Final Drainage Report

Winsome Subdivision Filing No. 3 El Paso County, Colorado

Prepared for: Joe DesJardin Winsome, LLC 1864 Woodmoor Drive, Suite 100 Monument, CO 80132

Prepared by: Kimley-Horn and Associates, Inc. 2 North Nevada Avenue, Suite 300 Colorado Springs, Colorado 80903 (719) 453-0180 Contact: Brice Hammersland, P.E.

PCD File No. SF-22-009 Project #: 196106001 Prepared: February 2, 2023

Kimley »Horn

CERTIFICATION

DESIGN ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparation of this report.

SIGNATURE (Affix Seal):

Brice Hammersland, P.E. Colorado P.E. No. 56012

Date

OWNER/DEVELOPER'S STATEMENT

I, the developer, have read and will comply with all of the requirements specified in this Drainage Report and Plan.

Name of Developer

Authorized Signature

Date

Printed Name

Title

Address:

EL PASO COUNTY

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Joshua Palmer, P.E. County Engineer/ ECM Administrator Date

Conditions:

TABLE OF CONTENTS

CERTIFICATION	.2
DESIGN ENGINEER'S STATEMENT	.2
OWNER/DEVELOPER'S STATEMENT	
EL PASO COUNTY	
TABLE OF CONTENTS	.3
INTRODUCTION	.5
PURPOSE AND SCOPE OF STUDY	.5
LOCATION	.5
DESCRIPTION OF PROPERTY	
DRAINAGE BASINS	.6
MAJOR BASIN DESCRIPTIONS	
EXISTING SUB-BASIN DESCRIPTIONS	
Sub-Basin A	
Sub-Basin G Sub-basin H	
Sub-basin I	
Sub-basin J	
Sub-basin K	
PROPOSED HEC-HMS SUB-BASIN DESCRIPTIONS	
DRAINAGE DESIGN CRITERIA1	
DEVELOPMENT CRITERIA REFERENCE1	
HYDROLOGIC CRITERIA	
DETENTION	
CHANNELS	
THE FOUR STEP PROCESS1	16
DRAINAGE FACILITY DESIGN	47
GENERAL CONCEPT1 SPECIFIC DETAILS	
RUNOFF REDUCTION	
WQCV EXCLUSION AREAS	
DRIVEWAY CULVERTS	
EXISTING MINOR DRAINAGE CHANNELS	
HEAD CUTTING CHANNELS EXISTING MAJOR DRAINAGE CHANNELS	
CONCURRENT REPORTS	
ENGINEER'S COST ESTIMATE1	
DRAINAGE FEE1	9
SUMMARY	20
REFERENCES	21

APPENDIX

APPENDIX A: FIGURES APPENDIX B: HYDROLOGY APPENDIX C: HYDRAULICS APPENDIX D: REFERENCES APPENDIX E: WEST KIOWA CREEK STABILITY ANALYSIS APPENDIX F: DRAINAGE MAPS

INTRODUCTION

PURPOSE AND SCOPE OF STUDY

The purpose of this Final Drainage Report (FDR) is to provide the hydrologic and hydraulic calculations and to document and finalize the drainage design methodology in support of the proposed Winsome Subdivision ("the Project") Filing No. 3 ("the Site") for Winsome LLC. The Project is located within the jurisdictional limits of El Paso County ("the County"). Thus, the guidelines for the hydrologic and hydraulic design components were based on the criteria for the County and City of Colorado Springs, described below.

LOCATION

The Project is located approximately 17 miles west of Monument, Colorado within Township 11 South, Range 65 West of the 6th Principal Meridian, County of El Paso, State of Colorado (the "Site"). More specifically, the Site is located northwest of Winsome Filing No.2 which is located north of Hodgen Road, and west of Meridian Road. A vicinity map has been provided in the **Appendix A** of this report.

The Site is currently owned by Winsome, LLC and will be developed by Winsome, LLC.

DESCRIPTION OF PROPERTY

The Project is located on approximately 768 acres of land consisting of vacant land with native vegetation and is classified as "Pasture, grassland or range" per Table 6-6 of the City of Colorado Springs Drainage Criteria Manual. Filing No 3 consists of 38 5-acre residential lots. The Site does not currently provide water quality or detention for the Project area. The existing land use is undeveloped vacant land. This Filing consists of 349.5 acres and will have a disturbance of approximately 31.6 acres.

The existing topography consists of slopes ranging from 1% to 16%. The West Kiowa Creek ("the Creek") runs along the south side of Filing 3.

NRCS soil data is available for this Site and it has been noted that soils onsite are generally USCS Type B and Type C. The NRCS soil data can be found in **Appendix D**. There are no major drainage ways or irrigation facilities within the Site.

Improvements will consist of mowing, clearing and grubbing, weed control, paved access road construction, roadway grading, three detention ponds, roadside ditches, culverts, drainage swales, native seeding and a proposed channel to convey flows to the water quality pond.

The Site proposes to plat 38 lots for single family development, as well as, provide the grading, roadway and drainage improvements.

An updated Topographic field survey was completed for the Project by Edward-James Surveying, Inc. dated November 3th, 2020 and is the basis for design for the drainage improvements.

DRAINAGE BASINS

MAJOR BASIN DESCRIPTIONS KHA RESPONSE: Floodplain statement has A preliminary drainage report was completed for the ov been updated to reflect the is previously completed by The Vertex Companies. This roved **RBD** Floodplain review Preliminary Drainage Report prepared by The Vertex (3 final comment. design. Update the flooplain statement section as needed based The Site improvements are located on RBD Floodplain's review comment. determined by the Flood Insurance December 7, 2018 (see Appendix submitted and approved under Wil **Appendix D**). The floodplain is located along the southeast side of Filing No. 3 and the site improvements which are within the floodplain limits include roads, culverts, and channel stabilization. Refer to **Appendix D** for the CLOMR application approval letter from FEMA for Case No. 19-08-0185R. After construction of the site improvements is completed, a LOMR will be completed and processed through FEMA to officially establish the floodplain and base flood elevations for the Site. The final plat for Filing No. 3 can be recorded before the approval of the LOMR through FEMA. However, five lots will be prohibited from sale until the LOMR is approved. The Project is located within El Paso County's West Kiowa Creek Drainage Basin.

 EXIST
 RBD Floodplain
 BFE's and floodplain extents from the CWCB risk map program accepted by FEMA to be shown ob plat. contact Keith Curtis for approved BFE and floodplain extents shapefiles,

 Site w
 "Roadway improvement across the creek" per note 7, require either a less than 6" rise certification per FEMA guidance, or an approved CLOMR from FEMA prior to requesting a local floodplain permit for this work .

Sub-Basin A

Per the approved PDR sub-basin, A consists of an area of 915.4 acres, located in the southwest corner of the property. Drainage flows overland from the northwest to southeast and into the West Kiowa Creek. Runoff during the 5-year and 100-year events are 87.10 cfs and 585.9 cfs respectively. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Sub-Basin G

Per the approved PDR sub-basin G consists of an on-site area of 107.6 acres, located in the center of the western portion of the property. Drainage flows overland from the northwest to southeast into the West Kiowa Creek. Runoff during the 5-year and 100-year events are 45.30 cfs and 199.0 cfs respectively. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Sub-basin H

Per the approved PDR sub-basin H consists of an on-site area of 121.8 acres, located in the center of the north portion of the property. Drainage flows overland from northwest to southeast to the West Kiowa Creek. Runoff during the 5-year and 100-year events are 34.80 cfs and 197.2 cfs respectively. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Sub-basin I

Per the approved PDR sub-basin I consists of an on-site area of 37.5 acres, located in the north portion of the property. Drainage flows overland from northwest to southeast to the West Kiowa Creek. Runoff during the 5-year and 100-year events are 26.40 cfs and 88.5 cfs respectively. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Sub-basin J

Per the approved PDR sub-basin J consists of an on-site area of 10.1 acres, located in the northwest corner of the property. Drainage flows overland from south to north and outfall offsite. Runoff during the 5-year and 100-year events are 3.40 cfs and 19.9 cfs respectively. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Sub-basin K

Per the approved PDR sub-basin K consists of an on-site area of 17.8 acres, located in the north portion of the property. Drainage flows overland from south to north and outfall offsite. Runoff during the 5-year and 100-year events are 12.90 cfs and 45.1 cfs respectively. Refer to **Appendix D** for the Existing Conditions Drainage Map.

Offsite flows entering the Site from sub-basin G will be conveyed through the Site following historical drainage paths and outfall to West Kiowa Creek. Offsite flows from sub-basin G will be routed to Water Quality Pond A and detained on site.

Excerpts from the approved PDR for the Existing Drainage Conditions are included in the **Appendix D** of this report for reference.

PROPOSED HEC-HMS SUB-BASIN DESCRIPTIONS

For the proposed condition, stormwater will generally maintain historic flow patterns from northwest to southeast. The proposed roadways will alter some of the existing flow paths. The roadway ditches will capture runoff from the roadways and direct flows back to the existing flow paths, which will ultimately outfall to Water Quality Pond A, Pond 1, Pond 2 or Pond 4. To determine the design flows for the proposed culverts the existing basins were broken out and design points were created at each culvert crossing location.

For Filing No.3 the proposed basins has been divided into 25 larger sub-basins for the HEC-HMS model.

Sub-Basin A2A is an offsite basin on the northwest side of Filing No. 3. Runoff from this basin will be directed to design point A2A where it will be directed to Basin A3B. This sub-basin has an area of 28.13 acres. The curve number for Sub-Basin A2A is 65.43. The basin will generate runoff of 5.3 cfs and 47.1 cfs in the minor and major storm event.

Sub-Basin A2B is an offsite basin on the northwest side of Filing No. 3. Runoff from this basin will be directed to design point A2B where it will be directed to Basin A3A. This sub-basin has an area of 8.87 acres. The curve number for Sub-Basin A2B is 69.78. The basin will generate runoff of 2.3 cfs and 20.3 cfs in the minor and major storm event.

Sub-Basin A3A consists of large residential lots and a portion of roadway. Runoff from this basin will be directed to design point A3A where it will be directed to Swale A3A and into the proposed culvert A3A to subbasin G2A. This sub-basin has an area of 8.25 acres. The curve number for

Sub-Basin A3A is 73.04. The basin will generate runoff of 5.7 cfs and 25.8 cfs in the minor and major storm event.

Sub-Basin A3B consists of large residential lots and a portion of roadway. Runoff from this basin will be directed to design point A3B where it outfalls into West Kiowa Creek. This sub-basin has an area of 13.22 acres. The curve number for Sub-Basin A3B is 74.30. The basin will generate runoff of 9.1 cfs and 42.6 cfs in the minor and major storm event. Area 4 in the Runoff Reduction Exhibit within Appendix C shows the roadway portion within this basin being accounted for in the runoff reduction calculation.

Sub-Basin A3C consists of large residential lots in the southwest corner of the site. Runoff from this basin will be directed to design point A3C where it will be directed to outfall in West Kiowa Creek. This sub-basin has an area of 11.66 acres. The curve number for Sub-Basin A3C is 77.23. The basin will generate runoff of 10.4 cfs and 40.5 cfs in the minor and major storm event. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of EI Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5.

Sub-Basin G1 consists of large residential lots along the west boundary of the site. Runoff from this basin will be directed to design point G1 where it will be directed to the southeast in culvert G1 to subbasin G2A. This sub-basin has an area of 24.79 acres. The curve number for Sub-Basin G1 is 67.58. The basin will generate runoff of 3.1 cfs and 40.1 cfs in the minor and major storm event.

Sub-Basin G2A consists of portions of roadway and several portions of 4 large residential lots south of Alamar Way. Runoff from this basin will be directed to design point G2A where it will be directed to Water Quality Pond A which will outfall to West Kiowa Creek. This sub-basin has an area of 18.60 acres. The curve number for Sub-Basin G2A is 74.20. The basin will generate runoff of 12.9 cfs and 59.9 cfs in the minor and major storm event.

Sub-Basin G2B consists of portions of roadway and portions of 2 large residential lots east of Alamar Way. Runoff from this basin will be directed to the WQ Channel where it will drain into the Water Quality Pond A which will outfall into West Kiowa Creek. This sub-basin has an area of 2.77 acres. The curve number for Sub-Basin G2B is 74.24. The basin will generate runoff of 2.6 cfs and 9.6 cfs in the minor and major storm event.

Sub-Basin H1 consists of portions of roadway and portions of 2 large residential lots in the northwest corner of the site. Runoff from this basin will be directed to culvert H1 then to subbasin H4. This sub-basin has an area of 13.76 acres. The curve number for Sub-Basin H1 is 70.03. The basin will generate runoff of 4.6 cfs and 33.0 cfs in the minor and major storm event.

Sub-Basin H2 consists of portions of roadway and 8 large residential lots north of Alamar Way in the center of the northern portion of the site. Runoff from this basin will flow southeast to culvert H2 and into sub-basin H6B. This sub-basin has an area of 39.09 acres. The curve number for Sub-Basin H2 is 64.93. The basin will generate runoff of 8.9 cfs and 65.2 cfs in the minor and major storm event.

Sub-Basin H3A consists of portions of roadway and portions of large residential lots and of an undeveloped area north of the site. Runoff from this basin will be directed to culvert H3 and into sub-basin H7B. This sub-basin has an area of 3.08 acres. The curve number for Sub-Basin H3A is 71.60. The basin will generate runoff of 1.3 cfs and 8.0 cfs in the minor and major storm

event.

Sub-Basin H3B consists of portions of roadway and portions of large residential lots and of an undeveloped area north of the site. Runoff from this basin will be directed to culvert I1 by a roadside ditch. This sub-basin has an area of 2.71 acres. The curve number for Sub-Basin H3B is 72.02. The basin will generate runoff of 1.4 cfs and 6.9cfs in the minor and major storm event.

Sub-Basin H4 consists of portions of roadway and portions of large residential lots. Runoff from this basin will be directed to Reach H1 and into Detention Pond 1 which outfalls to West Kiowa Creek. This sub-basin has an area of 27.00 acres. The curve number for Sub-Basin H4 is 74.44. The basin will generate runoff of 15.4 cfs and 73.6 cfs in the minor and major storm event.

Sub-Basin H5A consists of portions of large residential lots. Runoff from this basin will be directed to design point H5A and outfall to West Kiowa Creek. This sub-basin has an area of 9.03 acres. The curve number for Sub-Basin H5A is 75.95. The basin will generate runoff of 6.2 cfs and 27.0 cfs in the minor and major storm event. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of El Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5.

Sub-Basin H5B consists of portions of roadway and of large residential lots, south of Alamar Way in the center of the site. Runoff from this basin will be directed to design point H5B and outfall to West Kiowa Creek. This sub-basin has an area of 10.48 acres. The curve number for Sub-Basin H5B is 73.76. The basin will generate runoff of 5.6 cfs and 29.0 cfs in the minor and major storm event. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of El Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5. Flows from Basin H5B are conveyed to Sediment Basin H5B. The permanent Sediment Basin H5B will be installed within the Early Grading Phase.

Sub-Basin H6A consists of portions of large residential lots, south of Alamar Way. Runoff from this basin will be directed to design point H6A and outfall to West Kiowa Creek. This sub-basin has an area of 16.64 acres. The curve number for Sub-Basin H6A is 75.56. The basin will generate runoff of 11.6 cfs and 51.1 cfs in the minor and major storm event. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of El Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5.

Sub-Basin H6B consists of portions of roadway and portions of large residential lots, south of Alamar Way. Runoff from this basin will be directed through Reach H2 into Detention Pond 2 and outfall to West Kiowa Creek. This sub-basin has an area of 15.96 acres. The curve number for Sub-Basin H6B is 76.47. The basin will generate runoff of 15.5 cfs and 57.1 cfs in the minor and major storm event.

Sub-Basin H7A consists of portions of roadway and large residential lots, southwest of the intersection at Alamar Way and Twinkle Star Lane. Runoff from this basin will sheet flow into a roadside ditch to the Pond 4 Culvert. This sub-basin has an area of 8.50 acres. The curve number for Sub-Basin H7A is 72.92. The basin will generate runoff of 6.1 cfs and 27.1 cfs in the minor and major storm event.

Sub-Basin H7B consists of portions of roadway and large residential lots, south of Alamar Way. Runoff from this basin will be directed through Reach H3 to design point H7B to culvert Pond 4. This sub-basin has an area of 17.35 acres. The curve number for Sub-Basin H7B is 71.39. The basin will generate runoff of 7.8 cfs and 49.5 cfs in the minor and major storm event.

Sub-Basin H8A consists of portions of roadway and a portion of a large residential lot, east of Twinkling Star in the east portion of the site. Runoff from this basin will sheet flow to design point H8A and outfall to Detention Pond 4. This sub-basin has an area of 3.93 acres. The curve number for Sub-Basin H8 is 72.46. The basin will generate runoff of 6.7 cfs and 11.2 cfs in the minor and major storm event. The roadway portions within in this basin will be directed through a roadside ditch and drain to Detention Pond 4 to provide adequate water quality treatment.

Sub-Basin H8B consists of portions of roadway and a portion of a large residential lot, east of Twinkling Star in the east portion of the site. Runoff from this basin will sheet flow to design point H8B and outfall to West Kiowa Creek. This sub-basin has an area of 5.09 acres. The curve number for Sub-Basin H8B is 77.78. The basin will generate runoff of 6.7 cfs and 17.8 cfs in the minor and major storm event. The roadway portions within in this basin are accounted for in the runoff reduction areas.

Sub-Basin H9 consists of portions of 2 large residential lots, east of Twinkling Star in the east portion of the site. Runoff from this basin will be directed to design point H9 and outfall to West Kiowa Creek. This sub-basin has an area of 6.52 acres. The curve number for Sub-Basin H9 is 71.58. The basin will generate runoff of 2.3 cfs and 15.0 cfs in the minor and major storm event.1. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of EI Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5.

Sub-Basin I1 consists of portions of roadway and portions of large residential lots, northwest of Alamar Way and Twinkle Star Lane intersection. Runoff from this basin will be directed to design point I1 into Culvert I1. Flows are conveyed to Pond 4 via the roadside ditch along Twinkling Star Lane. This sub-basin has an area of 6.82 acres. The curve number for Sub-Basin I1 is 74.72. The basin will generate runoff of 5.9 cfs and 20.3 cfs in the minor and major storm event.

Sub-Basin I2 consists of portions of roadway and portions of 3 large residential lots, east of Alamar Way in the northeast portion of the site. Runoff from this basin will be directed to design point I2 and will ultimately outfall to West Kiowa Creek. This sub-basin has an area of 14.59 acres. The curve number for Sub-Basin I2 is 72.48. The basin will generate runoff of 8.3 cfs and 39.1 cfs in the minor and major storm event. Runoff reduction is being accounted for to meet water quality requirements for the roadway runoff within this basin. Refer to the runoff reduction section for additional information.

Sub-Basin J1 consists of portions of 3 large residential lots, in the northwest corner of the site. Runoff from this basin will be directed to design point J1 and flow offsite. This sub-basin has an area of 10.14 acres. The curve number for Sub-Basin J1 is 60.00. The basin will generate runoff of 2.1 cfs and 13.0 cfs in the minor and major storm event for proposed conditions. Which is lower than the existing condition flows of 3.4 cfs and 19.9 cfs in the minor and major events. Therefore, flood control storage would not be required. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of El Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number

5.

Sub-Basin K1 consists of portions of 4 large residential lots, north of Alamar Way in the northeast portion of the site. Runoff from this basin will be directed to design point K1 and flow offsite. This sub-basin has an area of 17.50 acres. The curve number for Sub-Basin K1 is 69.56. The basin will generate runoff of 4.5 cfs and 40.7 cfs in the minor and major storm event for proposed conditions. Which is lower than the existing condition flows of 4.5 cfs and 40.7 cfs in the minor and major events. Therefore, flood control storage would not be required. Flows from this sub-basin are not required to be conveyed to a water quality facility according to Appendix I Section 1.7.1.B of El Paso County's Engineering Construction Manual (ECM). The sub-basin is identified as a large lot single family area with an impervious cover under 20 percent under Section 1.7.1.B, number 5.

Basin B3, B4, B2, C2, C3, C4, D5, and D6 are shown within the drainage map however were accounted for in Winsome Filing No.1 Final Drainage Report approved, May 15, 2019.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

The proposed storm facilities are designed to be in compliance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)" dated October 2018 ("the MANUAL"), El Paso County "Engineering Criteria Manual" ("the Engineering Manual"), Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014 ("the Colorado Springs MANUAL").

Site drainage is not significantly impacted by such constraints as utilities or existing development.

A preliminary drainage report was completed for the overall Winsome subdivision. This was previously completed by The Vertex Companies. This Final Drainage Report used the approved Preliminary Drainage Report prepared by The Vertex Companies (PDR) for the Site's final design.

HYDROLOGIC CRITERIA

The 5-year and 100-year design storm events were used in determining rainfall and runoff for the proposed drainage analysis per the MANUAL. Table 6-2 of the Colorado Springs MANUAL is the source for rainfall data for the 5-year and 100-year design storm events. Design runoff was calculated using the NRCS curve number method for developed conditions as established in the MANUAL. This aligns with what was completed in the PDR. The NRCS curve number method was used for existing conditions and proposed conditions due to the on-site and off-site basins containing more than 130 acres. Per the PDR the runoff curve numbers for the existing and proposed drainage basins used the curve numbers in DCM. The PDR developed the following values for the 5 acre lots in **Table 1** below. These values were also used for the final design in this report.

		Soil Type				
Lot Size (Acres)	% Imp	A	В	С	D	
5	7	N/A	60	72	77	

Table 1: Values Extrapolated per the PDR

The rainfall depths that were determined in the PDR were also used for the final design. The rainfall depths utilized the Frontal Storm which produced higher design flows. See **Table 2** below for the Frontal Storm rainfall values.

	Duration (HRS)				
Storm Event	1 HR	24 HR			
5 Year	1.5	2.7			
100 Year	2.52	4.6			

 Table 2: Frontal Storm Rainfall Depths

Calculations for the composite curve numbers are included in the Appendix B.

The proposed impervious values were determined in the PDR and were utilized in this report for the final design.

The Site is providing one water quality pond, one permanent sediment basin and three full spectrum detention ponds as the Site is not significantly increasing the imperviousness of the Site, the Project is maintaining the historic drainage patterns as much as possible and not significantly increasing developed flows.

There are no additional provisions selected or deviations from the criteria in both the MANUAL and Colorado Springs MANUAL.

HYDRAULIC CRITERIA

Applicable design methods were utilized to size the proposed pond, culverts, and drainage channels, which includes the use of the UD-Detention spreadsheet, rational calculations spreadsheet, UD-Culvert and FlowMaster, V8i software.

Proposed drainage features on-site have been analyzed and sized for the following design storm events:

• Major Storm: 100-year Storm Event

For the stormwater modeling for the Site was completed utilizing the NRCS Curve Number Method as required by the City of Colorado Springs. The HEC-HMS peak flows were determined to size the proposed culverts and channels. The same assumptions were kept from

the PDR for the time of concentration calculations. **Table 3** below outlines these assumptions from the PDR:

	Shape	Side Slope	Depth (ft)	Wetted Perimeter (ft)	Cross Sectional Area (sq. ft.)
< 100 Acre Basin Channels	Triangular	4:1	4	32.98	64
>100 Acre Basin Channels	Triangular	4:1	3	24.74	36

Table 3: Time of Concentration Assumptions

For the conveyance flow paths the same assumptions and method was carried through from the PDR. These flow paths were for between the basin and the main channels and used 3 profiles. Per the PDR the 3 profiles utilized are as follows: "triangular profiles were used for the majority of the conveyance channels, larger branching tributaries with an 8 ft bottom, and the main channels were modeled as trapezoidal with a 20 ft bottom."

DETENTION

Three full spectrum detention ponds, and one water quality pond are proposed in order to maintain historic flows and water quality. Mile High Flood District's UD-detention spreadsheet was utilized to design the pond outlet structure. The same methodology that was used and approved by the County on Filing 1 was used to calibrate the UD-detention spreadsheet for this Filing. The UD-detention spreadsheet has area limitations when large tributary areas are entered into the spreadsheet. The flows entering the pond and the volume entering the pond are lower than what the HEC-HMS model results reflected. Therefore, the UD-detention spreadsheet to show a similar 100-year flow entering the pond. The following steps were completed for the UD-detention spreadsheet calibration:

- 1. A UD-detention spreadsheet was developed for each pond (Pond 1, Pond 2, Pond 4, and WQ Pond) that reflected the total area draining to the pond which reflected a lower 100-yr. The spreadsheet also developed the required water quality capture volume for each pond.
- 2. A second UD-detention spreadsheet was created for each pond with an adjusted basin area. This area was adjusted until the 100-year peak inflow matched the HEC-HMS model. All other parameters in the UD-detention basin input were held constant and reflect the proposed conditions.
- 3. Once the calibration was completed the calculated runoff volume was compared between the HEC-HMS model and the UD-detention spreadsheet. The UD-detention spreadsheet resulted in a larger runoff volume and ultimately confirming this as a conservative approach.
- 4. The water quality capture volume and excessive runoff volume from step one was manually entered into the second UD-detention spreadsheet where the outlet structure design was developed.

5. The pond discharge curve values from UD-detention were then input into the HEC-HMS model to match the outflow hydrographs.

Pond	Original Basin Area (Acres)	UD- Detention Adjusted Area Value (Acres)	WQCV Volume (Ac-ft)	100YR Volume (Ac-ft)	HEC- HMS In- Flow (Q100 cfs)	UD- Detention Adjusted In-Flow (Q100 cfs)	HEC- HMS In- Flow (Ac-Ft)	UD- Detention In-Flow (Ac-Ft)
1	41.0	60.0	0.174	1.3	105.0	104.7	4.2	7.87
2	55.0	67.9	0.268	1.5	110.8	110.4	4.8	9.06
4	42.4	64.0	0.250	1.9	108.2	107.7	4.5	8.60
WQ	63.4	94.5	0.047	N/A	N/A	148.8	N/A	12.10
H5B 10.5 N/A							1.34	

Table 4: Pond Calculation Comparison Table

HEC-HMS and Pond calculations are provided in **Appendix B** and **Appendix C**.

For Pond 1 a rock chute is proposed with a downstream stilling basin to dissipate the energy of the flow being conveyed into the pond through the rock chute. The stilling basin will have dual purposes one to assist in dissipating the energy before out falling into the pond bottom and two to serve as a forebay structure. The concrete lined trickle channels will convey flows to the outlet structures micro pool. The outlet structure is designed to provide full spectrum characteristics. The 100-year storm volume will be released via 36" RCP. An emergency spillway is proposed and designed to convey the 100-year flow with a depth of flow less than 1'. The emergency spillway has been designed to provide a minimum of 1' of freeboard. A 15' wide access road is proposed from the trail to the bottom of the pond for maintenance. The pond reduces proposed flows at the outfall below historic levels relative to the impact of Filing 3.

For Pond 2 a rock chute is proposed with a downstream stilling basin to dissipate the energy of the flow being conveyed into the pond through the rock chute. The stilling basin will have dual purposes one to assist in dissipating the energy before out falling into the pond bottom and two to serve as a forebay structure. The concrete lined trickle channels will convey flows to the outlet structures micro pool. The outlet structure is designed to provide full spectrum characteristics. The 100-year storm volume will be released via 48" RCP. An emergency spillway is proposed and designed to convey the 100-year flow with a depth of flow less than 1'. The emergency spillway has been designed to provide a minimum of 1' of freeboard. A 15' wide access road is proposed from the trail to the bottom of the pond for maintenance. The pond reduces proposed flows at the outfall below historic levels relative to the impact of Filing 3.

For Pond 4 a rock chute is proposed with a downstream stilling basin to dissipate the energy of the flow being conveyed into the pond through the rock chute. The stilling basin will have dual purposes one to assist in dissipating the energy before out falling into the pond bottom and two to serve as a forebay structure. The concrete lined trickle channels will convey flows to the outlet structures micro pool. A proposed 42" diameter RCP will convey flows to Pond 4 as well.

Clarify that per MHFD Detail T-5, forebays are only needed when >1ac of imperviousness is tributary to a pond inflow point. Since this threshold is not exceeding at either concentrated inflow point, actual concrete lined forebays with slow release notches are not required.

Final Drainage Report Winsome Subdivision Filing No. 3, El Paso County, CO

KHA RESPONSE: Clarification has been added to the report within this paragraph.

structure will be placed at the outfall of the culvert (Culvert Pond 4). The signed to provide full spectrum characteristics. The 100-year storm volume 2" RCP. An emergency spillway is proposed and designed to convey the depth of flow less than 1. The emergency spillway has been designed to f 1' of freeboard. A 15' wide access road is proposed from the right-of-way

to the bottom of the pond for maintenance. The pond reduces proposed flows at the main outfall below historic levels relative to the impact of Filing 3.

For Water Quality Pond A, two rock chutes are proposed with a downstream stilling basin to dissipate the energy of the flow being conveyed into the pond through the rock chutes. The stilling basins will have dual purposes one to assist in dissipating the energy before out falling into the pond bottom and two to serve as a forebay structure. The concrete lined trickle channels will convey flows to the outlet structures micro pool. The outlet structure is designed to provide water quality for the 1.12 acress of roadway area sending runoff to the pond. Larger storms will utilize the spillway. The spillway is designed to convey the 100-year flow with a depth of flow less than 1'. The spillway has been designed to provide a minimum of 1' of freeboard. A 15' wide access road is proposed from the trail to the bottom of the pond for maintenance.

For the Permanent Sediment Basin H5B no grading is proposed within the channel. The natural topography of the channel will be used as the sediment basin. The 100-year storm volume will be released via a CDOT Type C inlet. An emergency spillway is proposed and designed to convey the 100-year flow with a depth of flow less than 1'. The spillway has been designed to provide a minimum of 1' of freeboard. The sediment basin meets drain time requirements with the 5-year design storm is released in 60 hours. See **Appendix C** of the Winsome Filing No. 3 Early Grading Final Drainage Report (EGP-21-005) for calculations associated with Permanent Sediment Basin H5B.

Each pond reduces proposed flows at the main outfall below historic levels relative to the impact of Filing 3. The proposed 100-year peak flow (1960 cfs) at Reach -6 Kiowa Outfall remains less than the existing conditions peak flow (2,470 cfs).

CHANNELS

Channels and roadside ditches are designed to carry flows to the temporary sediment basins. The channels have varying bottom widths, and slopes, with equal 4:1 side slopes. It should be mentioned that there are several head cuts occurring in existing onsite drainage channels. As part of this Filing mitigation measure will be implemented to stabilize the existing head cuts. In addition to the head cut mitigation measures additional channel improvements are proposed for channel H1-B, H4, H5B, and H3 to reduce the erosion potential to those channel sections. The proposed channel improvements include re-grading portions of the channels, rock sills, riprap rock chutes, and a permanent sediment basin. The approach with the proposed channel improvements presented in this report specifically for channels H1-B, H4, H1-A, and H5B allows for the least disturbance and removal of existing trees. For channel H5B which has a high density of trees, the head cuts will be stabilized, and the remaining length of the channel will remain as is, due to the large number of trees located within the reach. A permeant sediment basin for channel H5B is proposed prior to out falling into West Kiowa Creek. The other area with a high tree density is upstream of detention Pond 1 at channels (H1-B, H4, and H1-A). At this location the proposed channel improvements will include re-grading, rock sills and riprap rock chutes. The channel sizing and capacity calculations are provided in the Appendix C of the Winsome Filing No. 3 Early Grading Final Drainage Report (EGP-21-005) and channel design point are provided in the Proposed Drainage Maps. Refer to Appendix C for the rock chutes calculations for all rock chutes. Refer to **Appendix F** for the head cutting locations exhibit.

Roadside ditches are provided along the proposed roadways to route flows to the proposed culverts. The roadside ditches are sized to convey the major event flow. The majority of the roadside ditches have been designed to have an average depth of approximately 3 feet, a v-ditch, with 4:1 side slopes. Refer to MHFD DCM Table 8-1 in **Appendix C** for permissible velocities for grass line channels for type C soils. All ditch velocities exceeding 7 feet per second will be lined with Turf Reinforcement Mat or approved equal to reduce the potential of erosion within the channel. The Turf Reinforcement Mat material and performance specifications reflect an unvegetated maximum allowable velocity of 9 fps. Refer to **Appendix C** for Turf Reinforcement Mat specifications. Roadside ditch sizing and capacity calculations are provided in the **Appendix C**.

Culverts were sized to convey flows from the ditches and channels, underneath the Site's paved roads. The proposed culverts range in diameter from 24" to 48" and have been designed to convey the 100-year storm event. Culvert calculations are provided in the **Appendix C** of the Winsome Filing No. 3 Early Grading Final Drainage Report (EGP-21-005) and culvert locations are provided in the Proposed Drainage Maps. Two 18" CMP culverts are located under the Pond 2 maintenance access path. Flows unable to be conveyed through the 18" will overtop the maintenance path. Maintenance path culvert calculations are located within **Appendix C**.

THE FOUR STEP PROCESS

The Project was designed in accordance with the four-step process to minimize adverse impacts of urbanization, as outlined in Engineering Criteria Manual Appendix I Section 1.7.2.

Step 1. Employ Runoff Reduction Practices- The project is proposing a low-density residential development that will be designed to minimize the impact to the current existing terrain. The Site's proposed paved roadways will increase the Site's impervious area however roadside ditches and channels will be constructed to slow down the runoff velocity and reduce runoff peaks. The three full spectrum detention ponds will be used to capture stormwater and maintain flows discharging off site at or below historic levels. For portions of Alamar Way and Twinkling Star Lane runoff reduction has been employed by removing the ditch on the downhill side of the road and sending stormwater that contacts the road across a receiving previous area

Step 2. Stabilize Drainageways – Stabilizing proposed roadside ditches, swales, and channels by designing them with slopes that control the flow rates. Placement of riprap upstream and downstream of culverts to help reduce erosion of the roadside ditches. Existing drainage ways have been graded to reduce the velocity of the water to minimize erosion. The existing natural channels have been analyzed for width and velocity for the 100-year storm event. Easements are proposed to accommodate the full width of the major storm event.

Step 3 Provide Water Quality Capture Volume (WQCV)-

Permanent water quality measures and detention facilities will be necessary for the Project. Temporary water quality and erosion control measures will be provided during construction to prevent sediment laden water from discharging from the Site. Water quality measures are being used for all stormwater that contacts roadways.

Step 4. Consider Need for Industrial or Commercial BMPs – The erosion control construction BMPs of the Project were designed to reduce contamination. Source control BMPs include the use of vehicle tracking control, culvert protection, stockpile management, and stabilized staging areas.

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

The proposed drainage patterns will match the historic patterns. To maintain historic flows, three full spectrum detention ponds and one water quality pond are being proposed and will capture and control the flows from the proposed development into a series of channels and culverts.

Provided in the **Appendix B** are hydrologic calculations utilizing the NRCS/HEC-HMS method for the proposed conditions. **Appendix C** in Winsome Filing No. 3 Early Grading Final Drainage Report (EGP-21-005) contains the hydraulic calculations for the proposed conditions UD-Culvert culvert calculations, Flowmaster details and cross sections for proposed drainage features. As previously mentioned, the existing drainage map can be found in **Appendix D** and the proposed drainage maps can be found in **Appendix F**.

SPECIFIC DETAILS

The existing condition of the Site have flows conveying from the northwest to southeast and discharging in the West Kiowa Creek. Runoff conditions for the Site were developed utilizing the previously referenced Hydrologic Criteria per the approved PDR for the Winsome subdivision. The proposed development looks to preserve the natural drainage patterns as much as possible.

A Proposed Drainage Conditions Map and hydrologic calculations are included in the **Appendix B**, **Appendix C**, and **Appendix F** of this report for reference.

The Site will disturb more than 1 acre and will require a Colorado Discharge Permit System (CDPS) General Permit for Stormwater Discharge Associated with Construction Activities from the Colorado Department of Public Health and Environment (CDPHE).

There are no current drainage and bridge fees for the Project as the West Kiowa Creek Drainage Basin is not part of the El Paso County Drainage Basin Fee Program.

RUNOFF REDUCTION

Runoff reduction was implemented in two select areas of the site. The south portion of Twinkling Star Lane, and the south portion of Alamar Way have the road travel perpendicular to grade, therefore the roadside ditch has been removed on the downhill side of the road. All roadway runoff at these sections can be treated using the receiving pervious area between the roadway boundary and property line. Runoff reduction calculations and locations are provided in the **Appendix C.**

WQCV EXCLUSION AREAS

Two areas within the site do not have water quality provided. Under the ECM's Appendix I. Section 1.7.C.A, 20% of the development site or less than 1 acre can be excluded from providing water quality. The combined exclusion areas for Filing 3 sum to 0.59 acres. WQCV exclusion locations are provided in the **Appendix C**.

EXISTING MINOR DRAINA

proposed easements and velocities for erosion. Proposed regrading of existing drainage channels H1-A, H1-B, H3, and H4 will be proposed as part **Conductions** the endocement

are fully vegetated and channels H1-A, H1-B, H3, and H4 v Four channels will require lining due to velocities exceeding H1-A, H1-B, H5B, and H3 will require additional improveme within the channels. These channels are discussed in the h Swale I1 and the Water Quality Channel will be lined with T equal to reduce the potential of erosion within the channel.

Address the above comment by providing a summary of Swale I2 result. The paragraph does not specifically state whether or not any additional improvements are necessary for Reach I2.

Channels section to discuss

Reach I2.

and performance specifications reflect an unvegetated maximum allowable velocity or 9 tos. Refer to **Appendix C** for the channel calculations, maximum KHA RESPONSE: MHFD and Turf Reinforcement Mat. Refer to the Winsome Clarification has been added to Drainage Report (EGP-21-005) for detailed hydraulic analythe Existing Minor Drainage

HEAD CUTTING CHANNELS

Channels H1, H5B and H3 required channel improvements

within the reaches. Due to steep slopes, rock chutes were used to decrease slopes to generate velocities below 5 fps. Per El Paso County DCM Section 6.5.2, channels velocities for grasslined channels cannot exceed 5 feet per second. NRCS's Rock Chute Design spreadsheet was used to design the rock chutes. Grading improvements will be completed within the channels, see Winsome Filing No 3 Construction Documents for grading details. Refer to **Appendix C** for the channel calculations, and rock chute designs.

EXISTING MAJOR DRAINAGE CHANNELS

The existing West Kiowa Creek was analyzed in the previously approved Preliminary Drainage Report (PDR) dated May 22, 2019. Further analysis was completed for this Filing that built off of the PDR analysis. This analysis was submitted as a separate technical memorandum "West Kiowa Creek Stability (Hydraulic and Geomorphic) Analysis". Refer to **Appendix E** for the West Kiowa Creek Stability (Hydraulic and Geomorphic) Analysis.

The analysis evaluated the creek and took a more comprehensive look at the way to manage this natural creek and adjacent riparian wetlands that are consistent with U.S. Army Corp of Engineers (USACE) Section 404 and 401 of the Clean Water Act. The analysis provides a detailed evaluation of hydraulics and geomorphology of West Kiowa Creek in relation to applicable regulations (Section 404/401 and FEMA) as well as El Paso County's Engineering Criteria Manual (ECM) and the DCM.

Based on the detailed evaluation no stabilization directly in West Kiowa Creek outside of the location of the proposed box culverts is recommended. The box culvert inlet and outlet protection will mitigate the high Froude numbers. The areas shown in Table 4 of the memorandum where the Froude number is above 0.9 will be mitigated by sloping back the valley wall terrace slope to a 3:1 to 4:1 slopes and revegetate with native vegetation. Temporary erosion control matting will be proposed following grading until vegetation can establish. As mentioned in this report additional channel stabilization will be done to several onsite channels

as well. All detention and water quality pond outfall locations will have erosion protection proposed at the outfall locations.

Each full spectrum detention pond reduces proposed flows at the main outfall below historic levels relative to the impact of Filing 3. The proposed 5-year peak (420.7 cfs) and 100-year peak flow (1960 cfs) at Reach -6 Kiowa Outfall (downstream of project site) remains less than the existing conditions peak flows for the 5-year (447.4 cfs) and 100-year (2,470 cfs).

CONCURRENT REPORTS

Two reinforced bridge culvert crossings are proposed for the Site. The hydraulic analysis for the culverts is discussed in the Winsome Filing No.3 Hydraulic Report by Kimley-Horn, (PCD File No.CDR-21-012). The reinforced concrete box culverts will be submitted concurrently.

Portions of West Kiowa Creek within the Winsome Subdivision require channel stabilization measures. The West Kiowa Creek Stability Analysis – Winsome Subdivision Technical Memorandum by Kimley-Horn, dated May, 2021 provides analysis for designated sections of West Kiowa Creek. The report will be submitted concurrently and reviewed as a standalone project. The proposed improvements will be implemented in conjunction with the construction of the bridge culverts.

ENGINEER'S COST ESTIMATE

Total cost for drainage improvements on Winsome Filing No 3 are listed below in Table 5.

Completed under Early Grading Permit						
Description	Quantity	Units	Unit Cost	Total		
Concrete Box Culvert (M Standard),	294	LF	\$950.00	\$279,300.00		
Size (12'x7')						
18" Reinforced Concrete Pipe	87	LF	\$76.00	\$6,612.00		
24" Reinforced Concrete Pipe	65	LF	\$91.00	\$5,915.00		
30" Reinforced Concrete Pipe	164	LF	\$114.00	\$18,696.00		
36" Reinforced Concrete Pipe	209	LF	\$140.00	\$29,260.00		
42" Reinforced Concrete Pipe	136	LF	\$187.00	\$25,432.00		
48" Reinforced Concrete Pipe	123	LF	\$228.00	\$28,044.00		
18" Flared End Section	2	EA	\$456.00	\$912.00		
24" Flared End Section	1	EA	\$546.00	\$546.00		
30" Flared End Section	4	EA	\$684.00	\$2,736.00		
36" Flared End Section	4	EA	\$840.00	\$3,360.00		
42" Flared End Section	2	EA	\$1,122.00	\$2,244.00		
48" Flared End Section	1	EA	\$1,368.00	\$1,368.00		
Riprap, D50 from 6" to 24"	4284	TONS	\$415,548.00	\$415,548.00		
Rock Chutes	6	EA	\$18,000.00	\$108,000.00		
Rock Sill	13	EA	\$8,000.00	\$104,000.00		
TOTAL (Early Grading Permit)				\$1,031,973.00		
Completed under Final Drainage Report						
18" Reinforced Concrete Pipe	3	LF	\$76.00	\$228.00		
36" Reinforced Concrete Pipe	1	LF	\$140.00	\$140.00		
42" Reinforced Concrete Pipe	1	LF	\$187.00	\$187.00		

Table 5: Engineer's Cost Estimate Table

Final Drainage Report Winsome Subdivision Filing No. 3, El Paso County, CO

48" Reinforced Concrete Pipe	1	LF	\$228.00	\$228.00
18" Flared End Section	1	EA	\$456.00	\$456.00
36" Flared End Section	1	EA	\$840.00	\$840.00
42" Flared End Section	1	EA	\$1,122.00	\$1,122.00
48" Flared End Section	1	EA	\$1,368.00	\$1,368.00
Riprap, D50 from 6" to 24" (Pond	1,256	TONS	\$97.00	\$121,832.00
Outfall & Spillway)				
Rock Chutes	5	EA	\$18,000.00	\$90,000.00
Rock Sills	10	EA	\$8,000.00	\$80,000.00
Concrete Forebay	1	EA	\$40,000	\$40,000
Concrete Trickle Channel	771	LF	\$45.00	\$34,695.00
Outlet Structure	4	EA	\$50,000.00	\$200,000.00
Crestwall	4	EA	\$15,000.00	\$60,000.00
TOTAL (Final Drainage Report)				\$631,096.00

DRAINAGE FEE

There are no current drainage and bridge fees for the Project as the West Kiowa Creek Drainage Basin is not part of the El Paso County Basin Fee Program.

SUMMARY

The proposed drainage design is to maintain the historic drainage patterns, the overall imperviousness and release rates for the Site. Runoff from the Site will flow overland to existing El Paso County drainage basins: The West Kiowa Creek Basin. The basin ultimately discharges to the West Kiowa Creek. The drainage design presented within this report conforms to the criteria presented in both the MANUAL and the Colorado Springs MANUAL. Additionally, the Site runoff and storm drain facilities will not adversely affect the downstream and surrounding developments, including West Kiowa Creek.

REFERENCES

- 1. City of Colorado Springs "Drainage Criteria Manual (DCM) Volume 1", dated May, 2014
- 2. El Paso County "Drainage Criteria Manual", dated October 31, 2018
- 3. El Paso County "Engineering Criteria Manual" Revision 6, dated December 13, 2016
- 4. Chapter 6 and Section 3.2.1. of Chapter 13-City of Colorado Springs Drainage Criteria Manual, May 2014.
- 5. Urban Drainage and Flood Control District Drainage Criteria Manual (UDFCDCM), Vol. 1, prepared by Wright-McLaughlin Engineers, June 2001, with latest revisions.
- 6. Flood Insurance Rate Map, El Paso County, Colorado and Incorporated Areas, Map Number 08041C0507F and 08041C0530F, Effective Date March 17, 1997, prepared by the Federal Emergency Management Agency (FEMA).
- 7. Winsome Subdivision Preliminary Drainage Report (PDR), prepared by The Vertex Companies, Inc, May 15, 2019. PCD File No. SP-18-006.
- 8. Request For Conditional Letter of Map Revision For West Kiowa Creek, prepared by The Vertex Companies, Inc., July 1,2019. FEMA Case No. 19-08-0185R.
- 9. Winsome Subdivision Filing No. 3, Early Grading Permit Final Drainage Report. Prepared by Kimley-Horn and Associates Inc. January 2023, PCD File No. EGP-21-005.
- 10. Winsome Subdivision Filing No. 3 Final Hydraulic & Hydraulic Section Report. Prepared by Kimley-Horn and Associates Inc. August 2022, PCD File No. CDR-21-012.

APPENDIX

Kimley **»Horn**

APPENDIX A: FIGURES

Kimley **»Horn**

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The **community map repository** should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control structures**. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The **projection** used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The **horizontal datum** was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the **North American Vertical Datum** of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same **vertical datum**. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12

National Geodetic Survey SSMC-3, #9202

1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management, National Oceanic and Atmospheric Administration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date **stream channel configurations and floodplain delineations** than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact **FEMA Map Service Center** (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

El Paso County Vertical Datum Offset Table Vertical Datum Flooding Source Offset (ft)

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION

Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

		LEGEND							
		D HAZARD AREAS (SFHAS) SUBJECT TO THE 1% ANNUAL CHANCE FLOOD							
that has a 1% cl	hance of being equ	year flood), also known as the base flood, is the flood aled or exceeded in any given year. The Special Flood to flooding by the 1% annual chance flood. Areas of							
Special Flood Ha	zard include Zones	is A, AE, AH, AO, AR, A99, V, and VE. The Base Flood tion of the 1% annual chance flood.							
	o Base Flood Eleva ase Flood Elevation								
	ood depths of 1 evations determine	to 3 feet (usually areas of ponding); Base Flood ed.							
de	epths determined.	3 feet (usually sheet flow on sloping terrain); average For areas of alluvial fan flooding, velocities also							
ZONE AR Sp flc AF	ood by a flood cor R indicates that t	d Area Formerly protected from the 1% annual chance htrol system that was subsequently decertified. Zone he former flood control system is being restored to							
ZONE A99 Ar	rea to be protecte	om the 1% annual chance or greater flood. ed from 1% annual chance flood by a Federal flood under construction; no Base Flood Elevations							
ZONE V Co	etermined. Dastal flood zone evations determine	with velocity hazard (wave action); no Base Flood ed.							
	oastal flood zone evations determine	with velocity hazard (wave action); Base Flood							
FLOODWAY AREAS IN ZONE AE									
kept free of enc		tream plus any adjacent floodplain areas that must be t the 1% annual chance flood can be carried without ts.							
	OTHER FLOOD AREAS Areas of 0.2% annual chance flood; areas of 1% annual chance flood with								
av so	verage depths of quare mile; and are	al chance flood; areas of 1% annual chance flood with less than 1 foot or with drainage areas less than 1 eas protected by levees from 1% annual chance flood.							
	THER AREAS reas determined to	be outside the 0.2% annual chance floodplain.							
		hazards are undetermined, but possible.							
	OASTAL BARRI	ER RESOURCES SYSTEM (CBRS) AREAS							
<u>)</u>	THERWISE PRO	OTECTED AREAS (OPAs)							
CBRS areas and (located within or adjacent to Special Flood Hazard Areas.							
		ain boundary ay boundary							
		Boundary							
	Bounda	nd OPA boundary ny dividing Special Flood Hazard Areas of different Base							
← 513 ~ (EL 987)	Flood E Base Fl	levations, flood depths or flood velocities. ood Elevation line and value; elevation in feet* ood Elevation value where uniform within zone;							
	elevatio	n Vertical Datum of 1988 (NAVD 88)							
A >	-	ection line							
(23)	 23) Transed	ct line							
97° 07' 30.00"	Geogra	phic coordinates referenced to the North American							
32° 22' 30.00" ⁴² 75 ^{000m} N	Datum	of 1983 (NAD 83)							
⁴² 75 ^{000m} N 6000000 FT	zone 13 5000-fc	oot grid ticks: Colorado State Plane coordinate							
DX5510 _×	Lamber Bench r	, central zone (FIPSZONE 0502), t Conformal Conic Projection mark (see explanation in Notes to Users section of							
M1.5	this FIR	RM panel)							
M1.5	River M	lile							
	Refer to N	MAP REPOSITORIES Map Repositories list on Map Index							
		CTIVE DATE OF COUNTYWIDE OD INSURANCE RATE MAP MARCH 17, 1997							
	t 7, 2018 - to updat Hazard Areas, to	TE(S) OF REVISION(S) TO THIS PANEL te corporate limits, to change Base Flood Elevations and update map format, to add roads and road names, and to eviously issued Letters of Map Revision.							
For community m		prior to countywide mapping, refer to the Community							
Map History Table	e located in the Flo	od Insurance Study report for this jurisdiction.							
		available in this community, contact your insurance urance Program at 1-800-638-6620.							
		AP SCALE 1" = 2000'							
1	000 0 日日日	2000 4000							
600		600 1200							
		PANEL 0350G							
	MAA BOR	FIRM FLOOD INSURANCE RATE MAP EL PASO COUNTY,							
		COLORADO AND INCORPORATED AREAS							
	PANEL 350 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT)								
	CONTAINS:								
		COMMUNITY NUMBER PANEL SUFFIX EL PASO COUNTY 080059 0350 G							
		Notice to User: The Map Number shown below should be used when placing map orders: the Community Number shown above should be used on insurance applications for the subject community							
		08041C0350G							
		MAP REVISED DECEMBER 7, 2018							
		Federal Emergency Management Agency							

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
Soil Map	5
Soil Map	6
Legend	7
Map Unit Legend	8
Map Unit Descriptions	8
El Paso County Area, Colorado	10
1—Alamosa loam, 1 to 3 percent slopes	10
15—Brussett loam, 3 to 5 percent slopes	11
21—Cruckton sandy loam, 1 to 9 percent slopes	12
25—Elbeth sandy loam, 3 to 8 percent slopes	13
36—Holderness loam, 8 to 15 percent slopes	14
71—Pring coarse sandy loam, 3 to 8 percent slopes	15
92—Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	16
93—Tomah-Crowfoot complex, 8 to 15 percent slopes	18
Soil Information for All Uses	20
Soil Properties and Qualities	20
Soil Qualities and Features	20
Hydrologic Soil Group	20
References	25

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND)	MAP INFORMATION
Area of Int	terest (AOI)	100	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:24,000.
	Area of Interest (AOI)	۵	Stony Spot	1.24,000.
Soils	Soil Map Unit Polygons	0	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
	Soil Map Unit Lines	\$	Wet Spot	
~	·	\triangle	Other	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
	Soil Map Unit Points		Special Line Features	line placement. The maps do not show the small areas of
Special	Point Features Blowout	Water Fea	atures	contrasting soils that could have been shown at a more detailed scale.
×	Borrow Pit	\sim	Streams and Canals	
<u>ک</u>	Clay Spot	Transport	tation Rails	Please rely on the bar scale on each map sheet for map measurements.
0	Closed Depression	++++	Interstate Highways	medauemento.
×	Gravel Pit	~	US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
***	Gravelly Spot		Major Roads	Coordinate System: Web Mercator (EPSG:3857)
0	Landfill	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
Ă.	Lava Flow	Backgrou		projection, which preserves direction and shape but distorts
عليه	Marsh or swamp	Васкугоц	Aerial Photography	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more
~	Mine or Quarry			accurate calculations of distance or area are required.
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as
0	Perennial Water			of the version date(s) listed below.
\sim	Rock Outcrop			Soil Survey Area: El Paso County Area, Colorado
+	Saline Spot			Survey Area Data: Version 18, Jun 5, 2020
°*°	Sandy Spot			Soil map units are labeled (as space allows) for map scales
-	Severely Eroded Spot			1:50,000 or larger.
\diamond	Sinkhole			Date(s) aerial images were photographed: Sep 8, 2018—May
≫	Slide or Slip			26, 2019
ģ	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
1	Alamosa loam, 1 to 3 percent slopes	23.6	6.5%	
15	Brussett loam, 3 to 5 percent slopes	6.0	1.6%	
21	Cruckton sandy loam, 1 to 9 percent slopes	1.8	0.5%	
25	Elbeth sandy loam, 3 to 8 percent slopes	46.0	12.6%	
36	Holderness loam, 8 to 15 percent slopes	255.9	70.3%	
71	Pring coarse sandy loam, 3 to 8 percent slopes	6.3	1.7%	
92	Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	24.2	6.7%	
93	Tomah-Crowfoot complex, 8 to 15 percent slopes	0.1	0.0%	
Totals for Area of Interest		363.9	100.0%	

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas

are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

1—Alamosa loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: 3670 Elevation: 7,200 to 7,700 feet Farmland classification: Prime farmland if irrigated and reclaimed of excess salts and sodium

Map Unit Composition

Alamosa and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Alamosa

Setting

Landform: Flood plains, fans Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

A - 0 to 6 inches: loam Bt - 6 to 14 inches: clay loam Btk - 14 to 33 inches: clay loam Cg1 - 33 to 53 inches: sandy clay loam Cg2 - 53 to 60 inches: sandy loam

Properties and qualities

Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: About 12 to 18 inches
Frequency of flooding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Very slightly saline to strongly saline (2.0 to 16.0 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 10.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: D Ecological site: R048AY241CO Hydric soil rating: Yes

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

15—Brussett loam, 3 to 5 percent slopes

Map Unit Setting

National map unit symbol: 367k Elevation: 7,200 to 7,500 feet Frost-free period: 115 to 125 days Farmland classification: Prime farmland if irrigated

Map Unit Composition

Brussett and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Brussett

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Eolian deposits

Typical profile

A - 0 to 8 inches: loam BA - 8 to 12 inches: loam Bt - 12 to 26 inches: clay loam Bk - 26 to 60 inches: silt loam

Properties and qualities

Slope: 3 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 9.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: R048AY222CO Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

21—Cruckton sandy loam, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 367s Elevation: 7,200 to 7,600 feet Mean annual precipitation: 16 to 18 inches Mean annual air temperature: 42 to 46 degrees F Frost-free period: 110 to 120 days Farmland classification: Not prime farmland

Map Unit Composition

Cruckton and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Cruckton

Setting

Landform: Flats, hills Landform position (three-dimensional): Side slope, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from arkose

Typical profile

A - 0 to 11 inches: sandy loam Bt - 11 to 28 inches: sandy loam C - 28 to 60 inches: loamy coarse sand

Properties and qualities

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 5.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B *Ecological site:* R049XB216CO - Sandy Divide *Hydric soil rating:* No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

25—Elbeth sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 367x Elevation: 7,300 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Elbeth and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Elbeth

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from arkose

Typical profile

A - 0 to 3 inches: sandy loam

E - 3 to 23 inches: loamy sand

Bt - 23 to 68 inches: sandy clay loam

C - 68 to 74 inches: sandy clay loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 7.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

36—Holderness loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 3689 Elevation: 7,200 to 7,400 feet Farmland classification: Not prime farmland

Map Unit Composition

Holderness and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Holderness

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy alluvium derived from arkose

Typical profile

A - 0 to 9 inches: loam Bt - 9 to 43 inches: clay loam C - 43 to 60 inches: gravelly sandy clay loam

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 9.6 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: C *Ecological site:* R048AY222CO *Hydric soil rating:* No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369k Elevation: 6,800 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Pring and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Pring

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam

C - 14 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: R048AY222CO Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Other soils

Percent of map unit: Hydric soil rating: No

92—Tomah-Crowfoot loamy sands, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 36b9 Elevation: 7,300 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Tomah and similar soils: 50 percent *Crowfoot and similar soils:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Tomah

Setting

Landform: Hills, alluvial fans Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from arkose and/or residuum weathered from arkose

Typical profile

A - 0 to 10 inches: loamy sand E - 10 to 22 inches: coarse sand C - 48 to 60 inches: coarse sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 2.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: R049XB216CO - Sandy Divide Hydric soil rating: No

Description of Crowfoot

Setting

Landform: Alluvial fans, hills Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

A - 0 to 12 inches: loamy sand *E* - 12 to 23 inches: sand *Bt* - 23 to 36 inches: sandy clay loam *C* - 36 to 60 inches: coarse sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: R049XB216CO - Sandy Divide Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

93—Tomah-Crowfoot complex, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 36bb Elevation: 7,300 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Tomah and similar soils: 50 percent *Crowfoot and similar soils:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Tomah

Setting

Landform: Alluvial fans, hills Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from arkose and/or residuum weathered from arkose

Typical profile

- A 0 to 10 inches: loamy sand
- E 10 to 22 inches: coarse sand
- C 48 to 60 inches: coarse sand

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 2.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: R049XB216CO - Sandy Divide Hydric soil rating: No

Description of Crowfoot

Setting

Landform: Hills, alluvial fans Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

A - 0 to 12 inches: loamy sand

E - 12 to 23 inches: sand

Bt - 23 to 36 inches: sandy clay loam

C - 36 to 60 inches: coarse sand

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: R049XB216CO - Sandy Divide Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

Hydrologic Soil Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Table—Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
	Map unit name	Rating	Acres III AOI	Percent of AOI
1	Alamosa loam, 1 to 3 percent slopes	D	23.6	6.5%
15	Brussett loam, 3 to 5 percent slopes	В	6.0	1.6%
21	Cruckton sandy loam, 1 to 9 percent slopes	В	1.8	0.5%
25	Elbeth sandy loam, 3 to 8 percent slopes	В	46.0	12.6%
36	Holderness loam, 8 to 15 percent slopes	С	255.9	70.3%
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	6.3	1.7%
92	Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	В	24.2	6.7%
93	Tomah-Crowfoot complex, 8 to 15 percent slopes	В	0.1	0.0%
Totals for Area of Inter	est	1	363.9	100.0%

Rating Options—Hydrologic Soil Group

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX B: HYDROLOGY

Kimley	»Horn				Post Runoff Ar e of Concentrat	•						* NOTES TO USE
Project Information	Project Name KHA Project #		Winsome Fili 19610600	-		D FLOW EQN	LAG TI	ME EQN	Equations U: MAI	<u>sed</u> NNINGS EQN	SHEE	T FLOW EQN
	Designed by		Date:	-	$T_t = L / (360)$	00·V)	$t_{lag}=0.$	$6 \cdot t_c$	V = 1.4	49 R _h ^{2/3} S ^{1/2} / n	$T_i = 0.007$	$(n \cdot L)^{0.8} / (P_2)^{0.5} S^{0.4}$
	Revised by: Checked by:		Date:		City of Colorado S	orings Drainage	City of Colorado	Springs Drainage	City of Color	rado Springs Drainage	City of Color	ado Springs Draina
Mir	nimum Time of Concentration 2YR-24HR Rainfall, P2		minutes		Criteria Manu			ual Eqn. 6-13		Manual Eqn. 6-17		Manual Eqn. 6-15
Post-Dev	elopment											
Drainage Area	a: A3C											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	100.00	0.064	0.10	2.10						5.49	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	275.00	0.006			U				1.25	3.67	
CHANNEL	T3 CHANNEL FLOW	554.00	0.01	0.04		U	64.00	32.98	1.94	4.49	2.06	
							Post-I	Development Time	e of Concentra	tion, A3C	11.22	6.73
Post-Dev												
Drainage Area	a: G1											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	, Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.030	0.10	2.10						17.91	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	539.00	0.048			U				3.52	2.56	
CHANNEL	T3 CHANNEL FLOW	620.00	0.04	0.04		U	64.00	32.98	1.94	11.74	0.88	
							Post-	Development Tim	e of Concentra	ation, G1	21.34	12.80
Post-Dev	•											
Drainage Area	a: 62A	Flow Length, L	1	Manning's Roughness	Two-year, 24-hr rainfall,	1	cross sectional Area of	Wetted Perimeter, pw	Hydraulic radius	1	Travel Time, Tt	
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Paved or Unpaved	Flow, A (ft ²)	(ft)	r (ft)	Average Velocity, V (ft/s)**	(min)	Lag Time (min)
SHEET	T1 SHEET FLOW	100.00	0.080	0.10	2.10						5.02	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	20.00	0.080			U				4.56	0.07	
CHANNEL	T3 CHANNEL FLOW	1240.00	0.04	0.04		U	64.00	32.98	1.94	11.59	1.78	
							Post-E	Development Time	of Concentra	tion, G2A	10.00	6.00
						I						
Post-Dev	elopment											
Drainage Area	a: G2B											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	, Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
						Paveu or Onpaveu	Flow, A (IT)	(11)	1 (11)	Average velocity, v (it/s)		Lay Hitle (Hilli)
SHEET	T1 SHEET FLOW	67.00	0.040	0.10	2.10		(100	00.00	4.04	44.00	4.81	
CHANNEL	T3 CHANNEL FLOW	750.00	0.06	0.04		U	64.00	32.98	1.94	14.20	0.88	
							Post-L	Development Time	e ur concentra	UUI, G2B	10.00	6.00
B (-												
Post-Dev												
Drainage Area	1: H1	Elow Longth	1	Manning's Poursher	Two-year, 24-hr rainfall,	1	CLOSS SECTIONAL MER OF	Wetted Perimeter, pw	Hydraulic radius		Travel Time, Tt	
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	P2 (in)	Paved or Unpaved	Flow, A (ft ²)	(ft)	r (ft)	, Average Velocity, V (ft/s)**	(min)	Lag Time (min)
SHEET	T1 SHEET FLOW	250.00	0.049	0.10	2.10						12.77	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	450.00	0.058			U		1	1	3.88	1.93	
CHANNEL	T3 CHANNEL FLOW	225.00	0.050	0.04		U	64.00	32.98	1.94	14.20	0.26	
OTMINEL	13 CHANNEL LEONA	220.00	0.00	0.01		, v		Development Tim			14.96	0.00

U 64:00 32:98 1.94 14:20 Post-Development Time of Concentration, H1 0.26 14.96

8.98

Kimley					Post Runoff An e of Concentrat	•						* NOTES TO U
ect Information	Project Name	:	Winsome Fili	ing 3	CONCENTRATE	D FLOW EQN	LAG TI	ME EQN	Equations U MA	<u>Ised</u> NNINGS EQN	SHEE	T FLOW EQN
	KHA Project #	:	19610600)1				_	_			
	Designed by Revised by:		Date:	9/14/2022	$T_t = L / (360)$	0·V)	$t_{lag}=0.$	$6 \cdot t_c$	V = 1.	.49 $R_h^{2/3} S^{1/2} / n$	$T_i = 0.007$	$(n \cdot L)^{0.8} / (P_2)^{0.5}$
	Checked by:		Date:	9/14/2022	 City of Colorado S 	prings Drainage	City of Colorado	Springs Drainage	City of Colo	orado Springs Drainage	City of Color	ado Springs Dra
Μ	inimum Time of Concentratior 2YR-24HR Rainfall, P2		minutes		Criteria Manua			ual Eqn. 6-13		Manual Eqn. 6-17		Manual Eqn. 6-1
Post-Dev	velopment											
Drainage Are	a: H2	Classed a mathe	ľ	Manainala Davahaana	Two ware 04 be existent	1		Mottod Desimator and	l huden die en die	- 1	Tanual Time Th	
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius r (ft)	s, Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min
SHEET	T1 SHEET FLOW	300.00	0.140	0.10	2.10						9.67	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	1000.00	0.030			U				2.79	5.97	
CHANNEL	T3 CHANNEL FLOW	516.00	0.04	0.04		U	64.00	32.98	1.94	10.84	0.79	
							Post-	Development Tim	e of Concentr	ation, H2	16.43	9.86
Post-Dev	velopment											
Drainage Are	a: H3A											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius r (ft)	s, Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (mir
SHEET	T1 SHEET FLOW	300.00	0.055	0.10	2.10						14.05	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	50.00	0.076			U				4.45	0.19	
							Post-i	Development Time	e of Concentra	ation, H3A	14.24	8.54
Post-Dev Drainage Are	velopment va: H3B											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius r (ft)	s, Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min
SHEET	T1 SHEET FLOW	266.00	0.046	0.10	2.10						13.71	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	334.00	0.014			U				1.91	2.92	
							Post-I	Development Time	e of Concentra	ation, H3B	16.62	9.97
Post-Dev	velopment											
Drainage Are												
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius r (ft)	s, Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (mir
SHEET	T1 SHEET FLOW	300.00	0.050	0.10	2.10						14.60	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	270.00	0.045			U				3.42	1.32	
CHANNEL	T3 CHANNEL FLOW	802.00	0.05	0.04		U	64.00	32.98	1.94	13.22	1.01	
							Post-	Development Tim	e of Concentr	ation, H4	16.92	10.15
Drainage Are	velopment											
Drainage Are	a. noA	Flow Length, L		Manning's Roughness	Two-year, 24-hr rainfall,	1	Cross Sectional Area of	Wetted Perimeter, pw	Hydraulic radius	S,	Travel Time, Tt	
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Paved or Unpaved	Flow, A (ft ²)	(ft)	r (ft)	Average Velocity, V (ft/s)**	(min)	Lag Time (mir
		300.00	0.078	0.10	2.10						12.22	
SHEET	T1 SHEET FLOW											
	T1 SHEET FLOW T2 SHALLOW CONCENTRATED FLOW	830.00	0.070			U				4.27	3.24	
SHEET			0.070	0.04		UUU	64.00	32.98 Development Time	1.94	14.20	3.24 0.00	

	»Horn				Post Runoff An e of Concentrat	•						* NOTES TO USE
oject Information	Project Name: KHA Project #:		Winsome Fil 19610600	-		D FLOW EQN	LAG TI	ME EQN	Equations Us MAI	<u>sed</u> NNINGS EQN	SHEE	T FLOW EQN
	Designed by: Revised by:	TOS	Date: Date:	9/14/2022	$T_t = L / (360)$	(0·V)	$t_{lag}=0.$	$6 \cdot \mathbf{t}_c$	V = 1.4	49 R _h ^{2/3} S ^{1/2} / n	$T_i = 0.007$	$n \cdot L$) ^{0.8} / (P ₂) ^{0.5} S ^{0.4}
Mir	Checked by: nimum Time of Concentration 2YR-24HR Rainfall, P2	ı <u>5.0</u>	Date:		City of Colorado S Criteria Manua		City of Colorado Criteria Man	Springs Drainage ual Eqn. 6-13		rado Springs Drainage Manual Eqn. 6-17		ido Springs Draina Ianual Eqn. 6-15
Post-Deve	elopment											
Drainage Area	ı: H5B											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.070	0.10	2.10						12.76	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	450.00	0.080			U				4.56	1.64	
CHANNEL	T3 CHANNEL FLOW	500.00	0.05	0.04		U	64.00	32.98	1.94	12.96	0.64	
							Post-I	Development Time	of Concentra	tion, H5B	15.05	9.03
Post-Deve	elopment											
Drainage Area												
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.090	0.10	2.10						11.54	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	650.00	0.080			U				4.56	2.37	
							Post-L	Development Time	of Concentra	tion, H6A	13.91	8.35
Post-Deve	elopment											
Drainage Area	1: H6B											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	Average Velocity, V (ft/s)**	Travel Time, Tt (min)	
SHEET	T1 SHEET FLOW	10.00						. ,			()	Lag Time (min)
		42.00	0.040	0.10	2.10						3.31	Lag Time (min)
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	42.00 710.00	0.040	0.10	2.10	U				3.95		Lag Time (min)
				0.10	2.10		64.00	32.98	1.94	11.59	3.31 3.00 1.19	Lag Time (min)
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	710.00	0.060		2.10	U	64.00			11.59	3.31 3.00	Lag Time (min) 6.00
SHALLOW CONCENTRATED CHANNEL	T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW	710.00	0.060		2.10	U	64.00	32.98		11.59	3.31 3.00 1.19	
SHALLOW CONCENTRATED	12 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW Elopment	710.00	0.060		2.10	U	64.00	32.98		11.59	3.31 3.00 1.19	
SHALLOW CONCENTRATED CHANNEL Post-Deve	12 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW Elopment	710.00 825.00	0.060	0.04 Manning's Roughness	Two-year, 24-hr rainfall,	UUU	64.00 Post-E	32.98 Development Time Wetted Perimeter, pw	of Concentra	11.59 tion, H6B	3.31 3.00 1.19 10.00	6.00
SHALLOW CONCENTRATED CHANNEL Post-Deve Drainage Area	12 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW	710.00 825.00 Flow Length, L (ft)	0.060 0.04 Slope, s (ft/ft)	0.04 Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	U	64.00	32.98 Development Time	of Concentra	11.59	3.31 3.00 1.19 10.00 Travel Time, Tt (min)	
SHALLOW CONCENTRATED CHANNEL Post-Deve Drainage Area SHEET	IZ SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW elopment a: H7A T1 SHEET FLOW	710.00 825.00 Flow Length, L (ft) 37.00	0.060 0.04 Slope, s (ft/ft) 0.050	0.04 Manning's Roughness	Two-year, 24-hr rainfall,	Paved or Unpaved	64.00 Post-E	32.98 Development Time Wetted Perimeter, pw	of Concentra	11.59 tion, H6B Average Velocity, V (ft/s)**	3.31 3.00 1.19 10.00 Travel Time, Tt (min) 2.74	6.00
SHALLOW CONCENTRATED CHANNEL Post-Deve Drainage Area SHEET SHALLOW CONCENTRATED	12 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW elopment a: H7A T1 SHEET FLOW T2 SHALLOW CONCENTRATED FLOW	710.00 825.00 Flow Length, L (ft) 37.00 546.00	0.060 0.04 Slope, s (ft/ft) 0.050 0.040	0.04 Manning's Roughness Coefficient, n 0.10	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	64.00 Post-E Cross sectional rivea of Flow, A (ft ²)	32.98 Development Time Wetted Perimeter, pw (ft)	Hydraulic radius, r (ft)	11.59 tion, H6B Average Velocity, V (ft/s)** 3.23	3.31 3.00 1.19 10.00 Travel Time, Tt (min) 2.74 2.82	6.00
SHALLOW CONCENTRATED CHANNEL Post-Deve Drainage Area SHEET	IZ SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW elopment a: H7A T1 SHEET FLOW	710.00 825.00 Flow Length, L (ft) 37.00	0.060 0.04 Slope, s (ft/ft) 0.050	0.04 Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	64.00 Post-E Cross sectional wear of Flow, A (tr ²) 64.00	32.98 Development Time Wetted Perimeter, pw	Hydraulic radius, r (ft)	11.59 tion, H6B Average Velocity, V (ft/s)** 3.23 12.96	3.31 3.00 1.19 10.00 Travel Time, Tt (min) 2.74	6.00
SHALLOW CONCENTRATED CHANNEL Post-Deve Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL	IZ SHALLOW CONCENTRATED FLOW T3 CHANNEL R.OW elopment a: H7A T1 SHEET FLOW T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW	710.00 825.00 Flow Length, L (ft) 37.00 546.00	0.060 0.04 Slope, s (ft/ft) 0.050 0.040	0.04 Manning's Roughness Coefficient, n 0.10	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	64.00 Post-E Cross sectional wear of Flow, A (tr ²) 64.00	32.98 Development Time Wetted Perimeter, pw (ft) 32.98	Hydraulic radius, r (ft)	11.59 tion, H6B Average Velocity, V (ft/s)** 3.23 12.96	3.31 3.00 1.19 10.00 Iravel Time, Tt (min) 2.74 2.82 1.51	6.00 Lag Time (min)
SHALLOW CONCENTRATED CHANNEL Post-Deve Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-Deve	IZ SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW elopment a: H7A T1 SHEET FLOW T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW Blopment	710.00 825.00 Flow Length, L (ft) 37.00 546.00	0.060 0.04 Slope, s (ft/ft) 0.050 0.040	0.04 Manning's Roughness Coefficient, n 0.10	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	64.00 Post-E Cross sectional wear of Flow, A (tr ²) 64.00	32.98 Development Time Wetted Perimeter, pw (ft) 32.98	Hydraulic radius, r (ft)	11.59 tion, H6B Average Velocity, V (ft/s)** 3.23 12.96	3.31 3.00 1.19 10.00 Iravel Time, Tt (min) 2.74 2.82 1.51	6.00 Lag Time (min)
SHALLOW CONCENTRATED CHANNEL Post-Deve Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL	IZ SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW elopment a: H7A T1 SHEET FLOW T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW Blopment	710.00 825.00 Flow Length, L (ft) 37.00 546.00 1177.00	0.060 0.04 Slope, s (ft/ft) 0.050 0.040	0.04 Manning's Roughness Coefficient, n 0.10 0.04	Two-year, 24-hr rainfall, P2 (in) 2.10	Paved or Unpaved	64.00 Post-E Cross sectional wear of Flow, A (tr ²) 64.00	32.98 Development Time Wetted Perimeter, pw (ft) 32.98 Development Time	THydraulic radius, r (ft) 1.94 of Concentra	11.59 tion, H6B Average Velocity, V (ft/s)** 3.23 12.96	3.31 3.00 1.19 10.00 Travel Time, Tt (min) 2.74 2.82 1.51 10.00	6.00 Lag Time (min)
SHALLOW CONCENTRATED CHANNEL Post-Deve Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-Deve	IZ SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW elopment a: H7A T1 SHEET FLOW T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW Blopment	710.00 825.00 Flow Length, L (ft) 37.00 546.00	0.060 0.04 Slope, s (ft/ft) 0.050 0.040	0.04 Manning's Roughness Coefficient, n 0.10	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	64.00 Post-E Cross sectional wear of Flow, A (tr ²) 64.00	32.98 Development Time Wetted Perimeter, pw (ft) 32.98	Hydraulic radius, r (ft)	11.59 tion, H6B Average Velocity, V (ft/s)** 3.23 12.96	3.31 3.00 1.19 10.00 Iravel Time, Tt (min) 2.74 2.82 1.51	6.00 Lag Time (min)
SHALLOW CONCENTRATED CHANNEL Post-Deve Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-Deve	IZ SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW elopment a: H7A T1 SHEET FLOW T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW Blopment	710.00 825.00 Flow Length, L (ft) 37.00 546.00 1177.00	0.060 0.04 Slope, s (ft/ft) 0.050 0.040 0.05	0.04 Manning's Roughness Coefficient, n 0.10 0.04 Manning's Roughness	Two-year, 24-hr rainfall, P2 (in) 2.10	Paved or Unpaved U U U U U U U	64.00 Post-E Cross sectional area of Flow, A (ft ²) 64.00 Post-E	32.98 Development Time Wetted Perimeter, pw (ft) 32.98 Development Time Wetted Perimeter, pw	Hydraulic radius, r (ft) 1.94 of Concentra	11.59 tion, H6B Average Velocity, V (ft/s)** 3.23 12.96 tion, H7A	3.31 3.00 1.19 10.00 Travel Time, Tt (min) 2.74 2.82 1.51 10.00 Travel Time, Tt	6.00 Lag Time (min) 6.00
SHALLOW CONCENTRATED CHANNEL Post-Deve Drainage Area SHEET SHALLOW CONCENTRATED CHANNEL Post-Deve Drainage Area	I 2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW a: H7A T1 SHEET FLOW T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW BEIOPMENT a: H7B	710.00 825.00 Flow Length, L (ft) 37.00 546.00 1177.00	0.060 0.04 Slope, s (ft/ft) 0.050 0.040 0.05 Slope, s (ft/ft)	0.04 Manning's Roughness Coefficient, n 0.10 0.04 Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in) 2.10 Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved U U U U U U U	64.00 Post-E Cross sectional area of Flow, A (ft ²) 64.00 Post-E	32.98 Development Time Wetted Perimeter, pw (ft) 32.98 Development Time Wetted Perimeter, pw	Hydraulic radius, r (ft) 1.94 of Concentra	11.59 tion, H6B Average Velocity, V (ft/s)** 3.23 12.96 tion, H7A	3.31 3.00 1.19 10.00 Travel Time, Tt (min) 2.74 2.82 1.51 10.00 Travel Time, Tt (min)	6.00 Lag Time (min) 6.00

Post-Development Time of Concentration, H7B

10.00

6.00

	»Horn				Post Runoff An e of Concentrat	•						* NOTES TO USE
ject Information	Project Name: KHA Project #:		Winsome Fili 19610600	-		D FLOW EQN	LAG TI	ME EQN	Equations U MAI	<u>sed</u> NNINGS EQN	SHEE	ET FLOW EQN
	Designed by: Revised by: Checked by:	TOS	Date: Date: Date:	9/14/2022	$T_t = L / (360)$		$t_{lag}=0.$		_	49 R _h ^{2/3} S ^{1/2} / n		$(\mathbf{n} \cdot \mathbf{L})^{0.8} / (\mathbf{P}_2)^{0.5} \mathbf{S}^6$
Mi	nimum Time of Concentration 2YR-24HR Rainfall, P2		minutes		 City of Colorado S Criteria Manua 			Springs Drainage ual Eqn. 6-13		rado Springs Drainage Manual Eqn. 6-17		ado Springs Draina Manual Eqn. 6-15
Post-Dev	velopment											
Drainage Are	a: H8A											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius r (ft)	, Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.080	0.10	2.10						12.09	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	600.00	0.080			U				4.56	2.19	
							Post-E	Development Time	of Concentra	tion, H8A	14.29	8.57
Post-Dev	velopment											
Drainage Are	a: H8B											
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Cross Sectional Area of Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius r (ft)	, Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.080	0.10	2.10						12.09	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	80.00	0.080			U				4.56	0.29	
							103(-1	Development Time	or concentra	1001, 1100	12.39	7.43
Post-Dev Drainage Are	velopment a: H9											
			-									
		Flow Length, L (ft)	Slope, s (ft/ft)	Manning's Roughness Coefficient, n	Two-year, 24-hr rainfall, P2 (in)	Paved or Unpaved	Flow, A (ft ²)	Wetted Perimeter, pw (ft)	Hydraulic radius r (ft)	, Average Velocity, V (ft/s)**	Travel Time, Tt (min)	Lag Time (min)
SHEET	T1 SHEET FLOW	(ft) 300.00	Slope, s (ft/ft) 0.036			Paved or Unpaved	Flow, A (ft ²)					Lag Time (min)
SHALLOW CONCENTRATED	T1 SHEET FLOW T2 SHALLOW CONCENTRATED FLOW	(ft) 300.00 300.00	0.036	Coefficient, n 0.10	P2 (in)	U		(ft)	r (ft)	3.95	(min) 16.65 1.27	Lag Time (min)
		(ft) 300.00	0.036	Coefficient, n	P2 (in)		64.00	(ft) 32.98	r (ft)	3.95 18.33	(min) 16.65 1.27 0.21	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	(ft) 300.00 300.00	0.036	Coefficient, n 0.10	P2 (in)	U	64.00	(ft)	r (ft)	3.95 18.33	(min) 16.65 1.27	Lag Time (min)
SHALLOW CONCENTRATED CHANNEL	T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW	(ft) 300.00 300.00	0.036	Coefficient, n 0.10	P2 (in)	U	64.00	(ft) 32.98	r (ft)	3.95 18.33	(min) 16.65 1.27 0.21	
SHALLOW CONCENTRATED CHANNEL Post-Dev	T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW	(ft) 300.00 300.00	0.036	Coefficient, n 0.10	P2 (in)	U	64.00	(ft) 32.98	r (ft)	3.95 18.33	(min) 16.65 1.27 0.21	
SHALLOW CONCENTRATED CHANNEL	T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW	(ft) 300.00 300.00 230.00 Flow Length, L	0.036 0.060 0.10	Coefficient, n 0.10 0.04 Manning's Roughness	P2 (in) 2.10 Two-year, 24-hr rainfall,	UUU	64.00 Post-	(ft) 32.98 Development Time Wetted Perimeter, pw	r (ft)	395 18.33 ation, H9	(min) 16.65 1.27 0.21 18.12 Travel Time, Tt	10.87
SHALLOW CONCENTRATED CHANNEL Post-Dev Drainage Are	T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL R.OW relopment a: 11	(ft) 300.00 230.00 Flow Length, L (ft)	0.036 0.060 0.10 Slope, s (ft/ft)	Coefficient, n 0.10 0.04 Manning's Roughness Coefficient, n	P2 (in) 2.10 Two-year, 24-hr rainfall, P2 (in)	U	64.00	32.98 Development Time	r (ft)	3.95 18.33	(min) 16.65 1.27 0.21 18.12 Travel Time, Tt (min)	
SHALLOW CONCENTRATED CHANNEL Post-Dev Drainage Are SHEET	T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW Velopment a: 11 T1 SHEET FLOW	(ft) 300.00 300.00 230.00 Flow Length, L (ft) 300.00	0.036 0.060 0.10 Slope, s (ft/ft) 0.038	Coefficient, n 0.10 0.04 Manning's Roughness	P2 (in) 2.10 Two-year, 24-hr rainfall,	U U Paved or Unpaved	64.00 Post-	(ft) 32.98 Development Time Wetted Perimeter, pw	r (ft)	3.95 18.33 attion, H9 Average Velocity, V (ft/s)**	(min) 16.65 1.27 0.21 18.12 Travel Time, Tt (min) 16.29	10.87
SHALLOW CONCENTRATED CHANNEL Post-Dev Drainage Are SHEET SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW Velopment a: 11 T1 SHEET FLOW T2 SHALLOW CONCENTRATED FLOW	(ft) 300.00 230.00 Flow Length, L (ft)	0.036 0.060 0.10 Slope, s (ft/ft)	Coefficient, n 0.10 0.04 Manning's Roughness Coefficient, n	P2 (in) 2.10 Two-year, 24-hr rainfall, P2 (in)	UUU	64.00 Post-	(ft) 32.98 Development Time Wetted Perimeter, pw	r (ft)	395 18.33 ation, H9	(min) 16.65 1.27 0.21 18.12 Travel Time, It (min) 16.29 0.34	10.87
SHALLOW CONCENTRATED CHANNEL Post-Dev Drainage Are SHEET	T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW Velopment a: 11 T1 SHEET FLOW	(ft) 300.00 230.00 230.00 Flow Length, L (ft) 300.00 65.00	0.036 0.060 0.10 Slope, s (ft/ft) 0.038 0.038	Coefficient, n 0.10 0.04 Manning's Roughness Coefficient, n 0.10	P2 (in) 2.10 Two-year, 24-hr rainfall, P2 (in)	U U V Paved or Unpaved	64.00 Post- Cross sectional Area of Flow, A (tt ²) 64.00	(ft) 32.98 Development Time Wetted Perimeter, pw (ft)	r (ft) 1.94 e of Concentra r (ft) 1.94	3 95 18.33 ation, H9 Average Velocity, V (ft/s)** 3.14 11.74	(min) 16.65 1.27 0.21 18.12 Travel Time, Tt (min) 16.29	10.87
SHALLOW CONCENTRATED CHANNEL Post-Dev Drainage Are SHEET SHALLOW CONCENTRATED CHANNEL	IZ SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW Velopment a: 11 T1 SHEET FLOW T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW	(ft) 300.00 230.00 230.00 Flow Length, L (ft) 300.00 65.00	0.036 0.060 0.10 Slope, s (ft/ft) 0.038 0.038	Coefficient, n 0.10 0.04 Manning's Roughness Coefficient, n 0.10	P2 (in) 2.10 Two-year, 24-hr rainfall, P2 (in)	U U V Paved or Unpaved	64.00 Post- Cross sectional Area of Flow, A (tt ²) 64.00	(ft) 32.98 Development Time Wetted Perimeter, pw (ft) 32.98	r (ft) 1.94 e of Concentra r (ft) 1.94	3 95 18.33 ation, H9 Average Velocity, V (ft/s)** 3.14 11.74	(min) 16.65 1.27 0.21 18.12 Travel Time, Tt (min) 16.29 0.34 0.75	10.87 Lag Time (min)
SHALLOW CONCENTRATED CHANNEL Post-Dev Drainage Are SHEET SHALLOW CONCENTRATED CHANNEL Post-Dev	IZ SHALLOW CONCENTRATED FLOW T3 CHANNEL R.OW Relopment a: 11 T1 SHEET FLOW T2 SHALLOW CONCENTRATED R.OW T3 CHANNEL R.OW	(ft) 300.00 230.00 230.00 Flow Length, L (ft) 300.00 65.00	0.036 0.060 0.10 Slope, s (ft/ft) 0.038 0.038	Coefficient, n 0.10 0.04 Manning's Roughness Coefficient, n 0.10	P2 (in) 2.10 Two-year, 24-hr rainfall, P2 (in)	U U V Paved or Unpaved	64.00 Post- Cross sectional Area of Flow, A (tt ²) 64.00	(ft) 32.98 Development Time Wetted Perimeter, pw (ft) 32.98	r (ft) 1.94 e of Concentra r (ft) 1.94	3 95 18.33 ation, H9 Average Velocity, V (ft/s)** 3.14 11.74	(min) 16.65 1.27 0.21 18.12 Travel Time, Tt (min) 16.29 0.34 0.75	10.87 Lag Time (min)
SHALLOW CONCENTRATED CHANNEL Post-Dev Drainage Are SHEET SHALLOW CONCENTRATED CHANNEL	IZ SHALLOW CONCENTRATED FLOW T3 CHANNEL R.OW Relopment a: 11 T1 SHEET FLOW T2 SHALLOW CONCENTRATED R.OW T3 CHANNEL R.OW	(ft) 300.00 230.00 230.00 Flow Length, L (ft) 300.00 65.00	0.036 0.060 0.10 Slope, s (ft/ft) 0.038 0.038	Coefficient, n 0.10 0.04 Manning's Roughness Coefficient, n 0.10	P2 (in) 2.10 Two-year, 24-hr rainfall, P2 (in)	U U V Paved or Unpaved	64.00 Post- Cross sectional Area of Flow, A (tt ²) 64.00	(ft) 32.98 Development Time Wetted Perimeter, pw (ft) 32.98	r (ft) 1.94 e of Concentra r (ft) 1.94	3 95 18.33 ation, H9 Average Velocity, V (ft/s)** 3.14 11.74	(min) 16.65 1.27 0.21 18.12 Travel Time, Tt (min) 16.29 0.34 0.75	10.87 Lag Time (min)
SHALLOW CONCENTRATED CHANNEL Post-Dev Drainage Are SHEET SHALLOW CONCENTRATED CHANNEL Post-Dev	IZ SHALLOW CONCENTRATED FLOW T3 CHANNEL R.OW Relopment a: 11 T1 SHEET FLOW T2 SHALLOW CONCENTRATED R.OW T3 CHANNEL R.OW	(ft) 300.00 300.00 230.00 Flow Length, L (ft) 300.00 65.00 526.00 Flow Length, L	0.036 0.060 0.10 Slope, s (ft/ft) 0.038 0.038 0.04	Coefficient, n 0.10 0.04 Manning's Roughness Manning's Roughness	P2 (in) 2.10 Two-year, 24-hr rainfall, P2 (in) 2.10 2.10 Two-year, 24-hr rainfall,	Paved or Unpaved	64.00 Post- Cross sectional wear of Flow, A (ft ²) 64.00 Post-	(ft) 32.98 Development Time Wetted Perimeter, pw (ft) 32.98 -Development Time Wetted Perimeter, pw	r (ft) 1.94 e of Concentration r (ft) 1.94 e of Concentration r (ft) 1.94 e of Concentration Hydraulic radius	3 95 18.33 ation, H9 Average Velocity, V (ft/s)** 3.14 11.74 ation, I1	(min) 16.65 1.27 0.21 18.12 Travel Time, Tt (min) 16.29 0.34 0.75 17.38 Travel Time, Tt	10.87
SHALLOW CONCENTRATED CHANNEL Post-Dev Drainage Are SHEET SHALLOW CONCENTRATED CHANNEL Post-Dev Drainage Are	IZ SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW relopment a: 11 T1 SHEET FLOW T2 SHALLOW CONCENTRATED FLOW T3 CHANNEL FLOW Relopment a: 12	(ft) 300.00 300.00 230.00 Flow Length, L (ft) 300.00 65.00 526.00 Flow Length, L (ft)	0.036 0.060 0.10 Slope, s (ft/ft) 0.038 0.038 0.04 Slope, s (ft/ft)	Coefficient, n 0.10 0.04 Manning's Roughness Coefficient, n 0.10 0.04 Manning's Roughness Coefficient, n	P2 (in) 2.10 1.00 2.1	Paved or Unpaved	64.00 Post- Flow, A (ft ²) 64.00 Post- Flow, A (ft ²)	(ft) 32.98 Development Time Wetted Perimeter, pw (ft) 32.98 -Development Time Wetted Perimeter, pw	r (ft) 1.94 e of Concentration of Conc	3.95 18.33 ation, H9 Average Velocity, V (ft/s)** 3.14 11.74 ation, I1 Average Velocity, V (ft/s)** 2.79	(min) 16.65 1.27 0.21 18.12 Travel Time, Tt (min) 16.29 0.34 0.75 17.38 Travel Time, Tt (min)	10.87 Lag Time (min) 10.43

	i o pinioni											
Drainage Area:	K1											
		Flow Length, L		Manning's Roughness	Two-year, 24-hr rainfall,		cross Sectional Area of	Wetted Perimeter, pw	Hydraulic radius,		Travel Time, Tt	
		(ft)	Slope, s (ft/ft)	Coefficient, n	P2 (in)	Paved or Unpaved	Flow, A (ft ²)	(ft)	r (ft)	Average Velocity, V (ft/s)**	(min)	Lag Time (min)
SHEET	T1 SHEET FLOW	300.00	0.083	0.10	2.10						11.92	
SHALLOW CONCENTRATED	T2 SHALLOW CONCENTRATED FLOW	390.00	0.043			U				3.34	1.94	
							Post-	Development Time	of Concentra	ation, K1	13.86	8.32

Pre vs. Post Runoff Analysis

Project Name:	Winsome Filing 3			
KHA Project #:	196106001			
Designed by:	TOS	Date:	9/14/2022	
Revised by:		Date:		
Revised by:		Date:		
Checked by:		Date:	9/14/2022	

				Development	
	1051		10/0001		Drainage Area:
Initial Abstrac	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	COVER DESCRIPTION
	15.39	60.00	В	5 acre (7% imp.)	RESIDENTIAL
	12.74	72.00	C	5 acre (7% imp.)	RESIDENTIAL
				CUSTOM	
0.528	28.13	.43	65	CURVE NUMBER - A2A	COMPOSITE SCS
					-
				Development	Post-I Drainage Area:
	AREA, A	SCS CURVE NUMBER	HYDROLOGIC SOIL	HYDROLOGIC CONDITION OR	Dialitage Alea.
Initial Abstrac	(ac.)	(CN)	GROUP	COVER TYPE	COVER DESCRIPTION
	1.64	60.00	В	5 acre (7% imp.)	RESIDENTIAL
	7.23	72.00	С	5 acre (7% imp.)	RESIDENTIAL
				CUSTOM	
0.433	8.87	.78	69	CURVE NUMBER - A2B	COMPOSITE SCS
				Development	Post-
				-	Drainage Area:
	AREA, A	SCS CURVE NUMBER	HYDROLOGIC SOIL	HYDROLOGIC CONDITION OR	
Initial Abstrac	(ac.)	(CN)	GROUP	COVER TYPE	COVER DESCRIPTION
	0.43	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
	7.82	72.00	С	5 acre (7% imp.)	RESIDENTIAL
0.369	8.25	.04	73	CURVE NUMBER - A3A	COMPOSITE SCS
				Development	
	AREA, A	SCS CURVE NUMBER	HYDROLOGIC SOIL	A3B HYDROLOGIC CONDITION OR	Drainage Area:
Initial Abstrac	(ac.)	(CN)	GROUP	COVER TYPE	COVER DESCRIPTION
	0.12	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
	9.09	72.00	C	5 acre (7% imp.)	RESIDENTIAL
	4.01	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
				CUSTOM	
0.346	13.22	.30	74	CURVE NUMBER - A3B	COMPOSITE SCS
				Development	Post
				-	Drainage Area:
	AREA, A	SCS CURVE NUMBER	HYDROLOGIC SOIL	HYDROLOGIC CONDITION OR	ž
Initial Abstrac	(ac.)	(CN)	GROUP	COVER TYPE	COVER DESCRIPTION
	0.00	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
	2.95	72.00	С	5 acre (7% imp.)	RESIDENTIAL
_	8.71	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
	11 44	22			
0.000	11.66	.23	//	CURVE NUMBER - A3C	LUIVIPUSITE SUS
0.295					
0.295				Development	Post-
0.295					Post-I Drainage Area:
	AREA, A	SCS CURVE NUMBER	HYDROLOGIC SOIL	G1 HYDROLOGIC CONDITION OR	Drainage Area:
0.295	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	G1 HYDROLOGIC CONDITION OR COVER TYPE	
	(ac.) 0.24	(CN) 92.00		G1 HYDROLOGIC CONDITION OR	Drainage Area:
	(ac.) 0.24 10.03	(CN) 92.00 72.00	GROUP C C	G1 HYDROLOGIC CONDITION OR COVER TYPE Paved: open ditches (including right-of-way) 5 acre (7% imp.)	Drainage Area: COVER DESCRIPTION IMPERVIOUS RESIDENTIAL
	(ac.) 0.24	(CN) 92.00	GROUP C C B	G1 HYDROLOGIC CONDITION OR COVER TYPE Paved; open ditches (including right-of-way) 5 acre (7% imp.) 5 acre (7% imp.)	Drainage Area: COVER DESCRIPTION IMPERVIOUS
	(ac.) 0.24 10.03	(CN) 92.00 72.00	GROUP C C	G1 HYDROLOGIC CONDITION OR COVER TYPE Paved: open ditches (including right-of-way) 5 acre (7% imp.)	Drainage Area: COVER DESCRIPTION IMPERVIOUS RESIDENTIAL
	(ac.) 0.24 10.03 0.83	(CN) 92.00 72.00 60.00	GROUP C C B	G1 HYDROLOGIC CONDITION OR COVER TYPE Paved; open ditches (including right-of-way) 5 acre (7% imp.) 5 acre (7% imp.)	Drainage Area: COVER DESCRIPTION IMPERVIOUS RESIDENTIAL RESIDENTIAL
	(ac.) 0.24 10.03 0.83 9.08	(CN) 92.00 72.00 60.00 60.00	GROUP C C B B B	G1 HYDROLOGIC CONDITION OR COVER TYPE Paved; open ditches (including right-of-way) 5 acre (7% imp.) 5 acre (7% imp.) WOODS, Fair condition (grass cover 50 to 75%)	Drainage Area: COVER DESCRIPTION IMPERVIOUS RESIDENTIAL RESIDENTIAL WOODS WOODS

Pre vs. Post Runoff Analysis

Project Name:	Winsome Filing 3		
KHA Project #:	196106001		
Designed by:	TOS	Date:	9/14/2022
Revised by:		Date:	
Revised by:		Date:	
Checked by:		Date:	9/14/2022

				Development	Post-L
					Drainage Area:
Initial Abstractio	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	COVER DESCRIPTION
	0.28	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
	13.28	72.00	С	5 acre (7% imp.)	RESIDENTIAL
	5.04	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
0.040	10.70	00	74		
0.348	18.60	.20	/4	CURVE NUMBER - G2A	COMPOSITE SCS
				Development	
		SCS CURVE NUMBER	HYDROLOGIC SOIL	G2B HYDROLOGIC CONDITION OR	Drainage Area:
Initial Abstractio	AREA, A (ac.)	(CN)	GROUP	COVER TYPE	COVER DESCRIPTION
	0.31	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
	2.46	72.00	C	5 acre (7% imp.)	RESIDENTIAL
	0.00	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
				CUSTOM	
0.347	2.77	.24	74	CURVE NUMBER - G2B	COMPOSITE SCS
				Development	Post-I
					Drainage Area:
	AREA, A	SCS CURVE NUMBER	HYDROLOGIC SOIL	HYDROLOGIC CONDITION OR	
Initial Abstractio	(ac.)	(CN)	GROUP	COVER TYPE	COVER DESCRIPTION
	0.32	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
_	10.65	72.00	С	5 acre (7% imp.)	RESIDENTIAL
-	2.79	60.00	В	5 acre (7% imp.) CUSTOM	RESIDENTIAL
0.428	13.76	.03	70	S CURVE NUMBER - H1	
				Development	Post-L
			1		Drainage Area:
Initial Abstractio	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	COVER DESCRIPTION
		92.00	С	Paved; open ditches (including right-of-way)	
-	0.65 24.64	60.00	B	5 acre (7% imp.)	IMPERVIOUS RESIDENTIAL
-	12.91	72.00	C	5 acre (7% imp.)	RESIDENTIAL
	0.89	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
				CUSTOM	
0.540	39.09	.93	64	S CURVE NUMBER - H2	COMPOSITE SCS
				Development	Post-I
					Drainage Area:
	AREA, A	SCS CURVE NUMBER	HYDROLOGIC SOIL	HYDROLOGIC CONDITION OR	<u>v</u>
Initial Abstractio	(ac.)	(CN)	GROUP	COVER TYPE	COVER DESCRIPTION
	0.16	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
_	0.00	60.00	В	5 acre (7% imp.)	RESIDENTIAL
-	1.18	72.00	С	5 acre (7% imp.)	RESIDENTIAL
-	0.87	60.00	В	WOODS, Fair condition (grass cover 50 to 75%)	WOODS
-	0.87	79.00	С	Pasture, grassland or range (Fair Condition) CUSTOM	AGRICULTURAL
0.397	3.08	.60	71	CURVE NUMBER - H3A	
				Development	
			I		Drainage Area:
Initial Abstractio	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	COVER DESCRIPTION
1	0.18	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
	0.10		B	5 acre (7% imp.)	RESIDENTIAL
	0.00	60.00			contraction and a condition
	0.00	60.00 72.00	C	5 acre (7% imp.)	RESIDENTIAL
-	1.16	72.00	С	5 acre (7% imp.) WOODS, Fair condition (grass cover 50 to 75%)	
-					RESIDENTIAL WOODS AGRICULTURAL
	1.16 0.69	72.00 60.00	C B	WOODS, Fair condition (grass cover 50 to 75%)	WOODS AGRICULTURAL

Pre vs. Post Runoff Analysis

Winsome Filing 3		
196106001		
TOS	Date:	9/14/2022
	Date:	
	Date:	
	Date:	9/14/2022
	196106001	196106001 TOS Date: Date: Date:

				Development	Post-
				· H4	Drainage Area
Initial Abstraction	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	COVER DESCRIPTION
	0.25	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
	18.06	72.00	С	5 acre (7% imp.)	RESIDENTIAL
-	8.69	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
0.343	27.00	.44	74	CUSTOM S CURVE NUMBER - H4	COMPOSITE SC
				Development	Post-
				H5A	Drainage Area.
Initial Abstraction	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	COVER DESCRIPTION
	0.00	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
	3.93	72.00	С	5 acre (7% imp.)	RESIDENTIAL
	5.10	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
				CUSTOM	
0.317	9.03	.95	75	S CURVE NUMBER - H5A	COMPOSITE SC.
				Development	Post-
			-	H5B	Drainage Area
Initial Abstraction	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	COVER DESCRIPTION
	0.00	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
	7.85	72.00	С	5 acre (7% imp.)	RESIDENTIAL
	2.63	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
				CUSTOM	
0.356	10.48	.76	73	S CURVE NUMBER - H5B	COMPOSITE SC.
-				Development	
					Drainage Area
Initial Abstraction	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	COVER DESCRIPTION
	0.00	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
	8.17	72.00	С	5 acre (7% imp.)	RESIDENTIAL
	8.47	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
				CUSTOM	
0.323	16.64	.56	75	S CURVE NUMBER - H6A	COMPOSITE SC.
				Development	Post-
					Drainage Area
Initial Abstraction	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	COVER DESCRIPTION
1	0.64	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
1	8.48	72.00	С	5 acre (7% imp.)	RESIDENTIAL
	4.73	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
_	2.11	84.00	D	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
0.200	15.04	47	74		
0.308	15.96	.47	/0	S CURVE NUMBER - H6B	COMPOSITE SC.
				Development	
1		SCS CLIDVE NUMBER	HYDROLOGIC SOIL	HYDROLOGIC CONDITION OR	Drainage Area
Initial Abstraction	AREA, A (ac.)	SCS CURVE NUMBER (CN)	GROUP	COVER TYPE	COVER DESCRIPTION
1	0.63	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
1	6.17	72.00	С	5 acre (7% imp.)	RESIDENTIAL
1	0.88	60.00	В	5 acre (7% imp.)	RESIDENTIAL
	0.82	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
0.371	8.50	.92		CUSTOM S CURVE NUMBER - H7A	001 1000175

Pre vs. Post Runoff Analysis

Project Name:	Winsome Filing 3		
KHA Project #:	196106001		
Designed by:	TOS	Date:	9/14/2022
Revised by:		Date:	
Revised by:		Date:	
Checked by:		Date:	9/14/2022

				Development	Post-I
					Drainage Area:
Initial Abstraction (in	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	COVER DESCRIPTION
	0.31	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
-	14.64	72.00	C	5 acre (7% imp.)	RESIDENTIAL
-	1.77	60.00	B	5 acre (7% imp.)	RESIDENTIAL
-	0.63	79.00	C	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
				CUSTOM	
0.401	17.35	.39	71	CURVE NUMBER - H7B	COMPOSITE SCS
				Development	
Initial Abstraction (ii	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	Drainage Area:
	0.13	89.00	В	Paved; open ditches (including right-of-way)	IMPERVIOUS
	0.28	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
-	1.08	60.00	B	5 acre (7% imp.)	RESIDENTIAL
-	0.39	72.00	C	5 acre (7% imp.)	RESIDENTIAL
1	0.74	69.00	В	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
7	0.00	84.00	D	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
_	1.31	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
			70		
0.380	3.93	.46	12	CURVE NUMBER - H8A	COMPOSITE SCS
				Development	
Initial Abstraction (ii	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	H8B HYDROLOGIC CONDITION OR COVER TYPE	Drainage Area: COVER DESCRIPTION
	0.00	89.00	В	Paved; open ditches (including right-of-way)	IMPERVIOUS
	0.05	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
_	0.79	60.00	B	5 acre (7% imp.)	RESIDENTIAL
-	0.36	72.00	C	5 acre (7% imp.)	RESIDENTIAL
-	0.00	69.00	B	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
1	2.13	84.00	D	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
	1.76	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
				CUSTOM	
0.286	5.09	.78	77	CURVE NUMBER - H8B	COMPOSITE SCS
				Development	Post-I
					Drainage Area:
Initial Abstraction (i	AREA, A (ac.)	SCS CURVE NUMBER (CN)	HYDROLOGIC SOIL GROUP	HYDROLOGIC CONDITION OR COVER TYPE	COVER DESCRIPTION
	6.29	72.00	С	5 acre (7% imp.)	RESIDENTIAL
_	0.23	60.00	В	5 acre (7% imp.)	RESIDENTIAL
				CUSTOM	
0.397	6.52	.58	71	S CURVE NUMBER - H9	COMPOSITE SCS
				Development	Post-L
	AREA, A	SCS CURVE NUMBER	HYDROLOGIC SOIL	11 HYDROLOGIC CONDITION OR	Drainage Area:
Initial Abstraction (i	(ac.)	(CN)	GROUP	COVER TYPE	COVER DESCRIPTION
_	0.93	92.00	С	Paved; open ditches (including right-of-way)	IMPERVIOUS
	5.89	72.00	С	5 acre (7% imp.)	RESIDENTIAL
_	0.00	79.00	С	Pasture, grassland or range (Fair Condition)	AGRICULTURAL
0.338	6.82	.72	74	CUSTOM S CURVE NUMBER - 11	
	-				
				Development 12	
Initial Abstraction (AREA, A	SCS CURVE NUMBER	HYDROLOGIC SOIL	12 HYDROLOGIC CONDITION OR	Drainage Area:
Initial Abstraction (i	(ac.)	(CN)	GROUP	12 HYDROLOGIC CONDITION OR COVER TYPE	Drainage Area: COVER DESCRIPTION
Initial Abstraction (i	(ac.) 0.34	(CN) 92.00	GROUP	12 HYDROLOGIC CONDITION OR COVER TYPE Paved: open ditches (including right-of-way)	Drainage Area: COVER DESCRIPTION IMPERVIOUS
Initial Abstraction (ii	(ac.) 0.34 14.22	(CN) 92.00 72.00	GROUP C C	12 HYDROLOGIC CONDITION OR COVER TYPE Paved; open ditches (including right-of-way) 5 acre (7% imp.)	Drainage Area: COVER DESCRIPTION IMPERVIOUS RESIDENTIAL
Initial Abstraction (ii	(ac.) 0.34	(CN) 92.00	GROUP	12 HYDROLOGIC CONDITION OR COVER TYPE Paved: open ditches (including right-of-way)	Drainage Area: COVER DESCRIPTION IMPERVIOUS RESIDENTIAL AGRICULTURAL

Pre vs. Post Runoff Analysis

Project Name:	Winsome Filing 3		
KHA Project #:	196106001		
Designed by:	TOS	Date:	9/14/2022
Revised by:		Date:	
Revised by:		Date:	
Checked by:		Date:	9/14/2022

Pos	t-Development				
Drainage Area	a: J1				
COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	Initial Abstraction (in
IMPERVIOUS	Paved; open ditches (including right-of-way)	В	89.00	0.00	
RESIDENTIAL	5 acre (7% imp.)	В	60.00	10.14	
	CUSTOM				
COMPOSITE S	SCS CURVE NUMBER - J1	60	.00	10.14	0.667
Pos	t-Development				
Drainage Area	a: K1				

COVER DESCRIPTION	HYDROLOGIC CONDITION OR COVER TYPE	HYDROLOGIC SOIL GROUP	SCS CURVE NUMBER (CN)	AREA, A (ac.)	Initial Abstraction (in)
RESIDENTIAL	5 acre (7% imp.)	В	60.00	3.56	
RESIDENTIAL	5 acre (7% imp.)	С	72.00	13.94	
AGRICULTURAL	Pasture, grassland or range (Fair Condition)	С	79.00	0.00	
	CUSTOM				
COMPOSITE SC	COMPOSITE SCS CURVE NUMBER - K1		.56	17.50	0.438

C Value Table

Winsome	e Filing 3		
19610	06001		
TOS	Date:	9/6/2022	_
	Date:		_
	Date:		_
	Date:	9/6/2022	_
	19610	Date:	196106001 TOS Date: 9/6/2022 Date: Date:

		Hydrologic Soil Type				
Land Cover	Imp %	А	В	С	D	Source
5 acre Residential Lot	7%	51.0	60.0	72.0	77.0	Winsome PDR
Pasture, grassland or range (Fair Condition)	2%	49.0	69.0	79.0		City of Colorado Springs DCM Table 6-10
Woods (Fair Condition)	2%	36.0	60.0	73.0		City of Colorado Springs DCM Table 6-10
Roadway, paved w/ ROW	100%	83.0	89.0	92.0		City of Colorado Springs DCM Table 6-10

Imperviousness Table

Project Name:Winsome Filing 3KHA Project #:196106001Designed by:TOSDate:9/14/2022Checked by:Date:9/14/2022

		Impe	ervious Areas			
		Historic Flow	5-acre	Roadway	Modified Area for	
Basin	Area (ac)	Analysis (2%)	Residential (7%)	(100%)	UD-Detention	Imperviousness %
		N	/Q Pond 1			
A2B	8.87	0.00	8.87	0.00		7.0%
A3A	8.25	0.00	7.82	0.43		11.89
G2A	18.60	5.04	13.28	0.28		7.09
G2B	2.77	0.00	2.46	0.31		17.49
G1	24.79	13.69	10.85	0.24		5.1%
Total	63.28			1.26		2%
			Pond 1			
H1	13.76	0.0%	97.7%	2.3%		9.29
H4	27.00	32.2%	66.9%	0.9%		6.39
Total	40.76				45.5	7.2%
			Pond 2			
H6B	15.96	42.8%	53.1%	4.0%		8.60
H2	39.09	2.3%	96.1%	1.7%		8.49
Total	55.05				67.90	8.59
			Pond 4			
H3A	3.08	56.6%	38.4%	5.1%		8.9%
H3B	2.71	50.9%	42.6%	6.5%		10.5%
H7A	8.50	9.6%	82.9%	7.4%		13.49
H7B	17.35	3.6%	94.6%	1.8%		8.59
1	6.82	0.0%	86.4%	13.6%		19.69
H8A	3.93	52.2%	37.4%	10.4%		14.19
Total	42.38				64.00	11.99

Basin ID	Area	Imperviousness %
A2A	28.13	7.0%
A2B	8.87	7.0%
A3A	8.25	11.8%
A3B	13.22	6.3%
A3C	11.66	3.3%
G1	24.79	5.1%
G2A	18.60	7.0%
G2B	2.77	17.4%
H1	13.76	9.2%
H2	39.09	8.4%
H3A	3.08	8.9%
H3B	2.71	10.5%
H4	27.00	6.3%
H5A	9.03	4.2%
H5B	10.48	5.7%
H6A	16.64	4.5%
H6B	15.96	8.6%
H7A	8.50	13.4%
H7B	17.35	8.5%
H8A	3.93	14.1%
H8B	5.09	4.1%
H9	6.52	7.0%
11	6.82	19.6%
12	14.59	9.2%
J1	10.14	7.0%
К1	17.50	7.0%

PROPOSED CONDITIONS HEC-HMS LAYOUT WINSOME FILING NO. 3

Project: Winsome_Fil_3 Simulation Run: Prop Basin 5yr

Start of Run:26Feb2019, 00:00Basin Model:Proposed BEnd of Run:27Feb2019, 12:00Meteorologic Model:Prop BasinsCompute Time:DATA CHANGED, RECOMPUTEControl Specifications:Control 1

Hydrologic	Drainage Are	aPeak Discharg	eTime of Peak	Volume
Element	(MI2)	(CFS)		(AC-FT)
A1	1.3529000	84.1	26Feb2019, 12:26	13.7
A2A	0.0439531	5.3	26Feb2019, 12:03	0.4
A2B	0.0138594	2.3	26Feb2019, 12:04	0.2
A3A	0.0128906	5.7	26Feb2019, 12:01	0.3
A3B	0.0206563	9.1	26Feb2019, 12:01	0.3
A3C	0.0182187	10.7	26Feb2019, 12:02	0.3
BOX CULVERT 1	7.8720139	370.1	26Feb2019, 12:43	80.0
BOX CULV 2	8.8550872	408.4	26Feb2019, 12:49	91.5
B1	5.9948000	286.7	26Feb2019, 12:42	60.5
B2	0.0204688	3.3	26Feb2019, 12:07	0.3
B3	0.0857813	6.8	26Feb2019, 12:15	0.9
B4	0.0648125	5.5	26Feb2019, 12:16	0.7
CLV E4	0.1670157	26.6	26Feb2019, 12:11	3.1
CULV A3A	0.0267500	7.0	26Feb2019, 12:03	0.4
CULV B2	0.0204688	3.3	26Feb2019, 12:07	0.3
CULV C2	0.2892200	23.8	26Feb2019, 12:16	2.9
CULV C3	0.3143763	26.5	26Feb2019, 12:18	3.3
CULV D2	0.3593700	31.5	26Feb2019, 12:18	3.9
CULV D3	0.1423438	13.2	26Feb2019, 12:19	1.8
CULV D4	0.1959376	18.8	26Feb2019, 12:19	2.7
CULV E1.1	0.0592188	4.9	26Feb2019, 12:16	0.6
CULV E1.2	0.0238750	5.0	26Feb2019, 12:08	0.5
CULV E1.5	0.0136094	2.7	26Feb2019, 12:08	0.2
CULV E2	0.0768907	7.3	26Feb2019, 12:13	1.0
CULV E5	0.0210938	3.9	26Feb2019, 12:08	0.4
CULV F2	0.0068750	2.2	26Feb2019, 12:03	0.2
CULV G1	0.0387188	3.1	26Feb2019, 12:05	0.3

Hydrologic Element	Drainage Are (MI2)	aPeak Discharg (CFS)	eTime of Peak	Volume (AC-FT)
CULV H1	0.0217031	4.6	26Feb2019, 12:04	0.3
CULV H2	0.0610938	8.9	26Feb2019, 12:03	0.7
CULV H3	0.0048125	1.4	26Feb2019, 12:04	0.1
CULV I1	0.0148907	6.6	26Feb2019, 12:06	0.4
CULV-E3	0.1317032	18.6	26Feb2019, 12:09	2.2
CULV-Pond4	0.0452031	14.7	26Feb2019, 12:02	0.8
C1	0.2542200	21.0	26Feb2019, 12:14	2.6
C2	0.0350000	3.1	26Feb2019, 12:11	0.4
C3	0.0251563	3.8	26Feb2019, 12:09	0.4
C4	0.0371875	1.9	26Feb2019, 12:16	0.2
D1.1	0.2520300	20.8	26Feb2019, 12:14	2.5
D1.2	0.0779688	5.8	26Feb2019, 12:18	0.8
D2	0.1073400	11.8	26Feb2019, 12:12	1.4
D3	0.0643750	8.1	26Feb2019, 12:15	1.0
D4	0.0535938	7.8	26Feb2019, 12:10	0.9
D5	0.0200000	0.8	26Feb2019, 12:10	0.1
D6	0.0653125	4.4	26Feb2019, 12:15	0.6
EX CULV C1	0.2542200	21.0	26Feb2019, 12:14	2.6
EX CULV D1.1	0.2520300	20.8	26Feb2019, 12:14	2.5
EX CULV D1.2	0.0779688	5.8	26Feb2019, 12:18	0.8
EX CULV E0	0.0592188	4.9	26Feb2019, 12:14	0.6
E0	0.0592188	4.9	26Feb2019, 12:14	0.6
E1.1	0.0136094	2.7	26Feb2019, 12:08	0.2
E1.2	0.0238750	5.0	26Feb2019, 12:08	0.5
E2	0.0040625	2.3	26Feb2019, 11:56	0.1
E3	0.0309375	7.6	26Feb2019, 12:06	0.7
E4	0.0284375	6.3	26Feb2019, 12:09	0.7
E5	0.0210938	3.9	26Feb2019, 12:08	0.4
E6	0.0144609	2.7	26Feb2019, 12:03	0.2
E7	0.0159688	3.3	26Feb2019, 12:05	0.3
E8	0.0246594	5.2	26Feb2019, 11:59	0.4

Hydrologic Element	Drainage Ar (MI2)	eæPeak Discharo (CFS)	eTime of Peak	Volume (AC-FT)
E9	0.0059688	0.3	26Feb2019, 11:55	0.0
F1	0.0501563	8.1	26Feb2019, 12:07	0.8
F2	0.0068750	2.2	26Feb2019, 12:03	0.2
F3	0.0150313	3.4	26Feb2019, 12:04	0.3
G1	0.0387188	3.1	26Feb2019, 12:05	0.3
G2A	0.0290625	12.9	26Feb2019, 12:01	0.5
G2B	0.0043281	2.6	26Feb2019, 12:00	0.1
H1	0.0217031	4.6	26Feb2019, 12:04	0.3
H2	0.0610938	8.9	26Feb2019, 12:03	0.7
НЗА	0.0048125	1.4	26Feb2019, 12:03	0.1
НЗВ	0.0042344	1.3	26Feb2019, 12:05	0.1
H4	0.0421875	15.4	26Feb2019, 12:05	0.6
H5A	0.0141094	6.2	26Feb2019, 12:04	0.2
H5B	0.0163750	5.6	26Feb2019, 12:04	0.2
H6A	0.0260000	11.6	26Feb2019, 12:03	0.4
H6B	0.0249375	15.5	26Feb2019, 12:01	0.5
H7A	0.0132812	6.2	26Feb2019, 12:01	0.3
H7B	0.0271094	8.0	26Feb2019, 12:01	0.4
H8A	0.0061406	2.5	26Feb2019, 12:03	0.1
H8B	0.0079531	4.9	26Feb2019, 12:02	0.1
H9	0.0102188	2.3	26Feb2019, 12:06	0.1
11	0.0106563	6.0	26Feb2019, 12:05	0.4
12	0.0231250	8.3	26Feb2019, 12:05	0.5
J1	0.0158438	2.1	26Feb2019, 12:00	0.2
K1	0.0273438	4.5	26Feb2019, 12:03	0.3
OUT-1	9.2436297	420.9	26Feb2019, 12:52	97.1
REACH A1	1.3529000	83.8	26Feb2019, 12:31	13.7
Reach E3.1	0.0238750	5.0	26Feb2019, 12:11	0.5
Reach H3	0.0048125	1.3	26Feb2019, 12:10	0.1
Reach-A2A	0.0439531	5.2	26Feb2019, 12:07	0.4
Reach-A2B	0.0138594	2.2	26Feb2019, 12:10	0.2

Hydrologic Element	Drainage Ar (MI2)	eaPeak Discharg (CFS)	eTime of Peak	Volume (AC-FT)
Reach-A3	0.0439531	5.2	26Feb2019, 12:09	0.4
Reach-A3A	0.0310781	9.6	26Feb2019, 12:03	0.4
Reach-B1	5.9948000	286.6	26Feb2019, 12:46	60.5
Reach-B2	0.0204688	3.3	26Feb2019, 12:15	0.3
Reach-B3	6.0805813	288.7	26Feb2019, 12:50	61.4
Reach-B4-3	0.3143763	26.5	26Feb2019, 12:19	3.3
Reach-C1	0.2542200	20.9	26Feb2019, 12:17	2.6
Reach-C2	0.2892200	23.8	26Feb2019, 12:20	2.9
Reach-D1.1	0.2520300	20.7	26Feb2019, 12:20	2.5
Reach-D3	0.0779688	5.7	26Feb2019, 12:24	0.8
Reach-D4	0.1423438	13.2	26Feb2019, 12:24	1.8
Reach-D5	0.3593700	31.4	26Feb2019, 12:22	3.9
Reach-D6	0.1959376	18.7	26Feb2019, 12:23	2.7
Reach-E1.1	0.0592188	4.9	26Feb2019, 12:15	0.6
Reach-E2	0.0592188	4.9	26Feb2019, 12:18	0.6
Reach-E3	0.0768907	7.3	26Feb2019, 12:18	1.0
Reach-E4	0.1317032	18.6	26Feb2019, 12:13	2.2
Reach-E6	0.0210938	3.8	26Feb2019, 12:13	0.4
Reach-E6-2	0.1974454	30.3	26Feb2019, 12:15	3.6
Reach-E7	0.1670157	26.6	26Feb2019, 12:14	3.1
Reach-F2	0.0068750	2.2	26Feb2019, 12:08	0.2
Reach-G1	0.0387188	3.0	26Feb2019, 12:11	0.3
Reach-H1	0.0217031	4.6	26Feb2019, 12:09	0.3
Reach-H2	0.0610938	8.9	26Feb2019, 12:05	0.7
Reach-H3B	0.0042344	1.2	26Feb2019, 12:13	0.1
Reach-I1	0.0210313	8.9	26Feb2019, 12:09	0.6
Reach-P3	0.2612501	21.0	26Feb2019, 12:30	3.2
Reach-P4	0.0662344	8.7	26Feb2019, 12:18	1.2
Reach-1	7.9708733	371.6	26Feb2019, 12:45	81.3
Reach-2	8.0719514	376.2	26Feb2019, 12:48	82.4
Reach-3	8.4818058	390.9	26Feb2019, 12:48	86.8

Hydrologic Element	Drainage Are (MI2)	aPeak Discharg (CFS)	eTime of Peak	Volume (AC-FT)
Reach-4	8.5938371	393.8	26Feb2019, 12:50	88.3
Reach-5	8.8550872	408.3	26Feb2019, 12:50	91.5
Reach-6 Kiowa Outfal	9.2769735	421.3	26Feb2019, 12:52	97.7
STORAGE P1	0.0638906	9.8	26Feb2019, 12:15	0.9
STORAGE P2	0.0860313	10.7	26Feb2019, 12:11	1.1
STORAGE P3	0.2612501	21.0	26Feb2019, 12:29	3.2
STORAGE P4	0.0662344	8.8	26Feb2019, 12:17	1.2
STORAGE P5	0.2431986	6.7	26Feb2019, 13:03	3.2

	Project: Winsome_Fil_3	Simulation Run: Prop Basin Subbasin: A1	5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44 Volume Units	Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
Computed Results Peak Dischar Precipitation Loss Volume Excess Volun	Volume:195.2 (AC-FT) : 181.5 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	

Project: Winsome_Fil_3	Simulation Run: Prop Basin 5yr Subbasin: A2A
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:44 Volume Uni	Basin Model: Proposed Basins Meteorologic Model: Prop Basins 5yr Control Specifications: Control 1 ts: AC-FT
Computed Results Peak Discharge: 5.3 (CFS) Precipitation Volume£.3 (AC-FT) Loss Volume: 5.9 (AC-FT) Excess Volume: 0.4 (AC-FT)	Date/Time of Peak Discharge26Feb2019, 12: Direct Runoff Volume: 0.4 (AC-FT) Baseflow Volume: 0.0 (AC-FT) Discharge Volume: 0.4 (AC-FT)

Project: Winsome_Fil_3	Simulation Run: Prop Basin 5yr Subbasin: A2B	
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:44	Basin Model:Proposed BasinsMeteorologic Model:Prop Basins 5yrControl Specifications:Control 1	
Volume Unit	s: AC-FT	
Computed Results		
Peak Discharge: 2.3 (CFS)	Date/Time of Peak Discharge26Feb2019,	12:
Precipitation Volume 2.0 (AC-FT)	Direct Runoff Volume: 0.2 (AC-FT)	
Loss Volume: 1.8 (AC-FT)	Baseflow Volume: 0.0 (AC-FT)	
Excess Volume: 0.2 (AC-FT)	Discharge Volume: 0.2 (AC-FT)	

Project: W	'insome_Fil_3 Subl	Simulation Run: Prop Basir basin: A3A	n 5yr
Start of Run: 26Feb20 End of Run: 27Feb2 Compute Time: 09Dec20	2019, 12:00	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Units:	AC-FT	
Computed Results			
Peak Discharge:	5.7 (CFS)	Date/Time of Peak Disc	harge:26Feb2019, 12:
Precipitation Volume:	1.9 (AC-FT)	Direct Runoff Volume:	0.3 (AC-FT)
Loss Volume:	1.6 (AC-FT)	Baseflow Volume:	0.0 (AC-FT)
Excess Volume:	0.3 (AC-FT)	Discharge Volume:	0.3 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Bas Subbasin: A3B	sin 5yr
Start of Run: End of Run: Compute Tim	,,	Basin Model: Meteorologic Model: Control Specifications	Proposed Basins Prop Basins 5yr s: Control 1
	Volume Ur	nits: AC-FT	
Computed Results			
Peak Disch	5 ()	Date/Time of Peak Dis	scharge26Feb2019, 12:
•	n Volume3.0 (AC-FT)	Direct Runoff Volume:	
Loss Volum	- ,	Baseflow Volume:	0.0 (AC-FT)
Excess Volu	ume: 0.3 (AC-FT)	Discharge Volume:	0.3 (AC-FT)

Project: Winsome_Fil_3 Sul	Simulation Run: Prop Basir bbasin: A3C	n 5yr
Start of Run:26Feb2019, 00:00End of Run:27Feb2019, 12:00Compute Time:09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
Volume Units:	AC-FT	
Computed Results		
Peak Discharge: 10.7 (CFS)	Date/Time of Peak Disc	harge26Feb2019, 12:
Precipitation Volume 2.6 (AC-FT)	Direct Runoff Volume:	0.3 (AC-FT)
Loss Volume: 2.4 (AC-FT)	Baseflow Volume:	0.0 (AC-FT)
Excess Volume: 0.3 (AC-FT)	Discharge Volume:	0.3 (AC-FT)

	Project: Winsome_Fil_3 R	Simulation Run: Prop Basir each: CULV A3A	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Un	its: AC-FT	
Computed Results			
	ow: 7.0 (CFS) harge:7.0 (CFS) lume: 0.4 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basir Reach: CULV G1	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
	ow: 3.1 (CFS) harge:3.1 (CFS) lume: 0.3 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basir Reach: CULV H1	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
	ow: 4.6 (CFS) harge:4.6 (CFS) lume: 0.3 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	

	Project: Winsome_Fil_3	Simulation Run: Prop Basir each: CULV H2	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	ts: AC-FT	
Computed Results			
	ow: 8.9 (CFS) charge:8.9 (CFS) olume: 0.7 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basir each: CULV H3	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Unit	s: AC-FT	
Computed Results			
	ow: 1.4 (CFS) harge:1.4 (CFS) lume: 0.1 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	

Project: Winsome_Fil_3	Simulation Run: Prop Basir Reach: CULV I1	n 5yr
27Feb2019, 12:00	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
Volume Un	its: AC-FT	
charge:6.6 (CFS)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,
	26Feb2019, 00:00 27Feb2019, 12:00 ne: 09Dec2021, 07:54:44 Volume Un	Reach: CULV I1 26Feb2019, 00:00 Basin Model: 27Feb2019, 12:00 Meteorologic Model: e: 09Dec2021, 07:54:44 Control Specifications: Volume Units: AC-FT ow: 6.6 (CFS) Date/Time of Peak Inflow charge:6.6 (CFS) Date/Time of Peak Dischard

	Project: Winsome_Fil_3 Re	Simulation Run: Prop Basir ach: CULV-Pond4	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Un	its: AC-FT	
Computed Results			
	ow: 14.8 (CFS) harge:14.7 (CFS) lume: 0.8 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

Project: Win		Simulation Run: Prop Basin basin: G1	5yr
Start of Run: 26Feb2019 End of Run: 27Feb20 Compute Time: 09Dec2021	19, 12:00	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 5yr Control 1
Precipitation Volume5. Loss Volume: 5.	6 (AC-FT) [3 (AC-FT) [Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	harge26Feb2019, 12: 0.3 (AC-FT) 0.0 (AC-FT) 0.3 (AC-FT) 0.3 (AC-FT)

Project: Winsome_Fil_3 Sul	Simulation Run: Prop Basir bbasin: G2A	n 5yr
Start of Run:26Feb2019, 00:00End of Run:27Feb2019, 12:00Compute Time:09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
Volume Units:	AC-FT	
Computed Results Peak Discharge: 12.9 (CFS) Precipitation Volume:4.2 (AC-FT) Loss Volume: 3.7 (AC-FT) Excess Volume: 0.5 (AC-FT)	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	harge26Feb2019, 12: 0.5 (AC-FT) 0.0 (AC-FT) 0.5 (AC-FT)

		Project: W	/insome_Fil_3	Sin Subbasin	nulation Run: Prop Basir : G2B	n 5yr	
	Start of Run: End of Run: Compute Tim	27Feb	19, 00:00 2019, 12:00 21, 07:54:44		Basin Model: Meteorologic Model: Control Specifications:	Prop E	oposed Basins 3asins 5yr ol 1
			Volume Unit	IS:	AC-FT		
Computed R	esults						
	Peak Discha	5	2.6 (CFS)		e/Time of Peak Disc		,
	Precipitation		()		ct Runoff Volume:		0.1 (AC-FT)
	Loss Volum		0.5 (AC-FT)		eflow Volume:		0.0 (AC-FT)
	Excess Volu	me:	0.1 (AC-FT)	Disc	charge Volume:		0.1 (AC-FT)

Project: Winsome_Fil_3 S	Simulation Run: Prop Basir ubbasin: H1	n 5yr
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:44 Volume Units:	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
Computed Results	AC-FT	
Peak Discharge: 4.6 (CFS) Precipitation Volume3.1 (AC-FT) Loss Volume: 2.8 (AC-FT) Excess Volume: 0.3 (AC-FT)	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	harge26Feb2019, 12: 0.3 (AC-FT) 0.0 (AC-FT) 0.3 (AC-FT)

ł	Project: Winsome_Fil_3	Simulation Run: Prop Basi Subbasin: H2	n 5yr
End of Run:	26Feb2019, 00:00 27Feb2019, 12:00 09Dec2021, 07:54:44 Volume Uni	Basin Model: Meteorologic Model: Control Specifications: ts: AC-FT	Proposed Basins Prop Basins 5yr Control 1
Computed Results Peak Dischar Precipitation Loss Volume Excess Volun	Volume 8.8 (AC-FT) : 8.1 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 0.7 (AC-FT) 0.0 (AC-FT) 0.7 (AC-FT) 0.7 (AC-FT)

	Project: Winsome_Fil	_3 Simulation Run: Subbasin: H3A	Prop Basin 5yr	
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:4	5		oposed Basins Basins 5yr Il 1
	Volume	Units: AC-FT		
Computed Results Peak Discha Precipitation Loss Volum Excess Volu	n Volume 0.7 (AC-F e: 0.6 (AC-F	T)Direct RunoffT)Baseflow Volu	Volume: me:	26Feb2019, 12: 0.1 (AC-FT) 0.0 (AC-FT) 0.1 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basir Subbasin: H3B	n 5yr
Start of Run End of Run: Compute Tir	,	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Un	its: AC-FT	
Computed Results			
Peak Disch	J	Date/Time of Peak Disc	• · ·
•	on Volume 0.6 (AC-FT)	Direct Runoff Volume:	0.1 (AC-FT)
Loss Volun		Baseflow Volume:	0.0 (AC-FT)
Excess Vol	ume: 0.1 (AC-FT)	Discharge Volume:	0.1 (AC-FT)

Project: Winsome_Fil_3 S	Simulation Run: Prop Basir ubbasin: H4	n 5yr
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
Computed Results	AC-FT	
Peak Discharge: 15.4 (CFS) Precipitation Volume 6.1 (AC-FT) Loss Volume: 5.5 (AC-FT) Excess Volume: 0.6 (AC-FT)	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	harge26Feb2019, 12: 0.6 (AC-FT) 0.0 (AC-FT) 0.6 (AC-FT)

	Project: Winsome_Fil_3 Su	Simulation Run: Prop Basir bbasin: H5A	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Units:	AC-FT	
Computed Results Peak Discha Precipitation Loss Volume Excess Volu	volume2.0 (AC-FT) e: 1.8 (AC-FT)	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 0.2 (AC-FT) 0.0 (AC-FT) 0.2 (AC-FT) 0.2 (AC-FT)

	Project: Winsome_Fil	_3 Simulation Run: I Subbasin: H5B	orop Basin 5yr
Start of Ru End of Ru Compute ⊺	,	Ŭ	
	Volume	e Units: AC-FT	
Computed Results			
Peak Disc	• • • • •	•	eak Discharge26Feb2019, 12:
	ion Volume2.4 (AC-F	,	
Loss Volu	- (-	,	
Excess Ve	olume: 0.2 (AC-F	T) Discharge Volu	me: 0.2 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop B Subbasin: H6A	asin 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model Control Specification	
	Volume U	nits: AC-FT	
Computed Results			
Peak Discha	5 ()	,	Discharge 26 Feb 2019, 12:
Precipitation Loss Volume	ו Volume3.8 (AC-FT)		
Excess Volume	,		0.0 (AC-FT) 0.4 (AC-FT)

Project: Winsome_Fil_3 Su	Simulation Run: Prop Basin bbasin: H6B	5yr
Start of Run:26Feb2019, 00:00End of Run:27Feb2019, 12:00Compute Time:09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
Volume Units:	AC-FT	
Computed Results		
Peak Discharge: 15.5 (CFS)	Date/Time of Peak Disc	5
Precipitation Volume3.6 (AC-FT) Loss Volume: 3.1 (AC-FT)	Direct Runoff Volume: Baseflow Volume:	0.5 (AC-FT) 0.0 (AC-FT)
Excess Volume: 0.5 (AC-FT)	Discharge Volume:	0.5 (AC-FT)

	Ρ	roject: Wins		Simulation Run: Prop Basir basin: H7A	n 5yr
E	itart of Run: ind of Run: compute Time:	26Feb2019, 27Feb201 09Dec2021,	9, 12:00	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
			Volume Units:	AC-FT	
Computed Resul	ts				
Pe	eak Discharg	je: 6.2	(CFS)	Date/Time of Peak Disc	charge:26Feb2019, 12:
Pi	recipitation \	/olume:1.9	(AC-FT)	Direct Runoff Volume:	0.3 (AC-FT)
Lo	oss Volume:	1.6	(AC-FT)	Baseflow Volume:	0.0 (AC-FT)
E	cess Volum	e: 0.3	(AC-FT)	Discharge Volume:	0.3 (AC-FT)

	Proje	ct: Winsome_Fil_3 Su	Simulation Run: Prop Basir Jbbasin: H7B	n 5yr
		eb2019, 00:00 7Feb2019, 12:00 9ec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
		Volume Units:	AC-FT	
Com	puted Results			
	Peak Discharge:	8.0 (CFS)	Date/Time of Peak Disc	• ,
	Precipitation Vol	. ,	Direct Runoff Volume:	0.4 (AC-FT)
	Loss Volume:	3.5 (AC-FT)	Baseflow Volume:	0.0 (AC-FT)
	Excess Volume:	0.4 (AC-FT)	Discharge Volume:	0.4 (AC-FT)

	Project: Winsome_Fil_3 Sul	Simulation Run: Prop Basir bbasin: H8A	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 15Sep2022, 11:13:09	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Units:	AC-FT	
Computed Results Peak Discha Precipitatior Loss Volum Excess Volu	າ Volumeນ.9 (AC-FT) e: 0.7 (AC-FT)	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	harge26Feb2019, 12: 0.1 (AC-FT) 0.0 (AC-FT) 0.1 (AC-FT)

	Project	:: Winsome_Fil_3 Su	Simulation Run: Prop Basir bbasin: H8B	n 5yr
		b2019, 00:00 Feb2019, 12:00 p2022, 11:13:09 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 5yr Control 1
Computed	Results Peak Discharge: Precipitation Volur Loss Volume: Excess Volume:	4.9 (CFS)	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 0.1 (AC-FT) 0.0 (AC-FT) 0.1 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basin Subbasin: H9	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 : 15Sep2022, 11:13:09 Volume Un	Basin Model: Meteorologic Model: Control Specifications: its: AC-FT	Proposed Basins Prop Basins 5yr Control 1
Computed Results Peak Dischar Precipitation Loss Volume Excess Volur	Volume:1.5 (AC-FT) :: 1.3 (AC-FT)	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 0.1 (AC-FT) 0.0 (AC-FT) 0.1 (AC-FT)

Project: Winsome_Fil_3	Simulation Run: Prop Basir Subbasin: I1	n 5yr
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:44 Volume Units	Basin Model: Meteorologic Model: Control Specifications: S: AC-FT	Proposed Basins Prop Basins 5yr Control 1
Computed Results Peak Discharge: 6.0 (CFS) Precipitation Volume:1.5 (AC-FT) Loss Volume: 1.2 (AC-FT) Excess Volume: 0.4 (AC-FT)	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 0.4 (AC-FT) 0.0 (AC-FT) 0.4 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Bas Subbasin: I2	sin 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 15Sep2022, 11:13:09 Volume Ut	Basin Model: Meteorologic Model: Control Specifications nits: AC-FT	Proposed Basins Prop Basins 5yr s: Control 1
Computed Results Peak Discha Precipitation Loss Volum Excess Volu	n Volume3.3 (AC-FT) e: 2.9 (AC-FT)	Direct Runoff Volume Baseflow Volume:	scharge26Feb2019, 12: : 0.5 (AC-FT) 0.0 (AC-FT) 0.5 (AC-FT)

Project: Winsome_Fil_3	_3 Simulation Run: Prop Basin 5yr Subbasin: J1	
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:44 Volume U	Meteorologic Model: Prop Control Specifications: Control	Proposed Basins Basins 5yr rol 1
Computed Results Peak Discharge: 2.1 (CFS) Precipitation Volume2.3 (AC-FT Loss Volume: 2.1 (AC-FT Excess Volume: 0.2 (AC-FT	T) Baseflow Volume:	e26Feb2019, 12: 0.2 (AC-FT) 0.0 (AC-FT) 0.2 (AC-FT)

Project: Winsome_Fil_3	Simulation Run: Prop Basir Subbasin: K1	i 5yr
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:44 Volume Units	Basin Model: Meteorologic Model: Control Specifications: :: AC-FT	Proposed Basins Prop Basins 5yr Control 1
Computed Results Peak Discharge: 4.5 (CFS) Precipitation Volume3.9 (AC-FT) Loss Volume: 3.6 (AC-FT) Excess Volume: 0.3 (AC-FT)	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	harge26Feb2019, 12: 0.3 (AC-FT) 0.0 (AC-FT) 0.3 (AC-FT) 0.3 (AC-FT)

	Project: Wir	nsome_Fil_3	Simulation	on Run: Prop Basin 5yr	
		R	each: OUT-1		
Start of Run:	26Feb2019, 00:	00		Basin Model:	Proposed Basins
End of Run:	27Feb2019, 1	2:00		Meteorologic Model:	Prop Basins 5yr
Compute Time	: DATA CHANGE	D, RECOMPUT	E	Control Specifications:	Control 1
		Volume Units	s: A	NC-FT	
Computed Results					
	nflow: 421. Discharge:420. Volume: 97.2	. ,		e of Peak Inflow e of Peak Discharge Volume:	26Feb2019, 12:49 26Feb2019, 12:52 97.1 (AC-FT)

	Project: Winsome_Fil_3 Reservoi	Simulation Run: Prop Basi ir: STORAGE P1	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 31Jan2023, 10:25:36	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Units:	AC-FT	
Computed Results			
Peak Inflo	w: 19.5 (CFS)	Date/Time of Peak Inflo	w: 26Feb2019, 12:0
Peak Disch	arge: 9.8 (CFS)	Date/Time of Peak Disch	narge26Feb2019, 12:1
Inflow Volu	ume: 0.9 (AC-FT)	Peak Storage:	0.5 (AC-FT)
Discharge	Volume0.9 (AC-FT)	Peak Elevation:	7319.2 (FT)

	Project: Winsome_Fil_3 Reservoir	Simulation Run: Prop Basir : STORAGE P2	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 31Jan2023, 10:25:36 Volume Units:	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
Computed Deculto	volume units:	AC-FT	
Computed Results Peak Inflow Peak Disch Inflow Volu Discharge	harge: 10.7 (CFS) ume: 1.3 (AC-FT)	Date/Time of Peak Inflo Date/Time of Peak Disch Peak Storage: Peak Elevation:	,

	Project: Winsome_Fil_3 Reserve	Simulation Run: Prop Basi oir: STORAGE P4	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 31Jan2023, 10:25:36	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Units	S: AC-FT	
Computed Results			
Peak Inflo	<i>N</i> : 21.2 (CFS)	Date/Time of Peak Inflo	w: 26Feb2019, 12:0
Peak Disch	arge: 8.8 (CFS)	Date/Time of Peak Disch	narge26Feb2019, 12:1
Inflow Volu	ume: 1.4 (AC-FT)	Peak Storage:	0.7 (AC-FT)
Discharge	Volume1.2 (AC-FT)	Peak Elevation:	7293.7 (FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basir Reach: Reach-1	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
	w: 371.6 (CFS) harge:371.6 (CFS) lume: 81.3 (AC-FT)	Date/Time of Peak Inflov Date/Time of Peak Disch Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basi Reach: Reach-2	in 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 31Jan2023, 10:25:36	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
Peak Inflo	w: 376.3 (CFS)	Date/Time of Peak Inflo	w 26Feb2019, 12:44
Peak Disc	harge:376.2 (CFS)	Date/Time of Peak Disch	narge26Feb2019, 12:48
Inflow Vo	lume: 82.4 (AC-FT)	Discharge Volume:	82.4 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basi Reach: Reach-3	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 31Jan2023, 10:25:36	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
	w: 390.9 (CFS) harge:390.9 (CFS) lume: 86.8 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Disch Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Bas Reach: Reach-4	in 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 31Jan2023, 10:25:36	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
	w: 393.9 (CFS) harge:393.8 (CFS) lume: 88.3 (AC-FT)	Date/Time of Peak Inflo Date/Time of Peak Disch Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basi Reach: Reach-5	in 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 31Jan2023, 10:25:36	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
	w: 408.4 (CFS) narge:408.3 (CFS) ume: 91.5 (AC-FT)	Date/Time of Peak Inflo Date/Time of Peak Disch Discharge Volume:	,

	Proje	ct: Winsome_Fil_3	Simulation Run: Prop Basin 5	/r
		Reach: Re	each-6 Kiowa Outfall	
Start of	f Run: 26Feb20	19, 00:00	Basin Model:	Proposed Basins
End of	Run: 27Feb	2019, 12:00	Meteorologic Model:	Prop Basins 5yr
Compu	ute Time: DATA Cl	ANGED, RECOMPU	TE Control Specification:	s: Control 1
		Volume Unit	s: AC-FT	
Computed Resul	ts			
	Peak Inflow: Peak Discharge Inflow Volume	()	Date/Time of Peak Inflow Date/Time of Peak Discharg Discharge Volume:	26Feb2019, 12:5 je26Feb2019, 12:52 97.7 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basi each: REACH A1	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 30Nov2021, 13:26:30	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	ts: AC-FT	
Computed Results			
Peak Inflo	()	Date/Time of Peak Inflov	,
	harge:83.8 (CFS) lume: 13.7 (AC-FT)	Date/Time of Peak Disch Discharge Volume:	arge26Feb2019, 12:3 13.7 (AC-FT)

	Project: Winsome_Fil_3 Re	Simulation Run: Prop Basir ach: Reach-A2A	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	ts: AC-FT	
Computed Results			
	ow: 5.3 (CFS) harge:5.2 (CFS) lume: 0.4 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	

	Project: Winsome_Fil_3 Re	Simulation Run: Prop Basir each: Reach-A2B	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
	ow: 2.3 (CFS) harge:2.2 (CFS) lume: 0.2 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	

	Project: Winsome_Fil_3 R	Simulation Run: Prop Basir each: Reach-A3	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Un	its: AC-FT	
Computed Results			
	ow: 5.2 (CFS) harge:5.2 (CFS) lume: 0.4 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

	Project: Winsome_Fil_3 Re	Simulation Run: Prop Basir each: Reach-A3A	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
	ow: 9.6 (CFS) charge:9.6 (CFS) olume: 0.6 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basir each: Reach-G1	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
Peak Inflo	()	Date/Time of Peak Inflow	
	harge:3.0 (CFS) Jume: 0.3 (AC-FT)	Date/Time of Peak Discha Discharge Volume:	0.3 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basir each: Reach-H1	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	its: AC-FT	
Computed Results			
	ow: 4.6 (CFS) harge:4.6 (CFS) lume: 0.3 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basir each: Reach-H2	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Un	its: AC-FT	
Computed Results			
	ow: 8.9 (CFS) harge:8.9 (CFS) olume: 0.7 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	

	Project: Winsome_Fil_3	Simulation Run: Prop Basir leach: Reach H3	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Un	its: AC-FT	
Computed Results			
	ow: 1.4 (CFS) harge:1.3 (CFS) lume: 0.1 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

	Project: Winsome_Fil_3 Re	Simulation Run: Prop Basin ach: Reach-H3B	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Uni	ts: AC-FT	
Computed Results			
	ow: 1.3 (CFS) harge:1.2 (CFS) Ilume: 0.1 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	

	Project: Winsome_Fil_3	Simulation Run: Prop Basir Reach: Reach-I1	n 5yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:44	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Un	its: AC-FT	
Computed Results			
	ow: 6.6 (CFS) harge:6.5 (CFS) lume: 0.4 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

	Project: Winsome_Fil_3 Reservoi	Simulation Run: Prop Basir ir: STORAGE P4	n 5yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 15Sep2022, 11:13:09	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 5yr Control 1
	Volume Units:	AC-FT	
Computed Results			
Peak Inflo	()	Date/Time of Peak Inflo	,
Peak Disch	. . ,	Date/Time of Peak Disch	. ,
Inflow Volu	()	Peak Storage:	0.7 (AC-FT)
Discharge	Volume1.1 (AC-FT)	Peak Elevation:	7293.7 (FT)

Project: Winsome_Fil_3 Simulation Run: Prop Basins 100 yr

Start of Run:26Feb2019, 00:00End of Run:27Feb2019, 12:00Compute Time:30Jan2023, 16:24:56

Basin Model: Proposed Basins Meteorologic Model: Prop Basins 100yr Control Specifications:Control 1

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
A1	1.3529000	402.8	26Feb2019, 12:28	40.2
A2A	0.0439531	47.1	26Feb2019, 12:04	1.7
A2B	0.0138594	20.3	26Feb2019, 12:03	0.7
A3A	0.0128906	25.8	26Feb2019, 12:00	0.9
A3B	0.0206563	42.6	26Feb2019, 11:59	1.5
A3C	0.0182187	40.8	26Feb2019, 12:00	1.6
BOX CULVERT 1	7.8720139	1689.6	26Feb2019, 12:42	237.8
BOX CULV 2	8.8550872	1871.9	26Feb2019, 12:44	279.2
B1	5.9948000	1289.0	26Feb2019, 12:44	178.0
B2	0.0204688	17.2	26Feb2019, 12:09	0.9
B3	0.0857813	49.3	26Feb2019, 12:17	3.2
B4	0.0648125	46.3	26Feb2019, 12:17	2.9
CLV E4	0.1670157	117.6	26Feb2019, 12:12	8.1
CULV A3A	0.0267500	40.9	26Feb2019, 12:03	1.6
CULV B2	0.0204688	17.2	26Feb2019, 12:09	0.9
CULV C2	0.2892200	120.4	26Feb2019, 12:18	8.4
CULV C3	0.3143763	134.2	26Feb2019, 12:19	9.6
CULV D2	0.3593700	170.8	26Feb2019, 12:18	11.8
CULV D3	0.1423438	64.0	26Feb2019, 12:20	5.1
CULV D4	0.1959376	92.3	26Feb2019, 12:19	7.5
CULV E1.1	0.0592188	24.6	26Feb2019, 12:17	1.7
CULV E1.2	0.0238750	21.4	26Feb2019, 12:10	1.3
CULV E1.5	0.0136094	16.6	26Feb2019, 12:08	0.8
CULV E2	0.0768907	36.6	26Feb2019, 12:14	2.8
CULV E5	0.0210938	18.4	26Feb2019, 12:10	1.1
CULV F2	0.0068750	8.6	26Feb2019, 12:05	0.4
CULV G1	0.0387188	40.0	26Feb2019, 12:07	1.5

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
CULV H1	0.0217031	33.0	26Feb2019, 12:03	1.1
CULV H2	0.0610938	65.5	26Feb2019, 12:04	2.5
CULV H3	0.0048125	8.0	26Feb2019, 12:02	0.3
CULV I1	0.0148907	25.8	26Feb2019, 12:05	1.3
CULV-E3	0.1317032	84.6	26Feb2019, 12:11	6.0
CULV-Pond4	0.0452031	81.0	26Feb2019, 12:01	2.8
C1	0.2542200	105.6	26Feb2019, 12:16	7.4
C2	0.0350000	16.1	26Feb2019, 12:13	1.0
C3	0.0251563	19.1	26Feb2019, 12:11	1.1
C4	0.0371875	19.1	26Feb2019, 12:18	1.2
D1.1	0.2520300	105.2	26Feb2019, 12:16	7.4
D1.2	0.0779688	28.2	26Feb2019, 12:20	2.3
D2	0.1073400	69.8	26Feb2019, 12:14	4.4
D3	0.0643750	38.1	26Feb2019, 12:17	2.9
D4	0.0535938	38.6	26Feb2019, 12:12	2.4
D5	0.0200000	15.0	26Feb2019, 12:12	0.7
D6	0.0653125	28.1	26Feb2019, 12:17	1.9
EX CULV C1	0.2542200	105.6	26Feb2019, 12:16	7.4
EX CULV D1.1	0.2520300	105.2	26Feb2019, 12:16	7.4
EX CULV D1.2	0.0779688	28.2	26Feb2019, 12:20	2.3
EX CULV E0	0.0592188	24.6	26Feb2019, 12:16	1.7
EO	0.0592188	24.6	26Feb2019, 12:16	1.7
E1.1	0.0136094	16.6	26Feb2019, 12:08	0.8
E1.2	0.0238750	21.4	26Feb2019, 12:10	1.3
E2	0.0040625	8.9	26Feb2019, 11:56	0.3
E3	0.0309375	33.7	26Feb2019, 12:07	1.8
E4	0.0284375	27.0	26Feb2019, 12:10	1.7
E5	0.0210938	18.4	26Feb2019, 12:10	1.1
E6	0.0144609	14.1	26Feb2019, 12:05	0.6
E7	0.0159688	16.2	26Feb2019, 12:07	0.8
E8	0.0246594	25.6	26Feb2019, 12:01	1.0

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
E9	0.0059688	5.8	26Feb2019, 11:56	0.1
F1	0.0501563	36.6	26Feb2019, 12:09	2.1
F2	0.0068750	8.6	26Feb2019, 12:04	0.4
F3	0.0150313	14.5	26Feb2019, 12:06	0.7
G1	0.0387188	40.1	26Feb2019, 12:07	1.5
G2A	0.0290625	59.9	26Feb2019, 11:59	2.1
G2B	0.0043281	9.6	26Feb2019, 11:59	0.4
H1	0.0217031	33.0	26Feb2019, 12:03	1.1
H2	0.0610938	65.7	26Feb2019, 12:04	2.5
НЗА	0.0048125	8.0	26Feb2019, 12:02	0.3
НЗВ	0.0042344	6.9	26Feb2019, 12:04	0.3
H4	0.0421875	73.6	26Feb2019, 12:04	3.0
H5A	0.0141094	27.0	26Feb2019, 12:03	1.1
H5B	0.0163750	29.0	26Feb2019, 12:03	1.1
H6A	0.0260000	51.1	26Feb2019, 12:02	2.0
H6B	0.0249375	57.1	26Feb2019, 11:59	2.3
H7A	0.0132812	27.1	26Feb2019, 11:59	1.0
H7B	0.0271094	49.8	26Feb2019, 12:00	1.5
H8A	0.0061406	11.2	26Feb2019, 12:02	0.4
H8B	0.0079531	17.8	26Feb2019, 12:01	0.8
H9	0.0102188	15.0	26Feb2019, 12:05	0.5
11	0.0106563	20.3	26Feb2019, 12:04	1.0
12	0.0231250	39.1	26Feb2019, 12:04	1.6
J1	0.0158438	13.0	26Feb2019, 12:02	0.5
K1	0.0273438	40.7	26Feb2019, 12:02	1.3
OUT-1	9.2436297	1958.9	26Feb2019, 12:45	297.5
REACH A1	1.3529000	402.3	26Feb2019, 12:31	40.2
Reach E3.1	0.0238750	21.4	26Feb2019, 12:12	1.3
Reach H3	0.0048125	8.0	26Feb2019, 12:07	0.3
Reach-A2A	0.0439531	47.1	26Feb2019, 12:07	1.7
Reach-A2B	0.0138594	20.1	26Feb2019, 12:07	0.7

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
Reach-A3	0.0439531	46.9	26Feb2019, 12:08	1.7
Reach-A3A	0.0310781	49.3	26Feb2019, 12:04	2.0
Reach-B1	5.9948000	1288.9	26Feb2019, 12:46	178.0
Reach-B2	0.0204688	17.2	26Feb2019, 12:14	0.9
Reach-B3	6.0805813	1301.2	26Feb2019, 12:48	181.2
Reach-B4-3	0.3143763	134.2	26Feb2019, 12:19	9.6
Reach-C1	0.2542200	105.5	26Feb2019, 12:18	7.4
Reach-C2	0.2892200	120.3	26Feb2019, 12:20	8.4
Reach-D1.1	0.2520300	105.1	26Feb2019, 12:20	7.4
Reach-D3	0.0779688	28.2	26Feb2019, 12:24	2.3
Reach-D4	0.1423438	64.0	26Feb2019, 12:23	5.1
Reach-D5	0.3593700	170.6	26Feb2019, 12:20	11.8
Reach-D6	0.1959376	92.2	26Feb2019, 12:22	7.5
Reach-E1.1	0.0592188	24.6	26Feb2019, 12:17	1.7
Reach-E2	0.0592188	24.5	26Feb2019, 12:19	1.7
Reach-E3	0.0768907	36.6	26Feb2019, 12:17	2.8
Reach-E4	0.1317032	84.5	26Feb2019, 12:14	6.0
Reach-E6	0.0210938	18.4	26Feb2019, 12:13	1.1
Reach-E6-2	0.1974454	137.3	26Feb2019, 12:14	9.5
Reach-E7	0.1670157	117.5	26Feb2019, 12:14	8.1
Reach-F2	0.0068750	8.6	26Feb2019, 12:08	0.4
Reach-G1	0.0387188	40.0	26Feb2019, 12:10	1.5
Reach-H1	0.0217031	32.8	26Feb2019, 12:06	1.1
Reach-H2	0.0610938	65.4	26Feb2019, 12:06	2.5
Reach-H3B	0.0042344	6.8	26Feb2019, 12:09	0.3
Reach-I1	0.0210313	36.2	26Feb2019, 12:07	1.8
Reach-P3	0.2612501	79.0	26Feb2019, 12:37	9.4
Reach-P4	0.0662344	58.0	26Feb2019, 12:11	4.3
Reach-1	7.9708733	1694.5	26Feb2019, 12:43	243.3
Reach-2	8.0719514	1712.7	26Feb2019, 12:44	248.5
Reach-3	8.4818058	1781.7	26Feb2019, 12:43	263.2

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (AC-FT)
Reach-4	8.5938371	1795.5	26Feb2019, 12:44	269.8
Reach-5	8.8550872	1871.4	26Feb2019, 12:44	279.2
Reach-6 Kiowa Ou	t £a12 769735	1960.0	26Feb2019, 12:45	299.6
STORAGE P1	0.0638906	72.1	26Feb2019, 12:11	4.1
STORAGE P2	0.0860313	78.6	26Feb2019, 12:09	4.6
STORAGE P3	0.2612501	79.0	26Feb2019, 12:36	9.4
STORAGE P4	0.0662344	58.0	26Feb2019, 12:11	4.3
STORAGE P5	0.2431986	73.4	26Feb2019, 12:32	10.3

-	Simulation Run: Prop Basins 100 yr basin: A1
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:11 Volume Units:	Basin Model: Proposed Basins Meteorologic Model: Prop Basins 100yr Control Specifications: Control 1
Computed Results Peak Discharge: 402.8 (CFS) Precipitation Volume331.6 (AC-FT) Loss Volume: 291.4 (AC-FT) Excess Volume: 40.2 (AC-FT)	Date/Time of Peak Discharge26Feb2019, 12Direct Runoff Volume:40.2 (AC-FT)Baseflow Volume:0.0 (AC-FT)Discharge Volume:40.2 (AC-FT)

	Proje	ect: Winsome_Fil_3 S	Simulation Run: Prop Basins ubbasin: A2A	100 yr
	End of Run:	6Feb2019, 00:00 27Feb2019, 12:00 9Dec2021, 07:54:11 Volume Units	Basin Model: Meteorologic Model: Control Specifications: S: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Computed R	Peak Discharge	olume:10.8 (AC-FT) 9.1 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	scharge26Feb2019, 12 1.7 (AC-FT) 0.0 (AC-FT) 1.7 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basins Subbasin: A2B	s 100 yr
Start of Run End of Run: Compute Ti	,	Basin Model: Meteorologic Model: Control Specifications: nits: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Computed Results Peak Disc Precipitat Loss Volu Excess Vo	tion Volume3.4 (ÀC-FT) ume: 2.7 (AC-FT)	Direct Runoff Volume: Baseflow Volume:	charge26Feb2019, 12: 0.7 (AC-FT) 0.0 (AC-FT) 0.7 (AC-FT) 0.7 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basins Subbasin: A3A	s 100 yr
Start of Run End of Run: Compute Ti	,	Basin Model: Meteorologic Model: Control Specifications: nits: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Computed Results Peak Disc Precipitat Loss Volu Excess Vo	tion Volume3.2 (ÀC-FŤ) Jme: 2.2 (AC-FŤ)	Direct Runoff Volume: Baseflow Volume:	charge26Feb2019, 12: 0.9 (AC-FT) 0.0 (AC-FT) 0.9 (AC-FT) 0.9 (AC-FT)

	Project:	Winsome_Fil_3 Su	Simulation Run: Prop Basins ubbasin: A3B	100 yr
		02019, 00:00 Feb2019, 12:00 c2021, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
 Computed 	Results Peak Discharge: Precipitation Volu Loss Volume: Excess Volume:	42.6 (CFS) me5.1 (AC-FT) 3.6 (AC-FT) 1.5 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 11: 1.5 (AC-FT) 0.0 (AC-FT) 1.5 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Pro Subbasin: A3C	op Basins 100 yr
Start of Run End of Run: Compute Tir	,,	5	Proposed Basins Model: Prop Basins 100yr fications: Control 1
	Volumo	e Units: AC-FT	
Computed Results			
Peak Disc Precipitati Loss Volu Excess Vo	ion Volume:4.5 (AC-I me: 2.8 (AC-I	T) Direct Runoff V T) Baseflow Volun	ne: 0.0 (AC-FT)

F	Project: Winsome_Fil_3 F	Simulation Run: Prop Basins Reach: CULV A3A	100 yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	nits: AC-FT	
Computed Results			
	ow: 41.0 (CFS) charge:40.9 (CFS) olume: 1.6 (AC-FT)	Date/Time of Peak Inflov Date/Time of Peak Disch Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basins Reach: CULV G1	s 100 yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	nits: AC-FT	
	flow: 40.1 (CFS) scharge:40.0 (CFS) 'olume: 1.5 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Disch Discharge Volume:	,

Project: Winsome_Fil_3	Simulation Run: Prop Basins 100 yr Reach: CULV H1
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:11	Basin Model:Proposed BasinsMeteorologic Model:Prop Basins 100yrControl Specifications:Control 1
Volume U	Jnits: AC-FT
Computed Results	
Peak Inflow: 33.0 (CFS)	Date/Time of Peak Inflow 26Feb2019, 12:02
Peak Discharge:33.0 (CFS)	Date/Time of Peak Discharge26Feb2019, 12:03
Inflow Volume: 1.1 (AC-FT)	Discharge Volume: 1.1 (AC-FT)

	Project: Winsome_Fil_	3 Simulation Run: Prop Ba Reach: CULV H2	asins 100 yr
Start of R End of Ru Compute	,,	Ŭ	1 ,
	Volur	ne Units: AC-FT	
Peak	Inflow: 65.7 (CFS) Discharge:65.5 (CFS) v Volume: 2.5 (AC-F) Date/Time of Peak Di	nflow 26Feb2019, 12:03 ischarge26Feb2019, 12:04 2.5 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basins Reach: CULV H3	s 100 yr
Start of Run End of Run: Compute Tir	,,	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume U	nits: AC-FT	
	iflow: 8.0 (CFS) ischarge:8.0 (CFS) Volume: 0.3 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Disch Discharge Volume:	'

	Project: Winso		Simulation Run: Prop Basins each: CULV I1	s 100 yr
Start of Run End of Run: Compute Ti	,	9, 12:00	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
		Volume Units	S: AC-FT	
	nflow: 25.8 ischarge:25.8 Volume: 1.3 (. ,	Date/Time of Peak Inflow Date/Time of Peak Disch Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basin Reach: CULV-Pond4	us 100 yr
Start of Run: End of Run: Compute Tin	,,,	Basin Model: Meteorologic Model: Control Specifications	Proposed Basins Prop Basins 100yr : Control 1
	Volume	Units: AC-FT	
Computed Results			
	flow: 81.1 (CFS) scharge:81.0 (CFS) /olume: 2.8 (AC-FT)	Date/Time of Peak Inflo Date/Time of Peak Discl Discharge Volume:	w 26Feb2019, 11:59 harge26Feb2019, 12:01 2.8 (AC-FT)

	Project: V	Vinsome_Fil_3 Sເ	Simulation Run: Prop Basins	s 100 yr
		2019, 00:00 202019, 12:00 2021, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Computed F	Results Peak Discharge: Precipitation Volun Loss Volume: Excess Volume:	40.1 (CFS) ne9.5 (AC-FT) 8.0 (AC-FT) 1.5 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 1.5 (AC-FT) 0.0 (AC-FT) 1.5 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basins Subbasin: G2A	100 yr
	Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:11 Volume Uni	Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
Cor	nputed Results Peak Discharge: 59.9 (CFS) Precipitation Volume7.1 (AC-FT) Loss Volume: 5.1 (AC-FT) Excess Volume: 2.1 (AC-FT)	Date/Time of Peak Disc Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 11: 2.1 (AC-FT) 0.0 (AC-FT) 2.1 (AC-FT)

	F	Project: W	insome_Fil_3	Simu Subbasi	ulation Run: Prop Basins n: G2B	; 100 yr	
	Start of Run: End of Run: Compute Time	27Feb	019, 00:00 02019, 12:00 021, 07:54:11 Volume Un	its:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Prop Bas	osed Basins ins 100yr
- Computed R	Peak Discha	n Volum ne:	9.6 (CFS) e1.1 (AC-FT) 0.7 (AC-FT) 0.4 (AC-FT)	Dir Ba	te/Time of Peak Dis ect Runoff Volume: seflow Volume: scharge Volume:	0 0	6Feb2019, 11: .4 (AC-FT) .0 (AC-FT) .4 (AC-FT)

	Project: Wi	nsome_Fil_3 Su	Simulation Run: Prop Basins	100 yr
		19, 00:00 2019, 12:00 21, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
– Comput	ed Results Peak Discharge: Precipitation Volume Loss Volume: Excess Volume:	33.0 (CFS) e5.3 (AC-FT) 4.2 (AC-FT) 1.1 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 1.1 (AC-FT) 0.0 (AC-FT) 1.1 (AC-FT)

• – –	Simulation Run: Prop Basins obasin: H2	100 yr
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Computed Results Peak Discharge: 65.7 (CFS) Precipitation Volume:15.0 (AC-FT) Loss Volume: 12.5 (AC-FT) Excess Volume: 2.5 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	scharge26Feb2019, 12 2.5 (AC-FT) 0.0 (AC-FT) 2.5 (AC-FT)

	Project: Wir		Simulation Run: Prop Basins basin: H3A	100 yr
Start of F End of R Compute		2019, 12:00	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Precipit Loss Ve	vischarge: tation Volume olume: Volume:	8.0 (CFS) :1.2 (AC-FT) 0.9 (AC-FT) 0.3 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 0.3 (AC-FT) 0.0 (AC-FT) 0.3 (AC-FT) 0.3 (AC-FT)

	Project: Wi		Simulation Run: Prop Basins basin: H3B	100 yr
E		19, 00:00 2019, 12:00 21, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
P	Its Peak Discharge: Precipitation Volume oss Volume: Excess Volume:	6.9 (CFS) e1.0 (AC-FT) 0.8 (AC-FT) 0.3 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 0.3 (AC-FT) 0.0 (AC-FT) 0.3 (AC-FT)

Project: Winsome_Fil_3 Su	Simulation Run: Prop Basins 100 yr Ibbasin: H4	
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:11	Basin Model:Proposed BasinsMeteorologic Model:Prop Basins 100yrControl Specifications:Control 1	
Volume Units:	AC-FT	
Computed Results Peak Discharge: 73.6 (CFS) Precipitation Volume:10.3 (AC-FT) Loss Volume: 7.3 (AC-FT) Excess Volume: 3.0 (AC-FT)	Date/Time of Peak Discharge26Feb2019, 12Direct Runoff Volume:3.0 (AC-FT)Baseflow Volume:0.0 (AC-FT)Discharge Volume:3.0 (AC-FT)	

	Project: Wi	insome_Fil_3 Sub	Simulation Run: Prop Basins basin: H5A	100 yr
Start o End of Compu		019, 00:00 02019, 12:00 021, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Preci Loss	Discharge: pitation Volume Volume: ss Volume:	27.0 (CFS)		charge26Feb2019, 12: 1.1 (AC-FT) 0.0 (AC-FT) 1.1 (AC-FT)

	Project: Win		Simulation Run: Prop Basins basin: H5B	100 yr
Enc	art of Run: 26Feb201 d of Run: 27Feb2 mpute Time: 09Dec202	2019, 12:00 21, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
		Volume Units:	AC-FT	
Computed Results	S			
	ak Discharge: ecipitation Volume	29.0 (CFS) 4.0 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume:	charge26Feb2019, 12: 1.1 (AC-FT)
Lo	ss Volume:	2.9 (AC-FT)	Baseflow Volume:	0.0 (AC-FT)
EX	cess Volume:	1.1 (AC-FT)	Discharge Volume:	1.1 (AC-FT)

	Project: W	insome_Fil_3 Sub	Simulation Run: Prop Basins	100 yr
End c		019, 00:00 02019, 12:00 021, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Prec Loss	c Discharge: ipitation Volum Volume: ess Volume:	51.1 (CFS) e6.4 (AC-FT) 4.3 (AC-FT) 2.0 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 2.0 (AC-FT) 0.0 (AC-FT) 2.0 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basins ubbasin: H6B	100 yr
	Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
- Cc	Peak Discharge: 57.1 (CFS) Precipitation Volume6.1 (AC-FT) Loss Volume: 3.8 (AC-FT) Excess Volume: 2.3 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 11: 2.3 (AC-FT) 0.0 (AC-FT) 2.3 (AC-FT)

	Pro	oject: Win	some_Fil_3 Sເ	Simulation Run: Prop Basins ubbasin: H7A	s 100 yr
l	Start of Run: End of Run: Compute Time:		2019, 12:00	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
	ults Peak Dischar Precipitation Loss Volume Excess Volun	Volume :	27.1 (CFS) 3.3 (AC-FT) 2.3 (AC-FT) 1.0 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 11: 1.0 (AC-FT) 0.0 (AC-FT) 1.0 (AC-FT)

	Ρ	Project: Wi	nsome_Fil_3 S	Simulation Run: Prop Basins ubbasin: H7B	s 100 yr
	Start of Run: End of Run: Compute Time	27Feb	19, 00:00 2019, 12:00 21, 07:54:11 Volume Units	Basin Model: Meteorologic Model: Control Specifications: : AC-FT	Proposed Basins Prop Basins 100yr Control 1
Computed Re	Peak Discha	n Volume e:	49.8 (CFS) e6.6 (AC-FT) 5.1 (AC-FT) 1.5 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	ccharge26Feb2019, 12: 1.5 (AC-FT) 0.0 (AC-FT) 1.5 (AC-FT)

	Project: W	insome_Fil_3 Sut	Simulation Run: Prop Basins	100 yr
Start of End of Compu		019, 00:00 02019, 12:00 022, 11:04:07 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Precij Loss	Discharge: pitation Volum Volume: ss Volume:	11.2 (CFS) e1.5 (AC-FT) 1.1 (AC-FT) 0.4 (AC-FT)		charge26Feb2019, 12: 0.4 (AC-FT) 0.0 (AC-FT) 0.4 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basins Subbasin: H8B	5 100 yr
Start of Run End of Run: Compute Tir	,,	Basin Model: Meteorologic Model: Control Specifications: its: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Computed Results Peak Disc Precipitati Loss Volu Excess Vo	tion Volume:1.9 (AC-FT) ume: 1.2 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 0.8 (AC-FT) 0.0 (AC-FT) 0.8 (AC-FT) 0.8 (AC-FT)

	Project: V	Vinsome_Fil_3 S	Simulation Run: Prop Basins ubbasin: H9	s 100 yr
		2019, 00:00 202019, 12:00 2022, 11:04:07 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Computed	Results Peak Discharge: Precipitation Volun Loss Volume: Excess Volume:	15.0 (CFS) ne2.5 (AC-FT) 2.0 (AC-FT) 0.5 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 0.5 (AC-FT) 0.0 (AC-FT) 0.5 (AC-FT)

	Project: W	/insome_Fil_3 S	Simulation Run: Prop Basins ubbasin: I1	s 100 yr
		019, 00:00 b2019, 12:00 021, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Computed	Results Peak Discharge: Precipitation Volum Loss Volume: Excess Volume:	20.3 (CFS)		charge26Feb2019, 12: 1.0 (AC-FT) 0.0 (AC-FT) 1.0 (AC-FT)

-	Simulation Run: Prop Basins bbasin: I2	100 yr
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 15Sep2022, 11:04:07	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
Computed Results	AC-FT	
Peak Discharge: 39.1 (CFS) Precipitation Volume5.7 (AC-FT) Loss Volume: 4.1 (AC-FT) Excess Volume: 1.6 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 1.6 (AC-FT) 0.0 (AC-FT) 1.6 (AC-FT)

	Р	roject: Wi	nsome_Fil_3	Simulation Run: Prop Basins Subbasin: J1	s 100 yr
	Start of Run: End of Run: Compute Time	27Feb	19, 00:00 2019, 12:00 21, 07:54:11 Volume Units	Basin Model: Meteorologic Model: Control Specifications: S: AC-FT	Proposed Basins Prop Basins 100yr Control 1
Computed Re	Peak Discha	n Volume e:	13.0 (CFS) 23.9 (AC-FT) 3.4 (AC-FT) 0.5 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 0.5 (AC-FT) 0.0 (AC-FT) 0.5 (AC-FT)

	Project: V	Vinsome_Fil_3 St	Simulation Run: Prop Basins ubbasin: K1	100 yr
		2019, 00:00 eb2019, 12:00 2021, 07:54:11 Volume Units:	Basin Model: Meteorologic Model: Control Specifications: AC-FT	Proposed Basins Prop Basins 100yr Control 1
⊂ Computed R	Peak Discharge: Precipitation Volun Loss Volume: Excess Volume:	40.7 (CFS) ne6.7 (AC-FT) 5.4 (AC-FT) 1.3 (AC-FT)	Date/Time of Peak Dis Direct Runoff Volume: Baseflow Volume: Discharge Volume:	charge26Feb2019, 12: 1.3 (AC-FT) 0.0 (AC-FT) 1.3 (AC-FT)

	Project:	Winsome_Fil_3		Simulation Run: Prop Basins 100 y ach: OUT-1	r
Start of Run: End of Run: Compute Time		9, 00:00 019, 12:00 ANGED, RECOM	IPUTE	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
		Volume	Units:	AC-FT	
Peak [Discharge:	1959.0 (CFS) 1958.9 (CFS) 297.5 (AC-FT		Date/Time of Peak Inflow Date/Time of Peak Discharge Discharge Volume:	26Feb2019, 12:4 e26Feb2019, 12:4 297.5 (AC-FT)

	Project: W	/insome_Fil_3 Reserv	Simulation Run: Prop Basins roir: STORAGE P1	s 100 yr
Start of Run: End of Run: Compute Tir	27Fe	019, 00:00 b2019, 12:00 023, 16:24:56	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
		Volume Unit	s: AC-FT	
Computed Results				
Peak Infl	low:	105.0 (CFS)	Date/Time of Peak Infle	ow: 26Feb2019, 12:0
Peak Dis	charge:	72.1 (CFS)	Date/Time of Peak Disc	harge26Feb2019, 12:1
Inflow Ve	olume:	4.2 (AC-FT)	Peak Storage:	1.3 (AC-FT)
Discharg	e Volume	4.1 (AC-FT)	Peak Elevation:	7321.2 (FT)

	Project: Winsome_	-	ion Run: Prop Basins DRAGE P2	100 yr
Start of Run: End of Run: Compute Tir	,	2:00 M	asin Model: eteorologic Model: ontrol Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Vo	lume Units:	AC-FT	
Computed Results				
Peak Inf	low: 110.8 (CFS) Date/T	ime of Peak Inflo	w: 26Feb2019, 12:0
Peak Dis	charge: 78.6 (C	FS) Date/T	ime of Peak Discl	narge26Feb2019, 12:0
Inflow Ve	olume: 4.8 (AC	-FT) Peak S	Storage:	1.5 (AC-FT)
Discharg	e Volume4.6 (AC	-FT) Peak E	levation:	7305.6 (FT)

	Project: Winsome_		ion Run: Prop Basins 1 DRAGE P4	D0 yr
Start of Run End of Run: Compute Ti	,	2:00 M	asin Model: eteorologic Model: P ontrol Specifications: C	Proposed Basins rop Basins 100yr ontrol 1
	Vo	olume Units:	AC-FT	
Computed Results				
Inflow V	charge: 58.0 (0	CFS) Date/T C-FT) Peak S	ime of Peak Inflow ime of Peak Discha torage: levation:	: 26Feb2019, 12:0 rge26Feb2019, 12:1 1.9 (AC-FT) 7295.4 (FT)

Project: Winsome_Fil_3 Rea	Simulation Run: Prop Basins 100 yr ich: Reach-1
Start of Run:26Feb2019, 00:00End of Run:27Feb2019, 12:00Compute Time:09Dec2021, 07:54:11	Basin Model:Proposed BasinsMeteorologic Model:Prop Basins 100yrControl Specifications:Control 1
Volume Units:	AC-FT
Computed Results Peak Inflow: 1694.6 (CFS)	Date/Time of Peak Inflow 26Feb2019, 12:4
Peak Discharge:1694.5 (CFS) Inflow Volume: 243.3 (AC-FT)	Date/Time of Peak Discharge26Feb2019, 12:4Discharge Volume:243.3 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basins each: Reach-2	s 100 yr
Start of Run End of Run: Compute Ti	1	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Unit	s: AC-FT	
Computed Results			
	low: 1713.1 (CFS) scharge:1712.7 (CFS) olume: 248.6 (AC-FT)	Date/Time of Peak Infle Date/Time of Peak Disc Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basine each: Reach-3	s 100 yr
Start of Run End of Run: Compute Tir	,	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Units	AC-FT	
Computed Results			
	flow: 1781.8 (CFS) scharge:1781.7 (CFS) /olume: 263.2 (AC-FT)	Date/Time of Peak Infle Date/Time of Peak Disc Discharge Volume:	ow 26Feb2019, 12:4 charge26Feb2019, 12:4 263.2 (AC-FT)

	Project: Winsome_F	il_3 Sim Reach: I	ulation Run: Prop Basins Reach-4	s 100 yr
Start of Ru End of Ru Compute	,,	:00	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Vol	ume Units:	AC-FT	
Computed Results				
	nflow: 1795.7 (C Discharge:1795.5 (C Volume: 269.8 (AC	FS) Dat	e/Time of Peak Inflo e/Time of Peak Disc charge Volume:	ow 26Feb2019, 12:4 harge26Feb2019, 12:4 269.8 (AC-FT)

	Project: Winsome_Fil_3	Simulation Run: Prop Basins Reach: Reach-5	s 100 yr
Start of Run: End of Run: Compute Tir	,	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	nits: AC-FT	
Computed Results			
	low: 1871.9 (CFS) charge:1871.4 (CFS) olume: 279.2 (AC-FT)	Date/Time of Peak Inflo Date/Time of Peak Disc Discharge Volume:	· ·

Project: Winsome_Fil_3	Simulation Run: Prop Basins 100 yr ach: REACH A1
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:11	Basin Model:Proposed BasinsMeteorologic Model:Prop Basins 100yrControl Specifications:Control 1
Volume Unit	s: AC-FT
Computed Results Peak Inflow: 402.8 (CFS) Peak Discharge:402.3 (CFS) Inflow Volume: 40.2 (AC-FT)	Date/Time of Peak Inflow26Feb2019, 12:27Date/Time of Peak Discharge26Feb2019, 12:37Discharge Volume:40.2 (AC-FT)

Project: Winsome_Fil_3 Re	Simulation Run: Prop Basins 100 yr each: Reach-A2A
Start of Run: 26Feb2019, 00:00 End of Run: 27Feb2019, 12:00 Compute Time: 09Dec2021, 07:54:11	Basin Model:Proposed BasinsMeteorologic Model:Prop Basins 100yrControl Specifications:Control 1
Volume Un	its: AC-FT
Computed Results	
Peak Inflow: 47.1 (CFS)	Date/Time of Peak Inflow 26Feb2019, 12:03
Peak Discharge:47.1 (CFS)	Date/Time of Peak Discharge26Feb2019, 12:07
Inflow Volume: 1.7 (AC-FT)	Discharge Volume: 1.7 (AC-FT)

F	Project: Winsome_Fil_3 Re	Simulation Run: Prop Basins each: Reach-A2B	100 yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	its: AC-FT	
Computed Results			
Peak Inf	ow: 20.3 (CFS)	Date/Time of Peak Inflow	v 26Feb2019, 12:02
Peak Dis	charge:20.1 (CFS)	Date/Time of Peak Discha	arge26Feb2019, 12:07
Inflow Ve	olume: 0.7 (AC-FT)	Discharge Volume:	0.7 (AC-FT)

F	Project: Winsome_Fil_3 F	Simulation Run: Prop Basins Reach: Reach-A3	100 yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	nits: AC-FT	
Computed Results			
	ow: 47.1 (CFS) charge:46.9 (CFS) olume: 1.7 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

F	Project: Winsome_Fil_3 R	Simulation Run: Prop Basins each: Reach-A3A	s 100 yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	nits: AC-FT	
Computed Results			
	ow: 49.5 (CFS) charge:49.3 (CFS) olume: 2.0 (AC-FT)	Date/Time of Peak Inflov Date/Time of Peak Disch Discharge Volume:	,

F	Project: Winsome_Fil_3 R	Simulation Run: Prop Basins Reach: Reach-G1	s 100 yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	nits: AC-FT	
	ow: 40.0 (CFS) charge:40.0 (CFS) olume: 1.5 (AC-FT)	Date/Time of Peak Inflov Date/Time of Peak Disch Discharge Volume:	,

F	Project: Winsome_Fil_3 R	Simulation Run: Prop Basins Reach: Reach-H1	100 yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 a: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	its: AC-FT	
Computed Results			
	ow: 33.0 (CFS) charge:32.8 (CFS) olume: 1.1 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	'

, – –	Simulation Run: Prop Basins Reach: Reach-H2	100 yr
26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
Volume Ur	nits: AC-FT	
charge:65.4 (CFS)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	
	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:11 Volume U	Reach: Reach-H2 26Feb2019, 00:00 Basin Model: 27Feb2019, 12:00 Meteorologic Model: e: 09Dec2021, 07:54:11 Control Specifications: Volume Units: AC-FT low: 65.5 (CFS) Date/Time of Peak Inflow charge:65.4 (CFS) Date/Time of Peak Discharge

F	Project: Winsome_Fil_3 F	Simulation Run: Prop Basins Reach: Reach H3	s 100 yr
Start of Run: End of Run: Compute Tim	26Feb2019, 00:00 27Feb2019, 12:00 e: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	its: AC-FT	
	low: 8.0 (CFS) charge:8.0 (CFS) olume: 0.3 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Disch Discharge Volume:	,

F	Project: Winsome_Fil_3 Ri	Simulation Run: Prop Basins each: Reach-H3B	s 100 yr
Start of Run: End of Run: Compute Time	26Feb2019, 00:00 27Feb2019, 12:00 a: 09Dec2021, 07:54:11	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume Ur	its: AC-FT	
Computed Results			
	ow: 6.9 (CFS) charge:6.8 (CFS) olume: 0.3 (AC-FT)	Date/Time of Peak Inflov Date/Time of Peak Disch Discharge Volume:	,

	Project: Winsome_Fil_3	Simulation Run: Prop Basins Reach: Reach-I1	100 yr
Start of Ru End of Ru Compute ⊺	,	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume l	Jnits: AC-FT	
Peak	Inflow: 36.2 (CFS) Discharge:36.2 (CFS) V Volume: 1.8 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	

	Project: Winsome_Fil_3	Simulation Run: Prop Basins Reach: Reach-P4	100 yr
Start of Run End of Run Compute T	,,	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
	Volume U	Inits: AC-FT	
	nflow: 63.1 (CFS) Discharge:63.0 (CFS) Volume: 4.3 (AC-FT)	Date/Time of Peak Inflow Date/Time of Peak Discha Discharge Volume:	,

	Project:	Winsome_Fil_3 Reach: Re	Simulatio each-6 Kiowa	n Run: Prop Basins 100 a Outfall	yr
Start of Run: End of Run: Compute Time		9, 00:00 019, 12:00 ANGED, RECOMPUT	Ē	Basin Model: Meteorologic Model: Control Specifications:	Proposed Basins Prop Basins 100yr Control 1
		Volume Unit	S:	AC-FT	
Computed Results					
Peak D	Discharge:	1960.1 (CFS) 1960.0 (CFS) 299.6 (AC-FT)	Date/Ti	me of Peak Inflow me of Peak Discharg ge Volume:	26Feb2019, 12:4 je26Feb2019, 12:4 299.6 (AC-FT)

APPENDIX C: HYDRAULICS

	DRIVEWAY CULVERT SIZING TABLE					
Lot	100 yr. Flow (cfs)	Culvert size (in)	Anticipated Driveway Location	Notes		
1	N/A	N/A	N/A	N/A		
2	41	36	East side of lot	Cross Swale A3A		
3	41	36	East side of lot	Cross Swale A3A		
4	<10	18	East side of lot	Cross roadside ditch		
5	<10	18	South side of lot	Cross roadside ditch		
6	<10	18	South side of lot	Cross roadside ditch		
7	N/A	18	Shared driveway	Shared driveway		
8	N/A	18	Shared driveway	Shared driveway		
9	<10	18	South side of lot	Corss roadside ditch		
10	<10	18	South side of lot	Cross roadside ditch		
11	N/A	18	Shared driveway	Shared driveway		
12	N/A	18	Shared driveway	Shared driveway		
13	<10	18	South side of lot	Cross roadside ditch		
14	<10	18	East side of lot	Cross roadside ditch		
15	<10	18	East side of lot	Cross roadside ditch		
16	<10	18	South side of lot	Cross roadside ditch		
17	<10	18	South side of lot	Cross roadside ditch		
18	<10	18	East side of lot	Cross roadside ditch		
19	<10	18	East side of lot	N/A		
20	<10	18	West side of lot	N/A		
21	<10	18	West side of lot	N/A		
22	<10	18	West side of lot	N/A		
23	20	24	West side of lot	Cross roadside ditch		
24	20	24	West side of lot	Cross roadside ditch		
25	27	30	East side of lot	Cross roadside ditch		
26	<10	18	North side of lot	Cross roadside ditch		
27	<10	18	North side of lot	Cross roadside ditch		
28	<10	18	West side of lot	Cross roadside ditch		
29	<10	18	North side of lot	Cross roadside ditch		
30	<10	18	North side of lot	Cross roadside ditch		
31	<10	18	North side of lot	Cross roadside ditch		

Lot	100 yr. Flow (cfs)	Culvert size (in)	Anticipated Driveway Location	Notes	
32	<10	18	North side of lot	Cross roadside ditch	
33	<10	18	North side of lot	Cross roadside ditch	
34	<10	18	North side of lot	Cross roadside ditch	
35	<10	18	West side of lot	Cross roadside ditch	
36	<10	18	West side of lot	Cross roadside ditch	
36	100	2- 36"	East side of drainageway	Cross Channel G1	
37	<10	18	West side of lot	Cross roadside ditch	
37	100	2- 36"	East side of drainageway	Cross Channel G1	
38	<10	18	West side of lot	Cross roadside ditch	
38	100	2- 36"	East side of drainageway	Cross Channel G1	
*Culvert sizing is based on flows in roadside ditch. If driveways cross natural channels an engineering site plan would be required.					

Generic Driveway Culvert Sizing Table*

	,	3
Culvert Diameter (in)	# of Barrels	Allowable Flow (cfs)
18	1	10
24	1	20
30	1	30
36	1	50
42	1	70
36	2	100

*See Generic Driveway Culvert Sizing calculations for Hw/D and culvert slope assumptions for each culvert size.

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs Design Flow: 10 cfs Maximum Flow: 100 cfs

	•	-		-
Headwater Elevation (ft)	Total Discharge (cfs)	Driveway Culvert 18in Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7388.00	0.00	0.00	0.00	1
7390.26	10.00	10.00	0.00	1
7392.71	20.00	17.08	2.91	10
7393.05	30.00	17.78	12.20	5
7393.30	40.00	18.30	21.69	5
7393.52	50.00	18.73	31.22	4
7393.72	60.00	19.12	40.84	4
7393.90	70.00	19.48	50.50	4
7394.07	80.00	19.79	60.15	3
7394.23	90.00	20.09	69.87	3
7394.39	100.00	20.37	79.62	3
7392.50	16.61	16.61	0.00	Overtopping

Table 28 - Summary of Culvert Flows at Crossing: General Driveway-18in

Rating Curve Plot for Crossing: General Driveway-18in

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7388.00	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
10.00	10.00	7390.26	2.256	1.995	5-S2n	0.900	1.219	1.033	0.907	7.709	3.039
20.00	17.08	7392.71	4.713	3.730	7-M2c	1.500	1.382	1.382	1.176	10.031	3.614
30.00	17.78	7393.05	5.046	3.943	7-M2t	1.500	1.308	1.369	1.369	10.507	4.000
40.00	18.30	7393.30	5.300	4.124	4-FFf	1.500	1.492	1.500	1.525	10.354	4.298
50.00	18.73	7393.52	5.520	4.393	4-FFf	1.500	1.500	1.500	1.658	10.601	4.544
60.00	19.12	7393.72	5.720	4.633	4-FFf	1.500	1.500	1.500	1.776	10.821	4.756
70.00	19.48	7393.90	5.905	4.853	4-FFf	1.500	1.500	1.500	1.882	11.021	4.943
80.00	19.79	7394.07	6.071	5.051	4-FFf	1.500	1.500	1.500	1.978	11.197	5.111
90.00	20.09	7394.23	6.233	5.240	4-FFf	1.500	1.500	1.500	2.067	11.367	5.264
100.00	20.37	7394.39	6.388	5.419	4-FFf	1.500	1.500	1.500	2.151	11.526	5.404

 Table 29 - Culvert Summary Table: Driveway Culvert 18in

Straight Culvert

Inlet Elevation (invert): 7388.00 ft, Outlet Elevation (invert): 7387.80 ft Culvert Length: 10.00 ft, Culvert Slope: 0.0200

Culvert Performance Curve Plot: Driveway Culvert 18in

Water Surface Profile Plot for Culvert: Driveway Culvert 18in

Site Data - Driveway Culvert 18in

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7388.00 ft Outlet Station: 10.00 ft Outlet Elevation: 7387.80 ft Number of Barrels: 1

Culvert Data Summary - Driveway Culvert 18in

Barrel Shape: Circular Barrel Diameter: 1.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	7387.80	0.00	0.00	0.00	0.00
10.00	7388.71	0.91	3.04	1.13	0.80
20.00	7388.98	1.18	3.61	1.47	0.83
30.00	7389.17	1.37	4.00	1.71	0.85
40.00	7389.33	1.53	4.30	1.90	0.87
50.00	7389.46	1.66	4.54	2.07	0.88
60.00	7389.58	1.78	4.76	2.22	0.89
70.00	7389.68	1.88	4.94	2.35	0.90
80.00	7389.78	1.98	5.11	2.47	0.91
90.00	7389.87	2.07	5.26	2.58	0.91
100.00	7389.95	2.15	5.40	2.68	0.92

 Table 30 - Downstream Channel Rating Curve (Crossing: General Driveway-18in)

Tailwater Channel Data - General Driveway-18in

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 4.00 (_:1) Channel Slope: 0.0200 Channel Manning's n: 0.0400 Channel Invert Elevation: 7387.80 ft

Roadway Data for Crossing: General Driveway-18in

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 10.00 ft Crest Elevation: 7392.50 ft Roadway Surface: Paved Roadway Top Width: 10.00 ft

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs Design Flow: 20 cfs

Maximum Flow: 100 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	Driveway Culvert 24in Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7388.00	0.00	0.00	0.00	1
7389.69	10.00	10.00	0.00	1
7390.92	20.00	20.00	0.00	1
7392.93	30.00	30.00	0.00	1
7393.41	40.00	31.91	8.05	5
7393.68	50.00	32.92	17.07	5
7393.91	60.00	33.75	26.20	4
7394.11	70.00	34.48	35.49	4
7394.30	80.00	35.10	44.87	4
7394.47	90.00	35.68	54.30	4
7394.63	100.00	36.19	63.77	3
7393.00	30.27	30.27	0.00	Overtopping

Table 31 - Summary of Culvert Flows at Crossing: General Driveway-24in

Rating Curve Plot for Crossing: General Driveway-24in

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7388.00	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
10.00	10.00	7389.69	1.686	1.187	1-S2n	0.767	1.131	0.915	0.907	7.140	3.039
20.00	20.00	7390.92	2.924	2.625	5-S2n	1.144	1.606	1.370	1.176	8.719	3.614
30.00	30.00	7392.93	4.934	4.030	5-S2n	1.535	1.862	1.724	1.369	10.421	4.000
40.00	31.91	7393.41	5.415	4.345	5-S2n	1.631	1.889	1.786	1.525	10.776	4.298
50.00	32.92	7393.68	5.682	4.518	5-S2n	1.692	1.900	1.822	1.658	10.961	4.544
60.00	33.75	7393.91	5.907	4.665	5-S2n	1.758	1.909	1.858	1.776	11.095	4.756
70.00	34.48	7394.11	6.111	4.794	3-M2t	2.000	1.874	1.882	1.882	11.244	4.943
80.00	35.10	7394.30	6.298	4.926	7-M2t	2.000	1.840	1.978	1.978	11.195	5.111
90.00	35.68	7394.47	6.474	5.119	4-FFf	2.000	1.817	2.000	2.067	11.357	5.264
100.00	36.19	7394.63	6.632	5.297	4-FFf	2.000	1.778	2.000	2.151	11.520	5.404

 Table 32 - Culvert Summary Table: Driveway Culvert 24in

Straight Culvert

Inlet Elevation (invert): 7388.00 ft, Outlet Elevation (invert): 7387.80 ft Culvert Length: 10.00 ft, Culvert Slope: 0.0200

Culvert Performance Curve Plot: Driveway Culvert 24in

Water Surface Profile Plot for Culvert: Driveway Culvert 24in

Site Data - Driveway Culvert 24in

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7388.00 ft Outlet Station: 10.00 ft Outlet Elevation: 7387.80 ft Number of Barrels: 1

Culvert Data Summary - Driveway Culvert 24in

Barrel Shape: Circular Barrel Diameter: 2.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	7387.80	0.00	0.00	0.00	0.00
10.00	7388.71	0.91	3.04	1.13	0.80
20.00	7388.98	1.18	3.61	1.47	0.83
30.00	7389.17	1.37	4.00	1.71	0.85
40.00	7389.33	1.53	4.30	1.90	0.87
50.00	7389.46	1.66	4.54	2.07	0.88
60.00	7389.58	1.78	4.76	2.22	0.89
70.00	7389.68	1.88	4.94	2.35	0.90
80.00	7389.78	1.98	5.11	2.47	0.91
90.00	7389.87	2.07	5.26	2.58	0.91
100.00	7389.95	2.15	5.40	2.68	0.92

 Table 33 - Downstream Channel Rating Curve (Crossing: General Driveway-24in)

Tailwater Channel Data - General Driveway-24in

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 4.00 (_:1) Channel Slope: 0.0200 Channel Manning's n: 0.0400 Channel Invert Elevation: 7387.80 ft

Roadway Data for Crossing: General Driveway-24in

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 10.00 ft Crest Elevation: 7393.00 ft Roadway Surface: Paved Roadway Top Width: 10.00 ft

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs

Design Flow: 30 cfs

Maximum Flow: 100 cfs

	-	-		-
Headwater Elevation (ft)	Total Discharge (cfs)	Driveway Culvert 30in Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7388.00	0.00	0.00	0.00	1
7389.49	10.00	10.00	0.00	1
7390.30	20.00	20.00	0.00	1
7391.14	30.00	30.00	0.00	1
7392.27	40.00	40.00	0.00	1
7393.60	50.00	49.05	0.92	10
7393.94	60.00	51.10	8.87	5
7394.19	70.00	52.55	17.44	5
7394.41	80.00	53.76	26.20	4
7394.60	90.00	54.84	35.13	4
7394.78	100.00	55.83	44.15	4
7393.50	48.44	48.44	0.00	Overtopping

Table 34 - Summary of Culvert Flows at Crossing: General Driveway-30in

Rating Curve Plot for Crossing: General Driveway-30in

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7388.00	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
10.00	10.00	7389.49	1.489	0.959	1-S2n	0.702	1.056	0.843	0.907	6.874	3.039
20.00	20.00	7390.30	2.301	1.728	1-S2n	1.011	1.518	1.253	1.176	8.121	3.614
30.00	30.00	7391.14	3.142	2.590	5-S2n	1.274	1.867	1.585	1.369	9.144	4.000
40.00	40.00	7392.27	4.268	3.756	5-S2n	1.524	2.129	1.866	1.525	10.180	4.298
50.00	49.05	7393.60	5.599	4.662	5-S2n	1.761	2.287	2.082	1.658	11.232	4.544
60.00	51.10	7393.94	5.942	4.885	5-S2n	1.819	2.313	2.126	1.776	11.488	4.756
70.00	52.55	7394.19	6.192	5.047	5-S2n	1.861	2.330	2.156	1.882	11.674	4.943
80.00	53.76	7394.41	6.407	5.186	5-S2n	1.899	2.342	2.182	1.978	11.829	5.111
90.00	54.84	7394.60	6.603	5.311	5-S2n	1.933	2.353	2.204	2.067	11.974	5.264
100.00	55.83	7394.78	6.785	5.428	5-S2n	1.966	2.361	2.224	2.151	12.103	5.404

 Table 35 - Culvert Summary Table: Driveway Culvert 30in

Straight Culvert

Inlet Elevation (invert): 7388.00 ft, Outlet Elevation (invert): 7387.80 ft Culvert Length: 10.00 ft, Culvert Slope: 0.0200

Culvert Performance Curve Plot: Driveway Culvert 30in

Water Surface Profile Plot for Culvert: Driveway Culvert 30in

Site Data - Driveway Culvert 30in

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7388.00 ft Outlet Station: 10.00 ft Outlet Elevation: 7387.80 ft Number of Barrels: 1

Culvert Data Summary - Driveway Culvert 30in

Barrel Shape: Circular Barrel Diameter: 2.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	7387.80	0.00	0.00	0.00	0.00
10.00	7388.71	0.91	3.04	1.13	0.80
20.00	7388.98	1.18	3.61	1.47	0.83
30.00	7389.17	1.37	4.00	1.71	0.85
40.00	7389.33	1.53	4.30	1.90	0.87
50.00	7389.46	1.66	4.54	2.07	0.88
60.00	7389.58	1.78	4.76	2.22	0.89
70.00	7389.68	1.88	4.94	2.35	0.90
80.00	7389.78	1.98	5.11	2.47	0.91
90.00	7389.87	2.07	5.26	2.58	0.91
100.00	7389.95	2.15	5.40	2.68	0.92

Table 36 - Downstream Channel Rating Curve (Crossing: General Driveway-30in)

Tailwater Channel Data - General Driveway-30in

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 4.00 (_:1) Channel Slope: 0.0200 Channel Manning's n: 0.0400 Channel Invert Elevation: 7387.80 ft

Roadway Data for Crossing: General Driveway-30in

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 10.00 ft Crest Elevation: 7393.50 ft Roadway Surface: Paved Roadway Top Width: 10.00 ft

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 0 cfs

Design Flow: 50 cfs

Maximum Flow: 100 cfs

Headwater Elevation (ft)	Total Discharge (cfs)	Driveway Culvert 36in Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7388.00	0.00	0.00	0.00	1
7389.36	10.00	10.00	0.00	1
7390.07	20.00	20.00	0.00	1
7390.67	30.00	30.00	0.00	1
7391.27	40.00	40.00	0.00	1
7391.97	50.00	50.00	0.00	1
7392.82	60.00	60.00	0.00	1
7393.85	70.00	70.00	0.00	1
7394.33	80.00	74.20	5.79	6
7394.59	90.00	76.31	13.68	5
7394.81	100.00	78.06	21.90	4
7394.00	71.34	71.34	0.00	Overtopping

Table 37 - Summary of Culvert Flows at Crossing: General Driveway-36in

Rating Curve Plot for Crossing: General Driveway-36in

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7388.00	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
10.00	10.00	7389.36	1.359	0.849	1-S2n	0.658	1.000	0.792	0.907	6.697	3.039
20.00	20.00	7390.07	2.073	1.430	1-S2n	0.937	1.435	1.172	1.176	7.820	3.614
30.00	30.00	7390.67	2.671	2.014	1-S2n	1.161	1.774	1.478	1.369	8.653	4.000
40.00	40.00	7391.27	3.272	2.641	5-S2n	1.362	2.059	1.743	1.525	9.388	4.298
50.00	50.00	7391.97	3.971	3.672	5-S2n	1.551	2.301	1.981	1.658	10.100	4.544
60.00	60.00	7392.82	4.823	4.309	5-S2n	1.735	2.501	2.193	1.776	10.837	4.756
70.00	70.00	7393.85	5.849	5.023	5-S2n	1.922	2.657	2.382	1.882	11.631	4.943
80.00	74.20	7394.33	6.333	5.345	5-S2n	2.002	2.710	2.454	1.978	11.989	5.111
90.00	76.31	7394.59	6.588	5.512	5-S2n	2.044	2.733	2.489	2.067	12.176	5.264
100.00	78.06	7394.81	6.805	5.653	5-S2n	2.078	2.751	2.517	2.151	12.332	5.404

 Table 38 - Culvert Summary Table: Driveway Culvert 36in

Straight Culvert

Inlet Elevation (invert): 7388.00 ft, Outlet Elevation (invert): 7387.80 ft Culvert Length: 10.00 ft, Culvert Slope: 0.0200

Culvert Performance Curve Plot: Driveway Culvert 36in

Water Surface Profile Plot for Culvert: Driveway Culvert 36in

Site Data - Driveway Culvert 36in

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7388.00 ft Outlet Station: 10.00 ft Outlet Elevation: 7387.80 ft Number of Barrels: 1

Culvert Data Summary - Driveway Culvert 36in

Barrel Shape: Circular Barrel Diameter: 3.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	7387.80	0.00	0.00	0.00	0.00
10.00	7388.71	0.91	3.04	1.13	0.80
20.00	7388.98	1.18	3.61	1.47	0.83
30.00	7389.17	1.37	4.00	1.71	0.85
40.00	7389.33	1.53	4.30	1.90	0.87
50.00	7389.46	1.66	4.54	2.07	0.88
60.00	7389.58	1.78	4.76	2.22	0.89
70.00	7389.68	1.88	4.94	2.35	0.90
80.00	7389.78	1.98	5.11	2.47	0.91
90.00	7389.87	2.07	5.26	2.58	0.91
100.00	7389.95	2.15	5.40	2.68	0.92

Table 39 - Downstream Channel Rating Curve (Crossing: General Driveway-36in)

Tailwater Channel Data - General Driveway-36in

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 4.00 (_:1) Channel Slope: 0.0200 Channel Manning's n: 0.0400 Channel Invert Elevation: 7387.80 ft

Roadway Data for Crossing: General Driveway-36in

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 10.00 ft Crest Elevation: 7394.00 ft Roadway Surface: Paved Roadway Top Width: 10.00 ft

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs Design Flow: 70 cfs Maximum Flow: 100 cfs

	-	-		•
Headwater Elevation (ft)	Total Discharge (cfs)	Driveway Culvert 42in Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7388.00	0.00	0.00	0.00	1
7389.29	10.00	10.00	0.00	1
7389.90	20.00	20.00	0.00	1
7390.45	30.00	30.00	0.00	1
7390.93	40.00	40.00	0.00	1
7391.39	50.00	50.00	0.00	1
7391.88	60.00	60.00	0.00	1
7392.42	70.00	70.00	0.00	1
7393.05	80.00	80.00	0.00	1
7393.76	90.00	90.00	0.00	1
7394.55	100.00	99.71	0.28	7
7394.50	99.18	99.18	0.00	Overtopping

Table 40 - Summary of Culvert Flows at Crossing: General Driveway-42in

Rating Curve Plot for Crossing: General Driveway-42in

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7388.00	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
10.00	10.00	7389.29	1.292	0.783	1-S2n	0.628	0.957	0.754	0.907	6.564	3.039
20.00	20.00	7389.90	1.896	1.274	1-S2n	0.885	1.369	1.111	1.176	7.620	3.614
30.00	30.00	7390.45	2.448	1.727	1-S2n	1.089	1.692	1.397	1.369	8.370	4.000
40.00	40.00	7390.93	2.927	2.185	1-S2n	1.268	1.967	1.646	1.525	8.996	4.298
50.00	50.00	7391.39	3.390	2.663	1-S2n	1.431	2.210	1.870	1.658	9.561	4.544
60.00	60.00	7391.88	3.878	3.168	5-S2n	1.584	2.427	2.075	1.776	10.097	4.756
70.00	70.00	7392.42	4.424	3.703	5-S2n	1.731	2.622	2.265	1.882	10.628	4.943
80.00	80.00	7393.05	5.047	4.620	5-S2n	1.875	2.794	2.441	1.978	11.167	5.111
90.00	90.00	7393.76	5.761	5.139	5-S2n	2.017	2.943	2.603	2.067	11.729	5.264
100.00	99.71	7394.55	6.545	5.682	5-S2n	2.156	3.065	2.747	2.151	12.309	5.404

 Table 41 - Culvert Summary Table: Driveway Culvert 42in

Straight Culvert

Inlet Elevation (invert): 7388.00 ft, Outlet Elevation (invert): 7387.80 ft Culvert Length: 10.00 ft, Culvert Slope: 0.0200

Culvert Performance Curve Plot: Driveway Culvert 42in

Water Surface Profile Plot for Culvert: Driveway Culvert 42in

Site Data - Driveway Culvert 42in

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7388.00 ft Outlet Station: 10.00 ft Outlet Elevation: 7387.80 ft Number of Barrels: 1

Culvert Data Summary - Driveway Culvert 42in

Barrel Shape: Circular Barrel Diameter: 3.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

	ī — — — — —				
Flow (cfs)	Water Surface	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
. ,	Elev (ft)	,		. ,	
	- ()				
0.00	7387.80	0.00	0.00	0.00	0.00
10.00	7388.71	0.91	3.04	1.13	0.80
20.00	7388.98	1.18	3.61	1.47	0.83
30.00	7389.17	1.37	4.00	1.71	0.85
40.00	7389.33	1.53	4.30	1.90	0.87
50.00	7389.46	1.66	4.54	2.07	0.88
60.00	7389.58	1.78	4.76	2.22	0.89
70.00	7389.68	1.88	4.94	2.35	0.90
80.00	7389.78	1.98	5.11	2.47	0.91
90.00	7389.87	2.07	5.26	2.58	0.91
100.00	7389.95	2.15	5.40	2.68	0.92

 Table 42 - Downstream Channel Rating Curve (Crossing: General Driveway-42in)

Tailwater Channel Data - General Driveway-42in

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 4.00 (_:1) Channel Slope: 0.0200 Channel Manning's n: 0.0400 Channel Invert Elevation: 7387.80 ft

Roadway Data for Crossing: General Driveway-42in

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 10.00 ft Crest Elevation: 7394.50 ft Roadway Surface: Paved Roadway Top Width: 10.00 ft

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 10 cfs Design Flow: 100 cfs Maximum Flow: 120 cfs

	-	-	-	
Headwater Elevation (ft)	Total Discharge (cfs)	Culvert 1 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7358.55	10.00	10.00	0.00	1
7359.01	21.00	21.00	0.00	1
7359.42	32.00	32.00	0.00	1
7359.78	43.00	43.00	0.00	1
7360.11	54.00	54.00	0.00	1
7360.43	65.00	65.00	0.00	1
7360.76	76.00	76.00	0.00	1
7361.12	87.00	87.00	0.00	1
7361.59	100.00	100.00	0.00	1
7361.95	109.00	109.00	0.00	1
7362.44	120.00	120.00	0.00	1
7367.00	192.69	192.69	0.00	Overtopping

Table 1 - Summary of Culvert Flows at Crossing: Driveway Culvert-2- 36"

Rating Curve Plot for Crossing: Driveway Culvert-2- 36"

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
10.00	10.00	7358.55	0.950	0.612	1-S2n	0.534	0.700	0.591	0.371	5.075	2.543
21.00	21.00	7359.01	1.406	0.979	1-S2n	0.772	1.026	0.883	0.494	6.044	3.190
32.00	32.00	7359.42	1.818	1.301	1-S2n	0.958	1.277	1.113	0.586	6.702	3.608
43.00	43.00	7359.78	2.182	1.615	1-S2n	1.120	1.490	1.312	0.663	7.235	3.925
54.00	54.00	7360.11	2.512	1.933	1-S2n	1.269	1.679	1.491	0.729	7.701	4.184
65.00	65.00	7360.43	2.832	2.262	1-S2n	1.409	1.850	1.655	0.788	8.129	4.405
76.00	76.00	7360.76	3.162	2.606	5-S2n	1.544	2.006	1.808	0.841	8.537	4.597
87.00	87.00	7361.12	3.517	2.967	5-S2n	1.676	2.148	1.952	0.891	8.934	4.770
100.00	100.00	7361.59	3.986	3.764	5-S2n	1.833	2.301	2.112	0.945	9.405	4.953
109.00	109.00	7361.95	4.348	4.039	5-S2n	1.944	2.397	2.216	0.979	9.735	5.069
120.00	120.00	7362.44	4.838	4.397	5-S2n	2.084	2.501	2.339	1.020	10.150	5.201

Table 2 - Culvert Summary Table: Culvert 1

Straight Culvert

Inlet Elevation (invert): 7357.60 ft, Outlet Elevation (invert): 7357.50 ft Culvert Length: 10.00 ft, Culvert Slope: 0.0100

Culvert Performance Curve Plot: Culvert 1

Water Surface Profile Plot for Culvert: Culvert 1

Crossing - Driveway Culvert-2- 36", Design Discharge - 100.0 cfs

Site Data - Culvert 1

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7357.60 ft Outlet Station: 10.00 ft Outlet Elevation: 7357.50 ft Number of Barrels: 2

Culvert Data Summary - Culvert 1

Barrel Shape: Circular Barrel Diameter: 3.00 ft Barrel Material: Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

					-
Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
10.00	7357.87	0.37	2.54	0.93	1.00
21.00	7357.99	0.49	3.19	1.23	1.06
32.00	7358.09	0.59	3.61	1.46	1.09
43.00	7358.16	0.66	3.93	1.65	1.12
54.00	7358.23	0.73	4.18	1.82	1.13
65.00	7358.29	0.79	4.40	1.97	1.15
76.00	7358.34	0.84	4.60	2.10	1.16
87.00	7358.39	0.89	4.77	2.22	1.17
100.00	7358.44	0.94	4.95	2.36	1.18
109.00	7358.48	0.98	5.07	2.44	1.19
120.00	7358.52	1.02	5.20	2.55	1.20

 Table 3 - Downstream Channel Rating Curve (Crossing: Driveway Culvert-2- 36")

Tailwater Channel Data - Driveway Culvert-2- 36"

Tailwater Channel Option: Irregular Channel

Roadway Data for Crossing: Driveway Culvert-2- 36"

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 10.00 ft Crest Elevation: 7367.00 ft Roadway Surface: Paved Roadway Top Width: 10.00 ft

				CHANNEL FLOWS	SUMMARY					
			Channel		Tributary	Q100 Flows		Q100 Velocity		
Reach/Channel ID	Slope (%)	Friction Factor	Depth (ft)	Contributing Basins	Area (ac)	(cfs)	Q100 Depth (ft)	(ft/s)	Lining	Headcutting
EX_Reach G1	4.00	0.04	10.5	G1+G2A	43.39	100.0	0.95	4.98	Grass	
EX_Reach H1-A	4.30	0.04	32.1	H1+H4	40.76	106.6	1.24	6.40	Grass	Х
Prop_Reach H1-A	1.30	0.04	32.1	H1+H4	40.76	106.6	1.61	4.23	Grass	
EX_Reach H1-B	5.00	0.04	7.0	H1+29% of H4	21.59	54.3	1.45	6.57	Grass	Х
Prop_Reach H1-B	2.70	0.04	7.0	H1+29% of H4	21.59	54.3	0.80	4.44	Grass	
EX_Reach H2	3.80	0.04	13.0	H2	16.00	57.1	0.92	4.71	Grass	
EX_Reach H3	6.00	0.04	17.0	H3A+H7B	18.77	57.8	1.06	5.92	Grass	Х
Prop_Reach H3	4.86	0.04	9.0	H3A+H7B	18.77	57.8	0.70	5.67	Grass/TRM	Х
Prop_Reach H3B	4.20	0.04	2.5	H3B+25% of I1	4.40	12.0	0.89	4.32	Grass	
EX_Reach H4	6.80	0.04	17.0	23% of H4	6.21	16.9	0.73	4.94	Grass	Х
EX_Reach H5B	5.00	0.04	18.0	H5B	10.48	29.0	0.86	4.71	Grass	Х
Prop_Reach I1	7.90	0.04	5.1	H3B+I1+H8A	13.40	38.4	1.23	7.32	Grass/TRM	
Prop_Swale A3A	4.20	0.04	6.5	A2B+A3A	17.20	46.1	1.18	5.29	Grass/TRM	
EX_Reach I2	2.43	0.04	7.8	12	14.60	39.1	0.60	3.87	Grass	
Prop_WQ Channel	1.90	0.04	3.0	A2B+A3A+G2B	20.00	55.7	1.12	4.77	Grass	

Worksheet for EX_Reach G1

Project Description				_
Friction Method	Manning			_
	Formula Normal Depth			
				_
Input Data				_
Channel Slope Discharge	0.040 ft/ft 100.00 cfs			
	Se	ction Definitions		
Statio (ft)	n		Elevation (ft)	
		0+25		7,367.99
		0+87		7,360.00
		1+16		7,357.46
		1+30		7,357.78
		1+45		7,358.60
		1+97		7,363.04
		2+20		7,365.99
	Roughne	ess Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+25, 7,367.99)		(2+20, 7,365.99)		0.040
Options				-
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			_
Results				-
Normal Depth	11.4 in			_
Roughness Coefficient	0.040			
Elevation	7,358.41 ft			
Elevation Range	7,357.5 to 7,368.0 ft			
Flow Area	20.1 ft ²			
Wetted Perimeter	36.5 ft			
Hydraulic Radius	6.6 in			
Top Width	36.48 ft			
Normal Depth	11.4 in			
Critical Depth	12.3 in			
Critical Slope	0.028 ft/ft			
Velocity	4.98 ft/s			
Velocity Head	0.39 ft			
Specific Energy	1.34 ft			
hannels_Flowmaster.fm8		ems, Inc. Haestad Methods Solution Center		FlowMas [10.03.00.0
2/9/2021		on Company Drive Suite 200 W , CT 06795 USA +1-203-755-1666		Page 1 c

Results		
Froude Number	1.185	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	11.4 in	
Critical Depth	12.3 in	
Channel Slope	0.040 ft/ft	
Critical Slope	0.028 ft/ft	

Worksheet for EX_Reach G1

Cross Section for EX_Reach G1

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlowMaster [10.03.00.03] Page 1 of 1

Project Description				_
Friction Method	Manning			_
	Formula			
Solve For	Normal Depth			_
Input Data				_
Channel Slope	0.043 ft/ft			
Discharge	106.60 cfs			_
	Se	ection Definitions		
Station (ft)			Elevation (ft)	
		0+00		7,363.3
		1+08		7,331.9
		1+16		7,331.1
		1+24		7,331.6
		2+75		7,360.0
	Roughne	ess Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,363.31)		(2+75, 7,360.00)		0.04
Options				_
Current Roughness Weighted Method	Pavlovskii's Method			_
Open Channel Weighting Method	Pavlovskii's Method			
	Method Pavlovskii's			
Method Closed Channel Weighting Method	Method			Ξ
Method Closed Channel Weighting Method Results	Method Pavlovskii's Method			-
Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method 14.9 in			-
Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method 14.9 in 0.040			=
Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft			-
Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to			-
Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range	Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft			-
Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area	Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ²			-
Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft			-
Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft 9.1 in			-
Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width	Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft 9.1 in 21.78 ft			-
Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft 9.1 in 21.78 ft 14.9 in			-
Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft 9.1 in 21.78 ft 14.9 in 16.8 in			-
Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft 9.1 in 21.78 ft 14.9 in 16.8 in 0.025 ft/ft			-
Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft 9.1 in 21.78 ft 14.9 in 16.8 in 0.025 ft/ft 6.40 ft/s			-
Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft 9.1 in 21.78 ft 14.9 in 16.8 in 0.025 ft/ft 6.40 ft/s 0.64 ft			-
Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head Specific Energy	Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft 9.1 in 21.78 ft 14.9 in 16.8 in 0.025 ft/ft 6.40 ft/s 0.64 ft 1.88 ft			-
Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method 14.9 in 0.040 7,332.39 ft 7,331.2 to 7,363.3 ft 16.6 ft ² 22.0 ft 9.1 in 21.78 ft 14.9 in 16.8 in 0.025 ft/ft 6.40 ft/s 0.64 ft			-

Worksheet for EX_Reach H1-A

Channels_Flowmaster.fm8 12/9/2021

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 2

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	14.9 in	
Critical Depth	16.8 in	
Channel Slope	0.043 ft/ft	
Critical Slope	0.025 ft/ft	

Worksheet for EX_Reach H1-A

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 2 of 2

Cross Section for EX_Reach H1-A

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description				
Friction Method	Manning			_
Solve For	Formula Normal Depth			
Input Data	· · · · · · · · · · · · · · · · · · ·			-
Channel Slope	0.013 ft/ft			_
Discharge	106.60 cfs			_
	Se	ection Definitions		
Static (ft)	n		Elevation (ft)	
()		0+00		7,363.3
		1+08		7,331.9
		1+16		7,331.1
		1+24		7,331.6
		2+75		7,360.0
	Roughne	ess Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,363.31)		(2+75, 7,360.00)		0.04
Options				_
Current Roughness Weighted Method	Pavlovskii's Method			_
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				_
	10.0.1			_
Normal Depth	19.3 in			
Roughness Coefficient	0.040			
Elevation	7,332.76 ft			
	7,331.2 to			
Elevation Range	7,363.3 ft			
Elevation Range Flow Area				
	7,363.3 ft			
Flow Area	7,363.3 ft 25.2 ft ²			
Flow Area Wetted Perimeter	7,363.3 ft 25.2 ft ² 25.3 ft			
Flow Area Wetted Perimeter Hydraulic Radius	7,363.3 ft 25.2 ft ² 25.3 ft 12.0 in			
Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	7,363.3 ft 25.2 ft ² 25.3 ft 12.0 in 24.99 ft			
Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	7,363.3 ft 25.2 ft ² 25.3 ft 12.0 in 24.99 ft 19.3 in			
Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	7,363.3 ft 25.2 ft ² 25.3 ft 12.0 in 24.99 ft 19.3 in 16.8 in 0.025 ft/ft			
Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	7,363.3 ft 25.2 ft ² 25.3 ft 12.0 in 24.99 ft 19.3 in 16.8 in 0.025 ft/ft 4.23 ft/s			
Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	7,363.3 ft 25.2 ft ² 25.3 ft 12.0 in 24.99 ft 19.3 in 16.8 in 0.025 ft/ft 4.23 ft/s 0.28 ft			
Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head Specific Energy	7,363.3 ft 25.2 ft ² 25.3 ft 12.0 in 24.99 ft 19.3 in 16.8 in 0.025 ft/ft 4.23 ft/s 0.28 ft 1.89 ft			
Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	7,363.3 ft 25.2 ft ² 25.3 ft 12.0 in 24.99 ft 19.3 in 16.8 in 0.025 ft/ft 4.23 ft/s 0.28 ft			

Worksheet for Prop_Reach H1-A

Channels_Flowmaster.fm8 12/9/2021 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	19.3 in	
Critical Depth	16.8 in	
Channel Slope	0.013 ft/ft	
Critical Slope	0.025 ft/ft	

Worksheet for Prop_Reach H1-A

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for Prop_Reach H1-A

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

	Workshe	et for EX_Reach H1	-B	
Project Description				_
Friction Method	Manning			_
Solve For	Formula Normal Depth			
Solve Fol	Normal Depth			_
Input Data				
Channel Slope	0.050 ft/ft			
Discharge	54.30 cfs			_
	Se	ection Definitions		
Static	n		Elevation	
(ft)			(ft)	
		0+04 0+55		7,369.03 7,359.99
		0+55		
		0+73		7,349.57
				7,346.68
		1+01		7,351.01
		1+17		7,359.46
		1+59		7,364.84
	Roughne	ess Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	t
(0+04, 7,369.03)		(1+59, 7,364.84)		0.040
				_
Options				
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				
Normal Depth	17.4 in			
Roughness Coefficient	0.040			
Elevation	7,348.13 ft			
	7,346.7 to			
Elevation Range	7,369.0 ft			
Flow Area	8.3 ft ²			
Wetted Perimeter	11.7 ft			
Hydraulic Radius	8.4 in			
Top Width	11.38 ft			
Normal Depth	17.4 in			
Critical Depth	19.7 in			
Critical Slope	0.026 ft/ft			
Velocity	6.57 ft/s			
Velocity Head	0.67 ft			
Specific Energy	2.12 ft			
hannels_Flowmaster.fm8	Bentley Sys	tems, Inc. Haestad Methods Solution Center		FlowMast [10.03.00.0
2/9/2021		non Company Drive Suite 200 W n, CT 06795 USA +1-203-755-1666		Page 1 of

Worksheet for EX_Reach H1-B

Results		
Froude Number	1.359	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	17.4 in	
Critical Depth	19.7 in	
Channel Slope	0.050 ft/ft	
Critical Slope	0.026 ft/ft	

Worksheet for EX_Reach H1-B

Cross Section for EX_Reach H1-B

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
	Manning	
Friction Method	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.040	
Channel Slope	0.025 ft/ft	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Bottom Width	12.00 ft	
Discharge	54.30 cfs	
Results		
Normal Depth	9.6 in	
Flow Area	12.2 ft ²	
Wetted Perimeter	18.6 ft	
Hydraulic Radius	7.9 in	
Top Width	18.43 ft	
Critical Depth	9.4 in	
Critical Slope	0.027 ft/ft	
Velocity	4.44 ft/s	
Velocity Head	0.31 ft	
Specific Energy	1.11 ft	
Froude Number	0.960	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	9.6 in	
Critical Depth	9.4 in	
Channel Slope	0.025 ft/ft	
Critical Slope	0.027 ft/ft	

Worksheet for Prop_Reach H1-B

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.040	
Channel Slope	0.025 ft/ft	
Normal Depth	9.6 in	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Bottom Width	12.00 ft	
Discharge	54.30 cfs	

Cross Section for Prop_Reach H1-B

V:1 L H:1

Channels_Flowmaster.fm8 12/10/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for EX_Reach H2

Project Description				
Friction Method	Manning			_
Solve For	Formula Normal Depth			
Input Data	·			-
Channel Slope	0.038 ft/ft			-
Discharge	57.10 cfs			_
	Se	ction Definitions		
Statio (ft)			Elevation (ft)	
(11)		0+00		7,329.99
		0+43		7,321.99
		0+68		7,319.99
		0+93		7,316.97
		0+99		7,316.75
		1+14		7,316.75 7,317.99
		1+14 1+79		7,317.99
		1+79		1,329.30
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,329.99)		(1+79, 7,329.38)		0.040
				-
Options				
Current Roughness Weighted	Pavlovskii's			-
Current Roughness Weighted Method	Method			-
Current Roughness Weighted Method Open Channel Weighting Method	Method Pavlovskii's Method			_
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting	Method Pavlovskii's Method Pavlovskii's			-
Current Roughness Weighted Method Open Channel Weighting Method	Method Pavlovskii's Method			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting	Method Pavlovskii's Method Pavlovskii's			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 11.0 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ²			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ² 23.2 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ² 23.2 ft 6.3 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ² 23.2 ft 6.3 in 23.07 ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ² 23.2 ft 6.3 in 23.07 ft 11.0 in 11.7 in			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ² 23.2 ft 6.3 in 23.07 ft 11.0 in 11.7 in 0.028 ft/ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ² 23.2 ft 6.3 in 23.07 ft 11.0 in 11.7 in 0.028 ft/ft 4.71 ft/s			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ² 23.2 ft 6.3 in 23.07 ft 11.0 in 11.7 in 0.028 ft/ft			-
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ² 23.2 ft 6.3 in 23.07 ft 11.0 in 11.7 in 0.028 ft/ft 4.71 ft/s 0.34 ft 1.26 ft	ame Inc. Haestad Mathodo Solution		- - -
Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	Method Pavlovskii's Method Pavlovskii's Method 11.0 in 0.040 7,317.67 ft 7,316.8 to 7,330.0 ft 12.1 ft ² 23.2 ft 6.3 in 23.07 ft 11.0 in 11.7 in 0.028 ft/ft 4.71 ft/s 0.34 ft 1.26 ft	ems, Inc. Haestad Methods Solution Center		- - FlowMas 10.03.00.0

Results		
Froude Number	1.144	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	11.0 in	
Critical Depth	11.7 in	
Channel Slope	0.038 ft/ft	
Critical Slope	0.028 ft/ft	

Worksheet for EX_Reach H2

Cross Section for EX_Reach H2

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for EX_Reach H3

Project Description				
Friction Method	Manning			
	Formula			
Solve For	Normal Depth			
Input Data				
Channel Slope	0.060 ft/ft			
Discharge	57.80 cfs			
	Se	ection Definitions	5	
Statio	n		Elevation	
(ft)			(ft)	
		0+00		7,323.1
		0+25		7,319.9
		0+51		7,312.5
		0+58		7,310.4
		0+70		7,309.1
		0+79		7,310.1
		0+94		7,316.1 7,319.7
		1+12 1+76		7,319.7
	Roughne	ess Segment Defi	nitions	
Start Station		Ending Station	Roughness Coeff	icient
(0+00, 7,323.16)		(1+76, 7,	326.41)	0.04
Options				
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's			
Closed Channel Weighting	Method Pavlovskii's			
Method	Method			
Results				
Normal Depth	12.7 in			
Roughness Coefficient	0.040			
Elevation	7,310.17 ft			
Flowetion Dange	7,309.1 to			
Elevation Range	7,326.4 ft			
Flow Area	9.8 ft ²			
Wetted Perimeter	18.6 ft			
Hydraulic Radius	6.3 in			
Top Width	18.50 ft			
Normal Depth	12.7 in			
Critical Depth	14.6 in			
Critical Slope	0.027 ft/ft			
Velocity	5.92 ft/s			

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Results		
Velocity Head	0.54 ft	
Specific Energy	1.60 ft	
Froude Number	1.436	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	12.7 in	
Critical Depth	14.6 in	
Channel Slope	0.060 ft/ft	
Critical Slope	0.027 ft/ft	

Worksheet for EX_Reach H3

Cross Section for EX_Reach H3

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.040	
Channel Slope	4.860 %	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Bottom Width	12.00 ft	
Discharge	57.80 cfs	
Results		
Normal Depth	0.7 ft	
Flow Area	10.2 ft ²	
Wetted Perimeter	17.7 ft	
Hydraulic Radius	0.6 ft	
Top Width	17.52 ft	
Critical Depth	0.8 ft	
Critical Slope	2.701 %	
Velocity	5.67 ft/s	
Velocity Head	0.50 ft	
Specific Energy	1.19 ft	
Froude Number	1.311	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	0.7 ft	
Critical Depth	0.8 ft	
Channel Slope	4.860 %	
Critical Slope	2.701 %	

Worksheet for Prop_Reach H3

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Friction Method	Manning Formula	
Solve For	Normal Depth	
nput Data		
Roughness Coefficient	0.040	
Channel Slope	4.860 %	
Normal Depth	0.7 ft	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Bottom Width	12.00 ft	
Discharge	57.80 cfs	

----- 12.00 ft -------

Cross Section for Prop_Reach H3

V:1 L H:1

Channels_Flowmaster.fm8 11/28/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for PROP_Reach H3B

Project Description				
Friction Method	Manning			_
	Formula Normal Depth			
	Normal Doptil			-
Input Data				_
Channel Slope Discharge	0.042 ft/ft 12.00 cfs			
	Se	ction Definitions		-
Statio	n		Elevation	
(ft)		o. (o	(ft)	
		0+60 0+66		7,374.12 7,372.11
		0+76		7,372.1
	Roughne	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+60, 7,374.12)		(0+76, 7,374.63)		0.040
				_
Options				_
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				-
Normal Depth	10.7 in			_
Roughness Coefficient	0.040			
Elevation	7,373.00 ft			
Elevation Range	7,372.1 to 7,374.6 ft			
	7,574.011			
Flow Area	2.8 ft ²			
Flow Area Wetted Perimeter	2.8 ft ² 6.5 ft			
Wetted Perimeter	6.5 ft			
Wetted Perimeter Hydraulic Radius	6.5 ft 5.1 in			
Wetted Perimeter Hydraulic Radius Top Width	6.5 ft 5.1 in 6.24 ft			
Wetted Perimeter Hydraulic Radius Top Width Normal Depth	6.5 ft 5.1 in 6.24 ft 10.7 in			
Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	6.5 ft 5.1 in 6.24 ft 10.7 in 11.3 in 0.032 ft/ft			
Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	6.5 ft 5.1 in 6.24 ft 10.7 in 11.3 in			
Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	6.5 ft 5.1 in 6.24 ft 10.7 in 11.3 in 0.032 ft/ft 4.32 ft/s			
Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	6.5 ft 5.1 in 6.24 ft 10.7 in 11.3 in 0.032 ft/ft 4.32 ft/s 0.29 ft			

GVF Input Data

Channels_Flowmaster.fm8 12/9/2021 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	10.7 in	
Critical Depth	11.3 in	
Channel Slope	0.042 ft/ft	
Critical Slope	0.032 ft/ft	

Worksheet for PROP_Reach H3B

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for PROP_Reach H3B

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for EX_Reach H4

Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Channel Slope	0.068 ft/f	t		
Discharge	16.91 cfs			
	S	ection Definitions		
	Station (ft)		Elevation (ft)	
		0+36		7,357

(11)		(11)	
	0+36		7,357.99
	0+66		7,353.99
	0+82		7,343.34
	0+86		7,341.99
	0+92		7,340.90
	1+01		7,342.10
	1+05		7,344.37
	1+16		7,355.99
	1+20		7,357.99

Roughness Segment Definitions

Start Station	Ending Stat	lion	Roughness Coefficient	
(0+36, 7,357.99)	(1+20, 7,357.99)		0.040
Options				
Current Roughness Weighted Method	Pavlovskii's Method			
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				
Normal Depth	8.8 in			
Roughness Coefficient	0.040			
Elevation	7,341.64 ft			
Elevation Range	7,340.9 to 7,358.0 ft			
Flow Area	3.4 ft ²			
Wetted Perimeter	9.4 ft			
Hydraulic Radius	4.4 in			
Top Width	9.29 ft			
Normal Depth	8.8 in			
Critical Depth	10.2 in			
Critical Slope	0.032 ft/ft			
Velocity	4.94 ft/s			
Channels_Flowmaster.fm8 12/9/2021	Bentley Systems, Inc. Haest Center 27 Siemon Company Dr Watertown, CT 06795 USA	ive Suite 200 W	[1	FlowMaste 0.03.00.03 Page 1 of 2

Results		
Velocity Head	0.38 ft	
Specific Energy	1.12 ft	
Froude Number	1.434	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	8.8 in	
Critical Depth	10.2 in	
Channel Slope	0.068 ft/ft	
Critical Slope	0.032 ft/ft	

Worksheet for EX_Reach H4

Cross Section for EX_Reach H4

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for EX_Reach H5B

Project Description				
Friction Method	Manning			_
	Formula			
Solve For	Normal Depth			_
Input Data				
Channel Slope	0.050 ft/ft			
Discharge	29.00 cfs			_
	Sec	ction Definitions		
Statio (ft)	n		Elevation (ft)	
(1)		0+00	(11)	7,342.0
		0+35		7,337.9
		0+42		7,335.9
		0+58		7,327.3
		0+64		7,325.9
		0+74		7,323.9
		0+90		7,325.3
		1+02		7,329.7
		1+16		7,337.9
		1+34		7,341.9
				7,011.7
	Roughnes	ss Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+00, 7,342.00)		(1+34, 7,341.97)		0.04
(0+00, 7,342.00) Options		(1+34, 7,341.97)		0.04
Options Current Roughness Weighted	Pavlovskii's	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method	Method	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted		(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting	Method Pavlovskii's Method Pavlovskii's	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method	Method Pavlovskii's Method	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting	Method Pavlovskii's Method Pavlovskii's	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results	Method Pavlovskii's Method Pavlovskii's Method	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 10.3 in	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to 7,342.0 ft	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Results Elevation Range	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to 7,342.0 ft 6.2 ft ² 14.4 ft	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to 7,342.0 ft 6.2 ft ² 14.4 ft 5.1 in	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to 7,342.0 ft 6.2 ft ² 14.4 ft 5.1 in 14.29 ft	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to 7,342.0 ft 6.2 ft ² 14.4 ft 5.1 in 14.29 ft 10.3 in	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to 7,342.0 ft 6.2 ft ² 14.4 ft 5.1 in 14.29 ft	(1+34, 7,341.97)		0.04
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to 7,342.0 ft 6.2 ft ² 14.4 ft 5.1 in 14.29 ft 10.3 in 11.4 in 0.030 ft/ft			
Options Current Roughness Weighted Method Open Channel Weighting Method Closed Channel Weighting Method Results Normal Depth Roughness Coefficient Elevation Elevation Range Flow Area Wetted Perimeter Hydraulic Radius Top Width Normal Depth Critical Depth	Method Pavlovskii's Method Pavlovskii's Method 10.3 in 0.040 7,324.83 ft 7,324.0 to 7,342.0 ft 6.2 ft ² 14.4 ft 5.1 in 14.29 ft 10.3 in 11.4 in 0.030 ft/ft	(1+34, 7,341.97)		0.04

Results		
Velocity	4.71 ft/s	
Velocity Head	0.34 ft	
Specific Energy	1.21 ft	
Froude Number	1.265	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	10.3 in	
Critical Depth	11.4 in	
Channel Slope	0.050 ft/ft	
Critical Slope	0.030 ft/ft	

Worksheet for EX_Reach H5B

Cross Section for EX_Reach H5B

Worksheet for Prop_Reach I1 **Project Description** Manning Friction Method Formula Solve For Normal Depth Input Data 0.079 ft/ft Channel Slope Discharge 38.40 cfs Section Definitions Station Elevation (ft) (ft) 0+75 7,330.96 0+85 7,328.37 1+01 7,333.54 **Roughness Segment Definitions** Start Station **Ending Station Roughness Coefficient** 0.040 (0+75, 7,330.96) (1+01, 7,333.54) Options Current Roughness Weighted Pavlovskii's Method Method Pavlovskii's **Open Channel Weighting** Method Method **Closed Channel Weighting** Pavlovskii's Method Method Results Normal Depth 14.7 in **Roughness Coefficient** 0.040 Elevation 7,329.59 ft 7,328.4 to **Elevation Range** 7,333.5 ft Flow Area 5.2 ft² 8.9 ft Wetted Perimeter Hydraulic Radius 7.0 in Top Width 8.58 ft Normal Depth 14.7 in Critical Depth 17.9 in Critical Slope 0.027 ft/ft Velocity 7.32 ft/s Velocity Head 0.83 ft Specific Energy 2.05 ft

GVF Input Data

Froude Number

Flow Type

Channels_Flowmaster.fm8 9/15/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

1.651

Supercritical

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	14.7 in	
Critical Depth	17.9 in	
Channel Slope	0.079 ft/ft	
Critical Slope	0.027 ft/ft	

Worksheet for Prop_Reach I1

Channels_Flowmaster.fm8 9/15/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for Prop_Reach I1

Channels_Flowmaster.fm8 9/15/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description				-
Friction Method	Manning Formula			_
Solve For	Normal Depth			_
Input Data				_
Channel Slope Discharge	0.042 ft/ft 46.10 cfs			
	Se	ection Definitions		-
Statio			Elevation	
(ft)		0+19	(ft)	7,373.9
		0+78 0+97		7,367.4 7,372.7
	Roughne	ess Segment Definitions		
Start Station		Ending Station	Roughness Coefficient	
(0+19, 7,373.99)		(0+97, 7,372.70)	J. J	0.04
Options				-
Current Roughness Weighted Method	Pavlovskii's Method			_
Open Channel Weighting Method	Pavlovskii's Method			
Closed Channel Weighting Method	Pavlovskii's Method			
Results				-
Normal Depth	14.1 in			_
Roughness Coefficient	0.040			
Elevation Elevation Range	7,368.66 ft 7,367.5 to 7,374.0 ft			
Flow Area	8.7 ft ²			
Wetted Perimeter	15.1 ft			
Hydraulic Radius	6.9 in			
Top Width	14.84 ft			
Normal Depth	14.1 in			
Critical Depth	15.2 in			
Critical Slope	0.028 ft/ft			
Velocity	5.29 ft/s			
Velocity Head	0.43 ft			
Specific Energy	1.61 ft			
Froude Number	1.216			

Worksheet for Prop_Swale A3A

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	14.1 in	
Critical Depth	15.2 in	
Channel Slope	0.042 ft/ft	
Critical Slope	0.028 ft/ft	

Worksheet for Prop_Swale A3A

Channels_Flowmaster.fm8 12/9/2021

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for Prop_Swale A3A

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for EX_Reach_I2

Project Description					
Friction Method	Manning Formula				
Solve For	Normal Depth				
Input Data					-
Channel Slope	2.430 %				_
Discharge	39.10 cfs				
	Se	ection Definit	ions		
Statio (ft)	n			Elevation (ft)	
		0+39		(· · /	7,325.8
		0+70			7,323.7
		0+82			7,317.9
		0+97			7,317.9
		1+09			7,321.9
		1+32			7,324.8
	Roughne	ess Segment	Definitions		
Start Station		Ending Station		Roughness Coefficient	
(0+39, 7,325.81)		(1+	32, 7,324.89)		0.04
Options					-
Current Roughness Weighted	Pavlovskii's				_
Method	Method				
Open Channel Weighting Method	Pavlovskii's Method				
Closed Channel Weighting	Pavlovskii's				
Method	Method				_
Results					-
Normal Depth	0.6 ft				_
Roughness Coefficient	0.040				
Elevation	7,318.59 ft				
Elevation Range	7,318.0 to 7,325.8 ft				
Flow Area	10.1 ft ²				
	18.5 ft				
Wetted Perimeter	10.0 11				
Wetted Perimeter Hydraulic Radius	0.5 ft				
Hydraulic Radius Top Width Normal Depth	0.5 ft 18.27 ft 0.6 ft				
Hydraulic Radius Top Width Normal Depth Critical Depth	0.5 ft 18.27 ft 0.6 ft 0.6 ft				
Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope	0.5 ft 18.27 ft 0.6 ft 0.6 ft 2.937 %				
Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity	0.5 ft 18.27 ft 0.6 ft 2.937 % 3.87 ft/s				
Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	0.5 ft 18.27 ft 0.6 ft 2.937 % 3.87 ft/s 0.23 ft				
Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head Specific Energy	0.5 ft 18.27 ft 0.6 ft 2.937 % 3.87 ft/s 0.23 ft 0.84 ft				
Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head	0.5 ft 18.27 ft 0.6 ft 2.937 % 3.87 ft/s 0.23 ft				
Hydraulic Radius Top Width Normal Depth Critical Depth Critical Slope Velocity Velocity Head Specific Energy	0.5 ft 18.27 ft 0.6 ft 2.937 % 3.87 ft/s 0.23 ft 0.84 ft 0.917	tems, Inc. Haestad № Center	Nethods Solution		FlowMa [10.03.00

Results		
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	0.6 ft	
Critical Depth	0.6 ft	
Channel Slope	2.430 %	
Critical Slope	2.937 %	

Worksheet for EX_Reach_I2

Cross Section for EX_Reach_12

Channels_Flowmaster.fm8 1/27/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Project Description		
Friction Method	Manning	
FIICTION METHOD	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.036	
Channel Slope	0.019 ft/ft	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Bottom Width	6.00 ft	
Discharge	55.70 cfs	
Results		
Normal Depth	13.4 in	
Flow Area	11.7 ft ²	
Wetted Perimeter	15.2 ft	
Hydraulic Radius	9.2 in	
Top Width	14.93 ft	
Critical Depth	13.0 in	
Critical Slope	0.021 ft/ft	
Velocity	4.77 ft/s	
Velocity Head	0.35 ft	
Specific Energy	1.47 ft	
Froude Number	0.951	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	13.4 in	
Critical Depth	13.0 in	
Channel Slope	0.019 ft/ft	
Critical Slope	0.021 ft/ft	

Worksheet for Prop_WQ Channel

Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.036	
Channel Slope	0.019 ft/ft	
Normal Depth	13.4 in	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Bottom Width	6.00 ft	
Discharge	55.70 cfs	

Cross Section for Prop_WQ Channel

V:1 L H:1

Channels_Flowmaster.fm8 8/30/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

Specifications

IECA Member

A variety of test methods are utilized to determine performance and conformance values for Rolled Erosion Control Products (RECPs). Information within this document is presented to provide conformance values and recommended design values. Test results obtained for the Excel PP5-12 Turf Reinforcement Mat (TRM) and general design values are presented in Tables 1-4. For specific information detailing testing protocols, results and application of design values, refer to document number WE_EXCEL_PERF_GEN.

Table 1 - Bench Scale Testing / NTPEP					
Test Method	Condition	Result			
	2 in per hour	14.53			
ASTM D7101 Bench Scale Rainfall and Rainsplash Test	4 in per hour				
	6 in per hour	4.82			
ASTM D7207 Bench Scale Shear Resistance Test	3.0 psf (145 PA)	0.5 in (12 mm)			
ASTM D7322 Bench Scale Vegetation Establishment Test	Top Soil, Fescue, 21 Day Incubation	661 %			
NTPEP Report Number	ECP-2016-03-008				

	Table 3 ·	Recommended	Desian	Values*
--	-----------	-------------	--------	---------

Design Value	Unvegetated	Vegetated
Typical RUSLE Cover Factor (C Factor)**	0.03	N/A
Maximum Slope Gradient (RUSLE)	1H : 1V	N/A
Max Allowable Velocity (0.5 in (12mm) soil loss)***	9.0 ft/s (2.7 m/s)	15.0 ft/s (4.6 m/s)
Max Allowable Shear Stress (0.5 in (12mm) soil loss)***	2.8 psf (134 PA)	12.0 psf (575 PA)
CFveg/CFTRM	N/A	0.26

Table 2 - Texas Transportation Institute (TTI) Results

Class	Test Condition	Result
А	< 3H:1 Clay Slope Test	N/A
В	< 3H:1 Sand Slope Test	N/A
С	> 3H:1 Clay Slope Test	N/A
D	> 3H:1 Sand Slope Test	N/A
E	2 psf Partially Vegetated Channel Test	Approved
F	4 psf Partially Vegetated Channel Test	Approved
G	6 psf Partially Vegetated Channel Test	Approved
Н	8 psf Partially Vegetated Channel Test	Approved

Table 4 - HEC-15 Resistance to Flow Value:	S
--	---

Design Value	Unvegetated
Manning's n @ Tau _{lower} (0.7 psf (34 PA))	0.027
Manning's n @ Tau _{mid} (1.4 psf (67 PA))	0.027
Manning's n @ Tau _{upper} (2.8 psf (134 PA))	0.027

Recommended Design Values are based on results of standardized industry full-scale testing and may not be applicable for all field conditions. For most accurate computation of field performance, consult Excel Erosion Design (EED) at www.westernexcelsior.com.

The information contained herein may represent product index data, performance ratings, bench scale testing or other material utility quantifications. Each representation may have unique utility and limitations. Every effort has been made to ensure accuracy, however, no warranty is claimed and no liability shall be assumed by Western Excelsior Corporation (WEC) or its affiliates regarding the completeness, accuracy or fitness of these values for any particular application or interpretation. While testing methods are provided for reference, values shown may be derived from interpolation or adjustment to be representative of intended use. For further information, please feel free to contact WEC.

possible for as much of the reach as possible to the maximum prudent values for the hydraulic parameters in the 100 year event. The designer should determine the return period where these parameters would be achieved and, with the owner and local jurisdiction, determine if the associated risks are acceptable.

On the other hand, if the recommendation to avoid floodplain filling is not followed and fill is proposed, this should only happen in floodplains where the maximum prudent values for the hydraulic parameters shown in Table 8-1 are not exceeded in the 100-year event.

Tuble 0 1. Muximum product values for interface mainter hydraune parameters						
Design Parameter	Non-Cohesive Soils or Poor Vegetation	Cohesive Soils and Vegetation				
Maximum flow velocity (average of section)	5 ft/s	7 ft/s				
Maximum Froude number	0.6	0.8				
Maximum tractive force (average of section)	0.60 lb/sf	1.0 lb/sf				
Maximum depth outside bankfull channel	5 ft	5 ft				

Table 8-1. Maximum prudent values for natural channel hydraulic parameters

Stream Restoration Principle 8: Evaluate Hydraulics of Streams over a Range of Flows

Representative Design Tasks and Deliverables

- 1. Document hydraulic analyses of the project reach following the guidance of Section 7.0.
 - 2. Describe how hydraulic performance of the project reach compares to maximum prudent values for the hydraulic parameters shown in Table 8-1 for several return periods (including 2-, 10-, and 100-year events at a minimum). Describe any locations in the reach where these parameters are exceeded and discuss efforts made to improve hydraulics.
- 3. Confirm that hydraulic parameters of Table 8-1 are satisfied in for the100-year event in all locations where fill is proposed in the floodplain.

ROCK CHUTE DETAILS

				Drop (ft)									
			Upstream	(Inlet Apron		Downstream					Min Rock		
	Channel		Inlet Apron	to Outlet	Chute Length	Outlet Apron			Rock Chute		Chute Depth	Rock Chute	Top Chute
Rock Chute ID	Location	Flow (cfs)	Length (ft)	Apron)	(ft)	Length (ft)	Chute Width (ft)	D50 (in)	Thickness (in)	Radius (ft)	(ft)	Depth (ft)	Width (ft)
4	Pond 1	107	10	6	24	15	24	18	36	50	1.27	2.00	40
6	Pond 2	110	10	8	32	18	17	18	36	50	1.57	2.00	33
11	Pond 4	26	10	10	40	11	10	9	18	25	0.85	2.00	26
12	WQ Pond	100	11	5	20	20	12	18	36	50	1.81	2.00	28
13	WQ Pond	57	10	3	12	16	10	18	36	50	1.38	2.00	26

Rock Chute Design - Plan Sheet

Rock Chute Design - Cut/Paste Plan

Rock Chute Design - Plan Sheet

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998) Project: Winsome Filing 3- Rock Chute 6 (Pond 2) County: El Paso Designer: TOS Checked by: Date: Date: <u>Minimum</u> Enter Design Values Plan Values Rock Gradation Envelope Quantities ⁶ D₅₀ dia. = Rock = 302 yd³ 14.6 in. 18.00in. % Passing Diameter, in. (weight, lbs.) yd² D₁₀₀ ----- 27 - 36 (1393 - 3302) 36.00 jn. Geotextile (WCS-13)^b = 392 29.2 in. Rock_{chute} thickness = yd³ 10.00_{ft} D₈₅ ----- 23 - 32 (907 - 2407) Bedding 6 in. = 6810 ft Inlet apron length = D₅₀ ----- 18 - 27 (413 - 1393) yd³ Excavation = 018.00 ft 18 ft. Outlet apron length = D₁₀ ----- 14 - 23 (211 - 907) Earthfill = 0yd³ 30 ft. Radius = 50 ft. Depth (in.) = 6.0 Seeding = 0.0 acres Will bedding be used? Yes ----Notes: a Rock, bedding, and geotextile quantities are determined Degree of angularity = 1 from the x-section below (neglect radius). ^b Geotextile Class I (non-woven) shall be overlapped and anchored (18-in. min. along sides and 24-in. min. on the ends). 1 50% angular, 50% rounded 2 100 % rounded Upstream Inlet apron elev. = 7309 ft. Channel Slope = 0.02 ft./ft Rock thickness = 36 in. Inlet apron Rock Chute Radius = 50 ft. Outlet apron Downstream **Stakeout Notes** elev. = 7301 ft Channel Geotextile Sta. Elev. (Pnt) 0+00.0 7309 ft. (1) lope = 0.004 ft./ft. 0+03.8 7309 ft. (2) Outlet apron 32 ft. 0+10.0 7308.6 ft. (3) d = 1 ft.25 0+16.0 7307.5 ft. (4) **Profile Along Centerline of Rock Chute** ** Note : The outlet will 0+42.0 7301 ft. (5) 0+60.0 7301 ft. (6) function adequately 0+62.5 7302 ft. (7) Top width = 30 ft. Berm Class I non-woven Geotextile Freeboard = 0.5 ft. Rock gradation envelope can be met with Rock Chute Gradation printed Bedding Rock thickness = 36 in. Rock Chute Cost Estimate Unit Cost Unit Cost * Use H_p throughout chute Rock \$10.00 /yd3 \$3,020.00 but not less than z2. Geotextile \$12.00/vd² \$4,704.00 **Rock Chute Cross Section** Bedding \$12.00 /yd3 \$816.00 **Profile, Cross Sections, and Quantities** \$12.00/yd³ \$0.00 Excavation Earthfill \$1.00 /yd3 \$0.00 Seeding \$2.00 \$0.00 /ac. 540 0 Date le Name Winsome Filing 3- Rock Chute 6 (Pond 2) rawing Name El Paso County Sheet ____ of

Rock Chute Design - Cut/Paste Plan

Rock Chute Design - Plan Sheet

Rock Chute Design - Cut/Paste Plan

Rock Chute Design - Plan Sheet

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998) **Project:** Winsome Filing 3- Rock Chute #12 County: El Paso Designer: TOS Checked by: Date: Date: <u>Minimum</u> Enter Rock Gradation Envelope Design Values Plan Values Quantities^a D₅₀ dia. = Rock = 240 yd³ 16.0 _{in.} 18.00in. <u>% Passing</u> <u>Diameter, in. (weight, lbs.)</u> D₁₀₀ ----- 27 - 36 (1393 - 3302) yd² 36.00 jn. Geotextile $(WCS-13)^{b} = 316$ 32.0 in. Rock_{chute} thickness = yd³ 11.00_{ft} D₈₅ ----- 23 - 32 (907 - 2407) Bedding 6 in. = 5511 ft Inlet apron length = D₅₀ ----- 18 - 27 (413 - 1393) yd³ 20 ft. Outlet apron length = 20.00 ft. Excavation = 0yd³ D₁₀ ----- 14 - 23 (211 - 907) Earthfill = 033 ft. Radius = 50 ft. Depth (in.) = 6.0 Seeding = 0.0 acres Will bedding be used? Yes ----Notes: a Rock, bedding, and geotextile quantities are determined Degree of angularity = 1 from the x-section below (neglect radius). ^b Geotextile Class I (non-woven) shall be overlapped and anchored (18-in. min. along sides and 24-in. min. on the ends). 1 50% angular, 50% rounded 2 100 % rounded Upstream Inlet apron elev. = 7330 ft. Channel Slope = 0.02 ft./ft Rock thickness = 36 in. Inlet apron Rock Chute Radius = 50 ft. Outlet apron Downstream **Stakeout Notes** elev. = 7325 f Channel Geotextile Sta. Elev. (Pnt) 0+00.0 7330 ft. (1) lope = 0.004 ft./ft. 0+04.8 7330 ft. (2) Outlet apron 20 ft. 0+11.0 7329.6 ft. (3) d = 1 ft.25 0+17.0 7328.5 ft. (4) **Profile Along Centerline of Rock Chute** ** Note : The outlet will 0+31.0 7325 ft. (5) 0+51.0 7325 ft. (6) function adequately 0+53.5 7326 ft. (7) Top width = 26 ft. Berm Class I non-woven Geotextile Freeboard = 0.5 ft. Rock gradation envelope can be met with Rock Chute Gradation printed Bedding Rock thickness = 36 in. Rock Chute Cost Estimate Unit Cost Unit Cost * Use H_p throughout chute \$10.00 /yd3 Rock \$2,400.00 but not less than z2. Geotextile \$12.00/vd² \$3.792.00 **Rock Chute Cross Section** Bedding \$12.00 /yd3 \$660.00 **Profile, Cross Sections, and Quantities** \$12.00/yd³ \$0.00 Excavation Earthfill \$1.00 /yd3 \$0.00 Seeding \$2.00 \$0.00 /ac. Date le Name Winsome Filing 3- Rock Chute #12 rawing Name El Paso County Sheet ____ of

Rock Chute Design - Cut/Paste Plan

Rock Chute Design - Plan Sheet

(Version WI-July-2010, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998) **Project:** Winsome Filing 3- Rock Chute #13 County: El Paso Designer: TOS Checked by: Date: Date: <u>Minimum</u> Enter Des<u>ign Values</u> Rock Gradation Envelope Plan Values Quantities^a D₅₀ dia. = Rock = 156 yd³ 13.2 _{in.} 18.00in. % Passing Diameter, in. (weight, lbs.) D₁₀₀ ----- 27 - 36 (1393 - 3302) Geotextile (WCS-13)^b = 214 yd² 36.00 jn. 26.4 in. Rock_{chute} thickness = yd³ 10.00_{ft}. D₈₅ ----- 23 - 32 (907 - 2407) Bedding 6 in. = 38 9 ft Inlet apron length = D₅₀ ----- 18 - 27 (413 - 1393) yd³ Excavation = 016.00 ft 16 ft. Outlet apron length = D₁₀ ----- 14 - 23 (211 - 907) Earthfill = 0yd³ 27 ft. Radius = 50 ft. Depth (in.) = 6.0 Seeding = 0.0 acres Will bedding be used? Yes ----Notes: a Rock, bedding, and geotextile quantities are determined Degree of angularity = 1 from the x-section below (neglect radius). ^b Geotextile Class I (non-woven) shall be overlapped and anchored (18-in. min. along sides and 24-in. min. on the ends). 1 50% angular, 50% rounded 2 100 % rounded Upstream Inlet apron elev. = 7328 ft. Channel Slope = 0.02 ft./ft Rock thickness = 36 in. Inlet apron Rock Chute Radius = 50 ft. Outlet apron Downstream **Stakeout Notes** elev. = 7325 f Channel Geotextile <u>Sta.</u> Elev. (Pnt) 0+00.0 7328 ft. (1) lope = 0.004 ft./ft. 0+03.8 7328 ft. (2) Outlet apron 7327.6 ft. (3) 0+10.0 12 ft. d = 1 ft.25 0+16.0 7326.5 ft. (4) **Profile Along Centerline of Rock Chute** ** Note : The outlet will 0+22.0 7325 ft. (5) 0+38.0 7325 ft. (6) function adequately 0+40.5 7326 ft. (7) Top width = 21 ft. Berm Class I non-woven Geotextile Freeboard = 0.5 ft. Rock gradation envelope can be met with Rock Chute Gradation printed Bedding Rock thickness = 36 in. Rock Chute Cost Estimate Unit Cost Unit Cost * Use H_p throughout chute \$10.00 /yd3 Rock \$1,560.00 $= 10.9 \, \text{ft}$ but not less than z2. Geotextile \$12.00/vd² \$2.568.00 **Rock Chute Cross Section** Bedding \$12.00 /yd3 \$456.00 **Profile, Cross Sections, and Quantities** \$12.00/yd³ Excavation \$0.00 Earthfill \$1.00 /yd3 \$0.00 Seeding \$2.00 \$0.00 /ac. 84 0 Date le Name Winsome Filing 3- Rock Chute #13 rawing Name El Paso County Sheet ____ of

Rock Chute Design - Cut/Paste Plan

	ZONE 1		
PERMANENT	ZONE 1 AND 2 ORIFICES	100-YEAR ORIFICE	2_
	ple Zone Configur	ation (Retention Pond)	

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	60.00	acres
Watershed Length =	2,399	ft
Watershed Length to Centroid =	960	ft
Watershed Slope =	0.050	ft/ft
Watershed Imperviousness =	7.20%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	6.9%	percent
Percentage Hydrologic Soil Groups C/D =	93.1%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban nydrograph nocedure.						
Water Quality Capture Volume (WQCV) =	0.172	acre-feet				
Excess Urban Runoff Volume (EURV) =	0.241	acre-feet				
2-yr Runoff Volume (P1 = 1.19 in.) =	1.063	acre-feet				
5-yr Runoff Volume (P1 = 1.5 in.) =	2.245	acre-feet				
10-yr Runoff Volume (P1 = 1.75 in.) =	3.366	acre-feet				
25-yr Runoff Volume (P1 = 2 in.) =	4.924	acre-feet				
50-yr Runoff Volume (P1 = 2.25 in.) =	6.155	acre-feet				
100-yr Runoff Volume (P1 = 2.52 in.) =	7.866	acre-feet				
500-yr Runoff Volume (P1 = 3.14 in.) =	11.014	acre-feet				
Approximate 2-yr Detention Volume =	0.276	acre-feet				
Approximate 5-yr Detention Volume =	0.741	acre-feet				
Approximate 10-yr Detention Volume =	1.072	acre-feet				
Approximate 25-yr Detention Volume =	1.301	acre-feet				
Approximate 50-yr Detention Volume =	1.333	acre-feet				
Approximate 100-yr Detention Volume =	1.903	acre-feet				

Define	Zones	and	Rasin	Geometry

Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.172	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.069	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	1.662	acre-feet
Total Detention Basin Volume =	1.903	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$		ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin (A_{MAIN}) =		ft ²
Volume of Main Basin (VMAIN) =	user	ft ³

in (V_M Calculated Total Basin Volume (V_{total}) = user acre-feet

n Pond)		Depth Increment = Stage - Storage Description	Stage (ft)	ft Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft 3)	Volume (ac-ft)
		Top of Micropool		0.00				49	0.001		
		7317		1.00				2,950	0.068	1,499	0.034
		7318		2.00				8,352	0.192	7,150	0.164
		7319		3.00				13,337	0.306	17,995	0.413
		7320		4.00				16,699	0.383	33,013	0.758
		7321		5.00				20,465	0.470	51,595	1.184
		7322		6.00				24,598	0.565	74,126	1.702
		7323		7.00				30,068	0.690	101,459	2.329
		7324		8.00				35,153	0.807	134,070	3.078
					-						
	er Overrides										
0.172	acre-feet										
0.241	acre-feet										
1.19	inches										
1.50	inches										
1.75	inches										
2.00	inches									<u> </u>	
	-									+	
2.25	inches									l	
2.52	inches									L	
	inches										
							-			1	
										+	
										<u> </u>	
										L	
											-
					-		-				
							-				
										<u> </u>	
										L	
										L	
										+	
										<u> </u>	
						~~					
										1	
									-	1	
										<u> </u>	
										1	
										1	
										<u> </u>	
										1	
										<u> </u>	
										<u> </u>	
										1	

MHFD-Detention, Version 4.04 (February 2021)

	DI	ETENTION	BASIN OUT	LET STRU	CTURE DES	SIGN			
Project:	WINSOME FILING		D-Detention, Ver	sion 4.04 (Februa	ry 2021)				
		1+H4)_Modified A	rea						
ZONE 3				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
100-YR VOLUME EURV WOCV			Zone 1 (WQCV)	_	0.172	Orifice Plate			
	100-YEAR		Zone 2 (EURV)		0.069	Orifice Plate			
ZONE 1 AND 2	ORIFICE				1				
	Configuration (Re	tention Pond)	Zone 3 (100-year)	6.35	1.662	Weir&Pipe (Restrict)			
				Total (all zones)	1.903	l	Calaulated Danama	taan fan Lladaadaain	
User Input: Orifice at Underdrain Outlet (typically Underdrain Orifice Invert Depth =	<u>y used to drain wc</u>			curface)	Undors	Irain Orifice Area =	Calculated Parame	ft ²	<u>1</u>
Underdrain Orifice Diameter =	-	inches	the filtration media	surrace)		orifice Centroid =		feet	
Under drain Onnice Diameter =		Inches			Underdrait			leet	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically used	to drain WOCV and	d/or ELIRV in a sedi	mentation BMP)		Calculated Parame	tors for Plato	
Invert of Lowest Orifice =	0.00		n bottom at Stage =			ce Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	2.05		n bottom at Stage =			iptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	9.40	inches	i bottom ut otago	010		ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	inches				Iliptical Slot Area =	N/A	ft ²	
		indire b			-	inpublic of the out			
Jser Input: Stage and Total Area of Each Orifice	e Row (numbered f	rom lowest to high	est)						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Stage of Orifice Centroid (ft)	0.00	0.68	1.37						1
Orifice Area (sq. inches)	0.75	0.80	0.80						1
(54, 1000)									•
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Orifice Centroid (ft)	()			(),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			(, ,		1
Orifice Area (sq. inches)									1
		•	•	•	•				4
Jser Input: Vertical Orifice (Circular or Rectangu	ular)						Calculated Parame	ters for Vertical Or	ifice
	Not Selected	Not Selected]				Not Selected	Not Selected]
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basir	n bottom at Stage =	= 0 ft) Ver	tical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basir	n bottom at Stage =	= 0 ft) Vertica	I Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						-
			-						
Jser Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Re	ctangular/Trapezoid	al Weir (and No Ou	itlet Pipe)		Calculated Parame	ters for Overflow V	Veir
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	1
Overflow Weir Front Edge Height, Ho =	2.40	N/A	ft (relative to basin	bottom at Stage = 0	ft) Height of Grate	e Upper Edge, H _t =	3.90	N/A	feet
Overflow Weir Front Edge Length =	12.00	N/A	feet		Overflow W	/eir Slope Length =	6.18	N/A	feet
Overflow Weir Grate Slope =	4.00	N/A	H:V	Gr	ate Open Area / 10	0-yr Orifice Area =	7.36	N/A	
Horiz. Length of Weir Sides =	6.00	N/A	feet	0	verflow Grate Open	Area w/o Debris =	51.65	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A		C	Overflow Grate Ope	n Area w/ Debris =	25.83	N/A	ft ²
Debris Clogging % =	50%	N/A	%						-
			_						
Jser Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, R	estrictor Plate, or F	Rectangular Orifice)		Ca	Iculated Parameters	s for Outlet Pipe w/	Flow Restriction Pl	ate
	Zone 3 Restrictor	Not Selected					Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	1.50	N/A	ft (distance below b	asin bottom at Stage	= 0 ft) O	utlet Orifice Area =	7.01	N/A	ft ²
Outlet Pipe Diameter =	36.00	N/A	inches		Outle	t Orifice Centroid =	1.49	N/A	feet
Restrictor Plate Height Above Pipe Invert =	35.00		inches	Half-Cen	tral Angle of Restric	tor Plate on Pipe =	2.81	N/A	radians
Jser Input: Emergency Spillway (Rectangular or	Trapezoidal)	-					Calculated Parame	ters for Spillway	
Spillway Invert Stage=	6.10	ft (relative to basi	n bottom at Stage =	= 0 ft)	Spillway D	esign Flow Depth=	0.68	feet	
Spillway Crest Length =		feet			Stage at T	op of Freeboard =	8.00	feet	
1 5 5	60.00				5		0.81	acres	
Spillway End Slopes =	4.00	H:V			•	op of Freeboard =	0.81		
. , , ,		H:V feet			Basin Area at T	op of Freeboard = op of Freeboard =	3.07	acre-ft	
Spillway End Slopes =	4.00				Basin Area at T			acre-ft	
Spillway End Slopes = Freeboard above Max Water Surface =	4.00 1.22	feet	ID bydes see the	d rupoff where t	Basin Area at T Basin Volume at T	op of Freeboard =	3.07		(5)
Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results	4.00 1.22 The user can over	feet ride the default CU		í á la churchail a	Basin Area at T Basin Volume at T <u>y entering new value</u>	op of Freeboard =	3.07 drographs table (Co	lumns W through A	
Spillway End Slopes = Freeboard above Max Water Surface = touted Hydrograph Results Design Storm Return Period =	4.00 1.22 The user can over WQCV	feet ride the default CU EURV	2 Year	5 Year	Basin Area at T Basin Volume at T <i>rentering new value</i> 10 Year	op of Freeboard = es in the Inflow Hyce 25 Year	3.07 drographs table (Co 50 Year	<i>lumns W through A</i> 100 Year	500 Yea
Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results	4.00 1.22 The user can over	feet ride the default CU		í á la churchail a	Basin Area at T Basin Volume at T <u>y entering new value</u>	op of Freeboard =	3.07 drographs table (Co	lumns W through A	500 Yea 3.14
Spillway End Slopes = Freeboard above Max Water Surface = touted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	4.00 1.22 The user can over WQCV N/A	feet ride the default CU EURV N/A	2 Year 1.19	5 Year 1.50	Basin Area at T Basin Volume at T Ventering new value 10 Year 1.75	op of Freeboard = es in the Inflow Hyce 25 Year 2.00	3.07 drographs table (Co 50 Year 2.25	<i>lumns W through A</i> 100 Year 2.52	500 Yea 3.14 11.014
Spillway End Slopes = Freeboard above Max Water Surface = Couted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	4.00 1.22 <i>The user can over</i> WQCV N/A 0.172 N/A N/A	feet ride the default CU EURV N/A 0.241 N/A N/A	2 Year 1.19 1.063	5 Year 1.50 2.245	Basin Area at T Basin Volume at T <i>rentering new value</i> 10 Year 1.75 3.366	op of Freeboard = es in the Inflow Hyc 25 Year 2.00 4.924	3.07 drographs table (Co 50 Year 2.25 6.155	<i>lumns W through A</i> 100 Year 2.52 7.866	500 Yea 3.14 11.014
Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	4.00 1.22 The user can over WOCV N/A 0.172 N/A N/A	feet ride the default CU N/A 0.241 N/A N/A N/A	2 Year 1.19 1.063 1.063 14.9	5 Year 1.50 2.245 2.245 31.4	Basin Area at T Basin Volume at T Ventering new value 10 Year 1.75 3.366 3.366 43.5	op of Freeboard = <u>25 Year</u> 2.00 <u>4.924</u> <u>4.924</u> <u>66.8</u>	3.07 drographs table (Coo 50 Year 2.25 6.155 6.155 82.6	lumns W through A 100 Year 2.52 7.866 7.866 101.5	500 Yea 3.14 11.014 11.014 140.2
Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) =	4.00 1.22 The user can ovel WOCV N/A 0.172 N/A N/A N/A	feet ride the default CU EURV N/A 0.241 N/A N/A N/A N/A	2 Year 1.19 1.063 1.063 14.9 0.25	5 Year 1.50 2.245 2.245 31.4 0.52	Basin Area at T Basin Volume at T <i>entering new value</i> 10 Year 1.75 3.366 3.366 43.5 0.73	op of Freeboard = es in the Inflow Hyc 25 Year 2.00 4.924 4.924 66.8 1.11	3.07 trographs table (Co 50 Year 2.25 6.155 6.155 82.6 1.38	lumns W through A 100 Year 2.52 7.866 7.866 101.5 1.69	500 Yea 3.14 11.014 11.014 140.2 2.34
Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Ruoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) =	4.00 1.22 The user can over WOCV N/A 0.172 N/A N/A	feet ride the default CU EURV N/A 0.241 N/A N/A N/A N/A	2 Year 1.19 1.063 1.063 14.9	5 Year 1.50 2.245 2.245 31.4	Basin Area at T Basin Volume at T <i>rentering new valua</i> 10 Year 1.75 3.366 3.366 43.5 0.73 46.4	op of Freeboard = <u>es in the Inflow Hyc</u> <u>25 Year</u> <u>2.00</u> <u>4.924</u> <u>4.924</u> <u>66.8</u> <u>1.11</u> <u>69.9</u>	3.07 <i>drographs table (Co</i> 50 Year 2.25 6.155 6.155 82.6 1.38 85.7	lumns W through A 100 Year 2.52 7.866 7.866 101.5	500 Yea 3.14 11.014 11.014 140.2 2.34 143.4
Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) =	4.00 1.22 <i>The user can over</i> WOCV N/A 0.172 N/A N/A N/A N/A N/A	feet ride the default CU EURV N/A 0.241 N/A N/A N/A N/A	2 Year 1.19 1.063 1.063 14.9 0.25 17.5	5 Year 1.50 2.245 2.245 31.4 0.52 34.3	Basin Area at T Basin Volume at T <i>entering new value</i> 10 Year 1.75 3.366 3.366 43.5 0.73	op of Freeboard = es in the Inflow Hyc 25 Year 2.00 4.924 4.924 66.8 1.11	3.07 trographs table (Co 50 Year 2.25 6.155 6.155 82.6 1.38	lumns W through A 2.52 7.866 7.866 101.5 1.69 104.7	500 Yea 3.14 11.014 11.014 140.2 2.34 143.4
Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	4.00 1.22 The user can over WOCV N/A 0.172 N/A N/A N/A N/A N/A N/A N/A N/A	feet ride the default CU EURV N/A 0.241 N/A N/A N/A N/A N/A 0.1 N/A Plate	2 Year 1.19 1.063 1.063 14.9 0.25 17.5 9.5 N/A Overflow Weir 1	5 Year 1.50 2.245 2.245 31.4 0.52 34.3 24.4 0.8 Overflow Weir 1	Basin Area at T Basin Volume at T entering new value 10 Year 1.75 3.366 3.366 43.5 0.73 46.4 35.8 0.8 0.8 0.9 Verflow Weir 1	op of Freeboard = es in the Inflow Hyc 25 Year 2.00 4.924 4.924 66.8 1.11 69.9 59.1 0.9 Overflow Weir 1	3.07 frographs table (Co 50 Year 2.25 6.155 6.155 82.6 1.38 85.7 73.4 0.9 Overflow Weir 1	lumns W through A 100 Year 2.52 7.866 7.866 101.5 1.69 104.7 81.8 0.8 Outlet Plate 1	500 Yea 3.14 11.014 140.2 2.34 143.4 134.4 1.0 Spillwar
Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	4.00 1.22 <i>The user can over</i> WOCV N/A 0.172 N/A N/A N/A N/A N/A N/A N/A N/A	feet ride the default CU EURV N/A 0.241 N/A N/A N/A N/A N/A 0.1 N/A Plate N/A	2 Year 1.19 1.063 1.063 14.9 0.25 17.5 9.5 N/A Overflow Weir 1 0.18	5 Year 1.50 2.245 2.245 31.4 0.52 34.3 24.4 0.8 Overflow Weir 1 0.5	Basin Area at T Basin Volume at T entering new value 10 Year 1.75 3.366 43.5 0.73 46.4 35.8 0.8 0verflow Weir 1 0.7	op of Freeboard = es in the Inflow Hyco 25 Year 2.00 4.924 66.8 1.11 69.9 59.1 0.9 Overflow Weir 1 1.1	3.07 frographs table (Coo 50 Year 2.25 6.155 82.6 1.38 85.7 73.4 0.9 Overflow Weir 1 1.4	lumns W through A 100 Year 2.52 7.866 7.866 101.5 1.69 104.7 81.8 0.8 Outlet Plate 1 1.6	500 Yea 3.14 11.014 140.2 2.34 143.4 134.4 1.0 Spillwa 1.7
Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Notflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	4.00 1.22 <i>The user can over</i> WQCV N/A 0.172 N/A N/A N/A N/A N/A N/A N/A N/A	feet ride the default CU EURV N/A 0.241 N/A N/A N/A N/A 0.1 N/A Plate N/A N/A N/A	2 Year 1.19 1.063 1.063 14.9 0.25 17.5 9.5 N/A Overflow Weir 1 0.18 N/A	5 Year 1.50 2.245 31.4 0.52 34.3 24.4 0.8 Overflow Weir 1 0.5 N/A	Basin Area at T Basin Volume at T V entering new value 10 Year 1.75 3.366 4.3.5 0.73 4.6.4 3.5.8 0.8 Overflow Weir 1 0.7 N/A	op of Freeboard = es in the Inflow Hyco 25 Year 2.00 4.924 4.924 66.8 1.11 69.9 59.1 0.9 Overflow Weir 1 1.1 N/A	3.07 drographs table (Coo 50 Year 2.25 6.155 6.155 82.6 1.38 85.7 73.4 0.9 Overflow Weir 1 1.4 N/A	lums W through A 100 Year 2.52 7.866 7.866 101.5 1.69 104.7 81.8 0.8 Outlet Plate 1 1.6 N/A	500 Yea 3.14 11.014 140.2 2.34 143.4 134.4 1.0 Spillway 1.7 N/A
Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak O (cfs) = OPTIONAL Override Predevelopment Peak O (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Untflow O (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	4.00 1.22 <i>The user can over</i> WOCV N/A 0.172 N/A N/A N/A N/A N/A N/A N/A N/A	feet ride the default CU N/A 0.241 N/A N/A N/A N/A N/A 0.1 N/A Plate N/A N/A N/A 47	2 Year 1.19 1.063 1.063 14.9 0.25 17.5 9.5 N/A Overflow Weir 1 0.18 N/A 41	5 Year 1.50 2.245 31.4 0.52 34.3 24.4 0.8 Overflow Weir 1 0.5 N/A 32	Basin Area at T Basin Volume at T Ventering new value 1.75 3.366 3.366 4.3.5 0.73 4.6.4 35.8 0.8 Overflow Weir 1 0.7 N/A 25	Top of Freeboard = es in the Inflow Hyco 2.00 4.924 4.924 4.924 66.8 1.11 69.9 59.1 0.9 Overflow Weir 1 1.1 N/A 18	3.07 drographs table (Coo 50 Year 2.25 6.155 82.6 1.38 85.7 73.4 0.9 Overflow Weir 1 1.4 N/A 13	lums W through A 100 Year 2.52 7.866 7.866 101.5 1.69 104.7 81.8 0.8 Outlet Plate 1 1.6 N/A 7	500 Yea 3.14 11.014 11.014 140.2 2.34 143.4 134.4 1.0 Spillway 1.7 N/A 3
Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Nufflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	4.00 1.22 The user can over WOCV N/A 0.172 N/A N/A N/A N/A N/A N/A N/A Plate N/A N/A N/A 40 43	feet ride the default CU EURV N/A 0.241 N/A N/A N/A N/A N/A 0.1 N/A Plate N/A N/A 47 51	2 Year 1.19 1.063 1.063 14.9 0.25 17.5 9.5 N/A Overflow Weir 1 0.18 N/A 41 50	5 Year 1.50 2.245 2.245 31.4 0.52 34.3 24.4 0.8 Overflow Weir 1 0.5 N/A 32 44	Basin Area at T Basin Volume at T (entering new value 10 Year 1.75 3.366 3.366 43.5 0.73 46.4 35.8 0.8 Overflow Weir 1 0.7 N/A 25 41	op of Freeboard = es in the Inflow Hyco 25 Year 2.00 4.924 4.924 66.8 1.11 69.9 59.1 0.9 Overflow Weir 1 1.1 N/A 18 36	3.07 drographs table (Coo 50 Year 2.25 6.155 6.155 82.6 1.38 85.7 73.4 0.9 Overflow Weir 1 1.4 N/A 13 33	lums W through A 100 Year 2.52 7.866 7.866 101.5 1.69 104.7 81.8 0.8 Outlet Plate 1 1.6 N/A 7 30	500 Yea 3.14 11.014 140.2 2.34 143.4 134.4 1.0 Spillway 1.7 N/A 3 24
Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak O (cfs) = OPTIONAL Override Predevelopment Peak O (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow O (cfs) = Peak Inflow O (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	4.00 1.22 <i>The user can over</i> WOCV N/A 0.172 N/A N/A N/A N/A N/A N/A N/A N/A	feet ride the default CU N/A 0.241 N/A N/A N/A N/A N/A 0.1 N/A Plate N/A N/A N/A 47	2 Year 1.19 1.063 1.063 14.9 0.25 17.5 9.5 N/A Overflow Weir 1 0.18 N/A 41	5 Year 1.50 2.245 31.4 0.52 34.3 24.4 0.8 Overflow Weir 1 0.5 N/A 32	Basin Area at T Basin Volume at T Ventering new value 1.75 3.366 3.366 4.3.5 0.73 4.6.4 35.8 0.8 Overflow Weir 1 0.7 N/A 25	Top of Freeboard = es in the Inflow Hyco 2.00 4.924 4.924 4.924 66.8 1.11 69.9 59.1 0.9 Overflow Weir 1 1.1 N/A 18	3.07 drographs table (Coo 50 Year 2.25 6.155 82.6 1.38 85.7 73.4 0.9 Overflow Weir 1 1.4 N/A 13	lums W through A 100 Year 2.52 7.866 7.866 101.5 1.69 104.7 81.8 0.8 Outlet Plate 1 1.6 N/A 7	500 Yea 3.14 11.014 11.014 140.2 2.34 143.4 134.4 1.0 Spillway 1.7 N/A 3

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	The user can o	verride the calcu	ulated inflow hyd	drographs from	this workbook w	ith inflow hydro	graphs develope	ed in a separate j	program.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 1111	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
	0:15:00	0.00	0.00	0.06	0.10	0.12	0.08	0.10	0.10	0.14
	0:20:00	0.00	0.00	0.23	1.06	1.67	0.23	0.39	0.67	1.58
	0:25:00	0.00	0.00	3.20	15.62	24.87	3.05	6.90	10.32	24.34
	0:30:00	0.00	0.00	13.38	30.35	42.43	39.03	50.84	60.51	89.91
	0:35:00	0.00	0.00	17.37	34.30	46.43	61.69	76.92	94.14	131.53
	0:40:00	0.00	0.00	17.51	32.49	43.63	69.90	85.68	104.70	143.39
	0:45:00	0.00	0.00	15.31	29.16	39.99	67.32	82.23	102.90	140.42
	0:50:00 0:55:00	0.00	0.00	13.26	26.17	35.82	64.04	78.13	97.91	133.39
	1:00:00	0.00	0.00	11.38	23.08 20.46	32.38 29.66	57.76 52.22	70.73 64.26	90.50 84.23	123.68 115.46
	1:05:00	0.00	0.00	8.83	18.07	29.00	47.46	58.66	79.10	108.58
	1:10:00	0.00	0.00	7.58	15.82	24.68	41.93	52.17	70.10	96.82
	1:15:00	0.00	0.00	6.32	13.34	22.21	36.21	45.44	60.24	83.96
	1:20:00	0.00	0.00	5.17	11.32	19.53	30.22	38.12	50.19	70.48
	1:25:00	0.00	0.00	4.44	9.90	17.06	25.69	32.48	42.48	59.86
	1:30:00	0.00	0.00	3.90	8.75	14.86	22.10	27.97	36.44	51.41
	1:35:00	0.00	0.00	3.45	7.73	12.93	19.14	24.24	31.47	44.41
	1:40:00	0.00	0.00	3.01	6.64	11.18	16.51	20.91	27.08	38.20
	1:45:00	0.00	0.00	2.58	5.59	9.55	14.15	17.92	23.08	32.56
	1:50:00 1:55:00	0.00	0.00	2.15	4.57 3.58	8.00 6.47	11.92 9.79	15.10 12.40	19.34 15.84	27.29 22.35
	2:00:00	0.00	0.00	1.71	2.61	4.91	7.75	9.83	15.84	17.75
	2:05:00	0.00	0.00	0.82	1.68	3.40	5.67	7.21	9.31	13.11
	2:10:00	0.00	0.00	0.44	1.04	2.43	3.66	4.75	6.24	8.98
	2:15:00	0.00	0.00	0.26	0.71	1.86	2.40	3.20	4.22	6.24
	2:20:00	0.00	0.00	0.17	0.52	1.45	1.62	2.22	2.91	4.42
	2:25:00	0.00	0.00	0.13	0.38	1.13	1.11	1.56	1.99	3.09
	2:30:00	0.00	0.00	0.10	0.28	0.86	0.75	1.08	1.32	2.10
	2:35:00	0.00	0.00	0.08	0.21	0.64	0.51	0.75	0.83	1.38
	2:40:00	0.00	0.00	0.06	0.15	0.46	0.33	0.50	0.48	0.84
	2:45:00	0.00	0.00	0.04	0.11	0.31	0.21	0.32	0.26	0.49
	2:50:00 2:55:00	0.00	0.00	0.03	0.07	0.21	0.14	0.21	0.17	0.32
	3:00:00	0.00	0.00	0.03	0.05	0.14	0.10	0.15	0.12	0.22
	3:05:00	0.00	0.00	0.02	0.04	0.10	0.06	0.09	0.10	0.13
	3:10:00	0.00	0.00	0.01	0.01	0.05	0.04	0.06	0.06	0.10
	3:15:00	0.00	0.00	0.01	0.01	0.04	0.03	0.05	0.04	0.07
	3:20:00	0.00	0.00	0.00	0.00	0.02	0.02	0.03	0.03	0.05
	3:25:00	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.02	0.03
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.02
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00 3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Outflow [cfs]	
7000		49	0.001	0	0.000	0.00	
7322	0.00	2,950	0.068	1,499	0.034	0.04	For best results, include th stages of all grade slope
7323	1.00						changes (e.g. ISV and Floo
7324	2.00	8,352	0.192	7,150	0.164	0.09	from the S-A-V table on
7325	3.00	13,337	0.306	17,995	0.413	5.65	Sheet 'Basin'.
7326	4.00	16,699 20,465	0.383	33,013 51,595	0.758	29.52 68.80	Also include the inverte of
7327	5.00	20,485	0.470	74,126	1.184	82.80	Also include the inverts of outlets (e.g. vertical orifice
7328	6.00	30,068	0.690	101,459	2.329	250.48	overflow grate, and spillw
7329 7330	7.00	35,153	0.890	134,070	3.078	614.77	where applicable).
7330	6.00	55,155		134,070			-
							-
							- - -
							-
							-
							-
							- - -
							-
							4
							1

Stage (ft)

Depth Increment =

Stage - Storage Description

Top of Micropool

Optional User Override

1.19 inches

1.50 inches 1.75 inches 2.00 inches 2.25 inches 2.52 inches inches

ZONE 1 AND 2-ORIFICES PERM Example Zone Configuration (Retention Pond)

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	41.00	acres
Watershed Length =	2,399	ft
Watershed Length to Centroid =	960	ft
Watershed Slope =	0.050	ft/ft
Watershed Imperviousness =	7.20%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	6.9%	percent
Percentage Hydrologic Soil Groups C/D =	93.1%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban hydro	graph Floceuu	iie.
Water Quality Capture Volume (WQCV) =	0.172	acre-feet
Excess Urban Runoff Volume (EURV) =	0.241	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.727	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	1.536	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	2.303	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	3.368	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	4.211	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	5.381	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	7.535	acre-feet
Approximate 2-yr Detention Volume =	0.189	acre-feet
Approximate 5-yr Detention Volume =	0.506	acre-feet
Approximate 10-yr Detention Volume =	0.732	acre-feet
Approximate 25-yr Detention Volume =	0.889	acre-feet
Approximate 50-yr Detention Volume =	0.911	acre-feet
Approximate 100-yr Detention Volume =	1.300	acre-feet

Define Zones and Basin Geometry

Zone 3

Total

Zone 1 Volume (WQCV) =	0.172	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.069	acre-feet
ne 3 Volume (100-year - Zones 1 & 2) =	1.059	acre-feet
Total Detention Basin Volume =	1.300	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
tal Available Detention Depth $(H_{total}) =$	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio ($R_{L/W}$) =	user	

ft i Initial Surcharge Area (A_{ISV}) = user Surcharge Volume Length (LISV) = user ft Surcharge Volume Width (W_{ISV}) = user Depth of Basin Floor (H_{FLOOR}) = user Length of Basin Floor (L_{FLOOR}) = user Width of Basin Floor (W_{FLOOR}) = user Area of Basin Floor (A_{FLOOR}) = user Volume of Basin Floor (V_{FLOOR}) = user Depth of Main Basin $(H_{MAIN}) =$ user Length of Main Basin (LMAIN) = user Width of Main Basin $(W_{MAIN}) =$ user Area of Main Basin (A_{MAIN}) = Volume of Main Basin (V_{MAIN}) = user Ĥ user acre-fee

user

Calculated Total Basin Volume (V_{total}) =

	TOP OF MICROPOOL	 0.00	-	 -	300	0.007		
		 1.00		 	3,300	0.076	1,800	0.041
					-			
		 3.00		 	8,000	0.184	13,100	0.301
		 5.00		 	15,000	0.344	36,100	0.829
		 7.50		 	18,000	0.413	77,350	1.776
		 			-,- 30		,	
			-	 				
er Overrides				 				
acre-feet								
acre-feet				 				
inches				 				
inches				 				
inches								
inches				 				
inches				 				
inches								
inches				 				
inches				 				
Lucics								
				 			1	1
							I	I
				 		-	1	1
	-							
				 		<u> </u>		
				 		-	1	1
				 		_	_	_
			-	 				
				 -				
				 -				
			-	 				
			-	 -				
			-	 -				
			-	 -				
			-	 -				
			-	 -				
			- 1	 - 1		-	1	1
			-	 -				
			-	 -				
			-	 -				
			-	 -				
		 		 -				
	L	 		 				
				 -				
				 -			I	I
			-	 -				
						-	1	1
				 -				
			-	 -				
	L			 				

Volume (ft³)

Volume (ac-ft)

Area

(acre)

0.007

rea (ft²

300

Area

(ft²)

Width

(ft)

Length ride (ft)

Stage (ft)

0.00

MHFD-Detention, Version 4.04 (February 2021)

	DE	ETENTION	BASIN OUT	FLET STRU	CIURE DE	SIGN			
Project:	WINSOME FILING	МН	FD-Detention, Vers						
Basin ID:	POND 1 (BASIN H	1+H4)_Original							
ZONE 3				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
VOLUME EURY WOCV	1		Zone 1 (WQCV)	2.21	0.172	Orifice Plate	1		
+ + +	100-YEAR		Zone 2 (EURV)	2.66	0.069	Orifice Plate			
ZONE 1 AND 2 ORIFICES	ORIFICE								
FERMALEN	Configuration (Re	tention Pond)	Zone 3 (100-year)		1.059	Weir&Pipe (Restrict)			
•	•	•	(D)	Total (all zones)	1.300]		terre for the developing	
User Input: Orifice at Underdrain Outlet (typicall				curface)	Undor	drain Orifica Aroa -	N/A	ters for Underdrain ft ²	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A N/A	inches	the filtration media	surface)		drain Orifice Area = n Orifice Centroid =	N/A N/A	feet	
	N/A	inches			Underdrait		IN/A	leet	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot \	Neir (typically used	to drain WOCV and	l/or FLIRV in a sedir	mentation BMP)		Calculated Parame	tors for Plata	
Invert of Lowest Orifice =	0.00		bottom at Stage =			ice Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	2.13		bottom at Stage =	•	-	iptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	bottom at blage	0.10)		ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	inches				Elliptical Slot Area =	N/A	ft ²	
	,,	interios			-			1.6	
User Input: Stage and Total Area of Each Orifice	e Row (numbered fr	rom lowest to highe	<u>est)</u>						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)]
Stage of Orifice Centroid (ft)	· · · · · · · · · · · · · · · · · · ·	0.71	1.42						
Orifice Area (sq. inches)		0.75	0.75						
									-
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Circular or Rectange	<u>ular)</u>						Calculated Parame	ters for Vertical Ori	fice
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin	<pre>bottom at Stage =</pre>	0 ft) Ve	rtical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin	<pre>bottom at Stage =</pre>	0 ft) Vertica	I Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Rec	tangular/Trapezoida	al Weir (and No Out	let Pipe)		Calculated Parame	ters for Overflow W	/eir
	Zone 3 Weir						-		
	ZUIE 3 Well	Not Selected					Zone 3 Weir	Not Selected	1
Overflow Weir Front Edge Height, Ho =	2.60	Not Selected N/A	ft (relative to basin b	oottom at Stage = 0 ft) Height of Grat	e Upper Edge, $H_t =$			feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =			ft (relative to basin b feet	oottom at Stage = 0 ft	-	e Upper Edge, $H_t =$ /eir Slope Length =	Zone 3 Weir	Not Selected]
	2.60 6.00 4.00	N/A N/A N/A	feet H:V	-	-	/eir Slope Length =	Zone 3 Weir 4.10 6.18 5.63	Not Selected N/A N/A N/A	feet feet
Overflow Weir Front Edge Length =	2.60 6.00 4.00 6.00	N/A N/A N/A N/A	feet	G	Overflow W rate Open Area / 10 verflow Grate Open	/eir Slope Length = 00-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 4.10 6.18 5.63 25.83	Not Selected N/A N/A N/A N/A	feet feet ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	2.60 6.00 4.00 6.00 Type C Grate	N/A N/A N/A N/A N/A	feet H:V feet	G	Overflow W rate Open Area / 10 verflow Grate Open	/eir Slope Length = 00-yr Orifice Area =	Zone 3 Weir 4.10 6.18 5.63	Not Selected N/A N/A N/A	feet feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	2.60 6.00 4.00 6.00	N/A N/A N/A N/A	feet H:V	G	Overflow W rate Open Area / 10 verflow Grate Open	/eir Slope Length = 00-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 4.10 6.18 5.63 25.83	Not Selected N/A N/A N/A N/A	feet feet ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	2.60 6.00 4.00 6.00 Type C Grate 50%	N/A N/A N/A N/A N/A	feet H:V feet %	G	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Ope	/eir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = 2 m Area w/ Debris =	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91	Not Selected N/A N/A N/A N/A N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =	2.60 6.00 4.00 6.00 Type C Grate 50% (Circular Orifice, R	N/A N/A N/A N/A N/A estrictor Plate, or Re	feet H:V feet %	G	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Ope	/eir Slope Length = 00-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A (Flow Restriction Pl	feet feet ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate	2.60 6.00 4.00 6.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor	N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected	feet H:V feet % ectangular Orifice)	G O (Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Ope <u>Ca</u>	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = 2 m Area w/ Debris = 2 alculated Parameters	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A / Flow Restriction Pl Not Selected	feet feet ft ² ft ² <u>ate</u>
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe =	2.60 6.00 4.00 5.00 Type C Grate 50% (Circular Orifice, R Zone 3 Restrictor 1.00	N/A N/A N/A N/A N/A estrictor Plate, or Ri Not Selected N/A	feet H:V feet % ectangular Orifice) ft (distance below ba	G	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: utlet Orifice Area =	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pl Not Selected N/A	feet feet ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	2.60 6.00 4.00 7ype C Grate 50% (Circular Orifice, R Zone 3 Restrictor 1.00 30.00	N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected	feet H:V feet % ectangular Orifice) ft (distance below ba inches	G O (asin bottom at Stage =	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Cr</u> = 0 ft) O Outle	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid =	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pl Not Selected N/A N/A	feet feet ft ² ft ² <u>ate</u> ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe =	2.60 6.00 4.00 Type C Grate 50% (Circular Orifice, R Zone 3 Restrictor 1.00 30.00	N/A N/A N/A N/A N/A estrictor Plate, or Ri Not Selected N/A	feet H:V feet % ectangular Orifice) ft (distance below ba	G O (asin bottom at Stage =	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Cr</u> = 0 ft) O Outle	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: utlet Orifice Area =	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pl Not Selected N/A	feet feet ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	2.60 6.00 4.00 6.00 Type C Grate 50% (Circular Orifice, Rd Zone 3 Restrictor 1.00 30.00 26.50	N/A N/A N/A N/A N/A estrictor Plate, or Ri Not Selected N/A	feet H:V feet % ectangular Orifice) ft (distance below ba inches	G O (asin bottom at Stage =	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Cr</u> = 0 ft) O Outle	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid =	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44	Not Selected N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² <u>ate</u> ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or	2.60 6.00 4.00 5.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal)	N/A N/A N/A N/A N/A estrictor Plate, or R/ Not Selected N/A N/A	feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	G O (asin bottom at Stage = Half-Cen	Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Car = 0 ft) O Outle tral Angle of Restric	/eir Slope Length =)0-yr Orifice Area = Area w/o Debris = in Area w/ Debris = alculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe =	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 <u>Calculated Parame</u>	Not Selected N/A N/A N/A N/A N/A <u>Flow Restriction Pl</u> Not Selected N/A N/A N/A N/A	feet feet ft ² ft ² <u>ate</u> ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	2.60 6.00 4.00 5.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00	N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A N/A	feet H:V feet % ectangular Orifice) ft (distance below ba inches	G O (asin bottom at Stage = Half-Cen	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O Outle tral Angle of Restrict Spillway D	<pre>/eir Slope Length =)0-yr Orifice Area = Area w/o Debris = en Area w/ Debris = alculated Parameters utlet Orifice Area = t Orifice Centroid = ttor Plate on Pipe = vesign Flow Depth=</pre>	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 Calculated Parame 0.68	Not Selected N/A N/A N/A N/A N/A Y Flow Restriction Pl Not Selected N/A N/A N/A N/A ters for Spillway feet	feet feet ft ² ft ² <u>ate</u> ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	2.60 6.00 4.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00 35.00	N/A N/A N/A N/A N/A N/A Selected N/A N/A ft (relative to basin feet	feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	G O (asin bottom at Stage = Half-Cen	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Car = 0 ft) O Outle tral Angle of Restric Spillway D Stage at	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = In Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = ttor Plate on Pipe = Design Flow Depth= Top of Freeboard =	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 <u>Calculated Parame</u> 0.68 7.50	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet	feet feet ft ² ft ² <u>ate</u> ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	2.60 6.00 4.00 Type C Grate 50% (Circular Orifice, R Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00 35.00 4.00	N/A N/A N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basin feet H:V	feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	G O (asin bottom at Stage = Half-Cen	Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open <u>Ca</u> = 0 ft) O Uttle tral Angle of Restric Spillway D Stage at Basin Area at	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 <u>Calculated Parame</u> 0.68 7.50 0.41	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres	feet feet ft ² ft ² <u>ate</u> ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	2.60 6.00 4.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00 35.00	N/A N/A N/A N/A N/A N/A Selected N/A N/A ft (relative to basin feet	feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	G O (asin bottom at Stage = Half-Cen	Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open <u>Ca</u> = 0 ft) O Uttle tral Angle of Restric Spillway D Stage at Basin Area at	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = In Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = ttor Plate on Pipe = Design Flow Depth= Top of Freeboard =	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 <u>Calculated Parame</u> 0.68 7.50	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet	feet feet ft ² ft ² <u>ate</u> ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	2.60 6.00 4.00 Type C Grate 50% (Circular Orifice, R Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00 35.00 4.00	N/A N/A N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basin feet H:V	feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	G O (asin bottom at Stage = Half-Cen	Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open <u>Ca</u> = 0 ft) O Uttle tral Angle of Restric Spillway D Stage at Basin Area at	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 <u>Calculated Parame</u> 0.68 7.50 0.41	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres	feet feet ft ² ft ² <u>ate</u> ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	2.60 6.00 4.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00 35.00 4.00 0.82	N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet	feet H:V feet % ectangular Orifice) ft (distance below ba inches inches inches	G O (asin bottom at Stage = Half-Cen : 0 ft)	Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Ca = 0 ft) O Uutle tral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 Calculated Parame 0.68 7.50 0.41 1.78	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	2.60 6.00 4.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00 35.00 4.00 0.82	N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet	feet H:V feet % ectangular Orifice) ft (distance below be inches inches bottom at Stage = //P hydrographs and 2 Year	G O (asin bottom at Stage = Half-Cen : 0 ft)	Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Ca = 0 ft) O Uutle tral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at	<pre>/eir Slope Length =)0-yr Orifice Area = Area w/o Debris = in Area w/o Debris = alculated Parameters utlet Orifice Area = t Orifice Centroid = t Orifice Centroid = tor Plate on Pipe = > Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Sin the Inflow Hydd 25 Year</pre>	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 Calculated Parame 0.68 7.50 0.41 1.78 trographs table (Col 50 Year	Not Selected N/A N/A N/A N/A N/A Image: Not Selected N/A N/A N/A N/A N/A Image: N/A N/A Image: N/A N/A Image: N/A	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) =	2.60 6.00 4.00 5.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00 35.00 4.00 0.82 The user can oven WQCV N/A	N/A N/A N/A N/A N/A estrictor Plate, or Re N/A Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet	feet H:V feet % fet (distance below ba inches inches bottom at Stage = <i>HP hydrographs and</i> 2 Year 1.19	G O (asin bottom at Stage = Half-Cen = 0 ft) <u>1 runoff volumes by</u> <u>5 Year</u> 1.50	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Car = 0 ft) O Uutle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at entering new value 1.75	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameters utlet Orifice Area = t Orifice Centroid = ttor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 25 Year 2.00	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 Calculated Parame 0.68 7.50 0.41 1.78 rographs table (Col 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A N/A N/A Yelow Restriction Pl Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acres acres acres 1000 Year 2.52	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acref) =	2.60 6.00 4.00 5.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00 35.00 4.00 0.82 The user can overn WQCV N/A 0.172	N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet N/A 0.241	feet H:V feet % fet (distance below ba inches inches bottom at Stage = // <i>P hydrographs and</i> 2 Year 1.19 0.727	G O asin bottom at Stage = Half-Cen = 0 ft) <u>F Year 1.50</u> 1.536	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Car e 0 ft) O Utle tral Angle of Restric Spillway D Stage at Basin Volume at entering new value 1.75 2.303	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: Vitet Orifice Area = t Orifice Centroid = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = Top of Freeboard = Cop of Freeboa	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 Calculated Parame 0.68 7.50 0.41 1.78 rographs table (Col 50 Year 2.25 4.211	Not Selected N/A	feet feet ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	2.60 6.00 4.00 6.00 Type C Grate 50% (Circular Orifice, R/ Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00 35.00 4.00 0.82 The user can overn WQCV N/A 0.172 N/A	N/A N/A N/A N/A N/A estrictor Plate, or R/ N/A estrictor Plate, or R/ N/A N/A N/A fett feet H:V feet H:V feet H:V feet N/A N/A	feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <u>P hydrographs and</u> 2 Year 1.19 0.727 0.727	G O (asin bottom at Stage = Half-Cen : 0 ft) <u>(<i>runoff volumes by</i> 5 Year 1.50 1.536 1.536</u>	Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Car car car car car car car car car car c	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Streeboard =	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 Calculated Parame 0.68 7.50 0.41 1.78 Prographs table (Col 50 Year 2.25 4.211	Not Selected N/A N/A N/A N/A N/A N/A / Flow Restriction Pl N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft ////////////////////////////////////	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 7.535 7.535
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acref) =	2.60 6.00 4.00 5.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00 35.00 4.00 0.82 The user can overn WQCV N/A 0.172 N/A N/A	N/A N/A N/A N/A N/A estrictor Plate, or R/ N/A N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet N/A 0.241 N/A N/A N/A	feet H:V feet % fet (distance below ba inches inches bottom at Stage = // <i>P hydrographs and</i> 2 Year 1.19 0.727	G O asin bottom at Stage = Half-Cen = 0 ft) <u>F Year 1.50</u> 1.536	Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Car = 0 ft) O Utle tral Angle of Restric Spillway D Stage at Basin Volume at entering new value 1.75 2.303	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: Vitet Orifice Area = t Orifice Centroid = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = Top of Freeboard = Cop of Freeboa	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 Calculated Parame 0.68 7.50 0.41 1.78 rographs table (Col 50 Year 2.25 4.211	Not Selected N/A	feet feet ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Ne-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	2.60 6.00 4.00 6.00 Type C Grate 50% (Circular Orifice, R/ Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00 35.00 4.00 0.82 The user can overn WQCV N/A 0.172 N/A	N/A N/A N/A N/A N/A estrictor Plate, or R/ N/A estrictor Plate, or R/ N/A N/A N/A fett feet H:V feet H:V feet H:V feet N/A N/A	feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <u>P hydrographs and</u> 2 Year 1.19 0.727 0.727	G O (asin bottom at Stage = Half-Cen : 0 ft) <u>(<i>runoff volumes by</i> 5 Year 1.50 1.536 1.536</u>	Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Car car car car car car car car car car c	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Streeboard =	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 Calculated Parame 0.68 7.50 0.41 1.78 <i>Prographs table (Col</i>) 50 Year 2.25 4.211 4.211	Not Selected N/A N/A N/A N/A N/A N/A / Flow Restriction Pl N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft ////////////////////////////////////	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 7.535 7.535
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restricter Plate Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Renoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) =	2.60 6.00 4.00 5.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00 35.00 4.00 0.82 The user can overn WQCV N/A 0.172 N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A estrictor Plate, or R/ N/A N/A N/A N/A ft (relative to basin feet N/A N/A feet EURV N/A 0.241 N/A N/A N/A N/A N/A	feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <i>HP hydrographs and</i> 2 Year 1.19 0.727 8.8 0.22 10.5	G O O (asin bottom at Stage = Half-Cen = 0 ft) = 0 ft) = 1.536 = 1.536 = 1.536 = 1.536 = 1.834 = 0.45 = 20.2	Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Ca = 0 ft) O Uutle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at 1.75 2.303 2.303 2.5.6 0.62 2.7.4	Veir Slope Length = 00-yr Orifice Area = A rea w/o Debris = an Area w/ Debris = alculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Vesign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year 2.00 3.368 3.368 3.9.7 0.97 4.1.4	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 Calculated Parame 0.68 7.50 0.41 1.78 1.79 1.79 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.79 1.79 1.78 1.78 1.78 1.78 1.78 1.78 1.79 1.79 1.78 1.79 1.79 1.78 1.78 1.78 1.78 1.79 1.79 1.79 1.79 1.79 1.78 1.79	Not Selected N/A N/A N/A N/A N/A N/A Yelow Restriction Pl Not Selected N/A IOO Year 2.52 5.381 61.4 1.50 63.0 <td>feet feet ft² ft² ft² feet radians 500 Year 3.14 7.535 84.6 2.06 86.2</td>	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 7.535 84.6 2.06 86.2
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe W/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Net-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Riow, q (cfs)are) Peak Inflow Q (cfs) = Peak Unflow Q (cfs)	2.60 6.00 4.00 5.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00 35.00 4.00 0.82 The user can over WQCV N/A 0.172 N/A N/A N/A N/A 0.1	N/A N/A N/A N/A N/A N/A estrictor Plate, or Re N/A N/A N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet N/A 0.241 N/A N/A N/A N/A N/A N/A N/A O.2	feet H:V feet % fet (distance below ba inches inches bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> 1.19 0.727 0.727 8.8 0.22 10.5 5.1	G O (asin bottom at Stage = Half-Cen = 0 ft)	Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Car car car car car car car car car car c	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter withet Orifice Area = t Orifice Centroid = t Orifice Centroid = t Orifice Centroid = tor Plate on Pipe = Vesign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = Cop of Freeboard = Cop of Freeboard = Cop of Streeboard = Cop of Stree	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 Calculated Parame 0.68 7.50 0.41 1.78 Vographs table (Col 50 Year 2.25 4.211 4.211 4.211 4.211 4.211 4.211 4.3	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A VErow Restriction Pl Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acres acre-ft umns W through A 100 Year 2.52 5.381 5.381 61.4 1.50 63.0 51.8	feet feet ft ² ft ² ft ² feet radians <i>F).</i> 500 Year 3.14 7.535 7.535 7.535 7.535 84.6 8 4.6 8 6.2 81.0
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Neeton Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Untflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	2.60 6.00 4.00 5.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00 35.00 4.00 0.82 The user can overn WQCV N/A 0.172 N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A 0.241 N/A	feet H:V feet 9% ectangular Orifice) ft (distance below ba inches inches inches bottom at Stage = 4P hydrographs and 2 Year 1.19 0.727 0.727 8.8 0.22 10.5 5.1 N/A	G O (asin bottom at Stage - Half-Cen to ft) 1.50 1.536 1.536 1.536 1.536 1.536 1.536 1.4.4 0.45 20.2 14.2 0.8	Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Ca e 0 ft) O Utle tral Angle of Restrict Spillway D Stage at Basin Volume at Basin Volume at 1.75 2.303 2.303 2.303 25.6 0.62 27.4 21.2 0.8	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: Vitet Orifice Area = t Orifice Centroid = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboa	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 Calculated Parame 0.68 7.50 0.41 1.78 trographs table (Col 50 Year 2.25 4.211 4.211 49.0 1.19 50.8 44.3 0.9	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	F). 500 Year 3.14 7.535 7.535 84.6 2.06 86.2 81.0 1.0
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Ne-Hour Rainfall Depth (in) = CUHP Ruoff Volume (acre-ft) = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Flow =	2.60 6.00 4.00 5.00 Type C Grate 50% <u>(Circular Orifice, Ri</u> Zone 3 Restrictor 1.00 30.00 26.50 <u>Trapezoidal</u>) 6.00 35.00 4.00 0.82 <u>The user can overn</u> WQCV N/A 0.172 N/A N/A N/A N/A N/A Plate	N/A N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A ft (relative to basin feet H:V feet default CU/i Feet RUV N/A 0.241 N/A	feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = #P hydrographs and 2 Year 1.19 0.727 8.8 0.727 8.8 0.727 1.0.5 5.1 N/A Overflow Weir 1	G O O (asin bottom at Stage = Half-Cen = 0 ft) = 0 ft) = 1.536 = 1.53	Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Ca = 0 ft) O Uutle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at Entering new value 10 Year 1.75 2.303 2.303 2.5.6 0.62 2.7.4 2.1.2 0.8 Overflow Weir 1	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/o Debris = alculated Parameters utlet Orifice Area = t Orifice Centroid = to rifice Centroid = tor Plate on Pipe = Do of Freeboard = Top of Freeboard = Top of Freeboard = 200 3.368 3.9.7 0.97 41.4 35.3 0.9 Overflow Weir 1	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 11.7 2.44 Calculated Parame 0.68 7.50 0.41 1.78 rographs table (Col 50 Year 2.25 4.211 49.0 1.19 50.8 44.3 0.9 Overflow Weir 1	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A NA Vestor N/A Itemport Acres J.S0 63.0 51.8 0.8 Outlet Plate 1	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 7.535 84.6 2.06 86.2 81.0 5pillway
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe W/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Ne-Hour Rainfall Depth (in) = CUHP Renoff Volume (acre-ft) = Inflow Hydrograph Nolume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	2.60 6.00 4.00 5.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00 35.00 4.00 0.82 The user can oven WQCV N/A 0.172 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A N/A ft (relative to basin feet H:V feet H:V feet N/A 0.241 N/A	feet H:V feet % fet (distance below ba inches inches bottom at Stage = hp hydrographs and 2 Year 1.19 0.727 0.727 8.8 0.22 10.5 5.1 N/A Overflow Weir 1 0.19	G O (asin bottom at Stage = Half-Cen = 0 ft)	Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Car = 0 ft) O Uutle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 2.303 2.303 2.303 2.5.6 0.62 2.7.4 21.2 0.8 Overflow Weir 1 0.8	<pre>/eir Slope Length = 00-yr Orifice Area = Area w/o Debris = m Area w/ Debris = alculated Parameters utlet Orifice Area = t Orifice Centroid = ttor Plate on Pipe = ttor Plate on Pipe = ttor Plate on Pipe = cop of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 25 Year 2.00 3.368 3.368 3.368 3.368 3.368 3.368 3.368 3.37 0.97 4.1.4 35.3 0.9 Overflow Weir 1 1.4</pre>	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 Calculated Parame 0.68 7.50 0.41 1.78 Vographs table (Col 50 Year 2.25 4.211 4.211 4.211 4.211 4.211 4.211 0.9 0.04 1.19 50.8 44.3 0.9 Overflow Weir 1 1.7	Not Selected N/A N/A N/A N/A N/A N/A NA Yelow Restriction PL Not Selected N/A Iters for Spillway feet acres 3.381 61.4 1.50	feet feet ft ² ft ² ft ² feet radians <i>F).</i> 500 Year 3.14 7.535 7.535 84.6 2.06 86.2 81.0 1.0 5pillway 2.1
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Ne-Hour Rainfall Depth (in) = CUHP Ruoff Volume (acre-ft) = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Flow =	2.60 6.00 4.00 50% <u>Circular Orifice, R</u> <u>Zone 3 Restrictor</u> 1.00 30.00 26.50 <u>Trapezoidal</u>) 6.00 35.00 4.00 0.82 <u>The user can overn</u> <u>WQCV</u> N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A estrictor Plate, or R/ N/A N/A N/A N/A fet feet H:V feet H:V feet H:V feet N/A 0.241 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V feet % ectangular Orifice) ft (distance below be inches inches bottom at Stage = http://www.stage 0.727 0.72 0.72	G O O (asin bottom at Stage = Half-Cen Half-Cen 5 (1.536 1.537 1.536 1	Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Car = 0 ft) O Outle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at 1.75 2.303 2.303 2.303 2.5.6 0.62 2.7.4 2.1.2 0.8 Overflow Weir 1 0.8 N/A 30	<pre>/eir Slope Length = 00-yr Orifice Area = Area w/o Debris = m Area w/ Debris = alculated Parameters utlet Orifice Area = t Orifice Centroid = t Orifice Centroid = tor Plate on Pipe = tor of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard</pre>	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 Calculated Parame 0.68 7.50 0.41 1.78 Prographs table (Col 50 Year 2.25 4.211 49.0 1.19 50.8 44.3 0.9 Overflow Weir 1 1.7 N/A 19	Not Selected N/A N/A N/A N/A N/A N/A Variation Plow Restriction Pl Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Ion Selected acres 331 5.381<	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 7.535 7.535 84.6 2.06 86.2 81.0 5pillway 2.1 N/A 6
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Ne-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Nesults OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	2.60 6.00 4.00 5.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00 35.00 4.00 0.82 The user can oven WQCV N/A 0.172 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A ft (relative to basin feet fiet H:V feet Fide the default CU/i feet N/A 0.241 N/A N/A N/A N/A N/A N/A N/A N/A N/A SI N/A N/A N/A SI	feet H:V feet % ft (distance below be inches inches bottom at Stage = hP hydrographs and 2 Year 1.19 0.727 0.727 0.727 8.8 0.22 10.5 5.1 N/A Overflow Weir 1 0.19 N/A 45 54	G O O (asin bottom at Stage = Half-Cen = 0 ft) (<i>runoff volumes by</i> 5 Year 1.53 1.536 1.536 1.536 1.536 1.536 1.536 1.536 1.536 1.536 1.536 0.45 20.2 1.4.2 0.8 Overflow Weir 1 0.5 N/A 36 49	Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Car e 0 ft) O Uutle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at Basin Volume at 1.75 2.303 2.303 2.5.6 0.62 2.7.4 2.1.2 0.8 0Verflow Weir 1 0.8 N/A 30 45	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/o Debris = alculated Parameters utlet Orifice Area = t Orifice Centroid = to rifice Centroid = tor Plate on Pipe = vesign Flow Depth= Top of Freeboard = Top of Freeboard = 200 3.368 3.368 3.368 3.368 3.9.7 0.97 41.4 35.3 0.9 Overflow Weir 1 1.4 N/A 40	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 20ne 3 Restrictor 4.59 1.17 2.44 Calculated Parame 0.68 7.50 0.41 1.78 1.78 1.78 1.78 1.78 1.78 1.78 0.41 1.78 1.78 0.41 1.78 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.421 1.78 0.9 0.0verflow Weir 1 1.77 N/A 1.9 38	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A NA Version N/A Iters for Spillway feet acres acres acres acres 331 61.4 1 1.50 63.0 51.8 0.8 Outlet Plate 1 2.0 N	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 7.535 84.6 2.06 86.2 81.0 1.0 \$pillway 2.1 N/A 6 6
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe W/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs)acre) = Peak Unflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Maximum Ponding Depth (ft) =	2.60 6.00 4.00 6.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00 35.00 4.00 0.82 The user can over WQCV N/A 0.172 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A Stictor Plate, or Re Not Selected N/A N/A N/A N/A ft (relative to basin feet H:V feet ride the default CU/ EURV N/A 0.241 N/A	feet H:V feet % fet (distance below ba inches inches hottom at Stage = hottom at Stage = 2 Year 1.19 0.7270000000000	G O O (asin bottom at Stage = Half-Cen = 0 ft)	Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Car e of ft) O Uutle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Area at Basin Volume at entering new value 10 Year 1.75 2.303 2.5.6 0.62 0.62 0.62 0.62 0.7.4 21.2 0.8 Overflow Weir 1 0.8 N/A 30 45 4.29	<pre>/eir Slope Length = 00-yr Orifice Area = Area w/o Debris = n Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = t orifice Centroid = t orifice Centroid = t or Plate on Pipe = vesign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year 2.00 3.368 3.368 3.368 3.368 3.368 3.368 3.368 3.37 0.97 41.4 35.3 0.9 Overflow Weir 1 1.4 N/A 23 40 4.81</pre>	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 s for Outlet Pipe w/ Zone 3 Restrictor 4.59 1.17 2.44 Calculated Parame 0.68 7.50 0.41 1.78 Mographs table (Col 50 Year 2.25 4.211 4.211 4.211 4.211 4.211 4.211 4.211 1.17 50.8 4.4.3 0.9 Overflow Weir 1 1.7 N/A 19 38 5.11	Not Selected N/A 100 Year 2.52 5.381 5.381 5.381 61.4 1.50 63.0 51.8 Outlet Plate 1 2.0 N/A 14 34 5.68	feet feet ft ² ft ² feet radians 500 Year 3.14 7.535 7.535 7.535 84.6 2.06 86.2 81.0 1.0 \$pillway 2.1 N/A 6 229 6.38
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Ne-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Nesults OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	2.60 6.00 4.00 5.00 Type C Grate 50% (Circular Orifice, Re Zone 3 Restrictor 1.00 30.00 26.50 Trapezoidal) 6.00 35.00 4.00 0.82 The user can oven WQCV N/A 0.172 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A ft (relative to basin feet fiet H:V feet Fide the default CU/i feet N/A 0.241 N/A N/A N/A N/A N/A N/A N/A N/A N/A SI N/A N/A N/A SI	feet H:V feet % ft (distance below be inches inches bottom at Stage = hP hydrographs and 2 Year 1.19 0.727 0.727 0.727 8.8 0.22 10.5 5.1 N/A Overflow Weir 1 0.19 N/A 45 54	G O O (asin bottom at Stage = Half-Cen = 0 ft) (<i>runoff volumes by</i> 5 Year 1.53 1.536 1.536 1.536 1.536 1.536 1.536 1.536 1.536 1.536 1.536 0.45 20.2 1.4.2 0.8 Overflow Weir 1 0.5 N/A 36 49	Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Car e 0 ft) O Uutle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at Basin Volume at 1.75 2.303 2.303 2.5.6 0.62 2.7.4 2.1.2 0.8 0Verflow Weir 1 0.8 N/A 30 45	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = an Area w/o Debris = alculated Parameters utlet Orifice Area = t Orifice Centroid = to rifice Centroid = tor Plate on Pipe = vesign Flow Depth= Top of Freeboard = Top of Freeboard = 200 3.368 3.368 3.368 3.368 3.9.7 0.97 41.4 35.3 0.9 Overflow Weir 1 1.4 N/A 40	Zone 3 Weir 4.10 6.18 5.63 25.83 12.91 20ne 3 Restrictor 4.59 1.17 2.44 Calculated Parame 0.68 7.50 0.41 1.78 1.78 1.78 1.78 1.78 1.78 1.78 0.41 1.78 1.78 0.41 1.78 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.41 1.78 0.421 1.78 0.9 0.0verflow Weir 1 1.77 N/A 1.9 38	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A NA Version N/A Iters for Spillway feet acres acres acres acres 331 61.4 1 1.50 63.0 51.8 0.8 Outlet Plate 1 2.0 N	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 7.535 84.6 2.06 86.2 81.0 1.0 \$pillway 2.1 N/A 6 6

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

	SOURCE	CUHP	CUHP	CUHP	CUHP	th inflow hydrog CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME								100 Year [cfs]	
ime Interval	0:00:00	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]		25 Year [cfs]	50 Year [cfs]		
5.00 min	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	0:20:00	0.00	0.00	0.03	0.61	0.96	0.13	0.00	0.39	0.91
	0:25:00	0.00	0.00	1.85	9.00	14.33	1.76	3.97	5.95	14.02
	0:30:00	0.00	0.00	7.72	17.54	24.53	22.48	29.30	34.88	51.87
	0:35:00	0.00	0.00	10.11	20.20	27.44	35.69	44.58	54.60	76.55
	0:40:00	0.00	0.00	10.50 9.56	19.85 18.28	26.79 25.04	41.36 41.25	50.84 50.48	62.14 63.03	85.50 86.18
	0:50:00	0.00	0.00	8.45	16.79	23.01	39.86	48.72	61.00	83.36
	0:55:00	0.00	0.00	7.48	15.05	21.03	36.95	45.27	57.67	78.87
	1:00:00	0.00	0.00	6.61	13.50	19.46	33.73	41.51	54.17	74.32
	1:05:00	0.00	0.00	5.95	12.26	18.24	31.13	38.49	51.46	70.78
	1:10:00	0.00	0.00	5.32 4.70	11.16 9.94	17.13 16.01	28.25 25.43	35.15 31.87	46.89 41.99	64.89 58.57
	1:20:00	0.00	0.00	4.08	8.67	14.29	22.38	28.10	36.75	51.37
	1:25:00	0.00	0.00	3.48	7.42	12.30	19.39	24.34	31.69	44.29
	1:30:00	0.00	0.00	2.94	6.45	10.71	16.47	20.73	27.01	37.89
	1:35:00	0.00	0.00	2.58	5.78	9.52	14.27	18.00	23.41	32.96
	1:40:00 1:45:00	0.00	0.00	2.33	5.17 4.60	8.54	12.59	15.91	20.65 18.29	29.11
	1:50:00	0.00	0.00	2.11	4.00	7.65 6.84	11.19 9.94	14.15 12.57	16.19	25.81 22.86
	1:55:00	0.00	0.00	1.68	3.56	6.04	8.81	11.14	14.27	20.15
	2:00:00	0.00	0.00	1.46	3.08	5.23	7.73	9.79	12.47	17.61
	2:05:00	0.00	0.00	1.23	2.59	4.42	6.66	8.42	10.73	15.13
	2:10:00	0.00	0.00	1.02	2.12	3.64	5.62	7.10	9.09	12.78
	2:15:00 2:20:00	0.00	0.00	0.80	1.66	2.90	4.61	5.82	7.49	10.51
	2:25:00	0.00	0.00	0.59	1.20 0.76	2.20 1.54	3.62 2.64	4.57 3.34	5.91 4.36	8.29 6.10
	2:30:00	0.00	0.00	0.19	0.47	1.10	1.69	2.18	2.90	4.16
	2:35:00	0.00	0.00	0.11	0.32	0.85	1.11	1.47	1.96	2.89
	2:40:00	0.00	0.00	0.08	0.24	0.66	0.75	1.02	1.35	2.04
	2:45:00	0.00	0.00	0.06	0.18	0.52	0.51	0.72	0.92	1.43
	2:50:00	0.00	0.00	0.05	0.13	0.40	0.34	0.49	0.61	0.97
	3:00:00	0.00	0.00	0.03	0.10	0.30	0.23	0.34	0.38	0.63
	3:05:00	0.00	0.00	0.02	0.05	0.15	0.10	0.15	0.12	0.22
	3:10:00	0.00	0.00	0.02	0.04	0.10	0.07	0.10	0.08	0.15
	3:15:00	0.00	0.00	0.01	0.02	0.06	0.05	0.07	0.06	0.10
	3:20:00	0.00	0.00	0.01	0.02	0.05	0.04	0.05	0.05	0.08
	3:25:00 3:30:00	0.00	0.00	0.01	0.01	0.03	0.03	0.04	0.04	0.06
	3:35:00	0.00	0.00	0.00	0.00	0.02	0.02	0.03	0.03	0.03
	3:40:00	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.01	0.02
	3:45:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:55:00 4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00 5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.04 (February 2021) Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
7210		300	0.007	0	0.000	0.00	
7310	0.00	3,300	0.076	1,800	0.041	0.00	For best results, include the stages of all grade slope
7311	1.00					0.04	changes (e.g. ISV and Floor
7312	2.00	5,650	0.130	6,275	0.144		from the S-A-V table on
7313	3.00	8,000	0.184	13,100 22,850	0.301 0.525	1.69 14.99	Sheet 'Basin'.
7314	4.00	11,500 15,600	0.264	43,750	1.004	50.98	Also include the investo of
7315.5 7316	5.50 6.00	16,200	0.338	51,700	1.187	53.32	Also include the inverts of a outlets (e.g. vertical orifice
		17,400	0.372	68,500	1.137	172.32	overflow grate, and spillwa
7317 7317.50	7.00	18,000	0.413	77,350	1.375	279.15	where applicable).
7517.50	7.50	10,000	0.115	11,550	1.770	275.15	-
							-
							-
							_
							_
							-
							-
							-
							4
							1
							-
							4
							-
							-
							_
							-
							_
							-
							-
							-
							_
							-
							-
							-

Kimley »	Horn								
	tion Basin (EDB) (Calculations							
Project Date Prepared By Checked By	Winsome Filing 3 - P 9/15/2022 TOS		Manual Input Multipliers						
Release Factor:	0.02								
Forebay Releas		Release 2% of the unde 'notch or berm/pipe co	etained 100-year peak d onfiguration	ischarge by way of a					
Forebay	Incoming Pipe Diameter (in)	Undetained 100- year Peak Discharge (cfs)	Release Rate (cfs)	Forebay Notch Width (in)					
Forebay	Incoming Pipe Diameter (in) N/A		Release Rate (cfs) 2.09	Forebay Notch Width (in) 7.7					
-	Diameter (in)	year Peak Discharge (cfs) 104.70	2.09	(in)					
-	Diameter (in)	year Peak Discharge (cfs) 104.70 Maximum Forebay E	2.09	(in)	Note: a forebay depth of 30" requires handrails by most City Standards				
A	Diameter (in) N/A Impervious Area in	year Peak Discharge (cfs) 104.70 Maximum Forebay D Maximum Forebay	2.09 Depth Design Forebay Depth	(in) 7.7 Design Forebay Depth					
A	Diameter (in) N/A Impervious Area in Watershed (ac)	year Peak Discharge (cfs) 104.70 Maximum Forebay D Maximum Forebay Depth (in) 18	2.09 Depth Design Forebay Depth (in) 18	(in) 7.7 Design Forebay Depth (ft) 1.5	30" requires handrails by		Volumo Foster	0.02	
A	Diameter (in) N/A Impervious Area in Watershed (ac) 2.93	year Peak Discharge (cfs) 104.70 Maximum Forebay D Maximum Forebay Depth (in) 18 Minimum	2.09 Depth Design Forebay Depth (in) 18 Forebay Volume Requir	(in) 7.7 Design Forebay Depth (ft) 1.5	30" requires handrails by		Volume Factor:	0.03	
A	Diameter (in) N/A Impervious Area in Watershed (ac) 2.93	year Peak Discharge (cfs) 104.70 Maximum Forebay D Maximum Forebay Depth (in) 18	2.09 Depth Design Forebay Depth (in) 18 Forebay Volume Requir	(in) 7.7 Design Forebay Depth (ft) 1.5 ed: 3% WQCV	30" requires handrails by	Design Volume (cf)	Volume Factor:	0.03	

Kimley »Horn

Project: Winsome Filing 3 -Pond 1 12/13/2021 Date:

Emergency Overflow Weir Calculation

Horizontal Broad Crested Weir Equation (from USDCM Eqn. 12-8)

 $Q = C_{BCW} L H^{1.5}$

Equation 12-8

Where:

Q = discharge (cfs)

 C_{BCW} = broad-crested weir coefficient (This ranges from 2.6 to 3.0. A value of 3.0 is often used in practice.) See Hydraulic Engineering Circular No. 22 for additional information.

L = broad-crested weir length (ft)

H = head above weir crest (ft)

Sloping Broad Crested Weir Equation (from USDCM Eqn. 12-9)

$$\left(\frac{2}{5}\right)C_{BCW}ZH^{2.5}$$

Equation 12-9

Where:

Q = discharge (cfs)

 C_{BCW} = broad-crested weir coefficient (This ranges from 2.6 to 3.0. A value of 3.0 is often used in practice.) See Hydraulic Engineering Circular No. 22 for additional information.

Z = side slope (horizontal: vertical)

H = head above weir crest (ft)

Note that in order to calculate the total flow over the weir depicted in Figure 12-20, the results from Equation 12-8 must be added to two times the results from Equation 12-9.

-100-YEAR ORIFICE

ZONE 1 AND 2 ORIFICES PERMA Example Zone Configuration (Retention Pond)

Watershed Information

ator shou mitor mation		
Selected BMP Type =	EDB	
Watershed Area =	67.90	acres
Watershed Length =	2,639	ft
Watershed Length to Centroid =	1,158	ft
Watershed Slope =	0.043	ft/ft
Watershed Imperviousness =	8.50%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	100.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban nyard	graphinoceuu	ie.
Water Quality Capture Volume (WQCV) =	0.267	acre-feet
Excess Urban Runoff Volume (EURV) =	0.384	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	1.313	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	2.686	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	3.969	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	5.724	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	7.125	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	9.058	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	12.632	acre-feet
Approximate 2-yr Detention Volume =	0.380	acre-feet
Approximate 5-yr Detention Volume =	0.970	acre-feet
Approximate 10-yr Detention Volume =	1.328	acre-feet
Approximate 25-yr Detention Volume =	1.593	acre-feet
Approximate 50-yr Detention Volume =	1.641	acre-feet
Approximate 100-yr Detention Volume =	2.320	acre-feet

Define Zones and Basin Geometry

Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.267	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.117	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	1.936	acre-feet
Total Detention Basin Volume =	2.320	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (STC) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W_{ISV}) =	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$		ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft ³

Calculated Total Basin Volume (Vtotal) = user acre-feet

IR E	Depth Increment =		ft							
tion Pond)	Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
uon rona)	Description	(ft)	Stage (ft)	Length (ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
	Top of Micropool		0.00				135	0.003		
	7301		1.00				3,562	0.082	1,848	0.042
	7302		2.00				8,486	0.195	7,872	0.181
	7303		3.00				13,569	0.312	18,900	0.434
	7304		4.00				18,029	0.414	34,699	0.797
	7305		5.00				22,236	0.510	54,831	1.259
	7306		6.00				26,181	0.601	79,040	1.815
	7307		7.00				30,248	0.694	107,254	2.462
	7308		8.00				34,723	0.797	139,740	3.208
Optional User Overrides										
0.267 acre-feet						-				
0.384 acre-feet										
1.19 inches										
1.50 inches										
1.75 inches										
2.00 inches										
2.25 inches 2.52 inches										
2.52 inches									-	
ind R03										
						-				
						-				
										ĺ
										ļ
					1 1					
								-		
					1	: :				
					1	1 1				
					1	1 1				
										ļ
					1	: :				
										1
										1
									1	1
										1
						1 1				
						1 1				

MHFD-Detention, Version 4.04 (February 2021)

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.									
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.03
	0:15:00 0:20:00	0.00	0.00	0.08	0.12	0.15	0.10	0.13	0.13	0.19
	0:25:00	0.00	0.00	0.30	1.23 15.71	1.90 24.46	0.31 3.45	0.50	0.80	1.82 24.03
	0:30:00	0.00	0.00	14.11	31.27	43.51	38.00	49.61	59.01	87.95
	0:35:00	0.00	0.00	18.98	36.68	49.33	63.02	78.48	95.59	133.66
	0:40:00	0.00	0.00	19.65	35.86	47.83	73.41	89.85	109.53	150.06
	0:45:00	0.00	0.00	17.81	32.86	44.47	72.87	88.77	110.38	150.35
	0:50:00 0:55:00	0.00	0.00	15.64 13.70	29.98 26.74	40.63 36.84	70.00 64.56	85.19 78.72	106.37 99.93	144.73 136.06
	1:00:00	0.00	0.00	12.05	23.98	34.06	58.49	71.67	93.22	127.41
	1:05:00	0.00	0.00	10.86	21.73	31.81	53.86	66.28	88.31	120.96
	1:10:00	0.00	0.00	9.62	19.64	29.64	48.68	60.25	80.26	110.52
	1:15:00	0.00	0.00	8.37	17.30	27.44	43.42	54.11	71.13	98.70
	1:20:00 1:25:00	0.00	0.00	7.14	14.84 12.72	24.27 20.99	37.71 32.12	47.09 40.17	61.39 52.13	85.40 72.71
	1:30:00	0.00	0.00	5.15	12.72	18.43	27.37	34.34	44.46	62.26
	1:35:00	0.00	0.00	4.60	10.09	16.36	23.85	29.98	38.69	54.29
	1:40:00	0.00	0.00	4.13	8.96	14.55	21.00	26.42	34.01	47.75
	1:45:00	0.00	0.00	3.70	7.87	12.90	18.51	23.29	29.86	41.95
	1:50:00 1:55:00	0.00	0.00	3.28	6.84 5.95	11.38	16.26	20.47	26.11	36.70
	2:00:00	0.00	0.00	2.83	5.85 4.89	9.88 8.33	14.17 12.17	17.84 15.33	22.62 19.35	31.81 27.22
	2:05:00	0.00	0.00	1.93	3.94	6.78	10.16	12.79	16.17	22.71
	2:10:00	0.00	0.00	1.48	3.01	5.29	8.18	10.29	13.08	18.33
	2:15:00	0.00	0.00	1.04	2.10	3.89	6.24	7.85	10.05	14.06
	2:20:00 2:25:00	0.00	0.00	0.63	1.33	2.73	4.36	5.52	7.14	10.06
	2:30:00	0.00	0.00	0.34	0.87	2.05	2.79 1.89	3.64 2.53	4.76 3.28	6.89 4.87
	2:35:00	0.00	0.00	0.23	0.48	1.26	1.30	1.79	2.28	3.46
	2:40:00	0.00	0.00	0.13	0.36	0.98	0.90	1.26	1.55	2.41
	2:45:00	0.00	0.00	0.10	0.27	0.75	0.62	0.88	1.02	1.63
	2:50:00 2:55:00	0.00	0.00	0.08	0.20	0.55	0.42	0.61	0.63	1.05
	3:00:00	0.00	0.00	0.06	0.15	0.40	0.28	0.41	0.37	0.64
	3:05:00	0.00	0.00	0.03	0.07	0.18	0.13	0.19	0.16	0.28
	3:10:00	0.00	0.00	0.03	0.05	0.13	0.10	0.14	0.12	0.21
	3:15:00	0.00	0.00	0.02	0.03	0.09	0.07	0.11	0.09	0.17
	3:20:00 3:25:00	0.00	0.00	0.02	0.02	0.07	0.06	0.08	0.07	0.13
	3:30:00	0.00	0.00	0.01	0.01	0.05	0.04	0.06	0.05	0.09
	3:35:00	0.00	0.00	0.00	0.00	0.02	0.02	0.03	0.02	0.04
	3:40:00	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.01	0.02
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01
	3:50:00 3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Outflow [cfs]	
7300	0.00	135	0.003	0	0.000	0.00	For best results, include the
7301	1.00	3,562	0.082	1,848	0.042	0.05	stages of all grade slope
7302	2.00	8,486	0.195	7,872	0.181	0.12	changes (e.g. ISV and Floor)
7303	3.00	13,569	0.312	18,900	0.434	0.58	from the S-A-V table on Sheet 'Basin'.
7304	4.00	18,029	0.414	34,699	0.797	18.49	Sheet Dashi .
7305	5.00	22,236	0.510	54,831	1.259	55.53	Also include the inverts of al
7306	6.00	26,181	0.601	79,040	1.815	97.37	outlets (e.g. vertical orifice,
7307	7.00	30,248	0.694	107,254	2.462	293.09	overflow grate, and spillway where applicable).
7308	8.00	34,723	0.797	139,740	3.208	672.69	
							-
							-
							4
							-
	1						-
							-
							-
	1						-
							-
	-						-
							-
	-						-
	1						-
							-
							-
							-
							1

-100-YEAR ORIFICE ZONE 1 AND 2-ORIFICES Example Zone Configuration (Retention Pond)

Watershed Information

PERM

Selected BMP Type =	EDB	
Watershed Area =	55.06	acres
Watershed Length =	2,639	ft
Watershed Length to Centroid =	1,158	ft
Watershed Slope =	0.043	ft/ft
Watershed Imperviousness =	8.50%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	100.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded oblerado orbannyare	gruphinocouu	
Water Quality Capture Volume (WQCV) =	0.267	acre-feet
Excess Urban Runoff Volume (EURV) =	0.384	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	1.066	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	2.180	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	3.220	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	4.645	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	5.781	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	7.350	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	10.250	acre-feet
Approximate 2-yr Detention Volume =	0.308	acre-feet
Approximate 5-yr Detention Volume =	0.786	acre-feet
Approximate 10-yr Detention Volume =	1.077	acre-feet
Approximate 25-yr Detention Volume =	1.292	acre-feet
Approximate 50-yr Detention Volume =	1.331	acre-feet
Approximate 100-yr Detention Volume =	1.882	acre-feet

Define Zones and Basin Geometry

Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.267	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.117	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	1.497	acre-feet
Total Detention Basin Volume =	1.882	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (RL/W) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W_{ISV}) =	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$		ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =		ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft 3

Calculated Total Basin Volume (V_{total}) = User acre-feet

n Pond)		Depth Increment = Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft 3)	Volume (ac-ft)
		Top of Micropool		0.00				300	0.007		
				1.00	-			5,000	0.115	2,650	0.061
				3.00				12,000	0.275	19,650	0.451
				5.50				18,000	0.413	57,150	1.312
				7.50				22,000	0.505	97,150	2.230
tional Us	er Overrides										
	acre-feet										
	acre-feet										
1.19	inches										
1.50	inches										
1.75	inches				-		-				
	-										
2.00	inches										
	inches										
2.52	inches										
	inches										
					-						
					-						
										L	
										L	
					: :						
										1	
					: :						<u> </u>
					-						
									_		
										<u> </u>	
				1						1	
					: :						
								1		1	1
					: : :						

MHFD-Detention, Version 4.04 (February 2021)

Outflow Hydrograph Workbook Filename:

Cul P		Inflow Hydrog									
Internet 104 6000 6000 2 Yes (b) 2 Yes (b) 2 Yes (b) 000 yes (b)											011115
5.50 etc 0.00											
9.95 9.92 9.92 9.92 9.92 9.92 9.92 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.93 9.94 <th< td=""><td>Time Interval</td><td></td><td>WQCV [cfs]</td><td>EURV [cfs]</td><td>2 Year [cfs]</td><td>5 Year [cfs]</td><td>10 Year [cfs]</td><td>25 Year [cfs]</td><td>50 Year [cfs]</td><td>100 Year [cfs]</td><td>500 Year [cfs]</td></th<>	Time Interval		WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
9.1000 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.200 0.00 0.00 0.02 0.91 11.30 0.23 0.92 0.91 1.34 0.200 0.00 0.00 1.14 18.16 0.21 0.23 0.92 0.92 1.34 0.300 0.00 1.04 2.310 2.215 2.855 0.450 0.853 0.71 8.458 9.866 0.92 0.925 0.450 0.90 1.04 1.252 1.853 0.71 8.458 1.855 0.71 8.458 1.855 0.71 8.458 1.14.40 1.14.40 1.924 1.913 1.14.24	5.00 min		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.1500 0.00 0.00 0.27 0.71 1.36 0.33 0.23 0.24 0.96 0.14 0.2500 0.00 0.00 0.00 1159 1866 2.54 5.55 7.74 17.44 0.3500 0.00 0.00 16.27 2.13 39.79 45.85 34.64 44.55 44.49 0.4500 0.00 0.00 11.47 72.56 34.47 84.78 67.18 81.71 117.25 0.4500 0.00 0.00 11.24 2.529 44.21 55.22 67.71 86.60 114.2 117.25 10.60 10.00 10.00 11.21 2.51.0 10.61 61.55 61.75 10.75 <td></td>											
0.20 0.00 0.20 0.21 1140 0.23 0.27 0.50 1174 0.3000 0.00 0.00 10.42 23.13 22.15 28.65 34.63 54.60 1774 99.05 0.5000 0.00 10.42 27.31 34.47 54.49 55.00 17.14 1112.5 0.6000 0.00 10.42 27.23 34.41 53.31 67.71 84.08 1114.2 12.21 22.31 11.61 23.62 11.62.2 </td <td></td>											
0.5% 0.00 0.00 1159 1159 1255 2565 36.04 1457 46.489 0.5300 0.00 0.00 1427 27.31 36.79 46.58 55.66 17.34 97.66 0.5400 0.00 0.00 1474 27.36 36.47 64.58 55.66 17.14 48.68 114.22 114.13 25.57 64.70 64.14 11.12 11.12 12.11 24.11 55.35 67.71 44.68 11.12 0.5500 0.00 0.00 1.04 21.12 22.11 11.14 82.47 65.34 81.42 11.12 1.1500 0.00 0.00 1.47 17.36 22.97 42.11 12.12 23.11 32.14 32.14 32.14 43.61 11.14 92.11 14.14 82.14 14.14 14.14 14.14 12.14 15.61 13.14 43.14 43.14 43.14 43.14 43.14 43.14 43.14 43.14 43.14											
0.3000 0.00 0.00 14.72 23.10 23.10 24.00 86.40 56.00 70.74 49.05 0.4000 0.00 14.74 27.21 34.84 55.31 67.17 54.03 114.63 0.5000 0.00 0.00 13.49 55.24 34.21 55.31 67.17 54.03 41.12 11.12 0.5500 0.00 0.00 1.61 17.12 23.11 23.14 53.14 45.31 44.04 455.16 1.0500 0.00 0.00 1.62 17.33 23.29 30.60 60.31 47.17 1.1500 0.00 0.00 1.52 22.34 13.60 44.04 45.16 1.1500 0.00 0.00 1.52 13.60 12.24 42.35 13.84 13.92 1.1500 0.00 1.38 1.67 13.44 10.55 13.31 13.14 13.15 1.1500 0.00 0.00 1.38 17.67 <											
0.4000 0.00 1.179 1.278 3.847 9.473 9.718 9.171 1.1269 0.5000 0.00 0.00 1.279 2.331 31.41 53.67 65.31 77.11 81.00 111.431 0.5000 0.00 0.00 1.021 2.311 31.41 53.67 65.31 77.55 105.75 1.0000 0.00 4.02 1.913 2.949 46.01 51.44 51.14 77.55 105.71 77.94 1.1000 0.00 0.00 4.92 1.913 2.949 36.01 46.31 77.44 79.31 1.2000 0.00 0.00 4.92 1.924 13.44 2.843 3.811 63.16 1.3000 0.00 0.20 1.387 16.41 1.44 4.55 1.56 1.4000 0.00 0.381 7.61 1.228 1.241 1.44 2.56 1.321 1.500 0.00 0.00 1.58 1.317 <											
0.45.00 0.00 0.00 13.69 32.21 35.31 55.37 65.38 81.62 111.22 0.55.00 0.00 0.00 10.81 21.12 23.10 56.15 61.31 77.35 105.57 1.05.00 0.00 0.00 49.2 17.36 25.94 44.03 55.31 67.44 49.53 1.15.00 0.00 0.00 49.4 14.36 22.49 35.18 43.83 57.44 77.44 1.15.00 0.00 0.00 4.51 9.53 13.40 22.62 23.84 35.14 13.80 10.01 13.10 1.25.00 0.00 0.00 4.51 9.53 15.40 22.62 23.84 36.34 1.35.00 0.00 0.00 1.11 1.24 1.22.6 73.84 36.34 1.45.00 0.00 0.00 1.31 1.24 1.24 1.14.7 22.86 36.36 1.55.00 0.00 0.00 1.31		0:35:00	0.00	0.00	14.07	27.31	36.79	46.58	58.06	70.74	99.05
0.500 0.00 0.00 10.11 21.12 23.10 13.61 95.27 65.38 64.32 11.12 1.0500 0.00 0.00 9.02 190.31 28.92 44.01 56.43 77.53 199.91 1.0500 0.00 0.00 7.96 15.83 22.89 28.80 48.03 64.74 77.81 1.1500 0.00 0.00 6.94 14.35 22.44 23.15 64.33 57.47 77.81 1.2500 0.00 0.00 6.94 14.35 22.44 23.42 29.44 44.25 17.83 1.3500 0.00 0.00 4.51 9.53 15.44 22.42 29.44 43.44 1.500 0.00 0.00 3.95 8.82 11.07 13.89 19.94 26.45 30.06 1.500 0.00 0.00 2.26 5.79 8.93 14.24 17.87 12.24 12.44 15.5 22.20 2.05.00			0.00	0.00	14.79	27.26	36.47	54.78	67.18	81.91	112.55
0.55 00 0.00											
10000 0000 620 1920 2827 4421 5441 2117 999 11000 000 000 780 1533 2339 3880 4633 6174 894 11000 000 000 614 1436 2443 3513 4333 5749 7981 12000 000 600 6131 1269 2037 3127 7966 5981 7070 13000 000 600 632 1102 1740 2241 3441 4425 44531 14000 000 000 351 761 1228 1748 2241 2847 4356 1500 0.00 0.00 220 453 1224 1545 222 2245 2245 2245 2245 2241 1245 1550 202 2245 2245 2245 2245 2245 2245 2245 2245 2245 2245 2245 2245 2250											
1000 000 667 17.36 22.29 42.11 52.31 67.44 97.16 11500 000 0.00 6.44 14.36 22.49 13.18 44.80 57.34 77.941 12000 0.00 0.00 5.29 11.22 17.80 27.41 34.21 44.25 41.38 12500 0.00 0.00 5.29 11.22 17.80 27.41 34.21 44.25 45.18 13800 0.00 0.00 3.89 8.47 13.44 0.75 2.58 32.79 45.60 14900 0.00 0.00 2.51 7.41 12.80 17.41 12.84 15.94 2.241 42.54 42.30 15900 0.00 0.00 1.62 5.39 8.93 12.48 15.94 2.241 2.357 1500 0.00 0.00 1.67 3.42 5.70 8.47 13.48 1.80 1.34 1.80 1.55 2.250 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
11500 0.00 6.94 14.36 22.49 23.18 44.36 57.49 79.81 12500 0.00 0.00 5.29 11.02 17.80 77.41 34.21 34.15 31.11 11.12 11.13 12.14 11.14 11.12 11.13 22.14 12.05 31.14 11.14 11.12 11.12 11.14 11.12 11.14 11.12 11.14 11.12 11.14 11.12 11.13 11.14 <td></td> <td>1:05:00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1:05:00									
12.00 0.00 0.00 6.11 12.49 20.37 11.29 12.80 20.31 10.30 13.000 0.00 0.00 451 9.53 11.40 23.42 22.49 38.11 53.30 13.800 0.00 0.00 3.51 7.41 12.22 23.48 22.77 85.90 14.000 0.00 0.00 3.51 7.41 12.24 17.84 22.41 28.87 40.51 15.900 0.00 0.00 2.40 5.39 8.91 12.44 13.87 22.86 32.74 15.900 0.00 0.00 2.40 7.37 7.85 11.27 13.19 13.89 22.86 32.74 2.00.00 0.00 1.47 2.42 5.70 8.47 13.64 13.47 18.89 12.44 13.89 13.47 18.99 12.44 13.57 13.99 13.99 12.44 13.57 13.99 13.99 12.44 13.57 13.99 1		1:10:00	0.00	0.00	7.80	15.93	23.89	38.80	48.03		87.84
1.2500 0.00 0.00 4.51 9.33 1.540 2.241 9.44.25 6.158 1.3500 0.00 0.00 1.840 7.84 1.228 1.744 2.249 3.811 6.510 1.4400 0.00 0.00 3.51 7.81 1.228 1.744 2.241 2.248 3.814 6.511 1.4500 0.00 0.00 2.90 6.08 9.98 11.421 1.177 2.256 3.214 1.5500 0.00 0.00 2.90 6.08 9.98 11.22 1.419 1.74.6 2.256 2.0000 0.00 0.00 1.22 4.43 7.85 11.22 1.419 1.74.6 2.201 2.1000 0.00 0.00 1.72 2.40 7.74.8 1.027 1.34 1.855 2.201 2.1000 0.00 0.00 1.72 2.40 7.74.8 1.027 7.35.5 5.86 2.7500 0.00 0.00 0.25 </td <td></td>											
1.3200 0.00 0.00 4.01 9.33 16.40 22.52 25.38 32.79 45.90 1.4000 0.00 0.00 3.81 7.41 11.28 17.84 22.41 28.87 48.51 1.4500 0.00 0.00 2.90 6.08 0.40 14.12 17.84 22.44 28.87 48.51 1.5000 0.00 0.00 2.90 6.08 0.40 14.12 17.87 22.86 21.14 1.5000 0.00 0.00 1.92 4.73 7.85 11.22 14.14 17.46 25.27 2.00.00 0.00 0.00 1.37 2.80 4.70 7.14 8.86 11.40 15.85 22.61 2.10.00 0.00 0.00 1.38 2.80 4.77 7.3 4.36 13.38 2.50.00 0.00 0.00 1.88 2.88 4.57 5.73 7.50 2.50.00 0.00 0.00 0.00 <											
13500 0.00 1.00 3.89 8.47 11.24 2025 25.38 3.279 45.90 14000 0.00 0.00 3.19 6.82 11.07 15.99 19.98 25.48 34.06 15000 0.00 0.00 2.40 6.08 9.43 14.21 17.77 22.86 32.14 15500 0.00 0.00 2.29 4.73 7.85 11.27 14.19 17.66 2.01 2.455 2.0500 0.00 0.00 1.87 3.42 5.70 8.47 10.65 13.47 18.89 2.1000 0.00 0.00 1.88 2.80 4.75 7.33 3.4 13.08 2.2500 0.00 0.00 0.71 1.64 1.14 1.40 15.85 5.84 7.33 3.4 13.02 2.3000 0.00 0.00 0.17 0.64 1.64 2.10 2.35 5.86 2.4500 0.00 0.00											
140.00 0.00 0.00 3.51 7.41 17.28 17.84 7.24 7.84 7.84 7.84 7.84 7.84 7.84 7.84 7.84 7.84 7.85											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
15500 0.00 0.00 2.40 5.39 8.93 12.46 15.96 2.012 28.57 205 00 0.00 0.00 1.47 3.42 5.70 8.47 11.419 11.76 15.55 210 00 0.00 0.00 1.47 3.42 5.70 8.47 10.65 13.47 18.90 215 00 0.00 0.00 1.37 2.80 4.70 7.14 8.96 11.40 15.95 220 00 0.00 0.00 0.78 1.88 2.85 4.57 5.73 7.36 10.27 230 00 0.00 0.00 0.50 1.00 1.98 3.30 4.16 5.37 7.56 240 00 0.00 0.00 0.00 0.26 0.70 0.67 0.93 1.16 1.78 246 00 0.00 0.00 0.07 0.20 0.54 0.45 0.464 0.77 1.22 300 00 0.00 0.00 0.00											
20100 0.00 0.00 1.229 1.127 1.149 1.746 2.5211 2:16:00 0.00 1.00 1.67 3.42 5.10 8.47 10.455 2.2011 2:16:00 0.00 0.00 1.87 2.80 4.70 7.14 8.64 11.40 15.97 2:16:00 0.00 0.00 1.08 2.14 3.75 5.544 7.33 9.36 11.38 2:25:00 0.00 0.00 0.00 1.58 2.85 4.57 5.73 7.36 12.27 2:35:00 0.00 0.00 0.26 0.64 1.45 2.10 2.70 3.55 5.08 2:35:00 0.00 0.00 0.07 0.46 1.14 1.40 1.86 2.43 3.57 2:45:00 0.00 0.00 0.07 0.20 0.54 0.47 0.91 1.16 1.78 2:55:00 0.00 0.00 0.06 0.15 0.41 0.22<											
2 05:00 0.00 19:60 14:77 6.76 9.86 12:40 15:65 22:01 2115:00 0.00 0.00 1.37 2.80 4.70 7.14 8.86 11:40 15:80 22:00 0.00 0.00 1.08 2.19 3.75 5.84 7.33 9.36 11:08 2:30:00 0.00 0.00 0.78 1.58 2.10 2.70 3.55 5.68 2:30:00 0.00 0.00 0.26 0.44 1.45 2.10 2.70 3.55 5.68 2:40:00 0.00 0.00 0.17 0.46 1.14 1.40 1.56 2.43 3.57 2:40:00 0.00 0.00 0.02 0.26 0.70 0.67 0.93 1.16 1.78 2:50:00 0.00 0.00 0.03 0.06 0.11 0.32 0.45 0.44 0.80 0.71 1.22 3:00:00 0.00 0.00 0.03											
2:10:00 0.00 1.47 3.42 5.70 8.47 10.65 13.47 18.90 2:15:00 0.00 0.00 1.37 2.80 4.70 7.14 8.96 11.40 15.95 2:20:00 0.00 0.00 0.00 1.78 1.58 2.85 4.57 5.73 7.34 10.27 2:30:00 0.00 0.00 0.50 1.00 1.88 2.85 4.57 5.73 7.34 10.27 2:35:00 0.00 0.00 0.26 0.64 1.14 1.40 1.86 2.43 3.57 2:45:00 0.00 0.00 0.07 0.26 0.70 0.67 0.93 1.16 1.78 2:55:00 0.00 0.00 0.00 0.06 0.15 0.41 0.32 0.44 0.80 3:000 0.00 0.00 0.03 0.08 0.21 0.31 0.29 0.49 3:000 0.00 0.00 0.03											
2.20.00 0.00 1.08 2.19 3.75 5.84 7.33 9.36 11.08 2.25.00 0.00 0.00 0.55 1.00 1.88 2.85 4.57 5.73 7.36 10.27 2.35.00 0.00 0.00 0.26 0.44 1.145 2.10 2.70 3.35 5.08 2.45.00 0.00 0.01 1.70 4.46 1.14 1.40 1.186 2.43 3.57 2.45.00 0.00 0.00 0.01 0.26 0.70 0.67 0.93 1.16 1.78 2.55.00 0.00 0.00 0.07 0.20 0.54 0.45 0.44 0.47 1.22 3.00.00 0.00 0.06 0.15 0.41 0.31 0.29 0.49 3.15.00 0.00 0.00 0.03 0.05 0.14 0.12 0.16 0.33 3.15.00 0.00 0.00 0.02 0.03 0.05 0.04		2:10:00									
2.55.00 0.00 0.78 158 2.85 4.57 5.73 7.36 1027 2.30.00 0.00 0.00 0.26 0.44 1.48 2.10 2.70 3.55 5.68 2.40.00 0.00 0.00 0.17 0.46 1.14 1.40 1.86 2.43 3.57 2.45.00 0.00 0.00 0.12 0.35 0.59 0.64 1.16 1.16 1.16 1.12 2.45.00 0.00 0.00 0.01 0.20 0.54 0.64 0.47 0.23 1.16 1.72 2.55.00 0.00 0.00 0.04 0.11 0.33 0.21 0.41 0.12 0.44 0.60 3.05.00 0.00 0.00 0.03 0.08 0.21 0.14 0.10 0.14 0.12 0.12 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 <			0.00	0.00	1.37	2.80	4.70	7.14	8.96	11.40	15.95
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
2:35:00 0.00 0.26 0.64 1.45 2.10 2.70 3.55 5.08 2:40:00 0.00 0.00 0.17 0.46 1.14 1.40 1.86 2.43 3.57 2:45:00 0.00 0.00 0.02 0.55 0.70 0.67 0.93 1.16 1.72 2:50:00 0.00 0.00 0.07 0.20 0.54 0.45 0.45 0.47 0.73 1.16 1.72 3:00:00 0.00 0.00 0.04 0.11 0.30 0.21 0.31 0.49 0.80 3:05:00 0.00 0.00 0.03 0.08 0.21 0.14 0.10 0.14 0.12 0.21 3:05:00 0.00 0.00 0.03 0.08 0.21 0.14 0.10 0.14 0.12 0.21 3:20:00 0.00 0.00 0.02 0.03 0.07 0.05 0.08 0.07 0.12 3:35:00											
2:40:00 0.00 0.00 0.17 0.46 1.14 1.40 1.86 2.43 3.57 2:45:00 0.00 0.00 0.09 0.26 0.70 0.67 0.93 1.16 1.78 2:55:00 0.00 0.00 0.07 0.20 0.54 0.45 0.44 0.77 1.22 3:00:00 0.00 0.00 0.04 0.11 0.30 0.21 0.31 0.29 0.44 3:10:00 0.00 0.00 0.03 0.08 0.21 0.14 0.12 0.21 0.31 0.29 0.44 3:10:00 0.00 0.00 0.03 0.05 0.14 0.14 0.12 0.21 3:25:00 0.00 0.00 0.02 0.03 0.07 0.10 0.99 0.15 3:45:00 0.00 0.00 0.01 0.01 0.04 0.06 0.07 0.12 3:3:5:00 0.00 0.00 0.00 0.00											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.00	0.00	0.12	0.35	0.89	0.96	1.31	1.69	2.55
3:00:00 0.00 0.00 0.06 0.15 0.41 0.32 0.45 0.49 0.80 3:00:00 0.00 0.00 0.00 0.03 0.08 0.21 0.14 0.21 0.14 0.21 0.14 0.21 0.14 0.12 0.14 0.12 0.21 0.14 0.12 0.21 0.14 0.12 0.21 0.14 0.12 0.21 0.14 0.12 0.21											
3:05:00 0.00 0.00 0.04 0.11 0.30 0.21 0.31 0.29 0.49 3:10:00 0.00 0.00 0.03 0.08 0.21 0.14 0.12 0.21 0.16 0.30 3:20:00 0.00 0.00 0.02 0.04 0.09 0.07 0.10 0.09 0.15 3:20:00 0.00 0.00 0.02 0.03 0.07 0.10 0.09 0.15 3:30:00 0.00 0.00 0.01 0.02 0.05 0.04 0.06 0.05 0.09 3:40:00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.02 0.03 3:45:00 0.00											
3:10:00 0.00 0.03 0.08 0.21 0.14 0.21 0.16 0.33 3:15:00 0.00 0.00 0.03 0.05 0.14 0.10 0.14 0.12 0.21 3:20:00 0.00 0.00 0.02 0.04 0.07 0.10 0.09 0.15 3:25:00 0.00 0.00 0.02 0.03 0.07 0.05 0.08 0.07 0.12 3:35:00 0.00 0.00 0.01 0.02 0.05 0.04 0.06 0.07 3:40:00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.05 3:46:00 0.00 0.00 0.00 0.00 0.01											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
3:25:00 0.00 0.00 0.01 0.02 0.03 0.07 0.05 0.08 0.07 0.12 3:30:00 0.00 0.00 0.01 0.02 0.05 0.04 0.06 0.05 0.04 0.07 0.12 3:35:00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.05 3:40:00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.03 0.05 3:45:00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00			0.00	0.00	0.03	0.05	0.14	0.10	0.14	0.12	0.21
3:30:00 0.00 0.01 0.02 0.05 0.04 0.06 0.05 0.09 3:36:00 0.00 0.00 0.01 0.01 0.04 0.03 0.05 0.04 0.07 3:40:00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.05 3:45:00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 3:50:00 0.00											
3:35:00 0.00 0.01 0.01 0.04 0.03 0.05 0.04 0.07 3:40:00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.05 3:45:00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 3:50:00 0.00 0.00 0.00 0.00 0.00 0.01 0.00											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
3:50:00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 3:55:00 0.00											
3:55:00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 4:00:00 0.00			0.00	0.00	0.00	0.00	0.02	0.01	0.02	0.02	0.03
4:00:00 0.00											
4:05:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4:10:00 0.00											
4:10:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4:15:00 0.00											
4:20:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4:25:00 0.00		4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:25:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4:30:00 0.00											
4:30:00 0.00											
4:40:00 0.00		4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:45:00 0.00											
4:55:00 0.00		4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:00:00 0.00											
5:05:00 0.00											
5:15:00 0.00		5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:20:00 0.00											
5:30:00 0.00		5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:35:00 0.00											
5:40:00 0.00											
5:50:00 0.00		5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:55:00 0.00 0.00 0.00 0.00 0.00 0.00 0.											

Kimley »	Horn								
xtended Deter	ntion Basin (EDB) (Calculations							
roject)ate repared By ;hecked By	Winsome Filing 3 - P 9/15/2022 TOS	ond 2	Manual Input Multipliers						
Release Factor:	0.02								
Forebay Releas		notch or berm/pipe co	etained 100-year peak d onfiguration	ischarge by way of a					
Forebay	Incoming Pipe Diameter (in)	Undetained 100- year Peak Discharge (cfs)	Release Rate (cfs)	Forebay Notch Width (in)					
Forebay	Incoming Pipe Diameter (in) N/A	year Peak Discharge	Release Rate (cfs) 2.21	Forebay Notch Width (in) 7.9					
	Diameter (in)	year Peak Discharge (cfs) 110.40	2.21	(in)					
	Diameter (in)	year Peak Discharge (cfs) 110.40 Maximum Forebay E	2.21	(in)	Note: a forebay depth of 30" requires handrails by most City Standards				
A	Diameter (in) N/A Impervious Area in	year Peak Discharge (cfs) 110.40 Maximum Forebay D Maximum Forebay	2.21 Depth Design Forebay Depth	(in) 7.9 Design Forebay Depth					
A	Diameter (in) N/A Impervious Area in Watershed (ac)	year Peak Discharge (cfs) 110.40 Maximum Forebay D Maximum Forebay Depth (in) 18	2.21 Depth Design Forebay Depth (in) 18	(in) 7.9 Design Forebay Depth (ft) 1.5	30" requires handrails by		Volumo Easter	0.03	
A	Diameter (in) N/A Impervious Area in Watershed (ac) 4.68	year Peak Discharge (cfs) 110.40 Maximum Forebay D Maximum Forebay Depth (in) 18	2.21 Depth Design Forebay Depth (in) 18 Forebay Volume Requir	(in) 7.9 Design Forebay Depth (ft) 1.5 ed: 3% WQCV	30" requires handrails by	Design Volume (cf)	Volume Factor:	0.03	

Kimley »Horn

Project: Winsome Filing 3 -Pond 2 12/13/2021 Date:

Emergency Overflow Weir Calculation

Horizontal Broad Crested Weir Equation (from USDCM Eqn. 12-8)

Equation 12-8

Q = discharge (cfs)

 C_{BCW} = broad-crested weir coefficient (This ranges from 2.6 to 3.0. A value of 3.0 is often used in practice.) See Hydraulic Engineering Circular No. 22 for additional information.

L = broad-crested weir length (ft)

H = head above weir crest (ft)

Sloping Broad Crested Weir Equation (from USDCM Eqn. 12-9)

$$\left(\frac{2}{5}\right)C_{BCW}ZH^{2.5}$$

Equation 12-9

Q = discharge (cfs)

 C_{BCW} = broad-crested weir coefficient (This ranges from 2.6 to 3.0. A value of 3.0 is often used in practice.) See Hydraulic Engineering Circular No. 22 for additional information.

Z = side slope (horizontal: vertical)

H = head above weir crest (ft)

Note that in order to calculate the total flow over the weir depicted in Figure 12-20, the results from Equation 12-8 must be added to two times the results from Equation 12-9.

Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County) 110.4 cfs/60 ft = 1.84

Stage (ft)

Stage (ft)

Area (ft ²)

Override

rea (ft

Width

(ft)

Length

(ft)

Area (acre)

Volume (ft 3)

Volume (ac-ft)

MHFD-Detention, Version 4.04 (February 2021)

Depth Increment =

Stage - Storage Description

Watershed Information

tersned information		
Selected BMP Type =	EDB	
Watershed Area =	64.00	acres
Watershed Length =	2,267	ft
Watershed Length to Centroid =	1,368	ft
Watershed Slope =	0.057	ft/ft
Watershed Imperviousness =	11.90%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	14.0%	percent
Percentage Hydrologic Soil Groups C/D =	86.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban Hydro	gi apri Procedu	ie.
Water Quality Capture Volume (WQCV) =	0.247	acre-feet
Excess Urban Runoff Volume (EURV) =	0.433	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	1.333	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	2.607	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	3.819	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	5.479	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	6.792	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	8.600	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	11.978	acre-feet
Approximate 2-yr Detention Volume =	0.517	acre-feet
Approximate 5-yr Detention Volume =	1.104	acre-feet
Approximate 10-yr Detention Volume =	1.494	acre-feet
Approximate 25-yr Detention Volume =	1.815	acre-feet
Approximate 50-yr Detention Volume =	1.891	acre-feet
Approximate 100-yr Detention Volume =	2.561	acre-feet

Define	Zones	and	Basin	Geometry	1

Zone

Zone 1 Volume (WQCV) =	0.247	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.186	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	2.128	acre-feet
Total Detention Basin Volume =	2.561	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (STC) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (WISV) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

		Description Top of Micropool	(ft) 	0.00	(ft) 	(ft) 	(ft *) 	Area (ft *) 199	(acre) 0.005	(ft ²)	(ac-ft)
		7292		1.00				4,705	0.108	2,452	0.056
		7292		2.00				19,328	0.444	14,468	0.332
		7293		3.00					0.444		
		7294		4.00	-			28,048 31,430	0.644	38,156 67,895	0.876
		7296		5.00				34,844	0.800	101,032	2.319
		7295		6.00				38,298	0.879	137,603	3.159
		7298		7.00				41,682	0.957	177,593	4.077
Optional Use	r Overrides				-		-				
0.247	acre-feet										
0.433	acre-feet										
1.19	inches inches										
1.75	inches										
2.00	inches										
2.25	inches				-		-				
2.52	inches										
	inches										
									-		
					1		1				
					1		1				
]
						1	: :				
							-				
					-		-				
]
]
										<u> </u>	

0.186 acre-feet 2.128 acre-feet 2.561 acre-feet user user user user user user ft ³ н·v user ft 2 ft

MHFD-Detention_v4 04_POND_4_Mod_Area.xlsm, Basin

MHFD-Detention, Version 4.04 (February 2021)

	D	TENTION	BASIN OUT	FI FT STRU	CTURE DES	SIGN			
		MHF	D-Detention, Vers			JIGN			
	WINSOME FILING	6 3 3 + H7A + H7B + I	1) Modified Area						
ZONE 3	FORD 4 (BASIN II	<u>3 + 11/A + 11/B + 1</u>	T)_Wouthed Area	Estimated	Estimated				
ZONE 2 ZONE 1				Stage (ft)	Volume (ac-ft)	Outlet Type			
IOO-YR EURY WOCY			Zone 1 (WQCV)		0.247	Orifice Plate			
	100-YEAR		Zone 2 (EURV)		0.186	Orifice Plate			
ZONE 1 AND 2	ORIFICE								
1 Elimentelli	Configuration (Re	tention Pond)	Zone 3 (100-year)	l	2.128	Weir&Pipe (Restrict)			
		-	MD)	Total (all zones)	2.561	1	Coloulated Darama	tors for Underdrain	
ser Input: Orifice at Underdrain Outlet (typically Underdrain Orifice Invert Depth =			the filtration media	surface)	Under	drain Orifice Area =		eters for Underdrain	<u>I</u>
Underdrain Orifice Diameter =		inches	the mitation media	Surface)		n Orifice Centroid =		feet	
		,						1	
ser Input: Orifice Plate with one or more orifice	es or Elliptical Slot	Weir (typically used	to drain WQCV and	d/or EURV in a sedi	mentation BMP)		Calculated Parame	eters for Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basir	n bottom at Stage =	= 0 ft)	WQ Orifi	ice Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	1.80		n bottom at Stage =	= 0 ft)		iptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches				tical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	inches			ł	Elliptical Slot Area =	N/A	ft ²	
ser Input: Stage and Total Area of Each Orifice	Row (numbered (rom lowest to biab	est)						
ser inpat, stage and rotal field of Each Office	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Stage of Orifice Centroid (ft)	0.00	0.60	1.20			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	()		1
Orifice Area (sq. inches)	1.10	1.10	1.20						
									-
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									-
Orifice Area (sq. inches)		J							1
ser Input: Vertical Orifice (Circular or Rectangu	lar)						Calculated Paramo	eters for Vertical Ori	ifice
ser mput. Vertical Onlice (Circular Or Rectange	Not Selected	Not Selected	1				Not Selected	Not Selected	ince.
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basir	n bottom at Stage =	= 0 ft) Ver	rtical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A		n bottom at Stage =		al Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches	-					-
Iser Input: Overflow Weir (Dropbox with Flat or			<u>:tangular/Trapezoid</u>	al Weir (and No Ou	itlet Pipe)			eters for Overflow V	<u>Veir</u>
Overflow Weir Front Edge Height He	Zone 3 Weir 2.00	Not Selected N/A	ft (relative to begin	hottom at Stago	ft) Unight of Crot	o Uppor Edgo II	Zone 3 Weir 3.50	Not Selected N/A	foot
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	12.00	N/A	feet	bottom at Stage = 0 f	-	Veir Slope Length =	6.18	N/A	feet feet
Overflow Weir Grate Slope =	4.00	N/A	H:V	Gr		00-yr Orifice Area =	8.26	N/A	1001
Horiz. Length of Weir Sides =	6.00	N/A	feet			Area w/o Debris =	51.65	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A			ft ²				
Debris Clogging % =	50%	N/A	%			n Area w/ Debris =	25.83	N/A	11
							23.63	N/A	lir
ser Input: Outlet Pipe w/ Flow Restriction Plate		<u>estrictor Plate, or F</u>							_
	Zone 3 Restrictor	•	ectangular Orifice)		<u>Ca</u>	alculated Parameters	s for Outlet Pipe w/	/ Flow Restriction Pl	_
		Not Selected				alculated Parameters	s for Outlet Pipe w/ Zone 3 Restrictor	/ Flow Restriction Pl Not Selected	_
Depth to Invert of Outlet Pipe =	2.50	N/A	ft (distance below ba	basin bottom at Stage	= 0 ft) O	ulculated Parameters	s for Outlet Pipe w/ Zone 3 Restrictor 6.25	/ Flow Restriction Pl Not Selected N/A	late ft ²
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	2.50 42.00		ft (distance below ba	-	= 0 ft) O Outle	alculated Parameters utlet Orifice Area = t Orifice Centroid =	s for Outlet Pipe w/ Zone 3 Restrictor 6.25 1.23	/ Flow Restriction Pl Not Selected N/A N/A	late ft ² feet
Depth to Invert of Outlet Pipe =	2.50	N/A	ft (distance below ba	-	= 0 ft) O	alculated Parameters utlet Orifice Area = t Orifice Centroid =	s for Outlet Pipe w/ Zone 3 Restrictor 6.25	/ Flow Restriction Pl Not Selected N/A	late ft ²
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	2.50 42.00 26.00	N/A	ft (distance below ba	-	= 0 ft) O Outle	alculated Parameters utlet Orifice Area = t Orifice Centroid =	s for Outlet Pipe w/ Zone 3 Restrictor 6.25 1.23	/ Flow Restriction Pl Not Selected N/A N/A N/A	late ft ² feet
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	2.50 42.00 26.00	N/A N/A	ft (distance below ba	Half-Cent	= 0 ft) O Outle tral Angle of Restric	alculated Parameters utlet Orifice Area = t Orifice Centroid =	i for Outlet Pipe w/ Zone 3 Restrictor 6.25 1.23 1.81	/ Flow Restriction Pl Not Selected N/A N/A N/A	late ft ² feet
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or	2.50 42.00 26.00 Trapezoidal)	N/A N/A	ft (distance below ba inches inches	Half-Cent	= 0 ft) O Outle tral Angle of Restric Spillway D	utulet Orifice Area = t Orifice Centroid = tor Plate on Pipe =	s for Outlet Pipe w/ Zone 3 Restrictor 6.25 1.23 1.81 <u>Calculated Parame</u>	/ Flow Restriction Pl Not Selected N/A N/A N/A eters for Spillway	late ft ² feet
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	2.50 42.00 26.00 <u>Trapezoidal)</u> 5.34	N/A N/A ft (relative to basin	ft (distance below ba inches inches	Half-Cent	= 0 ft) O Outle tral Angle of Restric Spillway E Stage at	alculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth=	i for Outlet Pipe w/ Zone 3 Restrictor 6.25 1.23 1.81 <u>Calculated Parame</u> 0.69	/ Flow Restriction Pl Not Selected N/A N/A N/A eters for Spillway feet	late ft ² feet
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	2.50 42.00 26.00 <u>Trapezoidal)</u> 5.34 60.00	N/A N/A ft (relative to basin feet	ft (distance below ba inches inches	Half-Cent	= 0 ft) O Outle iral Angle of Restric Spillway E Stage at Basin Area at	ulculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard =	i for Outlet Pipe w/ Zone 3 Restrictor 6.25 1.23 1.81 <u>Calculated Parame</u> 0.69 7.03	/ Flow Restriction Pl Not Selected N/A N/A N/A ters for Spillway feet feet	late ft ² feet
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	2.50 42.00 26.00 Trapezoidal) 5.34 60.00 4.00	N/A N/A ft (relative to basin feet H:V	ft (distance below ba inches inches	Half-Cent	= 0 ft) O Outle iral Angle of Restric Spillway E Stage at Basin Area at	Ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	<u>i for Outlet Pipe w/</u> Zone 3 Restrictor 6.25 1.23 1.81 <u>Calculated Parame</u> 0.69 7.03 0.96	/ Flow Restriction PI Not Selected N/A N/A N/A eters for Spillway feet feet acres	late ft ² feet
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	2.50 42.00 26.00 <u>Trapezoidal)</u> 5.34 60.00 4.00 1.00	N/A N/A ft (relative to basir feet H:V feet	ft (distance below ba inches inches	Half-Cent	= 0 ft) O Outle tral Angle of Restric Spillway I Stage at Basin Area at Basin Volume at	alculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard =	<u>i for Outlet Pipe w/</u> Zone 3 Restrictor 6.25 1.23 1.81 <u>Calculated Parame</u> 0.69 7.03 0.96 4.08	/ Flow Restriction Pl Not Selected N/A N/A N/A ters for Spillway feet feet acres acre-ft	ate ft ² feet radians
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	2.50 42.00 26.00 <u>Trapezoidal)</u> 5.34 60.00 4.00 1.00	N/A N/A ft (relative to basir feet H:V feet	ft (distance below be inches inches	Half-Cent	= 0 ft) O Outle tral Angle of Restric Spillway I Stage at Basin Area at Basin Volume at	alculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard =	<u>i for Outlet Pipe w/</u> Zone 3 Restrictor 6.25 1.23 1.81 <u>Calculated Parame</u> 0.69 7.03 0.96 4.08	/ Flow Restriction Pl Not Selected N/A N/A N/A ters for Spillway feet feet acres acre-ft	ate ft ² feet radians
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	2.50 42.00 26.00 Trapezoidal) 5.34 60.00 4.00 1.00 The user can over WOCV N/A	N/A N/A ft (relative to basin feet H:V feet ride the default CU URV N/A	ft (distance below be inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19	Half-Cent = 0 ft) <u>d runoff volumes by</u> <u>5 Year</u> 1.50	= 0 ft) O Outle ral Angle of Restric Spillway E Stage at Basin Area at Basin Volume at Centering new valu 10 Year 1.75	alculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = top of Freeboard = top of Freeboard = 25 Year 2.00	<u>s for Outlet Pipe w/</u> Zone 3 Restrictor 6.25 1.23 1.81 <u>Calculated Parame</u> 0.69 7.03 0.96 4.08 <i>Irographs table (Ccc</i> 50 Year 2.25	/ Flow Restriction Pl Not Selected N/A N/A N/A eters for Spillway feet acres acre-ft plumns W through A 100 Year 2.52	tt ² feet radians <u>F).</u> 500 Yee 3.14
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	2.50 42.00 26.00 Trapezoidal) 5.34 60.00 4.00 1.00 The user can over WOCV N/A 0.247	N/A N/A N/A ft (relative to basin feet H:V feet ride the default CU N/A 0.433	ft (distance below be inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 1.333	Half-Cent = 0 ft) <u>d runoff volumes by</u> <u>5 Year</u> 1.50 2.607	= 0 ft) O Outle ral Angle of Restric Spillway [Stage at Basin Area at Basin Volume at <u>rentering new valu</u> 10 Year 1.75 3.819	alculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = tes in the Inflow Hype 2 S Year 2.00 5.479	<u>i for Outlet Pipe w/</u> Zone 3 Restrictor 6.25 1.23 1.81 <u>Calculated Parame</u> 0.69 7.03 0.96 4.08 <i>trographs table (Col</i> 50 Year 2.25 6.792	/ Flow Restriction Pl Not Selected N/A N/A N/A ters for Spillway feet feet acres acre-ft blumns W through A 100 Year 2.52 8.600	<i>it</i> ft ² feet radians <i>F).</i> 500 Ye 3.14 11.97
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	2.50 42.00 26.00 Trapezoidal) 5.34 60.00 4.00 1.00 The user can over WOCV N/A	N/A N/A ft (relative to basin feet H:V feet ride the default CU URV N/A	ft (distance below be inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19	Half-Cent = 0 ft) <u>d runoff volumes by</u> <u>5 Year</u> 1.50	= 0 ft) O Outle ral Angle of Restric Spillway E Stage at Basin Area at Basin Volume at Centering new valu 10 Year 1.75	alculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = top of Freeboard = top of Freeboard = 25 Year 2.00	<u>s for Outlet Pipe w/</u> Zone 3 Restrictor 6.25 1.23 1.81 <u>Calculated Parame</u> 0.69 7.03 0.96 4.08 <i>Irographs table (Ccc</i> 50 Year 2.25	/ Flow Restriction Pl Not Selected N/A N/A N/A eters for Spillway feet acres acre-ft plumns W through A 100 Year 2.52	ate ft² feet radians 500 Ye 3.14 11.97 11.97
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	2.50 42.00 26.00 Trapezoidal) 5.34 60.00 4.00 1.00 The user can over WOCV N/A 0.247 N/A N/A N/A	N/A N/A N/A ft (relative to basin feet H:V feet ride the default CU EURV N/A 0.433 N/A N/A N/A	ft (distance below be inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 1.333 1.333 14.4	Half-Cent = 0 ft) <u>5 Year</u> 1.50 2.607 2.607 30.4	= 0 ft) O Outle rral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 3.819 3.819 42.6	alculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = tes in the Inflow Hyco 25 Year 2.00 5.479 5.479 65.8	is for Outlet Pipe w/ Zone 3 Restrictor 6.25 1.23 1.81 Calculated Parame 0.69 7.03 0.96 4.08 Irographs table (Cor 50 Year 2.25 6.792 6.792 81.6	/ Flow Restriction Pl N/A Selected N/A N/A N/A ters for Spillway feet feet acres acre-ft 100 Year 2.52 8.600 8.600 101.6	ate ft ² feet radians 500 Ye 3.14 11.97 11.97
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Prodevelopment Unit Peak Flow, q (cfs/acre) =	2.50 42.00 26.00 Trapezoidal) 5.34 60.00 4.00 1.00 The user can over WOCV N/A 0.247 N/A N/A N/A N/A	N/A N/A N/A ft (relative to basin feet H:V feet Feet N/A 0.433 N/A N/A N/A N/A N/A	ft (distance below be inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 1.333 1.333 1.333 14.4 0.22	Half-Cent = 0 ft) d runoff volumes by 5 Year 1.50 2.607 2.607 3.0.4 0.48	= 0 ft) O Outle tral Angle of Restric Spillway E Stage at Basin Area at Basin Volume at Centering new value 10 Year 1.75 3.819 3.819 42.6 0.67	Alculated Parameters utlet Orifice Area = t Orifice Centroid = :tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year 2.00 5.479 5.479 65.8 1.03	is for Outlet Pipe w/ Zone 3 Restrictor 6.25 1.23 1.81 Calculated Parame 0.69 7.03 0.96 4.08 trographs table (Ccc 50 Year 2.25 6.792 81.6 1.27	/ Flow Restriction Pl Not Selected N/A N/A N/A eters for Spillway feet feet acres acre-ft blumns W through A 100 Year 2.52 8.600 101.6 1.59	interference interference ft² feet feet radians 500 Ye 3.14 11.97 11.97 11.97 2.19
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Predevelopment Inflow Q (cfs) = Peak Inflow Q (cfs) =	2.50 42.00 26.00 Trapezoidal) 5.34 60.00 4.00 1.00 The user can over WOCV N/A 0.247 N/A N/A N/A N/A N/A	N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.433 N/A N/A N/A N/A N/A N/A N/A	ft (distance below beinches inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 1.333 14.4 0.22 19.7	Half-Cent = 0 ft) d runoff volumes by 5 Year 1.50 2.607 2.607 2.607 30.4 0.48 36.5	= 0 ft) O Outle tral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at 10 Year 1.75 3.819 3.819 42.6 0.67 48.8	Interpretation of the second s	is for Outlet Pipe w/ Zone 3 Restrictor 6.25 1.23 1.81 Calculated Parame 0.69 7.03 0.96 4.08 Irographs table (Ccc 50 Year 2.25 6.792 81.6 1.27 88.5	/ Flow Restriction PI Not Selected N/A N/A N/A eters for Spillway feet feet acres acre-ft blumns W through A 100 Year 2.52 8.600 101.6 1.59 107.7	ate ft ² feet radians 500 Ye 3.14 11.97 11.97 140.1
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Prodevelopment Unit Peak Flow, q (cfs/acre) =	2.50 42.00 26.00 Trapezoidal) 5.34 60.00 4.00 1.00 The user can over WOCV N/A 0.247 N/A N/A N/A N/A	N/A N/A N/A ft (relative to basin feet H:V feet Feet N/A 0.433 N/A N/A N/A N/A N/A	ft (distance below be inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 1.333 1.333 1.333 14.4 0.22	Half-Cent = 0 ft) d runoff volumes by 5 Year 1.50 2.607 2.607 3.0.4 0.48	= 0 ft) O Outle tral Angle of Restric Spillway E Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 3.819 3.819 42.6 0.67	Alculated Parameters utlet Orifice Area = t Orifice Centroid = :tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year 2.00 5.479 5.479 65.8 1.03	is for Outlet Pipe w/ Zone 3 Restrictor 6.25 1.23 1.81 Calculated Parame 0.69 7.03 0.96 4.08 trographs table (Ccc 50 Year 2.25 6.792 81.6 1.27	/ Flow Restriction Pl Not Selected N/A N/A N/A eters for Spillway feet feet acres acre-ft blumns W through A 100 Year 2.52 8.600 101.6 1.59	ate ft ² feet radians 500 Ye 3.14 11.97 110.7 140.7 2.19 147.0 126.6
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outled Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	2.50 42.00 26.00 Trapezoidal) 5.34 60.00 4.00 1.00 The user can over WOCV N/A 0.247 N/A N/A N/A N/A N/A N/A N/A Plate	N/A N/A N/A ft (relative to basin feet H:V feet <i>EURV</i> N/A 0.433 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (distance below be inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 1.333 1.333 1.333 14.4 0.22 19.7 8.3 N/A Overflow Weir 1	Half-Cent = 0 ft) = 0 ft) <u>d runoff volumes by</u> <u>5 Year</u> <u>1.50</u> <u>2.607</u> <u>2.607</u> <u>3.0.4</u> <u>0.48</u> <u>3.6.5</u> <u>20.6</u> <u>0.7</u> Overflow Weir 1	= 0 ft) O Outle tral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at Centering new value 10 Year 1.75 3.819 3.819 3.819 42.6 0.67 48.8 31.0 0.7 Overflow Weir 1	Alculated Parameters utlet Orifice Area = t Orifice Centroid = :tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year 2.00 5.479 5.479 65.8 1.03 72.7 52.4 0.8 Overflow Weir 1	is for Outlet Pipe w/ Zone 3 Restrictor 6.25 1.23 1.81 Calculated Parame 0.69 7.03 0.96 4.08 trographs table (Ccc 50 Year 2.25 6.792 81.6 1.27 88.5 65.9 0.8 Overflow Weir 1	/ Flow Restriction Pl Not Selected N/A N/A N/A eters for Spillway feet feet acres acre-ft bumns W through A 100 Year 2.52 8.600 101.6 1.59 107.7 76.5 0.8 Outlet Plate 1	interference interference freet freet radians freet sadians sadians 500 Yee 3.14 11.97 11.97 11.97 11.97 140.1 140.2 9.9 Spillwa
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	2.50 42.00 26.00 Trapezoidal) 5.34 60.00 4.00 1.00 The user can over WQCV N/A 0.247 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.433 N/A N/A N/A N/A N/A N/A N/A N/A N/A Overflow Weir 1 0.02	ft (distance below beinches inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 1.333 14.4 0.22 19.7 8.3 N/A Overflow Weir 1 0.16	Half-Cent = 0 ft) d runoff volumes by 5 Year 1.50 2.607 2.607 30.4 0.48 36.5 20.6 0.7 0verflow Weir 1 0.4	= 0 ft) O Outle ral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at 10 Year 1.75 3.819 42.6 0.67 48.8 31.0 0.7 Overflow Weir 1 0.6	alculated Parameters utlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = 2.00 5.479 5.479 65.8 1.03 72.7 52.4 0.8 Overflow Weir 1 1.0	is for Outlet Pipe w/ Zone 3 Restrictor 6.25 1.23 1.81 Calculated Parame 0.69 7.03 0.96 4.08 Irographs table (Ccc 50 Year 2.25 6.792 81.6 1.27 88.5 65.9 0.8 Overflow Weir 1 1.3	/ Flow Restriction PI Not Selected N/A N/A N/A N/A eters for Spillway feet feet acres acre-ft blumns W through A 100 Year 2.52 8.600 101.6 1.59 107.7 76.5 0.8 Outlet Plate 1 1.5	ate ft ² feet radians 500 Ye 3.14 11.97 11.97 140.' 2.19 147.(126.(0.9 Spillwa 1.5
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outled Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	2.50 42.00 26.00 Trapezoidal) 5.34 60.00 4.00 1.00 The user can over WOCV N/A 0.247 N/A N/A N/A N/A N/A N/A N/A Plate	N/A N/A N/A ft (relative to basin feet H:V feet <i>EURV</i> N/A 0.433 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (distance below be inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 1.333 1.333 1.4.4 0.22 19.7 8.3 N/A Overflow Weir 1 0.16 N/A	Half-Cent = 0 ft) = 0 ft) = 0 ft) = 0 ft) = 0 ft =	= 0 ft) O Outle rral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at 1.75 3.819 3.819 4.2.6 0.67 4.8.8 3.1.0 0.7 Overflow Weir 1 0.6 N/A	alculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = 100 of Freeboard =	is for Outlet Pipe w/ Zone 3 Restrictor 6.25 1.23 1.81 Calculated Parame 0.69 7.03 0.96 4.08 trographs table (Ccc 50 Year 2.25 6.792 81.6 1.27 88.5 65.9 0.8 Overflow Weir 1	/ Flow Restriction Pl Not Selected N/A N/A N/A eters for Spillway feet feet acres acre-ft bumns W through A 100 Year 2.52 8.600 101.6 1.59 107.7 76.5 0.8 Outlet Plate 1	it/). 500 Yee 3.14 11.97 11.97 11.97 11.97 11.97 11.97 11.97 11.02 0.9
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Couted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Not, (sf) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	2.50 42.00 26.00 Trapezoidal) 5.34 60.00 4.00 1.00 The user can over WOCV N/A 0.247 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A ft (relative to basin feet H:V feet CURV N/A 0.433 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (distance below beinches inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 1.333 14.4 0.22 19.7 8.3 N/A Overflow Weir 1 0.16	Half-Cent = 0 ft) d runoff volumes by 5 Year 1.50 2.607 2.607 30.4 0.48 36.5 20.6 0.7 0verflow Weir 1 0.4	= 0 ft) O Outle ral Angle of Restrict Spillway E Stage at Basin Area at Basin Volume at 10 Year 1.75 3.819 42.6 0.67 48.8 31.0 0.7 Overflow Weir 1 0.6	alculated Parameters utlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = 2.00 5.479 5.479 65.8 1.03 72.7 52.4 0.8 Overflow Weir 1 1.0	s for Outlet Pipe w/ Zone 3 Restrictor 6.25 1.23 1.81 <u>Calculated Parame</u> 0.69 7.03 0.96 4.08 <i>trographs table (Co</i> 50 Year 2.25 6.792 6.792 6.792 6.792 6.792 6.792 81.6 1.27 88.5 65.9 0.8 Overflow Weir 1 1.3 N/A	/ Flow Restriction Pl Not Selected N/A N/A N/A ters for Spillway feet feet acres acre-ft 0/umns W through A 100 Year 2.52 8.600 8.600 8.600 101.6 1.59 107.7 7.6.5 0.8 Outlet Plate 1 1.5 N/A	ate ft ² feet radians 500 Ye 3.14 11.97 11.97 1.5 N/A
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Jser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfail Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Untflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	2.50 42.00 26.00 Trapezoidal) 5.34 60.00 4.00 1.00 The user can over WOCV N/A 0.247 N/A N/A N/A N/A N/A N/A Plate N/A N/A 40	N/A N/A N/A N/A ft (relative to basin feet H:V feet N/A 0.433 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (distance below bainches inches 1.19 1.333 1.333 1.4.4 0.22 19.7 8.3 N/A Overflow Weir 1 0.16 N/A 43	Half-Cent = 0 ft) = 0 ft) = 0 ft) = 0 ft) = 0 ft =	= 0 ft) O Outle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at U entering new value 10 Year 1.75 3.819 3.819 42.6 0.67 48.8 31.0 0.7 Overflow Weir 1 0.6 N/A 30	Alculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 25 Year 2.00 5.479 5.479 5.479 65.8 1.03 72.7 52.4 0.8 Overflow Weir 1 1.0 N/A 24	is for Outlet Pipe w/ Zone 3 Restrictor 6.25 1.23 1.81 Calculated Parame 0.69 7.03 0.96 4.08 trographs table (Cor 50 Year 2.25 6.792 81.6 1.27 88.5 65.9 0.8 Overflow Weir 1 1.3 N/A 20	/ Flow Restriction Pl Not Selected N/A N/A N/A ters for Spillway feet feet acres acre-ft blumns W through A 100 Year 2.52 8.600 101.6 1.59 107.7 76.5 0.8 Outlet Plate 1 1.5 N/A 14	ite ft ² feet radians 500 Yee 3.14 11.974 11.974 11.974 11.974 140.1 2.19 140.1 2.19 140.2 1.5 Spillwa 1.5 N/A 5

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

SOURCE CUMP <
5.00 min 0.000 0.00
0.05 0.05 0.05 0.00 <th< th=""></th<>
0.05.00 0.00
0100 0.02 0.02 0.08 1.44 0.23 0.02 0.02 0.04 1.44 1.23 0.44 1.43 0.44 1.43 0.44 0.03 0.04 0.04 0.04 0.04 0.05 0.04 1.44 4.23 0.44 1.43 0.44 1.43 0.44 1.43 0.44 0.43 1.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 0.44 0.43 1.44 0.43 1.44 0.43 1.44 0.43 1.44 0.43 1.44 0.43 1.44 0.43 1.44 0.43 1.44 0.43 <th< td=""></th<>
0.1500 0.09 0.16 0.26 0.22 0.22 0.28 0.22 0.28 0.22 0.22 0.28 0.22 0.28 0.20 0.80 1.40 2 0.25 00 0.00 0.00 1.564 3.25 0.4449 4.415 5.06 8.15 11.20 3.6 0.35 00 0.00 0.00 1.964 3.484 4.447 4.413 5.05 6.6 6.261 10.4 0.45 00 0.00 0.00 1.964 3.484 4.623 72.25 885.5 10.66.1 4.449 0.45 00 0.00 0.00 1.541 2.573 3.54 6.81 7.55 9.56 6.53 10.64 11.1 11.10 0.00 0.00 1.92 2.20 7.5 3.33 1.46 1.37 84.56 1.37 1.43.3 1.42 5.47 7.78 10 11.150 0.00 0.00 2.22 1.01 1.13.5 1.559 6.53 6.57
0.2000 0.00 0.00 5.29 1.745 2.82 0.92 0.92 0.92 0.92 0.93 0.90 0.90 116.44 32.36 44.49 41.35 52.67 62.61 119 0.45.00 0.00 0.00 119.56 36.48 44.87 44.01 79.13 96.42 117.3 0.45.00 0.00 0.00 115.47 34.84 44.82 72.66 88.52 107.73 144 0.45.00 0.00 0.00 115.47 34.84 42.86 70.45 68.58 108.64 148 0.55.00 0.00 0.00 112.12 23.06 32.64 64.13 77.8 48.36 111 11.00 0.00 0.00 4.59 30.31 31.46 63.17 78.43 64.17 78 14.33 14.25 54.57 77.7 14.43 11.500 0.00 0.00 4.69 7.6 11.64 22.28 27.44 38.50
0.25:00 0.00 0.00 1164 22.86 44.49 41.35 52.95 62.26 62.26 92.26 0.35:00 0.00 0.00 116.46 22.86 44.97 44.91 71.35 96.40 113 0.45:00 0.00 0.00 117.51 31.68 42.86 70.45 85.58 100.61 144 0.45:00 0.00 0.00 115.41 25.73 35.41 6.43 72.29 96.64 113 0.55:00 0.00 0.00 11.61 25.73 35.41 6.43.17 84.36 116 1.00:00 0.00 0.00 10.92 20.75 30.33 51.46 6.31.7 84.36 119 1.10:00 0.00 0.00 8.20 10.81 113.99 25.46 31.89 41.00 57 1.20:00 0.00 0.00 5.82 10.62 11.71 11.83 25.46 31.89 41.00 57 11.34 11.44
0.3500 0.00 100 1955 36.48 44.73 75.65 88.52 107.73 141 0.4500 0.00 0.00 17.51 31.64 42.06 70.45 85.58 106.61 142 0.5500 0.00 0.00 15.44 28.69 30.98 67.63 82.09 102.38 133 0.5500 0.00 0.00 12.12 23.06 32.68 56.12 68.60 92.28 121 1.0500 0.00 0.00 10.92 70.75 33.3 14.4 63.17 75.93 35.44 65.71 75.79 104 1.1500 0.00 0.00 6.95 13.77 22.41 34.82 15.47 78 1.2500 0.00 0.00 5.22 1081 17.79 25.64 31.89 41.00 57 1.500 0.00 0.00 3.35 7.44 12.02 17.44 35.80 50 1.500 0.00 <
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
0.50.00 0.00 10.00 13.47 28.97 38.98 67.63 82.09 102.38 133 0.55.00 0.00 0.00 13.41 25.73 35.41 61.81 75.23 95.65 133 1.00.00 0.00 0.00 10.92 20.75 30.33 51.46 63.17 84.43 111 1.10.00 0.00 0.00 8.26 16.18 25.65 40.67 55.56 66.39 97 1.25.00 0.00 0.00 5.88 12.02 19.44 29.43 36.79 47.59 66 1.25.00 0.00 0.00 5.88 12.02 19.44 29.43 36.79 47.59 66 1.25.00 0.00 0.00 4.69 9.76 15.46 22.28 27.94 35.80 50 1.46.00 0.00 0.00 3.75 7.44 12.10 17.15 21.5 10.10 23.5 1.55.00 0.00 0.00
0.5500 0.00 13.01 25.73 35.41 61.11 67.53 97.64 100.00 0.00 10.02 20.75 30.33 51.46 63.17 84.36 111 110.00 0.00 0.00 9.60 18.58 28.00 46.12 56.65 75.79 100 115.00 0.00 0.00 6.95 13.77 22.41 34.83 34.32 56.47 78 1.20.00 0.00 0.00 5.88 10.02 19.64 29.43 36.97 44.58 10.02 11.31 10.05 71 13.50 0.00 0.00 4.69 9.76 15.66 22.86 21.94 35.80 50 1.3500 0.00 0.00 3.75 7.49 12.10 17.15 21.52 27.31 33 15.50 16.83 13.35 13.3 13.35 13.3 13.35 13.35 13.35 13.35 13.35 13.35 13.35 13.35 13.35 13.
100:00 0.00 100 1212 23.06 32.88 56.12 68.60 89.28 121 105:00 0.00 0.00 1052 20.75 30.33 51.46 64.17 64.36 11 11:0:00 0.00 0.00 8.26 16.18 22.80 46.12 56.97 77 10 11:5:00 0.00 0.00 6.97 13.77 22.41 34.83 43.42 56.47 78 12:5:00 0.00 0.00 5.88 12.02 19.64 29.43 36.19 41.100 57 13:5:00 0.00 0.00 4.59 9.76 15.16.4 22.28 2.04 31.31 31.85 35.31 31.33 33 15.50 0.00 0.00 3.30 6.42 10.88 14.94 18.75 23.61 233 15:00 0.00 0.00 1.78 3.26 5.82 8.69 10.03 10.65 16.99 232 26.50
105:00 0.00 0.00 10.92 20.75 20.33 51.46 63.37 94.36 115 1:10:00 0.00 0.00 8.26 16:18 28.00 46:12 56.495 75.79 104 1:10:00 0.00 0.00 6.55 13.77 22.41 34.83 34.22 56.47 78 1:20:00 0.00 0.00 5.82 108.11 17.39 25.46 31.89 41.00 57 1:30:00 0.00 0.00 4.29 9.76 15.46 22.28 2.794 35.80 50 1:40:00 0.00 0.00 3.30 6.42 10.58 14.54 11.75 2.152 2.731 38 1:50:00 0.00 0.00 2.29 4.82 7.45 10.79 13.86 16.89 23 2:00:00 0.00 0.00 1.77 2.37 4.28 6.60 5.31 10.43 144 2:15:00 0.00
11:10:0 0.00 0.00 9.60 18.58 28.00 46.12 56.95 75.79 100 11:500 0.00 0.00 6.05 13.77 22.41 3.48.3 43.42 56.47 78 12:500 0.00 0.00 5.28 12.22 19.44 29.43 36.79 47.59 66 13:3000 0.00 0.00 4.69 9.76 15.46 21.87 31.83 43.60 14:400 0.00 0.00 3.75 7.44 12.10 17.15 21.52 27.31 38 15:500 0.00 0.00 3.30 6.42 10.68 14.44 18.75 23.61 33 15:500 0.00 0.00 2.29 4.38 7.45 10.79 13.56 16.69 22 20:500 0.00 0.00 1.78 3.36 4.60 8.31 10.43 14 21:500 0.00 0.00 1.168 2.35 3.33<
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2.00.00 0.00 2.29 4.38 7.45 10.79 13.56 16.89 23 2.05.00 0.00 0.00 1.78 3.36 5.82 8.69 10.93 13.65 19 2.10.00 0.00 0.00 1.27 2.37 4.28 6.60 8.31 10.43 14 2.15.00 0.00 0.00 0.51 1.08 2.35 3.03 3.94 5.00 7. 2.25.00 0.00 0.00 0.28 0.62 1.47 1.48 2.01 2.46 3. 2.35.00 0.00 0.00 0.22 0.48 1.15 1.05 1.45 1.70 2. 2.40.00 0.00 0.00 0.11 0.28 0.67 0.53 0.74 0.74 1.1 2.45.00 0.00 0.00 0.08 0.16 0.35 0.26 0.36 0.30 0. 3.05.00 0.00 0.00 0.03 0.04 0.11<
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
2:40:00 0.00 0.17 0.37 0.89 0.74 1.04 1.14 1. 2:45:00 0.00 0.00 0.14 0.28 0.67 0.53 0.74 0.74 1.1 2:55:00 0.00 0.00 0.11 0.21 0.49 0.37 0.52 0.45 0.0 2:55:00 0.00 0.00 0.07 0.11 0.25 0.19 0.27 0.22 0.0 3:00:00 0.00 0.00 0.05 0.08 0.18 0.15 0.20 0.17 0.0 3:05:00 0.00 0.00 0.04 0.06 0.14 0.11 0.16 0.14 0.13 3:15:00 0.00 0.00 0.02 0.02 0.07 0.66 0.09 0.08 0.0 3:25:00 0.00 0.00 0.01 0.01 0.03 0.03 0.04 0.06 0.05 0.0 3:30:00 0.00 0.00 0.00 0.00
2:45:00 0.00 0.14 0.28 0.67 0.53 0.74 0.74 1. 2:50:00 0.00 0.00 0.11 0.21 0.49 0.37 0.52 0.45 0.0 2:55:00 0.00 0.00 0.08 0.16 0.35 0.26 0.36 0.30 0.0 3:00:00 0.00 0.00 0.07 0.11 0.25 0.19 0.27 0.22 0. 3:05:00 0.00 0.00 0.05 0.08 0.18 0.15 0.20 0.17 0.0 3:10:00 0.00 0.00 0.02 0.02 0.07 0.06 0.09 0.08 0.0 3:15:00 0.00 0.00 0.01 0.01 0.03 0.03 0.04 0.06 0.05 0.0 3:30:00 0.00 0.00 0.01 0.01 0.03 0.03 0.04 0.00 0.0 3:40:00 0.00 0.00 0.00 0.00 </td
2:55:00 0.00 0.00 0.00 0.00 0.00 0.01 0.11 0.25 0.19 0.27 0.22 0. 3:00:00 0.00 0.00 0.00 0.05 0.08 0.18 0.15 0.20 0.17 0.22 0. 3:00:00 0.00 0.00 0.04 0.06 0.14 0.11 0.16 0.14 0. 3:15:00 0.00 0.00 0.03 0.04 0.06 0.14 0.11 0.16 0.14 0. 3:20:00 0.00 0.00 0.02 0.07 0.06 0.09 0.08 0. 3:30:00 0.00 0.00 0.01 0.01 0.05 0.04 0.06 0.05 0.0 3:35:00 0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3:15:00 0.00 0.00 0.03 0.04 0.10 0.08 0.12 0.11 0. 3:20:00 0.00 0.00 0.02 0.02 0.07 0.06 0.09 0.08 0. 3:25:00 0.00 0.00 0.01 0.01 0.05 0.04 0.06 0.05 0.0 3:30:00 0.00 0.00 0.01 0.01 0.03 0.03 0.04 0.06 0.03 0.0 3:30:00 0.00 0.00 0.01 0.01 0.02 0.00 0.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3:55:00 0.00
4:00:00 0.00
4:05:00 0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
4:15:00 0.00
4:20:00 0.00
4:30:00 0.00
4:35:00 0.00
4:40:00 0.00
4:45:00 0.00
<u>4:55:00 0.00 0.00 0.00 0.00 0.00 0.00 0.0</u>
5:00:00 0.00 0.00 0.00 0.00 0.00 0.00 0.
5.00.00 0.00
5:10:00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5:15:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5:20:00 0.00
5.2300 0.00 <
5:35:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5:40:00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5:40:00 0.00
5:40:00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
		199	0.005	0	0.000	0.00	
7291	0.00	4,705	0.108	2,452	0.056	0.06	For best results, include the stages of all grade slope
7292	1.00		0.444			0.08	changes (e.g. ISV and Floo
7293 7294	2.00	19,328 28,048	0.644	14,468 38,156	0.332 0.876	13.18	from the S-A-V table on
7294	4.00	31,430	0.722	67,895	1.559	43.81	Sheet 'Basin'.
7296	5.00	34,844	0.800	101,032	2.319	75.43	Also include the inverts of
7297	6.00	38,298	0.879	137,603	3.159	181.14	outlets (e.g. vertical orifice
7298	7.00	41,682	0.957	177,593	4.077	505.69	overflow grate, and spillwa
7299	8.00	41,682	0.957	177,593	4.077	505.69	where applicable).
							-
							-
	1						
							-
						<u> </u>	4
							4
							4
							_
							-
							_
						-	
							-
							-
						-	
							-
							-
							-
							-
]
							4
							1
							1
							4
						ł	4
		1	1			1	1

Watershed Information

EDB	
42.38	acres
2,267	ft
1,368	ft
0.057	ft/ft
11.90%	percent
0.0%	percent
14.0%	percent
86.0%	percent
40.0	hours
User Input	
	42.38 2,267 1,368 0.057 11.90% 0.0% 14.0% 86.0% 40.0

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded oblorddo orbannyard	gruphinocouu	
Water Quality Capture Volume (WQCV) =	0.274	acre-feet
Excess Urban Runoff Volume (EURV) =	0.433	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.000	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.000	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.000	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.000	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.000	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	0.000	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	0.000	acre-feet
Approximate 2-yr Detention Volume =	0.343	acre-feet
Approximate 5-yr Detention Volume =	0.731	acre-feet
Approximate 10-yr Detention Volume =	0.989	acre-feet
Approximate 25-yr Detention Volume =	1.202	acre-feet
Approximate 50-yr Detention Volume =	1.253	acre-feet
Approximate 100-yr Detention Volume =	1.696	acre-feet

Define Zones and Basin Geometry

Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.274	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.159	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	1.263	acre-feet
Total Detention Basin Volume =	1.696	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R1/W) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft 2
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$		ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L_{MAIN}) =	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³

Calculated Total Basin Volume (Vtotal) = user acre-feet

1										
	Depth Increment =		ft	1	1		Orther			
ion Pond)	Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
	Top of Micropool		0.00				8,535	0.196		
			5.50				17,603	0.404	71,879	1.650
	7308.5		7.50				21,697	0.498	111,179	2.552
									ļ	
Optional User Overrides									 	
acre-feet acre-feet									<u> </u>	
1.19 inches										
1.50 inches										
1.75 inches										
2.00 inches										
2.25 inches										
2.52 inches				-		-				
inches										
				-						
				-						
						: :				
						: :				
				: :	1 1	1 1				
				-		1 1				
									ļ	
			1						r	
				1 1 1	1 1 1	1 1 1				
				: :	-	: :				

MHFD-Detention, Version 4.04 (February 2021)

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	The user can ov	verride the calcul	ated inflow hydro	ographs from thi	s workbook with	inflow hydrograp	hs developed in	a separate progra	im.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.03
	0:15:00	0.00	0.00	0.09	0.14	0.18	0.12	0.15	0.15	0.22
	0:20:00	0.00	0.00	0.34	1.09	1.61	0.34	0.54	0.77	1.56
	0:25:00	0.00	0.00	2.91	9.61	14.76	2.80	4.82	6.72	14.50
	0:30:00	0.00	0.00	8.63	17.88	24.60	22.78	29.17	34.50	50.75
	0:35:00	0.00	0.00	10.91	20.54	27.54	35.42	43.84	53.44	74.55
	0:40:00	0.00	0.00	11.34	20.45	27.29	41.07	50.18	61.09	83.83
	0:45:00	0.00	0.00	10.51	19.04	25.71	41.51	50.50	62.72	85.46
	0:50:00 0:55:00	0.00	0.00	9.43 8.53	17.67 16.11	23.87 22.13	40.30 37.75	48.97 45.98	61.04 58.23	83.15 79.38
	1:00:00	0.00	0.00	7.69	14.58	22.13	34.91	43.98	55.25	79.38
	1:05:00	0.00	0.00	7.00	13.36	19.36	32.30	39.64	52.53	71.94
	1:10:00	0.00	0.00	6.36	12.35	18.39	29.57	36.51	48.27	66.49
	1:15:00	0.00	0.00	5.73	11.25	17.42	26.99	33.54	43.83	60.80
	1:20:00	0.00	0.00	5.11	10.10	15.88	24.23	30.16	39.07	54.29
	1:25:00	0.00	0.00	4.51	8.94	14.07	21.51	26.76	34.43	47.85
	1:30:00	0.00	0.00	3.92	7.82	12.26	18.82	23.41	30.04	41.74
	1:35:00	0.00	0.00	3.40	6.95	10.85	16.22	20.22	25.95	36.18
	1:40:00	0.00	0.00	3.05	6.24	9.82	14.25	17.81	22.80	31.91
	1:45:00	0.00	0.00	2.80	5.64	8.95	12.74	15.95	20.36	28.55
	1:50:00	0.00	0.00	2.58	5.09	8.17	11.48	14.39	18.27	25.65
	1:55:00 2:00:00	0.00	0.00	2.34 2.10	4.57 4.09	7.42 6.62	10.35 9.32	12.98 11.70	16.40 14.68	23.04 20.65
	2:05:00	0.00	0.00	1.85	3.59	5.81	9.32	10.37	12.97	18.23
	2:10:00	0.00	0.00	1.61	3.10	5.02	7.24	9.07	11.35	15.91
	2:15:00	0.00	0.00	1.37	2.63	4.26	6.26	7.83	9.83	13.75
	2:20:00	0.00	0.00	1.14	2.17	3.55	5.30	6.63	8.35	11.66
	2:25:00	0.00	0.00	0.91	1.72	2.87	4.37	5.47	6.91	9.63
	2:30:00	0.00	0.00	0.68	1.28	2.22	3.45	4.32	5.48	7.62
	2:35:00	0.00	0.00	0.46	0.86	1.59	2.55	3.20	4.07	5.65
	2:40:00	0.00	0.00	0.28	0.57	1.17	1.69	2.15	2.76	3.91
	2:45:00	0.00	0.00	0.19	0.41	0.92	1.14	1.49	1.90	2.76
	2:50:00	0.00	0.00	0.14	0.32	0.73	0.79	1.06	1.33	1.98
	2:55:00 3:00:00	0.00	0.00	0.11	0.25	0.58	0.56	0.77	0.93	1.41
	3:05:00	0.00	0.00	0.09	0.19	0.45	0.40	0.55	0.63	0.99
	3:10:00	0.00	0.00	0.05	0.13	0.35	0.20	0.40	0.42	0.44
	3:15:00	0.00	0.00	0.03	0.09	0.19	0.14	0.20	0.27	0.29
	3:20:00	0.00	0.00	0.04	0.06	0.14	0.10	0.15	0.12	0.21
	3:25:00	0.00	0.00	0.03	0.05	0.10	0.08	0.11	0.09	0.15
	3:30:00	0.00	0.00	0.02	0.03	0.07	0.06	0.08	0.07	0.12
	3:35:00	0.00	0.00	0.02	0.02	0.06	0.05	0.06	0.06	0.09
	3:40:00	0.00	0.00	0.01	0.01	0.04	0.03	0.05	0.04	0.07
	3:45:00	0.00	0.00	0.01	0.01	0.03	0.02	0.03	0.03	0.05
	3:50:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.03
	3:55:00 4:00:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.02
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00 4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00 5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 E:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	1
7201		8,535	0.196	0	0.000	0.00	
7301	0.00	17,603	0.404	71,879	1.650	0.00	For best results, include the stages of all grade slope
7306.5	5.50		0.404		2.552	0.00	changes (e.g. ISV and Flo
7308.5	7.50	21,697	0.498	111,179	2.552	0.00	from the S-A-V table on
	+	1	ł	-			Sheet 'Basin'.
							Also include the inverts of
							outlets (e.g. vertical orifice
							overflow grate, and spillw
							where applicable).
			1				
			1				
			1				
			1				
		ļ					
		ļ					
		l					_
		l					_
	-	l	ł	-			_
		l					
		l					
							_
	+	1	ł	-			-
	+	ł	ł	-			-
			1				
							-
							-
			ł				-
			1				
			1				
							_
							_
		l					_
	_						
							_
							_
							_
			1				
							_
			1				
			ļ				4
							-
							1
							1
			<u> </u>				4
							-
		l	ł	+			-
		1					

Kimley »Horn

Project: Winsome Filing 3 -Pond 4 Date: 9/14/2022

Emergency Overflow Weir Calculation

Horizontal Broad Crested Weir Equation (from USDCM Eqn. 12-8)

 $Q = C_{BCW} L H^{1.5}$

Equation 12-8

Where:

Q = discharge(cfs)

 C_{BCW} = broad-crested weir coefficient (This ranges from 2.6 to 3.0. A value of 3.0 is often used in practice.) See Hydraulic Engineering Circular No. 22 for additional information.

L = broad-crested weir length (ft)

H = head above weir crest (ft)

Sloping Broad Crested Weir Equation (from USDCM Eqn. 12-9)

$$Q = \left(\frac{2}{5}\right) C_{BCW} Z H^{2.5}$$

Equation 12-9

Where:

Q = discharge (cfs)

 C_{BCW} = broad-crested weir coefficient (This ranges from 2.6 to 3.0. A value of 3.0 is often used in practice.) See Hydraulic Engineering Circular No. 22 for additional information.

Z = side slope (horizontal: vertical)

H = head above weir crest (ft)

Note that in order to calculate the total flow over the weir depicted in Figure 12-20, the results from Equation 12-8 must be added to two times the results from Equation 12-9.

Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County) 107.7 cfs/60 ft = 1.80

Kimley »	lorn											
Extended Detent		Calculations										
		carculations										
Date Prepared By	Winsome Filing 3 - F 12/20/2021 TOS	Pond 4	Manual Input Multipliers									
Checked By												
Release Factor:	0.02											
Forebay Pelease	and Configuration.	Pelesse 2% of the und	etained 100-year peak d	ischarge by way of a								
Torebay Release		/notch or berm/pipe c		ischarge by way of a								
Forebay	Incoming Pipe	Undetained 100- year Peak Discharge		Forebay Notch Width								
Forebay	Diameter (in)	(cfs)	Release Rate (cfs)	(in)								
А	42	96.00	1.92	7.4								
		Maximum Forebay I	Jonth									
	1	Maximum Forebay I	Jepth									
Forebay	Impervious Area				Note: a forebay depth of							
Torebay	in Watershed (ac)	Depth (in)	(in)	(ft)	30" requires handrails by most City Standards							
A	4.38	18	18	1.5	most only standards							
	Incoming Dir -	Baffle Block Desi	gn									
Forebay	Incoming Pipe Diameter (in)	1/4 of Diameter	Side length (in)	Height (in)								
A	42	10.5	10.50	21								
			Minimum	n Forebay Volume Requi	rod: 2% MOCV					Volume Factor:	0.03	
		1	iviiiIIIIuI	r orebay volume Requi	1Cu. 3/0 WQUV	Cori	ner Calculations			volume raciol:	0.03	
Forebay	WQCV (ac-ft)	Required Volume (ac-ft)	Required Volume (cf)	Total Length (ft)	Total Width (ft)	Triangle Height (ft)	Triangle Base	Triangle Area (sf)	Design Volume (cf)			
Α	0.245	0.01	320	16	16	6	3.5	10.5	321			
										•		

Extended Detention	Basin (EDB) (
	i basiri (LDD) C	Calculations							
-	15/2022	ond 4 North Rock Chut	te Manual Input Multipliers						
Release Factor:	0.02								
Forebay Release and		notch or berm/pipe co	etained 100-year peak di onfiguration	ischarge by way of a					
	Incoming Pipe Diameter (in)	Undetained 100- year Peak Discharge (cfs)	Release Rate (cfs)	Forebay Notch Width (in)					
A	N/A	107.70	2.15	7.8					
		Maximum Forebay D)enth						
	pervious Area in Watershed (ac)		Design Forebay Depth (in)	Design Forebay Depth (ft)	Note: a forebay depth of 30" requires handrails by most City Standards				
A	2.18	18	18	1.5	,				
							-		1
		Minimum F	Forebay Volume Require	ed: 3% WQCV			Volume Factor:	0.03	ł
Forebay V	WQCV (ac-ft)	Required Volume (ac- ft)	Required Volume (cf)	Total Length (ft)	Total Width (ft)	Design Volume (cf)			
A	0.08	0.00	103	11	10	165			

MHFD-Detention, Version 4.04 (February 2021)

Project: WINSOME FILING 3 Basin ID: WQ Pond A_Modified Area (BASIN A2B+A3A+G2A+G2B+G1)

ZONE 3 ZONE 2 ZONE 1 VOLUME EURV WQCV -100-YEAR ORIFICE ZONE 1 AND 2 ORIFICES PERMA Example Zone Configuration (Retention Pond)

Watershed Information

tersned information		
Selected BMP Type =	EDB	
Watershed Area =	94.50	acres
Watershed Length =	2,895	ft
Watershed Length to Centroid =	1,447	ft
Watershed Slope =	0.040	ft/ft
Watershed Imperviousness =	2.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	100.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban nya		graphinoceuu	ie.
Water Quality Capture Volume (WQCV)	=	0.047	acre-feet
Excess Urban Runoff Volume (EURV)	=	0.138	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.)	=	1.393	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.)	=	3.212	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.)	=	4.950	acre-feet
25-yr Runoff Volume (P1 = 2 in.)	=	7.434	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.)	=	9.361	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.)	=	12.096	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.)	=	17.035	acre-feet
Approximate 2-yr Detention Volume	=	0.103	acre-feet
Approximate 5-yr Detention Volume	=	0.641	acre-feet
Approximate 10-yr Detention Volume	=	1.065	acre-feet
Approximate 25-yr Detention Volume	=	1.143	acre-feet
Approximate 50-yr Detention Volume	=	1.094	acre-feet
Approximate 100-yr Detention Volume	=	1.745	acre-feet

Define	70000	and	Doole	Comotro
Denne	Zones	dilu	DdSIII	Geometry

Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.047	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.091	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	1.607	acre-feet
Total Detention Basin Volume =	1.745	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W_{ISV}) =	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W_{FLOOR}) =		ft
Area of Basin Floor (A _{FLOOR}) =		ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin (L_{MAIN}) =	user	ft
Width of Main Basin (W_{MAIN}) =		ft
Area of Main Basin (A_{MAIN}) =		ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³

v Calculated Total Basin Volume (V_{total}) = User acre-feet

1	Depth Increment =		ft							
		C+	Optional	المعمرا	Width	Area	Optional Override	Area	Volume	Volume
ion Pond)	Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	(ft)	(ft ²)	Area (ft ²)	Area (acre)	(ft 3)	(ac-ft)
	Top of Micropool		0.00	-			1,774	0.041		
	7326		1.00				4,666	0.107	3,220	0.074
	7327		2.00				6,983	0.160	9,044	0.208
	7328		3.00				9,609	0.221	17,340	0.398
	7329		4.00				13,970	0.321	29,130	0.669
Optional User Overrides										
0.047 acre-feet										
acre-feet										
1.19 inches										
1.50 inches										
1.75 inches 2.00 inches										
2.25 inches										
2.52 inches										
inches										
				-						
				-						
					-					
									-	
				: :	1					
				1 1						
				1 1						

MHFD-Detention, Version 4.04 (February 2021)

	DE	TENTION	BASIN OU	TLET STRU	CTURE DE	SIGN					
Project	WINSOME FILING	MH		sion 4.04 (Februar							
5	WQ Pond A_Modif		2B+A3A+G2A+G2B	8+G1)							
ZONE 3				Estimated	Estimated						
				Stage (ft)	Volume (ac-ft)	Outlet Type					
100-YR VOLUME EURY WOCY			Zone 1 (WQCV)	0.73	0.047	Orifice Plate					
	100-YEAR		Zone 2 (EURV)	1.54	0.091	Weir&Pipe (Restrict)					
PERMANENT ORIFICES	ORIFICE		Zone 3 (100-year)	#VALUE!	1.607	Not Utilized					
POOL Example Zone	Configuration (Re	tention Pond)	. , ,	Total (all zones)	1.745		1				
User Input: Orifice at Underdrain Outlet (typically	y used to drain WQ	CV in a Filtration BM	<u>//P)</u>		•	-	Calculated Parame	ters for Underdrain			
Underdrain Orifice Invert Depth =		ft (distance below	the filtration media	surface)		drain Orifice Area =		ft ²			
Underdrain Orifice Diameter =		inches			Underdrair	n Orifice Centroid =		feet			
		M - 1- (h 1 II	1								
User Input: Orifice Plate with one or more orifice Invert of Lowest Orifice =	0.00		to drain woov and bottom at Stage =			ice Area per Row =	Calculated Parame N/A	ft ²			
Depth at top of Zone using Orifice Plate =	1.67		bottom at Stage = bottom at Stage =			iptical Half-Width =	N/A	feet			
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	i bottoini at otago	010		ical Slot Centroid =	N/A	feet			
Orifice Plate: Orifice Area per Row =	N/A	inches				Iliptical Slot Area =	N/A	ft ²			
		-						-			
User Input: Stage and Total Area of Each Orifice		÷		[٦		
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	-		
Stage of Orifice Centroid (ft)	0.00	0.63	1.27 0.79						-		
Orifice Area (sq. inches)	0.60	0.79	0.79								
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1		
Stage of Orifice Centroid (ft)	(opaonal)	(optional)	(optional)	(optional)	io (optional)	(optional)	is (optional)	(optional)	1		
Orifice Area (sq. inches)											
User Input: Vertical Orifice (Circular or Rectangu			1					ters for Vertical Ori	fice		
	Not Selected	Not Selected					Not Selected	Not Selected	2		
Invert of Vertical Orifice =	N/A	N/A		n bottom at Stage =		rtical Orifice Area =	N/A	N/A	ft ²		
Depth at top of Zone using Vertical Orifice =	N/A N/A	N/A N/A		n bottom at Stage =	0 ft) Vertica	I Orifice Centroid =	N/A	N/A	feet		
Vertical Orifice Diameter =	IN/A	IN/A	inches								
User Input: Overflow Weir (Dropbox with Flat or	r Sloped Grate and	Outlet Pipe OR Rec	tangular/Trapezoida	al Weir (and No Out	let Pipe)		Calculated Parame	ters for Overflow W	/eir		
·	Zone 2 Weir	Not Selected		•			Zone 2 Weir	Not Selected			
Overflow Weir Front Edge Height, Ho =	1.70	N/A	ft (relative to basin b	bottom at Stage = 0 ft) Height of Grat	e Upper Edge, H _t =	2.00	N/A	feet		
Overflow Weir Front Edge Length =	3.00	N/A	feet		Overflow W	/eir Slope Length =	3.01	N/A	e .		
Overflow Weir Grate Slope =	10.00	N/A	H:V	G	rate Onen Area / 1(0 vr Orifico Aroo	2 57		feet		
Horiz. Length of Weir Sides =	3.00	N/A	foot								
Overflow Grate Type =	Type C Grate		ieet		verflow Grate Open	Area w/o Debris =	3.56 6.30	N/A N/A	ft ²		
Debais Observice Of		N/A			verflow Grate Open						
Debris Clogging % =	50%	N/A N/A	%		verflow Grate Open	Area w/o Debris =	6.30	N/A	ft ²		
	50%	N/A	%		verflow Grate Open Dverflow Grate Ope	Area w/o Debris = n Area w/ Debris =	6.30 3.15	N/A N/A	ft ² ft ²		
	50%	N/A estrictor Plate, or R	%		verflow Grate Open Dverflow Grate Ope	Area w/o Debris =	6.30 3.15 s for Outlet Pipe w/	N/A N/A Flow Restriction Pl	ft ² ft ²		
	50%	N/A	% ectangular Orifice)		verflow Grate Open Overflow Grate Ope	Area w/o Debris = n Area w/ Debris =	6.30 3.15	N/A N/A	ft ² ft ²		
User Input: Outlet Pipe w/ Flow Restriction Plate	50% (Circular Orifice, Re Zone 2 Restrictor	N/A estrictor Plate, or R Not Selected	% ectangular Orifice)		verflow Grate Open Overflow Grate Ope <u>Cr</u> = 0 ft) C	Area w/o Debris = n Area w/ Debris = alculated Parameter	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor	N/A N/A Flow Restriction Pl Not Selected	ft ² ft ²		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe =	50% Circular Orifice, Re Zone 2 Restrictor 1.30 18.00	N/A estrictor Plate, or R Not Selected N/A	% ectangular Orifice) ft (distance below ba	asin bottom at Stage a	verflow Grate Open Dverflow Grate Ope <u>Ca</u> = 0 ft) O Outle	Area w/o Debris = n Area w/ Debris = alculated Parameter: utlet Orifice Area =	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77	N/A N/A Flow Restriction Pl Not Selected N/A	ft ² ft ² <u>ate</u> ft ²		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	50% (Circular Orifice, Re Zone 2 Restrictor 1.30 18.00 18.00	N/A estrictor Plate, or R Not Selected N/A	% ectangular Orifice) ft (distance below ba inches	asin bottom at Stage a	verflow Grate Open Dverflow Grate Ope <u>Ca</u> = 0 ft) O Outle	Area w/o Debris = n Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid =	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14	N/A N/A Flow Restriction Pl Not Selected N/A N/A N/A	ft ² ft ² ft ² ft ² ft ² ft ²		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or	50% Circular Orifice. Re Zone 2 Restrictor 1.30 18.00 18.00 Trapezoidal)	N/A estrictor Plate, or R Not Selected N/A N/A	% ectangular Orifice) ft (distance below ba inches inches	asin bottom at Stage - Half-Cen	verflow Grate Open Dverflow Grate Ope <u>C</u> = 0 ft) O Outle tral Angle of Restric	Area w/o Debris = n Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe =	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame	N/A N/A Flow Restriction Pl Not Selected N/A N/A N/A ters for Spillway	ft ² ft ² <u>ate</u> ft ² fteet		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	50% (Circular Orifice, Re Zone 2 Restrictor 1.30 18.00 18.00 Trapezoidal) 2.00	N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin	% ectangular Orifice) ft (distance below ba inches	asin bottom at Stage - Half-Cen	verflow Grate Open Dverflow Grate Ope (Ci (Ci (Ci (Ci (Ci (Ci (Ci (C	Area w/o Debris = n Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = vesign Flow Depth=	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.99	N/A N/A N/A Not Selected N/A N/A N/A ters for Spillway feet	ft ² ft ² <u>ate</u> ft ² fteet		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	50% <u>(Circular Orifice, Re</u> Zone 2 Restrictor 1.30 18.00 18.00 <u>Trapezoidal</u>) <u>2.00</u> 47.00	N/A <u>estrictor Plate, or R</u> Not Selected N/A N/A ft (relative to basin feet	% ectangular Orifice) ft (distance below ba inches inches	asin bottom at Stage - Half-Cen	verflow Grate Open Dverflow Grate Open Contection Conte	Area w/o Debris = n Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard =	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u> 0.99 3.99	N/A N/A Not Selected N/A N/A N/A ters for Spillway feet feet	ft ² ft ² <u>ate</u> ft ² fteet		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	50% <u>(Circular Orifice, Re</u> Zone 2 Restrictor 1.30 18.00 18.00 <u>Trapezoidal</u> <u>2.00</u> 47.00 4.00	N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V	% ectangular Orifice) ft (distance below ba inches inches	asin bottom at Stage - Half-Cen	verflow Grate Open Dverflow Grate Open Content	Area w/o Debris = n Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = besign Flow Depth= Top of Freeboard = Top of Freeboard =	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.99 3.99 0.32	N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres	ft ² ft ² <u>ate</u> ft ² fteet		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	50% <u>(Circular Orifice, Re</u> Zone 2 Restrictor 1.30 18.00 18.00 <u>Trapezoidal</u>) <u>2.00</u> 47.00	N/A <u>estrictor Plate, or R</u> Not Selected N/A N/A ft (relative to basin feet	% ectangular Orifice) ft (distance below ba inches inches	asin bottom at Stage - Half-Cen	verflow Grate Open Dverflow Grate Open Content	Area w/o Debris = n Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard =	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u> 0.99 3.99	N/A N/A Not Selected N/A N/A N/A ters for Spillway feet feet	ft ² ft ² <u>ate</u> ft ² fteet		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	50% (Circular Orifice, Re Zone 2 Restrictor 1.30 18.00 18.00 18.00 Trapezoidal) 2.00 47.00 4.00 1.00	N/A <u>estrictor Plate, or R</u> Not Selected N/A N/A N/A ft (relative to basin feet H:V feet	% ectangular Orifice) ft (distance below be inches inches bottom at Stage =	asin bottom at Stage - Half-Cen = 0 ft)	verflow Grate Open Dverflow Grate Open Corflow Grate Open Corflow Grate Open Outle tral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at	Area w/o Debris = n Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard =	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u> 0.99 3.99 0.32 0.67	N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	ft ² ft ² ft ² ft ² feet radians		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results	50% Corcular Orifice, R Zone 2 Restrictor 1.30 18.00 18.00 18.00 17apezoidal) 2.00 47.00 4.00 1.00	N/A <u>estrictor Plate, or R</u> Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet	% ectangular Orifice) ft (distance below ba inches inches n bottom at Stage =	asin bottom at Stage - Half-Cen = 0 ft)	verflow Grate Open Dverflow Grate Open Corflow Grate Open Corflow Grate Open Corflow Grate Corflow O Corflow Open Corflow	Area w/o Debris = n Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = besign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = tor f	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.99 3.99 0.32 0.67 rographs table (Col	N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft wmns W through A.	ft ² ft ² ft ² ft ² feet radians		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway (Rectangular or Spillway (Rectangular or Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	50% Circular Orifice, Retrictor 1.30 18.00 18.00 18.00 17apezoidal) 2.00 47.00 4.00 1.00	N/A <u>Not Selected</u> N/A N/A It (relative to basin feet H:V feet H:V feet H:V feet H:V feet	% ectangular Orifice) ft (distance below be inches inches bottom at Stage = <i>IP hydrographs and</i> 2 Year	asin bottom at Stage - Half-Cen = 0 ft) <u>1 runoff volumes by</u> 5 Year	verflow Grate Open Dverflow Grate Open Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca	Area w/o Debris = n Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = tor plate on Pipe = Top of Freeboard =	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u> 0.99 3.99 0.32 0.67 <u>rographs table (Coll</u>	N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 100 Year	ft ² ft ² ff ² feet radians		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	50% Zone 2 Restrictor 1.30 18.00 18.00 18.00 17apezoidal) 2.00 47.00 4.00 1.00	N/A Not Selected N/A N/A N/A ft (relative to basin feet H:V feet feet H:V feet <i>Current CUR</i> N/A	% ectangular Orifice) ft (distance below be inches inches bottom at Stage = # Phydrographs anc 2 Year 1.19	asin bottom at Stage - Half-Cen = 0 ft) 1 <i>runoff volumes by</i> 5 Year 1,50	verflow Grate Open Dverflow Grate Open C C C C C C C C C C C C C C C C C C C	Area w/o Debris = n Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Pesign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = is in the Inflow Hydr 25 Year 2.00	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u> 0.99 3.99 0.32 0.67 rographs lable (Col 50 Year 2.25	N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft acres acre-ft 100 Year 2.52	ft² ft² ft² ft² feet radians		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (n) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	50% Zone 2 Restrictor 1.30 18.00 18.00 18.00 18.00 17apezoidal) 2.00 47.00 4.00 1.00	N/A Not Selected N/A N/A N/A ft (relative to basin feet H:V feet H:V feet CURV N/A 0.138 N/A	% % ft (distance below be inches inches h bottom at Stage = 4P hydrographs and 2 Year 1.19 1.393	asin bottom at Stage - Half-Cen = 0 ft) <u>1 runoff volumes by</u> <u>5 Year</u> <u>1.50</u> <u>3.212</u> <u>3.212</u>	verflow Grate Open Dverflow Grate Open Car e 0 ft) O Outle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 4.950 4.950	Area w/o Debris = n Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = tor plate on Pipe = Top of Freeboard = 25 Year 2.00 7.434 7.434	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.99 0.32 0.67 rographs table (Col 50 Year 2.25 9.361 9.361	N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 100 Year 2.52 12.096 12.096	F). 500 Year 3.14 17.035 17.035		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Peak Q (cfs) = CUHP Predevelopment Peak Q (cfs) =	50% Zone 2 Restrictor 1.30 18.00 18.00 18.00 17apezoidal) 2.00 47.00 4.00 1.00	N/A <u>estrictor Plate, or R</u> Not Selected N/A N/A ft (relative to basir feet H:V feet ride the default CU/I EURV N/A 0.138 N/A N/A N/A	% ectangular Orifice) ft (distance below ba inches inches n bottom at Stage = <i>IP hydrographs and</i> 2 Year 1.19 1.393	asin bottom at Stage - Half-Cen = 0 ft) 5 Year 1.50 3.212	verflow Grate Open Dverflow Grate Open Corflow Grate Open Corflow Grate Open Corflow Grate Open Corflow O Corflow Open Corflow	Area w/o Debris = n Area w/o Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = besign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = tor freeboard = top of Freeboard = 2 Year 2.00 7.434	6.30 3.15 s for Outlet Pipe w// Zone 2 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u> 0.99 3.99 0.32 0.67 rographs table (Coll 50 Year 2.25 9.361	N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 2.52 12.096	ft ² ft ² ft ² ft ² feet radians		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	50% Zone 2 Restrictor 1.30 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 10.00 1.00 The user can overn WOCV N/A 0.047 N/A N/A N/A	N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet Fide the default CUI EURV N/A 0.138 N/A N/A N/A	% ectangular Orifice) ft (distance below ba inches inches n bottom at Stage = <i>IP hydrographs and</i> 2 Year 1.19 1.393 1.393 22.1	asin bottom at Stage - Half-Cen = 0 ft) 5 Year 1.50 3.212 3.212 45.3	verflow Grate Open Dverflow Grate Open Dverflow Grate Open Carter	Area w/o Debris = n Area w/o Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = lesign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = tor of Freeboard = tor of Freeboard = 25 Year 2.00 7.434 97.1	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.99 3.99 0.32 0.67 cographs table (Coll 50 Year 2.25 9.361 9.361 119.4	N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 100 Year 2.52 12.096 12.096 148.8	<i>f</i> t ² <i>f</i> t ² <i>f</i> t ² <i>f</i> t ² <i>f</i> eet <i>r</i> adians <i>5</i> 00 Year <i>3</i> .14 <i>17</i> .035 <i>17</i> .035 <i>2</i> 04.5		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Peak Q (cfs) = CUHP Predevelopment Peak Q (cfs) =	50% Zone 2 Restrictor 1.30 18.00 18.00 18.00 17apezoidal) 2.00 47.00 4.00 1.00	N/A <u>estrictor Plate, or R</u> Not Selected N/A N/A ft (relative to basir feet H:V feet ride the default CU/I EURV N/A 0.138 N/A N/A N/A	% ectangular Orifice) ft (distance below be inches inches bottom at Stage = <i>P hydrographs and</i> 2 Year 1.19 1.393 22.1 0.23 22.1	asin bottom at Stage - Half-Cen = 0 ft) <u>1 runoff volumes by</u> <u>5 Year</u> <u>1.50</u> <u>3.212</u> <u>3.212</u>	verflow Grate Open Dverflow Grate Open Car e 0 ft) O Outle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 4.950 4.950	Area w/o Debris = n Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = tor plate on Pipe = Top of Freeboard = 25 Year 2.00 7.434 7.434	6.30 3.15 s for Outlet Pipe w// Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.99 0.32 0.67 rographs table (Col 50 Year 2.25 9.361 9.361	N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 100 Year 2.52 12.096 12.096	<i>F).</i> 500 Year 3.14 17.035 17.035		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (are-ft) = Inflow Hydrograph Volume (are-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/are) = Peak Inflow Q (cfs) = Peak Unflow Q (cfs) =	50% Zone 2 Restrictor 1.30 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 10.00 1.00 1.00 N/A	N/A <u>Not Selected</u> N/A N/A ft (relative to basin feet H:V feet <i>EURV</i> N/A 0.138 N/A N/A N/A 0.1	% ectangular Orifice) ft (distance below be inches inches bottom at Stage = the hydrographs and 2 Year 1.19 1.393 1.393 2.2.1 0.23 2.2.1 2.3.0	asin bottom at Stage - Half-Cen = 0 ft) 5 Year 1.50 3.212 3.212 4.5.3 - 0.48 4.5.3 5.3.7	verflow Grate Open Dverflow Grate Open Dverflow Grate Open Carter Spillway D Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 4.950 4.950 62.3 0.66 62.3 71.8	Area w/o Debris = n Area w/o Debris = n Area w/ Debris = alculated Parameter utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Yean 2.00 7.434 7.434 97.1 1.03 97.1 95.9	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u> 0.99 3.99 0.32 0.67 rographs table (Coll 50 Year 2.25 9.361 9.361 119.4 126 119.4 124.3	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 00 Year 2.52 12.096 12.096 12.096 148.8 1.57 148.8 155.0	ft ² ft ² ft ² feet radians 500 Year radians 7.035 17.035 204.5 2.16 2.05 209.5		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q	50% Zone 2 Restrictor 1.30 18.00 18.00 2.00 47.00 4.00 1.00	N/A Selected N/A N/A N/A ft (relative to basin feet H:V feet CURV N/A 0.138 N/A	% % ft (distance below be inches inches bottom at Stage = # P hydrographs and 2 Year 1.19 1.393 1.393 2.2.1 0.23 2.1 0.23 2.1 2.3.0 N/A	asin bottom at Stage - Half-Cen = 0 ft) 1.50 3.212 3.212 45.3 - - - - - - - - - - - - - - - - - - -	verflow Grate Open Dverflow Grate Open Dverflow Grate Open Categories of the open Categorie	Area w/o Debris = n Area w/o Debris = n Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = besign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 2.00 7.434 7.434 97.1 1.03 97.1 95.9 1.0	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.99 3.99 0.32 0.67 rographs table (Col 50 Year 2.25 9.361 9.361 119.4 1.26 119.4 1.24.3 1.0	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	<i>F).</i> <i>500 Year</i> <i>ate</i> <i>ft</i> ² <i>feet</i> <i>radians</i> <i>500 Year</i> <i>3.14</i> <i>17.035</i> <i>17.035</i> <i>204.5</i> <i>2.16</i> <i>209.6</i> <i>1.0</i>		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfail Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = UHP Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Structur	50% Zone 2 Restrictor 1.30 18.00 18.00 18.00 18.00 18.00 17apezoidal) 2.00 47.00 4.00 1.00	N/A Selected N/A N/A N/A It (relative to basin feet H:V feet CU/V N/A 0.138 N/A	% ectangular Orifice) ft (distance below be inches inches inches a bottom at Stage = <i>IP hydrographs and</i> 2 Year 1.19 1.393 2.2.1 0.23 2.2.1 2.3.0 N/A Spillway	asin bottom at Stage - Half-Cen = 0 ft) 1.50 3.212 3.212 45.3 0.48 45.3 53.7 1.2 Spillway	verflow Grate Open Dverflow Grate Open Dverflow Grate Open Carter of the open State of the open Stage at a stage at a sta	Area w/o Debris = n Area w/o Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = tor of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 100 of Freeboard = 25 Year 2.00 7.434 97.1 97.1 95.9 1.0 Spillway	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.99 3.99 0.32 0.67 Calculated Parame 0.99 3.99 0.32 0.67 Calculated Parame 0.99 3.99 0.32 0.67 Calculated Parame 1.25 9.361 1.19.4 1.26 1.19.4 1.26 1.19.4 1.20 Spillway	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 00 Year 2.52 12.096 12.096 12.096 148.8 1.57 148.8 155.0	<i>F).</i> 500 Year 3.14 17.035 17.035 204.5 2.16 209.6 1.0 Spillway		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q	50% Zone 2 Restrictor 1.30 18.00 18.00 18.00 2.00 47.00 4.00 1.00	N/A Selected N/A N/A N/A ft (relative to basin feet H:V feet CURV N/A	% % ft (distance below be inches inches bottom at Stage = # P hydrographs and 2 Year 1.19 1.393 1.393 2.2.1 0.23 2.2.1 0.23 2.2.1 0.23 0.7 N/A Spillway 0.63 N/A	asin bottom at Stage - Half-Cen = 0 ft) 1 runoff volumes by 5 Year 1.50 3.212 45.3 - 45.3 - 0.48 45.3 53.7 1.2 Spillway 1.1 N/A	verflow Grate Open Dverflow Grate Open Dverflow Grate Open Categories of the open Categorie	Area w/o Debris = n Area w/o Debris = n Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = besign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 2.00 7.434 7.434 97.1 1.03 97.1 95.9 1.0	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.99 3.99 0.32 0.67 rographs table (Col 50 Year 2.25 9.361 9.361 119.4 1.26 119.4 1.24.3 1.0	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 100 Year 2.52 12.096 12.096 148.8 1.57 148.8 1.57 148.8 1.50 1.0 Spillway	<i>F).</i> <i>500 Year</i> <i>ate</i> <i>ft</i> ² <i>feet</i> <i>radians</i> <i>500 Year</i> <i>3.14</i> <i>17.035</i> <i>17.035</i> <i>204.5</i> <i>2.16</i> <i>209.6</i> <i>1.0</i>		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak O (cfs) = OPTIONAL Override Predevelopment Peak O (cfs) = Peak Inflow O (cfs) = Peak Outflow to Predevelopment Peak Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (ncurs)	50% Zone 2 Restrictor 1.30 18.00 18.00 18.00 18.00 18.00 17apezoidal) 2.00 47.00 4.00 1.00 7he user can over WOCV N/A N/A N/A N/A N/A Plate N/A N/A N/A	N/A Selected N/A N/A N/A ft (relative to basin feet H:V feet ide the default CUI EURV N/A 0.138 N/A	% % ectangular Orifice) ft (distance below be inches inches n bottom at Stage = 4P hydrographs and 2 Year 1.19 1.393 2.2.1 0.23 2.2.1 0.23 2.2.1 2.3.0 N/A Spillway 0.63 N/A 39	asin bottom at Stage - Half-Cen = 0 ft) 1 runoff volumes by 5 Year 1.50 3.212 3.212 3.212 45.3 0.48 45.3 53.7 1.2 Spillway 1.1 N/A 19	verflow Grate Open Dverflow Grate Open Dverflow Grate Open Carting Control of the open Stage of the open Stage of Restrict Spillway D Stage of Restrict Spillway D Stage of Restrict Spillway D Stage of the open Stage of the open Stage of the open Spillway D Control open	Area w/o Debris = n Area w/o Debris = n Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = tor of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 100 of Freeboard = 25 Year 2.00 7.434 7.434 97.1 1.03 97.1 95.9 1.0 Spillway 1.7 N/A 2	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.99 0.32 0.67 Calculated Parame 0.99 0.32 0.67 Calculated Parame 0.99 0.32 0.67 Calculated Parame 0.99 0.32 0.67 Calculated Parame 1.25 9.361 119.4 1.26 119.4 1.26 1.19.4 1.24.3 1.0 Spillway 2.0 N/A 2	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	F). 500 Year ate ft ² feet radians 500 Year 3.14 17.035 17.035 204.5 204.5 204.5 209.6 1.0 Spillway 2.6 N/A 1		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours)	50% Zone 2 Restrictor 1.30 18.00 4.00 1.00 N/A N/	N/A Selected N/A N/A N/A It (relative to basin feet H:V feet ide the default CU/I EURV N/A 0.138 N/A	% ectangular Orifice) ft (distance below be inches inches a bottom at Stage = <i>P hydrographs and</i> 2 Year 1.19 1.393 22.1 0.23 22.1 0.23 22.1 23.0 N/A Spillway 0.63 N/A 39 63	asin bottom at Stage - Half-Cen = 0 ft) 1.50 3.212 45.3 0.48 45.3 53.7 1.2 Spillway 1.1 N/A 19 46	verflow Grate Open Dverflow Grate Open Dverflow Grate Open Carting Control of the open	Area w/o Debris = n Area w/o Debris = n Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = tor pof Freeboard = Top of Freeboard = 100 of Freeboard = 25 Year 2.00 7.434 97.1 95.9 1.0 Spillway 1.7 N/A 2 26	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.99 0.32 0.67 Calculated Parame 0.99 0.32 0.67 So Year 2.25 9.361 119.4 1.26 119.4 1.26 119.4 2.20 N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 00 Year 2.52 12.096 12.096 12.096 148.8 1.57 148.8 1.57 148.8 1.57 1.0 Spillway 2.4 N/A 1 1 3	<i>F).</i> <i>500 Year</i> <i>ate</i> <i>ft²</i> <i>feet</i> <i>radians</i> <i>500 Year</i> <i>3.14</i> <i>17.035</i> <i>17.035</i> <i>17.035</i> <i>204.5</i> <i>204.5</i> <i>209.6</i> <i>1.0</i> <i>Spillway</i> <i>2.6</i> <i>N/A</i> <i>1</i> <i>4</i>		
User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak O(cfs) = OPTIONAL Override Predevelopment Peak O(cfs) = Peak Inflow O (cfs) = Peak Outflow 0 (cfs) = Ratio Peak Outflow to Predevelopment Poak Velocity through Grate 1 (ps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (cure)	50% Zone 2 Restrictor 1.30 18.00 18.00 18.00 18.00 18.00 17apezoidal) 2.00 47.00 4.00 1.00 7he user can over WOCV N/A	N/A Selected N/A N/A N/A ft (relative to basin feet H:V feet ide the default CUI EURV N/A 0.138 N/A	% % ectangular Orifice) ft (distance below be inches inches n bottom at Stage = 4P hydrographs and 2 Year 1.19 1.393 2.2.1 0.23 2.2.1 0.23 2.2.1 2.3.0 N/A Spillway 0.63 N/A 39	asin bottom at Stage - Half-Cen = 0 ft) 1 runoff volumes by 5 Year 1.50 3.212 3.212 3.212 45.3 0.48 45.3 53.7 1.2 Spillway 1.1 N/A 19	verflow Grate Open Dverflow Grate Open Dverflow Grate Open Carting Control of the open Carting Angle of Restrict Spillway D Stage at Basin Volume at Basin Area at Basin Volume at Carting new value 10 Year 1.75 4.950 4.950 62.3 71.8 0.66 62.3 71.8 1.2 Spillway 1.3 N/A 7	Area w/o Debris = n Area w/o Debris = n Area w/ Debris = alculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = tor of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 100 of Freeboard = 25 Year 2.00 7.434 7.434 97.1 1.03 97.1 95.9 1.0 Spillway 1.7 N/A 2	6.30 3.15 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.99 0.32 0.67 Calculated Parame 0.99 0.32 0.67 Calculated Parame 0.99 0.32 0.67 Calculated Parame 0.99 0.32 0.67 Calculated Parame 1.25 9.361 119.4 1.26 119.4 1.26 1.19.4 1.24.3 1.0 Spillway 2.0 N/A 2	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	F). 500 Year ate ft ² feet radians 500 Year 3.14 17.035 17.035 204.5 204.5 209.6 1.0 Spillway 2.6 N/A 1		

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
me Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5.00 11111	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ē	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	0:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:20:00	0.00	0.00	0.04	0.29	0.46	0.02	0.09	0.17	0.43
	0:25:00	0.00	0.00	1.33	13.76	22.95	0.85	4.93	8.35	22.30
_	0:30:00	0.00	0.00	11.69	34.13	50.21	36.94	50.57	61.72	97.19
	0:35:00	0.00	0.00	20.03	44.44	61.81	75.52	95.92	117.38	167.65
-	0:40:00	0.00	0.00	22.12	45.30	62.28	93.71	116.30	143.06	198.90
-	0:45:00	0.00	0.00	20.77 17.91	41.81 37.82	57.92 52.89	97.08 93.01	119.41 114.25	148.83 143.91	204.55 197.61
-	0:55:00	0.00	0.00	15.56	33.74	47.88	86.67	106.63	135.94	186.72
-	1:00:00	0.00	0.00	13.40	29.85	43.82	78.52	97.07	126.91	174.89
	1:05:00	0.00	0.00	11.78	26.74	40.72	71.79	89.25	119.64	165.40
	1:10:00	0.00	0.00	10.42	24.01	37.99	65.00	81.35	109.82	152.67
_	1:15:00	0.00	0.00	9.13	21.17	35.27	58.10	73.29	97.88	137.22
_	1:20:00	0.00	0.00	7.86	18.16	31.49	50.82	64.37	85.28	120.06
ŀ	1:25:00	0.00	0.00	6.59	15.19	26.79	43.48	55.06	72.75	102.40
F	1:30:00	0.00	0.00	5.40 4.75	12.98 11.50	23.13 20.33	36.38 31.37	46.23 39.95	61.29 52.87	86.69 74.93
F	1:40:00	0.00	0.00	4.75	10.22	20.33	27.49	39.95	46.34	65.69
-	1:45:00	0.00	0.00	3.81	9.03	15.84	24.23	30.86	40.71	57.69
Ē	1:50:00	0.00	0.00	3.39	7.90	13.90	21.29	27.10	35.68	50.53
	1:55:00	0.00	0.00	2.95	6.83	12.05	18.65	23.71	31.07	43.96
_	2:00:00	0.00	0.00	2.52	5.79	10.24	16.11	20.46	26.75	37.80
_	2:05:00	0.00	0.00	2.08	4.75	8.47	13.66	17.32	22.67	31.97
-	2:10:00	0.00	0.00	1.65	3.74	6.77	11.31	14.31	18.87	26.52
ŀ	2:15:00 2:20:00	0.00	0.00	1.22	2.75	5.15	8.98	11.36 8.48	15.11 11.40	21.18
-	2:25:00	0.00	0.00	0.80	1.76 0.99	3.62 2.44	6.70 4.43	5.68	7.83	15.95
-	2:30:00	0.00	0.00	0.15	0.58	1.77	2.72	3.60	5.10	7.42
	2:35:00	0.00	0.00	0.07	0.38	1.35	1.74	2.39	3.42	5.10
	2:40:00	0.00	0.00	0.04	0.26	1.02	1.13	1.60	2.28	3.49
_	2:45:00	0.00	0.00	0.03	0.17	0.77	0.71	1.05	1.47	2.31
_	2:50:00	0.00	0.00	0.02	0.12	0.55	0.44	0.67	0.89	1.45
Ļ	2:55:00	0.00	0.00	0.02	0.08	0.38	0.26	0.41	0.48	0.82
-	3:00:00	0.00	0.00	0.01	0.05	0.24	0.14	0.23	0.21	0.40
-	3:05:00	0.00	0.00	0.01	0.03	0.14	0.07	0.12	0.09	0.19
-	3:15:00	0.00	0.00	0.01	0.02	0.07	0.04	0.07	0.03	0.10
-	3:20:00	0.00	0.00	0.00	0.01	0.03	0.02	0.03	0.03	0.05
	3:25:00	0.00	0.00	0.00	0.00	0.02	0.02	0.02	0.02	0.04
	3:30:00	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.01	0.03
L	3:35:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.02
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01
-	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
ŀ	3:50:00 3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ē	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ę	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ē	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.04 (February 2021) Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
	0.00	1,774	0.041	0	0.000	0.00	For best results, include the
	1.00	4,666	0.107	3,220	0.074	0.04	stages of all grade slope
	2.00	6,983	0.160	9,044	0.208	1.30	changes (e.g. ISV and Floo
	3.00	9,609	0.221	17,340	0.398	166.63	from the S-A-V table on Sheet 'Basin'.
	4.00	13,970	0.321	29,130	0.669	471.26	Sheet Dasin.
							Also include the inverts of
							outlets (e.g. vertical orifice
							overflow grate, and spillwa where applicable).
							where applicable).
							-
							-
	-						-
							-
							-
							-
							-
							4
							_
	-						_
							-
	-						-
							-
							-
							-
							_
							-
	-						-
							-
							-
							-
							-
							_
							_
							-
							-
	-						_
							-
				1	1		-
							-
							1
					<u> </u>	<u> </u>	4
							-
							-
							-

MHFD-Detention, Version 4.04 (February 2021)

100-78	ZONE 1
	100-YEAR

ZONE 1 AND 2 ORIFICES Example Zone Configuration (Retention Pond) PERMANENT-

Watershed Information

atersneu mitornation		
Selected BMP Type =	EDB	
Watershed Area =	63.40	acres
Watershed Length =	2,895	ft
Watershed Length to Centroid =	1,447	ft
Watershed Slope =	0.040	ft/ft
Watershed Imperviousness =	2.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	100.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban hydro	igraph Procedu	ie.
Water Quality Capture Volume (WQCV) =	0.080	acre-feet
Excess Urban Runoff Volume (EURV) =	0.093	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.934	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	2.155	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	3.322	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	4.989	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	6.282	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	8.117	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	11.431	acre-feet
Approximate 2-yr Detention Volume =	0.069	acre-feet
Approximate 5-yr Detention Volume =	0.430	acre-feet
Approximate 10-yr Detention Volume =	0.715	acre-feet
Approximate 25-yr Detention Volume =	0.767	acre-feet
Approximate 50-yr Detention Volume =	0.734	acre-feet
Approximate 100-yr Detention Volume =	1.171	acre-feet

Define	Zones	and	Basin	Geome	etry
		2	Zone 1	Volume	(WÇ

Zone 1 Volume (WQCV) =	0.080	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.013	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	1.078	acre-feet
Total Detention Basin Volume =	1.171	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

acre-feet

Initial Surcharge Area (A _{ISV}) =	user	ft 2
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft 2
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³

Calculated Total Basin Volume (V_{total}) = **user** acre-feet

R	Depth Increment =		ft							
tion Pond)	Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
uon Pona)	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
	Top of Micropool		0.00	-		-	270	0.006		
	7326		1.00				798	0.018	534	0.012
	7327		2.00				4,404	0.101	3,135	0.072
	7328		3.00	-		-	5,720	0.131	8,197	0.188
	7329		4.00	-			6,808	0.156	14,461	0.332
				-		-				
				-						
				-						
				-		-				
				-						
Optional User Overrides										
acre-feet										
acre-feet										
1.19 inches				-						
1.50 inches										
1.75 inches				-						
2.00 inches				-						
2.25 inches				-						
2.52 inches		-		-	-	-				
inches		-		-	-					
-				-		-				
				-						
				-						
				-						
				-						
				-		-				
				-		-				
				-		-				
				-						
				-		-				
				-	-	-				
				-						
				-						
				-						
				-						
						-				
				-						
				-						
				-						
				-						
		-		-	-					
				-						
				-						
				-						
					-	1 1				
				1 1	1 1	1 1				
					1 1	1 1				
				1 1						
				-				-		
				-						
				-		-				
				-		1 1				
				-		-				
				-						
				1 1		1 1				
		-				1 1				
				1 1	1 1	1 1				
				-	-	-				
						1 1				
						-			·	·
				-		-				
				1 1 1						

MHFD-Detention, Version 4.04 (February 2021)

			FD-Detention, Ver			51011				
	WINSOME FILING	3	-	•	y 2021)					
	WQ Pond A_Origin	al Area (BASIN A2	B+A3A+G2A+G2B-	+G1)						
ZONE 2 ZONE 2 ZONE 1				Estimated	Estimated					
				Stage (ft)	Volume (ac-ft)	Outlet Type	•			
VOLUME EURY WOCV			Zone 1 (WQCV)	2.08	0.080	Orifice Plate				
ZONE 1 AND 2	100-YEAR ORIFICE		Zone 2 (EURV)	2.20	0.013	Weir&Pipe (Restrict)				
PERMANENT ORIFICES	0	(Zone 3 (100-year)	#VALUE!	1.078	Not Utilized				
Example zone	Configuration (Re			Total (all zones)	1.171	J				
ser Input: Orifice at Underdrain Outlet (typically	y used to drain WQ						Calculated Parame	eters for Underdrain	<u>1</u>	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =		inches	the filtration media	surface)		drain Orifice Area = n Orifice Centroid =		ft ² feet		
Underdrain Onlice Diameter =		inches			Underdrai	in Onlice Centrold =		leet		
ser Input: Orifice Plate with one or more orifice	es or Elliptical Slot \	Veir (typically used	to drain WOCV and	d/or EURV in a sedi	mentation BMP)		Calculated Parame	ters for Plate		
Invert of Lowest Orifice =			bottom at Stage =			ice Area per Row =	N/A	ft ²		
Depth at top of Zone using Orifice Plate =		ft (relative to basin	bottom at Stage =	= 0 ft)	Ell	iptical Half-Width =	N/A	feet		
Orifice Plate: Orifice Vertical Spacing =		inches			Ellipt	ical Slot Centroid =	N/A	feet		
Orifice Plate: Orifice Area per Row =		sq. inches			E	Elliptical Slot Area =	N/A	ft ²		
ser Input: Stage and Total Area of Each Orifice	Row (numbered fr	om lowest to bicho	act)							
John mput. Juage and Total Area of Each Unitice	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	7	
Stage of Orifice Centroid (ft)	non i (requireu)			(optional)	.ton 5 (optional)		/ (optional)		1	
Orifice Area (sq. inches)									1	
									_	
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	_	
Stage of Orifice Centroid (ft)								ļ	-	
Orifice Area (sq. inches)										
Iser Input: Vertical Orifice (Circular or Rectangu	ılar)						Calculated Parame	eters for Vertical Ori	ifice	
and angut, vertical onnice (circular of Rectange	Not Selected	Not Selected	1				Not Selected	Not Selected		
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basir	n bottom at Stage =	0 ft) Ve	rtical Orifice Area =	N/A	N/A	ft ²	
Depth at top of Zone using Vertical Orifice =	N/A	N/A		-			N/A	N/A	feet	
Vertical Orifice Diameter =	N/A	N/A								
		11/1	inches							
		11/14	inches							
		17/5	inches							
	·	·	1	al Weir (and No Out	tlet Pipe)		Calculated Parame	eters for Overflow V	Veir	
	·	·	1	al Weir (and No Ou	tlet Pipe)		Calculated Parame	eters for Overflow V Not Selected	Veir	
Jser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho =	r Sloped Grate and	Outlet Pipe OR Rec Not Selected N/A	tangular/Trapezoida	al Weir (and No Ou pottom at Stage = 0 f) Height of Grat	e Upper Edge, H _t =		Not Selected N/A	Veir feet	
Jser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	r Sloped Grate and Zone 2 Weir	Outlet Pipe OR Rec Not Selected N/A N/A	tangular/Trapezoida ft (relative to basin t feet	pottom at Stage = 0 fi	:) Height of Grat Overflow V	Veir Slope Length =		Not Selected N/A N/A		
Jser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	r Sloped Grate and Zone 2 Weir	Outlet Pipe OR Rec Not Selected N/A N/A N/A	tangular/Trapezoida ft (relative to basin t feet H:V	pottom at Stage = 0 fi) Height of Grat Overflow V rate Open Area / 1	Veir Slope Length = 00-yr Orifice Area =		Not Selected N/A N/A N/A	feet feet	
Jser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	r Sloped Grate and Zone 2 Weir	Outlet Pipe OR Rec Not Selected N/A N/A N/A N/A	tangular/Trapezoida ft (relative to basin t feet	bottom at Stage = 0 fi G O	:) Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper	Veir Slope Length = 00-yr Orifice Area = a Area w/o Debris =		Not Selected N/A N/A N/A N/A	feet feet ft ²	
Jser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =	r Sloped Grate and Zone 2 Weir	Outlet Pipe OR Rec Not Selected N/A N/A N/A N/A N/A	tangular/Trapezoida ft (relative to basin t feet H:V feet	bottom at Stage = 0 fi G O	:) Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper	Veir Slope Length = 00-yr Orifice Area =		Not Selected N/A N/A N/A	feet feet	
Jser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	r Sloped Grate and Zone 2 Weir	Outlet Pipe OR Rec Not Selected N/A N/A N/A N/A	tangular/Trapezoida ft (relative to basin t feet H:V	bottom at Stage = 0 fi G O	:) Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper	Veir Slope Length = 00-yr Orifice Area = a Area w/o Debris =		Not Selected N/A N/A N/A N/A	feet feet ft ²	
Jser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	r Sloped Grate and Zone 2 Weir 2.08	Outlet Pipe OR Rec Not Selected N/A N/A N/A N/A N/A N/A	tangular/Trapezoida ft (relative to basin t feet H:V feet %	bottom at Stage = 0 fi G O) Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper Overflow Grate Oper	Veir Slope Length = 200-yr Orifice Area = 1 Area w/o Debris = 2n Area w/ Debris =	Zone 2 Weir	Not Selected N/A N/A N/A N/A N/A	feet feet ft ² ft ²	
Jser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	r Sloped Grate and Zone 2 Weir 2.08 	Outlet Pipe OR Rec Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or Re	tangular/Trapezoida ft (relative to basin t feet H:V feet %	bottom at Stage = 0 fi G O) Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper Overflow Grate Oper	Veir Slope Length = 00-yr Orifice Area = a Area w/o Debris =	Zone 2 Weir	Not Selected N/A N/A N/A N/A N/A / Flow Restriction P	feet feet ft ² ft ²	
Jser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	r Sloped Grate and Zone 2 Weir 2.08	Outlet Pipe OR Rec Not Selected N/A N/A N/A N/A N/A N/A	tangular/Trapezoida ft (relative to basin t feet H:V feet % ectangular Orifice)	bottom at Stage = 0 fi G O	t) Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper Overflow Grate Oper Overflow Grate Oper	Veir Slope Length = 200-yr Orifice Area = 1 Area w/o Debris = 2n Area w/ Debris =	Zone 2 Weir	Not Selected N/A N/A N/A N/A N/A / Flow Restriction P	feet feet ft ² ft ²	
Jser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate	r Sloped Grate and Zone 2 Weir 2.08 	Outlet Pipe OR Rec N/A Selected N/A N/A N/A N/A N/A N/A Setrictor Plate, or Re Not Selected	tangular/Trapezoida ft (relative to basin t feet H:V feet % ectangular Orifice)	bottom at Stage = 0 fi G O	- Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper Overflow Grate Oper <u>C</u> = 0 ft) C	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = 2n Area w/ Debris = 2n Area w/ Debris = 21	Zone 2 Weir	Not Selected N/A N/A N/A N/A N/A - Flow Restriction P Not Selected	feet feet ft ² ft ²	
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe =	r Sloped Grate and Zone 2 Weir 2.08 	Outlet Pipe OR Rec N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or Ra Not Selected N/A	tangular/Trapezoida ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba	bottom at Stage = 0 f G O asin bottom at Stage	t) Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper Overflow Grate Oper Overflow Grate Oper C C = 0 ft) C	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = en Area w/ Debris = alculated Parameter Putlet Orifice Area =	Zone 2 Weir	Not Selected N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A	feet feet ft ² ft ² ft ²	
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Rr Zone 2 Restrictor	Outlet Pipe OR Rec N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or Ra Not Selected N/A	tangular/Trapezoida ft (relative to basin t feet H:V feet ectangular Orifice) ft (distance below ba inches	bottom at Stage = 0 f G O asin bottom at Stage	t) Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper Overflow Grate Oper Overflow Grate Oper C C = 0 ft) C	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = en Area w/ Debris = alculated Parameter: butlet Orifice Area = tt Orifice Centroid =	Zone 2 Weir	Not Selected N/A N/A N/A N/A N/A Elow Restriction P Not Selected N/A N/A	feet feet ft ² ft ² <u>late</u> ft ²	
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Rr Zone 2 Restrictor	Outlet Pipe OR Rec Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A N/A N/A N/A N/A	tangular/Trapezoida ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 ff G O S asin bottom at Stage Half-Cen	Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper Overflow Grate Oper <u>C</u> = 0 ft) <u>C</u> Outle tral Angle of Restri	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = en Area w/ Debris = alculated Parameter: Dutlet Orifice Area = tt Orifice Centroid = ctor Plate on Pipe =	Zone 2 Weir	Not Selected N/A N/A N/A N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A eters for Spillway	feet feet ft ² ft ² <u>late</u> ft ²	
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Rr Zone 2 Restrictor	Outlet Pipe OR Rec N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin	tangular/Trapezoida ft (relative to basin t feet H:V feet ectangular Orifice) ft (distance below ba inches	bottom at Stage = 0 ff G O S asin bottom at Stage Half-Cen	t) Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper Overflow Grate Oper C C = 0 ft) C Outle tral Angle of Restri Spillway D	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = en Area w/ Debris = alculated Parameter butlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth=	Zone 2 Weir	Not Selected N/A N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A eters for Spillway feet	feet feet ft ² ft ² <u>late</u> ft ²	
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Rr Zone 2 Restrictor	Outlet Pipe OR Rec N/A N/A N/A N/A N/A N/A N/A N/A N/A Setrictor Plate, or Rr Not Selected N/A N/A N/A	tangular/Trapezoida ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 ff G O S asin bottom at Stage Half-Cen	t) Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper Overflow Grate Oper Overflow Grate Oper C C = 0 ft) C Uttle tral Angle of Restri Spillway I Stage at	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = en Area w/ Debris = alculated Parameter: Putlet Orifice Area = tt Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard =	Zone 2 Weir	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² <u>late</u> ft ²	
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Rr Zone 2 Restrictor	Outlet Pipe OR Rec N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or R/ Not Selected N/A N/A ft (relative to basin feet H:V	tangular/Trapezoida ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 ff G O S asin bottom at Stage Half-Cen	t) Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper Overflow Grate Oper Overflow Grate Oper C C E = 0 ft) C Utle tral Angle of Restrict Spillway I Stage at Basin Area at	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = en Area w/ Debris = alculated Parameter Putlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 2 Weir	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A N/A Eters for Spillway feet feet acres	feet feet ft ² ft ² <u>late</u> ft ²	
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Rr Zone 2 Restrictor	Outlet Pipe OR Rec N/A N/A N/A N/A N/A N/A N/A N/A N/A Setrictor Plate, or Rr Not Selected N/A N/A N/A	tangular/Trapezoida ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 ff G O S asin bottom at Stage Half-Cen	t) Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper Overflow Grate Oper Overflow Grate Oper C C E = 0 ft) C Utle tral Angle of Restrict Spillway I Stage at Basin Area at	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = en Area w/ Debris = alculated Parameter: Putlet Orifice Area = tt Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard =	Zone 2 Weir	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² <u>late</u> ft ²	
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Rr Zone 2 Restrictor	Outlet Pipe OR Rec N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or R/ Not Selected N/A N/A ft (relative to basin feet H:V	tangular/Trapezoida ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 ff G O S asin bottom at Stage Half-Cen	t) Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper Overflow Grate Oper Overflow Grate Oper C C E = 0 ft) C Utle tral Angle of Restrict Spillway I Stage at Basin Area at	Veir Slope Length = 00-yr Orifice Area = Area w/o Debris = en Area w/ Debris = alculated Parameter Putlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 2 Weir	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A N/A Eters for Spillway feet feet acres	feet feet ft ² ft ² <u>late</u> ft ²	
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Re Zone 2 Restrictor Trapezoidal)	Outlet Pipe OR Rec N/A Selected N/A N/A N/A N/A N/A N/A N/A Setrictor Plate, or R/ Not Selected N/A N/A ft (relative to basin feet H:V feet	tangular/Trapezoida ft (relative to basin t feet H:V feet 9% ectangular Orifice) ft (distance below ba inches inches nothes bottom at Stage =	bottom at Stage = 0 f G O asin bottom at Stage Half-Cen = 0 ft)	t) Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper Overflow Grate Oper C C = 0 ft) C Uttle tral Angle of Restri- Spillway I Stage at Basin Area at Basin Volume at	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = en Area w/ Debris = alculated Parameter Autlet Orifice Area = the Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Free	Zone 2 Weir Solution 2 Weir Solution 2 Restrictor Calculated Parame	Not Selected N/A N/A N/A N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A eters for Spillway feet feet acres acres acre-ft	feet feet ft ² ft ² ft ² ft ² fteet radians	
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Outlet Hydrograph Results Design Storm Return Period =	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Re Zone 2 Restrictor Trapezoidal)	Outlet Pipe OR Rec Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet	tangular/Trapezoida ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches a bottom at Stage =	bottom at Stage = 0 f G O asin bottom at Stage Half-Cen = 0 ft) 5 Year	t) Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Dverflow Grate Oper C C = 0 ft) C Outle tral Angle of Restri Spillway I Stage at Basin Area at Basin Area at Basin Area at Basin Area at	Veir Slope Length = 20-yr Orifice Area = A rea w/o Debris = an Area w/o Debris = alculated Parameter: Putlet Orifice Area = tt Orifice Centroid = tt Orifice Centroid = ttor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year	Zone 2 Weir Zone 2 Weir Cone 2 Restrictor Calculated Parame Calculated Parame Calculated Parame Cone 50 Year	Not Selected N/A N/A N/A N/A N/A N/A VA N/A N/A N/A N/A N/A N/A N/A N/A N/A acres acre-ft 100 Year	feet feet ft ² ft ² ft ² ft ² feet radians	
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) =	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, R Zone 2 Restrictor Trapezoidal) Trapezoidal)	Outlet Pipe OR Rec N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A ft (relative to basin feet H:V feet H:V feet	tangular/Trapezoida ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches inches a bottom at Stage = Phydrographs anco 2 Year 1.19	bottom at Stage = 0 ff G O asin bottom at Stage Half-Cen = 0 ft) <u>1 runoff volumes by</u> <u>5 Year</u> 1.50	 Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper C C a a a c <lic< li=""> <lic< li=""> c c <</lic<></lic<>	Veir Slope Length = 20-yr Orifice Area = A rea w/o Debris = en Area w/ Debris = alculated Parameter butlet Orifice Area = thet Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Cop Hereboard = Cop	Zone 2 Weir Zone 2 Weir S for Outlet Pipe w, Zone 2 Restrictor Calculated Parame Calculated Parame Concepts table (Concepts) Concepts table (Concepts) Concepts) Concepts table (Concepts) Concepts) Concepts Conc	Not Selected N/A NA NA NA NA N/A N/A N/A N/A eters for Spillway feet acres acre-ft blumns W through A 100 Year 2.52	feet feet ft ² ft ² ft ² feet radians	
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Outlet Hydrograph Results Design Storm Return Period =	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Re Zone 2 Restrictor Trapezoidal)	Outlet Pipe OR Rec Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet	tangular/Trapezoida ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches a bottom at Stage =	bottom at Stage = 0 f G O asin bottom at Stage Half-Cen = 0 ft) 5 Year	t) Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Dverflow Grate Oper C C = 0 ft) C Outle tral Angle of Restri Spillway I Stage at Basin Area at Basin Area at Basin Area at Basin Area at	Veir Slope Length = 20-yr Orifice Area = A rea w/o Debris = an Area w/o Debris = alculated Parameter: Putlet Orifice Area = tt Orifice Centroid = tt Orifice Centroid = ttor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year	Zone 2 Weir Zone 2 Weir Cone 2 Restrictor Calculated Parame Calculated Parame Calculated Parame Cone 50 Year	Not Selected N/A N/A N/A N/A N/A N/A VA N/A N/A N/A N/A N/A N/A N/A N/A N/A acres acre-ft 100 Year	feet feet ft ² ft ² ft ² feet radians	
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, R Zone 2 Restrictor Trapezoidal) Trapezoidal)	Outlet Pipe OR Rec N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet H:V feet N/A 0.093 N/A N/A	tangular/Trapezoida ft (relative to basin t feet H:V feet ectangular Orifice) ft (distance below ba inches inches bottom at Stage = HP hydrographs and 2 Year 1.19 0.934	bottom at Stage = 0 f G O asin bottom at Stage Half-Cen = 0 ft) <u>1.50 2.155</u>	t) Height of Grat Overflow V rate Open Area / 1 verflow Grate Oper Dverflow Grate Oper Corflow Grate Oper Stage at Basin Area at Basin Volume at Corflow Grate Oper Corflow Grate Oper C	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: Putlet Orifice Area = to Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = Top of Freeboard = Cop of Freebo	Zone 2 Weir Solution 2 Weir Solution 2 Meir Solution 2 Restrictor Calculated Parame Calculated Parame Comparison 2 Restrictor	Not Selected N/A NA Plow Restriction P Not Selected N/A N/A N/A N/A Press for Spillway feet feet acres acres <td>feet feet ft² ft² ft² ft² fcet radians</td>	feet feet ft ² ft ² ft ² ft ² fcet radians	
ser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Ru Zone 2 Restrictor Zone 2 Restrictor Trapezoidal) Trapezoidal) The user can overn WQCV N/A 0.080 N/A N/A N/A	Outlet Pipe OR Rec N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or Rr Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet N/A N/A N/A N/A N/A	tangular/Trapezoida ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = // <i>P hydrographs and</i> 2 Year 1.19 0.934 0.934 12.6	bottom at Stage = 0 ff G O asin bottom at Stage Half-Cen = 0 ft) <u>f runoff volumes by</u> <u>5 Year</u> <u>1.50</u> <u>2.155</u> <u>2.155</u> <u>26.2</u>	 Height of Grat Overflow V rate Open Area / 1 verflow Grate Open Control Control Control Control<td>Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: Putlet Orifice Area = to Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = Top of Freeboard = Cop of Freebo</td><td>Zone 2 Weir</td><td>Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</td><td>feet feet ft² ft² ft² feet radians 500 Ye 3.14 11.43 11.43</td>	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: Putlet Orifice Area = to Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = Top of Freeboard = Cop of Freebo	Zone 2 Weir	Not Selected N/A	feet feet ft ² ft ² ft ² feet radians 500 Ye 3.14 11.43 11.43	
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Iser Streeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Vit Peak Flow, q (cfs/acre) =	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Re Zone 2 Restrictor Trapezoidal) Trapezoidal) The user can oven WQCV N/A 0.080 N/A N/A N/A	Outlet Pipe OR Rec N/A Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R/ Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.093 N/A N/A N/A N/A	tangular/Trapezoida ft (relative to basin t feet H:V feet 9% ectangular Orifice) ft (distance below ba inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 0.934 0.934 12.6	bottom at Stage = 0 f G O asin bottom at Stage Half-Cen = 0 ft) <u>5 Year</u> 1.50 2.155 2.155 2.155 2.155 2.155	 Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Dverflow Grate Oper C C <l< td=""><td>Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 2.00 4.989 4.989 56.4 0.89</td><td>Zone 2 Weir Zone 2 Weir Control Pipe w Zone 2 Restrictor Calculated Parame Calculated Parame Calculated Parame Control Parame</td><td>Not Selected N/A N/A N/A N/A N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A Eters for Spillway feet feet acres acres acres acres acres acre.ft N/A 100 Year 2.52 8.117 8.117 8.117 8.117 8.117</td><td>feet feet ft² ft² ft² ft² ft² feet radians iF/. 500 Ye 3.14 11.43 11.43 11.43 11.43</td></l<>	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 2.00 4.989 4.989 56.4 0.89	Zone 2 Weir Zone 2 Weir Control Pipe w Zone 2 Restrictor Calculated Parame Calculated Parame Calculated Parame Control Parame	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A Eters for Spillway feet feet acres acres acres acres acres acre.ft N/A 100 Year 2.52 8.117 8.117 8.117 8.117 8.117	feet feet ft ² ft ² ft ² ft ² ft ² feet radians iF/. 500 Ye 3.14 11.43 11.43 11.43 11.43	
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Ru Zone 2 Restrictor Zone 2 Restrictor Trapezoidal) Trapezoidal) The user can overn WQCV N/A 0.080 N/A N/A N/A	Outlet Pipe OR Rec N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or Rr Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet N/A N/A N/A N/A N/A	tangular/Trapezoida ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = // <i>P hydrographs and</i> 2 Year 1.19 0.934 0.934 12.6	bottom at Stage = 0 ff G O asin bottom at Stage Half-Cen = 0 ft) <u>f runoff volumes by</u> <u>5 Year</u> <u>1.50</u> <u>2.155</u> <u>2.155</u> <u>26.2</u>	 Height of Grat Overflow V rate Open Area / 1 verflow Grate Open Control Control Control Control<td>Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: Putlet Orifice Area = to Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = Top of Freeboard = Cop of Freebo</td><td>Zone 2 Weir</td><td>Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A</td><td>feet feet ft² ft² ft² ft² ft² feet radians i<i>F</i>/. 500 Ye 3.14 11.43 11.43 11.43</td>	Veir Slope Length = 20-yr Orifice Area = Area w/o Debris = an Area w/ Debris = alculated Parameter: Putlet Orifice Area = to Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = Top of Freeboard = Cop of Freebo	Zone 2 Weir	Not Selected N/A	feet feet ft ² ft ² ft ² ft ² ft ² feet radians i <i>F</i> /. 500 Ye 3.14 11.43 11.43 11.43	
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Exouted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Riow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Re Zone 2 Restrictor Trapezoidal) Trapezoidal) The user can oven WQCV N/A 0.080 N/A N/A N/A	Outlet Pipe OR Rec N/A Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R/ Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.093 N/A N/A N/A N/A	tangular/Trapezoida ft (relative to basin t feet H:V feet 9% ectangular Orifice) ft (distance below ba inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 0.934 0.934 12.6	bottom at Stage = 0 f G O asin bottom at Stage Half-Cen = 0 ft) <u>5 Year</u> 1.50 2.155 2.155 2.155 2.155 2.155	 Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Dverflow Grate Oper C C <l< td=""><td>Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 2.00 4.989 4.989 56.4 0.89</td><td>Zone 2 Weir Zone 2 Weir Control Pipe w Zone 2 Restrictor Calculated Parame Calculated Parame Calculated Parame Control Parame</td><td>Not Selected N/A N/A N/A N/A N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A Eters for Spillway feet feet acres acres acres acres acres acre.ft N/A 100 Year 2.52 8.117 8.117 8.117 8.117 8.117</td><td>feet feet ft² ft² ft² ft² ft² feet radians iF/. 500 Ye 3.14 11.43 11.43 11.43 11.43</td></l<>	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 2.00 4.989 4.989 56.4 0.89	Zone 2 Weir Zone 2 Weir Control Pipe w Zone 2 Restrictor Calculated Parame Calculated Parame Calculated Parame Control Parame	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A Eters for Spillway feet feet acres acres acres acres acres acre.ft N/A 100 Year 2.52 8.117 8.117 8.117 8.117 8.117	feet feet ft ² ft ² ft ² ft ² ft ² feet radians iF/. 500 Ye 3.14 11.43 11.43 11.43 11.43	
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = CUHP Redevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Structure Controlling Flow =	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Re Zone 2 Restrictor Trapezoidal) Trapezoidal) The user can oven WQCV N/A 0.080 N/A N/A N/A	Outlet Pipe OR Rec N/A Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R/ Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.093 N/A N/A N/A N/A	tangular/Trapezoida ft (relative to basin t feet H:V feet 9% ectangular Orifice) ft (distance below ba inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 0.934 0.934 12.6	bottom at Stage = 0 f G O asin bottom at Stage Half-Cen = 0 ft) <u>5 Year</u> 1.50 2.155 2.155 2.155 2.155 2.155	 Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Dverflow Grate Oper C C <l< td=""><td>Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 2.00 4.989 4.989 56.4 0.89</td><td>Zone 2 Weir Zone 2 Weir Control Pipe w Zone 2 Restrictor Calculated Parame Calculated Parame Calculated Parame Control Parame</td><td>Not Selected N/A N/A N/A N/A N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A Eters for Spillway feet feet acres acres acres acres acres acre.ft N/A 100 Year 2.52 8.117 8.117 8.117 8.117 8.117</td><td>feet feet ft² ft² ft² ft² ft² feet radians iF/. 500 Ye 3.14 11.43 11.43 11.43 11.43</td></l<>	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 2.00 4.989 4.989 56.4 0.89	Zone 2 Weir Zone 2 Weir Control Pipe w Zone 2 Restrictor Calculated Parame Calculated Parame Calculated Parame Control Parame	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A Eters for Spillway feet feet acres acres acres acres acres acre.ft N/A 100 Year 2.52 8.117 8.117 8.117 8.117 8.117	feet feet ft ² ft ² ft ² ft ² ft ² feet radians iF/. 500 Ye 3.14 11.43 11.43 11.43 11.43	
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Rlow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Re Zone 2 Restrictor Trapezoidal) Trapezoidal) The user can oven WQCV N/A 0.080 N/A N/A N/A	Outlet Pipe OR Rec N/A Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R/ Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.093 N/A N/A N/A N/A	tangular/Trapezoida ft (relative to basin t feet H:V feet 9% ectangular Orifice) ft (distance below ba inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 0.934 0.934 12.6	bottom at Stage = 0 f G O asin bottom at Stage Half-Cen = 0 ft) <u>5 Year</u> 1.50 2.155 2.155 2.155 2.155 2.155	 Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Dverflow Grate Oper C C <l< td=""><td>Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 2.00 4.989 4.989 56.4 0.89</td><td>Zone 2 Weir Zone 2 Weir Control Pipe w Zone 2 Restrictor Calculated Parame Calculated Parame Calculated Parame Control Parame</td><td>Not Selected N/A N/A N/A N/A N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A Eters for Spillway feet feet acres acres acres acres acres acre.ft N/A 100 Year 2.52 8.117 8.117 8.117 8.117 8.117</td><td>feet feet ft² ft² ft² ft² ft² feet radians i<i>F</i>/. 500 Ye 3.14 11.43 11.43 11.43</td></l<>	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 2.00 4.989 4.989 56.4 0.89	Zone 2 Weir Zone 2 Weir Control Pipe w Zone 2 Restrictor Calculated Parame Calculated Parame Calculated Parame Control Parame	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A Eters for Spillway feet feet acres acres acres acres acres acre.ft N/A 100 Year 2.52 8.117 8.117 8.117 8.117 8.117	feet feet ft ² ft ² ft ² ft ² ft ² feet radians i <i>F</i> /. 500 Ye 3.14 11.43 11.43 11.43	
Iser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Inflow Hydrograph Results Design Storm Return Period = One-Hour Rainfail Depth (in) = CUHP Runoff Volume (arce-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Riow, q (cfs/arce) = Peak Inflow Q (cfs) = Peak Outflow Q Predevelopment Peak Q (cfs) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Re Zone 2 Restrictor Trapezoidal) Trapezoidal) The user can oven WQCV N/A 0.080 N/A N/A N/A	Outlet Pipe OR Rec N/A Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R/ Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.093 N/A N/A N/A N/A	tangular/Trapezoida ft (relative to basin t feet H:V feet 9% ectangular Orifice) ft (distance below ba inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 0.934 0.934 12.6	bottom at Stage = 0 f G O asin bottom at Stage Half-Cen = 0 ft) <u>5 Year</u> 1.50 2.155 2.155 2.155 2.155 2.155	 Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Dverflow Grate Oper C C <l< td=""><td>Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 2.00 4.989 4.989 56.4 0.89</td><td>Zone 2 Weir Zone 2 Weir Control Pipe w Zone 2 Restrictor Calculated Parame Calculated Parame Calculated Parame Control Parame</td><td>Not Selected N/A N/A N/A N/A N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A Eters for Spillway feet feet acres acres acres acres acres acre.ft N/A 100 Year 2.52 8.117 8.117 8.117 8.117 8.117</td><td>feet feet ft² ft² ft² ft² ft² feet radians iF/. 500 Ye 3.14 11.43 11.43 11.43 11.43</td></l<>	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 2.00 4.989 4.989 56.4 0.89	Zone 2 Weir Zone 2 Weir Control Pipe w Zone 2 Restrictor Calculated Parame Calculated Parame Calculated Parame Control Parame	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A Eters for Spillway feet feet acres acres acres acres acres acre.ft N/A 100 Year 2.52 8.117 8.117 8.117 8.117 8.117	feet feet ft ² ft ² ft ² ft ² ft ² feet radians iF/. 500 Ye 3.14 11.43 11.43 11.43 11.43	
Jser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Jser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Ed Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Neaults One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak Q (cfs) = Preak Outflow Q (cfs) = Ratio Peak Outflow Predevelopment Q = Structre Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours)	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Re Zone 2 Restrictor Trapezoidal) Trapezoidal) The user can oven WQCV N/A 0.080 N/A N/A N/A	Outlet Pipe OR Rec N/A Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R/ Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.093 N/A N/A N/A N/A	tangular/Trapezoida ft (relative to basin t feet H:V feet 9% ectangular Orifice) ft (distance below ba inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 0.934 0.934 12.6	bottom at Stage = 0 f G O asin bottom at Stage Half-Cen = 0 ft) <u>5 Year</u> 1.50 2.155 2.155 2.155 2.155 2.155	 Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Dverflow Grate Oper C C <l< td=""><td>Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 2.00 4.989 4.989 56.4 0.89</td><td>Zone 2 Weir Zone 2 Weir Control Pipe w Zone 2 Restrictor Calculated Parame Calculated Parame Calculated Parame Control Parame</td><td>Not Selected N/A N/A N/A N/A N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A Eters for Spillway feet feet acres acres acres acres acres acre.ft N/A 100 Year 2.52 8.117 8.117 8.117 8.117 8.117</td><td>feet feet ft² ft² ft² ft² ft² feet radians</td></l<>	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 2.00 4.989 4.989 56.4 0.89	Zone 2 Weir Zone 2 Weir Control Pipe w Zone 2 Restrictor Calculated Parame Calculated Parame Calculated Parame Control Parame	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A Eters for Spillway feet feet acres acres acres acres acres acre.ft N/A 100 Year 2.52 8.117 8.117 8.117 8.117 8.117	feet feet ft ² ft ² ft ² ft ² ft ² feet radians	
Jser Input: Overflow Weir (Dropbox with Flat or Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Jser Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Inflow Hydrograph Results Design Storm Return Period = One-Hour Rainfail Depth (in) = CUHP Runoff Volume (arce-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/arce) = Peak Inflow Q (cfs) = Peak Outflow Q Predevelopment Peak Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	r Sloped Grate and Zone 2 Weir 2.08 (Circular Orifice, Re Zone 2 Restrictor Trapezoidal) Trapezoidal) The user can oven WQCV N/A 0.080 N/A N/A N/A	Outlet Pipe OR Rec N/A Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R/ Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.093 N/A N/A N/A N/A	tangular/Trapezoida ft (relative to basin t feet H:V feet 9% ectangular Orifice) ft (distance below ba inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 0.934 0.934 12.6	bottom at Stage = 0 f G O asin bottom at Stage Half-Cen = 0 ft) <u>5 Year</u> 1.50 2.155 2.155 2.155 2.155 2.155	 Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Dverflow Grate Oper C C <l< td=""><td>Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 2.00 4.989 4.989 56.4 0.89</td><td>Zone 2 Weir Zone 2 Weir Control Pipe w Zone 2 Restrictor Calculated Parame Calculated Parame Calculated Parame Control Parame</td><td>Not Selected N/A N/A N/A N/A N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A Eters for Spillway feet feet acres acres acres acres acres acre.ft N/A 100 Year 2.52 8.117 8.117 8.117 8.117 8.117</td><td>feet feet ft² ft² ft² feet radians 500 Yee 3.14 11.431 11.431</td></l<>	Veir Slope Length = 20-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 2.00 4.989 4.989 56.4 0.89	Zone 2 Weir Zone 2 Weir Control Pipe w Zone 2 Restrictor Calculated Parame Calculated Parame Calculated Parame Control Parame	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A / Flow Restriction P Not Selected N/A N/A N/A N/A Eters for Spillway feet feet acres acres acres acres acres acre.ft N/A 100 Year 2.52 8.117 8.117 8.117 8.117 8.117	feet feet ft ² ft ² ft ² feet radians 500 Yee 3.14 11.431 11.431	

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
ime Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]		50 Year [cfs]	100 Year [cfs]	
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5.00 11111	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
·	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:20:00	0.00	0.00	0.02	0.16	0.26	0.01	0.05	0.10	0.24
	0:25:00	0.00	0.00	0.75	7.72	12.87	0.48	2.77	4.68	12.51
	0:30:00	0.00	0.00	6.56	19.14	28.16	20.72	28.37	34.62	54.51
	0:35:00	0.00	0.00	11.25	25.07	34.92	42.35	53.83	65.91	94.25
	0:40:00	0.00	0.00	12.57	26.21	36.21	52.96	65.91	81.15	113.29
	0:45:00	0.00	0.00	12.24	25.03	34.77 32.36	56.45 55.61	69.63	86.72 86.05	119.66
·	0:55:00	0.00	0.00	10.93 9.70	23.15 21.18	32.36	55.61	68.43 64.99	86.05	118.40 113.93
	1:00:00	0.00	0.00	8.65	19.13	27.90	49.08	60.71	78.94	108.89
	1:05:00	0.00	0.00	7.68	17.27	26.01	45.50	56.51	75.22	103.98
	1:10:00	0.00	0.00	6.84	15.77	24.63	41.57	51.99	69.69	96.96
	1:15:00	0.00	0.00	6.18	14.38	23.45	37.96	47.85	63.59	89.20
	1:20:00	0.00	0.00	5.57	12.95	21.73	34.38	43.49	57.41	80.85
	1:25:00	0.00	0.00	4.98	11.53	19.51	30.78	38.95	51.22	72.16
	1:30:00	0.00	0.00	4.39	10.14	17.19	27.33	34.56	45.41	63.93
ļ	1:35:00	0.00	0.00	3.81	8.78	14.90	23.99	30.31	39.86	56.03
	1:40:00	0.00	0.00	3.24	7.59	12.99	20.74	26.24	34.59	48.71
	1:45:00	0.00	0.00	2.82 2.56	6.74	11.61	18.04 16.07	22.90	30.23 26.94	42.73
	1:50:00 1:55:00	0.00	0.00	2.56	6.09 5.52	10.49 9.50		20.43 18.38		38.14 34.25
	2:00:00	0.00	0.00	2.34	4.99	9.50	14.46 13.05	16.58	24.19 21.75	34.25
	2:05:00	0.00	0.00	1.93	4.48	7.67	11.75	14.92	19.51	27.60
·	2:10:00	0.00	0.00	1.73	3.99	6.80	10.53	13.35	17.41	24.61
	2:15:00	0.00	0.00	1.53	3.50	5.96	9.36	11.85	15.45	21.80
	2:20:00	0.00	0.00	1.33	3.03	5.16	8.24	10.42	13.62	19.18
	2:25:00	0.00	0.00	1.13	2.57	4.40	7.16	9.04	11.87	16.68
	2:30:00	0.00	0.00	0.93	2.11	3.67	6.09	7.69	10.14	14.23
	2:35:00	0.00	0.00	0.73	1.65	2.96	5.03	6.36	8.43	11.81
	2:40:00	0.00	0.00	0.53	1.19	2.25	3.98	5.03	6.71	9.39
	2:45:00	0.00	0.00	0.33	0.74	1.55	2.92	3.70	5.00	6.98
	2:50:00	0.00	0.00	0.15	0.41	1.05	1.88	2.42	3.36	4.77
	2:55:00	0.00	0.00	0.06	0.25	0.78	1.16	1.55	2.20	3.21
	3:00:00	0.00	0.00	0.03	0.16	0.59	0.75	1.03	1.48	2.21
	3:05:00 3:10:00	0.00	0.00	0.02	0.11	0.45	0.48	0.69	0.98	1.51
	3:10:00	0.00	0.00	0.01	0.07	0.34	0.30	0.45	0.62	0.99
	3:20:00	0.00	0.00	0.01	0.03	0.24	0.19	0.29	0.37	0.81
·	3:25:00	0.00	0.00	0.01	0.03	0.10	0.06	0.17	0.20	0.16
	3:30:00	0.00	0.00	0.00	0.02	0.06	0.00	0.10	0.00	0.08
·	3:35:00	0.00	0.00	0.00	0.01	0.03	0.02	0.03	0.02	0.04
ĺ	3:40:00	0.00	0.00	0.00	0.01	0.02	0.01	0.02	0.02	0.03
	3:45:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.02
	3:50:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.02
[3:55:00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.01
ļ	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01
ļ	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
ŀ	4:10:00 4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ľ	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

ser should graphically co Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]	[cfs]	
							For best results, inc
							stages of all grade changes (e.g. ISV a
							from the S-A-V tab
							Sheet 'Basin'.
							Also include the inv
							outlets (e.g. vertica
							overflow grate, and where applicable).
							mere appreable).
							-
							_
							_
							1
]
							4
							4
							-
							1
	_						
							_
							-
	_						
							-
							_
							-
							1
					1	1	1
]
							4
							4
							4
							1
							4
						-	4
							1
							4
							1
]
							4
							1
]
							-
							1
							4
							-
				1	1	1	-

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.04 (February 2021)

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Project: WINSOME FILING 3
Basin ID: WQ Pond A_Water Quality Volume (BASIN A2B+A3A+G2A+G2B+G1)

Basin ID: WQ Pon	A_Water	Quality Volum	e (BASIN A2	B+A3A+G2A+G2B+	+G1)								
ZONE 3 ZONE 2 ZONE 1	_	_											
VOLUMET EURY Wacy						1							
ZONE 1 AND 2	10	D-YEAR RIFICE		Depth Increment =		ft		T		Onlined	T		
PERMANENT ORIFICES POOL Example Zone Config	uration (Re	tention Pond)	Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
			, 	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
Watershed Information				Top of Micropool		0.00	-			270	0.006		
Selected BMP Type = EDE			W Ratio > 8			1.00	-			798	0.018	534	0.012
Watershed Area = 1.12	acres	L / W Rat	io = 67.15	7324		2.00	-		-	4,404	0.101	3,135	0.072
Watershed Length = 1,810	ft			7325		3.00	-			5,720	0.131	8,197	0.188
Watershed Length to Centroid = 905 Watershed Slope = 0.040	ft			7326		4.00	-		-	6,808	0.156	14,461	0.332
Watershed Imperviousness = 100.00							-		-				
Percentage Hydrologic Soil Group A = 0.0%	percent						-						
Percentage Hydrologic Soil Group B = 0.0%	percent												
Percentage Hydrologic Soil Groups C/D = 100.00	b percent												
Target WQCV Drain Time = 40.0	hours						-		-				
Location for 1-hr Rainfall Depths = User Input	t						-						
After providing required inputs above including 1-													
depths, click 'Run CUHP' to generate runoff hydrog the embedded Colorado Urban Hydrograph Pro	aphs using						-		-				
Water Quality Capture Volume (WQCV) = 0.047			acre-feet										
Excess Urban Runoff Volume (EURV) = 0.112	acre-fee acre-fee		acre-feet				-		-			-	
2-yr Runoff Volume (P1 = 1.19 in.) = 0.112	acre-fee		inches				-						
5-yr Runoff Volume (P1 = 1.5 in.) = 0.144	acre-fee		inches										
10-yr Runoff Volume (P1 = 1.75 in.) = 0.170	acre-fee		inches										
25-yr Runoff Volume (P1 = 2 in.) = 0.195	acre-fee	t 2.00	inches				-		-				
50-yr Runoff Volume (P1 = 2.25 in.) = 0.220	acre-fee		inches				-		-				
100-yr Runoff Volume (P1 = 2.52 in.) = 0.248	acre-fee		inches				-						
500-yr Runoff Volume (P1 = 3.14 in.) = 0.311	acre-fee		inches				-						
Approximate 2-yr Detention Volume = 0.103	acre-fee					-				-			
Approximate 5-yr Detention Volume = 0.134 Approximate 10-yr Detention Volume = 0.157	acre-fee acre-fee						-		-			<u> </u>	
Approximate 10-yr Detention Volume = 0.137 Approximate 25-yr Detention Volume = 0.166	acre-fee						-		-			-	
Approximate 50-yr Detention Volume = 0.169	acre-fee												
Approximate 100-yr Detention Volume = 0.172	acre-fee												
Define Zones and Basin Geometry							-						
Zone 1 Volume (WQCV) = 0.042	acre-fee	t					-						
Zone 2 Volume (EURV - Zone 1) = 0.065	acre-fee						-		-				
Zone 3 Volume (100-year - Zones 1 & 2) = 0.060							-		-				
Total Detention Basin Volume = 0.172		t					-						
Initial Surcharge Volume (ISV) = user	ft 3												
Initial Surcharge Depth (ISD) = user Total Available Detention Depth (H _{total}) = user	ft ft						-		-				
Depth of Trickle Channel (H_{TC}) = user							-		-				
Slope of Trickle Channel $(S_{TC}) =$ user	ft/ft						-						
Slopes of Main Basin Sides (Smain) = user	H:V												
Basin Length-to-Width Ratio (R _{L/W}) = user				-					-				
							-						
Initial Surcharge Area (A _{ISV}) = user	ft ²						-						
Surcharge Volume Length (L _{ISV}) = user	ft												
Surcharge Volume Width (W _{ISV}) = user	ft												
Depth of Basin Floor $(H_{FLOOR}) =$ user Length of Basin Floor $(L_{FLOOR}) =$ user	ft ft						-						
Length of Basin Floor (L _{FLOOR}) = user Width of Basin Floor (W _{FLOOR}) = user	ft						-		-				
Area of Basin Floor (A _{FLOOR}) = user	ft ²						-						
Volume of Basin Floor (V _{FLOOR}) = user	ft ³								-				
Depth of Main Basin (H _{MAIN}) = user	ft												
Length of Main Basin (L _{MAIN}) = user	ft						1		-				
Width of Main Basin (W _{MAIN}) = user	ft						-		-				
Area of Main Basin (A _{MAIN}) = user	ft ²						-		-				
Volume of Main Basin (V _{MAIN}) = user	ft 3												
Calculated Total Basin Volume (V _{total}) = use	acre-fee	ε.				-			-	-			
							-		-				
							-		-				
												<u> </u>	
							-		-				
												────	⊢]
							-		-				
												<u> </u>	
							-		-				
						-				-		<u> </u>	
							-		-				
												<u> </u>	
							-						
												<u> </u>	
							-		-				
						-				-		<u> </u>	
							-		-				
												<u> </u>	
												<u> </u>	
							-						
							1 1						

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

DETENTION BASIN OUTLET STRUCTURE DESIGN									
Project			FD-Detention, Vers	sion 4.04 (Februai	ry 2021)				
	WINSOME FILING		BASIN A2B+A3A+G	2A+G2B+G1)					
ZONE 3		Quality Foldine (Estimated	Estimated				
ZONE 2 ZONE 1				Stage (ft)	Volume (ac-ft)	Outlet Type			
VOLUME EURY WQCV			Zone 1 (WQCV)	1.72	0.047	Orifice Plate	1		
						Office Plate			
ZONE 1 AND 2	100-YEAR ORIFICE		Zone 2 (EURV)	2.38	0.065				
PERMANENT ORIFICES	Configuration (D	toution Doud)	Zone 3 (100-year)	2.88	0.060				
•	Configuration (Re			Total (all zones)	0.172				
User Input: Orifice at Underdrain Outlet (typicall	y used to drain WQ	CV in a Filtration Bl	<u> 1P)</u>				Calculated Parame	ters for Underdrain	<u>l</u>
Underdrain Orifice Invert Depth =		-	the filtration media	surface)		Irain Orifice Area =		ft ²	
Underdrain Orifice Diameter =		inches			Underdrain	Orifice Centroid =		feet	
User Input: Orifice Plate with one or more orific							Calculated Parame		
Invert of Lowest Orifice =	0.00		bottom at Stage =			ce Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	1.75		h bottom at Stage =	0π)		ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches				ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	inches			E	lliptical Slot Area =	N/A	ft ²	
liker Innut: Stage and Total Area of Each Orific	Pow (numbered f	om lowest to high	act)						
User Input: Stage and Total Area of Each Orifice	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	٦
Stage of Orifice Centroid (ft)		0.48		Row 4 (optional)	Kow 5 (optional)	Row 0 (optional)	Kow 7 (optional)	Row 8 (optional)	
Orifice Area (sq. inches)		0.48	0.96						-
Unite Area (sq. Inches)	0.20	0.24	0.27						
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	٦
Stage of Orifice Centroid (ft)	Row 9 (optional)	Row 10 (optional)	Row II (optional)	Row 12 (optional)	Row 15 (optional)	(optional)	Row 15 (optional)	Row 10 (optional)	
Orifice Area (sq. inches)							-		
Office Area (sq. file)									_
User Input: Vertical Orifice (Circular or Rectange	ular)						Calculated Parame	ters for Vertical Ori	fice
	Not Selected	Not Selected	1				Not Selected	Not Selected	1
Invert of Vertical Orifice =			ft (relative to basin	bottom at Stage =	0 ft) Ver	tical Orifice Area =			ft ²
Depth at top of Zone using Vertical Orifice =				bottom at Stage =		Orifice Centroid =			feet
Vertical Orifice Diameter =			inches	· · · · · · · · · · · ·	,				
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Rec	tangular/Trapezoida	al Weir (and No Out	tlet Pipe)		Calculated Parame	ters for Overflow W	/eir
	Not Selected	Not Selected					Not Selected	Not Selected	1
Overflow Weir Front Edge Height, Ho =			ft (relative to basin b	ottom at Stage = 0 fl) Height of Grate	e Upper Edge, H _t =			feet
Overflow Weir Front Edge Length =			feet	-	Overflow W	eir Slope Length =			feet
Overflow Weir Grate Slope =			H:V	G	rate Open Area / 10	0-yr Orifice Area =			
Horiz. Length of Weir Sides =			feet	0	verflow Grate Open	Area w/o Debris =			ft ²
Overflow Grate Type =				(Overflow Grate Ope	n Area w/ Debris =			ft ²
Debris Clogging % =			%						_
			_						
User Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, R	estrictor Plate, or R	ectangular Orifice)		<u>Ca</u>	Iculated Parameters	s for Outlet Pipe w/	Flow Restriction Pl	late
	Not Selected	Not Selected					Not Selected	Not Selected	
Depth to Invert of Outlet Pipe =			ft (distance below ba	sin bottom at Stage	= 0 ft) O	utlet Orifice Area =			ft ²
Circular Orifice Diameter =			inches		Outlet	Orifice Centroid =			feet
				Half-Cen	tral Angle of Restric	tor Plate on Pipe =	N/A	N/A	radians
User Input: Emergency Spillway (Rectangular or	Trapezoidal)	1					Calculated Parame		
Spillway Invert Stage=			n bottom at Stage =	0 ft)		esign Flow Depth=		feet	
Spillway Crest Length =		feet			-	Top of Freeboard =		feet	
Spillway End Slopes =		H:V				Top of Freeboard =		acres	
Freeboard above Max Water Surface =		feet			Basin Volume at 1	Top of Freeboard =		acre-ft	
Routed Hydrograph Results	The user can over	ride the default CU	HP hydrographs and	runoff volumes hv	entering new value	s in the Inflow Hvd	rographs table (Co	lumns W through A	F)
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.047	0.112	0.112	0.144	0.170	0.195	0.220	0.248	0.311
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.112	0.144	0.170	0.195	0.220	0.248	0.311
CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A N/A	N/A N/A	0.1	0.1	0.2	0.3	0.4	0.5	0.7
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A N/A	N/A N/A	0.05	0.12	0.18	0.28	0.35	0.45	0.63
Peak Inflow Q (cfs) =	N/A	N/A	0.8	1.0	1.1	1.4	1.6	1.8	2.2
Peak Outflow Q (cfs) =		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ratio Peak Outflow to Predevelopment Q =	0.0			0.5				<u> </u>	
	N/A	N/A	N/A	0.2 Plate	0.2	0.1 Plate	0.1 Plate	0.1 Plate	0.1 Plate
Structure Controlling Flow =	N/A Plate	N/A Plate	N/A Plate	Plate	0.2 Plate	Plate	Plate	Plate	Plate
	N/A	N/A	N/A		0.2				
Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	N/A Plate N/A N/A 40	N/A Plate N/A N/A 61	N/A Plate N/A N/A 62	Plate N/A N/A 72	0.2 Plate N/A N/A 79	Plate N/A N/A 86	Plate N/A N/A 94	Plate N/A N/A 101	Plate N/A N/A 118
Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	N/A Plate N/A N/A 40 45	N/A Plate N/A N/A 61 69	N/A Plate N/A N/A 62 70	Plate N/A N/A 72 81	0.2 Plate N/A N/A 79 89	Plate N/A N/A 86 96	Plate N/A N/A 94 104	Plate N/A N/A 101 112	Plate N/A N/A 118 >120
Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) = Maximum Ponding Depth (ft) =	N/A Plate N/A N/A 40 45 1.73	N/A Plate N/A N/A 61 69 2.38	N/A Plate N/A N/A 62 70 2.30	Plate N/A N/A 72 81 2.57	0.2 Plate N/A N/A 79 89 2.78	Plate N/A N/A 86 96 2.97	Plate N/A N/A 94 104 3.16	Plate N/A N/A 101 112 3.36	Plate N/A N/A 118 >120 3.79
Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	N/A Plate N/A N/A 40 45	N/A Plate N/A N/A 61 69	N/A Plate N/A N/A 62 70	Plate N/A N/A 72 81	0.2 Plate N/A N/A 79 89	Plate N/A N/A 86 96	Plate N/A N/A 94 104	Plate N/A N/A 101 112	Plate N/A N/A 118 >120

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

	The user can o	verride the calcu	lated inflow hyd	rographs from th	nis workbook wil	h inflow hydrogi	raphs developed	in a separate pro	ogram.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]		25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5.00 11111	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:00	0.00	0.00	0.00	0.12	0.14	0.10	0.12	0.12	0.17
	0:20:00	0.00	0.00	0.26	0.34	0.40	0.26	0.30	0.32	0.42
	0:25:00	0.00	0.00	0.55	0.71	0.84	0.55	0.63	0.66	0.85
	0:30:00	0.00	0.00	0.71	0.89	1.02	1.04	1.18	1.28	1.61
	0:35:00	0.00	0.00	0.76	0.94	1.08	1.25	1.41	1.59	2.00
	0:40:00	0.00	0.00	0.77	0.95	1.09	1.35	1.53	1.72	2.17
	0:45:00 0:50:00	0.00	0.00	0.75	0.94	1.08	1.37 1.37	1.55	1.78 1.78	2.23
	0:55:00	0.00	0.00	0.73	0.32	1.03	1.37	1.50	1.75	2.19
	1:00:00	0.00	0.00	0.69	0.87	1.00	1.29	1.46	1.72	2.15
	1:05:00	0.00	0.00	0.67	0.85	0.98	1.26	1.42	1.69	2.12
	1:10:00	0.00	0.00	0.64	0.83	0.96	1.21	1.37	1.61	2.02
	1:15:00	0.00	0.00	0.62	0.80	0.95	1.16	1.31	1.53	1.92
	1:20:00	0.00	0.00	0.60	0.78	0.92	1.11	1.26	1.45	1.81
	1:25:00	0.00	0.00	0.58	0.75	0.89	1.07	1.20	1.37	1.71
	1:30:00 1:35:00	0.00	0.00	0.56	0.73	0.86	1.01 0.96	1.14	1.29 1.22	1.62
	1:40:00	0.00	0.00	0.54	0.71	0.82	0.96	1.09	1.22	1.53
	1:45:00	0.00	0.00	0.52	0.63	0.75	0.86	0.97	1.08	1.35
	1:50:00	0.00	0.00	0.47	0.60	0.72	0.81	0.92	1.02	1.27
	1:55:00	0.00	0.00	0.44	0.57	0.68	0.77	0.87	0.95	1.19
	2:00:00	0.00	0.00	0.42	0.54	0.65	0.73	0.82	0.90	1.12
	2:05:00	0.00	0.00	0.39	0.50	0.60	0.67	0.75	0.82	1.03
	2:10:00	0.00	0.00	0.36	0.46	0.55	0.61	0.69	0.75	0.94
	2:15:00 2:20:00	0.00	0.00	0.33	0.42	0.51	0.56	0.64	0.69	0.87
	2:25:00	0.00	0.00	0.30	0.39	0.47	0.52	0.58	0.64	0.80
	2:30:00	0.00	0.00	0.25	0.33	0.40	0.44	0.34	0.55	0.67
	2:35:00	0.00	0.00	0.23	0.30	0.36	0.40	0.45	0.49	0.62
	2:40:00	0.00	0.00	0.21	0.27	0.33	0.37	0.42	0.45	0.57
	2:45:00	0.00	0.00	0.19	0.25	0.30	0.34	0.38	0.41	0.52
	2:50:00	0.00	0.00	0.18	0.23	0.27	0.30	0.34	0.38	0.47
	2:55:00	0.00	0.00	0.16	0.20	0.24	0.28	0.31	0.34	0.42
	3:00:00	0.00	0.00	0.14	0.18	0.22	0.25	0.28	0.30	0.38
	3:05:00 3:10:00	0.00	0.00	0.12	0.16	0.19 0.17	0.22	0.25	0.27	0.34
	3:15:00	0.00	0.00	0.09	0.14	0.17	0.19	0.21	0.23	0.29
	3:20:00	0.00	0.00	0.08	0.12	0.11	0.10	0.15	0.17	0.23
	3:25:00	0.00	0.00	0.06	0.08	0.10	0.11	0.13	0.14	0.17
	3:30:00	0.00	0.00	0.05	0.07	0.08	0.09	0.10	0.11	0.14
	3:35:00	0.00	0.00	0.04	0.06	0.07	0.07	0.08	0.09	0.11
	3:40:00	0.00	0.00	0.04	0.05	0.06	0.06	0.07	0.07	0.09
	3:45:00	0.00	0.00	0.03	0.04	0.05	0.05	0.06	0.06	0.07
	3:50:00 3:55:00	0.00	0.00	0.03	0.04	0.05	0.04	0.05	0.05	0.06
	4:00:00	0.00	0.00	0.02	0.03	0.04	0.04	0.04	0.04	0.05
	4:05:00	0.00	0.00	0.02	0.03	0.03	0.03	0.03	0.03	0.04
	4:10:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	4:15:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.02
	4:20:00 4:25:00	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.01 0.01	0.02
	4:30:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	4:35:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01 0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

ser should graphically co	Stage	Area	Area	Volume	Volume	Total	
Stage - Storage Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]	Outflow [cfs]	
							For best results, inc
							stages of all grade s changes (e.g. ISV a
							from the S-A-V table Sheet 'Basin'.
							Sneet 'Basin'.
							Also include the inv outlets (e.g. vertica
							overflow grate, and
							where applicable).
							-
							_
							-
							_
							_
							-
]
							-
							-
							-
							-
							_
							_
							_
							_
							-
							_
							_
							_
							_
							-
							_
							1
							_
							-
							1
							_
							-
							7
							1
							-
							1
							-
							1
				1	1		1

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.04 (February 2021)

Kimley »Horn

Project: Winsome Filing 3 -WQ Pond Date: 12/13/2021

Emergency Overflow Weir Calculation

Inrizontal	Broad	Croctod	Moir	Equation	lfrom	LICDUM	Ean	12 01	

Equation 12-8

Q = discharge (cfs)

 C_{BCW} = broad-crested weir coefficient (This ranges from 2.6 to 3.0. A value of 3.0 is often used in practice.) See Hydraulic Engineering Circular No. 22 for additional information.

L = broad-crested weir length (ft)

H = head above weir crest (ft)

Sloping Broad Crested Weir Equation (from USDCM Eqn. 12-9)

$$\left(\frac{2}{5}\right)C_{BCW}ZH^{2.5}$$

Equation 12-9

Q = discharge (cfs)

 C_{BCW} = broad-crested weir coefficient (This ranges from 2.6 to 3.0. A value of 3.0 is often used in practice.) See Hydraulic Engineering Circular No. 22 for additional information.

Z = side slope (horizontal: vertical)

H = head above weir crest (ft)

Note that in order to calculate the total flow over the weir depicted in Figure 12-20, the results from Equation 12-8 must be added to two times the results from Equation 12-9.

Chapter 12

Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County) 148.8 cfs/47 ft = 3.16

					BY DATE APPR.
					REVISION
ON AREA (0.02 ACRES)	DR/		ED B BY: D B`		것 등 것 Z North Nevada Avenue Sul 것 표 것 Colorado Springs, Colorado
In accordance with the MHFD, runoff reduction has vegetation requirements that have been overlooked in the past. Going forward the following will be required for runoff reduction: In accordance with the MHFD, runoff reduction has vegetation requirements that have been overlooked in the past. Going forward the following will be required for runoff reduction: • The runoff reduction RPA is considered a WQ Facility and requires a signed Maintenance Agreement • All RPA/SPA areas will need to be within a no build/drainage easement (or tract) and discussed in the maintenance agreement and O&M manual. • RPA vegetation should be turf grass (from seed [provide appropriate seed mix] or sod). • Irrigation (temp or permanent) is necessary to establish sufficient vegetation and not just weeds. • Show suitability of topsoil of RPA and steps for proper preparation of topsoil per recommendations in MHFD detail T-0 Table RR-3 • RPA/SPA Initis must be shown on GEC Plans (not just FDR) so our SW inspectors and the QSM know that these areas are to remain pervious, vegetated (80%), and irrigated post-construction. Our SW inspectors do not look at drainage reports.	WINSOME FILING NO. 3	FI PASO COUNTY, COI ORADO	CONSTRUCTION DOCUMENTS		KUNUFF KEDUCIION EXHIBIT
Other requirements: - Provide a detail (in CDs) for the UIA:RPA interface that shows the recommended vertical drop of 4". - Show signage to be posted in RPAs so maintenance personnel and owners know that the area is a water quality treatment area (not just a regular grassy area and/or an SPA). The signage should say something like: "Water Quality Treatment Area, do not pollute. Area to remain vegetated and properly maintained per the O&M Manual." GRAPHIC SCALE IN FEET 0 125 250 500 GRAPHIC SCALE IN FEET	FO CC Kinle	DNST mle ey-Horn : PROL 196	VIEV T F(TRU(Y) and Ass	V ON OR CTIC HO sociates NO.	NLY ON s, Inc.

			Design	UD-BMP (Versi								Sheet 1 of 1
Designer:	тоѕ			UD-DIVIF (VEISI	on 3.07, IVIAICN	2010)						Sheet 1 OF 1
-	Kimley-Horn										-	
	November 22	2022									-	
	Winsome Filir	-									-	
	El Paso Coun	-									-	
		.,,									-	
SITE INFORMATION (Use			0.60	linahaa								
Depth of Average Ru		Rainfall Depth	0.60	inches inches (for Wate	rahada Outaid	a of the Dom	or Pagion Ei	auro 2 1 in IIG				
Deptit of Average Ru		g 5101111, d ₆ –	0.43	Inches (IOI Wate	ersneus Outsiu	e or the Deriv	ei Keyioli, Fi	gure 5-1 in Oc				
Area Type	UIA:RPA	UIA:RPA	UIA:RPA	UIA:RPA	UIA:RPA	UIA:RPA	UIA:RPA	UIA:RPA	UIA:RPA			
Area ID	1	2	3	4	5 (Basin I2)	6	7	8	9			
Downstream Design Point ID	1	2	3	4	5	6	7	8	9			
Downstream BMP Type	None	None	None	None	None	None	None	None	None			
DCIA (ft ²)												
UIA (ft ²)	4,965	1,772	4,906	6,665	12,523	2,602	2,576	1,617	1,640			
RPA (ft ²)	5,254	1,946	5,531	6,177	11,052	2,900	2,902	1,793	1,694		ļ	
SPA (ft ²)											ļ	
HSG A (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%			
HSG B (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%			
HSG C/D (%)	100%	100%	100%	100%	100%	100%	100%	100%	100%		ļ	
Average Slope of RPA (ft/ft)	0.250	0.250	0.260	0.250	0.030	0.270	0.280	0.270	0.280			
UIA:RPA Interface Width (ft)	326.00	133.00	349.00	465.00	727.00	185.00	185.00	113.00	113.00			
CALCULATED RUNOFF	CALCULATED RUNOFF RESULTS											
Area ID	1	2	3	4	5 (Basin I2)	6	7	8	9			
UIA:RPA Area (ft ²)	10,219	3,718	10,437	12,842	23,575	5,502	5,478	3,410	3,334			
L/W Ratio	0.10	0.21	0.09	0.06	0.06	0.16	0.16	0.27	0.26		1	
UIA / Area	0.4859	0.4766	0.4701	0.5190	0.5312	0.4729	0.4702	0.4742	0.4919		İ	
Runoff (in)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		İ	
Runoff (ft ³)	0	0	0	0	0	0	0	0	0			
Runoff Reduction (ft ³)	207	74	204	278	522	108	107	67	68			
CALCULATED WQCV RE	SULTS											
Area ID	1	2	3	4	5 (Basin I2)	6	7	8	9			
WQCV (ft ³)	207	74	204	278	522	108	107	67	68			
WQCV Reduction (ft ³)	207	74	204	278	522	108	107	67	68			
WQCV Reduction (%)	100%	100%	100%	100%	100%	100%	100%	100%	100%			
Untreated WQCV (ft ³)	0	0	0	0	0	0	0	0	0			
		TS (0.000	oute from all	olumna with th	o come Dever	otroom De-'	nn Boint ID'					
CALCULATED DESIGN F								0	9			
Downstream Design Point ID	1	2	3	4	5	6	7	8	9			
DCIA (ft ²)	0 4,965	0	0 4,906	0 6,665	0 12,523	0 2,602	2,576	0 1,617	0			<u>├</u>
UIA (ft ²)	4,965	1,772	4,906	6,665	12,523	2,602	2,576	1,617	1,640			
RPA (ft ²)	5,254 0	1,946	5,531	0,177	0	2,900	2,902	1,793	1,694			
SPA (ft ²)	0 10,219	3,718	10,437	12,842	23,575	5,502	5,478	3,410	3,334			
Total Area (ft ²) Total Impervious Area (ft ²)	4,965	3,718	4,906	6,665	23,575	2,602	2,576	3,410	3,334			
	4,965	74	204	278	522	2,602	2,576	67	68			
WQCV (ft ³)		74			522		107	67	68 68			
WQCV Reduction (ft ³) WQCV Reduction (%)	207 100%	100%	204 100%	278 100%	522	108 100%	107	100%	100%			
Untreated WQCV (ft ³)	0	0	0	0	0	100%	0	0	100%			
Uniteated WQCV (ft*)	0	J	0	U	U	U	U	0	U		1	I
CALCULATED SITE RES	UI TS (sume	results from	all columns in	worksheet)								
Total Area (ft ²)	78,515	results nom		- orkaneery								
Total Impervious Area (ft ²)	39,266											
WQCV (ft ³)	1,636											
WQCV (ft ³)	1,636											
WQCV Reduction (ft [*]) WQCV Reduction (%)	1,636											
	0											
Untreated WQCV (ft ³)	0											

APPENDIX D: REFERENCES

Kimley **»Horn**

Federal Emergency Management Agency

Washington, D.C. 20472

September 30, 2019

CERTIFIED MAIL RETURN RECEIPT REQUESTED

The Honorable Mark Waller President, El Paso County Board of Commissioners 200 South Cascade Avenue, Suite 100 Colorado Springs, CO 80903 IN REPLY REFER TO: Case No.: 19-08-0185R

Community Name: El Paso County, CO Community No.: 080059

104

Dear Mr. Waller:

We are providing our comments with the enclosed Conditional Letter of Map Revision (CLOMR) on a proposed project within your community that, if constructed as proposed, could revise the effective Flood Insurance Study (FIS) report and Flood Insurance Rate Map (FIRM) for your community.

If you have any questions regarding the floodplain management regulations for your community, the National Flood Insurance Program (NFIP) in general, or technical questions regarding this CLOMR, please contact the Director, Mitigation Division of the Federal Emergency Management Agency (FEMA) Regional Office in Denver, at (303) 235-4830, or the FEMA Map Information eXchange (FMIX) toll free at 1-877-336-2627 (1-877-FEMA MAP). Additional information about the NFIP is available on our website at https://www.fema.gov/national-flood-insurance-program.

Sincerely,

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

List of Enclosures: Conditional Letter of Map Revision Comment Document

cc: Mr. Keith Curtis, P.E., CFM Floodplain Administrator Pikes Peak Regional Building Department

Mr. Joe DesJardin, P.E. Director of Projects PT McCune, LLC

Mr. Lance VanDemark, P.E., MSCE Vice President – Civil Engineering The Vertex Companies, Inc. Page 1 of 5 Issue Date: September 30, 2019

Case No.: 19-08-0185R

CLOMR-APP

Federal Emergency Management Agency

Washington, D.C. 20472

CONDITIONAL LETTER OF MAP REVISION **COMMENT DOCUMENT**

	COMMUNITY IN	FORMATION		PROPOSED PROJECT DESCRIPTION BASIS OF CONDITIONAL REQUE					
				and the second se					
	E	El Paso County		CULVE		BASE MAP CHANGES			
		Colorado			TION BASIN	HYDROLOGIC ANALYSIS			
	(Unin	corporated Areas)		FILL		HYDRAULIC ANALYSIS			
COMMUNITY						UPDATED TOPOGRAPHIC DATA			
				-					
	COMMUNITY NO .: 0800	59							
IDENTIFIER	McCune Ranch Subdivisi	on		APPRO	XIMATE LATITUDE AND LONGI	TUDE: 39.077, -104.621			
				SOURC	E: USGS QUADRANGLE DA	TUM: NAD 83			
	AFFECTED MA	P PANELS							
TYPE: FIRM*	NO.: 08041C0310G	DATE: December 7, 2	2018	* FIRM -	Flood Insurance Rate Map				
TYPE: FIRM	NO.: 08041C0350G	DATE: December 7, 2	2018						
		,							
		EL OODU			H DESCRIPTION				
VVest Klowa Creek	 from approximately 5,000) feet upstream of Meridi	an Road North to	o approxi	mately 1,640 feet downstream of	Hodgen Road			
		PR	OPOSED PROJ	ECT DES	SCRIPTION				
Flooding Source		Proposed Project			Location of Proposed Project	t			
West Kiowa Creek		2 New Triple 10'x10' E	Box Culverts	At approximately 6,220 feet upstream and 10,380 feet upstream of Meric Road North					
		6 New Detention Basi	ns		Located throughout the proposi	ed subdivision centered approximately 2,690			
					feet northwest of the intersection	on of Meridian Road and Forest Green Drive			
		Fill Placement				oproximately 6,220 feet upstream and 10,380			
					feet upstream of Meridian Road	North			
		SUMMARY	OF IMPACTS	O FLOO	D HAZARD DATA				
Flooding Source		Effective Flooding	Proposed FI		Increases Decrease				
West Kiowa Creek		No BFEs*	BFEs	5	Yes None	5			
		Zone A	Zone AE		Yes Yes				
		Zone A	Zone A		None Yes				
* BFEs - Base (1-per	cent-annual-chance) Floor	d Elevations			1616 165				
			COM						
			COM	\sim					
National Flood Insu community and dete	rance Program (NFIP) ma	ap. We reviewed the side project meets the min	ubmitted data a	nd the d	ata used to prepare the effective	MR for the project described above. This nformation shown on the effective e flood hazard information for your r community is responsible for approving eived. State/Commonwealth, county, and			
	based on their knowledg					eived. State/Commonwealth, county, and construction in the Special Flood Hazard			

This comment is based on the flood data presently available. If you have any questions about this document, please contact the FEMA Map Information eXchange (FMIX) toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on the FEMA website at https://www.fema.gov/national-flood-insurance-program.

Area (SFHA), the area subject to inundation by the base flood). If the State/Commonwealth, county, or community has adopted more restrictive or comprehensive

floodplain management criteria, these criteria take precedence over the minimum NFIP criteria.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

19-08-0185R

104

Page 2 of 5 Issue Date: September 30, 2019

Case No.: 19-08-0185R

CLOMR-APP

Federal Emergency Management Agency

Washington, D.C. 20472

CONDITIONAL LETTER OF MAP REVISION COMMENT DOCUMENT (CONTINUED)

COMMUNITY INFORMATION

To determine the changes in flood hazards that will be caused by the proposed project, we compared the hydraulic modeling reflecting the proposed project (referred to as the proposed conditions model) to the hydraulic modeling reflecting the existing conditions.

The table below shows the changes in the base flood water-surface elevations (WSELs).

	Base Flood WSEL Comparison Table								
Flooding Source	e: West Kiowa Creek	Base Flood WSEL Change (feet)	Location of maximum change						
	Maximum increase	4.9	Approximately 6,260 feet upstream of Meridian Road North						
Existing	Maximum decrease	0.4	Approximately 11,160 feet upstream of Meridian Road North						

NFIP regulations Subparagraph 60.3(b)(7) requires communities to ensure that the flood-carrying capacity within the altered or relocated portion of any watercourse is maintained. This provision is incorporated into your community's existing floodplain management ordinances; therefore, responsibility for maintenance of the altered or relocated watercourse, including any related appurtenances such as bridges, culverts, and other drainage structures, rests with your community. We may request that your community submit a description and schedule of maintenance activities necessary to ensure this requirement.

This comment is based on the flood data presently available. If you have any questions about this document, please contact the FEMA Map Information eXchange (FMIX) toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on the FEMA website at https://www.fema.gov/national-flood-insurance-program.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

19-08-0185R

Page 3 of 5 Issue Date: September 30, 2019

Case No.: 19-08-0185R

CLOMR-APP

Federal Emergency Management Agency

Washington, D.C. 20472

CONDITIONAL LETTER OF MAP REVISION COMMENT DOCUMENT (CONTINUED)

COMMUNITY INFORMATION (CONTINUED)

DATA REQUIRED FOR FOLLOW-UP LOMR

Upon completion of the project, your community must submit the data listed below and request that we make a final determination on revising the effective FIRM and FIS report. If the project is built as proposed and the data below are received, a revision to the FIRM and FIS report would be warranted.

• Detailed application and certification forms must be used for requesting final revisions to the maps. Therefore, when the map revision request for the area covered by this letter is submitted, Form 1, entitled "Overview and Concurrence Form," must be included. A copy of this form may be accessed at https://www.fema.gov/media-library/assets/documents/1343.

• The detailed application and certification forms listed below may be required if as-built conditions differ from the proposed plans. If required, please submit new forms, which may be accessed at https://www.fema.gov/media-library/assets/documents/1343, or annotated copies of the previously submitted forms showing the revised information.

Form 2, entitled "Riverine Hydrology and Hydraulics Form." Hydraulic analyses for as-built conditions of the base flood must be submitted with Form 2.

Form 3, entitled "Riverine Structures Form."

• A certified topographic work map showing the revised and effective base floodplain boundaries. Please ensure that the revised information ties in with the current effective information at the downstream and upstream ends of the revised reach.

• An annotated copy of the FIRM, at the scale of the effective FIRM, that shows the revised base floodplain boundary delineations shown on the submitted work map and how they tie-in to the base floodplain boundary delineations shown on the current effective FIRM at the downstream and upstream ends of the revised reach.

• As-built plans, certified by a registered Professional Engineer, of all proposed project elements.

• Documentation of the individual legal notices sent to property owners who will be affected by any widening or shifting of the base floodplain and/or any BFE establishment along West Kiowa Creek.

This comment is based on the flood data presently available. If you have any questions about this document, please contact the FEMA Map Information eXchange (FMIX) toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on the FEMA website at https://www.fema.gov/national-flood-insurance-program.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

19-08-0185R

Page 4 of 5 Issue Date: September 30, 2019

Case No.: 19-08-0185R

CLOMR-APP

Federal Emergency Management Agency

Washington, D.C. 20472

CONDITIONAL LETTER OF MAP REVISION COMMENT DOCUMENT (CONTINUED)

COMMUNITY INFORMATION (CONTINUED)

DATA REQUIRED FOR FOLLOW-UP LOMR (continued)

• An officially adopted maintenance and operation plan for the six new detention basins within the subdivision. This plan, which may be in the form of a written statement from the community Chief Executive Officer, an ordinance, or other legislation, must describe the nature of the maintenance activities, the frequency with which they will be performed, and the title of the local community official who will be responsible for ensuring that the maintenance activities are accomplished.

• FEMA's fee schedule for reviewing and processing requests for conditional and final modifications to published flood information and maps may be accessed at https://www.fema.gov/forms-documents-and-software/flood-map-related-fees. The fee at the time of the map revision submittal must be received before we can begin processing the request. Payment of this fee can be made through a check or money order, made payable in U.S. funds to the National Flood Insurance Program, or by credit card (Visa or MasterCard only). Please either forward the payment, along with the revision application, to the following address:

LOMC Clearinghouse Attention: LOMR Manager 3601 Eisenhower Avenue, Suite 500 Alexandria, Virginia 22304-6426

or submit the LOMR using the Online LOMC portal at: https://hazards.fema.gov/femaportal/onlinelomc/signin

After receiving appropriate documentation to show that the project has been completed, FEMA will initiate a revision to the FIRM and FIS report. Because the flood hazard information (i.e., base flood elevations, base flood depths, SFHAs, zone designations, and/or regulatory floodways) will change as a result of the project, a 90-day appeal period will be initiated for the revision, during which community officials and interested persons may appeal the revised flood hazard information based on scientific or technical data.

This comment is based on the flood data presently available. If you have any questions about this document, please contact the FEMA Map Information eXchange (FMIX) toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on the FEMA website at https://www.fema.gov/national-flood-insurance-program.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

19-08-0185R

104

Page 5 of 5 Issue Date: September 30, 2019

Case No.: 19-08-0185R

CLOMR-APP

Federal Emergency Management Agency Washington, D.C. 20472

CONDITIONAL LETTER OF MAP REVISION COMMENT DOCUMENT (CONTINUED)

COMMUNITY INFORMATION (CONTINUED)

COMMUNITY REMINDERS

We have designated a Consultation Coordination Officer (CCO) to assist your community. The CCO will be the primary liaison between your community and FEMA. For information regarding your CCO, please contact:

Ms. Jeanine P. Petterson Director, Mitigation Division Federal Emergency Management Agency, Region VIII Denver Federal Center, Building 710 P.O. Box 25267 Denver, CO 80225-0267 (303) 235-4830

This comment is based on the flood data presently available. If you have any questions about this document, please contact the FEMA Map Information eXchange (FMIX) toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on the FEMA website at https://www.fema.gov/national-flood-insurance-program.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

19-08-0185R

McCune Ranch Subdivision aka Winsome Subdivision 17480 Meridian Road North Colorado Springs, Colorado 80924

REQUEST FOR CONDITIONAL LETTER OF MAP REVISION

FOR WEST KIOWA CREEK

COLORADO SPRINGS, COLORADO

JULY 1, 2019

PREPARED FOR:

PT McCune, LLC Joseph W DesJardin 1864 Woodmoor Drive, Suite 100 Monument, Colorado 80132

PREPARED BY:

The Vertex Companies, Inc. 2420 W. 26th Avenue, Suite 100-D Denver, Colorado 80211 **PHONE:** 303-623-9116

VERTEX Project: 49388 FEMA Case No: 19-08-0185R

Project Engineer

Lance VanDemark, P.E. Project Manager

Request for Conditional Letter of Map Revision - Case No: 19-08-0185R McCune Ranch Subdivision Colorado Springs, Colorado

TABLE OF CONTENTS

1.0	INTRODUCTION	L
2.0	GENERAL LOCATION AND DESCRIPTION	1
GE	ENERAL LOCATION	2
DE	SCRIPTION OF PROPERTY	3
PR	OPOSED DEVELOPMENT	3
3.0	PROPOSED DESIGN CONDITIONS	1
RE	GULATIONS	1
	OPOSED DRAINAGE	
PR	OPOSED BRIDGES	1
H	DROLOGICAL AND HYDRAULIC CRITERIA	5
4.0	HYDRAULIC MODEL RESULTS6	5
5.0	SEDIMENT TRANSPORT	5
6.0	SCOUR ANALYSIS	7
7.0	ESA COMPLIANCE	3
8.0	OPERATION AND MAINTAINANCE REQUIREMENTS	3
9.0	PROPOSED CONDITION BFE INCREASE	3

APPENDICES

- A. REPRESENTATIVE PHOTOGRAPHS
- B. WORKING MAPS AND OTHER REQUIRED DOCUMENTS
- C. STUDIED EXISTING CONDITION 100 YEAR FLOODPLAIN MAP
- D. STUDIED PROPOSED CONDITION 100 YEAR FLOODPLAIN MAP
- E. ANNOTATED FIRMETTE MAPS
- F. HYDRAULIC ANALYSIS
 - i. STUDIED 100 YEAR FLOODPLAIN DATA
 - ii. STUDIED EXISTING CONDITION 100 YEAR FLOODPLAIN CROSS SECTIONS
 - iii. STUDIED EXISTING CONDITION 100 YEAR FLOODPLAIN PROFILE
 - iv. STUDIED PROPOSED CONDITION 100 YEAR FLOODPLAIN CROSS SECTIONS
 - v. STUDIED PROPOSED CONDITION 100 YEAR FLOODPLAIN PROFILE
 - vi. PROPOSED BRIDGE DETAILS, DRAWINGS, AND SPECIFICATIONS
- G. PROJECT DRAINAGE REPORT
- H. ENVIRONMENTAL ANALYSIS
 - i. ENDANGERED SPECIES "NO-TAKE" LETTER
 - ii. US FISH AND WILDLIFE "NO CONCERN" LETTER
 - iii. MCCUNE RANCH NATURAL FEATURES AND WETLAND REPORT

Page 1

1.0 INTRODUCTION

The purpose of this submittal is to request a Conditional Letter of Map Revision (CLOMR) for a flooding source in El Paso County, Colorado known as West Kiowa Creek. This request is requisite for a 760-acre property, known as the proposed McCune Ranch Subdivision (aka Winsome Subdidision). West Kiowa Creek, which flows across the property from west to east, is currently mapped as an approximate Zone A. Stormwater is directed from the contributing basins across the property along an approximate 1.25-mile flow path. The proposed development will affect FIRM map number 08041C0350G and 08041C0310G, effective December 7, 2018. Basin hydrology and hydraulics have been modeled and are included in this study to identify the Special Flood Hazard Area (SFHA). The basis of this request is to identify the floodplain boundary for the residential subdivision proposed for the site, and to assess the extent of flood risk relative to two proposed bridges.

2.0 GENERAL LOCATION AND DESCRIPTION

The following report provides detailed drainage and floodplain information for existing and proposed conditions of the McCune Ranch Subdivision project. The intent of this report is to show the extent of flood risk through the proposed site, and the boundaries of the SFHA, as well as other storm events per FEMA requirements. The information given in this report is intended to provide data resulting from a detailed analysis of stormwater drainage and define the 100-year floodplain. Because the subject reach is currently an approximate Zone A, Base Flood Elevations (BFE's) will be defined. A floodway has not been delineated. This development is in a rural area and will consist of large-lot single family residential parcels, a small commercial area, preserved open space, as well as the roads and required utility infrastructure.

Page 2

GENERAL LOCATION

The site is located at 17480 Meridian Road North or, more generally, at the northwest corner of Hodgen Road and Meridian Road North in unincorporated El Paso County. The subject property is undeveloped and situated in the West Half of Section 19, Township 11 South, Range 64 West of the 6th P.M., County of El Paso, State of Colorado.

The site is bounded to the south by Hodgen Road, to the east by Meridian Road North, and to the north and west by several parcels zoned primarily as Agricultural and Residential use with some Forest Land. On the east side of Median Road is Forest Green Subdivision, a low-density single-family development. On the south side of Hodgen Road is Bison Meadows Subdivision which is also a low-density single family residential subdivision. The remainder of properties surrounding the site have not yet been formally platted. The site has not been included in any previous drainage study.

Page 3

DESCRIPTION OF PROPERTY

The existing site contains 766 acres of agricultural grazing land and dry farm land. Ground cover consists mainly of native grasses and shrubs and contains several stands of evergreen trees along its southern and northern boundary. Existing wetlands are present along West Kiowa Creek and its tributaries, wetland boundaries are located roughly 50 feet to either side of the thalweg of West Kiowa Creek and the drainageway way to the south of the creek on the property. There are no existing irrigation canals or ditches on the project site nor are there any major geologic features. The property generally slopes in a northeasterly direction with slopes ranging between 1-16%. Soils consist of Alamosa loam, Brussett loam, Cruckton sandy loam, Elbeth sandy loam, Holderness loam, Kettle gravelly loamy sands, Peyton sandy loam, Peyton-Pring complex, Pring course sandy loam, Tomah-Crowford loamy sands and Tomah-Crowfoot complex. Most of the site has soils classified in Hydrologic Soil Group B; however, the property also contains a mixture of soils from Hydrologic Soils Groups C and D located in the areas in and adjacent to West Kiowa Creek and its tributaries.

PROPOSED DEVELOPMENT

The development of this property will consist of 143 2.5 to 5-acre single family residential lots and the requisite public roads and stormwater infrastructure to serve them. Anticipated construction activities include earthwork and paving associated with the public roads, as well as the installation of culverts and detention ponds to convey and treat stormwater on the site. The primary access for the site will be from Hodgen Road and Meridian Road. A site plan for the project is included in the appendix.

Page 4

3.0 PROPOSED DESIGN CONDITIONS

REGULATIONS

The hydrologic calculations in this report comply with the City of Colorado Springs/El Paso County Drainage Criteria Manuals, and FEMA drainage criteria. There are no previous drainage studies that cover this property.

EXISTING DRAINAGE

Historically, the runoff from the property flows into West Kiowa Creek, which bisects the site flowing from the southwest corner of the property to the northeast corner. There are 10 on-site sub-basins and 6 off-site sub-basin that contribute flows to West Kiowa Creek. The 10 on-site sub-basins correspond to the largest defined natural drainage channels that occur on site, while the 6 off-site basins are defined by the entire West Kiowa Creek watershed that is upstream from the subject property.

PROPOSED DRAINAGE

All existing drainage patterns will be maintained throughout the site to the extent possible. The path of the main thalweg is not altered, however 2 new box culverts are proposed at road crossings within the development. To calculate the design flows at points across the project, the existing basins were subdivided into 35 on-site sub-basins and 8 off-site sub-basins in the proposed condition. Stormwater detention ponds have been designed to control flow such that all flow off the site will be at or below historic averages.

PROPOSED BRIDGES

The project includes two triple box culverts at points where roads cross the floodplain. The culverts are sized at (3) 10' wide x 10' high totaling approximately 30' wide x 10' high of flow

Page 5

area. In the 100-year storm there is no overtopping of the road. This condition meets local requirements for this road category. The length of both box culverts is sized to accommodate 2 lanes of traffic and road shoulder. Details of the proposed culverts is included in the appendix.

The culverts will have flared end sections with a concrete apron that funnels the entering water in and spreads the exiting flow out. A rip-rap bed will be used at the culvert exit points to address potential erosion. The culverts will be installed at grade with 0.5% slope and allow the passage of aquatic life.

HYDROLOGICAL AND HYDRAULIC CRITERIA

Topographic mapping was developed from LiDAR and field mapping conducted in 2011, and obtained from the licensed GIS data service of El Paso County. El Paso County GIS Services projects the contours in the Colorado Central Zone in State Plane (Feet) units using the NAD83 horizontal datum. The vertical datum is NAVD.

Since this project contains sub-basins over 100 acres, times of concentration and peak runoff values were calculated using the SCS TR-55 Hydrograph method as required by the City of Colorado Springs/El Paso County Drainage Criteria Manuals. The model utilizes the SCS Type II 24-hr rainfall distribution and rain gauge data for the county.

Hydraulic modeling of the floodplain was performed using HEC-RAS version 5.0. Manning's nvalues of 0.03 for in channel areas and 0.035 for overbank areas were used in the model based on site observation and referencing within Ven Te Chow's <u>Open Channel Hydraulics</u>. Contraction and expansion coefficients are 0.1 and 0.3 respectively, for all cross sections except for the two box culverts where 0.3 and 0.5 are used at the appropriate sections.

Page 6

4.0 HYDRAULIC MODEL RESULTS

A HEC-RAS section analysis was performed to identify the floodplain width for the different storm events. Pertinent model information is included in the appendix. The following tables summarize the results:

COMPARATIVE EXISTING AND PROPOSED SECTION DATA											
CROSS SECTION	EC 100- YEAR WSEL	PC 100- YEAR WSEL	WSEL IMPACT	EC TOP WIDTH	PC TOP WIDTH	TOP WIDTH IMPACT					
72+34	7337.98	7338.11	0.13	62.28	63.12	0.84					
69+69	7335.41	7335.52	0.11	63.13	64.11	0.98					
67+63	7333.50	7333.63	0.13	63.51	64.92	1.41					
65+42	7331.02	7331.14	0.12	72.18	74.22	2.04					
63+02	7328.83	7328.85	0.02	76.66	76.90	0.24					
61+34	7327.64	7327.28	-0.36	135.78	131.11	-4.67					
58+12	7325.32	7326.47	1.15	129.67	201.82	72.15					
54+80	7323.11	7326.65	3.54	177.66	349.50	171.84					
53+75	7322.89	7326.35	3.46	136.48	278.31	141.83					
53+10 CULVERT											
52+56	7321.54	7321.50	-0.04	111.61	110.20	-1.41					
51+58	7318.63	7318.71	0.08	102.69	103.09	0.40					
48+10	7316.70	7316.81	0.11	178.97	179.90	0.93					
47+01	7316.60	7316.71	0.11	145.65	146.50	0.85					
44+67	7315.62	7315.70	0.08	112.95	114.47	1.52					
43+12	7314.33	7314.40	0.07	115.02	115.43	0.41					
40+58	7310.97	7311.05	0.08	98.36	99.53	1.17					
37+56	7308.35	7308.45	0.10	84.42	86.18	1.76					
36+71	7307.43	7307.52	0.09	95.71	96.89	1.18					
33+13	7304.27	7304.40	0.13	98.47	102.90	4.43					
30+53	7300.93	7301.03	0.10	68.96	69.79	0.83					
29+16	7299.69	7299.80	0.11	66.66	67.41	0.75					
25+59	7297.05	7297.13	0.08	117.36	118.75	1.39					
23+56	7294.53	7294.61	0.08	88.27	88.75	0.48					
21+15	7292.39	7292.45	0.06	99.33	99.93	0.60					

Page 7

18+26	7289.01	7289.14	0.13	84.94	86.77	1.83		
16+18	7288.55	7289.44	0.89	266.32	299.59	33.27		
15+15	7286.83	7289.46	2.63	166.37	425.09	258.72		
13+21	7285.19	7289.40	4.21	154.03	291.86	137.83		
12+24	7284.44	7289.09	4.65	157.81	255.05	97.24		
11+60	0 CULVERT							
11+05	7284.18	7283.36	-0.82	145.88	124.12	-21.76		
10+07	7282.77	7282.73	-0.04	89.32	88.93	-0.39		
8+93	7281.41	7281.40	-0.01	243.26	243.18	-0.08		
6+78	7278.50	7278.47	-0.03	265.74	265.53	-0.21		
4+40	7276.47	7276.45	-0.02	146.63	146.38	-0.25		

5.0 SEDIMENT TRANSPORT

After visual observation and examining historical records, there are no indications that sediment or debris transport will impact base flood elevations (BFE). The stream appears to be in a stable state with no evidence that the structure has been recently influenced by sediment deposition, degrading of the bank or stream bed, or vegetative cover in the flow path. Further, the proposed stormwater detention ponds will help address potential sediment before it reaches the floodplain area. As a result, sediment transport is not included in this analysis.

6.0 SCOUR ANALYSIS

The potential for scour of the floodway, and the associated impacts on water surface elevations, were considered as a part of this analysis. The two box culverts have been designed with characteristics to help address this in major storm events. At the exit point of the culvert, a combination of flared wing walls, a concrete apron, and a rip-rap bed are proposed to reduce the velocity of the water and the impacts of scour.

Page 8

7.0 ESA COMPLIANCE

An environmental features study dated October 1, 2018 has been prepared by Ecosystem Services for this project and is included in the appendix. Ecos has also provided a letter of "No Take" addressing ESA requirements. Further, a letter of "No Concern" from the US Fish and Wildlife Department has also been obtained and is included.

8.0 OPERATION AND MAINTAINANCE REQUIREMENTS

Metropolitan districts are being created for the neighborhood that will have the responsibility of maintaining drainage facilities and the floodplain area.

9.0 PROPOSED CONDITION BE INCREASE

The Base (1-percent-annual-chance) Flood Elevation (BFE) increases to greater than 1.0 foot within the current, effective approximate Zone A immediately upstream of each of the two bridges. Fulfillment of the requirements set forth in 44 CFR 65.12 are described below:

- a) Certification that no structures are affected by the increased BFE: Please see stamped certification on the next page.
- b) Documentation of individual legal notice to all affected property owners, explaining the impact of the proposed action on their property: The only affected property owner is the applicant of this LOMR request, thus the applicant is apprised of the impact of the proposed development, de facto.
- c) An evaluation of alternatives that would not result in an increase in BFE has been conducted. To access over half of the project area, the floodplain of this site must be crossed. Other bridge configurations are being considered, but due to the significant

Page 9

expense associated with a bridge of this size, box culverts are currently being specified. Further, alternative road alignments and ingress/egress locations were considered but deemed infeasible for the project.

Page 10

Certification that no structures will be affected by the rises in Base Flood Elevations (BFEs) as a result of the proposed project subject to this request. There are no existing structures currently within the boundary of the project.

Lance P. VanDemark PE, MSCE VICE PRESIDENT – CIVIL ENGINEERING O: 303.623.9116 | D: 720.545.0459 | C: 303.263.3102 | VERTEXENG.COM

THE VERTEX COMPANIES, INC.

2420 W. 26TH AVE., SUITE 100-D DENVER, CO 80211

A. <u>REPRESENTATIVE PHOTOGRAPHS</u>

B. WORKING MAPS AND OTHER REQUIRED DOCUMENTS

Pi\Stared\Projects\49000-49999\49309-49399\49388.McCune Randr\06-Engineering\Vertex Drawings\Exhibits\49388_EXH_VinMap.dwg Tuesday, October 02, 2018 12:595.57 PM Capyright: 2018 THE VERTEX COMPANES, MC.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1	Alamosa loam, 1 to 3 percent slopes	D	80.6	1.2%
15	Brussett loam, 3 to 5 percent slopes	В	6.0	0.1%
21	Cruckton sandy loam, 1 to 9 percent slopes	В	4.7	0.1%
25	Elbeth sandy loam, 3 to 8 percent slopes	В	2,081.3	31.8%
26	Elbeth sandy loam, 8 to 15 percent slopes	В	2,075.9	31.7%
34	Holderness loam, 1 to 5 percent slopes	С	15.5	0.2%
36	Holderness loam, 8 to 15 percent slopes	С	278.7	4.3%
40	Kettle gravelly loamy sand, 3 to 8 percent slopes	В	400.4	6.1%
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	В	265.1	4.0%
67	Peyton sandy loam, 5 to 9 percent slopes	В	36.3	0.6%
68	Peyton-Pring complex, 3 to 8 percent slopes	В	38.1	0.6%
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	26.0	0.4%
92	Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	В	661.6	10.1%
93	Tomah-Crowfoot complex, 8 to 15 percent slopes	В	574.4	8.8%
111	Water		10.0	0.2%
Totals for Area of Inter	rest	1	6,554.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

C. STUDIED EXISTING CONDITION 100 YEAR FLOODPLAIN MAP

FEMA CLOMR SUBMITTAL MCCUNE RANCH SUBDIVISION

STATE OF CO
r
Superior and the second second

WEST KIC	DWA CREEK	EXISTING CONDITION DATA	S 100-YEAR FLOOD
CROSS SECTION	100-YEAR EC WSEL	100-YEAR EC TOP WIDTH INCLUDING INEFFICTIVE FLOW	100-YEAR EC TOP WIDTH EXCLUDING INEFFICTIVE FLOW
72+34	7337.98	62.28	62.28
69+69	7335.41	63.13	63.13
67+63	7333.50	63.51	63.51
65+42	7331.02	72.18	72.18
63+02	7328.83	76.66	76.66
61+34	7327.64	135.78	135.78
58+12	7325.32	129.67	129.67
54+80	7323.11	177.66	139.36
53+75	7322.89	136.48	136.48
53+10			
52+56	7321.54	111.61	111.61
51+58	7318.63	102.69	102.69
48+10	7316.70	178.97	178.97
47+01	7316.60	145.65	145.65
44+67	7315.62	112.95	112.95
43+12	7314.33	115.02	115.02
40+58	7310.97	98.36	98.36
37+56	7308.35	84.42	84.42
36+71	7307.43	95.71	95.71
33+13	7304.27	98.47	98.47
30+53	7300.93	68.96	68.96
29+16	7299.69	66.66	66.66
25+59	7297.05	117.36	117.36
23+56	7294.53	88.27	88.27
21+15	7292.39	99.33	99.33
18+26	7289.01	84.94	84.94
16+18	7288.55	266.32	266.32
15+15	7286.83	166.37	82.16
13+21	7285.19	154.03	154.03
12+24	7284.44	157.81	157.81
11+60			
11+05	7284.18	145.88	145.88
10+07	7282.77	89.32	89.32
8+93	7281.41	243.26	243.26
6+78	7278.50	265.74	265.74
4+40	7276.47	146.63	146.63

10+07. DASHED LINE AT THESE CROSS SECTIONS REPRESENTS ADJUSTED ANGLE.

BENCHMARK: NORTHWEST CORNER OF SECTION 24, TOWNSHIP 11 SOUTH, RANGE 65 WEST OF THE 6TH P.M.

A 3.5" ALUMINUM CAP STAMPED "LS 12103"

ELEVATION IS 7429.30 NAVD88

D. STUDIED PROPOSED CONDITION 100 YEAR FLOODPLAIN MAP

FEMA CLOMR SUBMITTAL MCCUNE RANCH SUBDIVISION A PARCEL OF PROPERTY LOCATED IN SECTIONS 13 & 24, TOWNSHIP 11 SOUTH, RANGE 65 WEST OF THE 6TH P.M. AND IN THE WEST HALF OF THE WEST HALF OF SECTION 19, TOWNSHIP 11 SOUTH, RANGE 64 WEST OF THE 6TH P.M., COUNTY OF EL PASO, STATE OF COLORADO

WEST KIO	WA CREEK P	ROPOSED CONDITION DATA	NS 100-YEAR FLOOD	
CROSS SECTION	100-YEAR PC WSEL	100-YEAR PC TOP WIDTH INCLUDING INEFFICTIVE FLOW	100-YEAR PC TOP WIDTH <u>EXCLUDING</u> INEFFICTIVE FLOW	
72+34	7338.11	63.12	63.12	
69+69	7335.52	64.11	64.11	
67+63	7333.63	64.92	64.92	
65+42	7331.14	74.22	74.22	
63+02	7328.85	76.90	76.90	
61+34	7327.28	131.11	131.11	
58+12	7326.47	201.82	169.96	
54+80	7326.65	349.50	322.44	
53+75	7326.35	278.31	62.88	
53+10		CULVERT		
52+56	7321.50	110.20	66.00	
51+58	7318.71	103.09	103.09	
48+10	7316.81	179.90	179.90	
47+01	7316.71	146.50	146.50	
44+67	7315.70	114.47	114.47	
43+12	7314.40	115.43	115.43	
40+58	7311.05	99.53	99.53	
37+56	7308.45	86.18	86.18	
36+71	7307.52	96.89	96.89	
33+13	7304.40	102.90	102.90	
30+53	7301.03	69.79	69.79	
29+16	7299.80	67.41	67.41	
25+59	7297.13	118.75	118.75	
23+56	7294.61	88.75	88.75	
21+15	7292.45	99.93	99.93	
18+26	7289.14	86.77	86.77	
16+18	7289.44	299.59	299.59	
15+15	7289.46	425.09	425.09	
13+21	7289.40	291.86	189.05	
12+24	7289.09	255.05	62.76	
11+60		CULVERT		
11+05	7283.36	124.12	60.69	
10+07	7282.73	88.93	88.93	
8+93	7281.40	243.18	243.18	
6+78	7278.47	265.53	265.53	
4+40	7276.45	146.38	146.38	

SKEW ANGLE APPLIED IN HEC-RAS OF 55° @ 51+58 AND 45° @ 10+07. DASHED LINE AT THESE CROSS SECTIONS REPRESENTS ADJUSTED ANGLE.

BENCHMARK: NORTHWEST CORNER OF SECTION 24, TOWNSHIP 11 SOUTH, RANGE 65 WEST OF THE 6TH P.M.

A 3.5" ALUMINUM CAP STAMPED "LS 12103"

ELEVATION IS 7429.30 NAVD88

E. <u>ANNOTATED FIRMETTE MAPS</u>

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for ossible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained vithin the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and hould not be used as the sole source of flood elevation information. Accordingly flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0" North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwate Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 spheroid Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and pround elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway

Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management National Oceanic and Atmospheric Administration, United States Geological Survey and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

If you have questions about this map or questions concerning the National Flood nsurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) o visit the FEMA website at http://www.fema.gov/business/nfig El Paso County Vertical Datum Offset Table

> Vertical Datum Flooding Source Offset (ft)

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION

Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

> Additional Flood Hazard information and resources are Water Conservation Board.

available from local communities and the Colorado

	SPECIAL FLOO	LEGEND D HAZARD AREAS (SFHAS) SUBJECT TO
The 1% annuthat bac a 1%	INUNDATION B al chance flood (100	ID HAZARD AREAS (SFHAS) SUBJECT TO Y THE 1% ANNUAL CHANCE FLOOD -year flood), also known as the base flood, is the flood ualed or exceeded in any given year. The Special Flood
Hazard Area Special Flood	is the area subject Hazard include Zone	to flooding by the 1% annual chance flood. Areas of is A, AE, AH, AO, AR, A99, V, and VE. The Base Flood ation of the 1% annual chance flood.
ZONE A ZONE AE	Base Flood Elevatio	
ZONE AH ZONE AO	Elevations determin	 to 3 feet (usually areas of ponding); Base Flood red. o 3 feet (usually sheet flow on sloping terrain); average
ZONE AR	depths determined determined.	 For areas of alluvial fan flooding, velocities also rd Area Formerly protected from the 1% annual chance
	flood by a flood co AR indicates that	ontrol system that was subsequently decertified. Zone the former flood control system is being restored to from the 1% annual chance or greater flood.
ZONE A99		ted from 1% annual chance flood by a Federal flood a under construction; no Base Flood Elevations
ZONE V	determined. Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined.	
	Elevations determin	e with velocity hazard (wave action); Base Flood red. EAS IN ZONE AE
	is the channel of a	stream plus any adjacent floodplain areas that must be at the 1% annual chance flood can be carried without
substantial in	creases in flood heigh OTHER FLOOD	
ZONE X	average depths of	ual chance flood; areas of 1% annual chance flood with less than 1 foot or with drainage areas less than 1 reas protected by levees from 1% annual chance flood.
	OTHER AREAS	a be autoide the 0.70% annual chance floodalain
ZONE X ZONE D		o be outside the 0.2% annual chance floodplain. d hazards are undetermined, but possible.
UIII		IER RESOURCES SYSTEM (CBRS) AREAS
CBRS areas a		ROTECTED AREAS (OPAs) y located within or adjacent to Special Flood Hazard Areas.
	Flood	plain boundary vay boundary
	Zone I	D Boundary
	- Bound	and OPA boundary lary dividing Special Flood Hazard Areas of different Base Flevations, flood deaths or flood valorities
~ 513	Base F	Elevations, flood depths or flood velocities.
(EL 987 * Referenced	elevat	-lood Elevation value where uniform within zone; ion in feet* an Vertical Datum of 1988 (NAVD 88)
A		section line
23		ect line
97° 07° 30 32° 22' 30 ⁴² 75 ^{000m}	00" Datum N 1000-1	aphic coordinates referenced to the North American n of 1983 (NAD 83) meter Universal Transverse Mercator grid ticks,
6000000	zone 1 FT 5000-1	13 foot grid ticks: Colorado State Plane coordinate
DX5510	Lambe	n, central zone (FIPSZONE 0502), ert Conformal Conic Projection mark (see explanation in Notes to Users section of
_ M1.5		RM panel)
•	NIVEL	MAP REPOSITORIES
	EFFE	Map Repositories list on Map Index CTIVE DATE OF COUNTYWIDE OOD INSURANCE RATE MAP
		MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL
Special FI	ood Hazard Areas, to	ate corporate limits, to change Base Flood Elevations and o update map format, to add roads and road names, and to reviously issued Letters of Map Revision.
Map History T	able located in the Fl	ry prior to countywide mapping, refer to the Community lood Insurance Study report for this jurisdiction. s available in this community, contact your insurance
agent or call I	he National Flood In	surance Program at 1-800-638-6620.
	1000 0	MAP SCALE 1" = 2000' 2000 4000
6		
6		500 1200
	N.F.P	PANEL 0350G
		EIDM
		FIRM
)(E)	FLOOD INSURANCE RATE MAP EL PASO COUNTY,
	ARC	COLORADO
		AND INCORPORATED AREAS
	Ð	PANEL 350 OF 1300
	ANA	(SEE MAP INDEX FOR FIRM PANEL LAYOUT
		COMMUNITY NUMBER PANEL SUFFIX EL PASO COUNTY 086059 0350 G
		Notice to User. The Map Number shown below should be
		Notce to User: The Map Number shown below should be used when placing map orders: the Community Number shown above should be used on insurance applications for the subject community.
	E B	MAP NUMBER 08041C0350G
		U01411-U5508
	ONL	
	ANOIL	MAP REVISED DECEMBER 7, 2018

		LEGEND		
	0	ID HAZARD AREAS (SFHAS) SUBJECT TO Y THE 1% ANNUAL CHANCE FLOOD		
The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of				
Special Flood Hazard Include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood.				
ZONE A ZONE AE ZONE AH	No Base Flood Elevations determined, Base Flood Elevations determined. Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood			
ZONE AH	Elevations determined. Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average			
ganne e ge e tanne og e	depths determined. For areas of alluvial fan flooding, velocities also determined.			
ZONE AR	Special Flood Hazard Area Formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood.			
ZONE A99		ted from 1% annual chance flood by a Federal flood under construction; no Base Flood Elevations		
ZONE V		e with velocity hazard (wave action); no Base Flood		
ZONE VE	Coastal flood zon Elevations determin	e with velocity hazard (wave action); Base Flood ed.		
		EAS IN ZONE AE		
kept free of	encroachment so the creases in flood heigh			
ZONE X	OTHER FLOOD			
_уля⊏ А	average depths of	ual chance flood; areas of 1% annual chance flood with less than 1 foot or with drainage areas less than 1 eas protected by levees from 1% annual chance flood.		
	OTHER AREAS			
ZONE X ZONE D		o be outside the 0.2% annual chance floodplain. d hazards are undetermined, but possible.		
()))	COASTAL BARR	IER RESOURCES SYSTEM (CBRS) AREAS		
1111	OTHERWISE PR	ROTECTED AREAS (OPAs)		
CBRS areas a		y located within or adjacent to Special Flood Hazard Areas.		
	Flood	vay boundary		
		D Boundary and OPA boundary		
		lary dividing Special Flood Hazard Areas of different Base Elevations, flood depths or flood velocities.		
← 513 (EL 987) Base I	lood Elevation line and value; elevation in feet* lood Elevation value where uniform within zone;		
* Referenced		ion in feet* in Vertical Datum of 1988 (NAVD 88)		
A	- Cross	section line		
23	0	ect line		
97° 07° 30. 32° 22' 30.	0009	aphic coordinates referenced to the North American 1 of 1983 (NAD 83)		
⁴² 75 ^{000m}	N 1000- zone 1	meter Universal Transverse Mercator grid ticks, 13		
6000000	system	foot grid ticks: Colorado State Plane coordinate n, central zone (FIPSZONE 0502), ert Conformal Conic Projection		
Lambert Conformal Conic Projection				
DX5510	Bench	mark (see explanation in Notes to Users section of RM panel)		
DX5510		RM panel)		
	River	IRM panel) Mile MAP REPOSITORIES		
	River Refer to	IRM panel) Mile MAP REPOSITORIES Map Repositories list on Map Index CTIVE DATE OF COUNTYWIDE		
	River l Refer to EFFE FL	RM panel) Mile MAP REPOSITORIES Map Repositories list on Map Index		
• M1.5	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to	IRM panel) Mile MAP REPOSITORIES Map Repositories list on Map Index CTIVE DATE OF COUNTYWIDE OOD INSURANCE RATE MAP MARCH 17, 1997		
DECEME Special FI	River l Refer to EFFECTIVE D BER 7, 2018 - to upd ood Hazard Areas, to incorporate p by map revision histo	IRM panel) Mile MAP REPOSITORIES Map Repositories list on Map Index ICTIVE DATE OF COUNTYWIDE OOD INSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base Flood Elevations and o update map format, to add roads and road names, and to reviously issued Letters of Map Revision. ry prior to countywide mapping, refer to the Community.		
DECEME Special FI For communit Map History T To determine	River Refer to EFFECTIVE D BER 7, 2018 - to upd ood Hazard Areas, to incorporate p y map revision histo able located in the Fi	IRM panel) Mile MAP REPOSITORIES Map Repositories list on Map Index CTIVE DATE OF COUNTYWIDE OOD INSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base Flood Elevations and o update map format, to add roads and road names, and to reviously issued Letters of Map Revision. ry prior to countywide mapping, refer to the Community iood Insurance Study report for this jurisdiction. Is available in this community, contact your insurance		
DECEME Special FI For communit Map History T To determine	River Refer to EFFECTIVE D BER 7, 2018 - to upd ood Hazard Areas, to incorporate p y map revision histo able located in the Fi	IRM panel) Mile MAP REPOSITORIES Map Repositories list on Map Index CTIVE DATE OF COUNTYWIDE OOD INSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base Flood Elevations and o update map format, to add roads and road names, and to reviously issued-Letters of Map Revision. The prior to countywide mapping, refer to the Community lood Insurance Study report for this jurisdiction.		
DECEME Special FI For communit Map History T To determine	River I Refer to EFFECTIVE D BER 7, 2018 - to upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i he National Flood In	IRM panel) Mile MAP REPOSITORIES Map Repositories list on Map Index CTIVE DATE OF COUNTYWIDE OOD INSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base Flood Elevations and to update map format, to add roads and road names, and to reviously issued-Letters of Map Revision. The prior to countywide mapping, refer to the Community lood Insurance Study report for this jurisdiction. Is available in this community, contact your insurance surance Program at 1-800-638-6620.		
DECEME Special FI For communit Map History T To determine	River I Refer to EFFECTIVE D BER 7, 2018 - to upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i he National Flood In	IRM panel) Mile MAP REPOSITORIES Map Repositories list on Map Index CTIVE DATE OF COUNTYWIDE OOD INSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base Flood Elevations and o update map format, to add roads and road names, and to reviously issued Letters of Map Revision. ry prior to countywide mapping, refer to the Community iood Insurance Study report for this jurisdiction. Is available in this community, contact your insurance		
DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - to upd ood Hazard Areas, to incorporate p y map revision histo able located in the Fi if flood insurance the National Flood In	IRM panel) Mile MAP REPOSITORIES Map Repositories list on Map Index CTIVE DATE OF COUNTYWIDE OOD INSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base Flood Elevations and o update map format, to add roads and road names, and to reviously issued Letters of Map Revision. The prior to countywide mapping, refer to the Community lood Insurance Study report for this jurisdiction. Is available in this community, contact your insurance surance Program at 1-800-638-6620. MAP SCALE 1" = 1000' 1000 2000 FEET METERS		
DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	IRM panel) Mile MAP REPOSITORIES Map Repositories list on Map Index CTIVE DATE OF COUNTYWIDE OOD INSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base Flood Elevations and o update map format, to add roads and road names, and to reviously issued Letters of Map Revision. The prior to countywide mapping, refer to the Community lood Insurance Study report for this jurisdiction. Is available in this community, contact your insurance surance Program at 1-800-638-6620. MAP SCALE 1" = 1000' 1000 2000 FEET METERS		
DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	IRM panel) Mile MAP REPOSITORIES Map Repositories list on Map Index CTIVE DATE OF COUNTYWIDE OOD INSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base Flood Elevations and o update map format, to add roads and road names, and to reviously issued Letters of Map Revision. The prior to countywide mapping, refer to the Community lood Insurance Study report for this jurisdiction. Is available in this community, contact your insurance surance Program at 1-800-638-6620. MAP SCALE 1" = 1000' 1000 2000 FEET METERS		
DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	IRM panel) Mile MAP REPOSITORIES Map Repositories list on Map Index CTIVE DATE OF COUNTYWIDE ODD INSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base Flood Elevations and to reviously issued Letters of Map Revision. ry prior to countywide mapping, refer to the Community lood Insurance Study report for this jurisdiction. is available in this community, contact your insurance surance Program at 1-800-638-6620. MAP SCALE 1" = 1000' 1000 2000 FEET 300 600'		
DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	IRM panel) Mile MAP REPOSITORIES Map Repositories list on Map Index ISCTIVE DATE OF COUNTYWIDE CODINSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL. ate corporate limits, to change Base Flood Elevations and to reviously issued Letters of Map Revision. ry prior to countywide mapping, refer to the Community. odd Insurance Study report for this jurisdiction. is available in this community, contact your insurance surance Program at 1-800-638-6620. MAP SCALE 1" = 1000' 1000 2000 FEET 300 600		
DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	Image: Mile Mile MAP REPOSITORIES Map Repositories list on Map Index. Image: Content of CountryWide COUNT DATE OF COUNTYWIDE Country Map Revision COUNT ANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL. Image: Country Wide mapping, refer to the Community: In update map format, to add roads and road names, and to reviously issued Letters of Map Revision. Image: Country Wide mapping, refer to the Community: In update map format, to add roads and road names, and to reviously issued Letters of Map Revision. Image: Country Wide mapping, refer to the Community: In up of the country wide mapping, refer to the Community: Image: Country Wide mapping, refer to the Community: Image: Country wide mapping, refer to the Community: Image: Country Wide mapping, refer to the Community: Image: Country wide mapping, refer to the Community: Image: Country Wide mapping, refer to the Community: Image: Country wide mapping, refer to the Community: Image: Country Wide mapping, refer to the Community: Image: Country wide mapping, refer to the Community: Image: Country Wide mapping, refer to the Community: Image: Country wide mapping, refer to the Community: Image: Country Wide mapping, refer to the Country Wide mapping, refer to the Country Wide mapping, refer to the Country Wide mapping, refer to the Country Wide mapping, refer to the Country Wide ma		
M1.5 DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	IRM panel) Mile MAP REPOSITORIES Map Repositories list on Map Index ISCTIVE DATE OF COUNTYWIDE CODINSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL. ate corporate limits, to change Base Flood Elevations and to reviously issued Letters of Map Revision. ry prior to countywide mapping, refer to the Community. odd Insurance Study report for this jurisdiction. is available in this community, contact your insurance surance Program at 1-800-638-6620. MAP SCALE 1" = 1000' 1000 2000 FEET 300 600		
M1.5 DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	IRM panely Mile MAP REPOSITORIES Map Repositories list on Map Index ICTIVE DATE OF COUNTYWIDE ODD INSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base-Flood Elevations and to reviously issued-Letters of Map Revision. Ty prior to countywide mapping, refer to the Community lood Insurance Study report for this jurisdiction. Is available in this community, contact your insurance surance Program at 1-800-638-6620. MAP SCALE 1" = 1000' 1000 2000 Image: Ima		
M1.5 DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	IRM panel) Mile MAP REPOSITORIES Map Repositories list on Map Index CTIVE DATE OF COUNTYWIDE OOD INSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base Flood Elevations and to update map format, to add roads and road names, and to reviously issued Letters of Map Revision. Try prior to countywide mapping, refer to the Community food Insurance Study report for this jurisdiction. Is available in this community, contact your insurance surance Program at 1-800-638-6620. MAP SCALE 1" = 1000' 		
M1.5 DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	RW panely Mile MAP REPOSITORIES Map Repositories list on Map Index CTIVE DATE OF COUNTYWIDE COD INSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base-Flood Elevations and to reviously issued-Letters of Map Revision. Try prior to countywide mapping, refer to the Community tood Insurance Study report for this jurisdiction. Is available in this community, contact your insurance surance Program at 1-800-638-6620. MAP SCALE 1" = 1000' 100 200 FEET MAP SCALE 1" = 1000' METERS 300 600 METERS 300 600 METERS ADD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 310 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT)		
M1.5 DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	Image Mile MAP REPOSITORIES Map Repositories list on Map Index CTIVE DATE OF COUNTYWIDE ODD INSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL. tate corporate limits, to change Base Flood Elevations and o reviously issued-Letters of Map Revision. ry prior to countywide mapping, refer to the Community tood Insurance Study report for this jurisdiction. is available in this community, contact your insurance surance Program at 1-800-638-6620. MAP SCALE 1" = 1000' 1000 2000 METERS 300 600'		
M1.5 DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	RW panely Mile MAP REPOSITORIES Map Repositories list on Map Index CTIVE DATE OF COUNTYWIDE CODINSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base-Flood Elevations and to reviously issued-Letters of Map Revision. Try prior to countywide mapping, refer to the Community tood Insurance Study report for this jurisdiction. Is available in this community, contact your insurance surance Program at 1-800-638-6620. MAP SCALE 1" = 1000' 100 2000 FEET MAP SCALE 1" = 1000' MAP SCALE 1" = 100' MAP SCALE 1" = 100' M		
M1.5 DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	RW panely Mile MAP REPOSITORIES Map Repositories list on Map Index STIVE DATE OF COUNTYWIDE COUNSURANCE RATE MAP MARCH 17, 1997 ATC(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base Flood Elevations and to reviously issued Letters of Map Revision. ry prior to countywide mapping, refer to the Community cod Insurance Study report for this jurisdiction. is available in this community, contact your insurance surance Program at 1-800-638-6620. MAP ECALE 1" = 1000' 100 200 PEET 300 600 Reference Program at 1-800-638-6620. MAP ECALE 1" = 1000' 100 2000 PEET METERS 300 600 Reference Program at 1-800-638-6620. MAP ECALE 1" = 1000' METERS 300 600 Reference Program at 1-800-638-6620. PANEL 03100E METERS 300 600 Reference Program at 1-800-638-6620. PANEL 03100E METERS 300 600 Reference Program at 1-800-638-6620. <		
M1.5 DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	RW panely Mile MAP REPOSITORIES Map Repositories list on Map Index STIVE DATE OF COUNTYWIDE COUNSURANCE RATE MAP MARCH 17, 1997 ATC(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base Flood Elevations and to reviously issued Letters of Map Revision. ry prior to countywide mapping, refer to the Community cod Insurance Study report for this jurisdiction. is available in this community, contact your insurance surance Program at 1-800-638-6620. MAP ECALE 1" = 1000' 100 200 PEET 300 600 Reference Program at 1-800-638-6620. MAP ECALE 1" = 1000' 100 2000 PEET METERS 300 600 Reference Program at 1-800-638-6620. MAP ECALE 1" = 1000' METERS 300 600 Reference Program at 1-800-638-6620. PANEL 03100E METERS 300 600 Reference Program at 1-800-638-6620. PANEL 03100E METERS 300 600 Reference Program at 1-800-638-6620. <		
M1.5 DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	RW panely Mile MAP REPOSITORIES Map Repositories list on Map Index STIVE DATE OF COUNTYWIDE COUNSURANCE RATE MAP MARCH 17, 1997 ATC(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base Flood Elevations and to reviously issued Letters of Map Revision. ry prior to countywide mapping, refer to the Community cod Insurance Study report for this jurisdiction. is available in this community, contact your insurance surance Program at 1-800-638-6620. MAP ECALE 1" = 1000' 100 200 PEET 300 600 Reference Program at 1-800-638-6620. MAP ECALE 1" = 1000' 100 2000 PEET METERS 300 600 Reference Program at 1-800-638-6620. MAP ECALE 1" = 1000' METERS 300 600 Reference Program at 1-800-638-6620. PANEL 03100E METERS 300 600 Reference Program at 1-800-638-6620. PANEL 03100E METERS 300 600 Reference Program at 1-800-638-6620. <		
M1.5 DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	RM paniel) Mile MAP REPOSITORIES Map Repositories list on Map Index. SCIVE DATE OF COUNTYWIDE ODD INSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL. ate corporate limits, to change Base Flood Elevations and to reviously issued Letters of Map Revision. ry prior to countywide mapping, refer to the Community. oupdate map format, to add roads and road names, and to reviously issued Letters of Map Revision. ry prior to countywide mapping, refer to the Community. out and the provide state of Map Revision. available in this community, contact your insurance surance Program at 1-800-638-6620. METERS 300 600 METERS 300 600 METERS 300 600		
M1.5 DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	RW panely Mile MAP REPOSITORIES Map Repositories list on Map Index STIVE DATE OF COUNTYWIDE COUNSURANCE RATE MAP MARCH 17, 1997 ATC(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base Flood Elevations and to reviously issued Letters of Map Revision. ry prior to countywide mapping, refer to the Community cod Insurance Study report for this jurisdiction. is available in this community, contact your insurance surance Program at 1-800-638-6620. MAP ECALE 1" = 1000' 100 200 PEET 300 600 Reference Program at 1-800-638-6620. MAP ECALE 1" = 1000' 100 2000 PEET METERS 300 600 Reference Program at 1-800-638-6620. MAP ECALE 1" = 1000' METERS 300 600 Reference Program at 1-800-638-6620. PANEL 03100E METERS 300 600 Reference Program at 1-800-638-6620. PANEL 03100E METERS 300 600 Reference Program at 1-800-638-6620. <		
M1.5 DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	Intermedia Mile MAP REPOSITORIES Map Repositories list on Map Index. CITVE DATE OF COUNTYWIDE CODI INSURANCE RATE MAP Map Repositories list on hange Base Flood Elevations and to reviously issued Letters of Map Revision. Try prior to countywide mapping, refer to the Community. out of insurance Study report for this jurisdiction. It is comported limits, to change Base Flood Elevations and to reviously issued Letters of Map Revision. Try prior to countywide mapping, refer to the Community. It is available in this community, contact your insurance surance Program at 1-800-638-6620. It is available in this community. contact your insurance surance Program at 1-800-638-6620. It is available in this community. <		
M1.5 DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	IRM panel) Mile MAP REPOSITORIES Map Repositories list on Map Index. SCTVE DATE OF COUNTYWIDE OOD INSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL. ate corporate limits, to change Base Flood Elevations and to puddate map format, to add roads and road names, and to reviously issued Letters of Map Revision. ry prior to countywide mapping, refer to the Community. Issurance Program at 1-800-638-6620. MAP SCALE 1* = 1000* 		
M1.5 DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	RM painely Mile MAP REPOSITORIES Map Repositories list on Map Index. STUYE DATE OF COUNTYWIDE COD INSURANCE RATE MAP MARCH 17, 1997 ATE(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base-Flood Elevations and to previously issued Letters of Map Revision. Try prior to countywide mapping, refer to the Community cod Insurance Study report for this jurisdiction. is available in this community, contact your insurance surance Program at 1-800-638-6620. MAP ELEVISION MARCH 17: 1000 PANEL 0310G FEREM FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 310 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) COTTAINS: COMMUNITY MUMBER PANEL SUFFIX EL PASO COUNTY (8003) USIO 0 MAP NUMBER ON UNCORPORATED AREAS MAP REVISED MAP REVISED MAP REVISED		
M1.5 DECEME Special FI For communit Map History T To determine agent or call t	River Refer to EFFECTIVE D BER 7, 2018 - fo upd ood Hazard Areas, to incorporate p by map revision histo able located in the Fi if flood insurance i the National Flood In	Interpretendent Interpretendent Main Map REPOSITORIES st on Map Index. Strive DATE OF COUNTYWIDE Cooporate limits, to change Base-Flood Elevations and oneres, and to reviously issued Letters of Map Revision. Ty prior to countywide mapping, refer to the Community condit numeres. Indo of Insurance Study report for this jurisdiction. is available in this community, contact your insurance surance Program at 1-800-638-6620. Map RETERS 300 600 PANEL 0310G FEREM FLOOD INSURANCE RATE MAP FLOOD INSURANCE RATE MAP FLOOD INSURANCE RATE MAP FLOOD INSURANCE RATE MAP FLOOD INSURANCE RATE MAP FLOOD INSURANCE RATE MAP FLOOD INSURANCE RATE MAP FLOOD INSURANCE RATE MAP FLOOD INSURANCE FOR FIRM PANEL LAYOUT CONTAINS CONTAINS CONTAINS CONTAINS NUMBER PANEL SUFEX PANEL SUFEX CONTAINS ODED		

i. <u>STUDIED 100 YEAR FLOODPLAIN DATA</u>

WEST KIC	OWA CREEK	EXISTING CONDITION DATA	IS 100-YEAR FLOOD
CROSS	100-YEAR	100-YEAR EC TOP	100-YEAR EC TOP
SECTION	EC WSEL	WIDTH <u>INCLUDING</u>	WIDTH <u>EXCLUDING</u>
		INEFFICTIVE FLOW	INEFFICTIVE FLOW
72+34	7337.98	62.28	62.28
69+69	7335.41	63.13	63.13
67+63	7333.50	63.51	63.51
65+42	7331.02	72.18	72.18
63+02	7328.83	76.66	76.66
61+34	7327.64	135.78	135.78
58+12	7325.32	129.67	129.67
54+80	7323.11	177.66	139.36
53+75	7322.89	136.48	136.48
53+10		-	-
52+56	7321.54	111.61	111.61
51+58	7318.63	102.69	102.69
48+10	7316.70	178.97	178.97
47+01	7316.60	145.65	145.65
44+67	7315.62	112.95	112.95
43+12	7314.33	115.02	115.02
40+58	7310.97	98.36	98.36
37+56	7308.35	84.42	84.42
36+71	7307.43	95.71	95.71
33+13	7304.27	98.47	98.47
30+53	7300.93	68.96	68.96
29+16	7299.69	66.66	66.66
25+59	7297.05	117.36	117.36
23+56	7294.53	88.27	88.27
21+15	7292.39	99.33	99.33
18+26	7289.01	84.94	84.94
16+18	7288.55	266.32	266.32
15+15	7286.83	166.37	82.16
13+21	7285.19	154.03	154.03
12+24	7284.44	157.81	157.81
11+60	1		
11+05	7284.18	145.88	145.88
10+07	7282.77	89.32	89.32
8+93	7281.41	243.26	243.26
6+78	7278.50	265.74	265.74
4+40	7276.47	146.63	146.63
		D IN HEC-RAS OF 55° (
		AT THESE CROSS SEC	
		ADJUSTED ANGLE.	

		DATA 100-YEAR PC TOP	100-YEAR PC TOP
CROSS	100-YEAR		
SECTION	PC WSEL	WIDTH INCLUDING	WIDTH EXCLUDING
72+34	7338.11	63.12	63.12
69+69	7335.52	64.11	64.11
67+63	7333.63	64.92	64.92
65+42	7333.03	74.22	74.22
63+02	7328.85	76.90	76.90
61+34	7327.28	131.11	131.11
58+12	7326.47	201.82	169.96
54+80	7326.65	349.50	322.44
53+75	7326.35	278.31	62.88
53+10	7320.33	CULVERT	02.00
52+56	7321.50	110.20	66.00
51+58	7318.71	103.09	103.09
48+10	7316.81	179.90	
			179.90
47+01	7316.71	146.50	146.50
44+67	7315.70	114.47	114.47
43+12	7314.40	115.43	115.43
40+58	7311.05	99.53	99.53
37+56	7308.45	86.18	86.18
36+71	7307.52	96.89	96.89
33+13	7304.40	102.90	102.90
30+53	7301.03	69.79	69.79
29+16	7299.80	67.41	67.41
25+59	7297.13	118.75	118.75
23+56	7294.61	88.75	88.75
21+15	7292.45	99.93	99.93
18+26	7289.14	86.77	86.77
16+18	7289.44	299.59	299.59
15+15	7289.46	425.09	425.09
13+21	7289.40	291.86	189.05
12+24	7289.09	255.05	62.76
11+60	CULVERT		
11+05	7283.36	124.12	60.69
10+07	7282.73	88.93	88.93
8+93	7281.40	243.18	243.18
6+78	7278.47	265.53	265.53
4+40	7276.45	146.38	146.38
SKEW/ AN	GLE APPLIE) IN HEC-RAS OF 55° (ລ 51+58 AND 45°

ii. STUDIED EXISTING CONDITION 100 YEAR FLOODPLAIN CROSS SECTIONS

iii. STUDIED EXISTING CONDITION 100 YEAR FLOODPLAIN PROFILE

iv. STUDIED PROPOSED CONDITION 100 YEAR FLOODPLAIN CROSS SECTIONS

v. STUDIED PROPOSED CONDITION 100 YEAR FLOODPLAIN PROFILE

KHA RESPONSE: The provided hydraulic analysis is from the approved CLOMR. Refer to Appendix E for Creek Stability Memo which discusses the hydraulic analysis and recommendations for the Creek.

Unresolved from review 1. Provide the complete hydraulic analysis to include the velocity and froude number results, the boundary conditions used.

G. PROJECT DRAINAGE REPORT

H. ENVIRONMENTAL ANALYSIS

i. <u>ENDANGERED SPECIES "NO-TAKE" LETTER</u>

Proposal 2018-10-1

April 5, 2019

Joe Desjardin ProTerra Properties, LLC Director of Development 2475 Waynoka Place Colorado Springs, Colorado 80915

RE: Winsome Ecological Report - Case #19-08-0185R, FEMA ESA Compliance

Dear Mr. Desjardin:

The U.S. Fish and Wildlife Service (USFWS) has completed their review of the Ecosystem Services, LLC (ecos) "Biological Assessment" presented in our *Natural Features and Wetland Report for the Winsome Property in El Paso County, Colorado* dated January 4, 2019 (Ecological Report) and concurs with our finding that this project will result in "no take" of threatened and endangered species regulated under the Endangered Species Act. To acknowledge their concurrence the USFWS placed a "stamp" on the cover of the Ecological Report indicating they have "No Concerns" which was signed by the USFWS and dated 4-2-2019. USFWS also wrote notes next to the stamp describing that the concurrence was based on the following facts:

- 1) the marginal Preble's meadow jumping mouse (PMJM) habitat onsite that is not connected to good habitat;
- 2) conservation measures will be implemented by the Project to protect riparian habitat; and
- 3) the Project committed to survey for Ute ladies-tresses orchid at wetland impact areas despite the presence of marginal habitat for this species.

Based on the findings of the Ecological Report as supported by the USFWS concurrence, ecos can confidently state that the Winsome Project presents no potential for take of threatened and endangered species listed under the Endangered Species Act.

Sincerely,

Ecosystem Services, LLC

Frant E. Hurnée

Grant E. Gurnée, P.W.S. *Restoration Ecologist - Wildlife Biologist*

H. ENVIRONMENTAL ANALYSIS

ii. US FISH AND WILDLIFE "NO CONCERN" LETTER

RE: Request for Technical Assistance Regarding the Likelihood of Take of Federally-listed Threatened and Endangered Species resulting from the proposed development of the Winsome Project in El Paso County, Colorado

Dear Mr. DeBerry:

Ecosystem Services, LLC (ecos) has prepared the enclosed habitat evaluation on behalf of PT McCune, LLC to describe the physical/ecological characteristics of the Winsome Property (Site) and evaluate the potential effects of the proposed development project (Project) on the Federally-listed threatened and endangered (T&E) species protected under the Endangered Species Act (ESA).

The El Paso County Environmental Division has completed its review of the Winsome project (Project) and has requested the following: "Documentation from the U.S. Fish and Wildlife Service (USFWS) shall be provided to the Planning and Community Development Department prior to project commencement where the project will result in ground disturbing activity in habitat occupied or potentially occupied by threatened or endangered species and/or where development will occur within 300 feet of the centerline of a stream or within 300 feet of the 100 year floodplain, whichever is greater."

At this time there is no Federal action and no Federal agency is making a formal effects determination under Section 7 (a)(2) of the ESA. Therefore, ecos is requesting technical assistance from USFWS regarding PT McCune, LLC's (i.e., the non-federal party) responsibilities under the ESA, and specifically the likelihood of the Project (described herein) resulting in take of listed species. If the USFWS concurs with the findings presented herein we request that you issue an informal letter of concurrence for use in the El Paso County Project review process.

1.0 PROJECT DESCRIPTION and SITE LOCATION

The Site is situated in the northeastern corner of the Black Forest approximately 12.5 miles east of Monument and 7.3 miles east of Highway 83, in El Paso County, Colorado. The Site is located in the northwest corner of Hodgen and Meridian Roads. The Site is specifically located within Section 24, the south ¼ of Section 13, and the west ½ of Section 19, Township 11 South, Range 65 West in El Paso County, Colorado (refer to Figure 1).

The Applicant proposes to form a metropolitan district within El Paso County and develop the 766.66-acre Site as a residential community consisting of 5-acre and 2.5 acre single-family detached rural-residential lots and one 7.9-acre commercial lot, including trails, utilities, and streets and cul-de-sacs that provide access to each lot; and preserve 148.6 acres of open space along West Kiowa Creek (refer to Figure 2).

2.0 METHODOLOGY

2.1 Office Assessment

Ecos performed an office assessment in which available databases, resources, literature and field guides on local flora and fauna were reviewed to gather background information on the environmental setting of the Site. We consulted several organizations, agencies, and their databases, including:

- Colorado Department of Agriculture (CDA) Noxious Weed List;
- Colorado Natural Heritage Program (CNHP);
- Colorado Oil and Gas Conservation Commission (COGCC) GIS Online;
- Colorado Parks and Wildlife (CPW);
- El Paso County Black Forest Preservation Plan Update;
- Google Earth current and historic aerial imagery;
- CNHP Survey of Critical Biological Resources, El Paso County, Colorado;
- CNHP Survey of Critical Wetlands and Riparian Areas in El Paso and Pueblo Counties, Colorado;
- U.S. Fish and Wildlife Service (USFWS) Region 6;
- USFWS National Wetland Inventory (NWI); and
- U.S. Geological Survey (USGS).

2.2 Onsite Assessments

Following the collection and review of existing data and background information, ecos conducted a field assessment of the Site on September 5, 2018 to identify any potential impacts to natural resources associated with the Project. Field reconnaissance concentrated on identification of wetland habitat, waters of the U.S. and on the presence of habitat suitable to support threatened and endangered wildlife. Ecos conducted a follow-up field assessment on September 20, 2018 to gather additional data. Wetland habitat and waters of the U.S. boundaries, wildlife habitat, and vegetation communities were sketched on topographic and aerial base maps and located using a hand-held Global Positioning System as deemed necessary. Representative photographs were taken to assist in describing and documenting Site conditions and potential ecological impacts.

H. ENVIRONMENTAL ANALYSIS

iii. MC CUNE RANCH - NATURAL FEATURES AND WETLAND REPORT

Winsome Subdivision 17480 Meridian Road North Colorado Springs, Colorado 80924

Preliminary Drainage Report

MAY 15, 2019

PREPARED FOR:

PT McCune, LLC Joseph W DesJardin 1864 Woodmoor Drive Suite 100 Monument, Colorado 80132

PREPARED BY:

The Vertex Companies, Inc. 2420 W. 26th Avenue, Suite 100-D Denver, Colorado 80211 **PHONE:** 303-623-9116

VERTEX Project: 49388 PCD File No. SP-18-006 FEMA Case No: 19-08-0185R

imu P Jason Priddy Lance VanDemark, P.E.

Project Engineer Proj

Lance VanDemark, P.E. Project Manager

Preliminary Drainage Report McCune Ranch Subdivision

10.0 DRAINAGE PLANS

s\49000-49999\49 , 2019 1:30:53 PM The Vertex Compani

S	EXIS TOR <i>i</i> v	TING NWA1		
RU BASIN	BASIN AREA (ACRES)	CURVE	8LE Q ₁₀₀	
A	915.4	61.8	585.9	
Ва	3836.7	60.3	1448.9	
Bb	100.6	69.8	127.7	
Ca	162.7	60.0	127.8	
Cb	70.0	68.7	88.0	
Da	161.3	60.0	127.3	
Db	49.9	60.0	34.1	
Dc	249.7	67.7	275.7	
Ea	37.9	60.0	34.8	
Eb	74.6	67.2	85.8	
F	44.5	69.0	56.6	
G	107.6	74.5	199.0	
Н	121.8	71.8	197.2	
1	37.5	79.0	88.5	
J	10.1	69.5	19.9	
К	17.8 5998.1	76.0	45.1	

—5540—			
	_	_	

iects\49000-49999\ 16, 2019 1:56:29 PA 19 The Vertex Compa

	S	TORM	POSEI NWA1 NOFF		r
	BASIN	BASIN AREA (ACRES)	CURVE NUMBER	Q ₁₀₀	
	A1	865.9	60.4	350.3	
	A2	37.0	66.0	32.5	
	A3	41.5	76.5	65.7	
	B1	3836.7	60.3	1107.9	
	B2	13.1	64.0	15.5	
	B3	54.9	65.1	43.1	
	B4	41.5	68.5	39.9	
	C1	162.7	60.0	94.9	
	C2	22.4	64.0	14.6	
	C3	16.1	64.0	17.0	
	C4	23.8	65.0	16.9	
	D1.1	161.3	60.0	94.6	
ſ	D1.2	49.9	60.0	25.1	
	D2	68.7	64.8	61.3	
	D3	41.2	64.0	33.1	
	D4	34.3	64.0	34.2	
	D5	12.8	67.2	13.3	
	D6	41.8	61.7	24.5	
	EO	37.9	60.0	22.1	
	E1.1	7.9	76.0	16.3	
	E1.2	16.3	62.0	11.6	
	E2	2.6	64.0	3.3	
	E3	19.8	64.0	21.5	
	E4	18.2	64.0	19.3	
	E5	13.5	64.0	14.7	
	E6	28.9	62.4	26.1	
	E7	9.8	62.0	9.6	
	F1	42.9	60.4	26.8	
	G1	25.2	66.0	27.8	
	G2	21.2	72.7	27.3	
	HI	13.9	70.8	20.3	
	H2	39.1	67.2	40.7	
	Н3	5.8	66.0	7.5	
	H4	27.1	73.8	38.4	
	H5	20.2	74.8	30.7	
	H6	31.6	66.6	27.8	
	H7	25.8	70.5	32.7	
	H8	8.5	74.6	15.2	
	H9	6.9	70.8	11.0	
	11	6.8	72.0	11.5	
	12	14.8	72.0	25.4	
	J1	10.1	69.5	15.7	
	КI	17.8	76.0	35.9	
		5998.2			

COLORADO	8
KNOW WHAT'S BELOW. CALL BEFORE YOU DIG.	

DETENTION POND SUMMARY							
POND NUMBER	PROPOSED VOLUME	FLOW EXITING POND					
1	8.0 AC-FT	31.9 CFS					
2	7.4 AC-FT	35.1 CFS					
3	7.1 AC-FT	126.8 CFS					
4	1.5 AC-FT	30.6 CFS					
5	9.7 AC-FT	120.0 CFS					
6	4.0 AC-FT	18.0 CFS					

LEGEND

—5540———
—5540———

PROPERTY BOUNDARY LINE PROPOSED CONTOUR EXISTING CONTOUR DRAINAGE BASIN BOUNDARY DRAINAGE BASIN FLOW PATH

- BASIN NAME – DRAINAGE BASIN SIZE - 100-YEAR RUNOFF

- CURVE NUMBER FLOW ARROWS

4.5. - Initial Abstraction

The initial abstraction (Ia) represents a volume of rainfall that must fall to satisfy losses in a drainage basin before runoff begins. The default value for Ia is 0.20 times the potential maximum retention (S). Through modeling of the Jimmy Camp Creek drainage basin using gage-adjusted, NEXRAD-generated rainfall input and comparing model results with recorded flow data, it was determined that a more appropriate value for Ia is 0.10·S. Therefore, this value shall replace the default value for any evaluations that apply the NRCS curve number method for rainfall losses. To apply this adjustment when using HEC-HMS it will be necessary to provide the initial abstraction as a depth in inches rather to a fraction of the potential maximum retention. The initial abstraction in inches is calculated using Equation 6-12.

la = 0.1[(1000/CN) - 10] (Eq. 6-12)

Table 6-9. NRCS Curve Numbers for Pre-Development Thunderstorms Conditions (ARC I)	

Fully Developed Urban Areas (vegetation established) ¹	Treatment	Hydrologic Condition	%	Pre-Development CN				
				HSG A	HSG B	HSG C	HSG D	
Open space (lawns, parks, golf courses, cemeteries, etc.):								
Poor condition (grass cover < 50%)	_	_		47	61	72	77	
Fair condition (grass cover 50% to 75%)	_			29	48	61	69	
Good condition (grass cover > 75%)				21	40	54	63	
Impervious areas:								

Developing Urban Areas ¹	Treatment ²	Hydrologic Condition ³	% I	HSG A	HSG B	HSG C	HSG D
Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders)				91	91	91	91
Natural desert landscaping (pervious areas only)	_			42	58	70	75
Western desert urban areas:							
Dirt (including right-of- way)	_	_	_	52	66	74	77
Gravel (including right- of-way)	_		_	57	70	77	81
Paved; open ditches (including right-of-way)	_	_	_	67	77	83	85
Paved; curbs and storm sewers (excluding right- of-way)	_		_	95	95	95	95
Streets and roads:							
Paved parking lots, roofs, driveways, etc. (excluding right-of-way)	_		_	95	95	95	95

0/21; 0.20 F M					1	1	
Newly graded areas (pervious areas only, no vegetation)	_	_	_	58	72	81	87
Cultivated Agricultural Lands ¹	Treatment	Hydrologic Condition	% I	HSG A	HSG B	HSG C	HSG D
Fallow	Bare soil	_	_	58	72	81	87
	Crop	Poor	_	57	70	79	85
	residue cover (CR)	Good		54	67	75	79
Row crops	Straight	Poor		52	64	75	81
	row (SR)	Good	_	46	60	70	77
	SR + CR	Poor	_	51	63	74	79
		Good	_	43	56	66	70
	Contoured	Poor	_	49	61	69	75
	(C)	Good	_	44	56	66	72
	C + CR	Poor	_	48	60	67	74
		Good	_	43	54	64	70
	Contoured	Poor	_	45	54	63	66
	& terraced (C&T)	Good		41	51	60	64
	C&T+ CR	Poor	_	44	53	61	64
		Good		40	49	58	63

Small grain	SR	Poor		44	57	69	75
		Good		42	56	67	74
	SR + CR	Poor		43	56	67	72
		Good		39	52	63	69
	С	Poor		42	54	66	70
		Good		40	53	64	69
	C + CR Poor	Poor		41	53	64	69
		Good		39	52	63	67
	C&T	Poor		40	52	61	66
		Good		38	49	60	64
	C&T+ CR	Poor		39	51	60	64
		Good		37	48	58	63
Close-seeded or	SR	Poor		45	58	70	77
broadcast legumes or rotation meadow		Good		37	52	64	70
	С	Poor		43	56	67	70
		Good		34	48	60	67
	C&T	Poor		42	53	63	67
		Good		30	46	57	63
Pasture, grassland, or	-	Poor	_	47	61	72	77
range-continuous forage		1	1	1	1	1	1

50/21, 0.201 W	E	. 1 aso obuilty, oo bi	rainage onto				
for grazing ⁴	_	Fair	_	29	48	61	69
	_	Good	_	21	40	54	63
Meadow-continuous grass, protected from grazing and generally mowed for hay				15	37	51	60
Brush-brush-weed-grass	_	Poor	_	28	46	58	67
mixture with brush the major element ⁵	_	Fair	_	18	35	49	58
	_	Good		15	28	44	53
Woods-grass combination	_	Poor		36	53	66	72
(orchard or tree farm) ⁶	_	Fair	_	24	44	57	66
	_	Good	_	17	37	52	61
Woods ⁷	_	Poor	_	26	45	58	67
	_	Fair	_	19	39	53	61
		Good	_	15	34	49	58
Farmsteads-buildings, lanes, driveways, and surrounding lots				38	54	66	72
Arid and Semi-arid Rangelands ¹	Treatment	Hydrologic Condition ⁸	% I	HSG A	HSG B	HSG C	HSG D
Herbaceous-mixture of	_	Poor	_		63	74	85
grass, weeds, and low-	_	Fair			51	64	77
1							

	-		anago ona				
growing brush, with brush the minor element	_	Good	_		41	54	70
Oak-aspen-mountain brush mixture of oak	_	Poor			45	54	61
brush, aspen, mountain	_	Fair			28	36	42
mahogany, bitter brush, maple, and other brush	_	Good	_	_	15	23	28
Pinyon-juniper-pinyon,	_	Poor	_	_	56	70	77
juniper, or both; grass understory	_	Fair	_	_	37	53	63
	_	Good	_	_	23	40	51
Sagebrush with grass	_	Poor	_	_	46	63	70
understory	_	Fair	_	_	30	42	49
	_	Good	_	_	18	27	34
Desert shrub—major plants include saltbush,	_	Poor	_	42	58	70	75
greasewood, creosotebush, blackbrush, bursage, palo	_	Fair	_	34	52	64	72
verde, mesquite, and cactus	_	Good	_	29	47	61	69
	1	1	1	1	1	1	<u> </u>

^{1.} Average runoff condition, and Ia = 0.1S.

^{2.} Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

^{3.} Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good \geq 20%), and (e) degree of surface roughness. Poor: Factors impair infiltration and tend to increase runoff. Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

^{4.} Poor: <50%) ground cover or heavily grazed with no mulch. Fair: 50 to 75% ground cover and not heavily grazed. Good: > 75% ground cover and lightly or only occasionally grazed.

^{5.} Poor: <50% ground cover. Fair: 50 to 75% ground cover. Good: >75% ground cover.

^{6.} CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

^{7.} Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

^{8.} Poor: <30% ground cover (litter, grass, and brush overstory). Fair: 30 to 70% ground cover. Good: > 70% ground cover.

TABLE 6-10. NRCS CURVE NUMBERS FOR FRONTAL STORMS & THUNDERSTORMS FOR DEVELOPED CONDITIONS (ARCII)

Fully Developed Urban	Treatment	Hydrologic	% I	Pre-De	velopme	ent CN	
Areas (vegetation		Condition		HSG	HSG	HSG	HSG
established) ¹							
				A	B	С	D
Open space (lawns, parks, golf courses, cemeteries, etc.):							

cover < 50%)	
cover 50% to 75%)3961748Good condition (grass cover > 75%)3961748Impervious areas:9898989898Paved parking lots, roofs, driveways, etc. (excluding right-of-way989	89
cover > 75%)Impervious areas:Impervious areas:Impervi	84
Paved parking lots, roofs, driveways, etc. (excluding right-of-way 98 	<mark>80</mark>
roofs, driveways, etc. (excluding right-of-wayImage: Construction of the second secon	
Paved; curbs and storm ——- ——- 98 98 98 98 sewers (excluding right- ——- ——- ——- 98 98 98 98	98
sewers (excluding right-	
	98
Paved; open ditches ——- —— —— 83 89 92 92 92 (including right-of-way)	93
Gravel (including right- —— —— —— —— 76 85 89 9	91
Dirt (including right-of- way) 72 82 87 8	89
Western desert urban areas:	
Natural desert63778585landscaping (pervious areas only)areas only)	88

,			<u> </u>				
Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders)				96	96	96	96
Urban districts:							
Commercial and business			85	89	92	94	95
Industrial			72	81	88	91	93
Residential districts by average lot size:							
¼ acre or less (town houses)			65	77	85	90	92
¼ acre			38	61	75	83	87
⅓ acre			30	57	72	81	86
½ acre			25	54	70	80	85
1 acre			20	51	68	79	84
2 acres			12	46	65	77	82
Developing Urban Areas ¹	Treatment ²	Hydrologic Condition ³	% I	HSG A	HSG B	HSG C	HSG D
Newly graded areas (pervious areas only, no vegetation)				77	86	91	94

Cultivated Agricultural Lands ¹	Treatment	Hydrologic Condition	% I	HSG A	HSG B	HSG C	HSG D
Fallow	Bare soil			77	86	91	94
	Crop	Poor		76	85	90	93
	residue cover (CR)	Good		74	83	88	90
Row crops		Poor		72	81	88	91
	row (SR)	Good		67	78	85	89
	SR + CR	Poor		71	80	87	90
		Good		64	75	82	85
	Contoured	Poor		70	79	84	88
	(C)	Good		65	75	82	86
	C + CR	Poor		69	78	83	87
		Good		64	74	81	85
	Contoured	Poor		66	74	80	82
	& terraced (C&T)	Good		62	71	78	81
	C&T+ CR	Poor		65	73	79	81
		Good		61	70	77	80
Small grain	SR	Poor		65	76	84	88
		Good		63	75	83	87

0/21, 0.20 FW	L	Faso County, CO D	rainage one				
	SR + CR	Poor		64	75	83	86
		Good		60	72	80	84
	С	Poor		63	74	82	85
		Good		61	73	81	84
	C + CR Poor	Poor		62	73	81	84
		Good		60	72	80	83
	C&T	Poor		61	72	79	82
		Good		59	70	78	81
	C&T+ CR	Poor		60	71	78	81
		Good		58	69	77	80
Pasture, grassland, or		Poor		68	79	86	89
range—continuous forage for grazing ⁴	_	Fair		49	69	79	84
	_	Good		39	61	74	80
Meadow-continuous grass, protected from grazing and generally mowed for hay				30	58	71	78
Brush-brush-weed-grass		Poor		48	67	77	83
mixture with brush the major element ⁵		Fair		35	56	70	77
	_	Good		30	48	65	73

,							
Woods-grass combination		Poor		57	73	82	86
(orchard or tree farm) ⁶	_	Fair		43	65	76	82
	_	Good		32	58	72	79
Woods ⁷		Poor		45	66	77	83
	_	Fair		36	60	73	79
	_	Good		30	55	70	77
Farmsteads-buildings,				59	74	82	86
lanes, driveways, and surrounding lots							
Arid and Semi-arid	Treatment	Hydrologic	% I	HSG	HSG	HSG	HSG
Rangelands ¹		Condition ⁸		A	В	C	D
Herbaceous-mixture of		Poor			80	87	93
grass, weeds, and low- growing brush, with	_	Fair			71	81	89
brush the minor element	_	Good			62	74	85
Oak-aspen-mountain		Poor			66	74	79
brush mixture of oak brush, aspen, mountain		Fair			48	57	63
mahogany, bitter brush, maple, and other brush		Good			30	41	48
Pinyon-juniper-pinyon,		Poor			75	85	89
juniper, or both; grass understory		Fair			58	73	80
		Good			41	61	71

Sagebrush with grass		Poor	 	67	80	85
understory	_	Fair	 	51	63	70
	_	Good	 	35	47	55
Desert shrub—major plants include saltbush,		Poor	 63	77	85	88
greasewood, creosotebush, blackbrush, bursage, palo	_	Fair	 55	72	81	86
verde, mesquite, and cactus	_	Good	 49	68	79	84

¹ la = 0.1 S

^{2.} Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

^{3.} Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good \geq 20%), and (e) degree of surface roughness. Poor: Factors impair infiltration and tend to increase runoff. Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

^{4.} Poor: <50%) ground cover or heavily grazed with no mulch. Fair: 50 to 75% ground cover and not heavily grazed. Good: > 75% ground cover and lightly or only occasional

^{5.} Poor: <50% ground cover. Fair: 50 to 75% ground cover. Good: >75% ground cover.

^{6.} CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods

^{7.} Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

^{8.} Poor: <30% ground cover (litter, grass, and brush overstory). Fair: 30 to 70% ground cover. Good: > 70% ground cover.

11/16/2020

	-	<u> </u>	
<u>8</u> . Very weedy reaches, deep pools, or floodways with heavy stand of timber and underbrush	0.075	0.100	0.150
LINED OR BUILT-UP CHANNELS		I	
a. Corrugated Metal	0.021	0.025	0.030
b. Concrete	-		
<u>1</u> . Trowel finish	0.011	0.013	0.015
<u>2</u> . Float finish	0.013	0.015	0.016
<u>3</u> . Finished, with gravel on bottom	0.015	0.017	0.020
<u>4</u> . Unfinished	0.014	0.017	0.020
<u>5</u> . Gunite, good section	0.016	0.019	0.023
6. Gunite, wavy section	0.018	0.022	0.025
<u>7</u> . On good excavated rock	0.017	0.020	
<u>8</u> . On irregular excavated rock	0.022	0.027	
c. Concrete bottom float finished v	vith sides of		
<u>1</u> . Dressed stone in mortar	0.015	0.017	0.020
<u>2</u> . Random stone in mortar	0.017	0.020	0.024
<u>3</u> . Cement rubble masonry, plastered	0.016	0.020	0.024
<u>4</u> . Cement rubble masonry	0.020	0.025	0.030
<u>5</u> . Dry rubble or riprap	0.020	0.030	0.035
d. Gravel bottom with sides of			
<u>1</u> . Formed concrete	0.017	0.020	0.025
<u>2</u> . Random stone in mortar	0.020	0.023	0.026
<u>3</u> . Dry rubble or riprap	0.023	0.033	0.036
e. Asphalt		1	
<u> </u>		0.013	
<u>_2</u> . Rough		0.016	
f. Grassed	0.030	0.040	0.050

TABLE 10-3 MAXIMUM PERMISSIBLE DESIGN OPEN CHANNEL FLOW VELOCITIES IN EARTH*

Soil Types	Permissible Mean Channel Velocity (ft/sec)
Fine Sand (noncolloidal)	2.0
Coarse Sand (noncolloidal)	4.0
Sandy Loam (noncolloidal)	2.5
Silt Loam (noncolloidal)	3.0
Ordinary Firm Loam	3.5
Silty Clay	3.5
Fine Gravel	5.0
Stiff Clay (very colloidal)	5.0
Graded, Loam to Cobbles (noncolloidal)	5.0
Graded, Silt to Cobbles (colloidal)	5.5
Alluvial Silts (noncolloidal)	3.5
Alluvial Silts (colloidal)	5.0
Coarse Gravel (noncolloidal)	6.0
Cobbles and Shingles	5.5
Hard Shales and Hard Pans	6.0
Soft Shales	3.5
Soft Sandstone	8.0
Sound rock (usu. igneous or hard metamorphic)	20.0
*These velocities shall be used in conjunction with scour calculations and as ap	proved by City/County.

TABLE 10-4 MAXIMUM PERMISSIBLE VELOCITIES FOR EARTH CHANNELS WITH VARIED GRASS LININGS AND SLOPES

Channel Slope	Lining	Permissible Mean Channel Velocity* (ft/sec)
0 - 5%	Sodded grass	7
	Bermudagrass	6
	Reed canarygrass	5

Tall fescue Kentucky bluegrass Grass-legume mixture Red fescue Redtop Sericea lespedeza Annual lespedeza Small grains (temporary)	5 5 4 2.5 2.5 2.5 2.5 2.5
Grass-legume mixture Red fescue Redtop Sericea lespedeza Annual lespedeza	4 2.5 2.5 2.5
Red fescue Redtop Sericea lespedeza Annual lespedeza	2.5 2.5 2.5
Redtop Sericea lespedeza Annual lespedeza	2.5
Sericea lespedeza Annual lespedeza	2.5
Annual lespedeza	
	2.5
Small grains (temporary)	
	2.5
Sodded grass	6
Bermudagrass	5
Reed canarygrass	4
Tall fescue	4
Kentucky bluegrass	4
Grass-legume mixture	3
Sodded grass	5
Bermudagrass	4
Reed canarygrass	3
Tall fescue	3
Kentucky bluegrass	3
permissible velocities by 25%.	1
	Tall fescue Kentucky bluegrass Grass-legume mixture Sodded grass Bermudagrass Reed canarygrass Tall fescue Kentucky bluegrass

Except in horizontal curves, the flatter the open channel side slopes, the better. Side slopes for grass-lined channels shall be no steeper than 4H:1V, which is the practical limit for mowing equipment. Concrete-lined channels, or those which for other reasons require minimum or no slope maintenance, (i.e., channels lined with grouted riprap or soil cement), may have side slopes as steep as 2H:1V. Riprap lined channels may have slopes as steep as 2.5H:1V. Roadside ditches may have slopes as steep as 4H:1V.

For channels which are being constructed within existing site constraints including bridges and structures, concrete side slopes may be 1.5H:1V. These channels must have adequate fencing for general safety of the public.

10.5.2. Depth

Channel depth should not exceed 5.0' at the 100-year storm when the 100-year flow is approximately 1500 cfs or less. Excessive depths should be avoided to minimize high velocities and for other public safety considerations.

10.5.3. Bottom Width

I.7. - POST-CONSTRUCTION STORMWATER MANAGEMENT

I.7.1. Post-Construction Stormwater Management Planning

[Replaces DCM2 Section 4.1, pages 4-1 through "Other BMPs" continued on 4-5]

A. **Overview.** This chapter contains requirements and procedures for the selection, installation, implementation and maintenance of permanent stormwater quality control measures that will remain in operation after construction for new development and significant redevelopment. All applicable development sites must have operational permanent stormwater quality control measures at the completion of the site, unless excluded from the requirements of an applicable development site as described in Section I.7.1.C. All permanent control measures for applicable development sites shall meet one of the "base design standards" described in Section 1.71.D.

In the case where permanent water quality control measures are part of future phasing, the permittee must have a mechanism to ensure that all control measures will be implemented, regardless of completion of future phases or site ownership. In such cases, temporary water quality control measures must be implemented as feasible and maintained until removed or modified. All temporary water quality control measure must meet one of the "base design standards" described in Section I.7.1.D.

A procedure is provided within the context of a flow chart and a four-step process that shall be followed for all applicable development sites. Detailed descriptions, sizing and design criteria, and design procedures for control measures are provided in the New Development BMP Factsheets found in Section 4.2 of the DCMV2.

It is recommended that discussions and collaboration regarding proposed BMPs occur early in each project between the developer's planner and engineer, County Stormwater and County Planning and Community Development staff.

The analysis of the requirements, exclusions and base design standards presented in this Section I.7 shall be incorporated into existing ECM Administrator submittals for review and acceptance including Preliminary/Final Drainage Reports and construction plans, or as otherwise specified by the ECM Administrator.

- B. **Applicable Development Sites: Excluded Sites.** The following types of sites and associated land disturbances are excluded from the requirements of this Section 1.7. Although a site may qualify for an exclusion to Section 1.7 below, the site may still be considered an applicable construction activity subject to the requirements of an ESQCP or BESQCP.
 - Pavement Management Sites. Sites, or portions of sites, for the rehabilitation, maintenance, and
 reconstruction of roadway pavement, which includes roadway resurfacing, mill and overlay, white
 topping, black topping, curb and gutter replacement, concrete panel replacement, and pothole repair.
 The purpose of the site must be to provide additional years of service life and optimize service and safety.
 The site also must be limited to the repair and replacement of pavement in a manner that does not result
 in an increased impervious area, and the infrastructure must not substantially change. The types of sites
 covered under this exclusion include day-to-day maintenance activities, rehabilitation, and reconstruction
 of pavement. "Roadways" include roads and bridges that are improved, designed or ordinarily used for
 vehicular travel and contiguous areas or that are improved, designed or ordinarily used for
 parking or access to parking are not roadways.

El Paso County, CO Engineering Criteria Manual

- 2. Excluded Roadway Redevelopment. Redevelopment sites for existing roadways, when 1 of the following cri
 - 1) The site adds less than 1 acre of paved area per mile of roadway to an existing roadway, or
 - 2) The site does not add more than 8.25 feet of paved width at any location to the existing roadway.
- 3. Excluded Existing Roadway Areas. For redevelopment sites for existing roadways, only the area of the existing roadway is excluded from the requirements of an applicable development site when the site does not increase the width by 2 times or more, on average, of the original roadway area. The entire site is not excluded from being considered an applicable development site for this exclusion. The area of the site that is part of the added new roadway area is still an applicable development site.
- 4. Aboveground and Underground Utilities. Activities for installation or maintenance of underground utilities or infrastructure that does not permanently alter the terrain, ground cover, or drainage patterns from those present prior to the construction activity. This exclusion includes, but is not limited to, activities to install, replace, or maintain utilities under roadways or other paved areas that return the surface to the same condition.
- 5. Large Lot Single Family Sites. A single-family residential lot, or agricultural zoned lands, greater than or equal to 2.5 acres in size per dwelling and having a total lot impervious area of less than 10 percent. A total lot imperviousness greater than 10 percent is allowed when a study specific to the watershed and/or MS4 shows that expected soil and vegetation conditions are suitable for infiltration/filtration of the WQCV for a typical site, and the permittee accepts such study as applicable within its MS4 boundaries. The maximum total lot impervious covered under this exclusion shall be 20 percent.
- 6. Non-Residential and Non-Commercial Infiltration Conditions. This exclusion does not apply to residential or commercial sites for buildings. This exclusion applies to applicable development sites for which post-development surface conditions do not result in concentrated stormwater flow during the 80th percentile stormwater runoff event. In addition, post-development surface conditions must not be projected to result in a surface water discharge from the 80th percentile stormwater runoff events. Specifically, the 80th percentile event must be infiltrated and not discharged as concentrated flow. For this exclusion to apply, a study specific to the site, watershed and/or MS4 must be conducted. The study must show rainfall and soil conditions present within the project area, must include allowable slopes, surface conditions, and ratios of impervious area to pervious area, and the County must accept such study as applicable within its MS4 boundaries.
- 7. **Sites with Land Disturbance to Undeveloped Land that will Remain Undeveloped.** Sites with land disturbance to undeveloped land (land with no human-made structures such as buildings or pavement) that will remain undeveloped after the site. Typical examples of this type of site are trails, parks and open space without structures.
- 8. Stream Stabilization Sites. Construction activity that is solely for the purpose of stream stabilization.
- 9. **Trails.** Bike and pedestrian trails. Bike lanes for roadways are not included in this exclusion, unless attached to a roadway that qualifies under another exclusion in this section.
- 10. **Oil and Gas Exploration.** Facilities associated with oil and gas exploration, production, processing, or treatment operations, or transmission facilities, including activities necessary to prepare a site for drilling and for the movement and placement of drilling equipment, whether or not such field activities or operations may be considered to be an applicable construction activity.
- 11. **County Growth Areas.** The County may exclude the following when they occur within the county growth areas:

El Paso County, CO Engineering Criteria Manual

- a. Agricultural facilities and structures on agricultural zoned lands (e.g., barn, stables).
- b. Residential development site or larger common plans of development for which associated construction activities results in a land disturbance of less than or equal to 10 acres and have a proposed density of less than 1,000 people per square mile.
- c. Commercial or industrial development site or larger common plans of development for which associated construction activities results in a land disturbance of less than or equal to 10 acres.
- C. **Base Design Standard Requirements.** The "base design standard" is the minimum design standard for new and redevelopment before applying any exclusions or alternative standards. The control measures for applicable development sites shall meet one of the following base design standards:
 - 1. **Water Quality Capture Volume (WQCV) Standard.** The control measures is designed to provide treatment and/or infiltration of the WQCV and:
 - a. 100% of the applicable development site is captured, except the County may exclude up to 20 percent, not to exceed 1 acre, of the applicable development site area when the County has determined that it is not practicable to capture runoff from portions of the site that will not drain towards control measures. In addition, the County must also determine that the implementation of a separate control measure for that portion of the site is not practicable (e.g., driveway access that drains directly to street).
 - b. Evaluation of the minimum drain time shall be based on the pollutant removal mechanism and functionality of the control measure implemented. Consideration of drain time shall include maintaining vegetation necessary for operation of the control measure (e.g., wetland vegetation).
 - 2. **Pollutant Removal Standard.** The control measures is designed to treat at a minimum the 80th percentile storm event. The control measures shall be designed to treat stormwater runoff in a manner expected to reduce the event mean concentration of total suspended solids (TSS) to a median value of 30 mg/L or less.

100% of the applicable development site must be captured, except the County may exclude up to 20 percent not to exceed 1 acre of the applicable development site area when the County has determined that it is not practicable to capture runoff from portions of the site that will not drain towards control measures. In addition, the County must also determine that the implementation of a separate control measure for that portion of the site is not practicable (e.g., driveway access that drains directly to street).

- 3. Runoff Reduction Standard. The control measures is designed to infiltrate into the ground where site geology permits, evaporate, or evapotranspire a quantity of water equal to 60% of what the calculated WQCV would be if all impervious area for the applicable development site discharged without infiltration. This base design standard can be met through practices such as green infrastructure. "Green infrastructure" generally refers to control measures that use vegetation, soils, and natural processes or mimic natural processes to manage stormwater. Green infrastructure can be used in place of or in addition to low impact development principles.
- 4. Applicable Development Site Draining to a Regional WQCV Control Measure. The regional WQCV control measure must be designed to accept the drainage from the applicable development site. Stormwater from the site must not discharge to a water of the state before being discharged to the regional WQCV control measure. The regional WQCV control measure must meet the requirements of the WQCV in Part I.7.C.1.
- 5. Applicable Development Site Draining to a Regional WQCV Facility. The regional WQCV facility is

El Paso County, CO Engineering Criteria Manual

designed to accept drainage from the applicable development site. Stormwater from the site may discharge to a water of the state before being discharged to the regional WQCV facility. Before discharging to a water of the state, at least 20 percent of the upstream imperviousness of the applicable development site must be disconnected from the storm drainage system and drain through a receiving pervious area control measure comprising a footprint of at least 10 percent of the upstream disconnected impervious area of the applicable development site. The control measure must be designed in accordance with a design manual identified by the permittee. In addition, the stream channel between the discharge point of the applicable development site and the regional WQCV facility must be stabilized. The regional WQCV facility must meet the following requirements:

- a. The regional WQCV facility must be implemented, functional, and maintained following good engineering, hydrologic and pollution control practices.
- b. The regional WQCV facility must be designed and maintained for 100% WQCV for its entire drainage area.
- c. The regional WQCV facility must have capacity to accommodate the drainage from the applicable development site.
- d. The regional WQCV facility must be designed and built to comply with all assumptions for the development activities planned by the County within its drainage area, including the imperviousness of its drainage area and the applicable development site.
- e. Evaluation of the minimum drain time shall be based on the pollutant removal mechanism and functionality of the facility. Consideration of drain time shall include maintaining vegetation necessary for operation of the facility (e.g., wetland vegetation).
- f. The County shall require site plans and perform a site plan review consistent with the requirements of this ECM to ensure the regional WQCV facility and control measures for the applicable development site plans include:
 - i. Design details for all structural control measures implemented to meet the requirements of Part I.E.4.
 - ii. A narrative reference for all non-structural control measures for the site, if applicable. "Nonstructural control measures" are control measures that are not structural control measures and include, but are not limited to, control measures that prevent or reduce pollutants being introduced to water or that prevent or reduce the generation of runoff or illicit discharges.
 - iii. Documentation of operation and maintenance procedures to ensure the long term observation, maintenance, and operation of the control measures. The documentation shall include frequencies for routine inspections and maintenance activities.
 - iv. Documentation regarding easements or other legal means for access of the control measure sites for operation, maintenance, and inspection of control measures.
 - v. Confirmation that control measures meet the requirements of section I.7.C
 - vi. Confirmation that site plans meet the requirements of County's site plan review and approval requirements
- g. The regional WQCV facility must be subject to the County's authority consistent with requirements and actions for a Control Measure in accordance with a base design standard.
- h. Regional Facilities must be designed and implemented with flood control or water quality as the primary use. Recreational ponds and reservoirs may not be considered Regional Facilities. Water

bodies listed by name in surface water quality classifications and standards regulations (5 CCR 1002-32 through 5 CCR 1002-38) may not be considered regional facilities.

- 6. **Constrained Redevelopment Sites Design Standard.** The constrained redevelopment sites standard applies to redevelopment sites meeting the following criteria:
 - (a) The applicable redevelopment site is for a site that has greater than 75% impervious area, and
 - (b) The County must determine that it is not practicable to meet any of the base design standards in section I.7.1.C (1), (2), or (3). The County's determination shall include an evaluation of the applicable redevelopment site's ability to install a control measure without reducing surface area covered with the structures.

The control measures is designed to meet one of the following:

- (a) Provide treatment of the WQCV for the area captured. The captured area shall be 50% or more of the impervious area of the applicable redevelopment site. Evaluation of the minimum drain time shall be based on the pollutant removal mechanism and functionality of the control measure implemented,
- (b) The control measures is designed to provide for treatment of the 80th percentile storm event. The control measures shall be designed to treat stormwater runoff in a manner expected to reduce the event mean concentration of total suspended solids (TSS) to a median value of 30 mg/L or less. A minimum of 50% of the applicable development area including 50% or more of the impervious area of the applicable development area shall drain to the control measures. This standard does not require that 100% of the applicable redevelopment site area be directed to a control measures as long as the overall removal goal is met or exceeded (e.g., providing increased removal for a smaller area), or
- (c) Infiltrate, evaporate, or evapotranspirate, through practices such as green infrastructure, a quantity of water equal to 30% of what the calculated WQCV would be if all impervious area for the applicable redevelopment site discharged without infiltration.

I.7.2. BMP Selection

The selection of appropriate BMPs is based on the characteristics of the site and potential pollutants. The Four-Step Process provides a method of going through the selection process. Figure I.1 and Figure I.2 with annotations covers site-specific issues to be considered in selecting an effective BMP for each site.

A. **Four-Step Process.** The following four-step process is recommended for selecting structural BMPs in newly developing and redeveloping urban areas:

Step 1: Employ Runoff Reduction Practices

To reduce runoff peaks and volumes from urbanizing areas, employ a practice generally termed "minimizing directly connected impervious areas" (MDCIA). The principal behind MDCIA is twofold — to reduce impervious areas and to route runoff from impervious surfaces over grassy areas to slow down runoff and promote infiltration. The benefits are less runoff, less stormwater pollution, and less cost for drainage infrastructure. There are several approaches to reduce the effective imperviousness of a development site:

Reduced Pavement Area

Sometimes, creative site layout can reduce the extent of paved areas including parking, thereby saving on initial capital cost of pavement and then saving on pavement maintenance, repair, and replacement over time.

Porous Pavement

The use of modular block porous pavement or reinforced turf in low-traffic zones such as parking areas and low use service drives such as fire lanes can significantly reduce site imperviousness. This practice may reduce the extent and size of the downstream storm sewers and detention.

Grass Buffers

Draining impervious areas over grass buffers slows down runoff and encourages infiltration, in effect reducing the impact of the impervious area.

Grass Swales

The use of grass swales instead of storm sewers slows down runoff, promotes infiltration, and also reducing effective imperviousness. It also may reduce the size and cost of downstream storm sewers and detention.

Implementing these approaches on a new development site is discussed further in the DCM2 section titled Employing Runoff Reduction Techniques. This section provides a procedure for estimating a reduced imperviousness based on the use of grass buffers and swales. The latter three of the approaches for reducing imperviousness are structural BMPs and are described in detail in Section 4.2 of DCM2 (New Development BMP Factsheets):

- Grass Buffer.
- Grass Swale.
- Modular Block Porous Pavement (or Stabilized-Grass Porous Pavement).

Step 2: Stabilize Drainageways

Drainageway, natural and manmade, erosion can be a major source of sediment and associated constituents, such as phosphorus. Natural drainageways are often subject to bed and bank erosion when urbanizing areas increase the frequency, rate, and volume of runoff. Therefore, drainageways are required to be stabilized. One of three basic methods of stabilization may be selected.

Constructed Grass, Riprap, or Concrete-Lined Channel

These methods of channel stabilization have been in practice for some time. The water quality benefit associated with these channels is the reduction of severe bed and bank erosion that can occur in the absence of a stabilized channel. On the other hand, the hard-lined low flow channels that are often used do not offer much in the way of water quality enhancement or wetland habitat. The use of riprap or concrete lined flood conveyance channels is not recommended, unless hydraulic or physical conditions require such an alternative. Rock lined low-flow channels in many cases may be a better alternative.

Stabilized Natural Channel

In practice, many natural drainageways in and adjacent to new developments are frequently left in an undisturbed condition. While this may be positive in terms of retaining desirable riparian vegetation and habitat, urban development may cause the channel to become destabilized. When degradation occurs in these drainageways, significant erosion, loss of riparian and aquatic habitat, and elevated levels of sediment and associated pollutants can result. Therefore, it is recommended that some level of stream stabilization always be considered. Small grade control structures sized for a 5-year or larger runoff event are often an effective means of establishing a mild slope for the baseflow channel and arresting stream degradation. Severe bends or cut banks may also need to be stabilized. Such efforts to stabilize a natural waterway also preserve and promote natural riparian vegetation which can provide paybacks in terms of enhanced aesthetics, habitat, and water quality.

One additional method of drainageway stabilization gives special attention to stormwater quality and is described in Section 4.2 (New Development BMP Factsheets):

• Constructed Wetland Channel.

Step 3: Provide Water Quality Capture Volume (WQCV)

All applicable development sites must have operational permanent stormwater quality control measures at the completion of construction. Designing structures that provide the WQCV is a common preferred approach in El Paso County. Other base design standards discussed earlier may be used if applicable, however. One or more of six types of water quality basins, each draining slowly to provide for long-term settling of sediment particles, may be selected. Information on selecting and configuring for a site one or more of the WQCV facilities listed below is provided in the Section 4.2 of the DCMV2. These six BMPs are also described in detail in the New Development BMP Factsheets found in the DCMV2 Section 4.2.

- Porous Pavement Detention.
- Porous Landscape Detention.
- Extended Detention Basin.
- Sand Filter Extended Detention Basin.
- Constructed Wetland Basin.
- Retention Pond.

Full Spectrum Detention is a newer approach to providing the WQCV. Details on the use, sizing, configuration and maintenance of Full Spectrum Detention structures are located in the DCMV1 update of 2014, sections of which are incorporated by reference into this ECM.

Step 4: Consider Need for Industrial and Commercial BMPs

If a new development or significant redevelopment activity is planned for an industrial or commercial site, the need for specialized BMPs must be considered. Two approaches are described in the New Development BMP Factsheets:

- Covering of Storage/Handling Areas
- Spill Containment and Control

Other Specialized BMPs may also be required

B. Other Specialized BMPs. The Technical Advisory Committee (TAC) selected the above structural BMPs after a comprehensive screening of known structural BMPs. The members of TAC included representatives from many County agencies and individuals from the development community. Final selection by TAC was based on the rev documentation on potential effectiveness in a semiarid climate, local applicability, maintenance considerations, Development and evaluation of permanent BMPs are continuing processes. Better designs of the BMPs included in DCM2 and designs of new BMPs, including manufactured (proprietary) BMPs, will be developed and tested. To allow for this progress, additional BMPs will be considered on a case-by-case basis by County Stormwater Staff. Design and sizing details and results of independent testing of the BMP in conditions similar to those at the site will be submitted demonstrating that the BMP will meet or exceed the performance of approved BMPs for the site.

To promote improvement in stormwater protection, County Stormwater Staff may approve promising BMPs on an experimental basis. A performance monitoring program to be pre-approved by County Stormwater Staff and an agreement to replace the Experimental System with an approved system should it not function to the required level of performance, both at the owner's expense, will be required. A request to use an "experimental system" must be submitted to El Paso County in the form of a Request for a Deviation from these standards, submitted consistent with the criteria and process described Chapters 1 and 5, respectively. Design of any "experimental system" shall not commence until a Request for Deviation is submitted to and approved by the County.

C. Guidance for Selecting and Locating WQCV Facilities.

[The following section replaces DCM2 Section 4.1 pages 4-19 through 4-23]

Laying out WQCV facilities within a development site and watershed requires thought and planning. This planning and decision-making should occur during a master drainage planning process (Drainage Basin Planning Study or Master Development Drainage Plan) undertaken by local jurisdictions or a developer's engineer. Such plans, studies or other reports may depict a recommended approach for implementing WQCV on a watershed basis. Such reports may call for a few large regional WQCV facilities, smaller sub-regional facilities, or alternatively an onsite approach. It is always a good idea to find out if a master planning study has been completed that addresses water quality and to attempt to follow the Plan's recommendations.

If the master drainage planning process addresses water quality, the following provides supplemental information on the BMPs. If the existing master drainage planning process has not addressed water quality, or if a new master drainage process is underway, this will direct the water quality evaluation.

D. **Post-Construction Stormwater Quality Control Measure Selection Process.** The BMP selection process is illustrated in Figure I-1 and Figure I-2. These two figures shall be used for all projects except those that are strictly highway/roadway projects; that is, projects with no plans for building pad sites. Projects that are strictly highway/roadway projects are discussed in a separate section below.

The following process references the use of the permanent control measures (BMPs) and other practices outlined in DCM2 and this Appendix. The use of DCM2 BMPs will promote consistency between the City and County. These BMPs are commonly found in manuals and other literature from municipalities across the country, and they are the accepted best industry practices in stormwater quality control.

As described below, other control measures (which may be relatively new to the field of stormwater management) are acceptable if they can be shown to meet performance criteria provided in this Section 1.7. A Request for a Deviation from these standards submitted consistent with the criteria and process described

Chapters 1 and 5, respectively, must be submitted and approved by the County prior to the use of an permanent control measure not included in this ECM, DCMV1, DCMV2 and the DCMV1 Update of 2014.

The following items explain the decision points (i.e., the Boxes) in Figure I-1 and Figure I-2:

Box 1: For all sites, the possibility of incorporating runoff reduction practices must be investigated. Impervious area should be reduced to the maximum extent practicable, per DCM2. DCM2 also provides guidance for MDCIA by routing runoff to pervious areas. This is Step 1 in the Four-Step Process.

Box 2: All drainageways, ditches, and channels shall be stabilized with one of three methods included in Step 2, which include the use of appropriate methods for the type of drainageway as described in the DCM1. Drainageways include:

- Tributaries to creeks that have been left in a relatively natural state,
- Tributaries, channels, and drainageways that are graded or regraded and may include drop or check structures, side slope stabilization, and low-flow channels.
- Roadside ditches that are completely man-made and should only be used to convey runoff from roads and roadway right-of-ways (ROWs).

Box 3: It must be determined if the development and/or redevelopment disturbs an area of land that is 1 acre or larger (or planned to be 1 acre or larger) when all phases are complete.

Box 4: Sites tributary to sensitive waters should consider specialized BMPs to address the parameter of concern as shown in Table I-5. At this time, no special BMPs are required until the County develops an overall strategy to address the parameters of concern, probably if and when a Total Maximum Daily Load (TMDL) is determined.

Figure I-1. BMP Requirements Flowchart for New Development and Redevelopment Sites—For Selecting Post-

Construction BMPs in Compliance with El Paso County's Stormwater NPDES Permit

Figure I-2. BMP Requirements Flowchart for New Development and Redevelopment Sites—For Selecting Post-

Construction BMPs in Compliance with El Paso County's Stormwater NPDES Permit

Table I-4. Best Management Practices Abbreviations

Abbreviation	Best Management Practice
СШВ	Constructed Wetlands Basin
сwс	Constructed Wetlands Channel - Sedimentation Facility
EDB	Extended Detention Basin - Sedimentation Facility
PLD	Porous Landscape Detention
RP	Retention Pond - Sedimentation Facility
SFB	Sand Filter Extended Detention Basin
WQCV	Water Quality Capture Volume
GB	Grass Buffer
GS	Grass Swale

MBP	Modular Block Porous Pavement
PPD	Porous Pavement Detention

Table I-5. El Paso County Sensitive¹Waters

Stream and Segment	Parameter of Concern	Specialized BMPs Required			
Fountain Creek and tributaries above Monument Creek	E. coli and Se	None at this time			
Fountain Creek from Monument Creek to Highway 47	E. coli	None at this time			
Monument Creek from National Forest to Fountain Creek	Se	None at this time			
Willow Springs Pond #1 and #2	PCE	None at this time			
¹ CDDUE 2006 202(d) list. Standard arreation for Drivets Detertion Desires are in Annual div. C. Ethic					

¹ CDPHE 2006 303(d) list. Standard agreement forms for Private Detention Basins are in Appendix G. [This list may change in the future. The 303(d) list or equivalent in effect at the time of permitting will apply.]

Potential high-risk sites must also incorporate specialized BMPs. High-risk sites are defined by two factors:

- Sites with land uses involving the potential for significant deposition of pollutants.
- Sites without practices to eliminate exposure of pollutants to stormwater.

Land uses involving the potential for significant deposition of pollutants include, but are not limited to:

- Vehicle maintenance facilities,
- Gas stations,
- Automobile salvage yards and junk yards,
- Commercial sites with high levels of "in and out" traffic such as fast-food restaurants and convenience stores.

Many industrial facilities are required to obtain coverage under an industrial stormwater permit; these facilities include automobile salvage yards. Practices to eliminate exposure of pollutants to stormwater may or may not be part of an industrial stormwater permit. These practices include coverage of material storage

areas, berms around tanks, spill control plans, and other "good housekeeping" measures. For industrial sites where stormwater is not exposed to pollutants, structural BMPs, including detention ponds for water quality and other BMPs discussed below, may not be required.

Because stormwater pollutants are often transported with sediment, erosion protection and sediment control are necessary for stormwater quality protection. This is very important in the County because of the sandy soils in the region. In particular, discharges that may impact sensitive waters or that come from potentially high-risk sites should have a high level of sediment protection. Thus, in addition to the specialized BMPs, sediment control practices such as revegetation, grading to prevent steep side slopes, check dams, slope drains, and sediment basins should be employed where practical.

Box 5: No BMPs are required other than stabilized drainageways and possibly MDCIA.

Box 6: Specialized BMPs are required and therefore proceed to Box 7 on Table I-1.

Box 7: BMPs that employ infiltration include porous landscape detention and sand filter basins without underdrains. Certain conditions preclude the use of these types of BMPs, including close proximity of groundwater or relatively impervious soils to the bottom of the facility. Groundwater levels should be characterized during the season with the highest levels (often late Spring or early Summer). Impervious soils include bedrock as well as soil types C and D. The term "close proximity" means 5 feet or less. If there is less than 5 feet, a study of the hydraulic conductivity of the soils must be conducted to show that excessive groundwater mounding or direct groundwater contamination will not result from the use of BMPs that employ infiltration.

Box 8: If groundwater or relatively impervious soils are not within 5 feet of the surface, implement porous landscape detention (PLD) or a sand filter basin (SFB) from DCM2. Alternative BMPs can be used if shown to be equally effective as PLD or SFB (see discussion below).

Box 9: Implement PLDs or SFBs with underdrains, or implement a BMP with removal rates equivalent to PLDs or SFBs, including qualifying manufactured BMPs. Qualifying manufactured BMPs are those that have undergone independent tests to verify that the installation, flow volumes, and removal rates will work for the site under consideration.

Box 10: If the site disturbance is larger than one acre and is low density residential, then no WQCV may be required provided the site meets criteria presented in Section I.7.1. If WQCV is not required, the need for a permanent sediment control measure must still be evaluated. If the site is located near and will discharge to a sensitive water, then a "jump" to Box 4 is required for continued evaluation.

Box 11: Sediment is best controlled at the source. That is, rather than using structures to collect soil after it is suspended in stormwater, it is preferable to stabilize soil to prevent suspension from occurring. Sediment source controls must be implemented for all low-density developments and include (but are not limited to):

- · Adequately established vegetation per DCM1 criteria,
- Side slopes that are 3 horizontal to 1 vertical or flatter or the use of benched side slopes when slopes are steeper than 3 horizontal to 1 vertical,
- The use of erosion control blankets to aid establishment of vegetation,
- Check dams,

• Slope drains.

Temporary irrigation and maintenance of vegetation until adequately established may be required.

Box 12: In low density (rural) subdivisions, a method for permanent sediment control must be provided. If a detention pond is used, the forebay is to be sized according to the criteria for Extended Detention Basins. If a detention pond/Extended Detention Pond is not required, a sediment basin as described in DCM2, page 3-32 may be used. It should be sized to collect 1,800 cubic feet per acre of disturbed area. Drainage area above a sediment basin can be reduced by use of vegetated swales, buffers, or contour berms.

Box 13: If there are no detention ponds, separate sediment control measure must be located to catch all runoff leaving the disturbed area of the site.

Box 14: In cases where a detention pond is already required for controlling the volume of runoff, a sediment basin can take the form of a forebay to this pond.

Box 15: Regional WQCV facilities may only be used if they meet the requirements of Section I.7.1.C.

Box 16: The site is required to direct all runoff through grass buffers and/or grass swales or provide a similar BMP. (Note that this is required in accordance with the CDPHE guidance manual to afford some protection to state waters in between the site and the downstream WQCV BMP.)

Box 17: Grass buffers require irrigation in almost all cases in the County; swales sometimes require irrigation.

Box 18: "Dry" alternatives may be used if they are shown to have equivalent removal rates as buffers and swales. All of the structural treatment BMPs in DCM2 (Section 4.2) have equivalent removal rates and may be used. The covering of storage/handling areas and spill containment and control are not structural treatment BMPs, and thus are not substitutes for grass buffers and swales.

Box 19: If there is no regional WQCV facility downstream with adequate capacity to provide the WQCV for the proposed site, then a WQCV control measure must be provided for the site. Examples of potentially acceptable control measures include Extended Detention Basin, Full Spectrum Detention Basin, Sand Filter Basin, Constructed Wetland Basin, or a Retention Pond. For all ponds, issues related to dam construction and potential groundwater infiltration must be considered. Retention Ponds must be considered in the context of additional issues including safety and health (e.g., drowning and mosquito/West Nile virus) and water rights. For all structures that may hold water for more than 72 hours with an exposed water surface, water storage rights must be obtained before a structure (e.g. retention pond) can be proposed for a site. See Sections 3.2.5.F and 3.3.7 of this ECM for additional information regarding water right and permanent stormwater quality control measures.

Box 20: Sites tributary to sensitive waters must meet the requirements as outlined in Table I-5, and potential high-risk sites must have specialized BMPs.

Box 21: No additional BMPs are required other than WQCV-based BMPs. Also, as always, drainageways must be stabilized and runoff should be reduced as much as possible (Boxes 1 and 2).

Box 22: When specialized BMPs are required, proceed to Box 23 on Figure I-2.

Box 23: Two situations apply, one where conditions preclude the installation of BMPS that employ infiltration, and one where they do not. (See Box 7.) If conditions preclude the installation of BMPS that employ infiltration then proceed to Box 25; otherwise proceed to Box 24.

Box 24: Where soil and groundwater conditions are not prohibitive (that is, groundwater or relatively impervious soils are not within 5 feet of the surface), implement PLD or SFB from DCM2. Alternative BMPs can be used if shown to be equally effective as PLD or SFB (see discussion below).

Box 25: Constructed wetlands (either channels or basins) are an effective BMP for sites with drainage areas greater than 10 acres.

Box 26: Provide a BMP downstream of the pond with equivalent removal rates as a wetland channel; this could be a qualifying manufactured BMP or other BMP that meets the criteria below.

Box 27: If the catchment area is greater than 10 acres, provide a constructed wetland channel (CWC) downstream of pond or provide WQCV with CWB.

- E. **Projects that are Strictly Roadway Construction.** For projects that entail highway or other roadway construction, there are three basic questions for the applicant:
 - Is the road urban or rural?
 - That is, does the road have curb and gutter or does it utilize roadside ditches?
 - For rural roads, do the ditches require "water turnouts"?
 - Is the road a "hot spot" or does it discharge to sensitive waters?

For road construction projects, the applicant must determine if the roadway project is an applicable development site as defined in Section I.7.1.B. Excluded sites do not need to comply with the requirements of this Section I.7. If a roadway construction project is an applicable development site, then the owner must determine which base design standard is appropriate for the project and must design and implement water quality improvement with the project. Requirements for roadway projects included in the DCMV1 may be used provided they do not conflict with other provisions of this Section I.7.

Rural roads, i.e. those roads which utilize roadside ditches for conveyance of runoff from the roadway, do not have sufficient capacity in the roadside ditches to convey much more runoff than that which runs off the road itself. Rural roads (which by definition have roadside ditches) must be stabilized with one of three methods included in DCM2 on pages 4-3 and 4-4. These methods are described in DCMV1. "Water turnouts," which function as spillways which direct flow out of the ditches onto property adjacent to the ROW, are frequently required as a result. Design for the "water turnout" should ensure the turnout discharges into a "suitable outfall" as described in DCM1 along the roadway such as a natural swale. A drainage easement for this runoff must be acquired at these locations. A possible consequence of "water turnouts" is the loading of sediment onto private property. If "water turnouts" will be utilized for the ditches, sediment basins shall be used at these locations. However, there must be sufficient space in the ROW for both the structure itself and for maintenance access, or a specific drainage easement must be provided for the feature and access. Sediment basins can be designed in accordance with the guidelines in DCM2 in the section for construction BMPs. The basin shall be sized to collect 1,800 cubic feet of sediment per acre of drainage area of the roadway.

The term "high risk site" can be defined by traffic volume for a section of roadway. If the road will experience traffic volume of 30,000 average daily traffic (ADT) or more it is likely to contribute high levels of pollutants. For these situations, additional BMPs are required and selection must follow Boxes 6, 7, 8, and 9 in Figure 1b. Additional BMPs may also be required for discharge to sensitive waters. As described above for the general developments (with building pads), these additional requirements will depend on the TMDL process.

F. Additional Guidelines for BMP Selection. Additional Guidelines for selecting among the appropriate BMPs dete from Figure I-1 and Figure I-2. Figure I-3 (Figure ND-7 in DCM2) depicts a decision tree for selecting one of the si: BMPs based on drainage catchment area and whether water is available to satisfy evapotranspiration requirem Porous pavement and porous landscape detention are generally suited for small drainage areas (i.e. much less t acres); however, larger subwatersheds can be subdivided into individual drainage sub-catchment areas meeting criteria shown in Figure I-3 for these BMPs.

WQCV control measures and Regional WQCV control measures shall be located prior to the stormwater runoff being discharged to State Waters. When using a Regional WQCV facility for a site, the site may discharge to a water of the state before being discharged to the Regional WQCV facility; however, the conditions in Section I.7.1.C.5 shall be met.

Figure I-4 (Figure ND-8 in DCM2) provides an illustration of selection and location options for WQCV facilities based on the principles discussed above.

Figure I-6 (Table ND-1 in DCM2) indicates the BMP options for the four watershed areas shown in Figure I-4.

I.7.3. Incorporating WQCV into Stormwater Detention Structures

Wherever possible, it is recommended that WQCV facilities be incorporated into stormwater quantity detention facilities. This is relatively straightforward for an extended detention basin, constructed wetland basin, and a retention pond. When combined, the 2, 5, 10, and 100-year detention levels are provided above the WQCV and the outlet structure is designed to control two or three different releases. Stormwater quantity detention could be provided above the WQCV for porous pavement and landscape detention provided the drain times for the larger events are kept short.

The following approaches are to be implemented when incorporating WQCV into stormwater quantity detention facilities:

- 1. **Water Quality.** The full WQCV is to be provided according to the design procedures documented in the New Development BMP Factsheets.
- 2. Minor Storm. The full WQCV plus the full minor storm quantity detention volume is to be provided.
- 3. 100-Year Storm. One-half the WQCV plus the full 100-year detention volume is to be provided.

For linear projects and projects with limited space available for permanent water quality control measures, WQCV may be included in the design of underground detention structures such as sand filter basins (SFB) and proprietary underground detention structures. These systems rely on appropriate soil conditions to infiltrate or evapotranspire the WQCV.

It is extremely important that high sediment loading and compaction of underlying soils in the area to be used for infiltration be controlled to the maximum extent practicable. These structures are best suited to being brought on line at the end of the construction phase where disturbed ground has been stabilized with pavement or vegetation.

Any underground detention facilities proposed for use in the County must meet the good engineering, hydrologic and pollution control practices as defined in this Section I.7. The design of underground detention that incorporates WQCV shall not commence until a Request for Deviation is submitted for review and approved by the ECM Administrator. In addition to the approval criteria for a deviation request provide in Chapters 1 and 5 of this ECM, the owner or authorized agent must provide a structure-specific Operation and Maintenance (O&M)

Manual and maintenance agreement for the structures. The Operation and Maintenance Manual shall include specific procedures and equipment that will be used by the owner or authorized representative to operate and maintain the structures. A specification sheet or generic O&M manual provided by the vendor will not satisfy the O&M Manual requirement.

I.7.4. Separate Presedimentation Facilities

The design criteria shown in the New Development BMP Factsheets section shows presedimentation forebays at the upstream end of the extended detention basin, constructed wetland basin, and retention pond. The purpose of the forebay is to settle out coarse sediment and skim off floatables prior to the main body of the facility. An option to this approach is to install a separate facility upstream from the main WQCV facility. If this option is selected, the recommended size is at least 20 percent of the WQCV and the recommended drain time is 1 hour for the presedimentation forebay volume only. Using this approach, any requirement for sediment storage in the main facility may be reduced consistent with the storage capacity of the separated presedimentation forebay, and the forebay within the main facility may be eliminated.

Figure I-3. Decision Tree for WQCV BMP Selection

Note: Large drainage areas may be subdivided into areas < 20 acres for use of SFB or < 1 acre for use of PPD or PLD.

Figure I-4. Illustration of Selection and Location Options for WQCV Facilities

Note: For this example, sufficient make-up water exists for constructed wetlands and retention pond for the watershed areas > 50 acres through irrigation return flows.

Table I-7. Illustration of Selection and Location Options for WQCV Facilities
for the Development Parcel on Figure I.4

Watershed Number	Onstream or Offstream	BMP Options	Minimum Number of BMP Installations	Average Drainage Area for Sizing each BMP, acre
1	Offstream	Porous Pavement Detention Porous Landscape Detention	1	0.8 0.8
2	Offstream	Porous Pavement Detention Porous Landscape Detention Extended Detention Basin Sand Filter Extended Detention Basin	24 24 2 2	1 1 12 12

3	Offstream	Porous Pavement Detention	49	1
		Porous Landscape Detention	49	1
		Extended Detention Basin	2	24
		Sand Filter Extended	3	16
		Detention Basin		
	Onstream	Extended Detention Basin	1	70
		Constructed Wetland Basin	1	70
		Retention Pond	1	70
4	Offstream	Porous Pavement Detention	6	1
		Porous Landscape Detention	6	1
		Extended Detention Basin	1	6
		Sand Filter Extended	1	6
		Detention Basin		

I.7.5. Structural BMP Effectiveness

Table I-7 (Table ND-2 in DCM2) indicates ranges of removal efficiencies reported in literature for a number of structural BMPs. Although combinations of nonstructural/structural BMPs can improve the overall water quality of the runoff, the effectiveness of several BMPs in their ability to reduce influent pollutant concentrations as a group are not directly additive. Table I-7 also shows a most probable range of removal efficiencies for structural BMPs.

I.7.6. Separation Distances

To reduce potential for surface and ground water contamination, permanent water quality BMPs will be located away from wells and Individual Sewage Disposal Systems (ISDS). Rules for separation distances and grouting depths for wells and BMPs will be based on distances between wells and "sources of contamination" in Colorado's Rules and Regulations for Water Well Construction, Pump Installation, and Monitoring and Observation Hole/Well Construction. Permanent BMPs and ISDS will be separated by the same distances specified between the components of the ISDS and "waterways" in the El Paso County ISDS regulations. Additional separation distance may be required when a permanent stormwater quality control measure is located near a water of the state and relies on a vegetated buffer strip as part of the strategy to address WQCV prior to discharge to waters of the state.

Table I-8. BMP Pollutant Removal Ranges for Stormwater Runoff and Most Probable Range for BMPs

Type of BMP	(1)	TSS	ТР	TN	TZ	TPb	BOD	Bacteria	
-------------	-----	-----	----	----	----	-----	-----	----------	--

			-	,,	J -			
Grass Buffer	LRR: EPR	10-50 10-20	0-30 0-10	0-10 0-10	0-10 0-10	N/A N/A	N/A N/A	N/A N/A
Grass Swale	LRR: EPR	20-60 20-40	0-40 0-15	0-30 0-15	0-40 0-20	N/A N/A	N/A N/A	N/A N/A
Modular Block Porous Pavement	LRR: EPR	80-95 70-90	65 40-55	75-85 10-20	98 40-80	80 60-70	80 N/A	N/A N/A
Porous Pavement Detention	LRR: EPR	8-96 70-90	5-92 40-55	-130- 85 10-20	10-98 40-80	60-80 60-70	60-80 N/A	N/A N/A
Porous Landscape Detention	LRR: EPR	8-96 70-90	5-92 40-55	-100- 85 20-55	10-98 50-80	60-90 60-80	60-80 N/A	N/A N/A
Extended Detention Basin	LRR: EPR	50-70 55-75	10-20 45-55	10-20 10-20	30-60 30-60	75-90 55-80	N/A N/A	50-90 N/A
Constructed Wetland Basin	LRR: EPR	40-94 50-60	-4-90 40-80	21 20-50	-29-82 30-80	27-94 40-80	18 N/A	N/A N/A
Retention Pond	LRR: EPR	70-91 80-90	0-79 45-70	0-80 20-60	0-71 20-60	9-95 60-80	0-69 N/A	N/A N/A
Sand Filter Extended Detention	LRR: EPR	8-96 80-90	5-92 45-55	-129- 84 35-55	10-98 50-80	60-80 60-80	60-80 60-80	N/A N/A
Constructed Wetland Channel*	LRR: EPR	20-60 30-50	0-40 20-40	0-30 10-30	0-40 20-40	N/A 20-40	N/A N/A	N/A N/A
	1	1		1			1	

Ref: Bell et al. (1996), Colorado (1990), Harper & Herr (1992), Lakatos & McNemer (1987), Schueler (1987), Southwest (1995), Strecker et al. (1990), USGS (1986), US EPA (1983), Veenhuis et al. (1989), Whipple and Hunter (1981), Urbonas (1997.

(1) LRR Literature reported range, EPR—expected probable range of annual performance by DCM2 BMPs.

N/A Insufficient data to make an assessment.

^{*} The EPR rates for a Constructed Wetland Channel assume the wetland surface area is equal or greater than 0.5% of the tributary total impervious area.

I.7.7. Operation and Maintenance of Best Management Practices

A. Long-term Operation and Maintenance of Post-Construction Stormwater Management Structures. The El Paso County Phase II MS4 Permit requires the County to ensure the long-term operation and maintenance of all post-construction stormwater management control measures constructed by an applicable development site. Part I E.4.a.vi of MS4 permit states:

"vi. Construction Inspection and Acceptance: The County must implement inspection and acceptance procedures to ensure that control measures are installed and implemented in accordance with the site plan and include the following:

- (A) Confirmation that the completed control measure operates in accordance with the approved site plan.
- (B) All applicable development sites must have operational permanent water quality control measures at the completion of the site. In the case where permanent water quality control measures are part of future phasing, the County must have a mechanism to ensure that all control measures will be implemented, regardless of completion of future phases or site ownership. In such cases, temporary water quality control measures must be implemented as feasible and maintained until removed or modified. All temporary water quality control measure must meet one of the design standards in Part I.E.4.a.iv.

For the purpose of this section, completion of a site or phase shall be determined by the issuance of a certificate of occupancy, use of the completed site area according to the site plan, payment marking the completion of a site control measure, the nature of the selected control measure or equivalent determination of completion as appropriate to the nature of the site."

For all structures approved by El Paso County which are not public improvements, the property owner or authorized agent shall be responsible for the operation and maintenance of all permanent stormwater quality control measures. All temporary control measures required during construction shall be removed after construction activity on the site has been completed and final stabilization of the site is achieved.

Prior to approval of a subdivision, issuance of a Certificate of Occupancy, or closure of the ESQCP for sites that did not go through the subdivision review process that have permanent post-construction stormwater quality control measures, a signed private maintenance agreement for permanent BMPs must be submitted to and recorded by the County. El Paso County uses these agreements as the primary mechanism to ensure the long-term operation and maintenance of post construction stormwater quality control measures. Agreement templates are found in Appendix G.

During construction a County Stormwater Inspector will inspect structures for conformance with approved construction plans and the SWMP. Once the structure has been accepted into the County Permanent Stormwater Quality Control Measure Inventory consistent with Chapter 5, control measures will be inspected at minimum once every five (5) years. All inspections will be conducted as described in Section I.5.

Confirmation that post-construction stormwater quality control measures operate according to approved plans occurs through the use of an inflow hydrograph routed through a basin model. This analysis and the resulting hydrograph shall be performed by the Engineer of Record for the owner or authorized agent of the applicable development site and provided with Final Drainage Report included in the development plan submitted to the County. If the ECM Administrator determines that significant changes to the approved plans are identified in the "as-built" drawings provided in conformance with Section 5.10.6, an additional inflow hydrograph based on the "as-built" changes shall be provided to the County to confirm that the changes made during construction did not negatively alter the effective operation of the control measure.

If during an inspection of a post-construction stormwater quality control structure it is determined and documented by a County Stormwater Inspector that any owner or authorized agent failed to adequately operate and maintain a permanent stormwater quality control measures or remove the temporary control measures, an enforcement action described in Section I.6 shall be pursued.

B. **Operation and Maintenance Manual.** A detailed Operation and Maintenance Manual covering inspections, operation and maintenance of permanent BMPs will be provided to the party who holds the Private Maintenance Agreement for Permanent BMPs. The Operation and Maintenance Manual will include specifics on frequency of inspections and maintenance; standards for vegetation or structures, such as species of vegetation, mowing height, revegetation of worn or eroded areas, cleaning methods; depth of sediment requiring removal; replacement frequencies; and other relevant topics.

(Res. No. 19-245, 7-2-19)

possible for as much of the reach as possible to the maximum prudent values for the hydraulic parameters in the 100 year event. The designer should determine the return period where these parameters would be achieved and, with the owner and local jurisdiction, determine if the associated risks are acceptable.

On the other hand, if the recommendation to avoid floodplain filling is not followed and fill is proposed, this should only happen in floodplains where the maximum prudent values for the hydraulic parameters shown in Table 8-1 are not exceeded in the 100-year event.

Tuble 0 1. Muximum producti values for initiati channel nyar unite parameters					
Design Parameter	Non-Cohesive Soils or Poor Vegetation	Cohesive Soils and Vegetation			
Maximum flow velocity (average of section)	5 ft/s	7 ft/s			
Maximum Froude number	0.6	0.8			
Maximum tractive force (average of section)	0.60 lb/sf	1.0 lb/sf			
Maximum depth outside bankfull channel	5 ft	5 ft			

Table 8-1. Maximum prudent values for natural channel hydraulic parameters

Stream Restoration Principle 8: Evaluate Hydraulics of Streams over a Range of Flows

Representative Design Tasks and Deliverables

- 1. Document hydraulic analyses of the project reach following the guidance of Section 7.0.
 - 2. Describe how hydraulic performance of the project reach compares to maximum prudent values for the hydraulic parameters shown in Table 8-1 for several return periods (including 2-, 10-, and 100-year events at a minimum). Describe any locations in the reach where these parameters are exceeded and discuss efforts made to improve hydraulics.
- 3. Confirm that hydraulic parameters of Table 8-1 are satisfied in for the100-year event in all locations where fill is proposed in the floodplain.

APPENDIX E: WEST KIOWA CREEK STABILITY ANALYSIS

Kimley **»Horn**

TECHNICAL MEMORANDUM

From:	Kimley-Horn
	Will Wilhelm, P.E., CFM, CPESC
To:	Winsome, LLC
	1864 Woodmoor Drive, Suite 100
	Monument, Colorado 80132
Date:	May 10, 2021
Subject:	West Kiowa Creek Stability (Hydraulic and Geomorphic) Analysis - Winsome Subdivision

Kimley-Horn and Associates, Inc. (Kimley-Horn) is submitting this detailed hydraulic and geomorphic analysis for West Kiowa Creek that flows through the Winsome Subdivision on behalf or Winsome, LLC. This study builds on a the previously approved Preliminary Drainage Report (PDR) (May 22, 2019) and CLOMR (September 30, 2019). This evaluation provides a more detailed hydraulic analysis of channel stability based on actual site conditions as well as adds a geomorphic (a.k.a. river mechanic) evaluation of West Kiowa Creek.

This evaluation takes a more comprehensive look at a way to manage this natural creek (West Kiowa Creek) and adjacent riparian wetlands that are consistent with U.S. Army Corp of Engineers (USACE) Section 404 and 401 of the Clean Water Act. Additionally, West Kiowa Creek has a regulated floodplain as mapped by the Federal Emergency Management (FEMA) Flood Insurance Rate Map (FIRM) panels(s) 08041C0310G and 08041C0350G (December 2018) and the recommendations are consistent with FEMA guidance.

This study provides a detailed evaluation of hydraulics, geomorphology (a.k.a. river mechanics) of West Kiowa Creek in relation to applicable regulations (Section 404/401 and FEMA). In addition, this study is based on the El Paso County's Engineering Criteria Manual (ECM) Drainage Criteria Manual (DCM).

WATERSHED AND STUDY REACH

The study reach is 1.25 miles of West Kiowa Creek through the Winsome Development Subdivision located in the Section 24, Township 11 South, Range 65 West of the 6th P.M of El Paso County. The study reach starts approximately 1,100 feet downstream (north) of Hodgen Road and then flows through the Site (Winsome Subdivision) to the north/northeast for approximately 1.25 miles where it flows off property.

The watershed contains multiple upstream flood control reservoirs/dams. These reservoirs help control the 100year hydrology and the sediment budgets coming from the watershed as whole.

HYDROLOGY

The Hydrology (100-year) runoff came directly the previously approved FEMA CLOMR and are summarized below in Table 1. Refer to **Appendix A** for Figure 1 an excerpt from the approved Conditional Letter of Map Revision (CLOMR) dated September 30, 2019 and completed by The Vertex Companies, Inc.

Table 1 – Peak Flows West Kiowa Creek

Return Period	Reach Station	Peak Flow (cfs)
100-year	1515	2,311
100-year	7234	2,062

Full spectrum detention is proposed for this low-density (2.5 to 5+ acres lots) subdivision. Therefore, there is no expected significant changes to the above peak flows or sediment budgets post development.

HYDRAULIC ANALYSIS

The hydraulic analysis is based on El Paso County's Drainage Criteria Manual (DCM). Per Section 2.2.1 of the DCM "A stable channel reaches "equilibrium" over many years. Therefore, channel modifications should be minimal. The hydraulic properties of natural channel are general irregular. A comprehensive study of flow in natural channels requires consideration of sediment transport and river morphology." This report is that analysis.

Using table 10-1 (Composite Roughness Coefficients for Unlined Channels) from the DCM a more detailed evaluation of Manning's N was determined. Table 2 summarized the inputs to that composite Curve numbers per the DCM.

Coefficient	Represents	Condition	Value	
n0	Material Type	Course Gravel	0.028	
n1	Degree of Irregularity	Minor	0.000	
n2	Variation in Channel Cross-Section	Alternating Occasionally	0.005	
n3	Effective of Obstructions	No Obstructions	0.000	
n4	Vegetation	Low/Medium	0.010	
m	Degree of Meandering	Minor	1.15	
Manning's N	N= (n0+n1+n2+n3+n4)m	(n0+n1+n2+n3+n4)m		

Table 2 Composite Roughness Main Channel (Per Table 10-1 in El Paso Co DCM).

The Manning N from Chow tables (1959) was also used for the floodplain areas and is summarized in Table 3.

Table 3 – Manning's N for Floodplain (Chow 1959)

Floodplain Vegetation	Min	Мах	Site Observation		
Pasture High Grass	0.030	0.050	Native Grass, more dense/rough than "pasture"		
Scattered Brush, Heavy Weeds	0.035 0.070		Minimal brush (~20% of length light brush)		
Chosen N value for Floodplains			0.050		

The photos below (taken winter of 2021) are of the study reach and represent typical channel conditions to support the above calculations and decisions.

Photo 1 Meandering channel with dense native riparian/wetland vegetation in floodplain

Photo 2 Meandering channel with scattered brush and heavy weeds

Using the above Manning's n, a hydraulic model of the reach was performed using HEC-RAS version 5.0.7. The purpose of this analysis was to determine Froude number. The results of the model are summarized below in Table 4 below and against the maximum Froude number (<0.9), discussed in Section 6.5.2 in the DCM.

Photo 3 - Stable section of West Kiowa Creek

Table 4 – Results of Hydraulic (HEC-RAS) Analysis

Table 4 – Results of Hydrau	
Cross-Section ¹	100-year Froude Number
7234	0.68
6969	0.62
6763	0.76
6542	0.62
6302	0.78
6134	0.52
5812	0.44
5480	0.13
5375	0.28
5310 (culvert)	
5256	1.00
5158	0.50
4810	0.34
4701	0.29
4467	0.46
4312	0.97
4058	0.52
3756	0.68
3671	0.57
3313	0.77
3053	0.61
2916	0.59
2559	0.74
2356	0.59
2115	0.70
1826	0.65
1618	0.29
1515	0.18
1321	0.16
1224	0.29
1160 (culvert)	
1105	0.98
1007	0.63
893	0.82
678	0.40
440	0.60 x A for Cross Section Location

1. See Figure 1 in Appendix A for Cross Section Locations

GEOMORPHIC (RIVER MECHANICS) EVALUATION

West Kiowa Creek through the site is a moderately sinuous channel located in a moderately confined valley (See Photo 3). The channel has access to an active flood-prone area (i.e. geomorphic floodplain) as evident by adjacent wetlands and dense riparian/wetland vegetation (See Photos). This vegetation forms densely rooted sod mats from grasses and grass like plants. The channel exhibits predominately gravel and sand bed with slopes generally 0.5-2%. There are no visible signs of channel incision or head-cuts in the main stem of Kiowa Creek. The channel has good depth variability (i.e. pools and riffles) with riffles generally occurring in tangent sections and deeper pools in the outer bend of the radius. Coarser large gravel and cobble can be found in the riffles.

This type of morphological channel is hydraulically efficient channel and maintains a high sediment transport capacity. The narrow and relatively deep base flow channel maintains a high resistance to plan form adjustment, which results in channel stability without significant downcutting. This channel type is very stable unless the stream banks are disturbed (not planned), and significant changes in sediment supply and/or streamflow occurs. With the upstream flood control structures (upstream of Hodges road), the planned low density/large lot development combined with full-spectrum detention, no major change to sediment supply or hydrology are anticipated to impact this current stability.

The only observed instability (i.e. visible erosion) in this system is outside the channel and active flood prone area. It is in on the slope transition from the wetland/flood prone area up to the terrace. These areas are outside of geomorphic floodplain but partially inside the 100-year FEMA regulated floodplain – See Photo 4 below.

There are multiple drainage channels/draws that flow into Kiowa Creek inside the property. All are small non-jurisdictional channels and are wholly contained on property. All but two (2) of these channels are hydraulically and morphologically stable. The two unstable channels tie into Kiowa Creek at River State 4312 and 3756 and flow in from the northwest side. These two channels are incised with active head-cuts moving upstream. These channels bed and banks will be stabilized per DCM. The bed and bank stabilization of this smaller non-jurisdictional channels will occur outside of Kiowa Creek stream and wetland avoiding the need for a 404 permit from the USACE. Stabilizing these channels and reducing the large amount of sediment being transported downstream to Kiowa Creek will benefit the stream and wetland functions of Kiowa Creek including stability.

Photo 4 - Erosion on valley/terrace transition (slope on right). Note: Stable channel and floodplain

This slope erosion is likely due historic land use (cattle and vegetation management) and not from the channel's hydraulic geometry. A plan to address these areas is discussed below.

RECOMMENDATIONS

Based on the existing channel condition (See Photo 1-4) and the hydraulic and geomorphic evaluation summarized above, our professional opinion is no stabilization directly in West Kiowa Creek outside the location of the proposed box culvert is recommended. The box culvert and outlet protection will mitigate the high Froude numbers. The area shown in Table 4 where the Froude number is above 0.9 can be reduced by sloping back the valley wall terrace slope to a 3:1 to 4:1 slope, revegetated with native vegetation. Temporary erosion control (i.e. coir and straw) matting can be placed down following grading until vegetation can establish.

In addition, the two unstable non-jurisdictional channels (outside of Kiowa Creek) with active bed and bank erosion that tie river STA 4312 and 3756 (discussed above) will also be stabilized. This stabilization will be per the DCM and will likely include grading, rock, erosion control blankets, and temporary and permanent vegetation.

This stabilization identified as needed in this memo (culvert with energy dissipation, Kiowa Creek bank grading (one location), and two non-jurisdiction channels that flow into Kiowa Creek) will be detailed out in the final drainage report and submitted for County review and approval.

Table 5 summarizes the proposed Froude numbers after stabilization of the cross-sections from Table 4 that exceeded a maximum Froude number of 0.9.

Cross- Section ¹	100-year Froude Number	Comments
5256	1.00	Proposed condition – Box culvert + energy dissipator will mitigate
4312	0.72	Right valley bank sloped to 4:1
1160	0.98	Proposed condition – Box culvert + energy dissipator will mitigate

Table 5 – Proposed Hydraulic Condition with Stabilization/Sloping

Photo 5 - Erosion at Cross-Section 4312 (slope on right).

The above approach is preferred in that it:

- Is consistent with the USACE 404 permit to avoid and minimize impacts to jurisdictional streams and wetlands.
 - The proposed grading discussed above and shown in Table 5 is all outside jurisdiction features (i.e. wetlands or ordinary normal high water)
- Is a nature based solution that meets the following City/County Goals defined in the ECM and DCM
 - Environmental preservation and enhancement (Section 1.2.1)
 - o Ideal open channel is developed by nature over time (Section 10.1)
- Has the following benefits (defined by Section 10.1 or the USACE Stream Quantification Tool (SQT).
 - Low maintenance (10.1)
 - Available channel storage decreasing downstream peaks (10.1)
 - Depth Variability (pools and riffles) (SQT)
 - Floodplain connectivity (SQT)
 - Natural subsurface infiltration of flows provided (10.1)
 - Native vegetation and wildlife not disturbed (10.1)
 - Channel can provide a desirable green belt and recreation area (10.1)

SIGNATURE:

is of withen

Will Wilhelm, P.E., CFM, CPESC Registered Professional Engineer State of Colorado No. 56499

APPENDIX A – FIGURE

CASE #: 19-08-0185R

WEST KIOWA CREEK PROPOSED CONDITIONS 100-YEAR FLOOD DATA						
CROSS SECTION	100-YEAR WSEL	100-YEAR TOP WIDTH INCLUDING INEFFICTIVE FLOW	100-YEAR TOP WIDTH EXCLUDING INEFFECTIVE FLOW			
72+34	7338.11	63.12	63.12			
69+69	7335.52	64.11	64.11			
67+63	7333.63	64.92	64.92			
65+42	7331.14	74.22	74.22			
63+02	7328.85	76.90	76.90			
61+34	7327.28	131.11	131.11			
58+12	7326.51	205.39	170.72			
54+80	7326.64	314.42	314.42			
53+75	7326.35	278.31	62.88			
53+10		CULVERT				
52+56	7321.50	110.25	66.00			
51+58	7318.09	174.44	174.44			
48+10	7316.81	179.90	179.90			
47+01	7316.71	146.50	146.50			
44+67	7315.70	114.47	114.47			
43+12	7314.40	115.43	115.43			
40+58	7311.05	99.53	99.53			
37+56	7308.45	86.18	86.18			
36+71	7307.52	96.89	96.89			
33+13	7304.40	102.90	102.90			
30+53	7301.03	69.79	69.79			
29+16	7299.80	67.41	67.41			
25+59	7297.13	118.75	118.75			
23+56	7294.61	88.75	88.75			
21+15	7292.45	99.93	99.93			
18+26	7289.14	86.77	86.77			
16+18	7289.46	300.23	300.23			
15+15	7289.48	426.41	426.41			
13+21	7289.45	185.54	185.54			
12+24	7289.12	255.40	62.76			
11+60		CULVERT				
11+05	7283.37	124.27	60.70			
10+07	7282.01	114.85	114.85			
8+93	7281.40	243.18	243.18			
6+78	7278.48	265.58	265.58			
4+40	7276.46	146.44	146.44			

* SOME TOP WIDTHS HAVE BEEN ADJUSTED DUE TO ISLANDS, INEFFECTIVE FLOW, AND SECTION LOCATION RELATIVE TO CULVERT. SEE NOTES IN THE SUPPORTING HEC-RAS MODEL REGARDING THE 100-YEAR TOP WIDTH FOR THESE SECTIONS.

PROPOSED GRADING CROSS SECTIONS (CORRECT SIDE DEPICTED)

PROPOSED CULVERT MODIFICATIONS

BENCHMARK: NORTHWEST CORNER OF SECTION 24, TOWNSHIP 11 SOUTH, RANGE 65 WEST OF THE 6TH P.M.

A 3.5" ALUMINUM CAP STAMPED "LS 12103"

ELEVATION IS 7429.30 NAVD88

Kimley »Horn Appendix B – Hydraulics

Page 11

HEC-RAS Profile Output Summary Table

HEC-RAS Plan: REV	HEC-RAS Plan: REV_CUT3 River: Alignment - Kiow Reach: Alignment - Kiow Profile: 100yr											
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
Alignment - Kiow	7234	100yr	2062.00	7333.67	7337.85		7338.58	0.010862	6.94	304.11	101.09	0.67
Alignment - Kiow	6969	100yr	2062.00	7330.95	7334.91		7335.62	0.011438	6.77	306.60	105.40	0.68
Alignment - Kiow	6763	100yr	2062.00	7328.00	7332.79		7333.49	0.009383	6.70	309.93	94.10	0.63
Alignment - Kiow	6542	100yr	2062.00	7326.00	7330.80		7331.49	0.008682	6.68	315.34	94.74	0.61
Alignment - Kiow	6302	100yr	2062.00	7324.24	7329.30		7329.78	0.005590	5.68	388.17	131.72	0.50
Alignment - Kiow	6134	100yr	2062.00	7323.98	7328.31	7327.30	7328.77	0.006411	5.55	402.17	147.76	0.52
Alignment - Kiow	5812	100yr	2062.00	7321.76	7326.73	7325.40	7327.10	0.004305	5.25	473.66	233.76	0.44
Alignment - Kiow	5480	100yr	2062.00	7318.86	7326.69	7322.37	7326.73	0.000330	1.98	1348.58	350.55	0.13
Alignment - Kiow	5375	100yr	2062.00	7318.00	7326.36	7321.95	7326.65	0.001360	4.44	481.57	278.77	0.28
Alignment - Kiow	5310		Culvert									
Alignment - Kiow	5256	100yr	2062.00	7317.96	7321.50	7321.50	7323.07	0.024647	10.08	205.38	110.20	1.00
Alignment - Kiow	5158	100yr	2062.00	7316.00	7318.92		7319.25	0.006641	4.60	451.16	181.49	0.50
Alignment - Kiow	4810	100yr	2062.00	7312.97	7317.57		7317.80	0.002874	4.06	573.41	186.25	0.36
Alignment - Kiow	4701	100yr	2062.00	7312.00	7317.32		7317.52	0.002036	3.64	589.86	151.45	0.31
Alignment - Kiow	4467	100yr	2062.00	7312.00	7316.11		7316.68	0.007095	6.17	358.59	122.61	0.56
Alignment - Kiow	4312	100yr	2062.00	7311.45	7314.57		7315.18	0.013975	6.41	334.17	151.58	0.72
Alignment - Kiow	4058	100yr	2062.00	7307.52	7311.45		7312.17	0.010152	6.83	309.97	104.84	0.65
Alignment - Kiow	3756	100yr	2062.00	7304.66	7308.84		7309.41	0.008131	6.26	360.44	132.39	0.59
Alignment - Kiow	3671	100yr	2062.00	7303.99	7307.93		7308.60	0.010371	6.88	323.81	116.90	0.66
Alignment - Kiow	3313	100yr	2062.00	7300.23	7303.85	7303.26	7304.57	0.011514	6.85	313.16	119.53	0.68
Alignment - Kiow	3053	100yr	2062.00	7296.89	7301.65		7302.26	0.006890	6.32	336.25	96.59	0.55
Alignment - Kiow	2916	100yr	2062.00	7296.00	7300.55		7301.24	0.007847	6.78	317.48	95.27	0.59
Alignment - Kiow	2559	100yr	2062.00	7293.71	7297.53		7298.09	0.009867	6.11	356.85	146.78	0.63
Alignment - Kiow	2356	100yr	2062.00	7291.33	7295.37		7296.10	0.009611	6.87	306.21	93.26	0.64
Alignment - Kiow	2115	100yr	2062.00	7289.22	7292.64		7293.36	0.013601	6.80	305.10	118.32	0.73
Alignment - Kiow	1826	100yr	2062.00	7284.10	7289.97		7290.64	0.006813	6.68	332.54	100.43	0.56
Alignment - Kiow	1618	100yr	2062.00	7284.00	7289.64	7287.99	7289.77	0.001744	3.70	799.16	306.67	0.29
Alignment - Kiow	1515	100yr	2311.00	7282.00	7289.58	7286.74	7289.65	0.000648	2.73	1307.64	433.71	0.18
Alignment - Kiow	1321	100yr	2311.00	7280.72	7289.45	7284.42	7289.54	0.000489	2.57	1032.04	296.02	0.16
Alignment - Kiow	1224	100yr	2311.00	7280.00	7289.11	7284.63	7289.44	0.001421	4.88	506.76	255.26	0.29
Alignment - Kiow	1160		Culvert									
Alignment - Kiow	1105	100yr	2311.00	7279.08	7283.36	7283.36	7285.19	0.022053	10.98	216.57	124.06	0.98
Alignment - Kiow	1007	100yr	2311.00	7278.00	7282.10	7281.26	7282.72	0.009688	6.33	369.92	126.10	0.63
Alignment - Kiow	893	100yr	2311.00	7277.97	7280.44	7280.35	7281.09	0.021909	6.72	369.59	238.35	0.87
Alignment - Kiow	678	100yr	2311.00	7275.58	7278.99		7279.19	0.004343	3.59	645.76	269.50	0.40
Alignment - Kiow	440	100yr	2311.00	7273.97	7277.20	7276.42	7277.73	0.009014	5.94	406.15	154.80	0.60

HEC-RAS Plan; REV CUT3 River; Alignment - Kiow Reach; Alignment - Kiow Profile; 100vr

APPENDIX F: DRAINAGE MAPS

Kimley **»Horn**

NORTH

SHEET

NORTH

Kimley » Horr Kimley-Horn and Associates, In PROJECT NO. 196106001

SHEET

2

MΑ

PROJECT NO. 196106001

SHEET

3

NORTH

SHEET

5

Drainage Report - Final_V2-redline.pdf Markup Summary

dsdlaforce (4)		
analysis to determine top within for the probability of the second Subject: Text Box Page Label: 18 Lock: Unlocked Author: dsdlaforce Date: 4/6/2023 5:01:52 PM Status: Color: Layer: Space:	Address the above comment by providing a summary of Swale I2 result. The paragraph does not specifically state whether or not any additional improvements are necessary for Reach I2.	
	Subject: Image Page Label: 18 Lock: Unlocked Author: dsdlaforce Date: 4/6/2023 5:01:56 PM Status: Color: Layer: Space:	
	Subject: Image Page Label: 6 Lock: Unlocked Author: dsdlaforce Date: 4/6/2023 5:05:37 PM Status: Color: Layer: Space:	
<text><text><text><text><text><text></text></text></text></text></text></text>	Subject: Callout Page Label: 6 Lock: Unlocked Author: dsdlaforce Date: 4/6/2023 5:11:18 PM Status: Color: Layer: Space:	Update the flooplain statement section as needed based on RBD Floodplain's review comment.

Glenn Reese - EPC Stormwater (2)

Subject: SW - Textbox with Arrow Page Label: 15 Lock: Unlocked Author: Glenn Reese - EPC Stormwater Date: 4/7/2023 1:23:40 PM Status: Color: ■ Layer: Space:

Clarify that per MHFD Detail T-5, forebays are only needed when >1ac of imperviousness is tributary to a pond inflow point. Since this threshold is not exceeding at either concentrated inflow point, actual concrete lined forebays with slow release notches are not required.

Space:

Subject: SW - Textbox Page Label: [1] Runoff_Reduction_Exhibit-RR-OVERALL Lock: Unlocked Author: Glenn Reese - EPC Stormwater Date: 4/7/2023 1:45:52 PM Status: Color: ■ Layer:

In accordance with the MHFD, runoff reduction has vegetation requirements that have been overlooked in the past. Going forward the following will be required for runoff reduction:

- The runoff reduction RPA is considered a WQ Facility and requires a signed Maintenance Agreement

All RPA/SPA areas will need to be within a no build/drainage easement (or tract) and discussed in the maintenance agreement and O&M manual.
RPA vegetation should be turf grass (from seed [provide appropriate seed mix] or sod).

- Turf grass vegetation should have a uniform density of at least 80%.

 Irrigation (temp or permanent) is necessary to establish sufficient vegetation and not just weeds.
 Show suitability of topsoil of RPA and steps for proper preparation of topsoil per recommendations in MHFD detail T-0 Table RR-3

- RPA/SPA limits must be shown on GEC Plans (not just FDR) so our SW inspectors and the QSM know that these areas are to remain pervious, vegetated (80%), and irrigated post-construction. Our SW inspectors do not look at drainage reports.

Other requirements:

- Provide a detail (in CDs) for the UIA:RPA interface that shows the recommended vertical drop of 4".

- Show signage to be posted in RPAs so maintenance personnel and owners know that the area is a water quality treatment area (not just a regular grassy area and/or an SPA). The signage should say something like: "Water Quality Treatment Area, do not pollute. Area to remain vegetated and properly maintained per the O&M Manual."

lpackman (1)

Subject: Text Box Page Label: 431 Lock: Unlocked Author: Ipackman Date: 4/4/2023 3:40:35 PM Status: Color: Layer:

Space:

Unresolved from review 1. Provide the complete hydraulic analysis to include the velocity and froude number results, the boundary conditions used.