WATER RESOURCES REPORT

for

WINSOME FILING NO. 3

A Portion of Parcel No. 51000-00-493

May 2021 (Revised January 2023)

Prepared By:

WINSOME FILING NO. 3 A Portion of Parcel No. 51000-00-493

WATER RESOURCES REPORT

May 2021 (revised January 2023)

Prepared for:

Winsome, LLC 1864 Woodmoor Drive, Suite 100 Monument, CO 80132

Prepared by:

JDS-Hydro Consultants, Inc. 5540 Tech Center Drive, Suite 100 Colorado Springs, CO 80919

Table of Contents

1.0	INTRO	DDUCTION AND EXECUTIVE SUMMARY	1
2.0	PROJI	ECTED LAND USES	1
	2.1	Projected Land Uses	1
3.0	WATE	ER NEEDS AND PROJECTED DEMANDS	1
	3.1	Water Demand Summary	1
	3.2	Unit Water User Characteristics	2
	3.3	Demand versus Supply	2
4.0	WATE	R RIGHTS AND SUPPLY	2
	4.1	Water Rights	2
	4.2	Adequacy of Water Rights	3
	4.3	Description of Current Water Rights	5
5.0	WATE	ER SYSTEM FACILITIES AND PHYSICAL SUPPLY	5
	5.1	Source of Supply	5
	5.2	Water Treatment	5
	5.3	Water Storage	5
	5.4	Distribution, Pumping, and Transmission Lines	6
	5.5	Water Quality	6
6.0	EL PA	SO COUNTY MASTER PLANNING ELEMENTS	8
	6.1	County Water Master Plan 2040 and 2060 Projections	8
	6.2	Buildout (Including 2040 and 2060 Buildout):	8
	6.3	Description of Long-Term Planning and Future Sources of Supply	
	6.4	Water System Interconnects	8
7.0	CONC	LUSION	8

APPENDICES

Appendix A – Land Use Exhibit

Appendix B – Water Supply Information Summary – SEO Form

i

Appendix C – Determinations and Decrees

Appendix D – Replacement Plan

Appendix E – Water Quality Results

1.0 INTRODUCTION AND EXECUTIVE SUMMARY

The purpose of this report is to address the specific water needs of a proposed subdivision of taken from a portion of Parcel # 51000-00-493 in El Paso County, CO.

<u>EXECUTIVE SUMMARY</u>: The water rights and augmentation plans in place for the existing parcel are adequate to meet the needs of thirty-eight (38) residential lots proposed for the subdivision on a 300-year basis.

2.0 PROJECTED LAND USES

2.1 Projected Land Uses

This report pertains to the proposed 350-acres from the Winsome Filing No. 3 development parcel that is proposed to be divided into thirty-eight (38) residential lots. Please refer to the *Land Use Exhibit* in *Appendix A* depicting the proposed subdivision.

3.0 WATER NEEDS AND PROJECTED DEMANDS

3.1 Water Demand Summary

It is anticipated that each residential lot will use <u>0.60 acre-feet (AF)</u> of water per year. This estimate is based information provided in Chapter 8 of the *El Paso County Land Development Code* as well as the *Findings of Fact* for each replacement plan located in *Appendix C*. Water demands and wastewater loads are shown Table 3-1 below:

Table 3-1: Summary of Expected Water Demands & Wastewater Loads

	Wastewater					
	Annual	Average		Domestic	Total Indoor,	ADF
# of	# of Indoor Use		Irrigation	Watering	Watering,	(@ 90%
SFE's	FE's 0.30		0.25	0.0125	& Irrigation	Indoor Use
	(AF/YR/SFE)	(GPD)	(AF/yr/lot)	(AF/Horse/Year)	(AF)	(GPD)
	Note 1		Note: 2	Note 3		
38	11.400	10177	9.500	1.900	22.80	9160

Note 1: Per Part 10. of the Findings from Replacement Plan No. 3, Determination of Water Right No. 1692-BD and Part 11 of the Findings from Replacement Plan No. 1692-RP, No. 3

Note 2: Per 8.4.7(B)(7)d of the EPC Land Development Code - @ 1 irrigatible acres per lot

Per Part 2.c. of the Findings from Replacement Plan No. 2, Determination of Water Right

Note 3: No. 1692-BD and 2.c. of the Findings from Replacement Plan No. 1692-RP, No. 3. Stock watering demand assumes 4 horses per lot.

3.2 Unit Water User Characteristics

Unit water user characteristics are counted on a *single family equivalent* (SFE) basis. All single-family homes are counted as one SFE, and user characteristics were based on information provided in the *El Paso County Land Development Code*, Chapter 8. User characteristics for the commercial lot were also based on information provided in the *El Paso County Land Development Code*, Chapter 8.

3.3 Demand versus Supply

An overall residential demand of 22.80 acre-feet per year for the proposed subdivision is less than the amount of Dawson Aquifer supply listed in the decrees, determinations, and *Findings of Fact* (provided in *Appendix C*), and is further discussed in Section 4.0 of this report. Of note, the combined total of Filing No. 1 residential demands, Filing No. 2 residential demands, and Filing No. 3 residential demands total 87.6 AF/year. This total is far less than the allocated 300-year supply of 232.66 AF/year for the development out of the Dawson formation.

4.0 WATER RIGHTS AND SUPPLY

4.1 Water Rights

Water rights, determinations, and replacement plans were done by the Colorado Office of the State Engineer and are included in *Appendix C*. Table 4-1 below summarizes the information from said water rights and determinations. Of note, the Winsome overall development is comprised of 768.06 acres within the overall 900.52 acres described in the decrees. The water conveyed to the Winsome Development has been pro-rated as such.

Table 4-1: Water Rights Summary

Land Formation/ Aquifer	Determination	Tributary Status	Area	Decreed Volume	Annual Allocation 100-Year	Annual Allocation 300-Year
			(Acres)	(AF)	(AF/Year)	(AF/Year)
Dawson	1692-BD	NNT	766.66	69,797	697.97	232.66
Denver	1691-BD	NT	766.66	44,985	449.85	149.95
Arapahoe	1690-BD	NT	766.66	33,901	339.01	113.00
Laramie-Fox Hills	1689-BD	NT	766.66	22,435	224.35	74.78
			Total Lo	egal Supply	1711.18	570.39
					100-Year	300-Year

Beneficial Uses: Domestic Indoor, Industrial, Commercial, Irrigation, Augmentation Stock watering, Recreational water feature ponds, piscatorial, Wildlife Replacement Note that only the Dawson formation is to be used for the residential lots in this subdivision. The Denver formation is to be used to support the commercial lot well. According to the *Findings of Fact* located in *Appendix C*, the following conditions are allowed for the subject property:

- Water in the Dawson may be withdrawn through a new well drilled on each individual residential lot, totalling thirty-eight (38) new wells total.
- There shall be one (1) Dawson aguifer well per residential lot.
- Each well must provide water to a house on the same lot, ensuring that during pumping, return flows from septic systems alone will always equal or exceed stream depletions in the same year.
- The acre-feet of water drawn out of the Dawson formation by the thirty-eight (38) residential lots described in Filing No. 3 will create a depletion to the alluvial aquifer. This depletion will replaced by return flows through the residential septic systems as described in Replacement Plan No. 1692-RP, No. 3, both of which are contained in *Appendix D*. Of note, this replacement plan is currently being amended to add three lots to bring the total amount of lots to be augmented under this replacement plan from 60 lots to 63 lots.

4.2 Adequacy of Water Rights

Current water rights are adequate for buildout demands of thirty-eight (38) residential lots and meet 2040 and 2060 buildout projections on a 300-year basis.

According to the *Findings and Order* (Determinations 1692-BD and 1691-BD) located in *Appendix C*.

- There are 819 AF/year on a 100-year basis (or 273 AF/year on a 300-year basis) available for use out of the Dawson Aquifer. Of these 273 AF/year, 232.66 AF/year are available to Winsome, LLC through the overall 766.66 acre development. The Dawson Aquifer in this location is considered not-nontributary.
 - Previously approved Filing No. 1 will demand 28.20 AF/year of residential use out of the Dawson.
 - Previously submitted Filing No. 2 will demand an estimated 36.60
 AF/year of residential use out of the Dawson
 - Proposed Filing No. 3 will demand an estimated 22.80 AF/year of residential use out of the Dawson.
 - The allocated 232.66 AF/year will be able to supply the needs of Filing No. 1, Filing No. 2, and Filing No. 3 which totals 87.60 AF/year of residential use
- Replacement Plan No. 1692-BD, No. 2 and No. 1692-RP, No. 3 were developed to augment all not-nontributary water usage from the Dawson

Formation within the Winsome Development. These Findings and Orders are shown in *Appendix D*.

- Replacement Plan No. 1692-BD, No. 2 allows for the withdrawal of 49.8 AF annually through 83 wells located on 83 residential lots. Each of the residential lots is proposed to divert 0.6 AF/year, which will result in an increase to 1.87 AF/year by the 300th year of pumping. Of the 0.6 AF/year of overall pumping, 0.30 AF/year is estimated to be allocated to domestic use. Return flows from these domestic diversions are assumed to total 0.27 AF/year/lot, or 22.41 AF/year for all 83 lots at full build-out. The estimated 22.41 AF/year for all 83 lots will be more than enough to replace the 1.87 AF/year in alluvial depletions by year 300.
- o Replacement Plan No. 1692-RP, No. 4 (which replaces previously approved Replacement Plan No. 1692-BD, No. 3) allows for the withdrawal of 37.8 AF annually through 63 wells located on 63 residential lots. Each of the residential lots is proposed to divert 0.6 AF/year, which will result in an increase to 1.46 AF/year by the 300th year of pumping. Of the 0.6 AF/year of overall pumping, 0.30 AF/year is estimated to be allocated to domestic use. Return flows from these domestic diversions are assumed to total 0.27 AF/year/lot, or 17.01 AF/year for all 63 lots at full build-out. The estimated 17.01 AF/year for all 63 lots will be more than enough to replace the 1.46 AF/year in alluvial depletions by year 300.
- The forty-seven (47) residential lots existing in the approved Filing No. 1 lie completely within the 278.1 acres augmented by Replacement Plan 1692-BD, No. 2. Following augmentation of these 47 lots within Filing No. 1 there are 36 lots left unallocated within the area of Replacement Plan No. 2. See Exhibit in *Appendix D*.
- o The sixty-one (61) residential lots proposed in Filing No. 2 lie partially within Replacement Plan 1692-BD No. 2 and Replacement Plan 1692-RP No. 3. Of the sixty (61) residential lots proposed in Filing No. 2, thirty-six (36) will be augmented as part of Replacement Plan 1692-BD No. 2 and twenty-five (25) will be augmented by Replacement Plan 1692-RP No. 3. This leaves roughly thirty-eight (38) unallocated residential lots remaining under Replacement Plan 1692-RP No. 4. These thirty-eight (38) unallocated lots are being platted under Filing No. 3 See Exhibit in *Appendix D*.

Conclusion:

The current water rights and augmentation plan in place are adequate to meet the estimated overall demand of 22.80 acre-feet for thirty-eight (38) lots.

4.3 Description of Current Water Rights

The subject area's current water rights involve non-renewable supplies in the Denver Basin, further discussed below.

Non-Renewable Denver Basin Supply

The Denver Basin is a vast, deep-rock aquifer that stretches from southeast of Colorado Springs to Greeley, and from the base of the front range to the eastern end of Elbert County. Rights granted in the Denver basin are based on the ownership of the surface property – the larger the parcel, the larger the allocation. This water is much deeper than typical residential wells, ranging up to 2,650 feet deep.

Denver Basin water is considered finite and therefore non-renewable. In the subject area, there are four main formations that make up the Denver Basin: Dawson, Denver, Arapahoe, and Laramie-Fox Hills (LFH), described from shallowest to deepest.

The subject property comprising 768.06 acres has numerous determinations under its existing boundaries, which total 570 annual acre-feet on a 300-year basis, and 1,711 annual acre-feet on a 100-year basis. Of the 570 AF/year available on a 300-year basis, 293 are available to the Winsome development (232.66 AF/year from the Dawson and 60 AF/year from the Denver)

5.0 WATER SYSTEM FACILITIES AND PHYSICAL SUPPLY

5.1 Source of Supply

Supply for the thirty-eight (38) residential lots will be met with future wells completed in the Dawson aquifer. These wells will be drilled, screened, test-pumped, and completed accordance with the Colorado Division of Water Resources rules and regulations.

5.2 Water Treatment

Representative samples were taken in Dawson Aquifer from an existing adjacent well located on a neighboring property (11745 Quiet Waters PT – Golwer Well), located north-east of and directly adjacent to the overall proposed Winsome Subdivision for constituents required by El Paso County regulations for a confined aquifer. As described in Section 5.5 below the well was only to have elevated levels of combined radium 226+228 and manganese (considered a secondary contaminant). Any desired treatment of future wells will be at the discretion of the individual homeowners as this is not considered a *Community System* by the Colorado Department of Public Health and Environment. Point of use treatment filters can be purchased at local hardware stores and can be effective in eliminating the majority of contaminants from the source water.

5.3 Water Storage

Water storage (other than potential individual cisterns) will not be constructed for the residential lots. Therefore, a central water system with treatment and

fire-flow capabilities will not be provided. The residents of each subdivided lot will be made aware of this since it will be included on the subdivision plat.

5.4 Distribution, Pumping, and Transmission Lines

Since there is no central water system proposed for the residential lots, no distribution, pumping, or transmission lines will be constructed. For the commercial lot there will be a small 4" transmission line to the commercial buildings from the treatment building to carry treated water.

Unrelated to the Winsome Subdivision there will be four (4) well sites on the Winsome Subdivision property to transfer non-tributary water from the property to the Sterling Ranch Development for municipal uses. In addition, there will also be several transmission lines from the well sites to deliver water to Sterling Ranch Metropolitan District property. These transmission lines will not serve the Winsome Subdivision.

5.5 Water Quality

As mentioned previously representative samples out of the Dawson formation were taken from an existing adjacent well drilled into the Dawson aquifer. Samples for constituents required by El Paso County regulations for a confined aquifer were taken from the Gowler Property (11745 Quiet Waters PT) on February 7th, 2019. The source was approved by Nina Ruiz with El Paso County Development Services on November 14th, 2018. Water quality testing was performed by Colorado Analytical Laboratories per El Paso County Land Development Code section 8.4.7(B). Water quality results are included in *Appendix E*. The only constituents of concern were for combined radium 226+228 and manganese.

Combined radium 226 + 228 – the Maximum Contaminant Limit (MCL) for this constituent is 5 pCi/l. The result for this constituent from water sampling the Gowler Well is 8.3 pCi/l. Of note, the Colorado Department of Health and Environment would not consider one result above the MCL as a violation of the coRAD MCL and would instead take a series of samples over the entire year and take the average of these results to compare to the state MCL before issuing a violation. In addition, the presence of radium in an aquifer is rarely consistent with the potential that radium could be present in one well and then 100 feet away not exist at all. Moreover, the EPA has proposed that the standard MCL be raised to 20 pCi/l as the current MCL is well below levels in which health effects have been observed. For comparison purposes, the risk associated with consuming water containing 5 pCi/l of radium for one year is comparable to one chest X-ray. However, if residents of the development wish to provide an extra layer of protection on their source water and eliminate all potential of radium in their drinking water the installation of a water softener featuring ion exchange or a residential reverse osmosis unit is fairly simple. A list of manufacturers for these units can be provided to homebuilders, if desired.

Manganese – manganese is considered an aesthetic water quality issue and only features a secondary maximum contaminant level (SMCL). The SMCL for manganese is 0.05 mg/L while the results from the Gowler Well came in at 0.1171 mg/L. Manganese exists naturally and is found in several foods including nuts, legumes, seeds, teas, whole grains, and vegetables. However, if found in excess of the SMCL it can impair color, odor, or taste of the water. According to the EAP, however, health effects are not a concern until concentrations of manganese are found to be 10 times higher (or 0.5 mg/L). Regardless, manganese can be removed from drinking water using the same ion exchange or reverse osmosis units described above.

6.0 EL PASO COUNTY MASTER PLANNING ELEMENTS

6.1 County Water Master Plan 2040 and 2060 Projections

The subject property lies within the El Paso County Water Master Planning area, Region #4a.

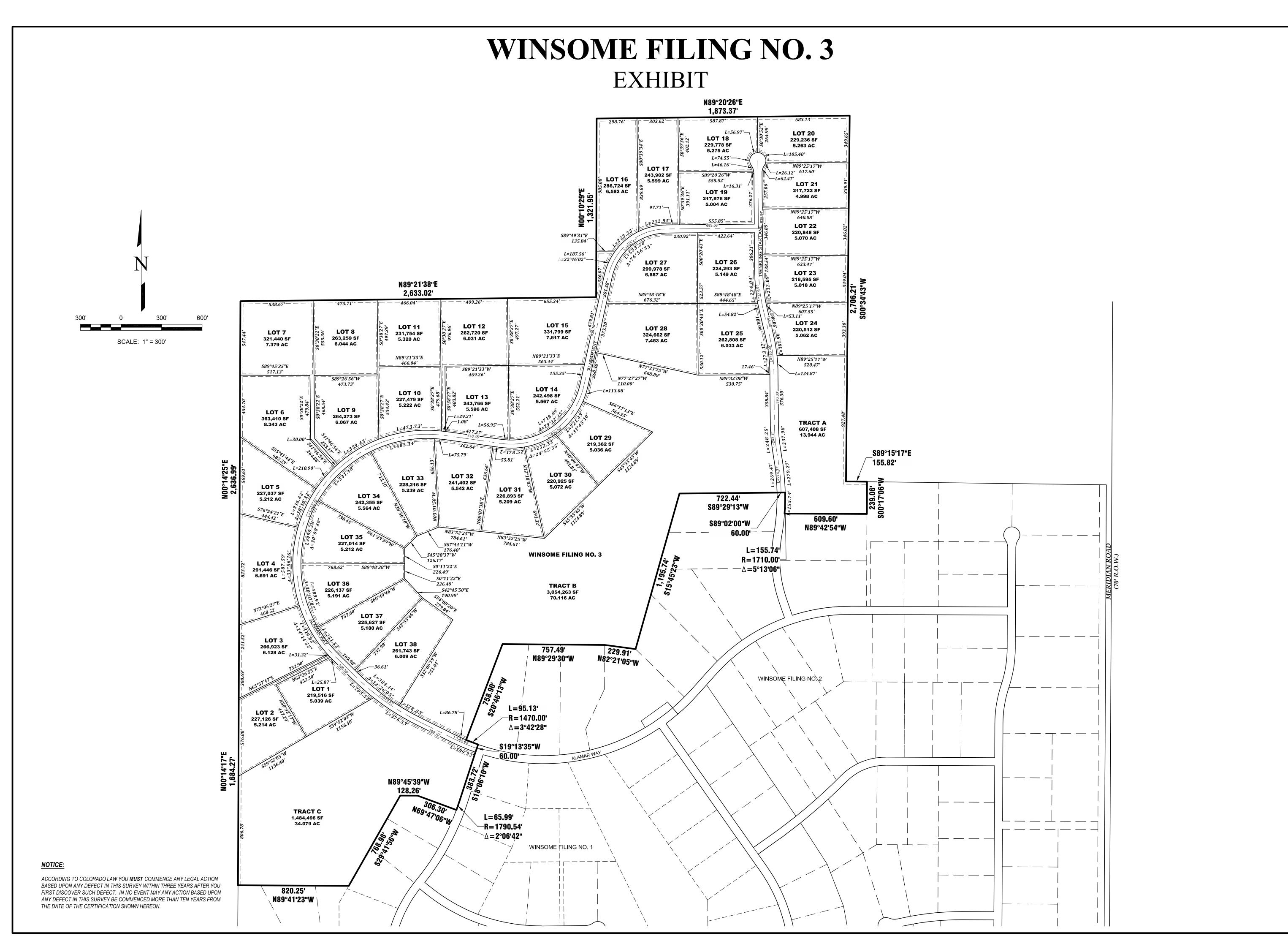
6.2 Buildout (Including 2040 and 2060 Buildout):

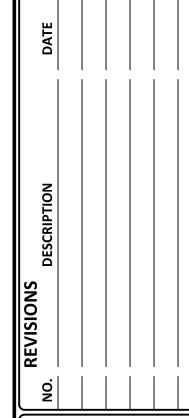
Expected buildout of the subject property is thirty-eight (38) residential lots, ranging from 5.01 acres to 7.58 acres in size. Demands for the entire subdivision are listed in Section 3.0 of this report.

6.3 Description of Long-Term Planning and Future Sources of Supply

Per El Paso County criteria, the 300-year supply of water for the subject property appears to be more than adequate for full buildout, which would include both the 2040 and 2060 scenarios. However, the proposed supply in the Dawson aquifer is based on non-renewable sources.

If needed beyond the 300-year supply in the Dawson formation, the subdivision has water rights in the Denver. Remaining rights in the Denver, Arapahoe, and Laramie Fox-Hills are subject to sale to Sterling Ranch Metropolitan District. Please refer to the water cases shown in *Appendix C* and replacement plans shown in *Appendix D*.


6.4 Water System Interconnects


The closest source for a potential interconnect is the Park Forest Water District – approximately 3.5 miles to the southwest.

It is not anticipated (and Park Forest Water District has not been contacted) that an interconnect is needed or warranted.

7.0 CONCLUSION

The subject property has adequate water supply to meet the needs of the proposed subdivision on a 300-year basis.

4732 Eagleridge Circle 80907 Pueblo, CO 81008 216 Office: (719) 545-6240 6 Fax: (719) 545-6247

Solorado Office

OME FILING NO. 3

DRAWN BY JWT
CHECKED BY ERF

H-SCALE 1"=300'

JOB NO. 1858-04

DATE CREATED 4-12-21

DATE ISSUED 4-16-21

SHEET NO 1 OF 1

WATER SUPPLY INFORMATION SUMMARY

Section 30-28-133,(d), C.R.S. requires that the applicant submit to the County, "Adequate evidence that a Water supply that is sufficient in terms of quantity, quality, and dependability will be available to ensure an ade

1. NAME OF DEVELOPMENT A	AS PROPOSED			Winsome F	iling No. 3				
2. LAND USE ACTION <u>Final Plat</u>									
3. NAME OF EXISTING PARCEL AS RECORDED <u>Unnamed</u>									
SUBDIVISION	Winsome	FILING	<u>3</u>	BLOCK	<u>N/A</u> Lo	. <u>N/A</u>			
4. TOTAL ACERAGE	<u>349.471</u>	5. NUMBER (OF LOTS PROPO	SED	<u>38</u> PL	T MAPS ENCLOSED	1		
6. PARCEL HISTORY - Please at	ttach copies of de	eds, plats, or othe	er evidence or docum	nentation. (In sul	omittal package)				
A. Was parcel recorded with co	ounty prior to J	June 1, 1972?			YES 4	NO			
B. Has the parcel ever been pa	rt of a division	of land action	since June 1, 197	2?		YES	✓ NO		
If yes, describe the previous	s action								
7. LOCATION OF PARCEL - Inc	clude a map deli	niating the proje	ct area and tie to a	section corner. (In submittal)				
PORTIONS OF	SECTION 1	13 and 24 T 0	OWNSHIP	<u>11</u>			N ✓S	RANGE 64 and 65	E 🗸 W
PRINCIPAL MERIDIAN:			✓ 6TH	N.M.	UTE	COSTILLA			
8. PLAT - Location of all wells on	n property must b	be plotted and p	ermit numbers pro	vided no wells ha	ve been drilled at this time	, and no existing wells are	e located on the property.		
Surveyors plat			YES	✓ NO		If not, scaled hand -dra	wn sketch	Y NO	
9. ESTIMATED WATER REQUI	REMENTS - Ga	illons per Day or	Acre Foot per Yea	ar		10. WATER SUPPLY	SOURCE		
						EXISTING	✓ DEVELOPED	✓ NEW WELLS	
HOUSEHOLD USE #*	38	of units	10,17	7 GPD	11.400 AF	WELLS WELL PE	SPRING RMIT NUMBERS		quifers - (Check One)
						WEELLE	KIMIT NOMBERO	Alluvial	Upper Arapahoe
COMMERCIAL USE #	N/A	SF	-	GPD	AF			✓ Upper Dawson	Lower Arapahoe
								Lower Dawson	Laramie Fox Hills
IRRIGATION # **	9.5000	acres	8,48	1 GPD	9.500 AF			Denver	Dakota
								Other	
ANIMAL WATERING # ***	152	244	1,69	GPD	1.9 AF	MUNICIPAL			
						ASSOCIATIO	N	WATER COURT D	DECREE CASE NUMBERS
				GPD	AF	COMPANY		Determinati	ion No. 1692-BD
TOTAL			20,355	GPD	22.800 AF*	DISTRICT			ion No. 1691-BD
TOTAL		-	20,000	_ 012	AI				No. 4, Water Right No.
* Per Part 10 of the Find	dings from F	Rep. Plan N	lo. 2 and Part	11 of Rep. P	lan No. 3	NAME: N/A			692-BD
** Assuming 0.25 AF/ye	ar/res. lot a	and 2.46 AF	/acre/year fo	r commercial	irrigation	LETTER OF COMMI	TMENT FOR		
*** Per Part 2.c. Rep. P	lan No. 2, A	Appendix C	of Report (as	suming 4 hors	ses/SFE)	SERVICE	YES VO		
11. ENGINEER'S WATER SUPP	PLY REPORT		✓ YES	NO	If ye	s, please forward with this	form. (This may be required be	efore our review is completed)	
12. TYPE OF SEWAGE DISPOSAL SYSTEM									
SEPTIC TANK/LEAC	SEPTIC TANK/LEACH FIELD CENTRAL SYSTEM - DISTRICT NAME:								
LAGOON						VAULT - LOCATION	SEWAGE HAULED TO:	-	
ENGINEERED SYST	EM (Attach a	copy of engi	ineering design)		OTHER:		-	

Appendix D Winsome, LLC- Winsome Subdivision Overall Water Supply Inventory (Phases 1-3)

	Finding/			Annual	Annual		Satu	rated	Owner
Land		Tributary	Volume	Allocation	Allocation	Notes	Sand	Specific	
Formation/Aquifer	Decree	Status	A E	100 Year	300 Year		Thickness	Yield	
			Acre-Feet	A-F/Year	A-F/Year	d Water Lengt Courses (Note 1 0	2)		
	Currently Available On-Site Ground Water Legal Sources (Note 1 & 2)								
Dawson	1692-BD	NNT	69,797	697.97	232.66	Entirety of McCune Ranch Subdivision demand will be met with water from Dawson Aquifer	455	20%	George F. McCune and Evelyn McCune
Denver	1691-BD	NT	44,985	449.85	149.95	60 acre-feet/year will be kept for McCune Ranch, with the remainder sold to Sterling Ranch	345	17%	George F McCune and Evelyn McCune
Arapahoe	1690-BD	NT	33,901	339.01	113.00	Water from this aquifer will be sold to Sterling Ranch and not used at the McCune Ranch Subdivision	260	17%	George F McCune and Evelyn McCune
Laramie-Fox Hills	1689-BD	NT	22,435	224.35	74.78	Water from this aquifer will be sold to Sterling Ranch and not used at the McCune Ranch Subdivision	195	15%	George F McCune and Evelyn McCune
Total Legal Supply			171,118	1,711	570				
Total Available for Use at McCune Ranch Subdivision			75,797		293				

Beneficial Uses Domestic

Industrial
Commercial
Irrigation
Augmentation
Stock watering

Recreational water feature ponds

Piscatorial Wildlife Replacement

RECORDER NOTE: Legibility of writing, typing or printing UNSATISFACTORY in portions of this document when received

COLORADO GROUND WATER COMMISSION FINDINGS AND ORDER

IN THE MATTER OF AN APPLICATION FOR DETERMINATION OF WATER RIGHT TO ALLOW THE WITHDRAWAL OF GROUND WATER IN THE KIOWA-BIJOU DESIGNATED **GROUND WATER BASIN**

APPLICANT: GEORGE F. MCCUNE AND EVELYN MCCUNE

AQUIFER: **DAWSON**

DETERMINATION NO.: 1692-BD ROBERT C. "BOB" BALINK

07/10/2008 03:13:17 PM Doc \$0.00 Page

Rec \$36.00

1 of 7

El Paso County, CO

In compliance with Section 37-90-107(7), C.R.S., and the Designated Basin Rules, 2 CCR 410-1, George F. McCune and Evelyn McCune (hereinafter "applicant") submitted an application for determination of water right to allow the withdrawal of designated ground water from the Dawson Aquifer.

FINDINGS

- 1. The application was received complete by the Colorado Ground Water Commission on April 17, 2008.
- 2. The applicant requests a determination of rights to designated ground water in the Dawson Aquifer (hereinafter "aquifer") underlying 900.52 acres, generally described as the SW1/4 of the SW1/4, Section 18, the W1/2 of the NW1/4 and the W1/2 of the SW1/4, Section 19, Township 11 South, Range 64 West of the 6th PM and the S1/2 of the SE1/4. Section 13 and all of Section 24. Township 11 South, Range 65 West of the 6th Principal Meridian, in El Paso County. According to a signed statement dated April 17, 2008, the applicant owns the 900.52 acres of land, as further described in said affidavit which is attached hereto as Exhibit A, and claims control of the ground water in the aquifer underlying this land area.
- The proposed annual amount of ground water to be allocated and withdrawn from the aquifer for intended beneficial uses is the maximum allowable amount.
- The above described land area overlying the ground water claimed by the applicant is located within the boundaries of the Kiowa-Bijou Designated Ground Water Basin. The Colorado Ground Water Commission (hereinafter "Commission") has jurisdiction.
- The applicant intends to apply the allocated ground water to the following beneficial uses: domestic, industrial, commercial, irrigation, augmentation, stock watering, recreational water feature ponds and piscatorial habitat less than 1000 square feet and wildlife, replacement and all other augmentation purposes. The applicant's proposed place of use of the allocated ground water is the above described 900.52 acre land area.
- The quantity of water in the aquifer underlying the 900.52 acres of land claimed by the applicant is 81900 acre-feet. This determination was based on the following as specified in the Designated Basin Rules:

Aquifer: Dawson

Determination No.: 1692-BD

a. The average specific yield of the saturated permeable material of the aquifer underlying the land under consideration that could yield a sufficient quantity of water that may be extracted and applied to beneficial use is 20 percent.

Page 2

- b. The average thickness of the saturated permeable material of the aquifer underlying the land under consideration that could yield a sufficient quantity of water that may be extracted and applied to beneficial use is 455 feet.
- 7. At this time, there is no substantial artificial recharge that would affect the aquifer within a one hundred year period.
- 8. Pursuant to Section 37-90-107(7), C.R.S., and in accordance with the Designated Basin Rules, the Commission shall allocate ground water in the aquifer based on ownership of the overlying land and an aquifer life of one hundred years. Therefore, the maximum allowed average annual amount of ground water in the aquifer that may be allocated for withdrawal pursuant to the data in the paragraphs above for the 900.52 acres of overlying land claimed by the applicant is 819 acre-feet.
- 9. A review of the records in the Office of the State Engineer has disclosed that none of the water in the aquifer underlying the land claimed by the applicant has been previously allocated or permitted for withdrawal.
- 10. Pursuant to Section 37-90-107(7)(c)(III), C.R.S., an approved determination of water right shall be considered a final determination of the amount of ground water so determined; except that the Commission shall retain jurisdiction for subsequent adjustment of such amount to conform to the actual local aquifer characteristics from adequate information obtained from well drilling or test holes.
- 11. The ability of wells permitted to withdraw the authorized amount of water from this non-renewable aquifer may be less than the one hundred years upon which the amount of water in the aquifer is allocated, due to anticipated water level declines.
- 12. In accordance with Rule 5.3.6 of the Designated Basin Rules, it has been determined that withdrawal of ground water from the aquifer underlying the land claimed by the applicant will, within one hundred years, deplete the flow of a natural steam or its alluvial aquifer at an annual rate greater than one-tenth of one percent of the annual rate of withdrawal and, therefore, the ground water is considered to be not-nontributary ground water. Withdrawal of water from the aquifer underlying the claimed land area would impact the alluvial aquifer of Kiowa Creek or its tributaries, which has been determined to be over-appropriated. Commission approval of a replacement plan pursuant to Section 37-90-107.5, C.R.S., and Rule 5.6 of the Designated Basin Rules providing for the actual depletion of the alluvial aquifer and adequate to prevent any material injury to existing water rights, would be required prior to approval of well permits for wells to be located on this land area to withdraw the allocated ground water from the aquifer.
- 13. In accordance with Section 37-90-107(7), C.R.S., upon Commission approval of a determination of water right, well permits for wells to withdraw the authorized amount of water from the aquifer shall be available upon application, subject to the conditions of this determination and the Designated Basin Rules and subject to approval by the Commission.

Aquifer: Dawson

Determination No.: 1692-BD

14. The Commission Staff has evaluated the application relying on the claims to control of the ground water in the aquifer made by the applicant.

- 15. In accordance with Sections 37-90-107(7) and 37-90-112, C.R.S., the application was published in the Ranchland News newspaper on May 8 and May 15, 2008.
- 16. No objections to the determination of water right and proposed allocation of ground water were received within the time limit set by statute.
- 17. In order to prevent unreasonable impairment to the existing water rights of others within the Kiowa-Bijou Designated Ground Water Basin it is necessary to impose conditions on the determination of water right and proposed allocation of ground water. Under conditions as stated in the following Order, no unreasonable impairment of existing water rights will occur from approval of this determination of water right or from the issuance of well permits for wells to withdraw the authorized amount of allocated ground water from the aquifer.

ORDER

In accordance with Section 37-90-107(7), C.R.S., and the Designated Basin Rules, the Colorado Ground Water Commission orders that the application for determination of rights to designated ground water in the Dawson Aquifer underlying 900.52 acres of land, generally described as the SW1/4 of the SW1/4, Section 18, the W1/2 of the NW1/4 and the W1/2 of the SW1/4, Section 19, Township 11 South, Range 64 West of the 6th PM and the S1/2 of the SE1/4, Section 13 and all of Section 24, Township 11 South, Range 65 West of the 6th Principal Meridian, is approved subject to the following conditions:

- 18. The allowed average annual amount of withdrawal of ground water from the aquifer shall not exceed 819 acre-feet. The allowed maximum annual amount of withdrawal may exceed the allowed average annual amount of withdrawal as long as the total volume of water withdrawn does not exceed the product of the number of years since the date of approval of this determination times the allowed average annual amount of withdrawal.
- 19. To conform to actual aquifer characteristics, the Commission may adjust the allowed average annual amount of ground water to be withdrawn from the aquifer based on analysis of geophysical logs or other site-specific data if such analysis indicates that the initial estimate of the volume of water in the aquifer was incorrect.
- 20. The applicant may pump the allowed average annual amount of withdrawal and the allowed maximum annual amount of withdrawal from one or more wells of a well field in any combination, so long as the total combined withdrawal of the wells does not exceed the amounts described in this Order.
- 21. Commission approval of a replacement plan, providing for actual depletion of affected alluvial aquifers and adequate to prevent any material injury to existing water rights in such alluvial aquifers is required prior to approval of well permits for wells to be located on the overlying land area to withdraw ground water from the aquifer.

Aquifer: Dawson

Determination No.: 1692-BD

22. The use of ground water from this allocation shall be limited to the following beneficial uses: domestic, industrial, commercial, irrigation, augmentation, stock watering, recreational water feature ponds and piscatorial habitat less than 1000 square feet and wildlife, replacement and all other augmentation purposes. The place of use shall be limited to the above described 900.52 acre land area.

- 23. The applicant, or subsequent persons controlling this water right, shall record in the public records of the county in which the claimed overlying land is located notice of transfer of any portion of this water right to another within sixty days after the transfer, so that a title examination of the above described 900.52 acre land area, or any part thereof, shall reveal the changes affecting this water right. Such notice shall consist of a signed and dated deed which indicates the determination number, the aquifer, a description of the above described land area, the annual amount of ground water (acre-feet) transferred, name of the recipient, and the date of transfer.
- 24. Subject to the above conditions, well permits for wells to withdraw the allocated annual amount of water from the aquifer shall be available upon application subject to approval by the Commission and the following conditions:
 - a. The wells shall be located on the above described 900.52 acre overlying land area.
 - b. The wells must be constructed to withdraw water from only the Dawson Aquifer. Upon application for a well permit to construct such a well, the estimated top and base of the aquifer at the proposed well location will be determined by the Commission and indicated on the approved well permit. Plain non-perforated casing must be installed, grouted and sealed to prevent diversion of ground water from other aquifers and the movement of ground water between aquifers.
 - c. The entire depth of each well must be geophysically logged <u>prior</u> to installing the casing as set forth in Rule 9 of the Statewide Nontributary Ground Water Rules, 2 CCR 402-7.
 - d. Each well shall be constructed within 200 feet of the location specified on the approved well permit, but must be more than 600 feet from any existing large-capacity well completed in the same aquifer.
 - e. A totalizing flow meter or other Commission approved measuring device shall be installed on each well and maintained in good working order by the well owner. Annual diversion records shall be collected and maintained by the well owner and submitted to the Commission upon their request.
 - f. The well owner shall mark the well in a conspicuous place with the permit number and the name of the aquifer. The well owner shall take necessary means and precautions to preserve these markings.
- 25. A copy of this Findings and Order shall be recorded by the applicant in the public records of the county in which the claimed overlying land is located so that a title examination of the above described 900.52 acre overlying land area, or any part thereof, shall reveal the existence of this determination.

Aquifer: Dawson

Determination No.: 1692-BD

Dated this 25 th day of June, 2008.

Dick Wolfe, P.E Executive Director

Colorado Ground Water Commission

Keith Vander Horst, P.E. Water Resource Engineer

Prepared by: JPM

المرسر 92GW\$ 1 03/2005

EXHIBIT A

1692-BD

Page 1 of 2

STATE OF COLORADO
OFFICE OF THE STATE ENGINEER
DIVISION OF WATER RESOURCES
1313 Sherman St. Room 821
Denver, CO 80203
(303) 866-3581 Fax (303) 866-3589

APR 1 7 2008

WATER RESOURCES STATE ENGINEER SOLO,

NONTRIBUTARY GROUND WATER LANDOWNERSHIP STATEMENT

(We) George F. McCune and Evelyn McCune
(Name(s))
claim and say that I (we) am (are) the owner(s) of the following described property consisting of 900.52 acres in the County of EI Paso . State of Colorado:
(Insert the property legal description)
SW/4SW/4 Section 18 and W/2 of the W/2 Section19, T11S, R64W, and S/2SE/4 Section 13
and All of Section 24, T11S R65W, 6 th PM, El Paso County, 900.52 acres
See attached Quitclaim Deed dated November 29, 1976, and map.
and, that the ground water sought to be withdrawn from the Dawson aquifer underlying the above-described land has not been conveyed or reserved to another, nor has consent been given to its withdrawal by another.
Further, I (we) claim and say that I (we) have read the statements made herein; know the contents hereof; and that the same are true to my (our) knowledge.
Signature Date
Signature Euclyn M. Mc Curu Date
INSTRUCTIONS:

Please type or print neatly in black or blue ink. This form may be reproduced by photocopy or word

processing means. See additional information on the reverse side.

EXHIBIT A wa 2017 at 197 1692-BD **企业工作** Page 2 of 2 RECEIVED QUITCLAIM DEED APR 1 7 2008 RAY C. McCUNE and GRETA C. McCUNE, as humband and wife, of the County of El Paro and State of Colorado, for the consideration of One Dollar (\$1.00) and other good and valuable consideration, in hand paid, hereby sell and quit claim to GEORGE F. McCUNE and EVELYN M. McCUNE, husband and wife, in joint tenancy, of the County of Elbert and State of Colorado, a one-half interest in and to all minerals underlying the following described property, including oil and gas, said property lying and being in the County of El Paro and State of Colorado, to wit: The Southwest quarter of the Southwest quarter of Section Eighteen, Township Eleven, Range Shiry four; the West half of the West half of Section Nineteen, Township Eleven, Banga Shary-four; the South half of the Southeast Quarter of Section Thirteen, Township Eleven, Range Stuty-five; All of Section Twentyfour, Township Elemen, Ringe Shay-five, contining in all Nine hundred and filly two hundredths (900.52) acres, more or less, according to Government with all its appartenances. DATED and signed this 22 day of Nov. Consideration NOV 2 9 1928 STATE OF COLORADO COUNTY OF EL PASO The foregoing instrument was acknowledged before me this , 1976, by Boy C. McCurie and Grafa C. McCurie. My commission expires:

RECORDER NOTE: Legibility of writing, typing or printing UNSATISFACTORY in portions of this document when received

COLORADO GROUND WATER COMMISSION FINDINGS AND ORDER

IN THE MATTER OF AN APPLICATION FOR DETERMINATION OF WATER RIGHT TO ALLOW THE WITHDRAWAL OF GROUND WATER IN THE KIOWA-BIJOU DESIGNATED GROUND WATER BASIN

APPLICANT: GEORGE F. MCCUNE AND EVELYN MCCUNE

AQUIFER:

DENVER

DETERMINATION NO.:

V = . .

1691-BD

ROBERT C. "BOB" BALINK

07/10/2008 03:13:17 PM

Doc \$0.00

Rec \$36.00 1 of 7

Page

El Paso County, CO

208078576

In compliance with Section 37-90-107(7), C.R.S., and the Designated Basin Rules, 2 CCR 410-1, George F. McCune and Evelyn McCune (hereinafter "applicant") submitted an application for determination of water right to allow the withdrawal of designated ground water from the Denver Aquifer.

FINDINGS

- 1. The application was received complete by the Colorado Ground Water Commission on April 17, 2008.
- 2. The applicant requests a determination of rights to designated ground water in the Denver Aquifer (hereinafter "aquifer") underlying 900.52 acres, generally described as the SW1/4 of the SW1/4, Section 18, the W1/2 of the NW1/4 and the W1/2 of the SW1/4, Section 19, Township 11 South, Range 64 West of the 6th PM and the S1/2 of the SE1/4, Section 13 and all of Section 24, Township 11 South, Range 65 West of the 6th Principal. Meridian, in El Paso County. According to a signed statement dated April 17, 2008, the applicant owns the 900.52 acres of land, as further described in said affidavit which is attached hereto as Exhibit A, and claims control of the ground water in the aquifer underlying this land area.
- The proposed annual amount of ground water to be allocated and withdrawn from the aquifer for intended beneficial uses is the maximum allowable amount.
- 4. The above described land area overlying the ground water claimed by the applicant is located within the boundaries of the Kiowa-Bijou Designated Ground Water Basin. The Colorado Ground Water Commission (hereinafter "Commission") has jurisdiction.
- 5. The applicant intends to apply the allocated ground water to the following beneficial uses: domestic, industrial, commercial, irrigation, augmentation, stock watering, recreational water feature ponds and piscatorial habitat less than 1000 square feet and wildlife, replacement and all other augmentation purposes. The applicant's proposed place of use of the allocated ground water is the above described 900.52 acre land area.
- 6. The quantity of water in the aquifer underlying the 900.52 acres of land claimed by the applicant is 52800 acre-feet. This determination was based on the following as specified in the Designated Basin Rules:

Aquifer: Denver

Determination No.: 1691-BD

a. The average specific yield of the saturated permeable material of the aquifer underlying the land under consideration that could yield a sufficient quantity of water that may be extracted and applied to beneficial use is 17 percent.

Page 2

- b. The average thickness of the saturated permeable material of the aquifer underlying the land under consideration that could yield a sufficient quantity of water that may be extracted and applied to beneficial use is 345 feet.
- 7. At this time, there is no substantial artificial recharge that would affect the aquifer within a one hundred year period.
- 8. Pursuant to Section 37-90-107(7), C.R.S., and in accordance with the Designated Basin Rules, the Commission shall allocate ground water in the aquifer based on ownership of the overlying land and an aquifer life of one hundred years. Therefore, the maximum allowed average annual amount of ground water in the aquifer that may be allocated for withdrawal pursuant to the data in the paragraphs above for the 900.52 acres of overlying land claimed by the applicant is 528 acre-feet.
- A review of the records in the Office of the State Engineer has disclosed that none of the water in the aquifer underlying the land claimed by the applicant has been previously allocated or permitted for withdrawal.
- 10. Pursuant to Section 37-90-107(7)(c)(III), C.R.S., an approved determination of water right shall be considered a final determination of the amount of ground water so determined; except that the Commission shall retain jurisdiction for subsequent adjustment of such amount to conform to the actual local aquifer characteristics from adequate information obtained from well drilling or test holes.
- 11. The ability of wells permitted to withdraw the authorized amount of water from this non-renewable aquifer may be less than the one hundred years upon which the amount of water in the aquifer is allocated, due to anticipated water level declines.
- 12. In accordance with Rule 5.3.6 of the Designated Basin Rules, it has been determined that withdrawal of ground water from the aquifer underlying the land claimed by the applicant will not, within one hundred years, deplete the flow of a natural steam or its alluvial aquifer at an annual rate greater than one-tenth of one percent of the annual rate of withdrawal and, therefore, the ground water is nontributary ground water as defined in Rule 4.2.19 of the Designated Basin Rules. No more than 98% of the amount of ground water withdrawn annually shall be consumed, as required by the Designated Basin Rules.
- 13. In accordance with Section 37-90-107(7), C.R.S., upon Commission approval of a determination of water right, well permits for wells to withdraw the authorized amount of water from the aquifer shall be available upon application, subject to the conditions of this determination and the Designated Basin Rules and subject to approval by the Commission.
- 14. The Commission Staff has evaluated the application relying on the claims to control of the ground water in the aquifer made by the applicant.

Aquifer: Denver

Determination No.: 1691-BD

15. In accordance with Sections 37-90-107(7) and 37-90-112, C.R.S., the application was published in the Ranchland News newspaper on May 8 and May 15, 2008.

- 16. No objections to the determination of water right and proposed allocation of ground water were received within the time limit set by statute.
- 17. In order to prevent unreasonable impairment to the existing water rights of others within the Kiowa-Bijou Designated Ground Water Basin it is necessary to impose conditions on the determination of water right and proposed allocation of ground water. Under conditions as stated in the following Order, no unreasonable impairment of existing water rights will occur from approval of this determination of water right or from the issuance of well permits for wells to withdraw the authorized amount of allocated ground water from the aquifer.

ORDER

In accordance with Section 37-90-107(7), C.R.S., and the Designated Basin Rules, the Colorado Ground Water Commission orders that the application for determination of rights to designated ground water in the Denver Aquifer underlying 900.52 acres of land, generally described as the SW1/4 of the SW1/4, Section 18, the W1/2 of the NW1/4 and the W1/2 of the SW1/4, Section 19, Township 11 South, Range 64 West of the 6th PM and the S1/2 of the SE1/4, Section 13 and all of Section 24, Township 11 South, Range 65 West of the 6th Principal Meridian, is approved subject to the following conditions:

- 18. The allowed average annual amount of withdrawal of ground water from the aquifer shall not exceed 528 acre-feet. The allowed maximum annual amount of withdrawal may exceed the allowed average annual amount of withdrawal as long as the total volume of water withdrawn does not exceed the product of the number of years since the date of approval of this determination times the allowed average annual amount of withdrawal.
- 19. To conform to actual aquifer characteristics, the Commission may adjust the allowed average annual amount of ground water to be withdrawn from the aquifer based on analysis of geophysical logs or other site-specific data if such analysis indicates that the initial estimate of the volume of water in the aquifer was incorrect.
- 20. The applicant may pump the allowed average annual amount of withdrawal and the allowed maximum annual amount of withdrawal from one or more wells of a well field in any combination, so long as the total combined withdrawal of the wells does not exceed the amounts described in this Order.
- 21. No more than 98% of the ground water withdrawn annually shall be consumed. The Commission may require well owners to demonstrate periodically that no more than 98% of the water withdrawn is being consumed.
- 22. The use of ground water from this allocation shall be limited to the following beneficial uses: domestic, industrial, commercial, irrigation, augmentation, stock watering, recreational water feature ponds and piscatorial habitat less than 1000 square feet and wildlife, replacement and all other augmentation purposes. The place of use shall be limited to the above described 900.52 acre land area.

Page 4

Applicant: George F. McCune and Evelyn McCune

Aquifer: Denver

Determination No.: 1691-BD

- 23. The applicant, or subsequent persons controlling this water right, shall record in the public records of the county in which the claimed overlying land is located notice of transfer of any portion of this water right to another within sixty days after the transfer, so that a title examination of the above described 900.52 acre land area, or any part thereof, shall reveal the changes affecting this water right. Such notice shall consist of a signed and dated deed which indicates the determination number, the aquifer, a description of the above described land area, the annual amount of ground water (acre-feet) transferred, name of the recipient, and the date of transfer.
- 24. Subject to the above conditions, well permits for wells to withdraw the allocated annual amount of water from the aquifer shall be available upon application subject to approval by the Commission and the following conditions:
 - a. The wells shall be located on the above described 900.52 acre overlying land area.
 - b. The wells must be constructed to withdraw water from only the Denver Aquifer. Upon application for a well permit to construct such a well, the estimated top and base of the aquifer at the proposed well location will be determined by the Commission and indicated on the approved well permit. Plain non-perforated casing must be installed, grouted and sealed to prevent diversion of ground water from other aquifers and the movement of ground water between aquifers.
 - c. The entire depth of each well must be geophysically logged <u>prior</u> to installing the casing as set forth in Rule 9 of the Statewide Nontributary Ground Water Rules, 2 CCR 402-7.
 - d. Each well shall be constructed within 200 feet of the location specified on the approved well permit, but must be more than 600 feet from any existing large-capacity well completed in the same aquifer.
 - e. A totalizing flow meter or other Commission approved measuring device shall be installed on each well and maintained in good working order by the well owner. Annual diversion records shall be collected and maintained by the well owner and submitted to the Commission upon their request.
 - f. The well owner shall mark the well in a conspicuous place with the permit number and the name of the aquifer. The well owner shall take necessary means and precautions to preserve these markings.
- 25. A copy of this Findings and Order shall be recorded by the applicant in the public records of the county in which the claimed overlying land is located so that a title examination of the above described 900.52 acre overlying land area, or any part thereof, shall reveal the existence of this determination.

Aquifer: Denver

Determination No.: 1691-BD

Dated this ________, 2008.

Dick Wolfe, P.E

Executive Director

Colorado Ground Water Commission

Keith Vander Horst, P.E.

Water Resource Engineer

Prepared by: JPM

92GWS 1 03/2005

EXHIBIT A

1691-BD

Page 1 of 2

STATE OF COLORADO
OFFICE OF THE STATE ENGINEER
DIVISION OF WATER RESOURCES
1313 Sherman St. Room 821
Denver, CO 80203
(303) 866-3581 Fax (303) 866-3589

RECEIVED

APR 1 7 2008

STATE COLO

NONTRIBUTARY GROUND WATER LANDOWNERSHIP STATEMENT

I (We) George F. McCune and Evelyn McC (Name)		<u> </u>
claim and say that I (we) am (are) the owner 900.52 acres in the County of El Paso State of Colorado:	••	escribed property consisting of
(Insert the property legal description)		
SW/4SW/4 Section 18 and W/2 of the V	V/2 Section19, T11	S, R64W, and S/2SE/4 Section 13
and All of Section 24, T11S R65W, 6 th I	PM, El Paso Count	ty, 900.52 acres
See attached Quitclaim Deed dated No	vember 29, 1976, a	and map.
and, that the ground water sought to be with aquifer underlying the above-described land consent been given to its withdrawal by anoti	nas not been conveye	ed or reserved to another, nor has
Further, I (we) claim and say that I (we) have hereof; and that the same are true to my (our	read the statements (made herein; know the contents
Signat	ure Jeorg	Date M. M. Cune
Signat	ure <u>Cuelyn 9</u>	Date Date
INSTRUCTIONS: Please type or print neatly in black or blue ink	. This form may be re	reproduced by photocopy or word

processing means. See additional information on the reverse side.

EXHIBIT A ton 2017 a MITS 1916 1691-BD 201337 HART WAS Greated The Page 2 of 2 RECEIVED QUITCLAIM DEED APR 1 7 2008 RAY C. McCUNE and GRETA C. McCUNE, as husband and wife, of the County of El Paso and State of Colorado, for the consideration of One Dollar (\$1.00) and other good and valuable consideration, in hand paid, hereby sell and quit claim to GEORGE F. McCUNE and EVELYN M. McCUNE, husband and wife, in joint tenancy, of the County of Elbert and State of Colorado, a one-half interest in and to all minerals underlying the following described property, including oil and gas, said property lying and being in the County of El Paso and State of Colorado, to wit: The Southwest quarter of the Southwest quarter of Section Eighteen, Township Eleven, Range Shiry-four) the West half of the West half of Section Mineteen, Township Eleven, Runge Shay-four; the South half of the Southeast Quarter of Section Thirteen, Township Eleven, Kange Shay-five; All of Section Twentyfour, Township Elemen, Rings Shoty-five, considering in all Nine hundred and filty two hundredths (900:52) acres, more or less, according to Government with all its appurtunances. DATED and signed this 22 day of Nou. Consideration STATE DOCUMENT NOV 29 1978 STATE OF COLORADO COUNTY OF EL PASO The foregoing instrument was acknowledged before me this , 1976, by Ray C. McCurie and Grata C. McCurie. My commission expires:

COLORADO GROUND WATER COMMISSION FINDINGS AND ORDER

IN THE MATTER OF AN APPLICATION FOR DETERMINATION OF WATER RIGHT TO ALLOW THE WITHDRAWAL OF GROUND WATER IN THE KIOWA-BIJOU DESIGNATED **GROUND WATER BASIN**

APPLICANT: GEORGE F. MCCUNE AND EVELYN MCCUNE

AQUIFER:

ARAPAHOÉ

DETERMINATION NO.:

from the Arapahoe Aquifer.

1690-BD

ROBERT C. "BOB" BALINK 07/10/2008 03:13:17 PM

Doc \$0.00

Page Rec \$36.00 1 of 7 El Paso County, CO

In compliance with Section 37-90-107(7), C.R.S., and the Designated Basin Rules, 2 CCR 410-1, George F. McCune and Evelyn McCune (hereinafter "applicant") submitted an application for determination of water right to allow the withdrawal of designated ground water

FINDINGS

- The application was received complete by the Colorado Ground Water Commission on April 17, 2008.
- 2. The applicant requests a determination of rights to designated ground water in the Arapahoe Aquifer (hereinafter "aquifer") underlying 900.52 acres, generally described as the SW1/4 of the SW1/4, Section 18, the W1/2 of the NW1/4 and the W1/2 of the SW1/4, Section 19, Township 11 South, Range 64 West of the 6th PM and the S1/2 of the SE1/4, Section 13 and all of Section 24, Township 11 South, Range 65 West of the 6th Principal Meridian, in El Paso County. According to a signed statement dated April 17, 2008, the applicant owns the 900.52 acres of land, as further described in said affidavit which is attached hereto as Exhibit A, and claims control of the ground water in the aquifer underlying this land area.
- The proposed annual amount of ground water to be allocated and withdrawn from the aquifer for intended beneficial uses is the maximum allowable amount.
- The above described land area overlying the ground water claimed by the applicant is located within the boundaries of the Kiowa-Bijou Designated Ground Water Basin. The Colorado Ground Water Commission (hereinafter "Commission") has jurisdiction.
- The applicant intends to apply the allocated ground water to the following beneficial uses: domestic, industrial, commercial, irrigation, augmentation, stock watering, recreational water feature ponds and piscatorial habitat less than 1000 square feet and wildlife, replacement and all other augmentation purposes. The applicant's proposed place of use of the allocated ground water is the above described 900.52 acre land area.
- The quantity of water in the aquifer underlying the 900.52 acres of land claimed by the applicant is 39800 acre-feet. This determination was based on the following as specified in the Designated Basin Rules:

of this document when received writing, typing or printing UNSATISFACTORY in portions RECORDER NO 15- 175

Aquifer: Arapahoe

Determination No.: 1690-BD

a. The average specific yield of the saturated permeable material of the aquifer underlying the land under consideration that could yield a sufficient quantity of water that may be extracted and applied to beneficial use is 17 percent.

Page 2

- b. The average thickness of the saturated permeable material of the aquifer underlying the land under consideration that could yield a sufficient quantity of water that may be extracted and applied to beneficial use is 260 feet.
- 7. At this time, there is no substantial artificial recharge that would affect the aquifer within a one hundred year period.
- 8. Pursuant to Section 37-90-107(7), C.R.S., and in accordance with the Designated Basin Rules, the Commission shall allocate ground water in the aquifer based on ownership of the overlying land and an aquifer life of one hundred years. Therefore, the maximum allowed average annual amount of ground water in the aquifer that may be allocated for withdrawal pursuant to the data in the paragraphs above for the 900.52 acres of overlying land claimed by the applicant is 398 acre-feet.
- 9. A review of the records in the Office of the State Engineer has disclosed that none of the water in the aquifer underlying the land claimed by the applicant has been previously allocated or permitted for withdrawal.
- 10. Pursuant to Section 37-90-107(7)(c)(III), C.R.S., an approved determination of water right shall be considered a final determination of the amount of ground water so determined; except that the Commission shall retain jurisdiction for subsequent adjustment of such amount to conform to the actual local aquifer characteristics from adequate information obtained from well drilling or test holes.
- 11. The ability of wells permitted to withdraw the authorized amount of water from this non-renewable aquifer may be less than the one hundred years upon which the amount of water in the aquifer is allocated, due to anticipated water level declines.
- 12. In accordance with Rule 5.3.6 of the Designated Basin Rules, it has been determined that withdrawal of ground water from the aquifer underlying the land claimed by the applicant will not, within one hundred years, deplete the flow of a natural steam or its alluvial aquifer at an annual rate greater than one-tenth of one percent of the annual rate of withdrawal and, therefore, the ground water is nontributary ground water as defined in Rule 4.2.19 of the Designated Basin Rules. No more than 98% of the amount of ground water withdrawn annually shall be consumed, as required by the Designated Basin Rules.
- 13. In accordance with Section 37-90-107(7), C.R.S., upon Commission approval of a determination of water right, well permits for wells to withdraw the authorized amount of water from the aquifer shall be available upon application, subject to the conditions of this determination and the Designated Basin Rules and subject to approval by the Commission.
- 14. The Commission Staff has evaluated the application relying on the claims to control of the ground water in the aquifer made by the applicant.

Aquifer: Arapahoe

Determination No.: 1690-BD

15. In accordance with Sections 37-90-107(7) and 37-90-112, C.R.S., the application was published in the Ranchland News newspaper on May 8 and May 15, 2008.

Page 3

- 16. No objections to the determination of water right and proposed allocation of ground water were received within the time limit set by statute.
- 17. In order to prevent unreasonable impairment to the existing water rights of others within the Kiowa-Bijou Designated Ground Water Basin it is necessary to impose conditions on the determination of water right and proposed allocation of ground water. Under conditions as stated in the following Order, no unreasonable impairment of existing water rights will occur from approval of this determination of water right or from the issuance of well permits for wells to withdraw the authorized amount of allocated ground water from the aquifer.

ORDER

In accordance with Section 37-90-107(7), C.R.S., and the Designated Basin Rules, the Colorado Ground Water Commission orders that the application for determination of rights to designated ground water in the Arapahoe Aquifer underlying 900.52 acres of land, generally described as the SW1/4 of the SW1/4, Section 18, the W1/2 of the NW1/4 and the W1/2 of the SW1/4, Section 19, Township 11 South, Range 64 West of the 6th PM and the S1/2 of the SE1/4, Section 13 and all of Section 24, Township 11 South, Range 65 West of the 6th Principal Meridian, is approved subject to the following conditions:

- 18. The allowed average annual amount of withdrawal of ground water from the aquifer shall not exceed 398 acre-feet. The allowed maximum annual amount of withdrawal may exceed the allowed average annual amount of withdrawal as long as the total volume of water withdrawn does not exceed the product of the number of years since the date of approval of this determination times the allowed average annual amount of withdrawal.
- 19. To conform to actual aquifer characteristics, the Commission may adjust the allowed average annual amount of ground water to be withdrawn from the aquifer based on analysis of geophysical logs or other site-specific data if such analysis indicates that the initial estimate of the volume of water in the aquifer was incorrect.
- 20. The applicant may pump the allowed average annual amount of withdrawal and the allowed maximum annual amount of withdrawal from one or more wells of a well field in any combination, so long as the total combined withdrawal of the wells does not exceed the amounts described in this Order.
- 21. No more than 98% of the ground water withdrawn annually shall be consumed. The Commission may require well owners to demonstrate periodically that no more than 98% of the water withdrawn is being consumed.
- 22. The use of ground water from this allocation shall be limited to the following beneficial uses: domestic, industrial, commercial, irrigation, augmentation, stock watering, recreational water feature ponds and piscatorial habitat less than 1000 square feet and wildlife, replacement and all other augmentation purposes. The place of use shall be limited to the above described 900.52 acre land area.

Aquifer: Arapahoe

Determination No.: 1690-BD

23. The applicant, or subsequent persons controlling this water right, shall record in the public records of the county - in which the claimed overlying land is located - notice of transfer of any portion of this water right to another within sixty days after the transfer, so that a title examination of the above described 900.52 acre land area, or any part thereof, shall reveal the changes affecting this water right. Such notice shall consist of a signed and dated deed which indicates the determination number, the aquifer, a description of the above described land area, the annual amount of ground water (acre-feet) transferred, name of the recipient, and the date of transfer.

- 24. Subject to the above conditions, well permits for wells to withdraw the allocated annual amount of water from the aquifer shall be available upon application subject to approval by the Commission and the following conditions:
 - a. The wells shall be located on the above described 900.52 acre overlying land area.
 - b. The wells must be constructed to withdraw water from only the Arapahoe Aquifer. Upon application for a well permit to construct such a well, the estimated top and base of the aquifer at the proposed well location will be determined by the Commission and indicated on the approved well permit. Plain non-perforated casing must be installed, grouted and sealed to prevent diversion of ground water from other aquifers and the movement of ground water between aquifers.
 - c. The entire depth of each well must be geophysically logged <u>prior</u> to installing the casing as set forth in Rule 9 of the Statewide Nontributary Ground Water Rules, 2 CCR 402-7.
 - d. Each well shall be constructed within 200 feet of the location specified on the approved well permit, but must be more than 600 feet from any existing large-capacity well completed in the same aquifer.
 - e. A totalizing flow meter or other Commission approved measuring device shall be installed on each well and maintained in good working order by the well owner. Annual diversion records shall be collected and maintained by the well owner and submitted to the Commission upon their request.
 - f. The well owner shall mark the well in a conspicuous place with the permit number and the name of the aquifer. The well owner shall take necessary means and precautions to preserve these markings.
- 25. A copy of this Findings and Order shall be recorded by the applicant in the public records of the county in which the claimed overlying land is located so that a title examination of the above described 900.52 acre overlying land area, or any part thereof, shall reveal the existence of this determination.

Page 4

Aquifer: Arapahoe

Determination No.: 1690-BD

Dated this 25th day of June, 2008.

Dick Wolfe, P.E

Executive Director

Keith Vander Horst, P.E.

Colorado Ground Water Commission

Water Resource Engineer

Prepared by: JPM

92GWS 1 03/2005

EXHIBIT A

1690-BD

Page 1 of 2

RECEIVED STATE OF COLORADO

OFFICE OF THE STATE ENGINEER **DIVISION OF WATER RESOURCES** 1313 Sherman St. Room 821

Denver, CO 80203

(303) 866-3581 Fax (303) 866-3589

APR 1 7 2008

WATER RESOURCES STATE ENGINEER COLO.

NONTRIBUTARY GROUND WATER LANDOWNERSHIP STATEMENT

(We) George F. McCune and Evelyn	
•	wner(s) of the following described property consisting of
900.52 acres in the County of <u>El Paso</u> State of Colorado:	
Insert the property legal description)	
SW/4SW/4 Section 18 and W/2 of the	ne W/2 Section19, T11S, R64W, and S/2SE/4 Section 13
and All of Section 24, T11S R65W,	6 th PM, El Paso County, 900.52 ac res
See attached Quitclaim Deed dated	November 00 4070
	i November 29, 1976, and map.
	November 29, 1976, and map.
	November 29, 1976, and map.
nd, that the ground water sought to be v	withdrawn from the Arapahoe
and, that the ground water sought to be v equifer underlying the above-described la	withdrawn from the <u>Arapahoe</u> and has not been conveyed or reserved to another, nor has
and, that the ground water sought to be vaquifer underlying the above-described laconsent been given to its withdrawal by a	withdrawn from the <u>Arapahoe</u> and has not been conveyed or reserved to another, nor has inother. have read the statements made herein; know the contents
and, that the ground water sought to be valuation and enderlying the above-described laconsent been given to its withdrawal by a further, I (we) claim and say that I (we) hereof; and that the same are true to my	withdrawn from the <u>Arapahoe</u> and has not been conveyed or reserved to another, nor has another. have read the statements made herein; know the contents (our) knowledge.
and, that the ground water sought to be vaquifer underlying the above-described laconsent been given to its withdrawal by a further, I (we) claim and say that I (we) hereof; and that the same are true to my	withdrawn from the <u>Arapahoe</u> and has not been conveyed or reserved to another, nor has another. have read the statements made herein; know the contents (our) knowledge.
and, that the ground water sought to be waquifer underlying the above-described laconsent been given to its withdrawal by a further, I (we) claim and say that I (we) hareof; and that the same are true to my	withdrawn from the Arapahoe and has not been conveyed or reserved to another, nor has another. have read the statements made herein; know the contents (our) knowledge. Alway 7 Mc Cum &

Please type or print neatly in black or blue ink. This form may be reproduced by photocopy or word

processing means. See additional information on the reverse side.

EXHIBIT A wa 25/7 at 197 1690-BD W. 1. W. 29 1976 280137 m Page 2 of 2 RECEIVED QUITCLAIM DEED APR 1 7 2008 RAY C. McCUNE and GRETA C. McCUNE, as furband and wife, of the County of El Paso and State of Colorado, for this consideration of One Dollar (\$1.00) and other good and valuable consideration, in hand paid, hereby sell and quit claim to GEORGE F. McCUNE and EVELYN M. McCUNE, husband and wife, in joint tenancy, of the County of Elbert and State of Colorado, a one-half interest in and to all minorals underlying the following described property, including oil and gas, said property lying and being in the County of El Paso and State of Colorado, to wit: The Southwest quarter of the Southwest quarter of Section Eighteen, Township Eleven, Range Shiry four; the West half of the West half of Section Nineteen, Township Eleven, Range Shay-four; the South half of the Southeast Quarter of Section Thisteen, Township Eleven, Ronge Shay-five; All of Section Twentyfour, Township Eleven, Ringe Shay-five, containing in all Nine hundred and fifty two bundrecities (900:52) acres, more or less, according to Government with all its appartunences. DATED and signed this 22 day of Nou. Consideration STATE DOCUM NOV 29 1978 STATE OF COLORADO. COUNTY OF EL PASO The foregoing instrument was acknowledged before me this 22

, 1976, by Roy C. McCurie and Grate C. McCure.

My commission expires

COLORADO GROUND WATER COMMISSION FINDINGS AND ORDER

IN THE MATTER OF AN APPLICATION FOR DETERMINATION OF WATER RIGHT TO ALLOW THE WITHDRAWAL OF GROUND WATER IN THE KIOWA-BIJOU DESIGNATED GROUND WATER BASIN

APPLICANT: GEORGE F. MCCUNE AND EVELYN MCCUNE

AQUIFER:

LARAMIE-FOX HILLS

DETERMINATION NO.:

1689-BD

ROBERT C. "BOB" BALINK

Page

07/10/2008 03:13:17 PM

Doc \$0.00 Rec \$36.00

Rec \$36.00 1 of 7

El Paso County, CO

208078578

In compliance with Section 37-90-107(7), C.R.S., and the Designated Basin Rules, 2 CCR 410-1, George F. McCune and Evelyn McCune (hereinafter "applicant") submitted an application for determination of water right to allow the withdrawal of designated ground water from the Laramie-Fox Hills Aquifer.

FINDINGS

- 1. The application was received complete by the Colorado Ground Water Commission on April 17, 2008.
- 2. The applicant requests a determination of rights to designated ground water in the Laramie-Fox Hills Aquifer (hereinafter "aquifer") underlying 900.52 acres, generally described as the SW1/4 of the SW1/4, Section 18, the W1/2 of the NW1/4 and the W1/2 of the SW1/4, Section 19, Township 11 South, Range 64 West of the 6th PM and the S1/2 of the SE1/4, Section 13 and all of Section 24, Township 11 South, Range 65 West of the 6th Principal Meridian, in El Paso County. According to a signed statement dated April 17, 2008, the applicant owns the 900.52 acres of land, as further described in said affidavit which is attached hereto as Exhibit A, and claims control of the ground water in the aquifer underlying this land area.
- 3. The proposed annual amount of ground water to be allocated and withdrawn from the aquifer for intended beneficial uses is the maximum allowable amount.
- 4. The above described land area overlying the ground water claimed by the applicant is located within the boundaries of the Kiowa-Bijou Designated Ground Water Basin. The Colorado Ground Water Commission (hereinafter "Commission") has jurisdiction.
 - The applicant intends to apply the allocated ground water to the following beneficial uses: domestic, industrial, commercial, irrigation, augmentation, stock watering, recreational water feature ponds and piscatorial habitat less than 1000 square feet and wildlife, replacement and all other augmentation purposes. The applicant's proposed place of use of the allocated ground water is the above described 900.52 acre land area.
 - The quantity of water in the aquifer underlying the 900.52 acres of land claimed by the applicant is 26300 acre-feet. This determination was based on the following as specified in the Designated Basin Rules:

RECORDER NOTE: Legibility of writing, typing or printing UNSATISFACTORY in portions of this document when received

Applicant: George F. McCune and Evelyn McCune Page 2

Aquifer: Laramie-Fox Hills Determination No.: 1689-BD

a. The average specific yield of the saturated permeable material of the aquifer underlying the land under consideration that could yield a sufficient quantity of water that may be extracted and applied to beneficial use is 15 percent.

- b. The average thickness of the saturated permeable material of the aquifer underlying the land under consideration that could yield a sufficient quantity of water that may be extracted and applied to beneficial use is 195 feet.
- 7. At this time, there is no substantial artificial recharge that would affect the aquifer within a one hundred year period.
- 8. Pursuant to Section 37-90-107(7), C.R.S., and in accordance with the Designated Basin Rules, the Commission shall allocate ground water in the aquifer based on ownership of the overlying land and an aquifer life of one hundred years. Therefore, the maximum allowed average annual amount of ground water in the aquifer that may be allocated for withdrawal pursuant to the data in the paragraphs above for the 900.52 acres of overlying land claimed by the applicant is 263 acre-feet.
- 9. A review of the records in the Office of the State Engineer has disclosed that none of the water in the aquifer underlying the land claimed by the applicant has been previously allocated or permitted for withdrawal.
- 10. Pursuant to Section 37-90-107(7)(c)(III), C.R.S., an approved determination of water right shall be considered a final determination of the amount of ground water so determined; except that the Commission shall retain jurisdiction for subsequent adjustment of such amount to conform to the actual local aquifer characteristics from adequate information obtained from well drilling or test holes.
- 11. The ability of wells permitted to withdraw the authorized amount of water from this non-renewable aquifer may be less than the one hundred years upon which the amount of water in the aquifer is allocated, due to anticipated water level declines.
- 12. In accordance with Rule 5.3.6 of the Designated Basin Rules, it has been determined that withdrawal of ground water from the aquifer underlying the land claimed by the applicant will not, within one hundred years, deplete the flow of a natural steam or its alluvial aquifer at an annual rate greater than one-tenth of one percent of the annual rate of withdrawal and, therefore, the ground water is nontributary ground water as defined in Rule 4.2.19 of the Designated Basin Rules. No more than 98% of the amount of ground water withdrawn annually shall be consumed, as required by the Designated Basin Rules.
- 13. In accordance with Section 37-90-107(7), C.R.S., upon Commission approval of a determination of water right, well permits for wells to withdraw the authorized amount of water from the aquifer shall be available upon application, subject to the conditions of this determination and the Designated Basin Rules and subject to approval by the Commission.
- 14. The Commission Staff has evaluated the application relying on the claims to control of the ground water in the aquifer made by the applicant.

Applicant: George F. McCune and Evelyn McCune

Aquifer: Laramie-Fox Hills Determination No.: 1689-BD

15. In accordance with Sections 37-90-107(7) and 37-90-112, C.R.S., the application was published in the Ranchland News newspaper on May 8 and May 15, 2008.

Page 3

- 16. No objections to the determination of water right and proposed allocation of ground water were received within the time limit set by statute.
- 17. In order to prevent unreasonable impairment to the existing water rights of others within the Kiowa-Bijou Designated Ground Water Basin it is necessary to impose conditions on the determination of water right and proposed allocation of ground water. Under conditions as stated in the following Order, no unreasonable impairment of existing water rights will occur from approval of this determination of water right or from the issuance of well permits for wells to withdraw the authorized amount of allocated ground water from the aquifer.

ORDER

In accordance with Section 37-90-107(7), C.R.S., and the Designated Basin Rules, the Colorado Ground Water Commission orders that the application for determination of rights to designated ground water in the Laramie-Fox Hills Aquifer underlying 900.52 acres of land, generally described as the SW1/4 of the SW1/4, Section 18, the W1/2 of the NW1/4 and the W1/2 of the SW1/4, Section 19, Township 11 South, Range 64 West of the 6th PM and the S1/2 of the SE1/4, Section 13 and all of Section 24, Township 11 South, Range 65 West of the 6th Principal Meridian, is approved subject to the following conditions:

- 18. The allowed average annual amount of withdrawal of ground water from the aquifer shall not exceed 263 acre-feet. The allowed maximum annual amount of withdrawal may exceed the allowed average annual amount of withdrawal as long as the total volume of water withdrawn does not exceed the product of the number of years since the date of approval of this determination times the allowed average annual amount of withdrawal.
- 19. To conform to actual aquifer characteristics, the Commission may adjust the allowed average annual amount of ground water to be withdrawn from the aquifer based on analysis of geophysical logs or other site-specific data if such analysis indicates that the initial estimate of the volume of water in the aquifer was incorrect.
- 20. The applicant may pump the allowed average annual amount of withdrawal and the allowed maximum annual amount of withdrawal from one or more wells of a well field in any combination, so long as the total combined withdrawal of the wells does not exceed the amounts described in this Order.
- 21. No more than 98% of the ground water withdrawn annually shall be consumed. The Commission may require well owners to demonstrate periodically that no more than 98% of the water withdrawn is being consumed.
- 22. The use of ground water from this allocation shall be limited to the following beneficial uses: domestic, industrial, commercial, irrigation, augmentation, stock watering, recreational water feature ponds and piscatorial habitat less than 1000 square feet and wildlife, replacement and all other augmentation purposes. The place of use shall be limited to the above described 900.52 acre land area.

Applicant: George F. McCune and Evelyn McCune Page 4

Aquifer: Laramie-Fox Hills Determination No.: 1689-BD

23. The applicant, or subsequent persons controlling this water right, shall record in the public records of the county - in which the claimed overlying land is located - notice of transfer of any portion of this water right to another within sixty days after the transfer, so that a title examination of the above described 900.52 acre land area, or any part thereof, shall reveal the changes affecting this water right. Such notice shall consist of a signed and dated deed which indicates the determination number, the aquifer, a description of the above described land area, the annual amount of ground water (acre-feet) transferred, name of the recipient, and the date of transfer.

- 24. Subject to the above conditions, well permits for wells to withdraw the allocated annual amount of water from the aquifer shall be available upon application subject to approval by the Commission and the following conditions:
 - a. The wells shall be located on the above described 900.52 acre overlying land area.
 - b. The wells must be constructed to withdraw water from only the Laramie-Fox Hills Aquifer. Upon application for a well permit to construct such a well, the estimated top and base of the aquifer at the proposed well location will be determined by the Commission and indicated on the approved well permit. Plain non-perforated casing must be installed, grouted and sealed to prevent diversion of ground water from other aquifers and the movement of ground water between aquifers.
 - c. The entire depth of each well must be geophysically logged <u>prior</u> to installing the casing as set forth in Rule 9 of the Statewide Nontributary Ground Water Rules, 2 CCR 402-7.
 - d. Each well shall be constructed within 200 feet of the location specified on the approved well permit, but must be more than 600 feet from any existing large-capacity well completed in the same aquifer.
 - e. A totalizing flow meter or other Commission approved measuring device shall be installed on each well and maintained in good working order by the well owner. Annual diversion records shall be collected and maintained by the well owner and submitted to the Commission upon their request.
 - f. The well owner shall mark the well in a conspicuous place with the permit number and the name of the aquifer. The well owner shall take necessary means and precautions to preserve these markings.
- 25. A copy of this Findings and Order shall be recorded by the applicant in the public records of the county in which the claimed overlying land is located so that a title examination of the above described 900.52 acre overlying land area, or any part thereof, shall reveal the existence of this determination.

Applicant: George F. McCune and Evelyn McCune

Aquifer: Laramie-Fox Hills Determination No.: 1689-BD

Dated this 25th day of June

Dick Wolfe, P.E. **Executive Director**

Colorado Ground Water Commission

Keith Vander Horst, P.E.

Water Resource Engineer

Prepared by: JPM

92GWS 1 03/2005

EXHIBIT A

1689-BD

Page 1 of 2

STATE OF COLORADO
OFFICE OF THE STATE ENGINEER
DIVISION OF WATER RESOURCES
1313 Sherman St. Room 821
Denver, CO 80203
(303) 866-3581 Fax (303) 866-3589

RECEIVED

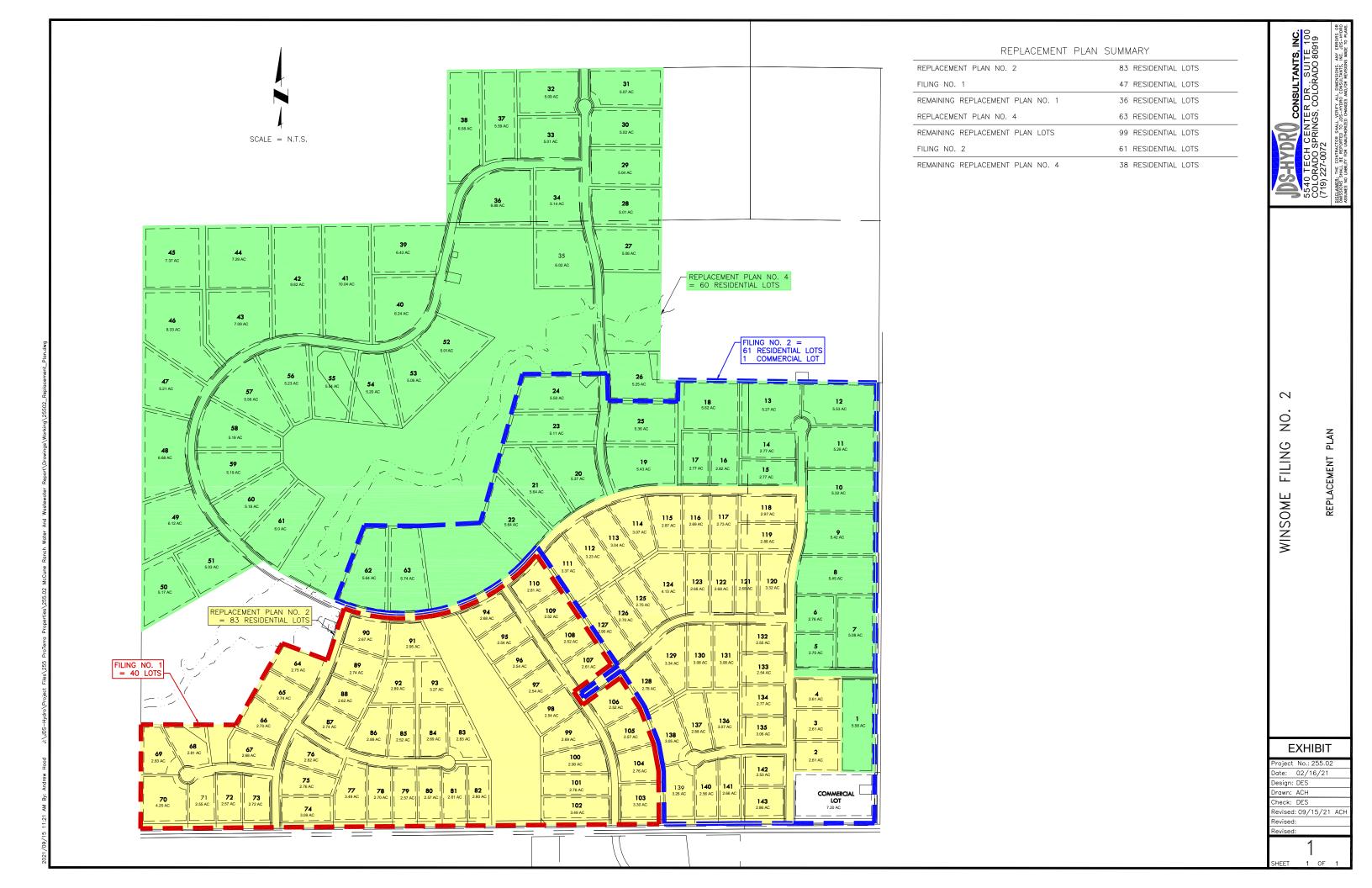
APR 1 7 2008

WATER RESOURCES STATE ENGINEER COLO.

NONTRIBUTARY GROUND WATER LANDOWNERSHIP STATEMENT

(We) George F. McCune and Evelyn McCune (Name(s))	
claim and say that I (we) am (are) the owner(s) of the following des 900.52 acres in the County of El Paso State of Colorado:	cribed property consisting of
(Insert the property legal description)	
SW/4SW/4 Section 18 and W/2 of the W/2 Section19, T11S	•
and All of Section 24, T11S R65W, 6 th PM, El Paso County	7, 900.52 acres
See attached Quitclaim Deed dated November 29, 1976, a	nd map.
and, that the ground water sought to be withdrawn from the <u>Laram</u> aquifer underlying the above-described land has not been conveyed consent been given to its withdrawal by another.	d or reserved to another, nor has
Further, I (we) claim and say that I (we) have read the statements in hereof; and that the same are true to my (our) knowledge.	nade herein; know the contents
Signature George	Date Cune
Signature Euglyn Th	ne Cune Date
INSTRUCTIONS: Please type or print neatly in black or blue ink. This form may be re	produced by photocopy or word

processing means. See additional information on the reverse side.


The foregoing instrument was admoviedged before me this all day of No. 1976, by Ray C. McCurie and Grafa C. McCurie.

Notary Public

My commission expires:

6/20/78

Appendix D

220124157 8/18/2020 9:46 AM PGS 10 \$58.00 DF \$0.00

Electronically Recorded Official Records El Paso County CO Chuck Broerman, Clerk and Recorder

COLORADO GROUND WATER COMMISSION FINDINGS AND ORDER

IN THE MATTER OF AN APPLICATION FOR REPLACEMENT PLAN TO ALLOW THE WITHDRAWAL OF GROUNDWATER FROM THE DAWSON AQUIFER IN THE KIOWA-BIJOU DESIGNATED GROUND WATER BASIN.

REPLACEMENT PLAN NO. 2 - DETERMINATION OF WATER RIGHT NO. 1692-BD

AQUIFER: DAWSON

APPLICANT: MCCUNE RANCH, LLC

In compliance with Section 37-90-107.5, C.R.S. and the Designated Basin Rules, 2 CCR 410-1 ("Rules" or "Rule"), McCune Ranch, LLC ("Applicant") submitted an application to replace the previously approved McCune Ranch, LLC replacement plan that allowed the withdrawal of ground water from the Dawson Aquifer that has been allocated by Determination of Water Right No. 1692-BD.

FINDINGS

- 1. Pursuant to Section 37-90-107.5, C.R.S., in a Findings and Order dated June 29, 2018, the Ground Water Commission ("Commission") approved a Replacement Plan that allowed the withdrawal of 42 acre-feet per year of Dawson Aquifer groundwater allocated by Determination of Water Right No. 1692-BD. This replacement plan application submitted by the Applicant seeks to replace in its entirety the previously approved replacement plan.
- 2. Pursuant to Section 37-90-107(7), C.R.S., in a Findings and Order dated June 25, 2008, the Commission approved a Determination of a Right to an Allocation of Ground Water, No. 1692-BD, from the Dawson Aquifer ("Aquifer"), summarized as follows.
 - a. The determination quantified an amount of water from beneath 900.52 acres of overlying land generally described as the SW1/4 of the SW1/4, Section 18, the W1/2 of the NW1/4 and the W1/2 of the SW1/4, Section 19, Township 11 South, Range 64 West of the 6th PM and the S1/2 of the SE1/4, Section 13 and all of Section 24, Township 11 South, Range 65 West of the 6th Principal Meridian, in El Paso County.
 - b. The allowed average annual amount of withdrawal shall not exceed 819 acre-feet, which based on an aquifer life of one hundred years results in an amount of water allocated of 81,900 acre-feet (subject to adjustment by the Commission to conform to actual local aquifer characteristics).
 - c. The use of ground water is limited to the following beneficial uses: domestic, industrial, commercial, irrigation, augmentation, stock watering, recreational water feature ponds and piscatorial habitat less than 1000 square feet and wildlife, replacement and all other augmentation purposes.
 - d. In accordance with Rule 5.3.6 the withdrawal of the subject ground water will, within one hundred years, deplete the flow of a natural stream or its alluvial aquifer at an annual rate greater than one-tenth of one percent of the annual rate of withdrawal, the ground water is considered to be not-nontributary, and Commission approval of a replacement plan providing for actual depletion of affected alluvial aquifers and adequate to prevent any material injury to existing water rights in such alluvial aquifers is required prior to approval of well permits for wells to withdraw the subject ground water.
- 3. The subject water is Designated Ground water located within the boundaries of the Kiowa-

Replacement Plan No. 2, Determination No.: 1692-BD

Aquifer: Dawson

Applicant: McCune Ranch, LLC

Bijou Designated Ground Water Basin. The Commission has jurisdiction over the withdrawal of the water by large capacity wells that are permitted pursuant to section 37-90-107(7), C.R.S.

Page 2

- 4. Withdrawal of the subject ground water would deplete the alluvial aquifer of the Kiowa-Bijou Designated Ground Water Basin, the alluvial aquifer of the Upper Big Sandy Designated Ground Water Basin and the alluvial aquifer of the Upper Black Squirrel Creek Designated Ground Water Basin, all of which, according to Rules 5.2.4.2, 5.2.7.2 and 5.2.6.2, respectively, have been determined to be over appropriated. Such depletion would unreasonably impair existing large capacity alluvial rights withdrawing water from those alluvial aquifers.
- 5. Pursuant to Rule 5.6.1 this plan must be adequate to prevent any material injury to water rights of other appropriators, which for purposes of this plan means large capacity wells withdrawing water from the alluvial aquifer of the Kiowa-Bijou Designated Ground Water Basin, the alluvial aquifer of the Upper Big Sandy Designated Ground Water Basin and the alluvial aquifer of the Upper Black Squirrel Creek Designated Ground Water Basin.
- 6. Pursuant to Rule 5.3.6.2(C) the amount of replacement water shall provide for the depletion of alluvial water for the first 100 years due to all previous pumping and if pumping continues beyond 100 years, shall replace actual impact until pumping ceases.
- 7. The application for the replacement plan was received by the Commission on December 6, 2018. The application is subject to the Designated Basin Rules as re-amended on May 15, 2018.
- 8. The Applicant proposes to divert 49.8 acre-feet annually from the Dawson Aquifer for a period of 300 years. The Dawson aquifer water will be withdrawn through 83 wells to be located on 83 residential lots. The residential lots will be within 278.1 acres generally described as a portion of the W1/2 of Section 19, Township 11 South, Range 64 West and a portion of Section 24, Township 11 South, Range 65 West, 6th P.M., and more specifically described on attached Exhibit B. As shown on attached Exhibit B, 70 lots are located mostly in Section 24 and 13 lots are located mostly in Section 19. Each Dawson Aquifer well is proposed to divert 0.6 acre-feet of water annually for use in 1 single family residence; irrigation of landscape, lawn and gardens; and watering of domestic animals and stock.
- 9. At a continuous withdrawal of 49.8 acre-feet annually for 300 years, depletions to the alluvial aquifer systems of the Kiowa-Bijou Designated Ground Water Basin, Upper Big Sandy Designated Ground Water Basin and Upper Black Squirrel Creek Designated Ground Water Basin would steadily increase to 1.87 acre-feet per year in the 300th year, which is equal to 3.75% of pumping, as shown in Exhibit A.
- 10. The Applicant proposes to provide 22.41 acre-feet per year of replacement water to the alluvial aquifer system of the Kiowa-Bijou Designated Ground Water Basin. The proposed source of replacement water is septic and leaching field return flows from the in-house use of the ground water to be pumped under the plan. The Applicant estimates that return flows from each lot will consist of 90% of the water used for in-house purposes. Assuming each lot uses a total annual amount for in-house use of 0.30 acre-feet, the return flow per lot would be 0.27 acre-feet annually, and the return flows under the plan will total 22.41 acre-feet per year for all 83 lots at full build out.

Replacement Plan No. 2, Determination No.: 1692-BD Page 3

Aguifer: Dawson

Applicant: McCune Ranch, LLC

11. The subject property is located within the drainage of Kiowa Creek, and the return flows will flow to the alluvial aquifer of the Kiowa-Bijou Designated Ground Water Basin. The Applicant proposes to aggregate all replacements to the drainage in which the well or wells will operate, in accordance with Guideline 2007-1.

- 12. Pursuant to Rule 5.6.1.D this plan may not cause unreasonable impairment of water quality. So long as the septic and leaching treatment systems for the in-house use of the water are constructed and operated in compliance with state and county health department standards the plan would not cause unreasonable impairment of water quality of the alluvial aquifer.
- 13. Records in this office indicate that the Applicant controls the water right to be used as the source of replacement water, consisting of Determination of Water Right No. 1692-BD, and such water is legally available for use pursuant to this plan.
- 14. In accordance with Sections 37-90-107.5 and 37-90-112, C.R.S., the application was published in the Ranchland News newspaper on December 19, 2019 and December 26, 2019. No objections to the application were received within the time limit set by statute.
- 15. According to Rule 5.6.2:
 - a. The Applicant has the burden of proving the adequacy of the plan in all respects.
 - b. The Commission Staff shall propose any additional terms and conditions or limitations which are necessary to prevent material injury and to ensure that the plan is administrable and enforceable.
- 16. The Commission Staff has evaluated the application pursuant to Section 37-90-107.5, C.R.S., and the requirements of Rule 5.3.6.2(C) and Rule 5.6, finds that the requirements have been meet, no material injury will occur to water rights of other appropriators, and the plan may be approved to allow diversions from the Dawson Aquifer if operated subject to the conditions given below.

ORDER

In accordance with Section 37-90-107.5, C.R.S., and the Designated Basin Rules, the Colorado Ground Water Commission orders that the application for a replacement plan to allow the withdrawal of ground water from the Dawson Aquifer underlying 900.52 acres that are the subject of Determination of Water Right no. 1692-BD is approved subject to the following conditions:

- 17. Approval of this replacement plan herby cancels the McCune Ranch, LLC replacement plan approved by the Commission in a Findings and Order dated June 29, 2018.
- 18. The Dawson aquifer water will be withdrawn through 83 wells to be located on 83 residential lots. The residential lots will be within 278.1 acres generally described as a portion of the W1/2 of Section 19, Township 11 South, Range 64 West and a portion of Section 24, Township 11 South, Range 65 West, 6th P.M., and more specifically described on attached Exhibit B. Each Dawson Aquifer well may divert 0.6 acre-feet of water annually for use in 1 single family residence; irrigation of landscape, irrigation of lawn and gardens; and watering of domestic animals and stock.
- 19. The allowed annual amount of ground water to be withdrawn from the aquifer by all wells

Replacement Plan No. 2, Determination No.: 1692-BD Page 4

Aquifer: Dawson

Applicant: McCune Ranch, LLC

operating under this plan shall not exceed 49.8 acre-feet. The allowed annual amount of water to be withdrawn from each on-lot well shall not exceed 0.6 acre-feet.

- 20. A totalizing flow meter shall be installed on each well. The well owner shall maintain the meter in good working order.
- 21. Permanent records of all withdrawals of ground water from each well shall be recorded at least annually by the well owners, permanently maintained, and provided to the Commission.
- 22. Pumping under this plan is limited to a period of 300 years. The year of first use of this replacement plan shall be the calendar year of construction of a well permitted pursuant to this plan or permitting of an existing well pursuant to the plan.
- 23. Return flows from in-house use of ground water shall occur through individual on-lot non-evaporative septic systems located within the 278.1 acres of land on which the 83 wells will be located, as described in paragraph 19 above and shown on attached Exhibit B. The septic systems must be constructed and operated in compliance with a permit issued by a local health agency.
- 24. Replacement of depletions must be provided annually in the acre-feet amounts shown in Exhibit A. Annual replacement requirements may be computed by pro-rating between the values given on Exhibit A, or for simplicity may be taken as the amount shown in the next succeeding 5 year increment.
- 25. The Applicant or their successor(s) are responsible for ensuring that replacement water is provided to the alluvial aquifer as required by this plan. The annual replacement requirement and the annual amount of replacement water provided shall be calculated and reported on a form acceptable to the Commission. The annual amount of replacement water provided must be no less than the annual replacement requirement on a yearly basis. No credit shall be claimed by the Applicant for an oversupply of replacement water provided to the alluvium during previous years.
- 26. The Applicant must provide the required annual amount of replacement water for the first 100 years, or for as long as a well is operated pursuant to this plan, whichever is longer.
- 27. To assure adequate return flows, the number of wells serving an occupied single-family dwelling that is generating return flows via a non-evaporative septic system must be equal to or greater than the number of wells shown in Table 1 below, or an amended or alternate replacement plan must be obtained that will replace actual depletions to the alluvial aquifer so as to prevent any material injury to water rights of other appropriators.

	Table 1	
Year	No. of Wells	Return Flow (af/yr)
1-70	1	0.27
71-110	2	0.54
111-150	3	0.81
151-185	4	1.08
186-225	5	1.35
226-260	6	1.62
261-300	7	1.89

Applicant: McCune Ranch, LLC

28. The Applicant (and their successors) must gather and maintain permanent records of all information pertaining to operation of this plan, which shall include, but is not be limited to, those items identified below. The Applicant must submit records to the Commission on forms acceptable to the Commission, on an annual basis for the previous calendar year, by February 15th of the following year.

Page 5

- a. Identification of all well permits issued and wells constructed under this plan.
- b. The amount of water diverted by each well and all wells in total, both annually and cumulatively since operation of the plan began.
- c. The number of occupied dwellings served by each well.
- d. The number of square feet irrigated by each well.
- e. The number of large domestic animals served by each well.
- f. The return flows occurring from use of all wells operating under the plan, assuming 0.27 acre-feet per year per occupied single family dwelling (90% of the water used for in-house purposes) enters the alluvial aquifer as replacement water.
- g. Any other information the Commission deems relevant and necessary to operation, monitoring, accounting, or administration of the plan.
- 29. The Applicant (and their successors) are fully responsible for the operation, monitoring, and accounting of the replacement plan. In the event a lot with a well permitted or operating pursuant to this plan is sold, identification of the well that was sold and evidence that the new owner has been notified of their responsibilities under the replacement plan shall accompany that year's accounting.
- 30. Any covenants adopted for this subdivision should contain a description of the replacement plan, including the limitations on diversions and use of water for each well and lot, the requirement to meter and record all well pumping, and information on how records are to be reported and the plan is to be administered.
- 31. In the event the permitted well or wells are not operated in accordance with the conditions of this replacement plan, they shall be subject to administration, including orders to cease diverting ground water.
- 32. All terms and conditions of Determination of Water Right No. 1692-BD must be meet.
- 33. A copy of this Findings and Order shall be recorded by the Applicant in the clerk and recorder's records of El Paso County, so that a title examination of the land on which the structures involved in this plan are located reveals the existence of this plan.

Dated this 3rd day of February, 2020.

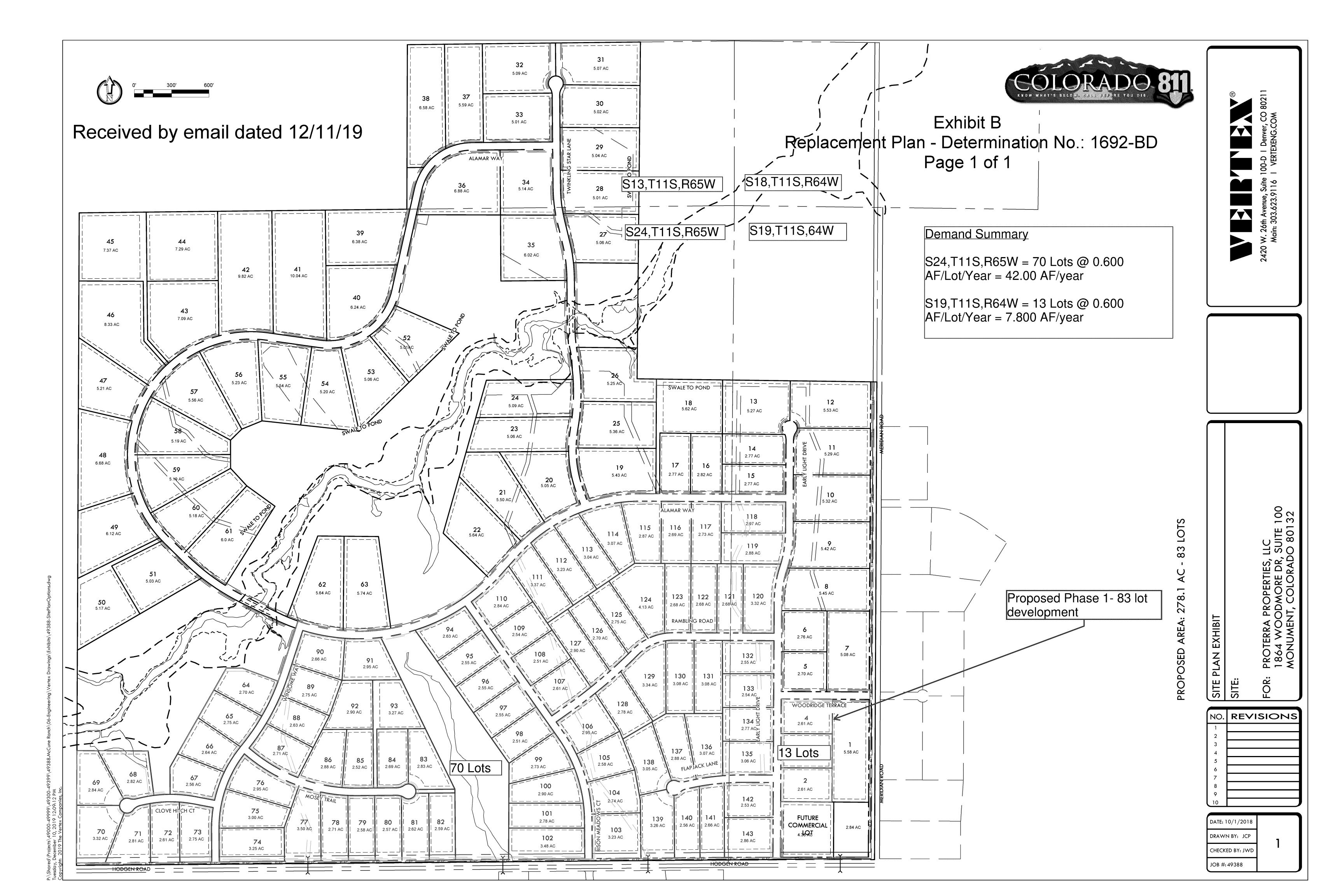
Frin St. Lein

Kevin G. Rein, P.E Executive Director

Colorado Ground Water Commission

By: Keith Vander Horst, P.E.
Chief of Water Supply, Basins

F&O1692-BD-RP.docx Prepared by: jmw


Exhibit A Replacement Plan - Determination No.: 1692-BD

Page 1 of 1

Designated Basin Summary Table for McCune Ranch, LLC													
Designated Basin Summary Table for McCune Ranch, LLC Pumping Rate of 49.8 acre-feet per year for 300 Years from the Dawson aquifer													
		And the second of the second o	s): Sec. 24, T11S, R65	W and Se									
Year	Pumping (Q)	Annual Depletion (q)		Year		Annual Depletion (q)	Depletion as a % of						
	(AF/YR)	(AF/YR)	Pumping (q/Q)		(AF/YR)	(AF/YR)	Pumping (q/Q)						
5	49.8	0.00	0.00	155	49.8	0.85	1.70						
10	49.8	0.00	0.01	160	49.8	0.88	1.78						
15	49.8	0.01	0.02	165	49.8	0.92	1.85						
20	49.8	0.02	0.04	170	49.8	0.96	1.92						
25	49.8	0.03	0.06	175	49.8	0.99	1.99						
30	49.8	0.05	0.10	180	49.8	1.03	2.07						
35	49.8	0.07	0.13	185	49.8	1.07	2.14						
40	49.8	0.09	0.18	190	49.8	1.10	2.21						
45	49.8	0.11	0.22	195	49.8	1.14	2.28						
50	49.8	0.14	0.27	200	49.8	1.17	2.36						
55	49.8	0.16	0.33	205	49.8	1.21	2.43						
60	49.8	0.19	0.38	1.25	2.50								
65	49.8	0.22	0.44	215	49.8	1.28	2.57						
70	49.8	0.25	0.51	220	49.8	1.32	2.64						
75	49.8	0.28	0.57	225	49.8	1.35	2.72						
80	49.8	0.32	0.64	230	49.8	1.39	2.79						
85	49.8	0.35	0.70	235	49.8	1.42	2.86						
90	49.8	0.38	0.77	240	49.8	1.46	2.93						
95	49.8	0.42	0.84	245	49.8	1.49	3.00						
100	49.8	0.45	0.91	250	49.8	1.53	3.07						
105	49.8	0.49	0.98	255	49.8	1.56	3.14						
110	49.8	0.52	1.05	260	49.8	1.60	3.21						
115	49.8	0.56	1.12	265	49.8	1.63	3.28						
120	49.8	0.59	1.19	270	49.8	1.67	3.34						
125	49.8	0.63	1.27	275	49.8	1.70	3.41						
130	49.8	0.67	1.34	280	49.8	1.73	3.48						
135	49.8	0.70	1.41	285	49.8	1.77	3.55						
140	49.8	0.74	1.48	290	49.8	1.80	3.62						
145	49.8	0.78	1.56	295	49.8	1.84	3.69						
150	49.8	0.78	1.63	300	49.8	1.87	3.75						
150	49.0	0.01	1.03	300	49.0	1.01	3.13						

Created by jmw on December 13, 2019

Values for 'Depletion as a % of Pumping' (q/Q) are not calculated when the pumping rate (Q) is changed to anything but zero

Recieved by email dated 12/13/2019

EDWARD-JAMES SURVEYING, INC.

December 11, 2019 Job 1858.00 Page 1 of 3

EXHIBIT A

LEGAL DESCRIPTION: REPLACEMENT PLAN

A TRACT OF LAND BEING A PORTION OF SECTION 24, RANGE 11 SOUTH, RANGE 65 WEST AND A PORTION OF THE SOUTHWEST QUARTER OF SECTION 19, TOWNSHIP 11 SOUTH, RANGE 64 WEST OF THE 6TH PRINCIPAL MERIDIAN, COUNTY OF EL PASO, STATE OF COLORADO, BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BASIS OF BEARINGS:

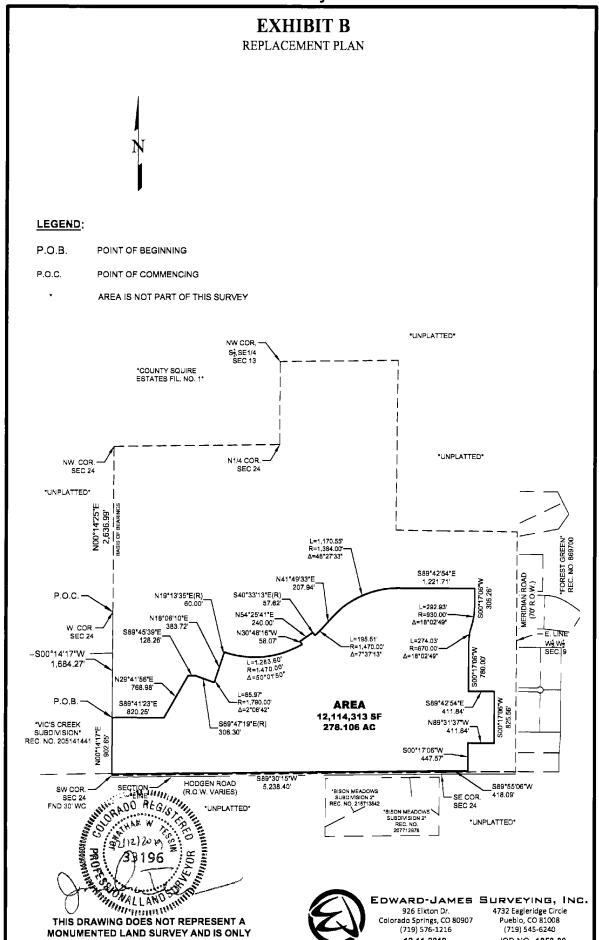
THE WEST LINE OF THE NORTHWEST QUARTER OF SECTION 24, TOWNSHIP 11 SOUTH, RANGE 65 WEST OF THE 6TH PRINCIPAL MERIDIAN BEING MONUMENTED ON THE SOUTHERLY END BY A 2-1/2" ALUMINUM CAP STAMPED "LS 28658" AND AT THE NORTHERLY END BY A 3-1/2" ALUMINUM CAP STAMPED "LS 12103" BEING ASSUMED TO BEAR N00°14'25"E A DISTANCE OF 2636.99 FEET AS SHOWN IN LAND SURVEY PLAT RECORDED UNDER RECEPTION 218900072 RECORDS OF EL PASO COUNTY, COLORADO.

COMMENCING AT THE WEST QUARTER CORNER OF SAID SECTION 24, SAID POINT BEING THE POINT OF BEGINNING; THENCE S00°14'17"W, A DISTANCE OF 1,684.27 FEET TO THE POINT OF BEGINNING: THENCE S89°41'23"E, A DISTANCE OF 820.25 FEET; THENCE N29°41'56"E, A DISTANCE OF 768.98 FEET; THENCE S89°45'39"E, A DISTANCE OF 128.26 FEET; THENCE S69°47'19"E, A DISTANCE OF 306.30 FEET TO A POINT ON CURVE; THENCE ON THE ARC OF A CURVE TO THE LEFT WHOSE CENTER BEARS N69°47'19"W. HAVING A DELTA OF 2°06'42", A RADIUS OF 1,790.00 FEET, A DISTANCE OF 65.97 FEET TO A POINT A POINT OF TANGENT; THENCE N18°06'10"E, A DISTANCE OF 383.72 FEET; THENCE N19°13'35"E, A DISTANCE OF 60.00 FEET TO A POINT ON CURVE; THENCE ON THE ARC OF A CURVE TO THE LEFT WHOSE CENTER BEARS N19°13'35"E, HAVING A DELTA OF 50°01'50", A RADIUS OF 1,470.00 FEET, A DISTANCE OF 1,283.60 FEET TO A POINT ON CURVE; THENCE N30°48'16"W, A DISTANCE OF 58.07 FEET; THENCE N54°25'41"E, A DISTANCE OF 240.00 FEET; THENCE S40°33'13"E, A DISTANCE OF 57.62 FEET TO A POINT ON CURVE; THENCE ON THE ARC OF A CURVE TO THE LEFT WHOSE CENTER BEARS N40°33'13"W, HAVING A DELTA OF 7°37'13", A RADIUS OF 1,470.00 FEET A DISTANCE OF 195.51 FEET TO A POINT OF TANGENT; THENCE N41°49'33"E, A DISTANCE OF 207.94 FEET TO A POINT OF CURVE; THENCE ON THE ARC OF A CURVE TO THE RIGHT HAVING A DELTA OF 48°27'33", A RADIUS OF 1,384.00 FEET, A DISTANCE OF 1,170.55 FEET TO A POINT OF TANGENT; THENCE S89°42'54"E, A DISTANCE OF 1,221.71 FEET; THENCE S00°17'06"W, A DISTANCE OF 306.26 FEET TO A POINT OF CURVE: THENCE ON THE ARC OF CURVE OT THE RIGHT HAVING A DELTA OF 18°02'49", A RADIUS OF 930.00 FEET, A DISTANCE OF 292.93 FEET TO A POINT OF REVERSE CURVE: THENCE ON THE ARC OF A CURVE TO THE LEFT HAVING A DELTA OF 18°02'49", A RADIUS OF 870.00 FEET, A DISTANCE OF 274.03 FEET TO A POINT OF TANGENT; THENCE S00°17'06"W, A DISTANCE OF 780.00 FEET; THENCE S89°42'54"E, A DISTANCE OF 411.84 FEET; THENCE S00°17'06"W, A DISTANCE OF 825.56 FEET; THENCE N89°31'37"W, A DISTANCE OF 411.84 FEET; THENCE S00°17'06"W, A DISTANCE OF 447.57 FEET TO A POINT 50.00 FEET NORTH OF THE SOUTH LINE OF THE SOUTHWEST QUARTER OF SECTION 19, TOWNSHIP 11 SOUTH, RANGE 64 WEST OF THE 6TH PRINCIPAL MERIDIAN; THENCE S89°55'06"W ON A LINE 50.00 NORTH OF AND PARALLEL TO SOUTH LINE OF THE SAID SOUTHWEST QUARTER OF SAID SECTION 19, A DISTANCE OF 418.09 FEET TO A POINT THE EAST LINE OF THE SOUTHEAST QUARTER OF SECTION 24, TOWNSHIP 11 SOUTH, RANGE 65 WEST OF THE 6TH PRINCIPAL MERIDIAN; THENCE

Recieved by email dated 12/13/2019

S89°30'15"W ON A LINE 50.00 FEET NORTH OF AN PARALLEL WITH THE SOUTH LINE OF SAID SECTION 24, A DISTANCE OF 5,238.40 FEET TO A POINT ON THE WEST LINE OF THE SOUTHWEST QUARTER OF SAID SECTION 24; THENCE N00°14'17"E ON THE WEST LINE OF THE SOUTHWEST QUARTER OF SAID SECTION 24, A DISTANCE OF 902.65 FEET TO THE POINT OF BEGINNING.

CONTAINING A CALCULATED AREA OF 12,114,313 SQUARE FEET OR 278.106 ACRES.


LEGAL DESCRIPTION STATEMENT

I, JONATHAN W. TESSIN, A REGISTERED PROFESSIONAL LAND SURVEYOR IN THE STATE OF COLORADO, DO HEREBY STATE THAT THE ABOVE LEGAL DESCRIPTION WAS PREPARED UNDER MY RESPONSIBLE CHARGE AND ON THE BASIS OF MY KNOWLEDGE, INFORMATION, AND BELIEF IS CORRECT.

JONATHAN W. TESSIN, PROFESSIONAL LAND SURVEYOR COLORADO PLS NO. 33196 FOR AND ON BEHALF OF EDWARD-JAMES SURVEYING, INC.

Recieved by email dated 12/13/2019

221170254 9/9/2021 4:31 PM PGS 8 \$48.00 DF \$0.00

Electronically Recorded Official Records El Paso County CO Chuck Broerman, Clerk and Recorder

COLORADO GROUND WATER COMMISSION FINDINGS AND ORDER

IN THE MATTER OF AN APPLICATION FOR REPLACEMENT PLAN TO ALLOW THE WITHDRAWAL OF GROUNDWATER FROM THE DAWSON AQUIFER IN THE KIOWA-BIJOU DESIGNATED GROUNDWATER BASIN.

REPLACEMENT PLAN NO. 1692-RP, NO. 4

FOR DETERMINATION OF WATER RIGHT NO. 1692-BD

AQUIFER: DAWSON

APPLICANT: WINSOME, LLC

In compliance with section 37-90-107.5, C.R.S. and the Designated Basin Rules, 2 CCR 410-1 (Rules

or Rule), Winsome, LLC (Applicant) submitted an application to replace the previously approved Replacement Plan 1692-RP, No. 3 to allow the withdrawal of groundwater from the Dawson Aquifer that has been allocated by Determination of Water Right No. 1692-BD.

FINDINGS

- 1. Pursuant to section 37-90-107(7), C.R.S., in a Findings and Order dated June 25, 2008, the Ground Water Commission (Commission) approved a Determination of a Right to an Allocation of Groundwater, No. 1692-BD, from the Dawson Aquifer (Aquifer), summarized as follows.
 - a. The determination quantified an amount of water from beneath 900.52 acres of overlying land generally described as the SW1/4 of the SW1/4, Section 18, the W1/2 of the NW1/4 and the W1/2 of the SW1/4, Section 19, Township 11 South, Range 64 West of the 6th PM and the S1/2 of the SE1/4, Section 13 and all of Section 24, Township 11 South, Range 65 West of the 6th Principal Meridian, in El Paso County, (Overlying Land).
 - b. The allowed average annual amount of withdrawal shall not exceed 819 acre-feet, which based on an aquifer life of one hundred years results in an amount of water allocated of 81,900 acre-feet (subject to adjustment by the Commission to conform to actual local aquifer characteristics).
 - c. The use of groundwater is limited to the following beneficial uses: domestic, industrial, commercial, irrigation, augmentation, stock watering, recreational water feature ponds and piscatorial habitat less than 1000 square feet and wildlife, replacement and all other augmentation purposes.
 - d. Withdrawal of the subject groundwater will, within one hundred years, deplete the flow of a natural stream or its alluvial aquifer at an annual rate greater than one-tenth of one percent of the annual rate of withdrawal, the groundwater is considered to be not-nontributary, and Commission approval of a replacement plan providing for actual depletion of affected alluvial aquifers and adequate to prevent any material injury to existing water rights in such alluvial aquifers is required prior to approval of well permits for wells to withdraw the subject groundwater.
- 2. Pursuant to Section 37-90-107.5, C.R.S., in a Findings and Order dated June 29, 2018, the Commission approved a Replacement Plan to allow the withdrawal of groundwater from the Dawson Aquifer that has been allocated by Determination of Water Right No. 1692-BD. The replacement plan allowed for the withdrawal of 42 acre-feet annually through 70 wells to be located on 70 residential lots within the 900.52 acres of Overlying Land described above.
- 3. Pursuant to Section 37-90-107.5, C.R.S., in a Findings and Order dated February 3, 2020, the

Aquifer: Dawson

Applicant: Winsome, LLC

Commission approved a Replacement Plan to allow the withdrawal of groundwater from the Dawson Aquifer that has been allocated by Determination of Water Right No. 1692-BD. The replacement plan allows for the withdrawal of 49.8 acre-feet annually through 83 wells to be located on 83 residential lots. The residential lots will be within 278.1 acres of the Overlying Land generally described as a portion of the W 1/2 of Section 19, Township 11 South, Range 64 West and a portion of Section 24, Township 11 South, Range 65 West, 6th P.M., and more specifically described on Exhibit B of the Findings and Order dated February 3, 2020. Upon approval of the replacement plan the replacement plan approved by the Commission in the Findings and Order dated June 29, 2018 was cancelled.

- 4. Pursuant to Section 37-90-107.5, C.R.S., in a Findings and Order dated December 1, 2020, the Ground Water Commission approved Replacement Plan No. 1692-RP, No. 3 to allow the withdrawal of groundwater from the Dawson Aquifer that has been allocated by Determination of Water Right No. 1692-BD. The replacement plan allows for the withdrawal of 36 acre-feet annually for 300 year through 60 well to be located on 60 residential lots. The residential lots will be located within 479.4 acres generally described as a portion of the W1/2 of the NW1/4 and the W1/2 of the SW1/4, Section 19, Township 11 South, Range 64 West of the 6th PM, a portion of the S1/2 of the SE1/4, Section 13 and a portion of Section 24, all in Township 11 South, Range 65 West of the 6th P.M., and more specifically described on Exhibit A of the Findings and Order dated December 1, 2020. This replacement plan application seeks to replace in its entirety the previously approved Replacement Plan No. 1692-RP, No. 3.
- 5. The subject water is Designated Groundwater located within the boundaries of the Kiowa-Bijou Designated Groundwater Basin. The Commission has jurisdiction over the withdrawal of the water by large capacity wells that are permitted pursuant to section 37-90-107(7).
- 6. Withdrawal of the subject groundwater would deplete the alluvial aquifer of the Kiowa-Bijou Designated Groundwater Basin, the alluvial aquifer of the Upper Big Sandy Designated Groundwater Basin and the alluvial aquifer of the Upper Black Squirrel Creek Designated Groundwater Basin, all of which, according to Rules 5.2.4.2, 5.2.7.2 and 5.2.6.2, respectively, have been determined to be over appropriated. Such depletion would unreasonably impair existing large capacity alluvial rights withdrawing water from those alluvial aquifers.
- 7. Pursuant to Rule 5.6.1.A this plan must be adequate to prevent any material injury to water rights of other appropriators, which for purposes of this plan means large capacity wells withdrawing water from the alluvial aquifer of the Kiowa-Bijou Designated Groundwater Basin, the alluvial aquifer of the Upper Big Sandy Designated Groundwater Basin and the alluvial aquifer of the Upper Black Squirrel Creek Designated Groundwater Basin.
- 8. Pursuant to Rule 5.3.6.2(C) the amount of replacement water shall provide for the depletion of alluvial water for the first 100 years due to all previous pumping and if pumping continues beyond 100 years, shall replace actual impact until pumping ceases.
- 9. The application for the replacement plan was received by the Commission on April 8, 2021.
- 10. The Applicant proposes to divert 37.8 acre-feet annually from the Dawson Aquifer for a period of 300 years. The Dawson aquifer water will be withdrawn through 63 well to be located on 63 residential lots. The residential lots will be located within 479.4 acres generally described as a portion of the W1/2 of Section 19, Township 11 South, Range 64 West of the 6th PM, a portion of the S1/2 of the SE1/4, Section 13 and a portion of Section

Replacement Plan No. 1692-RP, No. 4 Page 3

Aquifer: Dawson

Applicant: Winsome, LLC

24, all in Township 11 South, Range 65 West of the 6th P.M., more specifically described on attached Exhibit B. As show on attached Exhibit B, 10 lots are mostly located in Section 13, 12 lots mostly located within Section 19 and 41 lots are located mostly in Section 24. Each Dawson Aquifer well is proposed to diver 0.6 acre-feet of water annually for in-house use, landscape/irrigation of lawn and gardens, and the watering of domestic animals and stock.

- 11. At a continuous withdrawal of 37.8 acre-feet annually for 300 years, depletions to the alluvial aquifer systems of the Kiowa-Bijou Designated Groundwater Basin, Upper Big Sandy Designated Groundwater Basin and Upper Black Squirrel Creek Designated Groundwater Basin would steadily increase to 1.45 acre-feet per year in the 300th year, which is equal to 3.84% of pumping, as shown in Exhibit A.
- 12. The Applicant proposes to provide 17.01 acre-feet per year of replacement water to the alluvial aquifer system of the Kiowa-Bijou Designated Groundwater Basin. The proposed source of replacement water is septic and leaching field return flows from the in-house use of the groundwater to be pumped under the plan. The Applicant estimates that return flows from each lot will consist of 90% of the water used for in-house purposes. Assuming each lot uses a total annual amount for in-house use of 0.30 acre-feet, the return flow per lot would be 0.27 acre-feet annually, and the return flows under the plan will total 17.01 acre-feet per year for all 63 lots at full build out.
- 13. The subject property is located within the drainage of Kiowa Creek, and the return flows will flow to the alluvial aquifer of the Kiowa-Bijou Designated Groundwater Basin. The Applicant proposes to aggregate all replacements to the drainage in which the well or wells will operate, in accordance with Guideline 2007-1.
- 14. Pursuant to Rule 5.6.1.B this plan must be adequate to prevent unreasonable impairment of water quality. Pursuant to Rule 5.6.1.B.1.b, if the replacement source water is from an onsite wastewater treatment system permitted by a local health agency and the applicant demonstrates the source is in compliance with that permit there shall be a rebuttable presumption of no unreasonable impairment of water quality.
- 15. Pursuant to Rule 5.6.1.C this plan, including the proposed uses of the water withdrawn pursuant to the plan, must not be speculative, and must be technically and financially feasible and within the Applicant's ability to complete. The plan, including the proposed uses of the water withdrawn pursuant to the plan, is not speculative. The plan appears technically and financially feasible and within the Applicant's ability to complete.
- 16. Pursuant to Rule 5.6.1.D this plan must be able to be operated and administered on an ongoing and reliable basis. The plan appears to be able to be operated and administered on an ongoing and reliable basis.
- 17. Pursuant to Rule 5.6.1.F replacement source water must be physically and legally available in time, place and amount to prevent material injury. As determined in Determination of Water Right No. 1692-BD water is currently available in the amounts and for the number of years proposed to be diverted.
- 18. Pursuant to Rule 5.6.1.G the replacement source water must be legally available for use. Records in this office indicate that the Applicant controls the water right to be used as the source of replacement water, consisting of Determination of Water Right No. 1692-BD, and such water is legally available for use pursuant to this plan.

Replacement Plan No. 1692-RP, No. 4 Page 4

Aquifer: Dawson

Applicant: Winsome, LLC

19. In accordance with sections 37-90-107.5 and 37-90-112, C.R.S., the application was published in the Ranchland News newspaper on July 15, 2021 and July 22, 2021. No objections to the application were received within the time limit set by statute.

20. According to Rule 5.6.1:

- a. The Applicant has the burden of proving the adequacy of the plan in all respects.
- b. If the applicant meets its burden of proof, the Commission shall grant approval of the plan which shall include any terms and conditions established the Commission.
- 21. The Commission Staff has evaluated the application pursuant to section 37-90-107.5, and the requirements of Rule 5.3.6.2(C) and Rule 5.6, finds that the requirements have been meet, and the plan may be approved to allow diversions from the Dawson Aquifer if operated subject to the conditions given below.

ORDER

In accordance with section 37-90-107.5, and the Designated Basin Rules, the Colorado Ground Water Commission orders that the application for a replacement plan to allow the withdrawal of groundwater from the Dawson Aquifer underlying 900.52 acres that are the subject of Determination of Water Right no. 1692-BD is approved subject to the following conditions:

- 22. Approval of this replacement plan herby cancels the Winsome, LLC Replacement Plan No. 1692-RP, No. 3 approved by the Commission in a Findings and Order dated December 1, 2020.
- 23. The Dawson Aquifer water will be withdrawn through 63 wells to be located on 63 residential lots. The residential lots will be located within 479.4 acres generally described as a portion of the W1/2 of Section 19, Township 11 South, Range 64 West of the 6th PM, a portion of the S1/2 of the SE1/4, Section 13 and a portion of Section 24, all in Township 11 South, Range 65 West of the 6th P.M., more specifically described on attached Exhibit B. Each Dawson Aquifer well may divert 0.6 acre-feet of water annually for in-house use, landscape/irrigation of lawn and gardens, and the watering of domestic animals and stock.
- 24. The allowed annual amount of groundwater to be withdrawn from the Aquifer by all wells operating under this plan shall not exceed 37.8 acre-feet. The allowed annual amount of water to be withdrawn from each on-lot well shall not exceed 0.6 acre-feet.
- 25. A totalizing flow meter shall be installed on each well. The well owner shall maintain the meter in good working order.
- 26. Permanent records of all withdrawals of groundwater from each well shall be recorded at least annually by the well owners, permanently maintained, and provided to the Commission.
- 27. Pumping under this plan is limited to a period of 300 years. The year of first use of this replacement plan shall be the calendar year of construction of a well permitted pursuant to this plan or permitting of an existing well pursuant to the plan.
- 28. Return flows from in-house use of groundwater shall occur through individual on-lot non-

Aquifer: Dawson

Applicant: Winsome, LLC

evaporative septic systems located within the 479.4 acres described above, which are a portion of the Overlying Land that is the subject of Determination of Water Right No. 1692-BD. The septic systems must be constructed and operated in compliance with a permit issued by a local health agency.

- 29. Replacement of depletions must be provided annually in the acre-feet amounts shown in Exhibit A. Annual replacement requirements may be computed by pro-rating between the values given on Exhibit A, or for simplicity may be taken as the amount shown in the next succeeding 5 year increment.
- 30. The Applicant or their successor(s) are responsible for ensuring that replacement water is provided to the alluvial aquifer as required by this plan. The annual replacement requirement and the annual amount of replacement water provided shall be calculated and reported on a form acceptable to the Commission. The annual amount of replacement water provided must be no less than the annual replacement requirement on a yearly basis. No credit shall be claimed by the Applicant for an oversupply of replacement water provided to the alluvium during previous years.
- 31. The Applicant must provide the required annual amount of replacement water for the first 100 years, or for as long as a well is operated pursuant to this plan, whichever is longer.
- 32. To assure adequate return flows, the number of wells serving an occupied single-family dwelling that is generating return flows via a non-evaporative septic system must be equal to or greater than the number of wells shown in Table 1 below, or an amended or alternate replacement plan must be obtained that will replace actual depletions to the alluvial aquifer so as to prevent any material injury to water rights of other appropriators.

	Tabl	e 1				
Year	No. of Wells	Return Flow (af/yr)				
1-80	1	0.27				
81-130	2	0.54				
131-180	3	0.81				
181-230	4	1.08				
231-280	5	1.35				
281-300	6	1.62				

- 33. The Applicant (and their successors) must gather and maintain permanent records of all information pertaining to operation of this plan, which shall include, but is not be limited to, those items identified below. The Applicant must submit records to the Commission on forms acceptable to the Commission, on an annual basis for the previous calendar year, by February 15th of the following year.
 - a. Identification of all well permits issued and wells constructed under this plan.
 - b. The amount of water diverted by each well and all wells in total, both annually and cumulatively since operation of the plan began.
 - c. The number of occupied dwellings served by each well.
 - d. The number of square feet irrigated by each well.
 - e. The number of large domestic animals served by each well.
 - f. The return flows occurring from use of all wells operating under the plan, assuming 0.27 acre-feet per year per occupied single family dwelling (90% of the water used for in-house purposes) enters the alluvial aquifer as replacement water.

Applicant: Winsome, LLC

g. Any other information the Commission deems relevant and necessary to operation, monitoring, accounting, or administration of the plan.

Page 6

- 34. The Applicant (and their successors) are fully responsible for the operation, monitoring, and accounting of the replacement plan. In the event a lot with a well permitted or operating pursuant to this plan is sold, identification of the well that was sold and evidence that the new owner has been notified of their responsibilities under the replacement plan shall accompany that year's accounting.
- 35. Any covenants adopted for this subdivision should contain a description of the replacement plan, including the limitations on diversions and use of water for each well and lot, the requirement to meter and record all well pumping, and information on how records are to be reported and the plan is to be administered.
- 36. In the event the permitted well or wells are not operated in accordance with the conditions of this replacement plan, they shall be subject to administration, including orders to cease diverting groundwater.
- 37. All terms and conditions of Determination of Water Right No. 1692-BD must be met.
- 38. Pursuant to Rule 5.6.1.E, a copy of this Findings and Order shall be recorded by the Applicant in the clerk and recorder's records of El Paso County, so that a title examination of the land on which the structures involved in this plan are located reveals the existence of this plan.

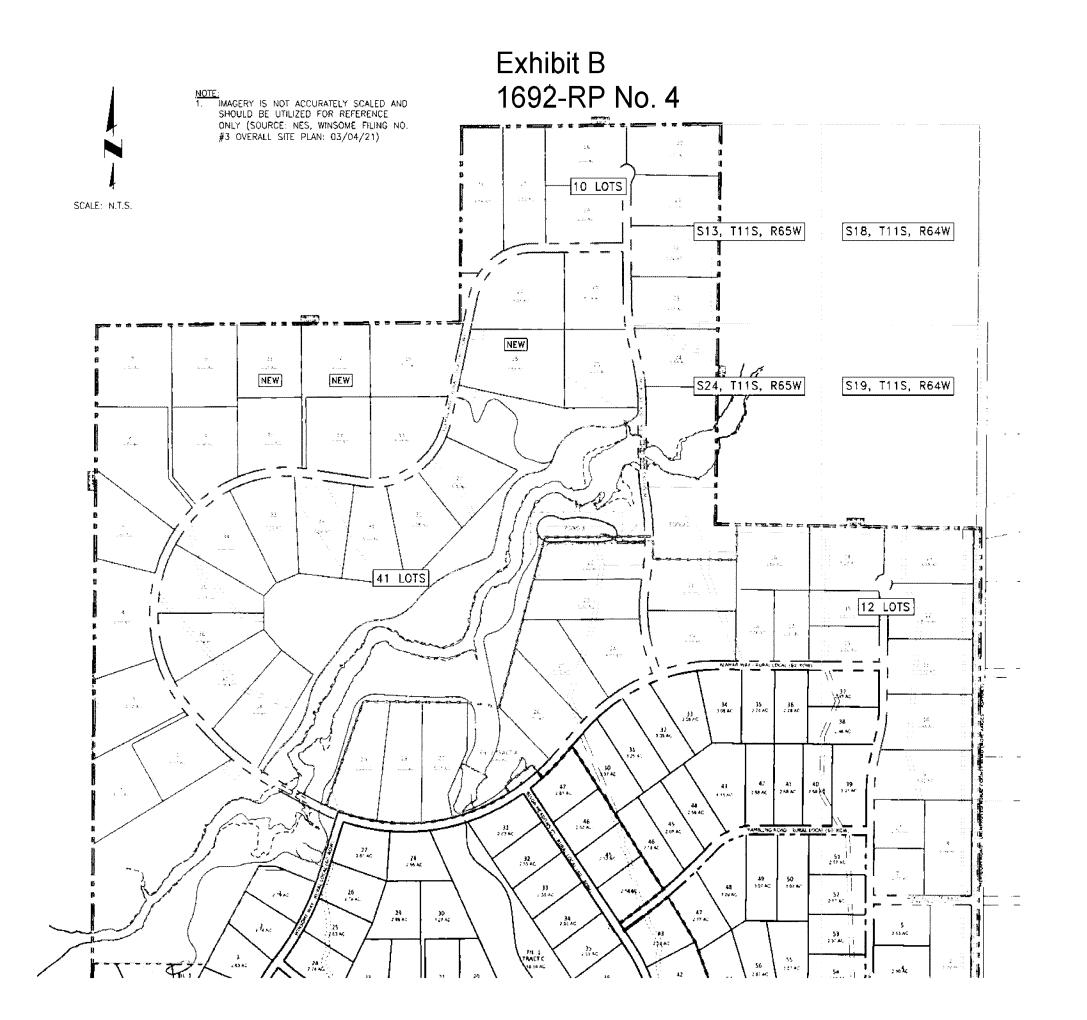
Dated this 27th day of August, 2021.

Kevin G. Rein, P.E Executive Director

Colorado Ground Water Commission

F&O1692-RP.docx Prepared by: aat Joanna Williams, P.E. Water Resource Engineer

Exhibit A


Replacement Plan No. 4 - Determination No.: 1692-BD

Page 1 of 1

Year 5 10 10 15 20 20 20 20 40 40		Pumping Rate of 3 Section(s): Section 13 & Annual Depletion (q) (AF/YR) 0.00 0.01 0.02 0.03 0.04 0.06 0.07 0.09	Page 1 of 1 nated Basin Summary Tab 77.8 acre-feet per year for 3 8. 24 , T11S, R65W, 6th P.N Depletion as a % of Pumping (q/Q) 0.00 0.01 10 0.02 11 0.07 11 0.15 0.19 0.24 12 0.30 0.30		f 1 able following followi	1 ble for Winsome, LL sole for Winsome, LL 300 Years from the D M. & Section 19, T11 M. & Section 19, T11 /ear Pumping (Q) (AF/YR) 155	le for Winsome, LLC 00 Years from the Dawson a 1. & Section 19, T115, R64W 21 Pumping (Q) Annual 25 37.8 30 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8
20	37.8	0.02	0.04	170 175	37.8	0.75 0.78	1.99
25	37.8	0.03	0.07	175 180	37.8 37.8	0.78	2.07
35	37.8	0.04	0.17	185	37.8	0.81	2.14
40	37.8	0.07	0.19	190	37.8	0.86	2.29
45	37.8	0.09	0.24	195	37.8	0.89	2.36
50	37.8	0.11	0.30	200	37.8	0.92	2.43
55	37.8	0.13	0.35	205	37.8	0.95	2.51
60	37.8	0.16	0.41	210	37.8	0.97	2.58
65	37.8	0.18	0.48	215	37.8	1.00	2.65
70	37.8	0.20	0.54	220	37.8	1.03	2.72
75	37.8	0.23	0.61	225	37.8	1.06	2.79
80	37.8	0.26	89.0	230	37.8	1.08	2.86
85	37.8	0.28	0.74	235	37.8	1.11	2.94
90	37.8	0.31	0.81	240	37.8	1.14	3.01
95	37.8	0.33	0.89	245	37.8	1.16	3.08
100	37.8	0.36	0.96	250	37.8	1.19	3.15
110	37.8	0.39	1 10	260	37.8	124	3 29
115	37.8	0.44	1.18	265	37.8	1.27	3.36
120	37.8	0.47	1.25	270	37.8	1.30	3.43
125	37.8	0.50	1.32	275	37.8	1.32	3.50
130	37.8	0.53	1.40	280	37.8	1.35	3.57
135	37.8	0.56	1.47	285	37.8	1.37	3.63
140	37.8	0.58	1.55	290	37.8	1.40	3.70
145	37.8	0.61	1.62	295	37.8	1.43	3.77
150	37.8	0.64	1.69	300	37.8	1.45	3.84

Created by AAT on July 06, 2021

Values for 'Depletion as a % of Pumping' (q/Q) are not calculated when the pumping rate (Q) is changed to anything but zero

WINSOME FILING NO. #3

DEMAND SUMMARY

<u>S13, T11S, R65W = 10 LOTS @ 0.6 AF/LOT/YEAR</u> = 6.0 AF/YEAR

<u>S24, T11S, R65W = 41 LOTS @ 0.6 AF/LOT/YEAR</u> = 24.6 AF/YEAR

S19, T11S, R64W = 12 LOTS @ 0.6 AF/LOT/YEAR = 7.2 AF/YEAR

TOTAL DEMAND = 37.8 AF/YEAR

WATER QUALITY RESULTS - SUMMARY TABLE

NATIONAL PRIMARY DRINKING WATER REGULATIONS

Acrylamide	TT 0.002		Not Tested Below
Alachlor Aldicarb	0.002	BDL BDL	NA
Aldicarb sulfone		BDL	NA
Aldicarb sulfoxide		BDL	NA
Aldrin Alpha/photon emitters	15 pCi/L	BDL	NA Not Tested
Antimony	0.006	BDL	Below
Arsenic	0.01	BDL	Below
Asbestos (fibers >10 micrometers) Atrazine	7 million fibers per Liter (MFL) 0.003	BDL	Not Tested Below
Barium	2 0.005	0.122	Below
Benzene		BDL	Below
BenZo(a)pyrene (PAHs) Beryllium	0.0002	BDL	Below
	0.004	BDL	Below
Beta photon emitters	4 MILLIREMS PER YEAR		Not Tested
Bicarbonate Bromate	0.01	89.8 mg/L	NA Not Tested
Bromobenzene		BDL	NA
Bromochloromethane		BDL	NA
Bromodichloromethane		BDL	NA
Bromoform		BDL	NA
Butachlor		BDL	NA
n-Butylbenzene		BDL	NA
sec-Butylbenzene		BDL	NA
tert-Butylbenzene		BDL	NA
Cadmium	0.005	BDL	Below
Calcium		67.8 mg/L	NA
Carbaryl		BDL	NA
Carbofuran	0.04	BDL	Below
Carbonate		BDL	NA
Carbon tetrachloride	0.005	BDL	Below
Chloramines (as Cl ₂)	MRDL=4.0		Not Tested
Chlordane	0.002	BDL	Below
Chlorine (as Cl ₂)	MRDL=4.0		Not Tested
Chlorine dioxide (as ClO ₂) Chlorite	MRDL=0.8 1.0		Not Tested Not Tested
Chlorobenzene	0.1	2001	Not Tested
Chlorodibromomethane Chloroethane		BDL BDL	NA NA
Chloroform		BDL	NA
Chloromethane		BDL	NA
o-Chlorotoluene		BDL	NA
p-Chlorotoluene		BDL	NA
Chromium (total) Copper	0.1	BDL	Below
	1.3	0.0183	Below
Chryptosporidium	Π		Not Tested
Cyanide (Total)	0.02	BDL	Below
2,4-D		BDL	Below
Dalapon	0.2	BDL	Below
Dibromochloropropane	0.0002	BDL	Below
Dibromomethane		BDL	NA
Dicamba		BDL	NA
m-Dichlorobenzene	0.6	BDL	NA
o-Dichlorobenzene		BDL	Below
Para-Dichlorobenzene Dichlorodifluoromethane	0.075	BDL BDL	Below NA
1,1-Dichloroethane	0.005	BDL	NA
1,2-Dichloroethane 1,1-Dichloroethylene	0.005	BDL	Below
	0.007	BDL	Below
cis-1,2-Dichloroethylene	0.07	BDL	Below
trans-1,2, Dichloroethylene	0.1	BDL	Below
Dichloromethane	0.005	BDL	Below
1,2-Dichloropropane	0.005	BDL	Below
1,3-Dichloropropane 1,1-Dichloropropene		BDL BDL	NA NA
1,3-Dichloropropene Dieldrin		BDL BDL	NA NA
Di(2-ethylhexyl) adipate	0.4	BDL	Below
Di(2-ethylhexyl) phthalate Dinoseb	0.006	BDL BDL	Below Below
Dioxin (2,3,7,8-TCDD)	0.0000003	BDL	Not Tested
Diquat	0.02		Below
Endothall	0.1	BDL	Below
Endrin	0.002	BDL	Below
Epichlorohydrin	TT	BDL	Not Tested
Ethylbenzene	0.7		Below
Ethylene dibromide	0.00005 MCL	BDL	Below Not Tested
Fecal coliform and E. coli Fluoride	4.0	0.34	Below
Fluorotrichloromethane Giardia lamblia	TT	BDL	NA Not Tested
Glyphosate	0.7	BDL	Below
Gross Alpha (incl. Uranium)	15	3.6	Below
Gross Beta Haloacetic acids (HAA5)	0.06	8.3	NA Not Tested
Heptachlor	0.0004	BDL	Below
Heptachlor epoxide	0.0002	BDL	Below
Heterotrophic plate count (HPC) Hexachlorobenzene	TT 0.001	BDL	Not Tested Below
Hexachlorobutadiene		BDL	NA
Hecachlorocyclopentadiene	0.05	BDL	Below
3-Hydroxycarbofuran		BDL	NA
Isopropylbenzene		BDL	NA
p-Isopropyltoluene		BDL	NA
Lead	0.015	0.0005	Below
Langolier Index		-1.02	NA
Legionella	TT	BDL	Not Tested
Lindane	0.0002		Below
Mercury (inorganic) Methomyl	0.002	BDL BDL	Below NA
Methoxychlor	0.04	BDL	Below NA
Metolachlor Metribuzin	2:	BDL BDL	NA
Monochlorobenzene Naphthalene	0.1	BDL BDL	NA NA
Nickel	10	BDL	NA
Nitrate (measured as Nitrogen)		BDL	Below
Nitrite (measured as Nitrogen) Oxamyl (Vydate)	1.0	BDL	Below
	0.2	BDL	Below
Pentachlorophenol	0.001	BDL	Below
pH		7.15	NA
Phosphate (ortho) Picloram	0.5	BDL	NA Below
Polychlorinated biphenyls (PCBs)	0.5	BDL	Below
Propachlor	-	BDL	NA
n-Propylbenzene		BDL	NA
Radium 226 Radium 228	5	8.3	Above
Radon	0.05	1650	NA
Selenium		BDL	Below
Simazine	0.004	BDL	Below
Sodium		9.4	NA
Styrene	0.1	BDL	Below
1,1,1,2 - Tetrachloroethane		BDL	NA
1,1,2,2-Tetrachloroethane	0.005	BDL	NA
Tetrachloroethylene	0.005	BDL	Below
Thallium	0.002	BDL	Below
Toluene	1.0	BDL	Below
Total Alkalinity		89.8 mg/L	NA
Total Coliforms Total Trihalomethanes (TTHMs)	5.00% 0.08	BDL	Not Tested Below
Toxaphene	0.003	BDL	Below
2,4,5-TP (Silvex)	0.05	BDL	Below
1,2,3-Trichlorobenzene		BDL	NA
1,2,4-Trichlorobenzene	0.07	BDL	Below
1,1,1-Trichloroethane	0.2	BDL	Below
1,1,2-Trichloroethane Trichloroethylene	0.005	BDL	Below
	0.005	BDL	Below
1,2,4-Trimethylbenzene Turbidity	П	BDL	NA Not Tested
Uranium	0.03	0.0002 BDI	Below Below
Vinyl chloride	0.002	BDL	Not Tested

SECONDARY DRINKING WATER STANDARDS

CONTAMINANT	SMCL	GOWLER WELL	Above	Below		
Aluminum	0.2		Not T	ested		
Chloride	250		Not T	ested		
Color	15		Not T	ested		
Copper	1.3	0.0183	Bel	low		
Corrosivity	Non-corrosive		Not T	ested		
Hydroxide	0.1	BDL	Bel	low		
Fluoride	2.0		Not T	ested		
Foaming agents	0.5		Not T	ested		
Iron	0.3	BDL	Bel	low		
Manganese	0.05	0.1171	Ab	ove		
Odor	3 TON		Not T	ested		
pH	6.5 - 8.5 units	7.15 units	Bel	low		
Silver	0.1		Not T	ested		
Sulfate	250		Not T	ested		
Temperature	N/A	11 °	Below			
Total Dissolved Solids (TDS)	500	154	Bel	low		
Zinc	5		Not T	ested		

Customer ID: 20040H Account ID: Z01034 Lab Control ID: 19M01215 Received: Feb 08, 2019 Reported: Mar 05, 2019 Purchase Order No. None Received

Stuart Nielson Colorado Analytical Laboratories, Inc. PO Box 507 240 South Main Street Brighton, CO 80601

ANALYTICAL REPORT

Report may only be copied in its entirety.
Results reported herein relate only to discrete samples submitted by the client. Hazen Research, Inc. does not warrant that the results are representative of anything other than the samples that were received in the laboratory

File: 19M01215 R1.pdf

Jessica Aken Analytical Laboratories Director

Lab Control ID: 19M01215

Received: Feb 08, 2019 Reported: Mar 05, 2019 Purchase Order No. None Received

Customer ID: 20040H Account ID: Z01034

ANALYTICAL REPORT

Stuart Nielson Colorado Analytical Laboratories, Inc.

La	ab Sam	ple ID	19M01215-001											
Custom	er Sam	ple ID	190208005-0)1 - Gowler	Well									
				sampled on 02/07/19 @ 0946 by Stephanie Shwenke										
				Precision* Detection Analysis										
Parameter	Units	Code	Result	+/-	Limit	Method	Date / Time	Analyst						
Gross Alpha	pCi/L	Т	3.6	2.1	0.1	SM 7110 B	2/18/19 @ 0800	SS						
Gross Beta	pCi/L	Т	8.3	2.7	3.7	SM 7110 B	2/18/19 @ 0800	SS						
Radium-226	pCi/L	Т	2.2	0.7	0.1	SM 7500-Ra B	2/19/19 @ 0827	SA						
Radium-228	pCi/L	Т	6.1	1.0	0.2	EPA Ra-05	2/22/19 @ 0955	JR						
Radon	pCi/L	Т	1650	45	13.0	SM 7500-Rn B	2/8/19 @ 1527	SA						

Certification ID's: CO/EPA CO00008; CT PH-0152; KS E-10265; NJ CO008; NYSELAP (NELAC Certified) 11417; RI LAO00284; WI 998376610, TX T104704256-15-6

Codes: (T) = Total (D) = Dissolved (S) = Suspended (R) = Total Residual (AR) = As Received < = Less Than

Samples received with air bubbles. Radon results may be biased low.

File: 19M01215 R1.pdf

^{*}Variability of the radioactive decay process (counting error) at the 95% confidence level, 1.96 sigma.

page 8 of 8

Drinking Water Chain of Custody

9210 NO

Report To Information	Bill To Information (If different from report to)	ifferent from re	port to)	State Form / Project Information	
Company Name: Colorado Analytical	Company Name: Same As Report To	As Report To		PWSID: JDS Hydro	
Contact Name: Stuart Nielson	Contact Name:			System Name: Private Well	
Address: 240 S. Main St.	Address:	The state of the s		System Address:	
City: Brighton State: CO Zip: 80601	<u>City:</u>	State:	Zip:	City: State: Zip:	::
Phone:303-659-2313 Fax:303-659-2315	Phone:	Fax:		County:	
Email: stuartnielson@coloradolab.com	Email:			Compliance Samples: Yes No X	JXI
Sampler Name: Stephanie Schwenke	PO No.:			Send Forms to State: Yes No	~

Colorado Analytica Laboratories, Inc.	
C :	

Brighton Lab 240 South Main Street Brighton, CO 80601 Lakewood Lab 12860 W. Cedar Dr, Suite 101 Lakewood CO 80228

Phone: 303-659-2313 Fax: 303-659-2315 www.coloradolab.com

S	muin	eiU [
Subcontract Analyses	uoı	Rac	3									□ ≗			11		
t An	822 muil	Rac	3											٦	Date/Time:		
ntrae	922 mil	Rac	3									Headspace Yes □	Ĺ	z]	Date/		
npco	ss Alpha/Beta	Gro	3									ıdsbac	÷	. Yes	.,,,		
S	***************************************											He	ŗ	Sample Pres. Yes LI No LI			
	(Sircle) 455 VU ,A	ans [⊔ ≗		Sampl			
	C, DOC (Circle)	OT [By:		
	./Lang. Index] VIK										Seals Present Yes	ě	% /Ice	Received By:		
/sis)	soineg.	ouI [s Pres		ď.	Re		
Drinking Water Analyses (check analysis)	ebiro	Llu	J									Seal	{	lemp.			
eck 8	əji.	niN [J									******************************			e:		
(ch	.વાલ	uiN [J											C/S Charge	Date/Time:		
lyses	d/Copper	sə.I [C/S C	Dat		
Апа	sènah 2.	252												_			
ater	sMHTT 2.																
g W	supiQ 2.]												By:		
nkin	Il Endothall														Relinquished By:		
Dri	Glyphosate									Щ				d Via	lingu		
I, II, V	.1 Carbamates											C/S Info		Delivered Via:	Re	***********	
E.	.2 SOCs-Pest				Ш							ర		<u>ದ</u>			
PHASE	.2 VOCs		ᆜ						LI.				JANJ RAJA		ıe:	- N	
_	esbioidash 4,		_ =										J >1		Date/Time:	727	>
	Pests/PCBs						H					رد	2	11 61	Da	<u></u>	-
	1 EDB/DBCP		 			H	H						10946	***			
	Samples Only A/9 miofiloO le				H							Ę.	ر در				
	(T.	/ 8 w)				***************************************						Bothers Le	ر چ و و			1	
	dual Chlorine	izəЯ			-		-			ļ	ļ			•	ş.	M	
	stənistno D Te	.oN	c							ļ	ļ	7)		Received By	N/	
		e e					-	***************************************				4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			Rece		
		ි 	~									esear)	١		-25	0
		EP	r Wel									Zen R	*	大きる アイン	٠ دو	8/8/10	2
		e D	Sowle	***************************************								Haz	Ĺ	9 5	Tim	∞	_
	44497	ampl	2-01									SD to	. 9	3	Date	18	
		Client Sample ID / EP Code	190208005-01 Gowler Well									d Ex		west _{eren}			
		Ğ	1905									ia Fe				K	
.8	all-horousessource-van					T						Instructions: Send via Fed Ex SD to Hazen Research Fed ピメー イフト 6 フ イス? ロタス?			:.A	Jan J	
SK NO	8005 F	Time	9560							-		ons:S			sed B	4	
CAL IASK NO.	190208005 ARF		61/									ructi	D	0	Relinquished By:	XX	
3	-	Date	02/07/19									Inst	(Q.	Reli	V	

Analytical Results

TASK NO: 190208006

Report To: Doug Schwenke

Company: JDS Hydro Consultants

545 E. Pikes Peak Ave

Suite 300

Colorado Springs CO 80903

Bill To: Doug Schwenke

Company: JDS Hydro Consultants

545 E. Pikes Peak Ave

Suite 300

Task No.: 190208006

Client PO: Client Project: Date Received: 2/8/19
Date Reported: 2/21/19

Matrix: Water - Drinking

Customer Sample ID Gowler Well

Sample Date/Time: 2/7/19

Lab Number: 190208006-01

Test	Result	Method	ML	T D		
Bicarbonate	80 8 mg/l as CaCO2	The state of the s		Date Analyzed	Analyzed By	
Calcium as CaCO3	89.8 mg/L as CaCO3	SM 2320-B	0.1	2/11/19	JTF	
Carbonate	67.8 mg/L	EPA 200.7	0.1	2/13/19	MBN	
	< 0.1 mg/L as CaCO3	SM 2320-B	0.1	2/11/19	JTF	
lydroxide	< 0.1 mg/L as CaCO3	SM 2320-B	0.1	10-10-10-10-10-10-10-10-10-10-10-10-10-1		
angelier Index	-1.02 units	SM 2330-B	0.1	2/11/19	JTF	
Н				2/13/19	SAN	
emperature	7.15 units	SM 4500-H-B	0.01	2/7/19	Sampler	
0.7500 •0.99.10.69.000.000	11 °C	SM 4500-H-B	1	2/7/19	Sampler	
otal Alkalinity	89.8 mg/L as CaCO3	SM 2320-B	0.1	2/11/19		
otal Dissolved Solids	154 mg/L	SM 2540-C		100 Sel-10-70	JTF	
	134 mg/L	OIVI 2040-C	5	2/13/19	ISG	

Abbreviations/ References:

ML = Minimum Level = LRL = RL
mg/L = Milligrams Per Liter or PPM
ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls
Date Analyzed = Date Test Completed

DATA APPROVED FOR RELEASE BY

Drinking Water Chain of Custody

No la	CAL lask No.	CAL
Send Forms to State: Van D. N.	PO No.:	Sampler Name: Techant - XIWAKE PONO .:
Compliance Samples: Yes No	Email:	Email: CSChroene
County: (1 PCSC	Phone: Fax:	Phone: 117-227-CX: 127ax: 717 471-340 Phone:
City Menus rentsing (Com X) 30	City State Zip	City (S State CZip SUNY)
Special programs		VIII 100
Address: 1745	Address:	Address: 5540 Tech Contentine
PWSID: 1 System Name:	Contact Name:	Contact Name: Long Simuranka
V.V. CT LY	Company Name:	Company Name: JDS Hydrc
State Form / Project I-6	Bill To Information (If different from report to)	Report To Information

	.2
_	11/2
ABORA	30
ABORATORIES, INC.	JE O
S. INC	88
	_0

Brighton Lab 240 South Main Street Brighton, CO 80601

Lakewood Lab
12860 W. Cedar Dr, Suite 100A
Lakewood CO 80228
Phone: 303-659-2313

Phone: 303-659-2313 Fax: 303-659-2315

www.coloradolab.com

,	RelinquishorBy		Instructions:				21111	15/E.T.	27-11 DUE14	SISI OIFE	71.01 10.16	11:31 WILL	27 7/1	Date	()	1 ask	7
		する	tions:				10:4	2.5.7	10:17	21.2	17.31	11:01	1350	Time	nawler	l ask Number	
	Date/Time: Rec	to metalis analysus	leage add lead, copper, from & murginese	Field blank	Trip blank		#17	414.	415	中一上	#13	412	#	Client Sample ID / EP Code	well		
	Received By:		5	\dashv	+	A p		N	Ŋ	()	W	g g	_	No. 01	ARF	0000	190208006
	Z X		3 #	*						0				Residu (mg/L)	ian Cinoline		
	- 12		3				メ							Total	Coliform P/	A -	T
	Date/Time:	(3							×				504.1	EDB/DBCF	~	1
٩	Time		3						×					505 P	ests/PCBs	1	
9.30			8	4										515.4	Herbicides		-
		-	1	\downarrow	_						X			524.2	VOCs	-	HA
	R		C/S Info:			1								525.2	SOCs-Pest		SE I,
	ling	arad .	nfo:	4	+	4		×				1		531.1	Carbamates	-	11,
	uishe		-	_	1	1		1	4		1			547 GI	yphosate		V DI
	Relinquished By:	H	-	4	_	1	1	1			1			548.1 E	Endothall		inki
		Relivered Vis. Tod Fo		+	+	4	_	4	\perp	1		\perp		549.2 I	Diquat		ng V
	13	۶,	-	_	_	1	1	4	1	- 1	-	\perp		524.2 T	THMs		Vate
t	D S	2	-	+	+	\downarrow	1	_	-	4	1			552.2 F	IAA5s		FAI
	Date/Time:	2	-	+	+	+	+	_	4	1	4	1	1	Lead/Co	opper].	alys
	ime:	1-	-	+	\perp	+	+	4	_	_	1	1	1	Vitrate		1	es (c
	-		(0)	+	+	+	+	+	+	+	+	4	1	Vitrite			heck
	Re		cals	+	-	+	+	+	+	+	+	+	F	luoride			BUB
	ceive		reser	+	+	+	+	+	+	\perp	+	7	-	norgani		150	FHASE I, II, V Drinking Water Analyses (check analysis)
	Received By:		Scals Present Yes	+	+	-	+	+	+	+	+	+			ig. Index	1	
	8		-	+	+-	-	+	+	+	+	+	+			OC (Circle)		
	10		N N	+-	-	-	+	+	+	+	+	+	St	JVA, UV	254 (Circle)		
L	amp		Hea	-	-		+	+	+	+	+	+	-			L	
	Sample Pres. Yes No Date/Time:		Headspace Yes No	+		_	+	+	+	+	+	-			pha/Beta	duc	2
	e Pres. Yes R Date/Time:		e Yes	-		_	+	+	+-	+	+	-		adium 2		nuo	
	: 🔯		Z	-		_	+	+	+	-	-	-		dium 2		act A	
			å			_	-	+-	-	-	×	-	_	idon	``	Subcontract Analyses	
L_		-				_							Ur	anium		vses	
														Page	2 of 3		_

Contact Name: Diry Shirente

Contact Name:

Company Name: Siva

Bill To Information (If different from report to)

Address:

Address:

11745 Durich Waters

PWSID: Privak well
System Name:

State Form / Project Information

Address: 5040 Tenterter

メルカーいつ

City

Sampler Name: Staply- in Stap with PO No.:

Email: d'x bicocoke () deshydisocom Email:

Phone: 74-327 40 12 Fax: 717-471-340 Phone:

CS State (Wip & 50719

City

State

Zip

Fax:

Company Name: Ths 1 14 11 C:

Report To Information

1		
	0	
	01/2	,
C	TO	
ABORATORIE	30	
ĤA	<u>5</u>	
ᅙ	<u>Έ</u> 0	
ES	<u>=</u> .0	
S	ΧŒ	
,	20	

	.6
L A	PO PO
ABORATORIE	
RIES, I	dig S
NC	20

Lakewood Lab 12860 W. Cedar Dr, Suite 100A Brighton, CO 80601 Brighton Lab 240 South Main Street

Fax: 303-659-2315 Phone: 303-659-2313 Lakewood CO 80228

www.coloradolab.com

Send Forms to State: Yes No X

Compliance Samples: Yes No

County: El Pesse County

City Monument State Czip 8013)

	Relinquished By			Instructions:	37.16.14.12	るからいれた	14:0 PA2	15:00AP	20:01 ME12	17.1.196.13	13:0 UA:	PSOCHAL/2	られいいかんし	7 -14 114	+-	Gow	Task Number	
(Date/Time: 1 nciron		Greld PH= 1.15		#10	12# C	*	サー	#	よく	五本工	13°	#	= 4	Client Sample ID / EP Code	Jower Well		
C	Received By:				-		_	_	_	-	-	2	-	- 8	N o. o	ARF	000000	190208006
			Freld temp= 11.3°C		8 8									-	(mg/l P/A S	L) Samples Only		,
	70		3		_	_	<u> </u>	_	_		_	_		1	Tota	Coliform F	P/A	-
	Date/Time		3		_	-		_	_	_	_	_	-	_	504.	I EDB/DBC	P	-
	Date/Time:		=			-	-	_	<u></u>	-	_	_		+	_	Pests/PCBs		
がら			, 200		-	-	-		×		_	_	_	\perp	_	4 Herbicides	. `	13
5		_		-	-	-	_						_	+		VOCs		A
	Re	elive		C/S Info:		_	_				_	×		+	1	2 SOCs-Pest		,
	Relinquished By:	Delivered Via:		ifo:	_						_			+	1	Carbamate	s	PHASE I, II, V Drinking Water Analyses (check analysis)
	(7)				_			×						1	547 (lyphosate		DI
	d By:	なる方	1							×		_		1	548.1	Endothall	_	Ki
		Ly)						-		_	×	_		+	549.2	Diquat	.~	100 X
		Χ'				-	-	_	4	_		4		_	524.2	TTHMs		ate
1	D	S				-	-		-	-		_		_	552.2	HAA5s		W.
	Date/Time:	C/S Charge IX				-	-	-		4	4	_		L	Lead/	Copper		alys
	ime:	7			>	-	-	-	-	4	1	4			Nitrat	e	-	es (c
	-	_	K	70	×	-	-	-	4	4	4	4		_	Nitrite			heck
-	R	Temp		Seals	~	+	\dashv	4	4	_	_	1			Fluori	de -	-	ans
	eceiv			Prese	×	+	\downarrow	4	4	1	1	\downarrow	_		Inorga	nics		ılysi
	Received By:	5		Pt Ye	_	\downarrow	4	+	4	4	1	4			Alk./L	ang. Index	-	<u>e</u>
	By:		٦	X -	+	+	+	\perp	+	_	1	4			TOC, I	OOC (Circle	:)	
		~	1	6	\perp	_	-	+	\perp	_	4	_	1		SUVA, U	JV 254 (Circle)		
	Sam)		Hea	-	<.	+	+	\perp	4	_		1	_	Cy	anide	1	
	Date/Time:		Ī	Seals Present Yes No Headsnace Ves	+	+	-	+	+	+	+	>	1		Gross A	Alpha/Beta	-	Sub
	Date/Time:		;	- Ye	+	+	+	+	+	-	+	1	-	X	Radium	226 -	-	cont
	ë. ⊠		<u></u>		+	+	+	+-	+	+	+	_	1	×	Radium	228 -		ract
	8		6	5	+	-	+	+	+	+	+	1	1	_	Radon			Subcontract Analyses
						_									Uraniun		- 3	VSPS
															Pag	e 3 of 3		

4:30

TASK NO: 190208006

Report To: Doug Schwenke

Company: JDS Hydro Consultants

545 E. Pikes Peak Ave

Suite 300

Colorado Springs CO 80903

Bill To: Doug Schwenke

Company: JDS Hydro Consultants

545 E. Pikes Peak Ave

Suite 300

Colorado Springs CO 80903

Task No.: 190208006

Client PO: **Client Project:**

Date Received: 2/8/19 Date Reported: 2/21/19

Matrix: Water - Drinking

Customer Sample ID Gowler Well Sample Date/Time: 2/7/19 Lab Number: 190208006-01

est	Result	Method	ML	Date Analyzed	Analyzed By	MCL
					Analyzed by	INICE
Dibromochloropropane	< 0.02 ug/L	EPA 504.1	0.02 ug/L	2/13/19	SPF	0.0
Ethylene dibromide	< 0.01 ug/L	EPA 504.1	0.01 ug/L		SPF	0.2 0.05
Aldrin	< 0.05 ug/L	EPA 505	0.05 ug/L	2/13/19	SPF	
Chlordane	< 0.2 ug/L	EPA 505	0.2 ug/L		SPF	2
Dieldrin	< 0.05 ug/L	EPA 505	0.05 ug/L		SPF	_
Endrin	< 0.01 ug/L	EPA 505	0.01 ug/L	2/13/19	SPF	2
Heptachlor epoxide	< 0.02 ug/L	EPA 505	0.02 ug/L	2/13/19	SPF	0.2
lexachlorobenzene	< 0.1 ug/L	EPA 505	0.1 ug/L	2/13/19	SPF	1
lexachlorocyclopentadiene	< 0.1 ug/L	EPA 505	0.1 ug/L	2/13/19	SPF	50
indane	< 0.02 ug/L	EPA 505	0.02 ug/L	2/13/19	SPF	0.2
lethoxychlor	< 0.1 ug/L	EPA 505	0.1 ug/L	2/13/19	SPF	40
olychlorinated biphenyl's	< 0.1 ug/L	EPA 505	0.1 ug/L	2/13/19	SPF	0.5
oxaphene	< 1 ug/L	EPA 505	1 ug/L	2/13/19	SPF	3
,4,5-TP	< 0.2 ug/L	EPA 515.4	0.2 ug/L	2/15/19	mbs	50
,4,-D	< 0.1 ug/L	EPA 515.4	0.1 ug/L	2/15/19	mbs	70
alapon	< 1.0 ug/L	EPA 515.4	1.0 ug/L	2/15/19	mbs	200
icamba	< 0.5 ug/L	EPA 515.4	0.5 ug/L	2/15/19	mbs	200
inoseb	< 0.2 ug/L	EPA 515.4	0.2 ug/L	2/15/19	mbs	7
entachlorophenol	< 0.04 ug/L	EPA 515.4	0.04 ug/L	2/15/19	mbs	1
icloram	< 0.1 ug/L	EPA 515.4	0.1 ug/L	2/15/19	mbs	500

Abbreviations/ References:

ML = Minimum Level = LRL = RLMCL = Maximum Contaminant Level per The EPA mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

TASK NO: 190208006

Report To: Doug Schwenke

Company: JDS Hydro Consultants

545 E. Pikes Peak Ave

Suite 300

Colorado Springs CO 80903

Bill To: Doug Schwenke

Company: JDS Hydro Consultants

545 E. Pikes Peak Ave

Suite 300

Colorado Springs CO 80903

Task No.: 190208006

Client PO:

Client Project:

Date Received: 2/8/19 Date Reported: 2/21/19

Matrix: Water - Drinking

Customer Sample ID Gowler Well

Sample Date/Time: 2/7/19

Lab Number: 190208006-01

Test	Result	Method	ML	Date Analyzed	Analyzed By	MCL
Alachlor	< 0.2 ug/L	EPA 525.2	0.2 ug/L	2/14/19	LEH	2
Atrazine	< 0.1 ug/L	EPA 525.2	0.1 ug/L		LEH	3
Benzo(a)pyrene	< 0.02 ug/L	EPA 525.2	0.02 ug/L		LEH	0.2
Butachlor	< 0.25 ug/L	EPA 525.2	0.25 ug/L		LEH	0.2
Di(2-ethylhexyl)adipate	< 0.6 ug/L	EPA 525.2	0.6 ug/L		LEH	400
Di(2-ethylhexyl)phthalate	< 0.6 ug/L	EPA 525.2	0.6 ug/L		LEH	6
Heptachlor	< 0.04 ug/L	EPA 525.2	0.04 ug/L		LEH	0.4
Metolachlor	< 0.25 ug/L	EPA 525.2	0.25 ug/L		LEH	0.4
Metribuzin	< 0.25 ug/L	EPA 525.2	0.25 ug/L		LEH	
Propachlor	< 0.25 ug/L	EPA 525.2	0.25 ug/L	2/14/19	LEH	
Simazine	< 0.07 ug/L	EPA 525.2	0.07 ug/L	2/14/19	LEH	4
3-Hydroxycarbofuran	< 0.5 ug/L	EPA 531.1	0.5 ug/L	2/14/19	MBS	
Aldicarb	< 0.6 ug/L	EPA 531.1	0.6 ug/L	2/14/19	MBS	
Aldicarb sulfone	< 1.0 ug/L	EPA 531.1	1.0 ug/L	2/14/19	MBS	
Aldicarb sulfoxide	< 0.7 ug/L	EPA 531.1	0.7 ug/L	2/14/19	MBS	
Carbaryl	< 0.5 ug/L	EPA 531.1	0.5 ug/L	2/14/19	MBS	
Carbofuran	< 0.9 ug/L	EPA 531.1	0.9 ug/L	2/14/19	MBS	40
Methomyl	< 0.5 ug/L	EPA 531.1	0.5 ug/L	2/14/19	MBS	40
Dxamyl	< 1.0 ug/L	EPA 531.1	1.0 ug/L	2/14/19	MBS	200
Blyphosate	< 6.0 ug/L	EPA 547	6.0 ug/L	2/17/19	Outside Lab	700

Abbreviations/ References:

ML = Minimum Level = LRL = RL

MCL = Maximum Contaminant Level per The EPA

mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

TASK NO: 190208006

Report To: Doug Schwenke

Company: JDS Hydro Consultants

545 E. Pikes Peak Ave

Suite 300

Colorado Springs CO 80903

Bill To: Doug Schwenke

Company: JDS Hydro Consultants

545 E. Pikes Peak Ave

Suite 300

Colorado Springs CO 80903

Task No.: 190208006

Client PO:

Client Project:

Date Received: 2/8/19 Date Reported: 2/21/19

Matrix: Water - Drinking

Customer Sample ID Gowler Well

Sample Date/Time: 2/7/19

Lab Number: 190208006-01

Test	Result	Method	ML	Date Analyzed	Analyzed By	MCL
Endothall	< 9 ug/L	EPA 548.1	9 ug/L	2/12/19	mbs	100
Diquat	< 0.4 ug/L	EPA 549.2	0.4 ug/L	2/12/19	Sean	20
1,1,1,2-Tetrachloroethane	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	
1,1,1-Trichloroethane	< 0.5 ug/L	EPA-524.2	0.5 ug/L		LEH	200
,1,2,2-Tetrachloroethane	< 0.5 ug/L	EPA-524.2	0.5 ug/L		LEH	200
,1,2-Trichloroethane	< 0.5 ug/L	EPA-524.2	0.5 ug/L		LEH	5
,1-Dichloroethane	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	3
,1-Dichloroethylene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	7
,1-Dichloropropene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	
,2,3-Trichlorobenzene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	
,2,3-Trichloropropane	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	
,2,4-Trichlorobenzene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	70
,2,4-Trimethylbenzene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	70
,2-Dichloroethane	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	5
,2-Dichloropropane	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	5
,3,5-Trimethylbenzene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	3
,3-Dichloropropane	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	
3-Dichloropropene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	
enzene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	5
romobenzene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	5
romochloromethane	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	

Abbreviations/ References:

ML = Minimum Level = LRL = RL

MCL = Maximum Contaminant Level per The EPA

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

TASK NO: 190208006

Report To: Doug Schwenke

Company: JDS Hydro Consultants

545 E. Pikes Peak Ave

Suite 300

Colorado Springs CO 80903

Bill To: Doug Schwenke

Company: JDS Hydro Consultants

545 E. Pikes Peak Ave

Suite 300

Colorado Springs CO 80903

Task No.: 190208006

Client PO:

Client Project:

Date Received: 2/8/19 Date Reported: 2/21/19

Matrix: Water - Drinking

Customer Sample ID Gowler Well

Sample Date/Time: 2/7/19

Lab Number: 190208006-01

Test	Result	Method	ML	Date Analyzed	Analyzed By	MCL
Bromodichloromethane	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	
Bromoform	< 0.5 ug/L	EPA-524.2	0.5 ug/L		LEH	
Bromomethane	< 0.5 ug/L	EPA-524.2	0.5 ug/L		LEH	
Carbon Tetrachloride	< 0.5 ug/L	EPA-524.2	0.5 ug/L		LEH	5
Chlorodibromomethane	< 0.5 ug/L	EPA-524.2	0.5 ug/L		LEH	3
Chloroethane	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	
Chloroform	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	
Chloromethane	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	
cis-1,2-Dichloroethylene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	70
Dibromomethane	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	70
Dichlorodifluoromethane	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	
Dichloromethane	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	5
Ethylbenzene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	700
Fluorotrichloromethane	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	700
lexachlorobutadiene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	
sopropylbenzene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	
n-Dichlorobenzene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	
Monochlorobenzene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	100
laphthalene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	100
-Butylbenzene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	
-Propylbenzene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	
o-Chlorotoluene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	

Abbreviations/ References:

ML = Minimum Level = LRL = RL

MCL = Maximum Contaminant Level per The EPA

mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

TASK NO: 190208006

Report To: Doug Schwenke

Company: JDS Hydro Consultants

545 E. Pikes Peak Ave

Suite 300

Colorado Springs CO 80903

Bill To: Doug Schwenke

Company: JDS Hydro Consultants

545 E. Pikes Peak Ave

Suite 300

Colorado Springs CO 80903

Task No.: 190208006

Client PO:

Client Project:

Date Received: 2/8/19 Date Reported: 2/21/19

Matrix: Water - Drinking

Customer Sample ID Gowler Well

Sample Date/Time: 2/7/19

Lab Number: 190208006-01

est	Result	Method	ML	Date Analyzed	Analyzed By	MCL
					· · · · · · · · · · · · · · · · · · ·	INIOL
o-Dichlorobenzene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	600
Para-Dichlorobenzene	< 0.5 ug/L	EPA-524.2	0.5 ug/L		LEH	75
o-Chlorotoluene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	73
-Isopropyltoluene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	
ec-Butylbenzene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	
tyrene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	100
ert-Butylbenzene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	100
etrachloroethylene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	5
oluene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	1000
otal Trihalomethanes	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	80
ans-1,2-Dichloroethylene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	100
richloroethylene	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	5
inyl chloride	< 0.5 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	2
ylenes (total)	1.0 ug/L	EPA-524.2	0.5 ug/L	2/11/19	LEH	10000

Abbreviations/ References:

ML = Minimum Level = LRL = RLMCL = Maximum Contaminant Level per The EPA

mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

LAB	PC PC
ABORATORIES, I	olora
. INC.	<u>8</u> 8

Sampler Name: Stytum Strucke PO No.:	Email: CASCARCOPARCO	Phone: 11-227-CX: 13Fax: 717-471-340 Phone:	City (State (Zip SUN) City	Sit 100	Address: 5540 Tech City Dive Address:	Contact Name: Contact Name:	Company Name: 105 Hust Company Name:	
		Fax:	State Zip			me:	Vame:	Bill To Information (If different from report to)
Send Forms to State: Yes No	Compliance Samples: Yes 7 No 7	County: (1 PCSC	City Manusmantsiale (Win X) 132	Spend Property	Address: 1745 F	PWSID: System Name:	O'NATOR	State Form / Project Information

Brighton Lab 240 South Main Street Brighton, CO 80601 Lakewood Lab
12860 W. Cedar Dr, Suite 100A
Lakewood CO 80228

Phone: 303-659-2313 Fax: 303-659-2315

www.coloradolab.com

	Reinquished By Date/Time: Received By	metals analys	Desire and lead, copper, inc	Field blank	Trip blank		THE ICIAL #17	か 311 年 511 年に	2/2/19 15:17 \$15	414	2/4/14 10:16 H13	27/19/15:11 #12 2	2/ 1/11 2/50 #	Date Time Client Sample ID / EP Code	Cicioler Well ARF	Task Number	CAL I ask No
	Zx.		from # manginese	3				.0				-		Residu (mg/L)	la conorne		
	1		3		-							-			mples Only		
	170		3			_	ブ					-			Coliform P/		
	Date/Time:		3		-	-		-		×		-			EDB/DBCF	^	-
9.30	C me:		3		+			\dashv			\dashv	-	-		ests/PCBs	_	- 4
8			7	+	+	-		-	-	\dashv		-	-		Herbicides	_	PH
		0		\dashv	+	-	\dashv	-	-	-	4	-	-	524.2			PHASE I, II, V Drinking W
	Reli	Delivered Via:	C/S Info:	\dashv	+	-	-		-	\dashv	+	\dashv	\dashv		SOCs-Pest	4	£ I, I
	Relinquished By:	red V	9	+	+	\dashv	\dashv	4	+	\dashv	+	\dashv	\dashv		Carbamates		I, v
	2		ŀ	+	+	+	+	\dashv	\dashv	\dashv	\dashv	+	\dashv		yphosate	\dashv	Dri
	Ву:	Z B	+	+	+	+	\dashv	\dashv	+	+	\dashv	\dashv	-	548.1 I	Endothall	_	nkin
	ľ	<u>m</u>	-	+	+	+	+	+	+	-	\bot	4	\downarrow	549.2 I		4	¥
		Χ,	-	+	-	+	+	4	4	-	3	\perp	1	524.2 7	THMs		ater Analyses (check analysis)
ŀ	D	C	-	+	+	+	4	\perp	+	4	\perp	1	4	552.2 F	IAA5s		An
	Date/Time:	Ĵ	-	+	+	+	+	-	+	1	_	\perp	1	Lead/C	opper	_	alys
	ime	7	-	4	+	+	\perp			1	\perp	1	\perp	Nitrate			SS (c
	<u> </u>			-	+	_	4	1	1	4		\perp	1	Nitrite			hec
-	R		Seals	+	+	1	1	\perp	\perp	\perp				Fluoride	2		81
	eceiv		Pres	\perp	\perp	\perp	4	\perp	\downarrow			>	1	Inorgan	ics		lvsi
	Received By:	}	Scals Present Yes	+	+	+	_	_	1	\perp		\perp	1	Alk./Lai	ng. Index	1	2
	d By:			-	-	1	+	_	_	1	\perp	\perp		roc, d	OC (Circle)		
		<	N N	+	\perp	\perp	_	1	1	\perp	\perp	L	S	UVA, UV	/ 254 (Circle)		
	Sam		No ⊠ Headspace Yes □ No □	+	+	1	1	_	_			L				1	
	Sample Pres. Yes No Date/Time:		adspa	1	1	-	1	1	1	L			(iross Al	pha/Beta	200	0
	e Pres. Yes & Date/Time:		ice Y	1	-		1	1	1				R	adium 2	226	Deon	
	E 3		2	-	_	_	1	1					R	adium 2	228	raci	
	No		8	_							×		R	adon	~	Ans	•
	⊔												U	ranium		Subcontract Analyses	
000			-	-		-						_	1	Page	6 of 7		

Bill To Information (If different from report to)

Company Name: Simon

Report To information

Contact Name: Deve Shirenke Company Name: Ths 1+44, C:

Address: 50 40 TeinCenter D.

Address:

Contact Name:

メコカーつつ

Sampler Name: Staply will PONO:

Email: dx 11000 (Jeshydovom Email:

Phone: 79-321 4012 Fax: 717-471-340 Phone:

Fax:

Zip

CS state (Wip SUN19

City

]	
LAI	
LABORATORIES, II	olorc
S, INC.	88 88

Brighton Lab 240 South Main Street Brighton, CO 80601

PWSID: Privak well
System Name:

Address:

11745 Builet Waters

State Form / Project Information

Lakewood CO 80228

Lakewood Lab 12860 W. Cedar Dr, Suite 100A

Fax: 303-659-2315 Phone: 303-659-2313

www.coloradolab.com

Send Forms to State: Yes No X

Compliance Samples: Yes No

county: El Passe County

City Monument Stand Czip & 13.7

								_	, ,		-		- 1	-				1
(Reling			Instru	14 L	光九	K. M	エナン	エエ	いたこ	これに	14/2	4.7	17/2/1	Date		Task	
٤.	Relinquished By			Instructions:	Shir BA	みにしいれ	THI DIFT	19:50 WA	10:01		7:57	POSE WAY	on: Chit.	7.42	Time	Jower Well	Task Number	
((Teld pH= 7.15	2	01#	124	**	世	# 6	すべ	九年	# 3	中	#	Client Sample ID / EP Code	cker	٦	
	Date/Time:		HO P		O		,	7	6	5	F	3	4	_	ample	3		
			\I												ID/E	5		
	1 acion		-5												P Cod		-	* 5
_	Receiv														C	ARF	90200000	CAL I ask No
	Received By:		-				_	_	_	_	_	r	_	2	No. o		Ö	NO.
	1		Freld temp= 11.3°C	•											(mg/L)	mples Only		
	70		KM		-						-	-				Coliform P		
	2/8/19		D		-	-	-		_	-	-				1	EDB/DBC	P	-
0	9		-			-	-	-				-			1	Pests/PCBs		
28:30			200						×					-		Herbicides VOCs		PH
()		De	-	Q								×		-		SOCs-Pest	_	PHASE I, II, V Drinking Water Analyses (check analysis)
	Relin	livere		C/S Info:											1	Carbamates		1, 11
	Relinquished By:	Delivered Via:		ä				×								yphosate	-	VI.
	ned B		,							×			\neg			Endothall	-	rink
	y:	Ted To									×		\dashv		549.21		,	cing
		$\Sigma_{\mathcal{U}}$														THMs		Wat
-		C											1		552.2 F	HAA5s	\exists	er A
	Date/Time:	C/S Charge X		-	1			\perp							Lead/C	opper		naly
	Time	arge [×	1	_		_						Nitrate		7	ses (
	-		_	1	×	_	_	1	1	1	1				Nitrite	_	7	hec
-	72	Temn		Seals Present Ves No	*	1	4	4	4	1	1	\perp	\perp		Fluoride	e -	-	k an
	eceiv			Prese	1	+	+	+	\downarrow	4	1	\perp	1		Inorgan	ics	1	alysi
	Received By:	5	;	3/	+	+	+	+	+	4	1	\perp	1	1	Alk./Lai	ng. Index -	-]	S
	d By:		4	Ž-	+	+	-	+	+	\perp	1	1	\perp			OC (Circle)		
		_			+	+	+	+	+	+	+	+	+	+	SUVA, UV	/ 254 (Circle)		
	Samp	,	1702		7	+	+	+	+	+	+		_	1	Cya	nide-	1	
	Date Date		uspac		+	+-	+	+	+	+	+	_		1		pha/Beta	- 2	0
	Date/Time:		ricauspace Yes	+	+	+	+	+	+	+	+	+	X		Radium 2		- In	-
	Date/Time:			-	+	+	+	+	+	+	+	+			Radium 2	228 —	2 308	
	å		 N	-	+	>	+	+	+	+	+	+	+	+	Radon		Saprontiact Vilalises	
		_											_	J	Jranium	7.050	ses	
															rage	7 of 7		

TASK NO: 190208008

Report To: Doug Schwenke

Company: JDS Hydro Consultants

545 E. Pikes Peak Ave

Suite 300

Colorado Springs CO 80903

Bill To: Doug Schwenke

Company: JDS Hydro Consultants

545 E. Pikes Peak Ave

Suite 300

Colorado Springs CO 80903

Task No.: 190208008

Client PO: Client Project: Date Received: 2/8/19
Date Reported: 2/11/19

Matrix: Water - Drinking

Lab Number	Customer Sample ID	Samp	le Date/Time	Test	Result	Method	Date Analyzed	
190208008-01	#17 Gowler Well	2/7/19	10:21 AM	Total Coliform	Absent	SM 9223	2/9/19	
				E-Coli	Absent	SM 9223	2/9/19	

Abbreviations/ References:

Absent = Coliform Not Detected
Present = Coliform Detected - Chlorination Recommended
Date Analyzed = Date Test Completed
SM = "Standard Methods for the Examination of Water and Wastewater"; APHA; 19th Edition; 1995

I ABORATORIES INC	Colorado

Report To Information	Bill To Information (If different from report to)	State Form / Project Information
Company Name: TDS-Hadre	Company Name:	private weil
Contact Name: Due Yhouse Le	Contact Name:	System Name:
Address: BOUD TOUT JUDEN NO	Address:	Address: 7450 340 Address
City (15) State(CZip SUNN)	City State Zip	City Monarchitstate (Szip SSIS)
Phone: 141-201-24 (Phone: 741-47) - Ste Phone:	Phone: Fex:	County: (1 Case
Email: 150 to 150 to 150	Email:	Compliance Samples: Yes No [3]
Sampler Name: PO No.:	₽O Na.:	Send Forms to State: Yes \(\square\) No \(\square\)

Brighton Lab 240 South Main Street Brighton, CO 80601

Lakewood Lab 12860 W. Cedar Dr. Suite 100A Lakewood CO 80228

Phone: 303-659-2313 Fax: 303-659-2315

www.coloradolab.com

Relinquished By Date/Fime: F	to mother attacks	Describe and lead, copper	Field blank	Trip blank		7 THE 10:01 FILE	100万十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	SIF 41.2 SIF	F1 # 131.31 13/E/2	14/16/01/11 #13	777/19 19 11 12 12 2 1 2 1 2 1 2 1 2 1 2 1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Date Time Client Sample ID / EP Code	Gooler well	Task Number	c
Received By:	3	The marketing					Ü	Vì	U	(V)	الم		No.	al Chlorine	190208008	CAL TASK NO.
5		M →			-	7					((mg/L P/A S	amples Only Coliform P	/A =	
Date/Time:		SAC CO							>					EDB/DBC		_
i me:		5				-		メ						Pests/PCBs	/	
		۴				-		-		X				Herbicides VOCs]	FILA
77	Del	CS												SOCs-Pest		FRASE I, II, V DI IIIKIII WATEL Allaiyses (Check allaiysis)
Relinquished	Delivered Via:	C/S Info:					×						531.1	Carbarnates	s ~	11, Y
uish	Via:					_							547 (Jlyphosate		ווע
ed By:	M					_	_						548.1	Endothall		II KILL
.:	6		_			<u> </u>	_	_	<u></u>				549.2	2 Diquat		S. A.A.
	必		_			<u> </u>	_	_		3			524.2	TTHMs		atel
	C					_			_				552.2	HAA5s		Alla
Date/	/S CI							<u></u>					Lead	/Copper		LLYSE
Date/Timé:	C/S Charge [X]							_					Nitra	te		3 (1
	0	ベ							L.				Nitri	te		ICC.
	Temp.	Seal											Fluor	ride		alla
Received By:	D	Scals Present Yes										يَعَرُ	Inorg	anics		ay 343
ived	0	sent	L										Alk./	Lang. Index		,
By:	C/Ic	ŝ											TOC	, DOC (Circ	le)	
	°C/Ice \	K S											SUVA	, UV 254 (Circl	le)	
	Sa	K														
-	Sample Pres. Yes No	Headspace Yes											Gros	s Alpha/Beta	n	2
Date/Time:	Pres	space											Radi	um 226		Supronti act Allai) ses
Tim	Yes	Yes										П	Radi	um 228		1 4 5
::	Z	2	1	1				<u> </u>	T		, , c		Rado		,	2

TASK NO: 190208006

Report To: Doug Schwenke

Company: JDS Hydro Consultants

545 E. Pikes Peak Ave

Suite 300

Colorado Springs CO 80903

Bill To: Doug Schwenke

Company: JDS Hydro Consultants

545 E. Pikes Peak Ave

Suite 300

Colorado Springs CO 80903

Task No.: 190208006

Client PO: **Client Project:**

Date Received: 2/8/19 Date Reported: 2/21/19

Matrix: Water - Drinking

Customer Sample ID Gowler Well

Sample Date/Time: 2/7/19

Lab Number: 190208006-01

Test	Result	Method	ML	Date Analyzed	Analyzed By	MCL
Fluoride	0.34 mg/L	EPA 300.0	0.09 n	ng/L 2/8/19	SEA	4
Nitrate Nitrogen	< 0.05 mg/L	EPA 300.0	0.05 n	ng/L 2/8/19	SEA	10
Nitrite Nitrogen	< 0.03 mg/L	EPA 300.0	0.03 n	ng/L 2/8/19	SEA	1
Cyanide-Total	< 0.005 mg/L	EPA 335.4	0.005 n	ng/L 2/13/19	LJG	0.02
<u>otal</u>						
Iron	< 0.005 mg/L	EPA 200.7	0.005 m	ng/L 2/12/19	MBN	0.3
Sodium	9.4 mg/L	EPA 200.7	0.1 m	ng/L 2/13/19	MBN	N/A
Antimony	< 0.001 mg/L	EPA 200.8	0.001 m	ng/L 2/12/19	DBM	0.006
Arsenic	< 0.001 mg/L	EPA 200.8	0.001 m	ng/L 2/12/19	DBM	0.01
Barium	0.122 mg/L	EPA 200.8	0.001 m	ng/L 2/12/19	DBM	2
Beryllium	< 0.001 mg/L	EPA 200.8	0.001 m	ng/L 2/12/19	DBM	0.004
Cadmium	< 0.001 mg/L	EPA 200.8	0.001 m	ıg/L 2/12/19	DBM	0.005
Chromium	< 0.001 mg/L	EPA 200.8	0.001 m	ıg/L 2/12/19	DBM	0.1
Copper	0.0183 mg/L	EPA 200.8	0.0008 m	ig/L 2/13/19	DBM	1.3
_ead	0.0005 mg/L	EPA 200.8	0.0001 m	ig/L 2/13/19	DBM	0.015
Manganese	0.1171 mg/L	EPA 200.8	0.0008 m	ig/L 2/13/19	DBM	0.05
Mercury	< 0.0001 mg/L	EPA 200.8	0.0001 m	g/L 2/12/19	DBM	0.002
lickel	< 0.001 mg/L	EPA 200.8	0.001 m		DBM	N/A
Selenium	< 0.001 mg/L	EPA 200.8	0.001 m		DBM	0.05

Abbreviations/ References:

ML = Minimum Level = LRL = RL

MCL = Maximum Contaminant Level per The EPA

mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB
mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

TASK NO: 190208006

Report To: Doug Schwenke

Company: JDS Hydro Consultants

545 E. Pikes Peak Ave

Suite 300

Colorado Springs CO 80903

Bill To: Doug Schwenke

Company: JDS Hydro Consultants

545 E. Pikes Peak Ave

Suite 300

Colorado Springs CO 80903

Task No.: 190208006

Client PO:

Client Project:

Date Received: 2/8/19 Date Reported: 2/21/19

Matrix: Water - Drinking

Customer Sample ID Gowler Well

Sample Date/Time: 2/7/19

Lab Number: 190208006-01

Test	Result	Method	ML	Date Analyzed	Analyzed By	MCL
<u>Total</u>						
Thallium	< 0.001 mg/L	EPA 200.8	0.001 mg/L	2/12/19	DBM	0.002
Uranium	0.0002 mg/L	EPA 200.8	0.0002 mg/L	2/13/19	DBM	0.03

Abbreviations/ References:

ML = Minimum Level = LRL = RL MCL = Maximum Contaminant Level per The EPA mg/L = Milligrams Per Liter or PPM

ug/L = Micrograms Per Liter or PPB

mpn/100 mls = Most Probable Number Index/ 100 mls

Date Analyzed = Date Test Completed

Report To Information	Bill To Information (If different from report to)	State Form / Project Information
Company Name: IDS Hydrc	Company Name:	pwsin: privide well
Contact Name: Line X hunder	Contact Name:	System Name:
Address: 5540 Tech Cinter Dive	Address:	Address: 11745 Constitutes
5 + 100		
City (S State (Dzip SUM))	City State Zip	City Menismantstate (Czip XD13)
Phone: 11 -221-CX: 12Fax: 717 471-340 Phone:	Phone: Fax:	County: CI Pass
Email: Schruene	Email:	Compliance Samples: Yes 🔲 No 🔯
Sampler Name: Statement State New PO No.:	PO No.:	Send Forms to State: Yes No 🕱

•	.5	
LABORATORIES, INC.	Colorc	
S. INC.	<u>8</u>	

Brighton Lab 240 South Main Street Brighton, CO 80601

Lakewood Lab
12860 W. Cedar Dr, Suite 100A
Lakewood CO 80228

www.coloradolab.com Phone: 303-659-2313 Fax: 303-659-2315

	Relinquished By Date Time:	to metals analysis	Device and load, copper	Field blank	Trip blank		THE LEGIL ALL	7/14 S. 1. 18/6,7	212119 C.17 415	11 # 121 DIE/2	2/7/10/10/11/ 4/3	27/19/10:11 #12	217/11/250 #1	Date Time Client Sample ID / EP Code	Gauser well	Task Number	. 5
\bigcirc	Received By	3						n	W	v	W	g.	-	No. o	ARF	190200000	CAL TASK NO.
	Tr.		rangement & news											(mg/l P/A S	amples Only		
	710		ξ				メ				_				Coliform P/	_	
	Date/Time:		CE							×		_	-		EDB/DBCI	~	-
۹	(G		\$				_		×			_	_		Pests/PCBs		
9.30			8									_	1		Herbicides		₽
		-									X				VOCs	_	IAS
	7.0	Deliv	C/S Info:											525.2	SOCs-Pest		E,
	Relinquished By:	Delivered Via: Fcd fx	nfo:					×				_		531.1	Carbamates	_	PHASE I, II, V Drinking Water Analyses (check analysis)
	uishe	Via:										_		547 (Slyphosate		Dri
	d B)	H												548.1	Endothall		nkir
	73	0												549.2	Diquat		ng W
		女												524.2	TTHMs		ate
														552.2	HAA5s		r An
	Date/Time:	C/S Charge 1												Lead/	Copper		alys
	Tim	arge												Nitrat	e		es (c
		-	7											Nitrit	e		hec
}		Тетр.	Seal											Fluor	ide		(ana
	Recei	P	s Pre										~	Inorga	anics		lysi
	Received By:	٥	ent 1											Alk./I	ang. Index		S.
	By:	°C/Ice	Scals Present Yes											TOC,	DOC (Circle	2)	
		<	NoX											SUVA,	UV 254 (Circle)		
		San	E Z			\perp											
f	D	Sample Pres. Yes 🖄 No 🗌	Headspace Yes	_			\perp							Gross	Alpha/Beta		Sut
	Date/Time:	res.	ace Y											Radiu	m 226		Subcontract Analyses
	ime:	S X	SS.											Radiu	m 228		ract
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N N	N									×,		Radon	•		Ana
		IJ									T			Uraniu	ım		yses
_														Pa	ge 3 of 4		

Bill To Information (If different from report to)

State Form / Project Information

PWSID: Privak well

System Name:

Address:

1745 Briter 1740

Company Name: Sint

Company Name: 175- 140 dic

Contact Name: Down & hivente

Contact Name:

Address:

Address: 5040 TeinCenter De

メンまっつつ

City

Phone: 74-327-4012 Fax: 717-471-34ch Phone: Email: d'x 1/1000 (Kel) jashydibutun Email:

CS State (Waip SUN19

City

State

Zip

Fax:

county: El Perse County

Compliance Samples: Yes | No

Send Forms to State: Yes No X

City Monument State Czip & 13.7

Sampler Name: Staply in Straward PO No.

Task Number

Report To Information

J	
	6
_	11/2
ABOR,	30
BORATORIES,	ڰؚٙۉ
	Sign
NC.	20

Brig	240	Brig
hton	Sout	hton
00	Ma	Lab
8060	in St	
=	tree	

Lakewood Lab 12860 W. Cedar Dr, Suite 100A Lakewood CO 80228

Phone: 303-659-2313

Number Number Number Number Time Client Sample ID/EP Code ARF Time Client Sample ID/EP Code No. o Residua Comornet (mg/L) P/A Samples Only Total Coliform P/A Sol.1 EDB/DBCP Sol. Pests/PCBs Sol. 1 EDB/DBCP Sol. Pests/PCBs Sol. 1 EDB/DBCP Nitrate Nitrite Nitrite Fluoride Nitrate Nitrite Fluoride Nitrite Fluoride Nitrite Fluoride Nitrite Fluoride Nitrite Fluoride Nitrite Fluoride Nitrite Sol. 1 Edb/Copper Nitrate Nitrite Fluoride Received By: Dale/Time: Nample Pres vo Byo Radon Uranium Page 4 of 4	nquisiieu by	aniched Rui			- 1	AU CITO	37: USY	14 :0 P/4	19:50			20.01	ころいろ	10:U6	4 7:42	Time	Gow	Number	
Residua Curomic (mg/L) P/A Samples Only Total Coliform P/A 504.1 EDB/DBCP 505 Pests/PCBs 515.4 Herbicides 524.2 VOCs 524.2 VOCs 525.2 SOCs-Pest 547 Glyphosate 549.2 Diquat 550.2 HAASS Lead/Copper Nitrate Nitrite Fluoride Inorganics Alk/Lang. Index TOC, DOC (Circle) 540.4 Circle Circle Sulva, UV 254 (Circle) Circle Sulva, UV 254 (Circle) Circle Sample Pres Ves Radium 226 Radium 228 Radon Uranium Uranium Uranium Circle Uranium Circle Value Radon Uranium Uranium Circle Value Val	1 scism	,		Je19 0H= 7.15		#10	#c)	#8	世一	#	TY.	一本二	43	サン	#	lient Sample ID / EP Code	`		CALIAS
Seals Present Yes No Date/Time: Present Yes No Date/Time: Date/Time: No Date/Time:	* Ku	ived By:		25		-	_		-	-		-	2	-	R	Resid	ua cmoim	. –	K No.
Seals Present Yes No Date/Time: Present Yes No Date/Time: Date/Time: No Date/Time:	'			1			-	\vdash	-	+	+	+-	-	-	+	-			-
Seals Present Yes No Date/Time: Present Yes No Date/Time: Date/Time: No Date/Time:	N	D		23		-	-	+	-	-	+	-	-	+	-	1			1
Seals Present Yes No Date/Time: Present Yes No Date/Time: Date/Time: No Date/Time:	8	ate/T		D		-	+	+	+	\vdash		+-	+	+	+				١,
Seals Present Yes No Date/Time: Present Yes No Date/Time: Date/Time: No Date/Time:	9	ime:				\vdash	+	+	+		-	+	+-	+	+				1
Seals Present Yes No Date/Time: Present Yes No Date/Time: Date/Time: No Date/Time:				200		-	+	+	+	1	-	+	-	+	\dagger				PHA
Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Circ. Sumple Pres. Yes. Radium 226 Radium 228 Radon Uranium Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Radium 226 Radium 228 Uranium				-	-		+-	+	+	+	\dagger		 ×	-	\dagger	_		st -	SE
Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Circ. Sumple Pres. Yes. Radium 226 Radium 228 Radon Uranium Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Radium 226 Radium 228 Uranium		Reli	eliver		Sini	-	1	\dagger	+	+	+	+		1	\dagger				Ę
Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Circ. Sumple Pres. Yes. Radium 226 Radium 228 Radon Uranium Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Radium 226 Radium 228 Uranium		nquis	ed Vi		0:		+	\dagger	×			\dagger			+				\V D
Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Circ. Sumple Pres. Yes. Radium 226 Radium 228 Radon Uranium Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Radium 226 Radium 228 Uranium		hed		١			T	T	T	\vdash	×		1	T		_			rink
Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Circ. Sumple Pres. Yes. Radium 226 Radium 228 Radon Uranium Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Radium 226 Radium 228 Uranium		By:	8				T	T				×				1			ng.
Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Circ. Sumple Pres. Yes. Radium 226 Radium 228 Radon Uranium Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Radium 226 Radium 228 Uranium			Z					T					T			_			Wate
Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Circ. Sumple Pres. Yes. Radium 226 Radium 228 Radon Uranium Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Radium 226 Radium 228 Uranium		_														552.2	HAA5s		T A
Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Circ. Sumple Pres. Yes. Radium 226 Radium 228 Radon Uranium Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Radium 226 Radium 228 Uranium		Date	C/S C							Γ						Lead	/Copper		naly
Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Circ. Sumple Pres. Yes. Radium 226 Radium 228 Radon Uranium Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Radium 226 Radium 228 Uranium		/Tim	harge			>										Nitra	te	_	es (
Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Circ. Sumple Pres. Yes. Radium 226 Radium 228 Radon Uranium Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Radium 226 Radium 228 Uranium		e:	Ø	7		×										Nitrit	e	_	hec
Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Circ. Sumple Pres. Yes. Radium 226 Radium 228 Radon Uranium Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Radium 226 Radium 228 Uranium			Tem	,	Seal											Fluor	ide	_	k ana
Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Circ. Sumple Pres. Yes. Radium 226 Radium 228 Radon Uranium Alk./Lang. Index TOC, DOC (Circle) SUVA, UV 254 (Circle) Radium 226 Radium 228 Uranium		Recei	Ġ		s Pres											Inorg	anics		alysi
Radon Uranium		ved	٥		ent \	×										Alk./I	Lang. Inde	х —	S
Radon Uranium	,	By:	C/Ice		es 😾											TOC,	DOC (Cir	cle)	2.0
Radon Uranium			~		No	_										SUVA,	UV 254 (Cir	cle)	
Radon Uranium			Sam		He		×									(C.)	anide		
Radon Uranium		Da	Dle P		adspa			_						×		Gross	Alpha/Be	ta	Sub
Radon Uranium		te/Ti	res Y		ice Ye										X	Radiu	m 226	_	conti
Uranium — 🕱		•	S.				_					_			×	Radiu	m 228	-	ract /
Uranium — 🕱			2		8		_												haly
Page 4 of 4		1	_					X										_	'ses
																Pa	ige 4 of 4	1	

いたこ

シオに

153:50 PAR

Instructions:

Shit BAL

Relinquished By

C

38:30

当にしゃれた

THING PA

によい

というではんし

OH: 12-4

Date

12/4 JUNE

www.coloradolab.com Fax: 303-659-2315