### Preliminary Drainage Report

for

The Shire at Old Ranch

### Prepared for KESS Properties

February 27, 2024

by Art of Engineering, Inc. 515 Manitou Ave. #260 Manitou Springs, CO 80829



### TABLE of CONTENTS

| PDF     |                                                                    |
|---------|--------------------------------------------------------------------|
| Page    |                                                                    |
| 1       | Cover                                                              |
| 2       | Table of Contents                                                  |
| 3       | Introduction                                                       |
| 4       | Project Overview, General Location, Description of Property        |
| 5       | Major Basin Description                                            |
| 6       | Pre-Development Sub-Basins                                         |
| 7       | Historic Runoff Results, Design Criteria, Four Step Process        |
| 8       | Criteria, Drainage Facility Design Concepts                        |
| 9       | Drainage Facility Design Details                                   |
| 10      | Final Drainage Strategies, Calculation Methods, Free Flowing Areas |
| 11      | Runoff from Property, Ponded Basins description                    |
|         |                                                                    |
| 13-36   | Pre Development Hydrographs                                        |
| 36      | Basin Map                                                          |
| 38-58   | Basins without Runoff Control, (free range waters;)                |
| 59      | Individual Basins                                                  |
| 60      | Format of Results:                                                 |
| 61-119  | Ponded Basin Calculations, Results and Strategies                  |
| 120     | Pre-Post Summary                                                   |
| 121     | Large Format Drainage Plan                                         |
| 122     | Large Format Drainage Details                                      |
| 123     | Constructed Pond Dimensions                                        |
| 124-126 | Table of Surface Areas                                             |
| 127-133 | Soils/Perc Test and Report                                         |

#### INTRODUCTION

This drainage report and it's proposed drainage solutions are unconventional versus typical developments. The owners have set intentions for the project that include best practices in water use and management. This drainage report and proposed strategies seek to treat storm water as an asset and intend to have as little stormwater leave the property as possible and prefer infiltrating. Our drainage strategies align with agricultural engineering more so than conventional civil engineering.

Our strategies focus on collecting stormwater from small basins that are adjacent to dedicated infiltration ponds. As such, conveyance needs are minimized and numerous vegetation lined ponds are proposed.

We've discussed our strategies for stormwater infiltration with our water attorney who indicates that pumping 'stored' water to other points on the property would certainly be considered as 'extracting a beneficial use' and would be considered contrary to Colorado water law. However, crops or commercial vegetation that gets 'watered' collaterally would not be a violation. Plantings in and around ponds would be helpful for erosion control and likely increase soil infiltration rates.

#### I PROJECT OVERVIEW

The Shire at Old Ranch is private development by the long time owners with the intent to create an educational and commercial experience focusing on gardening, health and wellness, and community. The project will include a garden center, cafe, meeting house, hand-craft workshops and agricultural endeavors including small animals and classes. The bulk of the land will be used for growing nursery and food crops.

#### II. GENERAL LOCATION

The project is located east of the intersection of Powers Blvd and Old Ranch Road. It is bounded by Old Ranch Rd to the south, Howells Rd to the west, Ridgeway Ln. to the north and adjacent properties to the east.

Township12S Range 66W SW4SW4 Sec 23 El Paso County, Colorado

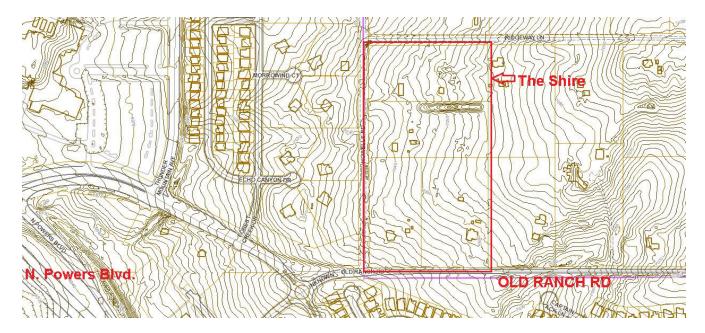
These parcels are at the very southwest corner of the Black Forest and located within the Kettle Creek Drainage Basin. Most of the land to the north and east of the Shire has not been developed beyond large-lot residential uses.

There are no drainageways on our property and there are no indications of anything other than sheet flow entering or leaving the property. The North Fork at Briargate to the west of this property has built three detention ponds.

Surrounding Platted Developments include:

- 1. Several small platted properties to the east
- 2. Academy High School Filing No. 5 and North Fork at Briargate Filing No. 6 to the west
- 3. Several Cordera Filings to the south
- 4. There aren't any new plattings filed to the north.

### III. DESCRIPTION OF PROPERTY


The project is comprised of four contiguous 5 acre parcels, these parcels are at the very southwest corner of the Black Forest.:

3820 Old Ranch Rd #6226000061 3890 Old Ranch Rd. #6226000060 10655 Howells Rd. #6226000059 10755 Howells Rd. #6226000058

Each of the four properties has a single family residence with wells and individual septic systems. The land hasn't been reshaped over the years and has natural grasses, small trees and shrubs throughout. The land slopes generally to the west at 2-5%. There are three sub-drainages within the 20 acres that flow to the northwest, west and south. The property is bound by Ridgeway Ln to the north, Howells Rd. to the west and Old Ranch Rd. to the south respectively.

The existing vegetation consists of trees (Blue Spruce, Sib Elm, Scrub Oak, Ponderosa, Black Locust...),

Shrubs (Juniper, Choke Cherry, Goji, Elderberry, American Plum, Sib. Pea, Currants, Goose Cherry...), all of which will be kept.

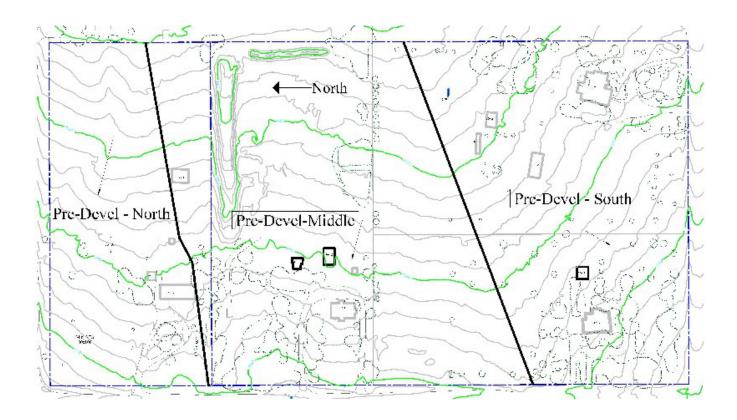


Based on geotechnical explorations that have been done, the soils beneath a few inches of top soil are fairly consistent fine sands, SW, SM. Sandstone was hit at 13' in just one test hole in the upper reach (east side). All other test bores showed sand/silt down to 20' maximum test depth. Percolation tests have found the soil capable of infiltrating water at 1.18 to 1.67 inches/hour.

USDA identifies this soils as sandy loam with some sand-clay loam (Peyton-Pring). The soil has a hydrologic Group B classification and a capacity of the most limiting layer to be 2.0-6.0 inches/hour. Areas to the east and north have similar soil (Group B) and slopes.

There are no drainageways or structures on the property and there is no sign that anything other than sheet flow may have ever entered the property along the east side or flowed off this property. There are no irrigation systems presently however the project will employ high efficiency irrigation methods when built. The only utilities within the property are those serving the existing residences.

#### IV. MAJOR BASIN DESCRIPTION


The property is within the area studied by JR Engineering in April 2001 for the Kettle Creek Drainage Basin-Old Ranch Road Tributary Drainage Basin Planning Study and Master Development Plan. This in the first study to to address the entire Kettle Creek Watershed. Our property is within this study area near Basin Identifiers D10 & D12. The drainage management plan proposed in this study 'calls for the major land owners/developers in the study area to construct the drainage infrastructure required to support the proposed development within the study area' and 'calls for several regional detention facilities'. The study acknowledges that much of the Kettle Creek Watershed is within the city limits of Colorado Springs and they would have jurisdiction. Also, since the watershed flows to the US Air Force Academy property, the City required 2,5,10,25, 50 and 100 year storm events to be analyzed.

Most of the land to the north and east of the Shire has not been developed beyond large lot residential. The Kettle Creek and Old Ranch Road Drainage Basin Planning Studies address drainage for the larger area whereas the a Drainage Report for the new subdivision (North Fork at Briargate Fil 2) is the nearest and most recent drainage study, albeit down stream from our project.

The property is not within a designated floodplain and FEMA classifies our property as "Area of Minimal Flood Hazard"

### V. SUB-BASIN DESCRIPTION

Historic drainage patterns within the property generally flow to the west. Three sub-basins have been identified: South, Middle and North for the pre-development analysis.



#### Historic Runoff

Analysis of the existing hydrologic conditions reveal a 10 year storm produces 1.27 Acre-Feet of runoff and 1.91 Acre-Feet for a 100 year storm. Flow rates are calculated for each sub-basin along with stormwater volume using the Rational Method. Hydrographs of these basins is found in the Appendix.

|                                |        |                        |                       | 10 Y                 | r Storm            | 100 Yr S             | torm               |
|--------------------------------|--------|------------------------|-----------------------|----------------------|--------------------|----------------------|--------------------|
| Storm Runoff - Pre-Development |        |                        | Rate of<br>Run-off    | Volume of<br>Run-off | Rate of Run-off    | Volume of<br>Run-off |                    |
| Run Free                       | Basin  | Composite<br>Area (ac) | Composite<br>Coeff RO | Q cfs 10yr           | Volume cf 10<br>yr | Q cfs 100 yr         | Volume cf<br>100yr |
| Pre Development                | South  | 3.956                  | 0.23                  | 2.303                | 20,178             | 3.461                | 30315              |
| r re bevelopment               | Middle | 9.221                  | 0.23                  | 3.036                | 24,226             | 4.545                | 36,265             |
|                                | North  | 6.806                  | 0.23                  | 1.496                | 11,128             | 2.233                | 16,613             |
|                                |        |                        | Total Pre-<br>Dev RO  | 3.21                 | 55,532             | 10.239               | 83,193             |
|                                |        |                        | Acre Feet             |                      | 1.27               |                      | 1.91               |

#### VI. DESIGN CRITERIA

The Kettle Creek/ORR DBPS used 2,5,10,25, 50 and 100 year storm events to be analyzed whereas our project uses 10 and 100 year storm events.

### VII. FOUR STEP

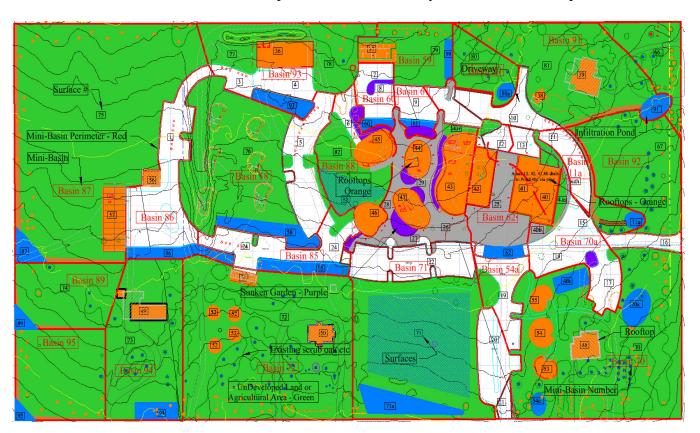
Our runoff reduction methods will include: Limiting hardscape to heavy traffic areas, use of permeable pavers in most walkways, rooftop waters directed to ponds\*, limited concrete curb and gutter (another hardscape), 'contour plowing' in crop areas, maintain many areas with dense vegetation.

Maintaining stable drainageways will be simplified by employing; numerous low volume, low velocity drainageways and allowing historic sheet flow to run directly to dedicated ponds. Some roof waters will be piped but most conveyances will be via small channels.

Our proposed WQCV would include all stormwaters infiltrated into the ground. We will be developing and implementing some unique 'best practices'.

<sup>\*</sup> The term 'Pond' refers to infiltration ponds of various types and sizes, from vegetation lined pits scattered around, grass buffers and constructed basins.

#### VIII. HYDROLOGIC CRITERIA


Design Storm for this report is the Rational Method and SCS Type II 24 hour storm for both 10 year and 100 year event. Hydrologic analysis was done using HYDROLOGY STUDIO v3.0.0.26 software. Rainfall data was downloaded from NOAA for Colorado Springs.

To size infiltration ponds, the Pond Design feature was utilized with the outflow volume reduced to 0.0001cfs. This gives the required size of pond to capture 100% of a given storm flow entirely.

#### IX. DRAINAGE FACILITY DESIGN CONCEPTS

A major objective of the project is to require the least amount of overlot grading and to maintain the historic drainage patterns. Our Drainage Strategies will reduce overall stormwater from flowing from the property. Using numerous mini-basins, basins will collect and infiltrate their waters 100% and some basins will allow a historic flow to continue. The net off-site flow will be reduced significantly.

The Plan view below shows enumerated surfaces and the general surface type in colors. Areas that will be runoff controlled will have their own pattern of runoff, conveyance and infiltration pond.



Most surface areas would utilize historic sheet flows directed to infiltration ponds (blue). Agricultural areas (green) would utilize strategies such as 'contour plowing'. Roofs are shown in orange color. White colored areas are paved surface (asphalt or gravel). Gray area around building groups is permeable pavers. Purple areas are depressed gardens which would not contribute to runoff.

#### X. DRAINAGE FACILITY DESIGN-DETAILS

A project goal is to limit water flowing off property to volumes less than the historic, calculated volume. Some of the identified mini-basins are easier to achieve that goal without significant disruption to existing landscaping and land use. Throughout the property various combinations of strategies for reducing run-off will be used.


We will employ low impact land use and drainage strategies that:

- 1. Minimize grading
- 2. Use heavy vegetation and contour plowing to achieve lower run-off
- 3. Employ planters and gardens in small depressions to collect and infiltrate on the spot
- 4. Require the least curb and gutter
- 5. Maximize sheet flow directly into dedicated infiltration ponds

Different pond styles will be employed, both sloped side basins and some vertical wall ponds to conserve space. Details of the Pond Types is found in the Appendix.

Where curb and gutter is necessary, Owners wish to pursue a less carbon intensive manner as shown below. Uphill edges of roadways and parking would have no curb. Wheel stops would be used in parking areas. The 'barrier' noted in the diagram could be notched to allow water to spill over barrier and through the Gabion basket and then surface flow to it's dedicated pond. A similar detail could be used on the uphill side to route waters to a strategic road crossing.

### Gabion Basket Curb



Our drainage strategies will not adversely affect streets and utilities. Many intentions for the project will result in positive environmental elements that will enhance the visitor experience at the Shire. Since we will infiltrate rather than discharge to other drainage systems, we expect to have a very positive affect on downstream drainage systems.

#### FINAL DRAINAGE STRATEGIES

Our drainage strategies involve numerous small collection and infiltration ponds which take advantage of the existing terrain with limited over-lot grading. The property has been broken into mini-basins that take advantage of proposed roadways, buildings and surfaces to allow waters to flow in small volumes to adjacent ponds. All surfaces have been colored and numbered.

#### **CALCULATION METHODS**

For both the pre and post development runoff analysis, the contributing surfaces and their coefficient of runoff, slope and time of concentration were calculated.

### Coefficients of Runoff used are as follows

| Undeveloped Land, Future Agricultural areas | 0.2  |
|---------------------------------------------|------|
| Asphalt Roads and Parking spaces            | 0.95 |
| Gravel Roads and Parking spaces, Pavers     | 0.85 |
| Roofs                                       | 0.95 |
| Ponds them selves, assumed full             | 1.00 |

The Time of Concentration was typically quite long for pre-development flows and was adjusted for post development flows to find the surface that had the least and longest Tc. In some case's, if an Ag and Paved surface dominated the basin, Tc's for both surfaces were determined to find the largest flow (in cubic feet per second, cfs) to assess channel requirements.

#### FREE FLOWING AREAS

Some areas were found not to be good candidates for managing stormwater, usually areas at the bottom of the basins or areas with heavy vegetation. These areas are on the south and west sides of the property. Runoff from these areas was calculated for the 10 and 100 year storms to find there rate of flow and total runoff that would be discharged.

This is a summary of those areas which will be allowed to flow off site. Waters from these areas would tend to accumulate in borrow ditches along Old Ranch and Howells Roads. There no indications that anything other than sheet flow has ever occurred in off-site flows.

Basin 72, west side @ 10755 Howells Rd. Area 20 & 21, low end of entry driveway, west side Basin 70 southwest corner, 3820 Old Ranch Rd. Area 16, 66 & 67, south entrance driveway, garden and 3890 Old Ranch Road

With these drainage strategies the net off site flows have been reduced by 0.97 and 1.47 acre feet for the 10 and 100 year storm events.

|                                                                                                     |                                                |                        |                                            | 10 Y                          | r Storm                        | 100 Yr                       | Storm                          |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------|--------------------------------------------|-------------------------------|--------------------------------|------------------------------|--------------------------------|
| Storm                                                                                               | Runoff - Pr                                    | e-Developme            | ent                                        | Rate of Run-off               | Volume of Run-off              | Rate of Run-<br>off          | Volume of Run-off              |
| Run Free                                                                                            | Basin                                          | Composite<br>Area (ac) | Composite<br>Coeff RO                      | Q cfs 10yr                    | Volume cf 10<br>yr             | Q cfs 100 yr                 | Volume cf<br>100yr             |
| Pre Development                                                                                     | South                                          | 3.956                  | 0.23                                       | 2.303                         | 20,178                         | 3.461                        | 30315                          |
|                                                                                                     | Middle                                         | 9.221                  | 0.21                                       | 3.036                         | 24,226                         | 4.545                        | 36,265                         |
|                                                                                                     | North                                          | 6.806                  | 0.23                                       | 1.496                         | 11,128                         | 2.233                        | 16,613                         |
|                                                                                                     |                                                |                        | Total Pre-<br>Dev RO                       | 3.21                          | 55,532                         | 10.239                       | 83,193                         |
|                                                                                                     |                                                |                        | Acre Feet                                  |                               | 1.27                           |                              | 1.91                           |
| Storm F Free Flowing off- site Free Flowing off- site Free Flowing off- site Free Flowing off- site | Runoff - Po Basin 72 Basin 70 #20+#21 Basin 92 | st Developm            | ent                                        | 0.86<br>0.86<br>0.93<br>0.818 | 4,458<br>4,907<br>668<br>3044  | 1.27<br>1.27<br>1.28<br>1.19 | 6,563<br>7,251<br>920<br>4426  |
|                                                                                                     |                                                |                        | Total Post-<br>Dev RO<br>Reduction<br>of : | 3.468                         | 13,077<br>42,455<br>cf<br>0.97 | 5.01<br>5.229<br>cfs         | 19,160<br>64,033<br>cf<br>1.47 |
|                                                                                                     |                                                |                        |                                            |                               | acre-feet                      |                              | acre-feet                      |

### PONDED BASINS

The bulk of the property has been broken into (20) mini-basins with infiltration ponds dedicated to the runoff in that basin. Ponds are placed where they can collect surface flows without channels as often as possible. Grassed Swales are employed when needed to convey waters.

The ponds are sized based on two parameters: the total volume required to collect storm waters, and the required infiltrative area to 'perc' storm waters into the ground within 40 hours. The width on a horizontal plane at the bottom of the pond was generally used as the 'infiltrative surface area'. The ponds will be maintained as they will also serves other productive purposes such as cash crops, walking paths, wildlife habitat, replanted vegetation and historic vegetation.

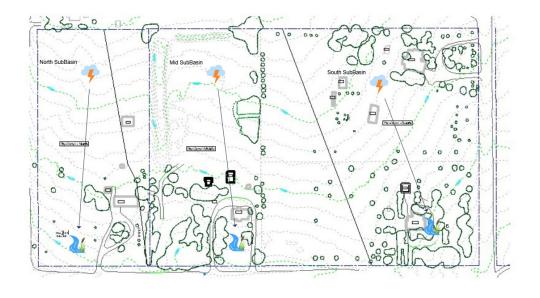
A copy of the Percolation Tests performed by Entech Engineering is in the Appendix.

The infiltration ponds are rectangular, oval and triangular and possible organic shapes, generally with 3:1 side slopes. Drawings attached show their design.

The pond sizes in this report may vary as the infiltration rate may differ, and pond shape may change as development proceeds, hence we will work with the owner during construction and offer final design afterward. Pond sizes will be larger than the L1 & L2 specified in this report as a 6" high freeboard is required on all ponds and channels. Owner may ask to use 2:1 side slopes with vegetation or riprap.

The next page describes the format of results of the hydrologic analysis and the results.

Following that are individual basin calculations and solutions, beginning with the pre-development hydrology and the basin that will be allowed to flow freely off site. The Appendix includes Percolation Tests and Pond concepts.


The pond sizes shown on subsequent pages are based on full water surface dimensions. A page showing constructed sizes is included at the end of this file and on drawing sheet DR-2. These dimensions include a 6" free board.

Also attached is the spreadsheet of the many surface areas used in the analysis.

The following is the Pre-Develoment Hydrology

Hydrology Studio v 3.0.0.26 03-29-2023

### PRE DEVELOPMENT RUN OFF



# Hydrograph by Return Period

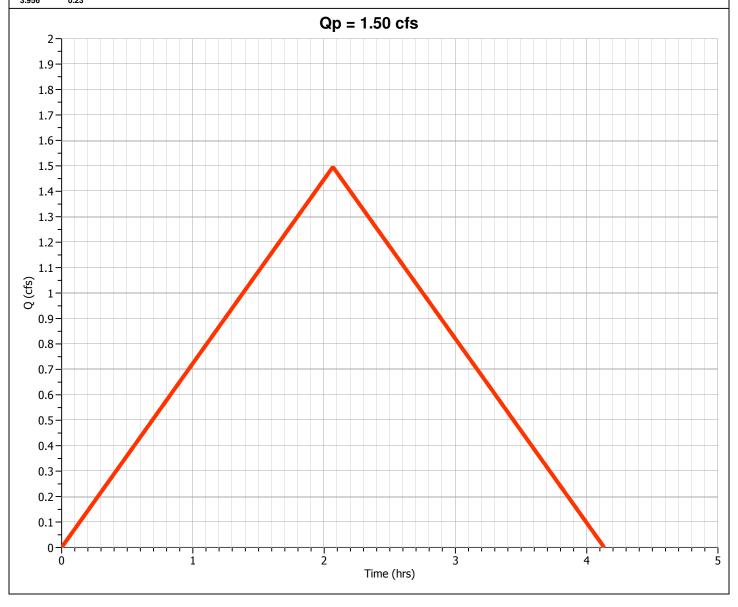
Hydrology Studio v 3.0.026

Project Name: Shire on ORR - Pre-Devel

| lyd. | Hydrograph | Hydrograph     |      |      |      | Peak Out | flow (cfs) |       |       |        |
|------|------------|----------------|------|------|------|----------|------------|-------|-------|--------|
| lo.  | Туре       | Name           | 1-yr | 2-yr | 3-yr | 5-yr     | 10-yr      | 25-yr | 50-yr | 100-yr |
| 1    | Rational   | North SubBasin |      |      |      |          | 1.496      |       |       | 2.233  |
| 2    | Reach      |                |      |      |      |          | 0.000      |       |       | 0.000  |
| 3    | Rational   | Mid SubBasin   |      |      |      |          | 3.036      |       |       | 4.545  |
| 4    | Reach      |                |      |      |      |          | 0.000      |       |       | 0.000  |
| 5    | Rational   | South SubBasin |      |      |      |          | 2.303      |       |       | 3.461  |
| 6    | Reach      |                |      |      |      |          | 0.000      |       |       | 0.000  |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |
|      |            |                |      |      |      |          |            |       |       |        |

### Project Name: Shire on ORR - Pre-Devel

# Hydrograph 10-yr Summary


| 1         Rational         North SubBasin         1.496         2.07         11.128            2         Reach         0.000         0.000         0.000         1           3         Rational         Mid SubBasin         3.036         2.22         24,226            4         Reach         0.000         0.000         0.000         3            5         Rational         South SubBasin         2.303         2.43         20,178            6         Reach         0.000         0.000         0.000         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lyd.<br>No. | Hydrograph<br>Type | Hydrograph<br>Name | Peak<br>Flow<br>(cfs) | Time to<br>Peak<br>(hrs) | Hydrograph<br>Volume<br>(cuft) | Inflow<br>Hyd(s) | Maximum<br>Elevation<br>(ft) | Maximum<br>Storage<br>(cuft) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|--------------------|-----------------------|--------------------------|--------------------------------|------------------|------------------------------|------------------------------|
| 3     Rational     Mid SubBasin     3.036     2.22     24,226        4     Reach     0.000     0.00     0.000     3       5     Rational     South SubBasin     2.303     2.43     20,178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1           | Rational           | North SubBasin     | 1.496                 | 2.07                     | 11,128                         |                  |                              |                              |
| 4         Reach         0.000         0.000         0.000         3           5         Rational         South SubBasin         2.303         2.43         20,178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2           | Reach              |                    | 0.000                 | 0.00                     | 0.000                          | 1                |                              |                              |
| 5 Rational South SubBasin 2.303 2.43 20,178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3           | Rational           | Mid SubBasin       | 3.036                 | 2.22                     | 24,226                         |                  |                              |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4           | Reach              |                    | 0.000                 | 0.00                     | 0.000                          | 3                |                              |                              |
| 6         Reach         0.000         0.000         5         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         < | 5           | Rational           | South SubBasin     | 2.303                 | 2.43                     | 20,178                         |                  |                              |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6           | Reach              |                    | 0.000                 | 0.00                     | 0.000                          | 5                |                              |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                    |                    |                       |                          |                                |                  |                              |                              |

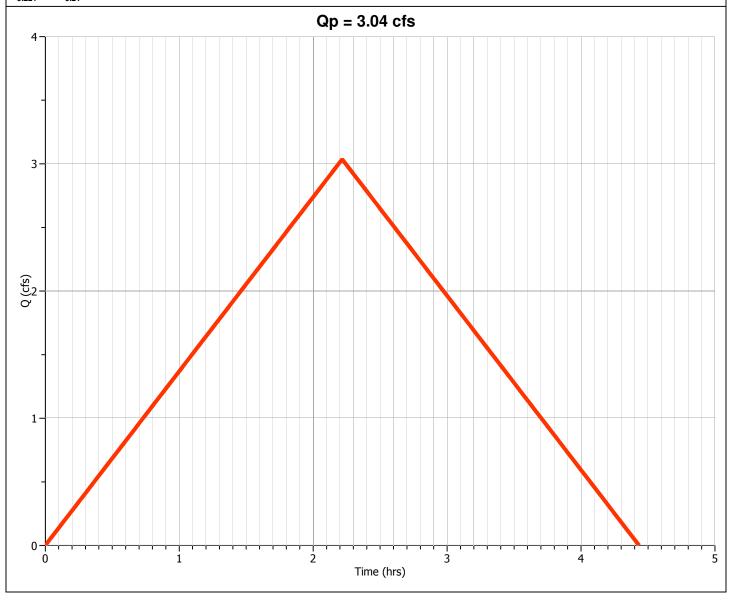
Hydrology Studio v 3.0.0.26 03-29-2023

### North SubBasin Hyd. No. 1

| Hydrograph Type    | = Rational             | Peak Flow            | = 1.496 cfs   |
|--------------------|------------------------|----------------------|---------------|
| Storm Frequency    | = 10-yr                | Time to Peak         | = 2.07 hrs    |
| Time Interval      | = 1 min                | Runoff Volume        | = 11,128 cuft |
| Drainage Area      | = 3.956 ac             | Runoff Coeff.        | = 0.23*       |
| Tc Method          | = User                 | Time of Conc. (Tc)   | = 124.0 min   |
| IDF Curve          | = Colorado Springs.idf | Intensity            | = 1.64 in/hr  |
| Freq. Corr. Factor | = 1.00                 | Asc/Rec Limb Factors | s = 1/1       |

| AREA (ac) | С    | DESCRIPTION |
|-----------|------|-------------|
| 0.041     | 0.95 | Roof        |
| 0.122     | 0.85 | Road        |
| 3.793     | 0.20 | Land        |
| 2.056     | 0.00 |             |



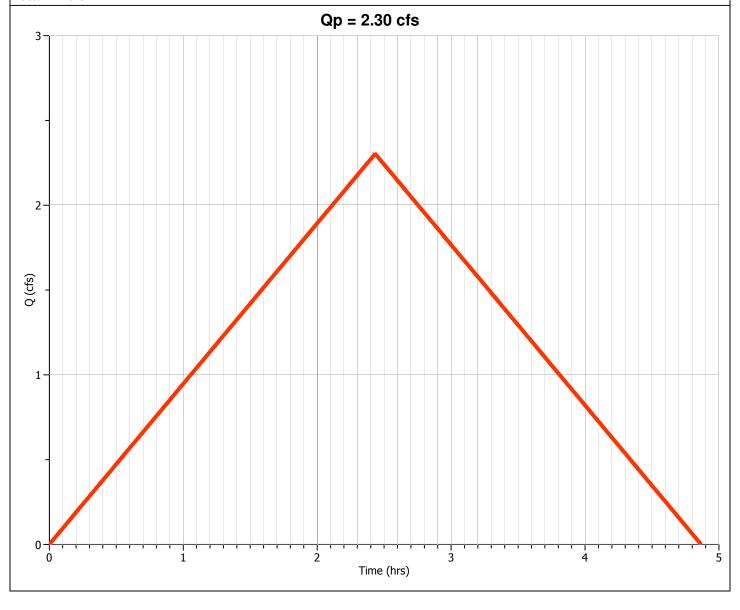

# Hydrograph Report

Hydrology Studio v 3.0.0.26 03-29-2023

### Mid SubBasin Hyd. No. 3

| Hydrograph Type    | = Rational             | Peak Flow            | = 3.036 cfs   |
|--------------------|------------------------|----------------------|---------------|
| Storm Frequency    | = 10-yr                | Time to Peak         | = 2.22 hrs    |
| Time Interval      | = 1 min                | Runoff Volume        | = 24,226 cuft |
| Drainage Area      | = 9.221 ac             | Runoff Coeff.        | = 0.21*       |
| Tc Method          | = User                 | Time of Conc. (Tc)   | = 133.0 min   |
| IDF Curve          | = Colorado Springs.idf | Intensity            | = 1.57 in/hr  |
| Freq. Corr. Factor | = 1.00                 | Asc/Rec Limb Factors | s = 1/1       |

| AREA (ac) | С    | DESCRIPTION |
|-----------|------|-------------|
| 0.052     | 0.95 | Roof        |
| 0.144     | 0.85 | Road        |
| 9.025     | 0.20 | Land        |
| 9.221     | 0.21 |             |



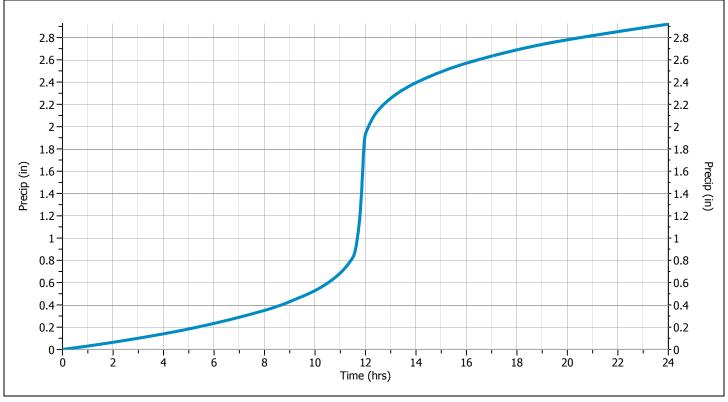

Hydrology Studio v 3.0.0.26 03-29-2023

### South SubBasin Hyd. No. 5

| Hydrograph Type    | = Rational             | Peak Flow            | = 2.303 cfs   |
|--------------------|------------------------|----------------------|---------------|
| Storm Frequency    | = 10-yr                | Time to Peak         | = 2.43 hrs    |
| Time Interval      | = 1 min                | Runoff Volume        | = 20,178 cuft |
| Drainage Area      | = 6.806 ac             | Runoff Coeff.        | = 0.23*       |
| Tc Method          | = User                 | Time of Conc. (Tc)   | = 146.0 min   |
| IDF Curve          | = Colorado Springs.idf | Intensity            | = 1.47 in/hr  |
| Freq. Corr. Factor | = 1.00                 | Asc/Rec Limb Factors | s = 1/1       |

| 6.806     | 0.23 |             |
|-----------|------|-------------|
| 6.544     | 0.20 | Land        |
| 0.133     | 0.85 | Road        |
| 0.129     | 0.95 | Roof        |
| AREA (ac) | С    | DESCRIPTION |




## Design Storm Report

Hydrology Studio v 3.0.0.26 03-29-2023

### Storm Distribution: NRCS/SCS - Type II, 24-hr

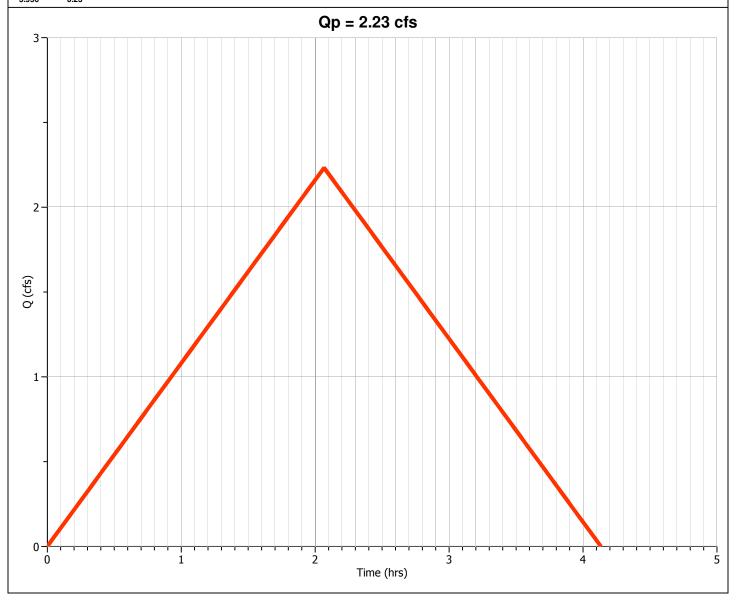
| Storm    |      |      |      | Total Rainfal | l Volume (in) |       |       |        |  |
|----------|------|------|------|---------------|---------------|-------|-------|--------|--|
| Duration | 1-yr | 2-yr | 3-yr | 5-yr          | √ 10-yr       | 25-yr | 50-yr | 100-yr |  |
| 24 hrs   | 1.62 | 1.89 | 0.00 | 2.41          | 2.92          | 3.72  | 4.43  | 5.21   |  |

|               |                |               | Incre          | mental Rainfa | II Distribution, | 10-yr         |                |               |                |
|---------------|----------------|---------------|----------------|---------------|------------------|---------------|----------------|---------------|----------------|
| Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in)   | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) |
| 11.42         | 0.005412       | 11.60         | 0.016404       | 11.78         | 0.042662         | 11.97         | 0.040178       | 12.15         | 0.008210       |
| 11.43         | 0.005490       | 11.62         | 0.018325       | 11.80         | 0.048005         | 11.98         | 0.028020       | 12.17         | 0.008025       |
| 11.45         | 0.005567       | 11.63         | 0.020245       | 11.82         | 0.053347         | 12.00         | 0.015861       | 12.18         | 0.007840       |
| 11.47         | 0.005645       | 11.65         | 0.022166       | 11.83         | 0.058690         | 12.02         | 0.010016       | 12.20         | 0.007655       |
| 11.48         | 0.005723       | 11.67         | 0.024087       | 11.85         | 0.064032         | 12.03         | 0.009505       | 12.22         | 0.007470       |
| 11.50         | 0.005801       | 11.68         | 0.026008       | 11.87         | 0.069375         | 12.05         | 0.009320       | 12.23         | 0.007285       |
| 11.52         | 0.006822       | 11.70         | 0.027928       | 11.88         | 0.074717         | 12.07         | 0.009135       | 12.25         | 0.007101       |
| 11.53         | 0.008721       | 11.72         | 0.029849       | 11.90         | 0.080060         | 12.08         | 0.008950       | 12.27         | 0.006916       |
| 11.55         | 0.010642       | 11.73         | 0.031770       | 11.92         | 0.085402         | 12.10         | 0.008765       | 12.28         | 0.006731       |
| 11.57         | 0.012563       | 11.75         | 0.033690       | 11.93         | 0.055846         | 12.12         | 0.008580       | 12.30         | 0.006546       |
| 11.58         | 0.014483       | 11.77         | 0.037037       | 11.95         | 0.052337         | 12.13         | 0.008395       | 12.32         | 0.006361       |



### Project Name: Shire on ORR - Pre-Devel

# Hydrograph 100-yr Summary


| Hyd.<br>No. | Hydrograph<br>Type | Hydrograph<br>Name | Peak<br>Flow<br>(cfs) | Time to<br>Peak<br>(hrs) | Hydrograph<br>Volume<br>(cuft) | Inflow<br>Hyd(s) | Maximum<br>Elevation<br>(ft) | Maximum<br>Storage<br>(cuft) |
|-------------|--------------------|--------------------|-----------------------|--------------------------|--------------------------------|------------------|------------------------------|------------------------------|
| 1           | Rational           | North SubBasin     | 2.233                 | 2.07                     | 16,613                         |                  |                              |                              |
| 2           | Reach              |                    | 0.000                 | 0.00                     | 0.000                          | 1                |                              |                              |
| 3           | Rational           | Mid SubBasin       | 4.545                 | 2.22                     | 36,265                         |                  |                              |                              |
| 4           | Reach              |                    | 0.000                 | 0.00                     | 0.000                          | 3                |                              |                              |
| 5           | Rational           | South SubBasin     | 3.461                 | 2.43                     | 30,315                         |                  |                              |                              |
| 6           | Reach              |                    | 0.000                 | 0.00                     | 0.000                          | 5                |                              |                              |
|             |                    |                    |                       |                          |                                |                  |                              |                              |
|             |                    |                    |                       |                          |                                |                  |                              |                              |

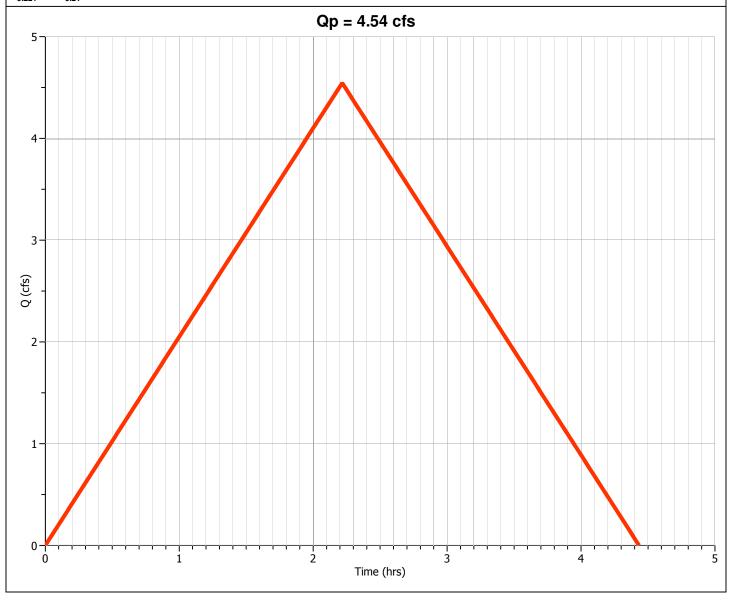
Hydrology Studio v 3.0.0.26 03-29-2023

### North SubBasin Hyd. No. 1

| Hydrograph Type    | = Rational             | Peak Flow            | = 2.233 cfs   |
|--------------------|------------------------|----------------------|---------------|
| Storm Frequency    | = 100-yr               | Time to Peak         | = 2.07 hrs    |
| Time Interval      | = 1 min                | Runoff Volume        | = 16,613 cuft |
| Drainage Area      | = 3.956 ac             | Runoff Coeff.        | = 0.23*       |
| Tc Method          | = User                 | Time of Conc. (Tc)   | = 124.0 min   |
| IDF Curve          | = Colorado Springs.idf | Intensity            | = 2.45 in/hr  |
| Freq. Corr. Factor | = 1.00                 | Asc/Rec Limb Factors | s = 1/1       |

| AREA (ac) | С    | DESCRIPTION |
|-----------|------|-------------|
| 0.041     | 0.95 | Roof        |
| 0.122     | 0.85 | Road        |
| 3.793     | 0.20 | Land        |
| 2 056     | 0.22 |             |



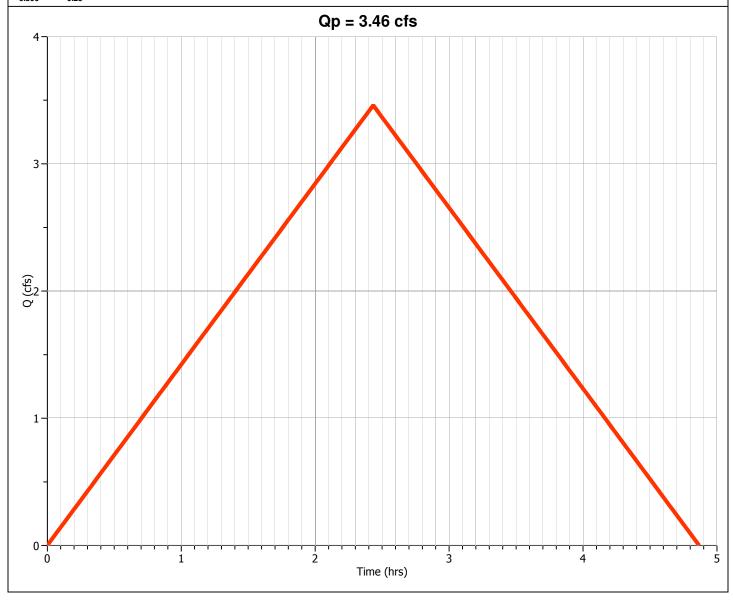

# Hydrograph Report

Hydrology Studio v 3.0.0.26 03-29-2023

### Mid SubBasin Hyd. No. 3

| Hydrograph Type    | = Rational             | Peak Flow            | = 4.545 cfs   |
|--------------------|------------------------|----------------------|---------------|
| Storm Frequency    | = 100-yr               | Time to Peak         | = 2.22 hrs    |
| Time Interval      | = 1 min                | Runoff Volume        | = 36,265 cuft |
| Drainage Area      | = 9.221 ac             | Runoff Coeff.        | = 0.21*       |
| Tc Method          | = User                 | Time of Conc. (Tc)   | = 133.0 min   |
| IDF Curve          | = Colorado Springs.idf | Intensity            | = 2.35 in/hr  |
| Freq. Corr. Factor | = 1.00                 | Asc/Rec Limb Factors | s = 1/1       |

| AREA (ac) | С    | DESCRIPTION |
|-----------|------|-------------|
| 0.052     | 0.95 | Roof        |
| 0.144     | 0.85 | Road        |
| 9.025     | 0.20 | Land        |
| 9.221     | 0.21 |             |



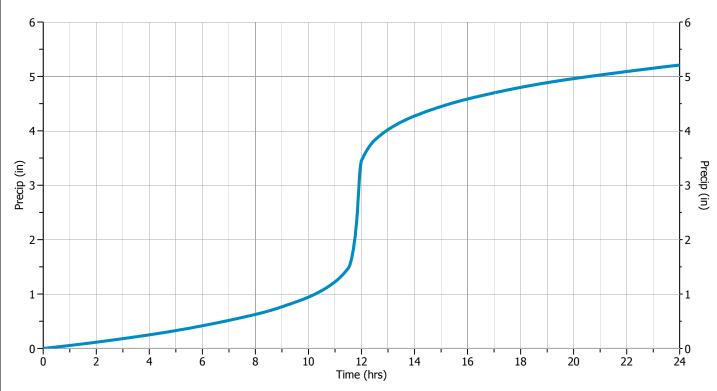

Hydrology Studio v 3.0.0.26 03-29-2023

### South SubBasin Hyd. No. 5

| Hydrograph Type    | = Rational             | Peak Flow            | = 3.461 cfs   |
|--------------------|------------------------|----------------------|---------------|
| Storm Frequency    | = 100-yr               | Time to Peak         | = 2.43 hrs    |
| Time Interval      | = 1 min                | Runoff Volume        | = 30,315 cuft |
| Drainage Area      | = 6.806 ac             | Runoff Coeff.        | = 0.23*       |
| Tc Method          | = User                 | Time of Conc. (Tc)   | = 146.0 min   |
| IDF Curve          | = Colorado Springs.idf | Intensity            | = 2.21 in/hr  |
| Freq. Corr. Factor | = 1.00                 | Asc/Rec Limb Factors | s = 1/1       |

| AREA (ac) | С    | DESCRIPTION |
|-----------|------|-------------|
| 0.129     | 0.95 | Roof        |
| 0.133     | 0.85 | Road        |
| 6.544     | 0.20 | Land        |
| 6.806     | 0.23 |             |




## Design Storm Report

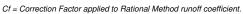
Hydrology Studio v 3.0.0.26 03-29-2023

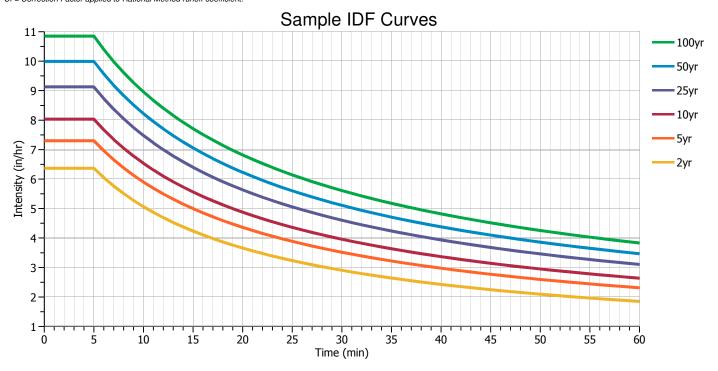
### Storm Distribution: NRCS/SCS - Type II, 24-hr

| Storm    |      |      |      | Total Rainfal | I Volume (in) |       |       |          |  |
|----------|------|------|------|---------------|---------------|-------|-------|----------|--|
| Duration | 1-yr | 2-yr | 3-yr | 5-yr          | 10-yr         | 25-yr | 50-yr | √ 100-yr |  |
| 24 hrs   | 1.62 | 1.89 | 0.00 | 2.41          | 2.92          | 3.72  | 4.43  | 5.21     |  |

| Incremental Rainfall Distribution, 100-yr |                |               |                |               |                |               |                |               |                |
|-------------------------------------------|----------------|---------------|----------------|---------------|----------------|---------------|----------------|---------------|----------------|
| Time<br>(hrs)                             | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) | Time<br>(hrs) | Precip<br>(in) |
| 11.42                                     | 0.009656       | 11.60         | 0.029269       | 11.78         | 0.076120       | 11.97         | 0.071688       | 12.15         | 0.014649       |
| 11.43                                     | 0.009795       | 11.62         | 0.032696       | 11.80         | 0.085652       | 11.98         | 0.049994       | 12.17         | 0.01431        |
| 11.45                                     | 0.009934       | 11.63         | 0.036123       | 11.82         | 0.095185       | 12.00         | 0.028300       | 12.18         | 0.01398        |
| 11.47                                     | 0.010073       | 11.65         | 0.039550       | 11.83         | 0.104717       | 12.02         | 0.017872       | 12.20         | 0.01365        |
| 11.48                                     | 0.010212       | 11.67         | 0.042977       | 11.85         | 0.114250       | 12.03         | 0.016959       | 12.22         | 0.01332        |
| 11.50                                     | 0.010351       | 11.68         | 0.046404       | 11.87         | 0.123782       | 12.05         | 0.016629       | 12.23         | 0.01299        |
| 11.52                                     | 0.012173       | 11.70         | 0.049831       | 11.88         | 0.133314       | 12.07         | 0.016299       | 12.25         | 0.01266        |
| 11.53                                     | 0.015561       | 11.72         | 0.053258       | 11.90         | 0.142847       | 12.08         | 0.015969       | 12.27         | 0.01233        |
| 11.55                                     | 0.018988       | 11.73         | 0.056685       | 11.92         | 0.152379       | 12.10         | 0.015639       | 12.28         | 0.01200        |
| 11.57                                     | 0.022415       | 11.75         | 0.060112       | 11.93         | 0.099643       | 12.12         | 0.015309       | 12.30         | 0.01167        |
| 11.58                                     | 0.025842       | 11.77         | 0.066084       | 11.95         | 0.093382       | 12.13         | 0.014979       | 12.32         | 0.01134        |




## **IDF** Report


Hydrology Studio v 3.0.0.26 03-29-2023

| Equation<br>Coefficients | Intensity = B / (Tc + D)^E (in/hr) |         |        |         |         |         |         |         |  |
|--------------------------|------------------------------------|---------|--------|---------|---------|---------|---------|---------|--|
|                          | 1-yr                               | 2-yr    | 3-yr   | 5-yr    | 10-yr   | 25-yr   | 50-yr   | 100-yr  |  |
| В                        | 0.0000                             | 58.1215 | 0.0000 | 57.1446 | 58.8780 | 63.5498 | 67.7965 | 72.2003 |  |
| D                        | 0.0000                             | 10.3000 | 0.0000 | 10.3000 | 10.3000 | 10.4000 | 10.5000 | 10.6000 |  |
| E                        | 0.0000                             | 0.8106  | 0.0000 | 0.7542  | 0.7303  | 0.7097  | 0.6986  | 0.6898  |  |
|                          |                                    |         |        |         |         |         |         |         |  |

Minimum Tc = 5 minutes

| Тс    |      |      |      | Intensity Va | alues (in/hr) |       |       |        |
|-------|------|------|------|--------------|---------------|-------|-------|--------|
| (min) | 1-yr | 2-yr | 3-yr | 5-yr         | 10-yr         | 25-yr | 50-yr | 100-yr |
| Cf    | 1.00 | 1.00 | 1.00 | 1.00         | 1.00          | 1.00  | 1.00  | 1.00   |
| 5     | 0    | 6.37 | 0    | 7.30         | 8.03          | 9.13  | 9.99  | 10.85  |
| 10    | 0    | 5.06 | 0    | 5.90         | 6.53          | 7.48  | 8.22  | 8.96   |
| 15    | 0    | 4.24 | 0    | 5.00         | 5.56          | 6.40  | 7.06  | 7.71   |
| 20    | 0    | 3.66 | 0    | 4.36         | 4.88          | 5.63  | 6.23  | 6.82   |
| 25    | 0    | 3.23 | 0    | 3.89         | 4.36          | 5.06  | 5.60  | 6.14   |
| 30    | 0    | 2.90 | 0    | 3.52         | 3.96          | 4.60  | 5.11  | 5.61   |
| 35    | 0    | 2.64 | 0    | 3.22         | 3.64          | 4.24  | 4.71  | 5.18   |
| 40    | 0    | 2.43 | 0    | 2.98         | 3.37          | 3.94  | 4.38  | 4.82   |
| 45    | 0    | 2.25 | 0    | 2.77         | 3.14          | 3.68  | 4.10  | 4.52   |
| 50    | 0    | 2.10 | 0    | 2.60         | 2.95          | 3.46  | 3.86  | 4.26   |
| 55    | 0    | 1.96 | 0    | 2.44         | 2.78          | 3.27  | 3.65  | 4.03   |
| 60    | 0    | 1.85 | 0    | 2.31         | 2.64          | 3.10  | 3.47  | 3.83   |





## **Precipitation Report**

Hydrology Studio v 3.0.0.26 (Rainfall totals in Inches)

03-29-2023

|                    | Active     | 1-yr            | 2-yr    | 3-yr | 5-yr | 10-yr | 25-yr | 50-yr | 100 |
|--------------------|------------|-----------------|---------|------|------|-------|-------|-------|-----|
| Active             |            |                 |         |      |      | ✓     |       |       | ,   |
| SCS Storms         | > SCS Dim  | nensionless S   | Storms  |      |      |       |       |       |     |
| SCS 6hr            |            | 1.25            | 1.41    | 0    | 1.77 | 2.15  | 2.79  | 3.38  | 4.  |
| Type I, 24-hr      |            | 1.62            | 1.89    | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.  |
| Type IA, 24-hr     |            | 1.62            | 1.89    | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.  |
| Type II, 24-hr     | ✓          | 1.62            | 1.89    | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.  |
| Type II FL, 24-hr  |            | 1.62            | 1.89    | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.  |
| Type III, 24-hr    |            | 1.62            | 1.89    | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.  |
| Synthetic Storms   | > IDF-Base | ed Synthetic    | Storms  |      |      |       |       |       |     |
| 1-hr               |            | 0               | 1.85    | 0    | 2.31 | 2.64  | 3.10  | 3.47  | 3.  |
| 2-hr               |            | 0               | 2.24    | 0    | 2.90 | 3.36  | 4.01  | 4.51  | 5.  |
| 3-hr               |            | 0               | 2.48    | 0    | 3.27 | 3.82  | 4.60  | 5.20  | 5.  |
| 6-hr               |            | 0               | 2.89    | 0    | 3.96 | 4.70  | 5.73  | 6.53  | 7.  |
| 12-hr              |            | 0               | 3.33    | 0    | 4.75 | 5.73  | 7.08  | 8.13  | 9.  |
| 24-hr              |            | 0               | 3.82    | 0    | 5.66 | 6.94  | 8.70  | 10.07 | 11  |
| Huff Distribution  | > 1st Quar | tile (0 to 6 hr | s)      |      |      |       |       |       |     |
| 1-hr               |            | 0.79            | 0.93    | 0    | 1.20 | 1.45  | 1.83  | 2.16  | 2.  |
| 2-hr               |            | 0.97            | 1.13    | 0    | 1.44 | 1.74  | 2.23  | 2.65  | 3.  |
| 3-hr               |            | 1.07            | 1.23    | 0    | 1.55 | 1.88  | 2.42  | 2.91  | 3.  |
| 6-hr               |            | 1.25            | 1.41    | 0    | 1.77 | 2.15  | 2.79  | 3.38  | 4.  |
| Huff Distribution  | > 2nd Qua  | rtile (>6 to 12 | hrs)    |      |      |       |       |       |     |
| 8-hr               |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     |     |
| 12-hr              |            | 1.42            | 1.64    | 0    | 2.07 | 2.51  | 3.24  | 3.90  | 4.  |
| Huff Distribution  | > 3rd Quai | rtile (>12 to 2 | 4 hrs)  |      |      |       |       |       |     |
| 18-hr              |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     |     |
| 24-hr              |            | 1.62            | 1.89    | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.  |
| Custom Storms      | > Custom   | Storm Distrib   | outions |      |      |       |       |       |     |
| Colorado Springs   |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     |     |
| My Custom Storm 2  |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     |     |
| My Custom Storm 3  |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     |     |
| My Custom Storm 4  |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     |     |
| My Custom Storm 5  |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     |     |
| My Custom Storm 6  |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     |     |
| My Custom Storm 7  |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     |     |
| My Custom Storm 8  |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     |     |
| My Custom Storm 9  |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     |     |
| My Custom Storm 10 |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     |     |

### Project Name:

# Hydrograph by Return Period

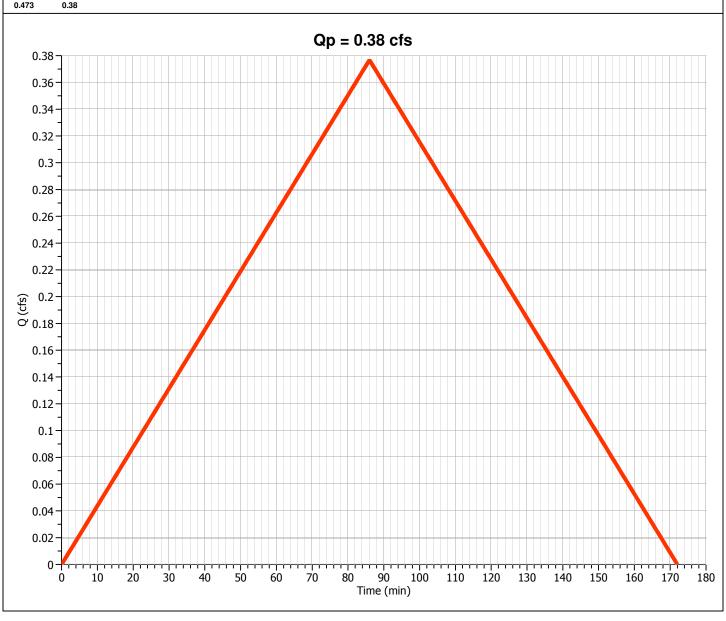
Hydrology Studio v 3 0 0 26 03-27-2023

| Hyd. | Hydrograph          | Hydrograph         |      |      |      | Peak Out | flow (cfs) |       |       |        |
|------|---------------------|--------------------|------|------|------|----------|------------|-------|-------|--------|
| No.  | Туре                | Name               | 1-yr | 2-yr | 3-yr | 5-yr     | 10-yr      | 25-yr | 50-yr | 100-yı |
| 1    | Rational            | Pre Pre            |      |      |      |          | 0.691      |       |       | 1.017  |
| 2    | Rational            | Post               |      |      |      |          | 0.377      |       |       | 0.555  |
| 2 3  | Rational Pond Route | Post #72 Runs Free |      |      |      |          | 0.377      |       |       | 0.555  |
|      |                     |                    |      |      |      |          |            |       |       |        |

### Project Name:

# Hydrograph 10-yr Summary Hydrology Studio v 3.0.0.26

03-27-2023


| Hyd.<br>No. | Hydrograph<br>Type   | Hydrograph<br>Name | Peak<br>Flow<br>(cfs) | Time to<br>Peak<br>(hrs) | Hydrograph<br>Volume<br>(cuft) | Inflow<br>Hyd(s) | Maximum<br>Elevation<br>(ft) | Maximum<br>Storage<br>(cuft) |
|-------------|----------------------|--------------------|-----------------------|--------------------------|--------------------------------|------------------|------------------------------|------------------------------|
| 1           | Rational             | Pre Pre            | 0.691                 | 1.43                     | 3,567                          |                  |                              |                              |
| 2           | Rational             | Post               | 0.377                 | 1.43                     | 1,944                          |                  |                              |                              |
| 2 3         | Rational  Pond Route | Post #72 Runs Free | 0.377                 | 0.00                     | 1,944                          | 2                | 101.58                       | 4,458                        |
|             |                      |                    |                       |                          |                                |                  |                              |                              |
|             |                      |                    |                       |                          |                                |                  |                              |                              |

Hydrology Studio v 3.0.0.26 03-27-2023

### Post Hyd. No. 2

| Hydrograph Type    | = Rational             | Peak Flow            | = 0.377 cfs  |
|--------------------|------------------------|----------------------|--------------|
| Storm Frequency    | = 10-yr                | Time to Peak         | = 1.43 hrs   |
| Time Interval      | = 1 min                | Runoff Volume        | = 1,944 cuft |
| Drainage Area      | = 0.473 ac             | Runoff Coeff.        | = 0.38*      |
| Tc Method          | = User                 | Time of Conc. (Tc)   | = 86.0 min   |
| IDF Curve          | = Colorado Springs.idf | Intensity            | = 2.10 in/hr |
| Freq. Corr. Factor | = 1.00                 | Asc/Rec Limb Factors | s = 1/1      |

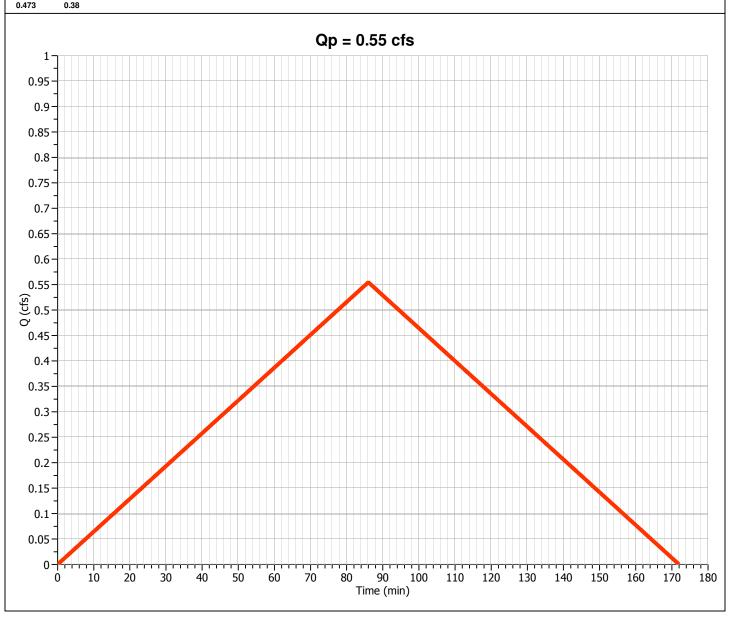
| 0.000     | 0.20 | 2414 01140101 |
|-----------|------|---------------|
| 0.353     | 0.20 | Land-Undevel  |
| 0.12      | 0.90 | Road-Asphalt  |
| AREA (ac) | С    | DESCRIPTION   |



### Project Name:

# Hydrograph 100-yr Summary Hydrology Studio v 3.0.0.26

03-27-2023


| Hyd.<br>No. | Hydrograph<br>Type   | Hydrograph<br>Name | Peak<br>Flow<br>(cfs) | Time to<br>Peak<br>(hrs) | Hydrograph<br>Volume<br>(cuft) | Inflow<br>Hyd(s) | Maximum<br>Elevation<br>(ft) | Maximum<br>Storage<br>(cuft) |
|-------------|----------------------|--------------------|-----------------------|--------------------------|--------------------------------|------------------|------------------------------|------------------------------|
| 1           | Rational             | Pre Pre            | 1.017                 | 1.43                     | 5,250                          |                  |                              |                              |
| 2           | Rational             | Post               | 0.555                 | 1.43                     | 2,861                          |                  |                              |                              |
| 3           | Rational  Pond Route | Post #72 Runs Free | 0.555                 | 0.00                     | 2,861                          | 2                | 102.08                       | 6,563                        |
|             |                      |                    |                       |                          |                                |                  |                              |                              |
|             |                      |                    |                       |                          |                                |                  |                              |                              |

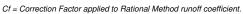
Hydrology Studio v 3.0.0.26 03-27-2023

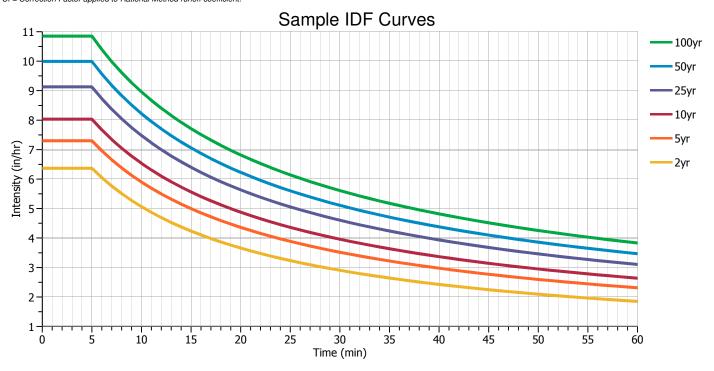
### Post Hyd. No. 2

| Hydrograph Type    | = Rational             | Peak Flow            | = 0.555 cfs  |
|--------------------|------------------------|----------------------|--------------|
| Storm Frequency    | = 100-yr               | Time to Peak         | = 1.43 hrs   |
| Time Interval      | = 1 min                | Runoff Volume        | = 2,861 cuft |
| Drainage Area      | = 0.473 ac             | Runoff Coeff.        | = 0.38*      |
| Tc Method          | = User                 | Time of Conc. (Tc)   | = 86.0 min   |
| IDF Curve          | = Colorado Springs.idf | Intensity            | = 3.09 in/hr |
| Freq. Corr. Factor | = 1.00                 | Asc/Rec Limb Factors | s = 1/1      |

| 0.000     | 0.20 | 2414 01140101 |
|-----------|------|---------------|
| 0.353     | 0.20 | Land-Undevel  |
| 0.12      | 0.90 | Road-Asphalt  |
| AREA (ac) | С    | DESCRIPTION   |




# IDF Report Hydrology Studio v 3.0.0.26


13-27-2023 Hydrology Studio y 3.0.0.26

| Equation     |        | Intensity = B / (Tc + D)^E (in/hr) |        |         |         |         |         |         |  |  |  |  |
|--------------|--------|------------------------------------|--------|---------|---------|---------|---------|---------|--|--|--|--|
| Coefficients | 1-yr   | 2-yr                               | 3-yr   | 5-yr    | 10-yr   | 25-yr   | 50-yr   | 100-yr  |  |  |  |  |
| В            | 0.0000 | 58.1215                            | 0.0000 | 57.1446 | 58.8780 | 63.5498 | 67.7965 | 72.2003 |  |  |  |  |
| D            | 0.0000 | 10.3000                            | 0.0000 | 10.3000 | 10.3000 | 10.4000 | 10.5000 | 10.6000 |  |  |  |  |
| E            | 0.0000 | 0.8106                             | 0.0000 | 0.7542  | 0.7303  | 0.7097  | 0.6986  | 0.6898  |  |  |  |  |
|              |        |                                    |        |         |         |         |         |         |  |  |  |  |

Minimum Tc = 5 minutes

| Тс    |      |      |      | Intensity Va | alues (in/hr) |       |       |        |
|-------|------|------|------|--------------|---------------|-------|-------|--------|
| (min) | 1-yr | 2-yr | 3-yr | 5-yr         | 10-yr         | 25-yr | 50-yr | 100-yr |
| Cf    | 1.00 | 1.00 | 1.00 | 1.00         | 1.00          | 1.00  | 1.00  | 1.00   |
| 5     | 0    | 6.37 | 0    | 7.30         | 8.03          | 9.13  | 9.99  | 10.85  |
| 10    | 0    | 5.06 | 0    | 5.90         | 6.53          | 7.48  | 8.22  | 8.96   |
| 15    | 0    | 4.24 | 0    | 5.00         | 5.56          | 6.40  | 7.06  | 7.71   |
| 20    | 0    | 3.66 | 0    | 4.36         | 4.88          | 5.63  | 6.23  | 6.82   |
| 25    | 0    | 3.23 | 0    | 3.89         | 4.36          | 5.06  | 5.60  | 6.14   |
| 30    | 0    | 2.90 | 0    | 3.52         | 3.96          | 4.60  | 5.11  | 5.61   |
| 35    | 0    | 2.64 | 0    | 3.22         | 3.64          | 4.24  | 4.71  | 5.18   |
| 40    | 0    | 2.43 | 0    | 2.98         | 3.37          | 3.94  | 4.38  | 4.82   |
| 45    | 0    | 2.25 | 0    | 2.77         | 3.14          | 3.68  | 4.10  | 4.52   |
| 50    | 0    | 2.10 | 0    | 2.60         | 2.95          | 3.46  | 3.86  | 4.26   |
| 55    | 0    | 1.96 | 0    | 2.44         | 2.78          | 3.27  | 3.65  | 4.03   |
| 60    | 0    | 1.85 | 0    | 2.31         | 2.64          | 3.10  | 3.47  | 3.83   |





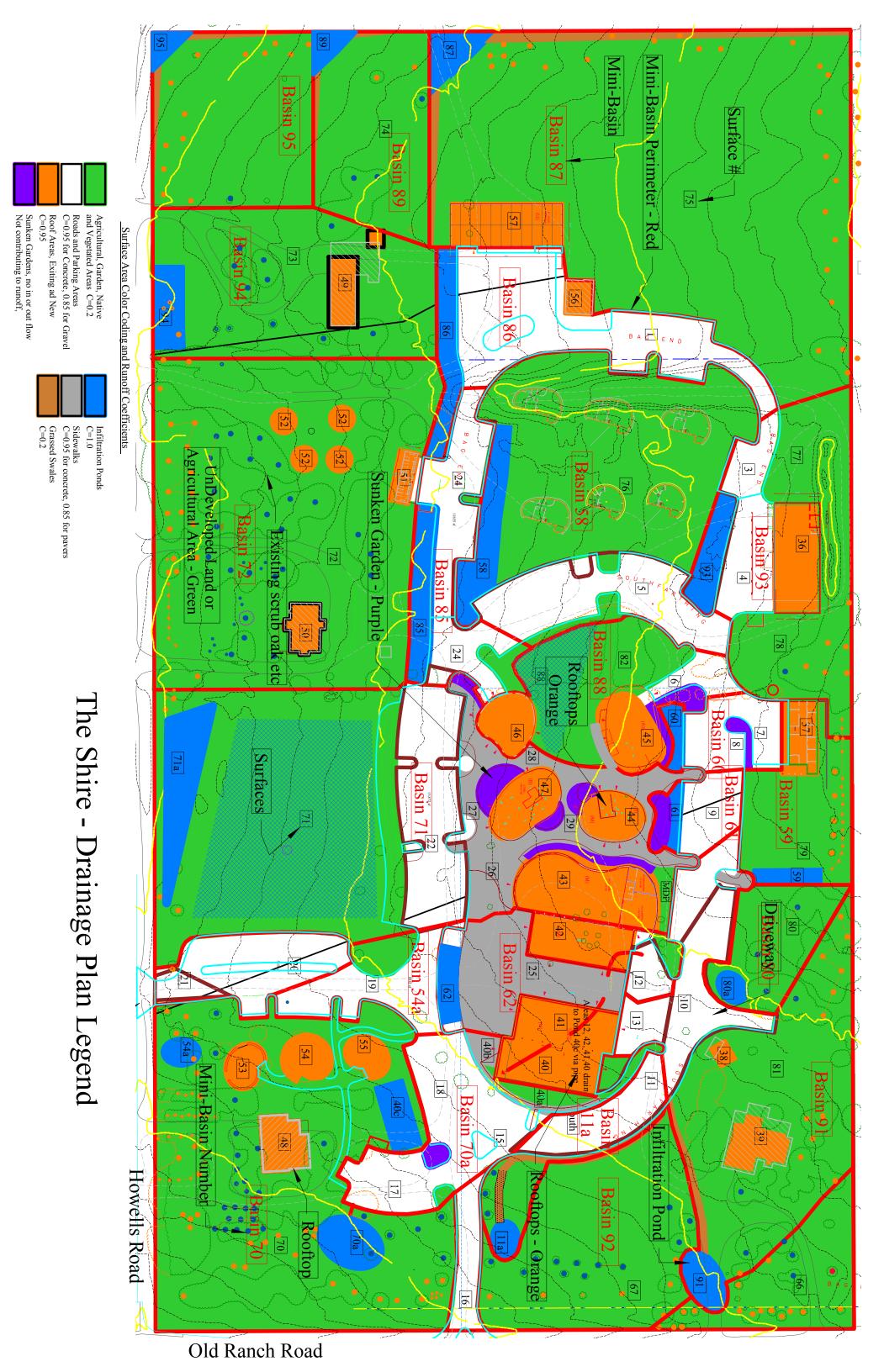
## **Precipitation Report**

Hydrology Studio v 3.0.0.26 (Rainfall totals in Inches)

03-27-2023

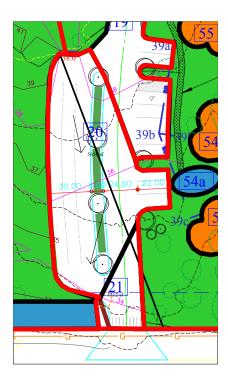
|                      | Active     | 1-yr            | 2-yr    | 3-yr | 5-yr | 10-yr | 25-yr | 50-yr | 100-yr |
|----------------------|------------|-----------------|---------|------|------|-------|-------|-------|--------|
| Active               |            |                 |         |      |      | ✓     |       |       | ✓      |
| SCS Storms           | > SCS Dim  | ensionless S    | Storms  |      |      |       |       |       |        |
| SCS 6hr              |            | 1.25            | 1.41    | 0    | 1.77 | 2.15  | 2.79  | 3.38  | 4.05   |
| Type I, 24-hr        |            | 1.62            | 1.89    | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.21   |
| Type IA, 24-hr       |            | 1.62            | 1.89    | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.21   |
| Type II, 24-hr       | ✓          | 1.62            | 1.89    | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.21   |
| Type II FL, 24-hr    |            | 1.62            | 1.89    | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.21   |
| Type III, 24-hr      |            | 1.62            | 1.89    | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.21   |
| Synthetic Storms     | > IDF-Base | ed Synthetic    | Storms  |      |      |       |       |       |        |
| 1-hr                 |            | 0               | 1.85    | 0    | 2.31 | 2.64  | 3.10  | 3.47  | 3.83   |
| 2-hr                 |            | 0               | 2.24    | 0    | 2.90 | 3.36  | 4.01  | 4.51  | 5.01   |
| 3-hr                 |            | 0               | 2.48    | 0    | 3.27 | 3.82  | 4.60  | 5.20  | 5.79   |
| 6-hr                 |            | 0               | 2.89    | 0    | 3.96 | 4.70  | 5.73  | 6.53  | 7.32   |
| 12-hr                |            | 0               | 3.33    | 0    | 4.75 | 5.73  | 7.08  | 8.13  | 9.17   |
| 24-hr                |            | 0               | 3.82    | 0    | 5.66 | 6.94  | 8.70  | 10.07 | 11.42  |
| Huff Distribution    | > 1st Quar | tile (0 to 6 hr | s)      |      |      |       |       |       |        |
| 1-hr                 |            | 0.79            | 0.93    | 0    | 1.20 | 1.45  | 1.83  | 2.16  | 2.53   |
| 2-hr                 |            | 0.97            | 1.13    | 0    | 1.44 | 1.74  | 2.23  | 2.65  | 3.12   |
| 3-hr                 |            | 1.07            | 1.23    | 0    | 1.55 | 1.88  | 2.42  | 2.91  | 3.46   |
| 6-hr                 |            | 1.25            | 1.41    | 0    | 1.77 | 2.15  | 2.79  | 3.38  | 4.05   |
| Huff Distribution    | > 2nd Qua  | rtile (>6 to 12 | hrs)    |      |      |       |       |       |        |
| 8-hr                 |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     | 0      |
| 12-hr                |            | 1.42            | 1.64    | 0    | 2.07 | 2.51  | 3.24  | 3.90  | 4.64   |
| Huff Distribution    | > 3rd Quar | tile (>12 to 2  | 4 hrs)  |      |      |       |       |       |        |
| 18-hr                |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     | 0      |
| 24-hr                |            | 1.62            | 1.89    | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.21   |
| <b>Custom Storms</b> | > Custom   | Storm Distrib   | outions |      |      |       |       |       |        |
| Colorado Springs     |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     | 0      |
| My Custom Storm 2    |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     | 0      |
| My Custom Storm 3    |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     | 0      |
| My Custom Storm 4    |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     | 0      |
| My Custom Storm 5    |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     | 0      |
| My Custom Storm 6    |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     | 0      |
| My Custom Storm 7    |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     | 0      |
| My Custom Storm 8    |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     | 0      |
| My Custom Storm 9    |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     | 0      |
| My Custom Storm 10   |            | 0               | 0       | 0    | 0    | 0     | 0     | 0     | 0      |

# Precipitation Report Cont'd


Rainfall totals in Inches 03-27-2023

|              | Active      | 1-yr | 2-yr | 3-yr | 5-yr | 10-yr | 25-yr | 50-yr | 100-yr |
|--------------|-------------|------|------|------|------|-------|-------|-------|--------|
| Active       |             |      |      |      |      | ✓     |       |       | ✓      |
| Huff Indiana | > Indianapo | olis |      |      |      |       |       |       |        |
| 30-min       |             | 0.61 | 0.73 | 0    | 0.95 | 1.15  | 1.44  | 1.68  | 1.93   |
| 1-hr         |             | 0.79 | 0.93 | 0    | 1.20 | 1.45  | 1.83  | 2.16  | 2.53   |
| 2-hr         |             | 0.97 | 1.13 | 0    | 1.44 | 1.74  | 2.23  | 2.65  | 3.12   |
| 3-hr         |             | 1.07 | 1.23 | 0    | 1.55 | 1.88  | 2.42  | 2.91  | 3.46   |
| 6-hr         |             | 1.25 | 1.41 | 0    | 1.77 | 2.15  | 2.79  | 3.38  | 4.05   |
| 12-hr        |             | 1.42 | 1.64 | 0    | 2.07 | 2.51  | 3.24  | 3.90  | 4.64   |
| 24-hr        |             | 1.62 | 1.89 | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.21   |
| Huff Indiana | > Evansvill | е    |      |      |      |       |       |       |        |
| 30-min       |             | 0.61 | 0.73 | 0    | 0.95 | 1.15  | 1.44  | 1.68  | 1.93   |
| 1-hr         |             | 0.79 | 0.93 | 0    | 1.20 | 1.45  | 1.83  | 2.16  | 2.53   |
| 2-hr         |             | 0.97 | 1.13 | 0    | 1.44 | 1.74  | 2.23  | 2.65  | 3.12   |
| 3-hr         |             | 1.07 | 1.23 | 0    | 1.55 | 1.88  | 2.42  | 2.91  | 3.46   |
| 6-hr         |             | 1.25 | 1.41 | 0    | 1.77 | 2.15  | 2.79  | 3.38  | 4.05   |
| 12-hr        |             | 1.42 | 1.64 | 0    | 2.07 | 2.51  | 3.24  | 3.90  | 4.64   |
| 24-hr        |             | 1.62 | 1.89 | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.21   |
| Huff Indiana | > Fort Way  | ne   |      |      |      |       |       |       |        |
| 30-min       |             | 0.61 | 0.73 | 0    | 0.95 | 1.15  | 1.44  | 1.68  | 1.93   |
| 1-hr         |             | 0.79 | 0.93 | 0    | 1.20 | 1.45  | 1.83  | 2.16  | 2.53   |
| 2-hr         |             | 0.97 | 1.13 | 0    | 1.44 | 1.74  | 2.23  | 2.65  | 3.12   |
| 3-hr         |             | 1.07 | 1.23 | 0    | 1.55 | 1.88  | 2.42  | 2.91  | 3.46   |
| 6-hr         |             | 1.25 | 1.41 | 0    | 1.77 | 2.15  | 2.79  | 3.38  | 4.05   |
| 12-hr        |             | 1.42 | 1.64 | 0    | 2.07 | 2.51  | 3.24  | 3.90  | 4.64   |
| 24-hr        |             | 1.62 | 1.89 | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.21   |
| Huff Indiana | > South Be  | nd   |      |      |      |       |       |       |        |
| 30-min       |             | 0.61 | 0.73 | 0    | 0.95 | 1.15  | 1.44  | 1.68  | 1.93   |
| 1-hr         |             | 0.79 | 0.93 | 0    | 1.20 | 1.45  | 1.83  | 2.16  | 2.53   |
| 2-hr         |             | 0.97 | 1.13 | 0    | 1.44 | 1.74  | 2.23  | 2.65  | 3.12   |
| 3-hr         |             | 1.07 | 1.23 | 0    | 1.55 | 1.88  | 2.42  | 2.91  | 3.46   |
| 6-hr         |             | 1.25 | 1.41 | 0    | 1.77 | 2.15  | 2.79  | 3.38  | 4.05   |
| 12-hr        |             | 1.42 | 1.64 | 0    | 2.07 | 2.51  | 3.24  | 3.90  | 4.64   |
| 24-hr        |             | 1.62 | 1.89 | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.21   |
|              |             |      |      |      |      |       |       |       |        |
|              |             |      |      |      |      |       |       |       |        |
|              |             |      |      |      |      |       |       |       |        |
|              |             |      |      |      |      |       |       |       |        |

# Precipitation Report Cont'd


Rainfall totals in Inches 03-27-2023

|                      | Active                    | 1-yr        | 2-yr   | 3-yr | 5-yr | 10-yr | 25-yr | 50-yr | 100-у |  |  |
|----------------------|---------------------------|-------------|--------|------|------|-------|-------|-------|-------|--|--|
| Active               |                           |             |        |      |      | ✓     |       |       | ✓     |  |  |
| NRCS Storms          | > NRCS Di                 | mensionless | Storms |      |      |       |       |       |       |  |  |
| NRCS MSE1, 24-hr     |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.21  |  |  |
| NRCS MSE2, 24-hr     |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.21  |  |  |
| NRCS MSE3, 24-hr     |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.21  |  |  |
| NRCS MSE4, 24-hr     |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.21  |  |  |
| NRCS MSE5, 24-hr     |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.21  |  |  |
| NRCS MSE6, 24-hr     |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.21  |  |  |
| NOAA-A, 24-hr        |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.21  |  |  |
| NOAA-B, 24-hr        |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.2   |  |  |
| NOAA-C, 24-hr        |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.2   |  |  |
| NOAA-D, 24-hr        |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.2   |  |  |
| NRCC-A, 24-hr        |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.2   |  |  |
| NRCC-B, 24-hr        |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.2   |  |  |
| NRCC-C, 24-hr        |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.2   |  |  |
| NRCC-D, 24-hr        |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.2   |  |  |
| CA-1, 24-hr          |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.2   |  |  |
| CA-2, 24-hr          |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.2   |  |  |
| CA-3, 24-hr          |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.2   |  |  |
| CA-4, 24-hr          |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.2   |  |  |
| CA-5, 24-hr          |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.2   |  |  |
| CA-6, 24-hr          |                           | 1.62        | 1.89   | 0    | 2.41 | 2.92  | 3.72  | 4.43  | 5.2   |  |  |
| FDOT Storms          | > Florida D               | OT Storms   |        |      |      |       |       |       |       |  |  |
| FDOT, 1-hr           |                           | 0           | 0      | 0    | 0    | 0     | 0     | 0     | 0     |  |  |
| FDOT, 2-hr           |                           | 0           | 0      | 0    | 0    | 0     | 0     | 0     | 0     |  |  |
| FDOT, 4-hr           |                           | 0           | 0      | 0    | 0    | 0     | 0     | 0     | 0     |  |  |
| FDOT, 8-hr           |                           | 0           | 0      | 0    | 0    | 0     | 0     | 0     | 0     |  |  |
| FDOT, 24-hr          |                           | 0           | 0      | 0    | 0    | 0     | 0     | 0     | 0     |  |  |
| FDOT, 72-hr          |                           | 0           | 0      | 0    | 0    | 0     | 0     | 0     | 0     |  |  |
| SFWMD, 72-hr         |                           | 0           | 0      | 0    | 0    | 0     | 0     | 0     | 0     |  |  |
| Austin Storms        | > Austin Frequency Storms |             |        |      |      |       |       |       |       |  |  |
| Austin Zone 1, 24-hr |                           | 0           | 0      | 0    | 0    | 0     | 0     | 0     | 0     |  |  |
| Austin Zone 2, 24-hr |                           | 0           | 0      | 0    | 0    | 0     | 0     | 0     | 0     |  |  |
|                      |                           |             |        |      |      |       |       |       |       |  |  |
|                      |                           |             |        |      |      |       |       |       |       |  |  |
|                      |                           |             |        |      |      |       |       |       |       |  |  |



These Areas are have no Drainage Control

#### Area 20 + 21

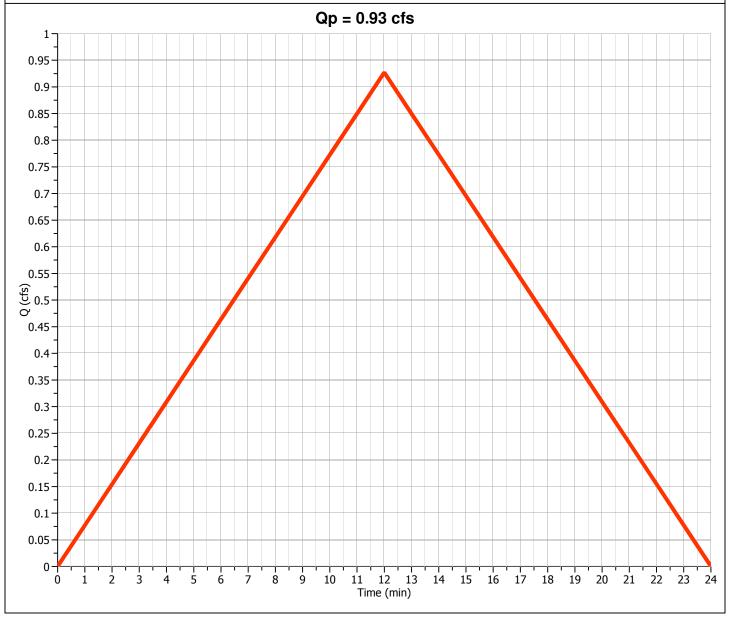


This drainage area is comprised of asphalt roadway. Some of the flow from #20 may be collected into the pond #89. This area will run free.

| 10 yr    | 10 yr Storm |          | 100 yr Storm |  |  |
|----------|-------------|----------|--------------|--|--|
| Qp (cfs) | Vol (cf)    | Qp (cfs) | Vol (cf)     |  |  |
| 0.93     | 668         | 1.28     | 920          |  |  |
|          |             |          |              |  |  |
|          |             |          |              |  |  |
|          |             |          |              |  |  |
|          | 120         |          | 165          |  |  |

# Hydrograph 10-yr Summary Hydrology Studio v 3.0.0.26

| Hydrology St | tudio v 3.0.0.26   |                    |                       |                          |                                |                  |                              | 02-27-202                    |
|--------------|--------------------|--------------------|-----------------------|--------------------------|--------------------------------|------------------|------------------------------|------------------------------|
| Hyd.<br>No.  | Hydrograph<br>Type | Hydrograph<br>Name | Peak<br>Flow<br>(cfs) | Time to<br>Peak<br>(hrs) | Hydrograph<br>Volume<br>(cuft) | Inflow<br>Hyd(s) | Maximum<br>Elevation<br>(ft) | Maximum<br>Storage<br>(cuft) |
| 1            | Rational           | Pre Pre            | 0.195                 | 0.20                     | 141                            |                  |                              |                              |
| 2            | Rational           | Post               | 0.927                 | 0.20                     | 668                            |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    | 1                  |                       | 1                        |                                |                  |                              | ·                            |


### Post Hyd. No. 2

| Hydrograph Type    | = Rational             | Peak Flow                  | = 0.927 cfs  |  |
|--------------------|------------------------|----------------------------|--------------|--|
| Storm Frequency    | = 10-yr                | Time to Peak               | = 0.20 hrs   |  |
| Time Interval      | = 1 min                | Runoff Volume              | = 668 cuft   |  |
| Drainage Area      | = 0.16 ac              | Runoff Coeff.              | = 0.95*      |  |
| Tc Method          | = User                 | Time of Conc. (Tc)         | = 12.0 min   |  |
| IDF Curve          | = Colorado Springs.idf | Intensity                  | = 6.10 in/hr |  |
| Freq. Corr. Factor | = 1.00                 | Asc/Rec Limb Factors = 1/1 |              |  |

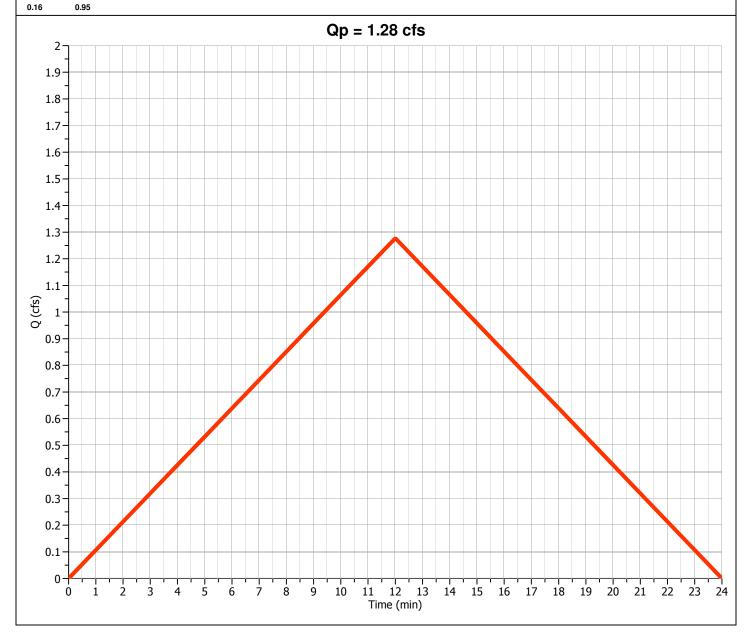
#### \* Composite C Worksheet

AREA (ac) C DESCRIPTION 0.16 0.95 Road-Asphalt

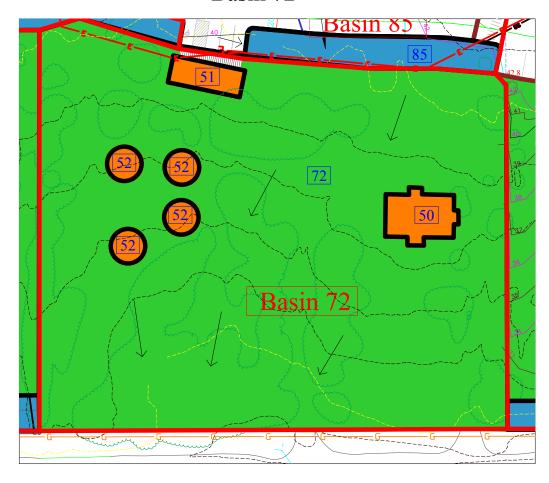
0.16 0.95



# Hydrograph 100-yr Summary Hydrology Studio v 3.0.0.26


| Hydrology Stu | udio v 3.0.0.26    |                    |                       |                          |                                |                  |                              | 02-27-2024                   |
|---------------|--------------------|--------------------|-----------------------|--------------------------|--------------------------------|------------------|------------------------------|------------------------------|
| Hyd.<br>No.   | Hydrograph<br>Type | Hydrograph<br>Name | Peak<br>Flow<br>(cfs) | Time to<br>Peak<br>(hrs) | Hydrograph<br>Volume<br>(cuft) | Inflow<br>Hyd(s) | Maximum<br>Elevation<br>(ft) | Maximum<br>Storage<br>(cuft) |
| 1             | Rational           | Pre Pre            | 0.269                 | 0.20                     | 194                            |                  |                              |                              |
| 2             | Rational           | Post               | 1.277                 | 0.20                     | 920                            |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |

### Post Hyd. No. 2


| Hydrograph Type    | = Rational             | Peak Flow                  | = 1.277 cfs  |  |
|--------------------|------------------------|----------------------------|--------------|--|
| Storm Frequency    | = 100-yr               | Time to Peak               | = 0.20 hrs   |  |
| Time Interval      | = 1 min                | Runoff Volume              | = 920 cuft   |  |
| Drainage Area      | = 0.16 ac              | Runoff Coeff.              | = 0.95*      |  |
| Tc Method          | = User                 | Time of Conc. (Tc)         | = 12.0 min   |  |
| IDF Curve          | = Colorado Springs.idf | Intensity                  | = 8.40 in/hr |  |
| Freq. Corr. Factor | = 1.00                 | Asc/Rec Limb Factors = 1/1 |              |  |

#### \* Composite C Worksheet

AREA (ac) C DESCRIPTION 0.16 0.95 Road-Asphalt



Basin 72

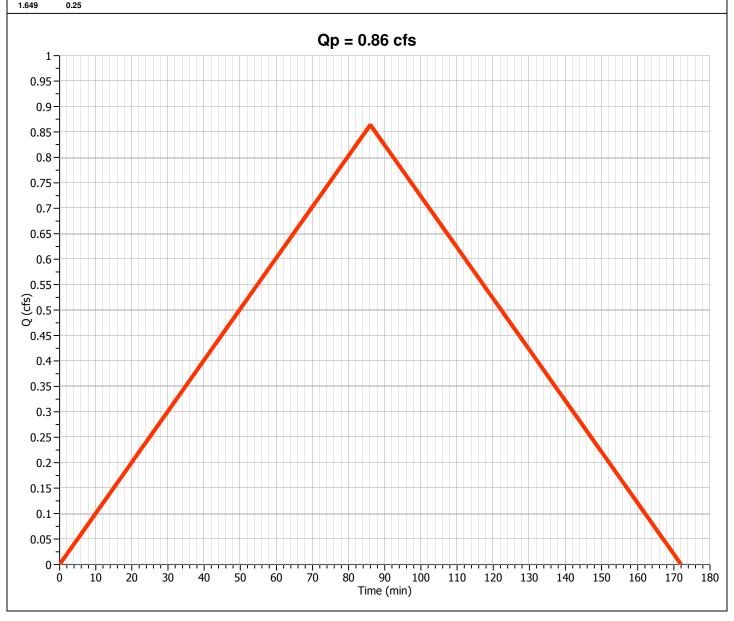


Basin 72 has no drainage control and is largely undeveloped land dominated by scrub oak and significant detritus accumulation.

This area will run free.

| 10 yr Storm  |          | 100 yr   | Storm    |
|--------------|----------|----------|----------|
| Qp (cfs)     | Vol (cf) | Qp (cfs) | Vol (cf) |
| 0.86         | 4,458    | 1.27     | 6,563    |
|              |          |          |          |
|              |          |          |          |
| Infiltration |          |          |          |
| Surface Area |          |          |          |
| Req'd (sf)   | 801      |          | 1,179    |

# Hydrograph 10-yr Summary Hydrology Studio v 3.0.0.26


| <b>No.</b> | Hydrograph<br>Type  Rational  Rational | Hydrograph<br>Name  Pre Pre  Post | Peak<br>Flow<br>(cfs) | Time to<br>Peak<br>(hrs) | Hydrograph<br>Volume<br>(cuft) | Inflow<br>Hyd(s) | Maximum<br>Elevation<br>(ft) | Maximum<br>Storage<br>(cuft) |
|------------|----------------------------------------|-----------------------------------|-----------------------|--------------------------|--------------------------------|------------------|------------------------------|------------------------------|
|            |                                        |                                   | 0.691                 |                          |                                |                  | ()                           | (cuit)                       |
| 2          | Rational                               | Poet                              |                       | 1.43                     | 3,567                          |                  |                              |                              |
|            |                                        | 1 051                             | 0.864                 | 1.43                     | 4,458                          |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |
|            |                                        |                                   |                       |                          |                                |                  |                              |                              |

### Post Hyd. No. 2

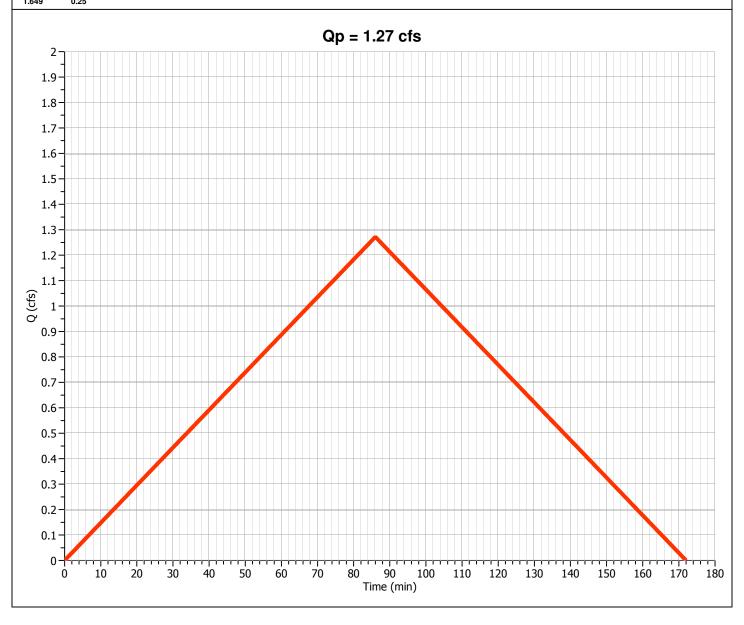
| Hydrograph Type    | = Rational             | Peak Flow                  | = 0.864 cfs  |  |
|--------------------|------------------------|----------------------------|--------------|--|
| Storm Frequency    | = 10-yr                | Time to Peak               | = 1.43 hrs   |  |
| Time Interval      | = 1 min                | Runoff Volume              | = 4,458 cuft |  |
| Drainage Area      | = 1.649 ac             | Runoff Coeff.              | = 0.25*      |  |
| Tc Method          | = User                 | Time of Conc. (Tc)         | = 86.0 min   |  |
| IDF Curve          | = Colorado Springs.idf | Intensity                  | = 2.10 in/hr |  |
| Freq. Corr. Factor | = 1.00                 | Asc/Rec Limb Factors = 1/1 |              |  |

#### \* Composite C Worksheet

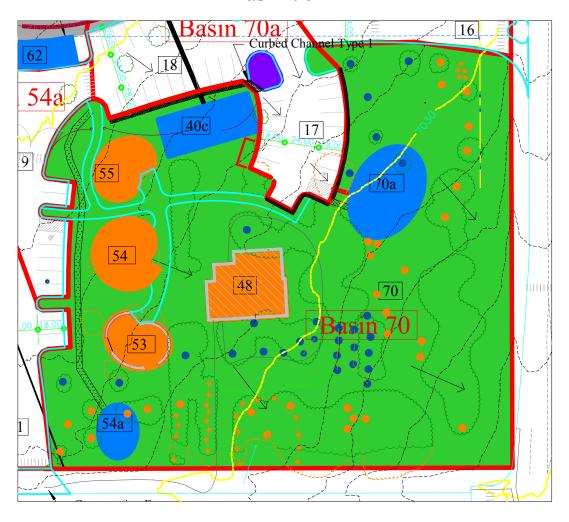
| AREA (ac) | С    | DESCRIPTION  |
|-----------|------|--------------|
| 0.107     | 0.95 | Roof         |
| 1.542     | 0.20 | Land-Undevel |
| 4 040     | 0.05 |              |



# Hydrograph 100-yr Summary Hydrology Studio v 3.0.0.26


| Hydrology Stu | udio v 3.0.0.26    | <u></u>            |                       |                          |                                |                  |                              | 02-27-2024                   |
|---------------|--------------------|--------------------|-----------------------|--------------------------|--------------------------------|------------------|------------------------------|------------------------------|
| Hyd.<br>No.   | Hydrograph<br>Type | Hydrograph<br>Name | Peak<br>Flow<br>(cfs) | Time to<br>Peak<br>(hrs) | Hydrograph<br>Volume<br>(cuft) | Inflow<br>Hyd(s) | Maximum<br>Elevation<br>(ft) | Maximum<br>Storage<br>(cuft) |
| 1             | Rational           | Pre Pre            | 1.017                 | 1.43                     | 5,250                          |                  |                              |                              |
| 2             | Rational           | Post               | 1.272                 | 1.43                     | 6,563                          |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |

### Post Hyd. No. 2


| Hydrograph Type    | = Rational             | Peak Flow                  | = 1.272 cfs  |  |
|--------------------|------------------------|----------------------------|--------------|--|
| Storm Frequency    | = 100-yr               | Time to Peak               | = 1.43 hrs   |  |
| Time Interval      | = 1 min                | Runoff Volume              | = 6,563 cuft |  |
| Drainage Area      | = 1.649 ac             | Runoff Coeff.              | = 0.25*      |  |
| Tc Method          | = User                 | Time of Conc. (Tc)         | = 86.0 min   |  |
| IDF Curve          | = Colorado Springs.idf | Intensity                  | = 3.09 in/hr |  |
| Freq. Corr. Factor | = 1.00                 | Asc/Rec Limb Factors = 1/1 |              |  |

#### \* Composite C Worksheet

AREA (ac) C DESCRIPTION
0.107 0.95 Roof
1.542 0.20 Land-Undevel
1.649 0.25



Basin 70

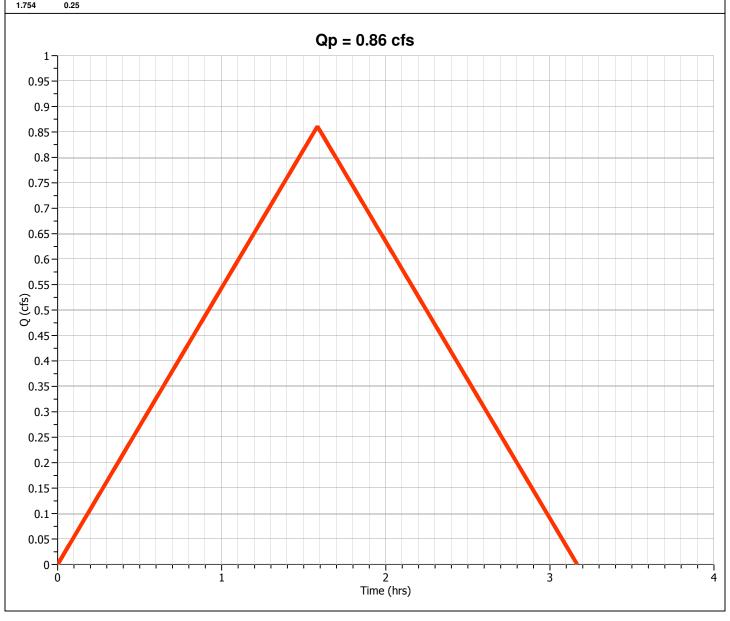


This basin in the SW corner of the project will have no drainage control. Within this basin are infiltration ponds collecting waters from adjacent pavement of other basins. A runoff coefficient of 0.2, is probably low with extensive scrub oak and accumulated detritus.

Run off will continue in it's historical manner to the borrow ditch.

| 10 yr Storm |          | Storm             |
|-------------|----------|-------------------|
| Vol (cf)    | Qp (cfs) | Vol (cf)          |
| 4,907       | 1.27     | 7,251             |
|             |          |                   |
|             |          |                   |
|             |          |                   |
|             |          |                   |
|             | Vol (cf) | Vol (cf) Qp (cfs) |

# Hydrograph 10-yr Summary Hydrology Studio v 3.0.0.26


| Flow Peak Volume Hyd(s) Elevation Stora | lydrology St | udio v 3.0.0.26 |         | _     |                          | ,      |                  |           | 02-27-202                    |
|-----------------------------------------|--------------|-----------------|---------|-------|--------------------------|--------|------------------|-----------|------------------------------|
|                                         |              |                 |         | Flow  | Time to<br>Peak<br>(hrs) | Volume | Inflow<br>Hyd(s) | Elevation | Maximum<br>Storage<br>(cuft) |
| Rational Pest 0.881 1.58 4,907          | 1            | Rational        | Pre Pre | 0.792 | 1.58                     | 4,516  |                  |           |                              |
|                                         | 2            | Rational        | Post    | 0.861 | 1.58                     | 4,907  |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |
|                                         |              |                 |         |       |                          |        |                  |           |                              |

### Post Hyd. No. 2

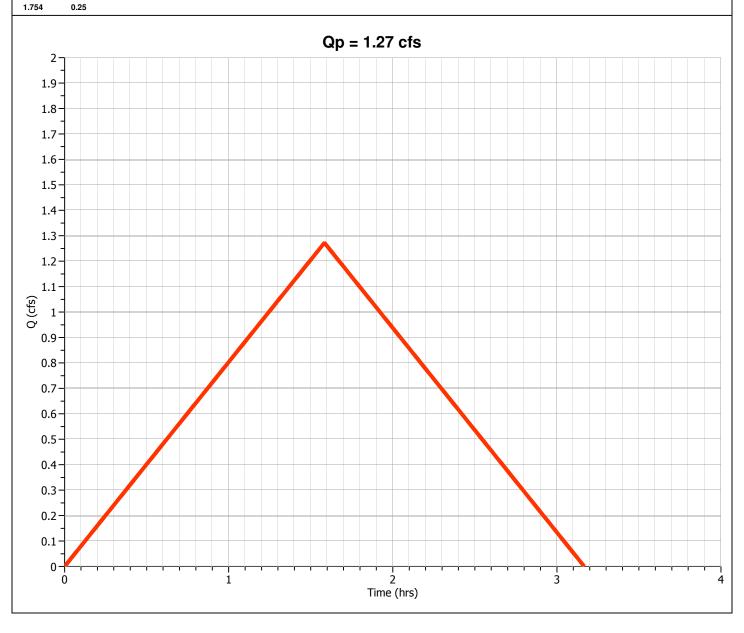
| Hydrograph Type    | = Rational             | Peak Flow            | = 0.861 cfs  |
|--------------------|------------------------|----------------------|--------------|
| Storm Frequency    | = 10-yr                | Time to Peak         | = 1.58 hrs   |
| Time Interval      | = 1 min                | Runoff Volume        | = 4,907 cuft |
| Drainage Area      | = 1.754 ac             | Runoff Coeff.        | = 0.25*      |
| Tc Method          | = User                 | Time of Conc. (Tc)   | = 95.0 min   |
| IDF Curve          | = Colorado Springs.idf | Intensity            | = 1.96 in/hr |
| Freq. Corr. Factor | = 1.00                 | Asc/Rec Limb Factors | s = 1/1      |

#### \* Composite C Worksheet

| AREA (ac) | С    | DESCRIPTION  |
|-----------|------|--------------|
| 0.126     | 0.95 | Roof         |
| 1.628     | 0.20 | Land-Undevel |
| 4 754     | 0.05 |              |



## Hydrograph 100-yr Summary


| Hydrology St | tudio v 3.0.0.26   |                    |                       |                          |                                |                  |                              | 02-27-202                    |
|--------------|--------------------|--------------------|-----------------------|--------------------------|--------------------------------|------------------|------------------------------|------------------------------|
| Hyd.<br>No.  | Hydrograph<br>Type | Hydrograph<br>Name | Peak<br>Flow<br>(cfs) | Time to<br>Peak<br>(hrs) | Hydrograph<br>Volume<br>(cuft) | Inflow<br>Hyd(s) | Maximum<br>Elevation<br>(ft) | Maximum<br>Storage<br>(cuft) |
| 1            | Rational           | Pre Pre            | 1.171                 | 1.58                     | 6,672                          |                  |                              |                              |
| 2            | Rational           | Post               | 1.272                 | 1.58                     | 7,251                          |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |
|              |                    |                    |                       |                          |                                |                  |                              |                              |

#### Post Hyd. No. 2


| Hydrograph Type    | = Rational             | Peak Flow            | = 1.272 cfs  |
|--------------------|------------------------|----------------------|--------------|
| Storm Frequency    | = 100-yr               | Time to Peak         | = 1.58 hrs   |
| Time Interval      | = 1 min                | Runoff Volume        | = 7,251 cuft |
| Drainage Area      | = 1.754 ac             | Runoff Coeff.        | = 0.25*      |
| Tc Method          | = User                 | Time of Conc. (Tc)   | = 95.0 min   |
| IDF Curve          | = Colorado Springs.idf | Intensity            | = 2.90 in/hr |
| Freq. Corr. Factor | = 1.00                 | Asc/Rec Limb Factors | s = 1/1      |

#### \* Composite C Worksheet

AREA (ac) C DESCRIPTION
0.126 0.95 Roof
1.628 0.20 Land-Undevel



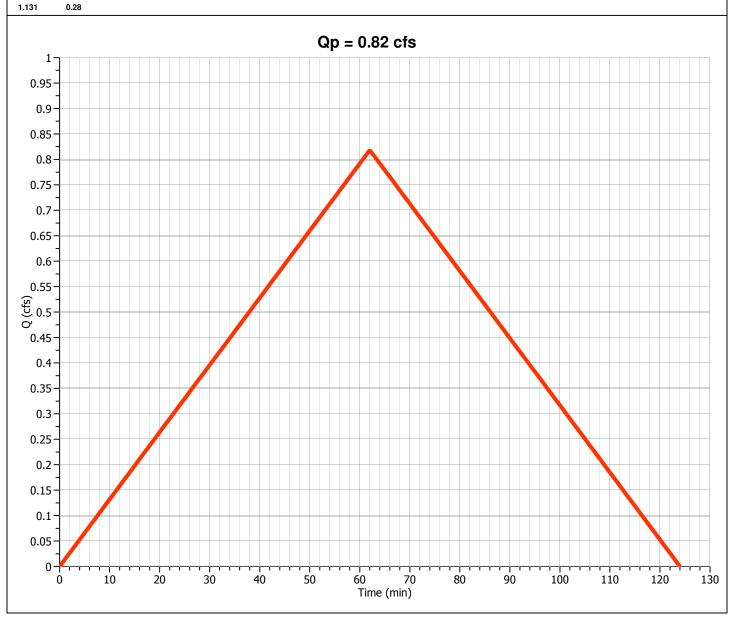
Basin 92 - Area 16 + 66 + 67 to Free



This drainage area is comprised of asphalt roadway #16 and undeveloped land #66 & 67 in the SE corner of the property. These areas will run free.

|                                                   | 10 yr Storm |          | 100 yr Storm |          |  |
|---------------------------------------------------|-------------|----------|--------------|----------|--|
| Hydrology Output                                  | Qp (cfs)    | Vol (cf) | Qp (cfs)     | Vol (cf) |  |
|                                                   | 0.818       | 3044     | 1.19         | 4,426    |  |
|                                                   |             |          |              |          |  |
| Infiltration                                      |             |          |              |          |  |
| Infiltration Surface Area Req'd (CF/IR/40hr) = SF |             |          |              |          |  |

# Hydrograph 10-yr Summary Hydrology Studio v 3.0.0.26


| Hydrology Stu | udio v 3.0.0.26    |                    |                       |                          |                                |                  |                              | 02-27-2024                   |
|---------------|--------------------|--------------------|-----------------------|--------------------------|--------------------------------|------------------|------------------------------|------------------------------|
| Hyd.<br>No.   | Hydrograph<br>Type | Hydrograph<br>Name | Peak<br>Flow<br>(cfs) | Time to<br>Peak<br>(hrs) | Hydrograph<br>Volume<br>(cuft) | Inflow<br>Hyd(s) | Maximum<br>Elevation<br>(ft) | Maximum<br>Storage<br>(cuft) |
| 1             | Rational           | Pre Pre            | 0.584                 | 1.03                     | 2,174                          |                  |                              |                              |
| 2             | Rational           | Post               | 0.818                 | 1.03                     | 3,044                          |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |

### Post Hyd. No. 2

| Hydrograph Type    | = Rational             | Peak Flow            | = 0.818 cfs  |
|--------------------|------------------------|----------------------|--------------|
| Storm Frequency    | = 10-yr                | Time to Peak         | = 1.03 hrs   |
| Time Interval      | = 1 min                | Runoff Volume        | = 3,044 cuft |
| Drainage Area      | = 1.131 ac             | Runoff Coeff.        | = 0.28*      |
| Tc Method          | = User                 | Time of Conc. (Tc)   | = 62.0 min   |
| IDF Curve          | = Colorado Springs.idf | Intensity            | = 2.58 in/hr |
| Freq. Corr. Factor | = 1.00                 | Asc/Rec Limb Factors | s = 1/1      |

#### \* Composite C Worksheet

| AREA (ac) | С    | DESCRIPTION  |
|-----------|------|--------------|
| 0.12      | 0.95 | Road-Asphalt |
| 1.011     | 0.20 | Land-Undevel |
|           |      |              |

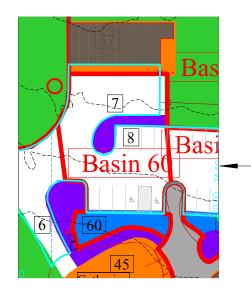


# Hydrograph 100-yr Summary Hydrology Studio v 3.0.0.26


| Hydrology Stu | udio v 3.0.0.26    |                    |                       |                          |                                |                  |                              | 02-27-2024                   |
|---------------|--------------------|--------------------|-----------------------|--------------------------|--------------------------------|------------------|------------------------------|------------------------------|
| Hyd.<br>No.   | Hydrograph<br>Type | Hydrograph<br>Name | Peak<br>Flow<br>(cfs) | Time to<br>Peak<br>(hrs) | Hydrograph<br>Volume<br>(cuft) | Inflow<br>Hyd(s) | Maximum<br>Elevation<br>(ft) | Maximum<br>Storage<br>(cuft) |
| 1             | Rational           | Pre Pre            | 0.850                 | 1.03                     | 3,161                          |                  |                              |                              |
| 2             | Rational           | Post               | 1.190                 | 1.03                     | 4,426                          |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |
|               |                    |                    |                       |                          |                                |                  |                              |                              |

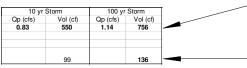
### Post Hyd. No. 2

| Hydrograph Type    | = Rational             | Peak Flow            | = 1.190 cfs  |
|--------------------|------------------------|----------------------|--------------|
| Storm Frequency    | = 100-yr               | Time to Peak         | = 1.03 hrs   |
| Time Interval      | = 1 min                | Runoff Volume        | = 4,426 cuft |
| Drainage Area      | = 1.131 ac             | Runoff Coeff.        | = 0.28*      |
| Tc Method          | = User                 | Time of Conc. (Tc)   | = 62.0 min   |
| IDF Curve          | = Colorado Springs.idf | Intensity            | = 3.76 in/hr |
| Freq. Corr. Factor | = 1.00                 | Asc/Rec Limb Factors | s = 1/1      |


#### \* Composite C Worksheet

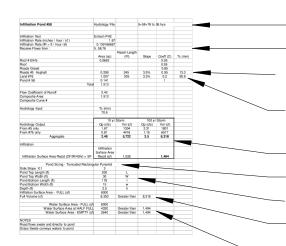
| AREA (ac) | С    | DESCRIPTION  |
|-----------|------|--------------|
| 0.12      | 0.95 | Road-Asphalt |
| 1.011     | 0.20 | Land-Undevel |
|           |      |              |




Calculations for Areas with Dedicated Infiltration Ponds

#### **Results Format**



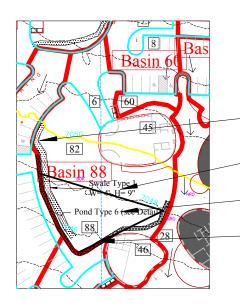

For each basin analyzed there is generally three pages of output. Below is the results of the Hydrology calculations these pages include.

Shows color coded surfaces and boundaries used for basin analysis



Shows expected total runoff volume in CF and flow in CFS for 10 yr and 100 yr storms

Shows the size of the pond required to infiltrate runoff within 40 hours




Shows Basin number and Hydrology file name Shows contributing areas and #'s Shows areas, reach, slope and coefficient of runoff

Shows Time of Concentration used for Pre and Post developement or different surface flows

Shows Hydrology output
Shows Pond Type
Shows pond size calculation
Shows Volume test as compared to req'd volume
Shows infiltrative area test when

pond is half full or empty

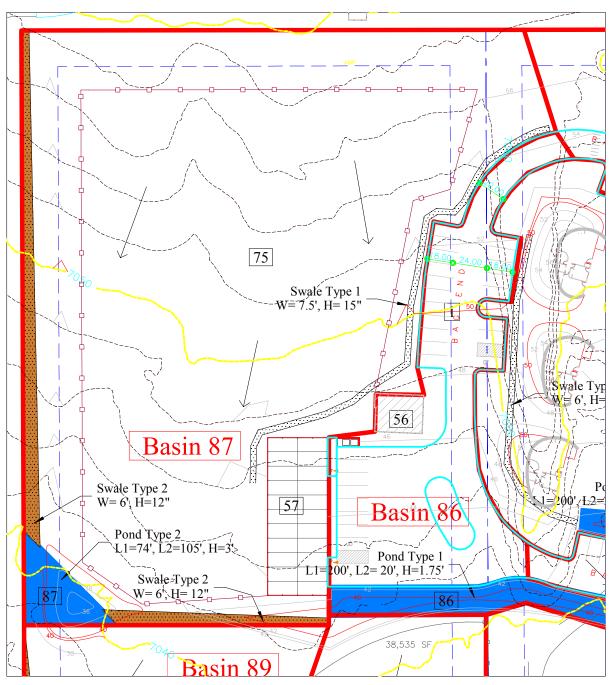


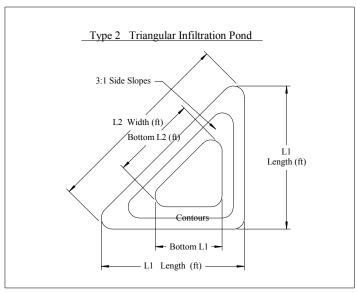

Shows Grassed Swale location and alignment

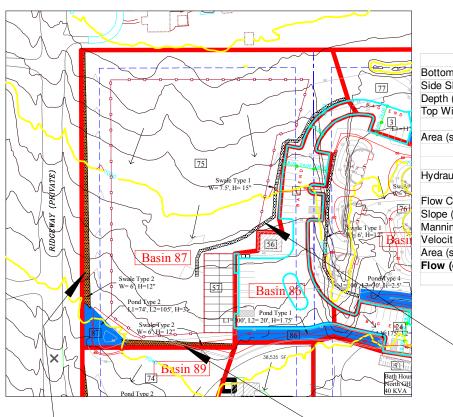
Shows Swale Type and size

Shows Pond Type and dimensions

**Shows Pond location** 


Basin 87



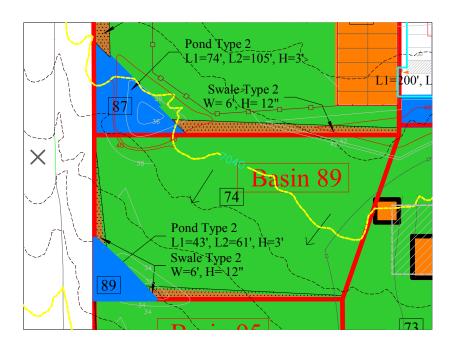


Area #75 in Basin 87 will remain predominantly agricultural use and will be contour plowed to further reduce runoff. Greenhouse roof #57 is included.

|                                                   | 10 yr St                                | 100 yr Storm |          |          |
|---------------------------------------------------|-----------------------------------------|--------------|----------|----------|
| Hydrology Output                                  | Qp (cfs)                                | Vol (cf)     | Qp (cfs) | Vol (cf) |
|                                                   | 1.42                                    | 8882         | 2.11     | 13,170   |
| Infiltration                                      |                                         |              |          |          |
| Infiltration Surface Area Req'd (CF/IR/40hr) = SF | Infiltration Surface<br>Area Req'd (sf) | 1,596        |          | 2,366    |

Basin 87

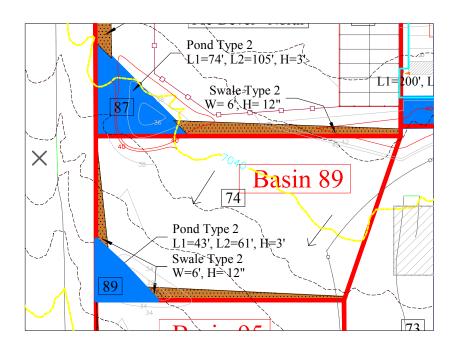


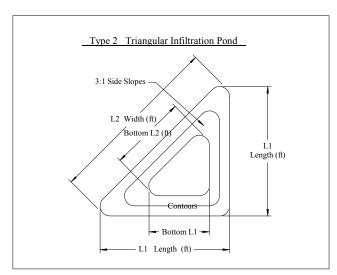




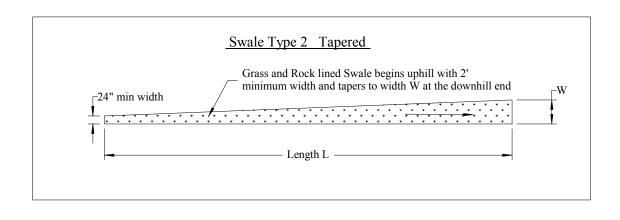

| Channel Parameters  |       |
|---------------------|-------|
| Bottom Width (ft) b | 0.00  |
| Side Slope X:1      | 3.00  |
| Depth (ft) h        | 1.25  |
| Top Width (ft) W    | 7.50  |
| Flow Area           |       |
| Area (sf)           | 4.69  |
|                     |       |
| Wetted Perimeter    | 7.91  |
| Hydraulic Radius    | 0.59  |
|                     |       |
| Flow Calc           |       |
| Slope (%)           | 0.20% |
| Mannings (n)        | 0.03  |
| Velocity (ft/sec)   | 1.57  |
| Area (sf)           | 4.69  |
| Flow (cf/sec)       | 7.35  |
|                     |       |

|            | Channel Parameters |       |
|------------|--------------------|-------|
| Bottom W   | Vidth (ft) b       | 0.50  |
| Side Slop  | pe X:1             | 3.00  |
| Depth (ft) | h                  | 0.50  |
| Top Width  | h (ft) T           | 3.50  |
|            | Flow Area          |       |
| Area (sf)  |                    | 1.00  |
|            |                    |       |
|            | Wetted Perimeter   | 3.66  |
| Hydraulic  | Radius             | 0.27  |
| Flow Calc  |                    |       |
| Slope (%)  | )                  | 5.14% |
| Mannings   | s (n)              | 0.03  |
| Velocity ( | (ft/sec)           | 4.74  |
| Area (sf)  |                    | 1.00  |
| Flow (cf/s | sec)               | 4.74  |
|            | sec)               |       |

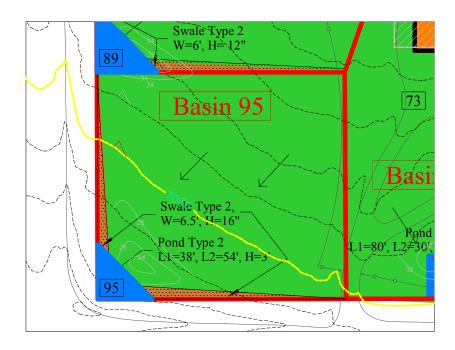

| Channel Parameters  |       |
|---------------------|-------|
| Bottom Width (ft) b | 0.50  |
| Side Slope X:1      | 3.00  |
| Depth (ft) H        | 0.75  |
| Top Width (ft) T    | 5.00  |
| Flow Area           |       |
| Area (sf)           | 2.06  |
|                     |       |
| Wetted Perimeter    | 5.24  |
| Hydraulic Radius    | 0.39  |
| Flow Calc           |       |
| Slope (%)           | 1.33% |
| Mannings (n)        | 0.03  |
| Velocity (ft/sec)   | 3.08  |
| Area (sf)           | 2.06  |
| Flow (cf/sec)       | 6.35  |
|                     |       |


| Hydrology File                                                          |                                                                                                                                                                           | 75±56±87 t                                                                                                                                                                                                                                       | n 87 hve                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trydrology File                                                         |                                                                                                                                                                           | 73+30+07 (                                                                                                                                                                                                                                       | O O7 .Hys                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |
|                                                                         |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| Entech PH2                                                              |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 1.67                                                                    |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 0.1391666666667                                                         |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 75, 54, 87                                                              |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
|                                                                         | Reach Length                                                                                                                                                              |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| Area (ac)                                                               | (Ft)                                                                                                                                                                      | Slope                                                                                                                                                                                                                                            | Coeff (C)                                                                                                                                                                                                                                                                             | Tc (Min)                                                                                                                                                                                                                                                                                                          |
| 0.0201                                                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                  | 0.95                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   |
| 0.1096                                                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                  | 0.95                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   |
| 2.4782                                                                  | 453                                                                                                                                                                       | 4.0%                                                                                                                                                                                                                                             | 0.2                                                                                                                                                                                                                                                                                   | 103.8                                                                                                                                                                                                                                                                                                             |
| 0.1410                                                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                   |
| 2.7489                                                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 0.2800                                                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 2.7490                                                                  |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
|                                                                         |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
|                                                                         | Composite                                                                                                                                                                 |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| Tc (min)                                                                |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
|                                                                         | 0.0.70                                                                                                                                                                    |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
|                                                                         |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 10 vr St                                                                | orm                                                                                                                                                                       | 100 vr                                                                                                                                                                                                                                           | Storm                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                   |
|                                                                         |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 1.42                                                                    | 8882                                                                                                                                                                      | 2.11                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
|                                                                         |                                                                                                                                                                           |                                                                                                                                                                                                                                                  | ,                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                   |
|                                                                         |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| Infiltration Surface                                                    |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| Area Req'd (sf)                                                         | 1,596                                                                                                                                                                     |                                                                                                                                                                                                                                                  | 2,366                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                   |
|                                                                         |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
|                                                                         |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
|                                                                         |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 3                                                                       |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 74                                                                      | L1                                                                                                                                                                        |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
|                                                                         |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
|                                                                         |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 24.7                                                                    |                                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 24.7                                                                    | h0                                                                                                                                                                        |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 24.7<br>7744.2                                                          | h0<br>BA                                                                                                                                                                  |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 24.7                                                                    | h0<br>BA                                                                                                                                                                  |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 24.7<br>7744.2<br>63668.4                                               | h0<br>BA<br>Vol                                                                                                                                                           |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 24.7<br>7744.2<br>63668.4<br>3.0                                        | h0 BA Vol                                                                                                                                                                 |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 24.7<br>7744.2<br>63668.4<br>3.0<br>56.0                                | h0  BA  Vol  h2 H                                                                                                                                                         |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 24.7 7744.2 63668.4 3.0 56.0 86.7                                       | h0  BA  Vol  h2 H  I  w                                                                                                                                                   |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 24.7 7744.2 63668.4 3.0 56.0 86.7 21.7                                  | h0  BA  Vol  h2 H  I  w                                                                                                                                                   |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 24.7 7744.2 63668.4 3.0 56.0 86.7                                       | h0  BA  Vol  h2 H  I  w                                                                                                                                                   |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 24.7 7744.2 63668.4 3.0 56.0 86.7 21.7                                  | h0  BA  Vol  h2 H  I  w                                                                                                                                                   | 13,170                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 24.7  7744.2 63668.4  3.0 56.0 86.7 21.7 35042.3  28626.1               | h0  BA  Vol  h2 H  I  w h1                                                                                                                                                | 13,170                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 24.7  7744.2 63668.4  3.0 56.0 86.7 21.7 35042.3  28626.1               | h0  BA  Vol  h2 H  I  w h1  Greater Than                                                                                                                                  | 13,170                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| 24.7  7744.2 63668.4  3.0 56.0 86.7 21.7 35042.3  28626.1 2426.3 3872.1 | h0  BA  Vol  h2 H  I  w h1  Greater Than                                                                                                                                  | 13,170                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
|                                                                         | 1.67 0.139166666667 75, 54, 87  Area (ac) 0.0201 0.1096 2.4782 0.1410 2.7489  0.2800 2.7490  Tc (min) 103.8  10 yr St Qp (cfs) 1.42  Infiltration Surface Area Req'd (sf) | Entech PH2  1.67  0.13916666666667  75, 54, 87  Reach Length (Ft)  0.0201  0.1096  2.4782  453  0.1410  2.7489  0.2800  2.7490  Composite Curve  103.8  10 yr Storm  Qp (cfs)  Vol (cf)  1.42  8882  Infiltration Surface Area Req'd (sf)  1,596 | Entech PH2  1.67  0.1391666666667  75, 54, 87  Reach Length  Area (ac)  0.1096  2.4782  0.1410  2.7489  0.2800  2.7490  Composite  Tc (min)  103.8  Composite  Curve  103.8  10 yr Storm  Qp (cfs)  Vol (cf)  Qp (cfs)  1.42  8882  2.11  Infiltration Surface Area Req'd (sf)  1,596 | Entech PH2  1.67  0.13916666666667  75, 54, 87  Reach Length (Ft) Slope Coeff (C)  0.0201  0.95  0.1096  2.4782 453 4.0% 0.2  0.1410  2.7489  0.2800  2.7490  Composite Curve  103.8  10 yr Storm  Qp (cfs) Vol (cf) Qp (cfs) Vol (cf)  1.42 8882 2.11 13,170  Infiltration Surface Area Req'd (sf)  1,596  2,366 |



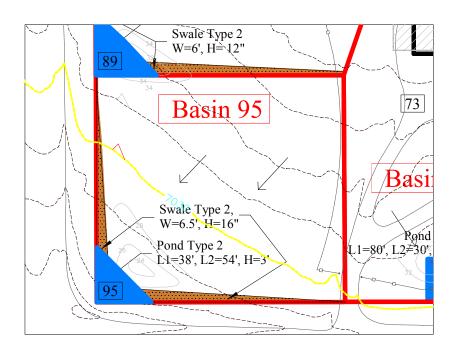

Basin #89, it's pond and conveyance swales is dedicated to reducing runoff from adversely affecting the OWTS Soil Treatment Area (#95).

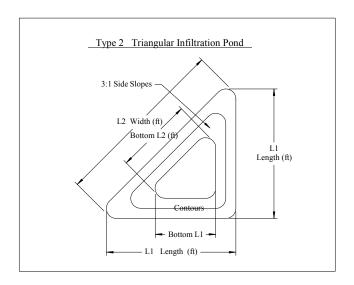
|                                                   | 10 yr :      | Storm    | 100 yr Storm |          |
|---------------------------------------------------|--------------|----------|--------------|----------|
| Hydrology Output                                  | Qp (cfs)     | Vol (cf) | Qp (cfs)     | Vol (cf) |
|                                                   | 0.6          | 1923     | 0.87         | 2,780    |
| Infiltration                                      |              |          |              |          |
|                                                   | Infiltration |          |              |          |
|                                                   | Surface Area |          |              |          |
| Infiltration Surface Area Req'd (CF/IR/40hr) = SF | Req'd (sf)   | 345      |              | 499      |



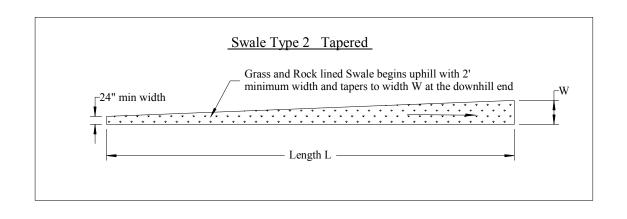



| Channel Parameters  |       |
|---------------------|-------|
| Bottom Width (ft) b | 0.50  |
| Side Slope X:1      | 3.00  |
| Depth (ft) h        | 0.50  |
| Top Width (ft) T    | 3.50  |
| Flow Area           |       |
| Area (sf)           | 1.00  |
|                     |       |
| Wetted Perimeter    | 3.66  |
| Hydraulic Radius    | 0.27  |
|                     |       |
| Flow Calc           |       |
| Slope (%)           | 0.03  |
| Mannings (n)        | 2.35% |
| Velocity (ft/sec)   | 4.23  |
| Area (sf)           | 1.00  |
| Flow (cf/sec)       | 4.23  |

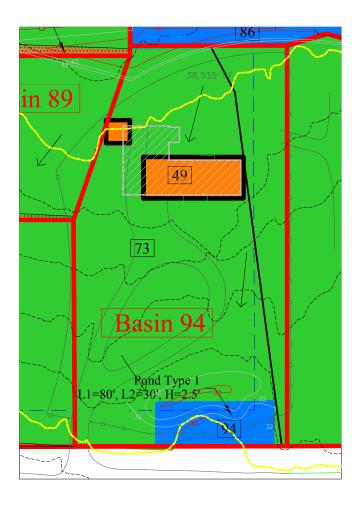




| Infiltration Pond #89                                  | Hydrology File  |                    | 74+89 to 89 | hve       |            |
|--------------------------------------------------------|-----------------|--------------------|-------------|-----------|------------|
| minuation Fond #09                                     | Trydrology File |                    | 74+09 10 03 | 7.11yS    |            |
|                                                        |                 |                    |             |           |            |
| Infiltration Test                                      | Entech PH2      |                    |             |           |            |
| Infiltration Rate (inches / hour / sf )                | 1.67            |                    |             |           |            |
| Infiltration Rate (IR = ft / hour /sf)                 | 0.139166667     |                    |             |           |            |
| Receive Flows from :                                   | 74, 89          |                    |             |           |            |
| Ticocive Flows from .                                  | 74,00           | Reach              |             |           |            |
|                                                        | Area (ac)       | Length (Ft)        | Slope       | Coeff (C) | Tc (min)   |
| Roof                                                   | 7 11 0 4 (40)   | Longin (i i)       | Сюро        | 0.95      | 10 (11111) |
| Roof                                                   |                 |                    |             | 0.95      |            |
| Basin #74                                              | 0.3525          | 130                | 4.6%        | 0.2       | 53.0       |
| Pond # 89                                              | 0.1410          | 130                | 4.076       | 1         | 33.0       |
| Total                                                  |                 |                    |             | •         |            |
| Ισιαι                                                  | 0.4933          |                    |             |           |            |
| Flow Coefficient of Runoff                             | 0.4300          |                    |             |           |            |
| Composite Area (ac)                                    | 0.4935          |                    |             |           |            |
| Composite Curve #                                      | 0.4933          |                    |             |           |            |
| Composite Curve #                                      |                 |                    |             |           |            |
|                                                        |                 | Compasite          |             |           |            |
| Hydrology Input                                        | Tc (min)        | Composite<br>Curve |             |           |            |
| Hydrology Input                                        |                 | Curve              |             |           |            |
|                                                        | 114             |                    |             |           |            |
|                                                        | 10              | Ctausa             | 100         | Ct a was  |            |
| Headred and Order of                                   |                 | Storm              |             | Storm     |            |
| Hydrology Output                                       | Qp (cfs)        | Vol (cf)           | Qp (cfs)    | Vol (cf)  |            |
|                                                        | 0.6             | 1923               | 0.87        | 2,780     |            |
| 1.00                                                   |                 |                    |             |           |            |
| Infiltration                                           |                 |                    |             |           |            |
|                                                        | Infiltration    |                    |             |           |            |
|                                                        | Surface Area    |                    |             |           |            |
| Infiltration Surface Area Req'd (CF/IR/40hr) = SF      | Req'd (sf)      | 345                |             | 499       |            |
|                                                        |                 |                    |             |           |            |
|                                                        |                 |                    |             |           |            |
| Pond Sizing - Truncated Triangular Pyramid             |                 |                    |             |           |            |
| Full Demonstrated (defines the discounting of several) |                 |                    |             |           |            |
| Full Pyramid (defines top dimensions of pond)          | 0.00            |                    |             |           |            |
| Side Slope X:1                                         | 3.00            |                    |             |           |            |
| Base Length                                            | 43.00           |                    |             |           |            |
| Base Width                                             | 60.81           |                    |             |           |            |
| Height                                                 | 14.33           | h0                 |             |           |            |
|                                                        |                 |                    |             |           |            |
| Base Area (sf)                                         | 2614.88         |                    |             |           |            |
| Volume (cf)                                            | 12492.07        | Vol                |             |           |            |
| O # B :1                                               | 1               |                    |             |           |            |
| Smaller Pyramid                                        |                 |                    |             |           |            |
| Depth                                                  |                 | h2 H               |             |           |            |
| Base Length                                            | 25.00           |                    |             |           |            |
| Base Width (ft)                                        | 42.81           |                    |             |           |            |
| Top Cone Height (ft)                                   | 11.33           | h1                 |             |           |            |
| Top Cone Volume (cf) POND Size                         | 4042.87         |                    |             |           |            |
|                                                        |                 |                    |             |           |            |
| Bottom Truncated Cone Volume (cf)                      |                 | Greater Than       | 2,780       |           |            |
| Base Area (sf)                                         |                 | I x w /2           |             |           |            |
| Water Surface Area - FULL(sf)                          | 1307.44         |                    |             |           |            |
| Water Surface Area at HALF FULL                        | 921.29          | Greater Than       | 499         |           |            |
|                                                        |                 |                    | 400         |           |            |
| Water Surface Area - EMPTY                             | 535.14          | Greater Than       | 499         |           |            |




Basin 95 is space reserved for the Soil Treatment Area of the OWTS. The uphill side of the STA is protected from runoff by Pond #89. Swales will be created on the north and west sides to convey water to Pond #95a

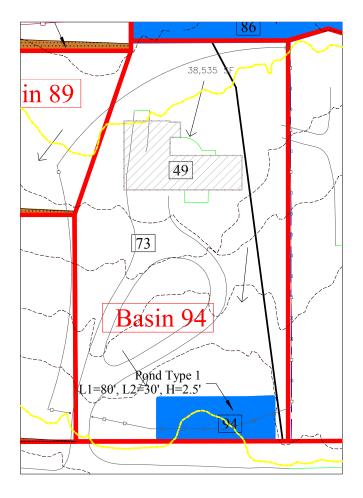
|                                                   | 10 yr S                      | Storm    | 100 yr Storm |          |
|---------------------------------------------------|------------------------------|----------|--------------|----------|
| Hydrology Output                                  | Qp (cfs)                     | Vol (cf) | Qp (cfs)     | Vol (cf) |
|                                                   | 0.42                         | 1355     | 0.6          | 1,960    |
| Infiltration                                      |                              |          |              |          |
|                                                   | Infiltration<br>Surface Area |          |              |          |
| Infiltration Surface Area Req'd (CF/IR/40hr) = SF | Req'd (sf)                   | 243      |              | 352      |

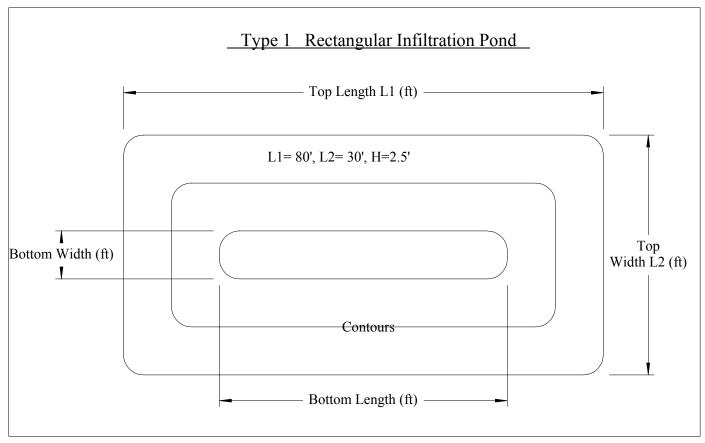





| Channel Parameters  |       |
|---------------------|-------|
| Bottom Width (ft) b | 0.50  |
| Side Slope X:1      | 3.00  |
| Depth (ft) h        | 1.00  |
| Top Width (ft) T    | 6.50  |
| Flow Area           |       |
| Area (sf)           | 3.50  |
|                     |       |
| Wetted Perimeter    | 6.82  |
| Hydraulic Radius    | 0.51  |
|                     |       |
| Flow Calc           |       |
| Slope (%)           | 2.07% |
| Mannings (n)        | 0.03  |
| Velocity (ft/sec)   | 4.58  |
| Area (sf)           | 3.50  |
| Flow (cf/sec)       | 16.03 |

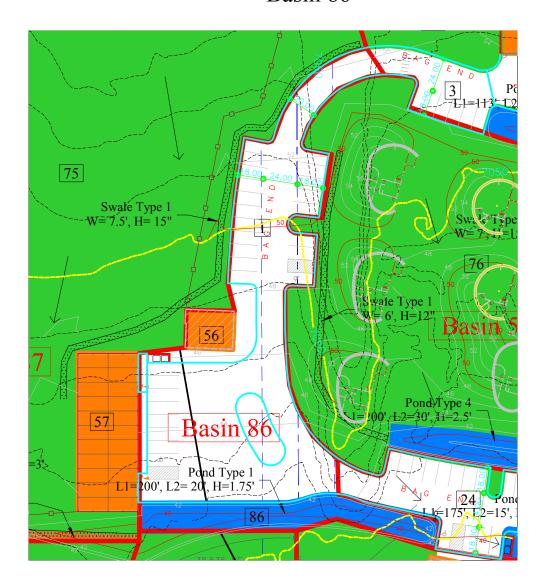



| Infiltration Pond #95                             | Hydrology File    |              | STA 95 to 9 | 5a.hys    |          |
|---------------------------------------------------|-------------------|--------------|-------------|-----------|----------|
|                                                   |                   |              |             |           |          |
|                                                   | E                 |              |             |           |          |
| Infiltration Test                                 | Entech PH2        |              |             |           |          |
| Infiltration Rate (inches / hour / sf )           | 1.67              |              |             |           |          |
| Infiltration Rate (IR = ft / hour /sf)            | 0.139166667       |              |             |           |          |
| Receive Flows from :                              | STA,95            |              |             |           |          |
|                                                   |                   | Reach Length |             |           |          |
|                                                   | Area (ac)         | (Ft)         | Slope       | Coeff (C) | Tc (min) |
| Roof                                              |                   |              |             | 0.95      |          |
| Roof                                              |                   |              |             | 0.95      |          |
| BasinSTA+95                                       | 0.5908            | 150          | 5.3%        | 0.2       | 54.2     |
| Pond                                              | 0.0280            |              |             | 1         |          |
| Total                                             | 0.6188            |              |             |           |          |
|                                                   |                   |              |             |           |          |
| Flow Coefficient of Runoff                        | 0.2100            |              |             |           |          |
| Composite Area                                    | 0.6188            |              |             |           |          |
| Composite Curve #                                 |                   |              |             |           |          |
|                                                   |                   |              |             |           |          |
|                                                   |                   | Composite    |             |           |          |
| Hydrology Input                                   | Tc (min)          | Curve        |             |           |          |
| , 3, 1                                            | 54.2              | 0.26         |             |           |          |
|                                                   |                   |              |             |           |          |
|                                                   | 10 vr             | Storm        | 100 vr      | Storm     |          |
| Hydrology Output                                  | Qp (cfs)          | Vol (cf)     | Qp (cfs)    | Vol (cf)  |          |
| Trydrology Catpat                                 | 0.42              | 1355         | 0.6         | 1,960     |          |
|                                                   | 0.42              | 1000         | 0.0         | 1,900     |          |
| Infiltration                                      |                   |              |             |           |          |
| Initiation                                        | 1 611 11          |              |             |           |          |
|                                                   | Infiltration      |              |             |           |          |
| Infiltration Curfoce Area Deald (CE/ID/40hr) CE   | Surface Area      | 243          |             | 352       |          |
| Infiltration Surface Area Req'd (CF/IR/40hr) = SF | Req'd (sf)        | 243          |             | 352       |          |
| Dand Cining Two pasted Triangular Dimensid        |                   |              |             |           |          |
| Pond Sizing - Truncated Triangular Pyramid        |                   |              |             |           |          |
| Full Dividual (defines ten dividual or of need)   |                   |              |             |           |          |
| Full Pyramid (defines top dimensions of pond)     | 0.00              |              |             |           |          |
| Side Slope X:1                                    | 3.00              |              |             |           |          |
| Base Length                                       | 38.00             |              |             |           |          |
| Base Width                                        | 53.74             |              |             |           |          |
| Height                                            | 12.67             | h0           |             |           |          |
|                                                   |                   |              |             |           |          |
| Base Area (sf)                                    | 2042.12           |              |             |           |          |
| Volume (cf)                                       | 8621.44           | Vol          |             |           |          |
|                                                   |                   |              |             |           |          |
| Smaller Pyramid                                   |                   |              |             |           |          |
| Depth                                             |                   | h2 H         |             |           |          |
| Base Length                                       | 20.00             |              |             |           |          |
| Base Width (ft)                                   | 35.74             |              |             |           |          |
| Top Cone Height (ft)                              | 9.67              |              |             |           |          |
| Top Cone Volume (cf) POND Size                    | 2303.02           |              |             |           |          |
|                                                   |                   |              |             |           |          |
| Bottom Truncated Cone Volume (cf)                 | 6318.42           | Greater Than | 1,960       |           |          |
| Bottom Truncated Cone volume (Cr)                 |                   |              | , · · ·     |           |          |
|                                                   | 357.40            | I A VV / C   |             |           |          |
| Base Area (sf)                                    | 357.40<br>1021.06 |              |             |           |          |
| Base Area (sf) Water Surface Area - FULL(sf)      | 1021.06           |              | 352         |           |          |
| Base Area (sf)                                    | 1021.06<br>689.23 |              | 352<br>352  |           |          |




Pond 94 infiltrates waters from mostly undeveloped land #73 and roof #49. Runoff flows via sheet flow to low area of pond.

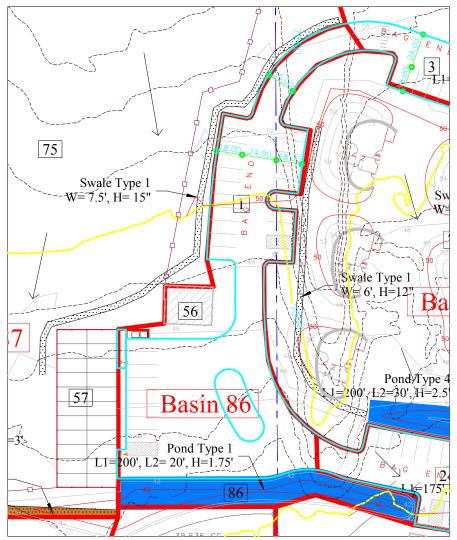
|                                                   | 10 yr        | Storm    | 100 yr Storm |          |
|---------------------------------------------------|--------------|----------|--------------|----------|
| Hydrology Output                                  | Qp (cfs)     | Vol (cf) | Qp (cfs)     | Vol (cf) |
|                                                   | 0.53         | 2798     | 0.78         | 4,122    |
| Infiltration                                      |              |          |              |          |
|                                                   | Infiltration |          |              |          |
|                                                   | Surface Area |          |              |          |
| Infiltration Surface Area Req'd (CF/IR/40hr) = SF | Req'd (sf)   | 503      |              | 740      |

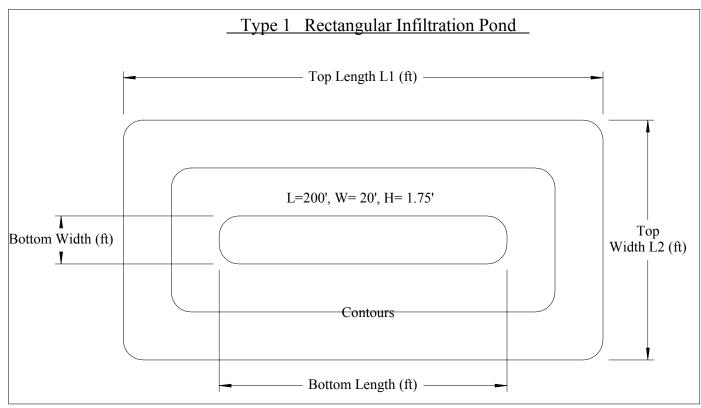

Basin 94



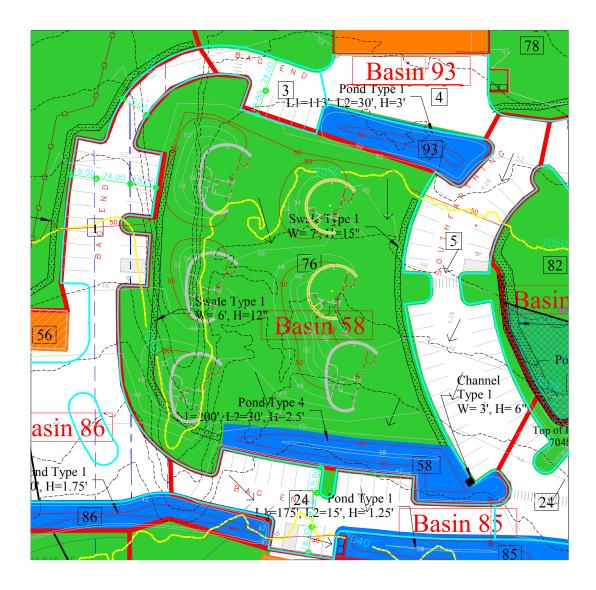


| Infiltration Pond #94                             | Hydrology File |                          | 49+73+94 t | o 94.hys  |          |
|---------------------------------------------------|----------------|--------------------------|------------|-----------|----------|
|                                                   |                |                          |            |           |          |
|                                                   |                |                          |            |           |          |
| Infiltration Test                                 | Entech PH2     |                          |            |           |          |
| Infiltration Rate (inches / hour / sf)            | 1.67           |                          |            |           |          |
| Infiltration Rate (IR = ft / hour /sf)            | 0.139166667    |                          |            |           |          |
| Receive Flows from :                              | 49,73,94       |                          |            |           |          |
|                                                   |                | Reach Length             |            |           |          |
|                                                   | Area (ac)      | (Ft)                     | Slope      | Coeff (C) | Tc (min) |
| Roof #49                                          | 0.0500         |                          |            | 0.95      |          |
| Roof                                              |                |                          |            | 0.95      |          |
| Basin #73                                         | 0.7804         | 270                      | 3.0%       | 0.2       | 88.3     |
| Pond # 94                                         | 0.0550         |                          |            | 1         |          |
| Total                                             | 0.8854         |                          |            |           |          |
| Flow Coefficient of Runoff                        | 0.2900         |                          |            |           |          |
| Composite Area                                    | 0.8854         |                          |            |           |          |
| Composite Curve #                                 |                |                          |            |           |          |
|                                                   |                |                          |            |           |          |
|                                                   |                | Composite                |            |           |          |
| Hydrology Input                                   | Tc (min)       | Curve                    |            |           |          |
|                                                   | 88.3           |                          |            |           |          |
|                                                   | 10 vr          | 10 yr Storm 100 yr Storm |            | Storm     |          |
| Hydrology Output                                  | Qp (cfs)       | Vol (cf)                 | Qp (cfs)   | Vol (cf)  |          |
| Trydrology Output                                 | 0.53           | 2798                     | 0.78       | 4,122     |          |
|                                                   | 0.00           |                          | 0.1.0      | -,        |          |
| Infiltration                                      |                |                          |            |           |          |
|                                                   | Infiltration   |                          |            |           |          |
|                                                   | Surface Area   |                          |            |           |          |
| Infiltration Surface Area Req'd (CF/IR/40hr) = SF | Req'd (sf)     | 503                      |            | 740       |          |
| Trapezoidal Pond Sizing                           | Input Values   |                          |            |           |          |
| Side Slope X:1                                    | 3              |                          |            |           |          |
| Pond Top Length (ft)                              | 80             | L                        |            |           |          |
| Pond Top Width (ft)                               | 30             | W                        |            |           |          |
| Pond Bottom Length (ft)                           | 65             | ı                        |            |           |          |
| Pond Bottom Width (ft)                            | 15             | w                        |            |           |          |
| Depth (ft)                                        | 2.5            | h                        |            |           |          |
| Infiltation Surface Area - FULL (sf)              | 2400           | **                       |            |           |          |
| Full Volume (cf)                                  | 4,125          | Greater Than             | 4,122      |           |          |
| - \- /                                            | , ==           |                          | ,          |           |          |
| Water Surface Area - FULL (sf)                    | 2400           |                          |            |           |          |
| Water Surface Area at HALF FULL                   |                | Greater than             | 740        |           |          |
| Water Surface Area - EMPTY (sf)                   | 975            | Greater than             | 740        |           |          |
|                                                   |                |                          |            |           |          |
| NOTES                                             |                |                          |            |           |          |


Basin 86

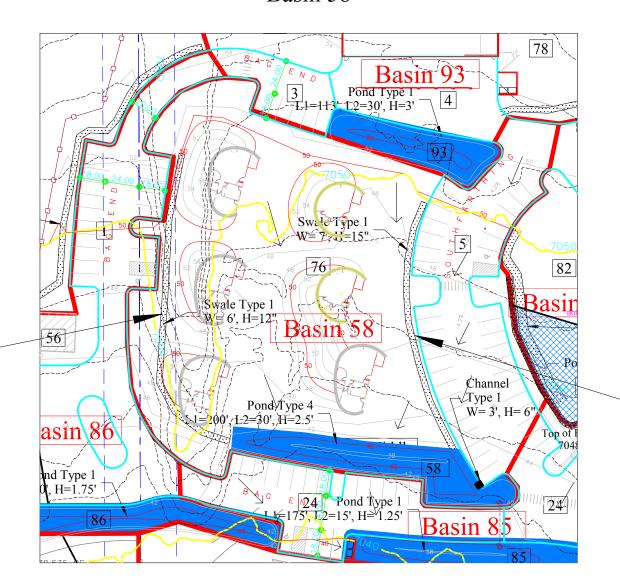



Pond 86 infiltrates waters from the gravel roadway #1 and a small shed #56. Runoff flows via sheet flow to pond #86.


| Hydrology Output                                       | 10 yr        | Storm    | 100 yr Storm |          |
|--------------------------------------------------------|--------------|----------|--------------|----------|
|                                                        | Qp (cfs)     | Vol (cf) | Qp (cfs)     | Vol (cf) |
|                                                        | 2.49         | 3432     | 3.49         | 4,821    |
| Infiltration                                           |              |          |              |          |
|                                                        | Infiltration |          |              |          |
| Infiltration Surface Area Req'd to drain within 40 hrs | Surface Area |          |              |          |
| (CF/IR/40hr) = SF                                      | Req'd (sf)   | 617      |              | 866      |

Basin 86

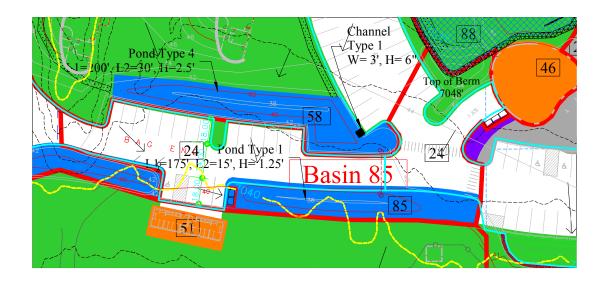





| 1.40                                                   |                |              | . =        |           |          |
|--------------------------------------------------------|----------------|--------------|------------|-----------|----------|
| Infiltration Pond #86                                  | Hydrology File |              | 1+56+86.hy | S         |          |
|                                                        |                |              |            |           |          |
| Infiltration Test                                      | Entech PH2     |              |            |           |          |
| Infiltration Rate (inches / hour / sf )                | 1.67           |              |            |           |          |
| Infiltration Rate (IR = ft / hour /sf)                 | 0.139166667    |              |            |           |          |
| Receive Flows from :                                   | 1, 56, 86      |              |            |           |          |
|                                                        | , ,            | Reach Length |            |           |          |
|                                                        | Area (ac)      | (Ft)         | Slope      | Coeff (C) | Tc (min) |
| Roof                                                   |                |              | -          |           |          |
| Roof #56                                               | 0.02           |              |            | 0.95      |          |
| Roads Gravel #1                                        | 0.507          | 313          | 4.5%       | 0.85      | 23.1     |
| Roads Asphalt                                          |                |              |            | 0.95      |          |
| Land                                                   |                | 313          | 4.5%       | 0.2       | 83.0     |
| Pond # 86                                              | 0.094          |              |            | 1         |          |
| Total                                                  | 0.621          | ac           |            |           |          |
| Flavo Caattiniant of Dunatt                            | 0.000          |              |            |           |          |
| Flow Coefficient of Runoff                             | 0.880          |              |            |           |          |
| Composite Area Composite Curve #                       | 0.621          |              |            |           |          |
| Composite Guive #                                      |                |              |            |           |          |
| Hydrology Input                                        | Tc (min)       |              |            |           |          |
| Trydrology input                                       | 23.1           |              |            |           |          |
|                                                        |                |              |            |           |          |
|                                                        | 10 yr          | Storm        | 100 yr     | Storm     |          |
| Hydrology Output                                       | Qp (cfs)       | Vol (cf)     | Qp (cfs)   | Vol (cf)  |          |
|                                                        | 2.49           | 3432         | 3.49       | 4,821     |          |
|                                                        |                |              |            |           |          |
| Infiltration                                           |                |              |            |           |          |
|                                                        | Infiltration   |              |            |           |          |
| Infiltration Surface Area Req'd to drain within 40 hrs | Surface Area   | 047          |            | 000       |          |
| (CF/IR/40hr) = SF                                      | Req'd (sf)     | 617          |            | 866       |          |
| Pond Sizing - Truncated Rectangular Pyramid            |                |              |            |           |          |
| Side Slope X:1                                         | 3              |              |            |           |          |
| Pond Top Length (ft)                                   | 200            | L            |            |           |          |
| Pond Top Width (ft)                                    | 20             | W            |            |           |          |
| Pond Bottom Length (ft)                                | 176            | I            |            |           |          |
| Pond Bottom Width (ft)                                 | 9.5            | W            |            |           |          |
| Depth (ft)                                             | 1.75           | h            |            |           |          |
| Infiltation Surface Area - FULL (sf)                   | 4000           |              |            |           |          |
| Full Volume (cf)                                       | 4,890          | Greater than | 4,821      |           |          |
|                                                        |                |              |            |           |          |
| Water Surface Area - FULL (sf)                         |                | _            |            |           |          |
| Water Surface Area at HALF FULL                        | 2836           | Greater than | 866        |           |          |
| Water Surface Area - EMPTY (sf)                        | 1672           |              |            |           |          |

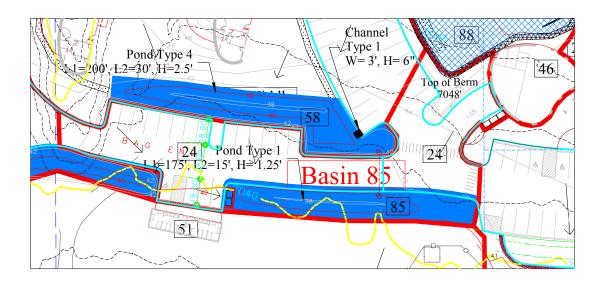


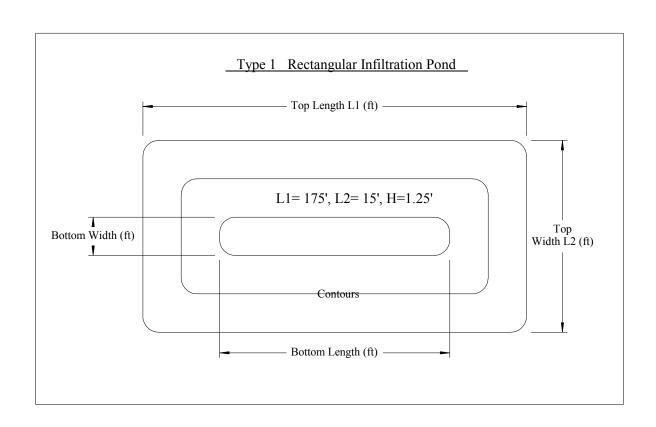
Pond 58 collects waters from paved area #5 and landscaped area #76 via grassed swales and sheet flow from land. The six small buildings are earth sheltered and their area has been included as roofs.


|                                                   | 10 yr        | Storm    | 100 yr Storm |          |  |
|---------------------------------------------------|--------------|----------|--------------|----------|--|
| Hydrology Output                                  | Qp (cfs)     | Vol (cf) | Qp (cfs)     | Vol (cf) |  |
| From #5 only                                      | 1.67         | 1304     | 2.31         | 1801     |  |
| From #76 only                                     | 0.81         | 4418     | 1.19         | 6517     |  |
| Aggregate                                         | 2.48         | 5,722    | 3.5          | 8,318    |  |
| Infiltration                                      |              |          |              |          |  |
|                                                   | Infiltration |          |              |          |  |
|                                                   | Surface Area |          |              |          |  |
| Infiltration Surface Area Req'd (CF/IR/40hr) = SF | Req'd (sf)   | 1,028    |              | 1,494    |  |



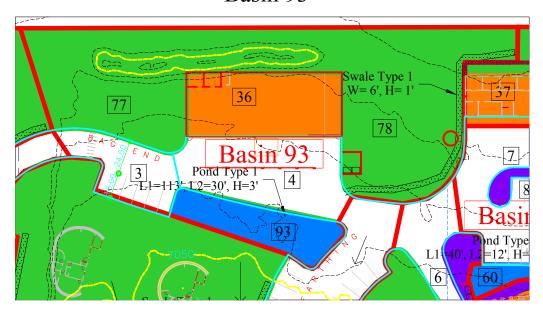
Pond 58 infiltrates waters and is generally trapezoidal with the dimensions shown. Both swales are Type 2 which begin a minimum of 2' wide and finish with the dimensions shown.


| Channel Parameters  |             | Channel Parameters  |             |
|---------------------|-------------|---------------------|-------------|
| Bottom Width (ft) b | 1.5         | Bottom Width (ft) b | 1           |
| Side Slope X:1      | 3           | Side Slope X:1      | 3           |
| Depth (ft) H        | 0.75        | Depth (ft) H        | 1           |
| Top Width (ft) W    | 6           | Top Width (ft) W    | 7           |
| Flow Area           |             | Flow Area           |             |
| Area (sf)           | 2.8125      | Area (sf)           | 4           |
| Wetted Perimeter    | 6.24341649  | Wetted Perimeter    | 7.32455532  |
| Hydraulic Radius    | 0.450474513 | Hydraulic Radius    | 0.546108238 |
| Flow Calc           |             | Flow Calc           |             |
| Slope (%)           | 3.0%        | Slope (%)           | 4.2%        |
| Mannings (n)        | 0.3         | Mannings (n)        | 0.3         |
| Velocity (ft/sec)   | 0.505789734 | Velocity (ft/sec)   | 0.683753708 |
| Area (sf)           | 2.8125      | Area (sf)           | 4           |
| Flow (cf/sec)       | 1.422533627 | Flow (cf/sec)       | 2.735014831 |


| Infiltration Pond #58                             | Hydrology File |              | 5+58+76 to   | 58 hve    |          |
|---------------------------------------------------|----------------|--------------|--------------|-----------|----------|
| illilitation Fond #56                             | Hydrology File |              | 3+36+76 10   | 56.HyS    |          |
|                                                   |                |              |              |           |          |
| Infiltration Test                                 | Entech PH2     |              |              |           |          |
| Infiltration Rate (inches / hour / sf )           | 1.67           |              |              |           |          |
| Infiltration Rate (IR = ft / hour /sf)            | 0.139166667    |              |              |           |          |
| Receive Flows from :                              | 5, 58,76       |              |              |           |          |
|                                                   | 0, 00,. 0      | Reach Length |              |           |          |
|                                                   | Area (ac)      | (Ft)         | Slope        | Coeff (C) | Tc (min) |
| Roof # EIH's                                      | 0.0663         | ( -/         |              | 0.95      | - ( /    |
| Roof                                              | 0.0000         |              |              | 0.95      |          |
| Roads Gravel                                      |                |              |              | 0.85      |          |
| Roads #5 Asphalt                                  | 0.299          | 245          | 3.5%         | 0.95      | 13.3     |
| Land #76                                          | 0.866          | 305          | 3.3%         | 0.2       | 90.8     |
| Pond # 58                                         | 0.141          |              | 2.370        | 1         | 23.0     |
| Total                                             | 1.372          |              |              |           |          |
| 10141                                             | 11072          |              |              |           |          |
| Flow Coefficient of Runoff                        | 0.40           |              |              |           |          |
| Composite Area                                    | 1.372          |              |              |           |          |
| Composite Curve #                                 | 1.072          |              |              |           |          |
| Composito Carvo II                                |                |              |              |           |          |
| Hydrology Input                                   | Tc (min)       |              |              |           |          |
| Tiyal ology mpat                                  | 70.6           |              |              |           |          |
|                                                   | 7 0.0          |              |              |           |          |
|                                                   | 10 vr          | Storm        | 100 vr       | Storm     |          |
| Hydrology Output                                  | Qp (cfs)       | Vol (cf)     | Qp (cfs)     | Vol (cf)  |          |
| From #5 only                                      | 1.67           | 1304         | 2.31         | 1801      |          |
| From #76 only                                     | 0.81           | 4418         | 1.19         | 6517      |          |
| Aggregate                                         | 2.48           | 5,722        | 3.5          | 8,318     |          |
| , igg. ogato                                      |                | <u> </u>     | 0.0          | 3,010     |          |
| Infiltration                                      |                |              |              |           |          |
|                                                   | Infiltration   |              |              |           |          |
|                                                   | Surface Area   |              |              |           |          |
| Infiltration Surface Area Req'd (CF/IR/40hr) = SF | Req'd (sf)     | 1,028        |              | 1,494     |          |
|                                                   | 110 q 01 (01)  | 1,525        |              | ,,,,,,    |          |
| Pond Sizing - Truncated Rectang                   | ular Pyramid   |              |              |           |          |
| Side Slope X:1                                    | 3              |              |              |           |          |
| Pond Top Length (ft)                              | 200            | L            |              |           |          |
| Pond Top Width (ft)                               | 30             | W            |              |           |          |
| Pond Bottom Length (ft)                           | 176            | I            |              |           |          |
| Pond Bottom Width (ft)                            | 15             | W            |              |           |          |
| Depth (ft)                                        | 2.5            | h            |              |           |          |
| Infiltation Surface Area - FULL (sf)              | 6000           |              |              |           |          |
| Full Volume (cf)                                  | 8,350          | Greater than | 8,318        |           |          |
| <b>\</b> ,                                        | ,              |              | ,            |           |          |
| Water Surface Area - FULL (sf)                    | 6000           |              |              |           |          |
| 11 200 1 200 1 200 1 200 1 200 1                  |                | <del> </del> | <del> </del> |           |          |
| Water Surface Area at HALF FULL                   | 4320           | Greater than | 1,494        |           |          |



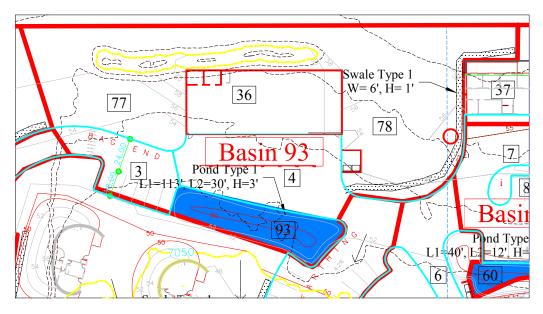
Pond #85 collects waters from mostly gravel road area #24. Waters sheet flow to pond.

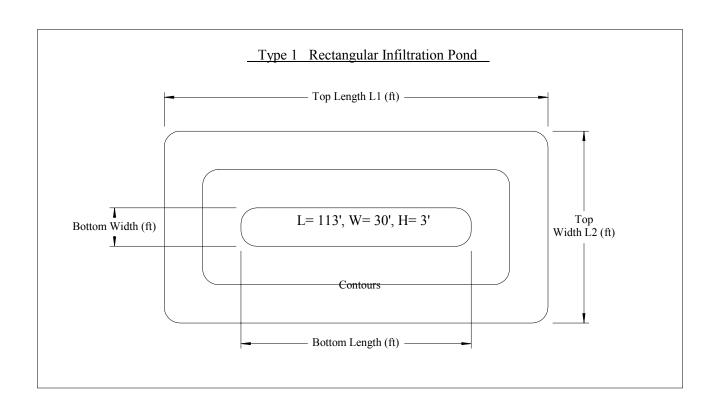

|                                                   | 10 yr        | Storm    | 100 yr Storm |          |  |
|---------------------------------------------------|--------------|----------|--------------|----------|--|
| Hydrology Output                                  | Qp (cfs)     | Vol (cf) | Qp (cfs)     | Vol (cf) |  |
|                                                   | 2.42         | 1343     | 3.07         | 1,842    |  |
|                                                   |              |          |              |          |  |
| Infiltration                                      |              |          |              |          |  |
|                                                   | Infiltration |          |              |          |  |
|                                                   | Surface Area |          |              |          |  |
| Infiltration Surface Area Req'd (CF/IR/40hr) = SF | Req'd (sf)   | 241      |              | 331      |  |



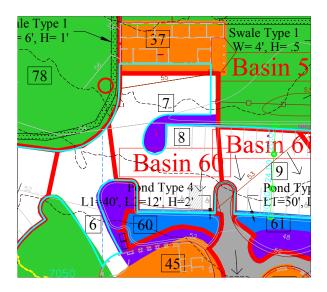


| Infiltration Pond #85                             | Hydrology File |              | 24+85 to 85 | .hvs      |          |
|---------------------------------------------------|----------------|--------------|-------------|-----------|----------|
|                                                   | , 3,           |              |             | ,         |          |
|                                                   |                |              |             |           |          |
| Infiltration Test                                 | Entech PH2     |              |             |           |          |
| Infiltration Rate (inches / hour / sf)            | 1.67           |              |             |           |          |
| Infiltration Rate (IR = ft / hour /sf)            | 0.139166667    |              |             |           |          |
| Receive Flows from :                              | 24,85          |              |             |           |          |
|                                                   |                | Reach Length |             |           |          |
|                                                   | Area (ac)      | (Ft)         | Slope       | Coeff (C) | Tc (min) |
| Roof                                              |                |              |             | 0.95      |          |
| Asphalt #24                                       | 0.2765         | 100          | 2.0%        | 0.95      | 10.2     |
| Basin                                             |                | 100          | 2.0%        | 0.2       | 61.2     |
| Pond #85                                          | 0.0799         |              |             | 1         |          |
| Total                                             | 0.3564         |              |             |           |          |
|                                                   |                | 0.02         |             |           |          |
| Flow Coefficient of Runoff                        | 0.9600         |              |             |           |          |
| Composite Area (ac)                               | 0.3564         |              |             |           |          |
| Composite Curve #                                 | 0.9600         |              |             |           |          |
| ·                                                 |                |              |             |           |          |
|                                                   |                | Composite    |             |           |          |
| Hydrology Input                                   | Tc (min)       | Curve        |             |           |          |
| 7 07 1                                            | 8              | 0.26         |             |           |          |
|                                                   |                |              |             |           |          |
|                                                   | 10 yr          | Storm        | 100 yr      | Storm     |          |
| Hydrology Output                                  | Qp (cfs)       | Vol (cf)     | Qp (cfs)    | Vol (cf)  |          |
| , , ,                                             | 2.42           | 1343         | 3.07        | 1,842     |          |
|                                                   |                |              |             | ,         |          |
| Infiltration                                      |                |              |             |           |          |
|                                                   | Infiltration   |              |             |           |          |
|                                                   | Surface Area   |              |             |           |          |
| Infiltration Surface Area Req'd (CF/IR/40hr) = SF | Req'd (sf)     | 241          |             | 331       |          |
|                                                   |                |              |             |           |          |
| Pond Sizing - Truncated Rectangular Pyramid       | Input Values   |              |             |           |          |
| Side Slope X:1                                    | 3              |              |             |           |          |
| Pond Top Length (ft)                              | 175            | L            |             |           |          |
| Pond Top Width (ft)                               | 15             | W            |             |           |          |
| Pond Bottom Length (ft)                           | 167.5          | 1            |             |           |          |
| Pond Bottom Width (ft)                            | 7.5            | w            |             |           |          |
| Depth (ft)                                        | 1.25           | h            |             |           |          |
| Infiltation Surface Area - FULL (sf)              | 2625           |              |             |           |          |
| Full Volume (cf)                                  | 2,414          | Greater Than | 1,842       |           |          |
| . ,                                               |                |              |             |           |          |
| Water Surface Area - FULL (sf)                    | 2625           |              |             |           |          |
| Water Surface Area at HALF FULL                   | 1940.625       | Greater than | 331         |           |          |
| Water Surface Area - EMPTY (sf)                   | 1256.25        |              |             |           |          |


Basin 93



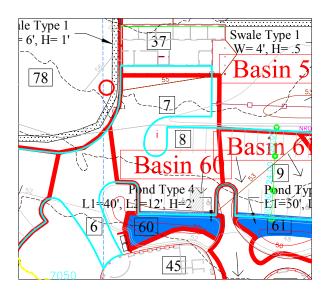

Pond #93 receives waters from land #77,78, roof #36 and pavement areas #3,4


|                                                        | 10 yr        | Storm    | 100 yr Storm |          |
|--------------------------------------------------------|--------------|----------|--------------|----------|
| Hydrology Output                                       | Qp (cfs)     | Vol (cf) | Qp (cfs)     | Vol (cf) |
|                                                        | 1.13         | 4,269    | 1.64         | 6,211    |
| Infiltration                                           |              |          |              |          |
|                                                        | Infiltration |          |              |          |
| Infiltration Surface Area Req'd to drain within 40 hrs | Surface Area |          |              |          |
| (CF/IR/40hr) = SF                                      | Req'd (sf)   | 767      |              | 1,116    |

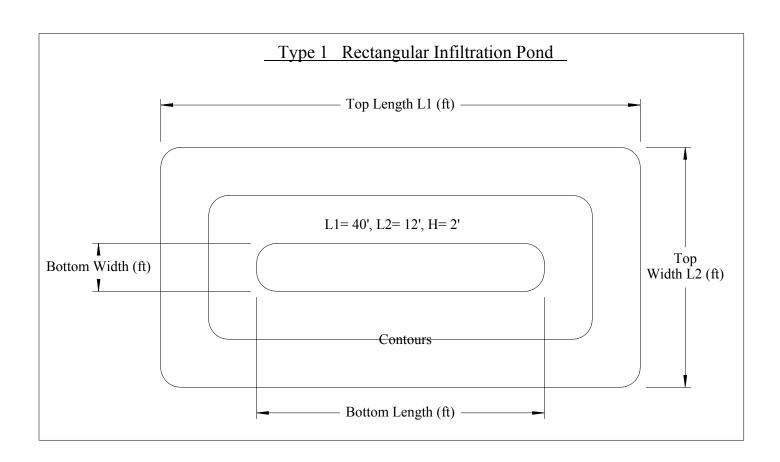
Basin 93






| Infiltration Pond #93                                                       | Hydrology File                             |                      | 77+36+3+4 | +78+93 to 93 | 3-F2.hys |
|-----------------------------------------------------------------------------|--------------------------------------------|----------------------|-----------|--------------|----------|
|                                                                             |                                            |                      |           |              |          |
| Infiltration Test                                                           | Entech PH2                                 |                      |           |              |          |
| Infiltration Rate (inches / hour / sf )                                     | 1.67                                       |                      |           |              |          |
| Infiltration Rate (IR = ft / hour /sf)                                      | 0.139166667                                |                      |           |              |          |
| Receive Flows from :                                                        | 77,36,3,4,78,9                             | 3                    |           |              |          |
|                                                                             | Area (ac)                                  | Reach Length<br>(Ft) | Slope     | Coeff (C)    | Tc (min) |
| Roof #36                                                                    | 0.1091                                     |                      |           | 0.95         |          |
| Roof                                                                        |                                            |                      |           | 0.95         |          |
| Roads Gravel / Pavers #3,#4                                                 | 0.194                                      |                      |           | 0.85         |          |
| Roads Asphalt                                                               | 0.000                                      |                      |           | 0.95         |          |
| Land #77,#78                                                                | 0.512                                      | 161                  | 3.7%      | 0.2          | 63.2     |
| Pond # 93                                                                   | 0.078                                      |                      |           | 1            |          |
| Total                                                                       | 0.892                                      | ac                   |           |              |          |
| Flow Coefficient of Runoff                                                  | 0.500                                      |                      |           |              |          |
| Composite Area                                                              | 0.892                                      |                      |           |              |          |
| Composite Curve #                                                           | 0.032                                      |                      |           |              |          |
| Composite Ourve #                                                           |                                            |                      |           |              |          |
| Hydrology Input                                                             | Tc (min)                                   |                      |           |              |          |
|                                                                             | 63.2                                       |                      |           |              |          |
|                                                                             | 10 vr                                      | Storm                | 100 vr    | Storm        |          |
| Hydrology Output                                                            | Qp (cfs)                                   | Vol (cf)             | Qp (cfs)  | Vol (cf)     |          |
| Trydrology Odiput                                                           | 1.13                                       | <b>4,269</b>         | 1.64      | 6,211        |          |
|                                                                             |                                            | ,                    |           | ,            |          |
| Infiltration                                                                |                                            |                      |           |              |          |
| Infiltration Surface Area Req'd to drain within 40 hrs<br>(CF/IR/40hr) = SF | Infiltration<br>Surface Area<br>Req'd (sf) | 767                  |           | 1,116        |          |
| Bond Sizing Truncated Bostongular Dyromid                                   |                                            |                      |           |              |          |
| Pond Sizing - Truncated Rectangular Pyramid Side Slope X:1                  | 3                                          |                      |           |              |          |
| Length (ft)                                                                 | 113                                        | L                    |           |              |          |
| Pond Top Width (ft)                                                         | 30                                         | W                    |           |              |          |
| Pond Bottom Length (ft)                                                     | 95                                         | I                    |           |              |          |
| Pond Bottom Width (ft)                                                      | 12                                         | w                    |           |              |          |
| Depth (ft)                                                                  | 3                                          | H                    |           |              |          |
| Infiltation Surface Area - FULL (sf)                                        | 3390                                       |                      |           |              |          |
| Full Volume (cf)                                                            | 6,633.0                                    | Greater than         | 6,211     |              |          |
|                                                                             |                                            |                      |           |              |          |
| Water Surface Area - FULL (sf)                                              |                                            |                      |           |              |          |
| Water Surface Area at HALF FULL                                             |                                            | Greater than         | 1,116     |              |          |
| Water Surface Area - EMPTY (sf)                                             | 1140                                       | Greater than         | 1,116     |              |          |




# Pond #60 infiltrates waters from pavements #7, 8.

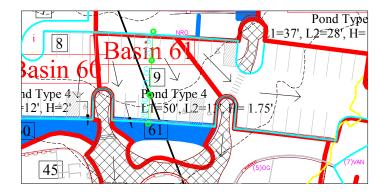
|                                                        | 10 yr        | Storm    | 100 yr Storm |          |
|--------------------------------------------------------|--------------|----------|--------------|----------|
| Hydrology Output                                       | Qp (cfs)     | Vol (cf) | Qp (cfs)     | Vol (cf) |
|                                                        | 0.94         | 564      | 1.29         | 774      |
|                                                        |              |          |              |          |
| Infiltration                                           |              |          |              |          |
|                                                        | Infiltration |          |              |          |
| Infiltration Surface Area Req'd to drain within 40 hrs | Surface Area |          |              |          |
| (CF/IR/40hr) = SF                                      | Req'd (sf)   | 101      |              | 139      |

Basin 60

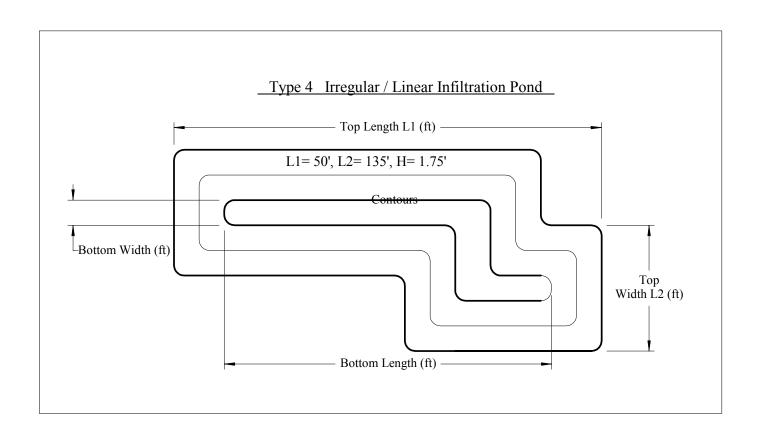


Waters sheet flow to infiltration pond #60



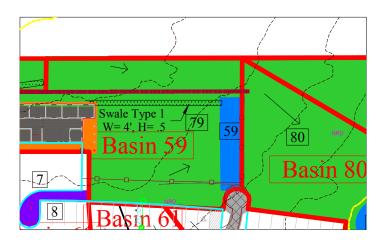

| Infiltration Pond #60                                      | Hydrology File |                      | 7+8+60 to 6 | 0.hys     |          |
|------------------------------------------------------------|----------------|----------------------|-------------|-----------|----------|
|                                                            |                |                      |             |           |          |
|                                                            |                |                      |             |           |          |
| Infiltration Test                                          | Entech PH2     |                      |             |           |          |
| Infiltration Rate (inches / hour / sf )                    | 1.67           |                      |             |           |          |
| Infiltration Rate (IR = $ft / hour / sf$ )                 | 0.139166667    |                      |             |           |          |
| Receive Flows from :                                       | 37, 7, 8, 60   |                      |             |           |          |
|                                                            | Area (ac)      | Reach<br>Length (Ft) | Slope       | Coeff (C) | Tc (min) |
| Roof                                                       |                |                      |             |           |          |
| Roof                                                       |                |                      |             | 0.95      |          |
| Roads Gravel #7                                            | 0.055          | 130                  | 4.6%        | 0.85      | 14.7     |
| Roads Asphalt #8                                           | 0.081          | 130                  | 4.6%        | 0.95      | 8.8      |
| Land                                                       |                |                      |             | 0.2       |          |
| Pond # 60                                                  | 0.024          |                      |             | 1         |          |
| Total                                                      | 0.159          | ac                   |             |           |          |
|                                                            |                |                      |             |           |          |
| Flow Coefficient of Runoff                                 | 0.910          |                      |             |           |          |
| Composite Area                                             | 0.159          |                      |             |           |          |
| Composite Curve #                                          |                |                      |             |           |          |
|                                                            |                |                      |             |           |          |
| Hydrology Input                                            | Tc (min)       |                      |             |           |          |
| , 0, 1                                                     | 14.7           |                      |             |           |          |
|                                                            |                |                      |             |           |          |
|                                                            | 10 yr          | Storm                | 100 yı      | Storm     |          |
| Hydrology Output                                           | Qp (cfs)       | Vol (cf)             | Qp (cfs)    | Vol (cf)  |          |
| , ,                                                        | 0.94           | 564                  | 1.29        | 774       |          |
|                                                            |                |                      |             |           |          |
| Infiltration                                               |                |                      |             |           |          |
|                                                            | Infiltration   |                      |             |           |          |
| Infiltration Surface Area Reg'd to drain within 40 hrs (CF | Surface Area   |                      |             |           |          |
| /IR/40hr) = SF                                             | Req'd (sf)     | 101                  |             | 139       |          |
| ·                                                          |                |                      |             |           |          |
| Pond Sizing - Truncated Rectangular Pyramid                |                |                      |             |           |          |
| Side Slope X:1                                             | 0.1            |                      |             |           |          |
| Pond Top Length (ft)                                       | 40             | L                    |             |           |          |
| Pond Top Width (ft)                                        | 12             | W                    |             |           |          |
| Pond Bottom Length (ft)                                    | 39.6           | I                    |             |           |          |
| Pond Bottom Width (ft)                                     | 11.6           | W                    |             |           |          |
| Depth (ft)                                                 | 2              | h                    |             |           |          |
| Infiltation Surface Area - FULL (sf)                       | 480            |                      |             |           |          |
| Full Volume (cf)                                           | 939            | Greater than         | 774         |           |          |
| V /                                                        |                |                      |             |           |          |
| Water Surface Area - FULL (sf)                             | 480            |                      |             |           |          |
| Water Surface Area at HALF FULL                            | 469.68         | Greater than         | 139         |           |          |
| Water Surface Area - EMPTY (sf)                            |                | Greater than         | 139         |           |          |




Pond #61 infiltrates waters from pavement #9. The purple area shown is a depressed garden and does no impact the runoff.

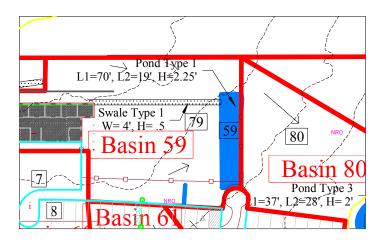
|                                          | 10 yr                        | 10 yr Storm |          | Storm    |
|------------------------------------------|------------------------------|-------------|----------|----------|
| Hydrology Output                         | Qp (cfs)                     | Vol (cf)    | Qp (cfs) | Vol (cf) |
|                                          | 0.69                         | 290         | 0.94     | 394      |
| Infiltration                             |                              |             |          |          |
| Infiltration Surface Area Reg'd to drain | Infiltration<br>Surface Area |             |          |          |
| within 40 hrs (CF/IR/40hr) = SF          | Req'd (sf)                   | 52          |          | 71       |

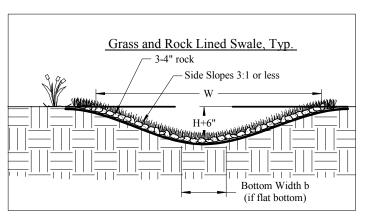
Basin 61

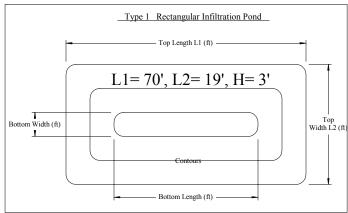


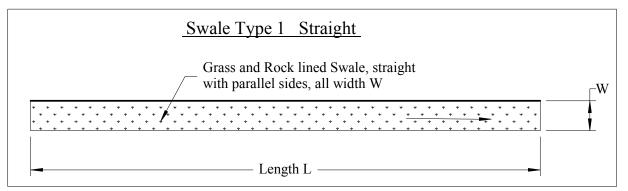

Waters sheet flow directly to infiltration pond #61




| Infiltration Pond #61                              | Hydrology File |              | 9+61 to 61. | hys        |             |
|----------------------------------------------------|----------------|--------------|-------------|------------|-------------|
|                                                    |                |              |             |            |             |
|                                                    |                |              |             |            |             |
| Infiltration Test                                  | Entech PH2     |              |             |            |             |
| Infiltration Rate (inches / hour / sf )            | 1.67           |              |             |            |             |
| Infiltration Rate (IR = ft / hour /sf)             | 0.139166667    |              |             |            |             |
| Receive Flows from :                               | 9, 61          |              |             |            |             |
|                                                    | A ( )          | Reach Length | 01          | 0 - (( (0) | T . ( ' . ) |
| Deet                                               | Area (ac)      | (Ft)         | Slope       | Coeff (C)  | Tc (min)    |
| Roof                                               |                |              |             | 0.95       |             |
| Roof                                               |                |              |             | 0.95       |             |
| Roads Gravel                                       | 0.000          | 00           | 0.00/       | 0.85       | 6.7         |
| Roads Asphalt #9                                   | 0.093          | 60           | 3.3%        | 0.95       | 6.7         |
| Land<br>Pond # 61                                  | 0.015          |              |             | 0.2        |             |
|                                                    | 0.015<br>0.123 | 80           |             | 1          |             |
| Total                                              | 0.123          | ac           |             |            |             |
| Flow Coefficient of Runoff                         | 0.960          |              |             |            |             |
| Composite Area                                     | 0.960          |              |             |            |             |
| Composite Curve #                                  | 0.123          |              |             |            |             |
| Composite Ourve #                                  |                |              |             |            |             |
| Hydrology Input                                    | Tc (min)       |              |             |            |             |
| in june 10 gy in par                               | 6.7            |              |             |            |             |
|                                                    |                |              |             |            |             |
|                                                    | 10 yr          | Storm        | 100 yı      | Storm      |             |
| Hydrology Output                                   | Qp (cfs)       | Vol (cf)     | Qp (cfs)    | Vol (cf)   |             |
|                                                    | 0.69           | 290          | 0.94        | 394        |             |
|                                                    |                |              |             |            |             |
| Infiltration                                       |                |              |             |            |             |
|                                                    | Infiltration   |              |             |            |             |
| Infiltration Surface Area Req'd to drain within 40 | Surface Area   |              |             |            |             |
| hrs (CF/IR/40hr) = SF                              | Req'd (sf)     | 52           |             | 71         |             |
|                                                    |                |              |             |            |             |
| Pond Sizing - Truncated Rectangular Pyramid        |                |              |             |            |             |
| Side Slope X:1                                     | 3              |              |             |            |             |
| Pond Top Length (ft)                               | 50             | L            |             |            |             |
| Pond Top Width (ft)                                | 13             | W            |             | 1          |             |
| Pond Bottom Length (ft)                            | 39.5           | l            |             |            |             |
| Pond Bottom Width (ft)                             | 2.5            | W            |             |            |             |
| Depth (ft)                                         | 1.75           | h            |             |            |             |
| Infiltation Surface Area - FULL (sf)               | 650            | 0            | 00.4        |            |             |
| Full Volume (cf)                                   | 623            | Greater than | 394         |            |             |
| Matau Ofara A FIII I ( )                           | 050            |              |             |            |             |
| Water Surface Area et IIAL 5 5 III                 |                | Croote: the: | 74          |            |             |
| Water Surface Area at HALF FULL                    |                | Greater than | 71          | -          |             |
| Water Surface Area - EMPTY (sf)                    | 98.75          | Greater than | 71          |            |             |

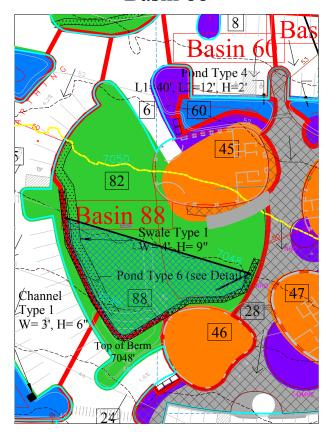

Basin 59





Pond #59 receives waters from area #79 which has a corral for goats etc. This is assumed to be fairly compacted soil so a runoff coefficient of .85 was used.

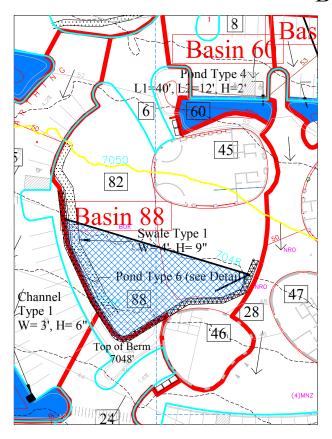
|                                                                          | 10 yr                                      | Storm    | 100 yr Storm |          |
|--------------------------------------------------------------------------|--------------------------------------------|----------|--------------|----------|
| Hydrology Output                                                         | Qp (cfs)                                   | Vol (cf) | Qp (cfs)     | Vol (cf) |
|                                                                          | 1.93                                       | 1391     | 2.66         | 1,917    |
| Infiltration                                                             |                                            |          |              |          |
| Infiltration Surface Area Req'd to drain within 40 hrs (CF/IR/40hr) = SF | Infiltration<br>Surface Area<br>Reg'd (sf) | 250      |              | 344      |



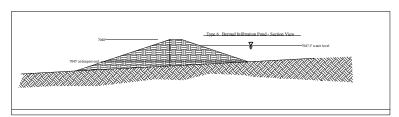


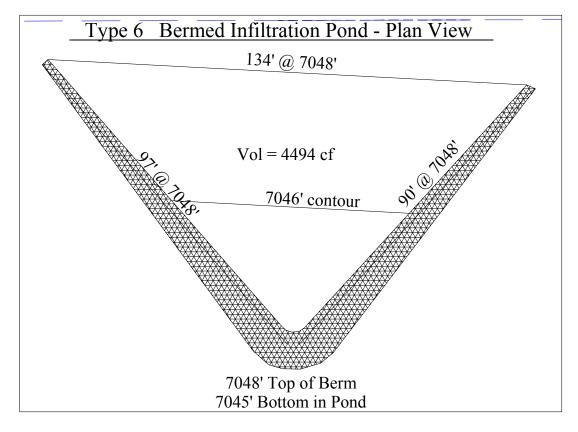




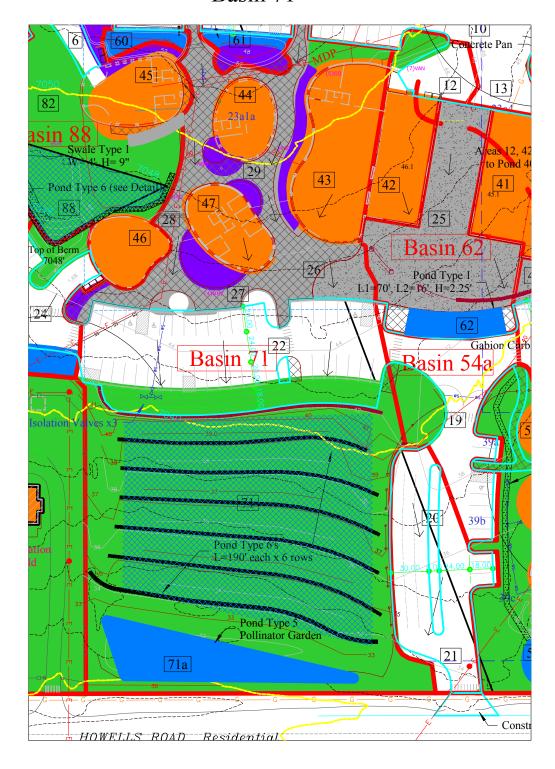


| Channel Parameters  |       |   |
|---------------------|-------|---|
| Bottom Width (ft) b | 1.00  | b |
| Side Slope X:1      | 3.00  |   |
| Depth (ft) h        | 0.50  | Н |
| Top Width (ft) W    | 4.00  | W |
| Flow Area           |       |   |
| Area (sf)           | 1.25  |   |
|                     |       |   |
| Wetted Perimeter    | 4.16  |   |
| Hydraulic Radius    | 0.30  |   |
|                     |       |   |
| Flow Calc           |       |   |
| Slope (%)           | 1.25% |   |
| Mannings (n)        | 0.03  |   |
| Velocity (ft/sec)   | 2.49  |   |
| Area (sf)           | 1.25  |   |
| Flow (cf/sec)       | 3.12  |   |

| Infiltration Pond #59                                       | Hydrology File |              | 37+79+59 t | o 59-F2.hys  |           |
|-------------------------------------------------------------|----------------|--------------|------------|--------------|-----------|
|                                                             |                |              |            |              |           |
|                                                             | E              |              |            |              |           |
| Infiltration Test                                           | Entech PH2     |              |            |              |           |
| Infiltration Rate (inches / hour / sf)                      | 1.67           |              |            |              |           |
| Infiltration Rate (IR = ft / hour /sf) Receive Flows from : | 0.139166667    |              |            |              |           |
| Receive Flows from :                                        | 79, 59         | D l. I II.   |            |              |           |
|                                                             | A ()           | Reach Length | Clara      | 04 (0)       | Ta (main) |
| Roof                                                        | Area (ac)      | (Ft)         | Slope      | Coeff (C)    | Tc (min)  |
|                                                             | 0.0500         | 100          | 0.10/      | 0.05         | 10.0      |
| Roof #37                                                    | 0.0562         | 100          | 2.1%       | 0.95<br>0.85 | 10.0      |
| Roads Gravel                                                |                |              |            |              |           |
| Roads Asphalt                                               | 0.070          | 100          | 0.00/      | 0.95         | 110       |
| Land #79                                                    | 0.270          | 108          | 3.8%       | 0.85         | 14.3      |
| Pond # 59                                                   | 0.034          |              |            | 1            |           |
| Total                                                       | 0.361          | ac           |            |              |           |
| Flow Coefficient of Runoff                                  | 0.350          |              |            |              |           |
|                                                             | 0.361          |              |            |              |           |
| Composite Area                                              | 0.361          |              |            |              |           |
| Composite Curve #                                           |                |              |            |              |           |
| Hydrology Input                                             | Tc (min)       |              |            |              |           |
| Trydrology input                                            | 14.3           |              |            |              |           |
|                                                             | 14.5           |              |            |              |           |
|                                                             | 10 yr          | Storm        | 100 vi     | Storm        |           |
| Hydrology Output                                            | Qp (cfs)       | Vol (cf)     | Qp (cfs)   | Vol (cf)     |           |
| Tryarology Gatpat                                           | 1.93           | 1391         | 2.66       | 1,917        |           |
|                                                             | 1.00           | 1001         | 2.00       | 1,017        |           |
| Infiltration                                                |                |              |            |              |           |
| Time duoi                                                   | Infiltration   |              |            |              |           |
| Infiltration Surface Area Reg'd to drain                    | Surface Area   |              |            |              |           |
| within 40 hrs (CF/IR/40hr) = SF                             | Reg'd (sf)     | 250          |            | 344          |           |
|                                                             | 11040 (01)     |              |            |              |           |
| Pond Sizing - Truncated Rec                                 | tangular Pyram | id           |            |              |           |
| Side Slope X:1                                              | 3              |              |            |              |           |
| Pond Top Length (ft)                                        | 70             | L            |            |              |           |
| Pond Top Width (ft)                                         | 19             | W            |            |              |           |
| Pond Bottom Length (ft)                                     | 52             | I            |            |              |           |
| Pond Bottom Width (ft)                                      | 1              | w            |            |              |           |
| Depth (ft)                                                  | 3              | h            |            |              |           |
| Infiltation Surface Area - FULL (sf)                        | 1330           |              |            |              |           |
| Full Volume (cf)                                            | 1,911          | TOO SMALL    | 1,917      |              |           |
| ` '                                                         |                |              |            |              |           |
| Water Surface Area - FULL (sf)                              | 1330           |              |            |              |           |
| Water Surface Area at HALF FULL                             |                | Greater than | 344        |              |           |
| Water Surface Area - EMPTY (sf)                             | 52             | TOO SMALL    | 344        |              |           |

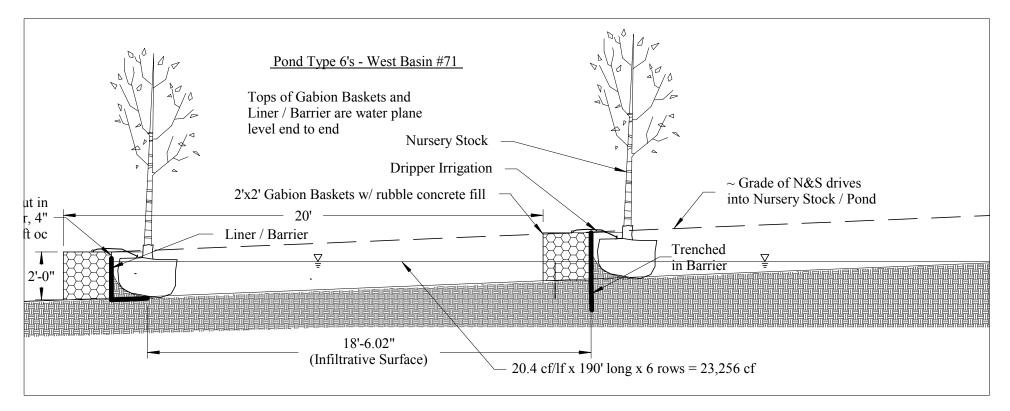


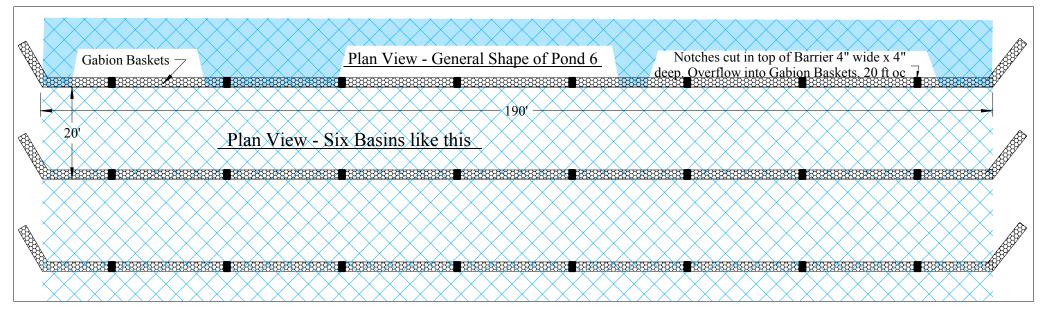


Pond #88 collects waters from land #82, roofs #45, 46 and pavement #6. Waters are conveyed to Pond 88 via grass swales. This pond is impounded by vegetated berms. See Plan and Detail DR-2

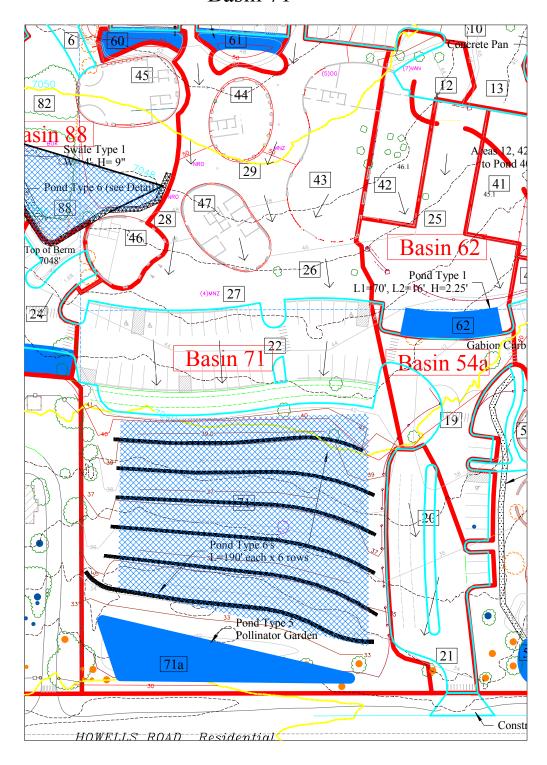
|                                                                          | 10                                         | yr Storm | 100 yr Storm |          |  |
|--------------------------------------------------------------------------|--------------------------------------------|----------|--------------|----------|--|
| Hydrology Output                                                         | Qp (cfs)                                   | Vol (cf) | Qp (cfs)     | Vol (cf) |  |
|                                                                          | 0.92                                       | 2993     | 1.34         | 4,330    |  |
| Infiltration                                                             |                                            |          |              |          |  |
| Infiltration Surface Area Req'd to drain within 40 hrs (CF/IR/40hr) = SF | Infiltration<br>Surface Area<br>Req'd (sf) | 538      |              | 778      |  |
|                                                                          |                                            |          |              |          |  |



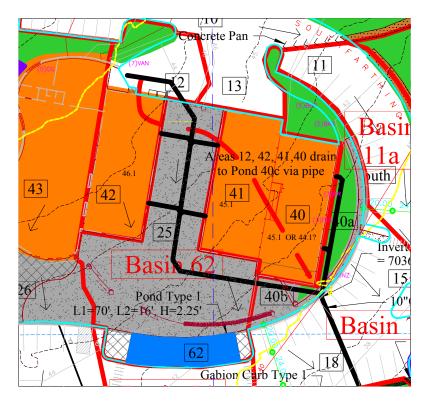

| Channel Parameters  |       |
|---------------------|-------|
| Bottom Width (ft) b | 1.00  |
| Side Slope X:1      | 3.00  |
| Depth (ft) H        | 0.50  |
| Top Width (ft) T    | 4.00  |
| Flow Area           |       |
| Area (sf)           | 1.25  |
|                     |       |
| Wetted Perimeter    | 4.16  |
| Hydraulic Radius    | 0.30  |
|                     |       |
| Flow Calc           |       |
| Slope (%)           | 0.05  |
| Mannings (n)        | 2.86% |
| Velocity (ft/sec)   | 5.41  |
| Area (sf)           | 1.25  |
| Flow (cf/sec)       | 6.76  |





| Infiltration Pond #88                                  | Hydrology File |                     | 6+45+46+8 | 2 to 88.hys |          |
|--------------------------------------------------------|----------------|---------------------|-----------|-------------|----------|
|                                                        | , ,,           |                     |           | ,           |          |
| Infiltration Test                                      | Entech PH2     |                     |           |             |          |
| Infiltration Rate (inches / hour / sf)                 | 1.67           |                     |           |             |          |
| Infiltration Rate (IR = ft / hour /sf)                 | 0.139166667    |                     |           |             |          |
| Receive Flows from :                                   | 6, 45, 46, 82, | 88                  |           |             |          |
|                                                        | Area (ac)      | Reach Length (Ft)   | Slope     | Coeff (C)   | Tc (min) |
| Roof #45,#46                                           | 0.1473         |                     |           | 0.95        |          |
| Roof                                                   |                |                     |           | 0.95        |          |
| Roads Gravel                                           |                |                     |           | 0.85        |          |
| Roads Asphalt #6                                       | 0.069          |                     |           | 0.95        |          |
| Land #82 + .5 * #88                                    | 0.261          | 150                 | 5.3%      | 0.2         | 54.2     |
| Pond # 88 x .5                                         | 0.070          |                     |           | 1           |          |
| Total                                                  | 0.547          | ac                  |           |             |          |
|                                                        |                |                     |           |             |          |
| Flow Coefficient of Runoff                             | 0.200          |                     |           |             |          |
| Composite Area                                         | 0.547          |                     |           |             |          |
| Composite Curve #                                      | 0.52           |                     |           |             |          |
|                                                        |                |                     |           |             |          |
| Hydrology Input                                        | Tc (min)       | 7.4                 |           |             |          |
|                                                        |                |                     |           |             |          |
|                                                        | 10             | yr Storm            | 100 yr    | Storm       |          |
| Hydrology Output                                       | Qp (cfs)       | Vol (cf)            | Qp (cfs)  | Vol (cf)    |          |
|                                                        | 0.92           | 2993                | 1.34      | 4,330       |          |
|                                                        |                |                     |           |             |          |
| Infiltration                                           |                |                     |           |             |          |
|                                                        | Infiltration   |                     |           |             |          |
| Infiltration Surface Area Req'd to drain within 40 hrs | Surface Area   |                     |           |             |          |
| (CF/IR/40hr) = SF                                      | Req'd (sf)     | 538                 |           | 778         |          |
|                                                        |                |                     |           |             |          |
|                                                        |                |                     |           |             |          |
|                                                        |                |                     |           |             |          |
| Half Triangular Prism Volume                           |                |                     |           |             |          |
| Side a                                                 | 134            |                     |           |             |          |
| Side b                                                 | 90             |                     |           |             |          |
| Side c                                                 | 97             |                     |           |             |          |
| Height h                                               | 2.2            |                     |           |             |          |
| Semi Perimeter (If)                                    | 160.5          | (a+b+c)/2           |           |             |          |
| Base Area (sf)                                         | 6134.5         | sf                  |           |             |          |
| Volume = (cf) triangle based pyramid                   | 4494.1         | cf = 1/3 x Base Are | a x h     |             |          |
|                                                        |                |                     |           |             |          |
| Water Surface Area - FULL (sf)                         | 6134.5         | far Greater than    | 4,330     |             |          |
|                                                        |                |                     | 1         |             |          |
| Full Volume (cf)                                       | 4494.1         | Greater than        | 4,330     |             |          |

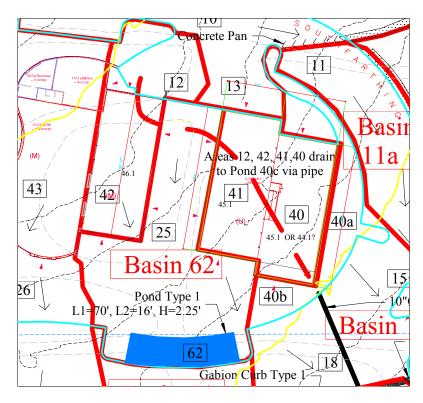



Basin 71 is the largest collecting waters from roofs #42,43,44, pavers #26,27,28,29, pavement #22 and the Nursery area #71. The Nursery area is where 'ball and burlap' trees are staged for sale in wide rows separated by Gabion basket 'dams', all of which are infiltration ponds. Pond #71a captures any waters that fall below the last 'dam'. It's irregular in shape and depth.

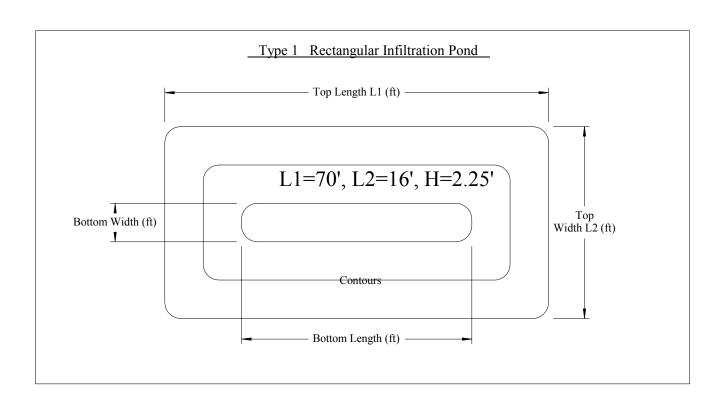






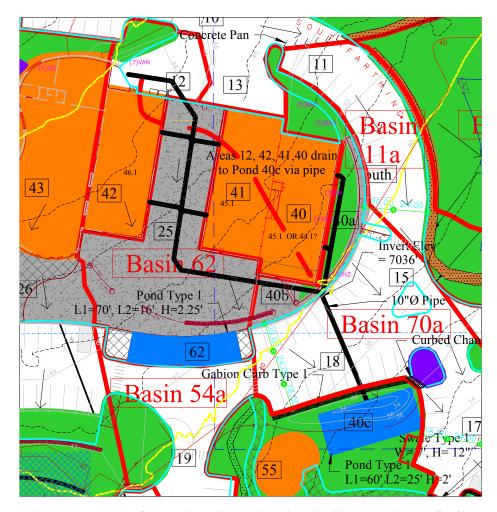

| Infiltration Pond #71 Half                             | Hydrology File |               | 26+27+28+ | 29+43+44+4 | 7+22+71 to 71H.hy |
|--------------------------------------------------------|----------------|---------------|-----------|------------|-------------------|
|                                                        | ,              |               |           |            | ,                 |
|                                                        |                |               |           |            |                   |
| Infiltration Test                                      | Entech PH2     |               |           |            |                   |
| Infiltration Rate (inches / hour / sf)                 | 1.67           |               |           |            |                   |
| Infiltration Rate (IR = ft / hour /sf)                 | 0.139166667    |               |           |            |                   |
| Receive Flows from :                                   | 26,27,28,29,44 | 4,47,43,22,71 |           |            |                   |
|                                                        |                | Reach         |           |            |                   |
|                                                        | Area (ac)      | Length (Ft)   | Slope     | Coeff (C)  | Tc (min)          |
| Roof #43,#44,#47                                       | 0.3374         |               |           | 0.95       |                   |
| Roof                                                   |                |               |           | 0.95       |                   |
| Roads Gravel / Pavers #26,#27,#28,#29                  | 0.373          |               |           | 0.85       |                   |
| Roads Asphalt #22                                      | 0.318          |               |           | 0.95       |                   |
| Land #71                                               | 0.650          | 300           | 3.8%      | 0.7        | 38.1              |
| Pond # 71                                              | 0.650          |               |           | 1          |                   |
| Total                                                  | 2.329          | ac            |           |            |                   |
|                                                        |                |               |           |            |                   |
| Flow Coefficient of Runoff                             | 0.700          |               |           |            |                   |
| Composite Area                                         | 2.329          |               |           |            |                   |
| Composite Curve #                                      | 0.79           |               |           |            |                   |
|                                                        | T ( ' )        |               |           |            |                   |
| Hydrology Input                                        | Tc (min)       |               |           |            |                   |
|                                                        | 38.0           |               |           |            |                   |
|                                                        | 10 yr          | Storm         | 100 //    | Storm      |                   |
| Hydrology Output                                       | Qp (cfs)       | Vol (cf)      | Qp (cfs)  | Vol (cf)   |                   |
| Trydrology Odiput                                      | 7.03           | 16,019        | 10.04     | 22,882     |                   |
|                                                        | 7.03           | 10,019        | 10.04     | 22,002     |                   |
| Infiltration                                           |                |               |           |            |                   |
| Innitiation                                            | Infiltration   |               |           |            |                   |
| Infiltration Surface Area Req'd to drain within 40 hrs | Surface Area   |               |           |            |                   |
| (CF/IR/40hr) = SF                                      | Reg'd (sf)     | 2,878         |           | 4,111      |                   |
| (01711040111) = 01                                     | 11040 (31)     | 2,070         |           | 7,111      |                   |
| Pond Sizing                                            |                |               |           |            |                   |
| Side Slope X:1                                         | 3              |               |           |            |                   |
| Pond Top Length (ft) 6 x 190' ea                       | 1140           | L             |           |            |                   |
| Pond Top Width (ft)                                    | 20             | W             |           |            |                   |
| Pond Bottom Length (ft)                                | 1129.5         | I             |           |            |                   |
| Pond Bottom Width (ft)                                 | 9.5            | w             |           |            |                   |
| Depth (ft) ave depth of water between Gabions          | 1.75           | h             |           |            |                   |
| Infiltation Surface Area - FULL (sf)                   | 22800          |               |           |            |                   |
| Full Volume (cf)                                       | 29,307         | Greater than  | 22,882    |            |                   |
|                                                        |                | 2             | ,         |            |                   |
| Water Surface Area - FULL (sf)                         | 22800          |               |           |            |                   |
| Water Surface Area at HALF FULL                        | 16765.125      | Greater than  | 4,111     |            |                   |
| Water Surface Area - EMPTY (sf)                        |                |               | ,         |            |                   |
| Overflow into Pond 71a                                 |                |               |           |            |                   |
| <u> </u>                                               | l              | l             | 1         |            |                   |




Pond 62 receives waters from plaza pavers #25. All waters sheet flow to pond.

|                                                        | 10 yr S           | Storm | 100 yr Storm |          |  |
|--------------------------------------------------------|-------------------|-------|--------------|----------|--|
| Hydrology Output                                       | Qp (cfs) Vol (cf) |       | Qp (cfs)     | Vol (cf) |  |
|                                                        | 1.66              | 1495  | 2.3          | 2,072    |  |
|                                                        |                   |       |              |          |  |
| Infiltration                                           |                   |       |              |          |  |
|                                                        | Infiltration      |       |              |          |  |
| Infiltration Surface Area Req'd to drain within 40 hrs | Surface Area      |       |              |          |  |
| (CF/IR/40hr) = SF                                      | Req'd (sf)        | 269   |              | 372      |  |

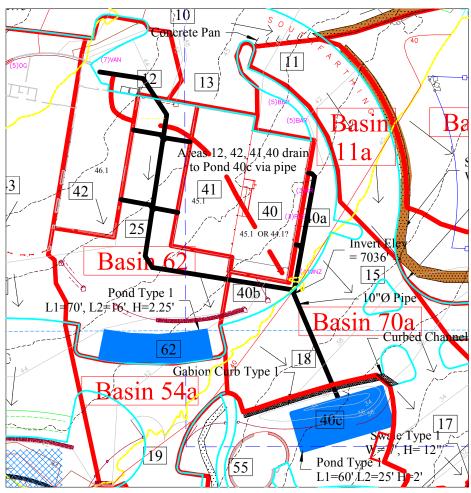
Basin 62

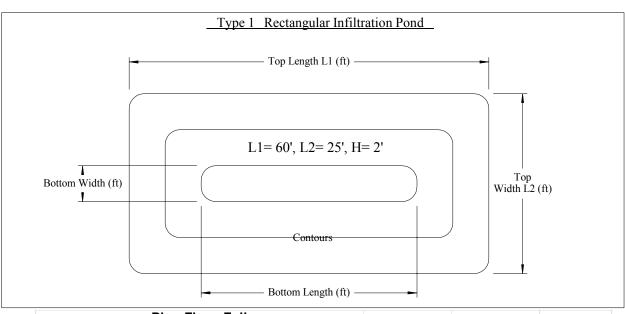



Waters sheet flow directly to infiltration pond #62



| Infiltration Pond #62                                  | Hydrology File |                      | 25+62 to 62 | .hys      |          |
|--------------------------------------------------------|----------------|----------------------|-------------|-----------|----------|
|                                                        |                |                      |             |           |          |
|                                                        |                |                      |             |           |          |
| Infiltration Test                                      | Entech PH2     |                      |             |           |          |
| Infiltration Rate (inches / hour / sf)                 | 1.67           |                      |             |           |          |
| Infiltration Rate (IR = ft / hour /sf)                 | 0.139166667    |                      |             |           |          |
| Receive Flows from :                                   | 25,62          |                      |             |           |          |
|                                                        | Area (ac)      | Reach<br>Length (Ft) | Slope       | Coeff (C) | Tc (min) |
| Roof                                                   |                |                      |             | 0.95      |          |
| Roof                                                   |                |                      |             | 0.95      |          |
| Roads Gravel / Pavers                                  |                |                      |             | 0.85      |          |
| Roads Concrete/Asphalt #25                             | 0.268          | 165                  | 1.2%        | 0.95      | 15.5     |
| Land                                                   |                | 165                  | 1.2%        | 0.2       | 93.0     |
| Pond # 62                                              | 0.043          |                      |             | 1         |          |
| Total                                                  | 0.311          | ac                   |             |           |          |
|                                                        |                |                      |             |           |          |
| Flow Coefficient of Runoff                             | 0.910          |                      |             |           |          |
| Composite Area                                         | 0.311          |                      |             |           |          |
| Composite Curve #                                      | 0.91           |                      |             |           |          |
|                                                        |                |                      |             |           |          |
| Hydrology Input                                        | Tc (min)       |                      |             |           |          |
|                                                        | 7.4            |                      |             |           |          |
|                                                        |                |                      |             |           |          |
|                                                        | 10 yr S        |                      |             | Storm     |          |
| Hydrology Output                                       | Qp (cfs)       | Vol (cf)             | Qp (cfs)    | Vol (cf)  |          |
|                                                        | 1.66           | 1495                 | 2.3         | 2,072     |          |
| Infiltration                                           |                |                      |             |           |          |
|                                                        | Infiltration   |                      |             |           |          |
| Infiltration Surface Area Req'd to drain within 40 hrs | Surface Area   |                      |             |           |          |
| (CF/IR/40hr) = SF                                      | Req'd (sf)     | 269                  |             | 372       |          |
| ,                                                      | . , ,          |                      |             |           |          |
| Pond Sizing - Truncated Rectangular Pyramid            |                |                      |             |           |          |
| Side Slope X:1                                         | 1              |                      |             |           |          |
| Pond Top Length (ft)                                   | 70             | L                    |             |           |          |
| Pond Top Width (ft)                                    | 16             | W                    |             |           |          |
| Pond Bottom Length (ft)                                | 65.5           | I                    |             |           |          |
| Pond Bottom Width (ft)                                 | 11.5           | W                    |             |           |          |
| Depth (ft)                                             | 2.25           | h                    |             |           |          |
| Infiltation Surface Area - FULL (sf)                   | 1120           |                      |             |           |          |
| Full Volume (cf)                                       | 2,100          | Greater than         | 2,072       |           |          |
|                                                        |                |                      |             |           |          |
| Water Surface Area - FULL (sf)                         | 1120           |                      |             |           |          |
| Water Surface Area at HALF FULL                        | 936.625        | Greater than         | 372         |           |          |
| Water Surface Area - EMPTY (sf)                        | 753.25         | Greater than         | 372         |           |          |

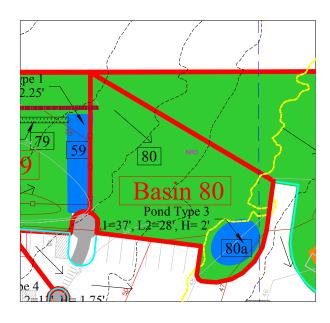

### Pond 40c




Pond 40c receives waters from loading dock pit #12 and roofs #40, 41, 42. All waters flow via underground pipe to pond.

|                                                             | 10 yr        | Storm    | 100 yr Storm |          |
|-------------------------------------------------------------|--------------|----------|--------------|----------|
| Hydrology Output                                            | Qp (cfs)     | Vol (cf) | Qp (cfs)     | Vol (cf) |
|                                                             | 2.02         | 1,451    | 2.78         | 2,000    |
| Infiltration                                                |              |          |              |          |
|                                                             | Infiltration |          |              |          |
| Infiltration Surface Area Req'd to drain within 40 hrs (CF) | Surface Area |          |              |          |
| IR/40hr) = SF                                               | Req'd (sf)   | 261      |              | 359      |

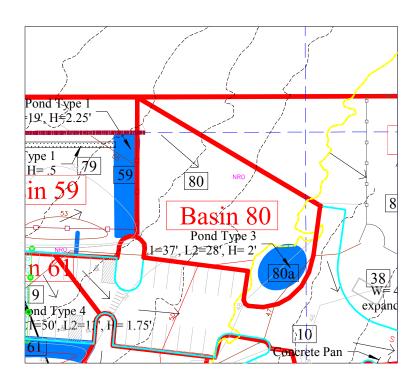
#### Pond 40c

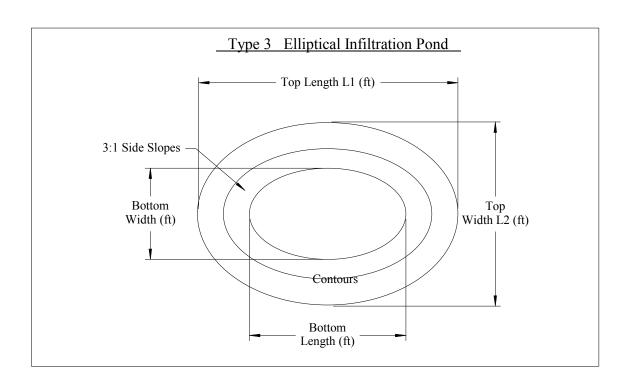





| Pipe Flow, Full               |        |                       |  |
|-------------------------------|--------|-----------------------|--|
| Slope (%) 2' drop over 83'    | 0.02   |                       |  |
| Pipe Diameter (in)            | 10     |                       |  |
| Pipe Diameter (ft)            | 0.8333 |                       |  |
| Pipe Area (sf)                | 0.5456 |                       |  |
| Wetted Perimeter (ft)         | 2.6190 |                       |  |
| Hydraulic Radius (ft) Rh      | 0.2083 |                       |  |
| Velocity, Gravity Flow (ft/s) | 8.1150 | (1.486/M)*Rh^0.66*S^0 |  |
| Flow Volume (cfs)             | 4.43   | cfs                   |  |

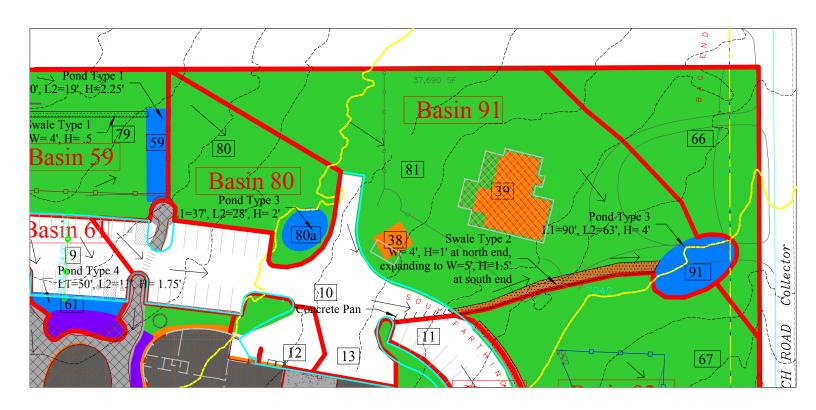
| Pond 40c                                               | Hydrology File    |                      | 12+42+40+                       | 41 to 40c.hys |               |
|--------------------------------------------------------|-------------------|----------------------|---------------------------------|---------------|---------------|
|                                                        |                   |                      |                                 |               |               |
|                                                        |                   |                      |                                 |               |               |
| Infiltration Test                                      | Entech PH2        |                      |                                 |               |               |
| Infiltration Rate (inches / hour / sf )                | 1.67              |                      |                                 |               |               |
| Infiltration Rate (IR = ft / hour /sf)                 | 0.139166667       |                      |                                 |               |               |
| Receive Flows from :                                   | 12, 40, 41, 42    |                      |                                 |               |               |
|                                                        | Area (ac)         | Reach Length<br>(Ft) | Slope                           | Coeff (C)     | Tc (min)      |
| Roof #40,41,42                                         | 0.2893            | 330                  | 3.3%                            | 0.95          | 15.7          |
| Roads Gravel / Pavers                                  | 0.2000            | 000                  | 0.070                           | 0.85          | 10.7          |
| Roads Asphalt #12                                      | 0.045             | 213                  | 4.2%                            | 0.95          | 11.6          |
| Land #40a                                              | 0.074             | 287                  | 4.2%                            | 0.2           | 81.3          |
| Pond                                                   | 0.07              |                      |                                 | 1             | <b>U</b> 1.10 |
| Total                                                  | 0.408             | ac                   |                                 |               |               |
| FI 0 ": + (P "                                         | 0.050             |                      |                                 |               |               |
| Flow Coefficient of Runoff                             | 0.950             |                      |                                 |               |               |
| Composite Area                                         | 0.408             |                      |                                 |               |               |
| Composite Curve #                                      |                   |                      |                                 |               |               |
| Hydrology Input                                        | Tc (min)          |                      |                                 |               |               |
| , 0, 1                                                 | 7.7               |                      |                                 |               |               |
|                                                        | 10 vr             | Storm                | 100 vr                          | Storm         |               |
| Hydrology Output                                       | Qp (cfs) Vol (cf) |                      | 100 yr Storm  Qp (cfs) Vol (cf) |               |               |
| Tryalology Gulpat                                      | 2.02              | 1,451                | 2.78                            | 2,000         |               |
|                                                        |                   |                      |                                 |               |               |
| Infiltration                                           |                   |                      |                                 |               |               |
|                                                        | Infiltration      |                      |                                 |               |               |
| Infiltration Surface Area Req'd to drain within 40 hrs | Surface Area      | 004                  |                                 |               |               |
| (CF/IR/40hr) = SF                                      | Req'd (sf)        | 261                  |                                 | 359           |               |
|                                                        |                   |                      |                                 |               |               |
| Pond Sizing - Truncated Rectangular Pyramid            |                   |                      |                                 |               |               |
| Side Slope X:1                                         | 3                 | ,                    |                                 |               |               |
| Pond Top Length (ft) (long side)                       | 60                | L                    | A                               |               |               |
| Pond Top Width (ft) (short side)                       | 25                | W                    | В                               |               |               |
| Pond Bottom Length (ft) (long side)                    | 48                | I                    | a                               |               |               |
| Pond Bottom Width (ft) (short side)                    | 13                | W                    | b                               |               |               |
| Depth (ft)                                             | 2                 | h                    | h                               |               |               |
| Infiltation Surface Area - FULL (sf)                   | 1500              | Crooter the          | 0.000                           |               |               |
| Full Volume (cf)                                       | 2,076             | Greater than         | 2,000                           |               |               |
| Water Surface Area - FULL (sf)                         | 1500              |                      |                                 |               |               |
| Water Surface Area EMPTY (-1)                          | 604               | Greater the          | 350                             |               |               |
| Water Surface Area - EMPTY (sf)                        | 624               | Greater than         | 359                             |               |               |


## Basin 80a




Pond 80a collects waters from undeveloped Basin 80.

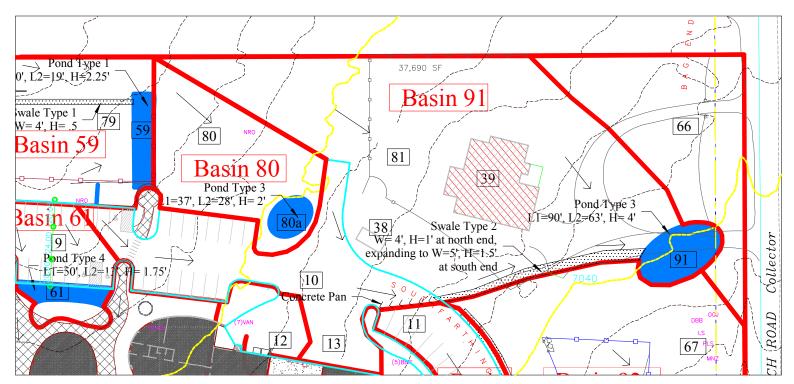
|                                                   | 10 yr        | Storm    | 100 yr Storm |          |
|---------------------------------------------------|--------------|----------|--------------|----------|
| Hydrology Output                                  | Qp (cfs)     | Vol (cf) | Qp (cfs)     | Vol (cf) |
|                                                   | 0.28         | 667      | 0.4          | 954      |
|                                                   | 2.17 off #10 |          | 2.99 off #10 |          |
| Infiltration                                      |              |          |              |          |
| Infiltration Surface Area Req'd (CF/IR/40hr) = SF |              | 120      |              | 171      |


# Basin 80a

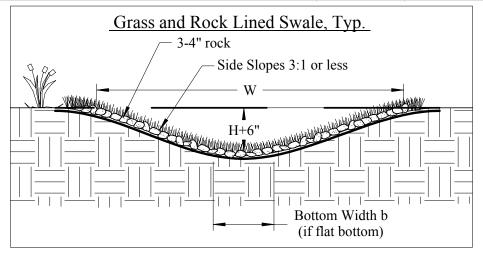




| Infiltration Pond #80a                            | Hydrology File |                 | 80+80a to 8  | 0a        |          |
|---------------------------------------------------|----------------|-----------------|--------------|-----------|----------|
|                                                   | , 0,           |                 |              |           |          |
|                                                   |                |                 |              |           |          |
| Infiltration Test                                 | Entech PH2     |                 |              |           |          |
| Infiltration Rate (inches / hour / sf)            | 1.67           |                 |              |           |          |
| Infiltration Rate (IR = ft / hour /sf)            | 0.139166667    |                 |              |           |          |
| Receive Flows from :                              | #80,#80a       |                 |              |           |          |
|                                                   |                | Reach Length    |              |           |          |
|                                                   | Area (ac)      | (Ft)            | Slope        | Coeff (C) | Tc (min) |
| Roof                                              |                |                 |              | 0.95      |          |
| Asphalt                                           |                |                 |              |           |          |
| UnDeveloped Land #80                              | 0.3670         | 135             | 11.1%        | 0.2       | 40.4     |
| Pond #80a                                         | 0.0081         |                 |              | 1         |          |
| Total                                             | 0.3751         |                 |              |           |          |
|                                                   |                |                 |              |           |          |
| Flow Coefficient of Runoff                        | 0.4100         |                 |              |           |          |
| Composite Area (ac)                               | 0.3751         |                 |              |           |          |
| Composite Curve #                                 |                |                 |              |           |          |
| -                                                 |                |                 |              |           |          |
|                                                   |                | Composite       |              |           |          |
| Hydrology Input                                   | Tc (min)       | Curve           |              |           |          |
| ,                                                 | 40.4           |                 |              |           |          |
|                                                   |                |                 |              |           |          |
|                                                   | 10 vr          | Storm           | 100 vr       | Storm     |          |
| Hydrology Output                                  | Qp (cfs)       | Vol (cf)        | Qp (cfs)     | Vol (cf)  |          |
| - yaranagy a arpar                                | 0.28           | 667             | 0.4          | 954       |          |
|                                                   | 2.17 off #10   |                 | 2.99 off #10 |           |          |
| Infiltration                                      |                |                 |              |           |          |
| Infiltration Surface Area Req'd (CF/IR/40hr) = SF |                | 120             |              | 171       |          |
|                                                   |                |                 |              |           |          |
|                                                   |                |                 |              |           |          |
|                                                   |                |                 |              |           |          |
| Pond Sizing - Truncated Conical Ellipse - FULL    |                |                 |              |           |          |
| Full Cone (top dimensions)                        |                |                 |              |           |          |
| Desired Depth                                     | 2              |                 |              |           |          |
| Side Slope X:1                                    | 3              |                 |              |           |          |
| Full Size (L1)                                    | 37             |                 |              |           |          |
| Base Length 'a' Long Axis radius (ft)             | 18.5           | W               |              |           |          |
| Full Size (L2)                                    | 28             |                 |              |           |          |
| Base Length 'b' Short Axis radius (ft)            | 14             |                 |              |           |          |
| Height of Full Cone (based on Side Slope) (ft) h1 | 4.7            |                 |              |           |          |
| Volume (cf)                                       | 1,266.1        |                 |              |           |          |
| 1 0.00 (0.1)                                      | 1,2011         |                 |              |           |          |
| Missing Cone (bottom dimensions)                  |                |                 |              |           |          |
| Missing Cone Height (ft) h2                       | 2.7            |                 |              |           |          |
| Base Length 'c' Long Axis radius (ft)             | 10.6           | w               |              |           |          |
| Base Length 'd' Short Axis radius (ft)            | 8.0            |                 |              |           |          |
| Volume (missing cone) (cf)                        | 236            |                 |              |           |          |
|                                                   | 230            |                 |              |           |          |
| Truncated Pond Volume (cf)                        | 1 030          | Greater Than    | 954          |           |          |
|                                                   | 1,000          | Silvator ritari | 334          |           |          |
| Full Pond Surface Area (sf)                       | 814            | sf              |              |           |          |
| Pond Bottom Surface Area (sf)                     |                | Greater Than    | 171          |           |          |
|                                                   |                | Silvator man    | .,,,         | 1         |          |

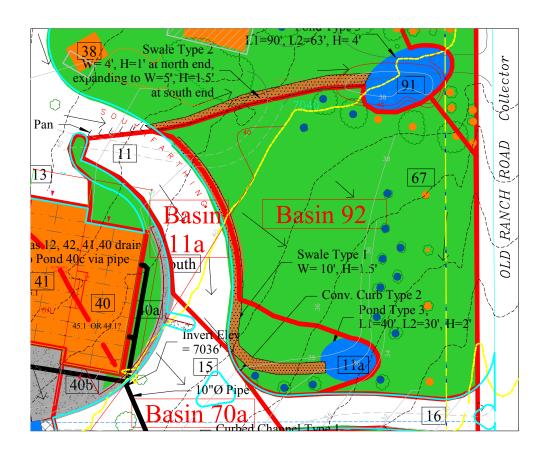

Basin 91




Pond #91 receives waters from mostly undeveloped land, some pavement and roof. Pavement waters are conveyed via grassed swale to pond #91

|                                                   | 10 yr S      | Storm    | 100 yr Storm |          |  |
|---------------------------------------------------|--------------|----------|--------------|----------|--|
| Hydrology Output                                  | Qp (cfs)     | Vol (cf) | Qp (cfs)     | Vol (cf) |  |
|                                                   | 1.8          | 6486     | 2.62         | 9,420    |  |
|                                                   | 2.17 off #10 |          | 2.99 off #10 |          |  |
| Infiltration                                      |              |          |              |          |  |
| Infiltration Surface Area Req'd (CF/IR/40hr) = SF |              | 1,165    |              | 1,692    |  |

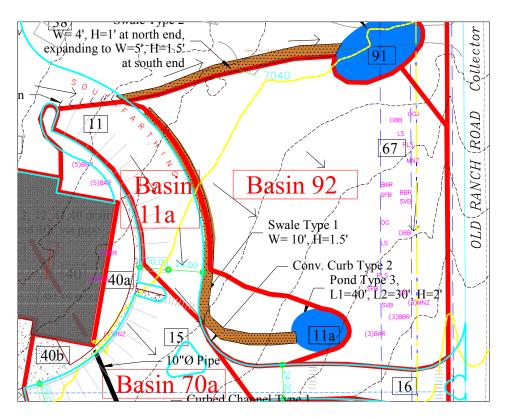
## Basin 91



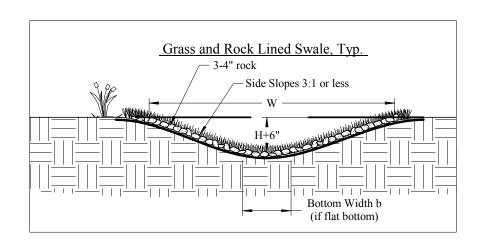

| Channel Parameters  |       |   |
|---------------------|-------|---|
| Bottom Width (ft) b | 1.00  | b |
| Side Slope X:1      | 3.00  |   |
| Depth (ft) h        | 0.50  | Н |
| Top Width (ft) W    | 4.00  | W |
| Flow Area           |       |   |
| Area (sf)           | 1.25  |   |
|                     |       |   |
| Wetted Perimeter    | 4.16  |   |
| Hydraulic Radius    | 0.30  |   |
| Flow Calc           |       |   |
| Slope (%)           | 1.25% |   |
| Mannings (n)        | 0.03  |   |
| Velocity (ft/sec)   | 2.49  |   |
| Area (sf)           | 1.25  |   |
| Flow (cf/sec)       | 3.12  |   |
|                     |       |   |



| Infiltration Pond #91                             | Hydrology File |                    | 10+13+81+    | 38+39+91 to | 91.hys   |
|---------------------------------------------------|----------------|--------------------|--------------|-------------|----------|
|                                                   | ,              |                    |              |             | ,        |
|                                                   |                |                    |              |             |          |
| Infiltration Test                                 | Entech PH2     |                    |              |             |          |
| Infiltration Rate (inches / hour / sf)            | 1.67           |                    |              |             |          |
| Infiltration Rate (IR = ft / hour /sf)            | 0.139166667    |                    |              |             |          |
| Receive Flows from :                              | 10,13,81,38,39 | 9.91               |              |             |          |
|                                                   | , , , ,        | Reach Length       |              |             |          |
|                                                   | Area (ac)      | (Ft)               | Slope        | Coeff (C)   | Tc (min) |
| Roof #38,#39                                      | 0.0000         |                    | '            | 0.95        | ,        |
| Asphalt #10, #13                                  | 0.0000         | 215                | 0.0428       | 0.95        | 11.6     |
| UnDeveloped Land#80,#81                           | 0.0000         | 450                | 3.3%         | 0.2         | 109.7    |
| Pond #91                                          | 0.0000         |                    | 0.070        | 1           |          |
| Total                                             | 0.0000         |                    |              |             |          |
| Total                                             | 0.0000         |                    |              |             |          |
| Flow Coefficient of Runoff                        | 0.4100         |                    |              |             |          |
| Composite Area (ac)                               | 0.0000         |                    |              |             |          |
| Composite Curve #                                 | 0.0000         |                    |              |             |          |
| Composite Curve #                                 |                |                    |              |             |          |
|                                                   |                | 0                  |              |             |          |
| Hydrology Input                                   | To (min)       | Composite<br>Curve |              |             |          |
| Hydrology Input                                   | Tc (min)       | Curve              |              |             |          |
|                                                   | 109.7          |                    |              |             |          |
|                                                   | 40             | 01                 | 400          | 01          |          |
|                                                   |                | Storm              |              | Storm       |          |
| Hydrology Output                                  | Qp (cfs)       | Vol (cf)           | Qp (cfs)     | Vol (cf)    |          |
|                                                   | 1.77           | 6369               | 2.57         | 9,250       |          |
|                                                   | 2.17 off #10   |                    | 2.99 off #10 | )           |          |
| Infiltration                                      |                |                    |              |             |          |
| Infiltration Surface Area Req'd (CF/IR/40hr) = SF |                | 1,144              |              | 1,662       |          |
|                                                   |                |                    |              |             |          |
|                                                   |                |                    |              |             |          |
| Pond Sizing - Truncated Conical Ellipse           |                |                    |              |             |          |
| Full Cone (top dimensions)                        |                |                    |              |             |          |
| Desired Depth                                     | 4              |                    |              |             |          |
| Side Slope X:1                                    | 3              |                    |              |             |          |
| Full Size (L1)                                    | 90             |                    |              |             |          |
| Base Length 'a' Long Axis radius (ft)             | 45             | а                  |              |             |          |
| Full Size (L2)                                    |                | W                  |              |             |          |
| Base Length 'b' Short Axis radius (ft)            | 31.5           | b                  |              |             |          |
| Height of Full Cone (based on Side Slope) (ft) h1 | 10.5           | h1                 |              |             |          |
| Volume (cf)                                       | 15,590.9       |                    |              |             |          |
|                                                   |                |                    |              |             |          |
| Missing Cone (bottom dimensions)                  |                |                    |              |             |          |
| Missing Cone Height (ft) h2                       | 6.5            |                    |              |             |          |
| Base Length 'c' Long Axis radius (ft)             | 27.9           | С                  |              |             |          |
| Base Length 'd' Short Axis radius (ft)            | 19.5           | d                  |              |             |          |
| Volume (missing cone) (cf)                        | 3,699          |                    |              |             |          |
|                                                   | ·              |                    |              |             |          |
| Truncated Pond Volume (cf)                        | 11,892         | Greater Than       | 9,250        |             |          |
|                                                   | ,              |                    | ,            |             |          |
| Full Pond Surface Area (sf)                       | 4455           | sf                 |              |             |          |
| Pond Bottom Surface Area (sf)                     |                | Greater Than       | 1,662        |             |          |
|                                                   | 1707           | J. Jacon I Hall    | .,002        | 1           | l        |

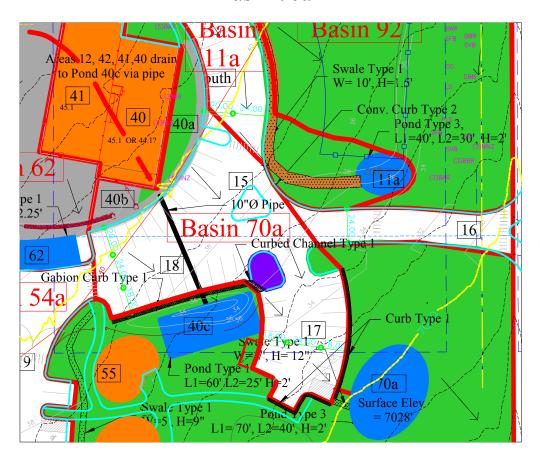

## Basin 11a




Pond #11a infiltrates waters from mostly concrete pavement and portion along the Basin 92.

|                                                   | 10 yr        | Storm    | 100 yr       | Storm    |  |
|---------------------------------------------------|--------------|----------|--------------|----------|--|
| Hydrology Output                                  | Qp (cfs)     | Vol (cf) | Qp (cfs)     | Vol (cf) |  |
|                                                   | 1.05         | 818      | 1.45         | 1,130    |  |
|                                                   | 2.17 off #10 |          | 2.99 off #10 |          |  |
| Infiltration                                      |              |          |              |          |  |
| Infiltration Surface Area Req'd (CF/IR/40hr) = SF |              | 147      |              | 203      |  |

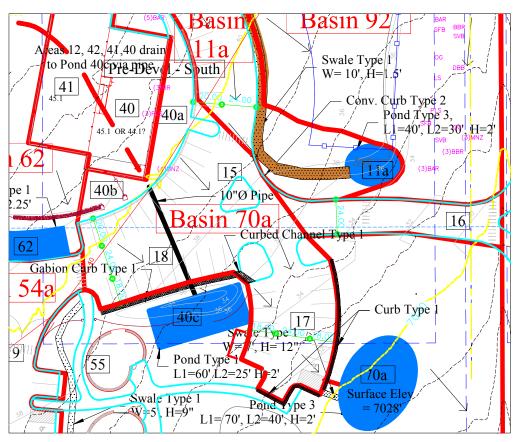
## Basin 11a

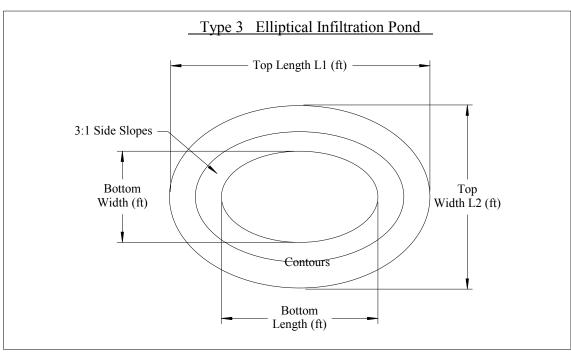



| Channel Parameters  |        |   |
|---------------------|--------|---|
| Bottom Width (ft) b | 1.00   | b |
| Side Slope X:1      | 3.00   |   |
| Depth (ft) H        | 1.50   | Н |
| Top Width (ft) W    | 10.00  | W |
| Flow Area           |        |   |
| Area (sf)           | 8.25   |   |
|                     |        |   |
| Wetted Perimeter    | 10.49  |   |
| Hydraulic Radius    | 0.79   |   |
| Flow Calc           |        |   |
|                     | 2 000/ |   |
| Slope (%)           | 3.00%  |   |
| Mannings (n)        | 0.30   |   |
| Velocity (ft/sec)   | 0.73   |   |
| Area (sf)           | 8.25   |   |
| Flow (cf/sec)       | 6.05   |   |
|                     |        |   |



| Infiltration Pond #11a                            | Hydrology File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 11 to 11a-F      | 2.hys     |          |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|-----------|----------|
|                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                  | ,         |          |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |           |          |
| Infiltration Test                                 | Entech PH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |           |          |
| Infiltration Rate (inches / hour / sf)            | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                  |           |          |
| Infiltration Rate (IR = ft / hour /sf)            | 0.139166667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                  |           |          |
| Receive Flows from :                              | 11+portion of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #92          |                  |           |          |
|                                                   | The state of the s | Reach Length |                  |           |          |
|                                                   | Area (ac)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Ft)         | Slope            | Coeff (C) | Tc (min) |
| Roof                                              | 1 11 0 01 (010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1-1)        | 0.000            | 0.95      | (******) |
| Asphalt                                           | 0.1403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 250          | 0.038            | 0.95      | 13.0     |
| UnDeveloped Land                                  | 0.0988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 250          | 3.8%             | 0.2       | 78.3     |
| Pond #11a                                         | 0.0261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 0.070            | 1         |          |
| Total                                             | 0.2652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                  |           |          |
| Total                                             | 0.2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                  |           |          |
| Flow Coefficient of Runoff                        | 0.4100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                  |           |          |
| Composite Area (ac)                               | 0.2652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                  |           |          |
| Composite Curve #                                 | 0.2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                  |           |          |
| Composite Garve #                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |           |          |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Composite    |                  |           |          |
| Hydrology Input                                   | Tc (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Curve        |                  |           |          |
| Trydrology input                                  | 78.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ourve        |                  |           |          |
|                                                   | 70.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                  |           |          |
|                                                   | 10 vr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Storm        | 100 vr           | Storm     |          |
| Hydrology Output                                  | Qp (cfs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vol (cf)     |                  | Vol (cf)  |          |
| Hydrology Output                                  | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 818          | Qp (cfs)<br>1.45 | 1,130     |          |
|                                                   | 2.17 off #10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 010          | 2.99 off #10     |           |          |
| Infiltration                                      | 2.17 011 #10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 2.99 011 #10     |           |          |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 147          |                  | 203       |          |
| Infiltration Surface Area Req'd (CF/IR/40hr) = SF |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 147          |                  | 203       |          |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |           |          |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |           |          |
| Pond Sizing - Truncated Conical Ellipse - FULL    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |           |          |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |           |          |
| Full Cone (top dimensions)                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                  |           |          |
| Desired Depth                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                  |           |          |
| Side Slope X:1                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                  |           |          |
| Full Size (L1)                                    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14/          |                  |           |          |
| Base Length 'a' Long Axis radius (ft)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W            |                  |           |          |
| Full Size (L2)                                    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                  |           |          |
| Base Length 'b' Short Axis radius (ft)            | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                  |           |          |
| Height of Full Cone (based on Side Slope) (ft) h1 | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n1           |                  |           |          |
| Volume (cf)                                       | 1,571.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                  |           |          |
| Missing Ones (In alternative extens)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |           |          |
| Missing Cone (bottom dimensions)                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                  |           |          |
| Missing Cone Height (ft) h2                       | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                  |           |          |
| Base Length 'c' Long Axis radius (ft)             | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                  |           |          |
| Base Length 'd' Short Axis radius (ft)            | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I            |                  |           |          |
| Volume (missing cone) (cf)                        | 339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                  |           |          |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |           |          |
| Truncated Pond Volume (cf)                        | 1,232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Greater Than | 1,130            |           |          |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |           |          |
| Full Pond Surface Area (sf)                       | 943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                  |           |          |
| Pond Bottom Surface Area (sf)                     | 339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Greater Than | 203              |           |          |

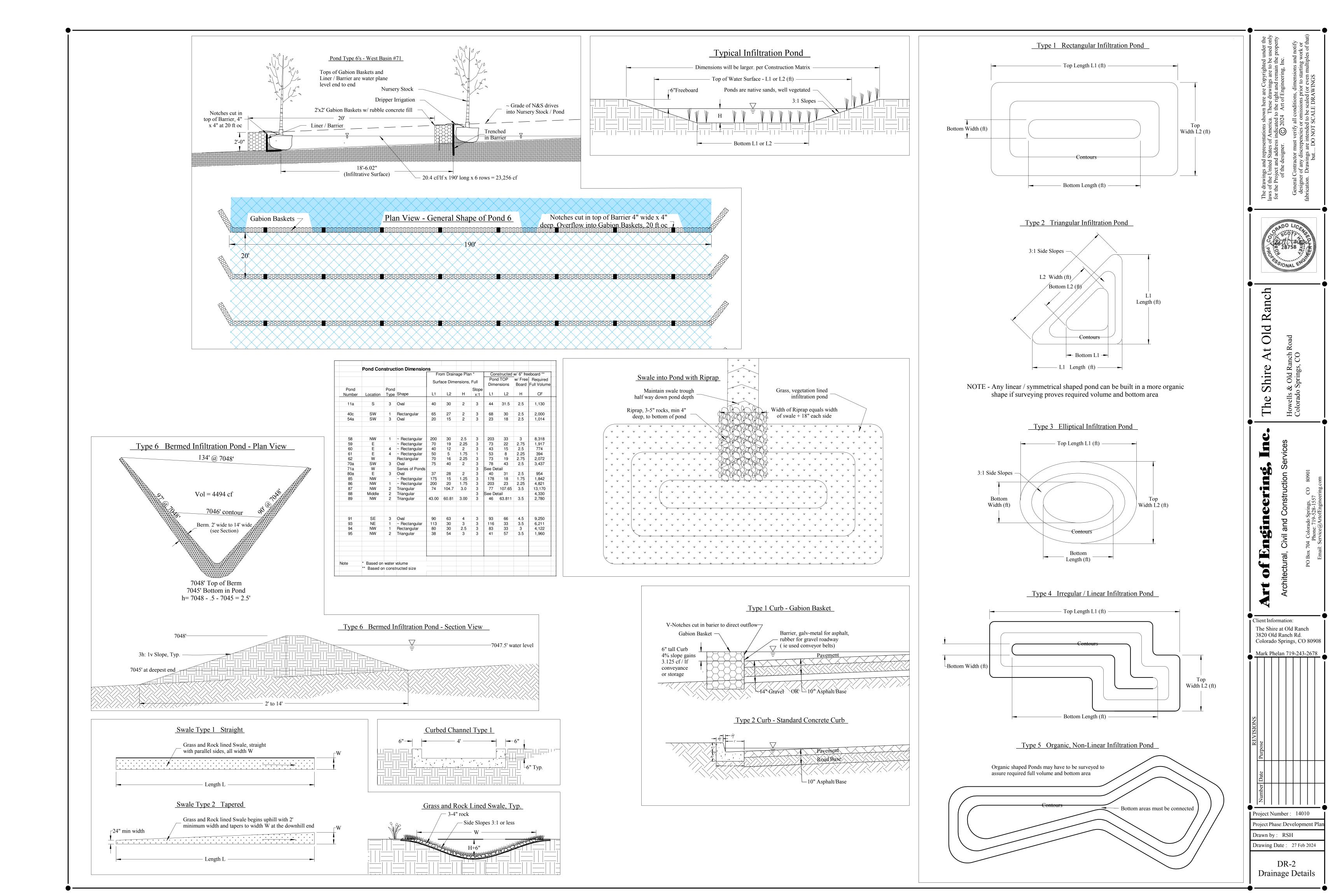

## Basin 70a




This basin collects waters from paved areas 15, 17, 18 and conveys waters via sheet flow to channels and then to pond #70a. #18 flows to a channel that discharges onto parking area #17 and then flows to 70a

|                                                        | 10 yr Stor           | 100 yr Storm |          |          |
|--------------------------------------------------------|----------------------|--------------|----------|----------|
| Hydrology Output                                       | Qp (cfs)             | Vol (cf)     | Qp (cfs) | Vol (cf) |
|                                                        | 3.24                 | 2,330        | 4.46     | 3,210    |
| Infiltration                                           |                      |              |          |          |
| Infiltration Surface Area Req'd to drain within 40 hrs | Infiltration Surface |              |          |          |
| (CF/IR/40hr) = SF                                      | Area Req'd (sf)      | 419          |          | 577      |

## Basin 70a






| Pond 70a                                           | Hydrology File       |              | 15+17+18 to | 70a.hys   |          |
|----------------------------------------------------|----------------------|--------------|-------------|-----------|----------|
|                                                    | , 0,                 |              |             | ,         |          |
|                                                    |                      |              |             |           |          |
| Infiltration Test                                  | Entech PH2           |              |             |           |          |
| Infiltration Rate (inches / hour / sf)             | 1.67                 |              |             |           |          |
| Infiltration Rate (IR = ft / hour /sf)             | 0.13916666666667     |              |             |           |          |
| Receive Flows from :                               | 15, 17, 18           |              |             |           |          |
|                                                    |                      | Reach Length |             |           |          |
|                                                    | Area (ac)            | (Ft)         | Slope       | Coeff (C) | Tc (min) |
|                                                    |                      |              |             |           |          |
| Roof                                               |                      | 330          | 3.3%        | 0.95      | 15.7     |
| Roads Gravel / Pavers                              |                      |              |             | 0.85      |          |
| Roads Asphalt #15,#17,#18,#40b                     | 0.489                | 213          | 4.2%        | 0.95      | 11.6     |
| Land #40a                                          | 0.074                | 300          | 3.3%        | 0.2       | 89.6     |
| Pond #70a                                          | 0.054                |              |             | 1         |          |
| Total                                              | 0.617                | ac           |             |           |          |
|                                                    |                      |              |             |           |          |
| Flow Coefficient of Runoff                         | 0.950                |              |             |           |          |
| Composite Area                                     | 0.617                |              |             |           |          |
| Composite Curve #                                  |                      |              |             |           |          |
|                                                    |                      |              |             |           |          |
| Hydrology Input                                    | Tc (min)             |              |             |           |          |
|                                                    | 7.7                  |              |             |           |          |
|                                                    |                      |              |             |           |          |
|                                                    | 10 yr St             | orm          | 100 yr      | Storm     |          |
| Hydrology Output                                   | Qp (cfs)             | Vol (cf)     | Qp (cfs)    | Vol (cf)  |          |
|                                                    | 3.24                 | 2,330        | 4.46        | 3,210     |          |
|                                                    |                      |              |             |           |          |
| Infiltration                                       |                      |              |             |           |          |
| Infiltration Surface Area Reg'd to drain within 40 | Infiltration Surface |              |             |           |          |
| hrs (CF/IR/40hr) = SF                              | Area Req'd (sf)      | 419          |             | 577       |          |
|                                                    |                      |              |             |           |          |
| Pond Sizing - Truncated Conical Ellipse            |                      |              |             |           |          |
| Full Cone (top dimensions)                         |                      |              |             |           |          |
| Desired Depth                                      | 2                    |              |             |           |          |
| Side Slope X:1                                     | 3                    |              |             |           |          |
| Full Size (L1)                                     | 75                   |              |             |           |          |
| Base Length 'a' Long Axis radius (ft)              | 37.5                 | W            |             |           |          |
| Full Size (L2)                                     | 40                   |              |             |           |          |
| Base Length 'b' Short Axis radius (ft)             | 20                   | L            |             |           |          |
| Height of Full Cone (based on Side Slope) (ft) h1  | 6.7                  | h1           |             |           |          |
| Volume (cf)                                        | 5,237.6              |              |             |           |          |
| , ,                                                |                      |              |             |           |          |
| Missing Cone (bottom dimensions)                   |                      |              |             |           |          |
| Missing Cone Height (ft) h2                        | 4.7                  |              |             |           |          |
| Base Length 'a' Long Axis radius (ft)              | 25.5                 | w            |             |           |          |
| Base Length 'b' Short Axis radius (ft)             | 8                    | I            |             |           |          |
| Volume (missing cone) (cf)                         | 997                  |              |             |           |          |
|                                                    |                      |              |             |           |          |
| Truncated Pond Volume (cf)                         | 4,240                | Greater Than | 3,210       |           |          |
|                                                    |                      |              |             |           |          |
| Full Pond Surface Area (sf)                        | 2357                 | sf           |             |           |          |
| Empty Pond Surface Area (sf)                       | 641                  | Greater Than | 577         |           |          |

|                       |                |             |              | 10 Y        | r Storm       | 100 Yr St       | orm       |                |
|-----------------------|----------------|-------------|--------------|-------------|---------------|-----------------|-----------|----------------|
| Storm F               | Runoff - Pre   | -Developmer | +            | Rate of Run | Volume of Run |                 | Volume of |                |
| Otomi i               | idiloli - i ic | Developmen  | •            | -off        | -off          | Rate of Run-off | Run-off   |                |
|                       |                | Composite   | Composite    |             | Volume cf 10  |                 | Volume cf |                |
| Run Free              | Basin          | Area (ac)   | Coeff RO     | Q cfs 10yr  | yr            | Q cfs 100 yr    | 100yr     | Includes       |
| Pre Development       | South          | 3.956       | 0.23         | 2.303       | 20,178        | 3.461           | 30315     |                |
|                       | Middle         | 9.221       | 0.21         | 3.036       | 24,226        | 4.545           | 36,265    |                |
|                       | North          | 6.806       | 0.23         | 1.496       | 11,128        | 2.233           | 16,613    |                |
|                       |                | Total       | Pre-Dev RO   | 3.21        | 55,532        | 10.239          | 83,193    |                |
|                       |                |             | Acre Feet    |             | 1.27          |                 | 1.91      |                |
| Storm R               | unoff - Pos    | t Developme | nt           |             |               |                 |           |                |
| Free Flowing off-site | Basin 72       |             |              | 0.86        | 4,458         | 1.27            | 6,563     | 51, 52, 72, 50 |
| Free Flowing off-site | Basin 70       |             |              | 0.86        | 4,907         | 1.27            | 7,251     | 53+54+55+48+70 |
| Free Flowing off-site | #20+#21        |             |              | 0.93        | 668           | 1.28            | 920       | 20,21          |
| Free Flowing off-site | Basin 92       |             |              | 0.818       | 3044          | 1.19            | 4426      | 16,66,67       |
|                       |                | Total Po    | st-Dev RO    | 3.468       | 13,077        | 5.01            | 19,160    |                |
|                       |                | Re          | duction of : | -0.258      | 42,455        | 5.229           | 64,033    |                |
|                       |                |             | cfs          | cf          | cfs           | cf              |           |                |
|                       |                | Re          | duction of : |             | 0.97          |                 | 1.47      |                |
|                       |                |             |              |             | acre-feet     |                 | acre-feet |                |





|                | Pond Co    | nstruc       | tion Dimensi    |       |          |          |              |        |               |      |                |
|----------------|------------|--------------|-----------------|-------|----------|----------|--------------|--------|---------------|------|----------------|
|                |            |              |                 | Fro   | m Drain  | age Plar | ነ *          | Con    | structed      |      | eboard **      |
|                |            |              |                 | Surfa | ace Dime | nsions,  | Full         |        | TOP<br>nsions | Free | Full<br>Volume |
| Pond<br>Number | Location   | Pond<br>Type | Shape           | L1    | L2       | Н        | Slope<br>x:1 | L1     | L2            | Н    | CF             |
| 11a            | S          | 3            | Oval            | 40    | 30       | 2        | 3            | 44     | 31.5          | 2.5  | 1,130          |
| 40c            | SW         | 1            | Rectangular     | 60    | 25       | 2        | 3            | 63     | 28            | 2.5  | 2,000          |
| 54a            | SW         | 3            | Oval            | 20    | 15       | 2        | 3            | 23     | 18            | 2.5  | 1,014          |
| 58             | NW         | 1            | ~ Rectangular   | 200   | 30       | 2.5      | 3            | 203    | 33            | 3    | 8,318          |
| 59             | E          |              | ~ Rectangular   | 70    | 19       | 2.25     | 3            | 73     | 22            | 2.75 | 1,917          |
| 60             | E          | 4            | ~ Rectangular   | 40    | 12       | 2        | 3            | 43     | 15            | 2.5  | 774            |
| 61             | E          | 4            | ~ Rectangular   | 50    | 13       | 1.75     | 1            | 53     | 16            | 2.25 | 394            |
| 62             | W          |              | Rectangular     | 70    | 16       | 2.25     | 3            | 73     | 19            | 2.75 | 2,072          |
| 70a            | SW         | 3            | Oval            | 75    | 40       | 2        | 3            | 78     | 43            | 2.5  | 3,210          |
| 71a            | W          |              | Series of Ponds | 3     |          |          | 3            | See De | tail          |      | ·              |
| 80a            | E          | 3            | Oval            | 37    | 28       | 2        | 3            | 40     | 31            | 2.5  | 954            |
| 85             | NW         |              | ~ Rectangular   | 175   | 15       | 1.25     | 3            | 178    | 18            | 1.75 | 1,842          |
| 86             | NW         | 1            | ~ Rectangular   | 200   | 20       | 1.75     | 3            | 203    | 23            | 2.25 | 4,821          |
| 87             | NW         | 2            | Triangular      | 74    | 104.7    | 3.0      | 3            | 77     | 107.65        | 3.5  | 13,170         |
| 88             | Middle     | 2            | Triangular      |       |          |          | 3            | See De | tail          |      | 4,330          |
| 89             | NW         | 2            | Triangular      | 43.00 | 60.81    | 3.00     | 3            | 46     | 63.811        | 3.5  | 2,780          |
|                |            |              |                 |       |          |          |              |        |               |      |                |
| 91             | SE         | 3            | Oval            | 90    | 63       | 4        | 3            | 93     | 66            | 4.5  | 9,250          |
| 93             | NE         | 1            | ~ Rectangular   | 113   | 30       | 3        | 3            | 116    | 33            | 3.5  | 6,211          |
| 94             | NW         | 1            | Rectangular     | 80    | 30       | 2.5      | 3            | 83     | 33            | 3    | 4,122          |
| 95             | NW         | 2            | Triangular      | 38    | 54       | 3        | 3            | 41     | 57            | 3.5  | 1,960          |
|                |            |              |                 |       |          |          |              |        |               |      |                |
| Note           | * Based or | water        | volume          |       |          |          |              |        |               |      |                |
| 1010           | ** Based o |              |                 |       |          |          |              |        |               |      |                |
|                | 24364 0    | 551151       | . 43104 0120    |       |          |          |              |        | <del> </del>  |      |                |

|              | Surface Areas List            |                 |         |                           |                            |           |              |                   |
|--------------|-------------------------------|-----------------|---------|---------------------------|----------------------------|-----------|--------------|-------------------|
|              | Surface Aleas List            |                 |         |                           |                            |           |              |                   |
| Sub<br>Basin | Location                      | Туре            | Surface | Coeff<br>of<br>RO<br>10yr | Coeff<br>of<br>RO<br>100yr | Area (sf) | Area<br>(ac) | Area (sq<br>mile) |
| 0            | Pre-Development               |                 |         |                           |                            | ` ,       | , ,          | ,                 |
| 1            | North Greenhouse (rd & lot)   | P&D             | Gravel  | 0.8                       | 0.85                       | 22,074    | 0.5067       | 0.000792          |
| 2            | not used                      |                 |         | 0.8                       | 0.85                       | 20,036    | 0.4600       | 0.000719          |
| 3            | NE Lot                        | P&D             | Paved   | 0.9                       | 0.95                       | 3,243     | 0.0744       | 0.000116          |
| 4            | Maintenance Building Lot      | P&D             | Gravel  | 0.8                       | 0.85                       | 5,195     | 0.1193       | 0.000186          |
| 5            | North Lot                     | P&D             | Paved   | 0.9                       | 0.95                       | 13,004    | 0.2985       | 0.000466          |
|              |                               |                 |         |                           |                            |           | 0.4922       |                   |
| 6            | NE Gathering Driveway         | Driving         | Paved   | 0.9                       | 0.95                       | 3,001     | 0.0689       | 0.000108          |
| 7            | Barn Driveway                 | Driving         | Gravel  | 0.8                       | 0.85                       | 2,395     | 0.0550       | 0.000086          |
| 8            | Barn Parking                  | Parking         | Paved   | 0.9                       | 0.95                       | 3,511     | 0.0806       | 0.000126          |
| 9            | East Lot north                | P&D             | Paved   | 0.9                       | 0.95                       | 4,044     | 0.0928       | 0.000145          |
| 10           | East Lot middle               | P&D             | Paved   | 0.9                       | 0.95                       | 3,222     | 0.0740       | 0.000116          |
| 11           | East Lot south & South Lot    | P&D             | Paved   | 0.9                       | 0.95                       | 6,111     | 0.1403       | 0.000219          |
| 12           | Truck Dock @ Coop             | Driving         | Paved   | 0.9                       | 0.95                       | 1,965     | 0.0451       | 0.000070          |
| 13           | Staging Area                  | Storage         | Gravel  | 8.0                       | 0.85                       | 3,146     | 0.0722       | 0.000113          |
| 14           | not used                      |                 |         |                           |                            |           |              | 0.000000          |
| 15           | South Junction                | Driving         | Paved   | 0.9                       | 0.95                       | 4,471     | 0.1026       | 0.000160          |
| 16           | South Entrance                | Driving         | Paved   | 0.9                       | 0.95                       | 5,213     | 0.1197       | 0.000187          |
| 17           | SSW Parking                   | Parking         | Paved   | 0.9                       | 0.95                       | 5,209     | 0.1196       | 0.000187          |
| 18           | SW Parking                    | P & D           | Paved   | 0.9                       | 0.95                       | 6,425     | 0.1475       | 0.000230          |
| 19           | West Entrance                 | Driving         | Paved   | 0.9                       | 0.95                       | 6,042     | 0.1387       | 0.000217          |
| 20           | Truck Dock                    | Driving         | Paved   | 0.9                       | 0.95                       | 5,638     | 0.1294       | 0.000202          |
| 21           | West Entrance (fork)          | Driving         | Paved   | 0.9                       | 0.95                       | 1,311     | 0.0301       | 0.000047          |
| 22           | West Paking                   | Xeriscaped      |         | 0.05                      | 0.25                       | 13,861    | 0.3182       | 0.000497          |
| 23           | not used                      |                 |         |                           |                            |           |              | 0.000000          |
| 24           | NW & Bathhouse                | P & D           | Gravel  | 8.0                       | 0.85                       | 12,045    | 0.2765       | 0.000432          |
| 25           | Main Courtyard                | Walking         | Pavers  | 0.6                       | 0.75                       | 11,666    | 0.2678       | 0.000418          |
| 26           | Courtyard west of N coop      | Walking         | Pavers  | 0.6                       | 0.75                       | 5,492     | 0.1261       | 0.000197          |
| 27           | Courtyard west of Vistor Ctr  | Walking         | Pavers  | 0.6                       | 0.75                       | 992       | 0.0228       | 0.000036          |
| 28           | Courtyard north of Cafe       | Walking         | Pavers  | 0.6                       | 0.75                       | 6,607     | 0.1517       | 0.000237          |
| 29           | Courtyard between Health & Ca | Walking         | Pavers  | 0.6                       | 0.75                       | 3,153     | 0.0724       | 0.000113          |
|              |                               |                 |         |                           |                            |           |              | 0.000000          |
|              | ROOFS                         |                 |         |                           |                            |           |              | 0.000000          |
|              |                               |                 |         |                           |                            |           | 0.000        | 0.000000          |
| 30           | EIH                           | Earth Sheltered |         |                           |                            | 400       | 0.0092       | 0.000014          |
| 31           | EIH                           | Earth Sheltered |         |                           |                            | 563       | 0.0129       | 0.000020          |
| 32           | EIH                           | Earth Sheltered |         |                           |                            | 400       | 0.0092       | 0.000014          |
| 33           | EIH                           | Earth Sheltered |         |                           |                            | 563       | 0.0129       | 0.000020          |
| 34           | EIH                           | Earth Sheltered |         |                           |                            | 400       | 0.0092       | 0.000014          |
| 35           | EIH 6= 2889sf=5.5% of #76     | Earth Sheltered |         | 0.0                       | 0.05                       | 563       | 0.0129       | 0.000020          |
| 36           | Maintenance Bldg              | Roof            |         | 0.9                       | 0.95                       | 4,752     | 0.1091       | 0.000170          |
| 37           | Barn Bldg                     | Roof            |         | 0.9                       | 0.95                       | 2,448     | 0.0562       | 0.000088          |
| 38           | Well House                    | Roof            |         | 0.9                       | 0.95                       | 384       | 0.0088       | 0.000014          |

| Alice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39  | House @ 3890 ORR            | Roof           | 0.9  | 0.95 | 3,246                                 | 0.0745 | 0.000116 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------|----------------|------|------|---------------------------------------|--------|----------|
| A0B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | _                           |                |      |      |                                       |        |          |
| Authorst   Authorst  |     | ,                           |                | 0.0  | 0.00 | •                                     |        |          |
| 41   Creenhouse, North   Roof   0.9   0.95   4200   0.0964   0.000151     42   Coop Bldg, South   Roof   0.9   0.95   4,200   0.0964   0.000151     43   Coop Bldg, North   Roof   0.9   0.95   8,750   0.2009   0.000314     44   Health Bldg   Roof   0.9   0.95   2,609   0.000314     45   Gathering Bldg   Roof   0.9   0.95   2,609   0.000031     46   Cafe   Roof   0.9   0.95   3,704   0.0650   0.000133     46   Cafe   Roof   0.9   0.95   3,704   0.0650   0.000133     47   Visitor Ctr   Roof   0.9   0.95   2,717   0.0623   0.000097     48   House @ 3820 ORR   Roof   0.9   0.95   2,177   0.0623   0.000097     49   House @ 10855 Howells Rd   Roof   0.9   0.95   1,550   0.0356   0.000130     49   House @ 10755 Howells Rd   Roof   0.9   0.95   1,550   0.0356   0.000056     50   House @ 10755 Howells Rd   Roof   0.9   0.95   1,932   0.0444   0.000069     51   Bath House   Roof   0.9   0.95   1,932   0.0444   0.000069     52   Yurts x 4   Roof   0.9   0.95   1,100   0.0253   0.000039     54   Craft 2   0.9   0.95   1,100   0.0253   0.000039     54   Craft 2   0.9   0.95   1,100   0.0253   0.000039     55   Craft 3   0.9   0.95   1,100   0.0253   0.000039     56   North Shed   877   0.0201   0.000011     57   North Greenhouse   Roof   0.9   0.95   4,773   0.1096   0.000171     58   Pond   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   807   8 |     |                             |                |      |      |                                       |        |          |
| A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                             |                | 0.9  | 0.95 | · · · · · · · · · · · · · · · · · · · |        |          |
| 43   Coop Bldg, North   Roof   0.9   0.95   8,750   0.2009   0.000314     44   Health Bldg   Roof   0.9   0.95   2,609   0.00099   0.000094     45   Gathering Bldg   Roof   0.9   0.95   2,609   0.00093   0.000094     46   Cafe   Roof   0.9   0.95   2,712   0.0623   0.000097     47   Visitor Ctr   Roof   0.9   0.95   2,712   0.0623   0.000097     48   House @ 3820 ORR   Roof   0.9   0.95   2,177   0.0500   0.000078     49   House @ 10855 Howells Rd   Roof   0.9   0.95   1,550   0.0366   0.000120     50   House @ 10755 Howells Rd   Roof   0.9   0.95   1,550   0.0366   0.000026     51   Bath House   Roof   0.9   0.95   1,932   0.0444   0.000098     52   Yurts x 4   Roof   0.9   0.95   1,932   0.0444   0.000098     53   Craft 1   0.9   0.95   1,100   0.0253   0.000039     54   Craft 2   0.9   0.95   1,100   0.0253   0.000039     54   Craft 2   0.9   0.95   1,100   0.0253   0.000039     55   Craft 3   0.9   0.95   1,100   0.0253   0.000039     56   North Shed   1.571   0.0036   0.000171   0.000018     57   North Greenhouse   Roof   0.9   0.95   1,100   0.0253   0.000039     58   Pond   0.9   0.95   1,100   0.0253   0.000039   0.000071   0.000018   0.000171   0.000018   0.000171   0.000018   0.000171   0.000018   0.000171   0.000018   0.000171   0.000018   0.0000171   0.000018   0.000171   0.000018   0.0000171   0.000018   0.0000171   0.000018   0.0000171   0.000018   0.0000171   0.000018   0.0000171   0.000018   0.0000018   0.00000018   0.00000018   0.00000018   0.000000018   0.0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | ,                           |                |      |      |                                       |        |          |
| Health Bidg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                             |                |      |      |                                       |        |          |
| 45         Gathering Bldg         Roof         0.9         0.95         3,704         0.0850         0.000133           46         Cafe         Roof         0.9         0.95         2,712         0.0623         0.000097           47         Visitor Ctr         Roof         0.9         0.95         2,2177         0.0500         0.000078           48         House @ 10855 Howells Rd         Roof         0.9         0.95         1,550         0.00078           49         House @ 10755 Howells Rd         Roof         0.9         0.95         1,550         0.00078           50         House @ 10755 Howells Rd         Roof         0.9         0.95         1,932         0.0444         0.00003           51         Bath House         Roof         0.9         0.95         1,812         0.0446         0.000035           52         Yurts x 4         Roof         0.9         0.95         1,100         0.0253         0.000039           54         Craft 2         0.9         0.95         1,100         0.0253         0.000039           54         Craft 3         0.9         0.95         1,100         0.0253         0.000030           55         Craft 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                             |                |      |      |                                       |        |          |
| 46         Cafe         Roof         0.9         0.95         2,712         0.0623         0.000097           47         Visitor Ctr         Roof         0.9         0.95         3,335         0.0768         0.000120           48         House @ 10855 Howells Rd         Roof         0.9         0.95         2,177         0.0500         0.000078           50         House @ 10755 Howells Rd         Roof         0.9         0.95         1,1550         0.0346         0.000056           51         Bath House         Roof         0.9         0.95         1,132         0.0444         0.000033           52         Yurts x 4         Roof         0.9         0.95         1,110         0.0253         0.000033           54         Craft 2         0.9         0.95         1,100         0.0253         0.000033           54         Craft 2         0.9         0.95         1,100         0.0253         0.000039           54         Craft 2         0.9         0.95         1,100         0.0253         0.000039           54         Craft 2         0.9         0.95         1,773         0.00017         0.00003           55         Craft 3         0.9 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                             |                |      |      |                                       |        |          |
| Visitor Ctr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                             |                |      |      |                                       |        |          |
| House @ 3820 ORR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                             |                |      |      |                                       |        |          |
| House   10855 Howells Rd   Roof   0.9   0.95   1,550   0.0356   0.00056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | House @ 3820 ORR            |                |      |      |                                       |        |          |
| 50         House @ 10755 Howells Rd         Roof         0.9         0.95         931         0.0214         0.000069           51         Bath House         Roof         0.9         0.95         931         0.0214         0.000063           52         Yurks x 4         Roof         0.9         0.95         1,100         0.0253         0.000039           54         Craft 2         0.9         0.95         1,100         0.0253         0.000039           54         Pond 54a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | _                           |                |      |      |                                       |        |          |
| 51         Bath House         Roof         0.9         0.95         931         0.0214         0.000033           52         Yurfs x 4         Roof         0.9         0.95         1,812         0.0416         0.000039           54         Craft 1         0.9         0.95         1,100         0.0253         0.000039           54         Craft 2         0.9         0.95         1,100         0.0253         0.000039           54a         Pond 54a          1,571         0.0361            55         Craft 3          0.9         0.95         1,100         0.0263         0.000039           55         North Shed          877         0.0201         0.00003         0.000171         0.0021         0.0000171         0.0021         0.00003         0.000171         0.0021         0.000171         0.0025         0.000171         0.0021         0.000171         0.0021         0.000171         0.0021         0.000171         0.0021         0.000171         0.0002         0.00003         0.00001         0.00001         0.00001         0.00001         0.00001         0.00001         0.00001         0.00001         0.00001         0.00001         0.00001 <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | _                           |                |      |      |                                       |        |          |
| 52         Yurts x 4         Roof         0.9         0.95         1,812         0.0416         0.000065           53         Craft 1         0.9         0.95         1,100         0.0253         0.000039           54         Craft 2         0.9         0.95         1,100         0.0253         0.000039           54         Pond 54a         1,571         0.0361         0.000039         0.000031         877         0.0201         0.000031           55         Craft 3         0.9         0.95         1,100         0.0263         0.000031           56         North Shed         877         0.0201         0.000031         0.000031           57         North Greenhouse         Roof         0.9         0.95         4,773         0.1096         0.000171           58         Pond         6         6,000         0.1377         0.000215         0.9000         0.1377         0.000215         0.9000         0.1377         0.000215         0.90000         0.1377         0.000215         0.9000         0.1377         0.000215         0.9000         0.1377         0.00020         0.00003         0.00003         0.00003         0.00003         0.00003         0.00003         0.00003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                             |                |      |      | · · · · · · · · · · · · · · · · · · · |        |          |
| 53         Craft 1         0.9         0.95         1,100         0.0253         0.000039           544         Craft 2         0.9         0.95         1,100         0.0253         0.000039           54a         Pond 54a         1,571         0.0361         1,571         0.0361           55         Craft 3         0.9         0.95         1,100         0.0253         0.000039           56         North Shed         877         0.0201         0.000031           57         North Greenhouse         Roof         0.9         0.95         4,773         0.1096         0.000171           58         Pond         60         0.95         4,773         0.00021         0.000021           59         Pond adjacent to Corral         1,487         0.0341         0.000053           60         Pond west of Barn         1,024         0.0235         0.000029           61         Pond west of Corral         802         0.0144         0.00029           62         Pond west of Plaza         1,894         0.0435         0.00002           63         Swale at south entrance         0.000         0.00000         0.00000           64         Swale at south entrance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                             |                |      |      |                                       |        |          |
| 544         Craft 2         0.9         0.95         1,100         0.0253         0.000039           54a         Pond 54a         0.9         0.95         1,571         0.0361           55         Craft 3         0.9         0.95         1,100         0.0253         0.000039           56         North Shed         877         0.0201         0.000031           57         North Greenhouse         Roof         0.9         0.95         4,773         0.1096         0.000171           58         Pond         6,000         0.1377         0.000215         0.000171         0.000171         0.000171         0.0000         0.00001         0.000053         0.000053         0.000053         0.000053         0.000053         0.000053         0.000053         0.000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.0000053         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                             |                |      |      |                                       |        |          |
| 54a         Pond 54a         0.9         0.95         1,100         0.0253         0.000039           55         North Shed         877         0.0201         0.000031           57         North Greenhouse         Roof         0.9         0.95         4,773         0.1096         0.000171           58         Pond         6,000         0.1377         0.000215         0.000031         0.000031         0.000031         0.000031         0.000171         0.000215         0.0000         0.1377         0.000215         0.0000         0.1377         0.000215         0.0000         0.1377         0.000215         0.0000         0.00000         0.00000         0.00000         0.000003         0.00003         0.00003         0.00003         0.00003         0.000003         0.00003         0.00003         0.00003         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.00000         0.000000         0.00000         0.00000         0.00000         0.00000         0.000000         0.00000         0.00000         0.00000         0.000000         0.000000         0.000000         0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                             |                |      |      |                                       |        |          |
| 55         Craft 3         0.9         0.95         1,100         0.0253         0.000039           56         North Shed         877         0.0201         0.000031           57         North Greenhouse         Roof         0.9         0.95         4,773         0.1096         0.000171           58         Pond         60         0.9         0.95         4,773         0.1096         0.000171           59         Pond adjacent to Corral         6,000         0.1377         0.000215         0.000037           60         Pond west of Barn         1,024         0.0235         0.00003           61         Pond west of Corral         802         0.0184         0.000029           62         Pond west of Plaza         1,894         0.0435         0.000068           63         Swale at south entrance         0.0000         0.00000         0.00000           64         Swale at south entrance         2,119         0.0500         0.00000           65         Borders ORR near S Entrance         2,219         0.0500         0.00000           66         SE Garden, South         30,723         0.7053         0.001102           68         Not used         0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                             |                |      |      | •                                     |        |          |
| 56         North Shed         Roof         0.9         0.95         4,773         0.0201         0.000031           57         North Greenhouse         Roof         0.9         0.95         4,773         0.1096         0.000171           58         Pond         6,000         0.1377         0.000215           59         Pond adjacent to Corral         1,487         0.0341         0.000037           60         Pond west of Barn         1,024         0.0235         0.000037           61         Pond west of Corral         802         0.0184         0.000029           62         Pond west of Plaza         1,894         0.0435         0.000008           63         Swale at south entrance         0.0000         0.00000         0.00000           64         Swale at south entrance         0.0000         0.00000         0.00000           65         Borders ORR near S Entrance         2,219         0.0509         0.00000           66         SE corner of 3890         13,332         0.3061         0.000478           67         SEE Garden, South         30,723         0.7053         0.001102           68         Not used         0.000         0.00000         0.00000 <td< td=""><td></td><td></td><td></td><td>0.9</td><td>0.95</td><td><u> </u></td><td></td><td>0.000039</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                             |                | 0.9  | 0.95 | <u> </u>                              |        | 0.000039 |
| 57         North Greenhouse         Roof         0.9         0.95         4,773         0.1096         0.000171           58         Pond         6,000         0.1377         0.000215           59         Pond adjacent to Corral         1,024         0.0341         0.000053           60         Pond west of Barn         1,024         0.0235         0.000037           61         Pond west of Corral         802         0.0184         0.000029           62         Pond west of Plaza         1,894         0.0435         0.000068           63         Swale at south entrance         0.0000         0.00000         0.00000           64         Swale at south entrance         2,219         0.0509         0.00000           65         Borders ORR near S Entrance         2,219         0.0509         0.00000           66         SE corner of 3890         13,332         0.3061         0.000478           67         SEE Garden, South         30,723         0.7053         0.001102           68         Not used         0.0000         0.00000         0.00000           70         LOT 3820 Old Ranch         Ag / Undevel'd         0.15         0.2         73,253         1.6817         0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                             |                |      |      |                                       |        |          |
| 58         Pond         6,000         0.1377         0.000215           59         Pond adjacent to Corral         1,487         0.0341         0.000053           60         Pond west of Barn         1,024         0.0235         0.000037           61         Pond west of Corral         802         0.0184         0.000029           62         Pond west of Plaza         1,894         0.0435         0.00000           63         Swale at south entrance         0.0000         0.00000         0.00000           64         Swale at south entrance         2,219         0.0509         0.00000           65         Borders ORR near S Entrance         2,219         0.0509         0.00000           66         SE corner of 3890         13,332         0.3061         0.00048           67         SEE Garden, South         30,723         0.7053         0.001102           68         Not used         0.0000         0.00000         0.00000           69         LAND         0.000         0.00000         0.00000           70         LOT 3820 Old Ranch         Ag / Undevel'd         0.15         0.2         73,253         1,6817         0.002628           70a         Pond at 3820 ORR <td></td> <td></td> <td>Roof</td> <td>0.9</td> <td>0.95</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                             | Roof           | 0.9  | 0.95 |                                       |        |          |
| 59         Pond adjacent to Corral         1,487         0.0341         0.000053           60         Pond west of Barn         1,024         0.0235         0.000037           61         Pond west of Plaza         802         0.0184         0.000029           62         Pond west of Plaza         1,894         0.0435         0.000068           63         Swale at south entrance         0.0000         0.00000         0.00000           64         Swale at south entrance         0.0000         0.00000         0.00000           65         Borders ORR near S Entrance         2,219         0.0509         0.00000           66         SE corner of 3890         13,332         0.3061         0.000478           67         SEE Garden, South         30,723         0.7053         0.001102           68         Not used         0.0000         0.00000         0.00000         0.00000           69         LAND         0.05         0.2         73,253         1.6817         0.002628           70a         Pond at 3820 Old Ranch         Ag / Undevel'd         0.15         0.2         73,253         1.6817         0.002628           71         Nursery Stock         Ag / Undevel'd         0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                             |                |      |      |                                       |        |          |
| 60         Pond west of Barn         1,024         0.0235         0.000037           61         Pond west of Corral         802         0.0184         0.000029           62         Pond west of Plaza         1,894         0.0435         0.000068           63         Swale at south entrance         0.0000         0.00000         0.00000           64         Swale at south entrance         0.0000         0.00000         0.00000           65         Borders ORR near S Entrance         2,219         0.0509         0.00008           66         SE corner of 3890         13,332         0.3061         0.000478           67         SEE Garden, South         30,723         0.7053         0.001102           68         Not used         0.0000         0.0000         0.00000           69         LAND         0.000         0.0000         0.00000           70         LOT 3820 Old Ranch         Ag / Undevel'd         0.15         0.2         73,253         1.6817         0.002628           70a         Pond at 3820 ORR         2,357         0.0541         0.0541         0.0541         0.002410         0.15         0.2         56,613         1.2997         0.002031           71a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                             |                |      |      |                                       |        |          |
| 61         Pond west of Corral         802         0.0184         0.000029           62         Pond west of Plaza         1,894         0.0435         0.000068           63         Swale at south entrance         0.0000         0.0000         0.00000           64         Swale at south entrance         0.0000         0.0000         0.00000           65         Borders ORR near S Entrance         2,219         0.0509         0.000080           66         SE corner of 3890         13,332         0.3061         0.000478           67         SEE Garden, South         30,723         0.7053         0.01102           68         Not used         0.0000         0.00000         0.00000           69         LAND         0.0000         0.00000         0.00000           70         LOT 3820 Old Ranch         Ag / Undevel'd         0.15         0.2         73,253         1.6817         0.002628           70a         Pond at 3820 ORR         2,357         0.0541         0.002628         0.002410         0.15         0.2         73,253         1.6817         0.002628           71         Nursery Stock         Ag / Undevel'd         0.15         0.2         56,613         1.2997         0.002031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                             |                |      |      |                                       |        |          |
| 62         Pond west of Plaza         1,894         0.0435         0.000068           63         Swale at south entrance         0.0000         0.00000         0.00000           64         Swale at south entrance         0.0000         0.00000         0.00000           65         Borders ORR near S Entrance         2,219         0.0509         0.000080           66         SE corner of 3890         13,332         0.3061         0.000478           67         SEE Garden, South         30,723         0.7053         0.001102           68         Not used         0.0000         0.00000         0.00000           69         LAND         0.000         0.00000         0.00000           70         LOT 3820 Old Ranch         Ag / Undevel'd         0.15         0.2         73,253         1.6817         0.002628           70a         Pond at 3820 ORR         2,357         0.0541         0.002628           71         Nursery Stock         Ag / Undevel'd         0.15         0.2         56,613         1.2997         0.002031           71         Pollinator Garden         0.15         0.2         67,180         1.5422         0.002410           73         LOT 10655 Howells         Ag /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                             |                |      |      | •                                     |        |          |
| 63         Swale at south entrance         0.0000         0.00000         0.00000         0.00000           64         Swale at south entrance         0.0000         0.00000         0.00000           65         Borders ORR near S Entrance         2,219         0.0509         0.000080           66         SE corner of 3890         13,332         0.3061         0.000478           67         SEE Garden, South         30,723         0.7053         0.001102           68         Not used         0.0000         0.00000         0.00000           69         LAND         0.0000         0.00000         0.00000           70         LOT 3820 Old Ranch         Ag / Undevel'd         0.15         0.2         73,253         1.6817         0.002628           70a         Pond at 3820 ORR         2,357         0.0541         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628         0.002628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62  | Pond west of Plaza          |                |      |      |                                       |        |          |
| 64         Swale at south entrance         0.0000         0.00000           65         Borders ORR near S Entrance         2,219         0.0509         0.000080           66         SE corner of 3890         13,332         0.3061         0.000478           67         SEE Garden, South         30,723         0.7053         0.001102           68         Not used         0.0000         0.00000         0.00000           69         LAND         0.000         0.00000         0.00000           70         LOT 3820 Old Ranch         Ag / Undevel'd         0.15         0.2         73,253         1.6817         0.002628           70a         Pond at 3820 ORR         2,357         0.0541         0.002628         0.0000         0.00000         0.00000         0.00000         0.00000         0.00000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.0000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.0000000         0.000000         0.000000         0.000000         0.000000         0.0000000         0.000000         0.0000000         0.0000000         0.00000000         0.0000000         0.0000000         0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63  | Swale at south entrance     |                |      |      | ,                                     |        |          |
| 66         SE corner of 3890         13,332         0.3061         0.000478           67         SEE Garden, South         30,723         0.7053         0.001102           68         Not used         0.0000         0.00000         0.00000           69         LAND         0.015         0.2         73,253         1.6817         0.002628           70a         Pond at 3820 ORR         2,357         0.0541         0.002628           71         Nursery Stock         Ag / Undevel'd         0.15         0.2         56,613         1.2997         0.002031           71a         Pollinator Garden         0.15         0.2         56,613         1.2997         0.002031           71a         Pollinator Garden         0.15         0.2         56,613         1.2997         0.002031           71a         Pollinator Garden         0.00         0.00         0.002410         0.15         0.2         56,613         1.2997         0.002231           71a         Pollinator Garden         0.15         0.2         56,613         1.2997         0.002231           71a         Pollinator Garden         0.00         0.15         0.2         67,180         1.5422         0.0022410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | Swale at south entrance     |                |      |      |                                       | 0.0000 |          |
| 66         SE corner of 3890         13,332         0.3061         0.000478           67         SEE Garden, South         30,723         0.7053         0.001102           68         Not used         0.0000         0.00000         0.00000           69         LAND         0.015         0.2         73,253         1.6817         0.002628           70a         Pond at 3820 ORR         2,357         0.0541         0.002628           71         Nursery Stock         Ag / Undevel'd         0.15         0.2         56,613         1.2997         0.002031           71a         Pollinator Garden         0.15         0.2         56,613         1.2997         0.002031           71a         Pollinator Garden         0.15         0.2         56,613         1.2997         0.002031           71a         Pollinator Garden         0.00         0.00         0.002410         0.15         0.2         56,613         1.2997         0.002031           71a         Pollinator Garden         0.00         0.00         0.002410         0.15         0.2         56,613         1.2997         0.002231           71a         Pollinator Garden         0.00         0.00         0.00         0.00240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65  | Borders ORR near S Entrance |                |      |      | 2,219                                 | 0.0509 | 0.000080 |
| 68         Not used         0.0000         0.000000         0.00000         0.00000         0.00000         0.00000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.000000         0.0002628         1.6817         0.002628         0.002410         0.00000         0.000000         0.0002628         0.002410         0.000000         0.0002031         0.000000         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031         0.0002031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                             |                |      |      |                                       |        |          |
| 69         LAND         Ag / Undevel'd         0.000         0.0000         0.00000           70         LOT 3820 Old Ranch         Ag / Undevel'd         0.15         0.2         73,253         1.6817         0.002628           70a         Pond at 3820 ORR         2,357         0.0541         0.002031           71         Nursery Stock         Ag / Undevel'd         0.15         0.2         56,613         1.2997         0.002031           71a         Pollinator Garden         90,002         0.002410         0.002         0.002410         0.002         0.002410         0.002         0.002410         0.002         0.002410         0.002410         0.002         0.002410         0.002410         0.002         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410         0.002410 </td <td>67</td> <td>SEE Garden, South</td> <td></td> <td></td> <td></td> <td>30,723</td> <td>0.7053</td> <td>0.001102</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 67  | SEE Garden, South           |                |      |      | 30,723                                | 0.7053 | 0.001102 |
| 70         LOT 3820 Old Ranch         Ag / Undevel'd         0.15         0.2         73,253         1.6817         0.002628           70a         Pond at 3820 ORR         2,357         0.0541           71         Nursery Stock         Ag / Undevel'd         0.15         0.2         56,613         1.2997         0.002031           71a         Pollinator Garden         0.15         0.2         67,180         1.5422         0.002410           72         LOT 10655 Howells         Ag / Undevel'd         0.15         0.2         67,180         1.5422         0.002410           73         LOT 10755 Howells         Ag / Undevel'd         0.15         0.2         33,996         0.7804         0.001219           74         East of Leach Field         Ag / Undevel'd         0.15         0.2         15,355         0.3525         0.000551           75         NE Garden         Ag / Undevel'd         0.15         0.2         107,949         2.4782         0.003872           76         Hobbit Town         Ag / Undevel'd         0.15         0.2         46,774         1.0738         0.001678           77         North of Shop         Ag / Undevel'd         0.15         0.2         12,665         0.2907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68  | 1                           |                |      |      | ,                                     | 0.0000 | 0.000000 |
| 70a         Pond at 3820 ORR         Ag / Undevel'd         0.15         0.2         56,613         1.2997         0.002031           71a         Pollinator Garden         0.15         0.2         56,613         1.2997         0.002031           72         LOT 10655 Howells         Ag / Undevel'd         0.15         0.2         67,180         1.5422         0.002410           73         LOT 10755 Howells         Ag / Undevel'd         0.15         0.2         33,996         0.7804         0.001219           74         East of Leach Field         Ag / Undevel'd         0.15         0.2         15,355         0.3525         0.000551           75         NE Garden         Ag / Undevel'd         0.15         0.2         107,949         2.4782         0.003872           76         Hobbit Town         Ag / Undevel'd         0.15         0.2         46,774         1.0738         0.001678           77         North of Shop         Ag / Undevel'd         0.15         0.2         9,624         0.2209         0.000345           79         South of Barn         Ag / Undevel'd         0.15         0.2         11,780         0.2704         0.000423           80         Between Barn and 3890         Ag / Und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69  | LAND                        |                |      |      |                                       | 0.0000 | 0.000000 |
| 71         Nursery Stock         Ag / Undevel'd         0.15         0.2         56,613         1.2997         0.002031           71a         Pollinator Garden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70  | LOT 3820 Old Ranch          | Ag / Undevel'd | 0.15 | 0.2  | 73,253                                | 1.6817 | 0.002628 |
| 71a         Pollinator Garden         Ag / Undevel'd         0.15         0.2         67,180         1.5422         0.002410           73         LOT 10755 Howells         Ag / Undevel'd         0.15         0.2         33,996         0.7804         0.001219           74         East of Leach Field         Ag / Undevel'd         0.15         0.2         15,355         0.3525         0.000551           75         NE Garden         Ag / Undevel'd         0.15         0.2         107,949         2.4782         0.003872           76         Hobbit Town         Ag / Undevel'd         0.15         0.2         46,774         1.0738         0.001678           77         North of Shop         Ag / Undevel'd         0.15         0.2         9,624         0.2209         0.000345           78         Between Shop and Barn         Ag / Undevel'd         0.15         0.2         12,665         0.2907         0.000454           79         South of Barn         Ag / Undevel'd         0.15         0.2         11,780         0.2704         0.000423           80         Between Barn and 3890         Ag / Undevel'd         0.15         0.2         16,338         0.3751         0.000586           80a         Pond #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70a | Pond at 3820 ORR            |                |      |      | 2,357                                 | 0.0541 |          |
| 72         LOT 10655 Howells         Ag / Undevel'd         0.15         0.2         67,180         1.5422         0.002410           73         LOT 10755 Howells         Ag / Undevel'd         0.15         0.2         33,996         0.7804         0.001219           74         East of Leach Field         Ag / Undevel'd         0.15         0.2         15,355         0.3525         0.000551           75         NE Garden         Ag / Undevel'd         0.15         0.2         107,949         2.4782         0.003872           76         Hobbit Town         Ag / Undevel'd         0.15         0.2         46,774         1.0738         0.001678           77         North of Shop         Ag / Undevel'd         0.15         0.2         9,624         0.2209         0.000345           78         Between Shop and Barn         Ag / Undevel'd         0.15         0.2         12,665         0.2907         0.000454           79         South of Barn         Ag / Undevel'd         0.15         0.2         11,780         0.2704         0.000423           80         Between Barn and 3890         Ag / Undevel'd         0.15         0.2         16,338         0.3751         0.000586           80a         Pond #8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71  | Nursery Stock               | Ag / Undevel'd | 0.15 | 0.2  | 56,613                                | 1.2997 | 0.002031 |
| 73         LOT 10755 Howells         Ag / Undevel'd         0.15         0.2         33,996         0.7804         0.001219           74         East of Leach Field         Ag / Undevel'd         0.15         0.2         15,355         0.3525         0.000551           75         NE Garden         Ag / Undevel'd         0.15         0.2         107,949         2.4782         0.003872           76         Hobbit Town         Ag / Undevel'd         0.15         0.2         46,774         1.0738         0.001678           77         North of Shop         Ag / Undevel'd         0.15         0.2         9,624         0.2209         0.000345           78         Between Shop and Barn         Ag / Undevel'd         0.15         0.2         12,665         0.2907         0.000454           79         South of Barn         Ag / Undevel'd         0.15         0.2         11,780         0.2704         0.000423           80         Between Barn and 3890         Ag / Undevel'd         0.15         0.2         16,338         0.3751         0.000586           80a         Pond #80a         354         0.0081           81         LOT 3890 Old Ranch         Ag / Undevel'd         0.15         0.2         78,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 71a | Pollinator Garden           | _              |      |      |                                       |        |          |
| 74         East of Leach Field         Ag / Undevel'd         0.15         0.2         15,355         0.3525         0.000551           75         NE Garden         Ag / Undevel'd         0.15         0.2         107,949         2.4782         0.003872           76         Hobbit Town         Ag / Undevel'd         0.15         0.2         46,774         1.0738         0.001678           77         North of Shop         Ag / Undevel'd         0.15         0.2         9,624         0.2209         0.000345           78         Between Shop and Barn         Ag / Undevel'd         0.15         0.2         12,665         0.2907         0.000454           79         South of Barn         Ag / Undevel'd         0.15         0.2         11,780         0.2704         0.000423           80         Between Barn and 3890         Ag / Undevel'd         0.15         0.2         16,338         0.3751         0.000586           80a         Pond #80a         354         0.0081           81         LOT 3890 Old Ranch         Ag / Undevel'd         0.15         0.2         78,589         1.8042         0.002819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72  | LOT 10655 Howells           | Ag / Undevel'd | 0.15 | 0.2  | 67,180                                | 1.5422 | 0.002410 |
| 75         NE Garden         Ag / Undevel'd         0.15         0.2         107,949         2.4782         0.003872           76         Hobbit Town         Ag / Undevel'd         0.15         0.2         46,774         1.0738         0.001678           77         North of Shop         Ag / Undevel'd         0.15         0.2         9,624         0.2209         0.000345           78         Between Shop and Barn         Ag / Undevel'd         0.15         0.2         12,665         0.2907         0.000454           79         South of Barn         Ag / Undevel'd         0.15         0.2         11,780         0.2704         0.000423           80         Between Barn and 3890         Ag / Undevel'd         0.15         0.2         16,338         0.3751         0.000586           80a         Pond #80a         354         0.0081           81         LOT 3890 Old Ranch         Ag / Undevel'd         0.15         0.2         78,589         1.8042         0.002819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73  | LOT 10755 Howells           | Ag / Undevel'd | 0.15 | 0.2  | 33,996                                | 0.7804 | 0.001219 |
| 76         Hobbit Town         Ag / Undevel'd         0.15         0.2         46,774         1.0738         0.001678           77         North of Shop         Ag / Undevel'd         0.15         0.2         9,624         0.2209         0.000345           78         Between Shop and Barn         Ag / Undevel'd         0.15         0.2         12,665         0.2907         0.000454           79         South of Barn         Ag / Undevel'd         0.15         0.2         11,780         0.2704         0.000423           80         Between Barn and 3890         Ag / Undevel'd         0.15         0.2         16,338         0.3751         0.000586           80a         Pond #80a         354         0.0081           81         LOT 3890 Old Ranch         Ag / Undevel'd         0.15         0.2         78,589         1.8042         0.002819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74  | East of Leach Field         | Ag / Undevel'd | 0.15 | 0.2  | 15,355                                | 0.3525 | 0.000551 |
| 77       North of Shop       Ag / Undevel'd       0.15       0.2       9,624       0.2209       0.000345         78       Between Shop and Barn       Ag / Undevel'd       0.15       0.2       12,665       0.2907       0.000454         79       South of Barn       Ag / Undevel'd       0.15       0.2       11,780       0.2704       0.000423         80       Between Barn and 3890       Ag / Undevel'd       0.15       0.2       16,338       0.3751       0.000586         80a       Pond #80a       354       0.0081         81       LOT 3890 Old Ranch       Ag / Undevel'd       0.15       0.2       78,589       1.8042       0.002819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75  | NE Garden                   | Ag / Undevel'd | 0.15 | 0.2  | 107,949                               | 2.4782 | 0.003872 |
| 77       North of Shop       Ag / Undevel'd       0.15       0.2       9,624       0.2209       0.000345         78       Between Shop and Barn       Ag / Undevel'd       0.15       0.2       12,665       0.2907       0.000454         79       South of Barn       Ag / Undevel'd       0.15       0.2       11,780       0.2704       0.000423         80       Between Barn and 3890       Ag / Undevel'd       0.15       0.2       16,338       0.3751       0.000586         80a       Pond #80a       354       0.0081         81       LOT 3890 Old Ranch       Ag / Undevel'd       0.15       0.2       78,589       1.8042       0.002819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76  | Hobbit Town                 |                | 0.15 | 0.2  | -                                     | 1.0738 |          |
| 79       South of Barn       Ag / Undevel'd       0.15       0.2       11,780       0.2704       0.000423         80       Between Barn and 3890       Ag / Undevel'd       0.15       0.2       16,338       0.3751       0.000586         80a       Pond #80a       354       0.0081         81       LOT 3890 Old Ranch       Ag / Undevel'd       0.15       0.2       78,589       1.8042       0.002819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77  | North of Shop               |                | 0.15 | 0.2  | 9,624                                 | 0.2209 | 0.000345 |
| 79       South of Barn       Ag / Undevel'd       0.15       0.2       11,780       0.2704       0.000423         80       Between Barn and 3890       Ag / Undevel'd       0.15       0.2       16,338       0.3751       0.000586         80a       Pond #80a       354       0.0081         81       LOT 3890 Old Ranch       Ag / Undevel'd       0.15       0.2       78,589       1.8042       0.002819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78  | Between Shop and Barn       | Ag / Undevel'd | 0.15 | 0.2  | 12,665                                | 0.2907 | 0.000454 |
| 80a         Pond #80a         354         0.0081           81         LOT 3890 Old Ranch         Ag / Undevel'd         0.15         0.2         78,589         1.8042         0.002819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79  | •                           |                | 0.15 | 0.2  | 11,780                                | 0.2704 | 0.000423 |
| 80a     Pond #80a     354     0.0081       81     LOT 3890 Old Ranch     Ag / Undevel'd     0.15     0.2     78,589     1.8042     0.002819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | Between Barn and 3890       |                | 0.15 | 0.2  | •                                     | 0.3751 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80a | Pond #80a                   |                |      |      |                                       | 0.0081 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1                           | Ag / Undevel'd | 0.15 | 0.2  | 78,589                                |        | 0.002819 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81R | LOT 3890 Old Ranch          | Ag/Paved       |      |      | 38,831                                | 0.8914 |          |

| 82 | North of Cafe/Gathering       | Ag / Undevel'd | 0.15 | 0.2 | 11,359 | 0.2608 | 0.000407 |
|----|-------------------------------|----------------|------|-----|--------|--------|----------|
| 83 | 3890 ORR                      | #81 subdivided |      |     | 33862  | 0.7774 |          |
| 84 | Pond                          |                |      |     |        | 0.0000 |          |
| 85 | Pond, west of corral          | Retension      |      |     |        | 0.0000 |          |
| 86 | Pond, west of #1 near Bathhou | se             |      |     | 4,073  | 0.0935 |          |
| 87 | Pond east of Health           |                |      |     | 6,119  | 0.1405 |          |
| 88 | Pond (triangular pyramid top) | N&W of STA     |      |     | 6134.5 | 0.1408 |          |
| 89 | Pond above STA                |                |      |     |        | 0.0000 |          |
| 90 |                               |                |      |     |        | 0.0000 |          |
| 91 | Pond at 3890 ORR              |                |      |     | 4,455  | 0.1023 |          |
| 92 | Pond at South Entrance        |                |      |     |        | 0.0000 |          |
| 93 | Pond near Maintenance         |                |      |     | 2,960  | 0.0680 |          |
| 94 | Pond at 10755 Howells         |                |      |     |        |        |          |
| 95 | Pond at STA                   |                |      |     |        | 0.6163 |          |
| 96 | Pond 96 in area 70            |                |      |     | 1,672  | 0.0384 |          |
| 97 |                               |                |      |     |        |        |          |





505 ELKTON DRIVE COLORADO SPRINGS, CO 80907 PHONE (719) 531-5599 FAX (719) 531-5238

November 24, 2021

Kess Properties 49955 Austin Bluffs Parkway Colorado Springs, CO 80918

Attn: Mark Phelan

Re:

Infiltration Rates (Percolation Test Method)

The Shire at Old Ranch 10755 Howells Road Colorado Springs, Colorado

Dear Mr. Phelan:

As requested, personnel of Entech Engineering, Inc. have performed percolation testing at the above referenced site to evaluate the site soils to determine the infiltration rate for the proposed detention pond.

The testing was performed on October 19 and November 3, 2021. The test locations are shown in Figure 1. The Test Boring Logs, Percolation Test results, Infiltration Rates, and Laboratory Test results are shown in Figures 2 through 6. Soils encountered in the profile and percolation holes consisted of silty sand.

The average percolation rates were 3 to 5 minutes/inch. The percolation rates correspond to adjusted average Infiltration Rate of 1.18 inches/hour for PH-1, and 1.67 inches/hour for PH-2.

We trust that this has provided you with the information you required. If you have any questions or need additional information, please do not hesitate to contact us.

Respectfully Submitted,

ENTECH ENGINEERING, INC.

Logan L. Langford, P.G.

Geologist

LLL/jr

Encl.

Entech Job No. 212362 AAprojects/2021/212362 Infiltration Rate Reviewed by:

Austin M. Nossokoff, P.I

Project Engineer





**P- APPROXIMATE PERCOLATION BORING LOCATIONS AND NUMBERS** 



TEST BORING LOCATION MAP THE SHIRE AT OLD RANCH 10755 HOWELLS RD COLORADO SPRINGS, CO FOR: KESS PROPERTIES

DRAWN: DATE: CHECKED: DATE:
JHR 12/1/21 AMN

JOB NO.: **212362** 

FIG NO .:

1

PROFILE HOLE NO. PROFILE HOLE NO. 2 DATE DRILLED 10/20/2021 DATE DRILLED 10/19/2021 CLIENT Job# 212362 **KESS PROPERTIES** LOCATION THE SHIRE AT OLD RANCH REMARKS REMARKS Watercontent % Blows per foot Blows per foot Watercontent Soil Type Depth (ft) Samples Samples Symbol Symbol DRY TO 10', 10/20/21 DRY TO 19', 10/20/21 SAND, SILTY, FINE TO COARSE SAND, SILTY, FINE TO COARSE GRAINED, TAN, MEDIUM DENSE GRAINED, TAN, MEDIUM DENSE TO DENSE, DRY TO MOIST 26 2.7 TO VERY DENSE, MOIST 28 3.2 1 28 1.2 1 50 4.9 1 11" 10 34 3.4 1 10 41 5.1 15 15



|        | PRO   | FILE HOLE LO | 3     |
|--------|-------|--------------|-------|
| DRAWN: | DATE: | CHECKED:     | DATE: |

JOB NO.: 212362 FIG NO.: Client:

**Kess Properties** 

Test Location:

The Shire at Old Ranch

Job Number:

212362

### PERCOLATION HOLES

Date Holes Prepared: 10/20/2021

Date Hole Completed: 11/3/2021

Hole No. 1A

Depth: 46"

Hole No. 1B

Depth: 34"

| a.           |        |              |              | -      |              |
|--------------|--------|--------------|--------------|--------|--------------|
|              |        | Water        |              |        | Water        |
|              | Time   | Level        |              | Time   | Level        |
| <u>Trial</u> | (min.) | Change (in.) | <b>Trial</b> | (min.) | Change (in.) |
| 1            | 10     | 4            | 1            | 10     | 4            |
| 2            | 10     | 7            | 2            | 10     | 2            |
| 3            | 10     | 2            | 3            | 10     | 2            |

Perc Rate (min./in.):

5

Perc Rate (min./in.): 5

Average Perc Rate (min./in.)

Hole No. 2A

Depth: 48"

Hole No. 2B

Depth:

38"

|              |        | Water        |              |        | Water        |
|--------------|--------|--------------|--------------|--------|--------------|
|              | Time   | Level        |              | Time   | Level        |
| <u>Trial</u> | (min.) | Change (in.) | <u>Trial</u> | (min.) | Change (in.) |
| 1            | 10     | 5            | 1            | 10     | 3            |
| 2            | 10     | 2            | 2            | 10     | 5            |
| 3            | 10     | 3            | 3            | 10     | 2            |

Perc Rate (min./in.):

Perc Rate (min./in.): 5

Observer: Nicholas S.

By:



**PERCOLATION TEST RESULTS** 

DRAWN:

DATE:

CHECKED:

DATE:

JOB NO 212362 FIG NO.

#### Infiltration Rate (I) = Percolation Rate (P)/ Reduction Factor(RF) I=P/RF

 $R_{f} = [(2d_1 - \Delta d) / dia] + 1$ 

 $d_1$  = initial water depth (in.)

 $\Delta d = \text{final water level drop (in.)}$ 

dia = diameter of the percolation hole (in.)

(PH-1) I AVG= 1.19 in/hr

| Test No. P1  | (PH-1) |       |
|--------------|--------|-------|
| Perc Rate=   | 12     | in/hr |
| dia =        | 8      |       |
|              |        |       |
| <u>P1</u>    |        |       |
| $d_1 =$      | 41.0   |       |
| $\Delta d =$ | 5.0    |       |
| $R_f =$      | 10.6   |       |

 $R_f =$ 10.6 I = 1.13 in/hr l = 1.25 in/hr

Test No. P2 (PH-1) Perc Rate= 12 in/hr

Test No. P2 (PH-2)

Perc Rate= 12 in/hr

8

33.0

5.0

8.6

8

36.0

3.0

9.6

dia =

<u>P2</u>  $d_1 =$ 

 $\Delta d =$ 

dia =

<u>P2</u>

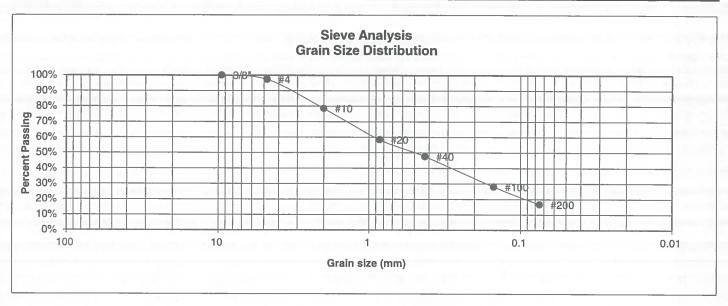
 $d_1 =$ 

 $\Delta d =$ 

 $R_f =$ 

DRAWN:

l = 1.95 in/hr I = 1.39 in/hr (PH-2) I AVG= 1.67 in/hr


CLIENT **KESS PROPERTIES** PROJECT THE SHIRE AT OLD RANCH JOB NO. 212362



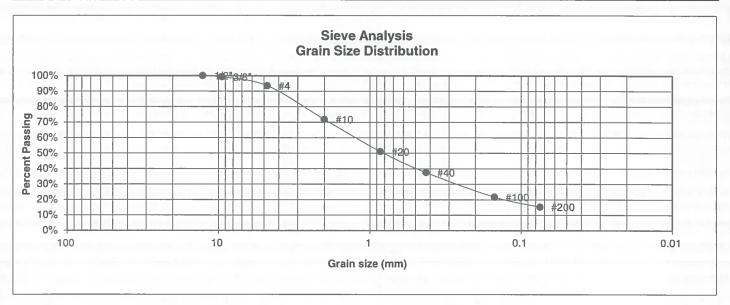
| INF | FILTRATION T | EST RESULT | S         |  |
|-----|--------------|------------|-----------|--|
|     | DATE:        | CHECKED    | DATE: /24 |  |

JOB NO.: 212362 FIG NO 4

| UNIFIED CLASSIFICATION | SM  | CLIENT  | KESS PROPERTIES        |
|------------------------|-----|---------|------------------------|
| SOIL TYPE #            | 1   | PROJECT | THE SHIRE AT OLD RANCH |
| TEST BORING #          | P1  | JOB NO. | 212362                 |
| DEPTH (FT)             | 2-3 | TEST BY | BL                     |



| U.S.<br>Sieve # | Percent<br><u>Finer</u> | Atterberg<br><u>Limits</u>          |
|-----------------|-------------------------|-------------------------------------|
| 3"<br>1 1/2"    |                         | Plastic Limit NP<br>Liquid Limit NV |
| 3/4"            |                         | Liquid Limit NV Plastic Index NP    |
| 1/2"            |                         | ridotto iridex 141                  |
| 3/8"            | 100.0%                  |                                     |
| 4               | 97.3%                   | <u>Swell</u>                        |
| 10              | 78.5%                   | Moisture at start                   |
| 20              | 58.4%                   | Moisture at finish                  |
| 40              | 47.5%                   | Moisture increase                   |
| 100             | 28.0%                   | Initial dry density (pcf)           |
| 200             | 16.6%                   | Swell (psf)                         |
|                 |                         |                                     |




|        | LABOR<br>RESUL | ATORY TEST |                |
|--------|----------------|------------|----------------|
| DRAWN: | DATE:          | CHECKED:   | DATE: 11/19/21 |

JOB NO.: 212362

FIG NO.:

| UNIFIED CLASSIFICATION | SM  | CLIENT  | KESS PROPERTIES        |
|------------------------|-----|---------|------------------------|
| SOIL TYPE #            | 1   | PROJECT | THE SHIRE AT OLD RANCH |
| TEST BORING #          | P2  | JOB NO. | 212362                 |
| DEPTH (FT)             | 2-3 | TEST BY | BL                     |



| U.S.<br><u>Sieve #</u><br>3"<br>1 1/2"<br>3/4"<br>1/2"<br>3/8" | Percent Finer  100.0% 99.2% | Atterberg <u>Limits</u> Plastic Limit Liquid Limit Plastic Index |
|----------------------------------------------------------------|-----------------------------|------------------------------------------------------------------|
| 4                                                              | 93.5%                       | <u>Swell</u>                                                     |
| 10                                                             | 71.8%                       | Moisture at start                                                |
| 20                                                             | 51.0%                       | Moisture at finish                                               |
| 40                                                             | 37.5%                       | Moisture increase                                                |
| 100                                                            | 21.7%                       | Initial dry density (pcf)                                        |
| 200                                                            | 15.3%                       | Swell (psf)                                                      |

DRAWN:



| LABORATORY TEST<br>RESULTS |          |                |
|----------------------------|----------|----------------|
| DATE:                      | CHECKED: | DATE: 11/19/21 |

JOB NO.: 212362

FIG NO.: