FINAL DRAINAGE REPORT FOR STERLING RANCH FILING NO. 5

Prepared For:

Classic SRJ Land, LLC 2138 Flying Horse Club Drive Colorado Springs, CO 80921 (719) 785-3270

December 2023
Project No. 25188.16
PCD Filing No: XX-XXX
SF241

Prepared By: JR Engineering, LLC 5475 Tech Center Drive, Suite 235 Colorado Springs, CO 80919 719-593-2593

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

errors, or omissions of	n my part in preparing this report.
Ryan Burns, Colorado For and On Behalf of	
DEVELOPER'S STA	ATEMENT:
I, the developer, have and plan.	read and will comply with all of the requirements specified in this drainage report
Business Name:	Classic SRJ Land, LLC
Ву:	
Title:	
Address:	2138 Flying Horse Club Drive Colorado Springs, CO 80921
	rith the requirements of the El Paso County Land Development Code, Drainage mes 1 and 2 and Engineering Criteria Manual, as amended.

Date

Conditions:

Joshua Palmer, P.E.

County Engineer/ ECM Administrator

Table of Contents

Purpose	1
General Site Description	1
General Location	1
Description of Property	1
Floodplain Statement	1
Existing Drainage Conditions	2
Major Basin Descriptions	2
Existing Sub-basin Drainage	2
Proposed Drainage Conditions	4
Proposed Sub-basin Drainage	4
Orainage Design Criteria	8
Development Criteria Reference	8
Hydrologic Criteria	8
Hydraulic Criteria	9
Orainage Facility Design	10
General Concept	10
Four Step Process to Minimize Adverse Impacts of Urbanization	10
Water Quality	11
Erosion Control Plan	12
Operation & Maintenance	12
Drainage and Bridge Fees	13
Construction Cost Opinion	13
Summary	15
References	16

APPENDIX

Appendix A – Vicinity Map, Soil Descriptions, FEMA Floodplain Map

Appendix B – Hydrologic Calcs

Appendix C - Hydraulic Calcs

Appendix D – Reference Material

Appendix E - Drainage Maps

PURPOSE

This document is the Final Drainage Report for Sterling Ranch Filing Number 5. The purpose of this report is to identify on-site and off-site drainage patterns, storm sewer, culvert, inlet locations, areas tributary to the site, and to safely route developed storm water to adequate outfall facilities.

GENERAL SITE DESCRIPTION

GENERAL LOCATION

Sterling Ranch Filing Number 5 (hereby referred to as the "site") is a proposed development within the Sterling Ranch master planned community with a total area of approximately 11.6 acres. The site is currently being designed to accommodate 72 urban lots.

The site is located in a portion of the Southeast Quarter (SE ¼) Of Section 33, Township 12 South, Range 65 West of the 6th Principal Meridian County Of El Paso, State Of Colorado. The site is surrounded by Barbarick Subdivision and Branding Iron at Sterling Ranch Filing No. 1 to the north, Sterling Ranch Filing No. 4 to the west, Sterling Ranch Road to the south, and Dines Boulevard to the east.

DESCRIPTION OF PROPERTY

The property will be primarily single-family residential development, open space and drainage tracts (approximately 11.6 acres total). The site is comprised of variable sloping grasslands that generally slope(s) downward to the southwest at 1 to 3% towards Sterling Ranch Road and Hazlett Dr.

Soil characteristics are comprised of Group A and B hydrologic soil groups. Group A soils have a high infiltration rate and high rate of water transmission. Group B soils have a moderate infiltration rate and moderate rate of water transmission. Refer to the soil survey map in Appendix A for additional information.

There are no major drainage ways running through the site. A tributary of Sand Creek lies to the east of the site. Currently, JR Engineering, LLC is performing studies and plans to address Sand Creek stabilization under PCD project number CDR-20-004 and is undergoing review.

There are no known irrigation facilities located on the project site.

FLOODPLAIN STATEMENT

Based on the FEMA FIRM Maps number 08041C0533G, dated December 7, 2018, the proposed development lies within Zone X. Zone X is defined as area outside the Special Flood Hazard Area

(SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. FIRM Map is presented in Appendix A.

EXISTING DRAINAGE CONDITIONS

MAJOR BASIN DESCRIPTIONS

The site lies within the Sand Creek Drainage Basin based on the "Sand Creek Drainage Basin Planning Study" (DBPS) completed by Kiowa Engineering Corporation in January 1993, revised March 1996. The Sand Creek Drainage Basin covers approximately 54 square miles and is divided into major subbasins. The site is within the Upper Sand Creek sub-basin as shown in Appendix D.

The Sand Creek DBPS assumed the Sterling Ranch Filing No. 5 property to have a "large lot residential" use for the majority of the site. The proposed Sterling Ranch master plan is a mix of; school, multi-family, single-family, and commercial land uses, resulting in higher runoff. The "Master Development Drainage Plan for Sterling Ranch"; (MDDP) prepared by M&S Civil Consultants, Inc., dated October 24, 2018 assumed a mix of a school site and single family residential lots ranging in size from 0.1 to 0.33 acres for the Sterling Ranch Filing No. 5 site.

Any additional runoff has been provided for with the extended detention basin, "Pond W-5", located at the southern edge of the Sterling Ranch boundary. The site generally drains from northeast to southwest. The site currently has drainage infrastructure built with prior Sterling Ranch Filing 4 and in the site's southwest corner that collects and conveys the Sterling Ranch Filing 5 runoff to Pond W-5. Currently, the site is undeveloped vacant land. Sand Creek is located approximately 500 feet east of the site running north to south. Currently, JR engineering is performing studies and plans to address Sand Creek stabilization adjacent to the site under PCD project number CDR-20-004 and is undergoing review.

—include Pond W-8

The proposed drainage on the site closely follows the approved "Master Development Drainage Plan for Sterling Ranch"; (MDDP) prepared by M&S Civil Consultants, Inc., dated October 24, 2 site is tributary to Pond W-5 and full-spectrum detention for the site was previously analyze to show it still functions be found in the Final Drainage Report for Sterling Ranch Filing 2 as shown in Appendix D. appropriately with revised development

EXISTING SUB-BASIN DRAINAGE

The existing condition of the site was broken into four on-site basins, as well as three off-site basins. The basin and sub-basin delineation is shown in the existing drainage map in Appendix E and is described as follows:

Basin A1 (Q_5 =1.0 cfs, Q_{100} =7.6 cfs) is 5.09 acres and 0 percent impervious consists of the northern portion of the proposed Sterling Filing No. 5 site. Runoff from this basin drains via overland flow to the south west into the existing storm sewer built with Filing 4 just north of Sterling Ranch Road

from this area.

located at DP3. Collected runoff is piped west to the DP5 and then piped via existing storm infrastructure south to Pond W-5 built with Filing 2.

Basin A2 (Q_5 =0.8 cfs, Q_{100} =5.9 cfs) is 2.89 acres and 0 percent impervious consists of the south western portion of the proposed Sterling Filing No. 5 site. Runoff from this basin drains via overland flow to the south west into the existing storm sewer built with Filing 5 just north of Sterling Ranch Road located at DP3. Collected runoff is piped west to the DP5 and then piped via existing storm infrastructure south to Pond W-5 built with Filing 2.

Basin A3 (Q_5 =0.5 cfs, Q_{100} =3.7 cfs) is 1.94 acres and 0 percent impervious consists of the southern portion of the proposed Sterling Filing No. 5 site. Runoff from this basin drains via overland flow to the south west into the existing storm sewer built with Filing 4 just north of Sterling Ranch Road located at DP3. Collected runoff is piped west to the DP5 and then piped via existing storm infrastructure south to Pond W-5 built with Filing 2.

Basin A4 (Q_5 =6.8 cfs, Q_{100} =16.0 cfs) is 4.83 acres and 47 percent impervious consists of the southeastern portion of the proposed Sterling Filing No. 5 site as well as the norther portion of Sterling Ranch Road. Runoff from this basin drains via overland flow to Sterling Ranch Road, then west to the existing 15' Type R inlet located at DP5. Collected runoff is piped via existing storm infrastructure south to Pond W-5 built with Filing 2.

spreadsheet. Please update

Basin OS1 (Q_5 = 1.4 cfs, Q_{100} =3.1 cfs) is 2.17 acres and 19 percent impervious, consists of the southern portion of the proposed Branding Iron at Sterling Ranch Filing No.1. Runoff from this basin drains to the south into the proposed Sterling Filing No. 5 northern site Basin A1. Runoff is collected into the existing storm sewer built with Filing 4 just north of Sterling Ranch Road located at DP3. Collected runoff is piped west to the DP5 and then piped via existing storm infrastructure south to Pond W-5 built with Filing 2.

Basin OS2 (Q_5 =14.4 cfs, Q_{100} =51.0 cfs) is 31.70 acres and 20 percent impervious and is located directly north of the site in the Barbarick subdivision per the "Final Drainage Report for Barbarick Subdivision, Portions of Lots 1, 2 and Lots 3&4" prepared by Matrix Design Group dated June 6, 2016. Historic runoff from this site drains south onto the Sterling Ranch Filing 4 site at DP2. Detained flow from this basin will be piped through the Sterling Ranch Filing 4 site to the detention Pond W-5 and will outfall to Sand Creek. The emergency overflow path for this pond is routed east around the Sterling ranch Filing 4 lots and onto the northwest corner of Sterling Ranch Filing 5. The emergency overflow path is conveyed south via a concrete line swale and grass swale to DP3.

Basin OS3 (Q_5 =19.4 cfs, Q_{100} =46.3 cfs) is 13.90 acres and 49 percent impervious, consists of the Sterling Ranch Filing No.4. Runoff from this basin drains to the southwest into the storm sewer built with Sterling Ranch Filing 4 and DP4. Collected runoff is piped south to the existing detention pond W-5 built with Filing 2 and outfalls to Sand Creek.

BASIN SUMMARY TABLE Tributary Area Percent t_c Q_5 Q_{100} Sub-basin (acres) Impervious C_5 C_{100} (min) (cfs) (cfs) 5.09 0.08 0.35 28.7 1.0 A1 0% 7.6 A2 2.89 0% 0.08 0.35 15.3 0.8 5.9 А3 1.94 0% 0.08 0.35 17.9 0.5 3.7 A4 4.83 47% 0.44 0.61 18.3 6.8 16.0 OS1 2.17 19% 0.19 0.42 9.6 1.7 6.4 OS₂ 31.70 20% 0.21 0.44 14.4 51.0 36.3 13.90 19.4 OS3 0.40 0.57 15.5 46.3

Table 1: Existing condition basin summary table

PROPOSED DRAINAGE CONDITIONS

PROPOSED SUB-BASIN DRAINAGE

The proposed site was broken into nine on-site basins and four off-site basin that lead into the existing storm structures on Sterling Ranch Road and Sterling Ranch Filing 4. The proposed basin (and subbasin) delineation is shown on the proposed drainage basin map within Appendix E and is described as follows.

Basin OS1 (Q_5 =1.6 cfs, Q_{100} =6.7 cfs) is 2.05 acres and 20% impervious, consists of single-family residential lots, open space, and lawns part of the Branding Iron at Sterling Ranch Filing No. 1 development. Runoff from this basin drains via sheet flow to the proposed swale which conveys flows to the Type C sump inlet at DP1 within Basin A1. Collected runoff is piped south to the proposed manhole at DP2.1.

Basin A1 (Q_5 =0.2 cfs, Q_{100} =0.8 cfs) is 0.22 acres and 27% impervious, consists of a portion of single-family residential lots, open space, lawns, and a proposed swale. Runoff from this basin sheet flows to the swale and is conveyed to the Type C sump inlet at DP1. This inlet was sized to capture all flow in the 5 and 100-year storm. In the event that the inlet at DP1 is clogged, the flow will overtop the proposed sidewalk and flow through Tract A to Manor House Way. Collected runoff is piped south to the proposed manhole at DP2.1.

Basin OS2 (Q_5 =0.3 cfs, Q_{100} =1.0 cfs) is 0.25 acres and 28% impervious, consists of tie-back slopes from the existing Barbarick full-spectrum detention pond and an existing concrete channel from the existing pond spillway. Runoff from this basin drains via sheet flow to the existing channel to the proposed double Type C inlet at DP2. Collected runoff is piped east to the manhole at DP2.1 (Q_5 =2.1 cfs, Q_{100} =8.3 cfs). All captured flow from DP2.1 is piped to the proposed manhole at DP4.1.

Basin A2 (Q_5 =1.0 cfs, Q_{100} =3.1 cfs) is 0.99 acres and 38% impervious, consists of single-family residential lots, open space, lawns, and a proposed swale. Runoff from this basin drains via sheet flow to the proposed swale which conveys flows to the proposed triple Type C sump inlet at DP3. This inlet was sized to capture all flow in the 5 and 100-year storm. In the event that the inlet at DP3 is clogged, the flow will overtop the existing sidewalk and flow through School House Drive to Hazlett Drive. Collected runoff is piped to the existing manhole at DP5.2.

Basin A3 (Q_5 =3.4 cfs, Q_{100} =7.9 cfs) is 1.72 acres and 66% impervious, consists of single-family residential lots, open space, lawns, sidewalks and a portion of Manor House Way. Runoff from this basin drains via overland flow, sheet flow, and curb and gutter to the proposed 15' Type R on-grade inlet at DP4. This inlet was sized to capture Q_5 =1.1 cfs & Q_{100} =7.7 cfs and bypass Q_5 =0.0 cfs & Q_{100} =0.2 cfs to the 10' Type R sump inlet at DP5. Collected runoff is piped to the proposed manhole at DP4.1 (Q_5 =5.3 cfs, Q_{100} =15.3 cfs) and then to the proposed 10' Type R sump inlet at DP5.1.

Basin A4 (Q_5 =5.5 cfs, Q_{100} =13.1 cfs) is 3.02 acres and 63% impervious, consists of single-family residential lots, open space, lawns, sidewalks and portions of Manor House Way, School House Drive, and Abby House Lane. Runoff from this basin drains via overland flow, sheet flow, and curb and gutter to the proposed 10' Type R sump inlet at DP5 (Q_5 =5.5 cfs, Q_{100} =13.2 cfs). This inlet was sized to capture all flow in the 5 and 100-year storm. In the event that the inlet at DP5 is clogged, the flow will overtop the existing sidewalk and flow through School House Drive to Hazlett Drive. Collected flows from DP4.1 and DP5 combine at DP5.1 (Q_5 =10.5 cfs, Q_{100} =27.7 cfs) which is then piped to the existing manhole at DP5.2 (Q_5 =10.9 cfs, Q_{100} =29.9 cfs). Flows are then piped to the existing manhole at DP7.2.

Basin A5 (Q_5 =3.8 cfs, Q_{100} =9.2 cfs) is 2.04 acres and 59% impervious, consists of single-family residential lots, open space, lawns, sidewalks and portions of School House Drive and Abby House Lane. Runoff from this basin drains via overland flow, sheet flow, and curb and gutter to the proposed 15' Type R on-grade inlet at DP6. This inlet was sized to capture Q_5 =3.8 cfs & Q_{100} =8.7 cfs and bypass Q_5 =0.0 cfs & Q_{100} =0.5 cfs to the series of existing Filing 4 sump inlets located at School House Drive which have the capacity for the additional flow. See the Ex. Inlet Bypass Exhibit in Appendix E for more information. Collected runoff is piped to the proposed manhole at DP7.1.

Basin A6 (Q_5 =2.8 cfs, Q_{100} =5.9 cfs) is 1.00 acres and 78% impervious, consists of single-family residential lots, open space, lawns, sidewalks and a portion of School House Drive. Runoff from this basin drains via overland flow, sheet flow, and curb and gutter to the proposed 15' Type R on-grade inlet at DP7. This inlet was sized to capture all flow in the 5 and 100-year storm. Collected runoff is piped to the proposed manhole at DP7.1 (Q_5 =6.2 cfs, Q_{100} =13.9 cfs) and then to the existing manhole at DP7.2 (Q_5 =16.4 cfs, Q_{100} =42.6 cfs). Flows from DP7.2 are then piped to the existing manhole at DP8.1.

Basin C4.1 (Q_5 =1.1 cfs, Q_{100} =2.3 cfs) is 0.31 acres and 79% impervious, consists of a portion of School House Drive, a portion of Hazlett Drive, a portion of Filing 4 and 5 single-family residential lots, open

space, and lawns. Runoff from this basin drains via sheet flow to the existing curb and gutter where it is conveyed west and then south to the proposed 5' Type R on-grade inlet at DP8. This inlet was sized to capture Q_5 =1.1 cfs & Q_{100} =1.9 cfs and bypass Q_5 =0.0 cfs & Q_{100} =0.4 cfs to the series of existing Filing 2 and 4 inlets located along Sterling Ranch Road and Marksheffel Road, which have the capacity for the additional flow. See the Ex. Inlet Bypass Exhibit in Appendix E for more information. Collected runoff is piped to the existing manhole at DP8.1 (Q_5 =17.0 cfs, Q_{100} =43.8 cfs) and then to the existing manhole at DP9.1.

Basin A7 (Q_5 =1.6 cfs, Q_{100} =4.5 cfs) is 1.34 acres and 53% impervious, consists of single-family residential lots, open space, and lawns. Runoff from this basin drains via overland flow and sheet flow to the proposed swale and continues west to the proposed Type C sump inlet at DP9. This inlet was sized to capture all flow in the 5 and 100-year storm. In the event that the inlet at DP9 is clogged, the flow will overtop the existing sidewalk and flow through Hazlett Drive to Sterling Ranch Road. Collected runoff is piped to the existing manhole at DP9.1 (Q_5 =18.2 cfs, Q_{100} =47.2 cfs) and then is piped south within the storm infrastructure along Sterling Ranch Road storm infrastructure which eventually conveys the flow to the existing manhole at DP16.1.

Basin A8 (Q_5 =0.4 cfs, Q_{100} =1.2 cfs) is 0.29 acres and 54% impervious, consists of single-family residential lots, open space, and lawns. Runoff from this basin drains via overland and sheet flow to the existing curb and gutter along Dines Boulevard and then flows to the existing 15' Type R on-grade inlet at DP10 within Basin C4.2.

Basin C4.2 (Q_5 =5.8 cfs, Q_{100} =14.0 cfs) is 3.35 acres and 61% impervious, consists of a portion of Sterling Ranch Road, a portion of Dines Blvd, Filing 4 single-family residential lots, open space, and lawns. Runoff from this basin drains via sheet flow to the existing curb and gutter west along Sterling Ranch Road to an existing on-grade inlet at DP10 built with Sterling Ranch Filing 2. This existing inlet was designed to capture Q_5 =6.1 cfs & Q_{100} =12.9 cfs and bypass Q_5 =0.0 cfs & Q_{100} =2.5 cfs to the series of existing Filing 2 and 4 inlets located along Sterling Ranch Road and Marksheffel Road, which have the capacity for the additional flow. See the Ex. Inlet Bypass Exhibit in Appendix E for more information. Collected runoff from the existing inlet conveys the flow to the existing manhole at DP16.1 (Q_5 =84.8 cfs, Q_{100} =197.4 cfs). DP16.1 represents the total flow to the existing detention Pond W-5 build within Filing 2 and combines the collected runoff from DP9.1, DP10, DP11, DP14.1, and DP15.1. Existing Pond W-5 outfalls to Sand Creek as designed with Filing 2.

Basin A9 (Q_5 =1.5 cfs, Q_{100} =3.8 cfs) is 0.79 acres and 54% impervious, consists of single-family residential lots, open space, lawns, sidewalks and a portion of Manor House Way. Runoff from this basin drains via overland flow, sheet flow, and curb and gutter offsite to the existing curb and gutter along Dines Boulevard. The flows collect in an existing 10' Type R sump inlet at DP17 which was calculated to have capacity to capture all of the additional flow. Captured flows are piped via an existing storm pipe to existing water quality and detention Pond W-8 on the east side of Dines and eventually outfalls to Sand Creek.

BASIN SUMMARY TABLE Tributary Percent Area t_{c} Q_5 Q₁₀₀ Sub-basin C_5 (acres) **Impervious** C_{100} (min) (cfs) (cfs) 0.2 Α1 0.22 27% 0.28 0.49 10.4 0.8 A2 0.99 38% 0.30 0.50 17.1 1.0 3.1 7.9 А3 1.72 66% 0.53 0.66 13.4 3.4 13.1 A4 3.02 0.51 15.0 5.5 63% 0.65 Α5 2.04 59% 0.50 13.2 3.8 9.2 0.65 1.00 78% 9.0 2.8 5.9 Α6 0.65 0.76 Α7 1.34 53% 0.38 0.55 18.5 1.6 4.5 1.2 0.29 0.39 0.55 10.7 0.4 **A8** 54% Α9 0.79 54% 0.42 0.58 7.2 1.5 3.8 OS1 2.05 20% 0.19 0.42 9.6 1.6 6.7 OS2 0.25 0.52 8.6 0.3 1.0 28% 0.31 C4.1 0.31 79% 0.69 0.80 5.0 1.1 2.3 C4.2 3.35 61% 0.54 0.69 19.0 5.8 14.0

Table 2: Proposed condition basin summary table

There are several locations where proposed Filing 5 storm sewer connects to existing storm sewer built with previous Sterling Ranch Filings 2 and 4.

- The proposed Filing 5 flows at DP5.1 ($Q_5=10.5$ cfs, $Q_{100}=27.7$ cfs) are located at the same location as Filing 4 DP2.i ($Q_5=11.6$ cfs, $Q_{100}=25.7$ cfs) and have a 2 cfs increase to the anticipated 100-year flow at the existing 24" RCP.
- The proposed Filing 5 flows at DP7.1 (Q_5 =6.2 cfs, Q_{100} =13.9 cfs) are located at the same location as Filing 4 DP3.i (Q_5 =7.1 cfs, Q_{100} =19.4 cfs) and have less than the anticipated flow at the existing 18" RCP.
- The proposed Filing 5 flows at DP7.2 ($Q_5=16.4$ cfs, $Q_{100}=42.6$ cfs) are located at the same location as Filing 4 DP3.2 ($Q_5=16.9$ cfs, $Q_{100}=40.2$ cfs) and have a 2.4 cfs increase to the anticipated 100-year flow at the existing storm manhole.
- The proposed Filing 5 flows at DP9.1 ($Q_5=18.2$ cfs, $Q_{100}=47.2$ cfs) are located at the same location as Filing 2 DP2.2 ($Q_5=56.9$ cfs, $Q_{100}=138.7$ cfs) and have less than the anticipated flow at the existing storm manhole.
- The proposed Filing 5 flows at DP11, DP12, DP13, DP14, and DP15.1 are the same flows the inlets at Filing 4 DP9, DP5, DP6.1, DP6.2, and DP7.1 capture.
- The proposed Filing 5 flows at DP14.1 have increased by 0.5 cfs due to the bypass flow from DP6 and are increased by 0.5 cfs from the flows at the inlet at Filing 4 DP6.2.
- The proposed Filing 5 flows at DP16.1 (Q_5 =84.8 cfs, Q_{100} =197.4 cfs) is located at the same location as Filing 4 DP10 (Q_5 =55.8 cfs, Q_{100} =149.7 cfs) and Filing 2 DP2.5 (Q_5 =96.6 cfs, Q_{100} =250.7 cfs). The downstream storm infrastructure from this design point was built in Filing 2 and the proposed flows are less than was anticipated in the existing storm manhole.

Based on these comparisons, there are no negative impacts anticipated to existing downstream storm infrastructure.

The Barbarick Subdivision to the northwest of the site has a full-spectrum detention pond emergency spillway that connects to an existing concrete channel along the northern side of Sterling Ranch Filing 4. The emergency overflow of the existing pond is 85.4 cfs, but for design purposes that value was rounded to 86 cfs. The existing concrete channel directs flows to a proposed double Type C inlet (DP2) within the site that will collect 23.5 cfs and connect to the proposed 24" RCP. The remaining 62.5 cfs will continue south within a proposed TRM-lined channel to a proposed triple Type C inlet (DP3). The proposed inlet will collect 50 cfs and connect to the proposed 36" RCP. The flows then combine within the downstream manhole for a total piped flow of 73.5 cfs within the existing storm system. The remaining 12.5 cfs will then overtop the existing sidewalk and flow south along Hazlett Drive. The flows will then remain in the north-half of Sterling Ranch Road and continue flowing west to a series of inlets along Sterling Ranch Road. Of the 86 cfs total emergency overflow from the existing Barbarick FSD pond, 73.5 cfs will be captured within the storm sewer system and 12.5 cfs will flow along proposed roadways. See Appendix C for the applicable emergency overflow calculations.

Provide analysis of swale carrying overflow of 62.5 cfs

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

Storm drainage analysis and design criteria for this project were taken from the "City of Colorado Springs/El Paso County Drainage Criteria Manual" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "Urban Storm Drainage Criteria Manual" Volumes 1 to 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual" (CSDCM), dated May 2014, as adopted by El Paso County.

HYDROLOGIC CRITERIA

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. On-site drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. Runoff was calculated using the Rational Method, and rainfall intensities for the 5-year and the 100-year storm return frequencies were obtained from Table 6-2 of the CSDCM. One hour point rainfall data for the storm events is identified in the chart below. Runoff coefficients were determined based on proposed land use and from data in Table 6-6 from the CSDCM. Time of concentrations were developed using equations from CSDCM. All runoff calculations and applicable charts and graphs are included in the Appendices.

Table 3: 1-hr Point Rainfall Data

Storm	Rainfall (in.)
5-year	1.50
100-year	2.52

HYDRAULIC CRITERIA

The Rational Method and USDCM's SF-2 and SF-3 forms were used to determine the runoff from the minor and major storms on the site. Sump and on-grade inlets were sized using MHFD UD-Inlet v5.02. StormCAD was used to model the proposed storm sewer system within the site to analyze the proposed HGL calculations for the Construction Drawings. Autodesk Hydraflow express was used to size any proposed channels or swales. Swales were sized based on the peak 100-year flows with the minimum and maximum swale slopes. Swales were checked for shear stress and turf reinforcement mat (TRM) was added for swales with a Froude number in excess of 0.80. Per criteria velocities were checked to be less than 5 ft/s in the proposed swales otherwise TRM was proposed. Manhole and pipe losses for the model were obtained from the *Modeling Hydraulic and Energy Gradients in Storm Sewers: A Comparison of Computation Methods*, by AMEC Earth & Environmental, Inc. The manhole loss coefficients used in the model can be seen in Table 4 (below) this method is accurate for pipes 42" and smaller. For pipes larger than 42", the Standard head-loss coefficients as recommended by Bentley were used as shown in Table 5. All hydraulic calculations are presented in Appendix C.

Table 4: Storm Head-loss Coefficients

	StormCA	D Conversion Tal	ble					
(0)	Bend Angle	K coefficient (Conversion					
osso	0	0.08	5					
d L	22.5	0.1						
Bend Loss	45	0.4						
m	60	0.64						
	90	1.32						
	1 Lateral K coefficient Conversion							
	Bend Angle	Non Surcharged	Surcharged					
SS	45	0.27	0.47					
2	60	0.52	0.9					
<u>aa</u>	90	1.02	1.77					
Lateral Loss	2 Latera	Is K coefficient Co	onversion					
	45	0.96	6					
	60	1.16	3					
	90	1.52	2					

Type of Manhole

Trunkline only with no bend at the junction

Trunkline only with 45° bend at the junction

Trunkline only with 90° bend at the junction

Trunkline with one lateral

Two roughly equivalent entrance lines with angle < 90° between lines

Two roughly equivalent entrance lines with angle > 90° between lines

Two roughly equivalent entrance lines with angle > 90° between lines

Two roughly equivalent entrance lines with angle > 90° between lines

Three or more entrance lines

1.0

Table 5: Storm Head-loss Coefficients

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

The proposed stormwater conveyance system was designed to convey the developed Sterling Ranch Filing No. 5 runoff to an existing (Filing 2) full-spectrum water quality and detention Pond W-5 and an existing full-spectrum water quality and detention Pond W-8 via existing and proposed storm sewer. The existing ponds were designed to release at less than historic rates to minimize adverse impacts downstream. Treated water will outfall directly into the Sand Creek Drainageway, where it will eventually outfall into Fountain Creek. A proposed drainage map is presented in Appendix E showing locations of the ponds.

FOUR STEP PROCESS TO MINIMIZE ADVERSE IMPACTS OF URBANIZATION

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four-step process to minimize adverse impacts of urbanization. The four-step process includes reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls.

Step 1 – Reducing Runoff Volumes: The Sterling Ranch Filing No. 5 development project consists of single-family homes with open spaces and lawn areas interspersed within the development which helps

disconnect impervious areas and reduce runoff volumes. Roof drains from the structures will discharge to lawn areas, where feasible, to allow for infiltration and runoff volume reduction.

Step 2 – Stabilize Drainage ways: The site lies within the Sand Creek Drainage Basin. Basin and bridge fees will be due at time of platting. These funds will be used for the channel stabilization being designed by JR Engineering adjacent to the site and on future projects within the basin to stabilize drainage ways. The site does not discharge directly into the open drainage way of Sand Creek, therefore no downstream stabilization will be accomplished with this project

Step 3 – Treat the WQCV: Water Quality treatment for this site is provided in the existing full spectrum water quality detention Pond W-5 and Pond W-8. The runoff from this site will be collected within inlets and conveyed to the proposed ponds via storm sewer. Upon entrance to the ponds, flows will be captured in a forebay designed to promote settlement of suspended solids. A trickle channel is also incorporated into the ponds to minimize the amount of standing water. The outlet structures have been designed to detain the water quality capture volume (WQCV) for 40 hours, and the extended urban runoff volume (EURV) for 72 hours. All flows released from the pond will be reduced to less than historic rates.

Step 4 –BMPs will be utilized to minimize off-site contaminants and to protect the downstream receiving waters. The Filing No. 5 site is residential. There is no proposed commercial or industrial use for the site. The permanent erosion control BMPs include asphalt drives, storm inlets and storm pipe, permanent vegetation, the full spectrum detention Pond W-5 and Pond W-8. Maintenance responsibilities and plans will be defined at the time of final platting.

WATER QUALITY

Filing 1 (Pond W-8) and Filing 2 (Pond W-5)

In accordance with Section 13.3.2.1 of the CCS/EPCDCM, full-spectrum water quality and detention are provided for all developed basins. This site will drain into two existing full-spectrum detention ponds (Pond W-5 and Pond W-8) developed during the Sterling Ranch Filing Project. Further details as well as all pond volume, water quality, and outfall calculations are included in the Sterling Ranch Filing 2 Final Drainage Report.

Pond W-5 corresponds to pond FSD6 from the Master Development Drainage Plan for Sterling Ranch", (MMDP) prepared by M&S Civil Consultants, Inc., dated October 24, 2018 and is releasing less than the MDDP values in the proposed design. A summary of Pond W-5 has been included below for reference. From the Filing No.2 drainage report, Pond W-5 accounted for Sterling Ranch Filing 5 area to have 65% imperviousness. The total imperviousness for the Filing 5 development is 59% imperviousness, and the total runoff is less than what was anticipated; therefore the existing Pond W-

5 will function as intended.

Engineer must confirm in the Drainage Report that the existing offsite or onsite PBMPs that the site is tributary to are functioning as intended (ie: that no minor or major maintenance is required per a visual inspection and per the O&M Manual).

Include Pond W-8

spreadsheets for both ponds to show they still

Table 6: Pond W-5 Volumes & Release Rates

	REQUIRED VOLUME PROVIDED VOLUME (AC-FT) (AC-FT)		WQCV	EURV	5-YEAR RELEASE	100-YEAR RELEASE		
	VOLUME (AC-FT) (AC-FT)		(AC-FT)	(AC-FT)	(CFS)	(CFS)		
POND W-5	18.217	18.441	3.29	11.71	2.7	137.1		

Pond W-8 corresponds to pond FSD13 from the "Master Development Drainage Plan for Sterling Ranch", (MMDP) prepared by M&S Civil Consultants, Inc., dated October 24, 2018 and is releasing less than the MDDP values in the proposed design. Pond W-8 was analyzed with the "Final Drainage Report for Branding Iron at Sterling Ranch Filing No. 1" prepared by M&S Civil Consultants, Inc., dated October, 2018. Per the drainage map excerpts shown in Appendix D, the existing Pond W-8 has a total tributary area of 25.5 acres with about 65% impervious. The addition of Basin A9 developed flows part of the site are an additional 0.79 acres at 54% impervious. The increased area only results in a 3% increase in the total area and slightly decreases the overall percent impervious for a new total area of 26.3 acres and 64.7% impervious. Therefore, the additional area added to Pond W-8 is negligible to the overall pond characteristics and the existing Pond W-8 will function as intended.

Provide updated pond

EROSION CONTROL PLAN

It is the policy of El Paso County that a Final Grading and Erosion Control Plan be submitted with the Final Drainage Report, construction drawings, and plat prior to obtaining a grading permit.

add: "metro"

OPERATION & MAINTENANCE

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. The district shall be responsible for the inspection, maintenance, rehabilitation and repair of stormwater and erosion control facilities located on the property unless another party accepts such responsibility in writing and responsibility is properly assigned through legal documentation. Access is provided from onsite facilities and easements for proposed infrastructure located offsite. A maintenance road was provided for the existing Pond W-5 and information on the road can be found in the Final Drainage Report for Sterling Ranch Filing No. 2. The maintenance road access is off Marksheffel Road and wraps around the top of the pond providing access to the inflow pipe wing walls and outlet structure for the pond. A maintenance road was provided for the existing Pond W-8 and information on the road can be found in the approved Sterling Ranch Filing No. 1 Storm Sewer Plans. The maintenance road access is off Dines Boulevard and provides access to the inflow pipe forebay and outlet structure for the pond.

DRAINAGE AND BRIDGE FEES

The site lies within the Sand Creek Drainage Basin. Anticipated drainage and bridge fees are presented below.

Sterling Ranch Filing 5 - Impervious Area Calculation										
Breakdown	Area (acres)	% Impervious	Impervious Acres							
R.O.W.	2.9283	100%	2.93							
Lots	6.2128	65%	4.04							
Tracts A-D - Open Space	2.5223	2%	0.05							
Total	11.6634		7.02							

Please revise to 2024 fees

2023 Drainage and Bridge Fee – Sterling Ranch Filing 5												
	Drainage Fee	•	· ·	Sterling Ranch Filing								
Acres (ac.)	(Per Imp. Acre)	(Per Imp. Acre)	5 Drainage Fee	5 Bridge Fee								
7.02	\$23,821	\$9,743	\$167,223.42	\$68,395.86								

CONSTRUCTION COST OPINION

A construction cost opinion for the public storm drainage infrastructure has been provided below. The below cost opinion is only an estimate of facility and drainage infrastructure cost and may vary.

Verify total lengths of pipe

Ensure all storm quantities match with information shown in FAE

	Sterling Ranch Filing No. 5 (Public Non-Reimbursable)												
Item	Description	Quantity	Unit	Unit Price	Cost								
1	18" RCP	212	L.F.	\$ 76	\$ 16,112.00								
2	24" RCP	626	L.F.	\$ 91	\$ 56,966.00								
3	36" RCP	24	L.F.	\$ 140	\$ 3,360.00								
4	5' Curb Inlet Type R < 10 ft.	1	Ea.	\$ 7,391	\$ 7,391.00								
5	10' Curb Inlet Type R < 10 ft.	1	Ea.	\$ 11,450	\$ 11,450.00								
6	15' Curb Inlet Type R < 5 ft.	2	Ea.	\$ 11,995	\$ 23,990.00								
7	15' Curb Inlet Type R < 10 ft.	1	Ea.	\$ 12,858	\$ 12,858.00								
8	Storm Sewer MH, slab base	6	Ea.	\$ 7,082	\$ 42,492.00								
9	Grated Inlet CDOT Type C	2	Ea.	\$ 5,611	\$ 11,222.00								
10	Grated Inlet CDOT Type C-Double	1	Ea.	\$ 11,222	\$ 11,222.00								
11	Grated Inlet CDOT Type C-Triple	1	Ea.	\$ 16,833	\$ 16,833.00								
	<u> </u>			Sub-Total	\$ 213,896.00								

Per LDC section 8.5.5.C.3.b(ii) Fee Reductions, Credits or Reimbursement for Facilities, this development requests that no cash drainage or bridge fees are due at platting as the value of reimbursable DBPS improvements for the Sand Creek Tributary segment 159, 164, 169, 186, the Sand Creek Mainstern segments 170, 187 and 163 and the Briargate Bridge shown in the below table exceed the drainage and bridge fee estimate shown above.

Sterling Ranch Deferred Drainage Fees Analysis
Reimbursable Costs associated with DBPS Segment 159 and 164, Segment 169 and 186
and Main Channel Segment 159

Project # was cut off

Reimbursable Estimate Segment 159 and 164 from SR F2 FDR (SF-2015) \$1,918,065.00
Reimbursable Estimate Segment 169 and 186 from HN F1 FDR (SF-2213) \$611,628.00
Reimbursable Estimate Mainstem Segment 170, 187 and 163 from SC Plans (CDR \$7,910,175.90
Subtotal Reimb. Costs associated with DBPS Segments 159-164, 169-186 \$10,439,868.90

and Main Channel Segments 170, 187 and 163

Earlier Plats Deferred Drainage Fees (SR F1, Branding Iron F1 & Homestead F1) \$451,616.32 SR F2 (SF-2015) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii) \$400,855.70 SR F3 (SF-2132) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii) \$214,430.47 HN F1 (SF-2213) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii) \$541,225.00 HN F2 (SF-2218) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii) \$310,413.22 HN F3 (SF-2229) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii) \$399,632.48 SR F4 (SF-2230) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii) \$576,864.11 \$167,223.42 SR F5 (SF-23xx) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii) SF-241 Subtotal Deferred Drainage Fees \$3,062,260.72

Unused Reimb. Costs associated with DBPS Segments 159-164, 169-186 and Main Channel Segments 170, 187 and 163

Paimbursable Estimate Prigrate Parkway Pridge from CDP 2113

\$7,377,608.18

¢1 5/6 676 00

Update fees based on 2024 rates

Sterling Ranch Deferred Bridge Fees Analysis

Reimbursable Costs associated with DBPS Bridge at Briargate Parkway and Sterling Ranch Rd.

Reinibursable Estimate bilaryate Parkway bridge Horri CDR 2113	\$1,340,070.90
Reimbursable Estimate Sterling Ranch Road Bridge from CDR 226	\$990,016.80
Subtotal Reimb. Costs associated with BGP and SR Rd. Bridges	\$2,536,693.78
SR F3 (SF-2132) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$87,709.60
HN F1 (SF-2213) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$221,388.00
HN F2 (SF-2218) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$126,974,29

HN F3 (SF-2229) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii) \$163,469.36

SR F4 (SF-2230) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii) \$235,942.53

SR F5 (SF-23xx) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii) \$68,395.86

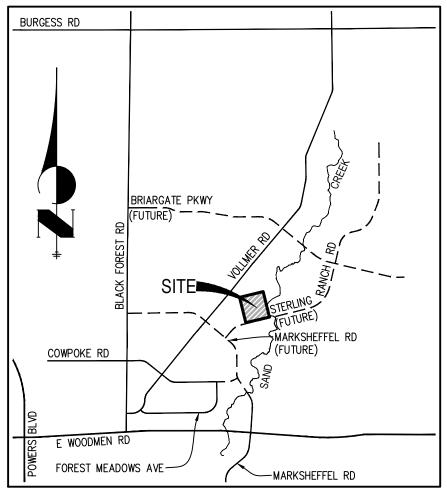
SF-241 Subtotal Deferred Bridge Fees \$903,879.64

Unused Reimb. Costs associated with Briargate Parkway and SR Road Bridges \$642,797.34

* Filing is not yet platted, actual fee at time of approval may be different than shown here Filing No. 4 has been approved, but I believe it has not yet been recorded.

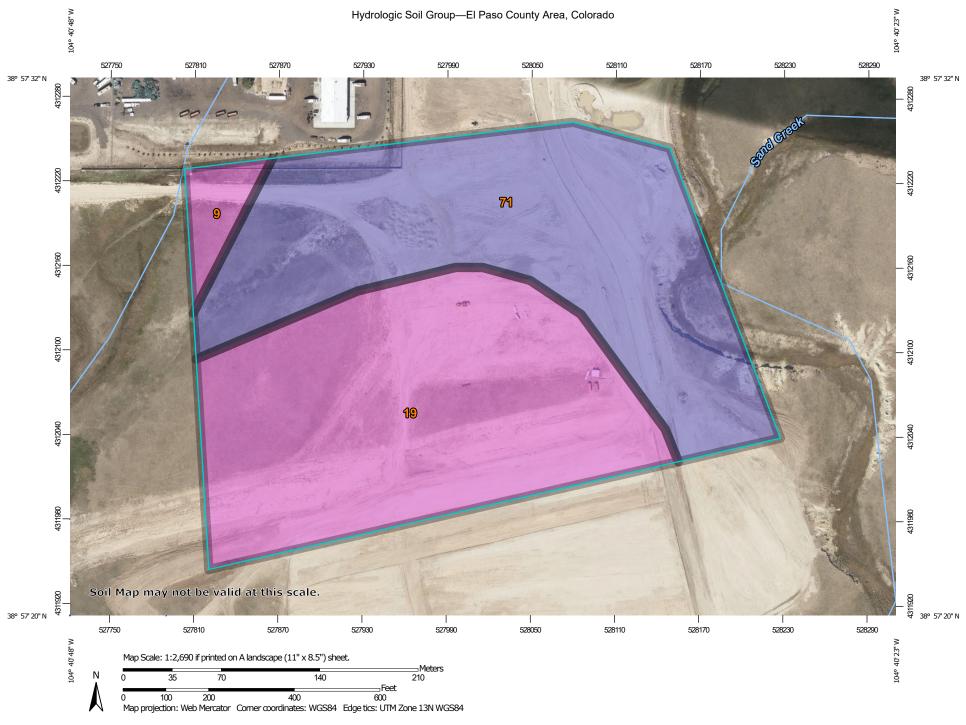
SUMMARY

The proposed Sterling Ranch Filing No. 5 drainage improvements were designed to meet or exceed the El Paso County Drainage Criteria. The proposed development will not adversely affect the offsite drainage-ways or surrounding development. The existing Ponds W-5 and W-8 are to release less than 90% of the predeveloped runoff study associated with the subject site. The site is in continuity with the Sterling Ranch Filing No. 2 Drainage Report and the Sterling Ranch Filing No. 4 Drainage Report. This report is in conformance and meets the latest El Paso County Storm Drainage Criteria requirements for this site. The proposed site does not impact any downstream facility or property.


REFERENCES

- 1. "El Paso County and City of Colorado Springs Drainage Criteria Manual, Vol I & II".
- 2. <u>Urban Storm Drainage Criteria Manual</u> (Volumes 1, 2, and 3), prepared by Mile High Flood District, Revised August 2018, September 2017, and January 2021.
- 3. "Master Development Drainage Plan for Sterling Ranch", (MMDP) prepared by M&S Civil Consultants, Inc., dated October 24, 2018.
- 4. <u>Sand Creek Drainage Basin Planning Study.</u> prepared Kiowa Engineering Corporation, January 1993, revised March 1996.
- 5. <u>Final Drainage Report For Barbarick Subdivision Portion Of Lots 1,2 And Lots 3 and 4,</u> prepared by Matrix Design Group, dated June 2016
- 6. "Final Drainage Report for Sterling Ranch Filing No. 2", prepared by JR Engineering, dated August 2021
- 7. "Final Drainage Report for Sterling Ranch Filing No. 4", prepared by JR Engineering, dated August 14, 2023
- 8. "Final Drainage Report for Branding Iron at Sterling Ranch Filing No. 1", prepared by M&S Civil Consultants, Inc., dated October 2018

Appendix A Vicinity Map, Soil Descriptions, FEMA Floodplain Map



VICINITY MAP

VICINITY MAP HOMESTEAD FILING NO. 5 JOB NO. 25188.16 8/26/22 SHEET 1 OF 1

Centennial 303-740-9393 • Colorado Springs 719-593-2593 Fort Collins 970-491-9888 • www.jrengineering.com

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D contrasting soils that could have been shown at a more detailed Streams and Canals Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 19, Aug 31, 2021 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Aug 19, 2018—Oct 20. 2018 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
9	Blakeland-Fluvaquentic Haplaquolls	А	0.8	3.3%
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	12.0	49.0%
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	11.7	47.7%
Totals for Area of Inter	est	1	24.5	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

NOTES TO USERS

his map is for use in administering the National Flood Insurance Program. It does ot necessarily identify all areas subject to flooding, particularly from local drainage curces of small size. The community map repository should be consulted for sestile updated or additional flood heazerd information.

To class more dealers of included in contract measurements and the contract measurement of the contract measuremen

coastal Base Flood Elevations shown on this map apply only landward of 0.0 horn American Vertical Datum of 1989 (NAVDBS). Users of this FRM should be level from the level from level level from level from level from level from level level from level fr

Boundaries of the floodways were computed at cross sections and interpolate between cross sections. The floodways were based on hydraulic considerations will regard to requirements of the National Flood Insurance Program. Floodways width and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood contri** tructures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance study report for information on flood control structures for this jurisdiction.

The projection used in the presentation of this map was Universal Transverse decision URIN 200 on 13. The hosticontal datum was MADSIS GR899 sphesoid Differences in datum, spheroid, prejection or UTM zones zones used in the conduction of FRINE for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not refer the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD86). These flood elevations must be compared to structure and of 1988 (NAVD86). These flood elevations must be compared to structure and conversion between the National Geodesic Vertical Datum of 1929 and the North American Vertical Datum of 1988, with the National Geodesic Survey website at the National Geodesic Survey website at the National Geodesic Survey and the North American Vertical Datum of 1988, visit the National Geodesic Survey are the National Geodesic Survey at the National Geodesic Survey are the National Geodesic Survey at the National Geodesic Survey at

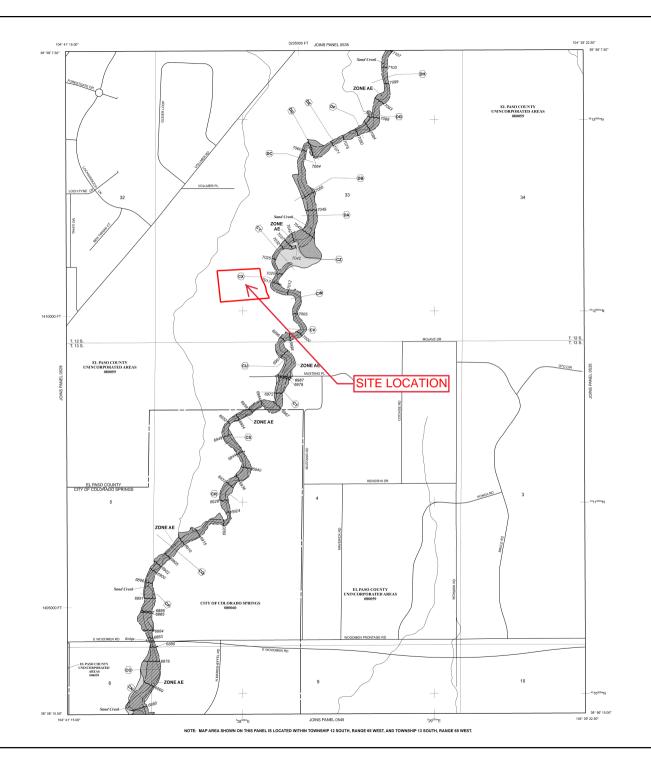
NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

This map reflects more detailed and up-to-date stream channel configurations and loopighin delineations than those shown on the previous FRM for this principlion was been adjusted to contrion these are stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Instrumed SNU, Separative of the SNU of the S

lease refer to the separately printed Map Index for an overview map of the count nowing the layout of map panels; community map repository addresses; and sting of Communities table containing National Flood insurance Program dates for sch community as well as a listing of the panels on which each community is

ontact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange MIX) 1-877-336-2627 for information on available products associated with this M. Available products may include previously issued Letters of Map Change, a lood Insurance Study Report, and/or digital versions of this map. The MSC may so be reached by Fax at 1-800-336-8620 and its website at

you have questions about this map or questions concerning the National Flossurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) sit the FEMA website at http://www.fema.gow/business/nflp.


El Paso County Vertical Datum Offset Table

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION

Digital Flood Insurance Rate Map (DFIRM) was produced through a serating Technical Partner (CTP) agreement between the State of Colorado or Conservation Board (CWCB) and the Federal Emergency Management

LEGEND

SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD

ZONE A No Base Flood Elevations determined.

ZONE AE Base Flood Elevations determined.

ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood

ZONE AO Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also determined.

determined.

Special Flood Hazard Area Formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the Former flood control system is briling restored to provide protection from the 1% annual chance or greater flood.

ZONE A99 Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Bevations

ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood

FLOODWAY AREAS IN ZONE AE

The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encreachment so that the 1% annual chance flood can be carried without substantial increases in flood heights.

OTHER FLOOD AREAS

ZONE X

OTHER AREAS

ZONE X Areas determined to be outside the 0.2% annual chance floodolain.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

OTHERWISE PROTECTED AREAS (OPAs)

Roodolain boundary Zone D Boundary

Boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities. Base Flood Elevation line and value; elevation in feet*

(EL 987) Base Flood Elevation value where uniform within zone;

* Referenced to the North American Vertical Datum of 1988 (NAVD 88) $\begin{picture}(100,0) \put(0,0){\line} \put(0,0){\li$

23-----23

97° 07' 30.00° 32° 22' 30.00° Geographic coordinates referenced to the North American Datum of 1983 (NAD 83) 4274(000mg)

1000-meter Universal Transverse Mercator grid ticks, zone 13

• M1.5

EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL
DECEMBER 7, 2016 - to update corporate limits, to change Base Flood
Special Flood Hazard Areas, to update may format, to add crads and no

To determine if flood insurance is available in this community, contact your insurance agent or call the National Flood Insurance Program at 1-930-538-5630.

MAP SCALE 1" = 500"

250 0 500 1000 H H FEET

FIRM

FLOOD INSURANCE RATE MAP

PANEL 0533G

EL PASO COUNTY, COLORADO AND INCORPORATED AREAS

PANEL 533 OF 1300

(SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS

COMMUNITY NUMBER PANEL SUFFIX

MAP NUMBER 08041C0533G

MAP REVISED **DECEMBER 7. 2018**

Federal Emergency Management Agency

Appendix B Hydrologic Calcs

COMPOSITE % IMPERVIOUS & COMPOSITE EXISTING RUNOFF COEFFICIENT CALCULATIONS

Subdivision: <u>Sterling Ranch Subdivision- Existing</u>

Location: El Paso County

Project Name: Sterling Ranch Filing 5

Project No.: 25188.16

Calculated By: DIG
Checked By: RAB

Date: 11/3/23

	Total	Str	eets (10	0% Impe	rvious)	Re	sidential	(65% Im	pervious)	Light I	ndustria	l (80% In	npervious)	ervious) Lawns (0% Impervious)			Basins Total Weighted C Values		Basins Total Weighted %	
Basin ID	Area (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	ues C ₁₀₀	lmp.
A1	5.09	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	5.09	0.0%	0.08	0.35	0.0%
A2	2.89	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	2.89	0.0%	0.08	0.35	0.0%
A3	1.94	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	0.00	0.0%	0.08	0.35	1.94	0.0%	0.08	0.35	0.0%
A4	4.83	0.90	0.96	1.75	36.2%	0.45	0.59	0.80	10.8%	0.59	0.70	0.00	0.0%	0.08	0.35	2.28	0.0%	0.44	0.61	47.0%
OS1	2.17	0.90	0.96	0.00	0.0%	0.45	0.59	0.62	18.6%	0.59	0.70	0.00	0.0%	0.08	0.35	1.55	0.0%	0.19	0.42	18.6%
OS2	31.70	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.59	0.70	7.91	20.0%	0.08	0.35	23.79	0.0%	0.21	0.44	20.0%
OS3	13.90	0.90	0.96	2.35	16.9%	0.45	0.59	6.86	32.1%	0.59	0.70	0.00	0.0%	0.08	0.35	4.69	0.0%	0.40	0.57	49.0%
TOTAL (A1-A4)	14.75																			0.0%
TOTAL (OS1-OS3)	47.77																			28.3%
TOTAL	62.52																			25.3%

EXISTING STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Sterling Ranch Subdivision- Existing Location: El Paso County

Project Name: Sterling Ranch Filing 5 Project No.: 25188.16

Calculated By: DIG

Checked By: RAB

Date: 11/3/23

		SUB-I	BASIN			INITI	AL/OVERI	LAND			TRAVEL TI	ME					
		D <i>A</i>	ATA				(T _i)				(T _t)			(L	IRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S_o	t _i	L _t	S_t	К	VEL.	t _t	COMP. t_c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
A1	5.09	В	0%	0.08	0.35	180	1.4%	22.1	500	1.6%	10.0	1.3	6.6	28.7	680.0	33.3	28.7
A2	2.89	Α	0%	0.08	0.35	125	4.6%	12.4	385	5.2%	10.0	2.3	2.8	15.3	510.0	29.1	15.3
A3	1.94	Α	0%	0.08	0.35	80	1.7%	13.8	385	2.5%	10.0	1.6	4.1	17.9	465.0	30.5	17.9
A4	4.83	Α	47%	0.44	0.61	100	3.0%	8.3	1465	1.5%	20.0	2.4	10.0	18.3	1565.0	30.8	18.3
OS1	2.17	Α	19%	0.19	0.42	30	25.0%	3.1	660	2.9%	10.0	1.7	6.5	9.6	690.0	28.4	9.6
OS2	31.70	Α	20%	0.21	0.44	300	3.0%	19.4	1665	2.7%	10.0	1.6	16.9	36.3	1965.0	36.9	36.3
OS3	13.90	Α	49%	0.40	0.57	100	1.8%	10.4	800	1.7%	20.0	2.6	5.1	15.5	900.0	24.1	15.5

NOTES:

$$t_c = t_i + t_t \qquad \qquad \text{Equation 6-2} \\ t_i = \frac{0.395(1.1 - C_5)\sqrt{L_t}}{S_{\varrho}^{0.33}} \qquad \qquad \text{Equation 6-3}$$
 Where:

Where:

 t_c = computed time of concentration (minutes)

 t_i = overland (initial) flow time (minutes)

 t_t = channelized flow time (minutes).

 t_i = overland (initial) flow time (minutes)

C₅ = runoff coefficient for 5-year frequency (from Table 6-4)

 L_i = length of overland flow (ft)

 S_0 = average slope along the overland flow path (ft/ft).

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

$$t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$$

Equation 6-4
$$t_c = (26-17i) + \frac{L_t}{60(14i+9)\sqrt{S_t}}$$

Equation 6-5

 t_t = channelized flow time (travel time, min)

 $L_t = \text{waterway length (ft)}$

 S_o = waterway slope (ft/ft) V_t = travel time velocity (ft/sec) = K $\sqrt{S_o}$ K = NRCS conveyance factor (see Table 6-2).

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1.

 $L_t =$ length of channelized flow path (ft)

i = imperviousness (expressed as a decimal)
 S_t = slope of the channelized flow path (ft/ft)

Table 6-2. NRCS Conveyance factors, K

Type of Land Surface	Conveyance Factor, K
Heavy meadow	2.5
Tillage/field	5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

STANDARD FORM SF-3 - EXISTING

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

	Project Name: Sterling Ranch Filing 5
Subdivision: Sterling Ranch Subdivision- Existing	Project No.: 25188.16
Location: El Paso County	Calculated By: DIG
Design Storm: 5-Year	Checked By: RAB
	Date: 11/3/23

				DIRE	CT RUI	NOFF			TO	OTAL R	RUNOF	F	STRE	ET/SW	/ALE		PIF	PΕ		TRAV	EL TIM		
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t_{c} (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	O (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	REMARKS	
	1	OS1	2.17	0.19	9.6	0.40	4.19	1.7															
	2	OS2	31.70		36.3		2.19															Offsite Barbarick Pond Release Piped to DP4	
	3	A1	5.09	0.08	28.7	0.41	2.55	1.0															
	3	A2	2.89	0.08	15.3	0.23	3.50	0.8															
	3	А3	1.94	0.08	17.9	0.16	3.26	0.5															
	3								28.7	1.20	2.55	3.1										Sum of basins A1-A3 and OS1, drain to Ex sto Piped west and south to Ex. Pond W-5	rm
	4	OS3	13.90	0.40	15.5	5.58	3.47	19.4															
	5	A4	4.83	0.44	18.3	2.12	3.22	6.8														Runoff to Ex. Inlet in Sterling Ranch Road Piped south to Ex. Pond W-5	

Motos

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

STANDARD FORM SF-3 - EXISTING

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

	Project Name: Sterling Ranch Filing 5
Subdivision: Sterling Ranch Subdivision- Existing	Project No.: 25188.16
Location: El Paso County	Calculated By: DIG
Design Storm: 100-Year	Checked By: RAB
	Date: 11/3/23

	DIRECT RUNOFF						OTAL R	UNOF	F	STRE	ET/SW	ALE		PIP	E		TRAV	'EL TIN	ЛE				
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street/swale} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	OS1	2.17	0.42	9.6	0.91	7.04	6.4															
	2	OS2	31.70	0.44	36.3	13.86	3.68	51.0															Offsite Barbarick Pond Release Piped to DP4
	3	A1	5.09	0.35	28.7	1.78	4.28	7.6															
	3	A2	2.89	0.35	15.3	1.01	5.87	5.9															
	3	A3	1.94	0.35	17.9	0.68	5.47	3.7															
	3								28.7	4.38	4.28	18.7											Sum of basins A1-A3 and OS1, drain to Ex storm Piped west and south to Ex. Pond W-5
	4	OS3	13.90	0.57	15.5	7.94	5.83	46.3				·											
	5	A4	4.83	0.61	18.3	2.95	5.41	16.0															Runoff to Ex. Inlet in Sterling Ranch Road Piped south to Ex. Pond W-5

Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

COMPOSITE % IMPERVIOUS & COMPOSITE PROPOSED RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Sterling Ranch Subdivision -Proposed Project Name: Sterling Ranch Filing 5

Project No.: 25188.16 Location: El Paso County

Calculated By: GAG

Checked By:

Date: 12/6/23

	Total	Paved	/Streets	(100% Ir	npervious)	Res	sidential	(65% Im	pervious)	L	awns (09	% Imperv	rious)	U	nted C	Basins Total
Basin ID	Area (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	Val C ₅	ues C ₁₀₀	Weighted % Imp.
A1	0.22	0.90	0.96	0.04	18.2%	0.45	0.59	0.03	8.9%	0.08	0.35	0.15	0.0%	0.28	0.49	27.0%
A2	0.99	0.90	0.96	0.04	4.0%	0.45	0.59	0.51	33.5%	0.08	0.35	0.44	0.0%	0.30	0.50	37.5%
A3	1.72	0.90	0.96	0.49	28.5%	0.45	0.59	1.00	37.8%	0.08	0.35	0.23	0.0%	0.53	0.66	66.3%
A4	3.02	0.90	0.96	0.89	29.5%	0.45	0.59	1.57	33.8%	0.08	0.35	0.56	0.0%	0.51	0.65	63.3%
A 5	2.04	0.90	0.96	0.71	34.8%	0.45	0.59	0.76	24.2%	0.08	0.35	0.57	0.0%	0.50	0.65	59.0%
A6	1.00	0.90	0.96	0.51	51.0%	0.45	0.59	0.42	27.3%	0.08	0.35	0.07	0.0%	0.65	0.76	78.3%
A7	1.34	0.90	0.96	0.01	0.7%	0.45	0.59	1.07	51.9%	0.08	0.35	0.26	0.0%	0.38	0.55	52.6%
A8	0.29	0.90	0.96	0.00	0.0%	0.45	0.59	0.24	53.8%	0.08	0.35	0.05	0.0%	0.39	0.55	53.8%
A9	0.79	0.90	0.96	0.10	12.7%	0.45	0.59	0.50	41.1%	0.08	0.35	0.19	0.0%	0.42	0.58	53.8%
OS1	2.05	0.90	0.96	0.00	0.0%	0.45	0.59	0.62	19.7%	0.08	0.35	1.43	0.0%	0.19	0.42	19.7%
OS2	0.25	0.90	0.96	0.07	28.0%	0.45	0.59	0.00	0.0%	0.08	0.35	0.18	0.0%	0.31	0.52	28.0%
C4.1	0.31	0.90	0.96	0.20	64.5%	0.45	0.59	0.07	14.7%	0.08	0.35	0.04	0.0%	0.69	0.80	79.2%
C4.2	3.35	0.90	0.96	1.55	46.3%	0.45	0.59	0.75	14.6%	0.08	0.35	1.05	0.0%	0.54	0.69	60.8%
TOTAL (A1-A9)	11.41															59.2%
TOTAL	17.37															54.8%

PROPOSED STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Sterling Ranch Subdivision -Proposed

Location: El Paso County

Project Name: Sterling Ranch Filing 5

Project No.: 25188.16

Calculated By: GAG

Checked By:

Date: 12/6/23

		SLIR-I	BASIN			INITI	INITIAL/OVERLAND TRAVEL TIME tc CHECK										
			ATA				(T _i)	L7 (1 V D			(T _t)	VIL		(U	RBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	So	t,	L _t	St	K	VEL.	t t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
A1	0.22	В	27%	0.28	0.49	18	2.0%	5.0	455	2.0%	10.0	1.4	5.4	10.4	473.0	25.6	10.4
A2	0.99	А	38%	0.30	0.50	95	2.0%	11.1	440	1.5%	10.0	1.2	6.0	17.1	535.0	23.8	17.1
А3	1.72	А	66%	0.53	0.66	95	2.0%	8.0	795	1.5%	20.0	2.4	5.4	13.4	890.0	20.7	13.4
A4	3.02	А	63%	0.51	0.65	90	2.0%	8.0	1035	1.5%	20.0	2.4	7.0	15.0	1125.0	23.1	15.0
A 5	2.04	А	59%	0.50	0.65	95	2.0%	8.4	750	1.6%	20.0	2.6	4.9	13.2	845.0	21.6	13.2
A6	1.00	Α	78%	0.65	0.76	30	2.0%	3.5	830	1.6%	20.0	2.5	5.5	9.0	860.0	18.2	9.0
A7	1.34	Α	53%	0.38	0.55	75	3.5%	7.4	665	1.0%	10.0	1.0	11.1	18.5	740.0	23.8	18.5
A8	0.29	А	54%	0.39	0.55	95	2.3%	9.5	170	1.5%	20.0	2.4	1.2	10.7	265.0	18.3	10.7
A9	0.79	А	54%	0.42	0.58	30	2.0%	5.4	300	1.9%	20.0	2.8	1.8	7.2	330.0	19.0	7.2
OS1	2.05	В	20%	0.19	0.42	30	25.0%	3.1	660	2.9%	10.0	1.7	6.5	9.6	690.0	28.2	9.6
OS2	0.25	А	28%	0.31	0.52	40	8.0%	4.5	204	0.7%	10.0	0.8	4.1	8.6	244.0	24.4	8.6
C4.1	0.31	А	79%	0.69	0.80	17	2.0%	2.4	220	1.0%	20.0	2.0	1.8	4.2	237.0	14.4	5.0
C4.2	3.35	Α	61%	0.54	0.69	20	2.0%	3.6	1855	1.0%	20.0	2.0	15.5	19.0	1875.0	33.3	19.0

NOTES:

$$t_c = t_i + t_t$$

Equation 6-2

 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.33}}$

Equation 6-3

Where:

 t_c = computed time of concentration (minutes)

 t_i = overland (initial) flow time (minutes)

 t_t = channelized flow time (minutes).

$$t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$$

Equation 6-4

Where

 t_i = overland (initial) flow time (minutes)

C5 = runoff coefficient for 5-year frequency (from Table 6-4)

 $L_i = \text{length of overland flow (ft)}$

 S_0 = average slope along the overland flow path (ft/ft). $t_c = (26 - 17i) + \frac{L_t}{60(14i + 9)\sqrt{S_t}}$

Equation 6-5

Heavy meadow	2.5	
Tillage/field	5	
Short pasture and lawns	7	
Nearly bare ground	10	
Grassed waterway	15	
Paved areas and shallow paved swales	20	

Table 6-2. NRCS Conveyance factors, K

Type of Land Surface

Where:

 t_t = channelized flow time (travel time, min)

 L_t = waterway length (ft)

 S_0 = waterway slope (ft/ft) V_t = travel time velocity (ft/sec) = K $\sqrt{S_0}$ K = NRCS conveyance factor (see Table 6-2). t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1. L_t = length of channelized flow path (ft)

i = imperviousness (expressed as a decimal) $S_t = \text{slope of the channelized flow path (ft/ft)}.$

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration

STANDARD FORM SF-3 - PROPOSED

STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision:	Sterling Ranch Subdivision -Proposed
Location:	El Paso County
Design Storm:	5-Year

Project Name: Sterling Ranch Filing 5
Project No.: 25188.16

Calculated By: GAG
Checked By:
Date: 12/6/23

				DIRE	CT RUN	NOFF			T	OTAL R	RUNOF	F	STRE	ET/SW	/ALE		PII	PE		TRAV	EL TIN	ИE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	I (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
		001		0.40	0.4	0.00	4.00	4.6															Off-site flows overland into Basin A1
	1	OS1	2.05	0.19	9.6	0.39	4.20	1.6															Combines flow at Type C sump inlet at DP1 Flows overland into swale to DP1
		A1	0.22	0.28	10.4	0.06	4.08	0.2															Combines flow at Type C sump inlet at DP1
																							Combined flow of Basin OS1 and Basin A1 within Type C sump inlet
	1								10.4	0.45	4.08	1.8				1.8	0.45	1.0	18	48	4.4	0.2	Flows are piped to manhole at DP2.1 Flows overland to existing swale to Double Type C sump inlet at DP2
	2	OS2	0.25	0.31	8.6	0.08	4 35	0.3								0.3	0.08	1.0	24	144	2.5	1.0	Flows overland to existing swale to bouble Type C sump inlet at DP2 Flows are piped to manhole at DP2.1
		OSE	0.20	0.51	0.0	0.00	1.55	0.5								0.0	0.00	1.0	21		2.0	1.0	Combined flow of DP1 and DP2 within manhole
	2.1								10.5	0.53	4.05	2.1				2.1	0.53	1.2	18	321	5.0	1.1	Flows are piped to manhole at DP4.1
																							Flows overland into swale to Triple Type C sump inlet at DP3
	3	A2	0.99	0.30	17.1	0.30	3.32	1.0								1.0	0.30	1.1	36	24	3.5	0.1	Flows are piped to manhole at DP5.2 Flows along c&g to 15' Type R inlet at DP4. Bypass flows to DP5
	4	A3	1 72	0.53	13.4	0.91	3.69	3.4								3.4	0.91	2.0	24	7	6.6	0.0	Captured flows are piped to manhole at DP4.1
	† ·	7.0		0.00		0.7.	0.07	0.1								0	0.71	2.0			0.0	0.0	Combined flow of DP2.1 and DP4 within manhole
	4.1								13.4	1.44	3.69	5.3				5.3	1.44	2.0	24	161	7.4	0.4	Flows are piped to 10' Type R inlet at DP5.1
																							Flows are piped to 10' Type R inlet at DP5.1 Flows along c&g to 10' Type R inlet at DP5
	5	A4	3.02	0.51	15.0	1.55	3.52	5.5															Combines flow at 10' Type R inlet at DP5.1
	l																						Combined flow of DP4.1 and DP5 within 10' Type R inlet
	5.1								15.0	2.99	3.52	10.5				10.5	2.99	2.0	24	65	9.1	0.1	Flows are piped to manhole at DP5.2
	5.2								17.2	2.20	3.31	10.9				10.9	3.29	2.0	36	44	8.9	0.1	Combined flow of DP3 and DP5.1 within manhole Flows are piped to manhole at DP7.2
	5.2								17.2	3.29	3.31	10.9				10.9	3.29	2.0	30	44	8.9	0.1	Flows along c&g to 15' Type R inlet at DP6. Bypass flows to inlet within SR F4
	6	A5	2.04	0.50	13.2	1.03	3.71	3.8								3.8	1.03	2.9	18	33	8.1	0.1	Captured flows are piped to manhole at DP7.1
																							Flows along c&g to 15' Type R inlet at DP7.
	7	A6	1.00	0.65	9.0	0.65	4.29	2.8								2.8	0.65	2.8	18	56	7.1	0.1	Captured flows are piped to manhole at DP7.1
	7.1								12.2	1 / 0	3.70	6.2				6.2	1.68	5.2	18	70	11.1	0.1	Combined flow of DP6 and DP7 within manhole
	7.1								13.3	1.08	3.70	0.2				0.2	1.08	5.2	18	70	11.1	0.1	Flows are piped to manhole at DP7.2 Combined flow of DP5.2 and DP7.1 within manhole
	7.2								17.3	4.97	3.30	16.4				16.4	4.97	1.8	36	119	9.7	0.2	Flows are piped to manhole at DP8.1
																							Flows along c&g to 5' Type R inlet at DP8. Bypass flows to inlet within SR F4
	8	C4.1	0.31	0.69	5.0	0.21	5.17	1.1							<u> </u>	1.1	0.21	16.4	18	9	9.8	0.0	Captured flows are piped to manhole at DP8.1
	8.1								17.5	E 10	3.29	17.0				17.0	5.18	2.0	36	10	10.0	0.0	Combined flow of DP7.1 and DP8 within manhole Flows are piped to manhole at DP9.1
	ö. I								17.5	5.18	3.29	17.0		-		17.0	5.18	2.0	30	10	10.0	U.C	Flows overland into swale to Type C inlet at DP9
	9	A7	1.34	0.38	18.5	0.51	3.21	1.6								1.6	0.51	4.0	18	60	6.8	0.1	Flows are piped to manhole at DP9.1
																							Combined flow of DP8.1 and DP9 within manhole
	9.1								18.7	5.69	3.19	18.2											Flows are piped to manhole at DP7.2

Page 1 of 2 12/13/2023

STANDARD FORM SF-3 - PROPOSED

STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

	Project Name: Sterling Ranch Filing 5
Subdivision: Sterling Ranch Subdivision -Proposed	Project No.: 25188.16
Location: El Paso County	Calculated By: GAG
Design Storm: 5-Year	Checked By:
	Date: 12/6/23

				DIRE	CT RUI	NOFF			T	OTAL R	UNOF	F	STREET/SWALE			PIPE				TRAVEL TIME			
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	I (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
		A8	0.29	0.39	10.7	0.11	4.03	0.4															Flows off-site along ex. Dines Blvd. c&g to ex. Sterling Ranch Road c&g Flows to ex. inlet at DP10
		C4.2					3.16																Flows off-site along ex. Dines Blvd. c&g to ex. Sterling Ranch Road c&g Flows to ex. inlet at DP10 Combined flow of Basin A8 and Basin C4.2 to ex. inlet at DP10
	10								19.0	1.93	3.16	6.1											Captured flows are piped to manhole at DP16.1
	11	EX F4 [DP9					3.8															Total runoff to ex. sump inlet at Filing 4 DP9 Piped to manhole at DP16.1
	12	EX F4 [DP5					12.0															Total runoff to ex. sump inlet at Filing 4 DP5 Piped to sump inlet at DP14.1
	13	EX F4 [DP6.1					3.9															Total runoff to ex. sump inlet at Filing 4 DP6.1 Piped to sump inlet at DP14.1
	14	EX F4 [DP6.2					2.0															Total runoff to ex. sump inlet at Filing 4 DP6.2 Piped to sump inlet at DP14.1
	14.1	EX F4 [DP6.3					16.9															Combined captured flow DP12, DP13, and DP14 and bypass from DP6. Piped to manhole at DP16.1
	15.1	EX F4 [DP7.1					39.8															Total runoff to ex. manhole at Filing 4 DP7.1 Piped to manhole at DP15.1
	16.1											84.8											Combined flow of DP9.1, DP10, DP11, DP14.1, and DP15.1. Same as Filing 4 DP10. Total runoff piped to ex. Pond W-5
_		EX Branding Iron F1 DP8 1.					1.4															Runoff to ex. 10' Type R inlet at Branding Iron at Sterling Ranch F1 DP8 Flows piped to ex. FSD Pond 8	
	17	Α9	0.79	0.42	7.2	0.33	4.63	1.5				29											Flows off-site along ex. Dines Blvd. c&g to ex. sump inlet at DP17 Flows piped to ex. Pond W-8

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

Values in BLUE indicate they are from the approved "Final Drainage Report for Sterling Ranch Filing No. 4" dated August 14, 2023 by JR Engineering.
Values in RED indicate they are from the approved "Final Drainage Report for Branding Iron at Sterling Ranch Filing No. 1" dated October 2018 by M&S Civil Consultants, Inc.

Page 2 of 2 12/13/2023

STANDARD FORM SF-3 - PROPOSED

STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision:	Sterling Ranch Subdivision -Proposed
Location:	El Paso County

Design Storm: 100-Year

Project Name: Sterling Ranch Filing 5
Project No.: 25188.16
Calculated By: GAG

Checked By:
Date: 12/6/23

				DIF	RECT RI	JNOFF			TOTAL RUNOFF				STRI	EET/SW	ALE			TRAV	VEL TII	ME			
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	(in/hr)	Q (cfs)	tc (min)	C*A (ac)	(in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
		OS1	2.05		9.6	0.87	7.65	6.7															Off-site flows overland into Basin A1 Combines flow at Type C sump inlet at DP1
																							Flows overland into swale to DP1
		A1	0.22	0.49	10.4	0.11	7.47	0.8															Combines flow at Type C sump inlet at DP1 Combined flow of Basin OS1 and Basin A1 within Type C sump inlet
	1								10.4	0.98	7 47	7.3				7.3	0.98	1.0	18	48	6.4	0.1	Flows are piped to manhole at DP2.1
	<u> </u>								10.4	0.70	7.47	7.0				7.5	0.70	1.0	- 10	10	0.4	0.1	Flows overland to existing swale to Double Type C sump inlet at DP2
	2	OS2	0.25	0.52	8.6	0.13	7.89	1.0								1.0	0.13	1.0	24	144	3.7	0.7	Flows are piped to manhole at DP2.1
	0.4								40.5		7.45					0.0		4.0	40				Combined flow of DP1 and DP2 within manhole
	2.1								10.5	1.11	7.45	8.3				8.3	1.11	1.2	18	321	7.1	8.0	Flows are piped to manhole at DP4.1 Flows overland into swale to Triple Type C sump inlet at DP3
	3	A2	0.99	0.50	17.1	0.49	6.34	3.1								3.1	0.49	1.1	36	24	4.8	0.1	Flows are piped to manhole at DP5.2
													0.2	0.03	2.2					169	3.0	0.9	Flows along c&g to 15' Type R inlet at DP4. Bypass flows to DP5
	4	A3	1.72	0.66	13.4	1.14	6.89	7.9								7.7	1.11	2.0	24	7	8.3	0.0	Captured flows are piped to manhole at DP4.1
	4.1								13.4	2.22	/ 00	15.3				15.3	2 22	2.0	24	1/1	10.0		Combined flow of DP2.1 and DP4 within manhole Flows are piped to 10' Type R inlet at DP5.1
	4.1								13.4	2.22	0.89	15.3				15.3	2.22	2.0	24	101	10.0	0.3	Flows along c&g to 10' Type R inlet at DP5, bypass from DP4
	5	A4	3.02	0.65	15.0	1.98	6.64	13.1	15.6	2.01	6.55	13.2											Combines flow at 10' Type R inlet at DP5.1
																							Combined flow of bypass from DP4, DP4.1, and DP5 within 10' Type R inlet.
	5.1								15.6	4.23	6.55	27.7				27.7	4.23	2.0	24	65	11.5	0.1	Flows are piped to manhole at DP5.2
	5.2								17.2	4.72	/ 22	20.0				29.9	4.70	2.0	36		11.0	0.1	Combined flow of DP3 and DP5.1 within manhole Flows are piped to manhole at DP7.2
	5.2								17.2	4.72	0.33	29.9	0.5	0.07	2.5	29.9	4.72	2.0	30	462	3.2	2.4	Flows along c&g to 15' Type R inlet at DP6. Bypass flows to DP14.1 inlet within SR F4
	6	A5	2.04	0.65	13.2	1.33	6.92	9.2					0.0	0.07	2.0	8.7	1.26	2.9	18	33	10.0	0.1	Captured flows are piped to manhole at DP7.1
																							Flows along c&g to 15' Type R inlet at DP7.
	7	A6	1.00	0.76	9.0	0.76	7.80	5.9								5.9	0.76	2.8	18	56	9.0	0.1	Captured flows are piped to manhole at DP7.1
																							Combined flow of DP6 and DP7 within manhole
	7.1								13.3	2.02	6.91	13.9				13.9	2.02	5.2	18	70	13.9	0.1	Flows are piped to manhole at DP7.2
																							Combined flow of DP5.2 and DP7.1 within manhole
	7.2								17.3	6.74	6.32	42.6				42.6	6.74	1.8	36		12.5		Flows are piped to manhole at DP8.1
													0.4	0.04	1.5						2.4		Flows along c&g to 5' Type R inlet at DP8. Bypass flows to DP14.1 inlet within SR F4
	8	C4.1	0.31	0.80	5.0	0.25	9.11	2.3								1.9	0.21	16.4	18	9	11.7	0.0	Captured flows are piped to manhole at DP8.1
	8.1								17.4	6.94	4 20	42.0				43.8	4.04	2.0	36	10	121	0.0	Combined flow of DP7.1 and DP8 within manhole Flows are piped to manhole at DP9.1
	0.1								17.4	0.74	0.30	43.8				43.6	0.94	2.0	30	10	13.1	0.0	Flows overland into swale to Type C inlet at DP9
	9	A7	1 24	0.55	18.5	0.73	6.17	4.5								4.5	0.72	4.0	18	40	02	0.1	Flows are piped to manhole at DP9.1
	7	A/	1.34	0.00	10.5	0.73	0.17	4.5								4.3	0.73	4.0	18	00	7.2	0.1	Combined flow of DP8.1 and DP9 within manhole
	9.1								18.6	7.67	6.16	47.2											Flows are piped to manhole at DP7.2

STANDARD FORM SF-3 - PROPOSED

STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

	Project Name: Sterling Ranch Filing 5
Subdivision: Sterling Ranch Subdivision - Proposed	Project No.: 25188.16
Location: El Paso County	Calculated By: GAG
Design Storm: 100-Year	Checked By:
	Date: 12/6/23

				DIF	RECT RU	JNOFF			Т	TOTAL F	RUNOF	F	STRE	ET/SW	ALE		PIP	E		TRAV	/EL TI	ME	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
		A8	0.29	0.55	10.7	0.16	7.40	1.2															Flows off-site along ex. Dines Blvd. c&g to ex. Sterling Ranch Road c&g Flows to ex. inlet at DP10
		C4.2			19.0																		Flows off-site along ex. Dines Blvd. c&g to ex. Sterling Ranch Road c&g Flows to ex. inlet at DP10
	10								19.0	2.50	6.11	15.3	2.4	0.39	3.0	12.9	2.11	1.0	24		3.5 7.4		Combined flow of Basin A8 and Basin C4.2 to ex. inlet at DP10 Captured flows are piped to manhole at DP16.1
	11	EX F4 D)P9					7.7															Total runoff to ex. sump inlet at Filing 4 DP9 Piped to manhole at DP16.1
	12	EX F4 D)P5					13.5															Total runoff to ex. sump inlet at Filing 4 DP5 Piped to sump inlet at DP14.1
	13	EX F4 C)P6.1					8.3															Total runoff to ex. sump inlet at Filing 4 DP6.1 Piped to sump inlet at DP14.1
	14	EX F4 D	P6.2					14.2															Total runoff to ex. sump inlet at Filing 4 DP6.2 Piped to sump inlet at DP14.1
	14.1	EX F4 C	P6.3					36.1															Combined captured flow DP12, DP13, and DP14 and bypass from DP6. Piped to manhole at DP16.1
	15.1	EX F4 D)P7.1					93.5															Total runoff to ex. manhole at Filing 4 DP7.1 Piped to manhole at DP15.1
	16.1											197.4											Combined flow of DP9.1, DP10, DP11, DP14.1, and DP15.1. Same as Filing 4 DP10. Total runoff piped to ex. Pond W-5
		EX Brar	nding Iro	n F1 DI	28			13.2						•			•						Runoff to ex. 10' Type R inlet at Branding Iron at Sterling Ranch F1 DP8 Flows piped to ex. FSD Pond 8
	17	A9	0.79	0.58	7.2	0.46	8.30	3.8				17.0											Flows off-site along ex. Dines Blvd. c&g to ex. sump inlet at DP17 Flows piped to ex. Pond W-8
														•									

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

Values in BLUE indicate they are from the approved "Final Drainage Report for Sterling Ranch Filing No. 4" dated August 14, 2023 by JR Engineering

Values in RED indicate they are from the approved "Final Drainage Report for Branding Iron at Sterling Ranch Filing No. 1" dated October 2018 by M&S Civil Consultants, Inc.

Appendix C Hydraulic Calcs

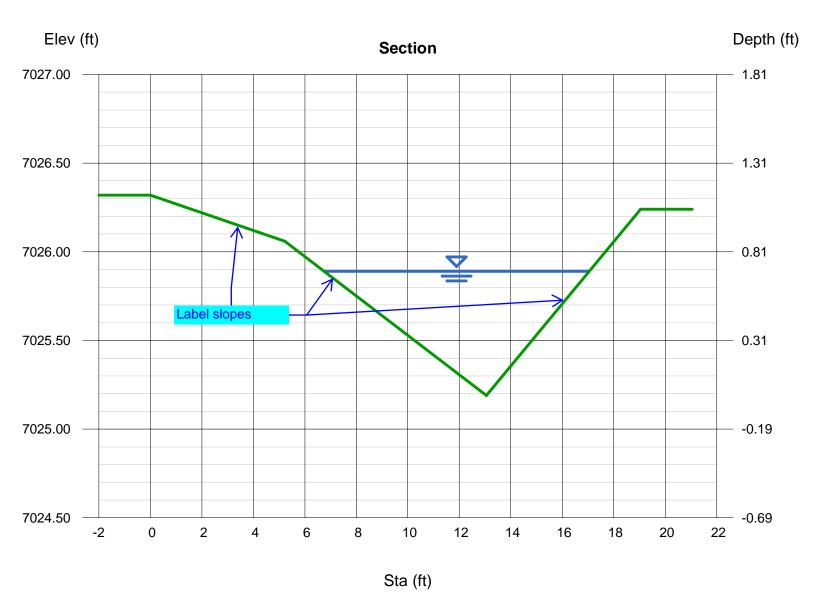
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Dec 20 2023

DP1 Swale-Capacity

User-defined	
Invert Elev (ft)	= 7025.19
Slope (%)	= 0.75
N-Value	= 0.030

Calculations


Compute by: Known Q = 7.50

Known Q (cfs)

(Sta, El, n)-(Sta, El, n)...

(0.00, 7026.32) -(5.22, 7026.06, 0.030) -(13.05, 7025.19, 0.030) -(19.05, 7026.24, 0.030)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Dec 20 2023

DP1 Swale-Velocity

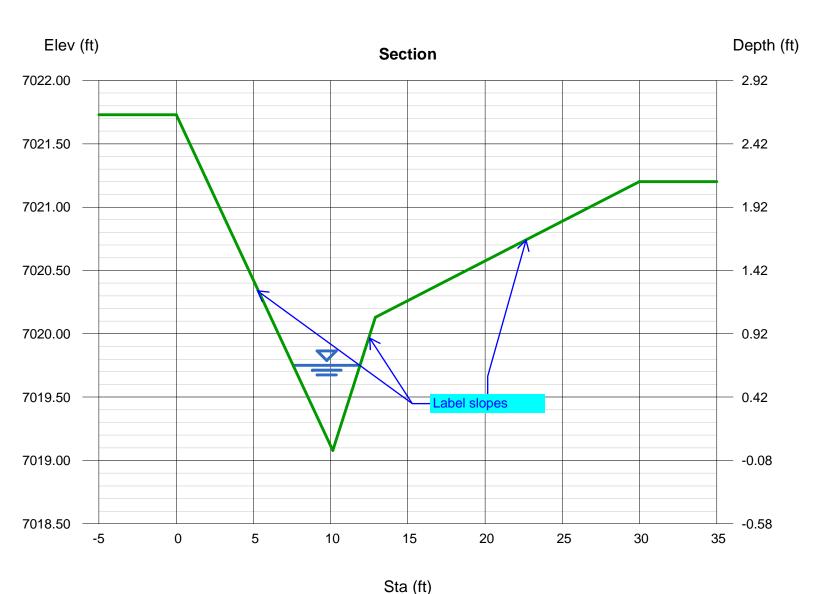
User-defined Invert Elev (ft) = 7019.08 Slope (%) = 5.00

N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 7.50

(Sta, El, n)-(Sta, El, n)...


(0.00, 7021.73) - (10.15, 7019.08, 0.030) - (12.90, 7020.13, 0.030) - (30.00, 7021.20, 0.030)

Highlighted

Depth (ft) = 0.67 Q (cfs) = 7.500 Area (sqft) = 1.45 Velocity (ft/s) = 5.18 Wetted Perim (ft) = 4.53 Crit Depth, Yc (ft) = 0.81

Top Width (ft) = 4.32EGL (ft) = 1.09

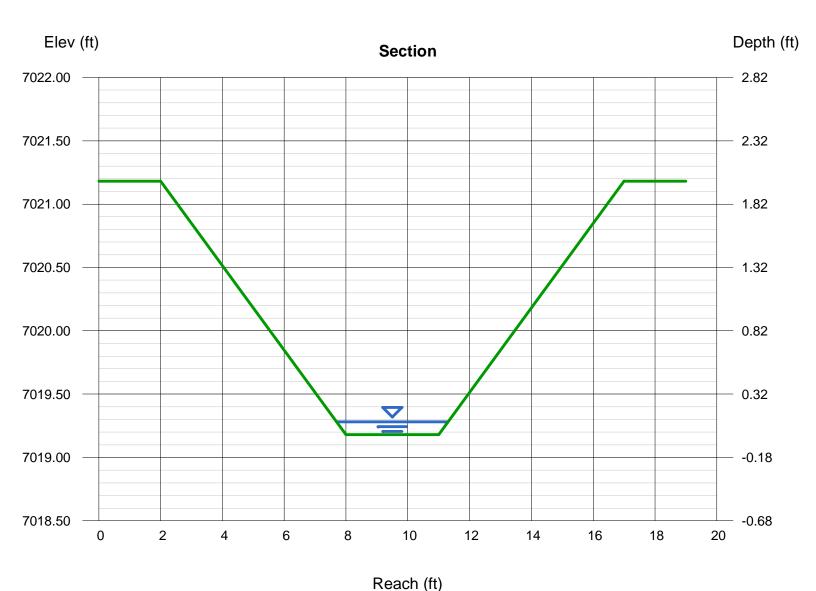
TRM will be used for this steep slope due to velocity.

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Dec 6 2023

DP2-Capacity & Velocity

Trapezoidal


Bottom Width (ft) = 3.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 2.00 Invert Elev (ft) = 7019.18 Slope (%) = 1.70 N-Value = 0.012

Calculations

Compute by: Known Q Known Q (cfs) = 1.00

Highlighted

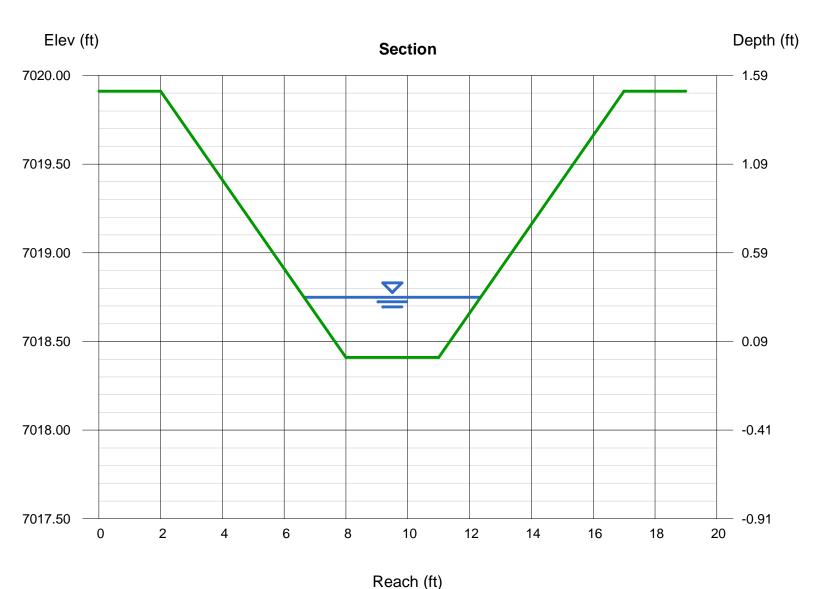
Depth (ft) = 0.10Q (cfs) = 1.000Area (sqft) = 0.33Velocity (ft/s) = 3.03Wetted Perim (ft) = 3.63Crit Depth, Yc (ft) = 0.15Top Width (ft) = 3.60EGL (ft) = 0.24

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Dec 6 2023

DP3 Swale-Capacity

pezoi	


Bottom Width (ft) = 3.00 Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 1.50 Invert Elev (ft) = 7018.41 Slope (%) = 1.50 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 3.50

Highlighted

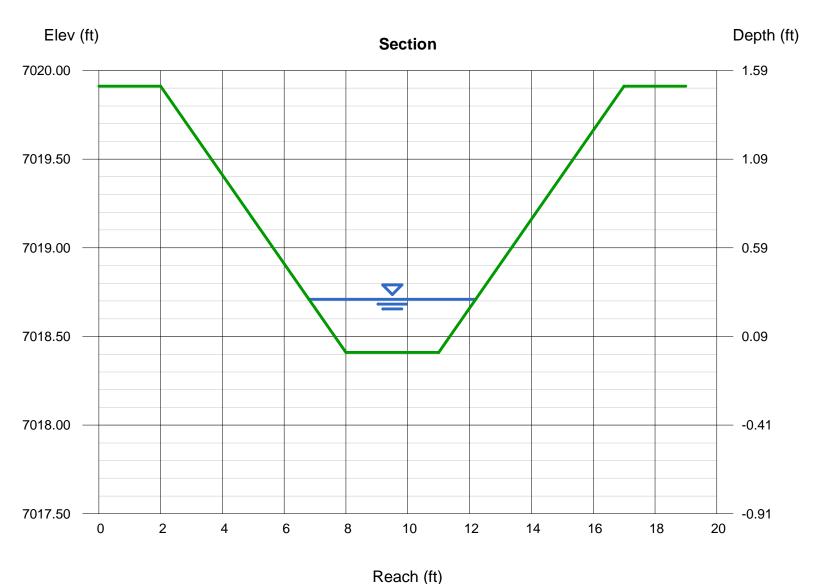
Depth (ft) = 0.34Q (cfs) = 3.500Area (sqft) = 1.48Velocity (ft/s) = 2.36Wetted Perim (ft) = 5.80Crit Depth, Yc (ft) = 0.31Top Width (ft) = 5.72= 0.43EGL (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Dec 6 2023

DP3 Swale-Velocity

pezoi	


Bottom Width (ft) = 3.00 Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 1.50 Invert Elev (ft) = 7018.41 Slope (%) = 2.50 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 3.50

Highlighted

Depth (ft) = 0.30Q (cfs) = 3.500Area (sqft) = 1.26Velocity (ft/s) = 2.78Wetted Perim (ft) = 5.47Crit Depth, Yc (ft) = 0.31Top Width (ft) = 5.40EGL (ft) = 0.42

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

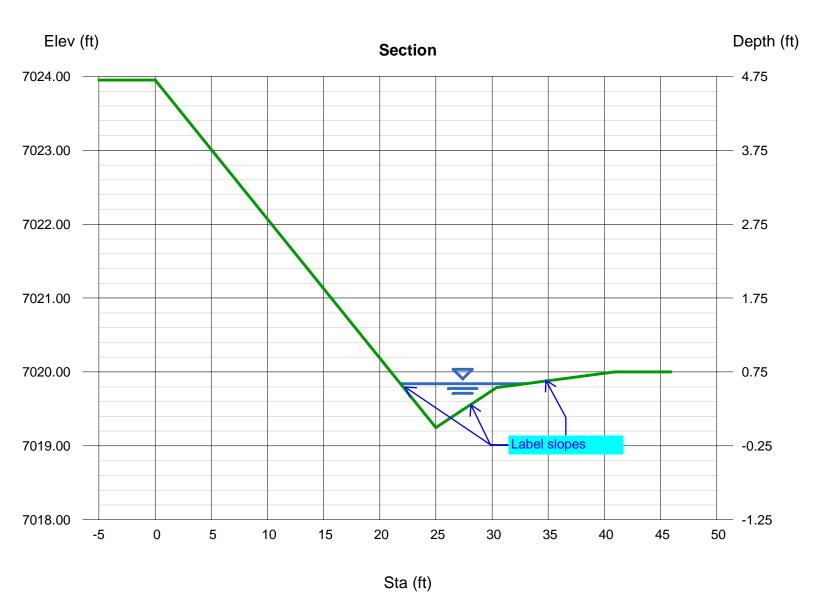
Wednesday, Dec 6 2023

DP9 Swale-Capacity

OSCI acilica	
Invert Elev (ft)	= 7019.25
Slope (%)	= 0.90
N-Value	= 0.030

Calculations

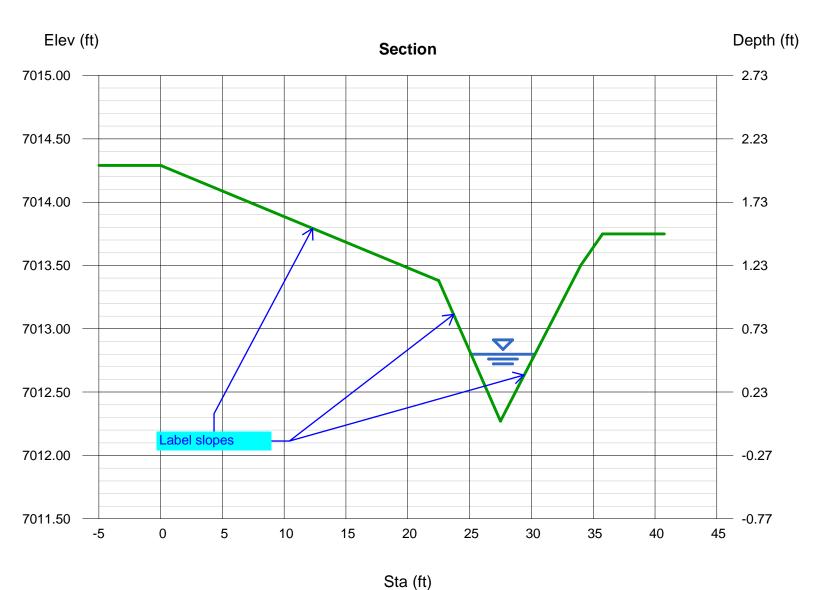
User-defined


Compute by: Known Q Known Q (cfs) = 5.00

(Sta, El, n)-(Sta, El, n)...

(0.00, 7023.95) -(25.00, 7019.25, 0.030) -(30.42, 7019.79, 0.030) -(40.95, 7020.00, 0.030)

EGL (ft) = 0.64


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Dec 6 2023

DP9 Swale-Velocity

User-defined		Highlighted	
Invert Elev (ft)	= 7012.27	Depth (ft)	= 0.53
Slope (%)	= 3.40	Q (cfs)	= 5.000
N-Value	= 0.030	Area (sqft)	= 1.37
		Velocity (ft/s)	= 3.64
Calculations		Wetted Perim (ft)	= 5.29
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.58
Known Q (cfs)	= 5.00	Top Width (ft)	= 5.19
		EGL (ft)	= 0.74

(Sta, El, n)-(Sta, El, n)... (0.00, 7014.29) -(22.50, 7013.38, 0.030) -(27.50, 7012.27, 0.030) -(34.00, 7013.50, 0.030) -(35.75, 7013.75, 0.030)

Froude Number Calculations

Sterling Ranch Filing No. 5

Froude Number Equation:

$$Fr = \frac{v}{(gh_m)^{1/2}}$$

Where: v = velocity (ft/s)

g= acceleration of gravity (32.2ft/s²)

h_m=hydraulic mean depth (ft)

Hydraulic Mean Depth Equation:

$$h_m = \frac{A}{T}$$

Where: $A = cross sectional area of filled flow in channel (ft^2)$

T= width of channel open to surface (ft)

Inlet DP1 Swale (Flat) Calculations:

Parameters: S = 0.75%, A = 3.61 ft², T = 10.40 ft, v = 2.08 ft/s

Therefore: $h_m = \frac{3.61}{10.40} = 0.35 \, ft$

$$Fr = \frac{2.08}{(32.2*0.35)^{1/2}} = \frac{0.62}{}$$

For cohesive soils maximum Froude Number is 0.80.

Inlet DP1 Swale (Steep) Calculations:

Parameters: S= 5.0%, A= 1.45 ft², T= 4.53 ft, v= 5.18 ft/s

Therefore: $h_m = \frac{1.45}{4.53} = 0.32 \, ft$

$$Fr = \frac{5.18}{(32.2*0.32)^{1/2}} = \frac{1.61}{}$$

For cohesive soils maximum Froude Number is 0.80.

Turf Reinforcement Mat (TRM) used for steep portion of the swale.

Inlet DP2 Swale Calculations:

Parameters:
$$A = 0.33 \text{ ft}^2$$
, $T = 3.63 \text{ ft}$, $v = 3.03 \text{ ft/s}$

Therefore:
$$h_m = \frac{0.33}{3.63} = 0.09 ft$$

$$Fr = \frac{3.03}{(32.2*0.09)^{1/2}} = \frac{1.78}{1.78}$$

For cohesive soils maximum Froude Number is 0.80.

Concrete is used for the DP2 swale.

Inlet DP3 Swale (Flat) Calculations:

Therefore:
$$h_m = \frac{1.48}{5.80} = 0.26 \, ft$$

$$Fr = \frac{2.36}{(32.2*0.26)^{1/2}} = \frac{0.82}{0.82}$$

For cohesive soils maximum Froude Number is 0.80.

Turf Reinforcement Mat (TRM) used for this swale.

Inlet DP3 Swale (Steep) Calculations:

Parameters:
$$S = 2.5\%$$
, $A = 1.26 \text{ ft}^2$, $T = 5.47 \text{ ft}$, $v = 2.78 \text{ ft/s}$

Therefore:
$$h_m = \frac{1.26}{5.47} = 0.23 \, ft$$

$$Fr = \frac{2.78}{(32.2*0.23)^{1/2}} = 1.02$$

For cohesive soils maximum Froude Number is 0.80.

Turf Reinforcement Mat (TRM) used for this swale.

Inlet DP9 Swale (Flat) Calculations:

Parameters:
$$S = 0.9\%$$
, $A = 2.72$ ft², $T = 11.14$ ft, $v = 1.84$ ft/s

Therefore:
$$h_m = \frac{2.72}{11.14} = 0.24 \, ft$$

$$Fr = \frac{1.84}{(32.2*0.24)^{1/2}} = \frac{0.66}{0.66}$$

For cohesive soils maximum Froude Number is 0.80.

Inlet DP9 Swale (Steep) Calculations:

Parameters:
$$S= 3.4\%$$
, $A= 1.37 \ ft^2$, $T= 5.29 \ ft$, $v= 3.64 \ ft/s$

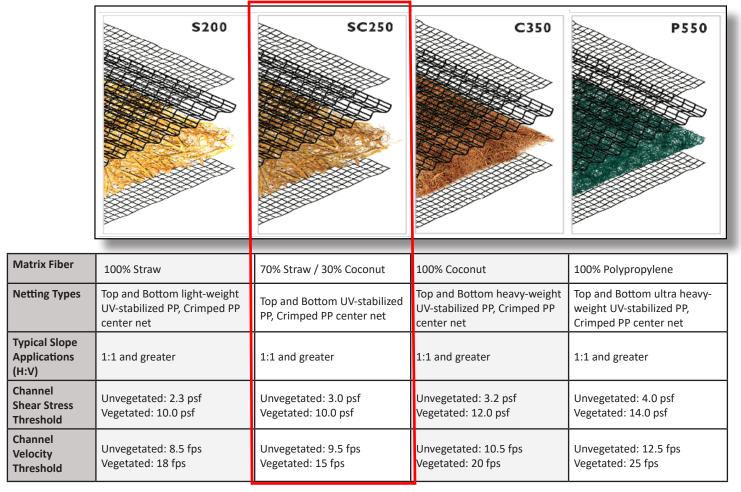
Therefore:
$$h_m = \frac{1.37}{5.29} = 0.26 \, ft$$

$$Fr = \frac{3.64}{(32.2 \times 0.26)^{1/2}} = \frac{1.26}{1.26}$$

For cohesive soils maximum Froude Number is 0.80.

Turf Reinforcement Mat (TRM) used for steep portion of the swale.

VMax® TRMs


A Permanent Turf Reinforcement Mat Solution for Every Design

The VMax system of permanent TRMs are ideal for high-flow channels, streambanks, shorelines, and other areas needing permanent vegetation reinforcement and protection from water and wind. Our VMax TRMs combine a three-dimensional matting and a fiber matrix material for allout erosion protection, vegetation establishment and reinforcement. The VMax TRMs are available with various performance capabilities and support reinforced vegetative lining development from germination to maturity.

VMax® Unique Three-Dimensional Design

North American Green VMax TRMs are each designed to maximize performance through all development phases of a reinforced vegetative lining. The corrugated matting structure lends a true reinforcement zone for vegetation entanglement, especially compared to flat net mats. The unique design of the corrugated matting also helps to create a shear plane that deflects flowing water away from the soil surface. And the incorporation of a fiber matrix supplements the 3-D structure by creating a ground cover that blocks soil movement and aids in vegetation establishment.

Four VMax Turf Reinforcement Mats Designed for Every Level of Performance

Selected product that will work for all swales above 5 ft/s. Has maximum of 15 ft/s.

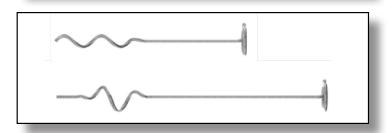
Copyright 2021.

North American Green, LLC. 4609 E. Boonville-New Harmony Rd., Evansville, IN (800) 772-2040 | www.nagreen.com

VMax® TRMs cont.

Selecting the Right VMax TRM

Choosing the right VMax TRM can be made easy by utilizing our Erosion Control Materials Design Software (www.ecmds.com), which allows users to input project specific parameters for channels, slopes, spillways, and more and ensures proper evaluation, design, and product selection in return. Our four VMax TRMs offer varying performance values, fiber matrix longevities, and price points, to help you meet your project specific goals.


Utilizing the VMax TRMs in conjunction with Twist Pin fastener technology can result in an installed system that pushes TRM performance with increased factors of safety. The combined system has been shown to have superior pullout strength performance up to 200 lbs when compared to installation with traditional wire staples and pins. This is up to 10x the pullout resistance of wire staples and pins. Additionally, the use of the twist pins provides intimate contact between the TRM and the soil, and have been shown to be effective in a wide range of soil types. With a quick and easy installation using an electric drill and custom chuck, the TRM+Twist Pin system can eliminate time and labor costs from day 1 through project release.

VMax turf reinforcement mat being installed on a channel application (top right), twist pins installed with TRMs can have increased system performance and pullout resistance (middle right), twist pins are available in 8" and 12" lengths and two coil configurations designed for hard or soft soil types (lower right).

Comparison of common TRM fasteners based on pullout performance and typical application (below).

Fastener	Pullout Resistance (lb)	Comment
6" Round Top Pin	14	Best for hardened soils where other fasteners are damaged during installation.
6" Regular U-staple	42	Standard fastener that develops additional pullout as legs may deflect and add friction during installation.
12" Pin with Washer	35	Standard fastener good for soils where staples can be bent frequently and are too difficult to install.
18" Pin with Washer	27	Standard fastener good for soils where staples are frequently bent and 12" straight pins fail to provide sufficient pullout because surface soil is wet or loose.
Twist Pin	170	Upgraded fastener that provides high pullout and ideal for loose or soft soils.

Copyright 2021.

North American Green, LLC. 4609 E. Boonville-New Harmony Rd., Evansville, IN (800) 772-2040 | www.nagreen.com

INLET MANAGEMENT

Worksheet Protected

Inlet Application (Street or Area) AREA Hydraulic Condition Swale Swale Inlet Type CDOT Type C User-Defined ER-DEFINED INPUT User-Defined Design Flows Minor Q _{Known} (cfs) Major Q _{Known} (cfs) T,3 T,0 Exercive Bypass Flow from: Minor Bypass Flow Received, Q _b (cfs) No Bypass Flow Received, Q _b (cfs) No Bypass Flow Received, Q _b (cfs) No Bypass Flow Received N	AREA Swale	INLET NAME	<u>DP1</u>	DP2	<u>DP3</u>
Algor Defined Design Flows Algor O _{Known} (cfs) Algor O _{Known} (Swale Swale Swale Swale Swale CDOT Type C User-Defined User-Defined	iite Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Type C User-Defined ER-DEFINED INPUT User-Defined Design Flows Inior O _{Known} (cfs) Inlets must be organized from upstream (left) to downstream (right) in order for bypass (Carry-Over) Flow from: No Bypass Flow Received No Bypass Flow	CDOT Type C User-Defined User-Defined				
ER-DEFINED INPUT Jayor O _{Known} (cfs) Alajor O _{Known} (cfs) Alajor O _{Known} (cfs) Bypass (Carry-Over) Flow from Upstream Inlets must be organized from upstream (left) to downstream (right) in order for bypass receive Bypass Flow from: No Bypass Flow Received No By	1.8	lydraulic Condition		Swale	Swale
User-Defined Design Flows Minor O _{Known} (cfs) Major O _{Known} (cfs) Receive Gypass (Carry-Over) Flow from Upstream Receive Bypass Flow from: No Bypass Flow Received	1.8	nlet Type	CDOT Type C	User-Defined	User-Defined
User-Defined Design Flows Minor Q _{Known} (cfs) Major O _{Known} (cfs) Bypass (Carry-Over) Flow from Upstream Receive Bypass Flow from: No Bypass Flow Received No Bypas	1.8	ED-DEFINED INDIIT			
Minor O _{Known} (cfs) 1.8 0.3 Major O _{Known} (cfs) 1.0 Bypass (Carry-Over) Flow from Upstream Receive Bypass Flow from: No Bypass Flow Received No Bypass Flow Recei	1.8				
Major Q _{Known} (cfs) 7.3 1.0 Bypass (Carry-Over) Flow from Upstream Receive Bypass Flow from: No Bypass Flow Received No B	The proof of the p		1.8	0.3	1.0
Bypass (Carry-Over) Flow from Upstream Receive Bypass Flow from: No Bypass Flow Received No Bypass Fl	No Bypass Flow Received No Bypass Flow Received No Bypass Flow Received				
Receive Bypass Flow from: No Bypass Flow Received No Bypas Flow Received No Bypass Flow Recei	No Bypass Flow Received No Bypass Flow Received No Bypass Flow Received	y Kilowii C	-	-	
Minor Bypass Flow Received, Q _b (cfs) Major Bypass Flow Received, Q _b (cfs) O.0 Major Bypass Flow Received, Q _b (cfs) O.0 Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft)	Received, Q _b (cfs) 0.0 0.0 0.0 Received, Q _b (cfs) 0.0 0.0 0.0 Interistics (acres)	Bypass (Carry-Over) Flow from Upstream	Inlets must be organized from upstrea	am (left) to downstream (right) in order fo	or bypass flows to be linked.
Major Bypass Flow Received, Q _b (cfs) Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft)	Received, Q _b (cfs) 0.0 0.0 0.0 Indeteristics (acres) (acres) (b) (cfs) (cores) (core		No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft)	ee ft) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft)	e ft) b) nfall I nput rn Period, T _r (years) tion, P ₁ (inches)	Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Subcatchment Area (acres) Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Length (ft) Channel Length (ft)	e ft) b) nfall I nput rn Period, T _r (years) tion, P ₁ (inches)				
Percent Impervious NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft)	efft) b) c) c) fall Input rn Period, T _r (years) tion, P ₁ (inches)				
Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft)	e ft) t) fall Input rn Period, T _r (years) tion, P ₁ (inches)	` '			
Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft)	ff) s) s) fall Input rn Period, T _r (years) tion, P ₁ (inches)				
Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft)	ff) s) s) fall Input rn Period, T _r (years) tion, P ₁ (inches)	NRCS Soil Type			
Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft)	fall Input The Period, T _r (years) tion, P ₁ (inches)				
Channel Slope (ft/ft) Channel Length (ft)	infall Input In Period, T _r (years) Ition, P ₁ (inches)				
Channel Length (ft)	nfall Input In Period, T _r (years) Ition, P ₁ (inches)				
	nfall Input In Period, T _r (years) Ition, P ₁ (inches)				
Minor Storm Poinfall Input	rn Period, T _r (years) tion, P ₁ (inches)				
Willion Storm Kalman mput	tion, P ₁ (inches)	Minor Storm Rainfall Input			
Design Storm Return Period, T _r (years)		Design Storm Return Period, T _r (years)			
One-Hour Precipitation, P ₁ (inches)		One-Hour Precipitation, P ₁ (inches)			
Major Storm Rainfall Input		Major Storm Rainfall Input			
	n Period, T _r (years)				
(Inc. Hour Brognitation, II. (Inches)		Design Storm Return Period, T _r (years)			
One-nour recipitation, r ₁ (incres)		Design Storm Return Period, T _r (years)			
		Design Storm Return Period, T _r (years)			
One-nour Precipitation, P ₁ (incres)		Design Storm Return Period, T _r (years)			
One-nour Precipitation, P ₁ (inches)		Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches)			
Otte-noul Precipitation, P ₁ (inches)		Design Storm Return Period, T _r (years)			
	tion, P ₁ (inches)	Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches)			
	tion, P ₁ (inches)	Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches)			
LCULATED OUTPUT	UT	Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches) LCULATED OUTPUT	1.8	0.3	1.0
LICULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) 1.8 0.3	UT gn Peak Flow, Q (cfs) 1.8 0.3 1.0	Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches) LCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs)			
ALCULATED OUTPUT	UT gn Peak Flow, Q (cfs) 1.8 0.3 1.0 gn Peak Flow, Q (cfs) 7.3 1.0 3.1	Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches) ALCULATED OUTPUT Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs)	7.3	1.0	3.1

INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>DP4</u>	<u>DP5</u>	<u>DP6</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
Hydraulic Condition	On Grade	In Sump	On Grade
Inlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening
ER-DEFINED INPUT			
User-Defined Design Flows			
Minor Q _{Known} (cfs)	3.4	5.5	3.8
Major Q _{Known} (cfs)	7.9	13.1	9.2
Bypass (Carry-Over) Flow from Upstream			
Receive Bypass Flow from:	No Bypass Flow Received	User-Defined	User-Defined
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.2	0.0
Watershed Characteristics Subcatchment Area (acres)			
Percent Impervious			
NRCS Soil Type			
Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft)			
Minor Storm Rainfall Input			
Design Storm Return Period, T _r (years)			
One-Hour Precipitation, P ₁ (inches)			
Major Storm Rainfall Input			
Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches)			

INLET MANAGEMENT

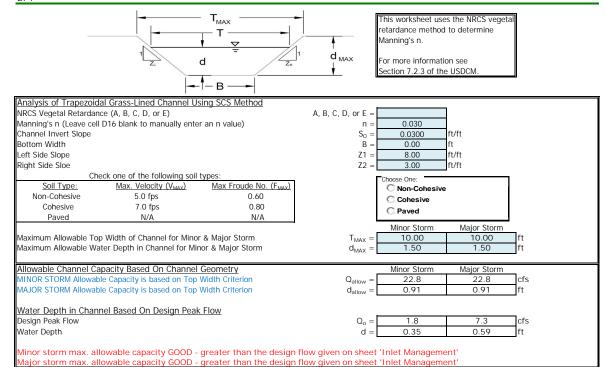
Worksheet Protected

User-Defined Design Flows Minor Q _{Known} (cfs) Major Q _{Known} (cfs) Bypass (Carry-Over) Flow from Upstream Receive Bypass Flow from: Minor Bypass Flow Received, Q _b (cfs) Major Bypass Flow Received, Q _b (cfs) Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type	URBAN STREET On Grade CDOT Type R Curb Opening 2.8 5.9 No Bypass Flow Received 0.0 0.0	URBAN STREET On Grade CDOT Type R Curb Opening 1.1 2.3 No Bypass Flow Received 0.0 0.0	URBAN AREA Swale CDOT Type C 1.6 4.5 No Bypass Flow Received 0.0
Hydraulic Condition Inlet Type ER-DEFINED INPUT User-Defined Design Flows Minor Q _{Known} (cfs) Major Q _{Known} (cfs) Bypass (Carry-Over) Flow from Upstream Receive Bypass Flow from: Minor Bypass Flow Received, Q _b (cfs) Major Bypass Flow Received, Q _b (cfs) Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type	On Grade CDOT Type R Curb Opening 2.8 5.9 No Bypass Flow Received 0.0	On Grade CDOT Type R Curb Opening 1.1 2.3 No Bypass Flow Received 0.0	Swale CDOT Type C 1.6 4.5 No Bypass Flow Received 0.0
ER-DEFINED INPUT User-Defined Design Flows Minor Q _{Known} (cfs) Major Q _{Known} (cfs) Bypass (Carry-Over) Flow from Upstream Receive Bypass Flow from: Minor Bypass Flow Received, Q _b (cfs) Major Bypass Flow Received, Q _b (cfs) Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type	2.8 5.9 No Bypass Flow Received 0.0	CDOT Type R Curb Opening 1.1 2.3 No Bypass Flow Received 0.0	1.6 4.5 No Bypass Flow Received 0.0
ER-DEFINED INPUT User-Defined Design Flows Minor Q _{Known} (cfs) Major Q _{Known} (cfs) Bypass (Carry-Over) Flow from Upstream Receive Bypass Flow from: Minor Bypass Flow Received, Q _b (cfs) Major Bypass Flow Received, Q _b (cfs) Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type	2.8 5.9 No Bypass Flow Received 0.0	1.1 2.3 No Bypass Flow Received 0.0	1.6 4.5 No Bypass Flow Received 0.0
Minor Q _{Known} (cfs) Major Q _{Known} (cfs) Bypass (Carry-Over) Flow from Upstream Receive Bypass Flow from: Minor Bypass Flow Received, Q _b (cfs) Major Bypass Flow Received, Q _b (cfs) Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type	5.9 No Bypass Flow Received 0.0	2.3 No Bypass Flow Received 0.0	4.5 No Bypass Flow Received 0.0
Minor Bypass Flow Received, Q _b (cfs) Major Bypass Flow Received, Q _b (cfs) Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type	5.9 No Bypass Flow Received 0.0	2.3 No Bypass Flow Received 0.0	4.5 No Bypass Flow Received 0.0
Major Q _{known} (cfs) Bypass (Carry-Over) Flow from Upstream Receive Bypass Flow from: Minor Bypass Flow Received, Q _b (cfs) Major Bypass Flow Received, Q _b (cfs) Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type	5.9 No Bypass Flow Received 0.0	2.3 No Bypass Flow Received 0.0	4.5 No Bypass Flow Received 0.0
Major Q _{Known} (cfs) Bypass (Carry-Over) Flow from Upstream Receive Bypass Flow from: Minor Bypass Flow Received, Q _b (cfs) Major Bypass Flow Received, Q _b (cfs) Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type	No Bypass Flow Received 0.0	No Bypass Flow Received 0.0	No Bypass Flow Received 0.0
Receive Bypass Flow from: Minor Bypass Flow Received, Q _b (cfs) Major Bypass Flow Received, Q _b (cfs) Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type	0.0	0.0	0.0
Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs) Watershed Characteristics Subcatchment Area (acres) Percent Impervious NRCS Soil Type			
Major Bypass Flow Received, Q _b (cfs) Watershed Characteristics	0.0	0.0	
Subcatchment Area (acres) Percent Impervious NRCS Soil Type			0.0
Subcatchment Area (acres) Percent Impervious NRCS Soil Type			
Percent Impervious NRCS Soil Type			
NRCS Soil Type			
Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft)			
Channel Length (ft)			
Minor Storm Rainfall Input			
Design Storm Return Period, T _r (years)			
One-Hour Precipitation, P ₁ (inches)			
Major Storm Rainfall Input			
Design Storm Return Period, T _r (years)			
One-Hour Precipitation, P ₁ (inches)			
LCULATED OUTPUT			
Minor Total Design Peak Flow, Q (cfs)	2.8	1.1	1.6
Major Total Design Peak Flow, Q (cfs)	5.9	2.3	4.5
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	0.0	0.4	0.0

INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>DP17</u>
Site Type (Urban or Rural)	URBAN
Inlet Application (Street or Area)	STREET
Hydraulic Condition	In Sump
Inlet Type	CDOT Type R Curb Opening


JSER-DEFINED INPUT	
User-Defined Design Flows	
Minor Q _{Known} (cfs)	2.9
Major Q _{Known} (cfs)	17.0
Bypass (Carry-Over) Flow from Upstream	
Receive Bypass Flow from:	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0
Watershed Characteristics	
Subcatchment Area (acres)	
Percent Impervious	
NRCS Soil Type	
Watershed Profile	
Overland Slope (ft/ft)	
Overland Length (ft)	
Channel Slope (ft/ft)	
Channel Length (ft)	
•	
Minor Storm Rainfall Input	
Design Storm Return Period, T _r (years)	
One-Hour Precipitation, P ₁ (inches)	
Major Storm Rainfall Input	
Design Storm Return Period, T _r (years)	
One-Hour Precipitation, P ₁ (inches)	

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	2.9
Major Total Design Peak Flow, Q (cfs)	17.0
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	N/A

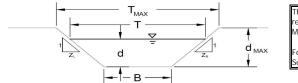
STERLING RANCH FILING 5

DP1

2518816_MHFD-Inlet_v5.02.xlsm, DP1 12/6/2023, 3:49 PM

STERLING RANCH FILING 5

Inlet Design Information (Input)
Type of Inlet CDOT Type C CDOT Type C -Inlet Type = Angle of Inclined Grate (must be <= 30 degrees)
Width of Grate θ 0.00 degrees W = 3.00 Length of Grate 3.00 L : Open Area Ratio A_{RATIO} = 0.70 Height of Inclined Grate H_B 0.00 Clogging Factor $C_f =$ 0.50 Grate Discharge Coefficient C_d 0.96 Orifice Coefficient Weir Coefficient 0.64 2.05 MINOR MAJOR Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) d : 0.35 0.59 8.4 Q_a = Total Inlet Interception Capacity (assumes clogged condition) cfs Q_b = Bypassed Flow 0.0 0.0 cfs Capture Percentage = Qa/Qo C% = % 100 100


Warning 04: Froude No. exceeds USDCM Volume I recommendation.

A, B, C, D, or E =

n =

STERLING RANCH FILING 5

DP2

This worksheet uses the NRCS vegetal retardance method to determine Manning's n.

For more information see Section 7.2.3 of the USDCM.

Analysis of Trapezoidal Grass-Lined Channel Using SCS Method NRCS Vegetal Retardance (A, B, C, D, or E) Manning's n (Leave cell D16 blank to manually enter an n value) Channel Invert Slope Bottom Width Left Side Slope Right Side Sloe

Check one of the following soil types: Max Froude No. (F_{MAX}) Soil Type: Max. Velocity (V_{MAX})

Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps 0.80 Paved N/A

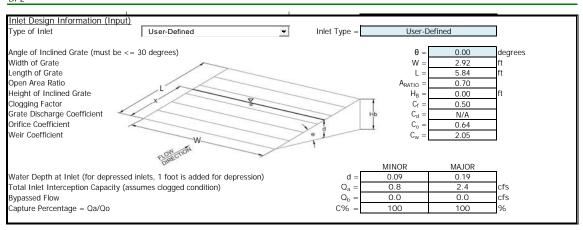
Maximum Allowable Top Width of Channel for Minor & Major Storm Maximum Allowable Water Depth in Channel for Minor & Major Storm

0.030 ft/ft S_O = 0.0100 В 3.00 ft/ft Z1 : 3.00 Z2 = 3.00 Choose One ○ Non-Cohesive Cohesive C Paved

Minor Storm 15.00 Major Storm 15.00 T_{MAX} d_{MAX} 2.00 2.00

Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

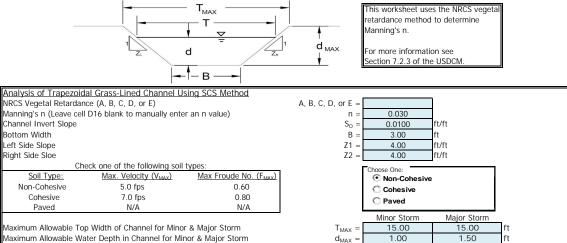
<u>Water Depth in Channel Based On Design Peak Flow</u> Design Peak Flow Water Depth


Minor Storm 98.1 98.1 cfs d_{allow} 2 00 2 00

Q, 0.3 1.0 cfs 0.09 0.19

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'I nlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'I nlet Management'

STERLING RANCH FILING 5


DP2

Warning 04: Froude No. exceeds USDCM Volume I recommendation.

STERLING RANCH FILING 5

DP3

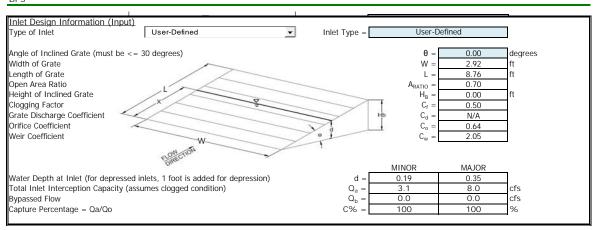
Maximum Allowable Water Depth in Channel for Minor & Major Storm

Allowable Channel Capacity Based On Channel Geometry

MINOR STORM Allowable Capacity is based on Depth Criterion

 $\begin{aligned} Q_{\text{allow}} &= & & & \text{Minor Storm} & & \text{Major Storm} \\ Q_{\text{allow}} &= & & 25.3 & & 61.5 & & \text{cfs} \\ d_{\text{allow}} &= & & 1.00 & & 1.50 & & \text{ft} \end{aligned}$

MAJOR STORM Allowable Capacity is based on Depth Criterion

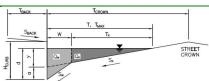

Water Depth in Channel Based On Design Peak Flow
Design Peak Flow
Water Depth

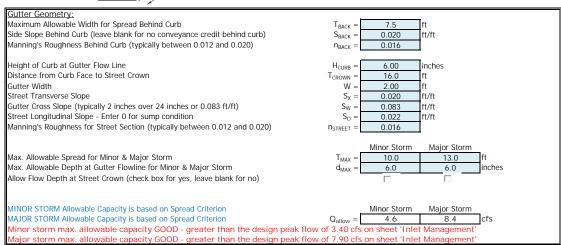
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

2518816_MHFD-Inlet_v5.02.xlsm, DP3 12/14/2023, 7:45 AM

STERLING RANCH FILING 5

DD3

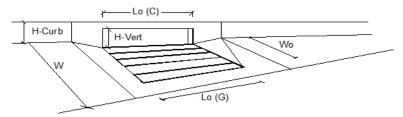



Warning 03: Velocity exceeds USDCM Volume I recommendation. Warning 04: Froude No. exceeds USDCM Volume I recommendation.

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

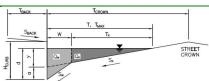
Project: STERLING RANCH FILING 5
Inlet ID: DP4



2518816_MHFD-Inlet_v5.02.xlsm, DP4 12/6/2023, 3:49 PM

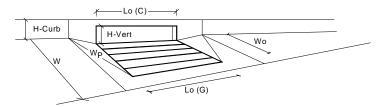
INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.02 (August 2022)


Design Information (Input) CDOT Type R Curb Opening	▼	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	$a_{LOCAL} =$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	3.4	7.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.2	cfs
Capture Percentage = Q_a/Q_o	C% =	100	98	%

2518816_MHFD-Inlet_v5.02.xlsm, DP4 12/6/2023, 3:49 PM

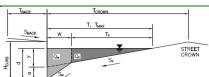
CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) **ALLOWABLE**

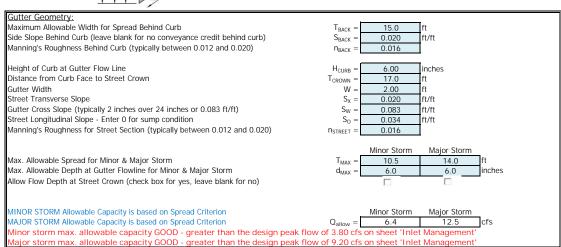

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: STERLING RANCH FILING 5
Inlet ID: DP5

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) T_{BACK} 15.0 ft/ft $\mathsf{S}_{\mathsf{BACK}}$ 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.016 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 inches Distance from Curb Face to Street Crown $\mathsf{T}_{\mathsf{CROWN}}$ 45.0 Gutter Width W 2.00 Street Transverse Slope S_X : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_{W} ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 40.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm $d_{\text{MAX}} \\$ inches 6.0 7.5 Check boxes are not applicable in SUMP conditions Major Storm SUMP MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition SUMP

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)

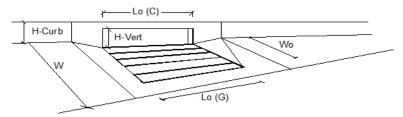

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.5	inches
Grate Information	=	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L_o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.46	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
Ĭ				-
	-	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a =$	8.3	14.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	Q _{PEAK REQUIRED} =	5.5	13.3	cfs


2518816_MHFD-Inlet_v5.02.xlsm, DP5 12/6/2023, 3:49 PM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

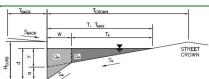
Project: STERLING RANCH FILING 5
Inlet ID: DP6

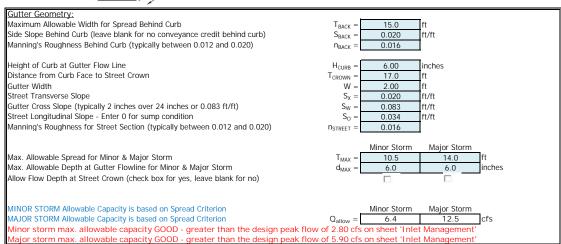


2518816_MHFD-inlet_v5.02.xlsm, DP6 12/6/2023, 3:49 PM

INLET ON A CONTINUOUS GRADE

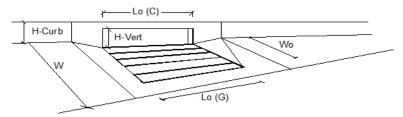
MHFD-Inlet, Version 5.02 (August 2022)


Design Information (Input) CDOT Type R Curb Opening	▼	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	$a_{LOCAL} =$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.8	8.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.5	cfs
Capture Percentage = Q _a /Q _o	C% =	100	95	%


2518816_MHFD-Inlet_v5.02.xlsm, DP6 12/6/2023, 3:49 PM

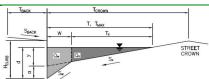
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

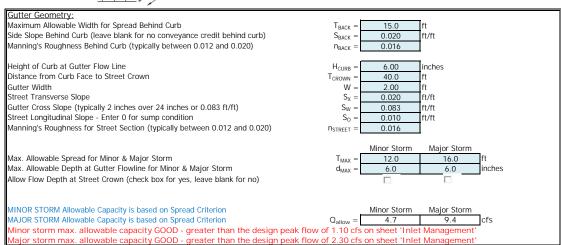
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: STERLING RANCH FILING 5
Inlet ID: DP7

INLET ON A CONTINUOUS GRADE

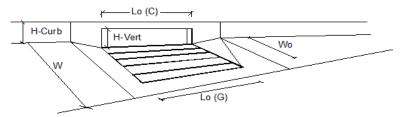
MHFD-Inlet, Version 5.02 (August 2022)


Design Information (Input) CDOT Type R Curb Opening	▼ .	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	$a_{LOCAL} =$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_o =$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o =$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.8	5.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.0	cfs
Capture Percentage = Q _a /Q _o	C% =	100	100	%


2518816_MHFD-Inlet_v5.02.xlsm, DP7 12/6/2023, 3:49 PM

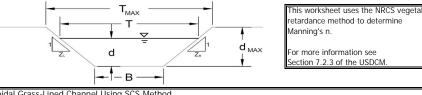
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

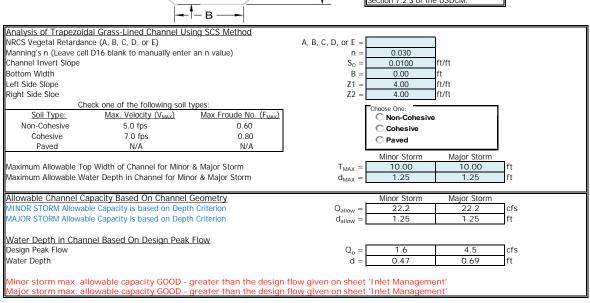
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: STERLING RANCH FILING 5
Inlet ID: DP8

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.02 (August 2022)




Design Information (Input) Type of Inlet CDOT Type R Curb Opening	Type =	MINOR CDOT Type R	MAJOR Curb Opening	1
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.1	1.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.4	cfs
Capture Percentage = Q _a /Q _o	C% =	100	82	%

2518816_MHFD-Inlet_v5.02.xlsm, DP8 12/6/2023, 3:49 PM

STERLING RANCH FILING 5

DDQ

2518816_MHFD-Inlet_v5.02.xlsm, DP9 12/6/2023, 3:49 PM

STERLING RANCH FILING 5

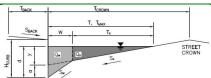
Inlet Design Information (Input)
Type of Inlet CDOT Type C -Inlet Type = CDOT Type C Angle of Inclined Grate (must be <= 30 degrees)
Width of Grate θ 0.00 degrees W = 3.00 Length of Grate L : 3.00 Open Area Ratio A_{RATIO} = 0.70 H_B = Height of Inclined Grate 0.00 Clogging Factor 0.50 Grate Discharge Coefficient $C_{\text{d}} \\$ 0.96 Co Orifice Coefficient 0.64 Weir Coefficient 2.05 MINOR MAJOR Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) d : 0.47 0.69 Q_a = Q_b = Total Inlet Interception Capacity (assumes clogged condition) 5.9 cfs 10.5 Bypassed Flow cfs 0.0 0.0

C% =

100

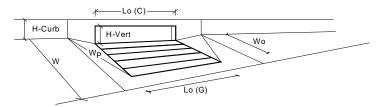
%

100

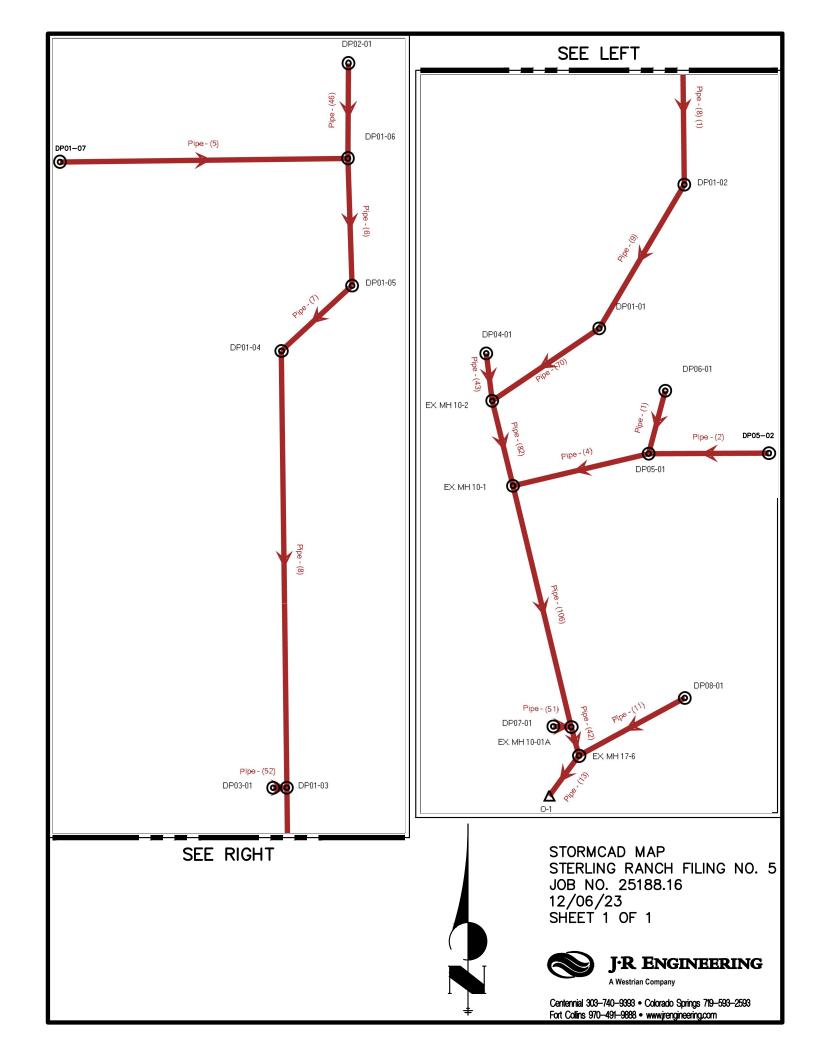

Warning 04: Froude No. exceeds USDCM Volume I recommendation.

Capture Percentage = Qa/Qo

CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) **ALLOWABLE**

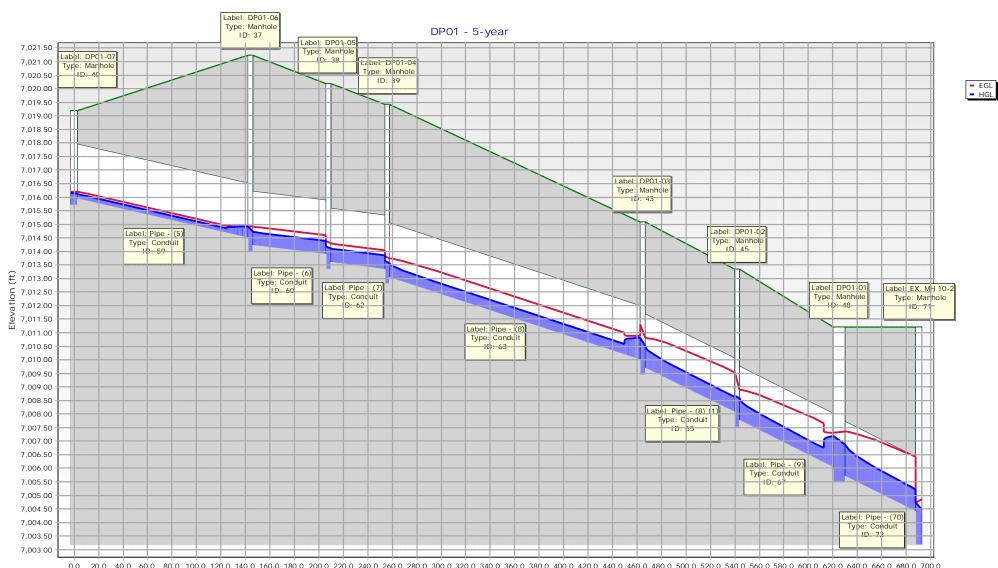

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

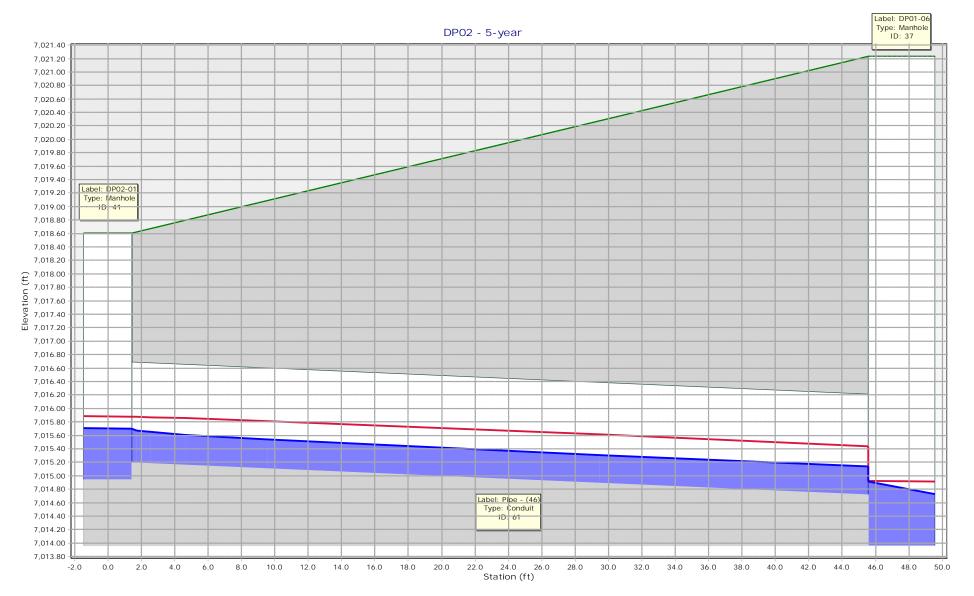
Project: STERLING RANCH FILING 5
Inlet ID: DP17


Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) T_{BACK} ft/ft $\mathsf{S}_{\mathsf{BACK}}$ 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.016 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 inches Distance from Curb Face to Street Crown $\mathsf{T}_{\mathsf{CROWN}}$ 20.0 Gutter Width W 2.00 Street Transverse Slope S_X : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_{W} ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 15.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm $d_{\text{MAX}} \\$ inches 6.0 6.0 Check boxes are not applicable in SUMP conditions Major Storm SUMP MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition SUMP

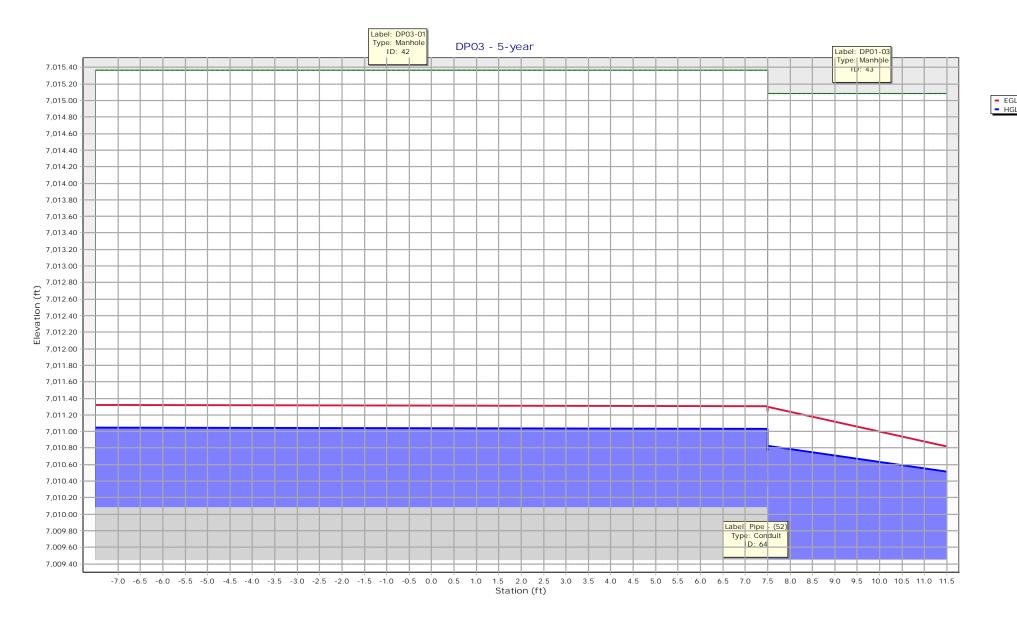
INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)

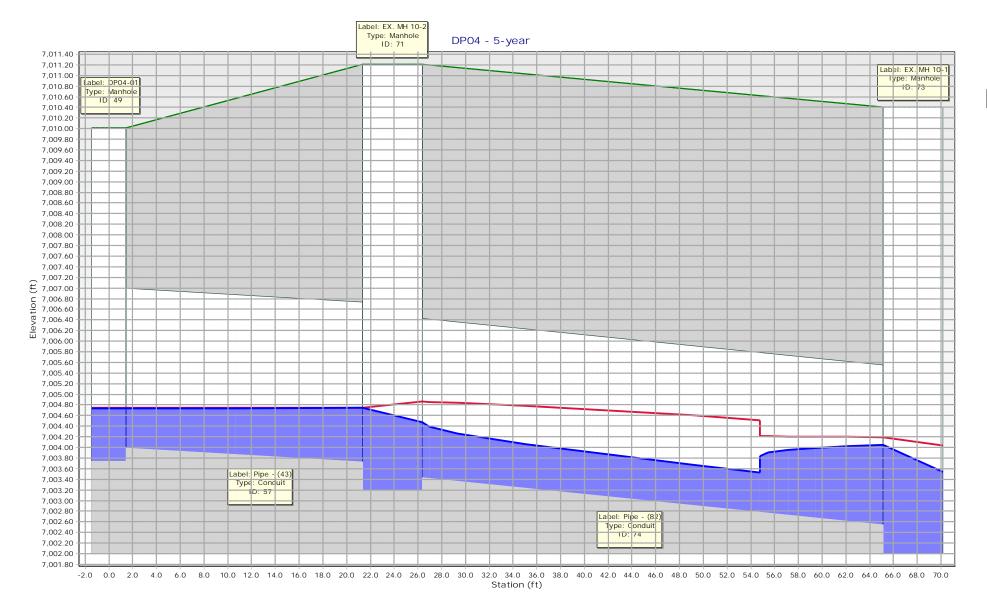
Design Information (Input)		MINOR	MAJOR	
Design Information (Input) CDOT Type R Curb Opening	T	CDOT Type R		1
Type of Inlet Local Depression (additional to continuous gutter depression 'a' from above)	Type =	3.00	3.00	inches
	a _{local} =			IIICHES
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	to the co
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	9.0	inches
Grate Information	, (c) F	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	=
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.58	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
J	Combination		*	=
	_	MINOR	MAJOR	-
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a =$	8.3	19.8	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	Q PEAK REQUIRED =	2.9	17.0	cfs


2518816_MHFD-Inlet_v5.02.xlsm, DP17 12/6/2023, 3:49 PM

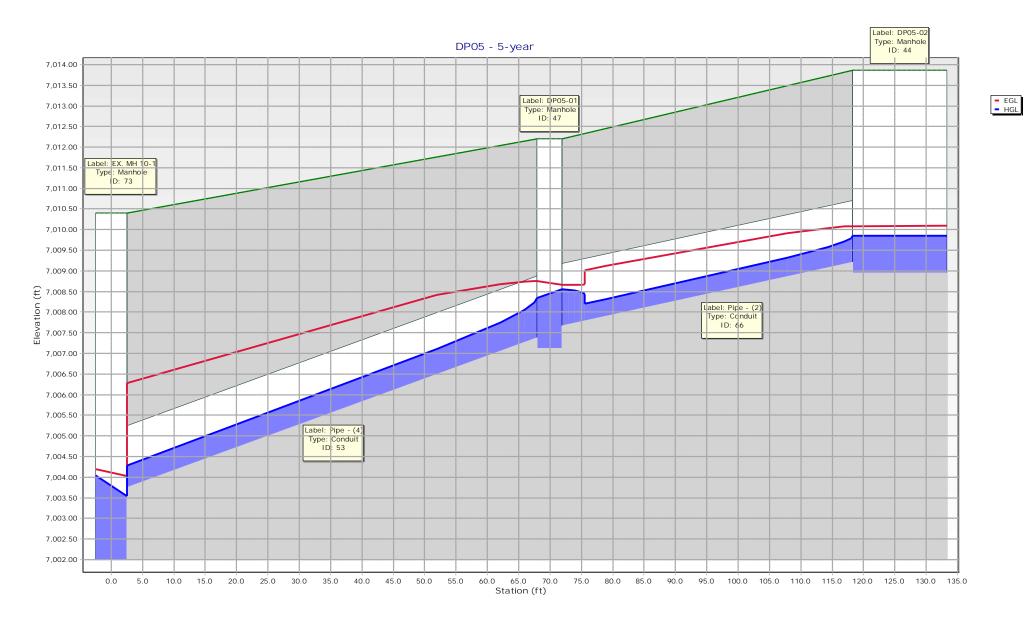

Scenario: 5-year Current Time Step: 0.000 h FlexTable: Conduit Table

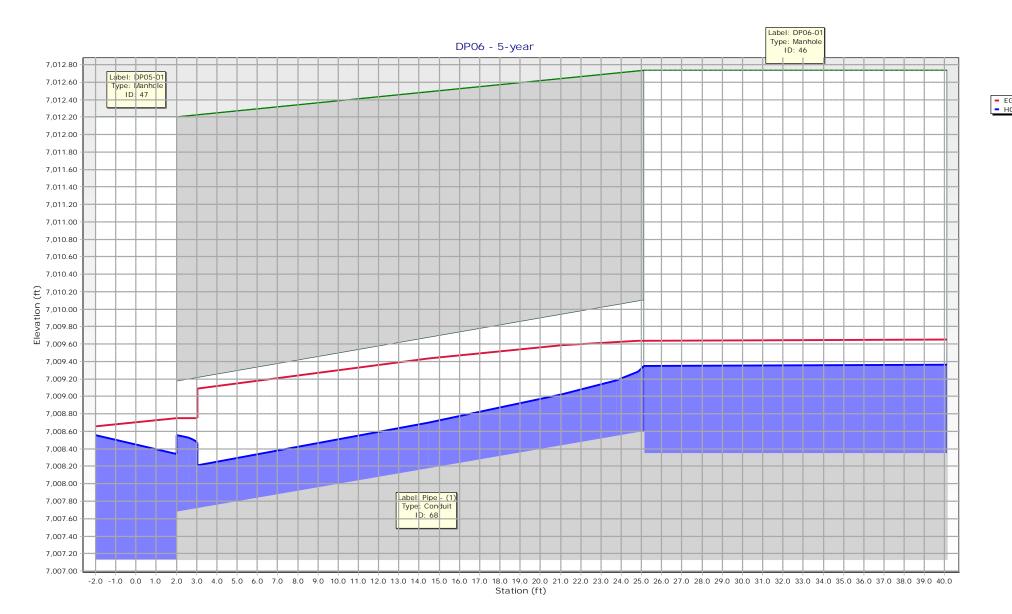
Upstream Structure	Label	Flow (cfs)	Capacity (Full Flow) (cfs)	Diameter (in)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Velocity (ft/s)	Invert (Start) (ft)	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Upstream Structure Headloss Coefficient	Manning's n
DP01-06	Pipe - (6)	2.20	16.12	24.0	63.8	0.005	3.59	7,014.21	7,013.89	7,021.23	7,020.18	7,014.73	7,014.39	7,014.91	7,014.59	1.020	0.013
DP01-05	Pipe - (7)	2.20	15.99	24.0	48.0	0.005	3.57	7,013.59	7,013.35	7,020.18	7,019.42	7,014.11	7,013.85	7,014.29	7,014.05	0.400	0.013
DP01-04	Pipe - (8)	2.20	27.33	24.0	209.0	0.015	5.22	7,013.05	7,010.00	7,019.42	7,015.08	7,013.57	7,010.82	7,013.75	7,010.87	0.400	0.013
DP01-07	Pipe - (5)	0.30	22.62	24.0	143.9	0.010	2.52	7,015.95	7,014.51	7,019.20	7,021.23	7,016.14	7,014.92	7,016.20	7,014.92	0.050	0.013
DP02-01	Pipe - (46)	1.80	10.50	18.0	47.6	0.010	4.44	7,015.19	7,014.71	7,018.60	7,021.23	7,015.69	7,015.13	7,015.88	7,015.44	0.050	0.013
DP03-01	Pipe - (52)	3.40	14.48	18.0	6.8	0.019	6.70	7,010.33	7,010.20	7,015.37	7,015.08	7,011.03	7,010.77	7,011.30	7,011.24	0.050	0.013
DP01-03	Pipe - (8) (1)	5.30	32.81	24.0	77.0	0.021	7.67	7,009.70	7,008.08	7,015.08	7,013.35	7,010.51	7,008.62	7,010.82	7,009.54	1.020	0.013
DP05-02	Pipe - (2)	2.80	17.42	18.0	55.9	0.027	7.23	7,009.21	7,007.67	7,013.86	7,012.20	7,009.85	7,008.55	7,010.09	7,008.66	0.050	0.013
DP01-02	Pipe - (9)	5.30	32.69	24.0	83.6	0.021	7.65	7,007.78	7,006.03	7,013.35	7,011.20	7,008.59	7,007.19	7,008.90	7,007.31	0.250	0.013
DP06-01	Pipe - (1)	3.80	17.73	18.0	32.6	0.028	7.99	7,008.60	7,007.67	7,012.74	7,012.20	7,009.35	7,008.55	7,009.64	7,008.75	0.050	0.013
DP05-01	Pipe - (4)	6.20	23.91	18.0	69.9	0.052	11.36	7,007.38	7,003.75	7,012.20	7,010.40	7,008.34	7,004.27	7,008.75	7,006.28	0.520	0.013
DP01-01	Pipe - (70)	10.50	32.00	24.0	65.0	0.020	9.12	7,005.72	7,004.42	7,011.20	7,011.21	7,006.88	7,005.23	7,007.36	7,006.44	0.640	0.013
DP04-01	Pipe - (43)	1.00	69.38	36.0	23.8	0.011	3.52	7,003.99	7,003.73	7,010.01	7,011.21	7,004.74	7,004.74	7,004.75	7,004.74	0.050	0.013
DP08-01	Pipe - (11)	1.60	21.00	18.0	59.8	0.040	7.02	7,003.52	7,001.12	7,009.38	7,009.02	7,003.99	7,001.40	7,004.16	7,002.17	0.050	0.013
DP07-01	Pipe - (51)	1.10	42.51	18.0	8.7	0.164	10.29	7,002.75	7,001.32	7,009.53	7,009.23	7,003.14	7,001.50	7,003.28	7,002.74	0.050	0.013
EX. MH 17-6	Pipe - (13)	18.20	200.97	48.0	23.0	0.020	9.93	6,998.62	6,998.17	7,009.02	7,008.52	7,000.87	7,000.90	7,000.97	7,000.96	0.270	0.013
EX. MH 10-2	Pipe - (82)	10.90	94.51	36.0	43.8	0.020	8.91	7,003.43	7,002.55	7,011.21	7,010.40	7,004.48	7,004.04	7,004.86	7,004.19	0.690	0.013
EX. MH 10-1	Pipe - (106)	16.40	89.37	36.0	118.6	0.018	9.63	7,002.25	7,000.12	7,010.40	7,009.23	7,003.54	7,001.65	7,004.03	7,001.97	1.020	0.013
EX. MH 10-01A	Pipe - (42)	17.00	95.49	36.0	9.8	0.021	10.20	6,999.82	6,999.62	7,009.23	7,009.02	7,001.14	7,000.69	7,001.64	7,001.58	1.020	0.013

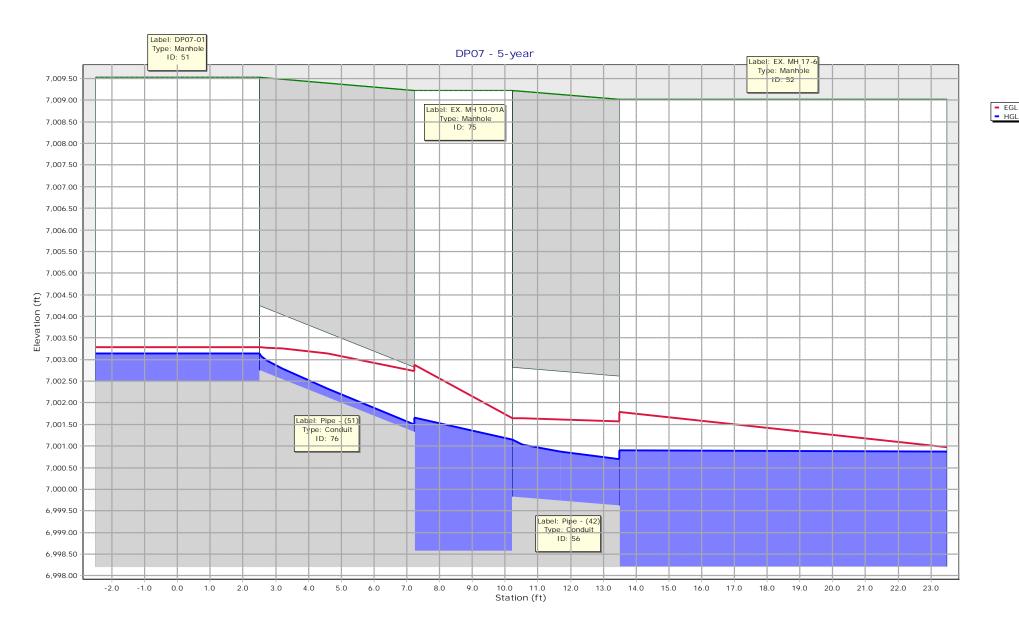

X:\2510000.all\2518816\StormCAD\Models\25288.16 StormCAD Model.stsw

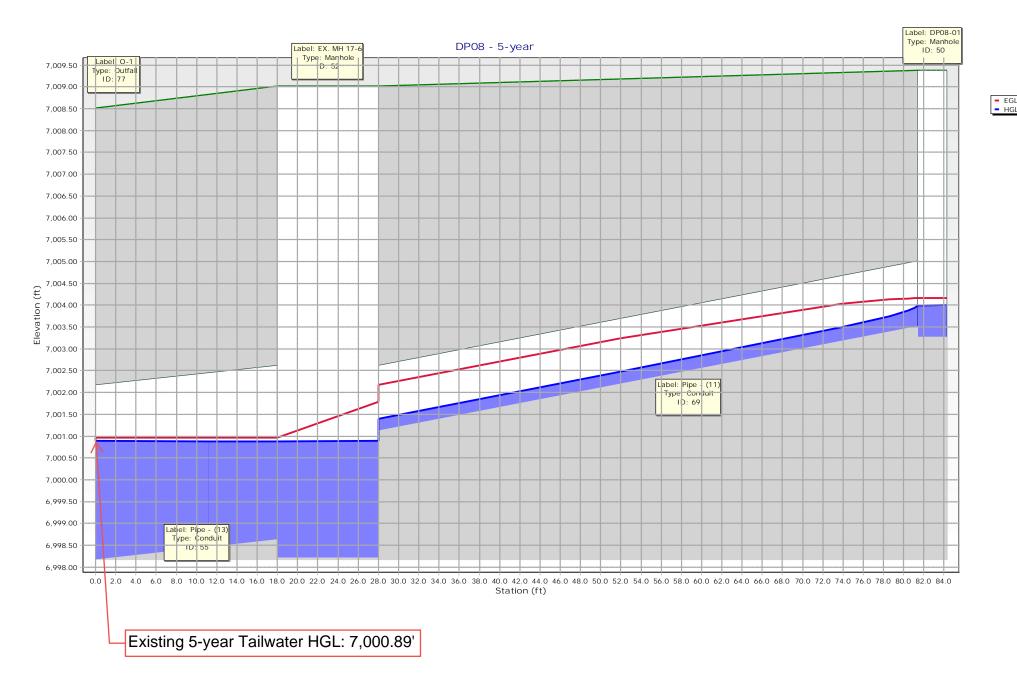


0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 220.0 240.0 260.0 280.0 300.0 320.0 340.0 360.0 380.0 400.0 420.0 440.0 460.0 480.0 500.0 520.0 540.0 560.0 580.0 600.0 620.0 640.0 660.0 680.0 700.0 Station (ft)

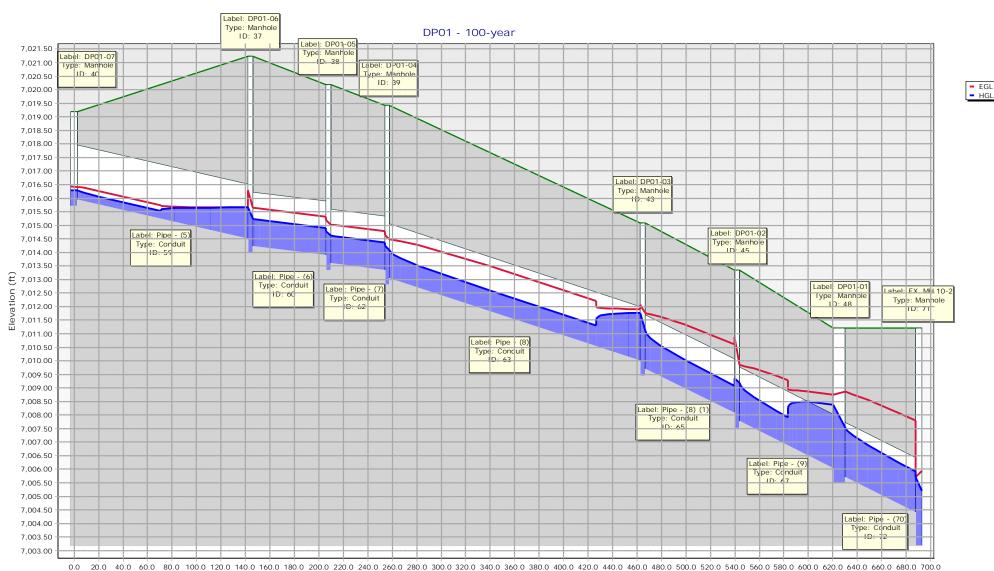


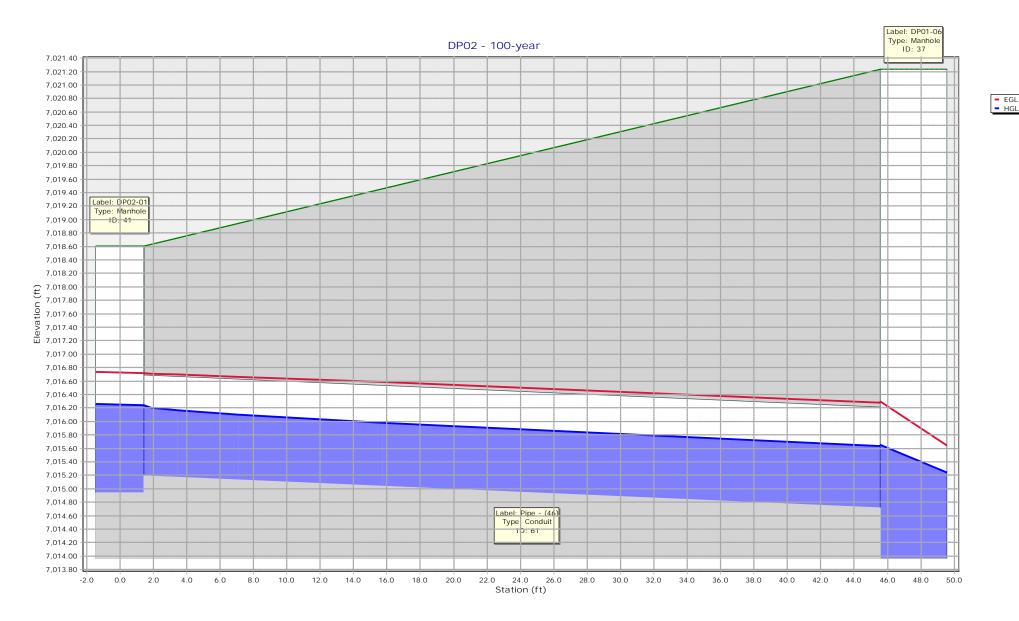

- EGL - HGL

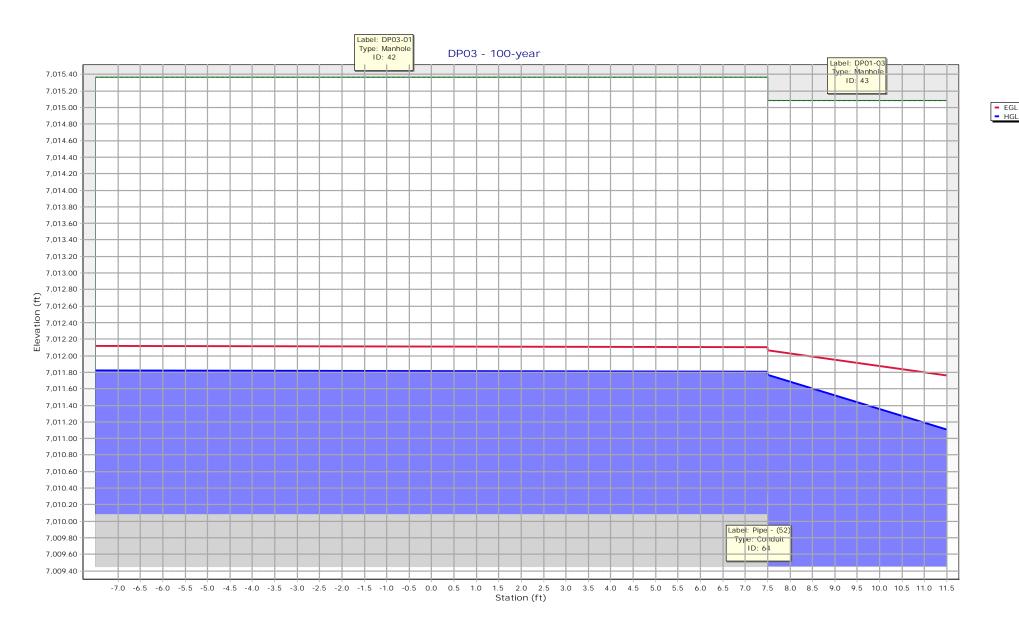


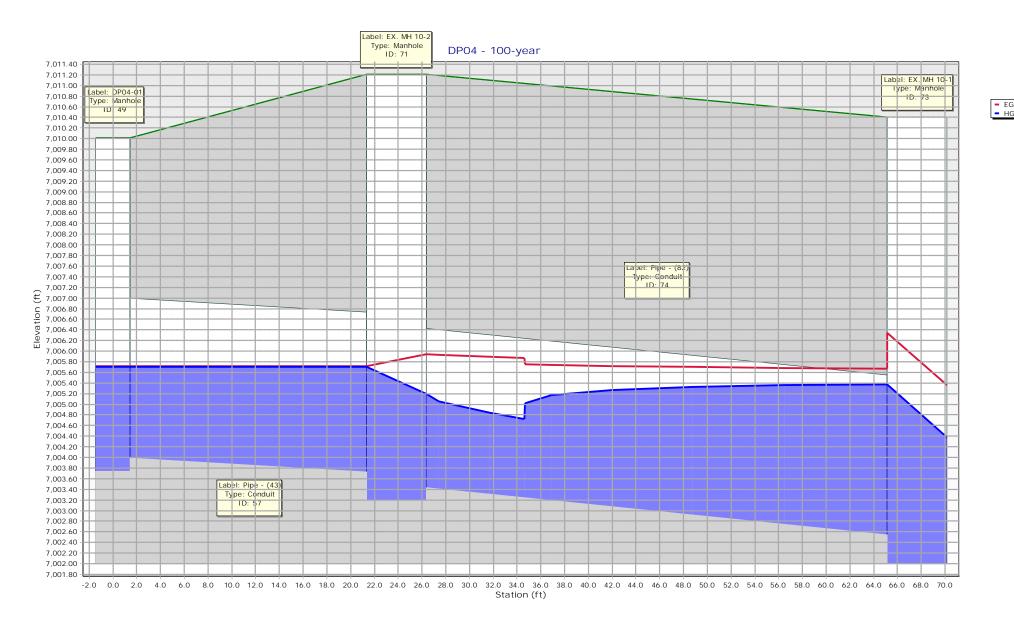


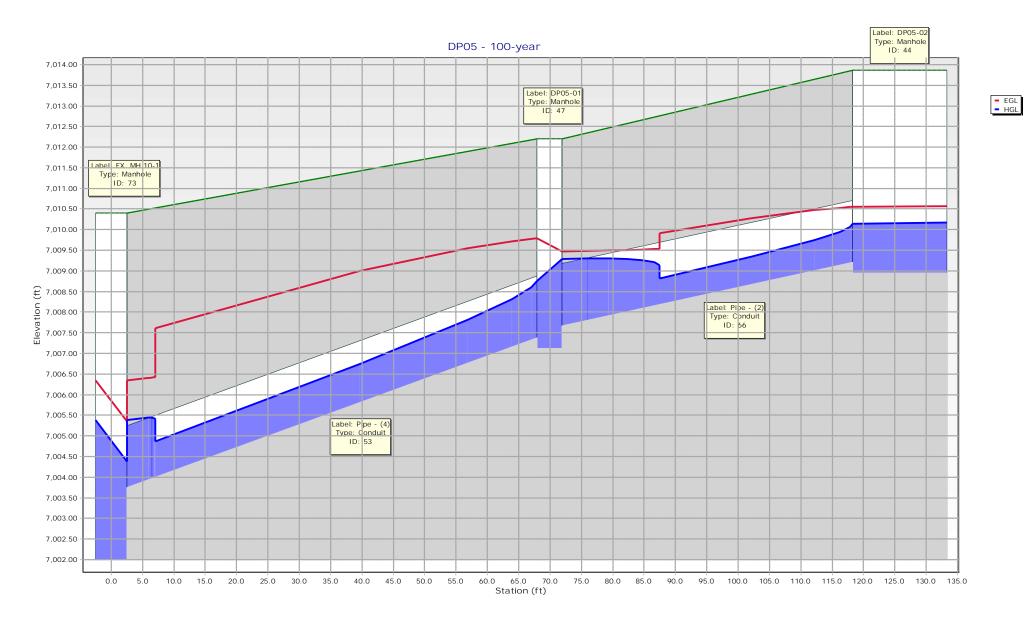
- EGL - HGL

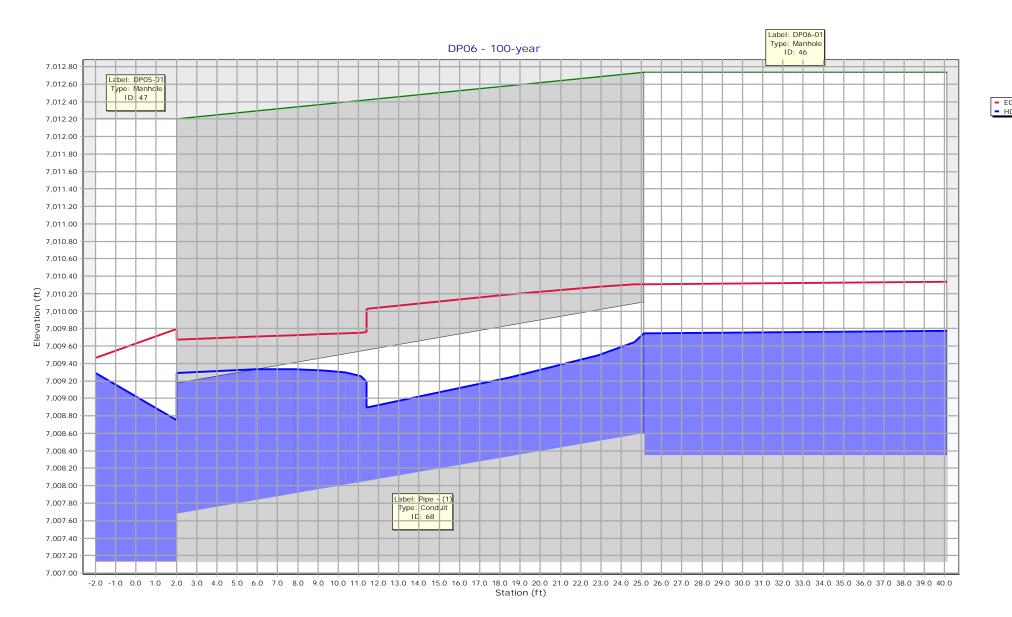


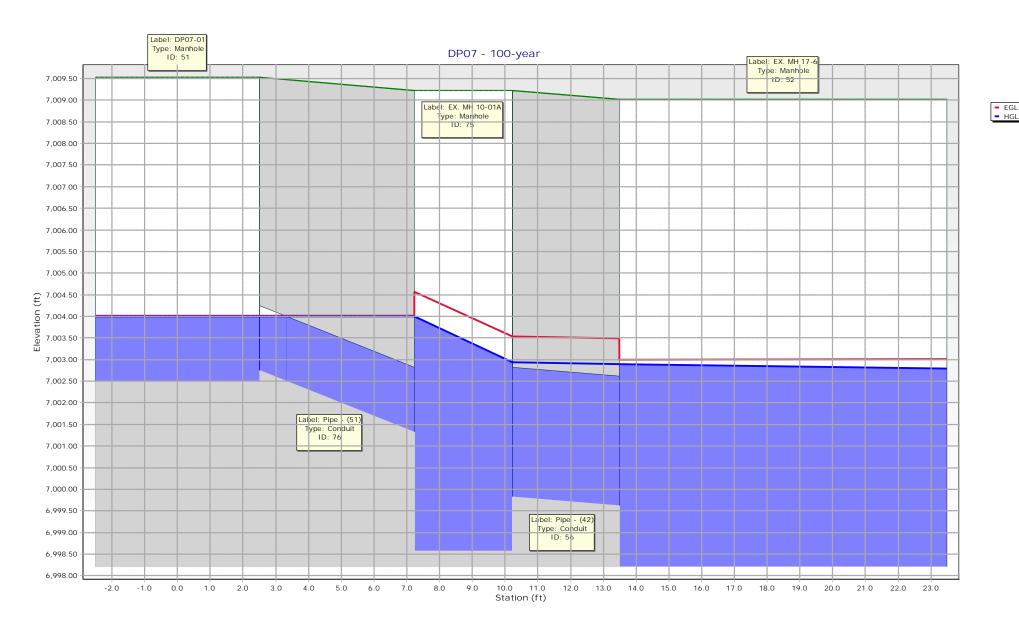

Scenario: 100-year Current Time Step: 0.000 h FlexTable: Conduit Table

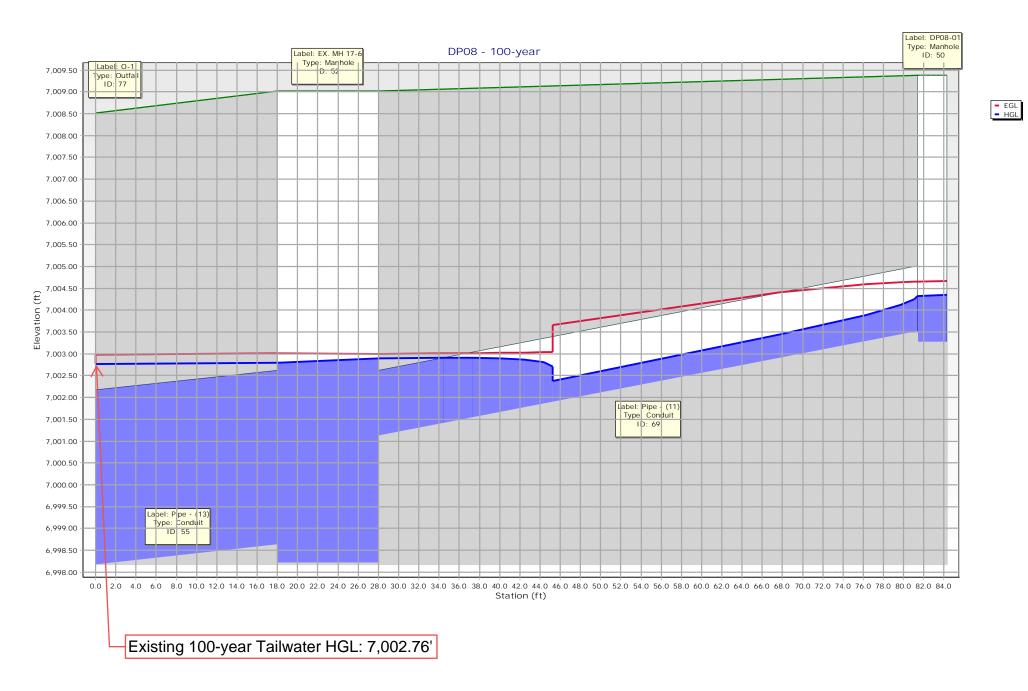

Upstream Structure	Label	Flow (cfs)	Capacity (Full Flow) (cfs)	Diameter (in)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Velocity (ft/s)	Invert (Start) (ft)	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Upstream Structure Headloss Coefficient	Manning's n
DP01-06	Pipe - (6)	8.30	16.12	24.0	63.8	0.005	5.17	7,014.21	7,013.89	7,021.23	7,020.18	7,015.24	7,014.91	7,015.65	7,015.32	1.020	0.013
DP01-05	Pipe - (7)	8.30	15.99	24.0	48.0	0.005	5.14	7,013.59	7,013.35	7,020.18	7,019.42	7,014.62	7,014.37	7,015.02	7,014.78	0.400	0.013
DP01-04	Pipe - (8)	8.30	27.33	24.0	209.0	0.015	7.63	7,013.05	7,010.00	7,019.42	7,015.08	7,014.08	7,011.77	7,014.48	7,011.90	0.400	0.013
DP01-07	Pipe - (5)	1.00	22.62	24.0	143.9	0.010	3.62	7,015.95	7,014.51	7,019.20	7,021.23	7,016.29	7,015.65	7,016.41	7,015.66	0.050	0.013
DP02-01	Pipe - (46)	7.30	10.50	18.0	47.6	0.010	6.42	7,015.19	7,014.71	7,018.60	7,021.23	7,016.24	7,015.64	7,016.71	7,016.27	0.050	0.013
DP03-01	Pipe - (52)	7.70	14.48	18.0	6.8	0.019	8.32	7,010.33	7,010.20	7,015.37	7,015.08	7,011.81	7,011.77	7,012.10	7,012.07	0.050	0.013
DP01-03	Pipe - (8) (1)	15.30	32.81	24.0	77.0	0.021	10.27	7,009.70	7,008.08	7,015.08	7,013.35	7,011.11	7,009.07	7,011.76	7,010.59	1.020	0.013
DP05-02	Pipe - (2)	5.90	17.42	18.0	55.9	0.027	8.90	7,009.21	7,007.67	7,013.86	7,012.20	7,010.15	7,009.29	7,010.55	7,009.47	0.050	0.013
DP01-02	Pipe - (9)	15.30	32.69	24.0	83.6	0.021	10.23	7,007.78	7,006.03	7,013.35	7,011.20	7,009.19	7,008.39	7,009.84	7,008.76	0.250	0.013
DP06-01	Pipe - (1)	8.70	17.73	18.0	32.6	0.028	9.99	7,008.60	7,007.67	7,012.74	7,012.20	7,009.75	7,009.29	7,010.31	7,009.67	0.050	0.013
DP05-01	Pipe - (4)	13.90	23.91	18.0	69.9	0.052	14.04	7,007.38	7,003.75	7,012.20	7,010.40	7,008.75	7,005.38	7,009.79	7,006.34	0.520	0.013
DP01-01	Pipe - (70)	27.70	32.00	24.0	65.0	0.020	11.47	7,005.72	7,004.42	7,011.20	7,011.21	7,007.54	7,005.91	7,008.86	7,007.80	0.640	0.013
DP04-01	Pipe - (43)	3.10	69.38	36.0	23.8	0.011	4.95	7,003.99	7,003.73	7,010.01	7,011.21	7,005.71	7,005.71	7,005.72	7,005.72	0.050	0.013
DP08-01	Pipe - (11)	4.50	21.00	18.0	59.8	0.040	9.46	7,003.52	7,001.12	7,009.38	7,009.02	7,004.33	7,002.90	7,004.66	7,003.00	0.050	0.013
DP07-01	Pipe - (51)	1.90	42.51	18.0	8.7	0.164	12.12	7,002.75	7,001.32	7,009.53	7,009.23	7,003.99	7,004.00	7,004.02	7,004.01	0.050	0.013
EX. MH 17-6	Pipe - (13)	47.20	200.97	48.0	23.0	0.020	3.76	6,998.62	6,998.17	7,009.02	7,008.52	7,002.79	7,002.77	7,003.01	7,002.99	0.470	0.013
EX. MH 10-2	Pipe - (82)	29.90	94.51	36.0	43.8	0.020	11.86	7,003.43	7,002.55	7,011.21	7,010.40	7,005.20	7,005.38	7,005.94	7,005.67	0.690	0.013
EX. MH 10-1	Pipe - (106)	42.60	89.37	36.0	118.6	0.018	12.49	7,002.25	7,000.12	7,010.40	7,009.23	7,004.38	7,004.00	7,005.36	7,004.56	1.020	0.013
EX. MH 10-01A	Pipe - (42)	43.80	95.49	36.0	9.8	0.021	6.20	6,999.82	6,999.62	7,009.23	7,009.02	7,002.94	7,002.90	7,003.54	7,003.49	1.770	0.013


X:\2510000.all\2518816\StormCAD\Models\25288.16 StormCAD Model.stsw




0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 220.0 240.0 260.0 280.0 300.0 320.0 340.0 360.0 380.0 400.0 420.0 440.0 460.0 480.0 500.0 520.0 540.0 560.0 580.0 600.0 620.0 640.0 660.0 680.0 700.0 Station (ft)



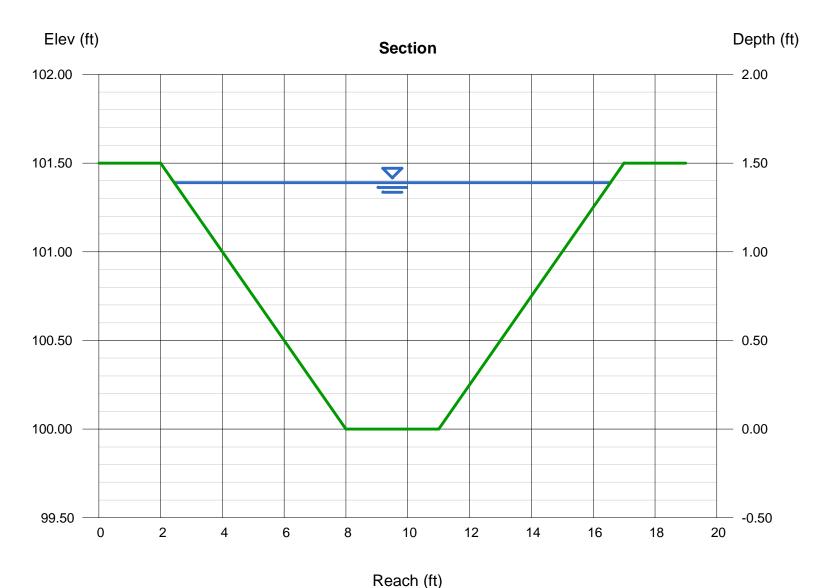


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Dec 14 2023

DP3 Swale Emergency Overflow-Capacity

Trapezoidal


Bottom Width (ft) = 3.00 Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 1.50 Invert Elev (ft) = 100.00 Slope (%) = 1.50 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 62.50

Highlighted

Depth (ft) = 1.39Q (cfs) = 62.50Area (sqft) = 11.90Velocity (ft/s) = 5.25Wetted Perim (ft) = 14.46Crit Depth, Yc (ft) = 1.40Top Width (ft) = 14.12EGL (ft) = 1.82

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Dec 14 2023

DP3 Swale Emergency Overflow-Velocity

Trapezoidal

Bottom Width (ft) = 3.00 Side Slopes (z:1) = 4.00, 4.00 Total Depth (ft) = 1.50 Invert Elev (ft) = 100.00 Slope (%) = 2.50 N-Value = 0.030

Calculations

Compute by: Known Q Known Q (cfs) = 62.50

Highlighted

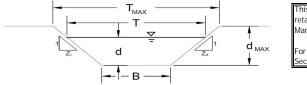
Depth (ft) = 1.24Q (cfs) = 62.50Area (sqft) = 9.87Velocity (ft/s) = 6.33Wetted Perim (ft) = 13.23Crit Depth, Yc (ft) = 1.40Top Width (ft) = 12.92EGL (ft) = 1.86

MHFD-Inlet, Version 5.02 (August 2022)

INLET MANAGEMENT

Worksheet Protected

INLET NAME	DP2-Emergency	DP3-Emergency
Site Type (Urban or Rural)	URBAN	URBAN
Inlet Application (Street or Area)	AREA	AREA
Hydraulic Condition	Swale	Swale
Inlet Type	User-Defined	User-Defined


Jser-Defined Design Flows		
Minor Q _{Known} (cfs)	0.0	0.0
Major Q _{Known} (cfs)	23.5	50.0
Bypass (Carry-Over) Flow from Upstream	Inlets must be organized from upstrea	ım (left) to downstream (right) in order
Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0
<u> </u>		·
Watershed Characteristics		
Subcatchment Area (acres)		
Percent Impervious		
NRCS Soil Type		
NRCS Soil Type		
NRCS Soil Type Watershed Profile		
NRCS Soil Type Watershed Profile Overland Slope (ft/ft)		
NRCS Soil Type Watershed Profile Overland Slope (ft/ft) Overland Length (ft)		
Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft)		
Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft)		
Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft)		
Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input		
Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input Design Storm Return Period, T _r (years)		
Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input Design Storm Return Period, T _r (years)		
Watershed Profile Overland Slope (ft/ft) Overland Length (ft) Channel Slope (ft/ft) Channel Length (ft) Minor Storm Rainfall Input Design Storm Return Period, T _r (years) One-Hour Precipitation, P ₁ (inches)		

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	0.0	0.0
Major Total Design Peak Flow, Q (cfs)	23.5	50.0
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0

MHFD-Inlet, Version 5.02 (August 2022) AREA INLET IN A SWALE

STERLING RANCH FILING 5 DP2-Emergency

This worksheet uses the NRCS vegetal retardance method to determine Manning's n.

For more information see Section 7.2.3 of the USDCM.

Analysis of Trapezoid	lal Grass-Lined Channel Us	ing SCS Method				
NRCS Vegetal Retardar	nce (A, B, C, D, or E)		A, B, C, D, or E =			
Manning's n (Leave cell	D16 blank to manually enter	an n value)	n =	0.030		
Channel Invert Slope			$S_0 =$	0.0100	ft/ft	
Bottom Width			B =	3.00	ft	
Left Side Slope			Z1 =	3.00	ft/ft	
Right Side Sloe			Z2 =	3.00	ft/ft	
Ch	eck one of the following soil t		Го	hoose One:		1
Soil Type:	Max. Velocity (V _{MAX})	Max Froude No. (F _{MAX})	-	O Non-Cohesive	9	
Non-Cohesive	5.0 fps	0.60		Cohesive		
Cohesive	7.0 fps	0.80		☐ Paved		
Paved	N/A	N/A				
			_	Minor Storm	Major Storm	
	p Width of Channel for Minor		$T_{MAX} =$	15.00	15.00	ft
Maximum Allowable Wa	ater Depth in Channel for Min	or & Major Storm	$d_{MAX} = $	2.00	2.00	ft
Allowable Channel Ca	apacity Based On Channel	Geometry		Minor Storm	Major Storm	
MINOR STORM Allowab	ole Capacity is based on Dept	n Criterion	Q _{allow} =	98.1	98.1	cfs
MAJOR STORM Allowab	ole Capacity is based on Depti	n Criterion	d _{allow} =	2.00	2.00	ft
Water Depth in Chan	nel Based On Design Peak	Flow				
Design Peak Flow			$Q_0 =$	0.0	23.5	cfs
Water Depth			d =	0.00	1.03	ft
	lowable capacity GOOD - lowable capacity GOOD -					

If possible overflow from Barbarick pond is 85.4 cfs, shouldn't overflow inlet/channel analysis use that flow?

AREA INLET IN A SWALE

STERLING RANCH FILING 5 DP2-Emergency

Inlet Design Information (Input) Type of Inlet User-Defined -Inlet Type = User-Defined Angle of Inclined Grate (must be <= 30 degrees)
Width of Grate θ 0.00 degrees W = 2.92 Length of Grate 5.84 L = Open Area Ratio A_{RATIO} = 0.70 H_B = Height of Inclined Grate 0.00 Clogging Factor 0.50 Grate Discharge Coefficient $C_{\text{d}} \\$ N/A Orifice Coefficient C_{o} 0.64 Weir Coefficient 2.05 MINOR MAJOR Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) d : 0.00 1.03 $Q_a = Q_b = 0$ 29.6 Total Inlet Interception Capacity (assumes clogged condition) 0.0 cfs Bypassed Flow cfs 0.0 0.0

C% =

100

%

100


Warning 04: Froude No. exceeds USDCM Volume I recommendation.

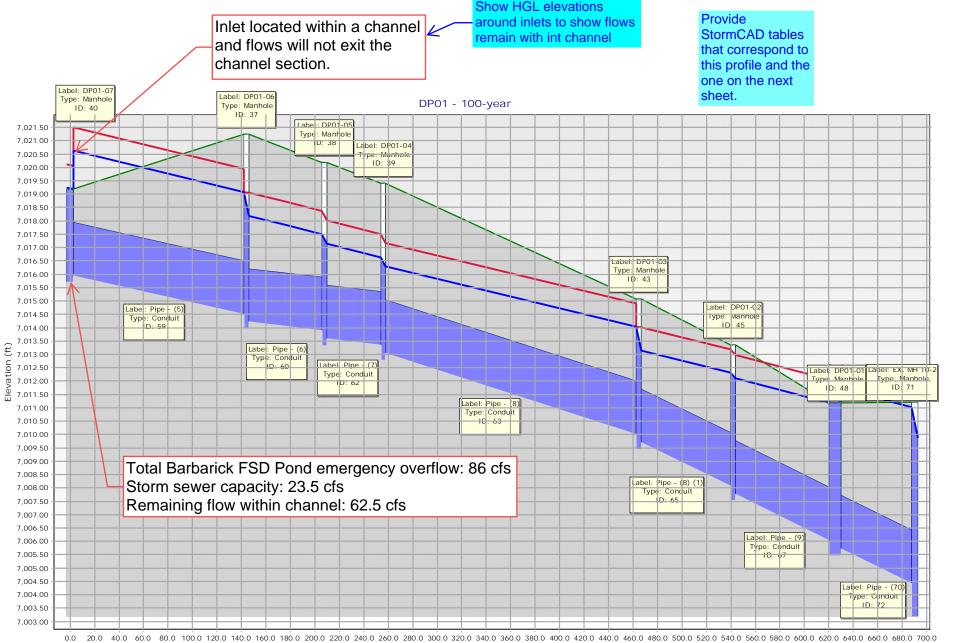
Capture Percentage = Qa/Qo

AREA INLET IN A SWALE

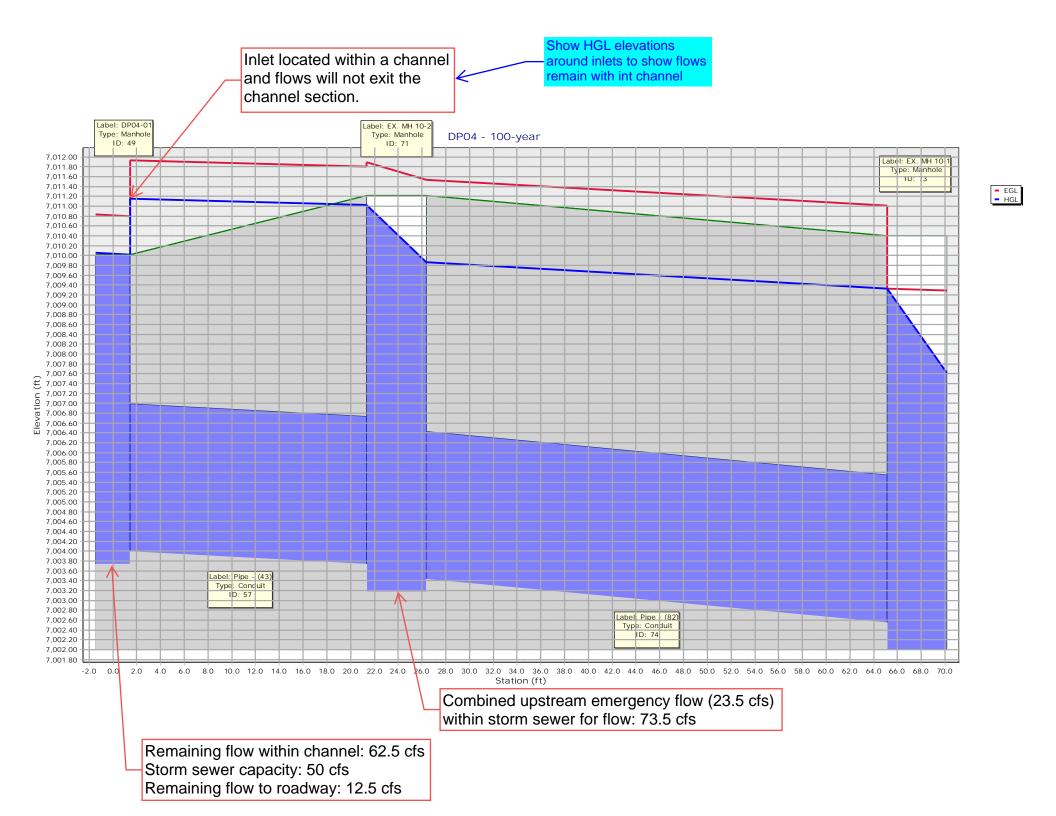
STERLING RANCH FILING 5

DP3-Emergency

Analysis of Trapezoidal Grass-Lined Channel Using SCS Method A, B, C, D, or E = NRCS Vegetal Retardance (A, B, C, D, or E) Manning's n (Leave cell D16 blank to manually enter an n value) 0.030 Channel Invert Slope ft/ft Sn = 0.0100 Bottom Width B = 3.00 eft Side Slope Z1 = 4.00 ft/ft Right Side Sloe Z2 = 4.00 ft/ft Check one of the following soil types: Choose One: Max. Velocity (V_{MAX}) Soil Type: Max Froude No. (F_{MAX}) Non-Cohesive Non-Cohesive 5.0 fps 0.60 Cohesive 7.0 fps Cohesive 0.80 Paved N/A N/A Minor Storm Major Storm Maximum Allowable Top Width of Channel for Minor & Major Storm 15.00 15.00 T_{MAX} = Maximum Allowable Water Depth in Channel for Minor & Major Storm 1.00 1.50 Allowable Channel Capacity Based On Channel Geometry MINOR STORM Allowable Capacity is based on Depth Criterion $\mathsf{Q}_{\mathsf{allow}}$ 61.5 cfs MAJOR STORM Allowable Capacity is based on Depth Criterion 1.50 $d_{\text{allow}} \\$ 1.00 Water Depth in Channel Based On Design Peak Flow Qo Design Peak Flow 50.0 0.0 cfs Water Depth d = 0.00 1.37 Minor storm max, allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max, allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'


> Should overflow analysis be for flow from Barbarick pond (85.4 cfs) plus flows from OS1, A1 & A2?

AREA INLET IN A SWALE

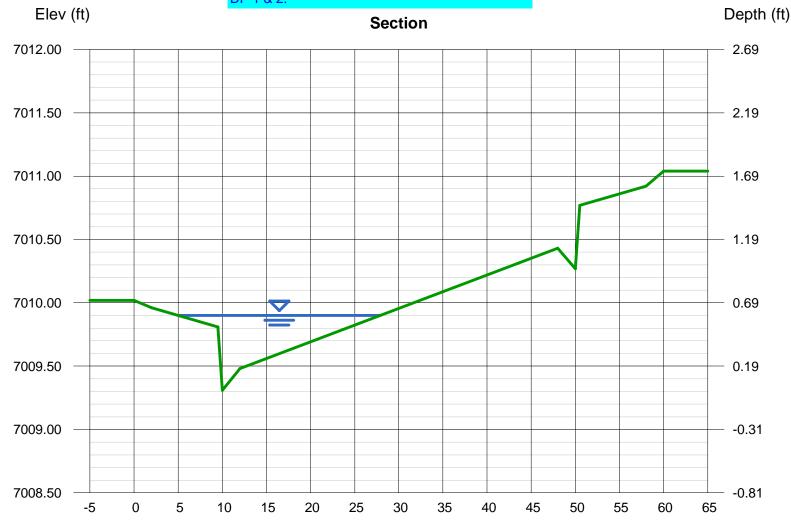

STERLING RANCH FILING 5 DP3-Emergency

Inlet Design Information (Input) Type of Inlet User-Defined -Inlet Type = User-Defined Angle of Inclined Grate (must be <= 30 degrees)
Width of Grate θ 0.00 degrees W = 2.92 Length of Grate 8.76 L= Open Area Ratio A_{RATIO} = 0.70 H_B = Height of Inclined Grate 0.00 Clogging Factor 0.50 Grate Discharge Coefficient $C_{\text{d}} \\$ N/A Orifice Coefficient C_{o} 0.64 Weir Coefficient 2.05 MINOR MAJOR Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) d : 0.00 1.37 $Q_a = Q_b = 0$ Total Inlet Interception Capacity (assumes clogged condition) 53.8 cfs 0.0 Bypassed Flow cfs 0.0 0.0 Capture Percentage = Qa/Qo C% = % 100 100

Warning 04: Froude No. exceeds USDCM Volume I recommendation.

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 220.0 240.0 260.0 280.0 300.0 320.0 340.0 360.0 380.0 400.0 420.0 440.0 460.0 480.0 500.0 520.0 540.0 560.0 580.0 600.0 620.0 640.0 660.0 680.0 700.0 Station (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

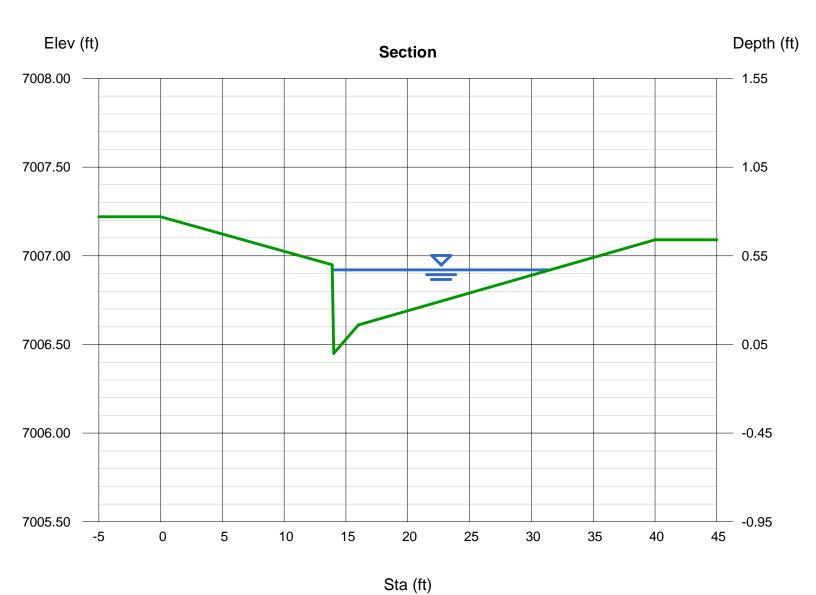

Thursday, Dec 14 2023

Hazlett Drive-Emergency Overflow

User-defined		Highlighted	
Invert Elev (ft)	= 7009.31	Depth (ft)	= 0.59
Slope (%)	= 0.65	Q (cfs)	= 12.50
N-Value	= 0.015	Area (sqft)	= 4.72
		Velocity (ft/s)	= 2.65
Calculations		Wetted Perim (ft)	= 23.13
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.60
Known Q (cfs)	= 12.50	Top Width (ft)	= 22.90
	K	EGL (ft)	= 0.70

(Sta, EI, n)-(Sta, EI, n)... (0.00, 7010.02) -(2.00, 7009.96, 0.030) -(9.50, 7009.81, 0.013) (10.00, 7009.31, 0.013) -(12.00, 7009.48, 0.013) -(48.00, 7010.43, 0.016) -(50.00, 7010.27, 0.013) -(50.50, 7010.77, 0.013) -(58.00, 7010.92, 0.013) -(60.00, 7011.04, 0.030)

> Provide an additional analysis for flow of at least 17.5 cfs (Flow from DP 8 & emergency flows from DP3 & DP5). Worse case scenario would also include emergency flows from Barbarick Pond & DP 1 & 2.


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Dec 14 2023

Sterling Ranch Road-Emergency Overflow

User-defined		Highlighted	
Invert Elev (ft)	= 7006.45	Depth (ft)	= 0.47
Slope (%)	= 1.80	Q (cfs)	= 12.50
N-Value	= 0.016	Area (sqft)	= 3.22
		Velocity (ft/s)	= 3.88
Calculations		Wetted Perim (ft)	= 18.02
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.56
Known Q (cfs)	= 12.50	Top Width (ft)	= 17.65
		EGL (ft)	= 0.70

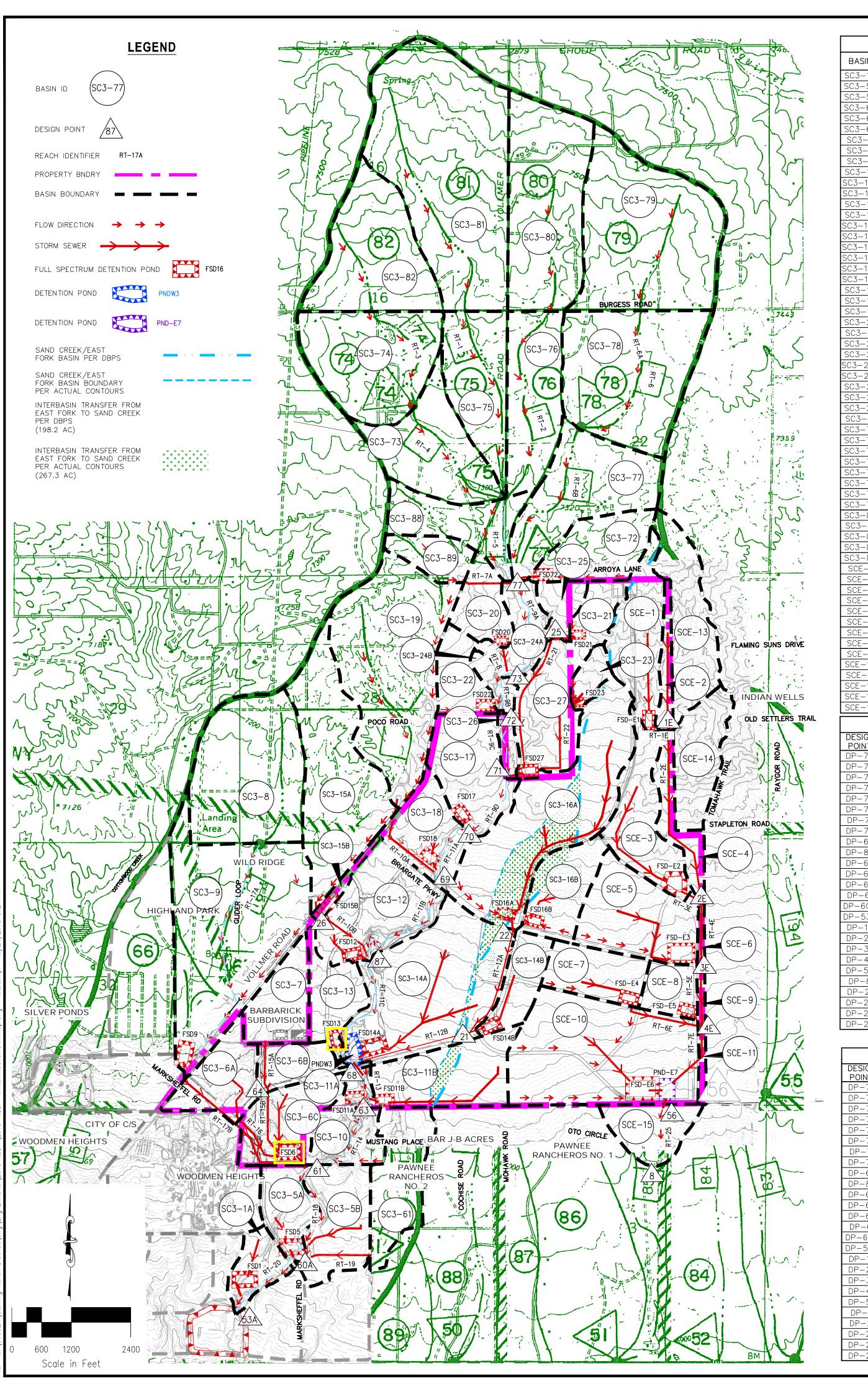
(Sta, El, n)-(Sta, El, n)... (0.00, 7007.22) -(13.87, 7006.95, 0.030) -(14.00, 7006.45, 0.013) -(16.00, 7006.61, 0.013) -(40.00, 7007.09, 0.016)

Appendix D Reference Material

MASTER DEVELOPMENT DRAINAGE PLAN FOR STERLING RANCH

OCTOBER 2018

Prepared for:


Morley-Bentley Investments, LLC 20 Boulder Crescent, 2nd Floor Colorado Springs, CO 80903 (719) 471-1742

Prepared by:

20 Boulder Crescent, Suite 110 Colorado Springs, CO 80903 (719) 955-5485

> Project #09-002 SKP-18-003 SF-17-024

			BA	ASIN S	UMMAF	RY			
BASIN	CN	AREA (ACRES)	AREA (SQ MI)	Q ₂ (CFS)	Q5 (OFS)	Q ₁₀ (cfs)	Q ₂₅ (CFS)	Q 50 (CFS)	Q ₁₀₀ (cFs)
SC3-1A	73	27.8	0.044	16.3	23.3	33.0	45.8	57.1	68.9
SC3-5A	84	39.1	0.061	40.6	53.7	71.0	92.4	110.6	129.1
SC3-5B	81	63.0	0.098	53.8	73.0	98.5	130.8	158.6	187.0
SC3-6A	88	49.3	0.077	61.4	79.3	102.2	130.1	153.6	177.1
SC3-6B	85	30.9	0.048	32.9	43.4	57.0	73.9	88.2	102.7
SC3-6C	82	58.0	0.091	53.9	72.5	97.1	128.0	154.5	181.5
SC3-7	88	45.7	0.071	54.0	69.9	90.3	115.2	136.2	157.2
SC3-8	62	143.4	0.224	25.4	42.1	66.7	100.7	132.3	166.2
SC3-9	66	217.4	0.340	45.8	71.5	108.6	158.9	204.9	254.0
SC3-10	63	36.0	0.056	7.6	12.3	19.4	29.1	38.0	47.7
SC3-11A	70	10.7	0.017	5.3	7.8	11.3	15.9	20.0	24.3
SC3-11B	80	76.6	0.120	59.4	81.3	110.8	148.1	180.5	213.7
SC3-12	81	88.2	0.138	77.8	105.6	142.5	189.1	229.1	270.0
SC3-13	85	41.0	0.064	43.9	57.8	76.0	98.5	117.6	136.9
SC3-14A	79	164.9	0.258	127.6	175.4	239.8	321.9	393.2	466.3
SC3-14B	77	34.7	0.054	24.6	34.3	47.4	64.2	79.0	94.1
SC3-15A	62	139.7	0.218	21.3	35.5	56.3	85.3	112.1	141.0
SC3-15B	87	7.9	0.012	10.8	14.0	18.2	23.3	27.6	31.9
SC3-16A	74	168.1	0.263	84.4	120.4	170.0	234.8	292.2	351.8
SC3-16B	78	50.7	0.079	39.0	53.7	73.6	99.0	121.1	143.8
SC3-17	73	70.6	0.110	41.8	59.6	85.2	119.0	149.1	180.6
SC3-18	81	53.8	0.084	49.3	67.1	91.0	121.2	147.3	174.0
SC3-19	62	184.0	0.287	28.8	47.7	75.7	114.4	150.2	188.8
SC3-20	65	34.2	0.053	9.9	15.5	23.8	35.1	45.5	56.6
SC3-21	66	23.3	0.036	7.0	10.8	16.3	23.7	30.4	37.5
SC3-22	65	33.9	0.053	9.4	14.8	22.5	32.9	42.5	52.6
SC3-23	67	14.5	0.023	5.5	8.3	12.4	18.0	23.0	28.4
SC3-24A	65	35.7	0.056	13.0	20.4	31.1	45.7	59.0	73.2
SC3-24B	65	12.2	0.019	3.4	5.3	8.1	11.8	15.2	18.9
SC3-25	66	19.0	0.030	5.8	8.9	13.4	19.5	25.1	31.0
SC3-26	63	10.0	0.016	2.5	4.0	6.2	9.2	12.1	15.1
SC3-27	71	70.0	0.109	35.1	51.2	73.8	103.7	130.3	158.3
SC3-61	63	65.5	0.102	13.7	22.0	34.4	51.6	67.6	84.8
SC3-72 SC3-73	64	56.2 90.0	0.088	12.8	20.2	31.4	46.7	60.9	76.0
SC3-73 SC3-74	63 63	119.7	0.141 0.187	16.4 22.3	26.4 36.5	41.3 57.3	62.1 85.9	81.3 112.3	102.0 140.7
SC3-74 SC3-75	63	79.3	0.107	13.1	21.5	33.7	50.5	66.1	82.8
SC3-76	63	86.4	0.124	14.2	23.1	36.4	54.6	71.4	89.6
SC3-77	62	106.9	0.167	16.6	27.6	43.8	66.2	87.0	109.4
SC3-77	63	155.6	0.167	28.1	45.3	70.6	106.2	139.1	174.5
SC3-79	63	189.0	0.295	34.9	57.0	89.5	134.3	175.6	220.1
SC3-80	63	147.7	0.231	27.3	44.3	69.6	104.5	136.8	171.4
SC3-81	62	262.9	0.411	42.6	70.2	111.0	167.4	219.6	275.7
SC3-82	62	117.8	0.184	20.0	33.2	52.8	80.0	105.1	132.3
SC3-88	62	60.2	0.094	10.5	17.4	27.6	41.8	54.9	69.0
SC3-89	62	27.5	0.043	6.1	10	15.7	23.6	30.8	38.6
SCE-1	65	64.4	0.101	23.3	35.9	53.8	79.1	102.4	127.4
SCE-2	64	15.0	0.023	4.4	7.0	10.8	15.9	20.7	25.7
SCE-3	70	67.5	0.105	30.6	45.2	65.9	93.3	118.0	143.9
SCE-4	70	29.5	0.046	13.3	19.6	28.6	40.6	257.8	62.6
SCE-5	87	85.5	0.134	100.4	130.6	169.6	217.4	257.8	298.4
SCE-6	64	3.8	0.006	1.6	2.5	3.7	5.4	7.0	8.6
SCE-7	89	44.9	0.070	58.9	75.5	96.6	122.2	143.7	165.2
SCE-8	92	25.5	0.040	38.6	48.4	60.7	75.4	87.7	99.9
SCE-9	64	4.0	0.006	1.5	2.4	3.6	5.3	6.8	8.5
SCE-10	83	174.3	0.272	7.6	189.4	19.4	29.1	398.9	467.5
SCE-11	64	5.8	0.009	2.3	3.6	5.5	8.0	10.3	12.8
SCE-13	63	78.6	0.123	19.6	31.3	48.7	73.1	95.7	120.0
SCE-14	63	52.5	0.082	13.2	21.2	33.3	49.9	65.2	81.7
SCE-15									

				DESIG	N POIN	IT SUM	MARY	
DESIGN POINT	AREA (sq mi)	Q ₂ (CFS)	Q ₅ (CFS)	Q ₁₀ (crs)	Q 25 (CFS)	Q ₅₀ (ofs)	Q100 (CFS)	LOCATION
DP-74	0.371	39.3	65.3	104.8	158.9	209.1	262.8	
DP-75	1.413	141.2	235.1	376.6	566.6	750.9	950.5	
DP-77	2.343	209.9	351.9	580.6	886.6	1168.4	1467.7	ARROYA LANE X-ING
DP-78	0.538	59.7	98.4	154.0	232.6	306.2	385.3	
DP-73	2.471	207.5	354.3	588.5	897.1	1187.2	1506.7	
DP-72	2.543	206.2	352.5	586.7	897.2	1195.3	1518.6	POCO ROAD X-ING
DP-71	2.757	205.9	349.3	610.5	932.4	1226.9	1612.2	STERLING RANCH NORTHERN BNDRY
DP-70	2.867	205.3	349.8	614.0	940.1	1260.6	1636.7	
DP-69	3.238	212.7	366.6	653.7	1010.6	1364.1	1775.7	BRIARGATE PARKWAY X-ING
DP-87	3.594	216.9	374.6	681.9	1072.1	1471.5	1905.9	
DP-68	4.312	214.6	374.5	714.9	1187.6	1674.9	2204.1	UPSTREAM OF POND W3
DP-64	0.119	85.9	112.1	145.9	187.5	222.6	258.0	
DP-63	4.449	154.4	201.0	375.7	815.9	1112.1	1385.1	STERLING RANCH SOUTHERN BNDRY
DP-61	5.356	156.6	223.9	428.0	928.2	1287.3	1620.1	COLORADO SPRINGS/EL PASO BNDRY
DP-60A	5.617	161.6	224.8	439.1	950.4	1320.5	1661.8	MARKSHEFFEL X-ING
DP-53A	5.661	161.6	225.7	441.8	951.1	1326.0	1668.9	SAND CREEK AND POND 3
DP-1E	0.247	23.9	38.3	70.1	132.8	173.0	220.9	
DP-2E	0.486	48.9	76.8	123.0	228.7	319.7	419.4	
DP-3E	0.626	48.5	75.7	122.2	271.1	387.1	500.1	
DP-4E	0.745	48.1	76.2	122.4	286.9	407.3	534.8	
DP-56	1.017	23.1	35.3	71.5	108.3	152.1	196.4	NEAR SE PROP CORNER
DP-8	1.079	24.1	37.2	73.5	111.3	155.4	200.7	BELOW SE PROP CORNER
DP-21	0.396	0.6	8.8	17.8	57.1	116.8	174.9	
DP-22	0.342	0.6	8.8	17.6	56.8	105.1	156.4	
DP-25	0.066	5.9	9.1	16.3	35.1	46.4	58.2	
DP-26	0.012	0.1	1.1	3.2	7.3	9.5	12.0	

DESIGN POINT SUMMARY (VOLUME)											
DESIGN POINT	AREA (sq mi)	V ₂ (AC-FT)	V ₅ (AC-FT)	V10 (AC-FT)	V25 (AC-FT)	V ₅₀ (AC-FT)	V ₁₀₀ (AC-FT)	LOCATION			
DP-74	0.371	5.9	9.0	13.6	19.8	25.5	31.6				
DP-75	1.413	22.7	34.5	51.7	75.4	97.1	120.5				
DP-77	2.343	37.7	57.4	85.9	125.1	161.1	199.9	ARROYA LANE X-ING			
DP-78	0.538	8.9	13.5	20.1	29.3	37.7	46.7				
DP-73	2.471	40.0	60.8	91.0	132.5	170.7	211.7				
DP-72	2.543	41.3	62.9	94.0	136.8	176.2	218.5	POCO ROAD X—ING			
DP-71	2.757	46.3	70.0	104.3	151.3	194.5	240.8	STERLING RANCH NORTHERN BNDRY			
DP-70	2.867	49.5	74.5	110.6	160.1	205.4	254.0				
DP-69	3.238	57.5	86.1	127.4	183.8	235.3	290.6	BRIARGATE PARKWAY X—ING			
DP-87	3.594	66.5	98.9	145.6	209.1	267.1	329.1				
DP-68	4.312	81.8	123.7	183.9	264.9	338.0	415.8	UPSTREAM OF POND W3			
DP-64	0.119	7.0	9.1	11.8	15.2	18.1	21.1				
DP-63	4.449	85.6	129.5	192.3	276.7	352.8	433.5	STERLING RANCH SOUTHERN BNDRY			
DP-61	5.356	103.7	157.8	235.1	338.4	431.3	529.8	COLORADO SPRINGS/EL PASO BNDRY			
DP-60A	5.617	111.0	168.6	250.4	359.5	457.7	561.5	MARKSHEFFEL X-ING			
DP-53A	5.661	112.0	170.0	252.6	362.6	461.7	566.5	SAND CREEK AND POND 3			
DP-1E	0.247	3.1	5.2	8.4	12.7	16.6	20.9				
DP-2E	0.480	6.1	10.4	16.9	25.7	33.7	42.2				
DP-3E	0.620	7.0	13.7	23.4	36.1	47.4	59.3				
DP-4E	0.736	7.6	15.6	27.2	43.0	57.2	72.0				
DP-56	1.017	7.7	16.1	28.6	51.3	71.7	92.9	NEAR SE PROP CORNER			
DP-8	1.079	8.0	16.7	26.6	53.0	74.0	95.9	BELOW SE PROP CORNER			
DP-21	0.396	6.3	11.3	18.3	27.5	35.6	44.0				
DP-22	0.736	6.3	10.7	16.7	24.6	31.5	38.7				
DP-25	1.017	1.3	1.9	2.8	4.1	5.2	6.4				
DP-26	1.079	0.7	0.9	1.2	1.5	1.8	2.1				

WATER QUALITY & DETENTION POND SUMMARY							WATER QUALITY & DETENTION POND SUMMARY						
FSD1			014 1 0	140 001	MINITI		FSD16B						
STORM EVENT (YR)	2	5	10	25	50	100	STORM EVENT (YR)	2	5	10	25	50	100
PEAK INFLOW (CFS)	16.3	23.3	33.0	45.8	57.1	68.9	PEAK INFLOW (CFS)	39.0	53.7	73.6	99.0	121.1	143.8
ALLOWABLE RELEASE (CFS)	0.1	1.7	3.3	10.9	17.5	25.5	ALLOWABLE RELEASE (CFS)	0.0	0.4	0.7	8.3 7.9	17.2 17.2	28.2
MODELED RELEASE (CFS)	0.1	1.6	3.2	10.9	17.4	25.4	MODELED RELEASE (CFS) STORED VOLUME (AC-FT)	0.0 3.0	0.4 3.9	5.1	7.9 5.1	5.3	28.1 5.8
STORED VOLUME (AC-FT)	2.4	2.6	3.0	3.6	1.9	2.2	STORED VOLUME (AC-FT)	3.0	J.9	3.1	J.1	3.3	3.0
(FSD17						
FSD5							STORM EVENT (YR)	2	5	10	25	50	100
STORM EVENT (YR)	2	5	10	25	50	100	PEAK INFLOW (CFS)	41.8	59.6	85.2	119.0	149.1	180.6
PEAK INFLOW (CFS)	40.6	53.7	71.0	92.4	110.6	129.1	ALLOWABLE RELEASE (CFS)	0.7	11.1	22.5	52.0	67.2	86.3
ALLOWABLE RELEASE (CFS)	0.1	1.4	2.6	11.3	19.8	30.2	MODELED RELEASE (CFS)	0.7	8.4	22.4	52.0	67.2	86.1
MODELED RELEASE (CFS)	0.1	1.4	2.6	11.2	19.7	30.1	STORED VOLUME (AC-FT)	2.6	2.6	2.8	3.4	4.0	4.7
STORED VOLUME (AC-FT)	3.0	3.2	3.8	4.1	4.7	5.2		•	•	•	•	•	
							FSD18						
FSD6							STORM EVENT (YR)	2	5	10	25	50	100
STORM EVENT (YR)	2	5	10	25	50	100	PEAK INFLOW (CFS)	49.3	67.1	91.0	121.2	147.3	174.0
PEAK INFLOW (CFS)	196.5	258.5	339.1	438.7	523.3	608.6	ALLOWABLE RELEASE (CFS)	0.6	9.2	18.4	42.2	54.6	69.9
ALLOWABLE RELEASE (CFS)	0.5	7.6 7.5	14.6	58.4	99.6	149.7	MODELED RELEASE (CFS)	0.6	6.3	18.4	42.2	54.6	69.6
MODELED RELEASE (CFS) STORED VOLUME (AC-FT)	0.5 15.5	16.4	14.5 18.7	58.2 20.8	99.6 23.3	149.6 26.0	STORED VOLUME (AC-FT)	3.2	3.2	3.4	4.0	4.7	5.3
STORED VOLUME (AC-11)	13.3	10.4	10.7	20.0	20.0	20.0	FORCE						
FSD9							FSD20			1.0	0.5	T 50	100
STORM EVENT (YR)	2	5	10	25	50	100	STORM EVENT (YR)	2	5	10	25 35.1	50	100
PEAK INFLOW (CFS)	64.6	105.6	169.5	252.3	327.1	410.1	PEAK INFLOW (CFS) ALLOWABLE RELEASE (CFS)	9.9 0.4	15.5 5.5	23.8	35.1 25.7	45.5 33.2	56.6 42.5
ALLOWABLE RELEASE (CFS)	1.7	24.9	49.8	141.1	207.2	290.0	MODELED RELEASE (CFS)	0.4	2.8	10.9	25.7 25.7	33.2	42.5
MODELED RELEASE (CFS)	1.7	24.9	49.8	141.1	207.2	289.9	STORED VOLUME (AC-FT)	0.4	0.8	0.8	0.9	1.0	1.2
STORED VOLUME (AC-FT)	8.7	8.7	9.6	10.8	12.3	13.8	STORED VOLUME (NO 11)	ı	1 0.0		J. J.J	1.0	1.4
FSD11A	•						FSD21						
STORM EVENT (YR)	2	5	10	25	50	100	STORM EVENT (YR)	2	5	10	25	50	100
PEAK INFLOW (CFS)	5.3	7.8	11.3	15.9	20.0	24.3	PEAK INFLOW (CFS)	7.0	10.8	16.3	23.7	30.4	37.5
ALLOWABLE RELEASE (CFS)	0.1	1.6	3.2	7.5	9.7	12.4	ALLOWABLE RELEASE (CFS)	0.3	4.0	8.0	18.3	23.7	30.3
MODELED RELEASE (CFS)	0.2	0.9	3.0	7.5	9.7	12.3	MODELED RELEASE (CFS)	0.3	3.3	8.0	18.3	23.7	30.1
STORED VOLUME (AC-FT)	0.3	0.3	0.4	0.4	0.5	0.6	STORED VOLUME (AC-FT)	0.5	0.5	0.5	0.6	0.7	0.8
FSD11B							FSD22			1	Г	1	
STORM EVENT (YR)	2	5	10	25	50	100	STORM EVENT (YR)	2	5	10	25	50	100
PEAK INFLOW (CFS)	59.4	81.3	110.8	148.1	180.5	213.7	PEAK INFLOW (CFS)	9.4	14.8	22.5	32.9	42.5	52.6
ALLOWABLE RELEASE (CFS)	0.3	4.5	8.7	29.6	47.7	69.6	ALLOWABLE RELEASE (CFS)	0.4	5.8	11.5	26.5	34.3	43.9
MODELED RELEASE (CFS)	0.3	4.5	8.6	29.5	47.7	69.5	MODELED RELEASE (CFS)	0.4	5.8	11.4	26.5	34.3	43.8
STORED VOLUME (AC-FT)	4.8	4.9	5.5	6.4	7.3	8.2	STORED VOLUME (AC-FT)	0.6	0.6	0.7	0.8	0.9	1.0
FSD12							FSD23						
STORM EVENT (YR)	2	<u> </u>	10	25	50	100	STORM EVENT (YR)	2	5	10	25	50	100
PEAK INFLOW (CFS)	77.8	105.6	142.5	189.1	229.1	270.0	PEAK INFLOW (CFS)	5.5	8.3	12.4	18.0	23.0	28.4
ALLOWABLE RELEASE (CFS)	0.9	13.2	26.7	62.0	80.2	103.2	ALLOWABLE RELEASE (CFS)	0.2	2.4	4.9	11.2	14.5	18.6
MODELED RELEASE (CFS)	0.9	9.0	26.7	61.9	80.1	103.1	MODELED RELEASE (CFS)	0.2	2.0	4.9	11.2	14.5	18.6
STORED VOLUME (AC-FT)	5.2	5.5	5.8	6.7	7.8	8.9	STORED VOLUME (AC-FT)	0.3	0.3	0.4	0.4	0.5	0.6
,									•		•		•
FSD13							FSD27						
STORM EVENT (YR)	2	5	10	25	50	100	STORM EVENT (YR)	2	5	10	25	50	100
PEAK INFLOW (CFS)	43.9	57.8	76.0	98.5	117.6	136.9	PEAK INFLOW (CFS)	38.8	57.6	84.1	119.7	159.2	206.3
ALLOWABLE RELEASE (CFS)	0.4	6.1	12.3	28.6	37.0	47.6	ALLOWABLE RELEASE (CFS)	1.4	21.1	42.4	97.8	126.4	161.9
MODELED RELEASE (CFS)	0.4	4.2	12.3	28.6	36.9	47.2	MODELED RELEASE (CFS)	1.4	18.4	42.3	97.7	126.2	161.9
STORED VOLUME (AC-FT)	3.1	3.1	3.3	3.8	4.4	5.0	STORED VOLUME (AC-FT)	2.7	2.8	2.9	3.2	3.7	4.2
ESD14A							[
FSD14A		E	10	0.5	FO	100	FSD72		Τ -	10	0.5	F 0	100
STORM EVENT (YR) PEAK INFLOW (CFS)	127.6	5 175.4	10	25 321.9	50	100	STORM EVENT (YR)	2	5	10	25 46.7	50	100
ALLOWABLE RELEASE (CFS)	0.5	7.5	239.8 14.4	56.2	393.2 95.2	466.3 142.4	PEAK INFLOW (CFS) ALLOWABLE RELEASE (CFS)	12.8 0.6	20.2 9.6	31.4 19.3	46.7 44.4	60.9 57.4	76.0 73.4
MODELED RELEASE (CFS)	0.5	7.5	14.4	56.2	95.2	142.4	MODELED RELEASE (CFS)	0.6	9.6	19.3	44.4	57.4	73.4
STORED VOLUME (AC-FT)	9.9	10.6	11.9	13.5	15.3	17.3	STORED VOLUME (AC-FT)	1.0	1.0	1.1	1.1	1.2	1.3
STORED VOLUME (AO 11)	1 3.3	1 ,0,0	11.0	1 10.0	10.0	17.0	, , ,	1.0	1.0	1.1	1 - 1	1.4	1.0
FSD14B							PNDW3	_	-	1.0	0.5	5.0	400
STORM EVENT (YR)	2	5	10	25	50	100	STORM EVENT (YR)	2	5 774 5	71.4.0	25	50	100
PEAK INFLOW (CFS)	24.6	34.3	47.4	64.2	79.0	94.1	PEAK INFLOW (CFS)	214.6	374.5	714.9	1187.6	1674.9	2204.1
ALLOWABLE RELEASE (CFS)		0.3	0.5	5.7	11.8	19.3	MODELED RELEASE (CFS) STORED VOLUME (AC-FT)	154.3	200.3 9.5	366.8	799.9	1085.6	1350.6 78.2
MODELED RELEASE (CFS)	0.0	0.3	0.5	4.5	11.8	19.3		2.8	9.5	26.3	41.2	57.2	/8.2
STORED VOLUME (AC-FT)	1.9	2.5	3.3	3.5	3.5	3.8	FSD-E1	Г	T	T		T	Γ .
							STORM EVENT (YR)	2	5	10	25	50	100
FSD15B	1						PEAK INFLOW (CFS)	23.3	35.9	53.8	79.1	102.4	127.4
STORM EVENT (YR)	2	5	10	25	50	100	ALLOWABLE RELEASE (CFS) MODELED RELEASE (CFS)	0.7	11.0	22.1	50.9 48.9	65.7	84.1
PEAK INFLOW (CFS)	10.8	14.0	18.2	23.3	27.6	31.9	STORED VOLUME (AC-FT)	0.7	5.4	19.9 1.5	48.9 1.8	62.8 2.1	84.0 2.5
ALLOWABLE RELEASE (CFS)	0.1	1.6	3.2	7.3	9.5	12.0	` '	1.0	1 1.0	1 1.0	1.0	<u> </u>	L Z.J
MODELED RELEASE (CFS)	0.1	1.1	3.2	7.3	9.5	12.0	FSD-E2	_	T =	· -			
STORED VOLUME (AC-FT)	0.6	0.6	0.7	0.8	0.9	1.0	STORM EVENT (YR)	2	5	10	25	50	100
FSD16A							PEAK INFLOW (CFS)	30.6	45.2	65.9	93.3	118.0	143.9
STORM EVENT (YR)	2	5	10	25	50	100	ALLOWABLE RELEASE (CFS) MODELED RELEASE (CFS)	0.6	9.5	19.2 18.5	45.5 41.3	59.8 58.5	77.6 74.7
PEAK INFLOW (CFS)	84.4	120.4	170.0	234.8	292.2	351.8	STORED VOLUME (AC-FT)	2.1	2.3	2.4	2.8	3.3	3.8
ALLOWABLE RELEASE (CFS)	0.6	8.8	17.3	56.2	88.4	128.3					<u> </u>	<u> </u>	J.0
MODELED RELEASE (CFS)	0.6	8.8	17.3	56.2	88.3	128.3	FSD-E3	_	T -	I		I -:	
STORED VOLUME (AC-FT)	7.6	7.7	8.9	10.4	12.1	13.8	STORM EVENT (YR)	2	5	10	25	50	100
	•	•	•	•			PEAK INFLOW (CFS)	100.4	130.6	169.6	217.4	257.8	298.4
1	SAND	CREEK	K FLOW	1			ALLOWABLE RELEASE (CFS) MODELED RELEASE (CFS)	0.9	13.2 6.8	26.5 25.7	61.6 56.0	79.8 79.8	102.6 101.3
	COMP				- 1		STORED VOLUME (AC ET)	7.0	6.8	25.7	56.0	79.8	101.5

SAND CREEK FLOW COMPARISON CHART									
DESIGN POINT	AREA (sq mi)	Q100 (CFS)	DESCRIPTION						
DP-77	2.343	1468	PROPOSED CONDITION						
	2.91	2262	SAND CREEK DBPS						
		2600	FEMA						
DP-71	2.757	1612	PROPOSED CONDITION						
		2260	SAND CREEK DBPS						
DP-63	4.449	1385	PROPOSED CONDITION						
	4.33	2630	SAND CREEK DBPS						
		2600	FEMA						
DP-60A	5.661	1662	PROPOSED CONDITION						
	5.38	3295	SAND CREEK DBPS						

EFSC DBPS DESIGN POINT SUMMARY (PEAK FLOW)									
DBPS DESIGN POINT	AREA (sq mi)	Q10 (CFS) (EXIST)	Q100 (CFS) (EXIST)	AREA (sq mi)	Q10 (CFS) (PROP)	Q100 (CFS) (PROP)			
DP-50	0.32	47.0	195.7	0.32	146.7	370.3			
DP-51 (BASIN 86)	0.33	17.7	74.1	0.33	110.0	233.5			
DP-52	1.67	80.5	456.5	1.67	1207.9	2123.0			
DP-56	0.79	63.6	265.0	0.79	513.0	908.2			

Values reported from SCDBPS, (DP 50, 51, 52 Not analyzed as a part of this study) DBPS Reach 85(Basin91)=Q10=28.8cfs Q100=115.2cfs / Q10=345.7cfs Q100=588.9cfs (EXISTING) (PROPOSED)

20 BOULDER CRESCEN COLORADO SPRINGS PHONE: 719.955.5485

	STORED VOLUME (AC-FT)	3.0	3.7	4.4	4.8	5.0	5.3			
	FSD-E6									
	STORM EVENT (YR)	2	5	10	25	50	100			
	PEAK INFLOW (CFS)	141.6	189.4	252.5	331.4	398.9	467.5			
	ALLOWABLE RELEASE (CFS)	0.2	1.9	3.2	37.4	77.3	125.6			
100	MODELED RELEASE (CFS)	0.2	0.9	3.2	18.3	64.1	123.3			
100 FS) (OP)	STORED VOLUME (AC-FT)	13.0	17.0	21.9	22.2	22.6	23.7			
0.3	PND-E7									
3.5	STORM EVENT (YR)	2	5	10	25	50	100			
23.0 8.2	PEAK INFLOW (CFS)		75.4	121.2	285.2	402.4	548.0			
8.2	MODELED RELEASE (CFS)	23.1	35.3	71.5	108.3	152.1	196.4			
	STORED VOLUME (AC-FT)	1.0	1.8	4.6	10.5	17.9	28.0			
•										
	2018 STERLING RANCH MDDP									
:NT, SUITE 110 S, CO 80903	ZUIO SIERLING RANCH WIDDP									
5, 00 00/00	I DEVELOPED HYDROLOGIC CONDITIONS MAP I									

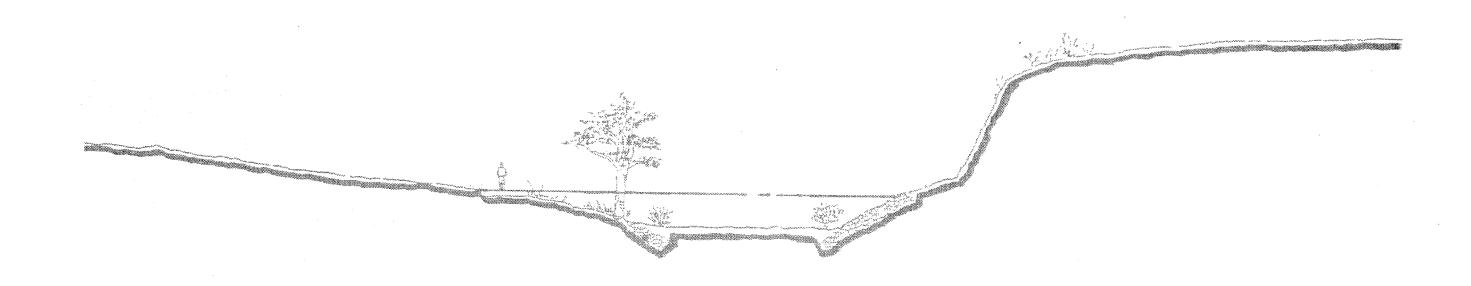
ALLOWABLE RELEASE (CFS) | 0.0 | 0.2 | 0.4 | 4.2 MODELED RELEASE (CFS) 0.0 0.2 0.5 2.2

S) 0.3 4.4 8.8 23.0 MODELED RELEASE (CFS) | 0.9 | 2.8 | 8.7 | 21.9 | 32.2 | 43.6 STORED VOLUME (AC-FT) 4.2 4.3 4.7 5.4 6.2 6.9

DELED RELEASE (CFS) | 1.0 | 6.8 | 25.7 | 56.0 | 79.8 | STORED VOLUME (AC-FT) 7.0 7.2 7.7 8.9 10.1

TORM EVENT (YR)

FSD-E5

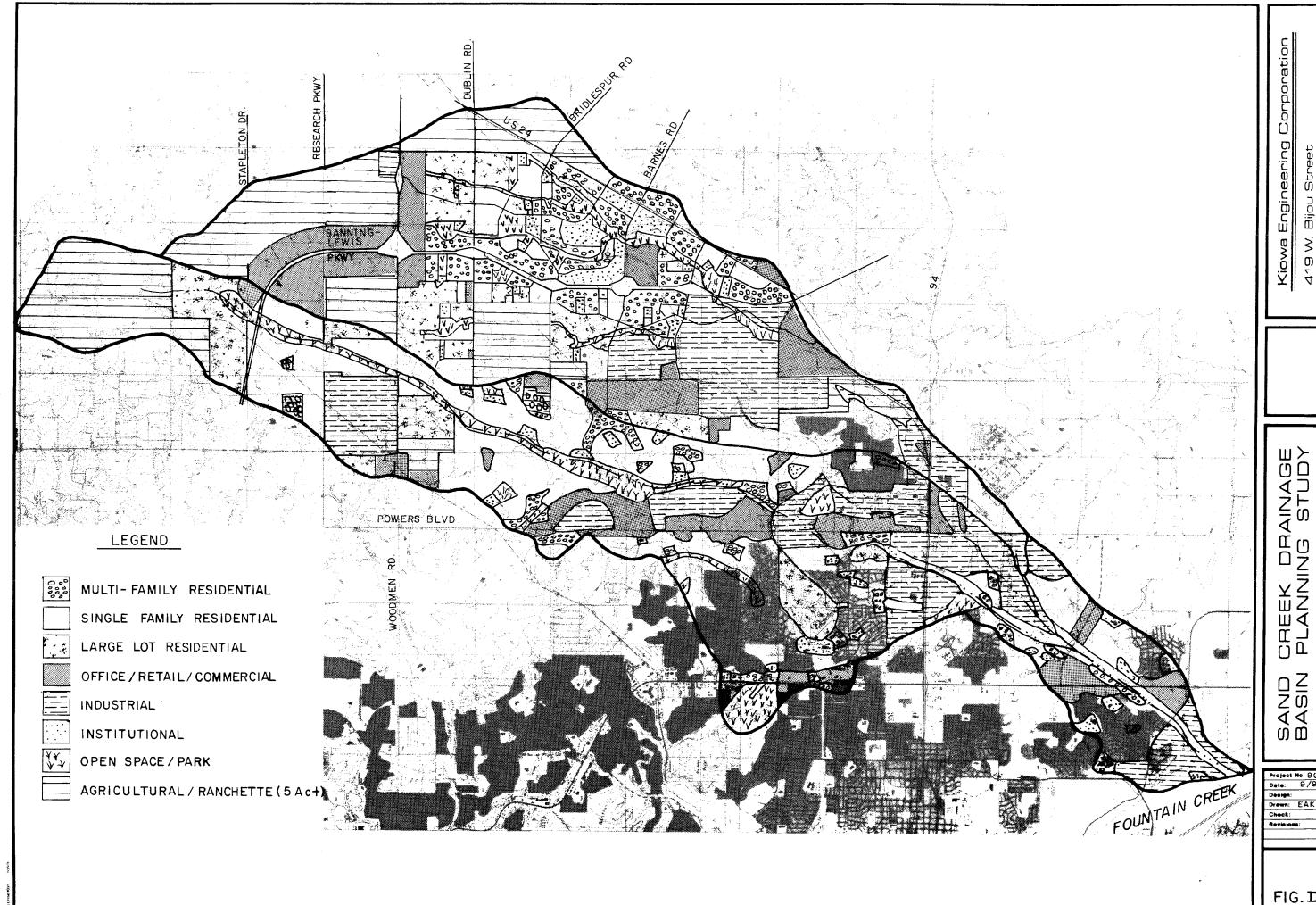

DEVELOI ED TITOROLOGIO CONDITIONS MAI

PROJECT NO. 09-002 | FILE: \dwg\Eng Exhibits\2018-MDDP-PROPCOND.dwg DATE: 10-21-2018 DESIGNED BY: JD DRAWN BY: HORIZ: 1"=2400' DM2 CHECKED BY: VAS VERT: 1"=2400"

SAND CREEK DRAINAGE BASIN PLANNING STUDY

PRELIMINARY DESIGN REPORT

CITY OF COLORADO SPRINGS, EL PASO COUNTY, COLORADO



PREPARED FOR:

City of Colorado Springs
Department of Comprehensive Planning, Development and Finance
Engineering Division
30 S. Nevada
Colorado Springs, Colorado 80903

PREPARED BY:

Kiowa Engineering Corporation 1011 North Weber Colorado Springs, CO 80903

Bijou Street do Springs, Co 419 W. Bijou S Colorado Sprin 80905-1308

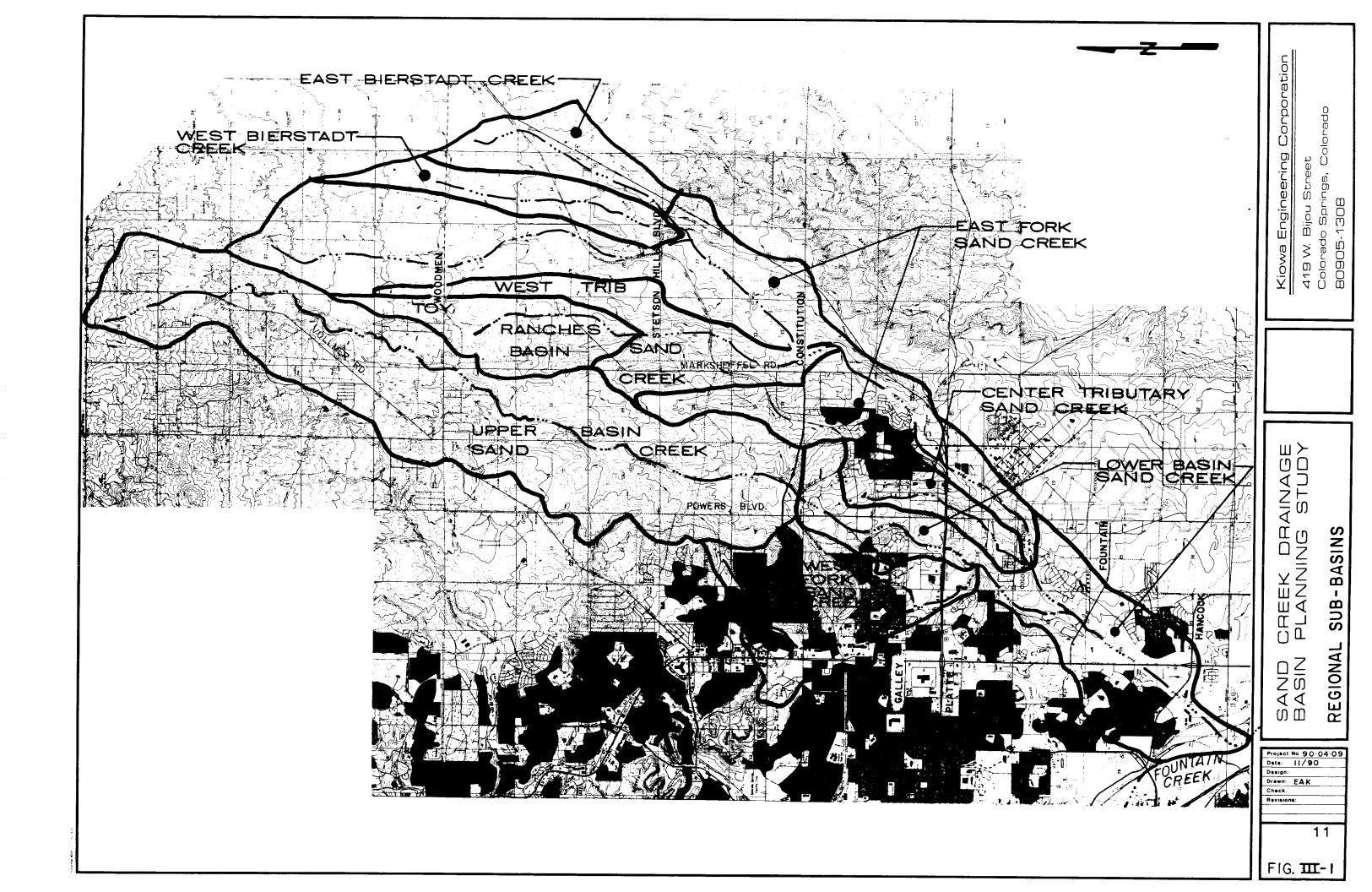
PROPOSED SAND BASIN

FIG. **II-3**

Table III-1. Percent Impervious Values.

Land Use Classification	Percent Impervious	Land Use Density
Multi-Family Residential	65-80	10-24 DU/AC
Single-Family Residential	45-65	6-10 DU/AC
Low Density Residential	30-45	1-6 DU/AC
Large Lot Residential/ Agricultural	5-20	1 DU/AC
Office/Commercial	80-90	
Industrial	85-95	
Institutional	50-75	
Dedicated Open Space/Park	5-10	
Rangeland - Poor to Good Condition	5- 20	

NOTE: The above data was used in the preparation of the hydrologic analysis for the Sand Creek Drainage Basin Planning Study. These data are not intended to reflect future land use planning within the City or the County.

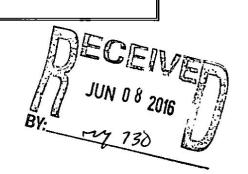

Table III-2:

Summary of Peak Discharges 24-hour Duration Storm, AMC-II Baseline Hydrologic Conditions

Design Point	Location	Area s.m.	100-year (cfs) Existing	Future	10-year (cfs) Existing	Future
	SAND CREEK (1)					
1	@ Fountain Creek	54.1	16900	25800	7470	11800
12	Hancock Blvd.	53.1	16100	25000	7250	11600
19	Fountain Blvd.	50.7	13600	22100	6230	10800
27	West Fork Sand Creek	23.0	11300	18900	5920	8790
99	C.R.I. & P. RR	16.0	5820	14530	2360	7400
20	North Carefree	13.5	4030	10260	1520	4810
37	Stetson Hills Blvd.	10.0	3230	6690	840	3060
60	Woodmen Road	5.4	2630	3300	760	950
75	Black Forest Road	1.4	1000	1030	320	350
	WEST FORK SAND CRE	EK				
27	@ Sand Creek	5.0	6840	6840	3200	3200
52	U. S. 24	4.8	6860	6860	3230	3230
59	Constitution Ave.	2.1	3450	3450	1680	1680
69	South Carefree	1.0	1630	1630	810	810
	CENTER TRIBUTARY S.	AND CRE	EK			
42	Airport Road	1.6	1530	2010	650	1200
43	Powers Blvd.	1.3	1300	1710	590	980
44	U.S. 24	1.1	1200	1680	580	960
45	Galley Road	0.8	1180	1340	530	650
	EAST FORK SAND CREI	EK				
1	@ Center Tributary	24.3	3970	15600	700	6530
9	@ East Fork Sub. Tributary	19.8	3730	13990	650	6050
29	@ W. Bierstadt Creek	10.6	2080	7460	400	3330
40	@ Tamlin Road	4.6	950	3570	210	1820
52	@ Woodmen Road	1.7	460	2120	80	1210
	EAST FORK SUB-TRIBU	TARY SA	ND CREEK			
11	@ Constitution Avenue	5.9	1330	4100	240	1630
15	@ Chicago & Rock Island RR	5.2	1250	3540	230	1370
26	@ Confluence w/Toy Ranch	1.0	220	820	50 50	370
47	@ Proposed Dublin Blvd.	0.4	100	300	20	140
	WEST BIERSTADT CREI	EK				
31	@ Confluence w/ East Fork	1.8	480	1590	80	600
39	@ Tamlin Road	0,8	270	680	50	290
54	@ Woodmen Road	0.5	230	420	55	150
	EAST BIERSTADT CREE	EK				
32	@ Conf. w/W Bierstadt	2.4	520	1520	90	580
38	@ Chicago & Rock Island RR	0.4	120	350	15	130

⁽¹⁾ Future baseline condition discharges for Sand Creek compiled with the assumption that the discharges from the East Fork Sand Creek basin are maintained at existing rates as shown on this Table.

10



FINAL DRAINAGE REPORT

BARBARICK SUBDIVISION, PORTIONS OF LOTS 1, 2 and LOTS 3 & 4 El Paso County, Colorado

Sand Creek Drainage Basin

Prepared for: El Paso County Development Services Engineering Division

On Behalf of:
Wykota Construction
430 Beacon Light Road, Suite 130
Monument, CO 80132

Prepared by:

2435 Research Parkway, Suite 300 Colorado Springs, CO 80920 (719) 575-0100 Fax (719) 572-0208

June 6, 2016

15.789.001

STERLING RANCH FILING NO. 1 PRELIMINARY DRAINAGE REPORT

(CDOT Type R Inlet Calculations - Sump Condition)

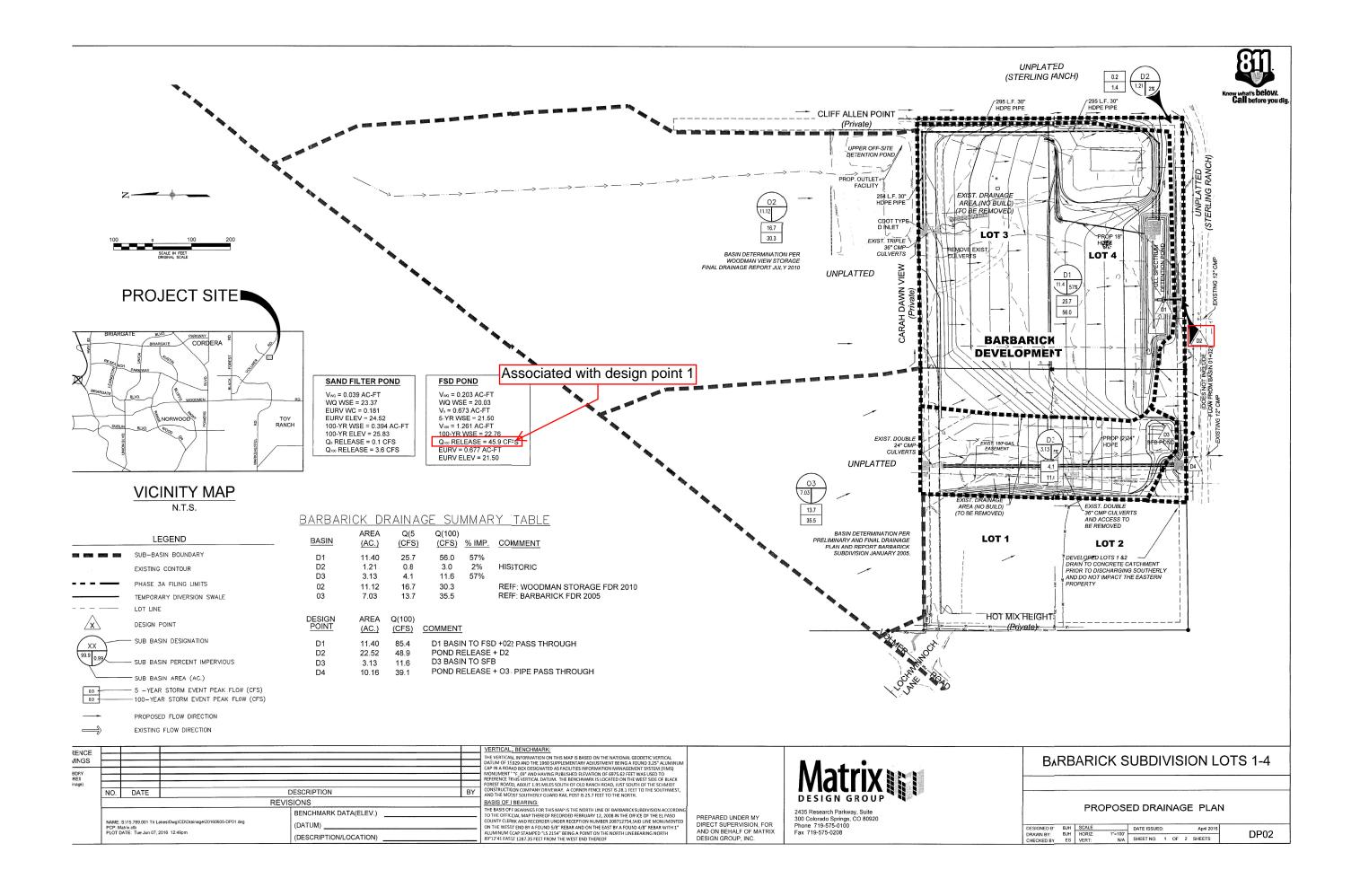
Urban Local Roadway-50' ROW-30' Pavement-6" Vertical Curb Maximum allowable depth for MINOR (0.43') & MAJOR (0.66') storm

iniet Length	Storm	Depth	Eqn. 7-31	Eqn. 7-32	Eqn. 7-29
			Qw=CwNwLeD^3/2	Qo=CoNo(LeHc)(2g(D-0.5Hc))^1/2	Qm=Cm(QwQo)^1/2
5	Q5	0.43	5.1	5.7	5.0
5	Q100	0.66	9.7	8.6	8.5
G	Q5	0.43	6.1	8.8	6.0
8	Q100	0.66	11.6	10.3	10.2
8	Q6	0.43	8.1	9.1	8,0
8	Q100	0.68	15,4	13.8	13.6
10	Q5	0.43	10.2	11.4	10.0
10	Q100	0.68	19.3	17.2	17.0
12	Q5	0.43	12.2	13.7	12.0
12	Q100	0.66	23.2	20.7	20,3
14	Qs	0.43	14.2	16.0	14.0
14	Q100	0.66	27.0	24.1	23.7
15	Q ₅	0.43	15.2	17.1	15.0
15	Q100	0.66	29.0	25.8	25.4
16	Q5	0.43	16.2	18.2	16.0
18	Q100	0.68	30.9	27.5	27.1

Table 7-7. Coefficients for various inlets in sumps								
inlet Type	Nw	Cw	140	<u> </u>	Cm			
CDOT Type 13 Grate	0.7	3.3	0.43	0.6	0.93			
Denver No. 16 Grate	0.73	3.6	0.31	0,6	0.9			
Curb Opening for Type								
13/No. 16 Combination	1	3.7	1	0.66	0.86			
CDOT Type R Curb								
Opening	1	3.6	1 1	0.67	0.93			

Woi	rksheet for	FSD Ou	tlet	Orifice Plate
Project Description				
Solve For	Diameter			
Input Data	*			
Discharge			45.90	11/5 (16.5 His + 29.4 Pec)
Headwater Elevation		÷	4.70	ft
Centroid Elevation			0.00	ft ·
Tailwater Elevation			0.00	ft .
Discharge Coefficient			0.60	
Results				
Diameter			2.37	ft
Headwater Height Above Centroid			4.70	ft
Tailwater Height Above Centroid			0.00	ft .

4.40 ft²


10.43 ft/s

Flow Area

Velocity

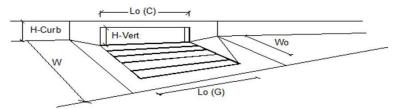
	Worksheet for	FSD Over	flow	v - Pass
Project Description				
olve For	Discharge			
nput Data				
leadwater Elevation		0.90	ft	
rest Elevation		0.00	ft	
ailwater Elevation		0.00	ft	
rest Surface Type	Gravel			
rest Breadth		12.00	ft	
rest Length		36.00	ft	
Results	*			
ischarge		86.22	ft³/s	(5510)+29.4 piec = 64.48
eadwater Height Above Crest		0.90	ft	,
ailwater Height Above Crest		0.00	ft	
Veir Coefficient		2.80	US	
ubmergence Factor		1.00		
djusted Weir Coefficient		2.80	US	
low Area		32.40	ft²	
elocity		2.66	ft/s	
Vetted Perimeter		37.80	ft	
op Width		36.00	ft	

Wo	ksheet for SFB (Overflo	w Developed
Project Description			
Solve For	Discharge		
Input Data			
Headwater Elevation		0.45	ft
Crest Elevation		0.00	ft
Tailwater Elevation		0.00	ft .
Crest Surface Type	Gravel		
Crest Breadth		6.00	ft
Crest Length		10.00	ft
Results			Res William Ade Color
Discharge		8.08	ft³/s
Headwater Height Above Crest		0.45	ft
Tailwater Height Above Crest		0.00	ft
Weir Coefficient		2.68	US
Submergence Factor		1.00	
Adjusted Weir Coefficient		2.68	US
Flow Area		4.50	€3
Velocity		1.80	ft/s
Wetted Perimeter		10.90	ft
Top Width		10.00	ft

FINAL DRAINAGE REPORT FOR STERLING RANCH FILING NO. 2

Prepared For: SR Land, LLC 20 Boulder Crescent, Suite 210 Colorado Springs, CO 80903

August 2021 Project No. 25188.01


Prepared By: JR Engineering, LLC 5475 Tech Center Drive Colorado Springs, CO 80919 719-593-2593

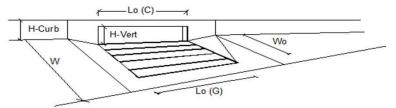
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Sterling Ranch Filing No. 2 Project: Inlet ID: STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 26.0 Gutter Width 2.00 Street Transverse Slope S_X : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) \textbf{S}_{W} 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition So 0.007 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 19.3 26.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm 26.7 cfs Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

UD-Inlet_v4.05.xlsm, A8 5/15/2020, 9:24 AM

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening ▼	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.0	10.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	85	%


UD-Inlet_v4.05.xlsm, A8 5/15/2020, 9:24 AM

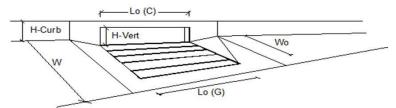
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Sterling Ranch Filing No. 2 Project: Inlet ID: STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 26.0 Gutter Width 2.00 Street Transverse Slope S_X : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) \textbf{S}_{W} 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition So 0.007 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 19.3 26.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm 26.9 cfs Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

UD-Inlet_v4.05.xlsm, A9 5/15/2020, 9:24 AM

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet CDOT Type R Curb Opening ▼	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.1	4.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	94	%


UD-Inlet_v4.05.xlsm, A9 5/15/2020, 9:24 AM

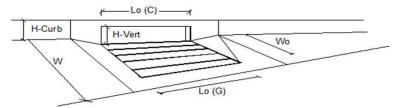
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Sterling Ranch Filing No. 2 Project: Inlet ID: STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) ft/ft 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 38.0 Gutter Width 2.00 Street Transverse Slope S_X : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) \textbf{S}_{W} 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition So 0.012 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 33.0 38.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm d_{MAX} 6.0 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm 15.1 63.3 cfs Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

UD-Inlet_v4.05.xlsm, A11 5/15/2020, 9:24 AM

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet CDOT Type R Curb Opening ▼	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.9	13.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.6	6.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	93	69	%


UD-Inlet_v4.05.xlsm, A11 5/15/2020, 9:24 AM

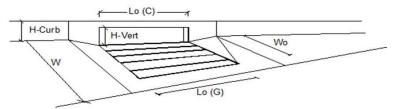
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Sterling Ranch Filling No. 2 Project: Inlet ID: STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 26.0 Gutter Width 2.00 Street Transverse Slope S_X : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) \textbf{S}_{W} 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition So 0.023 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 19.3 26.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Major Storm 36.4 Minor Storm 19.2 cfs Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

UD-Inlet_v4.05.xlsm, A15 5/15/2020, 9:24 AM

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

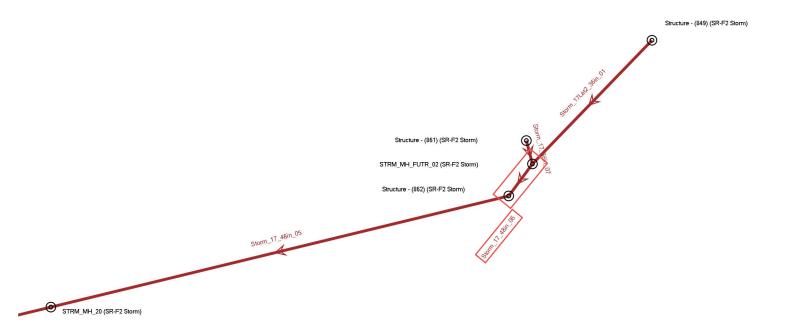
Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.4	10.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.4	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	88	%


UD-Inlet_v4.05.xlsm, A15 5/15/2020, 9:24 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Sterling Ranch Filing No. 2 Project: Inlet ID: STREET Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.016 Height of Curb at Gutter Flow Line H_{CURB} 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 26.0 Gutter Width 2.00 Street Transverse Slope S_X : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) \textbf{S}_{W} 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition So 0.023 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 19.3 26.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Major Storm 36.4 Minor Storm 19.2 cfs Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

UD-Inlet_v4.05.xlsm, A16 5/15/2020, 9:24 AM

INLET ON A CONTINUOUS GRADE


Version 4.05 Released March 2017

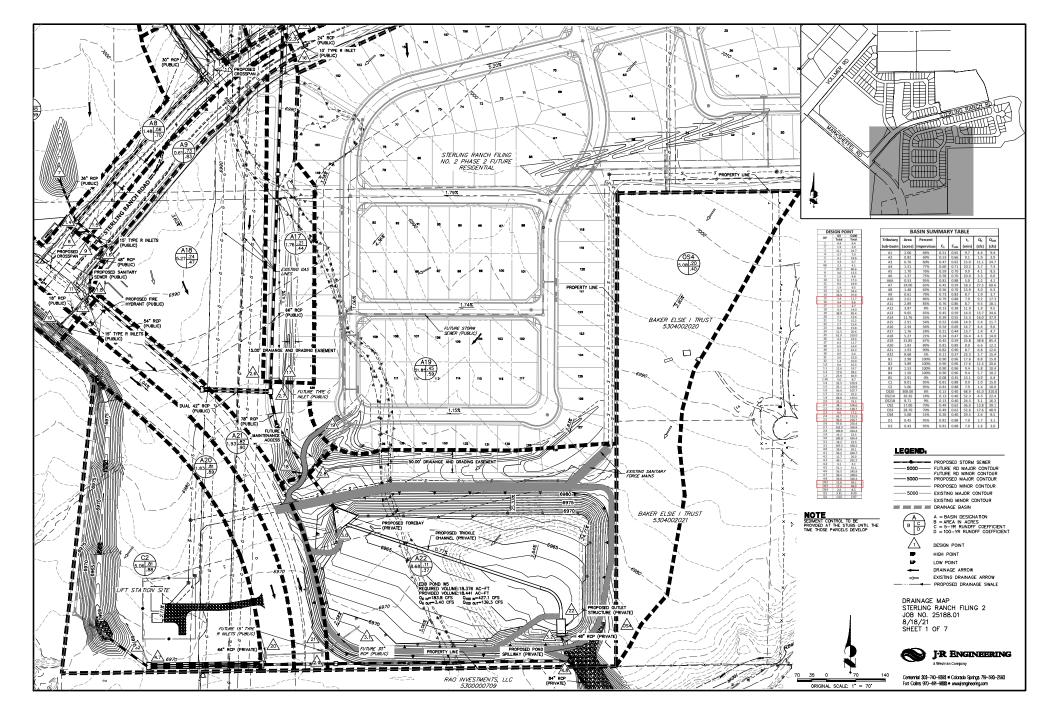
Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.3	7.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	2.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	97	73	%

UD-Inlet_v4.05.xlsm, A16 5/15/2020, 9:24 AM

Sterling Ranch 5yr

Scenario: 5-YEAR

Current Time Step: 0.000 h FlexTable: Conduit Table


			Length	Olema			Capacity	Hydraulic	Hydraulic
Labal	Flow	Diameter	(User	Slope	Manning's	Velocity	(Full	Grade	Grade
Label	(cfs)	(in)	Defined)	(Calculated)	n	(ft/s) ´	Flow)	Line (ln)	Line
	, ,	` ′	(ft)	(ft/ft)			(cfs)	(ft)	(Out) (ft)
Storm 21 48in 01	55.10	48.0	57.3	-0.030	0.013	15.91	248.76	6,984,23	6,981.75
Storm 21 48in 02	52.50	48.0	25.8	-0.030	0.013	15.69	248.66	6,984.95	6,984.69
Storm 16 48in 02	68.80	48.0	348.6	-0.024	0.013	15.49	220,31	6,979.03	6,972.39
Storm_17_48in_01	63.70	48.0	15.6	-0.020	0.013	14.28	202.74	6,989.18	6,988.44
Storm_17_48in_05	56.90	48.0	292.3	-0.020	0.013	13.87	203.11	7,000.43	6,994.63
Storm_16_48in_03	56.40	48.0	50.4	-0.020	0.013	13.85	203.42	6,980.18	6,979.56
Storm 16 48in 04	56.40	48.0	42.5	-0.020	0.013	13.83	203.12	6,981.03	6,980.64
Storm_17_48in_06	56.90	48.0	22.6	-0.020	0.013	13.82	202.28	7,000.88	7,000.89
Storm_14_66in_05	96.60	66.0	354.4	-0.014	0.013	13.79	397.24	6,984.12	6,978.30 6,981.49
Storm_16_48in_05 Storm 19 Lat 2 18in 01	55.10 12.60	48.0 18.0	26.8 76.7	-0.020 -0.049	0.013 0.013	13.74 13.39	203.11 23.16	6,981.54 7,006.61	7,002.92
Storm 14 66in 04	96.60	66.0	512.4	-0.049	0.013	13.02	366.67	6,976.96	6,972.10
Storm 17Lat2 36in 01	16.00	36.0	110.1	-0.040	0.013	12.71	133.20	7,005.28	7,001.34
Storm 19 30in 03	25.90	30.0	165.0	-0.024	0.013	12.37	64.17	6,992.63	6,988.66
Storm 18 18in 02	8.70	18.0	82.7	-0.050	0.013	12.29	23.47	6,985.92	6,983.18
Storm 17 48in 04	56.90	48.0	82.9	-0.014	0.013	12,29	172.06	6,994.40	6,993.44
Storm 17 48in 03	56.90	48.0	150.3	-0.014	0.013	12.28	171.79	6,993.21	6,991.28
Storm 17 48in 02	56.90	48.0	102.0	-0.014	0.013	12.19	170.08	6,991.05	6,989.03
Storm_19_24in_05	17.60	24.0	177.0	-0.030	0.013	12.14	39.18	7,002.55	6,996.67
Storm_14_48in_06	38.10	48.0	59.3	-0.017	0.013	11.72	187.87	6,989 . 32	6,987.79
Storm_14_84in_01	189.80	84.0	107.3	-0.005	0.013	11.25	453.09	6,970.13	6,969.23
Storm_14_72in_03	162.00	72.0	74.5	-0.005	0.013	10.99	306.40	6,971.03	6,971.00
CO-6	23.20	48.0	9.5	-0.021	0.013	10.94	208.41	6,989.62	6,989.67
Storm_14_72in_02	162.00	72.0	127.9	-0.005	0.013	10.80	299.58	6,970.64	6,970.48
Storm_23 54in_05	30.70	54.0	120.0	-0.015	0.013	10.39	240.88 240.88	6,957.68	6,955.40 6.971.61
Storm_23 54in_09 Storm 23 54in 08	30.70 30.70	54.0 54.0	402.5 567.0	-0.015 -0.015	0.013 0.013	10.39 10.39	240.88	6,978.16 6,969.87	6,960.87
Storm 23 54in 06	30.70	54.0	93.0	-0.015	0.013	10.39	240.76	6.959.07	6,957.97
Storm 19 18in 06	6.00	18.0	339.5	-0.040	0.013	10.23	20.95	7.016.00	7.002.92
Storm_17_36in_07	17.60	36.0	9.8	-0.020	0.013	10.21	94.31	7,001.15	7,001.34
Storm 23 54in 10	30.70	54.0	298.5	-0.014	0.013	10.14	232.69	6,982.73	6,978.06
Storm 23 54in 11	30.70	54.0	333.6	-0.014	0.013	10.14	232.65	6,993.98	6,988.82
Storm_23 54in_12	30.70	54.0	412.3	-0.014	0.013	10.14	232.63	7,002.09	6,995.83
Storm_15_18in_02-W	4.30	18.0	25.5	-0.049	0.013	10.08	23.36	6,973.60	6,972.01
Storm_14_36in_07	15.70	36.0	76.3	-0.020	0.013	9.89	94.31	6,991.27	6,989.33
Storm_18_18in_01	17.30	18.0	22.4	-0.059	0.013	9.79	25.59	6,982.43	6,981.79
Storm_19_Lat 1_ 18in_01	5.00	18.0	36.4	-0.030	0.013	8.78	18.18	6,993.84	6,993.02
Storm_19_Lat 2_18in_02	9.50	18.0	35.3	-0.015	0.013	7.97	12.86	7,007.49	7,007.05
Storm_19_36in_02	25.90	36.0	144.5	-0.006	0.013	7.26	51.15	6,987.99	6,987.48
Storm_19_36in_01	25.90	36.0 18.0	302.2	-0.006 -0.020	0.013 0.013	7.25	51.04 14.84	6,987.14 7,016.37	6,985.83
Storm_19_Lat 3_18in_01 Storm 15 42in 01-E	4.20 38.80	42.0	6.0 63.9	-0.020	0.013	7.22 7.09	65.41	6,971.94	7,016.40 6,971.67
Storm 23 54in 13	30.70	54.0	265.9	-0.005	0.013	6.98	138.03	7,010.66	7,009.20
Storm_21_42in_03	27,50	42.0	101.2	-0.005	0.013	6.92	71.15	6,985.78	6,985,83
Storm 23 54in 14	27.40	54.0	43.7	-0.005	0.013	6.70	136.36	7,011.10	7,011.18
Storm 22 30in 02	8.30	30.0	79.4	-0.009	0.013	6.22	38.24	7,016.69	7,016.15
Storm 23 three 42in 04	32.10	42.0	258.8	-0.008	0.013	6.19	264.00	6,954.49	6,952.34
STRM_29_02	1.60	18.0	79.6	-0.027	0.013	6.11	17.27	7,015.72	7,013.40
Storm_20_48in_01	3.40	48.0	57.9	-0.020	0.013	6.07	203.30	6,961.20	6,959.87
Storm_22_30in_01	16.00	30.0	113.0	-0.005	0.013	6.06	29.03	7,016.09	7,015.50
Storm_16_Lat_1_18in_01	2.10	18.0	13.2	-0.020	0.013	5.99	15.01	6,982.08	6,981.67
Storm_23_84in_02	35.50	84.0	27.0	-0.003	0.013	5.81	347.91	6,947.59	6,947.51
Storm_28 30in_01	8.40	30.0	90.0	-0.007	0.013	5.81	34.60	7,044.20	7,044.15
Storm_19_Lat 3_18in_02	1.90	18.0	29.3	-0.020	0.013	5.79	14.90	7,016.36	7,016.40
Storm_28 30in_01	18.40	30.0	35.4	-0.004	0.013	5.71	25.78	7,044.15	7,043.91
Storm_17_Lat_1_24in_01	9.60	24.0	8.8	-0.006	0.013	5.58	17.03	6,989.73	6,989.65
Storm_23_84in_01 STRM 29 01	35.50	84.0	200.4	-0.003	0.013	5.55 4.85	325.38	6,948.26	6,947.85
STRM 29 01 Storm 23 66in 03	3.30 32.10	18.0 66.0	66.2 167.7	-0.008 -0.002	0.013 0.013	4.85 4.77	9.40 139.63	7,013.34 6,951.31	7,012.73 6,951.02
Storm_23_66in_03 Storm 17 Lat 1 24in 02	32.10 4.30	24.0	53.4	-0.002	0.013	4.77	18.29	6.989.80	6,989.84
Storm 23 66in 02	32.10	66.0	549.0	-0.007	0.013	4.75	138.58	6,950.94	6,949.73
Storm 26 24in 01	2.10	24.0	80.7	-0.002	0.013	4.73	22.68	7,017.31	7,016.41
Storm 19 24in 04	0.50	24.0	144.7	-0.030	0.013	4.31	39.18	6,995.97	6,993.02
Storm 21 Lat 1 18in 01	3.00	18.0	19.4	-0.005	0.013	3.87	7.16	6,985.26	6,985.15
Storm_16_42in_01	68.80	42.0	158.3	-0.002	0.013	3.58	90.47	6,972.29	6,972.10

X:\2510000.all\2518801\StormCAD\2518801 StormCAD Model.stsw

Scenario: 100-YEAR Current Time Step: 0.000 h FlexTable: Conduit Table

Label Flow Diameter (rish) Diameter (rish) Clear Cle										
Label				Lenath				Canacity	Hydraulic	Hydraulic
Library Cefs		Flow	Diameter			Manning's	Velocity			
Storm 17,48in 01	Label					_				
Storm 17 48m 01 151,90 48.0 15.6 -0.020 -0.013 17.70 -0.0274 6.590.38 6.589.68 Storm 20 48m 05 139,30 48.0 57.9 -0.020 -0.013 17.42 203,30 6.594.17 6.590.18 Storm 23 54m 05 139,70 48.0 57.9 -0.020 -0.013 17.42 203,30 6.594.17 6.590.18 Storm 23 54m 05 139,70 48.0 57.9 -0.020 -0.013 17.42 203,30 6.594.17 6.599.18 Storm 23 54m 05 139,70 48.0 33.5 -0.014 -0.013 16.67 232,53 6.596.80 6.599.18 Storm 25 54m 04 139,70 48.0 410,13 4		(6,5)	("'')	,	(ft/ft)		(103)			
Storm 1-6 Storm 1-6 Storm 2-6 Stor	47 48'- 04	454.00	400		0.000	0.040	47.70	, ,	. ,	
Storm 2-6 sin 01 39,30 48,0 57,9 -0,020 -0,013 17,42 20,30 6,984,77 6,982,31 Storm 2-3 sin 15 233,40 54,0 333,6 -0,014 -0,013 16,67 232,85 6,986,66 6,986,66 58,000 58,										
Storm 17.48ln OS										
Storm 3 Alm 1										
Storm 73.64m 72 233.40 54.0 412.3 -0.014 0.013 16.67 232.63 7.004.71 6.996.49 Storm 71.42, 36in_0 1 33.70 36.0 110.1 -0.040 0.013 16.24 133.20 17.006.00 7.006.00 7.006.00 Storm 77.48in_0 3 138.70 48.0 85.3 -0.017 0.013 15.23 172.06 6.996.80 6.986.91 Storm 77.48in_0 3 138.70 48.0 85.3 -0.014 0.013 15.21 171.79 6.996.44 6.992.80 Storm 77.48in_0 3 138.70 48.0 85.3 -0.014 0.013 15.21 171.79 6.996.44 6.992.80 Storm 78.48in_0 2 23.40 46.0 6.003 -0.024 0.013 15.21 171.79 6.996.44 6.992.80 Storm 98.48in_0 3 -0.024 0.013 14.22 12.316 7.006.74 7.003.64 Storm 98.48in_0 3 -0.024 0.013 14.22 12.316 7.006.74 7.003.64 Storm 19.141 2.18in_0 1 19.70 48.0 76.7 -0.049 0.013 14.22 12.316 7.006.74 7.003.64 Storm 23.44in_0 3 233.40 54.0 286.5 -0.014 0.013 14.68 240.88 6.981.49 6.975.80 Storm 23.44in_0 3 233.40 54.0 266.5 -0.015 0.013 14.68 240.88 6.981.49 6.975.80 Storm 23.44in_0 3 233.40 54.0 567.0 -0.015 0.013 14.68 240.88 6.962.34 6.960.85 Storm 23.44in_0 3 233.40 54.0 266.5 -0.0015 0.013 14.68 240.88 6.962.34 6.960.85 Storm 23.44in_0 3 233.40 54.0 265.9 -0.005 0.013 14.68 240.88 6.962.34 6.960.85 Storm 23.54in_0 3 233.40 54.0 265.9 -0.005 0.013 14.68 240.88 6.962.34 6.960.85 Storm 23.54in_0 3 233.40 54.0 265.9 -0.005 0.013 14.68 240.88 6.962.34 6.960.85 Storm 23.54in_0 3 233.40 54.0 265.9 -0.005 0.013 14.68 240.88 6.962.34 6.960.85 Storm 23.54in_0 3 233.40 54.0 265.9 -0.005 0.013 14.68 240.88 6.962.34 6.960.85 Storm 23.54in_0 3 233.40 54.0 265.9 -0.005 0.013 14.68 240.86 6.962.34 6.960.85 Storm 23.54in_0 3 233.40 54.0 265.9 -0.005 0.013 14.68 240.86 6.962.36 6.966.8										
Storm T, Halp 36Hn 01 37,90 36.0 110.1 -0.040 0.013 16.24 133.20 7,006.00 7,003.91 Storm 17,48hn 04 138,70 48.0 85.3 -0.017 0.013 15.23 172.06 6,996.06 6,996.80 5,996.8										
Storm 14 48										
Simm_17_48ln_04										
Simm 7,48h 03 138,70 48,0 150,3 0.014 0.013 15,21 208,44 6,992,84 6,992,84 5,991,40 Simm 7,48h 0.9 17,760 48,0 102,0 0.014 0.013 15,00 170,06 6,992,28 6,991,40 Simm 7,48h 0.9 17,00 18,00 17,00 18,00 17,00 18,00 17,00 18,00										
COLOR T. 4810 D2 138,70 48.0 9.5 -0.021 0.013 15,20 208,41 6,991,39 6,991,01 Storm 19_Lat Z_18n 01 19,70 18.0 76.7 -0.049 0.013 14,72 23,16 7,002,74 7,003,66 5,992,28 5,991,01 5										
Storm 17_48in_02										
Storm 19_Lat Z_18h										
Storm 23 64n 70										
Storm 23 54in 08										
Storm 23 54in 08 233.40 54.0 567.0 -0.015 0.013 14.68 240.76 6,974.99 6,967.00										
Storm 23 54in 05										
Storm 23 54in 16 233,40 54.0 265.9 -0.005 -0.013 14.68 138.03 7,011.69 7,011.96 Storm 18 18in 01 25.30 18.0 22.4 -0.059 -0.013 14.22 25.59 6,984.40 6,983.10 Storm 19 24in 05 30.00 24.0 177.0 -0.005 -0.013 13.74 39.18 7,002.90 6,997.04 Storm 19 24in 05 30.00 24.0 177.0 -0.030 -0.013 13.74 39.18 7,002.90 6,997.04 Storm 19 24in 05 30.00 24.0 147.7 -0.030 -0.013 13.74 39.18 7,002.90 6,997.04 Storm 14.72in 03 336.80 77.0 74.5 -0.005 -0.013 12.31 94.31 6,991.91 6,991.40 Storm 14.72in 03 336.80 72.0 74.5 -0.005 -0.013 11.23 94.31 6,991.91 6,991.40 Storm 14.72in 03 336.80 72.0 74.5 -0.005 -0.013 11.91 299.58 6,976.00 6,975.27 Storm 19 18in 06 138.70 48.0 22.6 -0.020 -0.013 11.91 299.58 6,976.00 6,975.27 Storm 17 48in 06 138.70 48.0 22.6 -0.020 -0.013 11.04 202.28 7,002.97 7,002.76 Storm 14 68in 04 250.70 66.0 512.4 -0.012 -0.013 10.55 366.67 6,981.61 6,978.75 Storm 23 68in 03 243.40 66.0 512.4 -0.012 -0.013 10.55 366.67 6,981.61 6,978.75 Storm 23 68in 03 243.40 66.0 549.0 -0.002 -0.013 10.24 139.63 6,956.28 6,957.40 Storm 16 48in 02 125.00 48.0 348.6 -0.024 -0.013 10.24 139.63 6,958.28 6,957.40 Storm 16 48in 02 125.00 48.0 348.6 -0.024 -0.013 9.95 220.31 6,982.33 6,979.89 Storm 15 48in 02 125.00 48.0 348.6 -0.024 -0.013 9.95 220.31 6,982.33 6,975.85 Storm 16 48in 02 125.00 48.0 346.6 -0.024 -0.013 9.95 220.31 6,982.33 6,976.89 Storm 15 48in 02 125.00 48.0 346.6 -0.024 -0.013 9.95 220.31 6,982.33 6,976.89 Storm 16 48in 03 48.0 42.0 63.9 -0.004 -0.013 8.87 -0.044 -0.013 -0.004 -0.003 -0.013 -0.004 -0.003 -0.013 -0.004 -0.003 -0.013 -0.004 -0.003 -0.013 -0.004 -0.005 -0.004 -0.005 -0.005 -0.005 -0.005 -0.005 -										
Storm 23 54in 06										
Storm 18 18in O1										
Storm 12 3 54in_14										
Storm 19 24 10										
Storm_19_24in_04 30.00 24.0 144.7 -0.030 0.013 13.74 39.18 6.997.59 6.994.14										
Storm_14_36in_07										
Storm_14_72in_02 336,80 72,0 74,5 -0,005 0,013 11,91 295,86 6,976,66 6,975,62 5,007 1,91 295,86 6,976,86 6,976,86 5,007 6,976,63 5,007 1,91 295,86 6,976,86 6,976,86 5,007 6,976,83 5,004 6,075,27 7,003,66 5,007 7,003,66 5,007 7,003,66 7,002,76 7,003,66 7,002,76 7,003,66 7,002,76 7,003,66 7,002,76 7,003,66 7,002,76										
Storm 14 72ln 02 336.80 72.0 127.9 -0.005 0.013 11.91 299.88 6.976.08 6.975.27 1.95										
Storm 19 18in 06 10.30 18.0 339.5 -0.040 0.013 11.81 20.95 7.016.29 7.003.66 Storm 17 48in 06 138.70 48.0 107.3 -0.005 0.013 11.04 20.228 7.002.79 7.002.76 Storm 14 84in 01 424.40 48.0 107.3 -0.005 0.013 11.03 453.09 6.974.79 6.974.32 Storm 23 66in 02 243.40 66.0 549.0 -0.002 0.013 10.24 138.58 6.957.00 6.954.11 Storm 23 66in 02 243.40 66.0 167.7 -0.002 0.013 10.24 138.58 6.957.00 6.954.11 Storm 19 Lat 1 18in 01 8.70 18.0 36.4 -0.030 0.013 10.18 18.18 6.994.36 6.994.14 Storm 16 Lat 1 18in 01 8.70 18.0 36.4 -0.030 0.013 10.18 18.18 6.982.33 6.979.00 5.994.14 Storm 16 48in 02 125.00 48.0 346.6 -0.024 0.013 9.94 347.91 6.951.54 6.951.16 Storm 23 84in 02 382.70 84.0 22.0 -0.003 0.013 9.94 347.91 6.951.54 6.951.16 Storm 23 84in 01 382.70 84.0 22.0 -0.003 0.013 9.94 347.91 6.951.54 6.951.16 Storm 19 30in 03 46.90 30.0 165.0 -0.024 0.013 9.95 64.17 6.994.36 6.992.64 5.000 6.954.11 6.956.14 6.975.73 6.952.64 6.956.14 6.975.73 6.952.67 6.956.14 6.975.73 6.952.64 6.956.14 6.975.73 6.952.67 6.956.14 6.956.14 6.975.73 6.952.67 6.956.14 6.956.14 6.975.73 6.952.67 6.956.14 6.9										
Storm 17, 48in 06										
Storm 14 84 n 01										
Storm_14_66in_04										
Storm_23_66in_02										
Storm 23 G6 n O3 243,40 66.0 167.7 -0.002 0.013 10.24 139.63 6,958.28 6,957.40 Storm 9 Lat 18in O1 125.00 48.0 348.6 -0.024 0.013 9.95 220.31 6,982.33 6,979.69 Storm 23 84in O2 382.70 84.0 27.0 -0.003 0.013 9.94 325.38 6,951.54 6,951.64 6,951.65 6,951.65 6,										
Storm_19_Lat 1_8in_01										
Storm 16 48 10 2 125 00 48 0 348 6 -0.024 0.013 9.95 220.31 6,982.33 6,979.89 30.013 39.94 347.91 6,951.54 6,951.65 6,951.65 6,951.65 6,951.65 6,952.64 5,000 1,000										
Storm 23 B4in 02 382,70 84.0 27.0 -0.003 0.013 9.94 347.91 6,951.54 6,951.64 Storm 23 B4in 01 382,70 84.0 200.4 -0.003 0.013 9.94 325.38 6,953.31 6,952.64 Storm 19 30in 03 46.90 30.0 165.0 -0.024 0.013 9.55 64.17 6,931.43 6,991.28 Storm 15 42in 0.1 E 85.40 42.0 63.9 -0.004 0.013 8.88 65.41 6,975.73 6,975.27 Storm 16 48in 0.04 107.70 48.0 50.4 -0.020 0.013 8.57 203.42 6,983.38 6,983.38 6,983.30 Storm 21 48in 0.04 243.40 42.0 258.8 -0.020 0.013 8.57 203.42 6,984.19 6,985.69 Storm 23 48in 0.2 105.90 48.0 25.8 -0.030 0.013 8.43 264.00 6,960.38 6,986.80 Storm 19 Lat 2 18in 0.2 105.90 48.0 25.8 -0.030 0.013 8.43 248.66 6,986.94 6,986.80 Storm 19 Lat 2 18in 0.2 14.70 18.0 35.3 -0.015 0.013 8.27 248.76 6,986.27 6,985.97 Storm 16 48in 0.5 103.90 48.0 25.8 -0.020 0.013 8.27 248.76 6,986.27 6,985.97 Storm 16 48in 0.5 103.90 48.0 25.5 -0.049 0.013 8.27 248.76 6,986.27 6,985.97 Storm 16 18in 0.2 12.80 18.0 25.5 -0.049 0.013 7.92 23.36 6,975.72 6,985.97 Storm 15 18in 0.2 12.80 18.0 82.7 -0.050 0.013 7.24 23.47 6,967.22 6,985.99 Storm 19 Lat 3 18in 0.2 3.80 18.0 29.3 -0.020 0.013 6.82 94.31 7,003.97 7,016.96 7,016.97 Storm 19 36in 0.1 46.90 36.0 36.0 36.2 -0.006 0.013 6.63 51.15 6,990.59 6,988.80 Storm 19 36in 0.1 46.90 36.0 36.0 36.0 36.0 36.3 50.0 36.3 50.0 36.3 50.0 36.3 50.0 44.45 50.006 0.013 6.63 51.15 6,990.59 6,988.80 Storm 29 36in 01 46.90 36.0 36.0 36.0 36.0 36.3 50.0 71.15 6,986.91 6,986.94 6,986.94 6,986.94 6,986.94 6,986.94 6,986.94 6,986.94 6,986.94 6,986.94 6,986.94 6,986.94 6,986.94 6,986.94 6,986.94 6,986										
Storm_23_84in_O1 382.70 84.0 200.4 -0.003 0.013 9.94 325.38 6,953.31 6,952.64 Storm_19_30in_O3 46.90 30.0 165.0 -0.004 0.013 9.55 64.17 6,993.43 6,991.28 Storm_15_42in_O1+E 85.40 42.0 63.9 -0.004 0.013 8.57 203.42 6,983.38 6,983.10 Storm_16_48in_O4 107.70 48.0 50.4 -0.020 0.013 8.57 203.42 6,983.38 6,983.10 Storm_21_48in_O4 107.70 48.0 42.5 -0.020 0.013 8.57 203.42 6,983.38 6,983.10 Storm_23_three_42in_O4 243.40 42.0 258.8 -0.008 0.013 8.43 264.00 6,960.38 6,958.69 Storm_21_48in_O2 105.90 48.0 25.8 -0.003 0.013 8.43 248.66 6,986.94 6,986.80 Storm_21_48in_O1 103.90 48.0 57.3 -0.030 0.013 8.27 248.76 6,986.27 6,985.97 Storm_16_48in_O5 103.90 48.0 26.8 -0.020 0.013 8.27 203.11 6,984.90 6,984.76 Storm_15_18in_O2 12.80 18.0 82.7 -0.050 0.013 8.27 203.11 6,984.90 6,984.76 Storm_15_18in_O2 12.80 18.0 82.7 -0.050 0.013 7.24 23.47 6,987.22 6,985.97 Storm_18_18in_O2 12.80 18.0 82.7 -0.050 0.013 7.24 23.47 6,987.22 6,985.99 Storm_17_36in_O7 48.90 36.0 9.8 -0.020 0.013 7.24 23.47 6,987.22 6,985.99 Storm_17_36in_O7 48.90 36.0 9.8 -0.020 0.013 6.63 51.15 6,990.59 6,988.80 Storm_19_36in_O1 46.90 36.0 302.2 -0.006 0.013 6.63 51.15 6,990.59 6,988.80 Storm_19_36in_O1 46.90 36.0 302.2 -0.006 0.013 6.63 51.15 6,990.59 6,988.80 Storm_21_42in_O1 125.00 42.0 158.3 -0.002 0.013 5.99 25.78 7,044.51 7,044.55 Storm_26_30in_O1 125.00 42.0 158.3 -0.002 0.013 5.99 25.78 7,044.53 7,044.55 Storm_26_30in_O1 12.20 30.0 30.0 35.4 -0.005 0.013 5.99 25.78 7,044.51 7,044.55 7,044.55 7,044.55 7,044.55 7,044.55 7,044.55 7,044.55 7,044.55 7,044.55 7,044.55 7,044.55 7,044.55 7,044.55 7,044.55 7,044.55 7,044.55 7,044.55 7,044.55 7,044.55 7,0						0.013				6,979.69
Storm_19_30in_O3	Storm_23_84in_02									
Storm_16_48in_03	Storm_23_84in_01									6,952.64
Storm_16_48in_03										
Storm_16_48in_04	Storm_15_42in_01-E	85.40					8.88		6,975.73	6,975.27
Storm 23 three 42in 04	Storm_16_48in_03		48.0			0.013	8.57			6,983.10
Storm 21 48in 02							8.57			6,983.95
Storm_19_Lat \(\bar{2}\) 18in \(02 \) 14.70 18.0 35.3 -0.015 0.013 8.32 12.86 7,008.40 7,007.71 Storm_21_48in_01 103.90 48.0 57.3 -0.030 0.013 8.27 248.76 6,986.27 6,985.97 Storm_16_48in_05 103.90 48.0 26.8 -0.020 0.013 8.27 203.11 6,984.90 6,984.76 Storm_15_18in_02 14.00 18.0 25.5 -0.049 0.013 7.92 23.36 6,975.72 6,975.27 Storm_18_18in_02 12.80 18.0 82.7 -0.050 0.013 7.24 23.47 6,987.22 6,985.99 Storm_19_Lat \(\bar{3}\) 18in_02 3.80 18.0 29.3 -0.020 0.013 7.05 14.90 7,016.96 7,016.97 Storm_17_36in_07 48.90 36.0 9.8 -0.020 0.013 6.63 9.431 7,003.97 7,03.91 STRM_29_01 11.80 18.0 66.2 -0.008 0.013 6.68 9.40 7,019.74 7,018.90 Storm_19_36in_02 46.90 36.0 144.5 -0.006 0.013 6.63 51.15 6,990.59 6,988.84 Storm_19_36in_01 46.90 36.0 144.5 -0.006 0.013 6.63 51.15 6,990.59 6,988.84 Storm_19_36in_01 125.00 42.0 158.3 -0.002 0.013 6.63 51.04 6,989.53 6,988.04 Storm_28_30in_01 12.20 30.0 90.0 -0.007 0.013 6.44 34.60 7,044.41 7,044.53 Storm_21_42in_03 60.60 42.0 101.2 -0.005 0.013 6.30 71.15 6,988.41 6,986.80 Storm_21_42in_03 60.60 42.0 101.2 -0.005 0.013 6.30 71.15 6,988.41 6,986.80 Storm_28_30in_01 26.10 30.0 35.4 -0.004 0.013 5.93 29.03 7,022.08 7,021.51 Storm_19_Lat_1_18in_01 17.20 24.0 8.8 -0.006 0.013 5.93 29.03 7,022.08 7,021.51 Storm_19_Lat_3_18in_01 6.60 18.0 6.0 -0.020 0.013 2.79 38.24 7,022.22 7,022.13 Storm_16_Lat_1_18in_01 4.50 24.0 80.7 -0.010 0.013 2.55 15.01 6,984.79 6,991.23 6,991.23 5,991.23 18.29 6,991.23	Storm 23 three 42in_ 04				-0.008	0.013	8.43		6,960.38	6,958.69
Storm_21_48in_01										
Storm_16_48in_05 103.90 48.0 26.8 -0.020 0.013 8.27 203.11 6,984.90 6,984.76 Storm_15_18in_02-W 14.00 18.0 25.5 -0.049 0.013 7.92 23.36 6,975.72 6,975.27 Storm_18_18in_02 12.80 18.0 82.7 -0.050 0.013 7.24 23.47 6,987.22 6,985.99 Storm_19_Lat_3_18in_02 3.80 18.0 29.3 -0.020 0.013 7.05 14.90 7,016.96 7,016.96 7,016.97 Storm_17_36in_07 48.90 36.0 9.8 -0.020 0.013 6.92 94.31 7,003.97 7,003.91 STRM_29_01 11.80 18.0 66.2 -0.008 0.013 6.68 9.40 7,019.74 7,018.90 Storm_19_36in_02 46.90 36.0 144.5 -0.006 0.013 6.63 51.15 6,995.59 6,988.84 Storm_19_36in_01 46.90 36.0 302.2 -0.006 0.013 6.63 51.04 6,989.53 6,988.04 Storm_16_42in_01 125.00 42.0 158.3 -0.002 0.013 6.50 90.47 6,979.36 6,978.75 Storm_28_30in_01 12.20 30.0 90.0 -0.007 0.013 6.30 71.15 6,986.99 6,986.94 Storm_21_42in_03 60.60 42.0 101.2 -0.005 0.013 6.30 71.15 6,986.99 6,986.04 Storm_28_30in_01 20.10 30.0 35.4 -0.004 0.013 5.99 25.78 7,044.53 7,044.20 Storm_28_30in_01 29.10 30.0 113.0 -0.005 0.013 5.93 29.03 7,022.08 7,021.51 Storm_19_Lat_3_18in_01 14.50 24.0 8.8 -0.006 0.013 5.97 25.78 7,022.08 7,021.51 Storm_19_Lat_3_18in_01 14.50 24.0 8.8 -0.006 0.013 5.97 38.24 7,022.20 7,022.13 Storm_19_Lat_3_18in_01 4.50 24.0 8.0 6.0 -0.020 0.013 2.79 38.24 7,022.22 7,022.13 Storm_16_Lat_1_18in_01 4.50 18.0 13.2 -0.020 0.013 2.32 17.27 7,020.00 7,019.88 Storm_17_Lat_1_24in_02 7.00 24.0 8.0 7.96 -0.027 0.013 2.23 18.29 6,991.23 6,991.18 Storm_17_Lat_1_24in_02 7.00 24.0 8.0 7.96 -0.027 0.013 2.23 18.29 6,991.23 6,991.18 Storm_17_Lat_1_24in_02 7.00 24.0 53.4 -0.007 0.013 2.23 18.29 6,991.23 6,991.18 Storm_17_Lat_1_24in_02 7.00 24.0 53.4 -0.007 0.013 2.23 18.2										,
Storm_15_18in_02-W 14.00 18.0 25.5 -0.049 0.013 7.92 23.36 6,975.72 6,975.27										
Storm_18_18in_02 12.80 18.0 82.7 -0.050 0.013 7.24 23.47 6,987.22 6,985.99 Storm_19_Lat 3_18in_02 3.80 18.0 29.3 -0.020 0.013 7.05 14.90 7,016.96 7,016.97 Storm_17_36in_07 48.90 36.0 9.8 -0.020 0.013 6.92 94.31 7,003.97 7,003.91 Storm_19_36in_02 46.90 36.0 144.5 -0.006 0.013 6.63 51.15 6,990.59 6,988.04 Storm_19_36in_01 46.90 36.0 302.2 -0.006 0.013 6.63 51.15 6,990.59 6,988.04 Storm_19_36in_01 125.00 42.0 158.3 -0.002 0.013 6.63 51.04 6,989.53 6,988.04 Storm_16_42in_01 125.00 42.0 158.3 -0.002 0.013 6.50 90.47 6,979.36 6,988.04 Storm_21_42in_03 60.60 42.0 151.2 -0.005 0.013 6.30										
Storm_19_Lat 3_18in_02 3.80 18.0 29.3 -0.020 0.013 7.05 14.90 7,016.96 7,016.97										
Storm_17_36in_07 48.90 36.0 9.8 -0.020 0.013 6.92 94.31 7,003.97 7,003.91 STRM_29_01 11.80 18.0 66.2 -0.008 0.013 6.68 9.40 7,019.74 7,018.90 Storm_19_36in_02 46.90 36.0 144.5 -0.006 0.013 6.63 51.15 6,990.59 6,988.98 Storm_19_36in_01 46.90 36.0 302.2 -0.006 0.013 6.63 51.15 6,990.59 6,988.04 Storm_16_42in_01 125.00 42.0 158.3 -0.002 0.013 6.50 90.47 6,979.36 6,978.75 Storm_28_30in_01 12.20 30.0 90.0 -0.007 0.013 6.30 71.15 6,988.04 Storm_21_42in_03 60.60 42.0 101.2 -0.005 0.013 6.00 7.16 6,986.99 6,988.04 Storm_28_30in_01 26.10 30.0 35.4 -0.005 0.013 6.00 7.16 6,986.99										
STRM_29_01 11.80 18.0 66.2 -0.008 0.013 6.68 9.40 7,019.74 7,018.90 Storm_19_36in_02 46.90 36.0 144.5 -0.006 0.013 6.63 51.15 6,990.59 6,988.88 Storm_19_36in_01 46.90 36.0 302.2 -0.006 0.013 6.63 51.15 6,990.59 6,988.80 Storm_116_42in_01 125.00 42.0 158.3 -0.002 0.013 6.50 90.47 6,979.75 6,978.75 Storm_28 30in_01 12.20 30.0 90.0 -0.007 0.013 6.30 71.15 6,988.41 6,988.04 Storm_21_42in_03 60.60 42.0 101.2 -0.005 0.013 6.30 71.15 6,988.04 6,988.04 Storm_21_4at_1_18in_01 10.60 18.0 19.4 -0.005 0.013 6.00 7.16 6,986.99 6,986.80 Storm_22_30in_01 26.10 30.0 35.4 -0.004 0.013 5.99 2										
Storm_19_36in_02 46.90 36.0 144.5 -0.006 0.013 6.63 51.15 6,990.59 6,989.88 Storm_19_36in_01 46.90 36.0 302.2 -0.006 0.013 6.63 51.04 6,989.53 6,988.04 Storm_16_42in_01 125.00 42.0 158.3 -0.002 0.013 6.50 90.47 6,979.36 6,978.75 Storm_28_30in_01 12.20 30.0 90.0 -0.007 0.013 6.30 71.15 6,988.41 7,044.53 Storm_21_42in_03 60.60 42.0 101.2 -0.005 0.013 6.30 71.15 6,988.41 6,988.04 Storm_21_Lat_1_18in_01 10.60 18.0 19.4 -0.005 0.013 6.00 7.16 6,986.99 6,986.80 Storm_28_30in_01 26.10 30.0 35.4 -0.004 0.013 5.99 25.78 7,044.53 7,044.20 Storm_21_Lat_1_24in_01 17.20 24.0 8.8 -0.006 0.013 5.47										
Storm_19_36in_01 46.90 36.0 302.2 -0.006 0.013 6.63 51.04 6,988.03 6,988.04 Storm_16_42in_01 125.00 42.0 158.3 -0.002 0.013 6.50 90.47 6,979.36 6,978.75 Storm_28_30in_01 12.20 30.0 90.0 -0.007 0.013 6.50 90.47 6,978.75 Storm_21_42in_03 60.60 42.0 101.2 -0.005 0.013 6.30 71.15 6,988.94 6,988.04 Storm_21_Lat_1_18in_01 10.60 18.0 19.4 -0.005 0.013 6.00 7.16 6,986.99 6,986.80 Storm_28_30in_01 26.10 30.0 35.4 -0.004 0.013 5.99 25.78 7,044.53 7,044.20 Storm_22_30in_01 29.10 30.0 113.0 -0.005 0.013 5.93 29.03 7,022.08 7,021.51 Storm_12_Lat_1_24in_01 17.20 24.0 8.8 -0.006 0.013 5.47 17.03	STRM_29_01									
Storm_16_42in_01 125.00 42.0 158.3 -0.002 0.013 6.50 90.47 6,979.36 6,978.75 Storm_28 30in_01 12.20 30.0 90.0 -0.007 0.013 6.44 34.60 7,044.41 7,044.53 Storm_21_42in_03 60.60 42.0 101.2 -0.005 0.013 6.30 71.15 6,988.41 6,988.04 Storm_21_Lat_1_18in_01 10.60 18.0 19.4 -0.005 0.013 6.00 7.16 6,986.99 6,986.80 Storm_28 30in_01 26.10 30.0 35.4 -0.004 0.013 5.99 25.78 7,044.53 7,044.20 Storm_22 30in_01 29.10 30.0 113.0 -0.005 0.013 5.99 25.78 7,044.53 7,044.20 Storm_17_Lat_1_24in_01 17.20 24.0 8.8 -0.006 0.013 5.47 17.03 6,991.06 6,991.01 Storm_19_Lat 3_18in_01 6.60 18.0 6.0 -0.020 0.013 3.73										
Storm_28 30in_01 12.20 30.0 90.0 -0.007 0.013 6.44 34.60 7,044.41 7,044.53 Storm_21_4zin_03 60.60 42.0 101.2 -0.005 0.013 6.30 71.15 6,988.41 6,988,04 Storm_21_tat_1_18in_01 10.60 18.0 19.4 -0.005 0.013 6.00 7.16 6,986.99 6,986.80 Storm_28 30in_01 26.10 30.0 35.4 -0.004 0.013 5.99 25.78 7,044.53 7,044.20 Storm_22 30in_01 29.10 30.0 313.0 -0.005 0.013 5.99 25.78 7,044.20 Storm_17_Lat_1_24in_01 17.20 24.0 8.8 -0.006 0.013 5.47 17.03 6,991.06 6,991.01 Storm_19_Lat_3_18in_01 6.60 18.0 6.0 -0.020 0.013 3.73 14.84 7,016.99 7,016.97 Storm_16_Lat_1_18in_01 4.50 18.0 13.2 -0.020 0.013 2.79 38.24	Storm_19_36in_01									
Storm_21_42in_03 60.60 42.0 101.2 -0.005 0.013 6.30 71.15 6,988.41 6,988.04 Storm_21_Lat_1_18in_01 10.60 18.0 19.4 -0.005 0.013 6.00 7.16 6,986.99 6,986.80 Storm_28_30in_01 26.10 30.0 35.4 -0.004 0.013 5.99 25.78 7,044.53 7,044.20 Storm_22_30in_01 29.10 30.0 113.0 -0.005 0.013 5.99 25.78 7,044.53 7,024.20 Storm_17_Lat_1_24in_01 17.20 24.0 8.8 -0.006 0.013 5.47 17.03 6,991.06 6,991.01 Storm_26_24in_01 14.50 24.0 80.7 -0.010 0.013 5.47 17.03 6,991.06 6,991.01 Storm_19_Lat_3_18in_01 6.60 18.0 6.0 -0.020 0.013 3.73 14.84 7,016.99 7,016.97 Storm_16_Lat_1_18in_01 4.50 18.0 13.2 -0.020 0.013 2.79 </td <td></td>										
Storm_21_Lat18in_01 10.60 18.0 19.4 -0.005 0.013 6.00 7.16 6,986.99 6,986.80 Storm_28_30in_01 26.10 30.0 35.4 -0.004 0.013 5.99 25.78 7,044.53 7,044.20 Storm_22_30in_01 29.10 30.0 113.0 -0.005 0.013 5.93 29.03 7,022.08 7,021.51 Storm_17_Lat_1_24in_01 17.20 24.0 8.8 -0.006 0.013 5.47 17.03 6,991.06 6,991.01 Storm_26_24in_01 14.50 24.0 80.7 -0.010 0.013 4.62 22.68 7,022.43 7,022.10 Storm_19_Lat_3_18in_01 6.60 18.0 6.0 -0.020 0.013 3.73 14.84 7,016.99 7,016.97 Storm_16_Lat_1_18in_01 4.50 18.0 13.2 -0.020 0.013 2.79 38.24 7,022.22 7,022.13 Storm_16_Lat_1_18in_01 4.50 18.0 13.2 -0.020 0.013 2.7										,
Storm_28_30in_01 26.10 30.0 35.4 -0.004 0.013 5.99 25.78 7,044.53 7,044.20 Storm 22_30in_01 29.10 30.0 113.0 -0.005 0.013 5.93 29.03 7,022.08 7,021.51 Storm_17_Lat_1_24in_01 17.20 24.0 8.8 -0.006 0.013 5.47 17.03 6,991.01 Storm_26_24in_01 14.50 24.0 80.7 -0.010 0.013 4.62 22.68 7,022.43 7,022.10 Storm_19_Lat_3_18in_01 6.60 18.0 6.0 -0.020 0.013 3.73 14.84 7,016.99 7,016.97 Storm_22_30in_02 13.70 30.0 79.4 -0.009 0.013 2.79 38.24 7,022.12 7,022.13 Storm_16_Lat_1_18in_01 4.50 18.0 13.2 -0.020 0.013 2.55 15.01 6,984.79 6,984.76 STRM_29_02 4.10 18.0 79.6 -0.027 0.013 2.23 18.29										
Storm 22 30in 01 29.10 30.0 113.0 -0.005 0.013 5.93 29.03 7,022.08 7,021.51 Storm 17 Lat 1 24in 01 17.20 24.0 8.8 -0.006 0.013 5.47 17.03 6,991.06 6,991.01 Storm 26 24in 01 14.50 24.0 80.7 -0.010 0.013 4.62 22.68 7,022.43 7,022.10 Storm 19 Lat 3 18in 01 6.60 18.0 6.0 -0.020 0.013 3.73 14.84 7,016.99 7,016.97 Storm 22 30in 02 13.70 30.0 79.4 -0.009 0.013 2.79 38.24 7,022.22 7,022.13 Storm 16 Lat 1 18in 01 4.50 18.0 13.2 -0.020 0.013 2.55 15.01 6,984.79 6,984.76 STRM 29 02 4.10 18.0 79.6 -0.027 0.013 2.32 17.27 7,020.00 7,019.88 Storm 17 Lat 1 24in 02 7.00 24.0 53.4 -0.007 0.013 2.23										
Storm_17_Lat_1_24in_01 17.20 24.0 8.8 -0.006 0.013 5.47 17.03 6,991.06 6,991.01 Storm_26 24in_01 14.50 24.0 80.7 -0.010 0.013 4.62 22.68 7,022.43 7,022.10 Storm_19_Lat 3_18in_01 6.60 18.0 6.0 -0.020 0.013 3.73 14.84 7,016.99 7,016.97 Storm_22_30in_02 13.70 30.0 79.4 -0.009 0.013 2.79 38.24 7,022.22 7,022.13 Storm_16_Lat_1_18in_01 4.50 18.0 13.2 -0.020 0.013 2.55 15.01 6,984.76 STRM_29_02 4.10 18.0 79.6 -0.027 0.013 2.32 17.27 7,020.00 7,019.88 Storm_17_Lat_1_24in_02 7.00 24.0 53.4 -0.007 0.013 2.23 18.29 6,991.23 6,991.18										
Storm_26_24in_01 14.50 24.0 80.7 -0.010 0.013 4.62 22.68 7,022.43 7,022.10 Storm_19_Lat 3_18in_01 6.60 18.0 6.0 -0.020 0.013 3.73 14.84 7,016.99 7,016.97 Storm_22_30in_02 13.70 30.0 79.4 -0.009 0.013 2.79 38.24 7,022.22 7,022.13 Storm_16_Lat_1_18in_01 4.50 18.0 13.2 -0.020 0.013 2.55 15.01 6,984.79 6,984.76 STRM_29_02 4.10 18.0 79.6 -0.027 0.013 2.32 17.27 7,020.00 7,019.88 Storm_17_Lat_1_24in_02 7.00 24.0 53.4 -0.007 0.013 2.23 18.29 6,991.23 6,991.18										
Storm_19_Lat 3_18in_01 6.60 18.0 6.0 -0.020 0.013 3.73 14.84 7,016.99 7,016.97 Storm_22_30in_02 13.70 30.0 79.4 -0.009 0.013 2.79 38.24 7,022.22 7,022.13 Storm_16_Lat_1_18in_01 4.50 18.0 13.2 -0.020 0.013 2.55 15.01 6,984.79 6,984.76 STRM_29_02 4.10 18.0 79.6 -0.027 0.013 2.32 17.27 7,020.00 7,019.88 Storm_17_Lat_1_24in_02 7.00 24.0 53.4 -0.007 0.013 2.23 18.29 6,991.23 6,991.18										
Storm_22_30in_02 13.70 30.0 79.4 -0.009 0.013 2.79 38.24 7,022.22 7,022.13 Storm_16_Lat_1_18in_01 4.50 18.0 13.2 -0.020 0.013 2.55 15.01 6,984.79 6,984.76 STRM_29_02 4.10 18.0 79.6 -0.027 0.013 2.32 17.27 7,020.00 7,019.88 Storm_17_Lat_1_24in_02 7.00 24.0 53.4 -0.007 0.013 2.23 18.29 6,991.23 6,991.18										
Storm_16_Lat18in_01 4.50 18.0 13.2 -0.020 0.013 2.55 15.01 6,984.79 6,984.76 STRM_29_02 4.10 18.0 79.6 -0.027 0.013 2.32 17.27 7,020.00 7,019.88 Storm_17_Lat_1_24in_02 7.00 24.0 53.4 -0.007 0.013 2.23 18.29 6,991.23 6,991.18										
STRM_ 29_02 4.10 18.0 79.6 -0.027 0.013 2.32 17.27 7,020.00 7,019.88 Storm_17_Lat_1_24in_02 7.00 24.0 53.4 -0.007 0.013 2.23 18.29 6,991.23 6,991.18										
Storm_17_Lat_1_24in_02										
Storm_25 30in_01 10.00 30.0 28.2 0.005 0.013 2.04 29.93 6,960.67 6,960.65										
	Storm_25 30in_01	10.00	30.0	28.2	0.005	0.013	2.04	29.93	6,960.67	6,960.65

X:\2510000.all\2518801\StormCAD\2518801 StormCAD Model.stsw

X.251000001257 667 "Gravitati Stroot Deap Braining May-Proposed May Jee, 2 No.0 The unrecept. 8160201 112055 AM, FC

XX251003031EX 68V Wandast Short Dispri Drainage Maye/Proposed May, that, 24x07 The Landscape (H. 2022222 12: 6522 PM, FO

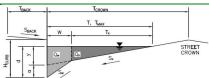
FINAL DRAINAGE REPORT FOR STERLING RANCH FILING NO. 4

Prepared For:

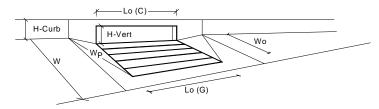
SR Land, LLC 20 Boulder Crescent, Suite 200 Colorado Springs, CO 80903 (719) 491-3024

> August 14, 2023 Project No. 25188.11

Prepared By:
JR Engineering, LLC
5475 Tech Center Drive, Suite 235
Colorado Springs, CO 80919
719-593-2593


PCD Filing No.: SF-22-030

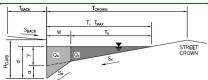
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

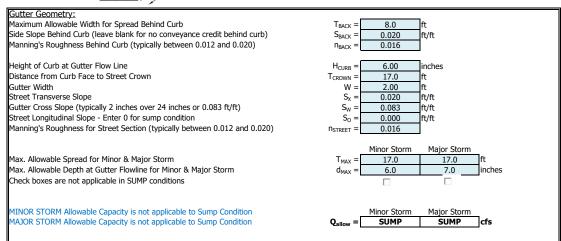

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Sterling Ranch Filing 4
Inlet ID: Inlet DP5

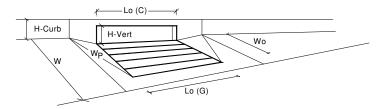
Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) T_{BACK} 8.0 ft/ft $\mathsf{S}_{\mathsf{BACK}}$ 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.016 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 inches Distance from Curb Face to Street Crown $\mathsf{T}_{\mathsf{CROWN}}$ 17.0 Gutter Width W 2.00 Street Transverse Slope S_X : 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_{W} ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm $d_{\text{MAX}} \\$ inches 6.0 7.0 Check boxes are not applicable in SUMP conditions Major Storm SUMP MINOR STORM Allowable Capacity is not applicable to Sump Condition Minor Storm MAJOR STORM Allowable Capacity is not applicable to Sump Condition SUMP

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)


Type = alocal = No = sq Depth = Lo (G) = Wo = Aratio = Cf (G) = Cw (G) = Co	MINOR CDOT Type R 3.00 1 7.1 MINOR N/A N/A N/A N/A N/A N/A N/A	MAJOR Curb Opening 3.00 1 7.4 MAJOR N/A N/A N/A N/A N/A N/A N/A N/A	inches inches Override Depths feet feet
$\begin{array}{c} a_{local} = \\ No = \\ ng \ Depth = \\ \end{array}$ $\begin{array}{c} L_o \ (G) = \\ W_o = \\ A_{ratio} = \\ C_f \ (G) = \\ \end{array}$	3.00 1 7.1 MINOR N/A N/A N/A N/A N/A N/A	3.00 1 7.4 MAJOR N/A N/A N/A N/A	inches Override Depths feet
$\begin{array}{c} NO = \\ \\ NO = \\ \\ C_{O}(G) = \\ \\ W_{O} = \\ \\ A_{ratio} = \\ \\ C_{f}(G) = \\ \\ C_{W}(G) = \\ \end{array}$	1 7.1 MINOR N/A N/A N/A N/A N/A N/A	1 7.4 MAJOR N/A N/A N/A N/A	inches Override Depths feet
$\begin{array}{c} \text{ng Depth} = \\ \\ L_0 \text{ (G)} = \\ W_0 = \\ \\ A_{\text{ratio}} = \\ C_f \text{ (G)} = \\ \\ C_w \text{ (G)} = \\ \end{array}$	7.1 MINOR N/A N/A N/A N/A N/A N/A	MAJOR	Override Depths feet
$L_{o}(G) = W_{o} = A_{ratio} = C_{f}(G) = C_{w}(G) = C_{w}(G) = C_{w}(G) = C_{w}(G)$	MINOR N/A N/A N/A N/A N/A N/A N/A N/A	MAJOR	Override Depths feet
$W_{o} = $ $A_{ratio} = $ $C_{f} (G) = $ $C_{w} (G) = $	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	feet
$W_{o} = $ $A_{ratio} = $ $C_{f} (G) = $ $C_{w} (G) = $	N/A N/A N/A N/A N/A	N/A N/A N/A N/A	
$A_{ratio} = $	N/A N/A N/A N/A	N/A N/A N/A	feet
$C_f(G) = C_w(G) = C_w(G)$	N/A N/A N/A	N/A N/A	
C _w (G) =	N/A N/A	N/A	_
	N/A		4
$C_o(G) =$		N/A	
	MINOR	MAJOR	_
$L_o(C) =$			feet
H _{vert} =			inches
H _{throat} =		6.00	inches
Theta =		63.40	degrees
$W_p =$	2.00	2.00	feet
	0.10	0.10	
$C_w(C) =$	3.60	3.60	
$C_o(C) =$	0.67	0.67]
	MINOR	MAJOR	
d _{Grato} =	N/A	N/A	∃ft
	0.43	0.45	ft
	N/A	N/A	1
	0.85	0.86	1
Combination =	N/A	N/A	
	MINOR	MA IOR	
0 =			cfs
REQUIRED =	12.0	25.9	cfs
	$\begin{array}{c} H_{throat} = \\ Theta = \\ W_p = \\ C_f(C) = \\ C_w(C) = \\ C_0(C) = \\ \end{array}$ $\begin{array}{c} d_{Grate} = \\ d_{Curb} = \\ RF_{Curb} = \\ \\ RF_{Curb} = \\ \end{array}$	$\begin{array}{l} L_{o}\left(C\right) = & 15.00 \\ H_{vert} = & 6.00 \\ H_{throat} = & 6.00 \\ Theta = & 63.40 \\ W_{p} = & 2.00 \\ C_{f}\left(C\right) = & 0.10 \\ C_{w}\left(C\right) = & 3.60 \\ C_{o}\left(C\right) = & 0.67 \\ \hline \\ MINOR \\ d_{Grate} = & N/A \\ d_{Curb} = & N/A \\ RF_{Grate} = & N/A \\ RF_{Curb} = & 0.85 \\ ombination = & N/A \\ \hline \\ MINOR \\ Q_{a} = & 12.2 \\ \hline \end{array}$	$\begin{array}{c} L_{o}\left(C\right) = & 15.00 & 15.00 \\ H_{wert} = & 6.00 & 6.00 \\ H_{throat} = & 6.00 & 6.00 \\ Theta = & 63.40 & 63.40 \\ W_{p} = & 2.00 & 2.00 \\ C_{f}\left(C\right) = & 0.10 & 0.10 \\ C_{w}\left(C\right) = & 3.60 & 3.60 \\ C_{o}\left(C\right) = & 0.67 & 0.67 \\ \hline \\ MINOR & MAJOR \\ d_{Grate} = & N/A & N/A \\ d_{Curb} = & 0.43 & 0.45 \\ RF_{Grate} = & N/A & N/A \\ RF_{Curb} = & 0.85 & 0.86 \\ Ombination = & N/A & N/A \\ \hline \\ MINOR & MAJOR \\ Q_{a} = & 12.2 & 13.5 \\ \hline \end{array}$

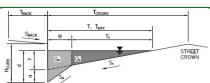

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

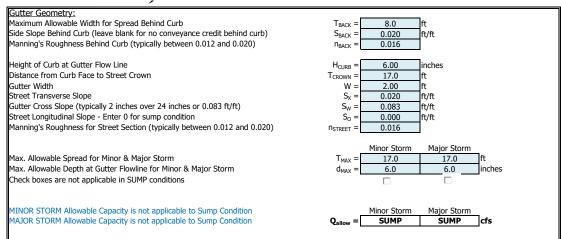
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: Sterling Ranch Filing 4

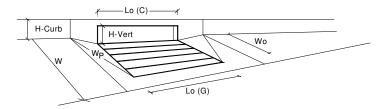
Inlet ID: Inlet DP6.1

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)


Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	_
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	8.0	inches
Grate Information	-	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	$A_{ratio} =$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.50	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.91	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A	
		MATALOR	M4305	
L		MINOR	MAJOR	7.6.
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.9	16.2	cfs
WARNING: Inlet Capacity < Q Peak for Major Storm	Q PEAK REQUIRED =	3.9	19.3	cfs

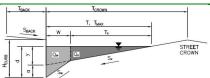

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

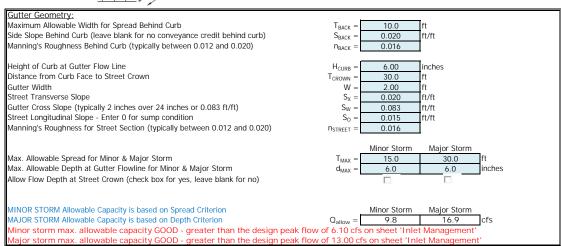
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: Sterling Ranch Filing 4

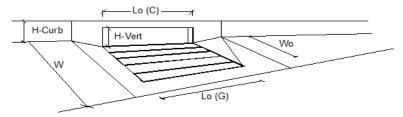
Inlet ID: Inlet DP6.2

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)



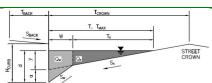

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Nater Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	8.0	inches
Grate Information		MINOR	MAJOR	Override Depths
ength of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Vidth of a Unit Grate	$W_o =$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	_
ength of a Unit Curb Opening	$L_o(C) =$	10.00	10.00	feet
leight of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
ow Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.50	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Curb} =$	0.91	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.9	16.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	Q PEAK REQUIRED =	2.0	7.3	cfs

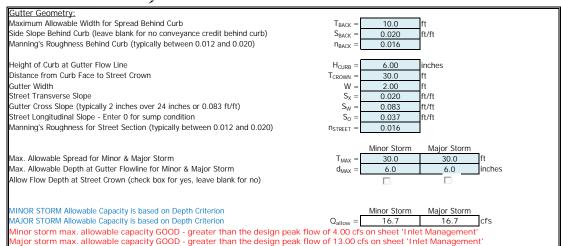
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

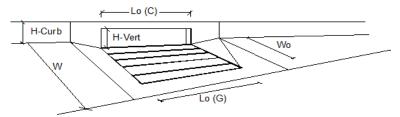
Project: Sterling Ranch Filing 4
Inlet ID: Ex Inlet DP8

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.02 (August 2022)




Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	$a_{LOCAL} =$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o =$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	6.1	10.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	2.2	cfs
Capture Percentage = Q_a/Q_o	C% =	100	83	%

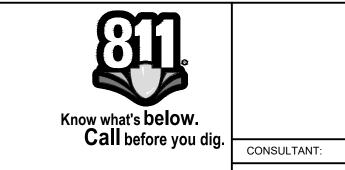
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Sterling Ranch Filing 4
Inlet ID: Inlet DP2e

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.02 (August 2022)

Design Information (Input) CDOT Type R Curb Opening	-1	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_f(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_f(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.0	10.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	2.1	cfs
Capture Percentage = Q _a /Q _o	C% =	100	84	%


						Design Pa	oint Summ	ary Tahlo		
D	Up	strea	n			Inlet	Jiiit Juliiiii	ary rable	Downstream	Receiving
Design Point	Area (Acres)			Subbasins Included	Name	Туре	Size (ft)	Outlet Pipe Size/Type	Design Point	Emergency Overflow
DP1	4.35	5.0	14.4	A2	A2	D 10 R	12	24" RCP/HP	DP6	DP6 / Street Overtop
DP2	5.15	5.8	16.5	A1	A1	D 10 R	10	24" RCP/HP	DP3	DP3 / Street Overtop
DP3	5.53	6.2	17.7	DP2,A4	A4	D 10 R	6	18" RCP/HP	DP6	DP6 / C & G, Street Overtop
DP4	4.06	3.4	11.4	A6	D4	D 10 R	8	36" RCP/HP	DP5	DP5 / Street Overtop
DP5	5.23	4.8	15.2	DP5, A7	D5	MH	6	36" RCP/HP	DP6	DP1 / C & G
DP6	16.22	16.7	49.3	DP1,DP3,DP5,A9	D6	D 10 R	6	42" RCP/HP	DP POND	DP POND / Overtop Curb, Swale
DP7	2.00	2.8	8.0	A5	A5	D 10 R	6	24" RCP/HP	DP POND	DP POND / Overtop Curb, Swale
DP Pond	21.57	19.9	61.2	A1,A2,A4,A5, A6,A7,A9,	A9	Detention Outlet	Overflow	ate: 1.02 Sq. In. (Stage 0', .9' & 1.06') Weir/Grate: L=2', W=2' w/ slope: 0 Weir/Grate: (Stage: 4' to 6')	-	-
Detention Discharge	-	0.4	3.7	A10	Að	Structure		Outlet Pipe: 18" RCP/HP (10.5" Orifice	Sand Creek	Sand Creek
DP8	1.95	5.9	13.2		A12	D 10 R	16	24" RCP/HP	DP9	DP10 / C & G
DP9	1.87	5.8	13.0	DP8,RP-7D,A13	A13	D 10 R	16	24" RCP/HP	DP11	DP11 / C & G
DP10	0.71	2.7	6.0	A14	A14	D 10 R	16	18" RCP/HP	DP11	DP12 / C & G
DP11	0.71	2.6	5.9	DP9,DP10,A15	A15	D 10 R	16	30" RCP/HP	DP13	DP13 / C & G
DP12	1.90	4.8	11.6	A16	A16	D 10 R	20	24" RCP/HP	DP13	Sand Creek Bridge
DP13	3.55	8.6	20.3		A17	D 10 R	16	42" RCP/HP	WQ POND/ Sand Creek	Sand Creek Bridge

Q5= 1.2 Q100=4.3

ASPEN MEADOWS

COLORADO SPRINGS, CO

PROPOSED CONDITIONS MAP

CIVIL ENGINEER/ LANDSCAPE ARCHITECT: **Matrix**

Excellence by Design

Fax (719) 575-0208

2435 Research Parkway, Suite 300 Colorado Springs, CO 80920 Contact: Greg Shaner, Civil Engineer Contact: Jason Alwine, Landscape Architect Phone (719) 575-0100

ASPEN MEADOWS FILING NO.1 PUD DEVELOPMENT PLAN CITY OF COLORADO SPRINGS

JANUARY 2020

COLA, LLC 555 MIDDLE PARKWAY COLORADO SPRINGS, CO 80921 (719)459-0807

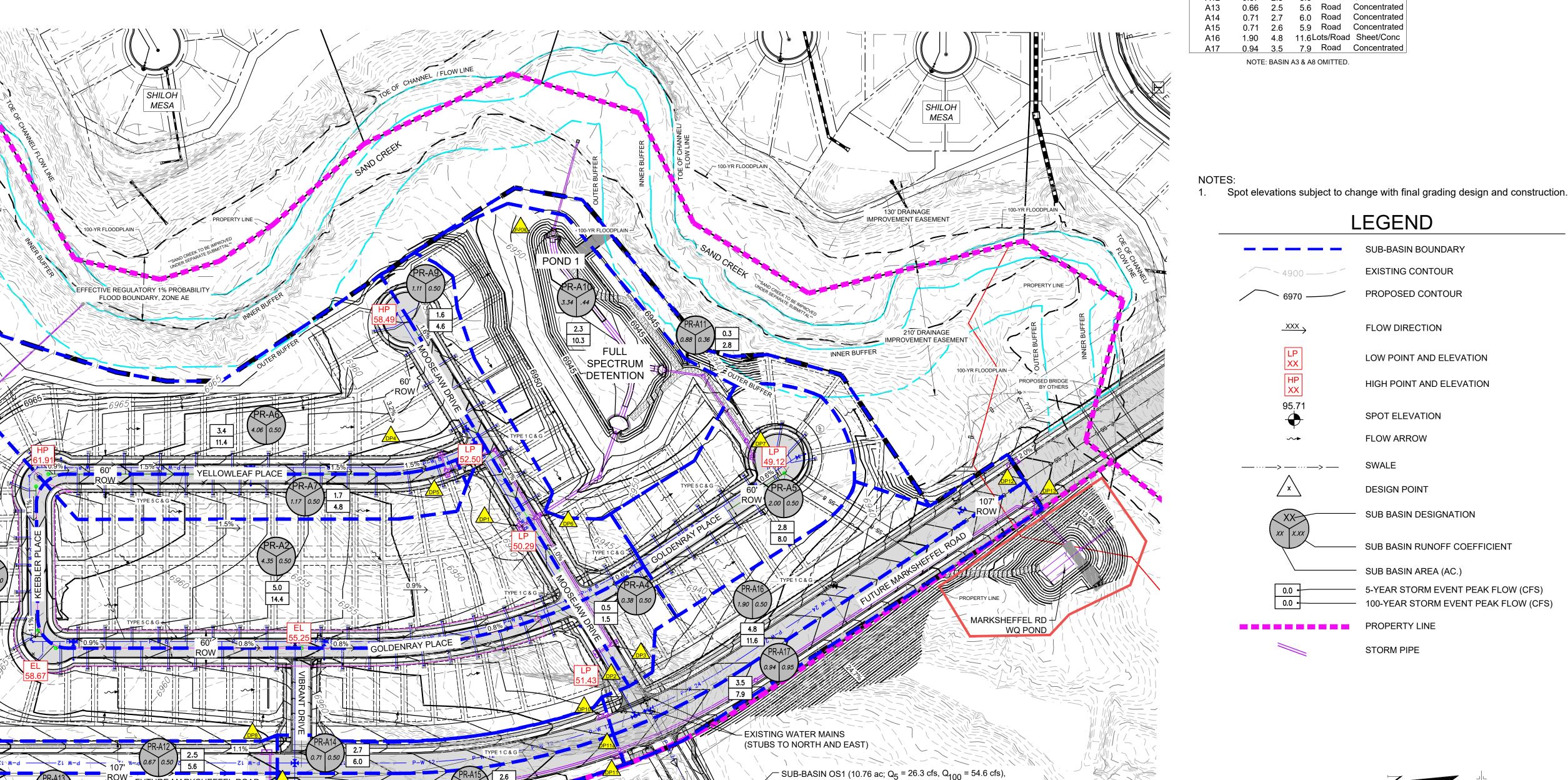
DEVELOPER:

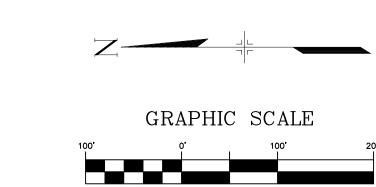
(719)459-0807

COLA, LLC 555 MIDDLE PARKWAY COLORADO SPRINGS, CO 80921

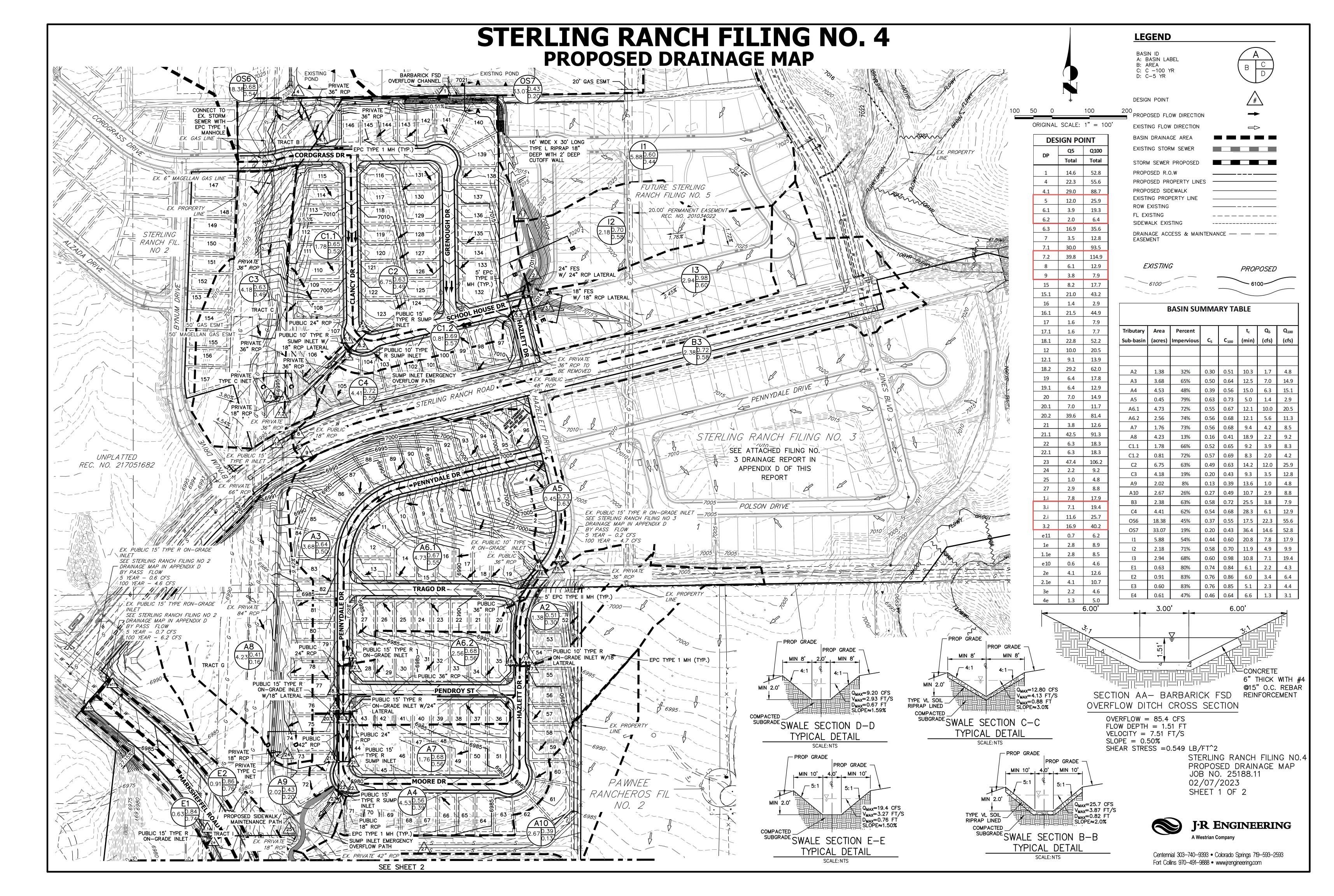
CITY PLANNING FILE NO: AR PUD 19-00053 ISSUE: MARCH, 2020

MAP

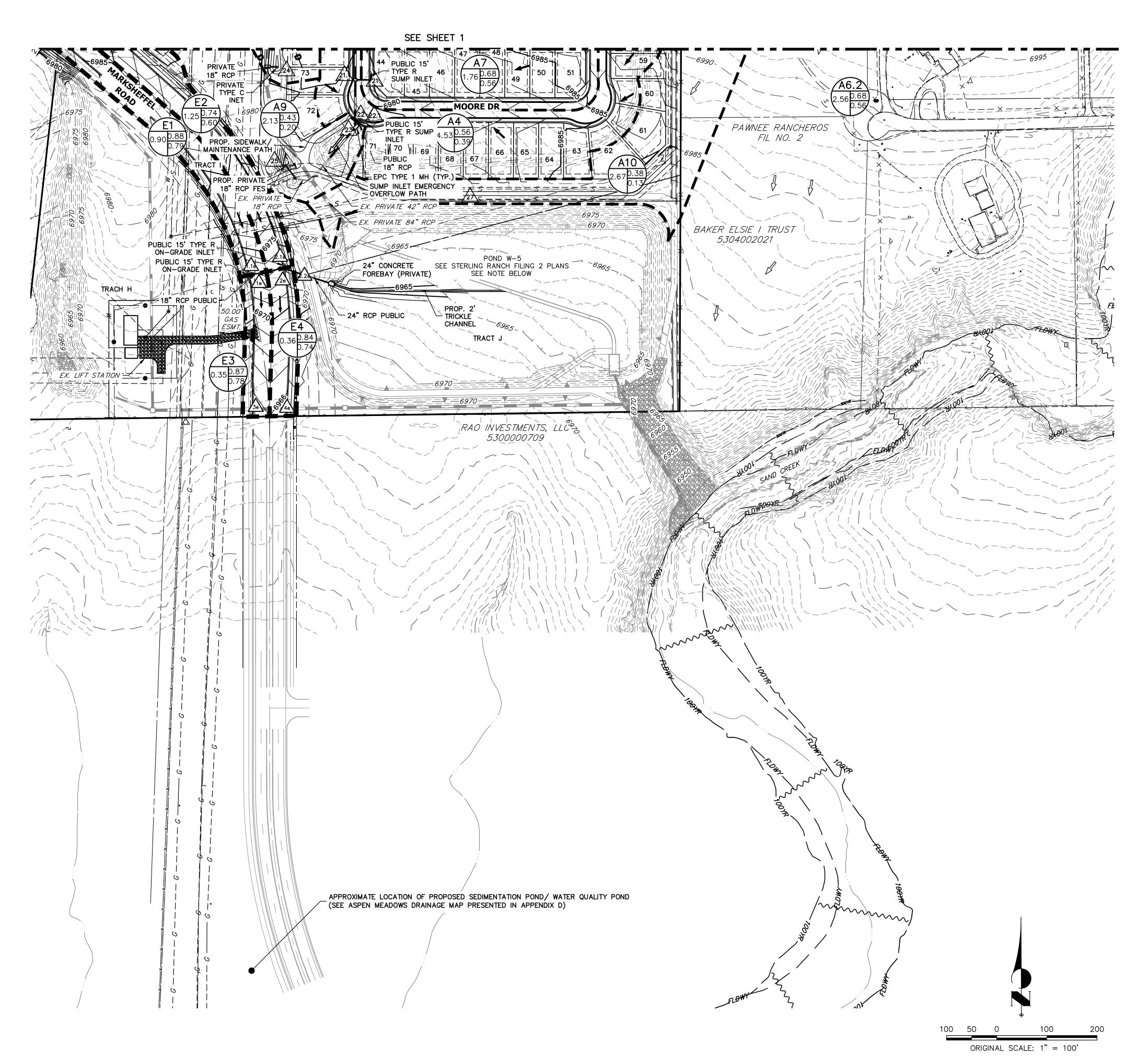

APPROVED BY:


DRAWING INFORMATION: PROJECT NO: 17.886.004.000 DRAWN BY: CRAIG DOLD CHECKED BY: JEFF ODOR

JEFF ODOR


DRAINAGE **REPORT**

Area Area Q5 Q100 Runoff Runoff							
ID	(Acres)	(cfs)	(cfs)	Source	Type		
RP-7C	1.28	2.8	6.4	Road	Concentrated		
RP-7D	1.21	2.9	6.5	Road	Concentrated		
A1	5.15	5.8	16.5l	_ots/Road	Sheet/Conc		
A2	4.35	5.0	14.4l	_ots/Road	Sheet/Conc		
A4	0.38	0.5	1.5 l	_ots/Road	Sheet/Conc		
A5	2.00	2.8	8.01	_ots/Road	Sheet/Conc		
A6	4.06	3.4	11.4l	_ots/Road	Sheet/Conc		
A7	1.17	1.7	4.8l	_ots/Road	Sheet/Conc		
A9	1.11	1.6	4.6l	_ots/Road	Sheet/Conc		
A10	3.34	2.3	10.3	Pond	Sheet		
A11	0.88	0.3	2.8	Channel	Concentrated		
A12	0.67	2.5	5.6	Road	Concentrated		
A13	0.66	2.5	5.6	Road	Concentrated		
A14	0.71	2.7	6.0	Road	Concentrated		
A15	0.71	2.6	5.9	Road	Concentrated		
A16	1.90	4.8	11.6l	_ots/Road	Sheet/Conc		
A17	0.94	3.5	7.9	Road	Concentrated		
	NOTE	BASIN	A3 & A8	3 OMITTED.			



(IN FEET) 1 inch = 100 ft.

X:\2510000.all\2518811\Drawings\Sheet Dwgs\Drainage Maps\2518811 DR01_F4.dwg, DR

STERLING RANCH FILING NO. 4 PROPOSED DRAINAGE MAP

DESIGN POINT						
Q5 Q100						
DP	Total	Total				
1	14.6	52.8				
4	22.3	55.6				
4.1	29.0	88.7				
5	12.0	25.9				
6.1	3.9	19.3				
6.2	2.0	13.2				
6.3	16.9	35.6				
7	3.5	12.8				
7.1	30.0	93.5				
7.2	39.8	114.9				
8	6.1	12.9				
9	3.8	7.9				
15	8.2	17.7				
15.1	21.0	43.2				
16	1.4	2.9				
16.1	21.5	44.9				
17	1.6	7.9				
17.1	1.6	7.7				
18.1	22.8	52.2				
12	10.0	20.5				
12.1	9.1	13.9				
18.2	29.2	62.0				
	6.4					
19		17.8				
19.1	6.4	12.9				
20	7.0	14.9				
20.1	7.0	11.7				
20.2	39.6	81.4				
21	3.8	12.6				
21.1	42.5	91.3				
22	6.3	18.3				
22.1	6.3	18.3				
23 24	47.4	106.2				
	2.2	9.2				
25	1.0	5.0 8.8				
27	2.9					
1.i	7.8	17.9				
3.i	7.1	19.4				
2.i	11.6	25.7				
3.2	16.9	40.2				
e11	0.7	6.2				
1e	4.0	10.9				
1.1e	4.0	9.8				
e10	0.6	4.6				
2e	4.0	13.0				
2.1e	4.0	10.9				
2 20	0.0	1 20 7				

2.2e 8.0 20.7

3e 1.3 3.6 4e 1.2 4.3

	BASIN ID A: BASIN LABEL B: AREA C: C -100 YR D: C-5 YR	A B C D
С	DESIGN POINT	_#
F	PROPOSED FLOW DIRECTION	-
E	EXISTING FLOW DIRECTION	
E	BASIN DRAINAGE AREA	
Е	EXISTING STORM SEWER	
S	STORM SEWER PROPOSED	
F	PROPOSED R.O.W	
F	PROPOSED PROPERTY LINES	
F	PROPOSED SIDEWALK	
E	EXISTING PROPERTY LINE	

LEGEND

ROW EXISTING

FL EXISTING

EASEMENT

SIDEWALK EXISTING

6100

DRAINAGE ACCESS & MAINTENANCE — — —

PROPOSED

ributary ub-basin Area (acres) Percent Impervious C s C C C (min) t c (min) (cfs) Q s (cfs) A2 1.38 32% 0.30 0.51 10.3 1.7 4.8 A3 3.68 65% 0.50 0.64 12.5 7.0 14.9 A4 4.53 48% 0.39 0.56 15.0 6.3 15.1 A5 0.45 79% 0.63 0.73 5.0 1.4 2.9 A6.1 4.73 72% 0.55 0.67 12.1 10.0 20.5 A6.2 2.56 74% 0.56 0.68 12.1 5.6 11.3 A7 1.76 73% 0.56 0.68 9.4 4.2 8.5 A8 4.23 13% 0.16 0.41 18.9 2.2 9.2 C1.1 1.78 66% 0.52 0.65 9.2 3.9 8.3 C1.2 0.81 72% 0.57 0.69<

STERLING RANCH FILING NO. 4
PROPOSED DRAINAGE MAP
JOB NO. 25188.11
08/10/2023
SHEET 2 OF 2

NOTE:

FOR ADDITIONAL INFORMATION REGARDING DESIGN POINTS, ROUTING, AND RUNOFF VALUES ASSOCIATED WITH POND W-5. REFER TO THE FILING 2 DRAINAGE MAP, AS SHOWN IN APPENDIX D OF THIS REPORT.

Centennial 303-740-9393 • Colorado Springs 719-593-2593 Fort Collins 970-491-9888 • www.jrengineering.com

FINAL DRAINAGE REPORT FOR BRANDING IRON AT STERLING RANCH FILING NO. 1

EL PASO COUNTY, COLORADO

October 2018

Prepared for: SR Land, LLC 20 Boulder Crescent, Suite 210 Colorado Springs, CO 80903

Prepared by:

Project #09-006 DSD Project # SF-17-024 Ranch Filing No.1" prepared by MS Civil Consultants, dated April 2017 (henceforth referred to as "Sterling Ranch Filing Nos. 1 & 2 MDDP") and the Sterling Ranch MDDP revised April 2018. Please refer to the Sterling Ranch Filing Nos. 1 & 2 MDDP by MS Civil Consultants for detailed information regarding the historic conditions of the area and discussion regarding early overlot grading which altered the existing drainage patterns prior to the issuance of this report.

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual and where applicable the Urban Storm Drainage Criteria Manual. The Rational Method was used to estimate stormwater runoff anticipated from design storms with 5-year and 100-year recurrence intervals.

HYDRAULIC CALCULATIONS

As the Hydrologic calculations performed as a part of this analysis matched the hydraulic analysis conducted with the Sterling Ranch Filing Nos. 1 & 2 MDDP, there is no need to reproduce in duplicate the hydraulic calculations provided within the aforementioned study. As such, please refer to the hydraulic calculations located in the appendix of the Master Development Drainage Report for Sterling Ranch Filing Nos. 1 & 2, and Final Drainage Report for Sterling Ranch Filing No.1 prepared by MS Civil Consultants, dated April 2017 for the relevant data sheets detailing the hydraulic analysis.

FLOODPLAIN STATEMENT

No portion of this site is within a designated F.E.M.A. floodplain as determined by the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel No. 08041C0535 F, effective date March 17, 1997 and revised to reflect LOMR, 08-08-O541P, dated July 23, 2009. An annotated FIRM Panel is included in the Appendix.

DRAINAGE CRITERIA

This drainage analysis has been prepared in accordance with the current City of Colorado Springs/El Paso County Drainage Criteria Manual, Volumes I & II, dated November 1991, including subsequent updates. El Paso County has also adopted Chapter 6 and Section 3.2.1 of Chapter 13 in the City of Colorado Springs & El Paso County Drainage Criteria Manual Volumes I and II, dated May 2014. (Appendix I of the El Paso County's Engineering Criteria Manual (ECM), 2008). In addition to the aforementioned ECMs, the Urban Storm Drainage Criteria Manuals, Volumes 1-3, published by the Urban Drainage and Flood Control District (Volumes 1 & 2 dated January 2016, Volume 3 dated November 2010 and updates) have been utilized to aid in design of the Full Spectrum Detention Facilities when required.

EXISTING DRAINAGE CONDITIONS

The Branding Iron at Sterling Ranch Filing No. 1 site consists of 10.545 acres. According to the Sterling Ranch MDDP (Existing Condition Map), historically runoff from the site drained to the southern boundary of the Sterling Ranch property (portion of Basin EX-3A) before combining with offsite runoff prior to reaching Sand Creek Channel. With the approval of the Sterling Ranch Onsite Early Grading Plan,

will be treated as WQCV and Full Spectrum Detention. As such the proposed develop shall not adversely affect the downstream infrastructure.

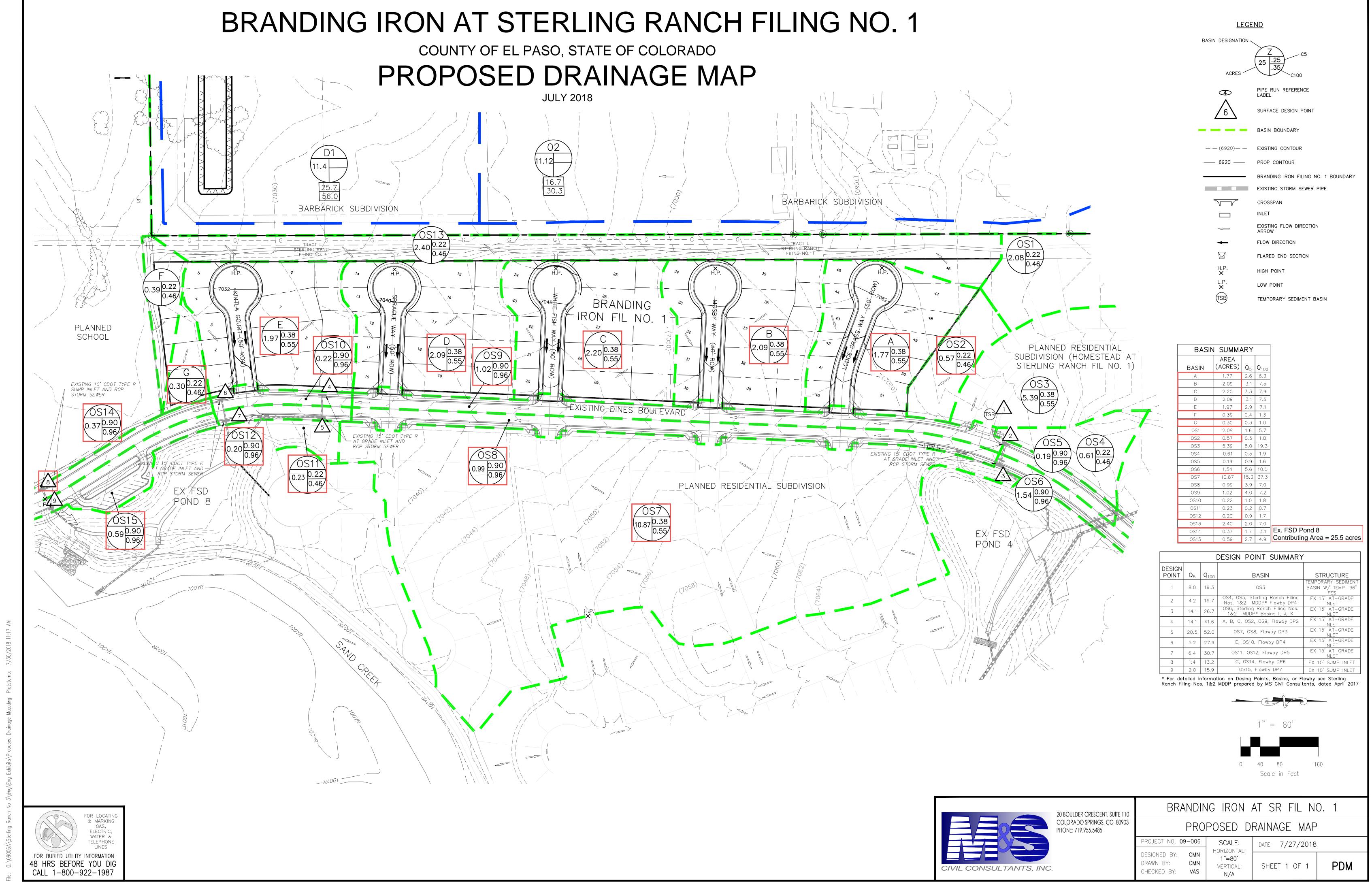
Water Quality/Full Spectrum Detention Facilities

With the exception of the outer permeable western and southern edges of the development the majority of the developed runoff from Branding Iron at Sterling Ranch Filing No. 1 is collected within the internal streets and conveyed via existing storm sewer systems to the existing Full Spectrum Detention Facility Pond 8 that was approved for construction as a portion of the Sterling Ranch Filing No.1 improvements. Pond 8 will provide 0.46 acre feet of water quality and 2.90 acres of full spectrum detention for approximately 29 acres of Sterling Ranch development of which the Branding Iron at Sterling Ranch Filing No.1 is a portion. The pond initially sized and designed within Sterling Ranch Filing Nos. 1&2 MDDP using the Detention Design UD-Detention v3.05 workbook. It should be noted that this drainage report and the SR Filing 1 and 2 MDDP were developed concurrently. Thus the larger scale concept planning was very finite and thus allowed for the developed flow rates to align between the two documents and thereby not requiring modifications to facility which is often common between conceptual and final design. Refer to the approved Sterling Ranch Filing No. 1 Storm Sewer Plans for additional details of FSD Pond 8.

The flows generated by Basin OS13 will be routed south via overlot grading and vegetated swales to a temporary sediment basin (future Pond W-5), at the south end of the Sterling Ranch Development. Upon development of the Sterling Ranch Filing No. 2 infrastructure Pond W-5 will be constructed and flows from Basin OS13 will be treated as WQCV (see WQCV deviation request) and Full Spectrum Detention. As such the proposed develop shall not adversely affect the downstream infrastructure.

EROSION CONTROL

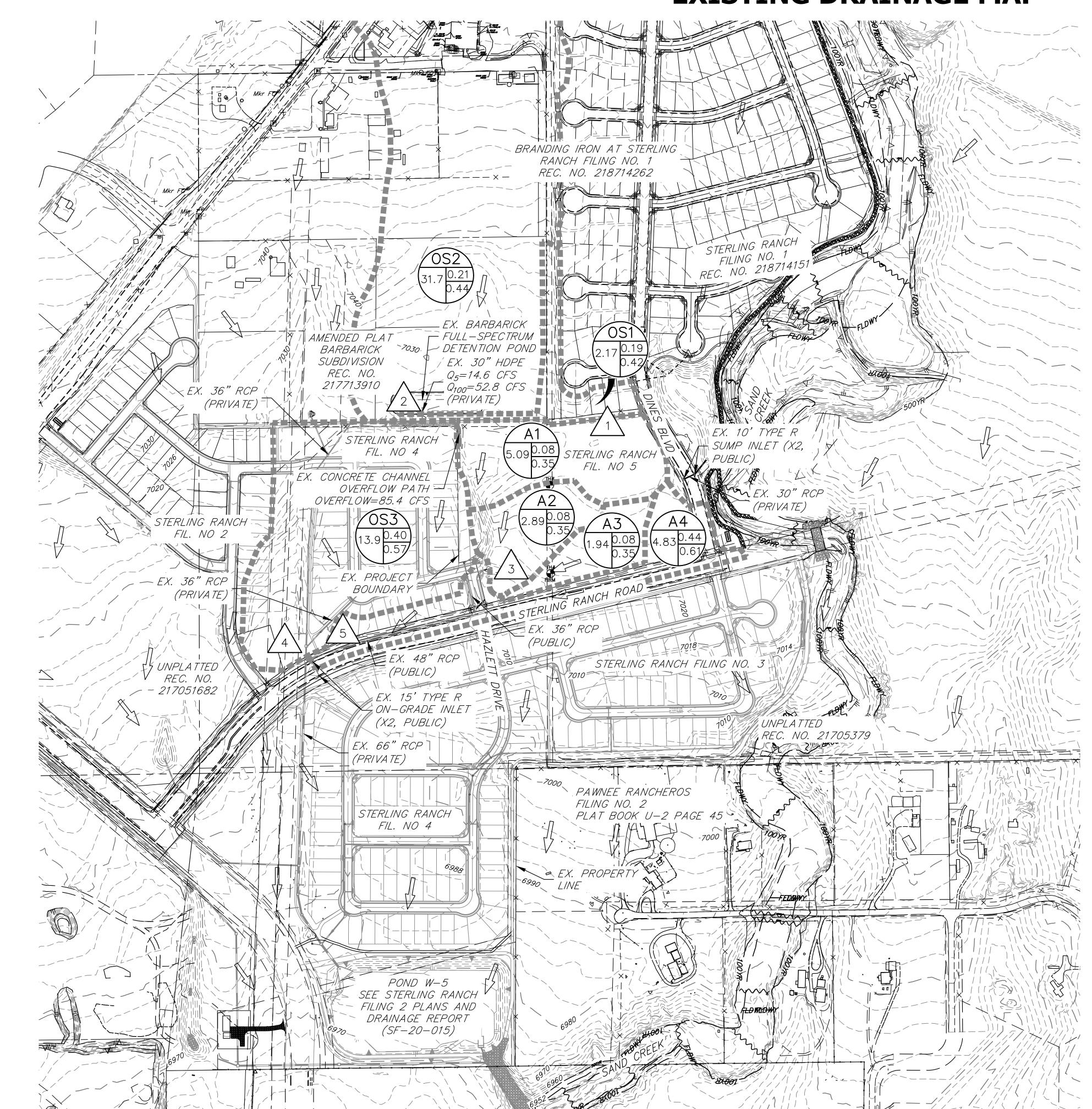
It is the policy of the El Paso County that a grading and erosion control plan be submitted with the drainage report. EPC approved "Early Grading Plan for Sterling Ranch Phase I <u>Onsite</u> Grading & Erosion Control", November 18, 2015. And "Early Grading Plan for Sterling Ranch Phase I <u>Offsite</u> Grading & Erosion Control", December 3, 2015. Grading and Erosion control operations are currently underway (August 2016). Grading and Erosion Control will cease with the final development of the site in the next 12-36 months.


CONSTRUCTION COST OPINION – BRANDING IRON AT STERLING RANCH FIL. NO. 1

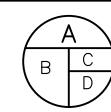
Drainage Facilities:

There are no planned improvements with the development of Branding Iron at Sterling Ranch Filing No. 1. Construction costs have been accounted for in the "Master Development Drainage Report for Sterling Ranch Filing Nos. 1 &2, and Final Drainage Report for Sterling Ranch Filing No.1" prepared by MS Civil Consultants, dated April 2017. Please see Drainage and Bridge Fees below.

DRAINAGE & BRIDGE FEES - BRANDING IRON AT STERLING RANCH FIL. NO. 1


This site is within the Sand Creek Drainage Basin. The 2017 Drainage and Bridge Fees per El Paso County for the BRANDING IRON AT STERLING RANCH FILING NO. 1 site are as follows:

Appendix E Drainage Maps



STERLING RANCH FILING 5 EXISTING DRAINAGE MAP

LEGEND

BASIN ID
A: BASIN LABEL
B: AREA
C: C -100 YR
D: C-5 YR

DESIGN POINT

EXISTING FLOW DIRECTION

BASIN DRAINAGE AREA

EXISTING STORM SEWER

OW DIRECTION

DRAINAGE ACCESS & MAINTENANCE — — — — EASEMENT

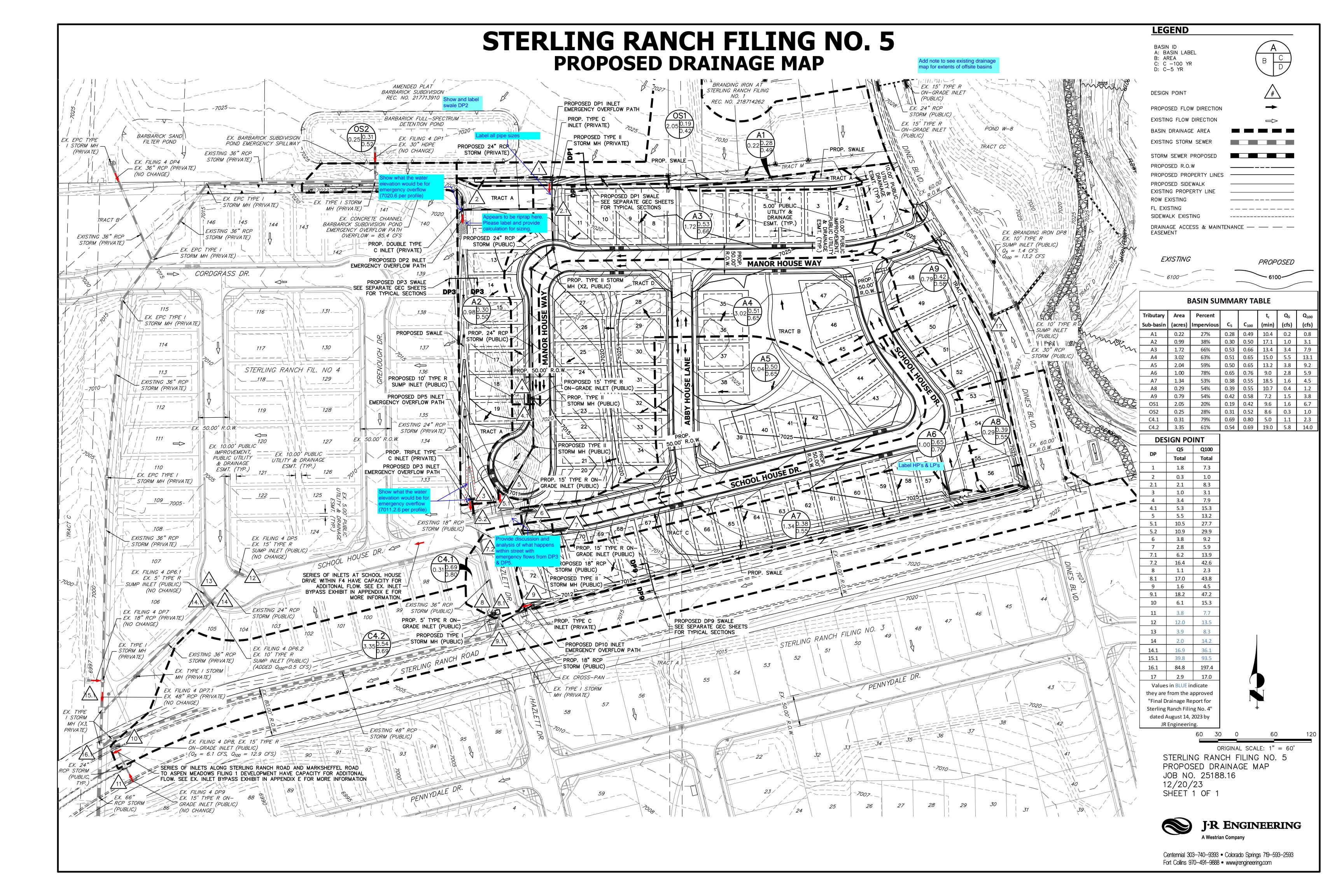
EXISTING

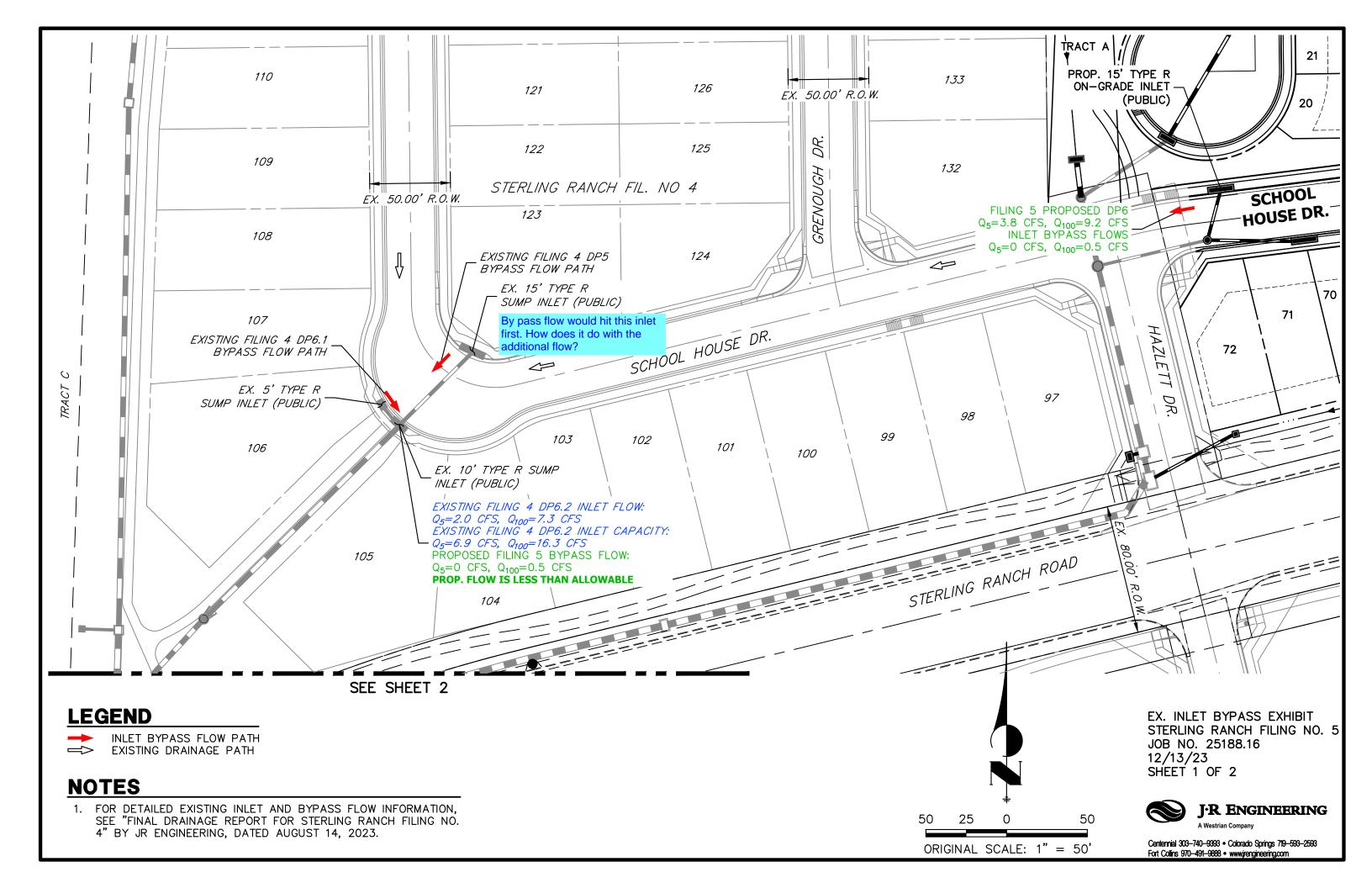
6100

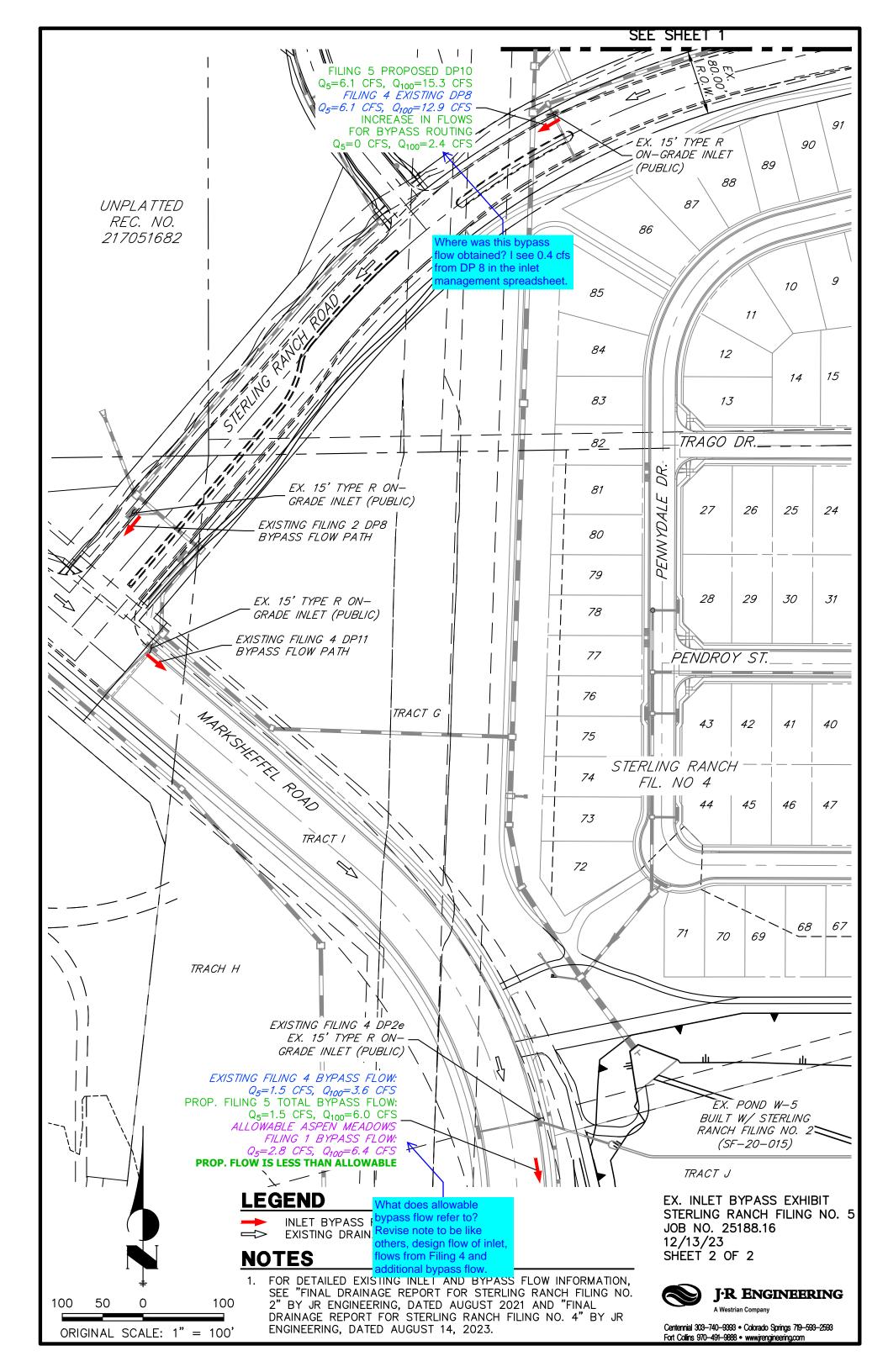
DES	DESIGN POINT				
DD.	Q5	Q100			
DP	Total	Total			
1	1.7	6.4			
2	14.4	51.0			
3	1.0	7.6			
4	19.4	46.3			
5	6.8	16.0			

BASIN SUMMARY TABLE								
Tributary	Area	Percent			t _c	Q₅	Q ₁₀₀	
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)	
A1	5.09	0%	0.08	0.35	28.7	1.0	7.6	
A2	2.89	0%	0.08	0.35	15.3	0.8	5.9	
A3	1.94	0%	0.08	0.35	17.9	0.5	3.7	
A4	4.83	47%	0.44	0.61	18.3	6.8	16.0	
OS1	2.17	19%	0.19	0.42	9.6	1.7	6.4	
OS2	31.70	20%	0.21	0.44	36.3	14.4	51.0	
OS3	13.90	49%	0.40	0.57	15.5	19.4	46.3	

design point flow in spreadsheet. Please update


300 150 0 300 6


ORIGINAL SCALE: 1" = 300'


STERLING RANCH FILING 5 EXISTING DRAINAGE MAP JOB NO. 25188.16 11/03/23 SHEET 1 OF 1

Centennial 303-740-9393 • Colorado Springs 719-593-2593 Fort Collins 970-491-9888 • www.jrengineering.com

V_1 Drainage Report - Final R1.pdf Markup Summary

Callout (22) Subject: Callout Label slopes Page Label: 1 Author: CDurham Date: 2/1/2024 3:41:57 PM Status: Color: Layer: Space: Subject: Callout Label slopes Page Label: 1 Author: CDurham Date: 2/1/2024 3:42:27 PM Status: Color: Layer: Space: Subject: Callout Label slopes Page Label: 1 Author: CDurham Date: 2/1/2024 3:46:41 PM Status: Color: Layer: Space: Subject: Callout Label slopes Page Label: 1 Author: CDurham Date: 2/1/2024 3:47:32 PM Status: Color: Layer: Space: Subject: Callout Show what the water elevation would be for Page Label: 4 emergency overflow (7020.6 per profile) Author: CDurham Date: 2/2/2024 10:44:04 AM Status: Color: Layer: Space:

Subject: Callout Page Label: 4 Author: CDurham

Date: 2/2/2024 10:00:52 AM

Status: Color: Layer: Space: Show what the water elevation would be for emergency overflow (7011.2.6 per profile)

Subject: Callout Page Label: 4 Author: CDurham

Date: 2/2/2024 10:03:56 AM

Status: Color: Layer: Space: If possible overflow from Barbarick pond is 85.4 cfs, shouldn't overflow inlet/channel analysis use that flow?

Subject: Callout Page Label: 6 Author: CDurham

Date: 2/2/2024 10:05:44 AM

Status: Color: Layer: Space: Should overflow analysis be for flow from Barbarick pond (85.4 cfs) plus flows from OS1, A1 & A2?

annel and the state of the stat

Subject: Callout Page Label: 8 Author: CDurham

Date: 2/2/2024 10:07:13 AM

Status: Color: Layer: Space: Show HGL elevations around inlets to show flows

remain with int channel

Subject: Callout Page Label: 9 Author: CDurham

Date: 2/2/2024 10:07:26 AM

Status: Color: Layer: Space: Show HGL elevations around inlets to show flows

remain with int channel

Subject: Callout Page Label: 4 Author: CDurham

Date: 2/2/2024 10:08:21 AM

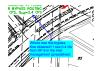
Status: Color: Layer: Space: Provide discussion and analysis of what happens within street with emergency flows from DP3 &

DP5.

Subject: Callout Page Label: 4 Author: CDurham

Date: 2/2/2024 10:12:05 AM

Status: Color: Layer: Space: Appears to be riprap here. Please label and provide calculation for sizing.



Subject: Callout

Page Label: 4
Author: CDurham

Date: 2/2/2024 10:12:33 AM

Status: Color: Layer: Space: Label all pipe sizes

Subject: Callout Page Label: [1] DR01 Author: CDurham

Date: 2/2/2024 10:25:27 AM

Status: Color: Layer: Space: Where was this bypass flow obtained? I see 0.4 cfs from DP 8 in the inlet management

spreadsheet.

Subject: Callout
Page Label: [1] DR01
Author: CDurham

Date: 2/2/2024 10:27:20 AM

Status: Color: Layer: Space: What does allowable bypass flow refer to? Revise note to be like others, design flow of inlet, flows from Filing 4 and additional bypass flow.

Subject: Callout Page Label: 3 Author: CDurham

Date: 2/2/2024 10:39:00 AM

Status: Color: Layer: Space: Flows don't match with design point flow in spreadsheet. Please update

nur160 city is 4.83 acres and 27 percent importions proposed Stelling Filing No. 5 size as well as the norther position bearing the solution for the Stelling Filing No. 5 size as well as the norther position for the solution for the Stelling Stel

Subject: Callout Page Label: 6 Author: CDurham

Date: 2/2/2024 10:41:47 AM

Status: Color: Layer: Space: Flows do not match with hydrology spreadsheet. Please update

Subject: Callout Page Label: 10 Author: CDurham

Date: 2/2/2024 11:02:27 AM

Status: Color: Layer: Space: Provide an additional analysis for flow of at least 17.5 cfs (Flow from DP 8 & emergency flows from DP3 & DP5). Worse case scenario would also include emergency flows from Barbarick Pond & DP 1 & 2.

Subject: Callout Please revise to 2024 fees Page Label: 16 Author: CDurham Date: 2/2/2024 11:09:49 AM Status: Color: Layer: Space: Subject: Callout Verify total lengths of pipe Page Label: 16 Author: CDurham Date: 2/2/2024 11:17:10 AM Status: Color: Layer: Space: Subject: Callout Project # was cut off Page Label: 17 Author: CDurham F-2213) \$611,628.00 m SC Plans (CDR \$7,910,175.90 159-164, 169-186 \$10,439,868.90 Date: 2/2/2024 11:20:52 AM Status: Color: Layer: Space: Subject: Callout Update fees based on 2024 rates Page Label: 17 Author: CDurham Date: 2/2/2024 11:42:22 AM Status: Color: Layer: Space: Engineer (3) Subject: Engineer Include Pond W-8 Page Label: 15 Author: Bret Date: 1/31/2024 4:33:12 PM Status: Color: Layer: Space: Subject: Engineer SF241 Page Label: 1 Author: Bret Date: 1/31/2024 4:52:57 PM Status: Color: Layer: Space:

Author: Bret Date: 1/31/2024 5:00:55 PM Status: Color: Layer: Space: Highlight (5) 6.4 Subject: Highlight 1./ Page Label: 3 14.4 51.0 Author: CDurham 1.0 7.6 Date: 2/2/2024 10:38:31 AM 19.4 46.3 Status: 6.8 16.0 Color: Layer: Space: Subject: Highlight ng 15' Type R inlet located at DP5. (to Pond W-5 built with Filing 2. Page Label: 6 OS1 (Q₅=1.4 cfs, Q₁₀₀=3.1 cfs) is 2.1 Author: CDurham nof the proposed Branding Iron at St auth into the proposed Sterling Filing ng storm sewer built with Filing 4 jus f is pined west to the DPS and then r Date: 2/2/2024 10:39:52 AM Status: Color: Layer: Space: Subject: Highlight Quantity 212 Page Label: 16 Author: CDurham Date: 2/2/2024 11:15:15 AM 676 Status: Color: Layer: Space: Subject: Highlight *212* 626 Page Label: 16 626 Author: CDurham Date: 2/2/2024 11:15:18 AM 24 Status: Color: Layer: Space: 020 Subject: Highlight 24 Page Label: 16 Author: CDurham Date: 2/2/2024 11:15:23 AM Status: Color: Layer: Space:

include Pond W-8

Subject: Engineer

Page Label: 5

PolyLine (1)

Subject: PolyLine **Page Label:** 4 **Author:** CDurham

Date: 2/2/2024 10:02:12 AM

Status: Color: Layer: Space:

SW - Textbox (1)

Subject: SW - Textbox **Page Label:** 14

Author: Glenn Reese - EPC Stormwater

Date: 2/1/2024 2:37:46 PM

Status: Color: ■ Layer: Space: Engineer must confirm in the Drainage Report that the existing offsite or onsite PBMPs that the site is tributary to are functioning as intended (ie: that no minor or major maintenance is required per a visual inspection and per the O&M Manual).

SW - Textbox with Arrow (2)

Fond W-5 and Pond W-8. Maintenan I platting. Filing 1 (Pond W-8) and Filing 2 (Pond W-5)

full-spectrum water quality and detenti into two existing full-spectrum detenti rling Ranch Filing Project. Further deta lations are included in the Sterling Ran Subject: SW - Textbox with Arrow

Page Label: 14

Author: Glenn Reese - EPC Stormwater

Date: 2/1/2024 1:31:01 PM

Status: Color: ■ Layer: Space: Filing 1 (Pond W-8) and Filing 2 (Pond W-5)

nal Drainage Report, construction add: "metro"

PERATION & MAINTENANC

tivities such as inspection, routin

Subject: SW - Textbox with Arrow

Page Label: 15

Author: Glenn Reese - EPC Stormwater

Date: 2/1/2024 2:36:09 PM

Status: Color: ■ Layer: Space: add: "metro"

Text Box (14)

Provide calculation for DP2 emergency overflow swale

Subject: Text Box Page Label: 1 Author: CDurham

Date: 2/2/2024 10:45:50 AM

Status: Color: Layer: Space: Provide calculation for DP2 emergency overflow swale

Provide StormCAD tables that correspond to this profile and the one on the next sheet. Subject: Text Box Page Label: 8 Author: CDurham

Date: 2/2/2024 9:54:48 AM

Status: Color: Layer: Space: Provide StormCAD tables that correspond to this profile and the one on the next sheet.

Subject: Text Box

Page Label: 4
Author: CDurham

Date: 2/2/2024 10:13:05 AM

Status: Color: Layer: Space: Show and label swale DP2

Subject: Text Box Page Label: 4 Author: CDurham

Date: 2/2/2024 10:14:01 AM

Status: Color: Layer: Space: Label HP's & LP's

Add note to see existing drainage map for extents of offsite basins

EX. 15. THE R
ON-GRADE INLET
(PUBLIC)

Subject: Text Box Page Label: 4 Author: CDurham

Date: 2/2/2024 10:14:47 AM

Status: Color: Layer: Space: Add note to see existing drainage map for extents of offsite basins

LEXD IMPO FAUTH OF A UPO BYPASS FOR WEATH OF STATE OF THE PROPERTY OF THE PROP

Subject: Text Box Page Label: 5 Author: CDurham

Date: 2/2/2024 10:21:08 AM

Status: Color: Layer: Space: By pass flow would hit this inlet first. How does it do with the additional flow?

Orainage Plan
Provide updated
analysis for Pond W-5
lyze to show it still functions
D. appropriately with
revised development

Subject: Text Box Page Label: 5 Author: CDurham

Date: 2/2/2024 10:31:56 AM

Status: Color: Layer: Space: Provide updated analysis for Pond W-5 to show it still functions appropriately with revised

development from this area.

i and continue nowing west to a series nergency overflow from the existing in sewer system and 12.5 cfs will flow mergency overflow calculations. Provide analysis of swale carrying overflow of 62.5 cfs

Subject: Text Box Page Label: 11 Author: CDurham

Date: 2/2/2024 11:04:25 AM

Status: Color: Layer: Space: Provide analysis of swale carrying overflow of 62.5 cfs

rvious for a new total ded to Pond W-8 is J-R ENGINEERING

Subject: Text Box Page Label: 15 Author: CDurham Date: 2/2/2024 11:08:15 AM

ponds to show they still function as intended.

Status: Color: Layer: Space:

Subject: Text Box Page Label: 17 Author: CDurham

Date: 2/2/2024 11:27:35 AM

Status: Color: Layer: Space:

Filing No. 4 has been approved, but I believe it has not yet been recorded.

Provide updated pond spreadsheets for both

\$1,546,676.98 990,016.80 2,536,693.78 Subject: Text Box Page Label: 17 Author: CDurham

Date: 2/2/2024 11:40:31 AM

Status: \$87 709 60 Color: Layer: Space:

\$990,016.80 \$2,536,693.78

SF-241

Subject: Text Box (SF-23xx) Dra Page Label: 17 Author: CDurham

Date: 2/2/2024 11:41:15 AM

Status: Color: Layer: Space:

SF-241

5 (SF-23xx) Br SF-241

Subject: Text Box Page Label: 17 Author: CDurham

Date: 2/2/2024 11:41:46 AM

Status: Color: Layer: Space:

SF-241

nsure all storm

Subject: Text Box Page Label: 16 Author: CDurham Date: 2/2/2024 2:17:07 PM

Status: Color: Layer: Space:

Ensure all storm quantities match with information shown in FAE