Traffic Impact Study

Circle K – US-24 & Meridian PCD File No. CS-21-003 El Paso County, Colorado

Prepared for:

Land Development Consultants

Kimley»Horn

TRAFFIC IMPACT STUDY

Traffic Engineer's Statement

Denver, Colorado 80206

The attached traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.

elfrey R. Hanck	
Jeffrey R. Planck, P.E., PE #53006	December 16, 2021 Date
Developer's Statement	
I, the Developer, have read and will comply with all c	commitments made on my behalf within this report.
Ms. Sofia Hernandez Land Development Consultants 100 Filmore Street Suite 500	Date

Circle K – US-24 & Meridian PCD File No. CS-21-003

El Paso County, Colorado

Prepared for Land Development Consultants 100 Filmore Street Suite 500 Denver, Colorado 80206

Prepared by
Kimley-Horn and Associates, Inc.
4582 South Ulster Street
Suite 1500
Denver, Colorado 80237
(303) 228-2300

53006 12/16/2021

December 2021

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

TABLE OF CONTENTS

TABLE OF CONTENTS	i
APPENDICES	ii
LIST OF TABLES	ii
LIST OF FIGURES	ii
1.0 EXECUTIVE SUMMARY	1
2.0 INTRODUCTION	7
3.0 EXISTING AND FUTURE CONDITIONS	10
3.1 Surrounding Land Use	10
3.2 Existing and Future Roadway Network	10
3.3 Existing Traffic Volumes	12
3.4 Unspecified Development Traffic Growth	12
4.0 PROJECT TRAFFIC CHARACTERISTICS	19
4.1 Trip Generation	19
4.2 Trip Distribution	20
4.3 Traffic Assignment	20
4.4 Total (Background Plus Project) Traffic	23
5.0 TRAFFIC OPERATIONS ANALYSIS	26
5.1 Analysis Methodology	26
5.2 Key Intersection Operational Analysis	27
5.3 Future Intersections	30
5.4 El Paso County and CDOT Turn Lane Requirement Analysis	32
5.5 Queuing Analysis	35
5.6 Access Spacing and Sight Distance Evaluation	37
5.7 Bicycle and Pedestrian Access	41
5.8 Road Impact Fees	41
5.9 Improvement Summary	41
6.0 CONCLUSIONS AND RECOMMENDATIONS	11

APPENDICES

Appendix A – Intersection Count Sheets	
Appendix B – Future Traffic Projections Data	
Appendix C – Trip Generation Worksheets	
Appendix D – Intersection Analysis Worksheets	
Appendix E - Queuing Analysis Worksheets	
Appendix F - Conceptual Site Plan	
LIST OF TABLES	
Table 1 – Project Traffic Generation	20
Table 2 – Level of Service Definitions	26
Table 3 – US-24 and (Old) Meridian Road LOS Results	28
Table 4 – US-24 and (New) Meridian Road LOS Results	29
Table 5 – Project Accesses and Future Intersections LOS Results	31
Table 6 – Turn Lane Length Analysis Results	36
Table 7 – Road Impact Fees	41
LIST OF FIGURES	
Figure 1 – Vicinity Map	8
Figure 2 – Site Area	
Figure 3 – Existing Lanes and Control	
Figure 4 – 2021 Existing Traffic Volumes	
Figure 5 – 2021 Existing Adjusted Traffic Volumes	
Figure 6 – 2023 Background Traffic Volumes	17
Figure 7 – 2040 Background Traffic Volumes	
Figure 8 – Project Trip Distribution	21
Figure 9 – Project Traffic Assignment	22
Figure 10 – 2023 Background Plus Project Traffic Volumes	24
Figure 11 – 2040 Background Plus Project Traffic Volumes	25
Figure 12 – Site Circulation and Roadway Classification	40
Figure 13 – 2023 Recommended Lane Configurations and Control	42
Figure 14 – 2040 Recommended Lane Configurations and Control	43

1.0 EXECUTIVE SUMMARY

A Circle K gas station is proposed to redevelop an existing gas station located on the southwest corner of US-24 and (Old) Meridian Road intersection in El Paso County, Colorado. The project is proposing 16 fueling positions with a 5,200 square foot convenience market to replace the existing gas station to be located on the southeast corner of the US-24 and New Meridian Road intersection. It should be noted that the existing gas station on site currently provides eight (8) fueling positions. In addition, this traffic study has been prepared for the entire redevelopment area bounded by New Meridian Road, Old Meridian Road, US-24, and Swingline Road. The remaining development was studied to include 20,000 square feet of retail space, 7,000 square feet of fast casual restaurant space, and a 4,500 square foot fast food restaurant with drive thru. It is expected that the project will be completed by 2023; therefore, analysis was conducted for the 2023 short term horizon as well as the 2040 long-term horizon per El Paso County requirements.

The purpose of this study is to identify project traffic generation characteristics and potential project traffic related impacts on the local street system, as well as to develop mitigation measures required for identified impacts. The following intersections were incorporated into this traffic study in accordance with El Paso County and Colorado Department of Transportation (CDOT) standards and requirements:

- US-24 and (Old) Meridian Road
- US-24 and (New) Meridian Road (future)
- Swingline Road and (New) Meridian Road (future)
- Swingline Road and (Old) Meridian Road (future realignment)
- Pacific Avenue and (New) Meridian Road (future)
- Pacific Avenue and (Old) Meridian Road (future)

Regional access will be provided by Woodmen Road and United States Highway 24 (US-24). Primary and direct access to the site will be provided from (New) Meridian Road and (Old) Meridian Road. A proposed three-quarter turning movement future intersection of Pacific Avenue and (New) Meridian Road and a full movement access along the west side of (Old) Meridian Road at the future Pacific Avenue will provide direct access. Two full movement driveways will be provided along the proposed Pacific Avenue roadway extending between

(Old) Meridian Road and (New) Meridian Road, as well as an access anticipated along Old Meridian Road assumed for the development area to the south between Pacific Avenue and Swingline Road.

The redeveloped Circle K project is expected to generate approximately 4,356 weekday daily trips with 432 of these trips occurring during the morning peak hour and 360 trips occurring during the afternoon peak hour. Based on traffic volume counts conducted and driveways of the existing gas station, the existing gas station on site is currently generating 110 trips during the weekday morning peak hour and 146 trips during the afternoon peak hour. To account for a COVID-19 adjustment, the existing gas station driveway volumes were increased by approximately 46 percent and would be expected to generate approximately 160 trips during the weekday morning peak hour and 213 trips during the afternoon peak hour. Therefore, the redeveloped Circle K project would be expected to generate 272 morning peak hour trips and 214 afternoon peak hour trips. The entire project with the net increase of Circle K trips plus adjacent retail and restaurant space with ITE procedure internal capture trips calculated is expected to generate a net additional 405 morning peak hour trips and 309 trips afternoon peak hour trips than the existing adjusted site traffic volume level.

Distribution of site traffic on the street system was based on the area street system characteristics, existing traffic patterns, anticipated surrounding development in the area, and the proposed access system for the project. Assignment of project traffic was based upon the trip generation described previously and the distributions developed.

Based on the analysis presented in this report, Kimley-Horn believes the redeveloped Circle K project with the adjacent retail and restaurant space will be successfully incorporated into the existing and future roadway network. The proposed project development and expected traffic volumes resulted in the following recommendations and conclusions:

2023 Recommendations:

- The following improvements are recommended in association with the project:
 - Pacific Avenue will be constructed as a public right-of-way within the development area with a Urban Non-Residential Collector classification between New Meridian Road and Old Meridian Road. The future intersections of Pacific Avenue/(New)

Meridian Road and Pacific Avenue/(Old Meridian Avenue will provide primary access for the project. The intersection of Pacific Avenue/(New) Meridian Road is proposed to allow three quarter turning movements with westbound left turns being prohibited. The intersection of Pacific Avenue/(Old) Meridian Road is proposed to allow full turning movements. Direct access to the project will be provided from two driveways located along the proposed Pacific Avenue roadway extending between (Old) Meridian Road and (New) Meridian Road.

- The driveway accesses along Pacific Avenue and (Old) Meridian Road, and the two future access intersections of Pacific Avenue/Meridian Road (New) and Pacific Avenue/Meridian Road (Old) are recommended to provide R1-1 "STOP" signs on the exiting approaches. It is anticipated that single shared movement lanes are sufficient for the exiting approaches of all these access intersections. A raised "pork-chop" median may be required in the exiting throat of the three-quarter movement access intersection of Pacific Avenue and (New) Meridian Road to prevent left turns onto (New) Meridian Road. A R3-2 "No Left Turn" sign should be installed under the STOP sign of this future intersection. A northbound right turn lane should be provided at the proposed Pacific Avenue and (New) Meridian Road intersection.
- There is approximately 340 feet of spacing along (New) Meridian Road between US-24 and the proposed Pacific Avenue (measured edge to edge). With the future intersection of Pacific Avenue and (New) Meridian Road being proposed to allow three-quarter turning movements, it is recommended that the northbound left turn lane at the US-24 and (New) Meridian Road intersection be restriped from 400 feet to 150 feet of length to accommodate back-to-back left turn lanes with the future intersection of Pacific Avenue and (New) Meridian Road. Further, the southbound left turn lane at the future Pacific Avenue and (New) Meridian Road intersection should provide 100 feet of length with a reduced shared taper length of 75 feet. A deviation request will need to be provided to allow these substandard left turn lane lengths; however, calculated vehicle queues are expected to be accommodated within the proposed left turn lane lengths.

- o It is recommended that the existing 400-foot northbound right turn lane at the US-24 and (New) Meridian Road intersection be shortened to 155 feet of length plus a 160-foot taper to accommodate the future intersection of Pacific Avenue and (New) Meridian Road. This new length meets El Paso County standards for a design speed of 40 miles per hour and vehicle queues will be accommodated in this lane as the northbound to eastbound right turn acceleration lane will provide free movements at this intersection.
- O It is understood that El Paso County may require a 10-foot additional right-of-way dedication along Old Meridian Road to bring the roadway up to the Urban Non-Residential Collector standard from US-24 to Swingline Road adjacent to the project development. A request of the Advisory Committee will be provided to obtain possible credits from the Road Impact Fee associated with this improvement.
- The following improvements along US-24 were completed by CDOT in association with the ongoing realignment of Meridian Road:
 - CDOT will convert the signalized intersection of US-24 and (Old) Meridian Road to an unsignalized intersection. Further, this intersection will be restricted to rightin/right-out only movements with stop control along the northbound and southbound (Old) Meridian Road approaches.
 - With completion of the new alignment of Meridian Road, it is anticipated that CDOT will construct a combination right turn acceleration to deceleration lane that will extend eastbound along US-24 from (New) Meridian Road to (Old) Meridian Road. Likewise, a combination right turn acceleration to deceleration lane will extend westbound along US-24 from (Old) Meridian Road to (New) Meridian Road.
 - A 600-foot eastbound right turn deceleration lane with a 225-foot taper is recommended at the intersection of US-24 and (New) Meridian Road. A 1,125-foot left turn lane with a 225-foot taper is also recommended along the eastbound approach of this intersection. Likewise, a westbound left turn lane with a length of 855 feet is recommended at the US-24 and (New) Meridian Road intersection. Lastly, a southbound Meridian Road to westbound US-24 right turn acceleration is

recommended with a length of 960 feet plus a 225-foot taper. All these improvements meet CDOT SHAC standards.

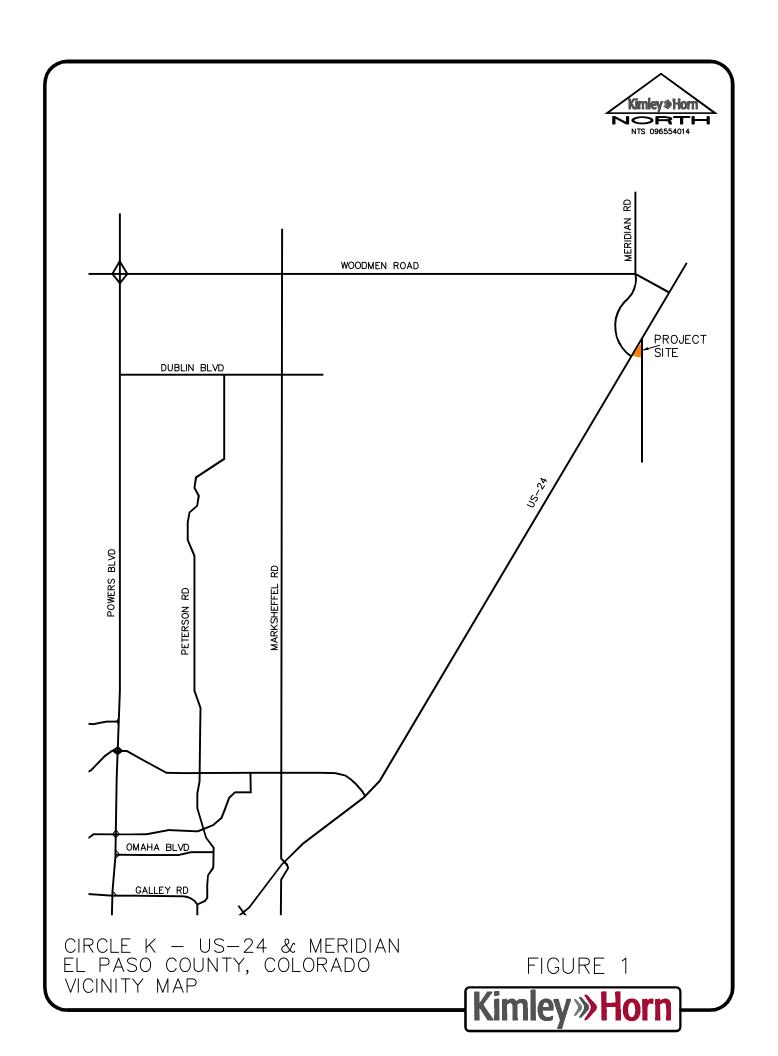
Required Access Deviations

- The intersection of Pacific Avenue will be approximately 390 feet south of the (New) Meridian Road and US-24 intersection (measured center to center). The intersection spacing is not located a quarter mile (1,320 feet) from an arterial roadway. Therefore, the proposed intersection does not meet ECM standards. The intersection is expected to meet operational, vehicle queue, and sign distance standards; therefore, it is believed that this intersection should be granted to restrict left-out movements. A deviation will be provided in support of allowing a restricted three-quarter intersection.
- o Pacific Avenue is expected to be classified as a local street with lower volumes and no intentions of having cut-through traffic. Therefore, Pacific Avenue can follow driveway spacing of a local roadway of 330 feet from an arterial roadway and 150 feet between local intersections. The west access will be approximately 215 feet (measured center to center) east of (New) Meridian Road. The intersection is expected to meet operational and vehicle queue standards; therefore, a deviation will be provided in support of allowing this access. The west access and the east access along Pacific Avenue are offset approximately 515 feet. Therefore, the accesses meet the 150 feet spacing standards. The east access will be approximately 125 feet (measured center to center) west of (Old) Meridian Road. The intersection is expected to meet operational and vehicle queue standards; therefore, a deviation will be provided in support of allowing this access to be spaced less than 175 feet.
- The proposed intersection access will be approximately 500 feet (measured center to center) south of (Old) Meridian Road and US-24 intersection. The access spacing requirement of a collector roadway to a local roadway intersection is 330 feet. Therefore, it is believed this access meets the access spacing criteria in the ECM.

2040 Recommendations:

- If future traffic volume projections materialize, US-24 will need to be improved to provide at least two through lanes in each direction throughout the study area.
- The westbound left turn lane at the US-24 and Meridian Road intersection may need to be extended from 855 feet to 935 feet of length.
- The eastbound approach of the US-24 and Meridian Road intersection may need to provide dual left turn lanes with 965 feet of length per lane.

General Recommendations:


 All on-site and off-site signing and striping improvements should be incorporated into the Civil Drawings and conform to El Paso County Standards as well as the Manual on Uniform Traffic Control Devices – 2009 Edition (MUTCD).

2.0 INTRODUCTION

Kimley-Horn and Associates, Inc. has prepared this report to document the results of a Traffic Impact Study of future traffic conditions associated with a Circle K redevelopment located on the southwest corner of US-24 and (Old) Meridian Road intersection in EI Paso County, Colorado. A vicinity map illustrating the project location is shown in **Figure 1**. The project is proposing 16 fueling positions with a 5,200 square foot convenience market to replace the existing gas station to be located on the southeast corner of the US-24 and New Meridian Road intersection. It should be noted that the existing gas station on site currently provides eight (8) fueling positions. In addition, this traffic study has been prepared for the entire redevelopment area bounded by New Meridian Road, Old Meridian Road, US-24, and Swingline Road. The remaining development was studied to include 20,000 square feet of retail space, 7,000 square feet of fast casual restaurant space, and a 4,500 square foot fast food restaurant with drive thru. A conceptual site plan illustrating the development is shown in **Appendix F**. It is expected that the project will be completed by 2023; therefore, analysis was conducted for the 2023 short term horizon as well as the 2040 long-term horizon per EI Paso County and CDOT requirements.

The purpose of this study is to identify project traffic generation characteristics and potential project traffic related impacts on the local street system, as well as to develop mitigation measures required for identified impacts. The following intersections were incorporated into this traffic study in accordance with El Paso County and Colorado Department of Transportation (CDOT) standards and requirements:

- US-24 and (Old) Meridian Road
- US-24 and (New) Meridian Road (future)
- Swingline Road and (New) Meridian Road (future)
- Swingline Road and (Old) Meridian Road (future realignment)
- Pacific Avenue and (New) Meridian Road (future)
- Pacific Avenue and (Old) Meridian Road (future)

Regional access will be provided by Woodmen Road and United States Highway 24 (US-24). Primary and direct access to the site will be provided from (New) Meridian Road and (Old) Meridian Road. A proposed three-quarter turning movement future intersection of Pacific Avenue and (New) Meridian Road and a full movement access along the west side of (Old) Meridian Road at the future Pacific Avenue will provide direct access. Two full movement driveways will be provided along the proposed Pacific Avenue roadway extending between (Old) Meridian Road and (New) Meridian Road, as well as an access anticipated along Old Meridian Road assumed for the development area to the south between Pacific Avenue and Swingline Road.

3.0 EXISTING AND FUTURE CONDITIONS

3.1 Surrounding Land Use

The project site is comprised of an existing gas station, two single-family residential homes, and vacant land. The south half of the project area will be for future development. The area to the southwest is primarily vacant while the surrounding area in direction includes residential neighborhoods. The area and roadway network surrounding the project site are shown in the aerial of **Figure 2**.

3.2 Existing and Future Roadway Network

US-24 provides one through lane in each direction adjacent to the project site with a posted speed limit of 55 miles per hour. US-24 is classified as a "principal arterial" per El Paso County roadway classification map while being categorized as E-X: Expressway, Major Bypass by CDOT. The March 2018 PEL for this roadway identifies a possible six-lane roadway for US-24. (Old) Meridian Road provides one through lane in each direction with a posted speed limit of 40 miles per hour. The (New) Meridian Road is currently under construction and is located approximately 1,000 feet west of the (Old) Meridian Road. El Paso County classifies Meridian Road as a principal arterial north of US-24 and a minor arterial roadway south of US-24.

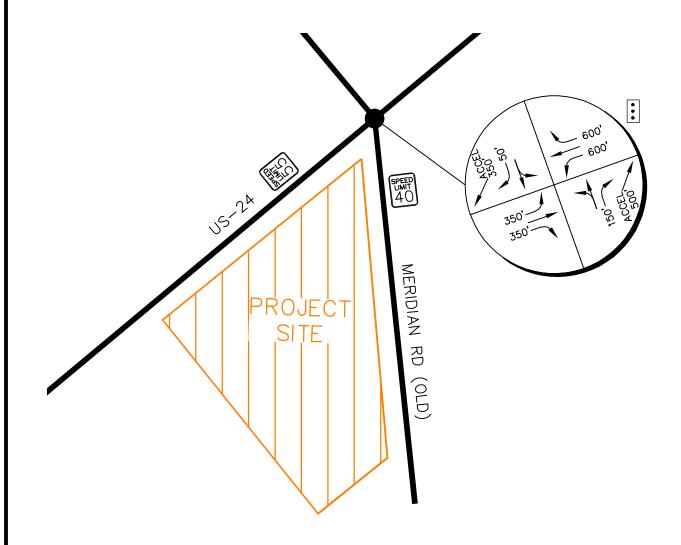
At the time of the counts, the existing intersection of US-24 and (Old) Meridian Road was signalized with protective-permissive left turn signal phasing on the eastbound westbound approaches of US-24. The north-south approaches of (Old) Meridian Road operated with split phasing. The eastbound and westbound approaches of this intersection provided a left turn lane, a through lane, and a right turn lane while the northbound and southbound approaches provided a shared through/left turn lane and a right turn lane. It is believed, this intersection will operate under stop control on the north-south approach of (Old) Meridian Road and be restricted to right-in/right-out only movements when construction is completed.

At the time of the counts, the intersection of US-24 and (New) Meridian Road was currently under construction. The US-24 and (New) Meridian Road intersection has recently been signalized with protected-permitted left turn phasing on all four approaches. The northbound and southbound approaches provide a left turn lane, two through lanes, and a right turn lane.

CIRCLE K — US—24 & MERIDIAN EL PASO COUNTY, COLORADO SITE AREA

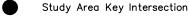
The eastbound and westbound approaches provide a left turn lane, a through lane, and a right turn lane. The existing intersection lane configuration and control for these study area key intersections are shown in **Figure 3**.

3.3 Existing Traffic Volumes


Existing PM peak hour turning movement counts were collected on Wednesday, April 14, 2021 while AM peak hour turning movement counts were conducted on Thursday, April 15, 2021. The counts were conducted in 15-minute intervals during the morning and afternoon peak hours of adjacent street traffic from 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM. Existing turning movement counts are shown in **Figure 4** with count sheets provided in **Appendix A**.

Due to the counts being collected during the COVID-19 Pandemic, an adjustment factor was determined in order to grow the counts to non-COVID conditions to represent normal condition traffic volumes. Peak hour through volumes conducted in 2019 that were provided by the Colorado Department of Transportation along US-24 were grown to year 2021. These volumes were compared to the approach volumes collected in 2021 at the intersection of US-24 and (Old) Meridian Road. It was determined the morning peak hour traffic volumes needed to be increase by 46 percent while the afternoon peak hour traffic volumes needed to be increased by 47 percent to identify normal existing conditions traffic volumes. The adjusted peak hour turning movement counts are shown in **Figure 5**.

3.4 Unspecified Development Traffic Growth

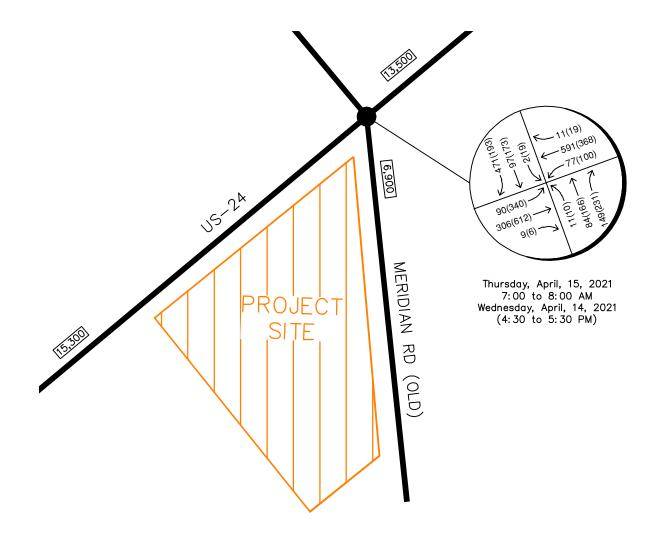

Based on information provided on the website for the Colorado Department of Transportation, the 20-year average growth factor along US-24 within the study area between 1.4 and 1.5. The average value equates to an annual growth rate of approximately 1.8 percent per year. Traffic information from the CDOT Online Transportation Information System (OTIS) is included in **Appendix B**. Based on the above information, a 2.0 percent annual growth rate was used to calculate future traffic volumes at the study area intersection and adjacent roadways. This annual growth rate was used to estimated short-term 2023 and long-term 2040 traffic volumes at the key intersections. Existing traffic counts at the intersection of US-24 and (Old) Meridian Road were redistributed to the intersection of US-24 and (New) Meridian Road due to the realignment of Meridian Road and (Old) Meridian Road being restricted to right-in/right-out movements in the future.

CIRCLE K - US-24 & MERIDIAN EL PASO COUNTY, COLORADO EXISTING LANE CONFIGURATIONS

LEGEND

Signalized Intersection

Stop Controlled Approach


Roadway Speed Limit

C Continuous Lane

—100' Turn Lane Length (feet)

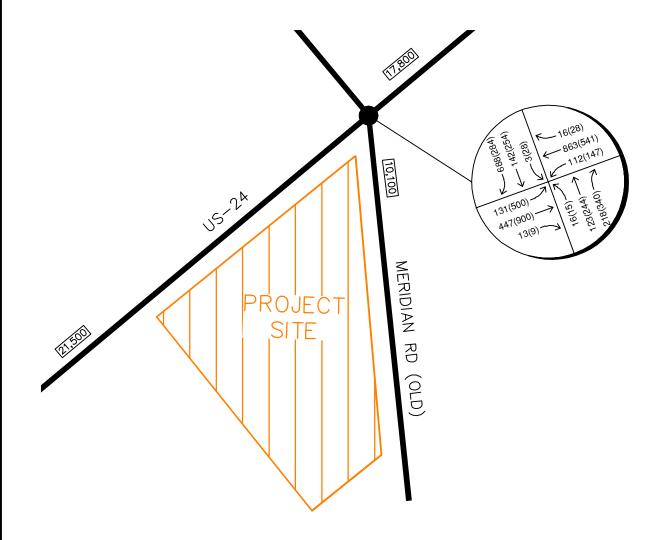
CIRCLE K - US-24 & MERIDIAN EL PASO COUNTY, COLORADO 2021 EXISTING TRAFFIC VOLUMES

LEGEND

Study Area Key Intersection

XXX(XXX)

Weekday AM(PM)


Peak Hour Traffic Volumes

XX,X00

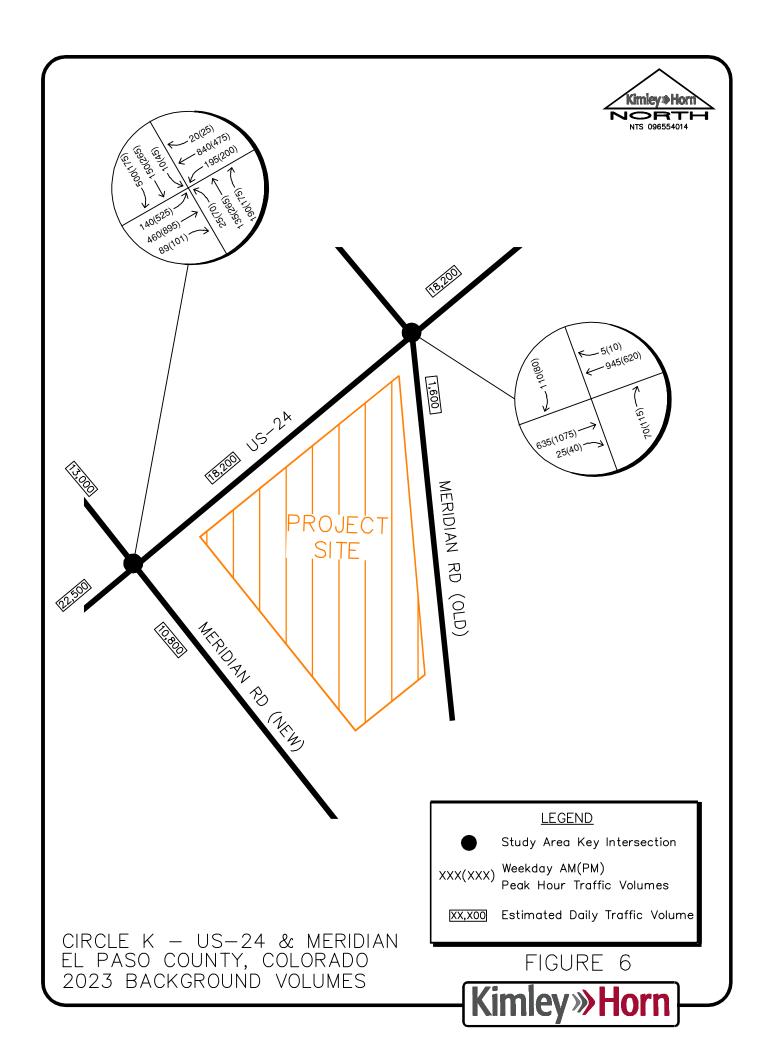
Estimated Daily Traffic Volume

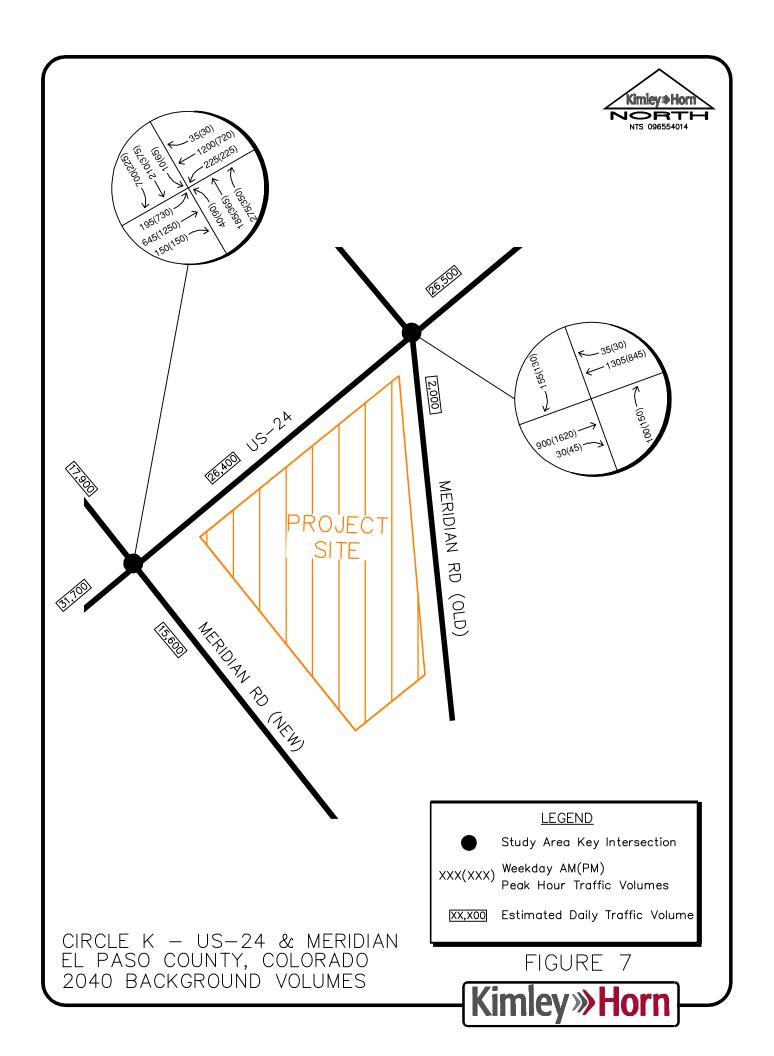
LEGEND

Study Area Key Intersection

XXX(XXX)

Weekday AM(PM)


Peak Hour Traffic Volumes


XX,X00 Estimated Daily Traffic Volume

CIRCLE K - US-24 & MERIDIAN EL PASO COUNTY, COLORADO EXISTING ADJUSTED TRAFFIC VOLUMES

In addition, traffic volumes associated with the Meridian Road/Falcon Park and Ride were included in the short-term and long-term horizon. The volumes included in the Traffic Operations/Access Assessment: Meridian Road/Falcon Park and Ride prepared by HDR Engineering, Inc in June 2019 is included in **Appendix B.** The calculated background traffic volumes for 2023 and 2040 are shown in **Figure 6** and **Figure 7**, respectively.

4.0 PROJECT TRAFFIC CHARACTERISTICS

4.1 Trip Generation

Site-generated traffic estimates are determined through a process known as trip generation. Rates and equations are applied to the proposed land uses to estimate traffic generated by the development during a specific time interval. The acknowledged source for trip generation rates is the *Trip Generation Report*¹ published by the Institute of Transportation Engineers (ITE). ITE has established trip rates in nationwide studies of similar land uses. For this study, Kimley-Horn used the ITE Trip Generation Report average rate equations that apply to Shopping Center (ITE Code 820), Fast Casual Restaurant (ITE 930), Fast-Food Restaurant with Drive-Thru (ITE 934), and Super Convenience Market/Gas Station (ITE 960) for traffic associated with the development.

Since the full buildout of the Circle K Redevelopment is proposed to contain a mix of uses, internal capture trips are expected to occur on site as well. These internal capture trips are shared trips from vehicles already within the internal street network. These shared trips reduce the number of total external trips and were calculated directly per the ITE procedure.

Existing peak hour traffic volumes were collected at the site driveways of the existing gas station on site. Based on the data from these counts, it is determined that the existing site generates 110 morning peak hour trips (59 in and 51 out) and 146 afternoon peak hour trips (70 in and 76 out). To account for a COVID-19 adjustment, the existing gas station driveway volumes were increased by approximately 46 percent and would be expected to generate approximately 160 trips during the weekday morning peak hour and 213 trips during the afternoon peak hour during normal traffic conditions. Therefore, the redeveloped Circle K project would be expected to generate 272 morning peak hour trips and 214 afternoon peak hour trips. The entire project with the net increase of Circle K trips plus adjacent retail and restaurant space with ITE procedure internal capture trips calculated is expected to generate a net additional 405 morning peak hour trips and 309 trips afternoon peak hour trips than the existing adjusted site traffic volume level. Calculations were based on the procedure and information provided in the ITE *Trip Generation Manual*, 10th Edition – Volume 2: Data, 2017. **Table 1** summarizes the

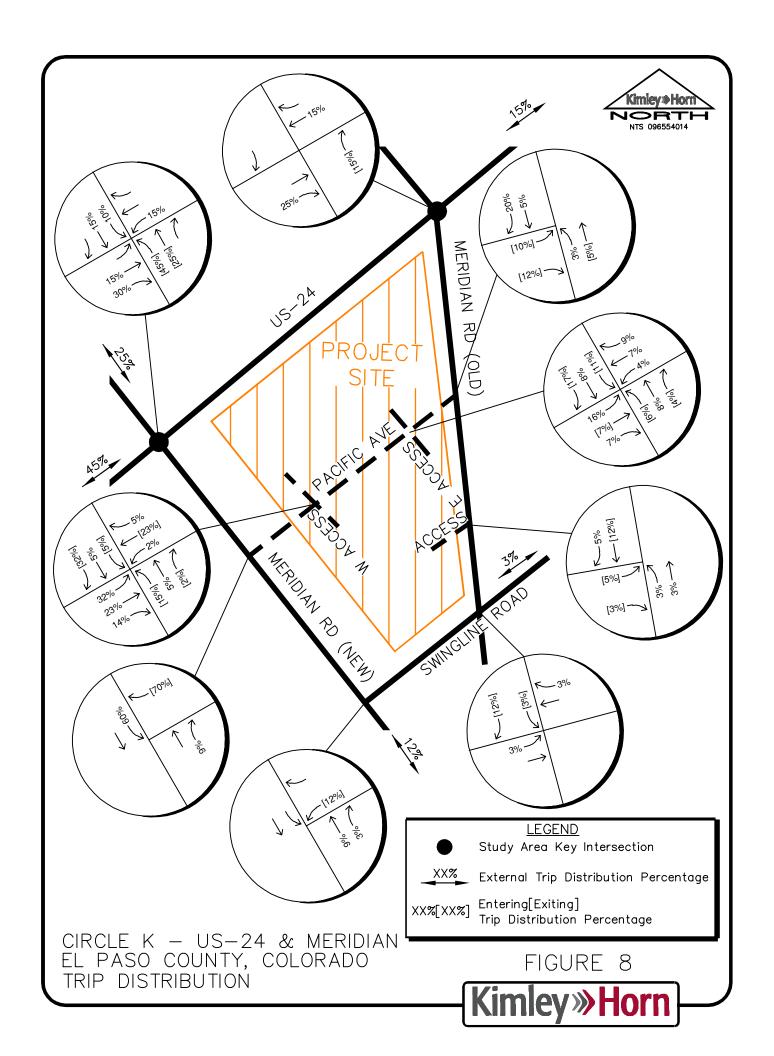
_

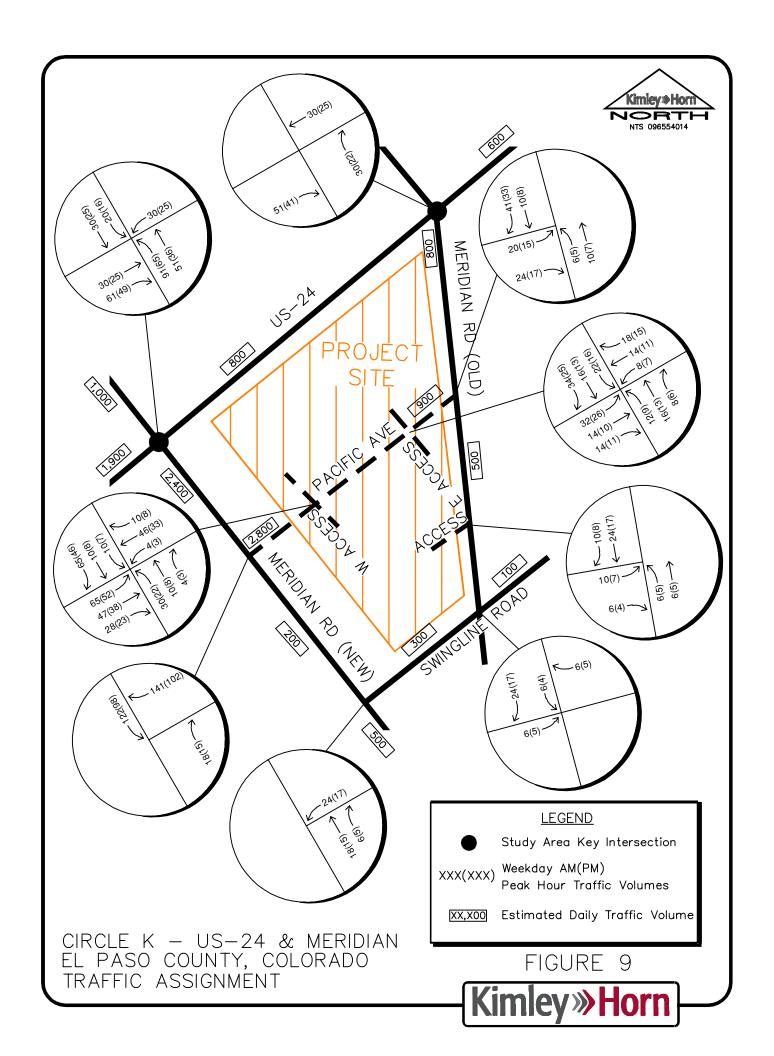
¹ Institute of Transportation Engineers, *Trip Generation: An Information Report*, Tenth Edition, Washington DC, 2017.

estimated trip generation for the proposed development. The trip generation worksheets are included in **Appendix C**.

Table 1 – Project Traffic Generation

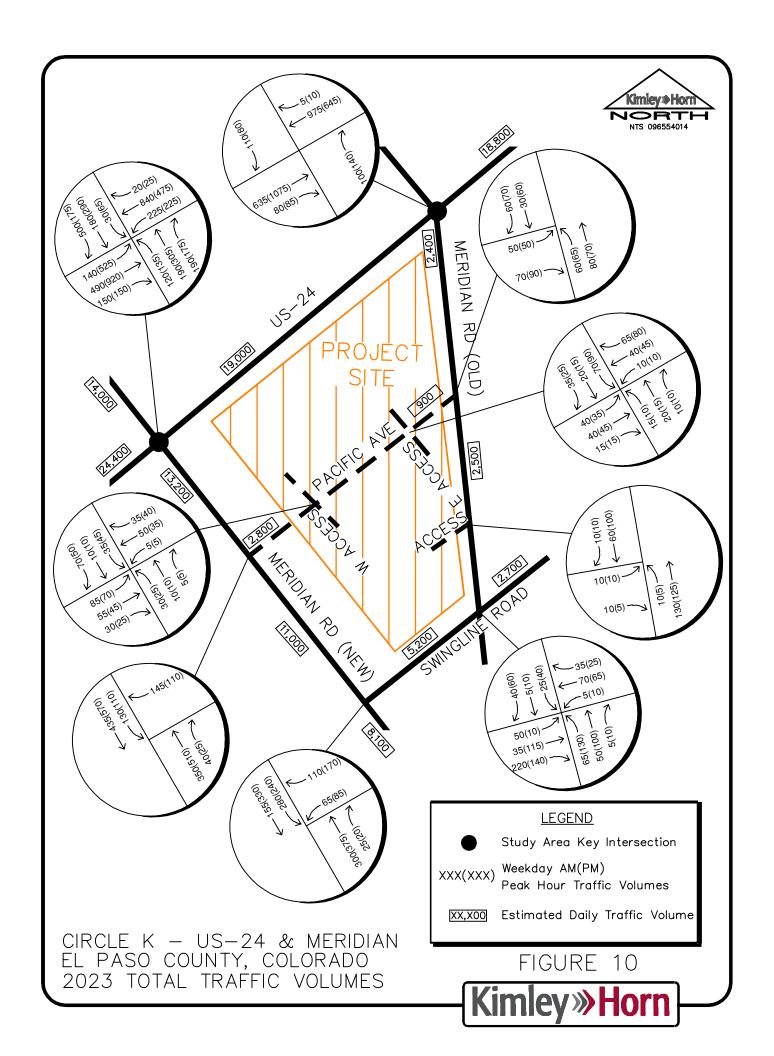
	Weekday Vehicle Trips						
	Doily	AM	AM Peak Hour		PM Peak Hou		our
Land Use and Quantity	Daily	In	Out	Total	In	Out	Total
Shopping Center – (ITE 820)							
23,000 Square Feet	870	14	8	22	42	46	88
Fast Casual Restaurant – (ITE 930)							
7,000 Square Feet	990	9	5	14	54	45	99
Fast-Food w/ Drive-Thru – (ITE 934)							
4,500 Square Feet	2,120	92	89	181	76	71	147
Redeveloped Circle K – (ITE 960)							
16 Fueling Positions	4,356	216	216	432	180	180	360
Total Project Trips w/ Internal Capture	6,720	289	276	565	266	256	522
Existing Gas Station Trips –							
Existing Counts: 8 Fueling Positions	*1,826	59	51	110	70	76	146
Existing Adjusted Gas Station Trips –							
8 Fueling Positions	*2,662	86	74	160	102	111	213
Net Site Generated Trips	4,058	203	202	405	164	145	309

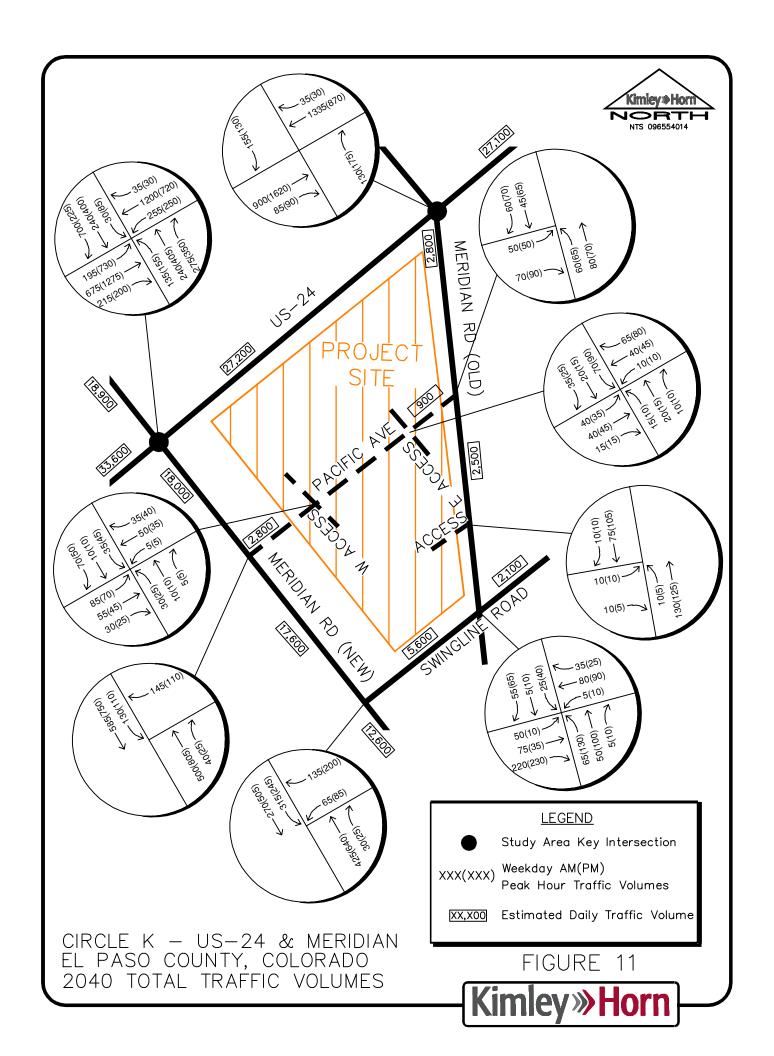

^{*}Assuming PM peak hour is 8% of the Daily


4.2 Trip Distribution

Distribution of site traffic on the street system was based on the area street system characteristics, existing traffic patterns, existing and anticipated surrounding demographic information, and the proposed access system for the project. The directional distribution of traffic is a means to quantify the percentage of site-generated traffic that approaches the site from a given direction and departs the site back to the original source. The project trip distribution is illustrated in **Figure 8**.

4.3 Traffic Assignment


Traffic assignment was obtained by applying the project trip distribution to the estimated traffic generation of the development shown in **Table 1**. Project traffic assignment for the Circle K project is shown in **Figure 9**.



4.4 Total (Background Plus Project) Traffic

Site traffic volumes were added to the background volumes to represent estimated traffic conditions for the short term 2023 horizon and long term 2040 horizon. These total traffic volumes for the site are illustrated for the 2023 and 2040 horizon years in **Figure 10** and **Figure 11**, respectively.

5.0 TRAFFIC OPERATIONS ANALYSIS

Kimley-Horn's analysis of traffic operations in the site vicinity was conducted to determine potential capacity deficiencies in the 2023 and 2040 development horizons at the identified key intersections and access driveway. The acknowledged source for determining overall capacity is the current edition of the *Highway Capacity Manual (HCM)*².

5.1 Analysis Methodology

Capacity analysis results are listed in terms of Level of Service (LOS). LOS is a qualitative term describing operating conditions a driver will experience while traveling on a particular street or highway during a specific time interval. It ranges from A (very little delay) to F (long delays and congestion). Typical standard traffic engineering practice recommends LOS D for overall intersections and LOS E for movements or approaches as the minimum thresholds for acceptable operations at intersections. **Table 2** shows the definition of level of service for signalized and unsignalized intersections.

Table 2 – Level of Service Definitions

Level of Service	Signalized Intersection Average Total Delay (sec/veh)	Unsignalized Intersection Average Total Delay (sec/veh)
А	≤ 10	≤ 10
В	> 10 and ≤ 20	> 10 and ≤ 15
С	> 20 and ≤ 35	> 15 and ≤ 25
D	> 35 and ≤ 55	> 25 and ≤ 35
E	> 55 and ≤ 80	> 35 and ≤ 50
F	> 80	> 50

Definitions provided from the Highway Capacity Manual, Special Report 209, Transportation Research Board, 2010.

Study area intersections were analyzed based on average total delay analysis for signalized and unsignalized intersections. Under the unsignalized analysis, the LOS for a two-way stop-controlled intersection is determined by the computed or measured control delay and is defined for each minor movement. LOS for a two-way stop-controlled intersection is not defined for the intersection as a whole. LOS for signalized, roundabout, and all-way stop controlled intersections are defined for each approach and for the overall intersection.

² Transportation Research Board, *Highway Capacity Manual*, Special Report 209, Washington DC, 2010.

5.2 Key Intersection Operational Analysis

Calculations for the level of service at the key intersection and project access driveways for the study area are provided in **Appendix D**. The existing year analysis is based on the lane geometry and intersection control shown in **Figure 3**. Synchro traffic analysis software was used to analyze the study area intersection and access driveway. The Synchro Highway Capacity Manual (HCM) methodology reports were used to analyze intersection delay and level of service.

US-24 and (Old) Meridian Road

The intersection of US-24 and (Old) Meridian Road currently operates as a signalized intersection with protected-permissive left turn phasing on the east-west approaches. This intersection currently operates with LOS C during the morning peak hour and LOS E during the afternoon peak hour. By 2023 and coinciding with the realignment of Meridian Road to the west, the intersection will convert to an unsignalized intersection with stop-control on the north and south approaches and be restricted to right-in/right-out movements on (Old) Meridian Road. With this configuration and control, the intersection movements are anticipated to operate at LOS A during the morning and afternoon peak hours throughout the 2040 horizon. Acceleration lanes will be provided along US-24 at (Old) Meridian Road; therefore, there will not be any movements at this intersection that report vehicular delays. By 2040, the El Paso County Major Transportation Corridors Plan (MTCP) and CDOT PEL both identify US-24 to be widened to six-lanes. It was determined based on the projected through volumes that the roadway would only need to be widened to a four-lane roadway (two through lanes in each direction) and was analyzed as such at the studied intersections along US-24. **Table 3** provides the results of the level of service at this intersection.

Table 3 – US-24 and (Old) Meridian Road LOS Results

	AM Peak	Hour	PM Peak Hour		
Scenario	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS	
2021 Existing (Adjusted)	33.3	С	65.4	Е	
2023 Background					
Northbound Right	0.0 *	Α	0.0 *	Α	
Southbound Right	0.0 *	Α	0.0 *	Α	
2023 Background Plus Project					
Northbound Right	0.0 *	Α	0.0 *	Α	
Southbound Right	0.0 *	Α	0.0 *	Α	
2040 Background					
Northbound Right	0.0 *	Α	0.0 *	Α	
Southbound Right	0.0 *	Α	0.0 *	Α	
2040 Background Plus Project #					
Northbound Right	0.0 *	Α	0.0 *	Α	
Southbound Right	0.0 *	Α	0.0 *	Α	

^{* =} Acceleration Lane with Free Movement; # = Includes Two Eastbound and Westbound Through Lanes

US-24 and (New) Meridian Road

The intersection of US-24 and (New) Meridian Road is currently under construction and is anticipated to be complete by the short-term horizon buildout year. The northbound and southbound Meridian Road approaches are anticipated to provide a left turn lane, two through lanes, and a channelized free right turn lane. The eastbound and westbound US-24 approaches are anticipated to provide a left turn lane, a through lane, and a right turn lane. Therefore, under the proposed configuration and control, the intersection is anticipated to operate at LOS C during the morning peak hour and LOS D during the afternoon peak hour with the addition of project traffic and re-routed traffic from the US-24 and (Old) Meridian Road intersection. By 2040, US-24 was identified as needing to provide two through lanes in each direction. In addition, if 2040 volumes are realized, eastbound dual left turn lanes are likely to be needed due to high volumes of left turns projected at this intersection in the future. With these improvements, this intersection is anticipated to operate acceptably during the peak hours in 2040. **Table 4** provides the results of the level of service at this intersection.

Table 4 – US-24 and (New) Meridian Road LOS Results

	AM Pea	ak Hour	PM Peak Hour		
Scenario	Delay (sec)	LOS	Delay (sec)	LOS	
2023 Background	31.9	С	41.8	D	
2023 Background Plus Project	31.9	С	41.3	D	
2040 Background	74.3	E	131.0	F	
2040 Background Plus Project #	32.6	С	42.4	D	

= Includes Two Eastbound and Westbound Through Lanes and Eastbound Dual Left Turn Lanes

5.3 Future Intersections

The future intersections of Pacific Avenue/(New) Meridian Road and Pacific Avenue/(Old Meridian Avenue will provide primary access for the project. The intersection of Pacific Avenue/(New) Meridian Road is proposed to allow three quarter turning movements with westbound left turns being prohibited. The intersection of Pacific Avenue/(Old) Meridian Road is proposed to allow full turning movements. Direct access to the project will be provided from two driveways located along proposed Pacific Avenue extending between (Old) Meridian Road and (New) Meridian Road.

The driveways along Pacific Avenue and (Old) Meridian Road, and the two future access intersections of Pacific Avenue/Meridian Road (New) and Pacific Avenue/Meridian Road (Old) are recommended to provide R1-1 "STOP" signs on the exiting approaches. It is anticipated that single shared movement lanes are sufficient for the exiting approaches of all these access intersections.

A raised "pork-chop" median may be required in the exiting throat of the three-quarter movement access intersection of Pacific Avenue and (New) Meridian Road to prevent left turns onto (New) Meridian Road. A R3-2 "No Left Turn" sign should be installed under the STOP sign of this future intersection.

The future intersection of Swingline Road and (New) Meridian Road is currently being constructed and will open with the completion of (New) Meridian Road in the surrounding area. (New) Meridian Road will provide two through lanes in each direction and separate left and right turn lanes onto Swingline Road. The westbound approach of Swingline Road will operate under stop control and will provide separate left and right turn lanes.

In addition, Swingline Road and (Old) Meridian Road will become a single-lane roundabout. The south leg will provide access to the future Meridian Road/Falcon Park and Ride and terminate approximate 500 feet from the roundabout.

With the recommended lane configurations and control, all the movements at the project accesses and proposed new intersections to the south are anticipated to operate at LOS C or

better during the morning and afternoon peak hour throughout the 2040 horizon. **Table 5** provides the results of the level of service at these intersections.

Table 5 – Project Accesses and Future Intersections LOS Results

	2023 Total Traffic				2040 Total Traffic			
	AM Peak Hour PM Peak Hour		AM Peak Hour		PM Peak Hour			
	Delay		Delay		Delay	Delay		
	(sec/	LOS	(sec/	LOS	(sec/	LOS	Delay (sec/	LOS
Scenario	veh)		veh)		veh)		veh)	
Pacific Avenue &			,		,		,	
(New) Meridian Rd (3/4 Mvmts)								
Westbound Right	10.4	В	11.0	В	11.3	В	13.0	В
Southbound Left	8.6	Α	9.1	Α	9.3	Α	10.7	В
Swingline Road &								
(New) Meridian Road								
Westbound Left	19.8	С	21.3	С	26.3	D	30.1	D
Westbound Right	9.9	Α	10.8	В	10.8	В	13.3	В
Southbound Left	9.0	Α	9.2	Α	10.0	Α	10.9	В
Swingline Road &								
(Old) Meridian Road	4.5	Α	4.8	Α	4.7	Α	4.8	Α
`Eastbound Approach	5.0	Α	4.4	Α	5.3	Α	4.9	Α
Westbound Approach	4.1	Α	5.3	Α	4.2	Α	4.7	Α
Northbound Approach	3.9	Α	4.3	Α	4.1	Α	4.8	Α
Southbound Approach	3.7	Α	4.9	Α	3.8	Α	4.5	Α
Pacific Avenue &								
(Old) Meridian Road								
Northbound Left	7.5	Α	7.6	Α	7.6	Α	7.6	Α
Eastbound Approach	10.1	В	10.5	В	10.3	В	10.5	В
Pacific Avenue West Access								
Northbound Approach	12.5	В	11.4	В	12.5	В	11.4	В
Eastbound Left	7.6	Α	7.5	Α	7.6	Α	7.5	Α
Westbound Left	7.4	Α	7.4	Α	7.4	Α	7.4	Α
Southbound Approach	10.7	В	10.6	В	10.7	В	10.6	В
Pacific Avenue East Access								
Northbound Approach	10.8	В	10.5	В	10.8	В	10.5	В
Eastbound Left	7.5	Α	7.6	Α	7.5	Α	7.6	Α
Westbound Left	7.3	Α	7.4	Α	7.3	Α	7.4	Α
Southbound Approach	11.2	В	11.5	В	11.2	В	11.5	В
(Old) Meridian Road Access								
Northbound Left	7.4	Α	7.5	Α	7.4	Α	7.5	Α
Eastbound Approach	9.3	Α	9.7	Α	9.4	Α	9.7	Α

5.4 El Paso County and CDOT Turn Lane Requirement Analysis

El Paso County

The El Paso County ECM was used to determine if left and right turn lanes are warranted along (New) Meridian Road, (Old) Meridian Road, and Pacific Avenue. El Paso County classifies (New) Meridian Road as a minor arterial roadway. According to El Paso County ECM guidelines for Minor Arterials, a left turn lane is required for any access with a project peak hour left turning volume of 25 vehicle per hour or greater whereas a right turn lane is required for any access with a projected peak hour right turning volume of 50 vehicles per hour or greater. (Old). Of note, right turn deceleration lanes may be dropped if the approach volumes is below 150 directional hourly vehicles and left turn deceleration lanes may be dropped if the opposing volumes is predicted to be less than 100 directional hourly vehicles based on the CDOT State Highway Access Code, which is adopted by many jurisdictions for supplementary turn lane guidelines.

Based on 2040 traffic volume projections, a northbound right turn lane <u>is not</u> warranted for the future Pacific Avenue and (New) Meridian Road based on projected 2040 total traffic volumes being 40 northbound right turns during the peak hour and the threshold being 50 vehicles per hour. A southbound left turn lane <u>is warranted</u> for the future Pacific Avenue and (New) Meridian Road based on projected 2040 total traffic volumes being 130 southbound left turns during the peak hour and the threshold being 25 vehicles per hour. In addition, neither right nor left turn lanes are warranted at the project accesses along Pacific Avenue or along (Old) Meridian Road based on turn volumes not meeting the threshold or the opposing/advancing volumes being low.

CDOT

Since US-24 is a state owned and maintained facility, it is recommended that auxiliary turn lanes along US-24 be constructed in accordance with the current CDOT State Highway Access Code (SHAC). CDOT categorizes the segment of US-24 through the study area as E-X: Expressway. According to the State Highway Access Code for category E-X roadways, the following thresholds apply:

 A left turn deceleration lane is required for any access with a projected average daily left turn ingress volume greater than 10 with the transition taper included within the required deceleration length. If the projected peak hour left ingress turning volume is greater than

- 10 vehicles per hour (vph), a left turn deceleration, storage, and taper lane is required for any access.
- A right turn deceleration lane and taper is required for any access with a projected peak hour right ingress turning volume greater than 10 vph.
- A right turn acceleration lane and taper is required for any access with a project peak hour right turning volume greater than 10 vph.

Based on traffic projections and the above thresholds, auxiliary turn lanes requirements along US-24 with a posted speed limit of 55 miles per hour are as follows:

US-24 and (Old) Meridian Road

- An eastbound right turn deceleration lane exists and <u>is</u> warranted based on the projected 2023 background plus project traffic being 85 eastbound right turns during the peak hour and the threshold being 10 vph. The existing right turn lane length is continuous from the eastbound acceleration lane at the (New) Meridian Road and US-24 intersection. The right turn deceleration lane length per SHAC requirements is 600 feet with a 225-foot taper (18.5:1 ratio). Therefore, the 600-foot deceleration lane is not accommodated in the existing combination acceleration to deceleration lane along US-24 from (New) Meridian Road to (Old) Meridian Road.
- A westbound right turn deceleration lane exists and <u>is</u> warranted based on the projected 2023 background plus project traffic being 10 westbound right turns during the peak hour and the threshold being 10 vph. The existing right turn lane length is intended to be continuous from the acceleration lane at the driveway to the east.
- An acceleration lane for the northbound right to eastbound through exists and <u>is</u> warranted based on the projected 2023 background plus project traffic being 140 northbound right turns during the peak hour and the threshold being 10 vph. The existing acceleration lane length is 500 feet long with a 225-foot taper. The acceleration lane length per SHAC requirements is 960 feet with a 225-foot taper (18.5:1 ratio). A design waiver was likely granted previously by CDOT for the existing substandard acceleration lane length due to the bridge located east of this intersection. It is believed that the existing northbound to eastbound acceleration lane along US-24 should remain at the current length and no mitigation is recommended.

• An acceleration lane for the southbound right to westbound through exists and <u>is</u> warranted based on the projected 2023 background plus project traffic being 110 southbound right turns during the peak hour and the threshold being 10 vph. The acceleration lane length per SHAC requirements is 960 feet with a 225-taper (18.5:1 ratio). It is anticipated that with completion of the (New) Meridian Road intersection to the west, a combination acceleration to deceleration lane will extend westbound along US-24 from (Old) Meridian Road to (New) Meridian Road.

US-24 and (New) Meridian Road

The intersection of US-24 and (New) Meridian Road is currently under construction and some turn lanes cannot be determined from the aerials. Therefore, only recommendations based on CDOT standards have been provided for the future auxiliary turn lanes.

- An eastbound right turn deceleration lane <u>is</u> warranted based on the projected 2023 background plus project traffic being 215 eastbound right turns during the peak hour and the threshold being 10 vph. The right turn deceleration lane length per SHAC requirements is 600 feet with a 225-foot taper (18.5:1 ratio). The right turn lane is constructed as a continuous lane. By 2040, when two through lanes are recommended, then the right turn lane is recommended to be constructed to SHAC requirements.
- A westbound right turn deceleration lane <u>is</u> warranted based on the projected 2023 background plus project traffic being 25 westbound right turns during the peak hour and the threshold being 10 vph. The eastbound right turn lane is anticipated to be continuous from the southbound right acceleration lane at the intersection of US-24 and (Old) Meridian Road.
- An eastbound left turn deceleration <u>is</u> warranted based on the projected 2023 background plus project traffic being 525 eastbound left turns during the peak hour and the threshold being 10 vph. The left turn deceleration lane per SHAC requirements is 525 feet of storage plus 600 feet of deceleration length plus a 225-foot taper (18.5:1 ratio). Therefore, the left turn deceleration lane should provide 1,125 feet of length plus a 225-foot taper. If 2040 volumes are realized, eastbound dual left turn lanes will likely be needed at this intersection should provide 965 feet of length per lane plus a 225-foot taper.
- A westbound left turn deceleration <u>is</u> warranted based on the projected 2023 background plus project traffic being 255 westbound left turns during the peak hour and

the threshold being 10 vph. The left turn deceleration lane per SHAC requirements is 255 feet of storage plus 600 feet of deceleration length plus a 225-foot taper (18.5:1 ratio). Therefore, the left turn deceleration lane should provide 855 feet of length plus a 225-foot taper. By 2040, the turn lane may need to be extended to 935 feet of length.

- An acceleration lane for the northbound right to eastbound through <u>is</u> warranted based on the projected 2023 background plus project traffic being 250 northbound right turns during the peak hour and the threshold being 10 vph. The acceleration lane length per SHAC requirements is 960 feet with a 225-foot taper (18.5:1 ratio). However, it is anticipated that a combination acceleration to deceleration lane will extend eastbound along US-24 from (New) Meridian Road to (Old) Meridian Road.
- An acceleration lane for the southbound right to westbound through <u>is</u> warranted based on the projected 2023 background plus project traffic being 500 southbound right turns during the peak hour and the threshold being 10 vph. An acceleration lane has been recently constructed to provide 900 feet in length.

5.5 Queuing Analysis

A queuing analysis was conducted for turn lanes at the study intersections. The queuing analysis was performed using the Synchro analysis software presenting the results of the 95th percentile queue length. Results are shown in the following **Table 6** with calculations provided in **Appendix D** for the unsignalized intersections and **Appendix E** for the signalized intersections.

Table 6 - Turn Lane Length Analysis Results

Intersection Turn Lane	Existing Turn Lane Length (feet)	2023 Total Queue Length (feet)	2023 Recommended Turn Lane Length (feet)	2040 Total Queue Length (feet)	2040 Recommended Turn Lane Length (feet)
US-24 & (New) Meridian	(leet)	(leet)	Length (leet)	(ieet)	Lengin (leei)
Eastbound Left	DNE	572'	1125'+225'T	481' DL	965'+225'T DL
Eastbound Right	DNE	38'	C	48' 48'	600'+225'T DL
Westbound Left	DNE	305'	855'+225'T	309'	935'+225'T
Westbound Right	DNE	0'	C	0'	C C
Northbound Left	400'	147'	150'	149'	150'
Northbound Right	DNE	0'	155'+160'T	0'	155'+160'T
Southbound Left	150'	79'	150'	87'	150'
Southbound Right	300'	0'	300'	0'	300'
Pacific Ave & (New) Meridian Rd	000		000		000
Westbound Approach	DNE	25'	С	25'	С
Southbound Left	DNE	25'	100'	25'	100'
Swingline Rd & (New) Meridian					
Westbound Left	DNE	50'	100'	50'	100'
Westbound Right	DNE	25'	C	50'	C
Southbound Left	125'	25'	125'	50'	125'
Swingline Rd & (Old) Meridian					
Eastbound Approach	DNE	25'	С	25'	С
Westbound Approach	DNE	25'	С	25'	С
Northbound Approach	DNE	25'	C	25'	C C
Southbound Approach	DNE	25'	С	25'	С
Pacific Ave & (Old) Meridian Rd					
Northbound Left	DNE	25'	C	25'	С
Eastbound Approach	DNE	25'	C	25'	С
Pacific Avenue West Access					
Northbound Approach	DNE	25'	C	25'	С
Eastbound Left	DNE	25'	C	25'	С
Westbound Left	DNE	25'	C	25'	CC
Southbound Approach	DNE	25'	С	25'	С
Pacific Avenue East Access					_
Northbound Approach	DNE	25'	C	25'	C
Eastbound Left	DNE	25'	C	25'	C
Westbound Left	DNE	25'	C	25'	C
Southbound Approach	DNE	25'	С	25'	С
(Old) Meridian Road Access					
Northbound Left	DNE	25'	C	25'	C
Eastbound Approach	DNE	25'	C — Continuous	25'	С

DNE = Does Not Exist; T = Taper; DL = Dual Left Turn Lanes; C = Continuous Lane

Results of the queuing analysis indicate that vehicle queues are expected to remain within the provided turn lanes of the studied intersections. In addition, the turn lanes for the eastbound left, eastbound right, westbound left, and westbound right at the intersection of US-24 and (New) Meridian Road have been designed per SHAC requirements.

There is approximately 340 feet of spacing along (New) Meridian Road between US-24 and the proposed Pacific Avenue (measured edge to edge). With the future intersection of Pacific Avenue and (New) Meridian Road being proposed to allow three-quarter turning movements, it is recommended that the northbound left turn lane at the US-24 and (New) Meridian Road intersection be restriped from 400 feet to 150 feet of length to accommodate back-to-back left turn lanes with the future intersection of Pacific Avenue and (New) Meridian Road. Further, the southbound left turn lane at the future Pacific Avenue and (New) Meridian Road intersection should provide 100 feet of length with a reduced shared taper length of 75 feet. A deviation request will need to be provided to allow these substandard left turn lane lengths; however, calculated vehicles are expected to be accommodated within the proposed turn lane lengths.

It is recommended that the existing 400-foot northbound right turn lane at the US-24 and (New) Meridian Road intersection be shortened to 155 feet of length plus a 160-foot taper to accommodate the future intersection of Pacific Avenue and (New) Meridian Road. This new length meets El Paso County standards for a design speed of 40 miles per hour and vehicle queues will be accommodated in this lane as the northbound to eastbound right turn acceleration lane will provide free movements at this intersection.

5.6 Access Spacing and Sight Distance Evaluation

Access Spacing Evaluation

The future Pacific Avenue access along (New) Meridian Road will be located approximately 390 feet south of US-24 (measured centerline to centerline) while the access along (Old) Meridian Road will be located approximately 410 feet south of US-24. According to El Paso County 2016 Major Transportation Corridors Plan Update, Meridian Road to the south of US-24 is classified as a Minor Arterial while (Old) Meridian Road is classified as a collector roadway (although meet the volume threshold for a local roadway) once the (New) Meridian Road realignment is complete. In addition, the proposed Pacific Avenue is classified as a local roadway.

According to the El Paso Engineering Criteria Manual (ECM), spacing of roads accessing an urban minor arterial that will result in a full movement intersection shall be planned at one-quarter mile. It is believed that the new public roadway of Pacific Avenue along (New) Meridian Road should be granted to allow for access to the development area. This Pacific Avenue intersection along (New) Meridian Road is proposed with three-quarter movements with the

exiting left turn movements being restricted. The back-to-back left turn configuration with this proposed access along (New) Meridian Road and the intersection of US-24 and Meridian Road (New) has been discussed in detail above in Section 5.5. According to the El Paso ECM, spacing of intersections along urban arterial roadways a quarter mile whereas intersection spacing along urban collector roadways is 660 feet with 330 feet being acceptable when intersecting local roadways. The spacing of intersections along urban local roadway is 175 feet.

(New) Meridian Road & Pacific Avenue

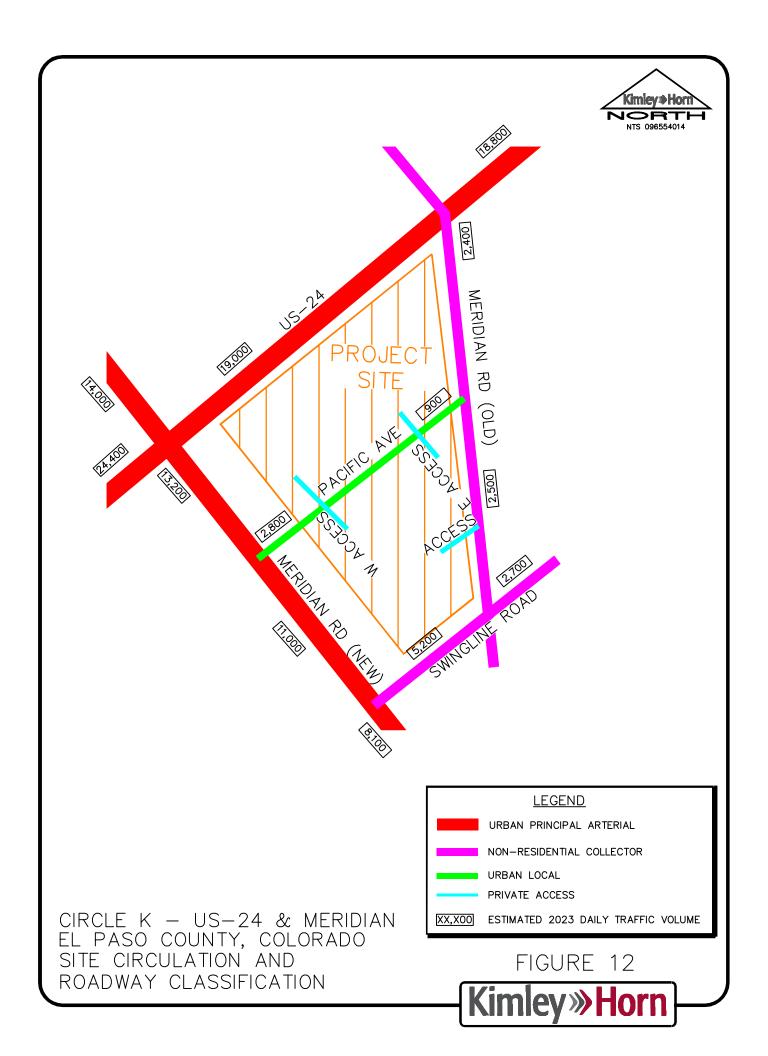
The intersection access will be approximately 390 feet south of the (New) Meridian Road and US-24 intersection (measured center to center). The intersection spacing is not located a quarter mile (1,320 feet) from an arterial roadway. Therefore, the proposed intersection does not meet ECM standards. The intersection is expected to meet operational, vehicle queue, and sign distance standards; therefore, it is believed that this intersection should be granted to restrict left-out movements. A deviation will be provided in support of allowing a restricted three-quarter intersection.

Pacific Avenue Accesses

Pacific Avenue is expected to be classified as a local street with lower volumes and no intentions of having cut-through traffic. Therefore, Pacific Avenue can follow driveway spacing of a local roadway of 330 feet from an arterial roadway and 150 feet between local intersections. The west access will be approximately 215 feet (measured center to center) east of (New) Meridian Road. The intersection is expected to meet operational and vehicle queue standards; therefore, a deviation will be provided in support of allowing this access. The west access and the east access along Pacific Avenue are offset approximately 515 feet. Therefore, the accesses meet the 150 feet spacing standards. The east access will be approximately 125 feet (measured center to center) west of (Old) Meridian Road. The intersection is expected to meet operational and vehicle queue standards; therefore, a deviation will be provided in support of allowing this access to be spaced less than 175 feet.

(Old) Meridian Road & Pacific Avenue

The proposed intersection access will be approximately 500 feet (measured center to center) south of (Old) Meridian Road and US-24 intersection. The access spacing requirement of a


collector roadway to a local roadway intersection is 330 feet. Therefore, it is believed this access meets the access spacing criteria in the ECM.

The future segment of US-24 near the project site meets EI Paso County average daily traffic (ADT) threshold of 40,000 vehicles per day (vpd) for a principal arterial. US-24 is expected to have 24,400 to 18,800 vpd. (New) Meridian Road also meets the ADT for an urban principal arterial with an expected 8,100 to 14,000 vpd. Pacific Road is expected to have approximately 900 to 2,800 vpd which meets the volumes thresholds for an urban local roadway. Swingline Road aligns with the EI Paso County roadway threshold of 20,000 vpd for a non-residential urban collector roadway. Swingline Road is expected to have 2,700 to 5,200 vpd. (Old) Meridian Road is classified as a non-residential collector but with an ADT below 3,000 vpd, the roadway aligns meet the volume characteristics of a local urban roadway. **Figure 12** illustrates the circulation plan and street classification map for roadways internal and external to the project.

Sight Distance Evaluation

With AASHTO standards for a roadway design speed of 40 miles per hour along (New) Meridian Road, the intersection sight distance for a vehicle turning right from stop is 390 feet, while the sight distance for a vehicle turning right from stop is 385 feet. Therefore, all obstructions for right turning vehicles from stop should be clear to the left within the triangle created with a vertex point located 14.5 feet from the edge of the major road and a line-of-sight distance of 385 feet located in the middle of the nearest northbound through lane along (New) Meridian Road.

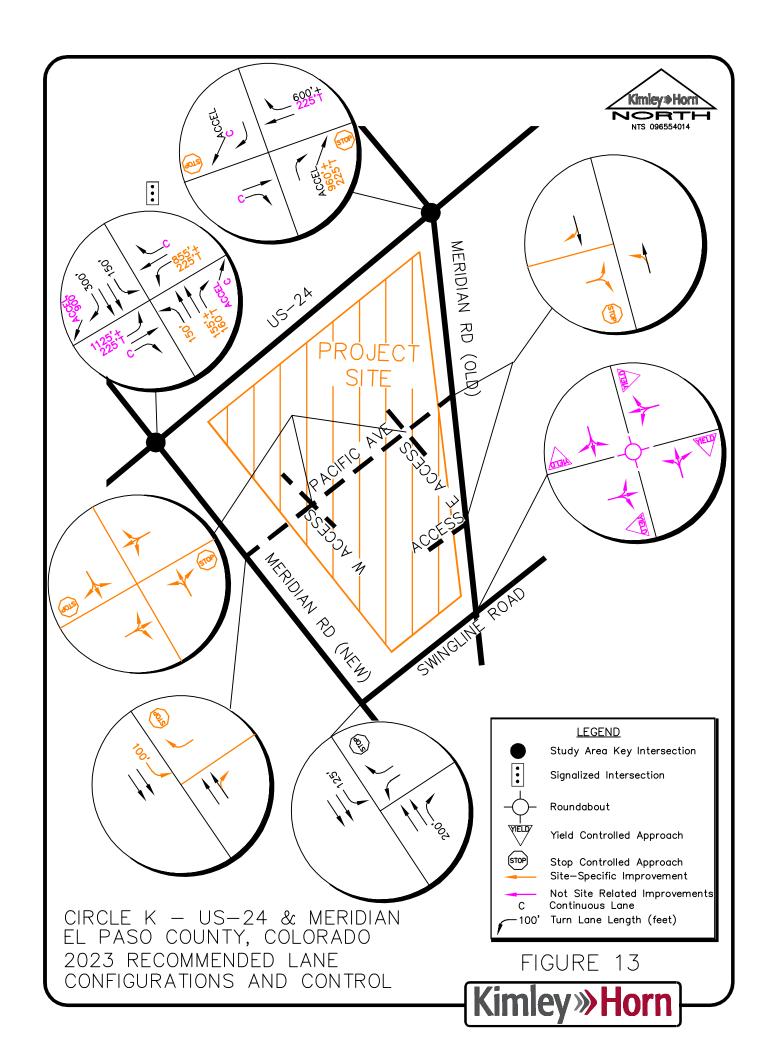
Likewise, with AASHTO standards and a future collector roadway design speed of 35 miles per hour along (Old) Meridian Road, the intersection sight distance for a vehicle turning left from stop is 390 feet, while the sight distance for a vehicle turning right from stop is 335 feet. Therefore, all obstructions for left turning vehicles from stop should be clear to the right within the triangle created with a vertex point located 14.5 feet from the edge of the major road traveled way (typical position of the minor road driver's eye when stopped) and a line-of-sight distance of 390 feet located in the middle of the northbound through lane along (Old) Meridian Road. Likewise, all obstructions for right turning vehicles from stop should be clear to the left within the triangle created with a vertex point located 14.5 feet from the edge of the major road traveled way and a line-of-sight distance of 335 feet located in the middle of the southbound through lane along (Old) Meridian Road.

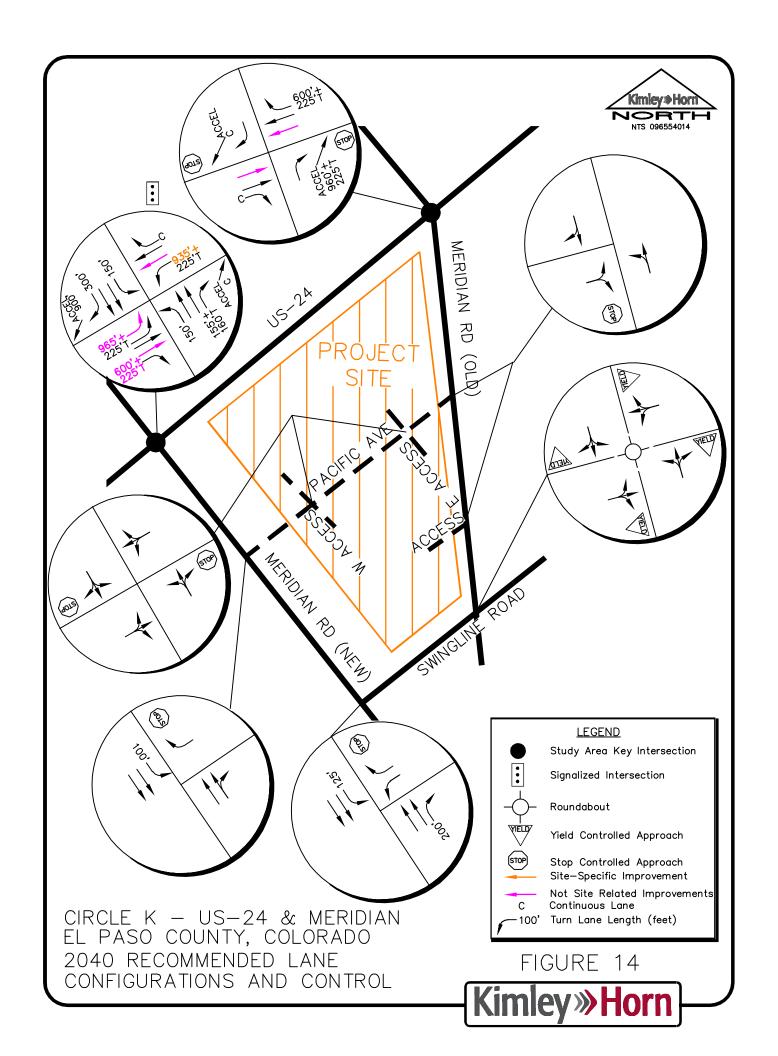
It is believed that both accesses are appropriately located to provide the necessary sight distance needed. It is recommended that appropriate sight distance triangles be provided at all site access points to give drivers exiting the development areas a clear view of oncoming traffic. Landscaping and objects within sight triangles must not obstruct drivers' views of the adjacent travel lanes.

5.7 Bicycle and Pedestrian Access

Bicycle lanes and sidewalks are provided along both sides of the recently constructed (New) Meridian Road. Sidewalks are provided on both side of Swingline Road. Adjacent to the site, there are no bicycle lanes or sidewalks along US-24 and (Old) Meridian Road.

5.8 Road Impact Fees


Road impact fees were evaluated based on the EI Paso County Road Impact Fee Schedule. Based on these fee schedule guidelines, the fee per general commercial use is \$4,958 per 1,000 square feet and convenience commercial (restaurants and convenience market) is \$8,800 per 1,000 square feet. Therefore, the road impact fee for the proposed Circle K redevelopment is expected to be \$273,314. During the final plat process, the project team will determine if the impact fees are paid up front or if the property will be included in one of the available public improvement districts with reduced upfront costs. The project team will determine payment methods with the final plat. Of note, the applicant petitions to credit the (Old) Meridian Road improvements as an eligible improvement towards the road impact fee.


Table 7 – Road Impact Fees

Use	KSF	Fee / Unit	Total Fee
General Commercial	23	\$4,958	\$114,034
Restaurants & Gas Station	18.1	\$8,800	\$159,280

5.9 Improvement Summary

Based on the results of the intersection operational and queuing analysis, the recommended lane configurations and control at the study key intersection and project access in 2023 and 2040 are shown in **Figure 13** and **Figure 14**, respectively.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the analysis presented in this report, Kimley-Horn believes the redeveloped Circle K project with the adjacent retail and restaurant space will be successfully incorporated into the existing and future roadway network. The proposed project development and expected traffic volumes resulted in the following recommendations and conclusions:

2023 Recommendations:

- The following improvements are recommended in association with the project:
 - Pacific Avenue will be constructed as a public right-of-way within the development area with a Urban Non-Residential Collector classification between New Meridian Road and Old Meridian Road. The future intersections of Pacific Avenue/(New) Meridian Road and Pacific Avenue/(Old Meridian Avenue will provide primary access for the project. The intersection of Pacific Avenue/(New) Meridian Road is proposed to allow three quarter turning movements with westbound left turns being prohibited. The intersection of Pacific Avenue/(Old) Meridian Road is proposed to allow full turning movements. Direct access to the project will be provided from two driveways located along the proposed Pacific Avenue roadway extending between (Old) Meridian Road and (New) Meridian Road.
 - The driveway accesses along Pacific Avenue and (Old) Meridian Road, and the two future access intersections of Pacific Avenue/Meridian Road (New) and Pacific Avenue/Meridian Road (Old) are recommended to provide R1-1 "STOP" signs on the exiting approaches. It is anticipated that single shared movement lanes are sufficient for the exiting approaches of all these access intersections. A raised "pork-chop" median may be required in the exiting throat of the three-quarter movement access intersection of Pacific Avenue and (New) Meridian Road to prevent left turns onto (New) Meridian Road. A R3-2 "No Left Turn" sign should be installed under the STOP sign of this future intersection. A northbound right turn lane should be provided at the proposed Pacific Avenue and (New) Meridian Road intersection.
 - There is approximately 340 feet of spacing along (New) Meridian Road between US 24 and the proposed Pacific Avenue (measured edge to edge). With the future

intersection of Pacific Avenue and (New) Meridian Road being proposed to allow three-quarter turning movements, it is recommended that the northbound left turn lane at the US-24 and (New) Meridian Road intersection be restriped from 400 feet to 150 feet of length to accommodate back-to-back left turn lanes with the future intersection of Pacific Avenue and (New) Meridian Road. Further, the southbound left turn lane at the future Pacific Avenue and (New) Meridian Road intersection should provide 100 feet of length with a reduced shared taper length of 75 feet. A deviation request will need to be provided to allow these substandard left turn lane lengths; however, calculated vehicle queues are expected to be accommodated within the proposed left turn lane lengths.

- o It is recommended that the existing 400-foot northbound right turn lane at the US-24 and (New) Meridian Road intersection be shortened to 155 feet of length plus a 160-foot taper to accommodate the future intersection of Pacific Avenue and (New) Meridian Road. This new length meets El Paso County standards for a design speed of 40 miles per hour and vehicle queues will be accommodated in this lane as the northbound to eastbound right turn acceleration lane will provide free movements at this intersection.
- O It is understood that El Paso County may require a 10-foot additional right-of-way dedication along Old Meridian Road to bring the roadway up to the Urban Non-Residential Collector standard from US-24 to Swingline Road adjacent to the project development. A request of the Advisory Committee will be provided to obtain possible credits from the Road Impact Fee associated with this improvement.
- The following improvements along US-24 were completed by CDOT in association with the ongoing realignment of Meridian Road:
 - CDOT will convert the signalized intersection of US-24 and (Old) Meridian Road to an unsignalized intersection. Further, this intersection will be restricted to rightin/right-out only movements with stop control along the northbound and southbound (Old) Meridian Road approaches.

- With completion of the new alignment of Meridian Road, it is anticipated that CDOT will construct a combination right turn acceleration to deceleration lane that will extend eastbound along US-24 from (New) Meridian Road to (Old) Meridian Road. Likewise, a combination right turn acceleration to deceleration lane will extend westbound along US-24 from (Old) Meridian Road to (New) Meridian Road.
- A 600-foot eastbound right turn deceleration lane with a 225-foot taper is recommended at the intersection of US-24 and (New) Meridian Road. A 1,125-foot left turn lane with a 225-foot taper is also recommended along the eastbound approach of this intersection. Likewise, a westbound left turn lane with a length of 855 feet is recommended at the US-24 and (New) Meridian Road intersection. Lastly, a southbound Meridian Road to westbound US-24 right turn acceleration is recommended with a length of 960 feet plus a 225-foot taper. All these improvements meet CDOT SHAC standards.

Required Access Deviations

- The intersection of Pacific Avenue will be approximately 390 feet south of the (New) Meridian Road and US-24 intersection (measured center to center). The intersection spacing is not located a quarter mile (1,320 feet) from an arterial roadway. Therefore, the proposed intersection does not meet ECM standards. The intersection is expected to meet operational, vehicle queue, and sign distance standards; therefore, it is believed that this intersection should be granted to restrict left-out movements. A deviation will be provided in support of allowing a restricted three-quarter intersection.
- o Pacific Avenue is expected to be classified as a local street with lower volumes and no intentions of having cut-through traffic. Therefore, Pacific Avenue can follow driveway spacing of a local roadway of 330 feet from an arterial roadway and 150 feet between local intersections. The west access will be approximately 215 feet (measured center to center) east of (New) Meridian Road. The intersection is expected to meet operational and vehicle queue standards; therefore, a deviation will be provided in support of allowing this access. The west access and the east access along Pacific Avenue are offset approximately 515 feet. Therefore, the accesses

meet the 150 feet spacing standards. The east access will be approximately 125 feet (measured center to center) west of (Old) Meridian Road. The intersection is expected to meet operational and vehicle queue standards; therefore, a deviation will be provided in support of allowing this access to be spaced less than 175 feet.

The proposed intersection access will be approximately 500 feet (measured center to center) south of (Old) Meridian Road and US-24 intersection. The access spacing requirement of a collector roadway to a local roadway intersection is 330 feet. Therefore, it is believed this access meets the access spacing criteria in the ECM.

2040 Recommendations:

- If future traffic volume projections materialize, US-24 will need to be improved to provide at least two through lanes in each direction throughout the study area.
- The westbound left turn lane at the US-24 and Meridian Road intersection may need to be extended from 855 feet to 935 feet of length.
- The eastbound approach of the US-24 and Meridian Road intersection may need to provide dual left turn lanes with 965 feet of length per lane.

General Recommendations:

 All on-site and off-site signing and striping improvements should be incorporated into the Civil Drawings and conform to El Paso County Standards as well as the Manual on Uniform Traffic Control Devices – 2009 Edition (MUTCD).

APPENDICES

APPENDIX A

Intersection Count Sheets

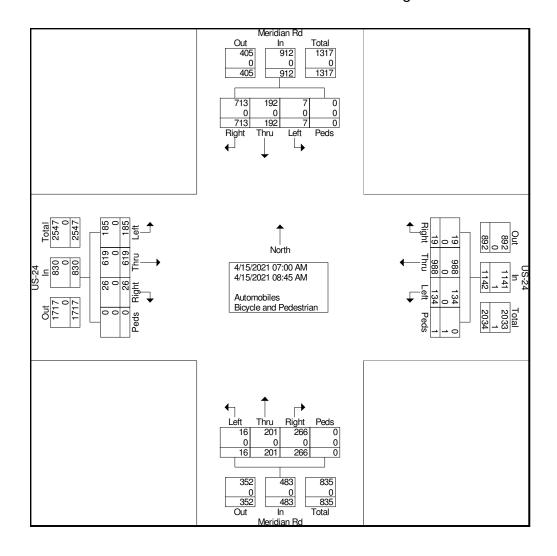
Falcon, CO Circle K - US24 & Meridian AM Peak US-24 & Meridian Rd File Name: US24 and Meridian AM

Site Code : IPO 538 Start Date : 4/15/2021

Page No : 1

Groups Printed- Automobiles - Bicycle and Pedestrian

			US-2	4			ючро	US-2		mobile	, 5.0		eridian	Rd			М	eridian	Rd		
		E	astbou	ınd			W	estbo	und			N	orthbo	und			Sc	outhbo	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	20	70	3	0	93	16	166	2	0	184	3	25	37	0	65	1	18	127	0	146	488
07:15 AM	26	85	0	0	111	11	164	3	0	178	2	15	42	0	59	0	25	114	0	139	487
07:30 AM	22	78	3	0	103	24	151	2	0	177	5	20	25	0	50	0	31	135	0	166	496
07:45 AM	22	73	3	0	98	26	110	4	0	140	1	24	45	0	70	1	23	95	0	119	427
Total	90	306	9	0	405	77	591	11	0	679	11	84	149	0	244	2	97	471	0	570	1898
•••	ا م		_			۱ ـ		_			١ .										l <u></u> .
08:00 AM	21	83	6	0	110	9	95	2	1	107	1	17	17	0	35	2	31	89	0	122	374
08:15 AM	24	64	4	0	92	16	98	1	0	115	0	26	43	0	69	0	28	50	0	78	354
08:30 AM	20	86	3	0	109	17	108	2	0	127	2	46	38	0	86	2	18	65	0	85	407
08:45 AM	30	80	4	0	114	15	96	3	0	114	2	28	19	0	49	1	18	38	0	57	334
Total	95	313	17	0	425	57	397	8	1	463	5	117	117	0	239	5	95	242	0	342	1469
														_							
Grand Total	185	619	26	0	830	134	988	19	1	1142	16	201	266	0	483	/	192	713	0	912	3367
Apprch %	22.3	74.6	3.1	0		11.7	86.5	1.7	0.1		3.3	41.6	55.1	0		0.8	21.1	78.2	0		
Total %	5.5	18.4	8.0	0	24.7	4	29.3	0.6	0	33.9	0.5	6	7.9	0	14.3	0.2	5.7	21.2	0	27.1	
Automobiles	185	619	26	0	830	134	988	19	0	1141	16	201	266	0	483	7	192	713	0	912	3366
% Automobiles	100	100	100	0	100	100	100	100	0	99.9	100	100	100	0	100	100	100	100	0	100	100
Bicycle and Pedestrian	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1
% Bicycle and Pedestrian	0	0	0	0	0	0	0	0	100	0.1	0	0	0	0	0	0	0	0	0	0	0

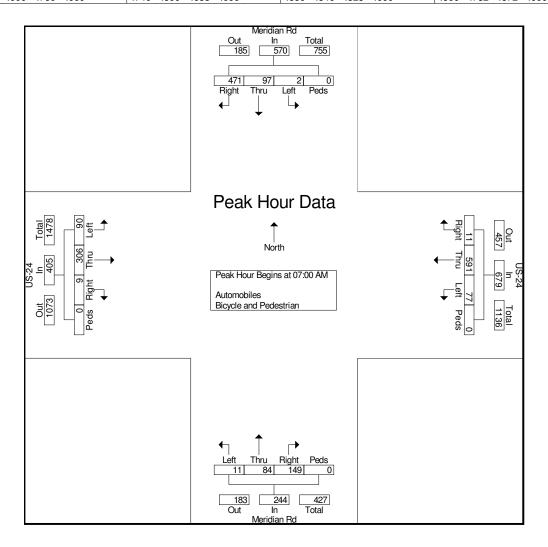


Falcon, CO Circle K - US24 & Meridian AM Peak

US-24 & Meridian Rd

File Name: US24 and Meridian AM

Site Code : IPO 538 Start Date : 4/15/2021



Falcon, CO Circle K - US24 & Meridian AM Peak US-24 & Meridian Rd File Name: US24 and Meridian AM

Site Code : IPO 538 Start Date : 4/15/2021

			US-2	4				US-2	4			М	eridiar	Rd			М	eridian	Rd		
		E	astbou	ınd			W	estbo	und			N	orthbo	und			Sc	outhbo	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	07:00	AM to	08:45 A	M - Pe	eak 1 o	f 1													
Peak Hour fo	r Entir	e Inters	section	n Begin	s at 07:	00 AM															
07:00 AM	20	70	3	0	93	16	166	2	0	184	3	25	37	0	65	1	18	127	0	146	488
07:15 AM	26	85	0	0	111	11	164	3	0	178	2	15	42	0	59	0	25	114	0	139	487
07:30 AM	22	78	3	0	103	24	151	2	0	177	5	20	25	0	50	0	31	135	0	166	496
07:45 AM	22	73	3	0	98	26	110	4	0	140	1	24	45	0	70	1	23	95	0	119	427
Total Volume	90	306	9	0	405	77	591	11	0	679	11	84	149	0	244	2	97	471	0	570	1898
% App. Total	22.2	75.6	2.2	0		11.3	87	1.6	0		4.5	34.4	61.1	0		0.4	17	82.6	0		
PHF	.865	.900	.750	.000	.912	.740	.890	.688	.000	.923	.550	.840	.828	.000	.871	.500	.782	.872	.000	.858	.957

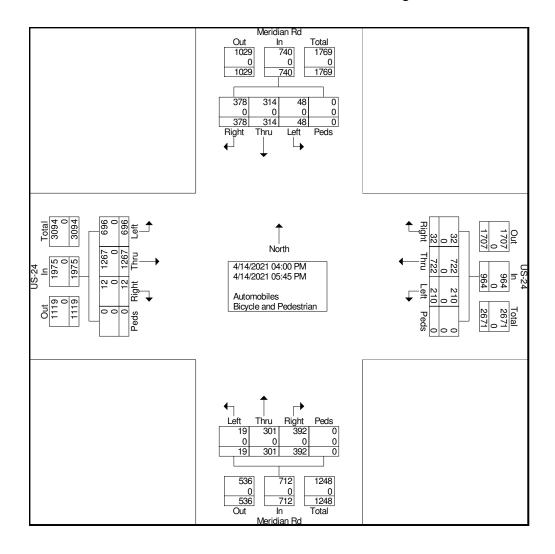
Falcon, CO Circle K - US24 & Meridian PM Peak US-24 & Meridian Rd File Name: US24 and Meridian PM

Site Code : IPO 538 Start Date : 4/14/2021

Page No : 1

Groups Printed- Automobiles - Bicycle and Pedestrian

			US-24	4			гоаро	US-24		, i i i i i i i i i i i i i i i i i i i	, 1010		eridian	Rd			М	eridian	Rd		
		E	astbou	ınd			W	estbo	und			N	orthbo	und			Sc	outhbo	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	78	161	1	0	240	20	107	4	0	131	1	49	56	0	106	5	38	63	0	106	583
04:15 PM	108	173	2	0	283	27	76	5	0	108	3	28	35	0	66	6	28	42	0	76	533
04:30 PM	74	159	1	0	234	18	101	4	0	123	0	47	53	0	100	6	38	56	0	100	557
04:45 PM	88	150	1	0	239	27	89	9	0	125	5	39	62	0	106	6	39	40	0	85	555
Total	348	643	5	0	996	92	373	22	0	487	9	163	206	0	378	23	143	201	0	367	2228
					·																
05:00 PM	87	149	3	0	239	32	90	2	0	124	3	41	62	0	106	3	53	41	0	97	566
05:15 PM	91	154	1	0	246	23	88	4	0	115	2	39	54	0	95	4	43	56	0	103	559
05:30 PM	95	156	0	0	251	36	77	2	0	115	3	31	37	0	71	11	38	38	0	87	524
05:45 PM	75	165	3	0	243	27	94	2	0	123	2	27	33	0	62	7	37	42	0	86	514
Total	348	624	7	0	979	118	349	10	0	477	10	138	186	0	334	25	171	177	0	373	2163
Grand Total	696	1267	12	0	1975	210	722	32	0	964	19	301	392	0	712	48	314	378	0	740	4391
Apprch %	35.2	64.2	0.6	0		21.8	74.9	3.3	0		2.7	42.3	55.1	0		6.5	42.4	51.1	0		
Total %	15.9	28.9	0.3	0	45	4.8	16.4	0.7	0	22	0.4	6.9	8.9	0	16.2	1.1	7.2	8.6	0	16.9	
Automobiles	696	1267	12	0	1975	210	722	32	0	964	19	301	392	0	712	48	314	378	0	740	4391
% Automobiles	100	100	100	0	100	100	100	100	0	100	100	100	100	0	100	100	100	100	0	100	100
Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bicycle and	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pedestrian																					

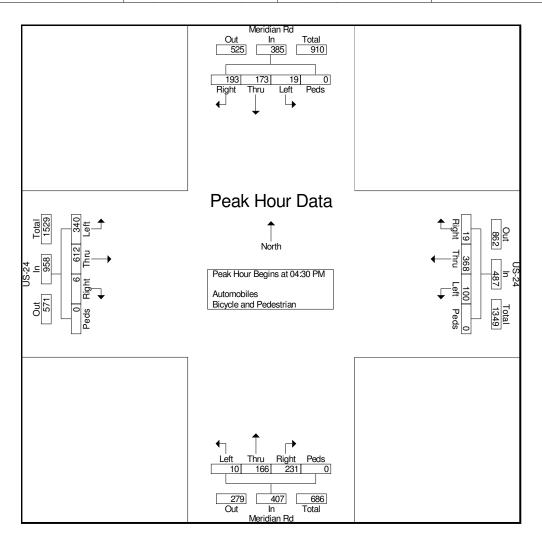


Falcon, CO Circle K - US24 & Meridian PM Peak

US-24 & Meridian Rd

File Name: US24 and Meridian PM

Site Code : IPO 538 Start Date : 4/14/2021



Falcon, CO Circle K - US24 & Meridian PM Peak US-24 & Meridian Rd File Name: US24 and Meridian PM

Site Code : IPO 538 Start Date : 4/14/2021

			US-2	4				US-2	4			М	eridian	Rd			М	eridian	Rd		
		E	astbou	ınd			W	estbo	und			N	orthbo	und			Sc	outhbo	und		
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	04:00	PM to	05:45 P	M - Pe	ak 1 o	f 1													
Peak Hour fo	r Entir	e Inters	section	n Begin	s at 04:	30 PM															
04:30 PM	74	159	1	0	234	18	101	4	0	123	0	47	53	0	100	6	38	56	0	100	557
04:45 PM	88	150	1	0	239	27	89	9	0	125	5	39	62	0	106	6	39	40	0	85	555
05:00 PM	87	149	3	0	239	32	90	2	0	124	3	41	62	0	106	3	53	41	0	97	566
05:15 PM	91	154	1	0	246	23	88	4	0	115	2	39	54	0	95	4	43	56	0	103	559
Total Volume	340	612	6	0	958	100	368	19	0	487	10	166	231	0	407	19	173	193	0	385	2237
% App. Total	35.5	63.9	0.6	0		20.5	75.6	3.9	0		2.5	40.8	56.8	0		4.9	44.9	50.1	0		
PHF	.934	.962	.500	.000	.974	.781	.911	.528	.000	.974	.500	.883	.931	.000	.960	.792	.816	.862	.000	.934	.988

Falcon, CO Circle K - US24 & Meridian AM Peak Meridian Circle K Access File Name: Meridian CircleK Access AM

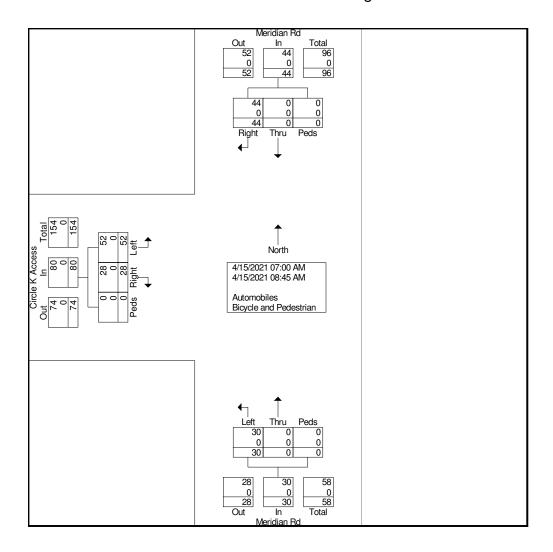
Site Code : IPO 538 Start Date : 4/15/2021

Page No : 1

Groups Printed- Automobiles - Bicycle and Pedestrian

		Circle K	Access	Groups i	iiiileu- Aul		an Rd	and Pedesi	ΠαΠ	Merid	ian Rd		
		Easth	oound			North	bound				bound		
Start Time	Left	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Int. Total
07:00 AM	8	2	0	10	2	0	0	2	0	3	0	3	15
07:15 AM	10	1	0	11	5	0	0	5	0	1	0	1	17
07:30 AM	4	8	0	12	5	0	0	5	0	9	0	9	26
07:45 AM	7	3	0	10	6	0	0	6	0	3	0	3	19
Total	29	14	0	43	18	0	0	18	0	16	0	16	77
08:00 AM	6	4	0	10	2	0	0	2	0	10	0	10	22
08:15 AM	5	4	0	9	5	0	0	5	0	4	0	4	18
08:30 AM	7	3	0	10	2	0	0	2	0	6	0	6	18
08:45 AM	5	3	0	8	3	0	0	3	0	8	0	8	19
Total	23	14	0	37	12	0	0	12	0	28	0	28	77
Grand Total	52	28	0	80	30	0	0	30	0	44	0	44	154
Apprch %	65	35	0		100	0	0		0	100	0		
Total %	33.8	18.2	0	51.9	19.5	0	0	19.5	0	28.6	0	28.6	
Automobiles	52	28	0	80	30	0	0	30	0	44	0	44	154
% Automobiles	100	100	0	100	100	0	0	100	0	100	0	100	100
Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0

Falcon, CO

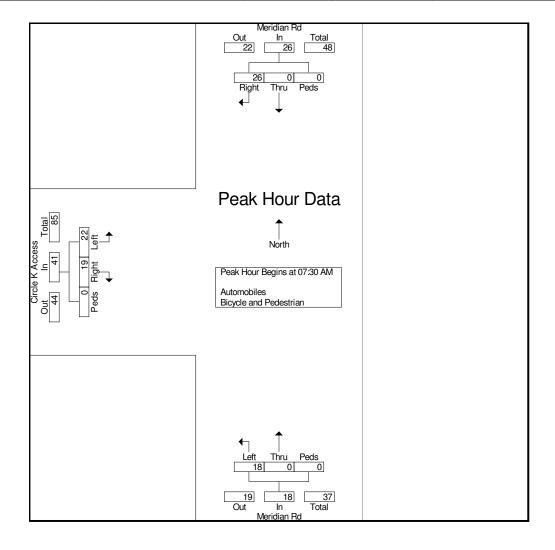

Circle K - US24 & Meridian

AM Peak

Meridian Circle K Access

File Name: Meridian CircleK Access AM

Site Code: IPO 538 Start Date : 4/15/2021


Falcon, CO Circle K - US24 & Meridian AM Peak

Meridian Circle K Access

File Name: Meridian CircleK Access AM

Site Code : IPO 538 Start Date : 4/15/2021

		Circle k	Access			Merid	ian Rd			Merid	lian Rd					
		East	bound			North	bound			South	bound					
Start Time	Left	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Int. Total			
Peak Hour Analysis	From 07:0	0 AM to	08:45 AM	- Peak 1 of	ı				•	•						
Peak Hour for Entire	e Intersecti	on Begins	at 07:30	AM												
07:30 AM	4	8	0	12	5	0	0	5	0	9	0	9	26			
07:45 AM	7	3	0	10	6	0	0	6	0	3	0	3	19			
08:00 AM	6	4	0	10	2	0	0	2	0	10	0	10	22			
08:15 AM	5	4	0	9	5	0	0	5	0	4	0	4	18			
Total Volume	22	19	0	41	18	0	0	18	0	26	0	26	85			
% App. Total	53.7	46.3	0		100	0	0		0	100	0					
PHF	.786	.594	.000	.854	.750	.000	.000	.750	.000	.650	.000	.650	.817			

Falcon, CO Circle K - US24 & Meridian PM Peak

Meridian Circle K Access

File Name: Meridian CircleK Access PM

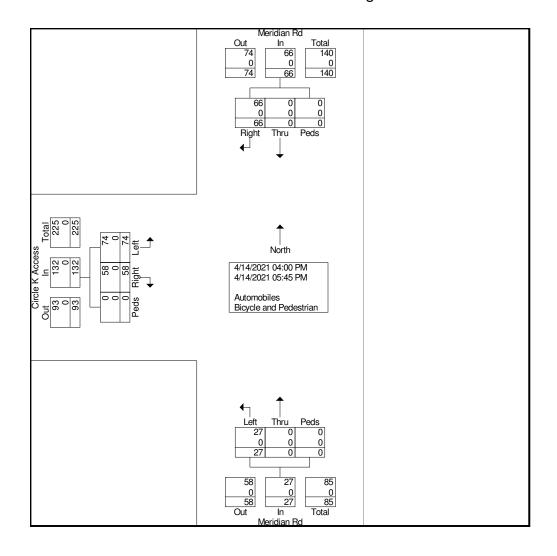
Site Code : IPO 538 Start Date : 4/14/2021

Page No : 1

Groups Printed- Automobiles - Bicycle and Pedestrian

		Circle K	Access	Groups	IIIIeu- Aut		ian Rd	and Pedesi	IIaII	Merid	ian Rd		
			ound				bound				bound		
Start Time	Left	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	14	11	0	25	7	0	0	7	0	10	0	10	42
04:15 PM	12	7	0	19	4	0	0	4	0	4	0	4	27
04:30 PM	4	5	0	9	4	0	0	4	0	5	0	5	18
04:45 PM	3	6	0	9	3	0	0	3	0	10	0	10	22
Total	33	29	0	62	18	0	0	18	0	29	0	29	109
05:00 PM	12	10	0	22	2	0	0	2	0	8	0	8	32
			U		2	U	U	۷	U		U	8	
05:15 PM	10	7	0	17	1	0	0	1	0	7	0	7	25
05:30 PM	10	8	0	18	3	0	0	3	0	14	0	14	35
05:45 PM	9	4	0	13	3	0	0	3	0	8	0	8	24
Total	41	29	0	70	9	0	0	9	0	37	0	37	116
Grand Total	74	58	0	132	27	0	0	27	0	66	0	66	225
Apprch %	56.1	43.9	0		100	0	0		0	100	0		
Total %	32.9	25.8	0	58.7	12	0	0	12	0	29.3	0	29.3	
Automobiles	74	58	0	132	27	0	0	27	0	66	0	66	225
% Automobiles	100	100	0	100	100	0	0	100	0	100	0	100	100
Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0

Falcon, CO


Circle K - US24 & Meridian

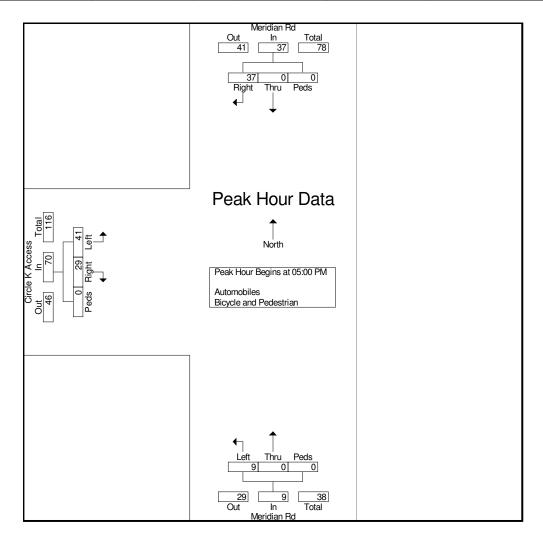
PM Peak

Meridian Circle K Access

File Name: Meridian CircleK Access PM

Site Code: IPO 538 Start Date : 4/14/2021

Falcon, CO Circle K - US24 & Meridian


PM Peak

Meridian Circle K Access

File Name: Meridian CircleK Access PM

Site Code : IPO 538 Start Date : 4/14/2021

		Circle k	Access			Merid	lian Rd			Meric	lian Rd		
		East	bound			North	bound			South	bound		
Start Time	Left	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 04:0	00 PM to 0)5:45 PM	- Peak 1 of	1								
Peak Hour for Entire	e Intersect	ion Begins	at 05:00	PM									
05:00 PM	12	10	0	22	2	0	0	2	0	8	0	8	32
05:15 PM	10	7	0	17	1	0	0	1	0	7	0	7	25
05:30 PM	10	8	0	18	3	0	0	3	0	14	0	14	35
05:45 PM	9	4	0	13	3	0	0	3	0	8	0	8	24
Total Volume	41	29	0	70	9	0	0	9	0	37	0	37	116
% App. Total	58.6	41.4	0		100	0	0		0	100	0		
PHF	.854	.725	.000	.795	.750	.000	.000	.750	.000	.661	.000	.661	.829

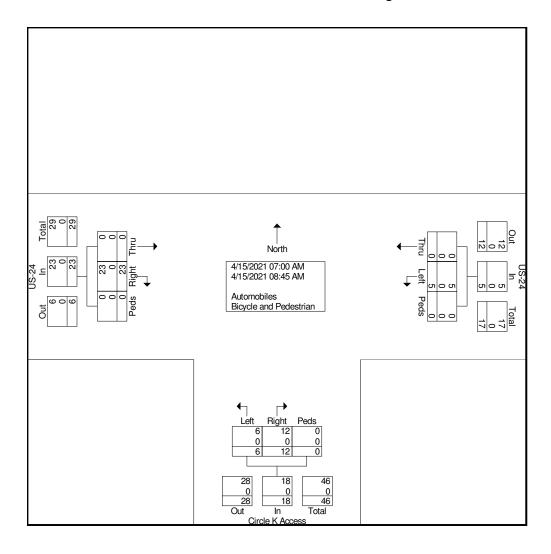
Falcon, CO Circle K - US24 & Meridian AM Peak US-24 Circle K Access File Name: US24 CircleK Access AM

Site Code : IPO 538 Start Date : 4/15/2021

Page No : 1

Groups Printed- Automobiles - Bicycle and Pedestrian

		US	i-24	Groups i	iiiileu- Aul		-24	and Pedesi	ΠαΠ	Circle K	Access		
			oound				oound			North	bound		
Start Time	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
07:00 AM	0	2	0	2	0	0	0	0	0	1	0	1	3
07:15 AM	0	6	0	6	0	0	0	0	0	2	0	2	8
07:30 AM	0	3	0	3	2	0	0	2	1	0	0	1	6
07:45 AM	0	0	0	0	2	0	0	2	0	2	0	2	4
Total	0	11	0	11	4	0	0	4	1	5	0	6	21
08:00 AM	0	2	0	2	0	0	0	0	2	3	0	5	7
08:15 AM	0	1	0	1	1	0	0	1	0	0	0	0	2
08:30 AM	0	6	0	6	0	0	0	0	1	4	0	5	11
08:45 AM	0	3	0	3	0	0	0	0	2	0	0	2	5
Total	0	12	0	12	1	0	0	1	5	7	0	12	25
Grand Total	0	23	0	23	5	0	0	5	6	12	0	18	46
Apprch %	0	100	0		100	0	0		33.3	66.7	0		
Total %	0	50	0	50	10.9	0	0	10.9	13	26.1	0	39.1	
Automobiles	0	23	0	23	5	0	0	5	6	12	0	18	46
% Automobiles	0	100	0	100	100	0	0	100	100	100	0	100	100
Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0

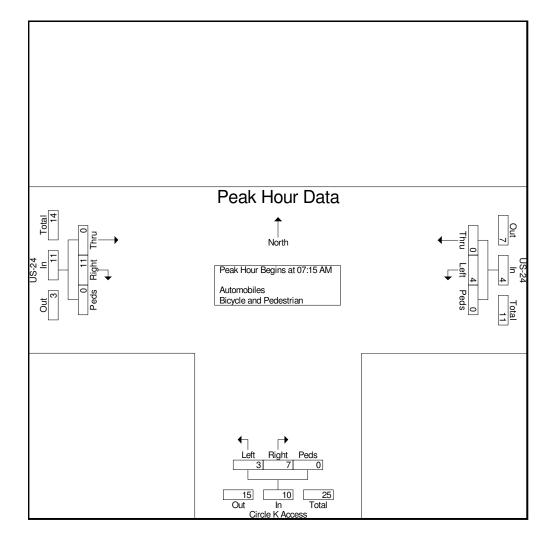

Falcon, CO Circle K - US24 & Meridian

AM Peak

US-24 Circle K Access

File Name: US24 CircleK Access AM

Site Code : IPO 538 Start Date : 4/15/2021



Falcon, CO Circle K - US24 & Meridian AM Peak US-24 Circle K Access File Name: US24 CircleK Access AM

Site Code : IPO 538 Start Date : 4/15/2021

		US	S-24			US	-24			Circle K	Access		
		East	bound			West	oound			North	bound		
Start Time	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
Peak Hour Analysis	From 07:0	00 AM to	08:45 AM	- Peak 1 of 1									_
Peak Hour for Entire	e Intersecti	on Begin	s at 07:15	AM									
07:15 AM	0	6	0	6	0	0	0	0	0	2	0	2	8
07:30 AM	0	3	0	3	2	0	0	2	1	0	0	1	6
07:45 AM	0	0	0	0	2	0	0	2	0	2	0	2	4
08:00 AM	0	2	0	2	0	0	0	0	2	3	0	5	7
Total Volume	0	11	0	11	4	0	0	4	3	7	0	10	25
% App. Total	0	100	0		100	0	0		30	70	0		
PHF	.000	.458	.000	.458	.500	.000	.000	.500	.375	.583	.000	.500	.781

Falcon, CO Circle K - US24 & Meridian PM Peak US-24 Circle K Access File Name: US24 CircleK Access PM

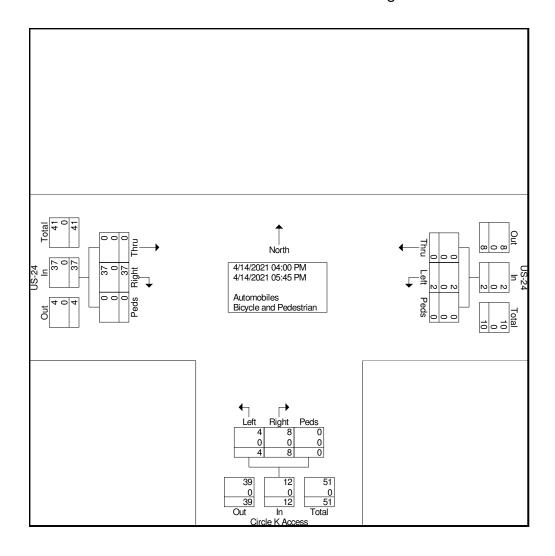
Site Code : IPO 538 Start Date : 4/14/2021

Page No : 1

Groups Printed- Automobiles - Bicycle and Pedestrian

		US	-24	Groups r	US-24				i i di i				
			oound				oound						
Start Time	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
04:00 PM	0	6	0	6	0	0	0	0	1	2	0	3	9
04:15 PM	0	3	0	3	0	0	0	0	0	1	0	1	4
04:30 PM	0	2	0	2	1	0	0	1	0	1	0	1	4
04:45 PM	0	4	0	4	0	0	0	0	1	2	0	3	7
Total	0	15	0	15	1	0	0	1	2	6	0	8	24
27.22.714		_	_	_ 1			_			_	_	ا ـ	_
05:00 PM	0	5	0	5	0	0	0	0	0	0	0	0	5
05:15 PM	0	9	0	9	0	0	0	0	0	1	0	1	10
05:30 PM	0	5	0	5	1	0	0	1	2	0	0	2	8
05:45 PM	0	3	0	3	0	0	0	0	0	1	0	1	4
Total	0	22	0	22	1	0	0	1	2	2	0	4	27
Grand Total	0	37	0	37	2	0	0	2	4	8	0	12	51
Apprch %	0	100	0	_	100	0	0		33.3	66.7	0		
Total %	0	72.5	0	72.5	3.9	0	0	3.9	7.8	15.7	0	23.5	
Automobiles	0	37	0	37	2	0	0	2	4	8	0	12	51
% Automobiles	0	100	0	100	100	0	0	100	100	100	0	100	100
Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0
% Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0

Falcon, CO

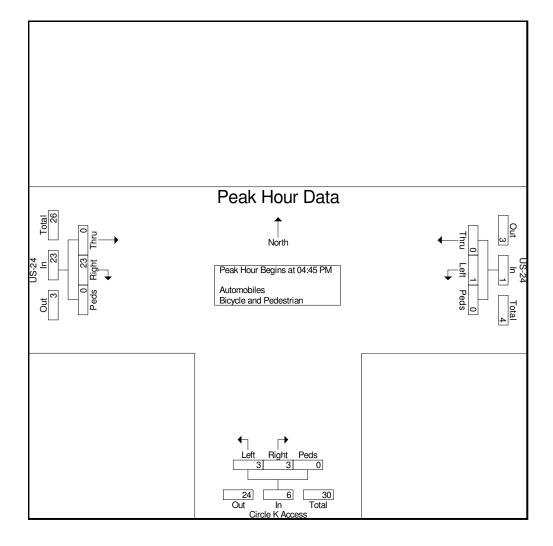

Circle K - US24 & Meridian

PM Peak

US-24 Circle K Access

File Name: US24 CircleK Access PM

Site Code : IPO 538 Start Date : 4/14/2021



Falcon, CO Circle K - US24 & Meridian PM Peak US-24 Circle K Access File Name: US24 CircleK Access PM

Site Code : IPO 538 Start Date : 4/14/2021

		US	S-24		US-24				Circle K Access				
	Eastbound				Westbound				Northbound				
Start Time	Thru	Right	Peds	App. Total	Left	Thru	Peds	App. Total	Left	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1											_		
Peak Hour for Entire Intersection Begins at 04:45 PM													
04:45 PM	0	4	0	4	0	0	0	0	1	2	0	3	7
05:00 PM	0	5	0	5	0	0	0	0	0	0	0	0	5
05:15 PM	0	9	0	9	0	0	0	0	0	1	0	1	10
05:30 PM	0	5	0	5	1	0	0	1	2	0	0	2	8
Total Volume	0	23	0	23	1	0	0	1	3	3	0	6	30
% App. Total	0	100	0		100	0	0		50	50	0		
PHF	.000	.639	.000	.639	.250	.000	.000	.250	.375	.375	.000	.500	.750

APPENDIX B

Future Traffic Projections Data

Circle K US-24 & Meridian Counts Adjustment

Traffic Counts		
Scenario	AM Peak	PM Peak
2019 Existing (Pre-COVID - 2019-04-16)	2,076	2,161
2019 Grown to 2021	2,160	2,248
2021 Counts (During COVID - 2021-04-15)	1,478	1,529
Percent Change	-31.57%	-31.99%
Growth Adjustment	46.13%	47.04%
Adjustment Factor	1.46	1.47

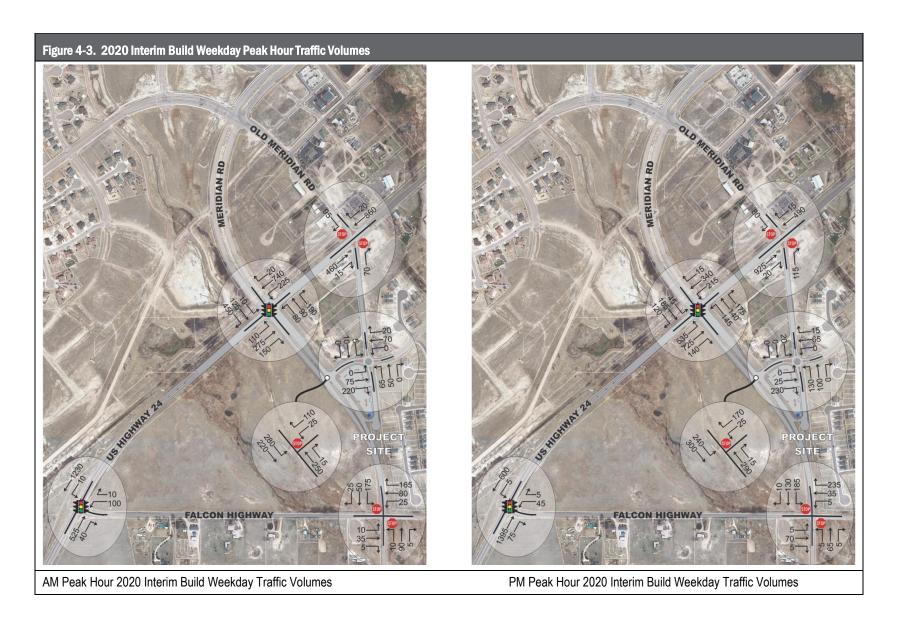
CDOT OTIS Count Station 107900: SH-24 S/O Woodman Road

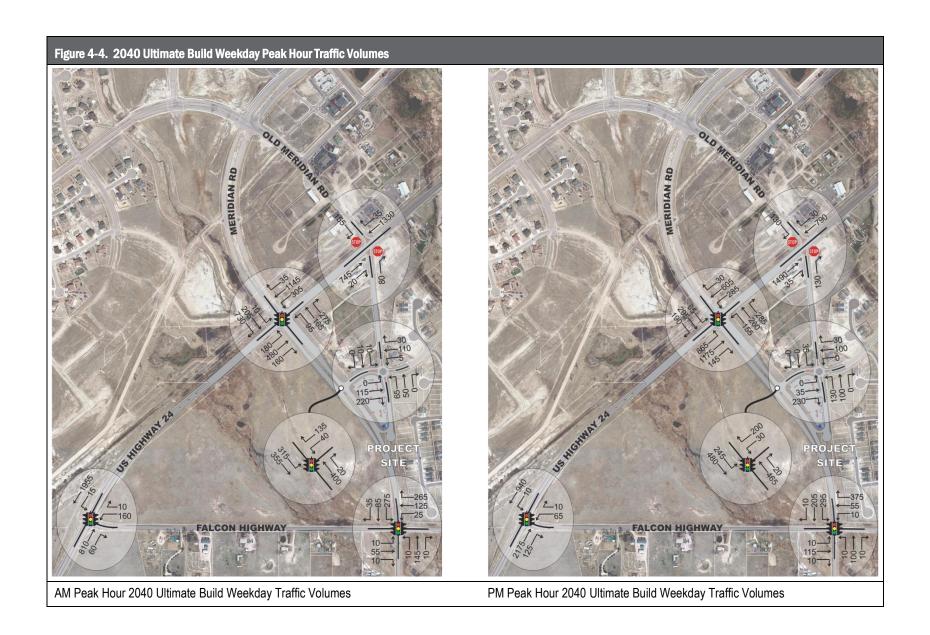
COUNTDIR	HOUR7	HOUR8	HOUR16	HOUR17
Primary	535	476	1464	1346
Secondary	1541	1023	697	607
Total	2076	1499	2161	1953

OTIS Growth Rate for Circle K @ US-24 & Meridian Road

ROUTE	UPDATEYR	AADT	AADTYR	COUNTYEAR	OFFPKTRK	YR20FACTOR	Growth Rate	DHV	D	D	LOCATION
024G	2019	20000	2019	2019	5.9	1.5	1.950%		10.5	75	ON SH 24 0.5MI NE/O CONSTITUTION AVE COLORADO SPRINGS
024G	2019	17000	2019	2017	4.1	1.4	1.615%		9.5	69	ON SH 24 NE/O FALCON HIGHWAY FALCON
024G	2019	14000	2019	2017	3.8	1.49	1.917%		11	57	ON SH 24 NE/O WOODMAN RD FALCON
024G	2019	11000	2019	2017	4.7	1.45	1.785%		11	57	ON SH 24 NE/O JUDGE ORR RD FALCON

Average 1.817%


TRAFFIC OPERATIONS/ACCESS ASSESSMENT Meridian Road/Falcon Park and Ride


Submitted by:

HDR

5555 Tech Center Drive, Suite 310 Colorado Springs, CO 80919 (719) 272-8800

APPENDIX C

Trip Generation Worksheets

Project C	ircle K & US-2	24 & Meridian R	oad					
		for Shopping C						
Designed by		Date		ber 14, :	2021	J	ob No. 0965	54014
Checked by		 Date					eet No. 1	of 1
TRIP GENERA	TION MANUA	L TECHNIQUE	<u>'S</u>					
ITE Trip Genera	ation Manual 1	Oth Edition, Ave	erage Rate Eq	uations				
Land Use Code	- Shopping C	enter (820)						
Independant Va	ıriable - 1000 S	Square Feet Gro	oss Leasable	Area (X))			
Gross Leas	sable Area =	23,000 Sq	uare Feet					
X = 23.00	0							
T = Average	ge Vehicle Tri	p Ends						
	·							
Peak Hour of A	djacent Stree	et Traffic, One	Hour Betwee	<u>n 7 an</u> d	9 a.m.	(800 Ser	ies Page 139)
Average Week		•			ribution:		62% ent.	38% exit.
T = 0.94 * (X)	,		T =	22			icle Trip Ends	
T = 0.94 *	23			enter		8	•	
. 5.5 .	20			5.101	9	J	- January	
			14	+	8	=	22	
Peak Hour of A	diacent Stree	et Traffic, One	Hour Betwee	n 4 and	6 p.m.	(800 Ser	ies page 140)
Average Week					ribution:		48% ent.	52% exit.
T = 3.81 * (X)	•		T =	88			icle Trip Ends	
T = 3.81 *	23		42	enter		46	exiting	
	-		_		J	-	5	
			42	+	46	=	88	
Weekday (800		<u> 138)</u>						
Average Week	lay		Directio	nal Dist			tering, 50% e	
T = 37.75 * (X)			T =	868	Aver	age Veh	icle Trip Ends	i
T = 37.75 *	23		434	enter	ing	434	exiting	
							-	
			434	+	434	=	868	
Non Pass-Bv T	rip Volumes	(Per ITE Trip G	eneration Ha	ındbool	k, 3rd Ed	dition Se	eptember 201	7-Page 190)
AM Peak Hour		lon-Pass By	PM Peak Ho		66%		ass By	
	IN Out	•					-	
AM Peak	9 5	15						
PM Peak	28 30	59						
Daily	286 286		PM Peak Ho	our Rate	Applied	to Dailv		
<i>y</i>					- P50	· · · ·		
Pass-By Trip V	olumes (Per	ITE Trip Gener	ation Handbo	ook. 3rc	l Edition	Septen	nber 2017 -Pa	age 190)
AM Peak Hour		ass By	PM Peak Ho		34%	Pass I		
	IN Out	•					,	
		. 5.441						
AM Peak		8						
AM Peak PM Peak	5 3 14 16	8 30						

Project	Circle K & US-24 &								
Subject	Trip Generation for	rip Generation for Fast Casual Restaurant							
Designed by	MAG	Date	December 14, 2021	Job No.	09655	54014			
Checked by		Date		Sheet No.	1	of	1		

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Average Rate Equations

Land Use Code - Fast Casual Restaurant (930)

Independant Variable - 1000 Square Feet Gross Floor Area (X)

Gross Floor Area = 7,000 Square Feet

X = 7.000

T = Average Vehicle Trip Ends

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (900 Series Page 62)

Average Weekday Directional Distribution: 67% ent. 33% exit. T = 2.07 (X) T = 14 Average Vehicle Trip Ends T = 2.07 * 7.000 9 entering 5 exiting

9 (*) + 5 = 14

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (900 Series Page 63)

Average Weekday Directional Distribution: 55% ent. 45% exit. T = 14.13(X) T = 99 Average Vehicle Trip Ends

T = 14.13 * 7.000 54 entering 45 exiting

54 + 45 = 99

Weekday (10% K-Factor from PM Peak Hour)

Average Weekday Directional Distribution: 50% entering, 50% exiting

T = 990 Average Vehicle Trip Ends

(T) = PM Peak Total / K Factor 0.1 495 entering 495 exiting

495 + 495 = 990

Saturday Peak Hour of Generator (900 Series Page 67)

Directional Distribution: 55% ent. 45% exit.

T = 34.02 (X) T = 238 Average Vehicle Trip Ends

T = 34.02 * 7.000 131 entering 107 exiting

131 + 107 = 238

			& Meridian Rorrer Fast-Food R	lestaurant with Drive-Through Window
Designed by		AG		December 14, 2021
Checked by				Sheet No. 1 of 1
<u> </u>				
TRIP GENER	ATION	MANUAL	TECHNIQUE	<u>s</u>
ITE <u>Trip Gene</u>	ration N	Manual 10th	edition, Aver	rage Rate Equations
Land Use Cod	e - Fas	t Food Res	taurant With [Drive-Through Window (934)
Gross Flo $X = 4.5$	or Area		4,500 Squ	ss Floor Area (X) uare Feet
Peak Hour of	Adjace	ent Street	Traffic, One I	Hour Between 7 and 9 a.m. (900 Series page 158)
Average Week	dav			Directional Distribution: 51% ent. 49% exit.
T = 40.19(X)	,			T = 181 Average Vehicle Trip Ends
T = 40.19 *		4.500		92 entering 89 exiting
				92 + 89 = 181
Peak Hour of	۸diac	ant Stroot	Traffic One l	Hour Between 4 and 6 p.m. (900 Series page 159)
	-	ent otreet	rranic, One i	
Average Weel $T = 32.67 (X)$	day			Directional Distribution: 52% ent. 48% exit. T = 147 Average Vehicle Trip Ends
T = 32.67 (A) T = 32.67 *		4.500		T = 147 Average Vehicle Trip Ends 76 entering 71 exiting
1 - 02.01		4.000		70 Citioning 71 Calaing
				76 + 71 = 147
Weekday (90) Serie	s page 157	<u>")</u>	
Average Week	day			Directional Distribution: 50% entering, 50% exiting
T = 470.95 (X))			T = 2120 Average Vehicle Trip Ends
T = 470.95 *		4.500		1060 entering 1060 exiting
				1060 + 1060 = 2120
Saturday Pea	k Hour	of Genera	ator (900 Seri	ies page 163)
				Directional Distribution: 51% ent. 49% exit.
T = 54.86 (X)				T = 247 Average Vehicle Trip Ends
T = 54.86 *		4.500		126 entering 121 exiting
				126 + 121 = 247
Non Pass-Bv	Trip V	olumes (P	er ITE Trip G	eneration Handbook, 3rd Edition September 2017)
AM Peak Hou			-Pass By	PM Peak Hour = 50% Non-Pass By
	IN	Out	Total	•
AM Peak	47	45	92	
PM Peak	38	36 530	74	DM Dock Hour Data Applied to Doile
Daily	530	530	1060	PM Peak Hour Rate Applied to Daily
	Volum	es (Per IT	E Trip Gener	ation Handbook, 3rd Edition September 2017)
Pass-By Trip				PM Peak Hour = 50% Pass By
		49% Pas	5 Бу	TWT carriour = 00% Tabb By
AM Peak Hou	' = 4 IN	Out	Total	TWI CARTICAL = 0070 Tabb By
Pass-By Trip AM Peak Hour AM Peak PM Peak	= 4		•	Tim Foak Hour = 00% Table By

Project	Circle K @ US-24	& Meridian Road			
Subject	Trip Generation for	r Super Convenier	nce Market/Gas Station		
Designed by	MAG	Date	54/2021	Job No.	096554014
Checked by		Date		Sheet No.	of

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Average Rate Equations

Land Use Code - Super Convenience Market/Gas Station (960)

Independant Variable - 1000 Square Feet Gross Leasable Area (X)

Gross Leasable Area = 5,200 Square Feet

X = 5.200

T = Average Vehicle Trip Ends

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (900 Series Page 404)

Directional Distribution: 50% ent. 50% exit. T = 83.14 (X) T = 432 Average Vehicle Trip Ends T = 83.14 * 5.200 216 entering 216 exiting

216 + 216 = 432

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (900 Series page 405)

Directional Distribution: 50% ent. 50% exit. T = 69.28 (X) T = 360 Average Vehicle Trip Ends 180 entering 180 exiting 180 + 180 + 180 = 360

Weekday (800 Series page 335)

Average Weekday Directional Distribution: 50% entering, 50% exiting T = 837.58 (X) T = 837.58 * 5.200 Directional Distribution: 50% entering, 50% exiting T = 4356 Average Vehicle Trip Ends 2178 entering 2178 exiting

2178 + 2178 = 4356

Non Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017)

PM Peak Hou	ır = 44	·% Non	-Pass By	AM Peak Hour =	38%	Non-Pass By
	IN	Out	Total	* Utilized ITE 945 p	bass-by	calculations
AM Peak	82	82	164			
PM Peak	79	79	158			
Dailv	958	958	1916	PM Peak Hour Rat	e Applie	ed to Daily

Pass-By Trip Volumes (Per ITE Trip Generation Handbook, 3rd Edition September 2017)

PM Peak Hou	ır = 56	% Pass	Ву	AM Peak Hour = 62% Pass By
	IN	Out	Total	
AM Peak	134	134	268	
PM Peak	101	101	202	
Daily	1220	1220	2440	PM Peak Hour Rate Applied to Daily

	NCHRP 684 Internal Trip Capture Estimation Tool									
Project Name:	Circle K US-24 & Meridian		Organization:	Kimley-Horn and Associates, Inc.						
Project Location:	El Paso County, Colorado		Performed By:	MAG						
Scenario Description:			Date:	12/16/2021						
Analysis Year:			Checked By:							
Analysis Period:	AM Street Peak Hour		Date:							

	Table '	1-A: Base Vehic	le-Trip Generation	Est	imates (Single-Use Site	Estimate)		
Land Use	Developm	ent Data (For Int	formation Only)		Estimated Vehicle-Trips ³			
Land Use	ITE LUCs1	Quantity	Units	Ī	Total	Entering	Exiting	
Office		-	1,000 Sq Ft	Ī	0	0	0	
Retail		28	1,000 Sq Ft	Ī	454	230	224	
Restaurant		12	1,000 Sq Ft		195	101	94	
Cinema/Entertainment		-	Screen(s)	Ī	0	0	0	
Residential		-	Dwelling Unit(s)	Ī	0	0	0	
Hotel		-	Room(s)	Ī	0	0	0	
All Other Land Uses ²			0		0	0	0	
			-		649	331	318	

	Table 2-A: Mode Split and Vehicle Occupancy Estimates									
Land Use		Entering Trip	OS .		Exiting Trips					
Land Ose	Veh. Occ.4	Veh. Occ. ⁴ % Transit % Non-Motorized			Veh. Occ.4	% Transit	% Non-Motorized			
Office	1.00	0%	0%		1.00	0%	0%			
Retail	1.00	0%	0%		1.00	0%	0%			
Restaurant	1.00	0%	0%		1.00	0%	0%			
Cinema/Entertainment	1.00	0%	0%		1.00	0%	0%			
Residential	1.00	0%	0%		1.00	0%	0%			
Hotel	1.00	0%	0%		1.00	0%	0%			
All Other Land Uses ²	1.00	0%	0%		1.00	0%	0%			

	Table	3-A: Average La	and Use Interchan	ge Distances (Feet Walking	Distance)	
0 : : (5)				Destination (To)		
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office						
Retail						
Restaurant						
Cinema/Entertainment						
Residential						
Hotel						

Table 4-A: Internal Person-Trip Origin-Destination Matrix*									
Origin (From)				Destination (To)					
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office		0	0	0	0	0			
Retail	0		29	0	0	0			
Restaurant	0	13		0	0	0			
Cinema/Entertainment	0	0	0		0	0			
Residential	0	0	0	0		0			
Hotel	0	0	0	0	0				

Table 5-A	Table 5-A: Computations Summary									
Total Entering Exiting										
All Person-Trips	649	331	318							
Internal Capture Percentage	13%	13%	13%							
External Vehicle-Trips ⁵	565	289	276							
External Transit-Trips ⁶	0	0	0							
External Non-Motorized Trips ⁶	0	0	0							

Table 6-A: Interna	Table 6-A: Internal Trip Capture Percentages by Land Use						
Land Use	Entering Trips	Exiting Trips					
Office	N/A	N/A					
Retail	6%	13%					
Restaurant	29%	14%					
Cinema/Entertainment	N/A	N/A					
Residential	N/A	N/A					
Hotel	N/A	N/A					

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.

⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.

Project Name: Analysis Period:	

	Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends									
Land Use	Tab	le 7-A (D): Enter	ing Trips			Table 7-A (O): Exiting Trips				
Land Use	Veh. Occ.	Vehicle-Trips	Person-Trips*		Veh. Occ.	Vehicle-Trips	Person-Trips*			
Office	1.00	0	0		1.00	0	0			
Retail	1.00	230	230		1.00	224	224			
Restaurant	1.00	101	101		1.00	94	94			
Cinema/Entertainment	1.00	0	0		1.00	0	0			
Residential	1.00	0	0		1.00	0	0			
Hotel	1.00	0	0		1.00	0	0			

	Table 8-A	(O): Internal Po	erson-Trip Origin-	Destination Matrix (Compu	ted at Origin)	
Origin (Fram)				Destination (To)		
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		0	0	0	0	0
Retail	65		29	0	31	0
Restaurant	29	13		0	4	3
Cinema/Entertainment	0	0	0		0	0
Residential	0	0	0	0		0
Hotel	0	0	0	0	0	

	Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)								
Origin (From)				Destination (To)					
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office		74	23	0	0	0			
Retail	0		51	0	0	0			
Restaurant	0	18		0	0	0			
Cinema/Entertainment	0	0	0		0	0			
Residential	0	39	20	0		0			
Hotel	0	9	6	0	0				

	Та	ble 9-A (D): Int	ernal and Externa	l Tr	ips Summary (Enterin	g Trips)		
Design for Levelle		Person-Trip Estimates			External Trips by Mode*			
Destination Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²	
Office	0	0	0		0	0	0	
Retail	13	217	230		217	0	0	
Restaurant	29	72	101		72	0	0	
Cinema/Entertainment	0	0	0		0	0	0	
Residential	0	0	0		0	0	0	
Hotel	0	0	0		0	0	0	
All Other Land Uses ³	0	0	0		0	0	0	

	Т	able 9-A (O): In	ternal and Externa	al Trips Sun	nmary (Exiting	Trips)	
Origin Land Llan		Person-Trip Esti	mates			External Trips by Mode*	
Origin Land Use	Internal	External	Total	,	Vehicles ¹	Transit ²	Non-Motorized ²
Office	0	0	0		0	0	0
Retail	29	195	224		195	0	0
Restaurant	13	81	94		81	0	0
Cinema/Entertainment	0	0	0		0	0	0
Residential	0	0	0		0	0	0
Hotel	0	0	0		0	0	0
All Other Land Uses ³	0	0	0		0	0	0

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A ²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator *Indicates computation that has been rounded to the nearest whole number.

	NCHRP 684 Internal Trip Capture Estimation Tool								
Project Name:	Circle K US-24 & Meridian		Organization:	Kimley-Horn and Associates, Inc.					
Project Location:	El Paso County, Colorado		Performed By:	MAG					
Scenario Description:			Date:	12/16/2021					
Analysis Year:			Checked By:						
Analysis Period:	PM Street Peak Hour		Date:						

Land Use	Developme	ent Data (For Int	formation Only)		Estimated Vehicle-Trips ³	
Land Ose	ITE LUCs ¹	Quantity	Units	Total	Entering	Exiting
Office			1,000 Sq Ft	0	0	0
Retail		28	1,000 Sq Ft	448	222	226
Restaurant		12	1,000 Sq Ft	246	130	116
Cinema/Entertainment		-	Screen(s)	0	0	0
Residential		-	Dwelling Unit(s)	0	0	0
Hotel		-	Room(s)	0	0	0
All Other Land Uses ²		-	0	0	0	0
				694	352	342

Table 2-P: Mode Split and Vehicle Occupancy Estimates										
Land Use		Entering Trip	os			Exiting Trips				
Land Use	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.4	% Transit	% Non-Motorized			
Office	1.00	0%	0%		1.00	0%	0%			
Retail	1.00	0%	0%		1.00	0%	0%			
Restaurant	1.00	1.00 0% 0%			1.00	0%	0%			
Cinema/Entertainment	1.00	0%	0%		1.00	0%	0%			
Residential	1.00	0%	0%		1.00	0%	0%			
Hotel	1.00	0%	0%		1.00	0%	0%			
All Other Land Uses ²	1.00	0%	0%		1.00	0%	0%			

Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)											
Origin (From)				Destination (To)							
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office											
Retail											
Restaurant											
Cinema/Entertainment											
Residential											
Hotel											

Table 4-P: Internal Person-Trip Origin-Destination Matrix*											
Origin (From)		Destination (To)									
Oligili (Fiolii)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office	0 0		0	0	0						
Retail	0		38	0	0	0					
Restaurant	0	48		0	0	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	0	0	0	0		0					
Hotel	0	0	0	0	0						

Table 5-P: Computations Summary										
	Total	Entering	Exiting							
All Person-Trips	694	352	342							
Internal Capture Percentage	25%	24%	25%							
External Vehicle-Trips ⁵	522	266	256							
External Transit-Trips ⁶	0	0	0							
External Non-Motorized Trips ⁶	0	0	0							

Table 6-P: Interna	Table 6-P: Internal Trip Capture Percentages by Land Use									
Land Use	Entering Trips	Exiting Trips								
Office	N/A	N/A								
Retail	22%	17%								
Restaurant	29%	41%								
Cinema/Entertainment	N/A	N/A								
Residential	N/A	N/A								
Hotel	N/A	N/A								

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be ⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Analysis Period:	PM Street Peak Hour
Project Name:	Circle K US-24 & Meridian

Table 7-P: Conversion of Vehicle-Trip Ends to Person-Trip Ends										
Land Use	Table	7-P (D): Entering	g Trips		Table 7-P (O): Exiting Trips					
Land Use	Veh. Occ.	Vehicle-Trips	Person-Trips*		Veh. Occ.	Vehicle-Trips	Person-Trips*			
Office	1.00	0	0		1.00	0	0			
Retail	1.00	222	222		1.00	226	226			
Restaurant	1.00	130	130		1.00	116	116			
Cinema/Entertainment	1.00	0	0		1.00	0	0			
Residential	1.00	0	0		1.00	0	0			
Hotel	1.00	0	0		1.00	0	0			

Table 8-P (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)											
Origin (From)	Destination (To)										
Oligili (Fiolii)	Office	Retail	Restaurant	Cinema/Entertainment	Entertainment Residential						
Office		0	0	0	0	0					
Retail	5		66	9	59	11					
Restaurant	3	48		9	21	8					
Cinema/Entertainment	0	0	0		0	0					
Residential	0	0	0	0		0					
Hotel	0	0	0	0	0						

Table 8-P (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)											
Origin (Franc)		Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		18	3	0	0	0					
Retail	0		38	0	0	0					
Restaurant	0	111		0	0	0					
Cinema/Entertainment	0	9	4		0	0					
Residential	0	22	18	0		0					
Hotel	0	4	7	0	0						

Table 9-P (D): Internal and External Trips Summary (Entering Trips)										
Destination Land Use	Р	erson-Trip Estima	ates			External Trips by Mode*				
Destination Land Use	Internal	External	Total	Ī	Vehicles ¹	Transit ²	Non-Motorized ²			
Office	0	0	0		0	0	0			
Retail	48	174	222		174	0	0			
Restaurant	38	92	130		92	0				
Cinema/Entertainment	0	0	0		0	0	0			
Residential	0	0	0		0	0	0			
Hotel	0	0	0		0	0	0			
All Other Land Uses ³	0	0	0		0	0	0			

Table 9-P (O): Internal and External Trips Summary (Exiting Trips)										
Origin Land Has	P	erson-Trip Estima	ites			External Trips by Mode*				
Origin Land Use	Internal	External	Total	Ī	Vehicles ¹	Transit ²	Non-Motorized ²			
Office	0	0	0		0	0	0			
Retail	38	188	226		188	0				
Restaurant	48	68	116		68	0	0			
Cinema/Entertainment	0	0	0		0	0	0			
Residential	0	0	0		0	0	0			
Hotel	0	0	0		0	0	0			
All Other Land Uses ³	0	0	0		0	0	0			

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P

²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator

*Indicates computation that has been rounded to the nearest whole number.

APPENDIX D

Intersection Analysis Worksheets

1: (Old) Meridian Road & US-24

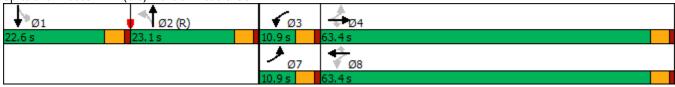
	۶	→	•	•	←	*	1	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	†	7	7	†	7		ર્ન	7		4	7
Traffic Volume (vph)	131	447	13	112	863	16	16	123	218	3	142	688
Future Volume (vph)	131	447	13	112	863	16	16	123	218	3	142	688
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Free	Perm	NA	Free
Protected Phases	7	4		3	8			2			1	
Permitted Phases	4		4	8		8	2		Free	1		Free
Detector Phase	7	4	4	3	8	8	2	2		1	1	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	22.5	22.5		22.5	22.5	
Total Split (s)	10.9	63.4	63.4	10.9	63.4	63.4	23.1	23.1		22.6	22.6	
Total Split (%)	9.1%	52.8%	52.8%	9.1%	52.8%	52.8%	19.3%	19.3%		18.8%	18.8%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5		4.5			4.5	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lag	Lag		Lead	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	C-Max	C-Max		Max	Max	
Act Effct Green (s)	65.3	58.9	58.9	65.3	58.9	58.9		18.6	120.0		18.1	120.0
Actuated g/C Ratio	0.54	0.49	0.49	0.54	0.49	0.49		0.16	1.00		0.15	1.00
v/c Ratio	0.87	0.51	0.02	0.28	0.98	0.02		0.53	0.14		0.95	0.45
Control Delay	68.2	23.2	0.0	13.2	56.8	0.1		54.4	0.2		110.5	0.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0
Total Delay	68.2	23.2	0.0	13.2	56.8	0.1		54.4	0.2		110.5	0.9
LOS	Е	С	Α	В	Е	Α		D	Α		F	Α
Approach Delay		32.6			50.9			21.3			20.0	
Approach LOS		С			D			С			В	

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:, Start of Green

Natural Cycle: 110


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.98

Intersection Signal Delay: 33.9 Intersection LOS: C
Intersection Capacity Utilization 82.7% ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 1: (Old) Meridian Road & US-24

	۶	→	•	•	←	4	†	/	>	ļ	4	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	†	7	ħ	†	7		4	7		4	7
Traffic Volume (vph)	131	447	13	112	863	16	16	123	218	3	142	688
Future Volume (vph)	131	447	13	112	863	16	16	123	218	3	142	688
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.0		4.5	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		0.99	1.00		1.00	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583		1852	1583		1861	1583
Flt Permitted	0.07	1.00	1.00	0.35	1.00	1.00		0.95	1.00		0.57	1.00
Satd. Flow (perm)	127	1863	1583	659	1863	1583		1776	1583		1059	1583
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	136	466	14	117	899	17	17	128	227	3	148	717
RTOR Reduction (vph)	0	0	7	0	0	9	0	0	0	0	0	0
Lane Group Flow (vph)	136	466	7	117	899	8	0	145	227	0	151	717
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	Free	Perm	NA	Free
Protected Phases	7	4		3	8			2			1	
Permitted Phases	4		4	8		8	2		Free	1		Free
Actuated Green, G (s)	65.3	58.9	58.9	65.3	58.9	58.9		18.6	120.0		18.1	120.0
Effective Green, g (s)	65.3	58.9	58.9	65.3	58.9	58.9		18.6	120.0		18.1	120.0
Actuated g/C Ratio	0.54	0.49	0.49	0.54	0.49	0.49		0.16	1.00		0.15	1.00
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5		4.5			4.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)	156	914	776	417	914	776		275	1583		159	1583
v/s Ratio Prot	c0.05	0.25		0.01	c0.48							
v/s Ratio Perm	0.43		0.00	0.14		0.01		0.08	0.14		c0.14	c0.45
v/c Ratio	0.87	0.51	0.01	0.28	0.98	0.01		0.53	0.14		0.95	0.45
Uniform Delay, d1	29.1	20.7	15.6	14.7	30.1	15.6		46.7	0.0		50.5	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00
Incremental Delay, d2	37.6	0.4	0.0	0.4	25.6	0.0		7.1	0.2		59.2	0.9
Delay (s)	66.7	21.2	15.6	15.1	55.7	15.6		53.7	0.2		109.6	0.9
Level of Service	Е	С	В	В	Е	В		D	Α		F	Α
Approach Delay (s)		31.1			50.4			21.1			19.8	
Approach LOS		С			D			С			В	
Intersection Summary												
HCM 2000 Control Delay			33.3	Н	CM 2000	Level of	Service		С			
	CM 2000 Volume to Capacity ratio											
Actuated Cycle Length (s)					um of los				18.0			
Intersection Capacity Utiliz	ation		82.7%	IC	CU Level	of Service)		Е			
Analysis Period (min)			15									

c Critical Lane Group

1: (Old) Meridian Road & US-24

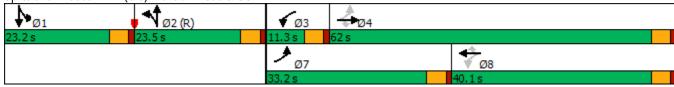
	•	-	•	•	←	*	†	/	ţ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBT	NBR	SBT	SBR	
Lane Configurations	7	†	7	7	†	7	ર્ન	7	4	7	
Traffic Volume (vph)	500	900	9	147	541	28	244	340	254	284	
Future Volume (vph)	500	900	9	147	541	28	244	340	254	284	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	NA	Free	NA	Free	
Protected Phases	7	4		3	8		2		1		
Permitted Phases	4		4	8		8		Free		Free	
Detector Phase	7	4	4	3	8	8	2		1		
Switch Phase											
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0		
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	22.5		22.5		
Total Split (s)	33.2	62.0	62.0	11.3	40.1	40.1	23.5		23.2		
Total Split (%)	27.7%	51.7%	51.7%	9.4%	33.4%	33.4%	19.6%		19.3%		
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5		
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5		
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes		
Recall Mode	None	None	None	None	None	None	C-Max		Max		
Act Effct Green (s)	68.8	57.5	57.5	42.4	35.6	35.6	19.0	120.0	18.7	120.0	
Actuated g/C Ratio	0.57	0.48	0.48	0.35	0.30	0.30	0.16	1.00	0.16	1.00	
v/c Ratio	1.05	1.03	0.01	0.93	1.00	0.05	0.90	0.22	1.00	0.18	
Control Delay	89.5	69.4	0.0	83.0	81.0	0.2	82.0	0.3	104.1	0.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	89.5	69.4	0.0	83.0	81.0	0.2	82.0	0.3	104.1	0.3	
LOS	F	Е	Α	F	F	Α	F	Α	F	Α	
Approach Delay		76.1			78.2		35.6		52.0		
Approach LOS		E			E		D		D		

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:, Start of Green

Natural Cycle: 130


Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.05

Intersection Signal Delay: 65.0 Intersection LOS: E
Intersection Capacity Utilization 99.8% ICU Level of Service F

Analysis Period (min) 15

Splits and Phases: 1: (Old) Meridian Road & US-24

	•	→	\rightarrow	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ		7	7	†	7		ર્ન	7		ર્ન	7
Traffic Volume (vph)	500	900	9	147	541	28	15	244	340	28	254	284
Future Volume (vph)	500	900	9	147	541	28	15	244	340	28	254	284
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.0		4.5	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		1.00	1.00		0.99	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583		1857	1583		1853	1583
Flt Permitted	0.10	1.00	1.00	0.11	1.00	1.00		1.00	1.00		0.99	1.00
Satd. Flow (perm)	186	1863	1583	209	1863	1583		1857	1583		1853	1583
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	510	918	9	150	552	29	15	249	347	29	259	290
RTOR Reduction (vph)	0	0	5	0	0	20	0	0	0	0	0	0
Lane Group Flow (vph)	510	918	4	150	552	9	0	264	347	0	288	290
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Split	NA	Free	Split	NA	Free
Protected Phases	7	4		3	8		2	2		1	1	
Permitted Phases	4		4	8		8			Free			Free
Actuated Green, G (s)	68.8	57.5	57.5	42.4	35.6	35.6		19.0	120.0		18.7	120.0
Effective Green, g (s)	68.8	57.5	57.5	42.4	35.6	35.6		19.0	120.0		18.7	120.0
Actuated g/C Ratio	0.57	0.48	0.48	0.35	0.30	0.30		0.16	1.00		0.16	1.00
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5	4.5		4.5			4.5	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0			3.0	
Lane Grp Cap (vph)	485	892	758	162	552	469		294	1583		288	1583
v/s Ratio Prot	c0.25	0.49		0.05	0.30			c0.14			c0.16	
v/s Ratio Perm	c0.35		0.00	0.27		0.01			0.22			0.18
v/c Ratio	1.05	1.03	0.01	0.93	1.00	0.02		0.90	0.22		1.00	0.18
Uniform Delay, d1	37.0	31.2	16.3	33.1	42.2	29.8		49.5	0.0		50.6	0.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00
Incremental Delay, d2	55.1	37.8	0.0	49.0	38.3	0.0		31.8	0.3		53.0	0.3
Delay (s)	92.1	69.1	16.3	82.2	80.5	29.9		81.4	0.3		103.7	0.3
Level of Service	F	Е	В	F	F	С		F	Α		F	Α
Approach Delay (s)		76.9			78.8			35.3			51.8	
Approach LOS		Е			Е			D			D	
Intersection Summary												
HCM 2000 Control Delay			65.4	Н	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capa	acity ratio		1.04									
Actuated Cycle Length (s)			120.0		um of los				18.0			
Intersection Capacity Utilization	ation		99.8%	IC	CU Level	of Service	!		F			
Analysis Period (min)			15									

Intersection												
Int Delay, s/veh	0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†	7		†	7			7			7
Traffic Vol, veh/h	0	635	25	0	945	5	0	0	70	0	0	110
Future Vol, veh/h	0	635	25	0	945	5	0	0	70	0	0	110
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	350	-	-	375	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	661	26	0	984	5	0	0	73	0	0	115
Major/Minor M	ajor1		ľ	Major2		N	/linor1		N	/linor2		
Conflicting Flow All	-	0	0	-	-	0	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	0	0	0	0
Stage 1	0	-	-	0	-	-	0	0	0	0	0	0
Stage 2	0	-	-	0	-	-	0	0	0	0	0	0
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			0			0		
HCM LOS							A			A		
110111 200							, ,			, ,		
Minor Lang/Major Mumb		IDI n1	EDT	EDD	WDT	WDD	DI n1					
Minor Lane/Major Mvmt	<u> </u>	IBLn1	EBT	EBR	WBT	WBR S	DLIII					
Capacity (veh/h)		-	-	-	-	-	-					
HCM Central Delay (c)		-	-	-	-	-	-					
HCM Long LOS		0	-	-	-	-	0					
HCM Lane LOS HCM 95th %tile Q(veh)		Α	-	-	-	-	Α					
HOW YOU WINE Q(VEN)		-	-	-	-	-	-					

Intersection												
Int Delay, s/veh	0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑	7		†	7			7			7
Traffic Vol, veh/h	0	1075	40	0	620	10	0	0	115	0	0	80
Future Vol, veh/h	0	1075	40	0	620	10	0	0	115	0	0	80
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	350	-	-	375	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	98	98	98	98	98	98	98	98	98	98	98	98
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1097	41	0	633	10	0	0	117	0	0	82
Major/Minor M	ajor1			Major2			/linor1		N	Minor2		
Conflicting Flow All	-	0	0	-	-	0	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	0	0	0	0
Stage 1	0	-	-	0	-	-	0	0	0	0	0	0
Stage 2	0	-	-	0	-	-	0	0	0	0	0	0
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			0			0		
HCM LOS							Α			Α		
Minor Lane/Major Mvmt	N	NBLn1	EBT	EBR	WBT	WBR S	SBI n1					
Capacity (veh/h)	<u> </u>											
HCM Lane V/C Ratio		-	_		_	-						
HCM Control Delay (s)		0		_			0					
HCM Lane LOS		A	-	-	-	-	A					
HCM 95th %tile Q(veh)		-		_		_	-					
110W 70W 70W Q(VCII)												

Intersection												
Int Delay, s/veh	0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†	7		†	7			7			1
Traffic Vol, veh/h	0	635	80	0	975	5	0	0	100	0	0	110
Future Vol, veh/h	0	635	80	0	975	5	0	0	100	0	0	110
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	0	-	-	375	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	661	83	0	1016	5	0	0	104	0	0	115
Major/Minor M	lajor1		N	Major2		Λ	/linor1		N	/linor2		
Conflicting Flow All	<u>-</u>	0	0	<u>viajoi 2</u> -		0	-	_		-	_	_
Stage 1		-	-	_		-	-		-	-	-	<u> </u>
Stage 2	_	_	_	_	_	_	_	_	_	_	_	<u>-</u>
Critical Hdwy	_	_	_	_	_	_	_	_	_	_	_	_
Critical Hdwy Stg 1	_	_	_	_		_	_	_	_	_	_	_
Critical Hdwy Stg 2	_	_	_	_	_	_	_	_	_	_	_	_
Follow-up Hdwy	_	_	_	_	_	_	_	_	_	_	_	_
Pot Cap-1 Maneuver	0	-	-	0	-	_	0	0	0	0	0	0
Stage 1	0	-	-	0	-	-	0	0	0	0	0	0
Stage 2	0	-	-	0	-	-	0	0	0	0	0	0
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			0			0		
HCM LOS	- 0						A			A		
TOW LOO							, ·			,,		
Minor Long/Maior M		IDI1	EDT	EDD	WDT	WDD	`DL1					
Minor Lane/Major Mvmt	. \	NBLn1	EBT	FRK	WBT	WBR S	PRFUI					
Capacity (veh/h)		-	-	-	-	-	-					
HCM Caratast Datas (2)		-	-	-	-	-	-					
HCM Control Delay (s)		0	-	-	-	-	0					
HCM Lane LOS		Α	-	-	-	-	Α					
HCM 95th %tile Q(veh)		-	-	-	-	-	-					

Intersection												
Int Delay, s/veh	0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7		†	7			7			1
Traffic Vol, veh/h	0	1075	85	0	645	10	0	0	140	0	0	80
Future Vol, veh/h	0	1075	85	0	645	10	0	0	140	0	0	80
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	0	-	-	375	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	98	98	98	98	98	98	98	98	98	98	98	98
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1097	87	0	658	10	0	0	143	0	0	82
Major/Minor M	lajor1		N	Major2		N	/linor1		N	/linor2		
Conflicting Flow All	-	0	0	-		0	_	_		-	_	_
Stage 1	-	-	-	-	-	-	-	_	-	-	-	-
Stage 2	-	-	_	_		_	_	_			_	_
Critical Hdwy	_	_	-	_	-	-	-	-	-	-	_	-
Critical Hdwy Stg 1	-	-	-	_	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	0	0	0	0
Stage 1	0	-	-	0	-	-	0	0	0	0	0	0
Stage 2	0	-	-	0	-	-	0	0	0	0	0	0
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			0			0		
HCM LOS							A			A		
Minor Lane/Major Mvmt		NBLn1	EBT	FBR	WBT	WBR S	SBI n1					
Capacity (veh/h)						-						
HCM Lane V/C Ratio		_	_	_	_	_	_					
HCM Control Delay (s)		0	_	_			0					
HCM Lane LOS		A	_	_	-	_	A					
HCM 95th %tile Q(veh)		-	_	_	_	_	-					

Intersection												
Int Delay, s/veh	0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7			7			7			7
Traffic Vol, veh/h	0	900	30	0	1305	35	0	0	100	0	0	155
Future Vol, veh/h	0	900	30	0	1305	35	0	0	100	0	0	155
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	350	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	938	31	0	1359	36	0	0	104	0	0	161
Major/Minor M	lajor1		N	Major2		N	/linor1		N	/linor2		
Conflicting Flow All	-	0	0	_	-	0	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	_	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	0	0	0	0
Stage 1	0	-	-	0	-	-	0	0	0	0	0	0
Stage 2	0	-	-	0	-	-	0	0	0	0	0	0
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			0			0		
HCM LOS							Α			Α		
Minor Lane/Major Mvmt	·	NBLn1	EBT	EBR	WBT	WBR S	SBLn1					
Capacity (veh/h)		_	_	_		_	_					
HCM Lane V/C Ratio		_	_	_	_	_	_					
HCM Control Delay (s)		0	-	_	_	_	0					
HCM Lane LOS		A	_	_	_	_	A					
HCM 95th %tile Q(veh)		-	-	-	-	-	-					
2(7011)												

Intersection												
Int Delay, s/veh	0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7		†	7			7			7
Traffic Vol, veh/h	0	1620	45	0	845	30	0	0	150	0	0	130
Future Vol, veh/h	0	1620	45	0	845	30	0	0	150	0	0	130
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	350	-	-	375	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	98	98	98	98	98	98	98	98	98	98	98	98
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1653	46	0	862	31	0	0	153	0	0	133
Major/Minor Major/Minor	ajor1			Major2		N	/linor1		N	/linor2		
Conflicting Flow All	-	0	0	_	-	0	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	0	0	0	0
Stage 1	0	-	-	0	-	-	0	0	0	0	0	0
Stage 2	0	-	-	0	-	-	0	0	0	0	0	0
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			0			0		
HCM LOS							A			A		
Minor Lane/Major Mvmt	N	NBLn1	EBT	EBR	WBT	WBR S	CDI n1					
	ľ	NDLIII	EDI	EDK	VVDI	WDK	DDLIII					
Capacity (veh/h)		-	-	-	-	-	-					
HCM Control Doloy (c)		-	-	-	-	-	-					
HCM Control Delay (s) HCM Lane LOS		0	-	-	-	-	0					
HCM 95th %tile Q(veh)		Α	-	-	-	-	Α					
HOW YOU WINE Q(Ven)		-	-	-	-	-	-					

Intersection												
Int Delay, s/veh	0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7		^	7			7			7
Traffic Vol, veh/h	0	900	85	0	1335	35	0	0	130	0	0	155
Future Vol, veh/h	0	900	85	0	1335	35	0	0	130	0	0	155
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	0	-	-	375	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	938	89	0	1391	36	0	0	135	0	0	161
Major/Minor M	lajor1		N	Major2		N	/linor1		Λ	/linor2		
Conflicting Flow All	-	0	0	-		0	-	_		-	_	_
Stage 1	_	-	-	-	_	-	_	_	_	_	_	_
Stage 2	_	_	_	_	_	_	_	_	_	_	_	_
Critical Hdwy	_	-	_	_	_	_	_	_	_	_	_	_
Critical Hdwy Stg 1	_	_	_	_	_	_	_	_	_	_	_	_
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	_	_	_	_	_	_	_	_	_	_	_	_
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	0	0	0	0
Stage 1	0	_	_	0	_	_	0	0	0	0	0	0
Stage 2	0	-	-	0	-	-	0	0	0	0	0	0
Platoon blocked, %		_	_		_	_						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Mov Cap-2 Maneuver	-	-	_	-	-	-	_	_	_	-	_	_
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	_	-	_	_	-	_	_	_	_	_	_
- -												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			0			0		
HCM LOS	- 0						A			A		
							,,			,,		
Minor Lane/Major Mvmt	N	NBLn1	EBT	EBR	WBT	WBR S	SBI n1					
Capacity (veh/h)												
HCM Lane V/C Ratio		_	_	_	_	_	_					
HCM Control Delay (s)		0					0					
HCM Lane LOS		A	-	_	-	-	A					
HCM 95th %tile Q(veh)				-								
How roun rounc a(ven)												

Intersection												
Int Delay, s/veh	0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		^	7		^	7			7			7
Traffic Vol, veh/h	0	1620	90	0	870	30	0	0	175	0	0	130
Future Vol, veh/h	0	1620	90	0	870	30	0	0	175	0	0	130
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	0	-	-	375	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	98	98	98	98	98	98	98	98	98	98	98	98
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1653	92	0	888	31	0	0	179	0	0	133
Major/Minor M	ajor1		N	Major2		N	/linor1		N	/linor2		
Conflicting Flow All	-	0	0	-	-	0	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	-	-	-	-	-	-	-
Pot Cap-1 Maneuver	0	-	-	0	-	-	0	0	0	0	0	0
Stage 1	0	-	-	0	-	-	0	0	0	0	0	0
Stage 2	0	-	-	0	-	-	0	0	0	0	0	0
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			0			0			0		
HCM LOS							Α			Α		
Minor Lane/Major Mvmt	N	NBLn1	EBT	EBR	WBT	WBR S	SBLn1					
Capacity (veh/h)		-	-	-	-	-	-					
HCM Lane V/C Ratio		-	-	-	-		-					
HCM Control Delay (s)		0	-	-	-	-	0					
HCM Lane LOS		A	_	_	_	_	A					
HCM 95th %tile Q(veh)		_	-	-	-	-	_					

	•	_	$\overline{}$	_	•	•	•	†	<u></u> →	<u> </u>	1	1
Lane Group	EBL	EBT	€BR	₩BL	WBT	WBR	NBL	NBT	, NBR	SBL	▼ SBT	SBR
Lane Configurations	T T	<u> </u>	7	<u> </u>		7	NDL	↑ ↑	TVDIX	SDL N	↑ ↑	7
Traffic Volume (vph)	140	460	89	195	840	20	25	135	190	10	150	500
Future Volume (vph)	140	460	89	195	840	20	25	135	190	10	150	500
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free
Protected Phases	риітрі 7	4	r Cilli	3	8	r Cilli	рит+рі 5	2	1166	ριτι τ ρι 1	6	1166
Permitted Phases	4	4	4	8	U	8	2		Free	6	U	Free
Detector Phase	7	4	4	3	8	8	5	2	1166	1	6	1100
Switch Phase	,			3	U	U	J	2		,	U	
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5		9.5	22.5	
Total Split (s)	13.3	71.1	71.1	15.2	73.0	73.0	9.5	24.2		9.5	24.2	
Total Split (%)	11.1%	59.3%	59.3%	12.7%	60.8%	60.8%	7.9%	20.2%		7.9%	20.2%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)	72.7	64.0	64.0	76.3	65.7	65.7	31.1	30.1	120.0	29.3	26.3	120.0
Actuated g/C Ratio	0.61	0.53	0.53	0.64	0.55	0.55	0.26	0.25	1.00	0.24	0.22	1.00
v/c Ratio	0.75	0.50	0.11	0.42	0.90	0.02	0.09	0.17	0.13	0.03	0.21	0.34
Control Delay	44.6	19.6	2.7	10.2	36.4	0.1	35.6	38.0	0.2	35.0	41.9	0.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	44.6	19.6	2.7	10.2	36.4	0.1	35.6	38.0	0.2	35.0	41.9	0.6
LOS	D	В	Α	В	D	Α	D	D	А	С	D	Α
Approach Delay		22.5			30.9			17.3			10.5	
Approach LOS		С			С			В			В	

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.90

Intersection Signal Delay: 22.2 Intersection Capacity Utilization 75.3% ICU Level of Service D

Analysis Period (min) 15

	۶	→	•	•	←	•	4	†	/	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	7	ሻ	•	7	ሻ	^	7	ሻ	^	7
Traffic Volume (veh/h)	140	460	89	195	840	20	25	135	190	10	150	500
Future Volume (veh/h)	140	460	89	195	840	20	25	135	190	10	150	500
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	152	500	97	212	913	22	27	147	0	11	163	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	200	941	797	457	972	824	363	923		365	881	
Arrive On Green	0.06	0.50	0.50	0.07	0.52	0.52	0.02	0.26	0.00	0.01	0.25	0.00
Sat Flow, veh/h	1781	1870	1585	1781	1870	1585	1781	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	152	500	97	212	913	22	27	147	0	11	163	0
Grp Sat Flow(s), veh/h/ln	1781	1870	1585	1781	1870	1585	1781	1777	1585	1781	1777	1585
Q Serve(g_s), s	4.9	21.8	3.9	6.8	55.0	0.8	1.3	3.8	0.0	0.6	4.3	0.0
Cycle Q Clear(g_c), s	4.9	21.8	3.9	6.8	55.0	0.8	1.3	3.8	0.0	0.6	4.3	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	200	941	797	457	972	824	363	923		365	881	
V/C Ratio(X)	0.76	0.53	0.12	0.46	0.94	0.03	0.07	0.16		0.03	0.19	
Avail Cap(c_a), veh/h	227	1038	880	483	1068	905	393	923		417	881	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	26.9	20.2	15.8	14.8	27.1	14.0	32.3	34.3	0.0	33.0	35.6	0.0
Incr Delay (d2), s/veh	12.3	0.5	0.1	0.7	14.5	0.0	0.1	0.4	0.0	0.0	0.5	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.8	9.5	1.4	2.8	27.3	0.3	0.6	1.7	0.0	0.2	2.0	0.0
Unsig. Movement Delay, s/veh		7.10		2.0	27.10	0.0	0.0		0.0	0.2	2.0	0.0
LnGrp Delay(d),s/veh	39.3	20.7	15.9	15.6	41.5	14.1	32.4	34.7	0.0	33.1	36.0	0.0
LnGrp LOS	D	C	В	В	D	В	C	C	0.0	С	D	0.0
Approach Vol, veh/h		749			1147			174	А		174	А
Approach Delay, s/veh		23.8			36.2			34.3	А		35.9	
Approach LOS		C C			D			C			D	
											D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	6.0	35.7	13.5	64.8	7.5	34.2	11.4	66.9				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	19.7	10.7	66.6	5.0	19.7	8.8	68.5				
Max Q Clear Time (g_c+I1), s	2.6	5.8	8.8	23.8	3.3	6.3	6.9	57.0				
Green Ext Time (p_c), s	0.0	0.6	0.1	4.0	0.0	0.7	0.1	5.4				
Intersection Summary												
HCM 6th Ctrl Delay			31.9									
HCM 6th LOS			С									
Notes												

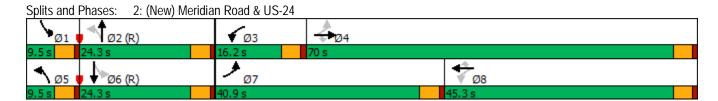
Unsignalized Delay for [NBR, SBR] is excluded from calculations of the approach delay and intersection delay.

	۶	→	•	•	←	•	1	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	7	7	†	7	ሻ	^	7	7	44	7
Traffic Volume (vph)	525	895	101	200	475	25	70	265	175	45	265	175
Future Volume (vph)	525	895	101	200	475	25	70	265	175	45	265	175
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8	2		Free	6		Free
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5		9.5	22.5	
Total Split (s)	40.9	70.0	70.0	16.2	45.3	45.3	9.5	24.3		9.5	24.3	
Total Split (%)	34.1%	58.3%	58.3%	13.5%	37.8%	37.8%	7.9%	20.3%		7.9%	20.3%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5		4.5	4.5	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)	81.2	65.0	65.0	54.5	42.8	42.8	26.2	22.2	120.0	26.2	22.2	120.0
Actuated g/C Ratio	0.68	0.54	0.54	0.45	0.36	0.36	0.22	0.18	1.00	0.22	0.18	1.00
v/c Ratio	0.92	0.97	0.12	0.93	0.78	0.04	0.34	0.44	0.12	0.22	0.44	0.12
Control Delay	46.9	48.3	3.8	78.5	44.5	0.1	41.2	46.8	0.2	38.2	46.8	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	46.9	48.3	3.8	78.5	44.5	0.1	41.2	46.8	0.2	38.2	46.8	0.2
LOS	D	D	Α	Е	D	Α	D	D	Α	D	D	А
Approach Delay		44.8			52.6			30.0			29.2	
Approach LOS		D			D			С			С	

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green


Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.97

Intersection Signal Delay: 41.8 Intersection LOS: D
Intersection Capacity Utilization 84.7% ICU Level of Service E

Analysis Period (min) 15

	۶	→	•	•	—	•	1	†	/	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	ሻ	•	7	ሻ	^	7	ሻ	^↑	7
Traffic Volume (veh/h)	525	895	101	200	475	25	70	265	175	45	265	175
Future Volume (veh/h)	525	895	101	200	475	25	70	265	175	45	265	175
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	571	973	110	217	516	27	76	288	0	49	288	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	608	1004	851	243	778	659	250	664		245	635	
Arrive On Green	0.21	0.54	0.54	0.09	0.42	0.42	0.04	0.19	0.00	0.03	0.18	0.00
Sat Flow, veh/h	1781	1870	1585	1781	1870	1585	1781	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	571	973	110	217	516	27	76	288	0	49	288	0
Grp Sat Flow(s), veh/h/ln	1781	1870	1585	1781	1870	1585	1781	1777	1585	1781	1777	1585
Q Serve(g_s), s	22.0	60.3	4.1	9.1	26.7	1.2	4.2	8.6	0.0	2.7	8.7	0.0
Cycle Q Clear(g_c), s	22.0	60.3	4.1	9.1	26.7	1.2	4.2	8.6	0.0	2.7	8.7	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	608	1004	851	243	778	659	250	664		245	635	
V/C Ratio(X)	0.94	0.97	0.13	0.89	0.66	0.04	0.30	0.43		0.20	0.45	
Avail Cap(c_a), veh/h	767	1021	865	252	778	659	250	664		260	635	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	21.1	26.8	13.8	30.5	28.3	20.8	38.4	43.2	0.0	38.5	44.0	0.0
Incr Delay (d2), s/veh	17.0	20.8	0.1	29.6	2.1	0.0	0.7	2.1	0.0	0.4	2.3	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	11.4	31.3	1.5	5.8	12.3	0.5	1.9	4.0	0.0	1.2	4.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	38.1	47.7	13.9	60.1	30.4	20.9	39.1	45.2	0.0	38.9	46.4	0.0
LnGrp LOS	D	D	В	E	С	С	D	D		D	D	
Approach Vol, veh/h		1654			760			364	А		337	Α
Approach Delay, s/veh		42.1			38.5			44.0			45.3	
Approach LOS		D			D			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	8.5	26.9	15.6	68.9	9.5	25.9	30.2	54.4				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	19.8	11.7	65.5	5.0	19.8	36.4	40.8				
Max Q Clear Time (g_c+I1), s	4.7	10.6	11.1	62.3	6.2	10.7	24.0	28.7				
Green Ext Time (p_c), s	0.0	1.2	0.0	2.1	0.0	1.2	1.6	2.7				
Intersection Summary												
HCM 6th Ctrl Delay			41.8									
HCM 6th LOS			D									

User approved pedestrian interval to be less than phase max green.
Unsignalized Delay for [NBR, SBR] is excluded from calculations of the approach delay and intersection delay.

	•	→	•	•	•	•	1	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	7	†	7	ሻ	^	7	*	^	7
Traffic Volume (vph)	140	490	150	225	840	20	120	190	190	30	180	500
Future Volume (vph)	140	490	150	225	840	20	120	190	190	30	180	500
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8	2		Free	6		Free
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5		9.5	22.5	
Total Split (s)	13.0	67.3	67.3	17.7	72.0	72.0	10.0	25.5		9.5	25.0	
Total Split (%)	10.8%	56.1%	56.1%	14.8%	60.0%	60.0%	8.3%	21.3%		7.9%	20.8%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5		-0.5	-0.5	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)	70.7	61.7	61.7	78.0	65.5	65.5	31.4	27.8	120.0	28.4	22.5	120.0
Actuated g/C Ratio	0.59	0.51	0.51	0.65	0.55	0.55	0.26	0.23	1.00	0.24	0.19	1.00
v/c Ratio	0.76	0.56	0.18	0.51	0.90	0.02	0.45	0.25	0.13	0.11	0.30	0.34
Control Delay	47.1	22.3	2.7	11.8	37.0	0.1	41.6	40.9	0.2	34.6	44.0	0.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	47.1	22.3	2.7	11.8	37.0	0.1	41.6	40.9	0.2	34.6	44.0	0.6
LOS	D	С	Α	В	D	Α	D	D	Α	С	D	Α
Approach Delay		22.9			31.1			25.6			13.1	
Approach LOS		С			С			С			В	

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.90

Intersection Signal Delay: 24.0 Intersection LOS: C
Intersection Capacity Utilization 76.9% ICU Level of Service D

Analysis Period (min) 15

	۶	→	•	•	←	•	4	†	/	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	ሻ	↑	7	7	^	7	ሻ	^	7
Traffic Volume (veh/h)	140	490	150	225	840	20	120	190	190	30	180	500
Future Volume (veh/h)	140	490	150	225	840	20	120	190	190	30	180	500
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	152	533	163	245	913	22	130	207	0	33	196	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	209	926	784	436	974	825	374	895		359	831	
Arrive On Green	0.06	0.49	0.49	0.09	0.52	0.52	0.05	0.25	0.00	0.03	0.23	0.00
Sat Flow, veh/h	1781	1870	1585	1781	1870	1585	1781	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	152	533	163	245	913	22	130	207	0	33	196	0
Grp Sat Flow(s), veh/h/ln	1781	1870	1585	1781	1870	1585	1781	1777	1585	1781	1777	1585
Q Serve(g_s), s	5.0	24.2	6.9	7.8	54.9	0.8	6.0	5.6	0.0	1.7	5.4	0.0
Cycle Q Clear(q_c), s	5.0	24.2	6.9	7.8	54.9	0.8	6.0	5.6	0.0	1.7	5.4	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	209	926	784	436	974	825	374	895		359	831	
V/C Ratio(X)	0.73	0.58	0.21	0.56	0.94	0.03	0.35	0.23		0.09	0.24	
Avail Cap(c_a), veh/h	232	987	836	483	1060	898	374	895		383	831	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	26.6	21.4	17.1	15.5	26.9	14.0	33.7	35.7	0.0	33.0	37.3	0.0
Incr Delay (d2), s/veh	9.9	0.7	0.1	1.2	14.4	0.0	0.6	0.6	0.0	0.1	0.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.6	10.6	2.6	3.2	27.3	0.3	3.0	2.5	0.0	0.7	2.4	0.0
Unsig. Movement Delay, s/veh			2.0	0.2	27.10	0.0	0.0	2.0	0.0	0		0.0
LnGrp Delay(d),s/veh	36.5	22.1	17.2	16.7	41.3	14.0	34.3	36.3	0.0	33.1	37.9	0.0
LnGrp LOS	D	C	В	В	D	В	C	D	0.0	С	D	0.0
Approach Vol, veh/h		848			1180			337	А		229	А
Approach Delay, s/veh		23.8			35.7			35.5	А		37.2	А
Approach LOS		C C			D			D			D	
											D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.8	34.2	14.5	63.4	10.0	32.1	11.5	66.5				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	21.0	13.2	62.8	5.5	20.5	8.5	67.5				
Max Q Clear Time (g_c+l1), s	3.7	7.6	9.8	26.2	8.0	7.4	7.0	56.9				
Green Ext Time (p_c), s	0.0	1.0	0.2	4.5	0.0	0.9	0.1	5.1				
Intersection Summary												
HCM 6th Ctrl Delay			31.9									
HCM 6th LOS			С									
Notes												

Unsignalized Delay for [NBR, SBR] is excluded from calculations of the approach delay and intersection delay.

	•	→	•	•	←	*	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, T	†	7	J.	†	7	7	44	7	¥	^	7
Traffic Volume (vph)	525	920	150	225	475	25	135	305	175	65	290	175
Future Volume (vph)	525	920	150	225	475	25	135	305	175	65	290	175
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8	2		Free	6		Free
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5		9.5	22.5	
Total Split (s)	39.9	70.0	70.0	17.2	47.3	47.3	9.6	23.3		9.5	23.2	
Total Split (%)	33.3%	58.3%	58.3%	14.3%	39.4%	39.4%	8.0%	19.4%		7.9%	19.3%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5		-0.5	-0.5	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)	83.1	65.9	65.9	59.7	46.5	46.5	25.8	21.3	120.0	24.8	19.2	120.0
Actuated g/C Ratio	0.69	0.55	0.55	0.50	0.39	0.39	0.22	0.18	1.00	0.21	0.16	1.00
v/c Ratio	0.90	0.98	0.17	0.96	0.72	0.04	0.75	0.53	0.12	0.35	0.56	0.12
Control Delay	39.6	50.6	2.4	82.8	38.9	0.1	65.0	49.1	0.2	42.0	50.7	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	39.6	50.6	2.4	82.8	38.9	0.1	65.0	49.1	0.2	42.0	50.7	0.2
LOS	D	D	Α	F	D	Α	E	D	Α	D	D	Α
Approach Delay		42.4			51.2			38.7			33.0	
Approach LOS		D			D			D			С	

Intersection Summary

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.98

Intersection Signal Delay: 42.2 Intersection LOS: D
Intersection Capacity Utilization 89.7% ICU Level of Service E

Analysis Period (min) 15

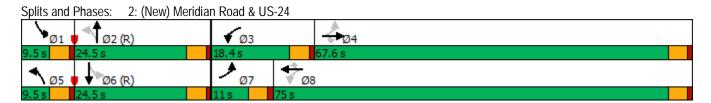
	۶	→	•	•	←	4	1	†	/	/	†	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑	7	ሻ	↑	7	ሻ	^	7	7	^	7
Traffic Volume (veh/h)	525	920	150	225	475	25	135	305	175	65	290	175
Future Volume (veh/h)	525	920	150	225	475	25	135	305	175	65	290	175
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	571	1000	163	245	516	27	147	332	0	71	315	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	626	1024	868	269	876	742	229	580	0.00	222	577	0.00
Arrive On Green	0.19	0.55	0.55	0.11	0.47	0.47	0.05	0.16	0.00	0.05	0.16	0.00
Sat Flow, veh/h	1781	1870	1585	1781	1870	1585	1781	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	571	1000	163	245	516	27	147	332	0	71	315	0
Grp Sat Flow(s), veh/h/ln	1781	1870	1585	1781	1870	1585	1781	1777	1585	1781	1777	1585
Q Serve(g_s), s	18.4	62.4	6.2	11.3	24.3	1.1	5.6	10.3	0.0	3.9	9.8	0.0
Cycle Q Clear(g_c), s	18.4	62.4	6.2	11.3	24.3	1.1	5.6	10.3	0.0	3.9	9.8	0.0
Prop In Lane	1.00	1001	1.00	1.00	07/	1.00	1.00	500	1.00	1.00		1.00
Lane Grp Cap(c), veh/h	626	1024	868	269	876	742	229	580		222	577	
V/C Ratio(X)	0.91	0.98	0.19	0.91	0.59	0.04	0.64	0.57		0.32	0.55	
Avail Cap(c_a), veh/h	822	1029	872	269	876	742	229	580	1.00	222	577	1.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	17.1	26.4	13.7	35.6	23.4	17.2	44.8	46.3	0.0	39.6	46.2	0.0
Incr Delay (d2), s/veh	11.9	22.4	0.1	32.2	1.0	0.0	5.9	4.1	0.0	0.8	3.7	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	9.6	32.6	2.2	9.6	10.8	0.4	1.9	4.9	0.0	1.8	4.6	0.0
Unsig. Movement Delay, s/veh		40.0	12.0	47.0	24 5	17.0	E0 7	EO 4	0.0	40 E	40 O	0.0
LnGrp Delay(d),s/veh	29.0 C	48.8 D	13.8 B	67.9 E	24.5 C	17.3 B	50.7 D	50.4 D	0.0	40.5 D	49.9 D	0.0
LnGrp LOS			D	<u>C</u>		D	U		۸	U		Λ
Approach Vol, veh/h		1734			788			479	Α		386	Α
Approach LOS		39.0			37.7			50.5			48.1	
Approach LOS		D			D			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	9.5	23.6	17.2	69.7	9.6	23.5	26.7	60.2				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	18.8	12.7	65.5	5.1	18.7	35.4	42.8				
Max Q Clear Time (g_c+l1), s	5.9	12.3	13.3	64.4	7.6	11.8	20.4	26.3				
Green Ext Time (p_c), s	0.0	1.1	0.0	8.0	0.0	1.1	1.8	3.1				
Intersection Summary												
HCM 6th Ctrl Delay			41.3									
HCM 6th LOS			D									
Notoc												

Unsignalized Delay for [NBR, SBR] is excluded from calculations of the approach delay and intersection delay.

	ၨ	→	•	•	←	•	4	†	/	>	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	†	7	7	†	7	7	^	7	7	^	7
Traffic Volume (vph)	195	645	150	225	1200	35	40	185	275	10	210	700
Future Volume (vph)	195	645	150	225	1200	35	40	185	275	10	210	700
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8	2		Free	6		Free
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5		9.5	22.5	
Total Split (s)	11.0	67.6	67.6	18.4	75.0	75.0	9.5	24.5		9.5	24.5	
Total Split (%)	9.2%	56.3%	56.3%	15.3%	62.5%	62.5%	7.9%	20.4%		7.9%	20.4%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5		-0.5	-0.5	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)	73.0	66.0	66.0	81.6	71.0	71.0	29.2	28.1	120.0	26.8	22.4	120.0
Actuated g/C Ratio	0.61	0.55	0.55	0.68	0.59	0.59	0.24	0.23	1.00	0.22	0.19	1.00
v/c Ratio	1.28	0.68	0.17	0.62	1.18	0.04	0.17	0.24	0.19	0.04	0.35	0.48
Control Delay	192.4	24.2	2.6	14.3	117.3	0.1	36.5	39.2	0.3	34.5	45.0	1.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	192.4	24.2	2.6	14.3	117.3	0.1	36.5	39.2	0.3	34.5	45.0	1.0
LOS	F	С	Α	В	F	Α	D	D	Α	С	D	Α
Approach Delay		54.1			98.6			17.5			11.4	
Approach LOS		D			F			В			В	

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green


Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.28

Intersection Signal Delay: 56.0 Intersection LOS: E
Intersection Capacity Utilization 97.3% ICU Level of Service F

Analysis Period (min) 15

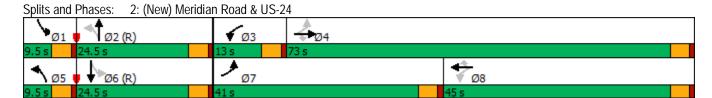
	۶	→	•	•	←	•	4	†	/	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	7	ሻ	•	7	ሻ	44	7	ሻ	^	7
Traffic Volume (veh/h)	195	645	150	225	1200	35	40	185	275	10	210	700
Future Volume (veh/h)	195	645	150	225	1200	35	40	185	275	10	210	700
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	212	701	163	245	1304	38	43	201	0	11	228	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	164	1068	905	401	1107	938	268	710		269	642	
Arrive On Green	0.06	0.57	0.57	0.08	0.59	0.59	0.04	0.20	0.00	0.02	0.18	0.00
Sat Flow, veh/h	1781	1870	1585	1781	1870	1585	1781	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	212	701	163	245	1304	38	43	201	0	11	228	0
Grp Sat Flow(s), veh/h/ln	1781	1870	1585	1781	1870	1585	1781	1777	1585	1781	1777	1585
Q Serve(g_s), s	7.0	30.8	5.9	6.6	71.0	1.2	2.3	5.8	0.0	0.6	6.7	0.0
Cycle Q Clear(q_c), s	7.0	30.8	5.9	6.6	71.0	1.2	2.3	5.8	0.0	0.6	6.7	0.0
Prop In Lane	1.00	00.0	1.00	1.00	7 110	1.00	1.00	0.0	1.00	1.00	0.7	1.00
Lane Grp Cap(c), veh/h	164	1068	905	401	1107	938	268	710		269	642	
V/C Ratio(X)	1.29	0.66	0.18	0.61	1.18	0.04	0.16	0.28		0.04	0.35	
Avail Cap(c_a), veh/h	164	1068	905	475	1107	938	285	710		321	642	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	38.9	17.6	12.3	15.0	24.5	10.2	37.7	40.7	0.0	38.9	43.0	0.0
Incr Delay (d2), s/veh	169.7	1.5	0.1	1.7	89.9	0.0	0.3	1.0	0.0	0.1	1.5	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	12.7	13.2	2.1	2.6	56.7	0.4	1.0	2.6	0.0	0.3	3.1	0.0
Unsig. Movement Delay, s/vel		10.2	۷.۱	2.0	30.7	0.7	1.0	2.0	0.0	0.5	5.1	0.0
LnGrp Delay(d),s/veh	208.6	19.1	12.4	16.6	114.4	10.3	38.0	41.7	0.0	39.0	44.6	0.0
LnGrp LOS	F	В	В	В	F	В	D	D	0.0	D	D	0.0
Approach Vol, veh/h	<u> </u>	1076			1587			244	A		239	A
Approach Delay, s/veh		55.4			96.8			41.1	А		44.3	A
Approach LOS		55.4 E			90.0 F			41.1 D			44.3 D	
Approach LOS		E			Г			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	6.0	28.0	13.5	72.5	8.3	25.7	11.0	75.0				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	20.0	13.9	63.1	5.0	20.0	6.5	70.5				
Max Q Clear Time (g_c+I1), s	2.6	7.8	8.6	32.8	4.3	8.7	9.0	73.0				
Green Ext Time (p_c), s	0.0	0.9	0.3	6.2	0.0	1.0	0.0	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			74.3									
HCM 6th LOS			Ε									
Notes												

Unsignalized Delay for [NBR, SBR] is excluded from calculations of the approach delay and intersection delay.

	ၨ	→	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	7	†	7	ሻ	^	7	7	44	7
Traffic Volume (vph)	730	1250	150	225	720	30	90	365	350	65	375	225
Future Volume (vph)	730	1250	150	225	720	30	90	365	350	65	375	225
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8	2		Free	6		Free
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5		9.5	22.5	
Total Split (s)	41.0	73.0	73.0	13.0	45.0	45.0	9.5	24.5		9.5	24.5	
Total Split (%)	34.2%	60.8%	60.8%	10.8%	37.5%	37.5%	7.9%	20.4%		7.9%	20.4%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5		-0.5	-0.5	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)	82.0	69.0	69.0	50.0	41.0	41.0	26.8	22.4	120.0	26.0	20.5	120.0
Actuated g/C Ratio	0.68	0.58	0.58	0.42	0.34	0.34	0.22	0.19	1.00	0.22	0.17	1.00
v/c Ratio	1.30	1.27	0.17	1.26	1.23	0.05	0.59	0.60	0.24	0.39	0.68	0.15
Control Delay	179.0	154.3	5.6	182.3	152.6	0.2	52.2	49.8	0.4	42.4	53.0	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	179.0	154.3	5.6	182.3	152.6	0.2	52.2	49.8	0.4	42.4	53.0	0.2
LOS	F	F	Α	F	F	Α	D	D	Α	D	D	Α
Approach Delay		152.3			154.7			28.6			34.1	
Approach LOS		F			F			С			С	

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green


Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.30

Intersection Signal Delay: 113.9 Intersection LOS: F
Intersection Capacity Utilization 107.0% ICU Level of Service G

Analysis Period (min) 15

	۶	→	*	•	←	4	1	†	~	/	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	7	ሻ	†	7	ሻ	^	7	ሻ	^	7
Traffic Volume (veh/h)	730	1250	150	225	720	30	90	365	350	65	375	225
Future Volume (veh/h)	730	1250	150	225	720	30	90	365	350	65	375	225
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	793	1359	163	245	783	33	98	397	0	71	408	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	609	1075	911	194	639	542	204	607		207	607	
Arrive On Green	0.31	0.57	0.57	0.08	0.34	0.34	0.05	0.17	0.00	0.05	0.17	0.00
Sat Flow, veh/h	1781	1870	1585	1781	1870	1585	1781	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	793	1359	163	245	783	33	98	397	0	71	408	0
Grp Sat Flow(s), veh/h/ln	1781	1870	1585	1781	1870	1585	1781	1777	1585	1781	1777	1585
Q Serve(g_s), s	37.0	69.0	5.8	9.0	41.0	1.7	5.5	12.5	0.0	3.9	12.9	0.0
Cycle Q Clear(g_c), s	37.0	69.0	5.8	9.0	41.0	1.7	5.5	12.5	0.0	3.9	12.9	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	609	1075	911	194	639	542	204	607		207	607	
V/C Ratio(X)	1.30	1.26	0.18	1.27	1.23	0.06	0.48	0.65		0.34	0.67	
Avail Cap(c_a), veh/h	609	1075	911	194	639	542	204	607		207	607	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	35.7	25.5	12.1	32.4	39.5	26.6	39.7	46.4	0.0	39.0	46.6	0.0
Incr Delay (d2), s/veh	147.5	126.2	0.1	153.9	114.9	0.0	1.8	5.4	0.0	1.0	5.8	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	41.5	66.2	2.1	11.9	38.9	0.6	2.5	6.0	0.0	1.8	6.2	0.0
Unsig. Movement Delay, s/veh		1517	10.0	10/ 2	1544	2//	41 F	F1 0	0.0	40.0	F2 4	0.0
LnGrp Delay(d),s/veh	183.2	151.7	12.2	186.3	154.4	26.6	41.5	51.9	0.0	40.0	52.4	0.0
LnGrp LOS	F	F 2215	В	F	FF	С	D	D 405	Λ	D	D 470	Δ.
Approach Vol, veh/h		2315			1061			495	А		479	Α
Approach Delay, s/veh		152.7			157.8			49.8			50.6	
Approach LOS		ŀ			ŀ			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	9.5	24.5	13.0	73.0	9.5	24.5	41.0	45.0				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.0	20.0	8.5	68.5	5.0	20.0	36.5	40.5				
Max Q Clear Time (g_c+l1), s	5.9	14.5	11.0	71.0	7.5	14.9	39.0	43.0				
Green Ext Time (p_c), s	0.0	1.2	0.0	0.0	0.0	1.2	0.0	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			131.0									
HCM 6th LOS			F									

User approved pedestrian interval to be less than phase max green.
Unsignalized Delay for [NBR, SBR] is excluded from calculations of the approach delay and intersection delay.

	ᄼ	→	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	† †	7	7	^	7	7	^	7	¥	^	7
Traffic Volume (vph)	195	675	215	255	1200	35	135	240	275	30	240	700
Future Volume (vph)	195	675	215	255	1200	35	135	240	275	30	240	700
Turn Type	Prot	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4	8		8	2		Free	6		Free
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5		9.5	22.5	
Total Split (s)	17.0	56.0	56.0	23.0	62.0	62.0	15.0	31.4		9.6	26.0	
Total Split (%)	14.2%	46.7%	46.7%	19.2%	51.7%	51.7%	12.5%	26.2%		8.0%	21.7%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5		-0.5	-0.5	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)	12.1	50.7	50.7	69.3	54.1	54.1	41.8	35.6	120.0	33.1	26.8	120.0
Actuated g/C Ratio	0.10	0.42	0.42	0.58	0.45	0.45	0.35	0.30	1.00	0.28	0.22	1.00
v/c Ratio	0.61	0.49	0.29	0.64	0.82	0.05	0.39	0.25	0.19	0.10	0.33	0.48
Control Delay	59.7	26.2	3.5	18.8	33.2	0.1	33.0	35.4	0.3	29.8	42.1	1.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	59.7	26.2	3.5	18.8	33.2	0.1	33.0	35.4	0.3	29.8	42.1	1.0
LOS	Е	С	Α	В	С	Α	С	D	Α	С	D	Α
Approach Delay		27.7			30.0			20.0			12.1	
Approach LOS		С			С			С			В	

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.82

Intersection Signal Delay: 23.7 Intersection LOS: C
Intersection Capacity Utilization 66.2% ICU Level of Service C

Analysis Period (min) 15

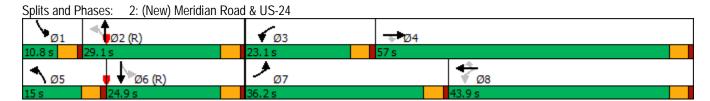
	۶	→	•	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1,1	^	7	*	^	7	Ť	^	7	*	^	7
Traffic Volume (veh/h)	195	675	215	255	1200	35	135	240	275	30	240	700
Future Volume (veh/h)	195	675	215	255	1200	35	135	240	275	30	240	700
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	212	734	234	277	1304	38	147	261	0	33	261	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	285	1407	628	399	1513	675	448	1160		422	1000	
Arrive On Green	0.08	0.40	0.40	0.11	0.43	0.43	0.08	0.33	0.00	0.03	0.28	0.00
Sat Flow, veh/h	3456	3554	1585	1781	3554	1585	1781	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	212	734	234	277	1304	38	147	261	0	33	261	0
Grp Sat Flow(s), veh/h/ln	1728	1777	1585	1781	1777	1585	1781	1777	1585	1781	1777	1585
Q Serve(g_s), s	7.2	18.9	12.6	10.6	39.9	1.7	6.7	6.4	0.0	1.6	6.8	0.0
Cycle Q Clear(g_c), s	7.2	18.9	12.6	10.6	39.9	1.7	6.7	6.4	0.0	1.6	6.8	0.0
Prop In Lane	1.00	10.7	1.00	1.00	07.7	1.00	1.00	0.1	1.00	1.00	0.0	1.00
Lane Grp Cap(c), veh/h	285	1407	628	399	1513	675	448	1160	1.00	422	1000	1.00
V/C Ratio(X)	0.74	0.52	0.37	0.69	0.86	0.06	0.33	0.23		0.08	0.26	
Avail Cap(c_a), veh/h	374	1540	687	481	1718	766	474	1160		448	1000	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	53.8	27.6	25.7	19.6	31.2	20.3	25.9	29.4	0.0	28.8	33.4	0.0
Incr Delay (d2), s/veh	5.6	0.3	0.4	3.4	4.3	0.0	0.4	0.5	0.0	0.1	0.6	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.4	8.0	4.8	4.6	17.6	0.6	2.9	2.8	0.0	0.7	3.1	0.0
Unsig. Movement Delay, s/veh		0.0	1.0	1.0	17.0	0.0	2.7	2.0	0.0	0.7	0.1	0.0
LnGrp Delay(d),s/veh	59.4	27.9	26.1	23.0	35.6	20.3	26.3	29.8	0.0	28.9	34.1	0.0
LnGrp LOS	57.4 E	C	C	C	D	C	C	C	0.0	C	C	0.0
Approach Vol, veh/h		1180			1619			408	A		294	A
Approach Delay, s/veh		33.2			33.0			28.6	Л		33.5	Λ
Approach LOS		33.2 C			33.0 C			20.0 C			33.5 C	
											C	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.8	43.2	17.5	51.5	13.2	37.8	13.9	55.1				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	5.1	26.9	18.5	51.5	10.5	21.5	12.5	57.5				
Max Q Clear Time (g_c+l1), s	3.6	8.4	12.6	20.9	8.7	8.8	9.2	41.9				
Green Ext Time (p_c), s	0.0	1.5	0.4	6.8	0.1	1.3	0.2	8.7				
Intersection Summary												
HCM 6th Ctrl Delay			32.6									
HCM 6th LOS			С									
Notos												

Unsignalized Delay for [NBR, SBR] is excluded from calculations of the approach delay and intersection delay.

	•	→	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	14.54	† †	7	7	† †	7	ሻ	^	7	7	44	7
Traffic Volume (vph)	730	1275	200	250	720	30	155	405	350	85	400	225
Future Volume (vph)	730	1275	200	250	720	30	155	405	350	85	400	225
Turn Type	Prot	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	Free
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4	8		8	2		Free	6		Free
Detector Phase	7	4	4	3	8	8	5	2		1	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	9.5	22.5	22.5	9.5	22.5	22.5	9.5	22.5		9.5	22.5	
Total Split (s)	36.2	57.0	57.0	23.1	43.9	43.9	15.0	29.1		10.8	24.9	
Total Split (%)	30.2%	47.5%	47.5%	19.3%	36.6%	36.6%	12.5%	24.3%		9.0%	20.8%	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5		-0.5	-0.5	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	None	None	None	None	None	None	C-Max		None	C-Max	
Act Effct Green (s)	31.1	52.7	52.7	56.9	39.3	39.3	37.4	26.8	120.0	29.8	22.9	120.0
Actuated g/C Ratio	0.26	0.44	0.44	0.47	0.33	0.33	0.31	0.22	1.00	0.25	0.19	1.00
v/c Ratio	0.89	0.89	0.27	0.84	0.68	0.05	0.66	0.56	0.24	0.40	0.64	0.15
Control Delay	56.2	39.6	3.5	56.1	38.2	0.2	45.6	45.1	0.4	37.1	50.6	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	56.2	39.6	3.5	56.1	38.2	0.2	45.6	45.1	0.4	37.1	50.6	0.2
LOS	Е	D	Α	Е	D	Α	D	D	Α	D	D	Α
Approach Delay		41.8			41.6			28.0			33.0	
Approach LOS		D			D			С			С	

Cycle Length: 120
Actuated Cycle Length: 120

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green


Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.89

Intersection Signal Delay: 37.9 Intersection LOS: D
Intersection Capacity Utilization 82.1% ICU Level of Service E

Analysis Period (min) 15

	۶	→	•	•	—	•	1	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1,4	^	7	7	^	7	ሻ	^	7	7	^	7
Traffic Volume (veh/h)	730	1275	200	250	720	30	155	405	350	85	400	225
Future Volume (veh/h)	730	1275	200	250	720	30	155	405	350	85	400	225
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	793	1386	217	272	783	33	168	440	0	92	435	0
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	871	1520	678	307	1078	481	328	904		302	783	
Arrive On Green	0.25	0.43	0.43	0.13	0.30	0.30	0.09	0.25	0.00	0.06	0.22	0.00
Sat Flow, veh/h	3456	3554	1585	1781	3554	1585	1781	3554	1585	1781	3554	1585
Grp Volume(v), veh/h	793	1386	217	272	783	33	168	440	0	92	435	0
Grp Sat Flow(s), veh/h/ln	1728	1777	1585	1781	1777	1585	1781	1777	1585	1781	1777	1585
Q Serve(g_s), s	26.7	43.9	10.9	12.5	23.6	1.8	8.4	12.6	0.0	4.7	13.0	0.0
Cycle Q Clear(g_c), s	26.7	43.9	10.9	12.5	23.6	1.8	8.4	12.6	0.0	4.7	13.0	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	871	1520	678	307	1078	481	328	904		302	783	
V/C Ratio(X)	0.91	0.91	0.32	0.88	0.73	0.07	0.51	0.49		0.30	0.56	
Avail Cap(c_a), veh/h	927	1570	700	363	1182	527	330	904		302	783	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	43.5	32.2	22.8	29.0	37.3	29.7	31.1	38.1	0.0	33.4	41.5	0.0
Incr Delay (d2), s/veh	12.4	8.3	0.3	19.8	2.0	0.1	1.3	1.9	0.0	0.6	2.8	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	12.8	20.1	4.1	6.9	10.5	0.7	3.7	5.7	0.0	2.1	6.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	55.9	40.5	23.0	48.8	39.4	29.8	32.4	39.9	0.0	34.0	44.4	0.0
LnGrp LOS	E	D	С	D	D	С	С	D		С	D	
Approach Vol, veh/h		2396			1088			608	Α		527	Α
Approach Delay, s/veh		44.0			41.4			37.9			42.6	
Approach LOS		D			D			D			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	10.8	34.5	19.3	55.3	14.9	30.5	34.3	40.4				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	6.3	24.6	18.6	52.5	10.5	20.4	31.7	39.4				
Max Q Clear Time (g_c+l1), s	6.7	14.6	14.5	45.9	10.4	15.0	28.7	25.6				
Green Ext Time (p_c), s	0.0	2.0	0.3	4.9	0.0	1.3	1.0	4.7				
Intersection Summary												
HCM 6th Ctrl Delay			42.4									
HCM 6th LOS			D									
Notos												

Unsignalized Delay for [NBR, SBR] is excluded from calculations of the approach delay and intersection delay.

2.4					
W/RI	WRD	MRT	MRD	SRI	SBT
WDL					
C					^
					435
					435
					0
Stop		Free		Free	Free
-	None	-	None	-	None
-	0	-	100	100	-
e, # 0	-	0	-	-	0
0	-	0	-	-	0
92	92	92	92	92	92
					2
					473
U	150	300	43	141	4/3
Minor1	N	Major1	<u> </u>	Major2	
-	190	0	0	423	0
-	_	_	_	-	-
_	_	_	_	_	_
	6 9/		_	111	_
_			_		
			-		
			-		-
		-	-		-
	820	-	-	1133	-
	-	-	-	-	-
0	-	-	-	-	-
		-	-		-
-	820	-	-	1133	-
_	-	_	_	-	_
	_		_	_	
_			_		-
-	-	-	-	-	-
WB		NB		SB	
		U			
D					
			MDI n1	SBL	SBT
nt	NBT	NBRV	VDLIII	JUL	
nt	NBT -	NBRV -			
nt	NBT -	-	820	1133	-
	NBT - -	-	820 0.192	1133 0.125	-
nt	NBT - -	-	820 0.192 10.4	1133 0.125 8.6	- - -
	NBT - - -	-	820 0.192	1133 0.125	-
	WBL 0 0 0 Stop 0 0 92 2 0 Minor1	WBL WBR 0 145 0 145 0 0 Stop Stop - None - 0 - 92 92 2 2 2 0 158 Minor1 N - 190 6.94 3.32 0 820 0 - 0 - 0 - WB 10.4	WBL WBR NBT Image: Control of the	WBL WBR NBT NBR 0 145 350 40 0 145 350 40 0 0 0 0 Stop Stop Free Free - None - None - None - None - None - None - 0 - 100 - 0 - 0 - 0 - 0 92 92 92 92 2 2 2 2 2 2 2 2 2 2 380 43 43 43 Minor1 Major1 Major1 Major1 Major1 Major1 Major1 Major1 Major2 Major3 Minor3 Minor3 Minor3 Minor4 Major4 Major4 Major4 Major4 Major4 Major5 Major4 Major5 Major6 Major6 Major7 Ma	WBL WBR NBT NBR SBL Image: color of the color o

Intersection						
Int Delay, s/veh	1.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL	VVDIX	<u>↑</u>	NDIX 7	JDL Š	† †
Traffic Vol, veh/h	0	110	510	25	110	570
Future Vol, veh/h	0	110	510	25	110	570
Conflicting Peds, #/hr	0	0	0	0	0	0
					Free	
Sign Control RT Channelized	Stop	Stop None	Free	Free None	riee -	Free None
	-	0	-	100	100	None -
Storage Length Veh in Median Storage,		-	0	100	100	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	120	554	27	120	620
Major/Minor N	1inor1	N	Najor1	N	Major2	
Conflicting Flow All	_	277	0	0	581	0
Stage 1	_		-	-	-	-
Stage 2		_	_	_	_	_
Critical Hdwy	_	6.94	_	_	4.14	_
Critical Hdwy Stg 1	_	-	_	_	7.17	_
Critical Hdwy Stg 2	_	_	-		_	_
Follow-up Hdwy	_	3.32			2.22	_
Pot Cap-1 Maneuver	0	720	-	-	989	
	0	720	-	-	909	-
Stage 1			-	-	-	
Stage 2	0	-	-	-	-	-
Platoon blocked, %		700	-	-	000	-
Mov Cap-1 Maneuver	-	720	-	-	989	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	11		0		1.5	
HCM LOS	В		U		1.0	
HOW LOS	D					
Minor Lane/Major Mvmt		NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	720	989	-
HCM Lane V/C Ratio		-	-	0.166	0.121	-
HCM Control Delay (s)		-	-		9.1	-
HCM Lane LOS		-	-	В	Α	-
HCM 95th %tile Q(veh)		-	-	0.6	0.4	-

Intersection						
Int Delay, s/veh	2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
	WDL					
Lane Configurations	0	7	^	7	100	^
Traffic Vol, veh/h	0	145	500	40	130	585
Future Vol, veh/h	0	145	500	40	130	585
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	100	100	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	158	543	43	141	636
IVIVIIIL I IOW	U	150	343	43	141	030
Major/Minor N	/linor1	N	Major1	ľ	Major2	
Conflicting Flow All	-	272	0	0	586	0
Stage 1	_		-	-	-	-
Stage 2	_	_	_	_	_	_
Critical Hdwy		6.94		_	4.14	_
Critical Hdwy Stg 1	_	0.74			4.14	
			-			
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	0	726	-	-	985	-
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	-	726	-	-	985	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	_	_	-	-	-	_
Stage 2	_	_	_	_	_	_
Olugo 2						
Approach	WB		NB		SB	
HCM Control Delay, s	11.3		0		1.7	
HCM LOS	В					
					0.51	
Minor Lane/Major Mvm	ıt	NBT	NBRV		SBL	SBT
Capacity (veh/h)		-	-	120	985	-
HCM Lane V/C Ratio		-	-	0.217	0.143	-
HCM Control Delay (s)		-	-	11.3	9.3	-
HCM Lane LOS		-	-	В	A	-
HCM 95th %tile Q(veh))	-	-	0.8	0.5	-
,						

Intersection						
Int Delay, s/veh	1.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	^	7	ሻ	^
Traffic Vol, veh/h	0	110	805	25	110	750
Future Vol, veh/h	0	110	805	25	110	750
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	_	0	_	100	100	-
Veh in Median Storage,	, # 0	-	0	-	-	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	120	875	27	120	815
IVIVIIIL FIOW	U	120	0/3	21	120	013
Major/Minor N	1inor1	N	Major1	Λ	/lajor2	
Conflicting Flow All	-	438	0	0	902	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.94	-	-	4.14	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	0	567	-	-	749	-
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	_	567	-	-	749	_
Mov Cap-2 Maneuver	-	-	_	_	-	_
Stage 1	_	_	_	-	_	_
Stage 2	_	_	_	_	_	_
Stage 2						
Approach	WB		NB		SB	
HCM Control Delay, s	13		0		1.4	
HCM LOS	В					
Minor Lane/Major Mvmt	ŀ	NBT	NRDV	VBLn1	SBL	SBT
	l	INDI	NDRV			SDI
Capacity (veh/h)		-	-	567	749	-
HCM Cardad Ratio		-	-	0.211	0.16	-
HCM Control Delay (s)		-	-	13	10.7	-
HCM Lane LOS		-	-	В	В	-
HCM 95th %tile Q(veh)				0.8	0.6	

Intersection						
Int Delay, s/veh	5.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		7	^	7	ች	^
Traffic Vol, veh/h	65	110	300	25	280	155
Future Vol, veh/h	65	110	300	25	280	155
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	100	0	_	200	125	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	92	92	92	92	92	92
	2	2	2	2		2
Heavy Vehicles, %					2	
Mvmt Flow	71	120	326	27	304	168
Major/Minor I	Minor1	N	Major1	N	Najor2	
Conflicting Flow All	1018	163	0	0	353	0
Stage 1	326	-	-	-	-	-
Stage 2	692	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	_	-	_	_	_
Critical Hdwy Stg 2	5.84	_	_	_	_	_
Follow-up Hdwy	3.52	3.32	_	_	2.22	_
Pot Cap-1 Maneuver	233	853	_	_	1202	_
Stage 1	704	-	_	_	1202	_
Stage 2	458	_				_
Platoon blocked, %	430	-	-	-	-	-
	17/	853	-	-	1202	
Mov Cap-1 Maneuver	174		-	-	1202	-
Mov Cap-2 Maneuver	313	-	-	-	-	-
Stage 1	704	-	-	-	-	-
Stage 2	342	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13.6		0		5.8	
HCM LOS	В				0.0	
110111200						
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1W		SBL
Capacity (veh/h)		-	-	313	853	1202
HCM Lane V/C Ratio		-	-	0.226	0.14	0.253
HCM Control Delay (s)		-	-	19.8	9.9	9
HCM Lane LOS		-	-	С	Α	Α
HCM 95th %tile Q(veh)	-	-	0.9	0.5	1

Intersection						
Int Delay, s/veh	4.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	VV DL	WBK	<u>₩</u>	NDK	JDL	↑ ↑
Traffic Vol, veh/h	85	170	375	20	240	330
Future Vol, veh/h	85	170	375	20	240	330
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Slop -	None		None	-	None
Storage Length	100	0	-	200	125	-
Veh in Median Storage		-	0	200	123	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
	2	2	2			2
Heavy Vehicles, %				2	2	
Mvmt Flow	92	185	408	22	261	359
Major/Minor I	Minor1	N	/lajor1	Λ	/lajor2	
Conflicting Flow All	1110	204	0	0	430	0
Stage 1	408	-	-	-	-	-
Stage 2	702	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	203	803	-	-	1126	-
Stage 1	640	-	-	-	-	-
Stage 2	453	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	156	803	-	-	1126	-
Mov Cap-2 Maneuver	312	-	-	-	-	-
Stage 1	640	-	-	-	-	-
Stage 2	348	-	-	-	-	-
J						
Annroach	WD		ND		CD	
Approach	WB		NB		SB	
HCM Control Delay, s	14.3		0		3.9	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1W	/BLn2	SBL
Capacity (veh/h)		-	-	312	803	1126
HCM Lane V/C Ratio		_	-	0.296		0.232
HCM Control Delay (s)		-	-		10.8	9.2
HCM Lane LOS		-	-	С	В	A
HCM 95th %tile Q(veh)	-	-	4.0	0.9	0.9
	,					

Intersection						
Int Delay, s/veh	5.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	VVDL	VVDIX	↑ ↑	NDK *	JDL Š	↑ ↑
Traffic Vol, veh/h	65	135	425	30	315	270
Future Vol, veh/h	65	135	425	30	315	270
Conflicting Peds, #/hr	0	0	423	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Slup -	None		None	-	None
Storage Length	100	0	_	200	125	-
Veh in Median Storage		-	0	200	125	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
	2		2			2
Heavy Vehicles, %		2		2	2	
Mvmt Flow	71	147	462	33	342	293
Major/Minor N	/linor1	N	Major1	Λ	Najor2	
Conflicting Flow All	1293	231	0	0	495	0
Stage 1	462		-	_	-	-
Stage 2	831	_	-	_		_
Critical Hdwy	6.84	6.94	_	_	4.14	_
Critical Hdwy Stg 1	5.84	-	_	_	-	_
Critical Hdwy Stg 2	5.84	_	_	_	_	_
Follow-up Hdwy	3.52	3.32	_	_	2.22	_
Pot Cap-1 Maneuver	154	771	_	_	1065	_
Stage 1	601	-	_	_	-	_
Stage 2	388	_	_		_	_
Platoon blocked, %	300		_	_		_
Mov Cap-1 Maneuver	105	771	-		1065	_
Mov Cap-1 Maneuver	239	- // 1	_	_	1005	_
Stage 1	601		-	-	-	-
	263		-	-		-
Stage 2	203	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	15.8		0		5.4	
HCM LOS	С					
Minor Long/Major M.		NDT	NDDV	VDI ~1V	/DI ~2	CDI
Minor Lane/Major Mvm	t	NBT	MRKA	VBLn1W		SBL
Capacity (veh/h)		-	-	239	771	1065
					(1) 7(1)	0.321
HCM Lane V/C Ratio		-		0.296	0.19	
HCM Lane V/C Ratio HCM Control Delay (s)		-	-	26.3	10.8	10
HCM Lane V/C Ratio						

Intersection							
Int Delay, s/veh	4.7						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	<u> </u>	₩DK	^	T T	JDL T	† †	
Traffic Vol, veh/h	85	200	640	25	245	505	
Future Vol, veh/h	85	200	640	25	245	505	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	100	0	-	200	125	-	
Veh in Median Storage		-	0	-	-	0	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	92	217	696	27	266	549	
Major/Minor	Ninar1		Notor1		Malara		ŀ
	Minor1		Major1		Major2		
Conflicting Flow All	1503	348	0	0	723	0	
Stage 1	696	-	-	-	-	-	
Stage 2	807	-	-	-	-	-	
Critical Hdwy	6.84	6.94	-	-	4.14	-	
Critical Hdwy Stg 1	5.84	-	-	-	-	-	
Critical Hdwy Stg 2	5.84	-	-	-	-	-	
Follow-up Hdwy	3.52	3.32	-	-	2.22	-	
Pot Cap-1 Maneuver	112	648	-	-	875	-	
Stage 1	456	_	-	-		_	
Stage 2	399	_	_	_	-	_	
Platoon blocked, %	377		_	_		_	
Mov Cap-1 Maneuver	~ 78	648			875		
			-	-		-	
Mov Cap-2 Maneuver	234	-	-	-	-	-	
Stage 1	456	-	-	-	-	-	
Stage 2	278	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	18.3		0		3.6		
HCM LOS	C		U		3.0		
HOW LOS	C						
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1V	VBLn2	SBL	
Capacity (veh/h)		-	-	234	648	875	
HCM Lane V/C Ratio		-	-	0.395		0.304	
HCM Control Delay (s)		_	_	30.1	13.3	10.9	
HCM Lane LOS		_	_	D	В	В	
HCM 95th %tile Q(veh))	_	-	1.8	1.5	1.3	
	,			1.0	1.0	1.0	
Notes							
~: Volume exceeds cap	pacity	\$: De	elay ex	ceeds 3	800s	+: Com	1
	,						

Intersection				
Intersection Delay, s/veh	4.5			
Intersection LOS	А			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	331	119	130	75
Demand Flow Rate, veh/h	338	122	132	77
Vehicles Circulating, veh/h	38	182	122	155
Vehicles Exiting, veh/h	194	72	254	149
Ped Vol Crossing Leg, #/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	5.0	4.1	3.9	3.7
Approach LOS	Α	А	А	Α
Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
		LIK	LIIX	LIK
Assumed Moves	LTR	LTR	LTR	LTR
Assumed Moves RT Channelized	LTR	LTR	LTR	LTR
Assumed Moves			LTR 1.000	
Assumed Moves RT Channelized	LTR	LTR	LTR	LTR
Assumed Moves RT Channelized Lane Util	LTR 1.000 2.609 4.976	LTR 1.000 2.609 4.976	LTR 1.000	LTR 1.000
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h	1.000 2.609 4.976 338	LTR 1.000 2.609 4.976 122	1.000 2.609 4.976 132	LTR 1.000 2.609 4.976 77
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	LTR 1.000 2.609 4.976	LTR 1.000 2.609 4.976	LTR 1.000 2.609 4.976	LTR 1.000 2.609 4.976
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor	1.000 2.609 4.976 338	LTR 1.000 2.609 4.976 122	1.000 2.609 4.976 132	1.000 2.609 4.976 77 1178 0.973
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h	1.000 2.609 4.976 338 1327 0.980 331	1.000 2.609 4.976 122 1146 0.979	1.000 2.609 4.976 132 1218 0.984 130	1.000 2.609 4.976 77 1178 0.973
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h	1.000 2.609 4.976 338 1327 0.980 331 1301	1.000 2.609 4.976 122 1146 0.979 119	1.000 2.609 4.976 132 1218 0.984 130 1199	1.000 2.609 4.976 77 1178 0.973 75
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	1.000 2.609 4.976 338 1327 0.980 331 1301 0.255	1.000 2.609 4.976 122 1146 0.979	1.000 2.609 4.976 132 1218 0.984 130	1.000 2.609 4.976 77 1178 0.973 75 1146 0.065
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh	1.000 2.609 4.976 338 1327 0.980 331 1301 0.255 5.0	1.000 2.609 4.976 122 1146 0.979 119 1122 0.106 4.1	1.000 2.609 4.976 132 1218 0.984 130 1199 0.108 3.9	1.000 2.609 4.976 77 1178 0.973 75
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	1.000 2.609 4.976 338 1327 0.980 331 1301 0.255	1.000 2.609 4.976 122 1146 0.979 119 1122 0.106	1.000 2.609 4.976 132 1218 0.984 130 1199 0.108	1.000 2.609 4.976 77 1178 0.973 75 1146 0.065

Intersection				
Intersection Delay, s/veh	4.9			
Intersection LOS	А			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	288	109	261	119
Demand Flow Rate, veh/h	294	111	266	121
Vehicles Circulating, veh/h	66	266	182	227
Vehicles Exiting, veh/h	282	182	177	150
Ped Vol Crossing Leg, #/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	4.8	4.4	5.3	4.3
Approach LOS	А	А	Α	А
Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Follow-Up Headway, s	2.609	2.609	2.609	2.609
Critical Headway, s	4.976	4.976	4.976	4.976
Entry Flow, veh/h	294	111	266	121
Cap Entry Lane, veh/h	1290	1052	1146	1095
Entry HV Adj Factor	0.981	0.978	0.981	0.982
Flow Entry, veh/h	288	109	261	119
Cap Entry, veh/h	1266	1029	1124	1075
V/C Ratio	0.228	0.106	0.232	0.111
V/C Ratio Control Delay, s/veh		0.106 4.4	5.3	0.111 4.3
V/C Ratio	0.228	0.106		

Intersection				
Intersection Delay, s/veh	4.7			
Intersection LOS	А			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	375	130	130	92
Demand Flow Rate, veh/h	383	133	132	94
Vehicles Circulating, veh/h	38	182	167	166
Vehicles Exiting, veh/h	222	117	254	149
Ped Vol Crossing Leg, #/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	5.3	4.2	4.1	3.8
Approach LOS	Α	А	А	А
Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Follow-Up Headway, s	2.609	2.609	2.609	2.609
Critical Headway, s	4.976	4.976	4.976	4.976
Entry Flow, veh/h	383	133	132	94
Cap Entry Lane, veh/h	1327	1146	1164	1165
- · · · · · · · - ·				
Entry HV Adj Factor	0.980	0.979	0.984	0.978
Flow Entry, veh/h	375	0.979 130	130	92
Flow Entry, veh/h Cap Entry, veh/h	375 1301	0.979 130 1122	130 1145	92 1139
Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	375 1301 0.289	0.979 130 1122 0.116	130	92 1139 0.081
Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh	375 1301 0.289 5.3	0.979 130 1122 0.116 4.2	130 1145 0.113 4.1	92 1139
Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	375 1301 0.289	0.979 130 1122 0.116	130 1145 0.113	92 1139 0.081

Intersection				
Intersection Delay, s/veh	4.8			
Intersection LOS	А			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	299	136	261	125
Demand Flow Rate, veh/h	305	139	266	127
Vehicles Circulating, veh/h	66	266	94	255
Vehicles Exiting, veh/h	316	94	277	150
Ped Vol Crossing Leg, #/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	4.9	4.7	4.8	4.5
Approach LOS	Α	Α	А	А
Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
		LIIV		
Assumed Moves	LTR	LTR	LTR	LTR
Assumed Moves				
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s	LTR 1.000 2.609	LTR 1.000 2.609	LTR 1.000 2.609	LTR 1.000 2.609
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s	LTR 1.000 2.609 4.976	LTR 1.000 2.609 4.976	LTR 1.000 2.609 4.976	LTR 1.000 2.609 4.976
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h	1.000 2.609 4.976 305	LTR 1.000 2.609 4.976 139	LTR 1.000 2.609 4.976 266	1.000 2.609 4.976 127
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	1.000 2.609 4.976 305 1290	LTR 1.000 2.609 4.976 139 1052	LTR 1.000 2.609 4.976 266 1254	LTR 1.000 2.609 4.976 127 1064
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor	1.000 2.609 4.976 305 1290 0.981	1.000 2.609 4.976 139 1052 0.979	1.000 2.609 4.976 266 1254 0.981	1.000 2.609 4.976 127 1064 0.983
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h	1.000 2.609 4.976 305 1290 0.981 299	1.000 2.609 4.976 139 1052 0.979	1.000 2.609 4.976 266 1254 0.981 261	1.000 2.609 4.976 127 1064 0.983 125
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h	1.000 2.609 4.976 305 1290 0.981 299 1266	1.000 2.609 4.976 139 1052 0.979 136 1030	1.000 2.609 4.976 266 1254 0.981 261 1229	1.000 2.609 4.976 127 1064 0.983 125
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	1.000 2.609 4.976 305 1290 0.981 299 1266 0.236	1.000 2.609 4.976 139 1052 0.979 136 1030 0.132	1.000 2.609 4.976 266 1254 0.981 261 1229 0.212	1.000 2.609 4.976 127 1064 0.983 125 1045 0.119
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh	1.000 2.609 4.976 305 1290 0.981 299 1266 0.236 4.9	1.000 2.609 4.976 139 1052 0.979 136 1030 0.132 4.7	1.000 2.609 4.976 266 1254 0.981 261 1229 0.212 4.8	1.000 2.609 4.976 127 1064 0.983 125 1045 0.119 4.5
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	1.000 2.609 4.976 305 1290 0.981 299 1266 0.236	1.000 2.609 4.976 139 1052 0.979 136 1030 0.132	1.000 2.609 4.976 266 1254 0.981 261 1229 0.212	1.000 2.609 4.976 127 1064 0.983 125 1045 0.119

Intersection						
Int Delay, s/veh	4.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	₩.	LDK	NDL	4	<u>301</u>	אטכ
Traffic Vol, veh/h	5 0	70	60	원 80	30	60
Future Vol, veh/h	50	70	60	80	30	60
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	54	76	65	87	33	65
				-		
	/linor2		Major1		/lajor2	
Conflicting Flow All	283	66	98	0	-	0
Stage 1	66	-	-	-	-	-
Stage 2	217	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	707	998	1495	-	_	-
Stage 1	957	_	_	_	-	_
Stage 2	819	_	_	_	_	-
Platoon blocked, %	017			_	_	_
Mov Cap-1 Maneuver	674	998	1495		_	_
	674	770	1473	-		
Mov Cap-2 Maneuver	913		-	-		-
Stage 1		-	-	-	-	-
Stage 2	819	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	10.1		3.2		0	
HCM LOS	В		5.2		U	
TIGIVI LOS	U					
Minor Lane/Major Mvm	t	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		1495	-	831	-	-
HCM Lane V/C Ratio		0.044	-	0.157	-	-
HCM Control Delay (s)		7.5	0	10.1	-	-
HCM Lane LOS		A	A	В	_	_
HCM 95th %tile Q(veh)		0.1	-	0.6	_	_
		0.1		3.0		

Intersection						
Int Delay, s/veh	4.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	f)	
Traffic Vol, veh/h	50	90	65	70	60	70
Future Vol, veh/h	50	90	65	70	60	70
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	54	98	71	76	65	76
Major/Minor I	Minor2	ı	Major1	N.	/lajor2	
Conflicting Flow All	321	103	141	0	- najoiz	0
Stage 1	103	103	141	U	-	U
Stage 2	218	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12		-	-
Critical Hdwy Stg 1	5.42	0.22	4.12			-
Critical Hdwy Stg 2	5.42		-		-	-
Follow-up Hdwy		3.318	2 218		_	
Pot Cap-1 Maneuver	673		1442		-	-
Stage 1	921	932	1442		_	-
Stage 2	818	-	-	-	-	-
Platoon blocked, %	010	-	-	-	-	-
Mov Cap-1 Maneuver	639	952	1442	-	-	-
Mov Cap-1 Maneuver	639	932	1442	-	_	-
Stage 1	874	-	-	-	-	-
<u> </u>	818	-	-	_	_	-
Stage 2	010	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	10.5		3.7		0	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1442	-	810	-	- ODIT
HCM Lane V/C Ratio		0.049		0.188	_	_
HCM Control Delay (s)		7.6	0	10.5	_	_
HCM Lane LOS		Α.	A	В	_	_
HCM 95th %tile Q(veh)	0.2	-	0.7	-	-
	,			J.,		

Intersection						
Int Delay, s/veh	4.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	₩.	LDIN	NDL	4	1 ₀	JUIN
Traffic Vol, veh/h	50	70	60	8 0	45	60
Future Vol, veh/h	50	70	60	80	45	60
Conflicting Peds, #/hr	0	0	0	00	0	0
					Free	Free
Sign Control	Stop	Stop	Free	Free		
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	54	76	65	87	49	65
Major/Minor N	/linor2	N	Major1	١	/lajor2	
Conflicting Flow All	299	82	114	0	-	0
Stage 1	82	-	117	-	_	-
Stage 2	217	_	_		_	_
Critical Hdwy	6.42	6.22	4.12		_	
Critical Hdwy Stg 1	5.42	0.22	4.12	_	_	
Critical Hdwy Stg 2	5.42	-	-		-	
, ,		3.318	2 210	-	-	-
				-	-	-
Pot Cap-1 Maneuver	692	978	1475	-	-	-
Stage 1	941	-	-	-	-	-
Stage 2	819	-	-	-	-	-
Platoon blocked, %		070	4.475	-	-	-
Mov Cap-1 Maneuver	660	978	1475	-	-	-
Mov Cap-2 Maneuver	660	-	-	-	-	-
Stage 1	898	-	-	-	-	-
Stage 2	819	-	-	-	-	-
Approach	EB		NB		SB	
	10.3		3.2		0	
HCM Control Delay, s			3.2		U	
HCM LOS	В					
Minor Lane/Major Mvm	t	NBL	NBT E	EBLn1	SBT	SBR
Capacity (veh/h)		1475	_		-	-
HCM Lane V/C Ratio		0.044	_	0.16	_	-
HCM Control Delay (s)		7.6	0	10.3	-	_
HCM Lane LOS		A	A	В	_	_
HCM 95th %tile Q(veh)		0.1	-	0.6	-	_
		311		3.0		

Intersection						
Int Delay, s/veh	4.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
		LDI	NDL			אוטכ
Lane Configurations	¥	.00	/ [4	₽	70
Traffic Vol, veh/h	50	90	65	70	65	70
Future Vol, veh/h	50	90	65	70	65	70
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag	e,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	54	98	71	76	71	76
IVIVIIIL I IUW	54	70	7 1	70	71	70
Major/Minor	Minor2	1	Major1	Ν	/lajor2	
Conflicting Flow All	327	109	147	0	_	0
Stage 1	109	_	_	_	-	-
Stage 2	218	_	_	_		_
Critical Hdwy	6.42	6.22	4.12	_	_	_
Critical Hdwy Stg 1	5.42	- 0.22	7.12	_	_	_
	5.42		<u> </u>		-	
Critical Hdwy Stg 2		2 210	2 210	-	-	
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	667	945	1435	-	-	-
Stage 1	916	-	-	-	-	-
Stage 2	818	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	632	945	1435	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	868	_	_	-	-	-
Stage 2	818	_	_	_	_	_
Stugo Z	510					
Approach	EB		NB		SB	
HCM Control Delay, s	10.5		3.7		0	
HCM LOS	В					
Minor Lane/Major Mvr	nt	NBL	NBT I		SBT	SBR
0 11 / 1 // 1		1435	-	803	-	-
Capacity (veh/h)						_
Capacity (veh/h) HCM Lane V/C Ratio		0.049	-	0.19	-	
HCM Lane V/C Ratio)		0	0.19	-	-
HCM Lane V/C Ratio HCM Control Delay (s)	0.049 7.6	0	10.5		-
HCM Lane V/C Ratio		0.049			-	

Intersection												
Int Delay, s/veh	5.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	85	55	30	5	50	35	30	10	5	35	10	70
Future Vol, veh/h	85	55	30	5	50	35	30	10	5	35	10	70
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	:,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	92	60	33	5	54	38	33	11	5	38	11	76
Major/Minor N	Major1		<u> </u>	Major2			Vinor1			Minor2		
Conflicting Flow All	92	0	0	93	0	0	388	363	77	352	360	73
Stage 1	-	-	-	-	-	-	261	261	-	83	83	-
Stage 2	-	-	-	-	-	-	127	102	-	269	277	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
	2.218	-	-	2.218	-	-	3.518		3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1503	-	-	1501	-	-	571	565	984	603	567	989
Stage 1	-	-	-	-	-	-	744	692	-	925	826	-
Stage 2	-	-	-	-	-	-	877	811	-	737	681	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1503	-	-	1501	-	-	492	526	984	560	528	989
Mov Cap-2 Maneuver	-	-	-	-	-	-	492	526	-	560	528	-
Stage 1	-	-	-	-	-	-	696	647	-	865	823	-
Stage 2	-	-	-	-	-	-	796	808	-	674	637	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	3.8			0.4			12.5			10.7		
HCM LOS							В			В		
Minor Lane/Major Mvm	ıt ſ	VBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1			
Capacity (veh/h)		529	1503	_		1501		-				
HCM Lane V/C Ratio		0.092		-		0.004			0.166			
HCM Control Delay (s)		12.5	7.6	0	-	7.4	0	-				
HCM Lane LOS		В	A	A	_	A	A	_	В			
HCM 95th %tile Q(veh))	0.3	0.2	-	-	0	-	-	0.6			

Intersection												
Int Delay, s/veh	5.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	70	45	25	5	35	40	25	10	5	45	10	50
Future Vol, veh/h	70	45	25	5	35	40	25	10	5	45	10	50
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	76	49	27	5	38	43	27	11	5	49	11	54
Major/Minor N	Major1		ľ	Major2		ľ	Minor1		N	Minor2		
Conflicting Flow All	81	0	0	76	0	0	317	306	63	293	298	60
Stage 1	-	-	-	-	-	-	215	215	-	70	70	-
Stage 2	-	-	-	-	-	-	102	91	-	223	228	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1517	-	-	1523	-	-	636	608	1002	659	614	1005
Stage 1	-	-	-	-	-	-	787	725	-	940	837	-
Stage 2	-	-	-	-	-	-	904	820	-	780	715	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1517	-	-	1523	-	-	568	575	1002	619	580	1005
Mov Cap-2 Maneuver	-	-	-	-	-	-	568	575	-	619	580	-
Stage 1	-	-	-	-	-	-	746	687	-	891	834	-
Stage 2	-	-	-	-	-	-	841	818	-	724	678	-
J												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	3.7			0.5			11.4			10.6		
HCM LOS							В			В		
Minor Lane/Major Mvm	nt N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBLn1			
Capacity (veh/h)		602	1517	_		1523						
HCM Lane V/C Ratio		0.072	0.05	_		0.004	_		0.152			
HCM Control Delay (s)		11.4	7.5	0	-	7.4	0	-				
HCM Lane LOS		В	Α.	A	_	Α	A	_	В			
HCM 95th %tile Q(veh))	0.2	0.2	-	-	0	-	-	0.5			
2												

Intersection												
Int Delay, s/veh	5.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	85	55	30	5	50	35	30	10	5	35	10	70
Future Vol, veh/h	85	55	30	5	50	35	30	10	5	35	10	70
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	:,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	92	60	33	5	54	38	33	11	5	38	11	76
Major/Minor N	Major1		<u> </u>	Major2			Vinor1			Minor2		
Conflicting Flow All	92	0	0	93	0	0	388	363	77	352	360	73
Stage 1	-	-	-	-	-	-	261	261	-	83	83	-
Stage 2	-	-	-	-	-	-	127	102	-	269	277	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
	2.218	-	-	2.218	-	-	3.518		3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1503	-	-	1501	-	-	571	565	984	603	567	989
Stage 1	-	-	-	-	-	-	744	692	-	925	826	-
Stage 2	-	-	-	-	-	-	877	811	-	737	681	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1503	-	-	1501	-	-	492	526	984	560	528	989
Mov Cap-2 Maneuver	-	-	-	-	-	-	492	526	-	560	528	-
Stage 1	-	-	-	-	-	-	696	647	-	865	823	-
Stage 2	-	-	-	-	-	-	796	808	-	674	637	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	3.8			0.4			12.5			10.7		
HCM LOS							В			В		
Minor Lane/Major Mvm	ıt ſ	VBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1			
Capacity (veh/h)		529	1503	_		1501		-				
HCM Lane V/C Ratio		0.092		-		0.004			0.166			
HCM Control Delay (s)		12.5	7.6	0	-	7.4	0	-				
HCM Lane LOS		В	A	A	_	A	A	_	В			
HCM 95th %tile Q(veh))	0.3	0.2	-	-	0	-	-	0.6			

Intersection												
Int Delay, s/veh	5.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	70	45	25	5	35	40	25	10	5	45	10	50
Future Vol, veh/h	70	45	25	5	35	40	25	10	5	45	10	50
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	76	49	27	5	38	43	27	11	5	49	11	54
Major/Minor N	Major1		ľ	Major2		ľ	Minor1		N	Minor2		
Conflicting Flow All	81	0	0	76	0	0	317	306	63	293	298	60
Stage 1	-	-	-	-	-	-	215	215	-	70	70	-
Stage 2	-	-	-	-	-	-	102	91	-	223	228	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1517	-	-	1523	-	-	636	608	1002	659	614	1005
Stage 1	-	-	-	-	-	-	787	725	-	940	837	-
Stage 2	-	-	-	-	-	-	904	820	-	780	715	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1517	-	-	1523	-	-	568	575	1002	619	580	1005
Mov Cap-2 Maneuver	-	-	-	-	-	-	568	575	-	619	580	-
Stage 1	-	-	-	-	-	-	746	687	-	891	834	-
Stage 2	-	-	-	-	-	-	841	818	-	724	678	-
J												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	3.7			0.5			11.4			10.6		
HCM LOS							В			В		
Minor Lane/Major Mvm	nt N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBLn1			
Capacity (veh/h)		602	1517	_		1523						
HCM Lane V/C Ratio		0.072	0.05	_		0.004	_		0.152			
HCM Control Delay (s)		11.4	7.5	0	-	7.4	0	-				
HCM Lane LOS		В	Α.	A	_	Α	A	_	В			
HCM 95th %tile Q(veh))	0.2	0.2	-	-	0	-	-	0.5			
2												

Intersection												
Int Delay, s/veh	5.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	40	40	15	10	40	65	15	20	10	70	20	35
Future Vol, veh/h	40	40	15	10	40	65	15	20	10	70	20	35
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	43	43	16	11	43	71	16	22	11	76	22	38
Major/Minor N	Major1		ľ	Major2		1	Minor1		<u> </u>	Minor2		
Conflicting Flow All	114	0	0	59	0	0	268	273	51	255	246	79
Stage 1	-	-	-	-	-	-	137	137	-	101	101	-
Stage 2	-	-	-	-	-	-	131	136	-	154	145	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1475	-	-	1545	-	-	685	634	1017	698	656	981
Stage 1	-	-	-	-	-	-	866	783	-	905	811	-
Stage 2	-	-	-	-	-	-	873	784	-	848	777	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1475	-	-	1545	-	-	623	610	1017	653	631	981
Mov Cap-2 Maneuver	-	-	-	-	-	-	623	610	-	653	631	-
Stage 1	-	-	-	-	-	-	840	760	-	878	805	-
Stage 2	-	-	-	-	-	-	810	778	-	790	754	-
-												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	3.2			0.6			10.8			11.2		
HCM LOS							В			В		
Minor Lane/Major Mvm	nt N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SBLn1			
Capacity (veh/h)		675	1475	-		1545	-	-	716			
HCM Lane V/C Ratio		0.072		_		0.007	_	_	0.19			
HCM Control Delay (s)		10.8	7.5	0	_	7.3	0	_				
HCM Lane LOS		В	7.5 A	A	_	7.5 A	A	_	В			
HCM 95th %tile Q(veh))	0.2	0.1	-	_	0	-	_	0.7			
rioni romo Q(von)		0.2	0.1						0.1			

Intersection												
Int Delay, s/veh	5.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	35	45	15	10	45	80	10	15	10	90	15	25
Future Vol, veh/h	35	45	15	10	45	80	10	15	10	90	15	25
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	38	49	16	11	49	87	11	16	11	98	16	27
Major/Minor N	/lajor1		N	Major2		ľ	Vinor1		N	Minor2		
Conflicting Flow All	136	0	0	65	0	0	269	291	57	262	256	93
Stage 1	-	-	-	-	-	-	133	133	-	115	115	-
Stage 2	-	-	-	-	-	-	136	158	-	147	141	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1448	-	-	1537	-	-	684	619	1009	691	648	964
Stage 1	-	-	-	-	-	-	870	786	-	890	800	-
Stage 2	-	-	-	-	-	-	867	767	-	856	780	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1448	-	-	1537	-	-	634	597	1009	652	625	964
Mov Cap-2 Maneuver	-	-	-	-	-	-	634	597	-	652	625	-
Stage 1	-	-	-	-	-	-	847	765	-	866	794	-
Stage 2	-	-	-	-	-	-	819	761	-	806	759	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	2.8			0.5			10.5			11.5		
HCM LOS	2.0			0.0			В			В		
TIOM EGO												
Minor Lang/Major Mum	+ N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	CDI n1			
Minor Lane/Major Mvm	t r											
Capacity (veh/h) HCM Lane V/C Ratio		689	1448	-		1537	-	-				
HCM Control Delay (s)		0.055	0.026 7.6	0		0.007 7.4	0	-	0.204			
HCM Lane LOS		10.5 B	7.6 A	A	-	7.4 A	A	-	11.5 B			
HCM 95th %tile Q(veh)	\	0.2	0.1	- A	-	0	- A	-	0.8			
How 75th 70the Q(Ven)		0.2	0.1			U	-		0.0			

Intersection												
Int Delay, s/veh	5.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	40	40	15	10	40	65	15	20	10	70	20	35
Future Vol, veh/h	40	40	15	10	40	65	15	20	10	70	20	35
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	43	43	16	11	43	71	16	22	11	76	22	38
Major/Minor N	Major1		ľ	Major2		1	Minor1		<u> </u>	Minor2		
Conflicting Flow All	114	0	0	59	0	0	268	273	51	255	246	79
Stage 1	-	-	-	-	-	-	137	137	-	101	101	-
Stage 2	-	-	-	-	-	-	131	136	-	154	145	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1475	-	-	1545	-	-	685	634	1017	698	656	981
Stage 1	-	-	-	-	-	-	866	783	-	905	811	-
Stage 2	-	-	-	-	-	-	873	784	-	848	777	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1475	-	-	1545	-	-	623	610	1017	653	631	981
Mov Cap-2 Maneuver	-	-	-	-	-	-	623	610	-	653	631	-
Stage 1	-	-	-	-	-	-	840	760	-	878	805	-
Stage 2	-	-	-	-	-	-	810	778	-	790	754	-
-												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	3.2			0.6			10.8			11.2		
HCM LOS							В			В		
Minor Lane/Major Mvm	nt N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SBLn1			
Capacity (veh/h)		675	1475	-		1545	-	-	716			
HCM Lane V/C Ratio		0.072		_		0.007	_	_	0.19			
HCM Control Delay (s)		10.8	7.5	0	_	7.3	0	_				
HCM Lane LOS		В	7.5 A	A	_	7.5 A	A	_	В			
HCM 95th %tile Q(veh))	0.2	0.1	-	_	0	-	_	0.7			
rioni romo Q(von)		0.2	0.1						0.1			

Intersection												
Int Delay, s/veh	5.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	35	45	15	10	45	80	10	15	10	90	15	25
Future Vol, veh/h	35	45	15	10	45	80	10	15	10	90	15	25
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	38	49	16	11	49	87	11	16	11	98	16	27
Major/Minor N	/lajor1		N	Major2		ľ	Vinor1		N	Minor2		
Conflicting Flow All	136	0	0	65	0	0	269	291	57	262	256	93
Stage 1	-	-	-	-	-	-	133	133	-	115	115	-
Stage 2	-	-	-	-	-	-	136	158	-	147	141	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1448	-	-	1537	-	-	684	619	1009	691	648	964
Stage 1	-	-	-	-	-	-	870	786	-	890	800	-
Stage 2	-	-	-	-	-	-	867	767	-	856	780	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1448	-	-	1537	-	-	634	597	1009	652	625	964
Mov Cap-2 Maneuver	-	-	-	-	-	-	634	597	-	652	625	-
Stage 1	-	-	-	-	-	-	847	765	-	866	794	-
Stage 2	-	-	-	-	-	-	819	761	-	806	759	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	2.8			0.5			10.5			11.5		
HCM LOS	2.0			0.0			В			В		
TIOM EGO												
Minor Lang/Major Mum	+ N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	CDI n1			
Minor Lane/Major Mvm	t r											
Capacity (veh/h) HCM Lane V/C Ratio		689	1448	-		1537	-	-				
HCM Control Delay (s)		0.055	0.026 7.6	0		0.007 7.4	0	-	0.204			
HCM Lane LOS		10.5 B	7.6 A	A	-	7.4 A	A	-	11.5 B			
HCM 95th %tile Q(veh)	\	0.2	0.1	- A	-	0	- A	-	0.8			
How 75th 70the Q(Ven)		0.2	0.1			U	-		0.0			

Int Delay, s/veh Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/l Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow	10 10 nr 0 Stop - 0	10 10 0 Stop None - - - 2 2 11	NBL 10 10 0 Free 92 2	NBT 130 130 0 Free None 0 0 92	SBT 60 60 0 Free - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SBR 10 10 0 Free None
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/l Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, %	10 10 10 Stop - 0 age, # 0 92	10 10 0 Stop None - - - 92 2	10 10 0 Free - - - - 92 2	130 130 0 Free None - 0	60 60 0 Free - 0	10 10 0 Free None
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/l Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, %	10 10 10 Stop - 0 age, # 0 92	10 10 0 Stop None - - - 92 2	10 10 0 Free - - - - 92 2	130 130 0 Free None - 0	60 60 0 Free - 0	10 10 0 Free None
Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/l Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, %	10 10 nr 0 Stop - 0 age, # 0 92	10 0 Stop None - - - 92 2	10 0 Free - - - - 92 2	130 130 0 Free None - 0	60 60 0 Free - 0	10 0 Free None
Future Vol, veh/h Conflicting Peds, #/l Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, %	10 Stop - 0 age, # 0 92 2	10 0 Stop None - - - 92 2	10 0 Free - - - - 92 2	130 0 Free None - 0 0	60 0 Free - - 0 0	10 0 Free None
Conflicting Peds, #/I Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, %	nr 0 Stop - 0 age, # 0 0 92 2	0 Stop None - - - 92 2	0 Free - - - - 92 2	0 Free None - 0 0	0 Free - - 0 0	0 Free None
Sign Control RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, %	Stop - 0 nge, # 0 92 2	Stop None - - - 92 2	Free 92 2	Free None - 0 0	Free 0 0	Free None -
RT Channelized Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, %	0 age, # 0 0 92 2	None - - - 92 2	- - - - 92 2	None - 0 0	- - 0 0	None -
Storage Length Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, %	0 nge, # 0 0 92 2	- - - 92 2	- - - 92 2	0	0	
Veh in Median Stora Grade, % Peak Hour Factor Heavy Vehicles, %	nge, # 0 0 92 2	- 92 2	- - 92 2	0	0	-
Grade, % Peak Hour Factor Heavy Vehicles, %	0 92 2	92 2	92 2	0	0	
Peak Hour Factor Heavy Vehicles, %	92 2	92 2	92 2			
Heavy Vehicles, %	2	2	2	92	00	-
					92	92
	11	11		2	2	2
			11	141	65	11
		-				
Major/Minor	Minor2		Major1		/lajor2	
Conflicting Flow All	234	71	76	0	-	0
Stage 1	71	-	-	-	-	-
Stage 2	163	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	_		-
Pot Cap-1 Maneuve		991	1523	_	_	_
Stage 1	952	-	-	_	_	_
Stage 2	866	_	_	_	_	_
Platoon blocked, %	000	-	-	-	-	-
	or 740	001	1522	-	-	-
Mov Cap-1 Maneuve		991	1523	-	-	-
Mov Cap-2 Maneuve		-	-	-	-	-
Stage 1	944	-	-	-	-	-
Stage 2	866	-	-	-	-	-
Approach	EB		NB		SB	
			0.5		0	
HCM Control Delay,			0.5		U	
HCM LOS	A					
Minor Lane/Major M	vmt	NBL	NBT F	EBLn1	SBT	SBR
Capacity (veh/h)		1523	-			
HCM Lane V/C Rati	0	0.007		0.025	-	_
HCM Control Delay		7.4	0	9.3	-	-
HCM Lane LOS	(3)		A	9.3 A		-
HCM 95th %tile Q(v	o h)	A 0	- A	0.1	-	-
HOW YOU WINE U(V	en)	U	-	U. I	-	-

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	₽	
Traffic Vol, veh/h	10	5	5	125	100	10
Future Vol, veh/h	10	5	5	125	100	10
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	11	5	5	136	109	11
N 4 - 1 - 1/N 41-1 - 11	M: 0		11-!1		4-!	
	Minor2		Major1		/lajor2	
Conflicting Flow All	261	115	120	0	-	0
Stage 1	115	-	-	-	-	-
Stage 2	146	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	728	937	1468	-	-	-
Stage 1	910	-	-	-	-	-
Stage 2	881	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	725	937	1468	-	-	-
Mov Cap-2 Maneuver	725	-	-	-	-	-
Stage 1	906	-	-	-	-	-
Stage 2	881	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.7		0.3		0	
HCM LOS	9.7 A		0.5		U	
FICIVI EUS	A					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1468	-	784	-	-
HCM Lane V/C Ratio		0.004	-	0.021	-	-
HCM Control Delay (s)		7.5	0	9.7	-	-
HCM Lane LOS		Α	Α	Α	-	-
HCM 95th %tile Q(veh)	0	-	0.1	-	-

Intersection						
Int Delay, s/veh	1.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	₩.	LDI	NDL	4	<u>361</u>	אומכ
		10	10		75	10
Traffic Vol, veh/h	10			130		
Future Vol, veh/h	10	10	10	130	75	10
Conflicting Peds, #/hr	0	0	0	_ 0	_ 0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	11	11	11	141	82	11
				_		
	Minor2		Major1		Major2	
Conflicting Flow All	251	88	93	0	-	0
Stage 1	88	-	-	-	-	-
Stage 2	163	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	738	970	1501	-	-	-
Stage 1	935	-	-	-	-	-
Stage 2	866	-	-	-	-	-
Platoon blocked, %				_		_
Mov Cap-1 Maneuver	732	970	1501	_	_	_
Mov Cap-2 Maneuver	732	-	-	_	_	_
Stage 1	928	_	_	_	_	_
Stage 2	866	_				
Staye 2	000	-		-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.4		0.5		0	
HCM LOS	А					
				- DI	057	055
Minor Lane/Major Mvn	nt	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		1501	-	001	-	-
HCM Lane V/C Ratio		0.007	-	0.026	-	-
HCM Control Delay (s))	7.4	0	9.4	-	-
HCM Lane LOS		Α	Α	Α	-	-
HCM 95th %tile Q(veh	1)	0	-	0.1	-	-
·						

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	₩.	LDI	NDL	- ND1 - €	<u>301</u>	אמכ
Traffic Vol, veh/h	10	5	5	125	105	10
Future Vol, veh/h	10	5	5	125	105	10
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control			Free	Free	Free	Free
RT Channelized	Stop -	Stop None		None	riee -	None
Storage Length	0	None -	-	None -	-	None -
Veh in Median Storage		-	-	0	0	-
	0			0	0	
Grade, %		- 02	- 02			-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	11	5	5	136	114	11
Major/Minor 1	Minor2	ľ	Major1	I\	Major2	
Conflicting Flow All	266	120	125	0	-	0
Stage 1	120	-	-	-	_	-
Stage 2	146	-	_	_	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	_	-	-	-
Follow-up Hdwy		3.318	2.218	-	-	-
Pot Cap-1 Maneuver	723	931	1462	-	-	-
Stage 1	905	-	-	-	-	-
Stage 2	881	-	_	-	-	-
Platoon blocked, %				-	_	-
Mov Cap-1 Maneuver	720	931	1462	_	_	_
Mov Cap-2 Maneuver	720	-	-	-	_	-
Stage 1	901	_	_	_	_	_
Stage 2	881	_	_	_	_	_
Stuge 2	001					
Approach	EB		NB		SB	
HCM Control Delay, s	9.7		0.3		0	
HCM LOS	Α					
Minor Lane/Major Mvm	\ †	NBL	MDT	EBLn1	SBT	SBR
	IL				301	SDK
Capacity (veh/h)		1462	-		-	-
HCM Cantral Dalay (a)		0.004		0.021	-	-
HCM Long LOS		7.5	0	9.7	-	-
HCM Lane LOS		Α	Α	Α	-	-
HCM 95th %tile Q(veh	١	0	_	0.1	_	_

APPENDIX E

Queuing Analysis Worksheets

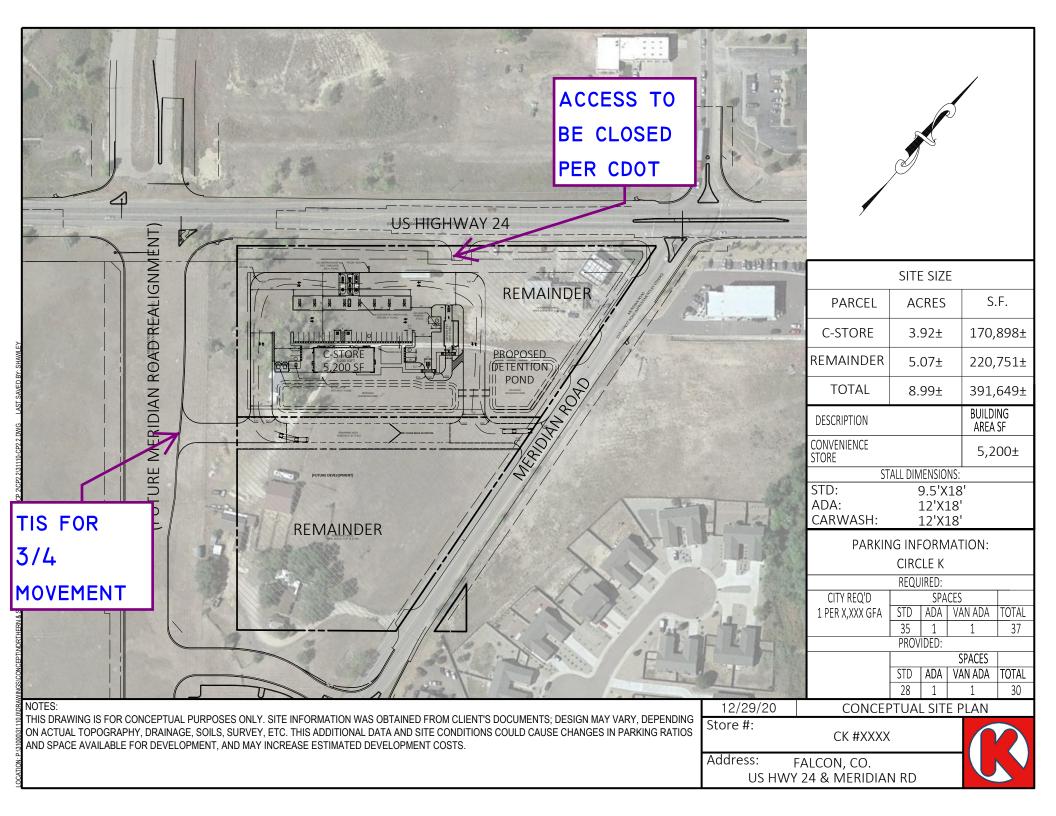
	۶	→	•	•	←	•	4	†	<i>></i>	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	152	533	163	245	913	22	130	207	207	33	196	543
v/c Ratio	1.35	0.64	0.20	0.63	0.95	0.03	0.31	0.20	0.13	0.09	0.24	0.34
Control Delay	224.2	29.4	3.5	20.0	47.2	0.1	29.8	34.5	0.2	27.2	40.0	0.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	224.2	29.4	3.5	20.0	47.2	0.1	29.8	34.5	0.2	27.2	40.0	0.6
Queue Length 50th (ft)	~80	306	0	86	634	0	71	67	0	17	67	0
Queue Length 95th (ft)	#201	426	38	130	#932	0	120	104	0	41	103	0
Internal Link Dist (ft)		1241			1307			590			512	
Turn Bay Length (ft)	800		600	750			150		400	150		300
Base Capacity (vph)	113	853	813	389	978	876	427	1036	1583	424	801	1583
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.35	0.62	0.20	0.63	0.93	0.03	0.30	0.20	0.13	0.08	0.24	0.34

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
 # 95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

	۶	-	•	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	571	1000	163	245	516	27	147	332	190	71	315	190
v/c Ratio	1.01	1.06	0.18	0.96	0.74	0.04	0.52	0.50	0.12	0.26	0.63	0.12
Control Delay	66.3	74.9	2.8	83.8	40.1	0.1	41.0	48.2	0.2	35.2	55.2	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	66.3	74.9	2.8	83.8	40.1	0.1	41.0	48.2	0.2	35.2	55.2	0.2
Queue Length 50th (ft)	~333	~849	0	139	342	0	89	125	0	41	123	0
Queue Length 95th (ft)	#572	#1102	34	#305	477	0	147	180	0	79	176	0
Internal Link Dist (ft)		1241			1307			590			512	
Turn Bay Length (ft)	800		600	750			150		400	150		300
Base Capacity (vph)	566	947	884	254	698	678	302	664	1583	359	503	1583
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.01	1.06	0.18	0.96	0.74	0.04	0.49	0.50	0.12	0.20	0.63	0.12

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
 # 95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

	•	→	•	•	←	•	4	†	~	\	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	212	734	234	277	1304	38	147	261	299	33	261	761
v/c Ratio	0.61	0.49	0.29	0.64	0.82	0.05	0.39	0.25	0.19	0.10	0.35	0.48
Control Delay	59.7	26.2	3.5	18.8	33.2	0.1	32.8	35.4	0.3	30.2	44.3	1.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	59.7	26.2	3.5	18.8	33.2	0.1	32.8	35.4	0.3	30.2	44.3	1.0
Queue Length 50th (ft)	81	204	0	94	439	0	83	88	0	18	94	0
Queue Length 95th (ft)	122	264	46	133	512	0	141	128	0	43	143	0
Internal Link Dist (ft)		1241			1307			590			512	
Turn Bay Length (ft)	800		600	750			150		400	150		300
Base Capacity (vph)	371	1561	829	475	1710	835	400	1051	1583	323	743	1583
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.57	0.47	0.28	0.58	0.76	0.05	0.37	0.25	0.19	0.10	0.35	0.48
Intersection Summary												


	•	-	•	•	•	•	•	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	793	1386	217	272	783	33	168	440	380	92	435	245
v/c Ratio	1.10	0.96	0.28	0.90	0.67	0.05	0.52	0.47	0.24	0.33	0.60	0.15
Control Delay	107.3	51.7	4.0	64.4	37.7	0.2	33.8	38.8	0.4	31.1	48.0	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	107.3	51.7	4.0	64.4	37.7	0.2	33.8	38.8	0.4	31.1	48.0	0.2
Queue Length 50th (ft)	~358	548	0	156	272	0	92	150	0	48	161	0
Queue Length 95th (ft)	#481	#711	48	#309	342	0	149	202	0	87	230	0
Internal Link Dist (ft)		1241			1307			590			512	
Turn Bay Length (ft)	800		600	750			150		400	150		300
Base Capacity (vph)	723	1439	772	312	1176	644	396	943	1583	277	726	1583
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.10	0.96	0.28	0.87	0.67	0.05	0.42	0.47	0.24	0.33	0.60	0.15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
 # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

APPENDIX F

Conceptual Site Plan

