Coeff (C)	Tc (min)
Roof				0.95	
Asphalt \#24	0.2765	100	2.0\%	0.95	10.2
Basin		100	2.0\%	0.2	61.2
Pond \#85	0.0799			1	
Total	0.3564				
		0.02			
Flow Coefficient of Runoff	0.9600				
Composite Area (ac)	0.3564				
Composite Curve \#	0.9600				
Hydrology Input	Tc (min)	Composite Curve			
	8	0.26			
	10 yr	Storm	100 yr	Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)	
	2.42	1343	3.07	1,842	
Infiltration					
Infiltration Surface Area Req'd (CF/IR/40hr) = SF	Infiltration Surface Area Req'd (sf)	241		331	
Pond Sizing - Truncated Rectangular Pyramid	Input Values				
Side Slope X:1	3				
Pond Top Length (ft)	175	L			
Pond Top Width (ft)	15	W			
Pond Bottom Length (ft)	167.5	1			
Pond Bottom Width (ft)	7.5	w			
Depth (ft)	1.25	h			
Infiltation Surface Area - FULL (sf)	2625				
Full Volume (cf)	2,414	Greater Than	1,842		
Water Surface Area - FULL (sf)	2625				
Water Surface Area at HALF FULL	1940.625	Greater than	331		
Water Surface Area - EMPTY (sf)	1256.25				

Pond \#93 receives waters from land \#77,78, roof \#36 and pavement areas \#3,4

	10 yr Storm		100 yr Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
Infiltration	$\mathbf{1 . 1 3}$	$\mathbf{4 , 2 6 9}$	$\mathbf{1 . 6 4}$	$\mathbf{6 , 2 1 1}$
Infiltration Surface Area Req'd to drain within 40 hrs (CF/IR/40hr) = SF	Infiltration Surface Area Req'd (sf)	$\mathbf{7 6 7}$		

Basin 93

Basin 60

Pond \#60 infiltrates waters from pavements \#7, 8 .

Hydrology Output	10 yr Storm		100 yr Storm	
	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
	0.94	564	1.29	774
Infiltration				
Infiltration Surface Area Req'd to drain within 40 hrs (CF/IR/40hr) = SF	Infiltration Surface Area Req'd (sf)	101		139

Basin 60

Waters sheet flow to infiltration pond \#60

Infiltration Pond \#60	Hydrology File		7+8+60 to 60.hys		
Infiltration Test	Entech PH2				
Infiltration Rate (inches / hour / sf)	1.67				
Infiltration Rate (IR = ft / hour /sf)	0.139166667				
Receive Flows from:	37, 7, 8, 60				
	Area (ac)	Reach Length (Ft)	Slope	Coeff (C)	Tc (min)
Roof					
Roof				0.95	
Roads Gravel \#7	0.055	130	4.6\%	0.85	14.7
Roads Asphalt \#8	0.081	130	4.6\%	0.95	8.8
Land				0.2	
Pond \# 60	0.024			1	
Total	0.159	ac			
Flow Coefficient of Runoff	0.910				
Composite Area	0.159				
Composite Curve \#					
Hydrology Input	Tc (min)				
	14.7				
	10 yr	Storm	100 yr	Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)	
	0.94	564	1.29	774	
Infiltration					
Infiltration Surface Area Req'd to drain within 40 hrs (CF $/ \mathrm{IR} / 40 \mathrm{hr})=\mathrm{SF}$	Infiltration Surface Area Req'd (sf)	101		139	
Pond Sizing - Truncated Rectangular Pyramid					
Side Slope X:1	0.1				
Pond Top Length (ft)	40	L			
Pond Top Width (ft)	12	W			
Pond Bottom Length (ft)	39.6	I			
Pond Bottom Width (ft)	11.6	w			
Depth (ft)	2	h			
Infiltation Surface Area - FULL (sf)	480				
Full Volume (cf)	939	Greater than	774		
Water Surface Area - FULL (sf)	480				
Water Surface Area at HALF FULL	469.68	Greater than	139		
Water Surface Area - EMPTY (sf)	459.36	Greater than	139		

Basin 61

Pond \#61 infiltrates waters from pavement \#9. The purple area shown is a depressed garden and does no impact the runoff.

	10 yr Storm		100 yr Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
	0.69	290	0.94	394
Infiltration				
Infiltration Surface Area Req'd to drain within 40 hrs (CF/IR/40hr) = SF	Infiltration Surface Area Req'd (sf)	52		

Basin 61

Waters sheet flow directly to infiltration pond \#61

Pond \#59 receives waters from area \#79 which has a corral for goats etc. This is assumed to be fairly compacted soil so a runoff coefficient of .85 was used.

Hydrology Output	10 yr Storm		100 yr Storm	
	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
	1.93	1391	2.66	1,917
Infiltration				
Infiltration Surface Area Req'd to drain within 40 hrs (CF/IR/40hr) = SF	Infiltration Surface Area Req'd (sf)	250		344

Basin 59

Channel Parameters		
Bottom Width (ft) b	1.00 b	
Side Slope X:1	3.00	
Depth (ft) h	0.50 H	
Top Width (ft) W	Flow Area	4.00 W
Area (sf)	Wetted Perimeter	
Hydraulic Radius	4.16	
	0.30	
Flow Calc		
Slope (\%)	1.25%	
Mannings (n)	0.03	
Velocity (ft/sec)	2.49	
Area (sf)	1.25	
Flow (cf/sec)	3.12	

Infiltration Pond \#59	Hydrology File		37+79+59 to 59-F2.hys		
Infiltration Test	Entech PH2				
Infiltration Rate (inches / hour / sf)	1.67				
Infiltration Rate (IR = ft / hour /sf)	0.139166667				
Receive Flows from:	79,59				
	Area (ac)	Reach Length (Ft)	Slope	Coeff (C)	Tc (min)
Roof					
Roof \#37	0.0562	100	2.1\%	0.95	10.0
Roads Gravel				0.85	
Roads Asphalt				0.95	
Land \#79	0.270	108	3.8\%	0.85	14.3
Pond \# 59	0.034			1	
Total	0.361	ac			
Flow Coefficient of Runoff	0.350				
Composite Area	0.361				
Composite Curve \#					
Hydrology Input	Tc (min)				
	14.3				
	10 yr	Storm	100 yr	Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)	
	1.93	1391	2.66	1,917	
Infiltration					
Infiltration Surface Area Req'd to drain within $40 \mathrm{hrs}(\mathrm{CF} / \mathrm{IR} / 40 \mathrm{hr})=\mathrm{SF}$	Infiltration Surface Area Req'd (sf)	250		344	
Pond Sizing - Truncated Rec	tangular Pyramid				
Side Slope X:1	3				
Pond Top Length (ft)	70	L			
Pond Top Width (ft)	19	W			
Pond Bottom Length (ft)	52	I			
Pond Bottom Width (ft)	1	w			
Depth (ft)	3	h			
Infiltation Surface Area - FULL (sf)	1330				
Full Volume (cf)	1,911	TOO SMALL	1,917		
Water Surface Area - FULL (sf)	1330				
Water Surface Area at HALF FULL	691	Greater than	344		
Water Surface Area - EMPTY (sf)	52	TOO SMALL	344		

Pond \#88 collects waters from land \#82, roofs \#45, 46 and pavement \#6. Waters are conveyed to Pond 88 via grass swales. This pond is impounded by vegetated berms. See Plan and Detail DR-2

	10 yr Storm		100 yr Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
	0.92	2993	1.34	4,330
Infiltration				
Infiltration Surface Area Req'd to drain within 40 hrs $(\mathrm{CF} / \mathrm{IR} / 40 \mathrm{hr})=\mathrm{SF}$	Infiltration Surface Area Req'd (sf)	538		778

Basin 88

Infiltration Pond \#88	Hydrology File		6+45+46+82 to 88.hys		
Infiltration Test	Entech PH2				
Infiltration Rate (inches / hour / sf)	1.67				
Infiltration Rate (IR = ft / hour /sf)	0.139166667				
Receive Flows from:	6, 45, 46, 82, 8				
	Area (ac)	Reach Length (Ft)	Slope	Coeff (C)	Tc (min)
Roof \#45,\#46	0.1473			0.95	
Roof				0.95	
Roads Gravel				0.85	
Roads Asphalt \#6	0.069			0.95	
Land \#82 + . 5 * \#88	0.261	150	5.3\%	0.2	54.2
Pond \# $88 \times .5$	0.070			1	
Total	0.547	ac			
Flow Coefficient of Runoff	0.200				
Composite Area	0.547				
Composite Curve \#	0.52				
Hydrology Input	Tc (min)	7.4			
	10	yr Storm	100 yr	Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)	
	0.92	2993	1.34	4,330	
Infiltration					
Infiltration Surface Area Req'd to drain within 40 hrs $(\mathrm{CF} / \mathrm{R} / 40 \mathrm{hr})=\mathrm{SF}$	Infiltration Surface Area Req'd (sf)	538		778	
Half Triangular Prism Volume					
Side a	134				
Side b	90				
Side c	97				
Height h	2.2				
Semi Perimeter (lf)	160.5	$(a+b+c) / 2$			
Base Area (sf)	6134.5	sf			
Volume = (cf) triangle based pyramid	4494.1	cf $=1 / 3 \times$ Base Are	$a \times h$		
Water Surface Area - FULL (sf)	6134.5	far Greater than	4,330		
			1		
Full Volume (cf)	4494.1	Greater than	4,330		

Basin 71

Basin 71 is the largest collecting waters from roofs \#42,43,44, pavers \#26,27,28,29, pavement \#22 and the Nursery area \#71. The Nursery area is where 'ball and burlap' trees are staged for sale in wide rows separated by Gabion basket 'dams', all of which are infiltration ponds. Pond \#71a captures any waters that fall below the last 'dam'. It's irregular in shape and depth.

Basin 71

Basin 62

Pond 62 receives waters from plaza pavers \#25. All waters sheet flow to pond.

Hydrology Output	10 yr Storm		100 yr Storm	
	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
	1.66	1495	2.3	2,072
Infiltration				
Infiltration Surface Area Req'd to drain within 40 hrs (CF/R/40hr) = SF	Infiltration Surface Area Req'd (sf)	269		372

Basin 62

Waters sheet flow directly to infiltration pond \#62

Infiltration Pond \#62	Hydrology File		25+62 to 62.hys		
Infiltration Test	Entech PH2				
Infiltration Rate (inches / hour / sf)	1.67				
Infiltration Rate (IR = ft / hour /sf)	0.139166667				
Receive Flows from :	25,62				
	Area (ac)	Reach Length (Ft)	Slope	Coeff (C)	Tc (min)
Roof				0.95	
Roof				0.95	
Roads Gravel / Pavers				0.85	
Roads Concrete/Asphalt \#25	0.268	165	1.2\%	0.95	15.5
Land		165	1.2\%	0.2	93.0
Pond \# 62	0.043			1	
Total	0.311	ac			
Flow Coefficient of Runoff	0.910				
Composite Area	0.311				
Composite Curve \#	0.91				
Hydrology Input	Tc (min)				
	7.4				
	10 yr S	Storm	100 yr	Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)	
	1.66	1495	2.3	2,072	
Infiltration					
Infiltration Surface Area Req'd to drain within 40 hrs (CF/IR/40hr) $=$ SF	Infiltration Surface Area Req'd (sf)	269		372	
Pond Sizing - Truncated Rectangular Pyramid					
Side Slope X:1	1				
Pond Top Length (ft)	70	L			
Pond Top Width (ft)	16	W			
Pond Bottom Length (ft)	65.5	I			
Pond Bottom Width (ft)	11.5	w			
Depth (ft)	2.25	h			
Infiltation Surface Area - FULL (sf)	1120				
Full Volume (cf)	2,100	Greater than	2,072		
Water Surface Area - FULL (sf)	1120				
Water Surface Area at HALF FULL	936.625	Greater than	372		
Water Surface Area - EMPTY (sf)	753.25	Greater than	372		

Pond 40c

Pond 40 c receives waters from loading dock pit \#12 and roofs \#40, 41, 42. All waters flow via underground pipe to pond.

Hydrology Output	10 yr Storm		100 yr Storm	
	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
	2.02	1,451	2.78	2,000
Infiltration				
Infiltration Surface Area Req'd to drain within 40 hrs (CF $\mathrm{IR} / 40 \mathrm{hr})=\mathrm{SF}$	Infiltration Surface Area Req'd (sf)	261		359

Pond 40c

Pipe Flow, Full

Slope (\%) 2' drop over 83'	0.02		
Pipe Diameter (in)	10		
Pipe Diameter (ft)	0.8333		
Pipe Area (sf)	0.5456		
Wetted Perimeter (ft)	2.6190		
Hydraulic Radius (ft) Rh	0.2083		
Velocity, Gravity Flow (tt/s)	8.1150		
Flow Volume (cfs)	4.486		

Basin 80a

Pond 80a collects waters from undeveloped Basin 80.

	10 yr Storm		100 yr Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
Infiltration	$\mathbf{0 . 2 8}$	$\mathbf{6 6 7}$	$\mathbf{0 . 4}$	$\mathbf{9 5 4}$
\quad Infiltration Surface Area Req'd $(C F / I R / 40 h r)=$ SF	2.17 off \#10		2.99 off \#10	

Basin 80a

Infiltration Pond \#80a	Hydrology File		$80+80 \mathrm{a}$ to 80a		
Infiltration Test	Entech PH2				
Infiltration Rate (inches / hour / sf)	1.67				
Infiltration Rate ($\mathrm{IR}=\mathrm{ft} /$ hour /sf)	0.139166667				
Receive Flows from:	\#80,\#80a				
	Area (ac)	Reach Length (Ft)	Slope	Coeff (C)	Tc (min)
Roof				0.95	
Asphalt					
UnDeveloped Land \#80	0.3670	135	11.1\%	0.2	40.4
Pond \#80a	0.0081			1	
Total	0.3751				
Flow Coefficient of Runoff	0.4100				
Composite Area (ac)	0.3751				
Composite Curve \#					
Hydrology Input	Tc (min)	Composite Curve			
	40.4				
	10 yr	Storm	100 yr	Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)	
	0.28	667	0.4	954	
	2.17 off \#10		2.99 off \#10		
Infiltration					
Infiltration Surface Area Req'd (CF/IR/40hr) = SF		120		171	
Pond Sizing - Truncated Conical Ellipse - FULL					
Full Cone (top dimensions)					
Desired Depth	2				
Side Slope X:1	3				
Full Size (L1)	37				
Base Length 'a' Long Axis radius (ft)	18.5	W			
Full Size (L2)	28				
Base Length 'b' Short Axis radius (ft)	14	L			
Height of Full Cone (based on Side Slope) (ft) h1	4.7	h1			
Volume (cf)	1,266.1				
Missing Cone (bottom dimensions)					
Missing Cone Height (ft) h2	2.7				
Base Length 'c' Long Axis radius (ft)	10.6	W			
Base Length 'd' Short Axis radius (ft)	8.0	I			
Volume (missing cone) (cf)	236				
Truncated Pond Volume (cf)	1,030	Greater Than	954		
Full Pond Surface Area (sf)	814	sf			
Pond Bottom Surface Area (sf)	266	Greater Than	171		

Basin 91

Pond \#91 receives waters from mostly undeveloped land, some pavement and roof. Pavement waters are conveyed via grassed swale to pond \#91

Hydrology Output	10 yr Storm		100 yr Storm	
	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
	1.8	6486	2.62	9,420
	2.17 off \#10		2.99 off \#10	
Infiltration				
Infiltration Surface Area Req'd (CF/IR/40hr) = SF		1,165		1,692

Basin 91

Channel Parameters

Bottom Width (tt) b	1.00 b
Side Slope X:1	3.00
Depth (tt) h	0.50 H
Top Width (ft) W	4.00 W
Flow Area	
Area (sf)	1.25
Wetted Perimeter	4.16
Hydraulic Radius	0.30
Flow Calc	
Slope (\%)	1.25\%
Mannings (n)	0.03
Velocity (tt/sec)	2.49
Area (sf)	1.25
Flow (cf/sec)	3.12

Infiltration Pond \#91	Hydrology File		$10+13+81+38+39+91$ to		91.hys
Infiltration Test	Entech PH2				
Infiltration Rate (inches / hour / sf)	1.67				
Infiltration Rate (IR = ft / hour /sf)	0.139166667				
Receive Flows from:	10,13,81,38,39				
	Area (ac)	Reach Length (Ft)	Slope	Coeff (C)	Tc (min)
Roof \#38,\#39	0.0000			0.95	
Asphalt \#10, \#13	0.0000	215	0.0428	0.95	11.6
UnDeveloped Land\#80,\#81	0.0000	450	3.3\%	0.2	109.7
Pond \#91	0.0000			1	
Total	0.0000				
Flow Coefficient of Runoff	0.4100				
Composite Area (ac)	0.0000				
Composite Curve \#					
Hydrology Input	Tc (min)	Composite Curve			
	109.7				
	10 yr	Storm	100 yr	Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)	
	1.77	6369	2.57	9,250	
	2.17 off \#10		2.99 off \#10		
Infiltration					
Infiltration Surface Area Req'd (CF/IR/40hr) = SF		1,144		1,662	
Pond Sizing - Truncated Conical Ellipse					
Full Cone (top dimensions)					
Desired Depth	4				
Side Slope X:1	3				
Full Size (L1)	90	L			
Base Length 'a' Long Axis radius (ft)	45	a			
Full Size (L2)	63	W			
Base Length 'b' Short Axis radius (ft)	31.5	b			
Height of Full Cone (based on Side Slope) (ft) h1	10.5	h1			
Volume (cf)	15,590.9				
Missing Cone (bottom dimensions)					
Missing Cone Height (ft) h2	6.5				
Base Length 'c' Long Axis radius (ft)	27.9	C			
Base Length 'd' Short Axis radius (ft)	19.5	d			
Volume (missing cone) (cf)	3,699				
Truncated Pond Volume (cf)	11,892	Greater Than	9,250		
Full Pond Surface Area (sf)	4455	sf			
Pond Bottom Surface Area (sf)	1707	Greater Than	1,662		

Basin 11a

Pond \#1 1a infiltrates waters from mostly concrete pavement and portion along the Basin 92.

Hydrology Output	10 yr Storm		100 yr Storm	
	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
	1.05	818	1.45	1,130
	2.17 off \#10		2.99 off \#10	
Infiltration				
Infiltration Surface Area Req'd (CF/IR/40hr) = SF		147		203

Basin 11a

Channel Parameters

Bottom Width (ft) b	1.00 b
Side Slope X:1	3.00
Depth (ft) H	1.50 H
Top Width (tt) W	10.00 W
Flow Area	
Area (sf)	8.25
Wetted Perimeter	10.49
Hydraulic Radius	0.79
Flow Calc	
Slope (\%)	3.00\%
Mannings (n)	0.30
Velocity (ft/sec)	0.73
Area (sf)	8.25
Flow (ct/sec)	6.05

Infiltration Pond \#11a	Hydrology File		11 to 11a-F2.hys		
Infiltration Test	Entech PH2				
Infiltration Rate (inches / hour / sf)	1.67				
Infiltration Rate (IR = ft / hour /sf)	0.139166667				
Receive Flows from:	11+portion of \#				
	Area (ac)	Reach Length (Ft)	Slope	Coeff (C)	Tc (min)
Roof				0.95	
Asphalt	0.1403	250	0.038	0.95	13.0
UnDeveloped Land	0.0988	250	3.8\%	0.2	78.3
Pond \#11a	0.0261			1	
Total	0.2652				
Flow Coefficient of Runoff	0.4100				
Composite Area (ac)	0.2652				
Composite Curve \#					
Hydrology Input	Tc (min)	Composite Curve			
	78.3				
	10 yr	Storm	100 yr	Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)	
	1.05	818	1.45	1,130	
	2.17 off \#10		2.99 off \#10		
Infiltration					
Infiltration Surface Area Req'd (CF/IR/40hr) = SF		147		203	
Pond Sizing - Truncated Conical Ellipse - FULL					
Full Cone (top dimensions)					
Desired Depth	2				
Side Slope X:1	3				
Full Size (L1)	40				
Base Length 'a' Long Axis radius (ft)	20	W			
Full Size (L2)	30				
Base Length 'b' Short Axis radius (ft)	15	L			
Height of Full Cone (based on Side Slope) (ft) h1	5.0	h1			
Volume (cf)	1,571.3				
Missing Cone (bottom dimensions)					
Missing Cone Height (ft) h2	3.0				
Base Length 'c' Long Axis radius (ft)	12.0	w			
Base Length 'd' Short Axis radius (ft)	9.0	I			
Volume (missing cone) (cf)	339				
Truncated Pond Volume (cf)	1,232	Greater Than	1,130		
Full Pond Surface Area (sf)	943	sf			
Pond Bottom Surface Area (sf)	339	Greater Than	203		

Basin 70a

This basin collects waters from paved areas $15,17,18$ and conveys waters via sheet flow to channels and then to pond \#70a. \#18 flows to a channel that discharges onto parking area \#17 and then flows to 70a

	10 yr Storm		100 yr Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)
	3.24	2,330	4.46	3,210
Infiltration				
Infiltration Surface Area Req'd to drain within 40 hrs $(C F / I R / 40 h r)=S F$	Infiltration Surface Area Req'd (sf)	419		577

Basin 70a

Pond 70a	Hydrology File		15+17+18 to 70a.hys		
Infiltration Test	Entech PH2				
Infiltration Rate (inches / hour / sf)	1.67				
Infiltration Rate (IR = ft / hour /sf)	0.13916666666667				
Receive Flows from:	15, 17, 18				
	Area (ac)	Reach Length (Ft)	Slope	Coeff (C)	Tc (min)
Roof		330	3.3\%	0.95	15.7
Roads Gravel / Pavers				0.85	
Roads Asphalt \#15,\#17,\#18,\#40b	0.489	213	4.2\%	0.95	11.6
Land \#40a	0.074	300	3.3\%	0.2	89.6
Pond \#70a	0.054			1	
Total	0.617	ac			
Flow Coefficient of Runoff	0.950				
Composite Area	0.617				
Composite Curve \#					
Hydrology Input	Tc (min)				
	7.7				
	10 yr St	orm	100 yr	Storm	
Hydrology Output	Qp (cfs)	Vol (cf)	Qp (cfs)	Vol (cf)	
	3.24	2,330	4.46	3,210	
Infiltration					
Infiltration Surface Area Req'd to drain within 40 hrs (CF/IR/40hr) $=$ SF	Infiltration Surface Area Req'd (sf)	419		577	
Pond Sizing - Truncated Conical Ellipse					
Full Cone (top dimensions)					
Desired Depth	2				
Side Slope X:1	3				
Full Size (L1)	75				
Base Length 'a' Long Axis radius (ft)	37.5	W			
Full Size (L2)	40				
Base Length 'b' Short Axis radius (ft)	20	L			
Height of Full Cone (based on Side Slope) (ft) h1	6.7	h1			
Volume (cf)	5,237.6				
Missing Cone (bottom dimensions)					
Missing Cone Height (ft) h2	4.7				
Base Length 'a' Long Axis radius (ft)	25.5	W			
Base Length 'b' Short Axis radius (ft)	8	I			
Volume (missing cone) (cf)	997				
Truncated Pond Volume (cf)	4,240	Greater Than	3,210		
Full Pond Surface Area (sf)	2357	sf			
Empty Pond Surface Area (sf)	641	Greater Than	577		

Storm Runoff - Pre		Development		10 Yr Storm		100 Yr Storm				
		Rate of Run -off	Volume of Run -off	Rate of Run-off	Volume of Run-off					
Run Free	Basin			Composite Area (ac)	Composite Coeff RO	Q cfs 10yr	Volume cf 10 yr	Q cfs 100 yr	Volume cf 100yr	Includes
Pre Development	South	3.956	0.23	2.303	20,178	3.461	30315			
	Middle	9.221	0.21	3.036	24,226	4.545	36,265			
	North	6.806	0.23	1.496	11,128	2.233	16,613			
		Total Pre-Dev RO		3.21	55,532	10.239	83,193			
			Acre Feet		1.27		1.91			
Storm Runoff - Post Development										
Free Flowing off-site	Basin 72			0.86	4,458	1.27	6,563	51, 52, 72, 50		
Free Flowing off-site	Basin 70			0.86	4,907	1.27	7,251	53+54+55+48+70		
Free Flowing off-site	\#20+\#21			0.93	668	1.28	920	20,21		
Free Flowing of-site	Basin 92			0.818	3044	1.19	4426	16,66,67		
		Total Po	st-Dev RO	3.468	13,077	5.01	19,160			
			duction of :	-0.258	42,455	5.229	64,033			
				cfs	cf	cfs	cf			
			duction of :		0.97		1.47			
					acre-feet		acre-feet			

	Pond Construction Dimensions											
				From Drainage Plan *				Constructed w/ 6 " freeboard **				
				Surface Dimensions, Full				Pond TOP Dimensions		Free	Full Volume	
Pond Number	Location	$\begin{aligned} & \text { Pond } \\ & \text { Type } \end{aligned}$	Shape	L1	L2	H	$\begin{gathered} \text { Slope } \\ x: 1 \end{gathered}$	L1	L2	H	CF	
11a	S	3	Oval	40	30	2	3	44	31.5	2.5	1,130	
40c	SW	1	Rectangular	60	25	2	3	63	28	2.5	2,000	
54a	SW	3	Oval	20	15	2	3	23	18	2.5	1,014	
58	NW	1	\sim Rectangular	200	30	2.5	3	203	33	3	8,318	
59	E		~ Rectangular	70	19	2.25	3	73	22	2.75	1,917	
60	E	4	\sim Rectangular	40	12	2	3	43	15	2.5	774	
61	E	4	\sim Rectangular	50	13	1.75	1	53	16	2.25	394	
62	W		Rectangular	70	16	2.25	3	73	19	2.75	2,072	
70a	SW	3	Oval	75	40	2	3	78	43	2.5	3,210	
71a	W		Series of Pond				3	See D	tail			
80a	E	3	Oval	37	28	2	3	40	31	2.5	954	
85	NW		\sim Rectangular	175	15	1.25	3	178	18	1.75	1,842	
86	NW	1	~ Rectangular	200	20	1.75	3	203	23	2.25	4,821	
87	NW	2	Triangular	74	104.7	3.0	3	77	107.65	3.5	13,170	
88	Middle	2	Triangular				3	See D	tail		4,330	
89	NW	2	Triangular	43.00	60.81	3.00	3	46	63.811	3.5	2,780	
91	SE	3	Oval	90	63	4	3	93	66	4.5	9,250	
93	NE	1	~ Rectangular	113	30	3	3	116	33	3.5	6,211	
94	NW	1	Rectangular	80	30	2.5	3	83	33	3	4,122	
95	NW	2	Triangular	38	54	3	3	41	57	3.5	1,960	
Note	Based on	water	volume									
	** Based 0	const	ructed size									

	Surface Areas List							
Sub	Location	Type	Surface	Coeff of RO 10yr	Coeff of RO 100yr	Area (sf)	$\underset{(a c)}{\text { Area }}$	Area (sq
0	Pre-Development							
1	North Greenhouse (rd \& lot)	P \& D	Gravel	0.8	0.85	22,074	0.5067	0.000792
2	not used			0.8	0.85	20,036	0.4600	0.000719
3	NE Lot	P \& D	Paved	0.9	0.95	3,243	0.0744	0.000116
4	Maintenance Building Lot	P \& D	Gravel	0.8	0.85	5,195	0.1193	0.000186
5	North Lot	P \& D	Paved	0.9	0.95	13,004	0.2985	0.000466
							0.4922	
6	NE Gathering Driveway	Driving	Paved	0.9	0.95	3,001	0.0689	0.000108
7	Barn Driveway	Driving	Gravel	0.8	0.85	2,395	0.0550	0.000086
8	Barn Parking	Parking	Paved	0.9	0.95	3,511	0.0806	0.000126
9	East Lot north	P \& D	Paved	0.9	0.95	4,044	0.0928	0.000145
10	East Lot middle	P \& D	Paved	0.9	0.95	3,222	0.0740	0.000116
11	East Lot south \& South Lot	P \& D	Paved	0.9	0.95	6,111	0.1403	0.000219
12	Truck Dock @ Coop	Driving	Paved	0.9	0.95	1,965	0.0451	0.000070
13	Staging Area	Storage	Gravel	0.8	0.85	3,146	0.0722	0.000113
14	not used							0.000000
15	South Junction	Driving	Paved	0.9	0.95	4,471	0.1026	0.000160
16	South Entrance	Driving	Paved	0.9	0.95	5,213	0.1197	0.000187
17	SSW Parking	Parking	Paved	0.9	0.95	5,209	0.1196	0.000187
18	SW Parking	P \& D	Paved	0.9	0.95	6,425	0.1475	0.000230
19	West Entrance	Driving	Paved	0.9	0.95	6,042	0.1387	0.000217
20	Truck Dock	Driving	Paved	0.9	0.95	5,638	0.1294	0.000202
21	West Entrance (fork)	Driving	Paved	0.9	0.95	1,311	0.0301	0.000047
22	West Paking	Xeriscaped		0.05	0.25	13,861	0.3182	0.000497
23	not used							0.000000
24	NW \& Bathhouse	P \& D	Gravel	0.8	0.85	12,045	0.2765	0.000432
25	Main Courtyard	Walking	Pavers	0.6	0.75	11,666	0.2678	0.000418
26	Courtyard west of N coop	Walking	Pavers	0.6	0.75	5,492	0.1261	0.000197
27	Courtyard west of Vistor Ctr	Walking	Pavers	0.6	0.75	992	0.0228	0.000036
28	Courtyard north of Cafe	Walking	Pavers	0.6	0.75	6,607	0.1517	0.000237
29	Courtyard between Health \& Ca	Walking	Pavers	0.6	0.75	3,153	0.0724	0.000113
								0.000000
	ROOFS							0.000000
								0.000000
30	EIH	Earth Sheltered				400	0.0092	0.000014
31	EIH	Earth Sheltered				563	0.0129	0.000020
32	ElH	Earth Sheltered				400	0.0092	0.000014
33	ElH	Earth Sheltered				563	0.0129	0.000020
34	EIH	Earth Sheltered				400	0.0092	0.000014
35	EIH 6= 2889sf= 5.5% of \#76	Earth Sheltered				563	0.0129	0.000020
36	Maintenance Bldg	Roof		0.9	0.95	4,752	0.1091	0.000170
37	Barn Bldg	Roof		0.9	0.95	2,448	0.0562	0.000088
38	Well House	Roof		0.9	0.95	384	0.0088	0.000014

39	House @ 3890 ORR	Roof	0.9	0.95	3,246	0.0745	0.000116
40	Greenhouse, South	Roof	0.9	0.95	4,200	0.0964	0.000151
40a	Crescent of land below \#40	Land			3,224	0.0740	0.000116
40b	Hard walk below \#40	Paving			1,649	0.0379	0.000059
41	Greenhouse, North	Roof	0.9	0.95	4200	0.0964	0.000151
42	Coop Bldg, South	Roof	0.9	0.95	4,200	0.0964	0.000151
43	Coop Bldg, North	Roof	0.9	0.95	8,750	0.2009	0.000314
44	Health Bldg	Roof	0.9	0.95	2,609	0.0599	0.000094
45	Gathering Bldg	Roof	0.9	0.95	3,704	0.0850	0.000133
46	Cafe	Roof	0.9	0.95	2,712	0.0623	0.000097
47	Visitor Ctr	Roof	0.9	0.95	3,335	0.0766	0.000120
48	House @ 3820 ORR	Roof	0.9	0.95	2,177	0.0500	0.000078
49	House @ 10855 Howells Rd	Roof	0.9	0.95	1,550	0.0356	0.000056
50	House @ 10755 Howells Rd	Roof	0.9	0.95	1,932	0.0444	0.000069
51	Bath House	Roof	0.9	0.95	931	0.0214	0.000033
52	Yurts $\times 4$	Roof	0.9	0.95	1,812	0.0416	0.000065
53	Craft 1		0.9	0.95	1,100	0.0253	0.000039
54	Craft 2		0.9	0.95	1,100	0.0253	0.000039
54a	Pond 54a				1,571	0.0361	
55	Craft 3		0.9	0.95	1,100	0.0253	0.000039
56	North Shed				877	0.0201	0.000031
57	North Greenhouse	Roof	0.9	0.95	4,773	0.1096	0.000171
58	Pond				6,000	0.1377	0.000215
59	Pond adjacent to Corral				1,487	0.0341	0.000053
60	Pond west of Barn				1,024	0.0235	0.000037
61	Pond west of Corral				802	0.0184	0.000029
62	Pond west of Plaza				1,894	0.0435	0.000068
63	Swale at south entrance					0.0000	0.000000
64	Swale at south entrance					0.0000	0.000000
65	Borders ORR near S Entrance				2,219	0.0509	0.000080
66	SE corner of 3890				13,332	0.3061	0.000478
67	SEE Garden, South				30,723	0.7053	0.001102
68	Not used					0.0000	0.000000
69	LAND					0.0000	0.000000
70	LOT 3820 Old Ranch	Ag / Undevel'd	0.15	0.2	73,253	1.6817	0.002628
70a	Pond at 3820 ORR				2,357	0.0541	
71	Nursery Stock	Ag / Undevel'd	0.15	0.2	56,613	1.2997	0.002031
71a	Pollinator Garden						
72	LOT 10655 Howells	Ag / Undevel'd	0.15	0.2	67,180	1.5422	0.002410
73	LOT 10755 Howells	Ag / Undevel'd	0.15	0.2	33,996	0.7804	0.001219
74	East of Leach Field	Ag / Undevel'd	0.15	0.2	15,355	0.3525	0.000551
75	NE Garden	Ag / Undevel'd	0.15	0.2	107,949	2.4782	0.003872
76	Hobbit Town	Ag / Undevel'd	0.15	0.2	46,774	1.0738	0.001678
77	North of Shop	Ag / Undevel'd	0.15	0.2	9,624	0.2209	0.000345
78	Between Shop and Barn	Ag / Undevel'd	0.15	0.2	12,665	0.2907	0.000454
79	South of Barn	Ag / Undevel'd	0.15	0.2	11,780	0.2704	0.000423
80	Between Barn and 3890	Ag / Undevel'd	0.15	0.2	16,338	0.3751	0.000586
80a	Pond \#80a				354	0.0081	
81	LOT 3890 Old Ranch	Ag / Undevel'd	0.15	0.2	78,589	1.8042	0.002819
81R	LOT 3890 Old Ranch	Ag/Paved			38,831	0.8914	

82	North of Cafe/Gathering	Ag / Undevel'd		0.15	0.2	11,359	0.2608	0.000407
83	3890 ORR	\#81 subdivided				33862	0.7774	
84	Pond						0.0000	
85	Pond, west of corral	Retension					0.0000	
86	Pond, west of \#1 near Bathhouse				4,073	0.0935		
87	Pond east of Health					6,119	0.1405	
88	Pond (triangular pyramid top)	N\&W of STA				6134.5	0.1408	
89	Pond above STA						0.0000	
90						0.0000		
91	Pond at 3890 ORR					4,455	0.1023	
92	Pond at South Entrance						0.0000	
93	Pond near Maintenance					2,960	0.0680	
94	Pond at 10755 Howells							
95	Pond at STA						0.6163	
96	Pond 96 in area 70					1,672	0.0384	
97								

Kess Properties

Attn: Mark Phelan

Re: Infiltration Rates (Percolation Test Method)
The Shire at Old Ranch
10755 Howells Road
Colorado Springs, Colorado
Dear Mr. Phelan:
As requested, personnel of Entech Engineering, Inc. have performed percolation testing at the above referenced site to evaluate the site soils to determine the infiltration rate for the proposed detention pond.

The testing was performed on October 19 and November 3, 2021. The test locations are shown in Figure 1. The Test Boring Logs, Percolation Test results, Infiltration Rates, and Laboratory Test results are shown in Figures 2 through 6. Soils encountered in the profile and percolation holes consisted of silty sand.

The average percolation rates were 3 to 5 minutes/inch. The percolation rates correspond to adjusted average Infiltration Rate of 1.18 inches/hour for $\mathrm{PH}-1$, and 1.67 inches/hour for PH-2.

We trust that this has provided you with the information you required. If you have any questions or need additional information, please do not hesitate to contact us.

Respectfully Submitted,
ENTECH ENGINEERING, INC.

Reviewed by:

Austin M. Nossokoff, P.E. Project Engineer

LLL_jr
Encl.
Entech Job No. 212362
AAprojects/2021/212362 Infiltration Rate

These bore holes are not all located where ponds are - there needs to be infiltration tests for all pond locations.

母TB- APPROXIMATE TEST BORING LOCATIONS AND NUMBERS
母-P- APPROXIMATE PERCOLATION BORING LOCATIONS AND NUMBERS

TEST BORING LOCATION MAPTHE SHRE AT OLD RANCH1OTF5 HOWELLS RDCOLORAD SPRINGS COFOR: KESS PROPERTIES				JOB NO.: 212362 FIG NO.:
DRAWN: JHR	$12 / 1 / 21$	$\begin{aligned} & \text { CHECKED: } \\ & \text { AMNN } \end{aligned}$	DATE:	

PROFILE HOLE LOG			
DRAWN	DATE	CHECKED	DATE

PERCOLATION HOLES

Date Holes Prepared: 10/20/2021
Date Hole Completed:
11/3/2021

Hole No. 1A
Depth: 46"

	Time Trial 1	Water (min.)
Level Change (in.)		
2	10	4
3	10	7
10	2	

Perc Rate (min./in.): \qquad 5

Hole No. 1B
Depth: 34"

Trial	Time (min.)	Water Level Change (in.)
2	10	4
3	10	2
2	10	2

Average Perc Rate (min./in.)

Hole No. 2A
Hole No. 2B
Depth: 48"

Trial	Time (min.)	Water Level Change (in.)
2	10	5
3	10	2
2	10	3

Perc Rate (min./in.): \qquad
Depth: 38"

Trial	Time (min.)	Water Level Change (in.)
$\frac{10}{3}$	10	5
3	10	2

Perc Rate (min./in.): 5

Observer: Nicholas S.
By:

Infiltration Rate (I) = Percolation Rate (P)/Reduction Factor(RF) $\mathrm{I}=\mathrm{P} / \mathrm{RF}$
$R_{f}=\left[\left(2 d_{1}-\Delta d\right) / d i a\right]+1$
$d_{1}=$ initial water depth (in.)
$\Delta d=$ final water level drop (in.)
dia $=$ diameter of the percolation hole (in.)

Test No. P1 (PH-1)

Perc Rate $=$	12
dia $=$	8

$\frac{P 1}{d_{1}}=$

$$
\Delta d=
$$

41.0
$R_{f}=$
5.0
$\mathrm{R}_{\mathrm{f}}=$
10.6

$I=1.13 \quad \mathrm{in} / \mathrm{hr}$

$(\mathrm{PH}-1) \mid$ AVG $=1.19 \mathrm{in} / \mathrm{hr}$

Test No. P1 (PH-2)

Perc Rate $=20 \mathrm{in} / \mathrm{hr}$
$\mathrm{dia}=\quad 8$
$\frac{P 1}{d}$
$\begin{array}{lc}d_{1}= & 39.0 \\ \Delta d= & 4.0\end{array}$
$R_{f}=\quad 10.3$
$1=1.95 \mathrm{in} / \mathrm{hr}$
$(P H-2) \mid$ AVG $=1.67 \mathrm{in} / \mathrm{hr}$

CLIENT KESS PROPERTIES

PROJECT THE SHIRE AT OLD RANCH
JOB NO. 212362

Test No. P2 (PH-1)
$\begin{array}{lc}\text { Perc Rate }= & 12 \\ \text { in } & \text { hr } \\ \text { dia }= & 8\end{array}$

$\frac{\mathrm{P} 2}{\mathrm{~d}_{1}}=$

$\Delta d=\quad 3.0$
$R_{f}=\quad 9.6$

$$
\mathrm{I}=1.25 \mathrm{in} / \mathrm{hr}
$$

Test No. P2 (PH-2)
Perc Rate $=12 \mathrm{in} / \mathrm{hr}$ $\mathrm{dia}=\quad 8$

$\frac{P 2}{}$	
$d_{1}=$	33.0
$\Delta d=$	5.0
$R_{f}=$	8.6

$$
\mathrm{I}=1.39 \mathrm{in} / \mathrm{hr}
$$

UNIFIED CLASSIFICATION	SM	CLIENT	KESS PROPERTIES
SOIL TYPE \#	1	PROJECT	THE SHIRE AT OLD RANCH
TEST BORING \#	P1	JOB NO.	212362
DEPTH (FT)	$2-3$	TESTBY	BL

U.S. Sieve \#	Percent Finer
$3^{\prime \prime}$	
$11 / 2^{\prime \prime}$	
$3 / 4^{\prime \prime}$	
$1 / 2^{\prime \prime}$	
$3 / 8^{\prime \prime}$	100.0%
4	97.3%
10	78.5%
20	58.4%
40	47.5%
100	28.0%
200	16.6%

Atterberg	
Limits	
Plastic Limit	NP
Liquid Limit	NV
Plastic Index	NP
Swell	
Moisture at start	
Moisture at finish	
Moisture increase	
Initial dry density (pcf)	
Swell (psf)	

UNIFIED CLASSIFICATION	SM	CLIENT	KESS PROPERTIES
SOIL TYPE \#	1	PROJECT	THE SHIRE AT OLD RANCH
TEST BORING \#	P2	POB NO.	212362
DEPTH (FT)	$2-3$	TEST BY	BL

U.S. Sieve \#	Percent Finer
$3^{\prime \prime}$ $11 / 2^{\prime \prime}$	
$3 / 4^{\prime \prime}$	
$1 / 2^{\prime \prime}$	100.0%
$3 / 8^{\prime \prime}$	99.2%
4	93.5%
10	71.8%
20	51.0%
40	37.5%
100	21.7%
200	15.3%

Atterberg
Limits
Plastic Limit Liquid Limit Plastic Index

Swell

Moisture at start
Moisture at finish
Moisture increase
Initial dry density (pcf)
Swell (psf)

[^0]: Discuss the proposed sub-basins as well as the historic. Explain in the narrative how water quality requirements are being addressed for all basins. Clearly identify which sub-basins have disturbance and which do not so it is clear which ponds are required for water quality treatment and which are superfluous.

[^1]: Ponds will be reviewed in further detail once construction drawings are provided for all of the ponds. Ponds should have spillways designed for emergency overtopping.

