Sterling Ranch Filing No. 5 Traffic Impact Study PUDSP-23-002
 (LSC \#S224610)

November 15, 2023

Traffic Engineer's Statement

This traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.

Developer's Statement

I, the Developer, have read and will comply with all commitments made on my behalf within this report.

Sterling Ranch Filing No. 5 Traffic Impact Study

Prepared for:
Classic SRJ
Loren Moreland
2138 Flying Horse Club Drive
Colorado Springs, CO 80921

NOVEMBER 15, 2023

LSC Transportation Consultants
Prepared by: Kirstin D. Ferrin, P.E.
Reviewed by: Jeffrey C. Hodsdon, P.E.

LSC \#S224610

PCS File No.: PUDSP-22-002

CONTENTS
REPORT CONTENTS 1
RECENT TRAFFIC REPORTS 2
REPORT SCENARIOS 2
Short-Term Scenario 2
Long-Term Scenario 2
RECENT TRAFFIC REPORTS 3
EXISTING ROAD AND TRAFFIC CONDITIONS 3
LAND USE AND ACCESS 4
Intersection Sight Distance 4
Pedestrian and Bicycle Analysis 4
Safety Analysis 5
TRIP GENERATION 5
TRIP DISTRIBUTION AND ASSIGNMENT 5
BACKGROUND TRAFFIC VOLUMES 6
Short-Term Scenario Background Conditions 6
Long-Term Scenario Background Conditions 6
TOTAL TRAFFIC VOLUMES 7
Short-Term Scenario Total Conditions 7
Long-Term Scenario Total Conditions 7
LEVELS OF SERVICE 7
Vollmer Road /Marksheffel Road 8
Sterling Ranch Road /Marksheffel Road 8
Sterling Ranch Road /Hazlett Drive 8
Sterling Ranch Road /Dines Boulevard 9
Dines Boulevard/Manor House Drive 9
SIGNAL WARRANT THRESHOLD ANALYSIS - AM AND PM PEAK HOURS 9
Marksheffel/Vollmer 9
Marksheffel/Sterling Ranch 9
SUBDIVISION STREET CLASSIFICATIONS 10
DEVIATION REQUESTS 10
ROADWAY IMPROVEMENTS 10
ROADWAY IMPROVEMENT FEE PROGRAM 11
Enclosures: 11

Tables 1, 3, and 4
Figures 1-13
Level of Service Reports
MTCP Maps
Appendix Tables 1-2

LSC TRANSPORTATION CONSULTANTS, INC.
2504 East Pikes Peak Avenue, Suite 304
Colorado Springs, CO 80909
(719) 633-2868

FAX (719) 633-5430
E-mail: Isc@Isctrans.com
Website: http://www.Isctrans.com

November 15, 2023

Classic SRJ
Loren Moreland
2138 Flying Horse Club Drive
Colorado Springs, CO 80921

RE: Sterling Ranch Filing No. 5
El Paso County, CO
Traffic Impact Study
PUDSP-22-002
LSC \#S224610

Dear Mr. Moreland:

LSC Transportation Consultants, Inc. has prepared this traffic impact study (TIS) for the proposed Sterling Ranch Filing No. 5 residential development. As shown in Figure 1, the site is located east of Vollmer Road and north of the future extension of Marksheffel Road currently under construction in El Paso County, Colorado.

REPORT CONTENTS

This report presents:

- A list of previous Sterling Ranch traffic reports and the context of this project;
- The existing roadway and traffic conditions in the site's vicinity including the roadway widths, surface conditions, lane geometries, traffic controls, and posted speed limits;
- A summary of the proposed land use and access plan;
- The projected average weekday and peak-hour vehicle trips to be generated by the proposed future development;
- The assignment of the projected site-generated traffic volumes to the area roadways;
- Estimates of projected short-term and long-term background traffic volumes;
- The projected short-term and long-term total traffic volumes on the area roadways;
- The projected levels of service at the key intersections within the study area;
- Signal-warrant threshold analysis;
- The recommended street classifications;
- A list of deviation requests;
- Findings and recommendations for study-area roadways and intersections, including number of lanes, auxiliary turn lanes, intersection traffic control, etc.; and
- The project's obligation to the County roadway improvement fee program.

RECENT TRAFFIC REPORTS

LSC prepared a previous master traffic impact study (TIS) for the entire Sterling Ranch development, Sterling Ranch Updated Traffic Impact Analysis (SKP07007) dated June 5, 2008. This master study was recently updated. The most current version of the Sterling Ranch Sketch Plan Amendment Master Traffic Impact Study (SKP 224) is dated February 10, 2023. Since 2008, LSC and SM Rocha, LLC have completed multiple studies for individual filings and phases within Sterling Ranch. Appendix Table 1, which includes a list of other traffic studies within Sterling Ranch and in the vicinity of area of study completed within the past five years (that LSC is aware of), is attached for reference.

El Paso County is currently studying the Briargate Stapleton Corridor as part of a Pikes Peak Rural Transportation Authority (PPRTA) study. A draft version of the Briargate-Stapleton Corridor Study by Wilson \& Company was published December 9, 2021.

REPORT SCENARIOS

Short-Term Scenario

The short-term scenario includes the roadway segments to be added in the short term only, as shown in Figure 2. This scenario includes traffic to be generated by the currently-proposed Sterling Ranch Filing No. 5 and traffic to be generated in the short term by buildout of Homestead at Sterling Ranch, Branding Iron at Sterling Ranch, Sterling Ranch Filings 2-4, Homestead North at Sterling Ranch Filings 1-3, the Retreat at TimberRidge Filings 1-3, Sterling Ranch East Filings 1 and 2, FourSquare at Sterling Ranch East, and Copper Chase at Sterling Ranch. Trips projected from these other short-term developments outside of the currently-proposed Sterling Ranch Filing No. 5 are included as short-term "background traffic" in this report.

Long-Term Scenario

The long-term scenario is essentially the same as the 2043 long-term scenario contained in the most current version of the Sterling Ranch Sketch Plan Amendment Master Traffic Impact Study (SKP 224) dated February 10, 2023 with additional detail added for this application - including the analysis of minor intersections and street segments that are part of the currently-proposed development. The study area of this report is more focused than the Sketch Plan.

RECENT TRAFFIC REPORTS

- LSC completed an updated master traffic study (MTIS) for the entire Sterling Ranch development, dated March 17, 2023. Appendix Table 1 includes a link to the El Paso County Electronic Development Application Review Program (EDARP) page where a copy of the latest version of that MTIS can be obtained.
- A list of other traffic studies within Sterling Ranch and in the vicinity of the area of study completed within the past five years (that LSC is aware of) is attached for reference (Appendix Table 1).
- El Paso County is currently studying the Briargate Stapleton Corridor as part of a Pikes Peak Rural Transportation Authority (PPRTA) study. A draft version of the Briargate-Stapleton Corridor Study by Wilson \& Company was published December 9, 2021.

EXISTING ROAD AND TRAFFIC CONDITIONS

The adjacent streets are shown in Figures 1 and 2 and are described below. Copies of the 2016 EI Paso County Major Transportation Corridors Plan (MTCP), 2040 Roadway Plan, and 2016 MTCP 2060 Corridor Preservation Plan with the site location identified on them have been attached to this report.

Vollmer Road is currently a five-lane urban street within the City of Colorado Springs limits between Black Forest Road and Cowpoke Road and a two-lane, rural, paved roadway north of Cowpoke Road extending to north of Hodgen Road. Improvements to a section of Vollmer Road in the vicinity of the future Marksheffel Road are currently under construction. In the southbound direction, Vollmer Road has a posted speed limit of 45 mph . South of Cowpoke Road, Vollmer Road has a 40-mph posted speed limit. The 2040 El Paso County Major Transportation Corridors Plan (MTCP) and the 2023 Sterling Ranch master traffic study show Vollmer Road as a four-lane Urban Minor Arterial in the vicinity of the site. Note: The new Connect COS City of Colorado Springs transportation plan shows Vollmer as a Principal Arterial.

Marksheffel Road is a Principal Arterial extending north from the City of Fountain to Woodmen Road. Marksheffel Road is planned to ultimately be widened to six lanes and extended north and west from Woodmen Road to connect to Research Parkway at Black Forest Road. Marksheffel Road is shown as a four-lane Principal Arterial through the site on the El Paso County MTCP. The City of Colorado Springs intends to take ownership and maintenance of Marksheffel Road when it is constructed from Vollmer to the east and south to where it will connect to the segment constructed north of Woodmen Road in the City.

The section of Marksheffel Road adjacent to Sterling Ranch is currently under construction on 107 feet of right-of-way to the City's required cross section(s) and criteria. It is anticipated that Marksheffel Road will be connected between Vollmer Road and Woodmen Road by the end of 2023.

Briargate Parkway is a six-lane, Principal Arterial that extends east from Interstate (I)-25 to Grand Lawn Circle (about one-half mile east of Powers Boulevard). Briargate Parkway is planned ultimately to extend to Towner Drive. The segment of Briargate Parkway between Vollmer Road and Sterling Ranch Road is planned to be constructed in the short term with the Sterling Ranch East Preliminary Plan.

Sterling Ranch Road is a planned Non-Residential Collector shown extending through the Sterling Ranch development between Marksheffel Road and the north end of the Sketch Plan area (Arroya Road). The segment between Marksheffel Road and Dines Boulevard has been constructed and the segment between Dines Boulevard and Briargate Parkway will be constructed in the short term with the Sterling Ranch East Preliminary Plan.

LAND USE AND ACCESS

The area planned for Sterling Ranch Filing No. 5 was included in the Sterling Ranch Master TIS as Traffic Analysis Zone (TAZ) 16. The Sterling Ranch Master TIS assumed TAZ 16 would be developed with 82 single-family homes. The currently-proposed Sterling Ranch Filing No. 5 is planned to include 72 residential dwelling units, including 37 duplexes and 35 single-family homes.

A full-movement access point (Manor House Way) is proposed to Dines Boulevard about 518 feet north of Sterling Ranch Road. A second access is proposed to form the northeast leg of the intersection of School House Drive/Hazlett Drive which was approved as part of Sterling Ranch Filing No. 2. Figure 3 shows the proposed site plan.

Intersection Sight Distance

Figure 4 shows a sight-distance analysis at the proposed intersection to Dines Boulevard and at the intersection of Dines Boulevard/Sterling Ranch Road. Based on a design speed of 40 miles per hour (mph) and the criteria contained in Table 2-21 of the Engineering Criteria Manual (ECM), the required intersection sight distance at these intersections is 445 feet. Based on the criteria contained in Table 2-17 of the ECM, the required stopping sight distance approaching these intersections is 305 feet. As shown in Figure 4, the proposed intersection of Dines/Manor House and the intersection of Dines/Sterling Ranch will meet the criteria.

Pedestrian and Bicycle Analysis

Figure 3 shows the location of all planned trails and sidewalks in the vicinity of the site. Connections are also proposed to the planned future Sand Creek Regional Trail (west of Dines Boulevard).

A detached sidewalk will be provided along the west side of Sterling Ranch Road. The multi-use paved shoulder on Sterling Ranch Road will accommodate bicycles.

There are no existing schools within two miles of the site. However, multiple school sites are planned within Sterling Ranch northeast of the intersection of Sterling Ranch Road/Dines Boulevard. School pedestrians would travel to/from the intersection of Sterling Ranch/Dines on the sidewalks and trails identified in Figure 3. The need for additional pedestrian facilities and/or school crossings should be identified when the school site(s) are developed.

Safety Analysis

Most of the roadways in the vicinity of the site have not yet been constructed. The Colorado State Patrol (CSP) provided LSC with crash history data for Vollmer Road between Tahiti Drive and Burgess Road from September 2019 through September 2022. During the reported time period, there were twelve reported crashes. Of the twelve reports, ten were single-vehicle non-intersection-related crashes on Vollmer Road. One crash involved a southbound vehicle that turned right onto Poco Road and crashed into several cars parked on Poco Road partially in the lane. The only intersection related crash occurred in June 2022. A vehicle heading northbound on Vollmer Road was slowing to turn left at Lochwinnoch Road and the vehicle behind them attempted to pass on the left side. The crash history data has been attached.

TRIP GENERATION

Sterling Ranch Filing No. 5 site-generated vehicle trips have been estimated using the nationally-published trip-generation rates from Trip Generation, 11th Edition, 2021 by the Institute of Transportation Engineers (ITE). Table 1 shows the trip-generation estimate. Table 1 also shows the trip-generation estimate for the same parcel assumed in the Sterling Ranch Master TIS (MTIS) for comparison.

Sterling Ranch Filing No. 5 is expected to generate 596 vehicle trips on the average weekday, with about half entering and half exiting the site during a 24 -hour period. This is about 177 fewer vehicle trips per day than were assumed for the same area in the Sterling Ranch MTIS. During the morning peak hour, which generally occurs for one hour between 6:30 and 8:30 a.m., about 11 vehicles would enter and 32 vehicles would exit the site. This is about 4 fewer entering vehicles and 11 fewer exiting vehicles than were assumed for the same area in the Sterling Ranch MTIS. During the afternoon peak hour, which generally occurs for one hour between 4:15 and 6:15 p.m., about 33 vehicles would enter and 21 vehicles would exit the site. This is about 15 fewer entering vehicles and 4 fewer exiting vehicles than were assumed for the same area in the Sterling Ranch MTIS.

TRIP DISTRIBUTION AND ASSIGNMENT

The directional distribution of the site-generated traffic volumes on the street and roadway system serving the site is an important factor in determining the site's traffic impacts. The distribution estimates for short-term and long-term residential-related traffic are shown in Figure 5. The short-term directional-distribution estimate assumes the short-term roadway
network shown in Figure 2 only and the long-term directional-distribution estimate assumes buildout of the roadway network. The directional-distribution estimates are based, in part, on the estimates contained in the sketch plan TIS report. Factors include: the location of the site with respect to the Colorado Springs metropolitan area, the planned access system for the site, the street and roadway system serving the site, and the land uses proposed for the site.

When the distribution percentages (from Figure 5) are applied to the new, external trip-generation estimates (from Table 1), the resulting site-generated traffic volumes can be determined. Figures 6 and 7 show the short-term and long-term site-generated traffic volumes, respectively. The short-term site-generated traffic volumes assume only the street network shown in Figure 2 and the long-term site-generated traffic volumes assume buildout of the area roadway network.

BACKGROUND TRAFFIC VOLUMES

Background traffic is the traffic estimated to be on the adjacent roadways and at adjacent intersections without the proposed development's trip generation of site-generated traffic volumes. Background traffic (for a specified horizon year) includes the through traffic and the traffic generated by nearby developments (existing and planned, including traffic generated by existing and planned developments within the greater Sterling Ranch overall development) but assumes zero traffic generated by land uses within Sterling Ranch Filing No. 5.

Short-Term Scenario Background Conditions

Figure 8 shows the projected volumes for the short-term background scenario. This scenario includes traffic to be generated in the short term by buildout of Homestead at Sterling Ranch, Branding Iron at Sterling Ranch, Sterling Ranch Filings 2-4, Homestead North at Sterling Ranch Filings 1-3, the Retreat at TimberRidge Filings 1-3, Sterling Ranch East Filings 1 and 2, FourSquare at Sterling Ranch, and Copper Chase at Sterling Ranch.

Long-Term Scenario Background Conditions

Figure 9 shows the projected 2043 background daily traffic volumes on key street segments at the key area intersections. These volumes assume buildout of the area street network, including the completion of Marksheffel Road between Vollmer Road and Black Forest Road, Briargate Parkway between Meridian Road and Black Forest Road, and Sterling Ranch Road between Marksheffel Road and Briargate Parkway.

The 2043 background traffic volumes are estimates by LSC, based on the traffic projections in the LSC February 10, 2023 Master TIS report. The 2043 background daily traffic volumes assume buildout of all other land uses within the Sterling Ranch Master Plan.

TOTAL TRAFFIC VOLUMES

Short-Term Scenario Total Conditions

Figure 10 shows the projected volumes for the short-term total scenario. These volumes are the sum of the short-term background scenario (from Figure 8) plus the short-term site-generated traffic volumes (from Figure 6).

Long-Term Scenario Total Conditions

Figure 11 shows the projected volumes for the 2043 total scenario. These volumes are the sum of the 2043 background scenario (from Figure 9) plus the long-term site-generated traffic volumes (from Figure 7).

LEVELS OF SERVICE

Level of service (LOS) is a quantitative measure of the level of congestion or delay at an intersection. Level of service is indicated on a scale from "A" to "F." LOS A represents control delay of less than 10 seconds for unsignalized intersections. LOS F represents control delay of more than 50 seconds for unsignalized intersections. Table 1 shows the level of service delay ranges.

Table 2: Intersection Levels of Service Delay Ranges

Level of Service	Signalized Intersections Average Control Delay (seconds per vehicle)	Unsignalized Intersections Average Control Delay (seconds per vehicle) ${ }^{(\mathbf{1})}$
	10.0 sec or less	10.0 sec or less
B	$10.1-20.0 \mathrm{sec}$	$10.1-15.0 \mathrm{sec}$
C	$20.1-35.0 \mathrm{sec}$	$15.1-25.0 \mathrm{sec}$
D	$35.1-55.0 \mathrm{sec}$	$25.1-35.0 \mathrm{sec}$
E	$55.1-80.0 \mathrm{sec}$	$35.1-50.0 \mathrm{sec}$
F	80.1 sec or more	50.1 sec or more

(1) For unsignalized intersections, if V / C ratio is greater than 1.0 the level of service is LOS F, regardless of the projected average control delay per vehicle.

The study-area stop-sign-controlled intersections have been analyzed based on the unsignalized-intersection analysis procedures from the Highway Capacity Manual, 6th Edition by the Transportation Research Board. The future signalized intersections of Vollmer Road/Marksheffel Road and Sterling Ranch Road /Marksheffel Road have been analyzed using Synchro.

Vollmer Road /Marksheffel Road

Marksheffel Road is planned to be constructed between Vollmer Road and Sterling Ranch Road in the short-term future. The intersection of Marksheffel/Vollmer is initially planned to be stop-sign controlled. Based on the projected short-term total traffic volumes, the westbound left-turn movement is projected to operate at LOS E during the morning peak hour and LOS F during the afternoon peak hour. This intersection is planned as a future signalized intersection. However, traffic-signal warrant(s) may not be met in the short-term. It is not uncommon for the minor movements at a stop-sign-controlled intersection to operate at LOS E or F as the traffic volumes approach the levels needed to meet vehicular-volume traffic-signal warrants.

By 2043, it was assumed that Marksheffel Road would be constructed west to Briargate Parkway and that the intersection of Vollmer/Marksheffel will be converted to traffic-signal control. The intersection of Vollmer/Marksheffel is projected to operate at an overall LOS C or better during the peak hours as a signalized intersection, based on the projected 2043 total traffic volumes.

Sterling Ranch Road /Marksheffel Road

Marksheffel Road is planned to be constructed between Vollmer Road and Sterling Ranch Road in the short-term future. The intersection of Marksheffel/Sterling Ranch is initially planned to be stop-sign controlled. Based on the projected short-term total traffic volumes, the southbound left-turn movement is projected to operate at LOS C during the morning peak hour and LOS E during the afternoon peak hour. This intersection is planned as a future signalized intersection. However, traffic-signal warrant(s) may not be met in the short-term. It is not uncommon for the minor-street movements at a stop-sign-controlled intersection to operate at LOS E or F as the traffic volumes approach the levels needed to meet vehicular-volume traffic-signal warrants.

By 2043, it was assumed that Sterling Ranch would be constructed south of Marksheffel Road and that the intersection of Sterling Ranch/Marksheffel will be converted to traffic-signal control. The intersection of Sterling Ranch/Marksheffel is projected to operate at an overall LOS C or better during the peak hours as a signalized intersection, based on the projected 2043 total traffic volumes.

Sterling Ranch Road /Hazlett Drive

All movements at the stop-sign-controlled intersection of Sterling Ranch Road/Hazlett Drive are projected to operate at LOS C or better during the peak hours, based on the projected short-term total traffic volumes. By 2043, the northbound approach of this intersection is projected to operate at LOS E during the afternoon peak hour, based on both the background and total traffic volumes. A vehicular-volume traffic-signal warrant is unlikely to be met at this intersection. Although this movement is projected to operate at LOS E, the V/C ratio is well below 1.0.

Sterling Ranch Road /Dines Boulevard

All movements at the stop-sign-controlled intersection of Sterling Ranch Road/Dines Boulevard are projected to operate at LOS D or better during the peak hours, based on the projected short-term and 2043 total traffic volumes.

Dines Boulevard/Manor House Drive

All movements at the stop-sign-controlled intersection of Dines/Manor House are projected to operate at LOS A during the peak hours, based on the projected short-term and 2043 total traffic volumes.

SIGNAL WARRANT THRESHOLD ANALYSIS - AM AND PM PEAK HOURS

The intersections of Marksheffel/Vollmer and Marksheffel/Sterling Ranch were analyzed to determine if the thresholds for Four-Hour and/or Eight-Hour Vehicular-Volume Traffic-Signal Warrant thresholds would be reached or exceeded, based on the projected short-term traffic volumes.

The off-peak-hour volumes are estimates by LSC, based on the peak-hour traffic volumes, 72-hour machine counts conducted by LSC on Vollmer Road in November 2020, and vehicle time-of-day distribution data for single-family homes published by the Institute of Transportation Engineers.

Marksheffel/Vollmer

Table 3 shows the results of the analysis for the intersection of Marksheffel/Vollmer. As shown in Table 3, in the short-term, only three of the hours analyzed are projected to meet the thresholds for an Eight-Hour Vehicular-Volume Traffic-Signal Warrant and none of the hours analyzed are projected to meet the thresholds for a Four-Hour Vehicular-Volume Traffic-Signal Warrant. This analysis indicates that traffic-signal warrant(s) will likely not be met at the intersection of Marksheffel/Vollmer in the short-term.

Marksheffel/Sterling Ranch

Table 4 shows the results of the analysis for the intersection of Marksheffel/Sterling Ranch. As shown in Table 4, in the short-term, only four of the hours analyzed are projected to meet the thresholds for an Eight-Hour Vehicular-Volume Traffic-Signal and only one of the hours analyzed are projected to meet the thresholds for a Four-Hour Vehicular-Volume Traffic-Signal Warrant. This analysis indicates that traffic-signal warrant(s) will likely not be met at the intersection of Marksheffel/Sterling Ranch in the short-term.

SUBDIVISION STREET CLASSIFICATIONS

All of the internal streets within Sterling Ranch Filing No. 5 should be classified as Urban Local. Figure 12 shows the recommended street classifications for the internal streets and the streets in the vicinity of the site.

DEVIATION REQUESTS

It is our understanding that no requests for deviations to the criteria contained in the El Paso County Engineering Criteria Manual (ECM) are being submitted with this filing.

ROADWAY IMPROVEMENTS

Table 4 from the Sterling Ranch Sketch Plan Amendment Master TIS contained a summary of needed area improvements. Appendix Table 2 is a copy of this table with updated notes and with the improvements needed either prior to or with Sterling Ranch Filing No. 5 highlighted. Please see Figure 13 for a map of the key street-segment locations.

The following auxiliary lanes shown will be required with Sterling Ranch Filing No. 5 if not completed with Sterling Ranch Filing No. 2. Note: These are shown on the construction plans by JR Engineering for these adjacent roadways and construction is underway:

- Marksheffel/Vollmer
- 155-foot northbound right-turn deceleration lane on Vollmer approaching Marksheffel, plus a160-foot taper.
- 310-foot southbound left-turn lane on Vollmer approaching Marksheffel, plus a 160-foot taper.
- 425-foot westbound left-turn lane on Marksheffel approaching Vollmer, plus a 200-foot taper.
- 235-foot westbound right-turn deceleration lane on Marksheffel approaching Vollmer, plus a 200 -foot taper.
- Sterling Ranch/Marksheffel
- 470-foot eastbound left-turn lane on Marksheffel approaching Sterling Ranch, plus a 200 -foot taper.
- A 285-foot southbound left-turn lane on Sterling Ranch approaching Marksheffel, plus a 90-foot reverse-curve taper.
- A 155-foot southbound right-turn lane on Sterling Ranch approaching Marksheffel, plus a 160-foot taper.
- Sterling Ranch/Hazlett
- A 305-foot northeast-bound left-turn lane on Sterling Ranch Road approaching Hazlett, plus a 90 -foot reverse-curve taper.
- Sterling Ranch/Dines
- A 305 -foot northeast-bound left-turn lane on Sterling Ranch Road approaching Hazlett, plus a 90 -foot reverse-curve taper.
- A 155-foot southeast-bound right-turn deceleration lane on Dines Boulevard approaching Sterling Ranch Road.
- Dines/Manor House
- Based on the projected short-term and 2043 total traffic volumes and the criteria contained in the ECM, no auxiliary turn lanes would be required at the intersection of Dines/Manor House.

ROADWAY IMPROVEMENT FEE PROGRAM

This project will be required to participate in the El Paso County Road Improvement Fee Program. Sterling Ranch Filing No. 5 will join the ten-mil PID. The 2019 ten-mil PID building permit fee portion associated with this option is $\$ 1,221$ per single-family dwelling unit. Based on 72 lots, the total building permit fee would be $\$ 87,912$. Note: program fees are subject to change.

Please contact me if you have any questions regarding this report.

Respectfully Submitted,
LSC TRANSPORTATION CONSULTANTS, INC.

By: Jeffrey C. Hodsdon, P.E.
Principal
JCH/KDF:jas

Enclosures: Tables 1, 3, and 4
Figures 1-13
Level of Service Reports
MTCP Maps
Appendix Tables 1-2

Tables 1, 3, and 4

Table 1 Trip Generation Estimate Sterling Ranch Filing No. 5														
Sketch Plan TAZ	ITE Code	ITE Land Use	Quantity	Unit	Trip Generation Rates ${ }^{(1)}$					Total Trip Generated				
					AM Peak Hour			PM Peak Hour		Daily	AM Peak Hour		PM Peak Hour	
					Daily	In	Out	In	Out		In	Out	In	Out
Trip Generation Estimate Based on the Currently Proposed Land Use														
16	215	Single Family Attached Housing	37	DU ${ }^{(2)}$	7.20	0.12	0.36	0.34	0.23	266	4	13	12	9
	210	Single-Family Detached Housing	35	DU	9.43	0.18	0.53	0.59	0.35	330	6	18	21	12
			72	DU						596	11	32	33	21
Trip Generation Estimate From the Sterling Ranch Sketch Plan Amendment Master Traffic Impact Study, March 17, 2023														
16	210	Single-Family Detached Housing	82	DU	9.43	0.18	0.52	0.59	0.35	773	15	42	49	29
					Change (Decrease) in Trip Generation Estimate for TAZ 16					-177	-4	-11	-15	-8
Notes: (1) Source: "Trip Generation, 11th Edition, 2021" by the Institute of Transportation Engineers (ITE) (2) DU = Dwelling Unit														
Source: LSC Transportation Consultants, Inc.										May-23				

Figures 1-13

${ }^{5}$

2043 Background Traffic, Lane Geometry,
Traffic Control and Level of Service

Intersection						
Int Delay, s/veh	6.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\mathbf{T}	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{1}$	个中
Traffic Vol, veh/h	129	80	226	30	135	386
Future Vol, veh/h	129	80	226	30	135	386
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	300	-	-	155	300	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	152	94	266	35	159	454

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	227	0	-	0	248	47
Stage 1	-	-		-	94	
Stage 2	-				154	
Critical Hdwy	4.14				6.84	6.94
Critical Hdwy Stg 1	-	-	-		5.84	
Critical Hdwy Stg 2			-	-	5.84	
Follow-up Hdwy	2.22	-	-	-	3.52	3.32
Pot Cap-1 Maneuver	1339	-	-	-	719	1012
Stage 1	-	-	-	-	919	
Stage 2		-	-	-	858	
Platoon blocked, \%						
Mov Cap-1 Maneuver	1339	-	-		699	1012
Mov Cap-2 Maneuver	-	-	-	-	699	
Stage 1	-	-	-		893	
Stage 2	-	-	-	-	858	

Approach	EB	WB	SB
HCM Control Delay, s	1.5	0	14.8
HCM LOS		B	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2	
Capacity (veh/h)	1339	-	-	-699	1012
HCM Lane V/C Ratio	0.028	-	-	-0.574	0.15
HCM Control Delay (s)	7.8	-	-	-	16.9
9.2					
HCM Lane LOS	A	-	-	-	C
HCM 95 th \%tile Q(veh)	0.1	-	-	-	3.7

Intersection						
Int Delay，s／veh	5.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	$\mathbf{1}$	$\mathbf{7}$	个中	$\mathbf{7}$	$\mathbf{1}$	个中
Traffic Vol，veh／h	86	178	506	101	115	320
Future Vol，veh／h	86	178	506	101	115	320
Conflicting Peds，\＃／hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	300	-	-	155	300	-
Veh in Median Storage，\＃	0	-	0	-	-	0
Grade，\％	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles，\％	2	2	2	2	2	2
Mvmt Flow	101	209	595	119	135	376

	Intersection					
Int Delay, s/veh	7.5					
Movement E	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7	44	44	F	${ }^{*}$	「
Traffic Vol, veh/h 1	108	108	178	385	226	86
Future Vol, veh/h 1	108	108	178	385	226	86
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Fr		Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length 300		-	-	205	155	0
Veh in Median Storage, \#	\# -	0	0	-	0	-
Grade, \%		0	0	-	0	-
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	127	127	209	453	266	101

	Intersection					
Int Delay, s/veh 7.2						
Movement W	NBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	${ }^{7}$	「	44	F	${ }^{*}$	44
Traffic Vol, veh/h 1	145	80	226	35	135	386
Future Vol, veh/h 1	145	80	226	35	135	386
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Stop	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length 300	300	-	-	155	300	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow 17	171	94	266	41	159	454

Intersection						

Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	233	0	-	0	260	47	
Stage 1	-	-	-	-	94	-	
Stage 2	-	-	-	-	166	-	
Critical Hdwy	4.14	-	-	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	2.22	-	-	-	3.52	3.32	
Pot Cap-1 Maneuver	1332	-	-	-	707	1012	
Stage 1	-	-	-	-	919	-	
Stage 2	-	-	-	-	846	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	1332	-	-	-	684	1012	
Mov Cap-2 Maneuver	-	-	-	-	684	-	
Stage 1	-	-	-	-	889	-	
Stage 2	-	-	-	-	846	-	
Approach	EB		WB		SB		
HCM Control Delay, s	1.7		0		15.5		
HCM LOS					C		
Minor Lane/Major Mvmt		EBL	EBT WBT		WBR SBLn1 SBLn2		
Capacity (veh/h)		1332	-	-	-	684	1012
HCM Lane V/C Ratio		0.033	-	-	-	0.609	0.17
HCM Control Delay (s)		7.8	-	-	-	18.1	9.3
HCM Lane LOS		A	-	-	-	C	A
HCM 95th \%tile Q(veh		0.1	-	-	-	4.2	0.6

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			\uparrow	$\mathbf{7}$	
Traffic Vol, veh/h	2	4	1	35	99	1
Future Vol, veh/h	2	4	1	35	99	1
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	2	5	1	41	116	1

Intersection						
Int Delay，s／veh	6.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\mathbf{T}	$\mathbf{7}$	个．	$\mathbf{7}$	$\mathbf{1}$	个中
Traffic Vol，veh／h	97	178	506	118	115	320
Future Vol，veh／h	97	178	506	118	115	320
Conflicting Peds，\＃／hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	300	-	-	155	300	-
Veh in Median Storage，\＃	0	-	0	-	-	0
Grade，\％	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles，\％	2	2	2	2	2	2
Mvmt Flow	114	209	595	139	135	376

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	MF			\uparrow	F	
Traffic Vol, veh/h	1	3	5	100	76	2
Future Vol, veh/h	1	3	5	100	76	2
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	1	4	6	118	89	2

Intersection												
Int Delay，s／veh	2.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	4	「゙	${ }^{7}$	\uparrow			\uparrow			\uparrow	「
Traffic Vol，veh／h	23	320	4	3	599	14	13	1	9	28	0	70
Future Vol，veh／h	23	320	4	3	599	14	13	1	9	28	0	70
Conflicting Peds，\＃／hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	－	－	None									
Storage Length	205	－	155	205	－	－	－	－	－	－	－	155
Veh in Median Storage，\＃	\＃	0	－	－	0	－	－	0	－	－	0	－
Grade，\％	－	0	－	－	0	－	－	0	－	－	0	－
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles，\％	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	24	337	4	3	631	15	14	1	9	29	0	74

	\rangle							\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	＊	性	$\stackrel{7}{7}$	\％	性	「	\％	个4	\％	${ }^{7}$	个4	7
Traffic Volume（vph）	71	838	42	171	925	69	115	235	110	121	517	131
Future Volume（vph）	71	838	42	171	925	69	115	235	110	121	517	131
Turn Type	pm＋pt	NA	Perm									
Protected Phases		2		1	6		3	8		7	4	
Permitted Phases	2		2	6		6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split（s）	10.0	23.0	23.0	10.0	23.0	23.0	10.0	23.0	23.0	10.0	23.0	23.0
Total Split（s）	12.0	66.0	66.0	12.0	66.0	66.0	12.0	30.0	30.0	12.0	30.0	30.0
Total Split（\％）	10．0\％	55．0\％	55．0\％	10．0\％	55．0\％	55．0\％	10．0\％	25．0\％	25．0\％	10．0\％	25．0\％	25．0\％
Yellow Time（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？	Yes											
Recall Mode	None	C－Max	C－Max	None	C－Max	C－Max	None	Max	Max	None	Max	Max
Act Efft Green（s）	67.7	61.0	61.0	69.0	63.4	63.4	32.0	25.0	25.0	32.0	25.0	25.0
Actuated g／C Ratio	0.56	0.51	0.51	0.58	0.53	0.53	0.27	0.21	0.21	0.27	0.21	0.21
v／c Ratio	0.25	0.49	0.05	0.55	0.52	0.08	0.65	0.34	0.28	0.41	0.74	0.32
Control Delay	11.8	20.5	0.1	17.0	9.8	0.2	49.2	41.9	8.9	36.2	51.3	9.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	11.8	20.5	0.1	17.0	9.8	0.2	49.2	41.9	8.9	36.2	51.3	9.6
LOS	B	C	A	B	A	A	D	D	A	D	D	A
Approach Delay		18.9			10.3			35.8			41.8	
Approach LOS		B			B			D			D	
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 120												
Offset： $0(0 \%)$ ，Referenced to phase 2：EBTL and 6：WBTL，Start of Green												
Natural Cycle： 70												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.74												
Intersection Signal Delay： 23.5				Intersection LOS：C								
Intersection Capacity Utilization 70．0\％				ICU Level of Service C								
Analysis Period（min） 15												

Splits and Phases：12：Vollmer Rd \＆Marksheffel Rd

	\rangle							\dagger	p		\dagger	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	¢	「	\％	性	F＇	\％	\uparrow	「	${ }^{7 *}$	\uparrow	「
Traffic Volume（vph）	157	900	10	47	809	171	39	8	55	466	10	318
Future Volume（vph）	157	900	10	47	809	171	39	8	55	466	10	318
Turn Type	pm＋pt	NA	Perm	pm＋pt	NA	Perm	pm＋pt	NA	Perm	Prot	NA	Perm
Protected Phases	5	2			6		3	8		7	4	
Permitted Phases	2		2	6		6	8		8			4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial（s）	5.0	15.0	15.0	5.0	15.0	15.0	5.0	10.0	10.0	20.0	10.0	10.0
Minimum Split（s）	10.0	20.0	20.0	10.0	20.0	20.0	10.0	15.0	15.0	25.0	20.0	20.0
Total Split（s）	12.0	51.0	51.0	12.0	51.0	51.0	12.0	25.0	25.0	32.0	45.0	45.0
Total Split（\％）	10．0\％	42．5\％	42．5\％	10．0\％	42．5\％	42．5\％	10．0\％	20．8\％	20．8\％	26．7\％	37．5\％	37．5\％
Yellow Time（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？	Yes											
Recall Mode	None	C－Max	C－Max	None	C－Max	C－Max	None	None	None	None	None	None
Act Effct Green（s）	74.5	65.4	65.4	66.5	59.6	59.6	14.6	10.0	10.0	22.8	25.2	25.2
Actuated g／C Ratio	0.62	0.54	0.54	0.55	0.50	0.50	0.12	0.08	0.08	0.19	0.21	0.21
v／c Ratio	0.43	0.49	0.01	0.15	0.48	0.21	0.22	0.05	0.21	0.75	0.03	0.62
Control Delay	20.2	15.4	0.0	12.1	23.0	3.7	32.7	51.6	1.8	53.7	35.6	14.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	20.2	15.4	0.0	12.1	23.0	3.7	32.7	51.6	1.8	53.7	35.6	14.6
LOS	C	B	A	B	C	A	C	D	A	D	D	B
Approach Delay		15.9			19.3			17.4			37.8	
Approach LOS		B			B			B			D	
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 120												
Offset： $0(0 \%)$ ，Referenced to phase 2：EBTL and 6：WBTL，Start of Green												
Natural Cycle： 75												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.75												
Intersection Signal Delay： 23.0				Intersection LOS：C								
Intersection Capacity Utilization 63．5\％				ICU Level of Service B								
Analysis Period（min） 15												

Splits and Phases：13：Sterling Ranch Rd \＆Marksheffel Rd

	\rangle						4	\dagger	p		\dagger	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	¢	$\stackrel{7}{ }$	${ }^{*}$	性	F	\％	\uparrow	「	\％${ }^{1}$	\uparrow	「
Traffic Volume（vph）	293	946	22	130	841	554	27	6	37	331	24	183
Future Volume（vph）	293	946	22	130	841	554	27	6	37	331	24	183
Turn Type	pm＋pt	NA	Perm	pm＋pt	NA	Perm	pm＋pt	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2		2	6		6	8		8			4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial（s）	5.0	15.0	15.0	5.0	15.0	15.0	5.0	10.0	10.0	20.0	10.0	10.0
Minimum Split（s）	10.0	20.0	20.0	10.0	20.0	20.0	10.0	15.0	15.0	25.0	20.0	20.0
Total Split（s）	20.0	68.0	68.0	12.0	60.0	60.0	10.0	15.0	15.0	25.0	30.0	30.0
Total Split（\％）	16．7\％	56．7\％	56．7\％	10．0\％	50．0\％	50．0\％	8．3\％	12．5\％	12．5\％	20．8\％	25．0\％	25．0\％
Yellow Time（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？	Yes											
Recall Mode	None	C－Max	C－Max	None	C－Max	C－Max	None	None	None	None	None	None
Act Effct Green（s）	80.3	69.1	69.1	69.9	62.9	62.9	11.0	10.0	10.0	20.0	23.0	23.0
Actuated g／C Ratio	0.67	0.58	0.58	0.58	0.52	0.52	0.09	0.08	0.08	0.17	0.19	0.19
v／c Ratio	0.73	0.49	0.02	0.41	0.48	0.53	0.20	0.04	0.12	0.61	0.07	0.42
Control Delay	37.4	10.4	0.0	12.8	20.8	3.5	37.8	51.3	0.8	51.5	39.2	8.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	37.4	10.4	0.0	12.8	20.8	3.5	37.8	51.3	0.8	51.5	39.2	8.5
LOS	D	B	A	B	C	A	D	D	A	D	D	A
Approach Delay		16.5			13.8			19.1			36.3	
Approach LOS		B			B			B			D	
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 120												
Offset： $0(0 \%)$ ，Referenced to phase 2：EBTL and 6：WBTL，Start of Green												
Natural Cycle： 90												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.73												
Intersection Signal Delay： 18.5				Intersection LOS：B								
Intersection Capacity Utilization 71．4\％				ICU Level of Service C								
Analysis Period（min） 15												

Splits and Phases：13：Sterling Ranch Rd \＆Marksheffel Rd

Intersection												
Int Delay, s/veh	2.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	4	「	${ }^{1 /}$	\uparrow			\leftrightarrow			\uparrow	F'
Traffic Vol, veh/h	24	326	4	3	602	15	13	1	9	30	0	73
Future Vol, veh/h	24	326	4	3	602	15	13	1	9	30	0	73
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	205	-	155	205	-	-	-	-	-	-	-	155
Veh in Median Storage, \#	\# -	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	25	343	4	3	634	16	14	1	9	32	0	77

Splits and Phases: 12: Vollmer Rd \& Marksheffel Rd

	\rangle							\dagger	p		\dagger	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	¢	「	\％	性	「	\％	\uparrow	「	${ }^{7 *}$	\uparrow	「
Traffic Volume（vph）	160	900	10	47	809	175	39	8	55	478	10	328
Future Volume（vph）	160	900	10	47	809	175	39	8	55	478	10	328
Turn Type	pm＋pt	NA	Perm	pm＋pt	NA	Perm	pm＋pt	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2		2	6		6	8		8			4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial（s）	5.0	15.0	15.0	5.0	15.0	15.0	5.0	10.0	10.0	20.0	10.0	10.0
Minimum Split（s）	10.0	20.0	20.0	10.0	20.0	20.0	10.0	15.0	15.0	25.0	20.0	20.0
Total Split（s）	12.0	51.0	51.0	12.0	51.0	51.0	12.0	25.0	25.0	32.0	45.0	45.0
Total Split（\％）	10．0\％	42．5\％	42．5\％	10．0\％	42．5\％	42．5\％	10．0\％	20．8\％	20．8\％	26．7\％	37．5\％	37．5\％
Yellow Time（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？	Yes											
Recall Mode	None	C－Max	C－Max	None	C－Max	C－Max	None	None	None	None	None	None
Act Effct Green（s）	74.4	65.2	65.2	66.0	59.1	59.1	14.6	10.0	10.0	23.0	25.5	25.5
Actuated g／C Ratio	0.62	0.54	0.54	0.55	0.49	0.49	0.12	0.08	0.08	0.19	0.21	0.21
v／c Ratio	0.44	0.49	0.01	0.15	0.49	0.21	0.22	0.05	0.21	0.76	0.03	0.63
Control Delay	21.0	15.5	0.0	12.3	23.4	3.7	32.6	51.6	1.8	54.0	35.4	15.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	21.0	15.5	0.0	12.3	23.4	3.7	32.6	51.6	1.8	54.0	35.4	15.6
LOS	C	B	A	B	C	A	C	D	A	D	D	B
Approach Delay		16.2			19.6			17.3			38.3	
Approach LOS		B			B			B			D	
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 120												
Offset： $0(0 \%)$ ，Referenced to phase 2：EBTL and 6：WBTL，Start of Green												
Natural Cycle： 75												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.76												
Intersection Signal Delay： 23.4				Intersection LOS：C								
Intersection Capacity Utilization 64．0\％				ICU Level of Service C								
Analysis Period（min） 15												

Splits and Phases：13：Sterling Ranch Rd \＆Marksheffel Rd

Intersection													
Int Delay, s/veh	2.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	${ }^{7}$	4	「	${ }^{*}$	\uparrow			¢			\uparrow		
Traffic Vol, veh/h	9	325	14	6	676	6	46	0	16	13	0	32	
Future Vol, veh/h	9	325	14	6	676	6	46	0	16	13	0	32	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None										
Storage Length	155	-	155	155	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	9	342	15	6	712	6	48	0	17	14	0	34	

Major/Minor	Minor2		Major1			
Conflicting Flow All	164	115	115	0	-	0
Stage 1	115	-	-	-	-	-
Stage 2	49	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	827	937	1474	-	-	-
Stage 1	910	-	-	-	-	-
Stage 2	973	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	826	937	1474	-	-	-
Mov Cap-2 Maneuver	826	-	-	-	-	-
Stage 1	909	-	-	-	-	-
Stage 2	973	-	-	-	-	-
Approach	EB		NB		B	
HCM Control Delay, s	9		0.4		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBL	NBT EBLn1		SBT	SBR
Capacity (veh/h)		1474	-	6	-	-
HCM Lane V/C Ratio		0.002	-		-	-
HCM Control Delay (s)		7.4	0	9	-	-
HCM Lane LOS		A	A	A	-	-
HCM 95th \%tile Q(veh)		0	-	0	-	-

12: Vollmer Rd \& Marksheffel Rd

Splits and Phases: 13: Sterling Ranch Rd \& Marksheffel Rd

MTCP Maps

Map 14: 2040 Roadway Plan (Classification and Lanes)

Appendix Table 2					
Roadway Segment Improvements					
Sterling Ranch Filing 5					
(Page 1 of 2)					
```Segment ID (1) (See Figure 14 for map)```	Improvement Description	Timing	$\begin{gathered} \text { Design ADT } \\ \text { (vpd) } \\ \hline \end{gathered}$	Projected 2042 ADT (vpd)	Responsibility
V1   (Short-Term) Northbound	UPDATE (November 2023): It is our understanding that a meeting(s) with JR Engineering/the applicant, City staff and County staff were held, that a short-term/interim improvement to segment V1 will not be required. The original LSC recommendation for this segment was for restriping. However, City staff indicated that the striped bike lane in the southbound direction needs to remain. Per the City of Colorado Springs, an outside paved shoulder will need to be added along the east side of Vollmer Road from Dry Needle Place up to the south end of segment $V 2$ improvements.	Updated 11/13/2023 - It is our understanding that following a meeting with the City of Colorado Springs and El Paso County, a V1 interim shoulder this improvement will no longer be required in the short-term	5,500 (Directional northbound)	16,275	N/ASterling Ranch
V1   (Short-Term) Southbound			10,000 (Directional southbound)		
V1	Improve Vollmer Road between Dry Needle Place and the Sterling Ranch south boundary to a standard 4-Lane Urban Minor Arterial Cross Section (Add a second northbound through lane and painted center median) ${ }^{(2)}$	Intermediate-Term Future	20,000		Sterling Ranch, if necessary prior to construction by Others
V2	Improve Vollmer Road between the Sterling Ranch south boundary to Lochwinnoch Lane/Sterling property boundary to a standard 4-Lane Urban Minor Arterial Cross Section ${ }^{(2)}$	Short-Term Future   (With Sterling Ranch Fil No. 2 Or Sterling Ranch Phase 2)   Updated 11/15/2023:   In Progress to be complete by November 2023	$\begin{gathered} 20,000 \\ \text { (Note: Existing } \\ \text { Capacity } 8,000^{(3)} \text { ) } \end{gathered}$	17,475	Sterling Ranch
V3	Short Term: Improve Vollmer Road from Lochwinnoch Lane to Sterling Ranch boundary (northeast of Glider Loop) to provide $36^{\prime}$ of pavement (existing pavement 1 approx. $23.38^{\prime}$ ) and stripe for one through lane and plus a $6^{\prime}$ paved, striped outside shoulder in each direction ${ }^{(2)}$	Short-Term Future (With Homestead North)   Updated 11/15/202: Construction Document Approved	11,000 (Note: Existing Capacity 8,000 )	17,380	Sterling Ranch
	Long Term: Improve Vollmer Road from Lochwinnoch Lane to Sterling Ranch boundary (northeast of Glider Loop) to a standard 4-Lane Urban Minor Arterial Cross Section ${ }^{(2)}$	Long-Term Future	20,000		By others - pursuant to the recent development agreement between Sterling Ranch and EPC.
V4	Improve Vollmer Road from Sterling Ranch boundary (northeast of Glider Loop) to Briargate Parkway to a standard 4Lane Urban Minor Arterial Cross Section ${ }^{(2)}$	Sections V4, V5, V6 to be constructed by May 2024	20,000	16,445	Sterling Ranch
V5	Improve Vollmer Road from Briargate Parkway to Jane Kirkham Drive to a standard 4-Lane Urban Minor Arterial Cross Section ${ }^{(2)}$	Sections V4, V5, v6 to be constructed by May 2024	20,000	11,690	Sterling Ranch
V6	Improve Vollmer Road from Jane Kirkham Drive to Sam Bass Drive to a standard 4-Lane Urban Minor Arterial Cross Section ${ }^{(2)}$	Sections V4, V5, v6 to be constructed by May 2024	20,000	11,425	Sterling Ranch
V7	Improve Vollmer Road between Sam Bass Drive and Poco Road to a 4-lane Urban Minor Arterial but with necessary lane transitions, redirect tapers, etc. south of Poco to adequately transition between the 4-Lane Urban Minor Arterial Cross Section and the 2-Lane Rural Arterial Cross Section north of Poco Road.	Sections V4, V5, v6 to be constructed by May 2024	20,000	10,090	Sterling Ranch
V8	Improve Vollmer Road from Poco Road to Shoup Road to a Rural 2-Lane Arterial Cross Section ${ }^{(2)}$	Long-Term Future	10,000	11,790	El Paso County Project ID U-12
Part 1/2 of this table (see Part 2 on next page) Notes:					
(1) See Figure 14					
40 mile per hour is 20:1					
(3) Source: Table 20 Road Impact Fee Study Updated November 16, 2016					
Source: LSC Transportation Consultants, Inc. (November, 2023)					


Appendix Table 2					
Roadway Segment Improvements					
Sterling Ranch Filing 5					
(Page 2 of 2)					
```Segment ID (1) (See Figure 14 for map)```	Improvement Description	Timing	$\begin{gathered} \text { Design ADT } \\ \text { (vpd) } \end{gathered}$	Projected 2042 ADT (vpd)	Responsibility
SR1	Construct Sterling Ranch Road as an Urban Non-Residential Collector from Marksheffel Road to Dines Boulevard	Completed	20,000	14,840	Sterling Ranch
SR2	Construct Sterling Ranch Road as an Urban Non-Residential Collector from Dines Boulevard to Briargate Parkway	Short-Term - with SRE Preliminary Plan 1	20,000	10,275	Sterling Ranch
SR3	Construct Sterling Ranch Road as an Urban Collector from Briargate Parkway to Vancouver Street.	Short-Term - with SRE Preliminary Plan 1	10,000	9,300	Sterling Ranch
SR4	Construct Sterling Ranch Road from Vancouver Street north to Arroya (or ultimate north terminus)	Long-Term Future	10,000	4,260	Sterling Ranch
M1	Construct Marksheffel Road as an Urban Principal Arterial to City of Colorado Springs standards in 107' of right-of-way between Vollmer Road and Sterling Ranch Road	Completed	40,000	23,370	Sterling Ranch
M2	Construct Marksheffel Road as an Urban Principal Arterial to City of Colorado Springs standards in 107' of right-of-way between Sterling Ranch Road and the south boundary of the Sterling Ranch Master Plan Area. NOTE: With the completion of this improvement the connection between Vollmer Road and Woodmen Road will be completed	To be completed in 2024	40,000	29,600	Sterling Ranch
M3	Construct Marksheffel Road between the south boundary of the Sterling Ranch Master Plan Area and Woodmen Road (Note this segment is located within the City of Colorado Springs)	Completed (by Others)	40,000	24,525	Others (Completed)
M4	Construct Marksheffel Road between Black Forest Road and Vollmer Road	Long-Term Future	40,000	27,910	Others
B1	Construct the full section of Briargate Pkwy (4-Lane Principal Arterial) between Vollmer Road and Wheatland Drive	Full section to be completed in 2023 with Homestead at Sterling Ranch Filing No. 1	40,000	24,745	Sterling Ranch
B2	Construct Briargate Pkwy (full section) as a 4-Lane Principal Arterial between Wheatland Dr and Sterling Ranch Road	Full section to be completed in 2023 or Spring 2024	40,000	26,375	Sterling Ranch
B3	Construct Briargate Pkwy as a 4-Lane Principal Arterial between Sterling Ranch Road and Banning Lewis Parkway	Intermediate Term	40,000	22,365	Sterling Ranch
B4	Construct Stapleton Road as a 4-Lane Principal Arterial between Banning Lewis Parkway and Meridian Road (including upgrade of existing rural two-lane segment between Towner and Meridian)	Long-Term Future	40,000	17,945	Others
B5	Construct Briargate Pkwy as a 4-Lane Principal Arterial between its current terminus and Black Forest Road and between Black Forest Road and Vollmer Road	Long-Term Future	40,000	24,340	Others
BL1	Construct Banning Lewis Parkway as a 4-Lane Principal Arterial between the south Sterling Ranch boundary and Briargate Pkwy	Long-Term Future	40,000	20,320	Future- TBD with the future preliminary plan for that areapotentially, financial assurances for half-section, west-side half-section or full-section w/ cost recover may be required
BL2	Construct Banning Lewis Parkway as a 4-Lane Principal Arterial between Woodmen Road and the south Sterling Ranch boundary (Note this segment will be located within the City of Colorado Springs)	Long-Term Future	40,000	28,480	Others
W1	Widen Woodmen Road from 4-lane to 6-lane section from Powers Boulevard to US 24	Long-Term Future	72,000	66,690	Others
Part 2/2 of this table Notes:					
(1) See Figure 14					
40 mile per hour is 20:1					
(3) Source: Table 20 Road Impact Fee Study Updated November 16, 2016					
Source: LSC Transportation Consultants, Inc. (November, 2023)					

