PRELIMINARY/FINAL DRAINAGE REPORT FOR PAINT BRUSH HILLS FILING NO. 14 EL PASO COUNTY, COLORADO

MARCH 2021

Prepared for:

The Landhuis Company 212 N. Wahsatch Ave, Suite 301 Colorado Springs, CO 80903 (719) 635-3200

Prepared by:

102 E.Pikes Peak, 5th Floor Colorado Springs, CO 80903 (719) 955-5485

Project #10-014 PCD Project # SP206 & SF2024

PRELIMINARY/FINAL DRAINAGE REPORT FOR PAINT BRUSH HILLS FILING NO. 14

DRAINAGE PLAN STATEMENTS

ENGINEERS STATEMENT

The attached drainage plan and report was prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omission on my part in preparing this report.

Virgil A. Sanchez, P.E. #37160 For and on Behalf of M&S Civil Consultants, Inc

DEVELOPER'S STATEMENT

I, the developer have read and will comply with all the requirements specified in this drainage report and plan.

BY: Mr. Jeff Mark

TITLE: Owner and Manager ADDRESS: Landuis Company 212 N. Washatch Ave, Suite 301 Colorado Springs, CO 80903 DATE: 3-8-21

EL PASO COUNTY'S STATEMENT

Filed in accordance with the requirements of El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Manual, as amended.

BY:

DATE:

Jennifer Irvine, P.E. County Engineer/ECM Administrator Engineering Department 04/01/2021 1:54:18 PM dsdnijkamp EPC Planning & Community Development Department

APPROVED

CONDITIONS

PRELIMINARY/FINAL DRAINAGE REPORT FOR PAINT BRUSH HILLS FILING NO. 14

TABLE OF CONTENTS

PURPOSE	4
GENERAL LOCATION AND DESCRIPTION	4
SOILS	4
HYDROLOGIC CALCULATIONS	4
HYDRAULIC CALCULATIONS	5
FLOOD PLAIN STATEMENT	5
DRAINAGE CRITERIA	5
FOUR STEP PROCESS	5
EXISTING DRAINAGE CONDITIONS	5
PROPOSED DRAINAGE CONDITIONS	6
DETENTION POND PROVISIONS AND MAINTENANCE EROSION CONTROL	10
EROSION CONTROL	11
CONSTRUCTION COST OPINION	11
DRAINAGE AND BRIDGE FEES	12
SUMMARY	12
REFERENCES	13

APPENDIX

Vicinity Map Soils Map FIRM Panel W/Revised LOMR Hydrologic Calculations Hydraulic Calculations/EDB Calculations Grading Erosion Control Plan Reference Maps Proposed and Existing Drainage Maps

PRELIMINARY/FINAL DRAINAGE REPORT FOR PAINT BRUSH HILLS FILING NO. 14

PURPOSE

This document is intended to serve as the Preliminary and Final Drainage Report for Paint Brush Hills Filing No. 14. The purpose of this document is to identify and analyze the on and offsite drainage patterns and to ensure that post development runoff is routed through the site safely and in a manner that satisfies the requirements set forth by the El Paso County Drainage Criteria Manual. The proposed principal use for the site consists of infrastructure typically associated with single family residential developments. The majority of the site will consist of asphalt, curb, landscaping and an existing storm water quality facility (Pond C) located near the southwest boundary of the site. This document is also intended to show some of Paint Brush Hills Filing No. 14 onsite drainage (of approximately 6.72 acres,) will not adversely affect the capacity of the existing storm water quality facility (Pond D) in the "Preliminary Drainage Report for Paint Brush Hills Filing 13E (PDRPBH-13E) (Pre-Development Grading Plan)", prepared by Classic Consulting Engineers and Surveyors, submitted on February 2018.

GENERAL LOCATION AND DESCRIPTION

Paint Brush Hills Filing No. 14 is located in the northeast quarter of Section 26, Township 12 South, Range 65 West of the 6th P.M. in El Paso County, Colorado. The parcel is bound to the north by existing single family residential Paint Brush Hills Filing No.3 and to the south by existing single family residential Paint Brush Hills Filing No. 12. An existing utility corridor and single family residential subdivision Paint Brush Hills Filing No. 13E, is planned along the east boundary of the site. Along the west property line are two rural and undeveloped parcels. Generally, runoff produced by the site is directed south and southwest to an Extended Detention Basin (EDB) Pond C and subsequently to an existing swale tributary to the Falcon Drainage Basin. The site lies within the Falcon Drainage Basin.

The site consists of 88.631 acres which is presently undeveloped. Vegetation is sparse, consisting of native grasses with no trees onsite. The site has not experienced any overlot grading activities. Existing site terrain generally slopes from north to south at grade rates that vary between 1.0% and 4.0%.

The site is currently platted and zoned "RS-20,000 & RS-6000" for Residential Suburban. The proposed principal use for the site is single family residential. The majority of the lots shall consist of standard setbacks, landscaping and back and/or side lot swales typical for single family housing. An existing detention facility is located at the southwest boundary of the site and is to be upgraded upon development of the proposed Paint Brush Hills Filing No. 14 site.

SOILS

Soils for this project have been delineated by the map in the appendix, as Pring Coarse Sandy Loam (71) and is characterized as Hydrologic Soil Type "B". Soils in the study area are shown as mapped by S.C.S. in the "Soils Survey of El Paso County Area." Vegetation is sparse, consisting of native grasses and weeds.

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual and where applicable the Urban Storm Drainage Criteria Manual. The Rational Method was used to estimate stormwater runoff anticipated from design storms with 5-year and 100-year recurrence intervals.

HYDRAULIC CALCULATIONS

Hydraulic calculations were estimated using the Manning's Formula and the methods described in the El Paso County Storm Drainage Design Criteria manual. The relevant data sheets are included in the appendix of this report.

FLOODPLAIN STATEMENT

No portion of this site is within a designated F.E.M.A. floodplain as determined by the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel No. 08041C0535 G, effective date December 7, 2018. A FIRM Panel is included in the Appendix.

DRAINAGE CRITERIA

This drainage analysis has been prepared in accordance with the current El Paso County Drainage Criteria Manual and where applicable the City of Colorado Springs DCM Volume 1 dated May 2014 effective January 2015. Hydrologic calculations were performed to determine runoff quantities for the 5-year and 100-year frequency storms for developed conditions using the Rational Method as required for basins having areas less than 130 acres (in accordance with Chapter 6 of the City of Colorado Springs DCM Volume 1). Full spectrum detention facilities have been designed in accordance with Section 3.2.1. of Chapter 13 of the City of Colorado Springs DCM Volume 1, dated May 2014, effective January 31, 2015 and Urban Drainage and Flood Control District Manuals dated January 2016.

FOUR STEP PROCESS

- **Step1 Employ Runoff Reduction Practices** Approx. 3.68 acres of proposed land (pervious surface) within the project has been set aside for an EDB facility. Also roof drains will be directed to landscaped areas to minimize direct connection of impervious surfaces. The two lots at the northwest corner of the site will have roof drains directed to the front of the lot.
- **Step 2 Stabilize Drainageways** The site outfall at Design Point 1 is upstream of an existing Pond D. A low tailwater riprap basin will dissipated energy and velocities to allow seed grasses to take hold and avoid erosion. Existing Pond D ultimately will outfall to the Falcon Drainage Basin. The site outfall at Design Point 17 (existing Pond C) is upstream of the Falcon Drainage Basin. A riprap basin will dissipated energy and velocities to avoid erosion of existing grasses. This outfall is existing and the flows have been restricted to less than existing conditions. It is not anticipated to have negative effect on the downstream drainageway.
- **Step 3 Provide Water Quality Capture Volume** The existing Pond C will be retrofitted to a Full Spectrum Extended Drainage Basin and will provide WQCV.
- **Step4 Consider Need for Industrial and Commercial BMP's** There are no commercial or industrial components to this development, therefore no BMPs of this nature are required. The existing Pond C will be retrofitted to a Full Spectrum Extended Drainage Basin and will provide WQCV.

EXISTING DRAINAGE CONDITIONS

The Paint Brush Hills Filing No. 14 site consists of 88.631 acres and is situated in the Falcon Drainage Basin with Chico Creek as receiving waters. This site was studied as part of the "Master Development Drainage Plan for Falcon Hills Development (MDDP)" prepared by Kiowa Engineering Corporation, approved November 2002. More recently the site was studied in the "Final Drainage Report for Paint Brush Hills-Phase 2 (Filing No. 13, (FDRPBH-PH2-13))", prepared by Classic Consulting Engineers and Surveyors, rev.June 2008.

Existing Paint Brush Hills Filing No. 14 site and offsite Paint Brush Hills Filing No. 3 is currently undeveloped and the terrain generally slopes from north to southwest at grade rates that vary between 1.0% and 4.0%. Existing natural drainage swales route flows to an existing detention facility (Pond C) constructed as part of the "Paint Brush Hills Filing No. 12", see attached Historic Conditions Drainage Map from FDRPBH-PH2-13 and also refer to "Final Drainage Report for Paint Brush Hill Filing Nos. 10, 11 & 12 (FDRPBH-10,11,12)" prepared by Classic Consulting Engineers and Surveyors, rev. July 2003. See Historic Conditions Drainage Map in Drainage Maps section of this report. Offsite and onsite flows on Paint Brush Hills Filing No.14 are described as follows;

Historic Basin Descriptions

Basin OS-5, 46.1 acres, ($Q_5=35$ cfs, $Q_{100}=79.0$ cfs), consists of offsite existing Paint Brush Hills Filing No.3. Filing No.3 is a single family residential development with the average lot size of 3.5 acres. The percent impervious is approximately 11%. The west half of **Basin OS-5**, runoff enters the site as sheet flow. The east half of **Basin OS-5**, runoff is concentrated and enters the site via a natural swale.

Basin H-1, 92.3 acres, (Q_5 =42.0 cfs, Q_{100} =108.0 cfs), consists of undeveloped Paint Brush Hills Filing No.14. The terrain generally slopes from north to southwest at grade rates that vary between 1.0% and 4.0%. Existing natural drainage swales route flows to an existing detention facility (Pond C). Historic cumulative flows, from **Basin OS-5** and **Basin H-1** are Q_5 =68.0 cfs, Q_{100} =169.0 cfs. Runoff is released via an existing 48" RCP pipe to an existing swale.

Basin H-5, 55.6 acres, ($Q_5=32.0$ cfs, $Q_{100}=80.0$ cfs), consists of undeveloped Paint Brush Hills Filing No.13E. The terrain generally slopes from north to southwest at grade rates that vary between 1.0% and 4.0%. Existing natural drainage swales route flows to the south end of the basin. Approximately 6.0 acres of undeveloped Paint Brush Hills Filing No. 14 is located at the northeast corner of **Basin H-5**. Historic flows, from **Basin H-5** are $Q_5=32.0$ cfs, $Q_{100}=80.0$ cfs. Runoff is released via a pair of existing 36" RCP culverts located under existing Londonderry Drive and outfall to an existing swale.

PROPOSED DRAINAGE CHARACTERISTICS

General Concept Drainage Discussion

The following is a description of the offsite and onsite basins, offsite flows and the overall proposed drainage characteristics for the development of Paint Brush Hill Filing No. 14. These calculations have been provided to show that what is proposed will be adequate to convey flows when development occurs. Offsite **Basin ***OS-5** has been divided into 3 sub-basins as they pertain to the onsite proposed drainage characteristics. The following **Basin** description, **Design Points (DP)** and **Pipe Runs (PR)** were determined using the Rational Method since each individual basin is less than 100 acres and the combined acreage at any DP are also less than 130 acres. See drainage map in appendix for proposed conditions. This method offers a conservative approach to sizing swales and storm drains. Development of this site will not adversely affect the surrounding development and is compliance with the M.D.D.P. approved for this site.

The * before a basin, design point and pipe run callout denotes previously studied in the "Final Drainage Report for Paint Brush Hills Filing 13E (FDRPBH-13E)", prepared by Classic Consulting Engineers and Surveyors, submitted on September 2018. The ** before a basin callout denotes a revision to FDRPBH-13E. The *** before a basin callout denotes previously studied in the "Final Drainage Report for Paint Brush Hills-Phase 2 (Filing No. 13,(FDRPBH-PH2-13))", prepared by Classic Consulting Engineers and Surveyors, submitted on rev. June 2008, specifically Basin ***OS-5. The # before a pipe run callout denotes, to be constructed or are existing with the Paint Brush Hills Filing No. 13E Street and Storm

Sewer plans but the flows (slightly higher) have been adjusted by this report the Preliminary/Final Drainage Report for Paint Brush Hills Filing No. 14" prepared by MS Civil Consultants, dated December 2020.

Detailed Drainage Discussion

Basins Tributary to Detention Pond C

Basin OS5C, 29.0 acres, ($Q_5=25.5$ cfs, $Q_{100}=57.0$ cfs), consist of existing developed 3.5-acre properties and streets. Runoff produced by the offsite area, are routed via existing roadside swales to a larger natural swale which carries flows south towards the north boundary of the subject site.

Basin A, 3.82 acres, $(Q_5=2.9 \text{ cfs}, Q_{100}=10.7 \text{ cfs})$, consists of a proposed single family residential lots and proposed 25' wide trail easement/Tract A. Developed flows within **Basin A** and offsite **Basin OS5C** are routed as surface runoff via an existing swale, in a 75' drainage easement, to **DP3** ($Q_5=27.7 \text{ cfs}, Q_{100}=65.3 \text{ cfs}$). Surface runoff at **DP3** will be collected and conveyed via a 36" RCP FES and 36" RCP pipe (**PR2**) to **DP4**. The existing swale shall be natural, except for the lower portion where it will be graded to the 36" RCP FES. This portion of the swale shall be maintained by the Paint Brush Hills Metropolitan District (see SC 150 Turf Reinforcement Mat in appendix). In the event of clogging, flows at **DP3** will over top the embankment and shall be conveyed via curb and gutter to **DP4**.

Basin J, 3.9 acres, $(Q_5=3.0 \text{ cfs}, Q_{100}=10.4 \text{ cfs})$, consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to **DP4** which will be collected by a proposed 10' Type R sump inlet. The intercepted flow $(Q_5=3.0 \text{ cfs}, Q_{100}=10.4 \text{ cfs})$ will be routed west via an 18" RCP pipe (**PR3**, $Q_5=3.0 \text{ cfs}, Q_{100}=10.4 \text{ cfs})$ to **PR5** $(Q_5=31.0 \text{ cfs}, Q_{100}=75.9 \text{ cfs})$, a 48" RCP. In the event of clogging, flows at **DP4** will over top the high point and be routed via curb and gutter to **DP10**.

Basin K, 0.8 acres, $(Q_5=1.1 \text{ cfs}, Q_{100}=2.7 \text{ cfs})$, consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to **DP5** which will be collected by a proposed 5' Type R sump inlet. The intercepted flow $(Q_5=1.1 \text{ cfs}, Q_{100}=2.7 \text{ cfs})$ will be routed west via an 18" RCP pipe (**PR4**, $Q_5=1.1 \text{ cfs}, Q_{100}=2.7 \text{ cfs})$ to **PR5** $(Q_5=31.0 \text{ cfs}, Q_{100}=75.5 \text{ cfs})$, a 48" RCP. In the event of clogging, flows at **DP5** will over top the high point and be routed via curb and gutter to **DP10**.

Basin OS5B, 13.4 acres, (Q_5 =4.6 cfs, Q_{100} =25.8 cfs), consist of existing developed 3.5-acre properties and streets. Runoff produced by the offsite area, will sheet flow into **Basin D**.

Basin D, 5.2 acres, ($Q_5=3.8$ cfs, $Q_{100}=14.0$ cfs), consists of a proposed single family residential lots. Cumulative developed flows within **Basin D** and offsite **Basin OS5B** are routed via curb and gutter and side lot swales to **DP6**.

Basin E, 0.5 acres, $(Q_5=2.3 \text{ cfs}, Q_{100}=4.1 \text{ cfs})$, consists of a proposed local residential street. Surface runoff from **Basin E** will combine with flows from **Basin OS5B** and **Basin D** and will be routed via curb and gutter to **DP6** which will be collected by a proposed 15' Type R sump inlet. The cumulative flow from **DP6** and **DP7** at **DP8** is $Q_5=10.7 \text{ cfs}$, $Q_{100}=44.4$. The 100-year flow will be split between the two inlets. The intercepted flow at **DP6** ($Q_5=9.3 \text{ cfs}$, $Q_{100}=22.2$) will be routed west via a 24'' RCP pipe (**PR7**, $Q_5=9.2 \text{ cfs}$, $Q_{100}=22.2 \text{ cfs}$) to **PR9**. In the event of clogging, flows at **DP6** will over top the high point in Country Manor Drive and be routed to **DP12**.

Basin F, 1.6 acres, (Q_5 =1.9 cfs, Q_{100} =5.4 cfs), consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to **DP7** which will be

collected by a proposed 15' Type R sump inlet. The cumulative flow from **DP6** and **DP7** at **DP8** is $Q_5=10.7$ cfs, $Q_{100}=44.4$. The 100-year flow will be split between the inlets. The intercepted flow at **DP7** ($Q_5=1.9$ cfs, $Q_{100}=22.2$) will be routed west via a 24" RCP pipe (**PR8**, $Q_5=1.9$ cfs, $Q_{100}=22.2$ cfs) to **PR9**. In the event of clogging, flows at **DP7** will over top the high point in Country Manor Drive and be routed to **DP12**.

Basin G, 12.2 acres, $(Q_5=14.0 \text{ cfs}, Q_{100}=34.8 \text{ cfs})$, consists of proposed single family residential lots and proposed local residential streets. Surface runoff from **Basin G** is routed via curb and gutter to **DP9** ($Q_5=14.0 \text{ cfs}, Q_{100}=34.8 \text{ cfs}$) which a portion of the flow will be collected by proposed dual 15' Type R atgrade inlets. The intercepted flow ($Q_5=7.0 \text{ cfs}, Q_{100}=13.7 \text{ cfs}$ per side) will be routed south via (2) 24" RCP pipes (**PR10, PR11**, $Q_5=7.0 \text{ cfs}, Q_{100}=13.7 \text{ cfs}$ per side) and will combine with **PR9** in **PR12** ($Q_5=53.7 \text{ cfs}, Q_{100}=142.4 \text{ cfs}$). In the event of clogging, flows at **DP9** will be routed via curb and gutter to **DP15**.

Basin I, 12.7 acres, $(Q_5=14.5 \text{ cfs}, Q_{100}=36.2 \text{ cfs})$, consists of proposed single family residential lots and proposed local residential streets. Surface runoff from **Basin I** is routed via curb and gutter to **DP10** which a portion of the flows will be collected by proposed dual 15' Type R at-grade inlets. The intercepted flow $(Q_5=7.3 \text{ cfs}, Q_{100}=14.0 \text{ cfs})$ per side) will be routed west via a 18" RCP pipe (**PR13**, $Q_5=7.3 \text{ cfs}, Q_{100}=14.0 \text{ cfs})$ to **PR14**. Cumulative flows in the proposed 30" RCP pipe (**PR14**, $Q_5=14.6 \text{ cfs}, Q_{100}=27.9 \text{ cfs})$ will be routed south to an existing 30" RCP pipe **PR#38** ($Q_5=14.6 \text{ cfs}, Q_{100}=27.9 \text{ cfs}$). In the event of clogging, flows at **DP10** will be routed via curb and gutter to **DP11**. **PR#38 is** to be constructed as part of the Paint Brush Hills Filing No. 13E infrastructure, which is to precede construction of the subject filing.

Basin L, 3.4 acres, $(Q_5=3.8 \text{ cfs}, Q_{100}=9.5 \text{ cfs})$, consists of proposed single family residential lots and proposed local residential streets. Flowby from **DP10** and surface runoff from **Basin L** will be routed via curb and gutter to **DP11** ($Q_5=3.7 \text{ cfs}, Q_{100}=17.0 \text{ cfs}$) which a portion of the flows will be collected by an existing 15' Type R at-grade inlet. The intercepted flow will be routed east via a 24" RCP pipe (**PR#15**, $Q_5=3.7 \text{ cfs}, Q_{100}=13.5 \text{ cfs}$) and then south to an existing 30" RCP pipe (**PR#16**, $Q_5=17.4 \text{ cfs}, Q_{100}=39.7 \text{ cfs}$). In the event of clogging, flows at **DP11** will be routed via curb and gutter to **DP15**. Pipe's **PR#15** and **PR#16** are to be constructed as part of the Paint Brush Hills Filing No. 13E infrastructure.

Basin *TT, 5.1 acres, $(Q_5=5.7 \text{ cfs}, Q_{100}=13.0 \text{ cfs})$, consists of proposed single family residential lots and proposed local residential streets. **Basin *TT** is to be constructed with Paint Brush Hills Filing No. 13E, however surface runoff is to be captured and routed to Pond C. Surface runoff is routed via curb and gutter to **DP*37** ($Q_5=5.7 \text{ cfs}, Q_{100}=13.0 \text{ cfs}$) which will be collected by an existing 15' Type R at-grade inlet. The intercepted flow will be routed west via an existing 24" RCP pipe (**PR#39**, $Q_5=5.7 \text{ cfs}, Q_{100}=13.0 \text{ cfs}$). The combined flows from **PR#16** and **PR#39** will be routed west to a existing 36" RCP pipe (**PR#17**, $Q_5=22.8 \text{ cfs}, Q_{100}=51.3 \text{ cfs}$). In the event of clogging, flows at **DP*37** will be routed via curb and gutter into the existing Paint Brush Hills Filing No. 12 subdivision. The combined flows from **DP*37** and flow from **Basin *UU** is ($Q_5=1.4 \text{ cfs}, Q_{100}=3.2 \text{ cfs}$) and will be discussed in the Paint Brush Hills Filing No. 13E report. Pipe Run **PR#16** and **PR#39** to be constructed as part of the Paint Brush Hills Filing No. 13E infrastructure.

Basin H, 10.8 acres, $(Q_5=11.9 \text{ cfs}, Q_{100}=29.7 \text{ cfs})$, consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to **DP12** which will be collected by proposed dual 15' Type R at-grade inlets. The intercepted flow ($Q_5=6.0 \text{ cfs}, Q_{100}=12.4 \text{ cfs}$ per side) will be routed east and west via a (2) 18" RCP pipes (**PR18-18.1**, $Q_5=6.0 \text{ cfs}, Q_{100}=12.4 \text{ cfs}$) and then south to a proposed 30" RCP pipe (**PR19**, ($Q_5=11.9 \text{ cfs}, Q_{100}=24.8 \text{ cfs}$). The combined flows from **PR17** and **PR19** will be routed west to a proposed 42" RCP pipe (**PR20**, $Q_5=34.4 \text{ cfs}, Q_{100}=75.3 \text{ cfs}$). The combined flows from **PR12** and **PR20** will be routed west to a proposed 54" RCP pipe (**PR21**, $Q_5=86.6 \text{ cfs}, Q_{100}=214.4 \text{ cfs}$). In the event of clogging, flows at **DP12** will be routed via curb and gutter to **DP15**.

Basin M, 2.53 acres, ($Q_5=2.6$ cfs, $Q_{100}=7.8$ cfs), consists of proposed single family residential lots and proposed local residential streets. Flowby from **DP9**, **DP11**, **DP12** and surface runoff from **Basin M** will be routed via curb and gutter to **DP13** ($Q_5=2.1$ cfs, $Q_{100}=21.3$ cfs). See **Basin C** for discussion of intercepted flow.

Basin OS5A, 3.7 acres, ($Q_5=1.5$ cfs, $Q_{100}=8.4$ cfs), consist of existing developed 3.5-acre properties and streets. Runoff produced by the offsite area, will sheet flow onto **Basin C** which will be routed via side lot swales and curb and gutter to **DP14**.

Basin C, 11.8 acres, $(Q_5=9.2 \text{ cfs}, Q_{100}=28.6 \text{ cfs})$, consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to **DP14** ($Q_5=10.3 \text{ cfs}$, $Q_{100}=34.8 \text{ cfs}$). The combined flows from **DP13** and **DP14** will be captured by proposed dual 20' Type R sump inlets at **DP15** ($Q_5=12.3 \text{ cfs}, Q_{100}=55.4 \text{ cfs}$). The intercepted flow will be routed south via a 30" RCP pipe (**PR22**, $Q_5=6.1 \text{ cfs}, Q_{100}=27.7 \text{ cfs}$ per side) and then south to a proposed 36" RCP pipe (**PR23**, ($Q_5=12.3 \text{ cfs}, Q_{100}=55.4 \text{ cfs}$). The combined flows from **PR21** and **PR23** will be routed south to a proposed 60" RCP pipe (**PR24**, $Q_5=98.8 \text{ cfs}, Q_{100}=269.2 \text{ cfs}$) which will ultimately outfall into a proposed concrete lined forebay in Pond C.

Basin B, 8.31 acres, ($Q_5=5.6$ cfs, $Q_{100}=20.8$ cfs), consists of the backyards of proposed single family residential lots. Minimal improvements to the backyards will be implemented and shall have split rail fences only along the rear and side lots lines. Surface runoff will be collected by a 2' wide swale (see Table 10-4 in appendix), within a 20'/30' easement, to **DP16** a CDOT type C inlet. The intercepted flow will be routed east via a 30'' RCP pipe (**PR25**, $Q_5=5.6$ cfs, $Q_{100}=20.8$ cfs). The cumulative flows from PR24 and PR25 will combine and be routed south to a proposed 66'' RCP pipe (**PR26**, $Q_5=103.6$ cfs, $Q_{100}=287.2$ cfs) which will outfall into a proposed concrete lined forebay in Pond C.

Basin N, 8.94 acres, (Q5=6.2 cfs, Q100=23.0 cfs), consists of backyards of proposed single family residential lots, backyards of existing residential lots from Paint Brush Hills Filing No. 12 and existing Pond C. The combined surface runoff and PR26 will be collected at **DP17** (existing **Pond C**, $Q_5=108.8$ cfs, Q_{100} =306.5 cfs). The existing Pond C will require modifications in order to function as an Full Spectrum Extended Detention Basin (EDB). These modifications will be addressed in the Street and Storm Sewer Construction drawings for Paint Brush Hills Filing No. 14. The proposed Detention Pond C functions to provide full spectrum detention and water quality for runoff calculated onsite and offsite flows. The pond is designed to treat approx 137.6 acres, and provide 1.839 ac-ft of WQCV storage, 4.673 ac-ft of EURV and 11.583 ac-ft of 100-year storage. The forebay, trickle channel micropool, outlet structure and pipe have been designed per the UDFCD manual using the MHFD Detention v4.03 workbook. The detention pond will be private and shall be maintained by the Paint Brush Hills Metropolitan District. Access shall be granted to the owner and El Paso County for maintenance of the private detention pond. A private maintenance agreement document shall accompany the submittal. In the event of clogging of the outlet structure, flows at DP17 will over top the emergency spillway and outfall onto an existing swale, as it previously was designed. Per the Paint Brush Hills Filing No. 12 Construction Plans, an existing 20' x 20' rip rap pad ($D_{50} = 18^{\circ}$) has been constructed and is in general conformance with the present release rate. The existing riprap pad will dissipate energy and prevent local scour at the outlet. The peak release rate from Pond C (#PR27, Q5=22.6 cfs and Q100=92.8cfs ~an existing 48" RCP) outfalls into an existing swale. The flows exiting the site are less than the flows as stated in the MDDP of Q5=22 cfs and Q100=161 cfs. The proposed discharge from the subject site will not adversely affect the downstream infrastructure or affect water quality.

Basin Tributary to Adjacent Property to the West

Basin B1, 0.92 acres, ($Q_5=0.6$ cfs, $Q_{100}=2.4$ cfs), consists of portions of two backyards of proposed single family residential lots which will have minimal to no impervious surfaces and an upstream natural swale.

Roof drains from the residential structures shall be routed to drain to Keynes Drive. Surface runoff will sheet flow west and shall follow historic drainage patterns (swale to remain natural) to the adjacent property. Flows will not adversely affect the downstream infrastructure. **Basin B1** comprises only 1% of the development site and is less than one acre. Per ECM I.7.1.C.1.a., the County may exclude this acreage if applicable. The upstream off-site drainage area was not part of the FDRPBH-PH2-13 study and will be routed through the two backyards as a natural undisturbed swale.

Basins Tributary to Adjacent Detention Pond D

As previously mentioned in the Purpose section of this report, approximately 5.99 acres of Paint Brush Hills Filing No. 14 runoff will be tributary to Paint Brush Hills Filing 13E (Pond D). The **Basin** description will show that the changes in drainage patterns will not adversely affect downstream infrastructure. **Basin **OS1** was initially part of **Basin **SS** and **Basin *OO** in the "Final Drainage Report for Paint Brush Hills Filing NO. 13E (FDRPBH-13E)". Due to site layout and grading **Basin **OS1** was created and accounted for this drainage report. Other than the basins describe below, the information provided (areas, C values, times of concentration, intensity) by the FDRPBH-13E report was used to quantify the flows in the proposed drainage spreadsheets for **Design Point *34A**, (Q₅=36 cfs, Q₁₀₀=155 cfs).

Basin ****SS**, 3.01 acres, ($Q_5=2.8$ cfs, $Q_{100}=8.4$ cfs), consists of a planned single family residential lots and proposed local residential streets. The developed flows within the **Basin** ****SS** are routed via curb and gutter to a planned 6' Type R sump inlet at **DP******34** ($Q_5=2.8$ cfs, $Q_{100}=8.4$ cfs). Due to changes in the grading and drainage patterns the acreage and surface runoff has been reduced from the FDRPBH-13E report ($Q_5=14.0$ cfs, $Q_{100}=29.0$ cfs). The combined flows from **DP******33** and **DP******34** ($Q_5=6.9$ cfs, $Q_{100}=19.4$ cfs) will be routed east, as planned in the FDRPBH-13E report, via a planned 24" RCP pipe and outlet into Basin OO (within an overhead electric utility easement). See the FDRPBH-13E report and construction plans, by Classic Engineers and Surveyors for additional details.

Basin **OS1, 4.44 acres, $(Q_5=4.9 \text{ cfs}, Q_{100}=13.7 \text{ cfs})$, consists of a planned single family residential lots and proposed local residential streets. The developed flows within the **Basin **OS1** are routed via curb and gutter to a planned 10' Type R sump inlet at **DP1** ($Q_5=4.9 \text{ cfs}, Q_{100}=13.7 \text{ cfs}$). Due to changes in the grading and drainage patterns the acreage and surface runoff has been increased but has been offset by acreage taken away from Basins ******SS and *****OO. The flows from **DP1** will be routed east via a proposed 18" RCP pipe (**PR1**)and outlet into Basin OO and an existing swale(within an overhead electric utility easement, see Table 10-4 in appendix). Caution will be taken working under the power lines and no amount of fill is anticipated as **PR1** and outfall are installed. A rip rap apron will be constructed to dissipate energy and prevent local scour at the outlet. In the event of clogging or total inlet failure, flows at **DP1** will over top the curb and gutter and outfall into overhead electric utility easement. See Paint Brush Hills Filing No. 14 Street and Storm Sewer construction plans, provided by M&S Civil Consultants for details. The proposed discharge from the subject site will not adversely affect the downstream infrastructure or affect water quality.

DETENTION POND PROVISIONS AND MAINTENANCE

Detention Pond C, has combined upstream developed runoff of Q5=108.8 cfs and Q100=306.5 cfs. The existing Pond C will require modifications in order to function as an Full Spectrum Extended Detention Basin (EDB). The proposed Detention Pond functions to provide detention and water quality for runoff calculated onsite. These modifications will be addressed in the Street and Storm Sewer Construction drawings for Paint Brush Hills Filing No. 14. The pond is designed to treat approx 137.6 acres, and provide 1.839 ac-ft of WQCV storage, 4.673 ac-ft of EURV and 11.583 ac-ft of 100-year storage. The forebay, trickle channel micropool, outlet structure and pipe have been designed per the UDFCD manual using the MHFD Detention v4.03 workbook. The detention pond will be private and shall be maintained

by the Paint Brush Hills Metropolitan District. Access shall be granted to the owner and El Paso County for maintenance of the private detention pond. A private maintenance agreement document shall accompany the submittal. In the event of clogging of the outlet structure, flows at **DP17** will over top the emergency spillway and outfall onto an existing swale, as it previously was designed. Per the Paint Brush Hills Filing No. 12 Construction Plans, an existing 20' x 20' rip rap pad (D50 = 18") has been constructed and is in general conformance with the present release rate. The existing riprap pad will dissipate energy and prevent local scour at the outlet. The peak release rate from **Pond C** (**#PR27**, Q5=22.6 cfs and Q100=92.8cfs ~an existing 48" RCP) outfalls into an existing swale. The flows exiting the site are less than the flows as stated in the MDDP of Q5=22 cfs and Q100=161 cfs. Flows will not adversely affect the downstream infrastructure.

EROSION CONTROL

It is the policy of the El Paso County that we submit a grading and erosion control plan with the drainage report. Proposed erosion control blanket, silt fence, vehicle traffic control, and concrete washout area are proposed as erosion control measures.

CONSTRUCTION COST OPINION

Private Drainage Facilities NON-Reimbursable:

Item	Description	Qua	ntity	Unit	Cost	Cost
1.	18"RCP	187	LF	\$40	/LF	\$7,480.00
2.	24"RCP	90	LF	\$50	/LF	\$4,500.00
3.	30"RCP	429	LF	\$65	/LF	\$27,885.00
4.	36"RCP	304	LF	\$75	/LF	\$22,800.00
5.	42"RCP	270	LF	\$85	/LF	\$22,950.00
6.	48"RCP	2423	LF	\$150	/LF	\$363,450.00
7.	54"RCP	183	LF	\$200	/LF	\$36,600.00
8.	60"RCP	163	LF	\$250	/LF	\$40,750.00
10.	66"RCP	114	LF	\$350	/LF	\$39,900.00
11.	18"FES	1	EA	\$245	/EA	\$245.00
12.	36"FES	1	EA	\$775	/EA	\$775.00
13.	66"END TREATEMENT	1	EA	\$15000/	/EA	\$15,000.00
	HEADWALL/W ING WALLS					
14.	5' TYPE R SUMP INLET	1	EA	\$4000	/EA	\$4,000.00
15.	10' TYPE R SUMP INLET	2	EA	\$4700	/EA	\$9,400.00
16.	15' TYPE R SUMP INLET	2	EA	\$6000	/EA	\$12,000.00
17.	15'TYPE R AT GRADE INLET	6	EA	\$6000	/EA	\$36,000.00
18.	20'TYPE R AT GRADE INLET	2	EA	\$8000	/EA	\$16,000.00
19.	3'x3' CDOT TYPE C	1	EA	\$4000	/EA	\$4,000.00
20.	TYPE I MH	13	EA	\$6000	/EA	\$78,000.00
21.	EDB Pond	1	EA	\$20,000	/EA	\$20,000.00
22.	Pond Outlet MOD TYPE D	1	EA	\$15,000	/EA	\$15,000.00
23.	RIPRAP OUTFALL TYPE L	27	CY	\$50	/CY	\$1,350.00
24.	RIPRAP SPILLWAY TYPE M	384	CY	\$65	/CY	\$24,960.00

Total \$ \$803,505.00

DRAINAGE & BRIDGE FEES

Drainage and Bridge Fees for the Paint Brush Hills Filing No. 14 site are as follows:

					Falcon Drainage		
	Acres		Imperviousness		Basin Fee		
2020 Drainage Fees:	88.631	х	36.8%	х	\$30,807.00	=	\$1,004,807.52
2020 Bridge Fees:	88.631	х	36.8%	х	\$4,232.00	=	<u>\$138,031.79</u>
						Total	\$1,142,839.31

M &S Civil Consultants, Inc. (M &S) cannot and does not guarantee the construction cost will not vary from these opinions of probable costs. These opinions represent our best judgment as design professionals familiar with the construction industry and this development in particular. The above is only an estimate of the facility cost and drainage basin fee amounts in 2020.

SUMMARY

Development of the Paint Brush Hills Filing No. 14 site shall not adversely affect adjacent or downstream properties per this final drainage report. The proposed drainage facilities will adequately convey, detain and route runoff from tributary onsite and existing offsite flows to the Chico Creek receiving waters. Full Spectrum Detention and Water Quality Pond will be used to discharge developed flows into the Chico Creek receiving waters per the Urban Drainage criteria flow rates, which are at or less than the historic flow. Care will be taken to accommodate overland emergency flow routes on site and temporary drainage conditions. The development of the Paint Brush Hills Filing No. 14 project shall not adversely affect adjacent or downstream property. The proposed discharge from the subject site will not adversely affect the downstream infrastructure or affect water quality.

REFERENCES

- 1.) "El Paso County and City of Colorado Springs Drainage Criteria Manual".
- 2.) "Urban Storm Drainage Criteria Manual"
- 3.) SCS Soils Map for El Paso County.
- 4.) Flood Insurance Rate Map (FIRM), Federal Emergency Management Agency, Effective date March 17, 1997.
- 5.) "Master Development Drainage Plan for Falcon Hills Development" prepared by Kiowa Engineering Corporation, approved November 2002.
- 6.) "Final Drainage Report for Paint Brush Hill Filing Nos. 10, 11 & 12" prepared by Classic Consulting Engineers and Surveyors, rev. July 2003.
- 7.) "Final Drainage Report for Paint Brush Hills-Phase 2 (Filing No. 13)", prepared by Classic Consulting Engineers and Surveyors, submitted on rev. June 2008.
- 8.) "Final Drainage Report for Paint Brush Hills Filing 13E", prepared by Classic Consulting Engineers and Surveyors, submitted on September 2018.

APPENDIX

VICINITY MAP

SOILS MAP

Hydrologic Soil Group-El Paso County Area, Colorado

Natural Resources Conservation Service

NSDA

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	87.6	100.0%
Totals for Area of Intere	st		87.6	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

FIRM PANEL

HYDROLOGIC CALCULATIONS

PAINTBRUSH HILLS FILING NO. 14 FINAL DRAINAGE CALCULATIONS (Area Runoff Coefficient Summary)

			IMPER	TOUS ARI	EA/STREET	LANDSC	APED/UNDE	VELOPED	RE	ESIDENTI	AL	WE	GHTED
BASIN	TOTAL AREA (Sq Ft)	TOTAL AREA (Acres)	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	C ₅	C ₁₀₀
**RR	182952	4.20	0.00	0.90	0.96	0.00	0.16	0.41	4.20	0.30	0.50	0.30	0.50
**SS	131167	3.01	0.00	0.90	0.96	0.00	0.16	0.41	3.01	0.30	0.50	0.30	0.50
**OS1	193584	4.44	0.00	0.90	0.96	0.00	0.16	0.41	4.44	0.30	0.50	0.30	0.50
*00	1268037	29.11	0.00	0.90	0.96	29.11	0.16	0.41	0.00	0.22	0.46	0.16	0.41
*TT	219978	5.05	0.00	0.90	0.96	0.00	0.16	0.41	5.05	0.35	0.45	0.35	0.45
*UU	55321	1.27	0.00	0.90	0.96	0.00	0.16	0.41	1.27	0.35	0.45	0.35	0.45
***OS-5	2008124	46.10	0.00	0.90	0.96	0.00	0.16	0.41	46.10	0.30	0.40	0.30	0.40
OS5A	159430	3.66	0.00	0.90	0.96	0.00	0.16	0.41	3.66	0.11	0.37	0.11	0.37
OS5B	585306	13.44	0.00	0.90	0.96	0.00	0.16	0.41	13.44	0.11	0.37	0.11	0.37
OS5C	1263404	29.00	0.00	0.90	0.96	0.00	0.16	0.41	29.00	0.30	0.40	0.30	0.40
A	166371	3.82	0.00	0.90	0.96	0.00	0.16	0.41	3.82	0.20	0.44	0.20	0.44
В	361915	8.31	0.00	0.90	0.96	0.00	0.16	0.41	8.31	0.20	0.44	0.20	0.44
B1	40214	0.92	0.00	0.90	0.96	0.00	0.16	0.41	0.92	0.16	0.41	0.16	0.41
С	514010	11.80	0.00	0.90	0.96	0.00	0.16	0.41	11.80	0.26	0.48	0.26	0.48
D	226401	5.20	0.00	0.90	0.96	0.00	0.16	0.41	5.20	0.20	0.44	0.20	0.44
Ε	21364	0.49	0.49	0.90	0.96	0.00	0.16	0.41	0.00	0.20	0.44	0.90	0.96
F	70330	1.61	0.00	0.90	0.96	0.00	0.16	0.41	1.61	0.30	0.50	0.30	0.50
G	531342	12.20	0.00	0.90	0.96	0.00	0.16	0.41	12.20	0.35	0.52	0.35	0.52
Н	469586	10.78	0.00	0.90	0.96	0.00	0.16	0.41	10.78	0.35	0.52	0.35	0.52
Ι	554956	12.74	0.00	0.90	0.96	0.00	0.16	0.41	12.74	0.35	0.52	0.35	0.52
J	169859	3.90	0.00	0.90	0.96	0.00	0.16	0.41	3.90	0.22	0.45	0.22	0.45
K	32632	0.75	0.00	0.90	0.96	0.00	0.16	0.41	0.75	0.36	0.54	0.36	0.54
L	146850	3.37	0.00	0.90	0.96	0.00	0.16	0.41	3.37	0.36	0.54	0.36	0.54
М	110207	2.53	0.00	0.90	0.96	0.00	0.16	0.41	2.53	0.27	0.48	0.27	0.48
N	389341	8.94	0.00	0.90	0.96	3.19	0.16	0.41	5.75	0.22	0.46	0.20	0.44

* Values taken from "Final Drainage Report for Paint Brush Hills Filing 13E" (*FDRPBH-13E) prepared by Classic Consulting Engineers and Surveyors, dated Sept 2018

Calculated by: GT

** Revised from "Final Drainage Report for Paint Brush Hills Filing 13E" (**PDRPBH13E) prepared by Classic Consulting Engineers and Surveyors, dated Sept 2018 *** "Final Drainage Report for Paint Brush Hills-Phase 2 (Filing 13)" (FDRPBH-PH2-13) prepared by Classic Consulting Engineers and Surveyors, revised June 2008 Date: 3/12/2021 Checked by: VAS

PAINTBRUSH HILLS FILING NO. 14 FINAL DRAINAGE CALCULATIONS

(Area Drainage Summary)

From Area Runoff Co	efficient Summa	ry			OVE	RLAND		STRE	ET / CH	ANNEL F	FLOW	Time o	f Travel	INTENS	SITY *	TOTAL FLOWS		
BASIN	AREA	C ₅	C100	C ₅	Length	Height	T _c	Length	Slope	Velocity	T _t	TOTAL	CHECK	I5	I ₁₀₀	Q5	Q ₁₀₀	
	(Acres)	From DCM	4 Table 5-1		(ft)	(ft)	(min)	(ft)	(%)	(fns)	(min)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	
					P	ronosed	Area Dro	ainage S	Summa	rv				0	1	(1)	(1)	
**RR	4.20	0.30	0.50	0.25												8.0	17.0	
**SS	3.01	0.30	0.50	0.25	170	3.4	16.5	800	3.9%	6.9	1.9	18.4	15.4	3.1	5.6	2.8	8.4	
**OS1	4.44	0.30	0.50	0.30	100	5	8.5	616	1.0%	2.0	5.1	13.6	14.0	3.7	6.2	4.9	13.7	
*00	29.11	0.16	0.41	0.16												22.0	51.0	
* <i>TT</i>	5.05	0.35	0.45	0.25	180	3.6	17.0	150	1.5%	4.3	0.6	17.6	11.8	3.2	5.7	5.7	13.0	
*UU	1.27	0.35	0.45	0.25	180	3.6	17.0	475	2.5%	5.5	1.4	18.4	13.6	3.1	5.6	1.4	3.2	
***OS-5	46.10	0.30	0.40	0.30												14.0	32.0	
OS5A	3.66	0.11	0.37	0.11	100	2	14.2	527	1.5%	1.8	4.8	19.0	13.5	3.7	6.2	1.5	8.4	
OS5B	13.44	0.11	0.37	0.11	100	2	14.2	1684	1.5%	1.8	15.3	29.5	19.9	3.1	5.2	4.6	25.8	
OS5C	29.00	0.30	0.40	0.30	100	2	11.5	2110	1.0%	2.0	17.6	29.1	22.3	2.9	4.9	25.5	57.0	
A	3.82	0.20	0.44	0.20	100	4	10.3	373	3.2%	2.7	2.3	12.6	12.6	3.8	6.3	2.9	10.7	
В	8.31	0.20	0.44	0.20	100	3	11.3	1063	3.2%	2.7	6.6	17.9	16.5	3.4	5.7	5.6	20.8	
B1	0.92	0.16	0.41	0.16	100	3	11.8	265	2.6%	3.2	1.4	13.2	12.0	3.9	6.5	0.6	2.4	
С	11.80	0.26	0.48	0.26	100	3	10.6	2030	2.6%	3.2	10.6	21.1	21.8	3.0	5.0	9.2	28.6	
D	5.20	0.20	0.44	0.20	100	4	10.3	593	2.0%	2.1	4.7	14.9	13.9	3.6	6.1	3.8	14.0	
Ε	0.49	0.90	0.96	0.90	10	0.2	0.9	471	2.0%	2.8	2.8	5.0	12.7	5.2	8.7	2.3	4.1	
F	1.61	0.30	0.50	0.30	60	1.2	8.9	362	2.0%	2.8	2.1	11.0	12.3	4.0	6.7	1.9	5.4	
G	12.20	0.35	0.52	0.35	100	2	10.8	1381	2.8%	3.3	6.9	17.7	18.2	3.3	5.5	14.0	34.8	
Н	10.78	0.35	0.52	0.35	100	2	10.8	1543	2.1%	2.9	8.9	19.6	19.1	3.2	5.3	11.9	29.7	
Ι	12.70	0.35	0.52	0.35	100	2	10.8	1309	2.1%	2.9	7.5	18.3	17.8	3.3	5.5	14.5	36.2	
J	3.90	0.22	0.45	0.22	100	2	12.6	799	1.9%	2.7	4.9	17.5	15.0	3.5	5.9	3.0	10.4	
K	0.75	0.36	0.54	0.36	72	1.4	9.1	277	1.6%	2.5	1.8	10.9	11.9	4.0	6.7	1.1	2.7	
L	3.37	0.36	0.54	0.36	75	1.5	9.2	1802	2.1%	2.9	10.4	19.6	20.4	3.1	5.2	3.8	9.5	
М	2.53	0.27	0.48	0.27	100	2	11.9	318	2.1%	2.9	1.8	13.8	12.3	3.8	6.4	2.6	7.8	
N	8.94	0.20	0.44	0.20	100	2	12.9	902	3.2%	3.6	4.2	17.1	15.6	3.5	5.8	6.2	23.0	
*Values taken from "Final 1	Drainage Rep	ort for Pain	t Brush Hi	lls Filing 1	3E" (*FDI	RPBH13E)	prepared by C	lassic Con.	sulting Eng	ineers and	Surveyors.	dated Sept 2	918	Calcul	ated by:	GT		

** Revised from "Final Drainage Report for Paint Brush Hills Filing 13E" (**PDRPBH13E) prepared by Classic Consulting Engineers and Surveyors, dated Sept 2018 *** "Final Drainage Report for Paint Brush Hills-Phase 2 (Filing 13)" (FDRPBH-PH2-13) prepared by Classic Consulting Engineers and Surveyors, revised June 2008 lated by: <u>GT</u> Date: <u>3/12/2021</u> ked by: <u>VAS</u>

		P	PAIN	TB	RUS	HH	ILL	S FIL	LIN	G NO	. 14						
		I	FINA	LL	DRA	INA	GE (CALC	CUL	ATIC	NS						
				(B	asin	Rou	ting	Sum	mar	y)							
1	From Area Runoff Coefficient Summary			Ù	OVE	RLAND		PIPI	E / CHA	NNEL FL	0W	Time of Travel (T_t)	INTEN	SITY *	TOTAL	FLOWS	
DESIGN POINT	CONTRIBUTING BASINS	CA5	CA100	C ₅	Length	Height	T _C (min)	Length	Slope	Velocity (fns)	T _t (min)	TOTAL (min)	I ₅ (in/hr)	I ₁₀₀ (in/hr)	Q ₅ (c.f.s.)	Q ₁₀₀	COMMENTS
			PRO	POSE	D DRA	INAGE	BASI	N ROUT	ING S	UMMAI	RY	()	()	()	(1910)	(1910)	
1	**OS1	1.33	2.22									13.6	3.7	6.2	4.9	13.7	PROP 10' SUMP TYPE R INLET
																	REV **PDRPBH13E
**33	**RR	1.26	2.10									14.9	3.5	5.9	8.0	17.0	*10' SUMP TYPE R INLET
																	*PDRPBH13E
**24	**\$\$	0.90	1.51									18.4	3.1	5.6	2.8	8.4	*W/24" RCP
54	55														2.0	0.7	*PDRPBH13E
																	*W/24" RCP
*34A	INFLOW POND D														36.0	155.0	INFLOW POND D
3	A	0.76	1.68					358	1.7%	1.9	3.1	22.3	2.9	4.9	27.7	65.3	PROP 36" RCP FES
	0850	8.70 9.47	11.60														
4	J	0.86	1.75									15.0	3.5	5.9	3.0	10.4	PROP 10' SUMP TYPE R INLET
																	W/18" RCP
5	К	0.27	0.40									10.9	4.0	6.7	1.1	2.7	PROP 5' SUMP TYPE R INLET
-																	W/18" RCP
(OSER	1.49	4.07									10.0	2.1	62	0.2	10.2	
0	D	1.48	2.29									19.9	3.1	5.2	9.2	40.2	W/24" RCP
	E	0.44	0.47														
7	E	2.96	7.73									11.0	4.0	67	1.0	5.4	DROD 12/ SUBAR TYDE R DILET
/	г	0.48	0.81									11.0	4.0	0.7	1.9	5.4	W/24" RCP
8	DP 6 & 7	3.44	8.54									19.9	3.1	5.2	10.7	44.4	PROP DUAL 15' SUMP TYPE R INLET
																22.2	FLOWS SPLIT @ DP8
9	G	4.27	6.34									17.7	3.3	5.5	14.0	34.8	PROP DUAL 15' AT-GRADE TYPE R INLET
																	W/24" RCPS
10	I	4.45	6.60									17.8	3.3	5.5	14.5	36.2	PROP DUAL 15' AT-GRADE TYPE R INLET
																	W/18" RCP & 30" RCP
11	L	1.21	1.82									20.4	3.1	5.1	37	17.0	FLOWS SPLIT @ DP10 EX_15' AT_GRADE TYPE R INLET
	Flowby DP10	0.00	1.49												517	1710	W/24" RCP
107	1.000	1.21	3.31														
*37	*11	1.77	2.27									11.8	3.2	5.7	5.7	13.0	EX. 15' AT-GRADE TYPE R INLET W/24" RCP
																	FLOWS SPLIT @ DP12
12	Н	3.77	5.61									19.1	3.2	5.3	11.9	29.7	PROP DUAL 15' AT-GRADE TYPE R INLET
																	FLOWS SPLIT @ DP12
13	М	0.68	1.21									20.4	3.1	5.1	2.1	21.3	SEE DP15 FOR CUMMULATIVE FLOW
	FLOWBY DP9	0.00	1.35														
	FLOWBY DP11	0.00	0.90														
		0.68	4.15														
14	C 0854	3.07	5.66									21.8	3.0	5.0	10.3	34.8	SEE DP15 FOR CUMMULATIVE FLOW
	035A	3.47	7.02														
15	DP13	0.68	4.15									21.8	3.0	5.0	12.3	55.4	PROP DUAL 20' SUMP TYPE R INLET
	DP14	3.47	7.02														W/30" & 36"RCP FLOWS SPLIT @ DP15
16	В	1.66	3.66									16.5	3.4	5.7	5.6	20.8	PROP CDOT TYPE C INLET
17	N	1.78	3.95									22.3	2.9	4.9	108.8	306.5	EX. POND C
•/	PR26	35.44	58.52												100.0	550.5	
		37.22	62.47										<i>.</i> .				
* Values taken f ** Revised	from "Final Drainage Report for Pai from "Final Drainage Report for Pa	int Brush Hil int Brush Hi	us Fuing 13. Ils Filing 13	E"(*FD E"(**P	DRPBH13E) prepared i E) prepared	oy Classic I by Classi	consulting l c Consulting	ngineers Engineer	and Surveyo s and Survey	rs, aated S vors, dated	eptember 2018 Sept 2018	Calcu	nated by: Date:	3/12	/2021	

*** "Final Drainage Report for Paint Brush Hills-Phase 2 (Filing 13)" (FDRPBH-PH2-13) prepared by Classic Consulting Engineers and Surveyors, revised June 2008

PAINTBRUSH HILLS FILING NO. 14 FINAL DRAINAGE CALCULATIONS (Storm Sewer Routing Summary)

					Inter	isity*	Fl	ow	PIPE SIZE
PIPE RUN	Contributing Pipes/Design Points	Equivalent CA 5	Equivalent CA 100	Maximum T _C	Ι,	I 100	Q 5	Q 100	
*36	PDRPBH-13E DP33	1.26	2.10	14.9	3.5	5.9	4.4	12.4	*24" RCP
*37	DP**34, DP*33	2.16	3.61	18.4	3.2	5.4	6.9	19.4	*30" RCP
1	DP1	1.33	2.22	13.6	3.7	6.2	4.9	13.7	18" RCP
2	DP3	9.47	13.28	22.3	2.9	4.9	27.7	65.3	36" RCP
3	DP4	0.86	1.75	15.0	3.5	5.9	3.0	10.4	18" RCP
4	DP5	0.27	0.40	10.9	4.0	6.7	1.1	2.7	18" RCP
5	PR2, PR3, PR4	10.59	15.44	22.3	2.9	4.9	31.0	75.9	48" RCP
7	DP6	2.96	4.27	19.9	3.1	5.2	9.2	22.2	24" RCP
8	DP7	0.48	4.27	19.9	4.0	5.2	1.9	22.2	24" RCP
9	PR5, PR7, PR8	14.04	23.97	22.3	2.9	4.9	41.0	117.7	48" RCP
10	1/2 DP9 CAPTURE	2.17	2.52	17.7	3.3	5.5	7.1	13.9	24" RCP
11	1/2 DP9 CAPTURE	2.17	2.52	17.7	3.3	5.5	7.1	13.9	24" RCP
12	PR9, PR10, PR11	18.38	29.02	22.3	2.9	4.9	53.7	142.4	48" RCP
13	1/2 DP 10 CAPTURE	2.24	2.55	17.8	3.3	5.5	7.3	14.0	18" RCP
14	1/2 DP 10 CAPTURE, PR13	4.48	5.10	17.8	3.3	5.5	14.6	27.9	30" RCP
#38	PR14	4.48	5.10	17.8	3.3	5.5	14.6	27.9	*30" RCP
#15	DP 11 CAPTURE	1.22	2.63	20.4	3.1	5.1	3.7	13.5	*24" RCP
#16	#PR38, #PR15	5.70	7.73	20.4	3.1	5.1	17.4	39.7	*30" RCP
#39	DP*37	1.77	2.27	11.8	3.2	5.7	5.7	13.0	*24" RCP
#17	PR#16, PR#39	7.47	10.00	20.4	3.1	5.1	22.8	51.3	*36" RCP
18	1/2 DP12	1.89	2.34	19.1	3.2	5.3	6.0	12.4	18" RCP
18.1	1/2 DP12	1.89	2.34	19.1	3.2	5.3	6.0	12.4	18" RCP
19	PR18, PR18.1	3.78	4.68	19.1	3.2	5.3	11.9	24.8	30" RCP
20	PR#17, PR19	11.25	14.68	20.4	3.1	5.1	34.4	75.3	42" RCP
21	PR12, PR20	29.63	43.70	22.3	2.9	4.9	86.6	214.4	54" RCP
22	1/2 DP15	2.08	5.58	21.8	3.0	5.0	6.1	27.7	30" RCP
23	1/2 DP15, PR22	4.15	11.16	21.8	3.0	5.0	12.3	55.4	36" RCP
24	PR21, PR23	33.78	54.86	22.3	2.9	4.9	98.8	269.2	60" RCP
25	В	1.66	3.66	16.5	3.4	5.7	5.6	20.8	30" RCP
26	PR24, PR25	35.44	58.52	22.3	2.9	4.9	103.6	287.2	66" RCP
#27	DP 17	POND C OU	JTFALL RESTRI	CTED FLOW F	ROM MHF	D SHT	22.6	92.8	EX 48" RCP

* Values taken from "Final Drainage Report for Paint Brush Hills Filing 13E" (*FDRPBH13E) prepared by Classic Consulting Engineers and Surveyors, dated September 2018 # Values adjusted from FDR PBH 14

DP - Design Point EX - Existing Design Point

FB- Flow By from Design Point INT- Intercepted Flow from Design Point

Calculated by: Date: 3/12/2021 Checked by: VAS <u>GT</u> HYDRAULIC CALCULATIONS / EDB WQCV CALCULATIONS

		dition)		Eqn. 7-29	\^1/2 Qm=Cm(QwQo)^1/2	5.0	8.5	6.0	10.2	8.0	13.6	10.0	17.0	12.0	20.3	14.0	23.7	15.0	25.4	16.0	27.1	18.0	30.5	20.0	33.9
FILING NO. 14	E REPORT	ons - Sump Conu	avement-6" Vertical Curb 43') & MAJOR (0.66') storm	Eqn. 7-32	Qo=CoNo(LeHc)(2g(D-0.5Hc))	5.7	3.6	6.8	10.3	9.1	13.8	11.4	17.2	13.7	20.7	16.0	24.1	17.1	25.8	18.2	27.5	20.5	31.0	22.8	34.4
STITH HILLS	DRAINAG	let Calculati	adway-50' ROW-30' P ₃ e depth for MINOR (0 .4	Eqn. 7-31	Qw=CwNwLeD^3/2	5.1	9.7	6.1	11.6	8.1	15.4	10.2	19.3	12.2	23.2	14.2	27.0	15.2	29.0	16.2	30.9	18.3	34.7	20.3	38.6
TBRU	INAL	R In	Local Ro aliowabli	Depth		0.43	0.66	0.43	0.66	0.43	0.66	0.43	0.66	0.43	0.66	0.43	0.66	0.43	0.66	0.43	0.66	0.43	0.66	0.43	0.66
PAINT	F	T Type	Urban Maximum	Storm		Q5	Q100																		
		(CDO		Inlet Length		5	5	9	9	8	œ	10	10	12	12	14	14	15	15	16	16	18	18	20	20

		Table 7-	 Coefficients for vario 	ous inlets in sumps		_
Inlet Type	Ň	Ş	No	ප	Ę	-
CDOT Type 13 Grate	0.7	3.3	0.43	0.6	0.93	_
Denver No. 16 Grate	0.73	3.6	0.31	0.6	0.9	_
Curb Opening for Type						
13/No. 16 Combination	~	3.7	-	0.66	0.86	
CDOT Type R Curb						
Opening	<u>۲</u>	3.6	~	0.67	0.93	

INLET IN A SUMP OR SAG LOCATION

Project = Inlet ID =

PAINT BRUSH HILLS FILING NO. 14 SUMP INLET DP1

Design information (input)		MINOR	MAJOR	
Type of Inlet	iniet Type =	CDOT Type R	Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{iocal} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2.0	2	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.9	inches_
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W., =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _r (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 ~ 0.80)	C _e (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5 00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	0.00	inches
Height of Curb Orifice Throat in Inches	H _{thront} =	6.00	6.00	Inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	6.9 40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor fcr a Single Curb Opening (typical value 0.10)	C _r (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Ortfice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
		MINOR	MAJOR	
Total inlet Interception Capacity (assumes clogged condition)	Q, =	8.7	19.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	4.9	13.7	cfs

INLET IN A SUMP OR SAG LOCATION

Project = Inlet iD = PAINT BRUSH HILLS FILING NO. 14

SUMP INLET DP**34

Design Information (input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2.0	2	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.9	inches
Grate Information		MINOR	MAJOR	 Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W.a =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _r (G) =	N/A	N/A	1
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G)=	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _e (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	•
Length of a Unit Curb Opening	L, (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta ≃	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	VV _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C ₁ (C) =	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.(4)	1
Curb Opening Orlfice Coefficient (typical value 0.60 - 0.70)	C _e (C) =	0.67	0.67	1
		MINOR	MAJOR	
Total inlet interception Capacity (assumes clogged condition)	Q_ =	8.7	19.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	3.5	9.7	cfs

Project = Inlet ID =

PAINT BRUSH HILLS FILING NO. 14 SUMP INLET DP4 —Lo (C)-× H-Curb Wo H-Vert WF w Lo (G)

Design Information (Input)		MINOR	MAJOR	_
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening]
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2.0	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.9	inches
Grate Information		MINOR	MAJOR	 Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60]
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
		MINOR	MAJOR	2
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.7	19.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	3.0	10.4	cfs

Project =

PAINT BRUSH HILLS FILING NO. 14

Design Information (Input)		MINOR	MAJOR	
Type of inlet	Inlet Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{toosi} =	3.00	3.00	inches
Number of Unit inlets (Grate or Curb Opening)	No =	1.0	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.9	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L, (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	1 1
Grate Welr Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1 1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	Inches
Height of Curb Orifice Throat in Inches	H _{throst} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	The ta =	63.40	63.40	dearees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2,60	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C1(C) =	0.10	0.10	
Curb Opening Welr Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q ₂ =	4.6	9.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	1.1	2.7	cfs

Project = Inlet ID =

Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3.0	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.9	inches
Grate Information		MINOR	MAJOR	 Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
	-	MINOR	MAJOR	-
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	11.1	27.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	9.2	22.2	cfs

Project = Inlet ID =

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3.0	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.9	inches
Grate Information		MINOR	MAJOR	 Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
	-	MINOR	MAJOR	-
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	11.1	27.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	1.9	22.2	cfs

Project: Inlet ID:

Design Information (Input)		MINOR	MAJOR	H
Type of Inlet	Туре =	CDOT Type R	Carb Opening	٦
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	BLOCAL #	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	L, =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W,=	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	CrG =	N/A	N/A	1 1
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	CrC =	0.10	0.10	1 1
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	·
Total Inlet Interception Capacity	Q =	7.00	13.72	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q, =	0.0	3.7	cfs
Capture Percentage = Q_/Q_ =	C% =	100	79	%

PAINT BRUSH HILLS FILING NO. 14 AT-GRADE INLET DP10

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Туре =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	aLOCAL =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	1
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	ft i
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W., =	N/A	N/A	ft
Clogging Fastor for a Single Unit Grate (typical min. value = 0.5)	C _r G =	N/A	N/A	1 1
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	CrC =	0.10	0.10	1
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.25	14.01	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q ₆ =	0.0	4.1	cfs
Capture Percentage = Q _e /Q _e =	C% =	100	77	%

100

79

٩.

C%

Project: inlet ID:

PAINT BRUSH HILLS FILING NO. 14 AT-GRADE INLET *DP37

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	٦
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	aLOCAL =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	L,, =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W, =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	Cr-G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _r C =	0.10	0.10	-
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.70	11.48	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q ₆ =	0.0	1.5	cfs
Capture Percentage = Q ₂ /Q ₀ =	C% =	100	88	%

.

Project: Inlet ID:

PAINT BRUSH HILLS FILING NO. 14

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Туре =	CDOT Type R	Curb Opening	٦ ٦
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	BLOCAL =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	1
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	1
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _r -C =	0.10	0.10	1
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.95	12.44	cfs
Total Iniet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	2.4	ofs
Capture Percentage = Q _e /Q _e =	C% =	100	84	%

Project = inlet ID = PAINT BRUSH HILLS FILING NO. 14

Design Information (input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	4.0	4	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.9	inches
Grate Information		MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	₩ <u></u> =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C ₁ (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} ≕	6.00	6.00	inches
Height of Curb Orffice Throat in Inches	H _{throni} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	Cr(C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	1
		MINOR	MAJOR	•
Total Inlet Interception Capacity (assumes clogged condition)	Q, =	15.0	36.7	cfs
iniet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	6.2	27.7	cfs

F					Worksheet Protected
	DESIGN PEAK FLOW FOR ONE-HALF OF ST OR GRASS-LINED CHANNEL BY THE RATIONAL	METHOD			
oject:	PAINT BRUSH HILLS FILING NO. 14				_
	SUMP INLET DP16				_
	GUTTER FLOW			Show Det	ails
				_	
				-	
г	Design Flow: ONLY if already determined through other methods:	Minor Storm	Maior Storm	1	<
	(local peak flow for 1/2 of street OR grass-lined channel): *Q _{Known} =	5.6	20.8	cfs	FILL IN THIS SECTION
	* If you enter values in Row 14, skip the rest of this sheet and proceed to sheet Q-Allow or Area I	nlet.			OR
	Geographic Information: (Enter data in the blue cells):		-		FILL IN THE
	Subc	atchment Area =		Acres	SECTIONS BELOW.
	ou cannot enter values for Q and use the Q calculator at the same time Percent in NF	CS Soil Type =		ABCorD	
	Site Type: Flows Developed For:	(00 00ii 1)po		,, ,, ,, ,, ,, ,, ,, ,,	
	Site is Urban O Street Inlets	Slope (ft/ft)	Length (ft)		
	O Site is Non-Urban Overland Flow =				
	Channel Flow =				
ŀ	Rainfall Information: Intensity I (inch/hr) = $G_{4} \times P_{4} / (G_{6} + I_{1}) \wedge G_{6}$	Minor Storm	Major Storm		-
	Design Storm Return Period, Tr =			vears	
	Return Period One-Hour Precipitation, P1=			inches	
	C ₁ =			1	
	C ₂ =				
	C ₃ =			-	
	User-Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User-Defined 5-vr. Runoff Coefficient (leave this blank to accept a calculated value), C ₅ =			-	
	Bypass (Carry-Over) Flow from upstream Subcatchments, Q_b =	0.0	0.0	cfs	
	Total Design Peak Flow, Q =	5.6	20.8	cfs	
L					

AREA INLET IN A TRAPEZOIDAL GRASS-LINED CHANNEL

- T _{MAY}	-	Grass Type	l imiting Manning's	: n
		Δ	0.06	Π.
		B	0.04	-
	T T	C	0.033	-1
d Z	d MAX	D	0.03	1
		E	0.024	1
⊸ ∱− в ——				븨
Analysis of Trapezoidal Grass-Lined Channel Using SCS Method			_	<u></u>
NRCS Vegetal Retardance (A, B, C, D, or E)	A, B, C, D or E	E		
Manning's n (Leave cell D16 blank to manually enter an n value)	n =	see details below		
Channel Invert Slope	S ₀ =	0.0348	ft/ft	
Bottom Width	B =	2.00	ft	
Left Side Slope	Z1 =	3.00	ft/ft	
Right Side Slope	Z2 =	3.00	ft/ft	
Check one of the following soil types:	Г	Choose One:		
Soil Type: Max. Velocity (V _{MAX}) Max Froude No. (F _{MAX})		Sandy		
Sandy 5.0 fps 0.50		O Non-Sandy		
Non-Sandy 7.0 fps 0.80	L			
	F	Minor Storm	Major Storm	٦
Max. Allowable Top Width of Channel for Minor & Major Storm	I MAX -	5.00	6.80	feet
Max. Allowable Water Depth in Channel for Minor & Major Storm	d _{MAX} =	0.46	0.78	feet
Maximum Channel Capacity Based On Allowable Top Width		Minor Storm	Major Storm	
Max. Allowable Top Width	T _{MAX} =	5.00	6.80	Tft
Water Depth	d =	0.50	0.80	ft
Flow Area	A =	1.75	3.52	sa ft
Wetted Perimeter	P =	5.16	7.06	ft
Hvdraulic Radius	R =	0.34	0.50	ft
Manning's n based on NRCS Vegetal Retardance	n =	0.035	0.028	-
Flow Velocity	v =	3.91	6.27	fps
Velocity-Depth Product	VR =	1.33	3.13	ft^2/s
Hydraulic Depth	D =	0.35	0.52	ft
Froude Number	Fr =	1.17	1.54	-"
Max. Flow Based On Allowable Top Width	Q _T =	6.85	22.07	cfs
Maximum Channel Capacity Based On Allowable Water Depth		Minor Storm	Maior Storm	
Max. Allowable Water Depth	d _{MAX} =	0.46	0.78	feet
Top Width	т=	4.76	6.68	feet
Flow Area	A =	1.55	3.39	square feet
Wetted Perimeter	P =	4.91	6.93	feet
Hydraulic Radius	R =	0.32	0.49	feet
Manning's n based on NRCS Vegetal Retardance	n =	0.036	0.028	1
Flow Velocity	V =	3.63	6.16	fps
Velocity-Depth Product	VR =	1.15	3.01	ft^2/s
Hydraulic Depth	D =	0.33	0.51	feet
Froude Number	Fr =	1.12	1.52	1
Max. Flow Based On Allowable Water Depth	Q _d =	5.64	20.84	cfs
Allowship Channel Canacity Based On Channel Coometry		Minor Ctorm	Major Storm	
MINOR STORM Allowable Capacity is based on Dopth Criterion	o =[E GA	20.94	lofo
MALOD STORM Allowable Capacity is based on Depth Criterion	d –	0.46	20.84	-
MAJOR STORM Allowable Capacity is based on Depth Chterion	u _{allow} –	0.46	0.78	1 ⁿ
Water Depth in Channel Based On Design Peak Flow	_			_
Design Peak Flow	Q ₀ =	5.60	20.80	cfs
Water Depth	d =	0.46	0.78	feet
Top Width	Т = [4.75	6.68	feet
Flow Area	A =	1.55	3.38	square feet
Wetted Perimeter	P =	4.90	6.93	feet
Hydraulic Radius	R =	0.32	0.49	feet
Manning's n based on NRCS Vegetal Retardance	n =	0.036	0.028	1
Flow Velocity	V =	3.62	6.15	fps
Velocity-Depth Product	VR =	1.14	3.00	ft^2/s
Hydraulic Depth	D =	0.33	0.51	feet

AREA INLET IN A TRAPEZOIDAL GRASS-LINED CHANNEL

Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation. We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. By continuing to use our site, you accept our use of cookies. To learn more, see our Privacy Policy link at bottom of webpage.

Got It!

Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D \cdot 0.5) * 0.5$ (for $0.5 \le y/D \le 1$)

PR1 Q100= 13.7 CFS

A privacy, disclaimer and tracking cookie usage reminder from Engineers Edge. To learn more, see our Privacy Policy / Cookie Usage & Disclaimer links at bottom of webpage.

Got It! ENGINEERS **Membership** Want to cut labor, time, and cost EDGE 3D SYSTEMS Register | Login from developing microfluidics? Solutions By Design **Partially FULL Pipe Flow Calculator and Equations** Search Fluid Flow Table of Contents Hydraulic and Pneumatic Knowledge **Fluid Power Equipment Main Categories** Home This engineering calculator determines the Flow within a partially full pipe (&e1/2 fullusing the Manning Engineering Book Store equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient Engineering Forum needs to be considered to be variable, dependent upon the depth of flow. Excel App. Downloads Online Books & Manuals Engineering News Partially Full Pipe Flow Calculations - U.S. Units Engineering Videos II. Calculation of Discharge, Q, and average velocity, V Engineering Calculators for pipes more than half full Engineering Toolbox GD&T Training Instructions: Enter values in blue boxes. Calculations in yellow Geometric Dimensioning Tolerancing **Calculations** <u>Inputs</u> DFM DFA Training Training Online Pipe Diameter, D = 36 Pipe Diameter, D 3 in ft Engineering 31.5 Advertising Center 1.5 Depth of flow, y = Pipe Radius, **r** ft in Follow @engineersedge (must have $y \ge D/2$) 0.375 Circ. Segment Height, **h** = ft TRANSLATE Full Pipe Manning 0.013 roughness, **n_{full}** 1.45 Central Angle, **q** radians 6.56 ft² Channel bottom Cross-Sect. Area, A: Print Webpage 0.01 slope, S ft/ft **Copyright Notice** Wetted Perimeter, P 7.3 ft 0.90 Hydraulic Radius, **R** ft Calculations Submit an 1.0625 66.14 n/n_{full} = Discharge, Q cfs Partially Full Manning Ave. Velocity, V 10.08 ft/sec Article 0.014 roughness, n = pipe % full [(A/A_{full})*100%] = 92.8% Become an r = D/2Engineers Edge h = 2r - vS Contributor K h (hydraulic radius) θ R = A/P(Manning Equation) $Q = (1.49/n)(A)(R^{2/3})(S^{1/2})$ V = Q/AР $\theta = 2 \arccos\left(\frac{\mathbf{r} \cdot \mathbf{h}}{\mathbf{r}}\right)$ Partially Full Pipe Flow Parameters $A = \pi r^2 - \frac{r^2(\theta - \sin \theta)}{2}$ (More Than Half Full)

Equation used for n/n_{full} : $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$ (for $0.5 \le y/D \le 1$)

PR2 Q100= 65.3 CFS

 $P = 2\pi r - r^* \theta$

CULVERTS

Figure CU-9-Inlet Control Nomograph-Example

DP3 Q100 = 65.3 cfs

We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. By continuing to use our site, you accept our use of cookies, To learn more, see our Privacy Policy link at bottom of webpage.

Got It!

Equation used for n/n_{full} : $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$ (for $0.5 \le y/D \le 1$)

PR3 Q100= 74.0 CFS

Equation used for n/n_{full} : $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$ (for $0.5 \le y/D \le 1$)

PR4 Q100= 2.7 CFS

 $P = 2\pi r - r^* \theta$

Equation used for n/n_{full} : $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$ (for $0.5 \le y/D \le 1$)

PR5 Q100= 76.0 CFS

A privacy, disclaimer and tracking cookie usage reminder from Engineers Edge. To learn more, see our Privacy Policy / Cookie Usage & Disclaimer links at bottom of webpage.

Got It!

Partially FULL Pipe Flow Calculator and Equation

Fluid Flow Table of Contents Hydraulic and Pneumatic Knowledge Fluid Power Equipment

		Register Login
IS		Search
		Main Categories
ising the oughness	Manning s coefficient	 Home Engineering Book Store Engineering Forum Excel App. Downloads Online Books & Manuals Engineering News Engineering Videos Engineering Calculators Engineering Toolbox GD&T Training Geometric Dimensioning Tolerancing DFM DFA Training Training Orline
2	ft	Finding Onnie Finding
1	ft	Advertising Center
	IL	
0.000	ft.	Follow @engineersedge TRANSLATE
0.00	radians	
3.14	ft ²	Print Webpage
6.3	ft	› <u>Copyright Notice</u>
0.50	ft	
22.68	cfs	Submit an
7.22	ft/sec	Austiala
		Article
100.0%		Become an Engineers Edge Contributor

Membership

This engineering calculator determines the Flow within a partially full pipe (&e1/2 fullu equation. This calculator can also be used for uniform flow in a pipe, but the Manning r needs to be considered to be variable, dependent upon the depth of flow.

Partially Full Pipe Flow Calculations - U.S. Units

II. Calculation of Discharge, Q, and average velocity, V for pipes more than half full

Instructions: Enter values in blue boxes. Calculations in yellow

in

in

ft/ft

Calculations

Pipe Diameter, D

Circ. Segment Height, h =

Central Angle, **q** Cross-Sect. Area, A

Wetted Perimeter, P Hydraulic Radius, **R**

Discharge, Q

Ave. Velocity, V

pipe % full [(A/A_{full})*100%] =

Pipe Radius, **r**

<u>Inputs</u>

Pipe Diameter, D

Depth of flow, y

(must have $y \ge D/2$)

Full Pipe Manning

roughness, **n_{full}**

Channel bottom

slope, S

24

24

0.013

0.01

Partially Full Pipe Flow Parameters (More Than Half Full)

(hydraulic radius)

R = A/P

(Manning Equation)

 $Q = (1.49/n)(A)(R^{2/3})(S^{1/2})$

V = Q/A

$$\theta = 2 \arccos\left(\frac{\mathbf{r} \cdot \mathbf{h}}{\mathbf{r}}\right)$$
$$\mathbf{A} = \pi \mathbf{r}^2 - \frac{\mathbf{r}^2(\theta \cdot \sin \theta)}{2}$$

Р

$$\mathbf{P} = 2\pi \mathbf{r} - \mathbf{r}^* \mathbf{\theta}$$

Equation used for n/n_{full}: n/n_{full} = 1.25 - (y/D -0.5)*0.5 (for $0.5 \le y/D \le 1$)

PR7 & PR8 Q100=22.2 CFS FLOWS SPLIT

https://www.engineersedge.com/fluid_flow/partially_iuir_pipe_iiow_caiculation/parualiyiuiipipeflow_calculation.htm

Got It!

Equation used for n/n_{full} : $n/n_{full} = 1.25 - (y/D - 0.5) + 0.5$ (for $0.5 \le y/D \le 1$)

PR9 Q100= 117.8 CFS

Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D \cdot 0.5) * 0.5$ (for $0.5 \le y/D \le 1$)

PR10 & PR11 Q100= 13.7 CFS FLOW SPLIT

Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D - 0.5) * 0.5$ (for $0.5 \le y/D \le 1$)

PR12 Q100= 142.5 CFS

Got It!

 $\mathbf{P} = 2\pi\mathbf{r} - \mathbf{r}^*\boldsymbol{\theta}$

Equation used for n/n_{full} : $n/n_{full} = 1.25 - (y/D - 0.5) + 0.5$ (for $0.5 \le y/D \le 1$)

PR13 Q100= 14.0 CFS

Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D - 0.5) * 0.5$ (for $0.5 \le y/D \le 1$)

PR14 Q100= 27.9 CFS

Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D - 0.5) \cdot 0.5$ (for $0.5 \le y/D \le 1$)

#PR38 Q100= 27.9 CFS

#PR15 Q100= 13.5 CFS

Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D \cdot 0.5) * 0.5$ (for $0.5 \le y/D \le 1$)

#PR16 Q100= 39.7 CFS

Equation used for n/n_{full} : $n/n_{full} = 1.25 - (y/D - 0.5) + 0.5$ (for $0.5 \le y/D \le 1$)

#PR39 Q100= 13.0 CFS

Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D \cdot 0.5)^{*}0.5$ (for $0.5 \le y/D \le 1$)

#PR17 Q100= 51.3 CFS

Equation used for n/nfull: n/nen = 1 25 . (v/n .n 5)+0 5 (for 0.5 - 1/n - 1)

PR18 Q100= 12.4 CFS

 $\mathbf{P} = 2\pi\mathbf{r} - \mathbf{r}^*\boldsymbol{\theta}$

Got It!

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Membership

Register | Login

Search

Engineering Book Store

Engineering Forum

Main Categories

Home

Partially Full Pipe Flow Parameters (More Than Half Full)

 $\theta = 2 \arccos\left(\frac{\mathbf{r} - \mathbf{h}}{\mathbf{r}}\right)$ $A = \pi r^2 - \frac{r^2(\theta - \sin \theta)}{2}$

 $\mathbf{P} = 2\pi\mathbf{r} - \mathbf{r}^*\boldsymbol{\theta}$

Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D \cdot 0.5) * 0.5$ (for $0.5 \le y/D \le 1$)

PR19 O100= 24.8 CFS

PR20 Q100= 75.3 CFS

of III		
Litimate ASME Laminate	- GD&T Wall Chart	<u>Membership</u> <u>Register Login</u>
Partially Full Pipe Flow Calcu	Search	
Fluid Flow Table of Conten	ts Hydraulic and Pneumatic Knowledge	
Fluid	Power Equipment	Main Categories
This engineering calculator determines the Flow calculator can also be used for uniform flow in a considered to be variable, dependent upon the de	within a partially full pipe using the Manning equation. This a pipe, but the Manning roughness coefficient needs to be epth of flow.	Home Engineering Book Store Engineering Forum Excel App. Downloads Online Books & Manuals
Partially Full Pip	e Flow Calculations - U.S. Units	 Engineering News Engineering Videos
II. Calculation of Di	scharge, Q, and average velocity, V	Engineering Calculators
for p	lpes more than half full	Engineering Toolbox GD&T Training
Instructions: Enter val	ues in blue baxes. Calculations in vellow	Geometric Dimensioning
Inputs	Calculations	DFM DFA Training
Pipe Diameter, $D = 54$ Depth of flow, $y = 53$	in Pipe Diameter, D = 4.5 ft	• <u>Training Online</u> Engineering • <u>Advertising Center</u>
(must have $v > D/2$)		TRANSLATE
	Circ. Segment Height, h = 0.083	i i ponj
Full Pipe Manning roughness, n _{full} = 0.013 Channel bottom	Central Angle, q = 0.55 Cross-Sect. Area, A = 15.84 ft ²	Print Webpage
310pc, 5 1	Wetted Perimeter, P = 12.9 ft	Submit on
Calculations	Hydraulic Radius, R = 1.23 ft	
n/n _{fuli} = <u>1.009259</u> ;	Discharge, Q = 216.17 cfs	Article
Partially Full Manning	Ave. Velocity, V = <u>13.65</u> ft/sec	5
104giniess, il 2 0.013	nine % full [(A/Ac.)]*100941 - 99.6%	
		Become an
		Engineers Edge
	r = D/2	Contributor
V II S	h = 2r - y	
K III	(bydraulic radius)	
0	R = A/P	
	(Manning Equation)	
	Q = (1.49/n)(A)(R"'")(S"")	
	V = Q/A P	

 $\theta = 2 \arccos\left(\frac{\mathbf{r} \cdot \mathbf{h}}{\mathbf{r}}\right)$ Partially Full Pipe Flow Parameters $A = \pi r^2 - \frac{r^2(\theta - \sin \theta)}{2}$ (More Than Half Full)

 $\mathbf{P} = 2\pi\mathbf{r} - \mathbf{r}^*\boldsymbol{\theta}$

Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D - 0.5) \cdot 0.5$ (for $0.5 \le y/D \le 1$)

PR21 Q100= 214.5 CFS

Membership

Register | Login

Search

Engineering Book Store

Engineering Forum

Main Categories

Home

Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Partially Full Pipe Flow Parameters (More Than Half Full)

 $\mathbf{P}=2\pi\mathbf{r}-\mathbf{r}^{*}\mathbf{\theta}$

Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D \cdot 0.5) * 0.5$ (for $0.5 \le y/D \le 1$)

PR22 Q100= 27.7 CFS

R = A/P

(Manning Equation)

Got It!

Equation used for n/n_{full} : n/n_{full} = 1.25 - (y/D -0.5)*0.5 (for 0.5 \leq y/D \leq 1)

PR23 Q100= 55.4 CFS

A privacy, disclaimer and tracking cookie usage reminder from Engineers Edge. To learn more, see our Privacy Policy / Cookie Usage & Disclaimer links at bottom of webpage.

Got It!

	- GD&T Wall Chart	<u>Membership</u> Register Login		
Partially FULL Pipe F Fluid Fl Hydraulican	Search			
This engineering calculator determines the Flow equation. This calculator can also be used for un needs to be considered to be variable, dependent	within a partially full pipe (&e1/2 fullusing the Manning iform flow in a pipe, but the Manning roughness coefficient upon the depth of flow.	Main Categories Image: Constraint of the second secon		
Partially Full Pin	e Flow Calculations - ILS. Units	 <u>Online Books & Manuals</u> <u>Engineering News</u> 		
II. Calculation of D for p	ischarge, Q, and average velocity, V ipes more than half full	 <u>Engineering Videos</u> <u>Engineering Calculators</u> <u>Engineering Toolbox</u> 		
Instructions: Enter val	ues in hlue haves Calculations in vellow	› <u>GD&T Training</u> Geometric Dimensioning		
Inputs	Calculations	Tolerancing <u>DFM DFA Training</u>		
Pipe Diameter, $\mathbf{D} = \boxed{60}$ Depth of flow, $\mathbf{y} = \boxed{56}$	in Pipe Diameter, D = 5 ft in Pipe Radius, r = 2.5 ft	 <u>Training Online</u> <u>Engineering</u> <u>Advertising Center</u> 		
(must have $y \ge D/2$) Full Pipe Mapping	Circ. Segment Height, h = 0.333 ft	Follow @engineersedge TRANSLATE		
roughness, $\mathbf{n_{full}} = \boxed{0.013}$ Channel bottom slope, $\mathbf{S} = \boxed{0.01}$	Central Angle, $\mathbf{q} = 1.04$ radians Cross-Sect. Area, $\mathbf{A} = 19.07$ ft ² ft/ft Wetted Perimeter $\mathbf{P} = 13.1$ ft	Print Webpage		
Calculations n/n_{full} 1.03333333Partially Full Manning0.013	Hydraulic Radius, $\mathbf{R} =$ 1.46ftDischarge, $\mathbf{Q} =$ 271.81cfsAve. Velocity, $\mathbf{V} =$ 14.25ft/sec	Submit an Article		
roughness, $\mathbf{n} = 0.013$	pipe % full [(A/A _{full})*100%] = 97.1%			
K h S	r = D/2 $h = 2r - y$	Become an Engineers Edge Contributor		
r	(hydraulic radius) R = A/P			
	$Q = (1.49/n)(A)(R^{2/3})(S^{1/2})$ $V = Q/A$ P			
	$\theta = 2 \arccos\left(\frac{\mathbf{r} - \mathbf{h}}{\mathbf{r}}\right)$			
Partially Full Pipe Flow Parameters (More Than Half Full)	$A = \pi r^2 - \frac{r^2(\theta - \sin \theta)}{2}$			

Equation used for n/n_{full}: n/n_{full} = 1.25 - (y/D -0.5)*0.5 (for 0.5 \leq y/D \leq 1)

PR24 Q100= 269.3 CFS

 $P = 2\pi r - r^* \theta$

A privacy, disclaimer and tracking cookie usage reminder from Engineers Edge. To learn more, see our Privacy Policy / Cookie Usage & Disclaimer links at bottom of webpage.

Got It!

ENGINEERS EDGE Solutions By Design	Geometric Bo Based of	n ASME Y14.5-2018	<u>Membership</u> <u>Register</u> <u>Login</u>
	Partially FULL P	ipe Flow Calculator and Equations	Counth
		iid Flow Table of Contents	Search
	<u>Hydra</u>	<u>ılic and Pneumatic Knowledge</u> Fluid Power Equipment	Main Categories
	This engineering calculator determines the equation. This calculator can also be used a needs to be considered to be variable, dependent of the equation of th	ning fficient * <u>Home</u> * <u>Engineering Book Store</u> * <u>Engineering Forum</u> * <u>Excel App. Downloads</u>	
	Partially F	ull Pine Flow Calculations - ILS, Units	 Online Books & Manuals Engineering News
	II. Calculatio	on of Discharge, O, and average velocity. V	> Engineering Videos
		for pipes more than half full	 <u>Engineering Calculators</u> <u>Engineering Toolbox</u>
	Instructions: En	 <u>GD&T Training</u> <u>Geometric Dimensioning</u> 	
	<u>Inputs</u>	<u>Calculations</u>	Tolerancing
	Pipe Diameter, $\mathbf{D} = \boxed{30}$ Depth of flow, $\mathbf{y} = \boxed{17}$	in Pipe Diameter, D = 2.5 in Pipe Radius, r = 1.25	ft <u>Engineering</u> ft <u>Advertising Center</u>
	(must have $y \ge D/2$)		Follow @engineersedge
		Circ. Segment Height, h = 1.083	ft
	Full Pipe Manning roughness, n_{full} = 0.013 Channel bottom slope, S = 0.01	Central Angle, q = 2.87 rav Cross-Sect. Area, A = 2.87 ft/ft	translate Print Webpage
	Calculations	Hydraulic Radius, $\mathbf{R} = 0.67$	ft land
	$n/n_{full} =$ 1.216666	56 Discharge, Q = 20.77	_{cfs} Submit an
	Partially Full Manning	Ave. Velocity, V = 7.24 ft	/sec Article
	roughness, n = 0.016	pipe % full [(A/A _{full})*100%] = 58.5%	
		r = D/2	Become an
	S	h = 2r - v	Engineers Edge
	Kh	(hydraulic radius)	Contributor
	r	$\mathbf{K} = \mathbf{A}/\mathbf{r}$	
		(Manning Equation)	
		Q = $(1.49/n)(A)(R^{2/3})(S^{1/2})$	
		V = Q/A P	

Partially Full Pipe Flow Parameters (More Than Half Full) $\theta = 2 \arccos\left(\frac{\mathbf{r} \cdot \mathbf{h}}{\mathbf{r}}\right)$ $A = \pi \mathbf{r}^2 - \frac{\mathbf{r}^2(\theta \cdot \sin \theta)}{2}$

$$\mathbf{P} = 2\pi \mathbf{r} - \mathbf{r}^* \boldsymbol{\theta}$$

Equation used for n/n_{full} : $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$ (for $0.5 \le y/D \le 1$)

PR25 Q100= 20.8 CFS

A privacy, disclaimer and tracking cookie usage reminder from Engineers Edge. To learn more, see our Privacy Policy / Cookie Usage & Disclaimer links at bottom of webpage.

Got It!

EN	GIN	EE	RS	
		_	<u> </u>	
S0	iutio	ns By	/ Desi	gn

	<mark>Geometric Boun</mark> Based on A	daries IV SME Y14.5-2018	<u>Membership</u> <u>Register Login</u>
	Search Main Categories		
This engineering c equation. This calc needs to be conside	alculator determines the Flow culator can also be used for ur ered to be variable, dependent	within a partially full pipe (&e1/2 fullusing the Manning iform flow in a pipe, but the Manning roughness coefficient a upon the depth of flow.	Home Engineering Book Store Engineering Forum Excel App. Downloads Online Books & Manuals
	Partially Full Pip	e Flow Calculations - U.S. Units	> Engineering News
	II. Calculation of D for p	ischarge, Q, and average velocity, V ipes more than half full	Engineering Videos Engineering Calculators Engineering Toolbox CD %T Training
	Instructions: Enter val	lues in blue boxes. Calculations in yellow	Geometric Dimensioning
<u>Inputs</u>		Calculations	Tolerancing
	Pipe Diameter; $\mathbf{D} = \boxed{66}$ Depth of flow, $\mathbf{y} = \boxed{64}$	in Pipe Diameter, D = 5.5 ft in Pipe Radius, r = 2.75 ft	 DFM DFA Training Training Online Engineering Advertising Center
ſr	must have $v > D/2$		Follow @engineersedge
(i	nasenave y <u>-</u> 0/2)	Circ. Segment Height. $\mathbf{h} = 0.167$ ft	
	Full Pipe Manning roughness, n_{full} = 0.013 Channel bottom slope, S = 0.005	Central Angle, $\mathbf{q} = \begin{bmatrix} 0.70 \\ radians \\ Cross-Sect. Area, \mathbf{A} = \begin{bmatrix} 23.55 \\ t^2 \end{bmatrix} ft/ftWetted Perimeter. \mathbf{P} = \begin{bmatrix} 15.4 \\ t \end{bmatrix} ft$	TRANSLATE Print Webpage Copyright Notice
<mark>Calcul</mark> n/ Partially Full M roughne	lations n_{full} =1.0151515lanningess, n =0.013	Hydraulic Radius, $\mathbf{R} = 1.53$ ft Discharge, $\mathbf{Q} = 250.01$ cfs Ave. Velocity, $\mathbf{V} = 10.62$ ft/sec	Submit an Article
		r = D/2	Become an Fngingers Edge
	Kh	h = 2r - y (hydraulic radius)	Contributor
	θ	R = A/P (Manning Equation) Q = $(1.49/n)(A)(R^{2/3})(S^{1/2})$ V = Q/A P	
and and have		$\theta = 2 \arccos\left(\frac{1-n}{r}\right)$	
TD	T II D' TI D		

 $A = \pi r^2 - \frac{r^2(\theta - \sin \theta)}{2}$

 $P = 2\pi r - r^* \theta$

PR26 Q100= 287.3 CFS

Partially Full Pipe Flow Parameters

(More Than Half Full)

A privacy, disclaimer and tracking cookie usage reminder from Engineers Edge. To learn more, see our Privacy Policy / Cookie Usage & Disclaimer links at bottom of webpage.

Got It!

Got It!			
	Ultimate - GL	Y-14.5-2018	<u>Membership</u> <u>Register</u> <u>Login</u>
Partia	ally FULL Pipe Flow Fluid Flow T	v Calculator and Equations	Search
	Hydraulic and Pi Fluid Pow	<u>neumatic Knowledge</u> <u>er Equipment</u>	Main Categories
This engineering calculator equation. This calculator ca needs to be considered to be	determines the Flow with n also be used for uniforn e variable, dependent upor	in a partially full pipe (&e1/2 fullusing the Manning n flow in a pipe, but the Manning roughness coefficient n the depth of flow.	 Home Engineering Book Store Engineering Forum Excel App. Downloads Online Books & Manuals
	Partially Full Pipe Flow	w Calculations - U.S. Units	 <u>Engineering News</u>
	II. Calculation of Dischar	rge, Q, and average velocity, V	<u>Engineering Videos</u> <u>Engineering Calculators</u>
	for pipes n	nore than half full	 <u>Engineering Toolbox</u> GD&T Training
	Instructions: Enter values in	blue boxes. Calculations in yellow	Geometric Dimensioning
Inputs Pipe Diam Depth of f (must have)	eter, $\mathbf{D} = \boxed{48}$ in low, $\mathbf{y} = \boxed{32}$ in $\mathbf{y} > \mathbf{D}/2$	<u>Calculations</u> Pipe Diameter, $\mathbf{D} = \frac{4}{12}$ ft Pipe Radius, $\mathbf{r} = \frac{2}{12}$ ft	DEM DFA Training DFM DFA Training Training Online Engineering Advertising Center Follow @engineersedge
		Circ. Segment Height, $\mathbf{h} = 1.333$ ft	TRANCLATE
Full Pipe I roughness Channel sl <u>Calculations</u> n/n _{full} = Partially Full Manning	Manning $\mathbf{r}, \mathbf{n}_{full} = \boxed{0.013}$ bottom ope, $\mathbf{S} = \boxed{0.01}$ ft/ft 1.1666666	Central Angle, $\mathbf{q} = 2.46$ radians Cross-Sect. Area, $\mathbf{A} = 8.90$ ft ² Wetted Perimeter, $\mathbf{P} = 7.6$ ft Hydraulic Radius, $\mathbf{R} = 1.16$ ft Discharge, $\mathbf{Q} = 96.77$ cfs Area Velocity $\mathbf{V} = 10.87$ ft (core	Print Webpage • Copyright Notice Submit an
roughness, n =	0.015	pipe % full [(A/A _{full})*100%] = 70.8%	Article
K	h	r = D/2 h = 2r - y	Become an Engineers Edge Contributor
r		(hydraulic radius) R = A/P (Manning Equation) $Q = (1.49/n)(A)(R^{2/3})(S^{1/2})$ V = Q/A P	
		$\theta = 2 \arccos\left(\frac{r-n}{r}\right)$	

Partially Full Pipe Flow Parameters (More Than Half Full)

 $A = \pi r^2 - \frac{r^2(\theta - \sin \theta)}{2}$ $\mathbf{P} = 2\pi \mathbf{r} - \mathbf{r} * \mathbf{\theta}$

Equation used for n/n_{full}: $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$ (for $0.5 \le y/D \le 1$)

#PR27 Q100= 92.8 CFS

STORM 1, 2, 3, 4, 4A, 5, 7 & 9 incl LATERALS INDEX MAP

MyReport

Line No.	Line ID	Line Type	Junct Type	J-Loss Coeff	n-val Pipe	Flow Rate	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Vel Ave	Line Length	Rim-Hw	
						(cfs)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft/s)	(ft)	(ft)	
1	Storm 1	Cir	МН	0.75	0.013	287.20	7191.76	7192.37	0.50	7197.26	7198.15	1.70	7199.86	12.09	121.710	5.65	
2	Storm 1(2)	Cir	МН	0.99 z	0.013	269.20	7192.87	7202.30	5.95	7199.86	7206.83	n/a	7206.83	14.05	158.500	5.17	
3	Storm 1	Cir	Generic	0.50	0.013	55.40	7204.30	7204.67	2.57	7209.10	7209.20	0.48	7209.67	7.84	14.400	1.73	
4	Storm 1	Cir	Generic	1.00	0.013	27.70	7205.17	7206.51	3.79	7210.13	7210.29	0.50	7210.79	5.64	35.350	0.61	
5	Storm 2	Cir	МН	1.00 z	0.013	214.40	7202.80	7205.94	1.72	7207.23	7210.06	n/a	7210.06	13.79	182.370	3.94	
6	Storm 2	Cir	МН	1.00 z	0.013	75.30	7206.94	7213.72	2.51	7212.18	7216.43	1.38	7216.43	8.62	270.010	3.57	
7	Storm 2	Cir	МН	1.00 z	0.013	51.30	7214.22	7218.47	2.77	7216.99	7220.80	n/a	7220.80	8.12	153.240	3.00	
8	Storm 2	Cir	Generic	1.00	0.013	13.00	7218.58	7219.65	3.74	7221.71	7221.81	0.27	7222.07	4.14	28.586	2.01	
9	Storm 3	Cir	МН	0.89 z	0.013	142.40	7206.44	7208.80	1.58	7211.13	7212.33	2.04	7212.33	11.73	149.360	3.83	
10	Storm 3	Cir	МН	0.15 z	0.013	117.70	7209.10	7217.15	1.85	7213.25	7220.42	n/a	7220.42	10.04	435.420	3.58	
11	Storm 3	Cir	МН	0.15 z	0.013	117.70	7217.45	7225.32	1.81	7220.84	7228.59	n/a	7228.59	10.54	435.420	3.87	
12	Storm 3	Cir	MH	0.15 z	0.013	117.70	7225.63	7240.60	4.41	7229.01	7243.87	n/a	7243.87	10.56	339.480	3.88	
13	Storm 3	Cir	МН	1.00 z	0.013	117.70	7240.89	7246.33	1.60	7244.29	7249.60	n/a	7249.60	10.53	339.480	6.89	
14	Storm 3	Cir	МН	0.92	0.013	117.70	7246.63	7247.95	0.60	7250.16	7251.48	1.44	7252.92	10.02	219.470	2.34	
15	Storm 3	Cir	МН	0.88	0.013	75.90	7248.25	7251.41	0.63	7253.91	7255.20	0.52	7255.72	6.10	502.070	2.74	
16	Storm 4	Cir	Generic	1.00	0.013	2.70	7253.93	7254.75	5.60	7256.27	7256.28	0.04	7256.32	1.53	14.630	2.33	
17	Storm 3_Lat 1	Cir	None	0.89	0.013	13.70	7211.10	7211.21	2.51	7213.68	7213.76	0.83	7214.59	7.75	4.375	1.87	
18	Storm 3_Lat 1	Cir	Generic	1.00	0.013	13.70	7211.21	7211.41	2.50	7214.59	7214.73	0.93	7215.66	7.75	8.000	0.59	
19	Storm 3_Lat 2	Cir	Generic	1.00	0.013	13.70	7211.10	7211.91	2.50	7213.68	7214.24	0.93	7215.17	7.75	32.420	1.17	
20	Storm 3_Lat 3	Cir	Generic	1.00	0.013	22.20	7249.95	7250.33	1.26	7253.71	7254.00	0.78	7254.77	7.07	30.230	0.48	
21	Storm 3_Lat 4	Cir	None	0.75	0.013	22.20	7249.95	7250.01	1.36	7253.71	7253.75	0.58	7254.33	7.07	4.380	1.03	
22	Storm 3_Lat 4(2)	Cir	Generic	1.00	0.013	22.20	7250.01	7250.11	1.25	7254.33	7254.41	0.78	7255.18	7.07	8.000	0.28	
23	Storm 4	Cir	Generic	1.00	0.013	10.40	7253.93	7254.27	0.97	7255.77	7256.12	0.54	7256.65	5.89	34.960	1.64	
Projec	t File: Storm Main S	ystem.str	n								Numbe	er of lines:	36		Date:	3/3/2021	
NOTE	S: ** Critical depth]				I		

MyReport

Line No.	Line ID	Line Type	Junct Type	J-Loss Coeff	n-val Pipe	Flow Rate	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Vel Ave	Line Length	Rim-Hw	
						(cfs)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft/s)	(ft)	(ft)	
24	Storm 5	Cir	МН	1.00	0.013	24.80	7214.72	7215.24	1.23	7217.28	7217.33	0.50	7217.83	5.35	42.170	2.65	
25	Storm 5(2)	Cir	Generic	1.00 z	0.013	12.40	7216.24	7217.19	2.98	7217.83	7218.52 j	n/a	7218.52	7.25	31.900	1.87	
26	Storm Planned	Cir	МН	1.00	0.013	39.70	7218.08	7219.19	1.83	7220.96	7221.32	1.24	7222.55	8.51	60.570	1.98	
27	Storm Planned	Cir	МН	1.00 z	0.013	27.90	7219.49	7223.85	1.50	7223.29	7225.65 j	n/a	7225.65	6.53	290.660	3.30	
28	Storm 6	Cir	Generic	1.00	0.013	13.50	7219.99	7220.09	1.94	7223.51	7223.52	0.29	7223.81	4.30	5.130	0.69	
29	Storm 7	Cir	Generic	1.46 z	0.013	27.90	7224.15	7224.80	1.01	7225.99	7226.60 j	n/a	7226.60	7.28	64.530	3.04	
30	Storm 7	Cir	Generic	1.00	0.013	14.00	7225.80	7226.17	1.01	7227.30	7227.95	0.98	7228.92	7.92	36.470	0.85	
31	Storm 9	Cir	None	0.75	0.013	20.80	7195.47	7195.56	1.03	7201.85	7201.87	0.21	7202.08	4.24	8.700	1.92	
32	Storm 9 (2)	Cir	Dp-Grate	1.00	0.013	20.80	7195.56	7198.67	1.00	7202.08	7202.88	0.28	7203.16	4.24	310.630	0.06	
33	STRM 5 LAT1	Cir	None	0.75	0.013	12.40	7216.24	7216.29	0.92	7217.83	7217.90	0.57	7218.48	7.02	5.390	2.22	
34	STRM 5 LAT1 (2)	Cir	Generic	1.00	0.013	12.40	7216.29	7216.37	1.00	7218.48	7218.59	0.77	7219.36	7.02	8.000	1.41	
35	Storm 3	Cir	МН	1.00	0.013	65.30	7252.43	7253.80	1.00	7255.72	7257.03	1.33	7258.36	9.24	136.550	1.64	
36	Storm 3	Cir	Hdwall	1.00	0.013	65.30	7254.10	7254.60	1.00	7258.36	7258.84	1.33	7260.17	9.24	50.150	-5.56	
Projec	t File: Storm Main Sy	/stem.sti	m		I		1				Numbe	Number of lines: 36 Date: 3/3/2021					
NOTE	S: ** Critical depth										1				I		

STORM 3-LAT 1 PROFILE

STORM 8 PIPE RUN INDEX MAP

MyReport

Line No.	Line ID	Line Type	Junct Type	J-Loss Coeff	n-val Pipe	Flow Rate	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Vel Ave	Line Length	Rim-Hw	
						(cfs)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft/s)	(ft)	(ft)	
1	Storm 8	Cir	Generic	1.25 z	0.013	13.70	7248.00	7249.01	1.70	7249.23	7250.38	n/a	7250.38	8.46	59.460	2.27	
Paint	Paint Brush Hills Filing 14 Number of lines: 1 Date: 12/10/2020								Date: 12/10/2020								
NOTE	S: ** Critic	al depth															

Weighted Percent Imperviousness of PBH Filing 14								
Contributing Basins	Area (Acres)	C		(A				
20000	(110105)	C 3	Impervious % (I)	(Acres)*(1)				
**051	4.44	0.30	40	177.60				
A	0.52	0.18	16	8.32				
В	8.31	0.20	20	166.17				
B1	0.92	0.16	13	12.00				
С	11.50	0.26	32	368.00				
D	5.20	0.20	20	104.00				
Ε	0.49	0.90	100	49.00				
F	1.61	0.30	40	64.40				
G	12.20	0.35	48	585.60				
Н	10.78	0.35	48	517.44				
Ι	12.74	0.35	48	611.52				
J	7.19	0.22	25	179.75				
K	0.75	0.36	50	37.50				
L	3.37	0.36	50	168.50				
М	2.53	0.27	34	86.02				
N	6.08	0.20	20	121.62				
Totals	88.63			3257.44				
Imperviousness								
of PBH 14	36.8							

Weig	Weighted Percent Imperviousness of WQ Pond C								
Contributing	Area								
Basins	(Acres)	<i>C</i> ₅	Impervious % (I)	(Acres)*(I)					
OS5A	3.66	0.11	5	18.30					
OS5B	13.44	0.11	5	67.18					
OS5C	29.00	0.30	40	1160.15					
A	0.52	0.18	16	8.37					
В	8.31	0.20	20	166.17					
С	11.80	0.26	32	377.60					
D	5.20	0.20	20	103.95					
E	0.49	0.90	100	49.04					
F	1.61	0.30	40	64.58					
G	12.20	0.35	48	585.50					
Н	10.78	0.35	48	517.45					
Ι	12.74	0.35	48	611.52					
J	7.19	0.22	25	179.81					
K	0.75	0.36	50	37.46					
L	3.37	0.36	50	168.56					
М	2.53	0.27	34	86.02					
N	8.94	0.20	20	178.76					
* <i>TT</i>	5.05	0.35	25	126.25					
Totals	137.58			4506.69					
Imperviousness									
of WQ Pond C	32.8								

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

Project: Paint Brush	Hills Filing I	No.14			-								
Basin ID: FSD Pond C													
ZONE 3	ZONE 3 / ZONE 2												
100-YR	T												
VOLUME EURV WQCV				-		-							
T TONE LAND 2	100-YEA ORIFICE	AR E		Depth Increment =		ft							
PERMANENT ORIFICES	an (Datanti	on Donal)		Charge Charges	Chago	Optional	Longth	Width	Area	Optional	A.r.o.5	Volume	Valuma
Example zone configurati	on (Retentio	on Pona)		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft ³)	(ac-ft)
Watershed Information			7190.09	Top of Micropool		0.00				180	0.004		
Selected BMP Type = EDB			7191			0.91				457	0.010	290	0.007
Watershed Area = 137.58	acres					1.91				14,185	0.326	7,611	0.175
Watershed Length = 3,440	ft					2.91				41,901	0.962	35,654	0.818
Watershed Length to Centroid = 2,149	ft					3.91				61,466	1.411	87,337	2.005
Watershed Slope = 0.025	ft/ft					4.91				72,754	1.670	154,447	3.546
Watershed Imperviousness = 32.80%	percent		7196.00			5.91				81,398	1.869	231,523	5.315
Percentage Hydrologic Soil Group A = 0.0%	percent		7197.00			6.91				86,246	1.980	315,345	7.239
Percentage Hydrologic Soil Group B = 100.0%	percent		7198.00			7.91	-			92,877	2.132	404,906	9.295
Percentage Hydrologic Soil Groups C/D = 0.0%	percent		7199.00			8.91				98,536	2.262	500,613	11.492
Target WQCV Drain Time = 40.0	hours		7200			9.91				105,513	2.422	602,637	13.835
Location for 1-hr Rainfall Depths = User Input													
After providing required inputs above including 1-hour	rainfall												
depths, click 'Run CUHP' to generate runoff hydrograph	is using												
		Optional Use	r Overrides										
Water Quality Capture Volume (WQCV) = 1.834	acre-feet		acre-feet									ļ	
Excess Urban Runoff Volume (EURV) = 4.664	acre-feet		acre-feet										
2-yr Runoff Volume (P1 = 1.19 in.) = 4.688	acre-feet	1.19	inches									┟────┤	
5-yr Runoff Volume (PI = 1.5 in.) = 7.414	acre-reet	1.50	inches										
10-yr Runoff Volume (P1 = 1.75 in.) = 9.906	acre-reet	2.00	inches										
23-yi Runoff Volume (P1 - 2 iii.) - 15.003	acre feet	2.00	inches										
100-vr Runoff Volume (P1 = 2.52 in.) = 20.186	acre-feet	2.23	inches										
500 -vr Runoff Volume (P1 = 3.14 in) = 27.480	acre-feet	2.52	inches										
Approximate 2-vr Detention Volume = 3.368	acre-feet												
Approximate 5-vr Detention Volume = 4.783	acre-feet												
Approximate 10-yr Detention Volume = 6.844	acre-feet												
Approximate 25-yr Detention Volume = 7.840	acre-feet												
Approximate 50-yr Detention Volume = 8.251	acre-feet												
Approximate 100-yr Detention Volume = 9.664	acre-feet											[]	
												ĺ	
Define Zones and Basin Geometry	_												
Zone 1 Volume (WQCV) = 1.834	acre-feet						-						
Zone 2 Volume (EURV - Zone 1) = 2.831	acre-feet												
Zone 3 Volume (100-year - Zones 1 & 2) = 5.000	acre-feet												
Total Detention Basin Volume = 9.664	acre-feet											ļ]	
Initial Surcharge Volume (ISV) = user	ft ³											ļļ	
Initial Surcharge Depth (ISD) = user	ft											ļļ	
Total Available Detention Depth (H _{total}) = user	rt											<u>↓</u>	
Depth of Trickle Channel (H_{TC}) = user	IT											┟────┦	
Slope of Trickle Channel (S_{TC}) = user												┝────┦	
Slopes or Main Basin Sloes $(S_{main}) = USe^{-1}$	n:v											┝────┦	
MHFD-Detention_v4 03.xlsm, Basin												12	/7/2020, 9:14

DETENTION BASIN OUTLET STRUCTURE DESIGN

Project:	Paint Brush Hills I	iling No.14	HFD-Detention, V	ersion 4.03 (May	2020)				
Basin ID:	FSD Pond C								
ZONE 3				Estimated	Estimated				
100-YR				Stage (ft)	Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	3.79	1.834	Orifice Plate			
	100-YEAR ORIFICE		Zone 2 (EURV)	5.56	2.831	Orifice Plate			
PERMANENT ORIFICES	of the following of the		Zone 3 (100-year)	8.09	5.000	Weir&Pipe (Restrict)			
Example Zone	Configuration (R	etention Pond)		Total (all zones)	9.664				
User Input: Orifice at Underdrain Outlet (typical	ly used to drain W	OCV in a Filtration I	BMP)			-	Calculated Parame	eters for Underdrain	<u>1</u>
Underdrain Orifice Invert Depth =		ft (distance below	the filtration media	surface)	Underd	rain Orifice Area =		ft ²	
Underdrain Orifice Diameter =		inches			Underdrain	Orifice Centroid =		feet	
User Input: Orifice Plate with one or more orific	ces or Elliptical Slot	t (relative to basic	ed to drain WQCV a	nd/or EURV in a sei	dimentation BMP)		Calculated Parame	eters for Plate	
Invert of Lowest Office =	0.00	ft (relative to basi	n bottom at Stage -	= 0 IL) - 0 ft)	WQ Unii Elli	ce Area per Row =	4.597E-02	IC feet	
Orifice Plate: Orifice Vertical Spacing -	22.20	inches	in bottom at Stage -	- 010)	Ellipti	cal Slot Centroid -	N/A	feet	
Orifice Plate: Orifice Area per Row =	6.62	sa, inches (use re	ctangular openings)		F	llintical Slot Area =	N/A	ft ²	
	0102	sqr menes (use re	etangalar opennige)		-	inputtur bloc / i tu	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
User Input: Stage and Total Area of Each Orific	e Row (numbered	from lowest to high	<u>hest)</u>						_
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	1.85	3.71						
Orifice Area (sq. inches)	6.62	6.62	6.62						
				[1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Circular or Rectand	ular)						Calculated Parame	ators for Vertical Or	ifice
osci input. Vertical office (circular of Acctang	Not Selected	Not Selected	1				Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basir	bottom at Stage =	=0ft) Ver	tical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basir	bottom at Stage =	= 0 ft) Vertical	Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches	. Socioni de Stage			,,,,	,,,	
	,	,							
User Input: Overflow Weir (Dropbox with Flat of	or Sloped Grate and	d Outlet Pipe OR Re	ectangular/Trapezoi	dal Weir (and No C	<u> Dutlet Pipe)</u>		Calculated Parame	eters for Overflow \	Veir
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	5.57	N/A	ft (relative to basin l	oottom at Stage = 0	ft) Height of Grate	e Upper Edge, $H_t =$	5.57	N/A	feet
Overflow Weir Front Edge Length =	8.50	N/A	feet		Overflow W	eir Slope Length =	2.90	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V	Gra	ate Open Area / 10	0-yr Orifice Area =	1.37	N/A	
Horiz. Length of Weir Sides =	2.90	N/A	feet	Ov	erflow Grate Open	Area w/o Debris =	17.26	N/A	ft ²
Overflow Grate Open Area % =	70%	N/A	%, grate open are	a/total area O	verflow Grate Oper	n Area w/ Debris =	8.63	N/A	ft ²
Debris Clogging % =	50%	N/A	%						
User Input: Outlet Pipe w/ Flow Restriction Plat	e (Circular Orifice	Restrictor Plate or	Rectangular Orifice)	Ca	culated Parameter	s for Outlet Pine w	Flow Restriction P	late
<u>oser input: ouder tipe w/ now restreating the</u>	Zone 3 Restrictor	Not Selected		4	<u></u>		Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below b	asin bottom at Stage	= 0 ft) OI	utlet Orifice Area =	12.57	N/A	ft ²
Outlet Pipe Diameter =	48.00	N/A	inches	j-	Outlet	Orifice Centroid =	2.00	N/A	feet
Restrictor Plate Height Above Pipe Invert =	48.00	,	inches	Half-Cent	ral Angle of Restric	tor Plate on Pipe =	3.14	N/A	radians
								•	
User Input: Emergency Spillway (Rectangular o	r Trapezoidal)						Calculated Parame	eters for Spillway	
Spillway Invert Stage=	8.97	ft (relative to basi	n bottom at Stage =	= 0 ft)	Spillway D	esign Flow Depth=	0.87	feet	
Spillway Crest Length =	96.00	feet			Stage at T	op of Freeboard =	10.84	feet	
Spillway End Slopes =	8.33	H:V			Basin Area at T	op of Freeboard =	2.42	acres	
Freeboard above Max Water Surface =	1.00	feet			Basin Volume at T	op of Freeboard =	13.83	acre-ft	
Routed Hydrograph Results	The user can over	ride the default CU	IHP hydrographs an	d runoff volumes b	y entering new val	ues in the Inflow H	ydrographs table (0	Columns W through	AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
LOHP RUNOIT VOLUME (acre-ft) =	1.654 N/A	4.004 N/A	4.000	7.414	9.906	13.603	16.440	20.186	27.480
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	13.4	37.5	57.3	104.5	131.2	167.6	233.6
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.10	0.27	0.42	0.76	0.95	1.22	1.70
Peak Inflow Q (cfs) =	N/A 0.8	1 2	50.U 1 2	90.7	42.3	1/0.5	205.3 78 0	248.U 92.8	333.2 226.2
Ratio Peak Outflow to Predevelopment O =	N/A	N/A	N/A	0.6	0.7	0.6	0.6	0.6	1.0
Structure Controlling Flow =	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	1.2	2.4	3.8	4.4	5.3	5.7
Max velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) -	IN/A 38	N/A 67	IN/A 68	IN/A 70	IN/A 68	IN/A 65	N/A 63	N/A 61	IN/A 57
Time to Drain 99% of Inflow Volume (hours) =	40	71	72	75	74	73	72	71	69
Maximum Ponding Depth (ft) =	3.79	5.56	5.43	6.14	6.50	7.29	7.95	8.96	9.53
Area at Maximum Ponding Depth (acres) =	1.36	1.80	1.77	1.89	1.93	2.04	2.14	2.27	2.36
maximum volume Stored (acre-ft) =	1.039	4.0/3	4.423	5./4/	0.41/	8.002	9.300	11.583	12.925

Stormwater Detention and Infiltration Design Data Sheet

Workbook Protected

Vorksheet Protected

Stormwater Facility Name: Pond C

Facility Location & Jurisdiction: Paint Brush Hills Filing No. 14, Londonderry Drive, El Paso County / El Paso County

User Input: Watershed Characteristics Watershed Slope = 0.025 ft/ft Watershed Length = 3440 ft 137.58 Watershed Area = acres Watershed Imperviousness = 32.8% percent 0.0% Percentage Hydrologic Soil Group A = percent Percentage Hydrologic Soil Group B = 100.0% percent Percentage Hydrologic Soil Groups C/D = 0.0% percent Location for 1-hr Rainfall Depths (use dropdown): User Input

WQCV Treatment Method = Extended Detention

User Defined	User Defined	User Defined	User Defined	
Stage [ft]	Area [ft^2]	Stage [ft]	Discharge [cfs]	
0.00	180	0.00	0.00	
0.91	457	0.91	0.00	
2.00	14,185	2.00	0.00	
3.00	41,901	3.00	0.01	
4.00	61,466	4.00	0.05	
5.00	72,754	5.00	0.50	
6.00	81,398	6.00	22.50	
7.00	86,246	7.00	35.30	
8.00	92,877	8.00	150.00	
9.00	98,536	9.00	180.00	
10.00	105,513	10.00	307.00	

After completing and printing this worksheet to a pdf, go to: https://maperture.digitaldataservices.com/gvh/?viewer=cswdif create a new stormwater facility, and attach the pdf of this worksheet to that record.

	Routed Hydro	graph Results					_
Design Storm Return Period =	WQCV	2 Year	5 Year	10 Year	50 Year	100 Year	
One-Hour Rainfall Depth =	0.53	1.19	1.50	1.75	2.25	2.52	in
Calculated Runoff Volume =	1.834	3.720	6.657	9.301	16.738	20.491	acre-ft
OPTIONAL Override Runoff Volume =							acre-ft
Inflow Hydrograph Volume =	1.833	3.719	6.650	9.300	16.729	20.487	acre-ft
Time to Drain 97% of Inflow Volume =	>116	>116	>116	>116	>116	>116	hours
Time to Drain 99% of Inflow Volume =	>116	>116	>116	>116	>116	>116	hours
Maximum Ponding Depth =	3.86	5.05	6.00	6.92	8.13	8.93	ft
Maximum Ponded Area =	1.35	1.68	1.87	1.97	2.15	2.25	acres
Maximum Volume Stored =	1.817	3.627	5.321	7.073	9.584	11.330	acre-ft

Stormwater Detention and Infiltration Design Data Sheet

Paint Brush Hills Filing No.14 **EMERGENCY SPILLWAY CALCULATIONS FSD POND C**

Horizontal Broad-Crested Weir (Eqn 12-20 UDFCD)									
	Variable			Solve For					
С	3.00			L (ft)	H (ft)	Q (cfs)			
L	96.00	ft		0.0	0.0	288.0			
Н	1.00	ft							
Q		cfs							

307.99

Total Q

 $Q = C_{BCW} L H^{1.5}$

Q = discharge (cfs)

 C_{BCW} = broad-crested weir coefficient (This ranges from 2.6 to 3.0. A value of 3.0 is often used in practice.) See Hydraulic Engineering Circular No. 22 for additional information.

L = broad-crested weir length (ft)

H = head above weir crest (ft)

Figure 12-20. Sloping broad-crest weir

The open channel flow calculator								
Select Channel Type: Trapezoid ✓	Rectangle	$\begin{bmatrix} y \\ z_1 \\ z_2 \end{bmatrix} \begin{bmatrix} y \\ z_1 $						
Velocity(V)&Discharge(Q) Velocity(V)	Select unit system: Feet(ft) V							
Channel slope: 0.33	Water depth(y): 0.241 ft	Bottom width(b) 96 ft						
Flow velocity 13.0435 ft/s	LeftSlope (Z1): 8.33 to 1 (H:V)	RightSlope (Z2): 8.33 to 1 (H:V)						
Flow discharge 308.0843 [ft^3/s	Input n value 0.025 or select n							
Calculate!	Status: Calculation finished	Reset						
Wetted perimeter 100.04	Flow area 23.62 ft^2	Top width(T) 100.02 ft						
Specific energy 2.88	Froude number 4.73	Flow status Supercritical flow						
Critical depth0.67	Critical slope 0.0105 ft/ft	Velocity head 2.64						

POND C SPILLWAY RUNDOWN

20 BOULDER CRESCENT, STE 110 COLORADO SPRINGS, CO 80903 (719) 955-5485

PROJECT: PAJOT BRUCH HELLS FILTONG 14

DATE:

Figure 13-12d. Riprap Types for Emergency Spillway Protection

Figure 1 – Micropool Surface Area (SA) Determination Chart

The tributary impervious area is the effective number of impervious acres that will be treated by the extended detention basin (EDB). It is calculated by multiplying the tributary area to be treated by the impervious fraction of that area.

$$TIA = I \times A$$

- Imperviousness (fraction)
 Tributary catchment area i
 - = Tributary catchment area upstream (acres)

For EDBs with tributary impervious areas greater than 100 acres, the micropool surface area is 400 sf. The initial surcharge depth (ISD) is defined as the depth of the initial surcharge volume (ISV). The surface area determined using Figure 1 assumes an ISD of 4 inches. The initial surcharge volume is thus calculated by multiplying the micropool surface area by 4 inches.

$$ISV = SA \times 4$$
 inches

- ISV = Initial surcharge volume (cf)
- SA = Surface area (from Figure 1, sf)

The open channel flow calculator							
Select Channel Type: Rectangle ✓	Rectangle	Triangle					
Velocity(V)&Discharge(Q) V	elect unit system: Feet(ft) V						
Channel slope: 0.005	Water depth(y): 0.5	Bottom W(b) 2					
Flow velocity 3.8858 ft/s	LeftSlope (Z1): 0 to 1 (H:'	RightSlope (Z2): 0 to 1 (H:V					
Flow discharge <mark>3.8858</mark> ft^3/s	Input n value 0.013 or select n						
Calculate!	Status: Calculation finished	Reset					
Wetted perimeter 3 ft	Flow area 1 ft^2	Top width(T)2					
Specific energy 0.73	Froude number 0.97	Flow status Subcritical flow					
Critical depth 0.49 ft	Critical slope 0.0053 ft/ft	Velocity head 0.23 ft					

LOW FLOW TRICKLE CHANNEL

20 BOULDER CRESCENT, STE 110 COLORADO SPRINGS, CO 80903 (719) 955-5485

PROJECT: PALAST BRUSH HEUS FILING M

DATE: _____

Ripo	TAZI U.A-TI = 13.7 cfs	18" RCP	of PR 1	
Fie. Fue	9-37 Low T 18" Storm	MULATOR Prola 8295. Risha	BARZN (UDF BABZN 15'L 15'L	x 20 w DESTENA x 30' w ATURE
470	+D Assum	TIS 10.4		
8	2/1) ^{1.5} = FRom F26	13.7/1.515 = 7.4 9-38 TYPE	16 L RTP229	250 = 9"
	25	$50 = 2 \times 9^{n} = -$	18" THELK	
er T	ALL LEASTEL	REP RAP BASIN	PR #27	
8 root	92.5 css	48" R.P.		
For	40" STOR	1 PZPE 24 24	L + 19 W	(UDFCD) DESTEN
F16	9-38 RZ	PAP FACSECU	Potectizen.	C UDFC D
	JE/D P	55 cm = 0.4		
	FRAM Free AD50=	9-38 TYPE 2x 12" = 24"	M Dow = THUCK	2
Ţ	En "PAZAUT Exziting	BRUSH HELLS F REP ROP FOR REP RAP PAD	227,26 12" CO OUT FAIL 20 5 7 20 COLO FOR	NSTRUCTEON PLANS 1' x 20' x 3'-HZCK (DSO=1

Chapter 9

BOX HERHI	Ω	322	L
18" - 24"	1'0"	45	15"
30" - 36"	1'-8"	6'	20'
42" - 48"	2'-0"	7	24'
54" - 60"	2'-6"	6'	28'
86" - 72"	3*0"	9'	32'

* IF DUTLET PIPE IS A BOX CULVERT WITH A WIDTH GREATER THAN W, THEN W - CULVERT WIDTH

Figure 9-37. Low tailwater riprap basin

Hydraulic Structures

Chapter 9

Equation 9-19

$$H_a = \frac{\left(H + Y_n\right)}{2}$$

Where the maximum value of H_a shall not exceed H, and:

 D_a = parameter to use in place of D in Figure 9-38 when flow is supercritical (ft)

 D_c = diameter of circular culvert (ft)

 H_a = parameter to use in place of H in Figure 9-39 when flow is supercritical (ft)

H = height of rectangular culvert (ft)

 Y_n = normal depth of supercritical flow in the culvert (ft)

Use D_a instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream

.

The open channel flow calculator			
Select Channel Type: Trapezoid ✓	$ \begin{array}{c c} \hline $	$\frac{1}{2} \frac{1}{22} \frac{1}{2} $	
Velocity(V)&Discharge(Q)	Select unit system: Feet(ft) 🗸		
Channel slope: .0107 ft/ft	Water depth(y): .38 [ft	Bottom width(b) 10 ft	
Flow velocity 2.7996 ft/s	LeftSlope (Z1): 8 to 1 (H:V)	RightSlope (Z2): 8 to 1 (H:V)	
Flow discharge 13.8728 [ft^3/s	Input n value 0.025 or select n		
Calculate!	Status: Calculation finished	Reset	
Wetted perimeter 16.13	Flow area 4.96 ft^2	Top width(T)[16.08 ft	
Specific energy 0.5	Froude number 0.89	Flow status Subcritical flow	
Critical depth0.35	Critical slope 0.0138 ft/ft	Velocity head 0.12	

DP1 EXISTING SWALE Q100= 13.7 CFS

SEE TABLE 10-4 FOR MAXIMUM PERMISSIBLE VELOTIES FOR EARTHEN CHANNELS WITH VARIED GRASS LININGS AND SLOPES

7

The open channel flow calculator				
Select Channel Type: Triangle ✓	F T-→ Fb-→ Rectangle	z1 b z2 Jy Trapezoid		
Velocity(V)&Discharge(Q)	Select unit system:	Feet(ft) ✔		
Channel slope: .012 ft/ft	Water depth(y): 1.93	ft	Bottom W(b) ft	0
Flow velocity 4.4509 [ft/s	LeftSlope (Z1): 4	to 1 (H:V)	RightSlope (Z to 1 (H:V)	2): 4
Flow discharge 66.317 ft^3/s	Input n value 0.035	or select n		
Calculate!	Status: Calculation finish	ned	Reset	
Wetted perimeter 15.92	Flow area 14.9	ft^2	Top width(T)	15.44
Specific energy 2.24 [ft	Froude number 0.8		Flow status Subcritical flow	,
Critical depth 1.76 ft	Critical slope 0.0194	ft/ft	Velocity head	0.31

DP3 NATURAL CHANNEL Q100=65.3 cfs SEE SC150 TURF REINFORCEMENT MAT

The open channel flow calculator				
Select Channel Type: Trapezoid ✓	F→T→ F→b→ Rectangle	z1 Trapezoid	$\frac{1}{z_1} \frac{1}{z_2} \frac{1}{z_2}$ Triangle	
Velocity(V)&Discharge(Q)	Select unit system: Fe	eet(ft) 🗸		
Channel slope: 0.0145 ft/ft	Water depth(y): 0.91	ft	Bottom width(b) 2
Flow velocity 4.8339 ft/s	LeftSlope (Z1): 3	to 1 (H:V)	RightSlope (Z	2): 3
Flow discharge 20.8065 [ft^3/s	Input n value 0.025	or select n		
Calculate!	Status: Calculation finishe	ed	Reset	
Wetted perimeter 7.76	Flow area 4.3	ft^2	Top width(T)	7.46
Specific energy 1.27 ft	Froude number 1.12		Flow status Supercritical flo	w
Critical depth0.97 ft	Critical slope 0.0112	ft/ft	Velocity head	0.36

DP16 PROPOSED SWALE Q100= 20.8 CFS

SEE TABLE 10-4 FOR MAXIMUM PERM.SSIBLE **VELOTIES FOR EARTHEN CHANNELS WITH** VARIED GRASS LININGS AND SLOPES

7

TABLE 10-4 MAXIMUM PERMISSIBLE VELOCITIES FOR EARTH CHANNELS WITH VARIED GRASS LININGS AND SLOPES

EXPAND

Channel Slope	Lining	Permissible Mean Channel Velocity* (ft/sec)
0 - 5% DP1, DP16	Sodded grass	7
DP1, DP16	Bermudagrass	6
DP1, DP16	Reed canarygrass	5
DP1, DP16	Tall fescue	5
DP1, DP16	Kentucky bluegrass	5
DP1	Grass-legume mixture	4
	Red fescue	2.5
	Redtop	2.5
	Sericea lespedeza	2.5
	Annual lespedeza	2.5
	Small grains (temporary)	2.5
5 - 10% DP3	Sodded grass	6
DP3	Bermudagrass	5
DP3	Reed canarygrass	4
DP3	Tall fescue	4

Channel Slope	Lining	Permissible Mean Channel Velocity* (ft/sec)
DP3	Kentucky bluegrass	4
DP3	Grass-legume mixture	3
Greater than 10%	Sodded grass	5
	Bermudagrass	4
	Reed canarygrass	3
	Tall fescue	3
	Kentucky bluegrass	3
*For highly erodible soils, decrease permissible velocities by 25%.		
*Grass lined channels are dependent upon assurances of continuous growth and maintenance of grass.		

Material and Performance Specification Sheet

North American Green 14649 Highway 41 North Evansville, IN 47725 800-772-2040 FAX: 812-867-0247 www.nagreen.com

A **tensar**, Company

SC150 Erosion Control Blanket

The extended-term double net erosion control blanket shall be a machine-produced mat of 70% agricultural straw and 30% coconut fiber with a functional longevity of up to 24 months. (NOTE: functional longevity may vary depending upon climatic conditions, soil, geographical location, and elevation). The blanket shall be of consistent thickness with the straw and coconut evenly distributed over the entire area of the mat. The blanket shall be covered on the top side with a heavyweight photodegradable polypropylene netting having ultraviolet additives to delay breakdown and an approximate 0.63 x 0.63 (1.59 x 1.59 cm) mesh, and on the bottom side with a lightweight photodegradable polypropylene netting with an approximate 0.50 x 0.50 in (1.27 x 1.27 cm) mesh. The blanket shall be sewn together on 1.50 inch (3.81 cm) centers with degradable thread.

The SC150 shall meet requirements established by the Erosion Control Technology Council (ECTC) Specification and the US Department of Transportation, Federal Highway Administration's (FHWA) Standard Specifications for Construction of Roads and Bridges on Federal Highway Projects, FP-03 Section 713.17 as a type 3.B Extended-term Erosion Control Blanket.

The SC150 is also available with the DOT System[™], which consists of installation staple patterns clearly marked on the erosion control blanket with environmentally safe paint. The blanket shall be manufactured with a colored thread stitched along both outer edges (approximately 2-5 inches [5-12.5 cm] from the edge) as an overlap guide for adjacent mats.

Material Content				
Matrix	70% Straw Fiber	$0.35 \text{ lbs/vd}^2 (0.19 \text{ kg/m}^2)$		
	30% Coconut Fiber	0 15 lbs/yd2 (0.08 kg/m²)		
Nettings	Top – Heavyweight photodegradable with UV additives	$3.0 \text{ b}/1000 \text{ ft}^2 (1.47 \text{ kg/100 m}^2)$		
	Bottom - Lightweight Photodegradable	1.5 lb/1000 ft2 (0.73 kg/100 m ²)		
Thread	Degradable	1.0 10/1000 R- (0.73 kg/100 112)		

SC150 is available in the following standard roll sizes:

Width	6.67 ft (2.03 m)	16 ft (4 87 m)
Length	108 ft (32.92 m)	108 ft (32 92 m)
Weight ± 10%	44 lbs (19.95 kg)	105.6 lbs (47.9 kg)
Area	80.0 yd ² (66.9 m ²)	192 vd ² (165.5 m ²)

Index Value Properties:

Property	Test Method	Typical
Thickness	ASTM D6525	0.39 in (9.91 mm)
Resiliency	ECTC Guidelines	75%
Water Absorbency	ASTM D1117	285%
Mass/Unit Area	ASTM 6475	11.44 oz/vd² (388 o/m²)
Swell	ECTC Guidelines	30%
Smolder Resistance	ECTC Guidelines	Yes
Stiffness	ASTM D1388	1.11 oz-in
Light Penetration	ECTC Guidelines	8.7%
Tensile Strength – MD	ASTM D6818	146.6 lbs/ft (2.17 kN/m)
Elongation – MD	ASTM D6818	26.9%
Tensile Strength – TD	ASTM D6818	147.6 lbs/ft (2.19 kN/m)
Elongation – TD	ASTM D6818	25.2%

Performance Design Values:

Maximum Permissibl	e Shear Stress
Unvegetated Shear Stress	2.00 lbs/ft ² (96 Pa)
Unvegetated Velocity	8.00 ft/s (2.44 m/s)

Slope Design Data: C Factors			
	Slope Gradients (S)		
Slope Length (L)	≤ 3:1	3:1 - 2:1	≥ 2:1
≤ 20 ft (6 m)	0.001	0.048	0.100
20-50 ft	0.051	0.079	0.145
≥ 50 ft (15.2 m)	0.10	0.110	0.190

Bench Scale Testing* (NTPEP):

Test Method	Parameters	Results	
ECTC Method 2	50 mm (2 in)/hr for 30 min	SLR** = 5.47	
Rainfall	100mm (4 in)/hr for 30 min	SLR** = 5.67	
	150 mm (6 in)/hr for 30 min	SLR** = 5.88	
ECTC Method 3	Shear at 0.50 inch soil loss	2.72 lbs/ft ²	
Shear Resistance			
ECTC Method 4	Top Soil, Fescue, 21 day	538% improvement of	
Germination	incubation	biomass	
* Bench Scale tests should not be used for design purposes			
** Soil Loss Ratio = Soil loss with Bare Soil/Soil Loss with RECP (soil loss is based on regression analysis)			

Roughness Coefficients- Unveg.		
Flow Depth	Manning's n	
≤ 0.50 ft (0.15 m)	0.050	
0.50 – 2.0 ft	0.050 - 0.018	
≥ 2.0 ft (0.60 m)	0.018	

Product Participant of:

PROPOSED AND EXISTING DRAINAGE MAP & REFERENCE MAPS

E. \205321/DRAINACE \205331FDM-HISTORIC.dwg, 8/22/2015 7:53:29 AM, DWC To FDF.pc3

ARY MINEAUTY M		LANDARY ACSEACE WOOV REG. = 0.88 A UEN REG. = 0.10 A RELACE 05 = 4.5 cfs @ V 0100 = 6.3.3 cfs @ V 0100 = 6.3.3 cfs @ V ENERGENCY SPILLWAY ENERGENCY SPILLWAY
RPOORT - EMARN RUNOCF 3.000 No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. <th< th=""><th>1 1<th>0 400 SCALE: I' = 200'</th></th></th<>	1 1 <th>0 400 SCALE: I' = 200'</th>	0 400 SCALE: I' = 200'
FINAL DrAMACE Busin Line FINAL DrAMACE Busin Line PERAL DrAMACE Dram Line PERAL DRAMACE	1 1	AVLIER MPS FOR DAMMAGE PAPERESS DAVY. SEE SAMANG PLAN FOR APPROPRIATE GALONIC INFORMATICA.

PRINGS,CO 80908	8 PVC SANITARY SEWER 7210 15	M 2.53.27 .48 19 12 8" PVC SANITARY _ 9 SEWER	PLANNED 30" RCP AN AT DP11 AND DP*37 CONSTRUCTED WITH P BRUSH HILLS FILING N WATER 43 43 439	ID INLETS TO BE AINT IO.13E	A CONDONDERR	DRIVE
16 25 7200 7195	$ \begin{array}{c} $	7210	*UU 1.27 <u>.16</u> .41			
	EX 8" PVC			BASIN SUMMARY	DESIGN POINT SUMMARY	STORM SEWER SUMMARY
1/(1) (1200)	SEWER			AREA	DESIGN CONTRIBUTING	
) C TRACT A			BASIN (ACRES) Q ₅ Q ₁₀₀	POINT Q ₅ Q ₁₀₀ BASIN (S) STRUCTURE	
	NO 12*			*RR 4.20 8.0 17.0	1 4.9 13.7 **OS1 PROP 10' TYPE R SUMP INLET	*36 4.4 12.4 *24" RCP
				**0S1 4.44 4.9 13.7	**33 8.0 17.0 **RR *10' TYPE R SUMP INLET	*37 6.9 19.4 *24" RCP
				*00 29.11 22.0 51.0	**34 2.8 8.4 **SS *5' TYPE R SUMP INLET	1 4.9 13.7 18" RCP
			EX ROCKINGHAM DRIVE	*TT 5.05 5.7 13.0	*34A 36 155 POND D INFLOW TO POND D	2 27.7 65.31 36" RCP
				*UU 1.27 1.4 3.2	3 27.7 65.3 A, OS5C PROP 36" RCP FES	3 3.0 10.4 18" RCP
				***0S-5 46.10 14.0 32.0	4 3.0 10.4 J PROP 10' TYPE R SUMP INLET	4 1.1 2.7 18" RCP
				US5A 3.66 1.5 8.4	5 1.1 2.7 K PROP 5' TYPE R SUMP INLET	5 31.0 75.9 48" RCP
7200		HILLS FILING NO 12*		055C 29.00 25.5 57.0	6 9.2 22.2 OS5B D E SEE DB8 FOR CUMULATIVE FLOW	/ 9.2 22.2 24 RCP 8 1.9 22.2 24" RCP
#22 -				A 3.82 2.9 10.7		9 41.0 117.7 48" RCP
				B 8.31 5.6 20.8	7 1.9 22.2 F SEE DP8 FOR COMOLATIVE FLOW	10 7.0 13.7 24" RCP
			POND C EDB SUMMARY	B1 0.92 0.6 2.4	8 10.7 44.4 DP6, DP7 PROP DUAL 15' TYPE R SUMP INLET	11 7.0 13.7 24" RCP
EX 48" RCP AND 20'x20'x3' DEEP				C 11.80 9.2 28.6	9 13.8 34.4 G PROP DUAL 15' TYPE R AT-GRADE INLET	12 53.7 142.4 48" RCP
RIPRAP PAD			EPC/URBAN DRAINAGE EDB	E 0.49 2.3 4.1	10 14.5 36.2 I PROP DUAL 15' TYPE R AT-GRADE INLET	13 7.3 14.0 18 RCP
			WQ WATER SURFACE ELEV 7193.88	F 1.61 1.9 5.4	11 3.7 17.0 L, FLOWBY DP10 EX 15' TYPE R AT-GRADE INLET	#38 14.6 27.9 *30" RCP
			WQ VOLUME 1.839 AC-FT	G 12.20 14.0 34.8	*37 5.7 13.0 *TT EX 15' TYPE R AT-GRADE INLET	#15 3.7 13.5 *24" RCP
	NU		EURV WATER SURFACE ELEV 7195.65	H 10.78 11.9 29.7	12 11.9 29.7 H PROP DUAL 15' TYPE R AT-GRADE INELT	#16 17.4 39.7 *30" RCP
BASIN DESIGNATION			$\frac{100 - YR}{100 - YR} WATER SURFACE FLEV 7199.00$	J 3.90 3.0 10.4	M,FLOWBY DP9,	- #39 5.7 13.0 *24" RCP #17 22.8 51.3 *36" PCP
		(H)	100-YR VOLUME 11.583 AC-FT	К 0.75 1.1 2.7	FLOWBY DP11	18 6.0 12.4 18" RCP
$\begin{pmatrix} 2 \\ 1 25 \end{pmatrix}$ C5	FLARED END SECTION		SPILLWAY CREST ELEV 7199.00	L 3.37 3.8 9.5	14 10.3 34.8 C, OS5A SEE DP15 FOR CUMULATIVE FLOW	18.1 6.0 12.4 18" RCP
	CROSSPAN		TOP OF EMBANKMENT ELEV 7201.00	M 2.53 2.6 7.8	15 12.3 55.4 DP13, DP14 PROP DUAL 20' TYPE R SUMP INLET	19 11.9 24.8 30" RCP
ACRES C100			100-YR INFLOW 248.0 CFS	N 8.94 6.2 23.0	16 5.6 20.8 B PROP CDOT TYPE C INLET	20 34.4 75.3 42" RCP
		1" 100'	100-TR RELEASE 92.0 CFS		17 108.8 306.5 N, PR26 EX POND C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
PIPE RUN REFERENCE LABEL	ARROW	I = I U U				23 12.3 55.4 36" RCP
	EMERGENCY OVERFLOW					24 98.8 269.2 60" RCP
/6 Surface design point	DIRECTION					25 5.6 20.8 30" RCP
	PROPOSED FLOW DIRECTION					26 103.6 287.2 66" RCP
BASIN BOUNDARY	H.P.	0 50 100 200				#27 22.6 92.8 EX 48" RCP
	× HIGH POINT	Scale in Feet			PERART FOR DAINT RELIGIUME CHUNG NO 475" RECEARED BY OLAGON ENGINEERS AND STONE	
	L.P. LOW POINT			HILLS FILING NO.13E DRAINAGE MAP BAS	INS DD1, DD2, EE, FF, GG, HH, II, JJ AND KK FOR AREA DRAINAGE SUMMARY, BASIN ROUTING S	UMMARY AND STORM SEVER ROUTING SUMMARY.

HILLS FILING NO.13E DRAINAGE MAP BASINS DD1, DD2, EE, FF, GG, HH, II, JJ AND KK FOR AREA DRAINAGE SUMMARY, BASIN ROUTING SUMMARY AND STORM SEWER ROUTING SUMMARY.

**REVISED FROM"FINAL DRAINAGE REPORT FOR PAINT BRUSH HILLS FILING NO.13E" PREPARED BY CLASSIC ENGINEERS AND SURVEYORS, DATED SEPTEMBER 2018

EX STORM SEWER PIPE

STORM SEWER PIPE

***"FINAL DRAINAGE REPORT FOR PAINT BRUSH HILLS PHASE 2 (FILING NO.13)" PREPARED BY CLASSIC ENGINEERS AND SURVEYORS, REVISED JUNE 2008

#REVISED FLOWS AND/OR PIPE SIZE FROM "FINAL DRAINAGE REPORT FOR PAINT BRUSH HILLS FILING NO.14" PREPARED BY MS CIVIL CONSULTANTS, DATED DECEMBER, 2020

