Final Drainage Report

Winsome Subdivision Filing No. 3 El Paso County, Colorado

Prepared for: Joe DesJardin Winsome, LLC 1864 Woodmoor Drive, Suite 100 Monument, CO 80132

Prepared by: Kimley-Horn and Associates, Inc. 2 North Nevada Avenue, Suite 300 Colorado Springs, Colorado 80903 (719) 453-0180

Contact: Brice Hammersland, P.E.

PCD File No. SF-22-009
Project \#: 196106001
Prepared: February 2, 2023

Kimley»"Horn

CERTIFICATION

DESIGN ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparation of this report.

SIGNATURE (Affix Seal):
Brice Hammersland, P.E.
Colorado P.E. No. 56012
Date

OWNER/DEVELOPER'S STATEMENT

I, the developer, have read and will comply with all of the requirements specified in this Drainage Report and Plan.

Name of Developer

Authorized Signature Date

Printed Name

Title

Address:

EL PASO COUNTY

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.
Joshua Palmer, P.E.
County Engineer/ ECM Administrator

Conditions:
TABLE OF CONTENTS
CERTIFICATION 2
Design Engineer's Statement 2
Owner/Developer's Statement
El Paso County 2
TABLE OF CONTENTS 3
INTRODUCTION 5
PURPOSE AND SCOPE OF STUDY 5
LOCATION 5
DESCRIPTION OF PROPERTY 5
DRAINAGE BASINS 6
MAJOR BASIN DESCRIPTIONS 6
EXISTING SUB-BASIN DESCRIPTIONS
Sub-Basin A 6
Sub-Basin G 6
Sub-basin H. 6
Sub-basin I. 7
Sub-basin J 7
Sub-basin K 7
PROPOSED HEC-HMS SUB-BASIN DESCRIPTIONS 7
DRAINAGE DESIGN CRITERIA 11
DEVELOPMENT CRITERIA REFERENCE 11
HYDROLOGIC CRITERIA 11
HYDRAULIC CRITERIA 12
DETENTION 13
CHANNELS 15
THE FOUR STEP PROCESS 16
DRAINAGE FACILITY DESIGN 17
GENERAL CONCEPT 17
SPECIFIC DETAILS 17
RUNOFF REDUCTION. 17
WQCV EXCLUSION AREAS 17
DRIVEWAY CULVERTS 18
EXISTING MINOR DRAINAGE CHANNELS 18
HEAD CUTTING CHANNELS 18
EXISTING MAJOR DRAINAGE CHANNELS 18
CONCURRENT REPORTS 18
ENGINEER'S COST ESTIMATE. 19
DRAINAGE FEE 19
SUMMARY 20
REFERENCES 21

APPENDIX

APPENDIX A: FIGURES
APPENDIX B: HYDROLOGY
APPENDIX C: HYDRAULICS
APPENDIX D: REFERENCES
APPENDIX E: WEST KIOWA CREEK STABILITY ANALYSIS
APPENDIX F: DRAINAGE MAPS

INTRODUCTION

PURPOSE AND SCOPE OF STUDY

The purpose of this Final Drainage Report (FDR) is to provide the hydrologic and hydraulic calculations and to document and finalize the drainage design methodology in support of the proposed Winsome Subdivision ("the Project") Filing No. 3 ("the Site") for Winsome LLC. The Project is located within the jurisdictional limits of El Paso County ("the County"). Thus, the guidelines for the hydrologic and hydraulic design components were based on the criteria for the County and City of Colorado Springs, described below.

LOCATION

The Project is located approximately 17 miles west of Monument, Colorado within Township 11 South, Range 65 West of the $6^{\text {th }}$ Principal Meridian, County of El Paso, State of Colorado (the "Site"). More specifically, the Site is located northwest of Winsome Filing No. 2 which is located north of Hodgen Road, and west of Meridian Road. A vicinity map has been provided in the Appendix A of this report.

The Site is currently owned by Winsome, LLC and will be developed by Winsome, LLC.

DESCRIPTION OF PROPERTY

The Project is located on approximately 768 acres of land consisting of vacant land with native vegetation and is classified as "Pasture, grassland or range" per Table 6-6 of the City of Colorado Springs Drainage Criteria Manual. Filing No 3 consists of 385 -acre residential lots. The Site does not currently provide water quality or detention for the Project area. The existing land use is undeveloped vacant land. This Filing consists of 349.5 acres and will have a disturbance of approximately 31.6 acres.

The existing topography consists of slopes ranging from 1% to 16%. The West Kiowa Creek ("the Creek") runs along the south side of Filing 3.

NRCS soil data is available for this Site and it has been noted that soils onsite are generally USCS Type B and Type C. The NRCS soil data can be found in Appendix D. There are no major drainage ways or irrigation facilities within the Site.
Improvements will consist of mowing, clearing and grubbing, weed control, paved access road construction, roadway grading, three detention ponds, roadside ditches, culverts, drainage swales, native seeding and a proposed channel to convey flows to the water quality pond.

The Site proposes to plat 38 lots for single family development, as well as, provide the grading, roadway and drainage improvements.

An updated Topographic field survey was completed for the Project by Edward-James Surveying, Inc. dated November $3^{\text {th }}, 2020$ and is the basis for design for the drainage improvements.

DRAINAGE BASINS

MAJOR BASIN DESCRIPTIONS

A preliminary drainage report was completed for the o previously completed by The Vertex Companies. This Preliminary Drainage Report prepared by The Vertex design.

KHA RESPONSE:

Floodplain statement has
been updated to reflect the
RBD Floodplain review comment.

Update the flooplain statement section as needed based
The Site improvements are locater determined by the Flood Insurance December 7, 2018 (see Appendix submitted and approved under Wii Appendix D). The floodplain is located along the southeast side of Filing No. 3 and the site improvements which are within the floodplain limits include roads, culverts, and channel stabilization. Refer to Appendix D for the CLOMR application approval letter from FEMA for Case No. 19-08-0185R. After construction of the site improvements is completed, a LOMR will be completed and processed through FEMA to officially establish the floodplain and base flood elevations for the Site. The final plat for Filing No. 3 can be recorded before the approval of the LOMR through FEMA. However, five lots will be prohibited from sale until the LOMR is approved.

The Project is located within El Paso County's West Kioya Creek Drainage Basin.

EXIS1

RBD Floodplain
Per ths
Site w
southe
existin
on RBD Floodplain's review comment.

Sub-basin I

Per the approved PDR sub-basin I consists of an on-site area of 37.5 acres, located in the north portion of the property. Drainage flows overland from northwest to southeast to the West Kiowa Creek. Runoff during the 5-year and 100-year events are 26.40 cfs and 88.5 cfs respectively. Refer to Appendix D for the Existing Conditions Drainage Map.

Sub-basin J

Per the approved PDR sub-basin J consists of an on-site area of 10.1 acres, located in the northwest corner of the property. Drainage flows overland from south to north and outfall offsite. Runoff during the 5 -year and 100-year events are 3.40 cfs and 19.9 cfs respectively. Refer to Appendix D for the Existing Conditions Drainage Map.

Sub-basin K

Per the approved PDR sub-basin K consists of an on-site area of 17.8 acres, located in the north portion of the property. Drainage flows overland from south to north and outfall offsite. Runoff during the 5 -year and 100-year events are 12.90 cfs and 45.1 cfs respectively. Refer to Appendix D for the Existing Conditions Drainage Map.

Offsite flows entering the Site from sub-basin G will be conveyed through the Site following historical drainage paths and outfall to West Kiowa Creek. Offsite flows from sub-basin G will be routed to Water Quality Pond A and detained on site.

Excerpts from the approved PDR for the Existing Drainage Conditions are included in the Appendix \mathbf{D} of this report for reference.

PROPOSED HEC-HMS SUB-BASIN DESCRIPTIONS

For the proposed condition, stormwater will generally maintain historic flow patterns from northwest to southeast. The proposed roadways will alter some of the existing flow paths. The roadway ditches will capture runoff from the roadways and direct flows back to the existing flow paths, which will ultimately outfall to Water Quality Pond A, Pond 1, Pond 2 or Pond 4. To determine the design flows for the proposed culverts the existing basins were broken out and design points were created at each culvert crossing location.

For Filing No. 3 the proposed basins has been divided into 25 larger sub-basins for the HECHMS model.

Sub-Basin A2A is an offsite basin on the northwest side of Filing No. 3. Runoff from this basin will be directed to design point A2A where it will be directed to Basin A3B. This sub-basin has an area of 28.13 acres. The curve number for Sub-Basin A2A is 65.43 . The basin will generate runoff of 5.3 cfs and 47.1 cfs in the minor and major storm event.

Sub-Basin A2B is an offsite basin on the northwest side of Filing No. 3. Runoff from this basin will be directed to design point A2B where it will be directed to Basin A3A. This sub-basin has an area of 8.87 acres. The curve number for Sub-Basin A2B is 69.78 . The basin will generate runoff of 2.3 cfs and 20.3 cfs in the minor and major storm event.

Sub-Basin A3A consists of large residential lots and a portion of roadway. Runoff from this basin will be directed to design point A3A where it will be directed to Swale A3A and into the proposed culvert A3A to subbasin G2A. This sub-basin has an area of 8.25 acres. The curve number for

Sub-Basin A3A is 73.04 . The basin will generate runoff of 5.7 cfs and 25.8 cfs in the minor and major storm event.

Sub-Basin A3B consists of large residential lots and a portion of roadway. Runoff from this basin will be directed to design point A3B where it outfalls into West Kiowa Creek. This sub-basin has an area of 13.22 acres. The curve number for Sub-Basin A3B is 74.30 . The basin will generate runoff of 9.1 cfs and 42.6 cfs in the minor and major storm event. Area 4 in the Runoff Reduction Exhibit within Appendix C shows the roadway portion within this basin being accounted for in the runoff reduction calculation.

Sub-Basin A3C consists of large residential lots in the southwest corner of the site. Runoff from this basin will be directed to design point A3C where it will be directed to outfall in West Kiowa Creek. This sub-basin has an area of 11.66 acres. The curve number for Sub-Basin A3C is 77.23. The basin will generate runoff of 10.4 cfs and 40.5 cfs in the minor and major storm event. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of El Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5.

Sub-Basin G1 consists of large residential lots along the west boundary of the site. Runoff from this basin will be directed to design point G1 where it will be directed to the southeast in culvert G1 to subbasin G2A. This sub-basin has an area of 24.79 acres. The curve number for SubBasin G1 is 67.58 . The basin will generate runoff of 3.1 cfs and 40.1 cfs in the minor and major storm event.

Sub-Basin G2A consists of portions of roadway and several portions of 4 large residential lots south of Alamar Way. Runoff from this basin will be directed to design point G2A where it will be directed to Water Quality Pond A which will outfall to West Kiowa Creek. This sub-basin has an area of 18.60 acres. The curve number for Sub-Basin G2A is 74.20 . The basin will generate runoff of 12.9 cfs and 59.9 cfs in the minor and major storm event.

Sub-Basin G2B consists of portions of roadway and portions of 2 large residential lots east of Alamar Way. Runoff from this basin will be directed to the WQ Channel where it will drain into the Water Quality Pond A which will outfall into West Kiowa Creek. This sub-basin has an area of 2.77 acres. The curve number for Sub-Basin G2B is 74.24 . The basin will generate runoff of 2.6 cfs and 9.6 cfs in the minor and major storm event.

Sub-Basin H 1 consists of portions of roadway and portions of 2 large residential lots in the northwest corner of the site. Runoff from this basin will be directed to culvert H1 then to subbasin H4. This sub-basin has an area of 13.76 acres. The curve number for Sub-Basin H 1 is 70.03. The basin will generate runoff of 4.6 cfs and 33.0 cfs in the minor and major storm event.

Sub-Basin H2 consists of portions of roadway and 8 large residential lots north of Alamar Way in the center of the northern portion of the site. Runoff from this basin will flow southeast to culvert H2 and into sub-basin H6B. This sub-basin has an area of 39.09 acres. The curve number for Sub-Basin H 2 is 64.93 . The basin will generate runoff of 8.9 cfs and 65.2 cfs in the minor and major storm event.

Sub-Basin H3A consists of portions of roadway and portions of large residential lots and of an undeveloped area north of the site. Runoff from this basin will be directed to culvert H3 and into sub-basin H7B. This sub-basin has an area of 3.08 acres. The curve number for Sub-Basin H3A is 71.60 . The basin will generate runoff of 1.3 cfs and 8.0 cfs in the minor and major storm
event.
Sub-Basin H3B consists of portions of roadway and portions of large residential lots and of an undeveloped area north of the site. Runoff from this basin will be directed to culvert I1 by a roadside ditch. This sub-basin has an area of 2.71 acres. The curve number for Sub-Basin H3B is 72.02 . The basin will generate runoff of 1.4 cfs and 6.9 cfs in the minor and major storm event.

Sub-Basin H4 consists of portions of roadway and portions of large residential lots. Runoff from this basin will be directed to Reach H1 and into Detention Pond 1 which outfalls to West Kiowa Creek. This sub-basin has an area of 27.00 acres. The curve number for Sub-Basin H 4 is 74.44 . The basin will generate runoff of 15.4 cfs and 73.6 cfs in the minor and major storm event.

Sub-Basin H5A consists of portions of large residential lots. Runoff from this basin will be directed to design point H5A and outfall to West Kiowa Creek. This sub-basin has an area of 9.03 acres. The curve number for Sub-Basin H5A is 75.95 . The basin will generate runoff of 6.2 cfs and 27.0 cfs in the minor and major storm event. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of El Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5.

Sub-Basin H5B consists of portions of roadway and of large residential lots, south of Alamar Way in the center of the site. Runoff from this basin will be directed to design point H5B and outfall to West Kiowa Creek. This sub-basin has an area of 10.48 acres. The curve number for Sub-Basin H5B is 73.76 . The basin will generate runoff of 5.6 cfs and 29.0 cfs in the minor and major storm event. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of El Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5. Flows from Basin H5B are conveyed to Sediment Basin H5B. The permanent Sediment Basin H5B will be installed within the Early Grading Phase.

Sub-Basin H6A consists of portions of large residential lots, south of Alamar Way. Runoff from this basin will be directed to design point H6A and outfall to West Kiowa Creek. This sub-basin has an area of 16.64 acres. The curve number for Sub-Basin H6A is 75.56 . The basin will generate runoff of 11.6 cfs and 51.1 cfs in the minor and major storm event. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of El Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5.

Sub-Basin H6B consists of portions of roadway and portions of large residential lots, south of Alamar Way. Runoff from this basin will be directed through Reach H2 into Detention Pond 2 and outfall to West Kiowa Creek. This sub-basin has an area of 15.96 acres. The curve number for Sub-Basin H6B is 76.47 . The basin will generate runoff of 15.5 cfs and 57.1 cfs in the minor and major storm event.

Sub-Basin H7A consists of portions of roadway and large residential lots, southwest of the intersection at Alamar Way and Twinkle Star Lane. Runoff from this basin will sheet flow into a roadside ditch to the Pond 4 Culvert. This sub-basin has an area of 8.50 acres. The curve number for Sub-Basin H7A is 72.92 . The basin will generate runoff of 6.1 cfs and 27.1 cfs in the minor and major storm event.

Sub-Basin H7B consists of portions of roadway and large residential lots, south of Alamar Way. Runoff from this basin will be directed through Reach H3 to design point H7B to culvert Pond 4. This sub-basin has an area of 17.35 acres. The curve number for Sub-Basin H7B is 71.39. The basin will generate runoff of 7.8 cfs and 49.5 cfs in the minor and major storm event.

Sub-Basin H8A consists of portions of roadway and a portion of a large residential lot, east of Twinkling Star in the east portion of the site. Runoff from this basin will sheet flow to design point H8A and outfall to Detention Pond 4. This sub-basin has an area of 3.93 acres. The curve number for Sub-Basin H8 is 72.46 . The basin will generate runoff of 6.7 cfs and 11.2 cfs in the minor and major storm event. The roadway portions within in this basin will be directed through a roadside ditch and drain to Detention Pond 4 to provide adequate water quality treatment.

Sub-Basin H8B consists of portions of roadway and a portion of a large residential lot, east of Twinkling Star in the east portion of the site. Runoff from this basin will sheet flow to design point H8B and outfall to West Kiowa Creek. This sub-basin has an area of 5.09 acres. The curve number for Sub-Basin H8B is 77.78 . The basin will generate runoff of 6.7 cfs and 17.8 cfs in the minor and major storm event. The roadway portions within in this basin are accounted for in the runoff reduction areas.

Sub-Basin H9 consists of portions of 2 large residential lots, east of Twinkling Star in the east portion of the site. Runoff from this basin will be directed to design point H9 and outfall to West Kiowa Creek. This sub-basin has an area of 6.52 acres. The curve number for Sub-Basin H9 is 71.58. The basin will generate runoff of 2.3 cfs and 15.0 cfs in the minor and major storm event.1. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of El Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5.

Sub-Basin 11 consists of portions of roadway and portions of large residential lots, northwest of Alamar Way and Twinkle Star Lane intersection. Runoff from this basin will be directed to design point $I 1$ into Culvert I1. Flows are conveyed to Pond 4 via the roadside ditch along Twinkling Star Lane. This sub-basin has an area of 6.82 acres. The curve number for Sub-Basin 11 is 74.72 . The basin will generate runoff of 5.9 cfs and 20.3 cfs in the minor and major storm event.

Sub-Basin 12 consists of portions of roadway and portions of 3 large residential lots, east of Alamar Way in the northeast portion of the site. Runoff from this basin will be directed to design point I2 and will ultimately outfall to West Kiowa Creek. This sub-basin has an area of 14.59 acres. The curve number for Sub-Basin I2 is 72.48 . The basin will generate runoff of 8.3 cfs and 39.1 cfs in the minor and major storm event. Runoff reduction is being accounted for to meet water quality requirements for the roadway runoff within this basin. Refer to the runoff reduction section for additional information.

Sub-Basin J1 consists of portions of 3 large residential lots, in the northwest corner of the site. Runoff from this basin will be directed to design point J 1 and flow offsite. This sub-basin has an area of 10.14 acres. The curve number for Sub-Basin J1 is 60.00 . The basin will generate runoff of 2.1 cfs and 13.0 cfs in the minor and major storm event for proposed conditions. Which is lower than the existing condition flows of 3.4 cfs and 19.9 cfs in the minor and major events. Therefore, flood control storage would not be required. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of El Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number

5.

Sub-Basin K1 consists of portions of 4 large residential lots, north of Alamar Way in the northeast portion of the site. Runoff from this basin will be directed to design point K1 and flow offsite. This sub-basin has an area of 17.50 acres. The curve number for Sub-Basin K1 is 69.56. The basin will generate runoff of 4.5 cfs and 40.7 cfs in the minor and major storm event for proposed conditions. Which is lower than the existing condition flows of 4.5 cfs and 40.7 cfs in the minor and major events. Therefore, flood control storage would not be required. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of El Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5 .

Basin B3, B4, B2, C2, C3, C4, D5, and D6 are shown within the drainage map however were accounted for in Winsome Filing No. 1 Final Drainage Report approved, May 15, 2019.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

The proposed storm facilities are designed to be in compliance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)" dated October 2018 ("the MANUAL"), El Paso County "Engineering Criteria Manual" ("the Engineering Manual"), Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014 ("the Colorado Springs MANUAL").

Site drainage is not significantly impacted by such constraints as utilities or existing development.

A preliminary drainage report was completed for the overall Winsome subdivision. This was previously completed by The Vertex Companies. This Final Drainage Report used the approved Preliminary Drainage Report prepared by The Vertex Companies (PDR) for the Site's final design.

HYDROLOGIC CRITERIA

The 5-year and 100-year design storm events were used in determining rainfall and runoff for the proposed drainage analysis per the MANUAL. Table 6-2 of the Colorado Springs MANUAL is the source for rainfall data for the 5 -year and 100-year design storm events. Design runoff was calculated using the NRCS curve number method for developed conditions as established in the MANUAL. This aligns with what was completed in the PDR. The NRCS curve number method was used for existing conditions and proposed conditions due to the on-site and off-site basins containing more than 130 acres. Per the PDR the runoff curve numbers for the existing and proposed drainage basins used the curve numbers in DCM. The PDR developed the following values for the 5 acre lots in Table 1 below. These values were also used for the final design in this report.

Table 1: Values Extrapolated per the PDR

		Soil Type			
Lot Size (Acres)	\% Imp	A	B	C	D
5	7	N/A	60	72	77

The rainfall depths that were determined in the PDR were also used for the final design. The rainfall depths utilized the Frontal Storm which produced higher design flows. See Table 2 below for the Frontal Storm rainfall values.

Table 2: Frontal Storm Rainfall Depths

	Duration (HRS)	
Storm Event	$\mathbf{1} \mathbf{H R}$	$\mathbf{2 4} \mathbf{H R}$
5 Year	1.5	2.7
100 Year	2.52	4.6

Calculations for the composite curve numbers are included in the Appendix B.
The proposed impervious values were determined in the PDR and were utilized in this report for the final design.

The Site is providing one water quality pond, one permanent sediment basin and three full spectrum detention ponds as the Site is not significantly increasing the imperviousness of the Site, the Project is maintaining the historic drainage patterns as much as possible and not significantly increasing developed flows.

There are no additional provisions selected or deviations from the criteria in both the MANUAL and Colorado Springs MANUAL.

HYDRAULIC CRITERIA

Applicable design methods were utilized to size the proposed pond, culverts, and drainage channels, which includes the use of the UD-Detention spreadsheet, rational calculations spreadsheet, UD-Culvert and FlowMaster, V8i software.

Proposed drainage features on-site have been analyzed and sized for the following design storm events:

- Major Storm: 100-year Storm Event

For the stormwater modeling for the Site was completed utilizing the NRCS Curve Number Method as required by the City of Colorado Springs. The HEC-HMS peak flows were determined to size the proposed culverts and channels. The same assumptions were kept from
the PDR for the time of concentration calculations. Table 3 below outlines these assumptions from the PDR:

Table 3: Time of Concentration Assumptions

	Shape	Side Slope	Depth (ft)	Wetted Perimeter (ft)	Cross Sectional Area (sq. ft.)
<100 Acre Basin Channels	Triangular	$4: 1$	4	32.98	64
>100 Acre Basin Channels	Triangular	$4: 1$	3	24.74	36

For the conveyance flow paths the same assumptions and method was carried through from the PDR. These flow paths were for between the basin and the main channels and used 3 profiles. Per the PDR the 3 profiles utilized are as follows: "triangular profiles were used for the majority of the conveyance channels, larger branching tributaries with an 8 ft bottom, and the main channels were modeled as trapezoidal with a 20 ft bottom."

DETENTION

Three full spectrum detention ponds, and one water quality pond are proposed in order to maintain historic flows and water quality. Mile High Flood District's UD-detention spreadsheet was utilized to design the pond outlet structure. The same methodology that was used and approved by the County on Filing 1 was used to calibrate the UD-detention spreadsheet for this Filing. The UD-detention spreadsheet has area limitations when large tributary areas are entered into the spreadsheet. The flows entering the pond and the volume entering the pond are lower than what the HEC-HMS model results reflected. Therefore, the UD-detention spreadsheet was calibrated to show a similar 100-year flow entering the pond. The following steps were completed for the UD-detention spreadsheet calibration:

1. A UD-detention spreadsheet was developed for each pond (Pond 1, Pond 2, Pond 4, and WQ Pond) that reflected the total area draining to the pond which reflected a lower $100-\mathrm{yr}$. The spreadsheet also developed the required water quality capture volume for each pond.
2. A second UD-detention spreadsheet was created for each pond with an adjusted basin area. This area was adjusted until the 100-year peak inflow matched the HEC-HMS model. All other parameters in the UD-detention basin input were held constant and reflect the proposed conditions.
3. Once the calibration was completed the calculated runoff volume was compared between the HEC-HMS model and the UD-detention spreadsheet. The UD-detention spreadsheet resulted in a larger runoff volume and ultimately confirming this as a conservative approach.
4. The water quality capture volume and excessive runoff volume from step one was manually entered into the second UD-detention spreadsheet where the outlet structure design was developed.
5. The pond discharge curve values from UD-detention were then input into the HEC-HMS model to match the outflow hydrographs.

Table 4: Pond Calculation Comparison Table

Pond	Original Basin Area (Acres)	UD- Detention Adjusted Area Value (Acres)	WQCV Volume (Ac-ft)	100YR Volume (Ac-ft)	HEC- Flow (Q100 cfs)	UD- Detention Adjusted In-Flow (Q100 cfs)	HEC- HMS In- Flow (Ac-Ft)	Detention In-Flow (Ac-Ft)
1	41.0	60.0	0.174	1.3	105.0	104.7	4.2	7.87
2	55.0	67.9	0.268	1.5	110.8	110.4	4.8	9.06
4	42.4	64.0	0.250	1.9	108.2	107.7	4.5	8.60
WQ	63.4	94.5	0.047	N/A	N/A	148.8	N/A	12.10
H5B	10.5	N/A						

HEC-HMS and Pond calculations are provided in Appendix B and Appendix C.
For Pond 1 a rock chute is proposed with a downstream stilling basin to dissipate the energy of the flow being conveyed into the pond through the rock chute. The stilling basin will have dual purposes one to assist in dissipating the energy before out falling into the pond bottom and two to serve as a forebay structure. The concrete lined trickle channels will convey flows to the outlet structures micro pool. The outlet structure is designed to provide full spectrum characteristics. The 100 -year storm volume will be released via 36 " RCP. An emergency spillway is proposed and designed to convey the 100 -year flow with a depth of flow less than 1^{\prime}. The emergency spillway has been designed to provide a minimum of 1 ' of freeboard. A 15 ' wide access road is proposed from the trail to the bottom of the pond for maintenance. The pond reduces proposed flows at the outfall below historic levels relative to the impact of Filing 3.

For Pond 2 a rock chute is proposed with a downstream stilling basin to dissipate the energy of the flow being conveyed into the pond through the rock chute. The stilling basin will have dual purposes one to assist in dissipating the energy before out falling into the pond bottom and two to serve as a forebay structure. The concrete lined trickle channels will convey flows to the outlet structures micro pool. The outlet structure is designed to provide full spectrum characteristics. The 100 -year storm volume will be released via 48 " RCP. An emergency spillway is proposed and designed to convey the 100-year flow with a depth of flow less than 1'. The emergency spillway has been designed to provide a minimum of 1 ' of freeboard. A 15' wide access road is proposed from the trail to the bottom of the pond for maintenance. The pond reduces proposed flows at the outfall below historic levels relative to the impact of Filing 3.

For Pond 4 a rock chute is proposed with a downstream stilling basin to dissipate the energy of the flow being conveyed into the pond through the rock chute. The stilling basin will have dual purposes one to assist in dissipating the energy before out falling into the pond bottom and two to serve as a forebay structure. The concrete lined trickle channels will convey flows to the outlet structures micro pool. A proposed 42 " diameter RCP will convey flows to Pond 4 as well.
KHA RESPONSE:
Clarification has been added
to the report within this
paragraph.
structure will be placed at the outfall of the culvert (Culvert Pond 4). The signed to provide full spectrum characteristics. The 100-year storm volume 2" RCP. An emergency spillway is proposed and designed to convey the depth of flow less than 1. The emergency spillway has been designed to f 1 ' of freeboard. A 15' wide access road is proposed from the right-of-way to the bottom of the pond for maintenance. The pond reduces proposed flows at the main outfall below historic levels relative to the impact of Filing 3.

For Water Quality Pond A, two rock chutes are proposed with a downstream stilling basin to dissipate the energy of the flow being conveyed into the pond through the rock chutes. The stilling basins will have dual purposes one to assist in dissipating the energy before out falling into the pond bottom and two to serve as a forebay structure. The concrete lined trickle channels will convey flows to the outlet structures micro pool. The outlet structure is designed to provide water quality for the 1.12 acres of roadway area sending runoff to the pond. Larger storms will utilize the spillway. The spillway is designed to convey the 100-year flow with a depth of flow less than 1'. The spillway has been designed to provide a minimum of 1' of freeboard. A 15 ' wide access road is proposed from the trail to the bottom of the pond for maintenance.

For the Permanent Sediment Basin H5B no grading is proposed within the channel. The natural topography of the channel will be used as the sediment basin. The 100-year storm volume will be released via a CDOT Type C inlet. An emergency spillway is proposed and designed to convey the 100-year flow with a depth of flow less than 1'. The spillway has been designed to provide a minimum of 1' of freeboard. The sediment basin meets drain time requirements with the 5 -year design storm is released in 60 hours. See Appendix C of the Winsome Filing No. 3 Early Grading Final Drainage Report (EGP-21-005) for calculations associated with Permanent Sediment Basin H5B.

Each pond reduces proposed flows at the main outfall below historic levels relative to the impact of Filing 3. The proposed 100-year peak flow (1960 cfs) at Reach -6 Kiowa Outfall remains less than the existing conditions peak flow ($2,470 \mathrm{cfs}$).

CHANNELS

Channels and roadside ditches are designed to carry flows to the temporary sediment basins. The channels have varying bottom widths, and slopes, with equal $4: 1$ side slopes. It should be mentioned that there are several head cuts occurring in existing onsite drainage channels. As part of this Filing mitigation measure will be implemented to stabilize the existing head cuts. In addition to the head cut mitigation measures additional channel improvements are proposed for channel $\mathrm{H} 1-\mathrm{B}, \mathrm{H} 4, \mathrm{H} 5 \mathrm{~B}$, and H 3 to reduce the erosion potential to those channel sections. The proposed channel improvements include re-grading portions of the channels, rock sills, riprap rock chutes, and a permanent sediment basin. The approach with the proposed channel improvements presented in this report specifically for channels $\mathrm{H} 1-\mathrm{B}, \mathrm{H} 4, \mathrm{H} 1-\mathrm{A}$, and H 5 B allows for the least disturbance and removal of existing trees. For channel H5B which has a high density of trees, the head cuts will be stabilized, and the remaining length of the channel will remain as is, due to the large number of trees located within the reach. A permeant sediment basin for channel H5B is proposed prior to out falling into West Kiowa Creek. The other area with a high tree density is upstream of detention Pond 1 at channels ($\mathrm{H} 1-\mathrm{B}, \mathrm{H} 4$, and $\mathrm{H} 1-\mathrm{A}$). At this location the proposed channel improvements will include re-grading, rock sills and riprap rock chutes. The channel sizing and capacity calculations are provided in the Appendix C of the Winsome Filing No. 3 Early Grading Final Drainage Report (EGP-21-005) and channel design point are provided in the Proposed Drainage Maps. Refer to Appendix C for the rock
chutes calculations for all rock chutes. Refer to Appendix F for the head cutting locations exhibit.

Roadside ditches are provided along the proposed roadways to route flows to the proposed culverts. The roadside ditches are sized to convey the major event flow. The majority of the roadside ditches have been designed to have an average depth of approximately 3 feet, a vditch, with $4: 1$ side slopes. Refer to MHFD DCM Table 8-1 in Appendix C for permissible velocities for grass line channels for type C soils. All ditch velocities exceeding 7 feet per second will be lined with Turf Reinforcement Mat or approved equal to reduce the potential of erosion within the channel. The Turf Reinforcement Mat material and performance specifications reflect an unvegetated maximum allowable velocity of 9 fps . Refer to Appendix C for Turf Reinforcement Mat specifications. Roadside ditch sizing and capacity calculations are provided in the Appendix C.
Culverts were sized to convey flows from the ditches and channels, underneath the Site's paved roads. The proposed culverts range in diameter from $24^{\prime \prime}$ to $48^{\prime \prime}$ and have been designed to convey the 100 -year storm event. Culvert calculations are provided in the Appendix C of the Winsome Filing No. 3 Early Grading Final Drainage Report (EGP-21-005) and culvert locations are provided in the Proposed Drainage Maps. Two 18" CMP culverts are located under the Pond 2 maintenance access path. Flows unable to be conveyed through the 18 " will overtop the maintenance path. Maintenance path culvert calculations are located within Appendix C.

THE FOUR STEP PROCESS

The Project was designed in accordance with the four-step process to minimize adverse impacts of urbanization, as outlined in Engineering Criteria Manual Appendix I Section 1.7.2.

Step 1. Employ Runoff Reduction Practices- The project is proposing a low-density residential development that will be designed to minimize the impact to the current existing terrain. The Site's proposed paved roadways will increase the Site's impervious area however roadside ditches and channels will be constructed to slow down the runoff velocity and reduce runoff peaks. The three full spectrum detention ponds will be used to capture stormwater and maintain flows discharging off site at or below historic levels. For portions of Alamar Way and Twinkling Star Lane runoff reduction has been employed by removing the ditch on the downhill side of the road and sending stormwater that contacts the road across a receiving previous area

Step 2. Stabilize Drainageways - Stabilizing proposed roadside ditches, swales, and channels by designing them with slopes that control the flow rates. Placement of riprap upstream and downstream of culverts to help reduce erosion of the roadside ditches. Existing drainage ways have been graded to reduce the velocity of the water to minimize erosion. The existing natural channels have been analyzed for width and velocity for the 100 -year storm event. Easements are proposed to accommodate the full width of the major storm event.

Step 3 Provide Water Quality Capture Volume (WQCV)-

Permanent water quality measures and detention facilities will be necessary for the Project. Temporary water quality and erosion control measures will be provided during construction to prevent sediment laden water from discharging from the Site. Water quality measures are being used for all stormwater that contacts roadways.

Step 4. Consider Need for Industrial or Commercial BMPs - The erosion control construction BMPs of the Project were designed to reduce contamination. Source control BMPs include the use of vehicle tracking control, culvert protection, stockpile management, and stabilized staging areas.

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

The proposed drainage patterns will match the historic patterns. To maintain historic flows, three full spectrum detention ponds and one water quality pond are being proposed and will capture and control the flows from the proposed development into a series of channels and culverts.

Provided in the Appendix B are hydrologic calculations utilizing the NRCS/HEC-HMS method for the proposed conditions. Appendix C in Winsome Filing No. 3 Early Grading Final Drainage Report (EGP-21-005) contains the hydraulic calculations for the proposed conditions UD-Culvert culvert calculations, Flowmaster details and cross sections for proposed drainage features. As previously mentioned, the existing drainage map can be found in Appendix \mathbf{D} and the proposed drainage maps can be found in Appendix F.

SPECIFIC DETAILS

The existing condition of the Site have flows conveying from the northwest to southeast and discharging in the West Kiowa Creek. Runoff conditions for the Site were developed utilizing the previously referenced Hydrologic Criteria per the approved PDR for the Winsome subdivision. The proposed development looks to preserve the natural drainage patterns as much as possible.
A Proposed Drainage Conditions Map and hydrologic calculations are included in the Appendix B, Appendix C, and Appendix F of this report for reference.
The Site will disturb more than 1 acre and will require a Colorado Discharge Permit System (CDPS) General Permit for Stormwater Discharge Associated with Construction Activities from the Colorado Department of Public Health and Environment (CDPHE).

There are no current drainage and bridge fees for the Project as the West Kiowa Creek Drainage Basin is not part of the El Paso County Drainage Basin Fee Program.

RUNOFF REDUCTION

Runoff reduction was implemented in two select areas of the site. The south portion of Twinkling Star Lane, and the south portion of Alamar Way have the road travel perpendicular to grade, therefore the roadside ditch has been removed on the downhill side of the road. All roadway runoff at these sections can be treated using the receiving pervious area between the roadway boundary and property line. Runoff reduction calculations and locations are provided in the Appendix C.

WQCV EXCLUSION AREAS

Two areas within the site do not have water quality provided. Under the ECM's Appendix I. Section 1.7.C.A, 20% of the development site or less than 1 acre can be excluded from providing water quality. The combined exclusion areas for Filing 3 sum to 0.59 acres. WQCV exclusion locations are provided in the Appendix C.

DRIVEWAY CULVERTS

Culverts were analyzed and si roadways. Design assumption:
Appendix C for the driveway (

EXISTING MINOR DRAINA

The existing drainage channel
proposed easements and velocities for erosion. Proposed regrading of existing drainage
channels $\mathrm{H} 1-\mathrm{A}, \mathrm{H} 1-\mathrm{B}, \mathrm{H} 3$, and H 4 will be proposed as part are fully vegetated and channels $\mathrm{H} 1-\mathrm{A}, \mathrm{H} 1-\mathrm{B}, \mathrm{H} 3$, and H 4 v Four channels will require lining due to velocities exceeding $\mathrm{H} 1-\mathrm{A}, \mathrm{H} 1-\mathrm{B}, \mathrm{H} 5 \mathrm{~B}$, and H 3 will require additional improveme within the channels. These channels are discussed in the h Swale I1 and the Water Quality Channel will be lined with T equal to reduce the potential of erosion within the channel. 12. and performance specifications reflect an unvegetated maxmmmamowanle velocivoryios Refer to Appendix C for the channel calculations, maximunKHA RESPONSE:
MHFD and Turf Reinforcement Mat. Refer to the Winsome |Clarification has been added to Drainage Report (EGP-21-005) for detailed hydraulic analysthe Existing Minor Drainage

Channels section to discuss Reach I2.

HEAD CUTTING CHANNELS

Address the above comment by providing a summary of Swale 12 result. The paragraph does not specifically state whether or not any additional improvements are necessary for Reach

Channels H1, H5B and H3 required channel improvements within the reaches. Due to steep slopes, rock chutes were used to decrease slopes to generate velocities below 5 fps. Per EI Paso County DCM Section 6.5.2, channels velocities for grasslined channels cannot exceed 5 feet per second. NRCS's Rock Chute Design spreadsheet was used to design the rock chutes. Grading improvements will be completed within the channels, see Winsome Filing No 3 Construction Documents for grading details. Refer to Appendix C for the channel calculations, and rock chute designs.

EXISTING MAJOR DRAINAGE CHANNELS

The existing West Kiowa Creek was analyzed in the previously approved Preliminary Drainage Report (PDR) dated May 22, 2019. Further analysis was completed for this Filing that built off of the PDR analysis. This analysis was submitted as a separate technical memorandum "West Kiowa Creek Stability (Hydraulic and Geomorphic) Analysis". Refer to Appendix E for the West Kiowa Creek Stability (Hydraulic and Geomorphic) Analysis.

The analysis evaluated the creek and took a more comprehensive look at the way to manage this natural creek and adjacent riparian wetlands that are consistent with U.S. Army Corp of Engineers (USACE) Section 404 and 401 of the Clean Water Act. The analysis provides a detailed evaluation of hydraulics and geomorphology of West Kiowa Creek in relation to applicable regulations (Section 404/401 and FEMA) as well as El Paso County's Engineering Criteria Manual (ECM) and the DCM.

Based on the detailed evaluation no stabilization directly in West Kiowa Creek outside of the location of the proposed box culverts is recommended. The box culvert inlet and outlet protection will mitigate the high Froude numbers. The areas shown in Table 4 of the memorandum where the Froude number is above 0.9 will be mitigated by sloping back the valley wall terrace slope to a 3:1 to 4:1 slopes and revegetate with native vegetation. Temporary erosion control matting will be proposed following grading until vegetation can establish. As mentioned in this report additional channel stabilization will be done to several onsite channels
as well. All detention and water quality pond outfall locations will have erosion protection proposed at the outfall locations.

Each full spectrum detention pond reduces proposed flows at the main outfall below historic levels relative to the impact of Filing 3. The proposed 5 -year peak (420.7 cfs) and 100 -year peak flow (1960 cfs) at Reach -6 Kiowa Outfall (downstream of project site) remains less than the existing conditions peak flows for the 5 -year (447.4 cfs) and 100-year ($2,470 \mathrm{cfs}$).

CONCURRENT REPORTS

Two reinforced bridge culvert crossings are proposed for the Site. The hydraulic analysis for the culverts is discussed in the Winsome Filing No. 3 Hydraulic Report by Kimley-Horn, (PCD File No.CDR-21-012). The reinforced concrete box culverts will be submitted concurrently.

Portions of West Kiowa Creek within the Winsome Subdivision require channel stabilization measures. The West Kiowa Creek Stability Analysis - Winsome Subdivision Technical Memorandum by Kimley-Horn, dated May, 2021 provides analysis for designated sections of West Kiowa Creek. The report will be submitted concurrently and reviewed as a standalone project. The proposed improvements will be implemented in conjunction with the construction of the bridge culverts.

ENGINEER'S COST ESTIMATE

Total cost for drainage improvements on Winsome Filing No 3 are listed below in Table 5.
Table 5: Engineer's Cost Estimate Table

Completed under Early Grading Permit				
Description	Quantity	Units	Unit Cost	Total
Concrete Box Culvert (M Standard), Size (12'x7')	294	LF	$\$ 950.00$	$\$ 279,300.00$
18" Reinforced Concrete Pipe	87	LF	$\$ 76.00$	$\$ 6,612.00$
24" Reinforced Concrete Pipe	65	LF	$\$ 91.00$	$\$ 5,915.00$
30" Reinforced Concrete Pipe	164	LF	$\$ 114.00$	$\$ 18,696.00$
36" Reinforced Concrete Pipe	209	LF	$\$ 140.00$	$\$ 29,260.00$
42" Reinforced Concrete Pipe	136	LF	$\$ 187.00$	$\$ 25,432.00$
48" Reinforced Concrete Pipe	123	LF	$\$ 228.00$	$\$ 28,044.00$
18" Flared End Section	2	EA	$\$ 456.00$	$\$ 912.00$
24" Flared End Section	1	EA	$\$ 546.00$	$\$ 546.00$
30" Flared End Section	4	EA	$\$ 684.00$	$\$ 2,736.00$
36" Flared End Section	4	EA	$\$ 840.00$	$\$ 3,360.00$
42" Flared End Section	2	EA	$\$ 1,122.00$	$\$ 2,244.00$
48" Flared End Section	1	EA	$\$ 1,368.00$	$\$ 1,368.00$
Riprap, D50 from 6" to 24"	4284	TONS	$\$ 415,548.00$	$\$ 415,548.00$
Rock Chutes	6	EA	$\$ 18,000.00$	$\$ 108,000.00$
Rock Sill	13	EA	$\$ 8,000.00$	$\$ 104,000.00$
TOTAL (Early Grading Permit)				$\$ 1,031,973.00$
Completed under Final Drainage Report				
18" Reinforced Concrete Pipe	3	LF	$\$ 76.00$	$\$ 228.00$
36" Reinforced Concrete Pipe	1	LF	$\$ 140.00$	$\$ 140.00$
42" Reinforced Concrete Pipe	1	LF	$\$ 187.00$	$\$ 187.00$

Final Drainage Report
Winsome Subdivision Filing No. 3, El Paso County, CO

48" Reinforced Concrete Pipe	1	LF	$\$ 228.00$	$\$ 228.00$
18" Flared End Section	1	EA	$\$ 456.00$	$\$ 456.00$
36" Flared End Section	1	EA	$\$ 840.00$	$\$ 840.00$
42" Flared End Section	1	EA	$\$ 1,122.00$	$\$ 1,122.00$
48" Flared End Section	1	EA	$\$ 1,368.00$	$\$ 1,368.00$
Riprap, D50 from 6" to 24" (Pond Outfall \& Spillway)	1,256	TONS	$\$ 97.00$	$\$ 121,832.00$
Rock Chutes	5	EA	$\$ 18,000.00$	$\$ 90,000.00$
Rock Sills	10	EA	$\$ 8,000.00$	$\$ 80,000.00$
Concrete Forebay	1	EA	$\$ 40,000$	$\$ 40,000$
Concrete Trickle Channel	771	LF	$\$ 45.00$	$\$ 34,695.00$
Outlet Structure	4	EA	$\$ 50,000.00$	$\$ 200,000.00$
Crestwall	4	EA	$\$ 15,000.00$	$\$ 60,000.00$
TOTAL (Final Drainage Report)				$\$ 631,096.00$

DRAINAGE FEE

There are no current drainage and bridge fees for the Project as the West Kiowa Creek Drainage Basin is not part of the El Paso County Basin Fee Program.

SUMMARY

The proposed drainage design is to maintain the historic drainage patterns, the overall imperviousness and release rates for the Site. Runoff from the Site will flow overland to existing El Paso County drainage basins: The West Kiowa Creek Basin. The basin ultimately discharges to the West Kiowa Creek. The drainage design presented within this report conforms to the criteria presented in both the MANUAL and the Colorado Springs MANUAL. Additionally, the Site runoff and storm drain facilities will not adversely affect the downstream and surrounding developments, including West Kiowa Creek.

REFERENCES

1. City of Colorado Springs "Drainage Criteria Manual (DCM) Volume 1", dated May, 2014
2. El Paso County "Drainage Criteria Manual", dated October 31, 2018
3. El Paso County "Engineering Criteria Manual" Revision 6, dated December 13, 2016
4. Chapter 6 and Section 3.2.1. of Chapter 13-City of Colorado Springs Drainage Criteria Manual, May 2014.
5. Urban Drainage and Flood Control District Drainage Criteria Manual (UDFCDCM), Vol. 1, prepared by Wright-McLaughlin Engineers, June 2001, with latest revisions.
6. Flood Insurance Rate Map, El Paso County, Colorado and Incorporated Areas, Map Number 08041C0507F and 08041C0530F, Effective Date March 17, 1997, prepared by the Federal Emergency Management Agency (FEMA).
7. Winsome Subdivision Preliminary Drainage Report (PDR), prepared by The Vertex Companies, Inc, May 15, 2019. PCD File No. SP-18-006.
8. Request For Conditional Letter of Map Revision For West Kiowa Creek, prepared by The Vertex Companies, Inc., July 1,2019. FEMA Case No. 19-08-0185R.
9. Winsome Subdivision Filing No. 3, Early Grading Permit - Final Drainage Report. Prepared by Kimley-Horn and Associates Inc. January 2023, PCD File No. EGP-21-005.
10. Winsome Subdivision Filing No. 3 Final Hydraulic \& Hydraulic Section Report. Prepared by Kimley-Horn and Associates Inc. August 2022, PCD File No. CDR-21-012.

APPENDIX

Kimley»Horn

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface 2
Soil Map 5
Soil Map 6
Legend 7
Map Unit Legend 8
Map Unit Descriptions. 8
El Paso County Area, Colorado 10
1-Alamosa loam, 1 to 3 percent slopes 10
15-Brussett loam, 3 to 5 percent slopes 11
21-Cruckton sandy loam, 1 to 9 percent slopes 12
25-Elbeth sandy loam, 3 to 8 percent slopes 13
36-Holderness loam, 8 to 15 percent slopes 14
71-Pring coarse sandy loam, 3 to 8 percent slopes 15
92-Tomah-Crowfoot loamy sands, 3 to 8 percent slopes 16
93-Tomah-Crowfoot complex, 8 to 15 percent slopes 18
Soil Information for All Uses 20
Soil Properties and Qualities 20
Soil Qualities and Features 20
Hydrologic Soil Group 20
References 25

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)	
\square	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(c) Blowout

B Borrow Pit
次 Clay Spot
\diamond Closed Depression
Bravel Pit
$\therefore \quad$ Gravelly Spot
(4) Landfill
A. Lava Flow
A. Marsh or swamp
\& Mine or Quarry
(-) Miscellaneous Water

- Perennial Water
- Rock Outcrop
+ Saline Spot
$\because \quad$ Sandy Spot
을 Severely Eroded Spot
- Sinkhole

3) Slide or Slip
(6) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 18, Jun 5, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 8, 2018-May 26, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
1	Alamosa loam, 1 to 3 percent slopes	23.6	6.5\%
15	Brussett loam, 3 to 5 percent slopes	6.0	1.6\%
21	Cruckton sandy loam, 1 to 9 percent slopes	1.8	0.5\%
25	Elbeth sandy loam, 3 to 8 percent slopes	46.0	12.6\%
36	Holderness loam, 8 to 15 percent slopes	255.9	70.3\%
71	Pring coarse sandy loam, 3 to 8 percent slopes	6.3	1.7\%
92	Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	24.2	6.7\%
93	Tomah-Crowfoot complex, 8 to 15 percent slopes	0.1	0.0\%
Totals for Area of Interest		363.9	100.0\%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas
are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

1—Alamosa loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: 3670
Elevation: 7,200 to 7,700 feet
Farmland classification: Prime farmland if irrigated and reclaimed of excess salts and sodium

Map Unit Composition

Alamosa and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Alamosa

Setting
Landform: Flood plains, fans
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

Typical profile

A - 0 to 6 inches: loam
Bt - 6 to 14 inches: clay loam
Btk - 14 to 33 inches: clay loam
Cg1-33 to 53 inches: sandy clay loam
Cg2-53 to 60 inches: sandy loam
Properties and qualities
Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to $0.60 \mathrm{in} / \mathrm{hr}$)
Depth to water table: About 12 to 18 inches
Frequency of flooding: NoneFrequent
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Very slightly saline to strongly saline (2.0 to $16.0 \mathrm{mmhos} / \mathrm{cm}$)
Available water supply, 0 to 60 inches: High (about 10.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 5w
Hydrologic Soil Group: D
Ecological site: R048AY241CO
Hydric soil rating: Yes

Minor Components

Other soils
Percent of map unit:
Hydric soil rating: No

15—Brussett loam, 3 to 5 percent slopes

Map Unit Setting

National map unit symbol: 367k
Elevation: 7,200 to 7,500 feet
Frost-free period: 115 to 125 days
Farmland classification: Prime farmland if irrigated

Map Unit Composition

Brussett and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Brussett

Setting

Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Eolian deposits

Typical profile

A-0 to 8 inches: loam
BA - 8 to 12 inches: loam
Bt-12 to 26 inches: clay loam
Bk-26 to 60 inches: silt loam

Properties and qualities

Slope: 3 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to $0.60 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to $2.0 \mathrm{mmhos} / \mathrm{cm}$)
Available water supply, 0 to 60 inches: High (about 9.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4 e
Hydrologic Soil Group: B
Ecological site: R048AY222CO
Hydric soil rating: No

Minor Components

Other soils

Percent of map unit:
Hydric soil rating: No

21-Cruckton sandy loam, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 367s
Elevation: 7,200 to 7,600 feet
Mean annual precipitation: 16 to 18 inches
Mean annual air temperature: 42 to 46 degrees F
Frost-free period: 110 to 120 days
Farmland classification: Not prime farmland

Map Unit Composition

Cruckton and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Cruckton

Setting

Landform: Flats, hills
Landform position (three-dimensional): Side slope, talf
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from arkose

Typical profile

A - 0 to 11 inches: sandy loam
Bt - 11 to 28 inches: sandy loam
C-28 to 60 inches: loamy coarse sand
Properties and qualities
Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 5.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: B

Ecological site: R049XB216CO - Sandy Divide
Hydric soil rating: No

Minor Components

Other soils
Percent of map unit:
Hydric soil rating: No

25-Elbeth sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 367x
Elevation: 7,300 to 7,600 feet
Farmland classification: Not prime farmland

Map Unit Composition

Elbeth and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Elbeth

Setting

Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from arkose
Typical profile
A - 0 to 3 inches: sandy loam
$E-3$ to 23 inches: loamy sand
$B t-23$ to 68 inches: sandy clay loam
C-68 to 74 inches: sandy clay loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to $0.60 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 7.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4 e
Hydrologic Soil Group: B

Hydric soil rating: No

Minor Components

Other soils

Percent of map unit:
Hydric soil rating: No

36-Holderness loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 3689
Elevation: 7,200 to 7,400 feet
Farmland classification: Not prime farmland

Map Unit Composition

Holderness and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Holderness

Setting

Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Loamy alluvium derived from arkose

Typical profile

A - 0 to 9 inches: loam
Bt -9 to 43 inches: clay loam
C-43 to 60 inches: gravelly sandy clay loam
Properties and qualities
Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to $0.20 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 9.6 inches)

Interpretive groups

Land capability classification (irrigated): 4e
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: C

Ecological site: R048AY222CO
Hydric soil rating: No

Minor Components

Other soils
Percent of map unit:
Hydric soil rating: No

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369k
Elevation: 6,800 to 7,600 feet
Farmland classification: Not prime farmland

Map Unit Composition

Pring and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pring

Setting
Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam
C-14 to 60 inches: gravelly sandy loam
Properties and qualities
Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: B
Ecological site: R048AY222CO
Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit:
Landform: Depressions
Hydric soil rating: Yes

Other soils

Percent of map unit:
Hydric soil rating: No

92—Tomah-Crowfoot loamy sands, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 36b9
Elevation: 7,300 to 7,600 feet
Farmland classification: Not prime farmland

Map Unit Composition

Tomah and similar soils: 50 percent
Crowfoot and similar soils: 30 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Tomah

Setting

Landform: Hills, alluvial fans
Landform position (three-dimensional): Side slope, crest
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from arkose and/or residuum weathered from arkose

Typical profile

A - 0 to 10 inches: loamy sand
E - 10 to 22 inches: coarse sand
C-48 to 60 inches: coarse sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 2.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: B
Ecological site: R049XB216CO - Sandy Divide
Hydric soil rating: No

Description of Crowfoot

Setting

Landform: Alluvial fans, hills
Landform position (three-dimensional): Side slope, crest
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

Typical profile

A - 0 to 12 inches: loamy sand
$E-12$ to 23 inches: sand
Bt - 23 to 36 inches: sandy clay loam
C - 36 to 60 inches: coarse sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: B
Ecological site: R049XB216CO - Sandy Divide
Hydric soil rating: No

Minor Components

Other soils

Percent of map unit:
Hydric soil rating: No

Pleasant

Percent of map unit:
Landform: Depressions
Hydric soil rating: Yes

93-Tomah-Crowfoot complex, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 36bb
Elevation: 7,300 to 7,600 feet
Farmland classification: Not prime farmland

Map Unit Composition

Tomah and similar soils: 50 percent
Crowfoot and similar soils: 30 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Tomah

Setting

Landform: Alluvial fans, hills
Landform position (three-dimensional): Side slope, crest
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from arkose and/or residuum weathered from arkose

Typical profile

A - 0 to 10 inches: loamy sand
E - 10 to 22 inches: coarse sand
C-48 to 60 inches: coarse sand

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 2.0 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 6e
Hydrologic Soil Group: B
Ecological site: R049XB216CO - Sandy Divide
Hydric soil rating: No

Description of Crowfoot

Setting

Landform: Hills, alluvial fans
Landform position (three-dimensional): Side slope, crest
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

Typical profile

A - 0 to 12 inches: loamy sand
E-12 to 23 inches: sand
Bt -23 to 36 inches: sandy clay loam
C-36 to 60 inches: coarse sand
Properties and qualities
Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to $2.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 6e
Hydrologic Soil Group: B
Ecological site: R049XB216CO - Sandy Divide
Hydric soil rating: No

Minor Components

Other soils
Percent of map unit:
Hydric soil rating: No

Pleasant

Percent of map unit:
Landform: Depressions
Hydric soil rating: Yes

Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

Hydrologic Soil Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

MAP LEGEND

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soi line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 18, Jun 5, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 8, 2018—May 26, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Table—Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1	Alamosa loam, 1 to 3 percent slopes	D	23.6	6.5\%
15	Brussett loam, 3 to 5 percent slopes	B	6.0	1.6\%
21	Cruckton sandy loam, 1 to 9 percent slopes	B	1.8	0.5\%
25	Elbeth sandy loam, 3 to 8 percent slopes	B	46.0	12.6\%
36	Holderness loam, 8 to 15 percent slopes	C	255.9	70.3\%
71	Pring coarse sandy loam, 3 to 8 percent slopes	B	6.3	1.7\%
92	Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	B	24.2	6.7\%
93	Tomah-Crowfoot complex, 8 to 15 percent slopes	B	0.1	0.0\%
Totals for Area of Interest			363.9	100.0\%

Rating Options-Hydrologic Soil Group

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://
www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242
United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624
United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Kimley»"Horn

Pre vs. Post Runoff Analysis

Project Information

CONCENTRATED FLOW EQN
\qquad
LAG TIME EQN
$t_{\text {lag }}=0.6 \cdot t_{c}$

Equations Used
MANNINGS EQN
$\mathrm{V}=1.49 \mathrm{R}_{\mathrm{h}}^{2 / 3} \mathrm{~S}^{1 / 2} / \mathrm{n}$
SHEET FLOW EQN
$\mathrm{T}_{\mathrm{i}}=0.007(\mathrm{n} \cdot \mathrm{L})^{0.8} /\left(\mathrm{P}_{2}\right)^{0.5} \mathrm{~S}^{0.4}$

City of Colorado Springs Drainage City of Colorado Springs Drainage Criteria Manual Eqn. 6-17 Criteria Manual Eqn. 6-15

Post-Development												
Drainage Area: A2A		Flow Length, L(ft)	Slope, 5 (tt/ft)	Manning's RoughnessCoefficient, n	Two-year, 24 hr rainfall,P2 (in)	Paved or Unpaved	Cross sectional flea orFlow, $A\left(\mathrm{ft}^{2}\right)$	Wetted Perimeter, pw (tt) (ft)	$\begin{array}{\|c} \text { Hydraulic radius, } \\ \mathrm{r}(\mathrm{t}) \end{array},$	Average Velocity, $\mathrm{V}(\mathrm{ft} / \mathrm{s})^{* *}$	$\begin{gathered} \text { Travel time, It } \\ (\min) \end{gathered}$	Lag Time (min)
SHEET	TISHEET FLOw	100.00	0.021	0.10	2.10						8.58	
SHALLOW CONCENTRATED	T2 Shallow concentrateo fiow	1284.00	0.029			U				2.75	7.79	
Channel	тз Chanel filow	200.00	0.03	0.04		U	64.00	32.98	1.94	9.87	0.34	
							Post-Development Time of Concentration, A2A				16.70	10.02

Post-Development												
Drainage Area: A3A												
		Flow Length, L (ft)	Slope, 5 (tt/ft)	Manning's Roughness Coefficient, n	$\underset{\text { P2 (in) }}{\text { Two-year 24inall, }}$	Paved or Unpaved	${ }^{\text {Cross sectional }}$ Alea or	Wetted Perimeter, pw (t)	Hydraulic radius, r (tt)	Average Velocity, V (ft/s)**	$\underset{(\text { min })}{T}$	Lag Time (min)
SHEET	Tis SHet flow	100.00	0.057	0.10	2.10						5.74	
Shallow Concentrated	T2 Sfallow concenrateo fow	890.00	0.050			U				3.61	4.11	
CHANNEL	тJ Chanel fiow	520.00	0.04	0.04		U	64.00	32.98	1.94	11.59	0.75	
							Post-D	evelopment Time	of Concentrat	ion, A3A	10.60	6.36

Post-Development

Post-Development												
Drainage Area: A3B												
		$\begin{gathered} \text { Flow Length,L } \\ (\mathrm{ft}) \end{gathered}$	Slope, s (ft/ft)	Manning's Roughness Coefficient n Coefficient, n	$\begin{gathered} \text { Two-year, 24-hr rainfall, } \\ \text { P2 (in) } \end{gathered}$	Paved or Unpaved	Cross sectional Alear or Flow, $\mathrm{A}\left(\mathrm{t}^{2}\right)$	Wetted Perimeter, pw (ft)	$\begin{gathered} \text { Hydraulic radius, } \\ \mathrm{r}(\mathrm{ft}) \end{gathered}$	Average Velocity, $\mathrm{V}(\mathrm{ft} / \mathrm{s}) * *$	$\underset{(\text { min) }}{ }$	Lag Time (min)
SHEET	TISHEET FLOw	100.00	0.070	0.10	2.10						5.30	
SHALLOW CONCENTRATED	T2 SHALLOW Concenrateo flow	150.00	0.070			U				4.27	0.59	
Channel	t3 Channel fliow	960.00	0.05	0.04		U	64.00	32.98	1.94	12.96	1.23	
							Post-Development Time of Concentration, A3B				10.00	6.00

Kimley»Horn

Post-Development												
Drainage Area: G1												
		$\begin{gathered} \text { Flow Length,L } \\ \text { (ft) } \end{gathered}$	Slope, 5 (tt/ft)	Manning's Roughness Coefficient, n Coefficient, n	$\prod_{\substack{\text { Two-year, } 24 \text { her rainfall, } \\ \text { P2 (in) }}}$	Paved or Unpaved	Cross sectonal alea or Flow, A (ft ${ }^{2}$)	Wetted Perimeter, pw (ft) (ft)	$\begin{array}{\|c} \text { Hydraulic radius, } \\ \mathrm{r}(\mathrm{ft}) \end{array}$	Average Velocity, $\mathrm{V}(\mathrm{t} /$ /s)**	$\begin{gathered} \text { Trave ITime, it } \\ (\text { min) } \end{gathered}$	Lag Time (min)
SHEET	TISHEET FLOw	300.00	0.030	0.10	2.10						17.91	
SHALLOW CONCENTRATED	T2 SHALLOW Concentrate flow	539.00	0.048			U				3.52	2.56	
CHANNEL	T3 Chanele fiow	620.00	0.04	0.04		U	64.00	32.98	1.94	11.74	0.88	
							Post-	Development Time	of Concentrat	tion, G1	21.34	12.80

Post-Development												
Drainage Area: G2B												
		Flow Length, L (ft)	Slope, 5 (tt/ft)	Manning's Roughness Coefficient n Coefficient, n	$\prod_{\text {P2 (in) }}^{\text {Two-year, } 24 \text { rinfall, }}$	Paved or Unpaved	Cross sectional flea Flow, $\mathrm{A}\left(\mathrm{tr}^{2}\right)$	Wetted Perimeter, pw (t)	$\left\lvert\, \begin{gathered} \text { Hydraulic radius, } \\ \mathrm{r}(\mathrm{ft}) \end{gathered}\right.$	Average Velocity, $\mathrm{V}\left(\mathrm{ft} / \mathrm{s}^{* *}\right.$	$\underset{(\text { min })}{\text { Trave, Ifime, Tt }}$	Lag Time (min)
SHEET	TISHEET FLOw	67.00	0.040	0.10	2.10						4.81	
Channel	TJC Chawnel fow	750.00	0.06	0.04		U	64.00	32.98	1.94	14.20	0.88	
				Post-Development Time of Concentration, G2B 10.00								6.00

Post-Development												
Drainage Area: H1												
			Slope, 5 (tt/ft)	Manning's Roughness Coefficient, n	$\prod_{\text {P2 (in) }}^{\text {Two-year, } 24 \text { hr rainfall, }}$	Paved or Unpaved	Cross sectuonala flead Flow, $A\left(f_{t}\right)$	Wetted Perimeter, pw (ft)		Average Velocity, V (ft/s)**	$\begin{array}{\|c\|} \hline \text { travel time, It } \\ (\text { min }) \end{array}$	Lag Time (min)
SHEET	TISHEET FLOw	250.00	0.049	0.10	2.10						12.77	
SHALLOW CONCENTRATED	T2 SHALOW Concentateo fow	450.00	0.058			U				3.88	1.93	
Channel	TJ Channel fiow	225.00	0.06	0.04		U	64.00	32.98	1.94	14.20	0.26	
							Post-Development Time of Concentration, H1				14.96	8.98

Kimley»Horn

Pre vs. Post Runoff Analys

 Time of Concentration

Post-Development												
Drainage Area: H3B												
		$\begin{gathered} \text { Flow Length,L } \\ \text { (tt) } \end{gathered}$	Slope, 5 (tt/ft)	Manning's Roughness Coefficient, n		Paved or Unpaved	Cross sectional Alear or Flow, $\mathrm{A}\left(\mathrm{ft}^{2}\right)$	Wetted Perimeter, pw (t)	$\begin{gathered} \text { Hydraulic radius, } \\ \mathrm{r}(\mathrm{ft}) \end{gathered}$	Average Velocity, $\mathrm{V}(\mathrm{ft} / \mathrm{s})^{* *}$	$\begin{array}{\|c\|} \hline \text { Travel time, Tt } \\ (\text { min }) \end{array}$	Lag Time (min)
SHEET	TISHEET FLOw	266.00	0.046	0.10	2.10						13.71	
SHALLOW CONCENTRATED	T2 Shallow concentrateof fow	334.00	0.014			U				1.91	2.92	
							Post-Development Time of Concentration, H3B				16.62	9.97

Post-Development												
Drainage Area: H4												
		Flow Length, L (ft)	Slope, s(tt/ft)	Manning's Roughness Coefficient, n Coefficient, n	$\prod_{\text {Po-year, 24.hr rainfall, }}^{\text {P2 (in) }}$	Paved or Unpaved	Cross sectronal flea Flow, $A\left(f_{t}\right)$	Wetted Perimeter, pw (ft)	$\left\lvert\, \begin{gathered} \text { Hydraulic radius, } \\ \text { r (ft) } \end{gathered}\right.$	Average Velocity, $\mathrm{V}\left(\mathrm{ft} / \mathrm{s}^{* *}\right.$	Travel Time, Tt (min)	Lag Time (min)
SHEET	TISHEET FLOW	300.00	0.050	0.10	2.10						14.60	
SHALLOW CONCENTRATED	T2 Shallow concenrateo fow	270.00	0.045			U				3.42	1.32	
CHANNEL	T3 Channelfiow	802.00	0.05	0.04		U	64.00	32.98	1.94	13.22	1.01	
							Post-Development Time of Concentration, H4				16.92	10.15

Post-Development												
Drainage Area: H5A												
		$\begin{gathered} \text { Flow Length,L } \\ \text { (tt) } \end{gathered}$	Slope, 5 (tt/ft)	Manning's Roughness Coefficient, n	$\prod_{\substack{\text { Two-year, 24 (in rainfall, } \\ \text { P2 (in) }}}$	Paved or Unpaved	Cross settonal flea Flow, $\mathrm{A}\left(\mathrm{ft}^{2}\right)$	$\underset{\text { (ft) }}{\text { Wetted Perimer, } \mathrm{pw}}$	$\begin{array}{\|c} \text { Hydraulic radius, } \\ \text { r(ft) } \end{array}$	Average Velocity, V (ft/s)**	$\begin{array}{\|c\|} \hline \text { Travel } \text { Time, } \mathrm{Tt} \\ (\mathrm{~min}) \end{array}$	Lag Time (min)
SHEET	Ti, SHEET FLow	300.00	0.078	0.10	2.10						12.22	
SHALLOW CONCENTRATED	T2 Shallow concentateo Low	830.00	0.070			U				4.27	3.24	
Channel	ts Chanvel fiow		0.06	0.04		U	64.00	32.98	1.94	14.20	0.00	
							Post-Development Time of Concentration, H5A				15.46	9.28

Kimley»Horn

Pre vs. Post Runoff Analys

 Time of Concentration| | | | | | of Concentrat | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Project Information | | | | | | | | | Equations Use | | | |
| | Project Name: | | Winsome Filin | | CONCENTRATED | FLOW EQN | LAG TIM | E EQN | MANN | NNINGS EQN | SHE | LOW EQN |
| | KHA Project \#, | | 196106001 | | | | | | | | | |
| | Designed by: | TOS | Date: | 9/14/2022 | $\mathrm{T}_{\mathrm{t}}=\mathrm{L} /(3600$ | V) | $t_{\text {lag }}=0.6$ | . t_{c} | $\mathrm{V}=1.49$ | $9 \mathrm{R}_{\mathrm{b}}{ }^{2 / 3} \mathrm{~S}^{1 / 2} / \mathrm{n}$ | $\mathrm{T}_{\mathrm{i}}=0.007$ | $)^{0.8} /\left(P_{2}\right)^{0.5} S^{0.4}$ |
| | Revised by: | | Date: | | | | | | | | | |
| | Checked by: | | Date: | 9/14/2022 | | | | | | | | |
| | Checked by. | | | | City of Colorado Spr | prings Drainage | City of Colorado | Springs Drainage | City of Colora | ado Springs Drainage | City of Color | Springs Drainage |
| | Minimum Time of Concentration | 5.0 | minutes | | Criteria Manual | Eqn. 6-16 | Criteria Manu | Eqn. 6-13 | Criteria M | anual Eqn. 6-17 | Criter | Eqn. 6-15 |
| | 2YR-24HR Rainfall, P2 | 2.10 | | | | | | | | | | |
| | | | | | | | | | | | | |
| Post-D | Development | | | | | | | | | | | |
| Drainage | Area: H5B | | | | | | | | | | | |
| | | $\begin{array}{\|c} \text { Fow Length,I } \\ \text { (ft) } \end{array}$ | Slope, $\mathrm{s}(\mathrm{tt} / \mathrm{ft})$ | Manning's Roughness Coefficient,$~$ n Coefficient, n | $\begin{gathered} \text { Two-year, 24-hr rainfall, } \\ \text { P2 (in) } \end{gathered}$ | Paved or Unpaved | Cross sectionalarea Flow, $\mathrm{A}\left(\mathrm{ft}^{2}\right)$ | Wetted Perimeter, pw
 (ft) | $\begin{aligned} & \text { Hydraulic radius, } \\ & \mathbf{r}(\mathrm{ft}) \end{aligned}$ | Average Velocity, V (ft/s)** | $\begin{gathered} \text { Travel Time, } \mathrm{Tt} \\ (\text { min }) \end{gathered}$ | Lag Time (min) |
| SHEET | TISHEET FLow | 300.00 | 0.070 | 0.10 | 2.10 | | | | | | 12.76 | |
| Shallow Concentrated | T2 Shallow concentateo fiow | 450.00 | 0.080 | | | U | | | | 4.56 | 1.64 | |
| CHANNEL | T3 CHANWEL Fiow | 500.00 | 0.05 | 0.04 | | U | 64.00 | 32.98 | 1.94 | 12.96 | 0.64 | |
| | | | | | | | Post-D | evelopment Time | of Concentrati | ion, H5B | 15.05 | 9.03 |
| Post-D | Development | | | | | | | | | | | |
| Drainage | Area: H6A | | | | | | | | | | | |
| | | $\begin{array}{\|c} \text { Fow Length,L } \\ \text { (ft) } \end{array}$ | Slope, 5 (t/fit) | Manning's Roughness Coefficient, n | $\begin{gathered} \text { Two-year, 24hr rainfall, } \\ \text { P2 (in) } \end{gathered}$ | Paved or Unpaved | Cross Sectionalat Areaor Flow, $\mathrm{A}\left(\mathrm{ft}^{2}\right)$ | Wetted Perimeter, pw
 (t) | $\begin{gathered} \text { Hydraulic radius, } \\ \text { r(ft) } \end{gathered}$ | Average Velocity, V (ft/s)** | $\begin{gathered} \text { Travel time, } \mathrm{Tt} \\ \text { (min) } \end{gathered}$ | Lag Time (min) |
| SHEET | TISHEET FLOW | 300.00 | 0.090 | 0.10 | 2.10 | | | | | | 11.54 | |
| Shallow Concentrated | T2 Shallow concentrateo fow | 650.00 | 0.080 | | | U | | | | 4.56 | 2.37 | |
| | | | | | | | Post-D | evelopment Time | of Concentrati | ion, H6A | 13.91 | 8.35 |
| Post-D | Development | | | | | | | | | | | |
| Drainage | Area: H6B | | | | | | | | | | | |
| | | $\begin{array}{\|c} \text { Fow Length,L } \\ \text { (tt) } \end{array}$ | Slope, 5 (t/f/t) | Manning's Roughness Coefficient, n | $\begin{gathered} \text { Two-year, 24hr rainfall, } \\ \text { P2 (in) } \end{gathered}$ | Paved or Unpaved | Cross sectionalarea Flow, $\mathrm{A}\left(\mathrm{ft}^{2}\right)$ | Wetted Perimeter, pw
 (t) | $\begin{gathered} \text { Hydraulic radius, } \\ \text { r(ft) } \end{gathered}$ | Average Velocity, $\mathrm{V}(\mathrm{ft} / \mathrm{s})^{* *}$ | $\begin{array}{\|c\|} \hline \text { Travel Time, } \mathrm{Tt} \\ \text { (min) } \end{array}$ | Lag Time (min) |
| SHEET | tis SHET Flow | 42.00 | 0.040 | 0.10 | 2.10 | | | | | | 3.31 | |
| Shallow Concentrated | T2 Shallow concentateo fow | 710.00 | 0.060 | | | U | | | | 3.95 | 3.00 | |
| Channel | TJ Chanvel fiow | 825.00 | 0.04 | 0.04 | | U | 64.00 | 32.98 | 1.94 | 11.59 | 1.19 | |
| | | | | | | | Post-D | evelopment Time | of Concentrati | ion, H6B | 10.00 | 6.00 |

Post-Development												
Drainage Area: H7A												
		$\begin{gathered} \text { Flow Length,L } \\ \text { (ft) } \\ \hline \end{gathered}$	Slope, s(tt/ft)	Manning's Roughness Coefficient, n	$\begin{gathered} \text { Two-year, } 24 \text { hhr rainfall, } \\ \text { P2 (in) } \end{gathered}$	Paved or Unpaved	Cross Sectiontal Area of Flow, $\mathbf{A}\left(\mathrm{ft}^{2}\right)$	Wetted Perimeter, pw (ft)	$\begin{gathered} \text { Hydraulic radius } \\ \text { r (t) } \end{gathered}$	Average Velocity, $\mathrm{V}\left(\mathrm{ft} / \mathrm{s}^{* *}\right.$	$\begin{array}{\|c} \hline \text { Travelifme, It } \\ (\text { min }) \end{array}$	Lag Time (min)
SHEET	Tis SHET Flow	37.00	0.050	0.10	2.10						2.74	
SHALLOW CONCENTRATED	T2 SHALLOW Concenrateo flow	546.00	0.040			U				3.23	2.82	
CHANNEL	T3 Chamel fiow	1177.00	0.05	0.04		U	64.00	32.98	1.94	12.96	1.51	
							Post-D	evelopment Time o	of Concentrati	ion, H7A	10.00	6.00

Post-Development												
Drainage Area: H7B												
		Flow Length, L (ft) (ft)	Slope, 5 (tt/ft)	Manning's Roughness Coefficient n Coefficient, n	$\prod_{\text {P2 (in) }}^{\text {Two-year, } 24 \text { he rainfll, }}$	Paved or Unpaved	Cross sectumanal Alea Flow, $A\left(t^{2}\right)$	$\underset{(f t)}{\text { Wetted Perimeter, pw }}$	$\left\lvert\, \begin{gathered} \text { Hydraulic radius, } \\ \mathrm{r}(\mathrm{ft}) \end{gathered}\right.$	Average Velocity, $\mathrm{V}\left(\mathrm{ft} / \mathrm{s}^{* *}\right.$	$\underset{(\text { min })}{\text { Travel }}$	Lag Time (min)
SHEET	TISHEET flow	100.00	0.076	0.10	2.10						5.13	
SHALLOW CONCENTRATED	T2 Sfallow concenrateo fow	180.00	0.076			U				4.45	0.67	
Channel	ts Channel fiow	1320.00	0.06	0.04		U	64.00	32.98	1.94	14.20	1.55	
							Post-Development Time of Concentration, H7B				10.00	6.00

Kimley»Horn

Pre vs. Post Runoff Analys

 Time of Concentration| | | | | | of Concentrat | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Project Information | | | | | | | | | Equations Use | | | |
| | Project Name: | | Winsome Filing | | CONCENTRATED | FLOW EQN | LAG TIM | E EQN | MANN | NINGS EQN | SHEE | LOW EQN |
| | KHA Project \#, | | 196106001 | | | | | | | | | |
| | Designed by: | TOS | Date: | 9/14/2022 | $\mathrm{T}_{\mathrm{t}}=\mathrm{L} /(3600$ | V) | $t_{\text {lag }}=0.6$ | | $\mathrm{V}=1.49$ | $9 \mathrm{R}_{\mathrm{b}}{ }^{2 / 3} \mathrm{~S}^{1 / 2} / \mathrm{n}$ | $\mathrm{T}_{\mathrm{i}}=0.007$ | L) ${ }^{0.8} /\left(\mathrm{P}_{2}\right)^{0.5} \mathrm{~s}^{0.4}$ |
| | Revised by: | | Date: | | | | | | | | | |
| | Checked by: | | Date: | 9/14/2022 | | | | | | | | |
| | Minimum Time of Concentration | 5.0 | minutes | | Criteria Manual | Eqn. 6-16 | Criteria Man | Eqn. 6-13 | Criteria M | Manual Eqn. 6-17 | Criteria | ual Eqn. 6-15 |
| | 2YR-24HR Rainfall, P2 | 2.10 | | | | | | | | | | |
| | | | | | | | | | | | | |
| Post- | Development | | | | | | | | | | | |
| Drainage | Area: H8A | | | | | | | | | | | |
| | | $\underset{\text { (ft) }}{\boldsymbol{H} \text { How Lengh,L }}$ | Slope, 5 (t/f/t) | Manning's Roughness Coefficient, n | \mid | Paved or Unpaved | Cross sectional मleaor Flow, $A\left(f^{2}\right)$ | Wetted Perimeter, pw
 (tt) | | Average Velocity, V (ft/s)** | $\underset{(\text { min })}{\text { Travel Ifime, It }}$ | Lag Time (min) |
| SHEET | TISHEET FLow | 300.00 | 0.080 | 0.10 | 2.10 | | | | | | 12.09 | |
| SHALLOW CONCENTRATED | T2 Shallow concentratep flow | 600.00 | 0.080 | | | U | | | | 4.56 | 2.19 | |
| | | | | | | | Post-D | evelopment Time of | of Concentratio | ion, H8A | 14.29 | 8.57 |
| Post-D | Development | | | | | | | | | | | |
| Drainage | Area: H8B | | | | | | | | | | | |
| | | $\begin{array}{\|c\|} \hline \text { Flow Length, } \mathrm{L} \\ \text { (ft) } \end{array}$ | Slope, 5 (t/fit) | Manning's Roughness Coefficient, n | \mid | Paved or Unpaved | Cross sectional मleaor Flow, $A\left(f^{2}\right)$ | Wetted Perimeter, pw
 (tt) | $\underset{\substack{\text { Hydraulic radius, } \\ \text { r (tt) }}}{ }$ | Average Velocity, V (tt/s)** | $\underset{(\text { min })}{\text { Travel Ifime, It }}$ | Lag Time (min) |
| SHEET | TISHEET FLOw | 300.00 | 0.080 | 0.10 | 2.10 | | | | | | 12.09 | |
| SHALLOW CONCENTRATED | T2 SHallow concentrateo fow | 80.00 | 0.080 | | | U | | | | 4.56 | 0.29 | |
| | | | | | | | Post-D | evelopment Time of | of Concentratio | ion, H8B | 12.39 | 7.43 |

Post-Development												
Drainage Area: H 9												
		Flow Length, L (ft)	Slope, s (ti/ft)	Manning's Roughness Coefficient, n	$\underset{\text { P2 (in) }}{\text { Two-year, }}$	Paved or Unpaved		Wetted Perimeter, pw (ft)	$\begin{array}{\|c} \text { Hydraulic radius, } \\ \mathrm{r}(\mathrm{t}) \end{array}$	Average Velocity, $\mathrm{V}(\mathrm{ft} / \mathrm{s})^{* *}$	Travel Time, Tt (min)	Lag Time (min)
SHEET	TISHEET FLOw	300.00	0.036	0.10	2.10						16.65	
Shallow Concentrated	T2 SHALLOW Concervareof fow	300.00	0.060			U				3.95	1.27	
CHANNEL	T3 Chandelfill	230.00	0.10	0.04		U	64.00	32.98	1.94	18.33	0.21	
							Post-Development Time of Concentration, H9				18.12	10.87

Post-Development												
Drainage Area: 11												
		$\underset{\text { (ft) }}{\text { Flow Lengh, }}$	Slope, 5 (ti/ft)	Manning's Roughness Coefficient n Coefficient, n		Paved or Unpaved	Cross sectional flead Flow, $\mathrm{A}\left(\mathrm{ft}^{2}\right)$	Wetted Perimeter, pw (ft)	$\left\lvert\, \begin{gathered} \text { Hydraulic radius, } \\ \text { r (ft) } \end{gathered}\right.$	Average Velocity, V (ft/s)**		Lag Time (min)
SHEET	TISHEET FLOw	300.00	0.038	0.10	2.10						16.29	
Shallow Concentrated	T2 Shallow concentateo Low	65.00	0.038			U				3.14	0.34	
CHANNEL	T3 Chawnel fiow	526.00	0.04	0.04		U	64.00	32.98	1.94	11.74	0.75	
							Post-Development Time of Concentration, II				17.38 10.43	

Post-Development												
Drainage Area: 12												
		$\begin{gathered} \text { Flow Length,L } \\ (\mathrm{ft}) \end{gathered}$	Slope, 5 (tt/ft)	Manning's Roughness Coefficient, n	$\prod_{\substack{\text { Two-year, } 24-\text { hr rainfall, } \\ \text { P2 (in) }}}$	Paved or Unpaved	$\left.\begin{array}{c}\text { Cross sectionala Area } \\ \text { Flow, } A\left(f^{2}\right)\end{array}\right]$	Wetted Perimeter, pw (t)	$\begin{gathered} \text { Hydraulicradius, } \\ \text { r(ft) } \end{gathered}$	Average Velocity, V (ft/s)**	$\begin{array}{\|c\|} \hline \text { Travel Time, It } \\ (\mathrm{min}) \end{array}$	Lag Time (min)
SHEET	Ti, SHEET Flow	300.00	0.040	0.10	2.10						15.96	
SHALLOW CONCENTRATED	T2 Shallow concenteate flow	140.00	0.030			U				2.79	0.84	
							Post-Development Time of Concentration, I2				16.79	10.08

Kimley»)Horn

Pre vs. Post Runoff Analysis

Time of Concentration

Post-Development												
Drainage Area: K1												
		$\begin{gathered} \text { Flow Length, L } \\ \text { (tt) } \end{gathered}$	Slope, $\mathrm{s}(\mathrm{tt} / \mathrm{ft})$	Manning's Roughness Coefficient, n Coefficient, n	$\begin{array}{\|l\|} \hline \text { Two-year, 24-hr rainfall, } \\ \text { P2 (in) } \end{array}$	Paved or Unpaved	$\begin{gathered} \text { Cross sectionalaread } \\ \text { Flow, } \mathrm{A}\left(\mathrm{ft}^{2}\right) \end{gathered}$	Wetted Perimeter, pw (ft)	$\begin{array}{\|c} \text { Hydraulic radius, } \\ \mathrm{r}(\mathrm{ft}) \end{array}$	Average Velocity, V (ft/s)**	$\begin{array}{\|c\|} \hline \text { Travel time, Tt } \\ \text { (min) } \end{array}$	Lag Time (min)
SHEET	TISHEET FLow	300.00	0.083	0.10	2.10						11.92	
SHALLOW CONCENTRATED	T2 Shallow concentrateo fiow	390.00	0.043			U				3.34	1.94	
							Post-Development Time of Concentration, K1				13.86	8.32

Kimley»)Horn

Pre vs. Post Runoff Analysis
Composite CN and Crat

Kimley»>Horn

Pre vs. Post Runoff Analysis Composite CN and Crat

Kimley»Horn
Pre vs. Post Runoff Analysis Composite CN and Crat

Kimley»)Horn

Pre vs. Post Runoff Analysis Composite CN and Crat

Kimley»)Horn

Pre vs. Post Runoff Analysis

 Composite CN and Crat| Project Name: | Winsome Filing 3 | | |
| :---: | :---: | :---: | :---: |
| KHA Project \#. | 196106001 | | |
| Designed by: | TOS | Date: | 9/14/2022 |
| Revised by: | | Date: | |
| Revised by: | | Date: | |
| Checked by: | | Date: | 9/14/2022 |

Post-Development
DrainageArea: K1

COVERDESCRIPION	HMDROLOGICCONDTIONOR COVRTMPE	HMDROLOGICSOIL GROUP	SCSORVENUMBR (CN)	AREA, A (ac)	Initial Abstraction (in)
RESIDENTIAL	5 acre (7\%imp.)	B	60.00	3.56	
RESIDENTIAL	5 acre (7% imp.)	C	72.00	13.94	
AGRICULTURAL	Pasture, grassland or range (Fair Condition)	C	79.00	0.00	
CUSTOM					
COMPOSITE SCSURVE NUMBER - K1		69.56		17.50	0.438

C Value Table

		Hydrologic Soil Type				
Land Cover	Imp \%	A	B	C	D	Source
5 acre Residential Lot	7\%	51.0	60.0	72.0	77.0	Winsome PDR
Pasture, grassland or range (Fair Condition)	2\%	49.0	69.0	79.0	84.0	City of Colorado Springs DCM Table 6-10
Woods (Fair Condition)	2\%	36.0	60.0	73.0	79.0	City of Colorado Springs DCM Table 6-10
Roadway, paved w/ ROW	100\%	83.0	89.0	92.0	93.0	City of Colorado Springs DCM Table 6-10

Imperviousness Table

Basin ID	Area	Imperviousness $\%$
A2A	28.13	7.0%
A2B	8.87	7.0%
A3A	8.25	11.8%
A3B	13.22	6.3%
A3C	11.66	3.3%
G1	24.79	5.1%
G2A	18.60	7.0%
G2B	2.77	17.4%
H1	13.76	9.2%
H2	39.09	8.4%
H3A	3.08	8.9%
H3B	2.71	10.5%
H4	27.00	6.3%
H5A	9.03	4.2%
H5B	10.48	5.7%
H6A	16.64	4.5%
H6B	15.96	8.6%
H7A	8.50	13.4%
H7B	17.35	8.5%
H8A	3.93	14.1%
H8B	5.09	4.1%
H9	6.52	7.0%
I1	6.82	19.6%
I2	14.59	9.2%
II	10.14	7.0%
K1	17.50	7.0%

PROPOSED CONDITIONS HEC-HMS LAYOUT
WINSOME FILING NO. 3

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: DATA CHANGED, RECOMPUTE Control Specifications:Control 1

Hydrologic Element	Drainage Ar (MI2)	Reak Discharg (CFS)	eTime of Peak	Volume (AC-FT)
A1	1.3529000	84.1	26Feb2019, 12:26	13.7
A2A	0.0439531	5.3	26Feb2019, 12:03	0.4
A2B	0.0138594	2.3	26Feb2019, 12:04	0.2
A3A	0.0128906	5.7	26Feb2019, 12:01	0.3
A3B	0.0206563	9.1	26Feb2019, 12:01	0.3
A3C	0.0182187	10.7	26Feb2019, 12:02	0.3
BOX CULVERT 1	7.8720139	370.1	26Feb2019, 12:43	80.0
BOX CULV 2	8.8550872	408.4	26Feb2019, 12:49	91.5
B1	5.9948000	286.7	26Feb2019, 12:42	60.5
B2	0.0204688	3.3	26Feb2019, 12:07	0.3
B3	0.0857813	6.8	26Feb2019, 12:15	0.9
B4	0.0648125	5.5	26Feb2019, 12:16	0.7
CLV E4	0.1670157	26.6	26Feb2019, 12:11	3.1
CULV A3A	0.0267500	7.0	26Feb2019, 12:03	0.4
CULV B2	0.0204688	3.3	26Feb2019, 12:07	0.3
CULV C2	0.2892200	23.8	26Feb2019, 12:16	2.9
CULV C3	0.3143763	26.5	26Feb2019, 12:18	3.3
CULV D2	0.3593700	31.5	26Feb2019, 12:18	3.9
CULV D3	0.1423438	13.2	26Feb2019, 12:19	1.8
CULV D4	0.1959376	18.8	26Feb2019, 12:19	2.7
CULV E1.1	0.0592188	4.9	26Feb2019, 12:16	0.6
CULV E1.2	0.0238750	5.0	26Feb2019, 12:08	0.5
CULV E1.5	0.0136094	2.7	26Feb2019, 12:08	0.2
CULV E2	0.0768907	7.3	26Feb2019, 12:13	1.0
CULV E5	0.0210938	3.9	26Feb2019, 12:08	0.4
CULV F2	0.0068750	2.2	26Feb2019, 12:03	0.2
CULV G1	0.0387188	3.1	26Feb2019, 12:05	0.3

Page 1

Hydrologic Element	Drainage Ar (MI2)	®eak Discharg (CFS)	eime of Peak	Volume (AC-FT)
CULV H1	0.0217031	4.6	26Feb2019, 12:04	0.3
CULV H2	0.0610938	8.9	26Feb2019, 12:03	0.7
CULV H3	0.0048125	1.4	26Feb2019, 12:04	0.1
CULV I1	0.0148907	6.6	26Feb2019, 12:06	0.4
CULV-E3	0.1317032	18.6	26Feb2019, 12:09	2.2
CULV-Pond4	0.0452031	14.7	26Feb2019, 12:02	0.8
C1	0.2542200	21.0	26Feb2019, 12:14	2.6
C2	0.0350000	3.1	26Feb2019, 12:11	0.4
C3	0.0251563	3.8	26Feb2019, 12:09	0.4
C4	0.0371875	1.9	26Feb2019, 12:16	0.2
D1.1	0.2520300	20.8	26Feb2019, 12:14	2.5
D1.2	0.0779688	5.8	26Feb2019, 12:18	0.8
D2	0.1073400	11.8	26Feb2019, 12:12	1.4
D3	0.0643750	8.1	26Feb2019, 12:15	1.0
D4	0.0535938	7.8	26Feb2019, 12:10	0.9
D5	0.0200000	0.8	26Feb2019, 12:10	0.1
D6	0.0653125	4.4	26Feb2019, 12:15	0.6
EX CULV C1	0.2542200	21.0	26Feb2019, 12:14	2.6
EX CULV D1.1	0.2520300	20.8	26Feb2019, 12:14	2.5
EX CULV D1.2	0.0779688	5.8	26Feb2019, 12:18	0.8
EX CULV E0	0.0592188	4.9	26Feb2019, 12:14	0.6
E0	0.0592188	4.9	26Feb2019, 12:14	0.6
E1.1	0.0136094	2.7	26Feb2019, 12:08	0.2
E1.2	0.0238750	5.0	26Feb2019, 12:08	0.5
E2	0.0040625	2.3	26Feb2019, 11:56	0.1
E3	0.0309375	7.6	26Feb2019, 12:06	0.7
E4	0.0284375	6.3	26Feb2019, 12:09	0.7
E5	0.0210938	3.9	26Feb2019, 12:08	0.4
E6	0.0144609	2.7	26Feb2019, 12:03	0.2
E7	0.0159688	3.3	26Feb2019, 12:05	0.3
E8	0.0246594	5.2	26Feb2019, 11:59	0.4

Page 2

Hydrologic Element	Drainage Arean Discharqeame of Peak (MI2) (CFS)		Volume (AC-FT)	
E9	0.0059688	0.3	26Feb2019, 11:55	0.0
F1	0.0501563	8.1	26Feb2019, 12:07	0.8
F2	0.0068750	2.2	26Feb2019, 12:03	0.2
F3	0.0150313	3.4	26Feb2019, 12:04	0.3
G1	0.0387188	3.1	26Feb2019, 12:05	0.3
G2A	0.0290625	12.9	26Feb2019, 12:01	0.5
G2B	0.0043281	2.6	26Feb2019, 12:00	0.1
H1	0.0217031	4.6	26Feb2019, 12:04	0.3
H2	0.0610938	8.9	26Feb2019, 12:03	0.7
H3A	0.0048125	1.4	26Feb2019, 12:03	0.1
H3B	0.0042344	1.3	26Feb2019, 12:05	0.1
H4	0.0421875	15.4	26Feb2019, 12:05	0.6
H5A	0.0141094	6.2	26Feb2019, 12:04	0.2
H5B	0.0163750	5.6	26Feb2019, 12:04	0.2
H6A	0.0260000	11.6	26Feb2019, 12:03	0.4
H6B	0.0249375	15.5	26Feb2019, 12:01	0.5
H7A	0.0132812	6.2	26Feb2019, 12:01	0.3
H7B	0.0271094	8.0	26Feb2019, 12:01	0.4
H8A	0.0061406	2.5	26Feb2019, 12:03	0.1
H8B	0.0079531	4.9	26Feb2019, 12:02	0.1
H9	0.0102188	2.3	26Feb2019, 12:06	0.1
I1	0.0106563	6.0	26Feb2019, 12:05	0.4
I2	0.0231250	8.3	26Feb2019, 12:05	0.5
J1	0.0158438	2.1	26Feb2019, 12:00	0.2
K1	0.0273438	4.5	26Feb2019, 12:03	0.3
OUT-1	9.2436297	420.9	26Feb2019, 12:52	97.1
REACH A1	1.3529000	83.8	26Feb2019, 12:31	13.7
Reach E3.1	0.0238750	5.0	26Feb2019, 12:11	0.5
Reach H3	0.0048125	1.3	26Feb2019, 12:10	0.1
Reach-A2A	Reach-A2B	56 Feb2019, 12:07	0.4	

Page 3

Hydrologic Element	Drainage Ar (MI2)	¥eak Discharg (CFS)	ETime of Peak	Volume (AC-FT)
Reach-A3	0.0439531	5.2	26Feb2019, 12:09	0.4
Reach-A3A	0.0310781	9.6	26Feb2019, 12:03	0.6
Reach-B1	5.9948000	286.6	26Feb2019, 12:46	60.5
Reach-B2	0.0204688	3.3	26Feb2019, 12:15	0.3
Reach-B3	6.0805813	288.7	26Feb2019, 12:50	61.4
Reach-B4-3	0.3143763	26.5	26Feb2019, 12:19	3.3
Reach-C1	0.2542200	20.9	26Feb2019, 12:17	2.6
Reach-C2	0.2892200	23.8	26Feb2019, 12:20	2.9
Reach-D1.1	0.2520300	20.7	26Feb2019, 12:20	2.5
Reach-D3	0.0779688	5.7	26Feb2019, 12:24	0.8
Reach-D4	0.1423438	13.2	26Feb2019, 12:24	1.8
Reach-D5	0.3593700	31.4	26Feb2019, 12:22	3.9
Reach-D6	0.1959376	18.7	26Feb2019, 12:23	2.7
Reach-E1.1	0.0592188	4.9	26Feb2019, 12:15	0.6
Reach-E2	0.0592188	4.9	26Feb2019, 12:18	0.6
Reach-E3	0.0768907	7.3	26Feb2019, 12:18	1.0
Reach-E4	0.1317032	18.6	26Feb2019, 12:13	2.2
Reach-E6	0.0210938	3.8	26Feb2019, 12:13	0.4
Reach-E6-2	0.1974454	30.3	26Feb2019, 12:15	3.6
Reach-E7	0.1670157	26.6	26Feb2019, 12:14	3.1
Reach-F2	0.0068750	2.2	26Feb2019, 12:08	0.2
Reach-G1	0.0387188	3.0	26Feb2019, 12:11	0.3
Reach-H1	0.0217031	4.6	26Feb2019, 12:09	0.3
Reach-H2	0.0610938	8.9	26Feb2019, 12:05	0.7
Reach-H3B	0.0042344	1.2	26Feb2019, 12:13	0.1
Reach-I1	0.0210313	8.9	26Feb2019, 12:09	0.6
Reach-P3	0.2612501	21.0	26Feb2019, 12:30	3.2
Reach-P4	0.0662344	8.7	26Feb2019, 12:18	1.2
Reach-1	7.9708733	371.6	26Feb2019, 12:45	81.3
Reach-2	8.0719514	376.2	26Feb2019, 12:48	82.4
Reach-3	8.4818058	390.9	26Feb2019, 12:48	86.8

Page 4

Hydrologic Element	Drainage Aremeak Dischargeime of Peak (MI2)	(CFS)	Volume $($ AC-FT $)$	
Reach-4	8.5938371	393.8	26Feb2019, 12:50	88.3
Reach-5	8.8550872	408.3	26Feb2019, 12:50	91.5
Reach-6 Kiowa Outfal	9.2769735	421.3	26Feb2019, 12:52	97.7
STORAGE P1	0.0638906	9.8	26Feb2019, 12:15	0.9
STORAGE P2	0.0860313	10.7	26Feb2019, 12:11	1.1
STORAGE P3	0.2612501	21.0	26Feb2019, 12:29	3.2
STORAGE P4	0.0662344	8.8	26Feb2019, 12:17	1.2
STORAGE P5	0.2431986	6.7	26Feb2019, 13:03	3.2

Page 5

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Subbasin: A1

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr
Subbasin: A2A

Start of Run:	26Feb2019, 00:00	Basin Model:	Proposed Basins
End of Run:	27Feb2019, 12:00	Meteorologic Model:	Prop Basins 5yr
Compute Time: 09Dec2021, 07:54:44	Control Specifications:	Control 1	

Volume Units: \quad AC-FT

Computed Results			
Peak Discharge:	5.3 (CFS)	Date/Time of Peak Discharge26Feb2019, 12:	
Precipitation Volume.6.3 (AC-FT)	Direct Runoff Volume:	0.4 (AC-FT)	
Loss Volume:	5.9 (AC-FT)	Baseflow Volume:	0.0 (AC-FT)
Excess Volume:	0.4 (AC-FT)	Discharge Volume:	0.4 (AC-FT)

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr
Subbasin: A2B

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr
Subbasin: A3A

Start of Run:	26Feb2019, 00:00	Basin Model:	Proposed Basins
End of Run:	27 Feb2019, 12:00	Meteorologic Model:	Prop Basins 5yr
Compute Time: 09Dec2021, 07:54:44	Control Specifications:	Control 1	

Volume Units: \quad AC-FT

Computed Results			
Peak Discharge:	5.7 (CFS)	Date/Time of Peak Discharge26Feb2019, 12 :	
Precipitation Volume:1.9 (AC-FT)	Direct Runoff Volume:	0.3 (AC-FT)	
Loss Volume:	1.6 (AC-FT)	Baseflow Volume:	$0.0(\mathrm{AC}-\mathrm{FT})$
Excess Volume:	0.3 (AC-FT)	Discharge Volume:	0.3 (AC-FT)

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr
 Subbasin: A3B

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Subbasin: A3C

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Reach: CULV G1

Start of Run: | 26Feb2019, 00:00 |
| :---: | :--- | :--- | :--- |
| End of Run: |
| 27Feb2019, 12:00 |

Compute Time: 09Dec2021, 07:54:44

Project: Winsome_Fil 3	Simulation Run: Prop Basin 5yr
	: CULV H1

Start of Run:	26Feb2019, 00:00	Basin Model:	Proposed Basins
End of Run:	27 Feb2019, 12:00	Meteorologic Model:	Prop Basins 5yr
Compute Time: 09Dec2021, 07:54:44	Control Specifications:	Control 1	

$$
\text { Volume Units: } \quad \text { AC-FT }
$$

Project: Winsome_Fil_3	Simulation Run: Prop Basin 5yr
	: CULV H2

Start of Run:	26Feb2019, 00:00	Basin Model:	Proposed Basins
End of Run:	27Feb2019, 12:00	Meteorologic Model:	Prop Basins 5yr
Compute Time: 09Dec2021, 07:54:44	Control Specifications:	Control 1	

$$
\text { Volume Units: } \quad \text { AC-FT }
$$

Computed Results
Peak Inflow: 8.9 (CFS) Date/Time of Peak Inflow 26Feb2019, 12:02 Peak Discharge:8.9 (CFS) Date/Time of Peak Discharge26Feb2019, 12:03
Inflow Volume: 0.7 (AC-FT) Discharge Volume: $\quad 0.7$ (AC-FT)

Project: Winsome_Fil_3	Simulation Run: Prop Basin 5yr
	: CULV H3

Start of Run:	26Feb2019, 00:00	Basin Model:	Proposed Basins
End of Run:	27 Feb2019, 12:00	Meteorologic Model:	Prop Basins 5yr
Compute Time: 09Dec2021, 07:54:44	Control Specifications:	Control 1	

$$
\text { Volume Units: } \quad \text { AC-FT }
$$

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Reach: CULV II

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Reach: CULV-Pond4

Start of Run:	26Feb2019, 00:00	Basin Model:	Proposed Basins
End of Run:	27Feb2019, 12:00	Meteorologic Model:	Prop Basins 5yr
Compute Time: 09Dec2021, 07:54:44	Control Specifications: Control 1		

Volume Units: \quad AC-FT

Computed Results
Peak Inflow: 14.8 (CFS) Date/Time of Peak Inflow 26Feb2019, 12:00 Peak Discharge:14.7 (CFS) Date/Time of Peak Discharge:26Feb2019, 12:02
Inflow Volume: 0.8 (AC-FT) Discharge Volume: $\quad 0.8$ (AC-FT)

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Subbasin: G1

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Subbasin: G2A

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr
Subbasin: G2B

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Subbasin: H1

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Subbasin: H2

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Subbasin: H3A

Start of Run: 26Feb2019, 00:00 End of Run: $\quad 27 \mathrm{Feb} 2019,12: 00$ Compute Time: 09Dec2021, 07:54:44	Basin Model: Proposed Basins Meteorologic Model: Prop Basins 5yr Control Speciifactions: Control 1
Volume Units:	AC-FT
Computed Results	
Peak Discharge: 1.4 (CFS)	Date/Time of Peak Discharge26Feb2019, 12:
Precipitation Volume 0.7 (AC-FT)	Direct Runoff Volume: $\quad 0.1$ (AC-FT)
Loss Volume: $\quad 0.6$ (AC-FT)	Baseflow Volume: $\quad 0.0$ (AC-FT)
Excess Volume: $\quad 0.1$ (AC-FT)	Discharge Volume: $\quad 0.1$ (AC-FT)

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr
Subbasin: H3B

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Subbasin: H4

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Subbasin: H5A

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr
 Subbasin: H5B

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Subbasin: H6A

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr
 Subbasin: H6B

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Subbasin: H7A

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Subbasin: H7B

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Subbasin: H8A

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr
Subbasin: H8B

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Subbasin: H9

Project: Winsome_Fil_3 $\begin{gathered}\text { Simulation Run: Prop Basin 5yr } \\ \text { Subbasin: } 11\end{gathered}$	
Start of Run: 26Feb2019, 00:00	Basin Model: Proposed Basins
End of Run: 27Feb2019, 12:00	Meteorologic Model: Prop Basins 5yr
Compute Time: 09Dec2021, 07:54:44	Control Specifications: Control 1
Volume Units:	AC-FT
Computed Results	
Peak Discharge: 6.0 (CFS)	Date/Time of Peak Discharge26Feb2019, 12:
Precipitation Volume:1.5 (AC-FT)	Direct Runoff Volume: $\quad 0.4$ (AC-FT)
Loss Volume: $\quad 1.2$ (AC-FT)	Baseflow Volume: $\quad 0.0$ (AC-FT)
Excess Volume: $\quad 0.4$ (AC-FT)	Discharge Volume: $\quad 0.4$ (AC-FT)

| | Project: Winsome_Fil_3 | Simulation Run: Prop Basin 5yr |
| :--- | :---: | :--- | :--- | :--- |
| | Subbasin: | 12 |

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Subbasin: K1

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Reservoir: STORAGE P1

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Reservoir: STORAGE P2

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Reservoir: STORAGE P4

Start of Run:	26Feb2019, 00:00	Basin Model:	Proposed Basins
End of Run:	27Feb2019, 12:00	Meteorologic Model:	Prop Basins 5yr
Compute Time: 31Jan2023, 10:25:36	Control Specifications: Control 1		

Volume Units: AC-FT

Computed Results
Peak Inflow: $\quad 21.2$ (CFS) Date/Time of Peak Inflow: 26Feb2019, 12:0
Peak Discharge: 8.8 (CFS) Date/Time of Peak Discharge:26Feb2019, 12:1
Inflow Volume: 1.4 (AC-FT) Peak Storage: 0.7 (AC-FT)
Discharge Volume:1.2 (AC-FT) Peak Elevation: 7293.7 (FT)

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr
Reach: Reach-1

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr
Reach: Reach-2

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr
Reach: Reach-3

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr
Reach: Reach-4

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr
Reach: Reach-5

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr
Reach: Reach-6 Kiowa Outfall

Start of Run: 26Feb2019, 00:00 End of Run: \quad 27Feb2019, 12:00 Compute Time: 30Nov2021, 13:26:30	Basin Model: Proposed Basins Meteorologic Model: Prop Basins 5yr Control Speciifications: Control 1
Volume Units:	AC-FT
- Computed Results	
Peak Inflow: 84.1 (CFS)	Date/Time of Peak Inflow 26Feb2019, 12:2!
Peak Discharge:83.8 (CFS)	Date/Time of Peak Discharge26Feb2019, 12:3:
Inflow Volume: 13.7 (AC-FT)	Discharge Volume: 13.7 (AC-FT)

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Reach: Reach-A2A

Start of Run:	26Feb2019, 00:00	Basin Model:	Proposed Basins
End of Run:	27Feb2019, 12:00	Meteorologic Model:	Prop Basins 5yr
Compute Time: 09Dec2021, 07:54:44	Control Specifications: Control 1		

$$
\text { Volume Units: } \quad \text { AC-FT }
$$

Computed Results
Peak Inflow: 5.3 (CFS) Date/Time of Peak Inflow 26Feb2019, 12:02 Peak Discharge:5.2 (CFS) Date/Time of Peak Discharge:26Feb2019, 12:07
Inflow Volume: 0.4 (AC-FT) Discharge Volume: 0.4 (AC-FT)

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Reach: Reach-A2B

Start of Run:	26Feb2019, 00:00	Basin Model:	Proposed Basins
End of Run:	27Feb2019, 12:00	Meteorologic Model:	Prop Basins 5yr
Compute Time: 09Dec2021, 07:54:44	Control Specifications: Control 1		

$$
\text { Volume Units: } \quad \text { AC-FT }
$$

Computed Results
Peak Inflow: 2.3 (CFS) Date/Time of Peak Inflow 26Feb2019, 12:03 Peak Discharge:2.2 (CFS) Date/Time of Peak Discharge:26Feb2019, 12:10 Inflow Volume: 0.2 (AC-FT) Discharge Volume: 0.2 (AC-FT)

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Reach: Reach-A3

Start of Run:	26Feb2019, 00:00	Basin Model:	Proposed Basins
End of Run:	27Feb2019, 12:00	Meteorologic Model:	Prop Basins 5yr
Compute Time: 09Dec2021, 07:54:44	Control Specifications:	Control 1	

$$
\text { Volume Units: } \quad \text { AC-FT }
$$

Computed Results
Peak Inflow: 5.2 (CFS) Date/Time of Peak Inflow 26Feb2019, 12:06
Peak Discharge:5.2 (CFS) Date/Time of Peak Discharge26Feb2019, 12:09
Inflow Volume: 0.4 (AC-FT) Discharge Volume: $\quad 0.4$ (AC-FT)

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Reach: Reach-A3A

Start of Run:	26Feb2019, 00:00	Basin Model:	Proposed Basins
End of Run:	27Feb2019, 12:00	Meteorologic Model:	Prop Basins 5yr
Compute Time: 09Dec2021, 07:54:44	Control Specifications: Control 1		

$$
\text { Volume Units: } \quad \text { AC-FT }
$$

Computed Results
Peak Inflow: $\quad 9.6$ (CFS) Date/Time of Peak Inflow 26Feb2019, 12:01 Peak Discharge:9.6 (CFS) Date/Time of Peak Discharge26Feb2019, 12:03
Inflow Volume: 0.6 (AC-FT) Discharge Volume: 0.6 (AC-FT)

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Reach: Reach-G1

Start of Run:	26Feb2019, 00:00	Basin Model:	Proposed Basins
End of Run:	27Feb2019, 12:00	Meteorologic Model:	Prop Basins 5yr
Compute Time: 09Dec2021, 07:54:44	Control Specifications:	Control 1	

$$
\text { Volume Units: } \quad \text { AC-FT }
$$

Computed Results
Peak Inflow: 3.1 (CFS) Date/Time of Peak Inflow 26Feb2019, 12:04 Peak Discharge:3.0 (CFS) Date/Time of Peak Discharge26Feb2019, 12:11
Inflow Volume: 0.3 (AC-FT) Discharge Volume: $\quad 0.3$ (AC-FT) Reach: Reach-H1

Start of Run: | 26Feb2019, 00:00 |
| :---: | :--- | :--- | :--- |
| End of Run: |
| 27Feb2019, 12:00 |

Compute Time: 09Dec2021, 07:54:44 Reach: Reach-H2

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Reach: Reach H3

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Reach: Reach-H3B

Start of Run:	26Feb2019, 00:00	Basin Model:	Proposed Basins
End of Run:	27Feb2019, 12:00	Meteorologic Model:	Prop Basins 5yr
Compute Time: 09Dec2021, 07:54:44	Control Specifications: Control 1		

$$
\text { Volume Units: } \quad \text { AC-FT }
$$

Computed Results
Peak Inflow: 1.3 (CFS) Date/Time of Peak Inflow 26Feb2019, 12:04 Peak Discharge:1.2 (CFS) Date/Time of Peak Discharge:26Feb2019, 12:13
Inflow Volume: 0.1 (AC-FT) Discharge Volume: 0.1 (AC-FT)

Project: Winsome_Fil_3	Simulation Run: Prop Basin 5yr
	: Reach-11

Start of Run:	26Feb2019, 00:00	Basin Model:	Proposed Basins
End of Run:	27 Feb2019, 12:00	Meteorologic Model:	Prop Basins 5yr
Compute Time: 09Dec2021, 07:54:44	Control Specifications:	Control 1	

$$
\text { Volume Units: } \quad \text { AC-FT }
$$

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr Reservoir: STORAGE P4

Start of Run: 26Feb2019, 00:00 Basin Model: Proposed Basins
End of Run: 27Feb2019, 12:00 Meteorologic Model: Prop Basins 5yr
Compute Time: 15Sep2022, 11:13:09 Control Specifications: Control 1
Volume Units: AC-FT

Computed Results
Peak Inflow: 21.2 (CFS) Date/Time of Peak Inflow: 26Feb2019, 12:0
Peak Discharge: 7.7 (CFS) Date/Time of Peak Discharge:26Feb2019, 12:1
Inflow Volume: 1.4 (AC-FT) Peak Storage: 0.7 (AC-FT)
Discharge Volume:1.1 (AC-FT) Peak Elevation: 7293.7 (FT)

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr

Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 30Jan2023, 16:24:56

Basin Model: Proposed Basins Meteorologic Model: Prop Basins 100yr Control Specifications:Control 1

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
A1	1.3529000	402.8	26Feb2019, 12:28	40.2
A2A	0.0439531	47.1	26Feb2019, 12:04	1.7
A2B	0.0138594	20.3	26Feb2019, 12:03	0.7
A3A	0.0128906	25.8	26Feb2019, 12:00	0.9
A3B	0.0206563	42.6	26Feb2019, 11:59	1.5
A3C	0.0182187	40.8	26Feb2019, 12:00	1.6
BOX CULVERT 1	7.8720139	1689.6	26Feb2019, 12:42	237.8
BOX CULV 2	8.8550872	1871.9	26Feb2019, 12:44	279.2
B1	5.9948000	1289.0	26Feb2019, 12:44	178.0
B2	0.0204688	17.2	26Feb2019, 12:09	0.9
B3	0.0857813	49.3	26Feb2019, 12:17	3.2
B4	0.0648125	46.3	26Feb2019, 12:17	2.9
CLV E4	0.1670157	117.6	26Feb2019, 12:12	8.1
CULV A3A	0.0267500	40.9	26Feb2019, 12:03	1.6
CULV B2	0.0204688	17.2	26Feb2019, 12:09	0.9
CULV C2	0.2892200	120.4	26Feb2019, 12:18	8.4
CULV C3	0.3143763	134.2	26Feb2019, 12:19	9.6
CULV D2	0.3593700	170.8	26Feb2019, 12:18	11.8
CULV D3	0.1423438	64.0	26Feb2019, 12:20	5.1
CULV D4	0.1959376	92.3	26Feb2019, 12:19	7.5
CULV E1.1	0.0592188	24.6	26Feb2019, 12:17	1.7
CULV E1.2	0.0238750	21.4	26Feb2019, 12:10	1.3
CULV E1.5	0.0136094	16.6	26Feb2019, 12:08	0.8
CULV E2	0.0768907	36.6	26Feb2019, 12:14	2.8
CULV E5	0.0210938	18.4	26Feb2019, 12:10	1.1
CULV F2	0.0068750	8.6	26Feb2019, 12:05	0.4
CULV G1	0.0387188	40.0	26Feb2019, 12:07	1.5

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
CULV H1	0.0217031	33.0	26Feb2019, 12:03	1.1
CULV H2	0.0610938	65.5	26Feb2019, 12:04	2.5
CULV H3	0.0048125	8.0	26Feb2019, 12:02	0.3
CULV I1	0.0148907	25.8	26Feb2019, 12:05	1.3
CULV-E3	0.1317032	84.6	26Feb2019, 12:11	6.0
CULV-Pond4	0.0452031	81.0	26Feb2019, 12:01	2.8
C1	0.2542200	105.6	26Feb2019, 12:16	7.4
C2	0.0350000	16.1	26Feb2019, 12:13	1.0
C3	0.0251563	19.1	26Feb2019, 12:11	1.1
C4	0.0371875	19.1	26Feb2019, 12:18	1.2
D1.1	0.2520300	105.2	26Feb2019, 12:16	7.4
D1.2	0.0779688	28.2	26Feb2019, 12:20	2.3
D2	0.1073400	69.8	26Feb2019, 12:14	4.4
D3	0.0643750	38.1	26Feb2019, 12:17	2.9
D4	0.0535938	38.6	26Feb2019, 12:12	2.4
D5	0.0200000	15.0	26Feb2019, 12:12	0.7
D6	0.0653125	28.1	26Feb2019, 12:17	1.9
EX CULV C1	0.2542200	105.6	26Feb2019, 12:16	7.4
EX CULV D1.1	0.2520300	105.2	26Feb2019, 12:16	7.4
EX CULV D1.2	0.0779688	28.2	26Feb2019, 12:20	2.3
EX CULV E0	0.0592188	24.6	26Feb2019, 12:16	1.7
E0	0.0592188	24.6	26Feb2019, 12:16	1.7
E1.1	0.0136094	16.6	26Feb2019, 12:08	0.8
E1.2	0.0238750	21.4	26Feb2019, 12:10	1.3
E2	0.0040625	8.9	26Feb2019, 11:56	0.3
E3	0.0309375	33.7	26Feb2019, 12:07	1.8
E4	0.0284375	27.0	26Feb2019, 12:10	1.7
E5	0.0210938	18.4	26Feb2019, 12:10	1.1
E6	0.0144609	14.1	26Feb2019, 12:05	0.6
E7	0.0159688	16.2	26Feb2019, 12:07	0.8
E8	0.0246594	25.6	26Feb2019, 12:01	1.0

Page 2

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
E9	0.0059688	5.8	26Feb2019, 11:56	0.1
F1	0.0501563	36.6	26Feb2019, 12:09	2.1
F2	0.0068750	8.6	26Feb2019, 12:04	0.4
F3	0.0150313	14.5	26Feb2019, 12:06	0.7
G1	0.0387188	40.1	26Feb2019, 12:07	1.5
G2A	0.0290625	59.9	26Feb2019, 11:59	2.1
G2B	0.0043281	9.6	26Feb2019, 11:59	0.4
H1	0.0217031	33.0	26Feb2019, 12:03	1.1
H2	0.0610938	65.7	26Feb2019, 12:04	2.5
H3A	0.0048125	8.0	26Feb2019, 12:02	0.3
H3B	0.0042344	6.9	26Feb2019, 12:04	0.3
H4	0.0421875	73.6	26Feb2019, 12:04	3.0
H5A	0.0141094	27.0	26Feb2019, 12:03	1.1
H5B	0.0163750	29.0	26Feb2019, 12:03	1.1
H6A	0.0260000	51.1	26Feb2019, 12:02	2.0
H6B	0.0249375	57.1	26Feb2019, 11:59	2.3
H7A	0.0132812	27.1	26Feb2019, 11:59	1.0
H7B	0.0271094	49.8	26Feb2019, 12:00	1.5
H8A	0.0061406	11.2	26Feb2019, 12:02	0.4
H8B	0.0079531	17.8	26Feb2019, 12:01	0.8
H9	0.0102188	15.0	26Feb2019, 12:05	0.5
11	0.0106563	20.3	26Feb2019, 12:04	1.0
12	0.0231250	39.1	26Feb2019, 12:04	1.6
J1	0.0158438	13.0	26Feb2019, 12:02	0.5
K1	0.0273438	40.7	26Feb2019, 12:02	1.3
OUT-1	9.2436297	1958.9	26Feb2019, 12:45	297.5
REACH A1	1.3529000	402.3	26Feb2019, 12:31	40.2
Reach E3.1	0.0238750	21.4	26Feb2019, 12:12	1.3
Reach H3	0.0048125	8.0	26Feb2019, 12:07	0.3
Reach-A2A	0.0439531	47.1	26Feb2019, 12:07	1.7
Reach-A2B	0.0138594	20.1	26Feb2019, 12:07	0.7

Page 3

Hydrologic Element	Drainage Area $($ MI2 $)$	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
Reach-A3	0.0439531	46.9	26Feb2019, 12:08	1.7
Reach-A3A	0.0310781	49.3	26Feb2019, 12:04	2.0
Reach-B1	5.9948000	1288.9	26Feb2019, 12:46	178.0
Reach-B2	0.0204688	17.2	26Feb2019, 12:14	0.9
Reach-B3	6.0805813	1301.2	26Feb2019, 12:48	181.2
Reach-B4-3	0.3143763	134.2	26Feb2019, 12:19	9.6
Reach-C1	0.2542200	105.5	26Feb2019, 12:18	7.4
Reach-C2	0.2892200	120.3	26Feb2019, 12:20	8.4
Reach-D1.1	0.2520300	105.1	26Feb2019, 12:20	7.4
Reach-D3	0.0779688	28.2	26Feb2019, 12:24	2.3
Reach-D4	0.1423438	64.0	26Feb2019, 12:23	5.1
Reach-D5	0.3593700	170.6	26Feb2019, 12:20	11.8
Reach-D6	0.1959376	92.2	26Feb2019, 12:22	7.5
Reach-E1.1	0.0592188	24.6	26Feb2019, 12:17	1.7
Reach-E2	0.0592188	24.5	26Feb2019, 12:19	1.7
Reach-E3	0.0768907	36.6	26Feb2019, 12:17	2.8
Reach-E4	0.1317032	84.5	26Feb2019, 12:14	6.0
Reach-E6	0.0210938	18.4	26Feb2019, 12:13	1.1
Reach-E6-2	0.1974454	137.3	26Feb2019, 12:14	9.5
Reach-E7	0.1670157	117.5	26Feb2019, 12:14	8.1
Reach-F2	0.0068750	8.6	26Feb2019, 12:08	0.4
Reach-G1	0.0387188	40.0	26Feb2019, 12:10	1.5
Reach-H1	0.0217031	32.8	26Feb2019, 12:06	1.1
Reach-H2	0.0610938	65.4	26Feb2019, 12:06	2.5
Reach-H3B	0.0042344	6.8	26Feb2019, 12:09	0.3
Reach-I1	0.0210313	36.2	1.8	
Reach-P3	0.2612501	79.0	26Feb2019, 12:37	9.4
Reach-P4	0.0662344	58.0	$12: 11$	4.3
Reach-1	7.9708733	1694.5	1712.7	1781.7
Reach-2	8.0719514	8.4818058	26 Feb2019, 12:43	243.3
Reach-3		$12: 44$	248.5	
	26Feb2019, 12:43	263.2		

Hydrologic Element	Drainage Area $(\mathrm{MI} 2)$	Peak Discharge (CFS)	Time of Peak	Volume $($ AC-FT $)$
Reach-4	8.5938371	1795.5	26Feb2019, 12:44	269.8
Reach-5	8.8550872	1871.4	26Feb2019, 12:44	279.2
Reach-6 Kiowa OuteßRP769735	1960.0	26Feb2019, 12:45	299.6	
STORAGE P1	0.0638906	72.1	26Feb2019, 12:11	4.1
STORAGE P2	0.0860313	78.6	26Feb2019, 12:09	4.6
STORAGE P3	0.2612501	79.0	26Feb2019, 12:36	9.4
STORAGE P4	0.0662344	58.0	26Feb2019, 12:11	4.3
STORAGE P5	0.2431986	73.4	26Feb2019, 12:32	10.3

Page 5

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Subbasin: A2A

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Subbasin: A2B

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Subbasin: A3A

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Subbasin: АЗB

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Subbasin: A3C

Project: Winsome_Fil_3 $\begin{gathered}\text { Simulation Run: Prop Basins } 100 \text { yr } \\ \text { Reach: CULV G1 }\end{gathered}$	
Start of Run: 26Feb2019, 00:00	Basin Model: Proposed Basins
End of Run: 27Feb2019, 12:00	Meteorologic Model: Prop Basins 100yr
Compute Time: 09Dec2021, 07:54:11	Control Specifications: Control 1
Volume Units: \quad AC-FT	
Computed Results	
Peak Inflow: 40.1 (CFS)	Date/Time of Peak Inflow 26Feb2019, 12:06
Peak Discharge:40.0 (CFS)	Date/Time of Peak Discharge26Feb2019, 12:07
Inflow Volume: 1.5 (AC-FT)	Discharge Volume: $\quad 1.5$ (AC-FT)

Project: Winsome_Fil_3 $\begin{gathered}\text { Simulation Run: Prop Basins } 100 \text { yr } \\ \text { Reach: CULV H1 }\end{gathered}$	
Start of Run: 26Feb2019, 00:00	Basin Model: \quad Proposed Basins
End of Run: 27Feb2019, 12:00	Meteorologic Model: Prop Basins 100yr
Compute Time: 09Dec2021, 07:54:11	Control Specifications: Control 1
Volume Units: \quad AC-FT	
Computed Results	
Peak Inflow: 33.0 (CFS)	Date/Time of Peak Inflow 26Feb2019, 12:02
Peak Discharge:33.0 (CFS)	Date/Time of Peak Discharge26Feb2019, 12:03
Inflow Volume: 1.1 (AC-FT)	Discharge Volume: $\quad 1.1$ (AC-FT)

Project: Winsome_Fil_3 $\begin{gathered}\text { Simulation Run: } \\ \text { Reach: CULV H2 }\end{gathered}$ Pasins 100 yrRe	
Start of Run: 26Feb2019, 00:00	Basin Model: \quad Proposed Basins
End of Run: 27Feb2019, 12:00	Meteorologic Model: Prop Basins 100yr
Compute Time: 09Dec2021, 07:54:11	Control Speciifications: Control 1
Volume Units: \quad AC-FT	
Computed Results	
Peak Inflow: 65.7 (CFS)	Date/Time of Peak Inflow 26Feb2019, 12:03
Peak Discharge:65.5 (CFS)	Date/Time of Peak Discharge26Feb2019, 12:04
Inflow Volume: 2.5 (AC-FT)	Discharge Volume: 2.5 (AC-FT)

Project: Winsome_Fil_3 $\begin{gathered}\text { Simulation Run: Prop Basins } 100 \text { yr } \\ \text { Reach: CULV H3 }\end{gathered}$	
Start of Run: 26Feb2019, 00:00	Basin Model: Proposed Basins
End of Run: 27Feb2019, 12:00	Meteorologic Model: Prop Basins 100yr
Compute Time: 09Dec2021, 07:54:11	Control Speciications: Control 1
Volume Units: \quad AC-FT	
Computed Results	
Peak Inflow: 8.0 (CFS)	Date/Time of Peak Inflow 26Feb2019, 12:01
Peak Discharge:8.0 (CFS)	Date/Time of Peak Discharge26Feb2019, 12:02
Inflow Volume: 0.3 (AC-FT)	Discharge Volume: 0.3 (AC-FT)

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Reach: CULV II

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Reach: CULV-Pond4

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Subbasin: G1

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Subbasin: G2A

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Subbasin: G2B

Start of Run:	26Feb2019, 00:00		
End of Run:			
27Feb2019, 12:00		\quad	Basin Model:
:---			
Compute Time: 09Dec2021, 07:54:11			

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Subbasin: H1

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Subbasin: H3A

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Subbasin: НЗВ

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Subbasin: H4

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Subbasin: H5A

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Subbasin: H5B

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Subbasin: H6A

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Subbasin: H6B

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Subbasin: H7A

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Subbasin: H7B

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Subbasin: H8A

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Subbasin: H8B

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Subbasin: H9

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Subbasin: 11

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Subbasin: 12

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Subbasin: J1

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Subbasin: K1

Start of Run:	26Feb2019, 00:00	Basin Model:	
End of Run: 27Feb2019, 12:00	Meteorologic Model:	Prop Based Basins 100yr	
Compute Time: DATA CHANGED, RECOMPUTE	Control Specifications: Control 1		

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Reservoir: STORAGE P1

Start of Run:	26Feb2019, 00:00	Basin Model:	Proposed Basins
End of Run:	27Feb2019, 12:00	Meteorologic Model:	Prop Basins 100yr
Compute Time: 30Jan2023, 16:24:56	Control Specifications: Control 1		
Volume Units:			
	AC-FT		

Computed Results
Peak Inflow: 105.0 (CFS) Date/Time of Peak Inflow: 26Feb2019, 12:0
Peak Discharge: 72.1 (CFS) Date/Time of Peak Discharge26Feb2019, 12:1
Inflow Volume: 4.2 (AC-FT) Peak Storage: 1.3 (AC-FT)
Discharge Volume 4.1 (AC-FT) Peak Elevation: 7321.2 (FT)

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Reservoir: STORAGE P2

Start of Run:	26Feb2019, 00:00	Basin Model:	Proposed Basins
End of Run:	27Feb2019, 12:00	Meteorologic Model:	Prop Basins 100yr
Compute Time: 30Jan2023, 16:24:56	Control Specifications: Control 1		
Volume Units:			
	AC-FT		

Computed Results
Peak Inflow: $\quad 110.8$ (CFS) Date/Time of Peak Inflow: 26Feb2019, 12:0
Peak Discharge: 78.6 (CFS) Date/Time of Peak Discharge26Feb2019, 12:0
Inflow Volume: 4.8 (AC-FT) Peak Storage: 1.5 (AC-FT)
Discharge Volume4.6 (AC-FT) Peak Elevation: 7305.6 (FT)

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Reservoir: STORAGE P4

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Reach: Reach-1

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Reach: Reach-2

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Reach: Reach-3

Start of Run: | 26Feb2019, 00:00 |
| :---: | :--- | :--- |
| End of Run: |
| 27Feb2019, 12:00 |

Compute Time: 30Jan2023, 16:24:56

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Reach: Reach-4

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Reach: Reach-5

Start of Run: | 26Feb2019, 00:00 |
| :---: | :--- | :--- |
| End of Run: |
| 27Feb2019, 12:00 |

Compute Time: 30Jan2023, 16:24:56

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Reach: REACH A1

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Reach: Reach-A3

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Reach: Reach-A3A

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Reach: Reach-G1

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Reach: Reach-H1

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Reach: Reach-H2

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Reach: Reach H3

Start of Run: | 26Feb2019, 00:00 |
| :---: | :--- | :--- | :--- |
| End of Run: |
| 27Feb2019, 12:00 |

Compute Time: 09Dec2021, 07:54:11

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr
Reach: Reach-H3B

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr Reach: Reach-11

	Project: Winsome_Fil_3	Simulation Run: Prop Basins 100 y	
	Reach: Rea	ch-6 Kiowa Outfall	
Start of Run:	26Feb2019, 00:00	Basin Model:	Proposed Basins
End of Run:	27Feb2019, 12:00	Meteorologic Model:	Prop Basins 100yr
Compute Tim	: DATA CHANGED, RECOMPUTE	Control Speciifications:	Control 1
	Volume Units:	AC-FT	
Computed Results			
Peak	Inflow: 1960.1 (CFS)	Date/Time of Peak Inflow	26Feb2019, 12:4
Peak	Discharge:1960.0 (CFS)	Date/Time of Peak Discharge	e26Feb2019, 12:4
Inflow	Volume: 299.6 (AC-FT)	Discharge Volume:	299.6 (AC-FT)

DRIVEWAY CULVERT SIZING TABLE				
Lot	100 yr. Flow (cfs)	Culvert size (in)	Anticipated Driveway Location	Notes
1	N/A	N/A	N/A	N/A
2	41	36	East side of lot	Cross Swale A3A
3	41	36	East side of lot	Cross Swale A3A
4	<10	18	East side of lot	Cross roadside ditch
5	<10	18	South side of lot	Cross roadside ditch
6	<10	18	South side of lot	Cross roadside ditch
7	N/A	18	Shared driveway	Shared driveway
8	N/A	18	Shared driveway	Shared driveway
9	<10	18	South side of lot	Corss roadside ditch
10	<10	18	South side of lot	Cross roadside ditch
11	N/A	18	Shared driveway	Shared driveway
12	N/A	18	Shared driveway	Shared driveway
13	<10	18	South side of lot	Cross roadside ditch
14	<10	18	East side of lot	Cross roadside ditch
15	<10	18	East side of lot	Cross roadside ditch
16	<10	18	South side of lot	Cross roadside ditch
17	<10	18	South side of lot	Cross roadside ditch
18	<10	18	East side of lot	Cross roadside ditch
19	<10	18	East side of lot	N/A
20	<10	18	West side of lot	N/A
21	<10	18	West side of lot	N/A
22	<10	18	West side of lot	N/A
23	20	24	West side of lot	Cross roadside ditch
24	20	24	West side of lot	Cross roadside ditch
25	27	30	East side of lot	Cross roadside ditch
26	<10	18	North side of lot	Cross roadside ditch
27	<10	18	North side of lot	Cross roadside ditch
28	<10	18	West side of lot	Cross roadside ditch
29	<10	18	North side of lot	Cross roadside ditch
30	<10	18	North side of lot	Cross roadside ditch
31	<10	18	North side of lot	Cross roadside ditch

DRIVEWAY CULVERT SIZING TABLE

DRIVEWAY CULVERT SIZING TABLE					
Lot	$\mathbf{1 0 0}$ yr. Flow (cfs)	Culvert size (in)	Anticipated Driveway Location	Notes	
32	<10	18	North side of lot	Cross roadside ditch	
33	<10	18	North side of lot	Cross roadside ditch	
34	<10	18	North side of lot	Cross roadside ditch	
35	<10	18	West side of lot	Cross roadside ditch	
36	<10	18	West side of lot	Cross roadside ditch	
36	100	$2-36 "$	East side of drainageway	Cross Channel G1	
37	<10	18	West side of lot	Cross roadside ditch	
37	100	$2-36 "$	East side of drainageway	Cross Channel G1	
38	<10	18	West side of lot	Cross roadside ditch	
38	100	$2-36 "$	East side of drainageway	Cross Channel G1	

*Culvert sizing is based on flows in roadside ditch. If driveways cross natural channels an engineering site plan would be required.

Generic Driveway Culvert Sizing Table*

Culvert Diameter (in)	\# of Barrels	Allowable Flow (cfs)
18	1	10
24	1	20
30	1	30
36	1	50
42	1	70
36	2	100

*See Generic Driveway Culvert Sizing calculations for Hw/D and culvert slope
assumptions for each culvert size.

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow
Minimum Flow: 0 cfs
Design Flow: 10 cfs
Maximum Flow: 100 cfs

Table 28 - Summary of Culvert Flows at Crossing: General Driveway-18in

Headwater Elevation (ft)	Total Discharge (cfs)	Driveway Culvert 18in Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7388.00	0.00	0.00	0.00	
7390.26	10.00	10.00	0.00	1
7392.71	20.00	17.08	2.91	1
7393.05	30.00	17.78	12.20	10
7393.30	40.00	18.30	21.69	5
7393.52	50.00	18.73	31.22	5
7393.72	60.00	19.12	40.84	4
7393.90	70.00	19.48	50.50	4
7394.07	80.00	19.79	60.15	4
7394.23	90.00	20.09	69.87	3
7394.39	100.00	20.37	79.62	3
7392.50	16.61	16.61	0.00	3

Rating Curve Plot for Crossing: General Driveway-18in

Total Rating Curve

Crossing: General Driveway-18in

Table 29 - Culvert Summary Table: Driveway Culvert 18in

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7388.00	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
10.00	10.00	7390.26	2.256	1.995	5-S2n	0.900	1.219	1.033	0.907	7.709	3.039
20.00	17.08	7392.71	4.713	3.730	7-M2c	1.500	1.382	1.382	1.176	10.031	3.614
30.00	17.78	7393.05	5.046	3.943	7-M2t	1.500	1.308	1.369	1.369	10.507	4.000
40.00	18.30	7393.30	5.300	4.124	4-FFf	1.500	1.492	1.500	1.525	10.354	4.298
50.00	18.73	7393.52	5.520	4.393	4-FFf	1.500	1.500	1.500	1.658	10.601	4.544
60.00	19.12	7393.72	5.720	4.633	4-FFf	1.500	1.500	1.500	1.776	10.821	4.756
70.00	19.48	7393.90	5.905	4.853	4-FFf	1.500	1.500	1.500	1.882	11.021	4.943
80.00	19.79	7394.07	6.071	5.051	4-FFf	1.500	1.500	1.500	1.978	11.197	5.111
90.00	20.09	7394.23	6.233	5.240	4-FFf	1.500	1.500	1.500	2.067	11.367	5.264
100.00	20.37	7394.39	6.388	5.419	4-FFf	1.500	1.500	1.500	2.151	11.526	5.404

Straight Culvert

Inlet Elevation (invert): 7388.00 ft , Outlet Elevation (invert): 7387.80 ft
Culvert Length: $10.00 \mathrm{ft}, \quad$ Culvert Slope: 0.0200
\qquad

Culvert Performance Curve Plot: Driveway Culvert 18in
Performance Curve
Culvert: Driveway Culvert 18in

Water Surface Profile Plot for Culvert: Driveway Culvert 18in

Crossing - General Driveway-18in, Design Discharge - 10.0 cfs Culvert - Driveway Culvert 18in, Culvert Discharge - 10.0 cfs

Site Data - Driveway Culvert 18in

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 7388.00 ft
Outlet Station: 10.00 ft
Outlet Elevation: 7387.80 ft
Number of Barrels: 1

Culvert Data Summary - Driveway Culvert 18in

Barrel Shape: Circular
Barrel Diameter: 1.50 ft
Barrel Material: Concrete
Embedment: 0.00 in
Barrel Manning's n: 0.0130
Culvert Type: Straight
Inlet Configuration: Square Edge with Headwall
Inlet Depression: None

Table 30 - Downstream Channel Rating Curve (Crossing: General Driveway-18in)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	7387.80	0.00	0.00	0.00	0.00
10.00	7388.71	0.91	3.04	1.13	0.80
20.00	7388.98	1.18	3.61	1.47	0.83
30.00	7389.17	1.37	4.00	1.71	0.85
40.00	7389.33	1.53	4.30	1.90	0.87
50.00	7389.46	1.66	4.54	2.07	0.88
60.00	7389.58	1.78	4.76	2.22	0.89
70.00	7389.68	1.88	4.94	2.35	0.90
80.00	7389.78	1.98	5.11	2.47	0.91
90.00	7389.87	2.07	5.26	2.58	0.91
100.00	7389.95	2.15	5.40	2.68	0.92

Tailwater Channel Data - General Driveway-18in

Tailwater Channel Option: Triangular Channel
Side Slope (H:V): 4.00 (_:1)
Channel Slope: 0.0200
Channel Manning's n: 0.0400
Channel Invert Elevation: 7387.80 ft
Roadway Data for Crossing: General Driveway-18in
Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 10.00 ft
Crest Elevation: 7392.50 ft
Roadway Surface: Paved
Roadway Top Width: 10.00 ft

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow
Minimum Flow: 0 cfs
Design Flow: 20 cfs
Maximum Flow: 100 cfs

Table 31 - Summary of Culvert Flows at Crossing: General Driveway-24in

Headwater Elevation (ft)	Total Discharge (cfs)	Driveway Culvert 24in Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7388.00	0.00	0.00	0.00	1
7389.69	10.00	10.00	0.00	1
7390.92	20.00	20.00	0.00	1
7392.93	30.00	30.00	0.00	1
7393.41	40.00	31.91	8.05	5
7393.68	50.00	32.92	17.07	5
7393.91	60.00	33.75	26.20	4
7394.11	70.00	34.48	35.49	4
7394.30	80.00	35.10	44.87	4
7394.47	90.00	35.68	54.30	4
7394.63	100.00	36.19	63.77	3
7393.00	30.27	30.27	0.00	Overtopping

Rating Curve Plot for Crossing: General Driveway-24in

Total Rating Curve

Crossing: General Driveway-24in

Table 32-Culvert Summary Table: Driveway Culvert 24in

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7388.00	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
10.00	10.00	7389.69	1.686	1.187	1-S2n	0.767	1.131	0.915	0.907	7.140	3.039
20.00	20.00	7390.92	2.924	2.625	5-S2n	1.144	1.606	1.370	1.176	8.719	3.614
30.00	30.00	7392.93	4.934	4.030	5-S2n	1.535	1.862	1.724	1.369	10.421	4.000
40.00	31.91	7393.41	5.415	4.345	5-S2n	1.631	1.889	1.786	1.525	10.776	4.298
50.00	32.92	7393.68	5.682	4.518	5-S2n	1.692	1.900	1.822	1.658	10.961	4.544
60.00	33.75	7393.91	5.907	4.665	5-S2n	1.758	1.909	1.858	1.776	11.095	4.756
70.00	34.48	7394.11	6.111	4.794	3-M2t	2.000	1.874	1.882	1.882	11.244	4.943
80.00	35.10	7394.30	6.298	4.926	7-M2t	2.000	1.840	1.978	1.978	11.195	5.111
90.00	35.68	7394.47	6.474	5.119	4-FFf	2.000	1.817	2.000	2.067	11.357	5.264
100.00	36.19	7394.63	6.632	5.297	4-FFf	2.000	1.778	2.000	2.151	11.520	5.404

Straight Culvert

Inlet Elevation (invert): 7388.00 ft , Outlet Elevation (invert): 7387.80 ft
Culvert Length: $10.00 \mathrm{ft}, \quad$ Culvert Slope: 0.0200
\qquad

Culvert Performance Curve Plot: Driveway Culvert 24in
Performance Curve
Culvert: Driveway Culvert 24in

Water Surface Profile Plot for Culvert: Driveway Culvert 24in

Crossing - General Driveway-24in, Design Discharge - 20.0 cfs
Culvert - Driveway Culvert 24in, Culvert Discharge - 20.0 cfs

Site Data - Driveway Culvert 24in

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 7388.00 ft
Outlet Station: 10.00 ft
Outlet Elevation: 7387.80 ft
Number of Barrels: 1

Culvert Data Summary - Driveway Culvert 24in

Barrel Shape: Circular
Barrel Diameter: 2.00 ft
Barrel Material: Concrete
Embedment: 0.00 in
Barrel Manning's n: 0.0130
Culvert Type: Straight
Inlet Configuration: Square Edge with Headwall
Inlet Depression: None

Table 33 - Downstream Channel Rating Curve (Crossing: General Driveway-24in)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	7387.80	0.00	0.00	0.00	0.00
10.00	7388.71	0.91	3.04	1.13	0.80
20.00	7388.98	1.18	3.61	1.47	0.83
30.00	7389.17	1.37	4.00	1.71	0.85
40.00	7389.33	1.53	4.30	1.90	0.87
50.00	7389.46	1.66	4.54	2.07	0.88
60.00	7389.58	1.78	4.76	2.22	0.89
70.00	7389.68	1.88	4.94	2.35	0.90
80.00	7389.78	1.98	5.11	2.47	0.91
90.00	7389.87	2.07	5.26	2.58	0.91
100.00	7389.95	2.15	5.40	2.68	0.92

Tailwater Channel Data - General Driveway-24in

Tailwater Channel Option: Triangular Channel
Side Slope (H:V): 4.00 (_:1)
Channel Slope: 0.0200
Channel Manning's n: 0.0400
Channel Invert Elevation: 7387.80 ft
Roadway Data for Crossing: General Driveway-24in
Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 10.00 ft
Crest Elevation: 7393.00 ft
Roadway Surface: Paved
Roadway Top Width: 10.00 ft

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow
Minimum Flow: 0 cfs
Design Flow: 30 cfs
Maximum Flow: 100 cfs

Table 34 - Summary of Culvert Flows at Crossing: General Driveway-30in

Headwater Elevation (ft)	Total Discharge (cfs)	Driveway Culvert 30in Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7388.00	0.00	0.00	0.00	1
7389.49	10.00	10.00	0.00	1
7390.30	20.00	20.00	0.00	1
7391.14	30.00	30.00	0.00	1
7392.27	40.00	40.00	0.00	1
7393.60	50.00	49.05	0.92	10
7393.94	60.00	51.10	8.87	5
7394.19	70.00	52.55	17.44	5
7394.41	80.00	53.76	26.20	4
7394.60	90.00	54.84	35.13	4
7394.78	100.00	55.83	44.15	4
7393.50	48.44	48.44	0.00	Overtopping

Rating Curve Plot for Crossing: General Driveway-30in

Total Rating Curve

Crossing: General Driveway-30in

Table 35-Culvert Summary Table: Driveway Culvert 30in

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7388.00	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
10.00	10.00	7389.49	1.489	0.959	1-S2n	0.702	1.056	0.843	0.907	6.874	3.039
20.00	20.00	7390.30	2.301	1.728	1-S2n	1.011	1.518	1.253	1.176	8.121	3.614
30.00	30.00	7391.14	3.142	2.590	5-S2n	1.274	1.867	1.585	1.369	9.144	4.000
40.00	40.00	7392.27	4.268	3.756	5-S2n	1.524	2.129	1.866	1.525	10.180	4.298
50.00	49.05	7393.60	5.599	4.662	5-S2n	1.761	2.287	2.082	1.658	11.232	4.544
60.00	51.10	7393.94	5.942	4.885	5-S2n	1.819	2.313	2.126	1.776	11.488	4.756
70.00	52.55	7394.19	6.192	5.047	5-S2n	1.861	2.330	2.156	1.882	11.674	4.943
80.00	53.76	7394.41	6.407	5.186	5-S2n	1.899	2.342	2.182	1.978	11.829	5.111
90.00	54.84	7394.60	6.603	5.311	5-S2n	1.933	2.353	2.204	2.067	11.974	5.264
100.00	55.83	7394.78	6.785	5.428	5-S2n	1.966	2.361	2.224	2.151	12.103	5.404

Straight Culvert

Inlet Elevation (invert): 7388.00 ft , Outlet Elevation (invert): 7387.80 ft
Culvert Length: $10.00 \mathrm{ft}, \quad$ Culvert Slope: 0.0200
\qquad

Culvert Performance Curve Plot: Driveway Culvert 30in
Performance Curve
Culvert: Driveway Culvert 30in

Water Surface Profile Plot for Culvert: Driveway Culvert 30in

Crossing - General Driveway-30in, Design Discharge - 30.0 cfs
Culvert - Driveway Culvert 30in, Culvert Discharge - 30.0 cfs

Site Data - Driveway Culvert 30in

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 7388.00 ft
Outlet Station: 10.00 ft
Outlet Elevation: 7387.80 ft
Number of Barrels: 1

Culvert Data Summary - Driveway Culvert 30in

Barrel Shape: Circular
Barrel Diameter: 2.50 ft
Barrel Material: Concrete
Embedment: 0.00 in
Barrel Manning's n: 0.0130
Culvert Type: Straight
Inlet Configuration: Square Edge with Headwall
Inlet Depression: None

Table 36 - Downstream Channel Rating Curve (Crossing: General Driveway-30in)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	7387.80	0.00	0.00	0.00	0.00
10.00	7388.71	0.91	3.04	1.13	0.80
20.00	7388.98	1.18	3.61	1.47	0.83
30.00	7389.17	1.37	4.00	1.71	0.85
40.00	7389.33	1.53	4.30	1.90	0.87
50.00	7389.46	1.66	4.54	2.07	0.88
60.00	7389.58	1.78	4.76	2.22	0.89
70.00	7389.68	1.88	4.94	2.35	0.90
80.00	7389.78	1.98	5.11	2.47	0.91
90.00	7389.87	2.07	5.26	2.58	0.91
100.00	7389.95	2.15	5.40	2.68	0.92

Tailwater Channel Data - General Driveway-30in

Tailwater Channel Option: Triangular Channel
Side Slope (H:V): 4.00 (_:1)
Channel Slope: 0.0200
Channel Manning's n: 0.0400
Channel Invert Elevation: 7387.80 ft
Roadway Data for Crossing: General Driveway-30in
Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 10.00 ft
Crest Elevation: 7393.50 ft
Roadway Surface: Paved
Roadway Top Width: 10.00 ft

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow
Minimum Flow: 0 cfs
Design Flow: 50 cfs
Maximum Flow: 100 cfs

Table 37-Summary of Culvert Flows at Crossing: General Driveway-36in

Headwater Elevation (ft)	Total Discharge (cfs)	Driveway Culvert 36in Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7388.00	0.00	0.00	0.00	
7389.36	10.00	10.00	0.00	1
7390.07	20.00	20.00	0.00	1
7390.67	30.00	30.00	0.00	1
7391.27	40.00	40.00	0.00	1
7391.97	50.00	50.00	0.00	1
7392.82	60.00	60.00	0.00	1
7393.85	70.00	70.00	0.00	1
7394.33	80.00	74.20	5.79	1
7394.59	90.00	76.31	13.68	6
7394.81	100.00	78.06	21.90	5
7394.00	71.34	71.34	0.00	4

Rating Curve Plot for Crossing: General Driveway-36in

Total Rating Curve

Crossing: General Driveway-36in

Table 38-Culvert Summary Table: Driveway Culvert 36in

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7388.00	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
10.00	10.00	7389.36	1.359	0.849	1-S2n	0.658	1.000	0.792	0.907	6.697	3.039
20.00	20.00	7390.07	2.073	1.430	1-S2n	0.937	1.435	1.172	1.176	7.820	3.614
30.00	30.00	7390.67	2.671	2.014	1-S2n	1.161	1.774	1.478	1.369	8.653	4.000
40.00	40.00	7391.27	3.272	2.641	5-S2n	1.362	2.059	1.743	1.525	9.388	4.298
50.00	50.00	7391.97	3.971	3.672	5-S2n	1.551	2.301	1.981	1.658	10.100	4.544
60.00	60.00	7392.82	4.823	4.309	5-S2n	1.735	2.501	2.193	1.776	10.837	4.756
70.00	70.00	7393.85	5.849	5.023	5-S2n	1.922	2.657	2.382	1.882	11.631	4.943
80.00	74.20	7394.33	6.333	5.345	5-S2n	2.002	2.710	2.454	1.978	11.989	5.111
90.00	76.31	7394.59	6.588	5.512	5-S2n	2.044	2.733	2.489	2.067	12.176	5.264
100.00	78.06	7394.81	6.805	5.653	5-S2n	2.078	2.751	2.517	2.151	12.332	5.404

Straight Culvert

Inlet Elevation (invert): 7388.00 ft , Outlet Elevation (invert): 7387.80 ft
Culvert Length: $10.00 \mathrm{ft}, \quad$ Culvert Slope: 0.0200
\qquad

Culvert Performance Curve Plot: Driveway Culvert 36in
Performance Curve
Culvert: Driveway Culvert 36in

Water Surface Profile Plot for Culvert: Driveway Culvert 36in

Crossing - General Driveway-36in, Design Discharge - 50.0 cfs
Culvert - Driveway Culvert 36in, Culvert Discharge - 50.0 cfs

Site Data - Driveway Culvert 36in

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 7388.00 ft
Outlet Station: 10.00 ft
Outlet Elevation: 7387.80 ft
Number of Barrels: 1

Culvert Data Summary - Driveway Culvert 36in

Barrel Shape: Circular
Barrel Diameter: 3.00 ft
Barrel Material: Concrete
Embedment: 0.00 in
Barrel Manning's n: 0.0130
Culvert Type: Straight
Inlet Configuration: Square Edge with Headwall
Inlet Depression: None

Table 39 - Downstream Channel Rating Curve (Crossing: General Driveway-36in)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	7387.80	0.00	0.00	0.00	0.00
10.00	7388.71	0.91	3.04	1.13	0.80
20.00	7388.98	1.18	3.61	1.47	0.83
30.00	7389.17	1.37	4.00	1.71	0.85
40.00	7389.33	1.53	4.30	1.90	0.87
50.00	7389.46	1.66	4.54	2.07	0.88
60.00	7389.58	1.78	4.76	2.22	0.89
70.00	7389.68	1.88	4.94	2.35	0.90
80.00	7389.78	1.98	5.11	2.47	0.91
90.00	7389.87	2.07	5.26	2.58	0.91
100.00	7389.95	2.15	5.40	2.68	0.92

Tailwater Channel Data - General Driveway-36in

Tailwater Channel Option: Triangular Channel
Side Slope (H:V): 4.00 (_:1)
Channel Slope: 0.0200
Channel Manning's n: 0.0400
Channel Invert Elevation: 7387.80 ft
Roadway Data for Crossing: General Driveway-36in
Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 10.00 ft
Crest Elevation: 7394.00 ft
Roadway Surface: Paved
Roadway Top Width: 10.00 ft

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow
Minimum Flow: 0 cfs
Design Flow: 70 cfs
Maximum Flow: 100 cfs

Table 40-Summary of Culvert Flows at Crossing: General Driveway-42in

Headwater Elevation (ft)	Total Discharge (cfs)	Driveway Culvert 42in Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7388.00	0.00	0.00	0.00	
7389.29	10.00	10.00	0.00	1
7389.90	20.00	20.00	0.00	1
7390.45	30.00	30.00	0.00	1
7390.93	40.00	40.00	0.00	1
7391.39	50.00	50.00	0.00	1
7391.88	60.00	60.00	0.00	1
7392.42	70.00	70.00	0.00	1
7393.05	80.00	80.00	0.00	1
7393.76	90.00	90.00	0.00	1
7394.55	100.00	99.71	0.28	1
7394.50	99.18	99.18	0.00	7

Rating Curve Plot for Crossing: General Driveway-42in

Total Rating Curve
 Crossing: General Driveway-42in

Table 41 - Culvert Summary Table: Driveway Culvert 42in

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7388.00	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
10.00	10.00	7389.29	1.292	0.783	1-S2n	0.628	0.957	0.754	0.907	6.564	3.039
20.00	20.00	7389.90	1.896	1.274	1-S2n	0.885	1.369	1.111	1.176	7.620	3.614
30.00	30.00	7390.45	2.448	1.727	1-S2n	1.089	1.692	1.397	1.369	8.370	4.000
40.00	40.00	7390.93	2.927	2.185	1-S2n	1.268	1.967	1.646	1.525	8.996	4.298
50.00	50.00	7391.39	3.390	2.663	1-S2n	1.431	2.210	1.870	1.658	9.561	4.544
60.00	60.00	7391.88	3.878	3.168	5-S2n	1.584	2.427	2.075	1.776	10.097	4.756
70.00	70.00	7392.42	4.424	3.703	5-S2n	1.731	2.622	2.265	1.882	10.628	4.943
80.00	80.00	7393.05	5.047	4.620	5-S2n	1.875	2.794	2.441	1.978	11.167	5.111
90.00	90.00	7393.76	5.761	5.139	5-S2n	2.017	2.943	2.603	2.067	11.729	5.264
100.00	99.71	7394.55	6.545	5.682	5-S2n	2.156	3.065	2.747	2.151	12.309	5.404

Straight Culvert

Inlet Elevation (invert): 7388.00 ft , Outlet Elevation (invert): 7387.80 ft
Culvert Length: $10.00 \mathrm{ft}, \quad$ Culvert Slope: 0.0200
\qquad

Culvert Performance Curve Plot: Driveway Culvert 42in
Performance Curve
Culvert: Driveway Culvert 42in

Water Surface Profile Plot for Culvert: Driveway Culvert 42in

Crossing - General Driveway-42in, Design Discharge - 70.0 cfs Culvert - Driveway Culvert 42in, Culvert Discharge - 70.0 cfs

Site Data - Driveway Culvert 42in

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 7388.00 ft
Outlet Station: 10.00 ft
Outlet Elevation: 7387.80 ft
Number of Barrels: 1

Culvert Data Summary - Driveway Culvert 42in

Barrel Shape: Circular
Barrel Diameter: 3.50 ft
Barrel Material: Concrete
Embedment: 0.00 in
Barrel Manning's n: 0.0130
Culvert Type: Straight
Inlet Configuration: Square Edge with Headwall
Inlet Depression: None

Table 42 - Downstream Channel Rating Curve (Crossing: General Driveway-42in)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	7387.80	0.00	0.00	0.00	0.00
10.00	7388.71	0.91	3.04	1.13	0.80
20.00	7388.98	1.18	3.61	1.47	0.83
30.00	7389.17	1.37	4.00	1.71	0.85
40.00	7389.33	1.53	4.30	1.90	0.87
50.00	7389.46	1.66	4.54	2.07	0.88
60.00	7389.58	1.78	4.76	2.22	0.89
70.00	7389.68	1.88	4.94	2.35	0.90
80.00	7389.78	1.98	5.11	2.47	0.91
90.00	7389.87	2.07	5.26	2.58	0.91
100.00	7389.95	2.15	5.40	2.68	0.92

Tailwater Channel Data - General Driveway-42in

Tailwater Channel Option: Triangular Channel
Side Slope (H:V): 4.00 (_:1)
Channel Slope: 0.0200
Channel Manning's n: 0.0400
Channel Invert Elevation: 7387.80 ft
Roadway Data for Crossing: General Driveway-42in
Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 10.00 ft
Crest Elevation: 7394.50 ft
Roadway Surface: Paved
Roadway Top Width: 10.00 ft

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow
Minimum Flow: 10 cfs
Design Flow: 100 cfs
Maximum Flow: 120 cfs

Table 1 - Summary of Culvert Flows at Crossing: Driveway Culvert-2-36"

Headwater Elevation (ft)	Total Discharge (cfs)	Culvert 1 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7358.55	10.00	10.00	0.00	1
7359.01	21.00	21.00	0.00	1
7359.42	32.00	32.00	0.00	1
7359.78	43.00	43.00	0.00	1
7360.11	54.00	54.00	0.00	1
7360.43	65.00	65.00	0.00	1
7360.76	76.00	76.00	0.00	1
7361.12	87.00	87.00	0.00	1
7361.59	100.00	100.00	0.00	1
7361.95	109.00	109.00	0.00	1
7362.44	120.00	120.00	0.00	1
7367.00	192.69	192.69	0.00	Overtopping

Rating Curve Plot for Crossing: Driveway Culvert-2-36"

Total Rating Curve

Crossing: Driveway Culvert-2-36"

Table 2 - Culvert Summary Table: Culvert 1

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
10.00	10.00	7358.55	0.950	0.612	1-S2n	0.534	0.700	0.591	0.371	5.075	2.543
21.00	21.00	7359.01	1.406	0.979	1-S2n	0.772	1.026	0.883	0.494	6.044	3.190
32.00	32.00	7359.42	1.818	1.301	1-S2n	0.958	1.277	1.113	0.586	6.702	3.608
43.00	43.00	7359.78	2.182	1.615	1-S2n	1.120	1.490	1.312	0.663	7.235	3.925
54.00	54.00	7360.11	2.512	1.933	1-S2n	1.269	1.679	1.491	0.729	7.701	4.184
65.00	65.00	7360.43	2.832	2.262	1-S2n	1.409	1.850	1.655	0.788	8.129	4.405
76.00	76.00	7360.76	3.162	2.606	5-S2n	1.544	2.006	1.808	0.841	8.537	4.597
87.00	87.00	7361.12	3.517	2.967	5-S2n	1.676	2.148	1.952	0.891	8.934	4.770
100.00	100.00	7361.59	3.986	3.764	5-S2n	1.833	2.301	2.112	0.945	9.405	4.953
109.00	109.00	7361.95	4.348	4.039	5-S2n	1.944	2.397	2.216	0.979	9.735	5.069
120.00	120.00	7362.44	4.838	4.397	5-S2n	2.084	2.501	2.339	1.020	10.150	5.201

Straight Culvert

Inlet Elevation (invert): 7357.60 ft , Outlet Elevation (invert): 7357.50 ft
Culvert Length: $10.00 \mathrm{ft}, \quad$ Culvert Slope: 0.0100
\qquad

Culvert Performance Curve Plot: Culvert 1

Performance Curve
Culvert: Culvert 1

Water Surface Profile Plot for Culvert: Culvert 1

Crossing - Driveway Culvert-2-36", Design Discharge - 100.0 cfs
Culvert - Culvert 1, Culvert Discharge - 100.0 cfs

Site Data - Culvert 1

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 7357.60 ft
Outlet Station: 10.00 ft
Outlet Elevation: 7357.50 ft
Number of Barrels: 2

Culvert Data Summary - Culvert 1

Barrel Shape: Circular
Barrel Diameter: 3.00 ft
Barrel Material:
Embedment: 0.00 in
Barrel Manning's n: 0.0120
Culvert Type: Straight
Inlet Configuration: Square Edge with Headwall
Inlet Depression: None

Table 3 - Downstream Channel Rating Curve (Crossing: Driveway Culvert-2-36")

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
10.00	7357.87	0.37	2.54	0.93	1.00
21.00	7357.99	0.49	3.19	1.23	1.06
32.00	7358.09	0.59	3.61	1.46	1.09
43.00	7358.16	0.66	3.93	1.65	1.12
54.00	7358.23	0.73	4.18	1.82	1.13
65.00	7358.29	0.79	4.40	1.97	1.15
76.00	7358.34	0.84	4.60	2.10	1.16
87.00	7358.39	0.89	4.77	2.22	1.17
100.00	7358.44	0.94	4.95	2.36	1.18
109.00	7358.48	0.98	5.07	2.44	1.19
120.00	7358.52	1.02	5.20	2.55	1.20

Tailwater Channel Data - Driveway Culvert-2-36"

Tailwater Channel Option: Irregular Channel

Roadway Data for Crossing: Driveway Culvert-2-36"

Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 10.00 ft
Crest Elevation: 7367.00 ft
Roadway Surface: Paved
Roadway Top Width: 10.00 ft

CHANNERLOWSSUMMARY										
Read/ Channel ID	Slope (\%)	Friction Factor	Channel Depth (ft)	Contributing Basins	Tributary Area (ac)	Q100 Rows (cfs)	Q100 Depth (ft)		Lining	Headautting
EX_Reach G1	4.00	0.04	10.5	G1+G2A	43.39	100.0	0.95	4.98	Grass	
EX_Reach H1-A	4.30	0.04	32.1	H1+H4	40.76	106.6	1.24	6.40	Grass	X
Prop_Reach H1-A	1.30	0.04	32.1	H1+H4	40.76	106.6	1.61	4.23	Grass	
EX_Reach H1-B	5.00	0.04	7.0	H1+29\%of H4	21.59	54.3	1.45	6.57	Grass	X
Prop_Reach H1-B	2.70	0.04	7.0	H1+29\%of H4	21.59	54.3	0.80	4.44	Grass	
EX_Reach H2	3.80	0.04	13.0	H2	16.00	57.1	0.92	4.71	Grass	
EX_Reach H3	6.00	0.04	17.0	H3A+H7B	18.77	57.8	1.06	5.92	Grass	X
Prop_Reach H3	4.86	0.04	9.0	H3A+H7B	18.77	57.8	0.70	5.67	Grass/TRM	X
Prop_Reach H3B	4.20	0.04	2.5	H3B+25\%of II	4.40	12.0	0.89	4.32	Grass	
EX_Reach H4	6.80	0.04	17.0	23\%of H4	6.21	16.9	0.73	4.94	Grass	X
EX_Reach H5B	5.00	0.04	18.0	H5B	10.48	29.0	0.86	4.71	Grass	X
Prop_Reach I1	7.90	0.04	5.1	H3B+1+H8A	13.40	38.4	1.23	7.32	Grass/TRM	
Prop_Swale A3A	4.20	0.04	6.5	A2B+A3A	17.20	46.1	1.18	5.29	Grass/TRM	
EX Reach 12	2.43	0.04	7.8	12	14.60	39.1	0.60	3.87	Grass	
Prop_WQ Channel	1.90	0.04	3.0	A2B+A3A+G2B	20.00	55.7	1.12	4.77	Grass	

Worksheet for EX_Reach G1

Project Description	
Friction Method	Manning
Solve For	Normula
Input Data	
Channel Slope	$0.040 \mathrm{ft} / \mathrm{ft}$
Discharge	100.00 cfs

Section Definitions

| Station
 (ft) | Elevation
 (ft) | |
| :---: | :---: | :---: | :---: |
| | $0+25$ | $7,367.99$ |
| | $0+87$ | $7,360.00$ |
| | $1+16$ | $7,357.46$ |
| | $1+30$ | $7,357.78$ |
| | $1+45$ | $7,358.60$ |
| | $1+97$ | $7,363.04$ |
| | $2+20$ | $7,365.99$ |

Roughness Segment Definitions

| Start Station | Ending Station | Roughness Coefficient |
| :---: | :---: | :---: | :---: |
| $(0+25,7,367.99)$ | $(2+20,7,365.99)$ | 0.040 |

Options	
Current Roughness Weighted	Pavlovskii's Method Method
Ppen Channel Weighting Method Method	
Closed Channel Weighting	Pavlovskii's Method
Method	
Results	
Normal Depth	11.4 in
Roughness Coefficient	0.040
Elevation	$7,358.41 \mathrm{ft}$
Elevation Range	$7,357.5 \mathrm{to}$
Flow Area	$7,368.0 \mathrm{ft}$
Wetted Perimeter	$20.1 \mathrm{ft}{ }^{2}$
Hydraulic Radius	36.5 ft
Top Width	6.6 in
Normal Depth	36.48 ft
Critical Depth	11.4 in
Critical Slope	12.3 in
Velocity	$0.028 \mathrm{ft} / \mathrm{ft}$
Velocity Head	$4.98 \mathrm{ft} / \mathrm{s}$
Specific Energy	0.39 ft
	1.34 ft
Channels_Flowmaster.fm8	Bentley Systems, Inc. Haestad Methods Solution
Center	27 Siemon Company Drive Suite 200 W
	Watertown, CT 06795 USA +1-203-755-1666

Worksheet for EX_Reach G1

Results	1.185
Froude Number	Supercritical
Flow Type	
GVF Input Data	0.0 in
Downstream Depth	0.0 ft
Length	0
Number Of Steps	
GVF Output Data	0.0 in
Upstream Depth	N / A
Profile Description	0.00 ft
Profile Headloss	Infinity ft / s
Downstream Velocity	Infinity ft / s
Upstream Velocity	11.4 in
Normal Depth	12.3 in
Critical Depth	$0.040 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.028 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Cross Section for EX_Reach G1

Project Description	
Friction Method	Manning
Formula	
Solve For	Normal Depth
Input Data	
Channel Slope	$0.040 \mathrm{ft} / \mathrm{ft}$
Normal Depth	11.4 in
Discharge	100.00 cfs

Worksheet for EX Reach H1-A

Project Description	
Friction Method	Manning
Solve For	Formula
Input Data	
Channel Slope	$0.043 \mathrm{ft} / \mathrm{ft}$
Discharge	106.60 cfs

Section Definitions

Station (ft)	Elevation (ft)		
	$0+00$	$7,363.31$	
	$1+08$	$7,331.99$	
	$1+16$	$7,331.15$	
	$1+24$	$7,331.66$	
	$2+75$	$7,360.00$	

Roughness Segment Definitions

| Start Station | Ending Station | Roughness Coefficient |
| :---: | :---: | :---: | :---: |
| $(0+00,7,363.31)$ | $(2+75,7,360.00)$ | 0.040 |

Options	
Current Roughness Weighted	Pavlovskii's Method Open Channel Weighting Method
Pavlovskii's Method	
Closed Channel Weighting	Pavlovskii's
Method	Method
Results	
Normal Depth	14.9 in
Roughness Coefficient	0.040
Elevation	$7,332.39 \mathrm{ft}$
Elevation Range	$7,331.2 \mathrm{to}$
Flow Area	$7,363.3 \mathrm{ft}$
Wetted Perimeter	16.6 ft 2
Hydraulic Radius	22.0 ft
Top Width	9.1 in
Normal Depth	21.78 ft
Critical Depth	14.9 in
Critical Slope	16.8 in
Velocity	$0.025 \mathrm{ft} / \mathrm{ft}$
Velocity Head	$6.40 \mathrm{ft} / \mathrm{s}$
Specific Energy	0.64 ft
Froude Number	1.88 ft
Flow Type	1.291

[^0]Worksheet for EX_Reach H1-A

GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.0 in
Profile Description	0.00 ft
Profile Headloss	Infinity ft/s
Downstream Velocity	Infinity ft/s
Upstream Velocity	14.9 in
Normal Depth	16.8 in
Critical Depth	$0.043 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.025 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Cross Section for EX_Reach H1-A

Project Description	
Friction Method	Manning
Solve For	Formula
Input Data	
Channel Slope	$0.043 \mathrm{ft} / \mathrm{ft}$
Normal Depth	14.9 in
Discharge	106.60 cfs

Worksheet for Prop Reach H1-A

Project Description	
Friction Method	Manning
Solve For	Formula
Input Data	
Channel Slope	$0.013 \mathrm{ft} / \mathrm{ft}$
Discharge	106.60 cfs

Section Definitions

Station (ft)	Elevation (ft)		
	$0+00$	$7,363.31$	
	$1+08$	$7,331.99$	
	$1+16$	$7,331.15$	
	$1+24$	$7,331.66$	
	$2+75$	$7,360.00$	

Roughness Segment Definitions

| Start Station | Ending Station | Roughness Coefficient |
| :---: | :---: | :---: | :---: |
| $(0+00,7,363.31)$ | $(2+75,7,360.00)$ | 0.040 |

Options	
Current Roughness Weighted	Pavlovskii's Method Method
Open Channel Weighting	Pavlovskii's
Method	Method
Closed Channel Weighting	Pavlovskii's
Method	
Method	
Results	
Normal Depth	19.3 in
Roughness Coefficient	0.040
Elevation	$7,332.76 \mathrm{ft}$
Elevation Range	$7,331.2 \mathrm{to}$
Flow Area	$7,363.3 \mathrm{ft}$
Wetted Perimeter	$25.2 \mathrm{ft}{ }^{2}$
Hydraulic Radius	25.3 ft
Top Width	12.0 in
Normal Depth	24.99 ft
Critical Depth	19.3 in
Critical Slope	16.8 in
Velocity	$0.025 \mathrm{ft} / \mathrm{ft}$
Velocity Head	$4.23 \mathrm{ft} / \mathrm{s}$
Specific Energy	0.28 ft
Froude Number	1.89 ft
Flow Type	0.743
	Subcritical

Worksheet for Prop_Reach H1-A

GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.0 in
Profile Description	N / A
Profile Headloss	Infinity ft $/ \mathrm{s}$
Downstream Velocity	Infinity ft/s
Upstream Velocity	19.3 in
Normal Depth	16.8 in
Critical Depth	$0.013 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.025 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Cross Section for Prop_Reach H1-A

Project Description	
Friction Method	Manning
Solve For	Formula
Input Data	
Channel Slope	$0.013 \mathrm{ft} / \mathrm{ft}$
Normal Depth	19.3 in
Discharge	106.60 cfs

Worksheet for EX_Reach H1-B

Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	
Channel Slope	$0.050 \mathrm{ft} / \mathrm{ft}$
Discharge	54.30 cfs

Section Definitions

Station (ft)	Elevation (ft)		
	$0+04$		$7,369.03$
	$0+55$	$7,359.99$	
	$0+73$	$7,349.57$	
	$0+84$	$7,346.68$	
	$1+01$	$7,351.01$	
	$1+17$	$7,359.46$	
	$1+59$	$7,364.84$	

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+04,7,369.03)$	$(1+59,7,364.84)$	0.040

Options		
Current Roughness Weighted Method	Pavlovskii's Method	
Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	17.4 in	
Roughness Coefficient	0.040	
Elevation	7,348.13 ft	
Elevation Range	$\begin{gathered} 7,346.7 \mathrm{to} \\ 7,369.0 \mathrm{ft} \end{gathered}$	
Flow Area	$8.3 \mathrm{ft}^{2}$	
Wetted Perimeter	11.7 ft	
Hydraulic Radius	8.4 in	
Top Width	11.38 ft	
Normal Depth	17.4 in	
Critical Depth	19.7 in	
Critical Slope	$0.026 \mathrm{ft} / \mathrm{ft}$	
Velocity	$6.57 \mathrm{ft} / \mathrm{s}$	
Velocity Head	0.67 ft	
Specific Energy	2.12 ft	
Channels_Flowmaster.fm8 12/9/2021	Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666	$\begin{array}{r} \text { FlowMaster } \\ \text { [10.03.00.03] } \\ \text { Page } 1 \text { of } 2 \end{array}$

Worksheet for EX_Reach H1-B

Results	1.359
Froude Number	Supercritical
Flow Type	
GVF Input Data	0.0 in
Downstream Depth	0.0 ft
Length	0
Number Of Steps	
GVF Output Data	0.0 in
Upstream Depth	N / A
Profile Description	0.00 ft
Profile Headloss	Infinity ft/s
Downstream Velocity	Infinity ft/s
Upstream Velocity	17.4 in
Normal Depth	19.7 in
Critical Depth	$0.050 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.026 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Cross Section for EX_Reach H1-B

Project Description	
Friction Method	Manning
Formula	
Solve For	Normal Depth
Input Data	
Channel Slope	$0.050 \mathrm{ft} / \mathrm{ft}$
Normal Depth	17.4 in
Discharge	54.30 cfs

Worksheet for Prop_Reach H1-B

Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	
Roughness Coefficient	0.040
Channel Slope	$0.025 \mathrm{ft} / \mathrm{ft}$
Left Side Slope	$4.000 \mathrm{H}: \mathrm{V}$
Right Side Slope	$4.000 \mathrm{H}: \mathrm{V}$
Bottom Width	12.00 ft
Discharge	54.30 cfs
Results	
Normal Depth	9.6 in
Flow Area	$12.2 \mathrm{ft}^{2}$
Wetted Perimeter	18.6 ft
Hydraulic Radius	7.9 in
Top Width	18.43 ft
Critical Depth	9.4 in
Critical Slope	$0.027 \mathrm{ft} / \mathrm{ft}$
Velocity	$4.44 \mathrm{ft} / \mathrm{s}$
Velocity Head	0.31 ft
Specific Energy	1.11 ft
Froude Number	0.960
Flow Type	Subcritical
GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.0 in
Profile Description	N/A
Profile Headloss	0.00 ft
Downstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$
Upstream Velocity	$0.00 \mathrm{ft} / \mathrm{s}$
Normal Depth	9.6 in
Critical Depth	9.4 in
Channel Slope	$0.025 \mathrm{ft} / \mathrm{ft}$
Critical Slope	$0.027 \mathrm{ft} / \mathrm{ft}$

Cross Section for Prop_Reach H1-B

Project Description	Manning Formula
Friction Method	Normal Depth
Solve For	
Input Data	0.040
Roughness Coefficient	$0.025 \mathrm{ft} / \mathrm{ft}$
Channel Slope	9.6 in
Normal Depth	$4.000 \mathrm{H}: \mathrm{V}$
Left Side Slope	$4.000 \mathrm{H}: \mathrm{V}$
Right Side Slope	12.00 ft
Bottom Width	54.30 cfs
Discharge	

$\mathrm{V}: 1 \Delta$
H: 1

Worksheet for EX_Reach H2

Project Description	Manning Formula Friction Method Solve For
Normal Depth	
Input Data	
Channel Slope	$0.038 \mathrm{ft} / \mathrm{ft}$
Discharge	57.10 cfs

Section Definitions

Station (ft)	Elevation (ft)		
	$0+00$		$7,329.99$
	$0+43$	$7,321.99$	
	$0+68$	$7,319.99$	
	$0+93$	$7,316.97$	
	$0+99$	$7,316.75$	
	$1+14$	$7,317.99$	
	$1+79$	$7,329.38$	

Roughness Segment Definitions

| Start Station | Ending Station | Roughness Coefficient |
| :---: | :---: | :---: | :---: |
| $(0+00,7,329.99)$ | $(1+79,7,329.38)$ | 0.040 |

Options	
Current Roughness Weighted	Pavlovskii's Method Method
Open Channel Weighting Method Closed Channel Weighting Method Method	Pavlovskii's Method
Results	
Normal Depth	11.0 in
Roughness Coefficient	0.040
Elevation	$7,317.67 \mathrm{ft}$
Elevation Range	$7,316.8 \mathrm{to}$
Flow Area	$7,330.0 \mathrm{ft}$
Wetted Perimeter	12.1 ft 2
Hydraulic Radius	23.2 ft
Top Width	6.3 in
Normal Depth	23.07 ft
Critical Depth	11.0 in
Critical Slope	11.7 in
Velocity	$0.028 \mathrm{ft} / \mathrm{ft}$
Velocity Head	$4.71 \mathrm{ft} / \mathrm{s}$
Specific Energy	0.34 ft
	1.26 ft
Channels_Flowmaster.fm8	Bentley Systems, Inc. Haestad Methods Solution
Center	27 Siemon Company Drive Suite 200 W
	Watertown, CT 06795 USA +1-203-755-1666

Worksheet for EX_Reach H2

Results	
Froude Number	1.144
Flow Type	Supercritical
GVF Input Data	0.0 in
Downstream Depth	0.0 ft
Length	0
Number Of Steps	
GVF Output Data	0.0 in
Upstream Depth	N / A
Profile Description	0.00 ft
Profile Headloss	Infinity ft/s
Downstream Velocity	Infinity ft/s
Upstream Velocity	11.0 in
Normal Depth	11.7 in
Critical Depth	$0.038 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.028 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Cross Section for EX_Reach H2

Project Description	Manning Friction Method Solve Formula
Normal Depth	
Input Data	
Channel Slope	$0.038 \mathrm{ft} / \mathrm{ft}$
Normal Depth	11.0 in
Discharge	57.10 cfs

Worksheet for EX_Reach H3

Project Description	
Friction Method	Manning
Solve For	Normula
Input Data	
Channel Slope	$0.060 \mathrm{ft} / \mathrm{ft}$
Discharge	57.80 cfs

Section Definitions

Station (ft)	Elevation (ft)		
		$0+00$	$7,323.16$
	$0+25$	$7,319.99$	
	$0+51$	$7,312.54$	
	$0+58$	$7,310.46$	
	$0+70$	$7,309.11$	
	$0+79$	$7,310.18$	
	$0+94$	$7,316.14$	
	$1+12$	$7,319.73$	
	$1+76$	$7,326.41$	

Roughness Segment Definitions

| Start Station | Ending Station | Roughness Coefficient |
| :---: | :---: | :---: | :---: |
| $(0+00,7,323.16)$ | $(1+76,7,326.41)$ | 0.040 |

Options	
Current Roughness Weighted	Pavlovskii's
Method	Method
Open Channel Weighting	Pavlovskii's
Method	
Method	Pavlovskii's
Closed Channel Weighting	Method
Method	
Results	12.7 in
Normal Depth	0.040
Roughness Coefficient	$7,310.17 \mathrm{ft}$
Elevation	$7,309.1$ to
Elevation Range	$7,326.4 \mathrm{ft}$
Flow Area	$9.8 \mathrm{ft}{ }^{2}$
Wetted Perimeter	18.6 ft
Hydraulic Radius	6.3 in
Top Width	18.50 ft
Normal Depth	12.7 in
Critical Depth	14.6 in
Critical Slope	$0.027 \mathrm{ft} / \mathrm{ft}$
Velocity	$5.92 \mathrm{ft} / \mathrm{s}$
	Bentley Systems, Inc. Haestad Methods Solution
Channels_Flowmaster.fm8	27 Siemon Company Drive Suite 200 W
12/9/2021	Watertown, CT 06795 USA +1-203-755-1666

Worksheet for EX_Reach H3

Results	
Velocity Head	0.54 ft
Specific Energy	1.60 ft
Froude Number	1.436
Flow Type	Supercritical

GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0

GVF Output Data	
Upstream Depth	0.0 in
Profile Description	N / A
Profile Headloss	0.00 ft
Downstream Velocity	Infinity ft/s
Upstream Velocity	Infinity ft/s
Normal Depth	12.7 in
Critical Depth	14.6 in
Channel Slope	$0.060 \mathrm{ft} / \mathrm{ft}$
Critical Slope	$0.027 \mathrm{ft} / \mathrm{ft}$

Cross Section for EX_Reach H3

Project Description	
Friction Method	Manning
Solve For	Normal Depth
Input Data	
Channel Slope	$0.060 \mathrm{ft} / \mathrm{ft}$
Normal Depth	12.7 in
Discharge	57.80 cfs

Worksheet for Prop_Reach H3

Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	
Roughness Coefficient	0.040
Channel Slope	4.860 \%
Left Side Slope	$4.000 \mathrm{H}: \mathrm{V}$
Right Side Slope	$4.000 \mathrm{H}: \mathrm{V}$
Bottom Width	12.00 ft
Discharge	57.80 cfs
Results	
Normal Depth	0.7 ft
Flow Area	$10.2 \mathrm{ft}^{2}$
Wetted Perimeter	17.7 ft
Hydraulic Radius	0.6 ft
Top Width	17.52 ft
Critical Depth	0.8 ft
Critical Slope	2.701 \%
Velocity	$5.67 \mathrm{ft} / \mathrm{s}$
Velocity Head	0.50 ft
Specific Energy	1.19 ft
Froude Number	1.311
Flow Type	Supercritical
GVF Input Data	
Downstream Depth	0.0 ft
Length	0.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.0 ft
Profile Description	N/A
Profile Headloss	0.00 ft
Downstream Velocity	Infinity ft/s
Upstream Velocity	Infinity ft/s
Normal Depth	0.7 ft
Critical Depth	0.8 ft
Channel Slope	4.860 \%
Critical Slope	2.701 \%

Cross Section for Prop_Reach H3

Project Description	Manning Formula
Friction Method	Normal Depth
Solve For	
Input Data	0.040
Roughness Coefficient	4.860%
Channel Slope	0.7 ft
Normal Depth	$4.000 \mathrm{H}: \mathrm{V}$
Left Side Slope	$4.000 \mathrm{H}: \mathrm{V}$
Right Side Slope	12.00 ft
Bottom Width	57.80 cfs
Discharge	

$\mathrm{V}: 1 \underset{\mathrm{H}: 1}{\Delta}$

Worksheet for PROP Reach H3B

Project Description	
Friction Method	Manning Formula Solve For
Normal Depth	
Input Data	
Channel Slope	$0.042 \mathrm{ft} / \mathrm{ft}$
Discharge	12.00 cfs

Section Definitions

Station (ft)	Elevation (ft)		
	$0+60$		$7,374.12$
	$0+66$	$7,372.11$	
	$0+76$	$7,374.63$	

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient	
$(0+60,7,374.12)$	$(0+76,7,374.63)$	0.040	

Options	
Current Roughness Weighted	Pavlovskii's Method
Method Open Channel Weighting Method	Pavlovskii's Method Closed Channel Weighting Method
Pavlovskii's	
Results	
Nothod	

Worksheet for PROP_Reach H3B

GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.0 in
Profile Description	N / A
Profile Headloss	Infinity ft $/ \mathrm{s}$
Downstream Velocity	Infinity ft/s
Upstream Velocity	10.7 in
Normal Depth	11.3 in
Critical Depth	$0.042 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.032 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Cross Section for PROP_Reach H3B

Project Description	Manning
Friction Method	Formula
Solve For	Normal Depth
Input Data	
Channel Slope	$0.042 \mathrm{ft} / \mathrm{ft}$
Normal Depth	12.2 in
Discharge	17.20 cfs

Worksheet for EX_Reach H4

Project Description	Manning Formula
Friction Method	Normal Depth
Solve For	
Input Data	$0.068 \mathrm{ft} / \mathrm{ft}$
Channel Slope	16.91 cfs
Discharge	

Section Definitions

Station (ft)	Elevation (ft)	
	$0+36$	
	$0+66$	$7,357.99$
	$0+82$	$7,353.99$
	$0+86$	$7,343.34$
	$0+92$	$7,341.99$
	$1+01$	$7,340.90$
$1+05$	$7,342.10$	
	$1+16$	$7,355.37$
	$1+20$	$7,357.99$

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
$(0+36,7,357.99)$	$(1+20,7,357.99)$	0.040

Options		
Current Roughness Weighted Method	Pavlovskii's Method	
Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	8.8 in	
Roughness Coefficient	0.040	
Elevation	7,341.64 ft	
Elevation Range	$\begin{gathered} 7,340.9 \mathrm{to} \\ 7,358.0 \mathrm{ft} \end{gathered}$	
Flow Area	$3.4 \mathrm{ft}^{2}$	
Wetted Perimeter	9.4 ft	
Hydraulic Radius	4.4 in	
Top Width	9.29 ft	
Normal Depth	8.8 in	
Critical Depth	10.2 in	
Critical Slope	$0.032 \mathrm{ft} / \mathrm{ft}$	
Velocity	$4.94 \mathrm{ft} / \mathrm{s}$	
Channels_Flowmaster.fm8 12/9/2021	Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666	$\begin{array}{r} \text { FlowMaster } \\ \text { [10.03.00.03] } \\ \text { Page } 1 \text { of } 2 \end{array}$

Worksheet for EX_Reach H4

Results	
Velocity Head	0.38 ft
Specific Energy	1.12 ft
Froude Number	1.434
Flow Type	Supercritical
GVF Input Data	0.0 in
Downstream Depth	0.0 ft
Length	0
Number Of Steps	
GVF Output Data	0.0 in
Upstream Depth	N / A
Profile Description	0.00 ft
Profile Headloss	Infinity ft/s
Downstream Velocity	Infinity ft/s
Upstream Velocity	8.8 in
Normal Depth	10.2 in
Critical Depth	$0.068 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.032 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Cross Section for EX_Reach H4

Project Description	
Friction Method	Manning
Solve Formula	Normal Depth
Input Data	
Channel Slope	$0.068 \mathrm{ft} / \mathrm{ft}$
Normal Depth	8.8 in
Discharge	16.91 cfs

Worksheet for EX_Reach H5B

Project Description	
Friction Method	Manning
Solve For	Formula
Input Data	
Channel Slope	$0.050 \mathrm{ft} / \mathrm{ft}$
Discharge	29.00 cfs

Section Definitions

Station (ft)	Elevation (ft)	
	$0+00$	
	$0+35$	$7,342.00$
	$0+42$	$7,337.99$
	$0+58$	$7,335.99$
	$0+64$	$7,327.33$
	$0+74$	$7,325.99$
	$0+90$	$7,323.97$
	$1+02$	$7,325.33$
	$1+16$	$7,329.70$
	$1+34$	$7,337.99$
		$7,341.97$

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient	
$(0+00,7,342.00)$	$(1+34,7,341.97)$	0.040	

Options		
Current Roughness Weighted Method	Pavlovskii's Method	
Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	10.3 in	
Roughness Coefficient	0.040	
Elevation	7,324.83 ft	
Elevation Range	$\begin{gathered} 7,324.0 \mathrm{to} \\ 7,342.0 \mathrm{ft} \end{gathered}$	
Flow Area	$6.2 \mathrm{ft}^{2}$	
Wetted Perimeter	14.4 ft	
Hydraulic Radius	5.1 in	
Top Width	14.29 ft	
Normal Depth	10.3 in	
Critical Depth	11.4 in	
Critical Slope	$0.030 \mathrm{ft} / \mathrm{ft}$	
Channels_Flowmaster.fm8 12/9/2021	Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666	$\begin{array}{r} \text { FlowMaster } \\ \text { [10.03.00.03] } \\ \text { Page } 1 \text { of } 2 \end{array}$

Worksheet for EX_Reach H5B

Results	
Velocity	$4.71 \mathrm{ft} / \mathrm{s}$
Velocity Head	0.34 ft
Specific Energy	1.21 ft
Froude Number	1.265
Flow Type	Supercritical
GVF Input Data	0.0 in
Downstream Depth	0.0 ft
Length	0
Number Of Steps	
GVF Output Data	0.0 in
Upstream Depth	N / A
Profile Description	0.00 ft
Profile Headloss	Infinity ft/s
Downstream Velocity	Infinity ft/s
Upstream Velocity	10.3 in
Normal Depth	11.4 in
Critical Depth	$0.050 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.030 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Cross Section for EX_Reach H5B

Project Description	
Friction Method	Manning
Solve For	Normula
Input Data	
Channel Slope	$0.050 \mathrm{ft} / \mathrm{ft}$
Normal Depth	10.3 in
Discharge	29.00 cfs

Worksheet for Prop_Reach II

Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	
Channel Slope	$0.079 \mathrm{ft} / \mathrm{ft}$
Discharge	38.40 cfs

Section Definitions

Station (ft)	Elevation (ft)		
	$0+75$		$7,330.96$
	$0+85$	$7,328.37$	
	$1+01$	$7,333.54$	

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient	
$(0+75,7,330.96)$	$(1+01,7,333.54)$	0.040	

Options				
Current Roughness Weighted	Pavlovskii's			
Method	Method			
Open Channel Weighting	Pavlovskii's			
Method	Method			
Closed Channel Weighting	Pavlovskii's			
Method		\quad	Results	
:---	:---:			
Normal Depth	14.7 in			
Roughness Coefficient	0.040			
Elevation	$7,329.59 \mathrm{ft}$			
Elevation Range	$7,328.4 \mathrm{to}$			
Flow Area	$7,333 \mathrm{ft}$			
Wetted Perimeter	$5.2 \mathrm{ft}{ }^{2}$			
Hydraulic Radius	8.9 ft			
Top Width	7.0 in			
Normal Depth	8.58 ft			
Critical Depth	14.7 in			
Critical Slope	17.9 in			
Velocity	$0.027 \mathrm{ft} / \mathrm{ft}$			
Velocity Head	$7.32 \mathrm{ft} / \mathrm{s}$			
Specific Energy	0.83 ft			
Froude Number	2.05 ft			
Flow Type	1.651			
GVF Input Data	Supercritical			

Worksheet for Prop_Reach II

GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.0 in
Profile Description	N / A
Profile Headloss	0.00 ft
Downstream Velocity	Infinity ft/s
Upstream Velocity	Infinity ft/s
Normal Depth	14.7 in
Critical Depth	17.9 in
Channel Slope	$0.079 \mathrm{ft} / \mathrm{ft}$
Critical Slope	$0.027 \mathrm{ft} / \mathrm{ft}$

Cross Section for Prop_Reach I1

Project Description	
Friction Method	Manning
Formula	
Normal Depth	
Input Data	
Channel Slope	$0.079 \mathrm{ft} / \mathrm{ft}$
Normal Depth	14.7 in
Discharge	38.40 cfs

Worksheet for Prop_Swale A3A

Project Description	Manning Formula
Friction Method	Normal Depth
Solve For	
Input Data	$0.042 \mathrm{ft} / \mathrm{ft}$
Channel Slope	46.10 cfs
Discharge	

Section Definitions

Station (ft)	Elevation (ft)		
	$0+19$		$7,373.99$
	$0+78$	$7,367.48$	
	$0+97$	$7,372.70$	

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient	
$(0+19,7,373.99)$	$(0+97,7,372.70)$	0.040	

Options	
Current Roughness Weighted	Pavlovskii's Method
Method Open Channel Weighting Method Pavlovskii's Closed Channel Weighting Method Method Resullts Mevskii's Normal Depth	
Roughness Coefficient	
Elevation	14.1 in
Elevation Range	0.040
Flow Area	$7,368.66 \mathrm{ft}$
Wetted Perimeter	$7,367.5 \mathrm{to}$
Hydraulic Radius	$8.7 \mathrm{ft} \mathrm{ft}^{2}$
Top Width	15.1 ft
Normal Depth	6.9 in
Critical Depth	14.84 ft
Critical Slope	14.1 in
Velocity	15.2 in
Velocity Head	$0.028 \mathrm{ft} / \mathrm{ft}$
Specific Energy	$5.29 \mathrm{ft} / \mathrm{s}$
Froude Number	0.43 ft
Flow Type	1.61 ft
GVF Input Data	1.216
	Supercritical

Worksheet for Prop_Swale A3A

GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.0 in
Profile Description	N / A
Profile Headloss	Infinity ft $/ \mathrm{s}$
Downstream Velocity	Infinity ft/s
Upstream Velocity	14.1 in
Normal Depth	15.2 in
Critical Depth	$0.042 \mathrm{ft} / \mathrm{ft}$
Channel Slope	$0.028 \mathrm{ft} / \mathrm{ft}$
Critical Slope	

Cross Section for Prop_Swale A3A

Project Description	
Friction Method	Manning
Solve For	Normal Depth
Input Data	
Channel Slope	$0.042 \mathrm{ft} / \mathrm{ft}$
Normal Depth	14.1 in
Discharge	46.10 cfs

	Worksheet for EX_Reach_12
Project Description	
Friction Method	Manning
Sormula	
Normal Depth	
Input Data	
Channel Slope	2.430%
Discharge	39.10 cfs

Section Definitions

Station (ft)	Elevation (ft)		
	$0+39$		$7,325.81$
	$0+70$	$7,323.77$	
	$0+82$	$7,317.99$	
	$0+97$	$7,317.99$	
	$1+09$	$7,321.99$	
	$1+32$	$7,324.89$	

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient	
$(0+39,7,325.81)$	$(1+32,7,324.89)$	0.040	

Options		
Current Roughness Weighted Method	Pavlovskii's Method	
Open Channel Weighting Method	Pavlovskii's Method	
Closed Channel Weighting Method	Pavlovskii's Method	
Results		
Normal Depth	0.6 ft	
Roughness Coefficient	0.040	
Elevation	7,318.59 ft	
Elevation Range	$\begin{gathered} 7,318.0 \mathrm{to} \\ 7,325.8 \mathrm{ft} \end{gathered}$	
Flow Area	$10.1 \mathrm{ft}^{2}$	
Wetted Perimeter	18.5 ft	
Hydraulic Radius	0.5 ft	
Top Width	18.27 ft	
Normal Depth	0.6 ft	
Critical Depth	0.6 ft	
Critical Slope	2.937 \%	
Velocity	$3.87 \mathrm{ft} / \mathrm{s}$	
Velocity Head	0.23 ft	
Specific Energy	0.84 ft	
Froude Number	0.917	
Channels_Flowmaster.fm8 1/27/2023	Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666	$\begin{array}{r} \text { FlowMaster } \\ \text { [10.03.00.03] } \\ \text { Page } 1 \text { of } 2 \end{array}$

Worksheet for EX_Reach_I2

Results	Subcritical
Flow Type	
GVF Input Data	0.0 ft
Downstream Depth	0.0 ft
Length	0
Number Of Steps	
GVF Output Data	0.0 ft
Upstream Depth	0.00 ft
Profile Description	$0.00 \mathrm{ft} / \mathrm{s}$
Profile Headloss	$0.00 \mathrm{ft} / \mathrm{s}$
Downstream Velocity	0.6 ft
Upstream Velocity	0.6 ft
Normal Depth	2.430%
Critical Depth	2.937%
Channel Slope	
Critical Slope	

Cross Section for EX_Reach_I2

Project Description	
Friction Method	Manning
Solve For	Normal Depth
Input Data	
Channel Slope	2.430%
Normal Depth	0.6 ft
Discharge	39.10 cfs

Worksheet for Prop_WQ Channel

Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	
Roughness Coefficient	0.036
Channel Slope	$0.019 \mathrm{ft} / \mathrm{ft}$
Left Side Slope	$4.000 \mathrm{H}: \mathrm{V}$
Right Side Slope	$4.000 \mathrm{H}: \mathrm{V}$
Bottom Width	6.00 ft
Discharge	55.70 cfs
Results	
Normal Depth	13.4 in
Flow Area	$11.7 \mathrm{ft}^{2}$
Wetted Perimeter	15.2 ft
Hydraulic Radius	9.2 in
Top Width	14.93 ft
Critical Depth	13.0 in
Critical Slope	$0.021 \mathrm{ft} / \mathrm{ft}$
Velocity	$4.77 \mathrm{ft} / \mathrm{s}$
Velocity Head	0.35 ft
Specific Energy	1.47 ft
Froude Number	0.951
Flow Type	Subcritical
GVF Input Data	
Downstream Depth	0.0 in
Length	0.0 ft
Number Of Steps	0
GVF Output Data	
Upstream Depth	0.0 in
Profile Description	N/A
Profile Headloss	0.00 ft
Downstream Velocity	Infinity ft/s
Upstream Velocity	Infinity ft/s
Normal Depth	13.4 in
Critical Depth	13.0 in
Channel Slope	$0.019 \mathrm{ft} / \mathrm{ft}$
Critical Slope	$0.021 \mathrm{ft} / \mathrm{ft}$

Cross Section for Prop_WQ Channel

Project Description	
Friction Method	Manning
Formula	
Solve For	
Input Data	0.036
Roughness Coefficient	$0.019 \mathrm{ft} / \mathrm{ft}$
Channel Slope	13.4 in
Normal Depth	$4.000 \mathrm{H}: \mathrm{V}$
Left Side Slope	$4.000 \mathrm{H}: \mathrm{V}$
Right Side Slope	6.00 ft
Bottom Width	55.70 cfs
Discharge	

$\mathrm{V}: 1 \triangle$
H: 1

Specifications

AFCTI

A variety of test methods are utilized to determine performance and conformance values for Rolled Erosion Control Products (RECPs). Information within this document is presented to provide conformance values and recommended design values. Test results obtained for the Excel PP5-12 Turf Reinforcement Mat (TRM) and general design values are presented in Tables 1-4. For specific information detailing testing protocols, results and application of design values, refer to document number WE_EXCEL_PERF_GEN.

Table 1 - Bench Scale Testing / NTPEP

Test Method	Condition	Result
ASTM D7101 Bench Scale	2 in per hour	14.53
Rainfall and Rainsplash Test	4 in per hour	5.59
	6 in per hour	4.82
ASTM D7207 Bench Scale Shear Resistance Test	3.0 psf (145 PA)	0.5 in (12 $\mathrm{mm})$
ASTM D7322 Bench Scale		
Vegetation Establishment	Top Soil, Fescue, 21 Day Incubation	661%
Test		

Table 3 - Recommended Design Values*

Design Value	Unvegetated	Vegetated
Typical RUSLE Cover Factor (C Factor)**	0.03	$\mathrm{~N} / \mathrm{A}$
Maximum Slope Gradient (RUSLE)	$1 \mathrm{H}: 1 \mathrm{~V}$	$\mathrm{~N} / \mathrm{A}$
Max Allowable Velocity (0.5 in $(12 \mathrm{~mm})$ soil loss)***	$9.0 \mathrm{ft} / \mathrm{s}$ $(2.7 \mathrm{~m} / \mathrm{s})$	$15.0 \mathrm{ft} / \mathrm{s}$ $(4.6 \mathrm{~m} / \mathrm{s})$
Max Allowable Shear Stress $(0.5$ in (12 mm) soil loss)***	2.8 psf $(134 \mathrm{PA})$	12.0 psf $(575 \mathrm{PA})$
CFveg/CFTRM	N / A	0.26
$*$ C Factor value compliant with ASTM D6459. *** Shear Stress and Velocity values compliant with ASTM D6460.		

Table 4-HEC-15 Resistance to Flow Values

Table 2 - Texas Transportation Institute (TTI) Results

Class	Test Condition	Result
A	$<3 H: 1$ Clay Slope Test	N/A
B	$<3 H: 1$ Sand Slope Test	N/A
C	$>3 H: 1$ Clay Slope Test	N/A
D	$>3 \mathrm{H}: 1$ Sand Slope Test	N/A
E	2 psf Partially Vegetated Channel Test	Approved
F	4 psf Partially Vegetated Channel Test	Approved
G	6 psf Partially Vegetated Channel Test	Approved
H	8 psf Partially Vegetated Channel Test	Approved

Design Value	Unvegetated
Manning's n @ Tau lower $(0.7 \mathrm{psf}(34 \mathrm{PA}))$	0.027
Manning's $\mathrm{n} @$ $(1.4 \mathrm{psf}(67 \mathrm{PA}))$	0.027
Manning's m n @ Tau upper $(2.8 \mathrm{psf}(134 \mathrm{PA}))$	0.027

*Recommended Design Values are based on results of standardized industry full-scale testing and may not be applicable for all field conditions. For most accurate computation of field performance,
consult Excel Erosion Design (EED) at www.westernexcelsior.com.
possible for as much of the reach as possible to the maximum prudent values for the hydraulic parameters in the 100 year event. The designer should determine the return period where these parameters would be achieved and, with the owner and local jurisdiction, determine if the associated risks are acceptable.

On the other hand, if the recommendation to avoid floodplain filling is not followed and fill is proposed, this should only happen in floodplains where the maximum prudent values for the hydraulic parameters shown in Table 8-1 are not exceeded in the 100-year event.

Table 8-1. Maximum prudent values for natural channel hydraulic parameters

Design Parameter	Non-Cohesive Soils or Poor Vegetation	Cohesive Soils and Vegetation
Maximum flow velocity (average of section)	$5 \mathrm{ft} / \mathrm{s}$	$7 \mathrm{ft} / \mathrm{s}$
Maximum Froude number	0.6	0.8
Maximum tractive force (average of section)	$0.60 \mathrm{lb} / \mathrm{sf}$	$1.0 \mathrm{lb} / \mathrm{sf}$
Maximum depth outside bankfull channel	5 ft	5 ft

Stream Restoration Principle 8: Evaluate Hydraulics of Streams over a Range of Flows

Representative Design Tasks and Deliverables

1. Document hydraulic analyses of the project reach following the guidance of Section 7.0.
2. Describe how hydraulic performance of the project reach compares to maximum prudent values for the hydraulic parameters shown in Table 8-1 for several return periods (including 2-, 10-, and 100-year events at a minimum). Describe any locations in the reach where these parameters are exceeded and discuss efforts made to improve hydraulics.
3. Confirm that hydraulic parameters of Table $8-1$ are satisfied in for the100-year event in all locations where fill is proposed in the floodplain.

ROCK CHUTE DETAILS

Rock Chute ID	Channel Location	Flow (cfs)	Upstream Inlet Apron Length (ft)	Drop (ft) (Inlet Apron to Outlet Apron)	Chute Length (ft)	Downstream Outlet Apron Length (ft)	Chute Width (ft)	D50 (in)	Rock Chute Thickness (in)	Radius (ft)	Min Rock Chute Depth (ft)	Rock Chute Depth (ft)	Top Chute Width (ft)
4	Pond 1	107	10	6	24	15	24	18	36	50	1.27	2.00	40
6	Pond 2	110	10	8	32	18	17	18	36	50	1.57	2.00	33
11	Pond 4	26	10	10	40	11	10	9	18	25	0.85	2.00	26
12	WQ Pond	100	11	5	20	20	12	18	36	50	1.81	2.00	28
13	WQ Pond	57	10	3	12	16	10	18	36	50	1.38	2.00	26

Rock Chute Design Data

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Project: Winsome Filing 3 - Rock Chute 4 (Pond 1)
Designer: TOS
Date: December 21, 2021

County: El Paso
Checked by:
Date:

Input Geometry:

Profile and Cross Section (Output):

Profile Along Centerline of Chute

Typical Cross Section

	$4.15 \mathrm{cfs} / \mathrm{ft}$.	Equivalent unit discharge
$\mathrm{F}_{\mathrm{S}}=$	1.60	Factor of safety (multiplier)
$\mathrm{z}_{1}=$	0.48 ft .	Normal depth in chute
n -value $=$	0.052	Manning's roughness coefficient
$\mathrm{D}_{50}\left(\mathrm{~F}_{\mathrm{s}}\right)=$	12.3 in.	Minimum Design D50*
$2\left(\mathrm{D}_{50}\right)\left(\mathrm{F}_{\mathrm{s}}\right)=$	24.6 in.	Rock chute thickness
$\mathrm{Tw}+\mathrm{d}=$	2.39 ft .	Tailwater above outlet apron
$\mathrm{z}_{2}=$	1.27 ft .	Hydraulic jump height
${ }^{* * *}$ The outlet	will	function adequately

High Flow Storm Information

Rock Chute Design - Plan Sheet

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Rock Chute Design - Cut/Paste Plan

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Project: Winsome Filing 3 - Rock Chute 4 (Pond 1)
Designer:
Date: 12/21/2021

County: El Paso
Checked by:
\qquad
Date: \qquad

Rock Chute Design Data

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Input Geometry:

Project: Winsome Filing 3- Rock Chute 6 (Pond 2)
Designer: TOS
Date: Novemeber 8th, 2021
$\mathrm{Bw}=17.0 \mathrm{ft}$.
Side slopes $=4.0(\mathrm{~m}: 1)$
Velocity n-value $=0.040$
Bed slope $=0.0200 \mathrm{ft} . / \mathrm{ft}$.

$\begin{aligned} & \hline \hline \text { Upstream Channel } \\ & \text { Bw }=17.0 \mathrm{ft} . \\ & \text { Side slopes }=4.0(\mathrm{~m}: 1) \\ & \text { Velocity n-value }=0.040 \\ & \text { Bed slope }=0.0200 \mathrm{ft} . / \mathrm{ft} . \end{aligned}$ Note: n value $=a$) velocity n from waterway progra or b) computed mannings n for channel	```Chute \(\mathrm{Bw}=17.0 \mathrm{ft}\). Factor of safety \(=1.60 \quad\left(F_{s}\right) \quad\) 1.2 Min Side slopes \(=4.0(\mathrm{~m}: 1) \rightarrow 2.0: 1\) max. Bed slope (4:1) \(=0.250 \mathrm{ft} . / \mathrm{ft} \rightarrow 3.0: 1\) max. Freeboard \(=0.5 \mathrm{ft} . \longrightarrow\) \(t\) apron depth, \(d=1.0 \mathrm{ft}\).```	```Downstream Channel Bw=17.0 ft. Side slopes = 4.0 (m:1) Velocity n-value = 0.040 Bed slope = 0.0040 ft./ft. Base flow = 0.0 cfs```
Design Storm Data (Table 2, FOTG, WI-NRCS Grade Stabilization Structure No. 410):		
$\begin{aligned} & \text { Apron elev. --- Inlet }=7309.0 \mathrm{ft} \text {.------ Outle } \overline{30} \\ & Q_{\text {high }}=\text { Runoff from design storm capacity from Tabl } \\ & Q_{5}=\text { Runofff from a 5-year,24-hour storm. } \\ & Q_{\text {high }}=110.0 \mathrm{cfs} \text { High flow } \\ & Q_{5}=24.0 \mathrm{cfs} \text { Low flow s } \end{aligned}$	$.0 \mathrm{ft} .---\left(\mathrm{H}_{\text {drop }}=7 \mathrm{ft}.\right)$ Note $:$ throug in com 2, FOTG Standard 410 Input $\mathrm{Tw}(\mathrm{ft})$	he total required capacity is routed he chute (principal spillway) or nation with an auxiliary spillway. water (Tw) : Program Program

Profile and Cross Section (Output):

Profile Along Centerline of Chute

Rock Chute Design - Plan Sheet

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Rock Chute Design - Cut/Paste Plan

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)
Project: Winsome Filing 3- Rock Chute 6 (Pond 2)
Designer: TOS
Date: Novemeber 8t
County: El Paso
Checked by:
\qquad
\qquad
Date: \qquad

Rock Chute Design Data

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Project: Winsome Filing 3 Rock Chute 11 (Pond 4)
Designer: TOS
Date: December 21, 2021

County: El Paso
Checked by:
Date:

Input Geometry:

Design Storm Data (Table 2, FOTG, WI-NRCS Grade Stabilization Structure No. 410):

Apron elev. --- Inlet =7302.0 ft. ------- Outleฤ292.0 ft. --- (H $\left.\mathrm{H}_{\text {drop }}=9 \mathrm{ft}.\right)$
$Q_{\text {high }}=$ Runoff from design storm capacity from Table 2, FOTG Standard 410
$Q_{5}=$ Runofff from a 5-year,24-hour storm.

$$
\begin{array}{cll}
Q_{\text {high }}=26.0 & \text { cfs } & \text { High flow storm through chute } \\
Q_{5}=6.0 & \text { cfs } & \text { Low flow storm through chute }
\end{array}
$$

Note : The total required capacity is routed through the chute (principal spillway) or in combination with an auxiliary spillway. Input tailwater (Tw) :
> Tw (ft.) = Program
\rightarrow Tw (ft.) = Program

Profile and Cross Section (Output):

Profile Along Centerline of Chute

Typical Cross Section

	2.32 cfs/ft.	Equivalent unit discharge
$\mathrm{F}_{\mathrm{S}}=$	1.60	Factor of safety (multiplier)
$\mathrm{z}_{1}=$	0.33 ft .	Normal depth in chute
n -value $=$	0.049	Manning's roughness coefficient
$\mathrm{D}_{50}\left(\mathrm{~F}_{\mathrm{s}}\right)=$	9 in.	Minimum Design D50*
$2\left(\mathrm{D}_{50}\right)\left(\mathrm{F}_{\mathrm{s}}\right)=$	18.1 in.	Rock chute thickness
$\mathrm{Tw}+\mathrm{d}=$	1.97 ft.	Tailwater above outlet apron
$\mathrm{z}_{2}=$	0.85 ft .	Hydraulic jump height
*** The outlet	will	function adequately

High Flow Storm Information

Rock Chute Design - Plan Sheet

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Rock Chute Design - Cut/Paste Plan

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)
Project: Winsome Filing 3 Rock Chute 11 (Pond 4)
Designer: \qquad
Date: 12/21/2021
County: El Paso
Checked by:
\qquad
\qquad
Date: \qquad

Rock Chute Design Data

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Project: Winsome Filing 3- Rock Chute \#12
Designer: TOS
Date: December 15, 2021

County: El Paso
Checked by:
Date:

Input Geometry:

$\begin{aligned} & \longrightarrow \text { Upstream Channel } \\ & \mathrm{Bw}=12.0 \mathrm{ft} . \\ & \text { Side slopes }=4.0(\mathrm{~m}: 1) \\ & \text { Velocity } \mathrm{n} \text {-value }=0.040 \\ & \text { Bed slope }=0.0200 \mathrm{ft} . / \mathrm{ft} . \\ &\text { Note: } \mathrm{n} \text { value }=\mathrm{a}) \text { velocity } \mathrm{n} \text { from waterway progra }\end{aligned}$	```Chute \(\mathrm{Bw}=12.0 \mathrm{ft}\). Factor of safety \(=1.60 \quad\left(F_{s}\right) \quad\) 1.2 Min Side slopes \(=4.0(\mathrm{~m}: 1) \rightarrow 2.0: 1\) max. Bed slope (4:1) \(=0.250 \mathrm{ft} . / \mathrm{ft} \rightarrow 3.0: 1\) max . Freeboard \(=0.5 \mathrm{ft} . \longrightarrow\) \(t\) apron depth, \(d=1.0 \mathrm{ft}\).```	$\begin{aligned} & \hline \hline \text { Downstream Channel } \\ & \text { Bw }=12.0 \mathrm{ft} . \\ & \text { Side slopes }=4.0(\mathrm{~m}: 1) \\ & \text { Velocity n-value }=0.040 \\ & \text { Bed slope }=0.0040 \mathrm{ft} . / \mathrm{ft} . \\ & \text { Base flow }=0.0 \mathrm{cfs} \\ & \hline \end{aligned}$
Design Storm Data (Table 2, FOTG, WI-NRCS Grade Stabilization Structure No. 410):		
$\begin{aligned} & \hline \text { Apron elev. --- Inlet }=7330.0 \mathrm{ft} \text {.------ Outle } \overline{3} \\ & Q_{\text {high }}=\text { Runoff from design storm capacity from Tab } \\ & Q_{5}=\text { Runofff from a 5-year,24-hour storm. } \\ & Q_{\text {high }}=100.0 \mathrm{cfs} \text { High flow } \\ & Q_{5}=50.0 \mathrm{cfs} \text { Low flow } \end{aligned}$	$0 \mathrm{ft} .---\left(\mathrm{H}_{\text {drop }}=4 \mathrm{ft}.\right)$ Note : throug in com Input Tw (ft.) Tw (ft.)	e total required capacity is routed he chute (principal spillway) or ation with an auxiliary spillway. water (Tw): Program Program

Profile and Cross Section (Output):

Profile Along Centerline of Chute

Rock Chute Design - Plan Sheet

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Rock Chute Design - Cut/Paste Plan

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)
Project: Winsome Filing 3- Rock Chute \#12
Designer: \qquad
TOS
Date: $12 / 15 / 2021$
County: El Paso
Checked by:
\qquad
\qquad
Date: \qquad

Rock Chute Design Data

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Project: Winsome Filing 3- Rock Chute \#13
Designer: TOS
Date: December 15, 2021

County: El Paso
Checked by:
Date:

Input Geometry:

$\begin{aligned} & \longrightarrow \text { Upstream Channel } \\ & \mathrm{Bw}=6.0 \mathrm{ft} . \\ & \text { Side slopes }=4.0(\mathrm{~m}: 1) \\ & \text { Velocity } \mathrm{n} \text {-value }=0.040 \\ & \text { Bed slope }=0.0200 \mathrm{ft} . / \mathrm{ft} . \\ &\text { Note: } \mathrm{n} \text { value }=\mathrm{a}) \text { velocity } \mathrm{n} \text { from waterway progra }\end{aligned}$	```Chute \(\mathrm{Bw}=10.0 \mathrm{ft}\). Factor of safety \(=1.60\left(F_{s}\right) \quad\) 1.2 Min Side slopes \(=4.0(\mathrm{~m}: 1) \rightarrow 2.0: 1 \mathrm{max}\). Bed slope (4:1) \(=0.250 \mathrm{ft} . / \mathrm{ft} \rightarrow 3.0: 1\) max . Freeboard \(=0.5 \mathrm{ft} . \longrightarrow\) \(t\) apron depth, \(d=1.0 \mathrm{ft}\).```	$\begin{aligned} & \hline \hline \text { Downstream Channel } \\ & \mathrm{Bw}=10.0 \mathrm{ft} . \\ & \text { Side slopes }=4.0(\mathrm{~m}: 1) \\ & \text { Velocity n-value }=0.040 \\ & \text { Bed slope }=0.0040 \mathrm{ft} . / \mathrm{ft} . \\ & \text { Base flow }=0.0 \mathrm{cfs} \end{aligned}$
Design Storm Data (Table 2, FOTG, WI-NRCS Grade Stabilization Structure No. 410):		
	$0 \mathrm{ft} .--\left(\mathrm{H}_{\text {drop }}=2 \mathrm{ft}.\right)$ Note $:$ through in com Input Tw (ft).	he total required capacity is routed the chute (principal spillway) or nation with an auxiliary spillway. Iwater (Tw) : Program Program

Profile and Cross Section (Output):

Profile Along Centerline of Chute

Typical Cross Section

	$4.73 \mathrm{cfs} / \mathrm{ft}$.	Equivalent unit discharge
$\mathrm{F}_{\mathrm{S}}=$	1.60	Factor of safety (multiplier)
z_{1}	0.52 ft .	Normal depth in chute
n -value	0.052	Manning's roughness coefficient
$\mathrm{D}_{50}\left(\mathrm{~F}_{\mathrm{s}}\right)$	13.2 in.	Minimum Design D50*
$2\left(\mathrm{D}_{50}\right)\left(\mathrm{F}_{\mathrm{s}}\right)=$	26.4 in.	Rock chute thickness
Tw + d =	2.47 ft .	Tailwater above outlet apron
$\mathrm{z}_{2}=$	1.38 ft .	Hydraulic jump height
*** The outlet	will	function adequately

High Flow Storm Information

Rock Chute Design - Plan Sheet

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Rock Chute Design - Cut/Paste Plan

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Project:	Winsome Filing 3- Rock Chute \#13
Designer:	TOS
Date:	$\underline{12 / 15 / 2021}$

County: El Paso
Checked by:
\qquad

Date: \qquad

MHFD-Detention, Version 4.04 (February 2021)													
Project: WINSOME FILING 3 Basin ID: POND 1 (BASIN H1+H4)_Modified Area													
PERMANENT- Example Zone Configuration (Retention Pond)			Stage - Storage Description	$\begin{gathered} \text { Stage } \\ (\mathrm{tt}) \end{gathered}$	Override Stage Stage (ft)	$\underset{\substack{\text { Length } \\(t t)}}{ }$	Wiath (ft)	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{f}^{2}\right) \end{aligned}$	$\begin{array}{\|l\|l} \\ \text { Override } \\ \text { Area }\left(\mathrm{ft}^{2}\right) \end{array}$	Area (acre)	$\begin{gathered} \text { Volume } \\ \left(\mathrm{t}^{3}\right) \end{gathered}$	$\begin{gathered} \text { Volume } \\ (\text { (ac.ft) } \end{gathered}$	
Watershed Information			Top of Micropool	-.	0.00	--	--	--	49	0.001			
Selected BMP Type $=$ Watershed Area = Watershed Length $=$	EDB		7317	..	1.00	.-	-	.-	2,950	0.068	1,499	0.034	
	res		7318	-	2.00	-	-	-	8,352	0.192	7,150	0.164	
			7319	\cdots	3.00	\cdots	\cdots	\cdots	13,337	0.306	17,995	0.413	
Watershed Length = Watershed Length to Centroid =			7320	\cdots	4.00	\cdots	\cdots	\cdots	16,699	0.383	33,013	0.758	
Watershed Slope $=$	t/t		7321	\cdots	5.00	-	-	-	20,465	0.470	51,595	1.184	
Watershed I Imperiousness $=$	percent		7322	-	6.00	\cdots	\cdots	-	24,598	0.565	74,126	1.702	
Percentage Hydrologic Soil Group $\mathrm{A}=$	percent		7323	..	7.00	..	-	-	30,068	0.690	101,459	2.329	
Percentage Hydrologic Soil Groups $C / D=$	percent		7324	\cdots	8.00	-	.-	\cdots	35,153	0.807	134,070	3.078	
	percent			\cdots		\cdots	-	-					
Target Wocv Drain Time $=$			-					
Location for 1-hr Rainfall Depths = User Input				-		\cdots	-	-					
After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.		Optional User Overrides		\cdots		\cdots	\cdots	\cdots					
			\cdots		\cdots	.-	\cdots						
Water Quality Capture Volume (Wocv) = Excess Urban Runoff Volume (EURV) $=$ 2.yr Runoff Volume ($\mathrm{P}=1.19 \mathrm{in}$.)) 5.yr Runoff Volume ($\mathrm{P} 1=1.5 \mathrm{in}$.) $=$	0.172 acre-feet		0.172 acre-feet		-		.-	.-	-				
	0.241 acre-feet	0.241 acre-feet		-		-	-	-					
	1.063 acre-feet	1.19 inches		-		-	-	-					
	2.245 acre-feet	1.50 inches		.-		.-	.-	-					
10-yr Runoff Volume ($\mathrm{P} 1=1.75$ in.) $=$ 25 -yr Runoff Volume ($\mathrm{P} 1=2 \mathrm{in}$.) $=$	3.366 acre-feet	1.75 inches		.-		.-	-	-					
	4.924 acre-feet	2.00 inches		.-		-	.-	\cdots					
$50-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2.25 \mathrm{in}$.) = $100-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2.52 \mathrm{in}$.) $=$	6.155 acre-feet	2.25 inches		.-		-	\cdots	\cdots					
	7.866 acre-feet	2.52 inches		-		..	.-	.-					
500 -yr Runoff Volume ($\mathrm{P}=3.14 \mathrm{in}$. $)=$	11.014 acre-feet	inches		\cdots		-	-	\cdots					
Approximate $2-\mathrm{yr}$ Detention Volume $=$ Approximate 5-yr Detention Volume $=$	0.276 acre-feet			-		\cdots	-	\cdots					
	0.741 acre-feet			-		-	.-	-					
Approximate $10-\mathrm{yr}$ Detention Volume $=$ Approximate $25-\mathrm{yr}$ Detention Volume $=$ Approximate $50-\mathrm{yr}$ Detention Volume $=$ Approximate $100-\mathrm{yr}$ Detention Volume $=$	1.072 acre-feet			.-		.-	..	-					
	1.301 acre-feet			..		\cdots	-	-					
	1.333 acre-feet			.-		-	.-	.-					
	1.903 acre-feet			.		\cdots	..	-					
				.		.	.	-					
Define Zones and Basin Geometry				-		-	-	-					
Zone 1 Volume (WQCV) $=$ Zone 2 Volume (EURV - Zone 1) =	0.172 acre-feet			-		-	-	-					
	0.069 acre-feet			-		-	.-	-					
Zone 3 Volume (100 -year - Zones $1 \& 2)=$	1.662 acre-feet			-		\cdots	-	-					
	1.903 acre-feet			\cdots		\cdots	\cdots	\cdots					
Initial Surcharge Volume (ISV) $=$ Initial Surcharge Depth (ISD) =	user tt^{3}			.-		\cdots	-	\cdots					
	user ft			\cdots		\cdots	-	-					
Total Available Detention Depth ($\left.H_{\text {trotal }}\right)=$	user ft			.		-	.-	-					
Depth of Trickle Channel $\left(H_{T C}\right)=$ Slope of Trickle Channel $\left(\mathrm{S}_{\mathrm{T}}\right)=$ Slopes of Main Basin Sides $\left(S_{\text {main }}\right)=$ Basin Length-to-Width Ratio $\left(R_{L / w}\right)=$	user ft			-		\cdots	-.	\cdots					
	user fr/t			\cdots		\cdots	.-	-					
	user H:V			-		\cdots	-	-					
	user			-		-	-	-					
Initial Surcharge Area ($\mathrm{A}_{\text {ISV }}$) $=$ Surcharge Volume Length $\left(\mathrm{L}_{\text {ISV }}\right)=$				\cdots		\cdots	-	-					
	user ft^{2}			-		\cdots	-	-					
	user ft			-		-	--	-					
	user ft			\cdots		-	-	-					
	user ft			\cdots		\cdots	-	.-					
Length of Basin Floor (Lfloor) $=$	user ft			.-		-	.-	-					
Width of Basin Floor $\left(\mathrm{W}_{\text {FLOOR }}\right)=$ Area of Basin Floor (Afloor) $=$	user ft			.-		.-	.-	.-					
	user ft^{2}			\cdots		\cdots	-	-					
Volume of Basin Floor ($\mathrm{V}_{\text {flook }}$) $=$	user ft^{3}			-		-	-	-					
Length of Main Basin $\left(L_{\text {MAIN }}\right)=$	user ft			\cdots		\cdots	-	\cdots					
	user ft			.-		-	-	-					
	user ft			-		.-	-	.-					
Area of Main Basin (Aman) $=$	user ft^{2}			\cdots		\cdots	-	\cdots					
Volume of Main Basin $\left(V_{\text {MAIN }}\right)=$ Calculated Total Basin Volume ($\left.\mathrm{V}_{\text {total }}\right)=$	user tt^{3}			\cdots		\cdots	-	\cdots					
	Ser acre-feet			\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		-	-	-					
				\cdots		\cdots	\cdots	\cdots					
				-		-	.-	.-					
				\cdots		\cdots	\cdots	\cdots					
				..		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				.-		.-	.-	.-					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		-	\cdots	\cdots					
				\cdots		\cdots	.	.					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				--		\cdots	-	.-					
				-		-	.-	.-					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		-	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)
Project: WINSOME FILING 3
Basin ID: POND 1 (BASIN H1+H4)_Modified Area

${ }_{100 \cdot Y R} T, \square \int_{1}^{\text {ZONE } 2} \text { ZONE 2 }$			Estimated Stage (ft)	Estimated Volume (ac-ft)	Outlet Type		
volume euni + wack		Zone 1 (WQCV)	2.05	0.172	Orifice Plate		
		Zone 2 (EURV)	2.37	0.069	Orifice Plate		
PERMANENT- ORIFICES		Zone 3 (100-year)	6.35	1.662	Weir\&Pipe (Restrict)		
Example Zone Configuration (Retention Pond)			otal (all zones)	1.903			
User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)						Calculated Parameters for Under	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter $=$		ft (distance below the filtration media surface) inches		Underdrain Orifice Area = Underdrain Orifice Centroid =			$f_{\mathrm{ft}}{ }^{2}$
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)							
Invert of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches inches		WQ Orifice Area per Row = Elliptical Half-Width = Elliptical Slot Centroid =		N/A	ft ${ }^{2}$feet
Depth at top of Zone using Orifice Plate $=$	2.05			N/A			
Orifice Plate: Orifice Vertical Spacing =	9.40			N/A	feet		
Orifice Plate: Orifice Area per Row $=$	N/A				Iliptical Slot Area $=$	N/A	ft^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.68	1.37					
Orifice Area (sq. inches)	0.75	0.80	0.80					

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

put: Overflow Weir (Dropbox with Flat or	d Grate	Pipe OR	r/Trapezoidal Weir (and No O	Pipe)	Calculated Parameters for Overflow Weir		
	Zone 3 Weir	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$ Overflow Weir Slope Length =	Zone 3 Weir	Not Selected	feet
Overflow Weir Front Edge Height, $\mathrm{Ho}=$	2.40	N/A			3.90	N/A	
Overflow Weir Front Edge Length $=$	12.00	N/A	feet		6.18	N/A	
Overflow Weir Grate Slope =	4.00	N/A	$\mathrm{H}: \mathrm{V}$	Open Area / 100-yr Orifice Area $=$	7.36	N/A	
Horiz. Length of Weir Sides =	6.00	N/A	feet Ove	fow Grate Open Area w/o Debris =	51.65	N/A	ft^{2}
Overflow Grate Type =	Type C Grate	N/A		flow Grate Open Area w/ Debris =	25.83	N/A	ft^{2}

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Calculated Parameters for Spillway	
Spillway Design Flow Depth=	0.68	feet
Stage at Top of Freeboard =	8.00	feet
Basin Area at Top of Freeboard =	0.81	acres
Basin Volume at Top of Freeboard =	3.07	acre-ft

	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.172	0.241	1.063	2.245	3.366	4.924	6.155	7.866	11.014
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	1.063	2.245	3.366	4.924	6.155	7.866	11.014
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	14.9	31.4	43.5	66.8	82.6	101.5	140.2
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.25	0.52	0.73	1.11	1.38	1.69	2.34
Peak Inflow Q (cfs) $=$	N/A	N/A	17.5	34.3	46.4	69.9	85.7	104.7	143.4
Peak Outfow Q (cfs) =	0.1	0.1	9.5	24.4	35.8	59.1	73.4	81.8	134.4
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.8	0.8	0.9	0.9	0.8	1.0
Structure Controlling Flow =	Plate	Plate	Overflow Weir 1	Outlet Plate 1	Spillway				
Max Velocity through Grate 1 (fps) =	N/A	N/A	0.18	0.5	0.7	1.1	1.4	1.6	1.7
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	40	47	41	32	25	18	13	7	3
Time to Drain 99\% of Inflow Volume (hours) =	43	51	50	44	41	36	33	30	24
Maximum Ponding Depth (ft) =	2.05	2.37	3.23	3.83	4.19	4.78	5.10	5.86	6.51
Area at Maximum Ponding Depth (acres) $=$	0.20	0.23	0.32	0.37	0.40	0.45	0.48	0.55	0.63
Maximum Volume Stored (acre-ft) $=$	0.174	0.243	0.482	0.694	0.828	1.079	1.232	1.618	2.000

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program | Time Interval | TIME | CUHP | CUHCV [cfs] | EURV [cfs] | 2 Year [cfs] | 5 Year [cfs] | 10 Year [cfs] | 25 Year [cfs] | 50 Year [cfs] | 100 Year [cfs] 500 Year [cfs] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.02
0:15:00	0.00	0.00	0.06	0.10	0.12	0.08	0.10	0.10	0.14
0:20:00	0.00	0.00	0.23	1.06	1.67	0.23	0.39	0.67	1.58
0:25:00	0.00	0.00	3.20	15.62	24.87	3.05	6.90	10.32	24.34
0:30:00	0.00	0.00	13.38	30.35	42.43	39.03	50.84	60.51	89.91
0:35:00	0.00	0.00	17.37	34.30	46.43	61.69	76.92	94.14	131.53
0:40:00	0.00	0.00	17.51	32.49	43.63	69.90	85.68	104.70	143.39
0:45:00	0.00	0.00	15.31	29.16	39.99	67.32	82.23	102.90	140.42
0:50:00	0.00	0.00	13.26	26.17	35.82	64.04	78.13	97.91	133.39
0:55:00	0.00	0.00	11.38	23.08	32.38	57.76	70.73	90.50	123.68
1:00:00	0.00	0.00	10.01	20.46	29.66	52.22	64.26	84.23	115.46
1:05:00	0.00	0.00	8.83	18.07	27.17	47.46	58.66	79.10	108.58
1:10:00	0.00	0.00	7.58	15.82	24.68	41.93	52.17	70.10	96.82
1:15:00	0.00	0.00	6.32	13.34	22.21	36.21	45.44	60.24	83.96
1:20:00	0.00	0.00	5.17	11.32	19.53	30.22	38.12	50.19	70.48
1:25:00	0.00	0.00	4.44	9.90	17.06	25.69	32.48	42.48	59.86
1:30:00	0.00	0.00	3.90	8.75	14.86	22.10	27.97	36.44	51.41
1:35:00	0.00	0.00	3.45	7.73	12.93	19.14	24.24	31.47	44.41
1:40:00	0.00	0.00	3.01	6.64	11.18	16.51	20.91	27.08	38.20
1:45:00	0.00	0.00	2.58	5.59	9.55	14.15	17.92	23.08	32.56
1:50:00	0.00	0.00	2.15	4.57	8.00	11.92	15.10	19.34	27.29
1:55:00	0.00	0.00	1.71	3.58	6.47	9.79	12.40	15.84	22.35
2:00:00	0.00	0.00	1.27	2.61	4.91	7.75	9.83	12.59	17.75
2:05:00	0.00	0.00	0.82	1.68	3.40	5.67	7.21	9.31	13.11
2:10:00	0.00	0.00	0.44	1.04	2.43	3.66	4.75	6.24	8.98
2:15:00	0.00	0.00	0.26	0.71	1.86	2.40	3.20	4.22	6.24
2:20:00	0.00	0.00	0.17	0.52	1.45	1.62	2.22	2.91	4.42
2:25:00	0.00	0.00	0.13	0.38	1.13	1.11	1.56	1.99	3.09
2:30:00	0.00	0.00	0.10	0.28	0.86	0.75	1.08	1.32	2.10
2:35:00	0.00	0.00	0.08	0.21	0.64	0.51	0.75	0.83	1.38
2:40:00	0.00	0.00	0.06	0.15	0.46	0.33	0.50	0.48	0.84
2:45:00	0.00	0.00	0.04	0.11	0.31	0.21	0.32	0.26	0.49
2:50:00	0.00	0.00	0.03	0.07	0.21	0.14	0.21	0.17	0.32
2:55:00	0.00	0.00	0.03	0.05	0.14	0.10	0.15	0.12	0.22
3:00:00	0.00	0.00	0.02	0.04	0.10	0.08	0.11	0.10	0.17
3:05:00	0.00	0.00	0.02	0.02	0.07	0.06	0.09	0.07	0.13
3:10:00	0.00	0.00	0.01	0.01	0.05	0.04	0.06	0.06	0.10
3:15:00	0.00	0.00	0.01	0.01	0.04	0.03	0.05	0.04	0.07
3:20:00	0.00	0.00	0.00	0.00	0.02	0.02	0.03	0.03	0.05
3:25:00	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.02	0.03
3:30:00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.02
3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft^{2}]	Area [acres]	Volume [ft^{3}]	Volume [ac-ft]	Total Outflow [cfs]	
7322	0.00	49	0.001	0	0.000	0.00	For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.
7323	1.00	2,950	0.068	1,499	0.034	0.04	
7324	2.00	8,352	0.192	7,150	0.164	0.09	
7325	3.00	13,337	0.306	17,995	0.413	5.65	
7326	4.00	16,699	0.383	33,013	0.758	29.52	
7327	5.00	20,465	0.470	51,595	1.184	68.80	Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).
7328	6.00	24,598	0.565	74,126	1.702	82.80	
7329	7.00	30,068	0.690	101,459	2.329	250.48	
7330	8.00	35,153	0.807	134,070	3.078	614.77	

MHFD-Detention, Version 4.04 (February 2021)													
Project:	Some filing 3												
Basin ID: POND 1 (BASIN H1+H4)_Original													
Depth Increment $=$ \square ft													
PERMANENT— Example Zon	onfiguration (Rete	ion Pond)	Stage - Storage Description	$\begin{gathered} \text { Stage } \\ (\mathrm{tt}) \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \text { Optional } \\ \text { Ooveride } \\ \text { Stage (ft) } \end{array}$	$\underset{\text { (t) }}{\substack{\text { Length }}}$	$\begin{gathered} \text { Width } \\ (\text { (t) } \end{gathered}$	Area $\left(\mathrm{ft}^{2}\right)$	Optional Override Area $\left(\mathrm{ft}^{2}\right)$	$\begin{aligned} & \text { Area } \\ & \text { (acre) } \end{aligned}$	$\begin{gathered} \text { Volume } \\ \left(\mathrm{ta}^{3}\right) \end{gathered}$	$\begin{aligned} & \text { Volume } \\ & (\mathrm{ac}-\mathrm{ft}) \end{aligned}$	
Watershed Information			Top of Micropool	-	0.00		(300	0.007			
Selected BMP Type =	acres			--	1.00	--	--	--	3,300	0.076	1,800	0.041	
				--	3.00	--	--	--	8,000	0.184	13,100	0.301	
Watershed Length to Centroid	${ }^{\text {t }}$			--	5.00	--	--	--	15,000	0.344	36,100	0.829	
	${ }^{\text {ft }}$			--	7.50	-	--	--	18,000	0.413	77,350	1.776	
Watershed Slope =	f/t			-		-	-	-					
Watershed Imperiousness $=$	percent			-		-	-	--					
Percentage Hydrologic Soil Group $\mathrm{A}=$	percent			-		-	--	-					
Percentage Hydrologic Soil $\operatorname{Group~} \mathrm{B}=$	percent			-		--	-	--					
Percentage Hydrologic Soil Groups $\mathrm{C} / \mathrm{D}=$	percent			-		-	-	--					
$\begin{aligned} \text { Target WQCV Drain Time } & =40.0 \\ \text { Location for 1-hr Rainfall Depths } & =\text { User Input } \end{aligned}$				-		-	-	-					
				-		-	-	-					
After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.		Optional User Overrides		-		\cdots	-	--					
			-		-	-	-						
			-		-	--	-						
Water Quality Capture Volume (WOCV) $=$	acre-feet		acre-feet		-		-	-	-				
Exess Urban Runoff Volume (EURV) $=$	acre-feet		acre-feet		-		-	-	--				
2 -yr Runoff Volume ($\mathrm{P}=1.19 \mathrm{in}$.) $)=$	acre-feet	1.19 inches		-		-	-	-					
5 -yr Runoff Volume ($\left.\mathrm{P}^{1}=1.5 \mathrm{in}.\right)=$	acre-feet	1.50 inches		-		--	--	-					
10-yr Runoff Volume (P1 = 1.75 in .) $)=$	acre-feet	1.75 inches		-		-	-	-					
$25 . y r$ Runoff Volume ($\mathrm{P} 1=2 \mathrm{in}.)=$	acre-feet acre-feet	2.00 inches		-		-	-	--					
$50-\mathrm{yr}$ Runoff Volume ($\mathrm{P}_{1}=2.25 \mathrm{in}$.) $=$	4.211 acre-feet	2.25 inches		-		-	--	--					
$100-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2.52 \mathrm{in}$. $)=$		2.52 inches		-		-	-	-					
$500-y \mathrm{y}$ Runoff Volume ($\mathrm{P} 1=3.14 \mathrm{in}$. $)=$	7.535 acre-feet	inches		-		-	--	--					
Approximate 2 -yr Detention Volume $=$				-		-	-	--					
Approximate 5 -yr Detention Volume $=$	acre-feet acre-feet			-		-	-	-					
Approximate 10-yr Detention Volume $=$	0.732 acre-feet			-		-	-	-					
Approximate 25 -yr Detention Volume $=$	acre-feet acre-feet			-		-	-	--					
Approximate $50-y \mathrm{yr}$ Detention Volume $=$	acre-feet acre-feet			-		-	-	--					
Approximate 100-yr Detention Volume $=$				-		-	-	-					
				-		-	-	-					
Define Zones and Basin Geometry				-		-	-	--					
Zone 1 Volume (WQCV) $=$	acre-feet			-		-	-	--					
Zone 2 Volume (EURV - Zone 1) = Zone 3 Volume (100-year - Zones $1 \& 2$) $=$	acre-feet			--		--	-	-					
	acre-feet			\cdots		-	-	-					
Zone 3 Volume (100-year - Zones $1 \& 2$) $=$ Total Detention Basiin Volume $=$	1.300 acre-feet			-		-	-	--					
	user ft^{3}			-		-	--	--					
Initial Surcharge Depth (ISD)	${ }^{\text {t }}$			-		-	-	-					
Total Availabl Detention Depth (Hotal) $=$	ft			-		-	\cdots	-					
Depth of Trickle Channel ($\mathrm{H}_{\text {TC }}$) $=$	-			-		-	--	-					
Slope of Trickle Channel ($\mathrm{S}_{\text {C }}$) $=$	t / t			-		-	-	-					
Slopes of Main Basin Sides ($S_{\text {main }}$)	H:V			-		-	-	--					
Basin Length-to-With Ratio (R_{4}) $=$				\cdots		\cdots	-	-					
				-		-	--	--					
Initial Surcharge Area (Ass) $=$	ft^{2}			-		-	-	-					
Surcharge Volume Length (LLsv) =				-		-	-	-					
Surcharge Volume Width ($W_{\text {LSV }}$) $=$				-		-	-	-					
Depth of Basin Floor ($\mathrm{H}_{\text {FLoor }}$) $=$	user ft			-		-	-	-					
Length of Basin Floor (LLiLOok) $=$				-		-	-	--					
Width of Basin Floor ($\mathrm{W}_{\text {fioor }}$) $=$	$\mathrm{ft}^{\text {t }}$			-		-	-	-					
Area of Basin Floor (Afiook) $=$	${ }_{\text {user }} \mathrm{ft}^{2}$			\cdots		-	\cdots	-					
Volume of Basin Floor ($\left.\mathrm{V}_{\text {Flooor }}\right)=$	${ }_{\text {user }} \mathrm{f}^{\text {a }}$			-		-	--	--					
Depth of Main Basin ($\mathrm{H}_{\text {man }}$) $=$	${ }_{\text {user }}{ }^{\text {t }}$			-		-	-	--					
Length of Main Basin (LManN) $=$ Width of Main Basin $\left(W_{\text {Man }}\right)=$				\cdots		--	$\stackrel{-}{-}$	--					
Area of Main Basin ($\mathrm{Aman}^{\text {a }}$) $=$	$\underbrace{}_{\text {acre-feet }}$			-		-	-	--					
Volume of Main Basin ($V_{\text {ManN }}$) $=$				-		-	-	-					
Calculated Total Basin Volume (V total $)=$				-		-	-	--					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	-	\because					
				\cdots		\cdots	\cdots	\because					
				\cdots		\cdots	\cdots	\because					
				\cdots		\cdots	\cdots	\cdots					
				-		-	-	\because					
				\cdots		\cdots	\cdots	-					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	-					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				-		-	-	\cdots					
				\cdots		\cdots	\cdots	$-$					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	-	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				--		--	--	--					
				\cdots		\cdots	-	\cdots					

DETENTION BASIN OUTLET STRUCTURE DESIGN

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Underdrain Orifice Invert Depth $=$ N/A ft (distance below the filtration media surface) inches

Underdrain Orifice Area	$=$Calculated Parameters Underdrain Orifice Centroid $=$ N/A ft^{2} feet

User In		Weir (typically used to drain WQCV and/or E	MP)	ted P	ters
Invert of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	WQ Orifice Area per Row =	N/A	ft^{2}
Depth at top of Zone using Orifice Plate $=$	2.13	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Elliptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	Elliptical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row =	N/A	inches	Elliptical Slot Area =	N/A	ft^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

	Zone 3 Weir	Not Selected	t (relat
Overflow Weir Front Edge Height, Ho =	2.60	N/A	
Overflow Weir Front Edge Length =	6.00	N/A	feet
Overflow Weir Grate Slope =	4.00	N/A	$\mathrm{H}: \mathrm{V}$
Horiz. Length of Weir Sides =	6.00	N/A	eet
Overflow Grate Type =	Type C Grate	N/A	
Debris Clogging \% =	50\%	N/A	\%

No Outlet Pipe)	Calculated Parameters for Overflow Weir		
	Zone 3 Weir	Not Selected	
= 0 ft) Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	4.10	N/A	fe
Overflow Weir Slope Length =	6.18	N/A	
Grate Open Area / 100-yr Orifice Area =	5.63	N/A	
Overflow Grate Open Area w/o Debris =	25.83	N/A	ft^{2}
Overflow Grate Open Area w/ Debris =	12.91	N/A	

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate				
mat Stage $=0 \mathrm{ft}$)		Zone 3 Restrictor	Not Selected	ft^{2}
	Outlet Orifice Area $=$	4.59	N/A	
	Outlet Orifice Centroid =	1.17	N/A	
Half-Central An	Restrictor Plate on Pipe $=$	2.44	N/A	radians

Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =		
	6.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
	35.00	feet
	4.00	H:V
	0.82	feet

| | Calculated Parameters for Spillway | |
| ---: | :--- | ---: | :--- |
| Spillway Design Flow Depth | $=0.68$ | feet |
| Stage at Top of Freeboard | $=1.50$ | feet |
| Basin Area at Top of Freeboard | $=10.41$ | acres |
| Basin Volume at Top of Freeboard | $=1.78$ | acre-ft |

$$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.172	0.241	0.727	1.536	2.303	3.368	4.211	5.381	7.535
Inflow Hydrograph Volume (acre-ft)	N/A	N/A	0.727	1.536	2.303	3.368	4.211	5.381	7.535
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	8.8	18.4	25.6	39.7	49.0	61.4	84.6
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.22	0.45	0.62	0.97	1.19	1.50	2.06
Peak Inflow Q (cfs) =	N/A	N/A	10.5	20.2	27.4	41.4	50.8	63.0	86.2
Peak Outflow Q (cfs) =	0.1	0.2	5.1	14.2	21.2	35.3	44.3	51.8	81.0
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.8	0.8	0.9	0.9	0.8	1.0
Structure Controlling Flow =	Plate	Overflow Weir 1	Outlet Plate 1	Spillway					
Max Velocity through Grate 1 (fps) $=$	N/A	0.00	0.19	0.5	0.8	1.4	1.7	2.0	2.1
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	44	51	45	36	30	23	19	14	6
Time to Drain 99\% of Inflow Volume (hours) =	48	55	54	49	45	40	38	34	29
Maximum Ponding Depth (ft) =	2.21	2.66	3.38	3.96	4.29	4.81	5.11	5.68	6.38
Area at Maximum Ponding Depth (acres) =	0.14	0.17	0.21	0.26	0.29	0.33	0.35	0.36	0.38
Maximum Volume Stored (acre-ft)	0.172	0.241	0.374	0.511	0.602	0.765	0.863	1.069	1.330

DETENTION BASIN OUTLET STRUCTURE DESIGN

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	0:15:00	0.00	0.00	0.03	0.05	0.07	0.05	0.06	0.06	0.08
	0:20:00	0.00	0.00	0.13	0.61	0.96	0.13	0.23	0.39	0.91
	0:25:00	0.00	0.00	1.85	9.00	14.33	1.76	3.97	5.95	14.02
	0:30:00	0.00	0.00	7.72	17.54	24.53	22.48	29.30	34.88	51.87
	0:35:00	0.00	0.00	10.11	20.20	27.44	35.69	44.58	54.60	76.55
	0:40:00	0.00	0.00	10.50	19.85	26.79	41.36	50.84	62.14	85.50
	0:45:00	0.00	0.00	9.56	18.28	25.04	41.25	50.48	63.03	86.18
	0:50:00	0.00	0.00	8.45	16.79	23.01	39.86	48.72	61.00	83.36
	0:55:00	0.00	0.00	7.48	15.05	21.03	36.95	45.27	57.67	78.87
	1:00:00	0.00	0.00	6.61	13.50	19.46	33.73	41.51	54.17	74.32
	1:05:00	0.00	0.00	5.95	12.26	18.24	31.13	38.49	51.46	70.78
	1:10:00	0.00	0.00	5.32	11.16	17.13	28.25	35.15	46.89	64.89
	1:15:00	0.00	0.00	4.70	9.94	16.01	25.43	31.87	41.99	58.57
	1:20:00	0.00	0.00	4.08	8.67	14.29	22.38	28.10	36.75	51.37
	1:25:00	0.00	0.00	3.48	7.42	12.30	19.39	24.34	31.69	44.29
	1:30:00	0.00	0.00	2.94	6.45	10.71	16.47	20.73	27.01	37.89
	1:35:00	0.00	0.00	2.58	5.78	9.52	14.27	18.00	23.41	32.96
	1:40:00	0.00	0.00	2.33	5.17	8.54	12.59	15.91	20.65	29.11
	1:45:00	0.00	0.00	2.11	4.60	7.65	11.19	14.15	18.29	25.81
	1:50:00	0.00	0.00	1.90	4.07	6.84	9.94	12.57	16.19	22.86
	1:55:00	0.00	0.00	1.68	3.56	6.04	8.81	11.14	14.27	20.15
	2:00:00	0.00	0.00	1.46	3.08	5.23	7.73	9.79	12.47	17.61
	2:05:00	0.00	0.00	1.23	2.59	4.42	6.66	8.42	10.73	15.13
	2:10:00	0.00	0.00	1.02	2.12	3.64	5.62	7.10	9.09	12.78
	2:15:00	0.00	0.00	0.80	1.66	2.90	4.61	5.82	7.49	10.51
	2:20:00	0.00	0.00	0.59	1.20	2.20	3.62	4.57	5.91	8.29
	2:25:00	0.00	0.00	0.37	0.76	1.54	2.64	3.34	4.36	6.10
	2:30:00	0.00	0.00	0.19	0.47	1.10	1.69	2.18	2.90	4.16
	2:35:00	0.00	0.00	0.11	0.32	0.85	1.11	1.47	1.96	2.89
	2:40:00	0.00	0.00	0.08	0.24	0.66	0.75	1.02	1.35	2.04
	2:45:00	0.00	0.00	0.06	0.18	0.52	0.51	0.72	0.92	1.43
	2:50:00	0.00	0.00	0.05	0.13	0.40	0.34	0.49	0.61	0.97
	2:55:00	0.00	0.00	0.03	0.10	0.30	0.23	0.34	0.38	0.63
	3:00:00	0.00	0.00	0.03	0.07	0.21	0.15	0.23	0.22	0.38
	3:05:00	0.00	0.00	0.02	0.05	0.15	0.10	0.15	0.12	0.22
	3:10:00	0.00	0.00	0.02	0.04	0.10	0.07	0.10	0.08	0.15
	3:15:00	0.00	0.00	0.01	0.02	0.06	0.05	0.07	0.06	0.10
	3:20:00	0.00	0.00	0.01	0.02	0.05	0.04	0.05	0.05	0.08
	3:25:00	0.00	0.00	0.01	0.01	0.03	0.03	0.04	0.04	0.06
	3:30:00	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.03	0.05
	3:35:00	0.00	0.00	0.00	0.00	0.02	0.01	0.02	0.02	0.03
	3:40:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.02
	3:45:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN
MHFD-Detention, Version 4.04 (February 2021)
Summary Staqe-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points

Stage - Storage Description	Stage [tt]	$\begin{aligned} & \text { Area } \\ & {\left[\mathrm{ft}^{2}\right]} \end{aligned}$		Volume $\left[t^{3}\right]$	$\begin{aligned} & \text { Volume } \\ & \text { [ac-ft] } \end{aligned}$	$\begin{gathered} \text { Total } \\ \hline \text { Outflow } \\ \text { [cfs] } \end{gathered}$	
7310	0.00	300	0.007	0	0.000	0.00	For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'. Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).
7311	1.00	3,300	0.076	1,800	0.041	0.04	
7312	2.00	5,650	0.130	6,275	0.144	0.08	
7313	3.00	8,000	0.184	13,100	0.301	1.69	
7314	4.00	11,500	0.264	22,850	0.525	14.99	
7315.5	5.50	15,600	0.358	43,750	1.004	50.98	
7316	6.00	16,200	0.372	51,700	1.187	53.32	
7317	7.00	17,400	0.399	68,500	1.573	172.32	
7317.50	7.50	18,000	0.413	77,350	1.776	279.15	

Kimley » Horn
Extended Detention Basin (EDB) Calculations

Project	Winsome Filing 3 - Pond 1	
Date	$9 / 15 / 2022$	Manual Input
Prepared By	TOS	Multipliers

Checked By

Release Factor:	0.02

Forebay Release and Configuration: Release 2\% of the undetained 100-year peak discharge by way of a				
wall/notch or berm/pipe configuration				

Maximum Forebay Depth						
Forebay	Impervious Area in Watershed (ac)	Maximum Forebay Depth (in)	Design Forebay Depth (in)	Design Forebay Depth (ft)		
A	2.93	18	18	1.5		

Minimum Forebay Volume Required: 3\% WQCV							Volume Factor:	0.03
Forebay	WQCV (ac-ft)	Required Volume (acft)	Required Volume (cf)	Total Length (ft)	Total Width (ft)	Design Volume (cf)		
A	0.172	0.01	225	15	23	517.5		

Kimley»Horn

Project: Winsome Filing 3 -Pond 1
Date: 12/13/2021

Emergency Overflow Weir Calculation

Q (ffs) $=$	104.7	(100-yr peak inflow)
$\mathrm{Cbcw}_{\text {g }}=$	3	
z =	4	
$\mathrm{H}=$	0.7	
$L(f t)=$	57.35	Rounded to 60

$$
\begin{gathered}
Q=C_{B C W} L H^{1.5}+2\left[(2 / 5) C_{B C W} Z H^{2.5}\right] \\
\text { rearrange to solve for length: } \\
L=\frac{Q-(4 / 5) C_{B C W} Z H^{2.5}}{C_{B C W} H^{1.5}}
\end{gathered}
$$

Figure 12-20. Sloping broad-crest weir

Horizontal Broad Crested Weir Equation (from USDCM Eqn. 12-8)

$$
\begin{aligned}
& Q=C_{B C W} L H^{1.5} \\
& \text { Where: } \\
& \qquad Q=\text { discharge (cfs) } \\
& C_{B C W}=\text { broad-crested weir coefficient (This ranges from } 2.6 \text { to } 3.0 \text {. A value of } 3.0 \text { is often used in } \\
& \text { practice.) See Hydraulic Engineering Circular No. } 22 \text { for additional information. } \\
& L=\text { broad-crested weir length (} \mathrm{ft} \text {) } \\
& \quad H=\text { head above weir crest (} \mathrm{ft} \text {) }
\end{aligned}
$$

Sloping Broad Crested Weir Equation (from USDCM Eqn. 12-9)

$$
Q=\left(\frac{2}{5}\right) C_{B C W} Z H^{2.5}
$$

Where
$Q=$ discharge (cfs)
$C_{B C W}=$ broad-crested weir coefficient (This ranges from 2.6 to 3.0 . A value of 3.0 is often used in practice.) See Hydraulic Engineering Circular No. 22 for additional information.
$Z=$ side slope (horizontal: vertical)
$H=$ head above weir crest (ft)
Note that in order to calculate the total flow over the weir depicted in Figure 12-20, the results from Equation 12-8 must be added to two times the results from Equation 12-9.
Chapter 12 Pond 1 Spillway Storage

EMERGENCY SPILLWAY SECTION AND SPILLWAY CHANNEL

Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County) $104.7 \mathrm{cfs} / 60 \mathrm{ft}=1.75$

MHFD-Detention, Version 4.04 (February 2021)													
Project: WINSOME FILING 3 Basin ID: POND 2 (BASIN H6B+H2)_Modified Area													
PERMANENT- Example Zone Configuration (Retention Pond)			Stage - Storage Description	$\begin{gathered} \text { Stage } \\ (\mathrm{tt}) \end{gathered}$	Override Stage Stage (ft)	$\underset{\substack{\text { Length } \\(t t)}}{ }$	Wiath (ft)	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{ft}^{2}\right) \end{aligned}$	$\begin{array}{\|l\|l} \\ \text { Override } \\ \text { Area }\left(\mathrm{ft}^{2}\right) \end{array}$	$\begin{gathered} \text { Ar } \\ (\text { acre } \end{gathered}$	$\begin{gathered} \text { Volume } \\ \left(\mathrm{ft}^{3}\right) \end{gathered}$	$\begin{gathered} \text { Volume } \\ \text { (ac-ft) } \end{gathered}$	
Watershed Information			Top of Micropool	--	0.00	--	--	--	135	0.003			
Selected BMP Type = Watershed Area $=$	EDB		7301	.-	1.00	.-	-	.-	3,562	0.082	1,848	0.042	
	acres		7302	-	2.00	-	-	-	${ }^{8,486}$	0.195	7,872	0.181	
Watershed Length = Watershed Length to Centroid =	tt		7303	\cdots	3.00	\cdots	\cdots	\cdots	13,569	0.312	18,900	0.434	
			7304	\cdots	4.00	\cdots	\cdots	\cdots	18,029	0.414	34,699	0.797	
Watershed Slope $=$	${ }_{\text {f/t }}^{\text {t/ }}$		7305	\cdots	5.00	-	-	-	22,236	0.510	54,831	1.259	
Watershed I Imperiousness $=$	percent		7306	-	6.00	\cdots	-	-	26,181	0.601	79,040	1.815	
Percentage Hydrologic Soil Group $\mathrm{A}=$	percent		7307	..	7.00	..	-	-	30,248	0.694	107,254	2.462	
	0.0\% percent		7308	\cdots	8.00	-	.-	\cdots	34,723	0.797	139,740	3.208	
	percent			..		\cdots	-	-					
Percentage Hydrologic Soil Groups C/D $=$ Target WQCV Drain Time =				.-	-					
Location for 1-hr Rainfall Depths = User Input				-		\cdots	-	-					
After providing required inputs above including 1 -hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.		Optional User Overrides		\cdots		\cdots	\cdots	\cdots					
			\cdots		\cdots	.-	\cdots						
Water Quality Capture Volume (wocv) = Excess Urban Runoff Volume (EURV) $=$ 2.yr Runoff Volume ($\mathrm{P} 1=1.19 \mathrm{in}.)=$ 5.yr Runoff Volume ($\mathrm{P}=1.5 \mathrm{in}$.) $=$	acre-feet		0.267 acre-feet		.-		-	.-	-				
	0.384 acre-	0.384 acre-feet		-		-	-	-					
	1.313 acre-feet	1.19 inches		-		-	.-	-					
	2.686 acre-fe	1.50 inches		.-		.-	-	-					
$\begin{array}{r} \text { 10-yr Runoff Volume }(\mathrm{P} 1=1.75 \mathrm{in} .)= \\ 25 \text {-yr Runoff Volume }(\mathrm{P} 1=2 \mathrm{in} .)= \end{array}$	3.969 acre-feet	1.75 inches		.-		.-	-	-					
	acre-feet	2.00 inches		.-		-	.-	\cdots					
$50-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2.25 \mathrm{in}$.) = $100-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2.52 \mathrm{in}$.) $=$	7.125 acre-feet	2.25 inches		.-		-	\cdots	\cdots					
	9.058 acre-feet	2.52 inches		-		..	.-	.-					
100 -yr Runoff Volume ($\mathrm{P} 1=2.52 \mathrm{in}$.) $=$ 500 -yr Runoff Volume ($\mathrm{P} 1=3.14 \mathrm{in}$.) $=$	12.632 acre-feet	\square inches		\cdots		-	-	\cdots					
Approximate 2 -yr Detention Volume $=$	0.380 acre-feet			-		\cdots	-	\cdots					
Approximate 5-yr Detention Volume $=$	0.970 acre-feet			-		-	.-	-					
Approximate 10-yr Detention Volume $=$	1.328 acre-feet			.-		.-	..	-					
Approximate 25-yr Detention Volume $=$	1.593 acre-feet			..		\cdots	-	-					
Approximate 50-yr Detention Volume $=$	1.641 acre-feet			.-		-	.-	.-					
Approximate 100 -yr Detention Volume $=$	2.320 acre-feet			.		\cdots	..	-					
				.		.	.	\cdots					
Define Zones and Basin GeometryZone 1 Volume (WOCV)				-		-	-	-					
	0.267 acre-feet			-		-	-	-					
	0.117 acre-feet			-		-	.-	-					
Zone 2 Volume (EURV - Zone 1) = Zone 3 Volume (100-year - Zones $1 \& 2$) =	1.936 acre-feet			-		\cdots	-	-					
Total Detention Basin Volume $=$ Initial Surcharge Volume (ISV) $=$	2.320 acre-feet			\cdots		\cdots	-	-					
				.-		\cdots	-	\cdots					
	user ft			\cdots		\cdots	-	-					
Initial Surcharge Depth (ISD) = Total Available Detention Depth $\left(\mathrm{H}_{\text {total }}\right)=$	user			-		-	.-	-					
Total Available Detention Depth $\left(\mathrm{H}_{\text {total }}\right)=$ Depth of Trickle Channel $\left(\mathrm{H}_{\mathrm{TC}}\right)=$	user			-		\cdots	.-	\cdots					
Slope of Trickle Channel (STC $^{\text {c }}$)	user			\cdots		\cdots	-	-					
Slopes of Main Basin Sides ($\mathrm{S}_{\text {main }}$) $=$ Basin Length-to-Width Ratio $($ R $u w)=$	user			-		\cdots	.-	.-					
				-		\cdots	-	-					
	user			\cdots		\cdots	.-	.-					
Initial Surcharge Area (Aisv) =	user			-		\cdots	-	-					
Surcharge Volume Length (LLsv) $=$	user			-		-	--	-					
Surcharge Volume Width ($W_{\text {ISV }}$) $=$	user			\cdots		-	-	-					
Depth of Basin Floor (Hflook) =	user			\cdots		\cdots	-	.-					
Length of Basin Floor (Lfiook) =	user			.-		-	.-	-					
Width of Basin Floor ($\left.\mathrm{W}_{\text {flook }}\right)=$	user ft			.-		.-	.-	.-					
Area of Basin Floor (Aflion) $=$	user ft^{2}			\cdots		\cdots	-	-					
Volume of Basin Floor ($\left.\mathrm{V}_{\text {FLook }}\right)=$	user			\cdots		\cdots	.-	.-					
Depth of Main Basin ($\mathrm{H}_{\text {Mank }}$) $=$	user			\cdots		\cdots	\cdots	\cdots					
Length of Main Basin (LMank) =	user			\cdots		\cdots	-	\cdots					
Width of Main Basin ($W_{\text {Mank }}$) $=$	user			-		.-	-	.-					
Area of Main Basin (Aman) $=$	user ft^{2}			\cdots		\cdots	-	\cdots					
Calculated Total Basin Volume ($\left.\mathrm{V}_{\text {total }}\right)=$	${ }_{\text {user }}^{\text {user }} \int_{\text {acre-feet }}{ }^{\text {a }}$			\cdots		\cdots	-	\cdots					
				\cdots		\cdots	\cdots	\cdots					
	user acre-feet			\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		-	-	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				-		-	.-	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				..		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				.-		.-	.-	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				-		.-	-	\cdots					
				\cdots		\cdots	.	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				--		\cdots	-	.-					
				-		.	.-	-					
				\cdots		\cdots	.	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				\cdots		\cdots	\cdots	\cdots					
				-		-	.-	\cdots					

Project: WINSOME FILING 3

Basin ID: POND 2 (BASIN H6B+H2)_Modified Area

	Estimated Stage (ft)	Estimated Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.40	0.267	Orifice Plate
Zone 2 (EURV)	2.84	0.117	Orifice Plate
Zone 3 (100-year)	6.80	1.936	Weir\&Pipe (Restrict)
	otal (all zo	2.320	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

> Underdrain Orifice Invert Depth $=\square \mathrm{ft}$ (distance below the filtration media surface) \quad Underdrain Orifice Diameter $=\square$ inches

Underdrain Orifice Area	$=\square$
Calculated Parameters ft	
Underdrain Orifice Centroid	$=\square$ ft

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

	Calculated Parameters for Plate	
WQ Orifice Area per Row =	N/A	$1 \mathrm{ft}^{2}$
Elliptical Half-Width $=$	N/A	feet
Elliptical Slot Centroid $=$	N/A	feet
Elliptical Slot Area $=$	N/A	ft^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.80	1.60					
Orifice Area (sq. inches)	1.10	1.10	1.20					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches	Calculated Parameters for Vertical Orific		
	Not Selected	Not Selected		Vertical Orifice Area = Vertical Orifice Centroid =	Not Selected	Not Selected
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A			N/A	N/A
Vertical Orifice Diameter $=$	N/A	N/A				

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectanqular/Trapezoidal Weir (and No Outlet Pipe)

Overflow Weir Front Edge Height, Ho =	Zone 3 Weir	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ feet
	2.90	N/A	
Overflow Weir Front Edge Length =	15.00	N/A	
Overflow Weir Grate Slope =	4.00	N/A	H:V
Horiz. Length of Weir Sides $=$	6.00	N/A	feet
Overflow Grate Type =	Type C Grate	N/A	
Debris Clogging \% =	50\%	N/A	\%

Pipe)	Calculated Parameters for Overflow We	
	Zone 3 Weir	Not Selected
Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	4.40	N/A
Overflow Weir Slope Length $=$	6.18	N/A
Grate Open Area / 100-yr Orifice Area $=$	8.87	N/A
Overflow Grate Open Area w/o Debris =	64.57	N/A
Overflow Grate Open Area w/ Debris $=$	32.28	N/A

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

t Stage $=0 \mathrm{ft}$)		Zone 3 Restrictor	Not Selected
	Outlet Orifice Area $=$ Outlet Orifice Centroid =	7.28	N/A
		1.28	N/A
Half-Central		1.70	N/A

User Input: Emergency Spillway (Rectangular or Trapezoidal)

	Calculated Parameters for Spillway
Spillway Design Flow Depth	$=0.70$
Stage at Top of Freeboard	$=$feet 7.70 feet
Basin Area at Top of Freeboard	$=0.77$
Basin Volume at Top of Freeboard	$=2.97$

$\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=}$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).							
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52
CUHP Runoff Volume (acre-ft) $=$	0.267	0.384	1.313	2.686	3.969	5.724	7.125	9.058
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	1.313	2.686	3.969	5.724	7.125	9.058
CUHP Predevelopment Peak Q (cfs) $=$	N/A	N/A	16.1	32.7	45.3	69.8	85.8	107.3
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A						
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.24	0.48	0.67	1.03	1.26	1.58
Peak Inflow Q (cfs) =	N/A	N/A	19.6	36.7	49.3	73.4	89.9	110.4
Peak Outflow Q (cfs) $=$	0.1	0.2	9.9	25.6	37.6	62.0	77.7	96.5
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.8	0.8	0.9	0.9	0.9
Structure Controlling Flow $=$	Plate	Plate	Overflow Weir 1	Outlet Plate 1				
Max Velocity through Grate 1 (fps) =	N/A	N/A	0.15	0.4	0.6	1.0	1.2	1.5
Max Velocity through Grate 2 (fps) =	N/A							
Time to Drain 97% of Inflow Volume (hours) $=$	41	49	45	37	31	25	21	15
Time to Drain 99% of Inflow Volume (hours) $=$	44	53	54	48	45	41	39	35
Maximum Ponding Depth (ft) =	2.40	2.84	3.65	4.23	4.57	5.14	5.46	5.86
Area at Maximum Ponding Depth (acres) $=$	0.24	0.29	0.38	0.44	0.47	0.52	0.55	0.59
Maximum Volume Stored (acre-ft) =	0.268	0.386	0.658	0.894	1.048	1.331	1.503	1.731

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.03
	0:15:00	0.00	0.00	0.08	0.12	0.15	0.10	0.13	0.13	0.19
	0:20:00	0.00	0.00	0.30	1.23	1.90	0.31	0.50	0.80	1.82
	0:25:00	0.00	0.00	3.94	15.71	24.46	3.45	7.51	10.76	24.03
	0:30:00	0.00	0.00	14.11	31.27	43.51	38.00	49.61	59.01	87.95
	0:35:00	0.00	0.00	18.98	36.68	49.33	63.02	78.48	95.59	133.66
	0:40:00	0.00	0.00	19.65	35.86	47.83	73.41	89.85	109.53	150.06
	0:45:00	0.00	0.00	17.81	32.86	44.47	72.87	88.77	110.38	150.35
	0:50:00	0.00	0.00	15.64	29.98	40.63	70.00	85.19	106.37	144.73
	0:55:00	0.00	0.00	13.70	26.74	36.84	64.56	78.72	99.93	136.06
	1:00:00	0.00	0.00	12.05	23.98	34.06	58.49	71.67	93.22	127.41
	1:05:00	0.00	0.00	10.86	21.73	31.81	53.86	66.28	88.31	120.96
	1:10:00	0.00	0.00	9.62	19.64	29.64	48.68	60.25	80.26	110.52
	1:15:00	0.00	0.00	8.37	17.30	27.44	43.42	54.11	71.13	98.70
	1:20:00	0.00	0.00	7.14	14.84	24.27	37.71	47.09	61.39	85.40
	1:25:00	0.00	0.00	6.00	12.72	20.99	32.12	40.17	52.13	72.71
	1:30:00	0.00	0.00	5.15	11.22	18.43	27.37	34.34	44.46	62.26
	1:35:00	0.00	0.00	4.60	10.09	16.36	23.85	29.98	38.69	54.29
	1:40:00	0.00	0.00	4.13	8.96	14.55	21.00	26.42	34.01	47.75
	1:45:00	0.00	0.00	3.70	7.87	12.90	18.51	23.29	29.86	41.95
	1:50:00	0.00	0.00	3.28	6.84	11.38	16.26	20.47	26.11	36.70
	1:55:00	0.00	0.00	2.83	5.85	9.88	14.17	17.84	22.62	31.81
	2:00:00	0.00	0.00	2.38	4.89	8.33	12.17	15.33	19.35	27.22
	2:05:00	0.00	0.00	1.93	3.94	6.78	10.16	12.79	16.17	22.71
	2:10:00	0.00	0.00	1.48	3.01	5.29	8.18	10.29	13.08	18.33
	2:15:00	0.00	0.00	1.04	2.10	3.89	6.24	7.85	10.05	14.06
	2:20:00	0.00	0.00	0.63	1.33	2.73	4.36	5.52	7.14	10.06
	2:25:00	0.00	0.00	0.34	0.87	2.05	2.79	3.64	4.76	6.89
	2:30:00	0.00	0.00	0.23	0.64	1.61	1.89	2.53	3.28	4.87
	2:35:00	0.00	0.00	0.17	0.48	1.26	1.30	1.79	2.28	3.46
	2:40:00	0.00	0.00	0.13	0.36	0.98	0.90	1.26	1.55	2.41
	2:45:00	0.00	0.00	0.10	0.27	0.75	0.62	0.88	1.02	1.63
	2:50:00	0.00	0.00	0.08	0.20	0.55	0.42	0.61	0.63	1.05
	2:55:00	0.00	0.00	0.06	0.15	0.40	0.28	0.41	0.37	0.64
	3:00:00	0.00	0.00	0.05	0.10	0.27	0.19	0.27	0.22	0.40
	3:05:00	0.00	0.00	0.04	0.07	0.18	0.13	0.19	0.16	0.28
	3:10:00	0.00	0.00	0.03	0.05	0.13	0.10	0.14	0.12	0.21
	3:15:00	0.00	0.00	0.02	0.03	0.09	0.07	0.11	0.09	0.17
	3:20:00	0.00	0.00	0.02	0.02	0.07	0.06	0.08	0.07	0.13
	3:25:00	0.00	0.00	0.01	0.01	0.05	0.04	0.06	0.05	0.09
	3:30:00	0.00	0.00	0.01	0.01	0.03	0.03	0.04	0.04	0.07
	3:35:00	0.00	0.00	0.00	0.00	0.02	0.02	0.03	0.02	0.04
	3:40:00	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.01	0.02
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Project: WINSOME FILING 3

 Basin ID: POND 2 (BASIN H6B+H2)_Orginal

	Estimated Stage (ft)	Estimated Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.26	0.267	Orifice Plate
Zone 2 (EURV)	2.75	0.117	Orifice Plate
Zone 3 (100-year)	6.79	1.497	Weir\&Pipe (Restrict)
	otal (all zo	1.882	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

> | Underdrain Orifice Invert Depth | $=$ | N/A |
| ---: | :--- | :--- |
| Underdrain Orifice Diameter | $=$ | ft / A | Underdrain Orifice Diameter $=\begin{aligned} & \text { N/A } \\ & \text { inches }\end{aligned}$

Calculated Parameters for		
Underdrain Orifice Area $=$	N/A	ft^{2}
Underdrain Orifice Centroid $=$	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

	Calculated Parameters for Plate	
WQ Orifice Area per Row =	N/A	$1 \mathrm{ft}^{2}$
Elliptical Half-Width $=$	N/A	feet
Elliptical Slot Centroid $=$	N/A	feet
Elliptical Slot Area $=$	N/A	ft^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.42	0.84					
Orifice Area (sq. inches)	3.30	3.50	4.00					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Vertical Orifice Area $=$ Vertical Orifice Centroid =	Calculated Parameters for Vertical Orific	
	Not Selected	Not Selected			Not Selected	Not Selected
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A			N/A	N/A
Vertical Orifice Diameter $=$	N/A	N/A	inches			

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

Overflow Weir Front Edge Height, Ho =	Zone 3 Weir	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) feet
	1.30	N/A	
Overflow Weir Front Edge Length =	6.00	N/A	
Overflow Weir Grate Slope $=$	4.00	N/A	$\mathrm{H}: \mathrm{V}$
Horiz. Length of Weir Sides $=$	6.00	N/A	feet
Overflow Grate Type =	Type C Grate	N/A	
Debris Clogging \% =	50\%	N/A	\%

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Routed Hydrograph Results

The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).

WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52
0.267	0.384	1.066	2.180	3.220	4.645	5.781	7.350
N/A	N/A	1.066	2.180	3.220	4.645	5.781	7.350
N/A	N/A	12.0	24.6	33.9	52.9	65.1	81.4
N/A	N/A						
N/A	N/A	0.22	0.45	0.62	0.96	1.18	1.48
N/A	N/A	14.8	27.3	36.8	55.5	67.7	84.1
6.3	12.8	10.5	22.5	31.6	50.3	54.1	70.7
N/A	N/A	N/A	0.9	0.9	1.0	0.8	0.9
Overflow Weir 1	Outlet Plate 1	Spillway					
0.28	0.62	0.38	0.9	1.2	1.9	2.1	2.2
N/A							
A	7	7	5	4	3	3	3
9	9	9	8	7	6	6	5
2.25	2.75	2.43	3.03	3.37	3.98	4.70	5.74
0.22	0.26	0.23	0.28	0.30	0.33	0.37	0.42
0.267	0.385	0.307	0.457	0.557	0.744	0.995	1.408

DETENTION BASIN OUTLET STRUCTURE DESIGN
MHFD-Detention, Version 4.04 (February 2021)

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.02
	0:15:00	0.00	0.00	0.06	0.09	0.11	0.08	0.10	0.09	0.14
	0:20:00	0.00	0.00	0.22	0.91	1.40	0.23	0.37	0.59	1.34
	0:25:00	0.00	0.00	2.91	11.59	18.06	2.54	5.55	7.94	17.74
	0:30:00	0.00	0.00	10.42	23.10	32.15	28.05	36.63	43.57	64.95
	0:35:00	0.00	0.00	14.07	27.31	36.79	46.58	58.06	70.74	99.05
	0:40:00	0.00	0.00	14.79	27.26	36.47	54.78	67.18	81.91	112.55
	0:45:00	0.00	0.00	13.69	25.29	34.21	55.53	67.71	84.08	114.63
	0:50:00	0.00	0.00	12.12	23.31	31.61	53.67	65.38	81.62	111.22
	0:55:00	0.00	0.00	10.81	21.12	29.10	50.15	61.21	77.55	105.75
	1:00:00	0.00	0.00	9.62	19.03	26.92	46.07	56.43	73.17	99.99
	1:05:00	0.00	0.00	8.67	17.36	25.29	42.51	52.31	69.44	95.16
	1:10:00	0.00	0.00	7.80	15.93	23.89	38.80	48.03	63.74	87.84
	1:15:00	0.00	0.00	6.94	14.36	22.49	35.18	43.83	57.49	79.81
	1:20:00	0.00	0.00	6.11	12.69	20.37	31.29	39.06	50.81	70.70
	1:25:00	0.00	0.00	5.29	11.02	17.80	27.41	34.21	44.25	61.58
	1:30:00	0.00	0.00	4.51	9.53	15.40	23.62	29.49	38.11	53.10
	1:35:00	0.00	0.00	3.89	8.47	13.64	20.25	25.38	32.79	45.90
	1:40:00	0.00	0.00	3.51	7.61	12.28	17.84	22.41	28.87	40.51
	1:45:00	0.00	0.00	3.19	6.82	11.07	15.89	19.98	25.68	36.06
	1:50:00	0.00	0.00	2.90	6.08	9.98	14.21	17.87	22.86	32.14
	1:55:00	0.00	0.00	2.60	5.39	8.93	12.68	15.96	20.32	28.58
	2:00:00	0.00	0.00	2.29	4.73	7.85	11.27	14.19	17.96	25.27
	2:05:00	0.00	0.00	1.98	4.07	6.76	9.86	12.40	15.65	22.01
	2:10:00	0.00	0.00	1.67	3.42	5.70	8.47	10.65	13.47	18.90
	2:15:00	0.00	0.00	1.37	2.80	4.70	7.14	8.96	11.40	15.95
	2:20:00	0.00	0.00	1.08	2.19	3.75	5.84	7.33	9.36	13.08
	2:25:00	0.00	0.00	0.78	1.58	2.85	4.57	5.73	7.36	10.27
	2:30:00	0.00	0.00	0.50	1.00	1.98	3.30	4.16	5.37	7.50
	2:35:00	0.00	0.00	0.26	0.64	1.45	2.10	2.70	3.55	5.08
	2:40:00	0.00	0.00	0.17	0.46	1.14	1.40	1.86	2.43	3.57
	2:45:00	0.00	0.00	0.12	0.35	0.89	0.96	1.31	1.69	2.55
	2:50:00	0.00	0.00	0.09	0.26	0.70	0.67	0.93	1.16	1.78
	2:55:00	0.00	0.00	0.07	0.20	0.54	0.45	0.64	0.77	1.22
	3:00:00	0.00	0.00	0.06	0.15	0.41	0.32	0.45	0.49	0.80
	3:05:00	0.00	0.00	0.04	0.11	0.30	0.21	0.31	0.29	0.49
	3:10:00	0.00	0.00	0.03	0.08	0.21	0.14	0.21	0.16	0.30
	3:15:00	0.00	0.00	0.03	0.05	0.14	0.10	0.14	0.12	0.21
	3:20:00	0.00	0.00	0.02	0.04	0.09	0.07	0.10	0.09	0.15
	3:25:00	0.00	0.00	0.02	0.03	0.07	0.05	0.08	0.07	0.12
	3:30:00	0.00	0.00	0.01	0.02	0.05	0.04	0.06	0.05	0.09
	3:35:00	0.00	0.00	0.01	0.01	0.04	0.03	0.05	0.04	0.07
	3:40:00	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.03	0.05
	3:45:00	0.00	0.00	0.00	0.00	0.02	0.01	0.02	0.02	0.03
	3:50:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.02
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Kimley » Horn
Extended Detention Basin (EDB) Calculations

Project	Winsome Filing 3 - Pond 2	
Date	$9 / 15 / 2022$	Manual Input
Prepared By	TOS	Multipliers

Checked By

Release Factor:	0.02

Forebay Release and Configuration: Release 2\% of the undetained 100-year peak discharge by way of a				
wall/notch or berm/pipe configuration				

Maximum Forebay Depth						
Forebay	Impervious Area in Watershed (ac)	Maximum Forebay Depth (in)	Design Forebay Depth (in)	Design Forebay Depth (ft)		
A	4.68	18	18	1.5		

Minimum Forebay Volume Required: 3\% WQCV							Volume Factor:	0.03
Forebay	WQCV (ac-ft)	Required Volume (ac ft)	Required Volume (cf)	Total Length (ft)	Total Width (ft)	Design Volume (cf)		
A	0.267	7.00	304920	18	19	513		

Kimley»Horn

Project: Winsome Filing 3 -Pond 2
Date: 12/13/2021

Emergency Overflow Weir Calculation


```
orange cells require
``` input

Horizontal Broad Crested Weir Equation (from USDCM Eqn. 12-8)
\[
Q=C_{B C W} L H^{1.5} \quad \text { Equation 12-8 }
\]

Where
\(Q=\) discharge (cfs)
\(C_{B C W}=\) broad-crested weir coefficient (This ranges from 2.6 to 3.0. A value of 3.0 is often used in practice.) See Hydraulic Engineering Circular No. 22 for additional information.
\(L=\) broad-crested weir length (ft)
\(H=\) head above weir crest (ft)
Sloping Broad Crested Weir Equation (from USDCM Eqn. 12-9)
\[
Q=\left(\frac{2}{5}\right) C_{B C W} Z H^{2.5}
\]

Where:
\[
Q=\text { discharge (cfs) }
\]
\(C_{B C W}=\) broad-crested weir coefficient (This ranges from 2.6 to 3.0 . A value of 3.0 is often used in practice.) See Hydraulic Engineering Circular No. 22 for additional information.
\(Z=\) side slope (horizontal: vertical)
\(H=\) head above weir crest (ft)
Note that in order to calculate the total flow over the weir depicted in Figure 12-20, the results from Equation 12-8 must be added to two times the results from Equation 12-9.

EMERGENCY SPILLWAY SECTION AND SPILLWAY CHANNEL

Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County) \(110.4 \mathrm{cfs} / 60 \mathrm{ft}=1.84\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{MHFD-Detention, Version 4.04 (February 2021)} \\
\hline Project: & Insome fling 3 & & & & & & & & & & & \\
\hline \multicolumn{13}{|c|}{Basin ID: POND 4 (BASIN H3 + H7A + H7B + 11)_Modified Area} \\
\hline \multicolumn{13}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & & & & & & & & & & \\
\hline & & & \[
\begin{gathered}
\text { Stage - Storage } \\
\text { Description } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Stage } \\
(\mathrm{t})
\end{gathered}
\] & \[
\begin{array}{|l|l|}
\hline \text { Override } \\
\text { Stage (ft) }
\end{array}
\] & \[
\begin{gathered}
\text { Length } \\
(\mathrm{ft})
\end{gathered}
\] & Width & Area \(\begin{gathered}\text { Area } \\ \left(t^{2}\right)\end{gathered}\) & Area \(\left(\mathrm{ft}^{2}\right)\) & \[
\begin{aligned}
& \text { Area } \\
& \text { (acre) }
\end{aligned}
\] & \[
\begin{gathered}
\text { Volume } \\
\left(\mathrm{ft}^{3}\right)
\end{gathered}
\] & (actt) \\
\hline \multicolumn{3}{|l|}{Watershed Information} & Top of Micropool & -- & 0.00 & -- & -- & -- & 199 & 0.005 & & \\
\hline \multirow[t]{2}{*}{Selected BMP Type = Watershed Area =} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{acres}} & 7292 & .- & 1.00 & .. & .. & .. & 4,705 & 0.108 & 2,452 & 0.056 \\
\hline & & & 7293 & - & 2.00 & .- & - & .- & 19,328 & 0.444 & 14,468 & 0.332 \\
\hline \multirow[t]{2}{*}{Watershed Length = Watershed Length to Centroid \(=\)} & \multicolumn{2}{|l|}{ft} & 7294 & .- & 3.00 & .- & .. & - & 28,048 & 0.644 & 38,156 & 0.876 \\
\hline & \multicolumn{2}{|l|}{\({ }^{\text {ft }}\)} & 7295 & - & 4.00 & \(\cdots\) & -- & - & 31,430 & 0.722 & 67,895 & 1.559 \\
\hline Watershed Slope \(=\) & \multicolumn{2}{|l|}{ft/t} & 7296 & .. & 5.00 & .- & .. & .. & 34,844 & 0.800 & 101,032 & 2.319 \\
\hline Watershed Imperiousness = & \multicolumn{2}{|l|}{percent} & 7295 & \(\cdots\) & 6.00 & \(\cdots\) & \(\cdots\) & \(\cdots\) & 38,298 & 0.879 & 137,603 & 3.159 \\
\hline Percentage Hydrologic Soil Group \(\mathrm{A}=\) & \multicolumn{2}{|l|}{percent} & 7298 & .- & 7.00 & .- & .- & .- & 41,682 & 0.957 & 177,593 & 4.077 \\
\hline Percentage Hydrologic Soil Group B \(=\) & \multicolumn{2}{|l|}{percent} & & \(\cdots\) & & .- & \(\cdots\) & \(\cdots\) & & & & \\
\hline \multirow[t]{2}{*}{Percentage Hydrologic Soil Groups \(C / D=\) Target WQCV Drain Time \(=\)} & \multicolumn{2}{|l|}{percent} & & - & & - & \(\cdots\) & - & & & & \\
\hline & 40.0 hours & & & - & & - & - & - & & & & \\
\hline \multicolumn{3}{|l|}{Location for 1-hr Rainfall Depths = User Input} & & - & & - & - & - & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{After providing required inputs above including 1 -hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.}} & & & - & & .- & .- & .- & & & & \\
\hline & & \multirow[b]{2}{*}{Optional User Overrides} & & - & & .- & .- & .- & & & & \\
\hline & & & & - & & - & .. & \(\cdots\) & & & & \\
\hline & & 0.247 acre-feet & & - & & - & - & - & & & & \\
\hline Excess Urban Runoff Volume (EURV) = & \multirow[b]{2}{*}{e-feet} & 0.433 acre-feet & & - & & -- & .- & .- & & & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
2-yr Runoff Volume (\(\mathrm{P} 1=1.19 \mathrm{in}\).) = \\
5 -yr Runoff Volume (\(\mathrm{P} 1=1.5 \mathrm{in}\).)
\end{tabular}} & & 1.19 inches & & - & & .- & .- & .- & & & & \\
\hline & \multirow[t]{2}{*}{acre-feet acre-feet} & 1.50 inches & & .. & & .. & .. & .. & & & & \\
\hline \multirow[t]{2}{*}{10-yr Runoff Volume (\(\mathrm{P} 1=1.75 \mathrm{in}.)=\)} & & 1.75 inches & & - & & .- & . & .- & & & & \\
\hline & acre-feet & 2.00 inches & & .- & & .- & .- & .- & & & & \\
\hline \(50 . y \mathrm{yr}\) Runoff Volume (\(\mathrm{P} 1=2.25 \mathrm{in}\).) \(=\) & acre-feet & 2.25 inches & & .- & & .- & .. & .- & & & & \\
\hline 100.yr Runoff Volume (\(\mathrm{P} 1=2.52 \mathrm{in}.)=\) & \multirow[t]{2}{*}{acre-feet} & 2.52 inches & & - & & - & .- & .- & & & & \\
\hline \(500 . y \mathrm{y}\) Runoff Volume (\(\mathrm{P} 1=3.14 \mathrm{in}.)=\) & & inches & & \(\cdots\) & & - & - & - & & & & \\
\hline Approximate 2 -yr Detention Volume \(=\) & acre-feet & & & - & & - & - & - & & & & \\
\hline Approximate 5-yr Detention Volume \(=\) & 1.104 acre-feet & & & .. & & .. & .- & .. & & & & \\
\hline Approximate 10 -yr Detention Volume \(=\) & acre-feet acre-feet & & & \(\cdots\) & & .. & .. & .. & & & & \\
\hline Approximate 25 -yr Detention Volume \(=\) & acre-feet & & & . & & . & . & .. & & & & \\
\hline Approximate 50 -yr Detention Volume \(=\) & \multirow[t]{3}{*}{acre-feet acre-feet} & & & - & & - & -- & - & & & & \\
\hline Approximate 100-yr Detention Volume \(=\) & & & & - & & - & .- & - & & & & \\
\hline & & & & - & & - & - & .. & & & & \\
\hline Define Zones and Basin Geometry & & & & - & & .. & .. & .. & & & & \\
\hline Zone 1 Volume (WQCV) \(=\) & 0.247 acre-feet & & & .- & & .- & .- & .- & & & & \\
\hline \multirow[t]{2}{*}{} & acre-feet & & & -- & & -- & -- & -- & & & & \\
\hline & acre-feet & & & .- & & .- & .. & .- & & & & \\
\hline \multirow[t]{3}{*}{Zone 3 Volume (100 -year - Zones \(1 \& 2\)) \(=\) Total Detention Basin Volume \(=\) Initial Surcharge Volume (ISV) = Initial Surcharge Depth (ISD) \(=\)} & acre-feet & & & - & & - & - & - & & & & \\
\hline & user \(\mathrm{tt}^{3}\) & & & - & & - & \(\cdots\) & .- & & & & \\
\hline & user ft & & & - & & - & - & - & & & & \\
\hline Total Available Detention Depth (\(\mathrm{H}_{\text {fotal }}\)) \(=\) & ft & & & - & & - & - & .. & & & & \\
\hline Depth of Trickle Channel (\(\mathrm{H}_{\text {c }}\)) \(=\) & tt & & & - & & - & \(\cdots\) & - & & & & \\
\hline Slope of Trickle Channel (\(\mathrm{STC}_{\text {c }}\)) \(=\) & tt/t & & & - & & - & - & - & & & & \\
\hline Slopes of Main Basin Sides (\(S_{\text {main }}\)) & \(\mathrm{H}: \mathrm{v}\) & & & .- & & .- & .- & .- & & & & \\
\hline Basin Length-to-Wicth Ratio (RLUw) = & \multirow[t]{2}{*}{user} & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & .. & & & & \\
\hline \multirow[b]{3}{*}{Initial Surcharge Area (A|SV) \(=\) Surcharge Volume Length (\(L_{\text {ISV }}\))} & & & & - & & - & - & - & & & & \\
\hline & \(\mathrm{tt}^{2}\) & & & - & & - & .- & .- & & & & \\
\hline & tt & & & - & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline Surcharge Volume Width (\(\mathrm{W}_{\text {Isv }}\)) \(=\) & ft & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline Depth of Basin Floor (Hfloor) \(=\) & & & & - & & . & . & - & & & & \\
\hline Length of Basin Floor (Lfilook) \(=\) & ft & & & .- & & - & .- & .- & & & & \\
\hline Width of Basin Floor (\(\left.\mathrm{W}_{\text {floor }}\right)=\) & & & & . & & - & - & . & & & & \\
\hline Area of Basin Floor (Aflook) \(=\) & \(\mathrm{ft}^{2}\) & & & - & & - & - & - & & & & \\
\hline Volume of Basin Floor (\(\mathrm{V}_{\text {floor }}\)) \(=\) & \(\mathrm{ta}^{3}\) & & & - & & - & -- & -- & & & & \\
\hline Depth of Main Basin (\(\mathrm{H}_{\text {main }}\)) \(=\) & & & & \(\cdots\) & & .- & .- & - & & & & \\
\hline Length of Main Basin (Luman) \(=\) & & & & .- & & .- & .- & .- & & & & \\
\hline Width of Main Basin (\(W_{\text {Mank }}\)) \(=\) & \(\mathrm{ft}^{\mathrm{ft}}\) & & & .- & & .- & \(\cdots\) & .- & & & & \\
\hline Area of Main Basin (\(\mathrm{maman}^{\text {a }}=\) & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\({ }^{\mathrm{t}^{\text {a }}}\)}} & & - & & - & - & - & & & & \\
\hline Volume of Main Basin \(\left(V_{\text {Matw }}\right)=\) & & & & \(\cdots\) & & - & .- & .- & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline \multicolumn{3}{|l|}{Calculated Total Basin Volume (V toatal \(^{\prime}=\) user acre-feet} & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & .- & & . & .- & .- & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & .- & \(\cdots\) & .- & & & & \\
\hline & & & & \(\cdots\) & & - & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & - & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline
\end{tabular}

\section*{DETENTION BASIN OUTLET STRUCTURE DESIGN}

MHFD-Detention, Version 4.04 (February 2021)
Project: WI NSOME FILING 3
Basin ID: POND 4 (BASIN H3 + H7A + H7B + I 1)_Modified Area

\begin{tabular}{rl}
User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP) & \\
Underdrain Orifice Invert Depth & \(=\) \\
Underdrain Orifice Diameter & \(=\) \\
\hline
\end{tabular}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Row 1 (required) & Row 2 (optional) & Row 3 (optional) & Row 4 (optional) & Row 5 (optional) & Row 6 (optional) & Row 7 (optional) & Row 8 (optional) \\
\hline Stage of Orifice Centroid (ft) & 0.00 & 0.60 & 1.20 & & & & & \\
\hline Orifice Area (sq. inches) & 1.10 & 1.10 & 1.20 & & & & & \\
\hline
\end{tabular}

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{Calculated Parameters for Spillway} \\
\hline Spillway Design Flow Depth= & 0.69 & feet \\
\hline Stage at Top of Freeboard = & 7.03 & feet \\
\hline Basin Area at Top of Freeboard = & 0.96 & acres \\
\hline Basin Volume at Top of Freeboard = & 4.08 & acre-ft \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=\|}
\]} & \multicolumn{9}{|l|}{The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).} \\
\hline & WQCV & EURV & 2 Year & 5 Year & 10 Year & 25 Year & 50 Year & 100 Year & 500 Year \\
\hline One-Hour Rainfall Depth (in) = & N/A & N/A & 1.19 & 1.50 & 1.75 & 2.00 & 2.25 & 2.52 & 3.14 \\
\hline CUHP Runoff Volume (acre-ft) = & 0.247 & 0.433 & 1.333 & 2.607 & 3.819 & 5.479 & 6.792 & 8.600 & 11.978 \\
\hline Inflow Hydrograph Volume (acre-ft) & N/A & N/A & 1.333 & 2.607 & 3.819 & 5.479 & 6.792 & 8.600 & 11.978 \\
\hline CUHP Predevelopment Peak Q (cfs) \(=\) & N/A & N/A & 14.4 & 30.4 & 42.6 & 65.8 & 81.6 & 101.6 & 140.1 \\
\hline OPTIONAL Override Predevelopment Peak Q (cfs) = & N/A & N/A & & & & & & & \\
\hline Predevelopment Unit Peak Flow, q (cff/acre) = & N/A & N/A & 0.22 & 0.48 & 0.67 & 1.03 & 1.27 & 1.59 & 2.19 \\
\hline Peak Inflow Q (cfs) = & N/A & N/A & 19.7 & 36.5 & 48.8 & 72.7 & 88.5 & 107.7 & 147.0 \\
\hline Peak Outfow Q (cfs) \(=\) & 0.1 & 1.2 & 8.3 & 20.6 & 31.0 & 52.4 & 65.9 & 76.5 & 126.6 \\
\hline Ratio Peak Outflow to Predevelopment \(\mathrm{Q}=\) & N/A & N/A & N/A & 0.7 & 0.7 & 0.8 & 0.8 & 0.8 & 0.9 \\
\hline Structure Controlling Flow = & Plate & Overflow Weir 1 & Outlet Plate 1 & Spillway \\
\hline Max Velocity through Grate 1 (fps) = & N/A & 0.02 & 0.16 & 0.4 & 0.6 & 1.0 & 1.3 & 1.5 & 1.5 \\
\hline Max Velocity through Grate 2 (fps) = & N/A \\
\hline Time to Drain 97\% of Inflow Volume (hours) = & 40 & 49 & 43 & 35 & 30 & 24 & 20 & 14 & 5 \\
\hline Time to Drain 99\% of Inflow Volume (hours) = & 43 & 54 & 52 & 47 & 44 & 40 & 38 & 34 & 30 \\
\hline Maximum Ponding Depth (ft) = & 1.80 & 2.22 & 2.76 & 3.30 & 3.64 & 4.22 & 4.53 & 5.17 & 5.74 \\
\hline Area at Maximum Ponding Depth (acres) \(=\) & 0.38 & 0.49 & 0.59 & 0.67 & 0.69 & 0.74 & 0.76 & 0.81 & 0.86 \\
\hline Maximum Volume Stored (acre-ft) = & 0.250 & 0.435 & 0.721 & 1.066 & 1.304 & 1.712 & 1.952 & 2.457 & 2.933 \\
\hline
\end{tabular}

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SOURCE & CUHP \\
\hline Time Interval & TIME & WQCV [cfs] & EURV [cfs] & 2 Year [cfs] & 5 Year [cfs] & 10 Year [cfs] & 25 Year [cfs] & 50 Year [cfs] & 100 Year [cfs] & 500 Year [cfs] \\
\hline 5.00 min & 0:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0:05:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0:10:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 0.00 & 0.06 \\
\hline & 0:15:00 & 0.00 & 0.00 & 0.16 & 0.26 & 0.32 & 0.22 & 0.28 & 0.26 & 0.40 \\
\hline & 0:20:00 & 0.00 & 0.00 & 0.63 & 1.98 & 2.92 & 0.62 & 0.98 & 1.40 & 2.83 \\
\hline & 0:25:00 & 0.00 & 0.00 & 5.29 & 17.45 & 26.81 & 5.08 & 8.75 & 12.20 & 26.33 \\
\hline & 0:30:00 & 0.00 & 0.00 & 15.64 & 32.36 & 44.49 & 41.35 & 52.95 & 62.61 & 92.03 \\
\hline & 0:35:00 & 0.00 & 0.00 & 19.56 & 36.48 & 48.78 & 64.01 & 79.13 & 96.40 & 134.06 \\
\hline & 0:40:00 & 0.00 & 0.00 & 19.67 & 34.84 & 46.23 & 72.65 & 88.52 & 107.73 & 147.03 \\
\hline & 0:45:00 & 0.00 & 0.00 & 17.51 & 31.68 & 42.86 & 70.45 & 85.58 & 106.61 & 145.05 \\
\hline & 0:50:00 & 0.00 & 0.00 & 15.49 & 28.89 & 38.98 & 67.63 & 82.09 & 102.38 & 139.08 \\
\hline & 0:55:00 & 0.00 & 0.00 & 13.61 & 25.73 & 35.41 & 61.81 & 75.23 & 95.65 & 130.15 \\
\hline & 1:00:00 & 0.00 & 0.00 & 12.12 & 23.06 & 32.68 & 56.12 & 68.60 & 89.28 & 121.88 \\
\hline & 1:05:00 & 0.00 & 0.00 & 10.92 & 20.75 & 30.33 & 51.46 & 63.17 & 84.36 & 115.35 \\
\hline & 1:10:00 & 0.00 & 0.00 & 9.60 & 18.58 & 28.00 & 46.12 & 56.95 & 75.79 & 104.20 \\
\hline & 1:15:00 & 0.00 & 0.00 & 8.26 & 16.18 & 25.65 & 40.67 & 50.58 & 66.39 & 91.99 \\
\hline & 1:20:00 & 0.00 & 0.00 & 6.95 & 13.77 & 22.41 & 34.83 & 43.42 & 56.47 & 78.48 \\
\hline & 1:25:00 & 0.00 & 0.00 & 5.88 & 12.02 & 19.64 & 29.43 & 36.79 & 47.59 & 66.51 \\
\hline & 1:30:00 & 0.00 & 0.00 & 5.22 & 10.81 & 17.39 & 25.46 & 31.89 & 41.00 & 57.43 \\
\hline & 1:35:00 & 0.00 & 0.00 & 4.69 & 9.76 & 15.46 & 22.28 & 27.94 & 35.80 & 50.20 \\
\hline & 1:40:00 & 0.00 & 0.00 & 4.22 & 8.62 & 13.71 & 19.58 & 24.57 & 31.33 & 43.95 \\
\hline & 1:45:00 & 0.00 & 0.00 & 3.75 & 7.49 & 12.10 & 17.15 & 21.52 & 27.31 & 38.33 \\
\hline & 1:50:00 & 0.00 & 0.00 & 3.30 & 6.42 & 10.58 & 14.94 & 18.75 & 23.61 & 33.16 \\
\hline & 1:55:00 & 0.00 & 0.00 & 2.80 & 5.39 & 9.06 & 12.82 & 16.10 & 20.14 & 28.29 \\
\hline & 2:00:00 & 0.00 & 0.00 & 2.29 & 4.38 & 7.45 & 10.79 & 13.56 & 16.89 & 23.74 \\
\hline & 2:05:00 & 0.00 & 0.00 & 1.78 & 3.36 & 5.82 & 8.69 & 10.93 & 13.65 & 19.15 \\
\hline & 2:10:00 & 0.00 & 0.00 & 1.27 & 2.37 & 4.28 & 6.60 & 8.31 & 10.43 & 14.60 \\
\hline & 2:15:00 & 0.00 & 0.00 & 0.81 & 1.56 & 3.08 & 4.60 & 5.84 & 7.38 & 10.43 \\
\hline & 2:20:00 & 0.00 & 0.00 & 0.51 & 1.08 & 2.35 & 3.03 & 3.94 & 5.00 & 7.26 \\
\hline & 2:25:00 & 0.00 & 0.00 & 0.37 & 0.81 & 1.86 & 2.10 & 2.79 & 3.50 & 5.19 \\
\hline & 2:30:00 & 0.00 & 0.00 & 0.28 & 0.62 & 1.47 & 1.48 & 2.01 & 2.46 & 3.73 \\
\hline & 2:35:00 & 0.00 & 0.00 & 0.22 & 0.48 & 1.15 & 1.05 & 1.45 & 1.70 & 2.64 \\
\hline & 2:40:00 & 0.00 & 0.00 & 0.17 & 0.37 & 0.89 & 0.74 & 1.04 & 1.14 & 1.82 \\
\hline & 2:45:00 & 0.00 & 0.00 & 0.14 & 0.28 & 0.67 & 0.53 & 0.74 & 0.74 & 1.20 \\
\hline & 2:50:00 & 0.00 & 0.00 & 0.11 & 0.21 & 0.49 & 0.37 & 0.52 & 0.45 & 0.77 \\
\hline & 2:55:00 & 0.00 & 0.00 & 0.08 & 0.16 & 0.35 & 0.26 & 0.36 & 0.30 & 0.51 \\
\hline & 3:00:00 & 0.00 & 0.00 & 0.07 & 0.11 & 0.25 & 0.19 & 0.27 & 0.22 & 0.38 \\
\hline & 3:05:00 & 0.00 & 0.00 & 0.05 & 0.08 & 0.18 & 0.15 & 0.20 & 0.17 & 0.29 \\
\hline & 3:10:00 & 0.00 & 0.00 & 0.04 & 0.06 & 0.14 & 0.11 & 0.16 & 0.14 & 0.23 \\
\hline & 3:15:00 & 0.00 & 0.00 & 0.03 & 0.04 & 0.10 & 0.08 & 0.12 & 0.11 & 0.18 \\
\hline & 3:20:00 & 0.00 & 0.00 & 0.02 & 0.02 & 0.07 & 0.06 & 0.09 & 0.08 & 0.13 \\
\hline & 3:25:00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.05 & 0.04 & 0.06 & 0.05 & 0.09 \\
\hline & 3:30:00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.03 & 0.03 & 0.04 & 0.03 & 0.06 \\
\hline & 3:35:00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.02 & 0.02 & 0.02 & 0.03 \\
\hline & 3:40:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.01 & 0.01 \\
\hline & 3:45:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 3:50:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 3:55:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:05:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:10:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:15:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:20:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:25:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:30:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:35:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:40:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:45:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:50:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:55:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:05:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:10:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:15:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:20:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:25:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:30:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:35:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:40:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:45:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:50:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:55:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 6:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}

\section*{DETENTION BASIN OUTLET STRUCTURE DESIGN}

MHFD-Detention, Version 4.04 (February 2021)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Stage - Storage Description & \begin{tabular}{l}
Stage \\
[ft]
\end{tabular} & \begin{tabular}{l}
Area \\
[\(\mathrm{ft}^{2}\)]
\end{tabular} & Area [acres] & \begin{tabular}{l}
Volume \\
[\(\mathrm{ft}^{3}\)]
\end{tabular} & \begin{tabular}{l}
Volume \\
[ac-ft]
\end{tabular} & Total Outflow [cfs] & \\
\hline 7291 & 0.00 & 199 & 0.005 & 0 & 0.000 & 0.00 & \multirow[t]{5}{*}{For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.} \\
\hline 7292 & 1.00 & 4,705 & 0.108 & 2,452 & 0.056 & 0.06 & \\
\hline 7293 & 2.00 & 19,328 & 0.444 & 14,468 & 0.332 & 0.13 & \\
\hline 7294 & 3.00 & 28,048 & 0.644 & 38,156 & 0.876 & 13.18 & \\
\hline 7295 & 4.00 & 31,430 & 0.722 & 67,895 & 1.559 & 43.81 & \\
\hline 7296 & 5.00 & 34,844 & 0.800 & 101,032 & 2.319 & 75.43 & \multirow[t]{4}{*}{Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).} \\
\hline 7297 & 6.00 & 38,298 & 0.879 & 137,603 & 3.159 & 181.14 & \\
\hline 7298 & 7.00 & 41,682 & 0.957 & 177,593 & 4.077 & 505.69 & \\
\hline 7299 & 8.00 & 41,682 & 0.957 & 177,593 & 4.077 & 505.69 & \\
\hline & & & & & & & \\
\hline
\end{tabular}

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectanqular/Trapezoidal Weir (and No Outlet Pipe)

\begin{tabular}{|c|c|c|}
\hline P Pipe) & \multicolumn{2}{|l|}{Calculated Parameters for Overflow Wei} \\
\hline \multirow[b]{3}{*}{ft) Height of Grate Upper Edge, \(\mathrm{H}^{\text {f }}\),} & Zone 3 Weir & Not Selected \\
\hline & & N/A \\
\hline & & N/A \\
\hline Grate Open Area / 100-yr Orifice Area \(=\) & & N/A \\
\hline Overflow Grate Open Area w/o Debris \(=\) & & N/A \\
\hline Overflow Grate Open Area w/ Debris \(=\) & & N/A \\
\hline
\end{tabular}

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice)
\begin{tabular}{|c|c|c|c|}
\hline \multirow{4}{*}{at Stage \(=0 \mathrm{ft}\))} & \multicolumn{3}{|l|}{Calculated Parameters for Outlet Pipe w/ Flow Restriction Plat} \\
\hline & & Zone 3 Restrictor & Not Selected \\
\hline & Outlet Orifice Area \(=\) & & N/A \\
\hline & Outlet Orifice Centroid = & & N/A \\
\hline Half-Central A & Restrictor Plate on Pipe \(=\) & & N/A \\
\hline
\end{tabular}

User Input: Emergency Spillway (Rectangular or Trapezoidal)

\begin{tabular}{rl}
Calculated Parameters for Spillway \\
Spillway Design Flow Depth & \(=\square\) \\
Stage at Top of Freeboard & \(=\square\) feet \\
Basin Area at Top of Freeboard & \(=\square\) \\
Basin Volume at Top of Freeboard & \(=\square\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Routed Hydrograph Results & er can & efa & raph & lume & ew va & flow H & ble (Comer & rough AF) \\
\hline Design Storm Return Period \(=\) & WQCV & EURV & 2 Year & 5 Year & 10 Year & 25 Year & 50 Year & 100 Year \\
\hline One-Hour Rainfall Depth (in) = & N/A & N/A & 1.19 & 1.50 & 1.75 & 2.00 & 2.25 & 2.52 \\
\hline CUHP Runoff Volume (acre-ft) = & 0.274 & 0.433 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
\hline Inflow Hydrograph Volume (acre-ft) = & N/A & N/A & 0.884 & 1.730 & 2.534 & 3.635 & 4.506 & 5.705 \\
\hline CUHP Predevelopment Peak Q (cfs) \(=\) & N/A & N/A & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline OPTIONAL Override Predevelopment Peak Q (cfs) = & N/A & N/A & & & & & & \\
\hline Predevelopment Unit Peak Flow, q (cfs/acre) = & N/A & N/A & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Peak Inflow Q (cfs) = & N/A & N/A & 11.3 & 20.5 & 27.5 & 41.5 & 50.5 & 62.7 \\
\hline Peak Outflow Q (cfs) \(=\) & & & & & & & & \\
\hline Ratio Peak Outflow to Predevelopment \(\mathrm{Q}=\) & & & & & & & & \\
\hline Structure Controlling Flow = & & & & & & & & \\
\hline Max Velocity through Grate 1 (fps) = & & & & & & & & \\
\hline Max Velocity through Grate 2 (fps) \(=\) & & & & & & & & \\
\hline Time to Drain 97\% of Inflow Volume (hours) = & & & & & & & & \\
\hline Time to Drain 99\% of Inflow Volume (hours) = & & & & & & & & \\
\hline Maximum Ponding Depth \((\mathrm{ft})=\) & & & & & & & & \\
\hline Area at Maximum Ponding Depth (acres) \(=\) & & & & & & & & \\
\hline Maximum Volume Stored (acre-ft) \(=\) & & & & & & & & \\
\hline
\end{tabular}

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SOURCE & CUHP \\
\hline Time Interval & TIME & WQCV [cfs] & EURV [cfs] & 2 Year [cfs] & 5 Year [cfs] & 10 Year [cfs] & 25 Year [cfs] & 50 Year [cfs] & 100 Year [cfs] & 500 Year [cfs] \\
\hline 5.00 min & 0:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0:05:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0:10:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.03 \\
\hline & 0:15:00 & 0.00 & 0.00 & 0.09 & 0.14 & 0.18 & 0.12 & 0.15 & 0.15 & 0.22 \\
\hline & 0:20:00 & 0.00 & 0.00 & 0.34 & 1.09 & 1.61 & 0.34 & 0.54 & 0.77 & 1.56 \\
\hline & 0:25:00 & 0.00 & 0.00 & 2.91 & 9.61 & 14.76 & 2.80 & 4.82 & 6.72 & 14.50 \\
\hline & 0:30:00 & 0.00 & 0.00 & 8.63 & 17.88 & 24.60 & 22.78 & 29.17 & 34.50 & 50.75 \\
\hline & 0:35:00 & 0.00 & 0.00 & 10.91 & 20.54 & 27.54 & 35.42 & 43.84 & 53.44 & 74.55 \\
\hline & 0:40:00 & 0.00 & 0.00 & 11.34 & 20.45 & 27.29 & 41.07 & 50.18 & 61.09 & 83.83 \\
\hline & 0:45:00 & 0.00 & 0.00 & 10.51 & 19.04 & 25.71 & 41.51 & 50.50 & 62.72 & 85.46 \\
\hline & 0:50:00 & 0.00 & 0.00 & 9.43 & 17.67 & 23.87 & 40.30 & 48.97 & 61.04 & 83.15 \\
\hline & 0:55:00 & 0.00 & 0.00 & 8.53 & 16.11 & 22.13 & 37.75 & 45.98 & 58.23 & 79.38 \\
\hline & 1:00:00 & 0.00 & 0.00 & 7.69 & 14.58 & 20.54 & 34.91 & 42.67 & 55.25 & 75.43 \\
\hline & 1:05:00 & 0.00 & 0.00 & 7.00 & 13.36 & 19.36 & 32.30 & 39.64 & 52.53 & 71.94 \\
\hline & 1:10:00 & 0.00 & 0.00 & 6.36 & 12.35 & 18.39 & 29.57 & 36.51 & 48.27 & 66.49 \\
\hline & 1:15:00 & 0.00 & 0.00 & 5.73 & 11.25 & 17.42 & 26.99 & 33.54 & 43.83 & 60.80 \\
\hline & 1:20:00 & 0.00 & 0.00 & 5.11 & 10.10 & 15.88 & 24.23 & 30.16 & 39.07 & 54.29 \\
\hline & 1:25:00 & 0.00 & 0.00 & 4.51 & 8.94 & 14.07 & 21.51 & 26.76 & 34.43 & 47.85 \\
\hline & 1:30:00 & 0.00 & 0.00 & 3.92 & 7.82 & 12.26 & 18.82 & 23.41 & 30.04 & 41.74 \\
\hline & 1:35:00 & 0.00 & 0.00 & 3.40 & 6.95 & 10.85 & 16.22 & 20.22 & 25.95 & 36.18 \\
\hline & 1:40:00 & 0.00 & 0.00 & 3.05 & 6.24 & 9.82 & 14.25 & 17.81 & 22.80 & 31.91 \\
\hline & 1:45:00 & 0.00 & 0.00 & 2.80 & 5.64 & 8.95 & 12.74 & 15.95 & 20.36 & 28.55 \\
\hline & 1:50:00 & 0.00 & 0.00 & 2.58 & 5.09 & 8.17 & 11.48 & 14.39 & 18.27 & 25.65 \\
\hline & 1:55:00 & 0.00 & 0.00 & 2.34 & 4.57 & 7.42 & 10.35 & 12.98 & 16.40 & 23.04 \\
\hline & 2:00:00 & 0.00 & 0.00 & 2.10 & 4.09 & 6.62 & 9.32 & 11.70 & 14.68 & 20.65 \\
\hline & 2:05:00 & 0.00 & 0.00 & 1.85 & 3.59 & 5.81 & 8.27 & 10.37 & 12.97 & 18.23 \\
\hline & 2:10:00 & 0.00 & 0.00 & 1.61 & 3.10 & 5.02 & 7.24 & 9.07 & 11.35 & 15.91 \\
\hline & 2:15:00 & 0.00 & 0.00 & 1.37 & 2.63 & 4.26 & 6.26 & 7.83 & 9.83 & 13.75 \\
\hline & 2:20:00 & 0.00 & 0.00 & 1.14 & 2.17 & 3.55 & 5.30 & 6.63 & 8.35 & 11.66 \\
\hline & 2:25:00 & 0.00 & 0.00 & 0.91 & 1.72 & 2.87 & 4.37 & 5.47 & 6.91 & 9.63 \\
\hline & 2:30:00 & 0.00 & 0.00 & 0.68 & 1.28 & 2.22 & 3.45 & 4.32 & 5.48 & 7.62 \\
\hline & 2:35:00 & 0.00 & 0.00 & 0.46 & 0.86 & 1.59 & 2.55 & 3.20 & 4.07 & 5.65 \\
\hline & 2:40:00 & 0.00 & 0.00 & 0.28 & 0.57 & 1.17 & 1.69 & 2.15 & 2.76 & 3.91 \\
\hline & 2:45:00 & 0.00 & 0.00 & 0.19 & 0.41 & 0.92 & 1.14 & 1.49 & 1.90 & 2.76 \\
\hline & 2:50:00 & 0.00 & 0.00 & 0.14 & 0.32 & 0.73 & 0.79 & 1.06 & 1.33 & 1.98 \\
\hline & 2:55:00 & 0.00 & 0.00 & 0.11 & 0.25 & 0.58 & 0.56 & 0.77 & 0.93 & 1.41 \\
\hline & 3:00:00 & 0.00 & 0.00 & 0.09 & 0.19 & 0.45 & 0.40 & 0.55 & 0.63 & 0.99 \\
\hline & 3:05:00 & 0.00 & 0.00 & 0.07 & 0.15 & 0.35 & 0.28 & 0.40 & 0.42 & 0.67 \\
\hline & 3:10:00 & 0.00 & 0.00 & 0.05 & 0.11 & 0.27 & 0.20 & 0.28 & 0.27 & 0.44 \\
\hline & 3:15:00 & 0.00 & 0.00 & 0.04 & 0.09 & 0.19 & 0.14 & 0.20 & 0.17 & 0.29 \\
\hline & 3:20:00 & 0.00 & 0.00 & 0.04 & 0.06 & 0.14 & 0.10 & 0.15 & 0.12 & 0.21 \\
\hline & 3:25:00 & 0.00 & 0.00 & 0.03 & 0.05 & 0.10 & 0.08 & 0.11 & 0.09 & 0.15 \\
\hline & 3:30:00 & 0.00 & 0.00 & 0.02 & 0.03 & 0.07 & 0.06 & 0.08 & 0.07 & 0.12 \\
\hline & 3:35:00 & 0.00 & 0.00 & 0.02 & 0.02 & 0.06 & 0.05 & 0.06 & 0.06 & 0.09 \\
\hline & 3:40:00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.04 & 0.03 & 0.05 & 0.04 & 0.07 \\
\hline & 3:45:00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.03 & 0.02 & 0.03 & 0.03 & 0.05 \\
\hline & 3:50:00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.02 & 0.02 & 0.02 & 0.02 & 0.03 \\
\hline & 3:55:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.01 & 0.01 & 0.02 \\
\hline & 4:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.01 & 0.01 \\
\hline & 4:05:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:10:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:15:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:20:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:25:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:30:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:35:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:40:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:45:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:50:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:55:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:05:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:10:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:15:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:20:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:25:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:30:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:35:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:40:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:45:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:50:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:55:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 6:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}

\section*{DETENTION BASI N OUTLET STRUCTURE DESIGN}

MHFD-Detention, Version 4.04 (February 2021)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Stage - Storage
Description & \begin{tabular}{l}
Stage \\
[ft]
\end{tabular} & \begin{tabular}{l}
Area \\
[ft \({ }^{2}\)]
\end{tabular} & Area [acres] & \begin{tabular}{l}
Volume \\
[\(\mathrm{ft}^{3}\)]
\end{tabular} & Volume [ac-ft] & \[
\begin{gathered}
\text { Total } \\
\text { Outflow } \\
\text { [cfs] }
\end{gathered}
\] & \\
\hline 7301 & 0.00 & 8,535 & 0.196 & 0 & 0.000 & 0.00 & \multirow[t]{9}{*}{\begin{tabular}{l}
For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'. \\
Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).
\end{tabular}} \\
\hline 7306.5 & 5.50 & 17,603 & 0.404 & 71,879 & 1.650 & 0.00 & \\
\hline 7308.5 & 7.50 & 21,697 & 0.498 & 111,179 & 2.552 & 0.00 & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{Kimley»>Horn}

Project: Winsome Filing 3-Pond 4
Date: \(\quad 9 / 14 / 2022\)

\section*{Emergency Overflow Weir Calculation}
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{Q}(\mathrm{cfs})=\) & 107.7 & (100-yr peak inflow) \\
\hline \(\mathrm{C}_{\text {Bcw }}=\) & 3 & \\
\hline z & 4 & \\
\hline \(\mathrm{H}=\) & 0.70 & \\
\hline \(L(f t)=\) & 59.06 & Rounded to 60 \\
\hline
\end{tabular}
orange cells require input
\(\mathrm{L}(\mathrm{ft})=\) 59.06 Rounded to 60
\[
\begin{gathered}
Q=C_{B C W} L H^{1.5}+2\left[(2 / 5) C_{B C W} Z H^{2.5}\right] \\
\text { rearrange to solve for length: } \\
L=\frac{Q-(4 / 5) C_{B C W} Z H^{2.5}}{C_{B C W} H^{1.5}}
\end{gathered}
\]

Figure 12-20. Sloping broad-crest weir

Horizontal Broad Crested Weir Equation (from USDCM Eqn. 12-8)
\(Q=C_{B C W} L H^{1.5} \quad\) Equation 12-8

Where:
\[
Q=\text { discharge (cfs) }
\]
\(C_{B C W}=\) broad-crested weir coefficient (This ranges from 2.6 to 3.0. A value of 3.0 is often used in practice.) See Hydraulic Engineering Circular No. 22 for additional information.
\(L=\) broad-crested weir length (ft)
\(H=\) head above weir crest (ft)

Sloping Broad Crested Weir Equation (from USDCM Eqn. 12-9)
\[
Q=\left(\frac{2}{5}\right) C_{B C W} Z H^{2.5}
\]

Where:
\[
Q=\text { discharge (cfs) }
\]
\(C_{B C W}=\) broad-crested weir coefficient (This ranges from 2.6 to 3.0 . A value of 3.0 is often used in practice.) See Hydraulic Engineering Circular No. 22 for additional information.
\(Z=\) side slope (horizontal: vertical)
\(H=\) head above weir crest (ft)
Note that in order to calculate the total flow over the weir depicted in Figure 12-20, the results from Equation 12-8 must be added to two times the results from Equation 12-9.
Chapter 12 Pond 4 Spillway Storage

EMERGENCY SPILLWAY SECTION AND SPILLWAY CHANNEL

Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County) \(107.7 \mathrm{cfs} / 60 \mathrm{ft}=1.80\)

Forebay Release and Configuration: Release \(2 \%\) of the undetained 100 -year peak discharge by way of a
\begin{tabular}{|c|c|c|c|c|}
\multicolumn{6}{|c|}{ Wall/notch or berm/pipe configuration } \\
\hline Forebay & \(\begin{array}{c}\text { Incoming Pipe } \\
\text { Diameter (in) }\end{array}\) & \(\begin{array}{c}\text { Undetained 100- } \\
\text { year Peak Discharge } \\
\text { (cfs) }\end{array}\) & Release Rate (cfs)
\end{tabular} \(\left.\begin{array}{c}\text { Forebay Notch Width } \\
\text { (in) }\end{array}\right]\)\begin{tabular}{cccc}
\hline A & 42 & 96.00 & 1.92 \\
\hline
\end{tabular}

Kimley » Horn
Extended Detention Basin (EDB) Calculations
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{ll}
Project & Winsome Filing 3 - Pond 4 North Rock Chute
\end{tabular} & \begin{tabular}{c}
Manual Input \\
Date
\end{tabular} & \begin{tabular}{l}
9/15/2022 \\
Prepared By \\
Checked By
\end{tabular} \\
TOS
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\multicolumn{5}{|c|}{ Forebay Release and Configuration: Release 2\% of the undetained 100-year peak discharge by way of a } \\
wall/notch or berm/pipe configuration
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ Maximum Forebay Depth } \\
\hline Forebay & \begin{tabular}{c}
Impervious Area in \\
Watershed (ac)
\end{tabular} & \begin{tabular}{c}
Maximum Forebay \\
Depth (in)
\end{tabular} & \begin{tabular}{c}
Design Forebay Depth \\
(in)
\end{tabular} & \begin{tabular}{c}
Design Forebay Depth \\
(ft)
\end{tabular} \\
\hline \(\mathbf{A}\) & 2.18 & 18 & 18 & 1.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Minimum Forebay Volume Required: 3\% WQCV} & Volume Factor: & 0.03 \\
\hline Forebay & WQCV (ac-ft) & Required Volume (ac ft) & Required Volume (cf) & Total Length (ft) & Total Width (ft) & Design Volume (cf) & & \\
\hline A & 0.08 & 0.00 & 103 & 11 & 10 & 165 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{MHFD-Detention, Version 4.04 (February 2021)} \\
\hline Projec & OME FILING 3 & & & & & & & & & & & \\
\hline \multicolumn{13}{|c|}{Basin ID: wQ Pond A_Modified Area (BASIN A2B + A3A + G2A + G2B + G1)} \\
\hline \multicolumn{13}{|l|}{Depth Increment \(=\) \(\square\) t} \\
\hline & Configuration (Re & n Pond) & Stage - Storage & Stage
\((t t)\) & \[
\begin{array}{|c|c|}
\hline \text { Optional } \\
\text { Overide } \\
\text { Stane (ft) }
\end{array}
\]
Stage ((t) & \[
\begin{aligned}
& \text { Length } \\
& (t)
\end{aligned}
\] & width (tt) & \[
\begin{gathered}
\text { Area } \\
\left(\left(t^{2}\right)\right.
\end{gathered}
\] & & \[
\begin{aligned}
& \text { Area } \\
& \text { (acre) }
\end{aligned}
\] & \begin{tabular}{l}
Volume \\
(ft \({ }^{3}\))
\end{tabular} & Volume (ac-ft) \\
\hline \multicolumn{3}{|l|}{Watershed Information} & Top of Micropool & -. & 0.00 & -. & .- & -. & 1,774 & 0.041 & & \\
\hline & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{acres}} & 7326 & .- & 1.00 & .. & .. & .- & 4,666 & 0.107 & 3,220 & 0.074 \\
\hline Watershed Area = & & & 7327 & - & 2.00 & - & \(\cdots\) & .- & 6,983 & 0.160 & 9,044 & 0.208 \\
\hline \multirow[t]{2}{*}{Watershed Length \(=\) Watershed Length to Centroid \(=\)} & \multicolumn{2}{|l|}{ft} & 7328 & .- & 3.00 & - & - & - & 9,609 & 0.221 & 17,340 & 0.398 \\
\hline & \multicolumn{2}{|l|}{ft} & 7329 & \(\cdots\) & 4.00 & - & - & - & 13,970 & 0.321 & 29,130 & 0.669 \\
\hline Watershed Slope \(=\) & \multicolumn{2}{|l|}{ft/t} & & .- & & - & - & .- & & & & \\
\hline Watershed Imperiousness = & \multicolumn{2}{|l|}{percent} & & .. & & - & .. & .. & & & & \\
\hline Percentage Hydrologic Soil Grup \(\mathrm{A}=\) & \multicolumn{2}{|l|}{percent} & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline \multirow[t]{2}{*}{Percentage Hydrologic Soil Group \(\mathrm{B}=\)} & \multicolumn{2}{|l|}{percent} & & .- & & .- & \(\cdots\) & .. & & & & \\
\hline & \multicolumn{2}{|l|}{percent} & & .. & & .. & - & - & & & & \\
\hline \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Location for 1-hr Rainfall Depths = User Input}} & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & .- & \(\cdots\) & - & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.}} & & & \(\cdots\) & & - & - & .- & & & & \\
\hline & & \multirow[b]{2}{*}{Optional User Overrides} & & .- & & .- & .- & .- & & & & \\
\hline & & & & - & & - & -- & -- & & & & \\
\hline Water Quality Capture Volume (WOCV) \(=\) & acre-feet & 0.047 acre-feet & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & - & & & & \\
\hline Excess Urban Runoff Volume (EURV) = & 0.138 acre-feet & acre-feet & & \(\cdots\) & & \(\cdots\) & - & - & & & & \\
\hline \multirow[t]{2}{*}{2-yr Runoff Volume (\(\mathrm{P} 1=1.19 \mathrm{in}\).) \(=\) \(5-\mathrm{yr}\) Runoff Volume (\(\mathrm{Pl}=1.5 \mathrm{in}\).) \(=\)} & acre-feet & 1.19 inches & & - & & - & .- & .- & & & & \\
\hline & acre-feet & 1.50 inches & & . & & .- & .- & .- & & & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
10 -yr Runoff Volume (\(\mathrm{P} 1=1.75 \mathrm{in}\).) \(=\) \\
25 -yr Runoff Volume (\(\mathrm{P} 1=2 \mathrm{in}\).) \(=\)
\end{tabular}} & acre-feet & 1.75 inches & & . & & .- & .- & .- & & & & \\
\hline & acre-feet & 2.00 inches & & \(\cdots\) & & .- & .- & - & & & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
\(50-\mathrm{yr}\) Runoff Volume (\(\mathrm{P} 1=2.25 \mathrm{in}\).) \(=\) \\
100 -yr Runoff Volume (\(\mathrm{P} 1=2.52 \mathrm{in}\).) \(=\)
\end{tabular}} & \({ }^{9.361}\) acre-feet & 2.25 inches & & - & & .- & .- & .- & & & & \\
\hline & acre-feet & 2.52 inches & & - & & - & - & -- & & & & \\
\hline \begin{tabular}{l}
100 -yr Runoff Volume (\(\mathrm{P} 1=2.52 \mathrm{in}\).) \(=\) \\
500 -yr Runoff Volume (P1 = 3.14 in .)
\end{tabular} & 17.035 acre-feet & inches & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline \multirow[t]{2}{*}{500 -yr Runoff Volume (\(\mathrm{Pl}=3.14 \mathrm{in}\).) \(=\) Approximate 2-yr Detention Volume \(=\) Approximate 5 -yr Detention Volume \(=\)} & acre-feet & & & - & & - & - & - & & & & \\
\hline & 0.641 acre-feet & & & .- & & .- & .. & .. & & & & \\
\hline Approximate 10-yr Detention Volume \(=\) & acre-feet & & & \(\cdots\) & & . & . & . & & & & \\
\hline \multirow[t]{3}{*}{Approximate 25 -yr Detention Volume \(=\) Approximate 50 -yr Detention Volume \(=\) Approximate 100 -yr Detention Volume \(=\)} & acre-feet & & & . & & . & .- & .- & & & & \\
\hline & \multirow[t]{2}{*}{\(\square\) acre-feet} & & & \(\cdots\) & & - & - & - & & & & \\
\hline & & & & - & & . & .- & .- & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & - & . & & & & \\
\hline Define Zones and Basin Geometry & \multirow[b]{2}{*}{acre-feet} & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & - & & & & \\
\hline Zone 1 Volume (WOCV) \(=\) & & & & - & & - & - & .- & & & & \\
\hline \multirow[t]{2}{*}{Zone 2 Volume (EURV - Zone 1)} & acre-feet & & & - & & . & . & .- & & & & \\
\hline & 1.607 acre-feet & & & \(\cdots\) & & \(\cdots\) & - & - & & & & \\
\hline Zone 3 Volume (100 -year - Zones \(1 \& 2\)) \(=\) Total Detention Basin Volume \(=\) & 1.745 acre-feet & & & .- & & .- & - & .- & & & & \\
\hline \multirow[t]{2}{*}{Initial Surcharge Volume (ISV) = Initial Surcharge Depth (ISD) =} & user \(\mathrm{tt}^{3}\) & & & - & & .- & .- & .- & & & & \\
\hline & user & & & - & & .- & .- & .- & & & & \\
\hline \multirow[t]{2}{*}{Total Available Detention Depth \(\left(\mathrm{H}_{\text {total }}\right)=\) Depth of Trickle Channel (\(\mathrm{H}_{\mathrm{TC}}\)) \(=\)} & ft & & & \(\cdots\) & & \(\cdots\) & - & - & & & & \\
\hline & \(\mathrm{ft}^{\mathrm{t}}\) & & & \(\cdots\) & & \(\cdots\) & - & .- & & & & \\
\hline Slope of Trickle Channel (\(\mathrm{S}_{\mathrm{T}}\)) \(=\) & \multirow[t]{2}{*}{ft/t} & & & - & & - & .- & .- & & & & \\
\hline \multirow[t]{2}{*}{Slopes of Main Basin Sides (\(\mathrm{S}_{\text {main }}\)) \(=\) Basin Length-to-Width Ratio \((\) R Luw \()=\)} & & & & - & & .- & .- & .- & & & & \\
\hline & \(\square\) & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & - & & & & \\
\hline \multirow[b]{3}{*}{Initial Surcharge Area (\(\mathrm{A}_{\text {ISV }}\)) \(=\) Surcharge Volume Length (\(\mathrm{L}_{\mathrm{ISV}}\)) \(=\)} & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & user \(\mathrm{tt}^{2}\) & & & - & & \(\cdots\) & \(\cdots\) & .. & & & & \\
\hline & user ft & & & - & & \(\cdots\) & \(\cdots\) & -- & & & & \\
\hline \multirow[t]{2}{*}{} & user ft & & & \(\cdots\) & & - & \(\cdots\) & .- & & & & \\
\hline & tt & & & - & & - & - & .- & & & & \\
\hline Length of Basin Floor (Lfioor) \(=\) & user ft & & & - & & .- & .- & .- & & & & \\
\hline \multirow[t]{2}{*}{Area of Basin Floor \(\left(\mathrm{A}_{\text {FLOOR }}\right)=\)} & user ft & & & - & & - & .- & .. & & & & \\
\hline & user \(\mathrm{ft}^{2}\) & & & \(\cdots\) & & \(\cdots\) & - & - & & & & \\
\hline Volume of Basin Floor (\(\left.\mathrm{F}_{\text {Flooor }}\right)=\) & \(\mathrm{ft}^{3}\) & & & \(\cdots\) & & .- & .- & .- & & & & \\
\hline Depth of Main Basin (\(\mathrm{H}_{\text {mank }}\)) \(=\) & user ft & & & .- & & -. & \(\cdots\) & \(\cdots\) & & & & \\
\hline Length of Main Basin (LMan) = & user \(f\) ft & & & .. & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline Width of Main Basin (\(W_{\text {Mata }}\)) \(=\) & & & & .. & & .- & .. & \(\cdots\) & & & & \\
\hline Area of Main Basin (Amain \(^{2}\)) \(=\) Volume of Main Basin \(\left(\mathrm{V}_{\text {Maln }}\right)=\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\int_{\text {acre-feet }}{ }^{\text {a }}\)}} & & \(\cdots\) & & \(\cdots\) & .- & \(\cdots\) & & & & \\
\hline & & & & .- & & \(\cdots\) & \(\cdots\) & .- & & & & \\
\hline \multicolumn{2}{|l|}{Calculated Total Basin Volume (\(\mathrm{V}_{\text {total }}\)) \(=\) user acre-feet} & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & .- & .- & .- & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & .- & & \(\cdots\) & .. & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & .- & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & .- & .. & .. & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline & & & & \(\cdots\) & & \(\cdots\) & \(\cdots\) & \(\cdots\) & & & & \\
\hline
\end{tabular}

\section*{DETENTION BASIN OUTLET STRUCTURE DESIGN}

\section*{Project: WINSOME FILING 3}

Basin ID: WQ Pond A_Modified Area (BASI N A2B+A3A+G2A+G2B+G1)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)} & \multicolumn{2}{|l|}{Calculated Parameters for Underd} \\
\hline Underdrain Orifice Invert Depth = Underdrain Orifice Diameter \(=\) & & ft (distance below the filtration media surface) inches & \[
\begin{array}{r}
\text { Underdrain Orifice Area }
\end{array}=
\] & & \[
\begin{aligned}
& \mathrm{ft}^{2} \\
& \text { feet }
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)} & \multicolumn{2}{|l|}{Calculated Parameters for Plate} \\
\hline Invert of Lowest Orifice \(=\) & 0.00 & ft (relative to basin bottom at Stage \(=0 \mathrm{ft}\)) & WQ Orifice Area per Row \(=\) & N/A & \(\mathrm{ft}^{2}\) \\
\hline Depth at top of Zone using Orifice Plate \(=\) & 1.67 & ft (relative to basin bottom at Stage \(=0 \mathrm{ft}\)) & Elliptical Half-Width \(=\) & N/A & feet \\
\hline Orifice Plate: Orifice Vertical Spacing \(=\) & N/A & inches & Elliptical Slot Centroid \(=\) & N/A & feet \\
\hline Orifice Plate: Orifice Area per Row \(=\) & N/A & inches & Elliptical Slot Area \(=\) & N/A & \(\mathrm{ft}^{2}\) \\
\hline
\end{tabular}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Row 1 (required) & Row 2 (optional) & Row 3 (optional) & Row 4 (optional) & Row 5 (optional) & Row 6 (optional) & Row 7 (optional) & Row 8 (optional) \\
\hline Stage of Orifice Centroid (ft) & 0.00 & 0.63 & 1.27 & & & & & \\
\hline Orifice Area (sq. inches) & 0.60 & 0.79 & 0.79 & & & & & \\
\hline & Row 9 (optional) & Row 10 (optional) & Row 11 (optional) & Row 12 (optional) & Row 13 (optional) & Row 14 (optional) & Row 15 (optional) & Row 16 (optional) \\
\hline Stage of Orifice Centroid (ft) Orifice Area (sq. inches) & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{User Input: Vertical Orifice (Circular or Rectangular)} & \multirow[b]{5}{*}{ft (relative to basin bottom at Stage \(=0 \mathrm{ft}\)) ft (relative to basin bottom at Stage \(=0 \mathrm{ft}\)) inches} & \multicolumn{4}{|r|}{Calculated Parameters for Vertical Orifice} \\
\hline & Not Selected & Not Selected & & \multirow{4}{*}{\begin{tabular}{l}
Vertical Orifice Area = \\
Vertical Orifice Centroid =
\end{tabular}} & Not Selected & Not Selected & \\
\hline Invert of Vertical Orifice \(=\) & N/A & N/A & & & N/A & N/A & \(\mathrm{ft}^{2}\) \\
\hline Depth at top of Zone using Vertical Orifice \(=\) & N/A & N/A & & & N/A & N/A & \\
\hline Vertical Orifice Diameter \(=\) & N/A & N/A & & & & & \\
\hline
\end{tabular}

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Overflow Weir Front Edge Height, Ho =} & Zone 2 Weir & Not Selected & \multirow[b]{2}{*}{ft (relative to basin bottom at Stage \(=0 \mathrm{ft}\)) Height of Grate Upper Edge, \(\mathrm{H}_{\text {t }}=\)} & Zone 2 Weir & Not Selected & \\
\hline & 1.70 & N/A & & 2.00 & N/A & feet \\
\hline Overflow Weir Front Edge Length = & 3.00 & N/A & feet Overflow Weir Slope Length = & 3.01 & N/A & feet \\
\hline Overflow Weir Grate Slope = & 10.00 & N/A & & 3.56 & N/A & \\
\hline Horiz. Length of Weir Sides \(=\) & 3.00 & N/A & feet Overflow Grate Open Area w/o Debris = & 6.30 & N/A & \(\mathrm{ft}^{2}\) \\
\hline Overflow Grate Type = & Type C Grate & N/A & Overflow Grate Open Area w/ Debris \(=\) & 3.15 & N/A & \(\mathrm{ft}^{2}\) \\
\hline Debris Clogging \% = & 50\% & N/A & \% & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Spillway Invert Stage= & 2.00 & tive to basin bottom at \\
\hline Spillway Crest Length = & 47.00 & feet \\
\hline Spillway End Slopes = & 4.00 & \(\mathrm{H}: \mathrm{V}\) \\
\hline Freeboard above Max Water Surface \(=\) & 1.00 & feet \\
\hline
\end{tabular}
\begin{tabular}{rl|l}
& \multicolumn{1}{l}{ Calculated Parameters for Spillway } \\
Spillway Design Flow Depth & \(=\) & 0.99 \\
Stage at Top of Freeboard & \(=\) & 3.99 \\
feet \\
Basin Area at Top of Freeboard & \(=\) & 0.32 \\
acres \\
Basin Volume at Top of Freeboard & \(=\) & 0.67 \\
& & acre-ft
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Routed Hydrograph Results
Design Storm Return Period \(=\)} & \multicolumn{9}{|l|}{The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).} \\
\hline & WQCV & EURV & 2 Year & 5 Year & 10 Year & 25 Year & 50 Year & 100 Year & 500 Year \\
\hline One-Hour Rainfall Depth (in) = & N/A & N/A & 1.19 & 1.50 & 1.75 & 2.00 & 2.25 & 2.52 & 3.14 \\
\hline CUHP Runoff Volume (acre-ft) \(=\) & 0.047 & 0.138 & 1.393 & 3.212 & 4.950 & 7.434 & 9.361 & 12.096 & 17.035 \\
\hline Inflow Hydrograph Volume (acre-ft) \(=\) & N/A & N/A & 1.393 & 3.212 & 4.950 & 7.434 & 9.361 & 12.096 & 17.035 \\
\hline CUHP Predevelopment Peak Q (cfs) \(=\) & N/A & N/A & 22.1 & 45.3 & 62.3 & 97.1 & 119.4 & 148.8 & 204.5 \\
\hline OPTIONAL Override Predevelopment Peak Q (cfs) = & N/A & N/A & & & & & & & \\
\hline Predevelopment Unit Peak Flow, q (cfs/acre) \(=\) & N/A & N/A & 0.23 & 0.48 & 0.66 & 1.03 & 1.26 & 1.57 & 2.16 \\
\hline Peak Inflow Q (cfs) = & N/A & N/A & 22.1 & 45.3 & 62.3 & 97.1 & 119.4 & 148.8 & 204.5 \\
\hline Peak Outflow Q (cfs) = & 0.0 & 0.1 & 23.0 & 53.7 & 71.8 & 95.9 & 124.3 & 155.0 & 209.6 \\
\hline Ratio Peak Outflow to Predevelopment \(\mathrm{Q}=\) & N/A & N/A & N/A & 1.2 & 1.2 & 1.0 & 1.0 & 1.0 & 1.0 \\
\hline Structure Controlling Flow \(=\) & Plate & Plate & Spillway \\
\hline Max Velocity through Grate 1 (fps) \(=\) & N/A & N/A & 0.63 & 1.1 & 1.3 & 1.7 & 2.0 & 2.4 & 2.6 \\
\hline Max Velocity through Grate 2 (fps) \(=\) & N/A \\
\hline Time to Drain 97\% of Inflow Volume (hours) = & 48 & 68 & 39 & 19 & 7 & 2 & 2 & 1 & 1 \\
\hline Time to Drain 99\% of Inflow Volume (hours) \(=\) & 52 & 75 & 63 & 46 & 35 & 26 & 20 & 13 & 4 \\
\hline Maximum Ponding Depth (ft) \(=\) & 0.73 & 1.53 & 2.26 & 2.47 & 2.57 & 2.69 & 2.82 & 2.95 & 3.17 \\
\hline Area at Maximum Ponding Depth (acres) \(=\) & 0.09 & 0.14 & 0.18 & 0.19 & 0.19 & 0.20 & 0.21 & 0.22 & 0.24 \\
\hline Maximum Volume Stored (acre-ft) \(=\) & 0.047 & 0.138 & 0.250 & 0.288 & 0.309 & 0.333 & 0.359 & 0.387 & 0.437 \\
\hline
\end{tabular}

DETENTION BASIN OUTLET STRUCTURE DESIGN

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SOURCE & CUHP \\
\hline Time Interval & TIME & WQCV [cfs] & EURV [cfs] & 2 Year [cfs] & 5 Year [cfs] & 10 Year [cfs] & 25 Year [cfs] & 50 Year [cfs] & 100 Year [cfs] & 500 Year [cfs] \\
\hline 5.00 min & 0:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0:05:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0:10:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0:15:00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 \\
\hline & 0:20:00 & 0.00 & 0.00 & 0.04 & 0.29 & 0.46 & 0.02 & 0.09 & 0.17 & 0.43 \\
\hline & 0:25:00 & 0.00 & 0.00 & 1.33 & 13.76 & 22.95 & 0.85 & 4.93 & 8.35 & 22.30 \\
\hline & 0:30:00 & 0.00 & 0.00 & 11.69 & 34.13 & 50.21 & 36.94 & 50.57 & 61.72 & 97.19 \\
\hline & 0:35:00 & 0.00 & 0.00 & 20.03 & 44.44 & 61.81 & 75.52 & 95.92 & 117.38 & 167.65 \\
\hline & 0:40:00 & 0.00 & 0.00 & 22.12 & 45.30 & 62.28 & 93.71 & 116.30 & 143.06 & 198.90 \\
\hline & 0:45:00 & 0.00 & 0.00 & 20.77 & 41.81 & 57.92 & 97.08 & 119.41 & 148.83 & 204.55 \\
\hline & 0:50:00 & 0.00 & 0.00 & 17.91 & 37.82 & 52.89 & 93.01 & 114.25 & 143.91 & 197.61 \\
\hline & 0:55:00 & 0.00 & 0.00 & 15.56 & 33.74 & 47.88 & 86.67 & 106.63 & 135.94 & 186.72 \\
\hline & 1:00:00 & 0.00 & 0.00 & 13.40 & 29.85 & 43.82 & 78.52 & 97.07 & 126.91 & 174.89 \\
\hline & 1:05:00 & 0.00 & 0.00 & 11.78 & 26.74 & 40.72 & 71.79 & 89.25 & 119.64 & 165.40 \\
\hline & 1:10:00 & 0.00 & 0.00 & 10.42 & 24.01 & 37.99 & 65.00 & 81.35 & 109.82 & 152.67 \\
\hline & 1:15:00 & 0.00 & 0.00 & 9.13 & 21.17 & 35.27 & 58.10 & 73.29 & 97.88 & 137.22 \\
\hline & 1:20:00 & 0.00 & 0.00 & 7.86 & 18.16 & 31.49 & 50.82 & 64.37 & 85.28 & 120.06 \\
\hline & 1:25:00 & 0.00 & 0.00 & 6.59 & 15.19 & 26.79 & 43.48 & 55.06 & 72.75 & 102.40 \\
\hline & 1:30:00 & 0.00 & 0.00 & 5.40 & 12.98 & 23.13 & 36.38 & 46.23 & 61.29 & 86.69 \\
\hline & 1:35:00 & 0.00 & 0.00 & 4.75 & 11.50 & 20.33 & 31.37 & 39.95 & 52.87 & 74.93 \\
\hline & 1:40:00 & 0.00 & 0.00 & 4.24 & 10.22 & 17.97 & 27.49 & 35.02 & 46.34 & 65.69 \\
\hline & 1:45:00 & 0.00 & 0.00 & 3.81 & 9.03 & 15.84 & 24.23 & 30.86 & 40.71 & 57.69 \\
\hline & 1:50:00 & 0.00 & 0.00 & 3.39 & 7.90 & 13.90 & 21.29 & 27.10 & 35.68 & 50.53 \\
\hline & 1:55:00 & 0.00 & 0.00 & 2.95 & 6.83 & 12.05 & 18.65 & 23.71 & 31.07 & 43.96 \\
\hline & 2:00:00 & 0.00 & 0.00 & 2.52 & 5.79 & 10.24 & 16.11 & 20.46 & 26.75 & 37.80 \\
\hline & 2:05:00 & 0.00 & 0.00 & 2.08 & 4.75 & 8.47 & 13.66 & 17.32 & 22.67 & 31.97 \\
\hline & 2:10:00 & 0.00 & 0.00 & 1.65 & 3.74 & 6.77 & 11.31 & 14.31 & 18.87 & 26.52 \\
\hline & 2:15:00 & 0.00 & 0.00 & 1.22 & 2.75 & 5.15 & 8.98 & 11.36 & 15.11 & 21.18 \\
\hline & 2:20:00 & 0.00 & 0.00 & 0.80 & 1.76 & 3.62 & 6.70 & 8.48 & 11.40 & 15.95 \\
\hline & 2:25:00 & 0.00 & 0.00 & 0.39 & 0.99 & 2.44 & 4.43 & 5.68 & 7.83 & 11.07 \\
\hline & 2:30:00 & 0.00 & 0.00 & 0.15 & 0.58 & 1.77 & 2.72 & 3.60 & 5.10 & 7.42 \\
\hline & 2:35:00 & 0.00 & 0.00 & 0.07 & 0.38 & 1.35 & 1.74 & 2.39 & 3.42 & 5.10 \\
\hline & 2:40:00 & 0.00 & 0.00 & 0.04 & 0.26 & 1.02 & 1.13 & 1.60 & 2.28 & 3.49 \\
\hline & 2:45:00 & 0.00 & 0.00 & 0.03 & 0.17 & 0.77 & 0.71 & 1.05 & 1.47 & 2.31 \\
\hline & 2:50:00 & 0.00 & 0.00 & 0.02 & 0.12 & 0.55 & 0.44 & 0.67 & 0.89 & 1.45 \\
\hline & 2:55:00 & 0.00 & 0.00 & 0.02 & 0.08 & 0.38 & 0.26 & 0.41 & 0.48 & 0.82 \\
\hline & 3:00:00 & 0.00 & 0.00 & 0.01 & 0.05 & 0.24 & 0.14 & 0.23 & 0.21 & 0.40 \\
\hline & 3:05:00 & 0.00 & 0.00 & 0.01 & 0.03 & 0.14 & 0.07 & 0.12 & 0.09 & 0.19 \\
\hline & 3:10:00 & 0.00 & 0.00 & 0.01 & 0.02 & 0.07 & 0.04 & 0.07 & 0.05 & 0.10 \\
\hline & 3:15:00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.04 & 0.03 & 0.04 & 0.03 & 0.06 \\
\hline & 3:20:00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.03 & 0.02 & 0.03 & 0.03 & 0.05 \\
\hline & 3:25:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.02 & 0.02 & 0.02 & 0.02 & 0.04 \\
\hline & 3:30:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.02 & 0.01 & 0.03 \\
\hline & 3:35:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.01 & 0.01 & 0.02 \\
\hline & 3:40:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.01 \\
\hline & 3:45:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 \\
\hline & 3:50:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 3:55:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:05:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:10:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:15:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:20:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:25:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:30:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:35:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:40:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:45:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:50:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:55:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:05:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:10:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:15:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:20:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:25:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:30:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:35:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:40:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:45:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:50:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:55:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 6:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}

DETENTION BASIN OUTLET STRUCTURE DESIGN
MHFD-Detention, Version 4.04 (February 2021)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Project: WINSOME FILING
Basin ID: WQ Pond A_Original Area (BASIN A2B+A3A+G2A+G2B+G1)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Watershed Information} \\
\hline Selected BMP Type = & EDB & \multirow[b]{2}{*}{acres} \\
\hline Watershed Area \(=\) & 63.40 & \\
\hline Watershed Length \(=\) & 2,895 & ft \\
\hline Watershed Length to Centroid = & 1,447 & ft \\
\hline Watershed Slope \(=\) & 0.040 & f/ft \\
\hline Watershed Imperviousness \(=\) & 2.00\% & percent \\
\hline Percentage Hydrologic Soil Group A \(=\) & 0.0\% & percent \\
\hline Percentage Hydrologic Soil Group B = & 0.0\% & ercent \\
\hline Percentage Hydrologic Soil Groups C/D \(=\) & 100.0\% & percent \\
\hline Target WQCV Drain Time \(=\) & 40.0 & hours \\
\hline Location for 1-hr Rainfall Depths \(=\) & ser Input & \\
\hline After providing required inputs above inclu depths, click 'Run CUHP' to generate runo the embedded Colorado Urban Hydrog & ding 1 -h hydrogr aph Proc & r rainfall hs using dure. \\
\hline Water Quality Capture Volume (WQCV) \(=\) & 0.080 & feet \\
\hline Excess Urban Runoff Volume (EURV) \(=\) & 0.093 & \\
\hline 2 -yr Runoff Volume (\(\mathrm{P} 1=1.19 \mathrm{in}\).) = & 0.934 & acre-feet \\
\hline 5 -yr Runoff Volume (\(\mathrm{P} 1=1.5 \mathrm{in}\).) \(=\) & 2.155 & eet \\
\hline \(10-\mathrm{yr}\) Runoff Volume (\(\mathrm{P} 1=1.75 \mathrm{in}\).) \(=\) & 3.322 & eet \\
\hline \(25-\mathrm{yr}\) Runoff Volume (\(\mathrm{P} 1=2 \mathrm{in}\).) \(=\) & 4.989 & acre-feet \\
\hline \(50-\mathrm{yr}\) Runoff Volume (\(\mathrm{P} 1=2.25 \mathrm{in}\).) \(=\) & 6.282 & -feet \\
\hline \(100-\mathrm{yr}\) Runoff Volume (\(\mathrm{P} 1=2.52 \mathrm{in}\).) \(=\) & 8.117 & eet \\
\hline \(500-\mathrm{yr}\) Runoff Volume (\(\mathrm{P} 1=3.14 \mathrm{in}\).) \(=\) & 11.431 & eet \\
\hline Approximate 2 -yr Detention Volume \(=\) & 0.069 & et \\
\hline Approximate 5 -yr Detention Volume \(=\) & 0.430 & acre-feet \\
\hline Approximate 10-yr Detention Volume \(=\) & 0.715 & e-feet \\
\hline Approximate 25 -yr Detention Volume \(=\) & 0.767 & -feet \\
\hline Approximate \(50-\mathrm{yr}\) Detention Volume \(=\) & 0.734 & acre-feet \\
\hline Approximate 100-yr Detention Volume \(=\) & 1.171 & acre-feet \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Zone 1 Volume (WQCV) \(=\) & 0.080 \\
\hline Zone 2 Volume (EURV - Zone 1) = & 0.013 \\
\hline Zone 3 Volume (100 -year - Zones 1 \& 2) \(=\) & 1.078 \\
\hline Total Detention Basin Volume \(=\) & 1.171 \\
\hline Initial Surcharge Volume (ISV) = & user \\
\hline Initial Surcharge Depth (ISD) \(=\) & user \\
\hline Total Available Detention Depth (\(\mathrm{H}_{\text {total }}\)) \(=\) & user \\
\hline Depth of Trickle Channel (\(\mathrm{H}_{\text {TC }}\)) \(=\) & user \\
\hline Slope of Trickle Channel (\(\mathrm{S}_{\text {TC }}\)) \(=\) & user \\
\hline Slopes of Main Basin Sides (\(\mathrm{S}_{\text {main }}\)) \(=\) & user \\
\hline Basin Length-to-Width Ratio (RLw) = & user \\
\hline
\end{tabular}

\section*{DETENTION BASIN OUTLET STRUCTURE DESIGN}

\begin{tabular}{rl}
User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) & Calculated Parameters for Underdrain \\
Underdrain Orifice Invert Depth \(=\square\) & ft (distance below the filtration media surface)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline User In & Weir (typically used to drain WQCV and/or E & MP) & ted P & ters for Plate \\
\hline Invert of Lowest Orifice \(=\) & ft (relative to basin bottom at Stage \(=0 \mathrm{ft}\)) & WQ Orifice Area per Row = & N/A & \(\mathrm{ft}^{2}\) \\
\hline Depth at top of Zone using Orifice Plate \(=\) & ft (relative to basin bottom at Stage \(=0 \mathrm{ft}\)) & Elliptical Half-Width = & N/A & feet \\
\hline Orifice Plate: Orifice Vertical Spacing = & inches & Elliptical Slot Centroid = & N/A & feet \\
\hline Orifice Plate: Orifice Area per Row \(=\) & sq. inches & Elliptical Slot Area = & N/A & \(\mathrm{ft}^{2}\) \\
\hline
\end{tabular}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{User Input: Vertical Orifice (Circular or Rectangular)} & \multirow[b]{5}{*}{ft (relative to basin bottom at Stage \(=0 \mathrm{ft}\)) ft (relative to basin bottom at Stage \(=0 \mathrm{ft}\)) inches} & \multirow{5}{*}{Vertical Orifice Area \(=\) Vertical Orifice Centroid \(=\)} & \multicolumn{3}{|l|}{Calculated Parameters for Vertical Orifice} \\
\hline & Not Selected & Not Selected & & & & & \\
\hline Invert of Vertical Orifice \(=\) & N/A & N/A & & & N/A & N/A & \(\mathrm{ft}^{2}\) \\
\hline Depth at top of Zone using Vertical Orifice \(=\) & N/A & N/A & & & N/A & N/A & \\
\hline Vertical Orifice Diameter \(=\) & N/A & N/A & & & & & \\
\hline
\end{tabular}

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate} \\
\hline \multirow{3}{*}{m at Stage = 0 ft)} & & Zone 2 Restrictor & Not Selected & \multirow[b]{2}{*}{\(\mathrm{ft}^{2}\)} \\
\hline & Outlet Orifice Area \(=\) & & N/A & \\
\hline & Outlet Orifice Centroid = & & N/A & feet \\
\hline Half-Central Ang & Restrictor Plate on Pipe \(=\) & & N/A & radians \\
\hline
\end{tabular}
\begin{tabular}{rl}
User Input: Emergency Spillway (Rectangular or Trapezoidal) & ft (relative to basin bottom at Stage \(=0 \mathrm{ft}\)) \\
Spillway Invert Stage \(=\) & feet \\
Spillway Crest Length & \(=\square\) \\
Spillway End Slopes & \(=\square\) \\
Freeboard above Max Water Surface & \(=\square\)
\end{tabular}
\begin{tabular}{rl}
& Calculated Parameters for Spillway \\
Spillway Design Flow Depth & \(=\square\) \\
Stage at Top of Freeboard & \(=\square\) \\
Basin Area at Top of Freeboard & \(=\square\) \\
Basin Volume at Top of Freeboard & \(=\square\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Routed Hydrograph Results & \multicolumn{9}{|l|}{The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).} \\
\hline Design Storm Return Period \(=\) & WQCV & EURV & 2 Year & 5 Year & 10 Year & 25 Year & 50 Year & 100 Year & 500 Year \\
\hline One-Hour Rainfall Depth (in) \(=\) & N/A & N/A & 1.19 & 1.50 & 1.75 & 2.00 & 2.25 & 2.52 & 3.14 \\
\hline CUHP Runoff Volume (acre-ft) = & 0.080 & 0.093 & 0.934 & 2.155 & 3.322 & 4.989 & 6.282 & 8.117 & 11.431 \\
\hline Inflow Hydrograph Volume (acre-ft) = & N/A & N/A & 0.934 & 2.155 & 3.322 & 4.989 & 6.282 & 8.117 & 11.431 \\
\hline CUHP Predevelopment Peak Q (cfs) = & N/A & N/A & 12.6 & 26.2 & 36.2 & 56.4 & 69.6 & 86.7 & 119.7 \\
\hline OPTIONAL Override Predevelopment Peak Q (cfs) = & N/A & N/A & & & & & & & \\
\hline Predevelopment Unit Peak Flow, q ((ff/acre) \(=\) & N/A & N/A & 0.20 & 0.41 & 0.57 & 0.89 & 1.10 & 1.37 & 1.89 \\
\hline Peak Inflow Q (cfs) = & N/A & N/A & 12.6 & 26.2 & 36.2 & 56.4 & 69.6 & 86.7 & 119.7 \\
\hline Peak Outflow Q (cfs) \(=\) & & & & & & & & & \\
\hline Ratio Peak Outflow to Predevelopment \(\mathrm{Q}=\) & & & & & & & & & \\
\hline Structure Controlling Flow = & & & & & & & & & \\
\hline Max Velocity through Grate 1 (fps) \(=\) & & & & & & & & & \\
\hline Max Velocity through Grate 2 (fps) = & & & & & & & & & \\
\hline Time to Drain 97\% of Inflow Volume (hours) = & & & & & & & & & \\
\hline Time to Drain 99\% of Inflow Volume (hours) = & & & & & & & & & \\
\hline Maximum Ponding Depth (ft) = & & & & & & & & & \\
\hline Area at Maximum Ponding Depth (acres) \(=\) & & & & & & & & & \\
\hline Maximum Volume Stored (acre-ft) = & & & & & & & & & \\
\hline
\end{tabular}

DETENTION BASIN OUTLET STRUCTURE DESIGN

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SOURCE & CUHP \\
\hline Time Interval & TIME & WQCV [cfs] & EURV [cfs] & 2 Year [cfs] & 5 Year [cfs] & 10 Year [cfs] & 25 Year [cfs] & 50 Year [cfs] & 100 Year [cfs] & 500 Year [cfs] \\
\hline 5.00 min & 0:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0:05:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0:10:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0:15:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 & 0.01 \\
\hline & 0:20:00 & 0.00 & 0.00 & 0.02 & 0.16 & 0.26 & 0.01 & 0.05 & 0.10 & 0.24 \\
\hline & 0:25:00 & 0.00 & 0.00 & 0.75 & 7.72 & 12.87 & 0.48 & 2.77 & 4.68 & 12.51 \\
\hline & 0:30:00 & 0.00 & 0.00 & 6.56 & 19.14 & 28.16 & 20.72 & 28.37 & 34.62 & 54.51 \\
\hline & 0:35:00 & 0.00 & 0.00 & 11.25 & 25.07 & 34.92 & 42.35 & 53.83 & 65.91 & 94.25 \\
\hline & 0:40:00 & 0.00 & 0.00 & 12.57 & 26.21 & 36.21 & 52.96 & 65.91 & 81.15 & 113.29 \\
\hline & 0:45:00 & 0.00 & 0.00 & 12.24 & 25.03 & 34.77 & 56.45 & 69.63 & 86.72 & 119.66 \\
\hline & 0:50:00 & 0.00 & 0.00 & 10.93 & 23.15 & 32.36 & 55.61 & 68.43 & 86.05 & 118.40 \\
\hline & 0:55:00 & 0.00 & 0.00 & 9.70 & 21.18 & 30.06 & 52.72 & 64.99 & 82.70 & 113.93 \\
\hline & 1:00:00 & 0.00 & 0.00 & 8.65 & 19.13 & 27.90 & 49.08 & 60.71 & 78.94 & 108.89 \\
\hline & 1:05:00 & 0.00 & 0.00 & 7.68 & 17.27 & 26.01 & 45.50 & 56.51 & 75.22 & 103.98 \\
\hline & 1:10:00 & 0.00 & 0.00 & 6.84 & 15.77 & 24.63 & 41.57 & 51.99 & 69.69 & 96.96 \\
\hline & 1:15:00 & 0.00 & 0.00 & 6.18 & 14.38 & 23.45 & 37.96 & 47.85 & 63.59 & 89.20 \\
\hline & 1:20:00 & 0.00 & 0.00 & 5.57 & 12.95 & 21.73 & 34.38 & 43.49 & 57.41 & 80.85 \\
\hline & 1:25:00 & 0.00 & 0.00 & 4.98 & 11.53 & 19.51 & 30.78 & 38.95 & 51.22 & 72.16 \\
\hline & 1:30:00 & 0.00 & 0.00 & 4.39 & 10.14 & 17.19 & 27.33 & 34.56 & 45.41 & 63.93 \\
\hline & 1:35:00 & 0.00 & 0.00 & 3.81 & 8.78 & 14.90 & 23.99 & 30.31 & 39.86 & 56.03 \\
\hline & 1:40:00 & 0.00 & 0.00 & 3.24 & 7.59 & 12.99 & 20.74 & 26.24 & 34.59 & 48.71 \\
\hline & 1:45:00 & 0.00 & 0.00 & 2.82 & 6.74 & 11.61 & 18.04 & 22.90 & 30.23 & 42.73 \\
\hline & 1:50:00 & 0.00 & 0.00 & 2.56 & 6.09 & 10.49 & 16.07 & 20.43 & 26.94 & 38.14 \\
\hline & 1:55:00 & 0.00 & 0.00 & 2.34 & 5.52 & 9.50 & 14.46 & 18.38 & 24.19 & 34.25 \\
\hline & 2:00:00 & 0.00 & 0.00 & 2.14 & 4.99 & 8.57 & 13.05 & 16.58 & 21.75 & 30.80 \\
\hline & 2:05:00 & 0.00 & 0.00 & 1.93 & 4.48 & 7.67 & 11.75 & 14.92 & 19.51 & 27.60 \\
\hline & 2:10:00 & 0.00 & 0.00 & 1.73 & 3.99 & 6.80 & 10.53 & 13.35 & 17.41 & 24.61 \\
\hline & 2:15:00 & 0.00 & 0.00 & 1.53 & 3.50 & 5.96 & 9.36 & 11.85 & 15.45 & 21.80 \\
\hline & 2:20:00 & 0.00 & 0.00 & 1.33 & 3.03 & 5.16 & 8.24 & 10.42 & 13.62 & 19.18 \\
\hline & 2:25:00 & 0.00 & 0.00 & 1.13 & 2.57 & 4.40 & 7.16 & 9.04 & 11.87 & 16.68 \\
\hline & 2:30:00 & 0.00 & 0.00 & 0.93 & 2.11 & 3.67 & 6.09 & 7.69 & 10.14 & 14.23 \\
\hline & 2:35:00 & 0.00 & 0.00 & 0.73 & 1.65 & 2.96 & 5.03 & 6.36 & 8.43 & 11.81 \\
\hline & 2:40:00 & 0.00 & 0.00 & 0.53 & 1.19 & 2.25 & 3.98 & 5.03 & 6.71 & 9.39 \\
\hline & 2:45:00 & 0.00 & 0.00 & 0.33 & 0.74 & 1.55 & 2.92 & 3.70 & 5.00 & 6.98 \\
\hline & 2:50:00 & 0.00 & 0.00 & 0.15 & 0.41 & 1.05 & 1.88 & 2.42 & 3.36 & 4.77 \\
\hline & 2:55:00 & 0.00 & 0.00 & 0.06 & 0.25 & 0.78 & 1.16 & 1.55 & 2.20 & 3.21 \\
\hline & 3:00:00 & 0.00 & 0.00 & 0.03 & 0.16 & 0.59 & 0.75 & 1.03 & 1.48 & 2.21 \\
\hline & 3:05:00 & 0.00 & 0.00 & 0.02 & 0.11 & 0.45 & 0.48 & 0.69 & 0.98 & 1.51 \\
\hline & 3:10:00 & 0.00 & 0.00 & 0.01 & 0.07 & 0.34 & 0.30 & 0.45 & 0.62 & 0.99 \\
\hline & 3:15:00 & 0.00 & 0.00 & 0.01 & 0.05 & 0.24 & 0.19 & 0.29 & 0.37 & 0.61 \\
\hline & 3:20:00 & 0.00 & 0.00 & 0.01 & 0.03 & 0.16 & 0.11 & 0.17 & 0.20 & 0.34 \\
\hline & 3:25:00 & 0.00 & 0.00 & 0.01 & 0.02 & 0.10 & 0.06 & 0.10 & 0.08 & 0.16 \\
\hline & 3:30:00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.06 & 0.03 & 0.05 & 0.04 & 0.08 \\
\hline & 3:35:00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.03 & 0.02 & 0.03 & 0.02 & 0.04 \\
\hline & 3:40:00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.02 & 0.01 & 0.02 & 0.02 & 0.03 \\
\hline & 3:45:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.01 & 0.01 & 0.02 \\
\hline & 3:50:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.01 & 0.01 & 0.02 \\
\hline & 3:55:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.01 & 0.01 & 0.01 \\
\hline & 4:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.01 \\
\hline & 4:05:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 \\
\hline & 4:10:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:15:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:20:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:25:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:30:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:35:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:40:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:45:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:50:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:55:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:05:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:10:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:15:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:20:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:25:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:30:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:35:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:40:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:45:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:50:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:55:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 6:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}

DETENTION BASIN OUTLET STRUCTURE DESIGN
MHFD-Detention, Version 4.04 (February 2021)
Summary Staqe-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Stage - Storage Description & \[
\begin{gathered}
\text { Stage } \\
{[\mathrm{ft}]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Area } \\
& {\left[\mathrm{ft}^{2}\right]}
\end{aligned}
\] & Area [acres] & \[
\begin{gathered}
\text { Volume } \\
{\left[\mathrm{ft}^{3}\right]}
\end{gathered}
\] & \[
\begin{aligned}
& \hline \text { Volume } \\
& \text { [ac-ft] }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Total } \\
& \text { Outflow } \\
& \text { [cfs] }
\end{aligned}
\] & \\
\hline & & & & & & & best results, include the \\
\hline & & & & & & & stages of all grade slope \\
\hline & & & & & & & changes (e.g. ISV and Floor) \\
\hline & & & & & & & from the S-A-V table on \\
\hline & & & & & & & neet 'Basin'. \\
\hline & & & & & & & Also include the inverts of all \\
\hline & & & & & & & outlets (e.g. vertical orifice, \\
\hline & & & & & & & overflow grate, and spillway, \\
\hline & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l|l|l|l|l|}
\hline & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

Project: WINSOME FLLING 3
Basin ID: WQ Pond A_Water Quality Volume (BASIN A2B+A3A+G2A+G2B+G1)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Watershed Information} \\
\hline Selected BMP Type \(=\) & EDB & \multirow[b]{2}{*}{acres} \\
\hline \multirow[t]{3}{*}{Watershed Area = Watershed Length = Watershed Length to Centroid =} & 1.12 & \\
\hline & 1,810 & ft \\
\hline & 905 & ft \\
\hline Watershed Slope \(=\) & 0.040 & \(\mathrm{t} / \mathrm{tt}\) \\
\hline \multirow[t]{2}{*}{Watershed Imperviousness = Percentage Hydrologic Soil Group A =} & 100.00\% & percent \\
\hline & 0.0\% & \\
\hline \multirow[t]{2}{*}{Percentage Hydrologic Soil Group B = Percentage Hydrologic Soil Groups \(\mathrm{C} / \mathrm{D}=\)} & 0.0\% & percent \\
\hline & 100.0\% & \\
\hline Target WQCV Drain Time \(=\) & 40.0 & \\
\hline \multicolumn{3}{|l|}{Location for 1-hr Rainfall Depths \(=\) User Input} \\
\hline \multicolumn{3}{|l|}{After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.} \\
\hline \multirow[t]{4}{*}{Water Quality Capture Volume (WQCV) \(=\) Excess Urban Runoff Volume (EURV) = 2-yr Runoff Volume (\(\mathrm{P} 1=1.19 \mathrm{in}\).) = \(5-\mathrm{yr}\) Runoff Volume (P1 = 1.5 in .) =} & 0.047 & , \\
\hline & 0.112 & \\
\hline & 0.112 & \\
\hline & 0.144 & acre-feet \\
\hline \multirow[t]{2}{*}{\(10-\mathrm{yr}\) Runoff Volume (\(\mathrm{P} 1=1.75 \mathrm{in}\).) \(=\) \(25-y r\) Runoff Volume (\(\mathrm{P} 1=2 \mathrm{in}\).) \(=\)} & 0.170 & e-feet \\
\hline & 0.195 & t \\
\hline \multirow[t]{2}{*}{\(50-\mathrm{yr}\) Runoff Volume (\((\mathrm{P} 1=2.25 \mathrm{in}\).) \(=\)} & 0.220 & acre-feet \\
\hline & 0.248 & et \\
\hline \(100-\)-rr Runoff Volume (\(\mathrm{P} 1=2.52 \mathrm{in}.)=\)
\(500-\mathrm{yr}\) Runoff Volume (\(\mathrm{P} 1=3.14 \mathrm{in}\).) \(=\) & 0.311 & acre-feet \\
\hline \multirow[t]{2}{*}{Approximate 2 -yr Detention Volume \(=\) Approximate 5 -yr Detention Volume \(=\)} & 0.103 & --feet \\
\hline & 0.134 & t \\
\hline \multirow[t]{2}{*}{Approximate \(10-\mathrm{yr}\) Detention Volume \(=\) Approximate 25 -yr Detention Volume \(=\)} & 0.157 & t \\
\hline & 0.166 & -feet \\
\hline \multirow[t]{2}{*}{Approximate \(50-\mathrm{yr}\) Detention Volume \(=\) Approximate 100 -yr Detention Volume \(=\)} & 0.169 & eet \\
\hline & 0.172 & cre-feet \\
\hline
\end{tabular}

Define Zones and Basin Geometry
Zone 1 Volume (WQCV) \(=0.047\) acre-fee
\begin{tabular}{|c|c|}
\hline Zone 1 Volume (WQC) & 0.04 \\
\hline Zone 2 Volume (EURV - Zone 1) = & 0.065 \\
\hline Zone 3 Volume (100 -year - Zones 1\&2) \(=\) & 0.060 \\
\hline Total Detention Basin Volume \(=\) & 0.172 \\
\hline Initial Surcharge Volume (ISV) \(=\) & user \\
\hline Initial Surcharge Depth (ISD) \(=\) & user \\
\hline Total Available Detention Depth (\(\left.\mathrm{H}_{\text {totala }}\right)=\) & user \\
\hline Depth of Trickle Channel (\(\mathrm{H}_{\text {TC }}\)) \(=\) & user \\
\hline Slope of Trickle Channel (\(\mathrm{STC}_{\text {c }}\)) \(=\) & user \\
\hline Slopes of Main Basin Sides (\(\mathrm{S}_{\text {main }}\)) \(=\) & user \\
\hline Basin Length-to-Width Ratio (RLw) = & user \\
\hline
\end{tabular}

\section*{DETENTION BASIN OUTLET STRUCTURE DESIGN}

\begin{tabular}{rl}
User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) \\
Underdrain Orifice Invert Depth \(=\square\) & ft (distance below the filtration media surface) \\
Underdrain Orifice Diameter \(=\square\) & inches
\end{tabular}
\begin{tabular}{rl}
& Calculated Parameters f \\
Underdrain Orifice Area & \(=\square\) \\
Underdrain Orifice Centroid & \(=\square\) feet
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)} & \multicolumn{2}{|l|}{Calculated Parameters for Plate} \\
\hline Invert of Lowest Orifice = & 0.00 & ft (relative to basin bottom at Stage \(=0 \mathrm{ft}\)) & WQ Orifice Area per Row \(=\) & N/A & \(\mathrm{ft}^{2}\) \\
\hline Depth at top of Zone using Orifice Plate \(=\) & 1.75 & ft (relative to basin bottom at Stage \(=0 \mathrm{ft}\)) & Elliptical Half-Width \(=\) & N/A & feet \\
\hline Orifice Plate: Orifice Vertical Spacing & N/A & inches & Elliptical Slot Centroid \(=\) & N/A & feet \\
\hline Orifice Plate: Orifice Area per Row \(=\) & N/A & inches & Elliptical Slot Area \(=\) & N/A & \(\mathrm{ft}^{2}\) \\
\hline
\end{tabular}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{User Input: Vertical Orifice (Circular or Rectangular)} & \multirow[b]{5}{*}{ft (relative to basin bottom at Stage \(=0 \mathrm{ft}\)) ft (relative to basin bottom at Stage \(=0 \mathrm{ft}\)) inches} & \multirow{5}{*}{Vertical Orifice Area \(=\) Vertical Orifice Centroid \(=\)} & \multicolumn{3}{|l|}{Calculated Parameters for Vertical Orifice} \\
\hline & Not Selected & Not Selected & & & Not Selected & Not Selected & \\
\hline Invert of Vertical Orifice \(=\) & & & & & & & \(\mathrm{ft}^{2}\) \\
\hline Depth at top of Zone using Vertical Orifice \(=\) & & & & & & & feet \\
\hline Vertical Orifice Diameter \(=\) & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)} & \multicolumn{4}{|l|}{Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate} \\
\hline \multirow{3}{*}{Depth to Invert of Outlet Pipe = Circular Orifice Diameter \(=\)} & Not Selected & Not Selected & \multirow[b]{3}{*}{ft (distance below basin bottom at Stage \(=0 \mathrm{ft}\)) inches} & \multirow[b]{3}{*}{\begin{tabular}{l}
Outlet Orifice Area \(=\) \\
Outlet Orifice Centroid = \\
Restrictor Plate on Pipe =
\end{tabular}} & Not Selected & Not Selected & \multirow[b]{2}{*}{feet \({ }^{\text {ft }}\)} \\
\hline & & & & & & Not Seleted & \\
\hline & & & & & N/A & N/A & radians \\
\hline
\end{tabular}
\begin{tabular}{ll}
User Input: Emergency Spillway (Rectangular or Trapezoidal) & ft (relative to basin bottom at Stage \(=0 \mathrm{ft}\)) \\
\(\qquad\)\begin{tabular}{rl}
Spillway Invert Stage \(=\square\) & feet \\
Spillway Crest Length \(=\) & \(\mathrm{H}: \mathrm{V}\) \\
Spillway End Slopes & \(=\square\) \\
Freeboard above Max Water Surface \(=\) & feet
\end{tabular}
\end{tabular}
\begin{tabular}{rl}
& Calculated Parameters for Spillway \\
Spillway Design Flow Depth & \(=\square\) feet \\
Stage at Top of Freeboard & \(=\square\) \\
feet \\
Basin Area at Top of Freeboard & \(=\square\) \\
Basin Volume at Top of Freeboard & \(=\square\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Routed Hydrograph Results & \multicolumn{9}{|l|}{The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).} \\
\hline Design Storm Return Period \(=\) & WQCV & EURV & 2 Year & 5 Year & 10 Year & 25 Year & 50 Year & 100 Year & 500 Year \\
\hline One-Hour Rainfall Depth (in) = & N/A & N/A & 1.19 & 1.50 & 1.75 & 2.00 & 2.25 & 2.52 & 3.14 \\
\hline CUHP Runoff Volume (acre-ft) = & 0.047 & 0.112 & 0.112 & 0.144 & 0.170 & 0.195 & 0.220 & 0.248 & 0.311 \\
\hline Inflow Hydrograph Volume (acre-ft) \(=\) & N/A & N/A & 0.112 & 0.144 & 0.170 & 0.195 & 0.220 & 0.248 & 0.311 \\
\hline CUHP Predevelopment Peak Q (cfs) \(=\) & N/A & N/A & 0.1 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.7 \\
\hline OPTIONAL Override Predevelopment Peak Q (cfs) = & N/A & N/A & & & & & & & \\
\hline Predevelopment Unit Peak Flow, q (cfs/acre) = & N/A & N/A & 0.05 & 0.12 & 0.18 & 0.28 & 0.35 & 0.45 & 0.63 \\
\hline Peak Inflow Q (cfs) \(=\) & N/A & N/A & 0.8 & 1.0 & 1.1 & 1.4 & 1.6 & 1.8 & 2.2 \\
\hline Peak Outflow Q (cfs) = & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Ratio Peak Outflow to Predevelopment \(\mathrm{Q}=\) & N/A & N/A & N/A & 0.2 & 0.2 & 0.1 & 0.1 & 0.1 & 0.1 \\
\hline Structure Controlling Flow \(=\) & Plate \\
\hline Max Velocity through Grate 1 (fps) = & N/A \\
\hline Max Velocity through Grate 2 (fps) = & N/A \\
\hline Time to Drain 97\% of Inflow Volume (hours) = & 40 & 61 & 62 & 72 & 79 & 86 & 94 & 101 & 118 \\
\hline Time to Drain 99\% of Inflow Volume (hours) \(=\) & 45 & 69 & 70 & 81 & 89 & 96 & 104 & 112 & \(>120\) \\
\hline Maximum Ponding Depth (ft) = & 1.73 & 2.38 & 2.30 & 2.57 & 2.78 & 2.97 & 3.16 & 3.36 & 3.79 \\
\hline Area at Maximum Ponding Depth (acres) \(=\) & 0.08 & 0.11 & 0.11 & 0.12 & 0.12 & 0.13 & 0.14 & 0.14 & 0.15 \\
\hline Maximum Volume Stored (acre-ft) \(=\) & 0.048 & 0.113 & 0.104 & 0.135 & 0.159 & 0.184 & 0.210 & 0.236 & 0.298 \\
\hline
\end{tabular}

DETENTION BASIN OUTLET STRUCTURE DESIGN

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SOURCE & CUHP \\
\hline Time Interval & TIME & WQCV [cfs] & EURV [cfs] & 2 Year [cfs] & 5 Year [cfs] & 10 Year [cfs] & 25 Year [cfs] & 50 Year [cfs] & 100 Year [cfs] & 500 Year [cfs] \\
\hline 5.00 min & 0:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0:05:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0:10:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.03 \\
\hline & 0:15:00 & 0.00 & 0.00 & 0.07 & 0.12 & 0.14 & 0.10 & 0.12 & 0.12 & 0.17 \\
\hline & 0:20:00 & 0.00 & 0.00 & 0.26 & 0.34 & 0.40 & 0.26 & 0.30 & 0.32 & 0.42 \\
\hline & 0:25:00 & 0.00 & 0.00 & 0.55 & 0.71 & 0.84 & 0.55 & 0.63 & 0.66 & 0.85 \\
\hline & 0:30:00 & 0.00 & 0.00 & 0.71 & 0.89 & 1.02 & 1.04 & 1.18 & 1.28 & 1.61 \\
\hline & 0:35:00 & 0.00 & 0.00 & 0.76 & 0.94 & 1.08 & 1.25 & 1.41 & 1.59 & 2.00 \\
\hline & 0:40:00 & 0.00 & 0.00 & 0.77 & 0.95 & 1.09 & 1.35 & 1.53 & 1.72 & 2.17 \\
\hline & 0:45:00 & 0.00 & 0.00 & 0.75 & 0.94 & 1.08 & 1.37 & 1.55 & 1.78 & 2.23 \\
\hline & 0:50:00 & 0.00 & 0.00 & 0.73 & 0.92 & 1.05 & 1.37 & 1.55 & 1.78 & 2.23 \\
\hline & 0:55:00 & 0.00 & 0.00 & 0.71 & 0.89 & 1.02 & 1.33 & 1.50 & 1.75 & 2.19 \\
\hline & 1:00:00 & 0.00 & 0.00 & 0.69 & 0.87 & 1.00 & 1.29 & 1.46 & 1.72 & 2.15 \\
\hline & 1:05:00 & 0.00 & 0.00 & 0.67 & 0.85 & 0.98 & 1.26 & 1.42 & 1.69 & 2.12 \\
\hline & 1:10:00 & 0.00 & 0.00 & 0.64 & 0.83 & 0.96 & 1.21 & 1.37 & 1.61 & 2.02 \\
\hline & 1:15:00 & 0.00 & 0.00 & 0.62 & 0.80 & 0.95 & 1.16 & 1.31 & 1.53 & 1.92 \\
\hline & 1:20:00 & 0.00 & 0.00 & 0.60 & 0.78 & 0.92 & 1.11 & 1.26 & 1.45 & 1.81 \\
\hline & 1:25:00 & 0.00 & 0.00 & 0.58 & 0.75 & 0.89 & 1.07 & 1.20 & 1.37 & 1.71 \\
\hline & 1:30:00 & 0.00 & 0.00 & 0.56 & 0.73 & 0.86 & 1.01 & 1.14 & 1.29 & 1.62 \\
\hline & 1:35:00 & 0.00 & 0.00 & 0.54 & 0.71 & 0.82 & 0.96 & 1.09 & 1.22 & 1.53 \\
\hline & 1:40:00 & 0.00 & 0.00 & 0.52 & 0.67 & 0.79 & 0.91 & 1.03 & 1.15 & 1.44 \\
\hline & 1:45:00 & 0.00 & 0.00 & 0.50 & 0.63 & 0.75 & 0.86 & 0.97 & 1.08 & 1.35 \\
\hline & 1:50:00 & 0.00 & 0.00 & 0.47 & 0.60 & 0.72 & 0.81 & 0.92 & 1.02 & 1.27 \\
\hline & 1:55:00 & 0.00 & 0.00 & 0.44 & 0.57 & 0.68 & 0.77 & 0.87 & 0.95 & 1.19 \\
\hline & 2:00:00 & 0.00 & 0.00 & 0.42 & 0.54 & 0.65 & 0.73 & 0.82 & 0.90 & 1.12 \\
\hline & 2:05:00 & 0.00 & 0.00 & 0.39 & 0.50 & 0.60 & 0.67 & 0.75 & 0.82 & 1.03 \\
\hline & 2:10:00 & 0.00 & 0.00 & 0.36 & 0.46 & 0.55 & 0.61 & 0.69 & 0.75 & 0.94 \\
\hline & 2:15:00 & 0.00 & 0.00 & 0.33 & 0.42 & 0.51 & 0.56 & 0.64 & 0.69 & 0.87 \\
\hline & 2:20:00 & 0.00 & 0.00 & 0.30 & 0.39 & 0.47 & 0.52 & 0.58 & 0.64 & 0.80 \\
\hline & 2:25:00 & 0.00 & 0.00 & 0.28 & 0.36 & 0.43 & 0.48 & 0.54 & 0.59 & 0.73 \\
\hline & 2:30:00 & 0.00 & 0.00 & 0.25 & 0.33 & 0.40 & 0.44 & 0.49 & 0.54 & 0.67 \\
\hline & 2:35:00 & 0.00 & 0.00 & 0.23 & 0.30 & 0.36 & 0.40 & 0.45 & 0.49 & 0.62 \\
\hline & 2:40:00 & 0.00 & 0.00 & 0.21 & 0.27 & 0.33 & 0.37 & 0.42 & 0.45 & 0.57 \\
\hline & 2:45:00 & 0.00 & 0.00 & 0.19 & 0.25 & 0.30 & 0.34 & 0.38 & 0.41 & 0.52 \\
\hline & 2:50:00 & 0.00 & 0.00 & 0.18 & 0.23 & 0.27 & 0.30 & 0.34 & 0.38 & 0.47 \\
\hline & 2:55:00 & 0.00 & 0.00 & 0.16 & 0.20 & 0.24 & 0.28 & 0.31 & 0.34 & 0.42 \\
\hline & 3:00:00 & 0.00 & 0.00 & 0.14 & 0.18 & 0.22 & 0.25 & 0.28 & 0.30 & 0.38 \\
\hline & 3:05:00 & 0.00 & 0.00 & 0.12 & 0.16 & 0.19 & 0.22 & 0.25 & 0.27 & 0.34 \\
\hline & 3:10:00 & 0.00 & 0.00 & 0.11 & 0.14 & 0.17 & 0.19 & 0.21 & 0.23 & 0.29 \\
\hline & 3:15:00 & 0.00 & 0.00 & 0.09 & 0.12 & 0.14 & 0.16 & 0.18 & 0.20 & 0.25 \\
\hline & 3:20:00 & 0.00 & 0.00 & 0.08 & 0.10 & 0.12 & 0.14 & 0.15 & 0.17 & 0.21 \\
\hline & 3:25:00 & 0.00 & 0.00 & 0.06 & 0.08 & 0.10 & 0.11 & 0.13 & 0.14 & 0.17 \\
\hline & 3:30:00 & 0.00 & 0.00 & 0.05 & 0.07 & 0.08 & 0.09 & 0.10 & 0.11 & 0.14 \\
\hline & 3:35:00 & 0.00 & 0.00 & 0.04 & 0.06 & 0.07 & 0.07 & 0.08 & 0.09 & 0.11 \\
\hline & 3:40:00 & 0.00 & 0.00 & 0.04 & 0.05 & 0.06 & 0.06 & 0.07 & 0.07 & 0.09 \\
\hline & 3:45:00 & 0.00 & 0.00 & 0.03 & 0.04 & 0.05 & 0.05 & 0.06 & 0.06 & 0.07 \\
\hline & 3:50:00 & 0.00 & 0.00 & 0.03 & 0.04 & 0.05 & 0.04 & 0.05 & 0.05 & 0.06 \\
\hline & 3:55:00 & 0.00 & 0.00 & 0.02 & 0.03 & 0.04 & 0.04 & 0.04 & 0.04 & 0.05 \\
\hline & 4:00:00 & 0.00 & 0.00 & 0.02 & 0.03 & 0.03 & 0.03 & 0.03 & 0.03 & 0.04 \\
\hline & 4:05:00 & 0.00 & 0.00 & 0.02 & 0.02 & 0.03 & 0.03 & 0.03 & 0.03 & 0.03 \\
\hline & 4:10:00 & 0.00 & 0.00 & 0.01 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 & 0.03 \\
\hline & 4:15:00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.02 & 0.02 & 0.02 & 0.02 & 0.02 \\
\hline & 4:20:00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.01 & 0.01 & 0.02 & 0.01 & 0.02 \\
\hline & 4:25:00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 \\
\hline & 4:30:00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 \\
\hline & 4:35:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 \\
\hline & 4:40:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 \\
\hline & 4:45:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:50:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:55:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:05:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:10:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:15:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:20:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:25:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:30:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:35:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:40:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:45:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:50:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:55:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 6:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}

DETENTION BASIN OUTLET STRUCTURE DESIGN
MHFD-Detention, Version 4.04 (February 2021)
Summary Staqe-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Stage - Storage Description & \[
\begin{gathered}
\text { Stage } \\
{[\mathrm{ft}]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Area } \\
& {\left[\mathrm{ft}^{2}\right]}
\end{aligned}
\] & Area [acres] & \[
\begin{gathered}
\text { Volume } \\
{\left[\mathrm{ft}^{3}\right]}
\end{gathered}
\] & \[
\begin{aligned}
& \hline \text { Volume } \\
& \text { [ac-ft] }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Total } \\
& \text { Outflow } \\
& \text { [cfs] }
\end{aligned}
\] & \\
\hline & & & & & & & best results, include the \\
\hline & & & & & & & stages of all grade slope \\
\hline & & & & & & & changes (e.g. ISV and Floor) \\
\hline & & & & & & & from the S-A-V table on \\
\hline & & & & & & & neet 'Basin'. \\
\hline & & & & & & & Also include the inverts of all \\
\hline & & & & & & & outlets (e.g. vertical orifice, \\
\hline & & & & & & & overflow grate, and spillway, \\
\hline & & & & & & & \\
\hline
\end{tabular} where applicable).

\section*{Kimley»Horn}

Project: Winsome Filing \(3-W Q\) Pond
Date: \(12 / 13 / 2021\)

\section*{Emergency Overflow Weir Calculation}

*orange cells require input
\(L(f t)=\) 46.40 Rounded to 47
\[
\begin{gathered}
Q=C_{B C W} L H^{1.5}+2\left[(2 / 5) C_{B C W} Z H^{2.5}\right] \\
\text { rearrange to solve for length: } \\
L=\frac{Q-(4 / 5) C_{B C W} Z H^{2.5}}{C_{B C W} H^{1.5}}
\end{gathered}
\]

Figure 12-20. Sloping broad-crest weir

Horizontal Broad Crested Weir Equation (from USDCM Eqn. 12-8)
\(Q=C_{B C W} L H^{1.5}\) Equation 12-8
Where:
\(\quad Q=\) discharge (cfs)
\(\quad\)\begin{tabular}{l}
\(C_{B C W}=\) broad-crested weir coefficient (This ranges from 2.6 to 3.0 . A value of 3.0 is often used in \\
practice.) See Hydraulic Engineering Circular No. 22 for additional information. \\
\(L=\) broad-crested weir length (ft) \\
\(H=\) head above weir crest (ft\()\)
\end{tabular}

Sloping Broad Crested Weir Equation (from USDCM Eqn. 12-9)
\[
Q=\left(\frac{2}{5}\right) C_{B C W} Z H^{2.5}
\]

Where:
\[
Q=\text { discharge }(\mathrm{cfs})
\]
\(C_{B C W}=\) broad-crested weir coefficient (This ranges from 2.6 to 3.0 . A value of 3.0 is often used in practice.) See Hydraulic Engineering Circular No. 22 for additional information.
\(Z=\) side slope (horizontal: vertical)
\(H=\) head above weir crest (ft)
Note that in order to calculate the total flow over the weir depicted in Figure 12-20, the results from Equation 12-8 must be added to two times the results from Equation 12-9.

EMERGENCY SPILLWAY SECTION AND SPILLWAY CHANNEL

Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County) \(148.8 \mathrm{cfs} / 47 \mathrm{ft}=3.16\)

\section*{APPENDIX D: REFERENCES}

Federal Emergency Management Agency

\author{
Washington, D.C. 20472
}

September 30, 2019
CERTIFIED MAIL
RETURN RECEIPT REQUESTED
The Honorable Mark Waller
President, El Paso County
Board of Commissioners
200 South Cascade Avenue, Suite 100
Colorado Springs, CO 80903

Colorado Springs, CO 80903

IN REPLY REFER TO:
Case No.: 19-08-0185R
Community Name: El Paso County, CO Community No.: 080059

Dear Mr. Waller:
We are providing our comments with the enclosed Conditional Letter of Map Revision (CLOMR) on a proposed project within your community that, if constructed as proposed, could revise the effective Flood Insurance Study (FIS) report and Flood Insurance Rate Map (FIRM) for your community.

If you have any questions regarding the floodplain management regulations for your community, the National Flood Insurance Program (NFIP) in general, or technical questions regarding this CLOMR, please contact the Director, Mitigation Division of the Federal Emergency Management Agency (FEMA) Regional Office in Denver, at (303) 235-4830, or the FEMA Map Information eXchange (FMIX) toll free at 1-877-336-2627 (1-877-FEMA MAP). Additional information about the NFIP is available on our website at https://www.fema.gov/national-flood-insurance-program.

Sincerely,

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

\section*{List of Enclosures:}

Conditional Letter of Map Revision Comment Document

\author{
cc: Mr. Keith Curtis, P.E., CFM \\ Floodplain Administrator \\ Pikes Peak Regional Building Department
}

Mr. Joe DesJardin, P.E.
Director of Projects
PT McCune, LLC
Mr. Lance VanDemark, P.E., MSCE
Vice President - Civil Engineering
The Vertex Companies, Inc.

\section*{COMMENT}

This document provides the Federal Emergency Management Agency's (FEMA's) comment regarding a request for a CLOMR for the project described above. This document is not a final determination; it only provides our comment on the proposed project in relation to the flood hazard information shown on the effective National Flood Insurance Program (NFIP) map. We reviewed the submitted data and the data used to prepare the effective flood hazard information for your community and determined that the proposed project meets the minimum floodplain management criteria of the NFIP. Your community is responsible for approving all floodplain development and for ensuring that all permits required by Federal or State/Commonwealth law have been received. State/Commonwealth, county, and community officials, based on their knowledge of local conditions and in the interest of safety, may set higher standards for construction in the Special Flood Hazard Area (SFHA), the area subject to inundation by the base flood). If the State/Commonwealth, county, or community has adopted more restrictive or comprehensive floodplain management criteria, these criteria take precedence over the minimum NFIP criteria.

This comment is based on the flood data presently available. If you have any questions about this document, please contact the FEMA Map Information eXchange (FMIX) toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on the FEMA website at https://www.fema.gov/national-flood-insurance-program

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch
Federal Insurance and Mitigation Administration

\section*{Federal Emergency Management Agency}

\section*{CONDITIONAL LETTER OF MAP REVISION COMMENT DOCUMENT (CONTINUED)}

\section*{COMMUNITY INFORMATION}

To determine the changes in flood hazards that will be caused by the proposed project, we compared the hydraulic modeling reflecting the proposed project (referred to as the proposed conditions model) to the hydraulic modeling reflecting the existing conditions.

The table below shows the changes in the base flood water-surface elevations (WSELs).
\begin{tabular}{|c|l|c|c|}
\hline \multicolumn{3}{|c|}{ Base Flood WSEL Comparison Table } \\
\hline Flooding Source: West Kiowa Creek & \begin{tabular}{c}
Base Flood WSEL \\
Change (feet)
\end{tabular} & Location of maximum change \\
\hline \multirow{2}{*}{\begin{tabular}{c}
Proposed vs. \\
Existing
\end{tabular}} & Maximum increase & 4.9 & Approximately 6,260 feet upstream of Meridian Road North \\
\cline { 2 - 4 } & Maximum decrease & 0.4 & Approximately 11,160 feet upstream of Meridian Road North \\
\hline
\end{tabular}

NFIP regulations Subparagraph \(60.3(\mathrm{~b})(7)\) requires communities to ensure that the flood-carrying capacity within the altered or relocated portion of any watercourse is maintained. This provision is incorporated into your community's existing floodplain management ordinances; therefore, responsibility for maintenance of the altered or relocated watercourse, including any related appurtenances such as bridges, culverts, and other drainage structures, rests with your community. We may request that your community submit a description and schedule of maintenance activities necessary to ensure this requirement.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief
Engineering Services Branch
Federal Insurance and Mitigation Administration

\section*{Federal Emergency Management Agency}

\author{
Washington, D.C. 20472
}

\section*{CONDITIONAL LETTER OF MAP REVISION COMMENT DOCUMENT (CONTINUED)}

\section*{COMMUNITY INFORMATION (CONTINUED)}

\section*{DATA REQUIRED FOR FOLLOW-UP LOMR}

Upon completion of the project, your community must submit the data listed below and request that we make a final determination on revising the effective FIRM and FIS report. If the project is built as proposed and the data below are received, a revision to the FIRM and FIS report would be warranted.
- Detailed application and certification forms must be used for requesting final revisions to the maps. Therefore, when the map revision request for the area covered by this letter is submitted, Form 1, entitled "Overview and Concurrence Form," must be included. A copy of this form may be accessed at https://www.fema.gov/media-library/assets/documents/1343.
- The detailed application and certification forms listed below may be required if as-built conditions differ from the proposed plans. If required, please submit new forms, which may be accessed at https://www.fema.gov/media-library/assets/documents/1343, or annotated copies of the previously submitted forms showing the revised information.

Form 2, entitled "Riverine Hydrology and Hydraulics Form." Hydraulic analyses for as-built conditions of the base flood must be submitted with Form 2.

Form 3, entitled "Riverine Structures Form."
- A certified topographic work map showing the revised and effective base floodplain boundaries. Please ensure that the revised information ties in with the current effective information at the downstream and upstream ends of the revised reach.
- An annotated copy of the FIRM, at the scale of the effective FIRM, that shows the revised base floodplain boundary delineations shown on the submitted work map and how they tie-in to the base floodplain boundary delineations shown on the current effective FIRM at the downstream and upstream ends of the revised reach.
- As-built plans, certified by a registered Professional Engineer, of all proposed project elements.
- Documentation of the individual legal notices sent to property owners who will be affected by any widening or shifting of the base floodplain and/or any BFE establishment along West Kiowa Creek.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

\section*{Federal Emergency Management Agency}

\section*{CONDITIONAL LETTER OF MAP REVISION COMMENT DOCUMENT (CONTINUED)}

\section*{COMMUNITY INFORMATION (CONTINUED)}

\section*{DATA REQUIRED FOR FOLLOW-UP LOMR (continued)}
- An officially adopted maintenance and operation plan for the six new detention basins within the subdivision. This plan, which may be in the form of a written statement from the community Chief Executive Officer, an ordinance, or other legislation, must describe the nature of the maintenance activities, the frequency with which they will be performed, and the title of the local community official who will be responsible for ensuring that the maintenance activities are accomplished.
- FEMA's fee schedule for reviewing and processing requests for conditional and final modifications to published flood information and maps may be accessed at https://www.fema.gov/forms-documents-and-software/flood-map-related-fees. The fee at the time of the map revision submittal must be received before we can begin processing the request. Payment of this fee can be made through a check or money order, made payable in U.S. funds to the National Flood Insurance Program, or by credit card (Visa or MasterCard only). Please either forward the payment, along with the revision application, to the following address:

\author{
LOMC Clearinghouse \\ Attention: LOMR Manager \\ 3601 Eisenhower Avenue, Suite 500 \\ Alexandria, Virginia 22304-6426
}
or submit the LOMR using the Online LOMC portal at: https://hazards.fema.gov/femaportal/onlinelomc/signin
After receiving appropriate documentation to show that the project has been completed, FEMA will initiate a revision to the FIRM and FIS report. Because the flood hazard information (i.e., base flood elevations, base flood depths, SFHAs, zone designations, and/or regulatory floodways) will change as a result of the project, a 90-day appeal period will be initiated for the revision, during which community officials and interested persons may appeal the revised flood hazard information based on scientific or technical data.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief
Engineering Services Branch
Federal Insurance and Mitigation Administration

\section*{Federal Emergency Management Agency}

Washington, D.C. 20472

\section*{CONDITIONAL LETTER OF MAP REVISION COMMENT DOCUMENT (CONTINUED)}

\section*{COMMUNITY INFORMATION (CONTINUED)}

\section*{COMMUNITY REMINDERS}

We have designated a Consultation Coordination Officer (CCO) to assist your community. The CCO will be the primary liaison between your community and FEMA. For information regarding your CCO, please contact:

\author{
Ms. Jeanine P. Petterson \\ Director, Mitigation Division \\ Federal Emergency Management Agency, Region VIII \\ Denver Federal Center, Building 710 \\ P.O. Box 25267 \\ Denver, CO 80225-0267 \\ (303) 235-4830
}

This comment is based on the flood data presently available. If you have any questions about this document, please contact the FEMA Map Information eXchange (FMIX) toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426, Additional Information about the NFIP is available on the FEMA website at https://www.fema.gov/national-flood-insurance-program

Patrick "Rick" F. Sacbibit, P.E., Branch Chief
Engineering Services Branch
Federal Insurance and Mitigation Administration

McCune Ranch Subdivision aka Winsome Subdivision

17480 Meridian Road North Colorado Springs, Colorado 80924

\section*{REQUEST FOR CONDITIONAL LETTER OF MAP REVISION}

FOR WEST KIOWA CREEK

\section*{COLORADO SPRINGS, COLORADO}

JULY 1, 2019

PREPARED FOR:
PT McCune, LLC
Joseph W DesJardin
1864 Woodmoor Drive, Suite 100
Monument, Colorado 80132

\section*{PREPARED BY:}

The Vertex Companies, Inc.
2420 W. \(26^{\text {th }}\) Avenue, Suite 100-D Denver, Colorado 80211
PHONE: 303-623-9116

VERTEX Project: 49388
FEMA Case No: 19-08-0185R

\section*{TABLE OF CONTENTS}
1.0 INTRODUCTION 1
2.0 GENERAL LOCATION AND DESCRIPTION 1
GENERAL LOCATION 2
DESCRIPTION OF PROPERTY 3
PROPOSED DEVELOPMENT 3
3.0 PROPOSED DESIGN CONDITIONS 4
REGULATIONS 4
PROPOSED DRAINAGE 4
PROPOSED BRIDGES 4
HYDROLOGICAL AND HYDRAULIC CRITERIA 5
4.0 HYDRAULIC MODEL RESULTS 6
5.0 SEDIMENT TRANSPORT 6
6.0 SCOUR ANALYSIS 7
7.0 ESA COMPLIANCE 8
8.0 OPERATION AND MAINTAINANCE REQUIREMENTS 8
9.0 PROPOSED CONDITION BFE INCREASE 8

Request for Conditional Letter of Map Revision - Case No: 19-08-0185R
McCune Ranch Subdivision
Colorado Springs, Colorado

\section*{APPENDICES}
A. REPRESENTATIVE PHOTOGRAPHS
B. WORKING MAPS AND OTHER REQUIRED DOCUMENTS
C. STUDIED EXISTING CONDITION 100 YEAR FLOODPLAIN MAP
D. STUDIED PROPOSED CONDITION 100 YEAR FLOODPLAIN MAP
E. ANNOTATED FIRMETTE MAPS
F. HYDRAULIC ANALYSIS
i. STUDIED 100 YEAR FLOODPLAIN DATA
ii. STUDIED EXISTING CONDITION 100 YEAR FLOODPLAIN CROSS SECTIONS
iii. STUDIED EXISTING CONDITION 100 YEAR FLOODPLAIN PROFILE
iv. STUDIED PROPOSED CONDITION 100 YEAR FLOODPLAIN CROSS SECTIONS
v. STUDIED PROPOSED CONDITION 100 YEAR FLOODPLAIN PROFILE
vi. PROPOSED BRIDGE DETAILS, DRAWINGS, AND SPECIFICATIONS
G. PROJECT DRAINAGE REPORT
H. ENVIRONMENTAL ANALYSIS
i. ENDANGERED SPECIES "NO-TAKE" LETTER
ii. US FISH AND WILDLIFE "NO CONCERN" LETTER
iii. MCCUNE RANCH - NATURAL FEATURES AND WETLAND REPORT

\title{
Request for Conditional Letter of Map Revision for West Kiowa Creek \\ McCune Ranch Subdivision \\ Colorado Springs, Colorado
}

Page 1

\subsection*{1.0 INTRODUCTION}

The purpose of this submittal is to request a Conditional Letter of Map Revision (CLOMR) for a flooding source in El Paso County, Colorado known as West Kiowa Creek. This request is requisite for a 760 -acre property, known as the proposed McCune Ranch Subdivision (aka Winsome Subdidision). West Kiowa Creek, which flows across the property from west to east, is currently mapped as an approximate Zone A. Stormwater is directed from the contributing basins across the property along an approximate 1.25 -mile flow path. The proposed development will affect FIRM map number 08041C0350G and 08041C0310G, effective December 7, 2018. Basin hydrology and hydraulics have been modeled and are included in this study to identify the Special Flood Hazard Area (SFHA). The basis of this request is to identify the floodplain boundary for the residential subdivision proposed for the site, and to assess the extent of flood risk relative to two proposed bridges.

\subsection*{2.0 GENERAL LOCATION AND DESCRIPTION}

The following report provides detailed drainage and floodplain information for existing and proposed conditions of the McCune Ranch Subdivision project. The intent of this report is to show the extent of flood risk through the proposed site, and the boundaries of the SFHA, as well as other storm events per FEMA requirements. The information given in this report is intended to provide data resulting from a detailed analysis of stormwater drainage and define the 100-year floodplain. Because the subject reach is currently an approximate Zone A, Base Flood Elevations (BFE's) will be defined. A floodway has not been delineated. This development is in a rural area and will consist of large-lot single family residential parcels, a small commercial area, preserved open space, as well as the roads and required utility infrastructure.

\title{
Request for Conditional Letter of Map Revision for West Kiowa Creek \\ McCune Ranch Subdivision \\ Colorado Springs, Colorado
}

Page 2

\section*{GENERAL LOCATION}

The site is located at 17480 Meridian Road North or, more generally, at the northwest corner of Hodgen Road and Meridian Road North in unincorporated El Paso County. The subject property is undeveloped and situated in the West Half of Section 19, Township 11 South, Range 64 West of the 6th P.M., County of El Paso, State of Colorado.

The site is bounded to the south by Hodgen Road, to the east by Meridian Road North, and to the north and west by several parcels zoned primarily as Agricultural and Residential use with some Forest Land. On the east side of Median Road is Forest Green Subdivision, a low-density single-family development. On the south side of Hodgen Road is Bison Meadows Subdivision which is also a low-density single family residential subdivision. The remainder of properties surrounding the site have not yet been formally platted. The site has not been included in any previous drainage study.

\title{
Request for Conditional Letter of Map Revision for West Kiowa Creek \\ McCune Ranch Subdivision \\ Colorado Springs, Colorado
}

Page 3

\section*{DESCRIPTION OF PROPERTY}

The existing site contains 766 acres of agricultural grazing land and dry farm land. Ground cover consists mainly of native grasses and shrubs and contains several stands of evergreen trees along its southern and northern boundary. Existing wetlands are present along West Kiowa Creek and its tributaries, wetland boundaries are located roughly 50 feet to either side of the thalweg of West Kiowa Creek and the drainageway way to the south of the creek on the property. There are no existing irrigation canals or ditches on the project site nor are there any major geologic features. The property generally slopes in a northeasterly direction with slopes ranging between 1-16\%. Soils consist of Alamosa loam, Brussett loam, Cruckton sandy loam, Elbeth sandy loam, Holderness loam, Kettle gravelly loamy sands, Peyton sandy loam, Peyton-Pring complex, Pring course sandy loam, Tomah-Crowford loamy sands and Tomah-Crowfoot complex. Most of the site has soils classified in Hydrologic Soil Group B; however, the property also contains a mixture of soils from Hydrologic Soils Groups C and D located in the areas in and adjacent to West Kiowa Creek and its tributaries.

\section*{PROPOSED DEVELOPMENT}

The development of this property will consist of 1432.5 to 5 -acre single family residential lots and the requisite public roads and stormwater infrastructure to serve them. Anticipated construction activities include earthwork and paving associated with the public roads, as well as the installation of culverts and detention ponds to convey and treat stormwater on the site. The primary access for the site will be from Hodgen Road and Meridian Road. A site plan for the project is included in the appendix.

\title{
Request for Conditional Letter of Map Revision for West Kiowa Creek \\ McCune Ranch Subdivision \\ Colorado Springs, Colorado
}

Page 4

\subsection*{3.0 PROPOSED DESIGN CONDITIONS}

\section*{REGULATIONS}

The hydrologic calculations in this report comply with the City of Colorado Springs/El Paso County Drainage Criteria Manuals, and FEMA drainage criteria. There are no previous drainage studies that cover this property.

\section*{EXISTING DRAINAGE}

Historically, the runoff from the property flows into West Kiowa Creek, which bisects the site flowing from the southwest corner of the property to the northeast corner. There are 10 on-site sub-basins and 6 off-site sub-basin that contribute flows to West Kiowa Creek. The 10 on-site sub-basins correspond to the largest defined natural drainage channels that occur on site, while the 6 off-site basins are defined by the entire West Kiowa Creek watershed that is upstream from the subject property.

\section*{PROPOSED DRAINAGE}

All existing drainage patterns will be maintained throughout the site to the extent possible. The path of the main thalweg is not altered, however 2 new box culverts are proposed at road crossings within the development. To calculate the design flows at points across the project, the existing basins were subdivided into 35 on-site sub-basins and 8 off-site sub-basins in the proposed condition. Stormwater detention ponds have been designed to control flow such that all flow off the site will be at or below historic averages.

\section*{PROPOSED BRIDGES}

The project includes two triple box culverts at points where roads cross the floodplain. The culverts are sized at (3) \(10^{\prime}\) wide \(\times 10^{\prime}\) high totaling approximately \(30^{\prime}\) wide \(\times 10^{\prime}\) high of flow

\title{
Request for Conditional Letter of Map Revision for West Kiowa Creek \\ McCune Ranch Subdivision \\ Colorado Springs, Colorado
}

Page 5
area. In the 100-year storm there is no overtopping of the road. This condition meets local requirements for this road category. The length of both box culverts is sized to accommodate 2 lanes of traffic and road shoulder. Details of the proposed culverts is included in the appendix.

The culverts will have flared end sections with a concrete apron that funnels the entering water in and spreads the exiting flow out. A rip-rap bed will be used at the culvert exit points to address potential erosion. The culverts will be installed at grade with \(0.5 \%\) slope and allow the passage of aquatic life.

\section*{HYDROLOGICAL AND HYDRAULIC CRITERIA}

Topographic mapping was developed from LiDAR and field mapping conducted in 2011, and obtained from the licensed GIS data service of El Paso County. El Paso County GIS Services projects the contours in the Colorado Central Zone in State Plane (Feet) units using the NAD83 horizontal datum. The vertical datum is NAVD.

Since this project contains sub-basins over 100 acres, times of concentration and peak runoff values were calculated using the SCS TR-55 Hydrograph method as required by the City of Colorado Springs/EI Paso County Drainage Criteria Manuals. The model utilizes the SCS Type II 24-hr rainfall distribution and rain gauge data for the county.

Hydraulic modeling of the floodplain was performed using HEC-RAS version 5.0. Manning's nvalues of 0.03 for in channel areas and 0.035 for overbank areas were used in the model based on site observation and referencing within Ven Te Chow's Open Channel Hydraulics. Contraction and expansion coefficients are 0.1 and 0.3 respectively, for all cross sections except for the two box culverts where 0.3 and 0.5 are used at the appropriate sections.

\title{
Request for Conditional Letter of Map Revision for West Kiowa Creek \\ McCune Ranch Subdivision \\ Colorado Springs, Colorado
}

Page 6

\subsection*{4.0 HYDRAULIC MODEL RESULTS}

A HEC-RAS section analysis was performed to identify the floodplain width for the different storm events. Pertinent model information is included in the appendix. The following tables summarize the results:
\begin{tabular}{|cccccccc|}
\hline \multicolumn{8}{c|}{ COMPARATIVE EXISTING AND PROPOSED SECTION DATA }
\end{tabular}

\title{
Request for Conditional Letter of Map Revision for West Kiowa Creek \\ McCune Ranch Subdivision \\ Colorado Springs, Colorado
}

Page 7
\begin{tabular}{ccc|c|ccc|}
\hline \(18+26\) & 7289.01 & 7289.14 & 0.13 & 84.94 & 86.77 & 1.83 \\
\(16+18\) & 7288.55 & 7289.44 & 0.89 & 266.32 & 299.59 & 33.27 \\
\(15+15\) & 7286.83 & 7289.46 & 2.63 & 166.37 & 425.09 & 258.72 \\
\(13+21\) & 7285.19 & 7289.40 & 4.21 & 154.03 & 291.86 & 137.83 \\
\(12+24\) & 7284.44 & 7289.09 & 4.65 & 157.81 & 255.05 & 97.24 \\
\hline \(11+60\) & & & CULVERT & & & \\
\hline \(11+05\) & 7284.18 & 7283.36 & -0.82 & 145.88 & 124.12 & -21.76 \\
\(10+07\) & 7282.77 & 7282.73 & -0.04 & 89.32 & 88.93 & -0.39 \\
\(8+93\) & 7281.41 & 7281.40 & -0.01 & 243.26 & 243.18 & -0.08 \\
\(6+78\) & 7278.50 & 7278.47 & -0.03 & 265.74 & 265.53 & -0.21 \\
\(4+40\) & 7276.47 & 7276.45 & -0.02 & 146.63 & 146.38 & -0.25 \\
\hline
\end{tabular}

\subsection*{5.0 SEDIMENT TRANSPORT}

After visual observation and examining historical records, there are no indications that sediment or debris transport will impact base flood elevations (BFE). The stream appears to be in a stable state with no evidence that the structure has been recently influenced by sediment deposition, degrading of the bank or stream bed, or vegetative cover in the flow path. Further, the proposed stormwater detention ponds will help address potential sediment before it reaches the floodplain area. As a result, sediment transport is not included in this analysis.

\subsection*{6.0 SCOUR ANALYSIS}

The potential for scour of the floodway, and the associated impacts on water surface elevations, were considered as a part of this analysis. The two box culverts have been designed with characteristics to help address this in major storm events. At the exit point of the culvert, a combination of flared wing walls, a concrete apron, and a rip-rap bed are proposed to reduce the velocity of the water and the impacts of scour.

\title{
Request for Conditional Letter of Map Revision for West Kiowa Creek \\ McCune Ranch Subdivision \\ Colorado Springs, Colorado
}

Page 8

\subsection*{7.0 ESA COMPLIANCE}

An environmental features study dated October 1, 2018 has been prepared by Ecosystem Services for this project and is included in the appendix. Ecos has also provided a letter of "No Take" addressing ESA requirements. Further, a letter of "No Concern" from the US Fish and Wildlife Department has also been obtained and is included.

\subsection*{8.0 OPERATION AND MAINTAINANCE REQUIREMENTS}

Metropolitan districts are being created for the neighborhood that will have the responsibility of maintaining drainage facilities and the floodplain area.

\subsection*{9.0 PROPOSED CONDITION BFE INCREASE}

The Base (1-percent-annual-chance) Flood Elevation (BFE) increases to greater than 1.0 foot within the current, effective approximate Zone A immediately upstream of each of the two bridges. Fulfillment of the requirements set forth in 44 CFR 65.12 are described below:
a) Certification that no structures are affected by the increased BFE: Please see stamped certification on the next page.
b) Documentation of individual legal notice to all affected property owners, explaining the impact of the proposed action on their property: The only affected property owner is the applicant of this LOMR request, thus the applicant is apprised of the impact of the proposed development, de facto.
c) An evaluation of alternatives that would not result in an increase in BFE has been conducted. To access over half of the project area, the floodplain of this site must be crossed. Other bridge configurations are being considered, but due to the significant

\title{
Request for Conditional Letter of Map Revision for West Kiowa Creek
}

\section*{McCune Ranch Subdivision \\ Colorado Springs, Colorado}

Page 9
expense associated with a bridge of this size, box culverts are currently being specified. Further, alternative road alignments and ingress/egress locations were considered but deemed infeasible for the project.

Certification that no structures will be affected by the rises in Base Flood Elevations (BFEs) as a result of the proposed project subject to this request. There are no existing structures currently within the boundary of the project.

Lance P. VanDemark PE, MSCE
VICE PRESIDENT - CIVIL ENGINEERING
O: 303.623.9116 | D: 720.545.0459 | C: 303.263.3102 | VERTEXENG.COM

THE VERTEX COMPANIES, INC.
2420 W. 26TH AVE., SUITE 100-D
DENVER, CO 80211

\section*{A. REPRESENTATIVE PHOTOGRAPHS}

B. WORKING MAPS AND OTHER REQUIRED DOCUMENTS

\section*{MAP LEGEND}
\begin{tabular}{|c|c|c|}
\hline Area of Interest (AOI) & \(\square\) & C \\
\hline Area of Interest (AOI) & \(\square\) & C/D \\
\hline Soils & \(\square\) & D \\
\hline \multicolumn{3}{|l|}{Soil Rating Polygons} \\
\hline A & \(\square\) & Not rated or not available \\
\hline A/D & Water Fe & ures \\
\hline & \(\sim\) & Streams and Canals \\
\hline B & & \\
\hline & \multicolumn{2}{|l|}{Transportation} \\
\hline B/D & H+ & Rails \\
\hline C & \(\sim\) & Interstate Highways \\
\hline C/D & (2) & US Routes \\
\hline D & \(\approx\) & Major Roads \\
\hline Not rated or not available & \multicolumn{2}{|l|}{Background} \\
\hline Soil Rating Lines & & Aerial Photography \\
\hline \(\cdots\) A & & \\
\hline \(\cdots\) A/D & & \\
\hline \(\cdots \mathrm{B}\) & & \\
\hline \(\cdots\) B/D & & \\
\hline \(\cdots \mathrm{C}\) & & \\
\hline \(\cdots \mathrm{C} / \mathrm{D}\) & & \\
\hline \(\cdots\) D & & \\
\hline * Not rated or not available & & \\
\hline Soil Rating Points & & \\
\hline \(\square \quad \mathrm{A}\) & & \\
\hline \(\square \quad \mathrm{A} / \mathrm{D}\) & & \\
\hline \(\square \quad \mathrm{B}\) & & \\
\hline - B/D & & \\
\hline
\end{tabular}

\section*{MAP INFORMATION}

The soil surveys that comprise your AOI were mapped at 1:24,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 15, Oct 10, 2017
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: May 22, 2016—Mar 9, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

\section*{Hydrologic Soil Group}
\begin{tabular}{|c|c|c|c|c|}
\hline Map unit symbol & Map unit name & Rating & Acres in AOI & Percent of AOI \\
\hline 1 & Alamosa loam, 1 to 3 percent slopes & D & 80.6 & 1.2\% \\
\hline 15 & Brussett loam, 3 to 5 percent slopes & B & 6.0 & 0.1\% \\
\hline 21 & Cruckton sandy loam, 1 to 9 percent slopes & B & 4.7 & 0.1\% \\
\hline 25 & Elbeth sandy loam, 3 to 8 percent slopes & B & 2,081.3 & 31.8\% \\
\hline 26 & Elbeth sandy loam, 8 to 15 percent slopes & B & 2,075.9 & 31.7\% \\
\hline 34 & Holderness loam, 1 to 5 percent slopes & C & 15.5 & 0.2\% \\
\hline 36 & Holderness loam, 8 to 15 percent slopes & C & 278.7 & 4.3\% \\
\hline 40 & Kettle gravelly loamy sand, 3 to 8 percent slopes & B & 400.4 & 6.1\% \\
\hline 41 & Kettle gravelly loamy sand, 8 to 40 percent slopes & B & 265.1 & 4.0\% \\
\hline 67 & Peyton sandy loam, 5 to 9 percent slopes & B & 36.3 & 0.6\% \\
\hline 68 & Peyton-Pring complex, 3 to 8 percent slopes & B & 38.1 & 0.6\% \\
\hline 71 & Pring coarse sandy loam, 3 to 8 percent slopes & B & 26.0 & 0.4\% \\
\hline 92 & Tomah-Crowfoot loamy sands, 3 to 8 percent slopes & B & 661.6 & 10.1\% \\
\hline 93 & Tomah-Crowfoot complex, 8 to 15 percent slopes & B & 574.4 & 8.8\% \\
\hline 111 & Water & & 10.0 & 0.2\% \\
\hline \multicolumn{3}{|l|}{Totals for Area of Interest} & 6,554.4 & 100.0\% \\
\hline
\end{tabular}

\section*{Description}

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

\section*{Rating Options}

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
C. STUDIED EXISTING CONDITION 100 YEAR FLOODPLAIN MAP

D. STUDIED PROPOSED CONDITION 100 YEAR FLOODPLAIN MAP

\section*{E. ANNOTATED FIRMETTE MAPS}

F. HYDRAULIC ANALYSIS
i. STUDIED 100 YEAR FLOODPLAIN DATA
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{WEST KIOWA CREEK EXISTING CONDITIONS 100-YEAR FLOOD} \\
\hline \multicolumn{4}{|c|}{DATA} \\
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
CROSS \\
SECTION
\end{tabular}} & \multirow[b]{3}{*}{\begin{tabular}{l}
100-YEAR \\
EC WSEL
\end{tabular}} & 100-YEAR EC TOP & 100-YEAR EC TOP \\
\hline & & WIDTH INCLUDING & WIDTH EXCLUDING \\
\hline & & INEFFICTIVE FLOW & INEFFICTIVE FLOW \\
\hline 72+34 & 7337.98 & 62.28 & 62.28 \\
\hline 69+69 & 7335.41 & 63.13 & 63.13 \\
\hline 67+63 & 7333.50 & 63.51 & 63.51 \\
\hline 65+42 & 7331.02 & 72.18 & 72.18 \\
\hline 63+02 & 7328.83 & 76.66 & 76.66 \\
\hline 61+34 & 7327.64 & 135.78 & 135.78 \\
\hline 58+12 & 7325.32 & 129.67 & 129.67 \\
\hline 54+80 & 7323.11 & 177.66 & 139.36 \\
\hline 53+75 & 7322.89 & 136.48 & 136.48 \\
\hline 53+10 & & & \\
\hline 52+56 & 7321.54 & 111.61 & 111.61 \\
\hline 51+58 & 7318.63 & 102.69 & 102.69 \\
\hline 48+10 & 7316.70 & 178.97 & 178.97 \\
\hline 47+01 & 7316.60 & 145.65 & 145.65 \\
\hline 44+67 & 7315.62 & 112.95 & 112.95 \\
\hline \(43+12\) & 7314.33 & 115.02 & 115.02 \\
\hline 40+58 & 7310.97 & 98.36 & 98.36 \\
\hline 37+56 & 7308.35 & 84.42 & 84.42 \\
\hline 36+71 & 7307.43 & 95.71 & 95.71 \\
\hline \(33+13\) & 7304.27 & 98.47 & 98.47 \\
\hline 30+53 & 7300.93 & 68.96 & 68.96 \\
\hline 29+16 & 7299.69 & 66.66 & 66.66 \\
\hline 25+59 & 7297.05 & 117.36 & 117.36 \\
\hline 23+56 & 7294.53 & 88.27 & 88.27 \\
\hline 21+15 & 7292.39 & 99.33 & 99.33 \\
\hline 18+26 & 7289.01 & 84.94 & 84.94 \\
\hline 16+18 & 7288.55 & 266.32 & 266.32 \\
\hline 15+15 & 7286.83 & 166.37 & 82.16 \\
\hline 13+21 & 7285.19 & 154.03 & 154.03 \\
\hline 12+24 & 7284.44 & 157.81 & 157.81 \\
\hline 11+60 & & & \\
\hline 11+05 & 7284.18 & 145.88 & 145.88 \\
\hline 10+07 & 7282.77 & 89.32 & 89.32 \\
\hline 8+93 & 7281.41 & 243.26 & 243.26 \\
\hline 6+78 & 7278.50 & 265.74 & 265.74 \\
\hline 4+40 & 7276.47 & 146.63 & 146.63 \\
\hline \multicolumn{4}{|l|}{SKEW ANGLE APPLIED IN HEC-RAS OF \(55^{\circ}\) @ 51+58 AND \(45^{\circ}\) @ 10+07. DASHED LINE AT THESE CROSS SECTIONS REPRESENTS ADJUSTED ANGLE.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{WEST KIOWA CREEK PROPOSED CONDITIONS 100-YEAR FLOOD} \\
\hline \multicolumn{4}{|c|}{DATA} \\
\hline & & 100-YEAR PC TOP & 100-YEAR PC TOP \\
\hline & 100-YEAR & WIDTH INCLUDING & WIDTH EXCLUDING \\
\hline SECTION & & INEFFICTIVE FLOW & INEFFICTIVE FLOW \\
\hline 72+34 & 7338.11 & 63.12 & 63.12 \\
\hline 69+69 & 7335.52 & 64.11 & 64.11 \\
\hline 67+63 & 7333.63 & 64.92 & 64.92 \\
\hline 65+42 & 7331.14 & 74.22 & 74.22 \\
\hline 63+02 & 7328.85 & 76.90 & 76.90 \\
\hline 61+34 & 7327.28 & 131.11 & 131.11 \\
\hline 58+12 & 7326.47 & 201.82 & 169.96 \\
\hline 54+80 & 7326.65 & 349.50 & 322.44 \\
\hline 53+75 & 7326.35 & 278.31 & 62.88 \\
\hline 53+10 & \multicolumn{3}{|c|}{CULVERT} \\
\hline 52+56 & 7321.50 & 110.20 & 66.00 \\
\hline 51+58 & 7318.71 & 103.09 & 103.09 \\
\hline 48+10 & 7316.81 & 179.90 & 179.90 \\
\hline 47+01 & 7316.71 & 146.50 & 146.50 \\
\hline 44+67 & 7315.70 & 114.47 & 114.47 \\
\hline \(43+12\) & 7314.40 & 115.43 & 115.43 \\
\hline 40+58 & 7311.05 & 99.53 & 99.53 \\
\hline 37+56 & 7308.45 & 86.18 & 86.18 \\
\hline 36+71 & 7307.52 & 96.89 & 96.89 \\
\hline 33+13 & 7304.40 & 102.90 & 102.90 \\
\hline 30+53 & 7301.03 & 69.79 & 69.79 \\
\hline 29+16 & 7299.80 & 67.41 & 67.41 \\
\hline 25+59 & 7297.13 & 118.75 & 118.75 \\
\hline 23+56 & 7294.61 & 88.75 & 88.75 \\
\hline 21+15 & 7292.45 & 99.93 & 99.93 \\
\hline 18+26 & 7289.14 & 86.77 & 86.77 \\
\hline 16+18 & 7289.44 & 299.59 & 299.59 \\
\hline 15+15 & 7289.46 & 425.09 & 425.09 \\
\hline 13+21 & 7289.40 & 291.86 & 189.05 \\
\hline 12+24 & 7289.09 & 255.05 & 62.76 \\
\hline 11+60 & & CULVERT & \\
\hline 11+05 & 7283.36 & 124.12 & 60.69 \\
\hline 10+07 & 7282.73 & 88.93 & 88.93 \\
\hline 8+93 & 7281.40 & 243.18 & 243.18 \\
\hline 6+78 & 7278.47 & 265.53 & 265.53 \\
\hline 4+40 & 7276.45 & 146.38 & 146.38 \\
\hline \multicolumn{4}{|l|}{SKEW ANGLE APPLIED IN HEC-RAS OF \(55^{\circ}\) @ 51+58 AND 45 \({ }^{\circ}\) @ 10+07. DASHED LINE AT THESE CROSS SECTIONS REPRESENTS ADJUSTED ANGLE.} \\
\hline
\end{tabular}
F. HYDRAULIC ANALYSIS
ii. STUDIED EXISTING CONDITION 100 YEAR FLOODPLAIN CROSS SECTIONS

\section*{F. HYDRAULIC ANALYSIS}
iii. STUDIED EXISTING CONDITION 100 YEAR FLOODPLAIN PROFILE

F. HYDRAULIC ANALYSIS
iv. STUDIED PROPOSED CONDITION 100 YEAR FLOODPLAIN CROSS SECTIONS

\section*{F. HYDRAULIC ANALYSIS}

\section*{v. STUDIED PROPOSED CONDITION 100 YEAR FLOODPLAIN PROFILE}

KHA RESPONSE:
The provided hydraulic analysis is from the approved CLOMR. Refer to Appendix E for Creek Stability Memo which discusses the hydraulic analysis and recommendations for the Creek.

Unresolved from review 1. Provide the complete hydraulic analysis to include the velocity and froude number results, the boundary conditions used.

\section*{G. PROJECT DRAINAGE REPORT}
H. ENVIRONMENTAL ANALYSIS
i. ENDANGERED SPECIES "NO-TAKE" LETTER
ecosystem services sc
April 5, 2019
Joe Desjardin
ProTerra Properties, LLC
Director of Development
2475 Waynoka Place
Colorado Springs, Colorado 80915

\section*{RE: Winsome Ecological Report - Case \#19-08-0185R, FEMA ESA Compliance}

Dear Mr. Desjardin:
The U.S. Fish and Wildlife Service (USFWS) has completed their review of the Ecosystem Services, LLC (egos) "Biological Assessment" presented in our Natural Features and Wetland Report for the Winsome Property in El Paso County, Colorado dated January 4, 2019 (Ecological Report) and concurs with our finding that this project will result in "no take" of threatened and endangered species regulated under the Endangered Species Act. To acknowledge their concurrence the USFWS placed a "stamp" on the cover of the Ecological Report indicating they have "No Concerns" which was signed by the USFWS and dated 4-2-2019. USFWS also wrote notes next to the stamp describing that the concurrence was based on the following facts:
1) the marginal Treble's meadow jumping mouse (PMJM) habitat onsite that is not connected to good habitat;
2) conservation measures will be implemented by the Project to protect riparian habitat; and
3) the Project committed to survey for Ute ladies-tresses orchid at wetland impact areas despite the presence of marginal habitat for this species.

Based on the findings of the Ecological Report as supported by the USFWS concurrence, eos can confidently state that the Winsome Project presents no potential for take of threatened and endangered species listed under the Endangered Species Act.

Sincerely,

\section*{Ecosystem Services, LLC}

\section*{Thant E. Purnée}

Grant E. Gurnée, P.W.S.
Restoration Ecologist - Wildlife Biologist
H. ENVIRONMENTAL ANALYSIS
ii. US FISH AND WILDLIFE "NO CONCERN" LETTER

January 10, 2019
2019. TA-0422

Mr. Drue DeBerry
Acting Colorado Field Supervisor
U.S. Fish and Wildlife Service

Colorado Ecological Services Field Office
134 Union Blvd., Suite 670
Lakewood, Colorado 80228
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
U.S. FISH AND WILDHEE SERVICE \\
(INO CONCERNS \\
- CONCUR MOT LKELY TO ADVERSELY AFFECT \\
- NO COMMAENT \\
Gresei Efluval 4-2-2019
\end{tabular}} & \\
\hline & mine ith of no \\
\hline & \\
\hline & prothet rippriom arias \\
\hline & - vill sway for ULTO; macyine habitat \\
\hline
\end{tabular}

RE: Request for Technical Assistance Regarding the Likelihood of Take of Federally-listed Threatened and Endangered Species resulting from the proposed development of the Winsome Project in El Paso County, Colorado

\section*{Dear Mr. DeBerry:}

Ecosystem Services, LLC (ecos) has prepared the enclosed habitat evaluation on behalf of PT McCune, LLC to describe the physical/ecological characteristics of the Winsome Property (Site) and evaluate the potential effects of the proposed development project (Project) on the Federally-listed threatened and endangered (T\&E) species protected under the Endangered Species Act (ESA).

The El Paso County Environmental Division has completed its review of the Winsome project (Project) and has requested the following: "Documentation from the U.S. Fish and Wildlife Service (USFWS) shall be provided to the Planning and Community Development Department prior to project commencement where the project will result in ground disturbing activity in habitat occupied or potentially occupied by threatened or endangered species and/or where development will occur within 300 feet of the centerline of a stream or within 300 feet of the 100 year floodplain, whichever is greater."

At this time there is no Federal action and no Federal agency is making a formal effects determination under Section 7 (a)(2) of the ESA. Therefore, ecos is requesting technical assistance from USFWS regarding PT McCune, LLC's (i.e., the non-federal party) responsibilities under the ESA, and specifically the likelihood of the Project (described herein) resulting in take of listed species. If the USFWS concurs with the findings presented herein we request that you issue an informal letter of concurrence for use in the El Paso County Project review process.

\subsection*{1.0 PROJECT DESCRIPTION and SITE LOCATION}

The Site is situated in the northeastern corner of the Black Forest approximately 12.5 miles east of Monument and 7.3 miles east of Highway 83, in El Paso County, Colorado. The Site is located in the northwest corner of Hodgen and Meridian Roads. The Site is specifically located within Section 24, the south \(1 / 4\) of Section 13 , and the west \(1 / 2\) of Section 19, Township 11 South, Range 65 West in El Paso County, Colorado (refer to Figure 1).

The Applicant proposes to form a metropolitan district within El Paso County and develop the 766.66 -acre Site as a residential community consisting of 5 -acre and 2.5 acre single-family detached rural-residential lots and one 7.9-acre commercial lot, including trails, utilities, and streets and cul-de-sacs that provide access to each lot; and preserve 148.6 acres of open space along West Kiowa Creek (refer to Figure 2).

\subsection*{2.0 METHODOLOGY}

\subsection*{2.1 Office Assessment}

Ecos performed an office assessment in which available databases, resources, literature and field guides on local flora and fauna were reviewed to gather background information on the environmental setting of the Site. We consulted several organizations, agencies, and their databases, including:
- Colorado Department of Agriculture (CDA) Noxious Weed List;
- Colorado Natural Heritage Program (CNHP);
- Colorado Oil and Gas Conservation Commission (COGCC) GIS Online;
- Colorado Parks and Wildlife (CPW);
- El Paso County Black Forest Preservation Plan Update;
- Google Earth current and historic aerial imagery;
- CNHP Survey of Critical Biological Resources, EI Paso County, Colorado;
- CNHP Survey of Critical Wetlands and Riparian Areas in EI Paso and Pueblo Counties, Colorado;
- U.S. Fish and Wildlife Service (USFWS) Region 6;
- USFWS National Wetland Inventory (NWI); and
- U.S. Geological Survey (USGS).

\subsection*{2.2 Onsite Assessments}

Following the collection and review of existing data and background information, ecos conducted a field assessment of the Site on September 5, 2018 to identify any potential impacts to natural resources associated with the Project. Field reconnaissance concentrated on identification of wetland habitat, waters of the U.S. and on the presence of habitat suitable to support threatened and endangered wildlife. Ecos conducted a follow-up field assessment on September 20, 2018 to gather additional data. Wetland habitat and waters of the U.S. boundaries, wildlife habitat, and vegetation communities were sketched on topographic and aerial base maps and located using a hand-held Global Positioning System as deemed necessary. Representative photographs were taken to assist in describing and documenting Site conditions and potential ecological impacts.
H. ENVIRONMENTAL ANALYSIS
iii. MC CUNE RANCH - NATURAL FEATURES AND WETLAND REPORT

\section*{Preliminary Drainage Report}

MAY 15, 2019

\section*{PREPARED FOR:}

PT McCune, LLC
Joseph W DesJardin
1864 Woodmoor Drive
Suite 100
Monument, Colorado 80132

\section*{PREPARED BY:}

The Vertex Companies, Inc.
2420 W. \(26^{\text {th }}\) Avenue, Suite 100-D
Denver, Colorado 80211
PHONE: 303-623-9116
VERTEX Project: 49388
PCD File No. SP-18-006
FEMA Case No: 19-08-0185R

\subsection*{10.0 DRAINAGE PLANS}

\section*{4.5. - Initial Abstraction}

The initial abstraction (la) represents a volume of rainfall that must fall to satisfy losses in a drainage basin before runoff begins. The default value for la is 0.20 times the potential maximum retention (S). Through modeling of the Jimmy Camp Creek drainage basin using gage-adjusted, NEXRAD-generated rainfall input and comparing model results with recorded flow data, it was determined that a more appropriate value for la is \(0.10 \cdot \mathrm{~S}\). Therefore, this value shall replace the default value for any evaluations that apply the NRCS curve number method for rainfall losses. To apply this adjustment when using HEC-HMS it will be necessary to provide the initial abstraction as a depth in inches rather to a fraction of the potential maximum retention. The initial abstraction in inches is calculated using Equation 6-12.
\[
\begin{equation*}
\mathrm{la}=0.1[(1000 / \mathrm{CN})-10] \tag{Eq.6-12}
\end{equation*}
\]

Table 6-9. NRCS Curve Numbers for Pre-Development Thunderstorms Conditions (ARC I)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Fully Developed Urban \\
Areas (vegetation established) \({ }^{1}\)
\end{tabular}} & \multirow[t]{2}{*}{Treatment} & \multirow[t]{2}{*}{\begin{tabular}{l}
Hydrologic \\
Condition
\end{tabular}} & \multirow[t]{2}{*}{\% I} & \multicolumn{4}{|l|}{Pre-Development CN} \\
\hline & & & & \[
\begin{aligned}
& \text { HSG } \\
& \text { A }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HSG } \\
& \text { B }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HSG } \\
& \text { C }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HSG } \\
& \text { D }
\end{aligned}
\] \\
\hline Open space (lawns, parks, golf courses, cemeteries, etc.): & & & & & & & \\
\hline Poor condition (grass cover < 50\%) & - & - & - & 47 & 61 & 72 & 77 \\
\hline Fair condition (grass cover 50\% to 75\%) & - & - & - & 29 & 48 & 61 & 69 \\
\hline Good condition (grass cover > 75\%) & - & - & - & 21 & 40 & 54 & 63 \\
\hline Impervious areas: & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Paved parking lots, roofs, driveways, etc. (excluding right-of-way) & - & - & - & 95 & 95 & 95 & 95 \\
\hline \multicolumn{8}{|l|}{Streets and roads:} \\
\hline Paved; curbs and storm sewers (excluding right-of-way) & - & - & - & 95 & 95 & 95 & 95 \\
\hline Paved; open ditches (including right-of-way) & - & - & - & 67 & 77 & 83 & 85 \\
\hline Gravel (including right-of-way) & - & - & - & 57 & 70 & 77 & 81 \\
\hline Dirt (including right-ofway) & - & - & - & 52 & 66 & 74 & 77 \\
\hline \multicolumn{8}{|l|}{Western desert urban areas:} \\
\hline Natural desert landscaping (pervious areas only) & - & - & - & 42 & 58 & 70 & 75 \\
\hline Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders) & - & - & - & 91 & 91 & 91 & 91 \\
\hline Developing Urban Areas \({ }^{1}\) & Treatment \({ }^{2}\) & \begin{tabular}{l}
Hydrologic \\
Condition \({ }^{3}\)
\end{tabular} & \% I & \[
\begin{aligned}
& \text { HSG } \\
& \text { A }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HSG } \\
& \text { B }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HSG } \\
& \text { C }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HSG } \\
& \text { D }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Newly graded areas (pervious areas only, no vegetation) & - & - & - & 58 & 72 & 81 & 87 \\
\hline Cultivated Agricultural Lands \({ }^{1}\) & Treatment & \begin{tabular}{l}
Hydrologic \\
Condition
\end{tabular} & \% I & \[
\begin{aligned}
& \text { HSG } \\
& \text { A }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HSG } \\
& \text { B }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HSG } \\
& \text { C }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HSG } \\
& \text { D }
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{Fallow} & Bare soil & - & - & 58 & 72 & 81 & 87 \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
Crop \\
residue \\
cover (CR)
\end{tabular}} & Poor & - & 57 & 70 & 79 & 85 \\
\hline & & Good & - & 54 & 67 & 75 & 79 \\
\hline \multirow[t]{12}{*}{Row crops} & \multirow[t]{2}{*}{Straight row (SR)} & Poor & - & 52 & 64 & 75 & 81 \\
\hline & & Good & - & 46 & 60 & 70 & 77 \\
\hline & \multirow[t]{2}{*}{SR + CR} & Poor & - & 51 & 63 & 74 & 79 \\
\hline & & Good & - & 43 & 56 & 66 & 70 \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
Contoured \\
(C)
\end{tabular}} & Poor & - & 49 & 61 & 69 & 75 \\
\hline & & Good & - & 44 & 56 & 66 & 72 \\
\hline & \multirow[t]{2}{*}{\(C+C R\)} & Poor & - & 48 & 60 & 67 & 74 \\
\hline & & Good & - & 43 & 54 & 64 & 70 \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
Contoured \\
\& terraced \\
(C\&T)
\end{tabular}} & Poor & - & 45 & 54 & 63 & 66 \\
\hline & & Good & - & 41 & 51 & 60 & 64 \\
\hline & \multirow[t]{2}{*}{\(C \& T+C R\)} & Poor & - & 44 & 53 & 61 & 64 \\
\hline & & Good & - & 40 & 49 & 58 & 63 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{12}{*}{Small grain} & \multirow[t]{2}{*}{SR} & Poor & - & 44 & 57 & 69 & 75 \\
\hline & & Good & -- & 42 & 56 & 67 & 74 \\
\hline & \multirow[t]{2}{*}{SR + CR} & Poor & -- & 43 & 56 & 67 & 72 \\
\hline & & Good & -- & 39 & 52 & 63 & 69 \\
\hline & \multirow[t]{2}{*}{C} & Poor & -- & 42 & 54 & 66 & 70 \\
\hline & & Good & -- & 40 & 53 & 64 & 69 \\
\hline & \multirow[t]{2}{*}{C + CR Poor} & Poor & -- & 41 & 53 & 64 & 69 \\
\hline & & Good & - & 39 & 52 & 63 & 67 \\
\hline & \multirow[t]{2}{*}{C\&T} & Poor & -- & 40 & 52 & 61 & 66 \\
\hline & & Good & - & 38 & 49 & 60 & 64 \\
\hline & \multirow[t]{2}{*}{\(C \& T+C R\)} & Poor & -- & 39 & 51 & 60 & 64 \\
\hline & & Good & -- & 37 & 48 & 58 & 63 \\
\hline \multirow[t]{6}{*}{Close-seeded or broadcast legumes or rotation meadow} & \multirow[t]{2}{*}{SR} & Poor & -- & 45 & 58 & 70 & 77 \\
\hline & & Good & -- & 37 & 52 & 64 & 70 \\
\hline & \multirow[t]{2}{*}{C} & Poor & -- & 43 & 56 & 67 & 70 \\
\hline & & Good & -- & 34 & 48 & 60 & 67 \\
\hline & \multirow[t]{2}{*}{C\&T} & Poor & -- & 42 & 53 & 63 & 67 \\
\hline & & Good & -- & 30 & 46 & 57 & 63 \\
\hline Pasture, grassland, or & - & Poor & - & 47 & 61 & 72 & 77 \\
\hline
\end{tabular} range-continuous forage
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline for grazing 4 & - & Fair & - & 29 & 48 & 61 & 69 \\
\hline & - & Good & - & 21 & 40 & 54 & 63 \\
\hline \begin{tabular}{l}
Meadow-continuous \\
grass, protected from \\
grazing and generally \\
mowed for hay
\end{tabular} & - & - & - & 15 & 37 & 51 & 60 \\
\hline \begin{tabular}{l}
Brush-brush-weed-grass \\
mixture with brush the \\
major element 5
\end{tabular} & - & - & Poor & - & 28 & 46 & 58 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\cline { 2 - 8 } \begin{tabular}{l}
growing brush, with \\
brush the minor element
\end{tabular} & - & Good & - & - & 41 & 54 & 70 \\
\hline \begin{tabular}{l}
Oak-aspen-mountain \\
brush mixture of oak \\
brush, aspen, mountain \\
mahogany, bitter brush, \\
maple, and other brush
\end{tabular} & - & - & Poor & - & - & 45 & 54 \\
\cline { 2 - 9 } & - & Fair & - & - & 28 & 36 & 42 \\
\hline \begin{tabular}{l}
Pinyon-juniper-pinyon, \\
juniper, or both; grass \\
understory
\end{tabular} & - & Good & - & - & 15 & 23 & 28 \\
\hline & - & Poor & - & - & 56 & 70 & 77 \\
\hline & - & Fair & - & - & 37 & 53 & 63 \\
\hline Sood & - & - & 23 & 40 & 51 \\
\hline \begin{tabular}{l}
Sagebrush with grass \\
understory
\end{tabular} & - & Poor & - & - & 46 & 63 & 70 \\
\hline & - & Fair & - & - & 30 & 42 & 49 \\
\hline & - & Good & - & - & 18 & 27 & 34 \\
\hline \begin{tabular}{l}
Desert shrub-major \\
plants include saltbush, \\
greasewood, \\
creosotebush, \\
blackbrush, bursage, palo \\
verde, mesquite, and \\
cactus
\end{tabular} & - & Poor & - & 42 & 58 & 70 & 75 \\
\hline & - & Fair & - & 34 & 52 & 64 & 72 \\
\hline & Good & - & 29 & 47 & 61 & 69 \\
\hline
\end{tabular}
1. Average runoff condition, and la \(=0.1 \mathrm{~S}\).
2. Crop residue cover applies only if residue is on at least \(5 \%\) of the surface throughout the year.
3. Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good \(\geq 20 \%\)), and (e) degree of surface roughness. Poor: Factors impair infiltration and tend to increase runoff. Good: Factors encourage average and better than average infiltration and tend to decrease runoff.
4. Poor: <50\%) ground cover or heavily grazed with no mulch. Fair: 50 to \(75 \%\) ground cover and not heavily grazed. Good: > 75\% ground cover and lightly or only occasionally grazed.
5. Poor: <50\% ground cover. Fair: 50 to \(75 \%\) ground cover. Good: >75\% ground cover.
6. CN's shown were computed for areas with \(50 \%\) woods and \(50 \%\) grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.
7. Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil.
8. Poor: <30\% ground cover (litter, grass, and brush overstory). Fair: 30 to \(70 \%\) ground cover. Good: > 70\% ground cover.

TABLE 6-10. NRCS CURVE NUMBERS FOR FRONTAL STORMS \& THUNDERSTORMS FOR DEVELOPED CONDITIONS (ARCII)
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Fully Developed Urban & Treatment & \begin{tabular}{l}
Hydrologic \\
Condition
\end{tabular} & \% I & \multicolumn{3}{|l|}{ Pre-Development CN }
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Poor condition (grass cover < 50\%) & --- & -—- & -- & 68 & 79 & 86 & 89 \\
\hline Fair condition (grass cover 50\% to 75\%) & -—- & --- & -- & 49 & 69 & 79 & 84 \\
\hline Good condition (grass cover > 75\%) & - & -—- & -- & 39 & 61 & 74 & 80 \\
\hline Impervious areas: & & & & & & & \\
\hline Paved parking lots, roofs, driveways, etc. (excluding right-of-way & -—- & --- & -- & 98 & 98 & 98 & 98 \\
\hline Streets and roads: & & & & & & & \\
\hline Paved; curbs and storm sewers (excluding right-of-way) & - & - & -- & 98 & 98 & 98 & 98 \\
\hline Paved; open ditches (including right-of-way) & - & - & -- & 83 & 89 & 92 & 93 \\
\hline Gravel (including right-of-way) & - & - - & -- & 76 & 85 & 89 & 91 \\
\hline Dirt (including right-ofway) & --- & --- & -- & 72 & 82 & 87 & 89 \\
\hline Western desert urban areas: & & & & & & & \\
\hline Natural desert landscaping (pervious areas only) & - & -—- & -- & 63 & 77 & 85 & 88 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders) & --- & --- & -- & 96 & 96 & 96 & 96 \\
\hline \multicolumn{8}{|l|}{Urban districts:} \\
\hline Commercial and business & --- & --- & 85 & 89 & 92 & 94 & 95 \\
\hline Industrial & --- & - & 72 & 81 & 88 & 91 & 93 \\
\hline \multicolumn{8}{|l|}{Residential districts by average lot size:} \\
\hline \(1 / 8\) acre or less (town houses) & --- & --- & 65 & 77 & 85 & 90 & 92 \\
\hline \(1 / 4\) acre & --- & - & 38 & 61 & 75 & 83 & 87 \\
\hline \(1 / 3\) acre & - & - & 30 & 57 & 72 & 81 & 86 \\
\hline 1/2 acre & - & - & 25 & 54 & 70 & 80 & 85 \\
\hline 1 acre & --- & --- & 20 & 51 & 68 & 79 & 84 \\
\hline 2 acres & - & --- & 12 & 46 & 65 & 77 & 82 \\
\hline Developing Urban Areas \({ }^{1}\) & Treatment \({ }^{2}\) & Hydrologic Condition \({ }^{3}\) & \% I & \[
\begin{aligned}
& \text { HSG } \\
& \text { A }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HSG } \\
& \text { B }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HSG } \\
& \text { C }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HSG } \\
& \text { D }
\end{aligned}
\] \\
\hline Newly graded areas (pervious areas only, no vegetation) & -- & --- & -- & 77 & 86 & 91 & 94 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Cultivated Agricultural Lands \({ }^{1}\) & Treatment & \begin{tabular}{l}
Hydrologic \\
Condition
\end{tabular} & \% I & \[
\begin{aligned}
& \text { HSG } \\
& \text { A }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HSG } \\
& \text { B }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HSG } \\
& \text { C }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HSG } \\
& \text { D }
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{Fallow} & Bare soil & --- & -- & 77 & 86 & 91 & 94 \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
Crop \\
residue \\
cover (CR)
\end{tabular}} & Poor & -- & 76 & 85 & 90 & 93 \\
\hline & & Good & -- & 74 & 83 & 88 & 90 \\
\hline \multirow[t]{12}{*}{Row crops} & \multirow[t]{2}{*}{Straight row (SR)} & Poor & -- & 72 & 81 & 88 & 91 \\
\hline & & Good & -- & 67 & 78 & 85 & 89 \\
\hline & \multirow[t]{2}{*}{SR + CR} & Poor & -- & 71 & 80 & 87 & 90 \\
\hline & & Good & -- & 64 & 75 & 82 & 85 \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
Contoured \\
(C)
\end{tabular}} & Poor & -- & 70 & 79 & 84 & 88 \\
\hline & & Good & - & 65 & 75 & 82 & 86 \\
\hline & \multirow[t]{2}{*}{\(C+C R\)} & Poor & -- & 69 & 78 & 83 & 87 \\
\hline & & Good & -- & 64 & 74 & 81 & 85 \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
Contoured \\
\& terraced \\
(C\&T)
\end{tabular}} & Poor & -- & 66 & 74 & 80 & 82 \\
\hline & & Good & -- & 62 & 71 & 78 & 81 \\
\hline & \multirow[t]{2}{*}{\(C \& T+C R\)} & Poor & -- & 65 & 73 & 79 & 81 \\
\hline & & Good & -- & 61 & 70 & 77 & 80 \\
\hline \multirow[t]{2}{*}{Small grain} & \multirow[t]{2}{*}{SR} & Poor & - & 65 & 76 & 84 & 88 \\
\hline & & Good & -- & 63 & 75 & 83 & 87 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Woods-grass combination (orchard or tree farm) \({ }^{6}\)} & --- & Poor & -- & 57 & 73 & 82 & 86 \\
\hline & - & Fair & -- & 43 & 65 & 76 & 82 \\
\hline & - & Good & -- & 32 & 58 & 72 & 79 \\
\hline \multirow[t]{3}{*}{Woods \({ }^{7}\)} & --- & Poor & -- & 45 & 66 & 77 & 83 \\
\hline & - & Fair & -- & 36 & 60 & 73 & 79 \\
\hline & - & Good & -- & 30 & 55 & 70 & 77 \\
\hline Farmsteads-buildings, lanes, driveways, and surrounding lots & - & --- & -- & 59 & 74 & 82 & 86 \\
\hline Arid and Semi-arid Rangelands \({ }^{1}\) & Treatment & \begin{tabular}{l}
Hydrologic \\
Condition \({ }^{8}\)
\end{tabular} & \% I & \[
\begin{aligned}
& \text { HSG } \\
& \text { A }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HSG } \\
& \text { B }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HSG } \\
& \text { C }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HSG } \\
& \text { D }
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{Herbaceous-mixture of grass, weeds, and lowgrowing brush, with brush the minor element} & -- & Poor & -- & --- & 80 & 87 & 93 \\
\hline & - & Fair & -- & --- & 71 & 81 & 89 \\
\hline & - & Good & -- & - & 62 & 74 & 85 \\
\hline \multirow[t]{3}{*}{Oak-aspen-mountain brush mixture of oak brush, aspen, mountain mahogany, bitter brush, maple, and other brush} & --- & Poor & -- & -- & 66 & 74 & 79 \\
\hline & - & Fair & -- & - & 48 & 57 & 63 \\
\hline & - & Good & -- & --- & 30 & 41 & 48 \\
\hline \multirow[t]{3}{*}{Pinyon-juniper-pinyon, juniper, or both; grass understory} & --- & Poor & -- & - & 75 & 85 & 89 \\
\hline & - & Fair & -- & --- & 58 & 73 & 80 \\
\hline & - & Good & - & --- & 41 & 61 & 71 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Sagebrush with grass understory} & - & Poor & -- & --- & 67 & 80 & 85 \\
\hline & - & Fair & -- & --- & 51 & 63 & 70 \\
\hline & - & Good & -- & - & 35 & 47 & 55 \\
\hline \multirow[t]{3}{*}{Desert shrub-major plants include saltbush, greasewood, creosotebush, blackbrush, bursage, palo verde, mesquite, and cactus} & -- & Poor & -- & 63 & 77 & 85 & 88 \\
\hline & - & Fair & -- & 55 & 72 & 81 & 86 \\
\hline & - & Good & -- & 49 & 68 & 79 & 84 \\
\hline \multicolumn{8}{|l|}{\({ }^{1} \mathrm{la}=0.1 \mathrm{~S}\)} \\
\hline
\end{tabular}
3. Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good \(\geq 20 \%\)), and (e) degree of surface roughness. Poor: Factors impair infiltration and tend to increase runoff. Good: Factors encourage average and better than average infiltration and tend to decrease runoff.
4. Poor: <50\%) ground cover or heavily grazed with no mulch. Fair: 50 to \(75 \%\) ground cover and not heavily grazed. Good: > 75\% ground cover and lightly or only occasional
5. Poor: <50\% ground cover. Fair: 50 to \(75 \%\) ground cover. Good: \(>75 \%\) ground cover.
6. CN's shown were computed for areas with \(50 \%\) woods and \(50 \%\) grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods

\footnotetext{
7. Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil.
8. Poor: <30\% ground cover (litter, grass, and brush overstory). Fair: 30 to \(70 \%\) ground cover. Good: > 70\% ground cover.
}
\begin{tabular}{|c|c|c|c|}
\hline 8. Very weedy reaches, deep pools, or floodways with heavy stand of timber and underbrush & 0.075 & 0.100 & 0.150 \\
\hline \multicolumn{4}{|l|}{LINED OR BUILT-UP CHANNELS} \\
\hline a. Corrugated Metal & 0.021 & 0.025 & 0.030 \\
\hline \multicolumn{4}{|l|}{b. Concrete} \\
\hline 1. Trowel finish & 0.011 & 0.013 & 0.015 \\
\hline 2. Float finish & 0.013 & 0.015 & 0.016 \\
\hline 3. Finished, with gravel on bottom & 0.015 & 0.017 & 0.020 \\
\hline 4. Unfinished & 0.014 & 0.017 & 0.020 \\
\hline 5. Gunite, good section & 0.016 & 0.019 & 0.023 \\
\hline 6. Gunite, wavy section & 0.018 & 0.022 & 0.025 \\
\hline ㄱ. On good excavated rock & 0.017 & 0.020 & \\
\hline 8. On irregular excavated rock & 0.022 & 0.027 & \\
\hline
\end{tabular}
c. Concrete bottom float finished with sides of
\begin{tabular}{|l|l|l|l|}
\hline _1. Dressed stone in mortar & 0.015 & 0.017 & 0.020 \\
\hline _2. Random stone in mortar & 0.017 & 0.020 & 0.024 \\
\hline \begin{tabular}{c}
3. Cement rubble masonry, \\
plastered
\end{tabular} & 0.016 & 0.020 & 0.024 \\
\hline 4. Cement rubble masonry & 0.020 & 0.025 & 0.030 \\
\hline 5. Dry rubble or riprap & 0.020 & 0.030 & 0.035 \\
\hline
\end{tabular}
d. Gravel bottom with sides of
\begin{tabular}{|l|l|l|l|}
\hline 1. Formed concrete & 0.017 & 0.020 & 0.025 \\
\hline 2. Random stone in mortar & 0.020 & 0.023 & 0.026 \\
\hline \hline 3. Dry rubble or riprap & 0.023 & 0.033 & 0.036 \\
\hline
\end{tabular}

\section*{e. Asphalt}
\begin{tabular}{|l|l|l|l|}
\hline 1. Smooth & & 0.013 & \\
\hline 2. Rough & & 0.016 & \\
\hline f. Grassed & 0.030 & 0.040 & 0.050 \\
\hline
\end{tabular}

TABLE 10-3
MAXIMUM PERMISSIBLE DESIGN OPEN CHANNEL FLOW VELOCITIES IN EARTH*
\begin{tabular}{|l|l|}
\hline Soil Types & Permissible Mean Channel Velocity (ft/sec) \\
\hline Fine Sand (noncolloidal) & 2.0 \\
\hline Coarse Sand (noncolloidal) & 4.0 \\
\hline Sandy Loam (noncolloidal) & 2.5 \\
\hline Silt Loam (noncolloidal) & 3.0 \\
\hline Ordinary Firm Loam & 3.5 \\
\hline Silty Clay & 3.5 \\
\hline Fine Gravel & 5.0 \\
\hline Stiff Clay (very colloidal) & 5.0 \\
\hline Graded, Loam to Cobbles (noncolloidal) & 5.0 \\
\hline Graded, Silt to Cobbles (colloidal) & 5.5 \\
\hline Alluvial Silts (noncolloidal) & 3.5 \\
\hline Alluvial Silts (colloidal) & 5.0 \\
\hline Coarse Gravel (noncolloidal) & 6.0 \\
\hline Cobbles and Shingles & 3.5 \\
\hline Sord Shales and Hard Pans & 20.0 \\
\hline These velocities shall be used in conjunction with scour calculations and as approved by City/County. \\
\hline
\end{tabular}

TABLE 10-4
MAXIMUM PERMISSIBLE VELOCITIES FOR EARTH CHANNELS WITH VARIED GRASS LININGS AND SLOPES
\begin{tabular}{|l|l|l|}
\hline Channel Slope & Lining & \begin{tabular}{l}
Permissible Mean Channel \\
Velocity* (ft/sec)
\end{tabular} \\
\hline \(0-5 \%\) & Sodded grass & 7 \\
\hline & Bermudagrass & 6 \\
\hline & Reed canarygrass & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Tall fescue & 5 \\
\hline & Kentucky bluegrass & 5 \\
\hline & Grass-legume mixture & 4 \\
\hline & Red fescue & 2.5 \\
\hline & Redtop & 2.5 \\
\hline & Sericea lespedeza & 2.5 \\
\hline & Annual lespedeza & 2.5 \\
\hline & Small grains (temporary) & 2.5 \\
\hline 5-10\% & Sodded grass & 6 \\
\hline & Bermudagrass & 5 \\
\hline & Reed canarygrass & 4 \\
\hline & Tall fescue & 4 \\
\hline & Kentucky bluegrass & 4 \\
\hline & Grass-legume mixture & 3 \\
\hline Greater than 10\% & Sodded grass & 5 \\
\hline & Bermudagrass & 4 \\
\hline & Reed canarygrass & 3 \\
\hline & Tall fescue & 3 \\
\hline & Kentucky bluegrass & 3 \\
\hline
\end{tabular}
*For highly erodible soils, decrease permissible velocities by \(25 \%\).
*Grass lined channels are dependent upon assurances of continuous growth and maintenance of grass.

Except in horizontal curves, the flatter the open channel side slopes, the better. Side slopes for grass-lined channels shall be no steeper than \(4 \mathrm{H}: 1 \mathrm{~V}\), which is the practical limit for mowing equipment. Concrete-lined channels, or those which for other reasons require minimum or no slope maintenance, (i.e., channels lined with grouted riprap or soil cement), may have side slopes as steep as \(2 \mathrm{H}: 1 \mathrm{~V}\). Riprap lined channels may have slopes as steep as \(2.5 \mathrm{H}: 1 \mathrm{~V}\). Roadside ditches may have slopes as steep as \(4 \mathrm{H}: 1 \mathrm{~V}\).

For channels which are being constructed within existing site constraints including bridges and structures, concrete side slopes may be \(1.5 \mathrm{H}: 1 \mathrm{~V}\). These channels must have adequate fencing for general safety of the public.
10.5.2. Depth

Channel depth should not exceed 5.0' at the 100-year storm when the 100-year flow is approximately 1500 cfs or less. Excessive depths should be avoided to minimize high velocities and for other public safety considerations.
10.5.3. Bottom Width

\section*{I.7. - POST-CONSTRUCTION STORMWATER MANAGEMENT}

\section*{I.7.1. Post-Construction Stormwater Management Planning}
[Replaces DCM2 Section 4.1, pages 4-1 through "Other BMPs" continued on 4-5]
A. Overview. This chapter contains requirements and procedures for the selection, installation, implementation and maintenance of permanent stormwater quality control measures that will remain in operation after construction for new development and significant redevelopment. All applicable development sites must have operational permanent stormwater quality control measures at the completion of the site, unless excluded from the requirements of an applicable development site as described in Section I.7.1.C. All permanent control measures for applicable development sites shall meet one of the "base design standards" described in Section 1.71.D.

In the case where permanent water quality control measures are part of future phasing, the permittee must have a mechanism to ensure that all control measures will be implemented, regardless of completion of future phases or site ownership. In such cases, temporary water quality control measures must be implemented as feasible and maintained until removed or modified. All temporary water quality control measure must meet one of the "base design standards" described in Section I.7.1.D.

A procedure is provided within the context of a flow chart and a four-step process that shall be followed for all applicable development sites. Detailed descriptions, sizing and design criteria, and design procedures for control measures are provided in the New Development BMP Factsheets found in Section 4.2 of the DCMV2.

It is recommended that discussions and collaboration regarding proposed BMPs occur early in each project between the developer's planner and engineer, County Stormwater and County Planning and Community Development staff.

The analysis of the requirements, exclusions and base design standards presented in this Section 1.7 shall be incorporated into existing ECM Administrator submittals for review and acceptance including Preliminary/Final Drainage Reports and construction plans, or as otherwise specified by the ECM Administrator.
B. Applicable Development Sites: Excluded Sites. The following types of sites and associated land disturbances are excluded from the requirements of this Section 1.7. Although a site may qualify for an exclusion to Section 1.7 below, the site may still be considered an applicable construction activity subject to the requirements of an ESQCP or BESQCP.
1. Pavement Management Sites. Sites, or portions of sites, for the rehabilitation, maintenance, and reconstruction of roadway pavement, which includes roadway resurfacing, mill and overlay, white topping, black topping, curb and gutter replacement, concrete panel replacement, and pothole repair. The purpose of the site must be to provide additional years of service life and optimize service and safety. The site also must be limited to the repair and replacement of pavement in a manner that does not result in an increased impervious area, and the infrastructure must not substantially change. The types of sites covered under this exclusion include day-to-day maintenance activities, rehabilitation, and reconstruction of pavement. "Roadways" include roads and bridges that are improved, designed or ordinarily used for vehicular travel and contiguous areas or that are improved, designed or ordinarily used for pedestrian or bicycle traffic, drainage for the roadway, and/or parking along the roadway. Areas primarily used for parking or access to parking are not roadways.
2. Excluded Roadway Redevelopment. Redevelopment sites for existing roadways, when 1 of the following cri
1) The site adds less than 1 acre of paved area per mile of roadway to an existing roadway, or
2) The site does not add more than 8.25 feet of paved width at any location to the existing roadway.
3. Excluded Existing Roadway Areas. For redevelopment sites for existing roadways, only the area of the existing roadway is excluded from the requirements of an applicable development site when the site does not increase the width by 2 times or more, on average, of the original roadway area. The entire site is not excluded from being considered an applicable development site for this exclusion. The area of the site that is part of the added new roadway area is still an applicable development site.
4. Aboveground and Underground Utilities. Activities for installation or maintenance of underground utilities or infrastructure that does not permanently alter the terrain, ground cover, or drainage patterns from those present prior to the construction activity. This exclusion includes, but is not limited to, activities to install, replace, or maintain utilities under roadways or other paved areas that return the surface to the same condition.
5. Large Lot Single Family Sites. A single-family residential lot, or agricultural zoned lands, greater than or equal to 2.5 acres in size per dwelling and having a total lot impervious area of less than 10 percent. A total lot imperviousness greater than 10 percent is allowed when a study specific to the watershed and/or MS4 shows that expected soil and vegetation conditions are suitable for infiltration/filtration of the WQCV for a typical site, and the permittee accepts such study as applicable within its MS4 boundaries. The maximum total lot impervious covered under this exclusion shall be 20 percent.
6. Non-Residential and Non-Commercial Infiltration Conditions. This exclusion does not apply to residential or commercial sites for buildings. This exclusion applies to applicable development sites for which post-development surface conditions do not result in concentrated stormwater flow during the 80th percentile stormwater runoff event. In addition, post-development surface conditions must not be projected to result in a surface water discharge from the 80th percentile stormwater runoff events. Specifically, the 80th percentile event must be infiltrated and not discharged as concentrated flow. For this exclusion to apply, a study specific to the site, watershed and/or MS4 must be conducted. The study must show rainfall and soil conditions present within the project area, must include allowable slopes, surface conditions, and ratios of impervious area to pervious area, and the County must accept such study as applicable within its MS4 boundaries.
7. Sites with Land Disturbance to Undeveloped Land that will Remain Undeveloped. Sites with land disturbance to undeveloped land (land with no human-made structures such as buildings or pavement) that will remain undeveloped after the site. Typical examples of this type of site are trails, parks and open space without structures.
8. Stream Stabilization Sites. Construction activity that is solely for the purpose of stream stabilization.
9. Trails. Bike and pedestrian trails. Bike lanes for roadways are not included in this exclusion, unless attached to a roadway that qualifies under another exclusion in this section.
10. Oil and Gas Exploration. Facilities associated with oil and gas exploration, production, processing, or treatment operations, or transmission facilities, including activities necessary to prepare a site for drilling and for the movement and placement of drilling equipment, whether or not such field activities or operations may be considered to be an applicable construction activity.
11. County Growth Areas. The County may exclude the following when they occur within the county growth areas:
a. Agricultural facilities and structures on agricultural zoned lands (e.g., barn, stables).
b. Residential development site or larger common plans of development for which associated construction activities results in a land disturbance of less than or equal to 10 acres and have a proposed density of less than 1,000 people per square mile.
c. Commercial or industrial development site or larger common plans of development for which associated construction activities results in a land disturbance of less than or equal to 10 acres.
C. Base Design Standard Requirements. The "base design standard" is the minimum design standard for new and redevelopment before applying any exclusions or alternative standards. The control measures for applicable development sites shall meet one of the following base design standards:
1. Water Quality Capture Volume (WQCV) Standard. The control measures is designed to provide treatment and/or infiltration of the WQCV and:
a. \(100 \%\) of the applicable development site is captured, except the County may exclude up to 20 percent, not to exceed 1 acre, of the applicable development site area when the County has determined that it is not practicable to capture runoff from portions of the site that will not drain towards control measures. In addition, the County must also determine that the implementation of a separate control measure for that portion of the site is not practicable (e.g., driveway access that drains directly to street).
b. Evaluation of the minimum drain time shall be based on the pollutant removal mechanism and functionality of the control measure implemented. Consideration of drain time shall include maintaining vegetation necessary for operation of the control measure (e.g., wetland vegetation).
2. Pollutant Removal Standard. The control measures is designed to treat at a minimum the 80th percentile storm event. The control measures shall be designed to treat stormwater runoff in a manner expected to reduce the event mean concentration of total suspended solids (TSS) to a median value of 30 \(\mathrm{mg} / \mathrm{L}\) or less.
\(100 \%\) of the applicable development site must be captured, except the County may exclude up to 20 percent not to exceed 1 acre of the applicable development site area when the County has determined that it is not practicable to capture runoff from portions of the site that will not drain towards control measures. In addition, the County must also determine that the implementation of a separate control measure for that portion of the site is not practicable (e.g., driveway access that drains directly to street).
3. Runoff Reduction Standard. The control measures is designed to infiltrate into the ground where site geology permits, evaporate, or evapotranspire a quantity of water equal to \(60 \%\) of what the calculated WQCV would be if all impervious area for the applicable development site discharged without infiltration. This base design standard can be met through practices such as green infrastructure. "Green infrastructure" generally refers to control measures that use vegetation, soils, and natural processes or mimic natural processes to manage stormwater. Green infrastructure can be used in place of or in addition to low impact development principles.
4. Applicable Development Site Draining to a Regional WQCV Control Measure. The regional WQCV control measure must be designed to accept the drainage from the applicable development site. Stormwater from the site must not discharge to a water of the state before being discharged to the regional WQCV control measure. The regional WQCV control measure must meet the requirements of the WQCV in Part I.7.C.1.
5. Applicable Development Site Draining to a Regional WQCV Facility. The regional WQCV facility is
designed to accept drainage from the applicable development site. Stormwater from the site may discharge to a water of the state before being discharged to the regional WQCV facility. Before discharging to a water of the state, at least 20 percent of the upstream imperviousness of the applicable development site must be disconnected from the storm drainage system and drain through a receiving pervious area control measure comprising a footprint of at least 10 percent of the upstream disconnected impervious area of the applicable development site. The control measure must be designed in accordance with a design manual identified by the permittee. In addition, the stream channel between the discharge point of the applicable development site and the regional WQCV facility must be stabilized. The regional WQCV facility must meet the following requirements:
a. The regional WQCV facility must be implemented, functional, and maintained following good engineering, hydrologic and pollution control practices.
b. The regional WQCV facility must be designed and maintained for \(100 \%\) WQCV for its entire drainage area.
c. The regional WQCV facility must have capacity to accommodate the drainage from the applicable development site.
d. The regional WQCV facility must be designed and built to comply with all assumptions for the development activities planned by the County within its drainage area, including the imperviousness of its drainage area and the applicable development site.
e. Evaluation of the minimum drain time shall be based on the pollutant removal mechanism and functionality of the facility. Consideration of drain time shall include maintaining vegetation necessary for operation of the facility (e.g., wetland vegetation).
f. The County shall require site plans and perform a site plan review consistent with the requirements of this ECM to ensure the regional WQCV facility and control measures for the applicable development site plans include:
i. Design details for all structural control measures implemented to meet the requirements of Part I.E.4.
ii. A narrative reference for all non-structural control measures for the site, if applicable. "Nonstructural control measures" are control measures that are not structural control measures and include, but are not limited to, control measures that prevent or reduce pollutants being introduced to water or that prevent or reduce the generation of runoff or illicit discharges.
iii. Documentation of operation and maintenance procedures to ensure the long term observation, maintenance, and operation of the control measures. The documentation shall include frequencies for routine inspections and maintenance activities.
iv. Documentation regarding easements or other legal means for access of the control measure sites for operation, maintenance, and inspection of control measures.
v. Confirmation that control measures meet the requirements of section I.7.C
vi. Confirmation that site plans meet the requirements of County's site plan review and approval requirements
g. The regional WQCV facility must be subject to the County's authority consistent with requirements and actions for a Control Measure in accordance with a base design standard.
h. Regional Facilities must be designed and implemented with flood control or water quality as the primary use. Recreational ponds and reservoirs may not be considered Regional Facilities. Water
bodies listed by name in surface water quality classifications and standards regulations (5 CCR 100232 through 5 CCR 1002-38) may not be considered regional facilities.
6. Constrained Redevelopment Sites Design Standard. The constrained redevelopment sites standard applies to redevelopment sites meeting the following criteria:
(a) The applicable redevelopment site is for a site that has greater than \(75 \%\) impervious area, and
(b) The County must determine that it is not practicable to meet any of the base design standards in section I.7.1.C (1), (2), or (3). The County's determination shall include an evaluation of the applicable redevelopment site's ability to install a control measure without reducing surface area covered with the structures.

The control measures is designed to meet one of the following:
(a) Provide treatment of the WQCV for the area captured. The captured area shall be \(50 \%\) or more of the impervious area of the applicable redevelopment site. Evaluation of the minimum drain time shall be based on the pollutant removal mechanism and functionality of the control measure implemented,
(b) The control measures is designed to provide for treatment of the 80th percentile storm event. The control measures shall be designed to treat stormwater runoff in a manner expected to reduce the event mean concentration of total suspended solids (TSS) to a median value of \(30 \mathrm{mg} / \mathrm{L}\) or less. A minimum of \(50 \%\) of the applicable development area including \(50 \%\) or more of the impervious area of the applicable development area shall drain to the control measures. This standard does not require that \(100 \%\) of the applicable redevelopment site area be directed to a control measures as long as the overall removal goal is met or exceeded (e.g., providing increased removal for a smaller area), or
(c) Infiltrate, evaporate, or evapotranspirate, through practices such as green infrastructure, a quantity of water equal to \(30 \%\) of what the calculated WQCV would be if all impervious area for the applicable redevelopment site discharged without infiltration.

\section*{I.7.2. BMP Selection}

The selection of appropriate BMPs is based on the characteristics of the site and potential pollutants. The FourStep Process provides a method of going through the selection process. Figure I. 1 and Figure I. 2 with annotations covers site-specific issues to be considered in selecting an effective BMP for each site.
A. Four-Step Process. The following four-step process is recommended for selecting structural BMPs in newly developing and redeveloping urban areas:

\section*{Step 1: Employ Runoff Reduction Practices}

To reduce runoff peaks and volumes from urbanizing areas, employ a practice generally termed "minimizing directly connected impervious areas" (MDCIA). The principal behind MDCIA is twofold - to reduce impervious areas and to route runoff from impervious surfaces over grassy areas to slow down runoff and promote infiltration. The benefits are less runoff, less stormwater pollution, and less cost for drainage infrastructure. There are several approaches to reduce the effective imperviousness of a development site:

\section*{Reduced Pavement Area}

Sometimes, creative site layout can reduce the extent of paved areas including parking, thereby saving on initial capital cost of pavement and then saving on pavement maintenance, repair, and replacement over time.

\section*{Porous Pavement}

The use of modular block porous pavement or reinforced turf in low-traffic zones such as parking areas and low use service drives such as fire lanes can significantly reduce site imperviousness. This practice may reduce the extent and size of the downstream storm sewers and detention.

\section*{Grass Buffers}

Draining impervious areas over grass buffers slows down runoff and encourages infiltration, in effect reducing the impact of the impervious area.

\section*{Grass Swales}

The use of grass swales instead of storm sewers slows down runoff, promotes infiltration, and also reducing effective imperviousness. It also may reduce the size and cost of downstream storm sewers and detention.

Implementing these approaches on a new development site is discussed further in the DCM2 section titled Employing Runoff Reduction Techniques. This section provides a procedure for estimating a reduced imperviousness based on the use of grass buffers and swales. The latter three of the approaches for reducing imperviousness are structural BMPs and are described in detail in Section 4.2 of DCM2 (New Development BMP Factsheets):
- Grass Buffer.
- Grass Swale.
- Modular Block Porous Pavement (or Stabilized-Grass Porous Pavement).

\section*{Step 2: Stabilize Drainageways}

Drainageway, natural and manmade, erosion can be a major source of sediment and associated constituents, such as phosphorus. Natural drainageways are often subject to bed and bank erosion when urbanizing areas increase the frequency, rate, and volume of runoff. Therefore, drainageways are required to be stabilized. One of three basic methods of stabilization may be selected.

\section*{Constructed Grass, Riprap, or Concrete-Lined Channel}

These methods of channel stabilization have been in practice for some time. The water quality benefit associated with these channels is the reduction of severe bed and bank erosion that can occur in the absence of a stabilized channel. On the other hand, the hard-lined low flow channels that are often used do not offer much in the way of water quality enhancement or wetland habitat. The use of riprap or concrete lined flood conveyance channels is not recommended, unless hydraulic or physical conditions require such an alternative. Rock lined low-flow channels in many cases may be a better alternative.

\section*{Stabilized Natural Channel}

In practice, many natural drainageways in and adjacent to new developments are frequently left in an undisturbed condition. While this may be positive in terms of retaining desirable riparian vegetation and habitat, urban development may cause the channel to become destabilized. When degradation occurs in these drainageways, significant erosion, loss of riparian and aquatic habitat, and elevated levels of sediment and associated pollutants can result. Therefore, it is recommended that some level of stream stabilization always be considered. Small grade control structures sized for a 5-year or larger runoff event are often an effective means of establishing a mild slope for the baseflow channel and arresting stream degradation. Severe bends or cut banks may also need to be stabilized. Such efforts to stabilize a natural waterway also preserve and promote natural riparian vegetation which can provide paybacks in terms of enhanced aesthetics, habitat, and water quality.

One additional method of drainageway stabilization gives special attention to stormwater quality and is described in Section 4.2 (New Development BMP Factsheets):
- Constructed Wetland Channel.

\section*{Step 3: Provide Water Quality Capture Volume (WQCV)}

All applicable development sites must have operational permanent stormwater quality control measures at the completion of construction. Designing structures that provide the WQCV is a common preferred approach in El Paso County. Other base design standards discussed earlier may be used if applicable, however. One or more of six types of water quality basins, each draining slowly to provide for long-term settling of sediment particles, may be selected. Information on selecting and configuring for a site one or more of the WQCV facilities listed below is provided in the Section 4.2 of the DCMV2. These six BMPs are also described in detail in the New Development BMP Factsheets found in the DCMV2 Section 4.2.
- Porous Pavement Detention.
- Porous Landscape Detention.
- Extended Detention Basin.
- Sand Filter Extended Detention Basin.
- Constructed Wetland Basin.
- Retention Pond.

Full Spectrum Detention is a newer approach to providing the WQCV. Details on the use, sizing, configuration and maintenance of Full Spectrum Detention structures are located in the DCMV1 update of 2014, sections of which are incorporated by reference into this ECM.

\section*{Step 4: Consider Need for Industrial and Commercial BMPs}

If a new development or significant redevelopment activity is planned for an industrial or commercial site, the need for specialized BMPs must be considered. Two approaches are described in the New Development BMP Factsheets:
- Covering of Storage/Handling Areas
- Spill Containment and Control

Other Specialized BMPs may also be required
B. Other Specialized BMPs. The Technical Advisory Committee (TAC) selected the above structural BMPs after a comprehensive screening of known structural BMPs. The members of TAC included representatives from many County agencies and individuals from the development community. Final selection by TAC was based on the rev documentation on potential effectiveness in a semiarid climate, local applicability, maintenance considerations, Development and evaluation of permanent BMPs are continuing processes. Better designs of the BMPs included in DCM2 and designs of new BMPs, including manufactured (proprietary) BMPs, will be developed and tested. To allow for this progress, additional BMPs will be considered on a case-by-case basis by County Stormwater Staff. Design and sizing details and results of independent testing of the BMP in conditions similar to those at the site will be submitted demonstrating that the BMP will meet or exceed the performance of approved BMPs for the site.

To promote improvement in stormwater protection, County Stormwater Staff may approve promising BMPs on an experimental basis. A performance monitoring program to be pre-approved by County Stormwater Staff and an agreement to replace the Experimental System with an approved system should it not function to the required level of performance, both at the owner's expense, will be required. A request to use an "experimental system" must be submitted to El Paso County in the form of a Request for a Deviation from these standards, submitted consistent with the criteria and process described Chapters 1 and 5, respectively. Design of any "experimental system" shall not commence until a Request for Deviation is submitted to and approved by the County.
C. Guidance for Selecting and Locating WQCV Facilities.
[The following section replaces DCM2 Section 4.1 pages 4-19 through 4-23]

Laying out WQCV facilities within a development site and watershed requires thought and planning. This planning and decision-making should occur during a master drainage planning process (Drainage Basin Planning Study or Master Development Drainage Plan) undertaken by local jurisdictions or a developer's engineer. Such plans, studies or other reports may depict a recommended approach for implementing WQCV on a watershed basis. Such reports may call for a few large regional WQCV facilities, smaller sub-regional facilities, or alternatively an onsite approach. It is always a good idea to find out if a master planning study has been completed that addresses water quality and to attempt to follow the Plan's recommendations.

If the master drainage planning process addresses water quality, the following provides supplemental information on the BMPs. If the existing master drainage planning process has not addressed water quality, or if a new master drainage process is underway, this will direct the water quality evaluation.
D. Post-Construction Stormwater Quality Control Measure Selection Process. The BMP selection process is illustrated in Figure I-1 and Figure I-2. These two figures shall be used for all projects except those that are strictly highway/roadway projects; that is, projects with no plans for building pad sites. Projects that are strictly highway/roadway projects are discussed in a separate section below.

The following process references the use of the permanent control measures (BMPs) and other practices outlined in DCM2 and this Appendix. The use of DCM2 BMPs will promote consistency between the City and County. These BMPs are commonly found in manuals and other literature from municipalities across the country, and they are the accepted best industry practices in stormwater quality control.

As described below, other control measures (which may be relatively new to the field of stormwater management) are acceptable if they can be shown to meet performance criteria provided in this Section 1.7. A Request for a Deviation from these standards submitted consistent with the criteria and process described

Chapters 1 and 5, respectively, must be submitted and approved by the County prior to the use of an permanent control measure not included in this ECM, DCMV1, DCMV2 and the DCMV1 Update of 2014.

The following items explain the decision points (i.e., the Boxes) in Figure I-1 and Figure I-2:
Box 1: For all sites, the possibility of incorporating runoff reduction practices must be investigated. Impervious area should be reduced to the maximum extent practicable, per DCM2. DCM2 also provides guidance for MDCIA by routing runoff to pervious areas. This is Step 1 in the Four-Step Process.

Box 2: All drainageways, ditches, and channels shall be stabilized with one of three methods included in Step 2, which include the use of appropriate methods for the type of drainageway as described in the DCM1. Drainageways include:
- Tributaries to creeks that have been left in a relatively natural state,
- Tributaries, channels, and drainageways that are graded or regraded and may include drop or check structures, side slope stabilization, and low-flow channels.
- Roadside ditches that are completely man-made and should only be used to convey runoff from roads and roadway right-of-ways (ROWs).

Box 3: It must be determined if the development and/or redevelopment disturbs an area of land that is 1 acre or larger (or planned to be 1 acre or larger) when all phases are complete.

Box 4: Sites tributary to sensitive waters should consider specialized BMPs to address the parameter of concern as shown in Table I-5. At this time, no special BMPs are required until the County develops an overall strategy to address the parameters of concern, probably if and when a Total Maximum Daily Load (TMDL) is determined.

Figure I-1. BMP Requirements Flowchart for New Development and Redevelopment Sites—For Selecting PostConstruction BMPs in Compliance with El Paso County's Stormwater NPDES Permit

Figure I-2. BMP Requirements Flowchart for New Development and Redevelopment Sites—For Selecting PostConstruction BMPs in Compliance with El Paso County's Stormwater NPDES Permit

Table I-4. Best Management Practices Abbreviations
\begin{tabular}{|l|l|}
\hline Abbreviation & Best Management Practice \\
\hline CWB & Constructed Wetlands Basin \\
\hline CWC & Constructed Wetlands Channel - Sedimentation Facility \\
\hline EDB & Extended Detention Basin - Sedimentation Facility \\
\hline PLD & Porous Landscape Detention \\
\hline RP & Sand Filter Extended Detention Basin \\
\hline SFB & Water Quality Capture Volume \\
\hline WQCV & Grass Buffer \\
\hline GB & Grass Swale \\
\hline GS &
\end{tabular}
\begin{tabular}{|l|l|}
\hline MBP & Modular Block Porous Pavement \\
\hline PPD & Porous Pavement Detention \\
\hline
\end{tabular}

Table I-5. El Paso County Sensitive \({ }^{1}\) Waters
\begin{tabular}{|l|l|l|}
\hline Stream and Segment & Parameter of Concern & Specialized BMPs Required \\
\hline \begin{tabular}{l}
Fountain Creek and tributaries \\
above Monument Creek
\end{tabular} & E. coli and Se & None at this time \\
\hline \begin{tabular}{l}
Fountain Creek from Monument \\
Creek to Highway 47
\end{tabular} & E. coli & None at this time \\
\hline \begin{tabular}{l}
Monument Creek from National \\
Forest to Fountain Creek
\end{tabular} & Se & None at this time \\
\hline Willow Springs Pond \#1 and \#2 & PCE & None at this time \\
\hline\({ }^{1}\) CDPHE 2006 303(d) list. Standard agreement forms for Private Detention Basins are in Appendix G. [This \\
list may change in the future. The 303(d) list or equivalent in effect at the time of permitting will apply.] \\
\hline
\end{tabular}

Potential high-risk sites must also incorporate specialized BMPs. High-risk sites are defined by two factors:
- Sites with land uses involving the potential for significant deposition of pollutants.
- Sites without practices to eliminate exposure of pollutants to stormwater.

Land uses involving the potential for significant deposition of pollutants include, but are not limited to:
- Vehicle maintenance facilities,
- Gas stations,
- Automobile salvage yards and junk yards,
- Commercial sites with high levels of "in and out" traffic such as fast-food restaurants and convenience stores.

Many industrial facilities are required to obtain coverage under an industrial stormwater permit; these facilities include automobile salvage yards. Practices to eliminate exposure of pollutants to stormwater may or may not be part of an industrial stormwater permit. These practices include coverage of material storage
areas, berms around tanks, spill control plans, and other "good housekeeping" measures. For industrial sites where stormwater is not exposed to pollutants, structural BMPs, including detention ponds for water quality and other BMPs discussed below, may not be required.

Because stormwater pollutants are often transported with sediment, erosion protection and sediment control are necessary for stormwater quality protection. This is very important in the County because of the sandy soils in the region. In particular, discharges that may impact sensitive waters or that come from potentially high-risk sites should have a high level of sediment protection. Thus, in addition to the specialized BMPs, sediment control practices such as revegetation, grading to prevent steep side slopes, check dams, slope drains, and sediment basins should be employed where practical.

Box 5: No BMPs are required other than stabilized drainageways and possibly MDCIA.

Box 6: Specialized BMPs are required and therefore proceed to Box 7 on Table I-1.

Box 7: BMPs that employ infiltration include porous landscape detention and sand filter basins without underdrains. Certain conditions preclude the use of these types of BMPs, including close proximity of groundwater or relatively impervious soils to the bottom of the facility. Groundwater levels should be characterized during the season with the highest levels (often late Spring or early Summer). Impervious soils include bedrock as well as soil types C and D. The term "close proximity" means 5 feet or less. If there is less than 5 feet, a study of the hydraulic conductivity of the soils must be conducted to show that excessive groundwater mounding or direct groundwater contamination will not result from the use of BMPs that employ infiltration.

Box 8: If groundwater or relatively impervious soils are not within 5 feet of the surface, implement porous landscape detention (PLD) or a sand filter basin (SFB) from DCM2. Alternative BMPs can be used if shown to be equally effective as PLD or SFB (see discussion below).

Box 9: Implement PLDs or SFBs with underdrains, or implement a BMP with removal rates equivalent to PLDs or SFBs, including qualifying manufactured BMPs. Qualifying manufactured BMPs are those that have undergone independent tests to verify that the installation, flow volumes, and removal rates will work for the site under consideration.

Box 10: If the site disturbance is larger than one acre and is low density residential, then no WQCV may be required provided the site meets criteria presented in Section I.7.1. If WQCV is not required, the need for a permanent sediment control measure must still be evaluated. If the site is located near and will discharge to a sensitive water, then a "jump" to Box 4 is required for continued evaluation.

Box 11: Sediment is best controlled at the source. That is, rather than using structures to collect soil after it is suspended in stormwater, it is preferable to stabilize soil to prevent suspension from occurring. Sediment source controls must be implemented for all low-density developments and include (but are not limited to):
- Adequately established vegetation per DCM1 criteria,
- Side slopes that are 3 horizontal to 1 vertical or flatter or the use of benched side slopes when slopes are steeper than 3 horizontal to 1 vertical,
- The use of erosion control blankets to aid establishment of vegetation,
- Check dams,
- Slope drains.

Temporary irrigation and maintenance of vegetation until adequately established may be required.

Box 12: In low density (rural) subdivisions, a method for permanent sediment control must be provided. If a detention pond is used, the forebay is to be sized according to the criteria for Extended Detention Basins. If a detention pond/Extended Detention Pond is not required, a sediment basin as described in DCM2, page 3-32 may be used. It should be sized to collect 1,800 cubic feet per acre of disturbed area. Drainage area above a sediment basin can be reduced by use of vegetated swales, buffers, or contour berms.

Box 13: If there are no detention ponds, separate sediment control measure must be located to catch all runoff leaving the disturbed area of the site.

Box 14: In cases where a detention pond is already required for controlling the volume of runoff, a sediment basin can take the form of a forebay to this pond.

Box 15: Regional WQCV facilities may only be used if they meet the requirements of Section I.7.1.C.

Box 16: The site is required to direct all runoff through grass buffers and/or grass swales or provide a similar BMP. (Note that this is required in accordance with the CDPHE guidance manual to afford some protection to state waters in between the site and the downstream WQCV BMP.)

Box 17: Grass buffers require irrigation in almost all cases in the County; swales sometimes require irrigation.

Box 18: "Dry" alternatives may be used if they are shown to have equivalent removal rates as buffers and swales. All of the structural treatment BMPs in DCM2 (Section 4.2) have equivalent removal rates and may be used. The covering of storage/handling areas and spill containment and control are not structural treatment BMPs, and thus are not substitutes for grass buffers and swales.

Box 19: If there is no regional WQCV facility downstream with adequate capacity to provide the WQCV for the proposed site, then a WQCV control measure must be provided for the site. Examples of potentially acceptable control measures include Extended Detention Basin, Full Spectrum Detention Basin, Sand Filter Basin, Constructed Wetland Basin, or a Retention Pond. For all ponds, issues related to dam construction and potential groundwater infiltration must be considered. Retention Ponds must be considered in the context of additional issues including safety and health (e.g., drowning and mosquito/West Nile virus) and water rights. For all structures that may hold water for more than 72 hours with an exposed water surface, water storage rights must be obtained before a structure (e.g. retention pond) can be proposed for a site. See Sections 3.2.5.F and 3.3.7 of this ECM for additional information regarding water right and permanent stormwater quality control measures.

Box 20: Sites tributary to sensitive waters must meet the requirements as outlined in Table I-5, and potential high-risk sites must have specialized BMPs.

Box 21: No additional BMPs are required other than WQCV-based BMPs. Also, as always, drainageways must be stabilized and runoff should be reduced as much as possible (Boxes 1 and 2).

Box 22: When specialized BMPs are required, proceed to Box 23 on Figure I-2.

Box 23: Two situations apply, one where conditions preclude the installation of BMPS that employ infiltration, and one where they do not. (See Box 7.) If conditions preclude the installation of BMPS that employ infiltration then proceed to Box 25; otherwise proceed to Box 24 .

Box 24: Where soil and groundwater conditions are not prohibitive (that is, groundwater or relatively impervious soils are not within 5 feet of the surface), implement PLD or SFB from DCM2. Alternative BMPs can be used if shown to be equally effective as PLD or SFB (see discussion below).

Box 25: Constructed wetlands (either channels or basins) are an effective BMP for sites with drainage areas greater than 10 acres.

Box 26: Provide a BMP downstream of the pond with equivalent removal rates as a wetland channel; this could be a qualifying manufactured BMP or other BMP that meets the criteria below.

Box 27: If the catchment area is greater than 10 acres, provide a constructed wetland channel (CWC) downstream of pond or provide WQCV with CWB.
E. Projects that are Strictly Roadway Construction. For projects that entail highway or other roadway construction, there are three basic questions for the applicant:
- Is the road urban or rural?
- That is, does the road have curb and gutter or does it utilize roadside ditches?
- For rural roads, do the ditches require "water turnouts"?
- Is the road a "hot spot" or does it discharge to sensitive waters?

For road construction projects, the applicant must determine if the roadway project is an applicable development site as defined in Section I.7.1.B. Excluded sites do not need to comply with the requirements of this Section I.7. If a roadway construction project is an applicable development site, then the owner must determine which base design standard is appropriate for the project and must design and implement water quality improvement with the project. Requirements for roadway projects included in the DCMV1 may be used provided they do not conflict with other provisions of this Section I.7.

Rural roads, i.e. those roads which utilize roadside ditches for conveyance of runoff from the roadway, do not have sufficient capacity in the roadside ditches to convey much more runoff than that which runs off the road itself. Rural roads (which by definition have roadside ditches) must be stabilized with one of three methods included in DCM2 on pages 4-3 and 4-4. These methods are described in DCMV1. "Water turnouts," which function as spillways which direct flow out of the ditches onto property adjacent to the ROW, are frequently required as a result. Design for the "water turnout" should ensure the turnout discharges into a "suitable outfall" as described in DCM1 along the roadway such as a natural swale. A drainage easement for this runoff must be acquired at these locations. A possible consequence of "water turnouts" is the loading of sediment onto private property. If "water turnouts" will be utilized for the ditches, sediment basins shall be used at these locations. However, there must be sufficient space in the ROW for both the structure itself and for maintenance access, or a specific drainage easement must be provided for the feature and access. Sediment basins can be designed in accordance with the guidelines in DCM2 in the section for construction BMPs. The basin shall be sized to collect 1,800 cubic feet of sediment per acre of drainage area of the roadway.

The term "high risk site" can be defined by traffic volume for a section of roadway. If the road will experience traffic volume of 30,000 average daily traffic (ADT) or more it is likely to contribute high levels of pollutants. For these situations, additional BMPs are required and selection must follow Boxes 6, 7, 8, and 9 in Figure 1b. Additional BMPs may also be required for discharge to sensitive waters. As described above for the general developments (with building pads), these additional requirements will depend on the TMDL process.
F. Additional Guidelines for BMP Selection. Additional Guidelines for selecting among the appropriate BMPs dete from Figure I-1 and Figure I-2. Figure I-3 (Figure ND-7 in DCM2) depicts a decision tree for selecting one of the si) BMPs based on drainage catchment area and whether water is available to satisfy evapotranspiration requirem Porous pavement and porous landscape detention are generally suited for small drainage areas (i.e. much less 1 acres); however, larger subwatersheds can be subdivided into individual drainage sub-catchment areas meeting criteria shown in Figure I-3 for these BMPs.

WQCV control measures and Regional WQCV control measures shall be located prior to the stormwater runoff being discharged to State Waters. When using a Regional WQCV facility for a site, the site may discharge to a water of the state before being discharged to the Regional WQCV facility; however, the conditions in Section I.7.1.C. 5 shall be met.

Figure I-4 (Figure ND-8 in DCM2) provides an illustration of selection and location options for WQCV facilities based on the principles discussed above.

Figure I-6 (Table ND-1 in DCM2) indicates the BMP options for the four watershed areas shown in Figure I-4.

\section*{I.7.3. Incorporating WQCV into Stormwater Detention Structures}

Wherever possible, it is recommended that WQCV facilities be incorporated into stormwater quantity detention facilities. This is relatively straightforward for an extended detention basin, constructed wetland basin, and a retention pond. When combined, the \(2,5,10\), and 100-year detention levels are provided above the WQCV and the outlet structure is designed to control two or three different releases. Stormwater quantity detention could be provided above the WQCV for porous pavement and landscape detention provided the drain times for the larger events are kept short.

The following approaches are to be implemented when incorporating WQCV into stormwater quantity detention facilities:
1. Water Quality. The full WQCV is to be provided according to the design procedures documented in the New Development BMP Factsheets.
2. Minor Storm. The full WQCV plus the full minor storm quantity detention volume is to be provided.
3. 100-Year Storm. One-half the WQCV plus the full 100-year detention volume is to be provided.

For linear projects and projects with limited space available for permanent water quality control measures, WQCV may be included in the design of underground detention structures such as sand filter basins (SFB) and proprietary underground detention structures. These systems rely on appropriate soil conditions to infiltrate or evapotranspire the WQCV.

It is extremely important that high sediment loading and compaction of underlying soils in the area to be used for infiltration be controlled to the maximum extent practicable. These structures are best suited to being brought on line at the end of the construction phase where disturbed ground has been stabilized with pavement or vegetation.

Any underground detention facilities proposed for use in the County must meet the good engineering, hydrologic and pollution control practices as defined in this Section I.7. The design of underground detention that incorporates WQCV shall not commence until a Request for Deviation is submitted for review and approved by the ECM Administrator. In addition to the approval criteria for a deviation request provide in Chapters 1 and 5 of this ECM, the owner or authorized agent must provide a structure-specific Operation and Maintenance (O\&M)

Manual and maintenance agreement for the structures. The Operation and Maintenance Manual shall include specific procedures and equipment that will be used by the owner or authorized representative to operate and maintain the structures. A specification sheet or generic O\&M manual provided by the vendor will not satisfy the O\&M Manual requirement.

\section*{I.7.4. Separate Presedimentation Facilities}

The design criteria shown in the New Development BMP Factsheets section shows presedimentation forebays at the upstream end of the extended detention basin, constructed wetland basin, and retention pond. The purpose of the forebay is to settle out coarse sediment and skim off floatables prior to the main body of the facility. An option to this approach is to install a separate facility upstream from the main WQCV facility. If this option is selected, the recommended size is at least 20 percent of the WQCV and the recommended drain time is 1 hour for the presedimentation forebay volume only. Using this approach, any requirement for sediment storage in the main facility may be reduced consistent with the storage capacity of the separated presedimentation forebay, and the forebay within the main facility may be eliminated.

Figure I-3. Decision Tree for WQCV BMP Selection

Note: Large drainage areas may be subdivided into areas \(<20\) acres for use of SFB or \(<1\) acre for use of PPD or PLD.

Figure I-4. Illustration of Selection and Location Options for WQCV Facilities

Note: For this example, sufficient make-up water exists for constructed wetlands and retention pond for the watershed areas > 50 acres through irrigation return flows.

Table I-7. Illustration of Selection and Location Options for WQCV Facilities
for the Development Parcel on Figure I. 4
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l}
Watershed \\
Number
\end{tabular} & \begin{tabular}{l}
Onstream or \\
Offstream
\end{tabular} & BMP Options & \begin{tabular}{l}
Minimum \\
Number of \\
BMP \\
Installations
\end{tabular} & \begin{tabular}{l}
Average \\
Drainage Area \\
for Sizing each \\
BMP, acre
\end{tabular} \\
\hline 1 & Offstream & \begin{tabular}{l}
Porous Pavement Detention \\
Porous Landscape Detention
\end{tabular} & 1 & 1
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline 3 & Offstream & Porous Pavement Detention & 49 & 1 \\
& & \begin{tabular}{l}
Porous Landscape Detention \\
Extended Detention Basin \\
Sand Filter Extended \\
Detention Basin
\end{tabular} & \begin{tabular}{l}
49 \\
2
\end{tabular} & 3 \\
\hline & & Onstream & Extended Detention Basin & 1 \\
Constructed Wetland Basin & 16 \\
\hline 4 & Retention Pond & 1 & 70 \\
\hline \multirow{2}{*}{} & & Porous Pavement Detention & 6 & 70 \\
\hline
\end{tabular}

\section*{I.7.5. Structural BMP Effectiveness}

Table I-7 (Table ND-2 in DCM2) indicates ranges of removal efficiencies reported in literature for a number of structural BMPs. Although combinations of nonstructural/structural BMPs can improve the overall water quality of the runoff, the effectiveness of several BMPs in their ability to reduce influent pollutant concentrations as a group are not directly additive. Table I-7 also shows a most probable range of removal efficiencies for structural BMPs.

\section*{I.7.6. Separation Distances}

To reduce potential for surface and ground water contamination, permanent water quality BMPs will be located away from wells and Individual Sewage Disposal Systems (ISDS). Rules for separation distances and grouting depths for wells and BMPs will be based on distances between wells and "sources of contamination" in Colorado's Rules and Regulations for Water Well Construction, Pump Installation, and Monitoring and Observation Hole/Well Construction. Permanent BMPs and ISDS will be separated by the same distances specified between the components of the ISDS and "waterways" in the EI Paso County ISDS regulations. Additional separation distance may be required when a permanent stormwater quality control measure is located near a water of the state and relies on a vegetated buffer strip as part of the strategy to address WQCV prior to discharge to waters of the state.

Table I-8. BMP Pollutant Removal Ranges for Stormwater Runoff and Most Probable Range for BMPs
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline Type of BMP & \((1)\) & TSS & TP & TN & TZ & TPb & BOD & Bacteria \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Grass Buffer & LRR: EPR & \[
\begin{aligned}
& 10-50 \\
& 10-20
\end{aligned}
\] & \[
\begin{aligned}
& 0-30 \\
& 0-10
\end{aligned}
\] & \[
\begin{aligned}
& 0-10 \\
& 0-10
\end{aligned}
\] & \[
\begin{aligned}
& 0-10 \\
& 0-10
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{N} / \mathrm{A} \\
& \mathrm{~N} / \mathrm{A}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{N} / \mathrm{A} \\
& \mathrm{~N} / \mathrm{A}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{N} / \mathrm{A} \\
& \mathrm{~N} / \mathrm{A}
\end{aligned}
\] \\
\hline Grass Swale & LRR: EPR & \[
\begin{aligned}
& 20-60 \\
& 20-40
\end{aligned}
\] & \[
\begin{aligned}
& 0-40 \\
& 0-15
\end{aligned}
\] & \[
\begin{aligned}
& 0-30 \\
& 0-15
\end{aligned}
\] & \[
\begin{aligned}
& 0-40 \\
& 0-20
\end{aligned}
\] & \begin{tabular}{l}
N/A \\
N/A
\end{tabular} & \begin{tabular}{l}
N/A \\
N/A
\end{tabular} & \begin{tabular}{l}
N/A \\
N/A
\end{tabular} \\
\hline Modular Block Porous Pavement & LRR: EPR & \[
\begin{aligned}
& 80-95 \\
& 70-90
\end{aligned}
\] & \[
\begin{aligned}
& 65 \\
& 40-55
\end{aligned}
\] & \[
\begin{aligned}
& 75-85 \\
& 10-20
\end{aligned}
\] & \[
\begin{aligned}
& 98 \\
& 40-80
\end{aligned}
\] & \[
\begin{aligned}
& 80 \\
& 60-70
\end{aligned}
\] & \begin{tabular}{l}
80 \\
N/A
\end{tabular} & \begin{tabular}{l}
N/A \\
N/A
\end{tabular} \\
\hline Porous Pavement Detention & LRR: EPR & \[
\begin{aligned}
& 8-96 \\
& 70-90
\end{aligned}
\] & \[
\begin{aligned}
& 5-92 \\
& 40-55
\end{aligned}
\] & \[
\begin{aligned}
& -130- \\
& 85 \\
& 10-20
\end{aligned}
\] & \[
\begin{aligned}
& 10-98 \\
& 40-80
\end{aligned}
\] & \[
\begin{aligned}
& 60-80 \\
& 60-70
\end{aligned}
\] & \[
\begin{aligned}
& 60-80 \\
& \text { N/A }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{N} / \mathrm{A} \\
& \mathrm{~N} / \mathrm{A}
\end{aligned}
\] \\
\hline Porous Landscape Detention & LRR: EPR & \[
\begin{aligned}
& 8-96 \\
& 70-90
\end{aligned}
\] & \[
\begin{aligned}
& 5-92 \\
& 40-55
\end{aligned}
\] & \[
\begin{aligned}
& -100- \\
& 85 \\
& 20-55
\end{aligned}
\] & \[
\begin{aligned}
& 10-98 \\
& 50-80
\end{aligned}
\] & \[
\begin{aligned}
& 60-90 \\
& 60-80
\end{aligned}
\] & \[
\begin{aligned}
& 60-80 \\
& \mathrm{~N} / \mathrm{A}
\end{aligned}
\] & \begin{tabular}{l}
N/A \\
N/A
\end{tabular} \\
\hline \begin{tabular}{l}
Extended \\
Detention Basin
\end{tabular} & LRR: EPR & \[
\begin{aligned}
& 50-70 \\
& 55-75
\end{aligned}
\] & \[
\begin{aligned}
& 10-20 \\
& 45-55
\end{aligned}
\] & \[
\begin{aligned}
& 10-20 \\
& 10-20
\end{aligned}
\] & \[
\begin{aligned}
& 30-60 \\
& 30-60
\end{aligned}
\] & \[
\begin{aligned}
& 75-90 \\
& 55-80
\end{aligned}
\] & \begin{tabular}{l}
N/A \\
N/A
\end{tabular} & \[
\begin{aligned}
& 50-90 \\
& \text { N/A }
\end{aligned}
\] \\
\hline Constructed Wetland Basin & LRR: EPR & \[
\begin{aligned}
& 40-94 \\
& 50-60
\end{aligned}
\] & \[
\begin{aligned}
& -4-90 \\
& 40-80
\end{aligned}
\] & \[
\begin{aligned}
& 21 \\
& 20-50
\end{aligned}
\] & \[
\begin{aligned}
& -29-82 \\
& 30-80
\end{aligned}
\] & \[
\begin{aligned}
& 27-94 \\
& 40-80
\end{aligned}
\] & \[
\begin{aligned}
& 18 \\
& \mathrm{~N} / \mathrm{A}
\end{aligned}
\] & \begin{tabular}{l}
N/A \\
N/A
\end{tabular} \\
\hline Retention Pond & LRR: EPR & \[
\begin{aligned}
& 70-91 \\
& 80-90
\end{aligned}
\] & \[
\begin{aligned}
& 0-79 \\
& 45-70
\end{aligned}
\] & \[
\begin{aligned}
& 0-80 \\
& 20-60
\end{aligned}
\] & \[
\begin{aligned}
& 0-71 \\
& 20-60
\end{aligned}
\] & \[
\begin{aligned}
& 9-95 \\
& 60-80
\end{aligned}
\] & \[
\begin{aligned}
& 0-69 \\
& \text { N/A }
\end{aligned}
\] & \begin{tabular}{l}
N/A \\
N/A
\end{tabular} \\
\hline \begin{tabular}{l}
Sand Filter \\
Extended \\
Detention
\end{tabular} & LRR: EPR & \[
\begin{aligned}
& 8-96 \\
& 80-90
\end{aligned}
\] & \[
\begin{aligned}
& 5-92 \\
& 45-55
\end{aligned}
\] & \[
\begin{aligned}
& -129- \\
& 84 \\
& 35-55
\end{aligned}
\] & \[
\begin{aligned}
& 10-98 \\
& 50-80
\end{aligned}
\] & \[
\begin{aligned}
& 60-80 \\
& 60-80
\end{aligned}
\] & \[
\begin{aligned}
& 60-80 \\
& 60-80
\end{aligned}
\] & \begin{tabular}{l}
N/A \\
N/A
\end{tabular} \\
\hline \begin{tabular}{l}
Constructed \\
Wetland Channel*
\end{tabular} & LRR: EPR & \[
\begin{aligned}
& 20-60 \\
& 30-50
\end{aligned}
\] & \[
\begin{aligned}
& 0-40 \\
& 20-40
\end{aligned}
\] & \[
\begin{aligned}
& 0-30 \\
& 10-30
\end{aligned}
\] & \[
\begin{aligned}
& 0-40 \\
& 20-40
\end{aligned}
\] & \[
\begin{aligned}
& \text { N/A } \\
& 20-40
\end{aligned}
\] & \begin{tabular}{l}
N/A \\
N/A
\end{tabular} & \begin{tabular}{l}
N/A \\
N/A
\end{tabular} \\
\hline
\end{tabular}

Ref: Bell et al. (1996), Colorado (1990), Harper \& Herr (1992), Lakatos \& McNemer (1987), Schueler (1987), Southwest (1995), Strecker et al. (1990), USGS (1986), US EPA (1983), Veenhuis et al. (1989), Whipple and Hunter (1981), Urbonas (1997.
(1) LRR Literature reported range, EPR—expected probable range of annual performance by DCM2 BMPs.

N/A Insufficient data to make an assessment.
*The EPR rates for a Constructed Wetland Channel assume the wetland surface area is equal or greater than \(0.5 \%\) of the tributary total impervious area.

\section*{I.7.7. Operation and Maintenance of Best Management Practices}
A. Long-term Operation and Maintenance of Post-Construction Stormwater Management Structures. The El Paso County Phase II MS4 Permit requires the County to ensure the long-term operation and maintenance of all post-construction stormwater management control measures constructed by an applicable development site. Part I E.4.a.vi of MS4 permit states:
"vi. Construction Inspection and Acceptance: The County must implement inspection and acceptance procedures to ensure that control measures are installed and implemented in accordance with the site plan and include the following:
(A) Confirmation that the completed control measure operates in accordance with the approved site plan.
(B) All applicable development sites must have operational permanent water quality control measures at the completion of the site. In the case where permanent water quality control measures are part of future phasing, the County must have a mechanism to ensure that all control measures will be implemented, regardless of completion of future phases or site ownership. In such cases, temporary water quality control measures must be implemented as feasible and maintained until removed or modified. All temporary water quality control measure must meet one of the design standards in Part I.E.4.a.iv. For the purpose of this section, completion of a site or phase shall be determined by the issuance of a certificate of occupancy, use of the completed site area according to the site plan, payment marking the completion of a site control measure, the nature of the selected control measure or equivalent determination of completion as appropriate to the nature of the site."

For all structures approved by El Paso County which are not public improvements, the property owner or authorized agent shall be responsible for the operation and maintenance of all permanent stormwater quality control measures. All temporary control measures required during construction shall be removed after construction activity on the site has been completed and final stabilization of the site is achieved.

Prior to approval of a subdivision, issuance of a Certificate of Occupancy, or closure of the ESQCP for sites that did not go through the subdivision review process that have permanent post-construction stormwater quality control measures, a signed private maintenance agreement for permanent BMPs must be submitted to and recorded by the County. El Paso County uses these agreements as the primary mechanism to ensure the long-term operation and maintenance of post construction stormwater quality control measures. Agreement templates are found in Appendix G.

During construction a County Stormwater Inspector will inspect structures for conformance with approved construction plans and the SWMP. Once the structure has been accepted into the County Permanent Stormwater Quality Control Measure Inventory consistent with Chapter 5, control measures will be inspected at minimum once every five (5) years. All inspections will be conducted as described in Section I.5.

Confirmation that post-construction stormwater quality control measures operate according to approved plans occurs through the use of an inflow hydrograph routed through a basin model. This analysis and the resulting hydrograph shall be performed by the Engineer of Record for the owner or authorized agent of the applicable development site and provided with Final Drainage Report included in the development plan submitted to the County. If the ECM Administrator determines that significant changes to the approved plans are identified in the "as-built" drawings provided in conformance with Section 5.10.6, an additional inflow hydrograph based on the "as-built" changes shall be provided to the County to confirm that the changes made during construction did not negatively alter the effective operation of the control measure.

If during an inspection of a post-construction stormwater quality control structure it is determined and documented by a County Stormwater Inspector that any owner or authorized agent failed to adequately operate and maintain a permanent stormwater quality control measures or remove the temporary control measures, an enforcement action described in Section I. 6 shall be pursued.
B. Operation and Maintenance Manual. A detailed Operation and Maintenance Manual covering inspections, operation and maintenance of permanent BMPs will be provided to the party who holds the Private Maintenance Agreement for Permanent BMPs. The Operation and Maintenance Manual will include specifics on frequency of inspections and maintenance; standards for vegetation or structures, such as species of vegetation, mowing height, revegetation of worn or eroded areas, cleaning methods; depth of sediment requiring removal; replacement frequencies; and other relevant topics.
(Res. No. 19-245, 7-2-19)
possible for as much of the reach as possible to the maximum prudent values for the hydraulic parameters in the 100 year event. The designer should determine the return period where these parameters would be achieved and, with the owner and local jurisdiction, determine if the associated risks are acceptable.

On the other hand, if the recommendation to avoid floodplain filling is not followed and fill is proposed, this should only happen in floodplains where the maximum prudent values for the hydraulic parameters shown in Table 8-1 are not exceeded in the 100-year event.

Table 8-1. Maximum prudent values for natural channel hydraulic parameters
\begin{tabular}{|l|c|c|}
\hline Design Parameter & \begin{tabular}{c}
Non-Cohesive Soils \\
or Poor Vegetation
\end{tabular} & \begin{tabular}{c}
Cohesive Soils and \\
Vegetation
\end{tabular} \\
\hline Maximum flow velocity (average of section) & \(5 \mathrm{ft} / \mathrm{s}\) & \(7 \mathrm{ft} / \mathrm{s}\) \\
\hline Maximum Froude number & 0.6 & 0.8 \\
\hline Maximum tractive force (average of section) & \(0.60 \mathrm{lb} / \mathrm{sf}\) & \(1.0 \mathrm{lb} / \mathrm{sf}\) \\
\hline Maximum depth outside bankfull channel & 5 ft & 5 ft \\
\hline
\end{tabular}

\section*{Stream Restoration Principle 8: Evaluate Hydraulics of Streams over a Range of Flows}

\section*{Representative Design Tasks and Deliverables}
1. Document hydraulic analyses of the project reach following the guidance of Section 7.0.
2. Describe how hydraulic performance of the project reach compares to maximum prudent values for the hydraulic parameters shown in Table 8-1 for several return periods (including 2-, 10-, and 100-year events at a minimum). Describe any locations in the reach where these parameters are exceeded and discuss efforts made to improve hydraulics.
3. Confirm that hydraulic parameters of Table \(8-1\) are satisfied in for the100-year event in all locations where fill is proposed in the floodplain.

\section*{Kimley»>Horn}

\section*{TECHNICAL MEMORANDUM}

From: Kimley-Horn
Will Wilhelm, P.E., CFM, CPESC
To: Winsome, LLC
1864 Woodmoor Drive, Suite 100
Monument, Colorado 80132
Date: May 10, 2021
Subject: West Kiowa Creek Stability (Hydraulic and Geomorphic) Analysis - Winsome Subdivision

\begin{abstract}
Kimley-Horn and Associates, Inc. (Kimley-Horn) is submitting this detailed hydraulic and geomorphic analysis for West Kiowa Creek that flows through the Winsome Subdivision on behalf or Winsome, LLC. This study builds on a the previously approved Preliminary Drainage Report (PDR) (May 22, 2019) and CLOMR (September 30, 2019). This evaluation provides a more detailed hydraulic analysis of channel stability based on actual site conditions as well as adds a geomorphic (a.k.a. river mechanic) evaluation of West Kiowa Creek.

This evaluation takes a more comprehensive look at a way to manage this natural creek (West Kiowa Creek) and adjacent riparian wetlands that are consistent with U.S. Army Corp of Engineers (USACE) Section 404 and 401 of the Clean Water Act. Additionally, West Kiowa Creek has a regulated floodplain as mapped by the Federal Emergency Management (FEMA) Flood Insurance Rate Map (FIRM) panels(s) 08041C0310G and 08041C0350G (December 2018) and the recommendations are consistent with FEMA guidance.
\end{abstract}

This study provides a detailed evaluation of hydraulics, geomorphology (a.k.a. river mechanics) of West Kiowa Creek in relation to applicable regulations (Section 404/401 and FEMA). In addition, this study is based on the El Paso County's Engineering Criteria Manual (ECM) Drainage Criteria Manual (DCM).

\section*{WATERSHED AND STUDY REACH}

The study reach is 1.25 miles of West Kiowa Creek through the Winsome Development Subdivision located in the Section 24, Township 11 South, Range 65 West of the \(6^{\text {th }}\) P.M of El Paso County. The study reach starts approximately 1,100 feet downstream (north) of Hodgen Road and then flows through the Site (Winsome Subdivision) to the north/northeast for approximately 1.25 miles where it flows off property.

The watershed contains multiple upstream flood control reservoirs/dams. These reservoirs help control the 100year hydrology and the sediment budgets coming from the watershed as whole.

\section*{Kimley»Horn}

\section*{HYDROLOGY}

The Hydrology (100-year) runoff came directly the previously approved FEMA CLOMR and are summarized below in Table 1. Refer to Appendix A for Figure 1 an excerpt from the approved Conditional Letter of Map Revision (CLOMR) dated September 30, 2019 and completed by The Vertex Companies, Inc.

Table 1 - Peak Flows West Kiowa Creek
\(\left.\begin{array}{|l|c|c|}\hline & \text { Return Period } & \begin{array}{c}\text { Reach } \\ \text { Station }\end{array}\end{array} \begin{array}{c}\text { Peak } \\ \text { Flow (cfs) }\end{array}\right]\)

Full spectrum detention is proposed for this low-density (2.5 to 5+ acres lots) subdivision. Therefore, there is no expected significant changes to the above peak flows or sediment budgets post development.

\section*{HYDRAULIC ANALYSIS}

The hydraulic analysis is based on El Paso County's Drainage Criteria Manual (DCM). Per Section 2.2.1 of the DCM "A stable channel reaches "equilibrium" over many years. Therefore, channel modifications should be minimal. The hydraulic properties of natural channel are general irregular. A comprehensive study of flow in natural channels requires consideration of sediment transport and river morphology." This report is that analysis.

Using table 10-1 (Composite Roughness Coefficients for Unlined Channels) from the DCM a more detailed evaluation of Manning's N was determined. Table 2 summarized the inputs to that composite Curve numbers per the DCM.

Table 2 Composite Roughness Main Channel (Per Table 10-1 in El Paso Co DCM).
\begin{tabular}{|l|l|l|l|}
\hline Coefficient & \multicolumn{1}{c}{ Represents } & \multicolumn{1}{c|}{ Condition } & \multicolumn{1}{c|}{ Value } \\
\hline n0 & Material Type & Course Gravel & 0.028 \\
\hline n 1 & Degree of Irregularity & Minor & 0.000 \\
\hline n 2 & Variation in Channel Cross-Section & Alternating Occasionally & 0.005 \\
\hline n 3 & Effective of Obstructions & No Obstructions & 0.000 \\
\hline n 4 & Vegetation & Low/Medium & 0.010 \\
\hline m & Degree of Meandering & Minor & 1.15 \\
\hline Manning's \(\mathbf{N}\) & \(\mathbf{N}=(\mathbf{n 0 + n} \mathbf{+ n} \mathbf{n}+\mathbf{n} 3+\mathbf{n} 4) \mathbf{m}\) & & \(\mathbf{0 . 0 4 9 5}\) \\
\hline
\end{tabular}

The Manning N from Chow tables (1959) was also used for the floodplain areas and is summarized in Table 3.

\section*{Kimley»)Horn}

Table 3 - Manning's N for Floodplain (Chow 1959)
\begin{tabular}{|l|r|r|l|}
\hline Floodplain Vegetation & \multicolumn{1}{c}{ Min } & \multicolumn{1}{c|}{ Max } & \multicolumn{1}{c|}{ Site Observation } \\
\hline Pasture High Grass & 0.030 & 0.050 & Native Grass, more dense/rough than "pasture" \\
\hline Scattered Brush, Heavy Weeds & 0.035 & 0.070 & Minimal brush (\(\sim 20 \%\) of length light brush) \\
\hline Chosen N value for Floodplains & & & \(\mathbf{0 . 0 5 0}\) \\
\hline
\end{tabular}

The photos below (taken winter of 2021) are of the study reach and represent typical channel conditions to support the above calculations and decisions.

Photo 1 Meandering channel with dense native riparian/wetland vegetation in floodplain

\section*{Kimley»>Horn}

Photo 2 Meandering channel with scattered brush and heavy weeds
Using the above Manning's n, a hydraulic model of the reach was performed using HEC-RAS version 5.0.7. The purpose of this analysis was to determine Froude number. The results of the model are summarized below in Table 4 below and against the maximum Froude number (<0.9), discussed in Section 6.5.2 in the DCM.

Photo 3-Stable section of West Kiowa Creek

\section*{Kimley»"Horn}

Table 4 - Results of Hydraulic (HEC-RAS) Analysis
\begin{tabular}{|c|c|}
\hline Cross-Section \({ }^{1}\) & \begin{tabular}{l}
100-year \\
Froude \\
Number
\end{tabular} \\
\hline 7234 & 0.68 \\
\hline 6969 & 0.62 \\
\hline 6763 & 0.76 \\
\hline 6542 & 0.62 \\
\hline 6302 & 0.78 \\
\hline 6134 & 0.52 \\
\hline 5812 & 0.44 \\
\hline 5480 & 0.13 \\
\hline 5375 & 0.28 \\
\hline 5310 (culvert) & \\
\hline 5256 & 1.00 \\
\hline 5158 & 0.50 \\
\hline 4810 & 0.34 \\
\hline 4701 & 0.29 \\
\hline 4467 & 0.46 \\
\hline 4312 & 0.97 \\
\hline 4058 & 0.52 \\
\hline 3756 & 0.68 \\
\hline 3671 & 0.57 \\
\hline 3313 & 0.77 \\
\hline 3053 & 0.61 \\
\hline 2916 & 0.59 \\
\hline 2559 & 0.74 \\
\hline 2356 & 0.59 \\
\hline 2115 & 0.70 \\
\hline 1826 & 0.65 \\
\hline 1618 & 0.29 \\
\hline 1515 & 0.18 \\
\hline 1321 & 0.16 \\
\hline 1224 & 0.29 \\
\hline 1160 (culvert) & \\
\hline 1105 & 0.98 \\
\hline 1007 & 0.63 \\
\hline 893 & 0.82 \\
\hline 678 & 0.40 \\
\hline 440 & 0.60 \\
\hline
\end{tabular}
1. See Figure \(\mathbf{1}\) in Appendix A for Cross Section Locations

\section*{Kimley»Horn}

\section*{GEOMORPHIC (RIVER MECHANICS) EVALUATION}

West Kiowa Creek through the site is a moderately sinuous channel located in a moderately confined valley (See Photo 3). The channel has access to an active flood-prone area (i.e. geomorphic floodplain) as evident by adjacent wetlands and dense riparian/wetland vegetation (See Photos). This vegetation forms densely rooted sod mats from grasses and grass like plants. The channel exhibits predominately gravel and sand bed with slopes generally \(0.5-2 \%\). There are no visible signs of channel incision or head-cuts in the main stem of Kiowa Creek. The channel has good depth variability (i.e. pools and riffles) with riffles generally occurring in tangent sections and deeper pools in the outer bend of the radius. Coarser large gravel and cobble can be found in the riffles.

This type of morphological channel is hydraulically efficient channel and maintains a high sediment transport capacity. The narrow and relatively deep base flow channel maintains a high resistance to plan form adjustment, which results in channel stability without significant downcutting. This channel type is very stable unless the stream banks are disturbed (not planned), and significant changes in sediment supply and/or streamflow occurs. With the upstream flood control structures (upstream of Hodges road), the planned low density/large lot development combined with full-spectrum detention, no major change to sediment supply or hydrology are anticipated to impact this current stability.

The only observed instability (i.e. visible erosion) in this system is outside the channel and active flood prone area. It is in on the slope transition from the wetland/flood prone area up to the terrace. These areas are outside of geomorphic floodplain but partially inside the 100-year FEMA regulated floodplain - See Photo 4 below.

There are multiple drainage channels/draws that flow into Kiowa Creek inside the property. All are small non-jurisdictional channels and are wholly contained on property. All but two (2) of these channels are hydraulically and morphologically stable. The two unstable channels tie into Kiowa Creek at River State 4312 and 3756 and flow in from the northwest side. These two channels are incised with active headcuts moving upstream. These channels bed and banks will be stabilized per DCM. The bed and bank stabilization of this smaller non-jurisdictional channels will occur outside of Kiowa Creek stream and wetland avoiding the need for a 404 permit from the USACE. Stabilizing these channels and reducing the large amount of sediment being transported downstream to Kiowa Creek will benefit the stream and wetland functions of Kiowa Creek including stability.

\section*{Kimley»Horn}

Photo 4 - Erosion on valley/terrace transition (slope on right). Note: Stable channel and floodplain
This slope erosion is likely due historic land use (cattle and vegetation management) and not from the channel's hydraulic geometry. A plan to address these areas is discussed below.

\section*{RECOMMENDATIONS}

Based on the existing channel condition (See Photo 1-4) and the hydraulic and geomorphic evaluation summarized above, our professional opinion is no stabilization directly in West Kiowa Creek outside the location of the proposed box culvert is recommended. The box culvert and outlet protection will mitigate the high Froude numbers. The area shown in Table 4 where the Froude number is above 0.9 can be reduced by sloping back the valley wall terrace slope to a \(3: 1\) to \(4: 1\) slope, revegetated with native vegetation. Temporary erosion control (i.e. coir and straw) matting can be placed down following grading until vegetation can establish.

In addition, the two unstable non-jurisdictional channels (outside of Kiowa Creek) with active bed and bank erosion that tie river STA 4312 and 3756 (discussed above) will also be stabilized. This stabilization will be per the DCM and will likely include grading, rock, erosion control blankets, and temporary and permanent vegetation.

This stabilization identified as needed in this memo (culvert with energy dissipation, Kiowa Creek bank grading (one location), and two non-jurisdiction channels that flow into Kiowa Creek) will be detailed out in the final drainage report and submitted for County review and approval.

\section*{Kimley»"Horn}

Table 5 summarizes the proposed Froude numbers after stabilization of the cross-sections from Table 4 that exceeded a maximum Froude number of 0.9.

Table 5 - Proposed Hydraulic Condition with Stabilization/Sloping
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Cross- \\
Section
\end{tabular} & \begin{tabular}{c}
100-year \\
Froude \\
Number
\end{tabular} & Comments \\
\hline 5256 & 1.00 & \begin{tabular}{c}
Proposed condition - Box culvert + energy \\
dissipator will mitigate
\end{tabular} \\
\hline 4312 & 0.72 & Right valley bank sloped to 4:1 \\
\hline 1160 & 0.98 & \begin{tabular}{c}
Proposed condition - Box culvert + energy \\
dissipator will mitigate
\end{tabular} \\
\hline
\end{tabular}

\section*{Kimley»Horn}

Photo 5 - Erosion at Cross-Section 4312 (slope on right).
The above approach is preferred in that it:
- Is consistent with the USACE 404 permit to avoid and minimize impacts to jurisdictional streams and wetlands.
- The proposed grading discussed above and shown in Table 5 is all outside jurisdiction features (i.e. wetlands or ordinary normal high water)
- Is a nature based solution that meets the following City/County Goals defined in the ECM and DCM
- Environmental preservation and enhancement (Section 1.2.1)
- Ideal open channel is developed by nature over time (Section 10.1)
- Has the following benefits (defined by Section 10.1 or the USACE Stream Quantification Tool (SQT).
- Low maintenance (10.1)
- Available channel storage decreasing downstream peaks (10.1)
- Depth Variability (pools and riffles) (SQT)
- Floodplain connectivity (SQT)
- Natural subsurface infiltration of flows provided (10.1)
- Native vegetation and wildlife not disturbed (10.1)
- Channel can provide a desirable green belt and recreation area (10.1)

SIGNATURE:

Will Wilhelm, P.E., CFM, CPESC
Registered Professional Engineer
State of Colorado No. 56499

\section*{Kimley»)Horn}

\section*{APPENDIX A - FIGURE}

A PARCEL OF PROPERTY LOCATED IN SECTIONS \(13 \& 24\) TOWNSHIP 11 SOUTH, RANGE 65 WEST OF THE 6TH P.M. AND IN THE WEST HALF OF THE WEST HALF OF SECTION 19, TOWNSHIP 11 SOUTH, RANGE 64 WEST OF THE 6TH P.M., COUNTY OF EL PASO, STATE OF COLORADO

\(\qquad\)

\section*{Kimley»Horn APPENDIX B - HYDRAULICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reach & River Sta & Profile & Q Total & Min Ch El & W.S. Elev & Crit W.S. & E.G. Elev & E.G. Slope & Vel Chnl & Flow Area & Top Width & Froude \# Chl \\
\hline & & & (cfs) & (ft) & (ft) & (ft) & (ft) & (ft/ft) & (ft/s) & (sq ft) & (ft) & \\
\hline Alignment - Kiow & 7234 & 100yr & 2062.00 & 7333.67 & 7337.85 & & 7338.58 & 0.010862 & 6.94 & 304.11 & 101.09 & 0.67 \\
\hline Alignment - Kiow & 6969 & 100yr & 2062.00 & 7330.95 & 7334.91 & & 7335.62 & 0.011438 & 6.77 & 306.60 & 105.40 & 0.68 \\
\hline Alignment - Kiow & 6763 & 100yr & 2062.00 & 7328.00 & 7332.79 & & 7333.49 & 0.009383 & 6.70 & 309.93 & 94.10 & 0.63 \\
\hline Alignment - Kiow & 6542 & 100yr & 2062.00 & 7326.00 & 7330.80 & & 7331.49 & 0.008682 & 6.68 & 315.34 & 94.74 & 0.61 \\
\hline Alignment - Kiow & 6302 & 100yr & 2062.00 & 7324.24 & 7329.30 & & 7329.78 & 0.005590 & 5.68 & 388.17 & 131.72 & 0.50 \\
\hline Alignment - Kiow & 6134 & 100yr & 2062.00 & 7323.98 & 7328.31 & 7327.30 & 7328.77 & 0.006411 & 5.55 & 402.17 & 147.76 & 0.52 \\
\hline Alignment - Kiow & 5812 & 100yr & 2062.00 & 7321.76 & 7326.73 & 7325.40 & 7327.10 & 0.004305 & 5.25 & 473.66 & 233.76 & 0.44 \\
\hline Alignment - Kiow & 5480 & 100yr & 2062.00 & 7318.86 & 7326.69 & 7322.37 & 7326.73 & 0.000330 & 1.98 & 1348.58 & 350.55 & 0.13 \\
\hline Alignment - Kiow & 5375 & 100yr & 2062.00 & 7318.00 & 7326.36 & 7321.95 & 7326.65 & 0.001360 & 4.44 & 481.57 & 278.77 & 0.28 \\
\hline Alignment - Kiow & 5310 & & Culvert & & & & & & & & & \\
\hline Alignment - Kiow & 5256 & 100yr & 2062.00 & 7317.96 & 7321.50 & 7321.50 & 7323.07 & 0.024647 & 10.08 & 205.38 & 110.20 & 1.00 \\
\hline Alignment - Kiow & 5158 & 100yr & 2062.00 & 7316.00 & 7318.92 & & 7319.25 & 0.006641 & 4.60 & 451.16 & 181.49 & 0.50 \\
\hline Alignment - Kiow & 4810 & 100yr & 2062.00 & 7312.97 & 7317.57 & & 7317.80 & 0.002874 & 4.06 & 573.41 & 186.25 & 0.36 \\
\hline Alignment - Kiow & 4701 & 100yr & 2062.00 & 7312.00 & 7317.32 & & 7317.52 & 0.002036 & 3.64 & 589.86 & 151.45 & 0.31 \\
\hline Alignment - Kiow & 4467 & 100yr & 2062.00 & 7312.00 & 7316.11 & & 7316.68 & 0.007095 & 6.17 & 358.59 & 122.61 & 0.56 \\
\hline Alignment - Kiow & 4312 & 100yr & 2062.00 & 7311.45 & 7314.57 & & 7315.18 & 0.013975 & 6.41 & 334.17 & 151.58 & 0.72 \\
\hline Alignment - Kiow & 4058 & 100yr & 2062.00 & 7307.52 & 7311.45 & & 7312.17 & 0.010152 & 6.83 & 309.97 & 104.84 & 0.65 \\
\hline Alignment - Kiow & 3756 & 100yr & 2062.00 & 7304.66 & 7308.84 & & 7309.41 & 0.008131 & 6.26 & 360.44 & 132.39 & 0.59 \\
\hline Alignment - Kiow & 3671 & 100yr & 2062.00 & 7303.99 & 7307.93 & & 7308.60 & 0.010371 & 6.88 & 323.81 & 116.90 & 0.66 \\
\hline Alignment - Kiow & 3313 & 100yr & 2062.00 & 7300.23 & 7303.85 & 7303.26 & 7304.57 & 0.011514 & 6.85 & 313.16 & 119.53 & 0.68 \\
\hline Alignment - Kiow & 3053 & 100yr & 2062.00 & 7296.89 & 7301.65 & & 7302.26 & 0.006890 & 6.32 & 336.25 & 96.59 & 0.55 \\
\hline Alignment - Kiow & 2916 & 100yr & 2062.00 & 7296.00 & 7300.55 & & 7301.24 & 0.007847 & 6.78 & 317.48 & 95.27 & 0.59 \\
\hline Alignment - Kiow & 2559 & 100yr & 2062.00 & 7293.71 & 7297.53 & & 7298.09 & 0.009867 & 6.11 & 356.85 & 146.78 & 0.63 \\
\hline Alignment - Kiow & 2356 & 100yr & 2062.00 & 7291.33 & 7295.37 & & 7296.10 & 0.009611 & 6.87 & 306.21 & 93.26 & 0.64 \\
\hline Alignment - Kiow & 2115 & 100yr & 2062.00 & 7289.22 & 7292.64 & & 7293.36 & 0.013601 & 6.80 & 305.10 & 118.32 & 0.73 \\
\hline Alignment - Kiow & 1826 & 100yr & 2062.00 & 7284.10 & 7289.97 & & 7290.64 & 0.006813 & 6.68 & 332.54 & 100.43 & 0.56 \\
\hline Alignment - Kiow & 1618 & 100yr & 2062.00 & 7284.00 & 7289.64 & 7287.99 & 7289.77 & 0.001744 & 3.70 & 799.16 & 306.67 & 0.29 \\
\hline Alignment - Kiow & 1515 & 100yr & 2311.00 & 7282.00 & 7289.58 & 7286.74 & 7289.65 & 0.000648 & 2.73 & 1307.64 & 433.71 & 0.18 \\
\hline Alignment - Kiow & 1321 & 100yr & 2311.00 & 7280.72 & 7289.45 & 7284.42 & 7289.54 & 0.000489 & 2.57 & 1032.04 & 296.02 & 0.16 \\
\hline Alignment - Kiow & 1224 & 100yr & 2311.00 & 7280.00 & 7289.11 & 7284.63 & 7289.44 & 0.001421 & 4.88 & 506.76 & 255.26 & 0.29 \\
\hline Alignment - Kiow & 1160 & & Culvert & & & & & & & & & \\
\hline Alignment - Kiow & 1105 & 100yr & 2311.00 & 7279.08 & 7283.36 & 7283.36 & 7285.19 & 0.022053 & 10.98 & 216.57 & 124.06 & 0.98 \\
\hline Alignment - Kiow & 1007 & 100yr & 2311.00 & 7278.00 & 7282.10 & 7281.26 & 7282.72 & 0.009688 & 6.33 & 369.92 & 126.10 & 0.63 \\
\hline Alignment - Kiow & 893 & 100yr & 2311.00 & 7277.97 & 7280.44 & 7280.35 & 7281.09 & 0.021909 & 6.72 & 369.59 & 238.35 & 0.87 \\
\hline Alignment - Kiow & 678 & 100yr & 2311.00 & 7275.58 & 7278.99 & & 7279.19 & 0.004343 & 3.59 & 645.76 & 269.50 & 0.40 \\
\hline Alignment - Kiow & 440 & 100yr & 2311.00 & 7273.97 & 7277.20 & 7276.42 & 7277.73 & 0.009014 & 5.94 & 406.15 & 154.80 & 0.60 \\
\hline
\end{tabular}

\section*{APPENDIX F: DRAINAGE MAPS}

\section*{Drainage Report - Final_V2-redline.pdf Markup Summary}
\begin{tabular}{|c|c|c|}
\hline dsdlaforce (4) & & \\
\hline & \begin{tabular}{l}
Subject: Text Box \\
Page Label: 18 \\
Lock: Unlocked \\
Author: dsdlaforce \\
Date: 4/6/2023 5:01:52 PM \\
Status: \\
Color: \\
Layer: \\
Space:
\end{tabular} & Address the above comment by providing a summary of Swale 12 result. The paragraph does not specifically state whether or not any additional improvements are necessary for Reach 12. \\
\hline & \begin{tabular}{l}
Subject: Image \\
Page Label: 18 \\
Lock: Unlocked \\
Author: dsdlaforce \\
Date: 4/6/2023 5:01:56 PM \\
Status: \\
Color: \\
Layer: \\
Space:
\end{tabular} & \\
\hline and
\(=\square=\)
\(\square=\) & \begin{tabular}{l}
Subject: Image \\
Page Label: 6 \\
Lock: Unlocked \\
Author: dsdlaforce \\
Date: 4/6/2023 5:05:37 PM \\
Status: \\
Color: \\
Layer: \\
Space:
\end{tabular} & \\
\hline & \begin{tabular}{l}
Subject: Callout \\
Page Label: 6 \\
Lock: Unlocked \\
Author: dsdlaforce \\
Date: 4/6/2023 5:11:18 PM \\
Status: \\
Color: \\
Layer: \\
Space:
\end{tabular} & Update the flooplain statement section as needed based on RBD Floodplain's review comment. \\
\hline \multicolumn{3}{|l|}{Glenn Reese - EPC Stormwater (2)} \\
\hline & \begin{tabular}{l}
Subject: SW - Textbox with Arrow \\
Page Label: 15 \\
Lock: Unlocked \\
Author: Glenn Reese - EPC Stormwater \\
Date: 4/7/2023 1:23:40 PM \\
Status: \\
Color: \\
Layer: \\
Space:
\end{tabular} & Clarify that per MHFD Detail T-5, forebays are only needed when \(>1\) ac of imperviousness is tributary to a pond inflow point. Since this threshold is not exceeding at either concentrated inflow point, actual concrete lined forebays with slow release notches are not required. \\
\hline
\end{tabular}

In accordance with the MHFD, runoff reduction has vegetation requirements that have been overlooked in the past. Going forward the following will be required for runoff reduction:
- The runoff reduction RPA is considered a WQ Facility and requires a signed Maintenance Agreement
- All RPA/SPA areas will need to be within a no build/drainage easement (or tract) and discussed in the maintenance agreement and O\&M manual - RPA vegetation should be turf grass (from seed [provide appropriate seed mix] or sod).
- Turf grass vegetation should have a uniform density of at least \(80 \%\).
- Irrigation (temp or permanent) is necessary to establish sufficient vegetation and not just weeds.
- Show suitability of topsoil of RPA and steps for proper preparation of topsoil per recommendations in MHFD detail T-0 Table RR-3
- RPA/SPA limits must be shown on GEC Plans (not just FDR) so our SW inspectors and the QSM know that these areas are to remain pervious, vegetated (\(80 \%\)), and irrigated post-construction. Our SW inspectors do not look at drainage reports.

Other requirements:
- Provide a detail (in CDs) for the UIA:RPA interface that shows the recommended vertical drop of 4".
- Show signage to be posted in RPAs so maintenance personnel and owners know that the area is a water quality treatment area (not just a regular grassy area and/or an SPA). The signage should say something like: "Water Quality Treatment Area, do not pollute. Area to remain vegetated and properly maintained per the O\&M Manual."

\section*{Ipackman (1)}
\begin{tabular}{|l|l|}
\hline\(\square\) & \begin{tabular}{l}
Subject: Text Box \\
Page Label: 431 \\
Lock: Unlocked \\
Author: Ipackman \\
Date: 4/4/2023 3:40:35 PM \\
Status: \\
\\
Color: \\
\\
\\
\\
\\
\\
\\
Sayer:
\end{tabular} \\
\hline
\end{tabular}

Unresolved from review 1. Provide the complete hydraulic analysis to include the velocity and froude number results, the boundary conditions used.```

[^0]: Channels_Flowmaster.fm8 12/9/2021

