PRELIMINARY/FINAL DRAINAGE REPORT FOR PAINT BRUSH HILLS FILING NO. 14 EL PASO COUNTY, COLORADO

DECEMBER 2020

Prepared for:

The Landhuis Company 212 N. Wahsatch Ave, Suite 301 Colorado Springs, CO 80903 (719) 635-3200

Prepared by:

102 E.Pikes Peak, 5th Floor Colorado Springs, CO 80903 (719) 955-5485

Project #10-014 PCD Project # SP206 & SF2024

PRELIMINARY/FINAL DRAINAGE REPORT FOR PAINT BRUSH HILLS FILING NO. 14

DRAINAGE PLAN STATEMENTS

ENGINEERS STATEMENT

The attached drainage plan and report was prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omission on my part in preparing this report.

Virgil A. Sanchez, P.E. #37160 For and on Behalf of M&S Civil Consultants, Inc

DEVELOPER'S STATEMENT

I, the developer have read and will comply with all the requirements specified in this drainage report and plan.

BY:_____

TITLE:_____ DATE:

ADDRESS: The Landhuis Company 212 N. Wahstach Ave, Suite 301 Colorado Springs, CO 80903

EL PASO COUNTY'S STATEMENT

Filed in accordance with the requirements of El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Manual, as amended.

DATE:

BY:______ Jennifer Irvine, P.E. County Engineer/ECM Administrator

CONDITIONS

PRELIMINARY/FINAL DRAINAGE REPORT FOR PAINT BRUSH HILLS FILING NO. 14

TABLE OF CONTENTS

PURPOSE	4
GENERAL LOCATION AND DESCRIPTION	4
SOILS	4
HYDROLOGIC CALCULATIONS	4
HYDRAULIC CALCULATIONS	5
FLOOD PLAIN STATEMENT	5
DRAINAGE CRITERIA	5
FOUR STEP PROCESS	5
EXISTING DRAINAGE CONDITIONS	5
PROPOSED DRAINAGE CONDITIONS	6
DETENTION POND PROVISIONS AND MAINTENANCE EROSION CONTROL	10
EROSION CONTROL	11
CONSTRUCTION COST OPINION	11
DRAINAGE AND BRIDGE FEES	11
SUMMARY	12
REFERENCES	13

APPENDIX

Vicinity Map Soils Map FIRM Panel W/Revised LOMR Hydrologic Calculations Hydraulic Calculations/EDB Calculations Grading Erosion Control Plan Reference Maps Proposed and Existing Drainage Maps

PRELIMINARY/FINAL DRAINAGE REPORT FOR PAINT BRUSH HILLS FILING NO. 14

PURPOSE

This document is intended to serve as the Preliminary and Final Drainage Report for Paint Brush Hills Filing No. 14. The purpose of this document is to identify and analyze the on and offsite drainage patterns and to ensure that post development runoff is routed through the site safely and in a manner that satisfies the requirements set forth by the El Paso County Drainage Criteria Manual. The proposed principal use for the site consists of infrastructure typically associated with single family residential developments. The majority of the site will consist of asphalt, curb, landscaping and an existing storm water quality facility (Pond C) located near the southwest boundary of the site. This document is also intended to show some of Paint Brush Hills Filing No. 14 onsite drainage (of approximately 6.72 acres,) will not adversely affect the capacity of the existing storm water quality facility (Pond D) in the "Preliminary Drainage Report for Paint Brush Hills Filing 13E (PDRPBH-13E) (Pre-Development Grading Plan)", prepared by Classic Consulting Engineers and Surveyors, submitted on February 2018.

GENERAL LOCATION AND DESCRIPTION

Paint Brush Hills Filing No. 14 is located in the northeast quarter of Section 26, Township 12 South, Range 65 West of the 6th P.M. in El Paso County, Colorado. The parcel is bound to the north by existing single family residential Paint Brush Hills Filing No.3 and to the south by existing single family residential Paint Brush Hills Filing No. 12. An existing utility corridor and single family residential subdivision Paint Brush Hills Filing No. 13E, is planned along the east boundary of the site. Along the west property line are two rural and undeveloped parcels. Generally, runoff produced by the site is directed south and southwest to an Extended Detention Basin (EDB) Pond C and subsequently to an existing swale tributary to the Falcon Drainage Basin. The site lies within the Falcon Drainage Basin.

The site consists of 88.631 acres which is presently undeveloped. Vegetation is sparse, consisting of native grasses with no trees onsite. The site has not experienced any overlot grading activities. Existing site terrain generally slopes from north to south at grade rates that vary between 1.0% and 4.0%.

The site is currently platted and zoned "RS-20,000 & RS-6000" for Residential Suburban. The proposed principal use for the site is single family residential. The majority of the lots shall consist of standard setbacks, landscaping and back and/or side lot swales typical for single family housing. An existing detention facility is located at the southwest boundary of the site and is to be upgraded upon development of the proposed Paint Brush Hills Filing No. 14 site.

SOILS

Soils for this project have been delineated by the map in the appendix, as Pring Coarse Sandy Loam (71) and is characterized as Hydrologic Soil Type "B". Soils in the study area are shown as mapped by S.C.S. in the "Soils Survey of El Paso County Area." Vegetation is sparse, consisting of native grasses and weeds.

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual and where applicable the Urban Storm Drainage Criteria Manual. The Rational Method was used to estimate stormwater runoff anticipated from design storms with 5-year and 100-year recurrence intervals.

HYDRAULIC CALCULATIONS

Hydraulic calculations were estimated using the Manning's Formula and the methods described in the El Paso County Storm Drainage Design Criteria manual. The relevant data sheets are included in the appendix of this report.

FLOODPLAIN STATEMENT

No portion of this site is within a designated F.E.M.A. floodplain as determined by the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel No. 08041C0535 G, effective date December 7, 2018. A FIRM Panel is included in the Appendix.

DRAINAGE CRITERIA

Step1

This drainage analysis has been prepared in accordance with the current El Paso County Drainage Criteria Manual and where applicable the City of Colorado Springs DCM Volume 1 dated May 2014 effective January 2015. Hydrologic calculations were performed to determine runoff quantities for the 5-year £ for ba s Step 4: Consider Need for Industrial and Commercial BMPs DCM n 3.2.1. У If a new development or significant redevelopment activity is planned for an industrial or 31, 20 commercial site, the need for specialized BMPs must be considered. Two approaches are described in the New Development BMP Factsheets: FOUR

- Covering of Storage/Handling Areas
 - Spill Containment and Control
 Other Specialized BMPs may also be required
 to

est

corner of the site will have roof drains directed to the front of the lot.

- Step 2 Stabilize Drainageways
tailwater riprap basin w
avoid erosion. Existing
at Design Point 17 (exis
dissipated energy and ve
flows have been restricte
on the downstream drainUpdate to match the four-step listed in ECM Appendix I Section
1.7.2Unresolved. Address Step 4 appropriately, this project is a
residential site not an industrial or commercial site. Are specialized
BMPs listed above required or being implemented?
- **Step 3 Provide Water Quality Capture Volume** The existing Pond C will be retrofitted to an Full Spectrum Extended Drainage Basin and will provide WQCV.
- **Step4** Consider Need for Industrial and Commercial BMP's This submittal provides a Preliminary Grading and Erosion Control plan. A Final GEC plan with BMP's in place shall be required with a Final Plat and Site Development applications. The proposed project will use silt fence, a vehicle tracking control pad, a concrete washout area, mulching and reseeding to mitigate the potential for erosion across the site.

EXISTING DRAINAGE CONDITIONS

The Paint Brush Hills Filing No. 14 site consists of 88.631 acres and is situated in the Falcon Drainage Basin with Chico Creek as receiving waters. This site was studied as part of the "Master Development Drainage Plan for Falcon Hills Development (MDDP)" prepared by Kiowa Engineering Corporation, approved November 2002. More recently the site was studied in the "Final Drainage Report for Paint

Brush Hills-Phase 2 (Filing No. 13, (FDRPBH-PH2-13))", prepared by Classic Consulting Engineers and Surveyors, rev.June 2008.

Existing Paint Brush Hills Filing No. 14 site and offsite Paint Brush Hills Filing No. 3 is currently undeveloped and the terrain generally slopes from north to southwest at grade rates that vary between 1.0% and 4.0%. Existing natural drainage swales route flows to an existing detention facility (Pond C) constructed as part of the "Paint Brush Hills Filing No. 12", see attached Historic Conditions Drainage Map from FDRPBH-PH2-13 and also refer to "Final Drainage Report for Paint Brush Hill Filing Nos. 10, 11 & 12 (FDRPBH-10,11,12)" prepared by Classic Consulting Engineers and Surveyors, rev. July 2003. See Historic Conditions Drainage Map in Drainage Maps section of this report. Offsite and onsite flows on Paint Brush Hills Filing No.14 are described as follows;

Historic Basin Descriptions

Basin OS-5, 46.1 acres, ($Q_5=35$ cfs, $Q_{100}=79.0$ cfs), consists of offsite existing Paint Brush Hills Filing No.3. Filing No.3 is a single family residential development with the average lot size of 3.5 acres. The percent impervious is approximately 11%. The west half of **Basin OS-5**, runoff enters the site as sheet flow. The east half of **Basin OS-5**, runoff is concentrated and enters the site via a natural swale.

Basin H-1, 92.3 acres, (Q_5 =42.0 cfs, Q_{100} =108.0 cfs), consists of undeveloped Paint Brush Hills Filing No.14. The terrain generally slopes from north to southwest at grade rates that vary between 1.0% and 4.0%. Existing natural drainage swales route flows to an existing detention facility (Pond C). Historic cumulative flows, from **Basin OS-5** and **Basin H-1** are Q_5 =68.0 cfs, Q_{100} =169.0 cfs. Runoff is released via an existing 48" RCP pipe to an existing swale.

Basin H-5, 55.6 acres, ($Q_5=32.0$ cfs, $Q_{100}=80.0$ cfs), consists of undeveloped Paint Brush Hills Filing No.13E. The terrain generally slopes from north to southwest at grade rates that vary between 1.0% and 4.0%. Existing natural drainage swales route flows to the south end of the basin. Approximately 6.0 acres of undeveloped Paint Brush Hills Filing No. 14 is located at the northeast corner of **Basin H-5**. Historic flows, from **Basin H-5** are $Q_5=32.0$ cfs, $Q_{100}=80.0$ cfs. Runoff is released via a pair of existing 36" RCP culverts located under existing Londonderry Drive and outfall to an existing swale.

PROPOSED DRAINAGE CHARACTERISTICS

General Concept Drainage Discussion

The following is a description of the offsite and onsite basins, offsite flows and the overall proposed drainage characteristics for the development of Paint Brush Hill Filing No. 14. These calculations have been provided to show that what is proposed will be adequate to convey flows when development occurs. Offsite **Basin ***OS-5** has been divided into 3 sub-basins as they pertain to the onsite proposed drainage characteristics. The following **Basin** description, **Design Points (DP)** and **Pipe Runs (PR)** were determined using the Rational Method since each individual basin is less than 100 acres and the combined acreage at any DP are also less than 130 acres. See drainage map in appendix for proposed conditions. This method offers a conservative approach to sizing swales and storm drains. Development of this site will not adversely affect the surrounding development and is compliance with the M.D.D.P. approved for this site.

The * before a basin, design point and pipe run callout denotes previously studied in the "Final Drainage Report for Paint Brush Hills Filing 13E (FDRPBH-13E)", prepared by Classic Consulting Engineers and Surveyors, submitted on September 2018. The ** before a basin callout denotes a revision to PDRPBH-13E. The *** before a basin callout denotes previously studied in the "Final Drainage Report for Paint Brush Hills-Phase 2 (Filing No. 13,(FDRPBH-PH2-13))", prepared by Classic Consulting Engineers and

Surveyors, submitted on rev. June 2008, specifically Basin ***OS-5. The # before a pipe run callout denotes, to be constructed with the Paint Brush Hills Filing No. 13E Street and Storm Sewer plans but the flows (slightly higher) have been adjusted by this report the Preliminary/Final Drainage Report for Paint Brush Hills Filing No. 14" prepared by MS Civil Consultants, dated December 2020.

Detailed Drainage Discussion

Basins Tributary to Detention Pon

Update Basin A per Parks comments and discussion with the design engineer on 2/24/11 this area will be redesigned.

Basin OS5C, 29.0 acres, (Q_5 =25.5 cfs, Q_{100} =57.0 cfs), consist of existing developed 3.5-acre properties and streets. Runoff produced by the offsite area, are routed via existing roadside swales to a larger natural swale which carries flows south towards the north boundary of the subject site.

Basin A, 0.5 acres, $(Q_5=0.4 \text{ cfs}, Q_{100}=1.4 \text{ cfs})$, consists of a proposed landscaped Tract. Developed flows within **Basin A** and offsite **Basin OS5C** are routed as surface runoff via a proposed 5' wide swale to **DP3** $(Q_5=25.7 \text{ cfs}, Q_{100}=58.1 \text{ cfs})$. The proposed 5' wide swale will be private and shall be maintained by the Paint Brush Hills Metropolitan District (see SC 250 Turf Reinforcement Mat in appendix). Surface runoff at **DP3** will be collected and conveyed via a 36" RCP FES and 36" RCP pipe (**PR2**) to **DP4**. In the event of clogging, flows at **DP3** will over top the embankment and shall be conveyed by a proposed swale, within a 20' storm drainage easement to **DP4**.

Basin J, 7.2 acres, ($Q_5=5.6$ cfs, $Q_{100}=19.1$ cfs), consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to **DP4** which will be collected by a proposed 15' Type R sump inlet. The intercepted flow ($Q_5=5.6$ cfs, $Q_{100}=19.1$ cfs) will combine with flows from **PR2** and be routed west via a 48" RCP pipe (**PR3**, $Q_5=30.4$ cfs, $Q_{100}=74.0$ cfs). In the event of clogging, flows at **DP4** will over top the high point and be routed via curb and gutter to **DP10**.

Basin K, 0.8 acres, ($Q_5=1.1$ cfs, $Q_{100}=2.7$ cfs), consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to **DP5** which will be collected by a proposed 5' Type R sump inlet. The intercepted flow ($Q_5=1.1$ cfs, $Q_{100}=2.7$ cfs) will be routed west via an 18" RCP pipe (**PR4**, $Q_5=1.1$ cfs, $Q_{100}=2.7$ cfs) to **PR5** ($Q_5=31.2$ cfs, $Q_{100}=76.0$ cfs). In the event of clogging, flows at **DP5** will over top the high point and be routed via curb and gutter to **DP10**.

Basin OS5B, 13.4 acres, (Q_5 =4.6 cfs, Q_{100} =25.8 cfs), consist of existing developed 3.5-acre properties and streets. Runoff produced by the offsite area, will sheet flow into **Basin D**.

Basin D, 5.2 acres, (Q_5 =3.8 cfs, Q_{100} =14.0 cfs), consists of a proposed single family residential lots. Cumulative developed flows within **Basin D** and offsite **Basin OS5B** are routed via curb and gutter and side lot swales to **DP6**.

Basin E, 0.5 acres, $(Q_5=2.3 \text{ cfs}, Q_{100}=4.1 \text{ cfs})$, consists of a proposed local residential street. Surface runoff from **Basin E** will combine with flows from **Basin OS5B** and **Basin D** and will be routed via curb and gutter to **DP6** which will be collected by a proposed 15' Type R sump inlet. The cumulative flow from **DP6** and **DP7** at **DP8** is $Q_5=10.7 \text{ cfs}$, $Q_{100}=44.4$. The 100-year flow will be split between the two inlets. The intercepted flow at **DP6** ($Q_5=9.3 \text{ cfs}$, $Q_{100}=22.2$) will be routed west via a 24'' RCP pipe (**PR7**, $Q_5=9.2 \text{ cfs}$, $Q_{100}=22.2 \text{ cfs}$) to **PR9**. In the event of clogging, flows at **DP6** will over top the high point in Country Manor Drive and be routed to **DP12**.

Basin F, 1.6 acres, $(Q_5=1.9 \text{ cfs}, Q_{100}=5.4 \text{ cfs})$, consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to **DP7** which will be collected by a proposed 15' Type R sump inlet. The cumulative flow from **DP6** and **DP7** at **DP8** is

 $Q_5=10.7$ cfs, $Q_{100}=44.4$. The 100-year flow will be split between the inlets. The intercepted flow at **DP7** ($Q_5=1.9$ cfs, $Q_{100}=22.2$) will be routed west via a 24" RCP pipe (**PR8**, $Q_5=1.9$ cfs, $Q_{100}=22.2$ cfs) to **PR9**. In the event of clogging, flows at **DP7** will over top the high point in Country Manor Drive and be routed to **DP12**.

Basin G, 12.2 acres, $(Q_5=14.0 \text{ cfs}, Q_{100}=34.8 \text{ cfs})$, consists of proposed single family residential lots and proposed local residential streets. Surface runoff from **Basin G** is routed via curb and gutter to **DP9** ($Q_5=13.8 \text{ cfs}, Q_{100}=34.4 \text{ cfs}$) which a portion of the flow will be collected by proposed dual 15' Type R atgrade inlets. The intercepted flow ($Q_5=7.0 \text{ cfs}, Q_{100}=13.7 \text{ cfs}$ per side) will be routed south via (2) 24" RCP pipes (**PR10, PR11**, $Q_5=7.0 \text{ cfs}, Q_{100}=13.7 \text{ cfs}$ per side) and will combine with **PR9** in **PR12** ($Q_5=53.9 \text{ cfs}, Q_{100}=142.5 \text{ cfs}$). In the event of clogging, flows at **DP9** will be routed via curb and gutter to **DP15**.

Basin I, 12.7 acres, (Q_5 =14.5 cfs, Q_{100} =36.2 cfs), consists of proposed single family residential lots and proposed local residential streets. Surface runoff from **Basin I** is routed via curb and gutter to **DP10** which a portion of the flows will be collected by proposed dual 15' Type R at-grade inlets. The intercepted flow (Q_5 =7.3 cfs, Q_{100} =14.0 cfs per side) will be routed west via a 18" RCP pipe (**PR13**, Q_5 =7.3 cfs, Q_{100} =14.0 cfs) to **PR14**. Cumulative flows in the proposed 30" RCP pipe (**PR14**, Q_5 =14.6 cfs, Q_{100} =27.9 cfs) will be routed south to an existing 30" RCP pipe **PR#38** (Q_5 =14.6 cfs, Q_{100} =27.9 cfs). In the event of clogging, flows at **DP10** will be routed via curb and gutter to **DP11**. **PR#38 is** to be constructed as part of the Paint Brush Hills Filing No. 13E infrastructure, which is to precede construction of the subject filing.

Basin L, 3.4 acres, $(Q_5=3.8 \text{ cfs}, Q_{100}=9.5 \text{ cfs})$, consists of proposed single family residential lots and proposed local residential streets. Flowby from **DP10** and surface runoff from **Basin L** will be routed via curb and gutter to **DP11** ($Q_5=3.7 \text{ cfs}, Q_{100}=17.0 \text{ cfs}$) which a portion of the flows will be collected by an existing 15' Type R at-grade inlet. The intercepted flow will be routed east via a 24" RCP pipe (**PR#15**, $Q_5=3.7 \text{ cfs}, Q_{100}=13.5 \text{ cfs}$) and then south to an existing 30" RCP pipe (**PR#16**, $Q_5=17.4 \text{ cfs}, Q_{100}=39.7 \text{ cfs}$). In the event of clogging, flows at **DP11** will be routed via curb and gutter to **DP15**. Pipe's **PR#15** and **PR#16** are to be constructed as part of the Paint Brush Hills Filing No. 13E infrastructure.

Basin *TT, 5.1 acres, $(Q_5=5.7 \text{ cfs}, Q_{100}=13.0 \text{ cfs})$, consists of proposed single family residential lots and proposed local residential streets. **Basin *TT** is to be constructed with Paint Brush Hills Filing No. 13E, however surface runoff is to be captured and routed to Pond C. Surface runoff is routed via curb and gutter to **DP*37** ($Q_5=5.7 \text{ cfs}, Q_{100}=13.0 \text{ cfs}$) which will be collected by an existing 15' Type R at-grade inlet. The intercepted flow will be routed west via an existing 24" RCP pipe (**PR#39**, $Q_5=5.7 \text{ cfs}, Q_{100}=13.0 \text{ cfs}$). The combined flows from **PR#16** and **PR#39** will be routed west to a existing 36" RCP pipe (**PR#17**, $Q_5=22.8 \text{ cfs}, Q_{100}=51.3 \text{ cfs}$). In the event of clogging, flows at **DP*37** will be routed via curb and gutter into the existing Paint Brush Hills Filing No. 12 subdivision. The combined flows from **DP*37** and flow from **Basin *UU** is ($Q_5=1.4 \text{ cfs}, Q_{100}=3.2 \text{ cfs}$) and will be discussed in the Paint Brush Hills Filing No. 13E report. Pipe Run **PR#16** and **PR#39** to be constructed as part of the Paint Brush Hills Filing No. 13E infrastructure.

Basin H, 10.8 acres, $(Q_5=11.9 \text{ cfs}, Q_{100}=29.7 \text{ cfs})$, consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to **DP12** which will be collected by proposed dual 15' Type R at-grade inlets. The intercepted flow ($Q_5=6.0 \text{ cfs}, Q_{100}=12.4 \text{ cfs}$ per side) will be routed east and west via a (2) 18" RCP pipes (**PR18-18.1**, $Q_5=6.0 \text{ cfs}, Q_{100}=12.4 \text{ cfs}$) and then south to a proposed 30" RCP pipe (**PR19**, ($Q_5=11.9 \text{ cfs}, Q_{100}=24.8 \text{ cfs}$). The combined flows from **PR17** and **PR19** will be routed west to a proposed 42" RCP pipe (**PR20**, $Q_5=34.4 \text{ cfs}, Q_{100}=75.3 \text{ cfs}$). The combined flows from **PR12** and **PR20** will be routed west to a proposed 54" RCP pipe (**PR21**, $Q_5=86.8 \text{ cfs}, Q_{100}=214.5 \text{ cfs}$). In the event of clogging, flows at **DP12** will be routed via curb and gutter to **DP15**.

Basin M, 2.53 acres, ($Q_5=2.6$ cfs, $Q_{100}=7.8$ cfs), consists of proposed single family residential lots and proposed local residential streets. Flowby from **DP9**, **DP11**, **DP12** and surface runoff from **Basin M** will

be routed via curb and gutter to **DP13** ($Q_5=2.1$ cfs, $Q_{100}=21.3$ cfs). See **Basin** C for discussion of intercepted flow.

Basin OS5A, 3.7 acres, (Q₅=1.5 cfs, Q₁₀₀=8.4 cfs), consist of existing developed 3.5-acre properties and streets. Runoff produced by the offsite area, will sheet flow onto **Basin** C which will be routed via side lot swales and curb and gutter to **DP14**.

Basin C, 11.8 acres, $(Q_5=9.2 \text{ cfs}, Q_{100}=28.6 \text{ cfs})$, consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to **DP14** ($Q_5=10.3$ cfs, Q_{100} =34.8 cfs). The combined flows from **DP13** and **DP14** will be captured by proposed dual 20' Type R sump inlets at **DP15** ($Q_5=12.3$ cfs, $Q_{100}=55.4$ cfs). The intercepted flow will be routed south via a 30" RCP pipe (**PR22**, $Q_5=6.1$ cfs, $Q_{100}=1$ Submittal 2 proposes a swale along the rear of the lots 7 $(Q_5=12.3 \text{ cfs}, Q_{100}=55.4 \text{ cfs}).$ through 18 to address review 1 comment. However, this proposed 60" RCP pipe (PR24, concrete lined forebay in Pond C swale is conveying up to 20 cfs across multiple lots, locate the swale within a tract and identify who is responsible for Basin B, 8.31 acres, (Qs = 5.6 c maintenance. As designed, homeowners will install fencing residential lots. Minimal impr that would impede flow.

collected by a 2' wide swale (see Table 10-4 in appendix) to **DP16** a CDOT type C inlet. The intercepted flow will be routed east via a 30" RCP pipe (**PR25**, $Q_5=5.6$ cfs, $Q_{100}=20.8$ cfs). The cumulative flows from PR24 and PR 25 will combine and be routed south to a proposed 66" RCP pipe (**PR26**, $Q_5=103.8$ cfs, $Q_{100}=287.3$ cfs) which will outfall into a proposed concrete lined forebay in Pond C.

Basin N, 8.94 acres, $(Q_5=6.2 \text{ cfs}, Q_{100}=23.0 \text{ cfs})$, consists of backyards of proposed single family residential lots, backyards of existing residential lots from Paint Brush Hills Filing No. 12 and existing Pond C. The combined surface runoff and PR26 will be collected at DP17 (existing Pond C, Q₅=109.0 cfs, Q_{100} =306.7 cfs). The existing Pond C will require modifications in order to function as an Full Spectrum Extended Detention Basin (EDB). These modifications will be addressed in the Street and Storm Sewer Construction drawings for Paint Brush Hills Filing No. 14. The proposed Detention Pond C functions to provide full spectrum detention and water quality for runoff calculated onsite and offsite flows. The pond is designed to treat approx 137.6 acres, and provide 1.839 ac-ft of WQCV storage, 4.673 ac-ft of EURV and 11.583 ac-ft of 100-year storage. The forebay, trickle channel micropool, outlet structure and pipe have been designed per the UDFCD manual using the MHFD Detention v4 03 workbook. The detention pond will be private and shall be maint: 100% of the development site must be treated for hall be granted to the owner and El Paso (water quality. Provide permanent stormwater vate maintenance agreement document shall quality control measure for basin B. tlet structure, flows at DP17 will over top s it previously was designed. Per the Paint I Unresolved. Update narrative to identify the 20' rip rap pad (D₅₀ = 18") has been constr specific criteria (See ECM I.7.1.C.1.a.) that allows ate. The existing riprap pad will dissipate e rate exclusion from permanent WQ for this particular from **Pond C** (**#PR27**, $Q5=2\mathbb{Z}.6$ cfs ar ing subbasin and include justification in the narrative. swale. The flows exiting the site are and

Water Quality Capture Volume (WQCV) Standard.

In the narrative identify basin B1's percentage of Q100=161 cfs. The proposed discharge the subdivision.

infrastructure or affect water quality.

1.

Basin Tributary to Adja

The control measures is designed to provide treatment and/or infiltration of the WQCV and:

eam

100% of the applicable development site is captured, except the County may exclude a. up to 20 percent, not to exceed 1 acre, of the applicable development site area when the County has determined that it is not practicable to capture runoff from portions of the site that will not drain towards control measures. In addition, the County must also determine that the implementation of a separate control measure for that portion of the site is not practicable (e.g., driveway access that drains directly to street).

Basin B1, 0.92° acres, (Q₄) family residential lots and routed to drain to Keynes to the adjacent property.]

Basins Tributary to Adjacent Detention Pond D

As previously mentioned in the Purpose section of this report, approximately 5.99 acres of Paint Brush Hills Filing No. 14 runoff will be tributary to Paint Brush Hills Filing 13E (Pond D). The **Basin** description will show that the changes in drainage patterns will not adversely affect downstream infrastructure. **Basin **OS1** was initially part of **Basin **SS** and **Basin *OO** in the "Final Drainage Report for Paint Brush Hills Filing NO. 13E (FDRPBH-13E)". Due to site layout and grading **Basin **OS1** was created and accounted for this drainage report. Other than the basins describe below, the information provided (areas, C values, times of concentration, intensity) by the FDRPBH-13E report was used to quantify the flows in the proposed drainage spreadsheets for **Design Point 34A**, (Q₅=51 cfs, Q₁₀₀=113 cfs).

Basin ****SS**, 3.01 acres, ($Q_5=2.8$ cfs, $Q_{100}=8.4$ cfs), consists of a planned single family residential lots and proposed local residential streets. The developed flows within the **Basin** ****SS** are routed via curb and gutter to a planned 6' Type R sump inlet at **DP******34** ($Q_5=2.8$ cfs, $Q_{100}=8.4$ cfs). Due to changes in the grading and drainage patterns the acreage and surface runoff has been reduced from the FDRPBH-13E report ($Q_5=14.0$ cfs, $Q_{100}=29.0$ cfs). The combined flows from **DP*****33** and **DP******34** ($Q_5=6.9$ cfs, $Q_{100}=19.4$ cfs) will be routed east, as planned in the PDRPBH-13E report, via a planned 30" RCP pipe and outlet into Basin OO (within an overhead electric utility easement). See the FDRPBH-13E report and construction plans, by Classic Engineers and Surveyors for additional details.

Basin **OS1, 4.44 acres, $(Q_5=4.9 \text{ cfs}, Q_{100}=13.7 \text{ cfs})$, consists of a planned single family residential lots and proposed local residential streets. The developed flows within the **Basin **OS1** are routed via curb and gutter to a planned 10' Type R sump inlet at **DP1** ($Q_5=4.9 \text{ cfs}, Q_{100}=13.7 \text{ cfs}$). Due to changes in the grading and drainage patterns the acreage and surface runoff has been increased but has been offset by acreage taken away from Basins ******SS and *****OO. The flows from **DP1** will be routed east via a proposed 18" RCP pipe (**PR1**)and outlet into Basin OO and an existing swale(within an overhead electric utility easement, see Table 10-4 in appendix). Caution will be taken working under the power lines and no amount of fill is anticipated as **PR1** and outfall are installed. A rip rap apron will be constructed to dissipate energy and prevent local scour at the outlet. In the event of clogging or total inlet failure, flows at **DP1** will over top the curb and gutter and outfall into overhead electric utility easement. See Paint Brush Hills Filing No. 14 Street and Storm Sewer construction plans, provided by M&S Civil Consultants for details. The proposed discharge from the subject site will not adversely affect the downstream infrastructure or affect water quality.

DETENTION POND PROVISIONS AND MAINTENANCE

Detention Pond C, has combined upstream developed runoff of Q5=109.0 cfs and Q100=306.7 cfs. The existing Pond C will require modifications in order to function as an Full Spectrum Extended Detention Basin (EDB). The proposed Detention Pond functions to provide detention and water quality for runoff calculated onsite. These modifications will be addressed in the Street and Storm Sewer Construction drawings for Paint Brush Hills Filing No. 14. The pond is designed to treat approx 137.6 acres, and provide 1.839 ac-ft of WQCV storage, 4.673 ac-ft of EURV and 11.583 ac-ft of 100-year storage. The forebay, trickle channel micropool, outlet structure and pipe have been designed per the UDFCD manual using the MHFD Detention v4.03 workbook. The detention pond will be private and shall be maintained by the Paint Brush Hills Metropolitan District. Access shall be granted to the owner and El Paso County for maintenance of the private detention pond. A private maintenance agreement document shall accompany the submittal. In the event of clogging of the outlet structure, flows at **DP17** will over top the emergency spillway and outfall onto an existing 20' x 20' rip rap pad (D50 = 18'') has been constructed and is in general conformance with the present release rate. The existing riprap pad will dissipate energy and prevent local scour at the outlet. The peak release rate from **Pond C** (**#PR27**, Q5=22.6 cfs and

Q100=92.8 cfs ~an existing 48" RCP) outfalls into an existing swale. The flows exiting the site are less than the flows as stated in the MDDP of Q5=22 cfs and Q100=161 cfs. Flows will not adversely affect the downstream infrastructure.

EROSION CONTROL

It is the policy of the El Paso County that we submit a grading and erosion control plan with the drainage report. Proposed erosion control blanket, silt fence, vehicle traffic control, and concrete washout area are proposed as erosion control measures.

CONSTRUCTION COST OPINION

Private Drainage Facilities NON-Reimbursable:

Item	Description	Qua	ntity	Unit	Cost	Cost
1.	18"RCP	151	LF	\$40	/LF	\$6,040.00
2.	24"RCP	46	LF	\$50	/LF	\$2,300.00
3.	30"RCP	674	LF	\$65	/LF	\$43,810.00
4.	36"RCP	340	LF	\$75	/LF	\$25,500.00
5.	42"RCP	261	LF	\$85	/LF	\$22,185.00
6.	48"RCP	2455	LF	\$150	/LF	\$368,250.00
7.	54"RCP	171	LF	\$200	/LF	\$34,200.00
8.	60"RCP	285	LF	\$250	/LF	\$71,250.00
9.	18"FES	1	EA	\$245	/EA	\$245.00
10.	36"FES	1	EA	\$775	/EA	\$775.00
11.	60"END TREATEMENT	1	EA	\$15000/	/EA	\$15,000.00
	HEADWALL/W ING WALLS					
12.	5' TYPE R SUMP INLET	3	EA	\$4000	/EA	\$12,000.00
13.	10' TYPE R SUMP INLET	1	EA	\$4700	/EA	\$4,700.00
14.	15' TYPE R SUMP INLET	1	EA	\$6000	/EA	\$6,000.00
15.	15'TYPE R ATGRADE INLET	6	EA	\$6000	/EA	\$36,000.00
16.	3'x3' CDOT TYPE C	1	EA	\$4000	/EA	\$4,000.00
17.	TYPE I MH	12	EA	\$6000	/EA	\$72,000.00
4.	EDB Pond	1	EA	\$20,000	/EA	\$20,000.00
5.	Pond Outlet MOD TYPE D	1	EA	\$15,000	/EA	\$15,000.00
6.	RIPRAP OUTFALL TYPE L	27	CY	\$50	/CY	\$1,350.00
7.	RIPRAP SPILLWAY TYPE M	384	CY	\$65	/CY	\$24,960.00
						T-4-10 0705 5(5 00

Total \$ \$785,565.00

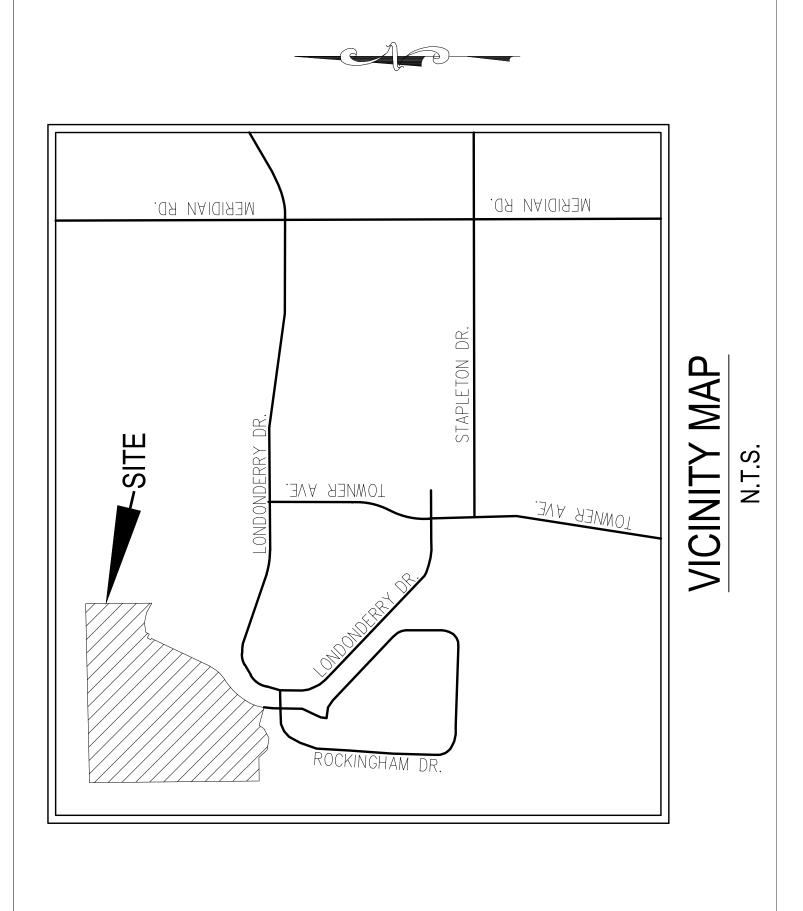
DRAINAGE & BRIDGE FEES

Drainage and Bridge Fees for the **Paint Brush Hills Filing No. 14** site are as follows:

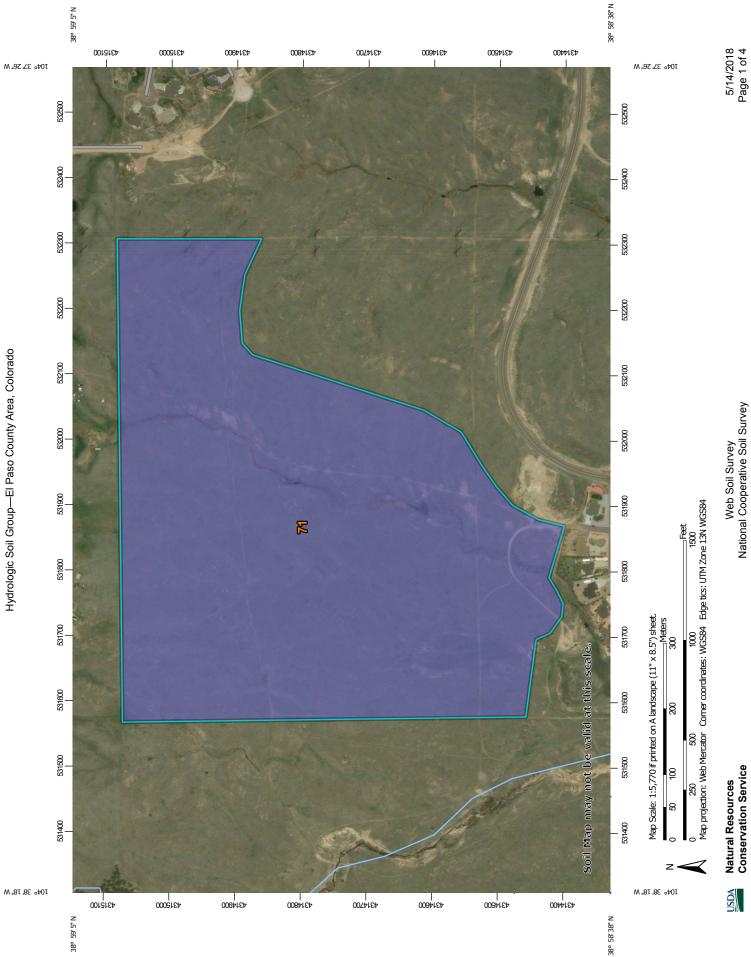
					Falcon Drainage		
	Acres		Imperviousness		Basin Fee		
2020 Drainage Fees:	88.631	Х	36.8%	Х	\$30,807.00	=	\$1,004,807.52
2020 Bridge Fees:	88.631	Х	36.8%	х	\$4,232.00	=	<u>\$138,031.79</u>
						Total	\$1,142,839.31

M &S Civil Consultants, Inc. (M &S) cannot and does not guarantee the construction cost will not vary from these opinions of probable costs. These opinions represent our best judgment as design professionals familiar with the construction industry and this development in particular. The above is only an estimate of the facility cost and drainage basin fee amounts in 2020.

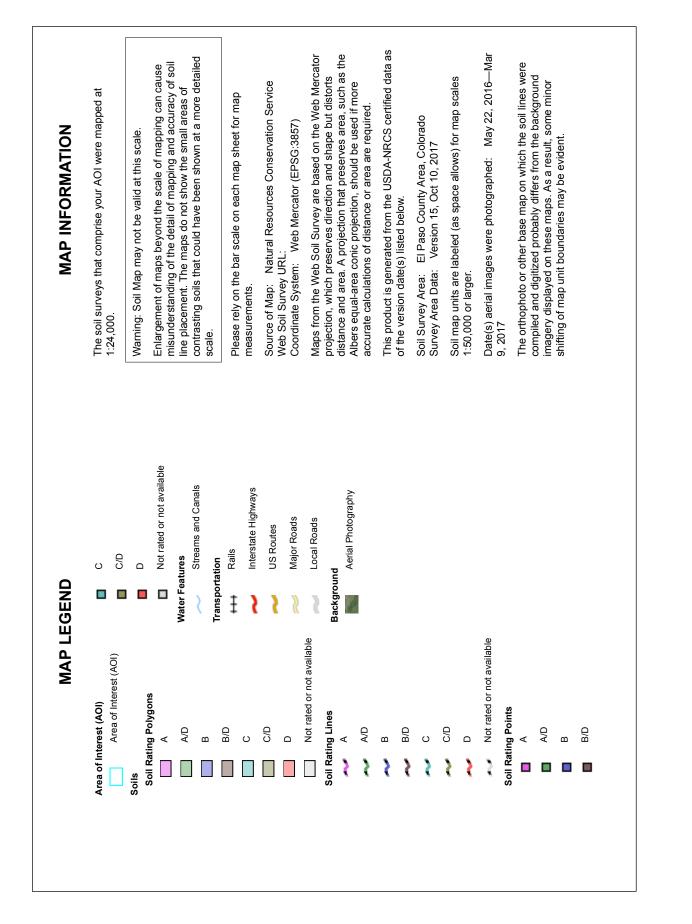
SUMMARY


Development of the Paint Brush Hills Filing No. 14 site shall not adversely affect adjacent or downstream properties per this final drainage report. The proposed drainage facilities will adequately convey, detain and route runoff from tributary onsite and existing offsite flows to the Chico Creek receiving waters. Full Spectrum Detention and Water Quality Pond will be used to discharge developed flows into the Chico Creek receiving waters per the Urban Drainage criteria flow rates, which are at or less than the historic flow. Care will be taken to accommodate overland emergency flow routes on site and temporary drainage conditions. The development of the Paint Brush Hills Filing No. 14 project shall not adversely affect adjacent or downstream property. The proposed discharge from the subject site will not adversely affect the downstream infrastructure or affect water quality.

REFERENCES


- 1.) "El Paso County and City of Colorado Springs Drainage Criteria Manual".
- 2.) "Urban Storm Drainage Criteria Manual"
- 3.) SCS Soils Map for El Paso County.
- 4.) Flood Insurance Rate Map (FIRM), Federal Emergency Management Agency, Effective date March 17, 1997.
- 5.) "Master Development Drainage Plan for Falcon Hills Development" prepared by Kiowa Engineering Corporation, approved November 2002.
- 6.) "Final Drainage Report for Paint Brush Hill Filing Nos. 10, 11 & 12" prepared by Classic Consulting Engineers and Surveyors, rev. July 2003.
- 7.) "Final Drainage Report for Paint Brush Hills-Phase 2 (Filing No. 13)", prepared by Classic Consulting Engineers and Surveyors, submitted on rev. June 2008.
- 8.) "Final Drainage Report for Paint Brush Hills Filing 13E", prepared by Classic Consulting Engineers and Surveyors, submitted on September 2018.

APPENDIX


VICINITY MAP

SOILS MAP

Hydrologic Soil Group-El Paso County Area, Colorado

Natural Resources Conservation Service

NSDA

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	87.6	100.0%
Totals for Area of Intere	est		87.6	100.0%

Description

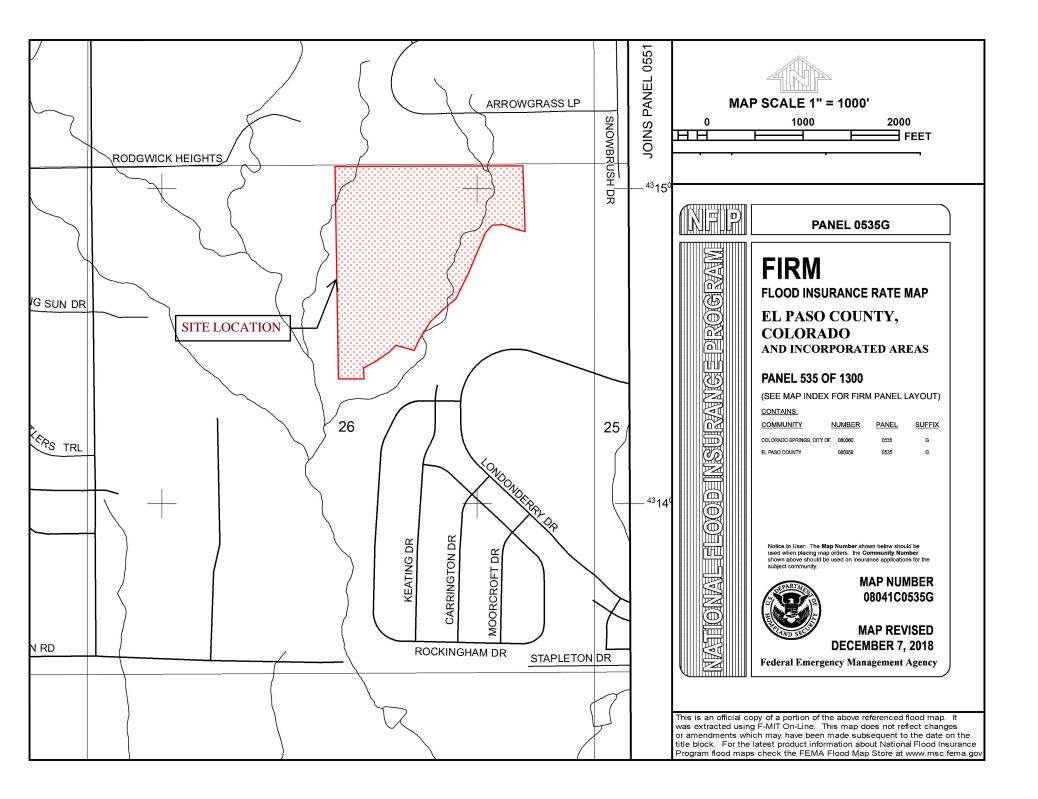
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.


Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

FIRM PANEL

HYDROLOGIC CALCULATIONS

PAINTBRUSH HILLS FILING NO. 14 FINAL DRAINAGE CALCULATIONS (Area Runoff Coefficient Summary)

			IMPERV	IOUS AR	EA/STREET	LANDSCA	PED/UNDE	EVELOPED	RE	SIDENTI	4L	WEI	GHTED
BASIN	TOTAL AREA (Sq Ft)	TOTAL AREA (Acres)	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	C ₅	C ₁₀₀
*RR	182952	4.00	0.00	0.90	0.96	0.00	0.16	0.41	4.20	0.30	0.50	0.30	0.50
		4.20	0.00	0.90	0.96	0.00	0.16	0.41	4.20	0.30	0.50	0.30	0.50
**SS	131167	3.01	0.00	0.90		0.00		-		0.30	0.50		
**0S1	193584	4.44	0.00	0.2.0	0.96	29.11	0.16	0.41	4.44	0.30	0.00	0.30	0.50
*00	1268037	29.11	0.00	0.90	0.96	_,	0.16	0.41	0.00		0.46	012.0	0.41
*TT	219978	5.05	0.00	0.90	0.96	0.00	0.16	0.41	5.05	0.35	0.45	0.35	0.45
*UU	55321	1.27	0.00	0.90	0.96	0.00	0.16	0.41	1.27	0.35	0.45	0.35	0.45
***0S-5	2008124	46.10	0.00	0.90	0.96	0.00	0.16	0.41	46.10	0.30	0.40	0.30	0.40
OS5A	159430	3.66	0.00	0.90	0.96	0.00	0.16	0.41	3.66	0.11	0.37	0.11	0.37
OS5B	585306	13.44	0.00	0.90	0.96	0.00	0.16	0.41	13.44	0.11	0.37	0.11	0.37
OS5C	1263404	29.00	0.00	0.90	0.96	0.00	0.16	0.41	29.00	0.30	0.40	0.30	0.40
A	22798	0.52	0.01	0.90	0.96	0.51	0.16	0.41	0.00	0.22	0.46	0.18	0.42
В	361915	8.31	0.00	0.90	0.96	0.00	0.16	0.41	8.31	0.20	0.44	0.20	0.44
B1	40214	0.92	0.00	0.90	0.96	0.00	0.16	0.41	0.92	0.16	0.41	0.16	0.41
С	514010	11.80	0.00	0.90	0.96	0.00	0.16	0.41	11.80	0.26	0.48	0.26	0.48
D	226401	5.20	0.00	0.90	0.96	0.00	0.16	0.41	5.20	0.20	0.44	0.20	0.44
Ε	21364	0.49	0.49	0.90	0.96	0.00	0.16	0.41	0.00	0.20	0.44	0.90	0.96
F	70330	1.61	0.00	0.90	0.96	0.00	0.16	0.41	1.61	0.30	0.50	0.30	0.50
G	531342	12.20	0.00	0.90	0.96	0.00	0.16	0.41	12.20	0.35	0.52	0.35	0.52
Н	469586	10.78	0.00	0.90	0.96	0.00	0.16	0.41	10.78	0.35	0.52	0.35	0.52
Ι	554956	12.74	0.00	0.90	0.96	0.00	0.16	0.41	12.74	0.35	0.52	0.35	0.52
J	313307	7.19	0.00	0.90	0.96	0.00	0.16	0.41	7.19	0.22	0.45	0.22	0.45
K	32632	0.75	0.00	0.90	0.96	0.00	0.16	0.41	0.75	0.36	0.54	0.36	0.54
L	146850	3.37	0.00	0.90	0.96	0.00	0.16	0.41	3.37	0.36	0.54	0.36	0.54
М	110207	2.53	0.00	0.90	0.96	0.00	0.16	0.41	2.53	0.27	0.48	0.27	0.48
N	389341	8.94	0.00	0.90	0.96	3.19	0.16	0.41	5.75	0.22	0.46	0.20	0.44

* Values taken from "Final Drainage Report for Paint Brush Hills Filing 13E" (*FDRPBH-13E) prepared by Classic Consulting Engineers and Surveyors, dated Sept 2018

Calculated by: <u>GT</u> Date: <u>11/20/2020</u> Checked by: VAS

** Revised from "Preliminary Drainage Report for Paint Brush Hills Filing 13E" (**PDRPBH13E) prepared by Classic Consulting Engineers and Surveyors, dated Feb 2018

*** "Final Drainage Report for Paint Brush Hills-Phase 2 (Filing 13)" (FDRPBH-PH2-13) prepared by Classic Consulting Engineers and Surveyors, revised June 2008

PAINTBRUSH HILLS FILING NO. 14 FINAL DRAINAGE CALCULATIONS

(Area Drainage Summary)

From Area Runoff Coef	ficient Summa	ry			OVE	RLAND		STRE	ET / CH	ANNEL F	LOW	Time o	f Travel	INTENS	SITY *	TOTAL	FLOWS
BASIN	AREA TOTAL	C ₅	C ₁₀₀	C ₅	Length	Height	T _C	Length	Slope	Velocity	T _t	TOTAL	CHECK	I ₅	I ₁₀₀	Q5	Q ₁₀₀
	(Acres)	From DCM	f Table 5-1		(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
					Pı	roposed	Area Dro	ainage S	Summa	ry							
*RR	4.20	0.30	0.50	0.25												8.0	17.0
** <i>SS</i>	3.01	0.30	0.50	0.25	170	3.4	16.5	800	3.9%	6.9	1.9	18.4	15.4	3.1	5.6	2.8	8.4
**0S1	4.44	0.30	0.50	0.30	100	5	8.5	616	1.0%	2.0	5.1	13.6	14.0	3.7	6.2	4.9	13.7
*00	29.11	0.16	0.41	0.16												22.0	51.0
* <i>TT</i>	5.05	0.35	0.45	0.25	180	3.6	17.0	150	1.5%	4.3	0.6	17.6	11.8	3.2	5.7	5.7	13.0
*UU	1.27	0.35	0.45	0.25	180	3.6	17.0	475	2.5%	5.5	1.4	18.4	13.6	3.1	5.6	1.4	3.2
***OS-5	46.10	0.30	0.40	0.30												14.0	32.0
OS5A	3.66	0.11	0.37	0.11	100	2	14.2	527	1.5%	1.8	4.8	19.0	13.5	3.7	6.2	1.5	8.4
OS5B	13.44	0.11	0.37	0.11	100	2	14.2	1684	1.5%	1.8	15.3	29.5	19.9	3.1	5.2	4.6	25.8
OS5C	29.00	0.30	0.40	0.30	100	2	11.5	2110	1.0%	2.0	17.6	29.1	22.3	2.9	4.9	25.5	57.0
A	0.52	0.18	0.42	0.18	100	5	9.8	569	4.3%	3.1	3.1	12.8	13.7	3.8	6.3	0.4	1.4
В	8.31	0.20	0.44	0.20	100	3	11.3	1063	3.2%	2.7	6.6	17.9	16.5	3.4	5.7	5.6	20.8
B1	0.92	0.16	0.41	0.16	100	3	11.8	265	2.6%	3.2	1.4	13.2	12.0	3.9	6.5	0.6	2.4
С	11.80	0.26	0.48	0.26	100	3	10.6	2030	2.6%	3.2	10.6	21.1	21.8	3.0	5.0	9.2	28.6
D	5.20	0.20	0.44	0.20	100	4	10.3	593	2.0%	2.1	4.7	14.9	13.9	3.6	6.1	3.8	14.0
Ε	0.49	0.90	0.96	0.90	10	0.2	0.9	471	2.0%	2.8	2.8	5.0	12.7	5.2	8.7	2.3	4.1
F	1.61	0.30	0.50	0.30	60	1.2	8.9	362	2.0%	2.8	2.1	11.0	12.3	4.0	6.7	1.9	5.4
G	12.20	0.35	0.52	0.35	100	2	10.8	1381	2.8%	3.3	6.9	17.7	18.2	3.3	5.5	14.0	34.8
Н	10.78	0.35	0.52	0.35	100	2	10.8	1543	2.1%	2.9	8.9	19.6	19.1	3.2	5.3	11.9	29.7
Ι	12.70	0.35	0.52	0.35	100	2	10.8	1309	2.1%	2.9	7.5	18.3	17.8	3.3	5.5	14.5	36.2
J	7.19	0.22	0.45	0.22	100	2	12.6	799	1.9%	2.7	4.9	17.5	15.0	3.5	5.9	5.6	19.1
K	0.75	0.36	0.54	0.36	72	1.4	9.1	277	1.6%	2.5	1.8	10.9	11.9	4.0	6.7	1.1	2.7
L	3.37	0.36	0.54	0.36	75	1.5	9.2	1802	2.1%	2.9	10.4	19.6	20.4	3.1	5.2	3.8	9.5
М	2.53	0.27	0.48	0.27	100	2	11.9	318	2.1%	2.9	1.8	13.8	12.3	3.8	6.4	2.6	7.8
N	8.94	0.20	0.44	0.20	100	2	12.9	902	3.2%	3.6	4.2	17.1	15.6	3.5	5.8	6.2	23.0
*Values taken from "Final Dr	rainage Rep	ort for Pair	nt Brush H	ills Filing	13E" (*FD	RPBH13E)	prepared by	Classic Co.	nsulting Er	ngineers an	d Surveyor	s, dated Sept	2018	Calcul	ated by:	GT	

*Values taken from "Final Drainage Report for Paint Brush Hills Filing 13E" (*FDRPBH13E) prepared by Classic Consulting Engineers and Surveyors, dated Sept 2018 ** Revised from "Preliminary Drainage Report for Paint Brush Hills Filing 13E" (**PDRPBH13E) prepared by Classic Consulting Engineers and Surveyors, dated Feb 2018

Date: 11/20/2020 ked by: VAS

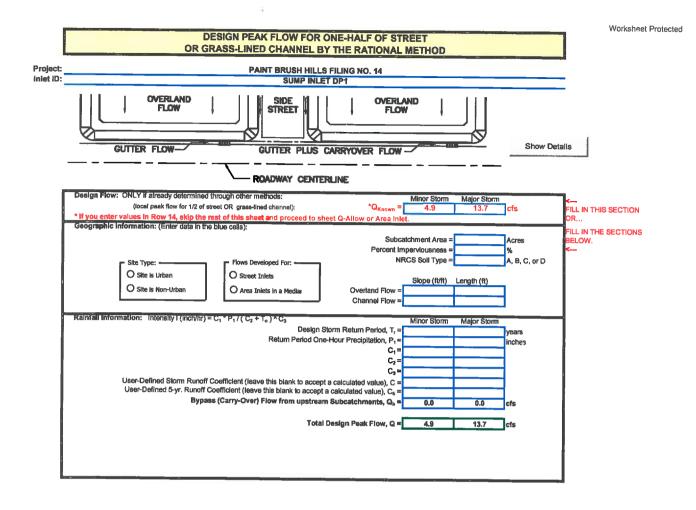
** Revised from "Preliminary Drainage Report for Paint Brush Hills Filing 13E" (**PDRPBH13E) prepared by Classic Consulting Engineers and Surveyors, dated Feb 20 *** "Final Drainage Report for Paint Brush Hills-Phase 2 (Filing 13)" (FDRPBH-PH2-13) prepared by Classic Consulting Engineers and Surveyors, revised June 2008

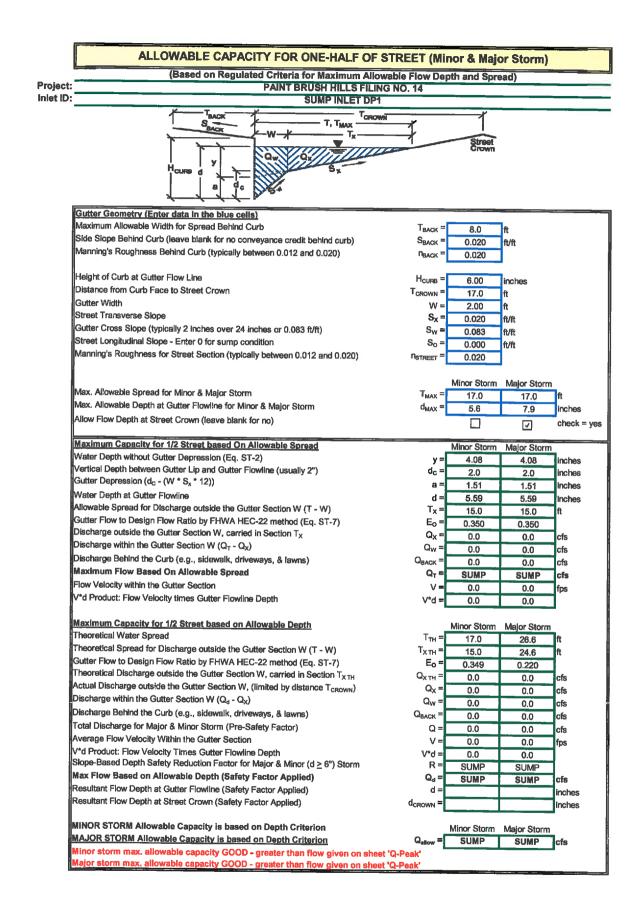
		F	INA							ATIO	NS						
				(B			ting	Sum					-				
	From Area Runoff Coefficient Summary					RLAND				NNEL FLO		Time of Travel (T_t)		SITY *		FLOWS	
SIGN POINT	CONTRIBUTING BASINS	CA5	CA ₁₀₀	C ₅	Length (ft)	Height (ft)	T _C (min)	Length (ft)	Slope (%)	Velocity (fps)	T _t (min)	TOTAL (min)	I ₅ (in/hr)	I ₁₀₀ (in/hr)	Q5 (c.f.s.)	Q ₁₀₀ (c.f.s.)	COMMENTS
1	**OS1	1.33	2.22	'OSE	D DRA	INAGE	BASL	N KOUI	INGS	UMMAK	Y	13.6	3.7	6.2	4.9	13.7	PROP 10' SUMP TYPE R INLET
1		1.55	2.22									15.0	3.7	0.2	4.9	13.7	REV **PDRPBH13E
																	W/18" RCP
*33	*RR	1.26	2.10									14.9	3.5	5.9	8.0	17.0	*6' SUMP TYPE R INLET
																	*PDRPBH13E
																	*W/24" RCP
**34	**SS	0.90	1.51									18.4	3.1	5.6	2.8	8.4	*6' SUMP TYPE R INLET
																	**PDRPBH13E *W/30" RCP
3	A	0.09	0.22									22.3	2.9	4.9	25.7	58.1	*W/30" RCP PROP 36" RCP FES
5	OS5C	8.70	11.60									22.0	2.7		20.7	50.1	rkor 50 ker res
		8.79	11.82														
4	J	1.58	3.24									15.0	3.5	5.9	5.6	19.1	PROP 15' SUMP TYPE R INLET
																	W/24" RCP
5	К	0.27	0.40									10.9	4.0	6.7	1.1	2.7	PROP 5' SUMP TYPE R INLET
																	W/18" RCP
6	OS5B	1.48	4.97									19.9	3.1	5.2	9.2	40.2	PROP 15' SUMP TYPE R INLET
0	D	1.04	2.29												7.2	40.2	W/24" RCP
	E	0.44	0.47														
		2.96	7.73														
7	F	0.48	0.81									11.0	4.0	6.7	1.9	5.4	PROP 15' SUMP TYPE R INLET
																	W/24" RCP
8	DP 6 & 7	3.44	8.54									19.9	3.1	5.2	10.7	44.4	PROP DUAL 15' SUMP TYPE R INLET
0	Dr 0 & /	3.44	0.34									19.9	5.1	5.2	10.7	44.4	100-YEAR
																22.2	FLOWS SPLIT @ DP8
9	G	4.27	6.34									18.2	3.2	5.4	13.8	34.4	PROP DUAL 15' AT-GRADE TYPE R INLE
																	W/24" RCPS
																	FLOWS SPLIT @ DP9
10	I	4.45	6.60									17.8	3.3	5.5	14.5	36.2	PROP DUAL 15' AT-GRADE TYPE R INLE
																	W/18" RCP & 30" RCP FLOWS SPLIT @ DP10
11	L	1.21	1.82									20.4	3.1	5.1	3.7	17.0	EX. 15' AT-GRADE TYPE R INLET
	Flowby DP10	0.00	1.49														W/24" RCP
		1.21	3.31														
*37	*TT	1.77	2.27									11.8	3.2	5.7	5.7	13.0	EX. 15' AT-GRADE TYPE R INLET
																	W/24" RCP
12	н	3.77	5.61									19.1	3.2	5.3	11.9	29.7	FLOWS SPLIT @ DP12 PROP DUAL 15' AT-GRADE TYPE R INLE'
12	п	5.11	5.01									. /.1	5.2	5.5	11.9	29.1	W/18" RCP & 30" RCP
																	FLOWS SPLIT @ DP12
13	М	0.68	1.21									20.4	3.1	5.1	2.1	21.3	SEE DP15 FOR CUMMULATIVE FLOW
	FLOWBY DP9	0.00	1.35														
	FLOWBY DP12	0.00	0.90														
	FLOWBY DP11	0.00	0.68														
14	С	3.07	4.15									21.8	3.0	5.0	10.3	34.8	SEE DP15 FOR CUMMULATIVE FLOW
17	OS5A	0.40	1.35									21.0	5.0	2.0	10.5	54.0	SEE DITO FOR COMMOLATIVE FLOW
		3.47	7.02														
15	DP13	0.68	4.15									21.8	3.0	5.0	12.3	55.4	PROP DUAL 20' SUMP TYPE R INLET
	DP14	3.47	7.02														W/30" & 36"RCP
		4.15	11.16								_						FLOWS SPLIT @ DP15
16	В	1.66	3.66									16.5	3.4	5.7	5.6	20.8	PROP CDOT TYPE C INLET
17	N	1.78	3.95									22.3	2.9	4.9	109.0	306.7	EX. POND C
	PR26	35.50	58.54														
		37.27	62.49														
* Values taken	from "Final Drainage Report for Pa	aint Brush Hil	ls Filing 13	E" (*FD	RPRH13E) prepared	by Classic	Consulting	Engineers	and Surveyo	rs dated S	Sentember 2018	Calcu	lated by:	0	T	

PAINTBRUSH HILLS FILING NO. 14 FINAL DRAINAGE CALCULATIONS (Storm Sewer Routing Summary)

					Inten	sity*	Fl	ow	PIPE SIZE
PIPE RUN	Contributing Pipes/Design Points	Equivalent CA 5	Equivalent CA 100	Maximum T _C	I_5	I 100	Q 5	Q 100	
*36	PDRPBH-13E DP33	1.26	2.10	14.9	3.5	5.9	4.4	12.4	*24" RCP
*37	DP**34, DP*33	2.16	3.61	18.4	3.2	5.4	6.9	19.4	*30" RCP
1	DP1	1.33	2.22	13.6	3.7	6.2	4.9	13.7	18" RCP
2	DP3	8.79	11.82	22.3	2.9	4.9	25.7	58.1	36" RCP
3	DP4, PR2	10.38	15.06	22.3	2.9	4.9	30.4	74.0	48" RCP
4	DP5	0.27	0.40	10.9	4.0	6.7	1.1	2.7	18" RCP
5	PR3, PR4	10.65	15.46	22.3	2.9	4.9	31.2	76.0	48" RCP
7	DP6	2.96	4.27	19.9	3.1	5.2	9.2	22.2	24" RCP
8	DP7	0.48	4.27	19.9	4.0	5.2	1.9	22.2	24" RCP
9	PR5, PR7, PR8	14.09	24.00	22.3	2.9	4.9	41.2	117.8	48" RCP
10	1/2 DP9 CAPTURE	2.17	2.52	18.2	3.2	5.4	7.0	13.7	24" RCP
11	1/2 DP9 CAPTURE	2.17	2.52	18.2	3.2	5.4	7.0	13.7	24" RCP
12	PR9, PR10, PR11	18.43	29.04	22.3	2.9	4.9	53.9	142.5	48" RCP
13	1/2 DP 10 CAPTURE	2.24	2.55	17.8	3.3	5.5	7.3	14.0	18" RCP
14	1/2 DP 10 CAPTURE, PR13	4.48	5.10	17.8	3.3	5.5	14.6	27.9	30" RCP
#38	PR14	4.48	5.10	17.8	3.3	5.5	14.6	27.9	*30" RCP
#15	DP 11 CAPTURE	1.22	2.63	20.4	3.1	5.1	3.7	13.5	*24" RCP
#16	#PR38, #PR15	5.70	7.73	20.4	3.1	5.1	17.4	39.7	*30" RCP
#39	DP*37	1.77	2.27	11.8	3.2	5.7	5.7	13.0	*24" RCP
#17	PR#16, PR#39	7.47	10.00	20.4	3.1	5.1	22.8	51.3	*36" RCP
18	1/2 DP12	1.89	2.34	19.1	3.2	5.3	6.0	12.4	18" RCP
18.1	1/2 DP12	1.89	2.34	19.1	3.2	5.3	6.0	12.4	18" RCP
19	PR18, PR18.1	3.78	4.68	19.1	3.2	5.3	11.9	24.8	30" RCP
20	PR#17, PR19	11.25	14.68	20.4	3.1	5.1	34.4	75.3	42" RCP
21	PR12, PR20	29.68	43.72	22.3	2.9	4.9	86.8	214.5	54" RCP
22	1/2 DP15	2.08	5.58	21.8	3.0	5.0	6.1	27.7	30" RCP
23	1/2 DP15, PR22	4.15	11.16	21.8	3.0	5.0	12.3	55.4	36" RCP
24	PR21, PR23	33.84	54.88	22.3	2.9	4.9	98.9	269.3	60" RCP
25	В	1.66	3.66	16.5	3.4	5.7	5.6	20.8	30" RCP
26	PR24, PR25	35.50	58.54	22.3	2.9	4.9	103.8	287.3	66" RCP
#27	DP 17	POND C OL	JTFALL RESTRI	CTED FLOW F	ROM MHF	D SHT	22.6	92.8	EX 48" RCP

* Values taken from "Final Drainage Report for Paint Brush Hills Filing 13E" (*FDRPBH13E) prepared by Classic Consulting Engineers and Surveyors, dated September 2018 # Values adjusted from FDR PBH 14

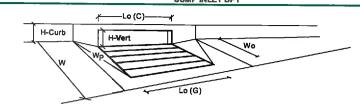

DP - Design Point EX - Existing Design Point

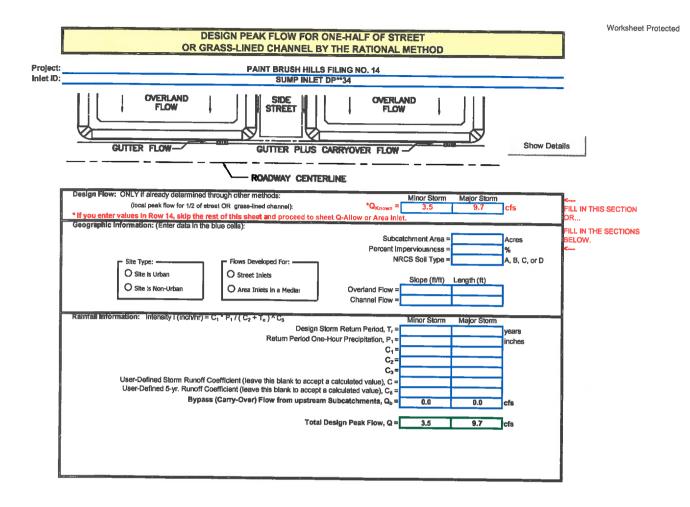

FB- Flow By from Design Point INT- Intercepted Flow from Design Point

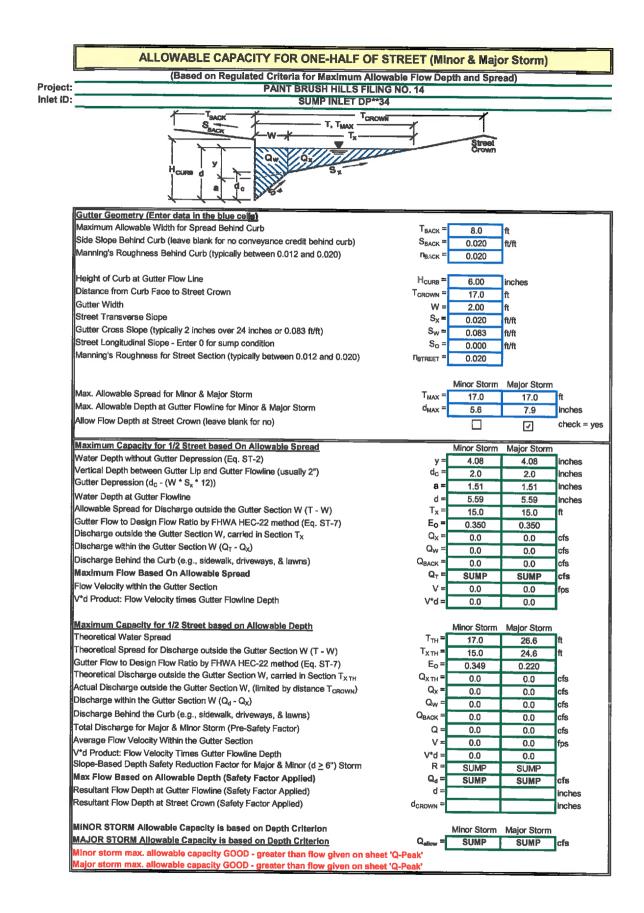
Calculated by: Date: 11/20/2020 Checked by: VAS <u>GT</u> HYDRAULIC CALCULATIONS / EDB WQCV CALCULATIONS

FINAL DRAINAGE REPORT CODOT Type R Inlet Calculations - Sump Condition Urban Local Roadway-50' Pavement-6" Vertical Cub Maximum allowable depth for MINOR (0.43') & MAJOR (0.65') storm Urban Local Roadway-50' Pavement-6" Vertical Cub Maximum allowable depth for MINOR (0.43') & MAJOR (0.65') storm Urban Local Roadway-50' Pavement-6" Vertical Cub Maximum allowable depth for MINOR (0.43') & MAJOR (0.65') storm Inlet Length Storm Gene Convolutente/200-5146)///12 Inlet Length Storm Gene Convolutente/200-5146)///12 Gene 0.43 8 Gene Convolutente/200-5146)///12 Gene 0.43 Storm Gene 0.43 Gene 0.43 Storm Gene 0.43 Gene 0.43 Storm Gene 0.43 Gene 0.43 <th colspa<="" th=""><th></th><th>PAIN</th><th>TBRI</th><th>STIH HIS</th><th>PAINTBRUSH HILLS FILING NO. 14</th><th></th></th>	<th></th> <th>PAIN</th> <th>TBRI</th> <th>STIH HIS</th> <th>PAINTBRUSH HILLS FILING NO. 14</th> <th></th>		PAIN	TBRI	STIH HIS	PAINTBRUSH HILLS FILING NO. 14	
DOT Type R Inlet Calculati Urban Local Roadway-50' ROW-30' Pa Maximum allowable depth for MINOR (0.4 Maximum allowable depth for MINOR (0.4 Allon 0.66 0.43 6.1 Q5 0.43 Qw=CwNwLeD^3/2 Q100 0.66 9.7 Q5 0.43 6.1 Q100 0.66 11.6 Q100 0.66 15.4 Q100 0.66 19.3 Q100 0.66 19.3 Q100 0.66 19.3 Q100 0.66 232 Q100 0.66 233.2 Q100 0.66 233.2 Q100 0.66 233.2 Q100 0.66 233.2 Q100 0.66 34.7 Q100		F	INAI	DRAINAG	E REPORT		
Urban Local Roadway-50' ROW-30' Pa Maximum allowable depth for MINOR (0.4 Storm Depth Eqn. 7-31 Q5 0.43 Qw=CwNwLeD^3/2 Q100 0.66 9.7 0.43 Q100 0.66 11.6 11.6 Q100 0.66 14.2 10.2 Q100 0.66 19.3 6.1 Q100 0.66 233.2 10.2 Q100 0.66 233.2 15.2 Q100 0.66 230.9 16.2 Q100 0.66 230.9 16.2 Q100 0.66 230.9 16.2 Q100 0.66 34.7 16.2 Q100 0.66 34.7 20.3 Q100 0.66 34.7 20.3	(CDO	T Type	R In	let Calculati	ions - Sump Condit	ion)	
Storm Depth Eqn. 7-31 $Q5$ 0.43 $QweCwNweD^{3/2}$ $Q5$ 0.43 $QweCwNweD^{3/2}$ $Q100$ 0.66 9.7 $Q100$ 0.66 9.7 $Q100$ 0.66 11.6 $Q100$ 0.66 112.2 $Q100$ 0.66 23.2 $Q100$ 0.66 34.7 $Q20$ 0.43 16.2 $Q100$ 0.66 34.7 $Q100$ 0.66 34.7		Urban Maximur	Local Ro n allowabl	adway-50' ROW-30' P e depth for MINOR (0.	avement-6" Vertical Curb 43') & MAJOR (0.66') storm		
Qas Qas Qas CurvaleDrazz Q5 0.43 5.1 5.1 Q5 0.43 6.1 9.7 Q5 0.43 6.1 6.1 Q100 0.66 9.7 6.1 Q100 0.66 11.6 11.6 Q100 0.66 15.4 11.5 Q100 0.66 15.4 10.2 Q100 0.66 15.4 10.2 Q100 0.66 19.3 14.2 Q100 0.66 23.2 2 Q100 0.66 23.2 14.2 Q100 0.66 23.3 15.2 Q100 0.66 23.0 16.2 Q100 0.66 23.0 16.2 Q100 0.66 30.9 16.2 Q100 0.66 34.7 16.2 Q100 0.66 34.7 16.2 Q100 0.66 34.7 20.3 Q1	Inlet Length	Storm	Depth	Eqn. 7-31	Eqn. 7-32	Eqn. 7-29	
Q5 0.43 5.1 Q100 0.66 9.7 Q5 0.43 6.1 Q5 0.43 6.1 Q100 0.66 11.6 Q100 0.66 11.6 Q100 0.66 11.6 Q100 0.66 15.4 Q100 0.66 15.4 Q100 0.66 19.3 Q100 0.66 19.3 Q100 0.66 23.2 Q100 0.66 27.0 Q5 0.43 16.2 Q100 0.66 30.9 Q100 0.66 34.7 Q5 0.43 16.2 Q5 0.43 18.3 Q5 0.43 20.3 Q				Qw=CwNwLeD^3/2	Qo=CoNo(LeHc)(2g(D-0.5Hc))^1/2	Qm=Cm(QwQo)^1/2	
Q100 0.66 9.7 8.6 6.1 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.1 6.8 6.1 6.8 6.1 6.8 6.1 6.8 6.1 6.8 6.1 6.1 6.1 9.1 <t< th=""><th>5</th><th>Q5</th><th>0.43</th><th>5.1</th><th>5.7</th><th>5.0</th></t<>	5	Q5	0.43	5.1	5.7	5.0	
Q6 0.43 6.1 6.8 $1.6.8$ 0.43 6.1 6.8 10.3 6.8 10.3 6.8 10.3 6.8 10.3 6.1 6.8 10.3 6.1 9.1	5	Q100	0.66	9.7	3.6	8.5	
Q100 0.66 11.6 10.3 $Q5$ 0.43 8.1 9.1 $Q100$ 0.66 15.4 13.8 $Q100$ 0.66 15.4 13.8 $Q100$ 0.66 19.3 11.4 $Q100$ 0.66 19.3 17.2 $Q100$ 0.66 23.2 20.7 $Q100$ 0.66 23.2 20.7 $Q100$ 0.66 23.2 20.7 $Q100$ 0.66 23.2 20.7 $Q100$ 0.66 27.0 24.1 $Q100$ 0.66 29.0 24.1 $Q100$ 0.66 30.9 27.5 $Q100$ 0.66 30.9 27.5 $Q100$ 0.66 34.7 31.0 $Q100$ 0.66 34.7 34.4	9	Q5	0.43	6.1	6.8	6.0	
Q5 0.43 8.1 9.1 Q100 0.66 15.4 13.8 13.8 Q100 0.66 15.4 13.8 13.8 Q5 0.43 10.2 11.4 13.8 Q100 0.66 19.3 17.2 17.2 Q100 0.66 23.2 20.7 20.7 Q100 0.66 23.2 20.7 Q100 0.66 23.2 20.7 Q100 0.66 27.0 24.1 Q100 0.66 29.0 24.1 Q100 0.66 29.0 24.1 Q100 0.66 29.0 24.1 Q100 0.66 29.0 27.5 Q100 0.66 30.9 27.5 Q100 0.66 30.9 27.5 Q100 0.66 34.7 31.0 Q100 0.66 34.7 31.0 Q100 0.66 34.7 31.0 Q100 0.66 34.7 34.4	9	Q100	0.66	11.6	10.3	10.2	
Q100 0.66 15.4 13.8 $Q5$ 0.43 10.2 11.4 $Q5$ 0.43 10.2 11.4 $Q100$ 0.66 19.3 17.2 $Q100$ 0.66 23.2 20.7 $Q100$ 0.66 23.2 20.7 $Q100$ 0.66 23.2 20.7 $Q100$ 0.66 23.2 20.7 $Q100$ 0.66 27.0 24.1 $Q100$ 0.66 29.0 24.1 $Q100$ 0.66 29.0 24.1 $Q100$ 0.66 29.0 24.1 $Q100$ 0.66 29.0 24.1 $Q100$ 0.66 30.9 27.5 $Q100$ 0.66 30.9 27.5 $Q100$ 0.66 34.7 31.0 $Q100$ 0.66 34.7 31.0 $Q100$ 0.66 34.7 31.0 $Q100$ 0.66 38.6 34.7	ω	Q5	0.43	8.1	9.1	8.0	
Q5 0.43 10.2 11.4 Q100 0.66 19.3 17.2 Q5 0.43 12.2 13.7 Q5 0.43 12.2 13.7 Q100 0.66 23.2 20.7 Q5 0.43 14.2 16.0 Q5 0.43 14.2 16.0 Q100 0.66 27.0 24.1 Q100 0.66 27.0 24.1 Q100 0.66 29.0 24.1 Q100 0.66 29.0 24.1 Q100 0.66 30.9 27.5 Q100 0.66 30.9 27.5 Q100 0.66 34.7 31.0 Q100 0.66 34.7 31.0 Q100 0.66 38.6 34.4	Ø	Q100	0.66	15.4	13.8	13.6	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	Q5	0.43	10.2	11.4	10.0	
Q6 0.43 12.2 13.7 Q100 0.66 23.2 20.7 Q5 0.43 14.2 16.0 Q5 0.43 14.2 16.0 Q100 0.66 27.0 24.1 Q5 0.43 15.2 17.1 Q5 0.43 15.2 17.1 Q6 0.66 29.0 24.1 Q100 0.66 29.0 27.5 Q100 0.66 34.7 31.0 Q100 0.66 34.7 31.0 Q100 0.66 38.6 34.4	10	Q100	0.66	19.3	17.2	17.0	
Q100 0.66 23.2 20.7 20.7 Q5 0.43 14.2 16.0 Q5 0.43 14.2 16.0 Q100 0.66 27.0 24.1 Q5 0.43 15.2 17.1 Q5 0.43 15.2 17.1 Q6 29.0 24.1 17.1 Q6 0.43 16.2 17.1 Q100 0.66 29.0 25.8 Q100 0.66 30.9 25.8 Q100 0.66 30.9 27.5 Q100 0.66 34.7 31.0 Q100 0.66 34.7 31.0 Q100 0.66 38.6 34.4	12	Q5	0.43	12.2	13.7	12.0	
Q5 0.43 14.2 16.0 Q100 0.66 27.0 24.1 Q5 0.43 15.2 17.1 Q5 0.43 15.2 17.1 Q100 0.66 29.0 24.1 Q5 0.43 15.2 17.1 Q100 0.66 29.0 25.8 Q5 0.43 16.2 18.2 Q100 0.66 30.9 27.5 Q100 0.66 34.7 31.0 Q5 0.43 20.3 20.5 Q100 0.66 34.7 31.0 Q100 0.66 38.6 34.4	12	Q100	0.66	23.2	20.7	20.3	
	14	Ő2	0.43	14.2	16.0	14.0	
	14	Q100	0.66	27.0	24.1	23.7	
Q100 0.66 29.0 25.8 Q5 0.43 16.2 18.2 Q100 0.66 30.9 27.5 Q5 0.43 18.3 20.5 Q5 0.43 18.3 27.5 Q5 0.43 18.3 20.5 Q100 0.66 34.7 31.0 Q5 0.43 20.3 34.7 Q100 0.66 34.7 31.0 Q5 0.43 20.3 34.7 Q100 0.66 38.6 34.4	15	ő	0.43	15.2	17.1	15.0	
Q5 0.43 16.2 18.2 Q100 0.66 30.9 27.5 Q5 0.43 18.3 20.5 Q100 0.66 34.7 31.0 Q5 0.43 20.3 34.7 Q6 0.43 20.3 34.7 Q5 0.43 38.6 34.4	15	Q100	0.66	29.0	25.8	25.4	
Q100 0.66 30.9 27.5 Q5 0.43 18.3 20.5 Q100 0.66 34.7 31.0 Q5 0.43 20.3 22.8 Q5 0.43 20.3 31.0 Q100 0.66 38.6 34.4	16	ő	0.43	16.2	18.2	16.0	
Q5 0.43 18.3 20.5 Q100 0.66 34.7 31.0 Q5 0.43 20.3 22.8 Q100 0.66 38.6 34.4	16	Q100	0.66	30.9	27.5	27.1	
Q100 0.66 34.7 31.0 Q5 0.43 20.3 22.8 Q100 0.66 38.6 34.4	18	Q5	0.43	18.3	20.5	18.0	
Q5 0.43 20.3 22.8 Q100 0.66 38.6 34.4	18	Q100	0.66	34.7	31.0	30.5	
Q100 0.66 38.6 34.4	20	ŝ	0.43	20.3	22.8	20.0	
	20	Q100	0.66	38.6	34.4	33.9	

		Table 7-	Table 7-7. Coefficients for various inlets in sumps	us inlets in sumps	
Inlet Type	Nw	ş	No	ပိ	Cm
CDOT Type 13 Grate	0.7	3.3	0.43	0.6	0.93
Denver No. 16 Grate	0.73	3.6	0.31	0.6	0.9
Curb Opening for Type					
13/No. 16 Combination	-	3.7	~	0.66	0.86
CDOT Type R Curb					
Opening	1.	3.6	7	0.67	0.93

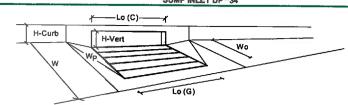


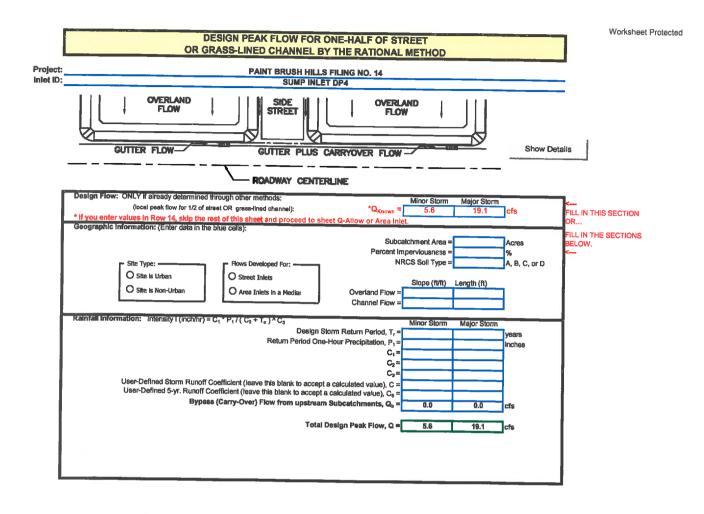

INLET IN A SUMP OR SAG LOCATION

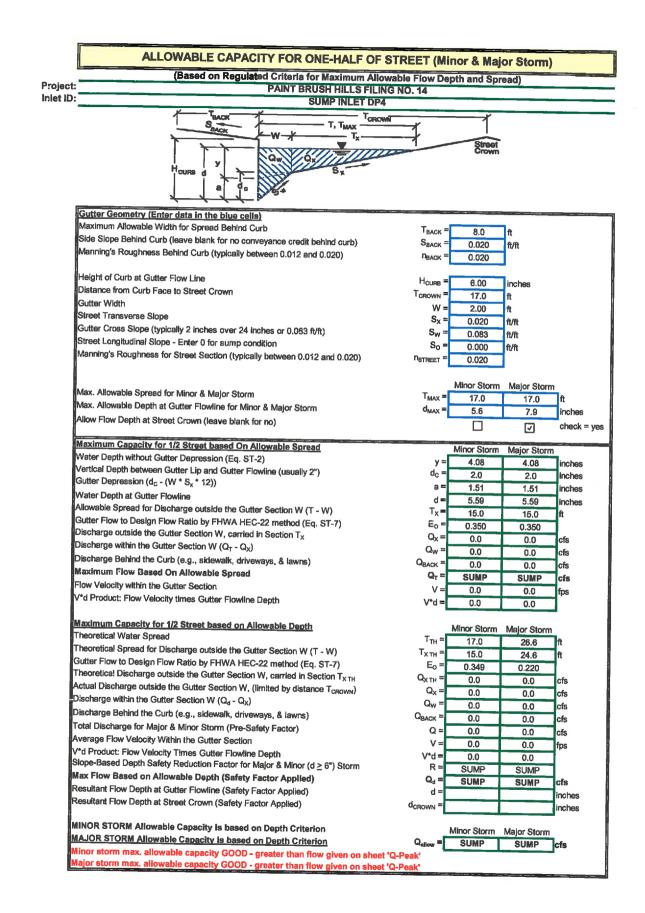

Project = Inlet ID =

PAINT BRUSH HILLS FILING NO. 14 SUMP INLET DP1

Design information (input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2.0	2	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.9	inches_
Grate Information		MINOR	MAJOR	inches
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _r (G) =	N/A	N/A	1
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _e (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L ₀ (C) =	5.00	5 00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	0.00	inches
Height of Curb Orifice Throat in Inches	H _{thront} =	6.00	6.00	Inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	6.3 40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor fcr a Single Curb Opening (typical value 0.10)	C _r (C) =	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Ortfice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	1
		MINOR	MAJOR	
Total inlet Interception Capacity (assumes clogged condition)	Q_ =	8.7	19.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	4.9	13.7	cfs

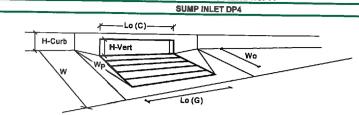


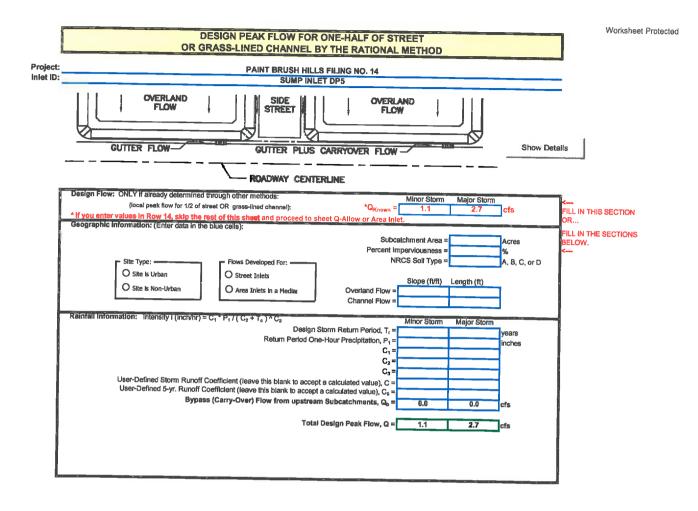

INLET IN A SUMP OR SAG LOCATION

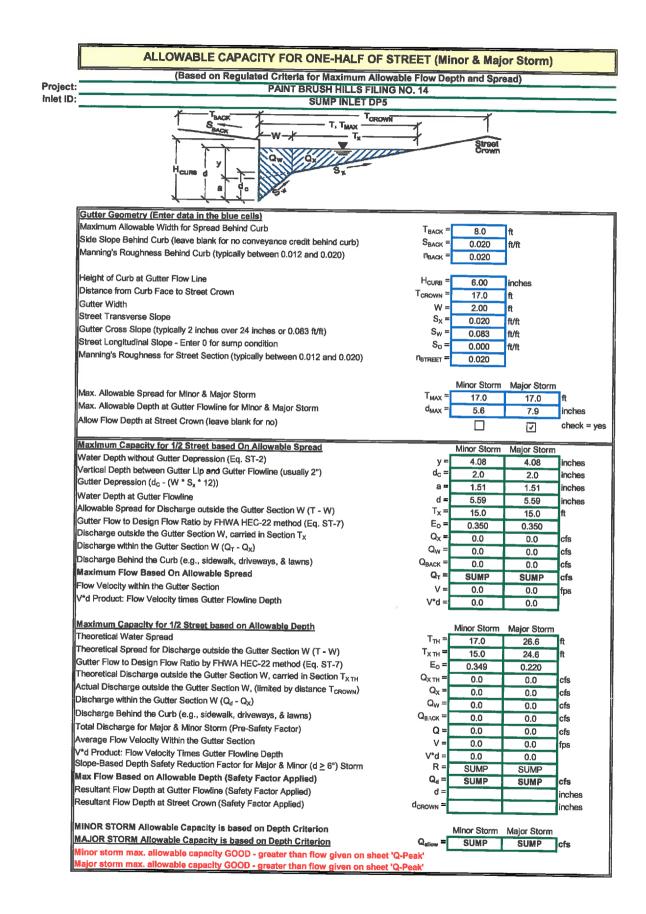

Project = Inlet iD = PAINT BRUSH HILLS FILING NO. 14

SUMP INLET DP**34

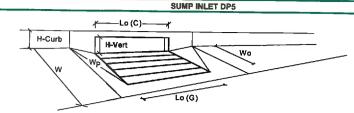
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{locel} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2.0	2	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.9	inches
Grate Information		MINOR	MAJOR	inches Override Depths
Length of a Unit Grate	L, (G) =	N/A	N/A	feet
Width of a Unit Grate	W _a =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _r (G) =	N/A	N/A	1
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{Urrost} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	VV _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _I (C) =	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.(%)	1
Curb Opening Orlfice Coefficient (typical value 0.60 - 0.70)	C _a (C) =	0.67	0.67	1
		MINOR	MAJOR	4
Total inlet interception Capacity (assumes clogged condition)	Q_ =	8.7	19.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	3.5	9.7	cfs

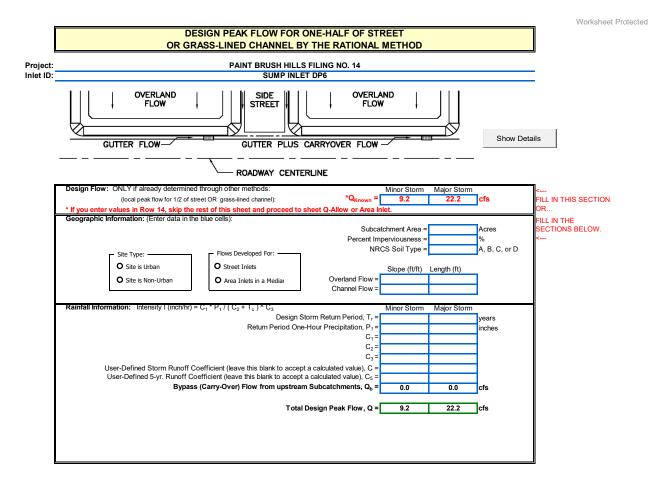


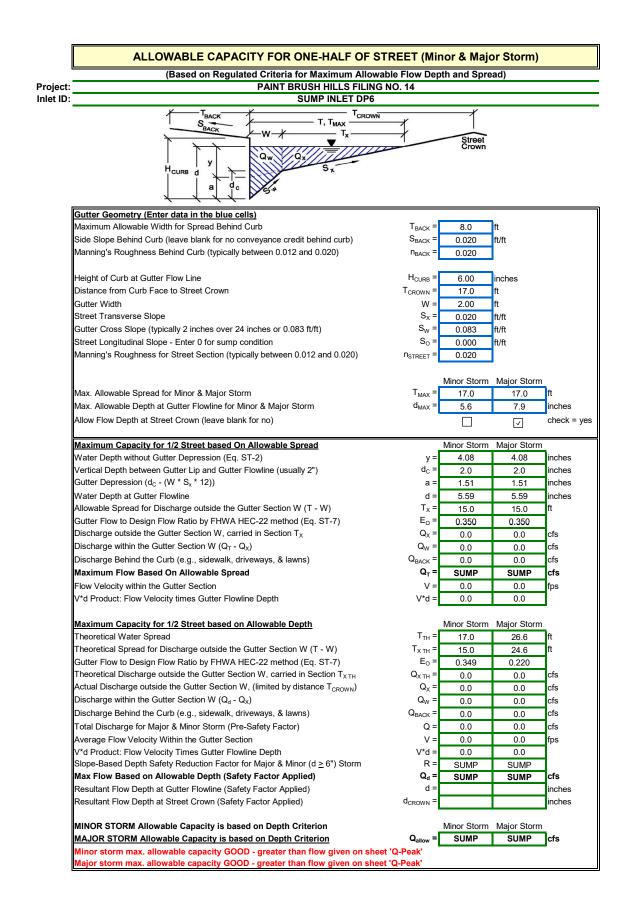

Project =


iniet iD =

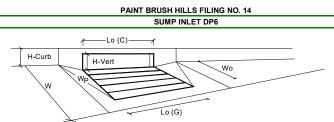
PAINT BRUSH HILLS FILING NO. 14


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	iniet Type =	CDOT Type R	Curb Opening	1 .
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} ≃	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3.0	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6		inches
Grate Information		MINOR	MAJOR	inches Override Depth
Length of a Unit Grate	L, (G) =	N/A	N/A	feet
Width of a Unit Grate	W, =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C ₁ (G) ≃	N/A	N/A	-
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	-
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C ₀ (G) =	N/A	N/A	-
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L, (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{wet} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63,40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _n =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_r(C) =$	0.10	0.10	reat
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	2.60	4
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	1
		MINOR	MAJOR	-
fotal Inlet Interception Capacity (assumes clogged condition)	Q _a =	11.1	27.3	cfs
nlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	5.6	19.1	cís

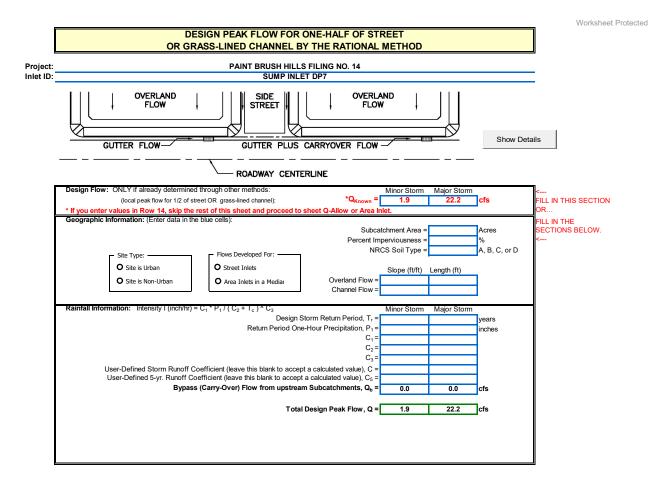


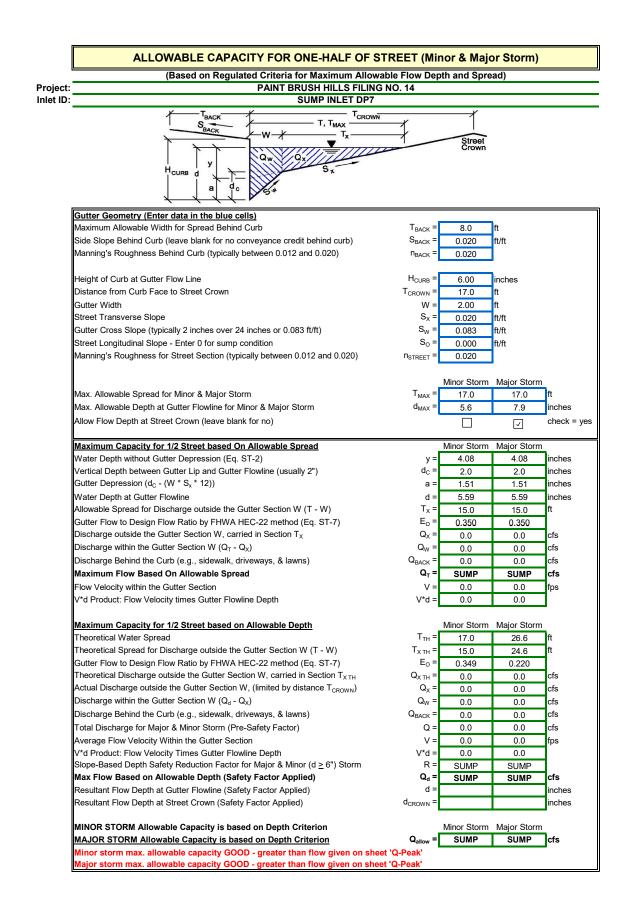

Project =

PAINT BRUSH HILLS FILING NO. 14

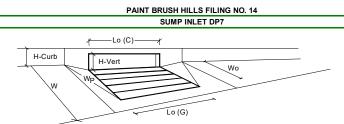


Design Information (Input)		MINOR	MAJOR	
Type of inlet	Inlet Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{toosi} =	3.00	3.00	inches
Number of Unit inlets (Grate or Curb Opening)	No =	1.0	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.9	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L, (G) =	N/A	N/A	feet
Width of a Unit Grate	w _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	4
Grate Welr Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	•
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L, (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	Inches
Height of Curb Orifice Throat in Inches	H _{threat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	The ta =	63.40	63,40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.60	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C ₁ (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
		MINOR	MAJOR	a j
Total Inlet Interception Capacity (assumes clogged condition)	Q ₂ =	4.6	9.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	1.1	2.7	cfs

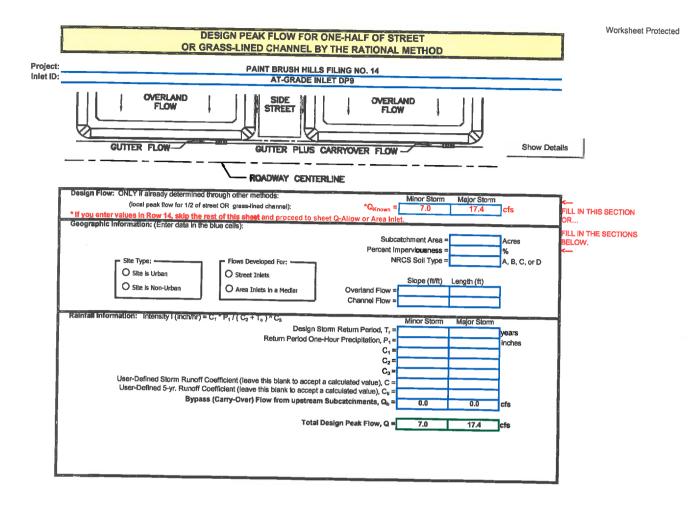


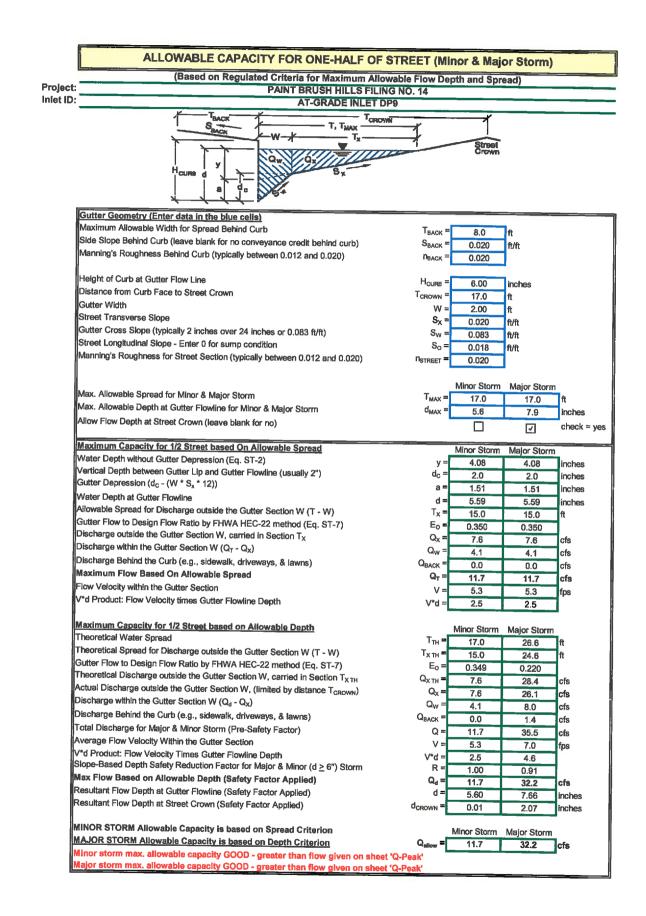


Project = Inlet ID =

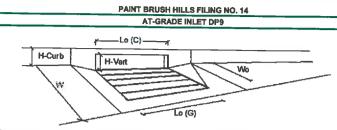


Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Inlet Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3.0	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.9	inches
Grate Information		MINOR	MAJOR	 Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
	=	MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	11.1	27.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	9.2	22.2	cfs

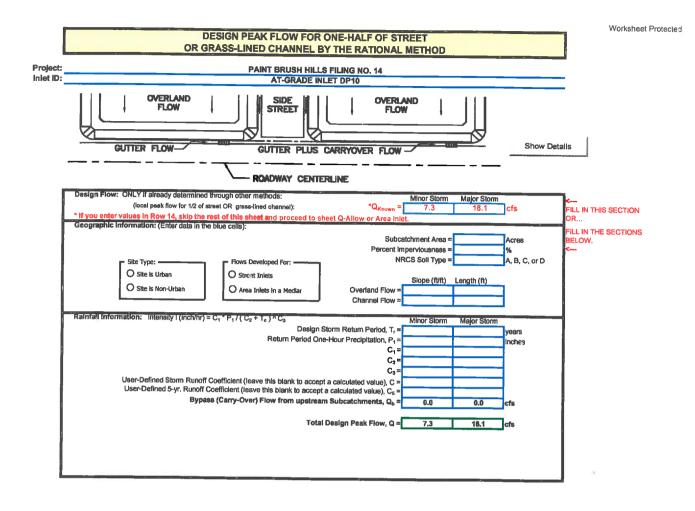


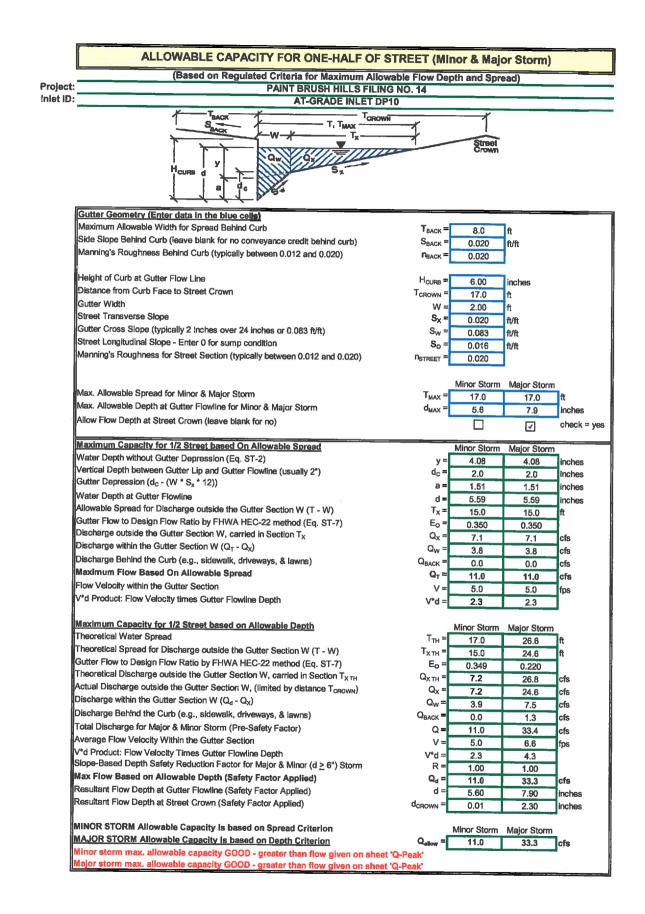


Project = Inlet ID =



Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3.0	3]
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.9	inches
Grate Information		MINOR	MAJOR	 Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.67	1
	E	MINOR	MAJOR	3
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	11.1	27.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	1.9	22.2	cfs

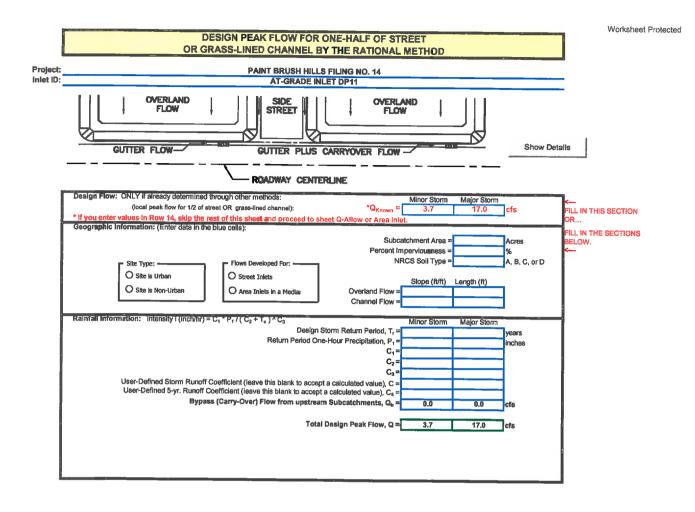


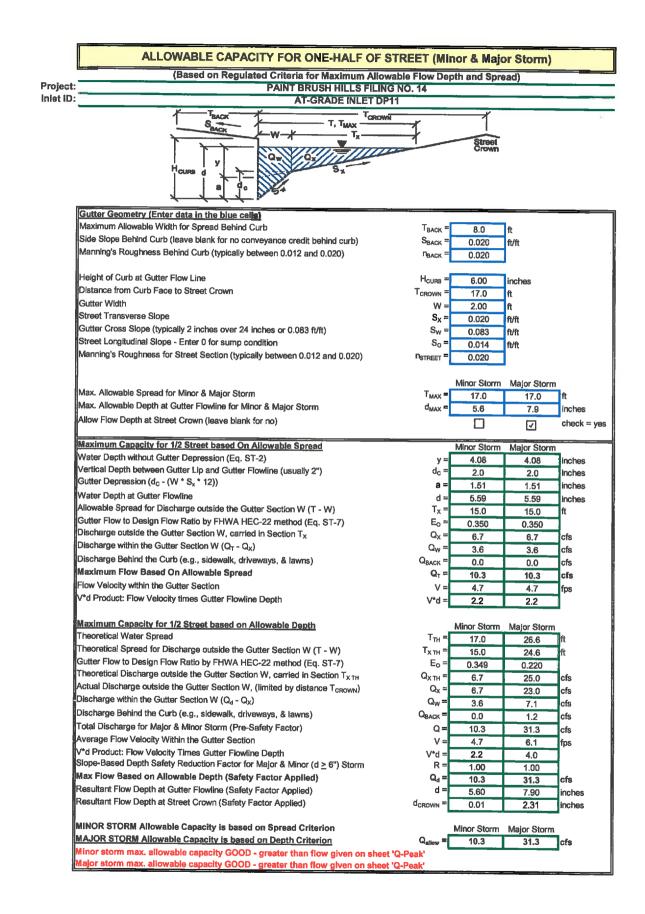


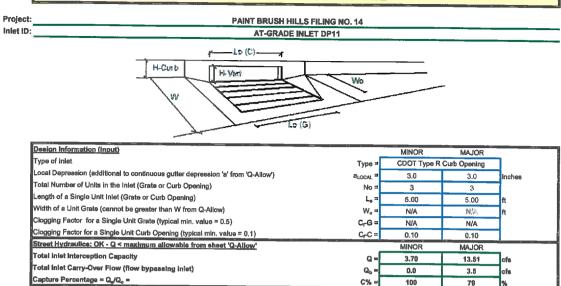
Project: Inlet ID:

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Туре =	CDOT Type R	Carb Opening	٦
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	BLOCAL #	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	L, =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W. =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	CrG =	N/A	N/A	-
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _r C =	0.10	0.10	1
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	-
Total Inlet Interception Capacity	Q =	7.00	13.72	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q, =	0.0	3.7	cís
Capture Percentage = Q_/Q_ =	с% =	100	79	GIS %

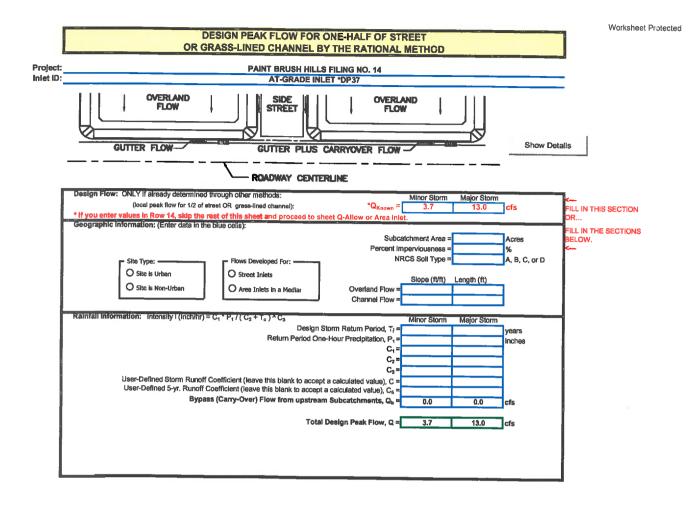


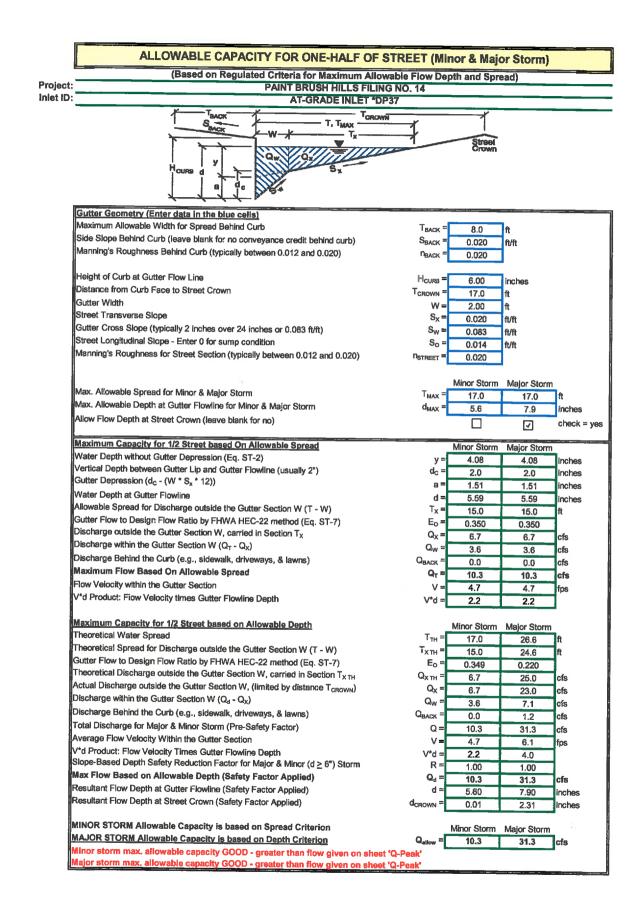





PAINT BRUSH HILLS FILING NO. 14 AT-GRADE INLET DP10

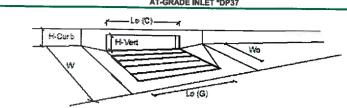
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Туре =	CDOT Type R	Curb Opening	٦
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	aLOCAL =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	w. =	N/A	N/A	ft
Clogging Fastor for a Single Unit Grate (typical min. value = 0.5)	Cr-G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _F C =	0.10	0.10	-
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	•
Total Inlet Interception Capacity	a =	7.25	14.01	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q, =	0.0	4.1	cfs
Capture Percentage = Q _e /Q _o =	C% =	100	77	%

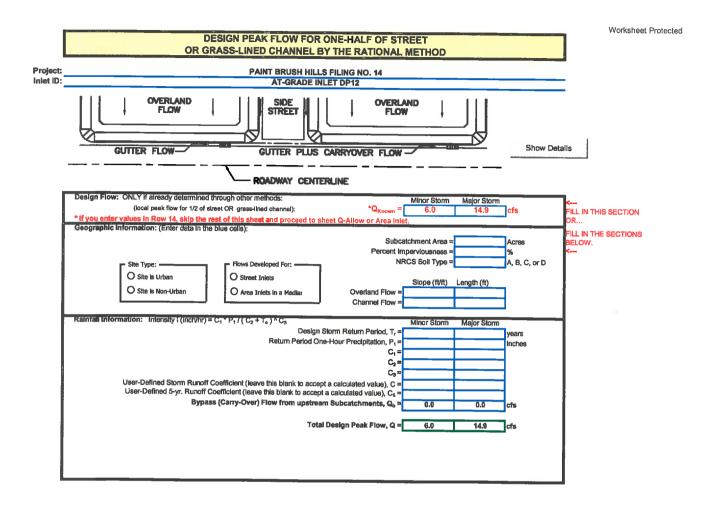



100

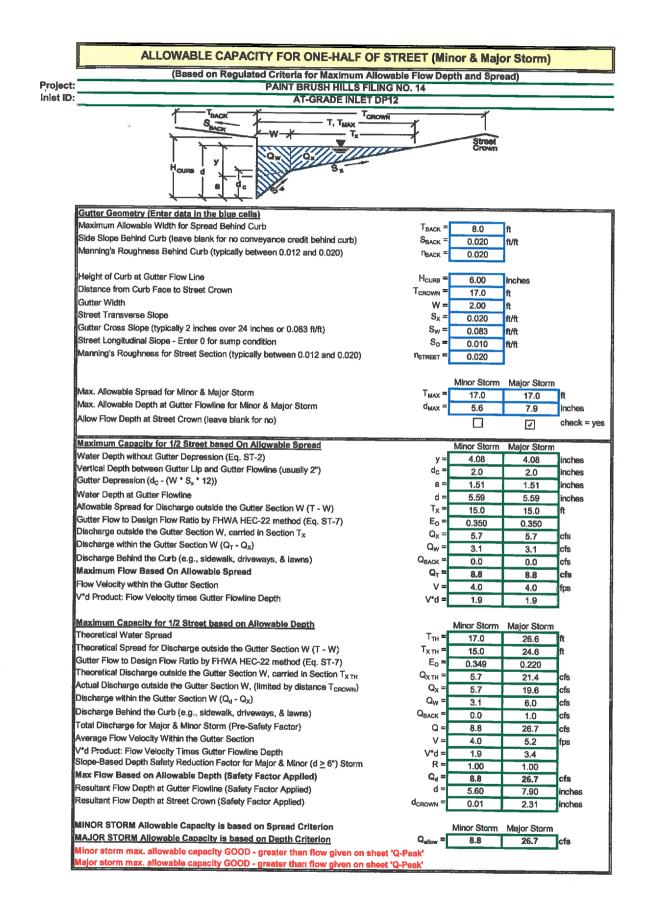
79

٩.

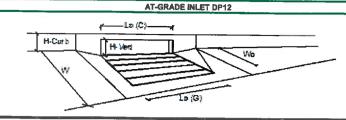

C%



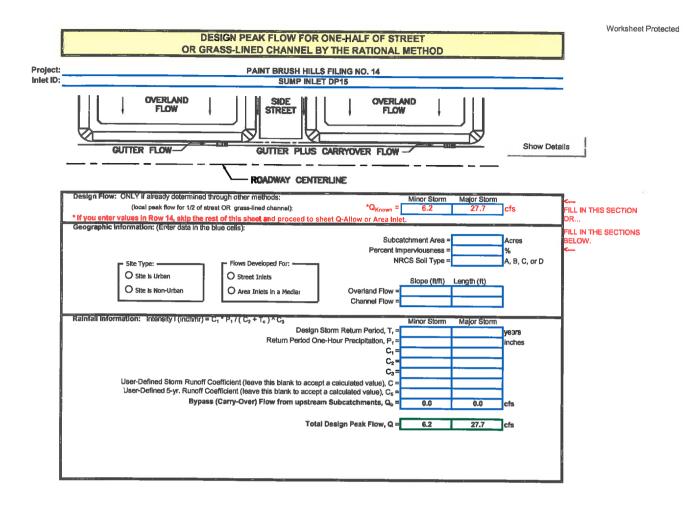
Project: inlet ID:

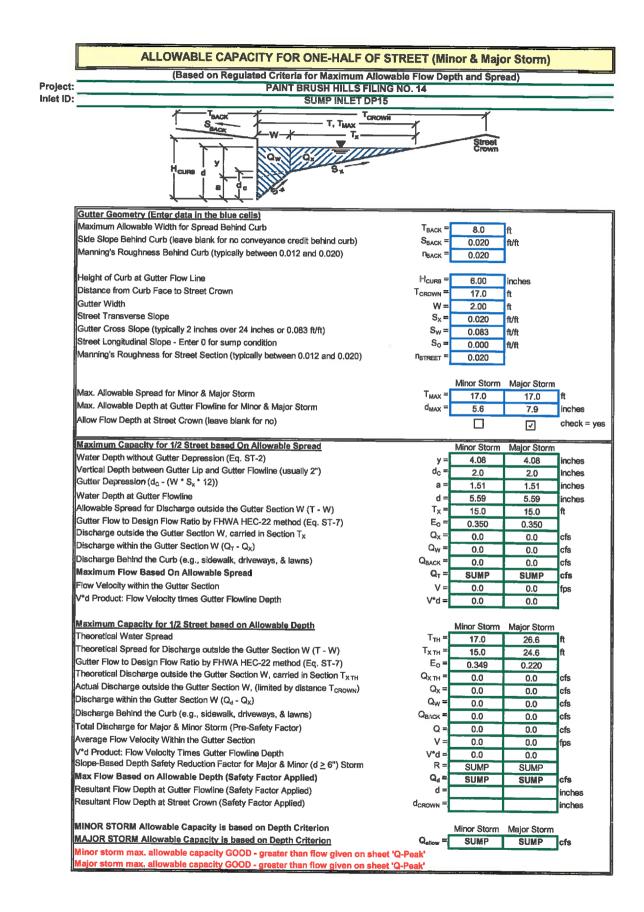

PAINT BRUSH HILLS FILING NO. 14 AT-GRADE INLET *DP37

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	aLOCAL =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	L, =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W., =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	CrG =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	CrC =	0.10	0.10	1
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.70	11.48	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.5	cfs
Capture Percentage = Q _e /Q _o =	C% =	100	86	%

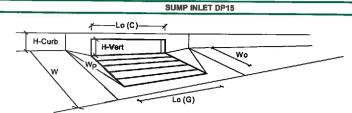


.



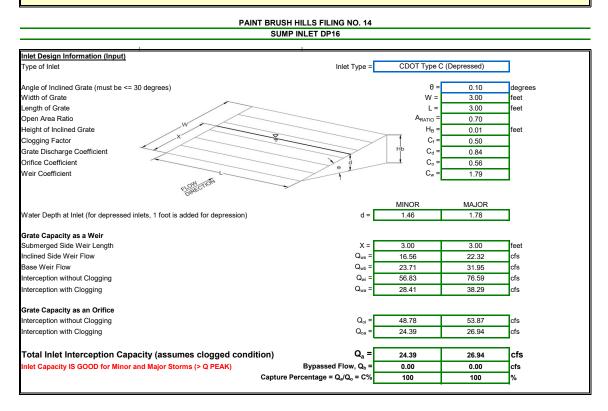

Project: Inlet ID:

PAINT BRUSH HILLS FILING NO. 14



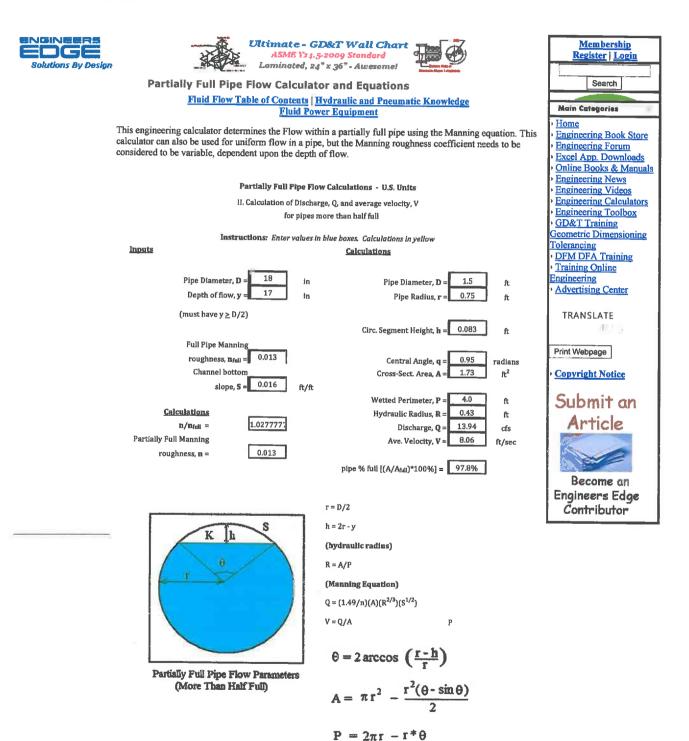
Design Information (Input)		MINOR	MAJOR	· · · · · ·
Type of Inlet	Туре =	CDOT Type R	Curb Opening	٦
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	BLOCAL =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	1
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W_ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r G =	N/A	N/A	1
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	CrC =	0.10	0.10	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.95	12.44	cfs
Totai Iniet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	2.4	ofs
Capture Percentage = Q _e /Q _e =	C% =	100	84	%

Project = inlet ID = PAINT BRUSH HILLS FILING NO. 14


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	4.0	4	1 1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	7.9	inches
Grate Information		MINOR	MAJOR	inches Override Depths
Length of a Unit Grate	L, (G) =	N/A	N/A	feet
Width of a Unit Grate	₩ <u>-</u> =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C ₁ (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} ≕	6.00	6.00	inches
Height of Curb Ortfice Throat in Inches	H _{throni} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	Cr(C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	1
		MINOR	MAJOR	•
Total Inlet Interception Capacity (assumes clogged condition)	Q, =	15.0	36.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	6.2	27.7	cfs

F					Worksheet Protected
	DESIGN PEAK FLOW FOR ONE-HALF OF ST OR GRASS-LINED CHANNEL BY THE RATIONAL				
oject: et ID:	PAINT BRUSH HILLS FILING NO. 14 SUMP INLET DP16				_
	SUMP INLET DP16				_
	GUTTER FLOW	w		Show Det	ails
				_	
				-	
г	Design Flow: ONLY if already determined through other methods:	Minor Storm	Major Storm	1	<
	(local peak flow for 1/2 of street OR grass-lined channel): *Q _{Known} =	5.6	20.8	cfs	FILL IN THIS SECTION
	* If you enter values in Row 14, skip the rest of this sheet and proceed to sheet Q-Allow or Area I	nlet.			OR
	Geographic Information: (Enter data in the blue cells):		-		FILL IN THE
		atchment Area = nperviousness =		Acres %	SECTIONS BELOW.
	NE	CS Soil Type =		70 A, B, C, or D	
	Site Type: Flows Developed For:	(00 00ii 1)po		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Site is Urban O Street Inlets	Slope (ft/ft)	Length (ft)		
	O Site is Non-Urban Overland Flow =				
	Channel Flow =				
ŀ	Rainfall Information: Intensity I (inch/hr) = $C_1 * P_1 / (C_2 + I_c) * C_3$	Minor Storm	Major Storm		-
	Design Storm Return Period, Tr =			vears	
	Return Period One-Hour Precipitation, P1=			inches	
	C ₁ =			1	
	C ₂ =				
	C_3 =			-	
	User-Defined Storm Runoff Coefficient (leave this blank to accept a calculated value), C = User-Defined 5-yr. Runoff Coefficient (leave this blank to accept a calculated value), C ₅ =			-	
	Bypass (Carry-Over) Flow from upstream Subcatchments, Q_b =		0.0	cfs	
	Total Design Peak Flow, Q =	5.6	20.8	cfs	
L					

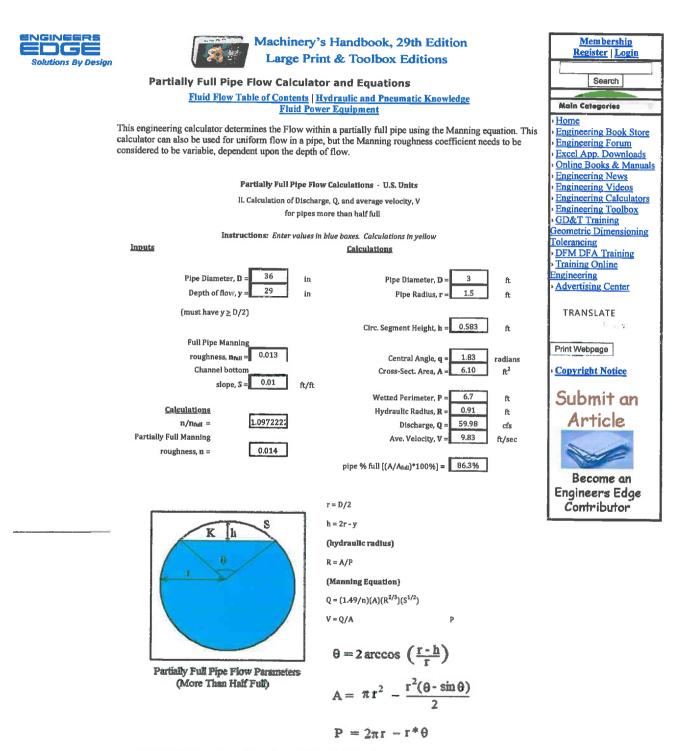
AREA INLET IN A TRAPEZOIDAL GRASS-LINED CHANNEL


	LLS FILING NO. 14 ILET DP16			
T_{MAX}	d _{MAX}	Grass Type A B C D E	Limiting Manning 0.06 0.04 0.033 0.03 0.024]'s n
Analysis of Trapezoidal Grass-Lined Channel Using SCS Method				
NRCS Vegetal Retardance (A, B, C, D, or E)	A, B, C, D or E	E	1	
Manning's n (Leave cell D16 blank to manually enter an n value)	n =	see details below		
Channel Invert Slope	S _O =	0.0348	ft/ft	
Bottom Width	B =	2.00	ft	
Left Side Slope	Z1 =	3.00	ft/ft	
Right Side Slope	Z2 =	3.00	ft/ft	
Check one of the following soil type: Max. Max Froude No. (F _{MAX})	Г	Choose One:		7
Sandy 5.0 fps 0.50		Sandy		
Non-Sandy 7.0 fps 0.80		O Non-Sandy		L
		Minor Storm	Major Storm	
Max. Allowable Top Width of Channel for Minor & Major Storm	T _{MAX} =	5.00	6.80	feet
Max. Allowable Water Depth in Channel for Minor & Major Storm	d _{MAX} =	0.46	0.78	feet
Maximum Channel Canasity Based On Allowship Tow Mildth		Mines Ot-	Mai Ot	
Maximum Channel Capacity Based On Allowable Top Width Max. Allowable Top Width	T _{MAX} =	Minor Storm 5.00	Major Storm 6.80	ft
Water Depth	d =	0.50	0.80	ft
Flow Area	A =	1.75	3.52	sq ft
Wetted Perimeter	P =	5.16	7.06	ft
Hydraulic Radius	R =	0.34	0.50	ft
Manning's n based on NRCS Vegetal Retardance	n =	0.035	0.028	
Flow Velocity	V =	3.91	6.27	fps
Velocity-Depth Product	VR =	1.33	3.13	ft^2/s
Hydraulic Depth	D =	0.35	0.52	ft
Froude Number Max. Flow Based On Allowable Top Width	Fr = Q T =	1.17 6.85	1.54 22.07	cfs
	L			
Maximum Channel Capacity Based On Allowable Water Depth		Minor Storm	Major Storm	-
Max. Allowable Water Depth	d _{MAX} =	0.46	0.78	feet
Top Width Flow Area	T = A =	4.76 1.55	6.68 3.39	feet
Wetted Perimeter	P=	4.91	6.93	square feet feet
Hydraulic Radius	R =	0.32	0.49	feet
Manning's n based on NRCS Vegetal Retardance	n =	0.036	0.028	
Flow Velocity	V =	3.63	6.16	fps
Velocity-Depth Product	VR =	1.15	3.01	ft^2/s
Hydraulic Depth	D =	0.33	0.51	feet
Froude Number	Fr =	1.12	1.52	
Max. Flow Based On Allowable Water Depth	Q _d =	5.64	20.84	cfs
Allowable Channel Capacity Based On Channel Geometry		Minor Storm	Major Storm	
MINOR STORM Allowable Capacity is based on Depth Criterion	Q _{allow} =	5.64	20.84	cfs
MAJOR STORM Allowable Capacity is based on Depth Criterion	d _{allow} =	0.46	0.78	ft
Water Depth in Channel Based On Design Peak Flow				
Design Peak Flow	Q _o =	5.60	20.80	cfs
Water Depth	d =	0.46	0.78	feet
Top Width	т=	4.75	6.68	feet
Flow Area	A =	1.55	3.38	square feet
Wetted Perimeter	P =	4.90	6.93	feet
Hydraulic Radius	R =	0.32	0.49	feet
Manning's n based on NRCS Vegetal Retardance	n =	0.036	0.028	- .
Flow Velocity	V =	3.62	6.15	fps ft^2/s
Velocity-Depth Product Hydraulic Depth	VR = D =	1.14 0.33	3.00 0.51	ft ^r 2/s
Froude Number	Fr =	1.12	1.52	1001

AREA INLET IN A TRAPEZOIDAL GRASS-LINED CHANNEL

Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation. We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. By continuing to use our site, you accept our use of cookies. To learn more, see our Privacy Policy link at bottom of webpage.

Got It!



Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D \cdot 0.5) \cdot 0.5$ (for $0.5 \le y/D \le 1$)

PR1 Q100= 13.7 CFS

We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. By continuing to use our site, you accept our use of cookies, To learn more, see our Privacy Policy link at bottom of webpage.

Got It!

Equation used for n/n_{full} : $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$ (for $0.5 \le y/D \le 1$)

PR2 Q100= 58.1 CFS

DRAINAGE CRITERIA MANUAL (V. 2)

CULVERTS

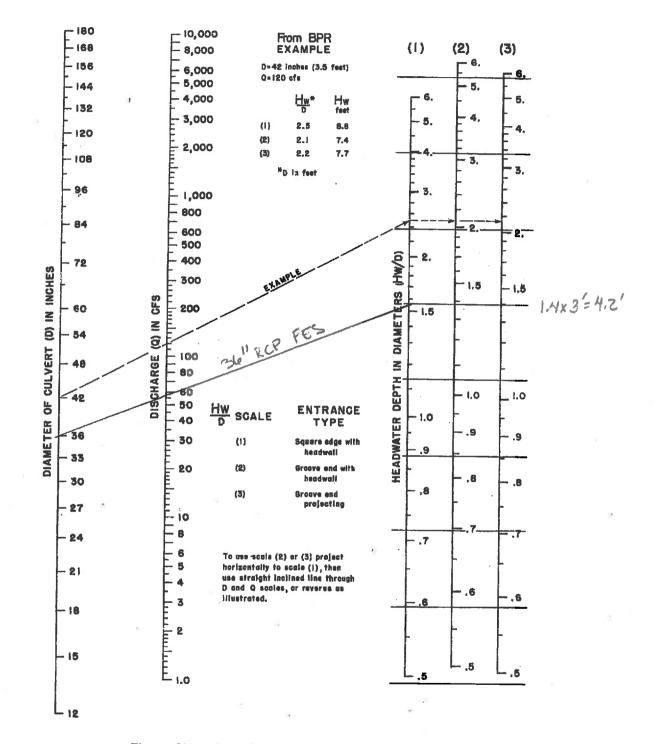
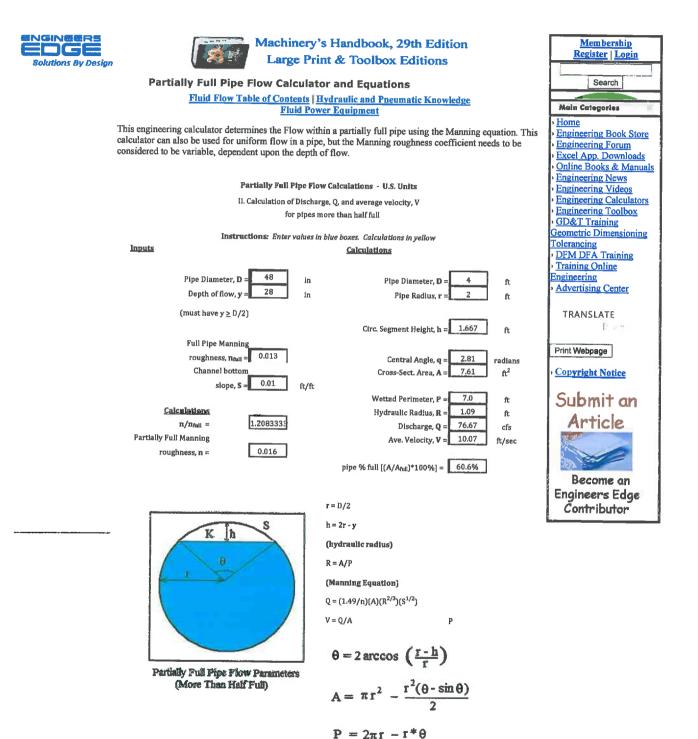
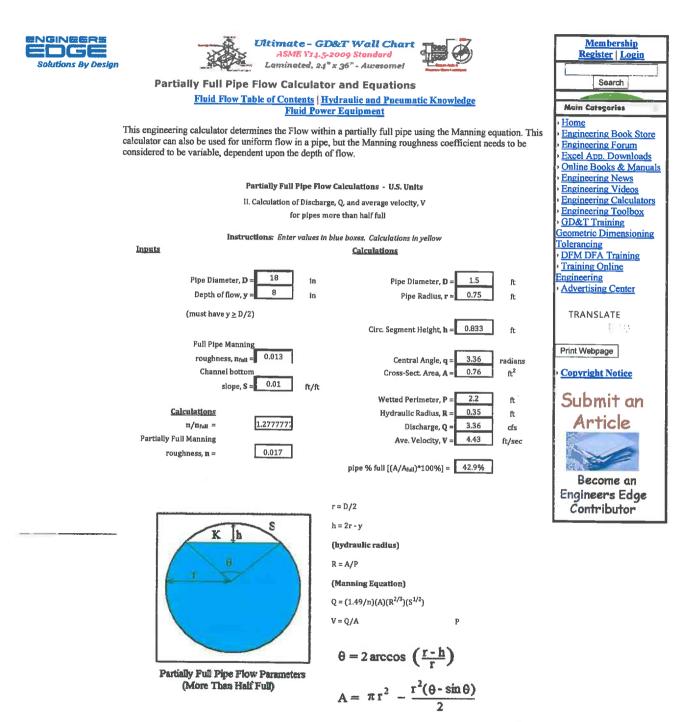



Figure CU-9—Inlet Control Nomograph—Example

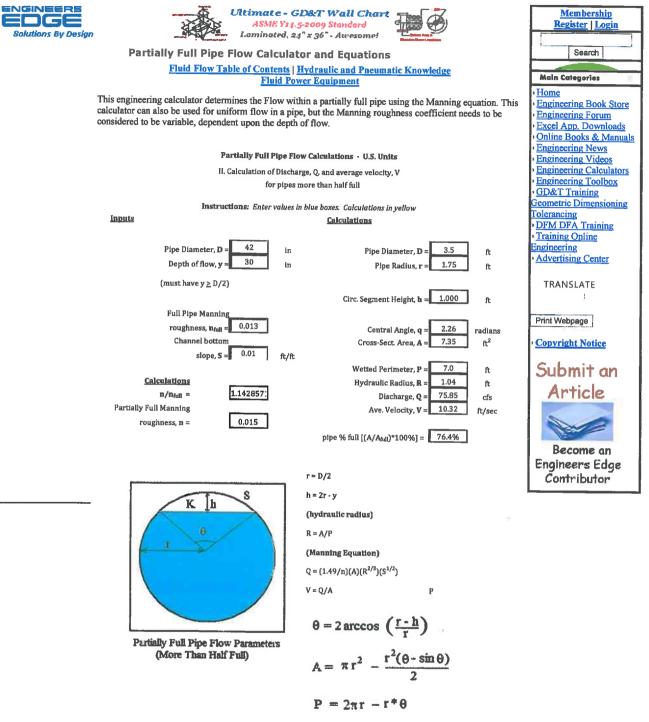
DP3 Q100= 58.1 CFS

We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. By continuing to use our site, you accept our use of cookies, To learn more, see our Privacy Policy link at bottom of webpage.


Got It!

Equation used for n/n_{full} : $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$ (for $0.5 \le y/D \le 1$)

PR3 Q100= 74.0 CFS



Equation used for n/n_{full} : $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$ (for $0.5 \le y/D \le 1$)

PR4 Q100= 2.7 CFS

 $P = 2\pi r - r^* \theta$

Equation used for n/n_{full} : $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$ (for $0.5 \le y/D \le 1$)

PR5 Q100= 76.0 CFS

A privacy, disclaimer and tracking cookie usage reminder from Engineers Edge. To learn more, see our Privacy Policy / Cookie Usage & Disclaimer links at bottom of webpage.

Got It!

<u>Inputs</u>

(Internet internet in

needs to be considered to be variable, dependent upon the depth of flow.

24

24

0.013

0.01

1

0.013

Pipe Diameter, D :

Depth of flow, y

(must have $y \ge D/2$)

Full Pipe Manning

roughness, **n_{full}**

Calculations

roughness, n =

Partially Full Manning

n/n_{full} =

Channel bottom

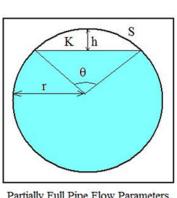
slope, S

Partially FULL Pipe Flow Calculator and Equations

Fluid Flow Table of Contents Hydraulic and Pneumatic Knowledge **Fluid Power Equipment**

for pipes more than half full

in


in

ft/ft

Calculations

Register | Login Search **Main Categories** Home This engineering calculator determines the Flow within a partially full pipe (&e1/2 fullusing the Manning Engineering Book Store equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient Engineering Forum Excel App. Downloads Online Books & Manuals Engineering News Partially Full Pipe Flow Calculations - U.S. Units Engineering Videos II. Calculation of Discharge, Q, and average velocity, V Engineering Calculators Engineering Toolbox GD&T Training Instructions: Enter values in blue boxes. Calculations in yellow Geometric Dimensioning Tolerancing DFM DFA Training Training Online Pipe Diameter, D ft Engineering Advertising Center 1 Pipe Radius, **r** ft Follow @engineersedge 0.000 Circ. Segment Height, h = ft TRANSLATE 0.00 Central Angle, **q** radians 3.14 ft² Cross-Sect. Area, A: Print Webpage **Copyright Notice** Wetted Perimeter, P 6.3 ft 0.50 Hydraulic Radius, **R** ft Submit an 22.68 Discharge, Q cfs Ave. Velocity, V 7.22 ft/sec Article pipe % full [(A/A_{full})*100%] = 100.0%Become an Engineers Edge Contributor

Membership

Partially Full Pipe Flow Parameters (More Than Half Full)

(hydraulic radius)

R = A/P

r = D/2

h = 2r - v

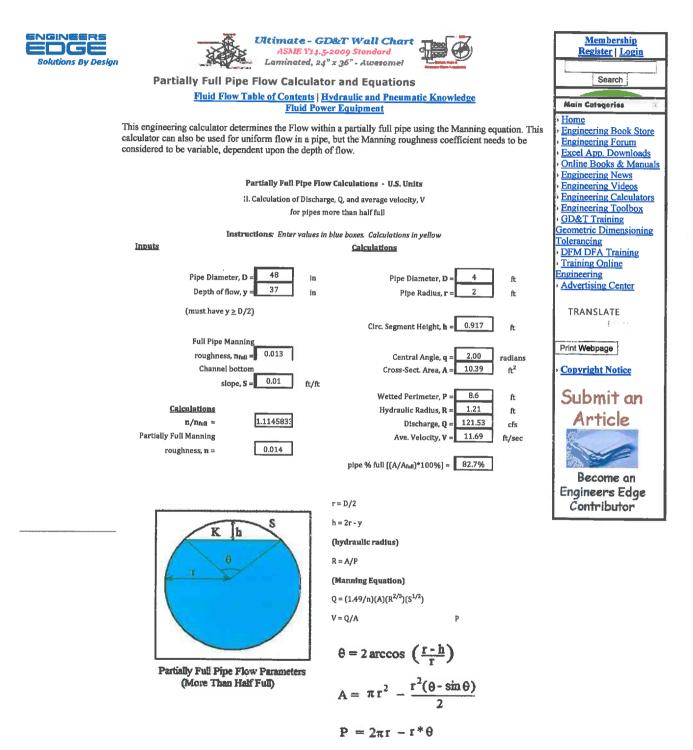
(Manning Equation)

 $Q = (1.49/n)(A)(R^{2/3})(S^{1/2})$

V = Q/A

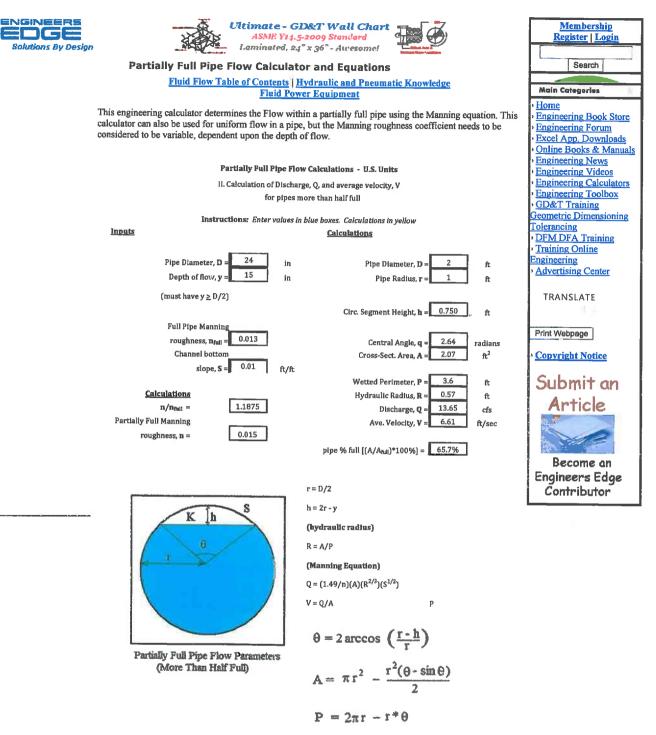
$$\theta = 2 \arccos\left(\frac{\mathbf{r} \cdot \mathbf{h}}{\mathbf{r}}\right)$$
$$\mathbf{A} = \pi \mathbf{r}^2 - \frac{\mathbf{r}^2(\theta \cdot \sin \theta)}{2}$$

Р

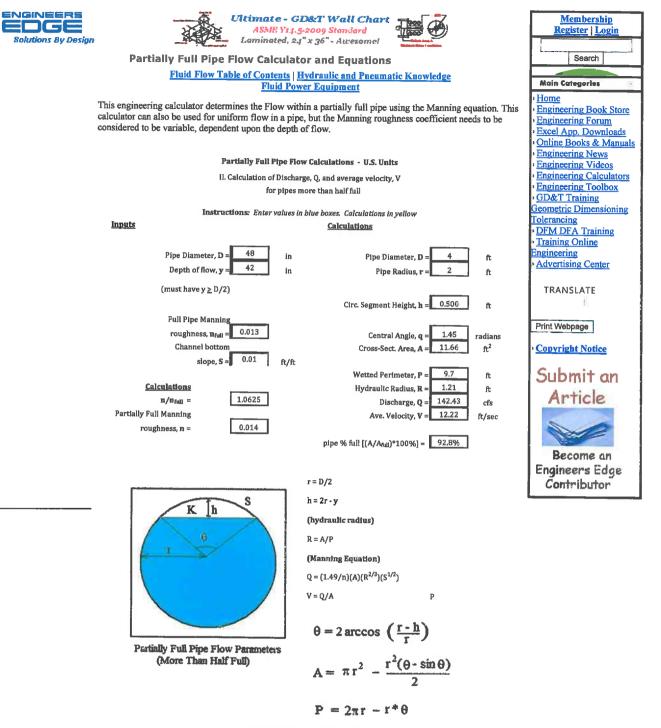

$$\mathbf{P} = 2\pi \mathbf{r} - \mathbf{r}^* \mathbf{\theta}$$

Equation used for n/n_{full} : $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$ (for $0.5 \le y/D \le 1$)

PR7 & PR8 Q100=22.2 CFS FLOWS SPLIT

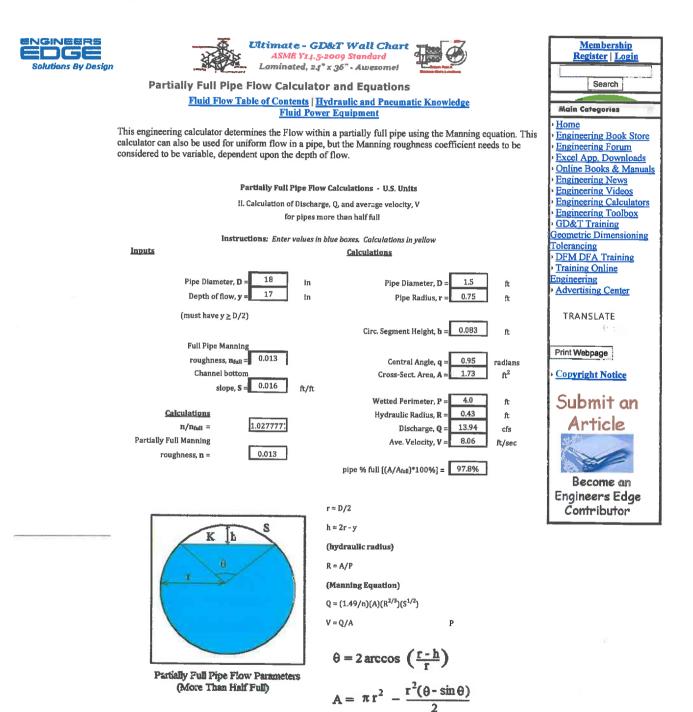

https://www.engineersedge.com/fluid_flow/partially_iuir_pipe_iiow_caiculation/parualiyiuiipipeflow_calculation.htm

Got It!


Equation used for n/n_{full} : $n/n_{full} = 1.25 - (y/D - 0.5) + 0.5$ (for $0.5 \le y/D \le 1$)

PR9 Q100= 117.8 CFS

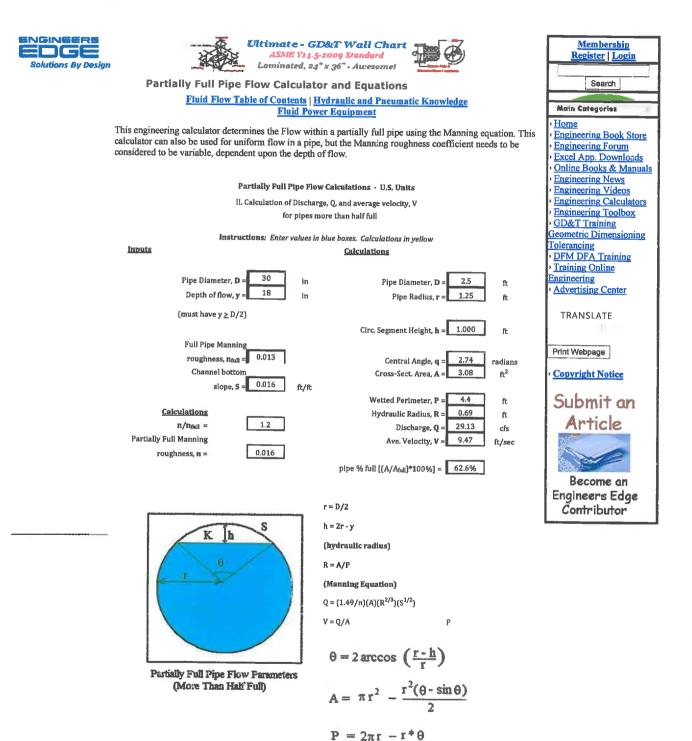
Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D \cdot 0.5) * 0.5$ (for $0.5 \le y/D \le 1$)


PR10 & PR11 Q100= 13.7 CFS FLOW SPLIT

Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D - 0.5) * 0.5$ (for $0.5 \le y/D \le 1$)

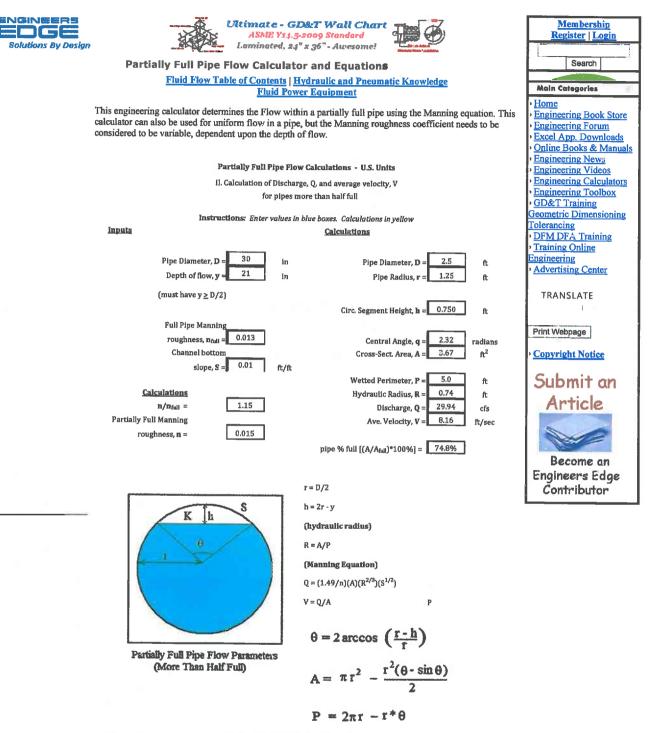
PR12 Q100= 142.5 CFS

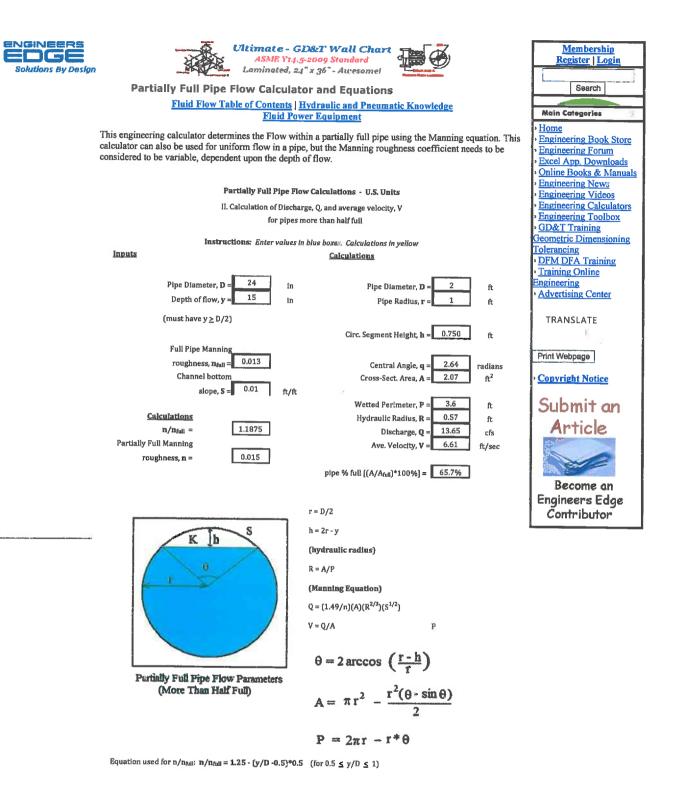
Got It!



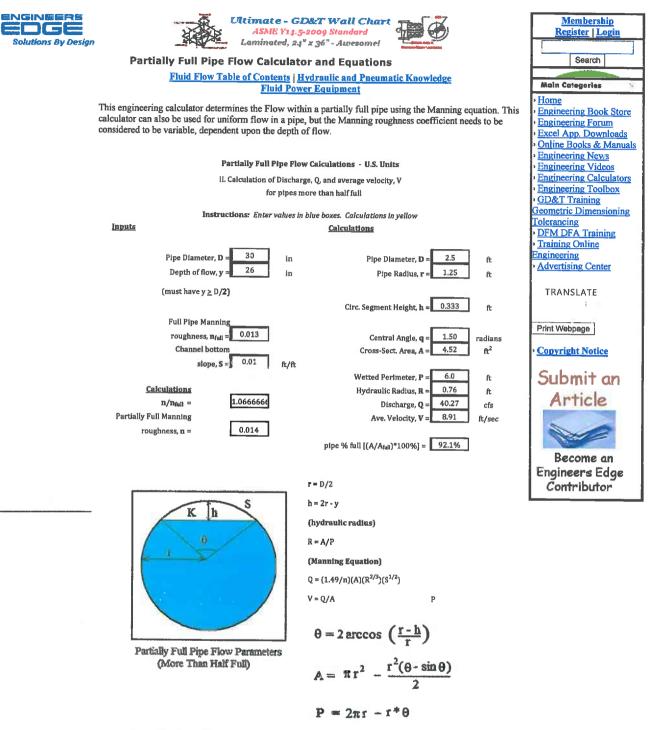
 $\mathbf{P} = 2\pi\mathbf{r} - \mathbf{r}^*\boldsymbol{\theta}$

Equation used for n/n_{full} : $n/n_{full} = 1.25 - (y/D - 0.5) + 0.5$ (for $0.5 \le y/D \le 1$)


PR13 Q100= 14.0 CFS

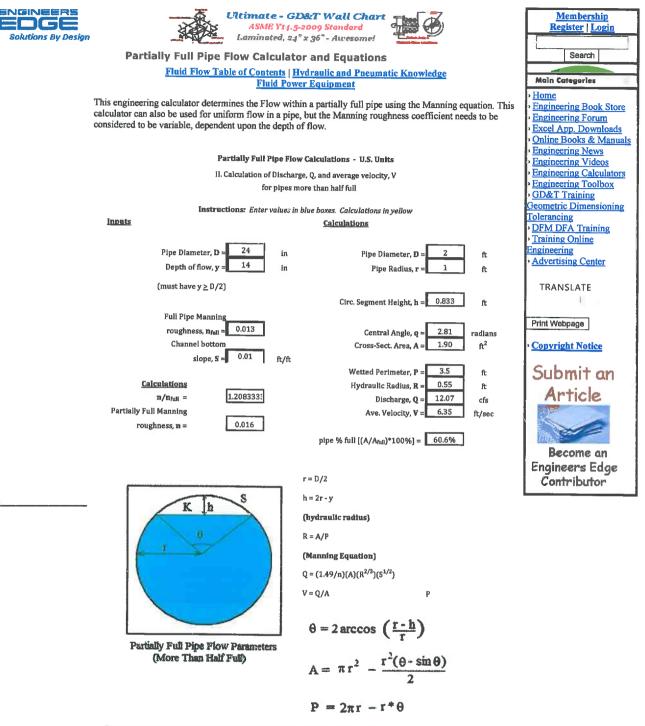

Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D - 0.5) * 0.5$ (for $0.5 \le y/D \le 1$)

PR14 Q100= 27.9 CFS

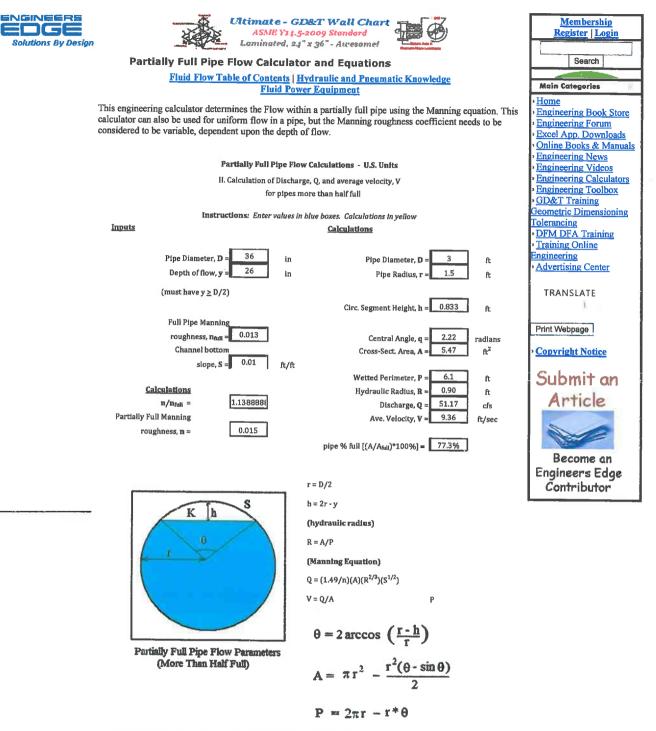


Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D - 0.5) \cdot 0.5$ (for $0.5 \le y/D \le 1$)

#PR38 Q100= 27.9 CFS

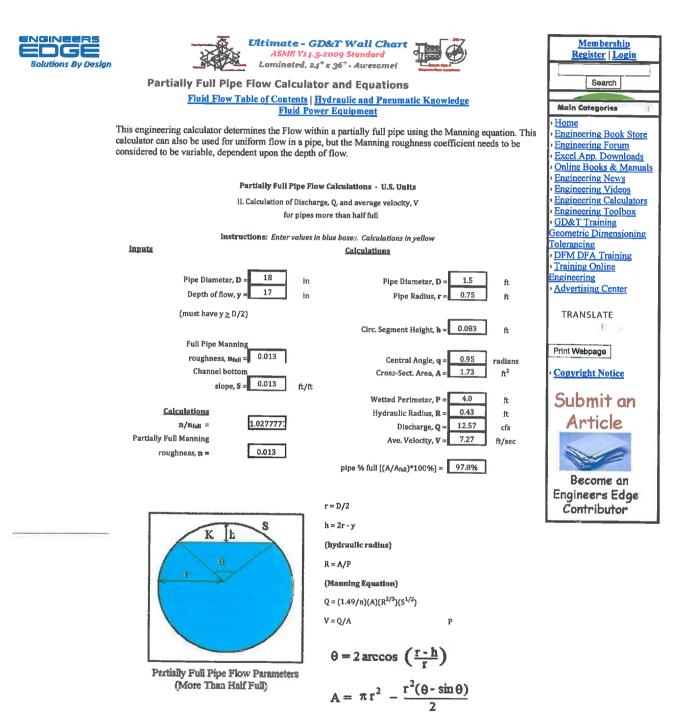


#PR15 Q100= 13.5 CFS


Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D \cdot 0.5) * 0.5$ (for $0.5 \le y/D \le 1$)

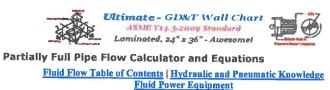
#PR16 Q100= 39.7 CFS

Equation used for n/n_{full} : $n/n_{full} = 1.25 - (y/D - 0.5) + 0.5$ (for $0.5 \le y/D \le 1$)

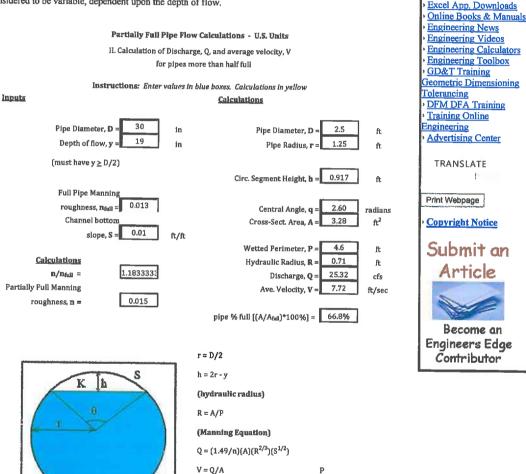

#PR39 Q100= 13.0 CFS

Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D \cdot 0.5)^{*}0.5$ (for $0.5 \le y/D \le 1$)

#PR17 Q100= 51.3 CFS


Equation used for n/nfull: n/nen = 1 25 . (v/n .n 5)+0 5 (for 0.5 - 1/n - 1)

PR18 Q100= 12.4 CFS

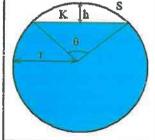

 $\mathbf{P} = 2\pi\mathbf{r} - \mathbf{r}^*\boldsymbol{\theta}$

Got It!

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Membership

Register | Login

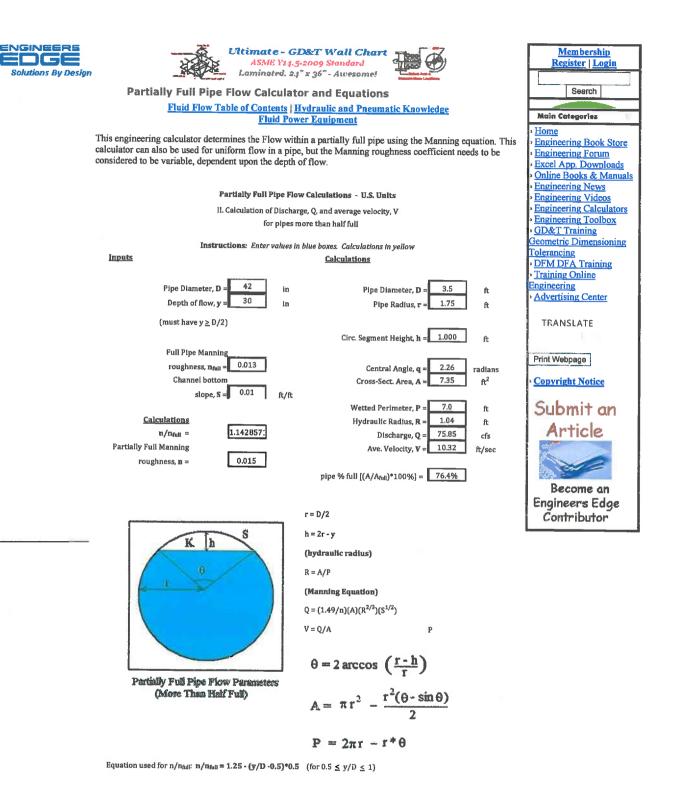

Search

Engineering Book Store

Engineering Forum

Main Categories

Home


Partially Full Pipe Flow Parameters (More Than Half Full)

 $\theta = 2 \arccos\left(\frac{\mathbf{r} - \mathbf{h}}{\mathbf{r}}\right)$ $A = \pi r^2 - \frac{r^2(\theta - \sin \theta)}{2}$

 $\mathbf{P} = 2\pi\mathbf{r} - \mathbf{r}^*\boldsymbol{\theta}$

Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D \cdot 0.5) * 0.5$ (for $0.5 \le y/D \le 1$)

PR19 O100= 24.8 CFS

PR20 Q100= 75.3 CFS

ot Iti		
ASME Y	GD&T Wall Chart 14.5-2009 Standard 24" x 36" - Awesome!	<u>Membership</u> <u>Register Login</u>
Partially Full Pipe Flow Calcul	ator and Equations	Search
	Hydraulic and Pneumatic Knowledge	
Fluid I	Power Equipment	Main Categories
This engineering calculator determines the Flow v calculator can also be used for uniform flow in a p considered to be variable, dependent upon the dep	within a partially full pipe using the Manning equation. This pipe, but the Manning roughness coefficient needs to be oth of flow.	 Home Engineering Book Store Engineering Forum Excel App. Downloads Online Books & Manuals
Partially Full Pipe	Flow Calculations - U.S. Units	 Engineering News Engineering Videos
II. Calculation of Dise	charge, Q. and average velocity, V	 Engineering Calculators
for pip	es more than half full	 Engineering Toolbox GD&T Training
Instructions: Enter value	es in blue boxes. Calculations in yellow	Geometric Dimensioning
Inputs	Calculations	Tolerancing <u>DFM DFA Training</u>
Pipe Diameter, D = 54 Depth of flow, y = 53		 <u>Driv Dry Training</u> <u>Training Online</u> <u>Engineering</u> <u>Advertising Center</u>
(must have $y \ge D/2$)		TRANSLATE
	Circ. Segment Height, h = 0.083 ft	nooi
Full Pipe Manning roughness, n _{full} = 0.013 Channel bottom slope, S = 0.011 ft/	Central Angle, $\mathbf{q} = \begin{bmatrix} 0.55 \\ radians \\ Cross-Sect. Area, \mathbf{A} = \begin{bmatrix} 15.84 \\ ft^2 \end{bmatrix}$	Print Webpage • <u>Copyright Notice</u>
	Wetted Perimeter, P = 12.9 ft	Submit an
Calculations	Hydraulic Radius, R = 1.23 ft	Article
$n/n_{full} = 1.0092592$	Discharge, Q = 216.17 cfs	Article
Partially Full Manning roughness, n = 0.013	Ave. Velocity, V = 13.65 ft/sec	S
	pipe % full [(A/A _{full})*100%] = 99.6%	
		Become an
		Engineers Edge
	r = D/2	Contributor
KI	$\mathbf{h} = 2\mathbf{r} - \mathbf{y}$	
	(hydraulic radius)	
0	R = A/P	
	(Manning Equation)	
	$Q = (1.49/n)(A)(R^{2/3})(S^{1/2})$	
	V = Q/A P	

 $\theta = 2 \arccos\left(\frac{\mathbf{r} \cdot \mathbf{h}}{\mathbf{r}}\right)$ $A = \pi r^2 - \frac{r^2(\theta - \sin \theta)}{2}$

 $\mathbf{P} = 2\pi\mathbf{r} - \mathbf{r}^*\boldsymbol{\theta}$

Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D - 0.5) * 0.5$ (for $0.5 \le y/D \le 1$)

Partially Full Pipe Flow Parameters

(More Than Half Full)

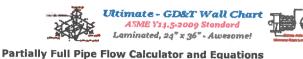
PR21 Q100= 214.5 CFS

Membership

Register | Login

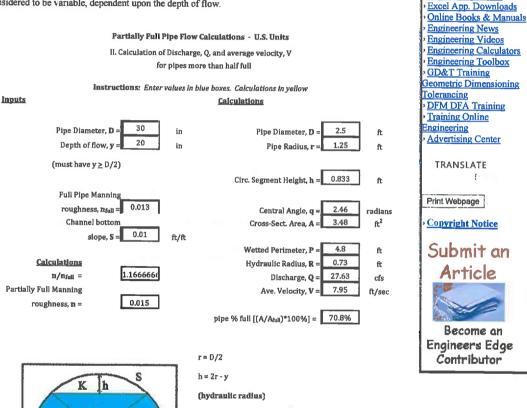
Search

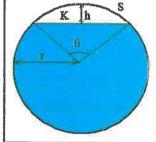
Engineering Book Store

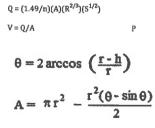

Engineering Forum

Main Categories

Home



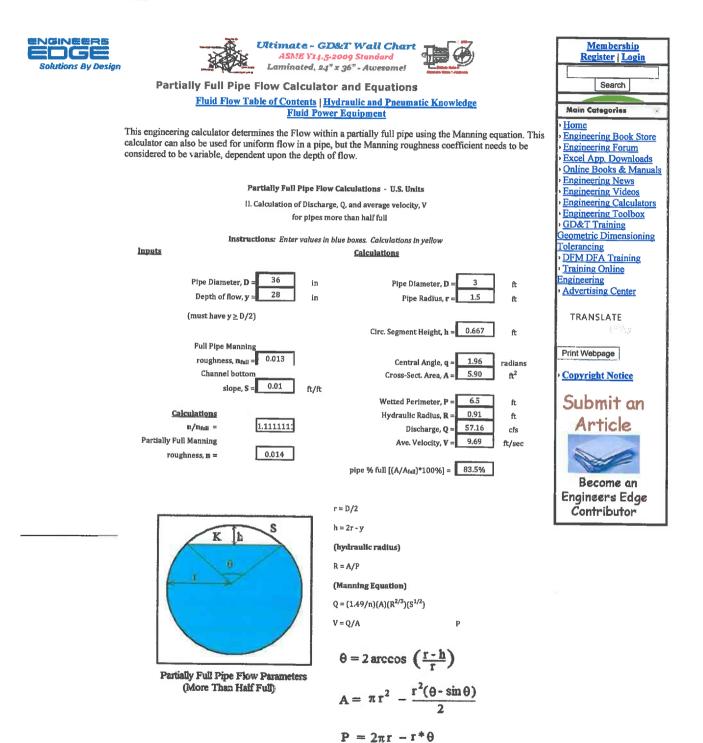



Fluid Flow Table of Contents | Hydraulic and Pneumatic Knowledge Fluid Power Equipment

This engineering calculator determines the Flow within a partially full pipe using the Manning equation. This calculator can also be used for uniform flow in a pipe, but the Manning roughness coefficient needs to be considered to be variable, dependent upon the depth of flow.

Partially Full Pipe Flow Parameters (More Than Half Full)

 $\mathbf{P}=2\pi\mathbf{r}-\mathbf{r}^{*}\mathbf{\theta}$


Equation used for n/n_{full} : $n/n_{full} = 1.25 \cdot (y/D \cdot 0.5) * 0.5$ (for $0.5 \le y/D \le 1$)

PR22 Q100= 27.7 CFS

R = A/P

(Manning Equation)

Got It!

Equation used for n/n_{full} : n/n_{full} = 1.25 - (y/D -0.5)*0.5 (for 0.5 \leq y/D \leq 1)

PR23 Q100= 55.4 CFS

A privacy, disclaimer and tracking cookie usage reminder from Engineers Edge. To learn more, see our Privacy Policy / Cookie Usage & Disclaimer links at bottom of webpage.

Got It!

Sot n:			
A CONTRACTOR	ASME	X-T Wall Chart	<u>Membership</u> <u>Register Login</u>
Parti	ally FULL Pipe Flow	v Calculator and Equations	Search
		<u>`able of Contents</u> neumatic Knowledge	
	Main Categories		
	in also be used for uniform	in a partially full pipe (&e1/2 fullusing the Manning a flow in a pipe, but the Manning roughness coefficient a the depth of flow.	 Home Engineering Book Store Engineering Forum Excel App. Downloads Online Books & Manuals
	Partially Full Pipe Flow	w Calculations - U.S. Units	 <u>Engineering News</u> <u>Engineering Videos</u>
		rge, Q, and average velocity, V	› Engineering Calculators
	for pipes n	nore than half full	 <u>Engineering Toolbox</u> <u>GD&T Training</u>
<u>Inputs</u>	Instructions: Enter values in	blue boxes. Calculations in yellow Calculations	Geometric Dimensioning Tolerancing
mputs			• DFM DFA Training
Pipe Diam	eter, $\mathbf{D} = 60$ in	Pipe Diameter, D = 5 ft	 <u>Training Online</u> <u>Engineering</u>
Depth of	flow, y = <u>56</u> in	Pipe Radius, $\mathbf{r} = 2.5$ ft	› <u>Advertising Center</u>
(must have	y <u>≥</u> D/2)		Follow @engineersedge
		Circ. Segment Height, h = 0.333 ft	TRANSLATE
Full Pipe roughnes		Central Angle, $\mathbf{q} = 1.04$ radians	
	l bottom	Central Angle, $\mathbf{q} = 1.04$ radians Cross-Sect. Area, $\mathbf{A} = 19.07$ ft ²	Print Webpage
s	lope, S = 0.01 ft/ft		> Copyright Notice
<u>Calculations</u>		Wetted Perimeter, $\mathbf{P} = 13.1$ ft Hydraulic Radius, $\mathbf{R} = 1.46$ ft	- copyright Notice
n/n _{full} =	1.0333333	Discharge, $\mathbf{Q} = 271.81$ cfs	Submit an
Partially Full Manning		Ave. Velocity, V = 14.25 ft/sec	Article
roughness, n =	0.013	pipe % full [(A/A _{full})*100%] = 97.1%	
			Become an
		r = D/2	Engineers Edge
K	h	$\mathbf{h} = 2\mathbf{r} - \mathbf{y}$	Contributor
		(hydraulic radius)	
r r	θ	R = A/P	
{	*)	(Manning Equation)	
		$Q = (1.49/n)(A)(R^{2/3})(S^{1/2})$	
		V = Q/A P	
		$\theta = 2 \arccos\left(\frac{\mathbf{r} \cdot \mathbf{h}}{\mathbf{r}}\right)$	
	be Flow Parameters		
(More Tha	m Half Full)	$A = \pi r^2 - \frac{r^2(\theta - \sin \theta)}{2}$	
		2	

Equation used for n/n_{full}: n/n_{full} = 1.25 - (y/D -0.5)*0.5 (for 0.5 \leq y/D \leq 1)

PR24 Q100= 269.3 CFS

 $P = 2\pi r - r^* \theta$

A privacy, disclaimer and tracking cookie usage reminder from Engineers Edge. To learn more, see our Privacy Policy / Cookie Usage & Disclaimer links at bottom of webpage.

Got It!

ENGINEERS EDGE Solutions By Design	Geometric Bou Based on J	Indaries IV ASME Y14.5-2018	<u>Membership</u> <u>Register</u> <u>Login</u>
	Partially FULL Pipe	e Flow Calculator and Equations	Secret
		Flow Table of Contents	Search
		<u>c and Pneumatic Knowledge 1id Power Equipment</u>	Main Categories
		ow within a partially full pipe (&e1/2 fullusing the Manning uniform flow in a pipe, but the Manning roughness coefficient lent upon the depth of flow.	 <u>Home</u> <u>Engineering Book Store</u> <u>Engineering Forum</u> <u>Excel App. Downloads</u> Online Books & Manuals
	Partially Full	Pipe Flow Calculations - U.S. Units	 <u>Engineering News</u>
	II. Calculation o	of Discharge, Q, and average velocity, V	 <u>Engineering Videos</u> <u>Engineering Calculators</u>
	fc	or pipes more than half full	 Engineering Toolbox
	Instructions: Enter	values in blue boxes. Calculations in yellow	 <u>GD&T Training</u> <u>Geometric Dimensioning</u>
	Inputs	Calculations	Tolerancing • DFM DFA Training
	Pipe Diameter, $\mathbf{D} = \boxed{30}$ Depth of flow, $\mathbf{y} = \boxed{17}$	in Pipe Diameter; D = 2.5 ft in Pipe Radius, r = 1.25 ft	 <u>Training Online</u> <u>Engineering</u> <u>Advertising Center</u>
	(must have $y \ge D/2$)		Follow @engineersedge
		Circ. Segment Height, $\mathbf{h} = 1.083$ ft	TRANCLATE
	Full Pipe Manning roughness, $n_{full} = $ Channel bottom slope, $S = $	Central Angle, $\mathbf{q} = 2.87$ radians Cross-Sect. Area, $\mathbf{A} = 2.87$ ft ² ft/ft	TRANSLATE Print Webpage Copyright Notice
	<u>Calculations</u>	Wetted Perimeter; $\mathbf{P} = \frac{4.3}{\text{ft}}$ ft Hydraulic Radius, $\mathbf{R} = 0.67$ ft	· <u>Copyright Hotec</u>
	$n/n_{full} = 1.2166666$	Discharge, $\mathbf{Q} = 20.77$ cfs	Submit an
	Partially Full Manning	Ave. Velocity, $\mathbf{V} = 7.24$ ft/sec	Article
	roughness, n = 0.016	pipe % full [(A/A _{full})*100%] = 58.5%	
		r = D/2	Become an
	S	$h = 2r \cdot y$	Engineers Edge
	Kh		Contributor
		(hydraulic radius)	
	r 0	R = A/P	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(Manning Equation)	
		$Q = (1.49/n)(A)(R^{2/3})(S^{1/2})$	
		V = Q/A P	

Partially Full Pipe Flow Parameters (More Than Half Full)  $\theta = 2 \arccos\left(\frac{\mathbf{r} \cdot \mathbf{h}}{\mathbf{r}}\right)$  $\mathbf{A} = \pi \mathbf{r}^2 - \frac{\mathbf{r}^2(\theta \cdot \sin \theta)}{2}$ 

$$\mathbf{P} = 2\pi \mathbf{r} - \mathbf{r}^* \mathbf{\Theta}$$

Equation used for  $n/n_{full}$ :  $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$  (for  $0.5 \le y/D \le 1$ )

# PR25 Q100= 20.8 CFS

A privacy, disclaimer and tracking cookie usage reminder from Engineers Edge. To learn more, see our Privacy Policy / Cookie Usage & Disclaimer links at bottom of webpage.

Got It!

ENGINEERS EDGE Solutions By Design	<mark>Geometric B</mark> Based o		r <mark>ies IV</mark> E Y14.5-2018			<u>Membership</u> <u>Register   Login</u>
	<u>Fi</u> Hydra	uid Flow T ulic and P	v Calculator and E <u>Table of Contents</u> neumatic Knowledge ver Equipment	quations		Search Main Categories
	This engineering calculator determines the equation. This calculator can also be used needs to be considered to be variable, dep	for uniform endent upo	n flow in a pipe, but the	Manning roughness		<ul> <li>Home</li> <li>Engineering Book Store</li> <li>Engineering Forum</li> <li>Excel App. Downloads</li> <li>Online Books &amp; Manuals</li> <li>Engineering News</li> </ul>
	II. Calculati	on of Discha	rge, Q, and average velocity, V	V		<ul> <li><u>Engineering Videos</u></li> <li><u>Engineering Calculators</u></li> </ul>
		for pipes r	nore than half full			» Engineering Toolbox
	Instructions: E	ıter values ir	n blue boxes. Calculations in	yellow		<ul> <li><u>GD&amp;T Training</u></li> <li><u>Geometric Dimensioning</u></li> </ul>
	<u>Inputs</u>		<u>Calculations</u>			Tolerancing • DFM DFA Training
	Pipe Diameter, $\mathbf{D} = \boxed{66}$ Depth of flow, $\mathbf{y} = \boxed{64}$	in in		ameter, <b>D</b> = 5.5 Radius, <b>r</b> = 2.75	ft ft	Training Online     Engineering     Advertising Center
	(must have y ≥ D/2) Full Pipe Manning		Circ. Segment	Height, <b>h</b> = 0.167	ft	Follow @engineersedge TRANSLATE
	roughness, <b>n_{full} = 0.013</b> Channel bottom slope, <b>S = 0.005</b>		Central Cross-Sec	Angle, <b>q</b> = $0.70$ t. Area, <b>A</b> = $23.55$	radians ft ²	Print Webpage
			Wetted Per		ft	<u>     Copyright Notice         </u>
	Calculations         n/n _{full} =       1.01515         Partially Full Manning	15		Radius, $\mathbf{R} =$ 1.53         charge, $\mathbf{Q} =$ 250.01         elocity, $\mathbf{V} =$ 10.62	ft cfs ft/sec	Submit an Article
	roughness, <b>n</b> = 0.013		pipe % full [(A/A _{full} )	*100%] = 99.1%		
			r = D/2			Become an
	S		h = 2r - y			Engineers Edge
	K h		(hydraulic radius)			Contributor
	θ		R = A/P			
	r		(Manning Equation)			
			$Q = (1.49/n)(A)(R^{2/3})(S^{1/3})$	^{/2} )		
			V = Q/A	Р		

Partially Full Pipe Flow Parameters (More Than Half Full)  $\theta = 2 \arccos\left(\frac{\mathbf{r} \cdot \mathbf{h}}{\mathbf{r}}\right)$  $A = \pi \mathbf{r}^2 - \frac{\mathbf{r}^2(\theta \cdot \sin \theta)}{2}$ 

$$\mathbf{P} = 2\pi \mathbf{r} - \mathbf{r}^* \mathbf{\theta}$$

Equation used for  $n/n_{full}$ :  $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$  (for  $0.5 \le y/D \le 1$ )

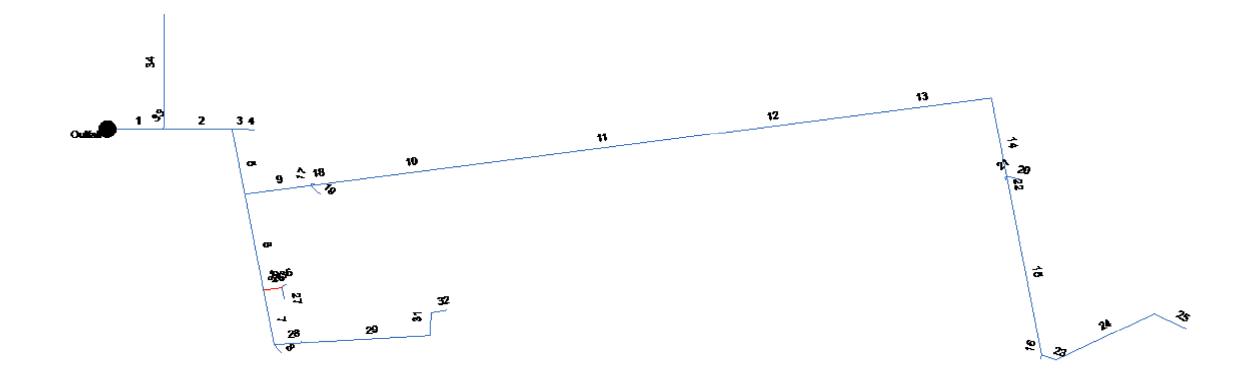
### PR26 Q100= 287.3 CFS

A privacy, disclaimer and tracking cookie usage reminder from Engineers Edge. To learn more, see our Privacy Policy / Cookie Usage & Disclaimer links at bottom of webpage.

Got It!



Got It!		
ASME	X-14.5-2018	<u>Membership</u> <u>Register   Login</u>
Partially FULL Pipe Flow Fluid Flow Ta	Calculator and Equations ble of Contents	Search
	<u>eumatic Knowledge</u> <u>r Equipment</u>	Main Categories
This engineering calculator determines the Flow within equation. This calculator can also be used for uniform needs to be considered to be variable, dependent upon	flow in a pipe, but the Manning roughness coefficient	<ul> <li>Home</li> <li>Engineering Book Store</li> <li>Engineering Forum</li> <li>Excel App. Downloads</li> <li>Online Books &amp; Manuals</li> </ul>
Partially Full Pipe Flow	Calculations - U.S. Units	› Engineering News
-	e, Q, and average velocity, V	<ul> <li><u>Engineering Videos</u></li> <li><u>Engineering Calculators</u></li> </ul>
for pipes mo	ore than half full	<ul> <li><u>Engineering Toolbox</u></li> <li><u>GD&amp;T Training</u></li> </ul>
Instructions: Enter values in l	blue boxes. Calculations in yellow Calculations	Geometric Dimensioning Tolerancing
Pipe Diameter, $\mathbf{D} = \boxed{48}$ in Depth of flow, $\mathbf{y} = \boxed{32}$ in	Pipe Diameter; $\mathbf{D} = \frac{4}{\text{ft}}$ ft Pipe Radius, $\mathbf{r} = \frac{2}{\text{ft}}$ ft	<ul> <li>DFM DFA Training</li> <li>Training Online</li> <li>Engineering</li> <li>Advertising Center</li> </ul>
(must have $y \ge D/2$ )	Circ. Segment Height, <b>h</b> = 1.333 ft	Follow @engineersedge
Full Pipe Manning	Circ. segment neight, $\mathbf{n} = \mathbf{n} \mathbf{n} \mathbf{n}$	TRANSLATE
roughness, $\mathbf{n_{full}} = \boxed{0.013}$ Channel bottom slope, $\mathbf{S} = \boxed{0.01}$ ft/ft	Central Angle, $\mathbf{q} = 2.46$ radians Cross-Sect. Area, $\mathbf{A} = 8.90$ ft ²	Print Webpage
Calculations	Wetted Perimeter, $\mathbf{P} = \frac{7.6}{1.16}$ ft Hydraulic Radius, $\mathbf{R} = 1.16$ ft	<u>     Copyright Notice     </u>
$n/n_{full} = 1.1666666$	Discharge, $\mathbf{Q} = 96.77$ cfs	Submit an
Partially Full Manning	Ave. Velocity, $\mathbf{V} = 10.87$ ft/sec	Article
roughness, <b>n</b> =0.015	pipe % full [(A/A _{full} )*100%] = 70.8%	
	r = D/2	Become an
S	h = 2r - y	Engineers Edge Contributor
K h	(hydraulic radius)	Contributor
θ	R = A/P	
< r	(Manning Equation)	
	$Q = (1.49/n)(A)(R^{2/3})(S^{1/2})$	
	V = Q/A P	
	$\theta = 2 \arccos\left(\frac{r-h}{r}\right)$	


Partially Full Pipe Flow Parameters (More Than Half Full)

 $A = \pi r^2 - \frac{r^2(\theta - \sin \theta)}{2}$  $\mathbf{P} = 2\pi \mathbf{r} - \mathbf{r} * \mathbf{\theta}$ 

Equation used for n/n_{full}:  $n/n_{full} = 1.25 - (y/D - 0.5)*0.5$  (for  $0.5 \le y/D \le 1$ )

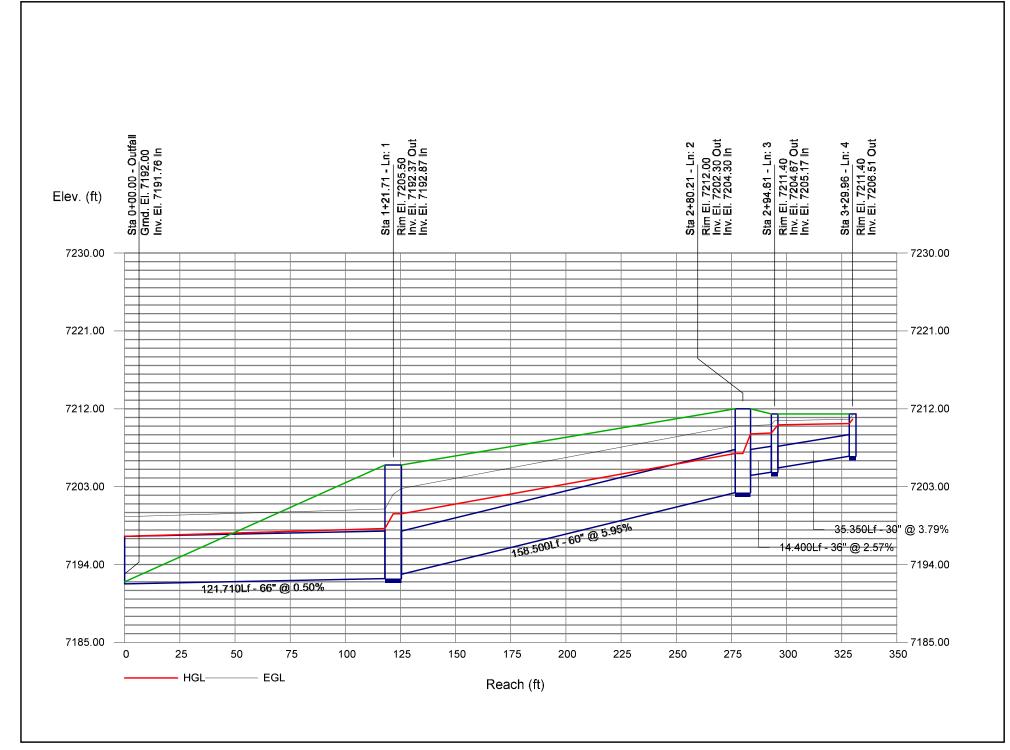
### **#PR27 Q100= 92.8 CFS**

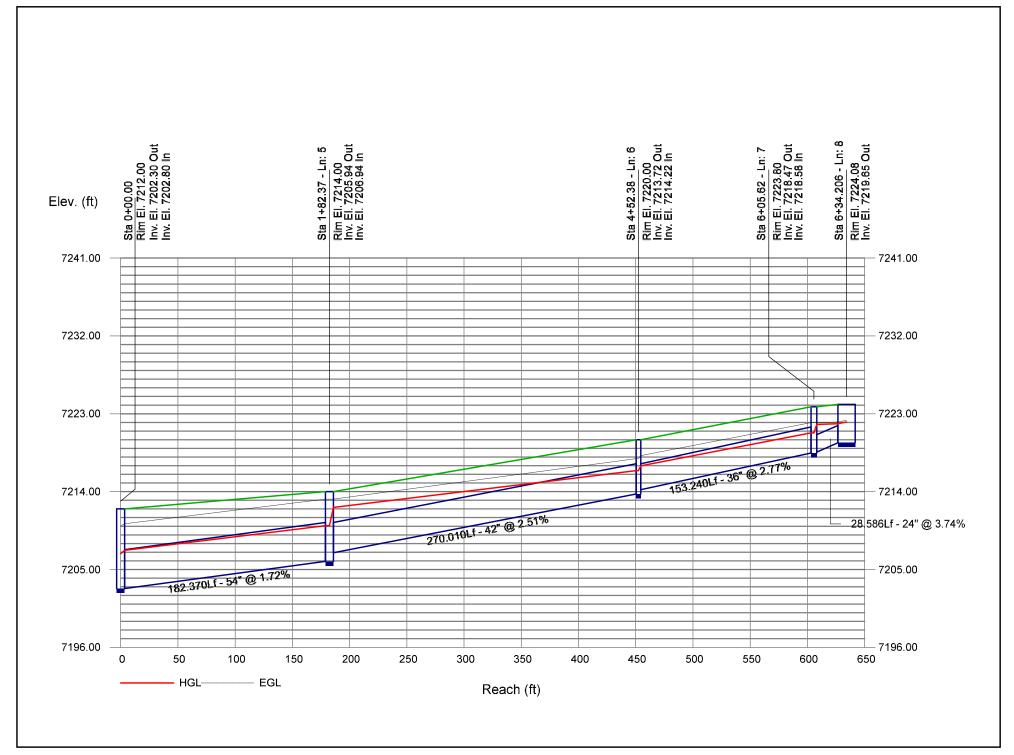
**STORM 1, 2, 3, 4, 5, 7 & 9 PIPE RUN INDEX MAP** 

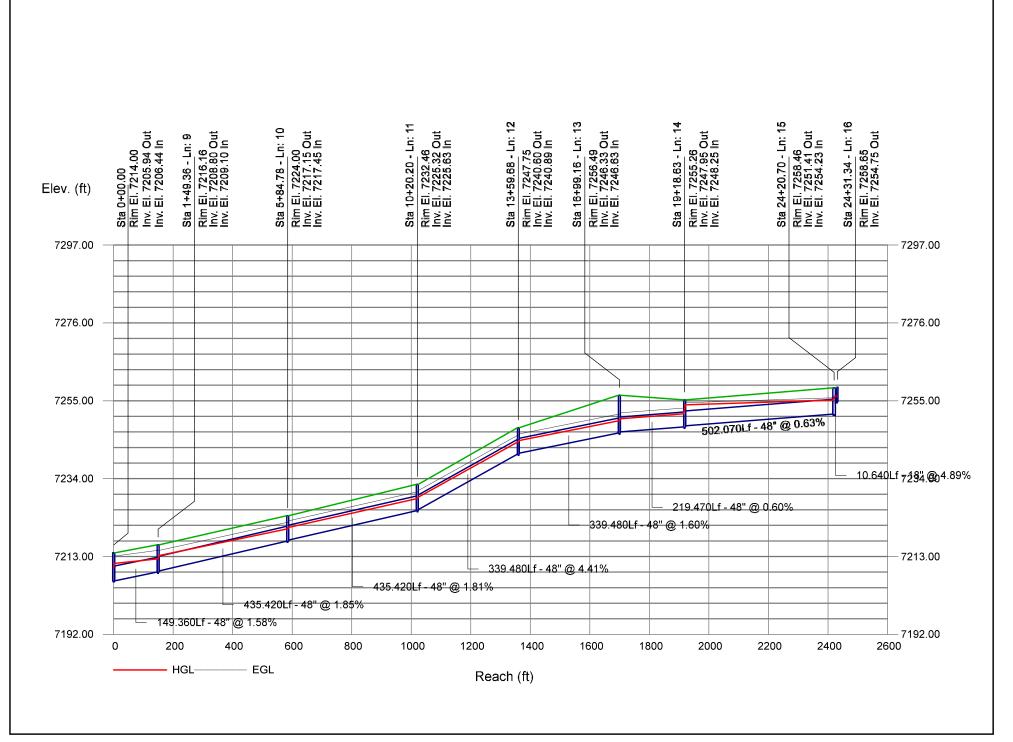


MyReport

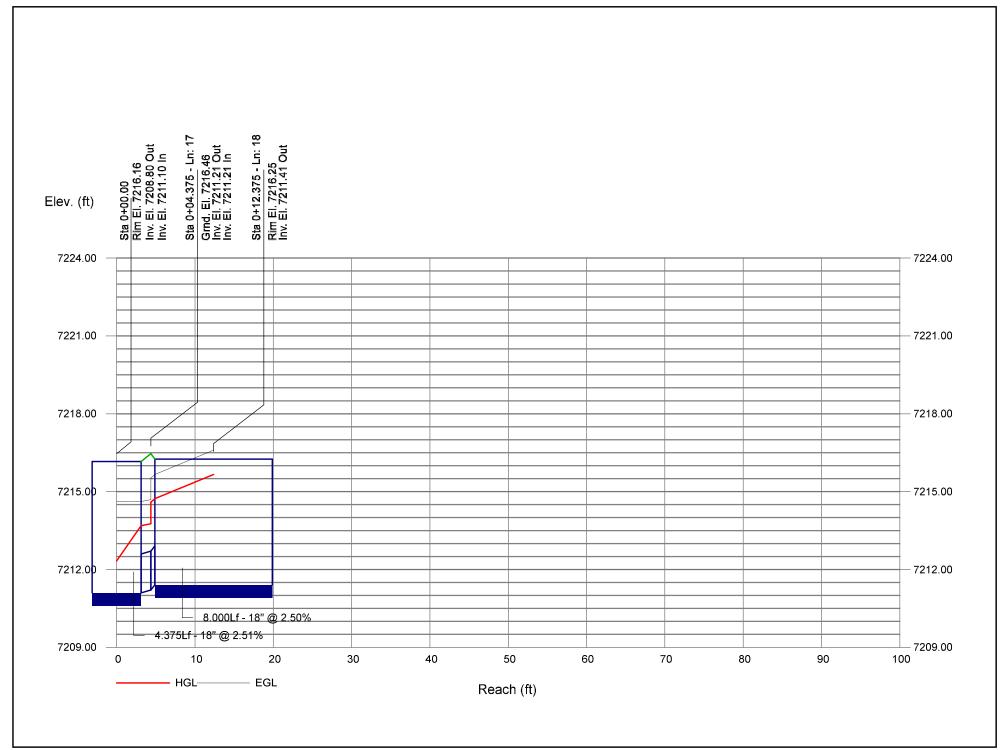
# STORM 1, 2, 3, 4, 5, 7 & 9 incl LATERALS

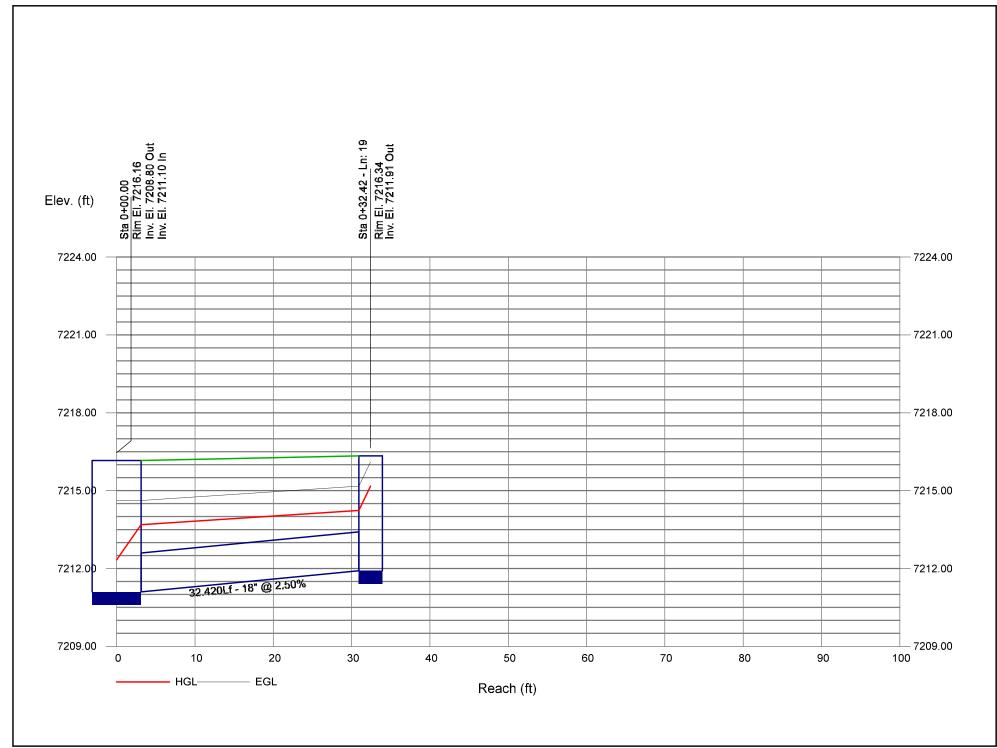

Line No.	Line ID	Line Type	Junct Type	J-Loss Coeff	n-val Pipe	Flow Rate	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Vel Ave	Line Length	Rim-Hw	
						(cfs)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft/s)	(ft)	(ft)	
1	Storm 1	Cir	МН	0.75	0.013	287.30	7191.76	7192.37	0.50	7197.26	7198.15	1.71	7199.86	12.09	121.710	5.64	
2	Storm 1(2)	Cir	МН	0.99 z	0.013	269.30	7192.87	7202.30	5.95	7199.86	7206.83	n/a	7206.83	14.06	158.500	5.17	
3	Storm 1	Cir	Generic	0.50	0.013	55.40	7204.30	7204.67	2.57	7209.10	7209.20	0.48	7209.68	7.84	14.400	1.72	
4	Storm 1	Cir	Generic	1.00	0.013	27.70	7205.17	7206.51	3.79	7210.14	7210.30	0.50	7210.79	5.64	35.350	0.61	
5	Storm 2	Cir	МН	1.00 z	0.013	214.50	7202.80	7205.94	1.72	7207.23	7210.06	3.07	7210.06	13.79	182.370	3.94	
6	Storm 2	Cir	МН	1.00 z	0.013	75.30	7206.94	7213.72	2.51	7212.18	7216.43	1.38	7216.43	8.62	270.010	3.57	
7	Storm 2	Cir	МН	1.00 z	0.013	51.30	7214.22	7218.47	2.77	7216.99	7220.80	n/a	7220.80	8.12	153.240	3.00	
8	Storm 2	Cir	Generic	1.00	0.013	11.50	7218.58	7219.65	3.74	7221.77	7221.85	0.21	7222.05	3.66	28.586	2.03	
9	Storm 3	Cir	МН	0.89 z	0.013	142.50	7206.44	7208.80	1.58	7211.13	7212.33	2.04	7212.33	11.74	149.360	3.83	
10	Storm 3	Cir	МН	0.15 z	0.013	117.80	7209.10	7217.15	1.85	7213.25	7220.42	n/a	7220.42	10.05	435.420	3.58	
11	Storm 3	Cir	МН	0.15 z	0.013	117.80	7217.45	7225.32	1.81	7220.84	7228.59	n/a	7228.59	10.55	435.420	3.87	
12	Storm 3	Cir	МН	0.15 z	0.013	117.80	7225.63	7240.60	4.41	7229.01	7243.87	n/a	7243.87	10.56	339.480	3.88	
13	Storm 3	Cir	МН	1.00 z	0.013	117.80	7240.89	7246.33	1.60	7244.29	7249.60	n/a	7249.60	10.54	339.480	6.89	
14	Storm 3	Cir	МН	0.92	0.013	117.80	7246.63	7247.95	0.60	7250.17	7251.49	1.44	7252.92	10.02	219.470	2.34	
15	Storm 3	Cir	МН	0.88	0.013	76.00	7248.25	7251.41	0.63	7253.92	7255.21	0.52	7255.73	6.11	502.070	2.73	
16	Storm 3	Cir	Generic	1.00	0.013	2.70	7254.23	7254.75	4.89	7256.28	7256.29	0.04	7256.32	1.53	10.640	2.33	
17	Storm 3_Lat 1	Cir	None	0.89	0.013	13.70	7211.10	7211.21	2.51	7213.69	7213.76	0.83	7214.59	7.75	4.375	1.87	
18	Storm 3_Lat 1	Cir	Generic	1.00	0.013	13.70	7211.21	7211.41	2.50	7214.59	7214.73	0.93	7215.66	7.75	8.000	0.59	
19	Storm 3_Lat 2	Cir	Generic	1.00	0.013	13.70	7211.10	7211.91	2.50	7213.69	7214.24	0.93	7215.17	7.75	32.420	1.17	
20	Storm 3_Lat 3	Cir	Generic	1.00	0.013	22.20	7249.95	7250.33	1.26	7253.71	7254.00	0.78	7254.78	7.07	30.230	0.47	
21	Storm 3_Lat 4	Cir	None	0.75	0.013	22.20	7249.95	7250.01	1.36	7253.71	7253.75	0.58	7254.33	7.07	4.380	1.03	
22	Storm 3_Lat 4(2)	Cir	Generic	1.00	0.013	22.20	7250.01	7250.11	1.25	7254.33	7254.41	0.78	7255.19	7.07	8.000	0.27	
23	Storm 4	Cir	Generic	1.23	0.013	74.00	7251.73	7251.99	0.75	7255.74	7255.81	0.69	7256.49	5.94	34.736	1.80	
 Proiec	t File: Storm Main Sy	/stem.str	n								Numbe	r of lines:	36		Date:	12/12/2020	

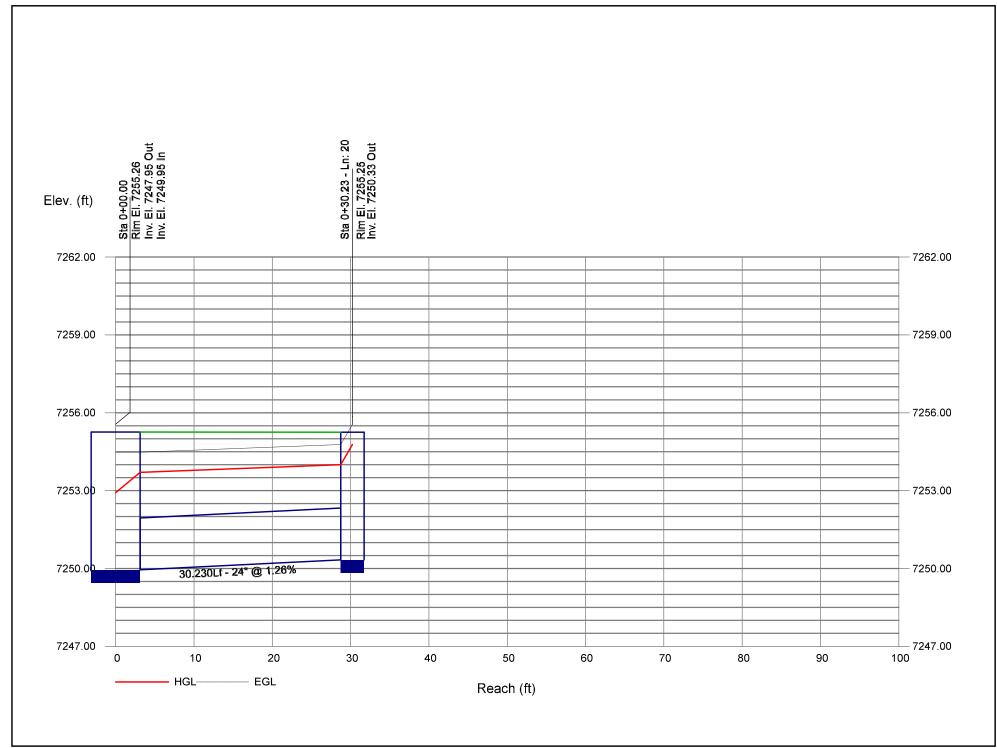

# **MyReport**

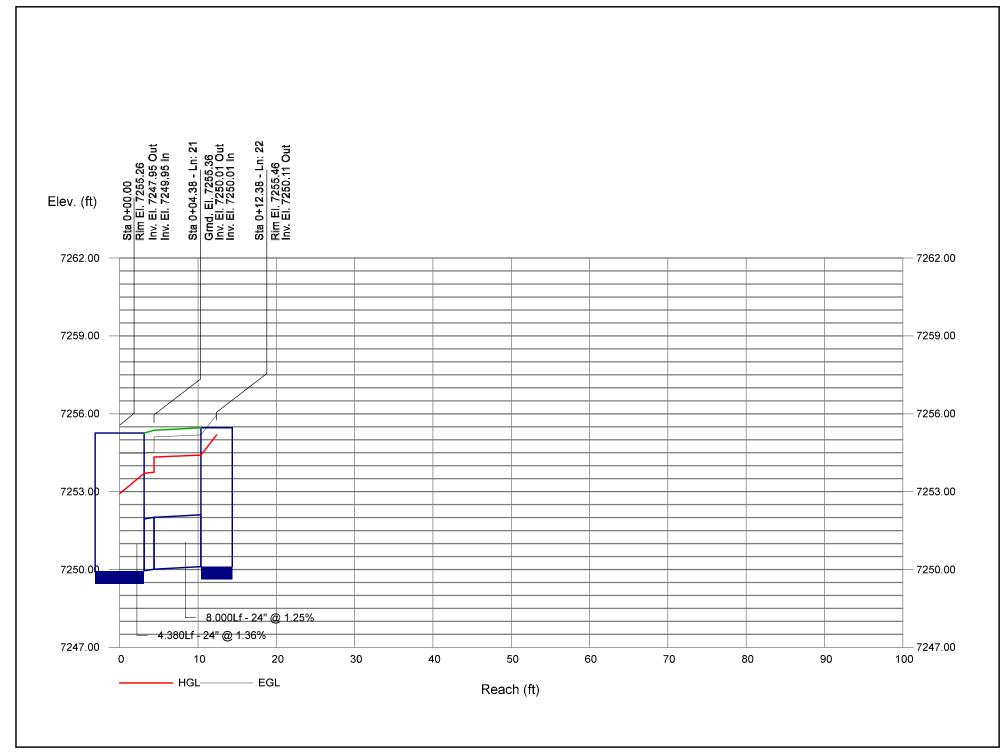

# STORM 1, 2, 3, 4, 5, 7 & 9 incl LATERALS

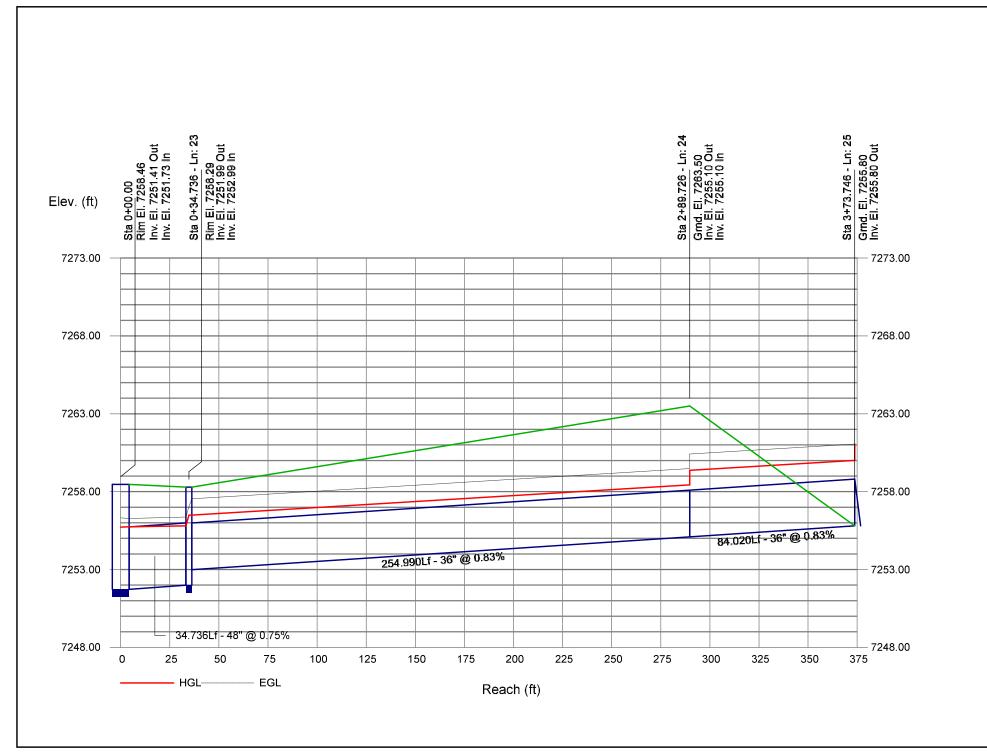
Page 2

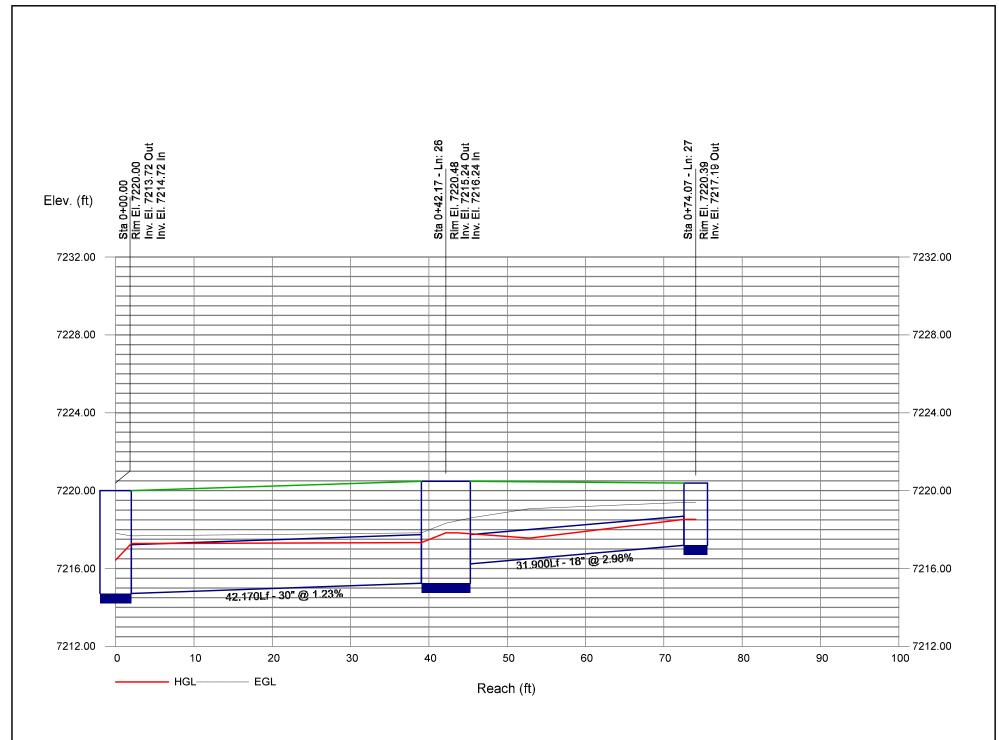

					I		,					1			1	1	
Line No.	Line ID	Line Type	Junct Type	J-Loss Coeff	n-val Pipe	Flow Rate	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Vel Ave	Line Length	Rim-Hw	
						(cfs)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft/s)	(ft)	(ft)	
24	Storm 4	Cir	None	0.89	0.013	58.10	7252.99	7255.10	0.83	7256.49	7258.43	0.93	7259.36	8.22	254.990	4.14	
25	Storm 4	Cir	Hdwall	1.00	0.013	58.10	7255.10	7255.80	0.83	7259.36	7260.00	1.05	7261.05	8.22	84.020	-5.25	
26	Storm 5	Cir	мн	1.00	0.013	24.80	7214.72	7215.24	1.23	7217.28	7217.33	0.50	7217.83	5.35	42.170	2.65	
27	Storm 5(2)	Cir	Generic	1.00 z	0.013	12.40	7216.24	7217.19	2.98	7217.83	7218.52 j	n/a	7218.52	7.25	31.900	1.87	
28	Storm Planned	Cir	мн	1.00	0.013	39.70	7218.08	7219.19	1.83	7220.96	7221.32	1.24	7222.55	8.51	60.570	1.98	
29	Storm Planned	Cir	мн	1.00 z	0.013	27.90	7219.49	7223.85	1.50	7223.29	7225.65 j	n/a	7225.65	6.53	290.660	3.30	
31	Storm 7	Cir	Generic	1.46 z	0.013	27.90	7224.15	7224.80	1.01	7225.99	7226.60 j	n/a	7226.60	7.28	64.530	3.04	
32	Storm 7	Cir	Generic	1.00	0.013	14.00	7225.80	7226.17	1.01	7227.30	7227.95	0.98	7228.92	7.92	36.470	0.85	
33	Storm 9	Cir	None	0.75	0.013	20.80	7195.47	7195.56	1.03	7201.85	7201.87	0.21	7202.08	4.24	8.700	1.92	
34	Storm 9 (2)	Cir	Dp-Grate	1.00	0.013	20.80	7195.56	7198.67	1.00	7202.08	7202.88	0.28	7203.16	4.24	310.630	0.06	
35	STRM 5 LAT1	Cir	None	0.75	0.013	12.34	7216.24	7216.29	0.92	7217.83	7217.90	0.57	7218.47	6.98	5.390	2.23	
36	STRM 5 LAT1 (2)	Cir	Generic	1.00	0.013	12.40	7216.29	7216.37	1.00	7218.47	7218.58	0.77	7219.35	7.02	8.000	1.42	
																	<u> </u>
Projec	t File: Storm Main Sy	/stem.sti	m								Numbe	er of lines:	36		Date:	12/12/2020	)
NOTE	S: ** Critical depth																

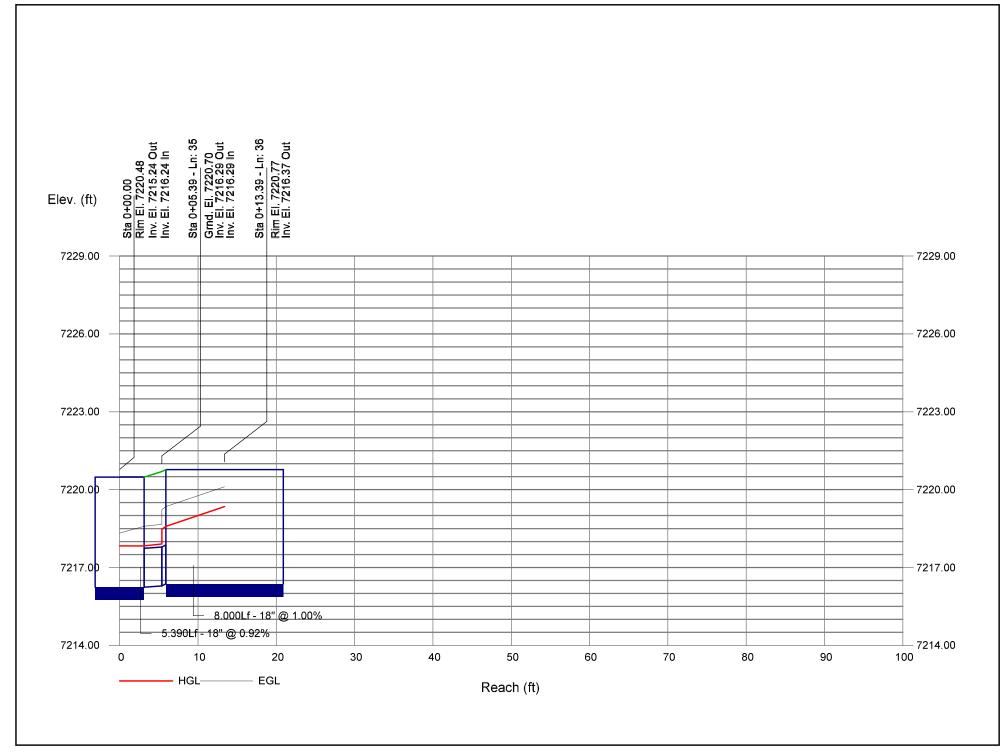


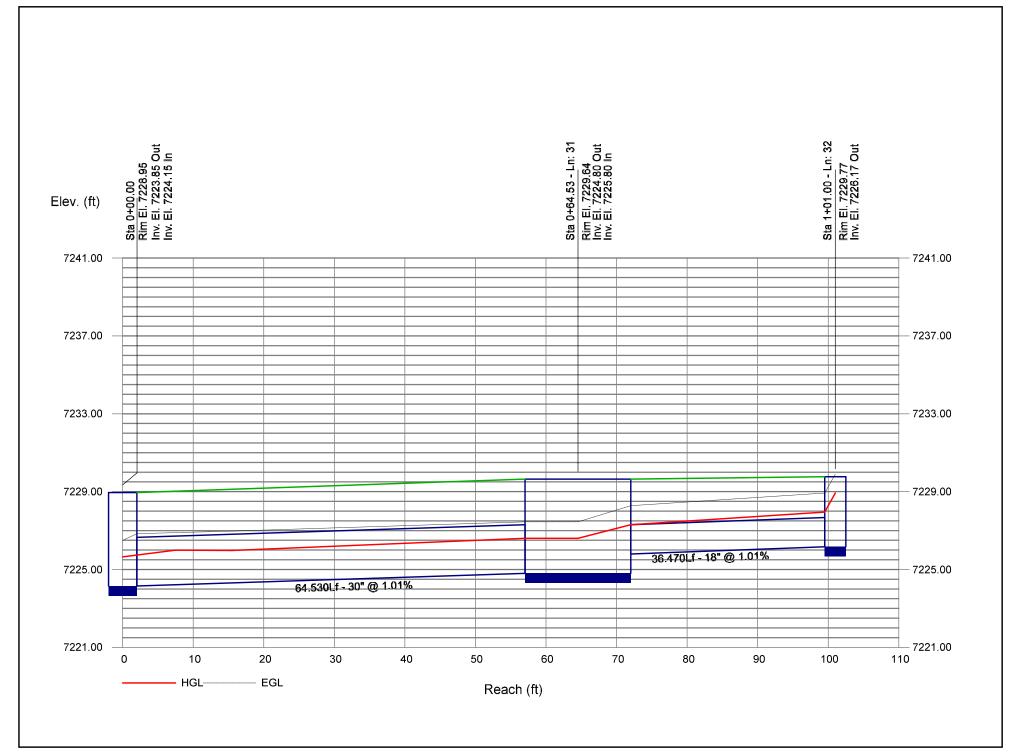



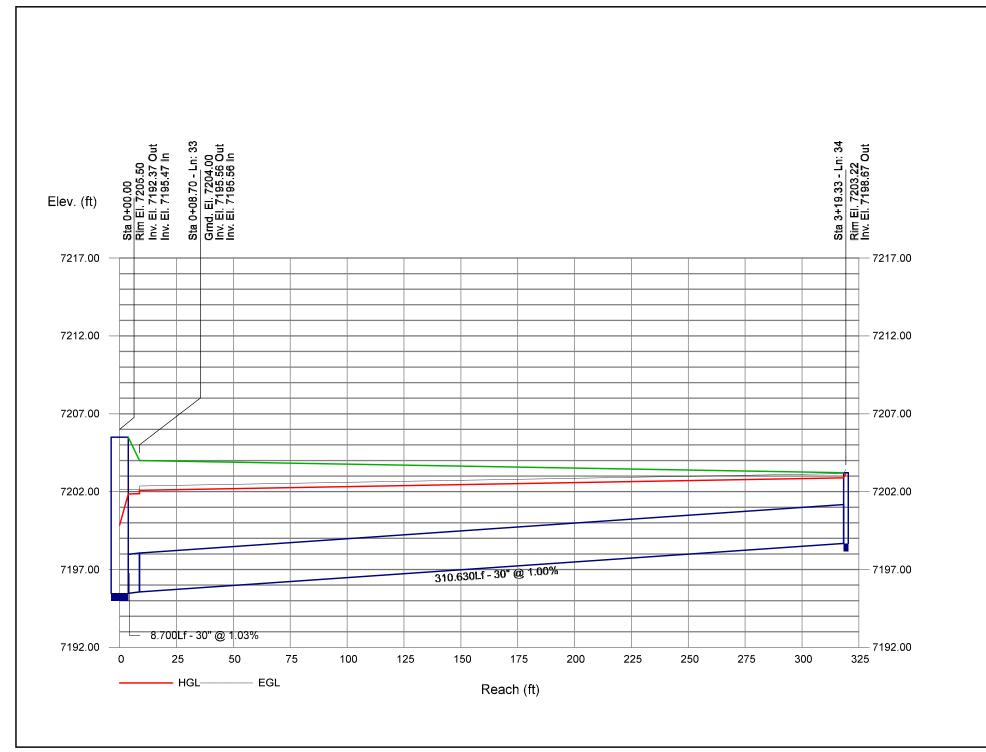





# **STORM 3-LAT 1 PROFILE**



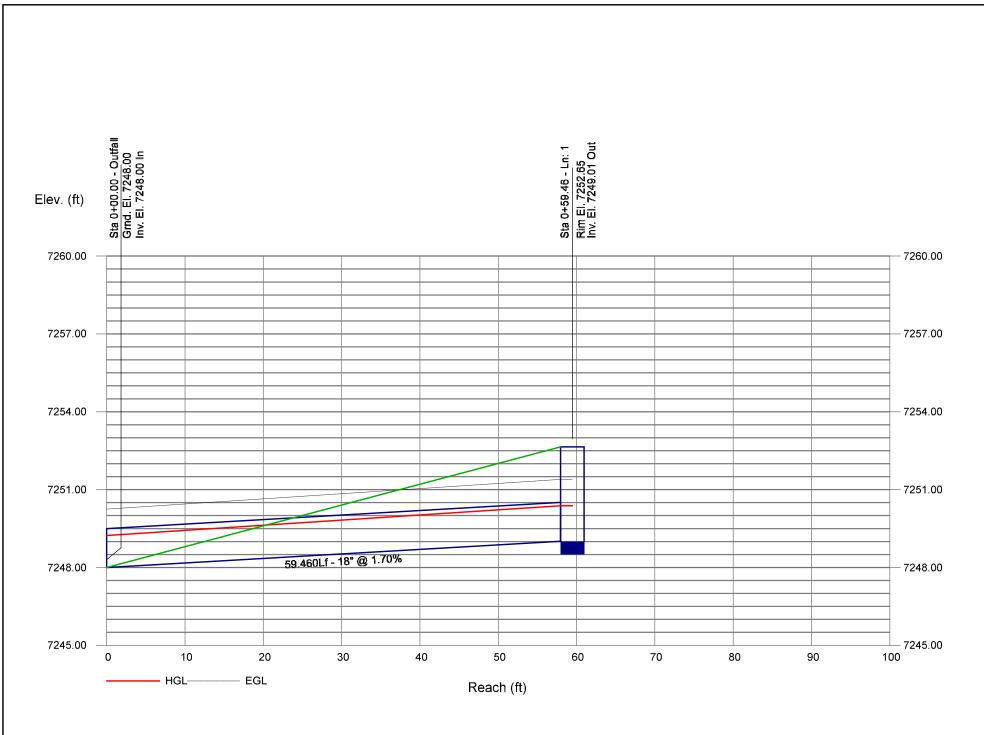












## **STORM 8 PIPE RUN INDEX MAP**



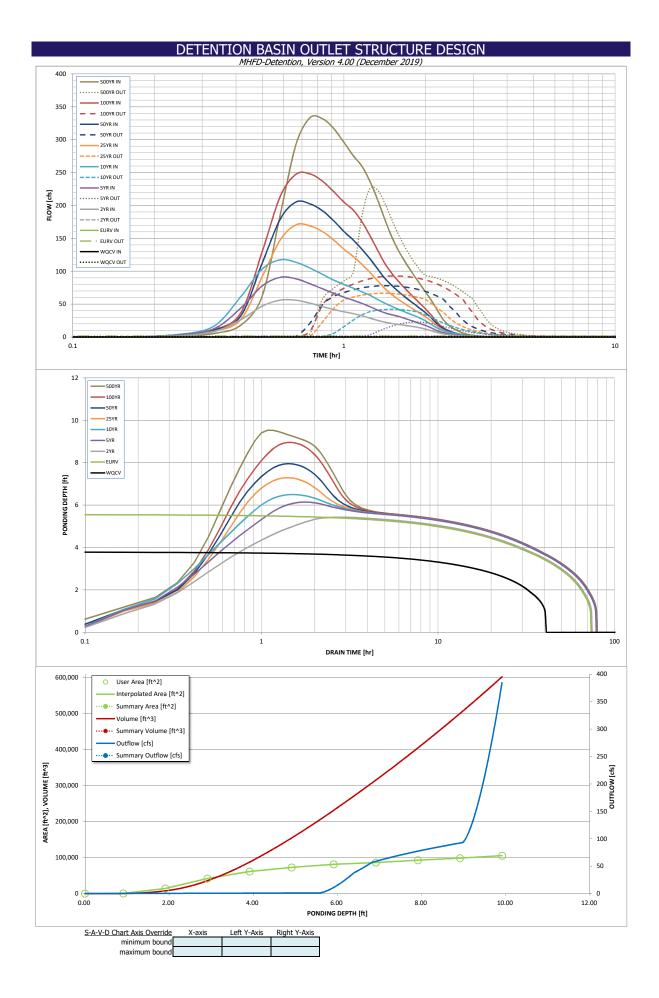
# **MyReport**

Line No.	Line ID	Line Type	Junct Type	J-Loss Coeff	n-val Pipe	Flow Rate	Invert Dn	Invert Up	Line Slope	HGL Dn	HGL Up	Minor Loss	HGL Jnct	Vel Ave	Line Length	Rim-Hw	
						(cfs)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(ft/s)	(ft)	(ft)	
1	Storm 8	Cir	Generic	1.25 z	0.013	13.70	7248.00	7249.01	1.70	7249.23	7250.38	n/a	7250.38	8.46	59.460	2.27	
Paint	Brush Hills	; Filing '	14									N	lumber of li	nes: 1			Date: 12/10/2020



Weight	Weighted Percent Imperviousness of PBH Filing 14 Contributing Area												
Contributing													
Basins	(Acres)	<i>C</i> ₅	Impervious % (I)	(Acres)*(I)									
** <b>0</b> \$1	4.44	0.30	40	177.60									
A	0.52	0.18	16	8.32									
В	8.31	0.20	20	166.17									
<i>B1</i>	0.92	0.16	13	12.00									
С	11.50	0.26	32	368.00									
D	5.20	0.20	20	104.00									
Ε	0.49	0.90	100	49.00									
F	1.61	0.30	40	64.40									
G	12.20	0.35	48	585.60									
Н	10.78	0.35	48	517.44									
Ι	12.74	0.35	48	611.52									
J	7.19	0.22	25	179.75									
K	0.75	0.36	50	37.50									
L	3.37	0.36	50	168.50									
М	2.53	0.27	34	86.02									
N	6.08	0.20	20	121.62									
Totals	88.63			3257.44									
Imperviousness of PBH 14	36.8												

Weig	Weighted Percent Imperviousness of WQ Pond C												
Contributing Basins	Area (Acres)	<i>C</i> ₅	Impervious % (I)	(Acres)*(I)									
OS5A	3.66	0.11	5	18.30									
OS5B	13.44	0.11	5	67.18									
OS5C	29.00	0.30	40	1160.15									
A	0.52	0.18	16	8.37									
В	8.31	0.20	20	166.17									
С	11.80	0.26	32	377.60									
D	5.20	0.20	20	103.95									
E	0.49	0.90	100	49.04									
F	1.61	0.30	40	64.58									
G	12.20	0.35	48	585.50									
Н	10.78	0.35	48	517.45									
Ι	12.74	0.35	48	611.52									
J	7.19	0.22	25	179.81									
K	0.75	0.36	50	37.46									
L	3.37	0.36	50	168.56									
М	2.53	0.27	34	86.02									
N	8.94	0.20	20	178.76									
* <i>TT</i>	5.05	0.35	25	126.25									
Totals	137.58			4506.69									
Imperviousness of WQ Pond C	32.8												


## DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

				MHH	D-Detention, Versio	n 4.03 (Ma	ay 2020)							
Project:	Paint Brush	Hills Filing I	No.14											
•	FSD Pond C													
ZONE 3	2													
	DNE 1	T												
		100-YEA	AR E		Depth Increment =		ft							
PERMANENT							Optional				Optional			
POOL Example Zone	Configuratio	on (Retenti	on Pond)		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ² )	Override Area (ft ² )	Area (acre)	Volume (ft ³ )	Volume (ac-ft)
Watershed Information				7100.00			0.00				180	0.004	(11)	
Selected BMP Type =	EDB	1		7190.09 <b>7191</b>	· · ·		0.91				457	0.010	290	0.007
		-		/191										
Watershed Area =	137.58	acres					1.91				14,185	0.326	7,611	0.175
Watershed Length =	3,440	ft					2.91				41,901	0.962	35,654	0.818
Watershed Length to Centroid =	2,149	ft					3.91				61,466	1.411	87,337	2.005
Watershed Slope =	0.025	ft/ft					4.91				72,754	1.670	154,447	3.546
Watershed Imperviousness =	32.80%	percent		7196.00			5.91				81,398	1.869	231,523	5.315
Percentage Hydrologic Soil Group A =	0.0%	percent		7197.00			6.91				86,246	1.980	315,345	7.239
Percentage Hydrologic Soil Group B =	100.0%	percent		7198.00			7.91				92,877	2.132	404,906	9.295
Percentage Hydrologic Soil Groups C/D =         0.0%         percent         7199.00          8.91           98,536         2.262         500,613         11.492           Target WOOV Drain Time =         40.0         hours         7300         0.01         105         513         2.423         603,627         13.835														
Target WQCV Drain Time =	40.0	hours		7200			9.91				105,513	2.422	602,637	13.835
Location for 1-hr Rainfall Depths =	User Input													
After providing required inputs above incl														L
depths, click 'Run CUHP' to generate runo the embedded Colorado Urban Hydrog														L
		1	Optional Use											L
Water Quality Capture Volume (WQCV) =	1.834	acre-feet		acre-feet										L
Excess Urban Runoff Volume (EURV) =	4.664	acre-feet		acre-feet										Ļ
2-yr Runoff Volume (P1 = 1.19 in.) =	4.688	acre-feet	1.19	inches										Ļ
5-yr Runoff Volume (P1 = $1.5$ in.) =	7.414	acre-feet	1.50	inches										
10-yr Runoff Volume (P1 = $1.75$ in.) =	9.906	acre-feet	1.75	inches										
25-yr Runoff Volume (P1 = 2 in.) =	13.603	acre-feet	2.00	inches										
50-yr Runoff Volume (P1 = $2.25$ in.) =	16.440	acre-feet	2.25	inches										L
100-yr Runoff Volume (P1 = $2.52$ in.) =	20.186	acre-feet	2.52	inches										
500-yr Runoff Volume (P1 = $3.14$ in.) =	27.480	acre-feet		inches										
Approximate 2-yr Detention Volume =	3.368	acre-feet												
Approximate 5-yr Detention Volume =	4.783	acre-feet												
Approximate 10-yr Detention Volume =	6.844	acre-feet												
Approximate 25-yr Detention Volume =	7.840	acre-feet												
Approximate 50-yr Detention Volume =	8.251	acre-feet												
Approximate 100-yr Detention Volume =	9.664	acre-feet												
Define Zones and Basin Geometry		-												
Zone 1 Volume (WQCV) =	1.834	acre-feet							-					
Zone 2 Volume (EURV - Zone 1) =	2.831	acre-feet												
Zone 3 Volume (100-year - Zones 1 & 2) =	5.000	acre-feet												
Total Detention Basin Volume =	9.664	acre-feet												
Initial Surcharge Volume (ISV) =	user	ft ³												
Initial Surcharge Depth (ISD) =	user	ft												
Total Available Detention Depth $(H_{total}) =$	user	ft												
Depth of Trickle Channel ( $H_{TC}$ ) =	user	ft												
Slope of Trickle Channel ( $S_{TC}$ ) =	user	ft/ft												
Slopes of Main Basin Sides ( $S_{main}$ ) =	user	H:V												
Basin Length-to-Width Ratio $(R_{L/W}) =$	user													
MHFD-Detention_v4 03.xlsm, Basin													12	2/7/2020, 9:14

## DETENTION BASIN OUTLET STRUCTURE DESIGN

Project:	Paint Brush Hills I		HFD-Detention, V	ersion 4.03 (May	2020)				
Basin ID:	FSD Pond C								
ZONE 3				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	3.79	1.834	Orifice Plate			
ZONE 1 AND 2	100-YEAR ORIFICE		Zone 2 (EURV)	5.56	2.831	Orifice Plate			
PERMANENT ORIFICES			Zone 3 (100-year)	8.09	5.000	Weir&Pipe (Restrict)			
Example Zone	Configuration (R	etention Pond)		Total (all zones)	9.664				
User Input: Orifice at Underdrain Outlet (typical	ly used to drain W	OCV in a Filtration I	BMP)			-	Calculated Parame	eters for Underdrain	<u>1</u>
Underdrain Orifice Invert Depth =		ft (distance below	the filtration media	surface)	Underd	rain Orifice Area =		ft ²	
Underdrain Orifice Diameter =		inches			Underdrain	Orifice Centroid =		feet	
User Input: Orifice Plate with one or more orifice							Calculated Parame		
Invert of Lowest Orifice = Depth at top of Zone using Orifice Plate =	0.00		n bottom at Stage = n bottom at Stage =	,	-	ce Area per Row = ptical Half-Width =	4.597E-02 N/A	ft ² feet	
Orifice Plate: Orifice Vertical Spacing =	22.20	inches	in bottom at Stage -	- 010)		cal Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	6.62		ctangular openings)			lliptical Slot Area =	N/A	ft ²	
	0102	sqr menes (use re	etangalar opennige)		-	inputtur bloc / i tu	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
User Input: Stage and Total Area of Each Orific	e Row (numbered	from lowest to high	<u>hest)</u>						_
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	1.85	3.71						
Orifice Area (sq. inches)	6.62	6.62	6.62						
				[					1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Circular or Rectand	ular)						Calculated Parame	eters for Vertical Or	ifice
osci input. Vertical office (circular of Acctang	Not Selected	Not Selected	1				Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basir	bottom at Stage =	=0ft) Ver	tical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basir	-	,	Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches	. Socioni de Stage			,,,,	,,,	
	,	,							
User Input: Overflow Weir (Dropbox with Flat of	or Sloped Grate and	d Outlet Pipe OR Re	ectangular/Trapezoi	dal Weir (and No C	<u> Dutlet Pipe)</u>		Calculated Parame	eters for Overflow \	Veir
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	5.57	N/A	ft (relative to basin l	oottom at Stage = 0	ft) Height of Grate	e Upper Edge, $H_t =$	5.57	N/A	feet
Overflow Weir Front Edge Length =	8.50	N/A	feet			eir Slope Length =	2.90	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V		ate Open Area / 10	•	1.37	N/A	
Horiz. Length of Weir Sides =	2.90	N/A	feet		erflow Grate Open		17.26	N/A	ft ²
Overflow Grate Open Area % =	70%	N/A	%, grate open are	a/total area O	verflow Grate Oper	n Area w/ Debris =	8.63	N/A	ft ²
Debris Clogging % =	50%	N/A	%						
User Input: Outlet Pipe w/ Flow Restriction Plate	e (Circular Orifice	Restrictor Plate or	Rectangular Orifice	)	Ca	culated Parameter	s for Outlet Pipe w/	Flow Restriction P	late
<u>oser input: ouder tipe w/ now restreating the</u>	Zone 3 Restrictor	Not Selected		4	<u></u>		Zone 3 Restrictor	1	
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below ba	asin bottom at Stage	= 0 ft) OI	utlet Orifice Area =	12.57	N/A	ft ²
Outlet Pipe Diameter =	48.00	N/A	inches	j-	,	Orifice Centroid =	2.00	N/A	feet
Restrictor Plate Height Above Pipe Invert =	48.00	,	inches	Half-Cent	ral Angle of Restric	tor Plate on Pipe =	3.14	N/A	radians
								•	
User Input: Emergency Spillway (Rectangular o	r Trapezoidal)						Calculated Parame	eters for Spillway	
Spillway Invert Stage=	8.97	ft (relative to basi	n bottom at Stage =	= 0 ft)	Spillway D	esign Flow Depth=	0.87	feet	
Spillway Crest Length =	96.00	feet			-	op of Freeboard =	10.84	feet	
Spillway End Slopes =	8.33	H:V				op of Freeboard =	2.42	acres	
Freeboard above Max Water Surface =	1.00	feet			Basin Volume at T	op of Freeboard =	13.83	acre-ft	
Routed Hydrograph Results	The user can over	ride the default CU	IHP hydrographs an	d runoff volumes b	y entering new val	ues in the Inflow H	ydrographs table (0	Columns W through	AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	1.834 N/A	4.664 N/A	4.688 4.688	7.414 7.414	9.906 9.906	13.603 13.603	16.440 16.440	20.186 20.186	27.480 27.480
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	13.4	37.5	57.3	104.5	131.2	167.6	233.6
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.10	0.27	0.42	0.76	0.95	1.22	1.70
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	N/A 0.8	N/A 1.2	56.0 1.2	90.7 22.6	117.3 42.3	170.5 66.5	205.3 78.0	248.0 92.8	333.2 226.2
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.6	0.7	0.6	0.6	0.6	1.0
Structure Controlling Flow =	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	1.2	2.4	3.8	4.4	5.3	5.7
Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	N/A 38	N/A 67	N/A 68	N/A 70	N/A 68	N/A 65	N/A 63	N/A 61	N/A 57
Time to Drain 99% of Inflow Volume (hours) =	40	71	72	75	74	73	72	71	69
Maximum Ponding Depth (ft) =	3.79	5.56	5.43	6.14	6.50	7.29	7.95	8.96	9.53
Area at Maximum Ponding Depth (acres) =	1.36	1.80	1.77	1.89	1.93	2.04	2.14	2.27	2.36
Maximum Volume Stored (acre-ft) =	1.839	4.673	4.423	5.747	6.417	8.002	9.380	11.583	12.925



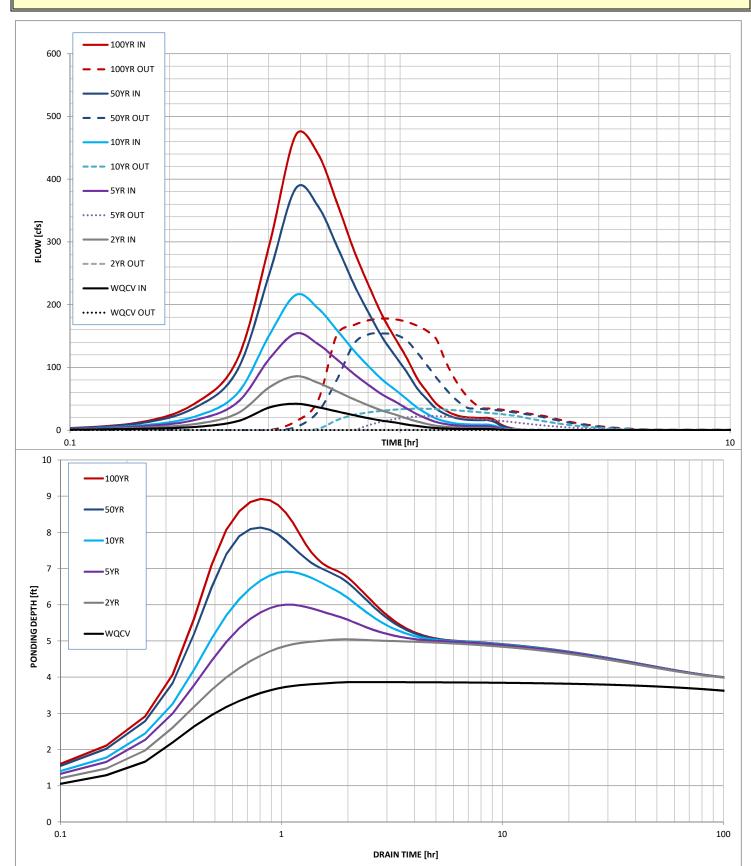
## **Stormwater Detention and Infiltration Design Data Sheet**

Workbook Protected

Vorksheet Protected

Stormwater Facility Name: Pond C

#### Facility Location & Jurisdiction: Paint Brush Hills Filing No. 14, Londonderry Drive, El Paso County / El Paso County


**User Input: Watershed Characteristics** Watershed Slope = 0.025 ft/ft Watershed Length = 3440 ft 137.58 Watershed Area = acres Watershed Imperviousness = 32.8% percent 0.0% Percentage Hydrologic Soil Group A = percent Percentage Hydrologic Soil Group B = 100.0% percent Percentage Hydrologic Soil Groups C/D = 0.0% percent Location for 1-hr Rainfall Depths (use dropdown): User Input

WQCV Treatment Method = Extended Detention

Stage [ft]         Area [ft^2]         Stage [ft]         Discharge [cfs]           0.00         180         0.00         0.00           0.91         457         0.91         0.00           2.00         14,185         2.00         0.00           3.00         41,901         3.00         0.01           4.00         61,466         4.00         0.05           5.00         72,754         5.00         0.50           6.00         81,398         6.00         22.50           7.00         86,246         7.00         35.30           8.00         92,877         8.00         150.00           9.00         98,536         9.00         180.00           10.00         105,513         10.00         307.00           10.00         105,513         10.00         307.00           10.01         105,513         10.01         10.01           10.01         10.01         10.01         10.01           10.01         10.01         10.01         10.01           10.01         10.01         10.01         10.01           10.01         10.01         10.01         10.01           10.01	User Defined	User Defined	User Defined	User Defined
0.914570.910.002.0014,1852.000.003.0041,9013.000.014.0061,4664.000.055.0072,7545.000.506.0081,3986.0022.507.0086,2467.0035.308.0092,8778.00150.009.0098,5369.00180.00	Stage [ft]	Area [ft^2]	Stage [ft]	Discharge [cfs]
2.00         14,185         2.00         0.00           3.00         41,901         3.00         0.01           4.00         61,466         4.00         0.05           5.00         72,754         5.00         0.50           6.00         81,398         6.00         22.50           7.00         86,246         7.00         35.30           8.00         92,877         8.00         150.00           9.00         98,536         9.00         180.00	0.00	180	0.00	0.00
3.00         41,901         3.00         0.01           4.00         61,466         4.00         0.05           5.00         72,754         5.00         0.50           6.00         81,398         6.00         22.50           7.00         86,246         7.00         35.30           8.00         92,877         8.00         150.00           9.00         98,536         9.00         180.00	0.91	457	0.91	0.00
4.0061,4664.000.055.0072,7545.000.506.0081,3986.0022.507.0086,2467.0035.308.0092,8778.00150.009.0098,5369.00180.00	2.00	14,185	2.00	0.00
5.00         72,754         5.00         0.50           6.00         81,398         6.00         22.50           7.00         86,246         7.00         35.30           8.00         92,877         8.00         150.00           9.00         98,536         9.00         180.00	3.00	41,901	3.00	0.01
6.00         81,398         6.00         22.50           7.00         86,246         7.00         35.30           8.00         92,877         8.00         150.00           9.00         98,536         9.00         180.00	4.00	61,466	4.00	0.05
7.00         86,246         7.00         35.30           8.00         92,877         8.00         150.00           9.00         98,536         9.00         180.00	5.00	72,754	5.00	0.50
8.0092,8778.00150.009.0098,5369.00180.00	6.00	81,398	6.00	22.50
9.00 98,536 9.00 180.00	7.00	86,246	7.00	35.30
	8.00	92,877	8.00	150.00
10.00     105,513     10.00     307.00	9.00	98,536	9.00	180.00
Image: series of the series	10.00	105,513	10.00	307.00
Image: series of the series				
Image: set of the				
Image: set of the				
Image: second				
Image: second				
Image: second				
Image: Sector of the sector				
Image: Sector of the sector				
Image: second				
Image: Constraint of the second se				
Image: second				
Image: second				
Image: second				
Image: second				
Image: second				

After completing and printing this worksheet to a pdf, go to: https://maperture.digitaldataservices.com/gvh/?viewer=cswdif create a new stormwater facility, and attach the pdf of this worksheet to that record.

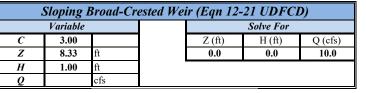
	Routed Hydro	ograph Results					_
Design Storm Return Period =	WQCV	2 Year	5 Year	10 Year	50 Year	100 Year	
One-Hour Rainfall Depth =	0.53	1.19	1.50	1.75	2.25	2.52	in
Calculated Runoff Volume =	1.834	3.720	6.657	9.301	16.738	20.491	acre-ft
OPTIONAL Override Runoff Volume =							acre-ft
Inflow Hydrograph Volume =	1.833	3.719	6.650	9.300	16.729	20.487	acre-ft
Time to Drain 97% of Inflow Volume =	>116	>116	>116	>116	>116	>116	hours
Time to Drain 99% of Inflow Volume =	>116	>116	>116	>116	>116	>116	hours
Maximum Ponding Depth =	3.86	5.05	6.00	6.92	8.13	8.93	ft
Maximum Ponded Area =	1.35	1.68	1.87	1.97	2.15	2.25	acres
Maximum Volume Stored =	1.817	3.627	5.321	7.073	9.584	11.330	acre-ft

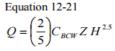


## **Stormwater Detention and Infiltration Design Data Sheet**

#### Paint Brush Hills Filing No.14 **EMERGENCY SPILLWAY CALCULATIONS FSD POND C**

Ha	orizontal	Broad-C	rested We	eir (Eqn 1	2-20 UDF	CD)
	Variable				Solve For	
С	3.00			L (ft)	H (ft)	Q (cfs)
L	96.00	ft		0.0	0.0	288.0
H	1.00	ft				
Q		cfs				


307.99


Total Q



 $Q = C_{BCW} L H^{1.5}$ 







Q = discharge (cfs)

 $C_{BCW}$  = broad-crested weir coefficient (This ranges from 2.6 to 3.0. A value of 3.0 is often used in practice.) See Hydraulic Engineering Circular No. 22 for additional information.

L = broad-crested weir length (ft)

H = head above weir crest (ft)

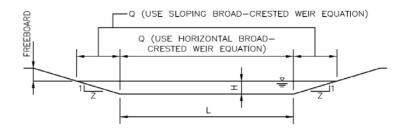
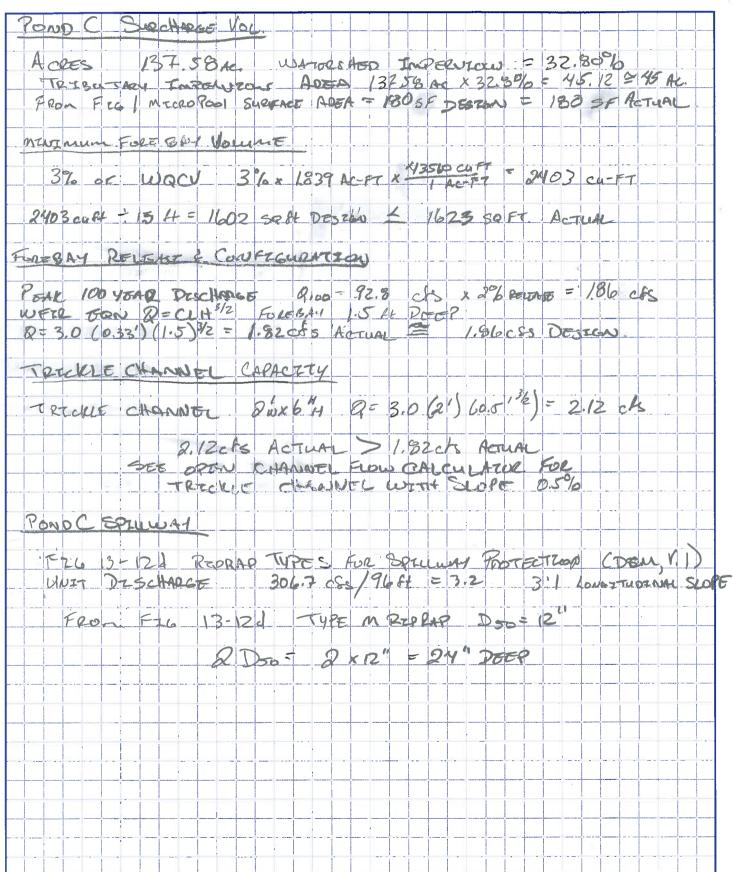



Figure 12-20. Sloping broad-crest weir

Т	The open channel flow calcu	ılator
Select Channel Type: Trapezoid ✓	Rectangle	$\begin{bmatrix} y \\ z_1 \end{bmatrix} \begin{bmatrix} y \\ z_2 \end{bmatrix} \begin{bmatrix} y \\ z_1 \end{bmatrix} \begin{bmatrix} y \\ z_2 \end{bmatrix} \begin{bmatrix} y \\ z_1 \end{bmatrix} \begin{bmatrix} y \\ z_2 \end{bmatrix} \begin{bmatrix} y \\ z_1 \end{bmatrix} \begin{bmatrix} y \\ z_2 \end{bmatrix} \begin{bmatrix} y \\ z_1 \end{bmatrix} \begin{bmatrix} y \\ z_2 \end{bmatrix} \begin{bmatrix} y \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} y \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z \\ z_1 \end{bmatrix} \begin{bmatrix} z \\ z_2 \end{bmatrix} \begin{bmatrix} z $
Velocity(V)&Discharge(Q)	Select unit system: Feet(ft) V	
Channel slope: 0.33	Water depth(y): 0.241 ft	Bottom width(b) 96 ft
Flow velocity 13.0435 ft/s	LeftSlope (Z1): 8.33 to 1 (H:V)	RightSlope (Z2): 8.33 to 1 (H:V)
Flow discharge 308.0843 [ft^3/s	Input n value 0.025 or select n	
Calculate!	Status: Calculation finished	Reset
Wetted perimeter 100.04	Flow area 23.62 ft ²	Top width(T)[100.02 ft
Specific energy 2.88	Froude number 4.73	Flow status Supercritical flow
Critical depth0.67	Critical slope 0.0105 ft/ft	Velocity head 2.64


#### POND C SPILLWAY RUNDOWN



#### 20 BOULDER CRESCENT, STE 110 COLORADO SPRINGS, CO 80903 (719) 955-5485

PROJECT: PAJOT BRUCH HELLS FILTAGE 14

DATE:





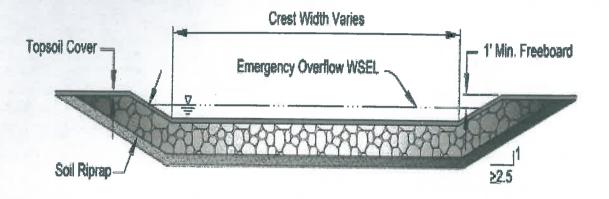
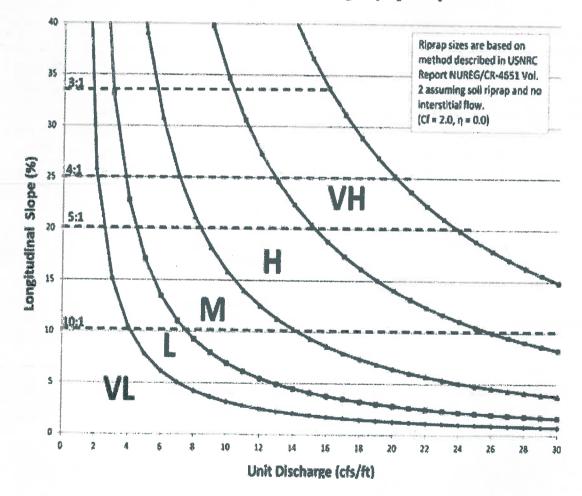




Figure 13-12d. Riprap Types for Emergency Spillway Protection



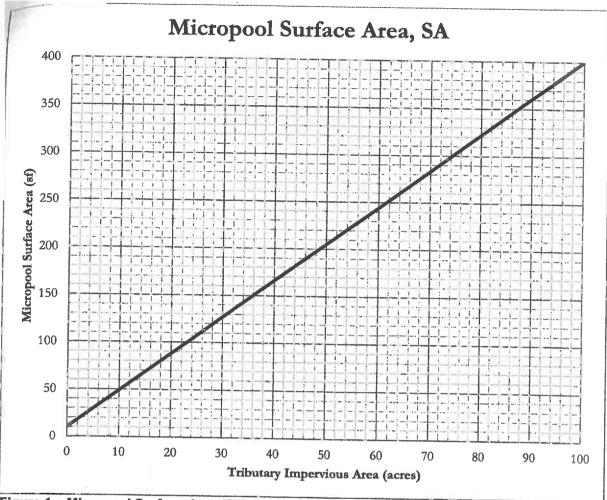



Figure 1 – Micropool Surface Area (SA) Determination Chart

The tributary impervious area is the effective number of impervious acres that will be treated by the extended detention basin (EDB). It is calculated by multiplying the tributary area to be treated by the impervious fraction of that area.

$$TIA = I \times A$$

- Imperviousness (fraction)
   Tributary catchment area i
  - = Tributary catchment area upstream (acres)

For EDBs with tributary impervious areas greater than 100 acres, the micropool surface area is 400 sf. The initial surcharge depth (ISD) is defined as the depth of the initial surcharge volume (ISV). The surface area determined using Figure 1 assumes an ISD of 4 inches. The initial surcharge volume is thus calculated by multiplying the micropool surface area by 4 inches.

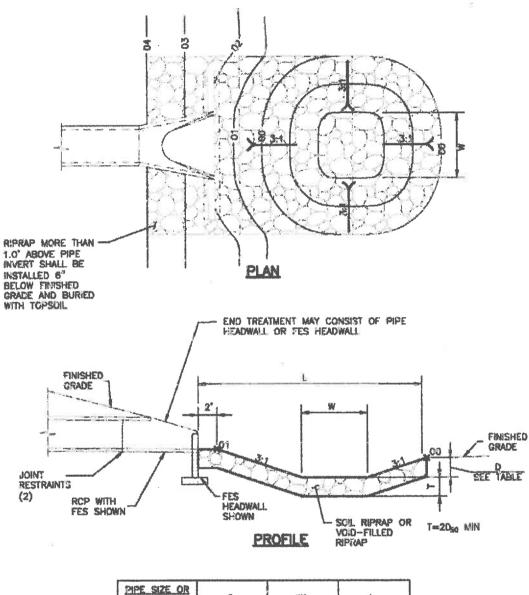
$$ISV = SA \times 4$$
 inches

- ISV = Initial surcharge volume (cf)
- SA = Surface area (from Figure 1, sf)

]	The open channel flow calculation	tor
Select Channel Type: Rectangle ✓	Rectangle	Triangle
Velocity(V)&Discharge(Q) V	elect unit system: Feet(ft) V	
Channel slope: 0.005	Water depth(y): 0.5	Bottom W(b) 2
Flow velocity 3.8858 ft/s	LeftSlope (Z1): 0 to 1 (H:'	RightSlope (Z2): 0 to 1 (H:V
Flow discharge 3.8858 ft^3/s	Input n value 0.013 or select n	
Calculate!	Status: Calculation finished	Reset
Wetted perimeter 3 ft	Flow area 1 ft^2	Top width(T)2
Specific energy 0.73	Froude number 0.97	Flow status Subcritical flow
Critical depth 0.49 ft	Critical slope 0.0053 ft/ft	Velocity head 0.23 ft

## LOW FLOW TRICKLE CHANNEL




20 BOULDER CRESCENT, STE 110 COLORADO SPRINGS, CO 80903 (719) 955-5485

PROJECT: PALAST BRUSH HEUS FILING M

DATE: _____

	144	LUAT	ta R.	ZP KA	2 31	5625	rĸ										
Ripp	= 13.7	Acts	18"6	2P													
FIG.	9-37 2 18"	Loco -	TALLA	4202	Fre	LAP B	Acz	ນ	(UD)	fc i	2	E.					
FU	2 18"	STORA	19295		RZP.RA	8 Bts	2N	1	51	X		n	De	526	no		
								ŀ	5'1	X	30	'w	Ac	TU	14		
Fre	9-38	P-2P:	248 7	ROST	on 7	PO-TI	ET1	icu	C	un	FC	5					
			, .														
	9+10 0	Assun	-60	0.4													
	1																
8	2/0"	2 =	13.71	1.51.5	= 7	.46											
	From	F26	9-3	28	TYP	EL	RTP	209		Da	5=	9″					
														_			
		2	Dou =	2×9	7 =	18	T	FLL	K								
								-									l .
	-																
017	KLL I	ATTER_	REP RI	F PI	ASTN	PR	#2	27									
& rop=	92.8	C&S		48	ReP												
	1									_				-			
FIL	9-3: 46"	Loi	- 7 A21	-unt	೯	22974	P 1	24-5	22	1	(4	DFL	D)		_		
FOR	40"	SICA	mpz	PE	2	412	x to	1.0		Dr	- 57 0	in .					
					2	ML	× 19	1 w		Ac	TUA	-4-					
								-									_
FLG	9-39	5 R.	ZPRAP	5-AC	SICT	100	the.	CIS	en		- 4	OFC	>				
	Viti				10 11		_								+		
	JE/	DP	SSUM	hep	0.7		_										-
	Q1.	1.5	0-0		1+11.5	- 11	1								-		1
	- AD	1.5 = Fu D50	12,0	685	17	- 11	, 6	R		2	1						-
	FRAC	~ Fre	0 7-3	0	1 9 4	0 0	$\uparrow$	Las	2	C					=		
	0	(150)	JAX	12	7 4 1	TA	CR								• • • • • •		- in .
5	D-0 "	200.00	20.	- (I. II	- 3 1 6	Gr		17 /1	C		701	157	04.	PI			-
	PEN" Exzs Exzs		2-0		- G.	TLLT.		A	2	5	A Same		31-		XIVS	10-	21
	UKAS	006	R D	210	200	20		Cal			X		2	17 4	Server Frank	CP50	<u>}  </u>
	6,27	ST LNU	e IVEP		141	+2		COA.	D PO	<b>(</b>	M.A	VCE	-				1
													-				
		11 11 11 11 11 11 11 11 11 11 11 11 11											-				
	-		-														Ī
a second s	* 104								setter as more								
		·										-					
													-				
													1				1
				- men hen etheren						-		1	1				1

Chapter 9



BOX HERHI	Ω	<u> 1000</u>	<u>ا</u>
18" - 24"	1'0"	4 ³	15'
30" - 36"	1"6"	6'	20'
42" - 48"	2'-0"	7	24'
54" - 60"	2'6"	8	28'
66" - 72"	3'-0"	9'	32'

* IF DUTLET PIPE IS A BOX CULVERT WITH A WIDTH GREATER THAN W, THEN W - CULVERT WIDTH

Figure 9-37. Low tailwater riprap basin

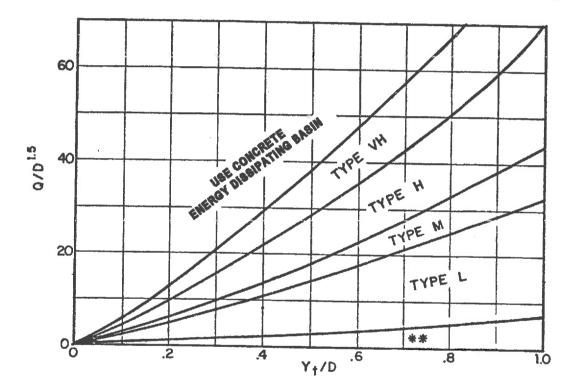
Hydraulic Structures

Chapter 9

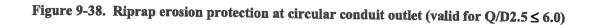
Equation 9-19

$$H_a = \frac{\left(H + Y_n\right)}{2}$$

Where the maximum value of  $H_a$  shall not exceed H, and:


 $D_a$  = parameter to use in place of D in Figure 9-38 when flow is supercritical (ft)

 $D_c$  = diameter of circular culvert (ft)


 $H_a$  = parameter to use in place of H in Figure 9-39 when flow is supercritical (ft)

H = height of rectangular culvert (ft)

 $Y_n$  = normal depth of supercritical flow in the culvert (ft)



Use D_a instead of D whenever flow is supercritical in the barrel. **Use Type L for a distance of 3D downstream



.

The open channel flow calculator				
Select Channel Type: Trapezoid ✓	P=_T ===  ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	z1 Trapezoid	z1 z2 Ly	
Velocity(V)&Discharge(Q)	Select unit system: F	eet(ft) 🗸		
Channel slope: .0107 ft/ft	Water depth(y): .38	ft	Bottom width(b	) [10
Flow velocity 2.7996 ft/s	LeftSlope (Z1): 8	to 1 (H:V)	RightSlope (ZZ to 1 (H:V)	2): 8
Flow discharge 13.8728 [ft^3/s	Input n value 0.025	or select n		
Calculate!	Status: Calculation finishe	ed	Reset	
Wetted perimeter 16.13	Flow area 4.96	ft^2	Top width(T)[1 [ft]	6.08
Specific energy 0.5	Froude number 0.89		Flow status Subcritical flow	
Critical depth0.35	Critical slope 0.0138	ft/ft	Velocity head	).12

## **DP1 EXISTING SWALE Q100= 13.7 CFS**

#### **SEE TABLE 10-4 FOR MAXIMUM PERMISSIBLE VELOTIES FOR EARTHEN CHANNELS WITH** VARIED GRASS LININGS AND SLOPES

7

The open channel flow calculator				
Select Channel Type: Trapezoid ✓	Freetangle	z1 L Trapezoid		
Velocity(V)&Discharge(Q)	Select unit system: For	eet(ft) 🗸		
Channel slope: 0.048 [ft/ft	Water depth(y): 0.83	ft	Bottom width(b	) 5
Flow velocity 9.3313 ft/s	LeftSlope (Z1): 3	to 1 (H:V)	RightSlope (Z to 1 (H:V)	2): 3
Flow discharge 58.0097 ft^3/s	Input n value0.025	or select n		
Calculate!	Status: Calculation finishe	ed	Reset	
Wetted perimeter 10.25	Flow area 6.22	ft^2	Top width(T)	9.98
Specific energy 2.18 [ft	Froude number 2.08		Flow status Supercritical flo	w
Critical depth 1.25	Critical slope 0.0099	ft/ft	Velocity head	1.35

## **DP3 PROPOSED SWALE Q100=58.1 CFS**

### SEE SC250 TURF REINFORCEMENT MAT

7

The open channel flow calculator				
Select Channel Type: Trapezoid ✓	Rectangle	z2 zoid	z1 z2 Ly	
Velocity(V)&Discharge(Q)	Select unit system: Feet(ft)	•		
Channel slope: 0.0145 ft/ft	Water depth(y): 0.91 [ft		Bottom width(b	) 2
Flow velocity 4.8339 ft/s	LeftSlope (Z1): 3 to	1 (H:V)	RightSlope (Z	2): 3
Flow discharge 20.8065 [ft^3/s	Input n value 0.025 or se	elect n		
Calculate!	Status: Calculation finished		Reset	
Wetted perimeter 7.76	Flow area 4.3 ft^2		Top width(T)	7.46
Specific energy 1.27 ft	Froude number 1.12		Flow status Supercritical flo	ow
Critical depth0.97 ft	Critical slope 0.0112 ft/	ft	Velocity head	0.36

## **DP16 PROPOSED SWALE Q100= 20.8 CFS**

#### SEE TABLE 10-4 FOR MAXIMUM PERM.SSIBLE VELOTIES FOR EARTHEN CHANNELS WITH VARIED GRASS LININGS AND SLOPES

#### TABLE 10-4 MAXIMUM PERMISSIBLE VELOCITIES FOR EARTH CHANNELS WITH VARIED GRASS LININGS AND SLOPES

EXPAND

······································		
Channel Slope	Lining	Permissible Mean Channel Velocity* (ft/sec)
0 - 5% <b>DP1, DP16</b>	Sodded grass	7
DP1, DP16	Bermudagrass	6
DP1, DP16	Reed canarygrass	5
DP1, DP16	Tall fescue	5
DP1, DP16	Kentucky bluegrass	5
DP1	Grass-legume mixture	4
	Red fescue	2.5
	Redtop	2.5
	Sericea lespedeza	2.5
	Annual lespedeza	2.5
	Small grains (temporary)	2.5
5 - 10% <b>DP3</b>	Sodded grass	6
DP3	Bermudagrass	5
DP3	Reed canarygrass	4
DP3	Tall fescue	4

Channel Slope	Lining	Permissible Mean Channel Velocity* (ft/sec)
DP3	Kentucky bluegrass	4
DP3	Grass-legume mixture	3
Greater than 10%	Sodded grass	5
	Bermudagrass	4
	Reed canarygrass	3
	Tall fescue	3
	Kentucky bluegrass	3
*For highly erodible soi	ls, decrease permissible velocities by 25%.	
*Grass lined channels a of grass.	are dependent upon assurances of continuous gr	owth and maintenance



# **Material and Performance Specification Sheet**

North American Green 14649 Highway 41 North Evansville, IN 47725 800-772-2040 FAX: 812-867-0247 <u>Www.nagreen.com</u>



# SC250 Turf Reinforcement Mat

The composite turf reinforcement mat (C-TRM) shall be a machine-produced mat of 70% straw and 30% coconut fiber matrix incorporated into a permanent three-dimensional turf reinforcement matting. The matrix shall be evenly distributed across the entire width of the matting and stitch bonded between a heavy duty UV stabilized netting with  $0.50 \times 0.50$  inch  $(1.27 \times 1.27 \text{ cm})$  openings, an ultra heavy UV stabilized, dramatically corrugated (crimped) intermediate netting with  $0.5 \times 0.5$  inch  $(1.27 \times 1.27 \text{ cm})$  openings, and covered by an heavy duty UV stabilized nettings with  $0.50 \times 0.50$  inch  $(1.27 \times 1.27 \text{ cm})$  openings. The middle corrugated netting shall form prominent closely spaced ridges across the entire width of the mat. The three nettings shall be stitched together on 1.50 inch (3.81 cm) centers with UV stabilized polypropylene thread to form a permanent three-dimensional turf reinforcement matting.

The SC250 shall meet requirements established by the Erosion Control Technology Council (ECTC) Specification and the US Department of Transportation, Federal Highway Administration's (FHWA) Standard Specifications for Construction of Roads and Bridges on Federal Highway Projects, FP-03 Section 713.18 as a type 5A, B, and C Permanent Turf Reinforcement Mat.

Installation staple patterns shall be clearly marked on the turf reinforcement matting with environmentally safe paint. All mats shall be manufactured with a colored thread stitched along both outer edges (approximately 2-5 inches [5-12.5 cm] from the edge) as an overlap guide for adjacent mats.

	Material Content				
Matrix	700/ 01 1000/ 0	0.35 lbs/yd ² (0.19 kg/m ² ) / 0.15 lbs/yd ² (0.08 kg/m ² )			
Nettings	Top and Dattery 194 1 http://	5 lb/1000 ft² (2.44 kg/100 m²)			
	I Ulidalla and I I I I I I I I I I I I I I I I I I I	24 lb/1000 ft ² (11.7 kg/100 m ² )			
Thread	Polypropylene, UV stabilized				

#### SC250 is available in the following roll sizes:

Width	6.5 ft (2.0 m)
Length	55.5 ft (16.9 m)
Weight ± 10%	34 lbs (15.42 kg)
Area	40.0 yd ² (33.4 m ² )

#### Index Value Properties:

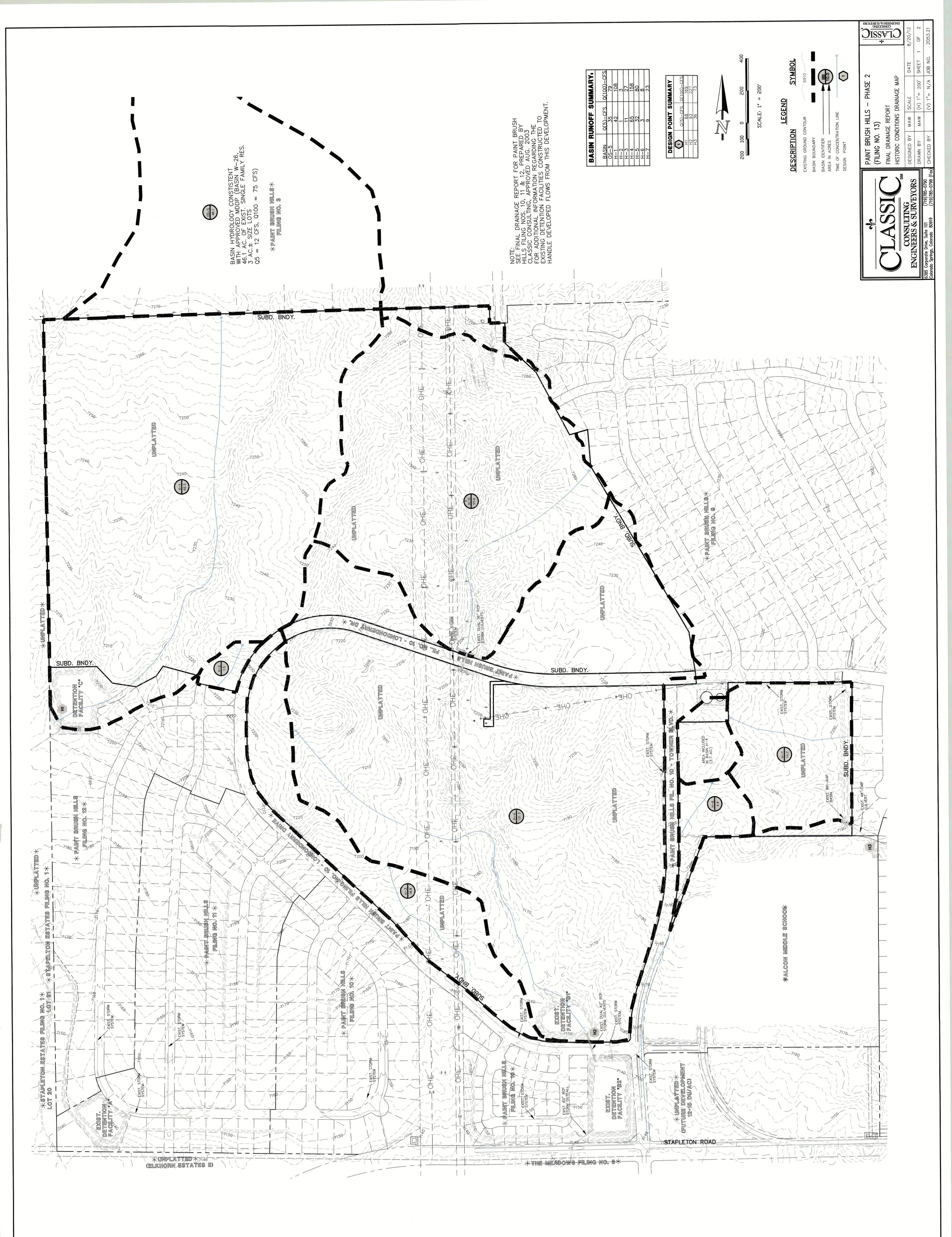
Property	Test Method	Typical	Net Only
Thickness	ASTM D6525	0.72 in (18.3 mm)	0.48 in
Resiliency	ASTM 6524	95.2%	0.10 11
Density	ASTM D792	0.53 oz/in ³	
Mass/Unit Area	ASTM 6566	17.88 oz/yd2 (606 g/m2)	
Porosity	ECTC Guidelines	99%	
Stiffness	ASTM D1388	222.65 oz-in	
Light Penetration	ECTC Guidelines	8.9%	
UV Stability	ASTM D4355/ 1000 hr	100%	100%
Tensile Strength MD	ASTM D6818	620 lbs/ft (9.05 kN/m)	655 lbs/ft
Elongation MD	ASTM D6818	35%	25%
Tensile Strength TD	ASTM D6818	737 lbs/ft (10.75 kN/m)	666 lbs/ft
Elongation TD	ASTM D6818	16%	16%

#### Bench Scale Testing* (NTPEP):

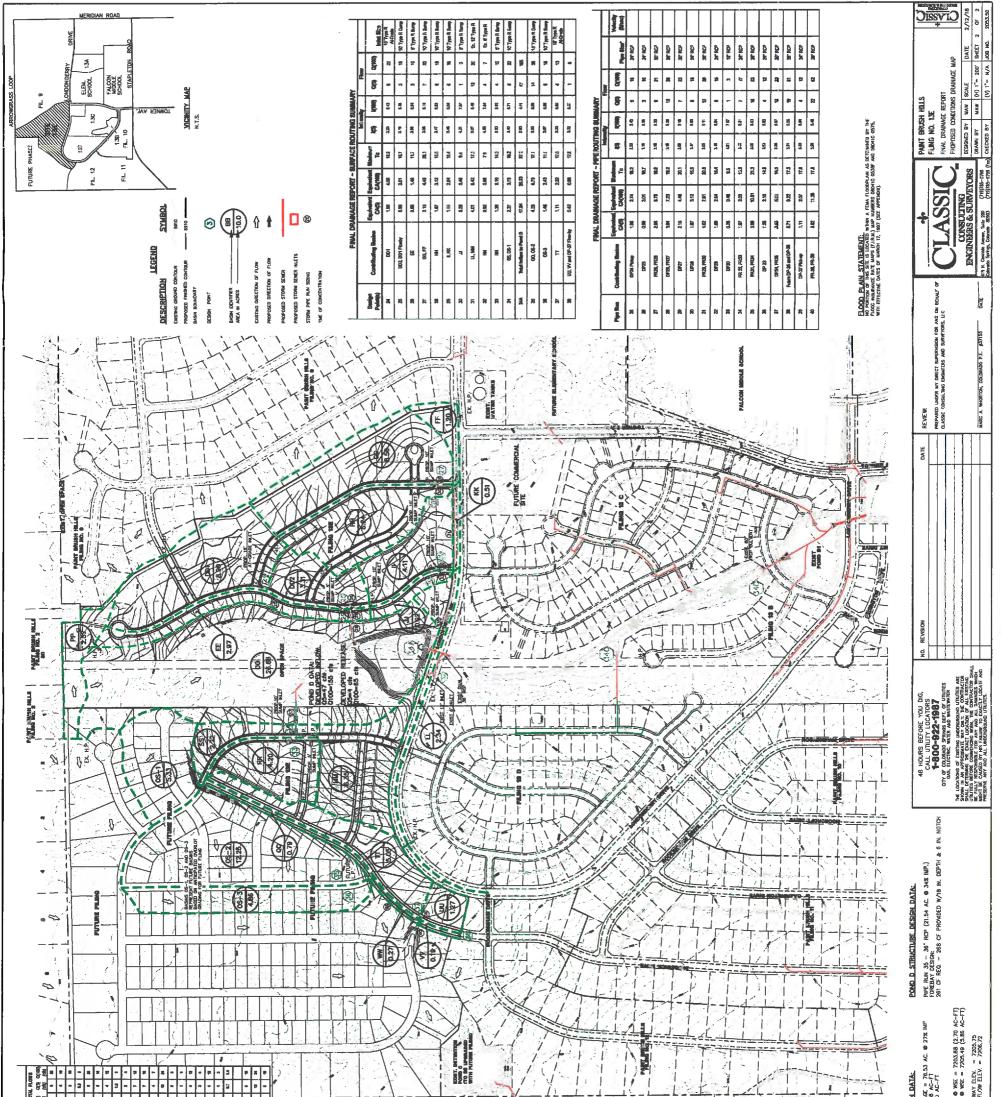
Test Method	Parameters	Results
ECTC Method 2	50 mm (2 in)/hr for 30 min	SLR** = 18,25
Rainfall	100mm (4 in)/hr for 30 min	SLR** = 20.97
	150 mm (6 in)/hr for 30 min	SLR** = 22.74
ECTC Method 3 Shear Resistance	Shear at 0.50 inch soil loss	7.7 lbs/ft ²
ECTC Method 4 Germination	Top Soil, Fescue, 21 day incubation	523% improvement of biomass
* Bench Scale tests sh	ould not be used for design purposes	

** Soil Loss Ratio = Soil loss with Bare Soil/Soil Loss with RECP (soil loss is based on regression analysis) Updated 3/09

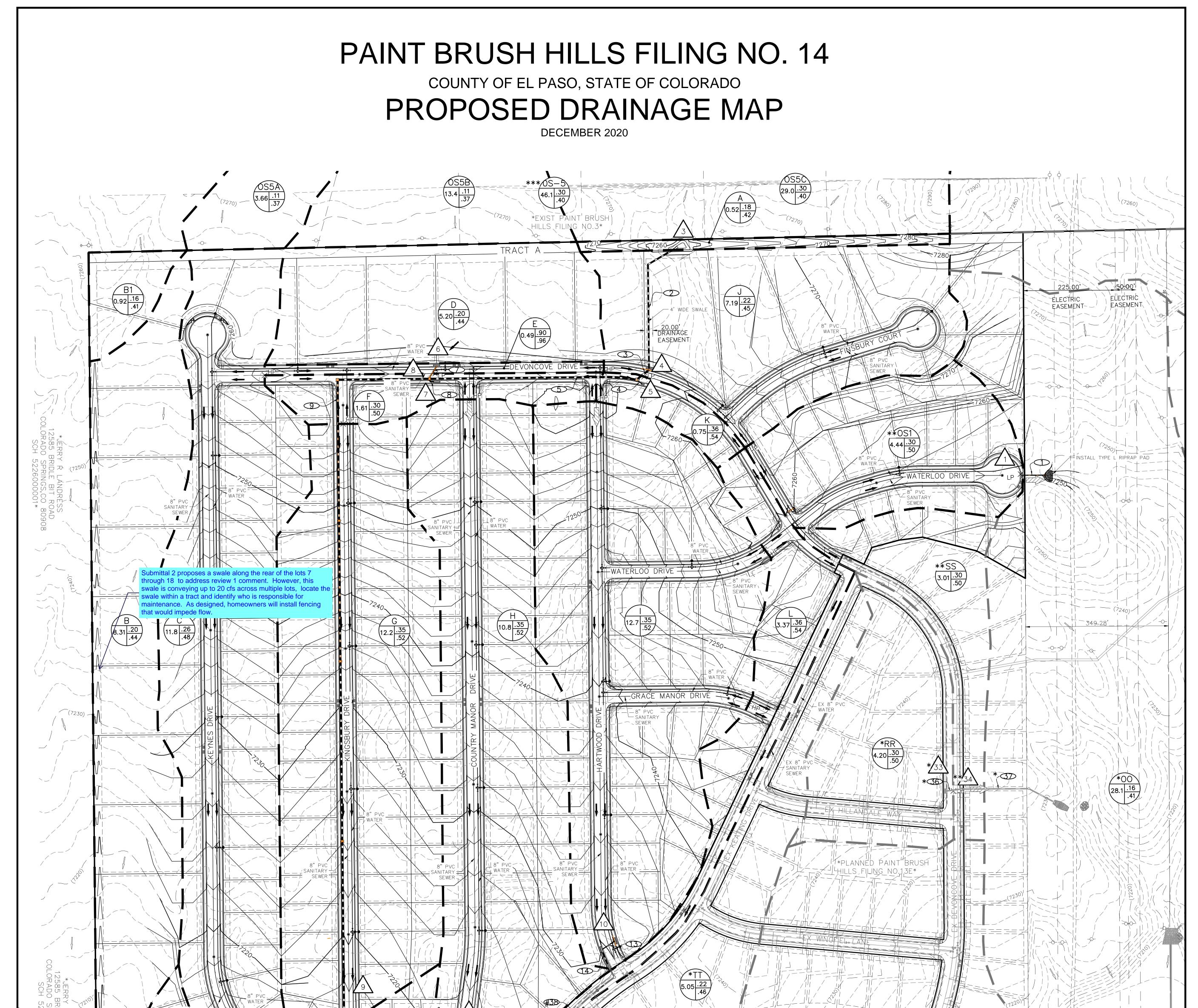
Performance Design Values:


Maxim	um Permissible S	Shear Stress
	Short Duration	Long Duration
Phase 1	3.0 lbs/ft ²	2.5 lbs/ft ²
Unvegetated	(144 Pa)	(120 Pa)
Phase 2	8.0 lbs/ft ²	8.0 lbs/ft ²
Partialiy Veg.	(383 Pa)	(383 Pa)
Phase 3	10.0 lbs/ft ²	8.0 lbs/ft ²
Fully Veg.	(480 Pa)	(383 Pa)
Velocity Unveg		s (2.9 m/s)
Veiocity Veg.		s (4.6 m/s)

Slope Design Data: C Factors				
	Slope Gradients (S)			
Slope Length (L)	≤ 3:1	3:1-2:1	≥2:1	
≤ 20 ft (6 m)	0.0010	0.0209	0.0507	
20-50 ft	0.0081	0.0266	0.0574	
≥ 50 ft (15.2 m)	0.0455	0.0555	0.081	
Roughness Coefficients- Unveg.				
Flow Depth	Mannin			
≤ 0.50 ft (0.15 m)	0.040			
0.50 - 2.0 ft	0.040 - 0.012			
≥ 2.0 ft (0.60 m) 0.011				


Product Participant of:

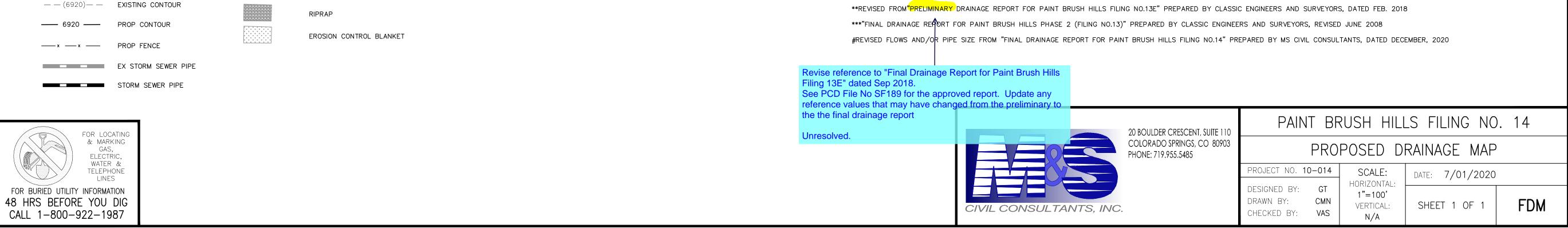



PROPOSED AND EXISTING DRAINAGE MAP & REFERENCE MAPS



E. \205321/DRAINACE \205331FDM-HISTORIC.dwg, 8/22/2015 7:53:29 AM, DWC To FDF.pc3




第3日の1000000000000000000000000000000000000		ESIGN DA ACREACE = 0.08 AC = 2.10 AC cfs © W cfs © W SPILLWAY DVERFLOW
1 1 1 1 1 1 1 1 1 1 1 1 1 1	사람이 것은 사람이 주말에 잘 했다. 그는 것 수는 것 같은 것 같이 많이	D DESIGN ARY AGREAG REG. = 0.08 REG. = 2.10 E.C. = 2.10 E.C. = 2.10 E.C. Shill E.C.Y OVERTI
The second sec		PONJO D DE TRIBUTARY AD WOCY REQ. = EURY REQ. = RELEACE: 05 = 4.5 0100 ~ 65.3 EMERGENCY SI EMERGENCY SI
444 844 244 244 244 244 244 244 244 244	SEESED TEMERING STATUTE OF ANYLINESS ATTENDED ATTENDED ATTENDED	POND WOCY F EURY F EURY R RELEAS 0100 - 0100 - 0100
100 Mar (100 Mar) (100 Mar)) (100 Mar) (100 Mar) (100 Mar)) (100 Mar) (100 Mar) (100 Mar)) (100 Mar) (100 Mar) (100 Mar) (100		8
		Ŧ
MINUM MAUA Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles Miles M		
A A A A A A A A A A A A A A A A A A A		<b>1</b> 19 19
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CONTY CONTY
1 日本市 1 日本 <p1 p="" 日本<=""> <p1 p="" 日本<=""> <p1 p="" 日本<=""> <p1 p="" 日本<=""> <p1 p="" 日本<=""></p1></p1></p1></p1></p1>		CO CO
0 CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(100) CA(10) CA(10) CA(10) CA(		ALSE PURE
Kitalong (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		PLAN FOR
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Allow Street
		NOTES: The sup of starting set starting Information



RIDLE BIT ROAD SPRINGS.CO 80908 7210 522600002*	11 12 12 12 12 12 12 12 12 12	D 30" RCP AND INLETS 1 AND DP*37 TO BE UCTED WITH PAINT HILLS FILING NO.13E		DRIVE
16 25 16 25 N 8.94 20 16 7200 7195 7195 7200 7195 7200 7195 7200 7195 7200 7195 7200 7195 7200 7195 700 7195 700 7195 700 700 7195 700 700 700 700 700 700 700 70	7210- (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn) (nn)			
EX 8" PVC		BASIN SUMMARY	DESIGN POINT SUMMARY	STORM SEWER SUMMARY
sewer // sewer // sewer // /		BASIN (ACRES) Q5 Q100	DESIGN CONTRIBUTING POINT Q5 Q100 BASIN (S) STRUCTURE	
PAINT BRUSH HILLS		*RR 4.20 8.0 17.0	1         4.9         13.7         **0S1         PROP 10' TYPE R SUMP INLET	PIPE RUN Q ₅ Q ₁₀₀ PIPE SIZE
FILING NO.12*		**SS         3.01         2.8         8.4           **0S1         4.44         4.9         13.7	*33 8.0 17.0 *RR *6' TYPE R SUMP INLET	*36 4.4 12.4 *24" RCP *37 6.9 19.4 *30" RCP
		*00 29.11 22.0 51.0	**34 2.8 8.4 **SS *6' TYPE R SUMP INLET	1 4.9 13.7 18" RCP
	EX ROCKINGHAM DRIVE	*TT 5.05 5.7 13.0	3         25.7         58.1         A, OS5C         PROP 36" RCP FES	2 25.7 58.1 36" RCP
		*UU 1.27 1.4 3.2	4 5.6 19.1 J PROP 15' TYPE R SUMP INLET	3 30.4 74.0 48" RCP
$\frac{1}{17}$		***OS-5         46.10         14.0         32.0           OS5A         3.66         1.5         8.4	5 1.1 2.7 K PROP 5' TYPE R SUMP INLET	4 1.1 2.7 18" RCP
	VEXIST PAINT BRUSH	OS5A3.661.58.4OS5B13.444.625.8	6 9.2 22.2 OS5B, D, E SEE DP8 FOR CUMULATIVE FLOW	5         31.2         76.0         48" RCP           7         9.2         22.2         24" RCP
	HILLŞ FILING NO.12*	OS5C 29.00 25.5 57.0	7 1.9 22.2 F SEE DP8 FOR CUMULATIVE FLOW	8 1.5 22.2 24 RCP
		A 0.52 0.4 1.4	8 10.7 44.4 DP6, DP7 PROP DUAL 15' TYPE R SUMP INLET	9 41.2 117.8 48" RCP
		B 8.31 5.6 20.8	9 13.8 34.4 G PROP DUAL 15' TYPE R AT-GRADE INLE	10 7.0 13.7 24" RCP
(7200)	POND C EDB SUMMARY	B10.920.62.4C11.809.228.6		
EX 48" RCP AND 20'x20'x3' DEEP RIPRAP PAD	EPC/URBAN DRAINAGE EDB	D 5.20 3.8 14.0	10 14.5 36.2 I PROP DUAL 15' TYPE R AT-GRADE INLE	12         53.9         142.5         48" RCP           13         7.3         14.0         18" RCP
$D_{50}=18$ "		E 0.49 2.3 4.1	11   3.7   17.0   L, FLOWBY DP10   EX 15' TYPE R AT-GRADE INLET	14 14.6 27.9 30" RCP
	WQ WATER SURFACE ELEV 7193.88	F 1.61 1.9 5.4	*37 5.7 13.0 *TT EX 15' TYPE R AT-GRADE INLET	#38 14.6 27.9 *30" RCP
LEGEND	WQ VOLUME1.839 AC-FTEURV WATER SURFACE ELEV7195.65	G12.2014.034.8H10.7811.929.7	12     11.9     29.7     H     PROP DUAL 15' TYPE R AT-GRADE INEL       M,FLOWBY DP9,	#15         3.7         13.5         *24" RCP           #16         17.4         39.7         *30" RCP
	EURV VOLUME 4.673 AC-FT	I 12.70 14.5 36.2	13 2.1 21.3 FLOWBY DP12, SEE DP15 FOR CUMULATIVE FLOW FLOWBY DP11	#39 5.7 13.0 *24" RCP
BASIN DESIGNATION	100-YR WATER SURFACE ELEV 7198.00	J 7.19 5.6 19.1	Image: PlowBT DPT       14     10.3     34.8     C, OS5A     SEE DP15 FOR CUMULATIVE FLOW	#17 22.8 51.3 *36" RCP
Z _ C5	100-YR VOLUME 9.490 AC-FT	K 0.75 1.1 2.7	15 12.3 55.4 DP13, DP14 PROP DUAL 20' TYPE R SUMP INLET	18 6.0 12.4 18" RCP
25 .25 .35 CROSSPAN	SPILLWAY CREST ELEV7199.00TOP OF EMBANKMENT ELEV7201.00	L 3.37 3.8 9.5 M 2.53 2.6 7.8	165.620.8BPROP CDOT TYPE C INLET	18.1         6.0         12.4         18" RCP           19         11.9         24.8         30" RCP
	100-YR INFLOW 248.0 CFS	N 8.94 6.2 23.0		20 34.4 75.3 42" RCP
ACRES C100 INLET/OUTLET STRUCTURE	100-YR RELEASE 92.8 CFS		17 109.0 306.7 N, PR26 EX POND C	21 86.8 214.5 54" RCP
PIPE RUN REFERENCE EXISTING FLOW DIRECTION	1" = 100'			22 6.1 27.7 30" RCP
				23 12.3 55.4 36" RCP
SURFACE DESIGN POINT				24         98.6         269.3         60" RCP           25         5.6         20.8         30" RCP
PROPOSED FLOW DIRECTION				26 103.8 287.3 66" RCP
	0 50 100 200			#27 22.6 92.8 EX 48" RCP
H.P. HIGH POINT	Scale in Feet			
CCES BASIN BOUNDARY		*VALUES TAKEN FROM "FINAL DRAINAGE	REPORT FOR PAINT BRUSH HILLS FILING NO.13E" PREPARED BY CLASSIC ENGINEERS AND SURVINS DD1, DD2, EE, FF, GG, HH, II, JJ AND KK FOR AREA DRAINAGE SUMMARY, BASIN ROUTING S	EYORS, DATED SEPTEMBER. 2018 SEE PAINT BRUSH
(6920)			PERCENT, DDZ, EE, FF, GG, HH, II, GJ AND KK FOK AKEA DKAINAGE SUMMART, BASIN KOUTING .	

EX POND C

___′*\|/*/////



# Drainage Report_V2.pdf Markup Summary

dsdlaforce (10)		
0 Pa) (383 9.5 ft/s (2.9 m 15 ft/s (4.6 m esign Data: C Factor	Subject: Highlight Page Label: 135 Lock: Unlocked Author: dsdlaforce Date: 11/6/2020 9:50:14 AM Status: Color: Layer: Space:	
	Subject: Callout Page Label: [1] PDM Lock: Unlocked Author: dsdlaforce Date: 2/26/2021 12:49:56 PM Status: Color: Layer: Space:	Submittal 2 proposes a swale along the rear of the lots 7 through 18 to address review 1 comment. However, this swale is conveying up to 20 cfs across multiple lots, locate the swale within a tract and identify who is responsible for maintenance. As designed, homeowners will install fencing that would impede flow.
A Contract of the state of the	Subject: Image Page Label: 5 Lock: Unlocked Author: dsdlaforce Date: 2/26/2021 9:13:39 AM Status: Color: Layer: Space:	
<text><text><text><text></text></text></text></text>	Subject: Callout Page Label: 5 Lock: Unlocked Author: dsdlaforce Date: 2/26/2021 9:15:24 AM Status: Color: Layer: Space:	Update to match the four-step listed in ECM Appendix I Section I.7.2 Unresolved. Address Step 4 appropriately, this project is a residential site not an industrial or commercial site. Are specialized BMPs listed above required or being implemented?
<text><text><text><text><text></text></text></text></text></text>	Subject: Text Box Page Label: 7 Lock: Unlocked Author: dsdlaforce Date: 2/26/2021 9:19:14 AM Status: Color: Layer: Space:	Update Basin A per Parks comments and discussion with the design engineer on 2/24/11 this area will be redesigned.

<text><text><text><text><text><text></text></text></text></text></text></text>	Subject: Callout Page Label: 9 Lock: Unlocked Author: dsdlaforce Date: 2/26/2021 9:35:23 AM Status: Color: Layer: Space:	Submittal 2 proposes a swale along the rear of the lots 7 through 18 to address review 1 comment. However, this swale is conveying up to 20 cfs across multiple lots, locate the swale within a tract and identify who is responsible for maintenance. As designed, homeowners will install fencing that would impede flow.
<text></text>	Subject: Image Page Label: 9 Lock: Unlocked Author: dsdlaforce Date: 2/26/2021 9:42:04 AM Status: Color: Layer: Space:	
<text><text><text><text></text></text></text></text>	Subject: Callout Page Label: 9 Lock: Unlocked Author: dsdlaforce Date: 2/26/2021 9:44:36 AM Status: Color: Layer: Space:	100% of the development site must be treated for water quality. Provide permanent stormwater quality control measure for basin B. Unresolved. Update narrative to identify the specific criteria (See ECM I.7.1.C.1.a.) that allows exclusion from permanent WQ for this particular subbasin and include justification in the narrative. In the narrative identify basin B1's percentage of the subdivision.
KEN FROM "FINAL DRAI NO.13E DRAINAGE MAI ROM"PRELIMINARY DRAI RAINAGE REPORT FOR F	Subject: Highlight Page Label: [1] PDM Lock: Unlocked Author: dsdlaforce Date: 2/26/2021 9:52:29 AM Status: Color: Layer: Space:	
	Subject: Callout Page Label: [1] PDM Lock: Unlocked Author: dsdlaforce Date: 2/26/2021 9:52:38 AM Status: Color: Layer: Space:	Revise reference to "Final Drainage Report for Paint Brush Hills Filing 13E" dated Sep 2018. See PCD File No SF189 for the approved report. Update any reference values that may have changed from the preliminary to the the final drainage report Unresolved.