Galloway

FINAL DRAINAGE REPORT

CONSTITUTION STORAGE DEVELOPMENT

El Paso County, Colorado

PREPARED FOR: Johnson Development Associates, Inc. 100 Dunbar Street, Suite 400 Spartanburg, SC 29306

PREPARED BY: Galloway & Company, Inc. 1155 Kelly Johnson Blvd., Suite 305 Colorado Springs, CO 80920

DATE: December 22, 2022

PCD Filing No.: PPR-2224

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Brady A. Shyrock, PE #38164 For and on behalf of Galloway & Company, Inc. Date

DEVELOPER'S CERTIFICATION

I, The developer, have read and will comply with all of the requirements specified in this drainage report and plan.

By:_____

Date

Address: Johnson Development Associates, Inc. 101 N. Pacific Coast Hwy, Suite 308 El Segundo, CA 90245

EL PASO COUNTY CERTIFICATION

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Joshua Palmer, P.E. Interim County Engineer Date

Conditions:

_

TABLE OF CONTENTS

I.	Pur	rpose4
II.	Ge	neral Description4
III.	D	Drainage Criteria4
IV.	Е	Existing Drainage Conditions5
V.	Fou	ur Step Process
		1. Employ Runoff Reduction Practices
		2. Stabilize Channels
		3. Provide Water Quality Capture Volume (WQCV)6
		4. Consider Need for Industrial and Commercial BMPs7
VI.	Р	Proposed Drainage Conditions7
VII.	S	Storm Sewer System
VIII.	Р	Proposed Water Quality Detention Ponds9
IX.	Ρ	Proposed Channel Improvements9
Х.	Ма	aintenance10
XI.	V	Vetlands Mitigation
XII.	F	Floodplain Statement
XIII.	D	Drainage Fees & Maintenance10
XIV.	С	Conclusion10
XV.	R	References

Appendices:

- A. Exhibits and Figures
- B. Hydrologic Computations
- C. Hydraulic Computations
- D. Water Quality Computations
- E. Drainage Maps & Water Quality Plan

I. Purpose

The purpose of this Final Drainage Report is to identify on and offsite drainage patterns, locate and identify tributary or downstream drainage features and facilities that impact the site, and to identify which types of drainage facilities will be needed and where they will be located. This report will remain in general compliance with the approved FDR prepared by Costin Engineering Company, dated February 2, 1983.

II. General Description

The project is a self-storage commercial development located in the Cimarron Hills area of El Paso County, Colorado. The site is located in a portion of Section 05, Township 14 South, Range 65 West of the 6th Principal Meridian, County of El Paso, State of Colorado. The subject property is bounded by Constitution Avenue to the north, Canada Drive to the east, Peterson Road to the west, and existing Northcrest Filing No. 3 residential development to the south. A Vicinity Map is included in **Appendix A**.

This final drainage report is the basis for the drainage facility design in conformance with the previously approved FDR for the site prepared by Costin Engineering Company, "*Amendment Number 1, Final Drainage Study, Cimarron Northcrest Filing No. 3*", Costin Engineering Company, February 1983 (**FDR**). The site consists of approximately 3.716 acres and includes 929 storage units.

The existing soil types within the proposed site as determined by the NRCS Web Soil Survey for El Paso County Area consist of Truckton Sandy Loam (hydrologic soil group A). See the soils map included in **Appendix A**.

III. Drainage Criteria

Hydrology calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.

The drainage calculations were based on the criteria manual Figure 6-5 and IDF equations to determine the intensity and are listed in Table 1 below.

Table 1 - Precipitation Data

Return Period	One Hour Depth (in).	Intensity (in/hr)
5-year	1.50	5.17
100-year	2.52	8.68

The rational method was used to calculate peak flows as the tributary areas are less than 100 acres. The rational method has been proven to be accurate for basins of this size and is based on the following formula:

Q = CIA

Where:

Q = Peak Discharge (cfs) C = Runoff Coefficient I = Runoff intensity (inches/hour) A = Drainage area (acres)

The runoff coefficients are calculated based on land use, percent imperviousness, and design storm for each basin, as shown in the drainage criteria manual (Table 6-6). Composite percent impervious and C values were calculated using the residential, streets, roofs, and lawns coefficients found in Table 6-6 of the manual.

The 100-year event was used as the major storm event. The 5-year event was used as the minor event. The UD-Inlets v5.01 spreadsheet was utilized for the sizing of the proposed sump inlets.

The UD-Detention v4.04 spreadsheet was utilized for the design of the proposed on-site Full Spectrum Detention Pond.

IV. Existing Drainage Conditions

The site lies within the existing Sand Creek drainage basin (see Reference Map). Based on this report, existing topography, and proposed future developments, no off-site basins will impact the site. Stormwater from this site generally drains to the southeast and southwest and will be routed to a single (1) private full spectrum detention facility designated as FSD-1 which has been sized to accommodate the developed flows from this site. The rational method was used to analyze the individual basins within the site because their size permits it.

The property presently discharges via sheet flow along the southern property line onto the adjacent Eight Line Inc. property and Alvarado property. Portions of the site along the eastern and western property lines also drain to the adjacent right-of-ways.

While the **FDR** shows a total of 26 basins that were analyzed as part of the overall Northcrest Filing No. 3 development, for the purposes of this report, only one (1) of the Basins within the FDR will be used for analysis. This Basin, C-4 (6.3 AC, $Q_5 = 7.0$ cfs, $Q_{100} = 18.30$ cfs) is located at the northwest corner of the approved FDR study area and drains through properties to the south to Allyn Way.

The **FDR** also establishes that runoff from Basin C-4 will be conveyed via curb and gutter to an existing detention facility south of the site along Piros Drive. This existing detention facility will no longer be utilized for water quality or detention for the project site, but the existing street flow drainage pattern will be maintained. As a result, the proposed private FSD-1 pond will outlet at grade to the curb in Canada Drive. There is no storm sewer infrastructure existing in Canada Drive.

For a more in-depth analysis of existing tributary conditions as it pertains to this phase of development, an existing basin map has been prepared. The existing map can be found in **Appendix E** and basins are described below. The site has been divided into six (6) sub-basins to better show where runoff flows in the current conditions.

Basin EX-1 (0.05 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.1$ cfs): This basin encompasses a portion of the southwest of the site in the existing condition. This basin consists of un-developed land. Runoff from this basin will sheet flow to the south before outfalling onto the adjacent Eight Line Inc. property. (**DP 1**).

Basin EX-2 (0.26 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.4$ cfs): This basin encompasses the southwest portion of the site in the existing condition. This basin consists of un-developed land. Runoff from this basin will sheet flow to the south before outfalling onto the adjacent Alvarado property. (**DP 2**).

Basin EX-3 (0.39 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.7$ cfs): This basin encompasses the western portion of the site in the existing condition, as well as a portion of the Peterson Road right-of-way. This basin consists of un-developed land and a portion of existing sidewalk. Runoff from this basin will sheet flow to the southwest before outfalling into Peterson Road. (DP 3).

Basin EX-4 (0.03 AC, $Q_5 = 0.1$ cfs, $Q_{100} = 0.2$ cfs): This basin encompasses a portion of the northwest of the site in the existing condition. This basin consists mostly of existing sidewalk. Runoff from this basin will sheet flow to the north before outfalling into Constitution Avenue. (**DP 4**).

Basin EX-5 (2.69 AC, $Q_5 = 0.4$ cfs, $Q_{100} = 4.8$ cfs): This basin encompasses the majority of the site in the existing condition, as well as a portion of Constitution Avenue right-of-way that is currently undeveloped. This basin consists of un-developed land, access drive, and a single-family home. Runoff from this basin will sheet flow to the south before outfalling onto the adjacent Eight Line Inc. property. (**DP 5**).

Basin EX-6 (0.36 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.5$ cfs): This basin encompasses the eastern portion of the site in the existing condition, as well as a portion of Constitution Avenue right-of-way that is currently undeveloped. This basin consists of un-developed land. Runoff from this basin will sheet flow to the southeast before outfalling into Canada Drive. (**DP 6**).

V. Four Step Process

The Four Step Process is used to minimize the adverse impacts of urbanization and is a vital component of developing a balanced, sustainable project. Below identifies the approach to the four-step process:

1. Employ Runoff Reduction Practices

This step uses low impact development (LID) practices to reduce runoff at the source. Generally, rather than creating point discharges that are directly connected to impervious areas runoff is routed through pervious areas to promote infiltration. The Impervious Reduction Factor (IRF) method was used, and calculations can be found in **Appendix D**. For the majority of the site this is not practical, however portions of the site do drain through landscaped swales prior to entering the storm sewer system.

2. Stabilize Channels

This step implements stabilization to channels to accommodate developed flows while protecting infrastructure and controlling sediment loading from erosion in the drainageways. This project does not discharge to a channel. Flows are detained onsite to control release rates from the site down to existing rates and not adversely impact downstream facilities. The site is designed to release at or below the existing release rate for the site and will not negatively impact the downstream infrastructure.

3. Provide Water Quality Capture Volume (WQCV)

This step utilizes formalized water quality capture volume to slow the release of runoff from the site. The EURV volume will release in 72 hours, while the WQCV will release in no less than 40 hours. An on-site Full Spectrum Detention Pond will provide water quality treatment for the majority of the developed areas, prior to the runoff being released into existing curb flowlines at Canada Dr. Refer to WQCV Plan in Appendix E.

4. Consider Need for Industrial and Commercial BMPs

As this project is a commercial development, roof drains connecting directly to proposed water quality and detention facility, surface flows being routed to inlets that capture developed runoff and direct flows to proposed water quality and detention facility. Stockpile and concrete washout BMPs will be implemented onsite. At the Contractor's discretion, additional specialized BMPs which would be associated with an industrial or commercial site may be implemented.

VI. Proposed Drainage Conditions

The proposed development lies completely within the Sand Creek Drainage Basin and consists of eleven (11) sub-basins. Site runoff will be collected via sheet flows, roof drains, inlets & pipes and diverted to the one (1) proposed full spectrum detention pond (FSD-1). All necessary calculations can be found within the appendices of this report.

According to the **FDR**, the proposed project site lies within Basin C-4 (6.3 AC, $Q_5 = 7.0$ cfs, $Q_{100} = 18.30$ cfs) is located at the northwest corner of the approved FDR study area. The property presently discharges via sheet flow along the southern property line onto the adjacent Eight Line Inc. property.

The site will provide one (1) private Full Spectrum Detention Pond (FSD). Pond FSD-1 will discharge treated runoff at historic rates directly into the existing curb flowline at Canada Drive, as there is not adjacent storm sewer infrastructure.

As has been mentioned previously, the site is proposed to have a land use of commercial self-storage. The site will consist of 929 storage units along with associated parking, drive aisles, RV storage, detention pond, and landscaping areas.

Basin PR-1 (0.24 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.3$ cfs): Located at the southwestern corner of the site, Basin PR-1 contains the proposed landscaping improvements immediately adjacent to the existing residential development (Northcrest Filing No. 3). Runoff from this basin will sheet flow to the existing southern boundary into the Alvarado property as it does in the existing condition (Basin EX-2) (DP 1). Exclusion I.7.1.B.7

Basin PR-2A (0.11 AC, $Q_5 = 0.1$ cfs, $Q_{100} = 0.3$ cfs): Located on the western boundary of the site, this basin consists of driveway and landscaping. Runoff from this basin will sheet flow from the driveway to All runoff needs to proposed curb and gutter at the driveway and Peterson Rd. Flows will then be routed, via curb & gutter downstream to the existing curb & gutter at the southwestern corner of the project site (DP 2A).

> **Basin PR-2B** (0.01 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.1$ cfs): Located on the northwestern corner of the site, this basin consists of sidewalk and landscaping. Runoff from this basin will sheet flow to existing curb and gutter at Peterson Rd. Flows will then be routed, via existing curb & gutter at the northwestern corner of the project site (DP 2B).

> **Basin PR-3** (0.22 AC, $Q_5 = 0.2$ cfs, $Q_{100} = 0.7$ cfs): Located on the northern boundary of the site, this basin consists of sidewalk and landscaping, as well as offsite areas within the Constitution right-of-way being developed. Runoff from this basin will sheet flow to existing curb and gutter in Constitution Ave. Flows will then be routed, via existing curb & gutter downstream to the northeastern corner of the project site (DP 3).

Galloway & Company, Inc.

Site])

Explain in the narrative how WQ

addressed for each highlighted basin and

reference Section VIII for more

information. The

be treated before leaving the Site

basin exclusion

needs to be discussed briefly in this section of

the text.

unless an exclusion applies.

Possible exclusions include

I.7.1.B.7 (land

disturbance to undeveloped land

that will remain undeveloped) and/or I.7.1.C.1

(which allows for

20% not to exceed 1 acre of

the applicable

area to not be captured [based on the lot site, that would be a max of 0.8acres for this

development site

is being

Basin PR-4 (0.25 AC, $Q_5 = 0.2$ cfs, $Q_{100} = 0.7$ cfs): Located on the eastern boundary of the site, this basin consists of driveway and landscaping. Runoff from this basin will sheet flow from the driveway to proposed curb and gutter at the driveway and Canada Dr. Flows will then be routed, via curb & gutter downstream to the existing curb & gutter at the southeastern corner of the project site (**DP 4**).

Basin PR-5 (1.32 AC, $Q_5 = 3.9$ cfs, $Q_{100} = 9.0$ cfs): Located on the northcentral portion of the site, this basin consists entirely of the proposed two-story building. Flows will be captured by roof drains and routed, via pipe (**DP 5**), to the proposed (private) full spectrum detention (FSD-1) located at the northeast corner of the site (**DP 10**).

Basin PR-6 (0.83 AC, $Q_5 = 0.9$ cfs, $Q_{100} = 2.6$ cfs): Located on the central portion of the site, west and south of Basin PR-5. This basin consists of landscaping and driveway. Runoff from this basin will sheet flow from the driveway to the proposed curb and gutter to the proposed (private) 8' Colorado Springs D-10-R inlet (**DP 6A**) where flows will be routed, via pipe, to the proposed (private) full spectrum detention (FSD-1) located at the northeast corner of the site (**DP 10**). Emergency overflows will be routed

clarify what size storm is considered emergency overflow Unresolved.

е	(1 3D-1) located at the hortheast comer of the site (DF 10). Lin	erger
	downstream via proposed curb and gutter to Canada Drive.	

Basin PR-7 (0.19 AC, $Q_5 = 0.6$ cfs, $Q_{100} = 1.3$ cfs): Located on the northcentral portion of the site east of Basin PR-5, this basin consists of landscaping, and RV storage. Runoff from this basin will sheet flow to the edge of the proposed RV storage area to a proposed (private) 6' Colorado Springs D-10-R inlet in sump condition (**DP 7**), where flows will be routed, via pipe, to the proposed (private) full spectrum detention (FSD-1) located at the northeast corner of the site (**DP 10**). Emergency overflows will be routed downstream via proposed curb and gutter to Canada Drive.

Basin PR-8 (0.13 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.2$ cfs): Located on the northern portion of the site, this basin consists entirely of landscaped area and swale north of the building. Runoff from this basin will sheet flow to the proposed swale to the proposed (private) CDOT Type C inlet **(DP 8)** where flows will be routed, via pipe, to the proposed (private) full spectrum detention (FSD-1) located at the northeast corner of the site **(DP 10)**. Emergency overflows will be routed downstream via proposed curb and gutter to Canada Drive.

Basin PR-9 (0.17 AC, $Q_5 = 0.5$ cfs, $Q_{100} = 0.9$ cfs): Located in the eastern portion of the site, this basin consists of drive aisle and parking. Runoff from this basin will sheet flow to a proposed (private) 6' Colorado Springs D-10-R inlet in on-grade conditions, located on the south side of the access drive adjacent to the eastern most parking stalls (**DP 9**) where flows will be routed, via pipe, to the proposed (private) full spectrum detention (FSD-1) located at the northeast corner of the site (**DP 10**). Emergency overflows will be routed downstream via proposed curb and gutter to Canada Drive.

Basin PR-10 (0.31 AC, $Q_5 = 0.0$ cfs, $Q_{100} = 0.6$ cfs): Located at the northeastern corner of the site, Basin PR-8 contains the entirety of the proposed (private) full spectrum detention (FSD-1) and adjacent landscaped area. Runoff from this basin will sheet flow directly to the (private) full spectrum detention (FSD-1) (**DP 10**).

VII. Storm Sewer System

All development is anticipated to be urban and will include storm sewer & street inlets. Storm sewers collect storm water runoff and convey the water to the water quality facility prior to discharging. Storm sewer systems will be designed to the 100-year storm and checked with the 5-year storm. Inlets will be placed at sump areas and locations where street flow is larger than street capacity. UDFCD Inlet

spreadsheet has been used to determine the size of all sump inlets. Emergency overflow conditions discussed above will only be activated in storm events exceeding the 100-year storm event.

There will be a proposed storm system within the site. The storm sewer system will discharge storm water into the proposed private full spectrum detention facility (FSD-1). The proposed system will consist of HDPE pipe, CDOT Type C inlets, Colorado Springs D-10-R inlets, Nyloplast Drain Basins, and storm sewer manholes. Inlet sizing and capacity calculations can be found in **Appendix D**, along with preliminary storm sewer sizing.

Additionally, there are two (2) proposed drainage swales that run along the north and west side of the proposed building, respectively within sub-basins PR-8 and PR-6. The swales were analyzed using the Bentley software FlowMaster to properly size a triangular channel to convey the 100-year flows from the basins to FSD-1, while providing 1.0-ft of freeboard. The sizing calculations can be found in **Appendix D**.

VIII. Proposed Water Quality Detention Ponds

One (1) Full Spectrum Detention Pond (FSD-1) will be provided for the proposed site. The proposed pond will be privately owned and maintained by Johnson Development Associates Inc., once established. This detention pond is proposed to be full spectrum and will provide water quality and detention. Flows will be routed into the pond with the proposed (private) storm sewer system and release onto proposed forebays into the pond. The WQCV release will be controlled by an orifice plate within the outlet structure The release rates for the WQCV and EURV will be 41-hours and 69-hours, respectively, and will pond to depths of 6500.94 and 6502.05. Flows exceeding the WQCV will be controlled by orifices and a modified Type C Outlet Structure and will be designed to release at or below the pre-development flow rate. A proposed outlet structure has been designed with this report. See **Appendix D** for calculations. Basins PR-5 through PR-10 drain to FSD-1, totaling 2.95 acres and 80% of the project site.

Note: The approved Northcrest Filing No. 3 FDR designed the area of the project site to drain to a detention facility south of the site via curb and gutter. While this existing drainage facility is no longer being utilized for water quality or detention, the existing drainage pattern using curb and gutter must be maintained as there is no existing storm sewer system in Canada Dr.

Per ECM Section I.7.1.C.1.a, 20% of the site may free release offsite, not to exceed 1 acre. Because the proposed private FSD-1 pond must outlet at grade to the curb and gutter, there are significant grading limitations to the site. Because of this, Basins PR-1, PR-2A, PR-2B, PR-2 and PR-4 free release off-site, totaling 0.77 acres and 20% of the site area. These basins also generally reflect the existing drainage patterns for the perimeter of the site. Since these basins are 20% of the site and do not exceed 1 acre, the project site complies with ECM Section I.7.1.C.1.a.

FSD-1: Located at the northeastern corner of the site, just west of existing Canada Dr. This pond will discharge to the existing western curb line within Canada Dr. The required volume WQCV and EURV are 0.069 Ac-Ft & 0.200 Ac-Ft, respectively. The total required detention basin volume is 0.392 Ac-Ft. See **Appendix D** for volume calculations.

IX. Proposed Channel Improvements

There are no proposed channel improvements as part of this report.

X. Maintenance

After completion of construction, the drainage facility (FSD-1) will be privately owned and maintained by Johnson Development Associates, Inc.

XI. Wetlands Mitigation

There are no existing wetlands within the project site.

XII. Floodplain Statement

No portion of the project sit lies with the designated Flood Zone as defined by the FIRM Map number 08041C0752G effective December 7, 2018. A copy of the FIRM Panel is included in **Appendix A**.

XIII. Drainage Fees & Maintenance

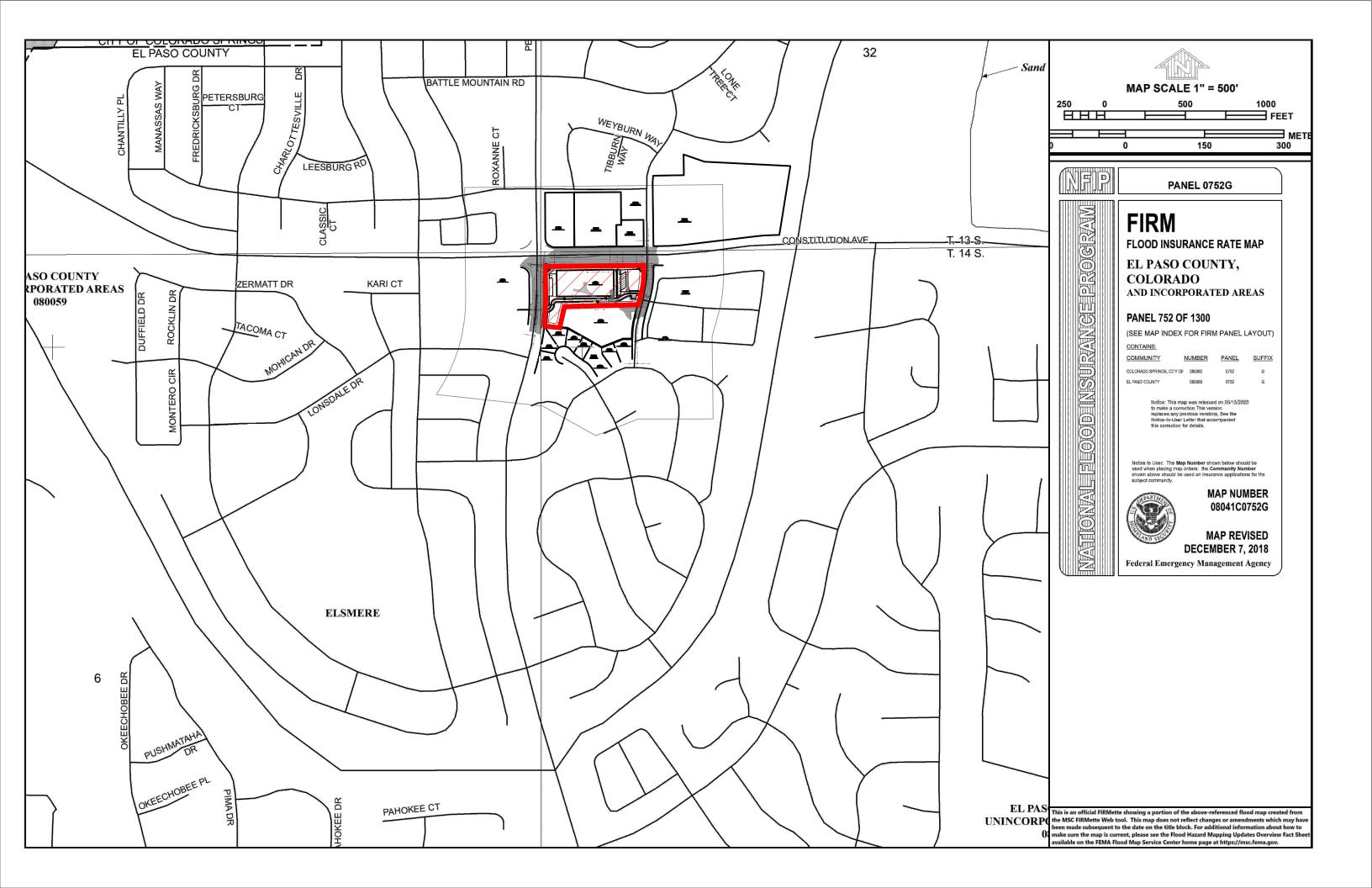
Drainage fees do not apply for Site Development Plans and are therefore not applicable to this project.

Item	Quantity	Unit		Unit Cost		Cost
Champ Durin Innun and (Driveta)						
Storm Drain Improvements (Private)			r		r	
CDOT Type C Inlet (Private)	1	EA	\$	5,138.00	\$	5,138.00
6' Type D-10 R Inlet (Private)	2	EA	\$	7,292.00	\$	14,584.00
8' Type D-10 R Inlet (Private)	1	EA	\$	8,447.00	\$	8,447.00
Storm Sewer Manhole, Slab Base	3	EA	\$	7,082.00	\$	21,246.00
18" Storm Drain - RCP (Private)	355	LF	\$	70.00	\$	24,850.00
18" Storm Drain - HDPE (Private)	475	LF	\$	60.00	\$	28,500.00
18" FES	1	EA	\$	420.00	\$	420.00
Subtotal					\$	103,185.00
WQCV Detention Ponds (Private)						
Pond (FSD-1)	1	EA	\$	45,000.00	\$	45,000.00
Subtotal					\$	45,000.00
Total					\$	148,185.00
Contingency				10%	\$	14,818.50
Grand Total					\$	163,003.50

Below is a cost estimate for the improvements proposed with this filing.

XIV. Conclusion

The Constitution Storage commercial development lies within the Sand Creek Drainage Basin. Water quality for the site is provided in a single on-site, private, Full Spectrum Detention Pond; FSD-1. All drainage facilities within this report were sized according to the El Paso County Drainage Criteria Manuals. The private full spectrum detention facility (FSD-1) will be maintained by Johnson Development Associates, Inc. The Constitution Storage development will not adversely impact any downstream facilities.


XV. References

- 1. El Paso County Drainage Criteria Manual, 1990.
- 2. Drainage Criteria Manual, Volume 2, City of Colorado Springs, 2002.
- 3. El Paso County Drainage Criteria Manual Update, 2015.
- 4. El Paso County Engineering Criteria Manual, 2020.
- 5. *Urban Storm Drainage Criteria Manual*, Urban Drainage and Flood Control District, January 2016 (with current revisions).
- 6. *Amendment Number 1, Final Drainage Study, Cimarron Northcrest Filing No. 3",* Costin Engineering Company, February 1983.

_

_

APPENDIX A Exhibits and Figures

El Paso County Area, Colorado

97—Truckton sandy loam, 3 to 9 percent slopes

Map Unit Setting

National map unit symbol: 2x0j2 Elevation: 5,300 to 6,850 feet Mean annual precipitation: 14 to 19 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 85 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Truckton and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Truckton

Setting

Landform: Interfluves, hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Re-worked alluvium derived from arkose

Typical profile

A - 0 to 4 inches: sandy loam Bt1 - 4 to 12 inches: sandy loam Bt2 - 12 to 19 inches: sandy loam C - 19 to 80 inches: sandy loam

Properties and qualities

Slope: 3 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 1 percent
Maximum salinity: Nonsaline (0.1 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 6.6 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 6e *Hydrologic Soil Group:* A *Ecological site:* R049XB210CO - Sandy Foothill *Hydric soil rating:* No

Minor Components

Blakeland

Percent of map unit: 8 percent Landform: Interfluves, hillslopes Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex, linear Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

Bresser

Percent of map unit: 7 percent Landform: Interfluves, Iow hills Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave, linear Across-slope shape: Concave, linear Ecological site: R049XB210CO - Sandy Foothill Hydric soil rating: No

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 19, Aug 31, 2021

USDA

Soil Map-El Paso County Area, Colorado

Area of Interest (AOI)				
	rest (AOI) Area of Interest (AOI)	000 «	Spoil Area Story Soot	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soils		0 6	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
	Soil Map Unit Polygons Soil Man Unit Lines	0	Wet Spot	Enlargement of maps beyond the scale of mapping can cause
} 1	Soil Map Unit Dainta	\triangleleft	Other	line placement. The maps do not show the small areas of
Cnocial D.	Social Doint Features	Ĭ,	Special Line Features	contrasting soils that could have been shown at a more detailed scale.
follow -	Blowout	Water Features	itures	
	Borrow Pit	{	Streams and Canals	Please rely on the bar scale on each map sheet for map measurements.
*	Clay Spot	Iransportation HHH Rai	tation Rails	Source of Map: Natural Resources Conservation Service
\diamond	Closed Depression	1	Interstate Highways	Web Soil Survey URL: Conrdinate Svstem: Web Mercator (FPSG:3857)
℅	Gravel Pit		US Routes	Mans from the Weh Soil Survey are based on the Weh Mercator
0 0 0	Gravelly Spot	2	Maior Roads	projection, which preserves direction and shape but distorts
0	Landfill	8	, Local Roads	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more
Z	Lava Flow	Background	pu	accurate calculations of distance or area are required.
-#	Marsh or swamp		Aerial Photography	This product is generated from the USDA-NRCS certified data as
¢	Mine or Quarry			<u>~</u>
0	Miscellaneous Water			Soli Survey Area. El raso County Area, Colorado Survey Area Data: Version 19, Aug 31, 2021
0	Perennial Water			Soil map units are labeled (as space allows) for map scales
>	Rock Outcrop			1:50,000 or larger.
÷	Saline Spot			Date(s) aerial images were photographed: Aug 19, 2018—Sep
0 0 0 0	Sandy Spot			The orthonhoto or other hase man on which the soil lines were
Ŵ	Severely Eroded Spot			compiled and digitized probably differs from the background
0	Sinkhole			imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
A	Slide or Slip			-
Q	Sodic Spot			

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
97	Truckton sandy loam, 3 to 9 percent slopes	3.8	100.0%
Totals for Area of Interest		3.8	100.0%

_

APPENDIX B Hydrologic Computations

COMPOSITE % IMPERVIOUS CALCULATIONS

Exisitng Conditions

Subdivision:

Location: CO, Colorado Springs

Project Name: 6855 Constitution Ave Storage Site

Project No.: JDA000002

Calculated By: DDJ

Checked By: BS

Date: 7/8/22

			Paved Road	ls		Lawns			Roofs		Desine Total
Basin ID	Total Area (ac)	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	Basins Total Weighted % Imp.
EX-1	0.05	100	0.00	0.0	2	0.05	2.0	90	0.00	0.00	2.0
EX-2	0.26	100	0.00	0.0	2	0.26	2.0	90	0.00	0.00	2.0
EX-3	0.39	100	0.02	4.2	2	0.38	1.9	90	0.00	0.00	6.1
EX-4	0.03	100	0.02	77.0	2	0.01	0.5	90	0.00	0.00	77.5
EX-5	2.69	100	0.16	6.0	2	2.50	1.9	90	0.03	1.00	8.9
EX-6	0.36	100	0.00	0.0	2	0.36	2.0	90	0.00	0.00	2.0

STANDARD FORM SF-2 TIME OF CONCENTRATION

Existing Conditions

Subdivision:

Location: CO, Colorado Springs

Project Name: 6855 Constitution Ave Storage Site

Project No.: JDA000002

Calculated By: DDJ

Checked By: BS

Date: 7/8/22

		SUB-BA	SIN			INIT	ial/overi	AND		TR	AVEL TIM	E			Tc CHECK		[
		DAT	A				(T _i)				(T _t)			(URBANIZED BAS	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₁₀₀	C ₅	L	S	Ti	L	S	Cv	VEL.	Tt	COMP. T _c	TOTAL	Urbanized T _c	T _c
ID	(AC)	Soils Group	(%)			(FT)	(%)	(MIN)	(FT)	(%)		(FPS)	(MIN)	(MIN)	LENGTH (FT)	(MIN)	(MIN)
EX-1	0.05	A	2.0	0.22	0.00	61	27.0	5.2	0	1.5	20.0	2.4	0.0	5.2	61.0	10.3	5.2
EX-2	0.26	A	2.0	0.22	0.00	100	3.0	14.0	130	7.3	15.0	4.1	0.5	14.5	230.0	11.3	11.3
EX-3	0.39	A	6.1	0.25	0.03	210	3.0	19.7	0	1.5	20.0	2.4	0.0	19.7	210.0	11.2	11.2
EX-4	0.03	A	77.5	0.63	0.53	16.5	2.0	3.4	16	1.5	20.0	2.4	0.1	3.5	32.5	10.2	5.0
EX-5	2.69	A	8.9	0.27	0.05	300	2.0	26.4	0	1.5	20.0	2.4	0.0	26.4	300.0	11.7	11.7
EX-6	0.36	A	2.0	0.22	0.00	200	5.0	16.7	0	1.5	20.0	2.4	0.0	16.7	200.0	11.1	11.1

NOTES:

 T_i = (0.395*(1.1 - C_5)*(L)^0.5)/((S)^0.33), S in ft/ft

T_t=L/60V (Velocity From Fig. 501)

Velocity V=Cv*S^0.5, S in ft/ft

Tc Check = 10+L/180

For Urbanized basins a minimum T_c of 5.0 minutes is required.

For non-urbanized basins a minimum T_c of 10.0 minutes is required

		STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE) Existing Conditions																			
													N								
									Exisi	itng Cond	litions	,			Project	Name:	6855 C	onstitut	ion Ave	e Stora	ge Site
Subdivision: Location: C	0.00	larada Car	inac													ect No.:	JDA000				~
Design Storm: 2	-Year		ings												Check	ed By:	BS				
																Date:	7/8/22				
	-				DIRECT RU	JNOFF				TOTAL	RUNOFF	:	STR	EET		PIPE	0	TR/	AVEL TI	ME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
	1	EX-1	0.05	0.00	5.2	0.00	4.06	0.0													Free-release offsite to Eight Line Inc. property
	2	EX-2	0.26	0.00	11.3	0.00	3.15	0.0													Free-release offsite to Alvarado property
	3	EX-3	0.39	0.03	11.2	0.01	3.16	0.0													Free-release offsite to Peterson Road
	4	EX-4	0.03	0.53	5.0	0.02	4.12	0.1													Free-release offsite to Constitution Avenue
	5	EX-5	2.69	0.05	11.7	0.13	3.11	0.4													Free-release offsite to Eight Line Inc. property
	6	EX-6	0.36	0.00	11.1	0.00	3.17	0.0													Free-release offsite to Canada Drive
	_																				
								I									I				1

									RM DR/	AINAGE	FORM SI SYSTEM DD PROCE	1 DESIGI	N								
Subdivision: _ Location: _			rings												Calculat	ect No.: ed By:	JDA000 DDJ		tion Ave	e Storag	ge Site
Design Storm:	100-Ye	ear													Check	ed By: Date:	BS 7/8/22				
				DI	RECT RUN	NOFF				TOTAL	RUNOFF	1	STR	REET		PIPE		TR/	AVEL TI	IME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
	1	EX-1	0.05	0.22	5.2	0.01	8.56	0.1													Free-release offsite to Eight Line Inc. property
	2	EX-2	0.26	0.22	11.3	0.06	6.63	0.4													Free-release offsite to Alvarado property
	3	EX-3	0.39	0.25	11.2	0.10	6.65	0.7													Free-release offsite to Peterson Road
	4	EX-4	0.03	0.63	5.0	0.02	8.68	0.2													Free-release offsite to Constitution Avenue
	5	EX-5	2.69	0.27	11.7	0.73	6.54	4.8													Free-release offsite to Eight Line Inc. property
	6	EX-6	0.36	0.22	11.1	0.08	6.67	0.5													Free-release offsite to Canada Drive

COMPOSITE % IMPERVIOUS CALCULATIONS

Proposed Conditions

Subdivision:

Location: CO, Colorado Springs

Project Name:	6855	Constitution	Ave Storage Site
---------------	------	--------------	------------------

Project No.: JDA000002

Calculated By: DDJ

Checked By: BS

Date: 9/23/22

			Paved Road	ls		Lawns			Roofs		Basins Total
Basin ID	Total Area (ac)	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	Weighted % Imp.
PR-1	0.24	100	0.00	0.0	2	0.24	2.0	90	0.00	0.00	2.0
PR-2A	0.11	100	0.04	39.7	2	0.07	1.2	90	0.00	0.00	40.9
PR-2B	0.01	100	0.008	75.5	2	0.003	0.5	90	0.00	0.00	76.0
PR-3	0.22	100	0.07	30.8	2	0.15	1.4	90	0.00	0.00	32.2
PR-4	0.25	100	0.09	35.9	2	0.16	1.3	90	0.00	0.00	37.2
PR-5	1.32	100	0.00	0.0	2	0.00	0.0	90	1.32	90.00	90.0
PR-6	0.83	100	0.49	58.6	2	0.34	0.8	90	0.00	0.00	59.4
PR-7	0.19	100	0.17	91.7	2	0.02	0.2	90	0.00	0.00	91.9
PR-8	0.13	100	0.00	0.0	2	0.13	2.0	90	0.00	0.00	2.0
PR-9	0.17	100	0.13	77.8	2	0.04	0.4	90	0.00	0.00	78.2
PR-10	0.31	100	0.00	0.0	2	0.31	2.0	90	0.00	0.00	2.0

STANDARD FORM SF-2 TIME OF CONCENTRATION

Proposed Conditions

Subdivision:

Location: CO, Colorado Springs

Project Name: 6855 Constitution Ave Storage Site

Project No.: JDA000002

Calculated By: DDJ

Checked By: BS

Date: 9/23/22

		SUB-BA	SIN			INIT	IAL/OVERI	LAND		TR	AVEL TIM	E			Tc CHECK		
		DAT	A				(T _i)				(T _t)				URBANIZED BAS	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₁₀₀	C₅	L	S	Ti	L	S	Cv	VEL.	T _t	COMP. T _c	TOTAL	Urbanized T _c	T _c
ID	(AC)	Soils Group	(%)			(FT)	(%)	(MIN)	(FT)	(%)		(FPS)	(MIN)	(MIN)	LENGTH (FT)	(MIN)	(MIN)
PR-1	0.24	A	2.0	0.22	0.00	137	10.0	10.9	0	3.0	20.0	3.5	0.0	10.9	137.0	10.8	10.8
PR-2A	0.11	A	40.9	0.41	0.25	42	2.0	8.0	54	2.0	20.0	2.8	0.3	8.3	96.0	10.5	8.3
PR-2B	0.01	A	76.0	0.62	0.51												5.0
PR-3	0.22	A	32.2	0.38	0.20												5.0
PR-4	0.25	A	37.2	0.40	0.23	93	6.0	8.5	0	3.0	20.0	3.5	0.0	8.5	93.0	10.5	8.5
PR-5	1.32	A	90.0	0.79	0.71												5.0
PR-6	0.83	A	59.4	0.49	0.36	57	2.0	8.1	370	0.5	20.0	1.4	4.4	12.5	427.0	12.4	12.4
PR-7	0.19	A	91.9	0.81	0.74	42	2.0	3.4	47	0.5	20.0	1.4	0.6	3.9	89.0	10.5	5.0
PR-8	0.13	A	2.0	0.22	0.00	25	2.0	8.0	390	2.5	20.0	3.2	2.1	10.0	415.0	12.3	10.0
PR-9	0.17	A	78.2	0.64	0.54	96	4.0	6.3	59	4.0	20.0	4.0	0.2	6.6	155.0	10.9	6.6
PR-10	0.31	A	2.0	0.22	0.00												5.0

NOTES:

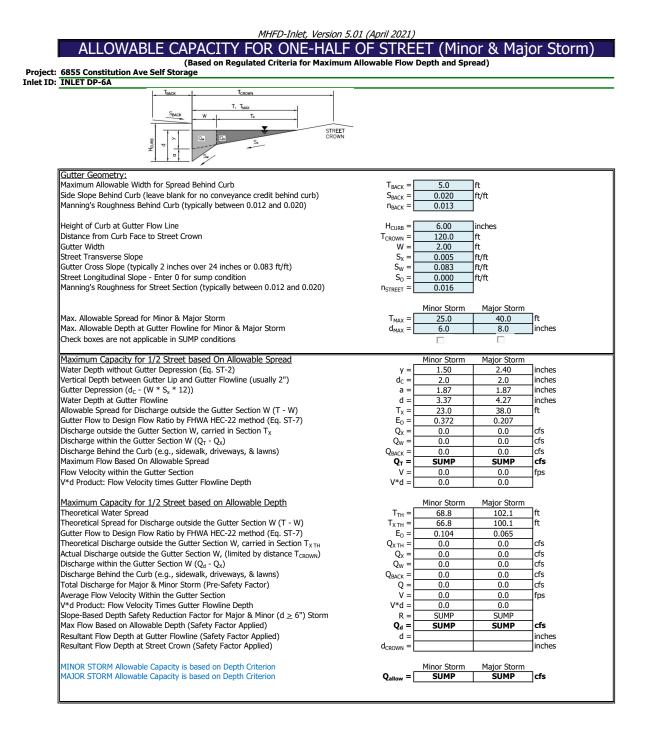
$$\begin{split} T_i &= (0.395^*(1.1 - C_5)^*(L)^{0.5})/((S)^{0.33}), \ S \ in \ ft/ft \\ T_t &= L/60V \ (Velocity \ From \ Fig. \ 501) \\ Velocity \ V &= Cv^*S^{0.5}, \ S \ in \ ft/ft \end{split}$$

Tc Check = 10+L/180

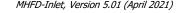
For Urbanized basins a minimum $T_{\rm c}$ of 5.0 minutes is required.

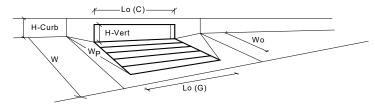
For non-urbanized basins a minimum T_c of 10.0 minutes is required

									STAND												
								STORN (RA	TIONAL N				V								
Subdivision: Location: Design Storm:	CO, Co	olorado Sp	rings									- ,			Calculat	ect No.: ted By: ked By:	JDA000 DDJ	0002	tion Av	e Stora	ge Site
					DIRECT R	UNOFF				TOTAL	RUNOFF		STR	REET		PIPE		TR	AVEL T	IME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
	1	PR-1	0.24	0.00	10.8	0.00	3.21	0.0													Free Release to Alvarado property
	2A	PR-2A	0.11	0.25	8.3	0.03	3.51	0.1													Free Release to Peterson Road
	2B	PR-2B	0.01	0.51	5.0	0.01	4.12	0.0													Free Release to Peterson Road
	3	PR-3	0.22	0.20	5.0	0.04	4.12	0.2													Free Release to Constitution Avenue
	4	PR-4	0.25	0.23	8.5	0.06	3.49	0.2													Free Release to Canada Drive
	5	PR-5	1.32	0.71	5.0	0.94	4.12	3.9													Roof drains to DP-6B
	6A	PR-6	0.83	0.36	12.4	0.30	3.04	0.9													D-10R inlet to DP-6B
	6B								12.4	1.24	3.04	3.8									Max flow at DP-6B to DP-7
	7	PR-7	0.19	0.74	5.0	0.14	4.12	0.6	12.4	1.38	3.04	4.2									D-10R inlet & Maximum flow at DP-7 to DP-8
	8	PR-8	0.13	0.00	10.0	0.00	3.29	0.0	12.4	1.38	3.04	4.2									Area inlet & Flows from PR-5, PR-6, PR-7, PR-8 into FSD
	9	PR-9	0.17	0.54	6.6	0.09	3.79	0.3													Max flow at DP-9 into FSD
	10	PR-10	0.31	0.00	5.0	0.00	4.12	0.0	12.4	1.47	3.04	4.5									Maximum flow into FSD
			1			I	I							1		1	1		1		I

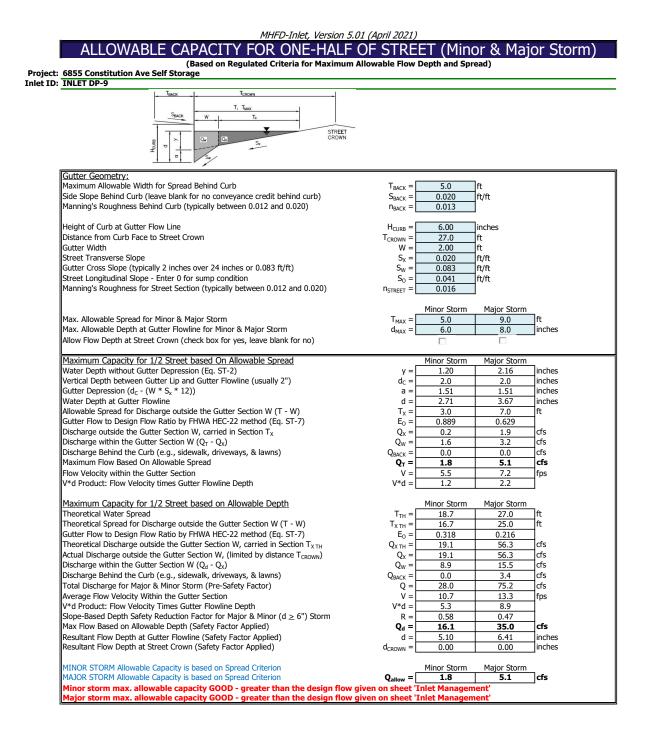


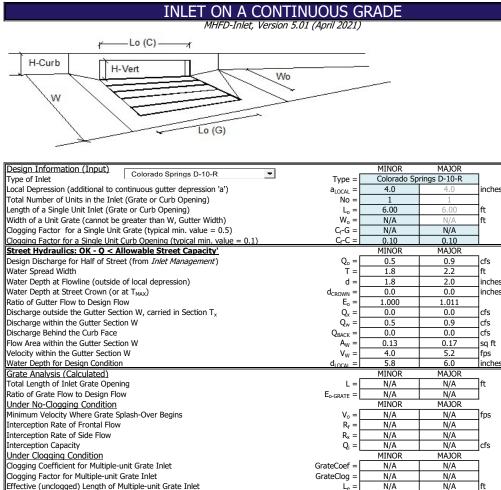
										INAGE	ORM SE	DESIG	I								
Subdivisi Locati Design Stor	on: CO, C	olorado Spi ear	rings												Calculat Check	et No.: ed By: ed By:	JDA000 DDJ	0002	tion Ave	e Storag	ge Site
				DI	RECT RUN	NOFF				TOTAL	RUNOFF		STR	REET		PIPE		TR	AVEL T	ME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
	1	PR-1	0.24	0.22	10.8	0.05	6.75	0.3													Free Release to Alvarado property
	2A	PR-2A	0.11	0.41	8.3	0.04	7.39	0.3													Free Release to Peterson Road
	2B	PR-2B	0.01	0.62	5.0	0.01	8.68	0.1													Free Release to Peterson Road
	3	PR-3	0.22	0.38	5.0	0.08	8.68	0.7													Free Release to Constitution Avenue
	4	PR-4	0.25	0.40	8.5	0.10	7.35	0.7													Free Release to Canada Drive
	5	PR-5	1.32	0.79	5.0	1.04	8.68	9.0													Roof drains to DP-6B
	6A	PR-6	0.83	0.49	12.4	0.41	6.40	2.6													D-10R inlet to DP-6B
	6B								12.4	1.45	6.40	9.3									Max flow at DP-6B to DP-7
	7	PR-7	0.19	0.81	5.0	0.15	8.68	1.3	12.4	1.60	6.40	10.2									D-10R inlet & Maximum flow at DP-7 to DP-8
	8	PR-8	0.13	0.22	10.0	0.03	6.92	0.2	12.4	1.63	6.40	10.4									Area inlet & Flows from PR-5, PR-6, PR-7, PR-8 into FSD
	9	PR-9	0.17	0.64	6.6	0.11	7.99	0.9													Max flow at DP-9 into FSD
	10	PR-10	0.31	0.22	5.0	0.07	8.68	0.6	12.4	1.81	6.40	11.6									Maximum flow into FSD
	_																				
				1		I								I			I			I	<u> </u>

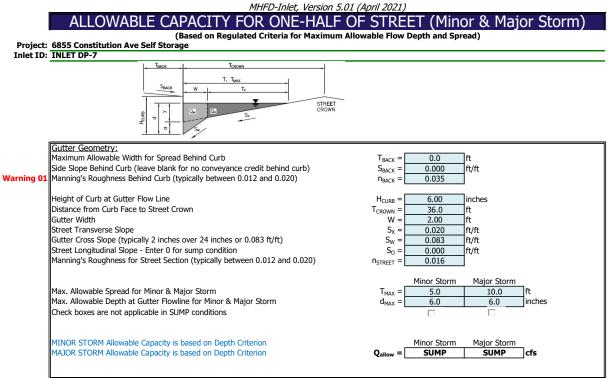

_


APPENDIX C

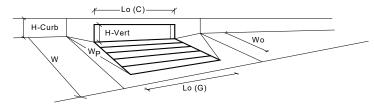
Hydraulic Computations



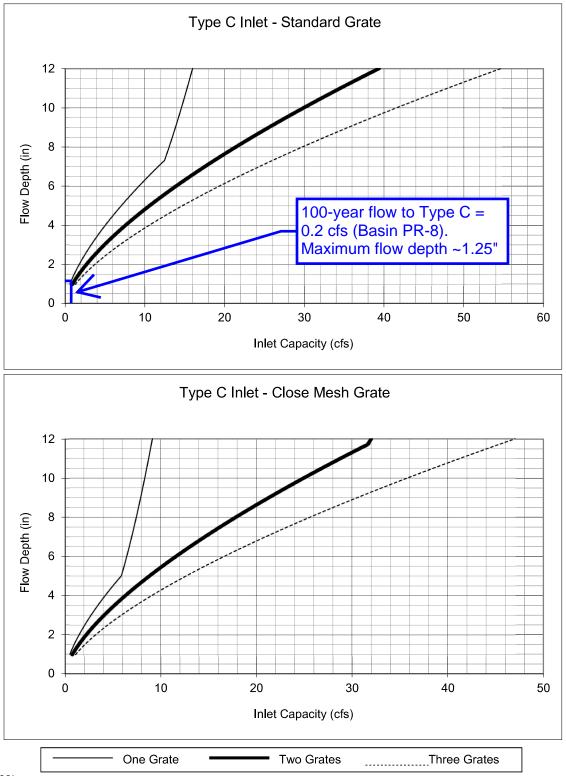

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		rings D-10-R	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.00	4.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	3.4	4.3	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	Ifeet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{w}(G) =$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	-
Curb Opening Information	-0(-)	MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{0}(C) =$	8.00	8.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	8.00	8.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	8.00	8.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	81.00	81.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{w}(C) =$	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	lft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.12	0.19	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.34	0.43	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.81	0.89	-
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOD	111105	
	o – [MINOR 1.2	MAJOR 2.9	cfs
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	0.9	2.9	crs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.9	2.0	LI3



Colorado Springs D-10-R	-	INDR	INAJUK	
Type of Inlet	Type =	Colorado Sp	orings D-10-R	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	4.0	4.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	6.00	6.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}-G =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$Q_o = $	0.5	0.9	cfs
Water Spread Width	T =	1.8	2.2	ft
Water Depth at Flowline (outside of local depression)	d =	1.8	2.0	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	1.000	1.011	1
Discharge outside the Gutter Section W, carried in Section T _x	$Q_x =$	0.0	0.0	cfs
Discharge within the Gutter Section W	$Q_w = $	0.5	0.9	lcfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.13	0.17	sq ft
Velocity within the Gutter Section W	V _W =	4.0	5.2	fps
Water Depth for Design Condition	d _{LOCAL} =	5.8	6.0	linches
Grate Analysis (Calculated)	GIULAI I	MINOR	MAJOR	Interies
Total Length of Inlet Grate Opening	L =[N/A	N/A	∃ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	-1"
Under No-Clogging Condition	LO-GRATE -L	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	$R_{f} = $	N/A	N/A N/A	
Interception Rate of Side Flow	$R_{x} =$	N/A N/A	N/A N/A	-
Interception Rate of Side Flow	$R_x = Q_i = $	N/A N/A	N/A N/A	cfs
Under Clogging Condition	Qi – [MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	7
55 5	- F		,	-
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	$L_e =$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	4
Interception Rate of Side Flow	R _x =	N/A	N/A	4.
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	-
Equivalent Slope S_e (based on grate carry-over)	S _e =	0.250	0.250	ft/ft
Required Length L_T to Have 100% Interception	L _T = [2.81	3.80	ft
Under No-Clogging Condition	-	MINOR	MAJOR	_
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	2.81	3.80	ft
Interception Capacity	$Q_i =$	0.5	0.9	cfs
Under Clogging Condition	-	MINOR	MAJOR	_
Clogging Coefficient	CurbCoef =	1.00	1.00	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.08	0.08	
Effective (Unclogged) Length	L _e =	5.40	5.40	ft
Actual Interception Capacity	Q _a =	0.5	0.9	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	Q _b =	0.0	0.0	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =[0.5	0.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.0	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	100	1%
A A A A A A A A A A A A A A A A A A A				


Warning 01: Manning's n-value does not meet the USDCM recommended design range.

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)	Colorado Springs D-10-R	_	MINOR	MAJOR	_
Type of Inlet		Type =	Colorado Sp	<u> </u>	
Local Depression (additional to	continuous gutter depression 'a' from above)	a _{local} =	4.00	4.00	inches
Number of Unit Inlets (Grate o	r Curb Opening)	No =	6	6	
Water Depth at Flowline (outsi	de of local depression)	Ponding Depth =	2.7	3.9	inches
Grate Information			MINOR	MAJOR	Override Dept
Length of a Unit Grate		L _o (G) =	N/A	N/A	feet
Width of a Unit Grate		W ₀ =	N/A	N/A	feet
Area Opening Ratio for a Grate	(typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Gr		$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical		C _w (G) =	N/A	N/A	-
Grate Orifice Coefficient (typical		$C_{w}(G) = C_{0}(G) $	N/A	N/A	
	ai value 0.00 - 0.80)	C ₀ (G) =	,	,	
Curb Opening Information			MINOR	MAJOR	761
1 Length of a Unit Curb Opening		$L_{o}(C) =$	1.00	1.00	feet
Height of Vertical Curb Openin		H _{vert} =	8.00	8.00	inches
Height of Curb Orifice Throat i		H _{throat} =	8.00	8.00	inches
Angle of Throat (see USDCM F		Theta =	81.00	81.00	degrees
Side Width for Depression Pan	(typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Cu	rb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient	(typical value 2.3-3.7)	$C_{w}(C) =$	3.60	3.60	7
Curb Opening Orifice Coefficien	nt (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	7
Grate Flow Analysis (Calcula			MINOR	MAJOR	
Clogging Coefficient for Multipl		Coef =	N/A	N/A	7
Clogging Factor for Multiple Ur		Clog =	N/A	N/A	-
	ased on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	discu on modificu meezz methody	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging			N/A	N/A	cfs
	based on Medified UEC22 Method)	Q _{wa} =	MINOR	MAJOR	
	based on Modified HEC22 Method)	о Г			- ,
Interception without Clogging		Q _{oi} =	N/A	N/A	cfs
Interception with Clogging		Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flo	W	_	MINOR	MAJOR	_
Interception without Clogging		Q _{mi} =	N/A	N/A	cfs
Interception with Clogging		Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assu	mes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis	(Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multipl	e Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Ur	its	Clog =	0.08	0.08	-
	sed on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging		Q _{wi} =	1.2	6.1	lcfs
Interception with Clogging			1.1	5.6	
	(based on Modified HEC22 Method)	Qwa =	MINOR	MAJOR	
Interception without Clogging	Loused on mounder neeze Methou	o _⊏	10.3	12.4	cfs
		Q _{oi} =	9.5	12.4	
Interception with Clogging	See d Elsee	Q _{oa} =		-	
Curb Opening Capacity as M	lixed Flow	~ -	MINOR	MAJOR	7,
Interception without Clogging		Q _{mi} =	3.3	8.1	cfs
Interception with Clogging		Q _{ma} =	3.0	7.4	cfs
	ty (assumes clogged condition)	Q _{Curb} =	1.1	5.6	cfs
Resultant Street Conditions			MINOR	MAJOR	_
Total Inlet Length		L = [6.00	6.00	feet
Resultant Street Flow Spread (based on street geometry from above)	т = 🗌	5.0	10.0	ft
Resultant Flow Depth at Street	Crown	d _{CROWN} =	0.0	0.0	inches
Low Head Performance Red	uction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth		d _{Grate} =	N/A	N/A	∃ft
1 ·	quation	d _{Grate} =	0.06	0.16	
Depth for Curb Opening Weir E					
	Reduction Factor for Long Inlets	RF _{Combination} =	0.32	0.46	4
Curb Opening Performance Re		RF _{Curb} =	0.83	0.96	_
Grated Inlet Performance Redu	uction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
			MINOR	MAJOR	
		Q _a = [1.1	5.6	cfs
Total Inlet Interception Capaci	ty (assumes clogged condition)	Qa - 1	1.1 I	5.0	LIS .

Warning 1: Dimension entered is not a typical dimension for inlet type specified.

Notes:

1. The standard inlet parameters must apply to use these charts.

	12" @ 0.5	% Capac	city	
Project Description				
Friction Method	Manning Formula			
Solve For	Full Flow Capacity			
Input Data				
Roughness Coefficient		0.013		
Channel Slope		0.00500	ft/ft	
Normal Depth		1.00	ft	
Diameter		1.00	ft	
Discharge		2.52	ft³/s	
Results				
Discharge		2.52	ft³/s	
Normal Depth		1.00	ft	
Flow Area		0.79	ft²	
Wetted Perimeter		3.14	ft	
Hydraulic Radius		0.25	ft	
Top Width		0.00	ft	
Critical Depth		0.68	ft	
Percent Full		100.0	%	
Critical Slope		0.00770	ft/ft	
Velocity		3.21	ft/s	
Velocity Head		0.16	ft	
Specific Energy		1.16	ft	
Froude Number		0.00		
Maximum Discharge		2.71	ft³/s	
Discharge Full		2.52	ft³/s	
Slope Full		0.00500	ft/ft	
Flow Type	SubCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
- ·				

Bentley Systems, Inc. Haestad Methods Solititional QeFiterw Master V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

9/29/2022 4:37:23 PM

12" @ 0.5% Capacity

GVF Output Data

Normal Depth Over Rise	100.00	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.00	ft
Critical Depth	0.68	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.00770	ft/ft

Project DescriptionFriction Method Solve ForManning Formula Full Flow CapacityInput Data0.013Roughness Coefficient0.013Channel Slope0.00500 ft/ftNormal Depth1.50 ftDiameter1.50 ftDischarge7.43 ft?/sPoischarge7.43 ft?/sDischarge7.43 ft?/sDischarge7.43 ft?/sDischarge7.43 ft?/sCorrect Full1.50 ftFlow Area1.77 ft2Wetted Perimeter4.71 ftHydraulic Radius0.38 ftTop Width0.00 ftCritical Slope0.00703 ft/ftVelocity4.20 ft/sVelocity Head0.27 ftSpecific Energy1.77 ft?Froude Number0.00 ft?/sDischarge Full7.43 ft?/sSlope Full7.43 ft?/s
Solve ForFull Flow CapacityInput DataRoughness Coefficient0.013Channel Slope0.00500ft/ftNormal Depth1.50ftDianeter1.50ftDischarge7.43ft³/sResults1.50ftPiow Area1.77ft²Vetted Perimeter4.71ftHydraulic Radius0.00ftTop Width0.00ftPercent Full100ftVetted Slope0.00703ft/ftVetted Nera1.77ftTop Width0.00ftCritical Slope0.00703ft/ftVelocity Head0.27ftSpecific Energy1.77ftFrude Number0.00ftMaximun Discharge7.99ft'sSlope Full7.43ft'sSlope Full7.43ft's
Solve For Full Flow Capacity Input Data 0.013 Roughness Coefficient 0.00500 ft/ft Channel Slope 0.00500 ft/ft Normal Depth 1.50 ft Diameter 1.50 ft Discharge 7.43 ft³/s Normal Depth 1.50 ft Discharge 7.43 ft³/s Normal Depth 1.50 ft Flow Area 1.77 ft² Wetted Perimeter 4.71 ft Hydraulic Radius 0.38 ft Top Width 0.00 ft Ortical Slope 0.00703 ft/ft Velocity Head 0.27 ft Specific Energy 1.77 ft Froude Number 0.00 ft Maximum Discharge 7.99 ft?s Discharge Full 7.43 ft?s
Roughness Coefficient0.013Channel Slope0.00500ft/ftNormal Depth1.50ftDiameter1.50ftDischarge7.43ft³/sResultsDischarge7.43ft³/sNormal Depth1.50ftFlow Area1.77ft²Wetted Perimeter4.71ftHydraulic Radius0.38ftTop Width0.00ftCritical Depth1.06ftPercent Full100.0%Critical Slope0.00703ft/ftVelocity4.20ft/sVelocity Head0.27ftSpecific Energy1.77ftFroude Number0.007.99Maximum Discharge7.99ft³/sSlope Full0.00500ft/ft
Channel Slope0.00500ft/ftNormal Depth1.50ftDiameter1.50ftDischarge7.43ft*/sResultsDischarge7.43ft*/sNormal Depth1.50ftFlow Area1.77ft²Wetted Perimeter4.71ftHydraulic Radius0.38ftTop Width0.00ftCritical Depth1.06ftPercent Full100.0%Critical Slope0.00703ft/ftVelocity Head0.27ftSpecific Energy1.77ftFroude Number0.00177Maximun Discharge7.99ft*/sSlope Full0.00500ft/ft
Normal Depth1.50ftDiameter1.50ftDischarge7.43ft*/sResultsDischarge7.43ft*/sNormal Depth1.50ftFlow Area1.77ft²Wetted Perimeter4.71ftHydraulic Radius0.38ftTop Width0.00ftCritical Depth1.06ftPercent Full100.0%Critical Slope0.0703ft/ftVelocity Head0.27ftSpecific Energy1.77ftFroude Number0.001.77Maximun Discharge7.99ft*/sSlope Full0.00500ft/ft
Diameter1.50ftDischarge7.43ft*/sResultsDischarge7.43ft*/sNormal Depth1.50ftFlow Area1.77ft²Wetted Perimeter4.71ftHydraulic Radius0.38ftTop Width0.00ftCritical Depth1.06ftPercent Full100.0%Critical Slope0.00703ft/ftVelocity Head0.27ftSpecific Energy1.77ftFroude Number0.00ftMaximum Discharge7.99ft*/sDischarge Full7.43ft*/s
Discharge7.43ft*/sResultsDischarge7.43ft*/sNormal Depth1.50ftFlow Area1.77ft²Wetted Perimeter4.71ftHydraulic Radius0.38ftTop Width0.00ftCritical Depth1.06ftPercent Full100.0%Critical Slope0.00703ft/ftVelocity Head0.27ftSpecific Energy1.77ftFroude Number0.00ftMaximum Discharge7.99ft'sDischarge Full7.43ft'sSlope Full0.00500ft/ft
Results Discharge 7.43 ft³/s Normal Depth 1.50 ft Flow Area 1.77 ft² Wetted Perimeter 4.71 ft Hydraulic Radius 0.38 ft Top Width 0.00 ft Critical Depth 1.06 ft Percent Full 100.0 % Critical Slope 0.00703 ft/ft Velocity Head 0.27 ft Specific Energy 1.77 ft Froude Number 0.00 ft Discharge Full 7.43 ft³/s Slope Full 7.43 ft³/s
Discharge 7.43 ft³/s Normal Depth 1.50 ft Flow Area 1.77 ft² Wetted Perimeter 4.71 ft Hydraulic Radius 0.38 ft Top Width 0.00 ft Critical Depth 1.06 ft Percent Full 100.0 % Critical Slope 0.00703 ft/ft Velocity 4.20 ft/s Velocity Head 0.27 ft Specific Energy 1.77 ft Froude Number 0.00 1.07 Maximum Discharge 7.99 ft³/s Discharge Full 7.43 ft³/s
Normal Depth 1.50 ft Flow Area 1.77 ft ² Wetted Perimeter 4.71 ft Hydraulic Radius 0.38 ft Top Width 0.00 ft Critical Depth 1.06 ft Percent Full 100.0 % Critical Slope 0.00703 ft/ft Velocity 4.20 ft/s Velocity Head 0.27 ft Specific Energy 1.77 ft Froude Number 0.00 0.00 Maximum Discharge 7.99 ft ³ /s Slope Full 0.00500 ft/ft
Flow Area1.77ft²Wetted Perimeter4.71ftHydraulic Radius0.38ftTop Width0.00ftCritical Depth1.06ftPercent Full100.0%Critical Slope0.00703ft/ftVelocity4.20ft/sSpecific Energy1.77ftFroude Number0.000.00Maximum Discharge7.99ft³/sSlope Full0.00500ft/ft
Wetted Perimeter4.71ftHydraulic Radius0.38ftTop Width0.00ftCritical Depth1.06ftPercent Full100.0%Critical Slope0.00703ft/ftVelocity4.20ft/sVelocity Head0.27ftSpecific Energy1.77ftFroude Number0.00Maximum Discharge7.99ft³/sSlope Full0.00500ft/ft
Hydraulic Radius0.38ftTop Width0.00ftCritical Depth1.06ftPercent Full100.0%Critical Slope0.00703ft/ftVelocity4.20ft/sVelocity Head0.27ftSpecific Energy1.77ftFroude Number0.00Maximum Discharge7.49ft³/sSlope Full0.00500ft/ft
Top Width0.00ftCritical Depth1.06ftPercent Full100.0%Critical Slope0.00703ft/ftVelocity4.20ft/sVelocity Head0.27ftSpecific Energy1.77ftFroude Number0.00Maximum Discharge7.99ft³/sDischarge Full7.43ft³/s
Critical Depth1.06ftPercent Full100.0%Critical Slope0.00703ft/ftVelocity4.20ft/sVelocity Head0.27ftSpecific Energy1.77ftFroude Number0.00Maximum Discharge7.49ft³/sDischarge Full7.43ft³/sSlope Full0.00500ft/ft
Percent Full100.0%Critical Slope0.00703ft/ftVelocity4.20ft/sVelocity Head0.27ftSpecific Energy1.77ftFroude Number0.00Maximum Discharge7.99ft³/sDischarge Full7.43ft³/sSlope Full0.00500ft/ft
Critical Slope0.00703ft/ftVelocity4.20ft/sVelocity Head0.27ftSpecific Energy1.77ftFroude Number0.000.00Maximum Discharge7.99ft³/sDischarge Full7.43ft³/sSlope Full0.00500ft/ft
Velocity4.20ft/sVelocity Head0.27ftSpecific Energy1.77ftFroude Number0.00Maximum Discharge7.99ft³/sDischarge Full7.43ft³/sSlope Full0.00500ft/ft
Velocity Head 0.27 ft Specific Energy 1.77 ft Froude Number 0.00 Maximum Discharge 7.99 ft³/s Discharge Full 7.43 ft³/s Slope Full 0.00500 ft/ft
Specific Energy1.77ftFroude Number0.00Maximum Discharge7.99ft³/sDischarge Full7.43ft³/sSlope Full0.00500ft/ft
Froude Number 0.00 Maximum Discharge 7.99 ft³/s Discharge Full 7.43 ft³/s Slope Full 0.00500 ft/ft
Maximum Discharge 7.99 ft³/s Discharge Full 7.43 ft³/s Slope Full 0.00500 ft/ft
Discharge Full 7.43 ft³/s Slope Full 0.00500 ft/ft
Slope Full 0.00500 ft/ft
Flow Type SubCritical
GVF Input Data
Downstream Depth 0.00 ft
Length 0.00 ft
Number Of Steps 0
GVF Output Data
Upstream Depth 0.00 ft
Profile Description
Profile Headloss 0.00 ft
Average End Depth Over Rise 0.00 %

 Bentley Systems, Inc.
 Haestad Methods Solititienti@eFiterref

9/29/2022 4:15:14 PM

18" @ 0.5% Capacity

GVF Output Data

Normal Depth Over Rise	100.00	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.50	ft
Critical Depth	1.06	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.00703	ft/ft

	24" @ 0.	.5% Capac	city	_
Project Description				
Friction Method	Manning Formula			
Solve For	Full Flow Capacity			
Input Data				
Roughness Coefficient		0.013		
Channel Slope		0.00500	ft/ft	
Normal Depth		2.00	ft	
Diameter		2.00	ft	
Discharge		16.00	ft³/s	
Results				
Discharge		16.00	ft³/s	
Normal Depth		2.00	ft	
Flow Area		3.14	ft²	
Wetted Perimeter		6.28	ft	
Hydraulic Radius		0.50	ft	
Top Width		0.00	ft	
Critical Depth		1.44	ft	
Percent Full		100.0	%	
Critical Slope		0.00662	ft/ft	
Velocity		5.09	ft/s	
Velocity Head		0.40	ft	
Specific Energy		2.40	ft	
Froude Number		0.00		
Maximum Discharge		17.21	ft³/s	
Discharge Full		16.00	ft³/s	
Slope Full		0.00500	ft/ft	
Flow Type	SubCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	

Bentley Systems, Inc. Haestad Methods Solititional @FiterwMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

9/29/2022 4:22:25 PM

GVF Output Data

Normal Depth Over Rise	100.00	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	2.00	ft
Critical Depth	1.44	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.00662	ft/ft

	Curb Cha	se Capa	city	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.013		
Channel Slope		0.02000	ft/ft	
Bottom Width		2.00	ft	
Discharge		0.62	ft³/s	
Results			R	
Normal Depth		0.10	ft	Nister 400 second Dalasse
Flow Area		0.19	ft²	Note: 100-year Release
Wetted Perimeter		2.19	ft	from Private FSD-1 Por
Hydraulic Radius		0.09	ft	
Top Width		2.00	ft	
Critical Depth		0.14	ft	
Critical Slope		0.00562	ft/ft	
Velocity		3.20	ft/s	
Velocity Head		0.16	ft	
Specific Energy		0.26	ft	
Froude Number		1.82		
Flow Type	Supercritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Infinity	ft/s	
Normal Depth		0.10	ft	
Critical Depth		0.14	ft	
Channel Slope		0.02000	ft/ft	

Bentley Systems, Inc. Haestad Methods Solitientle)eFitervMaster V8i (SELECTseries 1) [08.11.01.03]

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page

Basin PR-6 Swale					
Project Description					
Friction Method	Manning Formula				
Solve For	Normal Depth				
Input Data					
Roughness Coefficient		0.035			
Channel Slope		0.04000	ft/ft		
Left Side Slope		3.00	ft/ft (H:V)		
Right Side Slope		3.00	ft/ft (H:V)		
Discharge		1.00	ft³/s		
Results					
Normal Depth		0.36	ft		
Flow Area		0.38	ft²		
Wetted Perimeter		2.26	ft		
Hydraulic Radius		0.17	ft	Note: Flow reduced from	
Top Width		2.15	ft	PR-6 basin flow since	
Critical Depth		0.37	ft	swale only captures sma	
Critical Slope		0.03362	ft/ft	portion of landscaped	
Velocity		2.60	ft/s	flows	
Velocity Head		0.11	ft		
Specific Energy		0.46	ft		
Froude Number		1.08			
Flow Type	Supercritical				
GVF Input Data					
Downstream Depth		0.00	ft		
Length		0.00	ft		
Number Of Steps		0			
GVF Output Data					
Upstream Depth		0.00	ft		
Profile Description					
Profile Headloss		0.00	ft		
Downstream Velocity		Infinity	ft/s		
Upstream Velocity		Infinity	ft/s		
Normal Depth		0.36	ft		
Critical Depth		0.37	ft		
Channel Slope		0.04000	ft/ft		

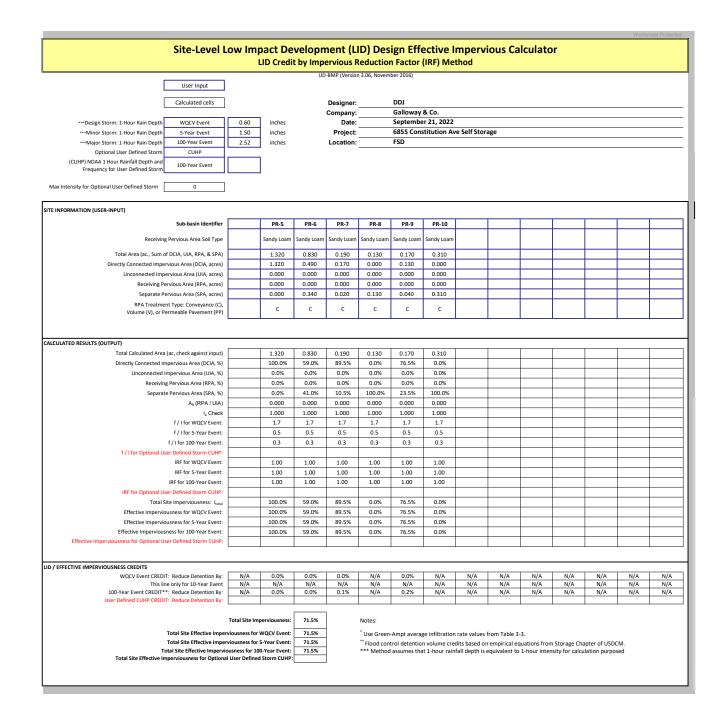
Bentley Systems, Inc. Haestad Methods Solicitional Operiter Waster V8i (SELECTseries 1) [08.11.01.03]

7/8/2022 11:35:23 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Basin PR-8 Swale						
Project Description						
Friction Method	Manning Formula					
Solve For	Normal Depth					
Input Data						
Roughness Coefficient	0.035					
Channel Slope	0.02000	ft/ft				
Left Side Slope	3.00	ft/ft (H:V)				
Right Side Slope	3.00	ft/ft (H:V)				
Discharge	0.20	ft³/s				
Results						
Normal Depth	0.22	ft				
Flow Area	0.15	ft²				
Wetted Perimeter	1.41	ft				
Hydraulic Radius	0.11	ft				
Top Width	1.34	ft				
Critical Depth	0.19	ft				
Critical Slope	0.04167	ft/ft				
Velocity	1.34	ft/s				
Velocity Head	0.03	ft				
Specific Energy	0.25	ft				
Froude Number	0.71					
Flow Type	Subcritical					
GVF Input Data						
Downstream Depth	0.00	ft				
Length	0.00	ft				
Number Of Steps	0					
GVF Output Data						
Upstream Depth	0.00	ft				
Profile Description						
Profile Headloss	0.00	ft				
Downstream Velocity	Infinity	ft/s				
Upstream Velocity	Infinity	ft/s				
Normal Depth	0.22	ft				
Critical Depth	0.19	ft				
Channel Slope	0.02000	ft/ft				
Critical Slope	0.04167	ft/ft				

Bentley Systems, Inc. Haestad Methods Sol dtentlegefitewMaster V8i (SELECTseries 1) [08.11.01.03]


27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

_

_

APPENDIX D

Pond Computations

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Depth Increment =

MHFD-Detention, Version 4.05 (January 2022)

0.20 ft Optional Override Stage (ft)

Project:	6855 Constitution Ave Self Storage
Basin ID:	FSD-1

Watershed Information

ceronea información		
Selected BMP Type =	EDB	
Watershed Area =	2.95	acres
Watershed Length =	520	ft
Watershed Length to Centroid =	225	ft
Watershed Slope =	0.020	ft/ft
Watershed Imperviousness =	71.50%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydrograph Procedure.			Optional User	Overrides
Water Quality Capture Volume (WQCV) =	0.069	acre-feet		acre-feet
Excess Urban Runoff Volume (EURV) =	0.269	acre-feet		acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.185	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	0.241	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	0.287	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	0.343	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	0.397	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.52 in.) =	0.463	acre-feet	2.52	inches
500-yr Runoff Volume (P1 = 3 in.) =	0.573	acre-feet	3.00	inches
Approximate 2-yr Detention Volume =	0.176	acre-feet		
Approximate 5-yr Detention Volume =	0.229	acre-feet		
Approximate 10-yr Detention Volume =	0.275	acre-feet		
Approximate 25-yr Detention Volume =	0.329	acre-feet		
Approximate 50-yr Detention Volume =	0.361	acre-feet		
Approximate 100-yr Detention Volume =	0.392	acre-feet		

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.069	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.200	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.123	acre-feet
Total Detention Basin Volume =	0.392	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth $(H_{total}) =$	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	
		_
Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
		a.

Width of Main Basin (W_{MAIN}) =

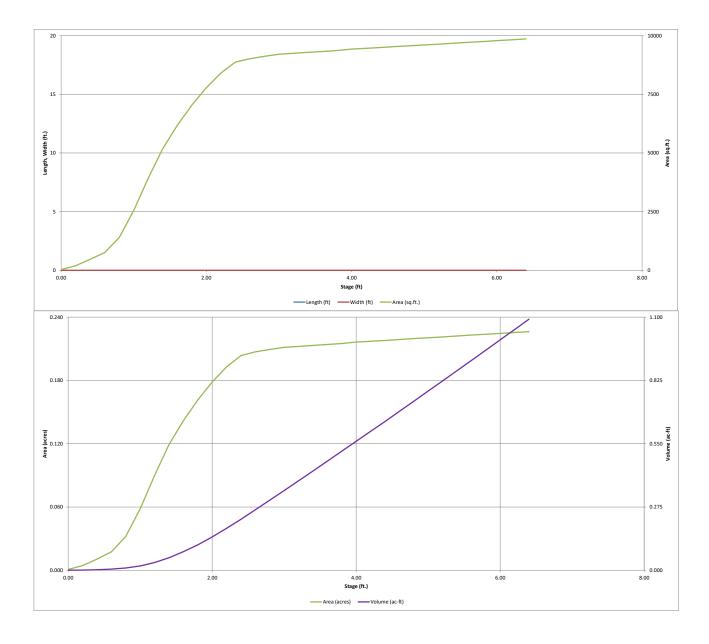
Volume of Main Basin (V_{MAIN}) =

Area of Main Basin (A_{MAIN}) =

Calculated Total Basin Volume (V_{total}) = user

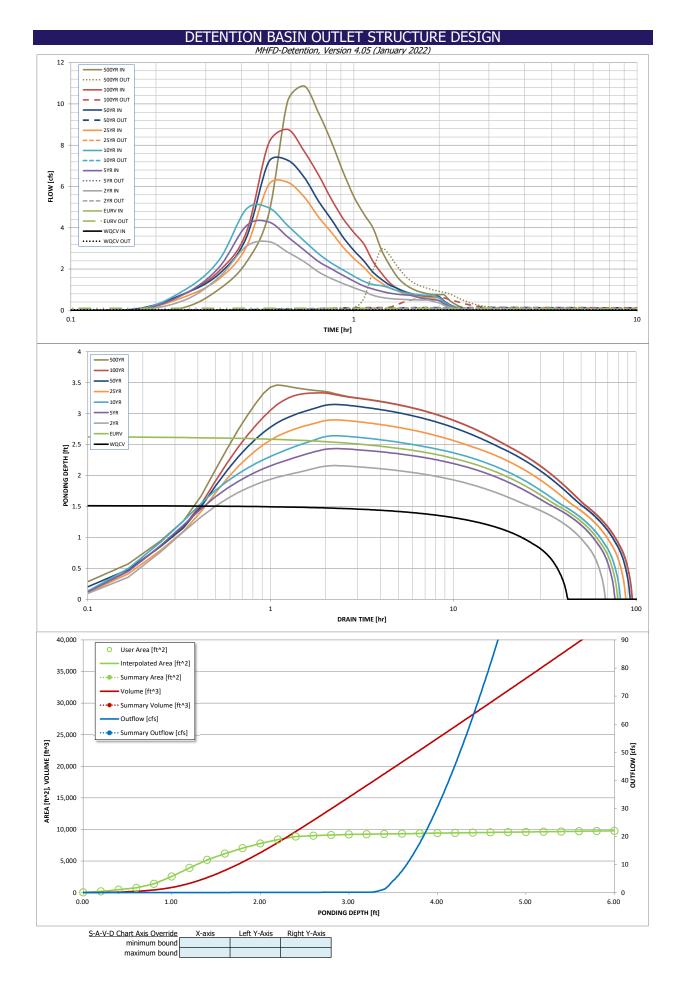
user ft

user ۱_ת :


ft 2 user

acre-feet

	Depth Increment =	0.20	ft							
			Optional				Optional			
d)	Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
	Top of Micropool		0.00				35	0.001		
	6499.6		0.20				194	0.004	23	0.001
			0.40				468	0.011	89	0.002
	6500		0.60				759	0.017	212	0.005
			0.80				1,395	0.032	427	0.010
			1.00				2,555	0.059	822	0.019
			1.20				3,917	0.090	1,469	0.034
			1.40				5,190	0.119	2,380	0.055
	6504									
	6501		1.60				6,173	0.142	3,516	0.081
			1.80				7,042	0.162	4,838	0.111
			2.00				7,777	0.179	6,319	0.145
			2.20				8,401	0.193	7,937	0.182
			2.40				8,872	0.204	9,665	0.222
	6502		2.60				9,019	0.207	11,454	0.263
	0502									
al User Overrides			2.80				9,121	0.209	13,268	0.305
acre-feet			3.00				9,210	0.211	15,101	0.347
acre-feet			3.20				9,249	0.212	16,947	0.389
19 inches			3.40				9,288	0.213	18,800	0.432
50 inches	6503		3.60				9,327	0.214	20,662	0.474
75 inches			3.80				9,366	0.215	22,531	0.517
00 inches			4.00				9,423	0.216	24,410	0.560
25 inches			4.20				9,459	0.217	26,298	0.604
52 inches			4.40				9,496	0.218	28,193	0.647
00 inches	6504		4.60				9,532	0.219	30,096	0.691
			4.80				9,568	0.220	32,006	0.735
										0.779
			5.00				9,604	0.220	33,923	
			5.20				9,641	0.221	35,848	0.823
			5.40				9,677	0.222	37,780	0.867
	6505		5.60				9,713	0.223	39,719	0.912
			5.80				9,750	0.224	41,665	0.956
			6.00				9,786	0.225	43,619	1.001
			6.20				9,822	0.225	45,579	1.046
			6.40				9,859	0.226	47,547	1.092
	6506						-,			
	6506									
										<u> </u>
						-				


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.05 (January 2022) Project: 6855 Constitution Ave Self Storage Basin ID: FSD-1 Estimated Estimated ZONE 1 Stage (ft) Volume (ac-ft) Outlet Type VOLUME EURV WQCV Zone 1 (WQCV) 1.52 0.069 Orifice Plate 100-YEAR Zone 2 (EURV) 2.63 0.200 Orifice Plate ZONE 1 AND 2 Zone 3 (100-year) 3.22 0.123 Weir&Pipe (Restrict) PERMANENT Example Zone Configuration (Retention Pond) Total (all zones) 0.392 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain ft (distance below the filtration media surface) Underdrain Orifice Area Underdrain Orifice Invert Depth = N/A N/A ft² Underdrain Orifice Diameter = Underdrain Orifice Centroid = N/A inches N/A feet Calculated Parameters for Plate User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Centroid of Lowest Orifice = ft (relative to basin bottom at Stage = 0 ft) WO Orifice Area per Row = 0.00 N/A lft² Depth at top of Zone using Orifice Plate = 2.63 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = feet N/A Orifice Plate: Orifice Vertical Spacing = inches Elliptical Slot Centroid = N/A feet N/A Orifice Plate: Orifice Area per Row = ft² sq. inches Elliptical Slot Area = N/A N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 0.88 1.52 2.45 Orifice Area (sq. inches) 0.44 0.44 1.23 1.23 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft) Orifice Area (sg. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Not Selected Not Selected Not Selected Not Selected ft² Vertical Orifice Area Invert of Vertical Orifice = N/A N/A ft (relative to basin bottom at Stage = 0 ft) N/A N/A Depth at top of Zone using Vertical Orifice = N/A N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = N/A N/A feet Vertical Orifice Diameter = inches N/A N/A User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe) Calculated Parameters for Overflow Weir Zone 3 Weir Not Selected Zone 3 Weir Not Selected ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t = Overflow Weir Front Edge Height, Ho = 3.25 N/A 3.25 N/A feet Overflow Weir Slope Length = Overflow Weir Front Edge Length = 2.92 N/A feet 2.92 N/A feet Overflow Weir Grate Slope = 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area = 22.25 N/A Horiz. Length of Weir Sides = Overflow Grate Open Area w/o Debris = ft² 2.92 N/A feet 5.93 N/A Overflow Grate Type = Overflow Grate Open Area w/ Debris = Type C Grate N/A 2.97 N/A fť Debris Clogging % = 50% N/A % User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe = 0.00 N/A Outlet Orifice Area ft² ft (distance below basin bottom at Stage = 0 ft) 0.27 N/A Outlet Pipe Diameter 18.00 Outlet Orifice Centroid 0.18 N/A feet N/A Restrictor Plate Height Above Pipe Invert = 3.75 Half-Central Angle of Restrictor Plate on Pipe = 0.95 N/A radians ches User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 3.40 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.29 feet Spillway Crest Length = Stage at Top of Freeboard = 20.00 feet 4.69 feet Spillway End Slopes -0.00 H:V 0.22 acres Unresolved. Provide details for Freeboard above Max Water Surface = 1.00 feet 0.71 acre-ft spillway IL CUHP hy Routed Hydrograph Results e user can ov ohs table nns W through Al EURV 10 Year WQCV 5 Year 25 Year Design Storm Return Period = 2 Year 50 Year 100 Year 500 Year One-Hour Rainfall Depth (in) = 1.50 N/A N/A 1.19 1.75 2.00 2.25 2.52 3.00 0.185 0.241 0.287 0.343 0.463 0.573 CUHP Runoff Volume (acre-ft) 0.069 0.269 0.397 Inflow Hydrograph Volume (acre-ft) = N/A N/A 0.185 0.241 0.287 0.343 0.397 0.463 0.573 CUHP Predevelopment Peak Q (cfs) = N/A N/A 0.0 0.1 0.6 0.0 1.2 1.9 3.0 OPTIONAL Override Predevelopment Peak Q (cfs) = N/A N/A Predevelopment Unit Peak Flow, g (cfs/acre) : 0.02 0.20 1.03 N/A N/A 0.01 0.02 0.39 0.64 Peak Inflow Q (cfs) 10.9 N/A 5.0 N/A 4.3 8.8 3.3 6.2 7.3 0.071 0.081 0.105 Peak Outflow Q (cfs) : 0.030 0.104 0.122 0.135 0.617 2.968 N/A Ratio Peak Outflow to Predevelopment Q = N/A N/A 0.1 0.2 0.3 1.0 Structure Controlling Flow : Plate Plate Plate Plate Plate Plate Plate Overflow Weir Spillway Max Velocity through Grate 1 (fps) = N/A N/A N/A N/A N/A N/A N/A 0.1 0.3 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A N/A Time to Drain 97% of Inflow Volume (hours) = 69 60 76 80 67 72 78 Time to Drain 99% of Inflow Volume (hours) 41 77 88 75 65 73 83 87 89 Maximum Ponding Depth (ft) = 1.52 2.63 2.16 2.44 2.64 2.90 3.15 3.34 3.46 0.20 Area at Maximum Ponding Depth (acres) 0.13 0.21 0.21 0.21 0.21 0.21 0.19 0.21 Maximum Volume Stored (acre-ft) = 0 173 0 417

Unresolved. Ratio	
should be closer to 1.	
Revise.	

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate progra

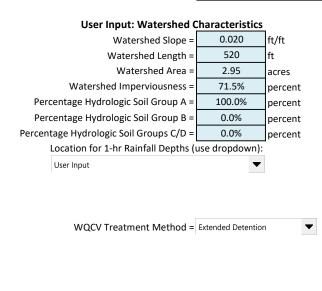
								l in a separate pr		
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.01	0.13
	0:15:00	0.00	0.00	0.47	0.77	0.96	0.64	0.79	0.78	1.02
	0:20:00	0.00	0.00	1.60	2.07	2.42	1.52	1.76	1.90	2.32
	0:25:00	0.00	0.00	3.10	4.09	4.90	3.07	3.51	3.76	4.67
	0:30:00	0.00	0.00	3.33	4.28	4.97	6.09	7.19	8.10	10.13
	0:35:00	0.00	0.00	2.82	3.56 2.92	4.11 3.37	6.20 5.50	7.28 6.45	8.77 7.71	10.87 9.57
	0:45:00	0.00	0.00	1.86	2.92	2.74	4.52	5.29	6.56	8.16
	0:50:00	0.00	0.00	1.53	2.01	2.29	3.78	4.39	5.38	6.70
	0:55:00	0.00	0.00	1.30	1.69	1.95	3.05	3.54	4.44	5.51
	1:00:00	0.00	0.00	1.09	1.41	1.65	2.51	2.90	3.77	4.67
	1:05:00	0.00	0.00	0.92	1.18	1.40	2.09	2.40	3.22	4.00
	1:10:00	0.00	0.00	0.73	1.03	1.25	1.63	1.86	2.38	2.93
	1:15:00	0.00	0.00	0.63	0.93	1.20	1.33	1.50	1.81	2.22
	1:20:00	0.00	0.00	0.58	0.84	1.10	1.10	1.24	1.36	1.65
	1:25:00	0.00	0.00	0.55	0.79	0.96	0.96	1.08	1.08	1.30
	1:30:00	0.00	0.00	0.53	0.75	0.87	0.82	0.93	0.91	1.09
	1:35:00 1:40:00	0.00	0.00	0.52	0.73	0.81	0.73	0.82	0.79	0.95
	1:40:00	0.00	0.00	0.51	0.64	0.77	0.68	0.76	0.72	0.86
	1:50:00	0.00	0.00	0.50	0.58	0.74	0.64	0.72	0.65	0.80
	1:55:00	0.00	0.00	0.42	0.51	0.68	0.60	0.67	0.64	0.76
	2:00:00	0.00	0.00	0.36	0.48	0.61	0.59	0.66	0.63	0.75
	2:05:00	0.00	0.00	0.25	0.32	0.41	0.40	0.45	0.43	0.51
	2:10:00	0.00	0.00	0.16	0.21	0.28	0.27	0.30	0.29	0.34
	2:15:00	0.00	0.00	0.11	0.14	0.18	0.18	0.20	0.19	0.23
	2:20:00	0.00	0.00	0.07	0.09	0.11	0.11	0.12	0.12	0.14
	2:25:00	0.00	0.00	0.04	0.05	0.07	0.07	0.08	0.08	0.09
	2:30:00	0.00	0.00	0.02	0.03	0.04	0.04	0.05	0.04	0.05
	2:35:00 2:40:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.02
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00 3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0.00	0.00	0.00	0.00	0.00	0.00			0.00
	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

	Design Procedure Form:	Extended Detention Basin (EDB)				
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3				
Designer:	DDJ					
Company: Date:	Galloway December 16, 2022					
Project:	6855 Constitution Self Storage					
Location:						
1. Basin Storage V	/olume					
A) Effective Imp	erviousness of Tributary Area, I _a	I _a = 71.5 %				
B) Tributary Are	a's Imperviousness Ratio (i = I _a / 100)	i = 0.715				
C) Contributing	Watershed Area	Area = 2.950 ac				
, -						
D) For Watersh Runoff Prode	eds Outside of the Denver Region, Depth of Average ucing Storm	d ₆ = in				
E) Design Conc	zept	Choose One				
	V when also designing for flood control)	Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)				
F) Design Volur	me (WQCV) Based on 40-hour Drain Time	V _{DESIGN} = 0.069 ac-ft				
(V _{DESIGN} = (1	.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)					
	neds Outside of the Denver Region,	V _{DESIGN OTHER} =ac-ft				
	ty Capture Volume (WQCV) Design Volume $_{R} = (d_{6}^{*}(V_{DESIGN}/0.43))$					
H) User Input o	f Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN USER} = ac-ft				
	ferent WQCV Design Volume is desired)					
	logic Soil Groups of Tributary Watershed					
	ge of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils	$HSG_{B} = $ %				
	age of Watershed consisting of Type C/D Soils	HSG _{C/D} =				
	In Runoff Volume (EURV) Design Volume					
	EURV _A = 1.68 * $i^{1.28}$ EURV _B = 1.36 * $i^{1.08}$	EURV _{DESIGN} = ac-f t				
For HSG C/	/D: EURV _{C/D} = 1.20 * i ^{1.08}					
	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} = ac-f t				
(Only If a diff	lerent EORV Design volume is desired)					
2. Basin Shape: Le	ength to Width Ratio	L:W = 2.0 :1 FSD-1 USES VERTICAL WALLS				
(A basin length t	to width ratio of at least 2:1 will improve TSS reduction.)					
3. Basin Side Slop	ec.					
A) Basin Maxim (Horizontal d	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 0.01 ft / ft TOO STEEP (< 3)				
4. Inlet		Forebays (Sheet 1 has been included twice, one for each forebay design; designated South Forebay and North Forebay)				
	ans of providing energy dissipation at concentrated					
inflow locatio	ons:					
5. Forebay		NORTH FOREBAY				
A) Minimum For (V _{FMIN} :	= <u>2%</u> of the WQCV)	V _{FMIN} =0.001 ac-ft				
B) Actual Foreb	pay Volume	V _F = 0.005 ac-ft				
C) Forebay Dep						
(D _F :		D _F = <u>18.0</u> in				
D) Forebay Disc	sharge					
i) Undetaine	ed 100-year Peak Discharge	Q ₁₀₀ = 10.50 cfs				
	Discharge Design Flow	$Q_F = 0.21$ cfs				
(Q _F = 0.02						
E) Forebay Disc	sharge Design	Choose One				
_		O Berm With Pipe Flow too small for berm w/ pipe				
		Wall with Rect. Notch Wall with V-Notch Weir				
F) Discharge Pip	pe Size (minimum 8-inches)	Calculated D _P = in				
G) Rectangular	Notch Width	Calculated $W_N = 4.0$ in				

	Design Procedure Form: I	Extended Detention Basin (EDB)
	UD-BMP ((Version 3.07, March 2018) Sheet 1 of 3
Designer: DDJ		
Company: Galloway Date: December		
	stitution Self Storage	
Location:		
1. Basin Storage Volume		
A) Effective Imperviousness	of Tributary Area, I _a	l _a = 71.5 %
B) Tributary Area's Imperviou	usness Ratio (i = l _a / 100)	i = 0.715
, , ,		
C) Contributing Watershed A		
 D) For Watersheds Outside Runoff Producing Storm 	of the Denver Region, Depth of Average	d ₆ = in
E) Design Concept		Choose One
	designing for flood control)	Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)
F) Design Volume (WQCV)	Based on 40-hour Drain Time	V _{DESIGN} = 0.069 ac-ft
	³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	
G) For Watersheds Outside		V _{DESIGN OTHER} =ac-ft
Water Quality Capture Vo (V _{WQCV OTHER} = (d ₆ *(V _{DESI}	olume (WQCV) Design Volume _{GN} /0.43))	
H) User Input of Water Qual	ity Canture Volume (WQCV) Design Volume	V _{DESIGN USER} = ac-ft
 H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) 		* Design User
I) NRCS Hydrologic Soil Gro	oups of Tributary Watershed	
	shed consisting of Type A Soils shed consisting of Type B Soils	$HSG_{A} = $ % $HSG_{B} = $ %
	shed consisting of Type C/D Soils	HSG _{C/D} = %
J) Excess Urban Runoff Vol		
For HSG A: EURV _A = 1.1 For HSG B: EURV _B = 1.3		EURV _{DESIGN} = ac-f t
For HSG C/D: EURV _{C/D}		
	an Runoff Volume (EURV) Design Volume	EURV _{DESIGN USER} = ac-f t
(Only if a different EURV	Design Volume is desired)	
2. Basin Shape: Length to Widt	h Ratio	L:W= 2.0 :1 FSD-1 USES VERTICAL WALLS
(A basin length to width ratio	of at least 2:1 will improve TSS reduction.)	
2. Dania Cida Clanca		
3. Basin Side Slopes		k
 A) Basin Maximum Side Slop (Horizontal distance per u 	pes unit vertical, 4:1 or flatter preferred)	Z = 0.01 ft / ft TOO STEEP (< 3)
	,	
4. Inlet		Forebays (Sheet 1 has been included twice, one for each forebay design; designated South
A) Describe means of provid	ding energy dissipation at concentrated	Forebay and North Forebay)
inflow locations:		
5 Eeroboy		
5. Forebay		
 A) Minimum Forebay Volume (V_{FMIN} = 2%) 	e of the WQCV)	V _{FMIN} = 0.001 ac-ft
B) Actual Forebay Volume	_	$V_{\rm F} = 0.001$ ac-ft
C) Forebay Depth (D _F = <u>18</u>	_inch maximum)	$D_{\rm F} = 18.0$ in
D) Forebay Discharge		
i) Undetained 100-year F	Peak Discharge	Q ₁₀₀ = 1.30 cfs
ii) Forebay Discharge De (Q _F = 0.02 * Q ₁₀₀)	ออเมา ค.บพ	Q _F =0.03 cfs
E) Forebay Discharge Desigi	n	Choose One
		Berm With Pipe Flow too small for berm w/ pipe
		Wall with Rect. Notch Wall with V-Notch Weir
F) Discharge Pipe Size (mini	mum 8-inches)	Calculated D _P = in
G) Rectangular Notch Width		Calculated W _N = 3.7 in

	Design Procedure Form: I	Extended Detention Basin (EDB)
Designer:	DDJ	Sheet 2 of 3
Company:	Galloway	
Date:	December 16, 2022	
Project:	6855 Constitution Self Storage	
Location:		
		Choose One
6. Trickle Channel		 Cincipal Direction Oconcrete
A) Type of Trick	kle Channel	Soft Bottom
F) Slope of Tric	kle Channel	S = 0.0050 ft / ft
7. Micropool and C	Dutlet Structure	
A) Depth of Mic	cropool (2.5-feet minimum)	$D_{\rm M} = 2.5$ ft
	a of Micropool (10 ft ² minimum)	A _M = <u>35</u> sq ft
C) Outlet Type		Choose One
		Orifice Plate
		Other (Describe):
D) Smallest Dir (Use UD-Detent	nension of Orifice Opening Based on Hydrograph Routing tion)	D _{otifice} = 0.63 inches
E) Total Outlet A		A _{ot} = 0.93 square inches
8. Initial Surcharge	9 Volume	
A) Depth of Init	ial Surcharge Volume	$D_{IS} = 4$ in
	commended depth is 4 inches)	
B) Minimum Initi	al Surcharge Volume	V _{IS} = cu ft
(Minimum vol	ume of 0.3% of the WQCV)	
C) Initial Surcha	rge Provided Above Micropool	V _s = 11.7 cu ft
9. Trash Rack		
A) Water Qualit	ty Screen Open Area: A _t = A _{ct} * 38.5*(e ^{-0.095D})	A _t = <u>34</u> square inches
	en (If specifying an alternative to the materials recommended	S.S. Well Screen with 60% Open Area
	indicate "other" and enter the ratio of the total open are to the for the material specified.)	
	Other (Y/N): N	
	Other (Y/N): N	
C) Ratio of Tota	I Open Area to Total Area (only for type 'Other')	User Ratio =
D) Total Water (Quality Screen Area (based on screen type)	A _{total} =sq. in.
	ign Volume (EURV or WQCV) design concept chosen under 1E)	H= 1.52 feet
F) Height of Wa	ter Quality Screen (H _{TR})	H _{TR} = 46.24 inches
	ter Quality Screen Opening (W _{coening}) inches is recommended)	W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

	Design Procedure Form	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	DDJ Galloway December 16, 2022 6855 Constitution Self Storage	Sheet 3 d
B) Slope of C	bankment embankment protection for 100-year and greater overtopping: Dverflow Embankment al distance per unit vertical, 4:1 or flatter preferred)	Ze = <u>16.67</u> ft / ft Choose One O Irrigated O Not Irrigated
12. Access A) Describe	Sediment Removal Procedures	


Stormwater Detention and Infiltration Design Data Sheet

Workbook Protected

Worksheet Protected

Stormwater Facility Name: Private FSD Pond - Constitution Storage

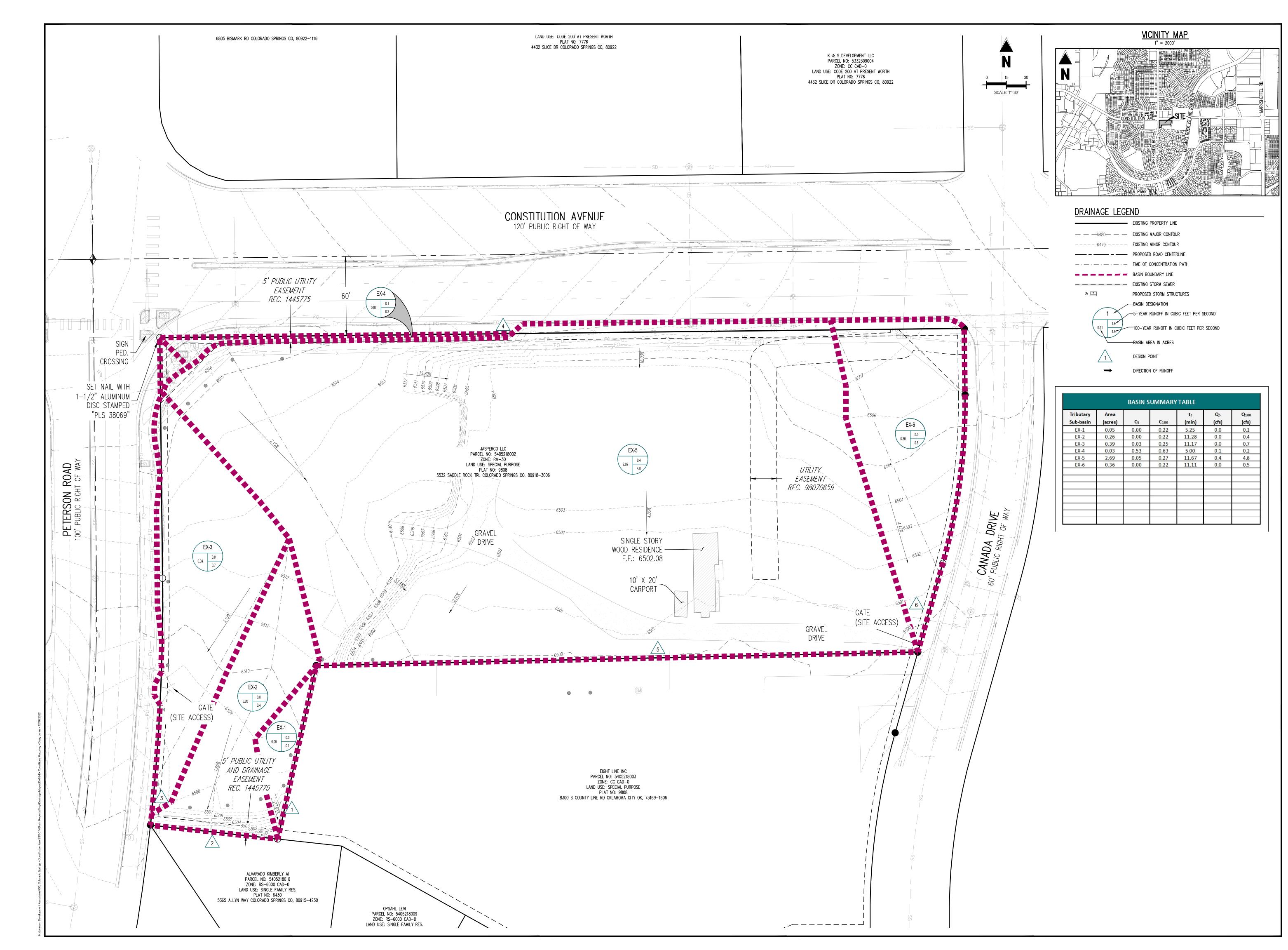
Facility Location & Jurisdiction: 6855 Constitution Ave; Colorado Springs, CO 80915 Sand Creek Basin - El Paso County

User Defined	User Defined	User Defined	User Defined
Stage [ft]	Area [ft^2]	Stage [ft]	Discharge [cfs]
0.00	35	0.00	0.00
1.00	2,555	1.00	0.02
1.52	5,663	1.52	0.03
2.00	7,777	2.00	0.07
3.00	9,210	3.00	0.12
3.25	9,263	3.25	0.62
3.40	9,295	3.40	2.97
4.00	9,423	4.00	2.97
5.00	9,604	5.00	2.97
6.00	9,713	6.00	2.97

After completing and printing this worksheet to a pdf, go to: <u>https://maperture.digitaldataservices.com/gvh/?viewer=cswdif</u> create a new stormwater facility, and

attach the pdf of this worksheet to that record.

	Routed Hydro	graph Results					_
Design Storm Return Period =	WQCV	2 Year	5 Year	10 Year	50 Year	100 Year	
One-Hour Rainfall Depth =	0.60	0.99	1.27	1.53	2.29	2.67	in
Calculated Runoff Volume =	0.069	0.154	0.204	0.256	0.419	0.512	acre-ft
OPTIONAL Override Runoff Volume =							acre-ft
Inflow Hydrograph Volume =	0.069	0.154	0.204	0.255	0.419	0.511	acre-ft
Time to Drain 97% of Inflow Volume =	46.3	63.6	69.3	74.1	82.4	80.4	hours
Time to Drain 99% of Inflow Volume =	50.6	69.9	76.4	82.1	92.4	91.4	hours
Maximum Ponding Depth =	1.41	1.96	2.22	2.48	3.16	3.34	ft
Maximum Ponded Area =	0.11	0.17	0.19	0.19	0.21	0.21	acres
Maximum Volume Stored =	0.065	0.145	0.193	0.242	0.381	0.418	acre-ft

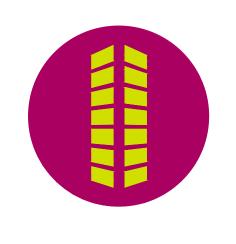

Stormwater Detention and Infiltration Design Data Sheet

_

_

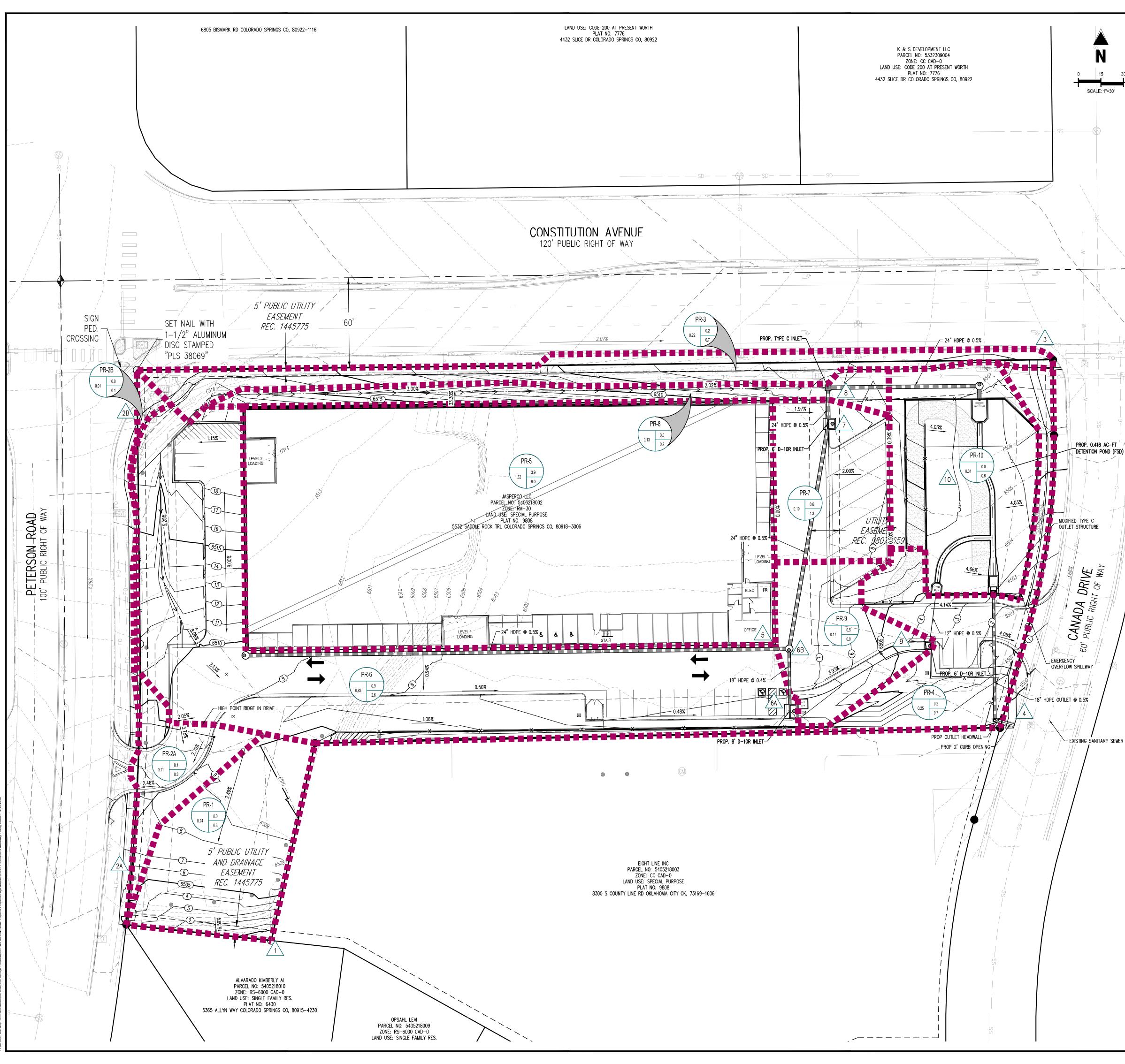
APPENDIX E

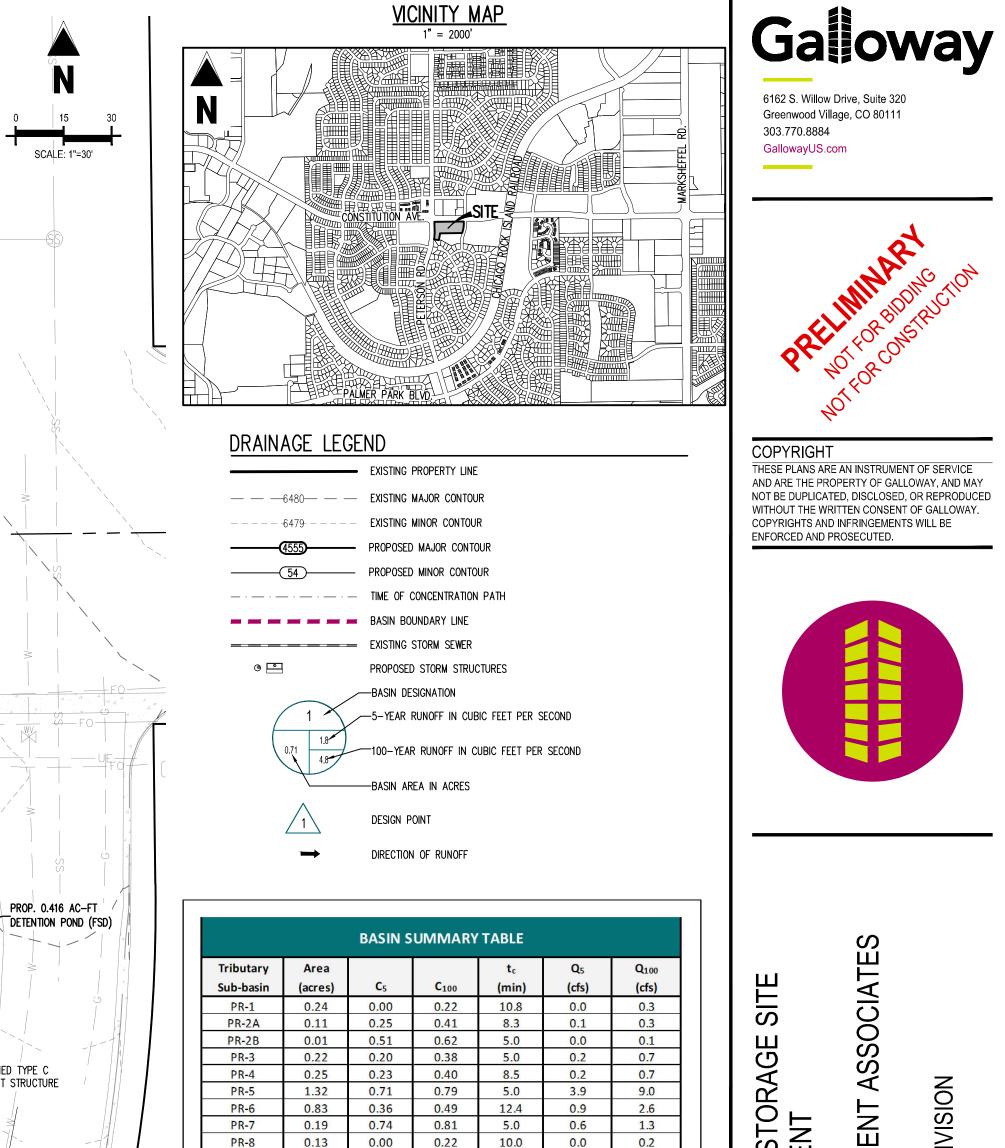
Drainage Maps



6162 S. Willow Drive, Suite 320 Greenwood Village, CO 80111 303.770.8884 GallowayUS.com

COPYRIGHT THESE PLANS ARE AN INSTRUMENT OF SERVICE AND ARE THE PROPERTY OF GALLOWAY, AND MAY NOT BE DUPLICATED, DISCLOSED, OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF GALLOWAY. COPYRIGHTS AND INFRINGEMENTS WILL BE ENFORCED AND PROSECUTED.




6855 CONSTITUTION AVE STORAGE SITE	COMMERCIAL DEVELOPMENT	DRAINAGE MAP	FOR JOHNSON DEVELOPMENT ASSOCIATES	LOT 1 OF THE EIGHT LINE SUBDIVISION	COLORADO SPRINGS, CO 80915
#	Date	Issue	/ Description		Init.

Project No:	JDA02.20
Drawn By:	BAS
Checked By:	BAS
Date:	07.08.2022

EXISTING DRAINAGE MAP

DESIGN	POINT SUM	IMARY TABLE
Design	Route	d Flows
Point	Q ₅ (cfs)	Q100 (cfs
1	0.0	0.3
2A	0.1	0.3
2B	0.0	0.1
3	0.2	0.7
4	0.2	0.7
5	3.9	9.0
6A	0.9	2.6
6B	3.8	9.3
7	4.2	10.2
8	4.2	10.4
9	0.3	0.9
10	4.5	11.6

0.64

0.22

6.6

5.0

0.5

00

4.5

0.5

0.9

0.6

11.6

2.2

PR-9

PR-10

DRIVE TOF WA

,09

0.17

0.31

0.54

0.00

Routed Flow to FSD (DP-10)

Total Offsite Free-Release (PR-1, PR-2A, PR-2B, PR-3, PR-4)

SSOCIATES SION K STITUTION AVE. STO MAP SUBDIV 80915 DEVELOPME E EIGHT LINE (6855 CONSTITUT COMMERCIAL DI DRAINAGE MAP FOR JOHNSON E - 1 OF THE I ORADO SF LOT COL # Date Issue / Description

Project No:	JDA02.20
Drawn By:	DDJ
Checked By:	SMB
Date:	12.20.2022
PROPOSED DRAINAGE	

MAP

DR-2