Early Grading Drainage Report Peaceful Ridge at Fountain Valley Subdivision El Paso County, Colorado

Prepared for: Fountain Valley Investment Partners, LLC 3 Widefield Boulevard Colorado Springs, Colorado 80911

Prepared by:

1604 South 21st Street Colorado Springs, Colorado 80904 (719) 630-7342

PCD File No: EGP-213

Kiowa Project No. 04092 & 21031

Original Report: December 7, 2005 Revised: July 20, 2006 Addendum: May 20, 2022

Page

Table of	of Contents
Engine	er's Statementiii
I.	General Location and Description1
II.	Previous Reports
III.	Hydrology4
IV.	Hydraulic Calculations
V.	Existing Drainage Patterns
VI.	Site Drainage Plan
VII.	Flood Plain Statement11
VIII.	Cost Estimate and Fees11
IX.	Summary and Conclusions11
List of	Tables
Table 5	-1 Recommended Average Runoff Coefficients Appendix A
List of	Figures
Figure	1 Vicinity Map2
Figure 2	2 Soil Survey of El Paso County
Figure 3	Flood Insurance Rate Map 12
Figure 4	4 Offsite Detention Basin Map15
Append	dix A – Hydrologic Calculations Runoff Coefficient Calculations Time of Concentration Calculations Runoff Calculations
Appen	dix B – Hydraulic Calculations
	EPA-SWMM Hydraulic HGL Calculations
	Detention Basin Outlet Structure Calculations – MHFD-UD_Detention V.30/ Dimen Design Calculations
	Channel Lining Calculations
	Channel Linnig Calculations Swale Canacity Calculations
	Swale Capacity Calculations

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City/County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Kiowa Engineering Corporation, 1604 South 21st Street, Colorado Springs, Colorado 80904

DEVELOPER'S STATEMENT:

I, the Developer, have read and will comply with all of the requirements specified in this drainage report and plan.

BY:

July 8th, 2022 Date

PRINT NAME: J. Ryan Watson

ADDRESS: Fountain Valley Investment Partners, LLC 3 Widefield Boulevard Colorado Springs, Colorado 80911

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E. El Paso County Engineer/ECM Administrator Conditions: Date

I. General Location and Description

Peaceful Ridge at Fountain Valley Subdivision is to be developed as a single-family residential subdivision. The site lies within the Southeast ¹/₄, Section 15, Township 15 South, Range 65 West of the 6th Principal Meridian, in El Paso County, Colorado. The property covers approximately 60.14 acres of which 2.34 acres will be dedicated as additional right-of-way along Marksheffel Road. The site is bounded to the north by unplatted land, to the east by Marksheffel Road, to the south by Cottonwood Meadows Filing No. 3 and to the west by unplatted land. A vicinity map showing the location of Peaceful Ridge is presented on Figure 1 on the following page.

The property is currently undeveloped and platted as Peaceful Ridge at Fountain Valley Subdivision with 255 single-family lots, a detention basin tract and roadway rights-of-ways. The construction plans for the overall site have been previously approved by the County and proposed drawings are being prepared to bring the construction drawings to current standards. Access to the development will be provided at Marksheffel Road at the northeast corner of the site with the construction of Peaceful Ridge Drive. A secondary access will be provided with the extension of Sleepy Meadows Drive at the southwest corner of the site.

The site slopes generally to the southeast at approximately 6%. The vegetation consists primarily of native grasses and weeds. According to the *Soil Survey for El Paso County, Colorado*, the site's soil, as shown on Figure 2, consists primarily of Kim Loam (#43), which is classified within Hydrologic Soil Group B. A small portion of the site consists of Nelson-Tassel Fine Sandy Loams (#56), Razor-Midway Complex (#75) and Stoneham Sandy Loam (#86). These soils are classified within Hydrologic Soil Groups C and D.

II. Previous Reports

- 1) *Final Drainage Report for Cottonwood Meadows, Filing No. 1*, prepared by HMS Group, LLC, approved November 4, 1999.
- 2) *Final Drainage Report for Cottonwood Meadows, Filings No. 2 and 3*, prepared by HMS Group, LLC, approved May 31, 2000.
- 3) Preliminary and Final Drainage Report, Peaceful Ridge at Fountain Valley Subdivision, prepared by Kiowa Engineering Corporation, approved October 17, 2006.
- 4) *City of Colorado Springs and El Paso County Drainage Criteria Manual*, current editions.
- 5) *City of Colorado Springs Drainage Criteria Manual Volume 2*, dated November 2002.
- 6) Soil Survey of El Paso County Area, Colorado, prepared by United States Department of Agriculture Soil Conservation Service, dated June 1981.

According to the Cottonwood Meadows drainage reports, historic offsite Basin H-3 which consists of the western and southern portions of the Peaceful Ridge site and a portion to the west of Peaceful Ridge drained in a southeasterly direction onto the Cottonwood Meadows site prior to the development of Cottonwood Meadows. A trapezoidal channel in the back of the

lots along the northern boundary line was constructed with the development of the Cottonwood Meadows property that now redirects this offsite runoff to the east to Marksheffel Road. A total of $Q_5=21$ cfs and $Q_{100}=62$ cfs from Basin H-3 drains to the trapezoidal channel and discharges to the northeast corner of the Cottonwood Meadows development. According to the Cottonwood Meadows drainage report, only historic runoff will be allowed to discharge to the trapezoidal channel.

Approximately $Q_5=10.1$ cfs and $Q_{100}=29.5$ cfs (Basin H-4) is generated offsite to the west of the Cottonwood Meadows development with a portion draining to Sleepy Meadows Drive. Runoff collected in this street gutter flows to the south to Fontaine Boulevard. Developed Basin 4 ($Q_5=8.8$ cfs and $Q_{100}=18.0$ cfs) consists of Sleepy Meadows Drive and the rear of the lots backing up to Fontaine Boulevard. A portion of Basin 4 drains to the street gutter while the remainder drains to a roadside ditch along Fontaine Boulevard. Runoff collected in the roadside ditch is conveyed to the east to the Fountain Mutual Irrigation Company (FMIC) ditch along Fontaine Boulevard.

III. Hydrology

The hydrology for this site was estimated using the methods outlined in the *City of Colorado Springs and El Paso County, Drainage Criteria Manual.* The topography for the site was compiled using a two-foot contour interval and is presented at a horizontal scale of 1-inch to 100-feet. Exhibit E-1 presents the historic drainage patterns for the area and Exhibit D-1 presents the developed drainage patterns for the area, including the sub-basins and the corresponding flow rates. The flow rates for the sub-basins were estimated by using the Rational Method. Detention basin volumes were estimated using the Rational Stored Rate Method. The 5-year and 100-year recurrence intervals were determined. The calculations can be found in the Appendix of this report.

The runoff coefficients for the development were determined using Table 5-1 of the *City of Colorado Springs and El Paso County, Drainage Criteria Manual.* A copy of Table 5-1 is located in the Appendix of this report. The hydrologic calculations were performed assuming Hydrologic Soil Groups B, C and D and are included in the Appendix of this report.

IV. Hydraulic Calculations

The sizing of the onsite hydraulic structures was done using the methods outlined in the *City of Colorado Springs and El Paso County, Drainage Criteria Manual.*

Culverts were sized assuming inlet control, a 100-year storm and a maximum headwater permitted by the *Colorado Springs and El Paso County, Drainage Criteria Manual*. The hydraulic capacities of the culverts were determined using EPA -SWMM Modelling along with the HY-8 culvert analysis and design program developed by the Federal Highway Administration and Pennsylvania State University. All road culverts are proposed to be reinforced concrete with flared end sections. The outlets of all culverts will be protected with riprap which will be sized to meet the outlet velocity condition at each culvert. The riprap at

the outlet of all the culverts has been sized to withstand the forces attributable to the 100-year design discharge.

The lining of swales was determined using the Hydrologic Engineering Circular No. 15, *Design of Roadside Ditches with Flexible Linings*. The use of grass-lined swales with erosion netting is suitable wherever the shear stress is calculated to be less than 2.1 pounds per square foot

The extended detention basin was designed taking into account the partially developed flows of the Peaceful Ridge development in an overlot graded condition for this report. Water quality capture volume is also incorporated into the design of the detention basin as a permanent feature. The detention basin was sized assuming that the outflow combined with runoff bypassing the basin would be restricted to historic 5-year and 100-year flows or less.

Supporting calculations associated with the sizing of hydraulic facilities for this development are located in the Appendix of this report.

V. Existing Drainage Patterns

Sub-basin E-1 contains approximately 27.76 acres and consists of the northern portion of the site. Approximately $Q_5=16.4$ cfs and $Q_{100}=41.5$ cfs generated from this sub-basin sheet flows to the east to a roadside ditch along Marksheffel Road. Runoff collected in this ditch travels to an existing 7'x4' concrete box culvert. Runoff intercepted by this culvert is directed under Marksheffel to the east and ultimately discharges into Jimmy Camp Creek.

Sub-basin E-2 contains approximately 33.34 acres and consists of the southern portion of the site. Approximately $Q_5=18.6$ cfs and $Q_{100}=46.3$ cfs generated from this sub-basin sheet flows in a southeasterly direction to the existing channel along the south boundary line. Runoff collected in the channel travels to the east to Marksheffel Road and discharges into the roadway corridor west side ditch.

Sub-basin OS-1 contains approximately 32.60 acres and is located the north of the proposed Peaceful Ridge development. Approximately $Q_5=23.0$ cfs and $Q_{100}=61.4$ cfs generated from this sub-basin sheet flows in an easterly and southeasterly direction to the roadside ditch alongside Marksheffel. Runoff from this basin does not enter the site until it nearly reaches Marksheffel Road. Runoff channel flows to the south to an existing 7'x4' concrete box culvert.

Sub-basin OS-2 contains approximately 3.05 acres and is located west of the proposed Peaceful Ridge development. Approximately $Q_5=2.3$ cfs and $Q_{100}=6.0$ cfs generated from this sub-basin sheet flows in a southeasterly direction to Sleepy Meadows Drive. Runoff gutter flows to the south towards Fontaine Boulevard.

Sub-basin OS-3 contains approximately 13.50 acres and is located north of the proposed Peaceful Ridge development along Marksheffel Road. Approximately $Q_5=11.1$ cfs and $Q_{100}=28.6$ cfs generated from this sub-basin sheet flows in a southeasterly direction to the roadside ditch alongside Marksheffel. Runoff channel flows to the south to an existing 7'x4' concrete box culvert. These flows will be captured and directed under Marksheffel Rd.

Sub-basin OS-4 contains 9.38 acres and is located west and south of the subject property. Flows from this basin accumulate in a broad natural channel which convey runoff to the south and away from the site. Some flows enter the west side borrow ditch for Sleepy Meadows Drive at a point several hundred feet south of the site. Some of these flows enter the Fontaine Boulevard Roadway Corridor, and some of these flows enter the FMIC Ditch. Sub-basin OS-4 is raw land and is heavily vegetated with native grasses and weeds.

VI. Site Drainage Plan

The drainage of the site will be accomplished through a combination of sheet flow, and temporary earthen swales which will be used in the Early Grading Plan phase to direct surface flows to a series of Temporary Sediment Basins (TSBs) and subsequently direct these flows to a permanent Extended Detention basin (EDB). Curb inlets and on-site storm pipes will be installed in the finished condition, but not at the time of Early Grading with the exception of the outfall system from the planned detention basin itself, and with the exception of a tie-off to a 48-inch RCP pipe lying under Markscheffel Road, which will serve the very northeast corner of the site. Flows will be intercepted at a series of TSBs as they generally flow southeast towards a low-point near the southeast corner that will ultimately represent the connecting point for Melting Sky Drive and Periwinkle Place. A proposed, full-spectrum, extended detention basin in the southeast corner of the site will be installed at the time of Early Grading except for the inflow forebay. The detention basin will collect partially developed flows from the majority of the site, which will be in an overlot graded condition, and discharge those flows at less than historic rates to an existing 7'x4' concrete box culvert on the east side of the site. Offsite basins OS-1 and OS-3 will drain to the northeast corner of the site. A new area inlet and connecting pipe will join onto an existing 48" RCP storm sewer system under Marksheffel Road to a point of discharge just east of Carriage Meadows North Filing No 1 (aka Lorson Ranch). Offsite basin OS-2 will continue to sheet flow to the site and enter the back of the lots on the west side of Sleepy Meadows Drive. The design of the existing 48-inch storm sewer was coordinated with the downstream property owner, Lorson Ranch (Carriage Meadows North Filing No 1). This developer developed the site on the east side of Marksheffel Road and is known as Carriage Meadows. Lorson Ranch agreed to accept the offsite runoff from the 48-inch RCP as well as the runoff discharging to an existing 7'x4' concrete box culvert under Marksheffel Road. Both of these discharging pipes have been constructed at the time of this report addendum.

<u>A Drainage Basins:</u> The A drainage basins are located in the northern end of the site. Runoff from this area will sheet flow to Peaceful Ridge Drive and continue in an easterly direction to a pair of Type R curb inlets before they reach Marksheffel Road. A small portion (less than 1 acre) of the planned Peaceful Ridge Drive cannot be captured due to grade and is exempted from treatment in accordance with El Paso County criteria. Runoff then will be routed under Marksheffel to the east and ultimately discharge into Jimmy Camp Creek.

Sub-basin A-0 contains 2.07 acres and is located along the north margin of the site. Approximately $Q_5=2.7$ cfs and $Q_{100}=6.4$ cfs generated from this sub-basin will sheet flow across backyard areas and will be released to the adjacent property to the north in an historic fashion. Water Quality Treatment is achieved for this sub-basin by Infiltration Reduction Factoring within the rear-yard areas. Calculations supporting treatment are provided in The IRF Appendix (Appendix C) in accordance with El Paso County requirement (Zones A-0-a & A-0-b).

Sub-basin A-1 contains approximately 3.218 acres and is located along the north side of Peaceful Ridge Drive at the north end of the site. Approximately $Q_5=5.8$ cfs and $Q_{100}=12.3$ cfs generated from this sub-basin will sheet flow to an earthen swale at Peaceful Ridge Drive and will be conveyed east to TSB 'B'. These captured flows are released to Periwinkle Place TSW and conveyed to the EDB. These combined flows will be passed under Peaceful Ridge Drive, which will be constructed to a rough-cut condition during Early Grading. A 24" temporary culvert will convey all of the Minor Event ($Q_5=38.7$ cfs) for these combined flows. These Flows continue south within the Marksheffel Rd side ditch in historic fashion to the existing 7'x4' concrete box culvert. Flows will overtop the planned Peaceful Ridge Drive road cut in the major event and re-enter the existing side ditch and continue south in historic fashion. Calculations for this temporary 24" crossing are included in Appendix B. Riprap stabilization is planned at the pipe outlet as well as the side slopes surrounding the outlet as these form the receiving edge in the major event in the Early Grading Permit (EGP) Condition ($Q_{100}=115.1$ cfs).

Sub-basin A-2 contains approximately 3.35 acres and is located along the south side of Peaceful Ridge Drive at the north end of the site. Approximately $Q_5=6.4$ cfs and $Q_{100}=13.4$ cfs generated from this sub-basin will sheet flow to a south-side earthen swale at Peaceful Ridge Drive and will be conveyed east to a temporary sedimentation basin (TSB 'B'). Bypass and Overflow at TSB 'B' will release to earthen swales and turn south within continuous earthen swale lying along the west side of Periwinkle Place. These flows will be directed along stabilized channel to the EDB.

<u>B Drainage Basins:</u> The B drainage basins consist of the majority of the site. Runoff from these basins will sheet flow and then enter earthen channels: Sleepy Meadows Drive, Melting Sky Drive and Periwinkle Place. Runoff in these streets will be intercepted by one of several earthen swales within the undercut roadway section. At a minimum grade of 4.0%, Melting Sky has a capacity of 19 cfs for the 5-year event, respectively. The maximum flow in the channel is 13 cfs at TSB 'C' for the 5-year storm and 39 cfs at the end of the planned street and just ahead of its release to the extended detention basin (EDB).

Earthen Swales will convey runoff collected in the roadway section and direct ot to stabilized channel sections which will release directly into the proposed, full-spectrum, extended detention basin located at the southeast corner of the site. Water quality capture volume (WQCV) will be incorporated into the EDB as required by El Paso County. Discharge from the detention basin will be restricted to historic rates. Runoff released from

volume (WQCV) will be incorporated into the EDB as required by El Paso County. Discharge from the detention basin will be restricted to historic rates. Runoff released from the detention basin will be conveyed to an existing 7'x4' concrete box culvert under Marksheffel Road via a 36-inch RCP outfall pipe installed as a part of the EDB.

Sub-basin B-1 contains approximately 6.51 acres and is located on either side of Black Powder Trail in the northern portion of the site. Approximately $Q_5=12.9$ cfs and $Q_{100}=27.2$ cfs generated from this sub-basin will sheet flow to Black Powder Drive and channel flow to the east to TSB 'D' just before its junction with the west side of Periwinkle Place. Approximately $Q_5=12.9$ cfs and $Q_{100}=24.6$ cfs will be intercepted and treated by TSB 'D'. Any Overtopping Flows will be directed south along Periwinkle Place to the EDB.

Sub-basin B-2 contains approximately 4.89 acres and is located between Mirador Lane and Periwinkle Place in the eastern portion of the site. Approximately $Q_5=8.8$ cfs and $Q_{100}=18.7$ cfs generated from this sub-basin will sheet flow to the southeast to Periwinkle Place and channel flow directly to the EDB. A combined flow from Periwinkle Place and Melting Sky Drive ($Q_5=8.8$ cfs and $Q_{100}=23.4$ cfs) will drain to the EDB within stabilized channel sections in both the minor event and the major event.

Sub-basin B-3 contains approximately 5.19 acres and is located in the central portion of the site on the west side of Mirador Lane. Approximately $Q_5=8.3$ cfs and $Q_{100}=17.6$ cfs generated from this sub-basin will sheet flow to the southeast to Mirador Lane. Runoff will channel flow to the south along the planned Mirador roadway cut and turn to the east along Melting Sky Drive. At this point, runoff combines and is directed to the EDB in stabilized temporary swale (TSW) channel. The combined flows ($Q_5=17.1$ cfs and $Q_{100}=36.3$ cfs) will drain directly to the EDB.

Sub-basin B-4 contains approximately 4.73 acres and is located in the central portion of the site on either side of Conundrum Court. Approximately $Q_5=8.9$ cfs and $Q_{100}=18.9$ cfs generated from this sub-basin will sheet flow to Conundrum Court. Runoff will channel flow to the south along Conundrum and to the east along Melting Sky Drive to proposed TSB 'C' near Mirador Lane. Approximately $Q_5=8.6$ cfs and $Q_{100}=16.6$ cfs will be intercepted by TSB 'C'. Overtopping flows will be conveyed directly to the EDB downstream along stabilized temporary swale conveyance (TSW).

Sub-basin B-5 contains approximately 6.09 acres and is located in the central portion of the site on either side of Panpipe Lane. Approximately $Q_5=10.3$ cfs and $Q_{100}=21.9$ cfs generated from this sub-basin will sheet flow to Panpipe Lane. Runoff will channel flow to the south along Panpipe and to the east along Melting Sky Drive to TSB 'C'. Approximately $Q_5=10.9$ cfs and $Q_{100}=21.9$ cfs will be intercepted by the TSB of flows from Sub-basin B-5. Overtopping flows will continue to travel in the channel along the north side of Melting Sky and enter the EDB as open channel flow.

Sub-basin B-6 contains approximately 7.25 acres and is located east of Sleepy Meadows Drive in the western portion of the site. Approximately $Q_5=14.3$ cfs and $Q_{100}=30.2$ cfs is generated from this sub-basin. A portion of the basin's runoff will drain to Sleepy Meadows and these flows will be conveyed within roadway cut channel sections along

Melting Sky Drive. The Majority of the runoff generated in this basin will sheet flow to Hazy Hollow Trail and channel flow to the south then to the east to TSB 'C'. The TSB will intercept approximately $Q_5=13.7$ cfs and $Q_{100}=21.8$ cfs of flows from Sub-basin B-6. Overtopping flows will continue to travel in the channel along the north side of Melting Sky and enter the EDB as open channel flow.

Sub-basin B-7 contains approximately 2.95 acres and is located on the south side of Melting Sky Drive in the southern portion of the site. Approximately $Q_5=5.4$ cfs and $Q_{100}=11.7$ cfs generated from this sub-basin will sheet flow to the northeast to Melting Sky and channel flow to the east to TSB 'C'. A combined flow from Periwinkle Place and Melting Sky Drive ($Q_5=10.0$ cfs and $Q_{100}=21.3$ cfs) will drain to TSB 'C' of flows from Sub-basin B-7. A proposed storm sewer system will convey runoff collected in the inlet to the southeast to the proposed detention basin at the southeast corner of the site. Overtopping flows will continue to travel in the channel along the north side of Melting Sky and enter the EDB as open channel flow.

Sub-basin B-8 contains approximately 2.72 acres and is located on the east side of Periwinkle Place in the eastern portion of the site. Approximately Q_5 =4.6 cfs and Q_{100} =9.6 cfs generated from this sub-basin will sheet flow to the southwest to Periwinkle Place and channel flow to the south and enter the EDB via a stabilized riprap rundown.

Under final build conditions, inlets and storm sewers will be added at the low point in the intersection of Melting Sky Drive and Periwinkle Place and these have been sized for piped conveyance of the 5-year & 100-year storm events.

- <u>C Drainage Basins:</u> Sub-basin C-1 contains approximately 4.29 acres and is located on the west side of Sleepy Meadows Drive in the western end of the site. Approximately $Q_5=8.0$ cfs and $Q_{100}=16.9$ cfs generated from this sub-basin will sheet flow to the southeast to Sleepy Meadows Drive via TSW channel. A combined runoff of $Q_5=10.3$ cfs and $Q_{100}=22.9$ cfs with a portion of offsite Sub-basin OS-2 will channel flow to the south to TSB 'A'. Approximately $Q_5=6.4$ cfs and $Q_{100}=17.4$ cfs will be intercepted by TSB 'A'. Overtopping flows of 3.9cfs in the Minor Event, and 5.5 cfs in the Major Event will be conveyed to the east along Melting Sky through TSB 'C' and then to the EDB. A small area which is unable to be captured by grade (5,000 s.f.) will escape at the SW corner, and will be directed along existing, hardened conveyances to the roadside ditch at Fontaine Boulevard.
- <u>D Drainage Basins:</u> The D drainage basins are located along the southern and eastern borders of the site. Runoff from this area will sheet flow and channel flow to Marksheffel Road.

Sub-basin D-1 contains approximately 2.61 acres and is located on the southern portion of the site. Approximately $Q_5=3.4$ cfs and $Q_{100}=7.8$ cfs generated from this sub-basin will sheet flow to the existing channel along the southern property line within the Cottonwood Meadows subdivision. The homeowners in Cottonwood Meadows have encroached upon this channel. The encroachments into the existing swale have not been done collectively and the channel is potentially unstable. With the Peaceful Ridge development, however, less runoff will be draining to this swale which will still have the capacity to carry the

developed flows from the Peaceful Ridge site. See capacity calculations in the Appendix of this report. Runoff intercepted by this swale will channel flow to the east to the roadside ditch along Marksheffel Road. Flows will travel in a southerly direction along Marksheffel in the roadside ditch. Water Quality Treatment is achieved in the rear yard areas. Calculations can be found in Appendix Z (Zones D-1-a & D-1-b).

Sub-basin D-2 contains approximately 2.25 acres and consists of the backside of the singlefamily lots on the east side of Periwinkle Place. Approximately Q_5 =4.0 cfs and Q_{100} =8.9 cfs generated from this sub-basin will sheet flow to the roadside ditch along Marksheffel Road. Flows will drain to the existing 7'x4' concrete box culvert that runs under Marksheffel. Water Quality Treatment is achieved in the rear yard areas. Calculations can be found in Appendix Z (Zones D-2-a & D-2-b).

Sub-basin D-3 contains approximately 2.29 acres and consists of the west half of the rightof-way for Marksheffel Road including half of the road itself and the additional 50-foot of right-of-way that will be dedicated with the platting of Peaceful Ridge at Fountain Valley Subdivision. Approximately Q_5 =4.4 cfs and Q_{100} =9.8 cfs generated from this sub-basin will sheet flow to the roadside ditch along Marksheffel Road. Flows will drain to the existing 7'x4' concrete box culvert that runs under Marksheffel.

There will be some offsite land disturbance related to the installation of a temporary culvert crossing at the very NE corner of the site near an existing well house. This is undeveloped raw land which shall otherwise remain in undeveloped condition. The temporary crossing shall be considered a TBMP installation. The surrounding and adjacent terrain will be stabilized and restored to its original condition. Planned Peaceful Valley Drive will be centered on the property line and the rough cut roadway portion will also disturb a small offsite area in the northeast corner of the site. The roadway will use a riprap rundown near its intersection with Marksheffel Rd, and this will stabilize concentrated runoff, and direct it south through the temporary culvert crossing and along the existing Marksheffel Road side ditch to the south along its historic course. In the Final Developed Condition these flows will all be intercepted at an area inlet and directed under Marksheffel Road along a new alignment.

Water Quality Treatment

Water Quality Treatment will be required for the proposed development. The proposed full spectrum extended detention basin will be used for permanent stormwater quality treatment. The required WQCV for a 40-hour drain time is 0.721 acre-feet. The storage volume required for EURV detention is 1.118 acre-feet. The storage volume for the 100-year Major Event is 1.961 acre-feet.

Water Quality Methodology (4-Step Process):

Step 1- Runoff reduction Practices

New construction will utilize existing and proposed grassed areas as buffers, allowing sediment to drop out of the storm runoff and helping to reduce runoff. Sub-basin D-3 contains portions of vegetated hillsides along with an existing, broad, meandering, five-foot, flat-bottom channel which will provide some runoff reduction benefit, along with some biofiltering. Runoff reduction calculations and *IRF Reduction Exhibit* are provided in Appendix C for Sub-basins A-0, D-1, D-2, C-0, C-1, C-2. IRF Reduction Analysis for this zone resulted in a treatment value of at least 60% of the expected overall WQCV.

Step 2- Implement BMP's That Slowly Releases Water Quality Capture Volume

Treatment and slow release of 40 hours of the water quality capture volume (WQCV) will be accomplished by the implementation of a new, private, full-spectrum, extended detention basin.

Step 3 - Stabilize Drainageways

There are no major drainageways affected by the development. No improvements to any downstream drainageways are required or anticipated, at this time. The project discharges to a large side ditch and directly enters downstream public storm sewer piping system at or below historic rates. Some additional ditch shaping, check dams and slope stabilization are planned in the Marksheffel Road side ditch where Peaceful Valley Road is extended west.

Step 4 - Implement Site Specific & Source Control BMPs

There are no potential sources of contaminants that could be introduced to the County's MS4 that will not be controlled by temporary construction BMPs. Maintenance and sweeping of parking areas is recommended to limit sediment transport to new inlets, pipes and detention areas. Construction BMPs in the form of vehicle tracking control, concrete washout area, inlet protection, rock socks, and silt fences will be utilized during construction activities to protect receiving waters.

Detention Facilities

The EDB will be mostly constructed at the time of the Early Grading excepting the inflow forebay, the trickle pan, and the lower maintenance road. It will act as a permanent Water Quality Treatment And Detention Facility. The proposed outlet structure will include two chambers: one for the 5-year and one for the 100-year storm event. An orifice plate will drain the water quality portion of the basin into the first chamber of the outlet structure. Approximately Q_5 =47.4 cfs and Q_{100} =153.6 cfs (DP-7) will drain to the proposed detention basin. Runoff released from the detention basin will be restricted to 4.0 cfs and 69.8 cfs for the 5-year and 100-year storm events, respectively, in order to limit the total runoff draining to Marksheffel Road. A proposed 36-inch RCP will convey runoff released from the detention basin to an open channel discharge point near the existing 7'x4' concrete box culvert. If the outlet structure becomes plugged, a 75-foot-wide emergency spillway will convey the runoff to the roadside ditch along Marksheffel Road.

VII. Flood Plain Statement

According to the Federal Emergency Management Agency (FEMA), the proposed development does not lie within a designated floodplain. The Floodplain Insurance Rate Map (FIRM) for El Paso County panel 08041C0957 G, dated December 7, 2018, was reviewed to determine any potential floodplain delineation. A copy of the relevant portion of the FIRM panel is shown on Figure 3.

VIII. Cost Estimate and Fees

The proposed development lies within the Jimmy Camp Creek Drainage Basin. Drainage and Bridge Fees have been paid with the platting of the property. These fees were based on developed impervious area in El Paso County.

An updated calculation of fees is presented in the Final Drainage Report Addendum.

IX. Summary and Conclusions

The subject site contains approximately 60.14 acres and is located on the west side of Marksheffel Road just north of Fontaine Boulevard. The property is to be developed into 255 single-family lots, with 3 lots being incorporated into the detention basin tract. The majority of runoff generated from the site will sheet flow and then channel flow in earthen swales to a series of TSBs. These TSBs will allow sediments to drop out of the system. Overtopping flows will also be conveyed in earthen swales. Armored Stabilization of the swales is used increasingly as the flows approach the EDB. Runoff collected within the EDB will be released at or below historic rates via a 36-inch RCP and will discharge to an existing 7'x4' concrete box culvert under Marksheffel Road. The Developer understands The County will not maintain this infrastructure within the public right of way, and that the pipe will be maintained by Peaceful Ridge Metropolitan District under a new license agreement to be generated on acceptance of this report and ahead of any construction within the right of way.

Similarly, the EDB and its associated infrastructure are private and will be privately maintained through Peaceful Ridge Metropolitan District.

04092Fig1-3.dwg/Nov 23, 2021/10:44am

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

	MAP L	EGEND		MAP INFORMATION
Area of Int	erest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soils	Soil Map Unit Polygons	â	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
~	Soil Map Unit Lines	Ŷ	Wet Spot	Enlargement of maps beyond the scale of mapping can cause
	Soil Map Unit Points	-	Special Line Features	misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of
(©	Blowout	Water Fea	tures Streams and Canals	contrasting soils that could have been shown at a more detailed scale.
×	Borrow Pit	Transport	ation	Please rely on the bar scale on each map sheet for map
×	Closed Depression	~	Rails Interstate Highways	measurements.
X	Gravel Pit Gravelly Spot Landfill	~	US Routes	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
ů.		~	Major Roads Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
۸.	Lava Flow	Backgrou	nd	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the
<u>به</u> ج	Marsh or swamp Mine or Quarry		Aerial Photography	Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as
0 ~	Perennial Water Rock Outcrop			Soil Survey Area: El Paso County Area, Colorado
+	Saline Spot			Survey Area Data: Version 19, Aug 31, 2021
**	Sandy Spot Severely Froded Spot			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
\$	Sinkhole			Date(s) aerial images were photographed: Aug 14, 2018—Sep
>	Slide or Slip			23, 2018
Ø				The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

	•• •• •• ••		
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
43	Kim loam, 1 to 8 percent slopes	56.2	90.2%
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	0.6	1.0%
75	Razor-Midway complex	3.8	6.1%
86	Stoneham sandy loam, 3 to 8 percent slopes	1.7	2.7%
Totals for Area of Interest		62.3	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or

landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

43—Kim loam, 1 to 8 percent slopes

Map Unit Setting

National map unit symbol: 368k Elevation: 5,300 to 5,600 feet Mean annual precipitation: 12 to 14 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 135 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Kim and similar soils: 98 percent *Minor components:* 2 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kim

Setting

Landform: Fans, hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous loamy alluvium

Typical profile

A - 0 to 6 inches: loam C - 6 to 60 inches: loam

Properties and qualities

Slope: 1 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 20 percent
Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 9.6 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: R069XY006CO - Loamy Plains, LRU's A and B 10-14 Inches, P.Z. Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 1 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

56—Nelson-Tassel fine sandy loams, 3 to 18 percent slopes

Map Unit Setting

National map unit symbol: 3690 Elevation: 5,600 to 6,400 feet Mean annual precipitation: 12 to 14 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 135 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Nelson and similar soils: 55 percent Tassel and similar soils: 40 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Nelson

Setting

Landform: Hills Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous residuum weathered from interbedded sedimentary rock

Typical profile

A - 0 to 5 inches: fine sandy loam Ck - 5 to 23 inches: fine sandy loam Cr - 23 to 27 inches: weathered bedrock

Properties and qualities

Slope: 3 to 12 percent
Depth to restrictive feature: 20 to 40 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 2.8 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: R067BY045CO - Shaly Plains Other vegetative classification: SHALY PLAINS (069AY046CO) Hydric soil rating: No

Description of Tassel

Setting

Landform: Hills Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous slope alluvium over residuum weathered from sandstone

Typical profile

A - 0 to 4 inches: fine sandy loam C - 4 to 10 inches: fine sandy loam Cr - 10 to 14 inches: weathered bedrock

Properties and qualities

Slope: 3 to 18 percent
Depth to restrictive feature: 6 to 20 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Available water supply, 0 to 60 inches: Very low (about 1.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D Ecological site: R067BY045CO - Shaly Plains Other vegetative classification: SHALY PLAINS (069AY046CO) Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 4 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

75—Razor-Midway complex

Map Unit Setting

National map unit symbol: 369p Elevation: 5,300 to 6,100 feet Mean annual precipitation: 12 to 14 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 135 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Razor and similar soils: 60 percent Midway and similar soils: 35 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Razor

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear, concave Across-slope shape: Linear Parent material: Clayey slope alluvium over residuum weathered from shale

Typical profile

A - 0 to 4 inches: stony clay loam Bw - 4 to 22 inches: cobbly clay loam Bk - 22 to 29 inches: cobbly clay Cr - 29 to 33 inches: weathered bedrock

Properties and qualities

Slope: 3 to 15 percent
Depth to restrictive feature: 20 to 40 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Gypsum, maximum content: 5 percent
Maximum salinity: Moderately saline to strongly saline (8.0 to 16.0 mmhos/cm)
Sodium adsorption ratio, maximum: 15.0
Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): 6e

Land capability classification (nonirrigated): 6e Hydrologic Soil Group: D Ecological site: R069XY047CO - Alkaline Plains LRU's A and B Other vegetative classification: ALKALINE PLAINS (069AY047CO) Hydric soil rating: No

Description of Midway

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Slope alluvium over residuum weathered from shale

Typical profile

A - 0 to 4 inches: clay loam C - 4 to 13 inches: clay Cr - 13 to 17 inches: weathered bedrock

Properties and qualities

Slope: 3 to 25 percent
Depth to restrictive feature: 6 to 20 inches to paralithic bedrock
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Gypsum, maximum content: 15 percent
Maximum salinity: Very slightly saline to moderately saline (2.0 to 8.0 mmhos/cm)
Sodium adsorption ratio, maximum: 15.0
Available water supply, 0 to 60 inches: Very low (about 2.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Ecological site: R069XY046CO - Shaly Plains LRU's A and B Other vegetative classification: SHALY PLAINS (069AY045CO) Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 4 percent Hydric soil rating: No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

86—Stoneham sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 36b2 Elevation: 5,100 to 6,500 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 52 degrees F Frost-free period: 135 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Stoneham and similar soils: 95 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Stoneham

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous loamy alluvium

Typical profile

A - 0 to 4 inches: sandy loam Bt - 4 to 8 inches: sandy clay loam Btk - 8 to 11 inches: sandy clay loam Ck - 11 to 60 inches: loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 9.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: R067BY024CO - Sandy Plains Other vegetative classification: SANDY PLAINS (069AY026CO) Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: 4 percent *Hydric soil rating:* No

Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

Appendix A Hydrologic Calculations Runoff Coefficient Calculations Time of Concentration Detention

TABLE 5-1

RECOMMENDED AVERAGE RUNOFF COEFFICIENTS AND PERCENT IMPERVIOUS

•

				"C"	
			FRE	QUENCY	
LAND USE OR	PERCENT		10	1	00
SURFACE CHARACTERISTICS	IMPERVIOUS	<u>A&B*</u>	C&D*	A&B*	C&D*
Business					
Commercial Areas	95	0.90	0.90	0.90	0.90
Neighborhood Areas	70	0.75	0.75	0.80	0.80
Residential					
1/8 Acre or less	65	0.60	0.70	0.70	0.80
1/4 Acre	40	0.50	0.60	0.60	0.70
1/3 Acre	30	0.40	0.50	0.55	0.60
1/2 Acre	25	0.35	0.45	0.45	0.55
1 Acre	20	0.30	0.40	0.40	0.50
Industrial	100 10				
Light Areas	80	0.70	0.70	0.80	0.80
Heavy Areas	90	0.80	0.80	0.90	0.90
Parks and Cemeteries	7	0.30	0.35	0.55	0.60
Playgrounds	13	0.30	0.35	0.60	0.65
Railroad Yard Areas	40	0.50	0.55	0.60	0.65
Undeveloped Areas					
Historic Flow Analysis-	2	0.15	0.25	0.20	0.30
Greenbelts, Agricultural	0	0.05	0.00	0.05	
Fascure/Meadow	0	0.25	0.30	0.35	0.45
Fypoged Book	100	0.10	0.15	0.15	0.20
Offsite Flow Applysic	100	0.90	0.90	0.95	0.95
(when land use not define	ad)	0.55	0.00	0.65	0.70
Streets	8				
Paved	100	0 00	0 00	0.05	0.05
Gravel	80	0.90	0.90	0.95	0.95
SILVEI	00	0.80	0.80	0.85	0.85
Drive and Walks	100	0.90	0.90	0.95	0.95
Roofs	90	0.90	0.90	0.95	0.95
Lawns	0	0.25	0.30	0.35	0.45

* Hydrologic Soil Group

9/30/90

5-8

.

Kiowa Engineering	CLIENT	Joв No[40]2	_ PAGE
Corporation	PROJECT COLOR FULL DISUR	DATE CHECKED	DATE 35-30-03

Site 40.14 Acres total less 2.34 Auros Row dedication less <u>1.21 Acres</u> Letention busin tract 56.59 Acres = 4.5 du/Ac

Use Runoff Coefficient between 18 Acre & 1/4 Acre

Soils - majority of site is soil B South west & northeast corners are C/D

Runoff Coefficient - Existing condition

 $\frac{\text{Basin E-1}}{\text{Pasture}} = 8\% = 501 \text{ C/D}, 1\% \text{ Road} 99\% \text{ pasture}$ $\frac{\text{Pasture}}{\text{Pasture}} = 0.92(.25) + 0.08(.30) = 0.25$ $\frac{\text{Goo} = 0.92(.35) + 0.08(.45) = 0.36$

 $C_5 = 0.99(.25) + 0.01(.90) = 0.26$ $C_{100} = 0.99(.36) + 0.01(.95) = 0.37$

Kiowa Engineering Corporation ROJECT FOUR Full RIDGE D	OB NO. 04092 PAGE 2 PATE CHECKED DATE 8-30-05
Runoff Coefficient - Existing	ing Confifion
Basin E-2 4% soil CID	0.5% Road
$\begin{bmatrix} p_{05} + ure & C_5 = 0.96(.25) \\ C_{100} = 0.96(.35) \end{bmatrix}$	+ 2.04(.30) = 0.25 +.04(.45) = 0.35
$\begin{bmatrix} & \text{wtd} & C_5 = 0.995(.25) \\ G_{00} = .995(.35) \end{bmatrix}$	+.005(.90) = .25 +.005(.95) = .35
Busin 05-1 13 soil B, 100% pusture	2/3 Scil CID medidary
$C_5 = V_3(.25) + -$	Z/3(.30) = 0.28
$G_{\infty} = \frac{1}{3}(35) + 3$	2/3(,45)= 0.42
$\begin{bmatrix} Busin 05-2 \\ C_5 = 0.25 \end{bmatrix} C_6$	50 = 0.35
Basin DS-3 Soil CID	5% Road 95% pasture
$C_5 = D.95(.30) +$	0.05(0.90) = 0.33
$G_{00} = 0.95(.45) +$	0.05(0.95) = 0.48

U

Kiowa Engineering Corporation	PROJECT PROJECT	ul Ridge	Јов No <u>0409</u> 2 Date Checked Checked By	PAGE DATE30-0.5 COMPUTED BY JEIN
Runoff	Coefficie	水一氏	itsting Conditi	DN
DP-L	basins E	-1, DS-	1 QD5-3	
A	ra: 27.7	6+32.6	eo + 13,50 =	73,86 Acres
	5 = 27.76	<u>(174) + 3'</u> 13,80	2,60(,28)+ 13,50 2	(133) = 0.28
C_{l}	00 - 27.76(.3	<u>7) + 32,66</u> 73,86	>(.42) + 13,55(.48	(i) = 0.41
DP-2	basins	E-2	2 05-2	
	Area .	33,34+	9.30 = 42.0	4 Ac
	$C_5 = 0.$	25 ($C_{100} = 0.35$	

Kiowa Engineering Corporation	CLIENT PROJECT	_ Јов No. <u></u>	PAGE 4 DATE 8-30-05 COMPUTED BY GA
[Runoff	Coefficient - De	veloped Cor	121410m
D for	4,5 Jul Ac soil B 447. impervious) soil C/D	: C5=0,51 : C5=0.61	900=0.61 900=0.71
Basin	A-1 5% soil CID 5 = 0.75(.51) + .09	5(.6i) = 0.º	52
0	100 = 0.75(.6i)+.	05 (171) = D	- 62
Basin	A-2 5% soil cl	D	
	$c_5 = 0.95(.51) + .05$ $c_{105} = .95(.64) + .05$	(.61) = 0.5 (.71) = 0	52),42
[] <u>136510</u>	<u>B-1</u> 100% soil 1 5 = 0.51	3 C ₁₀₀ = 0.61	
[] Basin	B-2 100% soil	B	
	C5 = Q51 C100	= 0.61	
Basin	B-3 100% soil	8	
	C5 = 0,5 C100	= 0.61	

Kiowa 8 Corpor	Engineering ation	CLIENT	refut teidore		NO. UP DA 2	PAGE 5 DATE 8-30-05
1.5		DETAIL		Сне	CKED BY	_ COMPUTED BY_ BID
	Runoff	Coeffici,	ert - C	Sevelops	d Conditi	NCH
	Basin	B-4	Soil B	5	0,51 0	100- 0.61
П	Basin P	-5	soil B	5	9,51 C	100 = 2,61
	POSIN	B-le	501 B	C57	a.51 c	100 = 0.61
	Basin F	3-7	19% soil	dD	81% 501	3
Π		05 =	0, 19(, 01)		$\mathcal{O}(\mathcal{A})$	- 0,50
		900 -	. D,19(,71)	+ 0,8	i(,úi) =	0.63
U	Basin B-	-8	19° soil	CID	81% 501	B
		C5 -	5.19(.6	l) + ,	81 (121)	= 0,53
U		900	= D.19(.7	(i) + C).81 (.61)	= 0.63
	BASIN	C-1	100% 5	oil B		
		65	= 0.51	900	= 0.61	
	Basin ?	2-1 7	23% sail a	cid 2	s% paveme	nt 80% lawn
	·/O	wn Ca	; = 0,77	1(.25) -	+ 0,23(.3	(0) = 0.26
		CIC	-0.77	(,35) -	- 0,73(,L	15) = 0,37
	wt	1 (5	= 0,80	(.24) +	0.20 (.90)	= 0.39
		CID	0 = 0,80	(.37)+	D.20 (.95) = 0.50

 \bigcup

Kiowa Engineering Corporation	CLIENT PROJECT_KACPFUL BILGE DETAIL	Јов No. <u>04012</u> Date Checked Checked By	PAGE 0 DATE 9-30-05 COMPUTED BY 190
Runoff	Coefficient - De	veloped Cox	dition_
Busin D	24% soil CID	20% roof/p 80% lawr	avenuent
]]	$c_{5} = 0.76(.35)$ $c_{100} = 0.76(.35)$	+ 0.24(1.30) + 0,24(1.45)	= 0.26 = 0.37
wtd	$C_5 = 0,80(.26)$ $C_{100} = 0.80(.37)$	+ 0.70(.90) = - 0.70(.95) =	0.39 0.50
BASIND	3 50% soil CID	15% plugrount-	85% Jawn
]]	$C_{5} = 0.50 (.25)$ $C_{100} = 0.50 (.35)$	+ 0.50 (.30) + 0.50 (.45)	= 0.28 = 0.40
wtd	C5 = 0.85(.28) GOD = 0.85(.40)	+ .15(.90) = + 0,15(.95)	- 0,37 = 0.48

•

Peaceful Ridge at Fountain Valley Subdivision Existing Condition Time of Concentration Calculation

Basin		Slope			Length		Run Coef.		Velocity			T _c		т	Dagin
Dasin	O'land 1	Chan. 1	Chan. 2	O'land 1	Chan. 1	Chan. 2	(5-year)	O'land 1	Chan. 1	Chan. 2	O'land 1	Chan. 1	Chan. 2	L ^c	Dasin
E-1	7.1 %	5.0 %	1.6 %	1,000 lf	1,100 lf	375 lf	0.26		5.0 ft/sec	4.0 ft/sec	25.9 min.	3.7 min.	1.6 min.	31.1 min.	E-1
E-2	6.2 %	4.8 %	1.5 %	1,000 lf	1,100 lf	260 lf	0.25		5.0 ft/sec	4.0 ft/sec	27.4 min.	3.7 min.	1.1 min.	32.1 min.	E-2
OS-1	8.2 %	5.6 %		1,000 lf	700 lf		0.28		6.0 ft/sec		24.1 min.	1.9 min.		26.0 min.	OS-1
OS-2	4.7 %	5.5 %		600 lf	400 lf		0.28		5.0 ft/sec		22.4 min.	1.3 min.		23.8 min.	OS-2
OS-3	10.0 %	0.7 %		400 lf	2,000 lf		0.33		2.5 ft/sec		13.4 min.	13.3 min.		26.7 min.	OS-3
OS-4	10.0 %	0.7 %		400 lf	1,560 lf		0.51		2.5 ft/sec		10.2 min.	10.4 min.		20.6 min.	OS-4
DP-1	7.1 %	5.0 %	1.6 %	1,000 lf	1,100 lf	375 lf	0.28		5.0 ft/sec	4.0 ft/sec	25.2 min.	3.7 min.	1.6 min.	30.5 min.	DP-1
DP-2	4.7 %	5.5 %	3.7 %	600 lf	400 lf	1,900 lf	0.25		3.5 ft/sec	5.0 ft/sec	23.3 min.	1.9 min.	6.3 min.	31.5 min.	DP-2

Equations:

Time of Concentration (Overland) = 1.87(1.1-C ₅)L ^{0.5} S ^{-0.333}

 C_5 = Runoff coefficient for five-year flow

L = Length of overland flow in feet

S = Slope of flow path in percent

Velocity (Road) = $10(10^{(0.5\log 5 + 0.5)})$

S = Slope of flow path in percent

Velocity (Channel) = $(1.49/n)R_n^{2/3} S^{1/2}$

Slope (S) = Slope of the channel

n = Manning's number

R_n = Hydraulic Radius (Reynold's Number)

Peaceful Ridge at Fountain Valley Subdivision Developed Time of Concentration Calculation

Desta		Slope			Length		Run Coef.		Velocity			T _c		т	Derte
Basin	O'land 1	Chan. 1	Chan. 2	O'land 1	Chan. 1	Chan. 2	(5-year)	O'land 1	Chan. 1	Chan. 2	O'land 1	Chan. 1	Chan. 2	I _c	Basin
A-0	4.0 %	5.0 %		25 lf	25 lf		0.25		4.4 ft/sec		5.0 min.	0.1 min.		5.1 min.	A-0
A-1	4.0 %	5.0 %		100 lf	1,800 lf		0.52		4.4 ft/sec		6.8 min.	6.8 min.		13.7 min.	A-1
A-2	4.0 %	5.0 %		90 lf	1,645 lf		0.52		4.4 ft/sec		6.5 min.	6.2 min.		12.7 min.	A-2
B-1	4.0 %	5.0 %		100 lf	1,060 lf		0.51		4.4 ft/sec		7.0 min.	4.0 min.		11.0 min.	B-1
B-2	5.0 %	4.5 %	1.4 %	185 lf	280 lf	500 lf	0.51		4.3 ft/sec	2.3 ft/sec	8.8 min.	1.1 min.	3.6 min.	13.5 min.	B-2
В-3	5.0 %	5.0 %	2.8 %	300 lf	270 lf	970 lf	0.51		3.3 ft/sec	3.3 ft/sec	11.2 min.	1.4 min.	4.9 min.	17.4 min.	B-3
B-4	7.0 %	2.2 %	4.2 %	200 lf	500 lf	280 lf	0.51		2.8 ft/sec	4.1 ft/sec	8.2 min.	3.0 min.	1.1 min.	12.3 min.	B-4
B-5	5.0 %	2.8 %		300 lf	850 lf		0.51		3.3 ft/sec		11.2 min.	4.3 min.		15.5 min.	B-5
B-6	5.0 %	3.8 %		100 lf	1,050 lf		0.51		3.8 ft/sec		6.5 min.	4.6 min.		11.1 min.	B-6
B-7	6.0 %	4.2 %		80 lf	1,400 lf		0.53		4.1 ft/sec		5.2 min.	5.7 min.		10.9 min.	B-7
B-8	4.0 %	1.4 %		60 lf	1,100 lf		0.53		2.3 ft/sec		5.2 min.	8.0 min.		13.2 min.	B-8
C-1	4.0 %	3.2 %		100 lf	1,250 lf		0.51		3.6 ft/sec		7.0 min.	5.8 min.		12.7 min.	C-1
D-1	6.0 %	4.0 %		80 lf	1,525 lf		0.39		3.0 ft/sec		6.5 min.	8.5 min.		15.0 min.	D-1
D-2	5.0 %			85 lf			0.39				7.2 min.			7.2 min.	D-2
D-3		2.0 %			500 lf		0.37		2.2 ft/sec			3.8 min.		5.0 min.	D-3
OS-1	8.2 %	5.6 %		1,000 lf	700 lf		0.28		6.0 ft/sec		24.1 min.	1.9 min.		26.0 min.	OS-1
OS-2	4.7 %	5.5 %		600 lf	400 lf		0.28		5.0 ft/sec		22.4 min.	1.3 min.		23.8 min.	OS-2
OS-3	10.0 %	0.7 %		400 lf	2,000 lf		0.33		2.5 ft/sec		13.4 min.	13.3 min.		26.7 min.	OS-3
OS-4	10.0 %	0.7 %		400 lf	1,560 lf		0.28		2.5 ft/sec		14.2 min.	10.4 min.		24.6 min.	OS-4
DP-1*			3.2 %			70 lf	0.08			3.6 ft/sec		23.8 min.	0.3 min.	24.1 min.	DP-1*
DP-2	5.0 %	3.8 %	4.2 %	100 lf	1,050 lf	290 lf	0.51		3.8 ft/sec	4.1 ft/sec	6.5 min.	4.6 min.	1.2 min.	12.2 min.	DP-2
DP-3	5.0 %	3.8 %	4.2 %	100 lf	1,050 lf	770 lf	0.51		3.8 ft/sec	4.1 ft/sec	6.5 min.	4.6 min.	3.1 min.	14.2 min.	DP-3
DP-4	5.0 %	3.8 %	4.2 %	100 lf	1,050 lf	1,120 lf	0.51		3.8 ft/sec	4.1 ft/sec	6.5 min.	4.6 min.	4.6 min.	15.6 min.	DP-4
DP-5	4.0 %	5.0 %	1.4 %	100 lf	1,060 lf	700 lf	0.51		4.4 ft/sec	2.3 ft/sec	7.0 min.	4.0 min.	5.1 min.	16.0 min.	DP-5
DP-6	4.0 %	5.0 %	1.4 %	100 lf	1,060 lf	700 lf	0.33		4.4 ft/sec	2.3 ft/sec	9.1 min.	4.0 min.	5.1 min.	18.2 min.	DP-6
DP-7**			2.0 %			70 lf	0.38			5.0 ft/sec		18.2 min.	0.2 min.	18.4 min.	DP-7**
DP-8	10.0 %	0.7 %		400 lf	2,000 lf		0.32		2.5 ft/sec		13.6 min.	13.3 min.		26.9 min.	DP-8
DP-8a	8.2 %	5.6 %		1,000 lf	700 lf		0.31		6.0 ft/sec		23.2 min.	1.9 min.		25.1 min.	DP-8a
DP-9a	4.0 %	5.0 %	1.2 %	90 lf	1,645 lf	400 lf	0.77		4.4 ft/sec	2.0 ft/sec	3.7 min.	6.2 min.	3.3 min.	13.3 min.	DP-9a

Equations:

Time of Concentration (Overland) = $1.87(1.1-C_5)L^{0.5} S^{-0.333}$

 $C_5 = Runoff$ coefficient for five-year flow

L = Length of overland flow in feet

S = Slope of flow path in percent

Velocity (Road) = $10(10^{(0.5\log 8 + 0.5)})$

S = Slope of flow path in percent

Velocity (Channel) = $(1.49/n)R_n^{2/3} S^{1/2}$

Slope (S) = Slope of the channel

R_n = Hydraulic Radius (Reynold's Number)

*Time of Concentration for Basin OS-2 plus additional curb & gutter flow

**Time of Concentration for DP-6 plus pipe flow

Peaceful Ridge at Fountain Valley Subdivision Existing Condition Runoff Calculation

Basin / Design	Contributing				Time of	Rainfall Intensity		Runoff		Basin / Design
Point	Basins	Area	C ₅	C ₁₀₀	Concentration	i ₅	i ₁₀₀	Q5	Q ₁₀₀	Point
E-1		27.76 ac	0.26	0.37	31.1 min.	2.3 in/hr	4.0 in/hr	16.4 cfs	41.5 cfs	E-1
E-2		33.34 ac	0.25	0.35	32.1 min.	2.2 in/hr	4.0 in/hr	18.6 cfs	46.3 cfs	E-2
OS-1		32.60 ac	0.28	0.42	26.0 min.	2.5 in/hr	4.5 in/hr	23.0 cfs	61.4 cfs	OS-1
OS-2		3.05 ac	0.28	0.42	23.8 min.	2.6 in/hr	4.7 in/hr	2.3 cfs	6.0 cfs	OS-2
OS-3		13.50 ac	0.33	0.48	26.7 min.	2.5 in/hr	4.4 in/hr	11.1 cfs	28.6 cfs	OS-3
OS-4		9.38 ac	0.28	0.42	24.6 min.	2.6 in/hr	4.6 in/hr	6.8 cfs	18.2 cfs	OS-4
DP-1	E-1, OS-1 & OS-3	73.86 ac	0.28	0.41	30.5 min.	2.3 in/hr	4.1 in/hr	47.5 cfs	123.8 cfs	DP-1
DP-2	E-2 & OS-2	36.39 ac	0.25	0.35	31.5 min.	2.3 in/hr	4.0 in/hr	20.5 cfs	51.1 cfs	DP-2

Equations:

 $i_{5}=54.6/(T_{c}^{0.83}+6.72)$ $i_{100}=75/((10+T_{c})^{0.786})$

i₅=Average 5-year Rainafall Intensity in inches per hou i100=Average 100-year Rainfall Intensity in inches per hou

T_c=Time of Concentration

Q = CiA

Q = Peak Runoff Rate, in cubic feet per second (cfs

C = Runoff coefficient representing a ration of peak runoff rate to average rainfa

intensity for a duration equal to the runoff time of concentration

i = average rainfall intensity in inches per hou

A = Drainage area in acres

Peaceful Ridge at Fountain Valley Subdivision Developed Runoff Calculation

Basin / Design	Contributing				Time of	Rainfall	ainfall Intensity		noff	Basin / Design
Point	Basins	Area	C ₅	C100	Concentration	i5	i ₁₀₀	Q5	Q100	Point
A-0	A-0	2.07 ac	0.25	0.35	5.1 min.	5.2 in/hr	8.9 in/hr	2.7 cfs	6.4 cfs	A-0
A-1	A-1	3.18 ac	0.52	0.62	13.7 min.	3.5 in/hr	6.2 in/hr	5.8 cfs	12.3 cfs	A-1
A-2	A-2	3.41 ac	0.52	0.62	12.7 min.	3.6 in/hr	6.4 in/hr	6.5 cfs	13.6 cfs	A-2
B-1	B-1	6.51 ac	0.51	0.61	11.0 min.	3.9 in/hr	6.9 in/hr	12.9 cfs	27.2 cfs	B-1
B-2	B-2	4.89 ac	0.51	0.61	13.5 min.	3.5 in/hr	6.3 in/hr	8.8 cfs	18.7 cfs	B-2
B-3	В-3	5.19 ac	0.51	0.61	17.4 min.	3.1 in/hr	5.6 in/hr	8.3 cfs	17.6 cfs	B-3
B-4	B-4	4.73 ac	0.51	0.61	12.3 min.	3.7 in/hr	6.5 in/hr	8.9 cfs	18.9 cfs	B-4
B-5	B-5	6.09 ac	0.51	0.61	15.5 min.	3.3 in/hr	5.9 in/hr	10.3 cfs	21.9 cfs	B-5
B-6	B-6	7.25 ac	0.51	0.61	11.1 min.	3.9 in/hr	6.8 in/hr	14.3 cfs	30.2 cfs	B-6
B-7	B-7	2.95 ac	0.48	0.59	11.4 min.	3.8 in/hr	6.8 in/hr	5.4 cfs	11.7 cfs	B-7
B-8	B-8	2.72 ac	0.48	0.59	13.6 min.	3.5 in/hr	6.3 in/hr	4.6 cfs	10.0 cfs	B-8
C-1	C-1	4.29 ac	0.51	0.61	12.7 min.	3.6 in/hr	6.4 in/hr	8.0 cfs	16.9 cfs	C-1
D-1	D-1	2.61 ac	0.39	0.50	15.0 min.	3.4 in/hr	6.0 in/hr	3.4 cfs	7.8 cfs	D-1
D-2	D-2	2.22 ac	0.39	0.50	7.2 min.	4.6 in/hr	8.0 in/hr	4.0 cfs	8.9 cfs	D-2
D-3	D-3	2.29 ac	0.37	0.48	5.0 min.	5.2 in/hr	8.9 in/hr	4.4 cfs	9.8 cfs	D-3
OS-1	OS-1	32.60 ac	0.28	0.42	26.0 min.	2.5 in/hr	4.5 in/hr	23.0 cfs	61.4 cfs	OS-1
OS-2	3.05 Acres is tributary to C-1	3.05 ac	0.28	0.42	23.8 min.	2.6 in/hr	4.7 in/hr	2.3 cfs	6.0 cfs	OS-2
OS-3	OS-3	13.50 ac	0.33	0.48	26.7 min.	2.5 in/hr	4.4 in/hr	11.1 cfs	28.6 cfs	OS-3
OS-4	OS-4	9.38 ac	0.28	0.42	24.1 min.	2.6 in/hr	4.7 in/hr	6.9 cfs	18.4 cfs	OS-4
DP-1a	OS-2 & C-1	7.34 ac	0.41	0.53	24.1 min.	2.6 in/hr	4.7 in/hr	8.0 cfs	18.2 cfs	DP-1a
DP-1	OS-2 & C-1, B6	14.59 ac	0.46	0.57	25.3 min.	2.6 in/hr	4.6 in/hr	17.3 cfs	37.9 cfs	DP-1
DP-2	B-5, B-6	13.34 ac	0.51	0.61	12.2 min.	3.7 in/hr	6.6 in/hr	25.3 cfs	53.4 cfs	DP-2
DP-3	B-4, B-5, B-6	18.07 ac	0.51	0.61	14.2 min.	3.5 in/hr	6.1 in/hr	31.9 cfs	67.6 cfs	DP-3
DP-4	B-3, B-4, B-5, B-6	23.26 ac	0.51	0.61	15.6 min.	3.3 in/hr	5.9 in/hr	39.3 cfs	83.2 cfs	DP-4
DP-5	A-1, A-2, B-1 & B-2	17.99 ac	0.51	0.61	16.0 min.	3.3 in/hr	5.8 in/hr	30.0 cfs	63.6 cfs	DP-5
DP-6	A-1,A-2, All B Basins + OS-2 & C-1	54.26 ac	0.33	0.39	18.2 min.	3.1 in/hr	5.4 in/hr	54.1 cfs	114.9 cfs	DP-6
DP-7	A-1,A-2, All B Basins + OS-2 & C-1	54.26 ac	0.38	0.45	18.4 min.	3.0 in/hr	5.4 in/hr	62.8 cfs	132.0 cfs	DP-7
DP-8	A-0, OS-1, & OS-3	48.17 ac	0.32	0.46	26.9 min.	2.5 in/hr	4.4 in/hr	38.1 cfs	97.5 cfs	DP-8
DP-8a	A-0 & OS-1	34.67 ac	0.31	0.45	25.1 min.	2.6 in/hr	4.6 in/hr	27.6 cfs	71.4 cfs	DP-8a
DP-9a	D-2, D-3	4.51 ac	0.77	0.96	13.3 min.	3.6 in/hr	6.3 in/hr	12.4 cfs	27.3 cfs	DP-9a
DP-9*	All except A-0, D-1, OS-1, OS-3	58.77 ac						32.3 cfs	82.6 cfs	DP-9*

Equations:

squations: $i_5=54.6/(T_c^{0.83}+6.72)$ $i_{100}=75/((10+T_c)^{0.786})$ $i_5=Average 5-year Rainafall Intensity in inches per hour$ $<math>i_{100}=Average 100-year Rainfall Intensity in inches per hour$

T_c=Time of Concentration

Q = CiA

Q = Peak Runoff Rate, in cubic feet per second (cfs)

C = Runoff coefficient representing a ration of peak runoff rate to average rainfall intensity for a duration equal to the runoff time of concentration.

i = average rainfall intensity in inches per hour

A = Drainage area in acres

*DP-9a plus dishcarge from Detention Basin

DETENTION	BASIN	STAGE-STORAGE	TARIF RIII DFR
DETENTION	DADING	THE STORAGE	TADLE DUILDER

UD-Detention, Version 3.07 (February 2017)

Project: Peaceful Ridge Subdivion
Basin ID: All Tributary Areas to Planned Detention Basin

	Configurati		an Pond)	>
	oomgalaa		un ond,	
Required Volume Calculation		1		
Selected BMP Type =	EDB			
Watershed Area =	58.77	acres		
Watershed Length =	2,200	ft		
Watershed Slope =	0.035	ft/ft		
Watershed Imperviousness =	38.00%	percent		
Percentage Hydrologic Soil Group A =	0.0%	percent		
Percentage Hydrologic Soil Group B =	85.0%	percent		
Percentage Hydrologic Soil Groups C/D =	15.0%	percent		
Desired WQCV Drain Time =	40.0	hours		
Location for 1-hr Rainfall Depths =	User Input	-		
Water Quality Capture Volume (WQCV) =	0.855	acre-feet	Optional Use	r Override
Excess Urban Runoff Volume (EURV) =	2.295	acre-feet	1-hr Precipita	tion
2-yr Runoff Volume (P1 = 1.19 in.) =	1.845	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	2.627	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	3.741	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	5.694	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	7.019	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.52 in.) =	8.744	acre-feet	2.52	inches
500-yr Runoff Volume (P1 = 3.2 in.) =	12.439	acre-feet	3.20	inches
Approximate 2-yr Detention Volume =	1.725	acre-feet		
Approximate 5-yr Detention Volume =	2.468	acre-feet		
Approximate 10-yr Detention Volume =	3.326	acre-feet		
Approximate 25-yr Detention Volume =	3.730	acre-feet		
Approximate 50-yr Detention Volume =	3.912	acre-feet		
Approximate 100-yr Detention Volume =	4.527	acre-feet		

				-
St	age-Storage	Calculation		-
		Zone 1 Volume (WQCV) =	0.855	acre-feet
	Zon	e 2 Volume (EURV - Zone 1) =	1.441	acre-feet
	Zone 3 Volu	ıme (100-year - Zones 1 & 2) =	2.231	acre-feet
	Т	otal Detention Basin Volume =	4.527	acre-feet
	In	itial Surcharge Volume (ISV) =	user	ft^3
		Initial Surcharge Depth (ISD) =	user	ft
	Total Avai	lable Detention Depth (H _{total}) =	user	ft
	D	epth of Trickle Channel (H _{TC}) =	user	ft
	s	lope of Trickle Channel (S _{TC}) =	user	ft/ft
	Slope	s of Main Basin Sides (S _{main}) =	user	H:V
	Basin	Length-to-Width Ratio (R _{L/W}) =	user	
				-
		Initial Surcharge Area (A _{6v}) =	user	ft^2
				-

maan odronalige virea (vigw -	usei	π ² 2
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L _{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (V _{total}) =	user	acre-feet

		0.0							
Stage Storage	Stage	Optional	Longth	Width	Aroo	Optional	Aron	Volumo	Volum
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft^2)	Area (ft ²)	(acre)	(ft^3)	(ac-ft)
Top of Micropool		0.00				26	0.001		
5731	-	0.50			-	2,400	0.055	583	0.013
5731.5		1.00			-	4.266	0.098	2.230	0.051
5732.5		2.00			-	28.535	0.655	18 389	0.422
5733.5		3.00			-	31 757	0.729	48,819	1 121
5733.5		4.00	-		-	25.011	0.904	92,202	1.121
5734.5 5725 5		4.00 6.00	-		-	29.250	0.004	110 004	2 720
5735.5	-	5.00				40,007	0.000	110,004	2.728
5736.5	-	7.00				42,207	0.971	159,202	3.000
5737.5		7.00				45,900	1.055	203,320	4.000
5736.5		0.00				49,930	1.140	251,271	5.760
	-								
ide	-								
	-		-						
	-								
	-		-		-				
3	-								I
3	-								I
									
					-				I
1									l
									l
					-				L
					-				
									i
									i – –
									1
									1
									1
									(
									[
									[
					-				<u> </u>
					-				<u> </u>
					-				
									<u> </u>
						-		-	
			-						<u> </u>
			-	-	-			1	
					-				
	-		-		-				
									<u> </u>
								I	
					-				
					-				L
								1	
					-	-		l	
	-		-	-	-				
	-		-		-				
					-				
-					-	-			
									[
		-					_		<u> </u>
					-				
		1				1		I	·
									1
			-		-				

21031 38_Percent_Imp_EGP_UD-Detention_v3.07, Basin

UD-Detention, Version 3.07 (February 2017)

Detention Basin Outlet Structure Design											
Broingt	Peaceful Valley Sul	h (Addondum 2021)	UD-Detention, Ve	rsion 3.07 (Februar	ry 2017)						
Project: Basin ID:	All Tributary	b (Addendum 2021)									
ZONE 3											
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type	1				
T FOULT MOCA			Zone 1 (WQCV)	2.63	0.855	Orifice Plate					
ZONE 1 AND 2	ORIFICE		Zone 2 (EURV)	6.87	2 231	Weir&Pine (Restrict)					
POOL Example Zone	Configuration (Re	etention Pond)	lone 5 (100-year)	0.07	4.527	Total	I				
User Input: Orifice at Underdrain Outlet (typically us	sed to drain WQCV in	a Filtration BMP)				Calculate	ed Parameters for Ur	derdrain			
Underdrain Orifice Invert Depth =	N/A	ft (distance below th	e filtration media sur	face)	Unde	erdrain Orifice Area =	N/A	ft ²			
Underdrain Orifice Diameter =	N/A	inches			Underdra	ain Orifice Centroid =	N/A	reet			
User Input: Orifice Plate with one or more orifices of	r Elliptical Slot Weir	(typically used to dra	in WQCV and/or EUF	RV in a sedimentation	n BMP)	Calcu	lated Parameters for	Plate			
Invert of Lowest Orifice =	0.00 ft (relative to basin bottom at Stage = 0 ft) WQ orifice Area per Row = $1.472E-02$ ft ²										
Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing =	6.00	inches	ottom at Stage = 0 ft)	Elli	ptical Slot Centroid =	N/A N/A	feet			
Orifice Plate: Orifice Area per Row =	2.12	sq. inches (diameter	= 1-5/8 inches)			Elliptical Slot Area =	N/A	ft ²			
User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)											
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)			
Stage of Orifice Centroid (ft)	0.00	0.50	1.00	1.50	2.00						
Untice Area (sq. inches)	2.12	2.12	2.12	2.12	2.12				l		
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)			
Stage of Orifice Centroid (ft)											
Orifice Area (sq. inches)											
User Input: Vertical Orifice (Circ	cular or Rectangular)					Calculated	Parameters for Vert	ical Orifice			
	Zone 2 Circular	Not Selected					Zone 2 Circular	Not Selected	. 7		
Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice =	2.63	N/A N/A	ft (relative to basin b ft (relative to basin b	ottom at Stage = 0 ft ottom at Stage = 0 ft) Verti	ertical Orifice Area =	0.02	N/A N/A	ft" feet		
Vertical Orifice Diameter =	1.90	N/A	inches		, vera		0.00	,,,			
User Input: Overflow Weir (Dropbox) and G	Grate (Flat or Sloped)					Calculated	Parameters for Ove	rflow Weir			
User Input: Overflow Weir (Dropbox) and C	irate (Flat or Sloped) Zone 3 Weir	Not Selected]			Calculated	Parameters for Ove Zone 3 Weir	rflow Weir Not Selected			
User Input: Overflow Weir (Dropbox) and O	Frate (Flat or Sloped) Zone 3 Weir 4.50	Not Selected	ft (relative to basin bo	ttom at Stage = 0 ft)	Height of Gi	Calculated	Parameters for Ove Zone 3 Weir 5.50	rflow Weir Not Selected N/A	feet		
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stong	Trate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00	Not Selected N/A N/A	ft (relative to basin bo feet H-V (enter zero for fl	ttom at Stage = 0 ft)	Height of Gi Over Flow Grate Onen Area /	Calculated rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area =	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57	rflow Weir Not Selected N/A N/A	feet feet		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	irate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 4.00	Not Selected N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet	ttom at Stage = 0 ft) at grate)	Height of G Over Flow Grate Open Area / Overflow Grate Op	Calculated rate Upper Edge, H _t = • Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09	rflow Weir Not Selected N/A N/A N/A N/A	feet feet should be ≥ 4 ft ²		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobe = Overflow Grate Open Area % =	Zone 3 Weir 4.50 8.00 4.00 4.00 70%	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t	ttom at Stage = 0 ft) at grate) otal area	Height of G Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	Calculated rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54	rflow Weir Not Selected N/A N/A N/A N/A N/A	feet feet should be \geq 4 ft ² ft ²		
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Strate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 4.00 70% 50%	Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t %	ttom at Stage = 0 ft) at grate) otal area	Height of G Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	Calculated rate Upper Edge, H, = · Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = pen Area w/ Debris =	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54	rflow Weir N/A N/A N/A N/A N/A N/A	feet feet should be \geq 4 ft ² ft ²		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci	Strate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 4.00 70% 50% rcular Orifice, Restrict	Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectang	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice)	ttom at Stage = 0 ft) at grate) otal area	Height of G Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	Calculated rate Upper Edge, H, = · Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/	rflow Weir N/A N/A N/A N/A N/A N/A	feet feet should be \geq 4 ft ² ft ²		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Cr	Trate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 4.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A N/A Cor Plate, or Rectang Not Selected	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice)	ttom at Stage = 0 ft) at grate) otal area	Height of G Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	Calculated rate Upper Edge, H, = · Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor	rflow Weir N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected	feet feet should be \geq 4 ft ² ft ²		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe =	Strate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 70% 50% rcular Orifice, Restrictor 0.33	Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0	Height of G Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area =	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47	rflow Weir N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A	feet feet should be \geq 4 ft ² e		
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Bestrictor Plate Height Above Pion Invert	rate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 70% 50% rcular Orifice, Restric Zone 3 Restrictor 0.33 36.00 31.00	Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Haff.	Height of G Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O ((t) Out Central Angle of Best	Calculated rate Upper Edge, H, = · Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = let Orifice Centroid =	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A	feet feet should be \geq 4 ft ² ft ² e ft ² feet redians		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	rate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.33 36.00 31.00	Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-i	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (t) Out Central Angle of Rest	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38	rflow Weir N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ² e ft ² feet radians		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectand	Content Content <t< td=""><td>Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A</td><td>ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches</td><td>ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1</td><td>Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (tt) Out Central Angle of Rest</td><td>Calculated rate Upper Edge, H, = · Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calculat</td><td>Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38</td><td>rflow Weir N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A</td><td>feet feet should be \geq 4 ft² ft² e ft² feet radians</td></t<>	Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (tt) Out Central Angle of Rest	Calculated rate Upper Edge, H, = · Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calculat	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38	rflow Weir N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Invert Stage=	Content Content <t< td=""><td>Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A</td><td>ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches</td><td>ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1</td><td>Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (tt) Out Central Angle of Rest</td><td>Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=</td><td>Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38</td><td>rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet</td><td>feet feet should be \geq 4 ft² ft² e ft² feet radians</td></t<>	Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (tt) Out Central Angle of Rest	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians		
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway End Slones = Spillway End Slones =	Content Content <t< td=""><td>Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A tr (relative to basin b feet H-Y</td><td>ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches inches</td><td>ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1</td><td>Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O ((t) Out Central Angle of Rest Spillway Stage a Basin Area a</td><td>Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula to Pasign Flow Depth= at Top of Freeboard = to Top of Freeboard =</td><td>Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38 ted Parameters for S 0.68 8.65 1.15</td><td>rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet acres</td><td>feet feet should be \geq 4 ft² ft² e ft² feet radians</td></t<>	Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A tr (relative to basin b feet H-Y	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches inches	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O ((t) Out Central Angle of Rest Spillway Stage a Basin Area a	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula to Pasign Flow Depth= at Top of Freeboard = to Top of Freeboard =	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38 ted Parameters for S 0.68 8.65 1.15	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet acres	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe W/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectand Spillway Crest Length = Spillway Crest Leng	rate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 70% 50% rcular Orifice, Restric Zone 3 Restrictor 0.33 36.00 31.00 gular or Trapezoidal) 6.97 75.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches inches	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-i	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Overflow Grate O (t) Spillway Stage a Basin Area a	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Posign Flow Depth= at Top of Freeboard = th Top of Freeboard =	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38 ted Parameters for S 0.68 8.65 0.68 8.65 1.15	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet feet acres	feet feet should be ≥ 4 ft ² ft ² e ft ² feet radians		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	rate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.33 36.00 31.00 gular or Trapezoidal) 6.97 75.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches oottom at Stage = 0 ft	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-i	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a Basin Area a	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula U Design Flow Depth= at Top of Freeboard = th Top of Freeboard =	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38 ted Parameters for S 0.68 8.65 1.15	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet feet acres	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Irvest Stage Spillway Enst Length = Spillway Enst Length = Spillway Enst Suffer Suf	rate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.33 36.00 31.00 gular or Trapezoidal) 6.97 75.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet FURV	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1)	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a Basin Area a	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula to Posign Flow Depth= at Top of Freeboard = th Top of Freeboard = 25 Year	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38 ted Parameters for S 0.68 8.65 1.15 	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet acres	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway Enet Sufase = Freeboard above Max Water Surface = Restrictor Plate Height Abore Pipe Invert = Spillway Enet Sufase = Spillway Enet Sufase = One-Hour Rainfall Depth (in) =	rate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 7.0% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.33 36.00 31.00 gular or Trapezoidal) 6.97 75.00 4.00 1.00 WQCV 0.53	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1) <u>5 Year</u> 1.50	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula to pof Freeboard = th Top of Freeboard = th Top of Freeboard = 25 Year 2.00	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38 ted Parameters for S 0.68 8.65 1.15	rflow Weir N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet acres	feet feet should be \geq 4 ft ² ft ² ft ² feet radians		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Enes Length = Spillway Enes Length = Spillway Enes Length = Spillway Enes Length = Spillway Enes Support Support Restrictor Above Max Water Surface = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (arcer, f) = OPTIONAL Overfile Puroff Volume (arcer, f) =	rate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 4.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.33 36.00 31.00 gular or Trapezoidal) 6.97 75.00 4.00 1.00 WQCV 0.53 0.855	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 2.295	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 1.845	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1) <u>5 Year 1.50 2.627</u>	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 3.741	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula to Posign Flow Depth= to Top of Freeboard = to Top of Freeboard = 25 Year 2.00 5.694	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38 ted Parameters for S 0.68 8.65 1.15	rflow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet feet acres 100 Year 2.52 8.744	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians 500 Year 3.20 12.439		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Irvert Stage Spillway Crest Length = Spillway Ense Stage Freeboard above Max Water Surface = Ereeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	rate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 4.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.33 36.00 31.00 gular or Trapezoidal) 6.97 75.00 4.00 1.00 WQCV 0.53 0.855	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 2.295 2.297	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.845	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1) <u>5 Year 1.50 2.627</u> 2.629	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 3.741 3.744	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula to po f Freeboard = th Top of Freeboard = th Top of Freeboard = 25 Year 2.00 5.694 5.698	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38 ted Parameters for S 0.68 8.65 1.15 50 Year 2.25 7.019	rflow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A ipillway feet feet feet acres 100 Year 2.52 8.744 8.746	feet feet should be \geq 4 ft ² ft ² feet radians <u>500 Year</u> <u>3.20</u> 12.439 12.446		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Enet Stage Spillway Enet Stage Stage Stage St	rate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 7.0% 5.0% rcular Orifice, Restrict Zone 3 Restrictor 0.33 3.6.00 31.00 gular or Trapezoidal) 6.97 7.5.00 4.00 1.00 WQCV 0.53 0.855 0.00 2.7 0.25 0.00 0.25 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.000 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000000	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 2.295 2.297 0.000 0.02	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.845 1.847 0.01	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1) <u>5 Year 1.50 2.627 2.629 0.04</u>	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 3.741 3.744 0.25	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calculat Pesign Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 5.694 5.698 0.77 4 = -	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38 ted Parameters for S 0.68 8.65 1.15 50 Year 2.25 7.019 1.05 7.019 1.05 	rflow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ² feet radians <u>500 Year</u> <u>3.20</u> 12.439 <u>12.446</u> 2.10 4.27		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Enst Stage Spillway Enst Stage	rate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 7.0% 5.0% rcular Orifice, Restrict Zone 3 Restrictor 0.33 3.6.00 31.00 gular or Trapezoidal) 6.97 7.5.00 4.00 1.00 WQCV 0.53 0.855 0.00 0.0 1.5.6	Not Selected N/A It (relative to basin b feet H:V feet H:V 1.07 2.295 2.297 0.00 0.0 41.5	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.845 1.847 0.01 0.8 33.4	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1) <u>5 Year 1.50 2.627 2.629 0.04 2.4 47.4</u>	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 3.741 3.744 0.25 14.9 67.1	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula to pof Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 5.694 0.77 45.2 101.2	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38 ted Parameters for S 0.68 8.65 1.15 50 Year 2.25 7.019 1.05 62.0 124.0	rflow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A ipillway feet feet feet acres 100 Year 2.52 8.744 1.40 8.2.6 153.6	feet feet should be \geq 4 ft ² ft ² feet radians 500 Year 3.20 12.439 12.439 12.446 2.10 123.7 216.0		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Enet Stage Spillway Enet Stage Spillway Enet Stage Spillway Enet Stage Spillway Enet Suges Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = Spillway Enet Stage Spillway Enet Stage	rate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.33 36.00 31.00 gular or Trapezoidal) 6.97 75.00 4.00 1.00 WQCV 0.53 0.855 0.00 0.0 15.6 0.4	Not Selected N/A It (relative to basin b feet H:V feet H:V 1.07 2.295 2.297 0.00 0.0 0.8	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.845 1.847 0.01 0.8 33.4 0.7	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1) <u>5 Year</u> 1.50 2.627 2.629 0.04 2.4 2.4 2.0	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (ft) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 3.741 3.744 0.25 14.9 67.1 14.1	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula to Posign Flow Depth= to Top of Freeboard = to Top of Freeboard = 25 Year 2.00 5.694 5.698 0.77 45.2 101.2 40.7	Parameters for Ove Zone 3 Weir 5.50 4.12 3.57 23.09 11.54 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38 ted Parameters for S 0.68 8.65 1.15 50 Year 2.25 7.019 1.05 62.0 124.0 58.8	rflow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft^2 ft^2 e feet radians		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Enes Le	rate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.33 36.00 31.00 gular or Trapezoidal) 6.97 75.00 4.00 1.00 WQCV 0.53 0.855 0.00 0.0 1.56 0.4 N/A Plate	Not Selected N/A Itor Plate, or Rectang Not Selected N/A H:V feet H:V feet U.07 2.295 2.297 0.00 0.0 0.8 N/A	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.845 1.847 0.01 0.8 33.4 0.7 N/A Vertical Orifice 1	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1 0 <u>5 Year</u> 1.50 2.627 <u>2.629</u> 0.04 2.4 4.7.4 2.0 0.8 Ouerflow Grate 1	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (tt) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 3.741 3.744 0.25 14.9 67.1 14.1 0.9 Outrflow Grate 1	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= tt Top of Freeboard = C.00 5.694 C.00 5.694 C.00 5.698 C.77 45.2 101.2 40.7 C.9 Coverflow Grate 1	Solution Solution 5.50 4.12 3.57 23.09 11.54 1.12 rs for Outlet Pipe w/ 2000 3 Restrictor 6.47 1.39 2.38 2.38 ted Parameters for Solution 6.47 1.39 2.38 ted Parameters for Solution 6.68 8.65 1.15 50 Year 2.25 7.019 1.05 62.0 1.24.0 58.8 0.9 Overflow Grade 10 0.9	rflow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A N/A N/A illway feet feet feet acres 100 Year 2.52 8.744 8.746 1.40 82.6 153.6 75.8 0.9 Outlat Plate 1	feet feet should be ≥ 4 ft ² ft ² feet radians 500 Year 3.20 12.439 12.439 12.446 2.10 123.7 216.0 158.4 1.3 3 Spillbargy		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Spillway End Slopes = Ereeboard above Max Water Surface = One-Hour Rainfall Depth (in) = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fts) =	rate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.33 36.00 31.00 gular or Trapezoidal) 6.97 75.00 4.00 1.00 WQCV 0.53 0.855 0.00 0.0 1.5.6 0.4 N/A Plate N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 2.295 2.297 0.00 0.0 4.1.5 0.8 N/A Vertical Orifice 1 N/A	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.845 0.01 0.8 33.4 0.7 N/A Vertical Orifice 1 N/A	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1) <u>5 Year</u> 1.50 2.627 <u>2.629</u> 0.04 2.4 47.4 2.0 0.8 Overflow Grate 1 0.1	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 3.741 3.744 0.25 14.9 67.1 14.1 0.9 Overflow Grate 1 0.6	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula to Top of Freeboard = th Top of Freeboard = th Top of Freeboard = 25 Year 2.00 5.694 	Solution Solution 5.50 4.12 3.57 23.09 11.54 1.12 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38 2.38 ted Parameters for Solution 6.47 1.39 2.38 ted Parameters for Solution 6.68 8.65 1.15 Sol Year 2.25 7.019 1.05 62.0 1.24.0 58.8 0.9 Overflow Grate 1 2.5	rflow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft^2 ft^2 e feet radians		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fts) =	rate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.33 36.00 31.00 gular or Trapezoidal) 6.97 75.00 4.00 1.00 WQCV 0.53 0.855 0.00 0.855 0.00 15.6 0.4 N/A Plate N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Constant of the second seco	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.845 0.01 0.8 33.4 0.7 N/A Vertical Orifice 1 N/A N/A	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1) 5 Year 1.50 2.627 2.629 0.04 2.4 47.4 2.0 0.8 Overflow Grate 1 0.1 N/A	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 3.741 0.25 14.9 67.1 14.1 0.9 0verflow Grate 1 0.6 N/A	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula to Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 1 Top of Freeboard = 5.698 0.77 45.2 101.2 40.7 0.9 Overflow Grate 1 1.7 N/A	Solution Solution 5.50 4.12 3.57 23.09 11.54 1.15 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38 2.38 ted Parameters for Solution 6.47 1.39 2.38 ted Parameters for Solution 6.65 1.15 2.5 7.019 1.05 62.0 1.24.0 58.8 0.9 Overflow Grate 1 2.5 N/A 56.7	rflow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ² feet radians 500 Year 3.20 12.439 - 12.446 2.10 123.7 216.0 158.4 1.3 3.4 N/A N/A		
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Irvert Stage Spillway Crest Length = Spillway Enst Stage Spillway End Slopes = Freeboard above Max Water Surface = None-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (ftps) = Max Velocity through Grate 1 (ftps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	rate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 70% 50% rcular Orifice, Restrice Zone 3 Restrictor 0.33 36.00 31.00 gular or Trapezoidal) 6.97 75.00 4.00 1.00 WQCV 0.53 0.855 0.00 0.0 1.56 0.4 N/A Plate N/A N/A 37 40	Not Selected N/A Itor Plate, or Rectang Not Selected N/A N/A Itor Plate, or Rectang Itor Plate, or Rectang N/A Itor Plate, or Rectang Itor Plate, or Rectang Itor Plate, or Rectang N/A Itor Plate, or Rectang	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.845 1.847 0.01 0.8 33.4 0.7 N/A Vertical Orifice 1 N/A N/A 54 58	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1 y <u>5 Year</u> 1.50 2.627 2.629 0.04 2.4 2.629 0.04 2.4 2.629 0.04 2.4 2.629 0.04 2.4 2.629 0.04 2.4 2.6 2 0.04 2.4 2.6 0.04 2.4 2.6 0 8 0 verflow Grate 1 0.1 N/A 63 68	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate O (ft) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 3.741 3.744 0.25 14.9 67.1 14.1 0.9 Overflow Grate 1 0.6 N/A 61 67	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula to Top of Freeboard = t Top of Freeboard = 1 Top of Freeboard = 25 Year 2.00 5.694 0.77 45.2 101.2 40.7 0.9 Overflow Grate 1 1.7 N/A 58 65	Solution Solution 5.50 4.12 3.57 23.09 11.54 1.15 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38 2.38 ted Parameters for Solution 0.68 8.65 1.15 50 Year 2.25 7.019 1.05 62.0 1.124.0 58.8 0.9 Overflow Grate 1 2.5 N/A 56 64 64	rflow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A pillway feet feet feet acres 100 Year 2.52 8.744 8.746 1.40 82.6 153.6 75.8 0.9 Outlet Plate 1 3.2 N/A 53 63	feet feet should be ≥ 4 ft^2 ft^2 feet radians		
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Design Storm Return Period = OPTIONAL Override Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	rate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.33 36.00 31.00 gular or Trapezoidal) 6.97 75.00 4.00 1.00 WQCV 0.53 0.855 0.00 0.855 0.00 15.6 0.4 N/A Plate N/A N/A A 2.55	Not Selected N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet LO7 2.295 2.297 0.00 0.0 41.5 0.8 N/A Vertical Orifice 1 N/A 60 65 4.37	ft (relative to basin bo feet H:V (enter zero for ff feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.845 0.01 0.8 33.4 0.7 N/A Vertical Orifice 1 N/A N/A 54 58 3.83	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1 y <u>5 Year</u> 1.50 2.627 <u>2.629</u> 0.04 2.4 47.4 2.0 0.2 47.4 2.0 0.04 2.4 47.4 2.0 0.04 2.4 47.4 2.0 0.1 N/A 63 68 68 4.70	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate O (ft) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 3.741 0.25 14.9 67.1 14.1 0.9 0verflow Grate 1 0.6 N/A 67 5.32	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula to Design Flow Depth= at Top of Freeboard = t Top of Freeboard = 1 Top of Freeboard = 5.698 0.77 45.2 101.2 40.7 0.9 Overflow Grate 1 1.7 N/A 58 65 6.05	Solution Solution 5.50 4.12 3.57 23.09 11.54 1.15 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38 2.38 tted Parameters for Solution 6.47 1.15 0.68 8.65 1.15 50 Year 2.25 7.019 1.05 62.0 124.0 58.8 0.9 Overflow Grate 1 2.5 N/A 56 64 6.43	rflow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A pillway feet feet feet acres 100 Year 2.52 8.744 1.40 8.746 1.40 82.66 153.6 75.8 0.9 Outlet Plate 1 3.2 N/A 53 63 6.96	feet feet should be ≥ 4 ft ² ft ² feet radians		
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface Design Storm Return Period = One-Hour Rainfall Depth (in) Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Max Velocity through Grate 1 (fts) = Max Velocity through Grate 2 (fts) = Time to Drain 97% of Inflow Volume (hours) =	rate (Flat or Sloped) Zone 3 Weir 4.50 8.00 4.00 70% 50% rcular Orifice, Restrict Zone 3 Restrictor 0.33 36.00 31.00 gular or Trapezoidal) 6.97 75.00 4.00 1.00 WQCV 0.53 0.855 0.00 0.0 15.6 0.4 N/A Plate N/A N/A Plate N/A N/A 37 40 2.55 0.70 0.75 0.70 0.70 0.70 0.75 0.70 0.70 0.70 0.75 0.70 0.75 0.70 0.70 0.75 0.70 0.70 0.75 0.70 0.75 0.70 0.75 0.70 0.75 0.70 0.75 0.70 0.75 0.70 0.75 0.70 0.75 0.70 0.75 0.70 0.75 0.70 0.75 0.70 0.70 0.75 0.70 0.70 0.70 0.70 0.70 0.75 0.70	Not Selected N/A tor Plate, or Rectang Not Selected N/A N/A Hot Selected N/A feet H:V feet 0.07 2.297 0.00 0.0 41.5 0.8 N/A Vertical Orifice 1 N/A 60 65 4.37 0.83 2.00	ft (relative to basin bo feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 2 Year 1.19 1.845 0.01 0.8 33.4 0.7 N/A Vertical Orifice 1 N/A N/A 54 58 3.83 0.79 - 77	ttom at Stage = 0 ft) at grate) otal area in bottom at Stage = 0 Half-1 y 5 Year 1.50 2.627 2.629 0.04 2.4 47.4 2.0 0.2 47.4 2.0 0.04 2.4 47.4 2.0 0.8 0verflow Grate 1 0.1 N/A 63 68 4.70 0.86 68	Height of Gi Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate O (ft) Out Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 3.741 0.25 14.9 67.1 14.1 0.9 0verflow Grate 1 0.6 N/A 67 5.32 0.91 0.91 0.91	Calculated rate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= at Top of Freeboard = t Top of Freeboard = 100 5.694 	Solution Solution 5.50 4.12 3.57 23.09 11.54 1.15 rs for Outlet Pipe w/ Zone 3 Restrictor 6.47 1.39 2.38 2.38 1.15 0.68 8.65 1.15 50 Year 2.25 7.019 1.05 62.0 1.24.0 58.8 0.9 Overflow Grate 1 2.5 N/A 56 64 6.43 1.01 4.02 4.02	rflow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A pillway feet feet feet acres 100 Year 2.52 8.744 1.40 8.746 1.53.6 75.8 0.9 Outlet Plate 1 3.2 N/A 53 63 6.96 1.05 4.57	feet feet should be ≥ 4 ft ² ft ² feet radians		

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

	Storm Inflow H	ydrographs	UD-Dete	ention, Versio	n 3.07 (Februa	ry 2017)				
	The user can o	verride the calcu	lated inflow hyd	drographs from t	this workbook w	ith inflow hydrog	raphs develope	d in a separate p	rogram.	
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TINAS	MOCU [-f-]	FUDV [sfs]	2 Vees [efe]	E Vees [efs]	10 Years [sfe]	25 Vees [efs]	50 Veee [efe]	100 Years [sfe]	500 Years [sfa]
Time interval	TIME	WQCV [CIS]	EURV [CIS]	z rear [cis]	5 Year [CIS]	10 Year [CIS]	25 Year [CIS]	SU Year [CIS]	100 Year [CIS]	SOU Year [CIS]
4.53 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:04:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:09:04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:13:35	0.69	1.77	1.44	2.02	2.81	4.07	4.85	5.79	7.58
1.105	0:18:07	1.86	4.86	3.93	5.54	7.77	11.48	13.86	16.85	22.86
	0:22:39	4.77	12.47	10.10	14.21	19.95	29.47	35.59	43.27	58.76
	0:27:11	13.11	34.24	27.72	39.00	54.71	80.72	97.42	118.34	160.38
	0:31:43	15.63	41.46	33.44	47 37	67.09	101 20	124.02	153 57	216.03
	0:36:14	14.93	39.73	32.02	45.41	64.47	97.93	120.61	150.30	214.11
	0:40:46	13 59	36.16	29.14	/1 32	58.67	89.42	110.34	137.82	197.19
	0:45:18	13.35	22.40	25.14	27.15	53.07	80.60	00.50	124.24	179.02
	0:49:50	10.51	32.45	20.13	37.13	46 10	70.67	99.30	100.29	157.04
	0:54:22	0.15	28.28	10.72	32.38	40.13	61 79	76.44	05.38	137.04
	0:58:53	9.15	24.00	17.00	26.19	40.31	61.78 EE 62	69 72	95.70	137.00
	1:02:25	6.25	18.60	14.02	23.32	30.41	46.80	57.09	33.30	104.82
	1:03:25	0.80	18.00	14.92	21.51	30.49	46.80	57.98	72.74	104.82
	1.07.37	5.62	15.35	12.29	17.61	25.25	38.85	48.17	60.49	87.28
	1:12:29	4.35	12.06	9.63	13.86	19.97	30.93	38.48	48.49	/0.36
	1:17:01	3.25	9.22	7.33	10.62	15.40	23.99	29.93	37.81	55.07
	1:21:32	2.35	6.80	5.38	7.86	11.48	18.02	22.56	28.59	41.86
	1:26:04	1.81	5.15	4.09	5.94	8.62	13.44	16.77	21.18	30.87
	1:30:36	1.49	4.18	3.33	4.81	6.95	10.76	13.37	16.83	24.38
	1:35:08	1.26	3.53	2.81	4.06	5.85	9.04	11.22	14.11	20.38
	1:39:40	1.11	3.08	2.46	3.54	5.09	7.85	9.73	12.21	17.59
	1:44:11	1.00	2.76	2.21	3.17	4.56	7.01	8.68	10.88	15.65
	1:48:43	0.92	2.53	2.03	2.91	4.17	6.41	7.93	9.93	14.26
	1:53:15	0.67	1.87	1.49	2.15	3.10	4.82	6.01	7.59	11.07
	1:57:47	0.50	1.36	1.09	1.56	2.25	3.48	4.34	5.47	7.97
	2:02:19	0.36	1.00	0.80	1.15	1.66	2.58	3.22	4.06	5.92
	2:06:50	0.27	0.74	0.59	0.86	1.24	1.92	2.39	3.02	4.39
	2:11:22	0.19	0.54	0.43	0.62	0.90	1.41	1.76	2.23	3.25
	2:15:54	0.14	0.39	0.31	0.45	0.65	1.02	1.27	1.61	2.36
	2:20:26	0.10	0.28	0.22	0.32	0.47	0.74	0.92	1.17	1.70
	2:24:58	0.06	0.19	0.15	0.22	0.33	0.52	0.65	0.83	1.22
	2:29:29	0.04	0.12	0.09	0.14	0.21	0.34	0.43	0.55	0.81
	2:34:01	0.02	0.07	0.05	0.08	0.12	0.20	0.25	0.32	0.49
	2:38:33	0.01	0.03	0.02	0.03	0.05	0.09	0.12	0.16	0.25
	2:43:05	0.00	0.01	0.00	0.01	0.01	0.03	0.04	0.05	0.08
	2:47:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:52:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:52:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:00:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:01:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3.10.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:14:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:19:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:23:51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:28:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:32:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:37:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:41:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:46:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:51:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:04:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:03:03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:18:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:22:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:27:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:31:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:36:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:49:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:54:27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:58:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:03:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:08:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5.17.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5.21.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:26:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Appendix B Hydraulic Calculations

Peaceful Ridge Sub - STORM 'C' (DETENTION BASIN OUTFALL)

100-Year HGL/EGL Analysis

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)

Peaceful Ridge Sub - STORM 'C'

100-Year HGL/EGL Analysis

Analysis Options

Flow Units CFS

Process Models:

- Rainfall/Runoff YES
- RDII NO
- Snowmelt NO
- Groundwater NO
- Flow Routing YES
- Ponding Allowed YES
- Water Quality NO
- Flow Routing Method DYNWAVE
- Surcharge Method EXTRAN
- Starting Date 03/16/2021 00:00:00
- Ending Date 03/16/2021 03:00:00
- Antecedent Dry Days 0.0
- Report Time Step 00:05:00

Routing Time Step 30.00 sec

Variable Time Step YES

Maximum Trials 8

Number of Threads 1

Head Tolerance 0.005000 ft

*******	Volume	Volume
Flow Routing Continuity	acre-feet	10^6 gal

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	18.420	6.003
External Outflow	11.956	3.896
Flooding Loss	6.504	2.119
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.102	0.033
Final Stored Volume	0.095	0.031
Continuity Error (%)	-0.176	

Time-Step Critical Elements

Link 27 (8983.33%)

Link 26 (33.33%)

Node MH-7 (16.67%)

Highest Flow Instability Indexes

All links are stable.

Routing Time Step Summary

Minimum Time Step	:	2.19 sec
Average Time Step	:	10.00 sec
Maximum Time Step	:	24.00 sec
Percent in Steady State	:	99.44
Average Iterations per Step	:	4.33
Percent Not Converging	:	16.67
Time Step Frequencies	:	
30.000 - 13.228 sec	:	40.00 %
13.228 - 5.833 sec	:	20.00 %
5.833 - 2.572 sec	:	20.00 %
2.572 - 1.134 sec	:	20.00 %
1.134 - 0.500 sec	:	0.00 %

Node Depth Summary

_____ Average Maximum Maximum Time of Max Reported Depth Depth HGL Occurrence Max Depth Node Туре Feet days hr:min Feet Feet Feet -----..... Outlet JUNCTION 3.59 7.27 5737.44 0 00:00 3.57 MH-7 JUNCTION 3.07 3.08 5732.92 0 00:00 3.08 FES-1 OUTFALL 2.26 2.26 5729.66 0 00:01 2.26

Node Inflow Summary

		Maximum	Maximum		Lateral	Total	Flow
		Lateral	Total	Time of Max	Inflow	Inflow	Balance
		Inflow	Inflow	Occurrence	Volume	Volume	Error
Node	Туре	CFS	CFS	days hr:min	10^6 gal	10^6 gal	Percent
Outlet	JUNCTION	74.30	74.30	0 00:00	6	6	0.064
MH-7	JUNCTION	0.00	94.09	0 00:00	0	6	-0.279
FES-1	OUTFALL	0.00	48.25	0 00:01	0	3.9	0.000

Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

			Max. Height	Min. Depth
		Hours	Above Crown	Below Rim
Node	Туре	Surcharged	Feet	Feet
Outlet	JUNCTION	3.00	4.272	0.000
MH-7	JUNCTION	3.00	0.000	0.000
*****	k*			

Node Flooding Summary

Flooding refers to all water that overflows a node, whether it ponds or not.

				Total	Maximum
		Maximum	Time of Max	Flood	Ponded
	Hours	Rate	Occurrence	Volume	Depth
Node	Flooded	CFS	days hr:min	10^6 gal	Feet
Outlet	0.01	37.56	0 00:00	0.001	0.002
MH-7	3.00	54.72	0 00:00	2.119	0.000

Outfall Loading Summary

	Flow	Flow Avg		Total							
	Freq	Flow	Flow	Volume							
Outfall Node	Pcnt	CFS	CFS	10^6 gal							
FES-1	100.00	48.11	48.25	3.896							
System	100.00	48.11	48.25	3.896							

Link Flow Summary

		Maximum	Time of Max	Maximum	Max/	Max/
		Flow	Occurrence	Veloc	Full	Full
Link	Туре	CFS	days hr:min	ft/sec	Flow	Depth
26	CONDUIT	94.09	0 00:00	13.31	2.28	1.00
27	CONDUIT	48.25	0 00:01	7.35	1.04	0.88

Peaceful Ridge at Fountain Valley Subdivision Riprap Design Calculation

Proposed Hydraulic Structure Location	Description	Design Flow	Channel Flow Velocity	Channel Slope	Riprap Value	Calculated Riprap Type	Proposed Riprap Type
Detention Outlet Pipe (#27)	36 inch RCP	69.8 cfs	5.0 ft/sec	2.0 %	1.9	VL	Μ

Equatio

Equations:	Riprap Value	Riprap Type	D50
Riprap Value = $VS^{0.17}/(S_s-1)^{0.66}$	1.4 to 3.2	VL	6 inches
V = mean channel flow velocity	3.3 to 3.9	L	9 inches
S = Longitudinal channel slope (ft/ft)	4.0 to 4.5	М	12 inches
$S_s = Specific Gravity of stone (minimum § = 2.50)$	4.6 to 5.5	Н	18 inches
$S_s = 2.64 \text{ (most cases)}$	5.6 to 6.4	VH	24 inches

Equations taken from Section 10.10.2, City of Colorado Springs & El Paso County Drainage Criteria Manual

Forebays

Presedementation / Forebay Sizing

			Total Req'd			Required				Discharge	Calc'd Open	
	100 Yr	Detention	Forebay Vol	Tributary	% Total	Forebay	Forebay Design			Design Flow	Width	Design
Forebay	Flow	WQCV	3.0% WQCV	Area	Trib Area	Volume	Area	Depth	Volume	1.0% 100yr	(1" min)	Width
SE Corner	160.0cfs	31,407cf	942cf	57.88ac	100.0%	942cf	556sf	1.75-ft	973 cf	1.60 cfs	5.7-inch	5.4-inch
Totals		31,407cf	942cf	57.88ac	100.0%				973 cf			
Opening Width Equation for Rectangular Opening						_			Forebay	I		
$L = Q / (CH^{1.5}) \times 12 + 0.2 \times H \times 12$ (UD-BMP Spreadsheet EDB tab)							C =	5.4	SE Corner]		

Forebay Overflow Calculation

Forebay	Water Surf Elev	Crest Elev	Crest Length	Flow Depth	Calc'd Flow			
SE Corner	5,733.64	5,733.39	12.0 ft	0.25 ft	4.5 cfs			
Weir Equation								
$Q = CLH^{1.5}$	C =	3.0						
C = Weir coefficient (dimensionless), C = 3.0 (most cases)								

L = Length of weir at Crest, in ft. Not including sideslopes.

Trickle Channel Calculation

Location	100yr Flow	Req'd Flow	Bottom Width	Flow Depth	Side Slope	Slope	Manning 'n'	Top Width	Flow Area	Wetted Perimeter	Hydraulic Radius	Flow Velocity	Capacity
SE Corner	160.0cfs	1.6cfs	2.0 ft	0.50 ft	0.0:1	1.0%	0.013	2.0 ft	1.00 sf	3.0 ft	0.33 ft	5.5 ft/sec	5.5 cfs

Equations:

Area (A) = $b(d)+zd^2$ b = width d = depth

Perimeter (P) = $b+2d^{*}(1+z^{2})^{0.5}$ z = side slope Hydraulic Radius = A/P

Velocity = $(1.49/n)R_n^{2/3}S^{1/2}$ I S = Slope of the channel n = Manning's number R_n = Hydraulic Radius (Reynold's Number) Flow = $(1.49/n)AR_n^{2/3} S^{1/2}$

	Presedimentation	
riable	Forebay	SE Corner
A	Pipe Slope%	0.33
В	Pipe Inv In	5732.07
С	Forebay Inv In	5731.80
D	Pipe Size (ft)	4.42
E	Baffle Face Inv	5731.76
F	Slot Width	5.40
G	Forebay Inv Out	5731.64
Η	Spillway Inv	5733.39
Ι	Spillway Top	5733.64
J	Trickle Pan Slope	0.33
K	Toe of Wall	5731.80
L	Toe of Wall	5731.78
М	Toe of Wall	5731.69
N	Toe of Wall	5731.67
0	Top of Wall	5733.64
Р	Top of Wall	5733.64
Q	Top of Wall	5733.64
R	Top of Wall	5733.64
S	Baffle Wall Top	5733.39
Т	Forebay Slope	0.50%

NORTH & SOUTH FOREBAYS Scale: NTS (Based on EPC DCM Fig. 13-9)

HERCP

Emergency Spillway Calculation:

Detention Area	100-yr Flow	120% 100yr Flow	Water Surf Elev	Crest Elev	Crest Length	Z	С	Flow Depth (H)	Calc'd Flow
EDB	160.0 cfs	192 cfs	5,737.37	5,738.65	75.00 ft	4:1	3.0	0.68 ft	160.2

Broad Crested Weir Equation (USDCM Eqn 12-20 and 12-21): Q = CLH^{1.5} + 2x((2/5)CZH^{5/2})

H = Head above weir crest, in ft

C = Weir coefficient, C = 3.0 (most cases)

L = Length of weir at Crest, in ft. Not including sideslopes.

Z = Side slope (horizontal:vertical)

Project: Peaceful Ridge Subdivion

Basin ID:	All Tributary Areas to Planned Detention Basin in Early Graded Condition	
	All Temporary Sediment Basins (A thru E) Designated and Sized	

TSB	Trib.	Cu. Ft.	Req'd.	Req'd.	
Desig.	Ac.	Unit/Ac	Cu. Ft	Ac/Ft	
А	7.71	1,800.00	13,878.00	0.319	
В	6.66	1,800.00	11,988.00	0.275	
С	18.93	1,800.00	34,074.00	0.782	
D	6.05	1,800.00	10,890.00	0.250	
Е	12.7	1,800.00	22,860.00	0.525	
Sum:	52.05	1,800.00	93,690.00	2.151	Required
			Basin 'E':	2.341	Provided

TEMPORARY SEDIMENT BASIN "A"

- A. 0.32 ac-ft Required to Spillway Crest
- B. Use 8" PVC Perforated Riser Pipe: Perforations Vertically Spacedf 4" Apart, 1 Column of 5 5/16" Ø Holes.
- C. 12' Long Spillway: 1' Depth, Lined With 12" Thick Type 'L' Riprap to toe of slope.
- D. Basin Bottom Width = 51'
- E. Depth = 2.0'

TEMPORARY SEDIMENT BASIN "C"

- A. 0.78 ac-ft Required to Spillway Crest
- B. Use 8" PVC Perforated Riser Pipe: Perforations Vertically Spacedf 4" Apart, 1 Column of 5 3/4" ø Holes.
- C. 22' Long Spillway: 1' Depth, Lined With 12" Thick Type 'L' Riprap to toe of slope.
- D. Basin Bottom Width = 75'
- E. Depth = 3.0'

TEMPORARY SEDIMENT BASIN "B"

- A. 0.28 ac-ft Required to Spillway Crest
- B. Use 8" PVC Perforated Riser Pipe: Perforations Vertically Spacedf 4" Apart, 1 Column of 5 5/16" Ø Holes.
- C. 11' Long Spillway: 1' Depth, Lined With 12" Thick Type 'L' Riprap to toe of slope.
- D. Basin Bottom Width = 47.25'
- E. Depth = 2.0'

TEMPORARY SEDIMENT BASIN "D"

- A. 0.53 ac-ft Required to Spillway Crest
- B. Use 8" PVC Perforated Riser Pipe: Perforations Vertically Spacedf 4' Apart, 1 Column of 5 9/16" ø Holes.
- C. 9' Long Spillway: 1' Depth, Lined With 12" Thick Type 'L' Riprap to toe of slope.
- D. Basin Bottom Width = 43'
- E. Depth = 2.5'

EMPORARY SEDIMENT BASIN CALCULATIONS NTS

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Culvert Analysis at Temporary Crossing 24-inch CMP (or Equiv) Q5=38.7 cfs

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 5733.62 = 56.00 = 1.79 = 5734.62 = 24.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 5.00 = 100.00 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 5.00
No. Barrels	= 1	Qpipe (cfs)	= 5.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Culvert	Veloc Dn (ft/s)	= 2.14
Culvert Entrance	= Smooth tapered inlet throat	Veloc Up (ft/s)	= 4.36
Coeff. K,M,c,Y,k	= 0.534, 0.555, 0.0196, 0.9, 0.2	HGL Dn (ft)	= 5735.01
		HGL Up (ft)	= 5735.41
Embankment		Hw Elev (ft)	= 5735.76
Top Elevation (ft)	= 5738.00	Hw/D (ft) ໌	= 0.57

Top Elevation (ft) Top Width (ft) Crest Width (ft)

= 5738.00 = 36.00 = 6.00

Qtotal (cfs)	=	5.00
Qpipe (cfs)	=	5.00
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	2.14
Veloc Up (ft/s)	=	4.36
HGL Dn (ft)	=	5735.01
HGL Up (ft)	=	5735.41
Hw Elev (ft)	=	5735.76
Hw/D (ft)	=	0.57
Flow Regime		Inlet Control
-		

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Feb 11 2022

Temp Culvert Crossing

	Highlighted	
= 2.00	Depth (ft)	= 1.80
	Q (cfs)	= 34.10
	Area (sqft)	= 2.98
= 5760.00	Velocity (ft/s)	= 11.44
= 2.00	Wetted Perim (ft)	= 5.00
= 0.013	Crit Depth, Yc (ft)	= 1.92
	Top Width (ft)	= 1.20
	EGL (ft)	= 3.84
Known Q		
= 34.10		
	= 2.00 = 5760.00 = 2.00 = 0.013 Known Q = 34.10	= 2.00 $= 2.00$ $= 5760.00$ $= 5760.00$ $= 2.00$ $= 0.013$ $= 0.013$ $= 34.10$ Highlighted Depth (ft) Q (cfs) Area (sqft) Velocity (ft/s) Velocity (ft/s) Velocity (ft/s) Crit Depth, Yc (ft) Top Width (ft) EGL (ft)

Reach (ft)

150.00

180.00

170.00

180.00

190.00

150.00

160.00

170.00

180.00

190.00

0.00

0.00

0.00

0.00

0.00

8.67

7.00

7.52

7.63

7.94

8.84

9.03

9.22

9,40

9.67

38.54

39,18

39.81

60.62

41.02

28.09

30.38

31.62

32.84

34.04

5728.58

5727.02

6727.07

6727.12

6727.17

5727.17

5727 28

6727.39

6727.49

6727.60

5728.66

5728.83

6729.01

6729.41

6729.87

0.98

1.02

1.08

1.18

1,21

Capacity Check for Early Grading Permit Condition at EX. CBC (7'x4') for Major Event (Q₁₀₀=185 cfs)

Appendix C IRF - Infiltration Reduction Factoring

Design Procedure Form: Runoff Reduction												
Designer	UD-BMP (Version 3.07, March 2018)										Sheet 1 of 1	
Company:	Designer: Micannike / A MicCord											
Date:	May 26, 2022										•	
Project:	Peaceful Ride	ae IRF BASINS	: A-0. D-1 & [D-2 (parts a &	b for each)						•	
Location:	Widefield, CC)		- (parto a a	<i>b</i> .o. <i>c</i> ucii,							
SITE INFORMATION (User Input in Blue Cells) WQCV Rainfall Depth 0.60 inches												
Depth of Average Runoff Producing Storm, d ₆ = 0.43 inches (for Watersheds Outside of the Denver Region, Figure 3-1 in USDCM Vol. 3)												
Area Type	UIA:RPA	UIA:RPA	SPA	SPA	UIA:RPA	UIA:RPA	SPA	SPA	UIA:RPA	UIA:RPA	SPA	SPA
Area ID	A-0-a	A-0-b	0-a	0-b	D-1-a	D-1-b	1-a	1-b	D-2-a	D-2-b	2-a	2-b
Downstream Design Point ID	8a	8a	8a	8a	9a	9a	9a	9a	H1	H1	H1	H1
Downstream BMP Type	None	None	None	None	None	None	None	None	None	None	None	None
DCIA (ft ²)												
UIA (ft ²)	26,365	11,124			14,200	11,697			20,090	18,230		
RPA (ft ²)	33,055	15,339			14,416	14,415			20,833	20,833		
SPA (ft ²)			26,698	12,563			13,314	12,415			176,867	15,809
HSG A (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
HSG B (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
HSG C/D (%)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Average Slope of RPA (ft/ft)	0.026	0.080			0.250	0.200			0.300	0.250		
UIA:RPA Interface Width (ft)	610.00	470.00			615.00	625.00			424.00	348.00		
CALCULATED RUNOFF	RESULTS											
Area ID	A-0-a	A-0-b	0-a	0-b	D-1-a	D-1-b	1-a	1-b	D-2-a	D-2-b	2-a	2-b
UIA:RPA Area (ft ²)	59,420	26,463			28,616	26,112			40,923	39,063		
L / W Ratio	0.16	0.12			0.08	0.07			0.23	0.32		
UIA / Area	0.4437	0.4204			0.4962	0.4480			0.4909	0.4667		
Runoff (in)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Runoff (ft ³)	0	0	0	0	0	0	0	0	0	0	0	0
Runoff Reduction (ft ³)	1099	464	1335	628	592	487	666	621	837	760	8843	790
		٨٥٢	0.0	0.5			1.0	1 h	D 2 a	Dah	2.0	2 h
Area ID	A-U-a	A-0-D	0-a	0-U	D-1-a	U-1-D 407	1-a	1-D	007	D-2-D 760	2-id	2-D
WQCV (ft ³)	1099	404	0	0	592	407	0	0	03/	760	0	0
WOOV Reduction (ft°)	1099	404	0%	0%	59Z	40/ 100%	0%	0%	03/	100%	0%	0%
Untroated MOON (%)	00%	0 ∩	0%	0%	00%	00%	0 	0%	00%	0	0%	0 %
	U	U	U	U	U	0	U	U	U	U	U	U
CALCULATED DESIGN P	OINT RESU	LTS (sums re	sults from a	ll columns w	vith the same	Downstrean	n Design Poi	nt ID)				
Downstream Design Point ID	8a	9a	H1									
DCIA (ft ²)	0	0	0		İ	İ						
UIA (ft ²)	37,489	25,897	38,320									
RPA (ft ²)	48,394	28,831	41,666									
SPA (ft ²)	39,261	25,729	192,676									
Total Area (ft ²)	125,144	80,457	272,662									
Total Impervious Area (ft ²)	37,489	25,897	38,320		İ	İ						
WQCV (ft ³)	1,562	1,079	1,597		İ	İ						
WQCV Reduction (ft ³)	1,562	1,079	1,597		İ	İ						
WQCV Reduction (%)	100%	100%	100%		İ	İ						
Untreated WQCV (ft ³)	0	0	0									
CALCULATED SITE RESULTS (sums results from all columns in worksheet)												
Total Area (ft ²)	478,263	-										
Total Impervious Area (ft ²)	101,706	1										
WQCV (ft ³)	4,238	1										
WQCV Reduction (ft ³)	4,238											
WQCV Reduction (%)	100%	1										
Untreated WQCV (ft ³)	0	1										

Appendix D Existing Conditions Map Developed Conditions Map

