

Prepared for:
EL PASO COUNTY
Engineering Development Review Team
2880 International Circle
Colorado Springs, CO 80910

On Behalf of:
Circle K Stores Inc.
5500 S. Quebec Street, Suite 100
Greenwood Village, CO 80111

Prepared by:
Matrix
Matrix Design Group
2435 Research Parkway, Suite 300
Colorado Springs, CO 80920
(719) 575-0100
fax (719) 572-0208
November 2022
Project No. 21.1207.037

Engineer's Statement:

This report and plan for the drainage design of Circle K at Highway 24 \& Meridian was prepared by me (or under my direct supervision) and is correct to the best of my knowledge and belief. Said report and plan has been prepared in accordance with the El Paso County Drainage Criteria Manual and is in conformity with the master plan of the drainage basin.

Jesse Sullivan	Date
Registered Professional Engineer	
State of Colorado	
No. 55600	

Developer's Statement:

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

Circle K Stores Inc.
Business Name

By: \qquad

Title: \qquad
Address: 5500 S Quebec St., Ste 100
Greenwood Village, CO 80111

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

Conditions:
I. INTRODUCTION 1
II. PURPOSE AND SCOPE OF STUDY 1
III. GENERAL LOCATION AND DESCRIPTION 2
IV. SOIL CONDITIONS 3
V. PROJECT CHARACTERISTICS 4
VI. DRAINAGE DESIGN CRITERIA 4
VII. DRAINAGE BASINS AND SUB-BASINS 6
VIII. DRAINAGE FACILITY DESIGN 12
IX. ENVIRONMENTAL EVALUATIONS 14
X. EROSION CONTROL PLAN 15
XI. DRAINAGE FEES 16
XII. CONSTRUCTION COST OPINION 16
XIII. SUMMARY 17
XIV. REFERENCES 18
XV. APPENDICES 19
APPENDIX
A. Hydrologic and Hydraulic Calculations
B. Standard Design Charts and Tables
C. Report References
D. Maps

I. Introduction

The Circle K development at Highway 24 \& Meridian Road is within El Paso County jurisdiction and is comprised of a total of 7.79 acres of commercial zoning. The site is located within 3 miles of the City of Colorado Springs and is subject to future annexation.

Figure 1 - Project Location

II. PURPOSE AND SCOPE OF STUDY

The purpose of this Preliminary Drainage Report (PDR) is to identify and evaluate the offsite and onsite drainage patterns associated with the Circle K development (7.79 acres) and to provide hydrologic and hydraulic analyses of this area to ensure compliance with the El Paso County Drainage Criteria Manual (DCM), as well as provide effective, safe routing to downstream outfalls.

III. GENERAL LOCATION AND DESCRIPTION

The Circle K development is within Falcon in El Paso County, Colorado. An existing Circle K gas station is located at the northeast corner of the project site and will be demolished after construction is complete. The property boundary encompasses 7.79 acres split into 2 lots. The north lot is 4.56 acres while the south lot is 3.23 acres. A 60 ' tract splits the two lots and will be used for a private access road. The proposed Circle K site will located in the north lot southwest of the existing Circle K gas station. The south lot will be returned to undeveloped conditions after the demolition of the existing structures present on the site. The overall site is adjacent to the city of Colorado Springs on the southwest property line and is subject to future annexation efforts by Colorado Springs. The west portion of the site is bounded by the Meridian Road. The east portion of the site bounded by the Meridian Sol Drive (previously Meridian Sol Drive). The south is bounded by Swingline Road. The general topography of the area is flat with drainage sloping from the northwest to the southeast. More specifically, the study area is located as follows:
A. General Location: A portion of the $\mathrm{SE} 1 / 4$ of section 12 , township 13 south, range 6 west of the $6^{\text {th }}$ P.M. County of El Paso County, State of Colorado.

B. Surrounding Streets and Developments:

a. North: Highway 24.
b. East: Big O Tires, several undeveloped properties, Falcon Vista Sub 2 neighborhood, Meridian Sol Drive
c. South: Farmland, undeveloped properties, Swingline Road
d. West: Meridian Road, undeveloped properties
C. Drainageways: This site is located within the Falcon Drainage Basin and ultimately discharges into Chico Creek.
a. West Swale: Proposed grading for the development of Meridian road shows a drainage swale to the east of the roadway. The swale continues down to Swingline Road where existing storm infrastructure collects the drainage. Current drainage patterns show flows from Highway 24 converging onto the proposed Circle K site and draining northwest to southeast. Opposite of the west swale.
b. East Swale: An existing swale is located to the east of the Circle K property off of Meridian Sol Drive. Site imagery shows it is relatively flat with adjacent areas to the west of the swale consisting of farmland. An existing area inlet south of the project property collects flows.

D. Irrigation Facilities

No known functioning irrigation facilities are within the project area.

E. Utilities and Encumbrances

a) Storm Sewer: Existing inlets are present along Meridian Road to the south of the project site and along Meridian Sol Drive south of the project site. Two area inlets are present north of Swingline Road.
b) Sanitary Sewer: Sanitary sewer associated with the existing Circle K station at the northeast corner of the project is present and will remain in service during construction. Sanitary service for the residential housing located in the project site shall be removed prior to construction.
c) Gas: Existing gas services associated with the existing Circle K station at the northeast corner of the project will remain in service during construction. Gas services for the residential housing located in the project site shall be removed prior to construction.
d) Water: Existing water services associated with the existing Circle K station at the northeast corner of the project will remain in service during construction. Water services for the residential housing located in the project site shall be removed prior to construction.
e) Electric: Existing electric services associated with the existing Circle K station at the northeast corner of the project will remain in service during construction. Electric services for the residential housing located in the project site shall be removed prior to construction. An existing overhead powerline is present in the middle of the site running north-south and will be rerouted prior to construction.

F. Referenced Drainage Reports

This site is within the West Tributary area of the Falcon Drainage Basin Planning Study. This study looks at the future stormwater and infrastructure needs for the Falcon Watershed.
"Falcon Drainage Basin Planning Study", completed by Matrix Design Group, Dated September 2015 (FDBPS-2015)

G. Land Uses

Land uses for the proposed development will be commercial development and private roads.

IV. SOIL CONDITIONS

Soils can be classified in four different hydrologic groups, A, B, C, or D to help predict stormwater runoff rates. Hydrologic group "A" is characterized by deep, well-drained coarse-grained soils with a rapid infiltration rate when thoroughly wet and having a low runoff potential. Group "D" typically has a clay layer at or near to the surface, or a very shallow depth to impervious bedrock and has a very slow infiltration rate and a high runoff potential. See Soils Map; Appendix C. Table 3.1 on the following page lists the soil types present in the development area:

Table 3.1-NRCS Soil Survey for E1 Paso County

SOIL ID NUMBER	SOIL	HYDROLOGIC CLASSIFICATION	PERMEABILITY	PERCENT
9	Blakeland- Fluvaquentic Haplaquolls	A	Well Drained	40.4%
19	Columbine Gravelly Sandy Loam, 0 to 3 percent slopes	A	Well Drained	59.6%

Predevelopment site conditions are undeveloped and ground cover consists of sparse natural vegetative land cover.

V. Project Characteristics

A. Major Basin Description

Chico Creek:

a. Onsite Flows: 7.79 Acres of commercial development are within the Falcon Drainage Basin. Under predevelopment conditions flows in the project area generally flow south. After north lot development, flows will generally sheet flow to adjacent streets, where they will be conveyed via gutter flow towards sump or at-grade inlets which will capture the flows. Flows will then be conveyed to the proposed North Detention Pond via storm sewer. South lot flows will remain in predevelopment conditions.
b. Offsite Flows:

Runoff from the adjacent Highway 24 and associated right of way will be bypassed around the site via existing swales. Undeveloped portions of the property will also be directed into these swales.

B. Regulatory Floodplain

Per the Flood Insurance Rate Map (FIRM) 08041C0561-G, effective date December 7, 2018, published by the Federal Emergency Management Agency (FEMA), no portion of Circle K at Highway 24 \& Meridian Road lies within any designated 100-year floodplain. This map can be found in Appendix C.

VI. Drainage Design Criteria

A. Design References

As required by El Paso County, Colorado, this report has been prepared in accordance to the criteria set forth in the El Paso County Drainage Criteria Manual Volume 1\&2(Drainage Criteria Manual or DCM), the El Paso County Engineering Criteria Manual (ECM), and El Paso County Resolutions 15-042 and 19-245.

In addition to the DCM, the Utban Storm Drainage Criteria Manuals, Volumes 1-3 (UDFCD), published by the Urban Drainage and Flood Control District, latest update, have
been used to supplement the Drainage Criteria Manual for water quality capture volume (WQCV).

B. Design Frequency

Design frequency is based on the DCM. The 100-year storm event was used as the major storm for the project, and the 5 -year storm event was used as the minor storm.

C. Design Discharge

a. Method of Analysis

The hydrology for this project uses the Rational Method as recommended by the Drainage Criteria Manual for the minor and major storms for drainage basins less than 100-acres in size. The Rational Method uses the following equation: $\mathrm{Q}=\mathrm{C} * \mathrm{i}^{*} \mathrm{~A}$

Where:

$$
\begin{aligned}
\mathrm{Q} & =\text { Maximum runoff rate in cubic feet per second (cfs) } \\
\mathrm{C} & =\text { Runoff coefficient } \\
\mathrm{i} & =\text { Average rainfall intensity (inches per hour) } \\
\mathrm{A} & =\text { Area of drainage sub-basin (acres) }
\end{aligned}
$$

b. Runoff Coefficient

Rational Method coefficients from Table 6-6 of the Drainage Criteria Manual for developed land were utilized in the Rational Method calculations. See Appendix B for more information.

c. Time of Concentration

The time of concentration consists of the initial time of overland flow and the travel time in a channel to the inlet or point of interest. A minimum time of concentrations of 5 minutes is utilized for urban areas.

d. Rainfall Intensity

The hypothetical rainfall depths for the 1 -hour storm duration were taken from Table 6-2 of the Drainage Criteria Manual. Table 5.1, below, lists the rainfall depth for the Major and Minor 1-hour storm events.

Table 5.1 - Project Area 1-Hour Rainfall Depth

Storm Recurrence Interval	Rainfall Depth (inches)
5-year	1.50
100-year	2.52

The rainfall intensity equation for the Rational Method was taken from Drainage Criteria Manual Volume 1 Figure 6-5.

e. StormCAD Analysis

1. Routing

Storm CAD was utilized to analyze the routing of runoff through the proposed storm sewer system. The model was calibrated to match the values calculated in the Rational Method spreadsheet.

2. HGL Profiles

StormCAD was also used to determine the Hydraulic Grade Profiles for the major and minor storms. The standard method was used to calculate head loss in the system with K coefficients taken from Table 9-4 of the

Table 9-4. STORMCAD Standard Method Coefficients
 Colorado Springs DCM.

VII. Drainage Basins and Sub-basins

A. The predevelopment conditions for the site have been analyzed and are presented by design points (Table 6.2) and are described as follows:
a. Chico Creek:

The studied area is within the West Tributary to Chico Creek. Flows from the majority of the site sheet flow in an easterly direction where they are captured by a broad swale which drains to the into an existing area inlet. A portion of onsite flows drain to the west and are captured by a broad swale which drains into an existing area inlet. Both swales capture roadside drainage.

Total discharge to Chico Creek basin is approximately 7.46 cfs for the Q5 event and 23.31 cfs for the Q100 event.

Circle K - HWY 24 \& Meridian							
Design Point	Existing Sub Basin Summary						
EX 01	Sub-Basins	Total Area (ac.)	$\mathbf{Q (5)}$ (cfs)	Q(100) (cfs)			
EX 02	EX 01	1.68	1.52	4.09			
EX 03	EX 02	3.93	1.29	6.40			
EX 04	EX 03	0.09	0.10	0.29			
EX 05	EX 04	1.88	3.95	8.70			
EX 06	EX 05	0.43	1.34	2.69			
EX SITE NORTH	EX 06	3.16	1.43	5.78			
EX SITE OVERALL	EX SITE NORTH	8.01	6.14	17.89			

B. The fully developed conditions for the site are as follows:

a. Chico Creek:

Under proposed conditions, developed flows for this basin will be directed to a proposed detention pond near the south boundary of the north lot. Offsite flows and flows for the south lot will continue under predeveloped conditions. Sub-basins and Design Points for this major basins are summarized in hydrology tables below and on the following pages.

Circle K - HWY 24 \& Meridian Proposed Conditions Sub-basin Summary			
Basin	Area	Q5	Q100
	acres	cfs	cfs
A	1.00	3.3	6.2
B	0.77	2.2	4.3
C	0.33	1.1	2.1
D	0.36	1.0	2.1
E	0.22	0.7	1.4
F	0.03	0.2	0.3
G	0.14	0.7	1.2
H	0.12	0.6	1.0
J	0.73	0.3	1.5
K	1.88	2.1	5.4
L	1.68	0.9	2.9
M	0.09	0.4	0.8
N	0.43	2.0	3.6
P	0.23	0.1	0.7
Q	3.22	0.7	5.0

Circle K - HWY 24 \& Meridian				
Proposed Design Point Summary				
Design Point	Sub-Basins	Total Area (ac.)	$\begin{aligned} & \mathrm{Q}(5) \\ & \text { (cfs) } \end{aligned}$	$\begin{gathered} Q(100) \\ \text { (cfs) } \end{gathered}$
DP A	Inlet at lowpoint of access road	1.00	3.27	6.22
DP A Inlet Flow	Inlet at lowpoint of access road, combined flow from DP B	2.62	7.65	14.69
DP B	Inlet at NW Corner of Pond, Sub Basin B	0.77	2.16	4.27
DP B Inlet Flow	Inlet at NW corner of Pond, B, C, D \& G	1.62	4.65	9.00
DP C	Area inlets in middle of front parking	0.33	1.09	2.08
DP C Inlet Flow	Area inlets in middle of front parking, combined flow from DP D	0.70	2.07	4.01
DP D	Area inlets in eastern part of front parking	0.36	1.05	2.06
DP E	Car wash entrance flume, E \& F	0.25	0.71	1.39
DP F	Car Wash Roof Drain	0.03	0.16	0.28
DP G	Fuel Canopy Roof Drainage	0.14	0.67	1.20
DP H	C-Store Roof Drain	0.12	0.55	0.99
DP J1	Detention pond area	0.73	0.32	1.54
DP J2	Sub-basins A, B, E, G \& H1	3.72	7.52	15.38
DP J3	Pond Outlet Structure	3.72	0.10	3.40
DP K	Undeveloped land to NE	1.88	2.12	5.43
DP L	Offsite drainage to west of site	1.68	0.91	2.87
DP M	Offsite street drainage for West entrance	0.09	0.43	0.77
DP N	Offsite street drainage for East entrance, west part of Meridian Sol	0.43	1.99	3.57
DP P	Offsite drainage to the south of the Access road, offsite culvert outlets	0.23	0.10	0.66
DP Q1	South Lot Drainage	3.22	0.74	4.96
DP Q2	Combined flows into South Area K, J3, M, N, P, Q1	7.61	15.37	38.42
DP Q3	South Pond Outflow (Q1)	3.22	0.10	1.40
DP SITE	North and South Overall Drainage	11.26	5.32	17.33

DESIGN POINT DESCRIPTIONS		
Design Point	Description	Downstream Design Point
DP A	- This design point is located at a private 5' Type R sump inlet on the north side of the private access road. It captures sheet flows from the access road, parts of the access entrances and sheet flows from paved portions of the commercial development. Flows from this inlet will be directed to the private detention pond via private 24 " RCP storm drain.	J2
DP A Inlet Flow	-This design point is the same as DP A but includes potential bypass flows from design points DP B, DP C, and DP D.	J2
DP B	-This design point is located at a private 10^{\prime} Type R sump inlet on the west side of the west entrance into the commercial development. It captures sheet flow from the northern area of the proposed site. Flows from this inlet will be directed to the private detention pond via private 18 " RCP storm drain.	J2
DP B Inlet Flow	-This design point is the same as DP B but includes by-pass flows from design points DP C \& DP D and flows from DP G.	J2
DP C	-This design point is located at a private triple valley inlet consisting of 3'x1.73' Denver No. 16 valley grates in the center of the front parking area. It captures sheet flows for the central area of the site. Flows from this inlet will be directed to the inlet at DP D via private 15 " RCP storm drain.	B
DP C Inlet Flow	-This design point is the same as DP C but includes bypass flows from design point DP D.	B
DP D	This design point is located at a private triple valley inlet consisting of 3'x1.73' Denver No. 16 valley grates in the center of the east portion of the front parking area. It captures sheet flows for the northeast portion of the commercial site. Flows from this inlet will be directed to the inlet at DP B via private $15^{\prime \prime}$ and $18^{\prime \prime}$ RCP storm drain.	C
DP E	-This design point represents the private 5 ' wide concrete flume near the entrance to the onsite car wash. It captures sheet flows for the eastern paved portion of the site parking. It includes private roof drainage from the car wash building. Flows will be released into the private detention pond.	J2
DP F	-This design point represents the private roof drainage from the car wash building. Flows will be directed to the private detention pond via private 6" PVC pipe.	J2
DP G	-This design point represents the private roof drainage from the fuel canopy. Flows will be directed to the inlet at DP B via private 6 " and 8 " PVC pipe.	B

Final Drainage Report
for Circle K at Highway 24 \& Meridian Road

DESIGN POINT DESCRIPTIONS		
Design Point	Description	Downstream Design Point
DP H	-This design point represents the private roof drainage from the convenience store building. Flows will be directed to the private detention pond via 6" PVC pipe.	J2
DP J1	-This design point represents the surface sheet flow from the detention pond area and the surrounding landscaping.	J2
DP J2	-This design point includes the combined inflow into the detention pond from design points DP A, DP B, DP E, DP G, DP H and DP J1.	J3
DP K	-This design point includes the eastern sheet flows from the undeveloped area to the east of the proposed Circle K and road sheet flows draining to this area from Highway 24. A private 15 " culvert and RCP storm drain will carry these flows across the proposed east entrance.	Q2
DP L	-This design point includes the western sheet flows draining to the proposed west culvert. These offsite flows include northern portions of of offsite ROW green space, existing channel flows, flows from Highway 24 and flows from Meridian Road. A private 23"X14" culvert and RCP storm drain will carry these flows across the proposed west entrance.	Q2
Detention Pond Discharge (J3)	-This design point is at the private discharge structure from the proposed private detention and water quality pond. -Developed flows from the proposed improvements will be metered out by this private structure at predevelopment levels as determined by the UD-Detention modeling of the Full Spectrum Extended Detention Basin. -Flows will discharge onto the south lot. Flows shall disperse across the south lot via riprap outfall projection and a proposed spreader swale.	Q2
DP M	-This design point represents sheet flows from the proposed access road for the west entrance.	Q2
DP N	-This design point represents offsite sheet flows from Meridian Sol Drive and the east entrance. These flows will be collected via riprap rundown into the existing west swale.	Q2
DP P	-This design point represents sheet flows to the south of the proposed access road.	Q2
DP Q1	-This design point represents surface sheet flows for the south lot.	Q2
DP Q2	-This design point includes the combined inflow into the future south detention pond from design points DP J3, DP K, DP M, DP N, and DP P.	Q3

Final Drainage Report
for Circle K at Highway 24 \& Meridian Road

DESIGN POINT DESCRIPTIONS			
Design Point	Description	Downstream Design Point	
Future South Detention Pond Discharge -This design point represents the discharge structure for the future south detention pond (not for construction). Undeveloped flows for DP Q1 were used for approximate sizing of this future pond as determined by the UD-Detention modeling of the Full Spectrum Extended Detention Basin.Existing Area Inlet			
DP SITE	-This design point sums flows from the north and south lots (DP J3, DP K, DP L, DP M, DP N, DP P, and DP Q3) and gives a value to the overall site discharge. Both Q5 and Q100 flows are less than existing conditions.	Existing Area Inlets	

- Generally, flows will sheet flow off the commercial development towards adjacent storm infrastructure. After capture by inlets, the flows will be conveyed onwards towards the downstream detention basin via storm sewer. Undeveloped flows will continue historic conditions.

VIII. Drainage Facility Design

A. Inlet Capacity

In accordance with the DCM, this project will use Type R inlets. On-grade inlet capacities were determined utilizing UD-Inlet. The following Table 6.2 lists inlets by design point and corresponding capacity. Table 6.3 describes overflow routing for each sump inlet.

Circle K at Highway 24 \& Meridian Road INLET SUMMARY												
DESIGN POINT (\#-Letter) or sUB-BASIN (Letter\#) 百	SUB-BASINS BASINS	total AREA (AC)	INLET			$\begin{gathered} Q(5) \\ \text { BYPASS } \\ \text { LLOWS } \end{gathered}$(cfs)	Q(5) total infLOW	$\begin{aligned} & \text { Q5 INLET } \\ & \text { CAPACITY } \end{aligned}$	$Q(100)$ BLOWS (cfs)	$Q(100)$ INFLOW (cfs)	$\begin{gathered} \text { MAXX } \\ \text { INLET } \\ \text { CAPACITY } \end{gathered}$	NOTES:
			$\underset{(F t .)}{S I Z E}$	TYPE	CONDITION							
DPA	A	1.00	5	R	SUMP	0.0	3.27	5.4	0.0	6.22	9.2	
DP B	B	0.77	10	R	SUMP	0.0	2.16	2.5	0.0	4.27	6.1	Inlet B Captures 100\% of Bypass Flows From Inlets C \& D
DP C	c	0.33	3	16	AT GRADE	0.0	1.09	1.1	0.1	2.08	2.0	Bypass flows to Inlet B
DP D	D	0.36	3	16	AT GRADE	0.0	1.05	1.0	0.4	2.06	1.7	Bypass flows to Inlet C

Table 6.3 Overflow Routing					
Circle Kat Highway 24 \& Meridian Road		$	$	Overflow Routing Under Inlet Blockage Conditions	In case of blockage of this inlet flows will surcharge the curb and gutter and flow directly into the North Detention pond.
:---:	:---:	:---:			
A					

B. Storm Sewer Capacities

Storm sewer capacities and HGL's were analyzed in StormCAD. Summary tables and HGL profiles for the Q5 and Q100 events can be found in Appendix A.

C. Detention

Summary information for the North Detention Pond is listed below. Supporting UD-Detention spreadsheets for the Detention Pond can be found in Appendix A. The north Detention Pond will be privately owned and maintained.

Table 6.5
North Pond Summary Table

Major Basin	Pond ID	Analysis Method	Contributing Basins	Tributary Area	Imperviousness	Approximate Detention Volumes			$\begin{gathered} \text { EX } \\ \hline 5 \\ \text { Year } \end{gathered}$	Proposed 5 Year	EX 100 Year	$\begin{array}{\|c\|} \hline \text { Proposed } \\ \hline 100 \\ \text { Year } \end{array}$
						WQCV	EURV	Q100				
				Ac.	\%	Ac.-Ft.	Ac.-Ft.	Ac.-Ft.	(CFS)	(CFS)	(CFS)	(CFS)
Chico Creek	$\begin{array}{\|c\|} \text { Detention } \\ \text { Pond } \end{array}$	UD- Detention	$\begin{gathered} \text { A, B, C, D, E, } \\ \text { F, G, H, J1 } \end{gathered}$	3.72	65.5	0.08	0.306	0.367	0.1	0.1	3.2	3.4

A future detention pond for the south lot was modeled to calculate overall site outflow for the north and south lots. Supporting UD-Detention spreadsheets for the future South Detention Pond can be found in Appendix A. The model is only preliminary and is not intended for construction.

Emergency Overflows

Table 6.6 Emergency Overflow Weirs		
Major Basin	Pond ID	Description of Emergency Overflow Weir
Chico Creek	North Detention Pond	The emergency overflow weir for this pond will release emergency overflows across the proposed access road and into the south property. Flows will then follow historic patterns.

Outfall Analysis

North Detention Pond

In order to assure a suitable outfall, we have completed Manning's channel flow analysis on the discharge from the proposed north detention pond. This outfall will discharge to the property to the south which will be rezoned for future commercial development. Using the FHWA Hydraulic Toolbox we have determined that the natural untouched vegetation is suitable for handling the outflow from the proposed north detention pond. The velocity of the anticipated Q100 discharge in the swale downstream off the 24 " outfall was calculated to be $0.44 \mathrm{ft} / \mathrm{s}$ which is well below the maximum low-flow velocity and maximum 100-year velocity. Table 12-3 (below) of the DCM regarding Hydraulic Design Criteria for natural unlined channels.

Table 12-3. Hydraulic Design Criteria for Natural Unlined Channels

Design Parameter	Erosive Soils or Poor Vegetation	Erosion Resistant Soils and Vegetation
Maximum Low-flow Velocity (ft/sec)	$3.5 \mathrm{ft} / \mathrm{sec}$	$5.0 \mathrm{ft} / \mathrm{sec}$
Maximum 100-year Velocity (ft/sec)	$5.0 \mathrm{ft} / \mathrm{sec}$	$7.0 \mathrm{ft} / \mathrm{sec}$
Froude No., Low-flow	0.5	0.7
Froude No., 100-year	0.6	0.8
Maximum Tractive Force, 100-year	$0.60 \mathrm{lb} / \mathrm{sf}$	$1.0 \mathrm{lb} / \mathrm{sf}$
IVelocities, Froude numbers and tractive force values listed are average values for the cross section. shall be resistant" soils are those with 30% or greater clay content. Soils with less than 30% clay content		

The Web Soil Survey for the site indicates that the Soils for the receiving swale are are class A sandy soils and likely resistant to erosive conditions.

Future South Detention Pond

For the future south detention pond, the outfall was modeled flowing into an existing area inlet located southeast of the south lot. From their an existing storm sewer network will convey the flows into an existing extended detention basin west of Meridian Road.

IX. Environmental Evaluations

A. WETLAND IMPACTS

There are no designated wetland or riparian areas on site, and no anticipated impacts.

B. STORMWATER QUALITY

All on-site detention facilities shall be designed to accommodate water quality requirements. As the development of each parcel progresses, the detention guidelines outlined in this report are to be upheld. Per Chapter 4, Section 4.1, of the El Paso County DCM, Volume 2, the DCM requires a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

Step 1: Employ Runoff Reduction Practices

- Site specific landscaping will be done on each lot to decrease the connectivity of impervious areas. Grass lined swales will be used where possible to allow infiltration.

Step 2: \quad Provide Water Quality Capture Volume

- The Detention pond meets the DCM standards for the release rates of Full Spectrum Detention Ponds for Water Quality Capture Volumes.

Step 3: \quad Stabilize Drainageways.

- Existing roadside swale existing along the east and western property boundaries for the entire site. The west swale collects flows from Meridian Road and portions of greenspace while the east swale
collects flows from Meridian Sol Drive and portions of onsite undeveloped land. Both swales shall be maintained in current conditions where no development occurs. Proposed culverts shall be installed where the proposed private access road crosses each existing swale. Riprap protection and erosion control shall be installed at all culvert entrances and exits. Proposed sidewalk along the north portion of Meridian Sol Drive shall drain into the street while slopes facing west shall be installed with erosion control. Existing area inlets to the south of the property shall have erosion control measures installed during construction.

Step 4: \quad Consider Need for Industrial and Commercial BMPs

- There are commercial components of this development, therefore special BMPs of this nature are required. Covering of fuel storage areas and spill containment $\&$ control will be required for this project. Please see the applicable underground fuel tank construction drawings for details and design information. The stormwater management plan developed for this site also includes potential sources of commercial pollution and a spill prevention and response plan. The Full Spectrum Detention BMP is provided for the proposed development by the detention pond.

C. PERMITTING REQUIREMENTS

No additional permitting requirements are expected at this time.

D. TREATMENT EXCLUSIONS

a. Land Disturbance to Undeveloped

Per Appendix I, Section 7.1.B.7, of the El Paso County DCM, Volume 2, the DCM allows the exclusion of sites with land disturbance resulting in undeveloped land that will remain undeveloped to remain untreated. DP L and DP K shall both be constructed back to undeveloped land and are not treated via the north detention pond. Both design points will flow downstream to existing swales via proposed culverts.
b. Impractical Capture

Per Appendix I, Section 7.1.C.1, of the El Paso County DCM, Volume 2, the DCM allows for areas less than 20%, and not to exceed 1 acre, of the applicable development site area to remain untreated if it is determined impractical to capture their flows. Both access driveways on the west and east sides into the proposed site are impractical to treat as they have been proposed to grade entrance flows away from the site so as to not take on offsite flows from Meridian Sol Drive and Meridian Road. The combined impervious area of both drive entrances does not exceed 20% of the site's applicable development area and does not exceed 1 acre.

X. Erosion Control Plan

A grading and erosion control plan (GEC) for Circle K at Highway 24 \& Meridian will be completed. The GEC incorporates check dams, silt fence, vehicle tracking control, inlet \& outlet control, sedimentation basins and other best management practices (BMPs) identified in the DCM Volume 2. Please refer to the GEC for phasing and procedural information.

Final Drainage Report
for Circle K at Highway 24 \& Meridian Road
XI. Drainage Fees

Impervious Area Calculations

Land Use Type	$\%$ Impervious	Area (Acres)	Impervious Acres			
Falcon Drainage Basin						
Commercial	95%	7.79	7.40			
Untouched/Green Space	0%	0	0			
Total					7.79	7.40

Circle K at Highway 24 \& Meridian 2022 Drainage and Bridge Fees for Falcon Drainage Basin						
	Impervious Area (ac.)	Fee/ Imp. Acre	Fee Due	Reimbursable Const. Costs	Fee Due at Platting	Drainage Fee Credit
Chico Creek						
Drainage Fee	7.40	\$34,117.00	\$252,465.80	\$0.00	\$252,465.80	\$0.00
Bridge Fee	7.40	\$4,687	\$34,683.80	\$0.00	\$34,683.80	\$0.00
Overall Total					\$287,149.60	

XII. Construction Cost Opinion

Engineer's Estimate of Probable Construction Costs				
Public Non-Reimbursable				
Kat Highway 24 \& Meridian				
Item	Unit	Quantity	Unit Cost	Extension
15" RCP	LF	302	$\$ 58.00$	$\$ 17,516.00$
18" RCP	LF	218	$\$ 70.00$	$\$ 15,260.00$
24" RCP	LF	85	$\$ 83.00$	$\$ 7,055.00$
23"X14" HERCP	LF	97	$\$ 85.00$	$\$ 8,245.00$
15" FES	EA	2	$\$ 400.00$	$\$ 800.00$
18" FES	EA	1	$\$ 420.00$	$\$ 420.00$
24" FES	EA	2	$\$ 498.00$	$\$ 498.00$
23"X14" FES	EA	2	$\$ 510.00$	$\$ 1,020.00$
TYPE II MANHOLE	EA	1	$\$ 7,082.00$	$\$ 7,082.00$
5' TYPE R INLET	EA	1	$\$ 7,981.00$	$\$ 7,981.00$
10' TYPE R INLET	EA	1	$\$ 10,898.00$	$\$ 10,898.00$
DENVER NO. 16 VALLEY GRATE	EA	6	$\$ 4,000.00$	$\$ 24,000.00$
DETENTION/WQ POND	EA	2	$\$ 86,000.00$	$\$ 172,000.00$

Since the engineer has no control over the cost of labor, materials, equipment, or services furnished by others, or over the contractor's method of determining prices, or over the competitive bidding or market conditions, the opinion of probable construction costs provided herein are made on the basis of the engineer's experience and qualifications and represents the best judgment as an experienced and qualified professional familiar with the construction industry. The engineer cannot, and does not guarantee that proposals, bid or actual construction costs will not vary from the opinions of probable cost.

XIII. Summary

The above report has demonstrated that the proposed Circle K at Highway 24 \& Meridian development will comply with the governing DCM, ECM, and the El Paso County MS4 permit. There are no DBPS requirements affecting the site and no adverse effects on downstream infrastructure is anticipated. Therefore, we recommend approval of the proposed development.

XIV. References

1. El Paso County Drainage Criteria Manual, Volume 1 \& 2, El Paso County, May 2014
2. El Paso County Engineering Criteria Manual, El Paso County, Rev. December 2016
3. Web Soil Survey of El Paso County Area, Colorado. Unites States Department of Agriculture Soil Conservation Service.
4. Flood Insurance Rate Maps for El Paso County, Colorado and Incorporated Areas, Panel 561 of 1300, Federal Emergency Management Agency, Effective Date December 7, 2018.
5. Urban Storm Drainage Criteria Manual, Vol. 1-3 by Urban Drainage and Flood Control District (UDFCD), January 2016
6. Falcon Drainage Basin Planning Study, Matrix Design Group, September 2015
7. Stormwater Management Plan, Circle Kat Highway 24 \& Meridian Road, Matrix Design Group, Under review.
8. E1 Paso County Department of Public Services U.S. 24 and Meridian Road Improvement Plans by HDR, August 2019.

Final Drainage Report
for Circle K at Highway 24 \& Meridian Road

XV. Appendices

APPENDIXA

Hydrologic and Hydraulic Calculations

Circle K at Highway 24 \& Meridian Road INLET SUMMARY												
DESIGN POINT (\#-Letter) or SUB-BASIN (Letter\#)	SUB-BASINS	TOTAL AREA (AC)	INLET			Q(5) BYPASS FLOWS (cfs)	Q(5) TOTAL INFLOW	Q5 INLET CAPACITY	Q(100) BYPASS FLOWS (cfs)	$\begin{aligned} & Q(100) \\ & \text { TOTAL } \\ & \text { INFLOW } \\ & \text { (cfs) } \end{aligned}$	MAX INLETCAPACITY	NOTES:
			$\begin{aligned} & \text { SIZE } \\ & \text { (Ft.) } \end{aligned}$	TYPE	CONDITION							
DP A	A	1.00	5	R	SUMP	0.0	3.27	5.4	0.0	6.22	9.2	
DP B	B	0.77	10	R	SUMP	0.0	2.16	2.5	0.0	4.27	6.1	Inlet B Captures 100\% of Bypass Flows From Inlets C \& D
DP C	C	0.33	3	16	AT GRADE	0.0	1.09	1.1	0.1	2.08	2.0	Bypass flows to Inlet B
DP D	D	0.36	3	16	AT GRADE	0.0	1.05	1.0	0.4	2.06	1.7	Bypass flows to Inlet C
		\#N/A				\#N/A	\#N/A		\#N/A	\#N/A		
		\#N/A				\#N/A	\#N/A		\#N/A	\#N/A		
		\#N/A				\#N/A	\#N/A		\#N/A	\#N/A		
		\#N/A				\#N/A	\#N/A		\#N/A	\#N/A		
		\#N/A				\#N/A	\#N/A		\#N/A	\#N/A		
		\#N/A				\#N/A	\#N/A		\#N/A	\#N/A		
		\#N/A				\#N/A	\#N/A		\#N/A	\#N/A		
		\#N/A				\#N/A	\#N/A		\#N/A	\#N/A		
		\#N/A				\#N/A	\#N/A		\#N/A	\#N/A		
		\#N/A				\#N/A	\#N/A		\#N/A	\#N/A		
		\#N/A				\#N/A	\#N/A		\#N/A	\#N/A		
		\#N/A				\#N/A	\#N/A		\#N/A	\#N/A		
		\#N/A				\#N/A	\#N/A		\#N/A	\#N/A		
		\#N/A				\#N/A	\#N/A		\#N/A	\#N/A		
		\#N/A				\#N/A	\#N/A		\#N/A	\#N/A		
		\#N/A				\#N/A	\#N/A		\#N/A	\#N/A		
		\#N/A		R		\#N/A	\#N/A		\#N/A	\#N/A		

Circle K at Highway 24 \& Meridian Road INLET SUMMARY												
DESIGNPOINT (\#Letter)	SUB-BASINS	$\begin{gathered} \text { TOTAL } \\ \text { AREA (AC) } \end{gathered}$	INLET			$\begin{aligned} & Q(5) \text { BYPASS } \\ & \text { FLOWS } \\ & \text { (cfs) } \end{aligned}$	Q(5) total inflow	Q5 InLET CAPACITY	$\begin{gathered} Q(100) \\ \text { BYPASS } \\ \text { FLOWS } \\ \text { (cfs) } \end{gathered}$	$Q(100)$ TOTAL INFLOW (cfs)	maX INLET CAPACITY	NOTES:
$\begin{gathered} \text { or } \\ \text { SUB-BASIN } \\ \text { (Letter\#) } \\ \hline \end{gathered}$			$\begin{aligned} & \text { SIZE } \\ & (F \mathrm{Ft}) \end{aligned}$	TYPE	CONDITION							
DP A	A	1.00	5	R	SUMP	0.0	3.27	5.4	0.0	6.22	9.2	
DP B	B	0.77	10	R	SUMP	0.0	2.16	2.5	0.0	4.27	6.1	Inlet B Captures $\mathbf{1 0 0 \%}$ of Bypass Flows From Inlets C \& D
DP C	C	0.33	3	16	AT GRADE	0.0	1.09	1.1	0.1	2.08	2.0	Bypass flows to Inlet B
DP D	D	0.36	3	16	AT GRADE	0.0	1.05	1.0	0.4	2.06	1.7	Bypass flows to Inlet C

STORMCAD LAYOUT - HIGHWAY 24 \& MERIDIAN ROAD

EAST CULVERT PROFILE - 5 YR

WEST CULVERT PROFILE - 5 YR

PIPE REPORT (5 YR)

	ID	Label	Start Node	Invert (Start) (ft)	Stop Node	Invert (stop) (ft)	$\begin{gathered} \text { Slope } \\ (\text { Calculated) } \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	Diameter	Manning's n	$\begin{gathered} \text { Flow } \\ (\mathrm{ffs}) \end{gathered}$	$\begin{gathered} \text { Velocity } \\ (\mathrm{ft/s)} \end{gathered}$	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (ft)
49: PPPE 1	49	PIPE 1	inlet ${ }^{\text {d }}$	6,824.33	inlet C	6,823.81	0.005	15.0	0.013	1.00	2.97	6,824.73	6,824.34
62: PPPE 2	62	PIPE 2	inlet C	6,823.71	MH 1	6,823.24	0.005	15.0	0.013	2.10	3.65	6,824.33	6,824.25
52: PPPE 3	52	PIPE 3	MH 1	6,822.99	inlet ${ }^{\text {B }}$	6,822.41	0.007	18.0	0.013	4.60	5.02	6,823.81	6,823.18
56: PIPE 5	56	PIPE 5	inlet B	6,822.31	Forebay 1	6,822.03	0.007	18.0	0.013	4.60	5.09	6,823.13	6,822.79
59: PIPE 6	59	PIPE 6	inlet A	6,820.00	Forebay 2	6,819.74	0.010	24.0	0.013	3.30	5.14	6,820.63	6,820.26
58: PIPE 7	58	PIPE 7	OUTLET STRUCTURE	6,818.49	FES 5	6,817.98	0.010	24.0	0.013	0.10	1.80	6,818.60	6,818.08
61: PPPE 8	61	PIPE 8	FES 1	6,821.69	FES 2	6,820.19	0.015		0.013	0.90	3.92	6,821.98	6,820.41
60: PIPE 9	60	PIPE 9	FES 3	6,821.79	FES 4	6,820.51	0.012	15.0	0.013	2.10	5.08	6,822.37	6,820.97

STRUCTURE REPORT (5 YR)

	ID	Label	\wedge	Elevation (Ground) (ft)	Elevation (Rim) (ft)	$\begin{aligned} & \text { Depth (Out) } \\ & (\mathrm{ft}) \end{aligned}$	Hydraulic Grade Line (In)	Hydraulic Grade Line (Out) (ft)	Headloss Coefficient (Standard)	Flow (Total Out) (cfs)
47: FES 1	47	FES 1		6,823.27	6,823.27	0.29	6,821.99	6,821.98	0.050	0.90
45: FES 3	45	FES 3		6,823.31	6,823.31	0.58	6,822.38	6,822.37	0.050	2.10
43: INLETA	43	InLET A		6,821.95	6,821.95	0.64	6,820.65	6,820.63	0.050	3.30
34: INLET B	34	INLET B		6,825.45	6,825.45	0.82	6,823.15	6,823.13	0.050	4.60
31: InLET C	31	Inlet C		6,826.12	6,826.12	0.62	6,824.34	6,824.33	0.050	2.10
32: INLETD	32	INLET D		6,826.64	6,826.64	0.40	6,824.73	6,824.73	0.050	1.00
33: MH 1	33	MH 1		6,826.04	6,826.04	0.82	6,824.25	6,823.81	1.320	4.60
40: OUTLET ST	40	OULLET STRUCTURE		6,821.79	6,821.79	-0.08	6,818.60	6,818.60	0.050	0.10

PIPE REPORT (100 YR)

	ID	Label	- Start Node	$\begin{aligned} & \text { Invert (Start) } \\ & ((t) \end{aligned}$	Stop Node	$\underset{(f t)}{\substack{\text { Invert (stop) }}}$	$\begin{aligned} & \text { Slope } \\ & \text { (Calculated) } \\ & (\mathrm{f} / \mathrm{ft}) \end{aligned}$	Diameter	Manning's n	$\begin{gathered} \text { Flow } \\ (\mathrm{ffs}) \end{gathered}$	$\begin{aligned} & \text { Velocity } \\ & (f(f / c) \end{aligned}$	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
49: PIPE 1	49	PIPE 1	inlet D	6,824.33	Inlet C	6,823.81	0.005	15.0	0.013	2.10	3.63	6,825.40	6,825.30
62: PIPE 2	62	PIPE 2	inlet C	6,823.71	MH 1	6,823.24	0.005	15.0	0.013	4.10	3.34	6,825.29	6,824.91
52: PIPE 3	52	PIPE 3	MH 1	6,822.99	Inlet ${ }^{\text {B }}$	6,822.41	0.007	18.0	0.013	9.00	5.65	6,824.26	6,823.57
56: PIPE 5	56	PIPE 5	inlet B	6,822.31	forebay 1	6,822.03	0.007	18.0	0.013	9.00	5.76	6,823.55	6,823.19
59: PIPE 6	59	PIPE 6	inlet A	6,820.00	Forebay 2	6,819.74	0.010	24.0	0.013	6.20	6.15	6,820.88	6,820.48
58: PIPE 7	58	PIPE 7	OUILET STRUCTURE	6,818.49	FES 5	6,817.98	0.010	24.0	0.013	3.40	5.19	6,819.13	6,818.50
61: PIPE 8	61	PIPE 8	FES 1	6,821.69	FES 2	6,820.19	0.015		0.013	2.90	5.60	6,822.23	6,820.58
60: PIPE 9	60	PIPE 9	FES 3	6,821.79	FES 4	6,820.51	0.012	15.0	0.013	5.40	6.43	6,822.73	6,821.32

STRUCTURE REPORT (100 YR)

	ID	Label	-	Elevation (Ground) (ft)	Elevation $($ Rim $)$ (ft)	Depth (Out) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out)	Headloss Coefficient (Standard)	Flow (Total Out) (cfs)
47: FES 1	47	FES 1		6,823.27	6,823.27	0.54	6,822.24	6,822.23	0.050	2.90
45: FES 3	45	FES 3		6,823.31	6,823.31	0.94	6,822.75	6,822.73	0.050	5.40
43: INLETA	43	inlet A		6,821.95	6,821.95	0.88	6,820.90	6,820.88	0.050	6.20
34: INLET B	34	INLET B		6,825.45	6,825.45	1.24	6,823.57	6,823.55	0.050	9.00
31: INLETC	31	inlet C		6,826.12	6,826.12	1.58	6,825.30	6,825.29	0.050	4.10
32: INLET D	32	INLET D		6,826.64	6,826.64	1.07	6,825.40	6,825.40	0.050	2.10
33: MH 1	33	MH 1		6,826.04	6,826.04	1.27	6,824.91	6,824.26	1.320	9.00
40: OUTLET ST	40	OUTLET STRUCTURE		6,821.79	6,821.79	0.45	6,819.15	6,819.13	0.050	3.40

									Forebay Volume		Forebay Outlet Sizing	
Design Point	Total Water Quality Control Volume (Cu. Ft.)	Pond Name	Pond Drainage Area (Acres)	Pond Drainage Area Less Pond Footprint (Acres)	Forebay Location	Drainage area tributary to Forebay	Proportion of Total Drainage Area	Proportional WQCV Volume (Cu. Ft.)	2% of WaCV (Cu. Ft.)	Q100 to Forebay (cfs)	$\begin{aligned} & \text { 2\% of Q100 } \\ & \text { (cfs) } \end{aligned}$	Forebay Slot Sizing (inches)
DPA	3463.591143	Detention Pond	3.73	3.263	South	1	0.31	1061.47	21	14.8	0.3	3.8

	On-Site EDBs tor Wor ut up toleds Impervious Incre Acre	EDBs with Watersheds betweenn and 2 Imperious Acres ${ }^{2}$	EDBs with Watershed up to 5 Impervious Acres Acres	EDBs with Watersheds over 5 Impervious Acres	EDBs with Watersheds over 20 Impervious \qquad
Forebay Release and Configuration	EDBs should not be used for watersheds with less than 1 impervious acre.	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch or configuration
$\begin{aligned} & \text { Minimum } \\ & \text { Forebay } \\ & \text { Volume } \end{aligned}$		1% of the WQCV	$\stackrel{2 \% \text { of the }}{\text { wecy }}$	3% of the WQCV	3% of the WQCV
$\begin{gathered} \text { Maximum } \\ \text { Forebay Depth } \\ \hline \end{gathered}$		12 inches	18 inches	18 inches	30 inches
Trickle Channel		$\underset{\substack{\geq \text { the } \\ \text { maximum } \\ \text { possible } \\ \text { foreapoutlet }}}{\text { capacty }}$		$\underset{\substack{\geq \text { the } \\ \text { maximum } \\ \text { possible } \\ \text { forebay outlet } \\ \text { capacity }}}{ }$	$\begin{gathered} \geq \text { the } \\ \begin{array}{c} \text { maximum } \\ \text { fossible } \\ \text { forebay outlet } \\ \text { capacity } \end{array} \\ \hline \end{gathered}$
Micropool		Area $\geq 10 \mathrm{ft}^{2}$	Area $\geq 10 \mathrm{ff}^{2}$	Area $\geq 10 \mathrm{ft}^{2}$	Area $\geq 10 \mathrm{ft}^{2}$
$\begin{aligned} & \text { Initial } \\ & \text { Surcharge } \\ & \text { Volume } \end{aligned}$		Depth ≥ 4 inches	Depth ≥ 4 inches	$\begin{aligned} & \text { Depth } \geq 4 \text { in. } \\ & \text { Volume } \geq \\ & 0.3 \% \text { WQCV } \end{aligned}$	$\begin{aligned} & \text { Depth } \geq 4 \text { in } . \\ & \text { Volume } \geq \\ & 0.3 \% \text { WQCV } \end{aligned}$

${ }^{1}$ EDBs are not recommended for sites with less than 2 impervious acres. Consider a sand filter or rain garden
${ }^{2}$ Round up to the first standard pipe size (minimum 8 inches).

									Forebay Volume		Forebay Outlet Sizing	
Design Point	Total Water Quality Control Volume (Cu. Ft.)	Pond Name	Pond Drainage Area (Acres)	Pond Drainage Area Less Pond Footprint (Acres)	Forebay Location	Drainage area tributary to Forebay	Proportion of Total Drainage Area	Proportional WQCV Volume (Cu. Ft.)	2% of WaCV (Cu. Ft.)	Q100 to Forebay (cfs)	$\begin{aligned} & \text { 2\% of Q100 } \\ & \text { (cfs) } \end{aligned}$	$\begin{aligned} & \text { Forebay Slot } \\ & \text { Sizing } \\ & \text { (inches) } \end{aligned}$
DP B	3463.591143	Detention Pond	3.73	3.263	West	1.63	0.50	1730.20	35	9.1	0.2	4.0

	On-Site EDBs tor Wor ut up toleds Impervious Incre Acre	EDBs with Watersheds betweenn and 2 Imperious Acres ${ }^{2}$	$\begin{aligned} & \text { EDBs with } \\ & \text { Watersheds } \\ & \text { up to } 5 \\ & \text { Impervious } \\ & \text { Acres } \end{aligned}$	EDBs with Watersheds over 5 Impervious Acres	EDBs with Watersheds over 20 Impervious Acres \qquad
Forebay Release and Configuration	EDBs should not be used for watersheds with less than 1 impervious acre.	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch or configuration
$\underset{\substack{\text { Minimum } \\ \text { Forebay } \\ \text { Volun }}}{ }$ Volum		1% of the WQCV	2% of the WQCV	3% of the WQCV	3% of the wQCV
$\begin{gathered} \text { Maximum } \\ \text { Forebay Depth } \\ \hline \end{gathered}$		12 inches	18 inches	18 inches	30 inches
Trickle Channel		$\underset{\substack{\text { maximum } \\ \text { possible } \\ \text { forobay outlet } \\ \text { capacity }}}{\geq \text { ter }}$		$\begin{gathered} \geq \text { the } \\ \text { maximum } \\ \text { possible } \\ \text { forebay outlet } \\ \text { capacity } \end{gathered}$	$\underset{\begin{array}{c} \geq \text { the } \\ \text { maximum } \\ \text { possible } \\ \text { forebay outlet } \\ \text { capacity } \end{array}}{ }$
Micropool		Area $\geq 10 \mathrm{ff}^{2}$	Area $\geq 10 \mathrm{ff}^{2}$	Area $\geq 10 \mathrm{ft}^{2}$	Area $\geq 10 \mathrm{ft}^{2}$
Initial $\begin{gathered}\text { Surcharge } \\ \text { Volume }\end{gathered}$		Depth ≥ 4 inches	Depth ≥ 4 inches	Depth ≥ 4 in. Volume \geq 0.3% WQCV	Depth ≥ 4 in. Volume \geq 0.3% WQCV

${ }^{1} \begin{gathered}\text { EDBs are not recommended for sites with less than } 2 \text { impervious acres. Consider a sand filter or rain } \\ \text { garden. }\end{gathered}$
${ }^{2}$ Round up to the first standard pipe size (minimum 8 inches).

Watershed Information		
Selected BMP Type =	EDB	acres
$\begin{aligned} \text { Watershed Area } & = \\ \text { Watershed Length } & = \\ \text { Watershed Length to Centroid } & =\end{aligned}$	3.73	
	450	ft
	150	$\mathrm{ft} / \mathrm{ft}$
Watershed Slope = Watershed Imperviousness =	0.020	
	65.43\%	per
Percentage Hydrologic Soil Group A $=$	100.0\%	percent
Percentage Hydrologic Soil Group B $=$	0.0\%	percent
Percentage Hydrologic Soil Groups $\mathrm{C} / \mathrm{D}=$	0.0\%	percent
Target WQCV Drain Time $=$	40.0	hours
Location for 1-hr Rainfall Depths =	er Input	
After providing required inputs above incl depths, click 'Run CUHP' to generate runo the embedded Colorado Urban Hydro	ing 1 -ho hydrogra aph Proc	rainfall s using ure.
Water Quality Capture Volume (WQCV) $=$	0.080	eet
Excess Urban Runoff Volume (EURV) $=$	0.303	-feet
$2-y r$ Runoff Volume ($\mathrm{P} 1=1.19 \mathrm{in}$.) =	0.205	eet
5 -yr Runoff Volume (P1 = 1.5 in .) $=$	0.269	re-feet
10-yr Runoff Volume ($\mathrm{P} 1=1.75 \mathrm{in}$.) $=$	0.320	feet
25 -yr Runoff Volume ($\mathrm{P} 1=2 \mathrm{in}$.) $=$	0.387	eet
$50-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2.25 \mathrm{in}$.) $=$	0.452	re-feet
$100-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2.52 \mathrm{in}$.) $=$	0.531	eet
$500-\mathrm{yr}$ Runoff Volume (P1 = 3.55 in .) =	0.824	-feet
Approximate 2-yr Detention Volume $=$	0.197	eet
Approximate 5 -yr Detention Volume $=$	0.258	feet
Approximate 10-yr Detention Volume $=$	0.311	feet
Approximate $25-\mathrm{yr}$ Detention Volume $=$	0.374	-feet
Approximate $50-\mathrm{yr}$ Detention Volume $=$	0.412	eet
Approximate 100-yr Detention Volum	0.451	feet

Depth Increment $=$	0.50								
Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{ft}^{2}\right) \end{aligned}$	Override Area (ft^{2})	$\begin{aligned} & \text { Area } \\ & \text { (acre) } \end{aligned}$	Volume $\left(\mathrm{ft}^{3}\right)$	$\begin{aligned} & \text { Volume } \\ & (\mathrm{ac}-\mathrm{ft}) \end{aligned}$
Top of Micropool	--	0.00	--	--	--	104	0.002		
6819.5	--	0.50	--	-	--	376	0.009	120	0.003
	--	1.00	--	--	--	1,157	0.027	503	0.012
	--	1.50	--	--	--	3,897	0.089	1,767	0.041
	--	2.00	--	--	--	6,935	0.159	4,475	0.103
	--	2.50	--	--	-	10,344	0.237	8,795	0.202
	--	3.00	--	--	--	12,769	0.293	14,573	0.335
	--	3.50	--	--	--	14,478	0.332	21,385	0.491
	--	4.00	--	--	--	15,956	0.366	28,993	0.666
	--	4.50	--	--	--	17,548	0.403	37,369	0.858
	--	5.00	--	--	--	20,596	0.473	46,905	1.077
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	-	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	--				
	\cdots		\cdots	--	--				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	--	\cdots				
	-		-	-	--				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	--				
	--		--	--	--				
	--		--	\cdots	--				
	\cdots		\cdots	\cdots	--				
	\cdots		\cdots	\cdots	--				
	--		--	--	--				
	--		--	--	--				
	\cdots		\cdots	--	--				
	--		--	-	--				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	\cdots	--				
	\cdots		\cdots	\cdots	\cdots				
	--		--	--	--				
	\cdots		\cdots	\cdots	-				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		\cdots	--	--				
	\cdots		\cdots	\cdots	--				
	\cdots		\cdots	-	\cdots				
	--		--	--	--				
	$\stackrel{-}{-}$		$\stackrel{-}{-}$	\cdots	\cdots				
	\cdots		\cdots	--	--				
	--		--	\cdots	--				
	\cdots		\cdots	\cdots	\cdots				
	\cdots		--	\cdots	--				

DETENTION BASIN OUTLET STRUCTURE DESIGN
 MHFD-Detention, Version 4.04 (February 2021)

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.62	1.23					
Orifice Area (sq. inches)	0.32	0.32	0.32					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches	Vertical Orifice Area $=$ Vertical Orifice Centroid $=$	Calculated Parameters for Vertical Orifice		
	Zone 2 Circular	Not Selected			Zone 2 Circular	Not Selected	$f_{\text {feet }}$
Invert of Vertical Orifice $=$	1.72	N/A			0.01	N/A	
Depth at top of Zone using Vertical Orifice $=$	2.78	N/A			0.05	N/A	
Vertical Orifice Diameter $=$	1.25	N/A					

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Restrictor	Not Selected	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches	Outlet Orifice Area $=$ Outlet Orifice Centroid =	Zone 3 Restrictor	Not Selected	ft^{2}
	0.33	N/A			0.45	N/A	
	24.00	N/A			0.24	N/A	feet radians
Restrictor Plate Height Above Pipe Invert $=$	4.80		inches Half-Central Ang	Restrictor Plate on Pipe $=$	0.93	N/A	

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	3.38	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	25.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

	Calculated Parameters for Spillway	
Spillway Design Flow Depth=	0.28	feet
Stage at Top of Freeboard =	4.66	feet
Basin Area at Top of Freeboard =	0.43	acres
Basin Volume at Top of Freeboard =	0.92	acre-ft

Routed Hydrograph Results	The user can over	the default C	hydrographs an	unoff volumes	tering new v a	in the Inflow	graphs table	mns W through	
Design Storm Return Period $=$	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.55
CUHP Runoff Volume (acre-ft) =	0.080	0.303	0.205	0.269	0.320	0.387	0.452	0.531	0.824
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	0.205	0.269	0.320	0.387	0.452	0.531	0.824
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.0	0.1	0.1	1.0	2.0	3.2	7.4
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.02	0.03	0.27	0.52	0.85	1.98
Peak Inflow Q (cfs) =	N/A	N/A	4.3	5.7	6.9	8.5	10.3	11.8	18.6
Peak Outflow Q (cfs) $=$	0.0	0.1	0.1	0.1	0.1	0.8	1.6	3.4	7.3
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.0	0.9	0.8	0.8	1.1	1.0
Structure Controlling Flow =	Vertical Orifice 1	Overflow Weir 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.0	0.0	0.1	0.2	0.2
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	39	69	58	66	72	71	70	68	63
Time to Drain 99\% of Inflow Volume (hours) =	42	76	64	72	78	78	77	76	74
Maximum Ponding Depth (ft) =	1.85	2.90	2.47	2.72	2.90	2.98	3.03	3.12	3.50
Area at Maximum Ponding Depth (acres) =	0.14	0.28	0.23	0.26	0.28	0.29	0.30	0.30	0.33
Maximum Volume Stored (acre-ft) $=$	0.080	0.306	0.193	0.254	0.306	0.326	0.343	0.367	0.491

Watershed Information	
Selected BMP Type =	EDB
	3.16
	400
	300
Watershed Length to Centroid = Watershed Slope =	0.020
Watershed Imperviousness =	100.00\%
Percentage Hydrologic Soil Group A	100.0\%
Percentage Hydrologic Soil Group B	0.0\%
Percentage Hydrologic Soil Groups C/D	0.0\%
Target WQCV Drain Time	40.0
Location for 1-hr Rainfall Depths = User Input	
After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.	
$\begin{aligned} \text { Water Quality Capture Volume (WQCV) } & = \\ \text { Excess Urban Runoff Volume (EURV) } & = \\ 2-\mathrm{yr} \text { Runoff Volume }(\text { P1 }=1.19 \mathrm{in} .) & = \\ 5-\mathrm{yr} \text { Runoff Volume }(\text { P1 }=1.5 \mathrm{in} .) & = \end{aligned}$	0.132
	0.442
	0.296
	0.379
10-yr Runoff Volume ($\mathrm{P} 1=1.75 \mathrm{in}$.) $=$	0.446
25 -yr Runoff Volume ($\mathrm{P} 1=2 \mathrm{in}$.) $=$	0.512
$50-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2.25 \mathrm{in}$.) $=$	0.579
$100-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2.52 \mathrm{in}$.) $=$	0.652
$500-\mathrm{yr}$ Runoff Volume (P1 = 3.55 in .) =	0.927
Approximate 2-yr Detention Volume $=$	0.293
Approximate 5 -yr Detention Volume $=$	0.379
Approximate $10-\mathrm{yr}$ Detention Volume $=$	0.448
Approximate $25-\mathrm{yr}$ Detention Volume $=$	0.525
Approximate $50-\mathrm{yr}$ Detention Volume $=$	0.569
	0.605

Define Zones and Basin Geometry
Zone 1 Volume $(W Q C V)=0.132$ acre-feet Zone 2 Volume (EURV - Zone 1) Zone 3 Volume (100 -year - Zones $1 \& 2$) Total Detention Basin Volume 0.163 acre-feet Initial Surcharge Volume (ISV) Initial Surcharge Depth (ISD) Total Available Detention Depth (H Depth of Trickle Channel $\left(\mathrm{H}_{\mathrm{TC}}\right)=$ Slope of Trickle Channel (S_{TC}) Slopes of Main Basin Sides ($\mathrm{S}_{\text {main }}$) Basin Length-to-Width Ratio ($\mathrm{R}_{\mathrm{L} / \mathrm{w}}$)

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.50	1.00	1.50	2.00	2.50	3.00	
Orifice Area (sq. inches)	0.25	0.25	0.25	0.25	0.25	0.25	0.15	

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches	Vertical Orifice Area $=$ Vertical Orifice Centroid $=$	Calculated Parameters for Vertical Orifice		
	Zone 2 Circular	Not Selected			Zone 2 Circular	Not Selected	$f_{\mathrm{ft}^{2}}^{\text {feet }}$
Invert of Vertical Orifice $=$	3.30	N/A			0.00	N/A	
Depth at top of Zone using Vertical Orifice $=$	6.02	N/A			0.00	N/A	
Vertical Orifice Diameter $=$	0.10	N/A					

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)				Calculated Parameters for Overflow Weir		
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Zone 3 Weir	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	Zone 3 Weir	Not Selected	$\left\{\begin{array}{l} \text { feet } \\ \text { feet } \end{array}\right.$
	6.50	N/A		6.50	N/A	
	4.00	N/A		4.00	N/A	
Overflow Weir Grate Slope =	0.00	N/A	$\mathrm{H}: \mathrm{V}$ Grate Open Area / 100-yr Orifice Area $=$	103.75	N/A	
Horiz. Length of Weir Sides $=$	4.00	N/A	feet Overflow Grate Open Area w/o Debris =	11.14	N/A	ft^{2}
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris $=$	5.57	N/A	ft^{2}
Debris Clogging \% =	50\%	N/A	\%			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Depth to Invert of Outlet Pipe	0.25	N/A	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches	Outlet Orifice Area $=$ Outlet Orifice Centroid =	0.11	N/A	$\mathrm{ff}_{\text {feet }}{ }_{\text {r }}$
Outlet Pipe Diameter $=$	18.00	N/A			0.10	N/A	
Restrictor Plate Height Above Pipe Invert $=$	2.00		inches Half-Central Ang	Restrictor Plate on Pipe $=$	0.68	N/A	

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	7.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	4.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Routed Hydrograph Results	ser ca	defaut	Ogra	unoff volumes	ing ne	in the Inflow	graphs table	nns W throug	
Design Storm Return Period $=$	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.55
CUHP Runoff Volume (acre-ft) =	0.132	0.442	0.296	0.379	0.446	0.512	0.579	0.652	0.927
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	0.296	0.379	0.446	0.512	0.579	0.652	0.927
CUHP Predevelopment Peak Q (cfs) $=$	N/A	N/A	0.0	0.1	0.1	0.6	1.3	2.1	4.9
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.02	0.02	0.20	0.40	0.65	1.54
Peak Inflow Q (cfs) =	N/A	N/A	5.8	7.3	8.5	10.0	11.3	12.4	17.5
Peak Outflow Q (cfs) $=$	0.1	0.1	0.1	0.1	0.1	0.1	0.9	1.4	4.6
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	2.2	1.7	0.2	0.7	0.7	1.0
Structure Controlling Flow =	Plate	Plate	Plate	Vertical Orifice 1	Plate	Vertical Orifice 1	Overflow Weir 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	0.1	0.1	0.1
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	38	71	58	66	72	77	79	78	75
Time to Drain 99\% of Inflow Volume (hours) =	40	76	62	71	77	83	86	86	85
Maximum Ponding Depth (ft) $=$	3.30	6.02	4.81	5.45	5.92	6.34	6.60	6.68	7.35
Area at Maximum Ponding Depth (acres) $=$	0.08	0.15	0.12	0.14	0.15	0.16	0.17	0.17	0.19
Maximum Volume Stored (acre-ft) $=$	0.132	0.443	0.280	0.361	0.427	0.493	0.535	0.550	0.673

Figure 13-12b. Emergency Spillway Profile at Embankment

Figure 13-12c. Emergency Spillway Protection

	DP J3		DP K		DP L	
Pipe Size (D)	24	Inches	15	Inches	18	Inches
Q	3.3	cfs	5.6	cfs	2.9	cfs
L	6	Feet	3.75	Feet	4.5	Feet
W	6	Feet	3.75	Feet	4.5	Feet
D	0	Feet	0	Feet	0	Feet
d50	0.13	Feet	0.20	Feet	0.17	Feet
	1.52	Inches	2.42	Inches	2.07	Inches
Depth of Flow	0.55	Feet	0.65	Feet	0.4	Feet
Q/D^1.5	1.17		4.01		1.58	
Yt/D	0.275		0.520		0.273	
Rip Rap	Type L for $3 x$ Pipe Dia Downstream		Type L for $3 x$ Pipe Dia Downstream		Type L for $3 \times$ Pipe Dia Downstream	
Length of Rock	6	Feet	3.75	Feet	4.5	Feet
Width of Rock	6.0	Feet	3.8	Feet	4.5	Feet

Use D_{0} instead of D whenever flow is supercritical in the barrel.
** Use Type L for a distance of $3 D$ downstream.

CLASSIFICATION AND GRADATION OF ORDINARY RIP RAP			
Rip Rap Designation by Weight	Smaller Than Given Size (inches)	Intermediate Rock Dimension	d50* (inches)
Type VL	$70-100$	12	
	$50-70$	9	$6^{* *}$
	$35-50$	6	
Type L	$2-10$	2	
	$70-100$	15	
	$50-70$	12	
	$35-50$	9	
Type M	$70-10$	3	
	$70-100$	21	
	$50-70$	18	12
	$35-50$	12	
Type H	$2-10$	4	
	$70-100$	20	
	$50-70$	24	18
	$35-50$	18	
Type VH	$2-10$	6	
	$50-100$	42	
	$35-70$	33	
	$2-10$	24	24

$*$

* $50=$ Mean particle size
Bury types VL and L with native top soil and revegetate to protect from vandalism.

GRADE AND BU
WTH TOPSOLL

$\frac{\text { PIPE SIZE OR }}{\text { BOX HEIGHI }}$	$\underline{0}$	w*	\downarrow
$18^{\prime \prime}-24^{\prime \prime}$	$1^{\prime \prime}=0^{\prime \prime}$	4	15^{\prime}
30" - 36"	1 '-6"	${ }^{\prime}$	20°
$42^{\prime \prime}-48^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$7{ }^{\prime}$	24^{\prime}
$54^{\prime \prime}$ - 60 "	$2{ }^{\prime}-6{ }^{\prime \prime}$	8.	28^{\prime}
66" - 72"	$3^{\prime}-0^{\prime \prime}$	s°	32^{\prime}

* IF OUTLET PIPE IS A BOX CULVERT WIIHA A
GREATER THN W, THEN W = CULVERT WIDTH

Figure 9-38. Riprap erosion protection at circular conduit outlet (valid for Q/D2.5 ≤ 6.0)

BASIN E FLUME

Rectangular

Bottom Width (ft)	$=5.00$
Total Depth (ft)	$=0.50$
Invert Elev (ft)	$=1.00$
Slope (\%)	$=33.00$
N-Value	$=0.013$

Calculations

Compute by:
Known Q (cfs)

Known Q
$=1.40$

Highlighted

Depth (ft)	$=0.04$
Q (cfs)	$=1.400$
Area (sqft)	$=0.20$
Velocity (ft/s)	$=7.00$
Wetted Perim (ft)	$=5.08$
Crit Depth, Yc (ft)	$=0.14$
Top Width (ft)	$=5.00$
EGL (ft)	$=0.80$

APPENDIXB

Standard Design Charts and Tables

Resolution No. 21-468

Basin Number	Receiving Waters	Year Studied	Drainage Basin Name	2022 Drainage Fee (per Impervious Acre)	2022 Bridge Fee (per Impervious Acre)

Drainage Basins with DBPS's:

CHMS0200	Chico Creek	2013	Haegler Ranch	\$11,891	\$1,755
CHWS1200	Chico Creek	2001	Bennett Ranch	\$13,312	\$5,106
CHWS1400	Chico Creek	2013	Falcon	\$34,117	\$4,687
FOFO2000	Fountain Creek	2001	West Fork Jimmy Camp Creek	\$14,470	\$4,281
FOFO2600	Fountain Creek	1991*	Big Johnson / Crews Gulch	\$21,134	\$2,729
FOFO2800	Fountain Creek	1988*	Widefield	\$21,134	\$0
FOFO2900	Fountain Creek	1988*	Security	\$21,134	\$0
FOFO3000	Fountain Creek	1991*	Windmill Gulch	\$21,134	\$317
FOFO3100 / FOFO3200	Fountain Creek	1988*	Carson Street / Little Johnson	\$12,891	\$0
FOFO3400	Fountain Creek	1984*	Peterson Field	\$15,243	\$1,156
FOFO3600	Fountain Creek	1991*	Fisher's Canyon	\$21,134	\$0
FOFO4000	Fountain Creek	1996	Sand Creek	\$21,814	\$8,923
FOFO4200	Fountain Creek	1977	Spring Creek	\$10,961	\$0
FOFO4600	Fountain Creek	1984*	Southwest Area	\$21,134	\$0
FOFO4800	Fountain Creek	1991	Bear Creek	\$21,134	\$1,156
FOFO5800	Fountain Creek	1964	Camp Creek	\$2,342	\$0
FOMO1000	Monument Creek	1981	Douglas Creek	\$13,291	\$294
FOMO1200	Monument Creek	1977	Templeton Gap	\$13,644	\$317
FOMO2000	Monument Creek	1971	Pulpit Rock	\$7,008	\$0
FOMO2200	Monument Creek	1994	Cottonwood Creek / S. Pine	\$21,134	\$1,156
FOMO2400	Monument Creek	1966	Dry Creek	\$16,684	\$604
FOMO3600	Monument Creek	1989*	Black Squirrel Creek	\$9,595	\$604
FOMO3700	Monument Creek	1987*	Middle Tributary	\$17,636	\$0
FOMO3800	Monument Creek	1987*	Monument Branch	\$21,134	\$0
FOMO4000	Monument Creek	1996	Smith Creek	\$8,616	\$1,156
FOMO4200	Monument Creek	1989*	Black Forest	\$21,134	\$575
FOMO5200	Monument Creek	1993*	Dirty Woman Creek	\$21,134	\$1,156
FOMO5300	Fountain Creek	1993*	Crystal Creek	\$21,134	\$1,156

Miscellaneous Drainage Basins: ${ }^{1}$

CHBS0800	Chico Creek
CHEC0000	Chico Creek
CHWS0200	Chico Creek
CHWS0400	Chico Creek
CHWS0600	Chico Creek
CHWS0800	Chico Creek
FOFO1200	Fountain Creek
FOFO1400	Fountain Creek
FOFO1600	Fountain Creek
FOFO2000	Fountain Creek
FOFO2200	Fountain Creek
FOFO2700	Fountain Creek
FOFO3800	Fountain Creek
FOFO5000	Fountain Creek
FOFO6000	Fountain Creek
FOFO6800	Fountain Creek
FOMO4600	Monument Creek
FOMO3000	Monument Creek
FOMO3400	Monument Creek
FOMO5000	Monument Creek
FOMO5400	Monument Creek
FOMO5600	Monument Creek
PLPL0200	Monument Creek

Book Ranch	$\$ 19,830$	$\$ 2,871$
Upper East Chico	$\$ 10,803$	$\$ 313$
Telephone Exchange	$\$ 11,870$	$\$ 278$
Livestock Company	$\$ 19,552$	$\$ 233$
West Squirrel	$\$ 10,192$	$\$ 4,229$
Solberg Ranch	$\$ 21,134$	$\$ 0$
Crooked Canyon	$\$ 6,381$	$\$ 0$
Calhan Reservoir	$\$ 5,327$	$\$ 310$
Sand Canyon	$\$ 3,849$	$\$ 0$
Jimmy Camp Creek		
Fort Carson	$\$ 21,134$	$\$ 989$
West Little Johnson	$\$ 16,684$	$\$ 604$
Stratton	$\$ 1,392$	$\$ 0$
Midland	$\$ 10,137$	$\$ 453$
Palmer Trail	$\$ 16,684$	$\$ 604$
Black Canyon	$\$ 16,684$	$\$ 604$
Beaver Creek	$\$ 16,684$	$\$ 604$
Kettle Creek	$\$ 12,635$	$\$ 0$
Elkhorn	$\$ 11,413$	$\$ 0$
Monument Rock	$\$ 1,917$	$\$ 0$
Palmer Lake	$\$ 9,160$	$\$ 0$
Raspberry Mountain	$\$ 14,647$	$\$ 0$
Bald Mountain	$\$ 4,927$	$\$ 0$
	$\$ 10,500$	$\$ 0$
Little Fountain Creek		
Jackson Creek	$\$ 2,702$	$\$ 0$
Teachout Creek	$\$ 8,365$	$\$ 0$

1. The miscellaneous drainage fee previous to September 1999 resolution was the average of all drainage fees for basins with Basin Planning Studies performed within the last 14 years.
2. Interim Drainage Fees are based upon draft Drainage Basin Planning Studies or the Drainage Basin Identification and Fee Estimation Report. (Best available information suitable for setting a fee.)
3. This is an interim fee and will be adjusted when a DBPS is completed. In addition to the Drainage Fee a surety in the amount of $\$ 7,285$ per impervious acre shall be provided to secure payment of additional fees in the event that the DBPS results in a fee greater than the current fee. Fees paid in excess of the future revised fee will be reimbursed. See Resolution 06-326 (9/14/06) and Resolution 16-320 (9/07/16).
depths over the duration of the storm as a fraction of the 1-hour depth and is also shown in Figure 619. By applying the 1 -hour depths shown in Table 6-2 to the values shown in Table 6-3, a shortduration project design storm can be developed for any return period storm from a 2 -year up to 100year frequency. By applying the appropriate 1 -hour depth for other project locations, a project design storm can be created for any location.

Table 6-3. 2-Hour Design Storm Distribution, $\leq 1 \mathbf{~ m i}^{2}$

Time (minutes)	Fraction of 1-Hour Rainfall Depth	Time (minutes)	Fraction of 1-Hour Rainfall Depth
5	0.014	65	1.004
10	0.046	70	1.018
15	0.079	75	1.030
20	0.120	80	1.041
25	0.179	85	1.052
30	0.258	90	1.063
35	0.421	95	1.072
40	0.712	100	1.082
45	0.824	105	1.091
50	0.892	110	1.100
55	0.935	115	1.109
60	0.972	120	1.119

- Frontal Storms: The characteristics of longer-duration "frontal storms" (general) is less well understood than the shorter duration thunderstorms and should be studied further. However, some events of this nature have been observed, such as the April 1999 storm which produced flooding on Fountain Creek, showing that these types of events do occur and tend to produce hazardous flood flows. In addition, modeling of the Jimmy Camp Creek drainage basin using the 24-hour, Type II distribution shows that it produces results reasonably comparably to recorded flow data. Therefore, the NRCS 24-hour Type II distribution has replaced the Type IIa distribution as the standard, longduration design storm. This distribution can be applied to drainage basins up to 10 square miles without a DARF correction and is shown in Table 6-4. This distribution is included as a standard storm option in the HEC-HMS program.

Table 6-6. Runoff Coefficients for Rational Method
(Source: UDFCD 2001)

Land Use or Surface Characteristics	Percent Impervious	Runoff Coefficients											
		2-year		5-year		10-year		25-year		50-year		100-year	
		HSG A\&B	HSG C\&D										
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis-Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration $\left(t_{c}\right)$ consists of an initial time or overland flow time $\left(t_{i}\right)$ plus the travel time $\left(t_{t}\right)$ in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time $\left(t_{i}\right)$ plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion $\left(t_{t}\right)$ of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Figure 6-25. Estimate of Average Concentrated Shallow Flow

APPENDIXC

REPORT REFERENCES

FIRMETTE

USDA NRCS WEb Soil Sur vey Report

MAP LEGEND

Area of Interest (AOI)	
\square	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(c) Blowout

B Borrow Pit
次 Clay Spot
\diamond Closed Depression
Gravel Pit
$\therefore \quad$ Gravelly Spot
(4) Landfill
A. Lava Flow

Marsh or swamp
\& Mine or Quarry
(-) Miscellaneous Water

- Perennial Water
- Rock Outcrop
+ Saline Spot
$\because \quad$ Sandy Spot
을 Severely Eroded Spot
- Sinkhole

3) Slide or Slip
(6) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 18, Jun 5, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 11, 2018—Oct 20, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
9	Blakeland-Fluvaquentic Haplaquolls	4.9	40.4\%
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	7.3	59.6\%
Totals for Area of Interest		12.2	100.0\%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,
onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.
Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

9-Blakeland-Fluvaquentic Haplaquolls

```
Map Unit Setting
    National map unit symbol: 36b6
    Elevation: 3,500 to 5,800 feet
    Mean annual precipitation: 13 to 17 inches
    Mean annual air temperature: }46\mathrm{ to }55\mathrm{ degrees F
    Frost-free period: }110\mathrm{ to }165\mathrm{ days
    Farmland classification: Not prime farmland
Map Unit Composition
    Blakeland and similar soils: 60 percent
    Fluvaquentic haplaquolls and similar soils: }38\mathrm{ percent
    Minor components: 2 percent
    Estimates are based on observations, descriptions, and transects of the mapunit.
Description of Blakeland
    Setting
        Landform: Hills, flats
        Landform position (three-dimensional): Side slope, talf
        Down-slope shape: Linear
        Across-slope shape: Linear
        Parent material: Sandy alluvium derived from arkose and/or eolian deposits
            derived from arkose
    Typical profile
        A - 0 to 11 inches: loamy sand
        AC - 11 to 27 inches: loamy sand
        C-27 to 60 inches: sand
    Properties and qualities
        Slope: }1\mathrm{ to }9\mathrm{ percent
        Depth to restrictive feature: More than }80\mathrm{ inches
        Drainage class: Somewhat excessively drained
        Runoff class: Low
        Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95
            to }19.98\textrm{in}/\textrm{hr}
        Depth to water table: More than }80\mathrm{ inches
        Frequency of flooding: None
        Frequency of ponding: None
        Calcium carbonate, maximum content: }5\mathrm{ percent
        Available water capacity: Low (about 4.5 inches)
    Interpretive groups
        Land capability classification (irrigated): 3e
        Land capability classification (nonirrigated): 6e
        Hydrologic Soil Group: A
        Ecological site: R049XB210CO - Sandy Foothill
        Hydric soil rating: No
```


Description of Fluvaquentic Haplaquolls

Setting

Landform: Swales
Down-slope shape: Linear
Across-slope shape: Linear Parent material: Alluvium

Typical profile

H1-0 to 12 inches: variable
Properties and qualities
Slope: 1 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.20 to $6.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: About 0 to 24 inches
Frequency of flooding: Occasional
Frequency of ponding: None
Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
Interpretive groups
Land capability classification (irrigated): 6w
Land capability classification (nonirrigated): 6w
Hydrologic Soil Group: D
Hydric soil rating: Yes

Minor Components

Other soils
Percent of map unit: 1 percent
Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent
Landform: Depressions
Hydric soil rating: Yes

19-Columbine gravelly sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 367p
Elevation: 6,500 to 7,300 feet
Mean annual precipitation: 14 to 16 inches
Mean annual air temperature: 46 to 50 degrees F
Frost-free period: 125 to 145 days
Farmland classification: Not prime farmland

Map Unit Composition

Columbine and similar soils: 97 percent
Minor components: 3 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Columbine

Setting

Landform: Fans, flood plains, fan terraces
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

Typical profile

A - 0 to 14 inches: gravelly sandy loam
C-14 to 60 inches: very gravelly loamy sand
Properties and qualities
Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95
to $19.98 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 2.5 inches)
Interpretive groups
Land capability classification (irrigated): 4e
Land capability classification (nonirrigated): 6e
Hydrologic Soil Group: A
Ecological site: R049XB215CO - Gravelly Foothill
Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: 1 percent
Landform: Depressions
Hydric soil rating: Yes

Other soils

Percent of map unit: 1 percent
Hydric soil rating: No

Fluvaquentic haplaquolls

Percent of map unit: 1 percent
Landform: Swales
Hydric soil rating: Yes

Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

Hydrologic Soil Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

MAP LEGEND

Area of Interest (AOI)

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soi line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 18, Jun 5, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 11, 2018—Oct 20, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
9	Blakeland-Fluvaquentic Haplaquolls	A	4.9	40.4\%
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	7.3	59.6\%
Totals for Area of Interest			12.2	100.0\%

Rating Options—Hydrologic Soil Group

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

APPENDIXD

MAPS

