

Preliminary & Final Drainage Report

Engineering Review

10/15/2019 12:52:08 PM dsdkuehster stevekuehster@elpasoco.com (719) 520-6813

EPC Planning & Community Development Department

Sanctuary of Peace Residential Community

PUD Development, Preliminary Plan and Final Plat

Project Number 61087

PCD Proj # PUDSP-019-002

September 12, 2019

Copyright © MVE, Inc., 2019

Preliminary & Final Drainage Report

for

Sanctuary of Peace Residential Community
PUD Development, Preliminary Plan and Final Plat

Project No. 61087

September 12, 2019

prepared for

Benet Hill Monastery of Colorado Springs, Inc. 3190 Benet Lane Colorado Springs, CO 80921 719.355.1639

prepared by

MVE, Inc. 1903 Lelaray Street, Suite 200 Colorado Springs, CO 80909 719.635.5736

Copyright © MVE, Inc., 2019

61087 SOP Final Drainage Report-full odf

Statements and Acknowledgments

Engineer's Statement This attached Drainage plan and report were prepared by under my direct supervision and are correct to the best of my knowledge and belief. Said report and plan has been prepared in accordance with the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.
Charles C. Crum, P.E. Colorado No. 13348 For and on Behalf of MVE, Inc.
Control of the contro
Developer's Statement Benet Hill Monastery of Colorado Springs, Inc., the owner/developer have read and will comply with all the requirements specified in this drainage report and plan.
Sister Marie Therese Summers OSB, Treasurer Benet Hill Monastery of Colorado Springs, Inc. 3190 Benet Lane Colorado Springs, CO 80921
El Paso County
Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.
Jennifer Irvine, P.E. , County Engineer / ECM Administrator El Paso County

Final Drainage Report Sanctuary of Peace Filing No. 1

Project No. 61087

PURPOSE

This is the Final Drainage Report is for the Sanctuary of Peace Residential Community PUD Development and Preliminary Plan, and the Final Plat of Sanctuary of Peace Filing No. 1. The purpose of this Final Drainage Report is to identify on-site and off-site drainage patterns, storm sewer, culvert and inlet locations, areas tributary to the site and to safely route developed storm water to adequate outfalls.

SUMMARY OF DATA

- Black Squirrel Creek Drainage Basin Planning Study URS Consultants January, 1989
- Smith Creek Drainage Basin Planning Study JR Engineering August, 2002
- Drainage Letter for Benet Hill Monastery/Ministry Center Bradley B. Bean, PE August 17, 2007
- City of Colorado Springs "Drainage Criteria Manual, Volume 1", May, 2014.
- City of Colorado Springs and El Paso County "Drainage Criteria Manual, Volume 2" May, 2014.
- Soil Survey for El Paso County, Colorado, U.S. Department of Agriculture, Soil Conservation Service.
- "Flood Insurance Studies for Colorado Springs and El Paso County, Colorado", prepared by the Federal Emergency Management Agency (FEMA), December 7, 2018.

Except for the previously mentioned drainage reports, no other drainage reports were reviewed during the course of preparing this drainage report.

GENERAL LOCATION & DESCRIPTION

The Sanctuary of Peace Residential Community contains 49.58+/- acres of land. Said Community is situate in South Half of Section 27, Township 11 South, Range 66 West of the 6th Principal Meridian within the County of El Paso, and the State of Colorado. The El Paso County Assessor Schedule Number is 7103001034 for the parcel of land and the address is 15760 State Highway 83.

The Sanctuary of Peace Residential Community is bounded on the east by State Highway 83, on the north by Benet Lane, on the west by Black Forest Park subdivision, and on the south by 10 & 20+/- acres parcels of un-platted land.

The Sanctuary of Peace Residential Community is located in two Major Drainage Basins and they are Black Squirrel Creek and Smith Creek of which are both Fee Basins.

FLOODPLAIN STATMENT

The Sanctuary of Peace Residential Community is not located in a designated floodplain as denoted on the Flood Insurance Rate Map (FIRM), map number 08041C0295G, effective date December 7, 2018. The FIRM is included in the **Appendix** for readers reference.

SOILS

The SCS Soils Map describes the soils as consisting of Kettle gravelly loamy sand (map unit 41), which is Hydrologic group "B". A soils Map and soils information is included for readers reference.

PROPOSED DEVELOPMENT

The proposed PUD Development Plan Preliminary Plan is composed of 27 Lots and 6 Tracts with drives, parking, landscaping, and three (3) Water Quality Sand Filter Basins. The proposed development is composed of 27 lots, clustered on 2.93 acres with 0.77 acres of paved roads, totaling 3.70 acres which is to be developed out of the parcel's total acreage of 49.58 acres. This Final Drainage report assumes a developed state for the entire development.

DRAINAGE CRITERIA

This Final Drainage Report for the Sanctuary of Peace Residential Community has been prepared according to the report guidelines presented in the *El Paso County Drainage Criteria Manual* (DCM). The County has also adopted portions of the City of Colorado Springs Drainage Criteria Volumes 1 and 2, especially concerning the calculation rainfall runoff rates. The hydrologic analysis is based on a collection of data from the DCM, the NRCS Web Soil Survey, topographic mapping and property boundary information provided by Polaris Land Surveying, Inc. and proposed plan layout, grading, and drainage system layout developed by M.V.E., Inc. All proposed drainage facilities are approximate in size and may vary with actual layout and design.

For this final drainage report the Rational Method as described in the *City of Colorado Springs Drainage Criteria Manual* has been used for all Storm Runoff calculations, as the development and all sub-basins are less than 130 acres in area. "Colorado Springs Rainfall Intensity Duration Frequency" curves, Figure 6-5 in the DCM, was used to obtain the design rainfall values; a copy is included in the **Appendix**. The "Overland (Initial) Flow Equation" (Eq. 6-8) in the DCM, and Manning's equation with estimated depths were used in time of concentration calculations. "Runoff Coefficients for Rational Method", Table 6-6 in the

DCM, was utilized as a guide in estimating runoff coefficient and Percent Impervious values; a copy is included in the **Appendix**. Peak runoff discharges were calculated for each drainage sub-basin for both the 5-year storm event and the 100-year storm event with the Rational Method formula, (Eq. 6-5) in the DCM.

DRAINAGE CHARACTERISTICS AND EXISTING DRAINAGE FACILITIES

The Development Plan for this site is proposing a clustered residential community, with drives, parking, landscaping, and three (3) Water Quality Sand Filter Basins. The site site of 49.58 acres, will have 27 Lots clustered on 3.90 acres with drives, parking, and existing trees & vegetation. The remainder of lands will be undisturbed except for placement of the Onsite Wastewater Treatment Systems (OWTS) and the placement of the three (3) Water Quality Basins.

The following descriptions describe how the existing and developed storm water flows are and will be handled. This Final Drainage Report for the PUD Development, Preliminary Plan and Final Plat submittal is hereby provided for the proposed Development. The existing and proposed Drainage Maps have been included in this report showing the improvements on the Sanctuary of Peace Residential Community for the readers reference.

Hydraulic Grade Line calculations are required, but will be provided with the construction drawings.

EXISTING DRAINAGE BASIN DESCRIPTIONS

An Existing Drainage Map is included for readers reference and an analysis has been included in the report. The site is within two Major Drainage Basins split by a ridge traversing the site from north to south near the middle of the site. The Black Squirrel Major Basin composes the eastern portion of the site and contains 19.73 acres. The Smith Creek Basin composes the western portion of the site and contains 29.85 acres.

The off-site drainage Basins OS A, OS B, and OS C storm water flows are calculated as existing flows and will remain as existing as there is no proposed development in these off-site Basins proposed by this plan.

Refer to he included Existing Drainage Map for direction and quantity of these existing storm water flows.

DEVELOPED DRAINAGE BASIN DESCRIPTIONS

A Proposed Drainage Map is included for readers reference and an analysis has been included in the report. The 49.58 acre site has been split into nine (9) on-site Drainage Basins with 7 of these Drainage Basins being located in the Black Squirrel Major Basin and 2 of these Drainage Basins being located in the Smith Creek Major Basin. The off-site Drainage Basins number three (3) with one (1) of these Drainage Basins being located in the Black Squirrel Major Basin and two (2) of these Drainage Basins being located in the Smith Creek Major Basin.

The clustered residential community portion to be developed of 3.90 acres is a very small portion of the total site and includes five (5) on site drainage basins.

The off-site drainage Basins OS A, OS B, and OS C storm water flows are not changed from their existing characteristics and do not affect our site as delineated in the above Existing Drainage Basin Descriptions.

Design Point P1 has existing storm water flows from drainage Basins OS A, OSB, & A2 and will flow overland & under Benet Lane continuing overland and exiting the Subdivision at the west side close to the southwest corner at a rate of Q5 = 34.8 cfs and Q100 = 230.2 cfs as it has historically done.

Design Point PP2 has proposed storm water flows from Drainage Basin A1 and will flow overland across the private drive and overland through 8 lots to the proposed Full Spectrum Sand Filter Basin (FSSFB) - A1 at DP2. Storm Drainage flows will be treated and released at a rate of Q5 = 0.1 cfs and Q100 = 3.1 cfs from the FSSFB - A1. The capacity of said FSSFB - A1 will be not less than 5,991+/- cubic feet (CF) to accept the required Water Quality Capture Volume for the developed Drainage Basin A1. Excess flows above the Water Quality Capture Volume requirement will over flow to a proposed 22' wide emergency spillway from the pond. These flows will pass through a 20' wide & 1' deep concrete weir onto a rip rap emergency spillway. These flows combine on site with Drainage Basin OS A, OS B, & A2 as shown on the included Proposed Drainage Map (Detail) for readers reference. The combined rate of flow is Q5 = 34.8 cfs and Q100 = 229.9 cfs and exit the site at Design Point DP1.

Design Point DP3 has proposed storm water flows from Drainage Basin C2 and will flow overland across the private driveway and overland through 3 lots to the proposed Full Spectrum Sand Filter Basin (FSSFB) - C2 at DP3. Storm Drainage flows will be treated and released at a rate of Q5 = 0.0 cfs and Q100 = 1.1 cfs from the FSSFB - C2. The capacity of said FSSFB - C2 will be not less than 1,783+/- cubic feet (CF) to accept the required Water Quality Capture Volume for the developed Drainage Basin C2. Excess flows above the Water Quality Capture Volume requirement will over flow to a proposed 12' wide emergency spillway from the pond. These flows will pass through a 10' wide & 1' deep concrete weir onto a rip rap emergency spillway. These flows combine on site with Drainage Basin C3 as shown on the included Proposed Drainage Map (Detail) for readers reference. The combined rate of flow is Q5 = 0.4 cfs and Q100 = 4.2 cfs and exit the site at Design Point DP4.

Design Point DP5 has proposed storm water flows from Drainage Basin C4 and will flow overland exiting the subdivision along the southern boundary line at a rate of Q5 = 0.2 cfs and Q100 = 1.6 cfs. This area remains in its existing state of forested land.

Design Point DP6 has proposed storm water flows from Drainage Basin C1 and will flow overland & through 8 lots, under the private drive via an 18" RC Pipe ccombining with the overland flow through 5 lots to the proposed Full Spectrum Sand Filter Basin (FSSFB) - C1 at PP6. Storm Drainage flows will be treated and released at a rate of Q5 = 0.1 cfs and Q100 = 6.1 cfs from the FSSFB - C1. The capacity of said FSSFB - C1 will be not less than 10,563+/- cubic feet (CF) to accept the required Water Quality Capture Volume for the developed Drainage Basin C1. Excess flows above the Water Quality Capture Volume requirement will over flow to a proposed 26' wide emergency spillway from the pond. These flows will pass through a 24' wide & 1' deep concrete weir onto a rip rap emergency

spillway. These flows combine on site with Drainage Basin C5 as shown on the included Proposed Drainage Map (Detail) for readers reference. The combined rate of flow is Q5 = 0.6 cfs and Q100 = 10.0 cfs and will exit the site at Design Point DP7.

Design Point DP8 has proposed storm water flows from Drainage Basin B1 and will flow overland to Benet Lane (private drive)and cross under said drive via an 18" RC Pipe into Basin B2. This area remains in its existing state of forested land. The rate of flow is Q5 = 0.6 cfs and Q100 = 10.0 cfs and exits at Design Point PP8.

Design Point PP9 has proposed storm water flows from Drainage Basin OS C and will flow overland to Benet Lane (private drive) and under Benet Lane via existing culverts. These storm water flows will combine with DP8 and overland flows from Basin B2. This area remains in its existing state of forested land. The rate of flow is Q5 = 24.9 cfs and Q100 = 137.2 cfs and exits the site along its southerly boundary designated as Point of Interest DP9.

WATER QUALITY

The Urban Drainage and Flood Control District provides criteria for design of a water quality pond as part of the Sand Filter design guidelines. This criteria specifies that this type of water quality pond shall be drained over a 12-hour period. The relief (grade change) of the natural gullies will allow the Water Quality Sand Filter Basin treated storm waters and storm waters to discharge at same grade.

The Full Spectrum Sand Filter Basins (are to be located on the southern and western side of the clustered housing will be constructed to collect the runoff from the developed portion of the site and treat & reduce the discharges from the site to existing levels. The Full Spectrum Sand Filter Basins will be constructed in accordance with El Paso County drainage criteria as supplemented by the accepted Urban Drainage Criteria, procedures, and methods. They will be owned and maintained by the Sanctuary of Peace Home Owners Association. These Full Spectrum Sand Filter Basins will be sited and located in the field by the Project Engineer to allow the designs to blend with the environment and limit unnecessary disturbance of land, trees, and vegetation. Once the Full Spectrum Sand Filter Basins are constructed, As- Built surveys will be conducted and a Substantial Compliance letter for the construction of them will be prepared by the Project Engineer.

EROSION CONTROL

During future construction, best management practices (BMP's) for erosion control will be employed based on the previously referenced El Paso County Drainage Criteria Manual Volume 1 & 2 and the approved Erosion Control Plan to minimize erosion from the site. The BMP's will remain in place until the site is stabilized with the new hard surfacing or landscape seeding, planting and cover materials. Also, BMP's will be utilized as deemed necessary by the contractor, engineer, owner, or County inspector and are not limited to the measures described on the Erosion Control Plan.

WATER QUALITY ENHANCEMENT BEST MANAGEMENT PRACTICES

This development will utilize the three (3) Full Spectrum Sand Filter Basins to be constructed. The Basins have been adequately sized for this purpose. Other drainage facilities in this project consist of two (2) - 18 "RC Pipes at proposed locations under the new private drive. These facilities will be private and will be maintained by the development's homeowners association. A Grading and Erosion Control Plan for the construction of the site has been prepared in accordance with the provisions of the County's Engineering Criteria Manual in conjunction with the private drive plan & profile design drawings. Placement of construction storm water BMP's will as required by the plan will limit soil erosion and deposition by storm water flowing over the site.

The El Paso County Engineering Criteria Manual (Appendix I, Section I.7.2) requires the consideration of a "Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage-ways, and implementing long term source controls". The Four Step Process is incorporated in this project and the elements are discussed below.

- 1) Runoff Reduction Practices are employed in this project. Impervious surfaces have been reduced as much as practically possible. A significant portion of the site, 45.88 acres, which is 92% will remain as pervious well treed open space.
- 2) There are no drainage paths on the site that are required to be stabilized as the they are well vegetated with no visual erosion. The Water Quality Detention Water Quality Basins will intercept flows from developed areas. Additionally, all inflow points will be stabilized by re-vegetation as incoming flows are not erosive.
- 3) The project contains no potentially hazardous uses. All developed areas drain into a proposed a Water Quality Capture Volume (WQCV) BMP.
- 4) The site is residential in nature and contains no storage of potentially harmful substances or use of potentially harmful substances. No Site Specific or Other Source Control BMP's are required.

The following cost opinion is for the construction of the required private storm water appurtenances. There are no public storm water facilities required.

DRAINAGE FACILITIES CONSTRUCTION COST ESTIMATE

Opinion of Costs - Private Storm Water Facilities

•	66 LF of 18" RC Pipe @ \$65 per LF		\$ 5,688
•	4 Ea – 18" RC Flared End @ \$390 per Ea	****	1,560
•	1 CY's of VL Rip-Rap @ \$95 per CY	=	95
•	3 Ea – Sand Filter Basins @ \$6,000 per Ea	==	18,000
•	44 LF Concrete Wier @ \$50 per LF	=	2,200
•	34 CY's of VL Rip-Rap @ \$95 per CY	=	3,230

Grand Total \$30,773

DRAINAGE, BRIDGE, AND SURCHARGE FEES

The Sanctuary of Peace Residential Community contains 49.58 acres of land. The Board of County Commissioners, County of El Paso, State of Colorado Resolution No. 99-383 allows the drainage basin fee to be based on impervious acreage. Black Squirrel Creek Basin contains 1.37 acres and Smith Creek Basin contains 0.57 acres of developed impervious acreage.

The resolution also allows a fee reduction of 25% for those portions of the development that consist entirely of 2.5 acre and larger lots. The Sanctuary of Peace Residential Community has clustered lots of below the 2.5 acre limit and therefore does not qualify.

Bridge Fees are calculated by impervious acre also. Black Squirrel is \$524 & Smith Creek \$1,004.

FEE CALCULATION

Black Squirrel Drainage Basin

Drainage Fee \$8,331/Impervious Acre @ 1.37 Acres = \$11,413.47

Bridge Fee \$492/Acre @ 19.73 Acres = \$ 9,707.16

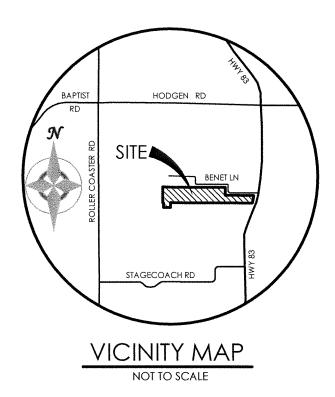
Smith Creek Drainage Basin

Drainage Fee \$7,481/Impervious Acre @ 0.57 Acres = \$ 4,264.17

Bridge Fee \$941/Acre @ 29.85 Acres = \$ 28,088.85

Grand Total Fees = \$53,473.65

CONCLUSION


The proposed site improvements will direct, control, and treat storm drainage runoff. The downstream drainage facilities will accept the proposed flows as described in this report. The proposed development of said Sanctuary of Peace Residential Community will not negatively impact the adjacent properties and down stream drainage facilities.

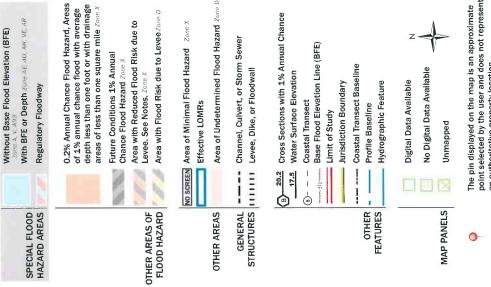
Z:\61087\Documents\Reports\61087 SOP Final Drainage Report-full.odt

Appendices

1 General Maps and Supporting Data

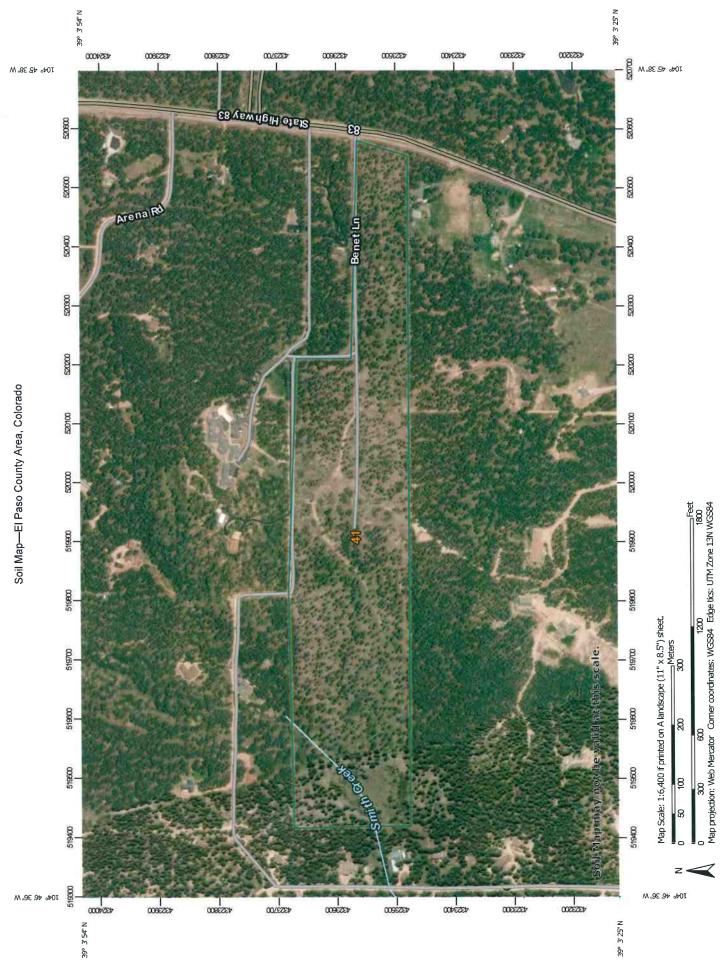
Vicinity Map Portion of Flood Insurance Rate Map Soil Type map and Tables Official Soil Series Descriptions Hydrologic Soil Group Map and Tables

National Flood Hazard Layer FIRMette


W"EE.8'84°401

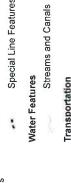
104°45'30.88"W USGS The Nettonal Map: Ortholmagery, Date refreshed

Legend


SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

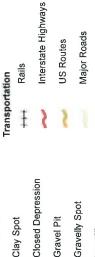
The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of The flood hazard information is derived directly from the digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap


authoritative NFHL web services provided by FEMA. This map reflect changes or amendments subsequent to this date and was exported on 1/9/2019 at 2:51:17 PM and does not time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for

MAP LEGEND

(33) Soil Map Unit Polygons Area of Interest (AOI) Soil Map Unit Points Soil Map Unit Lines Area of Interest (AOI) Soils


Special Line Features Very Stony Spot Stony Spot Spoil Area Wet Spot Other

Special Point Features

Blowout

Borrow Pit Clay Spot

Gravelly Spot

Gravel Pit

Marsh or swamp

Lava Flow

Landfill

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

contrasting soils that could have been shown at a more detailed misunderstanding of the detail of mapping and accuracy of soil Enlargement of maps beyond the scale of mapping can cause line placement. The maps do not show the small areas of

Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator distance and area. A projection that preserves area, such as the projection, which preserves direction and shape but distorts Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

El Paso County Area, Colorado Version 16, Sep 10, 2018 Soil Survey Area:

Survey Area Data:

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Jul 4, 2010—Oct 16, The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Severely Eroded Spot

Slide or Slip

Sinkhole

Sodic Spot

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	47.2	100.0%
Totals for Area of Interest		47.2	100.0%

This product is generated from the USDA-NRCS certified data as Date(s) aerial images were photographed: Jul 4, 2010—Oct 16, distance and area. A projection that preserves area, such as the contrasting soils that could have been shown at a more detailed Maps from the Web Soil Survey are based on the Web Mercator The orthophoto or other base map on which the soil lines were misunderstanding of the detail of mapping and accuracy of soil Enlargement of maps beyond the scale of mapping can cause projection, which preserves direction and shape but distorts Soil map units are labeled (as space allows) for map scales Source of Map: Natural Resources Conservation Service Albers equal-area conic projection, should be used if more line placement. The maps do not show the small areas of The soil surveys that comprise your AOI were mapped at 1:24,000. Please rely on the bar scale on each map sheet for map accurate calculations of distance or area are required. Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 16, Sep 10, 2018 Coordinate System: Web Mercator (EPSG:3857) MAP INFORMATION Warning: Soil Map may not be valid at this scale. of the version date(s) listed below. Web Soil Survey URL: 1:50,000 or larger. measurements. scale. Not rated or not available Streams and Canals Interstate Highways Aerial Photography Major Roads Local Roads **US Routes** Rails C/D Water Features Transportation Background MAP LEGEND Not rated or not available Not rated or not available Area of Interest (AOI) Soil Rating Polygons Area of Interest (AOI) Soil Rating Points Soil Rating Lines B/D ⋖

compiled and digitized probably differs from the background

imagery displayed on these maps. As a result, some minor

ΑD

g/D

shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
41	Kettle gravelly loarny sand, 8 to 40 percent slopes	В	47.2	100.0%
Totals for Area of Inter	est		47.2	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

lond Honor Cristian							Runoff Co	Runoff Coefficients					
Characteristics	Impervious	2-y	2-year	Ą-S	5-year	10,	10-year	25-)	25-year	98	50-year	100-	100-year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	08'0	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	ዖ	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	09.0	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	4.0	0.40	0.50	0.44	0.55
											-		
Industrial													
Light Areas	80	0.57	09.0	0.59	0.63	0.63	99.0	99.0	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	`0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.03	0.12	0.19	0.20	0.29	0:30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas							,						
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	60'0	0.16	0.17	92.0	92.0	38	0.21	248	36.0	2
Pasture/Meadow	0	0.02	9.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	40	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	8,0	0.95	0.95	96.0	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	44.0	0.51	0.48	0.55	0.51	97.0
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	92.0	0.95	0.95	96.0	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	99.0	99.0	0.70	99.0	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	96.0	96.0
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	08'0	0.82	0.81	0.83
Lawns	0	0.02	0.0 20.0	0.08	0.15	0.15	0.25	0.25	0.37	0:30	0.44	0.35	0.50

Hydrology Chapter 6

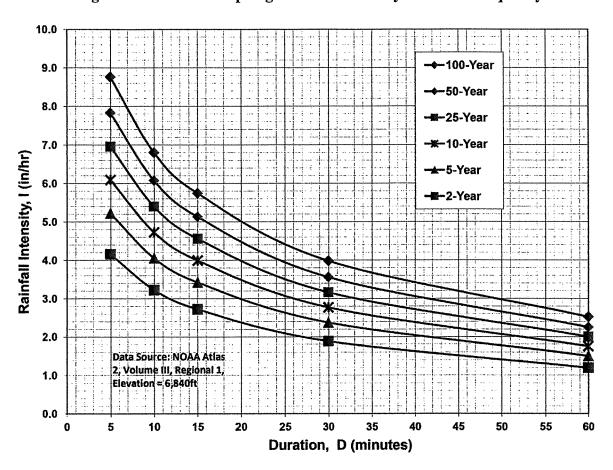


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations

$$I_{100} = -2.52 \ln(D) + 12.735$$

$$I_{50} = -2.25 \ln(D) + 11.375$$

$$I_{25} = -2.00 \ln(D) + 10.111$$

$$I_{10} = -1.75 \ln(D) + 8.847$$

$$I_5 = -1.50 \ln(D) + 7.583$$

$$I_2 = -1.19 \ln(D) + 6.035$$

Note: Values calculated by equations may not precisely duplicate values read from figure.

61087 Sanctuary of Peace

Job No.: Project:

Date:
Calcs By:
Checked By:

9/12/2019 15:12

ASM

				וווונט	5	וכפוומי	ממסו	e or concentration (Modilled Hoff) standard rollin SF-1)	1011	מומוס	01111 OF	-1)						
		Sub-Basin Data	ר Data		Ó	Overland		S	Shallow Channe	hannel			Channelized	lized		t, Check	SCK	
Area	I	and the state of t		%	2	တိ	+37	Ļ	Sot	Vosc	*5"	L ₀ c	လို	0°	1 9	_	t _{c,alt}	٥٠
(Acres)	- 1	౮	C ₁₀₀ /CN	lmp.	(ff)	(%)	(min)	(#)	(ft/ft)	(t/s)	(min)	(#)	(ft/ft)	(tt/s)	(min)	(min)	(min)	(min)
	<u> </u>	000	C	ò	90,	200	0	0,1	010	,	,	177	0,00	,	,	1		6
ر ا ا		0.0	0.35	° S	3	8	o N	2403	0.07	 D		_	0.043	<u>o</u> .	7:	3	Z Z	23.3
2.06	မ	0.08	0.35	%	100	%8	9.3	383	0.044	1.5	4.3	84	0.060	ر 9.	0.8	292	ΑX	14.4
8.7	Ŋ	0.08	0.35	%0	100	%2	9.7	211	0.047	1.5	2.3	0	0.000	0.0	0.0	311	N V	12.0
5.6	80	0.08	0.35	%0	100	11%	8.3	622	0.040	4.	7.4	0	0.000	0.0	0.0	722	Z/A	15.7
7.	8	0.08	0.35	%0	100	%8	9.3	200	0.085	2.0	1.6	0	0.000	0.0	0.0	300	N/A	10.9
ö	99	0.08	0.35	%0	100	10%	8.6	117	090.0	1.7	-	0	0.000	0.0	0.0	217	Z/A	9.6
69	40	0.08	0.35	%0	100	3%	12.8	1030	0.063	<u>6</u> .	8.6	1887	0.041	1.6	19.4	3017	N/A	41.9
83	.92	0.10	0.37	3%	100	3%	12.5	1030	0.063	8.	9.8	1887	0.041	1.6	19.4	3017	V V V	41.7
49	12	0.12	0.38	2%	100	2%	10.4	366	0.070	6.1	8.9	265	0.090	2.2	4.6	1692	N/A	23.9
~	.85	0.36	0.55	36%	9	11%	6.1	217	0.055	1.2	3.1	0	0.000	0.0	0.0	317	K/Z	9.1
78	9	0.08	0.35	%0	100	%6	8.9	1483	0.072	6.	18.4	117	0.043	2.7	0.3	1700	A/N	27.7
N	2.36	0.08	0.35	%0	100	8%	9.3	383	0.044	1.5	4.3	84	090.0	9.	0.8	292	N/A	14.4
တ	.23	0.10	0.36	2%	100	1%	9.5	211	0.047	1.5	2.3	0	0.000	0.0	0.0	311	A/N	11.8
4	.07	0.27	0.49	72%	100	16%	0.9	457	0.046	~	7.1	0	0.000	0.0	0.0	222	A/A	13.1
0	99.	0.28	0.49	27%	68	%/	7.5	100	0.060	1.2	4.	0	0.00	0.0	0.0	189	Ø,N	8.8
~	38	0.08	0.35	%0	100	%/	9.7	173	0.075	1.4	2.1	0	0.00	0.0	0.0	273	₹ X	11.8
0	4	0.08	0.35	%0	8	14%	7.0	140	0.071	1.3	1.7	0	0.000	0.0	0.0	221	A/A	8.8
₹	6	0.08	0.35	%0	100	10%	8.6	123	0.065	1.3	1.6	0	0.000	0.0	0.0	223	ΑX	10.2
						Walter to the second se												
	1			1	1	1	=	1	1	1	1				1			

Job No.: 61087
Project: Sanctuary of Peace
Design Storm: 5-Year Storm
Jurisdiction: DCM

5-Year Storm (20% Probability)
DCM

Sub-Basin and Combined Flows (Modified from Standard Form SF-2)

9/16/2019 14:37

ASM

Date: Calcs By: Checked By:

_		_1	_									·																																			-		
- 1	سی	(III)																																															
Travel Time	V _{0sc}	(ft/s)																																															
-	Length	€																				*******										menwer.												******	***********	***************************************			
		=	<u> </u>			-																																									1		
L.																														**********																			
Pipe Flow	Mnngs Length	د																																															
=	d)	(%)																																													-		
r		╢																						******																					·	***************************************	-		
1		(cfs)								# Z E																شند	~			-		12172						with the											
		(cts)													~~~																																		
∪ı⊢-	<u> </u>	€									******									~~~																													
2	Slope	8																																															
2	3	(cfs)									en no	ancour.							*****		******						35.7			 	19.0	2			34.8	2.8	0.8	4.0	0.2	4.1	. C	1 0	0.7	24.9					
Hunom	Ω.	(in/hr)		****																		Marian	- Accompany				2.53	2 5	7 7	4	2.82	1			4.26	4.26	4.32	3.88	4.33	3.72	4 10	- 6	3.59	3.59	***********				
Combined Runott	5	(Acres)																	n-moune	-							14 13		900	0.00	6.73	;			16.93	99.0	0.18	0.16	0.05	1.1	0.45	0 0	9.19	6.94					
	+	(min)													~~~~	to the time of											419	0 0	ο α ο σ	0 r	23.9) 			9.1	£.	8.8	11.8	8.8	13.1	10.2	7.	4.4	4.4					
30	3	(cfs)		0.0	9.0	2.7	18		·	0.2	11.4	17.4	t (9.0	ulantini.	2.8	5.9	0.7		4.	4	0.8	0 4	0	7 4	? ?	-		******	,,,,,,,,,	******			-								· · · · · · · · · · · · · · · · · · ·	me _l e.			*******			
TOTI	Q	(in/hr)		7.00	3.59	3.86	3.45		3	4.17	1.98	00	5.0	7.87		4.26	2.60	3.59	0 0	5.07	3.72	4.32	3 88	4 33	5 5	<u>2</u>											-												
Direct Kunoff	\dashv	(Acres)		7.4	0.16	0.70	0.45	9 0	9	0.05	5.77	2 7.2	0 1	5.8/		99.0	2.26	0 19	9 6	60.0	<u>+</u>	0.18	0	50.0	3 6															••••									
+	\dashv	(min)		5.5.5	14.4	12.0	15.7		5.0	හ හ	41.9	717	+ (23.9		9.1	27.7	14.4		0	13.1	8.8	27.8	ο α - α	5 5	Ŋ.																				·			
		C5		0.0	0.08	80.0	0 08	0	0	0.08	0.08	0,0	<u> </u>	0.12 0		0.36	0.08	0.08	0 0	<u> </u>	0.27	0.28	000	0 0	0 0	9	000	80.0	8000	0 0	0.11	-			60.0	0.36	0.28	0.08	90.0	0.27	800	9 6	90.0 90.0	0.11		Locale		2) + C2	
	Area	(Acres)		30.	2.06	8.75	5 68	0	2.03	0.66	69.40	83 03	20.00	49.12		1.85	28.30	2.36	0 0	9.23	4.07	99.0	1.36	- 6	2 6	5	153 32	20.02	99:0	00.00	59.93	2			183.47	1.85	99.0	2.02	0.64	4.07	5,69	9 6	2.36	60.72				1 = C1 * ln (tc) + C2	
4	-dns	Basin						***						-						***********	*****							N/14/2												-				-		-		DCM	
ć	Ω	Bř		Y-V	LY-RJ	EX-82	Z-X-	\ \ \ \	\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\	3-X	OSA	a o	2 (ာ ၁		A1	A 2	á	5 6	2	5	3	3	2 2	5 5	3								- :								_							
		님	_											(×		× ×	2 5	E S	}			2	P2	<u> </u>	DP4	P5	9d	24	- 6	ב ב	6					

 Job No.:
 61087

 Project:
 Sanctuary of Peace

 Design Storm:
 100-Year Storm (1% Probability)

 Jurisdiction:
 DCM

Sub-Basin and Combined Flows (Modified from Standard Form SF-2)

9/16/2019 14:38

ASM

Date: Calcs By: Checked By:

<u>ഇ</u>	42"	(min)																																					
Travel Time	Vosc	(ft/s)																																					
Ţ	Length	Œ												e e e e e e e e e e e e e e e e e e e	*******	***************************************																							1
	D	(ii)								•													******																
	Mnngs Length	Œ																																					
Pipe Flow	Mnngs	c																																					
Ω.	Slope	(%)																																					
	ø	(cfs)																																					
	ø	(cfs)					******		*******				- 	******							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,	***************************************							····	-				1
Streetflow	Length	€	***************************************																																				
S	ø)	(%)							*********																														1
	0100	(cfs)						-	*********				ini			######################################	mues				,	452.4	φ	9.	1.5	106.0	***************************************	230.2	7.007	c	1 0	4 4	10.0) (137.0	<u> </u>		1
noff		(in/hr)													*****							4.23	6.71	7.00	5.79	4.73		3 50	2 4	7 . 10	2 2 2	0.0	177	3 6	0.00	20.0	20.0		-
Combined Runoff		-				**********																78.97	0.71	23	66	98		מא	3 8	3 2 2 2) a	9 6	1 90	3 6	0.00	2 8	0		$\left \right $
Com	Ş	(Acres)																											,									******	
	وب	(min)																			;	41.9	10.9	9	15.7	23.6		à	, ò	. a	2 5	- 6	, d 20. d 40. d	2 9	10.2	1.4.4	<u>.</u>		
	Q100	(cfs)	50.6	λ. Σ. α	, t	8.4	1.6	81.1	102.7	88.1	1	S. C.	ئ ن ر	2 5	7	12.5	2.4	3.1	1.6	9.0				-	****					*****		-	iewiwi			iinnui.	******		
noff	1100	(in/hr)	18.4	6.02	7 70	6.71	7.00	3.32	3.34	4.73	7	7.16	, 4, a	20.02	0.0	6.25	7.25	6.52	7.27	6.88																			
Direct Runoff	ςA	(Acres)	10.54	9.72	5 6	0.71	0.23	24.44	30.79	18.61	5	20.0	9 9 9 0	20.0	4 6	96.	0.33	0.48	0.23	0.56				-	***************************************														
	٤٠	(min)	23.3	4.4	7.7	10.9	8.0	41.9	41.7	23.9	Č	1 7	7.17	‡ †	ю. :	13.1	ω	11.8	80	10.2		water all a						tar attraction detroit				17. FR 44.0		nadikan) u			***		
		C100	0.35	0.35	0.00	0.35	0.35	0.35	0.37	0.38	i.	C C C	0.0	0.00	S :	0.49	0.49	0.35	0.35	0.35		0.36	0.35	0.35	0.35	0.37		96.0) u	0 0	5 C	0.50	0.35	n i	0.35 ac	0000	0 0 0 0	www.esti	
	Area	(Acres) (30.11	2.06	0.70 0.70	2.03	99.0	69.40	83.92	49.12	i c	1.85	20.30	00.0	9.23	4.07	0.66	1.36	0.64	1.61		153.32	2.03	0.66	5.68	59.93		100	4.00	0. 6	00.0	00.1	0.64	2 6	1.61	62.70	90.72		-
-		٦						iplical i	Acces.	julian		indini				diame.	-	wasin,	Maria I				-		-1	alarol, al		, ,			eet u e	indic e	-iumidui		cekajus	بيناني	ulvirenzi		4
	-qns	Basin	EX-A1	X-91	7 - N	5 65 X	85-X)S A	SB	၁၉	,	A1	י ע	<u>.</u> .	. Z	Σ.	2	55	Ħ	35																			
		DP	<u> </u>	نا بي	u U	4 11	. Ш	J	J	<u>U</u>		<u> </u>	<u> </u>	u C	' بي	<u></u>	<u>U</u>	<u>U</u>	J	<u></u>			X			6X:			- 6	7 6	2 2	ž, i		2 !	7.40	ž 6			
	and the same of					manage in co	- Comme														-									- L	Remove	1000		-					- 2

DCM: 1 = C1 * ln (tc) + C2 C1: 2.52 C1: 12.735

Page 1

Sub-Basin Ex-A1 Runoff Calculations

Job No.: 61087 Date: 9/16/2019 10:38 Project: **Sanctuary of Peace** ASM Calcs by: Checked by: Jurisdiction DCM В Soil Type Runoff Coefficient Surface Type Urbanization Non-Urban

Basin Land Use Characteristics

	Area			Runc	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	1,311,446	30.11 0.00	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	1,311,446	30.11	0.02	0.08	0.15	0.25	0.30	0.35	0.0%
	4000								

Basin Travel Time

Shallo	w Channel Grou	nd Cover \$	Short Pastu	ire/Lawns		
	L _{max,Overland}	100 f	t		C_v	7
· •	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	1,700	121	-	-	-	•
Initial Time	100	9	0.090		8.9	N/A DCM Eq. 6-8
Shallow Channel	1,483	107	0.072	1.9	13.1	- DCM Eq. 6-9
Channelized	117	5	0.043	1.6	1.2	- V-Ditch
				t _c	23.3	min.

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yı
Intensity (in/hr)	2.29	2.86	3.34	3.82	4.30	4.81
Runoff (cfs)	1.4	6.9	15.1	28.7	38.8	50.6
Release Rates (cfs/ac)	-	-	-	-	-	•
Allowed Release (cfs)	1.4	6.9	15.1	28.7	38.8	50.6

COM: $1 = C3 \cdot m \text{ (tc)} + C2$ C1 1.19 1.5 1.75 2 2.25 2.52

C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin Ex-B1 Runoff Calculations

Job No.:

61087

Date:

9/16/2019 10:38

Project:

Sanctuary of Peace

Calcs by: Checked by: 3/10/2013 10.30

Jurisdiction

DCM

Soil Type

В

ASM

Runoff Coefficient

Surface Type

Urbanization

Non-Urban

Basin Land Use Characteristics

	Area			Runc	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	89,528	2.06 0.00	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	89,528	2.06	0.02	0.08	0.15	0.25	0.30	0.35	0.0%

4000

Basin Travel Time

Shallo	w Channel Grou	nd Cover §	Short Pastu	ure/Lawns		
	L _{max,Overland}	100 f	t		C _v	7
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	567	30	•	-	-	-
Initial Time	100	8	0.080	-	9.3	N/A DCM Eq. 6-8
Shallow Channel	383	17	0.044	1.5	4.3	- DCM Eq. 6-9
Channelized	84	5	0.060	1.9	0.8	- V-Ditch

t_c 14.4 min.

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	2.86	3.59	4.18	4.78	5.38	6.02
Runoff (cfs)	0.1	0.6	1.3	2.5	3.3	4.3
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	0.1	0.6	1.3	2.5	3.3	4.3

DCM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin Ex-B2 Runoff Calculations

Job No.:

61087

Surface Type

Date:

9/16/2019 10:38

Project:

Sanctuary of Peace

Calcs by: Checked by: ASM

Jurisdiction

Runoff Coefficient

DCM

Soil Type Urbanization В Non-Urban

Basin Land Use Characteristics

	Area	Area		Runoff Coefficient					
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	381,146	8.75 0.00	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	381,146	8.75	0.02	0.08	0.15	0.25	0.30	0.35	0.0%

4000

Basin Travel Time

Shallo	w Channel Grou	nd Cover \$	Short Pastu	ire/Lawns		
	L _{max,Overland}	100 f	Ť		C _v	7
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	311	17	•		-	-
Initial Time	100	7	0.070		9.7	N/A DCM Eq. 6-8
Shallow Channel	211	10	0.047	1.5	2.3	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch
				t.	12.0	min

12.0 min.

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.08	3.86	4.50	5.14	5.78	6.47
Runoff (cfs)	0.5	2.7	5.9	11.2	15.2	19.8
Release Rates (cfs/ac)	-	-	-	-	-	_
Allowed Release (cfs)	0.5	2.7	5.9	11.2	15.2	19.8

DCM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2.25 6.035 7.583 8.847 10 111 11.375

Sub-Basin Ex-C1 Runoff Calculations

Job No.:

61087

Surface Type

Date:

9/16/2019 10:38

Project:

Sanctuary of Peace

Calcs by:

ASM

Jurisdiction

Runoff Coefficient

DCM

Checked by: Soil Type

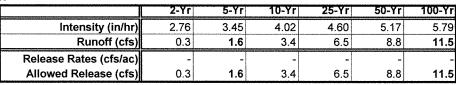
!

Urbanization

Non-Urban

В

Basin Land Use Characteristics


	Area	Area		Runoff Coefficient						
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.	
Forest	247,407	5.68 0.00	0.02	0.08	0.15	0.25	0.3	0.35	0%	
Combined	247,407	5.68	0.02	0.08	0.15	0.25	0.30	0.35	0.0%	

4000

Basin Travel Time

Shallo	w Channel Grou	nd Cover \$	Short Pastu	ire/Lawns		
	L _{max,Overland}	100 f	't		C_v	7
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	722	36	-	-	-	-
Initial Time	100	11	0.110	-	8.3	N/A DCM Eq. 6-8
Shallow Channel	622	25	0.040	1.4	7.4	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch
				tc	15.7 r	nin.

Rainfall Intensity & Runoff

DGM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin Ex-C2 Runoff Calculations

Job No.:

61087

Date:

9/16/2019 10:38

Project:

Sanctuary of Peace

Calcs by:

ASM

Jurisdiction

Runoff Coefficient

DCM

Surface Type

Checked by:

Soil Type Urbanization B Non-Urban

Basin Land Use Characteristics

	Area	Area		Runoff Coefficient					
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	88,571 -	2.03 0.00	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	88,571	2.03	0.02	0.08	0.15	0.25	0.30	0.35	0.0%

88571

Basin Travel Time

Shallo	w Channel Grou	nd Cover \$	Short Pastu	ire/Lawns		
	L _{max,Overland}	100 f	ť		C _v	7
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	300	25	-		-	-
Initial Time	100	8	0.080	~	9.3	N/A DCM Eq. 6-8
Shallow Channel	200	17	0.085	2.0	1.6	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch
				t _c	10.9	min.

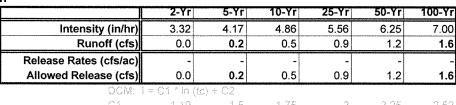
Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Үг	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.19	4.00	4.67	5.33	6.00	6.71
Runoff (cfs)	0.1	0.7	1.4	2.7	3.7	4.8
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	0.1	0.7	1.4	2.7	3.7	4.8

DCM: I = C1 * in (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin Ex-C3 Runoff Calculations

Job No.: 61087 Date: 9/16/2019 10:38 Project: **Sanctuary of Peace** Calcs by: ASM Checked by: Jurisdiction DCM Soil Type В Runoff Coefficient **Surface Type** Urbanization Non-Urban


Basin Land Use Characteristics

	Area			Runc	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	28,874	0.66 0.00	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	28,874	0.66	0.02	0.08	0.15	0.25	0.30	0.35	0.0%

Basin Travel Time

Shallo	w Channel Grou	nd Cover \$	Short Pastu	ire/Lawns		
	L _{max,Overland}	100 f	t		C_v	7
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	217	17	_	-	-	-
Initial Time	100	10	0.100	•	8.6	N/A DCM Eq. 6-8
Shallow Channel	117	7	0.060	1.7	1.1	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch
				t _c	9.8	min.

Rainfall Intensity & Runoff

C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin OS A Runoff Calculations

Job No.:

61087

Date:

9/16/2019 10:38

Project:

Sanctuary of Peace

Calcs by: Checked by: 9/10/2019 10.30

Jurisdiction

Runoff Coefficient

DCM

Surface Type

Soil Type

Urbanization

ASM

B Non-Urban

Basin Land Use Characteristics

	Area	Area		Runoff Coefficient					
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	3,004,559	68.98	0.02	0.08	0.15	0.25	0.3	0.35	0%
Gravel	18,357	0.42	0.57	0.59	0.63	0.66	0.68	0.7	80%
	Salara -	0.00							
		0.00							
Combined	3,022,916	69.40	0.02	0.08	0.15	0.25	0.30	0.35	0.5%

4000

Basin Travel Time

Shallo	w Channel Grou	nd Cover	Short Pastu	ire/Lawns		
	L _{max,Overland}	100 f	ŧ		C _v	7
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	3,017	146	-	-	-	-
Initial Time	100	3	0.030	-	12.8	N/A DCM Eq. 6-8
Shallow Channel	1,030	65	0.063	1.8	9.8	- DCM Eq. 6-9
Channelized	1,887	78	0.041	1.6	19.4	- V-Ditch
				tc	41.9	min.

Rainfall Intensity & Runoff

•						
	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	1.59	1.98	2.31	2.64	2.97	3.32
Runoff (cfs)	2.6	11.4	24.5	46.2	62.3	81.1
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	2.6	11.4	24.5	46.2	62.3	81.1

Sub-Basin OS B Runoff Calculations

 Job No.:
 61087
 Date:
 9/16/2019 10:38

 Project:
 Sanctuary of Peace
 Calcs by:
 ASM

Checked by:

JurisdictionDCMSoil TypeBRunoff CoefficientSurface TypeUrbanizationNon-Urban

Basin Land Use Characteristics

	Area			Runc	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	3,507,946	80.53	0.02	0.08	0.15	0.25	0.3	0.35	0%
Driveways & Walks	16,239	0.37	0.89	0.9	0.92	0.94	0.95	0.96	100%
Gravel	77,470	1.78	0.57	0.59	0.63	0.66	0.68	0.7	80%
Roofs	53,907	1.24	0.71	0.73	0.75	0.78	0.8	0.81	90%
Combined	3,655,562	83.92	0.05	0.10	0.17	0.27	0.32	0.37	3.5%

4000

Basin Travel Time

Shallo	ow Channel Grou	ind Cover \$	Short Pasti	ure/Lawns		
	L _{max,Overland}	100 f	t		C_v	7
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	3,017	146	-	-	-	
Initial Time	100	3	0.030	-	12.5	N/A DCM Eq. 6-8
Shallow Channel	1,030	65	0.063	1.8	9.8	- DCM Eq. 6-9
Channelized	1,887	78	0.041	1.6	19.4	- V-Ditch

t_c 41.7 min.

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	1.60	1.99	2.32	2.65	2.98	3.34
Runoff (cfs)	6.1	17.4	33.6	60.0	79.7	102.7
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	6.1	17.4	33.6	60.0	79.7	102.7

DCM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin OS C Runoff Calculations

 Job No.:
 61087
 Date:
 9/16/2019 10:38

Project: Sanctuary of Peace Calcs by: ASM Checked by:

Jurisdiction DCM Soil Type B

Runoff Coefficient Surface Type Urbanization Non-Urban

Basin Land Use Characteristics

	Area			Runo	ff Coeffici	ent		***************************************	%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	2,023,425	46.45	0.02	0.08	0.15	0.25	0.3	0.35	0%
Driveways & Walks	76,619	1.76	0.89	0.9	0.92	0.94	0.95	0.96	100%
Gravel	29,852	0.69	0.57	0.59	0.63	0.66	0.68	0.7	80%
Roofs	9,943	0.23	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	2,139,839	49.12	0.06	0.12	0.19	0.28	0.33	0.38	5.1%

4000

Basin Travel Time

Shallo	w Channel Grou	nd Cover §	Short Pastu	ire/Lawns		
	L _{max,Overland}	100 f	t		C _v	7
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	1,692	129	-	-	-	-
Initial Time	100	5	0.050	-	10.4	N/A DCM Eq. 6-8
Shallow Channel	995	70	0.070	1.9	8.9	- DCM Eq. 6-9
Channelized	597	54	0.090	2.2	4.6	- V-Ditch

t_c 23.9 min.

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	2.26	2.82	3.29	3.76	4.23	4.73
Runoff (cfs)	6.9	16.6	30.2	52.3	68.8	88.1
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	6.9	16.6	30.2	52.3	68.8	88.1
OCM: 1	= C1 * In (to) + C2				

C1 1.19 1.5 1.75 2 2.25 2.52 C2 8.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin A1 Runoff Calculations

 Job No.:
 61087
 Date:
 9/16/2019 10:38

Project: Sanctuary of Peace Calcs by: ASM

Jurisdiction DCM Soil Type B

Runoff Coefficient Surface Type Urbanization Non-Urban

Basin Land Use Characteristics

	Area			Runc	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	50,438	1.16	0.02	0.08	0.15	0.25	0.3	0.35	0%
Driveways & Walks	16,558	0.38	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	13,532	0.31	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	80,528	1.85	0.31	0.36	0.41	0.48	0.52	0.55	35.7%

80528

Basin Travel Time

Shallo	w Channel Grou	nd Cover I	Forest			
	L _{max,Overland}	100 f	t		C _v	5
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Ait} (min)
Total	317	23	-	_		-
Initial Time	100	11	0.110	-	6.1	N/A DCM Eq. 6-8
Shallow Channel	217	12	0.055	1.2	3.1	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch
					0.4	

t_c 9.1 min.

Checked by:

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.40	4.26	4.97	5.68	6.39	7.16
Runoff (cfs)	2.0	2.8	3.8	5.1	6.1	7.3
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	2.0	2.8	3.8	5.1	6.1	7.3

C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin A2 Runoff Calculations

Job No.:

61087

Date:

9/16/2019 10:38

Project:

Sanctuary of Peace

Calcs by: Checked by: ASM

Jurisdiction

Runoff Coefficient

DCM

Surface Type

Soil Type Urbanization

Non-Urban

В

Basin Land Use Characteristics

	Area		Runoff Coefficient						%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	1,232,700	28.30	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	1,232,700	28.30	0.02	0.08	0.15	0.25	0.30	0.35	0.0%

Basin Travel Time

Shallo	w Channel Grou	nd Cover I	Forest			
	L _{max,Overland}	100 f	ft		C _v	5
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	1,700	121	-	-	_	-
Initial Time	100	9	0.090	_	8.9	N/A DCM Eq. 6-8
Shallow Channel	1,483	107	0.072	1.3	18.4	- DCM Eq. 6-9
Channelized	117	5	0.043	5.7	0.3	- V-Ditch
				t _c	27.7	min.

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	2.08	2.60	3.04	3.47	3.90	4.37
Runoff (cfs)	1.2	5.9	12.9	24.6	33.1	43.3
Release Rates (cfs/ac)	-	-	-	_	_	-
Allowed Release (cfs)	1.2	5.9	12.9	24.6	33.1	43.3

DCM: I = C1 * In (tc) + C2 1.19 1.5 6.035 7.583 8 847 10 111 11.375 12.735

Sub-Basin B1 Runoff Calculations

Job No.:

61087

Date:

9/16/2019 10:38

Project:

Sanctuary of Peace

Calcs by:

Checked by:

Jurisdiction

DCM

Soil Type Urbanization

ASM

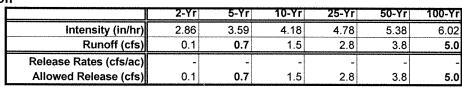
В Non-Urban

Runoff Coefficient

Surface Type

Basin Land Use Characteristics

	Area	Area		Runoff Coefficient						
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.	
Forest	102,701	2.36 0.00	0.02	0.08	0.15	0.25	0.3	0.35	0%	
Combined	102,701	2.36	0.02	0.08	0.15	0.25	0.30	0.35	0.0%	


4000

Basin Travel Time

Shallo	w Channel Grou	nd Cover \$	Short Pastu	ire/Lawns		
	L _{max,Overland}	100 f	it		C_{v}	7
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	567	30		-	-	-
Initial Time	100	8	0.080	-	9.3	N/A DCM Eq. 6-8
Shallow Channel	383	17	0.044	1.5	4.3	- DCM Eq. 6-9
Channelized	84	5	0.060	1.9	8.0	- V-Ditch

14.4 min.

Rainfall Intensity & Runoff

C1 1.19 1.5 1.75 2.25 6 035 7 583 8.847

Sub-Basin B2 Runoff Calculations

 Job No.:
 61087
 Date:
 9/16/2019 10:38

 Project:
 Sanctuary of Peace
 Calcs by:
 ASM

Checked by:

JurisdictionDCMSoil TypeBRunoff CoefficientSurface TypeUrbanizationNon-Urban

Basin Land Use Characteristics

	Area		Runoff Coefficient						
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	394,481	9.06	0.02	0.08	0.15	0.25	0.3	0.35	0%
Driveways & Walks	7,783	0.18	0.89	0.9	0.92	0.94	0.95	0.96	100%
Combined	402,264	9.23	0.04	0.10	0.16	0.26	0.31	0.36	1.9%
	4000								

Basin Travel Time

Shallo	w Channel Grou	nd Cover	Short Pastu	ire/Lawns		
	L _{max,Overland}	100 f	t		C _v	7
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	311	17	-	_	-	-
Initial Time	100	7	0.070	-	9.5	N/A DCM Eq. 6-8
Shallow Channel	211	10	0.047	1.5	2.3	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch
				t _c	11.8 1	nin.

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	1Y-001
Intensity (in/hr)	3.09	3.87	4.52	5.17	5.81	6.51
Runoff (cfs)	1.1	3.4	6.9	12.6	16.8	21.7
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	1.1	3.4	6.9	12.6	16.8	21.7
DCM: I=	C1 * In (tc) + C2				
C1	1.19	1.5	1.75	2	2.25	2.52

6 035 7.583

8 847

10 111 11.375

Sub-Basin C1 Runoff Calculations

Job No.: 61087 Date: 9/16/2019 10:38 Project: Sanctuary of Peace ASM Calcs by:

Checked by: Jurisdiction DCM Soil Type

В Runoff Coefficient **Surface Type** Urbanization Non-Urban

Basin Land Use Characteristics

	Area	Runoff Coefficient							
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	130,377	2.99	0.02	0.08	0.15	0.25	0.3	0.35	0%
Driveways & Walks	20,192	0.46	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	26,845	0.62	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	177,414	4.07	0.22	0.27	0.33	0.41	0.45	0.49	25.0%

177414

Basin Travel Time

Shallo	w Channel Grou	nd Cover I	-orest			
	L _{max,Overland}	100 f	t		C _v	5
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	557	37	-	-	-	-
Initial Time	100	16	0.160	-	6.0	N/A DCM Eq. 6-8
Shallow Channel	457	21	0.046	1.1	7.1	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch
				t.	13.1 ו	min.

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	2.97	3.72	4.35	4.97	5.59	6.25
Runoff (cfs)	2.7	4.1	5.8	8.3	10.2	12.5
Release Rates (cfs/ac)	-	-	-	-	-	_
Allowed Release (cfs)	2.7	4.1	5.8	8.3	10.2	12.5
DCM: I =	G1 * In (to) + C2	***************************************			
F 4	4.40	4 5	4 75	rty.	2.25	0.50

7.583 8 847

Sub-Basin C2 Runoff Calculations

Job No.:

61087

Date:

9/16/2019 10:38

Project:

Sanctuary of Peace

Calcs by: Checked by:

Jurisdiction

Runoff Coefficient

DCM

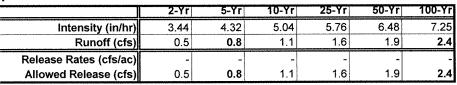
Surface Type

Soil Type Urbanization

ASM

В Non-Urban

Basin Land Use Characteristics


	Area		Runoff Coefficient						
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	20,454	0.47	0.02	0.08	0.15	0.25	0.3	0.35	0%
Driveways & Walks	1,280	0.03	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	7,150	0.16	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	28,884	0.66	0.23	0.28	0.33	0.41	0.45	0.49	26.7%

28884

Basin Travel Time

Shallo	w Channel Grou	nd Cover F	- Forest			
	L _{max,Overland}	100 f	t		C _v	5
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	189	12	-	_	-	-
Initial Time	89	6	0.067	-	7.5	N/A DCM Eq. 6-8
Shallow Channel	100	6	0.060	1.2	1.4	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch
				t _c	8.8	min.

Rainfall Intensity & Runoff

1.19 8 847

Sub-Basin C3 Runoff Calculations

 Job No.:
 61087
 Date:
 9/16/2019 10:38

 Project:
 Sanctuary of Peace
 Calcs by:
 ASM

 Checked by:
 Checked by:

JurisdictionDCMSoil TypeBRunoff CoefficientSurface TypeUrbanizationNon-Urban

Basin Land Use Characteristics

	Area	Area			Runoff Coefficient						
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.		
Forest	59,267	1.36	0.02	0.08	0.15	0.25	0.3	0.35	0%		
Combined	59,267	1.36	0.02	0.08	0.15	0.25	0.30	0.35	0.0%		

59267

Basin Travel Time

Shallo	w Channel Grou	nd Cover I	Forest			
	L _{max,Overland}	100 f	ť		C _v	5
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	273	20	-	-	-	-
Initial Time	100	7	0.070	-	9.7	N/A DCM Eq. 6-8
Shallow Channel	173	13	0.075	1.4	2.1	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch
				t _c	11.8 :	min.

•

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.10	3.88	4.53	5.18	5.82	6.52
Runoff (cfs)	0.1	0.4	0.9	1.8	2.4	3.1
Release Rates (cfs/ac)	-	-	-	-	-	-
Release Rates (cfs/ac) Allowed Release (cfs)	0.1	0.4	0.9	1.8	2.4	3.1

C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin C4 Runoff Calculations

Job No.:

61087

Date:

9/16/2019 10:38

Project:

Sanctuary of Peace

Calcs by:

9/10/2019 10.3

Jurisdiction

Checked by: Soil Type

В

ASM

Runoff Coefficient

DCM Surface Type

Urbanization

Non-Urban

Basin Land Use Characteristics

	Area			Runc	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	28,016	0.64	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	28,016	0.64	0.02	0.08	0.15	0.25	0.30	0.35	0.0%

28016

Basin Travel Time

Shallo	w Channel Grou	nd Cover I	orest			
	L _{max,Overland}	100 f	t		C_v	5
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	221	21	-	-	-	•
Initial Time	81	11	0.136		7.0	N/A DCM Eq. 6-8
Shallow Channel	140	10	0.071	1.3	1.7	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch
						•

t_c 8.8 min.

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.45	4.33	5.05	5.77	6.49	7.27
Runoff (cfs)	0.0	0.2	0.5	0.9	1.3	1.6
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	0.0	0.2	0.5	0.9	1.3	1.6

C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Sub-Basin C5 Runoff Calculations

Job No.: 61087 Date: 9/16/2019 10:38 Project: Sanctuary of Peace ASM Calcs by: Checked by: Jurisdiction DCM Soil Type В Runoff Coefficient **Surface Type** Urbanization Non-Urban

Basin Land Use Characteristics

	Area			Runc	off Coeffici	ent			%	
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.	
Forest	70,265	1.61	0.02	0.08	0.15	0.25	0.3	0.35	0%	
Combined	70,265	1.61	0.02	0.08	0.15	0.25	0.30	0.35	0.0%	
	70265									

Basin Travel Time

	L _{max,Overland}	100 f	it		C_v	5
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	223	18	_	-	-	•
Initial Time	100	10	0.100	-	8.6	N/A DCM Eq. 6-8
Shallow Channel	123	8	0.065	1.3	1.6	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch
				tc	10.2	min.

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.27	4.10	4.78	5.46	6.14	6.88
Runoff (cfs)	0.1	0.5	1.2	2.2	3.0	3.9
Release Rates (cfs/ac)	-	-	-	-	-	
Allowed Release (cfs)	0.1	0.5	1.2	2,2	3.0	3.9

C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

M.V.E., Inc. 1903 Lelaray Street., Suite 200 Colorado Springs, CO 80909 (719) 635-5736
 JOB
 60/087
 SANCTHRARY OF VEHOL

 SHEET NO.
 OF

 CALCULATED BY
 DATE

 CHECKED BY
 DATE

	SCALE																									

		fun kearran		X	7																					
		***											.,													
				Z.,	ر ورس	3/1			7		30	ا بر مسي	امر اسد	<												
				Cook 9	// E				\ \ \	1-1 10	2 all yr			л /					,	 						ATTECONOMINA
				ζ,	and the second	24			<u> </u>	4-maried	7		^ /	/4::/						 						
		Est.		d			Colo), et							\$	1.11	2	Л			 	 					
		List	5	L.			l La	4	4	3-1				Đ		4	75			 	 					
,																				 	 					
		C	5	3.			/ 7	. 1					_/	23	2 12	7					 					
					ļ																 					
		£-	k:	A	11;		· 4	, \$	7					50	7.4	>										
									annock Property					- vestion	· · · · · · · · · · · · · · · · · · ·	and the					 					
							A COLUMN TO THE PARTY OF THE PA	Water a same						is the second	CQQASGasser-											TO THE REAL PROPERTY.
				0,		44 44		gain .	7 a	2				25	4	e grap										
					\$	-														 				***************************************		
			ļ		ļ															 	 					
			-											, , , , , , , , , , , , , , , , , , , ,						 	 					
																						,				
				ļ																	 					
				ļ															<u> </u>		 					
				ļ																	 				<u></u>	
				ļ					.,,,,											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 				ļ	
											***********								<u> </u>	 ,	 					
														ļ		,,,,,					 			ļ		
																		ļ			 	ļ				
																	ļ					ļ		ļ		
										İ		 	Ī			,,,,,,,,,,,,			1	 	 [Ĭ	-		

Combined Sub-Basin EX4 Runoff Calculations

Includes Basins EX-C2

Job No.:

61087

Date:

9/16/2019 10:38

Project:

Sanctuary of Peace

Calcs by:

Jurisdiction

Runoff Coefficient

DCM

Surface Type

Checked by:

Soil Type Urbanization

Base or

Q_i (cfs)

Sides

v (ft/s)

Dia (ft) z:1 (ft/ft)

ASM

В Non-Urban

Basin Land Use Characteristics

	Area			Runc	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	88,571	2.03	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	88,571	2.03	0.02	80.0	0.15	0.25	0.30	0.35	0.0%

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ΔZ_0 (ft)
Furthest Reach	EX-C2	-	300	25
Channelized-1 Channelized-2				
Channelized-3				
Total			300	25

tc 10.9 (min)

t (min)

10.9

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas

 $\mathbf{Q}_{\mathrm{Minor}}$ Q_{Major}

(cfs) - 5-year Storm (cfs) - 100-year Storm

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.19	4.00	4.67	5.33	6.00	6.71
Site Runoff (cfs)	0.13	0.65	1.42	2.71	3.66	4.78
OffSite Runoff (cfs)	-	0.00	-		-	0.00
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	-	0.7	-	-	-	4.8

DCM: i = C1 * in (tc) + G2 1.5 7.583

Notes

Combined Sub-Basin EX5 Runoff Calculations

Includes Basins EX-C3

Job No.: 61087 Date: 9/16/2019 10:38 Project: **Sanctuary of Peace** Calcs by: **ASM** Checked by:

Jurisdiction DCM В Soil Type Runoff Coefficient **Surface Type** Urbanization Non-Urban

Basin Land Use Characteristics

	Area			Runc	ff Coeffici	ent	***************************************		%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	28,874	0.66	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	28,874	0.66	0.02	80.0	0.15	0.25	0.30	0.35	0.0%

Basin Travel Time

	Sub-basin or	Material		Elev.		Base or	Sides		
	Channel Type	Type	L (ft)	ΔZ_0 (ft)	Q _i (cfs)	Dia (ft)	z:1 (ft/ft)	v (ft/s)	t (min)
Furthest Reach	EX-C3	-	217	17	-	-	-	-	9.8
Channelized-1									
Channelized-2									
Channelized-3									
Total			217	17					

9.8 (min)

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas

 Q_{Minor} (cfs) - 5-year Storm $\mathsf{Q}_{\mathsf{Major}}$ (cfs) - 100-year Storm

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.32	4.17	4.86	5.56	6.25	7.00
Site Runoff (cfs)	0.04	0.22	0.48	0.92	1.24	1.62
OffSite Runoff (cfs)		0.00	-	-	-	0.00
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)		0.2	-	-	-	1.6

DGM: I = C1 * In (tc) + C2 1.19 8.847

Notes

Combined Sub-Basin EX7 Runoff Calculations

Includes Basins EX-C1

 Job No.:
 61087
 Date:
 9/16/2019 10:38

 Project:
 Sanctuary of Peace
 Calcs by:
 ASM

 Checked by:
 Checked by:
 B

Jurisdiction DCM
Runoff Coefficient Surface Type

e Urbanization Non-Urban

Basin Land Use Characteristics

	Area	Area			Runoff Coefficient						
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.		
Forest	247,407	5.68	0.02	0.08	0.15	0.25	0.3	0.35	0%		
Combined	247,407	5.68	0.02	0.08	0.15	0.25	0.30	0.35	0.0%		

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ΔZ_0 (ft)	Q _i (cfs)	Base or Dia (ft)	Sides z:1 (ft/ft)	v (ft/s)	t (min)
Furthest Reach Channelized-1 Channelized-2 Channelized-3	EX-C1	-	722	36	-	-	•	-	15.7
Total			722	36					

t_c 15.7 (min)

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas

 $\mathsf{Q}_{\mathsf{Minor}}$ $\mathsf{Q}_{\mathsf{Major}}$

(cfs) - 5-year Storm

(cfs) - 100-year Storm

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	2.76	3.45	4.02	4.60	5.17	5.79
Site Runoff (cfs)	0.31	1.57	3.43	6.53	8.82	11.51
OffSite Runoff (cfs)	-	0.00	-	-	-	0.00
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	-	1.6	-	-	-	11.5

DCM: I = C1 * in (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.738

Notes

Combined Sub-Basin EX8 Runoff Calculations

Includes Basins EX-B1

Job No.: 61087 Date: 9/16/2019 10:38 Project: **Sanctuary of Peace** Calcs by: **ASM** Checked by:

Jurisdiction **DCM** Soil Type В Runoff Coefficient **Surface Type** Urbanization Non-Urban

Basin Land Use Characteristics

	Area		Runoff Coefficient					%	
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	89,528	2.06	0.02	0.08	0.15	0.25	0.3	0.35	0%
Combined	89,528	2.06	0.02	0.08	0.15	0.25	0.30	0.35	0.0%

Basin Travel Time

	Sub-basin or	Material		Elev.		Base or	Sides		
	Channel Type	Туре	L (ft)	ΔZ_0 (ft)	Q _i (cfs)	Dia (ft)	z:1 (ft/ft)	v (ft/s)	t (min)
Furthest Reach	EX-A1	-	1,700	121	-	-	_	-	23.3
Channelized-1									
Channelized-2									
Channelized-3									
Total			1,700	121					

t_c 23.3 (min)

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas

 Q_{Minor} (cfs) - 5-year Storm $\mathsf{Q}_{\mathsf{Major}}$ (cfs) - 100-year Storm

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	2.29	2.86	3.34	3.82	4.30	4.81
Site Runoff (cfs)	0.09	0.47	1.03	1.96	2.65	3.46
OffSite Runoff (cfs)	-	0.00		-	-	0.00
Release Rates (cfs/ac)	-	-	-	-	-	
Allowed Release (cfs)	-	0.5	-	-	-	3.5

DCM: I = C1 * In (tc) + C2 7.583 8.847 11.375

Notes

Combined Sub-Basin EX9 Runoff Calculations

Includes Basins OS C EX-B1 EX-B2

Job No.: 61087 Date: 9/16/2019 10:38

Project: Sanctuary of Peace Calcs by: ASM

Jurisdiction DCM So

Surface Type

Soil Type **B**Urbanization **Non-Urban**

Basin Land Use Characteristics

Runoff Coefficient

	Area		Runoff Coefficient					%	
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	2,494,099	57.26	0.02	0.08	0.15	0.25	0.3	0.35	0%
Gravel	29,852	0.69	0.57	0.59	0.63	0.66	0.68	0.7	80%
Driveways & Walks	76,619	1.76	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	9,943	0.23	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	2,610,513	59.93	0.05	0.11	0.18	0.28	0.33	0.37	4.2%

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ΔZ_0 (ft)	Q _i (cfs)	Base or Dia (ft)	Sides z:1 (ft/ft)	v (ft/s)	t (min)
Furthest Reach Channelized-1	os c	-	1,692 0	129 0	-	-	-	-	23.9
Channelized-2 Channelized-3									
Total			1,692	129					

t_c 23.9 (min)

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas

 ${\cal Q}_{\rm Minor}$ (cfs) - 5-year Storm (cfs) - 100-year Storm

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	2.26	2.82	3.29	3.76	4.23	4.73
Site Runoff (cfs)	7.37	19.00	35.58	62.44	82.51	106.03
OffSite Runoff (cfs)		0.00	_	_	_	0.00
Release Rates (cfs/ac)	-	_	-	=	-	-
Allowed Release (cfs)	-	19.0	-	-	-	106.0

Notes

M.V.E., Inc.

1903 Lelaray Street., Suite 200 Colorado Springs, CO 80909 (719) 635-5736 CHECKED BY____ SCALE_ 8/1/ 122, P Q__= 230, Z @A

Combined Sub-Basin DP2 Runoff Calculations

Includes Basins A1

 Job No.:
 61087
 Date:
 9/16/2019 10:38

 Project:
 Sanctuary of Peace
 Calcs by:
 ASM

Checked by:

cked by:

Jurisdiction DCM Soil Type B

Runoff Coefficient Surface Type Urbanization Non-Urban

Basin Land Use Characteristics

	Area	1		Runc	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	50,438	1.16	0.02	0.08	0.15	0.25	0.3	0.35	0%
Gravel	-	0.00	0.57	0.59	0.63	0.66	0.68	0.7	80%
Driveways & Walks	16,558	0.38	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	13,532	0.31	0.71	0.73	0.75	0.78	0.8	0.81	90%
Combined	80,528	1.85	0.31	0.36	0.41	0.48	0.52	0.55	35.7%

Basin Travel Time

Sub-basin or Channel Type	Material Type	L (ft)	Elev. ΔZ_0 (ft)	Q _i (cfs)	Base or Dia (ft)	Sides z:1 (ft/ft)	v (ft/s)	t (min)
A1	_	317	23	_	_	-	-	9.1
	2	0	0					
		317	23					
	Channel Type	Channel Type Type A1 -	Channel Type Type L (ft) A1 - 317 2 0	Channel Type Type L (ft) ΔZ₀ (ft) A1 - 317 23 2 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

2 = Natural, Winding, minimal vegetation/shallow grass

(min) 9.1

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas

 Q_{Minor} (cfs) - 5-year Storm Q_{Major} (cfs) - 100-year Storm

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.40	4.26	4.97	5.68	6.39	7.16
Site Runoff (cfs)	1.98	2.82	3.76	5.05	6.12	7.31
OffSite Runoff (cfs)		0.00	-	-	•	0.00
Release Rates (cfs/ac)	-	-	-	-	_	-
Allowed Release (cfs)		2.8	_	-	-	7.3

Notes

Combined Sub-Basin DP3 Runoff Calculations

Includes Basins C2

Job No.:

61087

Date:

9/16/2019 10:38

Project:

Sanctuary of Peace

Calcs by: Checked by:

Q_i (cfs)

ASM

Jurisdiction

DCM

Soil Type

В

Runoff Coefficient

Surface Type

Urbanization

Base or

Sides

v (ft/s)

Dia (ft) z:1 (ft/ft)

Non-Urban

Basin Land Use Characteristics

	Area	Area			Runoff Coefficient						
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.		
Forest	20,454	0.47	0.02	0.08	0.15	0.25	0.3	0.35	0%		
Gravel	-	0.00	0.57	0.59	0.63	0.66	0.68	0.7	80%		
Driveways & Walks	1,280	0.03	0.89	0.9	0.92	0.94	0.95	0.96	100%		
Roofs	7,150	0.16	0.71	0.73	0.75	0.78	8.0	0.81	90%		
Combined	28,884	0.66	0.23	0.28	0.33	0.41	0.45	0.49	26.7%		

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ΔZ_0 (ft)
Furthest Reach Channelized-1	C2	-	189 0	12
Channelized-1		2	U	0
Channelized-3				
Total			189	12

2 = Natural, Winding, minimal vegetation/shallow grass

t_c 8.8 (min)

t (min)

8.8

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas

Q_{Minor} Q_{Major}

(cfs) - 5-year Storm

(cfs) - 100-year Storm

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.44	4.32	5.04	5.76	6.48	7.25
Site Runoff (cfs)	0.52	0.79	1.11	1.57	1.94	2.36
OffSite Runoff (cfs)	-	0.00	_	-	-	0.00
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	-	8.0	-	-	-	2.4

DCM: I = C1 * In (tc) + C2 C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.035 7.583 8.847 10.111 11.375 12.735

Notes

Combined Sub-Basin DP4 Runoff Calculations

Includes Basins C3

Job No.:

61087

Date:

9/16/2019 10:38

Project:

Sanctuary of Peace

Calcs by:

ASM

Sides

Dia (ft) z:1 (ft/ft) v (ft/s)

Jurisdiction

Runoff Coefficient

DCM

Surface Type

Checked by:

Soil Type

Urbanization

Base or

Q_i (cfs)

В Non-Urban

Basin Land Use Characteristics

	Area	Runoff Coefficient						%	
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	59,267	1.36	0.02	0.08	0.15	0.25	0.3	0.35	0%
Gravel	-	0.00	0.57	0.59	0.63	0.66	0.68	0.7	80%
Driveways & Walks	-	0.00	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	-	0.00	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	59,267	1.36	0.02	0.08	0.15	0.25	0.30	0.35	0.0%

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ΔZ_0 (ft)
Furthest Reach Channelized-1	C3	-	273	20 0
Channelized-2 Channelized-3				
Total			273	20

11.8 (min)

t (min)

11.8

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas DP3 / Pond C2 Outflow

 $\mathbf{Q}_{\text{Minor}}$

0 (cfs) - 5-year Storm

Q_{Major}

1.1 (cfs) - 100-year Storm

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.10	3.88	4.53	5.18	5.82	6.52
Site Runoff (cfs)	0.08	0.42	0.92	1.76	2.38	3.10
OffSite Runoff (cfs)	-	0.00	**	-	_	1.10
Release Rates (cfs/ac)		-	-	-	_	-
Allowed Release (cfs)	-	0.4	-	-	-	4.2

DCM: 1 = C1 * In (tc) + G2

Notes

Combined Sub-Basin DP5 Runoff Calculations

Includes Basins C4

Job No.:

61087

Date:

9/16/2019 10:38

Project:

Sanctuary of Peace

Calcs by:

ASM

Jurisdiction

DCM

Checked by:

Soil Type

Urbanization

В Non-Urban

Runoff Coefficient

Surface Type

Basin Land Use Characteristics

	Area	Area			Runoff Coefficient					
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.	
Forest	28,016	0.64	0.02	0.08	0.15	0.25	0.3	0.35	0%	
Gravel	-	0.00	0.57	0.59	0.63	0.66	0.68	0.7	80%	
Driveways & Walks	-	0.00	0.89	0.9	0.92	0.94	0.95	0.96	100%	
Roofs	-	0.00	0.71	0.73	0.75	0.78	8.0	0.81	90%	
Combined	28,016	0.64	0.02	0.08	0.15	0.25	0.30	0.35	0.0%	

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ΔZ_0 (ft)	Q _i (cfs)	Base or Dia (ft)	Sides z:1 (ft/ft)	v (ft/s)	t (min)
Furthest Reach	C4	-	221	21	-	•	-	-	8.8
Channelized-1		2	0	0					
Channelized-2				0					
Channelized-3									
Total			221	21					

2 = Natural, Winding, minimal vegetation/shallow grass

8.8 (min)

8.8

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas

Q_{Minor} $\mathbf{Q}_{\text{Major}}$ (cfs) - 5-year Storm

(cfs) - 100-year Storm

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.45	4.33	5.05	5.77	6.49	7.27
Site Runoff (cfs)	0.04	0.22	0.49	0.93	1.25	1.64
OffSite Runoff (cfs)	-	0.00	-	-	-	0.00
Release Rates (cfs/ac) Allowed Release (cfs)	-	0.2	-	-	-	1.6

DCM: I = C1 * In (tc) + C28.847 10.111

Notes

Combined Sub-Basin DP6 Runoff Calculations

Includes Basins C1

Job No.: 61087 Date: 9/16/2019 10:38 Project: **Sanctuary of Peace** Calcs by: ASM Checked by:

DCM Jurisdiction Soil Type В Runoff Coefficient **Surface Type** Urbanization Non-Urban

Basin Land Use Characteristics

	Area			Runc	ff Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	130,377	2.99	0.02	0.08	0.15	0.25	0.3	0.35	0%
Gravel	-	0.00	0.57	0.59	0.63	0.66	0.68	0.7	80%
Driveways & Walks	20,192	0.46	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	26,845	0.62	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	177,414	4.07	0.22	0.27	0.33	0.41	0.45	0.49	25.0%

Basin Travel Time

	Sub-basin or	Material		Elev.		Base or	Sides		
	Channel Type	Type	L (ft)	ΔZ_0 (ft)	Q_i (cfs)	Dia (ft)	z:1 (ft/ft)	v (ft/s)	t (min)
Furthest Reach	C1	-	557	37	-	-	_	-	13.1
Channelized-1		2	0	0					
Channelized-2									
Channelized-3									
Total			557	37					
	2	! = Natural, Wi	nding, minima	l vegetation/sl	hallow grass			t.	

13.1 (min)

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas

Q_{Minor} (cfs) - 5-year Storm $\mathsf{Q}_{\mathsf{Major}}$ (cfs) - 100-year Storm

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	2.97	3.72	4.35	4.97	5.59	6.25
Site Runoff (cfs)	2.71	4.12	5.81	8.27	10.23	12.45
OffSite Runoff (cfs)	-	0.00		_	-	0.00
Release Rates (cfs/ac) Allowed Release (cfs)	-	4.1	-	-	-	12.5
DCM: I =	C1 * in (tc) + G2				
C1	1.19	1.5	1.75	2	2.25	2.52

7 583

Notes

Combined Sub-Basin DP7 Runoff Calculations

Includes Basins C5

Job No.: 61087 Date: 9/16/2019 10:38

Checked by:

Project: Sanctuary of Peace ASM Calcs by:

Jurisdiction DCM Soil Type

Runoff Coefficient **Surface Type** Urbanization Non-Urban

Basin Land Use Characteristics

	Area			Runc	off Coeffici	ent			%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	70,265	1.61	0.02	0.08	0.15	0.25	0.3	0.35	0%
Gravel	-	0.00	0.57	0.59	0.63	0.66	0.68	0.7	80%
Driveways & Walks	_	0.00	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	-	0.00	0.71	0.73	0.75	0.78	0.8	0.81	90%
Combined	70,265	1.61	0.02	0.08	0.15	0.25	0.30	0.35	0.0%

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ΔZ_0 (ft)	Q _i (cfs)	Base or Dia (ft)	Sides z:1 (ft/ft)	v (ft/s)	t (min)
	visionalista esta esta esta esta esta esta esta e	Type	` '		G (0.0)	Dia (it)	2 (1010)	V (100)	` ,
Furthest Reach	C5	-	223	18	-	-	-	-	10.2
Channelized-1		2	0	0					
Channelized-2									
Channelized-3									
Total			223	18					

2 = Natural, Winding, minimal vegetation/shallow grass

10.2 (min)

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas DP6 / Pond C1 Outflow

 Q_{Minor} 0.1 (cfs) - 5-year Storm 6.1 (cfs) - 100-year Storm $\mathsf{Q}_{\mathsf{Major}}$

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.27	4.10	4.78	5.46	6.14	6.88
Site Runoff (cfs)	0.11	0.53	1.16	2.20	2.97	3.88
OffSite Runoff (cfs)	-	0.10		-	-	6.10
Release Rates (cfs/ac)	-	-	**			-
Allowed Release (cfs)	-	0.6	-	·	_	10.0

DCM: I = C1 * In (tc) + C2 1.19 1.5 02 6.035 8.847

Notes

Combined Sub-Basin DP8 Runoff Calculations

Includes Basins B1

Job No.:

61087

Date:

9/16/2019 10:38

Project:

Sanctuary of Peace

Surface Type

Calcs by:

Jurisdiction

Runoff Coefficient

DCM

Checked by:

Q_i (cfs)

Soil Type Urbanization

Base or

Dia (ft) z:1 (ft/ft)

Sides

v (ft/s)

ASM

Non-Urban

В

Basin Land Use Characteristics

	Area		Runoff Coefficient						
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	102,701	2.36	0.02	0.08	0.15	0.25	0.3	0.35	0%
Gravel	-	0.00	0.57	0.59	0.63	0.66	0.68	0.7	80%
Driveways & Walks	-	0.00	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	-	0.00	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	102,701	2,36	0.02	0.08	0.15	0.25	0.30	0.35	0.0%

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ΔZ_0 (ft)
Furthest Reach	B1		567	30
Channelized-1				0
Channelized-2				
Channelized-3				
Total			567	30

14.4 (min)

t (min)

14.4

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas

 Q_{Minor} $\mathsf{Q}_{\mathsf{Major}}$

(cfs) - 5-year Storm

(cfs) - 100-year Storm

Rainfall Intensity & Runoff

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yı
Intensity (in/hr)	2.86	3.59	4.18	4.78	5.38	6.02
Site Runoff (cfs)	0.14	0.68	1.48	2.82	3.81	4.97
OffSite Runoff (cfs)	-	0.00	-			0.00
Release Rates (cfs/ac)	-	-	-	-	-	
Allowed Release (cfs)	-	0.7	-	-	-	5.0

Notes

Combined Sub-Basin DP9 Runoff Calculations

Includes Basins B1 B2 OS C

Job No.:

61087

Date:

9/16/2019 10:38

Project:

Sanctuary of Peace

Calcs by: Checked by:

Q_i (cfs)

ASM

Jurisdiction

DCM

Soil Type

Runoff Coefficient

Surface Type

Urbanization

Base or

Sides

Dia (ft) z:1 (ft/ft) v (ft/s)

Non-Urban

В

Basin Land Use Characteristics

	Area		Runoff Coefficient						%
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	2,520,607	57.87	0.02	0.08	0.15	0.25	0.3	0.35	0%
Gravel	29,852	0.69	0.57	0.59	0.63	0.66	0.68	0.7	80%
Driveways & Walks	84,402	1.94	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	9,943	0.23	0.71	0.73	0.75	0.78	8.0	0.81	90%
Combined	2,644,804	60.72	0.06	0.11	0.18	0.28	0.33	0.38	4.4%

Basin Travel Time

	Sub-basin or Channel Type	Material Type	L (ft)	Elev. ΔZ ₀ (ft)
Furthest Reach	B1	-	567	30
Channelized-1			0	-0
Channelized-2				
Channelized-3				
Total			567	30

t_c 14.4 (min)

t (min)

14.4

Contributing Offsite Flows (Added to Runoff and Allowed Release, below.)

Contributing Basins/Areas

 Q_{Minor} Q_{Major}

(cfs) - 5-year Storm

(cfs) - 100-year Storm

Rainfall Intensity & Runoff

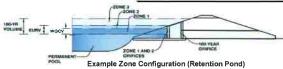
	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	2.86	3.59	4.18	4.78	5.38	6.02
Site Runoff (cfs)	9.84	24.91	46.31	80.92	106.80	137.16
OffSite Runoff (cfs)	-	0.00	-	-		0.00
Release Rates (cfs/ac)		PA	-	-	-	
Allowed Release (cfs)	-	24.9	-	-	-	137.2

DCM: I = C1 * In (tc) + C2 8.847

Notes

3 Hydraulic Calculations

IRF Worksheet
FS EDB design calculations (UD-BMP)
FS EDB design calculations (UD-Detention)
Spillway Detail
Culvert Calculations


	Design Procedure Form	n: Sand Filter (SF)
	UD-BMP (Version 3,07,	March 2018) Sheet 1 of 2
Designer:	D. Gorman	
Company:	M.V.E., Inc.	
Date:	September 13, 2019	
Project:	Sanctuary of Peace	
Location:	Sub-basin A1 - Sand Filter	
1. Basin Sto	rage Volume	
	e Imperviousness of Tributary Area, I _a if all paved and roofed areas upstream of sand filter)	I _a = 35.7 %
B) Tributa	ary Area's Imperviousness Ratio (i = I _a /100)	i = 0.357
	Quality Capture Volume (WQCV) Based on 12-hour Drain Time V= 0.8 * (0.91* i³ - 1.19 * i² + 0.78 * i)	WQCV = 0.13 watershed inches
D) Contri	buting Watershed Area (including sand filter area)	Area = 80,528 sq ft
	Quality Capture Volume (WQCV) Design Volume v = WQCV / 12 * Area	V _{wacv} =cu ft
,	atersheds Outside of the Denver Region, Depth of ge Runoff Producing Storm	d ₆ = 0.42 in
	/atersheds Outside of the Denver Region, · Quality Capture Volume (WQCV) Design Volume	V _{WQCV OTHER} = 882 cu ft
	nput of Water Quality Capture Volume (WQCV) Design Volume f a different WQCV Design Volume is desired)	V _{WQCV USER} =cu ft
2. Basin Geo	ometry	
A) WQCV	/ Depth	D _{wacv} = 0.7 ft
	Filter Side Slopes (Horizontal distance per unit vertical, flatter preferred). Use "0" if sand filter has vertical walls.	Z = 3.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
C) Minimu	um Filter Area (Flat Surface Area)	A _{Min} = 359 sq ft
D) Actual	Filter Area	A _{Actual} = 1200 sq ft
E) Volume	e Provided	V _T = 5990 cu ft
3. Filter Mate	erial	Choose One 18" CDOT Class B or C Filter Material Other (Explain):
4. Underdra	in System	Choose One
A) Are un	derdrains provided?	● YES ○ NO
B) Under	drain system orifice diameter for 12 hour drain time	
	Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice	y =ft
	ii) Volume to Drain in 12 Hours	Vol ₁₂ = 882 cu ft
	iii) Orifice Diameter, 3/8" Minimum	D _O = 11/16 in

	Design Procedure	Form: Sand Filter (SF)	
Designer:	D. Gorman M.V.E., Inc.		Sheet 2 of 2
Company: Date:	September 13, 2019		
Project:	Sanctuary of Peace		
Location:	Sub-basin A1 - Sand Filter		
A) Is an i	able Geomembrane Liner and Geotextile Separator Fabric impermeable liner provided due to proximity uctures or groundwater contamination?	Choose One YES NO	
	ribe the type of energy dissipation at inlet points and means of eying flows in excess of the WQCV through the outlet	emergency spillway with rip-rap protection rip-rap at inflow points	
Notes:			

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Project: Sancuary of Peace
Basin ID: Sub-basin A1 - Sand Fifter - DP2

Required Volume Calculation

uired volume Calculation		5200
Selected BMP Type =	SF	
Watershed Area =	1.85	acres
Watershed Length =	317	ft
Watershed Slope =	0.073	ft/ft
Watershed Imperviousness ≈	35.70%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Desired WQCV Drain Time =	12.0	hours

Location for 1-hr Rainfall Depths =	User Input	
Water Quality Capture Volume (WQCV) =	0.021	acre-feet
Excess Urban Runoff Volume (EURV) =	0.069	acre-feet
2-yr Runoff Volume (P1 = 1,19 in.) =	0.054	acre-feet
5-yr Runoff Volume (P1 = 1,5 in.) =	0.075	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.110	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.172	acre-feet

5-yr Runoff Volume (P1 = 1,5 in.) =	0.075	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.110	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.172	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.213	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	0.268	acre-feet
500-yr Runoff Volume (P1 = 3.4 in.) =	0.408	acre-feet
Approximate 2-yr Detention Volume =	0.050	acre-feet
Approximate 5-yr Detention Volume =	0.071	acre-feet
Approximate 10-yr Detention Volume =	0.099	acre-feet
Approximate 25-yr Detention Volume =	0,113	acre-feet
Approximate 50-yr Detention Volume =	0.118	acre-feet
Approximate 100-yr Detention Volume =	0,137	acre-feet

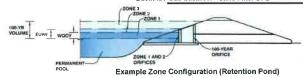
Optional User Override 1-hr Precipitation

inches	1.19
inches	1.50
inches	1.75
inches	2.00
inches	2.25
inches	2.52
inches	3.40

Stage-Storage Calculation

Zone 1 Volume (WQCV) =	0.021	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.048	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.069	acre-feet
Total Detention Basin Volume =	0.137	acre-feet
Initial Surcharge Volume (ISV) =	N/A	ft^3
Initial Surcharge Depth (ISD) =	N/A	ft
Total Available Detention Depth (H _{total}) =	3.00	ft
Depth of Trickle Channel (H _{TC}) =	N/A	ft
Slope of Trickle Channel (S_{TC}) =	N/A	ft/ft
Slopes of Main Basin Sides (S _{main}) =	3	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	2	

117		
Initial Surcharge Area (A _{ISV}) =	0	ft^2
Surcharge Volume Length (L _{ISV}) =	0.0	ft
Surcharge Volume Width (W _{ISV}) =	0.0	ft
Depth of Basin Floor (H _{FLOOR}) =	0.00	ft
Length of Basin Floor (L _{FLOOR}) =	49.4	ft
Width of Basin Floor (W _{FLOOR}) =	24.7	ft
Area of Basin Floor (A _{FLOOR}) =	1,222	ft^2
Volume of Basin Floor (V _{FLOOR}) =	0	ft^3
Depth of Main Basin (H _{MAIN}) =	3.00	ft
Length of Main Basin (L _{MAIN}) =	67.4	ft
Width of Main Basin (W _{MAIN}) =	42.7	ft
Area of Main Basin (A _{MAIN}) =	2,880	ft^2
Volume of Main Basin (V _{MAIN}) =	5,978	ft^3
Calculated Total Basin Volume (Vtotal) =	0.137	acre-fee


Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volum
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft^2)	Area (ft^2)	(acre)	(ft^3)	(ac-ft)
Media Surface	0.00		49.4	24.7	1,222		0.028		
	0.25		50.9	26.2	1,331		0.031	306	0.007
	0.50		52.4	27.7	1,448		0.033	653	0,015
Zone 1 (WQCV)	0.66		53.4	28.7	1,531		0.035	907	0.021
	0.75		53.9	29.2	1,571		0.036	1,031	0.024
	1.00		55.4	30.7	1,697		0.039	1,439	0.033
	1.25		56,9	32.2	1,829		0.042	1,880	0.043
	1.50		58.4	33.7	1,965		0.045	2,354	0.054
	1.75		59.9	35.2	2,105		0.048	2,863	0,066
Zone 2 (EURV)	1.81		60.3	35.6	2,145		0.049	3,011	0.069
1	2.00		61,4	36.7	2,250		0,052	3,407	0,078
	2.25		62.9	38.2	2,405		0.055	4,012	0.092
	2.50		64.4	39.7	2,559		0.059	4,632	0.10
	2.75		65.9	41.2	2,717		0.062	5,292	0.12
Zone 3 (100-year)	3.00		67.4	42.7	2,880		0.066	5,991	0.138
	3.25		68.9	44.2	3,048		0.070	6,732	0.15
	3.50		70.4	45.7	3,220		0.074	7,516	0.17
	3,75		71.9	47.2	3,396		0.078	8,342	0.193
	4.00		73,4	48.7	3,577		0.082	9,214	0.212
	4.25		74.9	50.2	3,763		0.086	10,131	0.23
	4.50		76.4	51.7	3,953		0.091	11,096	0.25
	4.75		77.9	53.2	4,147		0.095	12,108	0.27
	5.00		79.4	54.7	4,346		0.100	13,170	0.302
	5.25		80.9	56.2	4,550		0.104	14,282	0.32
	5.50		82.4	57.7	4,758		0.109	15,445	0.35
	5.75		83.9	59.2	4,970		0.114	16,661	0,38
	6.00		85.4	60.7	5,187		0.119	17,930	0.41
	6.25		86.9	62.2	5,409		0.124	19,255	0,44
	6.50		88.4	63.7	5,634		0,129	20,635	0.474
	6.75		89,9	65.2	5,865		0.135	22,072	0.50
	7.00		91.4	66.7	6,100		0.140	23,568	0.54
	7.25		92.9	68.2	6,339		0.146	25,123	0.57
	7.50		94,4	69.7	6,583		0.151	26,738	0.61
	7.75		95.9	71.2	6,832		0.157	28,415	0.65
	8.00		97.4	72.7	7,085		0.163	30,154	0.69
	8.25		98.9	74.2	7,342		0.169	31,958	0.73
	8.50		100.4	75.7	7,604		0.175	33,826	0.77
	8.75		101.9	77.2	7,871		0.181	35,760	0.82
	9.00		103.4	78.7	8,142		0.187	37,761	0.86
	9.25		104.9	80.2	8,417		0,193	39,831	0.91
	9,50		106.4	81.7	8,697		0.200	41,970	0.96
	9,75		107.9	83.2	8,982		0.206	44,180	1.01
	10.00		109.4	84.7	9,271		0.213	46,462	1.06
	10.25		110.9	86.2	9,564		0.220	48,816	1.12
	10.50		112.4	87.7	9,862		0.226	51,244	1.17
	10,75		113.9	89.2	10,164		0.233	53,747	1.23
	11,00		115.4	90.7	10,471		0.240	56,327	1.29
	11.25		116.9	92.2	10,783		0.248	58,983	1.35
	11.50		118.4	93.7	11,099		0.255	61,719	1.41
	11.75		119.9	95.2	11,419		0.262	64,533	1.48
	12.00		121.4	96.7	11,744		0.270	67,429	1.54
	12.25		122.9	98.2	12,074		0.277	70,406	1.61
	12.50		124.4	99.7	12,408		0.285	73,466	1.68
	12.75		125.9	101.2	12,746		0.293	76,610	1.75

61087-UD-Detention_v3.07-A1.xlsm, Basin 9/13/2019, 7:53 AM

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

Project: Sanctuary of Peace
Basin ID: Sub-basin A1 - Sand Filter DP2

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	0.66	0,021	Filtration Media
Zone 2 (EURV)	1.81	0.048	Orifice Plate
one 3 (100-year)	3.00	0.069	Weir&Pipe (Restrict)
_		0.137	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = 2.00 ft (distance below the filtration media surface) Underdrain Orifice Diameter =

Calculated Parameters for Underdrain Underdrain Orifice Area = 0.0 Underdrain Orifice Centroid = 0.03

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

		(-),
Invert of Lowest Orifice =	0.66	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	1.86	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	N/A	inches
Orifice Plate: Orifice Area per Row =	N/A	inches

Calcu	lated Parameters	for Plat
WQ Orifice Area per Row =	N/A	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.66	1.06	1.46					
Orifice Area (sq. inches)	0.76	0.76	0.76					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
t top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Diameter =	N/A	N/A	inches

Calculated F	Parameters for Vert	ical Orifice	
	Not Selected	Not Selected	1
Vertical Orifice Area =	N/A	N/A	ft ²
Vertical Orifice Centroid =	N/A	N/A	feet

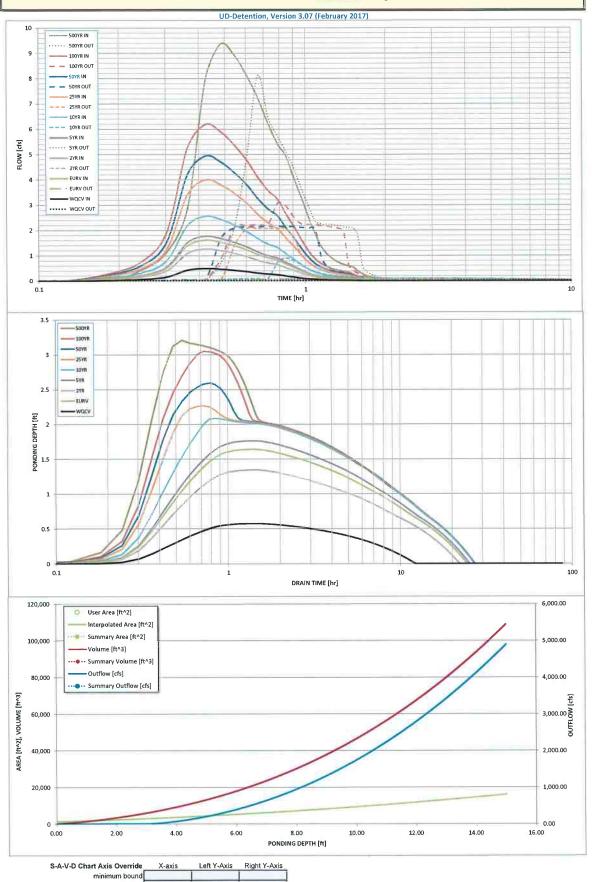
User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

Depth at

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	2.00	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	2.92	N/A	feet
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	2.92	N/A	feet
Overflow Grate Open Area % =	81%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated			
	Zone 3 Weir	Not Selected	
Height of Grate Upper Edge, H _t =	2.00	N/A	feet
Over Flow Weir Slope Length =	2.92	N/A	feet
Grate Open Area / 100-yr Orifice Area =	32.34	N/A	should be ≥ 4
Overflow Grate Open Area w/o Debris =	6.91	N/A	ft ²
Overflow Grate Open Area w/ Debris =	3.45	N/A	ft ²

User Input: Out

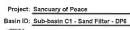

put: Outlet Pipe w/ Flow Restriction Plate (C	ircular Orifice, Restri	ctor Plate, or Recta	ngular Orifice)	Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate			e
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	2.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.21	N/A	ft ²
Outlet Pipe Diameter =	12.00	N/A	inches	Outlet Orifice Centroid =	0.19	N/A	feet
Restrictor Plate Height Above Pipe Invert =	3.80		inches Half-Central Angle of	Restrictor Plate on Pipe =	1.20	N/A	radians

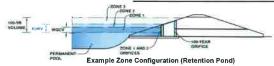
input: Energency Spinway (Nectangular or Frapezoidal)							
Spillway Invert Stage=	3.00	ft (relative to basin bottom at Stage = 0 ft)					
Spillway Crest Length =	20.00	feet					
Spillway End Slopes =	2.00	H;V					
Freeboard above Max Water Surface =	1.00	feet					

Calcula	ted Parameters for S	pillway
Spillway Design Flow Depth=	0.21	feet
Stage at Top of Freeboard =	4.21	feet
Basin Area at Top of Freeboard =	0.09	acres

Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.40
Calculated Runoff Volume (acre-ft) =	0.021	0.069	0.054	0.075	0.110	0.172	0.213	0.268	0.408
OPTIONAL Override Runoff Volume (acre-ft) =	8								
Inflow Hydrograph Volume (acre-ft) =	0.020	0.068	0.053	0.075	0.109	0.172	0.213	0.267	0.407
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.03	0.29	0.90	1.24	1.64	2.61
Predevelopment Peak Q (cfs) =	0.0	0.0	0.0	0.1	0.5	1.7	2.3	3.0	4.8
Peak Inflow Q (cfs) =	0.5	1.6	1.3	1.8	2.6	4.0	4.9	6.2	9.4
Peak Outflow Q (cfs) =	0.0	0.1	0.1	0.1	0.9	2.1	2.2	3.1	8.1
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.7	1.7	1.3	0.9	1.0	1.7
Structure Controlling Flow =	Filtration Media	Plate	Plate	Plate	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	Spillway	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.1	0.3	0.3	0.3	0,3
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	12	23	21	24	25	24	23	22	20
Time to Drain 99% of Inflow Volume (hours) =	12	24	22	25	26	26	26	25	25
Maximum Ponding Depth (ft) =	0.58	1.64	1.35	1.77	2.09	2.27	2.60	3.06	3.21
Area at Maximum Ponding Depth (acres) =	0.03	0.05	0.04	0.05	0.05	0.06	0.06	0.07	0.07
Maximum Volume Stored (acre-ft) =	0.018	0.061	0.047	0.067	0.083	0.093	0.112	0.141	0.151

Detention Basin Outlet Structure Design


maximum bound


	Design Procedure Form	n: Sand Filter (SF)
Designer:	UD-BMP (Version 3.07,	March 2018) Sheet 1 of 2
Company:	M.V.E., Inc.	
Date:	September 13, 2019	
	Sanctuary of Peace	
Project:	Sub-basin C1 - Sand Filter	
Location:	Sub-basili C1 - Salid Filter	
1. Basin Sto	rage Volume	
	re Imperviousness of Tributary Area, I _a if all paved and roofed areas upstream of sand filter)	I _a = 25.0 %
B) Tributa	ary Area's Imperviousness Ratio (i = I _a /100)	i = 0.250
C) Water WQC	Quality Capture Volume (WQCV) Based on 12-hour Drain Time V= 0,8 * (0.91* i ³ - 1.19 * i ² + 0.78 * i)	WQCV = 0.11 watershed inches
D) Contri	buting Watershed Area (including sand filter area)	Area = 177,412 sq ft
	Quality Capture Volume (WQCV) Design Volume v = WQCV / 12 * Area	V _{WQCV} =cu ft
	atersheds Outside of the Denver Region, Depth of ge Runoff Producing Storm	d ₆ = 0.42 in
	atersheds Outside of the Denver Region, Quality Capture Volume (WQCV) Design Volume	V _{WQCV OTHER} = 1,558 cu ft
	nput of Water Quality Capture Volume (WQCV) Design Volume f a different WQCV Design Volume is desired)	V _{WQCV USER} =cu ft
2. Basin Geo	pmetry	
A) WQCV	Depth	D _{WQCV} = 0.8 ft
	ilter Side Slopes (Horizontal distance per unit vertical, flatter preferred). Use "0" if sand filter has vertical walls,	Z = 3.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
C) Minimu	ım Filter Area (Flat Surface Area)	A _{Min} = 554 sq ft
D) Actual	Filter Area	A _{Actual} = 1843 sq ft
E) Volume	e Provided	V _T = 1601 cu ft
3. Filter Mate	erial	Choose One 18" CDOT Class B or C Filter Material Other (Explain):
4. Underdra	n System	Choose One
A) Are un	derdrains provided?	YES NO
B) Under	drain system orifice diameter for 12 hour drain time	I.
	Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice	y =ft
	ii) Volume to Drain in 12 Hours	Vol ₁₂ = 1,558 cu ft
	iii) Orifice Diameter, 3/8" Minimum	D _O = 15/16 in

	Design Procedure F	orm: Sand Filter (SF)	
	2.0		Sheet 2 of 2
Designer:	D. Gorman		
Company:	M.V.E., Inc.		
Date:	September 13, 2019		
Project:	Sanctuary of Peace		
Location:	Sub-basin C1 - Sand Filter		
A) Isan	able Geomembrane Liner and Geotextile Separator Fabric impermeable liner provided due to proximity uctures or groundwater contamination?	Choose One YES NO	
	tlet Works ribe the type of energy dissipation at inlet points and means of eying flows in excess of the WQCV through the outlet	emergency spillway with rip-rap protection	on
Notes:			

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

ired Volume Calculation		<u>-011</u>
Selected BMP Type =	SF	
Watershed Area =	4 07	acres
Watershed Length =	557	ft
Watershed Slope =	0 066	ft/ft
Watershed Imperviousness =	25 00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100 0%	percent
Percentage Hydrologic Soil Groups C/D =	0 0%	percent
Desired WQCV Drain Time =	12 0	hours

reiceitage riyurologic ooli Groups Crb =	0 0 /6	percent
Desired WQCV Drain Time =	12 0	hours
Location for 1-hr Rainfall Depths = L	Jser Input	90
Water Quality Capture Volume (WQCV) =	0.037	acre-feet
Excess Urban Runoff Volume (EURV) =	0,103	acre-feet
2-yr Runoff Volume (P1 = 1, 19 in.) =	0.077	acre-feet
5-yr Runoff Volume (P1 = 1,5 in.) =	0.112	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.180	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.324	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.417	acre-feet
100-yr Runoff Volume (P1 = 2.52 in) =	0.538	acre-feet
500-yr Runoff Volume (P1 = 3,4 in.) =	0.844	acre-feet
Approximate 2-yr Detention Volume =	0.072	acre-feet
Approximate 5-yr Detention Volume =	0,105	acre-feet
Approximate 10-yr Detention Volume =	0 160	acre-feet
Approximate 25-yr Detention Volume =	0,191	acre-feet
Approximate 50-yr Detention Volume =	0.201	acre-feet
Approximate 100-yr Detention Volume =	0.242	acre-feet
7		

Optional User Override

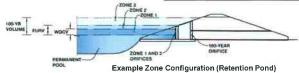
1-hr Precipit	
1 19	inches
1 50	inches
1 75	inches
2.00	inches
2 25	inches
2 52	inches
3 40	inches

Stage-Storage Calculation

Zone 1 Volume (WQCV) =	0.037	acre-fe
Zone 2 Volume (EURV - Zone 1) =	0.066	acre-fe
Zone 3 Volume (100-year - Zones 1 & 2) =	0,139	acre-fe
Total Detention Basin Volume =	0.242	acre-fe
Initial Surcharge Volume (ISV) =	N/A	ft^3
Initial Surcharge Depth (ISD) =	N/A	ft
Total Available Detention Depth (H _{total}) =	3 50	ft
Depth of Trickle Channel (H _{TC}) =	N/A	ft
Slope of Trickle Channel (Stc) =	N/A	ft/ft
Slopes of Main Basin Sides (Smain) =	3	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	3	

12		
Initial Surcharge Area (A _{tsv}) =	0	ft^2
Surcharge Volume Length (Lisv) =	0.0	ft
Surcharge Volume Width (Wisv) =	0,0	ft
Depth of Basin Floor (H _{FLOOR}) =	0.00	ft
Length of Basin Floor (L _{FLOOR}) =	74.3	ft
Width of Basin Floor (WFLOOR) =	24.8	ft
Area of Basin Floor (A _{FLOOR}) =	1,843	ft^2
Volume of Basin Floor (V _{FLOOR}) =	0	ft^3
Depth of Main Basin (H _{MAIN}) =	3.50	ft
Length of Main Basin (L _{MAIN}) =	95.3	ft
Width of Main Basin (W _{MAIN}) =	45.8	ft
Area of Main Basin (A _{MAIN}) =	4,365	ft^2
Volume of Main Basin (V _{MAIN}) =	10,552	ft^3
Calculated Total Basin Volume (V _{total}) =	0.242	acre-fee
		_

Depth Increment =	0.25	ft			-	I Out			_
Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft^2)	Optional Override Area (ft^2)	Area (acre)	Volume (ft^3)	Volum (ac-ft
Media Surface	0.00	- Citago (III)	74.3	24.8	1,843	7100(112)	0.042	111 07	140 10
	0.25		75.8	26.2	1,987		0.046	460	0.011
	0.50		77.3	27.7	2,143		0.049	976	0.022
	0.75		78.8	29.2	2,143		0.053	1,531	0.022
Zone 1 (WQCV)	0.77		79.0	29.4	2,302		0.053	1,601	0.037
Zone I (WQCV)	1.00	_	80.3	30.7	2,322	-	0.053	2,127	0.037
	1.25	+	81.8	32.2	2,636	-	0.061	2,765	0.043
	1.50	-	83.3	33.7	2,809	_	0.064	3,445	0.079
	1.75		84.8	35.2	2,809		0.069	4,170	0.078
Zone 2 (EURV)	1.85		85.4	35.9	3,066		0.070	4,503	0.103
ZORE Z (EURV)	2.00		86.3	36.7	3,169	-	0.073	4,939	0.113
	2.25		87.8	38.3	3,363	_	0.077	5,788	0.133
	2.50		89.3	39.8	3,555	_	0.082	6,653	0.153
	2.75		90.8	41.3	3,751		0.082	7,566	0.174
	3.00		92.3	41.3	3,751		0.086	8,528	0.174
	3.00		92.3	44.3	4,156	-	0.091	9,542	0.19
Zone 3 (100	3.49		95.3	44.3	4,156		0.100	10,563	0.21
Zone 3 (100-year)	3.49		95.3	45.7	4,357	-	0.100	10,563	0.24
	3.75		96.8	47.3	4,579		0.100	11,725	0.24
	4.00		98.3	48.8	4,798		0.105	12,897	0.26
	4.00		99.8	50.3	5,021		0.115	14,124	0.290
	4.20		101.3	51.8	5,021		0.113	15,408	0.354
	4.75		101.3	53.3	5,480	-	0.126	16,749	0.384
	5.00		102.8	54.8	5,480		0.126	18,148	0.384
	5.00		104.3	56.3	5,717		0.131	19,607	0.41
	5.25		105.8	57.8	6,203		0.137		0.45
	5.75		107.3	59.3		_	0.142	21,127	0.46
	6.00		110.3	60.8	6,453 6,707	_	0.148	22,709 24,354	0.55
	6.25	_	111.8	62.3	6,966		0.160	26,063	0.59
	6.50	-	113.3	63.8	7,230	_	0.166	27,838	0.63
	6.75		114.8	65.3	7,498		0,172	29,678	0.68
	7.00		116.3	66.8	7,770		0.172	31,587	0.72
	7.25		117.8	68.3	8,047	_	0.178	33,564	0.72
	7.50	-	119.3	69.8	8,329	_	0.191	35,5611	0.77
	7.75		120.8	71.3	8,615		0.191	37,729	0.86
	8.00		120.8	71.3	8,905	-	0.204	39,918	0.88
	8.25	_	123.8	74.3	_		0.204	_	0.96
	8.25	1	125.3	75.8	9,200		0.211	42,181 44,519	1.02
			125.3	77.3	-	_	0.218	46,932	1.02
	8.75 9.00	_	128.3	78.8	9,803	-	0.225	49,421	1.13
	9.00		128.3	80.3	10,112		0.232	51,988	1.13
	9.25		131.3	81.8	10,425		0.239	54,634	1.25
	9.75		131.3	83.3	11,064		0.247	57,359	1.25
	10.00		134.3	84.8	11,391	-	0.254	60,166	1.38
	10,00	-	134.3	86.3	11,722		0.261	63,055	1.38
	10.25		135,8	86.3	12,057		0.269	66,027	1.51
	10.75			_		-	0.277		-
			138.8	89.3	12,397	-		69,084	1.58
	11.00		140,3	90.8	12,741	-	0.293	72,226	1,65
	11.25		141.8	92.3	13,090	-	0.301	75,455	1.73
	11.50		143.3	93.8	13,444	-	0.309	78,772	1.80
	11.75		144.8	95.3	13,802	-	0.317	82,177	1.88
	12.00	-	146.3	96.8	14,164		0.325	B5,673	1,96
	12.25		147.8	98.3	14,531		0.334	89,260	2.04
	12.50		149 3	99.8	14,903		0.342	92,939	2.13


61087-UD-Detention_v3.07-C1.xlsm, Basin 9/13/2019, 7:54 AM

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

Project: Sanctuary of Peace

Basin ID: Sub-basin C1 - Sand Filter DP6

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	0.77	0.037	Filtration Media
Zone 2 (EURV)	1.85	0.066	Orifice Plate
(100-year)	3.49	0.139	Weir&Pipe (Restrict)
_		0.242	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = 2.00 ft (distance below the filtration media surface)

Underdrain Orifice Diameter = inches 0.96

Calculated Parameters for Underdrain

		_ `
Underdrain Orifice Area =	0.0	ft ²
Underdrain Orifice Centroid =	0.04	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice = 0.77 ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate = ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = 4.20 inches Orifice Plate: Orifice Area per Row = sq. inches (diameter = 15/16 inch) 0.68

lated Parameters to	Plate
4.722E-03	ft ²
N/A	feet
N/A	feet
N/A	ft ²
	4.722E-03 N/A N/A

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.77	1.13	1.50					
Orifice Area (sq. inches)	0.68	0.68	0.68					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected		
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)	
th at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)	Ve
Vertical Orifice Diameter =	N/A	N/A	inches	

Calculated F	Parameters for Vert	ical Orifice	
10	Not Selected	Not Selected	7
LOrifica Area -	N/A	N/A	تما

	Not Selected	Not Selected		Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches			

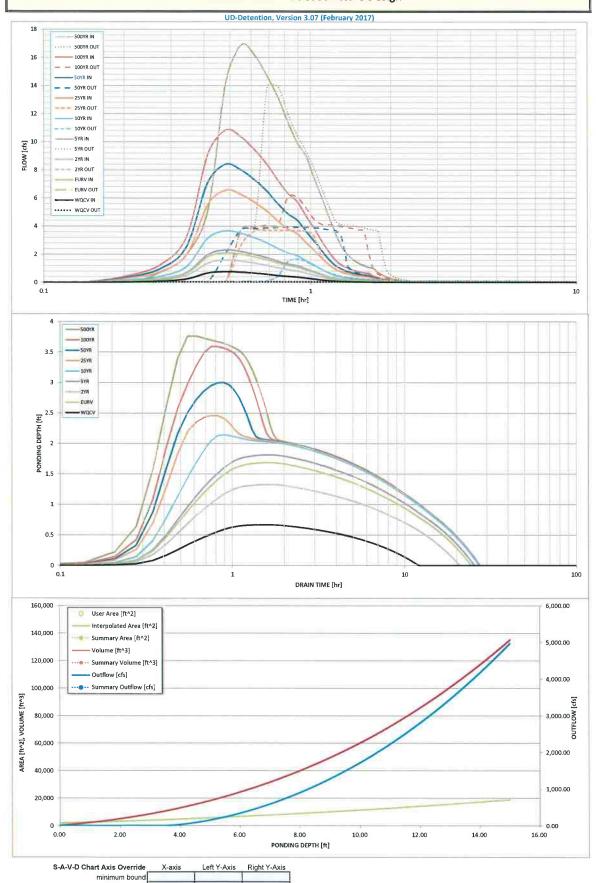
User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	2.00	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	2.92	N/A	feet
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	2.92	N/A	feet
Overflow Grate Open Area % =	81%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	1%

arameters for Ove	rflow Weir	
Zone 3 Weir	Not Selected]
2.00	N/A	feet
2.92	N/A	feet
18.37	N/A	should be ≥ 4
6.91	N/A	ft ²
3,45	N/A	ft²
	2.00 2.92 18.37 6.91	2.00 N/A 2.92 N/A 18.37 N/A 6.91 N/A

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	2.00	N/A	ft (distance below basin bottom at Stage = 0 ft)
Outlet Pipe Diameter =	12.00	N/A	inches
Restrictor Plate Height Above Pipe Invert =	5.80		inches Half-Central


Calculated Parameters	Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate					
	Zone 3 Restrictor	Not Selected	7			
Outlet Orifice Area =	0.38	N/A	ft ²			
Outlet Orifice Centroid =	0.28	N/A	feet			
ral Angle of Restrictor Plate on Pipe =	1.54	N/A	radia			

input. Enletgency Spinway (Rectangular or Trapezoidar)							
Spillway Invert Stage=	3.50	ft (relative to basin bottom at Stage = 0 ft)					
Spillway Crest Length =	24.00	feet					
Spillway End Slopes =	2.00	H;V					
Freeboard above Max Water Surface =	1.00	feet					

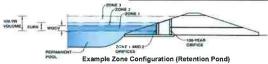
Calculated Parameters for Spills					
Spillway Design Flow Depth=	0.27	feet			
Stage at Top of Freeboard =	4.77	feet			
asin Area at Top of Freeboard =	0.13	acres			

Routed Hydrograph Results_									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.40
Calculated Runoff Volume (acre-ft) =	0.037	0.103	0.077	0.112	0.180	0.324	0.417	0.538	0.844
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.036	0.102	0.077	0.112	0.179	0.323	0.416	0,537	0.843
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.01	0.02	0.25	0.79	1.09	1.46	2.32
Predevelopment Peak Q (cfs) =	0.0	0.0	0.1	0.1	1.0	3.2	4.4	5.9	9,5
Peak Inflow Q (cfs) =	0.8	2,1	1.6	2.3	3.7	6.6	8.4	10.8	16.9
Peak Outflow Q (cfs) =	0.0	0.1	0.1	0.1	1.7	3.7	3.9	6.1	13.9
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.0	1.7	1.2	0.9	1.0	1.5
Structure Controlling Flow =	Filtration Media	Plate	Plate	Plate	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	Spillway	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.2	0.5	0.5	0.6	0.6
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	12	23	20	24	25	24	23	22	19
Time to Drain 99% of Inflow Volume (hours) =	12	24	21	25	27	26	26	26	25
Maximum Ponding Depth (ft) =	0.67	1.69	1.33	1,81	2.14	2.46	3.00	3.59	3.76
Area at Maximum Ponding Depth (acres) =	0.05	0.07	0.06	0.07	0.08	0.08	0.09	0.10	0.11
Maximum Volume Stored (acre-ft) =	0.031	0.092	0.068	0.101	0-124	0.149	0.196	0.252	0.269

Detention Basin Outlet Structure Design

maximum bound

Design Procedure Form: Sand Filter (SF)							
	UD-BMP (Version 3,07,	March 2018) Sheet 1 of 2					
Designer:	D. Gorman						
Company:	M.V.E., Inc.						
Date:	September 13, 2019						
Project:	Sanctuary of Peace						
Location:	Sub-basin C2 - Sand Filter						
1. Basin Stor	rage Volume						
	ve Imperviousness of Tributary Area, I _a if all paved and roofed areas upstream of sand filter)	I _a = 26.7 %					
B) Tributa	ary Area's Imperviousness Ratio (i = I _a /100)	i = 0.267					
	Quality Capture Volume (WQCV) Based on 12-hour Drain Time V= 0.8 * (0.91* i³ - 1,19 * i² + 0.78 * i)	WQCV = 0.11 watershed inches					
D) Contri	buting Watershed Area (including sand filter area)	Area = 28,884 sq ft					
	Quality Capture Volume (WQCV) Design Volume v = WQCV / 12 * Area	V _{wacv} =cu ft					
	atersheds Outside of the Denver Region, Depth of ge Runoff Producing Storm	$d_6 = 0.42$ in					
G) For Watersheds Outside of the Denver Region, Water Quality Capture Volume (WQCV) Design Volume		V _{WQCV OTHER} = 265 cu ft					
	nput of Water Quality Capture Volume (WQCV) Design Volume f a different WQCV Design Volume is desired)	V _{WQCV USER} =cu ft					
2. Basin Geo	ometry						
A) WQCV	/ Depth	$D_{WQCV} = 0.9 ft$					
	filter Side Slopes (Horizontal distance per unit vertical, flatter preferred). Use "0" if sand filter has vertical walls.	Z = 3.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE					
C) Minimu	um Filter Area (Flat Surface Area)	$A_{Min} = 96$ sq ft					
D) Actual	Filter Area	$A_{Actual} = $ sq ft					
E) Volume	e Provided	$V_T = 270$ cu ft					
3. Filter Mat	erial	Choose One 18" CDOT Class B or C Filter Material Other (Explain):					
4. Underdra	in System	Choose One					
A) Are un	derdrains provided?	© YES ○ NO					
B) Under	drain system orifice diameter for 12 hour drain time	L =					
Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice		y =ft					
	ii) Volume to Drain in 12 Hours	Vol ₁₂ = 265 cu ft					
iii) Orifice Diameter, 3/8" Minimum		$D_0 = 3/8$ in					


	Design Procedure F	Form: Sand Filter (SF)	
Designer:	D. Gorman		Sheet 2 of 2
Company:	M.V.E., Inc.		
Date:	September 13, 2019		
Project:	Sanctuary of Peace		
Location:	Sub-basin C2 - Sand Filter		
A) Isan	able Geomembrane Liner and Geotextile Separator Fabric impermeable liner provided due to proximity uctures or groundwater contamination?	Choose One YES NO	
	ribe the type of energy dissipation at inlet points and means of eying flows in excess of the WQCV through the outlet	emergency spillway with rip-rap protection rip-rap at inflow points	76
Notes:			

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Project: Sancuary of Peace

Basin ID: Sub-basin C2 - Sand Filter - DP3

Required Volume Calculation

uned volume Calculation		
Selected BMP Type =	SF]
Watershed Area =	0.66	acres
Watershed Length =	189	ft
Watershed Slope =	0 063	ft/ft
Watershed Imperviousness =	26 70%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100 0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Desired WQCV Drain Time =	12.0	hours
The second secon		

 Location for 1-hr Rainfall Depths =
 User Input

 Water Quality Capture Volume (WQCV) =
 0,006
 acre-feet

 Excess Urban Runoff Volume (EURV) =
 0,018
 acre-feet

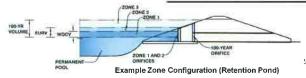
Excess Urban Runoff Volume (EURV) = acre-feet 2-yr Runoff Volume (P1 = 1, 19 in.) = 0.014 acre-feet 5-yr Runoff Volume (P1 = 1.5 in.) = 0.020 acre-feet 10-yr Runoff Volume (P1 = 1,75 in.) = 0.031 acre-feet 25-yr Runoff Volume (P1 = 2 in.) = acre-feet 0.054 50-yr Runoff Volume (P1 = 2.25 in.) = 0.069 acre-feet 100-yr Runoff Volume (P1 = 2.52 in.) = 0.089 acre-feet 500-yr Runoff Volume (P1 = 3.4 in.) = 0.138 acre-feet Approximate 2-yr Detention Volume = 0.013 acre-feet Approximate 5-yr Detention Volume = 0.018 acre-feet Approximate 10-yr Detention Volume = 0.027 acre-feet Approximate 25-yr Detention Volume = 0.032 acre-feet Approximate 50-yr Detention Volume = 0.034 acre-feet Approximate 100-yr Detention Volume = 0.041 acre-feet Optional User Override

1-hr Precipitation				
1 19	inches			
1 50	inches			
1 75	inches			
2 00	inches			
2 25	inches			
2.52	inches			
3 40	inches			

Stage-Storage Calculation

Zone 1 Volume (WQCV) =	0.006	acre-fee
Zone 2 Volume (EURV - Zone 1) =	0.012	acre-fee
Zone 3 Volume (100-year - Zones 1 & 2) =	0.023	acre-fee
Total Detention Basin Volume =	0.041	acre-fee
Initial Surcharge Volume (ISV) =	N/A	ft^3
Initial Surcharge Depth (ISD) =	N/A	ft
Total Available Detention Depth (H _{total}) =	2.00	ft
Depth of Trickle Channel (H _{TC}) =	N/A	ft
Slope of Trickle Channel (S _{TC}) =	N/A	ft/ft
Slopes of Main Basin Sides (S _{main}) =	3	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	2	

		141
Initiat Surcharge Area (A _{tsv}) =	0	ft^2
Surcharge Volume Length (L _{Isv}) =	0.0	ft
Surcharge Volume Width (Wisv) =	0.0	ft
Depth of Basin Floor (H _{FLOOR}) =	0,00	ft
Length of Basin Floor (L _{FLOOR}) =	33.0	ft
Width of Basin Floor (WFLOOR) =	16.5	ft
Area of Basin Floor (A _{FLOOR}) =	546	ft^2
Volume of Basin Floor (V _{FLOOR}) =	0	ft^3
Depth of Main Basin (H _{MAIN}) =	2.00	ft
Length of Main Basin (L _{MAIN}) =	45.0	π
Width of Main Basin (W _{MAIN}) =	28.5	ft
Area of Main Basin (A _{MAIN}) =	1,285	ft^2
Volume of Main Basin (V _{MAIN}) =	1,779	ft^3
Calculated Total Basin Volume (V _{total}) =	0.041	acre-fe
		_


Depth Increment =	0.25	ft							
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft^2)	Area (ft^2)	(acre)	(ft^3)	(ac-ft)
Media Surface	0.00		33.0	16.5	546		0.013		
	0.25		34.5	18.0	619		0.014	140	0.003
Zone 1 (WQCV)	0.44		35.7	19.2	684		0.016	270	0.006
	0.50		36.0	19.5	700		0.016	305	0.007
	0.75		37.5	21.0	786		0.018	490	0.011
	1,00		39.0	22.5	876		0.020	698	0.016
Zone 2 (EURV)	1.09		39.6	23.1	913		0.021	787	0.018
	1,25		40.5	24.0	970		0.022	929	0.021
	1,50		42.0	25,5	1,069		0.025	1,183	0.027
	1,75		43.5	27.0	1,173		0.027	1,464	0.034
	2.00		45.0	28.5	1,280		0.029	1,770	0.041
Zone 3 (100-year)	2,00		45.0	28.5	1,285		0.029	1,783	0.041
	2.25		46.5	30.0	1,397		0.032	2,118	0,049
	2.50		48.0	31.5	1,515		0.035	2,482	0.057
	2.75		49.5	33.0	1,636		0.038	2,876	0.066
	3.00		51.0	34.5	1,762		0.040	3,300	0.076
	3.25		52.5	36.0	1,893		0.043	3,757	0.086
	3,50		54.0	37.5	2,028		0.047	4,247	0.098
	3,75		55.5	39.0	2,168		0.050	4,772	0.110
	4.00		57.0	40.5	2,312		0,053	5,331	0.122
	4.25		58.5	42.0	2,460		0.056	5,928	0.136
	4 50		60.0	43.5	2,613		0.060	6,562	0.151
	4.75		61,5	45.0	2,771		0.064	7,235	0.166
	5.00		63.0	46.5	2,933		0.067	7,948	0.182
	5.25		64.5	48.0	3,100		0.071	8,702	0.200
	5.50		66,0	49.5	3,271		0.075	9,498	0.218
	5.75		67.5	51.0	3,446		0.079	10,338	0.237
	6.00		69.0	52.5	3,627		0.083	11,222	0.258
	6.25		70.5	54.0	3,811		0.087	12,151	0.279
	6.50		72.0	55.5	4,000		0.092	13,128	0.301
	6.75		73.5	57.0	4,194		0.096	14,152	0.325
	7.00		75.0	58.5	4,392		0.101	15,225	0.350
	7.25		76.5	60.0	4,595		0.105	16,348	0.375
	7.50		78.0	61.5	4,802		0.110	17,523	0.402
	7.75		79.5	63.0	5,013		0.115	18,749	0,430
	8.00		81.0	64.5	5,229		0.120	20,030	0.460
	8.25		82.5	66.0	5,450		0.125	21,364	0.490
	8,50		84.0	67.5	5,675		0.130	22,755	0.522
	8.75		85.5	69 0	5,905		0.136	24,202	0,556
	9,00		87.0	70.5	6,139		0.141	25,708	0.590
	9.25		88.5	72.0	6,377		0.146	27,272	0.626
	9.50		90.0	73.5	6,620		0.152	28,897	0,663
	9.75		91_5	75.0	6,868		0.158	30,583	0.702
	10.00		93.0	76.5	7,120		0,163	32,331	0.742
	10,25		94.5	78.0	7,377		0,169	34,143	0.784
	10.50		96.0	79.5	7,638		0,175	36,020	0.827
	10.75		97.5	81.0	7,904		0,181	37,962	0.871
	11.00		99.0	82.5	8,174		0,188	39,972	0.918
	11.25		100.5	84.0	8,448		0,194	42,050	0.965
	11.50		102.0	85.5	8,727		0.200	44,197	1,015
	11.75		103.5	87.0	9,011		0.207	46,414	1.066
	12.00		105.0	88.5	9,299		0.213	48,702	1.118
	12.25		106.5	90.0	9,592		0.220	51,064	1.172
	12.50		108.0	91.5	9,889		0.227	53,499	1.228

61087-UD-Detention_v3.07-C2.xlsm, Basin 9/14/2019, 8:58 AM

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

Project: Sanctuary of Peace
Basin ID: Sub-basin C2 - Sand Filter DP3

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	0.44	0.006	Filtration Media
Zone 2 (EURV)	1.09	0.012	Orifice Plate
(100-year)	2.00	0.023	Weir&Pipe (Restrict)
		0.041	Tatal

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = 2.00 ft (distance below the filtration media surface) Underdrain Orifice Diameter = 0.38 inches

Calculate	d Parameters for U	nderdrain
Underdrain Orifice Area =	0.0	ft ²
Underdrain Orifice Centroid =	0.02	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

t. Office riate with one of more offices of i	imputal stot i	iveli (typically used to dialii vacev alid/of cor
Invert of Lowest Orifice =	0.44	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	1.09	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	4.20	inches
Orifice Plate: Orifice Area per Row =	0.28	sq. inches (diameter = 9/16 inch)

Calcu	iateu rai ailleteis io	Flate
NQ Orifice Area per Row =	1.944E-03	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²
		_

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

[Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.44	0.66	0.87					
Orifice Area (sq. inches)	0.28	0.28	0.28					

1	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

_	Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
epth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Diameter =	N/A	N/A	inches

Calculated F	arameters for Vert	ical Orifice	
	Not Selected	Not Selected	7
Vertical Orifice Area =	N/A	N/A	ft ²
/ertical Orifice Centroid =	N/A	N/A	feet

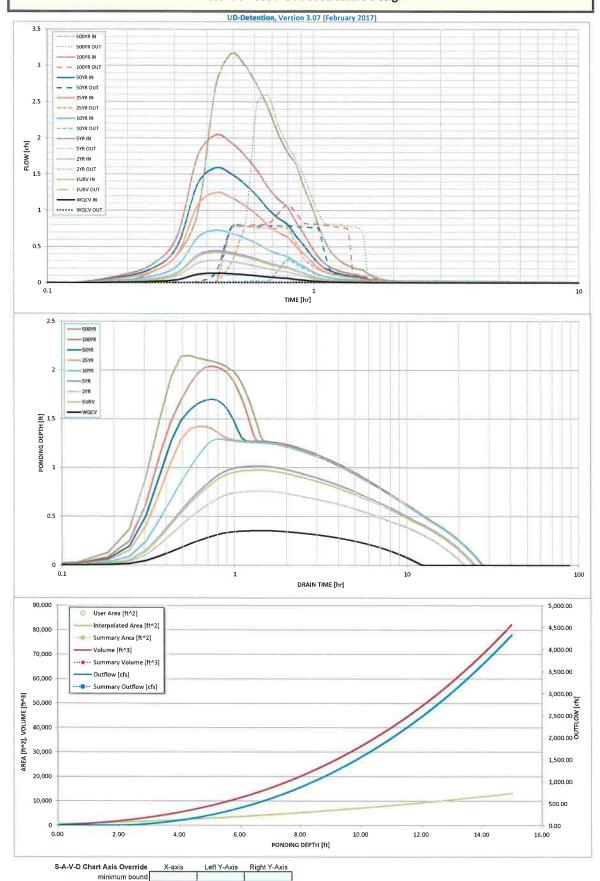
User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	1.25	N/A	ft (relative to basin bottom at Stage = 0 f
Overflow Weir Front Edge Length =	2.92	N/A	feet
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	2.92	N/A	feet
Overflow Grate Open Area % =	81%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

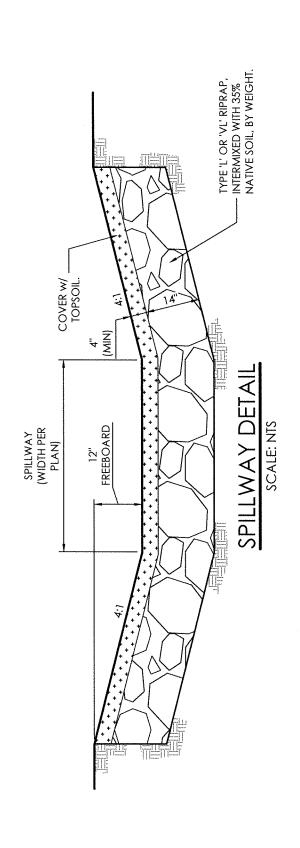
Calculated P	arameters for Ove	rriow weir	
	Zone 3 Weir	Not Selected	1
Height of Grate Upper Edge, H _t =	1.25	N/A	feet
Over Flow Weir Slope Length =	2.92	N/A	feet
Grate Open Area / 100-yr Orifice Area =	80.27	N/A	should be ≥ 4
Overflow Grate Open Area w/o Debris =	6.91	N/A	ft ²
Overflow Grate Open Area w/ Debris =	3.45	N/A	ft ²
-			77:

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

put: Outlet Pipe w/ Flow Restriction Plate (C	ngular Orifice)	Calculated Parameter	s for Outlet Pipe w/ F	low Restriction Pla	te		
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	Ī
Depth to Invert of Outlet Pipe =	2.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.09	N/A	ft²
Outlet Pipe Diameter =	12.00	N/A	inches	Outlet Orifice Centroid =	0.10	N/A	feet
Restrictor Plate Height Above Pipe Invert =	2.00		inches Half-Central Angle	of Restrictor Plate on Pipe =	0.84	N/A	radians


User

ser input: Emergency Spiliway (Rectangular or Trapezoidal)						
Spillway Invert Stage=	2.00	ft (relative to basin bottom at Stage = 0 ft)				
Spillway Crest Length =	10.00	feet				
Spillway End Slopes =	2.00	H:V				
Freeboard above Max Water Surface =	1.00	feet				


Calcula	ted Parameters for	Spillway
Spillway Design Flow Depth=	0.16	feet
Stage at Top of Freeboard =	3.16	feet
in Area at Top of Freeboard =	0.04	acres

Routed Hydrograph Results_									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.40
Calculated Runoff Volume (acre-ft) =	0.006	0.018	0.014	0.020	0.031	0.054	0.069	0.089	0.138
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.006	0.018	0.013	0.019	0.031	0.053	0.068	0.088	0.137
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.03	0.29	0.90	1,24	1.64	2,62
Predevelopment Peak Q (cfs) =	0.0	0.0	0.0	0.0	0.2	0.6	0.8	1.1	1.7
Peak Inflow Q (cfs) =	0.1	0.4	0.3	- 0.4	0.7	1.2	1.6	2.0	3.2
Peak Outflow Q (cfs) =	0.0	0.0	0.0	0.0	0.3	0.8	0.8	1.1	2.6
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.2	1.7	1.3	1.0	1.0	1.5
Structure Controlling Flow =	Filtration Media	Plate	Plate	Plate	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	Spillway	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.0	0.1	0.1	0.1	0.1
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	12	23	21	24	25	24	23	22	19
Time to Drain 99% of Inflow Volume (hours) =	12	24	21	25	27	26	26	26	25
Maximum Ponding Depth (ft) =	0.35	0.98	0.76	1.02	1.30	1.42	1.70	2.04	2.15
Area at Maximum Ponding Depth (acres) =	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03
Maximum Volume Stored (acre-ft) =	0.005	0.016	0.012	0.016	0.022	0.025	0.033	0.042	0.045

Detention Basin Outlet Structure Design

maximum bound

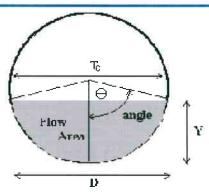
RIP	RIP-RAP GRADATION TABLE	ABLE
% SMALLER BY WEIGHT	TYPE VL INTER.ROCK DIM.(INCHES)	TYPE L INTER.ROCK DIM.(INCHES)
70 - 100 50 - 70 35 - 50 2 - 10	$d_{100} = 12$ $d_{70} = 9$ $d_{50} = 6$ $d_{10} = 2$	$d_{100} = 15$ $d_{70} = 12$ $d_{50} = 9$ $d_{10} = 3$

PROJECT: MONUMENT VALLEYENGINGERS INC.

ENGINEERS * SURVEYORS
1903 LELARAY STREET
COLORADO SPRINGS, COLORADO 80909
PHONE (719) 635-5736

SANCTUARY OF PEACE

SAND FILTER BASIN

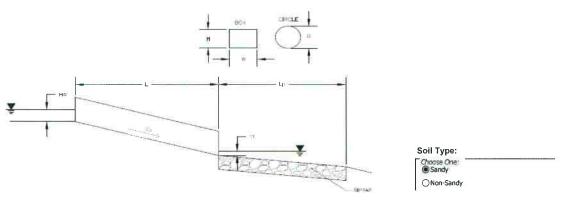

P SHEET 2 DRAWING NO. S 1/10/2018

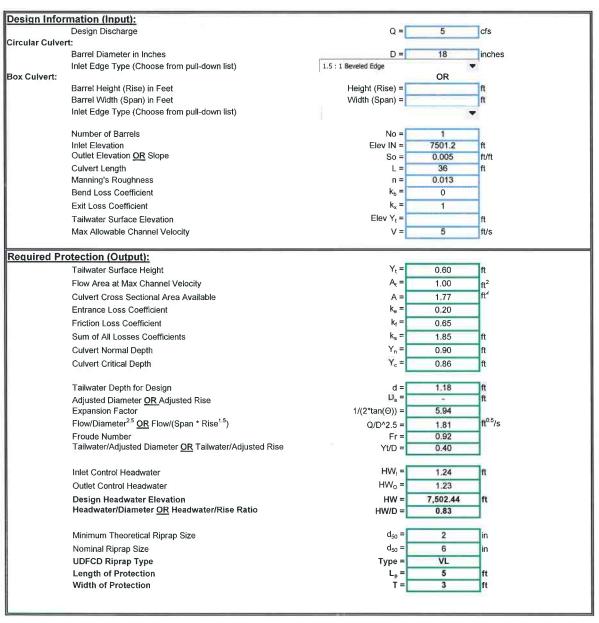
DATE:

PROJ. NO. **61087**

CIRCULAR CONDUIT FLOW (Normal & Critical Depth Computation)

Project: 61087 - Sanctuary of Peace
Pipe ID: Culvert B1




Design Information (Input) Pipe Invert Slope	So =	0.0050	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	5.00	cfs
Full-flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	7.45	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.77</td><td>radians</td></theta<3.14)<>	Theta =	1.77	radians
Flow area	An =	1.11	sq ft
Top width	Tn =	1.47	ft
Wetted perimeter	Pn =	2.66	ft
Flow depth	Yn =	0.90	ft
Flow velocity	Vn =	4.52	fps
Discharge	Qn =	5.00	cfs
Percent Full Flow	Flow =	67.1%	of full flow
Normal Depth Froude Number	Fr _n =	0.92	subcritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.72</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.72	radians
Critical flow area	Ac =	1.05	sq ft
Critical top width	Тс =	1.48	ft
Critical flow depth	Yc =	0.86	ft
Critical flow velocity	Vc =	4.77	fps
Critical Depth Froude Number	Fr _c =	1.00	

Determination of Culvert Headwater and Outlet Protection

Project: 61087 - Sanctuary of Peace

Basin ID: Culvert B1

Sub-Basin C1 (Culvert) Runoff Calculations

Job No.:

61087

Date:

9/16/2019 10:38

Project:

Sanctuary of Peace

Calcs by: Checked by: 3/10/2013 10.30

Jurisdiction

Runoff Coefficient

DCM

Surface Type

Soil Type Urbanization

ASM

Non-Urban

В

Basin Land Use Characteristics

	Area	Runoff Coefficient						%	
Surface	(SF)	(Acres)	C2	C5	C10	C25	C50	C100	Imperv.
Forest	74,698	1.71	0:02	0.08	0.15	0.25	0.3	0.35	0%
Driveways & Walks	5,171	0.12	0.89	0.9	0.92	0.94	0.95	0.96	100%
Roofs	15,854	0.36	0.71	0.73	0.75	0.78	0.8	0.81	90%
Combined	95,723	2.20	0.18	0.23	0.29	0.38	0.42	0.46	20.3%

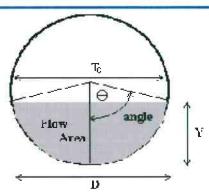
95723

Basin Travel Time

Shallo	w Channel Grou	ind Cover I	-orest			
	L _{max,Overland}	100 f	t		C_v	5
	L (ft)	ΔZ_0 (ft)	S ₀ (ft/ft)	v (ft/s)	t (min)	t _{Alt} (min)
Total	367	25	-	-	-	-
Initial Time	100	16	0.160		6.3	N/A DCM Eq. 6-8
Shallow Channel	267	9	0.034	0.9	4.8	- DCM Eq. 6-9
Channelized			0.000	0.0	0.0	- V-Ditch
				t _c	11.1	min.

٠.

Rainfall Intensity & Runoff

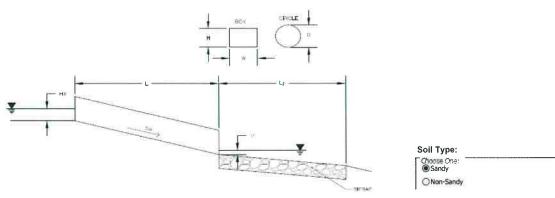

	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Intensity (in/hr)	3.17	3.97	4.63	5.29	5.95	6.66
Runoff (cfs)	1.3	2.0	3.0	4.4	5.5	6.7
Release Rates (cfs/ac)	-	-	-	-	-	-
Allowed Release (cfs)	1.3	2.0	3.0	4.4	5.5	6.7

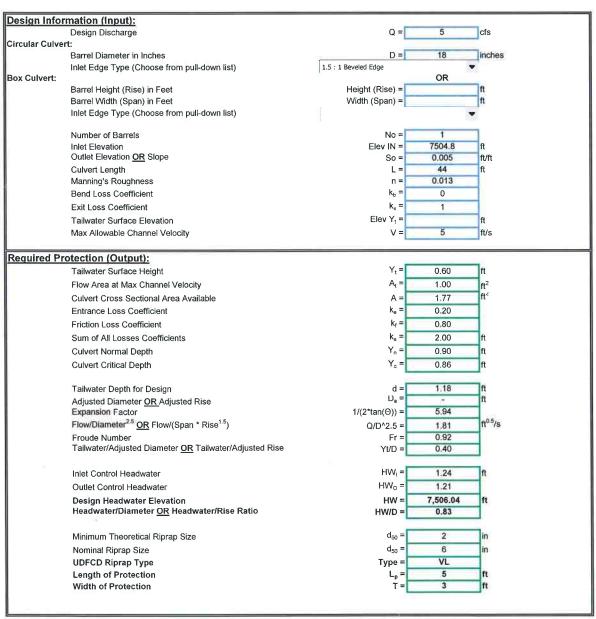
C1 1.19 1.5 1.75 2 2.25 2.52 C2 6.036 7.583 8.847 10.111 11.375 12.735

Notes

CIRCULAR CONDUIT FLOW (Normal & Critical Depth Computation)

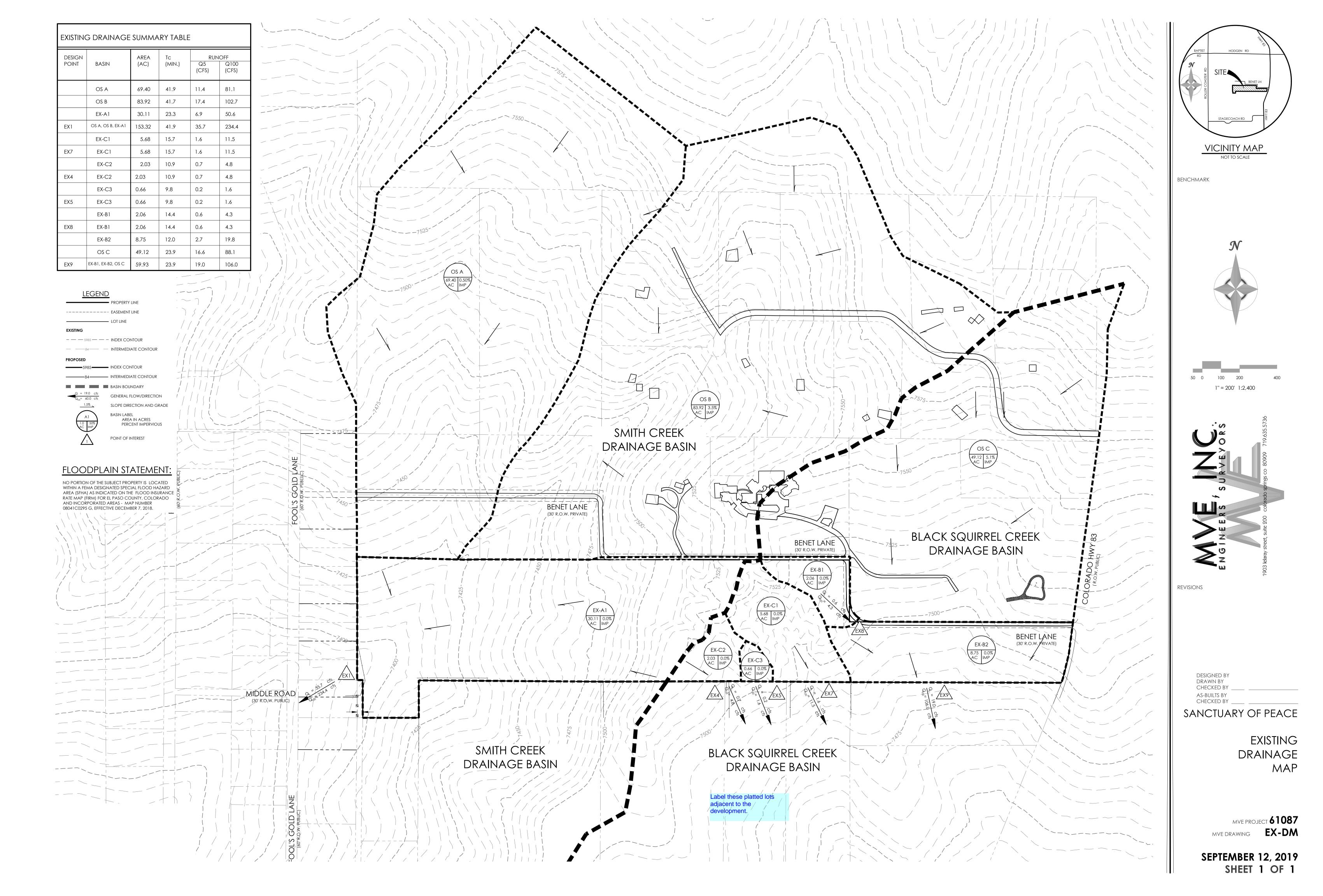
Project: 61087 - Sanctuary of Peace
Pipe ID: Culvert C1

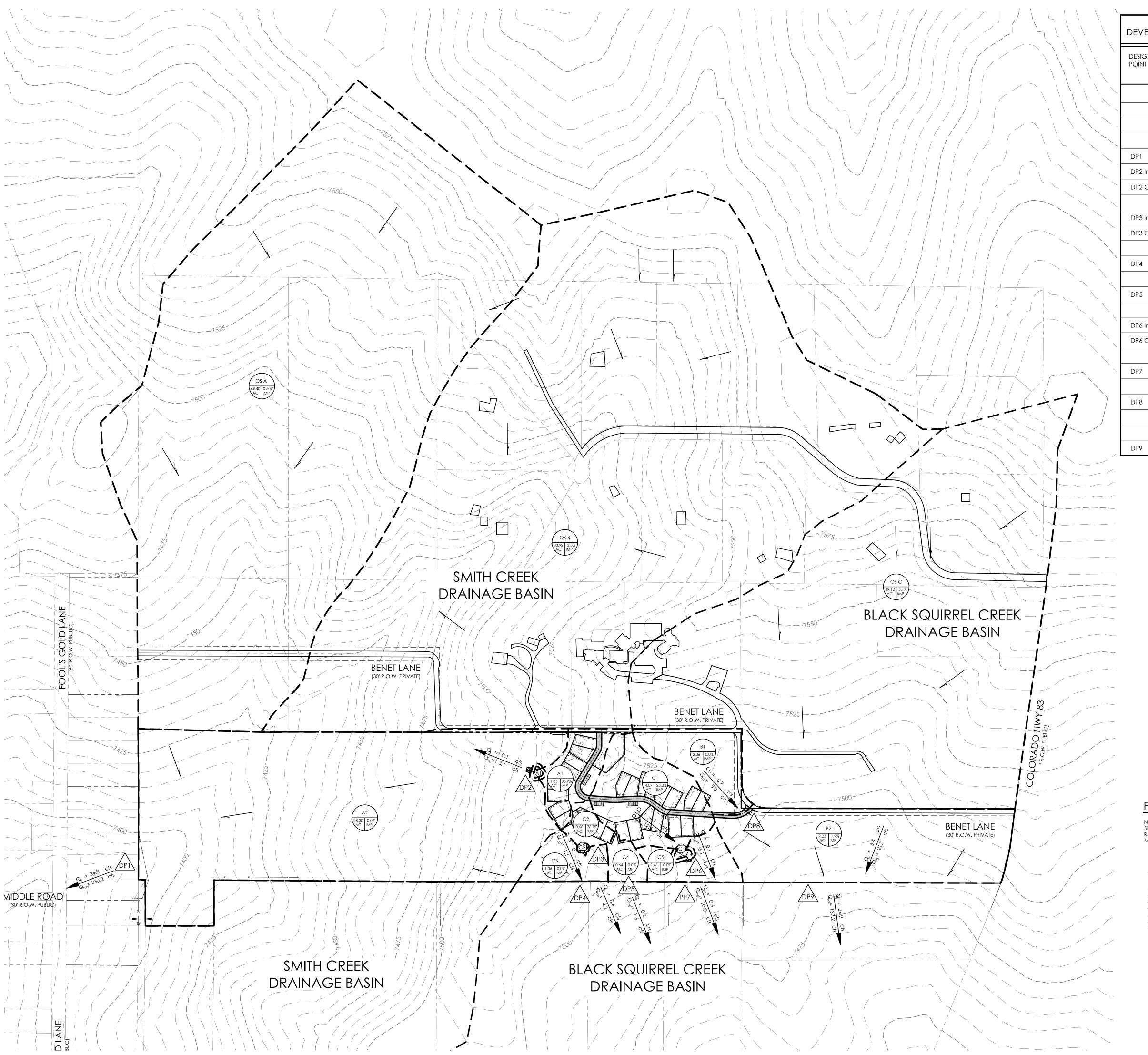


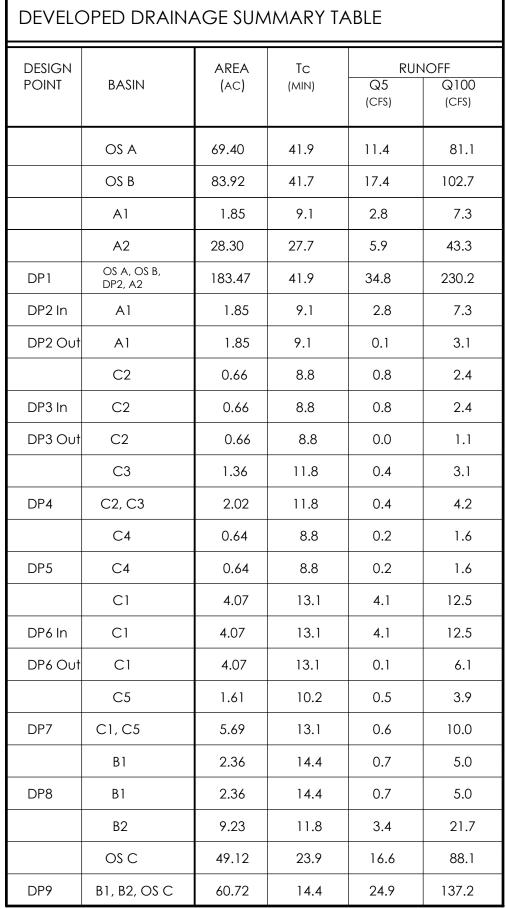

Design Information (Input)	_		
Pipe Invert Slope	So =	0.0050	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	6.70	cfs
Full-flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	7.45	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>2.07</td><td>radians</td></theta<3.14)<>	Theta =	2.07	radians
Flow area	An =	1.40	sq ft
Top width	Tn =	1.31	ft
Wetted perimeter	Pn =	3.11	ft
Flow depth	Yn =	1.11	ft
Flow velocity	Vn =	4.77	fps
Discharge	Qn =	6.70	cfs
Percent Full Flow	Flow =	89.9%	of full flow
Normal Depth Froude Number	Fr _n =	0.81	subcritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.91</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.91	radians
Critical flow area	Ac =	1.25	sq ft
Critical top width	Tc=	1.41	ft
Critical flow depth	Yc=	1.00	ft
Critical flow velocity	Vc=	5.34	f <mark>ps</mark>
Critical Depth Froude Number	Fr _c =	1.00	
			*

Determination of Culvert Headwater and Outlet Protection

Project: 61087 - Sanctuary of Peace

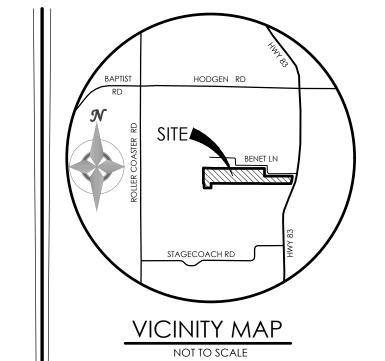

Basin ID: Culvert C1





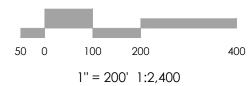
4 Drainage Maps

Existing Conditions Drainage Map Proposed Conditions Drainage Map (Map Pocket) (Map Pocket)


FLOODPLAIN STATEMENT:

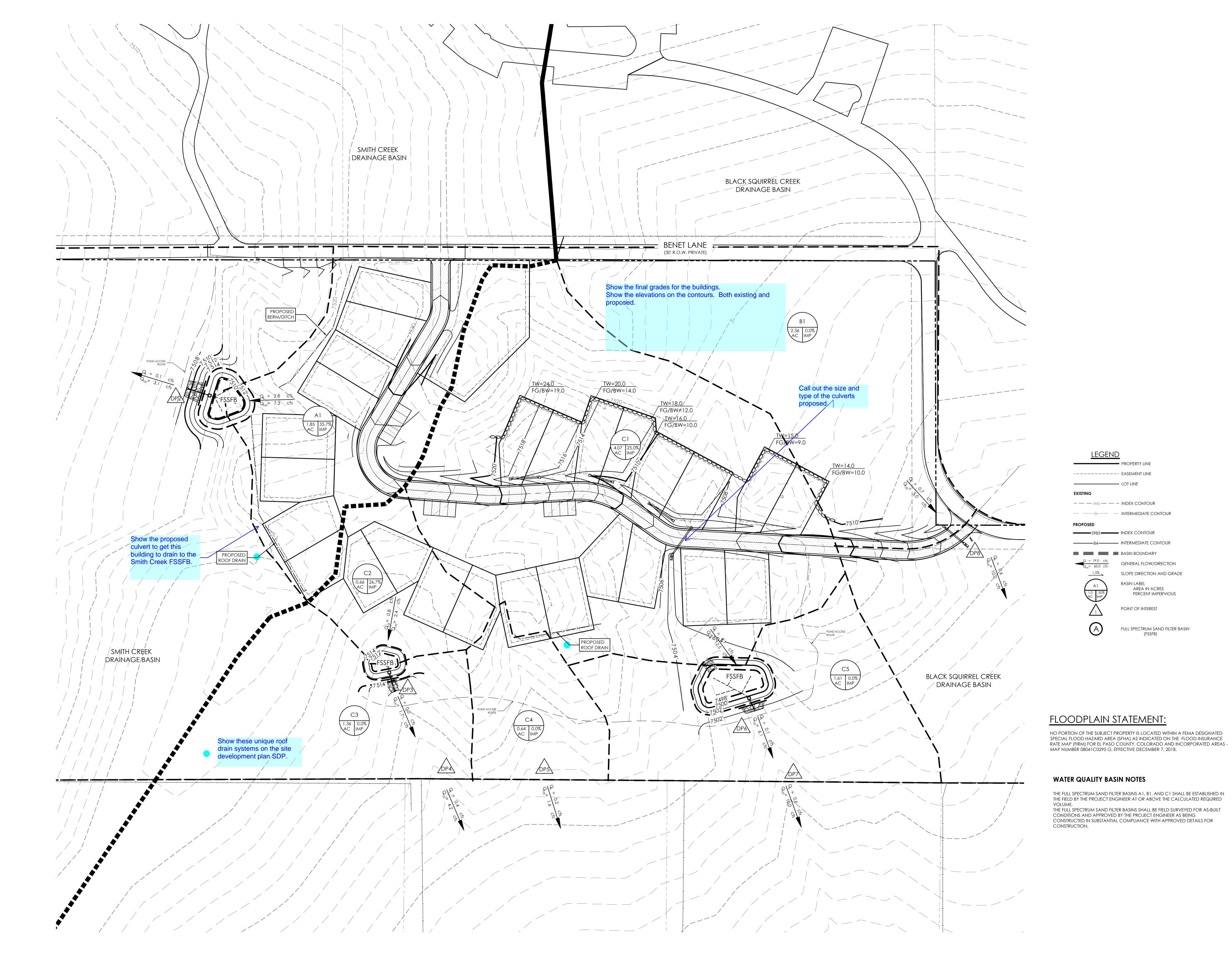
NO PORTION OF THE SUBJECT PROPERTY IS LOCATED WITHIN A FEMA DESIGNATED SPECIAL FLOOD HAZARD AREA (SFHA) AS INDICATED ON THE FLOOD INSURANCE RATE MAP (FIRM) FOR EL PASO COUNTY, COLORADO AND INCORPORATED AREAS - MAP NUMBER 08041C0295 G, EFFECTIVE DECEMBER 7, 2018.

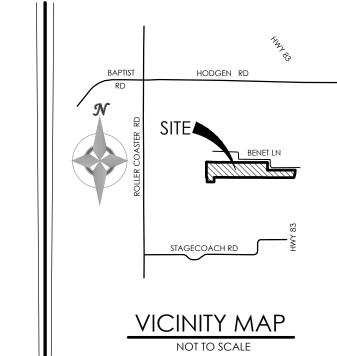
WATER QUALITY BASIN NOTES


THE FULL SPECTRUM SAND FILTER BASINS A1, B1, AND C1 SHALL BE ESTABLISHED IN THE FIELD BY THE PROJECT ENGINEER AT OR ABOVE THE CALCULATED REQUIRED VOLUME.

THE FULL SPECTRUM SAND FILTER BASINS SHALL BE FIELD SURVEYED FOR AS-BUILT CONDITIONS AND APPROVED BY THE PROJECT ENGINEER AS BEING CONSTRUCTED IN SUBSTANTIAL COMPLIANCE WITH APPROVED DETAILS FOR CONSTRUCTION.

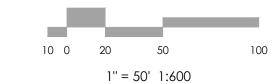
BENCHMARK

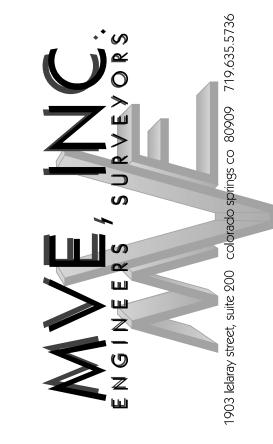

DESIGNED BY
DRAWN BY
CHECKED BY
AS-BUILTS BY
CHECKED BY


SANCTUARY OF PEACE

PROPOSED DRAINAGE MAP

MVE PROJECT **61087**MVE DRAWING **PP-DM**


SEPTEMBER 12, 2019 SHEET 1 OF 1



BENCHMARK

REVISIONS

DESIGNED BY
DRAWN BY
CHECKED BY _____
AS-BUILTS BY
CHECKED BY _____

SANCTUARY OF PEACE

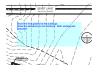
PROPOSED DRAINAGE MAP (DETAIL)

MVE PROJECT **61087**MVE DRAWING **PP-DM2**

SEPTEMBER 12, 2019 SHEET 1 OF 1

Drainage V_2 redlines.pdf Markup Summary 10-16-2019

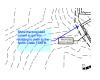
Steve Kuehster (10)



Subject: EPC ENG Review

Page Label: 1

Author: Steve Kuehster **Date:** 10/15/2019 12:52:08 PM


Status: Color: Layer: Space:

Subject: text box Page Label: 84

Author: Steve Kuehster Date: 10/9/2019 10:25:30 AM

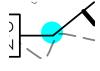
Status: Color: Layer: Space: Show the final grades for the buildings. Show the elevations on the contours. Both existing and proposed.

Subject: arrow & box

Page Label: 84 Author: Steve Kuehster

Date: 10/9/2019 10:37:40 AM **Status: Color:**

Color: Layer:
Space:

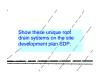

Show the proposed culvert to get this building to drain to the Smith Creek FSSFB.

Subject: Highlight Page Label: 84

Author: Steve Kuehster Date: 10/9/2019 10:40:21 AM

Status: Color: Layer: Space:

Subject: Highlight Page Label: 84


Author: Steve Kuehster Date: 10/9/2019 10:40:35 AM

Status: Color: Layer: Space:

Subject: Highlight Page Label: 84

Author: Steve Kuehster Date: 10/9/2019 10:41:16 AM

Status: Color: Layer: Space:

Subject: text box Page Label: 84

Author: Steve Kuehster Date: 10/9/2019 10:42:45 AM

Status: Color: Layer: Space:

Show these unique roof drain systems on the site

development plan SDP.

Subject: text box Page Label: 82

Author: Steve Kuehster Date: 10/9/2019 10:46:42 AM

Status: Color: Layer: Space:

Label these platted lots adjacent to the development.

Subject: text box Page Label: 10 Author: Steve Kuehster Date: 10/9/2019 11:23:20 AM

Status: Color: Layer: Space:

Bridge Fees are calculated by impervious acre also. Black Squirrel is \$524 & Smith Creek

\$1,004.

Subject: arrow & box Page Label: 84 Author: Steve Kuehster

Date: 10/9/2019 11:27:23 AM

Status: Color: Layer: Space:

Call out the size and type of the culverts proposed.