PRELIMINARY/FINAL DRAINAGE REPORT

for PAINT BRUSH HILLS FILING NO. 14

EL PASO COUNTY, COLORADO

MARCH 2021

Prepared for:
The Landhuis Company
212 N. Wahsatch Ave, Suite 301
Colorado Springs, CO 80903
(719) 635-3200

Prepared by:

102 E.Pikes Peak, $5^{\text {th }}$ Floor
Colorado Springs, CO 80903
(719) 955-5485

Project \#10-014
PCD Project \# SP206 \& SF2024

PRELIMINARY/FINAL DRAINAGE REPORT
 FOR PAINT BRUSH HILLS FILING NO. 14

DRAINAGE PLAN STATEMENTS

ENGINEERS STATEMENT

The attached drainage plan and report was prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omission on my part in preparing this report.

Virgil A. Sanchez, P.E. \#37160
For and on Behalf of M\&S Civil Consultants, Inc

DEVELOPER'S STATEMENT

I, the developer have read and will comply with all the requirements specified in this drainage report and plan.

EL PASO COUNTY'S STATEMENT

Filed in accordance with the requirements of El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Manual, as amended.

BY:
Jennifer Irvine, P.E.
County Engineer/ECM Administrator
DATE: \qquad

APPROVED Engineering Department 04/01/2021 1:54:18 PM dsdnijkamp
 EPC Planning \& Community Development Department

PRELIMINARY/FINAL DRAINAGE REPORT

FOR PAINT BRUSH HILLS FILING NO. 14

TABLE OF CONTENTS
PURPOSE 4
GENERAL LOCATION AND DESCRIPTION 4
SOILS 4
HYDROLOGIC CALCULATIONS 4
HYDRAULIC CALCULATIONS 5
FLOOD PLAIN STATEMENT 5
DRAINAGE CRITERIA 5
FOUR STEP PROCESS 5
EXISTING DRAINAGE CONDITIONS 5
PROPOSED DRAINAGE CONDITIONS 6
DETENTION POND PROVISIONS AND MAINTENANCE 10EROSION CONTROL
EROSION CONTROL 11
CONSTRUCTION COST OPINION 11
DRAINAGE AND BRIDGE FEES 12
SUMMARY 12
REFERENCES 13

APPENDIX

Vicinity Map
Soils Map
FIRM Panel W/Revised LOMR
Hydrologic Calculations
Hydraulic Calculations/EDB Calculations
Grading Erosion Control Plan
Reference Maps
Proposed and Existing Drainage Maps

PRELIMINARY/FINAL DRAINAGE REPORT FOR PAINT BRUSH HILLS FILING NO. 14

PURPOSE

This document is intended to serve as the Preliminary and Final Drainage Report for Paint Brush Hills Filing No. 14. The purpose of this document is to identify and analyze the on and offsite drainage patterns and to ensure that post development runoff is routed through the site safely and in a manner that satisfies the requirements set forth by the El Paso County Drainage Criteria Manual. The proposed principal use for the site consists of infrastructure typically associated with single family residential developments. The majority of the site will consist of asphalt, curb, landscaping and an existing storm water quality facility (Pond C) located near the southwest boundary of the site. This document is also intended to show some of Paint Brush Hills Filing No. 14 onsite drainage (of approximately 6.72 acres,) will not adversely affect the capacity of the existing storm water quality facility (Pond D) in the "Preliminary Drainage Report for Paint Brush Hills Filing 13E (PDRPBH-13E) (Pre-Development Grading Plan)", prepared by Classic Consulting Engineers and Surveyors, submitted on February 2018.

GENERAL LOCATION AND DESCRIPTION

Paint Brush Hills Filing No. 14 is located in the northeast quarter of Section 26, Township 12 South, Range 65 West of the 6th P.M. in El Paso County, Colorado. The parcel is bound to the north by existing single family residential Paint Brush Hills Filing No. 3 and to the south by existing single family residential Paint Brush Hills Filing No. 12. An existing utility corridor and single family residential subdivision Paint Brush Hills Filing No. 13E, is planned along the east boundary of the site. Along the west property line are two rural and undeveloped parcels. Generally, runoff produced by the site is directed south and southwest to an Extended Detention Basin (EDB) Pond C and subsequently to an existing swale tributary to the Falcon Drainage Basin. The site lies within the Falcon Drainage Basin.

The site consists of 88.631 acres which is presently undeveloped. Vegetation is sparse, consisting of native grasses with no trees onsite. The site has not experienced any overlot grading activities. Existing site terrain generally slopes from north to south at grade rates that vary between 1.0% and 4.0%.

The site is currently platted and zoned "RS-20,000 \& RS-6000" for Residential Suburban. The proposed principal use for the site is single family residential. The majority of the lots shall consist of standard setbacks, landscaping and back and/or side lot swales typical for single family housing. An existing detention facility is located at the southwest boundary of the site and is to be upgraded upon development of the proposed Paint Brush Hills Filing No. 14 site.

SOILS

Soils for this project have been delineated by the map in the appendix, as Pring Coarse Sandy Loam (71) and is characterized as Hydrologic Soil Type "B". Soils in the study area are shown as mapped by S.C.S. in the "Soils Survey of El Paso County Area." Vegetation is sparse, consisting of native grasses and weeds.

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual and where applicable the Urban Storm Drainage Criteria Manual. The Rational Method was used to estimate stormwater runoff anticipated from design storms with 5 -year and 100 -year recurrence intervals.

HYDRAULIC CALCULATIONS

Hydraulic calculations were estimated using the Manning's Formula and the methods described in the El Paso County Storm Drainage Design Criteria manual. The relevant data sheets are included in the appendix of this report.

FLOODPLAIN STATEMENT

No portion of this site is within a designated F.E.M.A. floodplain as determined by the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel No. 08041C0535 G, effective date December 7, 2018. A FIRM Panel is included in the Appendix.

DRAINAGE CRITERIA

This drainage analysis has been prepared in accordance with the current El Paso County Drainage Criteria Manual and where applicable the City of Colorado Springs DCM Volume 1 dated May 2014 effective January 2015. Hydrologic calculations were performed to determine runoff quantities for the 5 -year and 100 -year frequency storms for developed conditions using the Rational Method as required for basins having areas less than 130 acres (in accordance with Chapter 6 of the City of Colorado Springs DCM Volume 1). Full spectrum detention facilities have been designed in accordance with Section 3.2.1. of Chapter 13 of the City of Colorado Springs DCM Volume 1, dated May 2014, effective January 31, 2015 and Urban Drainage and Flood Control District Manuals dated January 2016.

FOUR STEP PROCESS

Step1 Employ Runoff Reduction Practices - Approx. 3.68 acres of proposed land (pervious surface) within the project has been set aside for an EDB facility. Also roof drains will be directed to landscaped areas to minimize direct connection of impervious surfaces. The two lots at the northwest corner of the site will have roof drains directed to the front of the lot.
Step 2 Stabilize Drainageways - The site outfall at Design Point lis upstream of an existing Pond D. A low tailwater riprap basin will dissipated energy and velocities to allow seed grasses to take hold and avoid erosion. Existing Pond D ultimately will outfall to the Falcon Drainage Basin. The site outfall at Design Point 17 (existing Pond C) is upstream of the Falcon Drainage Basin. A riprap basin will dissipated energy and velocities to avoid erosion of existing grasses. This outfall is existing and the flows have been restricted to less than existing conditions. It is not anticipated to have negative effect on the downstream drainageway.
Step 3 Provide Water Quality Capture Volume - The existing Pond C will be retrofitted to a Full Spectrum Extended Drainage Basin and will provide WQCV.
Step4 Consider Need for Industrial and Commercial BMP's - There are no commercial or industrial components to this development, therefore no BMPs of this nature are required. The existing Pond C will be retrofitted to a Full Spectrum Extended Drainage Basin and will provide WQCV.

EXISTING DRAINAGE CONDITIONS

The Paint Brush Hills Filing No. 14 site consists of 88.631 acres and is situated in the Falcon Drainage Basin with Chico Creek as receiving waters. This site was studied as part of the "Master Development Drainage Plan for Falcon Hills Development (MDDP)" prepared by Kiowa Engineering Corporation, approved November 2002. More recently the site was studied in the "Final Drainage Report for Paint Brush Hills-Phase 2 (Filing No. 13,(FDRPBH-PH2-13))", prepared by Classic Consulting Engineers and Surveyors, rev.June 2008.

Existing Paint Brush Hills Filing No. 14 site and offsite Paint Brush Hills Filing No. 3 is currently undeveloped and the terrain generally slopes from north to southwest at grade rates that vary between 1.0% and 4.0%. Existing natural drainage swales route flows to an existing detention facility (Pond C) constructed as part of the "Paint Brush Hills Filing No. 12", see attached Historic Conditions Drainage Map from FDRPBH-PH2-13 and also refer to "Final Drainage Report for Paint Brush Hill Filing Nos. 10, $11 \& 12$ (FDRPBH-10,11,12)" prepared by Classic Consulting Engineers and Surveyors, rev. July 2003. See Historic Conditions Drainage Map in Drainage Maps section of this report. Offsite and onsite flows on Paint Brush Hills Filing No. 14 are described as follows;

Historic Basin Descriptions

Basin OS-5, 46.1 acres, $\left(\mathrm{Q}_{5}=35 \mathrm{cfs}, \mathrm{Q}_{100}=79.0 \mathrm{cfs}\right)$, consists of offsite existing Paint Brush Hills Filing No.3. Filing No. 3 is a single family residential development with the average lot size of 3.5 acres. The percent impervious is approximately 11%. The west half of Basin OS-5, runoff enters the site as sheet flow. The east half of Basin OS-5, runoff is concentrated and enters the site via a natural swale.

Basin H-1, 92.3 acres, $\left(\mathrm{Q}_{5}=42.0 \mathrm{cfs}, \mathrm{Q}_{100}=108.0 \mathrm{cfs}\right)$, consists of undeveloped Paint Brush Hills Filing No.14. The terrain generally slopes from north to southwest at grade rates that vary between 1.0% and 4.0%. Existing natural drainage swales route flows to an existing detention facility (Pond C). Historic cumulative flows, from Basin OS-5 and Basin $\mathbf{H}-1$ are $\mathrm{Q}_{5}=68.0 \mathrm{cfs}, \mathrm{Q}_{100}=169.0$ cfs. Runoff is released via an existing $48^{\prime \prime}$ RCP pipe to an existing swale.

Basin H-5,55.6 acres, ($\mathrm{Q}_{5}=32.0 \mathrm{cfs}, \mathrm{Q}_{100}=80.0 \mathrm{cfs}$), consists of undeveloped Paint Brush Hills Filing No.13E. The terrain generally slopes from north to southwest at grade rates that vary between 1.0% and 4.0%. Existing natural drainage swales route flows to the south end of the basin. Approximately 6.0 acres of undeveloped Paint Brush Hills Filing No. 14 is located at the northeast corner of Basin H-5. Historic flows, from Basin $\mathbf{H}-5$ are $\mathrm{Q}_{5}=32.0 \mathrm{cfs}, \mathrm{Q}_{100}=80.0 \mathrm{cfs}$. Runoff is released via a pair of existing 36 " RCP culverts located under existing Londonderry Drive and outfall to an existing swale.

PROPOSED DRAINAGE CHARACTERISTICS

General Concept Drainage Discussion

The following is a description of the offsite and onsite basins, offsite flows and the overall proposed drainage characteristics for the development of Paint Brush Hill Filing No. 14. These calculations have been provided to show that what is proposed will be adequate to convey flows when development occurs. Offsite Basin ***OS-5 has been divided into 3 sub-basins as they pertain to the onsite proposed drainage characteristics. The following Basin description, Design Points (DP) and Pipe Runs (PR) were determined using the Rational Method since each individual basin is less than 100 acres and the combined acreage at any DP are also less than 130 acres. See drainage map in appendix for proposed conditions. This method offers a conservative approach to sizing swales and storm drains. Development of this site will not adversely affect the surrounding development and is compliance with the M.D.D.P. approved for this site.

The * before a basin, design point and pipe run callout denotes previously studied in the "Final Drainage Report for Paint Brush Hills Filing 13E (FDRPBH-13E)", prepared by Classic Consulting Engineers and Surveyors, submitted on September 2018. The ** before a basin callout denotes a revision to FDRPBH13E. The ${ }^{* * *}$ before a basin callout denotes previously studied in the "Final Drainage Report for Paint Brush Hills-Phase 2 (Filing No. 13,(FDRPBH-PH2-13))", prepared by Classic Consulting Engineers and Surveyors, submitted on rev. June 2008, specifically Basin ${ }^{* * *}$ OS-5. The \# before a pipe run callout denotes, to be constructed or are existing with the Paint Brush Hills Filing No. 13E Street and Storm

Sewer plans but the flows (slightly higher) have been adjusted by this report the Preliminary/Final Drainage Report for Paint Brush Hills Filing No. 14" prepared by MS Civil Consultants, dated December 2020.

Detailed Drainage Discussion

Basins Tributary to Detention Pond C

Basin OS5C, 29.0 acres, ($\mathrm{Q}_{5}=25.5 \mathrm{cfs}, \mathrm{Q}_{100}=57.0 \mathrm{cfs}$), consist of existing developed 3.5-acre properties and streets. Runoff produced by the offsite area, are routed via existing roadside swales to a larger natural swale which carries flows south towards the north boundary of the subject site.

Basin A, 3.82 acres, $\left(\mathrm{Q}_{5}=2.9 \mathrm{cfs}, \mathrm{Q}_{100}=10.7 \mathrm{cfs}\right)$, consists of a proposed single family residential lots and proposed 25 ' wide trail easement/Tract A. Developed flows within Basin A and offsite Basin OS5C are routed as surface runoff via an existing swale, in a 75 ' drainage easement, to $\mathbf{D P 3}$ ($\mathrm{Q}_{5}=27.7 \mathrm{cfs}, \mathrm{Q}_{100}=65.3$ cfs). Surface runoff at DP3 will be collected and conveyed via a 36" RCP FES and 36" RCP pipe (PR2) to DP4. The existing swale shall be natural, except for the lower portion where it will be graded to the 36 " RCP FES. This portion of the swale shall be maintained by the Paint Brush Hills Metropolitan District (see SC 150 Turf Reinforcement Mat in appendix). In the event of clogging, flows at DP3 will over top the embankment and shall be conveyed via curb and gutter to DP4.

Basin J, 3.9 acres, $\left(\mathrm{Q}_{5}=3.0 \mathrm{cfs}, \mathrm{Q}_{100}=10.4 \mathrm{cfs}\right)$, consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to DP4 which will be collected by a proposed 10 ' Type R sump inlet. The intercepted flow ($\mathrm{Q}_{5}=3.0 \mathrm{cfs}, \mathrm{Q}_{100}=10.4 \mathrm{cfs}$) will be routed west via an 18 " RCP pipe ($\mathbf{P R 3}, \mathrm{Q}_{5}=3.0 \mathrm{cfs}, \mathrm{Q}_{100}=10.4 \mathrm{cfs}$) to $\mathbf{P R 5}$ ($\mathrm{Q}_{5}=31.0 \mathrm{cfs}, \mathrm{Q}_{100}=75.9 \mathrm{cfs}$), a $48 "$ RCP. In the event of clogging, flows at DP4 will over top the high point and be routed via curb and gutter to DP10.

Basin K, 0.8 acres, $\left(\mathrm{Q}_{5}=1.1 \mathrm{cfs}, \mathrm{Q}_{100}=2.7 \mathrm{cfs}\right)$, consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to DP5 which will be collected by a proposed 5' Type R sump inlet. The intercepted flow ($\mathrm{Q}_{5}=1.1 \mathrm{cfs}, \mathrm{Q}_{100}=2.7 \mathrm{cfs}$) will be routed west via an 18 " RCP pipe ($\mathbf{P R 4} 4, \mathrm{Q}_{5}=1.1 \mathrm{cfs}, \mathrm{Q}_{100}=2.7 \mathrm{cfs}$) to $\operatorname{PR5}\left(\mathrm{Q}_{5}=31.0 \mathrm{cfs}, \mathrm{Q}_{100}=75.5 \mathrm{cfs}\right)$, a 48 " RCP. In the event of clogging, flows at DP5 will over top the high point and be routed via curb and gutter to DP10.

Basin OS5B, 13.4 acres, $\left(\mathrm{Q}_{5}=4.6 \mathrm{cfs}, \mathrm{Q}_{100}=25.8 \mathrm{cfs}\right)$, consist of existing developed 3.5-acre properties and streets. Runoff produced by the offsite area, will sheet flow into Basin D.

Basin D, 5.2 acres, $\left(\mathrm{Q}_{5}=3.8 \mathrm{cfs}, \mathrm{Q}_{100}=14.0 \mathrm{cfs}\right.$), consists of a proposed single family residential lots. Cumulative developed flows within Basin D and offsite Basin OS5B are routed via curb and gutter and side lot swales to DP6.

Basin E, 0.5 acres, $\left(\mathrm{Q}_{5}=2.3 \mathrm{cfs}, \mathrm{Q}_{100}=4.1 \mathrm{cfs}\right)$, consists of a proposed local residential street. Surface runoff from Basin E will combine with flows from Basin OS5B and Basin D and will be routed via curb and gutter to DP6 which will be collected by a proposed 15^{\prime} Type R sump inlet. The cumulative flow from DP6 and DP7 at DP8 is $\mathrm{Q}_{5}=10.7 \mathrm{cfs}, \mathrm{Q}_{100}=44.4$. The 100 -year flow will be split between the two inlets. The intercepted flow at DP6 $\left(\mathrm{Q}_{5}=9.3 \mathrm{cfs}, \mathrm{Q}_{100}=22.2\right)$ will be routed west via a 24 " RCP pipe ($\mathbf{P R 7},_{5}=9.2$ $\mathrm{cfs}, \mathrm{Q}_{100}=22.2 \mathrm{cfs}$) to PR9. In the event of clogging, flows at DP6 will over top the high point in Country Manor Drive and be routed to DP12.

Basin F, 1.6 acres, $\left(\mathrm{Q}_{5}=1.9 \mathrm{cfs}, \mathrm{Q}_{100}=5.4 \mathrm{cfs}\right)$, consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to DP7 which will be
collected by a proposed 15 ' Type R sump inlet. The cumulative flow from DP6 and DP7 at DP8 is $\mathrm{Q}_{5}=10.7 \mathrm{cfs}, \mathrm{Q}_{100}=44.4$. The 100 -year flow will be split between the inlets. The intercepted flow at DP7 $\left(\mathrm{Q}_{5}=1.9 \mathrm{cfs}, \mathrm{Q}_{100}=22.2\right.$) will be routed west via a $24 " \mathrm{RCP}$ pipe ($\mathbf{P R 8}, \mathrm{Q}_{5}=1.9 \mathrm{cfs}, \mathrm{Q}_{100}=22.2 \mathrm{cfs}$) to PR9. In the event of clogging, flows at DP7 will over top the high point in Country Manor Drive and be routed to DP12.

Basin G, 12.2 acres, ($\mathrm{Q}_{5}=14.0 \mathrm{cfs}, \mathrm{Q}_{100}=34.8 \mathrm{cfs}$), consists of proposed single family residential lots and proposed local residential streets. Surface runoff from Basin G is routed via curb and gutter to DP9 ($\mathrm{Q}_{5}=14.0 \mathrm{cfs}, \mathrm{Q}_{100}=34.8 \mathrm{cfs}$) which a portion of the flow will be collected by proposed dual 15 ' Type R atgrade inlets. The intercepted flow ($\mathrm{Q}_{5}=7.0 \mathrm{cfs}, \mathrm{Q}_{100}=13.7$ cfs per side) will be routed south via (2) 24 " RCP pipes ($\mathbf{P R 1 0}, \mathbf{P R 1 1}, \mathrm{Q}_{5}=7.0 \mathrm{cfs}, \mathrm{Q}_{100}=13.7 \mathrm{cfs}$ per side) and will combine with PR9 in PR12 ($\mathrm{Q}_{5}=53.7 \mathrm{cfs}$, $\mathrm{Q}_{100}=142.4 \mathrm{cfs}$). In the event of clogging, flows at DP9 will be routed via curb and gutter to DP15.

Basin I, 12.7 acres, $\left(\mathrm{Q}_{5}=14.5 \mathrm{cfs}, \mathrm{Q}_{100}=36.2 \mathrm{cfs}\right)$, consists of proposed single family residential lots and proposed local residential streets. Surface runoff from Basin I is routed via curb and gutter to DP10 which a portion of the flows will be collected by proposed dual 15^{\prime} Type R at-grade inlets. The intercepted flow $\left(\mathrm{Q}_{5}=7.3 \mathrm{cfs}, \mathrm{Q}_{100}=14.0 \mathrm{cfs}\right.$ per side) will be routed west via a 18 " RCP pipe ($\mathbf{P R 1 3}, \mathrm{Q}_{5}=7.3 \mathrm{cfs}, \mathrm{Q}_{100}=14.0$ cfs) to PR14. Cumulative flows in the proposed 30 " RCP pipe (PR14, $\mathrm{Q}_{5}=14.6 \mathrm{cfs}, \mathrm{Q}_{100}=27.9 \mathrm{cfs}$) will be routed south to an existing $30^{\prime \prime}$ RCP pipe $\mathbf{P R \# 3 8}\left(\mathrm{Q}_{5}=14.6 \mathrm{cfs}, \mathrm{Q}_{100}=27.9 \mathrm{cfs}\right)$. In the event of clogging, flows at DP10 will be routed via curb and gutter to DP11. PR\#38 is to be constructed as part of the Paint Brush Hills Filing No. 13E infrastructure, which is to precede construction of the subject filing.

Basin L, 3.4 acres, $\left(\mathrm{Q}_{5}=3.8 \mathrm{cfs}, \mathrm{Q}_{100}=9.5 \mathrm{cfs}\right)$, consists of proposed single family residential lots and proposed local residential streets. Flowby from DP10 and surface runoff from Basin \mathbf{L} will be routed via curb and gutter to DP11 ($\mathrm{Q}_{5}=3.7 \mathrm{cfs}, \mathrm{Q}_{100}=17.0 \mathrm{cfs}$) which a portion of the flows will be collected by an existing 15' Type R at-grade inlet. The intercepted flow will be routed east via a 24 " RCP pipe (PR\#15, $\mathrm{Q}_{5}=3.7 \mathrm{cfs}, \mathrm{Q}_{100}=13.5 \mathrm{cfs}$) and then south to an existing 30" RCP pipe (PR\#16, $\mathrm{Q}_{5}=17.4 \mathrm{cfs}, \mathrm{Q}_{100}=39.7$ cfs). In the event of clogging, flows at DP11 will be routed via curb and gutter to DP15. Pipe's PR\#15 and PR\#16 are to be constructed as part of the Paint Brush Hills Filing No. 13E infrastructure.

Basin *TT, 5.1 acres, $\left(\mathrm{Q}_{5}=5.7 \mathrm{cfs}, \mathrm{Q}_{100}=13.0 \mathrm{cfs}\right)$, consists of proposed single family residential lots and proposed local residential streets. Basin *TT is to be constructed with Paint Brush Hills Filing No. 13E, however surface runoff is to be captured and routed to Pond C. Surface runoff is routed via curb and gutter to $\mathbf{D P} * 37$ ($\mathrm{Q}_{5}=5.7 \mathrm{cfs}, \mathrm{Q}_{100}=13.0 \mathrm{cfs}$) which will be collected by an existing 15 ' Type R at-grade inlet. The intercepted flow will be routed west via an existing 24 " RCP pipe ($\mathbf{P R \# 3 9}, \mathrm{Q}_{5}=5.7 \mathrm{cfs}, \mathrm{Q}_{100}=13.0 \mathrm{cfs}$). The combined flows from PR\#16 and PR\#39 will be routed west to a existing 36" RCP pipe (PR\#17, $\mathrm{Q}_{5}=22.8$ $\mathrm{cfs}, \mathrm{Q}_{100}=51.3 \mathrm{cfs}$). In the event of clogging, flows at $\mathbf{D P} * 37$ will be routed via curb and gutter into the existing Paint Brush Hills Filing No. 12 subdivision. The combined flowby from DP*37 and flow from Basin * $\mathbf{U U}$ is $\left(\mathrm{Q}_{5}=1.4 \mathrm{cfs}, \mathrm{Q}_{100}=3.2 \mathrm{cfs}\right)$ and will be discussed in the Paint Brush Hills Filing No. 13E report. Pipe Run PR\#16 and PR\#39 to be constructed as part of the Paint Brush Hills Filing No. 13E infrastructure.

Basin H, 10.8 acres, ($\mathrm{Q}_{5}=11.9 \mathrm{cfs}, \mathrm{Q}_{100}=29.7 \mathrm{cfs}$), consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to DP12 which will be collected by proposed dual 15^{\prime} Type R at-grade inlets. The intercepted flow ($\mathrm{Q}_{5}=6.0 \mathrm{cfs}, \mathrm{Q}_{100}=12.4 \mathrm{cfs}$ per side) will be routed east and west via a (2) 18" RCP pipes (PR18-18.1, $\mathrm{Q}_{5}=6.0 \mathrm{cfs}, \mathrm{Q}_{100}=12.4 \mathrm{cfs}$) and then south to a proposed 30 " RCP pipe ($\mathbf{P R 1 9},\left(\mathrm{Q}_{5}=11.9 \mathrm{cfs}, \mathrm{Q}_{100}=24.8 \mathrm{cfs}\right)$. The combined flows from PR17 and PR19 will be routed west to a proposed 42 " RCP pipe (PR20, $\mathrm{Q}_{5}=34.4 \mathrm{cfs}, \mathrm{Q}_{100}=75.3 \mathrm{cfs}$). The combined flows from PR12 and PR20 will be routed west to a proposed 54" RCP pipe (PR21, $\mathrm{Q}_{5}=86.6$ $\mathrm{cfs}, \mathrm{Q}_{100}=214.4 \mathrm{cfs}$). In the event of clogging, flows at DP12 will be routed via curb and gutter to DP15.

Basin M, 2.53 acres, $\left(\mathrm{Q}_{5}=2.6 \mathrm{cfs}, \mathrm{Q}_{100}=7.8 \mathrm{cfs}\right)$, consists of proposed single family residential lots and proposed local residential streets. Flowby from DP9, DP11, DP12 and surface runoff from Basin M will be routed via curb and gutter to DP13 ($\mathrm{Q}_{5}=2.1 \mathrm{cfs}, \mathrm{Q}_{100}=21.3 \mathrm{cfs}$). See Basin C for discussion of intercepted flow.

Basin OS5A, 3.7 acres, ($\mathrm{Q}_{5}=1.5 \mathrm{cfs}, \mathrm{Q}_{100}=8.4 \mathrm{cfs}$), consist of existing developed 3.5-acre properties and streets. Runoff produced by the offsite area, will sheet flow onto Basin \mathbf{C} which will be routed via side lot swales and curb and gutter to DP14.

Basin C, 11.8 acres, $\left(\mathrm{Q}_{5}=9.2 \mathrm{cfs}, \mathrm{Q}_{100}=28.6 \mathrm{cfs}\right)$, consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to DP14 ($\mathrm{Q}_{5}=10.3 \mathrm{cfs}$, $\mathrm{Q}_{100}=34.8 \mathrm{cfs}$). The combined flows from DP13 and DP14 will be captured by proposed dual 20' Type R sump inlets at DP15 ($\left.\mathrm{Q}_{5}=12.3 \mathrm{cfs}, \mathrm{Q}_{100}=55.4 \mathrm{cfs}\right)$. The intercepted flow will be routed south via a $30^{\prime \prime} \mathrm{RCP}$ pipe ($\mathbf{P R 2 2}, \mathrm{Q}_{5}=6.1 \mathrm{cfs}, \mathrm{Q}_{100}=27.7 \mathrm{cfs}$ per side) and then south to a proposed 36 " RCP pipe (PR23, ($\mathrm{Q}_{5}=12.3 \mathrm{cfs}, \mathrm{Q}_{100}=55.4 \mathrm{cfs}$). The combined flows from PR21 and PR23 will be routed south to a proposed 60 " RCP pipe ($\mathbf{P R 2 4}, \mathrm{Q}_{5}=98.8 \mathrm{cfs}, \mathrm{Q}_{100}=269.2 \mathrm{cfs}$) which will ultimately outfall into a proposed concrete lined forebay in Pond C.

Basin B, 8.31 acres, $\left(\mathrm{Q}_{5}=5.6 \mathrm{cfs}, \mathrm{Q}_{100}=20.8 \mathrm{cfs}\right)$, consists of the backyards of proposed single family residential lots. Minimal improvements to the backyards will be implemented and shall have split rail fences only along the rear and side lots lines. Surface runoff will be collected by a 2' wide swale (see Table $10-4$ in appendix), within a $20^{\prime} / 30^{\prime}$ easement, to DP16 a CDOT type C inlet. The intercepted flow will be routed east via a 30 " RCP pipe ($\mathbf{P R 2 5}, \mathrm{Q}_{5}=5.6 \mathrm{cfs}, \mathrm{Q}_{100}=20.8 \mathrm{cfs}$). The cumulative flows from PR24 and PR25 will combine and be routed south to a proposed 66" RCP pipe (PR26, $\mathrm{Q}_{5}=103.6 \mathrm{cfs}$, $\mathrm{Q}_{100}=287.2 \mathrm{cfs}$) which will outfall into a proposed concrete lined forebay in Pond C.

Basin N, 8.94 acres, $\left(\mathrm{Q}_{5}=6.2 \mathrm{cfs}, \mathrm{Q}_{100}=23.0 \mathrm{cfs}\right)$, consists of backyards of proposed single family residential lots, backyards of existing residential lots from Paint Brush Hills Filing No. 12 and existing Pond C. The combined surface runoff and PR26 will be collected at DP17 (existing Pond C, $\mathrm{Q}_{5}=108.8 \mathrm{cfs}$, $\mathrm{Q}_{100}=306.5 \mathrm{cfs}$). The existing Pond C will require modifications in order to function as an Full Spectrum Extended Detention Basin (EDB). These modifications will be addressed in the Street and Storm Sewer Construction drawings for Paint Brush Hills Filing No. 14. The proposed Detention Pond C functions to provide full spectrum detention and water quality for runoff calculated onsite and offsite flows. The pond is designed to treat approx 137.6 acres, and provide $1.839 \mathrm{ac}-\mathrm{ft}$ of WQCV storage, $4.673 \mathrm{ac}-\mathrm{ft}$ of EURV and $11.583 \mathrm{ac}-\mathrm{ft}$ of 100 -year storage. The forebay, trickle channel micropool, outlet structure and pipe have been designed per the UDFCD manual using the MHFD Detention v4.03 workbook. The detention pond will be private and shall be maintained by the Paint Brush Hills Metropolitan District. Access shall be granted to the owner and El Paso County for maintenance of the private detention pond. A private maintenance agreement document shall accompany the submittal. In the event of clogging of the outlet structure, flows at DP17 will over top the emergency spillway and outfall onto an existing swale, as it previously was designed. Per the Paint Brush Hills Filing No. 12 Construction Plans, an existing 20' x 20’ rip rap pad ($\mathrm{D}_{50}=18^{\prime \prime}$) has been constructed and is in general conformance with the present release rate. The existing riprap pad will dissipate energy and prevent local scour at the outlet. The peak release rate from Pond C (\#PR27, Q5=22.6 cfs and Q100=92.8cfs ~an existing 48" RCP) outfalls into an existing swale. The flows exiting the site are less than the flows as stated in the MDDP of Q5=22 cfs and Q100 $=161 \mathrm{cfs}$. The proposed discharge from the subject site will not adversely affect the downstream infrastructure or affect water quality.

Basin Tributary to Adjacent Property to the West

Basin B1, 0.92 acres, $\left(\mathrm{Q}_{5}=0.6 \mathrm{cfs}, \mathrm{Q}_{100}=2.4 \mathrm{cfs}\right)$, consists of portions of two backyards of proposed single family residential lots which will have minimal to no impervious surfaces and an upstream natural swale.

Roof drains from the residential structures shall be routed to drain to Keynes Drive. Surface runoff will sheet flow west and shall follow historic drainage patterns (swale to remain natural) to the adjacent property. Flows will not adversely affect the downstream infrastructure. Basin B1 comprises only 1% of the development site and is less than one acre. Per ECM I.7.1.C.1.a., the County may exclude this acreage if applicable. The upstream off-site drainage area was not part of the FDRPBH-PH2-13 study and will be routed through the two backyards as a natural undisturbed swale.

Basins Tributary to Adjacent Detention Pond D

As previously mentioned in the Purpose section of this report, approximately 5.99 acres of Paint Brush Hills Filing No. 14 runoff will be tributary to Paint Brush Hills Filing 13E (Pond D). The Basin description will show that the changes in drainage patterns will not adversely affect downstream infrastructure. Basin **OS1 was initially part of Basin **SS and Basin *OO in the "Final Drainage Report for Paint Brush Hills Filing NO. 13E (FDRPBH-13E)". Due to site layout and grading Basin **OS1 was created and accounted for this drainage report. Other than the basins describe below, the information provided (areas, C values, times of concentration, intensity) by the FDRPBH-13E report was used to quantify the flows in the proposed drainage spreadsheets for Design Point ${ }^{* 34 A},\left(\mathrm{Q}_{5}=36 \mathrm{cfs}\right.$, $\mathrm{Q}_{100}=155 \mathrm{cfs}$).

Basin **SS, 3.01 acres, $\left(\mathrm{Q}_{5}=2.8 \mathrm{cfs}, \mathrm{Q}_{100}=8.4 \mathrm{cfs}\right)$, consists of a planned single family residential lots and proposed local residential streets. The developed flows within the Basin **SS are routed via curb and gutter to a planned 6' Type R sump inlet at $\mathbf{D P} * * 34\left(\mathrm{Q}_{5}=2.8 \mathrm{cfs}, \mathrm{Q}_{100}=8.4 \mathrm{cfs}\right)$. Due to changes in the grading and drainage patterns the acreage and surface runoff has been reduced from the FDRPBH-13E report ($\mathrm{Q}_{5}=14.0 \mathrm{cfs}, \mathrm{Q}_{100}=29.0 \mathrm{cfs}$). The combined flows from $\mathbf{D P} * * 33$ and $\mathbf{D P} * * 34\left(\mathrm{Q}_{5}=6.9 \mathrm{cfs}\right.$, $\mathrm{Q}_{100}=19.4 \mathrm{cfs}$) will be routed east, as planned in the FDRPBH-13E report, via a planned 24 " RCP pipe and outlet into Basin OO (within an overhead electric utility easement). See the FDRPBH-13E report and construction plans, by Classic Engineers and Surveyors for additional details.

Basin **OS1, 4.44 acres, $\left(\mathrm{Q}_{5}=4.9 \mathrm{cfs}, \mathrm{Q}_{100}=13.7 \mathrm{cfs}\right)$, consists of a planned single family residential lots and proposed local residential streets. The developed flows within the Basin **OS1 are routed via curb and gutter to a planned 10' Type R sump inlet at DP1 ($\left.\mathrm{Q}_{5}=4.9 \mathrm{cfs}, \mathrm{Q}_{100}=13.7 \mathrm{cfs}\right)$. Due to changes in the grading and drainage patterns the acreage and surface runoff has been increased but has been offset by acreage taken away from Basins **SS and *OO. The flows from DP1 will be routed east via a proposed 18 " RCP pipe (PR1)and outlet into Basin OO and an existing swale(within an overhead electric utility easement, see Table 10-4 in appendix). Caution will be taken working under the power lines and no amount of fill is anticipated as PR1 and outfall are installed. A rip rap apron will be constructed to dissipate energy and prevent local scour at the outlet. In the event of clogging or total inlet failure, flows at DP1 will over top the curb and gutter and outfall into overhead electric utility easement. See Paint Brush Hills Filing No. 14 Street and Storm Sewer construction plans, provided by M\&S Civil Consultants for details. The proposed discharge from the subject site will not adversely affect the downstream infrastructure or affect water quality.

DETENTION POND PROVISIONS AND MAINTENANCE

Detention Pond C, has combined upstream developed runoff of Q5 $=108.8 \mathrm{cfs}$ and $\mathrm{Q} 100=306.5 \mathrm{cfs}$. The existing Pond C will require modifications in order to function as an Full Spectrum Extended Detention Basin (EDB). The proposed Detention Pond functions to provide detention and water quality for runoff calculated onsite. These modifications will be addressed in the Street and Storm Sewer Construction drawings for Paint Brush Hills Filing No. 14. The pond is designed to treat approx 137.6 acres, and provide 1.839 ac-ft of WQCV storage, 4.673 ac-ft of EURV and 11.583 ac -ft of 100-year storage. The forebay, trickle channel micropool, outlet structure and pipe have been designed per the UDFCD manual using the MHFD Detention v4.03 workbook. The detention pond will be private and shall be maintained
by the Paint Brush Hills Metropolitan District. Access shall be granted to the owner and El Paso County for maintenance of the private detention pond. A private maintenance agreement document shall accompany the submittal. In the event of clogging of the outlet structure, flows at DP17 will over top the emergency spillway and outfall onto an existing swale, as it previously was designed. Per the Paint Brush Hills Filing No. 12 Construction Plans, an existing 20' x 20' rip rap pad ($\mathrm{D} 50=18$ ") has been constructed and is in general conformance with the present release rate. The existing riprap pad will dissipate energy and prevent local scour at the outlet. The peak release rate from Pond C (\#PR27, Q5=22.6 cfs and Q100 $=92.8 \mathrm{cfs} \sim$ an existing $48^{\prime \prime}$ RCP) outfalls into an existing swale. The flows exiting the site are less than the flows as stated in the MDDP of Q5=22 cfs and Q100=161 cfs. Flows will not adversely affect the downstream infrastructure.

EROSION CONTROL

It is the policy of the El Paso County that we submit a grading and erosion control plan with the drainage report. Proposed erosion control blanket, silt fence, vehicle traffic control, and concrete washout area are proposed as erosion control measures.

CONSTRUCTION COST OPINION

Private Drainage Facilities NON-Reimbursable:

Item	Description	Quantity	
1.	18"RCP	187	LF
2.	24"RCP	90	LF
3.	30"RCP	429	LF
4.	36"RCP	304	LF
5.	42"RCP	270	LF
6.	48 "RCP	2423	LF
7.	54"RCP	183	LF
8.	60 "RCP	163	LF
10.	66 "RCP	114	LF
11.	18"FES	1	EA
12.	36"FES	1	EA
13.	66"END TREATEMENT	1	EA
	HEADWALL/W ING WALLS		
14.	5' TYPE R SUMP INLET	1	EA
15.	10' TYPE R SUMP INLET	2	EA
16.	15' TYPE R SUMP INLET	2	EA
17.	15'TYPE R AT GRADE INLET	6	EA
18.	20'TYPE R AT GRADE INLET	2	EA
19.	3'x3' CDOT TYPE C	1	EA
20.	TYPE I MH	13	EA
21.	EDB Pond	1	EA
22.	Pond Outlet MOD TYPE D	1	EA
23.	RIPRAP OUTFALL TYPE L	27	CY
24.	RIPRAP SPILLWAY TYPE M	384	CY

24. RIPRAP SPILLWAY TYPE M 384 CY

Quantity
90 LF
429 LF
304 LF
2423 LF
183 LF
163 LF
114 LF
1 EA
1 EA
EA

1 EA

$\$ 4000$	$/ \mathrm{EA}$
$\$ 4700$	$/ \mathrm{EA}$
$\$ 6000$	$/ \mathrm{EA}$
$\$ 6000$	$/ \mathrm{EA}$
$\$ 8000$	$/ \mathrm{EA}$
$\$ 4000$	$/ \mathrm{EA}$
$\$ 6000$	$/ \mathrm{EA}$
$\$ 20,000$	$/ \mathrm{EA}$
$\$ 15,000$	/EA
$\$ 50$	/CY
$\$ 65$	/CY

Cost \$7,480.00
\$4,500.00
\$27,885.00
\$22,800.00
\$22,950.00
\$363,450.00
\$36,600.00
\$40,750.00
\$39,900.00
$\$ 245.00$
$\$ 775.00$
\$15,000.00
\$4,000.00
\$9,400.00
\$12,000.00
\$36,000.00
\$16,000.00
$\$ 4,000.00$
\$78,000.00
\$20,000.00
\$15,000.00
\$1,350.00
\$24,960.00
Total \$ \$803,505.00

DRAINAGE \& BRIDGE FEES

Drainage and Bridge Fees for the Paint Brush Hills Filing No. 14 site are as follows:
Falcon Drainage

Acres		Imperviousness		Basin Fee			
88.631	x	36.8%	x	$\$ 30,807.00$		$=$	$\$ 1,004,807.52$
88.631	x	36.8%	x	$\$ 4,232.00$	$=$	$\$ 138,031.79$	
						Total	$\mathbf{\$ 1 , 1 4 2 , 8 3 9 . 3 1}$

M \&S Civil Consultants, Inc. (M \&S) cannot and does not guarantee the construction cost will not vary from these opinions of probable costs. These opinions represent our best judgment as design professionals familiar with the construction industry and this development in particular. The above is only an estimate of the facility cost and drainage basin fee amounts in 2020.

SUMMARY

Development of the Paint Brush Hills Filing No. 14 site shall not adversely affect adjacent or downstream properties per this final drainage report. The proposed drainage facilities will adequately convey, detain and route runoff from tributary onsite and existing offsite flows to the Chico Creek receiving waters. Full Spectrum Detention and Water Quality Pond will be used to discharge developed flows into the Chico Creek receiving waters per the Urban Drainage criteria flow rates, which are at or less than the historic flow. Care will be taken to accommodate overland emergency flow routes on site and temporary drainage conditions. The development of the Paint Brush Hills Filing No. 14 project shall not adversely affect adjacent or downstream property. The proposed discharge from the subject site will not adversely affect the downstream infrastructure or affect water quality.

REFERENCES

1.) "El Paso County and City of Colorado Springs Drainage Criteria Manual".
2.) "Urban Storm Drainage Criteria Manual"
3.) SCS Soils Map for El Paso County.
4.) Flood Insurance Rate Map (FIRM), Federal Emergency Management Agency, Effective date March 17, 1997.
5.) "Master Development Drainage Plan for Falcon Hills Development" prepared by Kiowa Engineering Corporation, approved November 2002.
6.) "Final Drainage Report for Paint Brush Hill Filing Nos. 10, $11 \& 12 "$ prepared by Classic Consulting Engineers and Surveyors, rev. July 2003.
7.) "Final Drainage Report for Paint Brush Hills-Phase 2 (Filing No. 13)", prepared by Classic Consulting Engineers and Surveyors, submitted on rev. June 2008.
8.) "Final Drainage Report for Paint Brush Hills Filing 13E", prepared by Classic Consulting Engineers and Surveyors, submitted on September 2018.

APPENDIX

VICINITY MAP

SOILS MAP

MAP LEGEND			MAP INFORMATION
Area of Interest (AOI) \square Area of Interest (AOI)	\square \square	C C/D	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soil Rating Polygons	\square	D	Warning: Soil Map may not be valid at this scale.
A	\square	Not rated or not available	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
A/D	Water Fe	ures	line placement. The maps do not show the small areas of
]	\sim	Streams and Canals	contrasting soils that could have been shown at a more detailed scale.
B/D	Transportation		
	+		Please rely on the bar scale on each map sheet for map
C	\sim	Interstate Highways	measurements.
C/D	\sim	US Routes	Source of Map: Natural Resources Conservation Service
D	\approx	Major Roads	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
. Not rated or not available	\sim	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
Soil Rating Lines	Background		projection, which preserves direction and shape but distorts
$\cdots \quad A / D$	5	Aerial Photography	Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
B			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
$\checkmark \mathrm{C}$			Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 15, Oct 10, 2017
\cdots C/D			Soil map units are labeled (as space allows) for map scales
* D			1:50,000 or larger.
* Not rated or not available			Date(s) aerial images were photographed: May 22, 2016-Mar
Soil Rating Points			9,2017
$\square \quad A$			The orthophoto or other base map on which the soil lines were
$\square \quad \mathrm{A} / \mathrm{D}$			imagery displayed on these maps. As a result, some minor
- B			shifting of map unit boundaries may be evident.
- B/D			

Natural Resources

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
71	Pring coarse sandy loam, 3 to 8 percent slopes	B	87.6	100.0%
Totals for Area of Interest				

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Abstract

FIRM PANEL

HYDROLOGIC CALCULATIONS

PAINTBRUSH HILLS FILING NO. 14 FINAL DRAINAGE CALCULATIONS (Area Runoff Coefficient Summary)

			IMPER	US	TREET	LANDS	D/UN	OPED		DEN			ED
BASIN	$\begin{gathered} \hline \text { TOTAL } \\ \text { AREA } \\ \text { (Sq Ft) } \\ \hline \end{gathered}$	TOTAL AREA (Acres)	AREA (Acres)	C_{5}	C_{100}	AREA (Acres)	C_{5}	C_{100}	AREA (Acres)	C_{5}	C_{100}	C_{5}	C_{100}
**RR	182952	4.20	0.00	0.90	0.96	0.00	0.16	0.41	4.20	0.30	0.50	0.30	0.50
**SS	131167	3.01	0.00	0.90	0.96	0.00	0.16	0.41	3.01	0.30	0.50	0.30	0.50
**OS1	193584	4.44	0.00	0.90	0.96	0.00	0.16	0.41	4.44	0.30	0.50	0.30	0.50
*OO	1268037	29.11	0.00	0.90	0.96	29.11	0.16	0.41	0.00	0.22	0.46	0.16	0.41
*TT	219978	5.05	0.00	0.90	0.96	0.00	0.16	0.41	5.05	0.35	0.45	0.35	0.45
*UU	55321	1.27	0.00	0.90	0.96	0.00	0.16	0.41	1.27	0.35	0.45	0.35	0.45
***OS-5	2008124	46.10	0.00	0.90	0.96	0.00	0.16	0.41	46.10	0.30	0.40	0.30	0.40
OS5A	159430	3.66	0.00	0.90	0.96	0.00	0.16	0.41	3.66	0.11	0.37	0.11	0.37
OS5B	585306	13.44	0.00	0.90	0.96	0.00	0.16	0.41	13.44	0.11	0.37	0.11	0.37
OS5C	1263404	29.00	0.00	0.90	0.96	0.00	0.16	0.41	29.00	0.30	0.40	0.30	0.40
A	166371	3.82	0.00	0.90	0.96	0.00	0.16	0.41	3.82	0.20	0.44	0.20	0.44
B	361915	8.31	0.00	0.90	0.96	0.00	0.16	0.41	8.31	0.20	0.44	0.20	0.44
B1	40214	0.92	0.00	0.90	0.96	0.00	0.16	0.41	0.92	0.16	0.41	0.16	0.41
C	514010	11.80	0.00	0.90	0.96	0.00	0.16	0.41	11.80	0.26	0.48	0.26	0.48
D	226401	5.20	0.00	0.90	0.96	0.00	0.16	0.41	5.20	0.20	0.44	0.20	0.44
E	21364	0.49	0.49	0.90	0.96	0.00	0.16	0.41	0.00	0.20	0.44	0.90	0.96
F	70330	1.61	0.00	0.90	0.96	0.00	0.16	0.41	1.61	0.30	0.50	0.30	0.50
G	531342	12.20	0.00	0.90	0.96	0.00	0.16	0.41	12.20	0.35	0.52	0.35	0.52
H	469586	10.78	0.00	0.90	0.96	0.00	0.16	0.41	10.78	0.35	0.52	0.35	0.52
I	554956	12.74	0.00	0.90	0.96	0.00	0.16	0.41	12.74	0.35	0.52	0.35	0.52
J	169859	3.90	0.00	0.90	0.96	0.00	0.16	0.41	3.90	0.22	0.45	0.22	0.45
\boldsymbol{K}	32632	0.75	0.00	0.90	0.96	0.00	0.16	0.41	0.75	0.36	0.54	0.36	0.54
L	146850	3.37	0.00	0.90	0.96	0.00	0.16	0.41	3.37	0.36	0.54	0.36	0.54
M	110207	2.53	0.00	0.90	0.96	0.00	0.16	0.41	2.53	0.27	0.48	0.27	0.48
N	389341	8.94	0.00	0.90	0.96	3.19	0.16	0.41	5.75	0.22	0.46	0.20	0.44
* Values taken from "Final Drainage Report for Paint Brush Hills Filing 13E" (*FDRPBH-13E) prepared by Classic Consulting Engineers and Surveyors, dated Sept 2018 ** Revised from "Final Drainage Report for Paint Brush Hills Filing 13E" (**PDRPBH13E) prepared by Classic Consulting Engineers and Surveyors, dated Sept 2018 *** "Final Drainage Report for Paint Brush Hills-Phase 2 (Filing 13)" (FDRPBH-PH2-13) prepared by Classic Consulting Engineers and Surveyors, revised June 2008 Calculated by: GT Date: $3 / 12 / 2021$ Checked by: VAS													

PAINTBRUSH HILLS FILING NO. 14
FINAL DRAINAGE CALCULATIONS
(Area Drainage Summary)

From Area Rumoff Coeficicien Summary				OVERLAND				STREET / CHANNEL FLOW				Time of Travel		INTENSITY *		total flows	
basin	AREA total (Acres)	${ }_{\text {From }}^{\text {Coc }}$	C_{100}	C_{5}	Length (fi)	Height (ft)	$\begin{gathered} \mathrm{T}_{\mathrm{C}} \\ (m i n)) \end{gathered}$	$\begin{gathered} \text { Length } \\ (f i) \end{gathered}$	Slope (\%)	$\begin{gathered} \text { Velocity } \\ (f p s) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{t}} \\ (\text { min }) \end{gathered}$	total (min)	снеск (min)	$\begin{gathered} \mathbf{I}_{5} \\ (i n / h r) \\ \hline \end{gathered}$	$\begin{array}{\|c\|c} \mathbf{I}_{100} \\ (i n / h r) \\ \hline \end{array}$	$\begin{gathered} Q_{5} \\ \text { (c.f.s.) } \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{Q}_{100} \\ (\text { (c.f.s.) }) \\ \hline \end{gathered}$
Proposed Area Drainage Summary																	
**RR	4.20	0.30	0.50	0.25												8.0	17.0
**SS	3.01	0.30	0.50	0.25	170	3.4	16.5	800	3.9\%	6.9	1.9	18.4	15.4	3.1	5.6	2.8	8.4
**OS1	4.44	0.30	0.50	0.30	100	5	8.5	616	1.0\%	2.0	5.1	13.6	14.0	3.7	6.2	4.9	13.7
*OO	29.11	0.16	0.41	0.16												22.0	51.0
*TT	5.05	0.35	0.45	0.25	180	3.6	17.0	150	1.5\%	4.3	0.6	17.6	11.8	3.2	5.7	5.7	13.0
*UU	1.27	0.35	0.45	0.25	180	3.6	17.0	475	2.5\%	5.5	1.4	18.4	13.6	3.1	5.6	1.4	3.2
***OS-5	46.10	0.30	0.40	0.30												14.0	32.0
OS5A	3.66	0.11	0.37	0.11	100	2	14.2	527	1.5\%	1.8	4.8	19.0	13.5	3.7	6.2	1.5	8.4
OSSB	13.44	0.11	0.37	0.11	100	2	14.2	1684	1.5\%	1.8	15.3	29.5	19.9	3.1	5.2	4.6	25.8
OSSC	29.00	0.30	0.40	0.30	100	2	11.5	2110	1.0\%	2.0	17.6	29.1	22.3	2.9	4.9	25.5	57.0
A	3.82	0.20	0.44	0.20	100	4	10.3	373	3.2\%	2.7	2.3	12.6	12.6	3.8	6.3	2.9	10.7
B	8.31	0.20	0.44	0.20	100	3	11.3	1063	3.2\%	2.7	6.6	17.9	16.5	3.4	5.7	5.6	20.8
B1	0.92	0.16	0.41	0.16	100	3	11.8	265	2.6\%	3.2	1.4	13.2	12.0	3.9	6.5	0.6	2.4
C	11.80	0.26	0.48	0.26	100	3	10.6	2030	2.6\%	3.2	10.6	21.1	21.8	3.0	5.0	9.2	28.6
D	5.20	0.20	0.44	0.20	100	4	10.3	593	2.0\%	2.1	4.7	14.9	13.9	3.6	6.1	3.8	14.0
E	0.49	0.90	0.96	0.90	10	0.2	0.9	471	2.0\%	2.8	2.8	5.0	12.7	5.2	8.7	2.3	4.1
F	1.61	0.30	0.50	0.30	60	1.2	8.9	362	2.0\%	2.8	2.1	11.0	12.3	4.0	6.7	1.9	5.4
G	12.20	0.35	0.52	0.35	100	2	10.8	1381	2.8\%	3.3	6.9	17.7	18.2	3.3	5.5	14.0	34.8
H	10.78	0.35	0.52	0.35	100	2	10.8	1543	2.1\%	2.9	8.9	19.6	19.1	3.2	5.3	11.9	29.7
I	12.70	0.35	0.52	0.35	100	2	10.8	1309	2.1\%	2.9	7.5	18.3	17.8	3.3	5.5	14.5	36.2
J	3.90	0.22	0.45	0.22	100	2	12.6	799	1.9\%	2.7	4.9	17.5	15.0	3.5	5.9	3.0	10.4
K	0.75	0.36	0.54	0.36	72	1.4	9.1	277	1.6\%	2.5	1.8	10.9	11.9	4.0	6.7	1.1	2.7
L	3.37	0.36	0.54	0.36	75	1.5	9.2	1802	2.1\%	2.9	10.4	19.6	20.4	3.1	5.2	3.8	9.5
M	2.53	0.27	0.48	0.27	100	2	11.9	318	2.1\%	2.9	1.8	13.8	12.3	3.8	6.4	2.6	7.8
N	8.94	0.20	0.44	0.20	100	2	12.9	902	3.2\%	3.6	4.2	17.1	15.6	3.5	5.8	6.2	23.0
*Values taken from "Final Drainage Report for Paint Brush Hills Filing 13E" (*FDRPBH13E) prepared by Classic Consulting Engineers and Surveyors, dated Sept 2018																	
** Revised from "Final Drainage Report for Paint Brush Hills Filing 13E" (**PDRPBH13E) prepared by Classic Consulting Engineers and Surveyors, dated Sept 2018 Date: 3/12/2021 *** "Final Drainage Report for Paint Brush Hills-Phase 2 (Filing 13)" (FDRPBH-PH2-13) prepared by Classic Consulting Engineers and Surveyors, revised June 2008 \qquad																	

PAINTBRUSH HILLS FILING NO. 14

FINAL DRAINAGE CALCULATIONS

(Basin Routing Summary)

From Area Rumof Coofficien S Summay				overland				PIPE / CHANNEL FLOW				Time of Travel (T_{t})	INTENSITY *		Total flows		comments
design point	contributing basins	CA_{5}	$\mathrm{CA}_{\text {too }}$	C_{5}	$\begin{array}{\|c} \hline \text { Length } \\ (f i t \end{array}$	$\begin{array}{c\|} \hline \text { Height } \\ (f t) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{T}_{\mathrm{C}} \\ \text { (min) } \end{array}$	$\begin{aligned} & \text { Length } \\ & \text { (ft) } \end{aligned}$	$\begin{aligned} & \text { Slope } \\ & \left(\varphi_{0}\right. \end{aligned}$	$\begin{gathered} \hline \text { Velocity } \\ (f p s) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{T}_{\mathbf{i}} \\ (\text { min }) \end{gathered}$	$\begin{gathered} \text { ToTAL } \\ \hline \text { (min) } \\ \hline \end{gathered}$		$\begin{array}{\|l\|l\|} \hline \\ \text { (in } \end{array}$		$\begin{gathered} \mathrm{Q}_{100}^{(c, f .)} \end{gathered}$	
PROPOSED DRAINAGE BASIN ROUTING SUMMARY																	
1	**OS1	${ }^{1.33}$	${ }^{2.22}$									${ }^{13.6}$	3.7	${ }^{6.2}$	4.9	13.7	PROP 10' SUMP TYPE R INLET
																	REv **PDRPbHi3E
																	W/18" RCP
**33	**RR	${ }^{1.26}$	2.10									14.9	3.5	5.9	8.0	17.0	*IO'SUMP TYPE R INLET
																	*PDRPBHI3E
																	*W/24 ${ }^{\text {RCP }}$
**34	**SS	0.90	${ }^{1.51}$									18.4	3.1	5.6	2.8	8.4	*s'SUMP TYPE R INLET
																	*PDRPBHI3E
																	*W/24" RCP
*34A	INFLOW POND D														36.0	155.0	INFLOW PoND D
3	A	0.76	1.68					358	1.7\%	1.9	${ }^{3.1}$	22.3	2.9	4.9	27.7	65.3	PROP 36" RCP FES
	OssC	8.70	11.60														
		9.47	13.28														
4	J	0.86	1.75									15.0	3.5	5.9	3.0	10.4	PROP 10 SUMP TYPE R INLET
																	W/18" RCP
5	K	0.27	0.40									10.9	4.0	${ }^{6.7}$	1.1	2.7	PROP s' SUMP TYPE R INLET $^{\text {a }}$
																	w/18" RCP
6																	
	OssB	${ }^{1.48}$	4.97									19.9	${ }^{3.1}$	5.2	9.2	40.2	PROP I'S'SUMP TYPE R INLET
	D	1.04	2.29														W/24" RCP
	E	0.44	0.47														
		2.96	7.73														
7	F	0.48	${ }^{0.81}$									${ }^{11.0}$	4.0	${ }^{6.7}$	1.9	5.4	PROP IS' SUMP TYPE R INLET
																	W/24 ${ }^{\text {RCP }}$
8	DP 6 \& 7	3.44	8.54									19.9	3.1	5.2	10.7	44.4	PROP DUAL I'S SUMP TYPE R INLET
																	100-Year
																22.2	FLows Split @ DP8
9	G	4.27	${ }^{6.34}$									17.7	3.3	5.5	14.0	34.8	PRop dual 15'AT-GRade type r inlet
																	W/24" RCPS
																	FLows Split @ DP9
10	I	4.45	6.60									17.8	3.3	5.5	14.5	36.2	Prop dual 15'AT-Grade type r inlet
																	W/18" RCP \& $300^{\prime \prime}$ RCP
																	FLOWS SPLIT @ DP10
11	L	1.21	${ }^{1.82}$									20.4	3.1	5.1	3.7	17.0	EX. 15 'AT-GRADE TYPE R INLET
	Flowby DP10	0.00	1.49														W/24" RCP
		1.21	3.31														
*37	*TT	1.77	2.27									11.8	3.2	5.7	5.7	13.0	EX. 15'AT-GRADE TYPE R inlet
																	W/24" RCP
																	FLows SPLIT @ DP12
12	H	3.77	5.61									${ }^{19.1}$	3.2	5.3	11.9	29.7	PRop dual 15'AT-GRADE TYPE R INLET
																	W/18" RCP \& 30" RCP
																	FLows SPLIT @ DPI2
13	M	0.68	1.21									20.4	3.1	5.1	2.1	21.3	SEE dP15 For cummulative flow
	FLOWBY DP9	0.00	1.35														
	FLOWBY DP12	0.00	0.90														
	FLOWBY DP11	0.00	0.68														
		0.68	4.15														
14	C	3.07	5.66									${ }^{21.8}$	${ }^{3.0}$	5.0	10.3	34.8	SEE dPIS For Cummulative flow
	OS5A	0.40	1.35														
		3.47	7.02														
15	DP13	0.68	4.15									21.8	${ }^{3.0}$	5.0	12.3	55.4	PROP DUAL 20 ' SUMP TYPE R INLET
	DP14	3.47	7.02														W/30"\& $366^{\text {R }}$ CP
		4.15	11.16														FLows SPLIT @ DP15
16	B	1.66	3.66									16.5	3.4	5.7	5.6	20.8	PROP CDOT TYPE CINLET
17	N	1.78	3.95									${ }^{22.3}$	2.9	4.9	108.8	306.5	EX. Pond C
	PR26	35.44	58.52														
		37.22	62.47														
													Calculated by: GT				
** Revised from "Final Drainage Report for Paint Brush Hills Filing 13E" (**PDRPBHI3E) prepared Dy Classic Consulting Engineers and Surveyors, dated Sept 2018 *** "Final Drainage Report for Paint Brush Hills-Phase 2 (Filing 13)" (FDRPBH-PH2-13) prepared by Classic Consulting Engineers and Surveyors, revised June 2008														Date:			
														cked by:			

PAINTBRUSH HILLS FILING NO. 14
 FINAL DRAINAGE CALCULATIONS

(Storm Sewer Routing Summary)

	Contributing Pipes/Design Points	Equivalent CA_{5}	$\begin{gathered} \text { Equivalent } \\ C_{100} \end{gathered}$	$\begin{gathered} \text { Maximum } \\ T_{C} \end{gathered}$	Intensity*		Flow		PIPE SIZE
$\begin{aligned} & \text { PIPE } \\ & \text { RUN } \end{aligned}$					I_{5}	I_{100}	Q_{5}	Q_{100}	
*36	PDRPBH-13E DP33	1.26	2.10	14.9	3.5	5.9	4.4	12.4	*24" RCP
*37	DP**34, DP*33	2.16	3.61	18.4	3.2	5.4	6.9	19.4	*30" RCP
1	DP1	1.33	2.22	13.6	3.7	6.2	4.9	13.7	18 " RCP
2	DP3	9.47	13.28	22.3	2.9	4.9	27.7	65.3	36 " RCP
3	DP4	0.86	1.75	15.0	3.5	5.9	3.0	10.4	18" RCP
4	DP5	0.27	0.40	10.9	4.0	6.7	1.1	2.7	18" RCP
5	PR2, PR3, PR4	10.59	15.44	22.3	2.9	4.9	31.0	75.9	48" RCP
7	DP6	2.96	4.27	19.9	3.1	5.2	9.2	22.2	24 " RCP
8	DP7	0.48	4.27	19.9	4.0	5.2	1.9	22.2	24 " RCP
9	PR5, PR7, PR8	14.04	23.97	22.3	2.9	4.9	41.0	117.7	48" RCP
10	1/2 DP9 CAPTURE	2.17	2.52	17.7	3.3	5.5	7.1	13.9	24 " RCP
11	1/2 DP9 CAPTURE	2.17	2.52	17.7	3.3	5.5	7.1	13.9	24 " RCP
12	PR9, PR10, PR11	18.38	29.02	22.3	2.9	4.9	53.7	142.4	48" RCP
13	1/2 DP 10 CAPTURE	2.24	2.55	17.8	3.3	5.5	7.3	14.0	18" RCP
14	1/2 DP 10 CAPTURE, PR13	4.48	5.10	17.8	3.3	5.5	14.6	27.9	$30^{\prime \prime} \mathrm{RCP}$
\#38	PR14	4.48	5.10	17.8	3.3	5.5	14.6	27.9	*30" RCP
\#15	DP 11 CAPTURE	1.22	2.63	20.4	3.1	5.1	3.7	13.5	*24" RCP
\#16	\#PR38, \#PR15	5.70	7.73	20.4	3.1	5.1	17.4	39.7	*30" RCP
\#39	DP*37	1.77	2.27	11.8	3.2	5.7	5.7	13.0	*24" RCP
\#17	PR\#16, PR\#39	7.47	10.00	20.4	3.1	5.1	22.8	51.3	*36" RCP
18	1/2 DP12	1.89	2.34	19.1	3.2	5.3	6.0	12.4	18" RCP
18.1	1/2 DP12	1.89	2.34	19.1	3.2	5.3	6.0	12.4	18" RCP
19	PR18, PR18.1	3.78	4.68	19.1	3.2	5.3	11.9	24.8	30 " RCP
20	PR\#17, PR19	11.25	14.68	20.4	3.1	5.1	34.4	75.3	42" RCP
21	PR12, PR20	29.63	43.70	22.3	2.9	4.9	86.6	214.4	54 " RCP
22	1/2 DP15	2.08	5.58	21.8	3.0	5.0	6.1	27.7	30 " RCP
23	1/2 DP15, PR22	4.15	11.16	21.8	3.0	5.0	12.3	55.4	$36 " \mathrm{RCP}$
24	PR21, PR23	33.78	54.86	22.3	2.9	4.9	98.8	269.2	60" RCP
25	B	1.66	3.66	16.5	3.4	5.7	5.6	20.8	30 " RCP
26	PR24, PR25	35.44	58.52	22.3	2.9	4.9	103.6	287.2	66" RCP
\#27	DP 17	POND C OUTFALL RESTRICTED FLOW FROM MHFD SHT					22.6	92.8	EX 48" RCP
* Values taken from "Final Drainage Report for Paint Brush Hills Filing 13E" (*FDRPBH13E) prepared by Classic Consulting Engineers and Surveyors, dated September 2018 \# Values adjusted from FDR PBH 14									
DP - Design Point EX - Existing Design Point FB- Flow By from Design Point INT- Intercepted Flow from Design Point					Checked by: VAS				

HYDRAULIC CALCULATIONS / EDB WQCV CALCULATIONS

INLET IN A SUMP OR SAG LOCATION

Project $=$
lnlet ID =
\qquad

Deslan information (input)		MINOR	MANOR	inches
Type of Inlet	\|nlet Type $=$	CDOT Type R Curb Opening		
Local Depression (additional to contlnuous gutter depression 'a' from 'O-Allow')	$a_{\text {bcal }}=$	3.00	3.00	
Number of Unit Inlets (Grate or Curb Opening)	$\mathrm{No}=$	2.0	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	5.6	7.9	
Grate Information		MINOR	MAJOR	8) Overkle Depths
Length of a Unit Grate	$L_{0}(\mathrm{G})=$	N/A	N/A	feat
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	$N^{\prime} A$	feet
Area Opening Ratio for a Grate (typlcal values 0.15-0.90)	$A_{\text {maio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$C_{C}(G)=$	N/A	N/A	
Grate Weir Coefficient (typlcal value 2.15-3.60)	$C_{w}(G)=$	N/A	N/A	
Grate Orifice Coefficient (typical value $0.60-0.80$)	$C_{0}(\mathrm{G})=$	N/A	N ${ }^{\prime}$ A	
Curb Opening Information		MINOR	MANOR	
Length of a Unit Curb Opening	$L_{0}(C)=$	5.00	500	feet
Helght of Vertical Cutb Opening in Inches	$\mathrm{H}_{\text {ent }}=$	6.00	c.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {lromit }}=$	6.00	6.00	Inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	6.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feel)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor fcr a Single Curb Opening (typlcal value 0.10)	$\mathrm{C}_{\mathrm{T}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{w}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orfice Coefficient (typical value 0.60-0.70)	$C_{0}(\mathrm{C})=$	0.67	0.67	
		MINOR	MAJOR	
Total Inlet Interceptlon Capacity (assumes clogged condition)	$\mathbf{Q a m}^{\mathbf{m}}$	8.7	18.0	cff
Inlet Capaclity IS GOOD for Minor and Major Storms (\%Q PEAK)	$Q_{\text {peakrequrid }}=$	4.9	13.7	cfs

Gutter Geometry (Enter data in the blue colla)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Siope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{tt}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

$\mathrm{T}_{\text {BACK }}$	$=8.0$
ft	
$\mathrm{S}_{\mathrm{BACK}}$	$=0.020$
$\mathrm{ft} / \mathrm{ft}$	
$\mathrm{n}_{\mathrm{B}, \mathrm{ACK}}=0.020$	

$\mathrm{H}_{\text {cura }}=$	6.00	inches
$\mathrm{T}_{\text {CROWN }}=$	17.0	ft
W $=$	2.00	ft
$S_{\text {x }}=$	0.020	ftuft
$S_{\text {w }}=$	0.083	fifft
$\mathrm{S}_{0}=$	0.000	fift
Mstreet $=$	0.020	

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Fiowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression ($\mathrm{d}_{\mathrm{c}}-\left(\mathrm{W}^{*} \mathrm{~S}_{\mathrm{x}}{ }^{*} 12\right)$)
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathbf{X}}$
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V^{\star} d Product: Flow Velocity times Gutter Flowilne Depth

	Minor Storm	Major Storm	
$\mathrm{y}=$	4.08	4.08	inches
$\mathrm{d}_{\mathrm{c}}=$	2.0	2.0	inches
$\mathrm{a}=$	1.51	1.51	inches
$\mathrm{d}=$	5.59	5.59	inches
$\mathrm{T}_{\mathrm{x}}=$	15.0	15.0	ft
$E_{0}=$	0.350	0.350	
$Q_{x}=$	0.0	0.0	cts
$Q_{w}=$	0.0	0.0	cts
$Q_{\text {BACK }}=$	0.0	0.0	cfs
$Q_{T}=$	SUMP	SUMP	cfs
$V=$	0.0	0.0	fos
$V^{*} d^{\prime}=$	0.0	0.0	

Maximum Capaclty for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W) Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{X} \text { TH }}$ Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {crown }}$) Discharge within the Gutter Section $W\left(Q_{d}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6^{\prime \prime}$) Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)

	Minor Storm	Major Storm	
$\mathrm{T}_{\text {TH }}=$	17.0	26.6	ft
$\mathrm{T}_{\text {XTH }}=$	15.0	24.6	At
$\mathrm{E}_{0}=$	0.349	0.220	
$Q_{x \text { TH }}=$	0.0	0.0	cfs
$Q_{x}=$	0.0	0.0	cts
$Q_{w}=$	0.0	0.0	cfs
$\mathrm{Q}_{\text {BACK }}=$	0.0	0.0	cfs
Q =	0.0	0.0	cfs
$V=$	0.0	0.0	fps
$\mathrm{V}^{+} \mathrm{d}=$	0.0	0.0	
$\mathrm{R}=$	SUMP	SUMP	
$Q_{d}=$	SUMP	SUMP	cfs
$\mathrm{d}=$			inches
$\mathrm{d}_{\text {crown }}=$			inches

MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
Minor storm max. allowable capacity GOOD - greater than flow given on sheet ' Q-Peak'

Major storm max. allowable capacity GOOD - greater than flow given on sheet ' Q-Peak'

INLET IN A SUMP OR SAG LOCATION

Project $=$ \qquad

Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)

	Minor Storm	Major Storm	
$\mathrm{T}_{\text {MAX }}=$	17.0	17.0	ft
$\mathrm{d}_{\text {MAX }}=$	5.6	7.9	inches
	\square	\checkmark	check = yes

Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression (d_{C} - (W * S_{x} * 12))
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X} Discharge within the Gutter Section W $\left(Q_{T}-Q_{X}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth

	Minor Storm	Major Storm	inches inches
$y=$	4.08	4.08	
$\mathrm{d}_{\mathrm{c}}=$	2.0	2.0	
$\mathrm{a}=$	1.51	1.51	inches
d $=$	5.59	5.59	inches
$\mathrm{T}_{\mathrm{x}}=$	15.0	15.0	ft
$\mathrm{E}_{0}=$	0.350	0.350	
$\mathrm{Q}_{\mathrm{x}}=$	0.0	0.0	cfs
$\mathrm{Q}_{\mathrm{w}}=$	0.0	0.0	cfs
$\mathrm{Q}_{\text {BACK }}=$	0.0	0.0	cfs
$Q_{T}=$	SUMP	SUMP	cfs
$V=$	0.0	0.0	fps
$\mathrm{V}^{*} \mathrm{~d}=$	0.0	0.0	

Maximum Capacity for $1 / 2$ Street based on Allowable Depth

Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$ Actual Discharge outside the Gutter Section W, (limited by distance $\mathrm{T}_{\text {CROWN }}$) Discharge within the Gutter Section W $\left(Q_{d}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)

	Minor Storm	Major Storm	
$\mathrm{T}_{\text {TH }}=$	17.0	26.6	ft
$\mathrm{T}_{\text {XTH }}=$	15.0	24.6	ft
$\mathrm{E}_{0}=$	0.349	0.220	
$Q_{x \text { TH }}=$	0.0	0.0	cfs
$\mathrm{Q}_{\mathrm{x}}=$	0.0	0.0	cfs
$\mathrm{Q}_{\mathrm{w}}=$	0.0	0.0	cfs
$\mathrm{Q}_{\text {BACK }}=$	0.0	0.0	cfs
Q =	0.0	0.0	cfs
$\mathrm{V}=$	0.0	0.0	fps
$\mathrm{V}^{*} \mathrm{~d}=$	0.0	0.0	
$\mathrm{R}=$	SUMP	SUMP	
$\mathrm{Q}_{\mathrm{d}}=$	SUMP	SUMP	cfs
d $=$			inches
$\mathrm{d}_{\text {CROWN }}=$			inches

MINOR STORM Allowable Capacity is based on Depth Criterion

 MAJOR STORM Allowable Capacity is based on Depth Criterion Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak'
Major storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak'

INLET IN A SUMP OR SAG LOCATION

Project $=$ \qquad

Design Information (Input)

Type of Inlet

Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')
Number of Unit Inlets (Grate or Curb Opening)
Water Depth at Flowline (outside of local depression)
Grate Information
Length of a Unit Grate
Width of a Unit Grate
Area Opening Ratio for a Grate (typical values 0.15-0.90)
Clogging Factor for a Single Grate (typical value 0.50-0.70)
Grate Weir Coefficient (typical value 2.15-3.60)
Grate Orifice Coefficient (typical value 0.60-0.80)
Curb Opening Information
Length of a Unit Curb Opening
Height of Vertical Curb Opening in Inches
Height of Curb Orifice Throat in Inches
Angle of Throat (see USDCM Figure ST-5)
Side Width for Depression Pan (typically the gutter width of 2 feet)
Clogging Factor for a Single Curb Opening (typical value 0.10)
Curb Opening Weir Coefficient (typical value 2.3-3.7)
Curb Opening Orifice Coefficient (typical value 0.60-0.70)

Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)

INLET IN A SUMP OR SAG LOCATION

Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)

	Minor Storm	Major Storm	
$\mathrm{T}_{\text {MAX }}=$	17.0	17.0	ft
$\mathrm{d}_{\text {MAX }}=$	5.6	7.9	inches
	\square	v	check $=$ yes

Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression (d_{C} - (W * S_{x} * 12))
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X} Discharge within the Gutter Section W $\left(Q_{T}-Q_{X}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth

	Minor Storm	Major Storm	inches inches
$y=$	4.08	4.08	
$\mathrm{d}_{\mathrm{c}}=$	2.0	2.0	
$\mathrm{a}=$	1.51	1.51	inches
d $=$	5.59	5.59	inches
$\mathrm{T}_{\mathrm{x}}=$	15.0	15.0	ft
$\mathrm{E}_{0}=$	0.350	0.350	
$\mathrm{Q}_{\mathrm{x}}=$	0.0	0.0	cfs
$\mathrm{Q}_{\mathrm{w}}=$	0.0	0.0	cfs
$\mathrm{Q}_{\text {BACK }}=$	0.0	0.0	cfs
$Q_{T}=$	SUMP	SUMP	cfs
$V=$	0.0	0.0	fps
$\mathrm{V}^{*} \mathrm{~d}=$	0.0	0.0	

Maximum Capacity for $1 / 2$ Street based on Allowable Depth

Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$ Actual Discharge outside the Gutter Section W, (limited by distance $\mathrm{T}_{\text {CROWN }}$) Discharge within the Gutter Section W $\left(Q_{d}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)

	Minor Storm	Major Storm	
$\mathrm{T}_{\text {TH }}=$	17.0	26.6	ft
$\mathrm{T}_{\text {XTH }}=$	15.0	24.6	ft
$\mathrm{E}_{0}=$	0.349	0.220	
$Q_{x \text { TH }}=$	0.0	0.0	cfs
$\mathrm{Q}_{\mathrm{x}}=$	0.0	0.0	cfs
$\mathrm{Q}_{\mathrm{w}}=$	0.0	0.0	cfs
$\mathrm{Q}_{\text {BACK }}=$	0.0	0.0	cfs
Q =	0.0	0.0	cfs
$\mathrm{V}=$	0.0	0.0	fps
$\mathrm{V}^{*} \mathrm{~d}=$	0.0	0.0	
$\mathrm{R}=$	SUMP	SUMP	
$\mathrm{Q}_{\mathrm{d}}=$	SUMP	SUMP	cfs
d $=$			inches
$\mathrm{d}_{\text {CROWN }}=$			inches

MINOR STORM Allowable Capacity is based on Depth Criterion

 MAJOR STORM Allowable Capacity is based on Depth Criterion Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak'
Major storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak'

INLET IN A SUMP OR SAG LOCATION

Project $=$ \qquad

Design Information (Input)

Type of Inlet

Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')
Number of Unit Inlets (Grate or Curb Opening)
Water Depth at Flowline (outside of local depression)
Grate Information
Length of a Unit Grate
Width of a Unit Grate
Area Opening Ratio for a Grate (typical values 0.15-0.90)
Clogging Factor for a Single Grate (typical value 0.50-0.70)
Grate Weir Coefficient (typical value 2.15-3.60)
Grate Orifice Coefficient (typical value 0.60-0.80)
Curb Opening Information
Length of a Unit Curb Opening
Height of Vertical Curb Opening in Inches
Height of Curb Orifice Throat in Inches
Angle of Throat (see USDCM Figure ST-5)
Side Width for Depression Pan (typically the gutter width of 2 feet)
Clogging Factor for a Single Curb Opening (typical value 0.10)
Curb Opening Weir Coefficient (typical value 2.3-3.7)
Curb Opening Orifice Coefficient (typical value 0.60-0.70)

Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)

Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression (d_{C} - (W * S_{x} * 12))
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X} Discharge within the Gutter Section W $\left(Q_{T}-Q_{X}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth

	Minor Storm	Major Storm	
$y=$	4.08	4.08	inches
$\mathrm{d}_{\mathrm{C}}=$	2.0	2.0	inches
$\mathrm{a}=$	1.51	1.51	inches
$\mathrm{d}=$	5.59	5.59	inches
$\mathrm{T}_{\mathrm{x}}=$	15.0	15.0	ft
$\mathrm{E}_{0}=$	0.350	0.350	
$\mathrm{Q}_{\mathrm{X}}=$	0.0	0.0	cfs
$\mathrm{Q}_{\mathrm{w}}=$	0.0	0.0	cfs
$\mathrm{Q}_{\text {BACK }}=$	0.0	0.0	cfs
$Q_{\text {T }}=$	SUMP	SUMP	cfs
$V=$	0.0	0.0	fps
$\mathrm{V}^{*} \mathrm{~d}=$	0.0	0.0	

Maximum Capacity for $1 / 2$ Street based on Allowable Depth

Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$ Actual Discharge outside the Gutter Section W, (limited by distance $\mathrm{T}_{\text {CROWN }}$) Discharge within the Gutter Section W $\left(Q_{d}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm Max Flow Based on Allowable Depth (Safety Factor Applied) Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) Resultant Flow Depth at Street Crown (Safety Factor Applied)

	Minor Storm	Major Storm	
$\mathrm{T}_{\text {TH }}=$	17.0	26.6	ft
$\mathrm{T}_{\text {XTH }}=$	15.0	24.6	ft
$\mathrm{E}_{0}=$	0.349	0.220	
$Q_{x \text { TH }}=$	0.0	0.0	cfs
$\mathrm{Q}_{\mathrm{x}}=$	0.0	0.0	cfs
$\mathrm{Q}_{\mathrm{w}}=$	0.0	0.0	cfs
$\mathrm{Q}_{\text {BACK }}=$	0.0	0.0	cfs
Q =	0.0	0.0	cfs
$\mathrm{V}=$	0.0	0.0	fps
$\mathrm{V}^{*} \mathrm{~d}=$	0.0	0.0	
$\mathrm{R}=$	SUMP	SUMP	
$\mathrm{Q}_{\mathrm{d}}=$	SUMP	SUMP	cfs
d $=$			inches
$\mathrm{d}_{\text {CROWN }}=$			inches

MINOR STORM Allowable Capacity is based on Depth Criterion

 MAJOR STORM Allowable Capacity is based on Depth Criterion Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak'
Major storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak'

INLET IN A SUMP OR SAG LOCATION

Project $=$ \qquad
Inlet ID = \qquad

Design Information (Input)

Type of Inlet
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')
Number of Unit Inlets (Grate or Curb Opening)
Water Depth at Flowline (outside of local depression)

Grate Information

Length of a Unit Grate
Width of a Unit Grate
Area Opening Ratio for a Grate (typical values 0.15-0.90)
Clogging Factor for a Single Grate (typical value 0.50-0.70)
Grate Weir Coefficient (typical value 2.15-3.60)
Grate Orifice Coefficient (typical value 0.60-0.80)
Curb Opening Information
Length of a Unit Curb Opening
Height of Vertical Curb Opening in Inches
Height of Curb Orifice Throat in Inches
Angle of Throat (see USDCM Figure ST-5)
Side Width for Depression Pan (typically the gutter width of 2 feet)
Clogging Factor for a Single Curb Opening (typical value 0.10)
Curb Opening Weir Coefficient (typical value 2.3-3.7)
Curb Opening Orifice Coefficient (typical value 0.60-0.70)

	MINOR	MAJOR	
Inlet Type =	CDOT Ty	Opening	
$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
No =	3.0	3	
Ponding Depth $=$	5.6	7.9	inches
	MINOR	MAJOR	\checkmark Override Depths
$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
$\mathrm{W}_{\text {o }}=$	N/A	N/A	feet
$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
	MINOR	MAJOR	
$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Theta $=$	63.40	63.40	degrees
$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
	MINOR	MAJOR	
$\mathbf{Q}_{\mathrm{a}}=$	11.1	27.3	cfs
$Q_{\text {PEAK REQUIRED }}=$	1.9	22.2	cfs

INLET ON A CONTINUOUS GRADE

Daslign information (lnput)		MINOR	MAJOR	inches
Type of Injet	Type $=$	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	$a_{\text {LOCAL }}=$	3.0	3.6	
Total Number of Unils in the Inlet (Grate or Curb Opening)	$\mathrm{No}=$	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W from Q-Allow)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\text {-G }}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typlcal min. value $=0.1$)	$\mathrm{Cr}_{\mathrm{C}} \mathrm{C}=$	0.10	0.10	
Street Hydraslies: OK - $\mathrm{O}<$ maximum allowable from sheat '0-Allow'		MINOR	MA.JOR	
Total Inlet Interception Capacity	Q $=$	7.00	13.72	cfs
Total Inlet Carry-Over Flow (flow bypassing inlat)	$\mathrm{c}_{\mathrm{b}}=$	0.0	3.7	cfa
Capture Percentage $=Q_{4} / Q_{0}=$	C\% =	100	79	\%

Gutter Geometry (Enter data in the blue cells)
Maximurn Allowable Width for Spread Behind Curb
Side Slope Behind Curb (ieave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

$\mathrm{T}_{\text {BACK }}$	$=8.0$
ft	
$\mathrm{S}_{\text {BACK }}$	$=0.020$
$n_{\text {BACK }}$	$=0.020$
	ftIt

Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 !nehes over 24 inches or 0.083 ftft)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

$\mathrm{H}_{\text {CURE }}=$	6.00	inches
$\mathrm{T}_{\text {crown }}=$	17.0	t
$w=$	2.00	ft
$\mathrm{S}_{\mathrm{x}}=$	0.020	f/ft
$\mathrm{S}_{\mathrm{w}}=$	0.083	ft/t
$\mathrm{S}_{\mathrm{o}}=$	0.016	ft/f
$\mathrm{n}_{\text {STREEt }}=$	0.020	

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)

Maximum Capaclty for 1/2 Street based On Allowable Spread		Minor Storm	Major Storm	
Water Depth without Guiter Depresslon (Eq. ST-2)	$y=$	4.08	4.08	inches
Vertical Depth between Gutter Lip and Gutter Flowline (Lsually 2")	$\mathrm{d}_{\mathrm{c}}=$	2.0	2.0	inches
Gutter Depression (d_{c} - (W * $\mathrm{S}_{\mathrm{x}}{ }^{\text {* }} 12$) $)$	$a=$	1.51	1.51	inches
Water Depth at Gutter Fiowline	$\mathrm{d}=$	5.59	5.59	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	$\mathrm{T}_{\mathrm{x}}=$	15.0	15.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	$\mathrm{E}_{0}=$	0.350	0.350	
Discharge outside the Gutter Section W, carried in Section T_{X}	$Q_{x}=$	7.1	7.1	cts
Discharge within the Gutter Section W ($\left.\mathrm{Q}_{\mathrm{T}}-\mathrm{Q}_{\mathrm{x}}\right)$	$\mathrm{Q}_{\mathrm{w}}=$	3.8	3.8	cfs
Discharge Behind the Curb (e.g., sidewelk, driveways, \& lawns)	$Q_{\text {BACK }}=$	0.0	0.0	cis
Maximum Flow Based On Allowable Spread	$Q_{T}=$	11.0	11.0	cfs
Flow Velocity within the Gutter Section	$V=$	5.0	5.0	fps
V*d Product: Flow Velocity times Gutter Flowline Depth	$V^{*} \mathrm{~d}=$	2.3	2.3	
Maximum Capacity for 1/2 Street based on Allowable Depth		Minor Storm	Major Storm	
Theoretical Water Spread	$\mathrm{T}_{\text {TH }}=$	17.0	26.6	ft
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	$\mathrm{T}_{\text {хтн }}=$	15.0	24.6	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	$\mathrm{E}_{\mathrm{O}}=$	0.349	0.220	
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathbf{X} \text { TH }}$	$\mathrm{Q}_{\text {XTH }}=$	7.2	26.8	cts
Actual Discharge outside the Gulter Section W, (limited by distance $T_{\text {crown }}$)	$Q_{x}=$	7.2	24.6	cfs
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{\mathrm{x}}\right)$	$\mathrm{a}_{w}=$	3.9	7.5	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)	$Q_{\text {BACK }}=$	0.0	1.3	cfs
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)	Q =	11.0	33.4	cfs
Average Flow Velocity Within the Gutter Section	$V=$	5.0	6.6	fos
V*d Product: Flow Velocity Times Gutter Flowline Depth	$V^{\prime \prime} \mathrm{d}=$	2.3	4.3	
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6^{\prime \prime}$) Storm	R	1.00	1.00	
Max Flow Based on Allowable Depth (Safety Factor Applied)	$Q_{d}=$	11.0	33.3	cfs
Resultant Flow Depth at Gutter Flowilne (Safety Factor Applied)	$\mathrm{d}=$	5.60	7.90	inches
Resultant Flow Depth at Street Crown (Safety Factor Applied)	$\mathrm{d}_{\text {CROWN }}=$	0.01	2.30	inches
MINOR STORM Allowable Capacity is based on Spread Criterion		Minor Storm	Major Storm	
MAJOR STORM Allowable Canacity Is based on Depth Criterion	$Q_{\text {alow }}=$	11.0	33.3	fs

\square
INLET ON A CONTINUOUS GRADE
Project:
Inlet ID:
PAINT BRUSH HILLS FILING NO. 14

Dasign Information (lnput)		CDOT Type R Curb Opening		inches
Type of Inlet	$\begin{array}{r} \text { Type }= \\ \text { alocal }= \end{array}$			
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')		3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W from Q-Allow)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Fastor for a Single Unit Grate (typical min. value $=0.5$)	$C_{\text {r }} \mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{C}} \mathrm{C}=$	0.10	0.10	
Strest Hydraulies: OK - Q < maximum allowable from sheet 'O-Allow'		MINOR	MAJOR	
Total Inlet Interception Capacity	$a=$	7.25	14.01	cfa
Total Inlet Carry-Over Flow (fiow bypasalng inlet)	$\mathrm{a}_{6}=$	0.0	4.1	cfe
Capture Percentage $=\mathrm{Q}_{8} / \mathrm{Q}_{0}=$	c\% =	100	77	\%

Gutter Goometry (Enter data in the blue cells)				
Maximum Allowable Width for Spread Behind Curb	$\mathrm{T}_{\text {BACK }}=$	8.0	ft	
Side Stope Behind Curb (leave biank for no conveyance credit behind curb)	$\mathrm{S}_{\text {BACK }}=$	0.020		
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	$\mathrm{r}_{\text {BACK }}=$	0.020		
Height of Curb at Gutter Flow Line	$\mathrm{H}_{\text {curg }}=$	6.00	inches	
Distance from Curb Face to Street Crown	$\mathrm{T}_{\text {CROWN }}=$	17.0	ft	
Gutter Width	W =	2.00	f	
Street Transverse Slope	$\mathrm{S}_{\mathrm{x}}=$	0.020	ftft	
Gutter Cross Slape (typically 2 inches over 24 inches or $0.083 \mathrm{ft/ft}$)	$\mathrm{S}_{\mathrm{w}}=$	0.083	ftuft	
Street Lorgitudinal Slope - Enter 0 for sump condition	$\mathrm{S}_{0}=$	0.014	flutt	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	$n_{\text {STREET }}=$	0.020		
		Minor Storm	Major Storm	
Max. Allowable Spread for Minor \& Major Storm	$\mathrm{T}_{\text {max }}=$	17.0	17.0	
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm	$\mathrm{d}_{\text {max }}=$	5.6	7.9	inches
Allow Flow Depth at Street Crown (leave blank for no)		\square	-	check = yes
Maximum Capacity for 1/2 Street based On Allowable Spread		Minor Storm Major Storm		
Water Depth without Gutter Depression (Eq. ST-2)	$\mathrm{y}=$	4.08	4.08	inches
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	$\mathrm{d}_{\mathrm{c}}=$	2.0	2.0	
Gutter Depression ($\mathrm{d}_{\mathrm{c}}-\left(\mathrm{W}^{*} \mathrm{~S}_{\mathrm{x}}{ }^{*} 12\right)$)	$a=$	1.51	1.51	Inches inches
Water Depth at Gutter Flowline	$d=$	5.59	5.59	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	$\mathrm{T}_{\mathrm{x}}=$	15.0	15.0	
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	$E_{0}=$	0.350	0.350	ft
Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\boldsymbol{x}}$	$\mathrm{a}_{\mathrm{x}}=$	6.7	6.7	cfs
Discharge within the Gutter Section W ($Q_{T}-Q_{X}$)	$\mathrm{Q}_{\mathrm{w}}=$	3.6	3.6	cis
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)	$Q_{\text {back }}=$	0.0	0.0	cfs
Maximum Flow Based On Allowable Spread	$Q_{T}=$	10.3	10.3	cfs
Flow Velocity within the Gutter Section	$\mathrm{V}=$	4.7	4.7	fps
V"d Product: Flow Velocity times Gutter Flowline Depth	$v{ }^{*} d=$	22	2.2	
Maximum Capacity for 1/2 Stroet based on Allowable Depth		Minor Storm	Major Storm	
Theoretical Water Spread	$\mathrm{T}_{\text {TH }}=$	17.0	26.6	
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	$\mathrm{T}_{\text {XTH }}=$	15.0	24.6	ft
Gutter Flow to Design Fow Ratio by FHWA HEC-22 method (Eq. ST-7)	$E_{0}=$	0.349	0.220	
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathbf{x} \text { тн }}$	$Q_{\text {XTH }}=$	6.7	25.0	cfs
Actual Discharge outside the Gutter Section W, (limited by distance $\mathrm{T}_{\text {crown }}$)	$Q_{x}=$	6.7	23.0	cfs
Discharge within the Gutter Section W ($\mathbf{Q}_{\text {d }}-\mathrm{Q}_{\mathbf{x}}$)	$\mathrm{Q}_{\mathrm{w}}=$	3.6	7.1	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)	$0_{\text {Back }}=$	0.0	1.2	cts
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)	$Q=$	10.3	31.3	cts
Average Flow Velocity Within the Gutter Section	$V=$	4.7	6.1	fps
V*d Product: Flow Velocity Times Gutter Flowline Depth	$V^{*} \mathrm{~d}=$	2.2	4.0	
Slope-Based Depth Saiety Reduction Factor for Major \& Minor ($\mathrm{l} \geq 6^{\prime \prime}$) Storm	R	1.00	1.00	
Max Flow Based on Allowable Depth (Safety Factor Applied)	$Q_{d}=$	10.3	31.3	cfs
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	$d=$	5.60	7.90	inches
Resultant Flow Depth at Street Crown (Safely Factor Applied)	$\mathrm{d}_{\text {CROWN }}=$	0.01	2.31	
MINOR STORM Allowable Capacity is based on Spread Criterion		Minor Storm Major Storm		
MAJOR STORM Allowable Capacity is based on Depth Criterion	$Q_{\text {allow }}=$	10.3	31.3	cfs
Minor storm max. allowable capacity GOOD - greater than flow given on sheet ' Q-Peak' Major storm max. allowable capacity GOOD - greater than flow glven on sheet 'Q-Peak"				

Project $=$
inlet ID =

Deslan Information (inpur)		MINOR	MAJOR	inches
Type of inlet	Inleet Type $=$	CDOT Type R Curb Opening		
Local Depression (addillonat to continuous gutter depression 'a' from 'Q-Allow')	$\mathrm{a}_{\text {beam }}=$	3.00	3.00	
Number of Unit Inlets (Grate or Curb Opening)	No =	4.0	4	
Water Depth at Flcwiline (outside of local depression)	Ponding Depth $=$	5.6	7.9	
Grate information		MINOR	MAJOR	
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N'A	feet
Wiath of a Unlt Grate	$\mathrm{W}_{\mathrm{s}}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typlcal values 0.15-0.90)	$A_{\text {tatb }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{G}_{7}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{w}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{0}(\mathrm{C})=$	5.00	5.00	eet
Helght of Vertical Curb Opening in inches	$\mathrm{H}_{\text {verl }}=$	6.00	6.00	inches
Height of Curb Orfice Throat in Inches	$\mathrm{H}_{\text {lirana }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
SIde Width for Depression Pan (typically the gutter width of 2 feel)	$\mathrm{w}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{Cr}_{\text {r }}(\mathrm{C})=$	0.10	0.10	
Curb Opering Weir Coefficient (typlcal value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curt Opening Orifice Coefficient (typical value $0.60-0.70$)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
		MINOR	MAJOR	
Total Inlat Interception Capacity (assumes clogged condition)	$Q_{\text {a }}=$	15.0	36.7	cfs
inlet Capacily IS GOOD for Minor and Major Storms (>Q PEAK)	$Q_{\text {PEAK REQuIRED }}=$	6.2	27.7	cfs

AREA INLET IN A TRAPEZOIDAL GRASS-LINED CHANNEL

Analysis of Trapezoidal Grass-Lined Channel Using SCS Method
NRCS Vegetal Retardance (A, B, C, D, or E)
Manning's n (Leave cell D 16 blank to manually enter an n value)
Channel Invert Slope
Bottom Width
Left Side Slope
Right Side Slope

Check one of the following soil types:		
Soil Type:	Max. Velocity $\left(\mathrm{V}_{\text {MAX }}\right)$	Max Froude No. ($\left.\mathrm{F}_{\text {MAX }}\right)$
Sandy	5.0 fps	0.50
Non-Sandy	7.0 fps	0.80

Max. Allowable Top Width of Channel for Minor \& Major Storm
Max. Allowable Water Depth in Channel for Minor \& Major Storm
A, B, C, D or

Maximum Channel Capacity Based On Allowable Top Width

Max. Allowable Top Width

Water Depth
Flow Area
Wetted Perimeter
Hydraulic Radius
Manning's n based on NRCS Vegetal Retardance
Flow Velocity
Velocity-Depth Product
Hydraulic Depth
Froude Number
Max. Flow Based On Allowable Top Width
Maximum Channel Capacity Based On Allowable Water Depth
Max. Allowable Water Depth
Top Width
Flow Area
Wetted Perimeter
Hydraulic Radius
Manning's n based on NRCS Vegetal Retardance
Flow Velocity
Velocity-Depth Product
Hydraulic Depth
Froude Number
Max. Flow Based On Allowable Water Depth

Allowable Channel Capacity Based On Channel Geometry
MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

Water Depth in Channel Based On Design Peak Flow
Design Peak Flow
Water Depth
Top Width
Flow Area
Wetted Perimeter
Hydraulic Radius
Manning's n based on NRCS Vegetal Retardance
Warning 03 Flow Velocity
Velocity-Depth Product
Hydraulic Depth
Warning 04 Froude Number

Minor storm max. allowable capacity GOOD - greater than flow given on sheet ' Q-Peak'
Major storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak'

AREA INLET IN A TRAPEZOIDAL GRASS-LINED CHANNEL

PAINT BRUSH HILLS FILING NO. 14			
SUMP INLET DP16			
Inlet Design Information (Input)			
Type of Inlet \quad Inlet Type $=$	CDOT Type C	ressed)	
Angle of Inclined Grate (must be <= 30 degrees)	$\theta=$	0.10	degrees
Width of Grate	W =	3.00	feet
Length of Grate	$\mathrm{L}=$	3.00	feet
Open Area Ratio	$\mathrm{A}_{\text {RATIO }}=$	0.70	
Height of Inclined Grate	$\mathrm{H}_{\mathrm{B}}=$	0.01	feet
Clogging Factor	$\mathrm{C}_{\mathrm{f}}=$	0.50	
Grate Discharge Coefficient	$\mathrm{C}_{\mathrm{d}}=$	0.84	
Orifice Coefficient	$\mathrm{C}_{0}=$	0.56	
Weir Coefficient	$\mathrm{C}_{\mathrm{w}}=$	1.79	
	MINOR	MAJOR	
Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) $d=$	1.46	1.78	
Grate Capacity as a Weir			
Submerged Side Weir Length $\quad \mathrm{X}=$	3.00	3.00	feet
Inclined Side Weir Flow $\quad \mathrm{Q}_{\mathrm{ws}}=$	16.56	22.32	cfs
Base Weir Flow $\mathrm{Q}_{\mathrm{wb}}=$	23.71	31.95	cfs
Interception without Clogging $\quad \mathrm{Q}_{\mathrm{wi}}=$	56.83	76.59	cfs
Interception with Clogging $\quad \mathrm{Q}_{\text {wa }}=$	28.41	38.29	cfs
Grate Capacity as an Orifice			
Interception without Clogging $\quad Q_{\text {oi }}=$	48.78	53.87	cfs
Interception with Clogging $\quad \mathrm{Q}_{\mathrm{oa}}=$	24.39	26.94	cfs
	24.39	26.94	cfs
	0.00	0.00	cfs
	100	100	\%

Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation.

Abstract

We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. By continuing to use our site, you accept our use of cookies, To learn more, see our Privacy Policy link

 at bottom of webpage.
Got it

Partially Full Pipe Flow Calculator and Equations
Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

> Partially Full Pipe Flow Calculations - U.S. Units
> II, Calculation of Discharge, Q and average velocity, V
for pipes more than half full

Equation used for $n / n_{\text {full }} \mathbf{n} / n_{\text {full }}=1.25 \cdot(y / D-0.5)^{*} 0.5 \quad$ (for $\left.0.5 \leq y / D \leq 1\right)$

Partially FULL Pipe Flow Calculator and Equations

Fluid Flow Table of Contents

Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe (\&e1/2 fullusing the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

PR2 Q100= 65.3 CFS

Figure CU-9-Inlet Control Nomograph-Example

DP3 $Q_{100}=65.3 \mathbf{c f s}$

We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. By continuing to use our site, you accept our use of cookies, To learn more, see our Privacy Policy link at bottom of webpage.

$\sqrt{58+}$| Machinery's Handbook, 29th Edition |
| :---: |
| Large Print \& Toolbox Editions |

Partially Full Pipe Flow Calculator and Equations

Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. By continuing to use our site, you accept our use of cookies, To learn more, see our Privacy Policy link at bottom of webpage

Got lt!

Equation used for $n / n_{\text {full }} n / n_{\text {fuil }}=1.25-(y / D-0.5)^{4} 0.5 \quad$ (for $\left.0.5 \leq y / D \leq 1\right)$

Partially Full Pipe Flow Calculator and Equations Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

MembershipRegister Login	
T-L	
	Search
$\underline{-2}$	
Main Categorias	
- Home - Engineering Book Store - Engineering Forum	
, Excel App. Downloads	
, Online Books \& Manuals	
- Engineering News	
- Engineering Videos	
- Engineering Calculators	
- Engineering Toolbox	
- GD\&T Training	
Geometric Dimensioning	
Tolerancing	
DFM DFA Training	
- Training Online	
Engineering	
- Advertising Center	
TRANSLATE	
Print Webpage	
- Copyright Notice	
Submit an	
Article	
Become an Engineers Edge Contributor	

Equation used for n / n fall: $\mathrm{n} / \mathrm{n}_{\text {full }}=\mathbf{1 . 2 5}-(\mathrm{y} / \mathrm{D}-\mathbf{0 . 5})^{*} 0.5 \quad$ (for $\left.0.5 \leq y / D \leq 1\right)$

Partially FULL Pipe Flow Calculator and Equations

Fluid Flow Table of Contents

Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe（\＆e1／2 fullusing the Manning equation．This calculator can also be used for uniform flow in a pipe，but the Manning roughness coefficient needs to be considered to be variable，dependent upon the depth of flow．

Partially Full Pipe Flow Calculations－U．S．Units
II．Calculation of Discharge，Q ，and average velocity，V
for pipes more than half full
Instructions：Enter values in blue boxes．Calculations in yellow
Inputs
Calculations

in
in
（must have $\mathrm{y} \geq \mathrm{D} / 2$ ）

Full Pipe Manning

Channel bottom

$$
\begin{aligned}
& \text { Central Angle, } \mathbf{q}=0.00 \\
& \text { Cross-Sect. Area, } \mathbf{A}=3.14 \\
& \hline
\end{aligned}
$$

$\mathrm{ft} / \mathrm{ft}$

Calculations
$\mathbf{n} / \mathbf{n}_{\text {full }}=$
Partially Full Manning 0.013

ft
ft

$$
\text { Circ. Segment Height, } \mathbf{h}=0.000
$$

$$
\begin{gathered}
\text { radians } \\
\mathrm{ft}^{2}
\end{gathered}
$$ roughness， $\mathbf{n}=$

Wetted Perimeter， \mathbf{P}	$=$6.3 Hydraulic Radius， $\mathbf{R}$$=0.50$
Discharge， \mathbf{Q}	$=22.68$
Ave．Velocity， \mathbf{V}	$=7.22$

ft
ft
cfs
$\mathrm{ft} / \mathrm{sec}$

$$
\text { pipe } \% \text { full }\left[\left(\mathrm{A} / \mathrm{A}_{\mathrm{full}}\right)^{*} 100 \%\right]=100.0 \%
$$

Partially Full Pipe Flow Parameters （More Than Half Full）

$$
\mathrm{r}=\mathrm{D} / 2
$$

$\mathrm{h}=2 \mathrm{r}-\mathrm{y}$
（hydraulic radius）

$$
\mathrm{R}=\mathrm{A} / \mathrm{P}
$$

（Manning Equation）
$\mathrm{Q}=(1.49 / \mathrm{n})(\mathrm{A})\left(\mathrm{R}^{2 / 3}\right)\left(\mathrm{S}^{1 / 2}\right)$

$$
V=Q / A \quad P
$$

$$
\theta=2 \arccos \left(\frac{\mathrm{r}-\mathrm{h}}{\mathrm{r}}\right)
$$

$$
\begin{aligned}
& A=\pi r^{2}-\frac{r^{2}(\theta-\sin \theta)}{2} \\
& P=2 \pi r-r^{*} \theta
\end{aligned}
$$

PR7 \＆PR8 Q100＝22．2 CFS

FLOWS SPLIT

We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. By continuing to use our site, you accept our use of cookies, To learn more, see our Privacy Policy link at bottom of webpage.

Got It!

Partially Full Pipe Flow Calculator and Equations Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Equation used for $n / n_{\text {funll }}: n / n_{\text {fill }}=1.25-(y / D-0.5) * 0.5 \quad$ (for $\left.0.5 \leq y / D \leq 1\right)$

Partially Full Pipe Flow Calculator and Equations

 Fluid Flow Table of Contents | Hydraulic and Preumatic Knowledge Fluid Power EquipmentThis engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Partially Full Pipe Flow Calculations - U.S. Units
II. Calculation of Discharge, Q, and average velocity, V
for pipes more than half full

Inputs
Instructions: Enter values in biue boxes. Calculations in yellow

in
in
(must have $y \geq D / 2$)

Pa tianly Fuli Pipe Flow Parameters (More Than Kalf Full)
(hydraulic radius)
$R=A / P$
(Manning Equation)
$Q=(1.49 / n)(A)\left(R^{2 / 3}\right)\left(S^{1 / 2}\right)$
$\mathrm{V}=\mathrm{Q} / \mathrm{A} \quad \mathrm{P}$
$\theta=2 \arccos \left(\frac{\mathrm{r}-\mathrm{h}}{\mathrm{r}}\right)$

Calculations

$A=\pi r^{2}-\frac{r^{2}(\theta \cdot \sin \theta)}{2}$
$P=2 \pi r-r * \theta$
Equation used for $n / n_{\text {full }} \pi / n$ full $=1.25 \cdot(y / D-0.5) *$. 5 (for $0.5 \leq y / D \leq 1$)

PR10 \& PR11 Q100= 13.7 CFS FLOW SPLIT

Utimate-GDAT WTall Char
AssMEy.4.5-2009 Stomdard
Saminated, 2t" $\times 36^{\prime \prime}$ - Akcesomel

Partially Full Pipe Flow Calculator and Equations Fluid Flow Table of Contents | Hydraulic and Pueumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Partially Full Pipe Flow Calculations - U.S. Units
IJ. Calculation of Discharge, Q, and average velocity, V
for pipes more than half full

Inputs

Instructions: Enter values in blue boxes, Calculations in yellow

Calculations

in
(must have $y \geq$ D/2)
in
ft

$$
\begin{array}{r}
\text { Pipe Diameter, } \mathrm{D}=4 \\
\text { Pipe Radius, } \mathrm{r}
\end{array}=2
$$

ft
ft

pipe \% full $\left[\left(A / A_{\text {fill }}\right)^{*} 100 \%\right]=92.8 \%$

Partially Full Pipe Flow Parmeters (More Than Haif Full)

$$
r=D / 2
$$

$h=2 r-y$
(hydraulic radius)
$\mathrm{R}=\mathrm{A} / \mathrm{P}$
(Mamring Equation)
$Q=(1.49 / n)(A)\left(R^{2 / 3}\right)\left(S^{1 / 2}\right)$
$V=Q / A \quad P$
$\theta=2 \arccos \left(\frac{r-h}{r}\right)$
$A=\pi r^{2}-\frac{r^{2}(\theta-\sin \theta)}{2}$
$P=2 \pi r-r^{*} \theta$
Equation used for $n / n_{\text {full }} n / n_{\text {fall }}=1.25 \cdot(y / D-0.5) * 0.5 \quad$ (for $\left.0.5 \leq y / D \leq 1\right)$

$\underset{\text { Rembership }}{\text { Memper Login }}$
Search
Main Catagorier
- Home - Engineering Book Store - Engineering Forum , Excel App. Downloads - Online Books \& Manuals , Engineering News , Engineering Videos - Engineering Calculators , Engineering Toolbox - GD\&T Training Geometric Dimensioning Tolerancing - DFM DFA Training - Training Online Engineering - Advertising Center translate Print Webpage - Copyripht Notice Submit an Article Become an Engineers Edge Contributor

We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. By continuing to use our site, you accept our use of cookies, To learn more, see our Privacy Policy link at bottom of webpage.

Partially Full Pipe Flow Calculator and Equations Fluid Flow Table of Contents I Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Partally Full Pipe Flow Calculations - U.S. Units

II. Calculation of Discharge, Q and averzge velocity, V
for pipes more than half full

Equation used for $\mathrm{n} / \mathrm{n}_{\text {full }} \mathrm{n} / \mathrm{n}$ fall $=1.25-(y / \mathrm{D}-0.5)^{*} \mathbf{0 . 5}$ (for $0.5 \leq y / D \leq 1$)

PR13 Q100= 14.0 CFS

We use cookies to understand how you use our site and to improve your experience. This includes personalizing content
and advertising. By continuing to use our site. you accept our use of cookies, To learn more, see our Privacy Policy link at bottom of webpage.

Got lt!

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Partially Full Pipe Flow Calculations - U.S. Units
II. Calculation of Discharge, Q and average velocity, V
for pipes more than half full
Instructions: Enter values in blue boxes. Calculations in yellow

Induts

in
in
(must have $\mathrm{y} \geq \mathrm{D} / 2$)

Partially Full Pipe Flow Farmmeters (More Than Hali Full)

Calculations

Equation used for $\mathrm{n} / \mathrm{n}_{\text {full }} \mathrm{m} / \mathrm{m}_{\text {fuil }}=1.25 \cdot(\mathrm{y} / \mathrm{D} \mathbf{- 0 . 5}$)*0.5 (for $0.5 \leq \mathrm{y} / \mathrm{D} \leq 1$)

Membership
Partially Full Pipe Flow Calculator and Equations
Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Partially Fuli Pipe Flow Calculations - U.S. Units

II. Calculation of Discharge, Q, and average velocity, V
for pipes more than half full

Instructlons: Enter values in blue boxes. Calculations in yellow

Inputs

(must have $\mathrm{y} \geq \mathrm{D} / 2$)
Fuil Pipe Manning
roughness, $n_{f u l l}=0.013$

Calculations $n / \mathbf{n}_{\text {full }}=$	1.15
Partially Full Manning	
roughness, $\mathbf{n}=$	0.015

Partially Fuil Pipe Flow Parmeters (More Than Half Full)

Calculations

Pipe Diameter, D	$=2.5$
Pipe Radius, r	$=1.25$

Circ. Segment Height, $\mathbf{h}=0.750$

Central Angle, $q=$	2.32	radlans
Cross-Sect. Area, A	$=3.67$	ft^{2}

Wetted Perimeter, \mathbf{P}	$=5.0$
Hydraulic Radius, \mathbf{R}	$=0.74$
Discharge, \mathbf{Q}	$=29.94$

ft
ft
cfs
pipe $\%$ full $\left[\left(A / A_{\text {full }}\right]^{*} 100 \%\right]=74.8 \%$
$r=D / 2$
$h=2 r-y$
(hydraulic radius)
$R=A / P$
(Manning Equation)
$Q=(1.49 / n)(A)\left(R^{2 / 3}\right)\left(S^{1 / 2}\right)$
$\mathrm{V}=\mathrm{Q} / \mathrm{A} \quad \mathrm{P}$
$\theta=2 \arccos \left(\frac{r-h}{\tau}\right)$
$A=\pi i^{2}-\frac{r^{2}(\theta-\sin \theta)}{2}$
$\mathbf{P}=2 \pi r-r^{*} \theta$

Equation used for $n / n_{\text {full }} ; n_{\text {foll }}=1.25-(y / D-0.5) * 0.5 \quad$ (for $\left.0.5 \leq y / D \leq 1\right)$
\#PR38 Q100= 27.9 CFS

ENCINEERE是

Solutions By Desion

Partially Full Pipe Flow Calculator and Equations Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Partially Full Pipe Flow Calculations - U.S. Units
II. Calculation of Discharge, Q and average velocity, V
for pipes more than half full Inputs

Instructions: Enter values in blue boxes: Calculations in yellow

in
in
(must have $y \geq \mathrm{D} / 2$)

Full Pipe Manning
roughness, $n_{\text {full }}=0.013$
Channel bottom

Pipe Djameter, $\mathrm{D}=$	24
Depth of flow, $\mathbf{y}=$	15
(must have $\mathrm{y} \geq \mathrm{D} / 2$)	
Full Pipe Manning roughness, $\mathrm{n}_{\text {full }}=$	0.013
Channel bottom	
slope, $5=$	0.01

4

Partially Full Pipe Flow Calculator and Equations Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Partially Full Pipe Flow Caiculations - U.S. Units
II. Calculation of Discharge, Q, and average velocity, V
for pipes more than half full

Instructions: Enter values in blue boxes. Calculations in yellow

Imputs

Calculations

pipe $\%$ full $\left[\left(A / A_{\text {full }}\right) * 100 \%\right]=92.1 \%$

Partially Full Pipe Flow Parameters (More That fillf Fuil)
$r=D / 2$
$h=2 r-y$
(hydraulic radius)
$R=A / P$
(Manning Equation)
$Q=[1.49 / n)(A)\left(R^{2 / 3}\right)\left(S^{1 / 2}\right)$
$V=Q / A \quad P$

$$
\theta=2 \arccos \left(\frac{\mathrm{r}-\mathrm{h}}{\mathrm{r}}\right)
$$

$$
A=\pi r^{2}-\frac{r^{2}(\theta-\sin \theta)}{2}
$$

$$
\mathbf{P}=2 \pi \mathrm{r}-\mathrm{r} * \theta
$$

ENCINEERE
 $\operatorname{ma} \square$

Solutions By Design

$r=D / 2$
$h=2 r-y$
(hydraulic radius)
$\mathbf{R}=\mathbf{A} / \mathbf{P}$
(Manning Equation)
$Q=(1,49 / n)(A)\left(R^{2 / 3}\right)\left(S^{1 / 2}\right)$
$V=Q / A \quad P$
$\theta=2 \arccos \left(\frac{r-h}{r}\right)$
$\mathrm{A}=\pi \mathrm{r}^{2}-\frac{\mathrm{r}^{2}(\theta-\sin \theta)}{2}$
$\mathrm{P}=2 \pi \mathrm{r}-\mathrm{r}^{*} \theta$

Partially Full Pipe Flow Calculator and Equations Fluid Flow Table of Contents I Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Partially Full Pipe Flow Calculations - U.S. Units
II. Calculation of Discharge, Q, and average velocity, V
for pipes more than hall full

Inputs
Instructions: Enter values in blue boxes. Calculations in yellow,
Calculations

Equation used for $\mathrm{n} / \mathrm{nfalll}^{\mathrm{n}} \mathrm{n} / \mathrm{n}_{\mathrm{full}}=\mathbf{1 . 2 5} \cdot(\mathrm{y} / \mathrm{D}-\mathbf{0 . 5})^{*} 0.5$ (for $0.5 \leq \mathrm{y} / \mathrm{D} \leq 1$)
\#PR17 Q100= 51.3 CFS

We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. By continuing to use our site, you accept our use of cookies, To learn more, see our Privacy Policy link at bottom of webpage.

Got It|

Partially Full Pipe Flow Calculator and Equations Fluid Flow Table of Contents | Bydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

> Partlally Full Pipe Flow Calculations - U.S. Units
> Il. Calculation of Discharge, Q and average velocity, V
for pipes more than half full

Abstract

W'e use cookjes to understand how you use our site and to improve your experience. This includes personalizing content and ad ertising. By continuing to use our site, you accept our use of cookies, To learn more, see our Privacy Policy link at bottom of webpage.

Partially Full Pipe Flow Calculator and Equations Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Equation used for $\mathrm{n} / \mathrm{n}_{\text {full }} \mathrm{n} / \mathrm{n}_{\text {ful }}=1.25 \cdot(\mathrm{y} / \mathrm{D}-\mathbf{0 . 5})^{*} \mathbf{0 . 5}$ (for $\left.0.5 \leq y / D \leq 1\right\}$

Partially Full Pipe Flow Calculator and Equations Fluid Flow Table of Contents |Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Partially Full Pipe Flow Calculations - U.S. Units
II. Calculation of Discharge, Q and average velocity, V
for pipes more than half full

Instructions: Enter values in blue boxes. Calculations in yellow

Inputs

Partially Full Pipe Fiow Parminters (More Than Haif Full)

Calculations

$$
\begin{aligned}
& \begin{aligned}
& \\
& \text { Pipe Diameter, } \mathrm{D}=3.5 \\
& \text { Pipe Radius, } 5=1.75 \\
& \hline
\end{aligned} \\
& \begin{aligned}
& \text { Circ. Segment Height, } \mathbf{h}=1.000 \\
& \text { Central Angle, } \mathbf{q}=2.26 \\
& \text { Cross-Sect. Area, } \mathbf{A}=1.35 \\
& \text { Wetted Perimeter, } \mathbf{P}=7.0 \\
& \text { Hydraulic Radjus, } \mathbf{R}=1.04 \\
& \text { Discharge, } \mathbf{Q}=75.85 \\
& \text { Ave. Velocity, } \mathbf{V}=10.32 \\
& \hline
\end{aligned} \\
& \text { pipe } \% \text { full }\left[\left(A / A_{\text {fill }}\right){ }^{*} 100 \%\right]=76.4 \% \\
& r=D / 2 \\
& h=2 r-y \\
& \text { (hydraulic radius) } \\
& \mathrm{R}=\mathrm{A} / \mathrm{P} \\
& \text { (Manning Equation) } \\
& Q=(1.49 / n)(A)\left(R^{2 / 3}\right)\left(S^{1 / 2}\right) \\
& \mathrm{V}=\mathrm{Q} / \mathrm{A} \quad \mathrm{P} \\
& \theta=2 \arccos \left(\frac{\mathrm{r}-\mathrm{h}}{\mathrm{r}}\right) \\
& A=\pi r^{2}-\frac{r^{2}(\theta-\sin \theta)}{2} \\
& \mathrm{P}=2 \pi \mathrm{r}-\mathrm{r} * \boldsymbol{\theta}
\end{aligned}
$$

Membership Register \| Login	
Search	
\bigcirc	
Moin Sotogories	
- Home	
Engineering Book Store	
Engineering Forum	
- Excel App. Downloads	
- Online Books \& Manual	
, Engineering News	
Engineering Videos	
- Engineering Calculators	
, Engineering Toolbox	
- GD\& T Training	
Geometric Dimensioning	
Tolerancing	
- DFM DFA Training	
Training Online	
Engineering	
- Advertising Center	
translate	
Print Weoppage	
- Copyright Notice	
Submit an	
Article	
Become anEngineers Edge	
	ontributor

Equation used for $n / n_{\text {full }}: n / n_{\text {ful }}=1.25-(y / D-0.5)^{*} 0.5 \quad($ for $0.5 \leq y / D \leq 1)$

We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. By continuing to use our site, you accept our use of cookies, To learn more, see our Privac; Policy link at bottom of webpage.

[Got It :

 Solutions Ey Design

Partially Full Pipe Flow Calculator and Equations Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can aiso be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Partially Full Pipe Flow Calculations - U.S. Units
1I. Calculation of Discharge, Q, and average velocity, v
for pipes more than half full
Instructions: Enter values in blue boxes. Calculations in yellow
Inputs

in
in
(must have $\mathrm{y} \geq \mathrm{D} / 2$)

Partially Fual Pipe Flow Paramsters (More Than Raif Full)

Calculations

$h=2 r-y$
(hydraulic radius)
$R=A / P$
(Manning Equation)
$\mathrm{Q}=(1.49 / \mathrm{n})(\mathrm{A})\left(\mathrm{R}^{2 / 3}\right)\left(\mathrm{S}^{1 / 2}\right)$
$V=Q / A \quad P$
$\theta=2 \arccos \left(\frac{\mathrm{r}-\mathrm{h}}{\mathrm{t}}\right)$
$A=\pi r^{2}-\frac{r^{2}(\theta-\sin \theta)}{2}$

$$
\mathbf{P}=2 \pi \mathbf{r}-\mathbf{r}^{*} \theta
$$

Membership Reqister \|Login	
Soarch	
Main Cotegories	
- Home - Engineering Book Store	
- Excel App. Downloads	
- Online Books \& Manuals	
, Engineering News	
- Enginecring Videos	
- Engineering Calculator	
Engineering Toolbox	
- GD\&T Training	
Geometric Dimensioning	
- DFM DFA Training	
- Training Online	
Engineering	
- Advertising Center	
translate	
Print Webpage	
- Copyright Notice	
Submit an	
Article	
Sters	
Become anEngineers Edge	
	ontributor

Equation used for $n / n_{\text {fill: }} \mathrm{n} / \mathrm{n}_{\text {fill }}=1.25 \cdot(y / D-0.5) * 0.5 \quad$ (for $0.5 \leq y / D \leq 1$)

> We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. By continuing to use our site, you accept our use of cookies, To learn more, see our Privacr, Policy link at bottom of webpage.

Got It!

Partially Full Pipe Flow Calculator and Equations Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Equation used for $\mathrm{n} / \mathrm{nfill}: \mathrm{n} / \mathrm{n}_{\mathrm{fal}}=1.25 \cdot(\mathrm{y} / \mathrm{D}-\mathbf{0 . 5})^{*} 0,5 \quad$ (for $\left.0.5 \leq y / \mathrm{D} \leq 1\right)$

PR22 Q100= 27.7 CFS

Abstract

We use cookjes to understand how you use our site and to improve your experience. This includes personalizing content and advertising. By continuing to use our site, you accept our use of cookies, To learn more, see our Privacy Policy link

 at bottom of webpage.Got It]

Partially Full Pipe Flow Calculator and Equations
Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Equation used for $n / n_{\text {full }} n / n_{\text {ful }}=1.25-(y / D-0.5) * 0.5 \quad$ (for $\left.0.5 \leq y / D \leq 1\right)$
PR23 Q100= 55.4 CFS

Partially FULL Pipe Flow Calculator and Equations

Fluid Flow Table of Contents

Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe (\&e1/2 fullusing the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Partially Full Pipe Flow Calculations - U.S. Units
II. Calculation of Discharge, Q, and average velocity, V
for pipes more than half full
Instructions: Enter values in blue boxes. Calculations in yellow
Inputs
Calculations

in
in

pipe $\%$ full $\left[\left(\mathrm{A} / \mathrm{A}_{\text {full }}\right)^{*} 100 \%\right]=97.1 \%$

Calculations $\mathbf{n} / \mathbf{n}_{\text {full }}=$ Partially Full Manning roughness, $\mathbf{n}=$	1.033333

$\mathrm{r}=\mathrm{D} / 2$

Partially Full Pipe Flow Parameters (More Than Half Full)

$$
\begin{aligned}
& A=\pi r^{2}-\frac{r^{2}(\theta-\sin \theta)}{2} \\
& P=2 \pi r-r^{*} \theta
\end{aligned}
$$

(hydraulic radius)

$$
\mathrm{R}=\mathrm{A} / \mathrm{P}
$$

(Manning Equation)
$\mathrm{Q}=(1.49 / \mathrm{n})(\mathrm{A})\left(\mathrm{R}^{2 / 3}\right)\left(\mathrm{S}^{1 / 2}\right)$
$\mathrm{V}=\mathrm{Q} / \mathrm{A} \quad \mathrm{P}$
$\theta=2 \arccos \left(\frac{\mathrm{r}-\mathrm{h}}{\mathrm{r}}\right)$

Geometric Boundaries IV
 Based on ASME Y14.5-2018

Partially FULL Pipe Flow Calculator and Equations

Fluid Flow Table of Contents

Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe (\&e1/2 fullusing the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

PR25 Q100= 20.8 CFS

Geometric Boundaries IV
 Based on ASME Y14.5-2018

Partially FULL Pipe Flow Calculator and Equations

Fluid Flow Table of Contents

Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe (\&e1/2 fullusing the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Partially FULL Pipe Flow Calculator and Equations

Fluid Flow Table of Contents

Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe (\&e1/2 fullusing the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Partially Full Pipe Flow Calculations - U.S. Units
II. Calculation of Discharge, Q, and average velocity, V
for pipes more than half full
Instructions: Enter values in blue boxes. Calculations in yellow
Inputs
Calculations

in
in
(must have $\mathrm{y} \geq \mathrm{D} / 2$)

(must have $\mathrm{y} \geq \mathrm{D} / 2$)
Full Pipe Manning roughness, $\mathbf{n}_{\text {full }}$ Channel bottom slope, $\mathbf{S}$$=\square 0.013$
Calculations $\mathbf{n} / \mathbf{n}_{\text {full }}=$ Partially Full Manning roughness, $\mathbf{n}=$

$\mathrm{ft} / \mathrm{ft}$

| Wetted Perimeter, \mathbf{P} | $=$\begin{tabular}{\|c|}
\hline
\end{tabular} ft |
| ---: | :--- |
| Hydraulic Radius, \mathbf{R} | $=1.16$ |
| Discharge, \mathbf{Q} | $=$96.77
 ft
 ffs
 ft
 ft
 Ave. Velocity, \mathbf{V} |

$$
\text { pipe } \% \text { full }\left[\left(\mathrm{A} / \mathrm{A}_{\text {full }}\right)^{*} 100 \%\right]=70.8 \%
$$

Partially Full Pipe Flow Parameters (More Than Half Full)

$$
\begin{aligned}
& r=D / 2 \\
& h=2 r-y
\end{aligned}
$$

(hydraulic radius)
$\mathrm{R}=\mathrm{A} / \mathrm{P}$
(Manning Equation)
$\mathrm{Q}=(1.49 / \mathrm{n})(\mathrm{A})\left(\mathrm{R}^{2 / 3}\right)\left(\mathrm{S}^{1 / 2}\right)$
$\mathrm{V}=\mathrm{Q} / \mathrm{A} \quad \mathrm{P}$
$\theta=2 \arccos \left(\frac{\mathrm{r}-\mathrm{h}}{\mathrm{r}}\right)$

$$
\begin{aligned}
& \mathrm{A}=\pi \mathrm{r}^{2}-\frac{\mathrm{r}^{2}(\theta-\sin \theta)}{2} \\
& \mathrm{P}=2 \pi \mathrm{r}-\mathrm{r}^{*} \theta
\end{aligned}
$$

\#PR27 Q100= 92.8 CFS

STORM 1, 2, 3, 4, 4A, 5, 7 \& 9 incl LATERALS INDEX MAP

Line No.	Line ID	Line Type	Junct Type	J-Loss Coeff	n-val Pipe	Flow Rate (cfs)	Invert Dn (ft)	Invert Up (ft)	Line Slope (\%)	HGL Dn (ft)	HGL Up (ft)	Minor Loss (ft)	HGL Jnct (ft)	Vel Ave (ft/s)	Line Length (ft)	Rim-Hw (ft)
1	Storm 1	Cir	MH	0.75	0.013	287.20	7191.76	7192.37	0.50	7197.26	7198.15	1.70	7199.86	12.09	121.710	5.65
2	Storm 1(2)	Cir	MH	0.99 z	0.013	269.20	7192.87	7202.30	5.95	7199.86	7206.83	n/a	7206.83	14.05	158.500	5.17
3	Storm 1	Cir	Generic	0.50	0.013	55.40	7204.30	7204.67	2.57	7209.10	7209.20	0.48	7209.67	7.84	14.400	1.73
4	Storm 1	Cir	Generic	1.00	0.013	27.70	7205.17	7206.51	3.79	7210.13	7210.29	0.50	7210.79	5.64	35.350	0.61
5	Storm 2	Cir	MH	1.00 z	0.013	214.40	7202.80	7205.94	1.72	7207.23	7210.06	n/a	7210.06	13.79	182.370	3.94
6	Storm 2	Cir	MH	1.00 z	0.013	75.30	7206.94	7213.72	2.51	7212.18	7216.43	1.38	7216.43	8.62	270.010	3.57
7	Storm 2	Cir	MH	1.00 z	0.013	51.30	7214.22	7218.47	2.77	7216.99	7220.80	n/a	7220.80	8.12	153.240	3.00
8	Storm 2	Cir	Generic	1.00	0.013	13.00	7218.58	7219.65	3.74	7221.71	7221.81	0.27	7222.07	4.14	28.586	2.01
9	Storm 3	Cir	MH	0.89 z	0.013	142.40	7206.44	7208.80	1.58	7211.13	7212.33	2.04	7212.33	11.73	149.360	3.83
10	Storm 3	Cir	MH	0.15 z	0.013	117.70	7209.10	7217.15	1.85	7213.25	7220.42	n/a	7220.42	10.04	435.420	3.58
11	Storm 3	Cir	MH	0.15 z	0.013	117.70	7217.45	7225.32	1.81	7220.84	7228.59	n/a	7228.59	10.54	435.420	3.87
12	Storm 3	Cir	MH	0.15 z	0.013	117.70	7225.63	7240.60	4.41	7229.01	7243.87	n/a	7243.87	10.56	339.480	3.88
13	Storm 3	Cir	MH	1.00 z	0.013	117.70	7240.89	7246.33	1.60	7244.29	7249.60	n/a	7249.60	10.53	339.480	6.89
14	Storm 3	Cir	MH	0.92	0.013	117.70	7246.63	7247.95	0.60	7250.16	7251.48	1.44	7252.92	10.02	219.470	2.34
15	Storm 3	Cir	MH	0.88	0.013	75.90	7248.25	7251.41	0.63	7253.91	7255.20	0.52	7255.72	6.10	502.070	2.74
16	Storm 4	Cir	Generic	1.00	0.013	2.70	7253.93	7254.75	5.60	7256.27	7256.28	0.04	7256.32	1.53	14.630	2.33
17	Storm 3_Lat 1	Cir	None	0.89	0.013	13.70	7211.10	7211.21	2.51	7213.68	7213.76	0.83	7214.59	7.75	4.375	1.87
18	Storm 3_Lat 1	Cir	Generic	1.00	0.013	13.70	7211.21	7211.41	2.50	7214.59	7214.73	0.93	7215.66	7.75	8.000	0.59
19	Storm 3_Lat 2	Cir	Generic	1.00	0.013	13.70	7211.10	7211.91	2.50	7213.68	7214.24	0.93	7215.17	7.75	32.420	1.17
20	Storm 3_Lat 3	Cir	Generic	1.00	0.013	22.20	7249.95	7250.33	1.26	7253.71	7254.00	0.78	7254.77	7.07	30.230	0.48
21	Storm 3_Lat 4	Cir	None	0.75	0.013	22.20	7249.95	7250.01	1.36	7253.71	7253.75	0.58	7254.33	7.07	4.380	1.03
22	Storm 3_Lat 4(2)	Cir	Generic	1.00	0.013	22.20	7250.01	7250.11	1.25	7254.33	7254.41	0.78	7255.18	7.07	8.000	0.28
23	Storm 4	Cir	Generic	1.00	0.013	10.40	7253.93	7254.27	0.97	7255.77	7256.12	0.54	7256.65	5.89	34.960	1.64

MyReport

Storm Sewer Profile

Storm Sewer Profile

Storm Sewer Profile

Storm Sewer Profile

Storm Sewer Profile

Storm Sewer Profile

Storm Sewer Profile

Storm Sewer Profile

Storm Sewer Profile

Storm Sewer Profile

Storm Sewer Profile

STORM 8 PIPE RUN INDEX MAP

MyReport

Line No.	Line ID	Line Type	Junct Type	J-Loss Coeff	n-val Pipe	Flow Rate (cfs)	Invert Dn (ft)	Invert Up (ft)	Line Slope	HGL Dn (ft)	$\begin{gathered} \text { HGL } \\ \text { Up } \end{gathered}$ (ft)	Minor Loss (ft)	HGL Jnct (ft)	Vel Ave (ft/s)	Line Length (ft)	Rim-Hw (ft)	
1	Storm 8	Cir	Generic	1.25 z	0.013	13.70	7248.00	7249.01	1.70	7249.23	7250.38	n / a	7250.38	8.46	59.460	2.27	

Paint Brush Hills Filing 14
Number of lines: 1

Storm Sewer Profile

Weighted Percent Imperviousness of PBH Filing 14				
Contributing Basins	$\begin{gathered} \text { Area } \\ \text { (Acres) } \end{gathered}$	C_{5}	Impervious \% (I)	(Acres)*(I)
**OST	4.44	0.30	40	177.60
A	0.52	0.18	16	8.32
B	8.31	0.20	20	166.17
B1	0.92	0.16	13	12.00
C	11.50	0.26	32	368.00
D	5.20	0.20	20	104.00
E	0.49	0.90	100	49.00
F	1.61	0.30	40	64.40
G	12.20	0.35	48	585.60
H	10.78	0.35	48	517.44
I	12.74	0.35	48	611.52
J	7.19	0.22	25	179.75
K	0.75	0.36	50	37.50
L	3.37	0.36	50	168.50
M	2.53	0.27	34	86.02
N	6.08	0.20	20	121.62
Totals	88.63			3257.44
Tmperviousness of PBH 14	36.8			

Weighted Percent Imperviousness of WQ Pond C				
Contributing Basins	$\begin{gathered} \text { Area } \\ \text { (Acres) } \end{gathered}$	C_{5}	Impervious \% (I)	(Acres)*(I)
OS5A	3.66	0.11	5	18.30
OS5B	13.44	0.11	5	67.18
OS5C	29.00	0.30	40	1160.15
A	0.52	0.18	16	8.37
B	8.31	0.20	20	166.17
C	11.80	0.26	32	377.60
D	5.20	0.20	20	103.95
E	0.49	0.90	100	49.04
F	1.61	0.30	40	64.58
\boldsymbol{G}	12.20	0.35	48	585.50
H	10.78	0.35	48	517.45
I	12.74	0.35	48	611.52
J	7.19	0.22	25	179.81
K	0.75	0.36	50	37.46
L	3.37	0.36	50	168.56
M	2.53	0.27	34	86.02
N	8.94	0.20	20	178.76
*TT	5.05	0.35	25	126.25
Totals	137.58			4506.69
Tmperviousness of WQ Pond C	32.8			

Project: Paint Brush Hills Filing No. 14

Basin ID: FSD Pond C

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.
 2-yr Runoff Volume $(\mathrm{P} 1=1.19$ in $)=4.688$ 5 -yr Runoff Volume (P1 = 1.5 in) 5-y Runoff Volum (P1 1.75 in.)
$25-y r$ Runoff Volume ($\mathrm{P} 1=2 \mathrm{in}$.) $=$ $50-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2.25 \mathrm{in}$.) $=$ $100-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2.52 \mathrm{in}$.) $=$ $500-\mathrm{yr}$ Runoff Volume (P1 = 3.14 in .) $=$ Approximate 2-yr Detention Volume $=$ Approximate 5-yr Detention Volume $=$ Approximate $10-\mathrm{yr}$ Detention Volume $=$ Approximate $25-\mathrm{yr}$ Detention Volume $=$ Approximate $50-\mathrm{yr}$ Detention Volume $=$ Approximate 100 -yr Detention Volume $=$

Optional User Overrides
acre-feet acre-feet
1.19
inches

Depth Increment $=$		ft							
Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{ft}^{2}\right) \\ & \hline \end{aligned}$	Optional Override Area (ft^{2})	$\begin{gathered} \text { Area } \\ \text { (acre) } \end{gathered}$	Volume (ft ${ }^{3}$)	Volume (ac-ft)
Top of Micropool	--	0.00	--	--	--	180	0.004		
	--	0.91	--	--	--	457	0.010	290	0.007
	--	1.91	--	--	--	14,185	0.326	7,611	0.175
	--	2.91	--	--	--	41,901	0.962	35,654	0.818
	--	3.91	--	--	--	61,466	1.411	87,337	2.005
	--	4.91	--	--	--	72,754	1.670	154,447	3.546
	--	5.91	--	--	--	81,398	1.869	231,523	5.315
	--	6.91	--	--	--	86,246	1.980	315,345	7.239
	--	7.91	--	--	--	92,877	2.132	404,906	9.295
	--	8.91	--	--	--	98,536	2.262	500,613	11.492
	--	9.91	--	--	--	105,513	2.422	602,637	13.835
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				

DETENTION BASIN OUTLET STRUCTURE DESIGN

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.85	3.71					
Orifice Area (sq. inches)	6.62	6.62	6.62					
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								

User Input: Vertical Orifice (Circular or Rectanqular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Vertical Orifice Area $=$ Vertical Orifice Centroid $=$	Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected			Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A	ft^{2}
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A			N/A	N/A	t
Vertical Orifice Diameter $=$	N/A	N/A					

				Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate			
	Zone 3 Restrictor	Not Selected	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches		Zone 3 Restrictor	Not Selected	t^{2}
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	0.25	N/A		Outlet Orifice Area = Outlet Orifice Centroid =	12.57	N/A	
	48.00	N/A			2.00	N/A	feet
Restrictor Plate Height Above Pipe Invert	48.00		inches Half-Central Angl	Restrictor Plate on Pipe =	3.14	N/A	radians

Spillway Invert Stage=	8.97	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	96.00	feet
Spillway End Slopes =	8.33	$\mathrm{H}: \mathrm{V}$
Freeboard above Max Water Surface $=$	1.00	feet

	Calculated Parameters for Spillway	
Spillway Design Flow Depth=	0.87	feet
Stage at Top of Freeboard =	10.84	feet
Basin Area at Top of Freeboard =	2.42	acres
Basin Volume at Top of Freeboard $=$	13.83	acre-ft

Routed Hydrograph Results	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
Design Storm Return Period $=$	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	1.834	4.664	4.688	7.414	9.906	13.603	16.440	20.186	27.480
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	4.688	7.414	9.906	13.603	16.440	20.186	27.480
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	13.4	37.5	57.3	104.5	131.2	167.6	233.6
OPTIONAL Override Predevelopment Peak Q (cfs) $=$	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.10	0.27	0.42	0.76	0.95	1.22	1.70
Peak Inflow Q (cfs) =	N/A	N/A	56.0	90.7	117.3	170.5	205.3	248.0	333.2
Peak Outflow Q (cfs) $=$	0.8	1.2	1.2	22.6	42.3	66.5	78.0	92.8	226.2
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.6	0.7	0.6	0.6	0.6	1.0
Structure Controlling Flow =	Plate	Plate	Plate	Overflow Weir 1	Spillway				
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	1.2	2.4	3.8	4.4	5.3	5.7
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	38	67	68	70	68	65	63	61	57
Time to Drain 99\% of Inflow Volume (hours) =	40	71	72	75	74	73	72	71	69
Maximum Ponding Depth (ft) =	3.79	5.56	5.43	6.14	6.50	7.29	7.95	8.96	9.53
Area at Maximum Ponding Depth (acres) $=$	1.36	1.80	1.77	1.89	1.93	2.04	2.14	2.27	2.36
Maximum Volume Stored (acre-ft) =	1.839	4.673	4.423	5.747	6.417	8.002	9.380	11.583	12.925

DETENTION BASIN OUTLET STRUCTURE DESIGN
MHFD-Detention, Version 4.00 (December 2019)

Stormwater Detention and Infiltration Design Data Sheet

Stormwater Facility Name: Pond C

Facility Location \& Jurisdiction: Paint Brush Hills Filing No. 14, Londonderry Drive, El Paso County / El Paso County

Stormwater Detention and Infiltration Design Data Sheet

Paint Brush Hills Filing No. 14
EMERGENCY SPILLWAY CALCULATIONS FSD POND C

Equation 12-20
Total Q
307.99

$$
Q=C_{B C W} L H^{1.5}
$$

Equation 12-21
$Q=\left(\frac{2}{5}\right) C_{B C W} Z H^{2.5}$

Where:
$Q=$ discharge (cfs)
$C_{B C W}=$ broad-crested weir coefficient (This ranges from 2.6 to 3.0 . A value of 3.0 is often used in practice.) See Hydraulic Engineering Circular No. 22 for additional information.
$L=$ broad-crested weir length (ft)
$H=$ head above weir crest (ft)

Figure 12-20. Sloping broad-crest weir

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

POND C SPILLWAY RUNDOWN

\qquad Pajnt Pruen Hzus Filtano 14

CIVIL CONSULTANTS, INC. DATE:

Ponap C Suphtate Vol.

Treibutary Imponvion ADeA 13758 AC $\times 32 \% \%=45.12 \geqslant 14 \mathrm{AC}$
FROM FEG! MECROPOOI SUEFACE ADEA $=180$ SFDESZN $=180$ SFACTUAL
mzugimun foret bort Voume

FtalaAy Revetaz - Confzguratidon
 WFre GaN $Q=C u A^{3 / 2}$ Forestal 1.5 At DCEP?
$Q=3.0\left(0.33^{\prime}\right)(1.5)^{3 / 2}=1.82$ cfs Actual $\cong 1.86 c s s$ Desten.
TRTCKLE CHNNEL CAPACRTY

2.12 cHs Actual $>1.82 \mathrm{cts}$ Actual

Ste dov cuthinel fow calcultur foe Treclue dbanuel wint SLope 0.5%

PonbC Spzuwat
 WUIT DISCHAOGE $\quad 306.7 \mathrm{cfs} / 966 t=3.2 \quad 3^{\prime} 1$ LOM zTuDINAL SLOLE Fron Fi6 $13-124$ TYPE M RrPQP $D_{50}=12^{2}$

$$
2 D_{50}=2 \times 12^{\prime \prime}=24^{\prime \prime} \text { DEEP }
$$

Figure 13-12c. Emergency Spillway Protection

Figure 13-12d. Riprap Types for Emergency Spillway Protection

Figure 1 - Micropool Surface Area (SA) Determination Chart
The tributary impervious area is the effective number of impervious acres that will be treated by the extended detention basin (EDB). It is calculated by multiplying the tributary area to be treated by the impervious fraction of that area.

$$
T I A=I \times A
$$

TIA = Tributary impervious area (acres)
$1 \quad=$ Imperviousness (fraction)
A = Tributary catchment area upstream (acres)
For EDBs with tributary impervious areas greater than 100 acres, the micropool surface area is 400 sf . The initial surcharge depth (ISD) is defined as the depth of the initial surcharge volume (ISV). The surface area determined using Figure 1 assumes an ISD of 4 inches. The initial surcharge volume is thus calculated by multiplying the micropool surface area by 4 inches.
$\begin{array}{ll}\text { ISV } \\ \text { ISV } & =\text { Initial surcharge volume (cf) }\end{array}$
$S A=$ Surface area (from Figure 1, sf)

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

LOW FLOW TRICKLE CHANNEL
\qquad Parne Brusit Hzus Ffling M
\qquad
Low TAzL wata Rop Rap Bhate PR Il

$$
Q_{100}=13.7 \mathrm{cts} \quad 18^{\prime \prime} \mathrm{RdP}
$$

fue $18^{\prime \prime}$ stormprpa Rimpar Btazn $15^{\prime} L \times 10^{\prime}$＇n Destoun $15^{\prime}<\times 30^{\circ} \omega$ Acture
Fwo 9－3G Repzap Erostom wrotectra（4Df：D）
It ID assumes 19.4

$$
Q / 10^{1.5}=13.7 / 1.5^{1.5}=7.46
$$

FROM FTG q－38 TYTEL REPRA？$D_{50}=9^{\prime \prime}$

$$
2 D_{50}=2 \times 9^{\text {M }}=B_{8^{\prime \prime}} \text { TH+LK }
$$

$$
\text { Quo }=92_{0} \text { Ecs } \quad 48^{\prime \prime} \text { Rup }
$$

Fhe 9－37 Lowtammazer Lappinh Pansin（UDELD）

शपLChw Actunt

ytp absumuer 0.4

$$
\begin{aligned}
& Q / D^{1.5}=92.8 \mathrm{cs} / 4^{1.5}=1.4 \\
& \text { FRan Fre } 9-388^{\circ} \text { TYPE m Doe } \mathbb{L}^{\prime} \\
& 2 D_{50}=2 \times 12^{\prime \prime}=24^{\prime \prime} \text { TA动安. }
\end{aligned}
$$

PEn＂Panat Brusa hzus Feltonn $12 "$ Constructzon Pidans
 EAzbince fiq farifan Is in ConFuRmance．

$\begin{aligned} & \text { MPE steE on } \\ & \text { ROX HiHHI } \end{aligned}$	D	䍂	1
$18^{\prime \prime}-24^{\prime \prime}$	$i^{\prime \prime}-0^{\prime \prime}$	4	15^{*}
$30^{\circ}-30^{*}$	* ${ }^{\text {- }}$ "	6	20
$42^{\prime \prime}-48^{*}$	$2^{*}-0^{*}$	7	24°
$54^{*}-80^{\prime \prime}$	$2^{*}-8^{* *}$	8	28
86* $-72^{\prime \prime}$	$3^{*}-0^{\text {m }}$	$9 *$	33^{\prime}

- if outlet opre is a box culyert win a witev

報EATER THN W, THEN $=$ CULVERT WDTH

Figure 9-37. Low tailwater riprap basin

$$
H_{a}=\frac{\left(H+Y_{n}\right)}{2}
$$

Where the maximum value of H_{a} shall not exceed H, and:
$D_{a}=$ parameter to use in place of D in Figure 9-38 when flow is supercritical (ft)
$D_{c}=$ diameter of circular culvert (ft)
$H_{a}=$ parameter to use in place of H in Figure $9-39$ when flow is supercritical (ft)
$H=$ height of rectangular culvert (ft)
$Y_{n}=$ normal depth of supercritical flow in the culvert (ft)

Use D_{a} instead of D whenever flow is supercritical in the barrel.
** Use Type L for a distance of 30 downstream

Figure 9-38. Riprap erosion protection at circular conduit outlet (valid for Q/D2.5 ≤ 6.0)

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

DP1 EXISTING SWALE Q100= 13.7 CFS

SEE TABLE 10-4 FOR MAXIMUM PERMISSIBLE VELOTIES FOR EARTHEN CHANNELS WITH VARIED GRASS LININGS AND SLOPES

The open channel flow calculator			
Select Channel Type: Triangle			
Velocity(V)\&Discharge(Q)	Select unit system: Feet(ft) \downarrow		
Channel slope: 012	Water depth(y): 1.93	ft	Bottom W(b)
ft/ft		ft	ft
$\begin{array}{\|l\|} \hline \text { Flow velocity } 4.4509 \\ \mathrm{ft} / \mathrm{s} \\ \hline \end{array}$	LeftSlope (Z1): 4 to $1(\mathrm{H}: \mathrm{V})$		$\begin{aligned} & \text { RightSlope }(\mathrm{Z} 2): 4 \\ & \text { to } 1(\mathrm{H}: \mathrm{V}) \\ & \hline \end{aligned}$
Flow discharge 66.317	Input n value 0.035 or select n		
$\mathrm{ft}^{\wedge} 3 / \mathrm{s}$			
Calculate!	Status:Calculation finished		Reset
Wetted perimeter 15.92 ft ft	Flow area 14.9 ft^2		$\begin{aligned} & \hline \text { Top width(T) } 15.44 \\ & \mathrm{ft} \\ & \hline \end{aligned}$
$\begin{aligned} & \text { Specific energy } 2.24 \\ & \mathrm{ft} \end{aligned}$	Froude number 0.8		Flow status Subcritical flow
$\begin{aligned} & \text { Critical depth } 1.76 \\ & \mathrm{ft} \end{aligned}$	Critical slope 0.0194	ft/ft	Velocity head 0.31 ft

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

DP3 NATURAL CHANNEL Q $_{100}=65.3$ cfs

SEE SC150 TURF REINFORCEMENT MAT

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.
DP16 PROPOSED SWALE Q100= 20.8 CFS

SEE TABLE 10-4 FOR MAXIMUM PERM.SSIBLE VELOTIES FOR EARTHEN CHANNELS WITH VARIED GRASS LININGS AND SLOPES

Channel Slope	Lining	Permissible Mean Channel Velocity* (ft/sec)
DP3	Kentucky bluegrass	4
DP3	Grass-legume mixture	3
Greater than 10\%	Sodded grass	5
Bermudagrass	4	
Reed canarygrass	3	
Tall fescue	3	
	Kentucky bluegrass	3

*For highly erodible soils, decrease permissible velocities by 25%.
*Grass lined channels are dependent upon assurances of continuous growth and maintenance of grass.

Material and Performance Specification Sheet

SC150 Erosion Control Blanket

The extended-term double net erosion control blanket shall be a machine-produced mat of 70% agricultural straw and 30% coconut fiber with a functional longevity of up to 24 months. (NOTE: functional longevity may vary depending upon climatic conditions, soil, geographical location, and elevation). The blanket shall be of consistent thickness with the straw and coconut evenly distributed over the entire area of the mat. The blanket shall be covered on the top side with a heavyweight photodegradable polypropylene netting having ultraviolet additives to delay breakdown and an approximate $0.63 \times 0.63(1.59 \times 1.59 \mathrm{~cm})$ mesh, and on the bottom side with a lightweight photodegradable polypropylene netting with an approximate 0.50×0.50 in ($1.27 \times 1.27 \mathrm{~cm}$) mesh. The blanket shall be sewn together on 1.50 inch $(3.81 \mathrm{~cm})$ centers with degradable thread.
The SC150 shall meet requirements established by the Erosion Control Technology Council (ECTC) Specification and the US Department of Transportation, Federal Highway Administration's (FHWA) Standard Specifications for Construction of Roads and Brioges on Federal Highway Projects, FP-03 Section 713.17 as a type 3.B Extended-term Erosion Control Blanket.

The SC150 is also available with the DOT System ${ }^{\text {TM }}$, which consists of installation staple patterns clearly marked on the erosion control blanket with environmentally safe paint. The blanket shall be manufactured with a colored thread stitched along both outer edges (approximately 2-5 inches [512.5 cm] from the edge) as an overlap guide for adjacent mats.

Matrix		
	70% Straw Fiber	$0.35 \mathrm{lbs} / \mathrm{yd}^{2}\left(0.19 \mathrm{~kg} / \mathrm{m}^{2}\right)$
	30% Coconut Fiber	$0.15 \mathrm{lbs} / \mathrm{yd} \mathrm{d}^{2}\left(0.08 \mathrm{~kg} / \mathrm{m}^{2}\right)$
Nettings	Top - Healyweight photodegradable with UV additives	$3.0 \mathrm{lb} / 1000 \mathrm{ft}^{2}\left(1.47 \mathrm{~kg} / 100 \mathrm{~m}^{2}\right)$
	Bottom - Lightweight Photodegradable	$1.5 \mathrm{lb} / 1000 \mathrm{ft}^{2}\left(0.73 \mathrm{~kg} / 100 \mathrm{~m}^{2}\right)$
Thread	Degradable	

SC150 is available in the following standard roll sizes:

Width	$6.67 \mathrm{ft}(2.03 \mathrm{~m})$	$16 \mathrm{ft}(4.87 \mathrm{~m})$
Length	$108 \mathrm{ft}(32.92 \mathrm{~m})$	$108 \mathrm{ft}(32.92 \mathrm{~m})$
Weight $\pm 10 \%$	$44 \mathrm{lbs}(19.95 \mathrm{~kg})$	$105.6 \mathrm{lbs}(47.9 \mathrm{~kg})$
Area	$80.0 \mathrm{yd}^{2}\left(66.9 \mathrm{~m}^{2}\right)$	$192 \mathrm{yd}^{2}\left(165.5 \mathrm{~m}^{2}\right)$

Index Value Properties:

Property	Test Rhethod	
Thickness	ASTM D6525	0.39 in $(9.91 \mathrm{~mm})$
Resiliency	ECTC Guidelines	75%
Water Absorbency	ASTM D1117	285%
Mass/Unit Area	ASTM 6475	$11.44 \mathrm{oz} / \mathrm{yd} \mathrm{d}^{2}\left(388 \mathrm{~g} / \mathrm{m}^{2}\right)$
Swell	ECTC Guidelines	30%
Smolder Resistance	ECTC Guidelines	Yes
Stiffness	ASTM D1388	1.11 oz-in
Light Penetration	ECTC Guidelines	8.7%
Tensile Strength -MD	ASTM D6818	$146.6 \mathrm{lbs} / \mathrm{ft}(2.17 \mathrm{kN} / \mathrm{m})$
Elongation - MD	ASTM D6818	26.9%
Tensile Strength - TD	ASTM D6818	$147.6 \mathrm{lbs} / \mathrm{ft}(2.19 \mathrm{kN} / \mathrm{m})$
Elongation - TD	ASTM D6818	25.2%

Bench Scale Testing* (NTPEP):

Test 閏ethod	Parameters	Results
ECTC Method 2 Rainfall	50 mm (2 in)/hr for 30 min	$\mathrm{SLR}^{* *}=5.47$
	100 mm (4 in)/hr for 30 min	$S_{\text {LR }}{ }^{* *}=5.67$
	150 mm (6 in)/ $/ \mathrm{hr}$ for 30 min	SLR** $=5.88$
ECTC Method 3 Shear Resistance	Shear at 0.50 inch soil loss	$2.72 \mathrm{lbs} / \mathrm{ft}^{2}$
ECTC Method 4 Germination	Top Soil, Fescue, 21 day incubation	538% improvement of biomass
*Bench Scale tests should not be used for design purposes		

Performance Design Values:

聞aximum Permissible Shear Stress	
Unvegetated Shear Stress	$2.00 \mathrm{lbs} / \mathrm{ft}^{2}(96 \mathrm{~Pa})$
Unvegetated Velocity	$8.00 \mathrm{ft}(\mathrm{s}(2.44 \mathrm{~m} / \mathrm{s})$

Slope Design Data; C Factors			
	Slope Gradients (S)		
Slope Length (L)	$\leq 3: 1$	$3: 1-2: 1$	$\geq 2: 1$
$\leq 20 \mathrm{ft}(6 \mathrm{~m})$	0.001	0.048	0.100
$20-50 \mathrm{ft}$	0.051	0.079	0.145
$\geq 50 \mathrm{ft}(15.2 \mathrm{~m})$	0.10	0.110	0.190

Roughness Coefficients- Unveg.	
Flow Depth	Manning's n
$\leq 0.50 \mathrm{ft}(0.15 \mathrm{~m})$	0.050
$0.50-2.0 \mathrm{ft}$	$0.050-0.018$
$\geq 2.0 \mathrm{ft}(0.60 \mathrm{~m})$	0.018

Product Participant of:

PROPOSED AND EXISTING DRAINAGE MAP \& REFERENCE MAPS

PAINT BRUSH HILLS FILING NO. 14
PROPOSED DRAINAGE MAP

