

FINAL DRAINAGE REPORT

CONSTITUTION STORAGE DEVELOPMENT

El Paso County, Colorado

PREPARED FOR: Johnson Development Associates, Inc. 100 Dunbar Street, Suite 400 Spartanburg, SC 29306

PREPARED BY: Galloway & Company, Inc. 1155 Kelly Johnson Blvd., Suite 305 Colorado Springs, CO 80920

DATE: July 21, 2023

PCD Filing No.: PPR-2224

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

The S

Brady A. Shyrock, PE #38164 For and on behalf of Galloway & Company, Inc. 07/21/2023 Date

DEVELOPER'S CERTIFICATION

I, The developer, have read and will comply with all of the requirements specified in this drainage report and plan.

7/21/2023

Date

Address: Johnson Development Associates, Inc. 101 N. Pacific Coast Hwy, Suite 308 El Segundo, CA 90245

EL PASO COUNTY CERTIFICATION

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Joshua Palmer, P.E. Interim County Engineer Date

Conditions:

By:

_

TABLE OF CONTENTS

I.	Pu	Irpose4
II.	Ge	eneral Description4
III.	D	Drainage Criteria4
IV.	E	Existing Drainage Conditions5
V.	Fo	our Step Process6
		1. Employ Runoff Reduction Practices
		2. Stabilize Channels
		3. Provide Water Quality Capture Volume (WQCV)
		4. Consider Need for Industrial and Commercial BMPs7
VI.	Ρ	Proposed Drainage Conditions7
VII.	S	Storm Sewer System9
VIII.	Ρ	Proposed Water Quality Detention Ponds9
IX.	Ρ	Proposed Channel Improvements10
Х.	Ма	aintenance10
XI.	V	Netlands Mitigation
XII.	F	Floodplain Statement
XIII.	D	Drainage Fees & Maintenance10
XIV.	С	Conclusion11
XV.	F	References

Appendices:

- A. Exhibits and Figures
- B. Hydrologic Computations
- C. Hydraulic Computations
- D. Water Quality Computations
- E. Drainage Maps
- F. PCM Plans

I. Purpose

The purpose of this Final Drainage Report is to identify on and offsite drainage patterns, locate and identify tributary or downstream drainage features and facilities that impact the site, and to identify which types of drainage facilities will be needed and where they will be located. This report will remain in general compliance with the approved FDR prepared by Costin Engineering Company, dated February 2, 1983.

II. General Description

The project is a self-storage commercial development located in the Cimarron Hills area of El Paso County, Colorado. The site is located in a portion of Section 05, Township 14 South, Range 65 West of the 6th Principal Meridian, County of El Paso, State of Colorado. The subject property is bounded by Constitution Avenue to the north, Canada Drive to the east, Peterson Road to the west, and existing Northcrest Filing No. 3 residential development to the south. A Vicinity Map is included in **Appendix A**.

This final drainage report is the basis for the drainage facility design in conformance with the previously approved FDR for the site prepared by Costin Engineering Company, "*Amendment Number 1, Final Drainage Study, Cimarron Northcrest Filing No. 3*", Costin Engineering Company, February 1983 (**FDR**). The site consists of approximately 3.716 acres and includes 929 storage units.

The existing soil types within the proposed site as determined by the NRCS Web Soil Survey for El Paso County Area consist of Truckton Sandy Loam (hydrologic soil group A). See the soils map included in **Appendix A**.

III. Drainage Criteria

Hydrology calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.

The drainage calculations were based on the criteria manual Figure 6-5 and IDF equations to determine the intensity and are listed in Table 1 below.

Return Period	One Hour Depth (in).	Intensity (in/hr)
5-year	1.50	5.17
100-year	2.52	8.68

Table 1 - Precipitation Data

The rational method was used to calculate peak flows as the tributary areas are less than 100 acres. The rational method has been proven to be accurate for basins of this size and is based on the following formula:

Q = CIA

Constitution Storage FDR

Where:

Q = Peak Discharge (cfs) C = Runoff Coefficient I = Runoff intensity (inches/hour) A = Drainage area (acres)

The runoff coefficients are calculated based on land use, percent imperviousness, and design storm for each basin, as shown in the drainage criteria manual (Table 6-6). Composite percent impervious and C values were calculated using the residential, streets, roofs, and lawns coefficients found in Table 6-6 of the manual.

The 100-year event was used as the major storm event. The 5-year event was used as the minor event. The UD-Inlets v5.01 spreadsheet was utilized for the sizing of the proposed sump inlets.

The UD-Detention v4.04 spreadsheet was utilized for the design of the proposed on-site Full Spectrum Detention Pond.

IV. Existing Drainage Conditions

The site lies within the existing Sand Creek drainage basin (see Reference Map). Based on this report, existing topography, and proposed future developments, no off-site basins will impact the site. Stormwater from this site generally drains to the southeast and southwest and will be routed to a single (1) private full spectrum detention facility designated as FSD-1 which has been sized to accommodate the developed flows from this site. The rational method was used to analyze the individual basins within the site because their size permits it.

The property presently discharges via sheet flow along the southern property line onto the adjacent Eight Line Inc. property and Alvarado property. Portions of the site along the eastern and western property lines also drain to the adjacent right-of-ways.

While the **FDR** shows a total of 26 basins that were analyzed as part of the overall Northcrest Filing No. 3 development, for the purposes of this report, only one (1) of the Basins within the FDR will be used for analysis. This Basin, C-4 (6.3 AC, $Q_5 = 7.0$ cfs, $Q_{100} = 18.30$ cfs) is located at the northwest corner of the approved FDR study area and drains through properties to the south to Allyn Way.

The **FDR** also establishes that runoff from Basin C-4 will be conveyed via curb and gutter to an existing detention facility south of the site along Piros Drive. This existing detention facility will no longer be utilized for water quality or detention for the project site, but the existing street flow drainage pattern will be maintained. As a result, the proposed private FSD-1 pond will outlet at grade to the curb in Canada Drive. There is no storm sewer infrastructure existing in Canada Drive.

For a more in-depth analysis of existing tributary conditions as it pertains to this phase of development, an existing basin map has been prepared. The existing map can be found in **Appendix E** and basins are described below. The site has been divided into six (6) sub-basins to better show where runoff flows in the current conditions.

Basin EX-1 (0.05 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.1$ cfs): This basin encompasses a portion of the southwest of the site in the existing condition. This basin consists of un-developed land. Runoff from this basin will sheet flow to the south before outfalling onto the adjacent Eight Line Inc. property. (**DP 1**).

Basin EX-2 (0.26 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.4$ cfs): This basin encompasses the southwest portion of the site in the existing condition. This basin consists of un-developed land. Runoff from this basin will sheet flow to the south before outfalling onto the adjacent Alvarado property. **(DP 2)**.

Basin EX-3 (0.39 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.7$ cfs): This basin encompasses the western portion of the site in the existing condition, as well as a portion of the Peterson Road right-of-way. This basin consists of un-developed land and a portion of existing sidewalk. Runoff from this basin will sheet flow to the southwest before outfalling into Peterson Road. (DP 3).

Basin EX-4 (0.03 AC, $Q_5 = 0.1$ cfs, $Q_{100} = 0.2$ cfs): This basin encompasses a portion of the northwest of the site in the existing condition. This basin consists mostly of existing sidewalk. Runoff from this basin will sheet flow to the north before outfalling into Constitution Avenue. (**DP 4**).

Basin EX-5 (2.69 AC, $Q_5 = 0.4$ cfs, $Q_{100} = 4.8$ cfs): This basin encompasses the majority of the site in the existing condition, as well as a portion of Constitution Avenue right-of-way that is currently undeveloped. This basin consists of un-developed land, access drive, and a single-family home. Runoff from this basin will sheet flow to the south before outfalling onto the adjacent Eight Line Inc. property. (**DP 5**).

Basin EX-6 (0.36 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.5$ cfs): This basin encompasses the eastern portion of the site in the existing condition, as well as a portion of Constitution Avenue right-of-way that is currently undeveloped. This basin consists of un-developed land. Runoff from this basin will sheet flow to the southeast before outfalling into Canada Drive. (DP 6).

V. Four Step Process

The Four Step Process is used to minimize the adverse impacts of urbanization and is a vital component of developing a balanced, sustainable project. Below identifies the approach to the four-step process:

1. Employ Runoff Reduction Practices

This step uses low impact development (LID) practices to reduce runoff at the source. Generally, rather than creating point discharges that are directly connected to impervious areas runoff is routed through pervious areas to promote infiltration. The Impervious Reduction Factor (IRF) method was used, and calculations can be found in **Appendix D**. For the majority of the site this is not practical, however portions of the site do drain through landscaped swales prior to entering the storm sewer system.

2. Stabilize Channels

This step implements stabilization to channels to accommodate developed flows while protecting infrastructure and controlling sediment loading from erosion in the drainageways. This project does not discharge to a channel. Flows are detained onsite to control release rates from the site down to existing rates and not adversely impact downstream facilities. The site is designed to release at or below the existing release rate for the site and will not negatively impact the downstream infrastructure.

3. Provide Water Quality Capture Volume (WQCV)

This step utilizes formalized water quality capture volume to slow the release of runoff from the site. The EURV volume will release in 79 hours, while the WQCV will release in no less than 40 hours. An on-site Full Spectrum Detention Pond will provide water quality treatment for the majority of the developed areas, prior to the runoff being released into existing curb flowlines at Canada Dr. Refer to WQCV Plan in **Appendix E.**

4. Consider Need for Industrial and Commercial BMPs

As this project is a commercial development, roof drains connecting directly to proposed water quality and detention facility, surface flows being routed to inlets that capture developed runoff and direct flows to proposed water quality and detention facility. Stockpile and concrete washout BMPs will be implemented onsite. At the Contractor's discretion, additional specialized BMPs which would be associated with an industrial or commercial site may be implemented.

VI. Proposed Drainage Conditions

The proposed development lies completely within the Sand Creek Drainage Basin and consists of eleven (11) sub-basins. Site runoff will be collected via sheet flows, roof drains, inlets & pipes and diverted to the one (1) proposed full spectrum detention pond (FSD-1). All necessary calculations can be found within the appendices of this report.

According to the **FDR**, the proposed project site lies within Basin C-4 (6.3 AC, $Q_5 = 7.0$ cfs, $Q_{100} = 18.30$ cfs) is located at the northwest corner of the approved FDR study area. The property presently discharges via sheet flow along the southern property line onto the adjacent Eight Line Inc. property.

The site will provide one (1) private Full Spectrum Detention Pond (FSD). Pond FSD-1 will discharge treated runoff at historic rates directly into the existing curb flowline at Canada Drive, as there is not adjacent storm sewer infrastructure.

As has been mentioned previously, the site is proposed to have a land use of commercial self-storage. The site will consist of 929 storage units along with associated parking, drive aisles, RV storage, detention pond, and landscaping areas.

Basin PR-1 (0.22 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.4$ cfs): Located at the southwestern corner of the site, Basin PR-1 contains the proposed landscaping improvements immediately adjacent to the existing residential development (Northcrest Filing No. 3). Runoff from this basin will sheet flow to the existing southern boundary into the Alvarado property as it does in the existing condition (Basin EX-2) (**DP 1**). Due to layout and grading limitations, runoff from this basin is not receiving water quality treatment per exclusions in ECM Section I.7.1.C.1.a, reference Section VIII of this report for additional information.

Basin PR-2A (0.05 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.1$ cfs): Located on the western boundary of the site, this basin consists of landscaping and sidewalk adjacent to the property line. Runoff from this basin will sheet flow to existing curb and gutter in Peterson Rd. Flows will then be routed, via the existing curb & gutter at the southwestern corner of the project site (**DP 2A**). Due to layout and grading limitations, runoff from this basin is not receiving water quality treatment per exclusions in ECM Section I.7.1.C.1.a, reference Section VIII of this report for additional information.

Basin PR-2B (0.01 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.1$ cfs): Located on the northwestern corner of the site, this basin consists of sidewalk and landscaping. Runoff from this basin will sheet flow to existing curb and gutter at Peterson Rd. Flows will then be routed, via existing curb & gutter at the northwestern corner of the project site (**DP 2B**). Due to layout and grading limitations, runoff from this basin is not receiving water quality treatment per exclusions in ECM Section I.7.1.C.1.a, reference Section VIII of this report for additional information.

Basin PR-3 (0.22 AC, $Q_5 = 0.2$ cfs, $Q_{100} = 0.7$ cfs): Located on the northern boundary of the site, this basin consists of sidewalk and landscaping, as well as offsite areas within the Constitution right-of-way being developed. Runoff from this basin will sheet flow to existing curb and gutter in Constitution Ave. Flows will then be routed, via existing curb & gutter downstream to the northeastern corner of the project site (**DP 3**). Due to layout and grading limitations, runoff from this basin is not receiving water quality treatment per exclusions in ECM Section I.7.1.C.1.a, reference Section VIII of this report for additional information.

Basin PR-4 (0.25 AC, $Q_5 = 0.2$ cfs, $Q_{100} = 0.7$ cfs): Located on the eastern boundary of the site, this basin consists of driveway and landscaping. Runoff from this basin will sheet flow from the driveway to proposed curb and gutter at the driveway and Canada Dr. Flows will then be routed, via curb & gutter downstream to the existing curb & gutter at the southeastern corner of the project site (**DP 4**). Due to layout and grading limitations, runoff from this basin is not receiving water quality treatment per exclusions in ECM Section I.7.1.C.1.a, reference Section VIII of this report for additional information.

Basin PR-5 (1.32 AC, $Q_5 = 3.9$ cfs, $Q_{100} = 9.0$ cfs): Located on the northcentral portion of the site, this basin consists entirely of the proposed two-story building. Flows will be captured by roof drains and routed, via pipe (**DP 5**), to the proposed (private) full spectrum detention (FSD-1) located at the northeast corner of the site (**DP 10**).

Basin PR-6 (0.92 AC, $Q_5 = 1.2$ cfs, $Q_{100} = 3.3$ cfs): Located on the central portion of the site, west and south of Basin PR-5. This basin consists of landscaping and driveway. Runoff from this basin will sheet flow from the driveway to the proposed curb and gutter to the proposed (private) 10' Colorado Springs D-10-R inlet (**DP 6A**) where flows will be routed, via pipe, to the proposed (private) full spectrum detention (FSD-1) located at the northeast corner of the site (**DP 10**). Emergency overflows (events exceeding the 100-year design storm) will be routed downstream via proposed curb and gutter to Canada Drive.

Basin PR-7 (0.19 AC, $Q_5 = 0.6$ cfs, $Q_{100} = 1.3$ cfs): Located on the northcentral portion of the site east of Basin PR-5, this basin consists of landscaping, and RV storage. Runoff from this basin will sheet flow to the edge of the proposed RV storage area to a proposed (private) 6' Colorado Springs D-10-R inlet in sump condition (**DP 7**), where flows will be routed, via pipe, to the proposed (private) full spectrum detention (FSD-1) located at the northeast corner of the site (**DP 10**). Emergency overflows (events exceeding the 100-year design storm) will be routed downstream via proposed curb and gutter to Canada Drive.

Basin PR-8 (0.13 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.2$ cfs): Located on the northern portion of the site, this basin consists entirely of landscaped area and swale north of the building. Runoff from this basin will sheet flow to the proposed swale to the proposed (private) CDOT Type C inlet **(DP 8)** where flows will be routed, via pipe, to the proposed (private) full spectrum detention (FSD-1) located at the northeast corner of the site **(DP 10)**. Emergency overflows (events exceeding the 100-year design storm) will be routed downstream via proposed curb and gutter to Canada Drive.

Basin PR-9 (0.17 AC, $Q_5 = 0.5$ cfs, $Q_{100} = 0.9$ cfs): Located in the eastern portion of the site, this basin consists of drive aisle and parking. Runoff from this basin will sheet flow to a proposed (private) 6' Colorado Springs D-10-R inlet in on-grade conditions, located on the south side of the access drive adjacent to the eastern most parking stalls (**DP 9**) where flows will be routed, via pipe, to the proposed (private) full spectrum detention (FSD-1) located at the northeast corner of the site (**DP 10**). Emergency overflows (events exceeding the 100-year design storm) will be routed downstream via proposed curb and gutter to Canada Drive.

Basin PR-10 (0.31 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.6$ cfs): Located at the northeastern corner of the site, Basin PR-8 contains the entirety of the proposed (private) full spectrum detention (FSD-1) and adjacent landscaped area. Runoff from this basin will sheet flow directly to the (private) full spectrum detention (FSD-1) (DP 10).

VII. Storm Sewer System

All development is anticipated to be urban and will include storm sewer & street inlets. Storm sewers collect storm water runoff and convey the water to the water quality facility prior to discharging. Storm sewer systems will be designed to the 100-year storm and checked with the 5-year storm. Inlets will be placed at sump areas and locations where street flow is larger than street capacity. UDFCD Inlet spreadsheet has been used to determine the size of all sump inlets. Emergency overflow conditions discussed above will only be activated in storm events exceeding the 100-year storm event.

There will be a proposed storm system within the site. The storm sewer system will discharge storm water into the proposed private full spectrum detention facility (FSD-1). The proposed system will consist of HDPE pipe, CDOT Type C inlets, Colorado Springs D-10-R inlets, Nyloplast Drain Basins, and storm sewer manholes. Inlet sizing and capacity calculations can be found in **Appendix D**, along with preliminary storm sewer sizing.

Additionally, there are two (2) proposed drainage swales that run along the north and west side of the proposed building, respectively within sub-basins PR-8 and PR-6. The swales were analyzed using the Bentley software FlowMaster to properly size a triangular channel to convey the 100-year flows from the basins to FSD-1, while providing 1.0-ft of freeboard. The sizing calculations can be found in **Appendix D**.

VIII. Proposed Water Quality Detention Ponds

One (1) Full Spectrum Detention Pond (FSD-1) will be provided for the proposed site. The proposed pond will be privately owned and maintained by Johnson Development Associates Inc., once established. This detention pond is proposed to be full spectrum and will provide water quality and detention. Flows will be routed into the pond with the proposed (private) storm sewer system and release onto proposed forebays into the pond. The WQCV release will be controlled by an orifice plate within the outlet structure The release rates for the WQCV and EURV will be 40-hours and 79-hours, respectively, and will pond to depths of 6500.98 and 6502.14. Flows exceeding the WQCV will be controlled by orifices and a modified Type C Outlet Structure and will be designed to release at or below the pre-development flow rate. A proposed outlet structure has been designed with this report. See **Appendix D** for calculations. Basins PR-5 through PR-10 drain to FSD-1, totaling 3.03 acres and 81% of the project site.

Note: The approved Northcrest Filing No. 3 FDR designed the area of the project site to drain to a detention facility south of the site via curb and gutter. While this existing drainage facility is no longer being utilized for water quality or detention, the existing drainage pattern using curb and gutter must be maintained as there is no existing storm sewer system in Canada Dr.

Per ECM Section I.7.1.C.1.a, 20% of the site may free release offsite, not to exceed 1 acre. Because the proposed private FSD-1 pond must outlet at grade to the curb and gutter, there are significant grading limitations to the site. Because of this, Basins PR-1, PR-2A, PR-2B, PR-3 and PR-4 free release off-site, totaling 0.75 acres and 19% of the site area. These basins also generally reflect the existing drainage patterns for the perimeter of the site. Since these basins are 19% of the site and do not exceed 1 acre, the project site complies with ECM Section I.7.1.C.1.a.

FSD-1: Located at the northeastern corner of the site, just west of existing Canada Dr. This pond will discharge to the existing western curb line within Canada Dr. The required volume WQCV and EURV are 0.074 Ac-Ft & 0.213 Ac-Ft, respectively. The total required detention basin volume is 0.416 Ac-Ft. See **Appendix D** for volume calculations.

IX. Proposed Channel Improvements

There are no proposed channel improvements as part of this report.

X. Maintenance

After completion of construction, the drainage facility (FSD-1) will be privately owned and maintained by Johnson Development Associates, Inc.

XI. Wetlands Mitigation

There are no existing wetlands within the project site.

XII. Floodplain Statement

No portion of the project site lies with the designated Flood Zone as defined by the FIRM Map number 08041C0752G effective December 7, 2018. A copy of the FIRM Panel is included in **Appendix A.**

XIII. Drainage Fees & Maintenance

Drainage fees do not apply for Site Development Plans and are therefore not applicable to this project.

ltem	Quantity	Unit	Unit Cost	Cost
Storm Drain Improvements (Private)				
CDOT Type C Inlet (Private)	1	EA	\$ 5,611.00	\$ 5,611.00
6' Type D-10 R Inlet (Private)	2	EA	\$ 8,715.00	\$ 17,430.00
10' Type D-10 R Inlet (Private)	1	EA	\$ 9,224.00	\$ 9,224.00
Storm Sewer Manhole, Slab Base	3	EA	\$ 7,734.00	\$ 23,202.00
18" Storm Drain - RCP (Private)	355	LF	\$ 76.00	\$ 26,980.00
18" Storm Drain - HDPE (Private)	475	LF	\$ 60.00	\$ 28,500.00
18" FES	1	EA	\$ 420.00	\$ 420.00
Subtotal			 	\$ 111,367.00
WQCV Detention Ponds (Private)				
Pond (FSD-1)	1	EA	\$ 45,000.00	\$ 45,000.00
Subtotal				\$ 45,000.00
Total				\$ 156,367.00
Contingency			10%	\$ 15,636.70
Grand Total				\$ 172,003.70

Below is a cost estimate for the improvements proposed with this filing.

XIV. Conclusion

The Constitution Storage commercial development lies within the Sand Creek Drainage Basin. Water quality for the site is provided in a single on-site, private, Full Spectrum Detention Pond; FSD-1. All drainage facilities within this report were sized according to the El Paso County Drainage Criteria Manuals. The private full spectrum detention facility (FSD-1) will be maintained by Johnson Development Associates, Inc. The Constitution Storage development will not adversely impact any downstream facilities.

XV. References

- 1. El Paso County Drainage Criteria Manual, 1990.
- 2. Drainage Criteria Manual, Volume 2, City of Colorado Springs, 2002.
- 3. El Paso County Drainage Criteria Manual Update, 2015.
- 4. El Paso County Engineering Criteria Manual, 2020.
- 5. *Urban Storm Drainage Criteria Manual*, Urban Drainage and Flood Control District, January 2016 (with current revisions).
- 6. Amendment Number 1, Final Drainage Study, Cimarron Northcrest Filing No. 3", Costin Engineering Company, February 1983.

_

_

APPENDIX A Exhibits and Figures

El Paso County Area, Colorado

97—Truckton sandy loam, 3 to 9 percent slopes

Map Unit Setting

National map unit symbol: 2x0j2 Elevation: 5,300 to 6,850 feet Mean annual precipitation: 14 to 19 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 85 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Truckton and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Truckton

Setting

Landform: Interfluves, hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Re-worked alluvium derived from arkose

Typical profile

A - 0 to 4 inches: sandy loam Bt1 - 4 to 12 inches: sandy loam Bt2 - 12 to 19 inches: sandy loam C - 19 to 80 inches: sandy loam

Properties and qualities

Slope: 3 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 1 percent
Maximum salinity: Nonsaline (0.1 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 6.6 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e *Hydrologic Soil Group:* A *Ecological site:* R049XB210CO - Sandy Foothill *Hydric soil rating:* No

Minor Components

Blakeland

Percent of map unit: 8 percent Landform: Interfluves, hillslopes Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex, linear Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

Bresser

Percent of map unit: 7 percent Landform: Interfluves, Iow hills Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave, linear Across-slope shape: Concave, linear Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 19, Aug 31, 2021

USDA

Soil Map-El Paso County Area, Colorado

Area of Inte				
	rest (AOI) Area of Interest (AOI)	000 «	Spoil Area Story Soot	The soil surveys that comprise your AOI were mapped at 1:24,000.
soils [0 6	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
	Soil Map Unit Polygons Soil Man Unit Lines	0	Wet Spot	Enlargement of maps beyond the scale of mapping can caus misunderstanding of the datail of meaning and accuracy of s
<u>}</u> 1	Soil Map Unit Dainta	\triangleleft	Other	line placement. The maps do not show the small areas of
Cnorial D.	soli iviap Unit Polints sint Eesturee	Ĭ,	Special Line Features	contrasting soils that could have been shown at a more deta
fold in	Blowout	Water Fea	itures	
	Borrow Pit	{	Streams and Canals	Please rely on the bar scale on each map sheet for map measurements.
*	Clay Spot		tation Rails	Source of Map: Natural Resources Conservation Service
\diamond	Closed Depression	1	Interstate Highways	Web Soil Survey URL: Conrdinate Svstem: Web Mercator (FPSG:3857)
℅	Gravel Pit		US Routes	Mans from the Web Suil Survey are based on the Web Merr
0 0 0	Gravelly Spot	2	Maior Roads	projection, which preserves direction and shape but distorts
0	Landfill	8	, Local Roads	distance and area. A projection that preserves area, such as Albers equal-area conic projection, should be used if more
Z	Lava Flow	Backarou	pu	accurate calculations of distance or area are required.
-#	Marsh or swamp		Aerial Photography	This product is generated from the USDA-NRCS certified dated on the use of th
¢	Mine or Quarry			or the version date(s) have below.
0	Miscellaneous Water			Soli Survey Area. El raso County Area, Colorado Survey Area Data: Version 19, Aug 31, 2021
0	Perennial Water			Soil map units are labeled (as space allows) for map scales
>	Rock Outcrop			1:50,000 or larger.
÷	Saline Spot			Date(s) aerial images were photographed: Aug 19, 2018— 23. 2018
0 0 0 0	Sandy Spot			The orthonhoto or other base man on which the soil lines we
Ŵ	Severely Eroded Spot			compiled and digitized probably differs from the background
0	Sinkhole			imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
A	Slide or Slip			-
Q	Sodic Spot			

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
97	Truckton sandy loam, 3 to 9 percent slopes	3.8	100.0%
Totals for Area of Interest		3.8	100.0%

_

APPENDIX B Hydrologic Computations

COMPOSITE % IMPERVIOUS CALCULATIONS

Exisitng Conditions

Subdivision:

Location: CO, Colorado Springs

Project Name: Constitution Storage

Project No.: JDA000002

Calculated By: DDJ

Checked By: BS

Date: 7/8/22

			Paved Road	ds		Lawns			Roofs		Desire Total
Basin ID	Total Area (ac)	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	Weighted % Imp.
EX-1	0.05	100	0.00	0.0	2	0.05	2.0	90	0.00	0.00	2.0
EX-2	0.26	100	0.00	0.0	2	0.26	2.0	90	0.00	0.00	2.0
EX-3	0.39	100	0.02	4.2	2	0.38	1.9	90	0.00	0.00	6.1
EX-4	0.03	100	0.02	77.0	2	0.01	0.5	90	0.00	0.00	77.5
EX-5	2.69	100	0.16	6.0	2	2.50	1.9	90	0.03	1.00	8.9
EX-6	0.36	100	0.00	0.0	2	0.36	2.0	90	0.00	0.00	2.0

STANDARD FORM SF-2 TIME OF CONCENTRATION

Existing Conditions

Subdivision:

Location: CO, Colorado Springs

Project Name: Constitution Storage

Project No.: JDA000002

Calculated By: DDJ

Checked By: BS

Date: 7/8/22

		SUB-BA	ASIN			INIT	IAL/OVERI	LAND		TF	RAVEL TIM	E			Tc CHECK		
		DAT	Α				(T _i)				(T _t)				(URBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₁₀₀	C₅	L	S	Ti	L	S	Cv	VEL.	T _t	COMP. T _c	TOTAL	Urbanized T _c	Τ _c
ID	(AC)	Soils Group	(%)			(FT)	(%)	(MIN)	(FT)	(%)		(FPS)	(MIN)	(MIN)	LENGTH (FT)	(MIN)	(MIN)
EX-1	0.05	A	2.0	0.22	0.00	61	27.0	5.2	0	1.5	20.0	2.4	0.0	5.2	61.0	10.3	5.2
EX-2	0.26	A	2.0	0.22	0.00	100	3.0	14.0	130	7.3	15.0	4.1	0.5	14.5	230.0	11.3	11.3
EX-3	0.39	А	6.1	0.25	0.03	210	3.0	19.7	0	1.5	20.0	2.4	0.0	19.7	210.0	11.2	11.2
EX-4	0.03	A	77.5	0.63	0.53	16.5	2.0	3.4	16	1.5	20.0	2.4	0.1	3.5	32.5	10.2	5.0
EX-5	2.69	A	8.9	0.27	0.05	300	2.0	26.4	0	1.5	20.0	2.4	0.0	26.4	300.0	11.7	11.7
EX-6	0.36	A	2.0	0.22	0.00	200	5.0	16.7	0	1.5	20.0	2.4	0.0	16.7	200.0	11.1	11.1

NOTES:

 T_i = (0.395*(1.1 - $C_5)$ *(L)^0.5)/((S)^0.33), S in ft/ft

T_t=L/60V (Velocity From Fig. 501)

Velocity V=Cv*S^0.5, S in ft/ft

Tc Check = 10+L/180

For Urbanized basins a minimum $T_{c}\, of\, 5.0$ minutes is required.

For non-urbanized basins a minimum T_c of 10.0 minutes is required

									STAND	ARD FC	ORM SF	-3									
								STORM	1 DRAI	NAGE S	YSTEM	DESIG	N								
								(RA	TIONAL Exis	METHOE itng Con	D PROCE	DURE)									
C. 1. 1. 1. 1															Project	Name:	Constit	ution St	torage		
Locatio	n:	olorado Sp	orings												Proje Calculat	ted Bv:	DDAUUU	002			
Design Stor	m: 2-Yea	r	0												Check	ed By:	BS				
																Date:	7/8/22				
			-		DIRECT RU	JNOFF				TOTAL	RUNOFF		STR	EET		PIPE		TR	AVEL T	ME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
	1	EX-1	0.05	0.00	5.2	0.00	4.06	0.0													Free-release offsite to Eight Line Inc. property
	2	EX-2	0.26	0.00	11.3	0.00	3.15	0.0													Free-release offsite to Alvarado property
	3	EX-3	0.39	0.03	11.2	0.01	3.16	0.0													Free-release offsite to Peterson Road
	4	EX-4	0.03	0.53	5.0	0.02	4.12	0.1													Free-release offsite to Constitution Avenue
	5	EX-5	2.69	0.05	11.7	0.13	3.11	0.4													Free-release offsite to Eight Line Inc. property
	6	EX-6	0.36	0.00	11.1	0.00	3.17	0.0													Free-release offsite to Canada Drive
	_																				
	_																				
	_																				
	_																				
	_																				
	_																				
	_																				

								(TO)	STAN			F-3									
								STOR (F		L METHO	DD PROCE	DURE)	N								
Subdivision: Location: Design Storm:	CO, Co 100-Ye	olorado Spi ear	rings												Project Proje Calculat Check	Name: ect No.: ted By: ced By:	Constitu JDA000 DDJ BS	ution St 002	orage		
																Date:	7/8/22				I
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	(14/ui) I	Q (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
	1	EX-1	0.05	0.22	5.2	0.01	8.56	0.1													Free-release offsite to Eight Line Inc. property
	2	EX-2	0.26	0.22	11.3	0.06	6.63	0.4													Free-release offsite to Alvarado property
	3	EX-3	0.39	0.25	11.2	0.10	6.65	0.7													Free-release offsite to Peterson Road
	4	EX-4	0.03	0.63	5.0	0.02	8.68	0.2													Free-release offsite to Constitution Avenue
	5	EX-5	2.69	0.27	11.7	0.73	6.54	4.8													Free-release offsite to Eight Line Inc. property
	6	EX-6	0.36	0.22	11.1	0.08	6.67	0.5													Free-release offsite to Canada Drive

COMPOSITE % IMPERVIOUS CALCULATIONS

Proposed Conditions

Subdivision:

Location: CO, Colorado Springs

Project Name: Constitution Storage

Project No.: JDA000002

Calculated By: DDJ

Checked By: BS

Date: 6/7/23

			Paved Road	ds		Lawns			Roofs		Desire Total
Basin ID	Total Area (ac)	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	Weighted % Imp.
PR-1	0.22	100	0.00	0.0	2	0.22	2.0	90	0.00	0.00	2.0
PR-2A	0.05	100	0.01	13.2	2	0.04	1.7	90	0.00	0.00	14.9
PR-2B	0.01	100	0.009	77.2	2	0.003	0.5	90	0.00	0.00	77.7
PR-3	0.22	100	0.07	30.8	2	0.15	1.4	90	0.00	0.00	32.2
PR-4	0.25	100	0.09	35.9	2	0.16	1.3	90	0.00	0.00	37.2
PR-5	1.32	100	0.00	0.0	2	0.00	0.0	90	1.32	90.00	90.0
PR-6	0.92	100	0.62	67.9	2	0.29	0.6	90	0.00	0.00	68.5
PR-7	0.19	100	0.17	91.7	2	0.02	0.2	90	0.00	0.00	91.9
PR-8	0.13	100	0.00	0.0	2	0.13	2.0	90	0.00	0.00	2.0
PR-9	0.17	100	0.13	77.8	2	0.04	0.4	90	0.00	0.00	78.2
PR-10	0.31	100	0.00	0.0	2	0.31	2.0	90	0.00	0.00	2.0

STANDARD FORM SF-2 TIME OF CONCENTRATION

Proposed Condtions

Subdivision:

Location: CO, Colorado Springs

Project Name: Constitution Storage

Project No.: JDA000002

Calculated By: DDJ

Checked By: BS

Date: 6/7/23

		SUB-BA	ASIN			INIT	IAL/OVERI	LAND		TF	RAVEL TIM	E			Tc CHECK		
		DAT	Α				(T _i)				(T _t)				(URBANIZED BAS	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₁₀₀	C₅	L	S	Ti	L	S	Cv	VEL.	T _t	COMP. T _c	TOTAL	Urbanized T _c	Τ _c
ID	(AC)	Soils Group	(%)			(FT)	(%)	(MIN)	(FT)	(%)		(FPS)	(MIN)	(MIN)	LENGTH (FT)	(MIN)	(MIN)
PR-1	0.22	A	2.0	0.22	0.00	100	10.0	9.4	0	3.0	20.0	3.5	0.0	9.4	100.0	10.6	9.4
PR-2A	0.05	A	14.9	0.30	0.10	70	5.0	9.0	0	2.0	20.0	2.8	0.0	9.0	70.0	10.4	9.0
PR-2B	0.01	A	77.7	0.63	0.53												5.0
PR-3	0.22	А	32.2	0.38	0.20												5.0
PR-4	0.25	A	37.2	0.40	0.23	93	6.0	8.5	0	3.0	20.0	3.5	0.0	8.5	93.0	10.5	8.5
PR-5	1.32	A	90.0	0.79	0.71												5.0
PR-6	0.92	А	68.5	0.55	0.44	57	2.0	7.2	370	0.5	20.0	1.4	4.4	11.6	427.0	12.4	11.6
PR-7	0.19	А	91.9	0.81	0.74	42	2.0	3.4	47	0.5	20.0	1.4	0.6	3.9	89.0	10.5	5.0
PR-8	0.13	A	2.0	0.22	0.00	25	2.0	8.0	390	2.5	20.0	3.2	2.1	10.0	415.0	12.3	10.0
PR-9	0.17	A	78.2	0.64	0.54	96	4.0	6.3	59	4.0	20.0	4.0	0.2	6.6	155.0	10.9	6.6
PR-10	0.31	A	2.0	0.22	0.00												5.0

NOTES:

$$\begin{split} T_i &= (0.395^*(1.1 - C_5)^*(L)^{0.5})/((S)^{0.33}), \ S \ in \ ft/ft \\ T_t &= L/60V \ (Velocity \ From \ Fig. \ 501) \\ Velocity \ V &= Cv^*S^{0.5}, \ S \ in \ ft/ft \end{split}$$

Tc Check = 10+L/180

For Urbanized basins a minimum $T_{\rm c}$ of 5.0 minutes is required.

For non-urbanized basins a minimum T_c of 10.0 minutes is required

								STORM		ARD FC	ORM SF	-3 I DESI <u>G</u>	N								
								(RA	FIONAL I	METHOD	PROCE	DURE)									
Subdiv	ision:	olorado Sn	orings												Project Proje Calcula	Name: ect No.: ted By:	Constit	ution S	torage		
Design S	torm: 2-Year	r r	/iiigs												Checl	ked By:	BS				
																Date:	6/7/23				
			1		DIRECT RU	INOFF				TOTAL	RUNOFF	:	STE	REET		PIPE		TR	AVEL T	ME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs	Slope (%)	Pipe Size (inches	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
	1	PR-1	0.22	0.00	9.4	0.00	3.37	0.0													Free Release to Alvarado property
	2A	PR-2A	0.05	0.10	9.0	0.00	3.43	0.0													Free Release to Peterson Road
	2B	PR-2B	0.01	0.53	5.0	0.01	4.12	0.0													Free Release to Peterson Road
	3	PR-3	0.22	0.20	5.0	0.04	4.12	0.2													Free Release to Constitution Avenue
	4	PR-4	0.25	0.23	8.5	0.06	3.49	0.2													Free Release to Canada Drive
	5	PR-5	1.32	0.71	5.0	0.94	4.12	3.9													Roof drains to DP-6B
	6A	PR-6	0.92	0.44	11.6	0.40	3.12	1.2													D-10R inlet to DP-6B
	6B								11.6	1.34	3.12	4.2									Max flow at DP-6B to DP-7
	7	PR-7	0.19	0.74	5.0	0.14	4.12	0.6	11.6	1.48	3.12	4.6									D-10R inlet & Maximum flow at DP-7 to DP-8
	8	PR-8	0.13	0.00	10.0	0.00	3.29	0.0	11.6	1.48	3.12	4.6									Area inlet & Flows from PR-5, PR-6, PR-7, PR-8 into FSD
	9	PR-9	0.17	0.54	6.6	0.09	3.79	0.3													Max flow at DP-9 into FSD
	10	PR-10	0.31	0.00	5.0	0.00	4.12	0.0	11.6	1.57	3.12	4.9									Maximum flow into FSD
		-		I	I	I					I		-								•

Subdivision: Location: CO, Color Design Storm: 100-Year STREET	Orado Springs ar	Di Vices (vc) 8 knnoff Coeff: 0.222 0.22	te (ساند) TE	(Ac)		(R		TOTAL	RUNOFF	DURE)	STRE	F (Project I Proje Calculat Check	Name: ct No.: ed By: ed By: Date:	Constitu JDA0000 DDJ BS 6/7/23	tion St 002	orage		
Subdivision: Location: CO, Color Design Storm: 100-Year	PR-2A	Id Area (Ac) Runoff Coeff. 22.0	Tc (min)	(Ac)				TOTAL	RUNOFF		STRE	(:FT	Proje Calculat Check	ct No.: ed By: ed By: Date:	JDA0000 DDJ BS 6/7/23	002			
STREET	PR-1	Id Area (Ac) Runoff Coeff.	Tc (min)	IOFF (Ac)				TOTAL	RUNOFF		STRE	:FT [Check	ed By: ed By: Date:	BS 6/7/23				
STREET	PR-1	II Hunoff Coeff.	Tc (min)	(Ac)				TOTAL	RUNOFF		STRE	FT I		Date:	6/7/23				
STREET	PR-1	ID Area (Ac) Runoff Coeff.	Tc (min)	(JOFF				TOTAL	RUNOFF		STRE	FT						_	
STREET	PR-1	Area (Ac) Area (Ac) Runoff Coeff.	Tc (min)	(Ac)										PIPE		TR/	AVEL TI	ME	
1	PR-1	0.22 0.22		C*A	l (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
	PR-2A	==	9.4	0.05	7.10	0.4													Free Release to Alvarado property
2A F		0.05 0.30	9.0	0.01	7.21	0.1													Free Release to Peterson Road
2B F	PR-2B	0.01 0.63	5.0	0.01	8.68	0.1													Free Release to Peterson Road
3	PR-3	0.22 0.38	5.0	0.08	8.68	0.7													Free Release to Constitution Avenue
4	PR-4	0.25 0.40	8.5	0.10	7.35	0.7													Free Release to Canada Drive
5	PR-5	1.32 0.79	5.0	1.04	8.68	9.0													Roof drains to DP-6B
6A	PR-6	0.92 0.55	11.6	0.50	6.56	3.3													D-10R inlet to DP-6B
6B							11.6	1.54	6.56	10.1									Max flow at DP-6B to DP-7
7	PR-7	0.19 0.81	5.0	0.15	8.68	1.3	11.6	1.69	6.56	11.1									D-10R inlet & Maximum flow at DP-7 to DP-8
8	PR-8	0.13 0.22	10.0	0.03	6.92	0.2	11.6	1.72	6.56	11.3									Flows from PR-5, PR-6, PR-7, PR-8 into FSD
9	PR-9	0.17 0.64	6.6	0.11	7.99	0.9													Max flow at DP-9 into FSD
10 8	PR-10	0.31 0.22	5.0	0.07	8.68	0.6	11.6	1.90	6.56	12.5									Maximum flow into FSD

_

APPENDIX C Hydraulic Computations

MHFD-Inlet, Version 5.01	(April 2021)		
ALLOWABLE CAPACITY FOR ONE-HALF C)F STREET (M	inor & Ma	jor Storm
(Based on Regulated Criteria for Maximum All	owable Flow Depth and	Spread)	-
TNI FT DD-64			
Succe W Tr W Tr Com Col Sr CROWN			
Gutter Geometry:			
Maximum Allowable Width for Spread Behind Curb	TRACK = 5.0	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	$S_{BACK} = 0.020$	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	$n_{BACK} = 0.013$		
· 5· ···5 ···· · · · · · · · · · · · ·	BACK		
Height of Curb at Gutter Flow Line	H _{CURB} = 6.00	linches	
Distance from Curb Face to Street Crown	$T_{CROMN} = 120.0$	ft	
Gutter Width	W = 2.00	ft	
Street Transverse Slope	$S_{\rm Y} = 0.005$	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	$S_{W} = 0.083$	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	$S_0 = 0.000$	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	DCTDEET = 0.016		
······································	STREET CICLO		
	Minor Sto	rm Maior Storn	n
Max Allowable Spread for Minor & Major Storm	T = 25.0	40.0	ft
Max Allowable Denth at Gutter Flowline for Minor & Major Storm	$d_{\text{MAX}} = \frac{23.0}{6.0}$	8.0	linches
Check hoves are not applicable in SLIMP conditions			
Maximum Capacity for 1/2 Street based On Allowable Spread	Minor Sto	rm Major Storn	า
Water Denth without Gutter Depression (Eq. ST-2)	$v = \begin{bmatrix} 1.62 \\ 1.62 \end{bmatrix}$	2 59	
Vertical Depth Meloue Gutter Lin and Gutter Flowline (usually 2")	$d_c = \frac{1.02}{2.0}$	2.55	linches
Gutter Depression $(d_{a} - (W * S * 12))$	a = 1.86	1.86	linches
Water Depth at Gutter Flowline	$d = \frac{1.00}{3.48}$	4 45	linches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T 23.0	38.0	
Gutter Flow to Design Flow Patio by FHWA HEC-22 method (Fg. ST-7)	$F_{z} = \frac{23.0}{0.359}$	0.201	''
Discharge outside the Gutter Section W, carried in Section T		0.201	fr
Discharge within the Gutter Section $W_1(\Omega_{-}, \Omega_{-})$	$Q_{x} = 0.0$	0.0	
Discharge Within the Gutter Section $W_{(Q_1 - Q_2)}$		0.0	
Maximum Flow Based On Allowable Spread		CUMD	
Flaw Velesity within the Cutter Section			
V*d Product: Flow Velocity times Gutter Flowline Depth	V= 0.0	0.0	
v a riodade. Now velocity and s dater nowine bepar	vu = <u>0.0</u>	0.0	
Maximum Capacity for 1/2 Street based on Allowable Depth	Minor Sto	rm Major Storn	า
Theoretical Water Spread	Т _{тн} = 63.9	94.7	ft
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	Тутн = 61.9	92.7	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	$E_0 = 0.112$	0.069	
Theoretical Discharge outside the Gutter Section W, carried in Section TXTH	Q _{X TH} = 0.0	0.0	cfs
Actual Discharge outside the Gutter Section W, (limited by distance Tream)	$O_{\rm Y} = 0.0$	0.0	cfs
Discharge within the Gutter Section W ($Q_d - Q_v$)	$O_{W} = 0.0$	0.0	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	ORACK = 0.0	0.0	cfs
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	O = 0.0	0.0	- cfs
Average Flow Velocity Within the Gutter Section	V = 0.0	0.0	
V*d Product: Flow Velocity Times Gutter Flowline Denth	V*d = 0.0	0.0	
Slope-Based Denth Safety Reduction Factor for Major & Minor $(d > 6")$ Storm		SUMP	
Max Flow Based on Allowable Denth (Safety Factor Applied)			fs
Popultant Flow Donth at Cutter Flowline (Safety Factor Applied)		30/1P	
Resultant Flow Depth at Street Crown (Safety Factor Applied)	b		linches
Sarely Factor Applieu			
MINOP STOPM Allowable Capacity is based on Donth Criterion	Minor Cha	rm Major Charm	1
MINOR STORM Allowable Capacity is based on Depth Criterion	Minor Sto	rm Major Storn	

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Colorado Sp	rings D-10-R]
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.00	4.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1]
Water Depth at Flowline (outside of local depression)	Ponding Depth =	3.5	4.5	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) = [$	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_{o}(C) =$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	8.00	8.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	8.00	8.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	81.00	81.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	_
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
I ow Head Performance Peduction (Calculated)		MINOR	MAIOP	
Depth for Grate Midwidth	d[N/A	N/A	74
Depth for Curb Opening Weir Equation	d	0.12	0.21	
Combination Inlet Performance Reduction Factor for Long Inlets		0.12	0.21	
Curb Opening Performance Reduction Factor for Long Inlets	RE _c =	0.35	0.12	
Grated Inlet Performance Reduction Factor for Long Inlets	RE	N/A	N/A	
Sidea Incl Ferromance Reduction Factor for Long Inicia	Grate -	11/1	11/14	
	-	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	1.5	3.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.3	3.3	cfs

MHFD-Inlet, Version 5.01	1 (April 2021)	
ALLOWABLE CAPACITY FOR ONE-HALF C	OF STREET (Minor & Major Storr	m)
(Based on Regulated Criteria for Maximum Al	llowable Flow Depth and Spread)	
: INLET DP-9		
TBACK		
Cuttor Coomotou		
<u>Builder Geometry.</u> Maximum Allowable Width for Spread Behind Curb	$T_{\text{page}} = 5.0$ ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	$S_{BACK} = 0.020$ ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	$n_{BACK} = 0.013$	
Height of Curb at Gutter Flow Line	H _{CURB} = 6.00 inches	
Distance from Curb Face to Street Crown	$T_{CROWN} = 27.0$ ft	
Gutter Width	W = 2.00 ft	
Street Transverse Slope	$S_{x} = 0.020$ ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	$S_W = 0.083$ ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	$S_0 = 0.041$ ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	$n_{\text{STREET}} = 0.016$	
	Minor Storm Major Storm	
Max, Allowable Spread for Minor & Maior Storm	$T_{MAX} = \begin{bmatrix} 5.0 & 9.0 \\ \end{bmatrix}$ ft	
Max, Allowable Depth at Gutter Flowline for Minor & Major Storm	$d_{MAX} = 6.0$ 8.0 inches	
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)		
Maximum Capacity for 1/2 Street based On Allowable Spread	Minor Storm Major Storm	
Water Depth without Gutter Depression (Eq. ST-2)	y = <u>1.20</u> 2.16 inches	
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	$d_c = 2.0$ 2.0 inches	
Gutter Depression (d_c - (W + S _x + 12))	a = 1.51 1.51 inches	
Allowable Spread for Discharge outside the Cuttor Section W (T. W)	d = 2.71 3.67 Incres	
Cutter Flow to Decign Flow Patio by EHWA HEC-22 method (Fg. ST-7)	$I_X = 3.0$ 7.0 It	
Discharge outside the Gutter Section W, carried in Section T.	$C_0 = 0.023$ 0.025	
Discharge within the Gutter Section W, carried in Section V_{χ}	$Q_{\chi} = 0.2 1.5 crs$	
Discharge Behind the Curb (e.g., sidewalk, driveways, & Jawns)	$Q_{W} = 0.0 \qquad 0.0 \qquad \text{cfs}$	
Maximum Flow Based On Allowable Spread	$O_{T} = 1.8$ 5.1 cfs	
Flow Velocity within the Gutter Section	V = 5.5 7.2 fps	
V*d Product: Flow Velocity times Gutter Flowline Depth	V*d = 1.2 2.2	
Maximum Capacity for 1/2 Street based on Allowable Depth	Minor Storm Major Storm	
Theoretical Water Spread	$T_{TH} = 18.7$ 27.0 π	
Cutter Flow to Decign Flow Patio by FHWA HEC 22 method (Fg. ST. 7)	$I_{\rm XTH} = 10.7$ 25.0 II	
Theoretical Discharge outside the Gutter Section W, carried in Section T	$L_0 = 0.518 0.210$	
Actual Discharge outside the Gutter Section W, (limited by distance $T_{x,H}$	$Q_{X H} = 19.1$ 56.3 cfs	
Discharge within the Gutter Section W ($Q_d - Q_v$)	$Q_{\rm W} = 8.9$ 15.5 cfs	
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	$Q_{BACK} = 0.0$ 3.4 cfs	
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q = 28.0 75.2 cfs	
Average Flow Velocity Within the Gutter Section	V = 10.7 13.3 fps	
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d = 5.3 8.9	
Slope-Based Depth Safety Reduction Factor for Major & Minor (d \geq 6") Storm	R = 0.58 0.47	
Max Flow Based on Allowable Depth (Safety Factor Applied)	Q _d = <u>16.1</u> <u>35.0</u> cfs	
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	d = 5.10 6.41 inches	
Resultant Flow Depth at Street Crown (Safety Factor Applied)	d _{CROWN} = 0.00 0.00 inches	
MINOR CTORM Allowable Conseils is based on Coursed Criterian	Minou Charman Maiara Charma	
MAIOR STORM Allowable Capacity is based on Spread Criterion		
moore of orter Allowable Capacity is based off spread Citien off	Vallow - 1.0 J.1 US	
Minor storm may allowable canacity COOD - greater than the design flow sin	iven on sheet 'Inlet Management'	

N/A MINOF

0.250

2.81

MINOR

2.81

0.5

MINOR

1.00

0.08

5.40

0.5

0.0

MINOR

0.5

0.0

100

Q_b =

S_e =

L_T =

L

L

 $Q_a =$

Оь =

Q =

 $Q_b =$

C% -

CurbCoef =

CurbClog =

 $Q_i =$

N/A MAJOF

0.250

3.80

MAJOR

3.80

0.9

MAJOR

1.00

0.08

5.40

0.9

0.0

MAJOF

0.9

0.0

100

cfs

ft/ft

ft

ft

lcfs

ft

cfs

cfs

cfs

cfs

0%

Carry-Over Flow = $Q_n Q_n$ (to be applied to curb opening or next d/s inlet) Curb or Slotted Inlet Opening Analysis (Calculated)

Effective Length of Curb Opening or Slotted Inlet (minimum of L, LT)

Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet

Equivalent Slope S_e (based on grate carry-over)

Required Length L_T to Have 100% Interception

Total Inlet Carry-Over Flow (flow bypassing inlet)

Under No-Clogging Condition

Interception Capacity

Clogging Coefficient

Summarv

Under Clogging Condition

Effective (Unclogged) Length

Actual Interception Capacity

Carry-Over Flow = Qb(GRATE)-Q

Total Inlet Interception Capacity

Capture Percentage = Q_a/Q_o =

Warning 01: Manning's n-value does not meet the USDCM recommended design range.

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

			MINOR	111100	
	Design Information (Input) Colorado Springs D-10-R	-	MINOR	MAJOR	
	Type of Inlet	Type =	Colorado Sp	rings D-10-R	
	I cal Depression (additional to continuous gutter depression 'a' from above)	a =	4 00	4 00	linches
		Cilocal			
	Number of Unit Thets (Grate of Curb Opening)		6	6	-
	Water Depth at Flowline (outside of local depression)	Ponding Depth =	2.7	3.9	inches
	Grate Information	5 . L	MINOR	MAIOR	Override Depths
			PHINOR	PIAUOK	
	Length of a Unit Grate	$L_{o}(G) = [$	N/A	N/A	reet
	Width of a Unit Grate	W ₀ =	N/A	N/A	feet
	Area Opening Patio for a Crate (typical values 0.15-0.90)	_ × × _ L	N/A	NI/A	
		Aratio -		11/73	- 1
	Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) = [$	N/A	N/A	
	Grate Weir Coefficient (typical value 2.15 - 3.60)	C., (G) =	N/A	N/A	1
	Grate Orifice Coefficient (typical value 0.60 - 0.80)	ت زي ا	Ν/Δ	N/A	
	Grate of the control	C ₀ (0) = [IN/A	11/7	J
	Curb Opening Information		MINOR	MAJOR	
Warning 1	Length of a Unit Curb Opening	L ₀ (C) =	1.00	1.00	feet
	Height of Vortical Curb Opening in Inches		<u> 00</u>	0.00	linchos
	regit of vertical curb opening in inches	Vert -	0.00	0.00	
	Height of Curb Orifice Throat in Inches	H _{throat} =	8.00	8.00	inches
	Angle of Throat (see USDCM Figure ST-5)	Theta =	81.00	81.00	dearees
	Side Width for Depression Pan (typically the gutter width of 2 feet)	W -	2.00	2.00	foot
	Side width for Depression Part (typically the gutter width of 2 feet)	vv _p –	2.00	2.00	
	Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
	Curb Opening Weir Coefficient (typical value 2.3-3.7)	C., (C) =	3.60	3.60	7 1
	Curb Opening Orifice Coefficient (brical value 0.60 - 0.70)	- Čí Čí -	0.67	0.67	
		$c_0(c) =$	0.07	0.07	1
	Grate Flow Analysis (Calculated)		MINOR	MAJOR	
	Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	ן ר
			11/7	14/74	
	Clogging Factor for Multiple Units		N/A	N/A	
	Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
	Intercention without Clogging	0 · = [N/A	N/A	lcfs
		2wi -		N/A	
	Interception with Clogging	Q _{wa} =	N/A	N/A	CTS
	Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	-
	Interception without Clogging	o. – F	N/A	N/A	
		Q ₀ i -	N/A	N/A	
	Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
	Grate Capacity as Mixed Flow	-	MINOR	MAJOR	-
	Interception without Clogging	0 - F	N/A	N/A	lefe
		Q _{mi} =	N/A	IN/A	
	Interception with Clogging	Q _{ma} =	N/A	N/A	cts
	Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
	Curb Opening Flow Analysis (Calculated)	•	MINOR	MAIOR	
	<u>Curb Openning Flow Analysis (Calculated)</u>		MINOR	MAUOK	- I
	Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
	Clogging Factor for Multiple Units	Clog =	0.08	0.08	1
	Curb Opening as a Weir (based on Medified HEC22 Method)		MINOD	MAJOD	
	Curb Opening as a weir (based on Modified HEC22 Method)		MINOR	MAJUR	¬ .
	Interception without Clogging	$Q_{wi} =$	1.2	6.1	cfs
	Interception with Clogging	O	1.1	5.6	lcfs
	Curb Opening as an Orifice (based on Medified HEC22 Method)	-twa L	MINOR	MAIOR	
			MINUK	MAJOR	ا ₋ -
	Interception without Clogging	Q _{oi} =	10.3	12.4	cfs
	Interception with Clogging	0,, =	9.5	11.3	lcfs
	Curb Opening Conacity on Mixed Flow	-coa	MINOD	MAJOR	
	Curb Opening Capacity as Mixed Flow		MINOR	MAJOK	- I
	Interception without Clogging	Q _{mi} =	3.3	8.1	lcts
	Interception with Clogging	0m =	3.0	7.4	lcfs
	Bogulting Curb Opening Capacity (accuracy classed condition)	n	11	56	des 1
		•curb =	1.1		
	Resultant Street Conditions		MINOR	MAJOR	
	Total Inlet Length	ı _ Г	6.00	6,00	lfeet
	Begultant Street Flow Spread (based on street geometry from above)	÷_+	E 0	10.0	1 ₆
	Resultant Street Flow Spread (based on street geometry from above)	· = L	5.0	10.0	-l''
	Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
		· · · •			-
	Low Hood Performance Reduction (Calculated)		MINOD	MAJOR	
	Low near Performance Reduction (Calculated)	-	MINOR	MAJOK	- I
	Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
	Depth for Curb Opening Weir Equation		0.06	0.16	1 _{ft}
			0.00	0.10	-1' ^s
	Complination Inlet Performance Reduction Factor for Long Inlets	$RF_{Combination} = $	0.32	0.46	4 1
	Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.83	0.96	1
	Grated Inlet Performance Reduction Factor for Long Inlets	REc. =	N/A	N/A	1
	States incertationalice reduction ractor for Long inces	Grate -	11/1	11/1	-
			MINOR	MAJOR	
	Tatal Inlat Intercontian Conscits (consumer alogged condition)	0 - [11	5.6	
	Total The Interception Capacity (assumes clogged condition)	0 * ª <u>-</u> -	0.6	1.2	- offe

Warning 1: Dimension entered is not a typical dimension for inlet type specified.

Notes:

1. The standard inlet parameters must apply to use these charts.

	12" @ 0.5% Capa	city
Project Description		
Friction Method	Manning Formula	
Solve For	Full Flow Capacity	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.00500	ft/ft
Normal Depth	1.00	ft
Diameter	1.00	ft
Discharge	2.52	ft³/s
Results		
Discharge	2.52	ft³/s
Normal Depth	1.00	ft
Flow Area	0.79	ft²
Wetted Perimeter	3.14	ft
Hydraulic Radius	0.25	ft
Top Width	0.00	ft
Critical Depth	0.68	ft
Percent Full	100.0	%
Critical Slope	0.00770	ft/ft
Velocity	3.21	ft/s
Velocity Head	0.16	ft
Specific Energy	1.16	ft
Froude Number	0.00	
Maximum Discharge	2.71	ft³/s
Discharge Full	2.52	ft³/s
Slope Full	0.00500	ft/ft
Flow Type	SubCritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%

Bentley Systems, Inc. Haestad Methods Solicition(QeFiterr/Master V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

9/29/2022 4:37:23 PM

12" @ 0.5% Capacity

GVF Output Data

Normal Depth Over Rise	100.00	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.00	ft
Critical Depth	0.68	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.00770	ft/ft

	18" @ 0.5%	Capac	city
Project Description			
Friction Method	Manning Formula		
Solve For	Full Flow Capacity		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.00500	ft/ft
Normal Depth		1.50	ft
Diameter		1.50	ft
Discharge		7.43	ft³/s
Results			
Discharge		7.43	ft³/s
Normal Depth		1.50	ft
Flow Area		1.77	ft²
Wetted Perimeter		4.71	ft
Hydraulic Radius		0.38	ft
Top Width		0.00	ft
Critical Depth		1.06	ft
Percent Full		100.0	%
Critical Slope		0.00703	ft/ft
Velocity		4.20	ft/s
Velocity Head		0.27	ft
Specific Energy		1.77	ft
Froude Number		0.00	
Maximum Discharge		7.99	ft³/s
Discharge Full		7.43	ft³/s
Slope Full		0.00500	ft/ft
Flow Type	SubCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%

 Bentley Systems, Inc.
 Haestad Methods Solititienti@eFiterref

9/29/2022 4:15:14 PM

18" @ 0.5% Capacity

GVF Output Data

Normal Depth Over Rise	100.00	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.50	ft
Critical Depth	1.06	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.00703	ft/ft

	24" @ 0.5% Capa	city
Project Description		
Friction Method	Manning Formula	
Solve For	Full Flow Capacity	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.00500	ft/ft
Normal Depth	2.00	ft
Diameter	2.00	ft
Discharge	16.00	ft³/s
Results		
Discharge	16.00	ft³/s
Normal Depth	2.00	ft
Flow Area	3.14	ft²
Wetted Perimeter	6.28	ft
Hydraulic Radius	0.50	ft
Top Width	0.00	ft
Critical Depth	1.44	ft
Percent Full	100.0	%
Critical Slope	0.00662	ft/ft
Velocity	5.09	ft/s
Velocity Head	0.40	ft
Specific Energy	2.40	ft
Froude Number	0.00	
Maximum Discharge	17.21	ft³/s
Discharge Full	16.00	ft³/s
Slope Full	0.00500	ft/ft
Flow Type	SubCritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%

Bentley Systems, Inc. Haestad Methods Solititional @FiterwMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

9/29/2022 4:22:25 PM

GVF Output Data

Normal Depth Over Rise	100.00	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	2.00	ft
Critical Depth	1.44	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.00662	ft/ft

	Curb Cha	se Capa	city	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.013		
Channel Slope		0.02000	ft/ft	
Bottom Width		2.00	ft	
Discharge		0.87	ft³/s	
Results			N	
Normal Depth		0.12	ft	Note: 100-year Release Rat
Flow Area		0.24	ft²	from Private FSD-1 Pond
Wetted Perimeter		2.24	ft	
Hydraulic Radius		0.11	ft	
Top Width		2.00	ft	
Critical Depth		0.18	ft	
Critical Slope		0.00544	ft/ft	
Velocity		3.64	ft/s	
Velocity Head		0.21	ft	
Specific Energy		0.32	ft	
Froude Number		1.85		
Flow Type	Supercritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Infinity	ft/s	
Normal Depth		0.12	ft	
Critical Depth		0.18	ft	
Channel Slope		0.02000	ft/ft	
Critical Slope		0.00544	ft/ft	

 Bentley Systems, Inc.
 Haestad Methods Solititienti@eFiterremMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 1

	Basin P	R-6 Swa	le	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.035		
Channel Slope		0.04000	ft/ft	
Left Side Slope		3.00	ft/ft (H:V)	
Right Side Slope		3.00	ft/ft (H:V)	
Discharge		1.00	ft³/s	
Results				
Normal Depth		0.36	ft	
Flow Area		0.38	ft²	
Wetted Perimeter		2.26	ft	Nietes Eleverneduce d'fram
Hydraulic Radius		0.17	ft	Note: Flow reduced from
Top Width		2.15	ft	swale only captures small
Critical Depth		0.37	ft	nortion of landscaped
Critical Slope		0.03362	ft/ft	flows
Velocity		2.60	ft/s	nowo
Velocity Head		0.11	ft	
Specific Energy		0.46	ft	
Froude Number		1.08		
Flow Type	Supercritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Infinity	ft/s	
Normal Depth		0.36	ft	
Critical Depth		0.37	ft	
Channel Slope		0.04000	ft/ft	
Critical Slope		0.03362	ft/ft	

Bentley Systems, Inc. Haestad Methods Solicitional Operiter Waster V8i (SELECTseries 1) [08.11.01.03]

7/8/2022 11:35:23 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

	Basin PR-8 Swa	ale
Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.03	5
Channel Slope	0.02000	D ft/ft
Left Side Slope	3.00	D ft/ft (H:V)
Right Side Slope	3.00	D ft/ft (H:V)
Discharge	0.20	D ft³/s
Results		
Normal Depth	0.22	2 ft
Flow Area	0.15	5 ft²
Wetted Perimeter	1.4	1 ft
Hydraulic Radius	0.1	1 ft
Top Width	1.34	4 ft
Critical Depth	0.19	9 ft
Critical Slope	0.0416	7 ft/ft
Velocity	1.34	4 ft/s
Velocity Head	0.03	3 ft
Specific Energy	0.25	5 ft
Froude Number	0.7	1
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	D ft
Length	0.00	D ft
Number Of Steps	(0
GVF Output Data		
Upstream Depth	0.00	D ft
Profile Description		
Profile Headloss	0.00	D ft
Downstream Velocity	Infinit	y ft/s
Upstream Velocity	Infinit	y ft/s
Normal Depth	0.22	2 ft
Critical Depth	0.19	9 ft
Channel Slope	0.02000	D ft/ft
Critical Slope	0.0416	7 ft/ft

Bentley Systems, Inc. Haestad Methods Sol dtentlegefitewMaster V8i (SELECTseries 1) [08.11.01.03]

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

_

APPENDIX D Pond Computations

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Depth Increment = 0.20 ft

	Project: Constitution Storage	
	Basin ID: FSD-1	
100-YR EURY WOCV	ZONE 3 DE 2 CONT 200E 1 CONT 1 ADD 2 CONT	

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	3.03	acres
Watershed Length =	520	ft
Watershed Length to Centroid =	225	ft
Watershed Slope =	0.020	ft/ft
Watershed Imperviousness =	73.70%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydro	ograph Procedu	ire.	Optional User	Over
Water Quality Capture Volume (WQCV) =	0.074	acre-feet		acre-
Excess Urban Runoff Volume (EURV) =	0.287	acre-feet		acre-
2-yr Runoff Volume (P1 = 1.19 in.) =	0.197	acre-feet	1.19	inche
5-yr Runoff Volume (P1 = 1.5 in.) =	0.256	acre-feet	1.50	inche
10-yr Runoff Volume (P1 = 1.75 in.) =	0.304	acre-feet	1.75	inche
25-yr Runoff Volume (P1 = 2 in.) =	0.362	acre-feet	2.00	inche
50-yr Runoff Volume (P1 = 2.25 in.) =	0.419	acre-feet	2.25	inche
100-yr Runoff Volume (P1 = 2.52 in.) =	0.487	acre-feet	2.52	inche
500-yr Runoff Volume (P1 = 3 in.) =	0.601	acre-feet	3.00	inche
Approximate 2-yr Detention Volume =	0.188	acre-feet		
Approximate 5-yr Detention Volume =	0.245	acre-feet		
Approximate 10-yr Detention Volume =	0.293	acre-feet		
Approximate 25-yr Detention Volume =	0.350	acre-feet		
Approximate 50-yr Detention Volume =	0.384	acre-feet		
Approximate 100-yr Detention Volume =	0.416	acre-feet		

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.074	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.213	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.129	acre-feet
Total Detention Basin Volume =	0.416	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft

Length of Main Basin $(L_{MAIN}) =$

Width of Main Basin (W_{MAIN}) =

Volume of Main Basin (V_{MAIN}) =

Calculated Total Basin Volume (V_{total}) =

Area of Main Basin (A_{MAIN}) =

user ft

user ft

user ft

user ft

acre-feet

user

)		Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft²)	Area (ft ²)	(acre)	(ft ³)	(ac-ft)
				0.00				35	0.001		
		6499.6		0.20				194	0.004	23	0.001
				0.40				468	0.011	89	0.002
		6500		0.60				759	0.017	212	0.005
				0.80				1,395	0.032	427	0.010
				1.00				2,555	0.059	822	0.019
				1.20				3,917	0.090	1,469	0.034
				1.40				5,190	0.119	2,380	0.055
		6501		1.60				6,173	0.142	3,516	0.081
				1.80				7,042	0.162	4,838	0.111
				2.00				7,777	0.179	6,319	0.145
				2.20				8,401	0.193	7,937	0.182
				2.40				8,872	0.204	9,665	0.222
		6502		2.60				9,019	0.207	11,454	0.263
l User	r Overrides			2.80				9,121	0.209	13,268	0.305
	acre-feet			3.00				9,210	0.211	15,101	0.347
	acre-feet			3.20				9,249	0.212	16,947	0.389
9	inches			3.40				9,288	0.213	18,800	0.432
0	inches	6503		3.60				9,327	0.214	20,662	0.474
5	inches			3.80				9,366	0.215	22,531	0.517
0	inches			4.00				9,423	0.216	24,410	0.560
5	inches			4.20				9,459	0.217	26,298	0.604
2	inches			4.40				9,496	0.218	28,193	0.647
0	inches	6504		4.60				9,532	0.219	30,096	0.691
				4.80				9,568	0.220	32,006	0.735
				5.00				9,604	0.220	33,923	0.779
				5.20				9,641	0.221	35,848	0.823
				5.40				9,677	0.222	37,780	0.867
		6505		5.60				9,713	0.223	39,719	0.912
				5.80				9,750	0.224	41,665	0.956
				6.00				9,786	0.225	43,619	1.001
				6.20				9,822	0.225	45,579	1.046
				6.40				9,859	0.226	47,547	1.092
		6506									
										<u> </u>	
										⊢]	
										<u>├</u> ──┤	
										<u> </u>	
										<u>├</u> ───┤	
										I	I

Ontional

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

DETENTION BASIN OUTLET STRUCTURE DESIGN

Project:	Constitution Stora	MH ae	FD-Detention, Ver	sion 4.05 (Januar	y 2022)				
Basin ID:	FSD-1								
ZONE 3				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
VOLUME EURY WOCY				1 56	0.074	Orifico Plato	1		
				1.50	0.0/4		-		
ZONE 1 AND 2	ORIFICE		Zone 2 (EURV)	2.72	0.213	Orifice Plate	-		
PERMANENT ORIFICES	Configuration (De	tention Dand)	Zone 3 (100-year)	3.33	0.129	Weir&Pipe (Restrict)			
Example zone	Configuration (Re	tention Ponu)		Total (all zones)	0.416				
User Input: Orifice at Underdrain Outlet (typical	y used to drain WC	CV in a Filtration B	<u>MP)</u>				Calculated Parame	ters for Underdrain	
Underdrain Orifice Invert Depth =	N/A	ft (distance below	the filtration media	surface)	Underd	Irain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrain	Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically used	<u>l to drain WQCV and</u>	d/or EURV in a sed	imentation BMP)		Calculated Parame	ters for Plate	
Centroid of Lowest Orifice =	0.00	ft (relative to basir	bottom at Stage =	• 0 ft)	WQ Orifi	ce Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	2.72	ft (relative to basir	bottom at Stage =	• 0 ft)	Elli	ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches			Ellipti	ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	sq. inches			E	lliptical Slot Area =	N/A	ft ²	
User Input: Stage and Total Area of Each Orific	e Row (numbered f	rom lowest to high	<u>est)</u>						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	0.91	1.58	2.45					
Orifice Area (sq. inches)	0.44	0.60	0.79	0.44					
									1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Circular or Rectang	<u>ular)</u>						Calculated Parame	ters for Vertical Ori	fice
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin	bottom at Stage =	= 0 ft) Ver	tical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin	bottom at Stage =	= 0 ft) Vertical	Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						-
			•						
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Rec	tangular/Trapezoid	al Weir and No Out	tlet Pipe)		Calculated Parame	ters for Overflow W	/eir
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected]
Overflow Weir Front Edge Height, Ho =	3.25	N/A	ft (relative to basin b	ottom at Stage = 0 f	t) Height of Grate	e Upper Edge, H _t =	3.25	N/A	feet
Overflow Weir Front Edge Length =	2.92	N/A	feet		Overflow W	eir Slope Length =	2.92	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V	Gr	ate Open Area / 10	0-yr Orifice Area =	22.25	N/A	1
Horiz. Length of Weir Sides =	2.92	N/A	feet	O	verflow Grate Open	Area w/o Debris =	5.93	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A		C	Overflow Grate Oper	n Area w/ Debris =	2.97	N/A	ft ²
Debris Clogging % =	50%	N/A	%						1 -
55 5		,	1						
User Input: Outlet Pipe w/ Flow Restriction Plate	e (Circular Orifice, R	estrictor Plate, or R	ectangular Orifice)		Ca	Iculated Parameter	s for Outlet Pipe w/	Flow Restriction Pl	ate
	Zone 3 Restrictor	Not Selected					Zone 3 Restrictor	Not Selected]
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below ba	sin bottom at Stage	= 0 ft) O	utlet Orifice Area =	0.27	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	-	Outlet	t Orifice Centroid =	0.18	N/A	feet
Restrictor Plate Height Above Pipe Invert =	3.75		inches	Half-Cent	ral Angle of Restric	tor Plate on Pipe =	0.95	N/A	radians
5 1		I			5			,	1
User Input: Emergency Spillway (Rectangular or	Trapezoidal)						Calculated Parame	ters for Spillway	
Spillway Invert Stage=	3.40	ft (relative to basir	bottom at Stage =	0 ft)	Spillway D	esign Flow Depth=	0.29	feet	
Spillway Crest Length =	20.00	feet	5	,	Stage at 1	Fop of Freeboard =	4.69	feet	
Spillway End Slopes =	0.00	H:V			Basin Area at 1	Top of Freeboard =	0.22	acres	
Freeboard above Max Water Surface =	1.00	feet			Basin Volume at T	op of Freeboard =	0.71	acre-ft	
								1	
Routed Hydrograph Results	The user can over	ride the default CUI	HP hydrographs and	d runoff volumes by	v entering new valu	es in the Inflow Hy	drographs table (Co	olumns W through A	4 <i>F).</i>
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1./5	2.00	2.25	2.52	3.00
CUMP RUNOIT VOIUME (acre-it) =	0.074 N/A	0.267 N/A	0.197	0.256	0.304	0.362	0.419	0.467	0.601
CUHP Predevelopment Peak $O(cfs) =$	N/A	N/A	0.0	0.0	0.1	0.6	1.2	2.0	3.1
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.016	0.022	0.20	0.40	0.65	1.04
Peak Inflow Q (cfs) =	N/A	N/A	3.6	4.6	5.3	6.6	7.7	9.3	11.5
Peak Outflow Q (cfs) =	0.034 N/A	0.087	U.U66	0.0/8	0.088	0.09/	0.141	0.869	3.5//
structure Controlling Flow -	Plate	Plate	Plate	Plate	Plate	Plate	Overflow Weir 1	0.4 Overflow Weir 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	0.0	0.1	0.3
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	73	62	70	76	82	87	85	83
Time to Drain 99% of Inflow Volume (hours) =	40	79	67	76	82	89	95	94	93
Maximum Ponding Depth (ft) =				o = 1	0 =0	0.01		0.07	a
Area at Maximum Ponding Donth (acros) -	1.56	2.72	2.22	2.51	2.73	3.01	3.27	3.37	3.48
Area at Maximum Ponding Depth (acres) = Maximum Volume Stored (acre-ft) =	1.56 0.14 0.075	2.72 0.21 0.288	2.22 0.19 0.186	2.51 0.21 0.244	2.73 0.21 0.290	3.01 0.21 0.347	3.27 0.21 0.402	3.37 0.21 0.423	3.48 0.21 0.449

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

	Inflow Hydrog	<u>iraphs</u>								
	The user can ov	verride the calcu	llated inflow hyd	Irographs from t	his workbook wi	th inflow hydrog	raphs developed	l in a separate pr	ogram.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.01	0.15
	0:15:00	0.00	0.00	0.52	0.85	1.05	0.70	0.86	0.85	1.11
	0:20:00	0.00	0.00	1.75	2.26	2.64	1.65	1.91	2.07	2.53
	0:25:00	0.00	0.00	3.37	4.45	5.32	3.34	3.82	4.09	5.07
	0:30:00	0.00	0.00	3.61	4.62	5.35	6.57	7.72	8.69	10.80
	0:35:00	0.00	0.00	3.03	3.81	4.39	6.62	7.74	9.30	11.49
	0:40:00	0.00	0.00	2.51	3.10	3.56	5.84	6.83	8.13	10.06
	0:45:00	0.00	0.00	1.96	2.48	2.88	4.76	5.55	6.87	8.51
	0:50:00	0.00	0.00	1.61	2.11	2.40	3.96	4.60	5.61	6.96
	1.00.00	0.00	0.00	1.35	1.75	2.02	3.18	3.68	4.01	5.70
	1:05:00	0.00	0.00	0.05	1.45	1.70	2.00	2.99	3.09	4.01
	1:10:00	0.00	0.00	0.76	1.08	1.31	1.65	1.88	2.41	2.96
	1:15:00	0.00	0.00	0.66	0.98	1.27	1.37	1.56	1.86	2.27
	1:20:00	0.00	0.00	0.61	0.89	1.16	1.14	1.29	1.40	1.70
	1:25:00	0.00	0.00	0.58	0.83	1.02	1.00	1.13	1.11	1.34
	1:30:00	0.00	0.00	0.56	0.79	0.92	0.86	0.97	0.94	1.13
	1:35:00	0.00	0.00	0.55	0.77	0.86	0.77	0.87	0.83	0.99
	1:40:00	0.00	0.00	0.54	0.68	0.81	0.71	0.80	0.75	0.90
	1:45:00	0.00	0.00	0.53	0.61	0.78	0.67	0.76	0.70	0.84
	1:50:00	0.00	0.00	0.53	0.57	0.76	0.65	0.73	0.68	0.81
	1:55:00	0.00	0.00	0.44	0.54	0.72	0.63	0.71	0.67	0.80
	2:00:00	0.00	0.00	0.38	0.50	0.65	0.63	0.71	0.67	0.80
	2:05:00	0.00	0.00	0.25	0.34	0.43	0.42	0.4/	0.45	0.54
	2:15:00	0.00	0.00	0.17	0.22	0.28	0.28	0.31	0.30	0.33
	2:20:00	0.00	0.00	0.06	0.09	0.10	0.10	0.12	0.12	0.14
	2:25:00	0.00	0.00	0.04	0.05	0.07	0.07	0.08	0.07	0.09
	2:30:00	0.00	0.00	0.02	0.03	0.04	0.04	0.04	0.04	0.05
	2:35:00	0.00	0.00	0.01	0.01	0.01	0.02	0.02	0.02	0.02
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5:45:00 5:50:00

5:55:00

6:00:00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Design Procedure Form: Extended Detention Basin (EDB)						
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3				
Designer:	DDJ					
Company:	Galloway					
Date: Project:	Constitution Storage					
Location:						
1. Basin Storage \	/olume					
A) Effective Imp	perviousness of Tributary Area, I _a	I _a = 73.7 %				
B) Tributary Are	a's Imperviousness Ratio (i = I_/ 100)	i = 0.737				
() Contributing						
D) For Watersr Runoff Prod	lucing Storm	a ₆ = in				
E) Design Con	cept	Choose One				
(Select EUR	V when also designing for flood control)	water Quality Capture Volume (WQCV) Excess Linhan Runoff Volume (FURV)				
F) Design Volu (V _{DESIGN} = (1	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.074 ac-ft				
G) For Watersł Water Quali (Vwocy otka	neds Outside of the Denver Region, ty Capture Volume (WQCV) Design Volume ₅ = (d _e *(V _{INENIN} (0.43))	V _{DESIGN OTHER} =ac-ft				
H) User Input c (Only if a dif	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft				
I) NRCS Hydro i) Percenta ii) Percenta iii) Percent	logic Soil Groups of Tributary Watershed ige of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils age of Watershed consisting of Type C/D Soils	HSG _A = % HSG _B = % HSG _{CD} = %				
J) Excess Urba For HSG A For HSG B For HSG C	an Runoff Volume (EURV) Design Volume : EURV _A = 1.68 * i ^{1.28} : EURV _n = 1.36 * i ^{1.08} /D: EURV _{CID} = 1.20 * i ^{1.08}	EURV _{DESIGN} = ac-f t				
K) User Input o (Only if a dif	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} =ac-ft				
2. Basin Shape: Le (A basin length	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L:W =FSD-1 USES VERTICAL WALLS				
3. Basin Side Slop	les					
A) Basin Maxin (Horizontal d	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = ft / ft TOO STEEP (< 3)				
		Freehour (Obert 4 has been included bries are for each freehourdering, design to d. Death				
4. Inlet		Forebays (Sneet 1 has been included twice, one for each forebay design; designated South Forebay and North Forebay)				
 A) Describe me inflow location 	eans of providing energy dissipation at concentrated					
5. Forebay		NORTH FOREBAY				
A) Minimum Fo (V _{EMIN}	rebay Volume = 2% of the WQCV)	V _{FMIN} =0.001 ac-ft				
B) Actual Fore	bay Volume	V _F = 0.005 ac-ft				
C) Forebay Dep (D _F	oth = <u>18</u> inch maximum)	D _F = <u>18.0</u> in				
D) Forebay Disc	charge					
i) Undetaine	ed 100-year Peak Discharge	Q ₁₀₀ = 11.30 cfs				
ii) Forebay (Q _c = 0.0	Discharge Design Flow 2 * Q ₁₀₀)	Q _F = 0.23 cfs				
E) Forebay Disc	charge Design					
2,10,000,210		Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir				
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P = in				
G) Rectangular	Notch Width	Calculated W _N = in				

USAUP (Assume 3.02 March 2019) Sheet 1 of 3 Designation Solution 2010 Sheet 1 of 3 Designation Solution 2010 Solution 2010 Sheet 1 of 3 Designation Solution 2010 Solution 2010 Sheet 1 of 3 Designation Solution 2010 Solution 2010 Sheet 1 of 3 Designation Solution 2010 Solution 20	Design Procedure Form: Extended Detention Basin (EDB)				
Betsger: Dol Company: Solidary Decempor: Solidary Decempor: Solidary Image:		UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3		
Company Mail And P Protect: Downloaded: Biology Iterative: Downloade:	Designer:	DDJ			
Image:	Company:	Galloway			
Interview	Date: Project:	Sune 2, 2023			
Aussission where A barsis integration areas of the barsy Area, I, Birstein impersion areas of the barsy Area, I, Difference impersion areas of the barsy Area, I, Diff	Location:				
 1. Back Storage Values A) Elder Index Storage Values () Ender Index Storage State (= 0, 1/10) () Constanding Waterbook Asa () Constanding W					
 A) Bitchic Impervises at Tributy Asta, I, B) The Tributy Asta Impervises at Bits B = (-1/10) C) Contributing Worked Asta D) The Tributy Worked Asta	1. Basin Storage V	/olume			
 I) Trituary visits improvisions Refs (0 = 1, 100) I) Constituting Watched Aces I) Provide the construction of the const	A) Effective Imp	erviousness of Tributary Area. I.	la = 73.7 %		
<pre>e) Information reads the information reads (1 = 1, 100) () Control Waveshard Asia () Contro</pre>					
 C) Controlling Watershof Area Area = 3303 sc Brand Products (Suites of the Draw Region, Digits of Areage Read Products (Suites of the Draw Region, Digits of Areage Read Products (Suites of Area Suites (Areage Read Products (Suites (Area Suites (Area Suit	B) Tributary Are	a's imperviousness Ratio (I = $I_a/100$)			
(a) = r V Valence Not Charton Flagon, Depth of Average Note Physics (Depth of Average Note Ph	C) Contributing	Watershed Area	Area = 3.030 ac		
 Longer Coording Jaam (a) Design Coording Jaam (b) Design Coording Jaam (c) Design Votanie (VICCV) Design Vitatione (VICCV) Design Vita	D) For Watersh	eds Outside of the Denver Region, Depth of Average	$d_6 =$ in		
F) Beage Concept (Rever, CHV) whet also designing for fload control) Image: concept (concepts: values (VCV) (Descent that River Values (ULR)) F) Usego Values (VCV) (Paced in the Descent Right) (Newson - 10 / 0.81 / 1 - 1.91 ° f = 0.71 ° 1.02 ° 1 / 1 * 2 eas) Vesson - 10 077 * ac-4 G) Prof Waterhold Dates of the Descent Right (Wesson - 10 / 0.81 / 1 - 1.91 ° f = 0.71 ° 1.02 ° 1 / 1 * 2 eas) Vesson - 10 077 * ac-4 H) User for the Descent Right (Wesson - 10 / 10 × 10 / 1 × 10 × 10 × 10 × 10 ×	Runoli Prod		Choose One		
Learner (More Series) Learner (MORE) Learner (MORE	E) Design Cond (Select EUR)	cept V when also designing for flood control)	Water Quality Capture Volume (WQCV)		
F) Design Valuer (WGC) Based on 46-load Date Time (Wessen = 10 * 103 * 11 * 12 * 12 * 12 * 17 * 12 * 12 * 17 * 12 * 12	(· · · · · · · · · · · · · · · · · · ·	C Excess Urban Runoff Volume (EURV)		
P) Decay Volume WCCVD Based on APhone Thim (Volume Volume Volu					
(a) For Waterields Outside of the Dever Region, Waterie Genome and EV (Vicesses), Volume (Out) Capture Volume (VOCV) Design Volume Control and EV (Vicesses), Vicesses Outside of the Dever Region, Waterields and Control and EV (Vicesses), Vicesses Outside of The Action of Control and EV (Vicesses), Vicesses Outside of The Action of Control and EV (Vicesses), Vicesses Outside of The Action of Control and EV (Vicesses), Vicesses Outside of The Action of Control and EV (Vicesses), Vicesses Outside of The Action of Control and EV (Vicesses), Vicesses Outside of The Action of Control and EV (Vicesses), Vicesses Outside of The Action of Control and EV (Vicesses), Vicesses Outside of The Action of Control and EV (Vicesses), Vicesses Outside Outsi	F) Design Volu (Vprocev = (1	me (WQCV) Based on 40-hour Drain Time .0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.074 ac-ft		
b) (b) (b		and Outside of the Depuer Pasies			
IVecome (a) (Wacould Supplementation of Supplementation of Water (Working (Working Korking)) IVecome (a) (Wacould Supplementation of Suppl	er Watersh (ت Water Quali	ty Capture Volume (WQCV) Design Volume	VDESIGN OTHER		
H) User input of Water Oubly Capture Values (WOCV) Design Values Version values soch I) HOCS Hydrologic Bold Strapp of Telefory Water Red HOC S Hydrologic Bold Strapp of Telefory Water Red HOC S Hydrologic Bold Strapp of Telefory Water Red I) Proceedings of Water Red Costs I) Proceedings of Water Red Costs HOC S Hydrologic Bold Strapp of Telefory Water Red I) Proceedings of Water Red Costs II Proceedings of Type O Sols HOC S Hydrologic Bold Strapp of Telefory Water Red Costs I) Foreing Lewing to Water Red Costs II Proceeding of Type O Sols HOC S Hydrologic Bold Strapp of Telefory Water Red Costs I) Foreing Lewing to Water Red Costs II Proceedings of Telefory Water Red Costs HOC Sols I) Foreing Lewing to Water Red Costs II Proceedings of Telefory Water Red Costs HOC Sols I: User trapp of Water Red Costs II Proceedings of Telefory Water Red Costs II Proceedings of Telefory Costs I: Basin Bide Stopes (Mater Red Telefory Costs) II Too STEEP (<3)	(Vwqcv other	$R = (d_6^*(V_{\text{DESIGN}}/0.43))$			
(Dwy of a bit effert WAXD begin Volume a classed) () NRCS Hydroge Sid Occess Hard Type A Sols () Proceedings of Waterback consisting of Type IS Sols () Proceedings of Waterback consisting of Type IS Sols () Proceedings of Waterback consisting of Type IS Sols () Proceedings of Waterback consisting of Type IS Sols () Careas Mark Media Value (TRIN) Despin Volume () Careas Mark Media Value (TRIN) Despin Volume () Only if a officient EURV Despin Volume is double) () Basin Maximum Side Slopes () Note State State (TRIN) Charge Value is double) () Basin Maximum Side Slopes () Alse of Slopes Value (TRIN) Despin Volume is double) () Basin Maximum Side Slopes () Alsein Maximum Side Slopes () Maximum Side Slopes () Alsein Fronchay Value (TRIN) () Maximum Side Slopes () Maximum Side Slopes () Alsein Fronchay Value (TRIN) () Forebay Value (Trin) () Maximu	H) User Input o	f Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN USER} =ac-ft		
1) PRCS hybridge Concept of Tabulary Waterhold 0) Proceedings of Waterhold consider of Type 15 Sole 0) Proceedings of Waterhold consider of Type 15 Sole 0) Proceedings of Waterhold consider of Type 15 Sole 0) Proceedings of Waterhold consider of Type 15 Sole 0) Proceedings of Waterhold consider of Type 15 Sole 0) Decreas Udan Road Votame (EURV) Design Votame For HSG 1: EURV. = 130 · 1 ¹⁰ 1: User hydro of Decreas Udan Road Votame (EURV) Design Votame (Abasin Hogin to Wath Ratio (Abasin Hogin to Wath Ratio (Abasin Hogin to Wath Ratio (Abasin Hogin to Wath Ratio (Abasin Maximum Side Stopes (Hoticontal distance per unit vertical 4:1 or flatter preferred) 2. Basin Maximum Side Stopes (Hoticontal distance per unit vertical 4:1 or flatter preferred) 4. Intel (A) Describe means of providing energy dissipation at concentrated info/ Uscatome: 5. Forebay (Describe robust) 4. Intel (A) Describe means of providing energy dissipation at concentrated info/ Uscatome: 5. Forebay (Decrebay Votame (D ₁ = <u>15</u> moh meanum) 0) Forebay Depth (D ₂ = <u>16</u> moh meanum) 0) Forebay Depth (D ₂ = <u>16</u> moh meanum) 0) Forebay Depth (D ₂ = <u>160</u> moh meanum) 0) Forebay Depthering (Descharge Pipe Size (mimmum & Buchets) 0) D	(Only if a dif	ferent WQCV Design Volume is desired)			
 i) Proceedings of Watershot consisting of Type 3 Sole i) Proceedings of Watershot consisting of Type 3 Sole i) Excess Urban Randff Volume (EURV) Design Volume i) Excess Urban Randff Volume (EURV) Design Volume i) Excess Urban Randff Volume (EURV) Design Volume i) Urban Shapes Length to Wath Ratio i) Excess Urban Ratio of at least 2:1 will improve TSS reduction.) i) Sole Soles i) Soles Soles i) Soles Soles i) Soles Soles i) Urban Shapes Length to Wath Ratio ii) Urban Ratio of at least 2:1 will improve TSS reduction.) i) Soles Soles i) Sol	 I) NRCS Hydro i) Percenta 	logic Soil Groups of Tributary Watershed	HSG . =		
a) Proceedings of Watershed consisting of Type CD Sola PRG continues c) States Band Volume (EVR V) Design Volume Pro HSG CD (C) EURV ₀₀ = 1.20 ° 1 ^{1/2} Pro HSG CD (C) EURV ₀₀ = 1.20 ° 1 ^{1/2} EURV ₀₀₀₀₀₀ = -1.00 ° 1.	ii) Percenta	age of Watershed consisting of Type B Soils	$HSG_B = $		
a) Excess there Rein Holds EURVector ac-f1 b) EURVector ac-f1 ac-f1 c) Basin Shapes Length to Width Ratio (Absin heigh to width ratio of at least 2.1 will improve TSS reduction.) L: W = ac-f1 2. Basin Shapes Length to Width Ratio (Absin heigh to width ratio of at least 2.1 will improve TSS reduction.) L: W = ac-f1 3. Basin Side Stopes (Horizonial distance per unit vertical, 4.1 or fatter preferred) Z =	iii) Percent	age of Watershed consisting of Type C/D Soils	HSG _{C/D} =%		
Point IGG & EDRY_0 = 1.30 + 1 ¹⁰ PrivisG OD: EURY_0 = 1.30 + 1 ¹⁰ Decrementation in the interventation of	J) Excess Urba	n Runoff Volume (EURV) Design Volume	ELIRV/crean =		
Port HSC CD: EMVSus = 120*1 (k) User lyad of Excess Users Ready Volume is desired; (b) Ha officent ELIRO Design Volume is desired; 2. Basin Shape: Length to Width Ratio ((Absin length to width ratio of at least 2:1 will improve TSS reduction.) 3. Basin Side Slopes (A) Basin Maximum Side Slopes (Horizontal dislance per unit vertical, 4:1 of faiter preferred); 4. Inst (A) Describe means of providing energy dissipation at concentrated infow locations; 5. Forebay (A) Minimum Forebay Volume (Varies =	For HSG B	$EURV_{R} = 1.36 * 1^{1.08}$			
IN User hand of Discoss Usen Ranoff Vulume (EURV) Design Volume EURVpcseuruscel =	For HSG C	D: $EURV_{C/D} = 1.20 * i^{1.00}$			
2. Basin Shape: Length to Width Ratio (A basin kingth to width ratio of at least 2:1 will improve TSS reduction.) L:W = 20 : 1 FSD-1 USES VERTICAL WALLS 3. Basin Side Slopes (A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 of flatter preferred) Z = 0.01 ft / ft ToO STEEP (< 3)	K) User Input o (Only if a dif	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} =ac-f t		
2. Basin Shape: Length 6 Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.) L: W =					
(A basin length to width ratio of at least 2:1 will improve TSS reduction.) 3. Basin Side Slopes A) Basin Maximum Side Slopes (A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) 4. Inlet A) Describe means of providing energy dissipation at concentrated inflow locations: 5. Forebay A) Minimum Forebay Volume (Vran =2%) of the WQCV) B) Actual Forebay Volume (C) Forebay Depth (D_e =18 inch maximum) D) Forebay Discharge (I) Forebay Discharge (I) Forebay Discharge Design Flow (Q =	2. Basin Shape: Le	ength to Width Ratio	L:W= 2.0 :1 FSD-1 USES VERTICAL WALLS		
3. Basin Side Slopes Z = 0.01 h / ft TOO STEEP (< 3) 4. Intel Concentrated Forebays (Sheet 1 has been included twice, one for each forebay design; designated South Forebay and North Forebay) 4. Intel A) Describe means of providing energy dissipation at concentrated inflow locations: Forebays (Sheet 1 has been included twice, one for each forebay design; designated South Forebay) 5. Forebay A) Minimum Forebay Volume Vraw = 0.001 ac-ft (Vraw =2%of the WQCV) B) Actual Forebay Volume Vraw = 0.001 ac-ft (C) Forebay Discharge I) Undetlanded 100-year Peak Discharge in Dr = 18.0 in D) Forebay Discharge Design Flow (Qr = 0.02 * Qwn) E) Forebay Discharge Design Flow (Qr = 0.02 * Qwn) Calculated Dr =O Flow too small for berm w/ pipe F) Discharge Pipe Size (minimum 8-inches) Calculated Dr =O in Flow too small for berm w/ pipe G) Rectangular Notch Width Calculated Dr =O in Flow too small for berm w/ pipe	(A basin length	to width ratio of at least 2:1 will improve TSS reduction.)			
A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) $Z = 0.01$ n / ft TOO STEEP (<3) 4. Inlet $Z = 0.01$ n / ft TOO STEEP (<3) 4. Inlet Porebays (Sheet 1 has been included twice, one for each forebay design; designated South Forebay) 5. Forebay SOUTH FOREBAY A) Minimum Forebay Volume (Vraws = 2% of the WQCV) SOUTH FOREBAY B) Actual Forebay Volume (C) Forebay Discharge $V_{raws} = 0.001$ ac-ft C) Forebay Discharge $V_r = 0.001$ ac-ft B) Jordenand Discharge $V_r = 0.001$ ac-ft B) Forebay Discharge $Q_{roc} = 1.30$ of fs B) Forebay Discharge Design $Q_{roc} = 0.03$ of fs E) Forebay Discharge Design $Q_{roc} = 0.03$ of fs E) Forebay Discharge Design $Coccose Offerologic Certain Coccose Offerologic Certain Ce$	3. Basin Side Slop	es			
A) Basin Maximum Side sopes 2 = 0.01 ft /ft 100 Streep (-3) 4. Inlet A) Describe means of providing energy dissipation at concentrated inflow locations: 5. Forebay SOUTH FOREBAY A) Minimum Forebay Volume Vraws = 0.001 ac-ft (Vraws = 226 of the WQCV) Vraws = 0.001 ac-ft B) Actual Forebay Discharge Vraws = 0.001 ac-ft () Forebay Discharge Undetained 100-year Peak Discharge () Undetained 100-year Peak Discharge Q ₁₀₀ = 1.30 of s () Forebay Discharge Design Q ₁₀₀ = 1.30 of s () Discharge Pipe Size (minimum 8-inches) Calculated D ₂ = n (Calculated D ₂ = n Calculated D ₂ = n (Calculated D ₂ = n Calculated D ₂ = n					
4. Inlet A) Describe means of providing energy dissipation at concentrated inflow locations: Forebays (Sheet 1 has been included twice, one for each forebay design; designated South Forebay) 5. Forebay SOUTH FOREBAY A) Minimum Forebay Volume Vraws =2%0 of the WQCV) B) Actual Forebay Volume Vraws =0001 ac-ft (Vraws =2%0 of the WQCV) D _F =18inch maximum) D) Forebay Depth D _F =18inch maximum) D) Forebay Discharge Image: Construction of the WQC of	A) Basin Maxin (Horizontal d	lum Side Slopes distance per unit vertical, 4:1 or flatter preferred)	$Z = 0.01$ π/π 100 STEEP (< 3)		
4. Inlet Forebays (Sheet 1 has been included twice, one for each forebay design; designated South Forebay) A) Describe means of providing energy dissipation at concentrated inflow locations: Forebay 5. Forebay SOUTH FOREBAY A) Minimum Forebay Volume Vraws =					
A) Describe means of providing energy dissipation at concentrated inflow locations: 5. Forebay A) Minimum Forebay Volume ($V_{rainit} = -2\%$ of the WQCV) B) Actual Forebay Volume ($V_{rainit} = -2\%$ of the WQCV) B) Actual Forebay Volume ($V_{rainit} = -2\%$ of the WQCV) B) Actual Forebay Volume ($V_{rainit} = -2\%$ of the WQCV) B) Actual Forebay Volume C) Forebay Depth ($V_{r} = -18$ inch maximum) D) Forebay Discharge i) Undetained 100-year Peak Discharge ii) Forebay Discharge Design Flow ($Q_{r} = -0.25^{-}Q_{re0}$) E) Forebay Discharge Design F) Discharge Pipe Size (minimum 8-inches) G) Rectangular Notch Width	4. Inlet		Forebays (Sheet 1 has been included twice, one for each forebay design; designated South		
inflow locations:	A) Describe me	eans of providing energy dissipation at concentrated			
5. Forebay SOUTH FOREBAY A) Minimum Forebay Volume $V_{FMN} = 0.001$ ac-ft $(V_{FMN} = 2\% \text{ of the WQCV})$ $V_r = 0.001$ ac-ft B) Actual Forebay Volume $V_r = 0.001$ ac-ft (C) Forebay Depth ($D_r = 18$ inch maximum) $D_r = 18.0$ in D) Forebay Discharge $Q_{100} = 1.30$ ofs i) Undetained 100-year Peak Discharge $Q_{r00} = 1.30$ ofs ii) Forebay Discharge Design Flow ($Q_r = 0.02^* Q_{r00}$) $Q_r = 0.03$ ofs E) Forebay Discharge Design $Choose ORe \\ ORem With Rpe \\ Or Wall with Ret. Notch \\ Or Wall with Ret. Notch Virt F) Discharge Pipe Size (minimum 8-inches) Calculated D_p = 1 n G) Rectangular Notch Width Calculated W_N = 3.7 in $	inflow location	ons:			
SUBJURSUBJURSUBJURA) Minimum Broebay Volume $V_{FMM} = 0.001$ ac-ft $(V_{FMM} = 2%$ of the WQCV) $V_F = 0.001$ ac-ftB) Actual Forebay Volume $V_F = 0.001$ ac-ft $(D_F = 18$ inch maximum) $D_F = 18.0$ inD) Forebay Discharge 0 up = 1.30 of s $i)$ Undetained 100-year Peak Discharge $Q_{100} = 1.30$ of s $(Q_F = 0.02 * Q_{100})$ $Q_{F} = 0.03$ of sE) Forebay Discharge Design $Q_{roose One}$ E) Forebay Discharge Design $Choose One$ $O Wall with Pipe$ $O Wall with V-Notch WeirF) Discharge Pipe Size (minimum 8-inches)Calculated D_F = 1 inG) Rectangular Notch WidthCalculated W_N = 3.7 in$	5 Forebay				
A) minimum rorebay volume $(V_{FMN} = \underline{2\%}$ of the WQCV) $V_{FMN} = \underline{0.001}$ ac-ftB) Actual Forebay Volume $V_F = \underline{0.001}$ ac-ftC) Forebay Depth $(D_F = \underline{18}$ inch maximum) $D_F = \underline{18.0}$ inD) Forebay Discharge $D_F = \underline{18.0}$ ini) Undetained 100-year Peak Discharge $Q_{100} = \underline{1.30}$ ofsii) Forebay Discharge Design Flow $(Q_F = 0.02 * Q_{100})$ $Q_F = \underline{0.03}$ ofsE) Forebay Discharge Design $Choose One \\ \odot Wall with Rect. Notch \\ \odot Wall with Rect. Notch \\ \odot Wall with N-Notch WeirF) Discharge Pipe Size (minimum 8-Inches)Calculated D_P = \underline{1n}G) Rectangular Notch WidthCalculated W_N = \underline{3.7} in$					
B) Actual Forebay Volume $V_{\rm F} = 0.001$ ac-ftC) Forebay Depth $(D_{\rm F} = 18$ inch maximum) $D_{\rm F} = 0.001$ inD) Forebay Discharge $D_{\rm F} = 18.0$ ini) Undetained 100-year Peak Discharge $Q_{100} = 1.30$ cfsii) Forebay Discharge Design Flow $(Q_{\rm F} = 0.02 * Q_{100})$ $Q_{\rm F} = 0.03$ cfsE) Forebay Discharge Design $O_{\rm F} = 0.03$ cfsF) Discharge Pipe Size (minimum 8-inches) $Calculated D_{\rm P} = $ inG) Rectangular Notch WidthCalculated $W_{\rm N} = 3.7$ in	A) Minimum Fo (V _{FMIN}	repay volume = <u>2%</u> of the WQCV)	v _{FMIN} = ac-tt		
CFor ebay Depth $(D_F = _ 18_$ inch maximum) $D_F = 18.0$ D) Forebay Discharge $D_F = 18.0$ i) Undetained 100-year Peak Discharge $Q_{100} = 1.30$ ii) Forebay Discharge Design Flow $(Q_F = 0.02 * Q_{100})$ $Q_{100} = 1.30$ E) Forebay Discharge Design $Choose One$ $\bigcirc Berm With Pipe\bigcirc Wall with Rect. Notch\bigcirc Wall with Rect. NotchFlow too small for berm w/ pipeF) Discharge Pipe Size (minimum 8-inches)Calculated D_P = Calculated W_N = 3.7in$	B) Actual Foret	bay Volume	V _e = 0.001 ac-ft		
C) Forebay Discharge $D_F = 18.0$ ini) Drorebay Discharge $Q_{100} = 1.30$ cfsi) Undetained 100-year Peak Discharge $Q_{100} = 1.30$ cfsii) Forebay Discharge Design Flow $(Q_F = 0.02 * Q_{100})$ $Q_F = 0.03$ cfsE) Forebay Discharge Design $Choose One$ $\odot Berm With Pipe\odot Wall with X-Notch WeirF) Discharge Pipe Size (minimum 8-inches)Calculated D_P = inCalculated W_N = 3.7 in$	C) Earchay D	- th			
D) Forebay Discharge i) Undetained 100-year Peak Discharge ii) Forebay Discharge Design Flow (Q _F = 0.02 * Q ₁₀₀) E) Forebay Discharge Design Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir F) Discharge Pipe Size (minimum 8-inches) Calculated D _P = in G) Rectangular Notch Width	(D _F	= <u>18</u> inch maximum)	D _F = 18.0 in		
i) Undetained 100-year Peak Discharge Q100 = 1.30 cfs ii) Forebay Discharge Design Flow QF = 0.03 cfs (QF = 0.02 * Q100) Choose One E) Forebay Discharge Design Wall with Rect. Notch • Wall with V-Notch Weir Flow too small for berm w/ pipe F) Discharge Pipe Size (minimum 8-inches) Calculated DP =in G) Rectangular Notch Width Calculated WN =in	D) Forebay Disc	charge			
i) Forebay Discharge Design Flow $Q_F = 0.03$ ofs ii) Forebay Discharge Design Flow $Q_F = 0.03$ ofs E) Forebay Discharge Design $O_{P} = 0.03$ ofs F) Discharge Pipe Size (minimum 8-inches) Calculated $D_P = 1$ in G) Rectangular Notch Width Calculated $W_N = 3.7$ in	i) (Indetaine	ed 100-vear Peak Discharge	Q ₁₀₀ = 1.30 cfs		
III) Forebay Discharge Design Flow					
E) Forebay Discharge Design E) Forebay Discharge Design Berm With Pipe Wall with X-Notch Wall with V-Notch Weir F) Discharge Pipe Size (minimum 8-inches) Calculated D _p = in Calculated W _N =	(Q _F = 0.02	Discrarge Design Flow 2 * Q ₁₀₀)			
Choose One Berm With Pipe Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir Wall with V-Notch Weir F) Discharge Pipe Size (minimum 8-inches) Calculated D _p = in G) Rectangular Notch Width Calculated W _N = in	E) Forebay Disc	charge Design			
Image: Size (minimum 8-inches) Image: Size (minimum 8-inches) Calculated Dp = Image: Size (minimum 8-inches) Calculated Wn = 3.7	-		Berm With Pipe Flow too small for berm w/ pipe		
F) Discharge Pipe Size (minimum 8-inches) Calculated D _p = in G) Rectangular Notch Width Calculated W _N = in			Wall with Rect. Notch Wall with V-Notch Weir		
F) Discharge Pipe Size (minimum 8-inches) Calculated D _p = in G) Rectangular Notch Width Calculated W _N = in					
G) Rectangular Notch Width Calculated $W_N = 3.7$ in	F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P =in		
	G) Rectangular	Notch Width	Calculated W _N = in		

	Design Procedure Form: I	Extended Detention Basin (EDB)
Designer:	DDJ	Sheet 2 of 3
Company:	Galloway	
Date:	June 2, 2023	
Project:	Constitution Storage	
Location:		
6. Trickle Channel		Choose One Choose Concrete
A) Type of Trick	kle Channel	Soft Bottom
F) Slope of Tric	skle Channel	S = 0.0050 ft / ft
7. Micropool and C	Dutlet Structure	
A) Depth of Mic	cropool (2.5-feet minimum)	D _M = ft
B) Surface Area	a of Micropool (10 ft ² minimum)	A _M = sq ft
C) Outlet Type		
		Choose One
		Other (Describe):
D) Smallest Dir	nension of Orifice Opening Based on Hydrograph Routing	
(Use UD-Detent	tion)	D _{orifice} = 0.63 inches
E) Total Outlet A	Area	A _{ot} = 0.93 square inches
8. Initial Surcharge	e Volume	
 A) Depth of Init 	ial Surcharge Volume	
(Minimum re	commended depth is 4 inches)	
B) Minimum Initi	ial Surcharge Volume	V _{ic} =
(Minimum vol	lume of 0.3% of the WQCV)	VIS OU IC
C) Initial Surcha	arge Provided Above Micropool	V.= 11.7 cu ft
- /	5	
9. Trash Rack		
A) Water Quali	ty Screen Open Area: $A_t = A_{ot} * 38.5^{\circ}(e^{-0.095D})$	A _t = 34 square inches
B) Type of Scre	en (If specifying an alternative to the materials recommended	S.S. Well Screen with 60% Open Area
in the USDCM, in the USDCM, in the USDCM, in the USDCM, in the second seco	indicate "other" and enter the ratio of the total open are to the for the material specified)	
	Other (Y/N): N	
C) Ratio of Tota	Il Open Area to Total Area (only for type 'Other')	User Ratio =
D) Total Water (Quality Screen Area (based on screen type)	A _{total} =sq. in.
E) Depth of Des (Based on o	sign Volume (EURV or WQCV) design concept chosen under 1E)	H= 1.56 feet
F) Height of Wa	ter Quality Screen (H _{TR})	H _{TR} = 46.72 inches
G) Width of Wa	ter Quality Screen Opening (Wasses)	
(Minimum of 12	inches is recommended)	WIDTH HAS BEEN SET TO 12 INCHES.

	Design Procedure Form	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	DDJ Galloway June 2, 2023 Constitution Storage	Sheet 3 of
 Overflow Emb A) Describe e B) Slope of O (Horizonta 11. Vegetation 	pankment embankment protection for 100-year and greater overtopping: overflow Embankment Il distance per unit vertical, 4:1 or flatter preferred)	Ze = 16.67 ft / ft Choose One O Irrigated Not Irrigated
12. Access A) Describe S Notes:	Sediment Removal Procedures	

Stormwater Detention and Infiltration Design Data Sheet

Workbook Protected

Worksheet Protected

Stormwater Facility Name: Private FSD Pond - Constitution Storage

Facility Location & Jurisdiction: 2460 Canada Dr; Colorado Springs, CO 80915 Sand Creek Basin - El Paso County

User Defined	User Defined	User Defined	User Defined
Stage [ft]	Area [ft^2]	Stage [ft]	Discharge [cfs]
0.00	35	0.00	0.00
1.00	2,555	1.00	0.02
1.52	5,663	1.52	0.03
2.00	7,777	2.00	0.06
3.00	9,210	3.00	0.10
3.25	9,263	3.25	0.62
3.40	9,295	3.40	3.58
4.00	9,423	4.00	3.58
5.00	9,604	5.00	3.58
6.00	9,713	6.00	3.58

After completing and printing this worksheet to a pdf, go to: <u>https://maperture.digitaldataservices.com/gvh/?viewer=cswdif</u> create a new stormwater facility, and

attach the pdf of this worksheet to that record.

_	Routed Hydro	graph Results					
Design Storm Return Period =	WQCV	2 Year	5 Year	10 Year	50 Year	100 Year	
One-Hour Rainfall Depth =	0.60	0.99	1.27	1.53	2.29	2.67	in
Calculated Runoff Volume =	0.074	0.165	0.218	0.273	0.443	0.540	acre-ft
OPTIONAL Override Runoff Volume =							acre-ft
Inflow Hydrograph Volume =	0.073	0.164	0.218	0.272	0.443	0.540	acre-ft
Time to Drain 97% of Inflow Volume =	47.5	66.0	72.9	79.0	87.4	85.1	hours
Time to Drain 99% of Inflow Volume =	51.9	72.4	80.2	87.2	97.8	96.4	hours
Maximum Ponding Depth =	1.44	2.02	2.30	2.57	3.23	3.36	ft
Maximum Ponded Area =	0.12	0.18	0.19	0.20	0.21	0.21	acres
Maximum Volume Stored =	0.068	0.155	0.206	0.260	0.396	0.422	acre-ft

Stormwater Detention and Infiltration Design Data Sheet

_

_

APPENDIX E Drainage Maps

Greenwood Village, CO 80111 303.770.8884 GallowayUS.com _____

COPYRIGHT THESE PLANS ARE AN INSTRUMENT OF SERVICE AND ARE THE PROPERTY OF GALLOWAY, AND MAY NOT BE DUPLICATED, DISCLOSED, OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF GALLOWAY. COPYRIGHTS AND INFRINGEMENTS WILL BE ENFORCED AND PROSECUTED.

Q100

(cfs)

0.1

0.4

0.7

0.2

4.8

0.5

CONSTITUTION STORAGE COMMERCIAL DEVELOPMENT	DRAINAGE MAP FOR JOHNSON DEVELOPMENT ASSOCIATES	LOT 1 OF THE EIGHT LINE SUBDIVISION	COLORADO SPRINGS CO 80915
# Date 	Issue / Description		Init
- - -			

-			
_			
-			
-			
_			
-			
-			

Project No:	JDA02.20
Drawn By:	BAS
Checked By:	BAS
Date:	07.08.2022
EXISTING DRAINA	

EXISTING DRAINAGE MAP

_

APPENDIX F PCM Plans

LOT 1, EIGHT LINE SUBDIVISION LOCATED IN THE NORTHWEST QUARTER OF SECTION 5, TOWNSHIP 14 SOUTH, RANGE 65 WEST OF THE 6TH PRINCIPAL MERIDIAN, COUNTY OF EL PASO, STATE OF COLORADO

PROJECT CONTACTS

PROPERTY OWNER JASPERCO, LLC. 5532 SADDLE ROCK TRAIL

COLORADO SPRINGS, CO 80918 ATTN: TONY COLON EMAIL: TONYC@COLONFAM.COM

APPLICANT JOHNSON DEVELOPMENT ASSOCIATES, INC 100 DUNBAR STREET, SUITE 400 SPARTANBURG, SC 29306 TELE: (864) 529–1297 ATTN: BRIAN KEARNEY EMAIL: BKEARNEY@JOHNSONDEVELOPMENT.NET

CIVIL ENGINEER GALLOWAY & CO., INC. 1155 KELLY JOHNSON BLVD., SUITE 305 COLORADO SPRINGS, CO 80920 TELE: (719) 900-7220 ATTN: BRADY SHYROCK, P.E. EMAIL: BRADYSHYROCK@GALLOWAYUS.COM

GEOTECHNICAL ENGINEER

ROCKY MOUNTAIN GEOTECHNICAL, INC 555 E. PIKES PEAK AVE, SUITE 107 COLORADO SPRINGS, CO 80903 TELE: (303) 634–1999 ATTN: KENNETH L. MEYERS, PE

TRAFFIC ENGINEER

GALLOWAY & CO., INC. 5500 GREENWOOD PLAZA BLVD, SUITE 200 GREENWOOD VILLAGE, CO 80111 TELE: (303) 770-8884 ATTN: BRIAN HORAN, P.E. EMAIL: BRIANHORAN@GALLOWAYUS.COM

SURVEYOR

GALLOWAY & CO., INC. 1155 KELLY JOHNSON BLVD., SUITE 305 COLORADO SPRINGS, CO 80920 TELE: (719) 337–1262 ATTN: BRIAN DENNIS EMAIL: BRIANDENNIS@GALLOWAYUS.COM

STANDARD PCM NOTES

- NO CLEARING, GRADING, EXCAVATION, FILLING, OR OTHER LAND DISTURBING ACTIVITIES SHALL BE PERMITTED PRIOR TO APPROVAL OF THE SITE GRADING AND EROSION CONTROL (GEC) PLAN. REFERENCE THE CITY OF COLORADO SPRINGS DRAINAGE CRITERIA MANUAL (DCM) VOLUME 2, CHAPTER 7 FOR MORE INFORMATION.
- ANY LAND DISTURBANCE BY ANY OWNER, DEVELOPER, BUILDER, CONTRACTOR. OR OTHER PERSON SHALL COMPLY WITH THE POLICIES AND PROCEDURES OUTLINED IN THE CITY DCM, AND THE APPROVED GEC PLAN.
- THIS PERMANENT BMP PLAN WILL BE SUBJECT TO RE-REVIEW AND RE-ACCEPTANCE BY THE CITY OF COLORADO SPRINGS IF WORK ON THE PERMANENT BMP DOES NOT COMMENCE WITHIN 12 MONTHS OF PLAN APPROVAL, OR SHOULD ANY OF THE FOLLOWING OCCUR: A CHANGE IN OWNERSHIP, A CHANGE IN THE PROPOSED DEVELOPMENT, OR CHANGES TO THE DESIGN OF THE
- CONTACT CITY GEC INSPECTIONS, 719-385-5918, AND THE CITY ENGINEERING INSPECTIONS, 719-385-5977, AT LEAST 48 HOURS PRIOR TO CONSTRUCTION.
- ACCEPTANCE OF THIS PLAN DOES NOT CONSTITUTE APPROVAL TO GRADE OR CAUSE ANY DISTURBANCE WITHIN ANY UTILITY EASEMENT OR RIGHT-OF-WAY. APPROVALS TO WORK WITHIN UTILITY EASEMENTS MUST BE OBTAINED FROM THE APPROPRIATE UTILITY COMPANY, IT IS NOT PERMISSIBLE FOR ANY PERSON TO MODIFY THE GRADE OF THE EARTH ON ANY UTILITY EASEMENT OF RIGHT-OF-WAY WITHOUT THE APPROPRIATE WRITTEN APPROVAL. THE PLAN SHALL NOT INCREASE OR DIVERT WATER TOWARDS UTILITY FACILITIES. ANY CHANGES TO EXISTING UTILITY FACILITIES TO ACCOMMODATE THE PLAN MUST BE APPROVED BY THE AFFECTED UTILITY OWNER PRIOR TO IMPLEMENTING THE PLAN. THE APPLICANT IS RESPONSIBLE FOR THE COST TO RELOCATE OR PROTECT EXISTING UTILITIES OR TO PROVIDE INTERIM ACCESS.
- A PROFESSIONAL ENGINEER (PE) CERTIFICATION THAT THE BMP HAS BEEN INSTALLED AND CONSTRUCTED IN GENERAL CONFORMANCE WITH THESE PLANS WILL BE REQUIRED ONCE THE BMP IS FULLY CONSTRUCTED. AN AS-CONSTRUCTED SURVEY MUST BE COMPLETED TO VERIFY FACILITY VOLUMES AND ELEVATIONS. THE AS-BUILT DRAWINGS MUST BE SUBMITTED ALONG WITH THE PE CERTIFICATION. A PE CERTIFICATION REQUIRES PERIODIC ON-SITE OBSERVATIONS BY THE ENGINEER OF RECORD OR A PERSON UNDER THEIR RESPONSIBLE CHARGE. COORDINATION WITH THE ENGINEER OF RECORD TO ENSURE THAT THE NECESSARY ON-SITE OBSERVATIONS ARE COMPLETED IS THE RESPONSIBILITY OF THE APPLICANT.
- THE CONTRACTOR SHOULD CONTACT THE ENGINEER OF RECORD AND GEC INSPECTOR IMMEDIATELY SHOULD CONSTRUCTION OF THE BMP VARY IN ANY WAY FROM THE PLANS.
- RETAINING WALLS WILL BE DESIGNED FOR ADDITIONAL LOADING SUCH AS FOOTINGS BELOW EURV, ETC.

UTILITY CONTACTS

WATER & WASTEWATER CHEROKEE METROPOLITAN DISTRICT 6250 PALMER PARK BLVD. COLORADO SPRINGS, CO 80915 TELE: (719) 597-5080 ATTN: KEVIN BROWN EMAIL: KBROWN@CHEROKEEMETROPOLITAN.ORG

ELECTRIC MOUNTAIN VIEW ELECTRIC 11140 E WOODMEN RD FALCON, CO 80831 TELE: (719) 495-2283 CATHY HANSEN-LEE EMAIL: CATHY.HOMVEA.COOP

NATURAL GAS

COLORADO SPRINGS UTILITIES (CSU) 7710 DURANT DRIVE, P.O. BOX 1103, MAIL CODE 2150 COLORADO SPRINGS, CO 80947-2150 TELE: (719) 668–5573 AARON CASSIO EMAIL: ACASSIO@CSU.ORG

FIRE CIMARRON HILLS FIRE PROTECTION DISTRICT 1835 TUSKEGEE PL COLORADO SPRINGS, CO 80915 TELE: (719) 591–0960 EMAIL: JMCLEOD@CIMARRON

PROJECT DATA				
PARCEL NUMBER				
BMP CALCULATIONS	FINAL DRAINAGE REPORT CONSTITUTION STORAGE DEVELOPMENT			
GRADING, EROSION & STORMWATER QUALITY CONTROL PLAN	GRADING & EROSION CONTROL PLANS IN PROGRESS			
FUNCTIONAL MAINTENANCE OF THE PCM STRUCTURES WILL BE COMPLETED BY:	JOHNSON DEVELOPMENT ASSOCIATES, INC.			
AESTHETIC MAINTENANCE OF THE PCM WILL BE COMPLETED BY:	JOHNSON DEVELOPMENT ASSOCIATES, INC.			
100-YEAR WATER SURFACE ELEVATION	6502.79			
EURV WATER SURFACE ELEVATION	6502.14			
WQCV WATER SURFACE ELEVATION	6500.98			
SOIL DATA	SOIL DATA FOR CONSTITUTION STORAGE WAS OBTAINED FROM THE UNITED STATES DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE (NRCS) WEB SOIL SURVEY. SOILS WITHIN THE SITE ARE PREDOMINATELY TRUCKTON SANDY LOAM, SOIL CLASSIFICATION A. GEOTECH PER KUMAR & ASSOCIATES, INC., REPORT AND AMMENDUM #21-2-272			
VEGETATION	SITE DEVELOPMENT PLAN IN PROGRESS			
FEMA FLOOD INSURANCE RATE MAP	ACCORDING TO THE FEDERAL EMERGENCY MANAGEMENT AGENCY (FEMA) FLOOD INSURANCE RATE MAP (FIRM NUMBER 08041C0752G), EFFECTIVE DATE DECEMBER 7, 2018, THE PROJECT SITE LIES OUTSIDE OF THE 100-YEAR AND 500-YEAR FLOODPLAINS. THE PROJECT SITE IS LOCATED IN ZONE X DETERMINED TO BE OUTSIDE OF THE 0.2% ANNUAL CHANCE FLOODPLAIN.			

	POND COST ESTIMATE						
	ITEM	JOB TOTAL	UNIT	UNIT PRICE	TOTAL		
1	SOIL RIP RAP TRICKLE CHANNEL	158	LF	\$306.00	\$48,350.00		
2	FOREBAY W/ T-BAFFLE	2	EA	\$15,000.00	\$30,000.00		
3	OUTLET STRUCTURE	1	EA	\$20,000.00	\$20,000.00		
4	MICROPOOL	1	EA	\$5,000.00	\$5,000.00		
5	POND ACCESS ROAD (GRAVEL)	299	SY	\$57.87	\$17,300.00		
6	GRADING (NOT PART OF GEC)	0.24	AC	\$12,283.00	\$2,950.00		
7	SPILLWAY	30.5	LF	\$526.00	\$16,043.00		
8	PERMANENT SEEDING	1	LS	\$3,000.00	\$3,000.00		
	SUBTOTAL =				\$142,643.00		
	CONTINGENCY (10%)				\$14,264.30		
	GRAND TOTAL =				\$156,907.30		

JOHNSON DEVELOPMENT ASSOCIATES CONSTITUTION STORAGE

PERMANENT CONTROL MEASURE PLAN

SHEET INDEX				
SHEET DESCRIPTION	SHEET TITLE	SHEET NUMBER		
PCM0.0	COVER SHEET	1		
PCM1.0	OVERALL PCM PLAN	2		
PCM1.1	POND PLAN	3		
PCM1.2	FOREBAY DETAILS	4		
PCM1.3	MICROPOOL & OUTLET STRUCTURE DETAILS	5		
PCM1.4	RETAINING WALL DETAILS	6		

LEGAL DESCRIPTION LOT 1, EIGHT LINE SUBDIVISION LOCATED IN THE NORTHWEST QUARTER OF SECTION 5. TOWNSHIP 14 SOUTH, RANGE 65 WEST OF THE 6TH PRINCIPAL MERIDIAN, COUNTY OF EL

PASO, STATE OF COLORADO. **BASIS OF BEARINGS**

BASIS OF BEARING: ALL BEARINGS ARE GRID BEARINGS OF THE COLORADO STATE PLANE COORDINATE SYSTEM, CENTRAL ZONE, NORTH AMERICAN DATUM 1983. THE NORTH LINE OF THE NORTHWEST QUARTER OF SECTION 5, TOWNSHIP 14 SOUTH, RANGE 65 WEST BEARS N89'20'41"E, MONUMENTED BY THE NORTHWEST CORNER OF SAID SECTION 5, BEING A 3-1/4" ALUMINUM CAP STAMPED "PLS 4842 1985" IN RANGE BOX, AND BY THE NORTH QUARTER CORNER OF SAID SECTION 5, BEING A 3-1/4" ALUMINUM CAP STAMPED "PLS 30829 2003", AS SHOWN HEREON.

BENCHMARK

COLORADO SPRINGS UTILITIES FACILITIES INFORMATION MANAGEMENT SYSTEM (FIMS) BENCHMARK SR07 BEING A 2" ALUMINUM CAP STAMPED "CSU FIMS CONTROL SR07" AT THE SOUTHEAST CORNER OF THE CONCRETE BASE FOR AN ELECTRIC VAULT ON THE WEST SIDE OF PETERSON ROAD, ABOUT 360' SOUTH OF THE CENTER LINE OF LEOTI DRIVE.

FIMS DATUM ELEVATION = 6534.61

DESCRIPTION OF CONSTRUCTION ACTIVITIES

ALL DATES ARE SUBJECT TO CHANGE. CONSTRUCTION IS ANTICIPATED TO COMMENCE IN NOVEMBER OF 2021 AND BE COMPLETED BY MARCH OF 2022. FINAL STABILIZATION IS EXPECTED TO BE COMPLETED BY JULY OF 2022.

RECEIVING WATERS

INDIAN HILLS VILLAGE IS LOCATED WITHIN THE MESA DRAINAGE BASIN AS DESCRIBED IN THE "MASTER PLAN FOR MESA DRAINAGE BASIN," PREPARED BY GILBERT, MEYER & SAMS, INC. DATED AUGUST 10,1989.

PRINTED NAME: BRADY A. SHYROCK, P.E. # 38164

DEVELOPER'S/OWNER'S STATEMENT

JOHNSON DEVELOPMENT ASSOCIATES HEREBY CERTIFIES THAT THE PCM FOR CONSTITUTION STORAGE SHALL BE CONSTRUCTED ACCORDING TO THE DESIGN PRESENTED IN THIS PLAN. I UNDERSTAND THAT EL PASO COUNTY DOES NOT AND WILL NOT ASSUME LIABILITY FOR THE DRAINAGE FACILITIES DESIGNED AND/OR CERTIFIED BY MY ENGINEER AND THAT ARE SUBMITTED TO EL PASO COUNTY; AND CANNOT, ON BEHALF OF JOHNSON DEVELOPMENT ASSOCIATES, GUARANTEE THAT THE FINAL DRAINAGE DESIGN REVIEW WILL ABSOLVE JOHNSON DEVELOPMENT ASSOCIATES AND /OR THEIR SLICCESSORS AND/OR ASSIGNS OF FUTURE LIABILITY FOR IMPROPER DESIGN. 15m #1/m DEVELOPER/OWNER SIGNATURE:

NAME OF DEVELOPER/OWNER: Brian Duncan	_ DATE: _	7/21/2023
DBA: JOHNSON DEVELOPMENT ASSOCIATES, INC.	PHONE:	704-909-9186
ITTLE: Development Manager	EMAIL:	bduncan@johnsondevelopment.n
ADDRESS: 101 N Pacific Coast Hwy, Ste. 308, El Segundo, CA 90245	FAX:	704-909-9186

CITY OF COLORADO SPRINGS STATEMENT: FILED IN ACCORDANCE WITH SECTION 7.7.1503 OF THE CODE OF THE CITY OF COLORADO SPRINGS, 2001, AS AMENDED.

FOR THE CITY ENGINEER

THE CITY OF COLORADO SPRINGS APPROVES THESE PLANS BASED UPON THE NON-JURISDICTIONAL STATUS OF THE FACILITY. IT IS THE DESIGN ENGINEER'S RESPONSIBILITY TO FOLLOW UP WITH THE STATE DIVISION OF WATER RESOURCES FOR <u>JURISDICTIONAL DETERMINATION. IF UPON STATE REVIEW THE CLASSIFICATION CHANGES TO JURISDICTIONAL, ADDITIONAL CIT</u> REVIEW AND APPROVAL WILL BE NECESSARY.

CAUTION - NOTICE TO CONTRACTOR

1. ALL UTILITY LOCATIONS SHOWN ARE BASED ON MAPS PROVIDED BY THE APPROPRIATE UTILITY COMPANY AND FIELD SURFACE EVIDENCE AT THE TIME OF SURVEY AND IS TO BE CONSIDERED AN APPROXIMATE LOCATION ONLY. IT IS THE CONTRACTOR'S RESPONSIBILITY TO FIELD VERIFY THE LOCATION OF ALL UTILITIES, PUBLIC OR PRIVATE, WHETHER SHOWN ON THE PLANS OR NOT, PRIOR TO CONSTRUCTION. REPORT ANY DISCREPANCIESTO THE Know what's below. ENGINEER PRIOR TO CONSTRUCTION.

2. WHERE A PROPOSED UTILITY CROSSES AN EXISTING UTILITY, IT IS THE CONTRACTOR'S RESPONSIBILITY TO FIELD VERIFY THE HORIZONTAL AND VERTICAL LOCATION OF SUCH EXISTING UTILITY, EITHER THROUGH POTHOLING OR ALTERNATIVE METHOD. REPORT INFORMATION TO THE ENGINEER PRIOR TO CONSTRUCTION.

1155 Kelly Johnson Blvd., Suite 305 Colorado Springs, CO 80920 719.900.7220 GallowayUS.com

Galloway

COPYRIGH THESE PLANS ARE AN INSTRUMENT OF SERVICE AND ARE THE PROPERTY OF GALLOWAY, AND MAY NOT BE DUPLICATED, DISCLOSED, OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF GALLOWAY. COPYRIGHTS AND INFRINGEMENTS WILL BE ENFORCED AND PROSECUTED.

SEAL

7/04/0000

Project No:	JDA02
Drawn By:	ASA/MRK
Checked By:	BAS
Date:	JULY 2023

COVER SHEET

Sheet 1 of 6

LEGEND

SD 📃

PROPERTY LINE PROPOSED MAJOR CONTOUR PROPOSED MINOR CONTOUR EXISTING MINOR CONTOUR PROPOSED OPAQUE LANDSCAPE FENCE PROPOSED SPLIT RAIL FENCE PROPOSED BUILDING OUTLINE PROPOSED CROSS PAN PROPOSED SIDEWALK PROPOSED HEAVY DUTY CONCRETE PROPOSED DETECTABLE WARNING SURFACE PROPOSED GRAVEL MAINTENANCE ACCESS PROPOSED RETAINING WALL EXISTING SIDEWALK EXISTING FENCE PROPOSED STORM PIPE <12" EXISTING STORM PIPE PROPOSED CURB & GUTTER

PROPOSED STORM DRAIN STRUCTURES

EXISTING STORM DRAIN STRUCTURES

Colorado Springs, CO 80920 719.900.7220 GallowayUS.com

COPYRIGHT THESE PLANS ARE AN INSTRUMENT OF SERVICE AND ARE THE PROPERTY OF GALLOWAY, AND MAY NOT BE DUPLICATED, DISCLOSED, OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF GALLOWAY. COPYRIGHTS AND INFRINGEMENTS WILL BE ENFORCED AND PROSECUTED.

Ш SUR () \square E PERMANENT CONTR TUTION STORAGE \triangleleft OPMENT S 809 Ο Õ **DEVEL**(DRIVE A S) CANAD/ ORADO { NOSNHOL PRIVATE | CONSTITU 2460 COL(

 \cap

#	Date	Issue / Description	lnit.
_			
-			
_			
_			
_			
_			

Project No:	JDA02
Drawn By:	ASA/MRK
Checked By:	BAS
Date:	JULY 2023

OVERALL PCM PLAN

BASIS OF BEARINGS

BASIS OF BEARING: ALL BEARINGS ARE GRID BEARINGS OF THE COLORADO STATE PLANE COORDINATE SYSTEM, CENTRAL ZONE, NORTH AMERICAN DATUM 1983. THE NORTH LINE OF THE NORTHWEST QUARTER OF SECTION 5, TOWNSHIP 14 SOUTH, RANGE 65 WEST BEARS N89'20'41"E, MONUMENTED BY THE NORTHWEST CORNER OF SAID SECTION 5, BEING A 3-1/4" ALUMINUM CAP STAMPED "PLS 4842 1985" IN RANGE BOX, AND BY THE NORTH QUARTER CORNER OF SAID SECTION 5, BEING A 3-1/4" ALUMINUM CAP STAMPED "PLS 30829 2003", AS SHOWN HEREON.

BENCHMARK

COLORADO SPRINGS UTILITIES FACILITIES INFORMATION MANAGEMENT SYSTEM (FIMS) BENCHMARK SR07 BEING A 2" ALUMINUM CAP STAMPED "CSU FIMS CONTROL SR07" AT THE SOUTHEAST CORNER OF THE CONCRETE BASE FOR AN ELECTRIC VAULT ON THE WEST SIDE OF PETERSON ROAD, ABOUT 360' SOUTH OF THE CENTER LINE OF LEOTI DRIVE.

FIMS DATUM ELEVATION = 6534.61

CAUTION - NOTICE TO CONTRACTOR

1. ALL UTILITY LOCATIONS SHOWN ARE BASED ON MAPS PROVIDED BY THE APPROPRIATE UTILITY COMPANY AND FIELD SURFACE EVIDENCE AT THE TIME OF SURVEY AND IS TO BE CONSIDERED AN APPROXIMATE LOCATION ONLY. IT IS THE CONTRACTOR'S RESPONSIBILITY TO FIELD VERIFY THE LOCATION OF ALL UTILITIES, PUBLIC OR PRIVATE, WHETHER SHOWN ON THE PLANS OR NOT, PRIOR TO CONSTRUCTION. REPORT ANY DISCREPANCIESTO THE Know what's below. ENGINEER PRIOR TO CONSTRUCTION. Call before you dig.

Sheet 2 of 6

Development Associates/CO, Colorado Springs - Constitution Ave SSI0CIV/3-CD/PCM/UDA02_PCM 1.1 - PCM Pond Plan dwg - Craig Dold - 7/2/

SOUTH FOREBAY GRADING PLAN SCALE 1" = 2'

PRIVATE PERMANENT CONTROL MEASURE PLAN CONSTITUTION STORAGE JOHNSON DEVELOPMENT ASSOCIATES 2460 CANADA DRIVE COLORADO SPRINGS CO 80915

PCM1.3 Sheet 5 of 6

STRUCTURE DETAILS

- _ ____ 4" Ø ORIFICE ROW #3 _____ ‰"ø orifice ¯ ROW #1_ <u>+</u>--<u></u><u>₹</u> 1/4" THICK HOT DIPPED __ GALVANIZED STEEL PLATE 5/8" X 3" STAINLESS STEEL EXPANSION ANCHOR (TYP) NO X

WQCV ORIFICE PLATE DETAIL

	DESCRIPTION OF SPECIAL INSPECTION	PERIODIC	CONTINUOUS
SOILS	FOOTING SOIL BEARING SURFACES	Х	
	EXCAVATION DEPTH AND BEARING LAYER	Х	
	COMPACTED FILL MATERIAL; PHYSICAL PROPERTIES	Х	
	SUBGRADE PREPARATION PRIOR TO BACKFILL	Х	
	BACKFILLING OPERATIONS IN ACCORDANCE WITH GEOTECHNICAL REPORT RECOMMENDATIONS INCLUDING LIFT THICKNESS, DENSITY TESTING, MOISTURE CONTENT, MATERIAL PROPERTIES		X
CONCRETE	SIZE & PLACEMENT OF ALL REINFORCING STEEL	Х	
CONSTRUCTION	PLACEMENT CLEARANCES AROUND REINFORCING STEEL AT EMBEDDED CONDUIT	Х	
	SHAPE, LOCATION & DIMENSIONS OF MEMBERS FORMED	Х	
	USE OF THE REQUIRED DESIGN CONCRETE MIX	Х	
	MAINTENANCE OF SPECIFIED CURING TEMPERATURE AND TECHNIQUES	Х	
	VERIFICATION OF IN-SITU CONCRETE STRENGTH PRIOR TO REMOVAL OF SHORES AND FORMS FROM BEAMS AND STRUCTURAL SLABS	Х	
	PLACING & SIZE OF CAST-IN-PLACE ANCHOR BOLTS AND EMBEDDED FABRICATIONS PRIOR TO THE POUR	Х	
	PLACING OF CONCRETE AROUND CAST-IN-PLACE BOLTS AND EMBEDS		Х
	SAMPLING OF FRESH CONCRETE		Х
	DETERMINATIONS OF SLUMP, AIR CONTENT, AND TEMPERATURE		Х
	GROUTING OPERATION OF REBAR DOWELS		X

	CONCRETE MIX	DESIGN R	EQUIREME
		STRENGTH F'C (PSI)	TEST AGE
SPREAD FOOTING		4500	28
FOUNDATION WALLS		3500	28

CONCRETE REINFORCE					
MATERIALS	REINFORCING BARS ASTM				
PLACING: CONFORM TO ACI 301 SECTION 3.3.2 "PLACEMENT." PLACING TOLERANCES					
CONCRETE COVER: CONFORM TO THE FOLLOWING COVER REQUIREMENTS UNLESS NOTED OTHERWISE IN THE DRAWINGS:	CONCRETE CAST AGAINST EARTH				
	CONCRETE EXPOSED TO EARTH OR WEATHER				
	TIES IN COLUMNS AND BEAMS				
	BARS IN SLABS				
	BARS IN WALLS	_			
	EXTERIOR BARS IN TILT-UP PANELS				
SPLICES: CONFORM TO SCHEDULE" FOR TYPIC					

Sheet 6 of 6