

STRUCTURAL CALCULATIONS

PRIVATE PERMANENT CONTROL MEASURE

RETAINING WALL

Project Location: 6855 CONSTITUTION AVE. COLORADO SPRINGS, CO 80915

Project No.: JDA002

PREPARED FOR: JOHNSON DEVELOPMENT ASSOCIATES

PREPARED BY: Galloway & Company, Inc. 6162 S. Willow Drive, Suite 320 Greenwood Village, CO 80126

DATE: DECEMBER 22, 2022

TABLE OF CONTENTS

TITLE PAGE	
LOCAL INFORMATION	3
KEY PLAN	8
RETAINING WALL CALCULATIONS	10

LOCAL INFORMATION

Address:

ASCE 7 Hazards Report

Standard:

ASCE/SEI 7-16

Risk Category: ||

6855 Constitution Ave Colorado Springs, Colorado Soil Class: 80915

D - Default (see Section 11.4.3)

Elevation: 6523.78 ft (NAVD 88) 38.867308 Latitude: Longitude: -104.699718

Wind

Data Source: ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2 Date Accessed: Tue Oct 25 2022

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Site Soil Class: Results:	<mark>D - Default</mark> (see	e Section 11.4.3)	
S _s :	0.192	S _{D1} :	0.091
S ₁ :	0.057	Τ∟ :	4
F _a :	1.6	PGA :	0.105
F _v :	2.4	PGA M:	0.166
S _{MS} :	0.308	F _{PGA} :	1.591
S _{M1} :	0.136	l _e :	1
S _{DS} :	0.205	C _v :	0.7
Seismic Design Category	В		

Data Accessed:

Tue Oct 25 2022

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Results:

Elevation:

Data Source:

Date Accessed:

Tue Oct 25 2022

In "Case Study" areas, site-specific case studies are required to establish ground snow loads. Extreme local variations in ground snow loads in these areas preclude mapping at this scale.

Ground snow load determination for such sites shall be based on an extreme value statistical analysis of data available in the vicinity of the site using a value with a 2 percent annual probability of being exceeded (50-year mean recurrence interval).

Site is outside ASCE/SEI 7-16, Table 7.2-2 boundaries. For ground snow loads in this area, see SEAC Snow Load Committee. (2016). <u>Colorado Design Snow Loads</u>, Structural Engineers Association of Colorado.

Statutory requirements of the Authority Having Jurisdiction are not included.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

BASIC DESIGN INFORMATION

<u>CODES</u>

Jurisdictions served by Pikes Peak Regional Building Code have adopted the following codes:

2017 Pikes Peak Regional Building Code (PPRBC) 2015 International Building Code (IBC) 2015 International Existing Building Code (IEBC) 2015 International Energy Conservation Code (IECC) 2015 International Mechanical Code (IMC) 2015 International Fuel Gas Code (IFGC) 2018 International Plumbing Code (IPC) 2020 National Electrical Code (NEC) 2009 ICC/ANSI A117.1 Accessibility Standard ASME A17.1, 2013 Edition, Safety Code for Elevators & Escalators ASME A17.3, 2011 Edition, Safety Code for Existing Elevators & Escalators

The International Fire Code and amendments are adopted by the Fire authority. Plans are reviewed for compliance by the Zoning and Fire authorities. Contact those agencies directly for plan submittal requirements (see page 7).

The following criteria must be included on contact documents:

SNOW LOADS

Grade Plane — Average elevation of finished ground level adjacent to the building at exterior walls.

Flat Roof Snow Load — Building structure is designed for the specified uniform snow load, and cannot act concurrently with unbalance loading and drifting. Load may be reduced for slope per ASCE 7-10, <u>no other reductions are permitted</u>.

Unbalanced Loading & Drifting — Building structure is analyzed for drifting per ASCE 7-10. The specified ground snow load (p_g) is used to establish a new flat roof snow load (p_f) for this analysis only. The new value (p_f) is then used in the unbalanced loading and drifting calculations per Section 7.6, ASCE 7.

WIND LOADS

Basic wind speed Category I/II: 130 mph (V_{ult}) Category III/IV: 140 mph (V_{ult}) Exposure category Exposure C required

<u>EARTHQUAKE LOADS</u> — Code sets spectral response factors and cannot be numerically less than the specified values. **Short period spectral response** S₈: 18.5% **1-Second spectral response** S₁: 5.9%

LIVE & DEAD LOADS — Refer to Code

KEYPLAN

PROJECT NUMBER: JDA02 CHECKED BY: RAB

COPYRIGHT THESE PLANS ARE AN INSTRUMENT OF SERVICE AND ARE THE PROPERTY OF GALLOWAY, AND MAY NOT BE DUPLICATED, DISCLOSED, OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF GALLOWAY. COPYRIGHTS AND INFRINGEMENTS WILL BE ENFORCED AND PROSECUTED.

SILE DEVELOPMENT PLAN CONSTITUTION STORAGE	JOHNSON DEVELOPMENT ASSOCIATES	6855 CONSTITUTION AVENUE	COLORADO SPRINGS, CO 80915
Date	Issue / Description		Init.

Project No:	JDA02
Drawn By:	ASA
Checked By:	RGD
Date:	SEPTEMBER 2022
DETAIL GRADI	NG PLAN

RETAINING WALL CALCULATIONS

PROJECT NAME: JDA - COS, CO PROJECT NUMBER: JDA02 CHECKED BY: RAB 12/19/2022

Page 11

LIC# : KW-06014894, Build:20.22.8.17

DESCRIPTION: WALL 8'

Code Reference

Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Criteria

Retained Height	=	9.00 ft
Wall height above soil	=	0.00 ft
Slope Behind Wall	=	0.00
Height of Soil over Toe	=	12.00 in
Water height over heel	=	0.0 ft

Surcharge Loads

Surcharge Over Heel Used To Resist Slid Surcharge Over Toe Used for Sliding & C	ing & Ov = vverturni	0.0 psf verturning 0.0 ng	
Axial Load Applied to Stem			
Axial Dead Load	=	0.0 lbs	

Axial Live Load	=	0.0 lbs
Axial Load Eccentricity	=	0.0 in

Soil Data

Allow Soil Bearing Equivalent Fluid Pressure	= Meth	2,500.0 od	psf
Active Heel Pressure	=	55.0	psf/ft
	=		
Passive Pressure	=	180.0	psf/ft
Soil Density, Heel	=	120.00	pcf
Soil Density, Toe	=	120.00	pcf
Footing Soil Friction	=	0.400	
Soil height to ignore for passive pressure	=	12.00	in

Galloway & Company, Inc.

Lateral Load Applied to Stem

Lateral Load Height to Top Height to Bottom	= = =	0.0 #/ft 0.00 ft 0.00 ft
Load Type	=	Wind (W) (Service Level)
Wind on Exposed S (Strength Level)	Stem =	0.0 psf

1

Adjacent Footing Load

Adjacent Footing Load	=	0.0 lbs
Footing Width	=	0.00 ft
Eccentricity	=	0.00 in
Wall to Ftg CL Dist	=	0.00 ft
Footing Type		Spread Footing
Base Above/Below Soil at Back of Wall	=	0.0 ft
Poisson's Ratio	=	0.300

Project File: JDA02-CIVIL RW POND.ec6

(c) ENERCALC INC 1983-2022

LIC# : KW-06014894, Build:20.22.8.17 DESCRIPTION: WALL 8'

Design Summary

Wall Stability Ratios						
Overturning	=		2	2.90	Ok	Ç.
Sliding	=			1.60	OK	(
Global Stability	=			1.14		
Total Bearing Load	=		6,	725	lbs	
resultant ecc.	=		7	7.77	in	
Eccentricity within	n mi	dd	le th	hird		
Soil Pressure @ Toe	=		1,	494	psf	OK
Soil Pressure @ Heel	=			428	psf	OK
Allowable	=		2,	500	psf	
Soil Pressure Less	Tha	n /	۹llo	wabl	ė	
ACI Factored @ Toe	=		2,	091	psf	
ACI Factored @ Heel	=			599	psf	
Footing Shear @ Toe	=		1	18.9	psi	ΟК
Footing Shear @ Hee	=		1	11.4	psi	OK
Allowable	=		8	32.2	psi	
Sliding Calcs						
Lateral Sliding Force	=		2,93	36.4	lbs	
less 100% Passive Force	-	-	2,01	12.5	lbs	
less 100% Friction Force	= -	-	2,69	90.0	lbs	
Added Force Reald	_		,	00	lbs	ОК
for 1.5 Stability	_			0.0	lbe	OK
	-			0.0	103	

Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing

1.200
1.600
1.600
1.600
1.000

Galloway & Company, Inc.

Project File: JDA02-CIVIL RW POND.ec6

(c) ENERCALC INC 1983-2022

Stem Construction	_	Bottom		
Design Height Above Etc		Stem OK		
Wall Matarial Above "Ht"	π=	0.00 Conoroto		
Design Method	=	Concrete	90 90	
Thickness	_	12.00	30 30	
Rebar Size	_	# 8		
Rebar Spacing	=	12.00		
Rebar Placed at	=	Center		
Design Data				
fb/FB + fa/Fa	=	0.575		
Total Force @ Section				
Service Level	lbs=			
Strength Level	lbs=	3,564.0		
MomentActual				
Service Level	ft-# =			
Strength Level	ft-# =	10,692.0		
MomentAllowable	=	18,568.4		
ShearActual				
Service Level	psi =			
Strength Level	psi =	49.5		
ShearAllowable	, psi =	82.2		
Anet (Masonry)	in2=			
Wall Weight	psf =	150.0		
Rebar Depth 'd'	in =	6.00		
Masonry Data				
f'm	psi =			
Fs	, psi =			
Solid Grouting	. =			
Modular Ratio 'n'	=			
Equiv. Solid Thick.	=			
Masonry Block Type	=			
Masonry Design Method	=	ASD		
Concrete Data				
f'c	psi =	3,000.0		
Fy	psi =	60,000.0		

LIC# : KW-06014894, Build:20.22.8.17

DESCRIPTION: WALL 8'

Concrete Stem Rebar Area Details

Bottom Stem As (based on applied moment) : (4/3) * As : 200bd/fy : 200(12)(6)/60000 : 0.0018bh : 0.0018(12)(12) :

Required Area : Provided Area : Maximum Area :

Footing Data

Toe Width	_	3	00 ft
Heel Width	_	4	.00
Total Footing Width	=	7.	00
Footing Thickness	=	16.	00 in
Key Width	=	12.	00 in
Key Depth	=	30.	00 in
Key Distance from T	oe =	3.	00 ft
f'c = 3,000 psi	Fy =	60,0	00 psi
Footing Concrete De	ensity =	150.	.00 pcf
Min. As %	=	0.00	18
Cover @ Top 2.	00 @	Btm.=	3.00 in

Galloway & Company, Inc.

Vertical Reinforcing

0.4182 in2/ft

0.5576 in2/ft

0.2592 in2/ft

0.4182 in2/ft

0.9754 in2/ft

0.79 in2/ft

0.24 in2/ft

Project File: JDA02-CIVIL RW POND.ec6

(c) ENERCALC INC 1983-2022

Horizontal Reinforcing

 Min Stem T&S Reinf Area 2.592 in2

 Min Stem T&S Reinf Area per ft of stem Height : 0.288 in2/ft

 Horizontal Reinforcing Options :

 One layer of :
 Two layers of :

 #4@ 8.33 in
 #4@ 16.67 in

 #5@ 12.92 in
 #5@ 25.83 in

 #6@ 18.33 in
 #6@ 36.67 in

Footing Design Results

		<u>Toe</u>	<u>Heel</u>	
Factored Pressure	=	2,091	599 psf	
Mu' : Upward	=	8,452	3,653 ft-#	
Mu' : Downward	=	1,728	6,912 ft-#	
Mu: Design	=	6,724 OK	3,259 ft-#	OK
phiMn	=	41,684	30,318 ft-#	
Actual 1-Way Shear	=	18.94	11.44 psi	
Allow 1-Way Shear	=	82.16	82.16 psi	
Toe Reinforcing	=	# 8 @ 12.00 in		
Heel Reinforcing	=	# 8 @ 18.28 in		
Key Reinforcing	=	# 8 @ 12.00 in		
Footing Torsion, Tu		=	0.00 ft-lbs	
Footing Allow. Torsio	n, p	ohi Tu =	0.00 ft-lbs	

If torsion exceeds allowable, provide

supplemental design for footing torsion.

Other Acceptable Sizes & Spacings

Toe: #4@ 6.94 in, #5@ 10.76 in, #6@ 15.27 in, #7@ 20.83 in, #8@ 27.43 in, #9@ 34.72 in, #10@ 44.09 in

Heel: #4@ 6.94 in, #5@ 10.76 in, #6@ 15.27 in, #7@ 20.83 in, #8@ 27.43 in, #9@ 34.72 in, #10@ 44.09 in

Key: #4@ 10 in, #5@ 15.5 in, #6@ 18 in, #7@ 18 in,

Min footing T&S reinf Area	2.42 in2	
Min footing T&S reinf Area per foot	0.35 in2 /ft	
If one layer of horizontal bars:	If two layers of horizontal bars:	
#4@ 6.94 in	#4@ 13.89 in	
#5@ 10.76 in	#5@ 21.53 in	
#6@ 15.28 in	#6@ 30.56 in	

LIC# : KW-06014894, Build:20.22.8.17

Galloway & Company, Inc.

Project File: JDA02-CIVIL RW POND.ec6

(c) ENERCALC INC 1983-2022

DESCRIPTION: WALL 8'

Summary of Overturning & Resisting Forces & Moments

		.OVERTURN	ING		R	ESISTING	
Item	Force lbs	Distance	e Moment ft-#		Force Ibs	Distance ft	Moment ft-#
HL Act Pres (ab water tbl HL Act Pres (be water tbl Hvdrostatic Force) 2,93)	6.4 3.44	10,114.2	Soil Over HL (ab. water tbl) Soil Over HL (bel. water tbl) Watre Table	3,240.0	5.50 5.50	17,820.0 17,820.0
Buoyant Force Surcharge over Heel Surcharge Over Toe Adjacent Footing Load	= = = =			Sloped Soil Over Hee = Surcharge Over Heel = Adjacent Footing Load = Axial Dead Load on Stem = * Axial Live Load on Stem =			
Load @ Stem Above Soil	-			Soil Over Toe = Surcharge Over Toe =	360.0	1.50	540.0
				Stem Weight(s) = Earth @ Stem Transitions =	1,350.0	3.50	4,725.0
Total	= 2,93	6.4 O.T.M.	= 10,114.2	Footing Weight = Key Weight =	1,400.0 375.0	3.50 3.50	4,900.0 1,312.5
Resisting/Overturning	y Ratio	=	2.90	Vert. Component =			
Vertical Loads used for	or Soil Press	ure = 6,7	25.0 lbs	Total = * Axial live load NOT included in	6,725.0 n total displa	lbs R.M.= ved. or used fo	29,297.5 or overturning

resistance, but is included for soil pressure calculation.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus	250.0	рсі
Horizontal Defl @ Top of Wall (approximate only)	0.053	in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,

because the wall would then tend to rotate into the retained soil.

Cantilevered Retaining Wall	Project File: JDA02-CIVIL RW POND.ec6		
LIC# : KW-06014894, Build:20.22.8.17	Galloway & Company, Inc.	(c) ENERCALC INC 1983-202	
DESCRIPTION: WALL 8'			
Rebar Lap & Embedment Lengths I	nformation		
Stem Design Segment: Bottom			
Stem Design Height: 0.00 ft above top of f	ooting		
Lap Splice length for #8 bar specified in this s	tem design segment =	42.72 in	
Development length for #8 bar specified in this	s stem design segment =	32.86 in	
Hooked embedment length into footing for #8	bar specified in this stem design segment =	8.12 in	
As Provided =		0.7900 in2/ft	
As Required -		0 4182 in2/ft	

DESCRIPTION: WALL 8'

