PRELIMINARY DRAINAGE PLAN PUD/SP 21-006

THE RIDGE AT LORSON RANCH

MARCH, 2021 REV. JULY, 2021 REV SEPT, 2021

Prepared for:

Lorson, LLC 212 N. Wahsatch Ave, Suite 301 Colorado Springs, Colorado 80903 (719) 635-3200

Prepared by:

Core Engineering Group, LLC 15004 1ST Avenue South Burnsville, MN 55306 (719) 570-1100

Project No. 100.064

TABLE OF CONTENTS

ENGINEER'S STATEMENT	1
OWNER'S STATEMENT	1
FLOODPLAIN STATEMENT	1
1.0 LOCATION and DESCRIPTION	2
2.0 DRAINAGE CRITERIA	2
3.0 EXISTING HYDROLOGICAL CONDITIONS	3
4.0 DEVELOPED HYDROLOGICAL CONDITIONS	5
5.0 HYDRAULIC SUMMARY	. 11
6.0 DETENTION and WATER QUALITY PONDS	. 34
7.0 DRAINAGE and BRIDGE FEES	. 36
8.0 FOUR STEP PROCESS	. 37
9.0 CONCLUSIONS	. 37
10.0 REFERENCES	. 38

APPENDIX A

VICINITY MAP, SCS SOILS INFORMATION, FEMA FIRM MAP

APPENDIX B

HYDROLOGY CALCULATIONS

APPENDIX C

HYDRAULIC CALCULATIONS

APPENDIX D

POND CALCULATIONS and RUNOFF REDUCTION METHOD

APPENDIX E

STORM SEWER SCHEMATIC and HYDRAFLOW STORM SEWER CALCS

BACK POCKET

EXISTING CONDITIONS DRAINAGE MAP DEVELOPED CONDITIONS DRAINAGE MAPS FULL SPECTRUM OUTLET STRUCTURES

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Richard L. Schindler, P.E. #33997 For and on Behalf of Core Engineering Group, LLC

OWNER'S STATEMENT

I, the Owner, have read and will comply with all the requirements specified in the drainage report and plan.

Lorson, LLC

By Jeff Mark

Title

Manager

Address

212 N. Wahsatch Avenue, Suite 301, Colorado Springs, CO 80903

FLOODPLAIN STATEMENT

To the best of my knowledge and belief, this development is not located within a designated floodplain as shown on Flood Insurance Rate Map Panel No. and 08041C0976 G, dated December 7, 2018. (See Appendix A, FEMA FIRM Exhibit)

Richard L. Schindler, #33997

Date

Date

EL PASO COUNTY

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volume 1 and 2, and Engineering Criteria Manual, As Amended.

Jennifer Irvine County Engineer/ECM Administrator

Conditions:

Date

Date

1.0 LOCATION and DESCRIPTION

The Ridge at Lorson Ranch is located east of the East Tributary of Jimmy Camp Creek. The site is located on approximately 206.473 acres of vacant land. This project will develop this site into a single-family residential development. The land for the residential lots is currently owned by Love In Action

The site is located in the NE 1/4 of Sections 24 and the SE 1/4 of Section 13, Township 15 South and Range 65 West of the 6th Principal Meridian. The site is bounded on the north by unplatted land owned by Bull Hill, LLC, on the west by The Hills at Lorson Ranch, on the east by unplatted land, and the south by unplatted land in Lorson Ranch. For reference, a vicinity map is included in Appendix A of this report.

Conformance with applicable Drainage Basin Planning Studies (DBPS)

There is an existing (unapproved) DBPS for Jimmy Camp Creek prepared by Wilson & Company in 1987, and is referenced in this report. The only major drainage improvements for this study area according to the 1987 Wilson study was the reconstruction of the East Tributary of Jimmy Camp Creek (East Tributary). In 2014 and in 2018 the East Tributary was reconstructed from downstream of Lorson Boulevard north to the northern property line of Lorson Ranch in accordance with the 1987 study. The last section of the East Tributary (to the south property line of Lorson Ranch) has been designed by Kiowa Engineering and will be completed in 2020. There are no further improvements to be made on the East Tributary. On March 9, 2015 a new DBPS for Jimmy Camp Creek and the East Tributary was completed by Kiowa Engineering. The Kiowa Engineering DBPS for Jimmy Camp Creek has not been adopted by El Paso County but is allowed for concept design. The concept design includes the East Tributary armoring concept and the full spectrum detention pond requirements. The Kiowa DBPS did not calculate drainage fees so current El Paso County drainage/bridge fees apply to this development.

Conformance with Lorson East MDDP by Core Engineering Group

Core Engineering Group has an approved MDDP for Lorson East which covers this study area. This PDR conforms to the MDDP for Lorson East and is referenced in this report. The major infrastructure to be constructed in this site includes outlet structures in Detention/WQ Ponds C2.1 and C4 and WQ Pond F. Both detention ponds were graded, low flow channels, and forebays were constructed as part of The Hills at Lorson Ranch under PUDSP-20-003 and the WQ Pond F will be constructed with this project. There are also two bridges over the East Tributary that were built in 2018 to provide access to this development across the East Tributary. The bridges are located at Fontaine Boulevard and Lorson Boulevard.

The Ridge at Lorson Ranch is located within the *"Jimmy Camp Creek Drainage Basin"*, which is a fee basin in El Paso County and a small portion (SE corner) within the "Upper Williams Creek Drainage Basin which does not have a DBPS.

2.0 DRAINAGE CRITERIA

The supporting drainage design and calculations were performed in accordance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)", dated November, 1991, the El Paso County "Engineering Criteria Manual", Chapter 6 and Section 3.2.1 Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014, and the UDFCD "Urban Storm Drainage Criteria Manual" Volumes 1, 2 and 3 for inlet sizing and full spectrum ponds. No deviations from these published criteria are requested for this site.

The Rational Method as outlined in Section 6.3.0 of the May 2014 "Drainage Criteria Manual" and in Section 3.2.8.F of the El Paso County "Engineering Criteria Manual" was used for basins less than 130 acres to determine the rainfall and runoff conditions for the proposed development of the site. The runoff rates for the 5-year initial storm and 100-year major design storm were calculated.

Current updates to the Drainage Criteria manual for El Paso County states the if detention is necessary, Full Spectrum Detention will be included in the design, based on this criteria, Full Spectrum Detention will be required for this development.

3.0 EXISTING HYDROLOGICAL CONDITIONS

This site is currently undeveloped with native vegetation (grass with no shrubs) and moderate to steep slopes in a westerly direction the East Tributary of Jimmy Camp Creek.

The Soil Conservation Service (SCS) classifies the soils within the site as Manzanola clay loam; Midway Clay Loam, Nelson-Tassel fine Sandy loam; Razor clay loam; and Wiley silt loam [3]. The sandy and silty loams are considered hydrologic soil group B soils with moderate to moderately rapid permeability. The Midway and Razor clay loams are considered hydrologic soil group C/D soils with slow permeability. All of these soils are susceptible to erosion by wind and water, have low bearing strength, moderate shrink-swell potential, and high frost heave potential (see table 3.1 below). The clay loams are difficult to vegetate and comprise of a small portion of the study area. These soils can be mitigated easily by limiting their use as topsoil since they comprise of a small portion of the study area. Weathered bedrock may be encountered beneath some of the site but it can be excavated using conventional techniques.

Soil	Hydro. Group	Shrink/Swell Potential	Permeability	Surface Runoff Potential	Erosion Hazard
52-Manzanola Clay Loam	С	High	Slow	Medium	Moderate
54-Midway Clay Loam	D	High	Slow	Medium	Moderate
56-Nelson – Tassel Fine Sandy Loam	В	Moderate	Moderately Rapid	Slow	Moderate
75-Razor Clay Loam	С	High	Slow	Medium	Moderate
108-Wiley Silt Loam	В	Moderate	Moderate	Medium	Moderate

 Table 3.1:
 SCS Soils Survey

Excerpts from the SCS "Soil Survey of El Paso County Area, Colorado" are provided in *Appendix A* for further reference.

For the purpose of preparing hydrologic calculations for this report, the soil of each basin are assumed to be wholly comprised of the majority soil hydrologic group.

An existing electrical easement, with existing transmission towers, is located west side of this site and will be set aside as open space. It is the intent to utilize some of the open space under the towers for detention of storm flow.

This site is not located within the delineated 100-year floodplain of the East Tributary of Jimmy Camp Creek per the Federal Emergency Management Agency (FEMA) Flood Rate Insurance Map (FIRM) number 08041C10976 G, effective December 7, 2018.

Basin OS-B1.1

This existing offsite basin consists of existing flow from undeveloped areas east of Lorson Ranch. Runoff flows overland to the northwest and drains offsite at Design Point 1x. The existing runoff is 5.2cfs and 29.0cfs for the 5-year and 100-year events.

Basin EX-B1

This existing basin consists of existing flow from undeveloped areas within Lorson Ranch near the north property line. Runoff flows overland to the north and drains offsite at Design Point 1x. The existing runoff is 5.6cfs and 31.2cfs for the 5-year and 100-year events.

Design Point 1x

Design Point 1x is the total existing runoff flowing offsite to the north. The developed runoff flowing north will need to be lower than the existing runoff at this design point. The existing runoff is 9.7cfs and 54.2cfs for the 5-year and 100-year events.

Basin C1.1-ex

This existing basin consists of existing flow from undeveloped areas east of the Lorson Boulevard/Walleye Drive intersection. Runoff flows overland to the west and drains into an existing storm sewer system in Lorson/Walleye. The existing runoff is 3.2cfs and 21cfs for the 5-year and 100-year events.

Basin C2.1-ex

This existing basin consists of existing flow from undeveloped areas east of the Fontaine Boulevard/Walleye Drive intersection. Runoff flows overland to the west and drains into an existing storm sewer system in Fontaine/Walleye. The existing runoff is 6.1cfs and 40.2cfs for the 5-year and 100-year events.

Basin C2.2-ex

This existing basin consists of existing flow from undeveloped areas on west side of the site. Runoff flows overland to the west and drains to an existing 42" storm sewer that discharges west into Existing Pond C2.1. The existing runoff is 12.2cfs and 81.8cfs for the 5-year and 100-year events.

Basin C3.1-ex

This existing basin consists of existing flow from undeveloped areas on the central portion of the PUD. Runoff flows overland to the west and drains into an existing storm sewer system at the intersection of Walleye Drive/Grayling Drive. The existing runoff is 2.6cfs and 15.0cfs for the 5-year and 100-year events.

Basin C4.1-ex

This existing basin consists of existing flow from offsite undeveloped areas east of Lorson Ranch. Runoff flows overland to the west into Basin C4.2-ex. The existing runoff is 1.2cfs and 7.8cfs for the 5-year and 100-year events.

Basin C4.2-ex

This existing basin consists of existing flow from undeveloped areas in the northern portion of the PUD. Runoff flows overland to the west to Existing Pond C4 excavated as part of The Hills at Lorson Ranch. The existing runoff is 15.0cfs and 85.1cfs for the 5-year and 100-year events.

Design Point 4x

Design Point 4x is the existing flow entering Exising Pond C4 from Basin C4.1-ex and C4.2-ex. The existing runoff is 15.3cfs and 87.7cfs for the 5-year and 100-year events from these two basins. This flow is then routed south into Existing Pond C3.

Basin EX-F1

This existing basin consists of existing flow from undeveloped areas in the east portions of the PUD. Runoff flows overland eastward and offisite to the adjacent landowner located in the Upper Williams Creek Drainage Basin. The existing runoff is 6.3cfs and 38.5cfs for the 5-year and 100-year events.

Basin EX-F2

This existing basin consists of existing flow from undeveloped areas in the east portions of the PUD. Runoff flows overland southeast and offisite to the adjacent landowner located in the Upper Williams Creek Drainage Basin. The existing runoff is 9.1cfs and 51.1cfs for the 5-year and 100-year events.

Design Point 2x

Design Point 2x is the total existing flow at the east property line from Basins EX-F1 and EX-F2. The existing runoff is 12.4cfs and 72.7cfs for the 5-year and 100-year events from these two basins. This flows east overland and offsite in the Upper Williams Creek Drainage Basin. Per Colorado Water regulations Lorson Ranch will need to maintain existing runoff amounts into the Upper Williams Creek Drainage Basin.

4.0 DEVELOPED HYDROLOGICAL CONDITIONS

Hydrology for the **The Ridge at Lorson Ranch** drainage report was based on the City of Colorado Springs/El Paso County Drainage Criteria. Sub-basins that lie within this project were determined and the 5-year and 100-year peak discharges for the developed conditions have been presented in this report. Based on these flows, storm inlets will be added when the street capacity is exceeded.

Soil type B/C/D has been assumed for the developed hydrologic conditions. See Appendix A for SCS Soils Map.

The time of concentration for each basin and sub-basin was developed using an overland, ditch, street and pipe flow components. The maximum overland flow length for developed conditions was limited to 100 feet. Travel time velocities ranged from 2 to 6 feet per second. The travel time calculations are included in the back of this report.

Runoff coefficients for the various land uses were obtained from Table 6-6 dated May, 2014 from the updated City of Colorado Springs/El Paso County Drainage Criteria Manual. See Appendix B.

All detention ponds for this project have been constructed per The Hills at Lorson Ranch (SF21-010 & EGP 20-005) and WQ Pond F will be constructed with this project. See Section 6.0 for Detention Pond Discussions. The list below shows the ponds and the tributary drainage basins:

- 1. C1 Basins drain to Pond C1
- 2. C3 & C4 Basins drain to Pond C2.1
- 3. C5 Basins drain to Pond C2.2
- 4. C8 Basins drain to Pond C4
- 5. F Basins drain to WQ Pond F

Drainage concepts for each of the basins are briefly discussed as follow:

Basin C1.1

This basin consists of runoff from residential development and the east side of Nystrom Terrace and the north side of Aspen Butte Terrace. Runoff will be directed west to Design Point 1 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 5.6cfs and 12.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C1.2

This basin consists of runoff from residential development and the west side of Nystrom Terrace and the south side of Aspen Butte Terrace. Runoff will be directed west to Design Point 2 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 2.7cfs and 5.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C1.3

This basin consists of runoff from residential development and the north side of Lorson Blvd. Runoff will be directed south and west in Lorson Boulevard to Design Point 4 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 14.1cfs and 30.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C1.4

This basin consists of runoff from residential development, Nystrom Terrace, and Walleye Drive. Runoff will be directed west to Walleye Drive, then south to Design Point 1b in curb/gutter where it will be collected by an existing 15' Type R inlet. The developed flow from this basin is 4.2cfs and 9.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C1.5

This basin consists of runoff from future residential development and the south side of Lorson Blvd. Runoff will be directed north and west in Lorson Boulevard to Design Point 6 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 3.0cfs and 6.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C1.6

This basin consists of runoff from future residential development southeast of Walleye Dr./Lorson Blvd at Design Point 1a. Runoff will be directed north to Design Point 1a by future streets and a future storm sewer sized to handle a portion of the 100-year storm event from this basin. The remaining runoff will continue west in a future street to a future street intersection at Lorson Boulevard west of Brook Trout Trail. The future developed flow from this basin is 12.8cfs and 28.3cfs for the 5/100-year storm event. See the appendix for detailed calculations. This flow is only to be used to size a storm sewer stub from Design Point 6

Basin C3.1

This basin consists of runoff from residential development, Aspen Butte Terrace, Copper Butte Way, and the east half of Split Mountain Drive. Runoff will be directed west and north to Design Point 12 in curb/gutter of Split Mountain Drive where it will be collected by a Type R inlet. The developed flow from this basin is 9.9cfs and 21.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.2

This basin consists of runoff from residential development, Mission Peak Place, and the east half of Split Mountain Drive. Runoff will be directed west and north to Design Point 13 in curb/gutter of Split Mountain Drive where it will be collected by a Type R inlet. The developed flow from this basin is 7.9cfs and 17.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.3

This basin consists of runoff from residential development, Pearsoll Street, and the east half of Split Mountain Drive. Runoff will be directed west and north to Design Point 15 in curb/gutter of Split Mountain Drive where it will be collected by a Type R inlet. The developed flow from this basin is 8.5cfs and 18.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.4

This basin consists of runoff from residential development, Lost Peak Lane, and the east half of Split Mountain Drive. Runoff will be directed west and north to Design Point 17 in curb/gutter of Split

Mountain Drive where it will be collected by a Type R inlet. The developed flow from this basin is 7.2cfs and 15.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.5

This basin consists of runoff from residential development, Split Mountain Drive, and the south side of Lake Trout Dr. Runoff will be directed north and west to Design Point 19 in curb/gutter of Lake Trout Dr where it will be collected by a Type R inlet. The developed flow from this basin is 10.3cfs and 22.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.6a

This basin consists of runoff from residential development and the north side of Lake Trout Dr. Runoff will be directed west to Design Point 20a in curb/gutter of Lake Trout Dr where it will be collected by a Type R inlet. The developed flow from this basin is 5.6cfs and 12.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.6b

This basin consists of runoff from residential development and Lookout Peak Lane. Runoff will be directed west and south to Design Point 21 in curb/gutter of Lake Trout Dr where it will be collected by a Type R inlet. The developed flow from this basin is 7.2cfs and 15.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.7

This basin consists of runoff from residential development, Dragontail Terrace, and the south side of Lake Trout Dr. Runoff will be directed north and west to Design Point 23 in curb/gutter of Lake Trout Dr where it will be collected by a Type R inlet. The developed flow from this basin is 8.7cfs and 19.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.8

This basin consists of runoff from residential development, Foraker Lane, Raven Ridge Terrace, and the north side of Lake Trout Dr. Runoff will be directed west and south to Design Point 25 in curb/gutter of Lake Trout Dr where it will be collected by a Type R inlet. The developed flow from this basin is 10.0cfs and 22.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.9

This basin consists of runoff from residential development, Raven Ridge Terrace, and the south side of Lake Trout Dr. Runoff will be directed north and west to Design Point 27 in curb/gutter of Lake Trout Dr where it will be collected by a Type R inlet. The developed flow from this basin is 8.1cfs and 17.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C3.10

This basin consists of runoff from residential development, Nystrom Terrace, and the south side of Lake Trout Dr. Runoff will be directed north and west to Design Point 29 in curb/gutter of Lake Trout Dr where it will be collected by a Type R inlet. The developed flow from this basin is 9.2cfs and 20.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C4.1

This basin consists of runoff from residential development, Pearsoll Street, Buckner Way, and the south side of Fontaine Boulevard. Runoff will be directed north and west to Fontaine Boulevard where it will flow west to Design Point 31. The developed flow from this basin is 6.4cfs and 14.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C4.2

This basin consists of runoff from residential development and the south side of Fontaine Boulevard. Runoff will be directed north and west to Fontaine Boulevard to Design Point 31. The developed flow from this basin is 4.8cfs and 10.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C4.3

This basin consists of runoff from residential development, Lake Trout Dr, and Nystrom Terrace. Runoff will be directed north and west to Design Point 32 in curb/gutter of Nystrom Terrace where it will be collected by a Type R inlet. The developed flow from this basin is 5.7cfs and 12.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C4.4

This basin consists of runoff from residential development, Lake Trout Dr, and the west side of Walleye Drive. Runoff will be directed west and north to an existing 25' Type R inlet at Design Point 33 in curb/gutter of Walleye Drive. The developed flow from this basin is 6.2cfs and 13.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5.1a

This basin consists of runoff from residential development and the south side of Sanderling Street. Runoff will be directed west and south to Design Point 39 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 4.2cfs and 9.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5.1b

This basin consists of runoff from residential development and the north side of Gray Wolf Court. Runoff will be directed west to Design Point 36 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 11.4cfs and 25.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5.1c

This basin consists of runoff from residential development and the south side of Gray Wolf Court. Runoff will be directed west to Design Point 37 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 7.4cfs and 16.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5.1d

This basin consists of runoff from residential development and the north side of Snowfield Court. Runoff will be directed west and north to Design Point 41 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 9.3cfs and 20.7cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5.1e

This basin consists of runoff from residential development and the south side of Snowfield Court. Runoff will be directed west to Design Point 43 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 10.0cfs and 21.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5.2

This basin consists of runoff from residential development and the west side of Walleye Drive. Runoff will be directed south to Design Point 45 in curb/gutter where it will be collected by an existing 15' Type R inlet. The developed flow from this basin is 3.7cfs and 8.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C5.3

This basin consists of runoff from residential development and the north side of Fontaine Boulevard. Runoff will be directed west to Design Point 45 in curb/gutter where it will be collected by an existing 15'

Type R inlet. The developed flow from this basin is 4.3cfs and 9.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.1a

This basin consists of runoff from residential development and the south side of Meridith Ridge Way. Runoff will be directed west to Design Point 47 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 7.5cfs and 16.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.1b

This basin consists of runoff from residential development and the north side of Meridith Ridge Way and Donnas Drive. Runoff will be directed west and south to Design Point 49 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 6.3cfs and 13.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.1c

This basin consists of runoff from residential development and the north side of Sanderling Street. Runoff will be directed west to Design Point 48 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 3.4cfs and 7.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.2

This basin consists of runoff from residential development and the east side of Walleye Drive. Runoff will be directed west and north to Design Point 51 in curb/gutter where it will be collected by an existing 25' Type R inlet in Walleye Drive. The developed flow from this basin is 4.5cfs and 10.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin OS-C4a

This basin consists of runoff from undeveloped offsite land east of Lorson Ranch. Runoff will be directed northwest to a swale where the flow is conveyed north to Design Point 63a. The existing flow from this basin is 1.2cfs and 7.7cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.3a

This basin consists of runoff from residential development and the east side of Danis Drive. Runoff will be directed north to Design Point 53 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 10.5cfs and 23.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.3b

This basin consists of runoff from residential development and the west side of Rikers Ridge Lane and the south side of Walley Drive. Runoff will be directed west to Design Point 54 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 6.0cfs and 13.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin OS-C4b

This basin consists of runoff from undeveloped offsite land east of Lorson Ranch. Runoff will be directed northwest to a swale where the flow is conveyed north to Design Point 63a. At Design Point 63a the concentrated flow will be dissipated by two rip rap pads to change the flow to be closer to overland sheet flow. Lorson Ranch owns the downstream offsite land so no offsite easements are necessary. The existing flow from this basin is 0.9cfs and 5.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

An easement adequate for the flow – and requiring maintenance of any erosion issues is required

Basin C8.3c

These basins consist of runoff from residential development and the south side of Rikers Ridge Lane and Danis Drive. Runoff will be directed west to Design Point 54 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 4.5cfs and 9.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.3d

This basin consists of runoff from residential development and the north side of Jasons Ridge Way, and Donnas Drive. Runoff will be directed northwest to Design Point 56 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 8.9cfs and 19.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.4

This basin consists of runoff from residential development and the south side of Jasons Ridge Way and Donnas Drive. Runoff will be directed southwest to Design Point 57 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 11.0cfs and 24.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.5

This basin consists of runoff from residential development and the west side of Rikers Ridge Way and north side of Walleye Drive. Runoff will be directed southwest to Design Point 59 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 7.0cfs and 15.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.6

This basin consists of runoff from residential development, west side of Walleye Drive, and the north side of Grayling Drive. Runoff will be directed west to Design Point 62 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 4.0cfs and 6.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.7a

This basin consists of runoff from residential development and the north side of Logans Ridge Lane and the south side of Regan Ridge Drive. Runoff will be directed west to Design Point 63 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 8.1cfs and 18.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.7b

This basin consists of runoff from residential development and the south side of Logans Ridge Lane. Runoff will be directed west to Design Point 63 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 3.4cfs and 7.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.7c

This basin consists of runoff from residential development and Cody Ridge Way. Runoff will be directed west to Design Point 64 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 9.4cfs and 21.0cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.7d

This basin consists of runoff from residential development and the east side of Regan Ridge Drive. Runoff will be directed west to Design Point 66 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 0.6cfs and 1.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.7e

This basin consists of runoff from residential development, the east side of Regan Ridge Drive, and Alpine Ridge Lane. Runoff will be directed southwest to Design Point 62 in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 11.1cfs and 24.5cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin OS-B1

This basin consists of runoff from undeveloped offsite land east of Lorson Ranch. Runoff will be directed north to Design Point 63a in a swale. The existing flow from this basin is 5.2cfs and 29.0cfs (for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.8a

This basin consists of runoff from residential development, the west/north side of Regan Ridge Drive. Runoff will be directed southwest to Design Point 69 in curb/gutter where it will be collected by an existing 25' Type R inlet. The developed flow from this basin is 7.9cfs and 17.3cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C8.8

This basin consists of runoff from residential development. Runoff will be directed south directly to existing Pond C4. The developed flow from this basin is 5.9cfs and 21.8cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin F1.1

This basin consists of runoff from residential development. Runoff will be directed east into Basin F1.2 as sheet flow. The developed flow from this basin is 7.5cfs and 16.5cfs for the 5/100-year storm event. See the appendix for detailed calculations. Water quality for this basin flowing offsite will be addressed by the Runoff Reduction method for sheet flows crossing open space in Basin F1.2. See water quality section.

Basin F1.2

This basin consists of runoff from open space and will be directed east offsite generally as sheet flow which will not significantly be changed from existing conditions and grading. The flow from this basin is 6.1cfs and 44.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin F1.3

This basin consists of runoff from residential development, the east/north side of Kingston Peak Place. Runoff will be directed south to Design Point 35b in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 1.9cfs and 4.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin F1.4

This basin consists of runoff from residential development, the west/south side of Kingston Peak Place. Runoff will be directed south to Design Point 35a in curb/gutter where it will be collected by a Type R inlet. The developed flow from this basin is 5.9cfs and 13.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Combined Flow From the "F" developed basins

Developed runoff flowing east into the Upper Williams Creek Drainage Basin is required to match existing conditions. See Design Point 35 for analysis of offsite flows to the east.

Interim Basin G1

This basin consists of existing runoff from undeveloped land. Runoff flows south to Design Point 35e located on the south property line of Lorson Ranch. This basin was added to analyze existing runoff rates before and after development flowing south in the Upper Williams Creek Drainage Basin at the

Lorson Ranch south property line. See Design Point 35e for this analysis. The existing flow from this basin is 2.5cfs and 18.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

See the Developed Conditions Hydrology Calculations in the back of this report and the Developed Conditions Drainage Map (Map Pocket) for the 5-year and 100-year storm event amounts.

5.0 HYDRAULIC SUMMARY

The sizing of the hydraulic structures and detentions ponds were prepared by using the *Storm Sewer* and *Hydrographs* computer software programs developed by Intellisolve, which conforms to the methods outlined in the "City of Colorado Springs/El Paso County Drainage Criteria Manual". Street capacities and Inlets were sized by Denver Urban Drainage's xcel spreadsheet UD-Inlet.

It is the intent of this drainage report to use the proposed curb/gutter and storm sewer in the streets to convey runoff to detention and water quality ponds then to the East Tributary of Jimmy Camp Creek. Inlet size and location are preliminary only as shown on the storm sewer layout in the appendix. See Appendix C for detailed hydraulic calculations and the storm sewer model.

	Residen	tial Local	Residentia	al Collector	Principa	I Arterial
Street Slope	5-year	100-year	5-year	100-year	5-year	100-year
0.5%	6.3	26.4	9.7	29.3	9.5	28.5
0.6%	6.9	28.9	10.6	32.1	10.4	31.2
0.7%	7.5	31.2	11.5	34.6	11.2	33.7
0.8%	8.0	33.4	12.3	37.0	12.0	36.0
0.9%	8.5	35.4	13.0	39.3	12.7	38.2
1.0%	9.0	37.3	13.7	41.4	13.4	40.2
1.4%	10.5	44.1	16.2	49.0	15.9	47.6
1.8%	12.0	45.4	18.4	50.4	18.0	50.4
2.2%	13.3	42.8	19.4	47.5	19.5	47.5
2.6%	14.4	40.7	18.5	45.1	18.5	45.1
3.0%	15.5	39.0	17.7	43.2	17.8	43.2
3.5%	16.7	37.2	16.9	41.3	17.0	41.3
4.0%	17.9	35.7	16.2	39.7	16.3	29.7
4.5%	19.0	34.5	15.7	38.3	15.7	38.3
5.0%	19.9	33.4	15.2	37.1	15.2	37.1

Table 1: Street Capacities (100-year capacity is only ¹/₂ of street)

Note: all flows are in cfs (cubic feet per second)

Design Point 1a

Design Point 1a is located south of Lorson Boulevard and Walleye Drive and flow is from future development from Basin C1.6. A 24" storm sewer will be stubbed out from Design Pt. 6 at Lorson Boulevard north towards this design point. The total future flow is 12.8cfs/28.3cfs in the 5/100-year storm events for this basin. In the 5-year storm event 12cfs will be routed north to Design Point 6 (in pipe) and 0.8cfs will be routed to west in the future street (surface flow in street). In the 100-year storm event 20cfs will be routed north to Design Point 6 (in pipe) and 8.3cfs will be routed west in the future street (surface flow in street).

Design Point 1 is located at the NE corner of Nystrom Terrace and Aspen Butte Terrace at a knuckle and accepts flows from Basin C1.1 The developed conditions are as follows:

(<u>5-year storm)</u> Tributary Basins: C1.1 Upstream flowby:	Inlet/MH Number: Inlet DP1 Total Street Flow: 5.6cfs	
Flow Intercepted: 5.6cfs Inlet Size: 10' type R, sump	Flow Bypassed: 0	
Street Capacity: Street slope = 1.0%, capa	city = 9cfs, okay	
(100-year storm) Tributary Basins: C1.1 Upstream flowby:	Inlet/MH Number: Inlet DP1 Total Street Flow: 12.2cfs	
Flow Intercepted: 12.2cfs Inlet Size: 10' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, capacity = 37cfs (half street) is okay		

Design Point 2

Design Point 2 is located at the SW corner of Nystrom Terrace at a knuckle and accepts flows from Basin C1.2 The developed conditions are as follows:

(5-year storm) Tributary Basins: C1.2 Upstream flowby:	Inlet/MH Number: Inlet DP2 Total Street Flow: 2.7cfs	
Flow Intercepted: 2.7cfs Inlet Size: 10' type R, sump	Flow Bypassed: 0	
Street Capacity: Street slope = 1.0%, capacity = 9cfs, okay		
(100-year storm) Tributary Basins: C1.2 Upstream flowby:	Inlet/MH Number: Inlet DP2 Total Street Flow: 5.9cfs	
Flow Intercepted: 5.9cfs Inlet Size: 10' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, capacity = 37cfs (half street) is okay		

Design Point 3

Design Point 3 is the storm sewer pipe flow from Nystrom Terrace to Lorson Boulevard from Design Pt's 1 and 2. The total pipe flow is 8.3cfs/18.1cfs in the 5/100-year storm events in the storm sewer.

Design Point 4 is located at the NE of Lorson Boulevard and Walleye Drive and accepts flows from Lorson Boulevard (Basin C1.3).

Inlet/MH Number: Inlet DP4 Total Street Flow: 8.9cfs		
Flow Bypassed: 0.6cfs to ex. 15' inlet		
= 18cfs, okay		
Inlet/MH Number: Inlet DP4 Total Street Flow: 21.6cfs		
Flow Bypassed: 3.6cfs to ex. 15' inlet		
Street Capacity: Street slope = 2.0%, capacity = 50cfs (half street) is okay		
The existing 15' inlet was designed to accept 10cfs of upstream flow in the 100-year storm. See final drainage report for CDR 20-007 at Design Point 1b and 1.		

Design Point 5

Design Point 5 is the storm sewer pipe flow from Design Pt's 3 and 4. The total pipe flow is 17.2cfs/36.1cfs in the 5/100-year storm events in the storm sewer.

Design Point 6

Design Point 6 is located at the SE of Lorson Boulevard and Walleye Drive and accepts flows from Lorson Boulevard (Basin C1.5).

<u>(5-year storm)</u> Tributary Basins: C1.5 Upstream flowby:	Inlet/MH Number: Inlet DP6 Total Street Flow: 3.0cfs	
Flow Intercepted: 3.0cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: Ocfs in curb downstream	
Street Capacity: Street slope = 2.0%, cap	pacity = 18cfs, okay	
(100-year storm) Tributary Basins: C1.5 Upstream flowby:	Inlet/MH Number: Inlet DP6 Total Street Flow: 6.6cfs	
Flow Intercepted: 5.7cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 0.9cfs in curb downstream	
Street Capacity: Street slope = 2.0%, capacity = 50cfs (half street) is okay		

Design Point 7 is the existing 36" storm sewer pipe flow located in Lorson Boulevard. The total pipe flow is 36.8cfs/65.8cfs in the 5/100-year storm events in the storm sewer. Per the drainage report for CDR 20-007 the allowable flow in the existing 36" is 37.1cfs/65.3cfs.

Design Points 8-11 are not used

<u>Design Point 12</u> Design Point 12 is located at the SE corner of Split Mountain Drive and Mission Peak Place and accepts flows from Basin C3.1.

<u>(5-year storm)</u> Tributary Basins: C3.1 Upstream flowby:	Inlet/MH Number: Inlet DP12 Total Street Flow: 9.9cfs		
Flow Intercepted: 9.3cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 0.6cfs in curb downstream		
Street Capacity: Street slope = 2.6%, capacity = 14.4cfs, okay			
(100-year storm) Tributary Basins: C3.1 Upstream flowby:	Inlet/MH Number: Inlet DP12 Total Street Flow: 21.8cfs		
Flow Intercepted: 14.8cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 7.0cfs in curb downstream		
Street Capacity: Street slope = 2.6%, capacity = 40.7cfs (half street) is okay			

Design Point 13 Design Point 13 is located at the SE corner of Split Mountain Drive and Pearsoll Street and accepts flows from Basin C3.2.

, ,	C3.2 0.6cfs from Des. Pt 12	Inlet/MH Number: Inlet DP13 Total Street Flow: 8.5cfs
Flow Intercepted: 8 Inlet Size: 15' type F		Flow Bypassed: 0.2cfs in curb downstream
Street Capacity: St	reet slope = 2.2%, capacity	= 13.3cfs, okay
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	C3.2 7.0cfs from Des. Pt 12	Inlet/MH Number: Inlet DP13 Total Street Flow: 24.3cfs
Flow Intercepted: Inlet Size: 15' type		Flow Bypassed: 8.7cfs in curb downstream
Street Capacity: Street slope = 2.2%, capacity = 42.8cfs (half street) is okay		

Design Point 14 is the storm sewer pipe flow from Design Pt's 12 and 13. The total pipe flow is 17.6cfs/30.4cfs in the 5/100-year storm events in the storm sewer.

Design Point 15

Design Point 15 is located at the SE corner of Split Mountain Drive and Lost Peak Lane and accepts flows from Basin C3.3.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	C3.3 0.2cfs from Des. Pt 13	Inlet/MH Number: Inlet DP15 Total Street Flow: 8.7cfs
Flow Intercepted: 8 Inlet Size: 15' type F		Flow Bypassed: 0.3cfs in curb downstream
Street Capacity: St	reet slope = 1.9%, capacity	= 12.2cfs, okay
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	C3.3 8.7cfs from Des. Pt 13	Inlet/MH Number: Inlet DP15 Total Street Flow: 27.3cfs
Flow Intercepted: Inlet Size: 15' type		Flow Bypassed: 10.8cfs in curb downstream
Street Capacity: Street slope = 1.9%, capacity = 44.0cfs (half street) is okay		

Design Point 16

Design Point 16 is the storm sewer pipe flow from Design Pt's 14 and 15. The total pipe flow is 26.0cfs/46.9cfs in the 5/100-year storm events in the storm sewer.

Design Point 17

Design Point 17 is located at the SE corner of Split Mountain Drive and Lake Trout Dr and accepts flows from Basin C3.4.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	C3.4 0.3cfs from Des. Pt 15	Inlet/MH Number: Inlet DP17 Total Street Flow: 7.5cfs
Flow Intercepted: 7 Inlet Size: 20' type F		Flow Bypassed: 0cfs in curb downstream
Street Capacity: St	reet slope = 3.4%, capacity =	16.5cfs, okay
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	C3.4 10.8cfs from Des. Pt 15	Inlet/MH Number: Inlet DP17 Total Street Flow: 26.7cfs
Flow Intercepted: Inlet Size: 20' type		Flow Bypassed: 6.3cfs in curb downstream
Street Capacity: Street slope = 3.4%, capacity = 37.0cfs (half street) is okay		

Design Point 18 is the storm sewer pipe flow from Design Pt's 16 and 17. The total pipe flow is 33.5cfs/67.3cfs in the 5/100-year storm events in the storm sewer.

Design Point 19

Design Point 19 is located at the SW corner of Split Mountain Drive and Lake Trout Dr and accepts flows from Basin C3.5.

(<u>5-year storm)</u> Tributary Basins: C3.5 Upstream flowby:	Inlet/MH Number: Inlet DP19 Total Street Flow: 10.3cfs	
Flow Intercepted: 10.3cfs Inlet Size: 20' type R, on-grade	Flow Bypassed: 0cfs in curb downstream	
Street Capacity: Street slope = 2.6%, c	apacity = 14.4cfs, okay	
(100-year storm) Tributary Basins: C3.5 Upstream flowby: 6.3cfs from Des. P	t 17 Total Street Flow: 28.8cfs	
Flow Intercepted:21.2cfsFlow Bypassed:7.6cfs in curb downstreamInlet Size:20' type R, on-grade500 minute500 minute		
Street Capacity: Street slope = 2.6%, capacity = 40.7cfs (half street) is okay		

Design Point 20

Design Point 20 is the storm sewer pipe flow from Design Pt's 18 and 19. The total pipe flow is 43.8cfs/88.5cfs in the 5/100-year storm events in the storm sewer.

Design Point 20a

Design Point 20a is located at the NE corner of Lookout Peak Lane and Lake Trout Dr and accepts flows from Basin C3.6a.

<u>(5-year storm)</u> Tributary Basins: C3.6a Upstream flowby:	Inlet/MH Number: Inlet DP20a Total Street Flow: 5.6cfs	
Flow Intercepted: 5.6cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 0	
Street Capacity: Street slope = 2.1%, ca	apacity = 13.0cfs, okay	
<u>(100-year storm)</u> Tributary Basins: C3.6a Upstream flowby:	Inlet/MH Number: Inlet DP20a Total Street Flow: 12.3cfs	
Flow Intercepted: 10.7cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 1.6cfs in curb downstream	
Street Capacity: Street slope = 2.1%, capacity = 42.0cfs (half street) is okay		

Design Point 20b

Design Point 20b is the storm sewer pipe flow from Design Pt's 20a and 20. The total pipe flow is 49.4cfs/99.2cfs in the 5/100-year storm events in the storm sewer.

Design Point 21

Design Point 21 is located at the NW corner of Lookout Peak Lane and Lake Trout Dr and accepts flows from Basin C3.6b.

(<u>5-year storm)</u> Tributary Basins: C3.6b Upstream flowby:	Inlet/MH Number: Inlet DP21 Total Street Flow: 7.2cfs	
Flow Intercepted: 7.2cfs Inlet Size: 15' type R, on-grade	Flow Bypassed:	
Street Capacity: Street slope = 2.1%, capacity =	= 13.0cfs, okay	
(100-year storm) Tributary Basins: C3.6b Upstream flowby: 1.6cfs from Des. Pt 20a	Inlet/MH Number: Inlet DP21 Total Street Flow: 17.5cfs	
Flow Intercepted: 13.1cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 4.4cfs in curb downstream	
Street Capacity: Street slope = 2.1%, capacity = 42.0cfs (half street) is okay		

Design Point 22 not used

Design Point 23 Design Point 23 is located at the SW corner of Dragontail Terrace and Lake Trout Dr and accepts flows from Basin C3.7.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	C3.7	Inlet/MH Number: Inlet DP23 Total Street Flow: 8.7cfs
Flow Intercepted: 8.4 Inlet Size: 15' type R,		Flow Bypassed: 0.3cfs in curb downstream
Street Capacity: Stre	eet slope = 2.0%, capacity =	13.0cfs, okay
	C3.7 7.6cfs from Des. Pt 19	Inlet/MH Number: Inlet DP23 Total Street Flow: 26.7cfs
Flow Intercepted: Inlet Size: 15' type R	16.3cfs R, on-grade	Flow Bypassed: 10.4cfs in curb downstream
Street Capacity: Street slope = 2.0%, capacity = 42.0cfs (half street) is okay		

Design Point 24 is the storm sewer pipe flow from Design Pt's 20b and 23. The total pipe flow is 57.8cfs/115.5cfs in the 5/100-year storm events in the storm sewer.

<u>Design Point 24a</u> Design Point 24a is the storm sewer pipe flow from Design Pt's 21 and 24. The total pipe flow is 65cfs/118.6cfs in the 5/100-year storm events in the storm sewer.

Design Point 25

Design Point 25 is located at the NW corner of Nystrom Terr and Lake Trout Dr and accepts flows from Basin C3.8.

(5-year storm) Tributary Basins: C3.8 Upstream flowby:	Inlet/MH Number: Inlet DP25 Total Street Flow: 10.0cfs	
Flow Intercepted: 7.2cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 2.9cfs in curb downstream	
Street Capacity: Street slope = 1.1%, capacity	= 10.1cfs, okay	
(100-year storm) Tributary Basins: C3.8 Upstream flowby: 4.4cfs from Des. Pt 21	Inlet/MH Number: Inlet DP25 Total Street Flow: 26.4cfs	
Flow Intercepted: 11.3cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 15.1cfs in curb downstream	
Street Capacity: Street slope = 1.1%, capacity = 39.0cfs (half street) is okay		

Design Point 26 - not used

Design Point 27

Design Point 27 is located at the SW corner of Raven Ridge Terrace and Lake Trout Dr and accepts flows from Basin C3.9.

	C3.9 0.3cfs from Des.Pt. 23	Inlet/MH Number: Inlet DP27 Total Street Flow: 8.4cfs
Flow Intercepted: 8 Inlet Size: 20' type F		Flow Bypassed: 0cfs in curb downstream
Street Capacity: St	reet slope = 1.7%, capacity =	= 11.9cfs, okay
	C3.9 10.4cfs from Des. Pt 23	Inlet/MH Number: Inlet DP27 Total Street Flow: 28.3cfs
Flow Intercepted: Inlet Size: 20' type		Flow Bypassed: 7.6cfs in curb downstream
Street Capacity: Street slope = 1.7%, capacity = 45.0cfs (half street) is okay		

Design Point 28 is the storm sewer pipe flow from Design Pt's 27 and 24a. The total pipe flow is 73.4cfs/132.7cfs in the 5/100-year storm events in the storm sewer.

<u>Design Point 28a</u> Design Point 28a is the storm sewer pipe flow from Design Pt's 28 and 25. The total pipe flow is 80.6cfs/133.4cfs in the 5/100-year storm events in the storm sewer.

Design Point 29

Design Point 29 is located at the SW corner of Nystrom Terrace and Lake Trout Dr and accepts flows from Basin C3.10.

,, ,	C3.10 0.3cfs from Des.Pt. 27	Inlet/MH Number: Inlet DP29 Total Street Flow: 9.2cfs
Flow Intercepted: 9 Inlet Size: 20' type F		Flow Bypassed: 0cfs in curb downstream
Street Capacity: St	reet slope = 1.0%, capacity =	9.2cfs, okay
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	C3.10 7.6cfs from Des. Pt 27	Inlet/MH Number: Inlet DP29 Total Street Flow: 27.8cfs
Flow Intercepted:20.5cfsFlow Bypassed:7.3cfs in curb downstreamInlet Size:20' type R, on-grade500 minute500 minute		
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay		

Design Point 30

Design Point 30 is the storm sewer pipe flow from Design Pt's 28a and 29. The total pipe flow is 89.8cfs/153.9cfs in the 5/100-year storm events in the storm sewer.

Design Point 31 is located east of Walleye Drive on the south side of Fontaine Boulevard and accepts flows from Basin C4.1 and C4.2.

(<u>5-year storm)</u> Tributary Basins: C4.1+C4.2 Upstream flowby:	Inlet/MH Number: Inlet DP31 Total Street Flow: 10.5cfs	
Flow Intercepted: 9.7cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 0.8cfs in curb downstream	
Street Capacity: Street slope = 4.8%, capacity =	= 15.7cfs, okay	
(100-year storm) Tributary Basins: C4.1+C4.2 Upstream flowby:	Inlet/MH Number: Inlet DP31 Total Street Flow: 23.2cfs	
Flow Intercepted: 15.3cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 7.9cfs in curb downstream	
Street Capacity: Street slope = 4.8%, capacity = 38.3cfs (half street) is okay		

Design Point 32 is located on the north end of Nystrom Terr in a cul-de-sac and accepts flows from Basin C4.3

(5-year storm) Tributary Basins: C4.3 Upstream flowby: 2.8cfs from Des. Pt.25	Inlet/MH Number: Inlet DP32 Total Street Flow: 10.3 cfs
Flow Intercepted: 10.3cfs Inlet Size: 20' type R, sump	Flow Bypassed:
Street Capacity: Street slope = 1.0%, capacity	r = 9.2cfs, okay
(100-year storm) Tributary Basins: C4.3 Upstream flowby: 15.1cfs from Des.Pt. 25	Inlet/MH Number: Inlet DP32 Total Street Flow: 27.5cfs
Flow Intercepted: 27.5cfs Inlet Size: 20' type R, sump	Flow Bypassed:
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay	

Design Point 32a

Design Point 32a is the storm sewer pipe flow from Design Pt's 31 and 32. The total pipe flow is 18.2cfs/42.8cfs in the 5/100-year storm events in the storm sewer.

Design Point 33 is located on Walleye Drive south of Fontaine Boulevard and is an existing 25' type R inlet in a sump condition constructed as part of CDR 20-007.

(<u>5-year storm)</u> Tributary Basins: Upstream flowby: (C4.4 0.8cfs from Des.Pt. 31	Inlet/MH Number: Total Street Flow:	
Flow Intercepted: 7 Inlet Size: ex 25' type		Flow Bypassed:	
Street Capacity: Str	eet slope = 0.7%, capacity = ⁻	11.5cfs, okay	
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	C4.4 7.3cfs from Des.Pt. 29 7.9cfs from Des. Pt. 31	Inlet/MH Number:	ex. 25' inlet DP33
		Total Street Flow:	28.7cfs
Flow Intercepted: Inlet Size: ex 25' typ		Flow Bypassed:	
Street Capacity: Street slope = 0.7%, capacity = 34.6cfs (half street) is okay			

Design Point 34

Design Point 34 is the storm sewer pipe flow from Design Pt's 30, 32a, and 33. The total pipe flow is 115.0cfs/225.4cfs in the 5/100-year storm events in the existing 54" storm sewer constructed as part of CDR 20-007. The revised calculated flow in the existing 54" storm sewer is slightly more than the design flow in CDR 20-007 of 101.2cfs/218.6cfs in the 5/100-year storm events but the HGL's are not above the top of the 54" storm sewer.

Design Point 35a

Design Point 35a is located at the NW corner of Kingston Peak Place and Lorson Boulevard and accepts flows from Basin F1.4.

(<u>5-year storm)</u> Tributary Basins: F1.4 Upstream flowby:	Inlet/MH Number: Inlet DP29 Total Street Flow: 5.9cfs	
Flow Intercepted: 5.9cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: Ocfs in curb downstream	
Street Capacity: Street slope = 0.9%, capac	city = 9.2cfs, okay	
(100-year storm) Tributary Basins: F1.4 Upstream flowby:	Inlet/MH Number: Inlet DP29 Total Street Flow: 13.2cfs	
Flow Intercepted: 11.3cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 1.9cfs in curb downstream	
Street Capacity: Street slope = 0.9%, capacity = 37.3cfs (half street) is okay		

Design Point 35b

Design Point 35b is located at the NE corner of Kingston Peak Place and Lorson Boulevard and accepts flows from Basin F1.3.

(<u>5-year storm)</u> Tributary Basins: F1.3 Upstream flowby:	Inlet/MH Number: Inlet DP29 Total Street Flow: 1.9cfs
Flow Intercepted: 1.9cfs Inlet Size: 5' type R, sump	Flow Bypassed: 0cfs in curb downstream
Street Capacity: Street slope = 0.9%, capa	city = 9.2cfs, okay
(100-year storm) Tributary Basins: F1.3 Upstream flowby:	Inlet/MH Number: Inlet DP29 Total Street Flow: 4.6cfs
Flow Intercepted: 4.4cfs Inlet Size: 5' type R, sump	Flow Bypassed: 0.2cfs
Street Capacity: Street slope = 0.9%, capacity = 37.3cfs (half street) is okay	

Design Point 35c

Design Point 35c is the storm sewer pipe flow from Design Pt's 35a and 35b. The total pipe flow is 7.8cfs/15.7cfs in the 5/100-year storm events in the storm sewer. Stormwater enters WQ Pond F where it will be treated and released. WQ Pond F has been sized for water quality and the 5-100-year storm runoff will be allowed to flow through the pond with minimal detention.

Design Point 35

Design Point 35 is located on the east side of this site and is the total flow from Basins F1.1, F1.2, and Design Point 35d. The total flow from these basins and the WQ pond (Des.Pt. 35d) is 15.5cfs/69.5cfs in the 5/100-year storm events. The existing flow calculated at Design Point 2x flowing east offsite is 12.4cfs/72.7cfs in the 5/100-year storm events. The developed flow will remain sheet flow into the Upper Williams Creek Drainage Basin for the majority of the runoff as in existing conditions and will discharge the same runoff rates as in existing flows resulting in no negative impacts downstream. See Design Point 35d for discuss of concentrated runoff from WQ Pond F

Design Point 35d

Design Point 35d is located at the storm sewer outfall from WQ Pond F. The total pipe flow is 1.9cfs/8.4cfs in the 5/100-year storm events in the storm sewer per the full spectrum excel spreadsheets. Flow from the storm sewer outfall will be dispersed downstream by a 50' wide rip rap berm (1' high) to reduce concentrated flow. In addition, the storm sewer outfall is over 100' west of the Lorson Ranch property line which will further disperse the flow from the storm sewer.

Design Point 35e

Design Point 35e is located on the south property line of Lorson Ranch and is the total flow from Basin G1 which is 2.5cfs/18.2cfs in the 5/100-year storm events. The existing flow at this design point (Basin EX-G) is 2.9cfs/21.6cfs in the 5/100-year storm events. The runoff at the south property line of Lorson Ranch was reduced slightly due to grading north of Lorson Boulevard. The discharge is only slightly less than existing flows resulting in no negative impacts downstream.

Downstream easement and conveyance is needed due to change from sheet flow to point discharge and increased flow <u>Design Point 36</u> Design Point 36 is located on the north side of Gray Wolf Court and accepts flows from Basin C5.1b

(5-year storm) Tributary Basins: C5.1b Upstream flowby:	Inlet/MH Number: Inlet DP36 Total Street Flow: 11.4cfs
Flow Intercepted: 4.1cfs Inlet Size: 5' type R, on-grade	Flow Bypassed: 7.3cfs in curb downstream
Street Capacity: Street slope = 2.7%, capacity	city = 14.4cfs, okay
(100-year storm) Tributary Basins: C5.1b Upstream flowby:	Inlet/MH Number: Inlet DP36 Total Street Flow: 25.2cfs
Flow Intercepted: 5.7cfs Inlet Size: 5' type R, on-grade	Flow Bypassed: 19.5cfs in curb downstream
Street Capacity: Street slope = 2.7%, capacity = 40.7cfs (half street) is okay	

<u>Design Point 37</u> Design Point 37 is located on the south side of Gray Wolf Court and accepts flows from Basin C5.1c

(5-year storm) Tributary Basins: C5.1c Inlet/MH Number: Inlet DP37 Upstream flowby: Total Street Flow: 7.4cfs Flow Intercepted: 3.4cfs Flow Bypassed: 4.0cfs in curb downstream **Inlet Size:** 5' type R, on-grade **Street Capacity:** Street slope = 2.0%, capacity = 12.5cfs, okay (100-year storm) Tributary Basins: Inlet/MH Number: Inlet DP37 C5.1c Upstream flowby: Total Street Flow: 16.3cfs Flow Intercepted: 4.8cfs Flow Bypassed: 11.5cfs in curb downstream **Inlet Size:** 5' type R, on-grade Street Capacity: Street slope = 2.0%, capacity = 44.0cfs (half street) is okay

Design Point 38

Design Point 38 is the storm sewer pipe flow from Design Pt's 36 and 37. The total pipe flow is 7.5cfs/10.5cfs in the 5/100-year storm events in the storm sewer.

Design Point 39 is located at the southeast corner of Gray Wolf Court and Donnas Drive and accepts flows from Basin C5.1a.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	C5.1a.b,c 20.2cfs – 4.1(inlet DP36) –	
Flow Intercepted: 7 Inlet Size: 25' type F		Flow Bypassed:
Street Capacity: St	reet slope = 1.9%, capacity =	= 14cfs, okay
<u>(100-year storm)</u> Tributary Basins: Total flow in street:	C5.1a,b,c 44.5cfs – 5.7(inlet DP36) –	
Flow Intercepted: Inlet Size: 25' type		Flow Bypassed: 7.0cfs in curb downstream
Street Capacity: St	reet slope = 1.9%, capacity =	= 45.4cfs (half street) is okay

Design Point 40

Design Point 40 is the storm sewer pipe flow from Design Pt's 38 and 39. The total pipe flow is 23.0cfs/37.0cfs in the 5/100-year storm events in the storm sewer.

Design Point 41

Design Point 41 is located south of Gray Wolf Court on the east side of Donnas Drive and accepts flows from Basin C5.1d.

<u>(5-year storm)</u> Tributary Basins: C5.1d Upstream flowby:	Inlet/MH Number: Inlet DP41 Total Street Flow: 9.3cfs	
Flow Intercepted: 9.3cfs Inlet Size: 20' type R, SUMP	Flow Bypassed:	
Street Capacity: Street slope = 1.4%, capac	ity = 10.5cfs, okay	
(100-year storm) Tributary Basins: C5.1d Upstream flowby: 7.0cfs from Des.Pt.39	Inlet/MH Number: Inlet DP41 Total Street Flow: 27.7cfs	
Flow Intercepted: 25.1cfs Inlet Size: 20' type R, SUMP	Flow Bypassed: 2.6cfs to DP43	
Street Capacity: Street slope = 1.4%, capacity = 44.1cfs (half street) is okay		

Design Point 42 is the storm sewer pipe flow from Design Pt's 40 and 41. The total pipe flow is 32.3cfs/62.1cfs in the 5/100-year storm events in the storm sewer.

Design Point 43

Design Point 43 is located south of Gray Wolf Court on the west side of Donnas Drive and accepts flows from Basin C5.1e and flowby from Des. Pt. 41. See Des.Pt. 44 for overflow conveyance.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	C5.1e	Inlet/MH Number: Inlet DP41 Total Street Flow: 10.0cfs
Flow Intercepted: 7 Inlet Size: 20' type F		Flow Bypassed:
Street Capacity: St	treet slope = 1.4%, capacity =	10.5cfs, okay
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	C5.1e 2.6cfs from Des.Pt.41	Inlet/MH Number: Inlet DP41 Total Street Flow: 24.5cfs
Flow Intercepted: Inlet Size: 20' type		Flow Bypassed:
Street Capacity: Street slope = 1.4%, capacity = 44.1cfs (half street) is okay		

Design Point 44

Design Point 44 is the storm sewer pipe flow from Design Pt's 42 and 43. The total pipe flow is 42.3cfs/87.1cfs in the 5/100-year storm events in the storm sewer. The FDR for CDR20-007 (Design Point 16a) was designed to accept 42.3cfs/92.5cfs in the existing 36" RCP stub in Fontaine Boulevard. This design point is also at a low point in Donnas Drive and in the event the inlet at Design Point 43 is clogged, runoff will flow overland through Tract G which has a 25' wide swale (depression) which is 1' lower than the adjacent lots.

Design Points 45 & 46 Design Points 45 & 46 are located at the NE corner of Walleye Drive and Fontaine Boulevard and is an existing 15' type R inlet in a sump condition constructed as part of CDR 20-007

(5-year storm) Tributary Basins: C5.2 & C5.3 Upstream flowby:	Inlet/MH Number: ex. 15' inlet Total Street Flow: 7.7cfs	
Flow Intercepted: 7.7cfs Inlet Size: ex 15' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, capacity =	13.7cfs, okay	
(100-year storm) Tributary Basins: C5.2 & C5.3 Upstream flowby:	Inlet/MH Number: ex. 15' inlet Total Street Flow: 17.1cfs	
Flow Intercepted: 17.1cfs Inlet Size: ex 15' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, capacity = 41.4cfs (half street) is okay		
The FDR for CDR 20-007 designed the existing inlet to accept 7.9cfs/17.7cfs in the 5/100 year storm events.		

Design Point 47

Design Point 47 is located in the SE corner of Meridith Ridge Way and Donnas Drive and accepts flows from Basin C8.1a.

(5-year storm) Tributary Basins: C8.1a Upstream flowby:	Inlet/MH Number: Inlet DP47 Total Street Flow: 7.5cfs	
Flow Intercepted: 6.1cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 1.4cfs	
Street Capacity: Street slope = 1.0%,	capacity = 9.0cfs, okay	
(100-year storm) Tributary Basins: C8.1a Upstream flowby:	Inlet/MH Number: Inlet DP47 Total Street Flow: 16.4cfs	
Flow Intercepted: 9.1cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 7.3cfs	
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay		

Design Point 48 Design Point 48 is located in the NE corner of Sanderling Street and Donnas Drive and accepts flows from Basin C8.1c.

(5-year storm) Tributary Basins: C8.1c Upstream flowby:	Inlet/MH Number: Inlet DP48 Total Street Flow: 3.4cfs	
Flow Intercepted: 3.4cfs Inlet Size: 10' type R, on-grade	Flow Bypassed:	
Street Capacity: Street slope = 1.5%, capa	city = 11.0 cfs, okay	
(100-year storm) Tributary Basins: C8.1c Upstream flowby:	Inlet/MH Number: Inlet DP48 Total Street Flow: 7.6cfs	
Flow Intercepted: 6.2cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 1.4cfs	
Street Capacity: Street slope = 1.5%, capacity = 44.5cfs (half street) is okay		

Design Point 49 Design Point 49 is located in the NW corner of Sanderling Street and Donnas Drive and accepts flows from Basin C8.1b.

(5-year storm) Tributary Basins: Upstream flowby:	C8.1b 1.4cfs from Des.Pt. 47	Inlet/MH Number: Inlet DP49 Total Street Flow: 7.7 cfs
Flow Intercepted: 7 Inlet Size: 20' type I		Flow Bypassed:
Street Capacity: St	treet slope = 2.8%, capacity =	14.4cfs, okay
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	C8.1b 7.3cfs from Des.Pt.47 1.4cfs from Des.Pt.48 5.1cfs from Des.Pt.57	Inlet/MH Number: Inlet DP49 Total Street Flow: 27.7cfs
Flow Intercepted: Inlet Size: 20' type		Flow Bypassed: 6.9cfs
Street Capacity: Street slope = 2.8%, capacity = 40.7cfs (half street) is okay		

Design Point 50 is the storm sewer pipe flow from Design Pt's 48 and 49. The total pipe flow is 11.1cfs/27.0cfs in the 5/100-year storm events in the storm sewer. The FDR for CDR20-007 (Design Point 31a) was designed to accept 8.9cfs/20.9cfs in the existing 30" RCP stub from Walleye Drive at Sanderling Street. However, the existing pipe has capacity to handle the additional pipe flow based on the HGL. See Design Point 52.

Design Point 51

Design Point 51 is located at an existing 25' type R inlet in the SW corner of Grayling Drive and Walleye Drive and accepts flows from Basin C8.2.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	C8.2	Inlet/MH Number: existing 25' Total Street Flow: 4.5 cfs
Flow Intercepted: 4 Inlet Size: ex 25' typ		Flow Bypassed:
Street Capacity: St	treet slope (collector) = 1.0%,	capacity = 13.7cfs, okay
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	C8.2 6.9cfs from Des.Pt.49 9.1cfs from Des.Pt.56	Inlet/MH Number: existing 25' Total Street Flow: 26.0cfs
Flow Intercepted: Inlet Size: ex 25' ty		Flow Bypassed:
Street Capacity: Street slope = 1.0% (collector), capacity = 41.4cfs (half street) is okay		
The FDR for CDR 20-007 (Des.Pt. 31) designed the existing inlet to accept 14.5cfs/30.0cfs in the 5/100 year storm events.		

Design Point 52

Design Point 52 is the storm sewer pipe flow from Design Pt's 50 and 51 in an existing 36" storm sewer in Walleye Drive. The total pipe flow is 15.6cfs/53.0cfs in the 5/100-year storm events in the storm sewer. The FDR for CDR20-007 (Design Point 31c) designed the storm sewer to accept 23.4cfs/50.9cfs in the existing 36" RCP storm sewer in Walleye Drive. The existing pipe has capacity to handle the slight increase in pipe flow in the 100yr storm event.

Design Point 53 is located in the SE corner of Danis Drive and Walleye Drive and accepts flows from Basin C8.3a. Basin OS-C4a existing and future flows will be diverted north to Des. Pt. 63a.

(<u>5-year storm)</u> Tributary Basins: C8.3a Upstream flowby:	Inlet/MH Number: Inlet DP53 Total Street Flow: 10.6cfs	
Flow Intercepted: 9.7cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 0.9cfs	
Street Capacity: Street slope = 1.4%,	capacity = 10.5cfs, okay	
<u>(100-year storm)</u> Tributary Basins: C8.3a Upstream flowby:	Inlet/MH Number: Inlet DP53 Total Street Flow: 26.5cfs	
Flow Intercepted: 16.2cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 10.3cfs	
Street Capacity: Street slope = 1.4%, capacity = 44.1cfs (half street) is okay		

Design Point 54

Design Point 54 is located in the NE corner of Donnas Drive and Walleye Drive and accepts flows from Basin C8.3b& C8.3c.

-	C8.3b & C8.3c 0.9cfs from Des.Pt.53	Inlet/MH Number: Inlet DP54 Total Street Flow: 11.8cfs	
Flow Intercepted: 7 Inlet Size: 20' type F		Flow Bypassed: 0.1cfs	
Street Capacity: St	reet slope = 1.5%, capacity =	= 11.8cfs, okay	
	C8.3b & C8.3c 10.3cfs from Des.Pt.53		
Flow Intercepted: Inlet Size: 20' type		Flow Bypassed: 13.6cfs	
Street Capacity: Street slope = 1.5%, capacity = 45.0cfs (half street) is okay			

Design Point 55

Design Point 55 is the storm sewer pipe flow from Design Pt's 53 and 54. The total pipe flow is 21.4cfs/40.2cfs in the 5/100-year storm events in the storm sewer.

Design Point 56 Design Point 56 is located on Walleye Drive south of Donnas Drive and accepts flows from Basin C8.3d

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	C8.3d 0.1cfs from Des.Pt.54	Inlet/MH Number: Inlet DP56 Total Street Flow: 9.0cfs
Flow Intercepted: 9 Inlet Size: 20' type F		Flow Bypassed:
Street Capacity: Street slope = 1.2%, capacity = 10.0cfs, okay		
	C8.3d 13.6cfs from Des.Pt.54	Inlet/MH Number: Inlet DP56 Total Street Flow: 32.8cfs
Flow Intercepted: Inlet Size: 20' type		Flow Bypassed: 9.1cfs
Street Capacity: Street slope = 1.2%, capacity = 38.0cfs (half street) is okay		

Design Point 57

Design Point 57 is located at the NE corner of Donnas Drive and Meridith Ridge Way and accepts flows from Basin C8.4

(5-year storm) Tributary Basins: C8.4 Upstream flowby:	Inlet/MH Number: Inlet DP57 Total Street Flow: 11.0cfs	
Flow Intercepted: 11.0cfs Inlet Size: 20' type R, on-grade	Flow Bypassed:	
Street Capacity: Street slope = 1.0%, capacity = 9.0cfs, okay		
(100-year storm) Tributary Basins: C8.4 Upstream flowby:	Inlet/MH Number: Inlet DP57 Total Street Flow: 24.1cfs	
Flow Intercepted: 19.0cfs Inlet Size: 20' type R, on-grade	Flow Bypassed: 5.1cfs to DP49	
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay		

Design Point 58

Design Point 58 is the storm sewer pipe flow from Design Pt's 57 and 47. The total pipe flow is 17.1cfs/28.1cfs in the 5/100-year storm events in the storm sewer.

Design Point 59 is located on the north side of Walleye Drive south of Broken Top Drive and accepts flows from Basin C8.5

(<u>5-year storm)</u> Tributary Basins: C8.5 Upstream flowby:	Inlet/MH Number: Inlet DP59 Total Street Flow: 7.0cfs	
Flow Intercepted: 5.9cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 1.1cfs	
Street Capacity: Street slope = 1.2%, capacity = 10.0cfs, okay		
(100-year storm) Tributary Basins: C8.5 Upstream flowby:	Inlet/MH Number: Inlet DP59 Total Street Flow: 15.5cfs	
Flow Intercepted: 8.9cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 6.6cfs	
Street Capacity: Street slope = 1.2%, capacity = 38.0cfs (half street) is okay		

Design Point 60

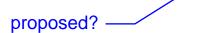
Design Point 60 is the storm sewer pipe flow from Design Pt's 55, 56 and 59. The total pipe flow is 32.7cfs/73.3cfs in the 5/100-year storm events in the storm sewer.

Design Point 61

Design Point 61 is the storm sewer pipe flow from Design Pt's 52, 58 and 60 from the C8.1, C8.3, C8.4, and C8.5 basins. The total pipe flow is 44.9cfs/104.1cfs in the 5/100-year storm events in the storm sewer. The FDR for CDR20-007 (Design Point 32) designed the storm sewer to accept 45.1cfs/105.4cfs in the existing 42" RCP storm sewer in Walleye Drive.

Design Point 62 is located in the NE corner of Grayling Drive and Regan Ridge Drive and accepts flows from Basin C8.6 & C8.7e.

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	C8.6 & C8.7e 1.1 cfs from Des.Pt.59	Inlet/MH Number: Inlet DP62 Total Street Flow: 14.3cfs	
Flow Intercepted: 7 Inlet Size: 25' type F		Flow Bypassed:	
Street Capacity: Street slope = 2.5%, capacity = 14.2cfs, okay			
(100-year storm)			
Tributary Basins: Upstream flowby:		Inlet/MH Number: Inlet DP62	
	2.7cfs from Des.Pt.66	Total Street Flow: 37.4cfs	
Flow Intercepted: Inlet Size: 25' type		Flow Bypassed:	
Street Capacity: Street slope = 2.5%, capacity = 41.4cfs (half street) is okay			


Design Point 63

Design Point 63 is located at the SE corner of Regan Ridge Drive and Logans Ridge Lane and accepts flows from Basin C8.7a&b

<u>(5-year storm)</u> Tributary Basins: C8.7a&b Upstream flowby:	Inlet/MH Number: Inlet DP63 Total Street Flow: 11.5cfs	
Flow Intercepted: 10.2cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 1.3cfs	
Street Capacity: Street slope = 1.6%, capacity = 11.5cfs, okay		
(100-year storm) Tributary Basins: C8.7a&b Upstream flowby:	Inlet/MH Number: Inlet DP63 Total Street Flow: 25.6cfs	
Flow Intercepted: 15.9cfs Inlet Size: 15' type R, on-grade	Flow Bypassed: 9.7cfs	
Street Capacity: Street slope = 1.6%, capacity = 45.0cfs (half street) is okay		

Design Point 63a

Design Point 63a is the existing offsite flow from areas west of Lorson Ranch from offsite Basins OS-B1, OS-C4a, and OS-C4b. These offsite basins will be routed north in a wide shallow swale onto adjacent land owned by Lorson Ranch. The total existing offsite flow in the swale is 7.3cfs/42.2cfs in the 5/100-year storm events which is less than existing total flow onto the adjacent property at Design Point 1x which is 9.7cfs/54.2cfs in the 5/100-year storm events (see existing conditions). Two rip rap

pads will be constructed at the north end of the shallow swale to disperse the concentrated flow as it flows north onto the adjacent property owned by Lorson Ranch.

Design Point 64

Design Point 64 is located at the SE corner of Regan Ridge Drive and Cody Ridge Way and accepts flows from Basin C8.7c

<u>(5-year storm)</u> Tributary Basins: Upstream flowby:	C8.7c 1.3cfs from Des.Pt.63	Inlet/MH Number: Total Street Flow:	
Flow Intercepted: S Inlet Size: 15' type F		Flow Bypassed:	0.9cfs
Street Capacity: Street slope = 4.0%, capacity = 17.9cfs, okay			
<u>(100-year storm)</u> Tributary Basins: Upstream flowby:	C8.7c 9.7cfs from Des.Pt.63	Inlet/MH Number: Total Street Flow:	
Flow Intercepted: Inlet Size: 15' type		Flow Bypassed: 7	13.1cfs
Street Capacity: Street slope = 4.0%, capacity = 35.7cfs (half street) is okay			

Design Point 65

Design Point 65 is the storm sewer pipe flow from Design Pt's 63 and 64. The total pipe flow is 20.0cfs/33.4cfs in the 5/100-year storm events in the storm sewer.

Design Point 66

Design Point 66 is located at the NE corner of Regan Ridge Drive and Broken Top Drive and accepts flows from Basin C8.7d

(<u>5-year storm)</u> Tributary Basins: C8.7d Upstream flowby: 0.9cfs		Inlet/MH Number: Inlet DP66 Total Street Flow: 1.5cfs	
Flow Intercepted:1.5cfsFlow Bypassed:Inlet Size:15' type R, on-grade			
Street Capacity: Street slope = 2.0%, capacity = 12.5cfs, okay			
(100-year storm) Tributary Basins: C8.7d Upstream flowby: 13.1c		Inlet/MH Number: Inlet DP66 Total Street Flow: 14.5cfs	
Flow Intercepted:11.8cfsFlow Bypassed:2.7cfsInlet Size:15' type R, on-grade			
Street Capacity: Street slope = 2.0%, capacity = 44.0cfs (half street) is okay			

Design Point 67

Design Point 67 is the storm sewer pipe flow from Design Pt's 65 and 66. The total pipe flow is 21.5cfs/45.2cfs in the 5/100-year storm events in the storm sewer.

Design Point 68

Design Point 68 is the storm sewer pipe flow from Basins C8.6-C8.7e and runby from Des.Pt. 59. The total pipe flow is 33.0cfs/76.5cfs in the 5/100-year storm events in the storm sewer.

Design Point 69

Design Point 69 is located at the NW corner of Regan Ridge Drive and Walleye Drive at an existing 25' Type R sump inlet and accepts flows from Basin OS-B1 & C8.8a

(5-year storm) Tributary Basins: C8.8a Upstream flowby:	Inlet/MH Number: Inlet DP69 Total Street Flow: 7.9cfs
Flow Intercepted: 7.9cfs Inlet Size: Ex 25' type R, SUMP	Flow Bypassed:
Street Capacity: Street slope = 2.0%, capacity	= 12.5cfs, okay
(100-year storm) Tributary Basins: C8.8a Upstream flowby:	Inlet/MH Number: Inlet DP69 Total Street Flow: 17.3cfs
Flow Intercepted: 17.3cfs Inlet Size: Ex 25' type R, SUMP	Flow Bypassed:
Street Capacity: Street slope = 2.0%, capacity	= 44.0cfs (half street) is okay

Design Point 70

Design Point 70 is the storm sewer pipe flow from the offsite basins, C8.7's, and C8.8a basins and runby from Des.Pt.59. The total pipe flow is 34.5cfs/86.3cfs in the 5/100-year storm events in the storm sewer from the xcel spreadsheet calculations. The FDR for CDR20-007 (Design Point 34a) designed the storm sewer to accept 38.2cfs/84.5cfs in the existing 42" RCP storm sewer in Walleye Drive. The storm sewer has capacity for these basins.

6.0 DETENTION AND WATER QUALITY PONDS

Detention and Storm Water Quality for The Ridge at Lorson Ranch is required per El Paso County criteria. We have implemented the Full Spectrum approach for detention for the Denver Urban Drainage Districts specifications. There are four permanent full spectrum ponds previously constructed in The Hills at Lorson Ranch for this development which will incorporate storm water quality features and comply with the Lorson Ranch East MDDP. In addition, one WQ pond will drain eastward as in existing condition into the Upper Williams Creek Drainage Basin required to match existing conditions. The ponds have been sized and include access roads, outlet pipes, overflow structures, and low flow channels. This drainage report provides design information on the outlet structure, trickle channel, and the forebays.

Full Spectrum Pond Construction Requirements

All four of the detention ponds required for this project have been previously graded as part of The Hills at Lorson Ranch (PUDSP 20-003) and include Pond C1, C2.1, C2.2, and C4. The Hills at Lorson Ranch constructed Existing Pond C1 and C2.2 which are complete full spectrum ponds that do not need to be modified and include the full spectrum outlet structure, forebays, outfall storm sewer, and low flow channels. Existing Pond C2.1 and Pond C4 were graded and constructed with forebays, outfall storm sewers, and low flow channels but did not include the full spectrum outlet structure. The outlet structure for these two ponds will be discussed in this section including what type of structure is proposed. Per the Lorson East MDDP, these four ponds and downstream Pond C5 (at Fontaine/East tributary) are part of an overall storm water system to be constructed by Lorson Ranch. Existing Pond C5 (including the final configuration of the orifice plate) was completed with Lorson Ranch East Filing No. 1 in 2018 and the entire stormwater system tributary to Pond C5 will be completed with this subdivision.

Design calculations for Pond C2.1 and Pond C4 spectrum outlet structures are included in this report. The existing ponds currently have a 15' wide gravel access road at a maximum 10% slope to the pond bottom, forebay, storm sewer outfall, and concrete low flow channels. The final design of the Pond C2.1 and Pond C4 will consist of a full spectrum outlet structure and overflow weirs. Soil borings, embankment, slope, and compaction requirements for detention ponds can be found in the geotechnical report for the The Hills at Lorson Ranch prepared by RMG.

WQ Pond Construction Requirements

In addition to the four detention ponds Lorson Ranch is required to discharge the same runoff rates eastward into the Upper Williams which will require one WQ Pond to be constructed for a small area draining eastward. The WQ pond will have a 15' wide gravel access road at a maximum 10% slope to the pond bottom, forebay, and a concrete low flow channel.

Detention Pond C1 (existing pond for information only, See CDR20-007)

This is an existing permanent full spectrum detention pond that includes water quality and discharges downstream to a storm sewer system in Fontaine Boulevard. Pond C1 is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes. The 5-year and 100-year flow rates meet the Lorson East MDDP and have been modeled in the full spectrum worksheets. The outlet structure is a standard full spectrum extended detention basin structure and will include an emergency overflow spillway. See map in appendix for watershed areas.

- Watershed Area: 71.1 acres
- Watershed Imperviousness: 55%
- Hydrologic Soils Group B
- Zone 1 WQCV: 1.307ac-ft, WSEL: 5746.97
- Zone 2 EURV: 4.212ac-ft, WSEL: 5749.02, Top outlet structure set at 5749.50, 3'x6' outlet structure
- (5-yr): 4.691ac-ft, WSEL: 5749.33, 6.4cfs
- Zone 3 (100-yr): 9.954ac-ft, WSEL: 5752.39, 17.7cfs
- Pipe Outlet: 18" RCP at 0.5%
- Overflow Spillway: 28' wide bottom, elevation=5753.40, 4:1 side slopes, flow depth=1.37' 1.16' freeboard
- Micropool Elevation: 5743.40

Detention Pond C2.2 (existing pond for information only, see CDR 20-007)

This is a permanent full spectrum detention pond that includes water quality and discharges downstream to an existing storm sewer in Fontaine Boulevard. Inflow to this pond is from direct tributary development and outflow from Pond C3. The inflow hydrograph has been modeled in the full spectrum spreadsheets by adding the direct tributary area CUHP hydrograph to the upstream pond

outflow hydrograph of Pond C3. The outlet structure, overflow wall, pond forebay and low flow channel will be built as part of the CDR 20-007 project. Pond C2.2 is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes. The 5-year and 100-year flow rates meet the Lorson East MDDP and have been modeled in the modeled in the full spectrum worksheets. The outlet structure is a standard full spectrum extended detention basin structure and will include an emergency overflow spillway. See map in appendix for watershed areas.

- Watershed Area: 45.0 acres
- Watershed Imperviousness: 55%
- Hydrologic Soils Group B (95%), Group C/D (5%)
- Zone 1 WQCV: 0.829ac-ft, WSEL: 5747.25
- Zone 2 EURV: 2.658ac-ft, WSEL: 5749.17, Top outlet structure set at 5751.00, 8'x6' outlet structure
- (5-yr): 4.475ac-ft, WSEL: 5760.88, 2.7cfs
- Zone 3 (100-yr): 6.67ac-ft, WSEL: 5752.75, 42.9cfs
- Pipe Outlet: 30" RCP
- Overflow Spillway: 20' wide bottom, elevation=5754.00, 4:1 side slopes, flow depth=1.51' 1.49' freeboard
- Micropool Elevation: 5744.00

Detention Pond C2.1

This is a permanent full spectrum detention pond that includes water quality and discharges downstream to Pond C2.3. The outlet Structure and overflow wall will be built as part of the final plat for this project. The pond forebay and low flow channel were built as part of the CDR 20-007 project. Pond C2.1 is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes. The 5-year and 100-year flow rates meet the Lorson East MDDP and have been modeled in the modeled in the full spectrum worksheets. The outlet structure is a standard full spectrum extended detention basin structure and will include an emergency overflow spillway. The full spectrum print outs are in the appendix of this report. See map in appendix for watershed areas.

- Watershed Area: 74.5 acres
- Watershed Imperviousness: 55%
- Hydrologic Soils Group B
- Zone 1 WQCV: 1.377ac-ft, WSEL: 5763.42
- Zone 2 EURV: 4.415ac-ft, WSEL: 5766.20, Top outlet structure set at 5766.20, 8'x6' outlet structure
- (5-yr): 4.694ac-ft, WSEL: 5766.44, 12.8cfs
- Zone 3 (100-yr): 7.829ac-ft, WSEL: 5768.80, 65.0cfs
- Pipe Outlet: 30" RCP at 0.5%
- Overflow Spillway: 25' wide bottom, elevation=5769.30, 4:1 side slopes, flow depth=1.69' 1.01' freeboard
- Micropool Elevation: 5760.00

Detention Pond C4

This is a permanent full spectrum detention pond that includes water quality and discharges downstream to Pond C3. Pond C4 has been graded. The outlet Structure and overflow wall will be built with the final plat of this project. The pond forebay and low flow channel were built as part of the CDR 20-007 project. Pond C4 is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes. The 5-year and 100-year flow rates meet the Lorson East MDDP and have been modeled in the modeled in the full spectrum worksheets. The outlet structure is a standard full spectrum extended detention basin structure and will include an emergency overflow spillway. The full spectrum print outs are in the appendix of this report. See map in appendix for watershed areas.

- Watershed Area: 81.00 acres
- Watershed Imperviousness: 55%
- Hydrologic Soils Group B (40%), Group C/D (60%)
- Zone 1 WQCV: 1.488ac-ft, WSEL: 5767.97
- Zone 2 EURV: 4.477ac-ft, WSEL: 5770.41, Top outlet structure set at 5770.50, 6'x6' outlet structure
- (5-yr): 3.934ac-ft, WSEL: 5770.84, 16.5cfs
- Zone 3 (100-yr): 10.152ac-ft, WSEL: 5774.34, 43.7cfs
- Pipe Outlet: 24" RCP at 0.5%
- Overflow Spillway: 30' wide bottom, elevation=5775.00, 4:1 side slopes, flow depth=1.87' 1.13' freeboard
- Micropool Elevation: 5765.00

Water Quality for Basin F1.1 (4.23ac) - - - - backyards of lots draining east offsite

Developed runoff from this basin flows east offsite (shallow sheet flow) and does not include a water quality pond. Runoff from this basin is from a standard 50'x110' lot with the back 90 feet of the residential lots which flows overland east across a 145' wide open space tract prior to discharging to the east. The Runoff Reduction Method procedure from the Mile High Flood Control District spreadsheet (UD-BMP-V3.07) calculations have been applied to a standard 50' wide lot to address water quality provisions for development in this basin (see appendix). The UIA area is 4500sf (50'x90') and the RPA area is 7250sf (50'x145') per lot which can then be applied to the remaining lots within the basin. The large 145' wide open space tract provides a 100% reduction in the water quality requirements for this basin. Grading within this basin should not channelize flow from backyards and flow should be allowed to pass under any backyard fencing without obstructing or channelizing the overland flow.

Water Quality Pond F (4.9ac)

This is a permanent water quality pond that discharges eastward overland into the Upper Williams Creek drainage basin. The pond forebay, low flow channel, and outlet structure will be built as part of this project. WQ Pond F is designed in the UDCF Full Spectrum spreadsheets for Water Quality. In order to maintain existing discharge rates to the east (see Design Pt. 35), this pond allow the 5-year and 100-year storms to discharge undetained through the pond overland to the east. The outlet structure is a standard extended detention basin structure with an orifice plate. Stormwater from the outlet pipe will be dispersed by a rip rap berm and it is located 100' west of the Lorson Ranch property line which will disperse the flow. The flow from the pond is 8.4cfs which will be dispersed by the berm and a downstream easement should not be necessary. The pond print outs are in the appendix of this report. See map in appendix for watershed areas.

- Watershed Area: 4.90 acres
- Watershed Imperviousness: 55%
- Hydrologic Soils Group B (100%)
- Zone 1 WQCV: 0.09ac-ft, WSEL: 5845.04
- Zone 2 EURV: not used
- (5-yr): not used
- Zone 3 (100-yr): not used
- Micropool Elevation: 5842.77

Address downstream easement and conveyance for increased flow and point discharge

7.0 DRAINAGE AND BRIDGE FEES

The Ridge at Lorson Ranch is located within the Jimmy Camp Creek drainage basin which is currently a fee basin in El Paso County. Current El Paso County regulations require drainage and bridge fees to be paid for platting of land as part of the plat recordation process.

 \leftarrow

Lorson Ranch Metro District will compile and submit to the county on a yearly basis the Drainage and bridge fees for the approved plats and shall show all credits they have received for the same yearly time frame.

ltem	Quantity	Unit	Unit Cost	Item Total
Inlets/Manholes	65	EA	\$5000/EA	\$325,000
18" Storm	1820	LF	\$35	\$63,700
24" Storm	720	LF	\$40	\$28,800
30" Storm	1330	LF	\$45	\$59,850
36" Storm	1130	LF	\$55	\$62,150
42" Storm	245	LF	\$65	\$15,925
48" Storm	400	LF	\$85	\$34,000
			Subtotal	\$589,425
	·	·	Eng/Cont (10%)	\$58,942
			Total Est. Cost	\$648,367

 Table 7.1: Public Drainage Facility Costs (non-reimbursable)

Table 7.2: Lorson Ranch Metro District Drainage Facility Costs (non-reimbursable)

Item	Quantity	Unit	Unit Cost	Item Total
Full Spectrum Outlets	2	LS	\$20,000	\$40,000
WQ Pond	1	LS	\$20,000	\$20,000
			Subtotal	\$60,000
			Eng/Cont (15%)	\$9,000
			Total Est. Cost	\$69,000

8.0 FOUR STEP PROCESS

The site has been developed to minimize wherever possible the rate of developed runoff that will leave the site and to provide water quality management for the runoff produced by the site as proposed on the development plan. The following four step process should be considered and incorporated into the storm water collection system and storage facilities where applicable.

Step 1: Employ Runoff Reduction Practices

The Ridge at Lorson Ranch has employed several methods of reducing runoff.

• The street configuration was laid out to minimize the length of streets. Many streets are straight and perpendicular resulting in lots with less wasted space.

- There are large open space buffers under the 325' wide electric transmission easement and on the east side
- Construct outlet structures for two Full Spectrum Detention Ponds. The full spectrum detention mimics existing storm discharges and includes water quality.

Step 2: Stabilize Drainageways

East Tributary of Jimmy Camp Creek is a major drainageway located west of this site. In 2014 and in 2018 the East Tributary of JCC was reconstructed and stabilized per county criteria. The design included a natural sand bottom and armored sides.

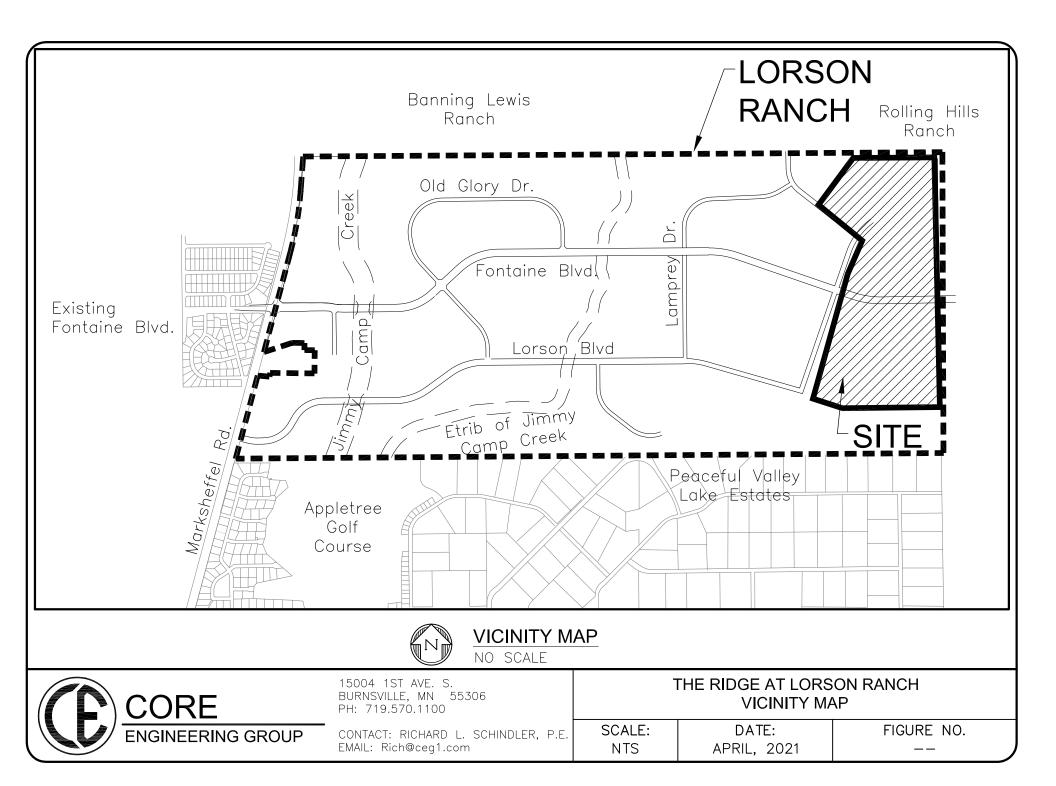
Step 3: Provide Water Quality Capture Volume

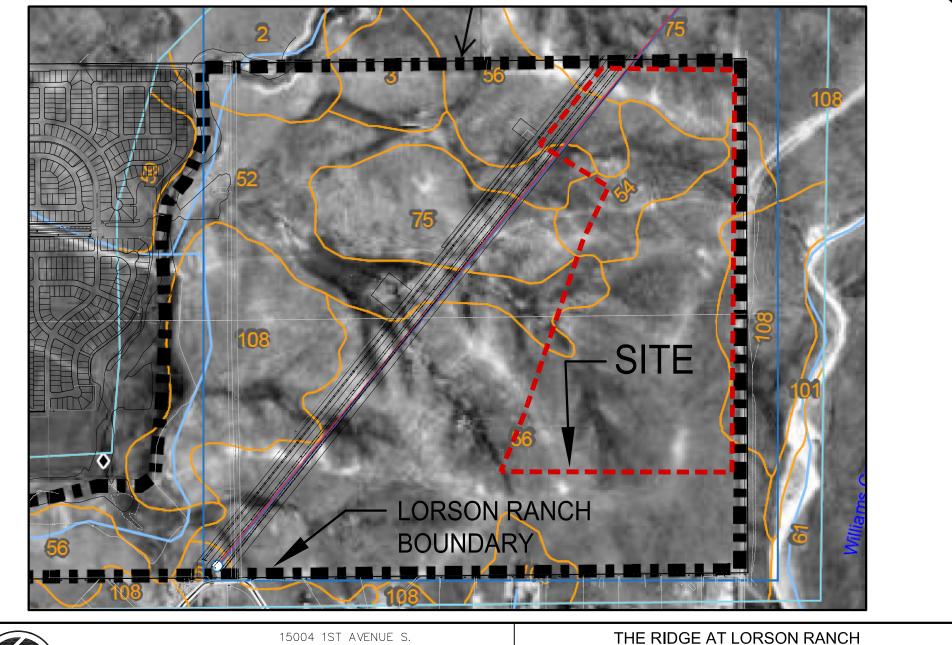
Treatment of the water quality capture volume (WQCV) is required for all new developments The Ridge at Lorson Ranch will construct two full spectrum stormwater extended detention basins and one WQ pond which include Water Quality Volumes and WQ outlet structures.

Step 4: Consider Need for Industrial and Commercial BMP's

There are no commercial or industrial areas within this site.

9.0 CONCLUSIONS


This drainage report has been prepared in accordance with the City of Colorado Springs/El Paso County Drainage Criteria Manual. The proposed development and drainage infrastructure will not cause adverse impacts to adjacent properties or properties located downstream. Several key aspects of the development discussed above are summarized as follows:


- Developed runoff will be conveyed via curb/gutter and storm sewer facilities
- The East Tributary of Jimmy Camp Creek has been reconstructed west of this study area
- Bridges over the East Tributary at Lorson Boulevard and Fontaine Boulevard and have been constructed providing access to this site.
- Detention and water quality for this site area will be provided in four permanent ponds and one runoff reduction area, and one WQ Pond.

10.0 REFERENCES

- 1. City of Colorado Springs/El Paso County Drainage Criteria Manual DCM, dated November, 1991
- 2. Soil Survey of El Paso County Area, Colorado by USDA, SCS
- 3. Jimmy Camp Creek Drainage Basin Planning Study, Dated March 9, 2015, by Kiowa Engineering Corporation
- 4. City of Colorado Springs "Drainage Criteria Manual, Volume 2
- 5. El Paso County "Engineering Criteria Manual"
- 6. Lorson Ranch East MDDP, June 30, 2017 by Core Engineering.
- 7. El Paso County Resolution #15-042, El Paso County adoption of Chapter 6 and Section 3.2.1 of the City of Colorado Springs Drainage Criteria Manual dated May, 2014.
- 8. Lorson Ranch East MDDP prepared by Core Engineering Group, dated November 27, 2017
- 9. Final Drainage Report for CDR 20-007 prepared by Core Engineering Group, dated October 22, 2020
- 10. Final Drainage Report for The Hills at Lorson Ranch Filing No. 1 prepared by Core Engineering Group, Reference SF 21-010

APPENDIX A – VICINTIY MAP, SOILS MAP, FEMA MAP

15004 1ST AVENUE S. BURNSVILLE, MN 55306 PH: 719.570.1100		THE RIDGE AT LORS SOILS MAR	
CONTACT: RICHARD L. SCHINDLER, P.E.EMAIL: Rich@ceg1.com	SCALE: NTS	DATE: APRIL, 2021	FIGURE NO.
		ALINE, ZUZI	

ġ.

Lomr 16:00-0605P 60,522220 LOOD (VAY) 2006 (42) Zone AB

GYG

PASO COUNTY-

AREA OF MINIMAL FLOL & HAZARD Z 200 X 08041 C0976 G

eff. 12/7/2018

site

Zone A

Standard Form SF-2. Storm Drainage System Design (Rational Method Procedure)

ENG	INEEKI	NG GROU		Date: <u>F</u> Checke	⁻ eb. 17, ed By: <u>L</u>	<u>2021</u> eonard	d Beasl Beasley	-					Project Design	Storm:	<u>54</u> idge at l <u>5 - Yea</u>	r Event					
	Ч				ect Run	off				Total	Runoff		Str	reet		Pipe		T	avel Tin	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	t	CA		Ø	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ā	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
EX-B1			14.42	0.15	28.1	2.16	2.58	5.6													
OS-B1.1			11.47	0.15	21.0	1.72	3.02	5.2													
EX-B	1X	25.89							29.7	3.88	2.50	9.7									
C1.1-ex			12.49	0.09	23.8	1.12	2.83	3.2													
C2.1-ex			26.58	0.10	33.6	2.66	2.31	6.1													
C2.2-ex			60.28	0.09	35.1	5.43	2.25	12.2													
C3.1-ex			8.36	0.12	28.6	1.00	2.55	2.6													
OS-C4.1			3.90	0.10	20.7	0.39	3.04	1.2													
C4.2-ex			47.93	0.13	31.6	6.23	2.41	15.0													
C4-ex	4X	51.83							34.1	6.62	2.29	15.2									
EX-F1			22.36	0.12	33.1	2.68	2.33	6.3													
EX-F2			17.49	0.15	15.4	2.62	3.48	9.1													
EX-F	2X	39.85							33.1	5.31	2.33	12.4									
EX-G			13.65	0.08	26.0	1.09	2.70	2.9													
Basin G1			10.61	0.08	22.3	0.85	2.93	2.5													

ENG.	INEERI	NG GROI		Date: F	⁻ eb. 17,	<u>Leonar</u> 2021 eonard							Project	o: <u>100.0</u> t: <u>The R</u> n Storm:	idge at l			rent)			
					ect Run		Deuble	<u>y</u>		Total I	Runoff			reet	100 10	Pipe	int (Our		ravel Tin	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		a	tc	Σ (CA)		a	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	ŧ	Remarks
		Ar	ac.		min.		in/hr	cfs	min	cfs	%	cfs	cfs	%	in	ft	ft/sec	min			
EX-B1			14.42	0.50	28.1	7.21	4.33	31.2													
OS-B1.1			11.47	0.50	21.0	5.74	5.06	29.0													
EX-B	1X	25.89							29.7	12.95	4.19	54.2									
C1.1-ex			12.49	0.36	23.8	4.50	4.75	21.4													
C2.1-ex			26.58	0.39	33.6	10.37	3.88	40.2													
C2.2-ex			60.28	0.36	35.1	21.70	3.77	81.8													<u> </u>
C3.1-ex			8.36	0.42	28.6	3.51	4.28	15.0													
C4.1-ex			3.90	0.39	20.7	1.52	5.10	7.8													
C4.2-ex			47.93	0.44	31.6	21.09	4.04	85.1													
C4-ex	4X	51.83							34.1	22.61	3.84	86.9									
EX-F1			22.36	0.44	33.1	9.84	3.91	38.5													
EX-F2			17.49	0.50	15.4	8.75	5.84	51.1													
EX-F	2X	39.85							33.1	18.58	3.91	72.7									
EX-G			13.65	0.35	26.0	4.78	4.52	21.6													
Basin G1			10.61	0.35	22.3	3.71	4.91	18.2													┣—

	DRE				<u>Standa</u>	ard For	m SF-2.	Storm	Draina	ige Sys	tem De	sign (R	ational	Metho	d Proce	dure)					
ENG	INEERI	NG GRO	UP	Date: F	ated By: Feb. 18,	2021							Projec	o: <u>100.0</u> t: The R	lidge at						
	Ŧ			Checke Dir	ed By: <u>L</u> rect Rur	<u>eonard</u> off	Beasle	Y		Total	Runoff			<u>Storm:</u> reet	<u>5 - Yea</u>	Pipe	t (Prop		ravel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		a	tc	Σ (CA)		a	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
	ă	Area	ac.	0	min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
C1.1	I-1		3.18	0.45	11.8	1.43	3.89	5.6													
C1.2	I-2		1.52	0.45	11.5	0.68	3.92	2.7													
C1.1-C1.2	3	4.70							11.8	2.12	3.89	8.2									<u> </u>
C1.3	I-4		6.71	0.45	21.8	3.02	2.96	8.9													<u> </u>
C1.1-C1.3	5	11.41							26.1	5.13	2.69	13.8									<u> </u>
C1.4			2.51	0.45	13.2	1.13	3.72	4.2													<u> </u>
C1.5	I-6		1.61	0.45	9.9	0.72	4.14	3.0													
C1.6			9.35	0.45	20.5	4.21	3.05	12.8					-								
C1.5-C1.6	7	10.96							20.5	6.06	3.05	18.5									<u> </u>
C3.1	I-12		6.20	0.45	14.7	2.79	3.55	9.9													<u> </u>
C3.2	I-13		5.01	0.45	15.3	2.25	3.49	7.9													<u> </u>
C3.1-C3.2	14	11.21							16.1	5.04	3.41	17.2									<u> </u>
C3.3	I-15		4.75	0.45	11.2	2.14	3.96	8.5													<u> </u>
C3.1-C3.3	16	15.96							18.1	7.18	3.24	23.3									<u> </u>
C3.4	I-17		3.77	0.45	9.4	1.70	4.23	7.2					-								<u> </u>
C3.1-C3.4	18	19.73							18.9	8.88	3.17	28.2									<u> </u>
C3.5	I-19		6.32	0.45	14.1	2.84	3.62	10.3													
C3.1-C3.5	20	26.05							19.9	11.72	3.10	36.3									<u> </u>
C3.6a	I-20a		3.15	0.45	11.2	1.42	3.96	5.6													<u> </u>
C3.1-C3.6a	20b	29.20							20.0	13.14	3.09	40.6									<u> </u>
C3.6b	I-21		4.80	0.45	16.8	2.16	3.35	7.2													<u> </u>
C3.7	I-23		4.58	0.45	9.4	2.06	4.22	8.7													<u> </u>
C3.1-C3.7	24	38.58	-						21.0	17.36	3.02	52.4									<u> </u>
C3.8	I-25		6.51	0.45	16.1	2.93	3.41	10.0													<u> </u>
C3.9	I-27		4.55	0.45	11.1	2.05	3.97	8.1													<u> </u>
C3.1-C3.9	28	49.64							22.3	22.34	2.93	65.4									<u> </u>
C3.10	I-29		6.01	0.45	16.4	2.70	3.39	9.2													<u> </u>
C3.1-C3.10	30	55.65							24.4	25.04	2.79	69.9									<u> </u>
C4.1			4.61	0.45	20.3	2.07	3.07	6.4													<u> </u>
C4.2			3.08	0.45	15.7	1.39	3.45	4.8													<u> </u>
C4.1-C4.2	31	7.69							20.6	3.46	3.04	10.5									<u> </u>
C4.3			3.07	0.46	10.7	1.41	4.02	5.7					-								<u> </u>

<u> </u>				Date: F	eb. 18,	2021	<u>d Beasl</u> Beasley						Projec	o: <u>100.00</u> :t: The R n Storm:	idge at	Lorson r Even	Ranch t (Prop	osed)			
	٦t			Dir	ect Rur	noff		-		Total	Runoff			reet		Pipe	1		ravel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		a	tc	Σ (CA)		a	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Are	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
C4.4			3.29	0.46	10.4	1.51	4.07	6.2													
C4.1-C4.4	34	14.05							22.6	6.39	2.91	18.6									
C4.5			0.63	0.90	5.0	0.57	5.17	2.9													
F1.1			4.23	0.45	11.3	1.90	3.94	7.5													-
F1.2			19.06	0.08	11.0	1.52	3.98	6.1													
F1.3			1.15	0.46	13.6	0.53	3.67	1.9													
F1.4			3.75	0.45	15.3	1.69	3.49	5.9													
F1.1-F1.4	35	28.19							15.3	3.43	3.49	12.0									┣_
													-								┡
C5.1a	I-39		2.33	0.47	12.5	1.10	3.79	4.2													
C5.1b	1-36		6.32	0.45	10.8	2.84	4.02	11.4													
C5.1c	I-37		3.78	0.45	8.6	1.70	4.35	7.4													
C5.1b-C5.1c	38	10.10							10.8	4.55	4.02	18.3									
C5.1a-C5.1c	I-39 &	12.43							14.4	5.64	3.58	20.2									
C5.1d	40 I-41	12.10	5.67	0.45	14.0	2.58	3.62	9.3		0.01	0.00	20.2									
C5.1a-C5.1d	42	18.10	0.01	0.10	11.0	2.00	0.02	0.0	14.4	4.28	3.58	15.3	-								
C5.1e	1-43	10.10	6.44	0.46	16.5	2.96	3.38	10.0		1.20	0.00	10.0									
C5.1a-C5.1e		24.54	0.44	0.40	10.0	2.30	0.00	10.0	16.5	11.18	3.38	37.8									
C5.2		2-1.04	1.71	0.49	8.5	0.84	4.37	3.7	10.0		0.00	01.0									
C5.2			2.26	0.49	10.3	1.04	4.09	4.3													Ĺ
C5.2-C5.3	I-45 &	3.97	2.20	0.40	10.3	1.04	שט.ד	- .J	10.3	1.88	4.09	7.7									
	46 I-47	5.87	4.12	0.45	10.7	1.85	4.03	7.5	10.3	1.00	7.09	1.1	-								
C8.1a				0.45	10.7																
C8.1b	1-49		3.69	0.48	14.6	1.77	3.56	6.3													
C8.1c	I-48	0.00	1.88	0.46	11.3	0.86	3.94	3.4	14.0	4.40	0.50	10.0									
C8.1	I-49	9.69	0.40	0.40	0.0	4.0.1	4.01	4 -	14.6	4.49	3.56	16.0									—
C8.2	I-51		2.12	0.49	8.9	1.04	4.31	4.5					-								
OS-C4a			3.40	0.09	11.8	0.31	3.88	1.2													
C8.3a	I-53		5.88	0.46	11.8	2.70	3.89	10.5	1					1			-	1	+		-

		NG GROU	UP						Draina	ge Syst	tem Des	sign (R			d Proce	<u>dure)</u>					
				Date: F	eb. 18,	Leonar 2021 eonard							Projec		<u>64</u> lidge at <u>5 - Yea</u>			osed)			
	t			Dir	rect Rur	noff	Deusie	<u>Y</u>		Total	Runoff			reet	0 - 100	Pipe			ravel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		Ø	tc	Σ (CA)	.—	ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
	ă	Area	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
OS-C4b			2.10	0.11	12.7	0.23	3.78	0.9													
C8.3b			3.46	0.48	14.2	1.66	3.61	6.0													
C8.3c (OS-C4b-C8.3c)	I-54	7.89	2.33	0.48	10.7	1.12	4.03	4.5	14.2	3.01	3.61	10.9									
OS-C4a-C8.3c	I-54	16.06							20.0	5.92	3.09	18.3	-								
C8.3d	I-56		5.26	0.48	15.1	2.52	3.51	8.9					-								
OS-C4a-C8.3d	I-56	21.32							20.6	8.45	3.05	25.7									
C8.4	I-57		6.70	0.46	14.5	3.08	3.57	11.0													╞
C8.1-C8.4	I-51	39.83							21.1	12.57	3.01	37.9									\vdash
C8.5	I-59		3.84	0.49	13.4	1.88	3.69	7.0													╞
C8.6			0.79	0.90	5.6	0.71	5.58	4.0													
C8.7a			4.52	0.49	13.7	2.21	3.66	8.1													
C8.7b	I-63		1.77	0.49	11.3	0.87	3.94	3.4													
C8.7a-C8.7b	I-63	6.29							13.9	3.08	3.63	11.2	-								
C8.7c	I-64		4.94	0.49	11.7	2.42	3.90	9.4													
C8.7a-C8.7c	I-64	11.23							14.4	5.50	3.59	19.7									
C8.7d	I-66		0.27	0.46	5.0	0.12	5.17	0.6													
C8.7e C8.6+C8.7e	I-62		6.09	0.47	11.9	2.86	3.87	11.1	13.4	2 57	2.60	12.2	-								
C8.7a-C8.7e	1-02	17.59							15.4	3.57 8.49	3.69 3.48	13.2 29.5	-								
C8.6-C8.7e	I-68	18.38							15.4	9.20	3.48	31.9									
	1 00	10.00							10.0	0.20	0.11	01.0									
OS-B1			5.11	0.15	12.7	0.77	3.77	2.9													L
C8.8a			5.65	0.49	23.4		2.86	7.9					 								
OS-B1-C8.8a	I-69	10.76							27.3	3.54	2.62	9.3									
68+69	I-70	29.14							27.3	12.74	2.62	33.4									
C8.8			7.80	0.22	15.6	1.72	3.46	5.9													
C8			73.39	0.43	27.5	31.46	2.61	82.2													
																					╞
																					-
													L								

	INEERII	IG GRUI	01	Calcula Date: <u>F</u>			d Beas	leγ						o: <u>100.0</u> t: The R		Lorson	Ranch				
	r			Checke	ed By: <u>L</u>	eonard	Beasle	Y	1	Tatal	D		Desigr	n Storm:		'ear Ev					
Street or Basin	Design Point	Area Design	p Area (A)	Runoff Coeff. (C)	rect Rur ਼ੁੁ min.	CA	 in/hr	ර cfs	ې min	Σ (CA)	Runoff 	O cfs	Slope %	reet Street Flow sto	sto Flow	Pipe Slope %	Tipe Size	t Length	ravel Tir	ne ≠ min	-
C1.1	I-1	4	3.18	0.59	11.8	1.88	6.52	12.2				015	/0	015	015	70			10360		
C1.2	I-2		1.52	0.59	11.5	0.90	6.58	5.9					-								_
C1.1-C1.2	3	4.70							11.8	2.77	6.52	18.1	-								_
C1.3	I-4		6.71	0.59	21.8	3.96	4.97	19.7													_
C1.1-C1.3	5	11.41							26.1	6.73	4.52	30.4									_
C1.4			2.51	0.59	13.2	1.48	6.24	9.2					-								_
C1.5	I-6		1.61	0.59	9.9	0.95	6.96	6.6													-
C1.6			9.35	0.59	20.5	5.52	5.12	28.3													-
C1.5-C1.6	7	10.96							20.5	7.95	5.12	40.7	 								$\left \right $
C3.1	I-12		6.20	0.59	14.7	3.66	5.96	21.8					 								$\left \right $
C3.2	I-13		5.01	0.59	15.3	2.96	5.86	17.3													╞
C3.1-C3.2	14	11.21							16.1	6.61	5.73	37.9	- 								_
C3.3	I-15		4.75	0.59	11.2	2.80	6.65	18.6					·								_
C3.1-C3.3	16	15.96							18.1	9.42	5.44	51.3	-								_
C3.4	I-17		3.77	0.59	9.4	2.22	7.10	15.8					- 								_
C3.1-C3.4	18	19.73							18.9	11.64	5.32	62.0	- 								-
C3.5	I-19		6.32	0.59	14.1	3.73	6.07	22.6													F
C3.1-C3.5	20	26.05							19.9	15.37	5.20	80.0									_
C3.6a	I-20a		3.15	0.59	11.2	1.86	6.64	12.3					- 								-
C3.1-C3.6a	20b	29.20							20.0	17.23	5.19	89.3									
C3.6b	I-21		4.80	0.59	16.8	2.83	5.63	15.9					-								-
C3.7	I-23		4.58	0.59	9.4	2.70	7.08	19.1													╞
C3.1-C3.7	24	38.58							21.0	22.76	5.06	115.2									-
C3.8	I-25		6.51	0.59	16.1	3.84	5.73	22.0					 								+
C3.9	I-27		4.55	0.59	11.1	2.68	6.66	17.9					 								+
C3.1-C3.9	28	49.64							22.3	29.29	4.92	144.0	 								+
C3.10	I-29		6.01	0.59	16.4	3.55	5.69	20.2					 								╞
C3.1-C3.10	30	55.65							24.4	32.83	4.69	153.9	 								╞
C4.1			4.61	0.59	20.3	2.72	5.15	14.0					 								╞
C4.2			3.08	0.59	15.7	1.82	5.79	10.5													-
C4.1-C4.2	31	7.69							20.6	4.54	5.11	23.2									╞
C4.3			3.07	0.60	10.7	1.84	6.76	12.4													╞
C4.4			3.29	0.60	10.4	1.97	6.84	13.5													F
C4.1-C4.4	34	14.05							22.6	8.35	4.88	40.8									

		NG GRO	UP		<u>Standa</u>	ard For	m SF-2.	Storm	Draina	ige Syst	tem De	sign (R	ational	l Metho	d Proce	dure)					
				Date: F	eb. 19,	2021	rd Beasl						Projec	o: <u>100.0</u> :t: The R n Storm:	lidge at			onosod	N		
	<u>ب</u>				ect Rur		Beasle	Y		Total	Runoff			reet	100 <u>- 1</u>	Pipe	ent (Pr		<u>)</u> ravel Tir	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		a	tc	Σ (CA)		ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
	De	Area	ac.	0	min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
C4.5			0.63	0.96	5.0	0.60	8.68	5.2					-								
F1.1			4.23	0.59	11.3	2.50	6.62	16.5					-								
F1.2			19.06	0.35	11.0	6.67	6.68	44.6													
F1.3			1.15	0.65	13.6	0.75	6.16	4.6					-								
F1.4			3.75	0.60	15.3	2.25	5.86	13.2	-												
F1.1-F4.4	35								15.3	12.16	5.86	71.3									
													_								
													_								
															1						
													-								
													_								
													-								
C5.1a	I-39		2.33	0.62	12.5	1.44	6.36	9.2													
C5.1b	I-36		6.32	0.59	10.8	3.73	6.75	25.2					-								
C5.1c	I-37		3.78	0.59	8.6	2.23	7.30	16.3													
C5.1b-C5.1c	38	10.10							10.8	5.96	6.75	40.2									
C5.1a-C5.1c	1-39 &	12.43							14.4	7.40	6.01	44.5	-								
C5.1d	40 I-41		5.67	0.60	14.0	3.40	6.08	20.7													
C5.1a-C5.1d	42	18.10							14.4	10.81	6.01	64.9									
		10.10		0.00	40 -	0.00	E 00	01.0	14.4	10.01	0.01	04.9									
C5.1e	I-43		6.44	0.60	16.5	3.86	5.68	21.9					-				1	1			
C5.1a-C5.1e	44	24.54							16.5	14.67	5.68	83.3									
C5.2			1.71	0.65	8.5	1.11	7.33	8.2					<u> </u>								
C5.3			2.26	0.61	10.3	1.38	6.87	9.5													
C5.2-C5.3	I-45 & 46	3.97							10.3	2.49	6.87	17.1									
C8.1a	I-47		4.12	0.59	10.7	2.43	6.76	16.4							-						
C8.1b	I-49		3.69	0.63	14.6	2.32	5.97	13.9													
C8.1c	I-48		1.88	0.61	11.3	1.15	6.62	7.6													
C8.1	I-49	9.69				-		-	14.6	5.90	5.97	35.3									
		0.00	2 4 2	0.65	0 0	1 20	7 00	10.0		0.00	0.01	00.0									
C8.2	I-51		2.12	0.65	8.9	1.38	7.23	10.0					-								
OS-C4a			3.40	0.35	11.8	1.19	6.51	7.7													

L

		NG GRO	UP	Calcula	Standa ated By: eb. 19,	Leonar	d Beas			<u></u>			Job No	o: <u>100.0</u>			Ranch				
				Checke	ed By: <u>L</u>	eonard	Beasle	v					Desigr	Storm:	100 - Y	ear Ev	ent (Pro				
	Point				ect Rur	noff					Runoff		St	reet		Pipe	υ		ravel Tin	ne	<i>"</i>
Street or Basin	Design Pc	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA		a	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	Ħ	Remarks
		Are	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	┣
C8.3a	I-53		5.88	0.60	11.8	3.53	6.53	23.0													
OS-C4a-C8.3a	I-54	8.17							14.0	4.35	6.08	26.5									
OS-C4b			2.10	0.41	12.7	0.86	6.34	5.5													
C8.3b			3.46	0.63	14.2	2.18	6.06	13.2													
C8.3c (OS- C4b-C8.3c)	I-54	7.89	2.33	0.63	10.7	1.47	6.76	9.9	14.2	4.51	6.06	27.3									
OS-C4a-C8.3c	I-54	16.06							20.0	8.86	5.18	45.9									
C8.3d	I-56		5.26	0.62	15.1	3.26	5.89	19.2													
OS-C4a-C8.3d	1-56	21.32							20.6	11.30	5.12	57.8									
C8.4	I-57		6.70	0.60	14.5	4.02	5.99	24.1													
C8.1-C8.4	I-51	39.83	0.70	0.00	14.0	4.02	0.00	27.1	21.1	17.52	5.06	88.6									
		39.03	0.04	0.05	40.4	0.50	0.00	45.5	21.1	17.52	5.00	00.0									
C8.5	I-59		3.84	0.65	13.4	2.50	6.20	15.5													
C8.6			0.79	0.96	5.6	0.76	8.40	6.4													
C8.7a			4.52	0.65	13.7	2.94	6.14	18.0													
C8.7b	I-63		1.77	0.65	11.3	1.15	6.62	7.6													
C8.7a-C8.7b	I-63	6.29							13.9	4.09	6.10	24.9									
C8.7c	I-64		4.94	0.65	11.7	3.21	6.55	21.0													
C8.7a-C8.7c	I-64	11.23							14.4	7.30	6.01	43.8									
C8.7d			0.27	0.61	5.0	0.16	8.68	1.4													
C8.7a-C8.7d	I-66	11.50							15.0	7.46	5.91	44.1									
C8.7e			6.09	0.62	11.9	3.78	6.50	24.5													
C8.6+C8.7e	I-62								13.4	4.53	6.19	28.1									
C8.7a-C8.7e	-	17.59							15.4			65.7									
C8.6-C8.7e	I-68	18.38										69.9									
00.0-00.78	1-00	10.30							15.5	12.00	5.03	09.9									
OS-B1			5.11	0.49	12.7	2.50	6.33	15.8													
C8.8a			5.65	0.64	23.4	3.62	4.80	17.3													
OS-B1-C8.8a	I-69	10.76							27.3	6.12	4.40	26.9						-			-
68+69	I-70	29.14							27.3	18.12	4.40	79.7									
C8.8			7.80	0.48	15.6	3.74	5.81	21.8													
C8			73.39	0.60	27.5	44.16	4.39	193.7													
																					<u> </u>
																		1	1		1

Γ

Preliminary Drainage Plan CURRENT CONDITIONS COEFFICIENT "C" CALCULATIONS

		Hydro	"C" CALCULATI		05	10/4-1 07	0400	M/H-1 0 100	lang	T
BASIN	Soil No.	Group	Area	Cover (%)	C5	Wtd. C5	C100	Wtd. C100	Impervious	Type of Cover
C2.1-ex	56	В	20.95	78.82%	0.09	0.07	0.36	0.28	100%	Undeveloped
	52/54	С	5.63	21.18%	0.16	0.03	0.51	0.11	80%	Undeveloped
			26.58	100.00%		0.10		0.39		
C2.2-ex	56	В	58.51	97.06%	0.09	0.09	0.36	0.35	10%	Undeveloped
	52	С	1.77	2.94%	0.16	0.00	0.51	0.01	10%	Undeveloped
			60.28	100.00%		0.09		0.36		
C3.1-ex	56	В	4.95	59.21%	0.09	0.05	0.36	0.21	10%	Undeveloped
	54	D	3.41	40.79%	0.16	0.07	0.51	0.21	10%	Undeveloped
			8.36	100.00%		0.12		0.42		
C4.1-ex	56	В	3.54	80.64%	0.09	0.07	0.36	0.29	10%	Undeveloped
	75	D	0.85	19.36%	0.16	0.03	0.51	0.10	10%	Undeveloped
			4.39	100.00%		0.10		0.39		
C4.2-ex	56/108	В	21.23	44.29%	0.09	0.04	0.36	0.16	10%	Undeveloped
	52/54/75	D	26.70	55.71%	0.16	0.09	0.51	0.28	10%	Undeveloped
			47.93	100.00%		0.13		0.44		
EX-F1	56/108	В	8.74	39.09%	0.08	0.03	0.35	0.14	10%	Undeveloped
EXTT	52	C	13.62	60.91%	0.15	0.09	0.50	0.30	10%	Undeveloped
	52	0	22.36	100.00%	0.10	0.03	0.00	0.30	1070	Ondeveloped
			22.30	100.00 /0		0.12		0.44		
EX-F2	56/108	В	0.23	1.32%	0.08	0.00	0.35	0.00	10%	Undeveloped
	50/108	C	17.26	98.68%	0.08	0.00	0.50	0.00	10%	Undeveloped
	52	U		100.00%	0.15	0.15	0.50		10 /0	Ondeveloped
EX-G	50/400		17.49		0.00		0.25	0.50	100/	Lindovalanad
EX-G	56/108	B	13.27	100.00%	0.08	0.08	0.35	0.35	10%	Undeveloped
	52	С	0.00	0.00%	0.15	0.00	0.50	0.00	10%	Undeveloped
			13.27	100.00%		0.08		0.35		

Standard Form SF-1. Time of Concentration-Current

Calculated By: <u>Leonard Beasley</u> Date: <u>Feb. 17, 2021</u> Checked By: <u>Leonard Beasley</u>

							beasley						
	Sub-Ba	asin Data		Ir	nitial Overlar	nd Time (t i)			Т	ravel Time (t	t)		Final t _c
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	Ti minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	Т t minutes	Computed tC Minutes	USDCM Recommended tc=ti+tt (min)
EX-B1	0.15	14.42	7.0	300.00	4.00%	0.27	18.80	575.00	4.00%	1.40	6.85		
			20.0					375.00	1.60%	2.53	2.47	28.12	28.12
OS-B1.1	0.15	11.47	20.0	300.00	4.00%	0.27	18.80	550.00	4.40%	4.20	2.19	20.99	20.99
(EX-B) 1X	0.15	20.06	20.0	300.00	2.00%	0.21	23.63	650.00	0.80%	1.79	6.06	29.69	29.69
C1.1-ex	0.09	12.49	7.0	300.00	5.40%	0.28	18.16	434.00	5.50%	1.64	4.41		
			15.0					225.00	4.44%	3.16	1.19	23.75	23.75
C2.1-ex	0.10	26.58	7.0	300.00	5.33%	0.28	18.06	1347.00	5.72%	1.67	13.41		
			15.0					266.00	1.88%	2.06	2.16	33.62	33.62
C2.2-ex	0.09	60.28	7.0	140.00	3.57%	0.16	14.22	1216.00	4.28%	1.45	13.99		
			15.0					1123.00	3.29%	2.72	6.88	35.10	35.10
C3.1-ex	0.12	8.36	7.0	300.00	6.00%	0.29	17.01	1052.00	6.10%	1.73	10.14		
			15.0					152.00	1.32%	1.72	1.47	28.63	28.63
OS-C4.1	0.10	4.39	7.0	300.00	4.50%	0.26	19.10	143.00	4.60%	1.50	1.59	20.68	20.68
C4.2-ex	0.13	47.93	7.0	300.00	5.25%	0.28	17.60	500.00	5.25%	1.60	5.20		
			15.0					1307.00	2.75%	2.49	8.76	31.55	31.55

Standard Form SF-1. Time of Concentration-Current

Calculated By: <u>Leonard Beasley</u> Date: <u>Feb. 17, 2021</u> Checked By: Leonard Beasley

Checked by. <u>Leonard Beasiey</u>													
	Sub-Ba	asin Data		Ir	nitial Overlar	nd Time (t i)				Final t _c			
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	Ti minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	Тt minutes	Computed tC Minutes	USDCM Recommended tc=ti+tt (min)
(C4-ex) 4X	0.13	52.32	7.0	300.00	4.50%	0.27	18.52	143.00	4.60%	1.50	1.59		
			7.0					500.00	5.25%	1.60	5.20		
			15.0					1307.00	2.75%	2.49	8.76	34.06	34.06
EX-F1	0.12	22.36	7.0	300.00	3.30%	0.24	20.67	950.00	3.30%	1.27	12.45	33.12	33.12
EX-F2	0.15	17.49	15.0	221.00	6.80%	0.27	13.55	406.00	5.90%	3.64	1.86	15.40	15.40
(EX-F) 2X	0.13	39.85	7.0	300.00	3.30%	0.24	20.46	390.00	3.30%	1.27	5.11	25.57	25.57
EX-G	0.08	13.27	7.0	300.00	4.80%	0.26	19.07	640.00	4.80%	1.53	6.96	26.02	26.02
Basin G1	0.08	10.61	7.0	300.00	4.80%	0.26	19.07	300.00	4.80%	1.53	3.26	22.33	22.33

15004 1st Avenue South

Burnsville, MN 55306

PROJECT NAME: The Ridge at Lorson Ranch PROJECT NUMBER: 100.064 ENGINEER: LAB DATE: Feb. 19, 2021

15

BASIN	Soil No.	Hydro Group	Area	Cover (%)	C5	Wtd. C5	C100	Wtd. C100	Impervious	Type of Cover
C1.1	56	В	3.18		0.45		0.59		65%	1/8 ac. Single Fan
C1.2	56	В	1.52		0.45		0.59		65%	1/8 ac. Single Fan
C1.3	56	В	13.47		0.45		0.59		65%	1/8 ac. Single Fan
C1.4	56	В	5.19		0.45		0.59		65%	1/8 ac. Single Far
C1.5	56	В	0.70		0.45		0.59		65%	1/8 ac. Single Far
C1.6	56/108	В	9.35		0.45		0.59		65%	1/8 ac. Single Far
C3.1	56	В	6.20		0.45		0.59		65%	1/8 ac. Single Far
C3.2	56	В	5.01		0.45		0.59		65%	1/8 ac. Single Far
C3.3	56	В	4.75		0.45		0.59		65%	1/8 ac. Single Far
C3.4	56	В	3.77		0.45		0.59		65%	1/8 ac. Single Far
C3.5	56	В	6.32		0.45		0.59		65%	1/8 ac. Single Far
C3.6a	56	В	3.15		0.45		0.59		65%	1/8 ac. Single Far
C3.6b	56	В	4.80		0.45		0.59		65%	1/8 ac. Single Far
C3.7	56	В	4.58		0.45		0.59		65%	1/8 ac. Single Far
C3.8	56	В	6.51		0.45		0.59		65%	1/8 ac. Single Far
C3.9	56	В	4.55		0.45		0.59		65%	1/8 ac. Single Far
C3.10	56	В	6.01		0.45		0.59		65%	1/8 ac. Single Far
C4.1	56	В	4.61		0.45		0.59		65%	1/8 ac. Single Far
C4.2	56	В	3.08		0.45		0.59		65%	1/8 ac. Single Far
C4.3	56	В	2.46	80.13%	0.45	0.36	0.59	0.47	65%	1/8 ac. Single Far
	52	С	0.61	19.87%	0.49	0.10	0.65	0.13	65%	1/8 ac. Single Far
			3.07	100.00%		0.46		0.60		
C4.1	56	В	4.61		0.45		0.59		65%	1/8 ac. Single Far
C4.2	56	В	3.08		0.45		0.59		65%	1/8 ac. Single Far
J 1.2			0.00		0.70		0.00		0070	
C4.3	56	В	2.46	80.13%	0.45	0.36	0.59	0.47	65%	1/8 ac. Single Far
	52	С	0.61	19.87%	0.49	0.10	0.65	0.13	65%	1/8 ac. Single Far
			3.07	100.00%		0.46		0.60		

Preliminary Drainage Plan	
---------------------------	--

		Drainage Pla CONDITION		T "C" CALCULAT	IONS					
C4.4	56	В	2.56	77.81%	0.45	0.35	0.59	0.46	65%	1/8 ac. Single Fami
	52	С	0.73	22.19%	0.49	0.11	0.65	0.14	65%	1/8 ac. Single Fam
			3.29	100.00%		0.46		0.60		
C4.5	56	В	0.26	41.27%	0.90	0.37	0.96	0.40	100%	Roadway
	52	С	0.37	58.73%	0.90	0.53	0.96	0.56	100%	Roadway
			0.63	100.00%		0.90		0.96		
C5.1a	56	В	1.34	57.51%	0.45	0.26	0.59	0.34	65%	1/8 ac. Single Fam
	54/52	D/C	0.99	42.49%	0.49	0.21	0.65	0.28	65%	1/8 ac. Single Fan
			2.33	100.00%		0.47		0.62		
C5.1b	56	В	5.96	94.30%	0.45	0.42	0.59	0.56	65%	1/8 ac. Single Fan
	52	С	0.36	5.70%	0.49	0.03	0.65	0.04	65%	1/8 ac. Single Fan
			6.32	100.00%		0.45		0.59		
C5.1c	56	В	3.54	93.65%	0.45	0.42	0.59	0.55	65%	1/8 ac. Single Fan
	52	С	0.24	6.35%	0.49	0.03	0.65	0.04	65%	1/8 ac. Single Fan
			3.78	100.00%		0.45		0.59		
C5.1d	56	В	4.98	87.83%	0.45	0.40	0.59	0.52	65%	1/8 ac. Single Fan
	52	С	0.69	12.17%	0.49	0.06	0.65	0.08	65%	1/8 ac. Single Fan
			5.67	100.00%		0.45		0.60		
C5.1e	56	В	5.44	84.47%	0.45	0.38	0.59	0.50	65%	1/8 ac. Single Far
	52	С	1.00	15.53%	0.49	0.08	0.65	0.10	65%	1/8 ac. Single Fan
			6.44	100.00%		0.46		0.60		
C5.2	52	С	1.71		0.49		0.65		65%	1/8 ac. Single Fan
C5.3	56	В	1.50	66.37%	0.45	0.30	0.59	0.39	65%	1/8 ac. Single Fan
	52	С	0.76	33.63%	0.49	0.16	0.65	0.22	65%	1/8 ac. Single Fan
			2.26	100.00%		0.46		0.61		

	THE COLD	CONDITION	C COELLINGELLI	C CALCOLAI						
C8.1a	56	В	3.81	92.48%	0.45	0.42	0.59	0.55	65%	1/8 ac. Single Family
	54	D	0.31	7.52%	0.49	0.04	0.65	0.05	65%	1/8 ac. Single Family
			4.12	100.00%		0.45		0.59		
C8.1b	56	В	1.36	36.86%	0.45	0.17	0.59	0.22	65%	1/8 ac. Single Family
	54	D	2.33	63.14%	0.49	0.31	0.65	0.41	65%	1/8 ac. Single Family
			3.69	100.00%		0.48		0.63		
C8.1c	56	В	1.31	69.68%	0.45	0.31	0.59	0.41	65%	1/8 ac. Single Family
	54	D	0.57	30.32%	0.49	0.15	0.65	0.20	65%	1/8 ac. Single Family
			1.88	100.00%		0.46		0.61		
C8.2	52	С	2.12		0.49		0.65		65%	1/8 ac. Single Family
OS-C4a	56	В	2.29		0.09		0.36		10%	Undeveloped
C8.3a	56	В	4.88	82.99%	0.45	0.37	0.59	0.49	65%	1/8 ac. Single Family
	54	C/D	1.00	17.01%	0.49	0.08	0.65	0.11	65%	1/8 ac. Single Family
			5.88	100.00%		0.46		0.60		
OS-C4b	56	В	1.36	64.76%	0.09	0.06	0.36	0.23	10%	Undeveloped
	75	D	0.74	35.24%	0.16	0.06	0.51	0.18	10%	Undeveloped

C8.3a 56 54 05-C4b 56 75 C8.3b 56 54		4.88 1.00	82.99%	0.45	0.37				
OS-C4b 56 75 C8.3b 56				0.45	0.27				
OS-C4b 56 75 C8.3b 56	C/D	1.00	47.040/		0.37	0.59	0.49	65%	1/8 ac. Single Family
C8.3b 56			17.01%	0.49	0.08	0.65	0.11	65%	1/8 ac. Single Family
C8.3b 56		5.88	100.00%		0.46		0.60		
C8.3b 56									
C8.3b 56	В	1.36	64.76%	0.09	0.06	0.36	0.23	10%	Undeveloped
	D	0.74	35.24%	0.16	0.06	0.51	0.18	10%	Undeveloped
		2.10	100.00%		0.11		0.41		
54	В	1.09	31.50%	0.45	0.14	0.59	0.19	65%	1/8 ac. Single Family
	D	2.37	68.50%	0.49	0.34	0.65	0.45	65%	1/8 ac. Single Family
		3.46	100.00%		0.48		0.63		
C8.3c 56	В	0.87	37.34%	0.45	0.17	0.59	0.22	65%	1/8 ac. Single Family
54	D	1.46	62.66%	0.49	0.31	0.65	0.41	65%	1/8 ac. Single Family
		2.33	100.00%		0.48		0.63		
DP-54 56	В	6.84	58.61%	0.45	0.26	0.59	0.35	65%	1/8 ac. Single Family
100.064\drainage\100.064 Flows				Pag	e 3 of 5				3/1
-				-					

Preliminary Draina	ge Plan
--------------------	---------

	PROPOSED	CONDITIONS	6 COEFFICIENT	"C" CALCULAT	ONS		1		1	1
	54	D	4.83	41.39%	0.49	0.20	0.65	0.27	65%	1/8 ac. Single Fam
			11.67	100.00%		0.47		0.61		
C8.3d	56	В	0.81	15.40%	0.45	0.07	0.59	0.09	65%	1/8 ac. Single Fam
	54	D	4.45	84.60%	0.49	0.41	0.65	0.55	65%	1/8 ac. Single Fam
			5.26	100.00%		0.48		0.64		
C8.4	56	В	5.25	78.36%	0.45	0.35	0.59	0.46	65%	1/8 ac. Single Fam
	54	D	1.45	21.64%	0.49	0.11	0.65	0.14	65%	1/8 ac. Single Fam
			6.70	100.00%		0.46		0.60		
C8.5	54/75	D	3.84		0.49		0.65		100%	1/8 ac. Single Fam
C8.6	54	D	0.79		0.90		0.96		100%	Street
C8.7a	75	D	6.29		0.49		0.65		100%	1/8 ac. Single Fam
C8.7b	54/75	D	4.94		0.49		0.65		100%	1/8 ac. Single Fam
C8.7c	75	D	4.94		0.49		0.65		100%	1/8 ac. Single Fam
C8.7d	56	В	0.17	62.96%	0.45	0.28	0.59	0.37	65%	1/8 ac. Single Fam
	54	D	0.10	37.04%	0.49	0.18	0.65	0.24	65%	1/8 ac. Single Fam
			0.27	100.00%		0.46		0.61		
C8.7e	56	В	2.56	42.04%	0.45	0.19	0.59	0.25	65%	1/8 ac. Single Fam
	52/54	C/D	3.53	57.96%	0.49	0.28	0.65	0.38	65%	1/8 ac. Single Fam
			6.09	100.00%		0.47		0.62		
OS-B1	56	В	0.75	14.68%	0.09	0.01	0.36	0.05	10%	Undeveloped
	75	D	4.36	85.32%	0.16	0.14	0.51	0.44	10%	Undeveloped
			5.11	100.00%		0.15		0.49		
C8.8a	56	В	0.70	12.39%	0.45	0.06	0.59	0.07	65%	1/8 ac. Single Fam
	52/54/75	C/D	4.95	87.61%	0.49	0.43	0.65	0.57	65%	1/8 ac. Single Fam
			5.65	100.00%		0.49		0.64		
C8.8	56	В	3.85	49.36%	0.16	0.08	0.41	0.20	13%	Pond / Open Space
	52	С	3.08	39.49%	0.23	0.09	0.54	0.21	13%	Pond / Open Spac

Preliminary Drainage Plan

	PROPOSED	-		"C" CALCULAT	TIONS					
	56	В	0.63	8.08%	0.45	0.04	0.59	0.05	65%	1/8 ac. Single Family
	52	С	0.24	3.08%	0.49	0.02	0.65	0.02	65%	1/8 ac. Single Family
			7.80	100.00%		0.22		0.48		
C8.4	56	В	4.89	72.99%	0.45	0.33	0.59	0.43	65%	1/8 ac. Single Family
	54	С	1.81	27.01%	0.49	0.13	0.65	0.18	65%	1/8 ac. Single Family
			6.70	100.00%		0.46		0.61		
C8.5	75	D	3.49		0.49		0.65		100%	1/8 ac. Single Family
C8.6	54	D	0.79		0.90		0.96		100%	Street
C8.7	56	В	3.68	15.59%	0.45	0.07	0.59	0.09	65%	1/8 ac. Single Family
	52/54/75	C/D	19.93	84.41%	0.49	0.41	0.65	0.55	65%	1/8 ac. Single Family
			23.61	100.00%		0.48		0.64		
C8.8	56	В	3.85	49.36%	0.16	0.08	0.41	0.20	13%	Pond / Open Space
	52	С	3.08	39.49%	0.23	0.09	0.54	0.21	13%	Pond / Open Space
	56	В	0.63	8.08%	0.45	0.04	0.59	0.05	65%	1/8 ac. Single Family
	52	С	0.24	3.08%	0.49	0.02	0.65	0.02	65%	1/8 ac. Single Family
			7.80	100.00%		0.22		0.48		
	52/75	C/D	0.93	10.65%	0.49	0.05	0.65	0.07	65%	1/8 ac. Single Family
			8.73	110.65%		0.27		0.55		

Calculated By: <u>Leonard Beasley</u> Date: <u>Feb. 19, 2021</u> Checked By: <u>Leonard Beasley</u>

	Checked By: Leonard Beas						rd Beasle	Y				r			
:	Sub-Ba	sin Data		Ini	tial Overla	nd Time (ti)		Tr	avel Time	(tt)			(urbanized sins)	Final tc
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
C1.1	0.45	3.18	7.0	100.00	3.00%	0.20	8.20	90.00	2.60%	1.13	1.33				
			20.0					350.00	1.71%	2.62	2.23	11.76	540.00	13.00	11.76
C1.2	0.45	1.52	20.0	67.00	2.00%	0.15	7.67	417.00	0.83%	1.82	3.81	11.49	484.00	12.69	11.49
DP-3	0.45	4.70	7.0	100.00	3.00%	0.20	8.20	90.00	2.60%	1.13	1.33				
			20.0					350.00	1.71%	2.62	2.23	11.76	540.00	13.00	11.76
C1.3	0.45	6.71	7.0	80.00	2.00%	0.16	8.38	87.00	1.40%	0.83	1.75				
			20.0					1400.00	1.39%	2.36	9.90				
			20.0					552.00	5.25%	4.58	2.01	22.04	2119.00	21.77	21.77
DP-5	0.45	16.31	7.0	100.00	2.00%	0.18	9.37	87.00	1.40%	0.83	1.75				
			20.0					2158.00	1.39%	2.36	15.25				
			20.0					552.00	5.25%	4.58	2.01	28.38	2897.00	26.09	26.09
C1.4	0.45	2.51	20.0	51.00	2.00%	0.13	6.69	685.00	2.10%	2.90	3.94				
			20.0					302.00	1.00%	2.00	2.52	13.15	1038.00	15.77	13.15
C1.5	0.45	1.61	20.0	23.00	2.00%	0.09	4.50	1220.00	3.52%	3.75	5.42	9.91	1243.00	16.91	9.91
C1.6	0.45	9.35	20.0	81.00	2.90%	0.18	7.46	2102.00	1.80%	2.68	13.06	20.52	2183.00	22.13	20.52
C3.1	0.45	6.20	7.0	100.00	2.00%	0.18	9.37	20.00	2.10%	1.01	0.33				
			20.0					395.00	3.92%	3.96	1.66				
			20.0					440.00	1.82%	2.70	2.72				
			20.0					150.00	3.67%	3.83	0.65	14.73	1105.00	16.14	14.73
C3.2	0.45	5.01	7.0	100.00	2.00%	0.18	9.37	120.00	2.20%	1.04	1.93				
			20.0					940.00	3.80%	3.90	4.02	15.32	1160.00	16.44	15.32
DP-14	0.45	11.21	7.0	100.00	2.00%	0.18	9.37	2.00	2.10%	1.01	0.03				
			20.0					395.00	3.92%	3.96	1.66				
			20.0					440.00	1.82%	2.70	2.72				
			20.0					150.00	3.67%	3.83	0.65				
			20.0					255.00	1.57%	2.51	1.70	16.13	1342.00	17.46	16.13
C3.3	0.45	4.75	7.0	55.00	7.82%	0.21	4.43	165.00	2.79%	1.17	2.35				
			20.0					631.00	4.90%	4.43	2.38				
			20.0					286.00	1.40%	2.37	2.01	11.17	1137.00	16.32	11.17
DP-16	0.45	15.96	7.0	100.00	2.00%	0.18	9.37	20.00	2.10%	1.01	0.33				
			20.0					395.00	3.92%	3.96	1.66				
			20.0					440.00	1.82%	2.70	2.72				

Calculated By: <u>Leonard Beasley</u> Date: <u>Feb. 19, 2021</u> Checked By: <u>Leonard Beasley</u>

Checked By: Leonard Beasley								<u>y</u>					+ 01-11	(Et al t	
	Sub-Ba	sin Data			tial Overla	-	-			avel Time ((tt)		tc Check Ba	Final tc		
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)	
			20.0					150.00	3.67%	3.83	0.65					
			20.0					255.00	1.57%	2.51	1.70					
			20.0					247.00	1.62%	2.55	1.62	18.05	1607.00	18.93	18.05	
C3.4	0.45	3.77	7.0	45.00	9.33%	0.20	3.78	130.00	2.31%	1.06	2.04					
			20.0					601.00	4.74%	4.35	2.30					
			20.0					225.00	2.22%	2.98	1.26	9.37	1001.00	15.56	9.37	
DP-18	0.45	19.73	7.0	100.00	2.00%	0.18	9.37	20.00	2.10%	1.01	0.33					
			20.0					395.00	3.92%	3.96	1.66					
			20.0					440.00	1.82%	2.70	2.72					
			20.0					150.00	3.67%	3.83	0.65					
			20.0					255.00	1.57%	2.51	1.70					
			20.0					247.00	1.62%	2.55	1.62					
			20.0					166.00	2.41%	3.10	0.89	18.94	1773.00	19.85	18.94	
C3.5	0.45	6.32	7.0	82.00	6.22%	0.23	5.83	100.00	2.80%	1.17	1.42					
			20.0					535.00	1.16%	2.15	4.14					
			20.0					559.00	5.01%	4.48	2.08					
			20.0					114.00	2.63%	3.24	0.59	14.06	1390.00	17.72	14.06	
DP-20	0.45	26.05	7.0	100.00	2.00%	0.18	9.37	20.00	2.10%	1.01	0.33					
			20.0					395.00	3.92%	3.96	1.66					
			20.0					440.00	1.82%	2.70	2.72					
			20.0					150.00	3.67%	3.83	0.65					
			20.0					255.00	1.57%	2.51	1.70					
			20.0					247.00	1.62%	2.55	1.62					
			20.0					166.00	2.41%	3.10	0.89					
			20.0					162.00	2.16%	2.94	0.92	19.86	1935.00	20.75	19.86	
C3.6a	0.45	3.15	20.0	63.00	2.00%	0.14	7.44	915.00	4.07%	4.03	3.78	11.22	978.00	15.43	11.22	
C3.6b	0.45	4.80	7.0	100.00	2.00%	0.18	9.37	65.00	2.00%	0.99	1.09					
			20.0					301.00	0.90%	1.90	2.64					
			20.0					515.00	5.24%	4.58	1.87					
			20.0					318.00	2.20%	2.97	1.79	16.77	1299.00	17.22	16.77	
C3.7	0.45	4.58	20.0	30.00	2.33%	0.10	4.88	364.00	1.73%	2.63	2.31					
			20.0					386.00	5.96%	4.88	1.32					
			20.0					154.00	1.95%	2.79	0.92	9.42	934.00	15.19	9.42	
DP-24	0.45	38.58	7.0	100.00	2.00%	0.18	9.37	20.00	2.10%	1.01	0.33					
			20.0					395.00	3.92%	3.96	1.66					
			20.0					440.00	1.82%	2.70	2.72					

Calculated By: <u>Leonard Beasley</u> Date: <u>Feb. 19, 2021</u> Checked By: Leonard Beasley

						By: <u>Leona</u>		<u>y</u>					t. Chask		
	Sub-Ba	sin Data	1		nd Time (avel Time	(t t)		tc Check Ba	Final tc		
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
			20.0					150.00	3.67%	3.83	0.65				
			20.0					255.00	1.57%	2.51	1.70				
			20.0					247.00	1.62%	2.55	1.62				
			20.0					166.00	2.41%	3.10	0.89				
			20.0					162.00	2.16%	2.94	0.92				
			20.0					236.00	2.97%	3.45	1.14	21.00	2171.00	22.06	21.00
C3.8	0.45	6.51	20.0	39.00	2.00%	0.11	5.85	569.00	1.28%	2.26	4.19				
			20.0					600.00	4.83%	4.40	2.28				
			20.0					539.00	1.39%	2.36	3.81	16.13	1747.00	19.71	16.13
C3.9	0.45	4.55	20.0	54.00	2.78%	0.15	6.18	1063.00	3.20%	3.58	4.95	11.13	1117.00	16.21	11.13
DP-28	0.45	45.09	7.0	100.00	2.00%	0.18	9.37	20.00	2.10%	1.01	0.33				
			20.0					395.00	3.92%	3.96	1.66				
			20.0					440.00	1.82%	2.70	2.72				
			20.0					150.00	3.67%	3.83	0.65				
			20.0					255.00	1.57%	2.51	1.70				
			20.0					247.00	1.62%	2.55	1.62				
			20.0					166.00	2.41%	3.10	0.89				
			20.0					162.00	2.16%	2.94	0.92				
			20.0					236.00	2.97%	3.45	1.14				
			20.0					246.00	2.64%	3.25	1.26	22.26	2417.00	23.43	22.26
C3.10	0.45	6.01	7.0	66.00	3.79%	0.18	6.16	118.00	2.37%	1.08	1.82				
			20.0					1076.00	2.39%	3.09	5.80				
			20.0					343.00	3.79%	3.89	1.47				
			20.0					146.00	1.23%	2.22	1.10	16.35	1749.00	19.72	16.35
DP-30	0.45	51.10	7.0	100.00	2.00%	0.18	9.37	20.00	2.10%	1.01	0.33				
			20.0					395.00	3.92%	3.96	1.66				
			20.0					440.00	1.82%	2.70	2.72				
			20.0					150.00	3.67%	3.83	0.65				
			20.0		<u></u>		<u></u>	255.00	1.57%	2.51	1.70				
			20.0					247.00	1.62%	2.55	1.62				
			20.0					166.00	2.41%	3.10	0.89				
			20.0					162.00	2.16%	2.94	0.92				
			20.0					236.00	2.97%	3.45	1.14				

Calculated By: <u>Leonard Beasley</u> Date: <u>Feb. 19, 2021</u> Checked By: Leonard Beasley

	Checked By: <u>Leonard Beasle</u>							<u>y</u>							Finalt
\$	Sub-Ba	sin Data			tial Overla	nd Time (ti)		Tr	avel Time	(t t)		tc Check Ba	Final t _c	
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
			20.0					246.00	2.64%	3.25	1.26				
			20.0					245.00	0.94%	1.94	2.11	24.37	2662.00	24.79	24.37
C4.1	0.45	4.61	7.0	45.00	10.00%	0.20	3.69	128.00	2.58%	1.12	1.90				
			20.0					1680.00	1.45%	1.36	20.59	26.18	1853.00	20.29	20.29
C4.2	0.45	3.08	20.0	43.00	2.80%	0.13	5.50	124.00	2.72%	3.30	0.63				
			20.0					865.00	4.44%	1.36	10.60	16.73	1032.00	15.73	15.73
DP-31	0.45	7.69	7.0	45.00	10.00%	0.20	3.69	128.00	2.58%	1.12	1.90				
			20.0					1680.00	1.45%	2.41	11.63				
			20.0					865.00	4.44%	4.21	3.42	20.64	2718.00	25.10	20.64
C4.3	0.46	3.07	7.0	100.00	2.00%	0.18	9.23	85.00	2.00%	0.99	1.43				
			20.0					5.07	1.12%	1.36	0.06	10.72	190.07	11.06	10.72
C4.4	0.46	3.29	20.0	34.00	3.82%	0.13	4.34	900.00	3.08%	3.51	4.27				
			20.0					144.00	1.32%	1.36	1.76	10.38	1078.00	15.99	10.38
DP-33	0.45	14.05	7.0	45.00	10.00%	0.20	3.66	128.00	2.58%	1.12	1.90				
			20.0					1680.00	1.45%	2.41	11.63				
			20.0					1170.00	4.27%	4.13	4.72				
			20.0					84.00	1.07%	2.07	0.68	22.58	3107.00	27.26	22.58
C4.5	0.90	0.63	20.0	56.00	3.93%	0.54	1.73	384.00	2.86%	3.38	1.89	3.62	440.00	12.44	3.62
F1.1	0.45	4.23	15.0	88.00	20.00%	0.36	4.10	150.00	2.50%	2.37	1.05	5.16	238.00	11.32	11.32
F1.2	0.08	19.06	7.0	37.00	19.19%	0.15	4.23	150.00	2.50%	1.11	2.26	6.49	187.00	11.04	11.04
F1.3	0.46	1.15	7.0	10.00	2.00%	0.06	2.92	30.00	2.00%	0.99	0.51				
			20.0					830.00	1.00%	1.36	10.17	13.59	870.00	14.83	13.59
F1.4	0.46	3.75	7.0	50.00	2.00%	0.13	6.53	100.00	2.00%	0.99	1.68				
			20.0					580.00	1.00%	1.36	7.11	15.32	730.00	14.06	15.32
C5.1a &	0.47	2.33	7.0	87.00	12.76%	0.32	4.59	141.00	2.13%	1.02	2.30				
I-39			20.0					1159.00	5.13%	4.53	4.26				
			20.0					296.00	3.14%	3.54	1.39	12.54	1683.00	19.35	12.54
C5.1b &	0.45	6.32	7.0	45.00	24.44%	0.27	2.75	255.00	3.53%	1.32	3.23				
I-36			20.0					1212.00	5.07%	4.50	4.49				
			20.0					62.00	3.23%	3.59	0.29	10.75	1574.00	18.74	10.75
C5.1c & I-37	0.45	3.78	7.0	44.00	20.45%	0.25	2.88	47.00	2.55%	1.12	0.70				
1-01			20.0					1335.00	4.85%	4.40	5.05	8.63	1426.00	17.92	8.63

Calculated By: <u>Leonard Beasley</u> Date: <u>Feb. 19, 2021</u> Checked By: <u>Leonard Beasley</u>

Checked By: Leonard Beasle						¥									
:	Sub-Ba	sin Data		Ini	tial Overla	nd Time (ti)		Tr	avel Time	(t t)			(urbanized usins)	Final t _c
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min
C5.1d & I-41	0.45	5.67	7.0	83.00	15.30%	0.32	4.32	228.00	2.68%	1.15	3.32				
1-41			20.0					1356.00	4.23%	4.11	5.49				
			20.0					115.00	1.13%	2.13	0.90	14.03	1782.00	19.90	14.03
DP-42	0.46	12.43	7.0	87.00	12.76%	0.31	4.66	141.00	2.13%	1.02	2.30				
			20.0					1159.00	5.13%	4.53	4.26				
			20.0					375.00	2.61%	3.23	1.93				
			20.0					123.00	0.65%	1.61	1.27	14.43	1885.00	20.47	14.43
C5.1e & DP-44	0.46	6.44	7.0	100.00	7.00%	0.27	6.13	191.00	6.00%	1.71	1.86				
D1-44			20.0					742.00	1.62%	2.55	4.86				
			20.0					786.00	4.58%	4.28	3.06				
			20.0					104.00	2.40%	3.10	0.56	16.47	1923.00	20.68	16.47
C5.2	0.49	1.71	20.0	38.00	2.63%	0.13	4.95	677.00	2.48%	3.15	3.58	8.53	715.00	13.97	8.53
C5.3	0.46	2.26	20.0	42.00	2.00%	0.12	5.98	1115.00	4.68%	4.33	4.30	10.28	1157.00	16.43	10.28
C8.1a	0.45	4.12	7.0	60.00	7.67%	0.21	4.65	163.00	2.45%	1.10	2.48				
			20.0					966.00	5.12%	4.53	3.56	10.69	1189.00	16.61	10.69
C8.1b	0.48	3.69	20.0	73.00	2.00%	0.16	7.64	929.00	5.30%	4.60	3.36				
			20.0					465.00	1.08%	2.08	3.73	14.73	1467.00	18.15	14.73
C8.1c	0.46	1.88	20.0	63.00	2.00%	0.14	7.30	1119.00	5.36%	4.63	4.03	11.32	1182.00	16.57	11.32
C8.1	0.45	9.68	7.0	57.00	8.07%	0.21	4.43	163.00	2.45%	1.10	2.48				
			20.0					1018.00	4.93%	4.44	3.82				
			20.0					363.00	1.29%	2.27	2.66	13.39	1601.00	18.89	13.39
C8.2	0.49	2.12	20.0	50.00	4.20%	0.17	4.87	385.00	0.64%	1.60	4.01	8.88	435.00	12.42	8.88
OS-C4a	0.09	2.29	7.0	100.00	4.30%	0.15	11.30	227.00	4.40%	1.47	2.58	13.88	327.00	11.82	11.82
C8.3a	0.46	5.88	7.0	61.00	18.85%	0.30	3.43	123.00	2.60%	1.13	1.82				
			20.0					1390.00	3.17%	3.56	6.51	11.75	1574.00	18.74	11.75
DP-53	0.38	8.17	7.0	100.00	4.30%	0.21	8.06	377.00	5.60%	1.66	3.79				
			20.0					548.00	4.50%	4.24	2.15	14.00	1025.00	15.69	14.00
OS-C4b	0.11	2.10	7.0	100.00	4.00%	0.15	11.35	378.00	5.00%	1.57	4.02	15.37	478.00	12.66	12.66
C8.3b	0.48	3.46	7.0	100.00	4.50%	0.24	6.84	28.00	16.00%	2.80	0.17				
			7.0					108.00	2.00%	0.99	1.82				
			20.0					672.00	2.40%	3.10	3.61	12.44	908.00	15.04	12.44
C8.3c	0.48	2.33	7.0	60.00	11.17%	0.26	3.92	148.00	2.36%	1.08	2.29				
			20.0					900.00	3.50%	3.74	4.01				
			20.0					93.00	2.69%	3.28	0.47	10.69	1201.00	16.67	10.69

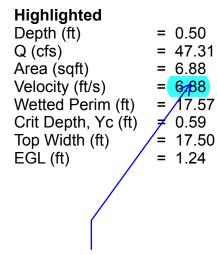
Calculated By: <u>Leonard Beasley</u> Date: <u>Feb. 19, 2021</u> Checked By: Leonard Beasley

Checked By: Leonard Beasley							¥.					t Ohaali	Final ta		
	Sub-Ba	sin Data			tial Overla	· · ·	ti)			avel Time ((tt)		tc Check Ba	Final tc	
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
DP-54	0.36	16.06	7.0	100.00	4.00%	0.20	8.48	616.00	4.91%	1.55	6.62				
			20.0					1085.00	3.24%	3.60	5.02	20.13	1801.00	20.01	20.01
C8.3d	0.48	5.26	20.0	76.00	2.00%	0.16	7.79	700.00	5.19%	4.56	2.56				
			20.0					664.00	1.36%	2.33	4.74	15.10	1440.00	18.00	15.10
DP-56	0.44	21.32	7.0	100.00	4.00%	0.22	7.57	616.00	4.91%	1.55	6.62				
			20.0					1310.00	2.92%	3.42	6.39	20.57	2026.00	21.26	20.57
C8.4	0.46	6.70	7.0	42.00	1.19%	0.10	7.16	157.00	4.14%	1.42	1.84				
			20.0					89.00	3.37%	3.67	0.40				
			20.0					697.00	5.16%	4.54	2.56				
			20.0					374.00	1.48%	2.43	2.56	14.52	1359.00	17.55	14.52
DP-51	0.46	39.82	7.0	100.00	4.00%	0.23	7.34	616.00	4.91%	1.55	6.62				
			20.0					1310.00	2.92%	3.42	6.39				
			20.0					391.00	1.20%	9.15	0.71	21.06	2417.00	23.43	21.06
C8.5	0.49	3.84	7.0	45.00	2.20%	0.13	5.72	160.00	1.88%	0.96	2.78				
			20.0					683.00	4.25%	4.12	2.76				
			20.0					320.00	1.60%	2.53	2.11	13.36	1208.00	16.71	13.36
C8.6	0.90	0.79	20.0	25.00	2.00%	0.29	1.44	342.00	1.67%	2.58	2.21				
			20.0					400.00	2.98%	3.45	1.93	5.58	767.00	14.26	5.58
C8.7a	0.49	4.52	7.0	75.00	6.67%	0.24	5.11	108.00	2.50%	1.11	1.63				
			20.0					857.00	1.05%	2.05	6.97	13.71	1040.00	15.78	13.71
C8.7b	0.49	1.77	20.0	33.00	2.00%	0.11	5.05	1040.00	1.92%	2.77	6.25	11.31	1073.00	15.96	11.31
DP-63	0.49	6.29	7.0	75.00	6.67%	0.24	5.11	108.00	2.50%	1.11	1.63				
			20.0					885.00	1.05%	2.05	7.20	13.94	1068.00	15.93	13.94
C8.7c	0.49	4.94	20.0	60.00	2.10%	0.15	6.70	817.00	3.11%	3.53	3.86				
			20.0					172.00	1.74%	2.64	1.09	11.65	1049.00	15.83	11.65
DP-64	0.49	11.23	7.0	75.00	6.67%	0.24	5.11	108.00	2.50%	1.11	1.63				
			20.0					885.00	1.05%	2.05	7.20				
			RCP					270.00	1.00%	10.63	0.42	14.36	1338.00	17.43	14.36
C8.7d	0.46	0.27	7.0	20.00	16.50%	0.16	2.05	166.00	3.31%	1.27	2.17	4.23	186.00	11.03	4.23
C8.7e	0.47	6.09	7.0	40.00	20.00%	0.25	2.68	290.00	2.83%	1.18	4.10				
			20.0					293.00	1.06%	2.06	2.37				
			20.0					577.00	3.14%	3.54	2.71	11.87	1200.00	16.67	11.87
DP-62 C3.7a-e	0.48	17.59	7.0	75.00	6.67%	0.24	5.20	108.00	2.50%	1.11	1.63				
			20.0					885.00	1.05%	2.05	7.20				
			RCP					270.00	1.00%	10.63	0.42				
			RCP					777.00	3.40%	13.28	0.98	15.42	2115.00	21.75	15.42

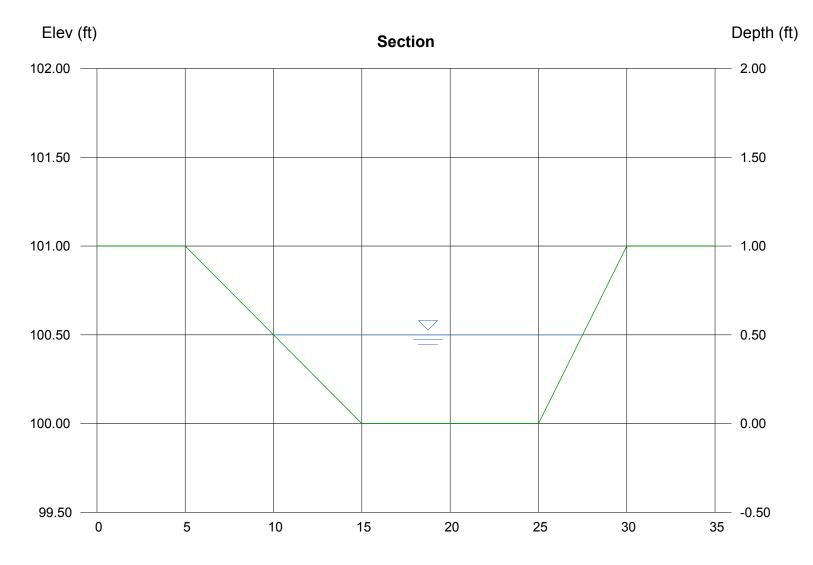
Œ			ING GR	OUP	Calculate Date: <u>Feb</u>	d By: <u>Leor</u>). 19, 2021	hard Beas		tration-Pr	<u>roposed</u>	Job No: <u>1</u> Project: <u>T</u>		t Lorson Rar	<u>nch</u>	
						By: <u>Leona</u>		<u>y</u>					to Chock	(urbanized	Final A
	Sub-Ba	sin Data	T			nd Time (ti)			avel Time	(t t)		Ba	isins)	Final tc
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
DP-62	0.50	22.22	7.0	45.00	2.20%	0.13	5.62	160.00	1.88%	0.96	2.78				
C3.5-C3.7	0.00		20.0			0.10	0.02	683.00	4.25%	4.12	2.76				
			20.0					320.00	1.60%	2.53	2.11				
			20.0					342.00	1.67%	2.58	2.21				
			20.0					400.00	2.98%	3.45	1.93	17.41	1950.00	20.83	17.41
OS-B1	0.15	5.11	7.0	100.00	4.40%	0.16	10.55	388.00	4.30%	1.45	4.46	15.01	488.00	12.71	12.71
C8.8a	0.49	5.65	7.0	100.00	4.60%	0.25	6.68	133.00	4.36%	1.46	1.52				
			20.0					1457.00	1.41%	2.37	10.23				
			20.0					427.00	3.75%	3.87	1.84				
			20.0					650.00	3.06%	3.50	3.10	23.35	2767.00	25.37	23.35
DP-68	0.33	10.76	7.0	100.00	4.50%	0.20	8.49	488.00	2.42%	1.09	7.47				
			20.0					1457.00	1.41%	2.37	10.23				
			20.0					427.00 650.00	3.75% 0.60%	3.87 1.55	1.84 6.99	35.01	3122.00	27.34	27.34
C8.8	0.22	7.80	7.0	100.00	2.00%	0.13	12.69	611.00	5.48%	1.64	6.21	00.01	5122.00	21.04	21.04
			7.0					53.00	33.00%	4.02	0.22				
			7.0					245.00	0.60%	0.54	7.53	26.65	1009.00	15.61	15.61
C8	0.43	73.39	7.0	20.00	18.50%	0.16	2.07	99.00	2.42%	1.09	1.52				
			20.0					2654.00	2.15%	2.93	15.08				
			RCP					566.00	5.30%	21.72	0.43				
			7.0					272.00	0.60%	0.54	8.36	27.46	3611.00	30.06	27.46

Channel Report

Hydraflow Express by Intelisolve


EAST SWALE 3%

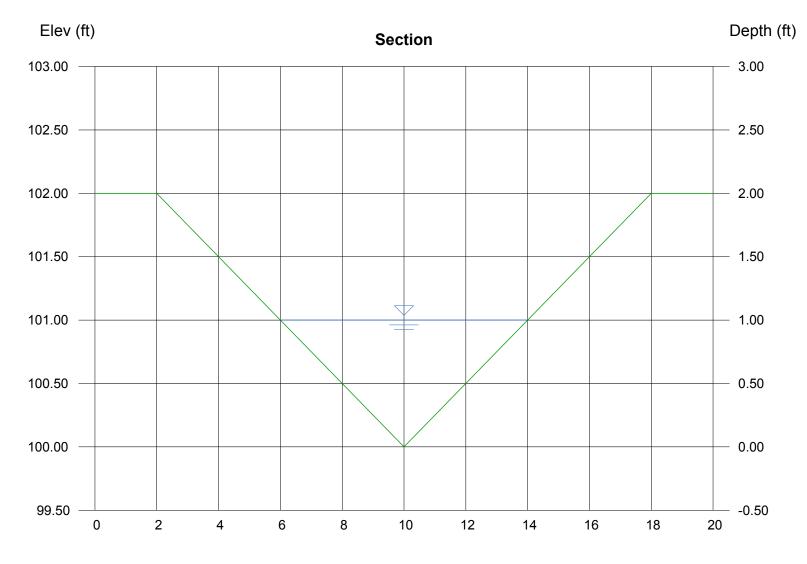
Trapezoidal


Botom Width (ft)	= 10.00
Side Slope (z:1)	= 10.00
Total Depth (ft)	= 1.00
Invert Elev (ft)	= 100.00
Slope (%)	= 3.00
N-Value	= 0.020

Calculations

Compute by: Q vs Depth No. Increments = 10

High velocity needs protection


Hydraflow Express by Intelisolve

Highlighted

EAST SWALE BY CUT/FILL (0.52%)

Triangular

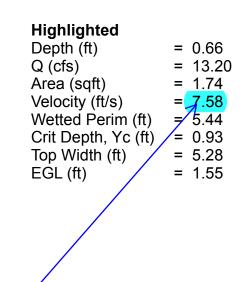
= 4.00	Depth (ft)	= 1.00
= 2.00	Q (cfs)	= 13.23
	Area (sqft)	= 4.00
= 100.00	Velocity (ft/s)	= 3.31
= 0.52	Wetted Perim (ft)	= 8.25
= 0.020	Crit Depth, Yc (ft)	= 0.73
	Top Width (ft)	= 8.00
	EĠL (ft)	= 1.17
Q vs Depth	ζ,	
= 10		
	= 2.00 = 100.00 = 0.52 = 0.020 Q vs Depth	= 2.00 Q (cfs) Area (sqft) = 100.00 Velocity (ft/s) = 0.52 Wetted Perim (ft) = 0.020 Crit Depth, Yc (ft) Top Width (ft) EGL (ft)

Reach (ft)

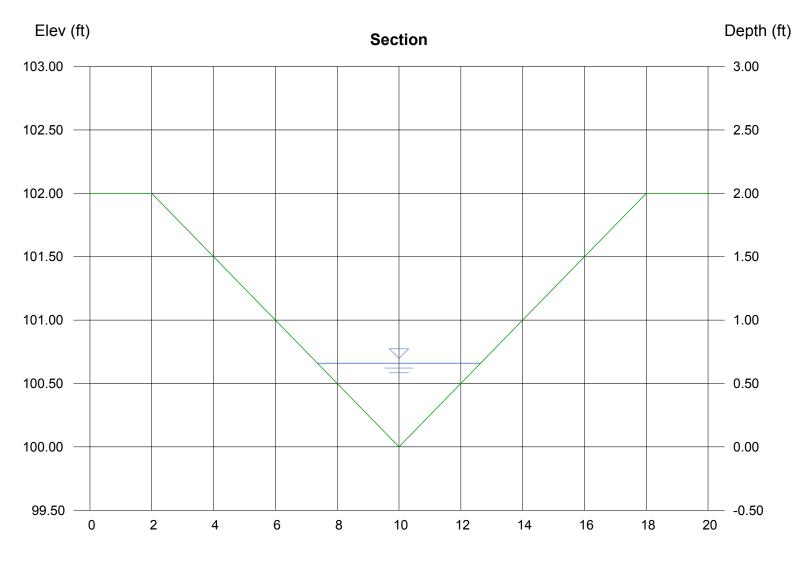
Hydraflow Express by Intelisolve

Wednesday, Sep 29 2021, 9:34 AM

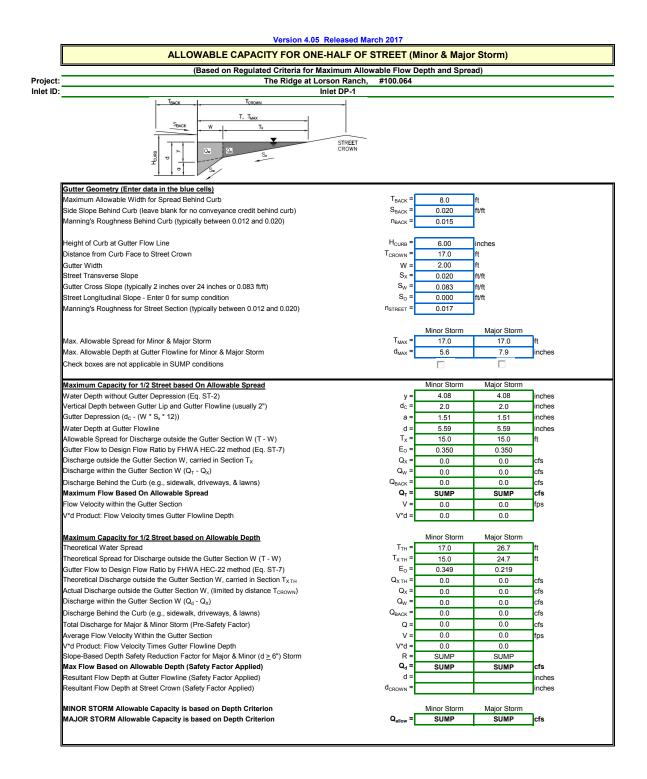
EAST SWALE BY CUT/FILL (5.0%)


Q

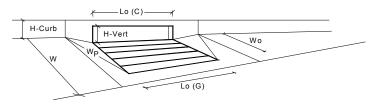
Triangular Side Slope (7.1)


Side Slope (z:1)	= 4.00
Total Depth (ft)	= 2.00
Invert Elev (ft)	= 100.00
Slope (%)	= 5.00
N-Value	= 0.020

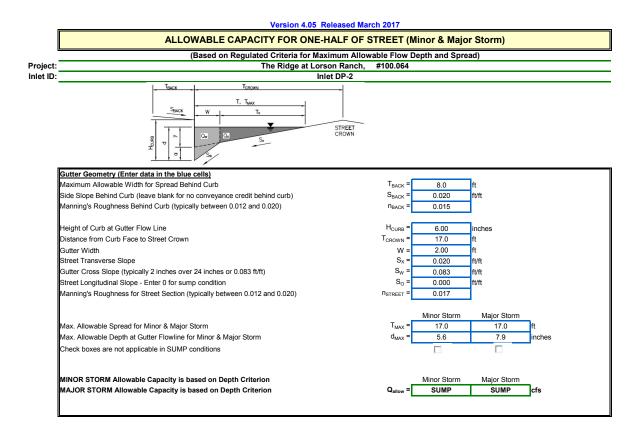
Calculations


Compute by:	Known C
Known Q (cfs)	= 13.20

Does this need lining? What is shear stress?

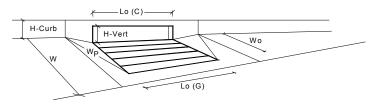


Reach (ft)

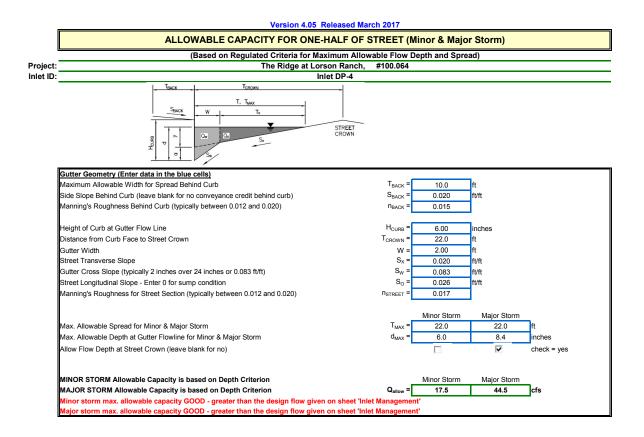


INLET IN A SUMP OR SAG LOCATION

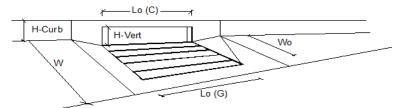
Version 4.05 Released March 2017

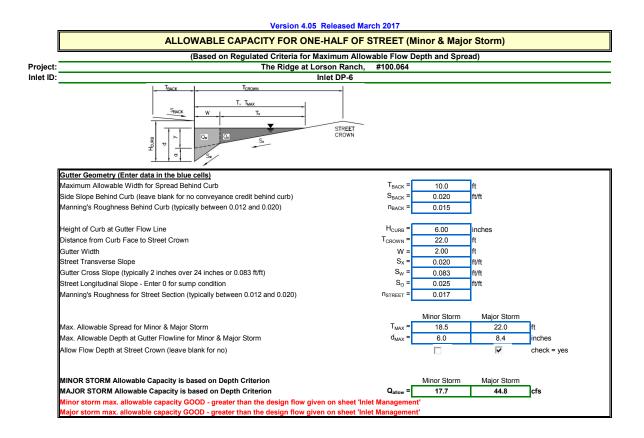


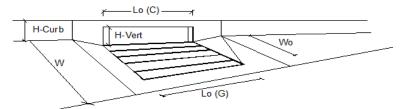
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.2	7.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.27	0.42	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.49	0.66	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.88	0.99	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.6	12.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	5.6	12.2	cfs

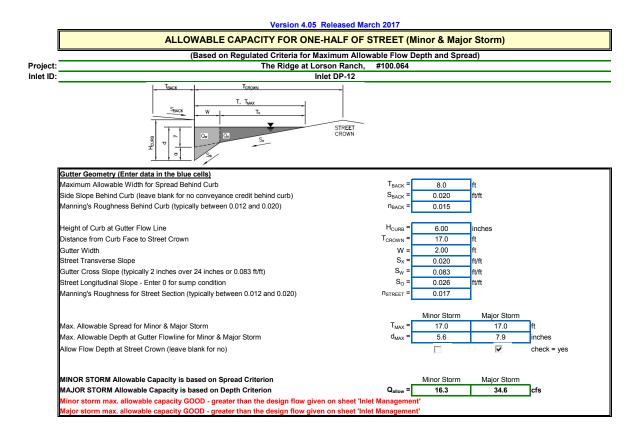


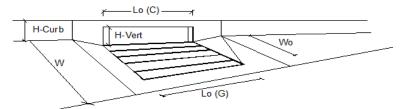
INLET IN A SUMP OR SAG LOCATION

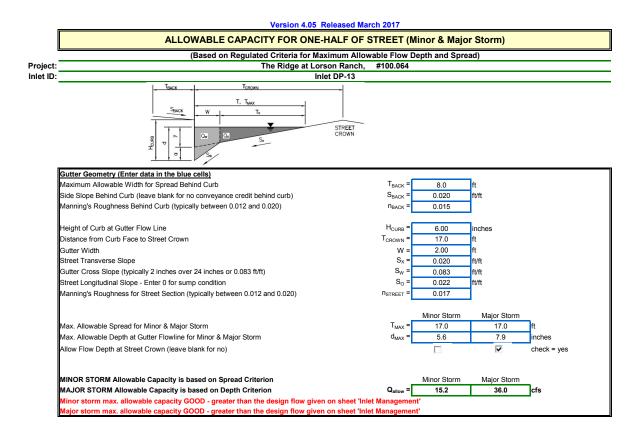

Version 4.05 Released March 2017

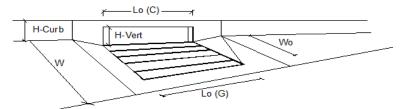

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.6	6.3	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.21	0.36	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.58	0.80	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.7	5.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.7	5.9	cfs

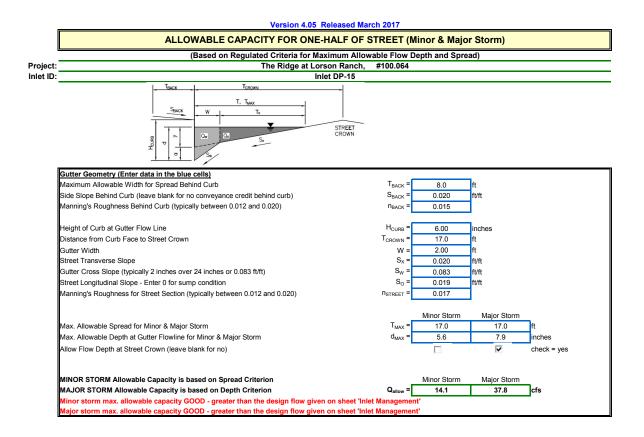


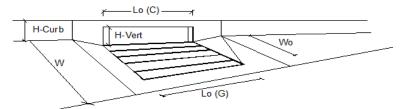

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	20.00	20.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W_ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	·
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _r -C =	0.10	0.10	-
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	8.9	21.6	cfs
Water Spread Width	т=	13.3	19.0	ft
Water Depth at Flowline (outside of local depression)	d =	4.7	6.1	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E, =	0.448	0.312	
Discharge outside the Gutter Section W, carried in Section T,	Q _x =	4.9	14.9	cfs
Discharge within the Gutter Section W	Q _w =	4.0	6.7	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.62	0.85	sq ft
Velocity within the Gutter Section W	V _W =	6.5	8.0	fps
Water Depth for Design Condition	d _{LOCAL} =	7.7	9.1	inches
Grate Analysis (Calculated)	GLOGAL -	MINOR	MAJOR	moneo
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A N/A	N/A	n.
Under No-Clogging Condition	-o-GRATE	MINOR	MAJOR	
	V., =	N/A	N/A	fps
Minimum Velocity Where Grate Splash-Over Begins		N/A N/A	N/A	ips
Interception Rate of Frontal Flow	R _f =		N/A N/A	_
Interception Rate of Side Flow	R _x =	N/A	N/A N/A	- 6-
Interception Capacity	Q _i =	N/A MINOR		cfs
Under Clogging Condition			MAJOR	-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	_
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	_
Interception Rate of Side Flow	R _x =	N/A	N/A	· · · · · · · · · · · · · · · · · ·
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	_	MINOR	MAJOR	-
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.104	0.079	ft/ft
Required Length L_T to Have 100% Interception	L _T =	17.27	30.89	ft
Under No-Clogging Condition	-	MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	17.27	20.00	ft
Interception Capacity	Q _i =	8.9	18.3	cfs
Under Clogging Condition	_	MINOR	MAJOR	_
Clogging Coefficient	CurbCoef =	1.33	1.33	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.03	0.03	
Effective (Unclogged) Length	L _e =	17.34	17.34	ft
Actual Interception Capacity	Q _a =	8.9	18.0	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	3.6	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.9	18.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	3.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	83	%

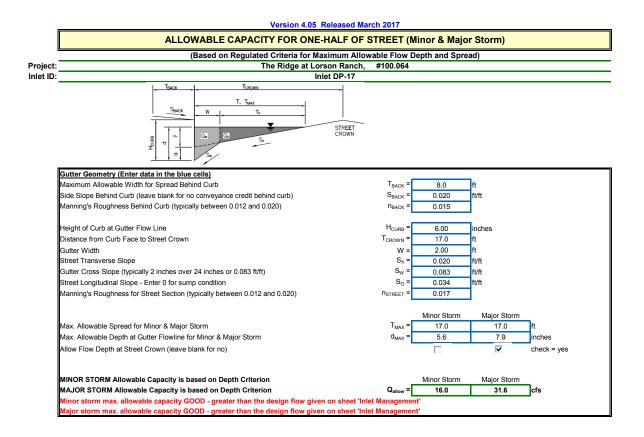


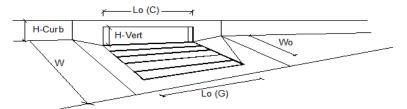

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.0	5.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	86	%

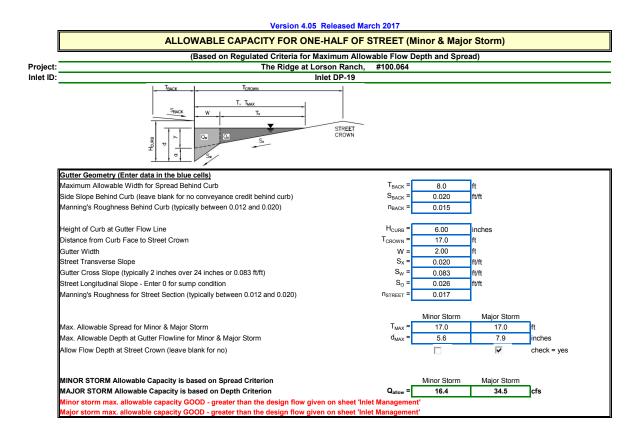


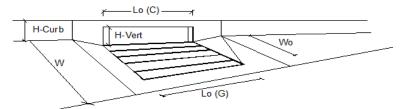

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	9.3	14.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.6	7.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	94	68	%

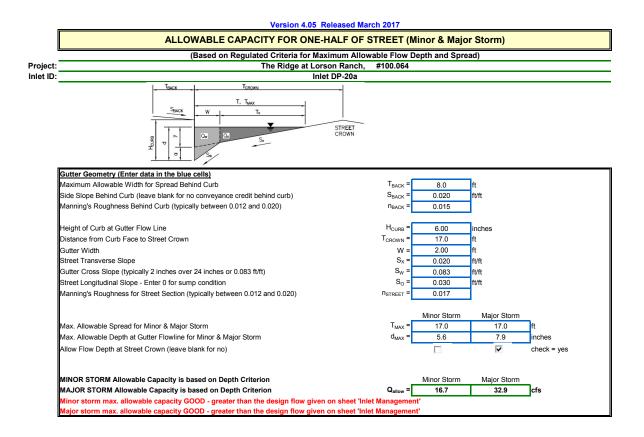


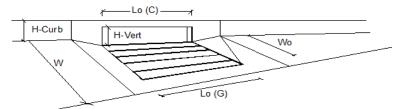

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.3	15.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.2	8.7	cfs
Capture Percentage = Q _a /Q _o =	C% =	97	64	%

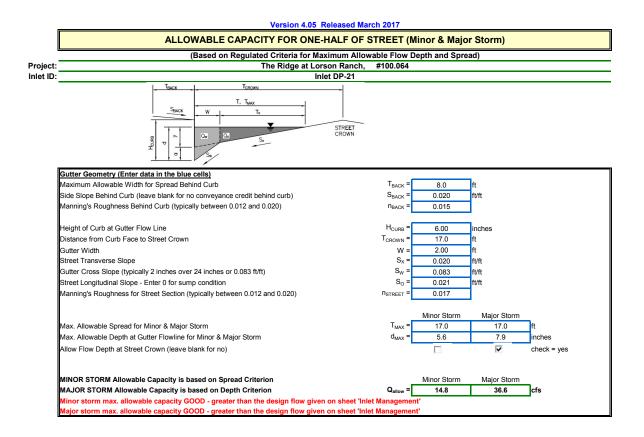


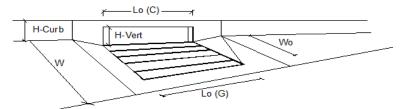

Design Information (Input)	Ĩ	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.4	16.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.3	10.8	cfs
Capture Percentage = Q _a /Q _o =	C% =	97	60	%

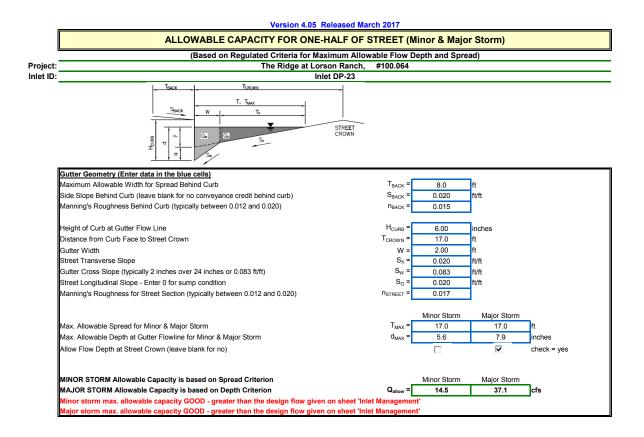


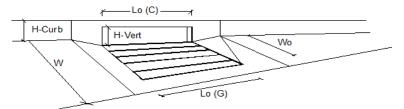

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	20.00	20.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.5	20.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	6.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	77	%

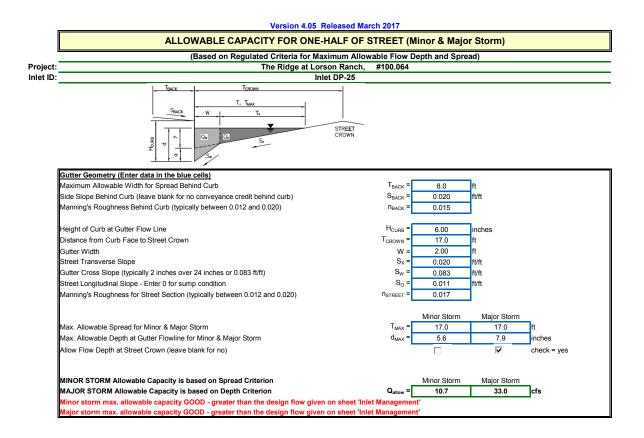


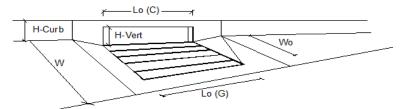

Design Information (Input)	a	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	20.00	20.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	10.3	21.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	7.6	cfs
Capture Percentage = Q _a /Q _o =	С% =	100	74	%

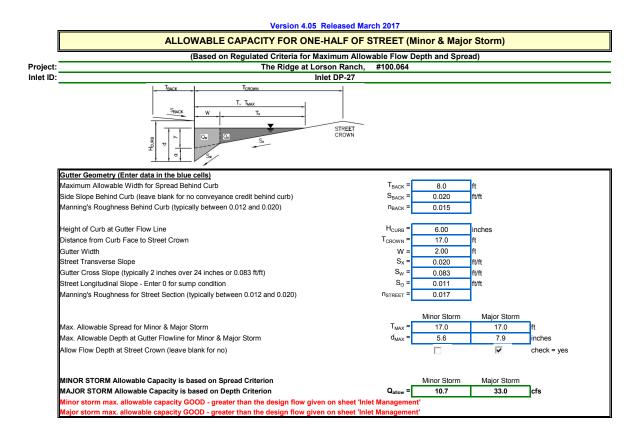


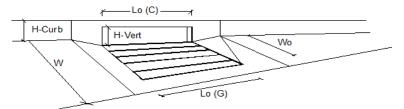

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.6	10.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	87	%

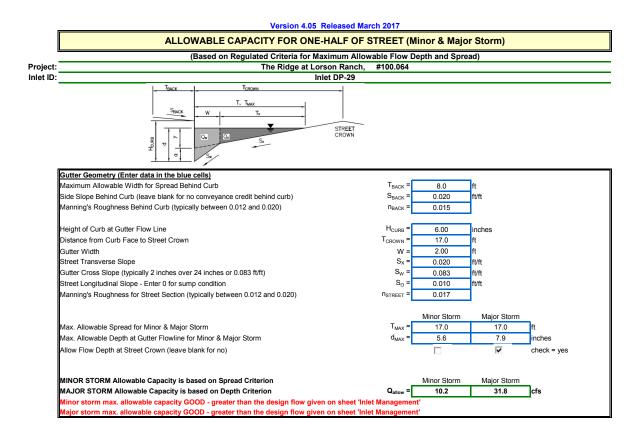


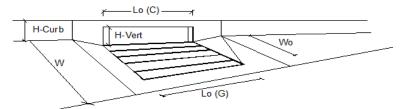

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.2	13.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	4.4	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	75	%

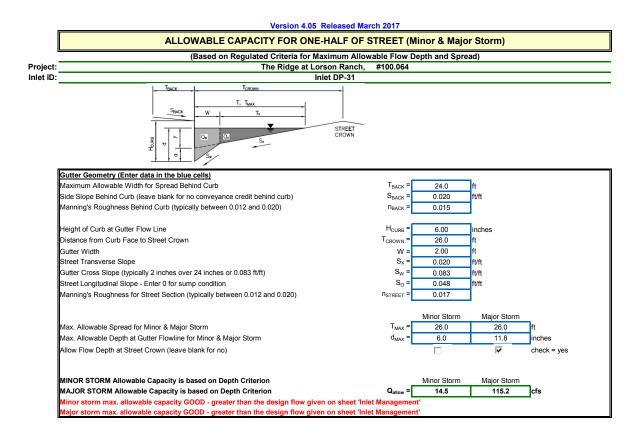


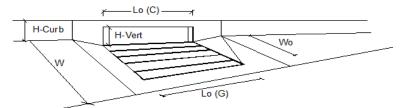

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.4	16.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.3	10.4	cfs
Capture Percentage = Q _a /Q _o =	C% =	97	61	%

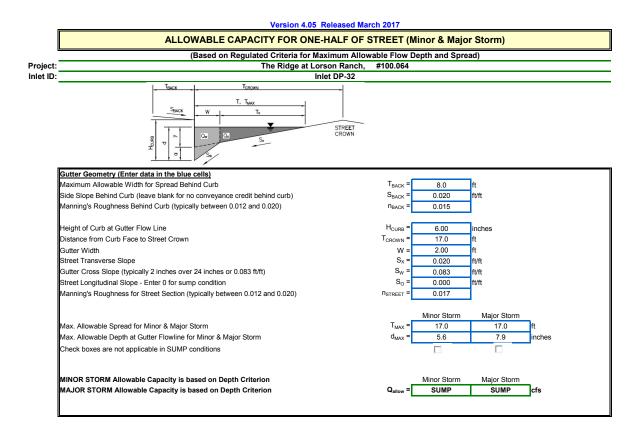


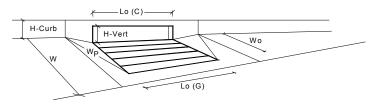

Design Information (Input)	-	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.2	11.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	2.9	15.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	71	43	%



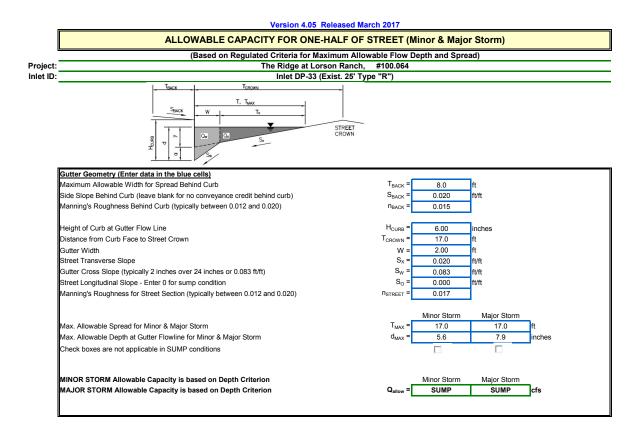

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	20.00	20.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.4	20.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	7.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	73	%

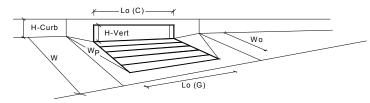



Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	20.00	20.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	9.2	20.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	7.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	74	%

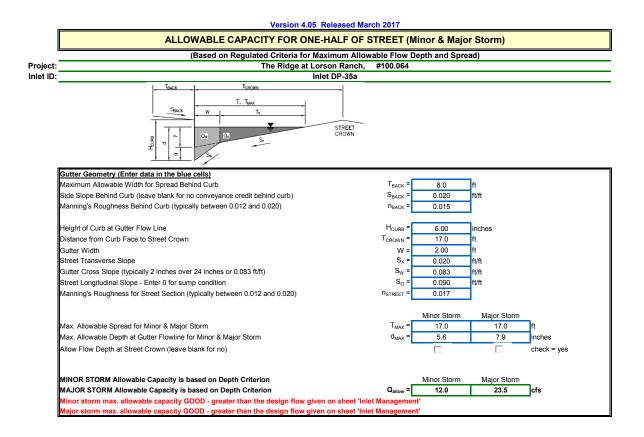


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	7
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	1
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q _o =	10.5	23.2	cfs
Water Spread Width	Т =	12.4	17.2	ft
Water Depth at Flowline (outside of local depression)	d =	4.5	5.6	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.477	0.346	1
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	5.5	15.2	cfs
Discharge within the Gutter Section W	Q _w =	5.0	8.0	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.58	0.77	sq ft
Velocity within the Gutter Section W	V _W =	8.6	10.4	fps
Water Depth for Design Condition	d _{LOCAL} =	7.5	8.6	inches
Grate Analysis (Calculated)	LOCAL	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{0-GRATE} =	N/A	N/A	
Under No-Clogging Condition	-o-GRATE	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow		N/A N/A	N/A	ips
Interception Rate of Side Flow	R _f =	N/A N/A	N/A	-
	R _x =			ofo
Interception Capacity	Q _i =	N/A MINOR	N/A MAJOR	cfs
Under Clogging Condition	Orate Orat			-
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	-
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	-
Interception Rate of Side Flow	R _x =	N/A	N/A	┥.
Actual Interception Capacity	Q, =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	. –	MINOR	MAJOR	-
Equivalent Slope Se (based on grate carry-over)	S _e =	0.110	0.085	ft/ft
Required Length L_T to Have 100% Interception	L _T =	19.05	32.09	ft
Under No-Clogging Condition	-	MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	15.00	15.00	ft
Interception Capacity	Q _i =	9.9	15.7	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	L _e =	13.03	13.03	ft
Actual Interception Capacity	Q _a =	9.7	15.3	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.8	7.9	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	9.7	15.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.8	7.9	cfs
Capture Percentage = Q_a/Q_o =	C% =	92	66	%

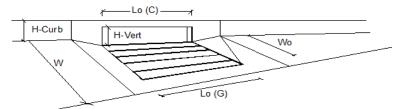


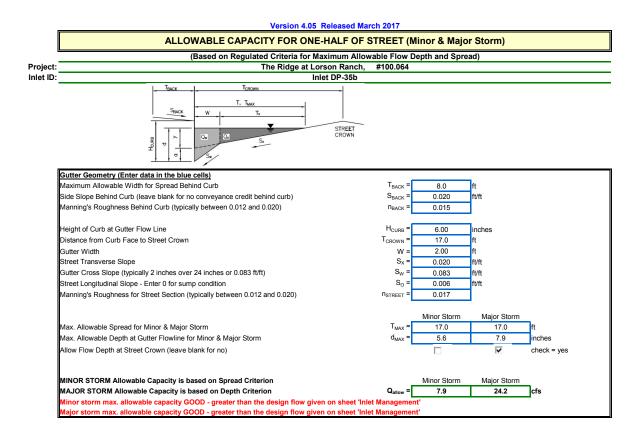

INLET IN A SUMP OR SAG LOCATION

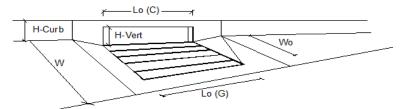
Version 4.05 Released March 2017

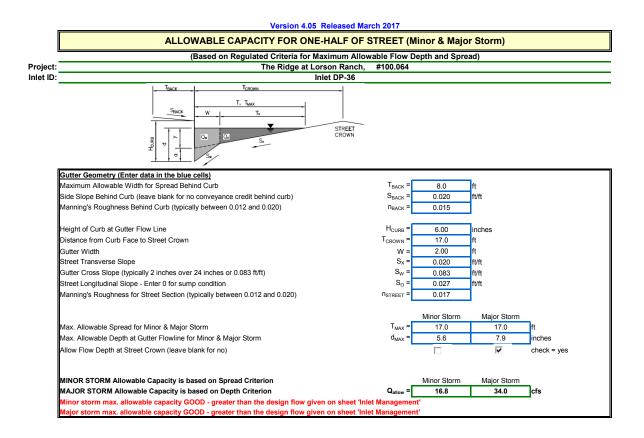


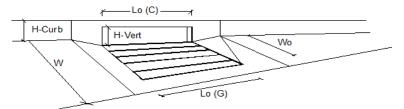
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
ocal Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Nater Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	8.4	inches
Grate Information		MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
ength of a Unit Curb Opening	L ₀ (C) =	20.00	20.00	feet
leight of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
ow Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.53	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.79	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.76	0.91	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	10.3	29.2	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	8.6	27.5	cfs

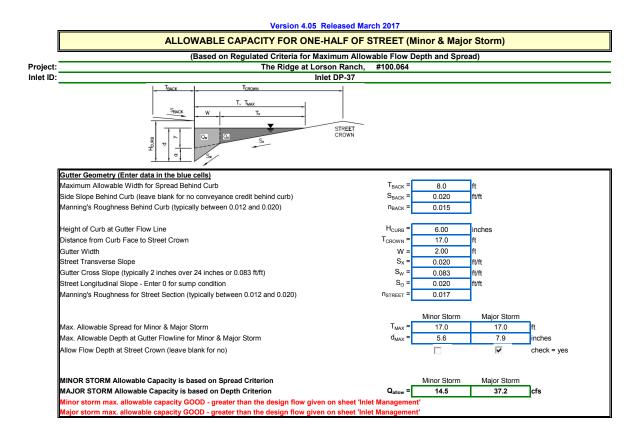


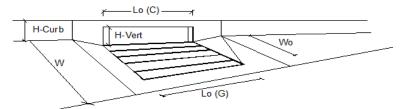

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.6	7.7	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	25.00	25.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.22	0.47	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.43	0.72	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.69	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	7.0	28.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	7.0	28.7	cfs

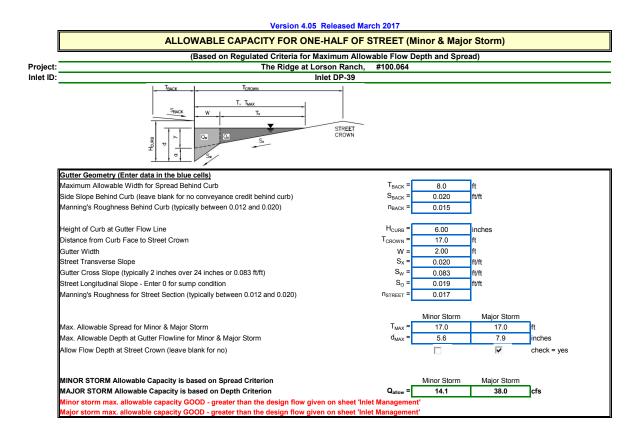


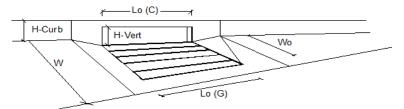

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.9	11.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	86	%

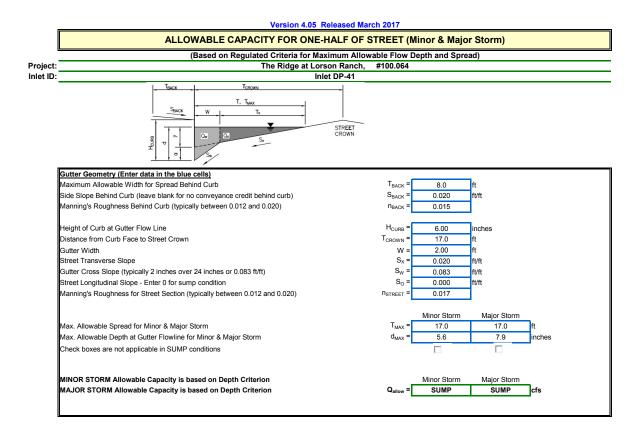


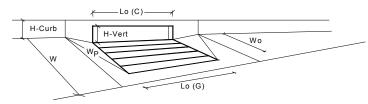

Design Information (Input)	Ĩ	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.9	4.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.2	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	96	%



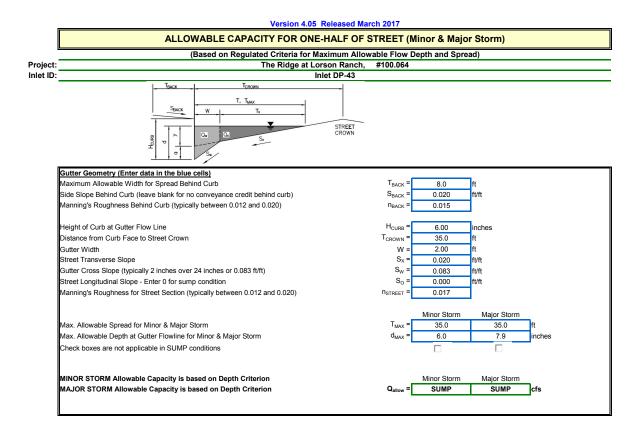

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	4.1	5.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	7.3	19.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	36	22	%

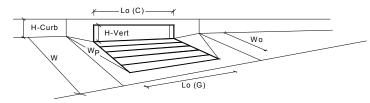


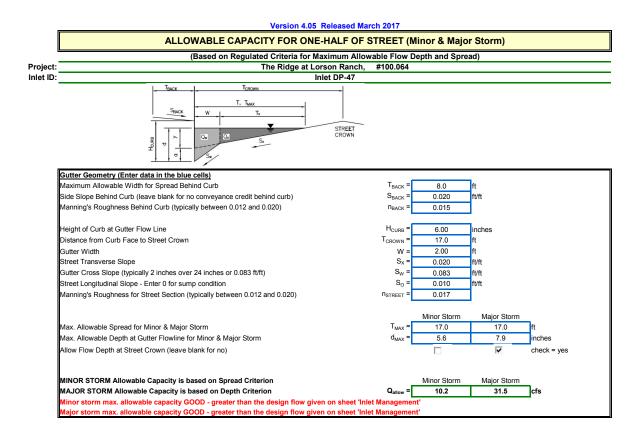

Design Information (Input)	ì	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.4	4.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	4.0	11.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	46	29	%



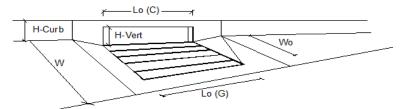
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	25.00	25.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	12.7	27.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	7.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	79	%

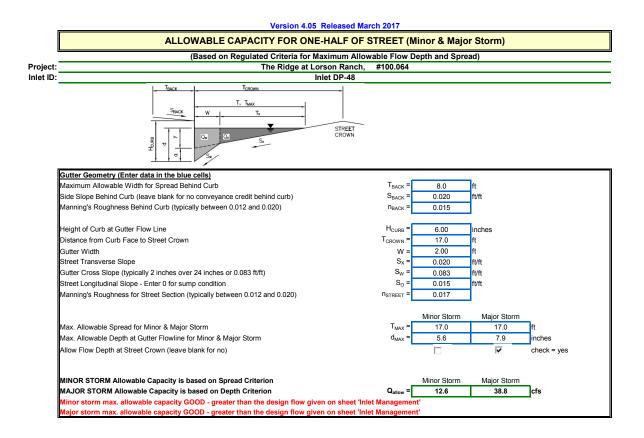


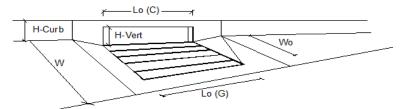

Version 4.05 Released March 2017

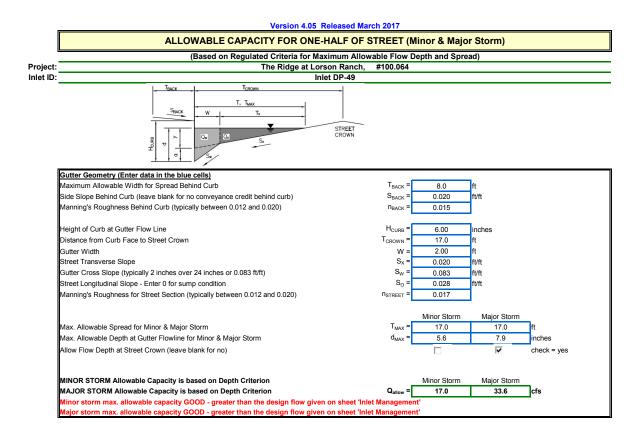

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.9	inches
Grate Information		MINOR	MAJOR	Override Depths
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	20.00	20.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.49	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.76	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	10.3	25.1	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	9.3	27.7	cfs

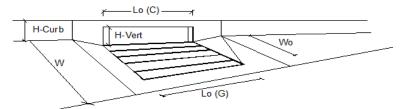
(Overtops to Inlet 43)

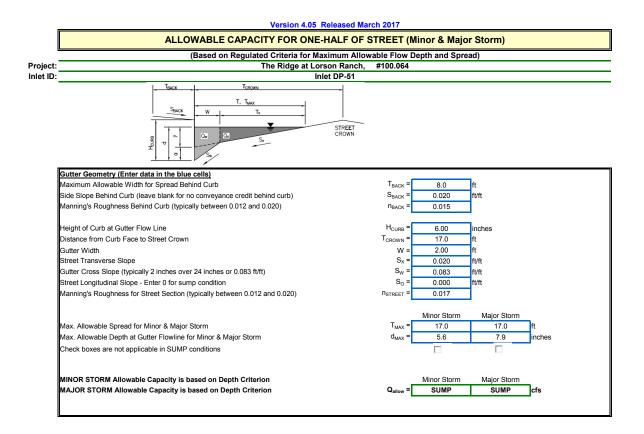


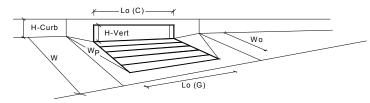

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	٦
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.9	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	20.00	20.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.49	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.76	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	10.3	25.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	10.0	24.5	cfs

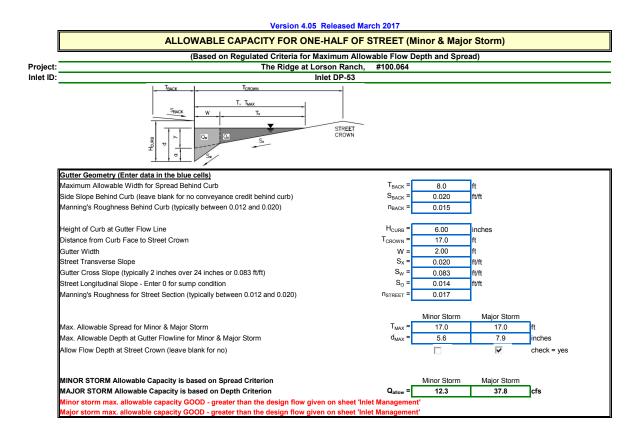



Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	6.1	9.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.4	7.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	81	56	%

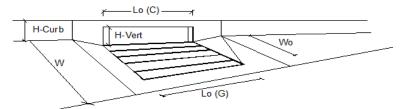


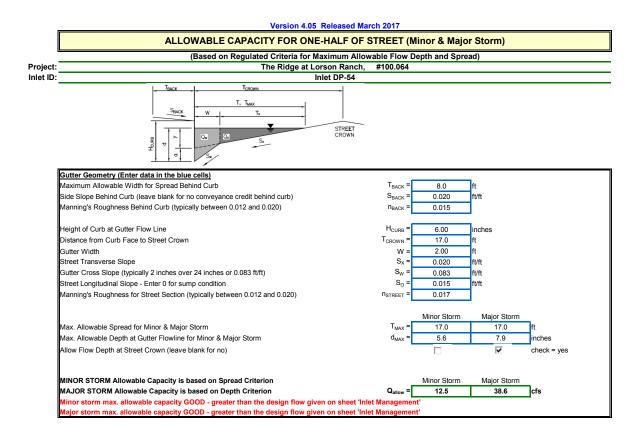

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.4	6.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.4	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	81	%

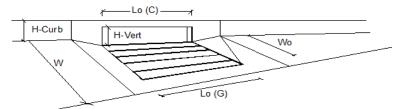


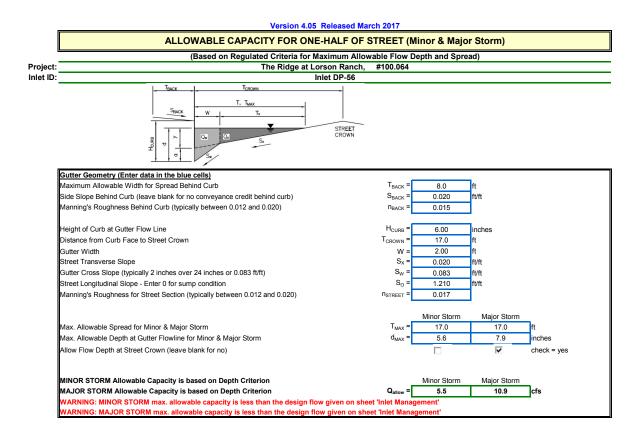


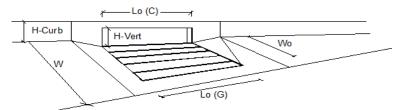
Design Information (Input)	Ĩ	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	20.00	20.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.7	20.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	6.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	75	%

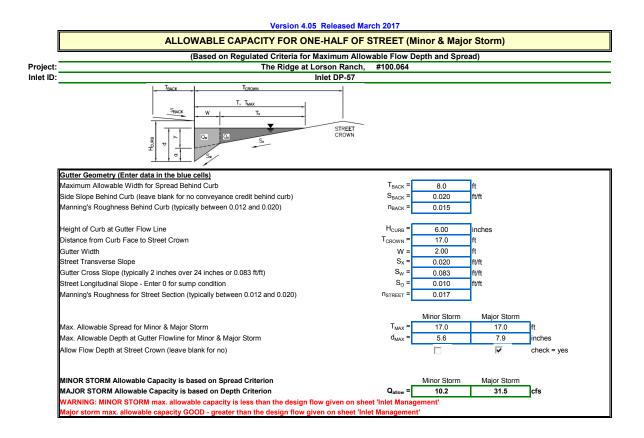


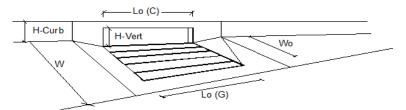

		MINOR	MAJOR	
Design Information (Input) CDOT Type R Curb Opening	T			-
Type of Inlet	Type =	•••	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.0	7.1	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	25.00	25.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	1
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.17	0.43	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.38	0.67	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.64	0.85	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	1
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.5	24.0	cfs
WARNING: Inlet Capacity less than Q Peak for Major Storm	Q PEAK REQUIRED =	4.5	26.0	cfs

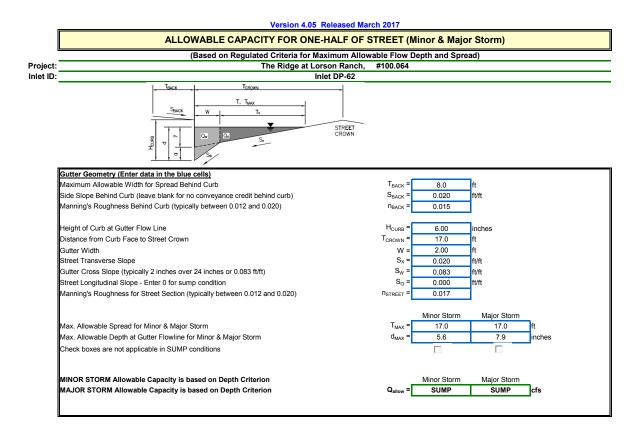


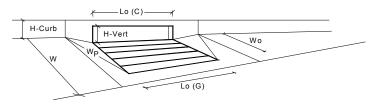

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	9.7	16.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.9	10.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	91	61	%

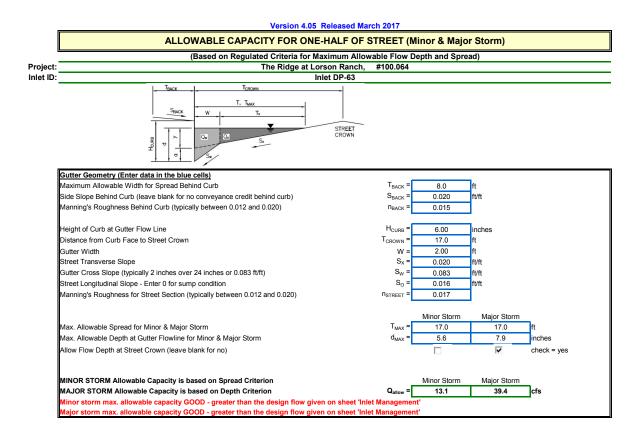



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	20.00	20.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	11.7	24.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	13.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	99	64	%

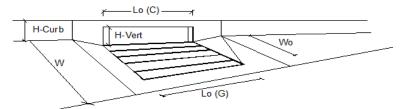


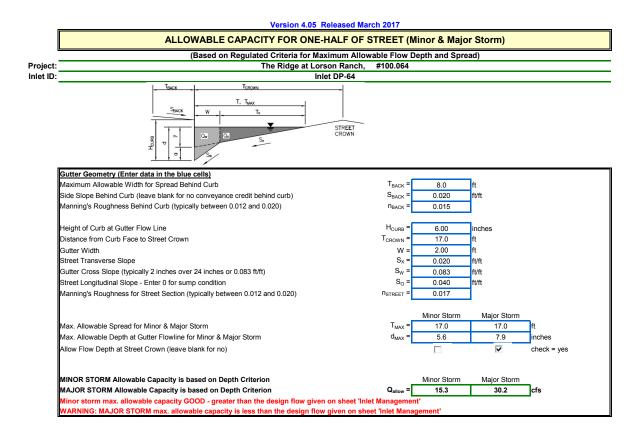

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	20.00	20.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MINOR & MAJOR STORM		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	9.0	23.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	9.1	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	72	%

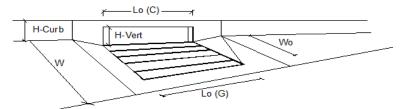




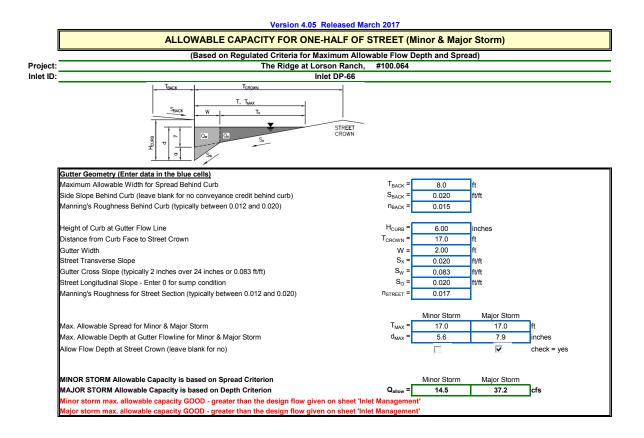
Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	20.00	20.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MINOR STORM		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	11.0	19.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	5.1	cfs
Capture Percentage = Q _a /Q _o =	С% =	100	79	%



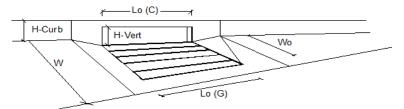

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	8.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	30.00	30.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.76	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	14.9	37.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	14.3	37.4	cfs



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	10.2	15.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.3	9.7	cfs
Capture Percentage = Q _a /Q _o =	C% =	89	62	%

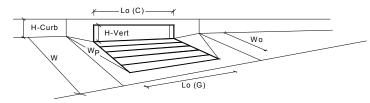


INLET ON A CONTINUOUS GRADE

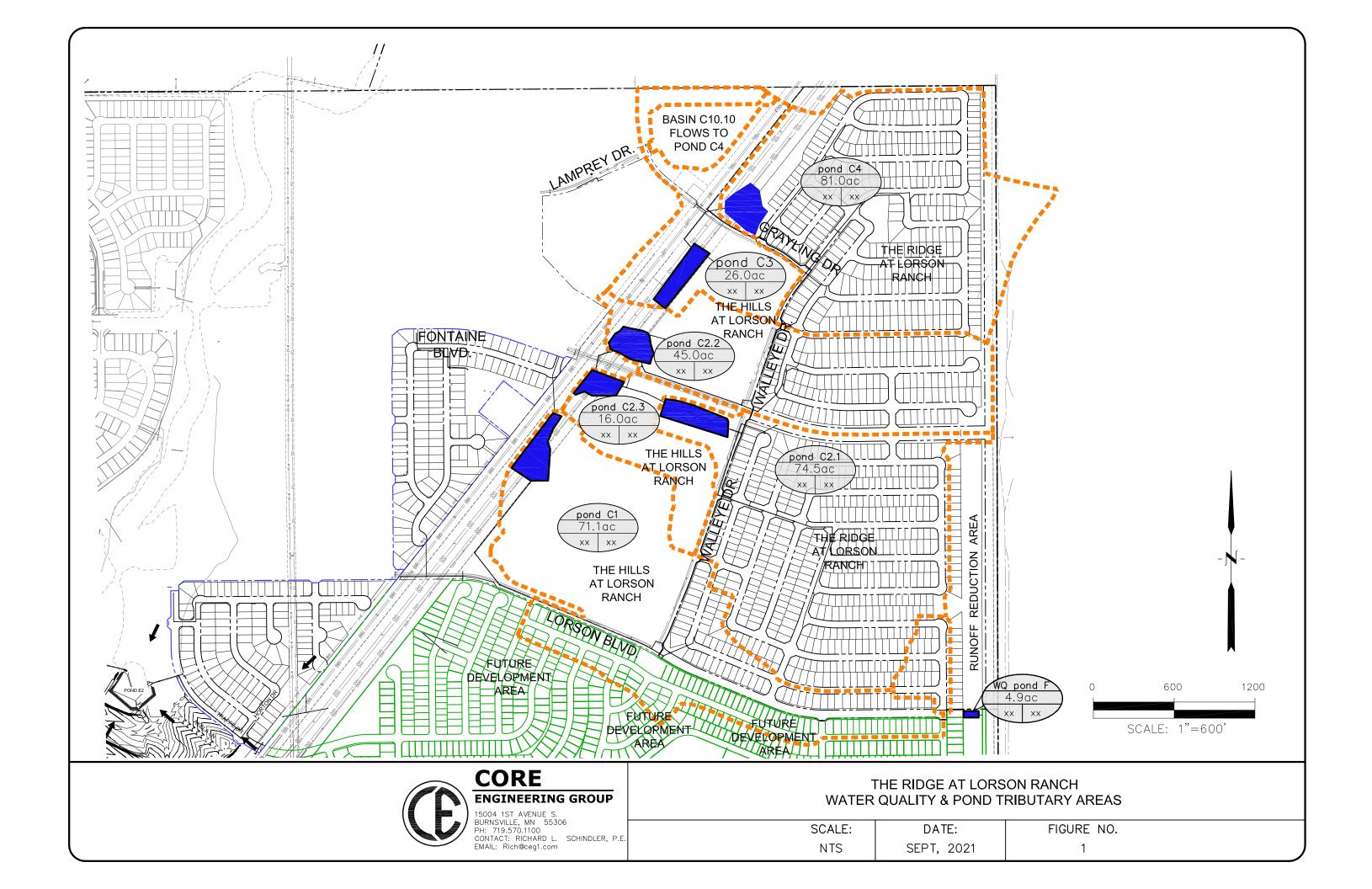


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MAJOR STORM		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	9.8	17.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.9	13.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	92	57	%

INLET ON A CONTINUOUS GRADE



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.5	11.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	2.7	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	81	%


INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	٦
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.5	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	25.00	25.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.29	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.52	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.75	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	12.0	29.8	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	7.9	17.3	cfs

APPENDIX D – POND AND ROUTING CALCULATIONS

			Desig	gn Procedu	ire Form: I	Runoff Red	luction					
<u></u>				UD-BMP (Ve	ersion 3.07, Ma	rch 2018)						Sheet 1 of 1
Designer:	Richard Schir	ndler									_	
Company:	Core Enginee	ring Group									_	
Date:	March 18, 202	21									_	
Project:	The Ridge at I	Lorson Ranch									_	
Location:	Basin F1										_	
SITE INFORMATION (Use	WQCV F	Rainfall Depth		inches	(storobodo O	itaida of the F)onver Degier		n USDCM Vo	1.2)		
Depth of Average Na		g Otomi, u ₆ –	0.45	Inches (IOI V	rater sheus Ot		Jenver Regior	i, rigule 5-i i		. 3)		
Area Type	UIA:RPA											
Area ID	res. Lot											
Downstream Design Point ID	1											
Downstream BMP Type	None											
DCIA (ft ²)												
UIA (ft ²)	4,500											
RPA (ft ²)	7,250											
SPA (ft ²)												
HSG A (%)	0%											┝───┤┃
HSG B (%)	100%											
HSG C/D (%) Average Slope of RPA (ft/ft)	0% 0.060											
UIA:RPA Interface Width (ft)	145.00											
OIA.IN A Interface width (it)	140.00											
CALCULATED RUNOFF												
Area ID	res. Lot											
UIA:RPA Area (ft ²)	11,750											
L / W Ratio	0.56											
UIA / Area	0.3830											
Runoff (in)	0.00											
Runoff (ft ³)	0											
Runoff Reduction (ft ³)	188											
CALCULATED WQCV RE												
Area ID												
WQCV (ft ³)	188											
WQCV Reduction (ft ³)	188											
WQCV Reduction (%)	100%											
Untreated WQCV (ft ³)	0											
CALCULATED DESIGN F		TS (sums re	sults from a	ll columns w	ith the same	Downstream	Design Poir	nt ID)				
Downstream Design Point ID		- (
DCIA (ft ²)	0											
UIA (ft ²)	4,500											
RPA (ft ²)	7,250											
SPA (ft ²)	0											
Total Area (ft ²)	11,750											
Total Impervious Area (ft ²)	4,500											
WQCV (ft ³)												
WQCV Reduction (ft ³)	188											└───┤┃
WQCV Reduction (%)	100%											┝───┤┃
Untreated WQCV (ft ³)	0				l		l					
CALCULATED SITE RES	ULTS (sums	results from	all columns	in workshee	t)							
Total Area (ft ²)	11,750											
Total Impervious Area (ft ²)	4,500											
WQCV (ft ³)	188											
WQCV Reduction (ft ³)												
WQCV Reduction (%)	100%											
Untreated WQCV (ft ³)	0											

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.02 (February 2020)

Depth Increment = 0.20

Optional User Overrid

1.19 inches
 1.10
 inches

 1.50
 inches

 1.75
 inches

 2.00
 inches
 2.25 inches 2.52 inches inches

100-YR VOLUME EURV WQCV -100-YEAR ORIFICE

ZONE 1 AND 2 ORIFICES PERMA Example Zone Configuration (Retention Pond)

Watershed Information

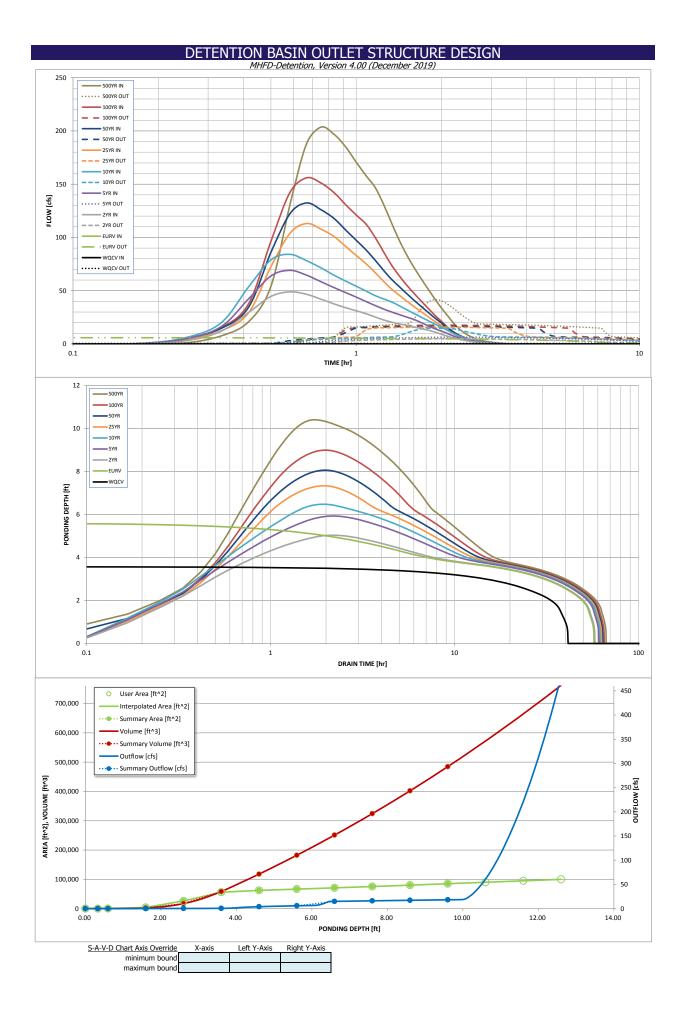
atersneu information		
Selected BMP Type =	EDB	
Watershed Area =	71.10	acres
Watershed Length =	4,800	ft
Watershed Length to Centroid =	2,100	ft
Watershed Slope =	0.040	ft/ft
Watershed Imperviousness =	55.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban nydre	graphinoceue	ic.
Water Quality Capture Volume (WQCV) =	1.306	acre-feet
Excess Urban Runoff Volume (EURV) =	4.212	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	3.975	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	5.580	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	6.975	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	8.792	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	10.293	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	12.175	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	16.033	acre-feet
Approximate 2-yr Detention Volume =	3.210	acre-feet
Approximate 5-yr Detention Volume =	4.365	acre-feet
Approximate 10-yr Detention Volume =	5.698	acre-feet
Approximate 25-yr Detention Volume =	6.193	acre-feet
Approximate 50-yr Detention Volume =	6.465	acre-feet
Approximate 100-yr Detention Volume =	7.133	acre-feet

Define	Zones	and	Basin	Geometry	

Denne Zones and Dasin Geometry		
Zone 1 Volume (WQCV) =	1.306	acre-feet
Zone 2 Volume (EURV - Zone 1) =	2.906	acre-feet
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	3.574	acre-feet
Total Detention Basin Volume =	7.786	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	


Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =		ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V _{total}) =	user	acre-feet

		Depth Increment =	0.20	ft							
)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
,		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
		Top of Micropool		0.00				40	0.001		
		5743.73		0.33				52	0.001	15	0.000
		5744		0.60				300	0.007	63	0.001
		5745		1.60				4,017	0.092	2,221	0.051
		5746		2.60				26,320	0.604	17,389	0.399
		5747		3.60				56,078	1.287	58,588	1.345
		5748		4.60				62,238	1.429	117,746	2.703
		5749		5.60				66,563	1.528	182,147	4.182
		5750		6.60				70,969	1.629	250,913	5.760
		5751		7.60	-		-	75,495	1.733	324,145	7.441
		5752		8.60	-	-	-	80,136	1.840		9.228
										401,960	9.228
		5753		9.60	-			85,057	1.953	484,557	
		5754		10.60	-			90,000	2.066	572,085	13.133
		5755		11.60				95,000	2.181	664,585	15.257
_	verrides	5756		12.60				100,000	2.296	762,085	17.495
_	re-feet				-						
	re-feet				-		-				
_	ches										
	ches										
_	ches				-						
-	ches										
	ches										
_	ches				-						
inc	ches										
					-		-				
					-						
					-						
							-				
					-						
					-						
					-					1	
					-						
					-		-				
							-				
					-		-				
					-						
					-						
					-		-				
					-						
					-						
			-		-		-				
					-	-	-				
					-						
					-						
					-						
					-						
					-						
					-		-				
					-		-				
					-		-				
							-				
			1 1		-		-				
					-	-	-		-		
					1 1		1 1				
							-				
					-						⊢]
					-						
			1 1 1		1 1		1 1 1				
					-						
					-						
					1 1 1	1 1 1	1 1 1			I	
					-						
									1		
			1 1			1 1	1 1				
					-		-			-	
						1 1					
					-		-				
					-		-				
		-						1		1	

pond bottom=5743.40

DETENTION BASIN OUTLET STRUCTURE DESIGN 1HFD-Detention, Version 4.02 (February 2020 Project: The Hills at Lorson Ranch Basin ID: Pond C1 Estimated Estimated ZONE 1 Outlet Type Stage (ft) Volume (ac-ft) VOLUME EURV WQCV Zone 1 (WQCV) Orifice Plate 3.57 1.306 Zone 2 (FURV) 2,906 Rectangular Orifice 5.63 100-YEAF ZONE 1 AND 2 ORIFICES '3 (100+1/2WQCV) 7.80 3.574 Weir&Pipe (Restrict) PERMAN Example Zone Configuration (Retention Pond) Total (all zones) 7.786 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Underdrain Orifice Area Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) ft² Underdrain Orifice Diameter = inches Underdrain Orifice Centroid = feet Calculated Parameters for Plate User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) WQ Orifice Area per Row Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) 2.465E-02 ft^2 Depth at top of Zone using Orifice Plate = 3.57 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet Orifice Plate: Orifice Vertical Spacing 14.60 Elliptical Slot Centroid N/A feet inches ft² Elliptical Slot Area Orifice Plate: Orifice Area per Row : 3.55 sq. inches (use rectangular openings) N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft 0.00 1.20 2.40 Orifice Area (sq. inches) 3.55 3.55 3.55 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft Orifice Area (sg. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifi Zone 2 Rectangula Not Selected Zone 2 Rectangula Not Selected Invert of Vertical Orifice 3.64 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area 0.82 N/A ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Vertical Orifice 5.63 N/A Vertical Orifice Centroid 0.25 N/A Vertical Orifice Height 6.00 N/A inches Vertical Orifice Width = 19.74 inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow We Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho 6.10 N/A Height of Grate Upper Edge, H_t N/A ft (relative to basin bottom at Stage = 0 ft) 6.10 Overflow Weir Front Edge Length 5.66 N/A feet Overflow Weir Slope Length 3.00 N/A Overflow Weir Grate Slope = 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area 9.41 N/A Horiz. Length of Weir Sides : N/A Overflow Grate Open Area w/o Debris 11.89 N/A 3.00 feet Overflow Grate Open Area % 70% N/A %, grate open area/total area Overflow Grate Open Area w/ Debris = 5.94 N/A Debris Clogging % = N/A 50% User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe 0.00 N/A Outlet Orifice Area N/A ft (distance below basin bottom at Stage = 0 ft) 1.26 Outlet Pipe Diameter 18.00 N/A inches Outlet Orifice Centroid 0.57 N/A Restrictor Plate Height Above Pipe Invert = 12.10 inches Half-Central Angle of Restrictor Plate on Pipe = 1.92 N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 10.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 1.37 feet Spillway Crest Length : 28.00 feet Stage at Top of Freeboard = 12.53 feet H:V Spillway End Slopes 4.00 Basin Area at Top of Freeboard 2.29 acres Freeboard above Max Water Surface = 1.16 Basin Volume at Top of Freeboard = 17.33 feet acre-ft micropool = 0 = 5743.40 Routed Hydrograph Results in the Inflow Hv hs table (Columns W through AF erride the c ault CLIHP hv inhs and i na new values f volumes hv i Design Storm Return Period WOCV EURV 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 10.293 12.175 CUHP Runoff Volume (acre-ft) 1.306 4.212 3.975 5.580 6.975 8.792 6.975 Inflow Hydrograph Volume (acre-ft) 3.975 5.580 N/A N/A 8.792 10.293 12.175 CUHP Predevelopment Peak Q (cfs) N/A N/A 5.2 14.7 22.8 41.9 52.7 68.0 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A 0.74 0.07 0.96 Predevelopment Unit Peak Flow, g (cfs/acre) 0.21 0.32 0.59 N/A N/A Peak Inflow Q (cfs) N/A N/A 48.9 69.1 84.1 113.0 132.4 155.9 0.5 4.9 Peak Outflow Q (cfs) 5.9 6.4 14.8 15.8 16.7 17.7 Ratio Peak Outflow to Predevelopment Q N/A N/A N/A 0.4 0.6 0.4 0.3 0.3 Structure Controlling Flow Plate Vertical Orifice Vertical Orifice Vertical Orifice Outlet Plate Outlet Plate Outlet Plate Outlet Plate 1 Max Velocity through Grate 1 (fps) N/A N/A N/A N/A 0.6 0.6 0.6 0.6 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A Time to Drain 97% of Inflow Volume (hours) 50 51 51 51 50 49 48 Time to Drain 99% of Inflow Volume (hours) 40 54 54 56 57 57 57 58 Maximum Ponding Depth (ft) 3.57 5.62 5.04 5.93 6.48 7.33 8.06 8.99 Area at Maximum Ponding Depth (acres) 1.47 3.327 1.78 1.88 1.56 1.62 5.549 1.71 1.307 4.212

Maximum Volume Stored (acre-ft)

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

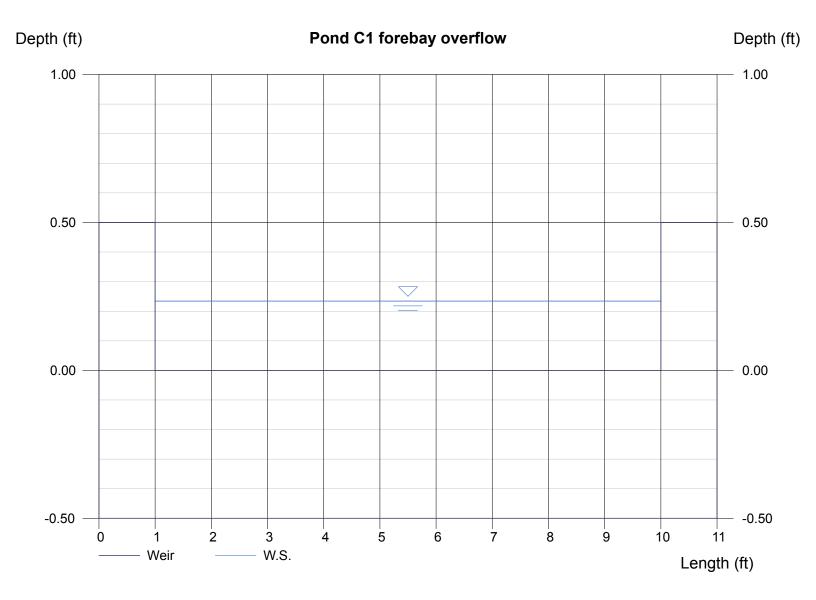
	The user can o	verride the calcu	lated inflow hyd	rographs from t	nis workbook wit	th inflow hydrog	raphs developed	l in a separate pro	ogram.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]		500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5.00 1111	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.33	0.00	1.07
	0:15:00	0.00	0.00	2.91	4.76	5.90	3.97	5.13	4.86	7.53
	0:20:00	0.00	0.00	11.94	16.24	19.80	12.28	14.54	15.28	20.80
	0:25:00	0.00	0.00	29.55	42.27	53.53	29.21	34.38	37.61	54.12
	0:30:00	0.00	0.00	44.62	63.86	78.94	72.63	85.96	96.39	130.39
	0:35:00	0.00	0.00	48.91	69.09	84.11	103.79	122.18	142.20	187.48
	0:40:00	0.00	0.00	46.62	64.63	78.29	113.02	132.36	155.90	203.58
	0:45:00	0.00	0.00	42.09	58.47	71.49	107.92	126.10	151.17	197.03
	0:50:00 0:55:00	0.00	0.00	37.67	53.00	64.67 59.11	101.05	118.01	142.22 130.90	185.19
	1:00:00	0.00	0.00	34.10 31.18	48.28 43.98	54.22	91.69 83.12	107.16 97.31	121.08	170.68 158.04
	1:05:00	0.00	0.00	28.39	39.82	49.61	75.28	88.27	1121.00	146.88
	1:10:00	0.00	0.00	25.32	36.08	45.39	67.00	78.65	100.07	130.93
	1:15:00	0.00	0.00	22.56	32.77	42.30	58.73	69.03	86.37	113.57
	1:20:00	0.00	0.00	20.51	30.02	39.44	51.59	60.68	74.05	97.72
	1:25:00	0.00	0.00	18.94	27.61	36.00	45.91	53.99	64.24	84.78
	1:30:00	0.00	0.00	17.54	25.44	32.45	40.74	47.82	55.98	73.80
	1:35:00	0.00	0.00	16.23	23.40	29.20	36.02	42.17	48.93	64.42
	1:40:00	0.00	0.00	14.92	20.99	26.19	31.68	36.95	42.47	55.84
	1:45:00	0.00	0.00	13.62	18.41	23.32	27.65	32.14	36.46	47.87
	1:50:00 1:55:00	0.00	0.00	12.34 10.72	15.95 13.82	20.63 18.07	23.82 20.30	27.58 23.41	30.85 25.76	40.45 33.72
	2:00:00	0.00	0.00	9.18	13.82	18.07	20.30	23.41	25.76	27.90
	2:05:00	0.00	0.00	7.61	10.19	13.31	13.78	15.79	16.77	22.12
	2:10:00	0.00	0.00	6.19	8.30	10.85	10.80	12.38	12.96	17.16
	2:15:00	0.00	0.00	5.00	6.67	8.77	8.44	9.67	9.95	13.20
	2:20:00	0.00	0.00	4.07	5.39	7.09	6.66	7.62	7.66	10.18
	2:25:00	0.00	0.00	3.28	4.33	5.69	5.25	5.99	5.87	7.80
	2:30:00	0.00	0.00	2.63	3.48	4.54	4.15	4.72	4.48	5.95
	2:35:00	0.00	0.00	2.09	2.75	3.55	3.23	3.66	3.39	4.49
	2:40:00	0.00	0.00	1.66	2.15	2.75	2.50	2.82	2.59	3.43
	2:45:00 2:50:00	0.00	0.00	1.32	1.66 1.29	2.12	1.93 1.51	2.17	2.01	2.65
	2:55:00	0.00	0.00	0.80	0.99	1.03	1.18	1.32	1.39	1.65
	3:00:00	0.00	0.00	0.60	0.74	0.97	0.90	1.00	0.96	1.26
	3:05:00	0.00	0.00	0.43	0.53	0.70	0.66	0.74	0.70	0.92
	3:10:00	0.00	0.00	0.28	0.36	0.48	0.46	0.51	0.49	0.63
	3:15:00	0.00	0.00	0.17	0.23	0.30	0.29	0.33	0.31	0.40
	3:20:00	0.00	0.00	0.09	0.13	0.16	0.17	0.18	0.17	0.22
	3:25:00	0.00	0.00	0.04	0.06	0.07	0.07	0.08	0.08	0.09
	3:30:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.02
	3:35:00 3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 5:05:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.02 (February 2020) Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
micropool	0.00	40	0.001	0	0.000	0.00	For best results, include the
surcharge	0.33	52	0.001	15	0.000	0.07	stages of all grade slope
5744	0.60	300	0.007	63	0.001	0.09	changes (e.g. ISV and Floor
5745	1.60	4,017	0.092	2,221	0.051	0.23	from the S-A-V table on
5746	2.60	26,320	0.604	17,389	0.399	0.38	Sheet 'Basin'.
5747	3.60	56,078	1.287	58,588	1.345	0.54	Also include the inverts of a
5748	4.60	62,238	1.429	117,746	2.703	3.99	outlets (e.g. vertical orifice,
5749	5.60	66,563	1.528	182,147	4.182	5.92	overflow grate, and spillway
5750	6.60	70,969	1.629	250,913	5.760	14.94	where applicable).
5751	7.60	75,495	1.733	324,145	7.441	16.13	
5752	8.60	80,136	1.840	401,960	9.228	17.24	
5753	9.60	85,057	1.953	484,557	11.124	18.28	
							-
				-			
	-						
							-
							-
	-						
	-						
	-						
							_
							_
							4
							4
							4
		L	ļ				4
	_						
							-
	_						
				-			
				-			1
				-			1
]
							4
	-						4
							4
							4
							1
	1	ł			1		1

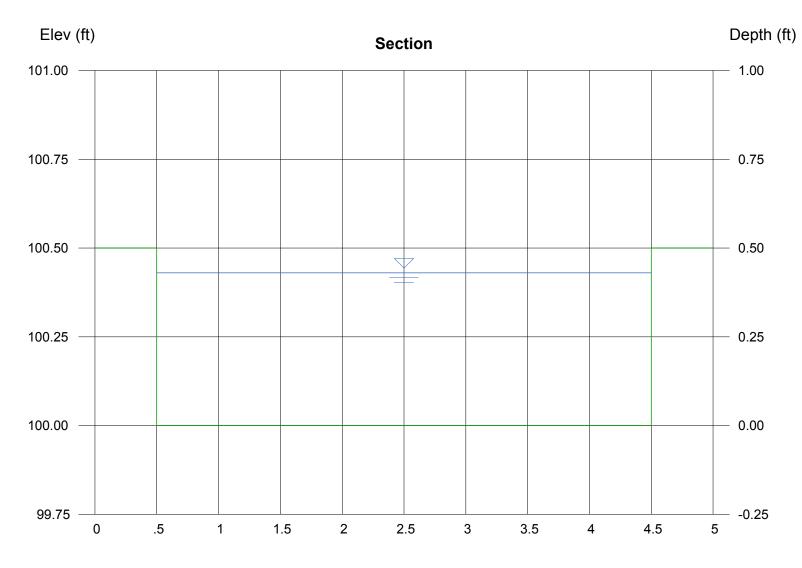
	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	Richard Schindler	
Company:	Core Engineering Group	
Date: Project:	April 30, 2020 The Hills at Lorson Ranch	
Location:	Pond C1	
1. Basin Storage V	/olume	
A) Effective Imp	erviousness of Tributary Area, I _a	l _a = 55.0 %
B) Tributary Are	a's Imperviousness Ratio (i = l _a / 100)	i = <u>0.550</u>
C) Contributing	Watershed Area	Area = 76.000 ac
	neds Outside of the Denver Region, Depth of Average	d ₆ = in
Runoff Prod	ucing Storm	Choose One
E) Design Cond		Water Quality Capture Volume (WQCV)
(Select EUR	V when also designing for flood control)	C Excess Urban Runoff Volume (EURV)
	me (WQCV) Based on 40-hour Drain Time	V _{DESIGN} = 1.396 ac-ft
	I.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	
	neds Outside of the Denver Region, ty Capture Volume (WQCV) Design Volume	V _{DESIGN OTHER} = ac-ft
	$_{R}^{2} = (d_{6}^{*}(V_{\text{DESIGN}}/0.43))$	
H) User Input o	f Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN USER} = ac-ft
	ferent WQCV Design Volume is desired)	
I) NRCS Hydro	logic Soil Groups of Tributary Watershed	
	ge of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils	$HSG_{R} = $ %
	age of Watershed consisting of Type D colls	$HSG_{CD} = \frac{1}{3}$ %
J) Excess Urba	in Runoff Volume (EURV) Design Volume	
For HSG A	: EURV _A = 1.68 * i ^{1.28}	EURV _{DESIGN} = ac-f t
	: EURV _B = 1.36 * i ^{1.08} /D: EURV _{C/D} = 1.20 * i ^{1.08}	
K) User Innut o	f Excess Urban Runoff Volume (EURV) Design Volume	EURV _{DESIGN USER} ac-ft
	ferent EURV Design Volume is desired)	
2 Pasin Shano: L	ength to Width Ratio	L:W = 2.0 : 1
	to width ratio of at least 2:1 will improve TSS reduction.)	
Basin Side Slop	es	
A) Basin Maxin	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = <u>3.00</u> ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
(Horizontal C		
4. Inlet		
A) Describe me	eans of providing energy dissipation at concentrated	
inflow location		
5. Forebay		
A) Minimum Fo		V _{FMIN} = 0.042 ac-ft
(V _{FMIN}	= <u>3%</u> of the WQCV)	
B) Actual Foreit	bay Volume	V _F = 0.045 ac-ft
C) Forebay Dep		
(D _F	= <u>30</u> inch maximum)	$D_{\rm F} = 24.0$ in
D) Forebay Disc	charge	
i) Undetaine	ed 100-year Peak Discharge	Q ₁₀₀ = 170.00 cfs
ii) Forebav	Discharge Design Flow	Q _F = 3.40 cfs
$(Q_F = 0.02)$		
E) Forebay Disc	charge Design	Choose One
		O Berm With Pipe
		Wall with Rect. Notch
		O Wall with V-Notch Weir
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P = in
G) Rectangular	Notch Width	Calculated W _N = 9.1 in


Design Procedure Form	: Extended Detention Basin (EDB)
Designer: Richard Schindler Company: Core Engineering Group Date: April 30, 2020 Project: The Hills at Lorson Ranch Location: Pond C1	Sheet 2 of 3
6. Trickle ChannelA) Type of Trickle ChannelF) Slope of Trickle Channel	Choose One Choose One Concrete Soft Bottom S = 0.0050 ft / ft
 7. Micropool and Outlet Structure A) Depth of Micropool (2.5-feet minimum) B) Surface Area of Micropool (10 ft² minimum) C) Outlet Type 	$D_{M} = \underbrace{2.5}_{M} \text{ ft}$ $A_{M} = \underbrace{50}_{O} \text{ sq ft}$ $\underbrace{Choose One}_{\textcircled{O} Orifice Plate}_{\textcircled{O} Other (Describe):}$
 D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing (Use UD-Detention) E) Total Outlet Area 	$D_{\text{ortifice}} = $ 1.93 inches $A_{\text{ot}} = $ 6.45 square inches
 8. Initial Surcharge Volume A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) C) Initial Surcharge Provided Above Micropool 	$D_{is} =$ 4 in $V_{is} =$ 182 cu ft $V_s =$ 16.7 cu ft
 9. Trash Rack A) Water Quality Screen Open Area: At = At * 38.5*(e^{-0.066D}) B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) Other (Y/N): y C) Ratio of Total Open Area to Total Area (only for type 'Other') D) Total Water Quality Screen Area (based on screen type) E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) F) Height of Water Quality Screen (H_{TR}) 	$A_t =$ 207 square inches Other (Please describe below)
G) Width of Water Quality Screen Opening (W _{opening}) (Minimum of 12 inches is recommended)	W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

Hydraflow Express by Intelisolve

Friday, May 1 2020, 8:58 AM

Pond C1 forebay overflow


Rectangular Weir		Highlighted
Crest	= Sharp	Depth (ft) = 0.23
Bottom Length (ft)	= 9.00	Q(cfs) = 3.400
Total Depth (ft)	= 0.50	Area (sqft) = 2.11
		Velocity (ft/s) = 1.61
Calculations		Top Width (ft) = 9.00
Weir Coeff. Cw	= 3.33	
Compute by:	Known Q	
Known Q (cfs)	= 3.40	

Hydraflow Express by Intelisolve

pond C1 low flow channel (2 x forebay release = 6.8cfs)

Rectangular		Highlighted	
Botom Width (ft)	= 4.00	Depth (ft)	= 0.43
Total Depth (ft)	= 0.50		= 6.800 = 1.72
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.95
Slope (%)	= 0.50	Wetted Perim (ft)	= 4.86
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.45
		Top Width (ft)	= 4.00
Calculations		EGL (ft) :	= 0.67
Compute by:	Known Q		
Known Q (cfs)	= 6.80		

Reach (ft)

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.02 (February 2020)

Project: The Hills at Lorson Ranch
Basin ID: Pond C2.1
 ZONE 3 ZONE 2 ZONE 1

-100-YEAR ORIFICE

ZONE 1 AND 2-ORIFICES PERM Example Zone Configuration (Retention Pond)

Watershed Information

EDB	
74.50	acres
2,500	ft
2,000	ft
0.038	ft/ft
55.00%	percent
0.0%	percent
100.0%	percent
0.0%	percent
40.0	hours
User Input	
	74.50 2,500 2,000 0.038 55.00% 0.0% 100.0% 0.0% 40.0

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban hydro	graphi Floceuc	ie.
Water Quality Capture Volume (WQCV) =	1.368	acre-feet
Excess Urban Runoff Volume (EURV) =	4.414	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	4.152	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	5.828	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	7.285	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	9.182	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	10.750	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	12.716	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	16.746	acre-feet
Approximate 2-yr Detention Volume =	3.363	acre-feet
Approximate 5-yr Detention Volume =	4.574	acre-feet
Approximate 10-yr Detention Volume =	5.970	acre-feet
Approximate 25-yr Detention Volume =	6.490	acre-feet
Approximate 50-yr Detention Volume =	6.774	acre-feet
Approximate 100-yr Detention Volume =	7.475	acre-feet

Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	1.368	acre-feet
Zone 2 Volume (EURV - Zone 1) =	3.045	acre-feet
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	3.745	acre-feet
Total Detention Basin Volume =	8.159	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	1
		•

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V _{total}) =	user	acre-feet

_	-					top microp	001-5760.0	U			
				1							
		Depth Increment =	0.20	ft Ontional		1	1	Optional		T	,
ion Pond)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
ion Fonu)		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft ³)	(ac-ft)
		Top of Micropool		0.00				42	0.001		
										10	0.000
		5760.33		0.33				50	0.001	15	0.000
		5761		1.00	-			1,264	0.029	455	0.010
		5762		2.00	-			20,478	0.470	11,326	0.260
		5763		3.00	-			41,417	0.951	42,274	0.970
		5764		4.00				44,796	1.028	85,380	1.960
		5765		5.00				48,239	1.107	131,898	3.028
		5766		6.00				51,758	1.188	181,896	4.176
		5767		7.00				55,348	1.271	235,449	5.405
		5768		8.00				59,010	1.355	292,628	6.718
					-			-			
		5769		9.00				62,743	1.440	353,505	8.115
		5770		10.00			-	66,548	1.528	418,150	9.599
		5771		11.00				70,423	1.617	486,636	11.172
		5772		12.00	-			74,434	1.709	559,064	12.834
Optional Use	r Overrides				-						
	acre-feet										
	acre-feet				-						
1.19	inches										
1.50	inches										
1.30	inches				-					1	
	+						-				
2.00	inches									<u> </u>	┝───┤
2.25	inches	-								I	
2.52	inches										
	inches				-						
					-		-				
										+	
					-						
					-		-				
					-						
					-						
					-						
					-						
										t	
										1	
							-				
									-		
		-								+	
										+	
					-						
										+	
					-				-		
										+	
					-						
			-		-				-		
										+	
					-					+	
					-						
		-			-					<u> </u>	
					-					1	
					-		-			1	
										<u> </u>	
					-					+	
										1	
					-						
					-					L	
		-								+	
										1	
					-						
										<u> </u>	┝───┤
							-			1	

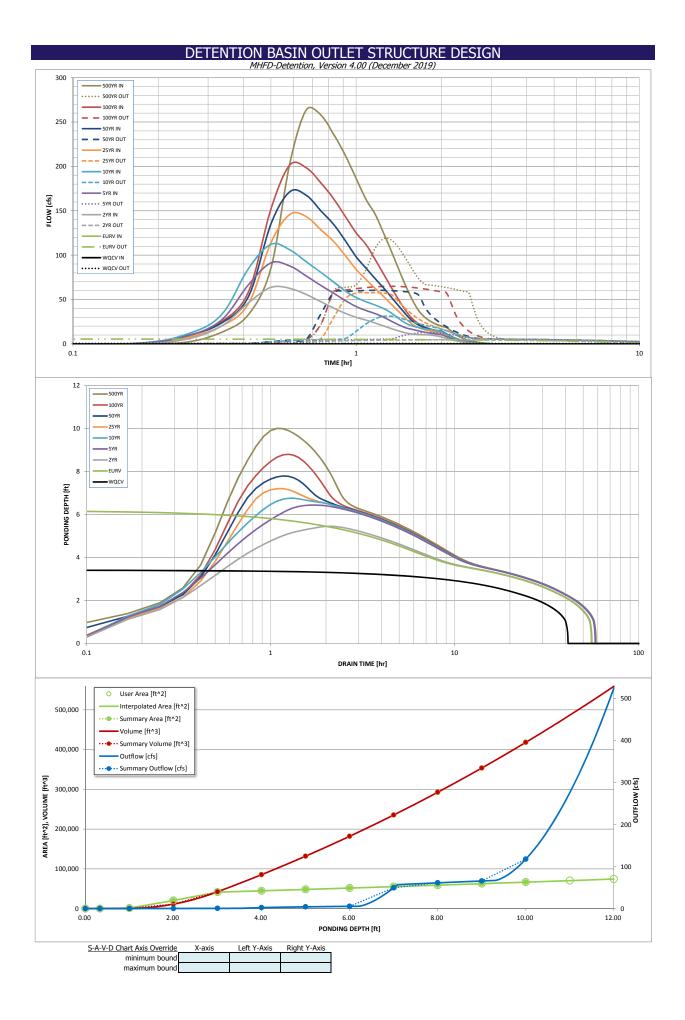
DETENTION BASIN OUTLET STRUCTURE DESIGN 1HFD-Detention, Version 4.02 (February 2020 Project: The Hills at Lorson Ranch Basin ID: Pond C2.1 Estimated Estimated ZONE 1 Outlet Type Stage (ft) Volume (ac-ft) VOLUME EURV WQCV Zone 1 (WQCV) 1.368 Orifice Plate 3.42 Zone 2 (FURV) 3.045 Rectangular Orifice 6.20 100-YEAF ZONE 1 AND 2 ORIFICES '3 (100+1/2WQCV) 9.04 3.745 Weir&Pipe (Restrict) PERMAN Example Zone Configuration (Retention Pond) Total (all zones) 8.159 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Underdrain Orifice Area Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) N/A ft² Underdrain Orifice Diameter = N/A inches Underdrain Orifice Centroid = N/A feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate WQ Orifice Area per Row Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) 2.819E-02 ft^2 Depth at top of Zone using Orifice Plate = ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet 3.42 Orifice Plate: Orifice Vertical Spacing 13.70 Elliptical Slot Centroid N/A feet inches ft² Elliptical Slot Area Orifice Plate: Orifice Area per Row : 4.06 sq. inches (use rectangular openings) N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft 0.00 1.14 2.28 Orifice Area (sq. inches) 4.06 4.06 4.06 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft Orifice Area (sg. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifi Zone 2 Rectangula Not Selected Zone 2 Rectangula Not Selected Invert of Vertical Orifice 3.42 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area 0.61 N/A ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Vertical Orifice 6.20 N/A Vertical Orifice Centroid 0.25 N/A Vertical Orifice Height 6.00 N/A inches Vertical Orifice Width = 14.59 inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow We Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho 6.20 N/A Height of Grate Upper Edge, H_t N/A ft (relative to basin bottom at Stage = 0 ft) 6.20 Overflow Weir Front Edge Length 8.00 N/A feet Overflow Weir Slope Length 6.00 N/A Overflow Weir Grate Slope 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area 6.84 N/A Horiz. Length of Weir Sides : N/A Overflow Grate Open Area w/o Debris = 33.60 N/A 6.00 feet Overflow Grate Open Area % 70% N/A %, grate open area/total area Overflow Grate Open Area w/ Debris = 16.80 N/A Debris Clogging % = N/A 50% User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe 0.00 N/A Outlet Orifice Area 4.91 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Pipe Diameter 30.00 N/A inches Outlet Orifice Centroid 1.25 N/A Restrictor Plate Height Above Pipe Invert = 30.00 inches Half-Central Angle of Restrictor Plate on Pipe = 3.14 N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 9.30 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 1.69 feet Spillway Crest Length : 25.00 feet Stage at Top of Freeboard = 12.00 feet H:V Spillway End Slopes 4.00 Basin Area at Top of Freeboard 1.71 acres Freeboard above Max Water Surface = 1.01 Basin Volume at Top of Freeboard = 12.83 feet acre-ft top micropool = 5761= stage 0 Routed Hydrograph Results in the Inflow Hv hs table (Columns W through AF r can override the o ault CUH nhs and r imes hv na new values Design Storm Return Period WOCV EURV 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 10.750 12.716 CUHP Runoff Volume (acre-ft) 1.368 4.414 4.152 5.828 7.285 9.182 Inflow Hydrograph Volume (acre-ft) N/A N/A 4.152 5.828 7.285 9.182 10.750 12.716 CUHP Predevelopment Peak Q (cfs) N/A N/A 21.2 32.2 57.6 72.4 92.1 7.5 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A 0.43 0.97 Predevelopment Unit Peak Flow, g (cfs/acre) 0.10 0.28 0.77 1.24 N/A N/A Peak Inflow Q (cfs) N/A N/A 63.8 91.4 112.2 146.0 171.6 201.7 4.8 Peak Outflow Q (cfs) 0.6 5.6 12.8 31.2 57.7 60.5 65.0 Ratio Peak Outflow to Predevelopment Q N/A N/A N/A 0.6 0.8 0.7 1.0 1.0 Structure Controlling Flow Vertical Orifice 1 rflow Weir 1 Vertical Orifice erflow Weir erflow Weir 1 Outlet Plate Outlet Plate Outlet Plate 1 Max Velocity through Grate 1 (fps) N/A N/A N/A 0.2 0.8 1.51.6 1.7 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A 43 Time to Drain 97% of Inflow Volume (hours) 38 48 48 49 47 45 41 Time to Drain 99% of Inflow Volume (hours) 40 52 53 54 53 52 52 51 Maximum Ponding Depth (ft) 3.42 6.20 5.45 6.44 6.76 7.20 7.79 8.80

1.14 3.534

1.22

1.34

1.29


1.25 5.090 1.42 7.829

Area at Maximum Ponding Depth (acres)

Maximum Volume Stored (acre-ft)

0.98

1.20

Inflow Hydrographs

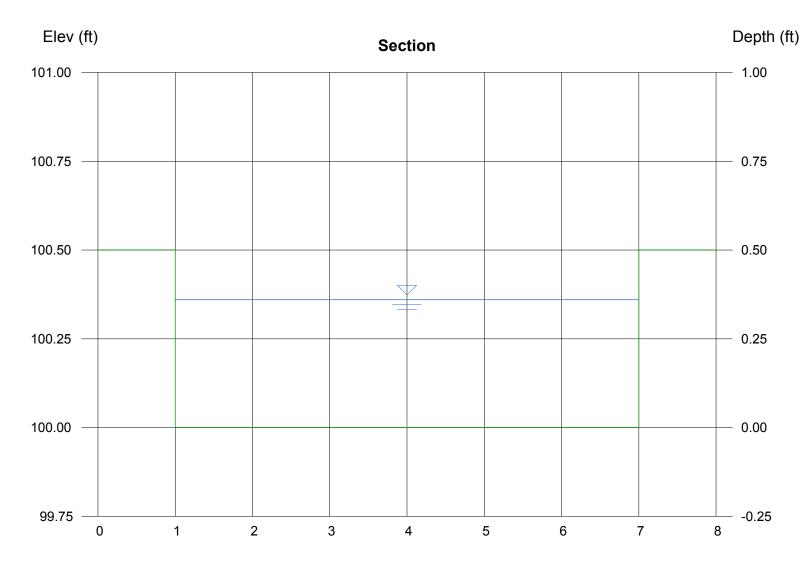
								l in a separate pro	-	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.59	0.06	1.91
	0:15:00	0.00	0.00	5.22	8.54	10.59	7.11	9.03	8.69	12.94
	0:20:00 0:25:00	0.00	0.00	19.89	26.61 66.84	32.39	19.92	23.33 53.57	24.81	33.21 85.49
	0:30:00	0.00	0.00	46.47 63.77	91.36	85.05 112.23	45.56 114.18	135.21	58.95 152.14	203.98
	0:35:00	0.00	0.00	62.57	87.72	105.94	146.00	171.56	201.73	263.77
	0:40:00	0.00	0.00	55.70	76.50	92.49	143.34	167.40	198.39	257.96
	0:45:00	0.00	0.00	47.59	65.90	80.77	128.66	150.06	181.55	235.82
	0:50:00	0.00	0.00	40.32	57.13	69.55	115.30	134.50	163.30	212.14
	0:55:00	0.00	0.00	34.42	48.76	59.53	99.33	116.01	143.36	186.25
	1:00:00 1:05:00	0.00	0.00	29.96 26.93	42.11	52.29 47.58	83.84 72.69	98.09	125.09 111.97	162.81 146.17
	1:10:00	0.00	0.00	23.58	37.69 34.19	43.72	62.57	85.28 73.59	95.11	146.17
	1:15:00	0.00	0.00	20.26	30.12	39.98	53.50	63.03	78.69	103.88
	1:20:00	0.00	0.00	17.23	25.50	34.67	44.42	52.30	63.05	83.27
	1:25:00	0.00	0.00	14.49	21.34	28.37	36.12	42.44	49.07	64.63
	1:30:00	0.00	0.00	12.33	18.09	23.14	28.26	33.06	37.14	48.88
	1:35:00	0.00	0.00	11.11	16.33	20.17	21.86	25.47	27.88	36.96
	1:40:00	0.00	0.00	10.58	14.63	18.35	18.19	21.12	22.45	29.88
	1:45:00 1:50:00	0.00	0.00	10.28 10.11	13.15 12.11	17.06 16.15	15.89 14.38	18.35 16.52	19.04 16.67	25.36 22.22
	1:55:00	0.00	0.00	9.09	11.32	15.20	14.30	15.24	15.02	22.22
	2:00:00	0.00	0.00	8.00	10.49	13.83	12.66	14.40	13.84	18.42
	2:05:00	0.00	0.00	6.32	8.33	10.89	10.10	11.46	10.78	14.34
	2:10:00	0.00	0.00	4.73	6.18	8.03	7.42	8.39	7.80	10.35
	2:15:00	0.00	0.00	3.55	4.59	5.92	5.50	6.20	5.78	7.65
	2:20:00	0.00	0.00	2.63	3.40	4.33	4.06	4.57	4.29	5.66
	2:25:00 2:30:00	0.00	0.00	1.93	2.46	3.15	2.96	3.32	3.16	4.16
	2:35:00	0.00	0.00	1.39 0.98	1.74	2.27	2.12	2.37	2.27	2.99 2.15
	2:40:00	0.00	0.00	0.98	0.84	1.12	1.08	1.71	1.15	1.52
	2:45:00	0.00	0.00	0.41	0.55	0.72	0.71	0.79	0.76	0.99
	2:50:00	0.00	0.00	0.22	0.32	0.40	0.42	0.46	0.44	0.58
	2:55:00	0.00	0.00	0.09	0.15	0.18	0.20	0.22	0.21	0.27
	3:00:00	0.00	0.00	0.03	0.05	0.05	0.06	0.07	0.06	0.08
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00 3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00 3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00 5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.02 (February 2020) Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
top micropool	0.00	42	0.001	0	0.000	0.00	For best results, include the
surcharge	0.33	50	0.001	15	0.000	0.08	stages of all grade slope
5761	1.00	1,264	0.029	455	0.010	0.14	changes (e.g. ISV and Floor
5762	2.00	20,478	0.470	11,326	0.260	0.32	from the S-A-V table on Sheet 'Basin'.
5763	3.00	41,417	0.951	42,274	0.970	0.54	
5764	4.00	44,796	1.028	85,380	1.960	2.36	Also include the inverts of a
5765	5.00	48,239	1.107	131,898	3.028	4.17	outlets (e.g. vertical orifice,
5766	6.00	51,758	1.188	181,896	4.176	5.36	overflow grate, and spillway where applicable).
5767	7.00	55,348	1.271 1.355	235,449	5.405 6.718	49.52 61.41	
5768 5769	8.00 9.00	59,010 62,743	1.355	292,628 353,505	8.115	65.80	-
5770	10.00	66,548	1.528	418,150	9.599	117.77	_
5770	10.00	00,010	11520	110/100	510555	11/10/	
							_
							_
							_
							_
					-		
							_
	-				ł		-
							_
							_
							-
							_
	-				-		_
	-					-	-
							_
					-		
							4
							-
					1		1
]
							4
							-
							-
						L	1
]
		1	1	1	1		1
							-

	Design Procedure Form: Extended Detention Basin (EDB)								
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3							
Designer:	Richard Schindler								
Company: Date:	Core Engineering Group May 2, 2020								
Project:	The Hills at Lorson Ranch								
Location:	Pond C2.1								
1. Basin Storage V									
A) Effective Imp	erviousness of Tributary Area, I _a	l _a = <u>55.0</u> %							
B) Tributary Are	a's Imperviousness Ratio (i = $I_a/100$)	i = 0.550							
C) Contributing	Watershed Area	Area = 74.500 ac							
	neds Outside of the Denver Region, Depth of Average	d ₆ = in							
Runoff Prod	lucing Storm	Choose One							
E) Design Cone (Select EUR)	cept V when also designing for flood control)	Water Quality Capture Volume (WQCV)							
,		O Excess Urban Runoff Volume (EURV)							
F) Design Volu (V _{DESIGN} = (1)	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} <mark>≕1.368</mark> ac-ft							
	neds Outside of the Denver Region,	V _{DESIGN OTHER} =ac-ft							
Water Quali	ity Capture Volume (WQCV) Design Volume _R = (d ₆ *(V _{DESIGN} /0.43))								
	of Water Quality Capture Volume (WQCV) Design Volume								
	ferent WQCV Design Volume is desired)	V _{DESIGN USER} ≡ ac-ft							
	logic Soil Groups of Tributary Watershed								
	ige of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils	$HSG_A = $ % $HSG_B = $ %							
	age of Watershed consisting of Type C/D Soils	HSG _{CD} = %							
	an Runoff Volume (EURV) Design Volume								
For HSG B	: EURV _A = 1.68 * i ^{1.28} : EURV _B = 1.36 * i ^{1.08}	EURV _{DESIGN} =ac-f t							
For HSG C	/D: EURV _{C/D} = 1.20 * i ^{1.08}								
	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} ac-ft							
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1							
(A basin length									
3. Basin Side Slop	les								
A) Basin Maxin	num Side Slopes	Z = 3.00 ft / ft							
(Horizontal o	distance per unit vertical, 4:1 or flatter preferred)	DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE							
4. Inlet									
	eans of providing energy dissipation at concentrated								
inflow locatio									
5. Forebay									
A) Minimum Fo (V _{FMIN}	rebay Volume = <u>3%</u> of the WQCV)	V _{FMIN} = 0.041 ac-ft							
B) Actual Foret		$V_{\rm F} = 0.045$ ac-ft							
C) Forebay Dep									
(D _F		D _F = 24.0 in							
D) Forebay Disc	charge								
i) Undetaine	ed 100-year Peak Discharge	Q ₁₀₀ = 202.00 cfs							
	Discharge Design Flow	$Q_F = 4.04$ cfs							
$(Q_F = 0.02)$									
E) Forebay Disc	charge Design	Choose One							
		O Berm With Pipe							
		Wall with Rect. Notch Wall with V-Notch Weir							
E) Discharge D	no Cizo (minimum 9 inches)								
	pe Size (minimum 8-inches)								
G) Rectangular	Notch Width	Calculated $W_N = 9.9$ in							

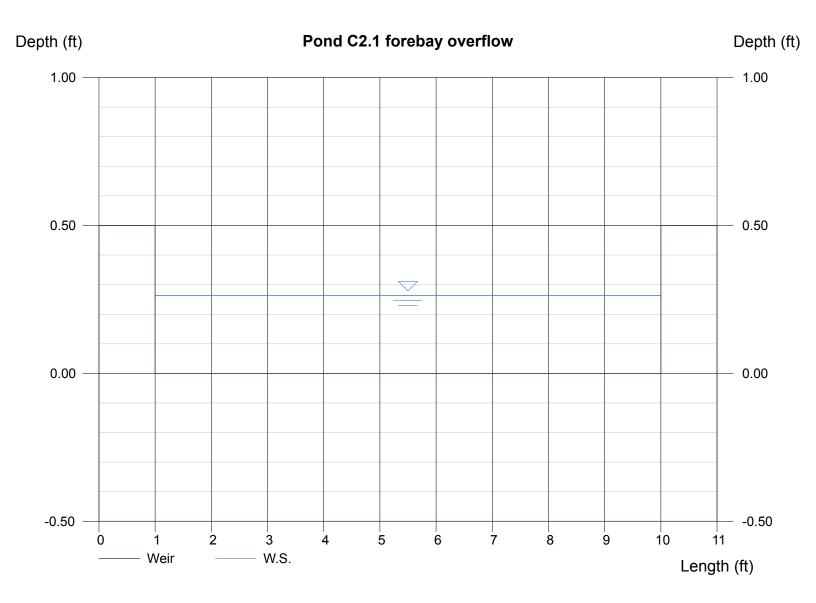

	Design Procedure Form:	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	Richard Schindler Core Engineering Group May 2, 2020 The Hills at Lorson Ranch Pond C2.1	Sheet 2 of 3
 6. Trickle Channel A) Type of Trick F) Slope of Trick 	kle Channel	Choose One Concrete Soft Bottom S = 0.0050 ft / ft
	cropool (2.5-feet minimum) a of Micropool (10 ft ² minimum)	$D_{M} = \underbrace{2.5}_{50} \text{ ft}$ $A_{M} = \underbrace{50}_{0} \text{ sq ft}$ $\underbrace{\text{Choose One}}_{0} \text{ Orifice Plate}$ $\underbrace{\text{Other (Describe):}}$
D) Smallest Dir (Use UD-Detent E) Total Outlet A		$D_{\text{ortice}} = 2.01$ inches $A_{\text{ct}} = 12.60$ square inches
(Minimum re B) Minimum Initi (Minimum vol	e Volume ial Surcharge Volume commended depth is 4 inches) ial Surcharge Volume lume of 0.3% of the WQCV) arge Provided Above Micropool	$D_{iS} = $ $V_{iS} = $ 179 cu ft $V_s = $ 16.7 cu ft
B) Type of Scre in the USDCM, i	ty Screen Open Area: $A_t = A_{ot} * 38.5^{\circ}(e^{-0.095D})$ een (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.) Other (Y/N): y	A _t = 401 square inches <i>Other (Please describe below)</i> wellscreen stainless
D) Total Water (E) Depth of Des (Based on o F) Height of Wa G) Width of Wa	al Open Area to Total Area (only for type 'Other') Quality Screen Area (based on screen type) sign Volume (EURV or WQCV) design concept chosen under 1E) ater Quality Screen (H _{TR}) ter Quality Screen Opening (W _{opening}) inches is recommended)	User Ratio = 0.6 $A_{total} = 668$ sq. in. Based on type 'Other' screen ratio H = 3.42 feet $H_{TR} = 69.04$ inches $W_{opening} = 12.0$ inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

	Design Procedure Form:	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	Richard Schindler Core Engineering Group May 2, 2020 The Hills at Lorson Ranch Pond C2.1	Sheet 3 of 3
B) Slope of O	ankment embankment protection for 100-year and greater overtopping: verflow Embankment I distance per unit vertical, 4:1 or flatter preferred)	Ze = ft / ft
11. Vegetation		Choose One O Irrigated O Not Irrigated
12. Access A) Describe S	Sediment Removal Procedures	
Notes:		

Hydraflow Express by Intelisolve

pond C2.1 low flow channel (2 x forebay release = 8.08cfs)

Rectangular		Highlighted	
Botom Width (ft)	= 6.00	Depth (ft) =	0.36
Total Depth (ft)	= 0.50	Q (cfs) =	8.080
		Area (sqft) =	2.16
Invert Elev (ft)	= 100.00	Velocity (ft/s) =	3.74
Slope (%)	= 0.50	Wetted Perim (ft) =	6.72
N-Value	= 0.013	Crit Depth, Yc (ft) =	0.39
		Top Width (ft) =	6.00
Calculations		EGL (ft) =	0.58
Compute by:	Known Q		
Known Q (cfs)	= 8.08		



Reach (ft)

Hydraflow Express by Intelisolve

Pond C2.1 forebay overflow

Rectangular Weir		Highlighted
Crest	= Sharp	Depth (ft) = 0.26
Bottom Length (ft)	= 9.00	Q (cfs) = 4.040
Total Depth (ft)	= 0.50	Area (sqft) = 2.36
		Velocity (ft/s) = 1.71
Calculations		Top Width (ft) = 9.00
Weir Coeff. Cw	= 3.33	
Compute by:	Known Q	
Known Q (cfs)	= 4.04	

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

, Version 4.02 (February 2020)

		DET	ENTIO		IN STAGE-S			
MHFD-Detention, Version 4.02 (Feb								
		Lorson Rai	ıch					
Basin ID: Pond C2.2								
	2 ONE 1		_					
					micropool = 0 = 5744.00			
T T	1	100-YE	NP.					
ZONE	1 AND 2	ORIFIC	E		Depth Increment =	0.20		
POOL Example Zon	e Configura	ation (Reter	tion Pond)		Stage - Storage	Stage		
Watershed Information					Description Top of Micropool	(ft)		
Selected BMP Type =	EDB	1			5744.33			
Watershed Area =	45.00	acres			5745			
Watershed Length =	2,500	ft			5745			
Watershed Length to Centroid =	1,200	ft			5747			
Watershed Slope =	0.045	ft/ft			5748			
Watershed Imperviousness =	55.00%	percent			5749			
Percentage Hydrologic Soil Group A =	0.0%	percent			5750			
Percentage Hydrologic Soil Group B =	95.0%	percent			5751			
Percentage Hydrologic Soil Groups C/D =	5.0%	percent			5752			
Target WQCV Drain Time =	40.0	hours			5753			
Location for 1-hr Rainfall Depths =					5754			
After providing required inputs above inc depths, click 'Run CUHP' to generate run								
the embedded Colorado Urban Hydro			Optional Use	r Overrides				
Water Quality Capture Volume (WQCV) =	0.827	acre-feet		acre-feet				
Excess Urban Runoff Volume (EURV) =	2.651	acre-feet		acre-feet				
2-yr Runoff Volume (P1 = 1.19 in.) =	2.510	acre-feet	1.19	inches				
5-yr Runoff Volume (P1 = 1.5 in.) =	3.521	acre-feet	1.50	inches				
10-yr Runoff Volume (P1 = 1.75 in.) =	4.403	acre-feet	1.75	inches				
25-yr Runoff Volume (P1 = 2 in.) =	5.541	acre-feet	2.00	inches				
50-yr Runoff Volume (P1 = 2.25 in.) =	6.487	acre-feet	2.25	inches				
100-yr Runoff Volume (P1 = 2.52 in.) = 500-yr Runoff Volume (P1 = 3.14 in.) =	7.671	acre-feet acre-feet	2.52	inches inches				
Approximate 2-yr Detention Volume =	2.035	acre-feet		linches				
Approximate 5-yr Detention Volume =	2.778	acre-feet						
Approximate 10-yr Detention Volume =	3.600	acre-feet						
Approximate 25-yr Detention Volume =	3.912	acre-feet						
Approximate 50-yr Detention Volume =	4.081	acre-feet						
Approximate 100-yr Detention Volume =	4.507	acre-feet						
Define Zones and Basin Geometry	0.827	acre-feet						
Zone 1 Volume (WQCV) = Zone 2 Volume (EURV - Zone 1) =	1.824	acre-feet						
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	2.269	acre-feet						
Total Detention Basin Volume =	4.920	acre-feet						
Initial Surcharge Volume (ISV) =	user	ft 3						
Initial Surcharge Depth (ISD) =	user	ft						
Total Available Detention Depth (H _{total}) =	user	ft						
Depth of Trickle Channel $(H_{TC}) =$	user	ft						
Slope of Trickle Channel (S _{TC}) =	user	ft/ft						
Slopes of Main Basin Sides (S_{main}) = Basin Length-to-Width Ratio ($R_{L/W}$) =	user	H:V						
basin Lengu-to-Width Katio (KL/W) =	user	-						
Initial Surcharge Area (A _{ISV}) =	user	ft ²						
Surcharge Volume Length (L_{ISV}) =	user	ft						
Surcharge Volume Width (W _{ISV}) =	user	ft						
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft						
Length of Basin Floor (L_{FLOOR}) =	user	ft						
Width of Basin Floor (W _{FLOOR}) =	user	ft						
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²						
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³ ft						
Depth of Main Basin (H _{MAIN}) =	user	i.						

user user user user user д 3

ĥ

acre-feet

Depth of Main Basin $(H_{MAIN}) =$ Length of Main Basin $(L_{MAIN}) =$ Width of Main Basin (W_{MAIN}) = Area of Main Basin (A_{MAIN}) =

Area of Main Basin (A_{MAIN}) = user Volume of Main Basin (V_{MAIN}) = user Calculated Total Basin Volume (V_{total}) = **user**

	5744.33	 0.33				50	0.001	15	0.000
	5745	 1.00				255	0.006	117	0.003
	5746	 2.00	-		-	6,998	0.161	3,743	0.086
	5747	 3.00	-			38,392	0.881	26,438	0.607
	5748	 4.00				40,927	0.940	66,098	1.517
	5749	 5.00				43,534	0.999	108,328	2.487
	5750	 6.00				46,212	1.061	153,201	3.517
	5751	 7.00	-	-	-		1.125		4.610
						48,991		200,803	
	5752	 8.00				51,837	1.190	251,217	5.767
	5753	 9.00	-			54,731	1.256	304,501	6.990
	5754	 10.00				58,033	1.332	360,883	8.285
			-						
s			-		-				
	-								
	-		-						
			-	-					
					-				
			-						
			-						
			-		-				
			-						
			-	-	-				
			-						
			-						
			-						
			-		-				
							-		
			-		-				
			-						
			-						
			-						
			-						
			-		-				
			-		-				
			-		-				
			-					-	-
			-		-				
					-				
					-				
			-						
			-						
			-						
			-						
			-	1 1 1					
			1 1						
					-				
		 	-						
			-						
				1 1					
			-		-				
			-						
			-	1 1	-				
			-						
			-		-				
			-	1					
			-						
			-						
			-						
			-						
			-					I	I

Width (ft)

Area (ft²)

Override

Area (ft²) 40

Length (ft)

Override

Stage (ft) 0.00

Area (acre) 0.001

Volume (ft³)

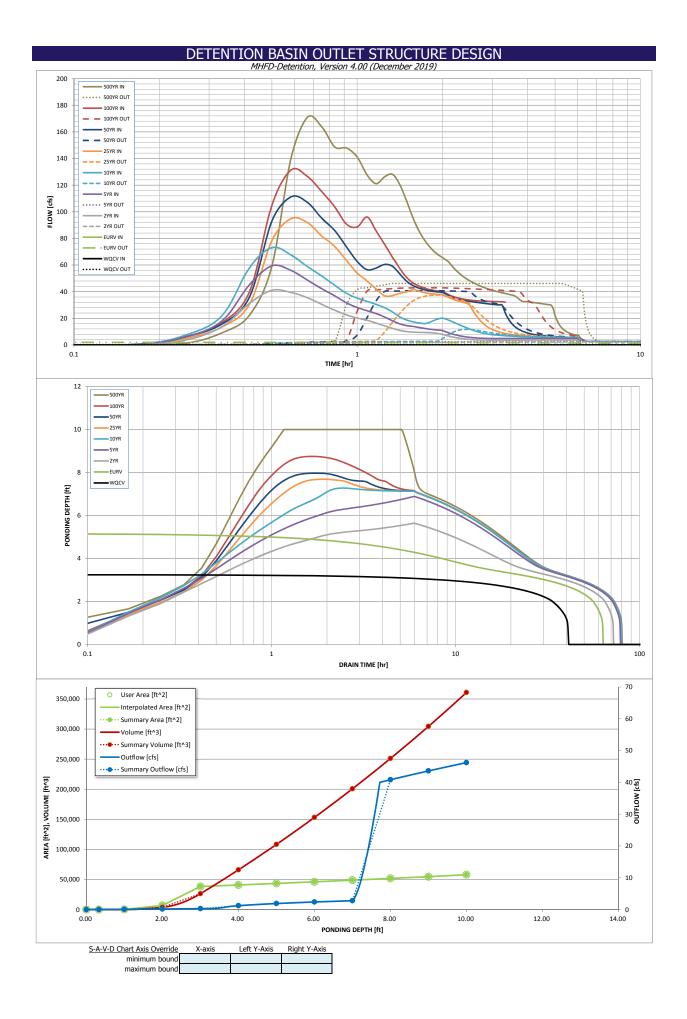
Volume (ac-ft)

MHFD-Detention_v4-02-Pond C2.2, Basin

Pond C2.2 Developed Inflow Hydrograph---- Pond C3 outflow + C5 Basin + C7 Basin

Fond C2.2 D	eveloped init	ow Hydrograp		2yr	5 Dasin - C7 1	Dasin	5yr			10yr			25yr			50yr			100yr			500yr
		2 Year	CUHP	Combined	5 Year	CUHP	Combined	10 Year	CUHP	Combined	25 Year	CUHP	Combined	50 Year	CUHP	Combined	100 Year	CUHP	Combined	500 Year	CUHP	Combined
Time [hr]	Time [min]	Pond C3 Outflow2 - [cfs]	2 Year [cfs]	Hydrograph	Pond C3 Outflow2 - [cfs]	2 5 Year [cfs]	Hydrograph	Ponc C3 Outflow2 - [cfs]	10 Year [cfs]	Hydrograph	Pond C3 Outflow2 - [cfs]	25 Year [cfs]	Hydrograph	Pond C3 Outflow2 - [cfs]	50 Year [cfs]	Hydrograph	Pond C3 Outflow2 - [cfs]	100 Year [cfs]	Hydrograph	Pond C3 Outflow2 - [cfs]	500 Year [cfs]	Hydrograph
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.03	0.02	0.00	0.02	0.03	0.00	0.03
0.08	5.00	0.03	0.00	0.03	0.03	0.00	0.03	0.03	0.00	0.03	0.03	0.00	0.03	0.04	0.00	0.04	0.03	0.00	0.03	0.04	0.00	0.04
0.25	15.00	0.10	3.74	3.84	0.11	6.11	6.22	0.11	7.57	7.68	0.10	5.09	5.19	0.10	6.38	6.48	0.10	6.20	6.30	0.12	9.01	9.13
0.33	20.00	0.14	13.60	13.74	0.16	18.00	18.16	0.17	21.92	22.09	0.14	13.38	13.52	0.15	15.61	15.76	0.16	16.68	16.84	0.17	22.29	22.46
0.42	25.00	0.17	31.11	31.28	0.20	45.07	45.27	0.52	57.54	58.06	0.19	30.50	30.69	0.24	35.87	36.11	0.39	39.63	40.02	1.63	57.77	59.40
0.50	30.00 35.00	0.24	40.82 38.60	41.06 39.47	1.21 2.10	58.25 53.89	59.46 55.99	1.95 2.57	71.19 65.04	73.14 67.61	1.68 2.72	76.90 92.11	78.58 94.83	2.14 3.16	91.05 108.06	93.19 111.22	2.56 3.60	102.55 127.72	105.11 131.32	3.27 4.27	136.67 166.67	139.94 170.94
0.67	40.00	1.66	33.84	35.50	2.52	46.24	48.76	2.99	55.88	58.87	3.44	88.47	91.91	3.89	103.22	107.11	4.32	122.26	126.58	4.98	158.77	163.75
0.75	45.00	2.01	28.43	30.44	2.81	39.40	42.21	3.35	48.41	51.76	3.99	77.76	81.75	4.43	90.67	95.10	4.86	110.23	115.09	5.54	143.17	148.71
0.83	50.00	2.25	23.82	26.07	3.03	33.85	36.88	3.70	41.10	44.80	4.43	69.49	73.92	4.85	81.04	85.89	5.29	98.35	103.64	20.24	127.67	147.91
0.92	55.00 60.00	2.44 2.59	20.11 17.63	22.55 20.22	3.21 3.38	28.41 24.74	31.62 28.12	4.03 4.33	34.74 30.90	38.77 35.23	4.78 5.08	58.63 48.90	63.41 53.98	5.19 5.49	68.45 57.23	73.64 62.72	5.65 15.15	85.07 73.51	90.72 88.66	30.72 31.92	110.43 95.81	141.15 127.73
1.08	65.00	2.39	17.63	18.59	3.55	22.20	25.75	4.58	28.16	32.74	5.33	48.90	48.11	6.30	50.23	56.53	29.72	66.37	96.09	34.49	86.66	127.73
1.17	70.00	2.79	13.63	16.42	3.70	19.91	23.61	4.81	25.58	30.39	5.55	36.41	41.96	14.94	42.84	57.78	30.21	55.34	85.55	53.73	72.60	126.33
1.25	75.00	2.87	11.46	14.33	3.84	17.10	20.94	5.01	23.01	28.02	6.25	30.66	36.91	24.32	36.16	60.48	30.53	44.97	75.50	68.71	59.42	128.13
1.33	80.00	2.93	9.51	12.44	3.97	14.14	18.11	5.18	19.48	24.66	12.33	24.76	37.09	29.87	29.17	59.04	30.79	34.93	65.72	73.88	46.13	120.01
1.42	85.00 90.00	2.99 3.05	7.93 6.97	10.92	4.09 4.20	11.69 10.29	15.78 14.49	5.32 5.44	15.58 13.16	20.90 18.60	19.28 25.17	19.60 14.82	38.88 39.99	30.07 30.25	23.03	53.10 47.57	31.01 31.20	26.23 19.11	57.24 50.31	72.67 68.71	34.55 25.36	107.22 94.07
1.58	95.00	3.10	6.50	9.60	4.20	9.58	13.88	5.55	11.74	17.29	29.61	11.96	41.57	30.23	13.95	44.36	31.20	14.90	46.27	64.29	19.87	84.16
1.67	100.00	3.15	6.27	9.42	4.40	8.56	12.96	5.64	10.76	16.40	29.92	10.21	40.13	30.56	11.85	42.41	31.53	12.39	43.92	60.59	16.55	77.14
1.75	105.00	3.20	6.14	9.34	4.48	7.72	12.20	6.07	10.05	16.12	30.03	9.08	39.11	30.69	10.48	41.17	31.67	10.63	42.30	57.81	14.20	72.01
1.83	110.00 115.00	3.24 3.28	6.04 5.34	9.28 8.62	4.55 4.62	7.11 6.67	11.66 11.29	8.15 10.36	9.57 8.98	17.72 19.34	30.13 30.22	8.29 7.79	38.42 38.01	30.82 30.93	9.52 8.90	40.34 39.83	31.81 31.94	9.43 8.58	41.24 40.52	55.69 54.06	12.60 11.45	68.29 65.51
2.00	115.00	3.28	4.68	8.62	4.62	6.16	11.29	10.36	8.98	20.10	30.22	7.79	38.01	30.93	8.90	39.83	31.94	8.58	40.52	52.58	11.45	63.22
2.08	125.00	3.35	3.59	6.94	4.71	4.72	9.43	12.85	6.16	19.01	30.35	5.71	36.06	31.13	6.47	37.60	32.15	6.02	38.17	51.05	8.02	59.07
2.17	130.00	3.37	2.65	6.02	4.75	3.44	8.19	13.03	4.45	17.48	30.34	4.14	34.48	31.20	4.68	35.88	32.24	4.36	36.60	49.59	5.80	55.39
2.25	135.00	3.39	1.95	5.34	4.77	2.52	7.29	12.75	3.22	15.97	30.26	3.01	33.27	31.26	3.40	34.66	32.32	3.19	35.51	48.23	4.22	52.45
2.33	140.00 145.00	3.41 3.43	1.42	4.83 4.45	4.79 4.80	1.83	6.62 6.08	12.18 11.47	2.34 1.67	14.52 13.14	30.12 29.95	2.20 1.56	32.32 31.51	31.31 31.35	2.48 1.75	33.79 33.10	32.38 32.44	2.35 1.68	34.73 34.12	46.99 45.87	3.11 2.22	50.10 48.09
2.50	150.00	3.44	0.71	4.15	4.81	0.88	5.69	10.72	1.17	11.89	28.62	1.10	29.72	31.39	1.23	32.62	32.49	1.18	33.67	44.86	1.56	46.42
2.58	155.00	3.46	0.49	3.95	4.81	0.61	5.42	10.00	0.82	10.82	23.64	0.79	24.43	31.37	0.88	32.25	32.54	0.84	33.38	43.95	1.11	45.06
2.67	160.00	3.47	0.31	3.78	4.82	0.41	5.23	9.36	0.53	9.89	19.85	0.52	20.37	31.27	0.59	31.86	32.58	0.56	33.14	43.11	0.74	43.85
2.75	165.00 170.00	3.48 3.50	0.17	3.65 3.58	4.82 4.83	0.24	5.06 4.95	8.83 8.39	0.31	9.14 8.54	16.93 14.67	0.32	17.25 14.83	31.13 30.96	0.35	31.48	32.61 32.64	0.34	32.95 32.81	42.34 41.64	0.44	42.78
2.83	170.00	3.50	0.08	3.58	4.83	0.12	4.95	8.03	0.15	8.54	14.67	0.16	14.83	30.96	0.18	31.14 30.82	32.64	0.17	32.81	41.64	0.22	41.86 41.05
3.00	180.00	3.52	0.00	3.52	4.84	0.00	4.84	7.72	0.00	7.72	11.61	0.00	11.61	30.54	0.00	30.54	32.67	0.00	32.67	40.37	0.00	40.37
3.08	185.00	3.53		3.53	4.84	0.00	4.84	7.47	0.00	7.47	10.59	0.00	10.59	30.31	0.00	30.31	32.62	0.00	32.62	39.78	0.00	39.78
3.17	190.00	3.54		3.54	4.85		4.85	7.25		7.25	9.79	0.00	9.79	30.07	0.00	30.07	32.51	0.00	32.51	39.21	0.00	39.21
3.25	195.00 200.00	3.55 3.56		3.55 3.56	4.85 4.86		4.85 4.86	7.06 6.90		7.06 6.90	9.15 8.63	0.00	9.15 8.63	29.82 23.98	0.00	29.82 23.98	32.37 32.19		32.37 32.19	38.66 38.13	0.00	38.66 38.13
3.42	205.00	3.57		3.57	4.86		4.86	6.76		6.76	8.21	0.00	8.21	19.59	0.00	19.59	31.99		31.99	37.60	0.00	37.60
3.50	210.00	3.58		3.58	4.86		4.86	6.63		6.63	7.86		7.86	16.49	0.00	16.49	31.78		31.78	37.04	0.00	37.04
3.58	215.00	3.59		3.59	4.87		4.87	6.52		6.52	7.57		7.57	14.25		14.25	31.55		31.55	35.80	0.00	35.80
3.67 3.75	220.00 225.00	3.59 3.60		3.59 3.60	4.87 4.87		4.87 4.87	6.42 6.32		6.42 6.32	7.32 7.11		7.32 7.11	12.58 11.31		12.58 11.31	31.31 31.07		31.31 31.07	33.93 32.74	0.00	33.93 32.74
3.83	230.00	3.61		3.61	4.88		4.88	6.24		6.24	6.92		6.92	10.33		10.33	30.82		30.82	32.57	0.00	32.57
3.92	235.00	3.61		3.61	4.88		4.88	6.17		6.17	6.76		6.76	9.56		9.56	30.57		30.57	32.38	0.00	32.38
4.00	240.00	3.62		3.62	4.88		4.88	6.10		6.10	6.62		6.62	8.94		8.94	30.32		30.32	32.17		32.17
4.08	245.00 250.00	3.63 3.63		3.63 3.63	4.88		4.88 4.88	6.04 5.98		6.04 5.98	6.50 6.39		6.50 6.39	8.44 8.03		8.44 8.03	30.07 29.77		30.07 29.77	31.94 31.71		31.94 31.71
4.17	255.00	3.64		3.63	4.88		4.88	5.96		5.98	6.29		6.29	7.69		7.69	23.75		29.77	31.47		31.47
4.33	260.00	3.64		3.64	4.89		4.89	5.88		5.88	6.21		6.21	7.41		7.41	19.39		19.39	31.22		31.22
4.42	265.00	3.65		3.65	4.89		4.89	5.84		5.84	6.13		6.13	7.17		7.17	16.31		16.31	30.98		30.98
4.50	270.00	3.65		3.65 3.65	4.89		4.89 4.89	5.80		5.80	6.05		6.05	6.96		6.96	14.07 12.41		14.07	30.73		30.73 30.48
4.58 4.67	275.00 280.00	3.65 3.66		3.65	4.89 4.89		4.89	5.76 5.74		5.76 5.74	5.99 5.93		5.99 5.93	6.78 6.63		6.78 6.63	12.41 11.14		12.41 11.14	30.48 30.22		30.48
4.75	285.00	3.66		3.66	4.89		4.89	5.71		5.71	5.88		5.88	6.49		6.49	10.17		10.17	29.97		29.97
4.83	290.00	3.66		3.66	4.89		4.89	5.70		5.70	5.83		5.83	6.37		6.37	9.40		9.40	27.51		27.51
4.92	295.00	3.67		3.67	4.89		4.89	5.69		5.69	5.79		5.79	6.27		6.27	8.78		8.78	21.96		21.96
5.00 5.08	300.00 305.00	3.67 3.67		3.67 3.67	4.89 4.89		4.89 4.89	5.69 5.69		5.69 5.69	5.75 5.73		5.75 5.73	6.17 6.09		6.17 6.09	8.29 7.88		8.29 7.88	18.12 15.38		18.12 15.38
5.17	310.00	3.67		3.67	4.89		4.89	5.68		5.69	5.70		5.70	6.09		6.09	7.54		7.66	13.38		13.38
5.25	315.00	3.67		3.67	4.89		4.89	5.68		5.68	5.69		5.69	5.94		5.94	7.26		7.26	11.87		11.87
5.33	320.00	3.67		3.67	4.89		4.89	5.68		5.68	5.69		5.69	5.88		5.88	7.02		7.02	10.72		10.72
5.42	325.00	3.67		3.67	4.88		4.88	5.67		5.67	5.69		5.69	5.83		5.83	6.81		6.81	9.83		9.83
5.50 5.58	330.00 335.00	3.67 3.67		3.67 3.67	4.88 4.88		4.88 4.88	5.67 5.66		5.67 5.66	5.68 5.68		5.68 5.68	5.78 5.75		5.78 5.75	6.64 6.48		6.64 6.48	9.12 8.55		9.12 8.55
5.67	340.00	3.67		3.67	4.88		4.88	5.66		5.66	5.68		5.68	5.72		5.72	6.35		6.35	8.09		8.09
5.75	345.00	3.67		3.67	4.88		4.88	5.65		5.65	5.67		5.67	5.70		5.70	6.23		6.23	7.71		7.71
										-			-									

DETENTION BASIN OUTLET STRUCTURE DESIGN 1HFD-Detention, Version 4.02 (February 2020 Project: The Hills at Lorson Ranch Basin ID: Pond C2.2 Estimated Estimated ZONE 1 Outlet Type Stage (ft) Volume (ac-ft) VOLUME EURV WQCV Zone 1 (WQCV) 0.827 Orifice Plate 3.25 Zone 2 (FURV) 1.824 Rectangular Orifice 5.17 100-YEAF ZONE 1 AND 2 ORIFICES '3 (100+1/2WQCV) 7.28 2.269 Weir&Pipe (Restrict) PERMAN Example Zone Configuration (Retention Pond) Total (all zones) 4.920 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Underdrain Orifice Area Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) N/A ft² Underdrain Orifice Diameter = N/A inches Underdrain Orifice Centroid = N/A feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate WQ Orifice Area per Row Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) 1.535E-02 ft^2 Depth at top of Zone using Orifice Plate = ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet 3.25 Orifice Plate: Orifice Vertical Spacing 13.00 inches Elliptical Slot Centroid N/A feet ft² Elliptical Slot Area Orifice Plate: Orifice Area per Row : 2.21 sq. inches (diameter = 1-11/16 inches) N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft 0.00 1.08 2.17 Orifice Area (sq. inches) 2.21 2.21 2.21 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft Orifice Area (sg. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifi Zone 2 Rectangula Not Selected Zone 2 Rectangula Not Selected Invert of Vertical Orifice 3.25 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area 0.25 N/A ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Vertical Orifice 5.17 N/A Vertical Orifice Centroid 0.25 N/A Vertical Orifice Height 6.00 N/A inches Vertical Orifice Width = 6.00 inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow We Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho 7.00 N/A Height of Grate Upper Edge, H_t 7.00 N/A ft (relative to basin bottom at Stage = 0 ft) Overflow Weir Front Edge Length 8.00 N/A feet Overflow Weir Slope Length 6.00 N/A Overflow Weir Grate Slope = 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area 10.58 N/A Horiz. Length of Weir Sides : N/A Overflow Grate Open Area w/o Debris = 33.60 N/A 6.00 feet Overflow Grate Open Area % 70% N/A %, grate open area/total area Overflow Grate Open Area w/ Debris = 16.80 N/A Debris Clogging % = N/A 50% User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe 0.00 N/A Outlet Orifice Area N/A ft (distance below basin bottom at Stage = 0 ft) 3.18 Outlet Pipe Diameter 30.00 N/A inches Outlet Orifice Centroid 0.87 N/A Restrictor Plate Height Above Pipe Invert = 18.50 inches Half-Central Angle of Restrictor Plate on Pipe = 1.81 N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 10.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 1.51 feet Spillway Crest Length : 20.00 feet Stage at Top of Freeboard = 13.00 feet H:V Spillway End Slopes 4.00 Basin Area at Top of Freeboard 1.33 acres Freeboard above Max Water Surface = 1.49 Basin Volume at Top of Freeboard = 8.28 feet acre-ft micropool = 0 = 5744.00 Routed Hydrograph Results anhs and in the Inflow Hvo ns table (Columns W through AF erride the c es hv na new values 100 Year Design Storm Return Period WOCV 2 Year 5 Year 10 Year 25 Year 50 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 4.403 5.541 7.671 CUHP Runoff Volume (acre-ft) 0.827 2.651 2.510 3.521 6.487 User Override Inflow Hydrograph Volume (acre-ft) N/A N/A 11.034 CUHP Predevelopment Peak Q (cfs) N/A N/A 5.0 13.5 20.5 36.5 45.7 58.2 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A 0.30 Predevelopment Unit Peak Flow, g (cfs/acre) 0.11 0.46 0.81 1.02 1.29 N/A N/A Peak Inflow Q (cfs) N/A N/A 41.1 59.5 73.1 94.8 111.2 131.3 42.9 Peak Outflow Q (cfs) 0.3 2.0 2.2 2.7 11.7 37.5 40.7 Ratio Peak Outflow to Predevelopment Q N/A N/A N/A 0.2 0.6 0.9 0.7 1.0 Structure Controlling Flow Plate Vertical Orifice Vertical Orifice Vertical Orifice erflow Weir 1 erflow Wei Outlet Plate Outlet Plate 1 Max Velocity through Grate 1 (fps) N/A N/A N/A N/A 0.3 1.0 1.1 1.2 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A Time to Drain 97% of Inflow Volume (hours) 38 56 62 66 64 59 55 50 Time to Drain 99% of Inflow Volume (hours) 40 61 68 73 73 71 69 67 Maximum Ponding Depth (ft) 7.28 8.75


Area at Maximum Ponding Depth (acres) Maximum Volume Stored (acre-ft)

3.25 5.17 5.64 6.88 0.90 1.04 3.139 1.01

1.12 1.14

7.69 7.97 1.19 1.17 5.390

1.24

Outflow Hydrograph Workbook Filename:

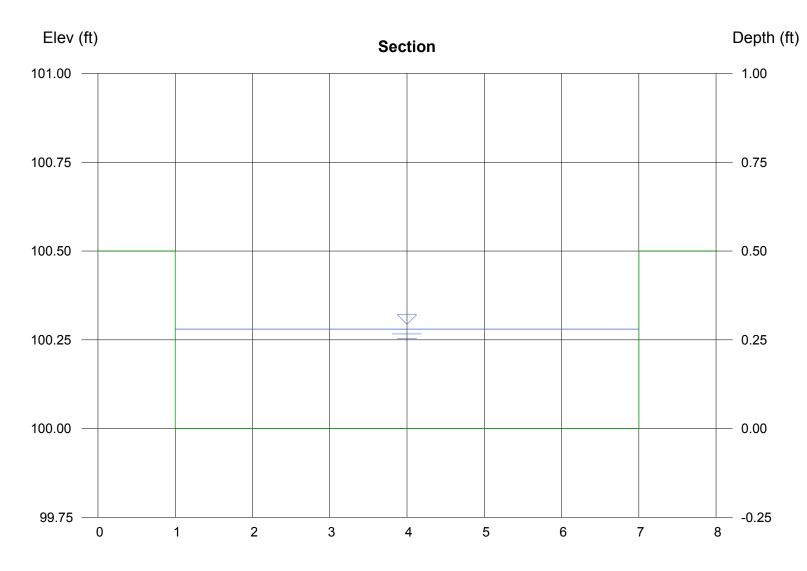
Inflow Hydrographs

	The user can or		lated inflow hvd	rographs from t	nis workbook wi	th inflow hvdroa	raphs developed	l in a separate pro	ogram.	
	SOURCE	CUHP	CUHP	USER	USER	USER	USER	USER	USER	USER
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]		50 Year [cfs]		500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.02	0.03
	0:05:00	0.00	0.00	0.03	0.03	0.03	0.03	0.04	0.03	0.04
	0:10:00 0:15:00	0.00	0.00	0.06	0.07	0.08	0.07	0.50	0.11	1.45
	0:20:00	0.00	0.00	3.84 13.74	6.22 18.16	7.68 22.09	5.19 13.52	6.48 15.76	6.30 16.84	9.13 22.46
	0:25:00	0.00	0.00	31.28	45.27	58.06	30.69	36.11	40.02	59.40
	0:30:00	0.00	0.00	41.06	59.46	73.14	78.58	93.19	105.11	139.94
	0:35:00	0.00	0.00	39.47	55.99	67.61	94.83	111.22	131.32	170.94
	0:40:00	0.00	0.00	35.50	48.76	58.87	91.91	107.11	126.58	163.75
	0:45:00	0.00	0.00	30.44	42.21	51.76	81.75	95.10	115.09	148.71
	0:50:00	0.00	0.00	26.07	36.88	44.80	73.92	85.89	103.64	147.91
	0:55:00	0.00	0.00	22.55	31.62	38.77	63.41	73.64	90.72	141.15
	1:00:00	0.00	0.00	20.22	28.12	35.23	53.98	62.72	88.66	127.73
	1:05:00	0.00	0.00	18.59	25.75	32.74	48.11	56.53	96.09	121.15
	1:10:00 1:15:00	0.00	0.00	16.42	23.61	30.39	41.96	57.78	85.55	126.33
	1:20:00	0.00	0.00	14.33	20.94	28.02	36.91	60.48	75.50	128.13
	1:25:00	0.00	0.00	12.44 10.92	18.11 15.78	24.66 20.90	37.09 38.88	59.04 53.10	65.72 57.24	120.01 107.22
	1:30:00	0.00	0.00	10.92	14.49	18.60	39.99	47.57	50.31	94.07
	1:35:00	0.00	0.00	9.60	13.88	17.29	41.57	44.36	46.27	84.16
	1:40:00	0.00	0.00	9.42	12.96	16.40	40.13	42.41	43.92	77.14
	1:45:00	0.00	0.00	9.34	12.20	16.12	39.11	41.17	42.30	72.01
	1:50:00	0.00	0.00	9.28	11.66	17.72	38.42	40.34	41.24	68.29
	1:55:00	0.00	0.00	8.62	11.29	19.34	38.01	39.83	40.52	65.51
	2:00:00	0.00	0.00	8.00	10.83	20.10	37.75	39.49	40.03	63.22
	2:05:00	0.00	0.00	6.94	9.43	19.01	36.06	37.60	38.17	59.07
	2:10:00	0.00	0.00	6.02	8.19	17.48	34.48	35.88	36.60	55.39
	2:15:00 2:20:00	0.00	0.00	5.34 4.83	7.29	15.97 14.52	33.27	34.66	35.51 34.73	52.45
	2:25:00	0.00	0.00	4.65	6.62 6.08	14.52	32.32 31.51	33.79 33.10	34.12	50.10 48.09
	2:30:00	0.00	0.00	4.15	5.69	11.89	29.72	32.62	33.67	46.42
	2:35:00	0.00	0.00	3.95	5.42	10.82	24.43	32.25	33.38	45.06
	2:40:00	0.00	0.00	3.78	5.23	9.89	20.37	31.86	33.14	43.85
	2:45:00	0.00	0.00	3.65	5.06	9.14	17.25	31.48	32.95	42.78
	2:50:00	0.00	0.00	3.58	4.95	8.54	14.83	31.14	32.81	41.86
	2:55:00	0.00	0.00	3.54	4.87	8.08	12.98	30.82	32.72	41.05
	3:00:00	0.00	0.00	3.52	4.84	7.72	11.61	30.54	32.67	40.37
	3:05:00	0.00	0.00	3.53	4.84	7.47	10.59	30.31	32.62	39.78
	3:10:00	0.00	0.00	3.54	4.85	7.25	9.79	30.07	32.51	39.21
	3:15:00 3:20:00	0.00	0.00	3.55 3.56	4.85 4.86	7.06	9.15 8.63	29.82 23.98	32.37 32.19	38.66 38.13
	3:25:00	0.00	0.00	3.50	4.86	6.76	8.21	19.59	31.99	37.60
	3:30:00	0.00	0.00	3.58	4.86	6.63	7.86	16.49	31.78	37.00
	3:35:00	0.00	0.00	3.59	4.87	6.52	7.57	14.25	31.55	35.80
	3:40:00	0.00	0.00	3.59	4.87	6.42	7.32	12.58	31.31	33.93
	3:45:00	0.00	0.00	3.60	4.87	6.32	7.11	11.31	31.07	32.74
	3:50:00	0.00	0.00	3.61	4.88	6.24	6.92	10.33	30.82	32.57
	3:55:00	0.00	0.00	3.61	4.88	6.17	6.76	9.56	30.57	32.38
	4:00:00	0.00	0.00	3.62	4.88	6.10	6.62	8.94	30.32	32.17
	4:05:00 4:10:00	0.00	0.00	3.63 3.63	4.88 4.88	6.04 5.98	6.50 6.39	8.44 8.03	30.07 29.77	31.94 31.71
	4:10:00	0.00	0.00	3.63	4.88	5.98	6.39	7.69	29.77	31.71 31.47
	4:20:00	0.00	0.00	3.64	4.89	5.88	6.21	7.41	19.39	31.22
	4:25:00	0.00	0.00	3.65	4.89	5.84	6.13	7.17	16.31	30.98
	4:30:00	0.00	0.00	3.65	4.89	5.80	6.05	6.96	14.07	30.73
	4:35:00 4:40:00	0.00	0.00	3.65 3.66	4.89 4.89	5.76 5.74	5.99 5.93	6.78 6.63	12.41 11.14	30.48 30.22
	4:45:00	0.00	0.00	3.66	4.89	5.71	5.88	6.49	10.17	29.97
	4:50:00	0.00	0.00	3.66	4.89	5.70	5.83	6.37	9.40	27.51
	4:55:00 5:00:00	0.00	0.00	3.67 3.67	4.89 4.89	5.69 5.69	5.79 5.75	6.27 6.17	8.78 8.29	21.96 18.12
	5:05:00	0.00	0.00	3.67	4.89	5.69	5.73	6.09	7.88	15.38
	5:10:00	0.00	0.00	3.67	4.89	5.68	5.70	6.01	7.54	13.38
	5:15:00 5:20:00	0.00	0.00	3.67 3.67	4.89 4.89	5.68 5.68	5.69 5.69	5.94 5.88	7.26 7.02	11.87 10.72
	5:20:00	0.00	0.00	3.67	4.89	5.68	5.69	5.88	6.81	9.83
	5:30:00	0.00	0.00	3.67	4.88	5.67	5.68	5.78	6.64	9.12
	5:35:00	0.00	0.00	3.67	4.88	5.66	5.68	5.75	6.48	8.55
	5:40:00 5:45:00	0.00	0.00	3.67 3.67	4.88 4.88	5.66 5.65	5.68 5.67	5.72 5.70	6.35 6.23	8.09 7.71
	5:50:00	0.00	0.00	3.67	4.87	5.65	5.67	5.69	6.13	7.39
	5:55:00	0.00	0.00	3.67	4.87	5.64	5.66	5.69	6.04	7.13
	6:00:00	0.00	0.00	3.65	4.86	5.63	5.65	5.68	5.81	6.62

MHFD-Detention, Version 4.02 (February 2020) Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	L
micropool	0.00	40	0.001	0	0.000	0.00	For best results, include the
surcharge	0.33	50	0.001	15	0.000	0.04	stages of all grade slope
5745	1.00	255	0.006	117	0.003	0.07	changes (e.g. ISV and Floor
5746	2.00	6,998	0.161	3,743	0.086	0.18	from the S-A-V table on Sheet 'Basin'.
5747	3.00	38,392	0.881	26,438	0.607	0.30	Sheet Basin.
5748	4.00	40,927	0.940	66,098	1.517	1.23	Also include the inverts of a
5749	5.00	43,534	0.999	108,328	2.487	1.91	outlets (e.g. vertical orifice,
5750	6.00	46,212	1.061	153,201	3.517	2.39	overflow grate, and spillway where applicable).
5751	7.00	48,991	1.125	200,803	4.610	2.79	
5752 5753	8.00 9.00	51,837 54,731	1.190 1.256	251,217 304,501	5.767 6.990	40.84 43.61	-
5754	10.00	58,033	1.332	360,883	8.285	46.21	_
5751	10.00	50,000	1002	500,005	0.205	10121	-
							-
							-
							_
							4
	_						4
							-
							-
	-				-		-
							-
							-
							-
							-
							-
							_
							_
	_				-		-
					-		-
							-
							-
							-
							-
							-
							-
							_
							_
							-
							-
							-
							4
							4
							4
							1
]
							4
							-
	+				ł		4

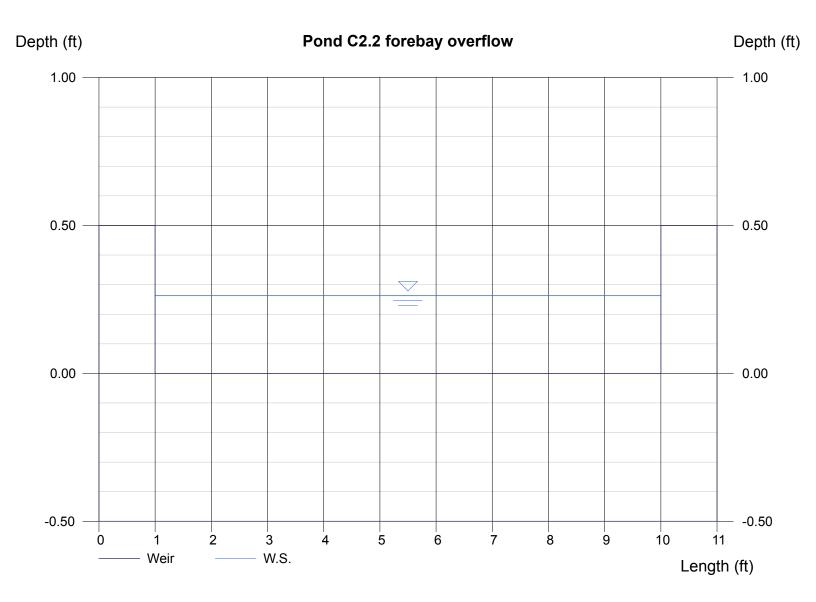

	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	Richard Schindler	
Company:	Core Engineering Group May 2, 2020	
Date: Project:	The Hills at Lorson Ranch	
Location:	Pond C2.2	
1. Basin Storage \	/olume	
A) Effective Imp	erviousness of Tributary Area, I _a	l _a = 55.0 %
B) Tributary Are	a's Imperviousness Ratio (i = l _a / 100)	i = 0.550
C) Contributing	Watershed Area	Area = 45.000 ac
	neds Outside of the Denver Region, Depth of Average lucing Storm	d ₆ = in
	-	Choose One
E) Design Con (Select EUR	cept V when also designing for flood control)	Water Quality Capture Volume (WQCV)
,		O Excess Urban Runoff Volume (EURV)
	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.827 ac-ft
		V
Water Qual	neds Outside of the Denver Region, ty Capture Volume (WQCV) Design Volume	V _{DESIGN OTHER} = ac-ft
(VWQCV OTHE	$_{R} = (d_{6}^{*}(V_{DESIGN}/0.43))$	
	of Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN USER} =ac-ft
(Only if a dif	ferent WQCV Design Volume is desired)	
	logic Soil Groups of Tributary Watershed	
	ige of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils	$HSG_{R} = $ %
iii) Percent	age of Watershed consisting of Type C/D Soils	HSG _{C/D} =
	an Runoff Volume (EURV) Design Volume	
	: EURV _A = 1.68 * i ^{1.28} : EURV _B = 1.36 * i ^{1.08}	EURV _{DESIGN} =ac-ft
	/D: EURV _{C/D} = 1.20 * $i^{1.08}$	
K) User Input o	f Excess Urban Runoff Volume (EURV) Design Volume	EURV _{DESIGN USER} = ac-f t
(Only if a dif	ferent EURV Design Volume is desired)	
2. Basin Shape: L	ength to Width Ratio	L:W= 2.0 : 1
(A basin length	to width ratio of at least 2:1 will improve TSS reduction.)	
3. Basin Side Slop	es	
,	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 3.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
(110112011011		
4. Inlet		
A) Describe me	eans of providing energy dissipation at concentrated	
inflow locati		
l		
5. Forebay		
A) Minimum Fo		V _{FMIN} = 0.025 ac-ft
(V _{FMIN}	= <u>3%</u> of the WQCV)	
B) Actual Forel	bay Volume	$V_F = 0.028$ ac-ft
C) Forebay Dep		
(D _F	= <u>30</u> inch maximum)	$D_F = 24.0$ in
D) Forebay Dise	charge	
i) Undetain	ed 100-year Peak Discharge	Q ₁₀₀ = 131.00 cfs
ii) Forebay	Discharge Design Flow	$Q_F = 2.62$ cfs
$(Q_F = 0.0)$		
E) Forebay Disc	charge Design	Choose One
		O Berm With Pipe
		Wall with Rect. Notch
		O Wall with V-Notch Weir
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P = in
G) Rectangular	Notch Width	Calculated W _N = 8.1 in

Designer: Richard Schindler Company: Core Engineering Group Date: May 2, 2020 Project: The Hills at Lorson Ranch Location: Pond C2.2 6. Trickle Channel A) Type of Trickle Channel F) Slope of Trickle Channel F) Slope of Trickle Channel 7. Micropool and Outlet Structure A) Depth of Micropool (2.5-feet minimum) B) Surface Area of Micropool (10 ft ² minimum) C) Outlet Type D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing C) Smallest Dimension of Orifice Opening Based on Hydrograph Routing	Sheet 2 of 3 Choose One © Concrete O Soft Bottom S = 0.0050 ft / ft $D_M = 2.5$ ft $A_M = 50$ sq ft
 A) Type of Trickle Channel F) Slope of Trickle Channel 7. Micropool and Outlet Structure A) Depth of Micropool (2.5-feet minimum) B) Surface Area of Micropool (10 ft² minimum) C) Outlet Type D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing 	• Concrete Soft Bottom S = 0.0050 ft / ft $D_M = 2.5$ ft
 A) Depth of Micropool (2.5-feet minimum) B) Surface Area of Micropool (10 ft² minimum) C) Outlet Type D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing 	
	Choose One Orifice Plate Other (Describe):
(Use UD-Detention) E) Total Outlet Area	$D_{\text{orfice}} = $ 1.48 inches $A_{\text{ot}} = $ 6.63 square inches
 8. Initial Surcharge Volume A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) C) Initial Surcharge Provided Above Micropool 	$D_{1S} = $ in $V_{1S} = $ 108 cu ft $V_{s} = $ 16.7 cu ft
 9. Trash Rack A) Water Quality Screen Open Area: A_t = A_{st} * 38.5*(e^{-0.065D}) B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) Other (Y/N): y C) Ratio of Total Open Area to Total Area (only for type 'Other') D) Total Water Quality Screen Area (based on screen type) E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) F) Height of Water Quality Screen (H_{TR}) G) Width of Water Quality Screen Opening (W_{opening}) 	$A_t =$ 222 square inches Other (Please describe below)

Hydraflow Express by Intelisolve

pond C2.2 low flow channel (2 x forebay release = 5.24cfs)

Rectangular		Highlighted	
Botom Width (ft)	= 6.00	Depth (ft)	= 0.28
Total Depth (ft)	= 0.50	Q (cfs)	= 5.240
		Area (sqft)	= 1.68
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.12
Slope (%)	= 0.50	Wetted Perim (ft)	= 6.56
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.29
		Top Width (ft)	= 6.00
Calculations		EGL (ft)	= 0.43
Compute by:	Known Q		
Known Q (cfs)	= 5.24		



Reach (ft)

Hydraflow Express by Intelisolve


Pond C2.2 forebay overflow

Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.26
Bottom Length (ft)	= 9.00	Q (cfs)	= 4.040
Total Depth (ft)	= 0.50	Area (sqft)	= 2.36
		Velocity (ft/s)	= 1.71
Calculations		Top Width (ft)	= 9.00
Weir Coeff. Cw	= 3.33		
Compute by:	Known Q		
Known Q (cfs)	= 4.04		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.02 (February 2020)

100-YEAR ORIFICE

ZONE 1 AND 2-ORIFICES PERM Example Zone Configuration (Retention Pond)

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	81.00	acres
Watershed Length =	2,300	ft
Watershed Length to Centroid =	1,200	ft
Watershed Slope =	0.050	ft/ft
Watershed Imperviousness =	55.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	40.0%	percent
Percentage Hydrologic Soil Groups C/D =	60.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Orban Hydro	igraph Procedu	re.
Water Quality Capture Volume (WQCV) =	1.488	acre-feet
Excess Urban Runoff Volume (EURV) =	4.468	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	4.607	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	6.475	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	8.109	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	10.045	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	11.748	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	13.830	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	18.178	acre-feet
Approximate 2-yr Detention Volume =	3.723	acre-feet
Approximate 5-yr Detention Volume =	5.293	acre-feet
Approximate 10-yr Detention Volume =	6.364	acre-feet
Approximate 25-yr Detention Volume =	6.876	acre-feet
Approximate 50-yr Detention Volume =	7.136	acre-feet
Approximate 100-yr Detention Volume =	7.948	acre-feet

Define	70000	and	Dacin	Geometry	
Denne	ZUHES	anu	Dasin	Geometry	

Zone Zone 3 (100yr +

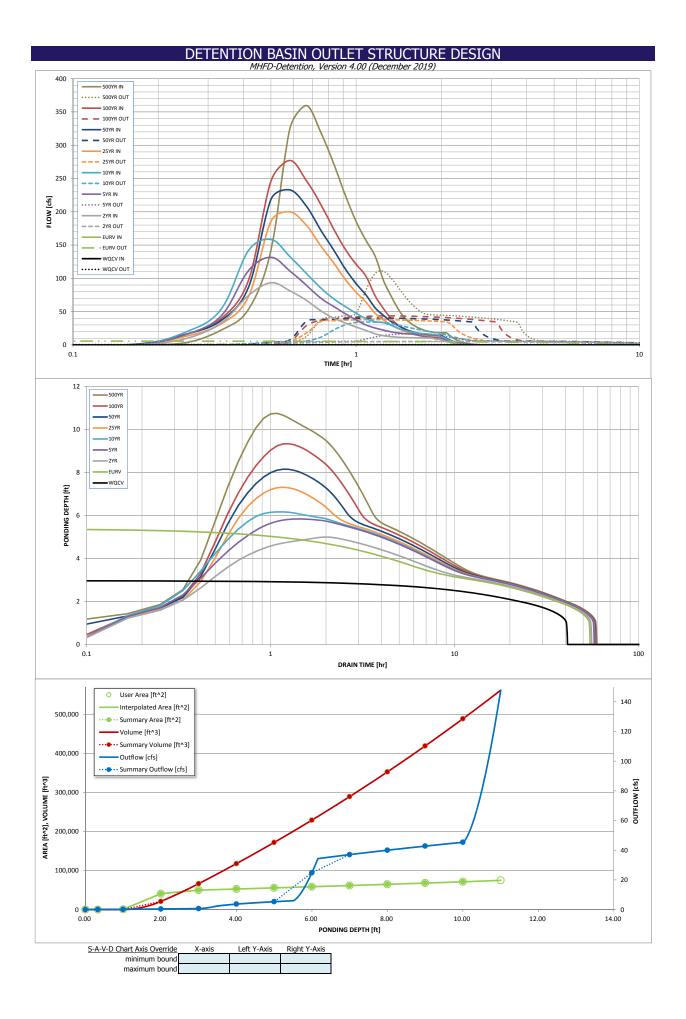
efine Zones and Basin Geometry		
· · · · · · · · · · · · · · · · · · ·		1
Zone 1 Volume (WQCV) =	1.488	acre-feet
Zone 2 Volume (EURV - Zone 1) =	2.980	acre-feet
ne 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	4.225	acre-feet
Total Detention Basin Volume =	8.692	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$		ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V _{total}) =	user	acre-feet

		Depth Increment =	0.20	ft							
				Optional	المتحر مع	Width	Area	Optional Override	Ar	Volume	Volume
ion Pond)		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	(ft)	(ft ²)	Area (ft ²)	Area (acre)	(ft 3)	Volume (ac-ft)
		Top of Micropool		0.00				40	0.001	()	(32 10)
		5765.33		0.33				50	0.001	15	0.000
		5766		1.00					0.001	243	0.000
		5767		2.00				630 40,811	0.014		
		5767		3.00				40,811 49,929	1.146	20,962 66,332	0.481 1.523
		5769		4.00			-	49,929 52,779	1.140	117,686	2.702
		5769		4.00				52,779	1.212	117,686	3.947
		5771		6.00			-	55,690	1.276	229,096	5.259
		5772		7.00	-		-	61,704	1.417	289,278	6.641
		5773		8.00	-		-	64,811	1.488	352,535	8.093
		5774		9.00	-		-	67,980	1.561	418,931	9.617
		5775		10.00				71,215	1.635	488,528	11.215
		5776		11.00				75,000	1.722	561,636	12.893
		5770		11.00				75,000	1.7 22	501,050	12:055
Optional Use	er Overrides										
	acre-feet										
	acre-feet										
1.19	inches		-								
1.50	inches										
1.75	inches		-								
2.00	inches										
2.25	inches										
2.52	inches										
	inches										
		-									
							-				
					-		-				
			-								
					-						
					-						
			-								
							-				
					-		-				
			-								
											⊢]
			1 1								
			1 1				-				
]

micropool = 0 = 5765

MHFD-Detention_v4-02-pond C4, Basin


DETENTION BASIN OUTLET STRUCTURE DESIGN 1HFD-Detention, Version 4.02 (February 2020 Project: The Hills at Lorson Ranch Basin ID: Pond C4 Estimated Estimated ZONE 1 Outlet Type Stage (ft) Volume (ac-ft) Zone 1 (WQCV) 2.97 1.488 Orifice Plate Zone 2 (FURV) 2,980 Rectangular Orifice 5.41 100-YEAF ZONE 1 AND 2 ORIFICES '3 (100+1/2WQCV) 8.40 4.225 Weir&Pipe (Restrict) PERMAN Example Zone Configuration (Retention Pond) Total (all zones) 8.692 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Underdrain Orifice Area Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) N/A ft² Underdrain Orifice Diameter = N/A inches Underdrain Orifice Centroid = N/A feet Calculated Parameters for Plate User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) WQ Orifice Area per Row Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) 3.250E-02 ft^2 Depth at top of Zone using Orifice Plate = 2.97 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet Orifice Plate: Orifice Vertical Spacing 11.90 Elliptical Slot Centroid N/A feet inches ft² Elliptical Slot Area Orifice Plate: Orifice Area per Row : 4.68 sq. inches (use rectangular openings) N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft 0.00 0.99 1.98 Orifice Area (sq. inches) 4.68 4.68 4.68 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft Orifice Area (sg. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifi Zone 2 Rectangula Not Selected Zone 2 Rectangula Not Selected Invert of Vertical Orifice 2.97 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area 0.68 N/A ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Vertical Orifice 5.41 N/A Vertical Orifice Centroid 0.25 N/A Vertical Orifice Height 6.00 N/A inches Vertical Orifice Width = 16.39 inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow We Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho 5.50 N/A Height of Grate Upper Edge, H_t N/A ft (relative to basin bottom at Stage = 0 ft) 5.50 Overflow Weir Front Edge Length 6.00 N/A feet Overflow Weir Slope Length 6.00 N/A Overflow Weir Grate Slope 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area 8.02 N/A Horiz. Length of Weir Sides : N/A Overflow Grate Open Area w/o Debris 25.20 N/A 6.00 feet Overflow Grate Open Area % 70% N/A %, grate open area/total area Overflow Grate Open Area w/ Debris = 12.60 N/A Debris Clogging % = N/A 50% User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe 0.00 N/A Outlet Orifice Area N/A ft (distance below basin bottom at Stage = 0 ft) 3.14 Outlet Pipe Diameter 24.00 N/A inches Outlet Orifice Centroid 1.00 N/A Restrictor Plate Height Above Pipe Invert = 24.00 inches Half-Central Angle of Restrictor Plate on Pipe = 3.14 N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 10.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 1.87 feet Spillway Crest Length : 30.00 feet Stage at Top of Freeboard = 13.00 feet H:V Spillway End Slopes 4.00 Basin Area at Top of Freeboard 1.72 acres Freeboard above Max Water Surface = 1.13 Basin Volume at Top of Freeboard = 12.89 feet acre-ft micropool = 0 = 5765Routed Hydrograph Results anhs and i in the Inflow Hv hs table (Columns W through AF erride the c ff volumes hv na new values Design Storm Return Period WOCV 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year One-Hour Rainfall Depth (in) N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 13.830 CUHP Runoff Volume (acre-ft) 1.488 4.468 4.607 6.475 8.109 10.045 11.748 Inflow Hydrograph Volume (acre-ft) N/A N/A 4.607 6.475 8.109 10.045 11.748 13.830 CUHP Predevelopment Peak Q (cfs) N/A N/A 17.5 39.6 56.8 90.6 111.9 138.5 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A 0.49 0.70 1.71 Predevelopment Unit Peak Flow, g (cfs/acre) 0.22 1.38 N/A 1.12 N/A Peak Inflow Q (cfs) N/A N/A 93.5 131.6 158.6 200.0 232.9 277.2 34.4 38.0 40.5 43.7 Peak Outflow Q (cfs) 0.6 5.8 5.3 16.5 Ratio Peak Outflow to Predevelopment Q N/A N/A N/A 0.4 0.6 0.4 0.4 0.3 Structure Controlling Flow Vertical Orifice 1 Vertical Orifice 1 Vertical Orifice 1 erflow Wei Outlet Plate Outlet Plate Outlet Plate Outlet Plate 1 Max Velocity through Grate 1 (fps) N/A N/A N/A 0.4 1.4 1.1 1.2 1 3 Max Velocity through Grate 2 (fps) N/A N/A N/A N/A N/A N/A N/A N/A 47 44 Time to Drain 97% of Inflow Volume (hours) 30 48 49 49 45 42 Time to Drain 99% of Inflow Volume (hours) 40 52 53 54 53 53 53 52 Maximum Ponding Depth (ft) 2.97 5.41 5.00 5.84 6.17 7.31 8.15 9.34 Area at Maximum Ponding Depth (acres) 1.44 1.14 1.28 3.934 1.34 5.031 1.59

4.477

Maximum Volume Stored (acre-ft)

1.36 5.476

1.50

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename: ...Outflow Hydrographs-pond C4.xlsx

Inflow Hydrographs

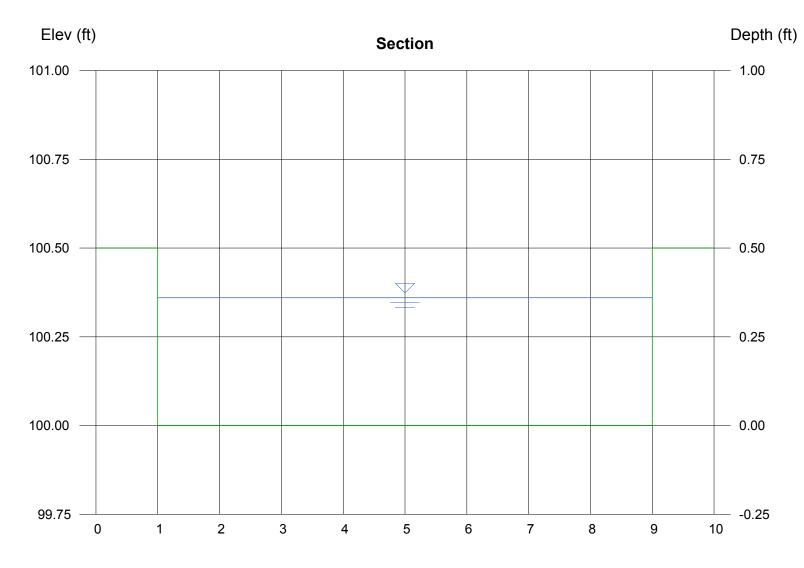
	The user can ov		lated inflow hvd	rographs from t	nis workbook wit	th inflow hvdroa	raphs developed	in a separate pro	ogram.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]		10 Year [cfs]		50 Year [cfs]	100 Year [cfs]	
	0:00:00									
5.00 min		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00 0:15:00	0.00	0.00	0.00	0.00	0.00	0.00	1.08	0.11	3.48
	0:20:00	0.00	0.00	9.55 32.92	15.60 43.38	19.32 53.47	12.98 31.67	16.07 36.70	15.80 39.53	22.32 53.64
	0:25:00	0.00	0.00	74.34	111.85	142.03	72.79	86.79	97.17	142.25
	0:30:00	0.00	0.00	93.50	131.62	158.60	185.73	218.67	246.14	324.95
	0:35:00	0.00	0.00	81.33	111.11	132.69	199.96	232.94	277.21	359.64
	0:40:00	0.00	0.00	67.06	89.76	107.50	179.81	208.60	246.90	319.22
	0:45:00	0.00	0.00	51.28	70.23	85.54	148.69	172.31	211.27	272.12
	0:50:00	0.00	0.00	40.21	57.70	69.19	122.99	142.40	173.74	224.11
	0:55:00	0.00	0.00	32.87	46.75	57.49	97.93	113.76	143.17	185.13
	1:00:00	0.00	0.00	26.74	37.48	47.65	78.91	91.95	121.14	156.73
	1:05:00	0.00	0.00	21.83	29.98	39.43	64.22	74.98	103.05	133.25
	1:10:00 1:15:00	0.00	0.00	16.70 13.82	25.41 22.23	34.92 33.34	47.41 37.17	55.74 44.19	73.66 54.17	96.29 72.10
	1:20:00	0.00	0.00	12.38	19.62	29.44	29.18	34.65	38.85	51.95
	1:25:00	0.00	0.00	11.55	17.93	29.44	29.13	28.54	28.70	38.45
	1:30:00	0.00	0.00	11.12	16.83	21.38	19.70	23.24	22.76	30.51
	1:35:00	0.00	0.00	10.79	16.17	19.14	16.72	19.67	18.74	25.11
	1:40:00	0.00	0.00	10.57	14.11	17.68	14.89	17.48	16.17	21.68
	1:45:00	0.00	0.00	10.43	12.53	16.70	13.64	15.97	14.54	19.48
	1:50:00	0.00	0.00	10.39	11.49	15.99	12.96	15.14	13.84	18.51
	1:55:00	0.00	0.00	8.80	10.81	14.89	12.55	14.64	13.56	18.10
	2:00:00	0.00	0.00	7.56	10.02	13.19	12.34	14.40	13.50	18.01
	2:05:00	0.00	0.00	5.14	6.81	8.96	8.46	9.87	9.31	12.40
	2:10:00 2:15:00	0.00	0.00	3.31	4.38	5.83	5.51	6.42	6.07	8.07
	2:20:00	0.00	0.00	2.13	2.77	3.73 2.28	3.57 2.18	4.15	3.92 2.39	5.21 3.17
	2:25:00	0.00	0.00	0.73	1.09	1.36	1.35	1.57	1.48	1.96
	2:30:00	0.00	0.00	0.36	0.56	0.70	0.74	0.85	0.80	1.06
	2:35:00	0.00	0.00	0.14	0.23	0.27	0.31	0.35	0.33	0.43
	2:40:00	0.00	0.00	0.03	0.05	0.05	0.06	0.07	0.06	0.08
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00 3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00 4:10:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00 4:35:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00 5:20:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.02 (February 2020) Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
micropool	0.00	40	0.001	0	0.000	0.00	For best results, include the
surcharge	0.33	50	0.001	15	0.000	0.09	stages of all grade slope
5766	1.00	630	0.014	243	0.006	0.17	changes (e.g. ISV and Floor
5767	2.00	40,811	0.937	20,962	0.481	0.40	from the S-A-V table on Sheet 'Basin'.
5768	3.00	49,929	1.146	66,332	1.523	0.66	
5769	4.00	52,779	1.212	117,686	2.702	3.71	Also include the inverts of a
5770	5.00	55,690	1.278	171,921	3.947	5.32	outlets (e.g. vertical orifice,
5771	6.00	58,660	1.347	229,096	5.259	24.83	overflow grate, and spillway where applicable).
5772	7.00	61,704	1.417 1.488	289,278	6.641 8.093	37.05 40.02	innele applicable).
5773 5774	8.00 9.00	64,811 67,980	1.488	352,535 418,931	9.617	40.02	-
5775	10.00	71,215	1.635	488,528	11.215	45.38	_
5775	10.00	7 1/210	1.000	100/020	111210	10100	-
							_
							_
	-						_
							_
							_
	-						-
							_
							-
							_
							_
							_
							_
	-						-
							_
							_
							-
							_
							4
							1
]
							4
							4
							-
							1
]
							4
							4
							1

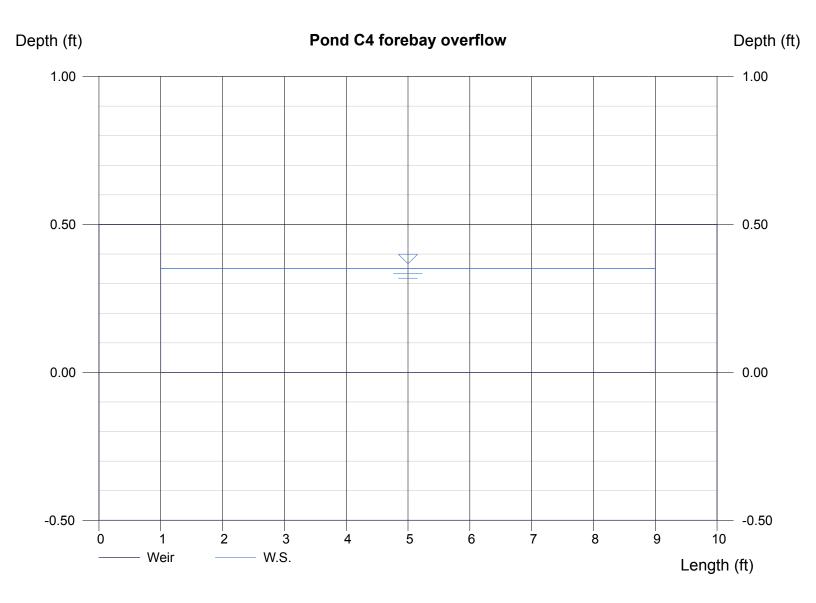

	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	Richard Schindler	
Company:	Core Engineering Group May 4, 2020	
Date: Project:	The Hills at Lorson Ranch	
Location:	Pond C4	
1. Basin Storage V	/olume	
A) Effective Imp	erviousness of Tributary Area, I _a	l _a = <u>55.0</u> %
B) Tributary Are	a's Imperviousness Ratio (i = $I_a / 100$)	i = 0.550
	Watershed Area	Area = 81.000 ac
	neds Outside of the Denver Region, Depth of Average lucing Storm	d ₆ = in
E) Design Con (Select EUR)	cept V when also designing for flood control)	Choose One Water Quality Capture Volume (WQCV)
(· · · · · · · · · · · · · · · · · · ·	O Excess Urban Runoff Volume (EURV)
	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} =1.488ac-ft
	neds Outside of the Denver Region, ty Capture Volume (WQCV) Design Volume	V _{DESIGN OTHER} =ac-ft
(Vwqcv other	$_{R} = (d_{6}^{*}(V_{\text{DESIGN}}/0.43))$	
	of Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft
	logic Soil Groups of Tributary Watershed	
	ige of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils	$HSG_{A} = $ % $HSG_{B} = $ %
iii) Percent	age of Watershed consisting of Type C/D Soils	HSG _{C/D} = %
For HSG A For HSG B	an Runoff Volume (EURV) Design Volume : EURV _A = 1.68 * i ^{1.28} : EURV _B = 1.36 * i ^{1.08}	EURV _{DESIGN} = ac-f t
	/D: EURV _{C/D} = 1.20 * i ^{1.08}	
	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} =ac-ft
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W = 2.0 : 1
3. Basin Side Slop	es	
,	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 3.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
(incrizontal)		
4. Inlet		
	eans of providing energy dissipation at concentrated	
inflow location	ons:	
5. Forebay		
A) Minimum Fo		V _{FMIN} =0.045 ac-ft
(V _{FMIN} B) Actual Foret	= <u>3%</u> of the WQCV) pay Volume	V _F = 0.050 ac-ft
C) Forebay Dep (D _F		D _F = 24.0 in
D) Forebay Disc	charge	
	ed 100-year Peak Discharge	Q ₁₀₀ = 277.00 cfs
ii) Forebay (Q _F = 0.0)	Discharge Design Flow 2 * Q ₁₀₀)	$Q_F = 5.54$ cfs
E) Forebay Disc	charge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P =in
G) Rectangular	Notch Width	Calculated W _N = <u>11.9</u> in

Designer: Richard Schindler Company: Core Engineering Group Date: May 4, 2020 Project: The Hills at Lorson Ranch Location: Pond C4 6. Trickle Channel A) Type of Trickle Channel A) Type of Trickle Channel F) Slope of Trickle Channel 7. Micropool and Outlet Structure A) Depth of Micropool (2.5-feet minimum) B) Surface Area of Micropool (10 f ² minimum) C) Outlet Type D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing (Use UD-Detention) C) E) Total Outlet Area S. Initial Surcharge Volume A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) C) Initial Surcharge Provided Above Micropool Context Surface Provided Above Micropool	Sheet 2 of 3
A) Type of Trickle Channel F) Slope of Trickle Channel 7. Micropool and Outlet Structure A) Depth of Micropool (2.5-feet minimum) B) Surface Area of Micropool (10 ft ² minimum) C) Outlet Type D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing (Use UD-Detention) E) Total Outlet Area 8. Initial Surcharge Volume A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) C) Initial Surcharge Provided Above Micropool	Concrete S oft Bottom S = 0.0050 ft / ft
A) Depth of Micropool (2.5-feet minimum) B) Surface Area of Micropool (10 ft ² minimum) C) Outlet Type D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing (Use UD-Detention) E) Total Outlet Area Initial Surcharge Volume (Minimum recommended depth is 4 inches) B) Minimum Initial Surcharge Volume (Minimum rolume of 0.3% of the WQCV) C) Initial Surcharge Provided Above Micropool	
(Use UD-Detention) E) Total Outlet Area 8. Initial Surcharge Volume A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) C) Initial Surcharge Provided Above Micropool	$D_{M} = \underbrace{2.5}_{\text{ft}} \text{ft}$ $A_{M} = \underbrace{50}_{\text{choose One}} \text{sq ft}$ $\bigcirc \text{Orifice Plate}_{\bigcirc \text{Other (Describe):}}$
 A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) C) Initial Surcharge Provided Above Micropool 	D _{orifice} = <u>2.16</u> inches A _{ot} = <u>14.04</u> square inches
	$D_{IS} = \underbrace{4}_{IS}$ in $V_{IS} = \underbrace{194}_{V_{S}}$ cu ft $V_{s} = \underbrace{16.7}_{CU}$ cu ft
Other (Y/N): y	$A_{i} = \underbrace{440}_{\text{square inches}}$ $\underbrace{Other (Please describe below)}_{\text{selscreen stainless}}$ ser Ratio = $\underbrace{0.6}_{\text{A}_{total}} = \underbrace{734}_{\text{sq. in.}} \text{ sq. in.} \text{ Based on type 'Other' screen ratio}$ $H = \underbrace{2.97}_{\text{freet}} \text{ freet}$ $H_{\text{Trs}} = \underbrace{63.64}_{\text{inches}} \text{ inches}$

Hydraflow Express by Intelisolve

pond C4 low flow channel (2 x forebay release = 11.08cfs)

Rectangular		Highlighted	
Botom Width (ft)	= 8.00	Depth (ft)	= 0.36
Total Depth (ft)	= 0.50	Q (cfs)	= 11.08
		Area (sqft)	= 2.88
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.85
Slope (%)	= 0.50	Wetted Perim (ft)	= 8.72
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.40
		Top Width (ft)	= 8.00
Calculations		EGL (ft)	= 0.59
Compute by:	Known Q		
Known Q (cfs)	= 11.08		


Reach (ft)

Hydraflow Express by Intelisolve

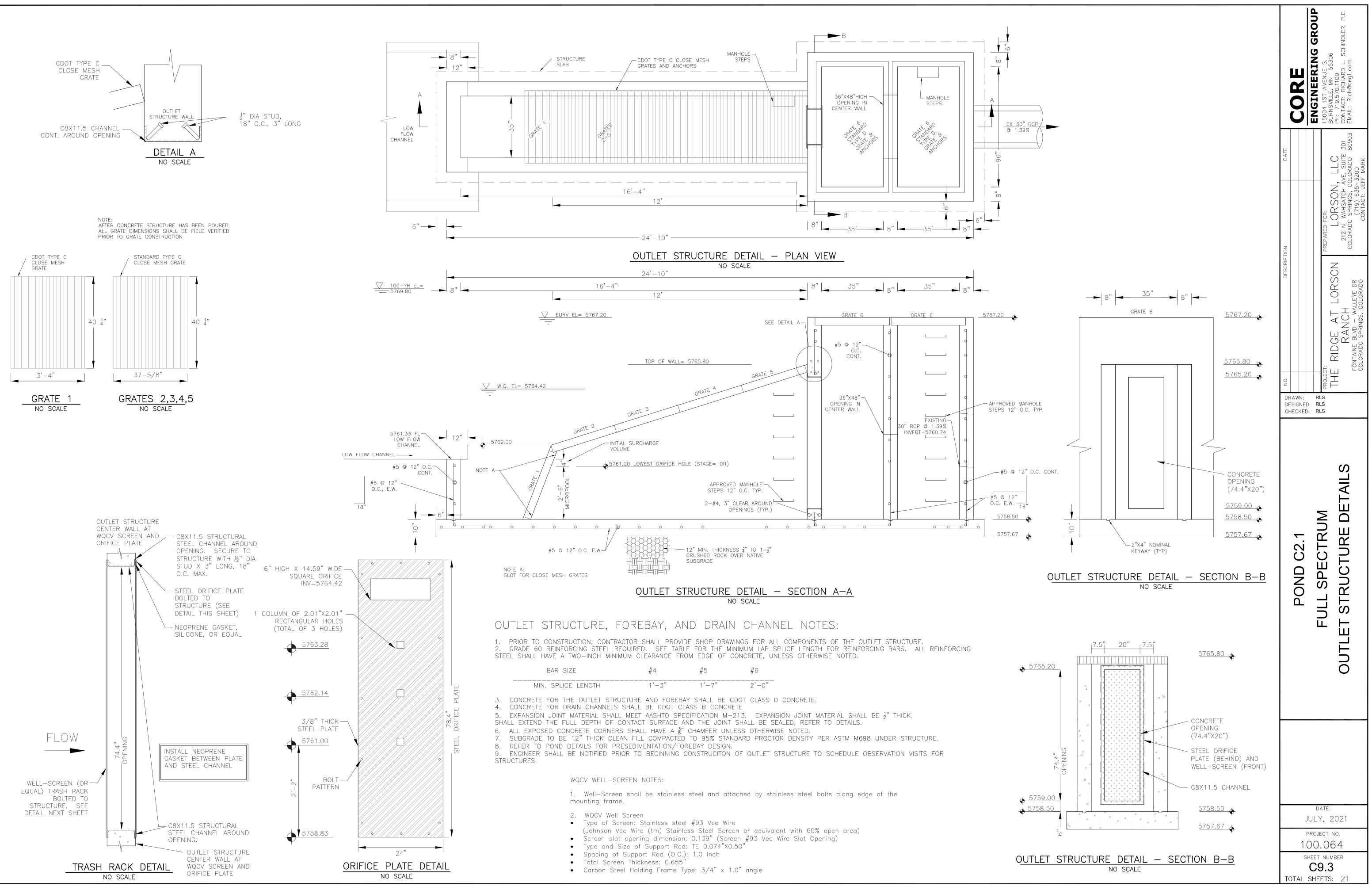
Monday, May 4 2020, 6:49 AM

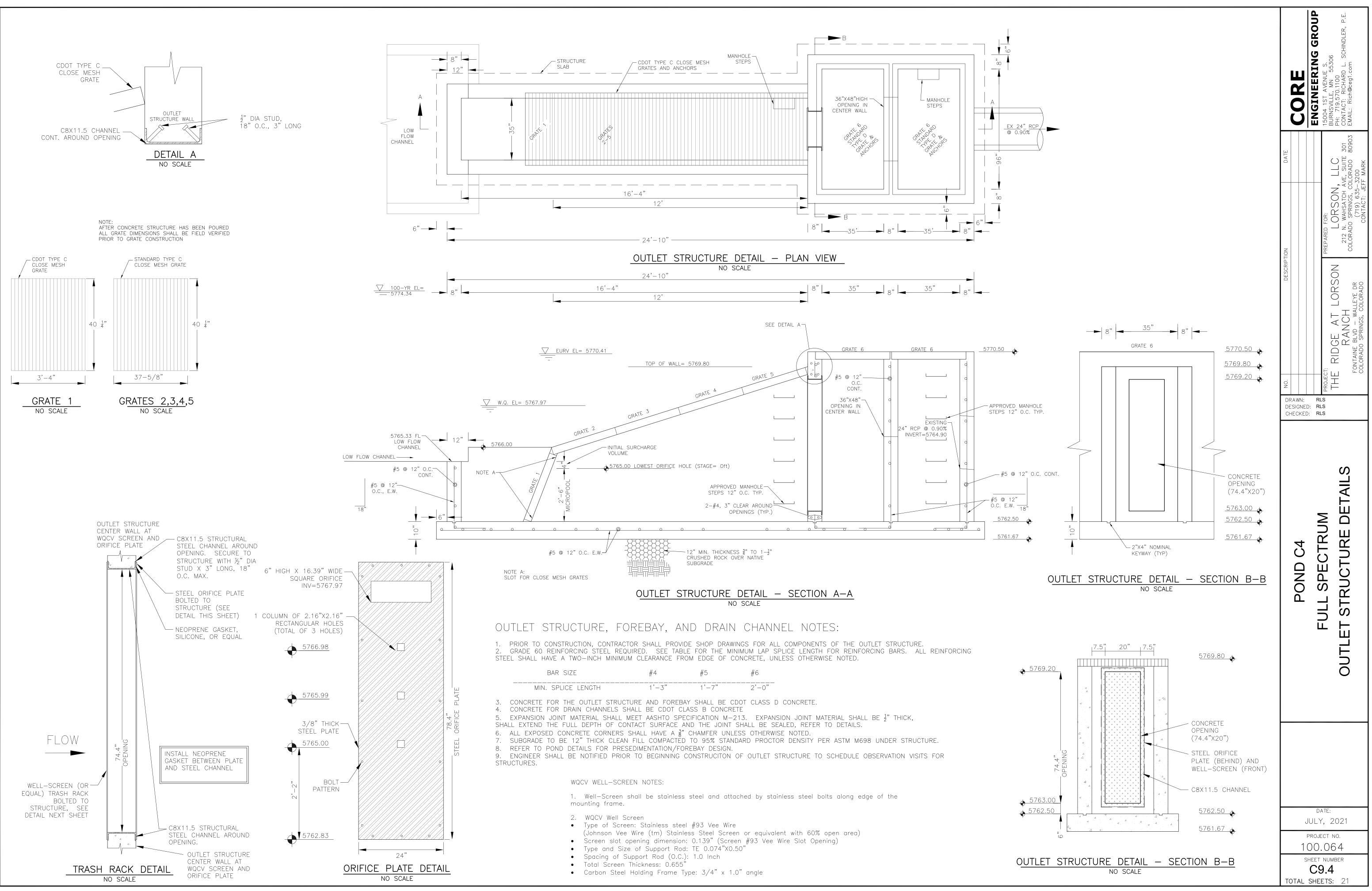
Pond C4 forebay overflow

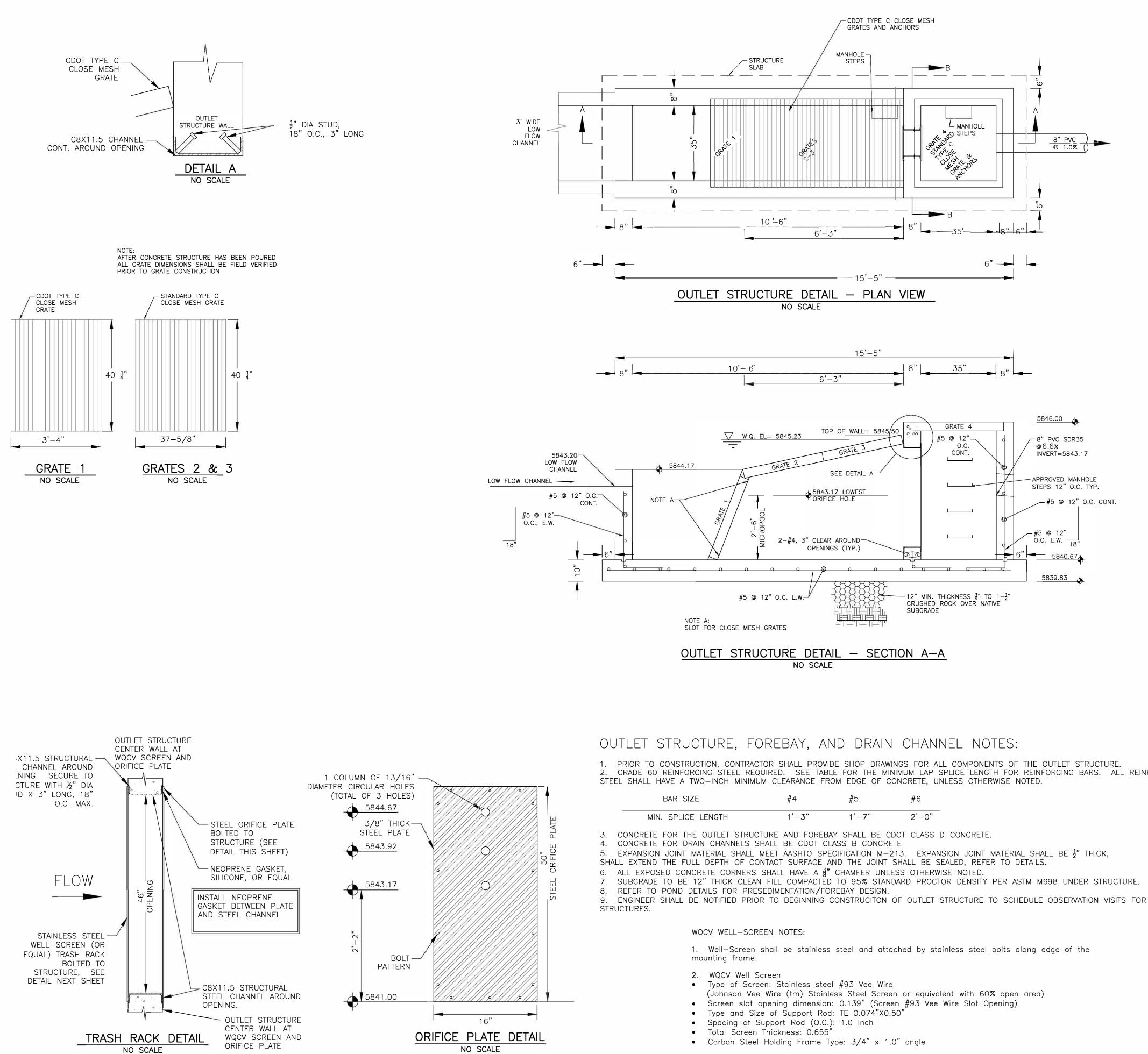
Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.35
Bottom Length (ft)	= 8.00	Q (cfs)	= 5.540
Total Depth (ft)	= 0.50	Area (sqft)	= 2.81
		Velocity (ft/s)	= 1.97
Calculations		Top Width (ft)	= 8.00
Weir Coeff. Cw	= 3.33		
Compute by:	Known Q		
Known Q (cfs)	= 5.54		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

				MHFD-L	Detention, Version	4.02 (Feb.	ruary 2020	ソ						
	The Ridge a	at Lorson I	Ranch											
Basin ID:														
	2 ONE 1								top microp	ool-5842.7	7			
					_		_							
ZONE	1 AND 2 CES	100-YE ORIFIC	AR CE		Depth Increment =	0.20	ft	1	1	1	Optional		I	
PERMANENT ORIFIC		tion (Rete	ntion Pond)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Override	Area	Volume	Volume
Watershed Information					Description Top of Micropool	(ft) 	Stage (ft) 0.00	(ft) 	(ft)	(ft ²)	Area (ft ²) 30	(acre) 0.001	(ft 3)	(ac-ft)
Selected BMP Type =	EDB	1			5844		1.23				1,180	0.001	744	0.017
Watershed Area =	4.90	acres			5845		2.23				4,840	0.111	3,754	0.086
Watershed Length =	900	ft			5846		3.23				6,608	0.152	9,478	0.218
Watershed Length to Centroid =	450	ft			5847		4.23				8,201	0.188	16,883	0.388
Watershed Slope =	0.009	ft/ft percent			5848 5849		5.23 6.23				9,600 10,600	0.220	25,783 35,883	0.592
Watershed Imperviousness = Percentage Hydrologic Soil Group A =	0.0%	percent			3045		0.23			-	10,000	0.243	33,003	0.024
Percentage Hydrologic Soil Group B =	100.0%	percent												
Percentage Hydrologic Soil Groups C/D =	0.0%	percent												
Target WQCV Drain Time = Location for 1-hr Rainfall Depths =	40.0	hours												
After providing required inputs above inc		rainfall												
depths, click 'Run CUHP' to generate run	off hydrograph	is using						-						
the embedded Colorado Urban Hydro		-	Optional Us	er Overrides										
Water Quality Capture Volume (WQCV) = Excess Urban Runoff Volume (EURV) =	0.090	acre-feet acre-feet		acre-feet acre-feet										
2-yr Runoff Volume (P1 = 1.19 in.) =	0.250	acre-feet	1.19	inches						-				
5-yr Runoff Volume (P1 = 1.5 in.) =	0.379	acre-feet	1.50	inches										
10-yr Runoff Volume (P1 = 1.75 in.) =	0.474	acre-feet	1.75	inches										
25-yr Runoff Volume (P1 = 2 in.) = 50-yr Runoff Volume (P1 = 2.25 in.) =	0.597 0.699	acre-feet acre-feet	2.00	inches										
100-yr Runoff Volume (P1 = 2.23 in.) =	0.899	acre-feet	2.25	inches										
500-yr Runoff Volume (P1 = 3.14 in.) =	1.089	acre-feet		inches										
Approximate 2-yr Detention Volume =	0.221	acre-feet						-						
Approximate 5-yr Detention Volume = Approximate 10-yr Detention Volume =	0.301 0.393	acre-feet acre-feet												
Approximate 25-yr Detention Volume =	0.427	acre-feet												
Approximate 50-yr Detention Volume =	0.446	acre-feet												
Approximate 100-yr Detention Volume =	0.492	acre-feet												
Define Zones and Basin Geometry														
Zone 1 Volume (WQCV) =	0.090	acre-feet												
Zone 2 Volume (EURV - Zone 1) =	0.200	acre-feet												
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	0.246	acre-feet												
Total Detention Basin Volume = Initial Surcharge Volume (ISV) =	0.537 user	acre-feet ft ³												
Initial Surcharge Volume (ISV) =	user	ft												
Total Available Detention Depth (H _{total}) =	user	ft						-						
Depth of Trickle Channel $(H_{TC}) =$	user	ft												
Slope of Trickle Channel (S_{TC}) = Slopes of Main Basin Sides (S_{main}) =	user user	ft/ft H:V												
Basin Length-to-Width Ratio (R _{L/W}) =	user													
		-						-		-				
Initial Surcharge Area $(A_{ISV}) =$	user	ft ²												
Surcharge Volume Length $(L_{ISV}) =$ Surcharge Volume Width $(W_{ISV}) =$	user	ft						-						
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft												
Length of Basin Floor $(L_{FLOOR}) =$	user	ft						-						
Width of Basin Floor $(W_{FLOOR}) =$	user	ft ft ²												
Area of Basin Floor $(A_{FLOOR}) =$ Volume of Basin Floor $(V_{FLOOR}) =$	user	π- ft ³												
Depth of Main Basin (H _{MAIN}) =	user	ft												
Length of Main Basin $(L_{MAIN}) =$	user	ft						-				-		
Width of Main Basin (W _{MAIN}) = Area of Main Basin (A _{MAIN}) =	user	ft ft²												
Area of Main Basin $(A_{MAIN}) =$ Volume of Main Basin $(V_{MAIN}) =$	user	ft ³								-				
Calculated Total Basin Volume (V _{total}) =		acre-feet						-						
											-			
								-						
										-				
								-						
								-		-				
														⊢]
								-						
												-		
										-		-		
								-		-				
												-		
								-						
							1						I	

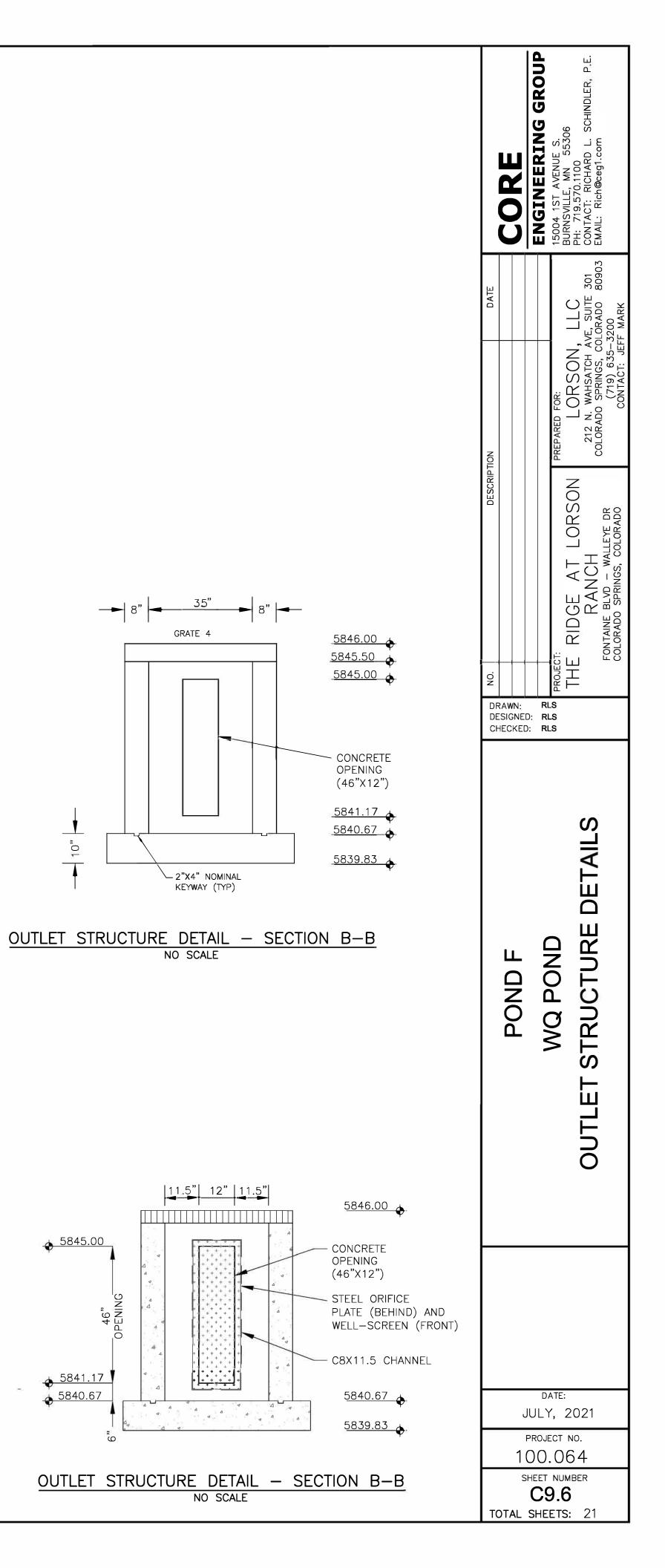

	DF	TENTION	BASIN OUT	LET STRU		SIGN			
Project:	The Ridge at Lors	МНІ	FD-Detention, Vers			01011			
Basin ID:	Pond F								
	\bigcirc			Estimated	Estimated				
100-YR				Stage (ft)	Volume (ac-ft)	Outlet Type	1		
			Zone 1 (WQCV)	2.27	0.090	Orifice Plate			
ZONE 1 AND 2	100-YEAR ORIFICE		Zone 2 (EURV)	3.69	0.200	Rectangular Orifice			
PERMANENT ORIFICES	Configuration (Ba		'3 (100+1/2WQCV)	4.98	0.246	Weir&Pipe (Restrict)			
	Configuration (Re			Total (all zones)	0.537				
ser Input: Orifice at Underdrain Outlet (typically	_	7	•	<i>c</i>				ters for Underdrain	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A N/A	inches	the filtration media	surface)		drain Orifice Area = n Orifice Centroid =	N/A N/A	ft ² feet	
	N/A	inches			Underdran		N/A	leet	
ser Input: Orifice Plate with one or more orifice	s or Elliptical Slot V	eir (typically used t	to drain WQCV and/	or EURV in a sedim	entation BMP)		Calculated Parame	ters for Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basin	bottom at Stage =	0 ft)	WQ Orif	fice Area per Row =	2.569E-03	ft ²	
Depth at top of Zone using Orifice Plate =	2.27	ft (relative to basin	bottom at Stage =	0 ft)	Ell	liptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	8.30	inches				tical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	0.37	sq. inches (diamete	er = 11/16 inch)		E	Elliptical Slot Area =	N/A	ft²	
ser Input: Stage and Total Area of Each Orifice	· · ·	-		ſ	ſ	1	I		1
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	0.00	0.76	1.51 0.37						
Office Area (sq. Inches)	0.37	0.37	0.37				1		1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
ser Input: Vertical Orifice (Circular or Rectangu			1					ters for Vertical Orifi	ice
Invert of Vertical Orifica -	Zone 2 Rectangular 2.27	Not Selected N/A	ft (rolativo to bacin	bottom at Stago -	0.61) 1/0	rtical Orifice Area =	Zone 2 Rectangular 0.08		ft ²
Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice =	3.69	N/A N/A		bottom at Stage = bottom at Stage =		al Orifice Centroid =	0.08	-	ft feet
Vertical Orifice Height =	1.00	N/A	inches	bollom at Stage -	vertica		0.04	N/A	ieet
Vertical Orifice Width =	12.00	in the second se	inches						
		1							
ser Input: Overflow Weir (Dropbox with Flat or	Sloped Grate and O	Dutlet Pipe OR Recta	angular/Trapezoidal	Weir (and No Outle	t Pine)		Calculated Daramo		e i u
					<u>st ripej</u>		Calculated Parallie	ters for Overflow We	eir
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	3.23	N/A	ft (relative to basin b	pottom at Stage = 0 fi	t) Height of Grat	te Upper Edge, H _t =	Zone 3 Weir 3.23	Not Selected N/A	feet
Overflow Weir Front Edge Length =	3.23 3.00	N/A N/A	ft (relative to basin b feet	pottom at Stage = 0 fl	e) Height of Grat Overflow V	Veir Slope Length =	Zone 3 Weir 3.23 6.00	Not Selected N/A N/A	
Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	3.23 3.00 0.00	N/A N/A N/A	ft (relative to basin b feet H:V	oottom at Stage = 0 fl G	e) Height of Grat Overflow V rate Open Area / 10	Veir Slope Length = 00-yr Orifice Area =	Zone 3 Weir 3.23 6.00 5.09	Not Selected N/A N/A N/A	feet feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	3.23 3.00 0.00 6.00	N/A N/A N/A N/A	ft (relative to basin b feet H:V feet	oottom at Stage = 0 ff G O	:) Height of Grat Overflow V rate Open Area / 10 verflow Grate Oper	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris =	Zone 3 Weir 3.23 6.00 5.09 9.00	Not Selected N/A N/A N/A N/A	feet feet ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	3.23 3.00 0.00 6.00 50%	N/A N/A N/A N/A N/A	ft (relative to basin b feet H:V feet %, grate open area	oottom at Stage = 0 ff G O	:) Height of Grat Overflow V rate Open Area / 10 verflow Grate Oper	Veir Slope Length = 00-yr Orifice Area =	Zone 3 Weir 3.23 6.00 5.09	Not Selected N/A N/A N/A N/A	feet feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	3.23 3.00 0.00 6.00	N/A N/A N/A N/A	ft (relative to basin b feet H:V feet	oottom at Stage = 0 ff G O	:) Height of Grat Overflow V rate Open Area / 10 verflow Grate Oper	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris =	Zone 3 Weir 3.23 6.00 5.09 9.00	Not Selected N/A N/A N/A N/A	feet feet ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	3.23 3.00 0.00 6.00 50% 50%	N/A N/A N/A N/A N/A	ft (relative to basin t feet H:V feet %, grate open area %	oottom at Stage = 0 ff G O	t) Height of Grat Overflow V rate Open Area / 10 verflow Grate Oper Overflow Grate Oper	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris =	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50	Not Selected N/A N/A N/A N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	3.23 3.00 0.00 6.00 50% 50%	N/A N/A N/A N/A N/A	ft (relative to basin t feet H:V feet %, grate open area %	oottom at Stage = 0 ff G O	t) Height of Grat Overflow V rate Open Area / 10 verflow Grate Oper Overflow Grate Oper	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris =	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50	Not Selected N/A N/A N/A N/A N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe =	3.23 3.00 0.00 6.00 50% 50% (<u>Circular Orifice, Re</u> Zone 3 Restrictor 0.00	N/A N/A N/A N/A N/A Strictor Plate, or <u>Re</u> Not Selected N/A	ft (relative to basin b feet H:V feet %, grate open area % ctangular Orifice)	oottom at Stage = 0 ff G O	t) Height of Grat Overflow V rate Open Area / 1(verflow Grate Oper Overflow Grate Oper Overflow Grate Oper <u>C</u> = 0 ft) C	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area =	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 s for Outlet Pipe w/ Zone 3 Restrictor 1.77	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	3.23 3.00 0.00 6.00 50% 50% <u>Circular Orifice, Re</u> Zone 3 Restrictor 0.00 18.00	N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected	ft (relative to basin b feet H:V feet %, grate open area % ctangular Orifice) ft (distance below ba inches	oottom at Stage = 0 ff G O a/total area	t) Height of Grat Overflow V rate Open Area / 1(verflow Grate Oper Overflow Grate Oper Overflow Grate Oper <u>C</u> = 0 ft) C	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid =	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A	feet feet ft ² ft ² ft ² ft ² fteet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe =	3.23 3.00 0.00 6.00 50% 50% (<u>Circular Orifice, Re</u> Zone 3 Restrictor 0.00	N/A N/A N/A N/A N/A strictor Plate, or <u>Re</u> Not Selected N/A	ft (relative to basin t feet H:V feet %, grate open area % ctangular Orifice) ft (distance below ba	oottom at Stage = 0 ff G O a/total area	t) Height of Grat Overflow V rate Open Area / 1(verflow Grate Oper Overflow Grate Oper Overflow Grate Oper <u>C</u> = 0 ft) C	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area =	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 s for Outlet Pipe w/ Zone 3 Restrictor 1.77	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A	feet feet ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	3.23 3.00 0.00 6.00 50% 50% <u>(Circular Orifice, Re</u> Zone 3 Restrictor 0.00 18.00 18.00	N/A N/A N/A N/A N/A strictor Plate, or <u>Re</u> Not Selected N/A	ft (relative to basin b feet H:V feet %, grate open area % ctangular Orifice) ft (distance below ba inches	oottom at Stage = 0 ff G O a/total area	t) Height of Grat Overflow V rate Open Area / 1(verflow Grate Oper Overflow Grate Oper Overflow Grate Oper <u>C</u> = 0 ft) C	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid =	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14	Not Selected N/A	feet feet ft ² ft ² ft ² ft ² fteet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or	3.23 3.00 0.00 6.00 50% 50% <u>Circular Orifice, Re</u> Zone 3 Restrictor 0.00 18.00 18.00 18.00 Trapezoidal)	N/A N/A N/A N/A N/A N/A strictor Plate, or Re Not Selected N/A N/A	ft (relative to basin t feet H:V feet %, grate open area % ctangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 ff G O a/total area asin bottom at Stage = Half-Cen	t) Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Dverflow Grate Oper Dverflow Grate Oper <u>C</u> = 0 ft) <u>C</u> Outle tral Angle of Restrict	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter outlet Orifice Area = to Orifice Centroid = ctor Plate on Pipe =	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u>	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A ters for Spillway	feet feet ft ² ft ² ft ² ft ² fteet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	3.23 3.00 0.00 6.00 50% 50% (<u>Circular Orifice, Re</u> Zone 3 Restrictor 0.00 18.00 18.00 18.00 Trapezoidal) 4.23	N/A N/A N/A N/A N/A strictor Plate, or Re Not Selected N/A N/A ft (relative to basin	ft (relative to basin b feet H:V feet %, grate open area % ctangular Orifice) ft (distance below ba inches	oottom at Stage = 0 ff G O a/total area asin bottom at Stage = Half-Cen	t) Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Overflow Grate Oper Curflow Grate Oper C	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth=	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.44	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A N/A Eters for Spillway feet	feet feet ft ² ft ² ft ² ft ² fteet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	3.23 3.00 0.00 6.00 50% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 18.00 18.00 Trapezoidal) 4.23 10.00	N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet	ft (relative to basin t feet H:V feet %, grate open area % ctangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 ff G O a/total area asin bottom at Stage = Half-Cen	t) Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Overflow Grate Oper Corflow Grate Oper C	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = en Area w/ Debris = alculated Parameter butlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard =	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u> 0.44 5.17	Not Selected N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A ters for Spillway. feet feet	feet feet ft ² ft ² ft ² ft ² fteet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	3.23 3.00 0.00 6.00 50% 50% (<u>Circular Orifice, Re</u> Zone 3 Restrictor 0.00 18.00 18.00 Trapezoidal) 4.23	N/A N/A N/A N/A N/A strictor Plate, or Re Not Selected N/A N/A ft (relative to basin	ft (relative to basin t feet H:V feet %, grate open area % ctangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 ff G O a/total area asin bottom at Stage = Half-Cen	t) Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Dverflow Grate Oper C C = 0 ft) C Uutle tral Angle of Restric Spillway [Stage at Basin Area at	Veir Slope Length = 00-yr Orifice Area = n Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth=	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.44	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A N/A Eters for Spillway feet	feet feet ft ² ft ² ft ² ft ² fteet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	3.23 3.00 0.00 6.00 50% 50% Zone 3 Restrictor 0.00 18.00 18.00 18.00 18.00 18.00 14.00	N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V	ft (relative to basin t feet H:V feet %, grate open area % ctangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 ff G O a/total area asin bottom at Stage = Half-Cen 0 ft)	t) Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Dverflow Grate Oper C C = 0 ft) C Uutle tral Angle of Restric Spillway [Stage at Basin Area at	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = en Area w/ Debris = alculated Parameter outlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u> 0.44 5.17 0.22	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Eters for Spillway feet feet acres	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	3.23 3.00 0.00 6.00 50% 50% (<u>Circular Orifice, Re</u> Zone 3 Restrictor 0.00 18.00 18.00 18.00 Trapezoidal) 4.23 10.00 4.00 0.50	N/A N/A N/A N/A N/A strictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet	ft (relative to basin to feet H:V feet %, grate open area % ctangular Orifice) ft (distance below ba inches inches bottom at Stage = top micropool = 584:	oottom at Stage = 0 ff G O a/total area Asin bottom at Stage = Half-Cen 0 ft) 2.77 = stage 0	 Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Overflow Grate Oper C 	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = en Area w/ Debris = alculated Parameter Autlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard =	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 <u>s for Outlet Pipe w/</u> Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u> 0.44 5.17 0.22 0.58	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet feet ft ² ft ² ft ² ft ² fteet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	3.23 3.00 0.00 6.00 50% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 18.00 18.00 18.00 18.00 18.00 Trapezoidal) 4.23 10.00 4.00 0.50	N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet	ft (relative to basin to feet H:V feet %, grate open area % ctangular Orifice) ft (distance below ba inches inches bottom at Stage = top micropool = 584:	oottom at Stage = 0 ff G O a/total area Asin bottom at Stage = Half-Cen 0 ft) 2.77 = stage 0 <u>runoff volumes by o</u>	 Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Overflow Grate Oper C a a a a b a c <lic< li=""> c <lic< li=""> c c<</lic<></lic<>	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = en Area w/ Debris = alculated Parameter butlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = s in the Inflow Hydri	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.44 5.17 0.22 0.58	Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A ters for Spillway. feet feet acres acres acres there the through AF).	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	3.23 3.00 0.00 6.00 50% 50% Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 18.00 18.00 18.00 18.00 Trapezoidal) 4.23 10.00 4.00 0.50 The user can oven WQCV N/A	N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet	ft (relative to basin to feet H:V feet %, grate open area % ft (distance below basinches inches bottom at Stage = top micropool = 584. (P hydrographs and 2 Year 1.19	oottom at Stage = 0 ff G O a/total area Asin bottom at Stage = Half-Cen 0 ft) 2.77 = stage 0 <u>runoff volumes by 0</u> 5 Year 1.50	t) Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Dverflow Grate Oper C = 0 ft) C Outle tral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at entering new valuee 10 Year 1.75	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = en Area w/ Debris = alculated Parameter alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = S in the Inflow Hydrin 25 Year 2.00	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.44 5.17 0.22 0.58 Digraphs table (Colu	Not Selected N/A N/A N/A N/A N/A Elow Restriction Pla Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 100 Year 2.52	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outled Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acreft) =	3.23 3.00 0.00 6.00 50% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 18.00 18.00 Trapezoidal) 4.23 10.00 4.00 0.50 The user can overn WQCV N/A 0.090	N/A N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A 0.290	ft (relative to basin to feet H:V feet %, grate open area % dt (distance below basin inches inches bottom at Stage = top micropool = 584: <u>IP hydrographs and</u> 2 Year 1.19 0.270	oottom at Stage = 0 ff G O a/total area asin bottom at Stage = Half-Cen 0 ft) 2.77 = stage 0 <u>runoff volumes by a</u> <u>5 Year 1.50 0.379</u>	 Height of Grat Overflow V rate Open Area / 11 verflow Grate Open Overflow Grate Open Current Gr	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = en Area w/ Debris = alculated Parameter Autet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = S in the Inflow Hydrh 2.00 0.597	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 <u>s for Outlet Pipe w/</u> Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u> 0.44 5.17 0.22 0.58 <u>ographs table (Colu</u>) <u>50 Year</u> 2.25 0.699	Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acres acre-ft 100 Year 2.52 0.827	feet feet ft ² ft ² feet radians 500 Yee 3.14 1.089
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acreft) = Inflow Hydrograph Volume (acreft) =	3.23 3.00 0.00 6.00 50% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.0	N/A N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet N/A O.290 N/A	ft (relative to basin to feet H:V feet %, grate open area % ctangular Orifice) ft (distance below ba inches inches inches bottom at Stage = top micropool = 584. <i>IP hydrographs and</i> 2 Year 1.19 0.270 0.270	oottom at Stage = 0 ff G O a/total area asin bottom at Stage = Half-Cen 0 ft) 2.77 = stage 0 <u>runoff volumes by o</u> <u>5 Year</u> <u>1.50</u> 0.379 0.379	 Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Dverflow Grate Oper C C a a a c <lic< li=""> c <lic< li=""> c c<</lic<></lic<>	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = an Area w/ Debris = alculated Parameter outlet Orifice Area = tt Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = s in the Inflow Hydro 25 Year 2.00 0.597 0.597	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u> 0.44 5.17 0.22 0.58 Digraphs table (Colu 50 Year 2.25 0.699 0.699	Not Selected N/A N/A N/A N/A N/A N/A N/A Construction Pla Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 100 Year 2.52 0.827 0.827	feet feet ft ² ft ² feet radians 500 Yea 3.14 1.089
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	3.23 3.00 0.00 6.00 50% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 18.00 18.00 Trapezoidal) 4.23 10.00 4.00 0.50 The user can overn WQCV N/A 0.090	N/A N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A 0.290	ft (relative to basin to feet H:V feet %, grate open area % dt (distance below basin inches inches bottom at Stage = top micropool = 584: <u>IP hydrographs and</u> 2 Year 1.19 0.270	oottom at Stage = 0 ff G O a/total area asin bottom at Stage = Half-Cen 0 ft) 2.77 = stage 0 <u>runoff volumes by a</u> <u>5 Year 1.50 0.379</u>	 Height of Grat Overflow V rate Open Area / 11 verflow Grate Open Overflow Grate Open Current Gr	Veir Slope Length = 00-yr Orifice Area = 1 Area w/o Debris = en Area w/ Debris = alculated Parameter Autet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = S in the Inflow Hydrh 2.00 0.597	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 <u>s for Outlet Pipe w/</u> Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u> 0.44 5.17 0.22 0.58 <u>ographs table (Colu</u>) <u>50 Year</u> 2.25 0.699	Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acres acre-ft 100 Year 2.52 0.827	feet feet ft ² ft ² feet radians 500 Yee 3.14 1.089
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway (Rectangular or Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) =	3.23 3.00 0.00 6.00 50% 50% (Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 18.00 18.00 18.00 Trapezoidal) 4.23 10.00 4.20 7.00 4.20 0.50 The user can overn WQCV N/A 0.090 N/A N/A N/A	N/A N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A fet H:V feet H:V feet H:V feet N/A 0.290 N/A N/A N/A N/A	ft (relative to basin to feet H:V feet %, grate open area % (distance below basin inches bottom at Stage = top micropool = 584: <i>Phydrographs and</i> 2 Year 1.19 0.270 0.270 0.3	oottom at Stage = 0 ff G O a/total area asin bottom at Stage = Half-Cen 0 ft) 2.77 = stage 0 <u>runoff volumes by a</u> <u>5 Year</u> <u>1.50</u> 0.379 0.379 1.0	 Height of Grat Overflow V rate Open Area / 11 verflow Grate Open Overflow Grate Open Current Control (Control (Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = en Area w/ Debris = alculated Parameter butlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 100 of Freeboard = 200 of Freeboard = 200 of Spreeboard = 200 of Spreeboard = 2.00 0.597 0.597 2.8 0.57	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.44 5.17 0.22 0.58 Digraphs table (Colu 50 Year 2.25 0.699 0.699 3.5 	Not Selected N/A N/A N/A N/A N/A N/A N/A Construction Pla Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acres acres acres 100 Year 2.52 0.827 0.827 4.5 0.92	feet feet ft ² ft ² feet radians 500 Yee 3.14 1.089 6.3 1.29
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ter Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ter Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs) are Peak Inflow Q (cfs) = Peak Inflow Q (cfs) =	3.23 3.00 0.00 6.00 50% 50% Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 19.00 10.00	N/A N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.290 N/A	ft (relative to basin to feet H:V feet %, grate open area % (tangular Orifice) ft (distance below basinches inches bottom at Stage = top micropool = 584: <i>P hydrographs and</i> 2 Year 1.19 0.270 0.270 0.3	bottom at Stage = 0 ff G Jordan area O akin bottom at Stage = Half-Cen 0 ft) 2.77 = stage 0 runoff volumes by a 0.379 1.50 0.379 1.0 0.20 4.5	 Height of Grat Overflow V rate Open Area / 10 verflow Grate Open Control Con	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = an Area w/ Debris = alculated Parameter alculated Parameter outlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = 5 in the Inflow Hydro 0.597 0.597 2.8 0.57 7.4	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 20ne 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.44 5.17 0.22 0.58 0.699 3.5 0.72 8.6	Not Selected N/A N/A N/A N/A N/A N/A N/A Plow Restriction Pla Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 100 Year 2.52 0.827 0.827 4.5 0.92 10.2	feet feet ft ² ft ² ft ² fteet radians 500 Yea 3.14 1.089 6.3 9 6.3
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = OHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Notflow Q (cfs) = Peak Outflow Q (cfs) = Peak Notflow Q (cfs) = Peak N	3.23 3.00 0.00 6.00 50% 50% Circular Orifice, Re Zone 3 Restrictor 0.00 18.00	N/A N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A fet H:V feet H:V feet H:V feet N/A 0.290 N/A N/A N/A N/A	ft (relative to basin to feet H:V feet %, grate open area % (distance below basin inches bottom at Stage = top micropool = 584: <i>Phydrographs and</i> 2 Year 1.19 0.270 0.270 0.3	oottom at Stage = 0 ff G O a/total area asin bottom at Stage = Half-Cen 0 ft) 2.77 = stage 0 <u>runoff volumes by a</u> <u>5 Year</u> <u>1.50</u> 0.379 0.379 1.0	 Height of Grat Overflow V rate Open Area / 11 verflow Grate Open Overflow Grate Open Current Control (Control (Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = en Area w/ Debris = alculated Parameter butlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 100 of Freeboard = 200 of Freeboard = 200 of Spreeboard = 200 of Spreeboard = 2.00 0.597 0.597 2.8 0.57	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.44 5.17 0.22 0.58 Digraphs table (Colu 50 Year 2.25 0.699 0.699 3.5 	Not Selected N/A N/A N/A N/A N/A N/A N/A Construction Pla Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acres acres acres 100 Year 2.52 0.827 0.827 4.5 0.92	feet feet ft ² ft ² feet radians 500 Yee 3.14 1.089 6.3 1.29
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Riow, q (cfs) ar Peak Inflow Q (cfs) = Peak Inflow Q (cfs) =	3.23 3.00 0.00 6.00 50% 50% Circular Orifice, Re Zone 3 Restrictor 0.00 18.00	N/A N/A N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A ft (relative to basin feet H:V feet EURV N/A O.290 N/A	ft (relative to basin to feet H:V feet %, grate open area % (tangular Orifice) ft (distance below basinches inches bottom at Stage = top micropool = 584. <i>IP hydrographs and</i> 2 Year 1.19 0.270 0.3 0.07 0.27 0.3 0.07	oottom at Stage = 0 ff G O a/total area asin bottom at Stage = Half-Cen 0 ft) 2.77 = stage 0 <i>runoff volumes by o</i> 5 Year 1.50 0.379 1.0 0.20 4.5 1.9	 Height of Grat Overflow V rate Open Area / 11 verflow Grate Open Dverflow Grate Open C = 0 ft) C Outle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at entering new values 1.75 0.474 1.5 0.31 5.5 2.9 	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = an Area w/ Debris = alculated Parameter alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Con Of Freeboard = 100 of Soft 0.597 0.597 2.8 0.57 7.4 5.1	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.44 5.17 0.22 0.58 Dographs table (Colu 50 Year 2.25 0.699 0.699 3.5 0.72 8.6 6.5	Not Selected N/A N/A N/A N/A N/A N/A Hove the set of th	feet feet ft ² ft ² ft ² feet radians 500 Yee 3.14 1.089 1.089 6.3 1.29 13.3 1.7 1.9
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Row, q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	3.23 3.00 0.00 6.00 50% 50% Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 18.00 18.00 18.00 17apezoidal) 4.23 10.00 4.23 10.00 4.23 10.00 4.00 0.50 The user can oven WQCV N/A 0.0990 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.290 N/A	ft (relative to basin to feet H:V feet %, grate open area % ft (distance below basinches inches bottom at Stage = top micropool = 584. <i>IP hydrographs and</i> 2 Year 1.19 0.270 0.3 0.270 0.3 0.07 3.2 0.4 N/A	oottom at Stage = 0 ff G O a/total area Asin bottom at Stage = Half-Cen 0 ft) 2.77 = stage 0 70077 volumes by o 5 Year 1.50 0.379 0.379 1.0 - - 0.20 4.5 1.9 1.9 0.20 Verflow Weir 1 0.2	 Height of Grat Overflow V rate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Veir 1 0.3 	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = an Area w/ Debris = alculated Parameter alculated Parameter outlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = 10 of Sp37 2.8 0.557 7.4 5.1 1.8 0verflow Weir 1 0.5	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 20ne 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.44 5.17 0.22 0.58 0.58 0.58 0.699 0.699 0.699 0.699 3.5 	Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft acres acre-ft 0.827 0.827 0.827 4.5 0.92 10.2 8.4 1.9 Overflow Weir 1 0.9	feet feet ft ² ft ² ft ² ft ² feet radians 500 Yee 3.14 1.089 1.089 1.089 1.089 1.089 1.033 1.1.7 1.29 1.33 1.1.7 1.9 Dverflow W 1.29
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate. Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Unflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	3.23 3.00 0.00 6.00 50% 50% C <u>(circular Orifice, Re</u> Zone 3 Restrictor 0.00 18	N/A N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV EURV N/A 0.290 N/A	ft (relative to basin to feet H:V feet %, grate open area % (tangular Orifice) ft (distance below basin inches inches bottom at Stage = top micropool = 584: <i>IP hydrographs and</i> 2 Year 1.19 0.270 0.3 0.270 0.3 0.7 3.2 0.4 N/A Vertical Orifice 1 N/A	oottom at Stage = 0 ff G O a/total area asin bottom at Stage = Half-Cen 0 ft) 2.77 = stage 0 <i>runoff volumes by</i> 5 Year 0.379 0.379 0.379 0.379 0.379 0.379 0.20 4.5 1.9 1.9 0.2 N/A	 Height of Grat Overflow V rate Open Area / 11 verflow Grate Oper Overflow Grate Oper Overflow Grate Oper Overflow Grate Oper C C C C C C C C C C C C C	Veir Slope Length = 00-yr Orifice Area = a Area w/o Debris = an Area w/ Debris = alculated Parameter Autlet Orifice Area = to Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Con of Freeboard = 100 of Freeboard = 100 of Spr 2.8 0.597 0.597 0.597 0.597 7.4 5.1 1.8 Overflow Weir 1 0.5 N/A	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 <u>s for Outlet Pipe w/</u> Zone 3 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u> 0.44 5.17 0.22 0.58 <u>ographs table (Colu</u> <u>50 Year</u> 2.25 0.699 0.699 3.5 <u>0.72</u> 8.6 6.5 1.9 <u>Overflow Weir 1</u> 0.7 N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A How Restriction Pla Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acres acre-ft 100 Year 2.52 0.827 0.827 0.827 0.827 0.827 0.827 10.2 8.4 1.9 Overflow Weir 1 0.9 N/A	feet feet ft ² ft ² ft ² feet radians 500 Yea 3.14 1.089 1.089 1.089 1.089 1.089 1.089 1.089 1.089 1.089 1.089 1.089 1.089 1.089 1.029 1.1.7 1.9 Vverflow W 1.2 N/A
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs)are) Peak Inflow Q (cfs) = Peak Unflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	3.23 3.00 0.00 6.00 50% 50% Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 18.00 18.00 18.00 17apezoidal) 4.23 10.00 4.23 10.00 4.23 10.00 4.00 0.50 The user can oven WQCV N/A 0.0990 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.290 N/A	ft (relative to basin to feet H:V feet %, grate open area % ft (distance below basinches inches bottom at Stage = top micropool = 584. <i>IP hydrographs and</i> 2 Year 1.19 0.270 0.3 0.270 0.3 0.07 3.2 0.4 N/A	oottom at Stage = 0 ff G O a/total area Asin bottom at Stage = Half-Cen 0 ft) 2.77 = stage 0 70077 volumes by o 5 Year 1.50 0.379 0.379 1.0 - - 0.20 4.5 1.9 1.9 0.20 Verflow Weir 1 0.2	 Height of Grat Overflow V rate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Veir 1 O.3 	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = an Area w/ Debris = alculated Parameter alculated Parameter outlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = 10 of Sp37 2.8 0.557 7.4 5.1 1.8 0verflow Weir 1 0.5	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 20ne 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.44 5.17 0.22 0.58 0.58 0.58 0.699 0.699 0.699 0.699 3.5 	Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft acres acre-ft 0.827 0.827 0.827 4.5 0.92 10.2 8.4 1.9 Overflow Weir 1 0.9	feet feet ft ² ft ² ft ² feet radians 500 Yea 3.14 1.089 1.089 6.3 11.7 1.29 13.3 11.7 1.9 Dverflow W 1.2
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Iser Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Iser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Cutted Hydrograph Nesults Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (arer.ft) = Inflow Hydrograph Volume (arer.ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Peak Unflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	3.23 3.00 0.00 6.00 50% 50% Circular Orifice, Re Zone 3 Restrictor 0.00 18.00 18.00 18.00 18.00 18.00 18.00 17apezoidal) 4.23 10.00 4.00 0.50 The user can oven WQCV N/A 0.090 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet N/A 0.290 N/A 0.290 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin to feet H:V feet %, grate open area % ft (distance below basin to inches inches bottom at Stage = top micropool = 584. <i>(P hydrographs and</i> 2 Year 1.19 0.270 0.3 0.270 0.3 0.270 0.3 0.4 N/A Vertical Orifice 1 N/A N/A 46 3.20	oottom at Stage = 0 ff G O a/total area Asin bottom at Stage = Half-Cen 0 ft) 2.77 = stage 0 700 ft volumes by 0 5 Year 1.50 0.379 0.379 1.0 0.20 4.5 1.9 1.9 0.2 N/A 38 45 3.37	 Height of Grat Overflow V rate Open Area / 11 verflow Grate Open Dverflow Grate Open C = 0 ft) C Outle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at entering new valuee 1.75 0.474 0.474 0.474 1.5 2.9 2.0 Overflow Weir 1 0.3 N/A 36 44 3.43 	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = an Area w/ Debris = alculated Parameter alculated Parameter outlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 100 of Freeboard = 100 of Freeboard = 100 of Freeboard = 100 of Sp37 2.8 0.557 7.4 5.1 1.8 Overflow Weir 1 0.5 N/A 34 43 3.53	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 s for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.44 5.17 0.22 0.58 Calculated Parame 0.44 5.17 0.22 0.58 Calculated Parame 0.44 5.17 0.22 0.58 Calculated Parame 0.44 5.17 0.22 0.58 Calculated Parame 0.44 5.17 0.22 0.58 Calculated Parame 0.44 5.17 0.22 0.58 Calculated Parame 0.44 5.17 0.22 0.58 Calculated Parame 0.44 5.17 0.22 0.58 Calculated Parame 0.44 5.17 0.22 0.58 Calculated Parame 0.44 0.75 0.75 0.72 0.699 0.699 0.699 0.699 0.699 0.72 8.6 6.5 1.9 Overflow Weir 1 0.7 N/A 33 42 3.59	Not Selected N/A 0.92 0.827 0.827 0.827 0.92 10.2 8.4 1.9 Overflow Weir 1 0.9 N/A 31 40 3.66	feet feet ft ² ft ² ft ² feet radians 500 Yea 3.14 1.089 1.089 6.3 11.7 1.29 13.3 11.7 1.9 Vverflow W 1.2 N/A 28 3 3.77
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Jser Input: Outlet Pipe w/ Flow Restriction Plate. Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Jser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 99% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	3.23 3.00 0.00 6.00 50% 50% Circular Orifice, Re Zone 3 Restrictor 0.00 18.00	N/A N/A N/A N/A N/A N/A N/A N/A N/A Strictor Plate, or Re Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.290 N/A	ft (relative to basin to feet H:V feet %, grate open area % ft (distance below basin to inches inches bottom at Stage = top micropool = 584: <i>P hydrographs and</i> 2 Year 1.19 0.270 0.270 0.3 0.07 3.2 0.4 Vertical Orifice 1 N/A Vertical Orifice 1 N/A 40 46	oottom at Stage = 0 ff G O a/total area asin bottom at Stage = Half-Cen 0 ft) 2.77 = stage 0 runoff volumes by - 0.379 1.50 0.379 1.0 0 Half-Cen 0 ft)	 Height of Grat Overflow V rate Open Area / 10 verflow Grate Open Control Contro	Veir Slope Length = 00-yr Orifice Area = h Area w/o Debris = an Area w/ Debris = alculated Parameter outlet Orifice Area = et Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Con of Freeboard = 100 of Freeboard = 100 of Freeboard = 100 of Freeboard = 100 of Soft 2.00 0.597 2.8 0.57 7.4 5.1 1.8 Overflow Weir 1 0.5 N/A 34 43	Zone 3 Weir 3.23 6.00 5.09 9.00 4.50 S for Outlet Pipe w/ Zone 3 Restrictor 1.77 0.75 3.14 Calculated Parame 0.44 5.17 0.22 0.58 0.58 0.58 0.699 3.5 0.699 3.5 0.72 8.6 6.5 1.9 0.verflow Weir 1 0.7 N/A 33 42	Not Selected N/A 0.827 0.827 0.827 0.92 10.2 8.4 1.9 Overflow Weir 1 0.9 N/A 31 40	feet feet ft ² ft ² ft ² ft ² feet radians 500 Yee 3.14 1.089 6.3 1.29 9.6.3 11.7 1.9 Verflow W 1.2 N/A 28 39

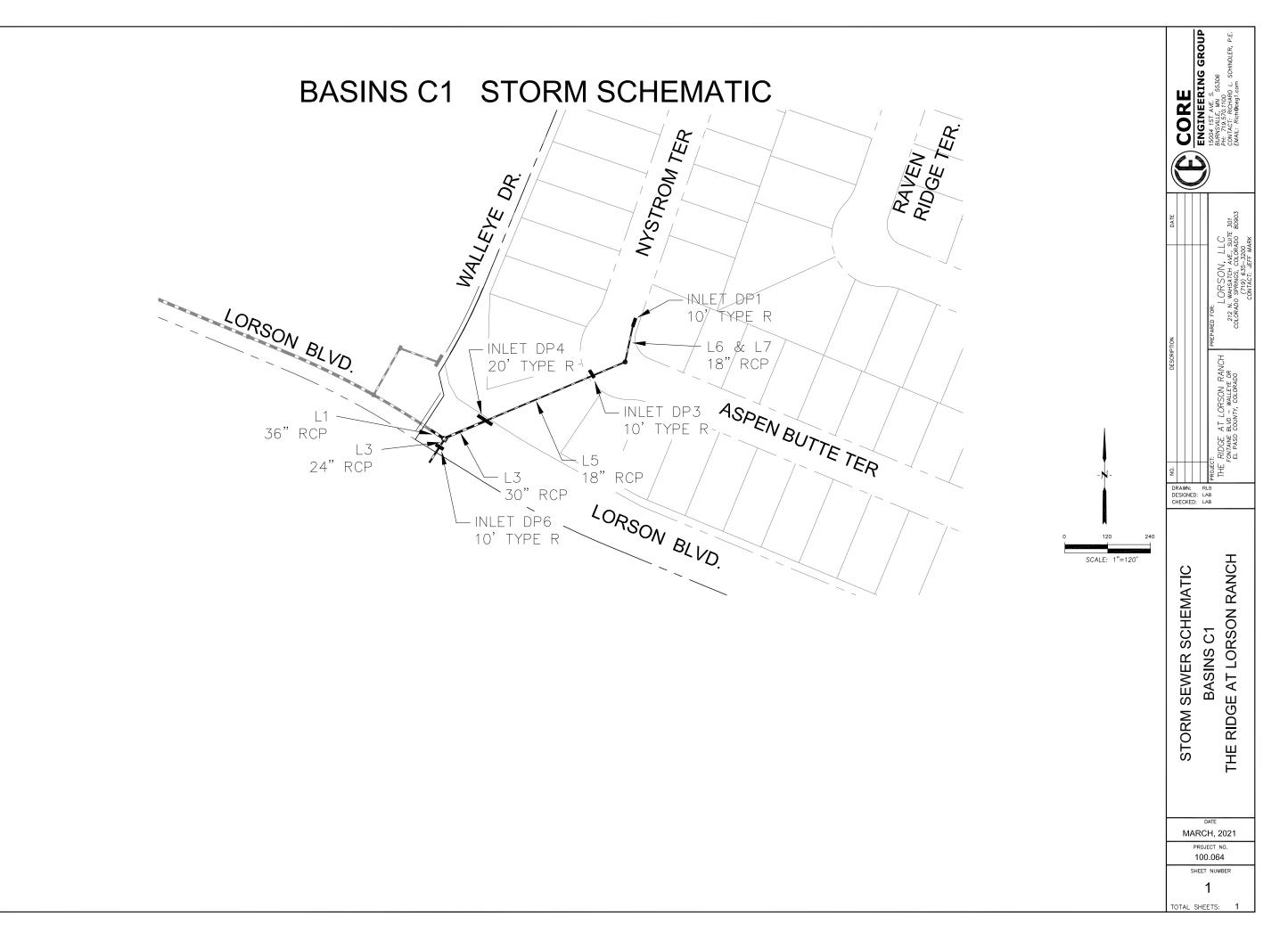

	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	Richard Schindler	
Company:	Core Engineering Group	
Date: Project:	July 17, 2021 The ridge at Lorson Ranch	
Location:	Pond F	
1. Basin Storage V	/olume	
A) Effective Imp	erviousness of Tributary Area, I _a	I _a = 55.0 %
B) Tributary Are	a's Imperviousness Ratio (i = l _a / 100)	i = 0.550
C) Contributing	Watershed Area	Area = 4.900 ac
	neds Outside of the Denver Region, Depth of Average	d ₆ = in
Runoff Prod	lucing Storm	Choose One
E) Design Cond (Select ELIP)	cept V when also designing for flood control)	Water Quality Capture Volume (WQCV)
(Select LUK		O Excess Urban Runoff Volume (EURV)
	me (WQCV) Based on 40-hour Drain Time	V _{DESIGN} = ac-ft
	1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	
	neds Outside of the Denver Region, ity Capture Volume (WQCV) Design Volume	V _{DESIGN OTHER} = ac-ft
	$_{R} = (d_{6}^{*}(V_{DESIGN}/0.43))$	
H) User Input o	f Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN USER} = 0.120 ac-ft
(Only if a dif	ferent WQCV Design Volume is desired)	
	logic Soil Groups of Tributary Watershed	
	ige of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils	$HSG_{R} = $ %
	age of Watershed consisting of Type C/D Soils	HSG _{CD} = %
J) Excess Urba	an Runoff Volume (EURV) Design Volume	
	: EURV _A = 1.68 * i ^{1.28} : EURV _B = 1.36 * i ^{1.08}	EURV _{DESIGN} =ac-ft
	/D: EURV _{C/D} = 1.20 * $i^{1.08}$	
K) User Input o	f Excess Urban Runoff Volume (EURV) Design Volume	EURV _{DESIGN USER} = ac-f t
(Only if a dif	ferent EURV Design Volume is desired)	
2 Basin Shape: Le	ength to Width Ratio	L:W = 2.0 : 1
	to width ratio of at least 2:1 will improve TSS reduction.)	
3. Basin Side Slop	es	
A) Basin Maxim (Horizontal (num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 4.00 ft / ft
(FIGHZOFIICH)		
4. Inlet		
A) Describe me	eans of providing energy dissipation at concentrated	
inflow locatio		
5. Forebay		
A) Minimum Fo		V _{FMIN} = 0.002 ac-ft
(V _{FMIN}	= <u>2%</u> of the WQCV)	
B) Actual Foreb	bay Volume	$V_F = 0.004$ ac-ft
C) Forebay Dep		
(D _F	= <u>18</u> inch maximum)	$D_{\rm F} = 18.0$ in
D) Forebay Disc	charge	
i) Undetaine	ed 100-year Peak Discharge	Q ₁₀₀ = 17.60 cfs
ii) Forebav	Discharge Design Flow	$Q_F = 0.35$ cfs
(Q _F = 0.02		
E) Forebay Disc	charge Design	Choose One
		O Berm With Pipe Flow too small for berm w/ pipe
		Wall with Rect. Notch Well with V Notch Weir
		Wall with V-Notch Weir
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P =
G) Rectangular	Notch Width	Calculated W _N = 4.3 in


	Design Procedure Form:	Extended Detention Basin (EDB)
		Sheet 2 of 3
Designer: Company:	Richard Schindler Core Engineering Group	
Date:	July 17, 2021	
Project:	The ridge at Lorson Ranch	
Location:	Pond F	
		Choose One
6. Trickle Channel		Concrete
A) Type of Trick	de Channel	O Soft Bottom
F) Slope of Tric	kle Channel	S = 0.0050 ft / ft
7. Micropool and C	Putlet Structure	
A) Depth of Mic	ropool (2.5-feet minimum)	D _M = <u>2.5</u> ft
B) Surface Area	a of Micropool (10 ft ² minimum)	A _M = sq ft
C) Outlet Type		
		Choose One Orifice Plate
		O Other (Describe):
D) Smallest Din (Use UD-Detent	nension of Orifice Opening Based on Hydrograph Routing ion)	D _{orifice} = 2.01 inches
E) Total Outlet A	rea	A _{et} = <u>12.60</u> square inches
8. Initial Surcharge	Volume	
	al Surcharge Volume commended depth is 4 inches)	D _{is} = in
	al Surcharge Volume ume of 0.3% of the WQCV)	V _{IS} = cu ft
C) Initial Surcha	rge Provided Above Micropool	V _a =16.7cu ft
9. Trash Rack		
A) Water Qualit	y Screen Open Area: A _t = A _{ct} * 38.5*(e ^{-0.095D})	A _t = 401 square inches
	en (If specifying an alternative to the materials recommended	Other (Please describe below)
	ndicate "other" and enter the ratio of the total open are to the for the material specified.)	wellscreen stainless
		Wendereen Stainless
	Other (Y/N): y	
C) Ratio of Total	Open Area to Total Area (only for type 'Other')	User Ratio = 0.6
D) Total Water 0	Quality Screen Area (based on screen type)	A _{total} = 668 sq. in. Based on type 'Other' screen ratio
	ign Volume (EURV or WQCV) lesign concept chosen under 1E)	H= 2.14 feet
F) Height of Wa	ter Quality Screen (H_{TR})	H _{TR} = 53.68 inches
	er Quality Screen Opening (W _{opening})	W _{opening} = 12.4 inches
(Minimum of 12	inches is recommended)	
1		

	Design Procedu	re Form:	Extended D	etention Basin (EDB)		
						Sheet 3 of 3
Designer:	Richard Schindler Core Engineering Group				_	
Company: Date:	July 17, 2021				_	
Project:	The ridge at Lorson Ranch				_	
Location:	Pond F				_	
10. Overflow Emb	ankment					
A) Describe e	mbankment protection for 100-year and greater overtopping:		-			
			<u>7</u>			
	verflow Embankment I distance per unit vertical, 4:1 or flatter preferred)			Ze = ft / ft		
(Hohzonta						
11. Vegetation			/ Г	Choose One		
		/		O Not Irrigated		
12. Access						
A) Describe S	Bediment Removal Procedures					
Notes:						
		<u> </u>				
	/					
	/					
	/					

Provide - TRM or riprap?

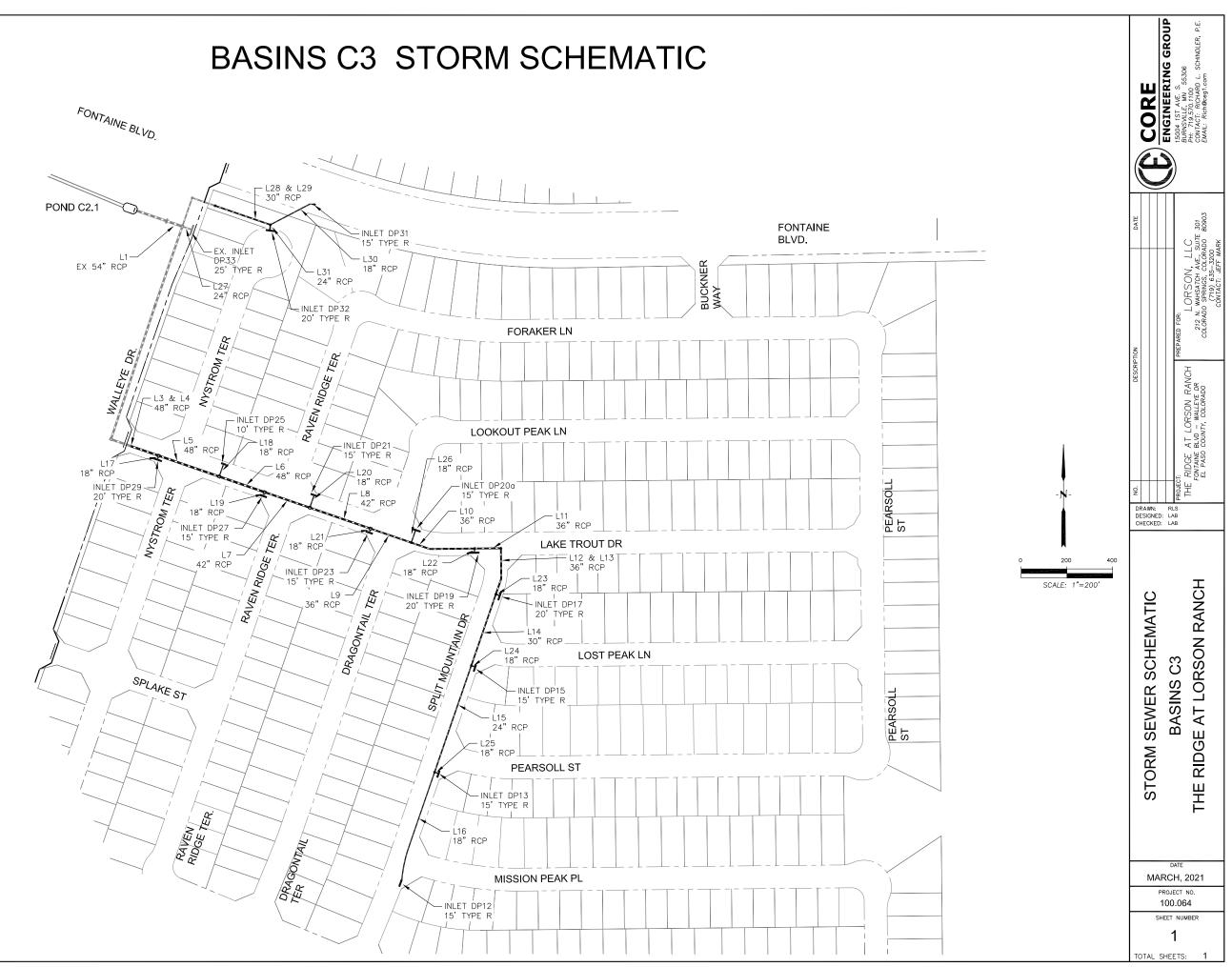




2. GRADE 60 REINFORCING STEEL REQUIRED. SEE TABLE FOR THE MINIMUM LAP SPLICE LENGTH FOR REINFORCING BARS. ALL REINFORCING

BAR SIZE	#4	#5	#6	
MIN SPLICE LENGTH	1'-3"	1'-7"	2'-0"	

APPENDIX E- STORM SEWER SCHEMATIC AND HYDRAFLOW STORM SEWER CALCS


Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	1	36.80	36 c	20.5	5798.38	5798.69	1.509	5800.33	5800.62	0.91	5800.62	End
2	2	15.00	24 c	8.0	5799.69	5799.81	1.525	5801.18	5801.18	n/a	5801.18	1
3	3	12.00	24 c	25.2	5799.91	5800.16	0.992	5801.62	5801.58	0.39	5801.97	2
4	4	21.80	30 c	51.4	5799.19	5799.70	0.993	5801.23	5801.26	n/a	5801.26 j	1
5	5	8.30	18 c	149.1	5800.70	5811.21	7.049	5801.63	5812.31	n/a	5812.31	4
6	6	5.60	18 c	39.8	5811.71	5812.09	0.953	5812.71	5812.99	n/a	5812.99 j	5
7	7	5.60	18 c	46.3	5812.49	5812.95	0.993	5813.27	5813.86	0.39	5814.25	6
	sins 5yr storm							nber of line			Date: 03-18	

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	1	65.80	36 c	20.5	5798.38	5798.69	1.509	5801.00	5801.29	1.59	5801.29	End
2	2	25.70	24 c	8.0	5799.69	5799.81	1.512	5801.84*	5801.94*	0.52	5802.46	1
3	3	20.00	24 c	25.2	5800.00	5800.25	0.992	5802.87*	5803.07*	0.63	5803.70	2
4	4	40.10	30 c	51.4	5799.19	5799.70	0.993	5801.84*	5802.33*	0.52	5802.85	1
5	5	18.10	18 c	149.1	5801.20	5811.71	7.049	5802.85	5813.16	n/a	5813.16 j	4
6	6	12.20	18 c	39.8	5811.71	5812.11	1.001	5814.08*	5814.62*	0.64	5815.26	5
7	7	12.20	18 c	46.3	5812.49	5812.96	1.014	5815.26*	5815.89*	0.74	5816.63	6

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

MyReport

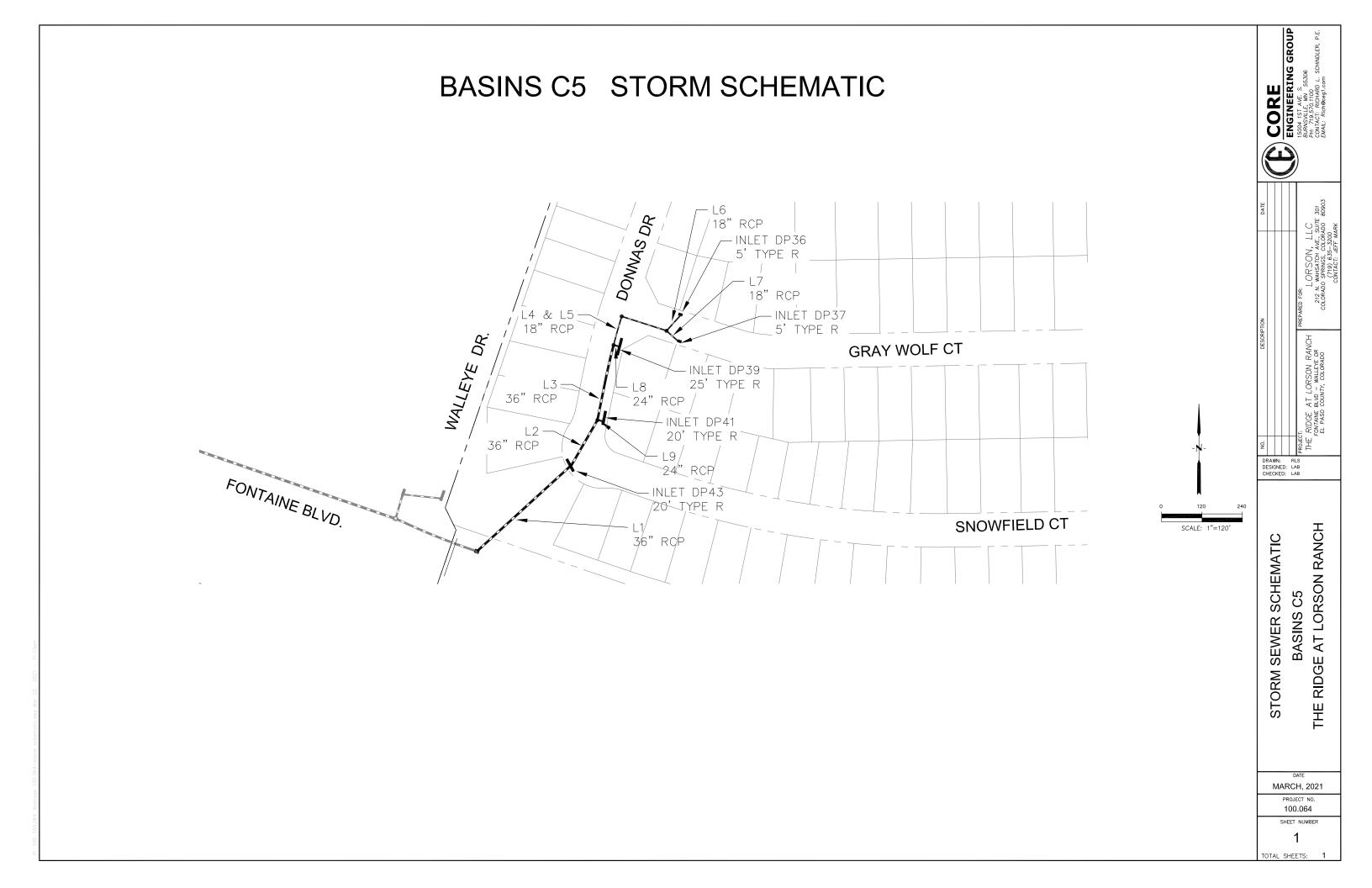
Line No.	Flow Rate	Line Size	Line Type	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Depth Up	Vel Dn
	(cfs)	(in)		(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/s)
1	65.80	36	Cir	5798.38	5798.69	1.51	5801.00	5801.29	1.59	5801.29	2.60**	10.05
2	25.70	24	Cir	5799.69	5799.81	1.51	5801.84	5801.94	0.52	5802.46	2.00	8.18
3	20.00	24	Cir	5800.00	5800.25	0.99	5802.87	5803.07	0.63	5803.70	2.00	6.37
4	40.10	30	Cir	5799.19	5799.70	0.99	5801.84	5802.33	0.52	5802.85	2.50	8.17
5	18.10	18	Cir	5801.20	5811.71	7.05	5802.85	5813.16 j	n/a	5813.16	1.45**	10.24
6	12.20	18	Cir	5811.71	5812.11	1.00	5814.08	5814.62	0.64	5815.26	1.50	6.91
7	12.20	18	Cir	5812.49	5812.96	1.01	5815.26	5815.89	0.74	5816.63	1.50	6.91
C1 ba	sins 100	yr storm	ı									
	: ** Cri		41-									

No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dn line No
1	1	115.0	54 c	38.4	5775.60	5776.70	2.869	5779.89	5779.78	1.53	5779.78	End
2	2	89.80	48 c	183.5	5777.70	5780.82	1.700	5780.51	5783.62	n/a	5783.62	1
3	3	89.80	48 c	307.6	5781.12	5790.01	2.890	5784.25	5792.81	n/a	5792.81	2
4	4	89.80	48 c	110.3	5790.30	5791.62	1.197	5793.44	5794.42	n/a	5794.42	3
5	5	80.60	48 c	102.4	5791.82	5793.05	1.201	5795.20	5795.71	n/a	5795.71	4
6	6	73.40	48 c	142.7	5793.05	5794.76	1.198	5796.46	5797.29	0.12	5797.29	5
7	7	65.00	42 c	104.4	5795.36	5796.61	1.197	5797.77	5799.08	n/a	5799.08	6
8	8	57.80	42 c	141.7	5796.92	5801.92	3.530	5799.77	5804.25	0.22	5804.25	7
9	9	49.40	36 c	135.8	5802.38	5805.38	2.209	5804.61	5807.62	n/a	5807.62	8
10	10	43.80	36 c	98.2	5805.58	5809.02	3.502	5808.21	5811.13	n/a	5811.13 j	9
11	11	33.50	36 c	57.5	5809.32	5810.48	2.016	5811.84	5812.33	n/a	5812.33 j	10
12	12	33.50	36 c	66.7	5810.69	5812.02	1.996	5812.82	5813.87	n/a	5813.87 j	11
13	13	33.50	36 c	35.9	5812.02	5812.74	2.005	5814.36	5814.59	n/a	5814.59 j	12
14	14	26.00	30 c	165.8	5813.24	5817.72	2.702	5814.99	5819.42	n/a	5819.42 j	13
15	15	17.60	24 c	245.7	5818.20	5822.14	1.604	5819.76	5823.63	n/a	5823.63 j	14
16	16	9.30	18 c	245.6	5822.64	5830.50	3.201	5823.96	5831.66	n/a	5831.66 j	15
17	17	9.20	18 c	7.9	5794.12	5794.44	4.057	5795.42	5795.60	n/a	5795.60	4
18	18	7.20	18 c	27.3	5795.76	5796.03	0.990	5796.73	5797.05	0.20	5797.05	5
19	19	8.40	18 c	8.0	5797.26	5797.58	4.003	5798.13	5798.69	0.56	5798.69	6
20	20	7.20	18 c	27.3	5798.78	5799.05	0.991	5800.07	5800.08	n/a	5800.27 j	7
21	21	8.40	18 c	8.0	5803.88	5804.20	4.020	5805.02	5805.31	0.00	5805.31	8
22	22	10.30	18 c	7.4	5810.82	5811.52	9.416	5811.66	5812.75	0.34	5813.09	10
23	23	7.50	18 c	7.5	5814.24	5814.54	4.004	5815.14	5815.59	0.51	5815.59	13
24	24	8.40	18 c	7.6	5818.70	5818.78	1.046	5819.90	5819.89	0.56	5820.45	14
25	25	8.30	18 c	10.1	5822.64	5822.74	0.996	5823.84	5823.84	0.55	5824.40	15
26	26	5.60	18 c	28.0	5807.28	5807.54	0.933	5808.65	5808.65	0.02	5808.68	9
27	27	7.00	24 c	17.8	5779.20	5779.94	4.149	5781.08	5780.88	0.14	5781.03	1
28	28	18.20	30 c	64.4	5778.80	5779.44	0.994	5781.10	5781.02	0.10	5781.12	1
29	29	18.20	30 c	172.1	5780.00	5786.88	3.997	5781.38	5788.31	n/a	5788.31	28
	30	9.70	18 c	123.9	5787.88	5791.52	2.939	5788.66	5792.71	0.26	5792.71	29
30								5788.81				

NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; j - Line contains hyd. jump.

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	1	225.4	54 c	38.4	5775.60	5776.70	2.869	5779.89	5780.88	n/a	5780.88	End
2	2	153.9	48 c	183.5	5777.70	5780.82	1.700	5781.88	5784.45	0.38	5784.45	1
3	3	153.9	48 c	307.6	5781.12	5790.01	2.890	5784.68	5793.64	1.28	5793.64	2
4	4	153.9	48 c	110.3	5790.30	5791.62	1.197	5793.87	5795.25	0.26	5795.25	3
5	5	133.4	48 c	102.4	5791.82	5793.05	1.201	5796.06	5796.78	0.19	5796.97	4
6	6	132.7	48 c	142.7	5793.05	5794.76	1.198	5797.09	5798.21	n/a	5798.21	5
7	7	118.6	42 c	104.4	5795.36	5796.61	1.197	5798.86*	5800.31*	0.24	5800.55	6
8	8	115.5	42 c	141.7	5796.92	5801.92	3.530	5800.67	5805.14	n/a	5805.14	7
9	9	99.20	36 c	135.8	5802.38	5805.38	2.209	5805.14	5808.28	0.63	5808.28	8
10	10	88.50	36 c	98.2	5805.58	5809.02	3.502	5808.97	5811.86	0.76	5811.86	9
11	11	67.30	36 c	57.5	5809.32	5810.48	2.016	5812.99*	5813.58*	1.41	5814.99	10
12	12	67.30	36 c	66.7	5810.69	5812.02	1.996	5814.99*	5815.67*	0.21	5815.88	11
13	13	67.30	36 c	35.9	5812.02	5812.74	2.005	5815.88*	5816.24*	0.70	5816.95	12
14	14	46.90	30 c	165.8	5813.24	5817.72	2.702	5816.95	5819.98	n/a	5819.98	13
15	15	30.40	24 c	245.7	5818.20	5822.14	1.604	5820.09	5824.12	0.73	5824.85	14
16	16	14.80	18 c	245.6	5822.64	5830.50	3.201	5825.22	5831.90	n/a	5831.90 j	15
17	17	20.50	18 c	7.9	5794.12	5794.44	4.057	5795.72*	5796.02*	2.09	5798.12	4
18	18	11.30	18 c	27.3	5795.76	5796.03	0.990	5798.19*	5798.51*	0.25	5798.76	5
19	19	20.70	18 c	8.0	5797.26	5797.58	4.003	5798.47*	5799.51*	2.13	5801.64	6
20	20	13.10	18 c	27.3	5798.78	5799.05	0.991	5802.06*	5802.48*	0.34	5802.82	7
21	21	16.30	18 c	8.0	5803.88	5804.20	4.020	5806.24*	5806.43*	0.00	5806.43	8
22	22	21.20	18 c	7.4	5810.82	5811.12	4.033	5812.16*	5812.72*	2.24	5814.96	10
23	23	20.40	18 c	7.5	5814.24	5814.54	4.004	5816.95*	5817.23*	2.07	5819.30	13
24	24	16.50	18 c	7.6	5818.70	5818.78	1.046	5820.20*	5820.39*	1.36	5821.74	14
25	25	15.60	18 c	10.1	5822.64	5822.74	0.996	5825.10*	5825.32*	1.21	5826.53	15
26	26	10.70	18 c	28.0	5806.88	5807.14	0.929	5810.84*	5811.13*	0.06	5811.18	9
27	27	28.70	24 c	17.8	5779.20	5779.94	4.149	5782.91*	5783.20*	0.52	5783.72	1
28	28	42.80	30 c	64.4	5778.80		0.994	5783.03*		0.24	5783.97	1
29	29	42.80	30 c	172.1	5780.00	5786.88	3.997	5783.97	5789.07	0.14	5789.07	28
30	30	15.30	18 c	123.9	5787.88		2.939	5789.27	5792.93	0.49	5792.93	29
31	31	27.50	24 c	15.9	5787.98	5788.30	2.005	5789.41*	5790.54*	0.48	5791.01	29
C3 bas	sins 100yr storm			Nun	nber of line	s: 31	Run	Date: 03-18	3-202 ⁻			

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

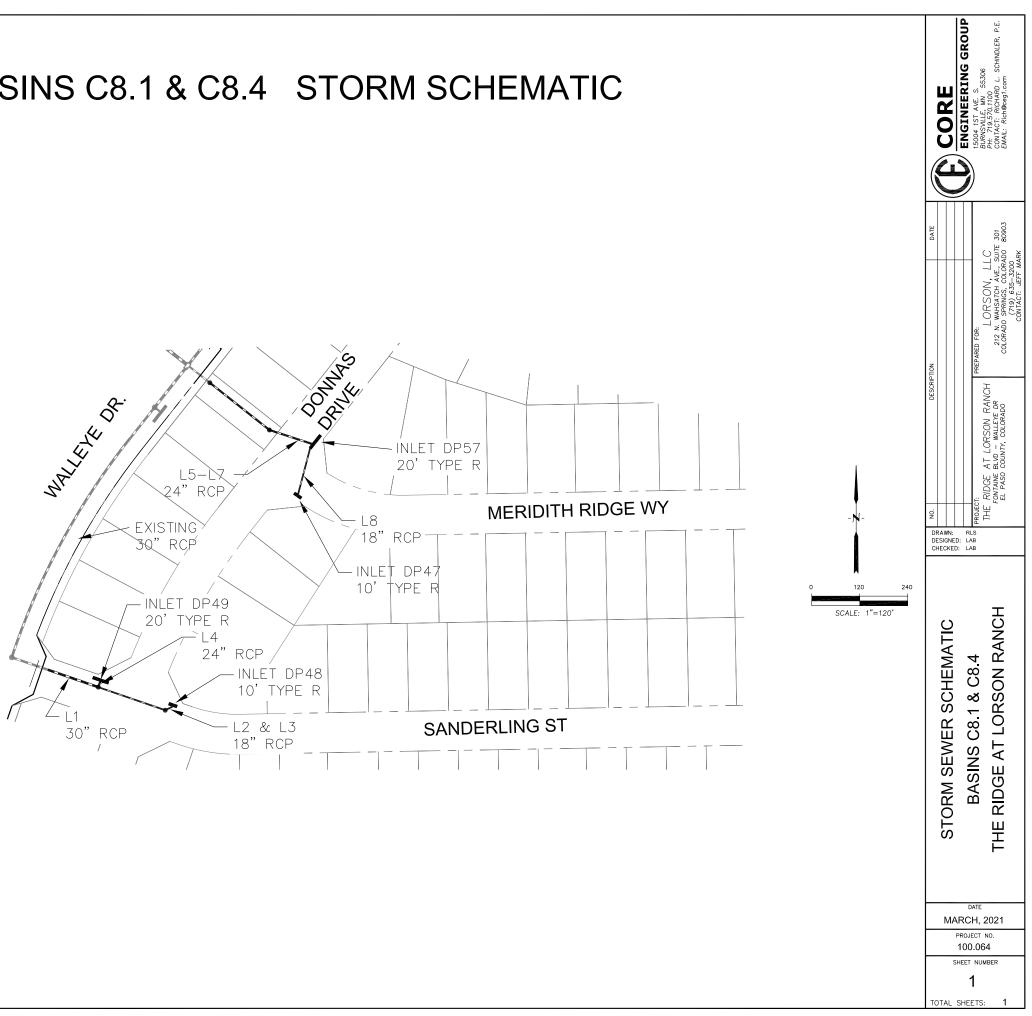

MyReport

Line No.	Flow Rate	Line Size	Line Type	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Depth Up	Vel Dn
	(cfs)	(in)		(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/s)
1	225.40	54	Cir	5775.60	5776.70	2.87	5779.89	5780.88	n/a	5780.88	4.18**	14.42
2	153.90	48	Cir	5777.70	5780.82	1.70	5781.88	5784.45	0.38	5784.45	3.63**	12.25
3	153.90	48	Cir	5781.12	5790.01	2.89	5784.68	5793.64	1.28	5793.64	3.63**	13.02
4	153.90	48	Cir	5790.30	5791.62	1.20	5793.87	5795.25	0.26	5795.25	3.63**	13.00
5	133.40	48	Cir	5791.82	5793.05	1.20	5796.06	5796.78	0.19	5796.97	3.73	10.62
6	132.70	48	Cir	5793.05	5794.76	1.20	5797.09	5798.21	n/a	5798.21	3.45**	10.56
7	118.60	42	Cir	5795.36	5796.61	1.20	5798.86	5800.31	0.24	5800.55	3.50	12.33
8	115.50	42	Cir	5796.92	5801.92	3.53	5800.67	5805.14	n/a	5805.14	3.22**	12.01
9	99.20	36	Cir	5802.38	5805.38	2.21	5805.14	5808.28	0.63	5808.28	2.90**	14.57
10	88.50	36	Cir	5805.58	5809.02	3.50	5808.97	5811.86	0.76	5811.86	2.84**	12.52
11	67.30	36	Cir	5809.32	5810.48	2.02	5812.99	5813.58	1.41	5814.99	3.00	9.52
12	67.30	36	Cir	5810.69	5812.02	2.00	5814.99	5815.67	0.21	5815.88	3.00	9.52
13	67.30	36	Cir	5812.02	5812.74	2.00	5815.88	5816.24	0.70	5816.95	3.00	9.52
14	46.90	30	Cir	5813.24	5817.72	2.70	5816.95	5819.98	n/a	5819.98	2.26**	9.56
15	30.40	24	Cir	5818.20	5822.14	1.60	5820.09	5824.12	0.73	5824.85	1.98	9.88
16	14.80	18	Cir	5822.64	5830.50	3.20	5825.22	5831.90 j	n/a	5831.90	1.40**	8.38
17	20.50	18	Cir	5794.12	5794.44	4.06	5795.72	5796.02	2.09	5798.12	1.50	11.60
18	11.30	18	Cir	5795.76	5796.03	0.99	5798.19	5798.51	0.25	5798.76	1.50	6.40
19	20.70	18	Cir	5797.26	5797.58	4.00	5798.47	5799.51	2.13	5801.64	1.50	13.55
20	13.10	18	Cir	5798.78	5799.05	0.99	5802.06	5802.48	0.34	5802.82	1.50	7.41
21	16.30	18	Cir	5803.88	5804.20	4.02	5806.24	5806.43	0.00	5806.43	1.50	9.23
C3 ba	sins 100y	r storm				ı I						
		ns 100yr storm Number of lines: 31 Date: 09-30-2021										

MyReport

Line No.	Flow Rate	Line Size	Line Type	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Depth Up	Vel Dn		
	(cfs)	(in)		(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/s)		
22	21.20	18	Cir	5810.82	5811.12	4.03	5812.16	5812.72	2.24	5814.96	1.50	12.71		
23	20.40	18	Cir	5814.24	5814.54	4.00	5816.95	5817.23	2.07	5819.30	1.50	11.55		
24	16.50	18	Cir	5818.70	5818.78	1.05	5820.20	5820.39	1.36	5821.74	1.50	9.34		
25	15.60	18	Cir	5822.64	5822.74	1.00	5825.10	5825.32	1.21	5826.53	1.50	8.83		
26	10.70	18	Cir	5806.88	5807.14	0.93	5810.84	5811.13	0.06	5811.18	1.50	6.06		
27	28.70	24	Cir	5779.20	5779.94	4.15	5782.91	5783.20	0.52	5783.72	2.00	9.14		
28	42.80	30	Cir	5778.80	5779.44	0.99	5783.03	5783.73	0.24	5783.97	2.50	8.72		
29	42.80	30	Cir	5780.00	5786.88	4.00	5783.97	5789.07	0.14	5789.07	2.19**	8.72		
30	15.30	18	Cir	5787.88	5791.52	2.94	5789.27	5792.93	0.49	5792.93	1.41**	8.93		
31	27.50	24	Cir	5787.98	5788.30	2.01	5789.41	5790.54	0.48	5791.01	2.00	11.46		
C3 bas	sins 100y	r storm											Number of lines: 31	Date: 09-30-2021
	S: ** Criti													

NOTES: ** Critical depth

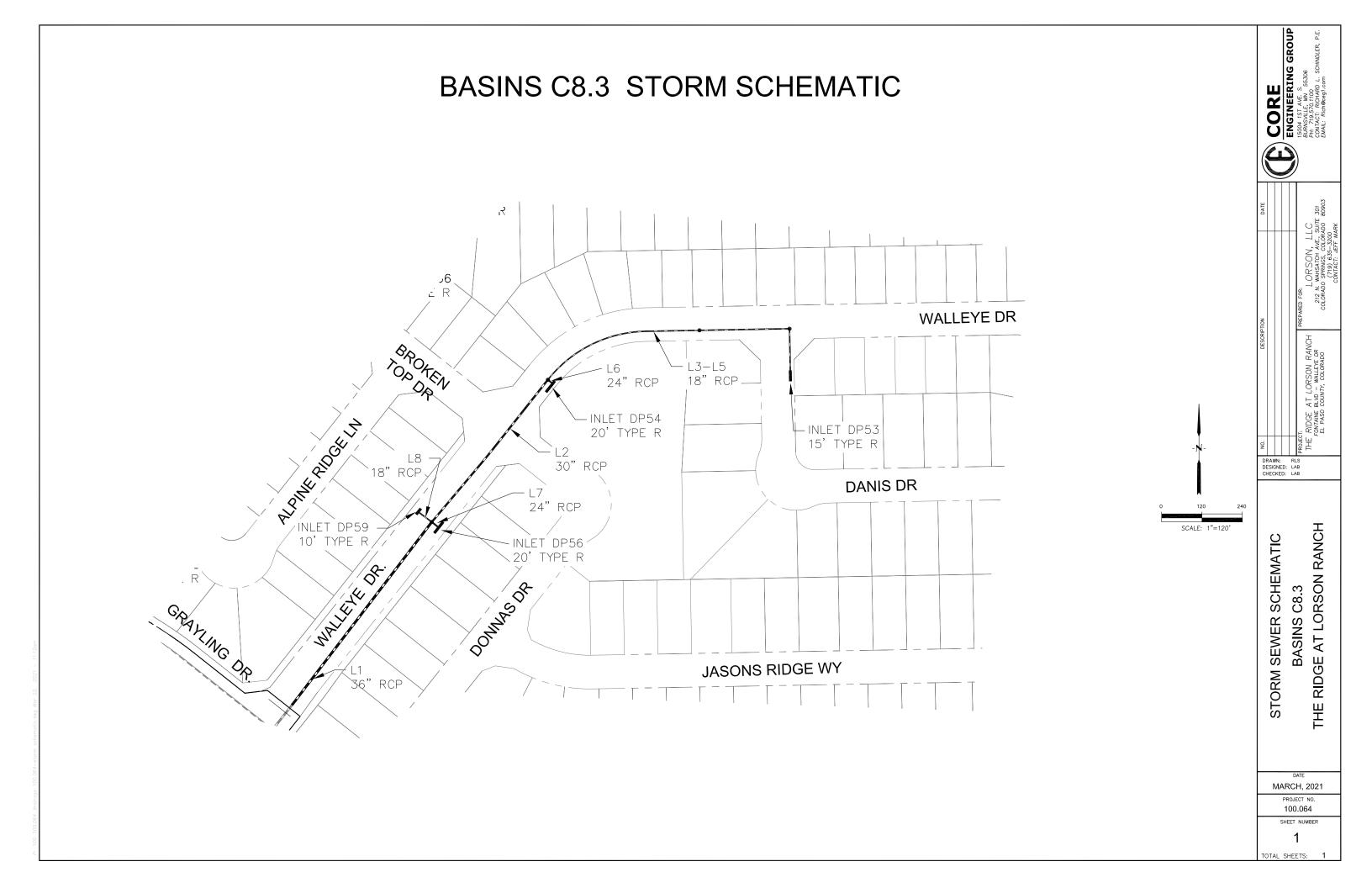

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dn line No
		42.30	36 c	190.8	5782.00	5788.40	3.354	5784.83	5790.47	n/a	5790.47 j	En
2		32.30	36 c	77.0	5789.50	5790.37	1.130	5791.17	5792.18	0.80	5792.18	1
3		23.00	36 c	121.5	5790.47	5791.49	0.839	5792.83	5793.02	n/a	5793.02 j	2
L I		7.50	18 c	38.1	5793.00	5793.38	0.998	5793.94	5794.43	0.50	5794.93	3
5		7.50	18 c	70.0	5793.58	5794.28	1.000	5795.15	5795.39	0.41	5795.80	4
6		4.10	18 c	30.4	5794.48	5794.82	1.119	5796.14	5796.17	0.09	5796.27	5
7		3.40	18 c	23.5	5794.48	5794.81	1.406	5796.17	5796.19	0.06	5796.25	5
3		15.50	24 c	10.8	5792.50	5792.62	1.109	5793.68	5794.30	0.47	5794.77	3
)		9.30	24 c	14.0	5791.37	5791.65	2.002	5792.86	5792.73	n/a	5792.73 j	2
1										1		

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1		87.10	36 c	190.8	5782.00	5787.80	3.039	5784.83	5790.63	1.38	5790.63	Enc
2		62.10	36 c	77.0	5788.70	5790.37	2.169	5791.90	5792.88	n/a	5792.88	1
3		37.00	36 c	121.5	5790.47	5791.44	0.797	5793.75	5794.03	0.50	5794.54	2
L I		10.50	18 c	38.1	5793.00	5793.38	0.998	5794.54	5794.87	0.55	5795.42	3
5		10.50	18 c	70.0	5793.58	5794.28	1.000	5795.42*	5796.12*	0.50	5796.63	4
6		5.70	18 c	30.4	5794.48	5794.82	1.119	5797.02*	5797.10*	0.16	5797.27	5
,		4.80	18 c	23.5	5794.48	5794.81	1.406	5797.06*	5797.11*	0.11	5797.23	5
3		26.50	24 c	10.8	5792.50	5792.72	2.034	5794.54	5794.65	1.13	5795.78	3
)		25.10	24 c	14.0	5791.37	5791.65	2.002	5793.39	5793.42	1.13	5794.55	2
C5 basin	s 100yr storm						Nun	nber of line:	s: 9	Run I	Date: 03-18	3-202

MyReport

Line No.	Flow Rate	Line Size	Line Type	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Depth Up	Vel Dn
	(cfs)	(in)		(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/s)
1	87.10	36	Cir	5782.00	5787.80	3.04	5784.83	5790.63	1.38	5790.63	2.83**	12.61
2	62.10	36	Cir	5788.70	5790.37	2.17	5791.90	5792.88	n/a	5792.88	2.51**	8.79
3	37.00	36	Cir	5790.47	5791.44	0.80	5793.75	5794.03	0.50	5794.54	2.59	5.24
4	10.50	18	Cir	5793.00	5793.38	1.00	5794.54	5794.87	0.55	5795.42	1.49	5.94
5	10.50	18	Cir	5793.58	5794.28	1.00	5795.42	5796.12	0.50	5796.63	1.50	5.94
6	5.70	18	Cir	5794.48	5794.82	1.12	5797.02	5797.10	0.16	5797.27	1.50	3.23
7	4.80	18	Cir	5794.48	5794.81	1.41	5797.06	5797.11	0.11	5797.23	1.50	2.72
8	26.50	24	Cir	5792.50	5792.72	2.03	5794.54	5794.65	1.13	5795.78	1.93	8.44
9	25.10	24	Cir	5791.37	5791.65	2.00	5793.39	5793.42	1.13	5794.55	1.77**	7.99
C5 ba	sins 100	vr storm	1									
	S: ** Cri											

BASINS C8.1 & C8.4 STORM SCHEMATIC

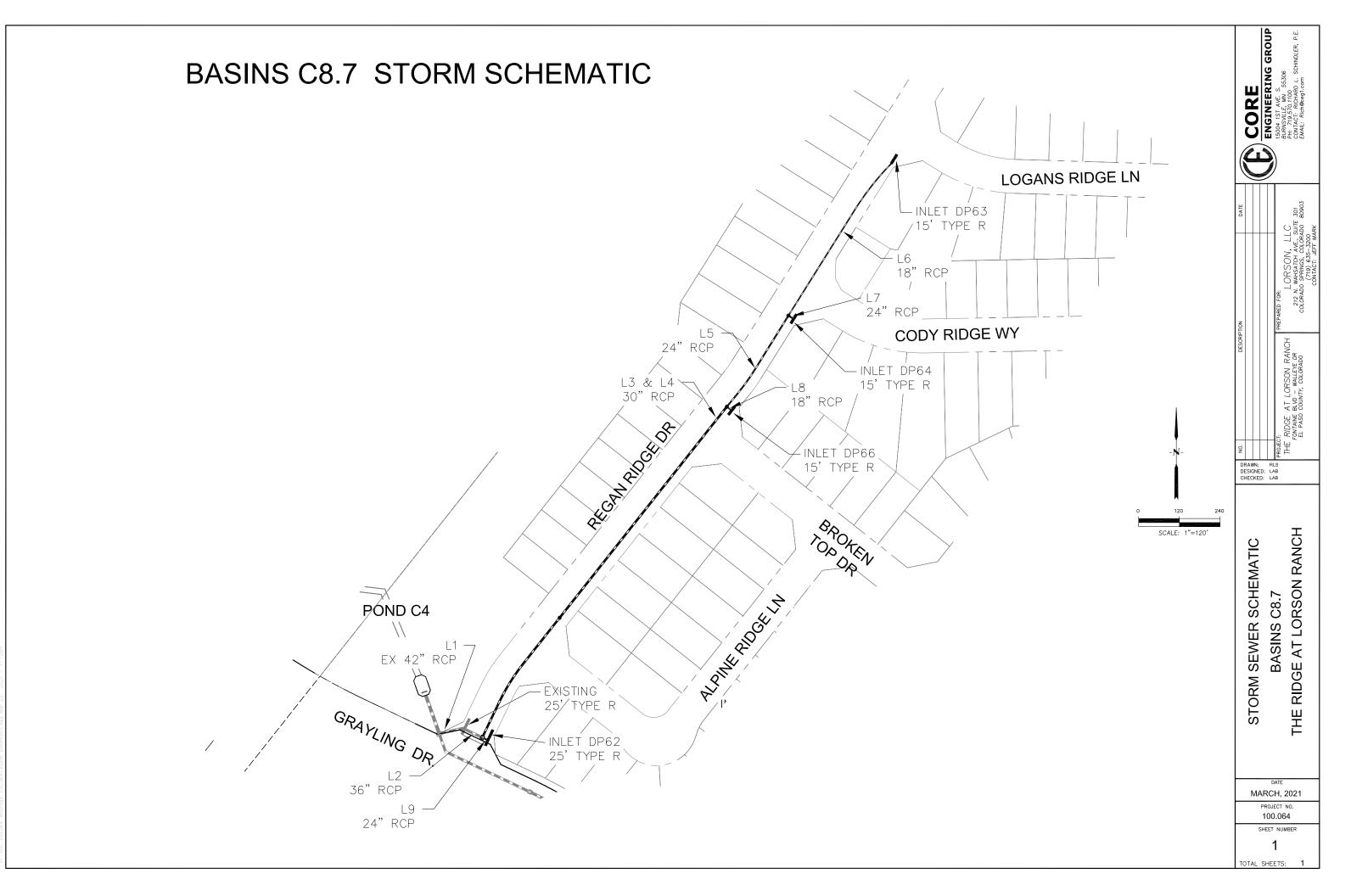


Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dn line No
1		11.10	30 c	67.8	5796.22	5796.92	1.032	5798.38	5798.33	0.24	5798.56	End
2		3.40	18 c	70.9	5798.90	5800.32	2.003	5799.39	5801.02	n/a	5801.02	1
3		3.40	18 c	14.9	5800.52	5800.82	2.012	5801.24	5801.52	n/a	5801.52 j	2
1		7.70	24 c	9.5	5798.10	5798.48	3.987	5798.71	5800.16	0.12	5800.27	1
5		17.10	24 c	36.5	5792.52	5793.43	2.492	5794.44	5794.90	n/a	5794.90 j	En
3		17.10	24 c	94.9	5793.88	5801.00	7.504	5795.18	5802.47	0.31	5802.47	5
7		17.10	24 c	55.5	5801.30	5802.13	1.496	5802.75	5803.60	1.12	5803.60	6
3		6.10	18 c	68.5	5803.23	5803.92	1.007	5804.16	5804.86	0.42	5804.86	7
	ins 5yr storm	1	1		1		·					

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dn: line No.
1		27.00	30 c	67.8	5796.22	5796.92	1.032	5798.38	5798.66	n/a	5798.66 j	End
2		6.20	18 c	70.9	5798.90	5800.32	2.003	5799.58	5801.27	n/a	5801.27	1
3		6.20	18 c	14.9	5800.52	5800.82	2.012	5801.51	5801.77	n/a	5801.77 j	2
4		20.80	24 c	9.5	5798.40	5798.78	3.997	5799.35*	5801.99*	0.68	5802.67	1
5		28.10	24 c	36.5	5792.52	5793.43	2.492	5794.44	5795.26	n/a	5795.26 j	End
6		28.10	24 c	94.9	5793.88	5801.00	7.504	5795.37	5802.83	0.57	5802.83	5
7		28.10	24 c	55.5	5801.30	5802.13	1.496	5802.97	5804.02	1.95	5805.97	6
8		9.10	18 c	68.5	5803.23	5803.92	1.007	5806.86*	5807.37*	0.41	5807.79	7
	ins 100yr storm			1	I	N I	nber of line:			Date: 03-18		

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

(cfs)(in)(in)(fi)(
2 6.20 18 Cir 5798.90 5800.32 2.00 5799.58 5801.27 n/a 5801.27 0.95** 8.03 3 6.20 18 Cir 5800.52 5800.82 2.01 5801.51 5801.77 j n/a 5801.77 0.95** 5.03 4 20.80 24 Cir 5798.40 5798.78 4.00 5799.35 5801.99 0.68 5802.67 2.00 14.09 5 28.10 24 Cir 5792.52 5793.43 2.49 5794.44 5795.26 j n/a 5795.26 1.83** 9.07 6 28.10 24 Cir 5793.88 5801.00 7.50 5795.37 5802.83 0.57 5802.83 1.83** 9.07 6 28.10 24 Cir 5793.88 5801.00 7.50 5795.37 5802.83 0.57 5802.83 1.83** 11.20 7 28.10 24 Cir 5801.30 5802.13 1.50 5804.02 1.95 5805.97 1.89 10.03
3 6.20 18 Cir 5800.52 5800.82 2.01 5801.51 5801.77 j n/a 5801.77 j 0.95** 5.03 4 20.80 24 Cir 5798.40 5798.78 4.00 5799.35 5801.99 0.68 5802.67 2.00 14.09 5 28.10 24 Cir 5792.52 5793.43 2.49 5794.44 5795.26 j n/a 5795.26 1.83** 9.07 6 28.10 24 Cir 5793.88 5801.00 7.50 5795.37 5802.83 0.57 5802.83 1.83** 11.20 7 28.10 24 Cir 5801.30 5802.13 1.50 5802.97 5804.02 1.95 5805.97 1.89 10.03
4 20.80 24 Cir 5798.40 5798.78 4.00 5799.35 5801.99 0.68 5802.67 2.00 14.09 5 28.10 24 Cir 5792.52 5793.43 2.49 5794.44 5795.26 j n/a 5795.26 1.83** 9.07 6 28.10 24 Cir 5793.88 5801.00 7.50 5795.37 5802.83 0.57 5802.83 1.83** 11.20 7 28.10 24 Cir 5801.30 5802.13 1.50 5802.97 5804.02 1.95 5805.97 1.89 10.03
5 28.10 24 Cir 5792.52 5793.43 2.49 5794.44 5795.26 j n/a 5795.26 1.83** 9.07 6 28.10 24 Cir 5793.88 5801.00 7.50 5795.37 5802.83 0.57 5802.83 1.83** 11.20 7 28.10 24 Cir 5801.30 5802.13 1.50 5802.97 5804.02 1.95 5805.97 1.89 10.03
6 28.10 24 Cir 5793.88 5801.00 7.50 5795.37 5802.83 0.57 5802.83 1.83** 11.20 7 28.10 24 Cir 5801.30 5802.13 1.50 5802.97 5804.02 1.95 5805.97 1.89 10.03
7 28.10 24 Cir 5801.30 5802.13 1.50 5802.97 5804.02 1.95 5805.97 1.89 10.03
8 9.10 18 Cir 5803.23 5803.92 1.01 5806.86 5807.37 0.41 5807.79 1.50 5.15
C8.1 basins 100yr storm

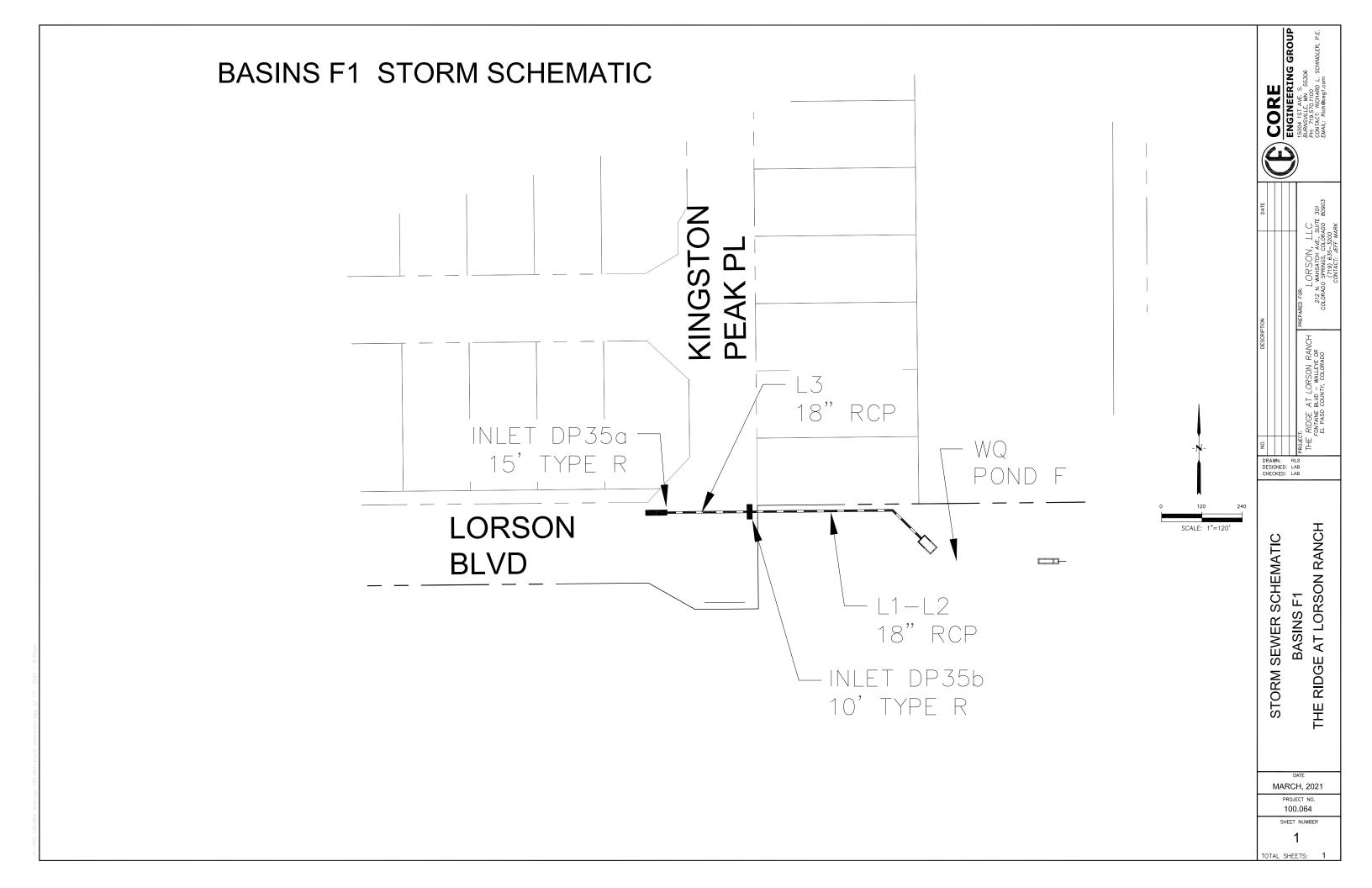


_ine No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dn line No
		32.70	36 c	388.3	5792.00	5797.44	1.401	5794.98	5799.26	n/a	5799.26 j	End
2		21.40	30 c	218.5	5797.94	5800.62	1.227	5799.79	5802.17	n/a	5802.17 j	1
3		9.70	18 c	212.9	5801.62	5809.62	3.758	5802.40	5810.81	0.38	5810.81	2
۱ I		9.70	18 c	213.7	5809.82	5817.64	3.660	5810.99	5818.83	0.65	5818.83	3
5		9.70	18 c	61.5	5817.95	5818.86	1.480	5819.01	5820.05	0.65	5820.05	4
6		11.70	24 c	8.0	5801.50	5801.74	3.003	5802.65	5802.95	n/a	5802.95	2
7		9.00	24 c	9.9	5798.44	5798.64	2.028	5799.96	5799.87	0.31	5800.18	1
3		5.90	18 c	25.1	5798.94	5799.19	0.997	5799.91	5800.12	0.41	5800.12	1
8.3 basi	ins 5yr storm						Nur	nber of line	s: 8	Run	Date: 03-18	8-202

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dn: line No.
1		73.30	36 c	388.3	5792.00	5797.44	1.401	5794.98	5800.15	n/a	5800.15	Enc
2		40.20	30 c	218.5	5797.94	5800.62	1.227	5800.96	5802.78	1.24	5804.02	1
3		16.20	18 c	212.9	5801.62	5809.62	3.758	5804.02	5811.05	n/a	5811.05 j	2
4		16.20	18 c	213.7	5809.82	5817.64	3.660	5811.10	5819.07	1.35	5819.07	3
5		16.20	18 c	61.5	5817.95	5818.86	1.480	5819.45*	5820.91*	1.31	5822.22	4
6		24.00	24 c	8.0	5801.50	5801.74	3.003	5804.35*	5804.44*	0.91	5805.34	2
7		32.80	24 c	9.9	5798.44	5798.64	2.028	5800.31	5800.55	1.75	5802.30	1
8		8.90	18 c	25.1	5798.94	5799.19	0.997	5801.61*	5801.79*	0.39	5802.18	1

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

Line No.	Flow Rate	Line Size	Line Type	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Depth Up	Vel Dn
	(cfs)	(in)		(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/s)
1	73.30	36	Cir	5792.00	5797.44	1.40	5794.98	5800.15	n/a	5800.15	2.71**	10.38
2	40.20	30	Cir	5797.94	5800.62	1.23	5800.96	5802.78	1.24	5804.02	2.16	8.19
3	16.20	18	Cir	5801.62	5809.62	3.76	5804.02	5811.05 j	n/a	5811.05	1.43**	9.17
4	16.20	18	Cir	5809.82	5817.64	3.66	5811.10	5819.07	1.35	5819.07	1.43**	10.12
5	16.20	18	Cir	5817.95	5818.86	1.48	5819.45	5820.91	1.31	5822.22	1.50	9.17
6	24.00	24	Cir	5801.50	5801.74	3.00	5804.35	5804.44	0.91	5805.34	2.00	7.64
7	32.80	24	Cir	5798.44	5798.64	2.03	5800.31	5800.55	1.75	5802.30	1.91**	10.75
8	8.90	18	Cir	5798.94	5799.19	1.00	5801.61	5801.79	0.39	5802.18	1.50	5.04
C8.3 b	asins 100)yr storn	n									



Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1		34.50	42 c	36.0	5778.08	5779.02	2.611	5781.58	5781.47	0.28	5781.75	Enc
2		33.00	36 c	31.0	5779.52	5779.89	1.194	5781.77	5781.72	0.33	5781.72	1
3		21.50	30 c	211.2	5780.39	5784.82	2.098	5782.25	5786.37	n/a	5786.37 j	2
4		21.50	30 c	394.6	5785.15	5798.76	3.449	5786.78	5800.31	n/a	5800.31 j	3
5		20.00	24 c	168.5	5799.30	5806.04	3.999	5800.38	5807.62	0.87	5807.62	4
6		10.20	18 c	269.2	5807.50	5816.38	3.298	5808.28	5817.60	0.68	5817.60	5
7		9.80	24 c	11.2	5807.10	5807.32	1.968	5808.35	5808.43	0.47	5808.43	5
8		1.50	18 c	10.7	5799.80	5800.01	1.956	5800.98	5800.97	0.02	5801.00	4
9		14.30	24 c	7.3	5780.39	5780.46	0.955	5782.14	5782.14	0.40	5782.54	2
	ins 5yr storm							nber of line	-	·	Date: 03-18	

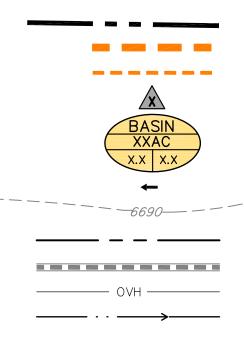
Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dn: line No
1		86.30	42 c	36.0	5778.08	5779.02	2.611	5781.58	5781.87	1.30	5781.87	End
2		76.50	36 c	31.0	5779.52	5779.89	1.194	5782.14	5782.70	0.77	5783.47	1
3		45.20	30 c	211.2	5780.39	5784.82	2.098	5784.07	5787.05	n/a	5787.05	2
1		45.20	30 c	394.6	5785.15	5798.76	3.449	5787.22	5800.99	n/a	5800.99	3
5		33.40	24 c	168.5	5799.30	5806.04	3.999	5800.99	5807.95	n/a	5807.95	4
6		15.90	18 c	269.2	5807.50	5816.38	3.298	5808.55	5817.81	n/a	5817.81	5
7		17.50	24 c	11.2	5807.10	5807.32	1.968	5809.27	5809.32	0.48	5809.80	5
3		11.80	18 c	10.7	5799.80	5800.01	1.956	5801.78*	5801.92*	0.69	5802.61	4
9		37.40	24 c	7.3	5780.39	5780.46	0.955	5783.47*	5783.67*	2.20	5785.87	2
9 7 haa	ins 100yr storm						Num	nber of line:	a· 0	Dun	Date: 03-18	2.202

Hydraflow Storm Sewers 2005

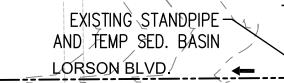
Line No.	Flow Rate	Line Size	Line Type	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Depth Up	Vel Dn
	(cfs)	(in)		(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/s)
1	86.30	42	Cir	5778.08	5779.02	2.61	5781.58	5781.87	1.30	5781.87	2.84**	8.97
2	76.50	36	Cir	5779.52	5779.89	1.19	5782.14	5782.70	0.77	5783.47	2.81	11.68
3	45.20	30	Cir	5780.39	5784.82	2.10	5784.07	5787.05	n/a	5787.05	2.23**	9.21
4	45.20	30	Cir	5785.15	5798.76	3.45	5787.22	5800.99	n/a	5800.99	2.23**	10.41
5	33.40	24	Cir	5799.30	5806.04	4.00	5800.99	5807.95	n/a	5807.95	1.91**	11.78
6	15.90	18	Cir	5807.50	5816.38	3.30	5808.55	5817.81	n/a	5817.81	1.42**	12.07
7	17.50	24	Cir	5807.10	5807.32	1.97	5809.27	5809.32	0.48	5809.80	2.00	5.57
8	11.80	18	Cir	5799.80	5800.01	1.96	5801.78	5801.92	0.69	5802.61	1.50	6.68
9	37.40	24	Cir	5780.39	5780.46	0.95	5783.47	5783.67	2.20	5785.87	2.00	11.91
C8.7 b	asins 100)yr storr	n									
	Q· ** Criti											

		rate (cfs)	size (in)	length (ft)	EL Dn (ft)	EL Up (ft)	slope (%)	down (ft)	up (ft)	loss (ft)	Junct (ft)	line No.
1	3	7.80	18 c	51.1	5844.50	5845.52	1.997	5845.57	5846.59	n/a	5846.59 j	End
2		7.80	18 c	106.7	5845.52	5854.05	7.998	5846.81	5855.12	n/a	5855.12 j	1
3		5.90	18 c	82.6	5854.38		1.006	5855.47	5856.14	n/a	5856.14 j	
	sins 5yr storm							mber of line			Date: 07-17	

No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	3	15.70	18 c	51.1	5844.50	5845.52	1.997	5845.95	5847.01	0.85	5847.86	End
2		15.70	18 c	106.7	5845.52	5854.05	7.998	5847.86	5855.47	n/a	5855.47 j	1
2 3		15.70	18 c 18 c	106.7 82.6	5845.52 5854.38		7.998	5847.86	5855.47 5857.07*	n/a 0.64	5855.47 j 5857.71	1 2
		1	1	1	1	1	1	1	1		1	


NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

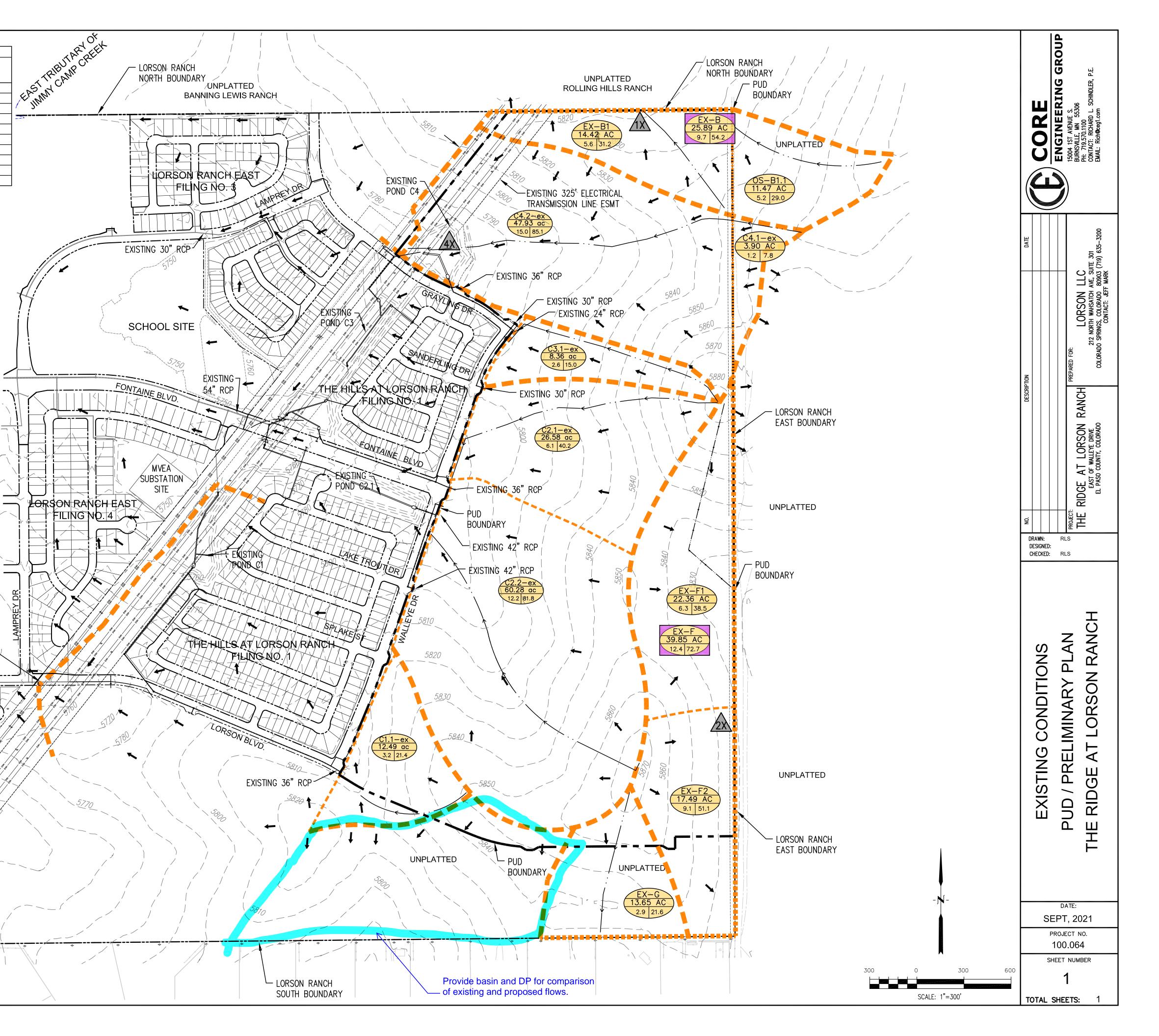
(Туре	Dn	Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Depth Up	Vel Dn
	(cfs)	(in)		(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/s)
1 1	15.70	18	Cir	5844.50	5845.52	2.00	5845.95	5847.01	0.85	5847.86	1.49	8.98
2 1	15.70	18	Cir	5845.52	5854.05	8.00	5847.86	5855.47 j	n/a	5855.47	1.42**	8.89
3 1	11.30	18	Cir	5854.38	5855.21	1.01	5856.11	5857.07	0.64	5857.71	1.50	6.40
												I
F1 basins	s 100yr	storm										

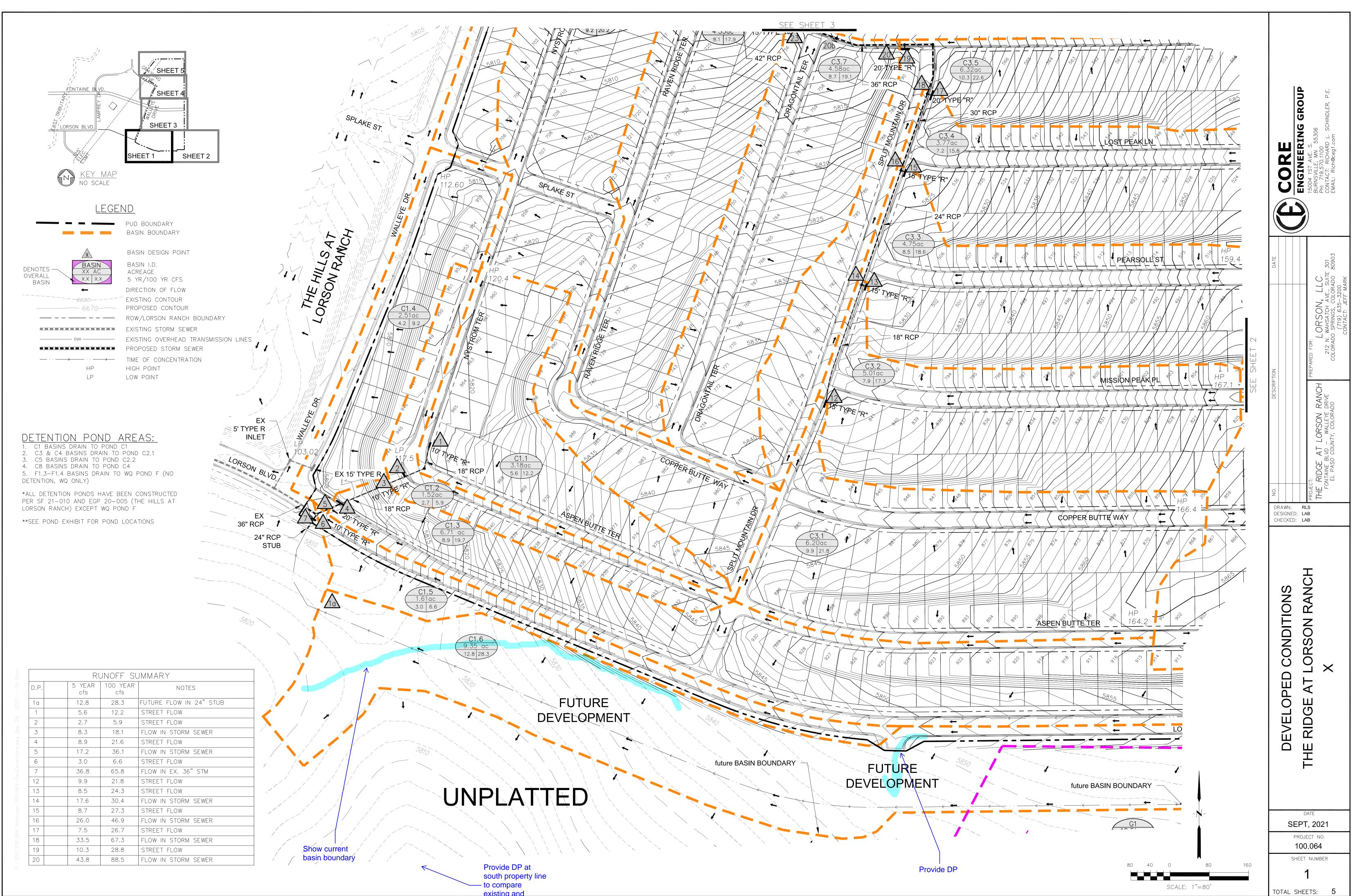

MAP POCKET

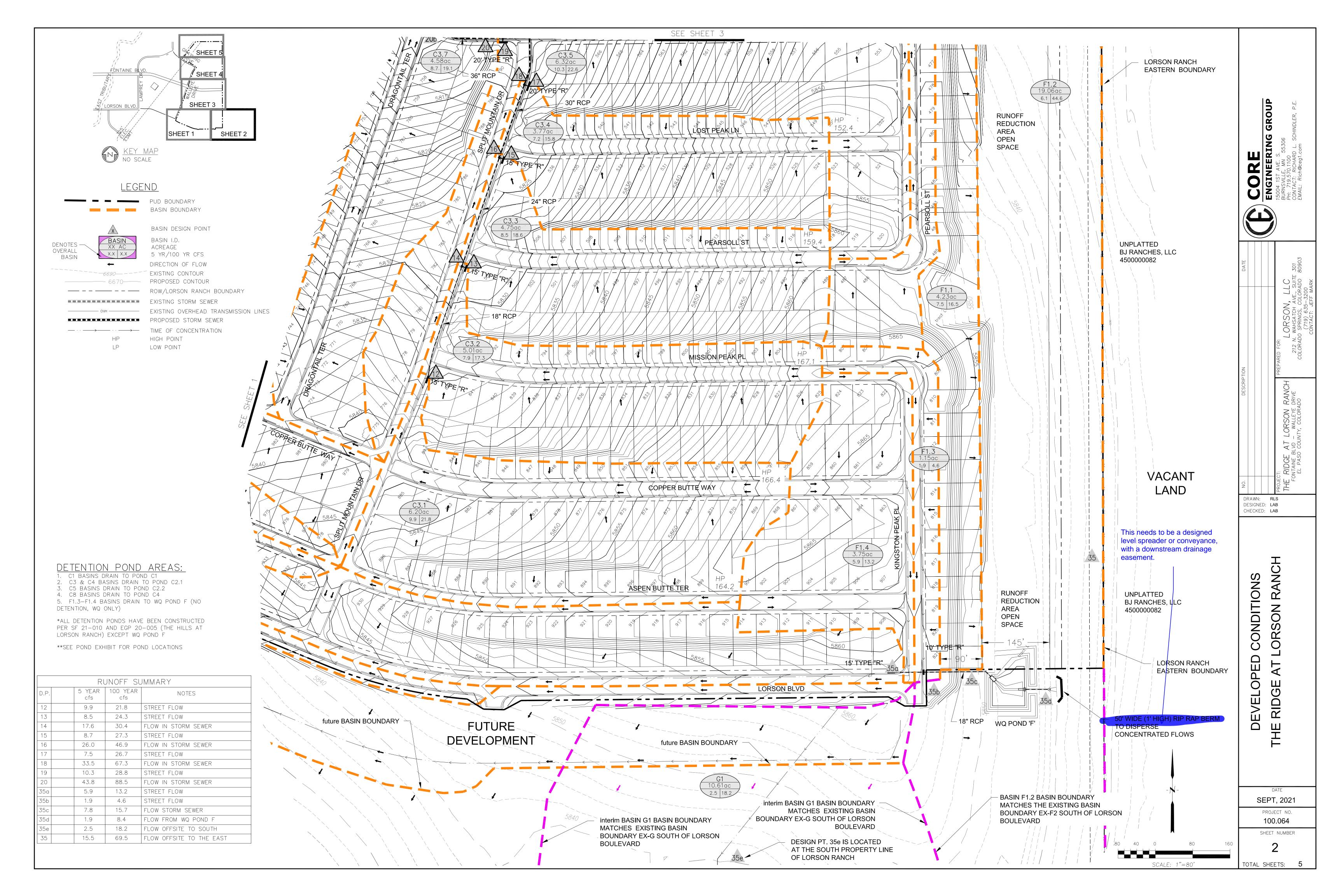
DESIGN POINT	BASIN	DRAINAGE AREA (AC)	RUNOFF 5 YR (CFS)	RUNOFF 100 YR (CFS)	COMMENT	
1X	EX-B	25.89	9.7cfs	54.2cfs	EX. FLOW OFFSITE TO ROLLING HILLS RANCH	
2X	EX-F	39.85	12.4cfs	72.7cfs	EX. FLOW OFFSITE TO THE EAST	
4X	C4-ex	52.32	15.3cfs	87.7cfs	EX. FLOW	

<u>LEGEND</u>

PUD BOUNDARY BASIN BOUNDARY-MAJOR BASIN BOUNDARY-MINOR BASIN DESIGN POINT BASIN I.D. ACREAGE 5 YR/100 YR CFS DIRECTION OF FLOW EXISTING CONTOUR EXISTING ROW/LORSON RANCH BOUNDARY EXISTING STORM SEWER EXISTING OVERHEAD TRANSMISSION LINES → TIME OF CONCENTRATION







.5770

proposed flows

	RI	JNOFF SL	JMMARY
D.P.	5 YEAR cfs	100 YEAR cfs	NOTES
17	7.5	26.7	STREET FLOW
18	33.5	67.3	FLOW IN STORM SEWER
19	10.3	28.8	STREET FLOW
20	43.8	88.5	FLOW IN STORM SEWER
20a	5.6	12.3	STREET FLOW
20b	49.4	99.2	FLOW IN STORM SEWER
21	7.2	17.5	STREET FLOW
23	8.7	26.7	STREET FLOW
24	57.8	115.5	FLOW IN STORM SEWER
24a	65.0	118.6	FLOW IN STORM SEWER
25	10.0	26.4	STREET FLOW
27	8.4	28.3	STREET FLOW
28	73.4	132.7	FLOW IN STORM SEWER
28a	80.6	133.4	FLOW IN STORM SEWER
29	9.2	27.8	STREET FLOW
30	89.8	153.9	FLOW IN STORM SEWER
I	I	I	1

	RI	JNOFF SL	JMMARY
D.P.	5 YEAR cfs	100 YEAR cfs	NOTES
31	10.5	23.2	STREET FLOW
32	10.3	27.5	STREET FLOW
32a	18.2	42.8	FLOW IN STORM S
33	7.0	28.7	STREET FLOW AT
34	115.0	225.4	FLOW IN EX. 54"
36	11.4	25.2	STREET FLOW
37	7.4	16.3	STREET FLOW
38	7.5	10.5	FLOW IN STORM S
39	12.7	34.0	STREET FLOW
40	23.0	37.0	FLOW IN STORM S
41	9.3	27.7	STREET FLOW
42	32.3	62.1	FLOW IN STORM S
43	10.0	24.5	STREET FLOW
44	42.3	87.1 FLOW INTO EX. S	
45	7.7	17.1	STREET FLOW AT

THE HILLS AT	
LORSON RANCH	/
	1

EX 10' TYPE R

190 - Contraction of the contrac

FONTAINE BLVD.

18.6 40.8

EX 54" RCP

LAKE TROUT DR.

te .

EXISTING POND C2.1

THE HILLS AT

LORSON RANCH

– EX 48" RCP

TER

ALLEYE DR.

+ EX 15' TYPE R - EX 36" RCP 30" RCF RCP_

³⁶"RCP

4.3 9.5

18" ~

TER.

170

× /

C4.2

4.8 10.5

-

WALLEYE

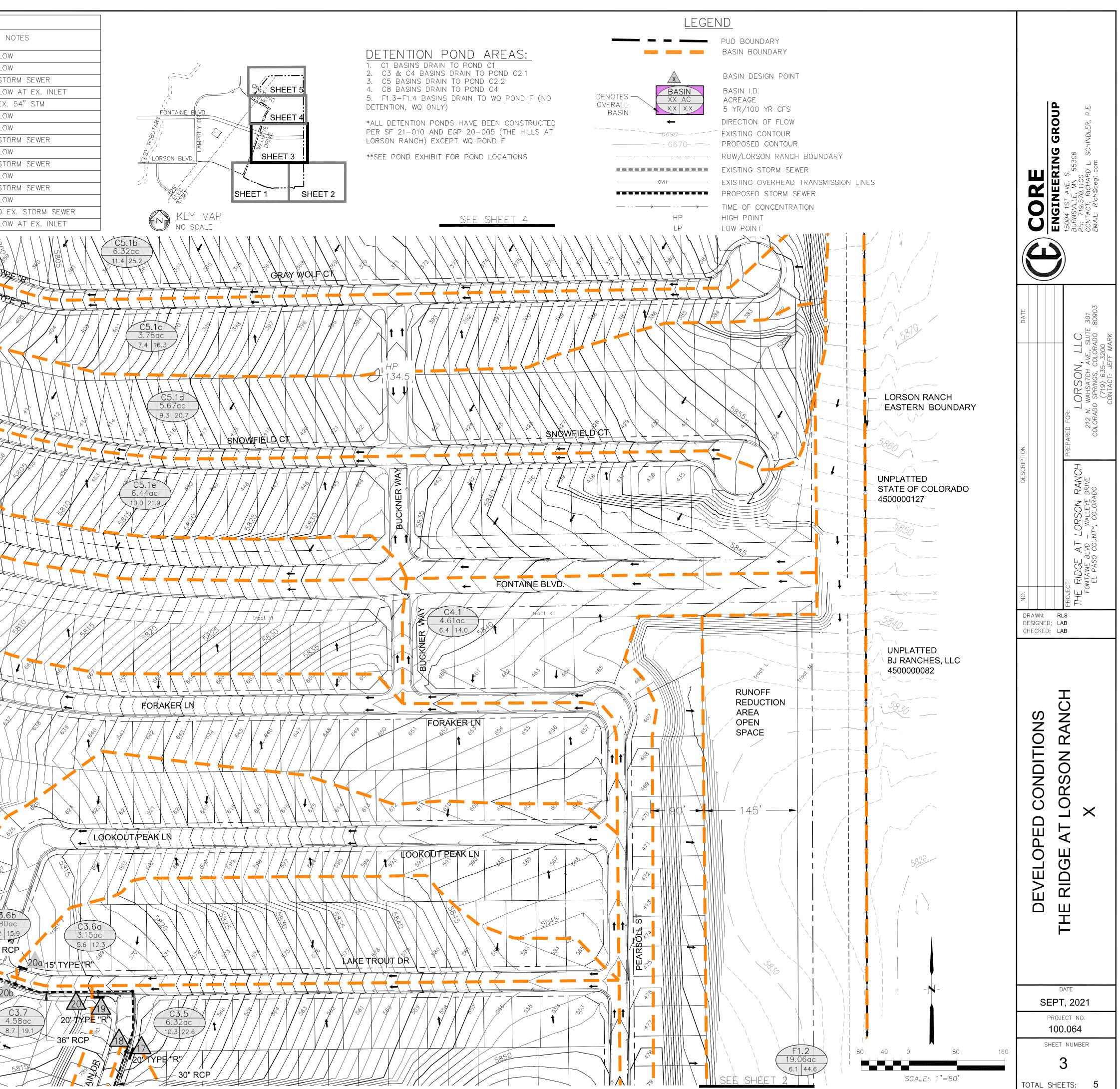
ex 25' TYPE R 57 124

ATER See NYS TH

RAVENRIDGE - 1/0' TYPE "R"

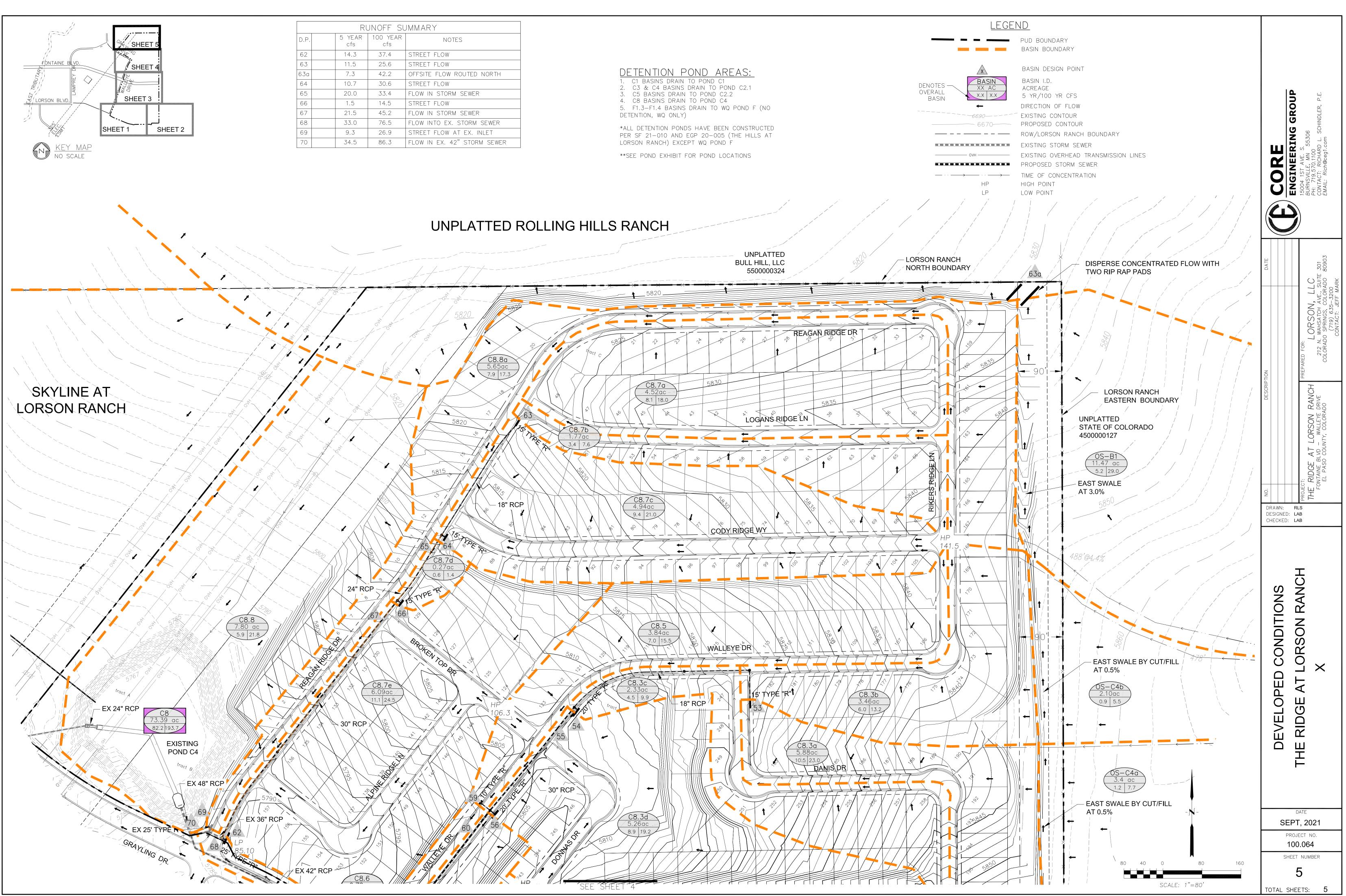
/ <u>720</u> 15' TYP $\overline{27}$ 24a-C3.9 4.55ac 8.1 17.9

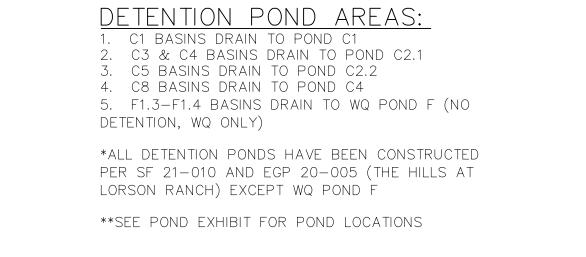
ALL A


RAVEN RIDGET

- 42" RCP -

5'/TYPE


C3.6b


36" RCP

RUNOFF SUMMARY					
D.P.		5 YEAR cfs	100 YEAR cfs	NOTES	
49		7.7	27.7	STREET FLOW	
50		11.1	27.0	FLOW INTO EX. STORM SEWER	
51		4.5	26.0	STREET FLOW AT EX. INLET	
52		15.6	53.0	FLOW IN EX. STORM SEWER	
53		10.6	26.5	STREET FLOW	
54		11.8	37.6	STREET FLOW	
55		21.4	40.2	FLOW IN STORM SEWER	
56		9.0	32.8	STREET FLOW	
57		11.0	24.1	STREET FLOW	
58		17.1	28.1	FLOW IN STORM SEWER	
59		7.0	15.5	STREET FLOW	
60		32.7	73.3	FLOW IN STORM SEWER	

