Preliminary Drainage Report Monument Ridge East

El Paso County, Colorado

Prepared for:

Monument Ridge East, LLC

5055 List Drive Colorado Springs, CO 80919 David J Whitehead, P.E. david@whiteheadengineering.com (719) 237-4411

Prepared by: PRC Engineering

1685 W. Uintah St., Suite 114 Colorado Springs, CO 80904 Raymond E. Perez, III, P.E. (719) 291-2744

Signature:

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Date:

oignataro.		Dato
	Raymond Perez, III, PE Registered Professional Engineer State	of Colorado
DEVELOP	PER'S STATEMENT:	
	er/developer, have read and will comply n this drainage report and plan.	/ with all of the requirements
Name of C	Owner/Developer: Monument Ridge Ea	ast, LLC
Authorized	d Signature:	Date:
Title:	Owner	
Address:	5055 List Drive Colorado Springs, CO 80919	
EL PASO	COUNTY:	
Volumes 1	cordance with the requirements of the land 2, El Paso County Engineering Coent Code as amended.	
County En	gineer / ECM Administrator	Date
Conditions	s:	

Contents

I.	INTRODUCTION	2
A.	Purpose	2
В.	Related Investigations	2
C.	Stakeholder Process	2
D.	Agency Jurisdictions	2
E.	General Project Description	2
F.	Data Sources	3
G.	Applicable Criteria and Standards	4
II.	PROJECT CHARACTERISTICS	4
A.	Drainage Basin Planning Study Compliance	4
В.	Land Features	4
C.	Existing and Proposed Land Uses	5
III.	HYDROLOGIC ANALYSIS	5
A.	Methodology	5
В.	Basin Hydrology – Existing Conditions	6
C.	Basin Hydrology – Developed Conditions	8
D.	Water Quality – 4 Step Process	18
E.	Water Quality Improvements	19
IV.	HYDRAULIC ANALYSIS	19
V.	ENVIRONMENTAL EVALUATIONS	19
A.	Wetland and Riparian Areas	19
В.	Stormwater Quality	19
C.	Permitting Requirements	20
VI.	ALTERNATIVES EVALUATION	20
VII.	SELECTED PLAN (IMPLEMENTATION OF THE MASTER PLAN)	20
A.	Plan Hydrology	20
В.	System Improvements	20
C.	System Priorities/Phasing	20
D.	Deficiency Costs	20
E.	Reimbursable Costs	21
F.	Governing Agencies Requirements	21
G.	Maintenance Requirements	21
Н.	Implementation Recommendation	21

l.	Grading and Erosion Control Plans	21
VIII.	FEE DEVELOPMENT	22
IX.	SUMMARY	22
Χ.	REFERENCES	22
XI.	APPENDICES	22
A.	Stakeholder Meeting Summary	22
B.	Hydrology	23
C.	Hydraulics – Pipes, Inlets and Ponds	23
D.	Drainage Maps	23

Appendix A – Maps

- NRCS Soils Map
- FEMA Flood Insurance Rate Map (Firmette)

Appendix B – Calculations Hydrologic

- Percent Impervious
- Composite Runoff Coefficients
- Basin Runoff Summary
- Surface Routing Summary

Hydraulic

- Inlets
- Culvert
- Pipe

Water Quality

• Extended Detention Basin

Appendix C – Drainage Maps (located in report pocket)

- Existing Conditions
- Developed Conditions Overall
- Developed Conditions Site

I. INTRODUCTION

A. Purpose

The purpose of this Master Development Drainage Plan for the Monument Ridge East (hereinafter referred to as the "Project") is to identify major drainageways, detention areas, locations of culverts, open channels and drainage areas contained within and adjacent to the proposed development and quantify and evaluate the impacts of stormwater runoff generated by this project and to provide adequate water quality/detention treatment and flow conveyance.

B. Related Investigations

The Monument Ridge East project is adjacent to the Misty Acres development. The Misty Acres development area has been studied in the past since 2001. There is no known master drainage study on file that encompasses the entire project area (Bald Mountain watershed). Refer to the references listing for Misty Acres development record reports used.

C. Stakeholder Process

To date, there has not been any public outreach or stakeholder engagement for the project. This phase of project development will run concurrently with the Development Plan process.

D. Agency Jurisdictions

This project is located within El Paso County and is subject to the design criteria set forth in the City of Colorado Springs Drainage Criteria Manual, Volumes I and II, dated May 2014 (rev. 2021) (DCM) and the El Paso County Drainage Criteria Manual Volume 1 Updates.

E. General Project Description

This project is in El Paso County, Colorado. Access to the site is from Palmer Divide Road (aka – County line road). It is located in Section 2, Township 14 south, Range 67 west of the 6th Principal Meridian. A vicinity map is provided below in Figure 1.

NORTH 1" = 800'

Figure 1 – Vicinity Map

(Source: Google Earth Imagery 2019)

The Project is a 65-acre single-family development. The project will consist of single-family homes and associated site elements typical of residential development (e.g. – roadways, buildings, walkways, parks/open space, detention/water quality ponds etc.) The proposed development area is currently vacant. The site is bounded by the north by existing Palmer-Divide Road to the east by Doewood Drive and Misty Acres Boulevard, to the west by Interstate 25.

F. Data Sources

General

The base mapping (including topography) and structure inventory was provided by Bear Creek Surveying, Inc. (now Colorado ILC Surveying). The field survey was

conducted in the fall of 2022. To date there have been no environmental or geotechnical studies performed for the Project. Soils information is provided in section II.B. Additional topography for areas outside of the topographic survey was obtained from the Colorado Water Conservation Board (CWCB). CWCB topography consists of Digital Elevation Model (DEM) 2ft contours and 5ft contours. The 2' contours were used for off-site basin delineation. The 5ft contours were used in the drawings for the "overall" mapping.

G. Applicable Criteria and Standards

The hydrologic and hydraulic analysis performed in this report utilizes The City of Colorado Springs Drainage Criteria Volumes 1 (revised January 2021) & 2 (revised December 2020), hereinafter referred to as the CSDCM. In addition to the City Criteria Manual, the Urban Storm Drainage Criteria Manual (USDCM), Volumes 1-3, published by the Mile High Flood District (MHFD), latest update, have been used to supplement the Drainage Criteria Manual for water quality capture volume (WQCV). Also, the El Paso County Drainage Criteria Manual volume 1 updates were incorporated. Stormwater runoff was determined using the Rational Method and was calculated for existing and proposed conditions for the 10-yr (minor) and 100-yr (major) recurrences.

II. PROJECT CHARACTERISTICS

A. Drainage Basin Planning Study Compliance

There is no Drainage Basin Planning Study of record that encompasses this project. All developed runoff from the site will be detained and released at predevelopment peak rates, and the water quality capture volume will be treated. Detention and water quality were determined by the MHFD detention spreadsheet UD-Detention v4.04.

B. Land Features

1. Geology

The majority of the site is currently undeveloped and consists of natural vegetative land cover with the exception of existing Misty Acres Boulevard (major arterial roadway) which essentially bisects the property. There were no pronounced geological features discovered during any of the site visits.

2. Vegetation

Ground cover primarily consists of bare ground, sparse vegetation, and trees.

3. Soils

The general topography of the land slopes to the north. According to the Natural Resources Conservation Service (NRCS), the soils in this area can be classified as a Hydrologic Soil Group (HSG) Types B and D. This is used to predict storm water runoff rates. A soils report and map describing the HSG's and other soils properties are provided in Appendix A. For the purposes of this report each basin defined has had runoff coefficients adjusted accordingly using the soils report and map.

4. Environmental

To date there has not been any environmental site evaluations conducted with the exception of wetlands delineation (refer to drainage map for delineation boundaries). There has not been any geotechnical engineering analysis. Endangered species, groundwater determination, etc. will be performed at a later date. Information found within those studies will be included in future Monument Ridge East Final Drainage Report (FDR) documentation.

5. Water Quality

There are no known existing water quality features located on the property.

6. Floodplain

Per the Flood Insurance Rate Map Numbers 08041C0065G and 0804C0276G, El Paso County, Colorado, Revised December 7, 2018, Federal Emergency Management Agency (FEMA) no portion of Monument Ridge East lies within the designated 100year floodplain. A FIRMette of the project area is included in Appendix A.

C. Existing and Proposed Land Uses

Presently, the site is unplatted and consists of undeveloped land. Monument Ridge East is a proposed single-family residential development with associated streets and detention/water quality ponds.

III. HYDROLOGIC ANALYSIS

A. Methodology

1. Method of Analysis

Storm sewer sizing for this project uses the Rational Method as recommended by the DCM for the minor (10 year) and major (100 year) storms for drainage basins less than 100-acres in size.

The Rational Method uses the following equation:

Q=C*I*A

Where:

Q = Maximum runoff rate in cubic feet per second (cfs)

C = Runoff coefficient

I = Average rainfall intensity (inches/hour)

A = Area of drainage sub-basin (acres)

2. Runoff Coefficient

Coefficients from Table 6-6 of the EPC DCM Volume 1 update for developed land were utilized in the Rational Method calculations. See Appendix B for more information.

3. Time of Concentration

The time of concentration consists of the initial time of overland flow and the travel time in a hydraulic conveyance feature to a design point or similar location of interest. A minimum time of concentration of 5 minutes is utilized for urban development.

4. Rainfall Intensity

The hypothetical rainfall depths for the 1-hour storm duration were taken from Table 6-2 of the Colorado Springs Drainage Criteria Manual.

B. Basin Hydrology – Existing Conditions

This project is located in the Bald Mountain major drainage basin. It is our understanding there is no Drainage Basin Planning Study (DBPS) on file that encompasses this project. Therefore, this project area is considered unstudied from a master drainage analysis perspective.

Stormwater runoff from the project generally flows to the north, and ultimately discharges into an unnamed drainage way. Eleven (11) basins were delineated for this analysis. Refer to the existing conditions map in Appendix D.

Design Point 1 flows are generated from basin E2. Basin E2 consists of a portion of a single-family home site and undeveloped land. Runoff from this basin travels overland easterly to an existing 36" RCP which outfalls on the east side of Interstate 25 into basin E1. Runoff will then travel easterly via a broad grass lined swale towards Design Point 2.

Design Point 2 flows are generated from basin E1. Basin E1 consists of undeveloped land with a few informal gravel roadways and paths. Runoff from this basin travels overland northeasterly to existing dual 48" RCP's which outfall on the east side of Misty Acres Boulevard into basin E3. Runoff will then travel northeasterly via a broad grass lined swale towards Design Point 3.

Design Point 3 flows are generated from Design Point 2 runoff and basin E3. Basin E3 consists of a portion of a single-family home sites and undeveloped land. Runoff from this basin travels overland northerly to an existing detention pond as part of the Misty Acres Filing No. 1 development. This pond serves as detention for the Misty Acres Filing No. 1 development as well as a portion of the project west of Misty Acres Boulevard. The pond outfalls with a 48" RCP to the north into basin E7. Runoff then travels north via a broad grass lined swale towards Design Point 6.

Design Point 4 flows are generated from basin E4. Basin E4 consists of single-family home sites. Runoff from this basin travels overland northwesterly to an existing pond facility that does not appear to provide a significant amount of detention as no outlet works are present. Therefore, no peak attenuation or water quality is provided. The pond outfalls to the north into basin E5. Runoff then travels northwesterly via a grass lined swale towards Design Point 5.

Design Point 5 flows are generated from Design Point 4 runoff and basin E5. Basin E5 consists of single-family home sites. Runoff from this basin travels northwesterly via a grass lined swale to dual 48" CMP's under Doewood Drive to the project's east boundary line. Runoff then travels northwesterly via a broad grass lined swale towards Design Point 6.

Design Point 6 flows are generated from Design Point 3 and Design Point 5 runoff and basin E7. Basin E7 consists of undeveloped land. Runoff from this basin travels overland northerly to an existing wetlands depression area south of and adjacent to the Palmer-Divide Road. During the minor and major storm events, flows overtop the roadway with the single 48" CMP.

Design Point 7 flows are generated from basin E8. Basin E8 consists of undeveloped land and large lot single family development as well as a portion of Interstate 25. Runoff from this basin travels overland easterly to an existing 48" CMP which outfall on the east side of Interstate 25 into basin E10. Runoff will then travel northerly via a broad grass lined swale towards Design Point 8.

Design Point 8 flows are generated from Design Point 7 runoff and basin E9 & E10. Basin E9 consists of Interstate 25 and Monument Hill Road. Runoff from this basin travels via a roadside swale northerly to an existing grated inlet constructed with the Interstate 25 express lane project. Flow is captured in this inlet and combines with runoff from basin E8 and outfalls on the east side of Monument Hill Road into basin E10. Basin E10 consists of Monument Hill Road and undeveloped land. Runoff then travels northeasterly via a broad grass lined swale to Design Point 8. Flow is conveyed under Monument Hill Road via an existing 48" RCP towards Design Point 9. It is noteworthy to mention that at this location it is difficult to determine if there is enough head for all of the flow to enter this culvert. The same holds true at Design Point 9. Additional survey data will be gathered prior to Final Drainage Report analysis.

Design Point 9 flows are generated from basin E11. Basin E11 consists of Interstate 25, an off-ramp and interchange gore areas. Runoff from this basin travels overland northeasterly via a broad grass lined swale to an existing 48" RCP which outfalls on the north side of Palmer Divide Road. It is noteworthy to mention that additional survey data is needed to determine if there is enough head to prevent flows from routing easterly. Regrading the swale to the west may be necessary which will be determined during the construction document preparation phase.

Design Point 10 is shown to represent where runoff from single-family residential home sites east of basins E4, E5 and E6 crosses over the Palmer Divide roadway. Field evidence reveals a roadside swale on the south side of Palmer Divide Road that has very little capacity as it approaches Doewood Drive. Under Doewood Drive, there is an existing 24" RCP that seems to convey flow only from basin E6. Basin E6 consists of single-family residential development. The amount of flow anticipated from the east side of the projects study is assumed to be very large. Due to the current swale geometry and grades at the Doewood intersection, it is assumed the runoff overtops Palmer Divide Road during even minor storm events and is directed to the north. For this reason, no anticipated flow besides that of basin E6 is anticipated to enter into basin E7.

C. Basin Hydrology - Developed Conditions

Stormwater runoff from the project generally flows to the north, and ultimately discharges into a wetlands depression area south of and adjacent to Palmer Divide Road. Proposed grading of the site will generate twenty-three (23) on-site basins and fourteen (14) off-site basins. Refer to the developed conditions map in Appendix D. All proposed storm piping, inlets and manholes within public right-of-way be publicly owned and maintained. All other proposed storm system elements will be privately owned and maintained. All public storm pipes will be RCP.

For the purposes of this report, generic descriptions of "pipe" and "inlets" have been referenced instead of using detailed descriptions (e.g. – "pipe 8" or "proposed 8' atgrade inlets"). Refer to the drainage maps, tables and calculations to provide more details as to what the system is composed of. The following basin descriptions are intended to provide general routing guidance only. Additionally, it is noteworthy to mention that at all inlet locations for this project (sump or at-grade), flows are captured in their entirety, i.e. – no flowby. Due to the steep grades of all roadways being proposed, sump inlet locations are not able to be sited in most situations.

Design Point 11 flows are generated from basin O1. Basin O1 consists of primarily undeveloped land with one home site. Per the Misty Acres drainage reports, this land will be required to detain runoff to historic levels upon development. For this reason, the basin runoff has been accommodated to flow through the project site at a historic rate. Runoff from this basin is routed via a proposed pipe to design point 13 after combining with runoff from basin A1.

Design Point 12 flows are generated from basin O2. Basin O2 consists of Interstate 25 and Monument Hill Road. Runoff from this basin travels east and is captured by a CDOT grated inlet located in the swale adjacent to the roadway. The flow is captured by the inlet and is routed to the east side of Monument Hill Road via a 36" RCP pipe. It is unknown as to why this pipe is so large considering the basin area is so small and is located near the high point of Interstate 25. Flows are then routed overland and enter the street. Flows then proceed via curb and gutter easterly within basin A1 towards Design Point 13.

Design Point 13 flows are generated from basin A1. Basin A1 consists of single-family tri-plex home sites. Runoff from this basin travels via curb and gutter to Design Point 13 where they are captured by two proposed inlets. Flows are then conveyed via a pipe system and are routed to Design Point 18.

Design Point 14 flows are generated from basin A2. Basin A2 consists of single family tri-plex home sites. Runoff from this basin travels via curb and gutter to Design Point 14 where they are captured by two proposed inlets. Flows are then conveyed via a pipe system and combine with flows from Design Point 13. They are then routed to Design Point 18.

Design Point 15 flows are generated from basin O3. Basin O3 is the same as basin E2 consisting of a single lot and undeveloped land on the west side of the

interstate. Runoff from this basin travels east via an existing 36" RCP connecting to an existing CDOT grated inlet at Design Point 16.

Design Point 16 flows are generated from basin O4. Basin O4 consist of Interstate 25 and Monument Hill Road. Runoff from this basin travels easterly to a proposed storm pipe located within basin A4 at Design Point 17. Flow is then routed to Design Point 18 via a pipe system.

Design Point 17 flows are generated from basin O4. Runoff from this basin travels easterly after entering a proposed end section to via a proposed storm pipe towards Design Point 18.

Design Point 18 is located where flows from aforementioned Design Points combine and are routed via a proposed storm pipe towards the culvert system which outfalls into pond 1.

Design Point 19 flows are generated from basin A3. Basin A3 consists of single-family tri-plex home sites and open space. Runoff from this basin travels to a proposed culvert at Design Point 19 and is routed north via a culvert towards proposed pond 1.

Design Point 20 flows are generated from basin A4. Basin A4 consists of single-family duplex and tri-plex home sites. Runoff from this basin travels to a proposed low point where it will be captured by two sump inlets. Flows from this point will be routed to the north to pond 1 after combining with flow from Design Points 18 and 19.

Design Point 21 is located at the outfall of the storm sewer system described above. Design Point 22 flows are generated from Design Point 19, 20 and 21 runoff. Basin A5 consists of pond 1 itself. For the purpose of this report, a detailed pond design was not conducted. This will be provided in future FDR's. As such, the MHFD UD-Detention spreadsheet was used for preliminary sizing. A private full spectrum extended detention basin (EDB) is proposed at this location. The proposed on-site imperviousness contributing to this pond has been calculated to be 45.60%. The ponds' tributary area equals 24.52 acres. The pond facility will provide ~2.1acre-ft of detention volume and ~0.4acre-ft of WQCV. The EDB will have forebays, a maintenance access road, concrete trickle channel, micro pool and an outlet structure retrofitted at the end of one of the existing 48" culverts under Misty Acres Boulevard. The other 48" culvert will be capped on each end and abandoned. The full-spectrum EDB will have a rip rap emergency overflow spillway

that will drain the 100yr peak flows in the event the outlet structure becomes entirely clogged and another 100yr event passes. The spillway will be constructed of soil rip rap. A minimum of 1.0' of freeboard will be provided. The spillway will be situated such that any overflow will be directed to a low point in Misty Acres Boulevard, Design Point 27. Refer to the design calculations in Appendix B for additional pond design information.

Design Point 23 flows are generated from basin B1. Basin B1 consists of single-family duplex home sites. Runoff from this basin travels north via curb and gutter to a proposed sump inlet at the end of the street. Flows are then routed via a pipe to Design Point 26.

Design Point 24 flows are generated from basin B2. Basin B2 consists of single-family duplex home sites. Runoff from this basin travels north via curb and gutter to a proposed triple type R inlet where flow is captured. Flows are then routed via pipe to Design Point 26.

Design Point 25 flows are generated from basin B3. Basin B3 consists of single-family duplex home sites. Runoff from this basin travels north via curb and gutter to a proposed triple type R inlet where flow is captured. Flows are then routed via pipe to Design Point 24 and then north to Design Point 26.

Design Point 26 is located where flows from Design Points 23, 24 and 25 combine and are routed via a proposed storm pipe towards the pipe system in Misty Acres Boulevard which outfalls into pond 2.

Design Point 27 flows are generated from basin B8. Basin B8 consists of open space and portion Misty Acres Boulevard. Runoff from this basin travels to a proposed low point where it will be captured by two sump inlets. Flows from this location will be routed to the north to Design Point 28. In the evnt clogging occurs, flow will overtop the roadway and enter the Misty Acres pond

Design Point 28 flows are generated from a portion of basin B4. Basin B4 consists of open space and the adjacent roadway. Runoff from this basin travels easterly via curb and gutter to an inlet where flow is captured. Flows are then routed in a pipe system towards Design Point 29.

Design Point 29 flows are generated from a portion of basin B4. Runoff from this basin travels easterly via curb and gutter to an inlet where flow is captured. Flows are then routed in a pipe system to proposed pond 2.

Design Point 30 flows are generated from a portion of basin B5. Basin B5 consists of single family duplex home sites and open space. Runoff from this basin travels via curb and gutter to Design Point 30 where they are captured by a proposed inlet. Flows are then conveyed via a pipe system and combine with flows from Design Point 31. They are then routed to Design Point 32 via a storm pipe system.

Design Point 31 flows are generated from a portion of basin B5. Runoff from this basin travels via curb and gutter to Design Point 31 where they are captured by a proposed inlet. Flows are then conveyed via a pipe system and combine with flows from Design Point 30. They are then routed to Design Point 32 via a storm pipe system.

Design Point 32 flows are generated from basin B6. Basin B6 consists of single family duplex home sites and open space. Runoff from this basin travels via curb and gutter to Design Point 32 where they are captured by a proposed inlet. Flows are then conveyed via a pipe system after combining with flows from Design Point 31 to Design Point 33.

Design Point 33 flows are generated from basin B7. Basin B6 consists of single family duplex home sites and open space. Runoff from this basin travels via curb and gutter to Design Point 33 where they are captured by a proposed inlet. Flows are then conveyed via a pipe system to proposed pond 2 after combining with flows from Design Point 32.

Design Point 34 flows are generated from Design Point 29 and 33 runoff and basin B9. Basin B9 consists of pond 2 itself along with open space. For the purpose of this report, a detailed pond design was not conducted. This will be provided in future FDR's. As such, the MHFD UD-Detention spreadsheet was used for preliminary sizing. A private full spectrum extended detention basin (EDB) is proposed at this location. The proposed on-site imperviousness contributing to this pond has been calculated to be 57.88%. The ponds' tributary area equals 20.48 acres. The pond facility will provide ~2.1acre-ft of detention volume and ~0.4acre-ft of WQCV. The EDB will have forebays, a maintenance access road, concrete trickle channel, micro pool and an outlet structure. The full-spectrum EDB will have a rip rap emergency overflow spillway that will drain the 100yr peak flows in the event the outlet structure becomes entirely clogged and another 100yr event passes. The spillway will be constructed of soil rip rap. A minimum of 1.0' of freeboard will be provided. The

spillway will be situated such that any overflow will be directed on the north side of the pond such that overflow would be directed north to a low point in Misty Acres Boulevard, Design Point 38. Refer to the design calculations in Appendix B for additional pond design information.

Design Point 35 flows are generated from basin C1. Basin C1 consists of single family duplex home sites and the adjacent roadway. Runoff from this basin travels northeasterly via curb and gutter to Design Point 35 where flow is captured by an inlet. Flows are then routed in a pipe system to Design Point 36.

Design Point 369 flows are generated from basin C2. Basin C2 consists of single family duplex home sites and the adjacent roadway. Runoff from this basin travels easterly via curb and gutter to an inlet where flow is captured. Flows are then routed in a pipe system to proposed pond 3.

Design Point 37 flows are generated from Design Point 36 runoff and basin C3. Basin C3 consists of pond 3 itself. For the purpose of this report, a detailed pond design was not conducted. This will be provided in future FDR's. As such, the MHFD UD-Detention spreadsheet was used for preliminary sizing. A private full spectrum extended detention basin (EDB) is proposed at this location. The proposed on-site imperviousness contributing to this pond has been calculated to be 63.17%. The ponds' tributary area equals 5.78 acres. The pond facility will provide ~0.6acre-ft of detention volume and ~0.1acre-ft of WQCV. The EDB will have forebays, a maintenance access road, concrete trickle channel, micro pool and an outlet structure. The full-spectrum EDB will have a rip rap emergency overflow spillway that will drain the 100yr peak flows in the event the outlet structure becomes entirely clogged and another 100yr event passes. The spillway will be constructed of soil rip rap. A minimum of 1.0' of freeboard will be provided. The spillway will be situated such that any overflow will be directed to the east to a low point in Misty Acres Boulevard, Design Point 38. Refer to the design calculations in Appendix B for additional pond design information.

Design Point 38 is located where flows from ponds 2 and 3 combine. Flows are then routed northerly via a pipe system towards the Palmer-Divide Roadway. Prior to reaching the intersection, the system directs runoff to the east to Design Point 45.

Design Point 39 flows are generated from basin D1. Basin D1 consists of open space and portion Misty Acres Boulevard. Runoff from this basin travels to a proposed low point where it will be captured by two sump inlets. Flows from this

location will be routed to the east to proposed pond 4 at Design Point 41. In the event clogging occurs, flows will overtop the roadway and enter pond 4.

Design Point 40a flows are generated from a portion of basin D2. Basin D2 consists of single-family home sites. Runoff from this basin travels north via curb and gutter to an inlet where flow is captured. Flows are then routed via pipe to Design Point 40b.

Design Point 40b flows are generated from a portion of basin D2. Runoff from this basin travels north via curb and gutter to an inlet where flow is captured. Flows are then routed via pipe to Design Point 40c.

Design Point 40c flows are generated from a portion of basin D2. Runoff from this basin travels north and then west via curb and gutter to two sump inlets where flow is captured. Flows are then routed via pipe to proposed pond 4 (south) at Design Point 41 after combining with flows from Design Point 40b.

Design Point 41 is composed of the southern basin of the pond 4 facility, basin D5. Flow routed to this location will be routed to the north into the upper portion of the pond via a flat 30" pipe thereby combing the two areas into one facility. The connecting pipe is sized such that there is no backwater effect and captured runoff will flow freely to be detained and treated in the north basin. The reason for this approach is due to the existing wetlands adjacent to the pond and the distance from the Misty Acres Boulevard connection to Palmer Divide Road being so close. To minimize wetlands disturbance, the pond has been located along its western edge. This creates a configuration that necessitates two depression areas which as stated above will be connected by a pipe and will function like a normal water quality and detention facility.

Design Point 42 flows are generated from basin D3. Basin D3 consists of a small portion of Misty Acres Boulevard and adjacent open space. This basin has been created to route impervious areas of the roadway to the pond for detention and water quality treatment. Runoff from this basin travels to an inlet where flow will be captured. Flows from this location will be routed to the east to Design Point 43 via a pipe system.

Design Point 43 flows are generated from basin D4. Basin D4 consists of a small portion of Misty Acres Boulevard. Similar to Design Point 42, flows from the roadway are being captured and routed to the pond for detention and water quality treatment.

Design Point 44 flows are generated from Design Points 41 and 43 and basin D5. Basin D5 consists of pond 3 itself. As stated prior, a detailed pond design was not conducted. This will be provided in future FDR's. As such, the MHFD UD-Detention spreadsheet was used for preliminary sizing. A private full spectrum extended detention basin (EDB) is proposed at this location. The proposed on-site imperviousness contributing to this pond has been calculated to be 41.62%. The ponds' tributary area equals 22.15 acres. The pond facility will provide ~1.8 acre-ft of detention volume and ~0.4acre-ft of WQCV. The EDB will have forebays, a maintenance access road, concrete trickle channel, micro pool and an outlet structure. The full-spectrum EDB will have a rip rap emergency overflow spillway that will drain the 100yr peak flows in the event the outlet structure becomes entirely clogged and another 100yr event passes. The spillway will be constructed of soil rip rap. A minimum of 1.0' of freeboard will be provided. The spillway will be situated such that any overflow will be directed to a swale that runs along the south side of Palmer Divide Road, ultimately outfalling into the wetlands depression area. Refer to the design calculations in Appendix B for additional pond design information. Flows released from the pond will be routed to the north into the bypass pipe system at Design Point 45.

Design Point 45 is a junction structure which connects system outflows from ponds 2 and 3 with pond 4. This bypass system outfalls int the wetland depression area.

Design Point 46 flows are generated from basin E. Basin E consists of single family residential home sites as well as pond 5 itself. As stated prior, a detailed pond design was not conducted. This will be provided in future FDR's. As such, the MHFD UD-Detention spreadsheet was used for preliminary sizing. A private full spectrum extended detention basin (EDB) is proposed at this location. The proposed on-site imperviousness contributing to this pond has been calculated to be 48.40%. The ponds' tributary area equals 3.21 acres. The pond facility will provide ~0.3acre-ft of detention volume and ~0.05acre-ft of WQCV. The EDB will have forebays, a maintenance access road, concrete trickle channel, micro pool and an outlet structure. The full-spectrum EDB will have a rip rap emergency overflow spillway that will drain the 100yr peak flows in the event the outlet structure becomes entirely clogged and another 100yr event passes. The spillway will be constructed of soil rip rap. A minimum of 1.0' of freeboard will be provided. The spillway will be situated such that any overflow will be directed north into a vacant parcel, ultimately outfalling into the wetlands depression area. Refer to the design calculations in Appendix B for additional pond design information.

Design Point 47 is where pond 5 will discharge to after being routed through a proposed retaining wall.

Design Point 48 flows are generated from Design Point 2 flows and basin O5 (which is the same as existing conditions basin E3). Flows reaching this location

(Misty Acres Filing No. 1 pond facility) are less than what was determined in the filing no. 1 report. The report planned on an inflow value of Q10=138cfs and a Q100 value of 301cfs with flow attenuation of Q10=58cfs and Q100=130cfs. This report has calculated inflow values of Q10=107cfs and Q100=226cfs which yields outflows of Q10=49cfs and Q100=96cfs. The reason for the difference is that areas planned to route runoff to the pond in the filing no. 1 report are now being routed to the projects' pond 1. The existing pond was not designed to provide water quality and as such cannot be used for the projects water quality requirement. Therefore, these flow will be routed around the development along the east side of basins D and E therefore bypassing the proposed project site. The existing 48" RCP outfall pipe is undersized to capture and convey flows northerly and therefore must be upsized to a 54" RCP.

Design Point 49 flows are generated by basin O6. Basin O6 consists of an area that will be routed to a proposed grated inlet which sits above the proposed existing ponds' outfall extension pipe. This pipe is needed to route flow around the project and into the wetlands depression area as it is now being routed to. Due to the amount of flow planned to be released (Q100max=96cfs) per the Misty Acres report) the pipe system needs to be sized accordingly to the grades which the pipe will flow at. Due to the route the system will take, the anticipated pipe slopes will be approximately 1%. The computed pipe size from Design Point 49 to Design Point 52 is 54".

Design Point 50 flows are generated from basin O7a (same as existing conditions basin E4). Refer to basin E4 for routing information.

Design Point 51 flows are generated from design point 50 and basin O7b (same as existing conditions basin E5). Refer to basin E5 for routing information. Flows reaching this location is conveyed by a channel through the neighboring subdivision. In order to route this flow around the project it must be collected and tied into the proposed bypass system mentioned in the Design Point 48 narrative. To do this, a concrete collection structure is needed at Design Point 52.

Design Point 52 is located where the proposed 66" RCP pipe coming from the existing Misty Acres Filing No. 1 Pond will enter the structure from the south. Flow will be captured in a collection structure and combine with that from Design Point 51. On the north side of the structure, a proposed pipe will route flows to the wetlands area. Due to the amount of flow anticipated from basins O7a and O7b (Q100~248cfs) combined with that expected from the Misty Acres pond (Q100~242cfs) for a total flow of ~470cfs, an 84" pipe is needed. The 84" pipe will route flows into the existing wetlands depression area thereby bypassing all offsite

flows around the project. A detailed design for the collection structure will be provided when the Final Drainage Report is prepared. Due to the amount of flow and the likelihood for scour at the outfall location, an energy dissipation structure will be required. This may be in the form or a riprap tailwater basin or some type of concrete baffle blocks or a combination thereof. A detailed design will be provided when the Final Drainage Report is prepared.

Design Point 53 flows are generated from basin O8 which has is the same basin as E6. See existing conditions narrative Design Point 10.

Design Point 54 flows are generated from the projects five ponds as well as the existing Misty Acres Filing No. 1 Pond and offsite basins O7a, O7b, O8 and O9. Flows reaching this location are approximately on the order of ~431cfs during the 100yr event. The existing conditions flows have been calculated to be ~488cfs during the 100yr event. Therefore, this project releases ~57cfs less during the 100yr event. Also it is noteworthy to mention that off site basins O7a and O7b have ponds located within their development areas. These have not been considered in this report but likely upon final design and analysis they will result in peak flows less than what has been assumed herein.

Design Point 55 is the outfall from the existing 48" CMP and the addition of 2-48" RCP's. The major and minor storm events will be adequately captured and conveyed beneath the roadway with this addition of two culverts.

Design Point 56 flows are generated from basin O10. Basin O10 is the same basin as E8 which consists of undeveloped land and large lot single family development as well as a portion of Interstate 25. Runoff from this basin travels overland easterly to an existing 48" CMP which outfalls on the east side of Interstate 25 into basin O11 (same basin as E9) at Design Point 57.

Design Point 57 consists of an outfall from basins O10 and O11. The proposed site is lower than the proposed outfall and therefore a broad grass lined swale will be constructed to route flows towards Design Point 58.

Design Points 58 and 59. Refer to existing conditions Design Points 8 and 9 for the same routing description. The flow values have changed slightly due to existing conditions basin O10 being minimized by development of this project, but the routing is the same. Regrading the swale to the west may be necessary which will be determined during the construction document preparation phase.

A summary of the basin runoff coefficients, peak flow rates and hydrologic analysis support calculations are provided in Appendix B.

D. Water Quality – 4 Step Process

Four-Step Process

El Paso County requires the MHFD Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

Step 1: Runoff Reduction Practices

This development address Low Impact Development strategies primarily through the utilization of landscape buffers, located in areas adjacent to the building and parking lot areas of the site. Runoff is routed over these grass areas via unconcentrated sheet flow prior to being conveyed to water quality and detention facilities.

Step 2: Implement BMPs - Water Quality Capture Volume with Slow Release On-site flow is directed to five private full-spectrum extended detention basins. These facilities provide Water Quality Capture Volume (WQCV) required for the site by releasing flows over a longer period of time. The proposed facilities meet or exceed the DCM standards for the release rates of full-spectrum detention ponds for water quality capture volumes.

Step 3: Stabilize Drainageways

All the flows generated from impervious portions of this site will be routed to private water quality and detention facilities. These flows will combine with flows from other areas adjacent to the site and discharge into a wetlands depression area at the north end of the project. Only minor channel improvements in basin O12 are being proposed with this development.

Step 4 – Implement Site Specific and Other Source Control BMPs

To adhere to the County's Municipal Separate Storm Sewer System (MS4) requirements, temporary construction BMP's and permanent post construction BMP's will be implemented to reduce the potential of pollutants entering the creek. The implementation of these BMP's will be provided in the Grading, Erosion and Stormwater Quality Control Plan and Stormwater Management Plan for the site. The Stormwater Management Plan also addresses structural and procedural source control BMP's such as materials storage and spill prevention, containment, and control, etc. during construction to protect downstream receiving waters. Refer to the Stormwater Management Plan for this site for additional source control BMP information specific to this site. If deemed necessary, site specific source controls including covering storage/handling areas and spill containment will be used.

E. Water Quality Improvements

The proposed full-spectrum extended detention basins have been analyzed in this study based on the proposed site conditions as shown on the Developed Conditions Drainage Maps.

Full Spectrum Extended Detention Basins

For the purpose of this report, detailed pond designs were not conducted. This will be provided in future FDR's. As such, the MHFD UD-Detention spreadsheet was used for preliminary sizing. Private full spectrum extended detention basins (EDB) is proposed various portions of the site. The EDB's will have forebays, maintenance access roads, concrete trickle channels, micro pools and outlet structures.

The full-spectrum EDB's will have rip rap emergency overflow spillways that will drain the 100yr peak flows in the event the outlet structure becomes entirely clogged and another 100yr event passes. The spillways will be constructed of soil rip rap. A minimum of 1.0' of freeboard will be provided. The spillway will be situated such that any overflow will be directed away from homes. Refer to the design calculations in Appendix B for additional information.

IV. HYDRAULIC ANALYSIS

Methodology

The following MHFD hydraulic software were used in this report:

- MHFD UD-Culvert v4.00 pipe calculations
- 2022 Civil3d Hydraulics module culvert calculations

All pipes have been sized using "Mannings" equation for open channel flow with a full flow percentage of around 65%. This should account for energy losses found when a final design is provided and the hydraulic grade line calculations are performed. Final design analysis will be conducted during the Final Drainage Report preparation phase.

V. ENVIRONMENTAL EVALUATIONS

A. Wetland and Riparian Areas

A wetland identification process has not been performed however a boundary delineation has been. Future Final Drainage Reports (FDR's) will include this information.

B. Stormwater Quality

Refer to section III E for water quality provided for this project.

C. Permitting Requirements

A USACE 404 permit is not anticipated for this project since there will be no wetlands disturbance.

VI. ALTERNATIVES EVALUATION

An alternatives evaluation was not conducted for this project since there is no drainage basin planning study for the Bald Mountain watershed.

VII. SELECTED PLAN (IMPLEMENTATION OF THE MASTER PLAN)

A. Plan Hydrology

There is no Master Drainage Plan that encompasses this site or more particularly described as being for the Bald Mountain watershed. A DBPS may be needed in the future as more development in the overall basin is experienced.

Per the MHFD modeling of the proposed full-spectrum detention/water quality ponds, detention from this project will either be equal to or reduce the major storm (100yr event) discharge from the site from the pre-development. As the proposed development is not projected to increase runoff from the site, there should not be any additional impact to downstream infrastructure.

B. System Improvements

Proposed improvements to the existing stormwater infrastructure are not planned at this time since no deficiencies have been found. The existing Misty Acres Filing No. 1 pond is now to be considered oversized compared to what was planned due to routing of project flows to proposed ponds located on site.

C. System Priorities/Phasing

No definitive phasing of the development is known at this time. Once development of any portion of the site begins, the owner will be responsible for providing full-spectrum detention and water quality in accordance with this MDDP. Developed runoff cannot be released from the site until full-spectrum water quality and detention has been provided. Subsequent Final Drainage Reports (FDR's) will establish the timing of such improvements.

D. Deficiency Costs

There are no deficient drainage structures associated with the project. All existing pipes will remain.

E. Reimbursable Costs

Due to the watershed being in an unstudied drainage basin and no public infrastructure is being proposed, no improvements will be reimbursable.

F. Governing Agencies Requirements

A United States Army Corps of Engineers (USACE) 404 permit will not be required for this project. There are no other external governmental agency requirements for this development, however CDOT will be a referral agency thereby reviewing the plans and reports since the project is adjacent to Interstate 25. Final Drainage Reports for each future phase of development will be presented to the Town of Monument and El Paso county with the development of the construction documents.

G. Maintenance Requirements

Regular maintenance of stormwater facilities is essential to ensure long term functionality and effectiveness. The proposed pipes, inlets, manholes, along with the full-spectrum detention and water quality facilities should be inspected regularly, and after significant rainstorms, to verify functionality, document erosion, and remove sediment and debris. Refer to the project's Inspection and Maintenance (IM) Plan for additional information.

The following is a list of recommendations regarding drainage around structures:

- Maintain positive drainage away from all structures at all locations.
- Adhere to guidelines outlined in the geotechnical report (if one has been completed); otherwise refer to the latest International Residential Code (IRC) book.
- Avoid grading low points adjacent to any structures.

The on-site full-spectrum ponds and storm sewer outlined in this report shall be owned and maintained by the metropolitan district or homeowners' association (HOA). The proposed storm sewer facilities located within street right-of-way outlined in this report shall be owned and maintained by the Town of Monument.

H. Implementation Recommendation

Development of the site requires the implementation of full-spectrum detention and water quality procedures that have been detailed in this report. The developed conditions will produce runoff at or below existing conditions. This ensures no additional impacts will result downstream as a result of development of this site.

I. Grading and Erosion Control Plans

Grading and Erosion Control Plans will be submitted separately.

VIII. FEE DEVELOPMENT

Since the Bald Mountain drainage basin has not been studied in a master plan document and there are no regional public improvements, no fees have been developed.

IX. SUMMARY

The Master Development Drainage Plan for Monument Ridge East was prepared using the City of Colorado Springs Drainage Criteria Manuals, MHFD Urban Storm Drainage Criteria Manuals and the El Paso County DCM Volume 1 updates. Stormwater quality is provided by proposed private full spectrum extended detention basin facilities located on-site. Site runoff, storm drain, and associated appurtenances will not adversely affect the downstream and surrounding developments. This report is in general conformance with and all other previously approved reports which included portions of this site.

X. REFERENCES

- 1. Drainage Criteria Manual, Volume I (revised January 2021) and Volume II (revised December 2020), City of Colorado Springs
- 2. Urban Storm Drainage Criteria Manual, Volumes I-III, Mile High Flood District (MHFD).
- 3. El Paso County Drainage Criteria Manual Volume 1 update, El Paso County Municode web site
- 4. El Paso County Engineering Criteria Manual, Drainage Criteria Manual Volume 2, Appendix I.
- 5. Misty Acres Subdivision Filing No. 1, Final Drainage Report, 2002, Kiowa Engineering Corporation
- 6. Misty Acres Ranch, Master Development Drainage Plan, 2001, Kiowa Engineering Corporation
- 7. Interstate 25 Express Lanes: Castle Rock to Monument (The Gap), Hydrology and Hydraulics Report, 2020, CH2M
- 8. Flood Insurance Rate Map Numbers 08041C0065G and 0804C0276G, El Paso County, Colorado, Revised December 7, 2018, Federal Emergency Management Agency (FEMA)
- 9. Web Soil Survey, Natural Resources Conservation Service (NRCS)

XI. APPENDICES

A. Stakeholder Meeting Summary

To date there have been no stakeholder or public meetings conducted for this site. Once meetings have been conducted, this information will be included in subsequent Final Drainage Reports for the project.

B. Hydrology

The following hydrologic calculations are located in appendix B:

- Percent Impervious
- Composite Runoff Coefficients
- Basin Runoff Summary
- Surface Routing Summary

C. Hydraulics – Pipes, Inlets and Ponds

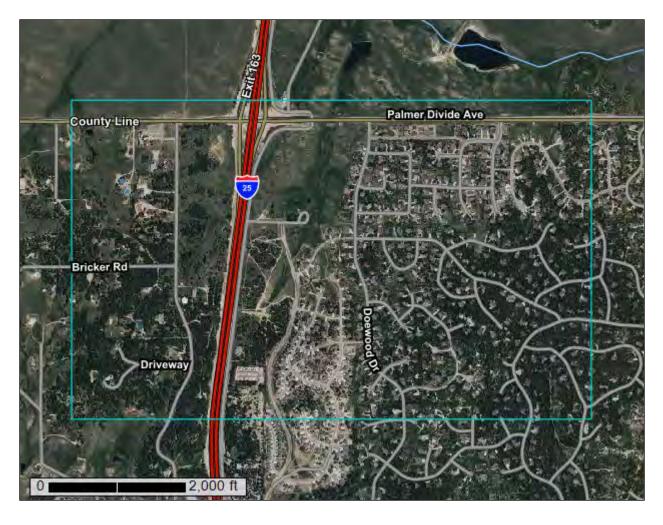
The following hydraulic calculations are located in appendix B:

- Inlets
- Culverts
- Pipes
- Full-spectrum Extended Detention and Water Quality ponds

Hydraulic Grade Lines (HGL) for the minor (10yr) and major (100yr) storm event will be provided for each storm sewer pipe in subsequent FDR's.

D. Drainage Maps

Existing and developed drainage maps are located in appendix C.


Appendix A Maps

VRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Castle Rock Area, Colorado, and El Paso County Area, Colorado

Monument Ridge East

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

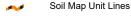
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
Soil Map	5
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	
Castle Rock Area, Colorado	
KfF—Kettle-Falcon complex, 9 to 65 percent slopes	. 12
Lw—Loamy wet alluvial land	14
PpE—Peyton-Pring-Crowfoot sandy loams, 5 to 25 percent slopes	15
PrE2—Peyton-Pring-Crowfoot complex, 3 to 15 percent slopes, eroded	. 17
El Paso County Area, Colorado	21
1—Alamosa loam, 1 to 3 percent slopes	21
41—Kettle gravelly loamy sand, 8 to 40 percent slopes	. 22
42—Kettle-Rock outcrop complex	23
69—Peyton-Pring complex, 8 to 15 percent slopes	. 24
92—Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	26

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.


MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

CLIND

Spoil Area

Stony Spot

Very Stony Spot

△ Other

Special Line Features

Water Features

Streams and Canals

Transportation

+++ Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

00

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at scales ranging from 1:20,000 to 1:24,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Castle Rock Area, Colorado Survey Area Data: Version 15, Sep 1, 2022

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 20, Sep 2, 2022

Your area of interest (AOI) includes more than one soil survey area. These survey areas may have been mapped at different scales, with a different land use in mind, at different times, or at different levels of detail. This may result in map unit symbols, soil properties, and interpretations that do not completely agree across soil survey area boundaries.

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jun 9, 2021—Jun 12, 2021

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

Custom Soil Resource Report

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
KfF	Kettle-Falcon complex, 9 to 65 percent slopes	4.0	0.5%
Lw	Loamy wet alluvial land	5.3	0.6%
PpE	Peyton-Pring-Crowfoot sandy loams, 5 to 25 percent slopes	17.5	2.1%
PrE2	Peyton-Pring-Crowfoot complex, 3 to 15 percent slopes, eroded	38.5	4.7%
Subtotals for Soil Survey A	ea	65.2	8.0%
Totals for Area of Interest		813.1	100.0%

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
1	Alamosa loam, 1 to 3 percent slopes	35.2	4.3%
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	285.9	35.2%
42	Kettle-Rock outcrop complex	9.1	1.1%
69	Peyton-Pring complex, 8 to 15 percent slopes	245.8	30.2%
92	Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	171.9	21.1%
Subtotals for Soil Survey	Area	747.9	92.0%
Totals for Area of Interes	t	813.1	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion

of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Castle Rock Area, Colorado

KfF—Kettle-Falcon complex, 9 to 65 percent slopes

Map Unit Setting

National map unit symbol: jqz2 Elevation: 6,600 to 8,000 feet

Mean annual precipitation: 17 to 21 inches Mean annual air temperature: 45 to 47 degrees F

Frost-free period: 115 to 125 days

Farmland classification: Not prime farmland

Map Unit Composition

Kettle and similar soils: 50 percent Falcon and similar soils: 35 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kettle

Setting

Landform: Hills, ridges

Landform position (three-dimensional): Side slope, base slope, crest

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Locally transported sandy alluvium derived from arkose

Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material

H1 - 1 to 10 inches: loamy sand H2 - 10 to 18 inches: sand

H3 - 18 to 60 inches: gravelly loamy coarse sand

Properties and qualities

Slope: 9 to 25 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat excessively drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High to very high (2.00

to 20.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: A

Ecological site: F048AY925CO - Ponderosa Pine Forest

Hydric soil rating: No

Description of Falcon

Setting

Landform: Cliffs

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from arkosic sandstone and/or conglomerate

Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material

H1 - 1 to 8 inches: sandy loam

H2 - 8 to 15 inches: gravelly sandy loam H3 - 15 to 18 inches: unweathered bedrock

Properties and qualities

Slope: 25 to 65 percent

Depth to restrictive feature: 4 to 20 inches to lithic bedrock

Drainage class: Well drained Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Available water supply, 0 to 60 inches: Very low (about 1.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: D

Ecological site: F048AY925CO - Ponderosa Pine Forest

Hydric soil rating: No

Minor Components

Rock outcrop

Percent of map unit: 7 percent

Hydric soil rating: No

Pring

Percent of map unit: 7 percent

Hydric soil rating: No

Aquic haploborolls

Percent of map unit: 1 percent

Landform: Swales Hydric soil rating: Yes

Lw-Loamy wet alluvial land

Map Unit Setting

National map unit symbol: jqzd Elevation: 7,000 to 8,000 feet

Mean annual precipitation: 17 to 19 inches Mean annual air temperature: 44 to 46 degrees F

Frost-free period: 115 to 120 days

Farmland classification: Not prime farmland

Map Unit Composition

Loamy wet alluvial land: 85 percent *Minor components:* 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Loamy Wet Alluvial Land

Setting

Landform: Drainageways, swales, flood plains

Down-slope shape: Linear Across-slope shape: Linear

Typical profile

H1 - 0 to 20 inches: sandy loam

H2 - 20 to 60 inches: stratified sand to clay

Properties and qualities

Slope: 1 to 5 percent

Drainage class: Poorly drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high

(0.06 to 6.00 in/hr)

Depth to water table: About 0 to 24 inches Frequency of flooding: FrequentNone

Calcium carbonate, maximum content: 5 percent

Gypsum, maximum content: 2 percent

Maximum salinity: Very slightly saline to moderately saline (2.0 to 8.0 mmhos/cm)

Sodium adsorption ratio, maximum: 2.0

Available water supply, 0 to 60 inches: Moderate (about 6.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 5w

Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Sandy wet alluvial land

Percent of map unit: 14 percent

Hydric soil rating: No

Fluvaquentic haplaquolls

Percent of map unit: 1 percent

Landform: Sloughs Hydric soil rating: Yes

PpE—Peyton-Pring-Crowfoot sandy loams, 5 to 25 percent slopes

Map Unit Setting

National map unit symbol: jqzn Elevation: 6,500 to 8,000 feet

Mean annual precipitation: 15 to 18 inches Mean annual air temperature: 44 to 46 degrees F

Frost-free period: 115 to 120 days

Farmland classification: Not prime farmland

Map Unit Composition

Peyton and similar soils: 40 percent Pring and similar soils: 25 percent Crowfoot and similar soils: 25 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Peyton

Setting

Landform: Valley sides, ridges Down-slope shape: Linear Across-slope shape: Linear

Parent material: Weathered alluvium derived from arkose

Typical profile

H1 - 0 to 11 inches: sandy loam H2 - 11 to 30 inches: sandy clay loam H3 - 30 to 40 inches: sandy loam H4 - 40 to 60 inches: sandy loam

Properties and qualities

Slope: 5 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of pondina: None

Available water supply, 0 to 60 inches: Moderate (about 7.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C

Ecological site: R048AY222CO - Loamy Park

Hydric soil rating: No

Description of Pring

Setting

Landform: Hills

Landform position (three-dimensional): Crest, base slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from arkosic sedimentary rock

Typical profile

H1 - 0 to 12 inches: sandy loam

H2 - 12 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 5 to 25 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 6.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 6.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: A

Ecological site: R048AY222CO - Loamy Park

Hydric soil rating: No

Description of Crowfoot

Setting

Landform: Valley sides, ridges Down-slope shape: Linear Across-slope shape: Linear

Parent material: Residuum weathered from arkosic sedimentary rock

Typical profile

H1 - 0 to 6 inches: sandy loam H2 - 6 to 19 inches: loamy sand

H3 - 19 to 32 inches: gravelly sandy clay loam H4 - 32 to 43 inches: gravelly sandy loam

H5 - 43 to 60 inches: coarse sand

Properties and qualities

Slope: 5 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.20 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 5.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: R049XY216CO - Sandy Divide

Hydric soil rating: No

Minor Components

Brussett

Percent of map unit: 3 percent

Hydric soil rating: No

Jarre

Percent of map unit: 3 percent

Hydric soil rating: No

Tomah

Percent of map unit: 3 percent

Hydric soil rating: No

Aquic haploborolls

Percent of map unit: 1 percent

Landform: Swales Hydric soil rating: Yes

PrE2—Peyton-Pring-Crowfoot complex, 3 to 15 percent slopes, eroded

Map Unit Setting

National map unit symbol: jqzp Elevation: 6,500 to 8,000 feet

Mean annual precipitation: 15 to 18 inches
Mean annual air temperature: 44 to 46 degrees F

Frost-free period: 115 to 120 days

Farmland classification: Not prime farmland

Map Unit Composition

Peyton, eroded, and similar soils: 40 percent Pring, eroded, and similar soils: 25 percent Crowfoot, eroded, and similar soils: 20 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Peyton, Eroded

Setting

Landform: Plateaus, mesas Down-slope shape: Linear Across-slope shape: Linear

Parent material: Weathered alluvium derived from arkose

Typical profile

H1 - 0 to 11 inches: sandy loam
H2 - 11 to 30 inches: sandy clay loam
H3 - 30 to 40 inches: sandy loam
H4 - 40 to 60 inches: sandy loam

Properties and qualities

Slope: 3 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 7.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: C

Ecological site: R049XY216CO - Sandy Divide

Hydric soil rating: No

Description of Pring, Eroded

Settina

Landform: Plateaus, mesas Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from arkosic sedimentary rock

Typical profile

H1 - 0 to 12 inches: gravelly sandy loam H2 - 12 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 6.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 5.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: A

Ecological site: R048AY222CO - Loamy Park

Hydric soil rating: No

Description of Crowfoot, Eroded

Setting

Landform: Plateaus, mesas Down-slope shape: Linear Across-slope shape: Linear

Parent material: Residuum weathered from arkosic sedimentary rock

Typical profile

H1 - 0 to 6 inches: sandy loam H2 - 6 to 19 inches: loamy sand

H3 - 19 to 32 inches: gravelly sandy clay loam H4 - 32 to 43 inches: gravelly sandy loam

H5 - 43 to 60 inches: coarse sand

Properties and qualities

Slope: 3 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.20 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 5.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: B

Ecological site: R049XY216CO - Sandy Divide

Hydric soil rating: No

Minor Components

Kippen

Percent of map unit: 8 percent Hydric soil rating: No

Truckton

Percent of map unit: 7 percent

Hydric soil rating: No

El Paso County Area, Colorado

1—Alamosa loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: 3670 Elevation: 7,200 to 7,700 feet

Farmland classification: Prime farmland if irrigated and reclaimed of excess salts

and sodium

Map Unit Composition

Alamosa and similar soils: 85 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Alamosa

Setting

Landform: Fans, flood plains Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

A - 0 to 6 inches: loam
Bt - 6 to 14 inches: clay loam
Btk - 14 to 33 inches: clay loam

Cg1 - 33 to 53 inches: sandy clay loam Cg2 - 53 to 60 inches: sandy loam

Properties and qualities

Slope: 1 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Runoff class: Very high

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: About 12 to 18 inches Frequency of flooding: NoneFrequent

Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent

Maximum salinity: Very slightly saline to strongly saline (2.0 to 16.0 mmhos/cm)

Available water supply, 0 to 60 inches: High (about 10.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 5w

Hydrologic Soil Group: D

Ecological site: R048AY241CO - Mountain Meadow

Hydric soil rating: Yes

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

41—Kettle gravelly loamy sand, 8 to 40 percent slopes

Map Unit Setting

National map unit symbol: 368h Elevation: 7,000 to 7,700 feet

Farmland classification: Not prime farmland

Map Unit Composition

Kettle and similar soils: 85 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kettle

Setting

Landform: Hills

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Sandy alluvium derived from arkose

Typical profile

E - 0 to 16 inches: gravelly loamy sand *Bt - 16 to 40 inches:* gravelly sandy loam

C - 40 to 60 inches: extremely gravelly loamy sand

Properties and qualities

Slope: 8 to 40 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat excessively drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: B

Ecological site: F048AY908CO - Mixed Conifer

Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

42—Kettle-Rock outcrop complex

Map Unit Setting

National map unit symbol: 368j Elevation: 6,800 to 7,700 feet Frost-free period: 110 to 130 days

Farmland classification: Not prime farmland

Map Unit Composition

Kettle and similar soils: 60 percent

Rock outcrop: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kettle

Setting

Landform: Hills

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Sandy alluvium derived from arkose

Typical profile

E - 0 to 16 inches: gravelly loamy sand *Bt - 16 to 40 inches:* gravelly sandy loam

C - 40 to 60 inches: extremely gravelly loamy sand

Properties and qualities

Slope: 8 to 40 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat excessively drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7e

Hydrologic Soil Group: B

Ecological site: F048AY908CO - Mixed Conifer

Hydric soil rating: No

Description of Rock Outcrop

Typical profile

R - 0 to 60 inches: unweathered bedrock

Properties and qualities

Slope: 8 to 60 percent

Depth to restrictive feature: 0 inches to lithic bedrock

Available water supply, 0 to 60 inches: Very low (about 0.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8s

Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

69—Peyton-Pring complex, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 369g Elevation: 6,800 to 7,600 feet

Farmland classification: Not prime farmland

Map Unit Composition

Peyton and similar soils: 40 percent Pring and similar soils: 30 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Peyton

Setting

Landform: Hills

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Arkosic alluvium derived from sedimentary rock and/or arkosic

residuum weathered from sedimentary rock

Typical profile

A - 0 to 12 inches: sandy loam

Bt - 12 to 25 inches: sandy clay loam

BC - 25 to 35 inches: sandy clay loam

C - 35 to 60 inches: sandy loam

Properties and qualities

Slope: 8 to 9 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.60 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: R049XY216CO - Sandy Divide

Hydric soil rating: No

Description of Pring

Setting

Landform: Hills

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam
C - 14 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of pondina: None

Available water supply, 0 to 60 inches: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6e

Hvdrologic Soil Group: B

Ecological site: R048AY222CO - Loamy Park

Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

92—Tomah-Crowfoot loamy sands, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 36b9 Elevation: 7,300 to 7,600 feet

Farmland classification: Not prime farmland

Map Unit Composition

Tomah and similar soils: 50 percent Crowfoot and similar soils: 30 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Tomah

Setting

Landform: Alluvial fans, hills

Landform position (three-dimensional): Side slope, crest

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from arkose and/or residuum weathered from

arkose

Typical profile

A - 0 to 10 inches: loamy sand E - 10 to 22 inches: coarse sand

Bt - 22 to 48 inches: stratified coarse sand to sandy clay loam

C - 48 to 60 inches: coarse sand

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: R049XY216CO - Sandy Divide

Hydric soil rating: No

Description of Crowfoot

Setting

Landform: Hills, alluvial fans

Landform position (three-dimensional): Side slope, crest

Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

A - 0 to 12 inches: loamy sand E - 12 to 23 inches: sand

Bt - 23 to 36 inches: sandy clay loam C - 36 to 60 inches: coarse sand

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: R049XY216CO - Sandy Divide

Hydric soil rating: No

Minor Components

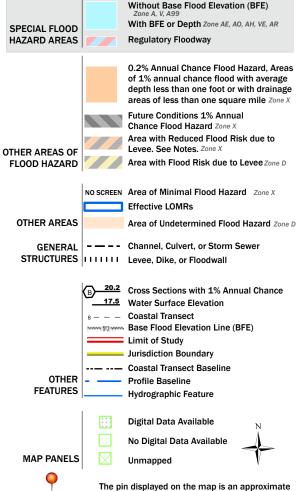
Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

National Flood Hazard Layer FIRMette



Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

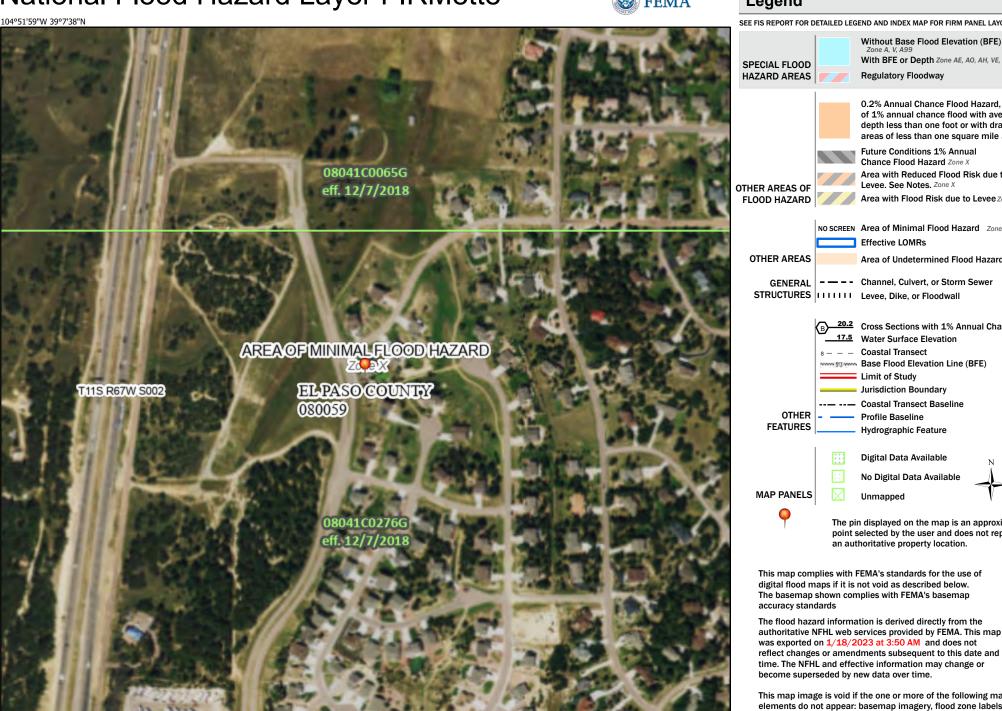
point selected by the user and does not represent

an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 1/18/2023 at 3:52 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

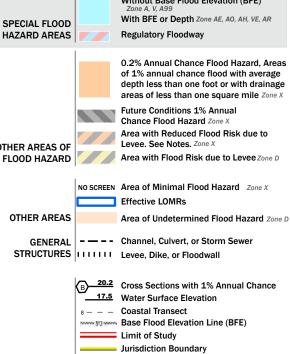
National Flood Hazard Layer FIRMette


250

500

1,000

1,500


1:6,000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

2.000

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

Digital Data Available

No Digital Data Available

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 1/18/2023 at 3:50 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

Appendix B Calculations

MONUMENT RIDGE EAST MASTER DEVELOPMENT DRAINAGE PLAN

(Percent Impervious)

Panin							Area (acres)			0/ /
Basin	Streets/Drives/Walks	Streets - Gravel	Roof	Lawn	Res 1/8	Res 1/4	Res 1/3	Res 1/2	TOTAL	% Imp
E1		1.86		30.03					31.89	4.67
E2		0.84						0.52	1.36	58.97
E3	10.77					2.45	4.47	42.47	60.16	39.41
E4	3.81						12.98	48.78	65.57	30.35
E5	2.18							15.29	17.47	34.36
E6	0.55						0.83		1.38	57.90
E7	0.81			34.79				5.88	41.48	5.50
E8	1.59	2.74	0.99	55.15					60.47	7.73
E9	1.72			1.2					2.92	58.90
E10	1.42	0.4		11.34					13.16	13.22
E11	1.91			3.34					5.25	36.38
A1	2.14		1.55	1.06					4.75	74.42
A2	0.78		0.88	0.75					2.41	65.23
АЗ	0.04		0.09	1.28					1.41	8.58
A4	2.49		0.82	1.34					4.65	69.42
A5	0.67			0.5					1.17	57.26
B1	1.54		1.04	1.49					4.07	60.84
B2	1.12		1.04	0.96					3.12	65.90
В3	0.68		0.73	0.47					1.88	71.12
B4	0.87			0.37					1.24	70.16
B5	0.27		0.21	0.59					1.07	42.90
B6	0.82		0.58	0.94					2.34	57.35
B7	0.61		0.26	1.42				_	2.29	36.86
B8	1.76			1.61					3.37	52.23
B9	0.71			0.39					1.10	64.55
C1	1.03		0.88	1.05					2.96	61.55

Page 1 of 3 2/6/2024

	1	1	I	1	1	1	l No. 1 Dand /Da	I .	02.44	27.02
013	1.91			3.34					5.25	36.38
012	0.74			3.94					4.68	15.81
011	2.08			0.93					3.01	69.10
010	1.59	2.74	0.99	55.15					60.47	7.73
O9	2.28			3.62					5.90	38.64
08	0.55						0.83		1.38	57.90
O7b	2.18							15.29	17.47	34.36
07a	3.81						12.98	48.78	65.57	30.35
06				0.63					0.63	0.00
O5	10.77					2.45	4.47	42.47	60.16	39.41
04	0.51			0.23					0.74	68.92
03		0.84						0.52	1.36	58.97
02	0.36			0.15					0.51	70.59
01		0.48		7.04					7.52	5.11
E	0.58				0.63		1.28	0.72	3.21	48.40
D5	0.19			1.39					1.58	12.03
D4	0.21			0.13					0.34	61.76
D3	0.23			0.41					0.64	35.94
D2	1.51			0	2.80		6.25	1.60	12.16	46.09
D1	2.84		0.16	4.43					7.43	40.16
C3	0.17			0.28					0.45	37.78
C2	1.02		0.71	0.64					2.37	70.00

Composite Existing - Misty Acres Fil No. 1 Pond (Basins E1 thru E3) 93.41 27.83 Composite Developed - Pond 1 (Basins A1 thru A5, O1 thru O4) 24.52 45.60 Composite Developed - Pond 2 (Basins B1 thru B9) 20.48 57.88 Composite Developed - Pond 3 (Basins C1 thru C3) 5.78 63.17 Composite Developed - Pond 4 (Basins D1 thru D5) 22.15 41.62 Pond 5 (Basin E) 3.21 48.40

Land Use	% Impervious
Streets/Drives/Walks	100
Streets - Gravel	80
Roof	90
Lawn	0

Page 2 of 3 2/6/2024

Res 1/8ac or less	65
Res 1/4ac or less	40
Res 1/3ac or less	30
Res 1/2ac or less	25

Page 3 of 3 2/6/2024

MONUMENT RIDGE EAST MASTER DEVELOPMENT DRAINAGE PLAN

(Composite Runoff Coefficients)

Basin	Basin Area	l and llas	Sub-B	asin (5yr)	Composite	Sub-B	asin (10yr)	Composite	Sub-Ba	asin (100yr)	Composite
Basin	(acres)	Land Use	C 5	Area (acres)	C 5	C 10	Area (acres)	C 10	C 100	Area (acres)	C 100
E1	31.89	Streets - Gravel	0.59	1.86	0.11	0.63	1.86	0.18	0.70	1.86	0.37
		Lawn	0.08	30.03		0.15	30.03		0.35	30.03	
E2	1.37	Streets - Gravel	0.59	0.84	0.45	0.63	0.84	0.50	0.70	0.84	0.61
E2		1/2 Ac	0.22	0.52		0.30	0.52		0.46	0.52	
	60.15	Streets/Drive/Walks	0.90	10.77	0.35	0.92	10.77	0.41	0.96	10.77	0.55
E3		1/4 Ac	0.30	2.45		0.36	2.45		0.50	2.45	
		1/3 Ac	0.25	4.47		0.32	4.47		0.47	4.47	
		1/2 Ac	0.22	42.47		0.30	42.47		0.46	42.47	
	65.56	Streets/Drive/Walks	0.90	3.81	0.27	0.92	3.81	0.34	0.96	3.81	0.49
E4		1/3 Ac	0.25	12.98		0.32	12.98		0.47	12.98	
		1/2 Ac	0.22	48.78		0.30	48.78		0.46	48.78	
	17.47	Streets/Drive/Walks	0.90	2.18	0.30	0.92	2.18	0.38	0.96	2.18	0.52
E5		1/2 Ac	0.22	15.29		0.30	15.29		0.46	15.29	
E6	1.38	Streets/Drive/Walks	0.90	0.55	0.51	0.92	0.55	0.56	0.96	0.55	0.67
_ ⊏0		1/3 Ac	0.25	0.83		0.32	0.83		0.47	0.83	
	41.48	Streets/Drive/Walks	0.90	0.81	0.15	0.92	0.81	0.23	0.96	0.81	0.45
E7		1/2 Ac	0.25	5.88		0.33	5.88		0.52	5.88	
		Lawn	0.12	34.79		0.20	34.79		0.43	34.79	
	60.46	Streets/Drive/Walks	0.90	1.59	0.14	0.92	1.59	0.20	0.96	1.59	0.39
		Streets - Gravel	0.59	2.74		0.63	2.74		0.70	2.74	
E8		Roof	0.73	0.99		0.75	0.99		0.81	0.99	
		Lawn	0.08	55.15		0.15	55.15		0.35	55.15	

Destin	Basin Area	I am I II a	Sub-B	asin (5yr)	Composite	Sub-B	asin (10yr)	Composite	Sub-Ba	asin (100yr)	Composite
Basin	(acres)	Land Use	C 5	Area (acres)	C 5	C 10	Area (acres)	C 10	C 100	Area (acres)	C 100
E9	2.92	Streets - Paved	0.90	1.72	0.56	0.92	1.72	0.60	0.96	1.72	0.71
E9		Lawn	0.08	1.20		0.15	1.20		0.35	1.20	
	13.16	Streets - Paved	0.90	1.42	0.22	0.92	1.42	0.29	0.96	1.42	0.50
E10		Streets - Gravel	0.61	0.40		0.65	0.40		0.72	0.40	
		Lawn	0.12	11.34		0.20	11.34] [0.43	11.34	
E11	5.24	Streets - Paved	0.90	1.91	0.40	0.92	1.91	0.46	0.96	1.91	0.62
EII		Lawn	0.12	3.34		0.20	3.34] [0.43	3.34	
	4.75	Streets/Drive/Walks	0.90	2.14	0.66	0.92	2.14	0.69	0.96	2.14	0.77
A1		Roof	0.73	1.55		0.75	1.55] [0.81	1.55	
		Lawn	0.08	1.06		0.15	1.06] [0.35	1.06	
	2.41	Streets/Drive/Walks	0.90	0.78	0.58	0.92	0.78	0.62	0.96	0.78	0.72
A2		Roof	0.73	0.88		0.75	0.88] [0.81	0.88	
		Lawn	0.08	0.75		0.15	0.75] [0.35	0.75	
	1.41	Streets/Drive/Walks	0.90	0.04	0.14	0.92	0.04	0.21	0.96	0.04	0.40
A3		Roof	0.73	0.09		0.75	0.09] [0.81	0.09	
		Lawn	0.08	1.28		0.15	1.28		0.35	1.28	
	4.65	Streets/Drive/Walks	0.90	2.49	0.63	0.92	2.49	0.67	0.96	2.49	0.76
A4		Roof	0.73	0.82		0.75	0.82		0.81	0.82	
		Lawn	0.08	1.34		0.15	1.34		0.35	1.34	
A5	1.17	Streets/Drive/Walks	0.90	0.67	0.55	0.92	0.67	0.59	0.96	0.67	0.70
AS		Lawn	0.08	0.50		0.15	0.50] [0.35	0.50	

Dareita	Basin Area	1 111	Sub-E	Basin (5yr)	Composite	Sub-B	asin (10yr)	Composite	Sub-Ba	asin (100yr)	Composite
Basin	(acres)	Land Use	C 5	Area (acres)	C ₅	C 10	Area (acres)	C 10	C 100	Area (acres)	C 100
	4.07	Streets/Drive/Walks	0.90	1.54	0.56	0.92	1.54	0.59	0.96	1.54	0.70
B1		Roof	0.73	1.04		0.75	1.04		0.81	1.04	
		Lawn	0.08	1.49		0.15	1.49		0.35	1.49	
	3.12	Streets/Drive/Walks	0.90	1.12	0.59	0.92	1.12	0.63	0.96	1.12	0.72
B2		Roof	0.73	1.04		0.75	1.04		0.81	1.04	
		Lawn	0.08	0.96		0.15	0.96		0.35	0.96	
	1.88	Streets/Drive/Walks	0.90	0.68	0.63	0.92	0.68	0.66	0.96	0.68	0.75
В3		Roof	0.73	0.73		0.75	0.73		0.81	0.73	
		Lawn	0.08	0.47		0.15	0.47		0.35	0.47	
B4	1.24	Streets/Drive/Walks	0.90	0.87	0.66	0.92	0.87	0.69	0.96	0.87	0.78
D 4		Lawn	0.08	0.37		0.15	0.37		0.35	0.37	
	1.07	Streets/Drive/Walks	0.90	0.27	0.41	0.92	0.27	0.46	0.96	0.27	0.59
B5		Roof	0.73	0.21		0.75	0.21		0.81	0.21	
		Lawn	0.08	0.59		0.15	0.59		0.35	0.59	
	2.34	Streets/Drive/Walks	0.90	0.82	0.53	0.92	0.82	0.57	0.96	0.82	0.68
В6		Roof	0.73	0.58		0.75	0.58		0.81	0.58	
		Lawn	0.08	0.94		0.15	0.94		0.35	0.94	
	2.29	Streets/Drive/Walks	0.90	0.61	0.37	0.92	0.61	0.42	0.96	0.61	0.56
В7		Roof	0.73	0.26		0.75	0.26		0.81	0.26	
		Lawn	0.08	1.42		0.15	1.42		0.35	1.42	

Danim	Basin Area	Landlina	Sub-B	asin (5yr)	Composite	Sub-B	asin (10yr)	Composite	Sub-Ba	asin (100yr)	Composite
Basin	(acres)	Land Use	C 5	Area (acres)	C ₅	C 10	Area (acres)	C 10	C 100	Area (acres)	C 100
B8	3.37	Streets/Drive/Walks	0.90	1.76	0.51	0.92	1.76	0.55	0.96	1.76	0.67
БО		Lawn	0.08	1.61		0.15	1.61		0.35	1.61	
В9	1.10	Pond	0.90	0.71	0.63	0.92	0.71	0.68	0.96	0.71	0.80
БЭ		Lawn	0.15	0.39		0.25	0.39		0.50	0.39	
	2.96	Streets/Drive/Walks	0.90	1.03	0.59	0.92	1.03	0.64	0.96	1.03	0.76
C1		Roof	0.75	0.88		0.77	0.88		0.83	0.88	
		Lawn	0.15	1.05		0.25	1.05		0.50	1.05	
	2.37	Streets/Drive/Walks	0.90	1.02	0.65	0.92	1.02	0.69	0.96	1.02	0.80
C2		Roof	0.75	0.71		0.77	0.71		0.83	0.71	
		Lawn	0.15	0.64		0.25	0.64		0.50	0.64	
C3	0.45	Pond	0.90	0.17	0.39	0.92	0.17	0.44	0.96	0.17	0.58
CS		Lawn	0.08	0.28		0.15	0.28		0.35	0.28	
D1	7.45	Streets/Drive/Walks	0.90	2.84	0.43	0.92	2.84	0.49	0.96	2.84	0.64
Di		Roof	0.74	0.18		0.76	0.18		0.82	0.18	
		Lawn	0.12	4.43		0.20	4.43		0.43	4.43	
	12.16	Streets/Drive/Walks	0.90	1.51	0.40	0.92	1.51	0.46	0.96	1.51	0.61
D2		1/8 Ac or Less	0.48	2.80		0.52	2.80		0.63	2.80	
DZ		1/3 Ac	0.28	6.25		0.35	6.25		0.53	6.25	
		1/2 Ac	0.25	1.60		0.33	1.60		0.52	1.60	
D3	0.64	Streets/Drive/Walks	0.90	0.23	0.37	0.92	0.23	0.43	0.96	0.23	0.57
D3		Lawn	0.08	0.41		0.15	0.41		0.35	0.41	
D4	0.34	Streets/Drive/Walks	0.90	0.21	0.59	0.92	0.21	0.63	0.96	0.21	0.73
<i>υ</i> 4		Lawn	0.08	0.13		0.15	0.13		0.35	0.13	
D5	1.58	Pond	0.90	0.19	0.21	0.92	0.19	0.29	0.96	0.19	0.49
D3		Lawn	0.12	1.39		0.20	1.39		0.43	1.39	

Danim	Basin Area	Landllan	Sub-E	asin (5yr)	Composite	Sub-E	Basin (10yr)	Composite	Sub-Ba	asin (100yr)	Composite
Basin	(acres)	Land Use	C 5	Area (acres)	C₅	C 10	Area (acres)	C 10	C 100	Area (acres)	C 100
	3.21	Streets/Drive/Walks	0.90	0.58	0.42	0.92	0.58	0.48	0.96	0.58	0.63
_		1/8 Ac or Less	0.48	0.63		0.52	0.63		0.63	0.63	
E		1/3 Ac	0.28	1.28		0.35	1.28		0.53	1.28	
		1/2 Ac	0.25	0.72		0.33	0.72		0.52	0.72	
01	7.52	Streets - Gravel	0.59	0.48	0.11	0.63	0.48	0.18	0.70	0.48	0.37
Οī		Lawn	0.08	7.04		0.15	7.04		0.35	7.04	
O2	0.51	Streets/Drive/Walks	0.90	0.36	0.66	0.92	0.36	0.69	0.96	0.36	0.78
02		Lawn	0.08	0.15		0.15	0.15		0.35	0.15	
00	1.37	Streets - Gravel	0.59	0.84	0.45	0.63	0.84	0.50	0.70	0.84	0.61
O3		1/2 Ac	0.22	0.52		0.30	0.52		0.46	0.52	
0.4	0.74	Streets/Drive/Walks	0.90	0.51	0.64	0.92	0.51	0.68	0.96	0.51	0.77
O4		Lawn	0.08	0.23		0.15	0.23		0.35	0.23	
	60.15	Streets/Drive/Walks	0.90	10.77	0.35	0.92	10.77	0.41	0.96	10.77	0.55
O5		1/4 Ac	0.30	2.45		0.36	2.45		0.50	2.45	
U5		1/3 Ac	0.25	4.47		0.32	4.47		0.47	4.47	
		1/2 Ac	0.22	42.47		0.30	42.47		0.46	42.47	
O6	0.63	Lawn	0.15	0.63	0.15	0.25	0.63	0.25	0.50	0.63	0.50
	65.56	Streets/Drive/Walks	0.90	3.81	0.27	0.92	3.81	0.34	0.96	3.81	0.49
O7a		1/3 Ac	0.25	12.98		0.32	12.98		0.47	12.98	
		1/2 Ac	0.22	48.78		0.30	48.78		0.46	48.78	
O7b	18.40	Streets/Drive/Walks	0.90	2.18	0.30	0.92	2.18	0.37	0.96	2.18	0.52
O/b		1/2 Ac	0.22	16.22		0.30	16.22		0.46	16.22	
00	1.38	Streets/Drive/Walks	0.90	0.55	0.51	0.92	0.55	0.56	0.96	0.55	0.67
O8		1/3 Ac	0.25	0.83		0.32	0.83		0.47	0.83	
00	5.90	Streets and Pond	0.90	2.28	0.42	0.92	2.28	0.48	0.96	2.28	0.63
O9		Lawn	0.12	3.62		0.20	3.62		0.43	3.62	

Danim	Basin Area	l and Haa	Sub-B	asin (5yr)	Composite	Sub-B	asin (10yr)	Composite	Sub-Ba	sin (100yr)	Composite
Basin	(acres)	Land Use	C 5	Area (acres)	C 5	C 10	Area (acres)	C 10	C 100	Area (acres)	C 100
	60.46	Streets/Drive/Walks	0.90	1.59	0.14	0.92	1.59	0.20	0.96	1.59	0.39
010		Streets - Gravel	0.59	2.74		0.63	2.74		0.70	2.74	
O10		Roof	0.73	0.99		0.75	0.99		0.81	0.99	
		Lawn	0.08	55.15		0.15	55.15		0.35	55.15	
011	3.00	Streets/Drive/Walks	0.90	2.08	0.65	0.92	2.08	0.68	0.96	2.08	0.77
011		Lawn	0.08	0.93		0.15	0.93		0.35	0.93	
012	4.68	Streets/Drive/Walks	0.90	0.74	0.27	0.92	0.74	0.36	0.96	0.74	0.57
012		Lawn	0.15	3.94		0.25	3.94		0.50	3.94	
O13	5.24	Streets/Drive/Walks	0.90	1.91	0.40	0.92	1.91	0.46	0.96	1.91	0.62
013		Lawn	0.12	3.34		0.20	3.34		0.43	3.34	

Notes:

- 1. Shaded cells indicate composite runoff coefficients with 1/2 HSG B and 1/2 HSG D.
- 2. All basins split between the two soil groups are 1/2 HSG D or less (i.e. conservative approach).

MONUMENT RIDGE EAST MASTER DEVELOPMENT DRAINAGE PLAN

(Basin Runoff Calculations)

						Overlar	nd Flow					Travel Time (T _t)	Inte	nsity	Total	Flows		
Basin	Area Total (acres)	C 5	C 10	C 100	C 5	Length (ft)	Slope (ft/ft)	T _C	Length (ft)	Slope (ft/ft)	Cv	Velocity (fps)	T _t	TOTAL* (min)	I ₁₀ (in/hr)	I ₁₀₀	Q ₁₀	Q ₁₀₀
E1	31.89	0.11	0.18	0.37	0.11	300	0.076	15.9	1060	0.035	15	2.8	6.3	22.2	3.4	4.9	19.4	58.2
E2	1.37	0.45	0.50	0.61	0.45	300	0.083	10.1						10.1	4.8	6.9	3.3	5.7
E3	60.15	0.35	0.41	0.55	0.35	100	0.052	7.9	1370	0.065	15	3.8	6.0	13.9	4.2	6.1	106.0	202.8
E4	65.56	0.27	0.34	0.49	0.27	100	0.12	6.6	1935	0.07	15	4.0	8.1	14.8	4.1	6.0	92.2	191.6
E5	17.47	0.30	0.38	0.52	0.30	100	0.102	6.7	840	0.105	15	4.9	2.9	9.6	4.9	7.0	32.3	64.3
E6	1.38	0.51	0.56	0.67										5.0	6.0	8.7	4.7	8.0
E7	41.48	0.15	0.23	0.45	0.15	300	0.065	16.0	1610	0.031	15	2.6	10.2	26.1	3.1	4.5	30.3	84.8
E8	60.46	0.14	0.20	0.39	0.14	300	0.077	15.4	1480	0.044	15	3.1	7.8	23.2	3.3	4.8	40.8	113.2
E9	2.92	0.56	0.60	0.71										5.0	6.0	8.7	10.6	18.0

						Overlar	nd Flow			Ch	annel Fl	low		Travel Time (T $_t$)	Inte	nsity	Total	Flows
Basin	Area Total (acres)	C 5	C 10	C 100	C 5	Length (ft)	Slope (ft/ft)	T _C	Length (ft)	Slope (ft/ft)	Cv	Velocity (fps)	T _t	TOTAL* (min)	I ₁₀	I ₁₀₀	Q ₁₀ (c.f.s.)	Q ₁₀₀ (c.f.s.)
E10	13.16	0.22	0.29	0.50	0.22	230	0.078	12.2	810	0.027	15	2.5	5.5	17.7	3.8	5.5	14.6	35.8
E11	5.24	0.40	0.46	0.62	0.40	100	0.04	8.0	1115	0.032	15	2.7	6.9	14.9	4.1	5.9	10.0	19.4
A1	4.75	0.66	0.69	0.77										5.0	6.0	8.7	19.8	31.9
A2	2.41	0.58	0.62	0.72										5.0	6.0	8.7	9.0	15.0
А3	1.41	0.14	0.21	0.40	0.14	100	0.022	13.3						13.3	4.3	6.2	1.3	3.5
A4	4.65	0.63	0.67	0.76										5.0	6.0	8.7	18.7	30.6
A5	1.17	0.55	0.59	0.70										5.0	6.0	8.7	4.2	7.1
B1	4.07	0.56	0.59	0.70										5.0	6.0	8.7	14.6	24.7
B2	3.12	0.59	0.63	0.72										5.0	6.0	8.7	11.8	19.6
В3	1.88	0.63	0.66	0.75										5.0	6.0	8.7	7.5	12.2
В4	1.24	0.66	0.69	0.78										5.0	6.0	8.7	5.2	8.4

						Overlar	nd Flow			Ch	annel Fl	ow		Travel Time (T_t)	Inte	Intensity		Total Flows	
Basin	Area Total (acres)	C 5	C 10	C 100	C 5	Length (ft)	Slope (ft/ft)	T _C	Length (ft)	Slope (ft/ft)	Cv	Velocity (fps)	T _t	TOTAL* (min)	l ₁₀ (in/hr)	l ₁₀₀ (in/hr)	Q ₁₀	Q ₁₀₀	
B5	1.07	0.41	0.46	0.59	0.41	100	0.098	5.8						5.8	5.8	8.3	2.8	5.3	
В6	2.34	0.53	0.57	0.68	0.53	90	0.089	4.8	340	0.033	20	3.6	1.6	6.3	5.6	8.1	7.5	12.8	
B7	2.29	0.37	0.42	0.56	0.37	95	0.180	4.9	690	0.029	20	3.4	3.4	8.3	5.1	7.4	5.0	9.6	
B8	3.37	0.51	0.55	0.67	0.51	95	0.126	4.5	130	0.01	20	2.0	1.1	5.6	5.8	8.4	10.9	18.9	
B9	1.10	0.63	0.68	0.80										5.0	6.0	8.7	4.5	7.6	
C1	2.96	0.59	0.64	0.76										5.0	6.0	8.7	11.4	19.5	
C2	2.37	0.65	0.69	0.80										5.0	6.0	8.7	9.9	16.4	
С3	0.45	0.39	0.44	0.58										5.0	6.0	8.7	1.2	2.3	
D1	7.45	0.43	0.49	0.64	0.43	100	0.093	5.8	580	0.029	20	3.4	2.8	8.6	5.1	7.3	18.5	34.9	

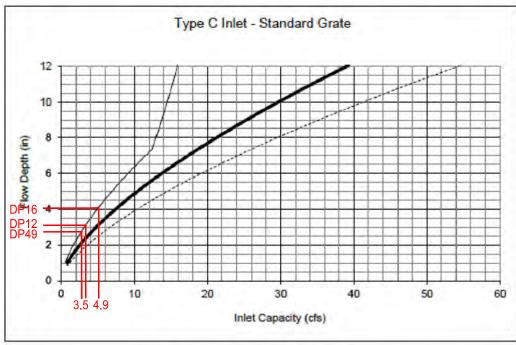
						Overlar	nd Flow			Ch	annel Fl	ow		Travel Time (T _t)	Inte	nsity	Total	Flows
Basin	Area Total (acres)	C 5	C 10	C 100	C 5	Length (ft)	Slope (ft/ft)	T _C	Length (ft)	Slope (ft/ft)	Cv	Velocity (fps)	T _t	TOTAL*	I ₁₀	I ₁₀₀	Q ₁₀ (c.f.s.)	Q ₁₀₀
D2	12.16	0.40	0.46	0.61	0.40	100	0.130	5.4	1050	0.0152	20	2.5	7.1	12.5	4.4	6.4	24.6	46.8
D3	0.64	0.37	0.43	0.57										5.0	6.0	8.7	1.6	3.2
D4	0.34	0.59	0.63	0.73										5.0	6.0	8.7	1.3	2.1
D5	1.58	0.21	0.29	0.49										5.0	6.0	8.7	2.7	6.8
E	3.21	0.42	0.48	0.63										5.0	6.0	8.7	9.3	17.4
01	7.52	0.11	0.18	0.37	0.11	130	0.080	10.2	480	0.054	10	2.3	3.4	13.7	4.3	6.1	5.8	17.2
O2	0.51	0.66	0.69	0.78										5.0	6.0	8.7	2.1	3.5
O3	1.37	0.45	0.50	0.61	0.45	300	0.083	10.1						10.1	4.8	6.9	3.3	5.7
O4	0.74	0.64	0.68	0.77										5.0	6.0	8.7	3.0	4.9
O5	60.15	0.35	0.41	0.55	0.35	100	0.052	7.9	1370	0.065	15	3.8	6.0	13.9	4.2	6.1	106.0	202.8

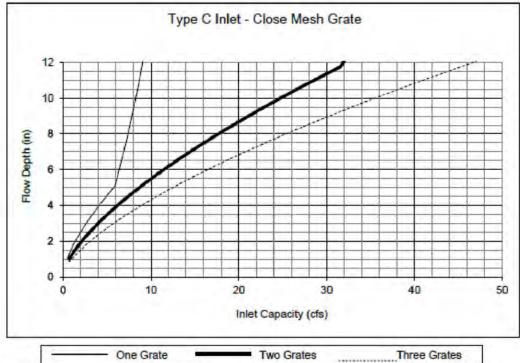
						Overlan	d Flow			Ch	annel Fl	ow		Travel Time (T _t)	Inte	nsity	Total Flows	Flows
Basin	Area Total	C 5	C 10	C 100	C 5	Length	Slope	Tc	Length	Slope	Cv	Velocity	,	TOTAL*	I 10	I 100	Q 10	Q 100
	(acres)					(ft)	(ft/ft)	(min)	(ft)	(ft/ft)		(fps)	(min)	(min)	(in/hr)		(c.f.s.)	(c.f.s.)
O6	0.63	0.15	0.25	0.50										5.0	6.0	8.7	1.0	2.7
O7a	65.56	0.27	0.34	0.49	0.27	100	0.120	6.6	1935	0.070	15	4.0	8.1	14.8	4.1	6.0	92.2	191.6
O7b	18.40	0.30	0.37	0.52	0.30	100	0.102	6.7	840	0.105	15	4.9	2.9	9.6	4.9	7.0	33.6	67.2
08	1.38	0.51	0.56	0.67										5.0	6.0	8.7	4.7	8.0
O9	5.90	0.42	0.48	0.63	0.42	245	0.049	11.4	330	0.036	15	2.8	1.9	13.3	4.3	6.2	12.2	23.3
O10	60.46	0.14	0.20	0.39	0.14	300	0.077	15.4	1480	0.044	15	3.1	7.8	23.2	3.3	4.8	40.8	113.2
011	3.00	0.65	0.68	0.77										5.0	6.0	8.7	12.4	20.1
O12	4.68	0.27	0.36	0.57	0.27	180	0.044	12.4	200	0.056	15	3.5	0.9	13.3	4.3	6.2	7.2	16.7
013	5.24	0.40	0.46	0.62	0.40	100	0.040	8.0	1115	0.032	15	2.7	6.9	14.9	4.1	5.9	10.0	19.4
* 5 MINUTE TI	IME OF CO	NCENTR	ATION - N	IINIMUM								1						

MONUMENT RIDGE EAST MASTER DEVELOPMENT DRAINAGE PLAN (Surface Routing Summary)

						nsity	Fle	ow			
Design Point	Design Point/ Contributing Basins	Equivalent CA ₁₀	Equivalent CA ₁₀₀	Routed T _C	I ₁₀	I ₁₀₀	Q ₁₀	Q ₁₀₀	Comments		
1	E2	0.69	0.83	10.1	4.8	6.9	3.3	5.7	existing 36" RCP culvert		
2	DP1,E1	6.36	12.64	22.2	3.4	4.9	21.8	62.2	existing dual 48" RCP culverts		
3	DP2,E3	31.32	45.84	22.2	3.4	4.9	107.2	225.6	Misty Ac 1 Pond Attenuation of Q10=58cfs, Q100=130cfs (per MDDP), yields Q10out=49.2cfs and Q100=95.6cfs)		
4	E4	22.29	32.19	14.8	4.1	5.9	92.1	191.4	unk pipe sizes, assume no peak flow attenuation		
5	DP4,E5	28.88	41.32	18.0	3.8	5.5	109.4	225.2	low point collection structure, size TBD in FDR		
6	DP3 (attenuated),DP5,E6,E7		ınd/depression	area		214.3	488.0	existing 48" CMP culvert, overtops road			
7	E8	12.20	23.54	23.2	3.3	4.8	40.8	113.3	existing 48" CMP culvert		
8	DP7,E9,E10	17.79	32.14	28.7	3.0	4.3	52.9	137.4	existing 48" RCP culvert, overtop elev unk		
9	DP8,E11	20.21	35.41	28.7	3.0	4.3	60.1	151.4	existing 48" RCP culvert, overtop elev unk		
10	E6	0.77	0.92	5.0	6.0	8.7	4.7	8.0	existing 24" culvert		
11	01	1.36	2.80	13.7	4.3	6.1	5.8	17.2	proposed 18" RCP		
12	02	0.35	0.40	5.0	6.0	8.7	2.1	3.5	existing type C inlet		
13	DP12,A1	3.64	4.08	5.0	6.0	8.7	22.0	35.4	split w/DP14 flows, proposed 4' and 16' D-10-R inlets		
14	A2	1.49	1.72	5.0	6.0	8.7	9.0	15.0	split w/DP13 flows, proposed 4' and 16' D-10-R inlets		
15	O3	0.69	0.83	10.1	4.8	6.9	3.3	5.7	existing 36" RCP culvert		
16	O4	0.50	0.57	5.0	6.0	8.7	3.0	4.9	existing type C inlet		
17	DP15,DP16	1.19	1.40	10.1	4.8	6.9	5.7	9.7	proposed 18" RCP culvert		

18	DP13,DP14,DP17		pipe flow juncti	on, for referen	ce only		42.5	77.3	proposed manhole
19	A3	0.30	0.56	13.3	4.3	6.2	1.3	3.5	proposed 18" RCP culvert
20	A4	3.11	3.52	5.0	6.0	8.7	18.7	30.6	proposed 2-12' D-10-R inlets
21	DP18,DP19,DP20	storr	n system outfall	location, for re	ference on	у	62.5	111.3	flow to pond 1, unrouted
22	DP21,A5		extended det	ention basin, p	ond 1		66.7	118.4	total flow to pond 1, not routed
23	B1	2.42	2.84	5.0	6.0	8.7	14.6	24.7	proposed 16' D-10-R inlet
24	B2	1.95	2.25	5.0	6.0	8.7	11.8	19.6	split w/DP25 flows, proposed triple type R inlets
25	В3	1.24	1.41	5.0	6.0	8.7	7.5	12.2	split w/DP24 flows, proposed triple type R inlets
26	DP23,DP24,DP25		pipe flow juncti	on, for referen	ce only	•	33.9	56.5	proposed manhole
27	B8	1.86	2.25	5.6	5.8	8.4	10.9	18.9	proposed 2-8' D-10-R inlets
28	B4(60%)	0.51	0.58	5.0	6.0	8.7	3.1	5.0	proposed double type 16 inlet
29	B4(40%)	0.34	0.39	5.0	6.0	8.7	2.1	3.3	proposed double type 16 inlet
30	B5(33%)	0.16	0.21	5.8	5.8	8.3	1.0	1.8	proposed single type R inlet
31	B5(66%)	0.33	0.42	5.8	5.8	8.3	1.9	3.5	proposed single type R inlet
32	B6	1.33	1.59	6.3	5.6	8.1	7.5	12.8	proposed double type R inlet
33	В7	0.97	1.29	7.9	5.2	7.5	5.1	9.7	proposed double type R inlet
34	DP23,DP24,DP25,DP27,DP28,DP 29,DP30,DP31,DP32,DP33,B9		extended det	ention basin, p	ond 2		69.8	119.2	total flow to pond 2, not routed
35	C1	1.89	2.24	5.0	6.0	8.7	11.4	19.5	split w/DP36 flows, proposed triple type R inlets
36	C2	1.65	1.89	5.0	6.0	8.7	9.9	16.4	split w/DP35 flows, proposed triple type R inlets
37	DP35,DP36,C3		extended det	ention basin, p	ond 3		22.5	38.1	total flow to pond 3, not routed
38	Pond 2 out, Pond 3 out		pipe flow juncti	on, for referen	ce only		12.8	34.1	proposed manhole
39	D1	3.64	4.78	8.6	5.1	7.3	18.5	34.9	proposed 2-16' D-10-R inlets
40a	D2(25%)	1.39	1.84	6.0	5.7	8.2	7.9	15.1	split w/DP40b flows, proposed 12' D-10-R inlet
40b	D2(25%)	1.39	1.84	6.0	5.7	8.2	7.9	15.1	split w/DP40a flows, proposed 12' D-10-R inlet

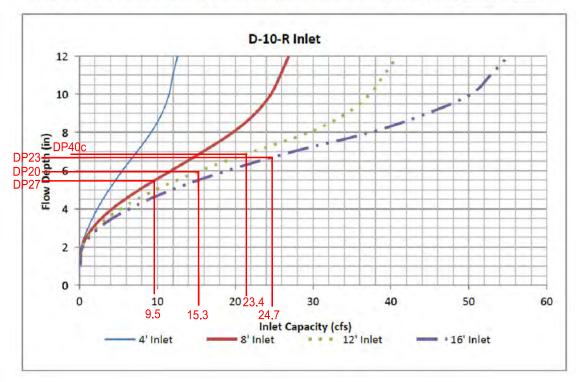

								•	
40c	D2(50%)	2.78	3.68	12.5	4.4	6.4	12.3	23.4	proposed 2-12' D-10-R inlets
41	DP39,DP40a,DP40b,DP40c, D5(50%)	extended detention basin, pond 4 (south)			48.0	92.0	total flow to pond 4 (south side)		
42	D3	0.27	0.36	5.0	6.0	8.7	1.6	3.2	proposed 4' D-10-R inlet
43	D4	0.21	0.25	5.0	6.0	8.7	1.3	2.1	proposed 4' D-10-R inlet
44	DP42,DP43,D5(50%)	е	xtended detenti	on basin, pond	4 (north)		4.3	8.7	total flow to pond 4 (south side)
45	DP38, Pond 4 out		pipe flow juncti	on, for referen	ce only		28.3	72.2	proposed manhole
46	E	1.55	2.01	5.0	6.0	8.7	9.3	17.4	proposed 16' D-10-R inlet
47	Pond 5 outfall	extended detention basin, pond 5		2.1	5.5	total flow release			
48	Pond 1 out,O5	total flow to existing Misty Acres pond		118.9	238.3	Misty Ac 1 Pond Attenuation of Q10=58cfs, Q100=130cfs (per MDDP), yields Q10out=60.9cfs and Q100=108.3cfs)			
49	O6	0.16	0.32	5.0	6.0	8.7	1.0	2.7	proposed type C inlet
50	O7A	22.29	32.19	14.8	4.1	5.9	92.1	191.4	total flow to existing pond, no peak flow attenutation
51	DP50,O7B	29.16	41.74	18.0	3.8	5.5	110.5	227.6	existing dual 48" CMP culverts
52	DP51	29.16	41.74	21.0	3.5	5.1	102.6	211.3	low point collection structure, size TBD in FDR
53	O8	0.77	0.92	5.0	6.0	8.7	4.7	8.0	ex culvert, size unk
54	DP45,DP47,DP48 OUT,DP49,DP52,DP53,O9		existing wetla	and/depression	area	!	211.7	431.3	total inflow
55	DP54 Pipe Out		for reference	ce only, see rep	oort		211.7	431.3	existing 48" culvert outfall, add 2-48" RCP's
56	O10	12.20	23.54	23.2	3.3	4.8	40.8	113.3	existing 48" CMP culvert
57	DP56,O11	14.25	25.86	23.2	3.3	4.8	47.7	124.4	existing type C inlet
58	DP57,O12	15.91	28.54	24.1	3.3	4.7	52.2	134.6	existing 48" RCP culvert
59	DP58,O13	18.33	31.80	24.1	3.3	4.7	60.1	150.0	existing 48" RCP culvert
		1	1	1	L	1	l		1


MONUMENT RIDGE EAST MASTER DEVELOPMENT DRAINAGE PLAN (Pipe Summary)

Din a ID	Flow	(cfs)	Din a Diama (in)	
Pipe ID	Q ₁₀	Q ₁₀₀	Pipe Diam (in)	
1	5.8	17.2	30" RCP	
2	21.3	42.4	30" RCP	
3	15.5	25.2	24" RCP	
4	36.8	67.6	36" RCP	
5	5.7	9.7	18" RCP	
6	5.7	9.7	18" RCP	
7	42.5	77.3	42" RCP	
8	1.3	3.5	18" RCP	
9	43.8	80.7	42" RCP	
10	9.4	15.3	24" RCP	
11	18.7	30.6	30" RCP	
12	62.5	111.3	48" RCP	
13	14.6	24.7	24" RCP	
14	14.6	24.7	24" RCP	
15	11.8	19.6	24" RCP	
16	7.5	12.2	24" RCP	
17	19.3	31.8	30" RCP	
18	33.9	56.5	36" RCP	
19	5.4	9.5	24" RCP	
20	10.9	18.9	24" RCP	
21	47.8	80.4	42" RCP	
22	49.9	83.7	42" RCP	
23	1.0	1.8	18" RCP	
24	1.9	3.5	18" RCP	

п			
25	2.9	5.3	18" RCP
26	7.5	12.8	24" RCP
27	10.3	18.1	24" RCP
28	15.4	27.9	24" RCP
29	10.6	28.3	24" RCP
30	11.4	19.5	30" RCP
31	21.3	35.9	36" RCP
32	2.2	5.8	18" RCP
33	12.8	34.1	36" RCP
34	12.8	34.1	36" RCP
35	9.2	17.5	24" RCP
36	18.5	34.9	30" RCP
37A	7.9	15.1	24" RCP
37B	15.9	30.2	30" RCP
37C	6.2	11.7	18" RCP
37D	22.0	42.0	30" RCP
38	28.2	53.7	36" RCP
39	1.6	3.2	18" RCP
40	2.9	5.3	18" RCP
41	15.5	38.1	36" RCP
42	28.3	72.2	48" RCP
43	9.3	17.4	24" RCP
44	2.1	5.5	18" RCP
45	60.9	108.3	54" RCP
46	61.9	111.0	54" RCP
47	61.9	111.0	54" RCP
48	164.5	322.3	78" RCP
49	164.5	322.3	78" RCP

Figure 8-10. Inlet Capacity Chart Sump Conditions, Area (Type C) Inlet



1. The standard inlet parameters must apply to use these charts.

Notes:

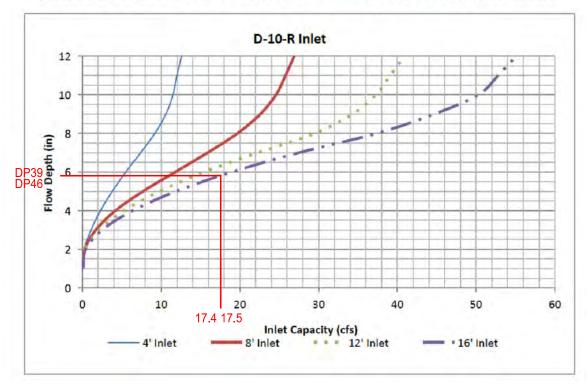
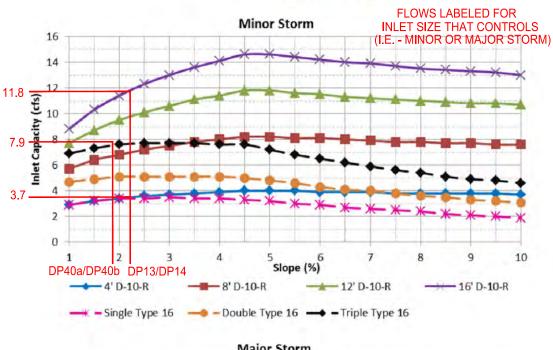
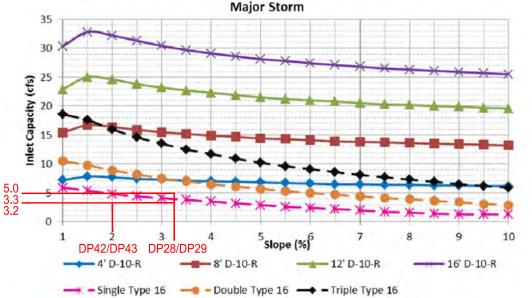
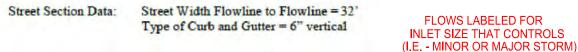
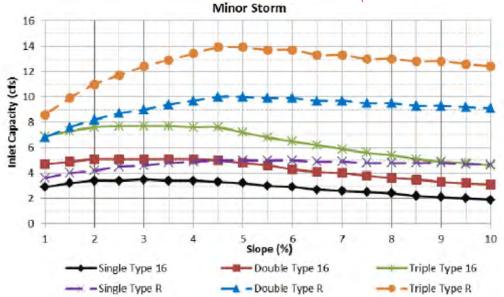
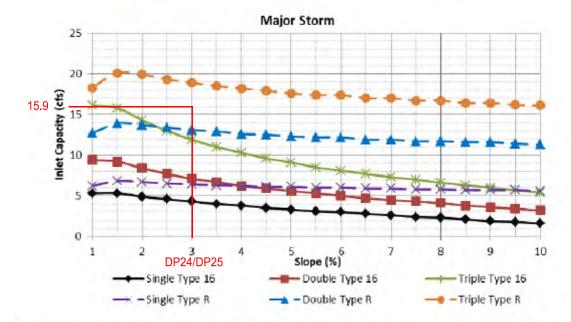




Figure 8-6. Inlet Capacity Chart Continuous Grade Conditions, Collector (without parking)

Street Section Data: Street Width Flowline to Flowline = 32'

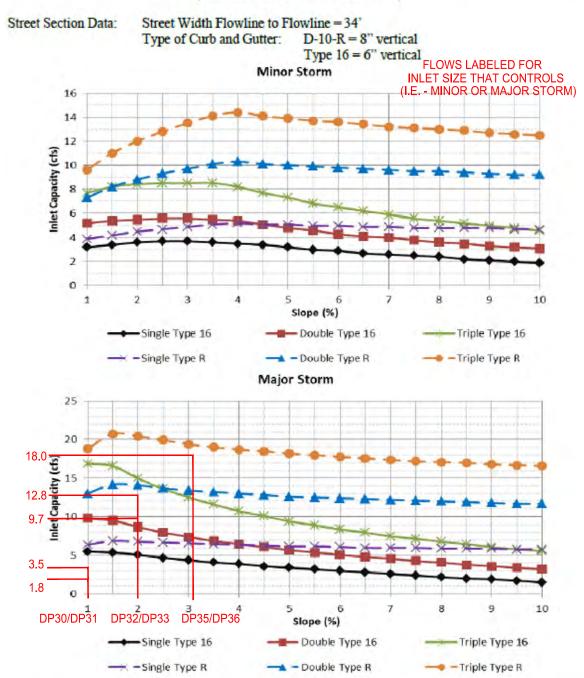

Type of Curb and Gutter: D-10-R = 8" vertical Type 16 = 6" vertical





The standard street section parameters as defined in Chapter 7 must apply to use these charts. For non-standard sections, the inlet capacity shall be calculated using the UDFCD spreadsheets. The maximum spread width is limited by the curb height based on no curb overtopping during a minor storm and flow being contained within the public right-of-way during the major storm. Calculations were done using UD-Inlet 3.00.xls, Mar., 2011 with the default clogging factors.

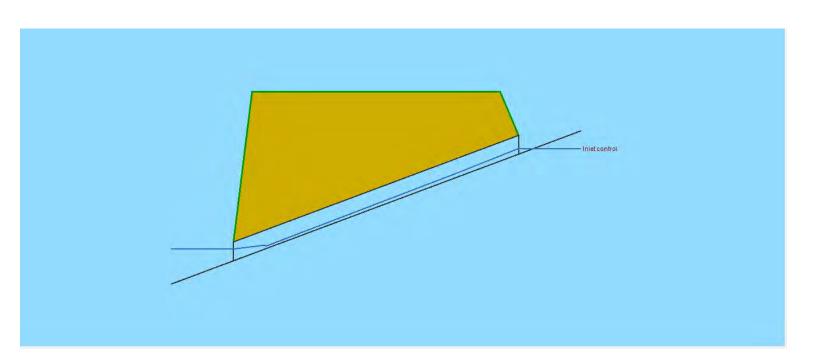
Figure 8-8. Inlet Capacity Chart Continuous Grade Conditions, Minor Residential (Local)
(Detached Sidewalk)



The standard street section parameters as defined in Chapter 7 must apply to use these charts. For non-standard sections, the inlet capacity shall be calculated using the UDFCD spreadsheets. The maximum spread width is limited by the curb height based on no curb overtopping during a minor storm and flow being contained within the public right-of-way during the major storm. Calculations were done using UD-Inlet 3.00.xls, Mar., 2011 with the default clogging factors.

Inlets Chapter 8

Figure 8-7. Inlet Capacity Chart Continuous Grade Conditions, Residential (Local)
(Attached and Detached Sidewalk)

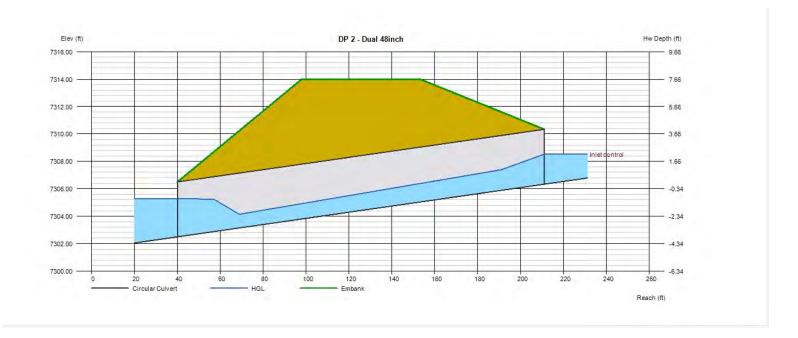

The standard street section parameters as defined in Chapter 7 must apply to use these charts. For non-standard sections, the inlet capacity shall be calculated using the UDFCD spreadsheets. The maximum spread width is limited by the curb height based on no curb overtopping during a minor storm and flow being contained within the public right-of-way during the major storm. Calculations were done using UD-Inlet 3.00.xls, Mar., 2011 with the default clogging factors.

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jan 18 2023

DP 1 - 36inch

Invert Elev Dn (ft)	= 7343.00	Calculations	
Pipe Length (ft)	= 230.00	Qmin (cfs)	= 5.70
Slope (%)	= 7.39	Qmax (cfs)	= 5.70
Invert Elev Up (ft)	= 7360.00	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 36.0	• •	, ,
Shape	= Circular	Highlighted	
Span (in)	= 36.0	Qtotal (cfs)	= 5.70
No. Barrels	= 1	Qpipe (cfs)	= 5.70
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 1.23
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 4.14
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7344.87
		HGL Up (ft)	= 7360.75
Embankment		Hw Elev (ft)	= 7360.91
Top Elevation (ft)	= 7370.00	Hw/D (ft)	= 0.30
Top Width (ft)	= 200.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 1000.00	-	
Crest Width (It)	= 1000.00		

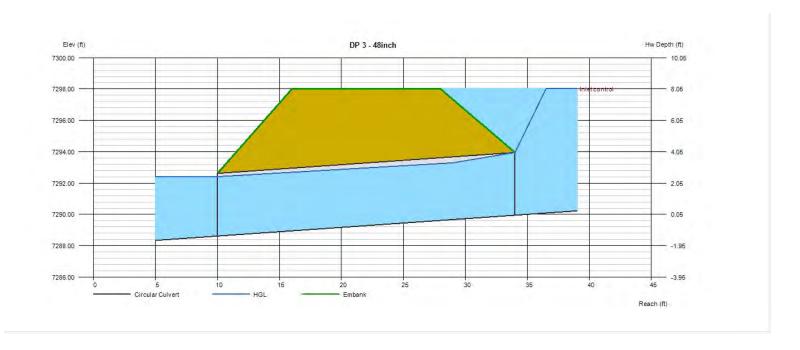


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jan 18 2023

DP 2 - Dual 48inch

Invert Elev Dn (ft)	= 7302.50	Calculations	
Pipe Length (ft)	= 171.00	Qmin (cfs)	= 57.40
Slope (%)	= 2.25	Qmax (cfs)	= 57.40
Invert Elev Up (ft)	= 7306.34	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 48.0		
Shape	= Circular	Highlighted	
Span (in)	= 48.0	Qtotal (cfs)	= 57.40
No. Barrels	= 2	Qpipe (cfs)	= 57.40
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 3.06
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 6.18
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7305.29
		HGL Up (ft)	= 7307.93
Embankment		Hw Elev (ft)	= 7308.53
Top Elevation (ft)	= 7314.00	Hw/D (ft)	= 0.55
Top Width (ft)	= 55.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 1000.00		

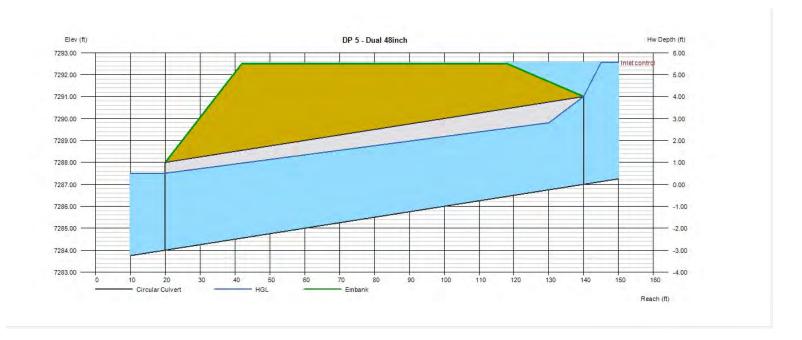


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jan 18 2023

DP 3 - 48inch

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7288.62 = 24.00 = 5.54 = 7289.95 = 48.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 150.00 = 208.10 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 48.0	Qtotal (cfs)	= 150.00
No. Barrels	= 1	Qpipe (cfs)	= 147.71
n-Value	= 0.013	Qovertop (cfs)	= 2.29
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 12.00
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 12.46
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7292.41
		HGL Up (ft)	= 7293.53
Embankment		Hw Elev (ft)	= 7298.02
Top Elevation (ft)	= 7298.00	Hw/D (ft)	= 2.02
Top Width (ft)	= 12.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 1000.00	-	

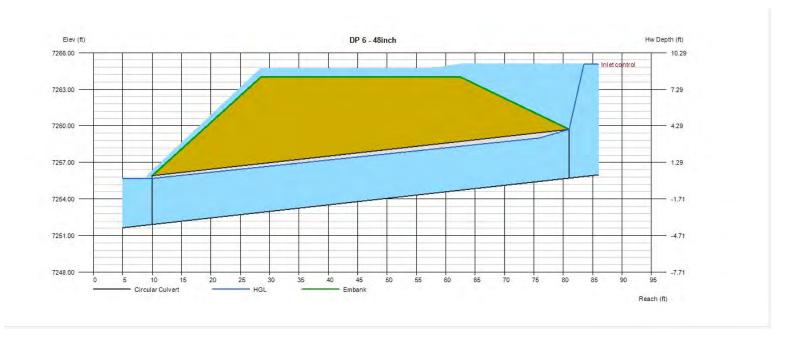


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jan 18 2023

DP 5 - Dual 48inch

Invert Elev Dn (ft)	= 7284.00	Calculations	
Pipe Length (ft)	= 120.00	Qmin (cfs)	= 225.30
Slope (%)	= 2.50	Qmax (cfs)	= 225.30
Invert Elev Up (ft)	= 7287.00	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 48.0		
Shape	= Circular	Highlighted	
Span (in)	= 48.0	Qtotal (cfs)	= 225.30
No. Barrels	= 2	Qpipe (cfs)	= 198.23
n-Value	= 0.023	Qovertop (cfs)	= 27.07
Culvert Type	 Circular Corrugate Metal Pipe 	Veloc Dn (ft/s)	= 8.49
Culvert Entrance	= Projecting	Veloc Up (ft/s)	= 9.76
Coeff. K,M,c,Y,k	= 0.034, 1.5, 0.0553, 0.54, 0.9	HGL Dn (ft)	= 7287.51
		HGL Up (ft)	= 7290.01
Embankment		Hw Elev (ft)	= 7292.55
Top Elevation (ft)	= 7292.50	Hw/D (ft)	= 1.39
Top Width (ft)	= 76.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 1000.00		

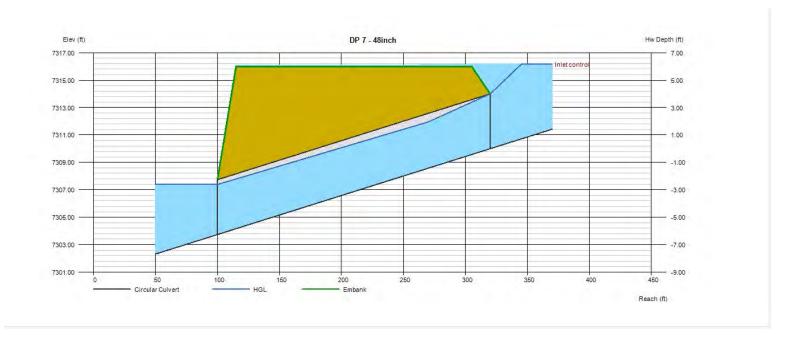


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jan 18 2023

DP 6 - 48inch

Invert Elev Dn (ft)	= 7251.91	Calculations	
Pipe Length (ft)	= 71.00	Qmin (cfs)	= 471.00
Slope (%)	= 5.35	Qmax (cfs)	= 471.00
Invert Elev Up (ft)	= 7255.71	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 48.0		
Shape	= Circular	Highlighted	
Span (in)	= 48.0	Qtotal (cfs)	= 471.00
No. Barrels	= 1	Qpipe (cfs)	= 144.22
n-Value	= 0.023	Qovertop (cfs)	= 326.78
Culvert Type	 Circular Corrugate Metal Pipe 	Veloc Dn (ft/s)	= 11.74
Culvert Entrance	= Projecting	Veloc Up (ft/s)	= 12.24
Coeff. K,M,c,Y,k	= 0.034, 1.5, 0.0553, 0.54, 0.9	HGL Dn (ft)	= 7255.68
		HGL Up (ft)	= 7259.26
Embankment		Hw Elev (ft)	= 7265.05
Top Elevation (ft)	= 7264.00	Hw/D (ft)	= 2.33
Top Width (ft)	= 34.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00		



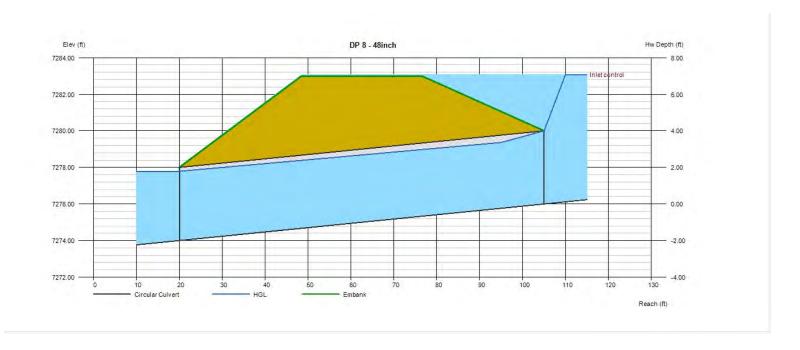
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jan 18 2023

DP 7 - 48inch

Invert Elev Dn (ft)	= 7303.74	Calculations	
Pipe Length (ft)	= 220.00	Qmin (cfs)	= 136.70
Slope (%)	= 2.85	Qmax (cfs)	= 136.70
Invert Elev Up (ft)	= 7310.00	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 48.0		
Shape	= Circular	Highlighted	
Span (in)	= 48.0	Qtotal (cfs)	= 136.70
No. Barrels	= 1	Qpipe (cfs)	= 119.90
n-Value	= 0.023	Qovertop (cfs)	= 16.80
Culvert Type	 Circular Corrugate Metal Pipe 	Veloc Dn (ft/s)	= 9.97
Culvert Entrance	= Headwall	Veloc Up (ft/s)	= 10.83
Coeff. K,M,c,Y,k	= 0.0078, 2, 0.0379, 0.69, 0.5	HGL Dn (ft)	= 7307.39
		HGL Up (ft)	= 7313.29
Embankment		Hw Elev (ft)	= 7316.15
Top Elevation (ft)	= 7316.00	Hw/D (ft)	= 1.54
Top Width (ft)	= 190.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

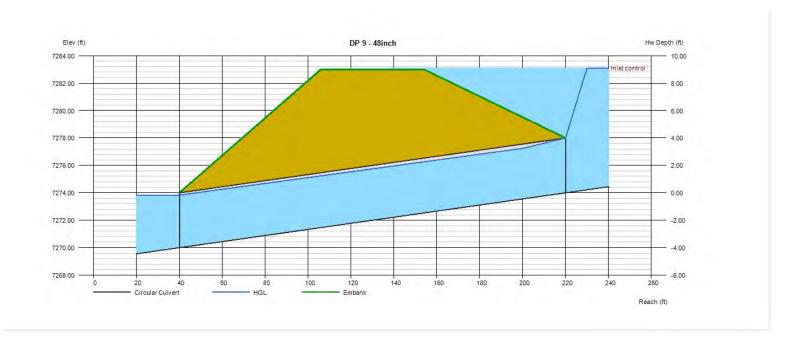

= 100.00

Wednesday, Jan 18 2023

DP 8 - 48inch

Crest Width (ft)

Invert Elev Dn (ft)	= 7274.00	Calculations	
Pipe Length (ft)	= 85.00	Qmin (cfs)	= 153.20
Slope (%)	= 2.35	Qmax (cfs)	= 153.20
Invert Elev Up (ft)	= 7276.00	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 48.0	. ,	
Shape	= Circular	Highlighted	
Span (in)	= 48.0	Qtotal (cfs)	= 153.20
No. Barrels	= 1	Qpipe (cfs)	= 147.49
n-Value	= 0.013	Qovertop (cfs)	= 5.71
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 11.98
Culvert Entrance	= Groove end projecting (C)	Veloc Up (ft/s)	= 12.45
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 7277.79
		HGL Up (ft)	= 7279.57
Embankment		Hw Elev (ft)	= 7283.08
Top Elevation (ft)	= 7283.00	Hw/D (ft)	= 1.77
Top Width (ft)	= 28.00	Flow Regime	= Inlet Control

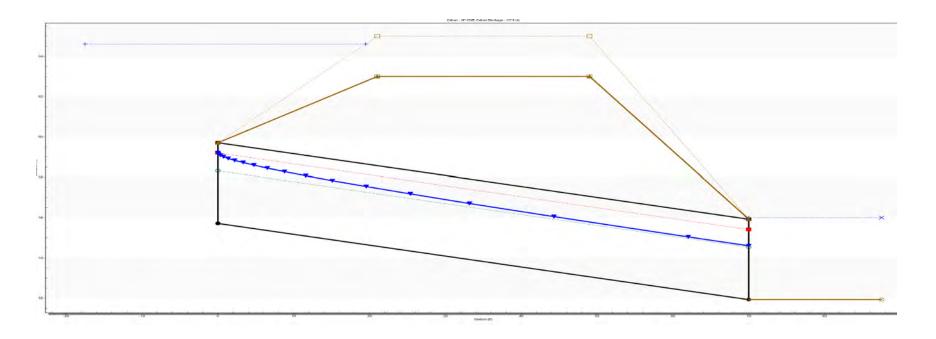


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Jan 18 2023

DP 9 - 48inch

Invert Elev Dn (ft)	= 7270.00	Calculations	
Pipe Length (ft)	= 180.00	Qmin (cfs)	= 167.50
Slope (%)	= 2.22	Qmax (cfs)	= 167.50
Invert Elev Up (ft)	= 7274.00	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 48.0		
Shape	= Circular	Highlighted	
Span (in)	= 48.0	Qtotal (cfs)	= 167.50
No. Barrels	= 1	Qpipe (cfs)	= 160.07
n-Value	= 0.013	Qovertop (cfs)	= 7.43
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 12.92
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 13.27
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7273.83
		HGL Up (ft)	= 7277.67
Embankment		Hw Elev (ft)	= 7283.09
Top Elevation (ft)	= 7283.00	Hw/D (ft)	= 2.27
Top Width (ft)	= 48.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 100.00		

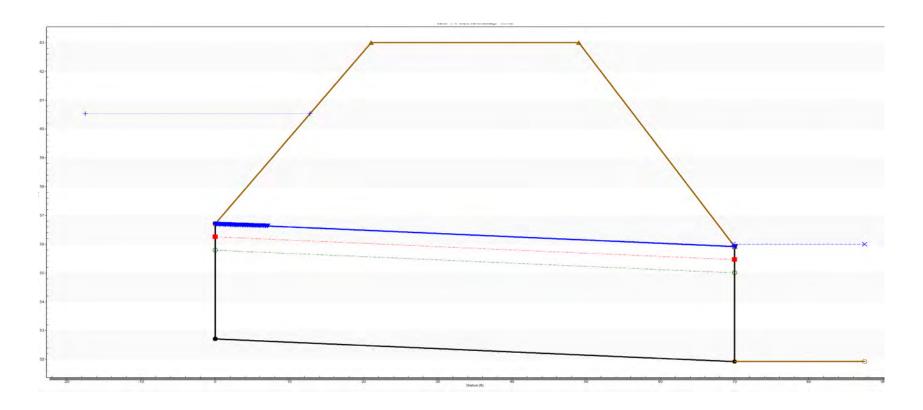

Culvert Crossing: DP6

COUNTY LINE ROAD CROSSING – 48" CMP CULVERT INVERT IN 55.7, TOP OF EMBANKMENT 63.0

OVERTOPS ROAD DURING BOTH MINOR AND MAJOR STORM EVENTS

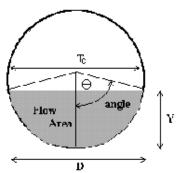
Customized Table

Discharg e Names	Total Discharg e (cfs)	Culvert Discharg e (cfs)	Headwate r Elevation (ft)	Inlet Control Depth(ft)	Outlet Control Depth(ft)	Flow Typ e	Norma l Depth (ft)	Critica l Depth (ft)	Outle t Dept h (ft)	Tailwate r Depth (ft)	Outlet Velocit y (ft/s)	Tailwate r Velocity (ft/s)
5 year	214.3	129.73	63.86	8.15	5.37	5- S2n	2.50	3.41	2.57	4.08	15.22	0.00
100 year	488.0	136.91	64.52	8.81	5.95	5-s- 2n	2.60	3.48	2.67	4.08	15.38	0.00



Culvert Crossing: DP54

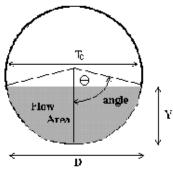
COUNTY LINE ROAD CROSSING – 48" (3) CULVERTS WITH DEPRESSION AT INLET INVERT IN 55.7, TOP OF EMBANKMENT 63.0


Customized Table

Discharg e Names	Total Discharg e (cfs)	Culvert Discharg e (cfs)	Headwate r Elevation (ft)	Inlet Control Depth(ft)	Outlet Control Depth(ft)	Flow Typ e	Norma l Depth (ft)	Critica l Depth (ft)	Outle t Depth (ft)	Tailwate r Depth (ft)	Outlet Velocit y (ft/s)	Tailwate r Velocity (ft/s)
5 year	211.70	211.70	57.34	4.63	4.25	5-S1t	1.91	2.54	4.00	4.08	5.62	0.00
100 year	431.30	431.30	60.53	7.82	7.82	5-S1t	3.08	3.54	4.00	4.08	11.44	0.00

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East
Pipe ID: PIPE 1

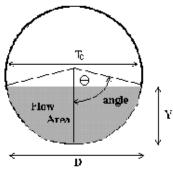


Design Information (Input)			
Pipe Invert Slope	So =	0.0080	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	30.00	inches
Design discharge	Q =	30.60	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	4.91	sq ft
Full-flow wetted perimeter	Pf =	7.85	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	36.79	cfs
Calculation of Normal Flow Condition			<u></u>
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.97</td><td>radians</td></theta<3.14)<>	Theta =	1.97	radians
Flow area	An =	3.65	sq ft
Top width	Tn =	2.30	ft
Wetted perimeter	Pn =	4.94	ft
Flow depth	Yn =	1.74	ft
Flow velocity	Vn =	8.38	fps
Discharge	Qn =	30.60	cfs
Percent of Full Flow	Flow =	83.2%	of full flow
Normal Depth Froude Number	Fr _n =	1.17	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.10</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.10	radians
Critical flow area	Ac =	3.97	sq ft
Critical top width	Tc =	2.15	ft
Critical flow depth	Yc =	1.89	ft
Critical flow velocity	Vc =	7.71	fps
Critical Depth Froude Number	Fr _c =	1.00	
	<u> </u>		

MHFD-Culvert_v4.0 - 1, Pipe 2/6/2024, 5:57 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East
Pipe ID: PIPE 2

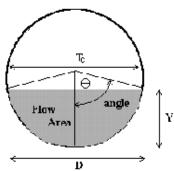


	ь		
Design Information (Input)			
Pipe Invert Slope	So =	0.0210	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	30.00	inches
Design discharge	Q =	42.40	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	4.91	sq ft
Full-flow wetted perimeter	Pf =	7.85	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	59.60	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.82</td><td>radians</td></theta<3.14)<>	Theta =	1.82	radians
Flow area	An =	3.22	sq ft
Top width	Tn =	2.42	ft
Wetted perimeter	Pn =	4.55	ft
Flow depth	Yn =	1.56	ft
Flow velocity	Vn =	13.18	fps
Discharge	Qn =	42.40	cfs
Percent of Full Flow	Flow =	71.1%	of full flow
Normal Depth Froude Number	Fr _n =	2.02	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.41</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.41	radians
Critical flow area	Ac =	4.54	sq ft
Critical top width	Tc =	1.67	ft
Critical flow depth	Yc =	2.18	ft
Critical flow velocity	Vc =	9.34	fps
Critical Depth Froude Number	Fr _c =	1.00	
		•	

MHFD-Culvert_v4.0 - 2, Pipe 2/6/2024, 5:58 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 3

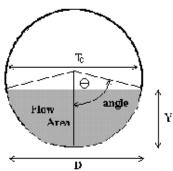


	ь		
Design Information (Input)			
Pipe Invert Slope	So =	0.0300	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	24.00	inches
Design discharge	Q =	25.20	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	3.14	sq ft
Full-flow wetted perimeter	Pf =	6.28	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	39.29	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.74</td><td>radians</td></theta<3.14)<>	Theta =	1.74	radians
Flow area	An =	1.90	sq ft
Top width	Tn =	1.97	ft
Wetted perimeter	Pn =	3.47	ft
Flow depth	Yn =	1.16	ft
Flow velocity	Vn =	13.27	fps
Discharge	Qn =	25.20	cfs
Percent of Full Flow	Flow =	64.1%	of full flow
Normal Depth Froude Number	Fr _n =	2.38	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.44</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.44	radians
Critical flow area	Ac =	2.94	sq ft
Critical top width	Tc =	1.28	ft
Critical flow depth	Yc =	1.77	ft
Critical flow velocity	Vc =	8.58	fps
Critical Depth Froude Number	Fr _c =	1.00	
		•	

MHFD-Culvert_v4.0 - 3, Pipe 2/6/2024, 6:00 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 4

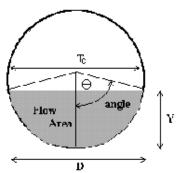


	-		
Design Information (Input)			
Pipe Invert Slope	So =	0.0200	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	36.00	inches
Design discharge	Q =	67.60	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	7.07	sq ft
Full-flow wetted perimeter	Pf =	9.42	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	94.58	cfs
			
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.82</td><td>radians</td></theta<3.14)<>	Theta =	1.82	radians
Flow area	An =	4.65	sq ft
Top width	Tn =	2.90	ft
Wetted perimeter	Pn =	5.47	ft
Flow depth	Yn =	1.88	ft
Flow velocity	Vn =	14.54	fps
Discharge	Qn =	67.61	cfs
Percent of Full Flow	Flow =	71.5%	of full flow
Normal Depth Froude Number	Fr _n =	2.03	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.42</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.42	radians
Critical flow area	Ac =	6.56	sq ft
Critical top width	Tc =	1.99	ft
Critical flow depth	Yc =	2.62	ft
Critical flow velocity	Vc =	10.31	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 4, Pipe 2/6/2024, 6:01 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East
Pipe ID: PIPE 5

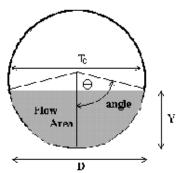


Design Information (Input)			
Pipe Invert Slope	So =	0.0200	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	9.70	cfs
[
Full-Flow Capacity (Calculated)			¬
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	14.90	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.75</td><td>radians</td></theta<3.14)<>	Theta =	1.75	radians
Flow area	An =	1.08	sq ft
Top width	Tn =	1.48	ft
Wetted perimeter	Pn =	2.62	ft
Flow depth	Yn =	0.88	ft
Flow velocity	Vn =	8.98	fps
Discharge	Qn =	9.70	cfs
Percent of Full Flow	Flow =	65.1%	of full flow
Normal Depth Froude Number	Fr _n =	1.85	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.22</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.22	radians
Critical flow area	Ac =	1.52	sq ft
Critical top width	Tc =	1.20	ft
Critical flow depth	Yc =	1.20	ft
Critical flow velocity	Vc =	6.39	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 5, Pipe 2/6/2024, 6:02 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 7

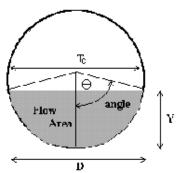


Design Information (Input)			
Pipe Invert Slope	So =	0.0170	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	42.00	inches
Design discharge	Q =	77.30	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	9.62	sq ft
Full-flow wetted perimeter	Pf =	11.00	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	131.53	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.67</td><td>radians</td></theta<3.14)<>	Theta =	1.67	radians
Flow area	An =	5.44	sq ft
Top width	Tn =	3.48	ft
Wetted perimeter	Pn =	5.86	ft
Flow depth	Yn =	1.93	ft
Flow velocity	Vn =	14.22	fps
Discharge	Qn =	77.30	cfs
Percent of Full Flow	Flow =	58.8%	of full flow
Normal Depth Froude Number	Fr _n =	2.01	supercritical
	·		
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.18</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.18	radians
Critical flow area	Ac =	8.11	sq ft
Critical top width	Tc =	2.87	ft
Critical flow depth	Yc =	2.75	ft
Critical flow velocity	Vc =	9.53	fps
Critical Depth Froude Number	Fr _c =	1.00	
			

MHFD-Culvert_v4.0 - 7, Pipe 2/6/2024, 6:03 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East
Pipe ID: PIPE 8

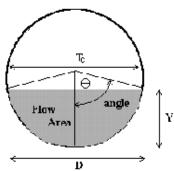


Design Information (Input)			
Pipe Invert Slope	So =	0.0400	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	3.50	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	21.07	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.11</td><td>radians</td></theta<3.14)<>	Theta =	1.11	radians
Flow area	An =	0.40	sq ft
Top width	Tn =	1.34	ft
Wetted perimeter	Pn =	1.66	ft
Flow depth	Yn =	0.41	ft
Flow velocity	Vn =	8.83	fps
Discharge	Qn =	3.50	cfs
Percent of Full Flow	Flow =	16.6%	of full flow
Normal Depth Froude Number	Fr _n =	2.86	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.52</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.52	radians
Critical flow area	Ac =	0.83	sq ft
Critical top width	Tc =	1.50	ft
Critical flow depth	Yc =	0.71	ft
Critical flow velocity	Vc =	4.22	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 8, Pipe 2/6/2024, 6:04 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 9

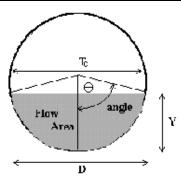


Design Information (Input)			
Pipe Invert Slope	So =	0.0400	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	42.00	inches
Design discharge	Q =	80.70	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	9.62	sq ft
Full-flow wetted perimeter	Pf =	11.00	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	201.76	cfs
Calculation of Normal Flow Condition			<u></u>
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.45</td><td>radians</td></theta<3.14)<>	Theta =	1.45	radians
Flow area	An =	4.08	sq ft
Top width	Tn =	3.47	ft
Wetted perimeter	Pn =	5.08	ft
Flow depth	Yn =	1.54	ft
Flow velocity	Vn =	19.80	fps
Discharge	Qn =	80.71	cfs
Percent of Full Flow	Flow =	40.0%	of full flow
Normal Depth Froude Number	Fr _n =	3.22	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.22</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.22	radians
Critical flow area	Ac =	8.27	sq ft
Critical top width	Tc =	2.79	ft
Critical flow depth	Yc =	2.81	ft
Critical flow velocity	Vc =	9.76	fps
Critical Depth Froude Number	Fr _c =	1.00	
	<u></u>		

MHFD-Culvert_v4.0 - 9, Pipe 2/6/2024, 6:05 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 10

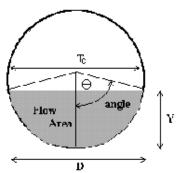


Design Information (Input)			
Pipe Invert Slope	So =	0.0200	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	24.00	inches
Design discharge	Q =	15.30	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	3.14	sq ft
Full-flow wetted perimeter	Pf =	6.28	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	32.08	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.54</td><td>radians</td></theta<3.14)<>	Theta =	1.54	radians
Flow area	An =	1.52	sq ft
Top width	Tn =	2.00	ft
Wetted perimeter	Pn =	3.09	ft
Flow depth	Yn =	0.97	ft
Flow velocity	Vn =	10.09	fps
Discharge	Qn =	15.30	cfs
Percent of Full Flow	Flow =	47.7%	of full flow
Normal Depth Froude Number	Fr _n =	2.04	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.99</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.99	radians
Critical flow area	Ac =	2.37	sq ft
Critical top width	Tc =	1.82	ft
Critical flow depth	Yc =	1.41	ft
Critical flow velocity	Vc =	6.46	fps
Critical Depth Froude Number	$Fr_c =$	1.00	」 '

MHFD-Culvert_v4.0 - 10, Pipe 2/6/2024, 6:06 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 11

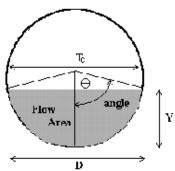


Design Information (Input)			
Pipe Invert Slope	So =	0.0200	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	30.00	inches
Design discharge	Q =	30.60	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	4.91	sq ft
Full-flow wetted perimeter	Pf =	7.85	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	58.16	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.60</td><td>radians</td></theta<3.14)<>	Theta =	1.60	radians
Flow area	An =	2.55	sq ft
Top width	Tn =	2.50	ft
Wetted perimeter	Pn =	4.00	ft
Flow depth	Yn =	1.29	ft
Flow velocity	Vn =	12.00	fps
Discharge	Qn =	30.60	cfs
Percent of Full Flow	Flow =	52.6%	of full flow
Normal Depth Froude Number	$Fr_n =$	2.09	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.10</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.10	radians
Critical flow area	Ac =	3.97	sq ft
Critical top width	Tc =	2.15	ft
Critical flow depth	Yc =	1.89	ft
Critical flow velocity	Vc =	7.71	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 11, Pipe 2/6/2024, 6:06 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 12



Design Information (Input)			
Pipe Invert Slope	So =	0.0400	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	48.00	inches
Design discharge	Q =	111.30	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	12.57	sq ft
Full-flow wetted perimeter	Pf =	12.57	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	288.06	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.43</td><td>radians</td></theta<3.14)<>	Theta =	1.43	radians
Flow area	An =	5.19	sq ft
Top width	Tn =	3.96	ft
Wetted perimeter	Pn =	5.73	ft
Flow depth	Yn =	1.73	ft
Flow velocity	Vn =	21.45	fps
Discharge	Qn =	111.31	cfs
Percent of Full Flow	Flow =	38.6%	of full flow
Normal Depth Froude Number	$Fr_n =$	3.30	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.21</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.21	radians
Critical flow area	Ac =	10.74	sq ft
Critical top width	Tc =	3.22	ft
Critical flow depth	Yc =	3.19	ft
Critical flow velocity	Vc =	10.36	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 12, Pipe 2/6/2024, 6:07 AM

MHFD-Culvert, Version 4.00 (May 2020)

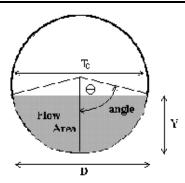
Project: Monument Ridge East Pipe ID: PIPE 13

	-		
Design Information (Input)			
Pipe Invert Slope	So =	0.0200	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	24.00	inches
Design discharge	Q =	24.70	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	3.14	sq ft
Full-flow wetted perimeter	Pf =	6.28	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	32.08	cfs
			
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.89</td><td>radians</td></theta<3.14)<>	Theta =	1.89	radians
Flow area	An =	2.19	sq ft
Top width	Tn =	1.90	ft
Wetted perimeter	Pn =	3.79	ft
Flow depth	Yn =	1.32	ft
Flow velocity	Vn =	11.26	fps
Discharge	Qn =	24.70	cfs
Percent of Full Flow	Flow =	77.0%	of full flow
Normal Depth Froude Number	Fr _n =	1.85	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.42</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.42	radians
Critical flow area	Ac =	2.92	sq ft
Critical top width	Tc =	1.31	ft
Critical flow depth	Yc =	1.75	ft
Critical flow velocity	Vc =	8.46	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 13, Pipe 2/6/2024, 6:08 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 15

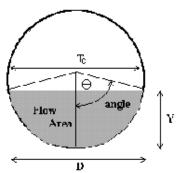


So = n = D =	0.0200 0.0130	ft/ft
• • • •	0.0130	
D =	0.0.00	
	24.00	inches
Q =	19.60	cfs
		- -
Af =	3.14	sq ft
Pf =	6.28	ft
Theta =	3.14	radians
Qf =	32.08	cfs
-		=
Theta =	1.70	radians
An =	1.83	sq ft
Tn =	1.98	ft
Pn =	3.40	ft
Yn =	1.13	ft
Vn =	10.72	fps
Qn =	19.60	cfs
Flow =	61.1%	of full flow
Fr _n =	1.97	supercritical
_		_
Theta-c =	2.20	radians
Ac =	2.68	sq ft
Tc =	1.61	ft
Yc =	1.59	ft
Vc =	7.31	fps
$Fr_c =$	1.00	
	·	
-	Af = Pf = Theta = Qf = Theta = An = Tn = Pn = Yn = Qn = Flow = Fr _n = Tc = Yc = Vc = Vc = Vc = Theta = Theta = Tc = Yc = Vc = Vc = Theta = Theta = Tc = T	$\begin{array}{c} \text{Af} = & 3.14 \\ \text{Pf} = & 6.28 \\ \text{Theta} = & 3.14 \\ \text{Qf} = & 32.08 \\ \end{array}$ $\begin{array}{c} \text{Theta} = & 1.70 \\ \text{An} = & 1.83 \\ \text{Tn} = & 1.98 \\ \text{Pn} = & 3.40 \\ \text{Yn} = & 1.13 \\ \text{Vn} = & 10.72 \\ \text{Qn} = & 19.60 \\ \text{Flow} = & 61.1\% \\ \text{Fr}_n = & 1.97 \\ \end{array}$ $\begin{array}{c} \text{Theta-c} = & 2.20 \\ \text{Ac} = & 2.68 \\ \text{Tc} = & 1.61 \\ \text{Yc} = & 1.59 \\ \text{Vc} = & 7.31 \\ \end{array}$

MHFD-Culvert_v4.0 - 15, Pipe 2/6/2024, 6:09 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 16

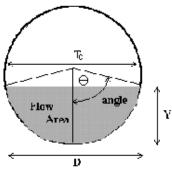


Design Information (Input)			
Pipe Invert Slope	So =	0.0100	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	24.00	inches
Design discharge	Q =	12.20	cfs
	<u> </u>		
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	3.14	sq ft
Full-flow wetted perimeter	Pf =	6.28	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	22.68	cfs
Calculation of Normal Flow Condition			<u></u>
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.62</td><td>radians</td></theta<3.14)<>	Theta =	1.62	radians
Flow area	An =	1.66	sq ft
Top width	Tn =	2.00	ft
Wetted perimeter	Pn =	3.23	ft
Flow depth	Yn =	1.04	ft
Flow velocity	Vn =	7.35	fps
Discharge	Qn =	12.20	cfs
Percent of Full Flow	Flow =	53.8%	of full flow
Normal Depth Froude Number	Fr _n =	1.42	supercritical
			
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.83</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.83	radians
Critical flow area	Ac =	2.08	sq ft
Critical top width	Tc =	1.93	ft
Critical flow depth	Yc =	1.26	ft
Critical flow velocity	Vc =	5.88	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 16, Pipe 2/6/2024, 6:10 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 17

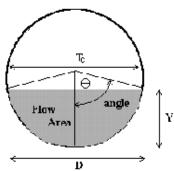


Design Information (Input)	_		
Pipe Invert Slope	So =	0.0110	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	30.00	inches
Design discharge	Q =	31.80	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	4.91	sq ft
Full-flow wetted perimeter	Pf =	7.85	sq rt
	Theta =	3.14	radians
Half Central Angle	Of =		
Full-flow capacity	QI =	43.13	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.85</td><td>radians</td></theta<3.14)<>	Theta =	1.85	radians
Flow area	An =	3.31	sq ft
Top width	Tn =	2.40	ft
Wetted perimeter	Pn =	4.63	ft
Flow depth	Yn =	1.60	ft
Flow velocity	Vn =	9.61	fps
Discharge	Qn =	31.80	cfs
Percent of Full Flow	Flow =	73.7%	of full flow
Normal Depth Froude Number	$Fr_n =$	1.44	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.14</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.14	radians
Critical flow area	Ac =	4.05	sq ft
Critical flow area Critical top width	Tc =	2.11	ft sq 11
Critical top width Critical flow depth	Yc =	1.92	- 't
Critical flow velocity	Vc =	7.86	
Critical flow velocity Critical Depth Froude Number	Fr _c =	1.00	fps
ornical popul froude Number	11c -	1.00	

MHFD-Culvert_v4.0 - 17, Pipe 2/6/2024, 6:10 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East
Pipe ID: PIPE 18

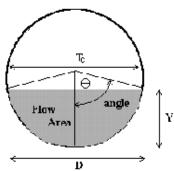


Design Information (Input)			
Pipe Invert Slope	So =	0.0250	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	36.00	inches
Design discharge	Q =	56.50	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	7.07	og ft
	AI = Pf =		sq ft
Full-flow wetted perimeter		9.42	
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	105.74	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.61</td><td>radians</td></theta<3.14)<>	Theta =	1.61	radians
Flow area	An =	3.72	sq ft
Top width	Tn =	3.00	ft
Wetted perimeter	Pn =	4.83	ft
Flow depth	Yn =	1.56	ft
Flow velocity	Vn =	15.21	fps
Discharge	Qn =	56.51	cfs
Percent of Full Flow	Flow =	53.4%	of full flow
Normal Depth Froude Number	Fr _n =	2.41	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.24</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.24	radians
Critical flow area	Ac =	6.15	sq ft
Critical top width	Tc =	2.34	ft
Critical flow depth	Yc =	2.44	ft
Critical flow velocity	Vc =	9.19	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 18, Pipe 2/6/2024, 6:11 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 19

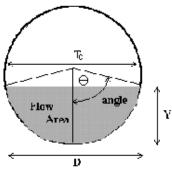


Design Information (Input)			
Pipe Invert Slope	So =	0.0100	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	24.00	inches
Design discharge	Q =	9.50	cfs
Full-Flow Capacity (Calculated)	. —		
Full-flow area	Af =	3.14	sq ft
Full-flow wetted perimeter	Pf =	6.28	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	22.68	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.47</td><td>radians</td></theta<3.14)<>	Theta =	1.47	radians
Flow area	An =	1.38	sq ft
Top width	Tn =	1.99	ft
Wetted perimeter	Pn =	2.95	ft
Flow depth	Yn =	0.90	ft
Flow velocity	Vn =	6.90	fps
Discharge	Qn =	9.50	cfs
Percent of Full Flow	Flow =	41.9%	of full flow
Normal Depth Froude Number	Fr _n =	1.46	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.67</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.67	radians
Critical flow area	Ac =	1.77	sq ft
Critical top width	Tc =	1.99	
Critical flow depth	Yc =	1.10	ft
Critical flow velocity	Vc =	5.36	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 19, Pipe 2/6/2024, 6:12 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 20

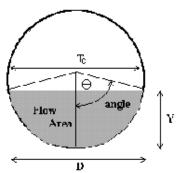


· · · · · · · · · · · · · · · · · · ·				
Pipe Manning's n-value	Design Information (Input)			
Pipe Diameter	Pipe Invert Slope	So =	0.0140	ft/ft
Design discharge	Pipe Manning's n-value	n =	0.0130	
Full-Flow Capacity (Calculated) Full-flow area Full-flow wetted perimeter Full-flow wetted perimeter Full-flow wetted perimeter Full-flow wetted perimeter Full-flow capacity Full-flow capacity Full-flow capacity Full-flow capacity Calculation of Normal Flow Condition Half Central Angle (0 <theta<3.14) area="" depth="" flow="" flow<="" full="" pischarge="" td="" velocity=""><td>Pipe Diameter</td><td>D =</td><td>24.00</td><td>inches</td></theta<3.14)>	Pipe Diameter	D =	24.00	inches
Full-flow area $ Af = 3.14 \\ Full-flow wetted perimeter \\ Half Central Angle \\ Full-flow capacity \\ Calculation of Normal Flow Condition \\ Half Central Angle (0 < Theta < 3.14) \\ Flow area \\ Top width \\ Wetted perimeter \\ Flow depth \\ Flow velocity \\ Discharge \\ Percent of Full Flow Number \\ Calculation of Critical Flow Condition \\ Formula Flow area \\ Top width \\ Tn = 1.94 \\ Flow telocity \\ Tn = 3.62 \\ Flow fit \\ Flow velocity \\ Tn = 1.24 \\ Flow fit \\ Flow velocity \\ Tn = 1.24 \\ Flow telocity \\ Tn = 1.24 \\ Flow velocity \\ Tn = 1.59 \\ Flow = 1.59 \\ To 4% \\ To full flow Supercritical \\ Theta-c = 2.17 \\ To dians Supercritical \\ Theta-c = 2.17 \\ To dians Supercritical \\ To telocation of Critical Flow Condition \\ Theta-c = 2.64 \\ To telocation of Critical Flow Condition \\ To telocation of Criti$	Design discharge	Q =	18.90	cfs
Full-flow area $ Af = 3.14 \\ Full-flow wetted perimeter \\ Half Central Angle \\ Full-flow capacity \\ Calculation of Normal Flow Condition \\ Half Central Angle (0 < Theta < 3.14) \\ Flow area \\ Top width \\ Wetted perimeter \\ Flow depth \\ Flow velocity \\ Discharge \\ Percent of Full Flow Number \\ Calculation of Critical Flow Condition \\ Formula Flow area \\ Top width \\ Tn = 1.94 \\ Flow telocity \\ Tn = 3.62 \\ Flow fit \\ Flow velocity \\ Tn = 1.24 \\ Flow fit \\ Flow velocity \\ Tn = 1.24 \\ Flow telocity \\ Tn = 1.24 \\ Flow velocity \\ Tn = 1.59 \\ Flow = 1.59 \\ To 4% \\ To full flow Supercritical \\ Theta-c = 2.17 \\ To dians Supercritical \\ Theta-c = 2.17 \\ To dians Supercritical \\ To telocation of Critical Flow Condition \\ Theta-c = 2.64 \\ To telocation of Critical Flow Condition \\ To telocation of Criti$				
Full-flow wetted perimeter $ Pf = 6.28 $	Full-Flow Capacity (Calculated)			<u></u>
Half Central Angle	Full-flow area	Af =	3.14	sq ft
Full-flow capacity $ Qf = $	Full-flow wetted perimeter	Pf =	6.28	ft
Calculation of Normal Flow Condition Half Central Angle (0 <theta<3.14) (0<theta-c<3.14)="" angle="" area="" calculation="" central="" condition="" critical="" depth="" discharge="" fix="" flow="" fps<="" fro="1.65" froude="" ft="" full="" half="" normal="" number="" of="" percent="" perimeter="" radians="" td="" theta="1.81" theta-c="2.17" top="" vc="7.17" velocity="" wetted="" width="" yc="1.56"><td>Half Central Angle</td><td>Theta =</td><td>3.14</td><td>radians</td></theta<3.14)>	Half Central Angle	Theta =	3.14	radians
Half Central Angle (0 <theta<3.14) (0<theta-c<3.14)="" an="2.04" angle="" area="" calculation="" central="" condition="" critical="" depth="" discharge="" flow="" fps<="" froude="" ft="" full="" half="" normal="" number="" of="" percent="" perimeter="" radians="" sq="" tc="1.65" td="" theta-c="2.17" tn="1.94" top="" va="7.17" velocity="" welocity="" wetted="" width=""><td>Full-flow capacity</td><td>Qf =</td><td>26.84</td><td>cfs</td></theta<3.14)>	Full-flow capacity	Qf =	26.84	cfs
Half Central Angle (0 <theta<3.14) (0<theta-c<3.14)="" an="2.04" angle="" area="" calculation="" central="" condition="" critical="" depth="" discharge="" flow="" fps<="" froude="" ft="" full="" half="" normal="" number="" of="" percent="" perimeter="" radians="" sq="" tc="1.65" td="" theta-c="2.17" tn="1.94" top="" va="7.17" velocity="" welocity="" wetted="" width=""><td></td><td></td><td></td><td></td></theta<3.14)>				
Flow area $An = 2.04 \qquad \text{sq ft}$ Top width $Tn = 1.94 \qquad \text{ft}$ Wetted perimeter $Pn = 3.62 \qquad \text{ft}$ Flow depth $Yn = 1.24 \qquad \text{ft}$ Flow velocity $Vn = 9.26 \qquad \text{fps}$ Discharge $Qn = 18.90 \qquad \text{cfs}$ Percent of Full Flow $Pr_n = 1.59 \qquad \text{of full flow}$ Normal Depth Froude Number $Fr_n = 1.59 \qquad \text{supercritical}$ $\frac{Calculation of Critical Flow Condition}{Half Central Angle (0 < Theta-c < 3.14)} \qquad Theta-c = 2.17 \qquad radians$ $Critical flow area \qquad Ac = 2.64 \qquad \text{sq ft}$ $Critical flow depth \qquad Tc = 1.65 \qquad \text{ft}$ $Critical flow depth \qquad Yc = 1.56 \qquad \text{ft}$ $Critical flow velocity \qquad Vc = 7.17 \qquad \text{fps}$	Calculation of Normal Flow Condition			
Top width $Tn = 1.94 \text{ ft}$ Wetted perimeter $Pn = 3.62 \text{ ft}$ Flow depth $Yn = 1.24 \text{ ft}$ Flow velocity $Vn = 9.26 \text{ fps}$ Discharge $Qn = 18.90 \text{ cfs}$ Percent of Full Flow $Flow = 70.4\% \text{ of full flow}$ Normal Depth Froude Number $Fr_n = 1.59 \text{ supercritical}$ $\frac{Calculation \text{ of Critical Flow Condition}}{Critical flow area}$ $Critical flow area$ $Critical flow depth Tc = 1.65 \text{ ft} Critical flow velocity Vc = 7.17 \text{ fps}$	Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.81</td><td>radians</td></theta<3.14)<>	Theta =	1.81	radians
Wetted perimeter $Pn = 3.62 ft$ Flow depth $Yn = 1.24 ft$ Flow velocity $Vn = 9.26 fps$ Discharge $Qn = 18.90 cfs$ Percent of Full Flow $Normal \ Depth \ Froude \ Number$ $Fr_n = 1.59 supercritical$ $Calculation \ of \ Critical \ Flow \ area$ $Ac = 2.64 sq \ ft$ Critical flow area $Ac = 2.64 sq \ ft$ Critical flow depth $Yc = 1.56 ft$ Critical flow velocity $Vc = 7.17 fps$	Flow area	An =	2.04	sq ft
Flow depth $Yn = 1.24 \qquad ft$ Flow velocity $Vn = 9.26 \qquad fps$ Discharge $Qn = 18.90 \qquad cfs$ Percent of Full Flow $Normal Depth Froude Number$ Flow = 70.4% of full flow supercritical Calculation of Critical Flow Condition Half Central Angle (0 <theta-c<3.14) <math="" display="block">Ac = 2.64 \qquad sq ft Critical flow area $Ac = 2.64 \qquad sq ft$ Critical flow depth $Yc = 1.56 \qquad ft$ Critical flow velocity $Vc = 7.17 \qquad fps$</theta-c<3.14)>	Top width	Tn =	1.94	ft
Flow velocity $ Vn = 9.26 \qquad fps \\ Discharge & Qn = 18.90 \qquad cfs \\ Percent of Full Flow & Flow = 70.4\% \qquad of full flow \\ Normal Depth Froude Number & Fr_n = 1.59 \qquad supercritical \\ \hline Calculation of Critical Flow Condition \\ Half Central Angle (0$	Wetted perimeter	Pn =	3.62	ft
Discharge $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Flow depth	Yn =	1.24	ft
Percent of Full Flow Normal Depth Froude Number $Fr_{n} = \begin{array}{c} 70.4\% & \text{of full flow} \\ \hline 70.4\% & \text{of full flow} \\ \hline 80 & \text{supercritical} \\ \hline \hline 80 & \text{Supercritical} \\ \hline \\ \hline 80 & S$	Flow velocity	Vn =	9.26	fps
Normal Depth Froude Number $Fr_{n} = 1.59 \qquad \text{supercritical}$ $\frac{\text{Calculation of Critical Flow Condition}}{\text{Half Central Angle (0 < Theta-c < 3.14)}} \qquad Theta-c = 2.17 \qquad \text{radians}$ $\text{Critical flow area} \qquad \qquad Ac = 2.64 \qquad \text{sq ft}$ $\text{Critical top width} \qquad \qquad Tc = 1.65 \qquad \text{ft}$ $\text{Critical flow depth} \qquad \qquad Yc = 1.56 \qquad \text{ft}$ $\text{Critical flow velocity} \qquad \qquad Vc = 7.17 \qquad \text{fps}$	Discharge	Qn =	18.90	cfs
	Percent of Full Flow	Flow =	70.4%	of full flow
Half Central Angle (0 <theta-c<3.14) <math="" area="" critical="" depth="" flow="" radians="" theta-c="2.17" top="" velocity="" width="">Ac = 2.64 sq ft $C = 1.65$ ft $C = 1.56$ ft $C = 1.56$ ft $C = 1.56$ ft $C = 1.56$ ft</theta-c<3.14)>	Normal Depth Froude Number	Fr _n =	1.59	supercritical
Half Central Angle (0 <theta-c<3.14) <math="" area="" critical="" depth="" flow="" radians="" theta-c="2.17" top="" velocity="" width="">Ac = 2.64 sq ft $C = 1.65$ ft $C = 1.56$ ft $C = 1.56$ ft $C = 1.56$ ft $C = 1.56$ ft</theta-c<3.14)>				
Critical flow area $Ac = $	Calculation of Critical Flow Condition			
Critical top width $Tc = 1.65$ ft Critical flow depth $Yc = 1.56$ ft Critical flow velocity $Vc = 7.17$ fps	Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.17</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.17	radians
Critical flow depth $YC = 1.56$ ft Critical flow velocity $VC = 7.17$ fps	Critical flow area	Ac =	2.64	sq ft
Critical flow velocity Vc = 7.17 fps	Critical top width	Tc =	1.65	ft
	Critical flow depth	Yc =	1.56	ft
Critical Depth Froude Number $Fr_c = 1.00$	Critical flow velocity	Vc =	7.17	fps
· · · · · · · · · · · · · · · · · · ·	Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 20, Pipe 2/6/2024, 6:12 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East
Pipe ID: PIPE 21

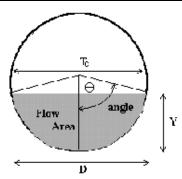


Design Information (Input)			
Pipe Invert Slope	So =	0.0300	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	42.00	inches
Design discharge	Q =	80.40	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	9.62	sq ft
Full-flow wetted perimeter	Pf =	11.00	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	174.73	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.52</td><td>radians</td></theta<3.14)<>	Theta =	1.52	radians
Flow area	An =	4.52	sq ft
Top width	Tn =	3.50	ft
Wetted perimeter	Pn =	5.33	ft
Flow depth	Yn =	1.67	ft
Flow velocity	Vn =	17.78	fps
Discharge	Qn =	80.40	cfs
Percent of Full Flow	Flow =	46.0%	of full flow
Normal Depth Froude Number	$Fr_n =$	2.76	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.21</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.21	radians
Critical flow area	Ac =	8.25	sq ft
Critical top width	Tc =	2.80	ft
Critical flow depth	Yc =	2.80	ft
Critical flow velocity	Vc =	9.74	fps
Critical Depth Froude Number	$Fr_c =$	1.00	

MHFD-Culvert_v4.0 - 21, Pipe 2/6/2024, 6:13 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 22

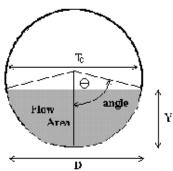


Design Information (Input)			
Pipe Invert Slope	So =	0.0300	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	42.00	inches
Design discharge	Q =	83.70	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	9.62	sq ft
Full-flow wetted perimeter	Pf =	11.00	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	174.73	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.55</td><td>radians</td></theta<3.14)<>	Theta =	1.55	radians
Flow area	An =	4.66	sq ft
Top width	Tn =	3.50	ft
Wetted perimeter	Pn =	5.41	ft
Flow depth	Yn =	1.71	ft
Flow velocity	Vn =	17.97	fps
Discharge	Qn =	83.70	cfs
Percent of Full Flow	Flow =	47.9%	of full flow
Normal Depth Froude Number	Fr _n =	2.74	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.25</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.25	radians
Critical flow area	Ac =	8.39	sq ft
Critical top width	Tc =	2.72	ft
Critical flow depth	Yc =	2.85	ft
Critical flow velocity	Vc =	9.97	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 22, Pipe 2/6/2024, 6:14 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 23

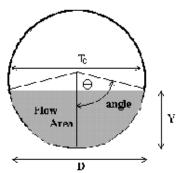


Design Information (Input)			
Pipe Invert Slope	So =	0.0100	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	1.80	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	10.53	cfs
<u>Calculation of Normal Flow Condition</u>			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.11</td><td>radians</td></theta<3.14)<>	Theta =	1.11	radians
Flow area	An =	0.40	sq ft
Top width	Tn =	1.35	ft
Wetted perimeter	Pn =	1.67	ft
Flow depth	Yn =	0.42	ft
Flow velocity	Vn =	4.45	fps
Discharge	Qn =	1.80	cfs
Percent of Full Flow	Flow =	17.1%	of full flow
Normal Depth Froude Number	Fr _n =	1.43	supercritical
Coloulation of Oritical Flour Condition			
Calculation of Critical Flow Condition	·	101	— "
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.24</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.24	radians
Critical flow area	Ac =	0.52	sq ft
Critical top width	Tc =	1.42	ft
Critical flow depth	Yc =	0.50	ft
Critical flow velocity	Vc =	3.45	fps
Critical Depth Froude Number	$Fr_c =$	1.00	

MHFD-Culvert_v4.0 - 23, Pipe 2/6/2024, 6:14 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 24

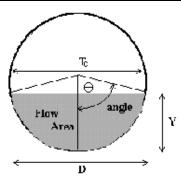


	-		
Design Information (Input)			
Pipe Invert Slope	So =	0.0100	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	3.50	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	10.53	cfs
			
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.36</td><td>radians</td></theta<3.14)<>	Theta =	1.36	radians
Flow area	An =	0.65	sq ft
Top width	Tn =	1.47	ft
Wetted perimeter	Pn =	2.04	ft
Flow depth	Yn =	0.60	ft
Flow velocity	Vn =	5.36	fps
Discharge	Qn =	3.50	cfs
Percent of Full Flow	Flow =	33.2%	of full flow
Normal Depth Froude Number	Fr _n =	1.41	supercritical
			<u>-</u> _
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.52</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.52	radians
Critical flow area	Ac =	0.83	sq ft
Critical top width	Tc =	1.50	ft
Critical flow depth	Yc =	0.71	ft
Critical flow velocity	Vc =	4.22	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 24, Pipe 2/6/2024, 6:15 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 25

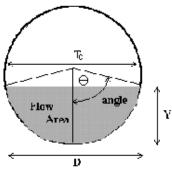


Design Information (Input)			
Pipe Invert Slope	So =	0.0100	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	5.30	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	10.53	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.57</td><td>radians</td></theta<3.14)<>	Theta =	1.57	radians
Flow area	An =	0.89	sq ft
Top width	Tn =	1.50	ft
Wetted perimeter	Pn =	2.36	ft
Flow depth	Yn =	0.75	ft
Flow velocity	Vn =	5.97	fps
Discharge	Qn =	5.30	cfs
Percent of Full Flow	Flow =	50.3%	of full flow
Normal Depth Froude Number	Fr _n =	1.37	supercritical
			
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.75</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.75	radians
Critical flow area	Ac =	1.09	sq ft
Critical top width	Tc =	1.47	ft
Critical flow depth	Yc =	0.89	ft
Critical flow velocity	Vc =	4.87	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 25, Pipe 2/6/2024, 6:16 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 26

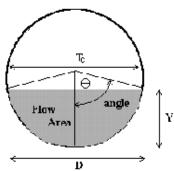


Design Information (Input)			
Pipe Invert Slope	So =	0.0100	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	24.00	inches
Design discharge	Q =	12.80	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	3.14	sq ft
Full-flow wetted perimeter	Pf =	6.28	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	22.68	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.65</td><td>radians</td></theta<3.14)<>	Theta =	1.65	radians
Flow area	An =	1.72	sq ft
Top width	Tn =	1.99	ft
Wetted perimeter	Pn =	3.29	ft
Flow depth	Yn =	1.08	ft
Flow velocity	Vn =	7.44	fps
Discharge	Qn =	12.80	cfs
Percent of Full Flow	Flow =	56.4%	of full flow
Normal Depth Froude Number	Fr _n =	1.41	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.86</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.86	radians
Critical flow area	Ac =	2.14	sq ft
Critical top width	Tc =	1.92	ft
Critical flow depth	Yc =	1.29	ft
Critical flow velocity	Vc =	5.99	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 26, Pipe 2/6/2024, 6:16 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 27

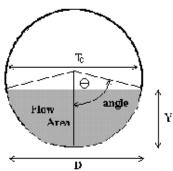


Design Information (Input)			
Pipe Invert Slope	So =	0.0200	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	24.00	inches
Design discharge	Q =	18.10	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	3.14	sq ft
Full-flow wetted perimeter	Pf =	6.28	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	32.08	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.65</td><td>radians</td></theta<3.14)<>	Theta =	1.65	radians
Flow area	An =	1.72	sq ft
Top width	Tn =	1.99	ft
Wetted perimeter	Pn =	3.29	ft
Flow depth	Yn =	1.08	ft
Flow velocity	Vn =	10.52	fps
Discharge	Qn =	18.10	cfs
Percent of Full Flow	Flow =	56.4%	of full flow
Normal Depth Froude Number	Fr _n =	2.00	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.13</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.13	radians
Critical flow area	Ac =	2.58	sq ft
Critical top width	Tc =	1.69	ft
Critical flow depth	Yc =	1.53	ft
Critical flow velocity	Vc =	7.01	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 27, Pipe 2/6/2024, 6:17 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 28

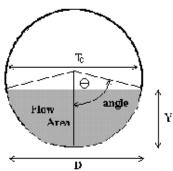


	-		
Design Information (Input)			
Pipe Invert Slope	So =	0.0300	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	24.00	inches
Design discharge	Q =	27.90	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	3.14	sq ft
Full-flow wetted perimeter	Pf =	6.28	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	39.29	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.82</td><td>radians</td></theta<3.14)<>	Theta =	1.82	radians
Flow area	An =	2.06	sq ft
Top width	Tn =	1.94	ft
Wetted perimeter	Pn =	3.64	ft
Flow depth	Yn =	1.24	ft
Flow velocity	Vn =	13.57	fps
Discharge	Qn =	27.90	cfs
Percent of Full Flow	Flow =	71.0%	of full flow
Normal Depth Froude Number	Fr _n =	2.32	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.54</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.54	radians
Critical flow area	Ac =	3.01	sq ft
Critical top width	Tc =	1.13	ft
Critical flow depth	Yc =	1.83	ft
Critical flow velocity	Vc =	9.27	fps
Critical Depth Froude Number	Fr _c =	1.00	
	·	· · · · · · · · · · · · · · · · · · ·	

MHFD-Culvert_v4.0 - 28, Pipe 2/6/2024, 6:18 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 29 POND 2 OUT

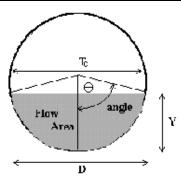


	-		
Design Information (Input)			
Pipe Invert Slope	So =	0.0550	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	24.00	inches
Design discharge	Q =	28.30	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	3.14	sq ft
Full-flow wetted perimeter	Pf =	6.28	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	53.20	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.61</td><td>radians</td></theta<3.14)<>	Theta =	1.61	radians
Flow area	An =	1.65	sq ft
Top width	Tn =	2.00	ft
Wetted perimeter	Pn =	3.22	ft
Flow depth	Yn =	1.04	ft
Flow velocity	Vn =	17.20	fps
Discharge	Qn =	28.30	cfs
Percent of Full Flow	Flow =	53.2%	of full flow
Normal Depth Froude Number	Fr _n =	3.34	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.56</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.56	radians
Critical flow area	Ac =	3.02	sq ft
Critical top width	Tc =	1.10	ft
Critical flow depth	Yc =	1.83	ft
Critical flow velocity	Vc =	9.38	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 29, Pipe 2/6/2024, 6:19 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 30



Design Information (Input)			
Pipe Invert Slope	So =	0.0080	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	30.00	inches
Design discharge	Q =	19.50	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	4.91	sq ft
Full-flow wetted perimeter	Pf =	7.85	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	36.79	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.61</td><td>radians</td></theta<3.14)<>	Theta =	1.61	radians
Flow area	An =	2.56	sq ft
Top width	Tn =	2.50	ft
Wetted perimeter	Pn =	4.02	ft
Flow depth	Yn =	1.29	ft
Flow velocity	Vn =	7.60	fps
Discharge	Qn =	19.50	cfs
Percent of Full Flow	Flow =	53.0%	of full flow
Normal Depth Froude Number	Fr _n =	1.32	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.77</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.77	radians
Critical flow area	Ac =	3.07	sq ft
Critical top width	Tc =	2.45	ft
Critical flow depth	Yc =	1.50	ft
Critical flow velocity	Vc =	6.35	fps
Critical Depth Froude Number	$Fr_c =$	1.00	

MHFD-Culvert_v4.0 - 30, Pipe 2/6/2024, 6:19 AM

MHFD-Culvert, Version 4.00 (May 2020)

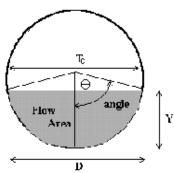
Project: Monument Ridge East Pipe ID: PIPE 31

Design Information (Input)			
Pipe Invert Slope	So =	0.0050	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	36.00	inches
Design discharge	Q =	35.90	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	7.07	sq ft
Full-flow wetted perimeter	Pf =	9.42	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	47.29	cfs
<u>Calculation of Normal Flow Condition</u>	_		
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.88</td><td>radians</td></theta<3.14)<>	Theta =	1.88	radians
Flow area	An =	4.88	sq ft
Top width	Tn =	2.86	ft
Wetted perimeter	Pn =	5.64	ft
Flow depth	Yn =	1.96	ft
Flow velocity	Vn =	7.36	fps
Discharge	Qn =	35.90	cfs
Percent of Full Flow	Flow =	75.9%	of full flow
Normal Depth Froude Number	Fr _n =	0.99	subcritical
Calculation of Critical Flow Condition			
	Theta-c =	1.07	radians
Half Central Angle (0 <theta-c<3.14)< td=""><td></td><td>1.87</td><td></td></theta-c<3.14)<>		1.87	
Critical flow area	Ac =	4.86	sq ft
Critical top width	Tc =	2.86	ft
Critical flow depth	Yc =	1.95	ft
Critical flow velocity	Vc =	7.39	fps
Critical Depth Froude Number	$Fr_c =$	1.00	

MHFD-Culvert_v4.0 - 31, Pipe 2/6/2024, 6:20 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 32 POND 3 OUT

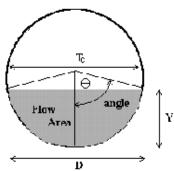


Design Information (Input)			
Pipe Invert Slope	So =	0.0050	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	5.80	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	7.45	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.90</td><td>radians</td></theta<3.14)<>	Theta =	1.90	radians
Flow area	An =	1.24	sq ft
Top width	Tn =	1.42	ft
Wetted perimeter	Pn =	2.86	ft
Flow depth	Yn =	1.00	ft
Flow velocity	Vn =	4.66	fps
Discharge	Qn =	5.80	cfs
Percent of Full Flow	Flow =	77.9%	of full flow
Normal Depth Froude Number	Fr _n =	0.88	subcritical
			
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.81</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.81	radians
Critical flow area	Ac =	1.15	sq ft
Critical top width	Tc =	1.46	ft
Critical flow depth	Yc =	0.93	ft
Critical flow velocity	Vc =	5.04	fps
Critical Depth Froude Number	Fr _c =	1.00	
	—		

MHFD-Culvert_v4.0 - 32, Pipe 2/6/2024, 6:21 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 33

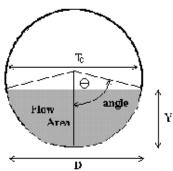


Design Information (Input)			
Pipe Invert Slope	So =	0.0080	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	36.00	inches
Design discharge	Q =	34.10	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	7.07	sq ft
Full-flow wetted perimeter	Pf =	9.42	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	59.82	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.65</td><td>radians</td></theta<3.14)<>	Theta =	1.65	radians
Flow area	An =	3.90	sq ft
Top width	Tn =	2.99	ft
Wetted perimeter	Pn =	4.96	ft
Flow depth	Yn =	1.62	ft
Flow velocity	Vn =	8.74	fps
Discharge	Qn =	34.10	cfs
Percent of Full Flow	Flow =	57.0%	of full flow
Normal Depth Froude Number	$Fr_n =$	1.35	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.84</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.84	radians
Critical flow area	Ac =	4.71	sq ft
Critical top width	Tc =	2.89	ft
Critical flow depth	Yc =	1.90	ft
Critical flow velocity	Vc =	7.24	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 33, Pipe 2/6/2024, 6:22 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 34

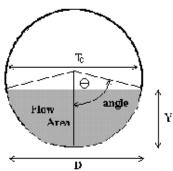


	_		
Design Information (Input)	_		
Pipe Invert Slope	So =	0.0090	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	36.00	inches
Design discharge	Q =	34.10	cfs
Full-Flow Capacity (Calculated)	_		_
Full-flow area	Af =	7.07	sq ft
Full-flow wetted perimeter	Pf =	9.42	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	63.45	cfs
Calculation of Normal Flow Condition	_		_
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.61</td><td>radians</td></theta<3.14)<>	Theta =	1.61	radians
Flow area	An =	3.73	sq ft
Top width	Tn =	3.00	ft
Wetted perimeter	Pn =	4.84	ft
Flow depth	Yn =	1.57	ft
Flow velocity	Vn =	9.14	fps
Discharge	Qn =	34.10	cfs
Percent of Full Flow	Flow =	53.8%	of full flow
Normal Depth Froude Number	Fr _n =	1.44	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.84</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.84	radians
Critical flow area	Ac =	4.71	sq ft
Critical top width	Tc =	2.89	- Ift
Critical flow depth	Yc =	1.90	⊣'t
Critical flow velocity	Vc =	7.24	fps
Critical Depth Froude Number	Fr _c =	1.00	
			_

MHFD-Culvert_v4.0 - 34, Pipe 2/6/2024, 6:22 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 35

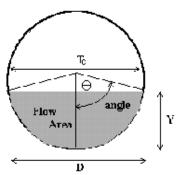


	-		
Design Information (Input)			
Pipe Invert Slope	So =	0.0200	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	24.00	inches
Design discharge	Q =	17.50	cfs
Full-Flow Capacity (Calculated)			<u></u>
Full-flow area	Af =	3.14	sq ft
Full-flow wetted perimeter	Pf =	6.28	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	32.08	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.62</td><td>radians</td></theta<3.14)<>	Theta =	1.62	radians
Flow area	An =	1.68	sq ft
Top width	Tn =	2.00	ft
Wetted perimeter	Pn =	3.25	ft
Flow depth	Yn =	1.05	ft
Flow velocity	Vn =	10.43	fps
Discharge	Qn =	17.50	cfs
Percent of Full Flow	Flow =	54.6%	of full flow
Normal Depth Froude Number	Fr _n =	2.01	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.10</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.10	radians
Critical flow area	Ac =	2.54	sq ft
Critical top width	Tc =	1.72	ft
Critical flow depth	Yc =	1.51	ft
Critical flow velocity	Vc =	6.89	fps
Critical Depth Froude Number	Fr _c =	1.00	
	·	· · · · · · · · · · · · · · · · · · ·	

MHFD-Culvert_v4.0 - 35, Pipe 2/6/2024, 6:23 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 36

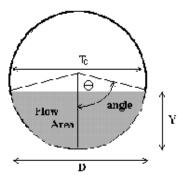


Design Information (Input)			
Pipe Invert Slope	So =	0.0200	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	30.00	inches
Design discharge	Q =	34.90	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	4.91	sq ft
Full-flow wetted perimeter	Pf =	7.85	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	58.16	cfs
			
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.69</td><td>radians</td></theta<3.14)<>	Theta =	1.69	radians
Flow area	An =	2.82	sq ft
Top width	Tn =	2.48	ft
Wetted perimeter	Pn =	4.22	ft
Flow depth	Yn =	1.40	ft
Flow velocity	Vn =	12.39	fps
Discharge	Qn =	34.90	cfs
Percent of Full Flow	Flow =	60.0%	of full flow
Normal Depth Froude Number	Fr _n =	2.05	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.22</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.22	radians
Critical flow area	Ac =	4.22	sq ft
Critical top width	Tc =	1.99	ft
Critical flow depth	Yc =	2.01	ft
Critical flow velocity	Vc =	8.27	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 36, Pipe 2/6/2024, 6:24 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 37A



Design Information (Input)			
Pipe Invert Slope	So =	0.0170	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	24.00	inches
Design discharge	Q =	15.10	cfs
3 3			
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	3.14	sq ft
Full-flow wetted perimeter	Pf =	6.28	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	29.58	cfs
Calculation of Normal Flow Condition			<u></u>
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.58</td><td>radians</td></theta<3.14)<>	Theta =	1.58	radians
Flow area	An =	1.60	sq ft
Top width	Tn =	2.00	ft
Wetted perimeter	Pn =	3.17	ft
Flow depth	Yn =	1.01	ft
Flow velocity	Vn =	9.46	fps
Discharge	Qn =	15.10	cfs
Percent of Full Flow	Flow =	51.1%	of full flow
Normal Depth Froude Number	$Fr_n =$	1.87	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.98</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.98	radians
Critical flow area	Ac =	2.35	sq ft
Critical top width	Tc =	1.83	sq rt
Critical flow depth	Yc =	1.40	— I't
Critical flow velocity	Vc =	6.43	fps
Critical Depth Froude Number	Fr _c =	1.00	—liha

MHFD-Culvert_v4.0 - 37A, Pipe

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 37B

Design Information (Input)			
Pipe Invert Slope	So =	0.0170	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	30.00	inches
Design discharge	Q =	30.20	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	4.91	sq ft
Full-flow wetted perimeter	Pf =	7.85	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	53.62	cfs
		·	
Calculation of Normal Flow Condition			<u></u>
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.64</td><td>radians</td></theta<3.14)<>	Theta =	1.64	radians
Flow area	An =	2.69	sq ft
Top width	Tn =	2.49	ft
Wetted perimeter	Pn =	4.11	ft
Flow depth	Yn =	1.34	ft
Flow velocity	Vn =	11.25	fps
Discharge	Qn =	30.20	cfs
Percent of Full Flow	Flow =	56.3%	of full flow
Normal Depth Froude Number	Fr _n =	1.91	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.09</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.09	radians
Critical flow area	Ac =	3.94	sq ft
Critical top width	Tc =	2.17	sq rt
Critical flow depth	Yc =	1.87	ft
Critical flow velocity	Vc =	7.66	fps
Critical Depth Froude Number	Fr _c =	1.00	— 'p3
	<u> </u>		

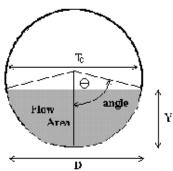
MHFD-Culvert_v4.0 - 37B, Pipe

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 37C

Design Information (Input)			
Pipe Invert Slope	So =	0.0200	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	11.70	cfs
3 3			
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	14.90	cfs
Calculation of Normal Flow Condition			<u></u>
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.91</td><td>radians</td></theta<3.14)<>	Theta =	1.91	radians
Flow area	An =	1.25	sq ft
Top width	Tn =	1.41	ft
Wetted perimeter	Pn =	2.87	ft
Flow depth	Yn =	1.00	ft
Flow velocity	Vn =	9.33	fps
Discharge	Qn =	11.70	cfs
Percent of Full Flow	Flow =	78.6%	of full flow
Normal Depth Froude Number	Fr _n =	1.75	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.40</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.40	radians
Critical flow area	Ac =	1.63	sq ft
Critical top width	Tc =	1.03	sq rt
Critical flow depth	Yc =	1.30	ft
Critical flow velocity	Vc =	7.18	fps
Critical Depth Froude Number	Fr _c =	1.00	— 'p3
	<u> </u>		

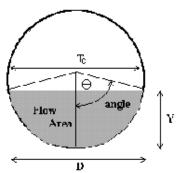
MHFD-Culvert, Version 4.00 (May 2020)


Project: Monument Ridge East Pipe ID: PIPE 37D

Design Information (Input)			
Pipe Invert Slope	So =	0.0200	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	30.00	inches
Design discharge	Q =	42.00	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	4.91	sq ft
Full-flow wetted perimeter	Pf =	7.85	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	58.16	cfs
Calculation of Normal Flow Condition			<u></u>
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.83</td><td>radians</td></theta<3.14)<>	Theta =	1.83	radians
Flow area	An =	3.25	sq ft
Top width	Tn =	2.41	ft
Wetted perimeter	Pn =	4.58	ft
Flow depth	Yn =	1.57	ft
Flow velocity	Vn =	12.90	fps
Discharge	Qn =	42.00	cfs
Percent of Full Flow	Flow =	72.2%	of full flow
Normal Depth Froude Number	Fr _n =	1.96	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.40</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.40	radians
Critical flow area	Ac =	4.53	sq ft
Critical top width	Tc =	1.69	
Critical flow depth	Yc =	2.17	ft
Critical flow velocity	Vc =	9.28	fps
Critical Depth Froude Number	Fr _c =	1.00	- F-

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 38

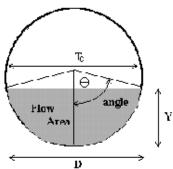


Design Information (Input)			
Pipe Invert Slope	So =	0.0300	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	30.00	inches
Design discharge	Q =	53.70	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	4.91	sq ft
Full-flow wetted perimeter	Pf =	7.85	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	71.24	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.87</td><td>radians</td></theta<3.14)<>	Theta =	1.87	radians
Flow area	An =	3.37	sq ft
Top width	Tn =	2.39	ft
Wetted perimeter	Pn =	4.68	ft
Flow depth	Yn =	1.62	ft
Flow velocity	Vn =	15.94	fps
Discharge	Qn =	53.70	cfs
Percent of Full Flow	Flow =	75.4%	of full flow
Normal Depth Froude Number	$Fr_n =$	2.37	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.63</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.63	radians
Critical flow area	Ac =	4.78	sq ft
Critical top width	Tc =	1.22	ft
Critical flow depth	Yc =	2.34	ft
Critical flow velocity	Vc =	11.24	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 38, Pipe 2/6/2024, 6:27 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 39

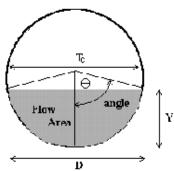


Design Information (Input)			
Pipe Invert Slope	So =	0.0050	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	3.20	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	7.45	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.49</td><td>radians</td></theta<3.14)<>	Theta =	1.49	radians
Flow area	An =	0.79	sq ft
Top width	Tn =	1.49	ft
Wetted perimeter	Pn =	2.23	ft
Flow depth	Yn =	0.69	ft
Flow velocity	Vn =	4.05	fps
Discharge	Qn =	3.20	cfs
Percent of Full Flow	Flow =	43.0%	of full flow
Normal Depth Froude Number	$Fr_n =$	0.98	subcritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.48</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.48	radians
Critical flow area	Ac =	0.78	sq ft
Critical top width	Tc =	1.49	ft'
Critical flow depth	Yc =	0.68	ft
Critical flow velocity	Vc =	4.10	fps
Critical Depth Froude Number	$Fr_c =$	1.00	

MHFD-Culvert_v4.0 - 39, Pipe 2/6/2024, 6:27 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 40

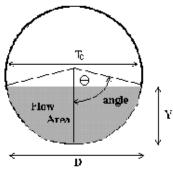


	ь		
Design Information (Input)			
Pipe Invert Slope	So =	0.0050	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	5.30	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	7.45	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.82</td><td>radians</td></theta<3.14)<>	Theta =	1.82	radians
Flow area	An =	1.16	sq ft
Top width	Tn =	1.45	ft
Wetted perimeter	Pn =	2.73	ft
Flow depth	Yn =	0.94	ft
Flow velocity	Vn =	4.58	fps
Discharge	Qn =	5.30	cfs
Percent of Full Flow	Flow =	71.2%	of full flow
Normal Depth Froude Number	Fr _n =	0.90	subcritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.75</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.75	radians
Critical flow area	Ac =	1.09	sq ft
Critical top width	Tc =	1.47	ft
Critical flow depth	Yc =	0.89	ft
Critical flow velocity	Vc =	4.87	fps
Critical Depth Froude Number	$Fr_c =$	1.00	
	-	·	

MHFD-Culvert_v4.0 - 40, Pipe 2/6/2024, 6:28 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 41 POND 4 OUT

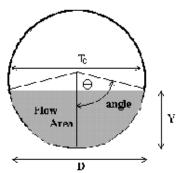


	-		
Design Information (Input)			
Pipe Invert Slope	So =	0.0100	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	36.00	inches
Design discharge	Q =	38.10	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	7.07	sq ft
Full-flow wetted perimeter	Pf =	9.42	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	66.88	cfs
			
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.65</td><td>radians</td></theta<3.14)<>	Theta =	1.65	radians
Flow area	An =	3.90	sq ft
Top width	Tn =	2.99	ft
Wetted perimeter	Pn =	4.96	ft
Flow depth	Yn =	1.62	ft
Flow velocity	Vn =	9.77	fps
Discharge	Qn =	38.11	cfs
Percent of Full Flow	Flow =	57.0%	of full flow
Normal Depth Froude Number	Fr _n =	1.51	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.92</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.92	radians
Critical flow area	Ac =	5.03	sq ft
Critical top width	Tc =	2.82	ft
Critical flow depth	Yc =	2.01	ft
Critical flow velocity	Vc =	7.57	fps
Critical Depth Froude Number	Fr _c =	1.00	
	•	•	

MHFD-Culvert_v4.0 - 41, Pipe 2/6/2024, 6:29 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE42

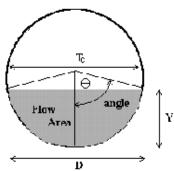


Design Information (Input)	<u></u>		
Pipe Invert Slope	So =	0.0090	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	48.00	inches
Design discharge	Q =	72.20	cfs
Full Flavy Corrective (Colordated)			
Full-Flow Capacity (Calculated)	۸, ۲	10.57	61
Full-flow area	Af =	12.57	sq ft
Full-flow wetted perimeter	Pf =	12.57	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	136.64	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.60</td><td>radians</td></theta<3.14)<>	Theta =	1.60	radians
Flow area	An =	6.55	sq ft
Top width	Tn =	4.00	ft
Wetted perimeter	Pn =	6.42	ft
Flow depth	Yn =	2.07	ft
Flow velocity	Vn =	11.02	fps
Discharge	Qn =	72.21	cfs
Percent of Full Flow	Flow =	52.8%	of full flow
Normal Depth Froude Number	Fr _n =	1.52	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.86</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.86	radians
Critical flow area	Ac =	8.53	sq ft
Critical top width	Tc =	3.83	
Critical flow depth	Yc =	2.57	ft
Critical flow velocity	Vc =	8.46	fps
Critical Depth Froude Number	$Fr_c =$	1.00	

MHFD-Culvert_v4.0 - 42, Pipe 2/6/2024, 6:30 AM

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East Pipe ID: PIPE 43

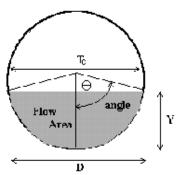


Design Information (Input)			
Pipe Invert Slope	So =	0.0200	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	24.00	inches
Design discharge	Q =	17.40	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	3.14	sq ft
Full-flow wetted perimeter	Pf =	6.28	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	32.08	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.62</td><td>radians</td></theta<3.14)<>	Theta =	1.62	radians
Flow area	An =	1.67	sq ft
Top width	Tn =	2.00	ft
Wetted perimeter	Pn =	3.24	ft
Flow depth	Yn =	1.05	ft
Flow velocity	Vn =	10.42	fps
Discharge	Qn =	17.40	cfs
Percent of Full Flow	Flow =	54.2%	of full flow
Normal Depth Froude Number	Fr _n =	2.01	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.10</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.10	radians
Critical flow area	Ac =	2.53	sq ft
Critical top width	Tc =	1.73	ft
Critical flow depth	Yc =	1.50	ft
Critical flow velocity	Vc =	6.87	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 43, Pipe 2/6/2024, 6:30 AM

MHFD-Culvert, Version 4.00 (May 2020)

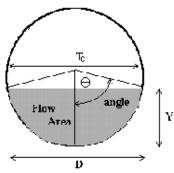
Project: Monument Ridge East Pipe ID: PIPE 44



	_		
Design Information (Input)			
Pipe Invert Slope	So =	0.0100	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	18.00	inches
Design discharge	Q =	5.50	cfs
Full-Flow Capacity (Calculated)			¬
Full-flow area	Af =	1.77	sq ft
Full-flow wetted perimeter	Pf =	4.71	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	10.53	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.60</td><td>radians</td></theta<3.14)<>	Theta =	1.60	radians
Flow area	An =	0.91	sq ft
Top width	Tn =	1.50	ft
Wetted perimeter	Pn =	2.40	ft
Flow depth	Yn =	0.77	ft
Flow velocity	Vn =	6.02	fps
Discharge	Qn =	5.50	cfs
Percent of Full Flow	Flow =	52.2%	of full flow
Normal Depth Froude Number	Fr _n =	1.36	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>1.78</td><td>radians</td></theta-c<3.14)<>	Theta-c =	1.78	radians
Critical flow area	Ac =	1.11	sq ft
Critical top width	Tc =	1.47	
Critical flow depth	Yc =	0.90	
Critical flow velocity	Vc =	4.94	fps
Critical Depth Froude Number	Fr _c =	1.00	

MHFD-Culvert_v4.0 - 44, Pipe 2/6/2024, 6:31 AM

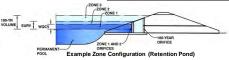
MHFD-Culvert, Version 4.00 (May 2020)


Project: Monument Ridge East
Pipe ID: PipeS 45,46 & 47

Pipe Manning's n-value Pipe Diameter Design discharge Full-Flow Capacity (Calculated) Full-flow area Full-flow wetted perimeter Half Central Angle Full-flow capacity Calculation of Normal Flow Condition Half Central Angle (0 <theta<3.14) area="" depth<="" flow="" perimeter="" th="" top="" wetted="" width=""><th>$\begin{array}{c} 0 = & 0.0100 \\ n = & 0.0130 \\ D = & 54.00 \\ D = & 108.30 \\ \end{array}$ of = $\begin{array}{c} 15.90 \\ 14.14 \\ a = & 3.14 \\ \end{array}$</th><th>ft/ft inches cfs</th></theta<3.14)>	$\begin{array}{c} 0 = & 0.0100 \\ n = & 0.0130 \\ D = & 54.00 \\ D = & 108.30 \\ \end{array}$ of = $\begin{array}{c} 15.90 \\ 14.14 \\ a = & 3.14 \\ \end{array}$	ft/ft inches cfs
Pipe Manning's n-value Pipe Diameter Design discharge Full-Flow Capacity (Calculated) Full-flow area Full-flow wetted perimeter Half Central Angle Full-flow capacity Calculation of Normal Flow Condition Half Central Angle (0 <theta<3.14) area="" depth<="" flow="" perimeter="" td="" top="" wetted="" width=""><td>$\begin{array}{cccc} n &=& 0.0130 \\ D &=& 54.00 \\ D &=& 108.30 \\ \end{array}$ $\begin{array}{cccc} oldsymbol{old} &=& 15.90 \\ oldsymbol{old} &=& 14.14 \\ \end{array}$</td><td>inches cfs</td></theta<3.14)>	$\begin{array}{cccc} n &=& 0.0130 \\ D &=& 54.00 \\ D &=& 108.30 \\ \end{array}$ $\begin{array}{cccc} oldsymbol{old} &=& 15.90 \\ oldsymbol{old} &=& 14.14 \\ \end{array}$	inches cfs
Pipe Diameter Design discharge Full-Flow Capacity (Calculated) Full-flow area Full-flow wetted perimeter Half Central Angle Full-flow capacity Calculation of Normal Flow Condition Half Central Angle (0 <theta<3.14) area="" depth<="" flow="" perimeter="" td="" top="" wetted="" width=""><td>D = 54.00 $D = 108.30$ $D = 15.90$ $D = 14.14$</td><td>cfs</td></theta<3.14)>	D = 54.00 $D = 108.30$ $D = 15.90$ $D = 14.14$	cfs
Full-Flow Capacity (Calculated) Full-flow area Full-flow wetted perimeter Half Central Angle Full-flow capacity Calculation of Normal Flow Condition Half Central Angle (0 <theta<3.14) area="" depth<="" flow="" perimeter="" td="" top="" wetted="" width=""><td>$\Omega = \frac{108.30}{108.30}$ of = \frac{15.90}{14.14}</td><td>cfs</td></theta<3.14)>	$\Omega = \frac{108.30}{108.30}$ of = \frac{15.90}{14.14}	cfs
Full-Flow Capacity (Calculated) Full-flow area Full-flow wetted perimeter Half Central Angle Full-flow capacity Calculation of Normal Flow Condition Half Central Angle (0 <theta<3.14) area="" depth<="" flow="" perimeter="" td="" top="" wetted="" width=""><td>of = 15.90 Of = 14.14</td><td></td></theta<3.14)>	of = 15.90 Of = 14.14	
Full-flow area Full-flow wetted perimeter Half Central Angle Full-flow capacity Calculation of Normal Flow Condition Half Central Angle (0 <theta<3.14) area="" depth<="" flow="" perimeter="" td="" top="" wetted="" width=""><td>Pf = 14.14</td><td>sq ft</td></theta<3.14)>	Pf = 14.14	sq ft
Full-flow area Full-flow wetted perimeter Half Central Angle Full-flow capacity Calculation of Normal Flow Condition Half Central Angle (0 <theta<3.14) area="" depth<="" flow="" perimeter="" td="" top="" wetted="" width=""><td>Pf = 14.14</td><td>sa ft</td></theta<3.14)>	Pf = 14.14	sa ft
Half Central Angle Ther Full-flow capacity C Calculation of Normal Flow Condition Half Central Angle (0 <theta<3.14) a="" area="" depth<="" flow="" perimeter="" t="" td="" ther="" top="" wetted="" width=""><td></td><td></td></theta<3.14)>		
Full-flow capacity Calculation of Normal Flow Condition Half Central Angle (0 <theta<3.14) (0<theta<3.14)="" (0<thetalogue="" (0<thetalogue<="" angle="" area="" calculation="" condition="" depth="" flow="" normal="" of="" perimeter="" td="" thetalogue="" top="" wetted="" width=""><td>a = 3.14</td><td>ft</td></theta<3.14)>	a = 3.14	ft
Calculation of Normal Flow Condition Half Central Angle (0 <theta<3.14) a="" a<="" area="" condition="" depth="" flow="" perimeter="" td="" theta="" tobush="" top="" wetted="" width=""><td></td><td>radians</td></theta<3.14)>		radians
Half Central Angle (0 <theta<3.14) a="" area="" depth="" flow="" fr<="" from="" perimeter="" td="" the="" theta="" top="" wetted="" width=""><td>2f = 197.18</td><td>cfs</td></theta<3.14)>	2f = 197.18	cfs
Half Central Angle (0 <theta<3.14) a="" area="" depth="" flow="" fr<="" from="" perimeter="" td="" the="" theta="" top="" wetted="" width=""><td></td><td>_</td></theta<3.14)>		_
Flow area A Top width T Wetted perimeter F Flow depth Y		<u>-</u>
Top width T Wetted perimeter F Flow depth Y	a = 1.63	radians
Wetted perimeter Flow depth Y	n = 8.54	sq ft
Flow depth Y	n = 4.49	ft
·	n = 7.33	ft
Flow velocity V	n = 2.38	ft
i low velocity	n = 12.69	fps
Discharge C	n = 108.30	cfs
	v = 54.9%	of full flow
Normal Depth Froude Number F	n = 1.62	supercritical
Calculation of Critical Flow Condition		
Half Central Angle (0 <theta-c<3.14) td="" theta-<=""><td>c = 1.94</td><td>radians</td></theta-c<3.14)>	c = 1.94	radians
9 1	c = 1.94 c = 11.52	sq ft
	C = 11.52 C = 4.20	ft
	c = 4.20 c = 3.06	ft
·	C = 3.06 C = 9.40	fps
	U = I 9.4U	Jiha
ortioal Doptil Froude Nambel	c = 1.00	1

MHFD-Culvert, Version 4.00 (May 2020)

Project: Monument Ridge East
Pipe ID: PipeS 48 AND 49


Design Information (Input)			
Pipe Invert Slope	So =	0.0075	ft/ft
Pipe Manning's n-value	n =	0.0130	
Pipe Diameter	D =	78.00	inches
Design discharge	Q =	322.30	cfs
			<u>-</u>
Full-Flow Capacity (Calculated)			
Full-flow area	Af =	33.18	sq ft
Full-flow wetted perimeter	Pf =	20.42	ft
Half Central Angle	Theta =	3.14	radians
Full-flow capacity	Qf =	455.26	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0 <theta<3.14)< td=""><td>Theta =</td><td>1.82</td><td>radians</td></theta<3.14)<>	Theta =	1.82	radians
Flow area	An =	21.66	sq ft
Top width	Tn =	6.31	ft
Wetted perimeter	Pn =	11.80	ft
Flow depth	Yn =	4.04	ft
Flow velocity	Vn =	14.88	fps
Discharge	Qn =	322.31	cfs
Percent of Full Flow	Flow =	70.8%	of full flow
Normal Depth Froude Number	Fr _n =	1.41	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0 <theta-c<3.14)< td=""><td>Theta-c =</td><td>2.07</td><td>radians</td></theta-c<3.14)<>	Theta-c =	2.07	radians
Critical flow area	Ac =	26.38	sq ft
Critical top width	Tc =	5.69	sq II
Critical flow depth	Yc =	4.82	
Critical flow velocity	Vc =	12.22	fps
Critical Depth Froude Number	Fr _c =	1.00	— 'P3
aa. Dopuaudamboi			

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Project: Monument Ridge East Basin ID: Pond 1 Qmax out = 90% PreDev Q. Q10=12.9cfs, Q100=35.5cfs

acre-feet acre-feet 1.19 inches 1.50 inches 1.75 inches 2.00 inches 2.25 inches 2.52 inches inches

Watershed Information

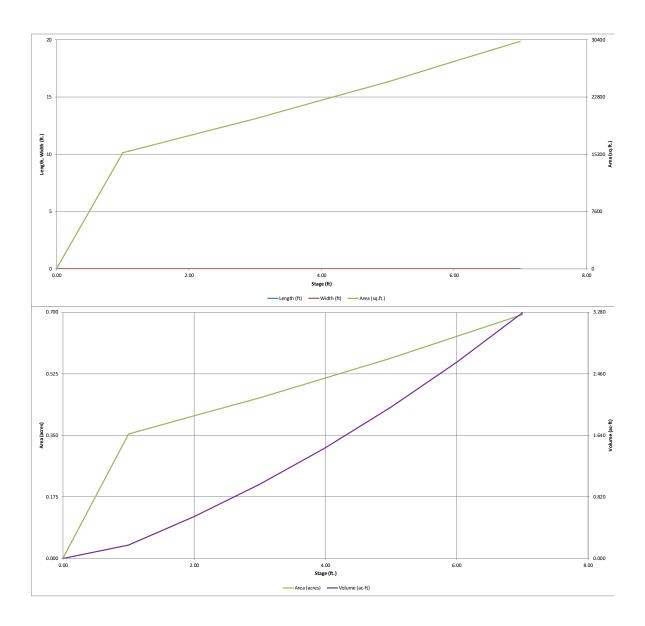
accioned information			
Selected BMP Type =	EDB		
Watershed Area =	24.52	acres	
Watershed Length =	1,320	ft	
Watershed Length to Centroid =	590	ft	
Watershed Slope =	0.036	ft/ft	
Watershed Imperviousness =	45.60%	percent	
Percentage Hydrologic Soil Group A =	0.0%	percent	
Percentage Hydrologic Soil Group B =	100.0%	percent	
Percentage Hydrologic Soil Groups C/D =	0.0%	percent	
Target WQCV Drain Time =	40.0	hours	
Location for 1-hr Rainfall Depths = User Input			

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydrograph Procedure.			
Water Quality Capture Volume (WQCV) =	0.397	acre-feet	
Excess Urban Runoff Volume (EURV) =	1.187	acre-feet	
2-yr Runoff Volume (P1 = 1.19 in.) =	1.114	acre-feet	
5-yr Runoff Volume (P1 = 1.5 in.) =	1.619	acre-feet	
10-yr Runoff Volume (P1 = 1.75 in.) =	2.067	acre-feet	
25-yr Runoff Volume (P1 = 2 in.) =	2.688	acre-feet	
50-yr Runoff Volume (P1 = 2.25 in.) =	3.183	acre-feet	
100-yr Runoff Volume (P1 = 2.52 in.) =	3.817	acre-feet	
500-yr Runoff Volume (P1 = 3.14 in.) =	5.094	acre-feet	
Approximate 2-yr Detention Volume =	0.887	acre-feet	
Approximate 5-yr Detention Volume =	1.225	acre-feet	
Approximate 10-yr Detention Volume =	1.647	acre-feet	
Approximate 25-yr Detention Volume =	1.817	acre-feet	
Approximate 50-yr Detention Volume =	1.903	acre-feet	
Approximate 100-yr Detention Volume =	2.147	acre-feet	

Define Zones and Basin Geometry

acre-fee		Select Zone 1 Storage Volume (Required) =
acre-fee		Select Zone 2 Storage Volume (Optional) =
acre-fee		Select Zone 3 Storage Volume (Optional) =
acre-fee		Total Detention Basin Volume =
ft 3	user	Initial Surcharge Volume (ISV) =
ft	user	Initial Surcharge Depth (ISD) =
ft	user	Total Available Detention Depth (Htotal) =
ft	user	Depth of Trickle Channel (H _{TC}) =
ft/ft	user	Slope of Trickle Channel (S _{TC}) =
H:V	user	Slopes of Main Basin Sides (Smain) =
1	user	Basin Length-to-Width Ratio (R _{L/W}) =


Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (LFLOOR) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft 2
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-fee

Depth Increment =	

Stage - Storage Stage Override Length Width (ft) (f		Depth Increment =		ft		1	1		1	1	1
Company Comp		Stage - Storage	Stage	Optional Override	Length	Width	Area		Area	Volume	Volume
1308 130		Description	(ft)	Stage (ft)	(ft)	(ft)			(acre)	(ft 3)	(ac-ft)
1309											
7310										7,712	0.177
7311											
1932											
7318											
7316											
		7314		7.00				30,200	0.073	142,712	3.270
					-						
	es										
	ŧ										
									-		-
					-						
			1		ı						
1											
1											
1											
1			-								
			-								
1											
1			-		-						
1											
1			-		-						
1											
1											
1											
1			-								
10			-								

2/6/2024, 6:41 AM

MHFD-Detention_v4 04 - Pond 1 2024.02.05, Basin

MHFD-Detention_v4 04 - Pond 1 2024.02.05, Basin 2662024, 641 AM

DETENTION BASIN OUTLET STRUCTURE DESIGN

	Di	МН	FD-Detention, Vers		ry 2021)	SIGN		
•	Monument Ridge Pond 1 Qmax out		Q10=12.9cfs, Q100	=35.5cfs				
ZONE 3				Estimated	Estimated			
ZONE 1				Stage (ft)	Volume (ac-ft)	Outlet Type		
100-YR VOLUME EURY WOCY	1		Zone 1	#N/A		J		
± ± ± + + + + + + + + + + + + + + + + +	100-YEAR			#10/15				
ZONE 1 AND 2	ORIFICE		Zone 2				1	
PERMANENT ORIFICES POOL Example Zone	Configuration (Ret	tention Pond)	Zone 3					
User Input: Orifice at Underdrain Outlet (typically		,	1P)	Total (all zones)	'	1	Calculated Parame	eters for Underdrain
Underdrain Orifice Invert Depth =	Tabba to aram Was		the filtration media	surface)	Under	drain Orifice Area =		ft ²
Underdrain Orifice Diameter =		inches	tilo ilitiation modia	54.7455)		n Orifice Centroid =		feet
Shararan Shines Blameter					ondordra.	. Omios cominaia].oot
User Input: Orifice Plate with one or more orifice	es or Elliptical Slot V	Weir (typically used	to drain WQCV and	or EURV in a sedim	nentation BMP)		Calculated Parame	_
Invert of Lowest Orifice =		ft (relative to basin	bottom at Stage =	0 ft)	WQ Orif	ice Area per Row =	N/A	ft ²
Depth at top of Zone using Orifice Plate =			n bottom at Stage =	0 ft)		iptical Half-Width =		feet
Orifice Plate: Orifice Vertical Spacing =		inches				ical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row =		inches			E	Elliptical Slot Area =	N/A	ft ²
User Input: Stage and Total Area of Each Orifice	Row (numbered fr	om lowest to highe	st)					
	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	,							
Orifice Area (sq. inches)								
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)	1							
Orifice Area (sq. inches)	,							
User Input: Vertical Orifice (Circular or Rectangu			7					eters for Vertical Or
	Not Selected	Not Selected					Not Selected	Not Selected
Invert of Vertical Orifice =			· ·	bottom at Stage =	•	rtical Orifice Area =		<u> </u>
Depth at top of Zone using Vertical Orifice =			-	bottom at Stage =	0 ft) Vertica	I Orifice Centroid =	:	
Vertical Orifice Diameter =			inches					
User Input: Overflow Weir (Dropbox with Flat or	Sloped Grate and	Outlet Pipe OR Rect	angular/Trapezoida	Weir (and No Outl	let Pipe)		Calculated Parame	eters for Overflow \
	Not Selected	Not Selected	1				Not Selected	Not Selected
Overflow Weir Front Edge Height, Ho =			ft (relative to basin b	oottom at Stage = 0 f	t) Height of Grat	e Upper Edge, H _t =		
Overflow Weir Front Edge Length =			feet		Overflow V	Veir Slope Length =	:	
Overflow Weir Grate Slope =	:		H:V	G	Grate Open Area / 10	00-yr Orifice Area =	:	
Horiz. Length of Weir Sides =			feet	C	Overflow Grate Oper	Area w/o Debris =	:	
Overflow Grate Type =	:				Overflow Grate Ope	en Area w/ Debris =	:	
Debris Clogging % =	:		%				1	
User Input: Outlet Pipe w/ Flow Restriction Plate		1	ectangular Orifice)		<u>C</u>	alculated Parameter	rs for Outlet Pipe w/	
	Not Selected	Not Selected					Not Selected	Not Selected
Depth to Invert of Outlet Pipe =				asin bottom at Stage		outlet Orifice Area =		_
Circular Orifice Diameter =			inches			t Orifice Centroid =		
				наіт-сег	ntral Angle of Restric	ctor Plate on Pipe =	N/A	N/A
User Input: Emergency Spillway (Rectangular or	Transpoidal						Calculated Parame	store for Spillway
Spillway Invert Stage=	тарегонат)	ft (rolative to basin	n bottom at Stage =	0 ft)	Spillway F	Design Flow Depth=	Calculated Parame	feet
Spillway Crest Length =		feet	i bottom at stage =	011)	. ,	Top of Freeboard =		feet
Spillway End Slopes =		H:V				Top of Freeboard =		acres
Freeboard above Max Water Surface =		feet				Top of Freeboard =		acre-ft
Freeboard above man wrater surface -		1.551			Sasiii voluitie at	. op or recoodid –		10010 11
Douted Hydrograph Describe							,	
Routed Hydrograph Results Design Storm Return Period =	The user can overi	ride the default CUF EURV	HP hydrographs and 2 Year	5 Year	10 Year	s in the Inflow Hydi 25 Year	rographs table (Colu	umns W through Ai
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52
CUHP Runoff Volume (acre-ft) =	0.397	1.187	1.114	1.619	2.067	2.688	3.183	3.817
Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	N/A N/A	N/A N/A	1.114 3.4	1.619 9.5	2.067 14.3	2.688 25.2	3.183 31.5	3.817 39.4
OPTIONAL Override Predevelopment Peak Q (cfs) =		N/A N/A	3.4	7.0	14.3	20.2	31.0	39.4

Routed Hydrograph Results	The user can over	ride the default CUH	IP hydrographs and	runoff volumes by	entering new values	s in the Inflow Hydr	ographs table (Colu	mns W through AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52
CUHP Runoff Volume (acre-ft) =	0.397	1.187	1.114	1.619	2.067	2.688	3.183	3.817
Inflow Hydrograph Volume (acre-ft) =		N/A	1.114	1.619	2.067	2.688	3.183	3.817
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	3.4	9.5	14.3	25.2	31.5	39.4
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A						
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.14	0.39	0.58	1.03	1.29	1.61
Peak Inflow Q (cfs) =	N/A	N/A	20.8	31.0	38.3	50.6	59.8	71.9
Peak Outflow Q (cfs) =								
Ratio Peak Outflow to Predevelopment Q =								
Structure Controlling Flow =								
Max Velocity through Grate 1 (fps) =								
Max Velocity through Grate 2 (fps) =								
Time to Drain 97% of Inflow Volume (hours) =								
Time to Drain 99% of Inflow Volume (hours) =	:							
Maximum Ponding Depth (ft) =								
Area at Maximum Ponding Depth (acres) =								
Maximum Volume Stored (acre-ft) =			·					

ice

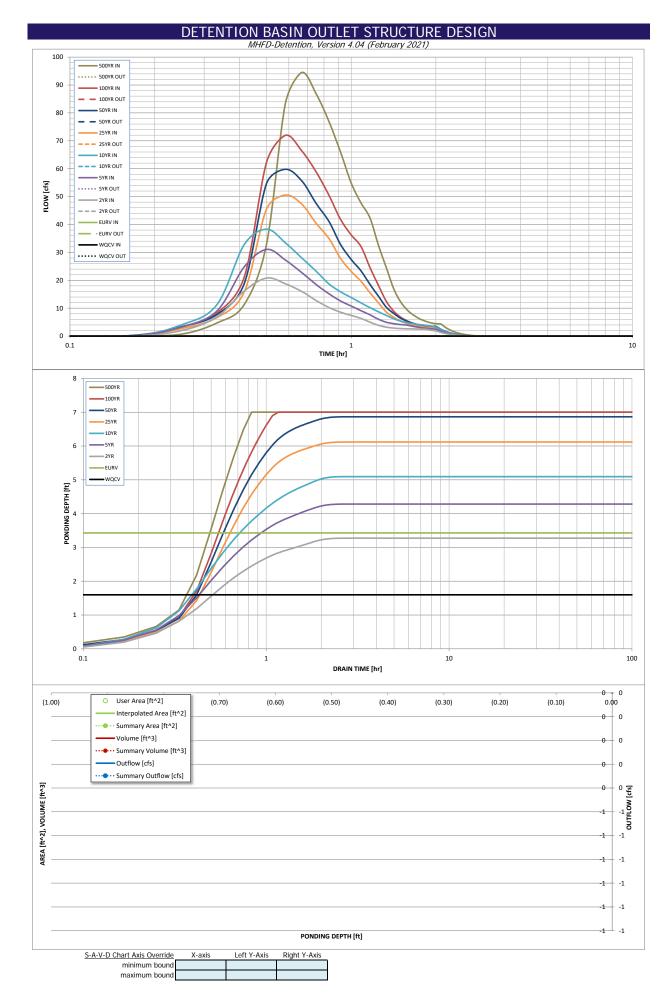
 ft^2

feet

eir

feet feet

ft²


<u>ıte</u>

 ft^2

feet

radians

500 Year
3.14
5.094
5.094
54.9
2.24
94.5

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

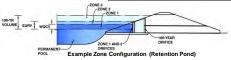
1								d in a separate pr		
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.23	0.02	0.74
	0:15:00	0.00	0.00	2.01	3.28	4.07	2.74	3.39	3.34	4.72
	0:20:00	0.00	0.00	6.91	9.04	11.29	6.67	7.74	8.33	11.34
	0:25:00	0.00	0.00	16.18	24.82	32.84	15.86	18.85	21.20	32.90
	0:30:00	0.00	0.00	20.79	31.05	38.32	45.54	54.69	62.25	83.38
	0:35:00	0.00	0.00	18.75	27.26	33.42	50.55	59.79	71.95	94.48
	0:40:00	0.00	0.00	16.01	22.76	28.02	47.32	55.66	66.41	86.91
	0:45:00	0.00	0.00	12.77	18.51	23.28	40.46	47.60	58.89	76.94
	0:50:00	0.00	0.00	10.24	15.16	18.71	34.98	41.11	50.49	65.91
	0:55:00	0.00	0.00	8.56	12.58	15.86	27.83	32.82	41.79	54.86
	1:00:00	0.00	0.00	7.39	10.76	13.81	23.17	27.45	36.26	47.73
	1:05:00	0.00	0.00	6.34	9.11	11.91	19.63	23.36	32.10	42.31
	1:10:00	0.00	0.00	4.99	7.62	10.17	15.50	18.50	24.51	32.58
	1:15:00	0.00	0.00	3.87	6.03	8.73	11.93	14.30	18.18	24.49
	1:20:00	0.00	0.00	3.20	4.97	7.39	8.62	10.34	12.42	16.91
	1:25:00	0.00	0.00	2.87	4.45	6.20	6.75	8.11	8.91	12.23
	1:30:00	0.00	0.00	2.70	4.12	5.37	5.33	6.37	6.76	9.32
	1:35:00	0.00	0.00	2.62	3.91	4.79	4.45	5.27	5.42	7.48
	1:40:00	0.00	0.00	2.55	3.44	4.39	3.85	4.52	4.49	6.21
	1:45:00	0.00	0.00	2.51	3.09	4.11	3.48	4.06	3.88	5.36
	1:50:00	0.00	0.00	2.47	2.84	3.91	3.22	3.73	3.45	4.77
	1:55:00	0.00	0.00	2.12	2.65	3.62	3.06	3.52	3.21	4.43
	2:00:00	0.00	0.00	1.86	2.44	3.20	2.97	3.40	3.14	4.32
	2:05:00	0.00	0.00	1.34	1.75	2.26	2.12	2.42	2.25	3.07
	2:10:00	0.00	0.00	0.94	1.22	1.58	1.48	1.69	1.58	2.16
	2:15:00	0.00	0.00	0.65	0.84	1.09	1.03	1.17	1.10	1.51
	2:20:00	0.00	0.00	0.44	0.55	0.74	0.70	0.79	0.75	1.02
	2:25:00	0.00	0.00	0.28	0.36	0.48	0.46	0.52	0.49	0.67
	2:30:00	0.00	0.00	0.18	0.24	0.31	0.31	0.35	0.33	0.44
	2:35:00	0.00	0.00	0.10	0.14	0.18	0.18	0.21	0.19	0.26
	2:40:00	0.00	0.00	0.04	0.07	0.08	0.09	0.10	0.09	0.13
	2:45:00	0.00	0.00	0.02	0.02	0.02	0.03	0.03	0.03	0.04
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00 3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00 3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	[ac-ft]	Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor from the S-A-V table on
							from the S-A-V table on Sheet 'Basin'.
							Silect basiii.
							Also include the inverts of a
							outlets (e.g. vertical orifice
							overflow grate, and spillwa where applicable).
							where applicable).
							-
							-
							-
							-
							+
							1
							-
							+
			1	1			1
							†
]
							_
							-
							†
							1
							4
							+
							<u> </u>
							_
							4
							+
]
							_
							-
							+
							⊣

DETENTION BASIN STAGE-STORAGE TABLE BUILDER


MHFD-Detention, Version 4.04 (February 2021)

Project: Monument Ridge East

Basin ID: Pond 2 Qmax out = 90% PreDev Q. Q10=10.6cfs, Q100=28.3cfs

acre-feet acre-feet 1.19 inches 1.50 inches

1.75 inches 2.00 inches 2.25 inches 2.52 inches inches

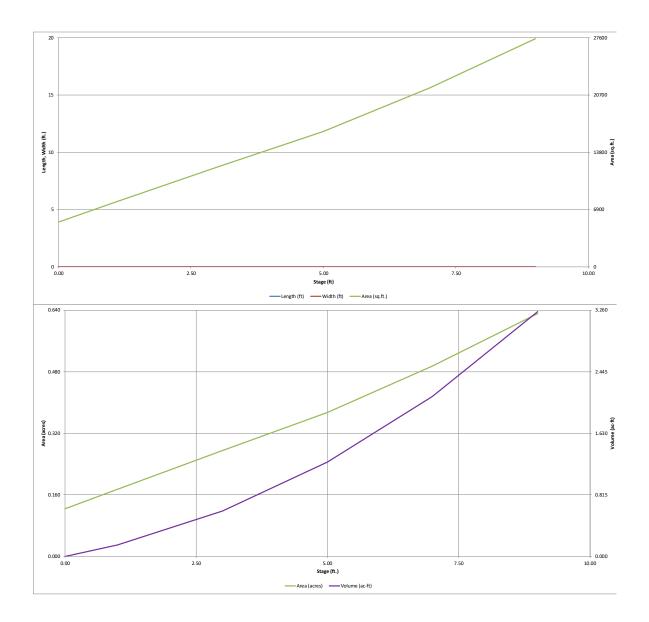
Watershed Information

itersneu irriorniauon		
Selected BMP Type =	EDB	
Watershed Area =	20.48	acres
Watershed Length =	1,370	ft
Watershed Length to Centroid =	660	ft
Watershed Slope =	0.049	ft/ft
Watershed Imperviousness =	57.88%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	82.0%	percent
Percentage Hydrologic Soil Groups C/D =	18.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydrograph Procedure.										
Water Quality Capture Volume (WQCV) =	0.391	acre-feet								
Excess Urban Runoff Volume (EURV) =	1.256	acre-feet								
2-yr Runoff Volume (P1 = 1.19 in.) =	1.170	acre-feet								
5-yr Runoff Volume (P1 = 1.5 in.) =	1.625	acre-feet								
10-yr Runoff Volume (P1 = 1.75 in.) =	2.024	acre-feet								
25-yr Runoff Volume (P1 = 2 in.) =	2.517	acre-feet								
50-yr Runoff Volume (P1 = 2.25 in.) =	2.938	acre-feet								
100-yr Runoff Volume (P1 = 2.52 in.) =	3.456	acre-feet								
500-yr Runoff Volume (P1 = 3.14 in.) =	4.533	acre-feet								
Approximate 2-yr Detention Volume =	0.987	acre-feet								
Approximate 5-yr Detention Volume =	1.353	acre-feet								
Approximate 10-yr Detention Volume =	1.713	acre-feet								
Approximate 25-yr Detention Volume =	1.853	acre-feet								
Approximate 50-yr Detention Volume =	1.929	acre-feet								
Approximate 100-yr Detention Volume =	2.120	acre-feet								

Define Zones and Basin Geometry


Select Zone 1 Storage Volume (Required) =		acre-fe
Select Zone 2 Storage Volume (Optional) =		acre-fe
Select Zone 3 Storage Volume (Optional) =		acre-fe
Total Detention Basin Volume =		acre-fe
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (Htotal) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (LFLOOR) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-fee

Depth Increment =	

Depth Increment =		ft							
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
op of Micropool		0.00				5,400	0.124		
7278		1.00				7,600	0.174	6,500	0.149
7280		3.00				12,000	0.275	26,100	0.599
7282		5.00				16,300	0.374	54,400	1.249
7284		7.00				21,550	0.495	92,250	2.118
7286		9.00				27,500	0.631	141,300	3.244
			-						
			-						
			ı						
			-						
					-				
			-						
			: :						
			: :						
			-						
			-						

MHFD-Detention_v4 04 - Pond 2 2024.02.05, Basin 2/6/2024, 6:44 AM

MHFD-Detention_v4 04 - Pond 2 2024.02.05, Basin 2662024, 6.44 AM

	וטו		FD-Detention, Ver	sion 4.04 (Februar	CTURE DE. 1y 2021)	JION		
	Monument Ridge I		010 10 (afa 0100	20 2afa				
ZONE 3	Pond 2 Qmax out	= 90% Predev Q.	Q10=10.6cis, Q100		· · ·			
ZONE 2		3-16		Estimated	Estimated	O. H. A. T		
100-YR VOLUME EURY WOCY				Stage (ft)	Volume (ac-ft)	Outlet Type	1	
_ com _ wdcv			Zone 1	#N/A			4	
ZONE 1 AND 2	100-YEAR ORIFICE		Zone 2				1	
PERMANENT ORIFICES POOL Example Zone	Configuration (Ret	tention Pond)	Zone 3	L				
·		,	10)	Total (all zones)]	0.1.1.1.0	
<u>User Input: Orifice at Underdrain Outlet (typically</u> <u>Underdrain Orifice Invert Depth =</u>	y used to drain WQC			o.urfa.co)	Llador	drain Orifice Area =	Calculated Paramet	ters for Underdrain
Underdrain Orifice Trivert Depth = Underdrain Orifice Diameter =		inches	the filtration media	surrace)		n Orifice Centroid =		feet
Underdrain Office Diameter =		linches			Officerdian	Torince certifold =		Treer
User Input: Orifice Plate with one or more orific	es or Elliptical Slot V	Weir (typically used	to drain WQCV and	or EURV in a sedim	nentation BMP)		Calculated Paramet	ters for Plate
Invert of Lowest Orifice =		ft (relative to basin	bottom at Stage =	0 ft)	WQ Orif	ice Area per Row =	N/A	ft ²
Depth at top of Zone using Orifice Plate =		ft (relative to basin	bottom at Stage =	0 ft)	EII	iptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing =		inches			Ellipt	ical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row =		inches			E	Iliptical Slot Area =	N/A	ft ²
User Input: Stage and Total Area of Each Orifice	Dow (numbered fr	om lowest to higher	c+)					
user imput. Stage and Total Area of Each Office	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)		now 2 (optional)	non o (optional)	new r (optional)	now o (optional)	now o (optional)	now / (optional)	now o (optional)
Orifice Area (sq. inches)								
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)	1							
Orifice Area (sq. inches)	,							
User Input: Vertical Orifice (Circular or Rectangu		Not Coloated	1				Not Selected	1
Invert of Vertical Orifice =	Not Selected	Not Selected	ft (rolativo to basin	bottom at Stage =	0 ft) Vo	rtical Orifice Area =		Not Selected
Depth at top of Zone using Vertical Orifice =				bottom at Stage =	•	I Orifice Centroid =		
Vertical Orifice Diameter =			inches	bottom at Stage =	orty vertice	ii office ochaoid =		
		•	4					
User Input: Overflow Weir (Dropbox with Flat or	Sloped Grate and (Outlet Pipe OR Rect	angular/Trapezoida	Weir (and No Outle	et Pipe)		Calculated Paramet	ters for Overflow \
	Not Selected	Not Selected					Not Selected	Not Selected
Overflow Weir Front Edge Height, Ho =				oottom at Stage = 0 f	-	e Upper Edge, H _t =		-
Overflow Weir Front Edge Length =			feet H:V			Veir Slope Length =		
Overflow Weir Grate Slope = Horiz. Length of Weir Sides =			feet		rate Open Area / 10 verflow Grate Oper	-		
Overflow Grate Type =			rect		Overflow Grate Ope			
Debris Clogging % =			%					
		•						
User Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, Re	estrictor Plate, or Re	ectangular Orifice)		<u>C</u> a	alculated Parameter	rs for Outlet Pipe w/	Flow Restriction F
	Not Selected	Not Selected					Not Selected	Not Selected
Depth to Invert of Outlet Pipe =				asin bottom at Stage		outlet Orifice Area =		
Circular Orifice Diameter =			inches			t Orifice Centroid =		
				Hair-Cen	tral Angle of Restric	ctor Plate on Pipe =	N/A	N/A
User Input: Emergency Spillway (Rectangular or	Transzoidal)						Calculated Paramet	tors for Spillway
Spillway Invert Stage=		ft (relative to basin	n bottom at Stage =	0 ft)	Spillway F	Design Flow Depth=	<u>Calculated Farante</u>	feet
Spillway Crest Length =	:	feet	g-			Top of Freeboard =		feet
Spillway End Slopes =	:	H:V			Basin Area at	Top of Freeboard =	:	acres
Freeboard above Max Water Surface =	:	feet			Basin Volume at	Top of Freeboard =	:	acre-ft
Routed Hydrograph Results	The user can over	ride the default CUF	HP hydrographs and	runoff volumes by	entering new value	s in the Inflow Hydi	rographs table (Colu	ımns W through Ai
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A 1.254	1.19	1.50	1.75	2.00	2.25	2.52
CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	0.391 N/A	1.256 N/A	1.170 1.170	1.625 1.625	2.024 2.024	2.517 2.517	2.938 2.938	3.456 3.456
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	3.1	7.8	11.8	20.2	25.2	31.4
OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A N/A	N/A N/A	0.15	0.38	0.58	0.99	1.23	1.53
Peak Inflow Q (cfs) =	N/A N/A	N/A N/A	22.5	31.4	37.9	47.9	55.8	66.6
Peak Outflow Q (cfs) =								
Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =							 	
Max Velocity through Grate 1 (fps) =	:							
Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	<u> </u>	-					 	
Time to Drain 97% of Inflow Volume (nours) =		1					 	
		7	t			t		1

Maximum Ponding Depth (ft) =
Area at Maximum Ponding Depth (acres) =
Maximum Volume Stored (acre-ft) =

ice

 ft^2

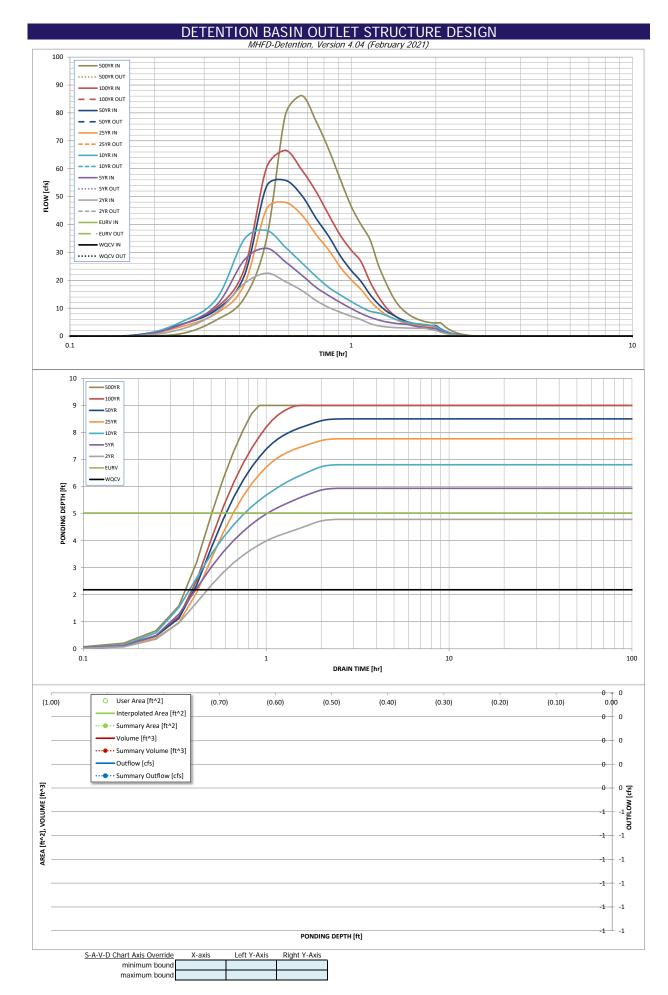
feet

eir

feet

feet

ft² ft²


<u>ıte</u>

 ft^2

feet

radians

500 Year
3.14
4.533
4.533
43.7
2.14
86.2

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

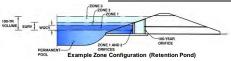
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

1								d in a separate pr		
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.29	0.03	0.93
	0:15:00	0.00	0.00	2.55	4.16	5.15	3.46	4.27	4.21	5.90
	0:20:00	0.00	0.00	8.66	11.25	13.61	8.27	9.57	10.32	13.63
	0:25:00	0.00	0.00	18.81	27.26	34.70	18.44	21.63	23.98	34.77
	0:30:00	0.00	0.00	22.53	31.45	37.87	45.54	53.66	60.34	79.26
	0:35:00	0.00	0.00	19.52	26.60	31.85	47.89	55.84	66.55	86.21
	0:40:00	0.00	0.00	16.36	21.86	26.26	43.45	50.46	59.59	77.03
	0:45:00	0.00	0.00	12.77	17.48	21.36	36.39	42.25	51.79	66.75
	0:50:00	0.00	0.00	10.23	14.49	17.38	30.74	35.65	43.34	55.91
	0:55:00	0.00	0.00	8.53	11.98	14.68	24.59	28.60	35.97	46.52
	1:00:00	0.00	0.00	7.11	9.89	12.40	20.17	23.53	30.83	39.94
	1:05:00	0.00	0.00	5.90	8.12	10.41	16.75	19.58	26.68	34.57
	1:10:00	0.00	0.00	4.49	6.74	8.90	12.67	14.89	19.46	25.41
	1:15:00	0.00	0.00	3.68	5.77	8.32	9.67	11.46	14.14	18.80
	1:20:00	0.00	0.00	3.30	5.09	7.38	7.57	8.96	10.15	13.54
	1:25:00	0.00	0.00	3.08	4.67	6.25	6.27	7.41	7.61	10.16
	1:30:00	0.00	0.00	2.97	4.38	5.48	5.17	6.06	6.06	8.09
	1:35:00	0.00	0.00	2.89	4.20	4.96	4.43	5.14	5.02	6.70
	1:40:00	0.00	0.00	2.83	3.69	4.59	3.98	4.58	4.35	5.78
	1:45:00	0.00	0.00	2.79	3.32	4.34	3.66	4.19	3.89	5.17
	1:50:00	0.00	0.00	2.77	3.06	4.34	3.47	3.94	3.63	4.82
	1:55:00	0.00	0.00	2.34	2.89	3.89	3.36	3.81	3.55	4.70
	2:00:00	0.00	0.00	2.03	2.68	3.46	3.30	3.73	3.52	4.65
	2:05:00	0.00	0.00	1.40	1.83	2.36	2.26	2.55	2.43	3.20
	2:10:00	0.00	0.00	0.93	1.22	1.59	1.52	1.71	1.64	2.16
	2:15:00	0.00	0.00	0.62	0.80	1.05	1.02	1.71	1.10	1.44
	2:20:00	0.00	0.00	0.39	0.50	0.67	0.65	0.73	0.70	0.92
	2:25:00	0.00	0.00	0.39	0.32	0.42	0.65	0.73	0.70	0.58
	2:30:00	0.00	0.00	0.12	0.19	0.24	0.24	0.27	0.26	0.34
	2:35:00	0.00	0.00	0.12	0.19	0.24	0.24			0.34
	2:40:00	0.00	0.00	0.05	0.09	0.03	0.12	0.13	0.13	0.16
	2:45:00	0.00	0.00	0.02		0.00		0.04	0.04	
	2:50:00	0.00		0.00	0.00	0.00	0.00	0.00		0.00
	2:55:00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00		0.00		0.00		0.00	
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00 3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00 3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00		0.00			0.00	0.00	0.00
	4:00:00			0.00		0.00	0.00		0.00	
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5.00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on
							from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice, overflow grate, and spillway,
							where applicable).
						1	
]


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Project: Monument Ridge East

Basin ID: Pond 3 Qmax out = 90% PreDev Q. Q10=2.2cfs, Q100=5.8cfs

acre-feet acre-feet 1.19 inches 1.50 inches 1.75 inches 2.00 inches 2.25 inches 2.52 inches inches

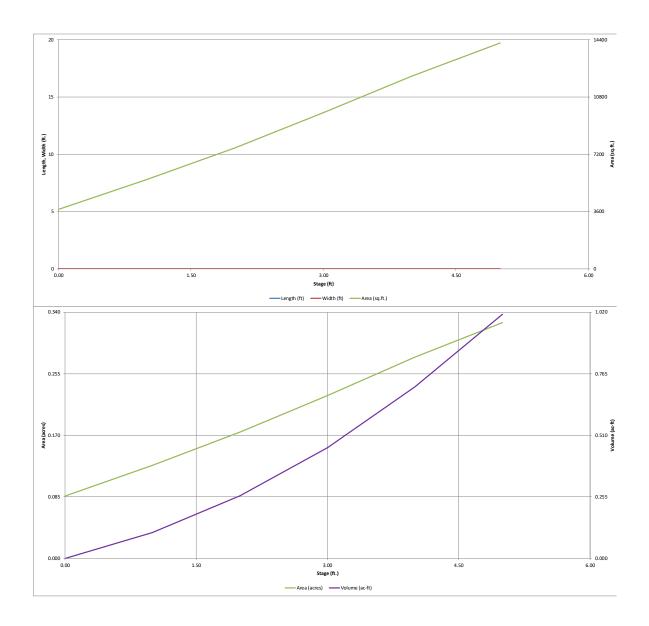
Watershed Information

		iteratica initormation
	EDB	Selected BMP Type =
acres	5.78	Watershed Area =
ft	1,080	Watershed Length =
ft	490	Watershed Length to Centroid =
ft/ft	0.027	Watershed Slope =
percent	63.17%	Watershed Imperviousness =
percent	0.0%	Percentage Hydrologic Soil Group A =
percent	53.0%	Percentage Hydrologic Soil Group B =
percent	47.0%	Percentage Hydrologic Soil Groups C/D =
hours	40.0	Target WQCV Drain Time =
	User Input	Location for 1-hr Rainfall Depths =

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

Water Quality Capture Volume (WOCV) = 0.119 acre-feet Excess Urban Runoff Volume (EURV) = 0.376 acre-feet 2-yr Runoff Volume (PI = 1.19 in.) = 0.369 acre-feet 5-yr Runoff Volume (PI = 1.15 in.) = 0.506 acre-feet 25-yr Runoff Volume (PI = 1.75 in.) = 0.624 acre-feet 25-yr Runoff Volume (PI = 2.25 in.) = 0.624 acre-feet 50-yr Runoff Volume (PI = 2.25 in.) = 0.884 acre-feet 100-yr Runoff Volume (PI = 2.52 in.) = 1.030 acre-feet 200-yr Runoff Volume (PI = 3.14 in.) = 0.311 acre-feet Approximate 2-yr Detention Volume = 0.429 acre-feet Approximate 10-yr Detention Volume = 0.521 acre-feet Approximate 25-yr Detention Volume = 0.559 acre-feet Approximate 50-yr Detention Volume = 0.559 acre-feet Approximate 50-yr Detention Volume = 0.559 acre-feet Approximate 50-yr Detention Volume = 0.579 acre-feet 25-yr Detention Volume 25-yr Detention Volume 25-yr Detentio	the embedded Colorado Urban Hydrograph Procedure.							
2-yr Runoff Volume (P1 = 1.19 in.) = 0.369 acre-feet 10-yr Runoff Volume (P1 = 1.75 in.) = 0.506 acre-feet 25-yr Runoff Volume (P1 = 2.17 in.) = 0.624 acre-feet 50-yr Runoff Volume (P1 = 2.25 in.) = 0.884 acre-feet 100-yr Runoff Volume (P1 = 2.25 in.) = 1.030 acre-feet 250-yr Runoff Volume (P1 = 3.14 in.) = 1.342 acre-feet 250-yr Runoff Volume (P1 = 3.14 in.) = 0.311 acre-feet 250-yr Runoff Volume (P1 = 0.25 in.) = 0.311 acre-feet 250-yr Runoff Volume (P1 = 0.25 in.) = 0.519 250-yr Runoff Volume (P1 = 0.559 acre-feet 250-yr Runoff Volume (P1 = 0	Water Quality Capture Volume (WQCV) =	0.119	acre-feet					
5-yr Runoff Volume (P1 = 1.5 in.) = 0.506 acre-feet 10-yr Runoff Volume (P1 = 1.75 in.) = 0.624 acre-feet 25-yr Runoff Volume (P1 = 2.25 in.) = 0.884 acre-feet 50-yr Runoff Volume (P1 = 2.25 in.) = 0.884 acre-feet 100-yr Runoff Volume (P1 = 3.14 in.) = 1.342 acre-feet 500-yr Runoff Volume (P1 = 3.14 in.) = 1.342 acre-feet Approximate 2-yr Detention Volume = 0.331 acre-feet Approximate 5-yr Detention Volume = 0.521 acre-feet Approximate 5-yr Detention Volume = 0.559 acre-feet Approximate 50-yr Detention Volume = 0.559 acre-feet Approximate 50-yr Detention Volume = 0.579 acre-feet	Excess Urban Runoff Volume (EURV) =	0.376	acre-feet					
10-yr Runoff Volume (P1 = 1.75 in.) =	2-yr Runoff Volume (P1 = 1.19 in.) =	0.369	acre-feet					
25-yr Runoff Volume (P1 = 2 in.) =	5-yr Runoff Volume (P1 = 1.5 in.) =	0.506	acre-feet					
50-yr Runoff Volume (P1 = 2.25 in.) = 0.884 acre-feet 100-yr Runoff Volume (P1 = 2.52 in.) = 1.030 acre-feet 500-yr Runoff Volume (P1 = 3.14 in.) = 1.342 acre-feet Approximate 2-yr Detention Volume = 0.311 acre-feet Approximate 5-yr Detention Volume = 0.429 acre-feet Approximate 10-yr Detention Volume = 0.551 acre-feet Approximate 50-yr Detention Volume = 0.559 acre-feet Approximate 50-yr Detention Volume = 0.579 acre-feet	10-yr Runoff Volume (P1 = 1.75 in.) =	0.624	acre-feet					
100-yr Runoff Volume (P1 = 2.52 in.) = 1.030 acre-feet 500-yr Runoff Volume (P1 = 3.14 in.) = 1.342 acre-feet Approximate 2-yr Detention Volume = 0.429 acre-feet Approximate 10-yr Detention Volume = 0.521 acre-feet Approximate 25-yr Detention Volume = 0.559 acre-feet Approximate 50-yr Detention Volume = 0.559 acre-feet	25-yr Runoff Volume (P1 = 2 in.) =	0.761	acre-feet					
500-yr Runoff Volume (P1 = 3.14 in.) = 1.342 acre-feet Approximate 2-yr Detention Volume = 0.311 acre-feet Approximate 5-yr Detention Volume = 0.521 acre-feet Approximate 25-yr Detention Volume = 0.559 acre-feet Approximate 50-yr Detention Volume = 0.579 acre-feet Approximate 50-yr Detention Volume = 0.579 acre-feet	50-yr Runoff Volume (P1 = 2.25 in.) =	0.884	acre-feet					
Approximate 2-yr Detention Volume	100-yr Runoff Volume (P1 = 2.52 in.) =	1.030	acre-feet					
Approximate 5-yr Detention Volume = 0.429 acre-feet Approximate 10-yr Detention Volume = 0.521 acre-feet Approximate 25-yr Detention Volume = 0.559 acre-feet Approximate 50-yr Detention Volume = 0.579 acre-feet	500-yr Runoff Volume (P1 = 3.14 in.) =	1.342	acre-feet					
Approximate 10-yr Detention Volume = 0.521 acre-feet Approximate 25-yr Detention Volume = 0.559 acre-feet Approximate 50-yr Detention Volume = 0.579 acre-feet	Approximate 2-yr Detention Volume =	0.311	acre-feet					
Approximate 25-yr Detention Volume = 0.559 acre-feet Approximate 50-yr Detention Volume = 0.579 acre-feet	Approximate 5-yr Detention Volume =	0.429	acre-feet					
Approximate 50-yr Detention Volume = 0.579 acre-feet	Approximate 10-yr Detention Volume =	0.521	acre-feet					
	Approximate 25-yr Detention Volume =	0.559	acre-feet					
Approximate 100 yr Detention Volume 0.422	Approximate 50-yr Detention Volume =	0.579	acre-feet					
Approximate 100-yr Determion volume = 0.032 acre-reet	Approximate 100-yr Detention Volume =	0.632	acre-feet					

Define Zones and Basin Geometry


Select Zone 1 Storage Volume (Required) =		acre-fe
Select Zone 2 Storage Volume (Optional) =		acre-fe
Select Zone 3 Storage Volume (Optional) =		acre-fe
Total Detention Basin Volume =		acre-fe
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (Htotal) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (LFLOOR) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A_{FLOOR}) =	user	ft 2
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-fee

Depth Increment =	

Depth Increment =		ft							
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
Top of Micropool		0.00				3,750	0.086		
7272		1.00				5,600	0.129	4,675	0.107
7273		2.00				7,600	0.174	11,275	0.259
7274		3.00				9,800	0.225	19,975	0.459
7275		4.00				12,100	0.278	30,925	0.710
7276		5.00				14,200	0.326	44,075	1.012
								1	
			ı						
								†	
								1	
								-	
								1	-
								1	
								1	
								 	
								-	
								†	
			ı						
								1	
								 	
								1	
								-	
			-						
			-		-				
								-	-
								1	-
			-						
			-						
			-						
								1	-
			-						
								1	-
			-					<u> </u>	<u> </u>
			-						
			-						

MHFD-Detention_v4 04 - Pond 3 2024.02.05, Basin 2/6/2024, 6:47 AM

MHFD-Detention_v4 04 - Pond 3 2024.02.05, Basin 2662024, 6.47 AM

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.04 (February 2021) Project: Monument Ridge East Basin ID: Pond 3 Qmax out = 90% PreDev Q. Q10=2.2cfs, Q100=5.8cfs Estimated Stage (ft) Volume (ac-ft) Outlet Type Zone #N/A Zone Zone 3 **Example Zone Configuration (Retention Pond)** Total (all zones) User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain ft (distance below the filtration media surface) Underdrain Orifice Area ft^2 Underdrain Orifice Invert Depth Underdrain Orifice Diameter Underdrain Orifice Centroid feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate ft (relative to basin bottom at Stage = 0 ft) WQ Orifice Area per Row ft² Invert of Lowest Orifice : N/A Depth at top of Zone using Orifice Plate ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width N/A feet Orifice Plate: Orifice Vertical Spacing inches Elliptical Slot Centroid N/A feet Orifice Plate: Orifice Area per Row Elliptical Slot Area N/A ft² User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (optional) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft Orifice Area (sq. inches) Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft Orifice Area (sq. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifi Not Selected Not Selected Not Selected Not Selected Invert of Vertical Orifice Vertical Orifice Area ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Vertical Orifice ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid Vertical Orifice Diameter = inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow We Not Selected Not Selected Not Selected Not Selected Overflow Weir Front Edge Height, Ho ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t Overflow Weir Front Edge Length Overflow Weir Slope Length feet Overflow Weir Grate Slope H:V Grate Open Area / 100-yr Orifice Area Horiz, Length of Weir Sides Overflow Grate Open Area w/o Debris feet Overflow Grate Type Overflow Grate Open Area w/ Debris Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla Not Selected Not Selected Not Selected Not Selected Depth to Invert of Outlet Pipe ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area Circular Orifice Diameter inches Outlet Orifice Centroid Half-Central Angle of Restrictor Plate on Pipe N/A N/A User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Design Flow Depth= feet Spillway Invert Stage: ft (relative to basin bottom at Stage = 0 ft) Spillway Crest Length : feet Stage at Top of Freeboard : feet Spillway End Slopes H:V Basin Area at Top of Freeboard acres Freeboard above Max Water Surface feet Basin Volume at Top of Freeboard : acre-ft

Routed Hydrograph Results 7	The user can over	ride the default CUH	IP hydrographs and	runoff volumes by	entering new value	s in the Inflow Hydr	rographs table (Colu	mns W through AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52
CUHP Runoff Volume (acre-ft) =	0.119	0.376	0.369	0.506	0.624	0.761	0.884	1.030
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.369	0.506	0.624	0.761	0.884	1.030
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.7	1.7	2.4	4.1	5.1	6.4
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A						
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.12	0.29	0.42	0.71	0.87	1.11
Peak Inflow Q (cfs) =	N/A	N/A	5.5	7.5	9.0	11.3	13.1	15.3
Peak Outflow Q (cfs) =								
Ratio Peak Outflow to Predevelopment Q =								
Structure Controlling Flow =								
Max Velocity through Grate 1 (fps) =								
Max Velocity through Grate 2 (fps) =								
Time to Drain 97% of Inflow Volume (hours) =								
Time to Drain 99% of Inflow Volume (hours) =								
Maximum Ponding Depth (ft) =								
Area at Maximum Ponding Depth (acres) =								
Maximum Volume Stored (acre-ft) =								

ice

 ft^2

feet

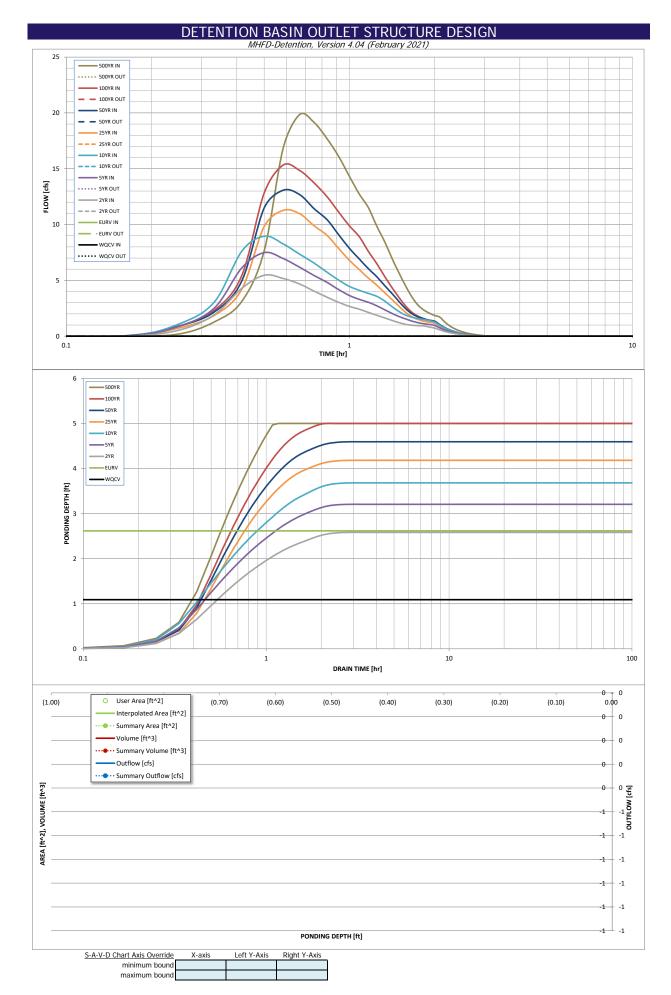
eir

feet

feet

ft²

 ft^2


<u>ite</u>

 ft^2

feet

radians

500 Year
3.14
1.342
1.342
9.0
1.55
19.8

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

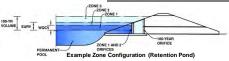
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.01	0.20
	0:15:00	0.00	0.00	0.54	0.88	1.09	0.73	0.91	0.89	1.28
	0:20:00	0.00	0.00	1.92	2.52	3.06	1.87	2.17	2.33	3.11
	0:25:00	0.00	0.00	4.28 5.46	6.11 7.48	7.60 8.95	4.20 9.83	4.94 11.49	5.42 12.82	7.64 16.83
	0:35:00	0.00	0.00	5.17	6.96	8.27	11.27	13.07	15.33	19.84
	0:40:00	0.00	0.00	4.67	6.18	7.35	10.97	12.69	14.85	19.15
	0:45:00	0.00	0.00	4.04	5.44	6.55	9.89	11.43	13.73	17.70
	0:50:00	0.00	0.00	3.50	4.82	5.74	9.04	10.44	12.50	16.10
	0:55:00 1:00:00	0.00	0.00	3.03 2.67	4.17 3.64	5.02 4.46	7.86 6.80	9.09 7.87	9.88	14.32 12.74
	1:05:00	0.00	0.00	2.42	3.30	4.40	5.97	6.92	8.92	11.52
	1:10:00	0.00	0.00	2.13	3.04	3.83	5.20	6.05	7.60	9.85
	1:15:00	0.00	0.00	1.87	2.72	3.57	4.56	5.32	6.49	8.44
	1:20:00	0.00	0.00	1.63	2.36	3.14	3.89	4.52	5.34	6.94
	1:25:00	0.00	0.00	1.41	2.03	2.63	3.27	3.80	4.33	5.62
	1:30:00	0.00	0.00	1.21	1.75	2.19 1.88	2.65	3.08 2.45	3.44 2.68	4.46 3.48
	1:40:00	0.00	0.00	0.98	1.34	1.69	1.72	1.99	2.00	2.77
	1:45:00	0.00	0.00	0.94	1.21	1.57	1.49	1.72	1.78	2.34
	1:50:00	0.00	0.00	0.92	1.11	1.49	1.34	1.55	1.56	2.06
	1:55:00	0.00	0.00	0.82	1.04	1.39	1.24	1.43	1.41	1.86
	2:00:00	0.00	0.00	0.73 0.57	0.96 0.75	0.99	1.17 0.91	1.34	1.30 0.99	1.71
	2:10:00	0.00	0.00	0.43	0.75	0.75	0.68	0.79	0.73	0.96
	2:15:00	0.00	0.00	0.33	0.43	0.56	0.52	0.59	0.54	0.72
	2:20:00	0.00	0.00	0.25	0.33	0.42	0.39	0.45	0.41	0.54
	2:25:00	0.00	0.00	0.19	0.24	0.31	0.29	0.33	0.31	0.40
	2:30:00	0.00	0.00	0.14	0.18	0.23	0.21	0.24	0.23	0.30
	2:35:00	0.00	0.00	0.10 0.07	0.13	0.17 0.12	0.16 0.12	0.18 0.13	0.17 0.12	0.22 0.16
	2:45:00	0.00	0.00	0.05	0.06	0.08	0.08	0.09	0.09	0.11
	2:50:00	0.00	0.00	0.03	0.04	0.05	0.05	0.06	0.06	0.07
	2:55:00	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.03	0.04
	3:00:00 3:05:00	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.02
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00 3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00 4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
I										

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope changes (e.g. ISV and Floor)
							from the S-A-V table on Sheet 'Basin'.
]
							Also include the inverts of all outlets (e.g. vertical orifice,
							overflow grate, and spillway, where applicable).
							-
							-
							-
							-
							-
							-
							-
							1
							-
							-
							_
							-
							-
							-
]
							-
							1
							-
							-
							-
							-
							1
							1
							}
							-
							-
							1
							1
							1
							}
]
							1
		l	I	I	i	L	J


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Project: Monument Ridge East

Basin ID: Pond 4 Qmax out = 90% PreDev Q. Q10=15.5cfs, Q100=38.1cfs

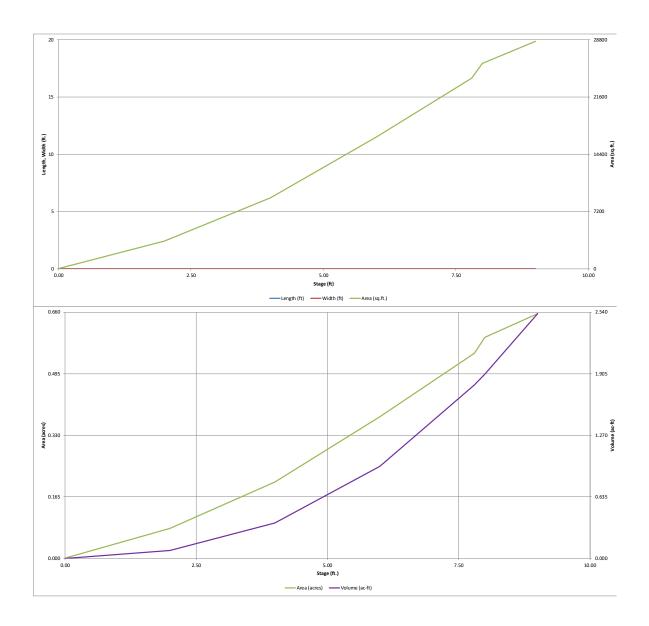
acre-feet acre-feet 1.19 inches 1.50 inches 1.75 inches 2.00 inches 2.25 inches inches inches

Watershed Information

araned information		
Selected BMP Type =	EDB	
Watershed Area =	22.15	acres
Watershed Length =	1,005	ft
Watershed Length to Centroid =	490	ft
Watershed Slope =	0.045	ft/ft
Watershed Imperviousness =	41.62%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	56.0%	percent
Percentage Hydrologic Soil Groups C/D =	44.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban nydro	grapii rioceuc	iie.
Water Quality Capture Volume (WQCV) =	0.340	acre-feet
Excess Urban Runoff Volume (EURV) =	0.922	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.954	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	1.412	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	1.828	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	2.364	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	2.809	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	3.376	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	4.524	acre-feet
Approximate 2-yr Detention Volume =	0.733	acre-feet
Approximate 5-yr Detention Volume =	1.072	acre-feet
Approximate 10-yr Detention Volume =	1.351	acre-feet
Approximate 25-yr Detention Volume =	1.494	acre-feet
Approximate 50-yr Detention Volume =	1.561	acre-feet
Approximate 100-yr Detention Volume =	1.799	acre-feet
		•


Define Zones and Basin Geometry

Select Zone 1 Storage Volume (Required) =		acre-fee
Select Zone 2 Storage Volume (Optional) =		acre-fee
Select Zone 3 Storage Volume (Optional) =		acre-fee
Total Detention Basin Volume =		acre-fee
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (LFLOOR) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft 2
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-feet

Depth Increment =

Stage - Storaç Description	ge Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft 3)	Volume (ac-ft)
Top of Microp		0.00				50	0.001		
7262		2.00				3,500	0.080	3,550	0.081
7264		4.00				8,900	0.204	15,950	0.366
7266 7267.8		6.00 7.80				16,550 23,950	0.380	41,400 77,850	0.950 1.787
7268		8.00				25,800	0.592	82,825	1.901
7269		9.00				28,600	0.657	110,025	2.526
es es									
t T									
1									
	-								
	-								
	-								
	-								
	-								
	-								
	1 1								
			-						

MHFD-Detention_v4 04 - Pond 4 2024.02.05, Basin 2602024, 649 AM

	DE	ETENTION	Basin out	TLET STRU	CTURE DES	SIGN		
		MHF	FD-Detention, Vers	sion 4.04 (Februar	ry 2021)			
	Monument Ridge I Pond 4 Qmax out		010-15 Ecfc 0100	_20 1ofc				
ZONE 3	Poliu 4 Qillax out	= 90 % Flebev Q. (210= 15.5cls, Q100					
ZONE 2				Estimated	Estimated	0.11.1.		
100-YR				Stage (ft)	Volume (ac-ft)	Outlet Type	i	
VOLUME EURV WOCV	7		Zone 1	#N/A				
	100-YEAR ORIFICE		Zone 2					
PERMANENT ORIFICES			Zone 3					
POOL Example Zone	Configuration (Ret	ention Pond)	·	Total (all zones)				
User Input: Orifice at Underdrain Outlet (typically	y used to drain WQ(CV in a Filtration BM	<u>P)</u>			•	Calculated Parame	ters for Underdrain
Underdrain Orifice Invert Depth =	:	ft (distance below f	the filtration media	surface)	Underd	drain Orifice Area =		ft ²
Underdrain Orifice Diameter =		inches			Underdrair	n Orifice Centroid =		feet
User Input: Orifice Plate with one or more orific	es or Elliptical Slot V				nentation BMP)		Calculated Parame	
Invert of Lowest Orifice =			bottom at Stage =		WQ Orifi	ice Area per Row =	N/A	ft ²
Depth at top of Zone using Orifice Plate =	2	ft (relative to basin	bottom at Stage =	0 ft)	Elli	iptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	:	inches			Ellipt	ical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row =	:	inches			E	Iliptical Slot Area =	N/A	ft ²
User Input: Stage and Total Area of Each Orifice		_		T	T	T		1
	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								
					_	T		1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches))							
User Lande Vertical Orifice (Circular or Doctores	.1\						C-laulated Darama	tors for Vartical Orifi
User Input: Vertical Orifice (Circular or Rectangu		Not Coloated	1					ters for Vertical Orifi
Invest of Vertical Orifica	Not Selected	Not Selected	ft (valativa ta basin	hattam at Ctana	0 ft) Va	rtical Orifica Area	Not Selected	Not Selected
Invert of Vertical Orifice =				bottom at Stage =		rtical Orifice Area =		+
Depth at top of Zone using Vertical Orifice = Vertical Orifice Diameter =			inches	bottom at Stage =	vertica	I Orifice Centroid =]
Vertical Offfice Diameter =			inches					
User Input: Overflow Weir (Dropbox with Flat or	r Sloned Grate and (Outlet Pine OR Rect:	angular/Tranezoidal	Weir (and No Outle	et Pine)		Calculated Parame	ters for Overflow We
OSCI IIIpat. Overnow well (Diopoox with Hat of	Not Selected	Not Selected	Ingular/ Trapezoidar	vvcii (and ivo outio	<u>ct ripe)</u>		Not Selected	Not Selected
Overflow Weir Front Edge Height, Ho =		Not Sciented	ft (relative to basin t	oottom at Stage = 0 ft	t) Height of Grat	e Upper Edge, H _t =	Not Sciented	Not Sciected
Overflow Weir Front Edge Length =			feet	ottom at stage = 0 n	-	Veir Slope Length =		
Overflow Weir Grate Slope =			H:V	G	Grate Open Area / 10			
Horiz. Length of Weir Sides =			feet		Overflow Grate Open	-		
Overflow Grate Type =			rect		Overflow Grate Ope			
Debris Clogging % =			%	·	overnow drate ope	iii / ii ca w/ bebiis =)
Debris diagging 70 =			1,00					
User Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, Re	estrictor Plate, or Re	ctangular Orifice)		Ca	alculated Parameter	s for Outlet Pipe w/	Flow Restriction Pla
	Not Selected	Not Selected					Not Selected	Not Selected
Depth to Invert of Outlet Pipe =			ft (distance below ba	asin bottom at Stage =	= 0 ft) O	utlet Orifice Area =		
Circular Orifice Diameter =			inches	ioni bottom at otago		t Orifice Centroid =		
			1	Half-Cen	ntral Angle of Restric		N/A	N/A
User Input: Emergency Spillway (Rectangular or	Trapezoidal)						Calculated Parame	ters for Spillway
Spillway Invert Stage=		ft (relative to basin	bottom at Stage =	0 ft)	Spillway D	Design Flow Depth=		feet
Spillway Crest Length =		feet		,		Top of Freeboard =		feet
Spillway End Slopes =		H:V				Top of Freeboard =		acres
Freeboard above Max Water Surface =		feet				Top of Freeboard =		acre-ft
		1						1
-								
Routed Hydrograph Results		ride the default CUH						
Design Storm Return Period = One-Hour Rainfall Depth (in) =	WQCV N/A	EURV N/A	2 Year 1.19	5 Year 1.50	10 Year 1.75	25 Year 2.00	50 Year 2.25	100 Year 2.52
CIHP Runoff Volume (acre-ft) =	0.340	0.922	0.954	1 412	1.73	2 364	2.809	3 376

Routed Hydrograph Results	The user can overi	ride the default CUH	P hydrographs and	runoff volumes by	entering new values	s in the Inflow Hydr	ographs table (Colu	mns W through AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52
CUHP Runoff Volume (acre-ft) =	0.340	0.922	0.954	1.412	1.828	2.364	2.809	3.376
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.954	1.412	1.828	2.364	2.809	3.376
CUHP Predevelopment Peak Q (cfs) =		N/A	5.2	11.7	17.2	27.6	34.1	42.3
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A						
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.23	0.53	0.78	1.25	1.54	1.91
Peak Inflow Q (cfs) =	N/A	N/A	20.3	30.5	37.6	49.1	58.1	70.2
Peak Outflow Q (cfs) =								
Ratio Peak Outflow to Predevelopment Q =								
Structure Controlling Flow =								
Max Velocity through Grate 1 (fps) =								
Max Velocity through Grate 2 (fps) =								
Time to Drain 97% of Inflow Volume (hours) =								
Time to Drain 99% of Inflow Volume (hours) =								
Maximum Ponding Depth (ft) =								
Area at Maximum Ponding Depth (acres) =			•					
Maximum Volume Stored (acre-ft) =			•					

ice

 ft^2

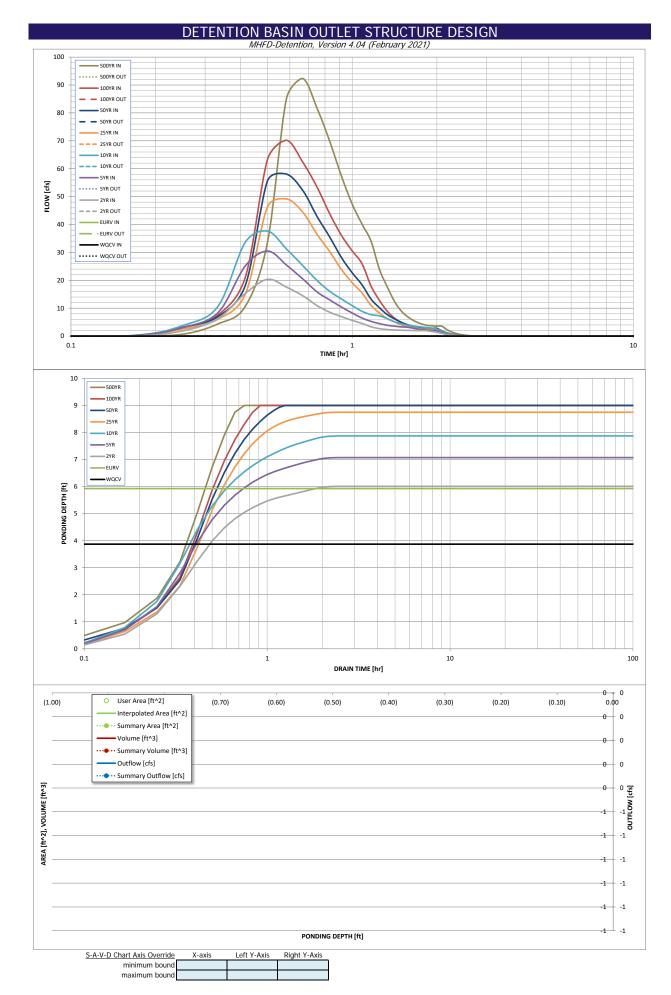
feet

eir

feet

feet

 ft^2 ft^2


<u>ite</u>

 ft^2

feet

radians

500 Year 3.14 4.524 4.524 58.6 2.65 92.3

Outflow Hydrograph Workbook Filename:

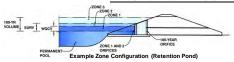
Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

1								d in a separate pr		
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.02	0.69
	0:15:00	0.00	0.00	1.87	3.07	3.80	2.56	3.15	3.12	4.36
	0:20:00	0.00	0.00	6.31	8.42	10.67	6.05	7.01	7.57	10.66
	0:25:00	0.00	0.00	15.29	25.16	33.65	15.00	18.13	21.05	33.70
	0:30:00	0.00	0.00	20.34	30.46	37.64	46.35	55.67	63.33	85.02
	0:35:00	0.00	0.00	17.55	25.47	31.27	49.14	58.08	70.18	92.33
	0:40:00	0.00	0.00	14.49	20.52	25.28	44.45	52.24	62.37	81.70
	0:45:00	0.00	0.00	10.94	15.83	19.92	36.51	42.88	53.39	69.62
	0:50:00	0.00	0.00	8.52	12.93	15.98	30.16	35.40	43.70	57.22
	0:55:00	0.00	0.00	6.95	10.39	13.26	23.80	28.08	36.02	47.30
	1:00:00	0.00	0.00	5.63	8.26	10.92	19.14	22.69	30.56	40.14
	1:05:00	0.00	0.00	4.54	6.47	8.89	15.47	18.40	25.95	34.06
	1:10:00	0.00	0.00	3.34	5.28	7.69	11.01	13.24	17.92	23.91
	1:15:00	0.00	0.00	2.68	4.48	7.26	8.29	10.17	12.80	17.59
	1:20:00	0.00	0.00	2.36	3.89	6.23	6.26	7.66	8.85	12.24
	1:25:00	0.00	0.00	2.19	3.52	5.10	5.03	6.13	6.34	8.81
	1:30:00	0.00	0.00	2.10	3.29	4.36	3.98	4.83	4.87	6.77
	1:35:00	0.00	0.00	2.03	3.14	3.84	3.30	3.99	3.86	5.38
	1:40:00	0.00	0.00	1.98	2.70	3.51	2.88	3.48	3.22	4.49
	1:45:00	0.00	0.00	1.95	2.39	3.28	2.60	3.12	2.81	3.91
	1:50:00	0.00	0.00	1.94	2.18	3.12	2.44	2.93	2.64	3.66
	1:55:00	0.00	0.00	1.63	2.04	2.86	2.36	2.81	2.58	3.56
	2:00:00	0.00	0.00	1.41	1.88	2.50	2.31	2.76	2.56	3.54
	2:05:00	0.00	0.00	0.95	1.25	1.67	1.54	1.84	1.72	2.37
	2:10:00	0.00	0.00	0.62	0.82	1.10	1.02	1.21	1.13	1.56
	2:15:00	0.00	0.00	0.40	0.52	0.71	0.66	0.78	0.73	1.01
	2:20:00	0.00	0.00	0.24	0.32	0.43	0.41	0.48	0.45	0.62
	2:25:00	0.00	0.00	0.14	0.20	0.26	0.26	0.30	0.28	0.39
	2:30:00	0.00	0.00	0.07	0.11	0.14	0.14	0.17	0.15	0.21
	2:35:00	0.00	0.00	0.03	0.05	0.05	0.06	0.07	0.06	0.08
	2:40:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.


Stage - Storage Description	Stage [ft]	Area [ft ²]	Area	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope changes (e.g. ISV and Floor)
							from the S-A-V table on Sheet 'Basin'.
]
							Also include the inverts of all outlets (e.g. vertical orifice,
							overflow grate, and spillway, where applicable).
							-
							-
							-
							-
							-
							-
							-
							1
							-
							-
							_
							-
							-
							-
]
							-
							1
							-
							-
							-
							-
							1
							1
							}
							-
							-
							1
							1
							1
							}
]
							1
		l	I	I	i	L	J

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Project: Monument Ridge East

Basin ID: Pond 5 Qmax out = 90% PreDev Q. Q10=2.1cfs, Q100=5.5cfs

Watershed Informatio

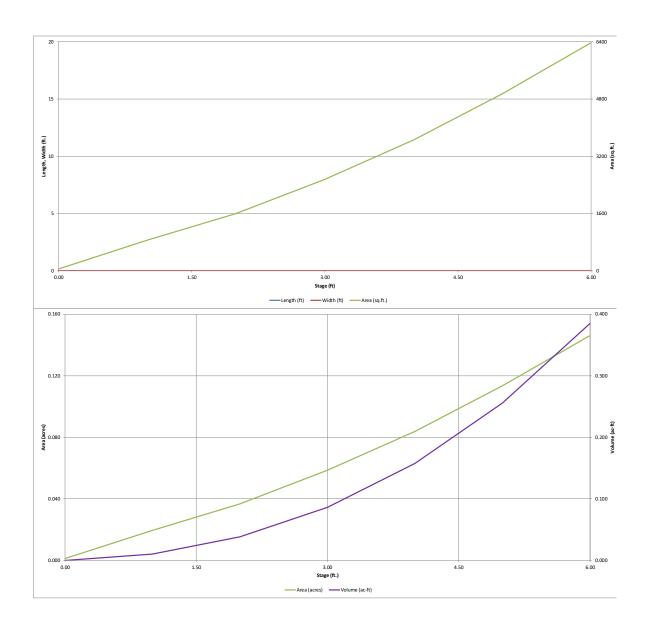
ersned information		
Selected BMP Type =	EDB	
Watershed Area =	3.21	acres
Watershed Length =	340	ft
Watershed Length to Centroid =	160	ft
Watershed Slope =	0.028	ft/ft
Watershed Imperviousness =	48.40%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	
Percentage Hydrologic Soil Group B = Percentage Hydrologic Soil Groups C/D = Target WQCV Drain Time =	100.0% 0.0% 40.0	percent percent

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Orban Hydro	graph Procedu	ire.
Water Quality Capture Volume (WQCV) =	0.054	acre-feet
Excess Urban Runoff Volume (EURV) =	0.166	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.146	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.210	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.266	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.343	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.404	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	0.483	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	0.641	acre-feet
Approximate 2-yr Detention Volume =	0.125	acre-feet
Approximate 5-yr Detention Volume =	0.171	acre-feet
Approximate 10-yr Detention Volume =	0.228	acre-feet
Approximate 25-yr Detention Volume =	0.250	acre-feet
Approximate 50-yr Detention Volume =	0.262	acre-feet
Approximate 100-yr Detention Volume =	0.293	acre-feet
		•

Define Zones and Basin Geometry

Select Zone 1 Storage Volume (Required) =		acre-fee
Select Zone 2 Storage Volume (Optional) =		acre-fee
Select Zone 3 Storage Volume (Optional) =		acre-fee
Total Detention Basin Volume =		acre-fee
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	


Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor (LFLOOR) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A_{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (Vtotal) =	user	acre-feet
·-		

Note: L / W Ratio < 1 L / W Ratio = 0.83

acre-feet acre-feet 1.19 inches 1.50 inches 1.75 inches 2.00 inches 2.25 inches inches

	Depth Increment = Stage - Storage Description Top of Micropool	Stage (ft)	ft Optional Override Stage (ft) 0.00	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre) 0.001	Volume (ft ³)	Volume (ac-ft)
1	7271		1.00				850	0.020	450	0.010
•										
ļ	7272		2.00				1,600	0.037	1,675	0.038
	7273		3.00				2,550	0.059	3,750	0.086
ſ	7274		4.00				3,650	0.084	6,850	0.157
ł	7275		5.00				4,940	0.113	11,145	0.256
ł										
ŀ	7276		6.00				6,370	0.146	16,800	0.386
l										
Ì										
ł										
ł										
ŀ										
Į										
ł										
ł										
ł										
ļ										
ļ										
İ										
ł										1
}									1	1
ŀ								-	1	1
ļ									ļ	
-										
Ì				-						
ł										
ł									1	
ł									1	
ļ									1	
١										
Ī				-						
İ										
ł									†	
ł									†	
- }										
Į										
ſ										
ı				-						
ł										
ł										
ļ										
ſ										
İ										
ł										
ł										
ļ										
Ì										
Ì				-						
ł										
ł										
Į										
Ì										
ł									†	
ł								l	1	1
ļ								-	1	1
Į										
١									<u></u>	<u></u>
Ī									l	
ı										
ł									†	
į										
Į				-					<u> </u>	
ł									1	
ł										1
Ì				-						
Į										
ļ										
ł		1		1 1					1	1
ł									1	
į										
ļ									_	
ŀ								-	 	-
ł								l	†	
ł										1
Ì										
ļ		-		-						
ļ								-	1	1
}				-					1	1
ł				-						1
ł		-		-						
Į				-						
ļ								-	1	1
ŀ								-	 	-
ł									1	
ł									<u>L</u>	
ı										
Į									<u> </u>	
ł									1	
- }		-							†	
ł									1	
Ì		-		-						
ļ				-						
Į									<u> </u>	
Į								L	1	L

MHFD-Detention_v4 04 - Pond 5 2024.02.05, Basin

MHFD-Detention_v4 04 - Pond 5 2024.02.05, Basin 2602024, 6:52 AM

	DL	MHI	FD-Detention, Vers		ry 2021)	SIGN		
•	Monument Ridge I Pond 5 Qmax out		Q10=2.1cfs, Q100=	=5.5cfs				
ZONE 3				Estimated	Estimated			
ZONE 1				Stage (ft)	Volume (ac-ft)	Outlet Type		
100-YR VOLUME EURY WOCY			Zone 1	#N/A	voidine (de 11)	- Outlet Type	1	
The macy		$\overline{}$		# N/A				
ZONE 1 AND 2	100-YEAR ORIFICE		Zone 2				4	
PERMANENT ORIFICES	Configuration (Ret	ention Pond)	Zone 3					
·		,	ID)	Total (all zones)]	Calculated Darama	tore for Underdrain
<u>User Input: Orifice at Underdrain Outlet (typically</u> <u>Underdrain Orifice Invert Depth =</u>			ir) the filtration media	curfoco)	Under	drain Orifice Area =	Calculated Parame	ft ²
· ·		inches	the ilitration media	surrace)		n Orifice Centroid =		feet
Underdrain Orifice Diameter =		linches			Underdrai	ii Office Certifold =		Treet
User Input: Orifice Plate with one or more orific	es or Elliptical Slot V	Weir (typically used	to drain WQCV and	or EURV in a sedin	nentation BMP)		Calculated Parame	ters for Plate
Invert of Lowest Orifice =	:	ft (relative to basin	bottom at Stage =	0 ft)	WQ Orif	fice Area per Row =	N/A	ft ²
Depth at top of Zone using Orifice Plate =	:	ft (relative to basin	bottom at Stage =	0 ft)	EII	iptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	:	inches			Ellip	tical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row =		inches			E	Elliptical Slot Area =	N/A	ft ²
User Input: Stage and Total Area of Each Orifice	e Row (numbered fr	om lowest to highe	st)					
	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)		, , , ,	, , , ,	, , , ,	,,,,,	,,,,,	```	· · · · ·
Orifice Area (sq. inches)								
						•		
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)	,							
Orifice Area (sq. inches)								
							01.11.15	
User Input: Vertical Orifice (Circular or Rectangu			1				Calculated Parame	1
	Not Selected	Not Selected			0.63		Not Selected	Not Selected
Invert of Vertical Orifice =				bottom at Stage =	•	rtical Orifice Area =		
Depth at top of Zone using Vertical Orifice =			inches	n bottom at Stage =	ε U π) Vertica	al Orifice Centroid =		
Vertical Orifice Diameter =			linches					
User Input: Overflow Weir (Dropbox with Flat or	r Sloped Grate and (Outlet Pipe OR Rect	angular/Trapezoida	l Weir (and No Outl	let Pipe)		Calculated Parame	ters for Overflow \
Jose Impace Overmon West (Steppon Militates	Not Selected	Not Selected	1	· · · · · · · · · · · · · · · · · · ·	<u> </u>		Not Selected	Not Selected
Overflow Weir Front Edge Height, Ho =		not colociou	ft (relative to basin b	oottom at Stage = 0 f	Height of Grat	e Upper Edge, H _t =		Not Selected
Overflow Weir Front Edge Length =			feet	g	-	Veir Slope Length =		
Overflow Weir Grate Slope =			H:V	G	Grate Open Area / 1			
Horiz. Length of Weir Sides =			feet		Overflow Grate Oper	•		
Overflow Grate Type =					Overflow Grate Ope			
Debris Clogging % =			%					
			-					
User Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, Re	estrictor Plate, or Re	ectangular Orifice)		<u>C</u>	alculated Parameter	rs for Outlet Pipe w/	Flow Restriction F
	Not Selected	Not Selected					Not Selected	Not Selected
Depth to Invert of Outlet Pipe =	:			asin bottom at Stage		outlet Orifice Area =		
Circular Orifice Diameter =			inches			t Orifice Centroid =		
				Half-Cer	ntral Angle of Restri	ctor Plate on Pipe =	N/A	N/A
Hara baset Farancia Callboar (Baston and	T						Coloniate d Donoue	t f C!!!
User Input: Emergency Spillway (Rectangular or		Ist (relative to begin	n bottom at Stage =	0.60	Cmilliana I	Doolan Flour Donah	Calculated Parame	, · · · ·
Spillway Invert Stage= Spillway Crest Length =		feet	i bottom at Stage =	011)		Design Flow Depth= Top of Freeboard =	·	feet
Spillway End Slopes =		H:V			•	Top of Freeboard =		feet
Freeboard above Max Water Surface =						•		acres
rieeboaiù above Max Water Sufface =		feet			pasiii voiume at	Top of Freeboard =		acre-ft
Routed Hydrograph Results							rographs table (Colu	
Design Storm Return Period = One-Hour Rainfall Depth (in) =	WQCV N/A	EURV N/A	2 Year 1.19	5 Year 1.50	10 Year 1.75	25 Year 2.00	50 Year 2.25	100 Year 2.52
CUHP Runoff Volume (acre-ft) =	0.054	0.166	0.146	0.210	0.266	0.343	0.404	0.483
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.146	0.210	0.266	0.343	0.404	0.483
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.6	1.5	2.3	3.9	4.8	6.1
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A					4	

Routed Hydrograph Results	The user can overr	ide the default CUH	IP hydrographs and	runoff volumes by	entering new values	in the Inflow Hydr	ographs table (Colu	mns W through AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52
CUHP Runoff Volume (acre-ft) =	0.054	0.166	0.146	0.210	0.266	0.343	0.404	0.483
Inflow Hydrograph Volume (acre-ft) =		N/A	0.146	0.210	0.266	0.343	0.404	0.483
CUHP Predevelopment Peak Q (cfs) =		N/A	0.6	1.5	2.3	3.9	4.8	6.1
OPTIONAL Override Predevelopment Peak Q (cfs) =		N/A						
Predevelopment Unit Peak Flow, q (cfs/acre) =		N/A	0.17	0.47	0.72	1.21	1.50	1.89
Peak Inflow Q (cfs) =	N/A	N/A	3.3	4.8	5.9	7.6	9.1	10.8
Peak Outflow Q (cfs) =								
Ratio Peak Outflow to Predevelopment Q =								
Structure Controlling Flow =								
Max Velocity through Grate 1 (fps) =								
Max Velocity through Grate 2 (fps) =								
Time to Drain 97% of Inflow Volume (hours) =								
Time to Drain 99% of Inflow Volume (hours) =								
Maximum Ponding Depth (ft) =								
Area at Maximum Ponding Depth (acres) =								
Maximum Volume Stored (acre-ft) =				·		·		·

ice

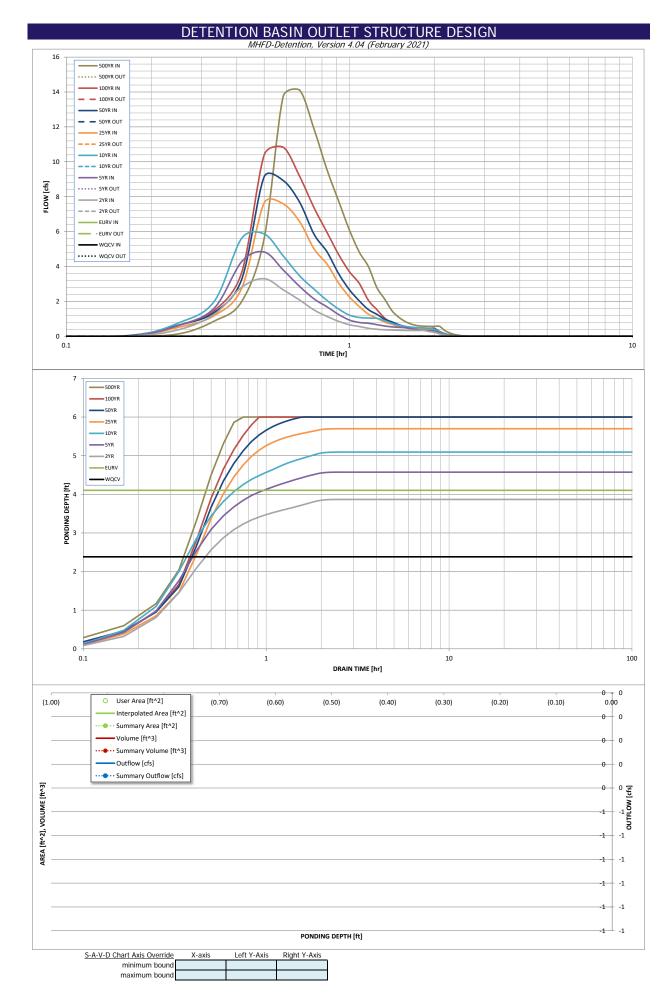
 ft^2

feet

eir

feet

feet


ft² ft²

<u>ıte</u>

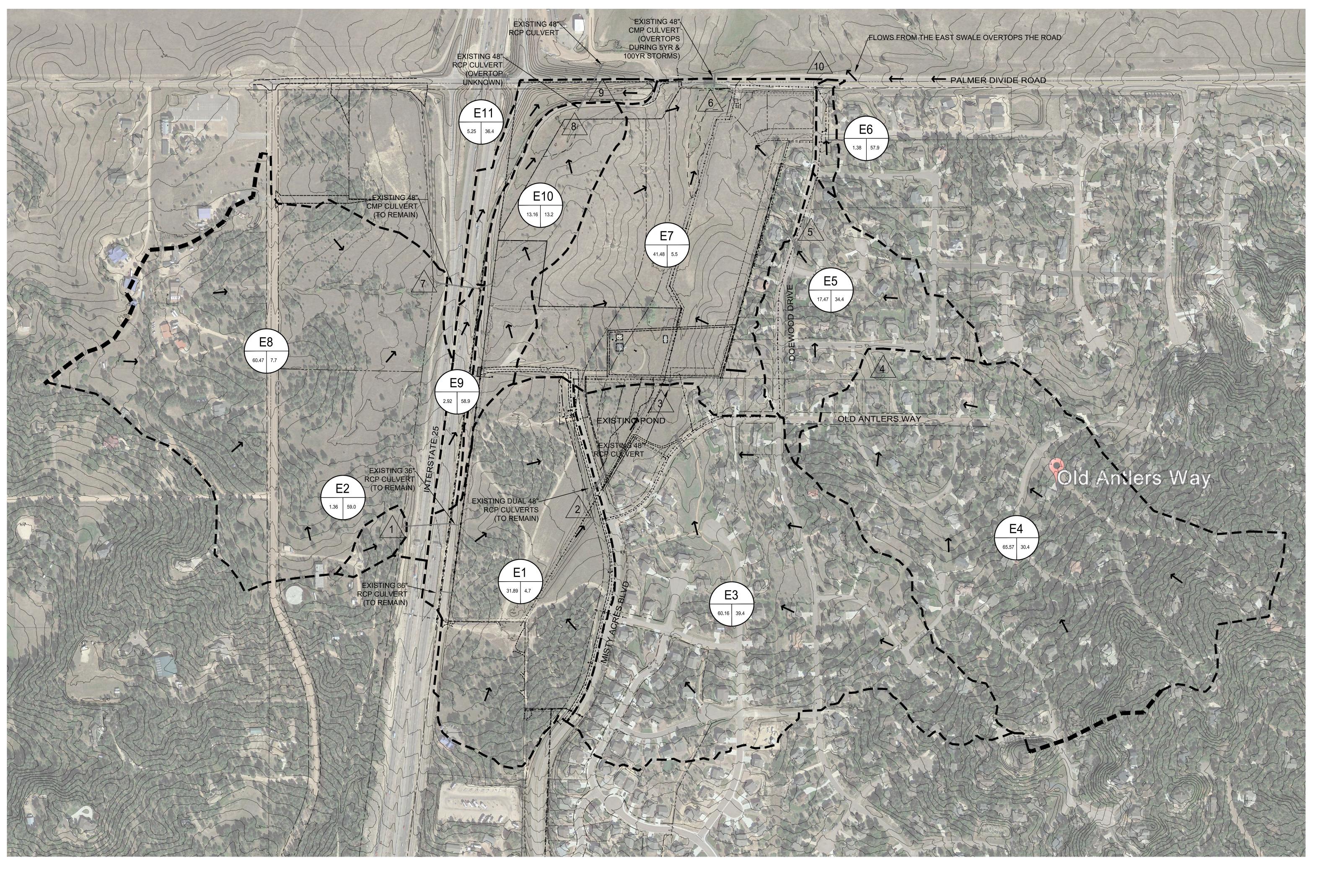
ft² feet

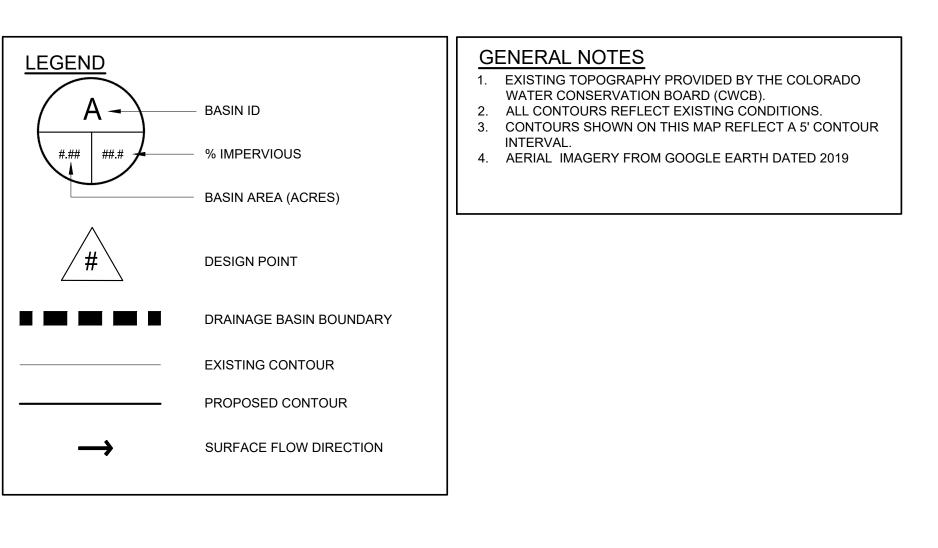
radians

500 Year 3.14 0.641 0.641 8.5 2.63 14.1

Outflow Hydrograph Workbook Filename:

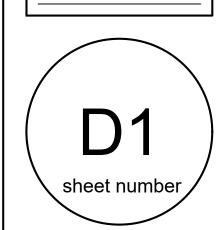
Inflow Hydrographs

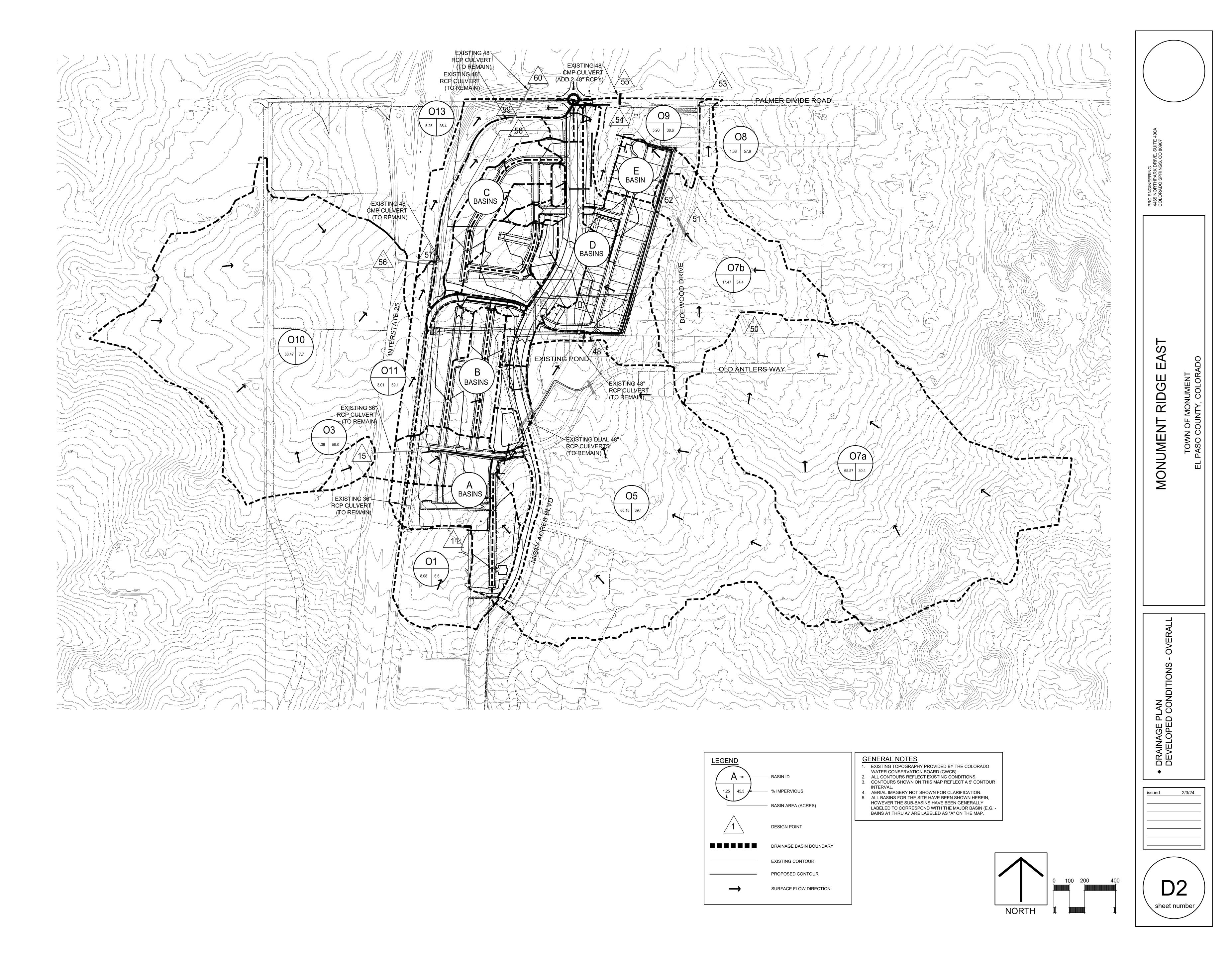

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

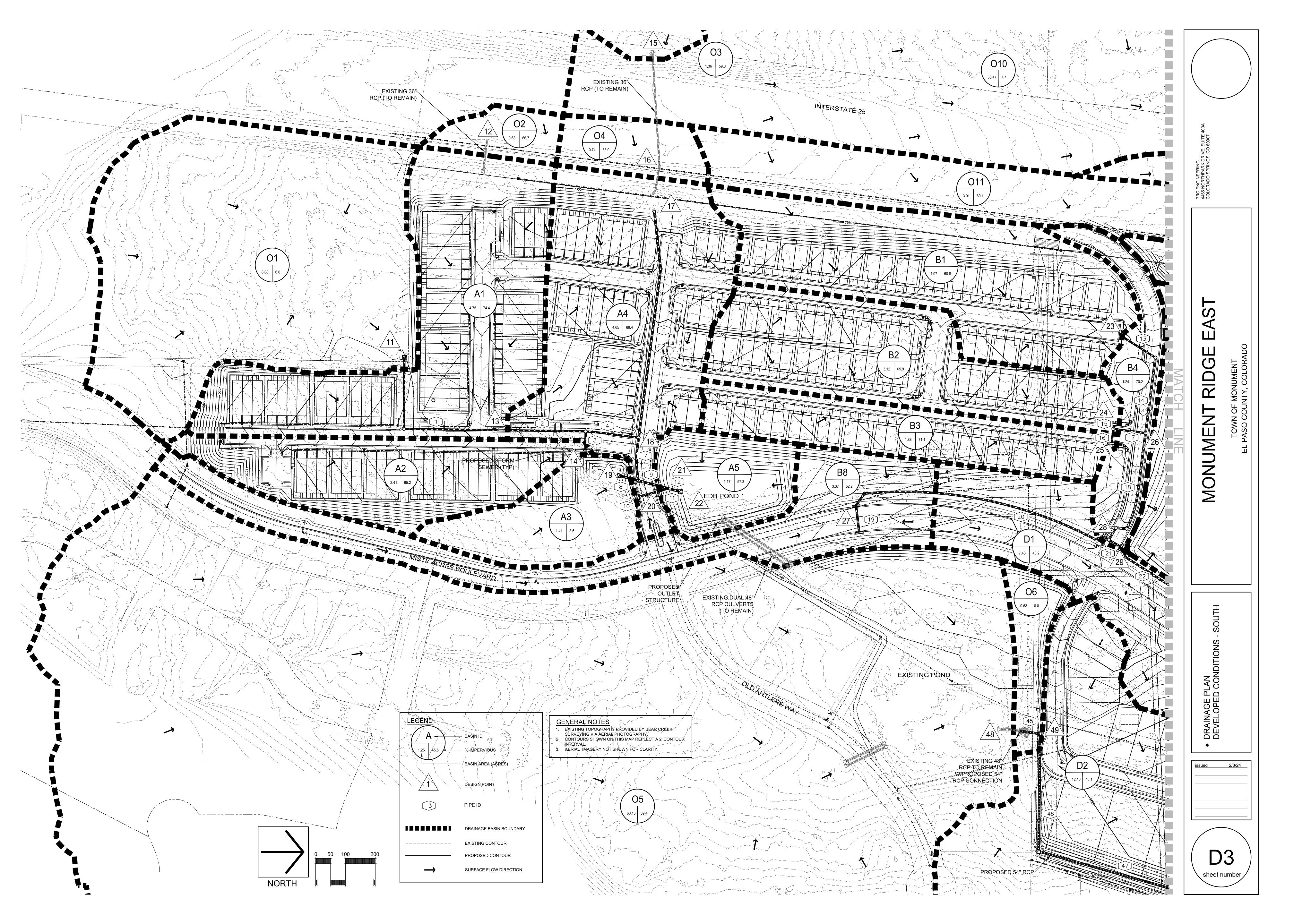

1								d in a separate pr		
_	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00									
		0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.14
	0:15:00	0.00	0.00	0.38	0.62	0.77	0.52	0.64	0.63	0.87
	0:20:00	0.00	0.00	1.26	1.62	2.01	1.19	1.37	1.48	1.99
	0:25:00	0.00	0.00	2.81	4.28	5.62	2.75	3.26	3.66	5.61
	0:30:00	0.00	0.00	3.30	4.83	5.86	7.64	9.14	10.39	13.74
	0:35:00	0.00	0.00	2.67	3.80	4.61	7.59	8.93	10.84	14.11
	0:40:00	0.00	0.00	2.08	2.86	3.47	6.58	7.69	9.18	11.88
	0:45:00	0.00	0.00	1.50	2.14	2.70	5.01	5.85	7.36	9.55
	0:50:00	0.00	0.00	1.14	1.69	2.05	4.14	4.84	5.96	7.74
	0:55:00	0.00	0.00	0.85	1.24	1.56	3.05	3.58	4.68	6.09
	1:00:00	0.00	0.00	0.66	0.93	1.21	2.26	2.67	3.70	4.83
	1:05:00	0.00	0.00	0.56	0.79	1.08	1.70	2.03	3.03	4.00
	1:10:00	0.00	0.00	0.46	0.74	1.04	1.27	1.53	2.06	2.79
	1:15:00	0.00	0.00	0.40	0.67	1.03	1.03	1.26	1.53	2.12
	1:20:00	0.00	0.00	0.37	0.59	0.89	0.81	0.97	1.04	1.44
	1:25:00	0.00	0.00	0.35	0.54	0.73	0.68	0.82	0.77	1.07
	1:30:00	0.00	0.00	0.34	0.51	0.62	0.55	0.65	0.60	0.82
	1:35:00	0.00	0.00	0.33	0.49	0.56	0.48	0.56	0.49	0.68
	1:40:00	0.00	0.00	0.33	0.42	0.52	0.43	0.50	0.44	0.60
	1:45:00	0.00	0.00	0.33	0.42	0.49	0.43	0.30	0.44	0.58
	1:50:00	0.00	0.00	0.33	0.34	0.49	0.41	0.47	0.42	0.57
	1:55:00	0.00	0.00	0.33	0.34		0.39	0.43		0.57
	2:00:00					0.45			0.42	
	2:00:00	0.00	0.00	0.23	0.30	0.40	0.39	0.44	0.42	0.57
		0.00	0.00	0.14	0.18	0.24	0.23	0.27	0.25	0.34
	2:10:00	0.00	0.00	0.08	0.11	0.14	0.14	0.16	0.15	0.21
	2:15:00	0.00	0.00	0.04	0.06	0.08	0.08	0.09	0.09	0.12
	2:20:00	0.00	0.00	0.02	0.03	0.04	0.05	0.05	0.05	0.07
	2:25:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	2:30:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	2:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

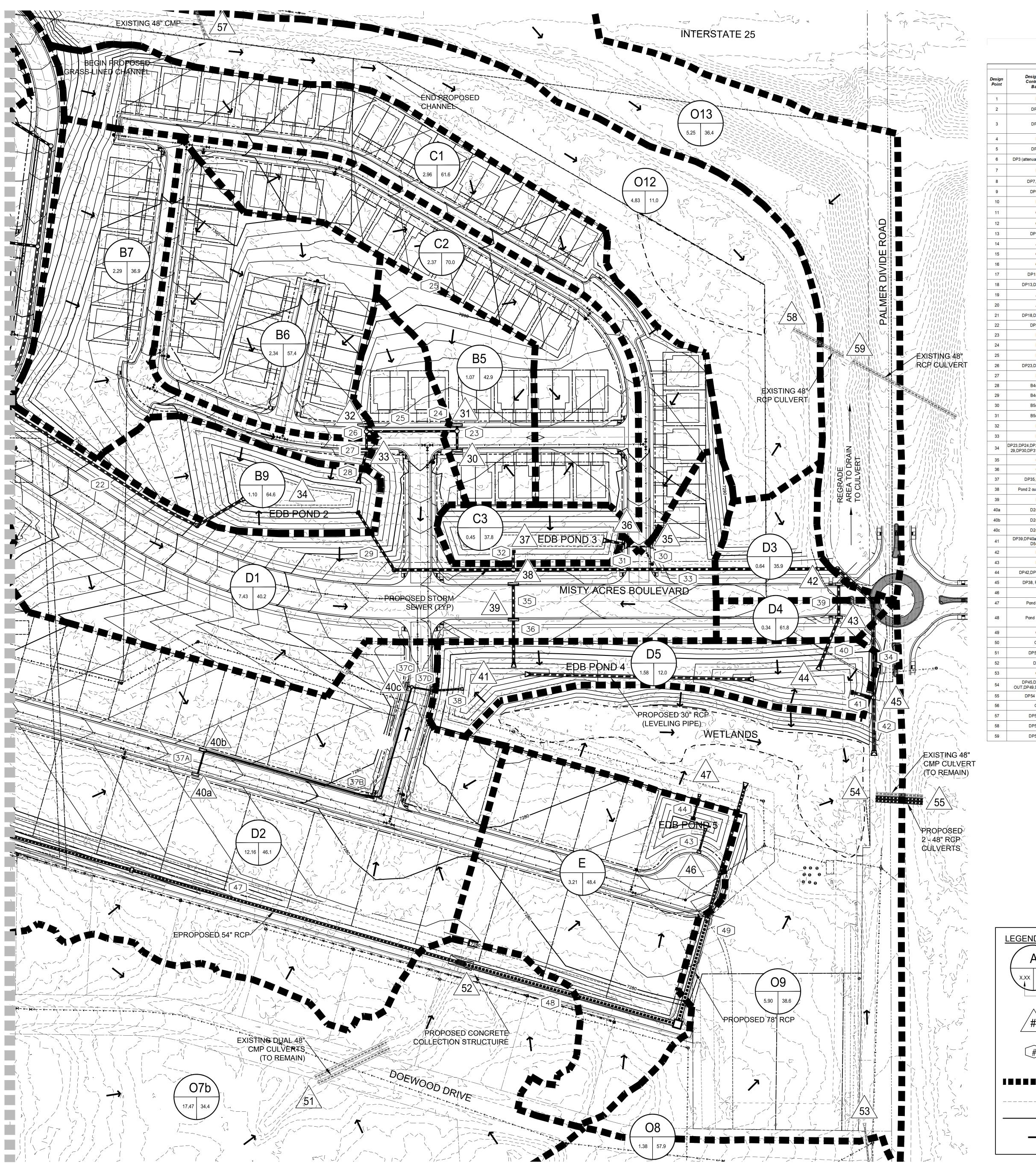
MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

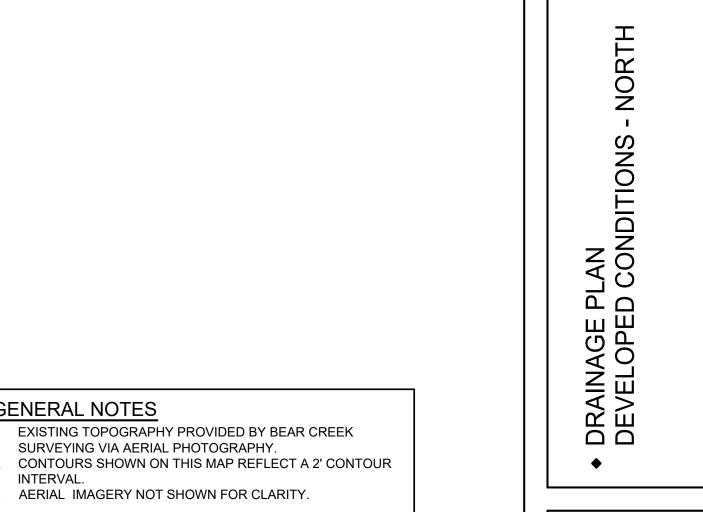

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope changes (e.g. ISV and Floor)
							from the S-A-V table on Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice,
							overflow grate, and spillway, where applicable).
							-
							-
							-
							-
							-
							-
							-
							-
]
							1
							1
							1
]
		1	1	1	1	1	1



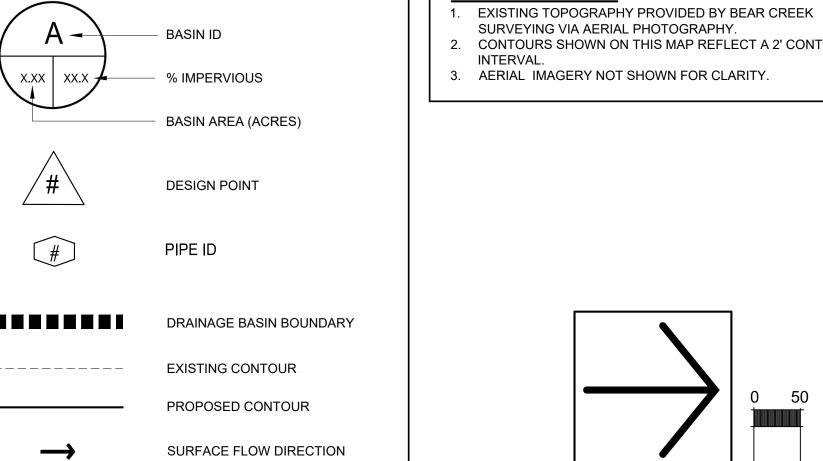

DRAINAGE PLAN EXISTING CONDITI


issued 2/3/24

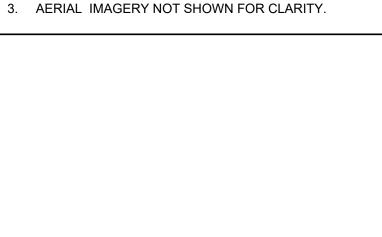
0 100 200 400

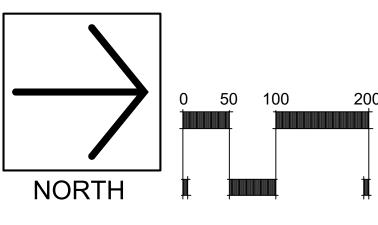

(Surface Routing Summary) Design Point/ Contributing 3.3 5.7 existing 36" RCP culvert DP1,E1 21.8 62.2 existing dual 48" RCP culverts Misty Ac 1 Pond Attenuation of Q10=58cfs, 107.2 225.6 Q100=130cfs (per MDDP), yields Q10out=49.2cfs and DP2,E3 Q100=95.6cfs) 92.1 191.4 unk pipe sizes, assume no peak flow attenuation DP4,E5 109.4 225.2 low point collection structure, size TBD in FDR DP3 (attenuated),DP5,E6,E7 214.3 488.0 existing 48" CMP culvert, overtops road 40.8 113.3 existing 48" CMP culvert 52.9 137.4 existing 48" RCP culvert, overtop elev unk 60.1 151.4 existing 48" RCP culvert, overtop elev unk 4.7 8.0 existing 24" culvert 5.8 17.2 proposed 18" RCP 2.1 3.5 existing type C inlet 22.0 35.4 split w/DP14 flows, proposed 4' and 16' D-10-R inlets 9.0 15.0 split w/DP13 flows, proposed 4' and 16' D-10-R inlets 3.3 5.7 existing 36" RCP culvert 3.0 4.9 existing type C inlet DP15,DP16 5.7 9.7 proposed 18" RCP culvert 42.5 77.3 proposed manhole DP13,DP14,DP17 1.3 | 3.5 | proposed 18" RCP culvert 18.7 30.6 proposed 2-12' D-10-R inlets DP18,DP19,DP20 62.5 | 111.3 | flow to pond 1, unrouted 66.7 118.4 total flow to pond 1, not routed 11.8 19.6 split w/DP25 flows, proposed triple type R inlets 7.5 12.2 split w/DP24 flows, proposed triple type R inlets DP23,DP24,DP25 33.9 56.5 proposed manhole 10.9 18.9 proposed 2-8' D-10-R inlets 3.1 5.0 proposed double type 16 inlet 2.1 3.3 proposed double type 16 inlet 1.0 1.8 proposed single type R inlet 1.9 3.5 proposed single type R inlet 7.5 12.8 proposed double type R inlet 5.1 9.7 proposed double type R inlet DP23,DP24,DP25,DP27,DP28,DP 69.8 119.2 total flow to pond 2, not routed 29,DP30,DP31,DP32,DP33,B9 11.4 19.5 split w/DP36 flows, proposed triple type R inlets 9.9 16.4 split w/DP35 flows, proposed triple type R inlets 22.5 38.1 total flow to pond 3, not routed DP35,DP36,C3 12.8 34.1 proposed manhole Pond 2 out, Pond 3 out 18.5 34.9 proposed 2-16' D-10-R inlets 7.9 15.1 split w/DP40b flows, proposed 12' D-10-R inlet 7.9 15.1 split w/DP40a flows, proposed 12' D-10-R inlet 12.3 23.4 proposed 2-12' D-10-R inlets 48.0 92.0 total flow to pond 4 (south side) 1.6 3.2 proposed 4' D-10-R inlet 1.3 2.1 proposed 4' D-10-R inlet DP42,DP43,D5(50%) 4.3 8.7 total flow to pond 4 (south side) 28.3 72.2 proposed manhole 9.3 17.4 proposed 16' D-10-R inlet Pond 5 outfall 2.1 5.5 total flow release Misty Ac 1 Pond Attenuation of Q10=58cfs, 118.9 238.3 Q100=130cfs (per MDDP), yields Q10out=60.9cfs and Q100=108.3cfs) 1.0 2.7 proposed type C inlet 92.1 191.4 total flow to existing pond, no peak flow attenutation 110.5 227.6 existing dual 48" CMP culverts 102.6 211.3 low point collection structure, size TBD in FDR 4.7 8.0 ex culvert, size unk 211.7 431.3 total inflow OUT,DP49,DP52,DP53,O9 DP54 Pipe Out 211.7 431.3 existing 48" culvert outfall 40.8 113.3 existing 48" CMP culvert 47.7 124.4 existing type C inlet

MONUMENT RIDGE EAST


MASTER DEVELOPMENT DRAINAGE PLAN

Pipe ID	Flow	(cfs)	Dina Diam (in		
ripe ib	Q 10	Q ₁₀₀	Pipe Diam (in,		
1	5.8	17.2	30" RCP		
2	21.3	42.4	30" RCP		
3	15.5	25.2	24" RCP		
4	36.8	67.6	36" RCP		
5	5.7	9.7	18" RCP		
6	5.7	9.7	18" RCP		
7	42.5	77.3	42" RCP		
8	1.3	3.5	18" RCP		
9	43.8	80.7	42" RCP		
10	9.4	15.3	24" RCP		
11	18.7	30.6	30" RCP		
12	62.5	111.3	48" RCP		
13	14.6	24.7	24" RCP		
14	14.6	24.7	24" RCP		
15	11.8	19.6	24" RCP		
16	7.5	12.2	24" RCP		
17	19.3	31.8	30" RCP		
18	33.9	56.5	36" RCP		
19	5.4	9.5	24" RCP		
20	10.9	18.9	24" RCP		
21	47.8	80.4	42" RCP		
22	49.9	83.7	42" RCP		
23	1.0	1.8	18" RCP		
24	1.9	3.5	18" RCP		
25	2.9	5.3	18" RCP		
26	7.5	12.8	24" RCP		
27	10.3	18.1	24" RCP		
28	15.4	27.9	24" RCP		
29	10.6	28.3	24" RCP		
30	11.4	19.5	30" RCP		
31	21.3	35.9	36" RCP		
32	2.2	5.8	18" RCP		
33	12.8	34.1	36" RCP		
34	12.8	34.1	36" RCP		
35	9.2	17.5	24" RCP		
36	18.5	34.9	30" RCP		
37A	7.9	15.1	24" RCP		
37B	15.9	30.2	30" RCP		
37C	6.2	11.7	18" RCP		
37D	22.0	42.0	30" RCP		
38	28.2	53.7	36" RCP		
39	1.6	3.2	18" RCP		
40	2.9	5.3	18" RCP		
41	15.5	38.1	36" RCP		
42	28.3	72.2	48" RCP		
43	9.3	17.4	24" RCP		
44	2.1	5.5	18" RCP		
45	60.9	108.3	54" RCP		
46	61.9	111.0	54" RCP		
47	61.9	111.0	54" RCP		
48	164.5	322.3	78" RCP		
49	164.5	322.3	78" RCP		


MONUMENT RIDGE EAST


MOM

52.2 134.6 existing 48" RCP culvert 60.1 150.0 existing 48" RCP culvert

GENERAL NOTES

D4 sheet number