FINAL DRAINAGE REPORT FOR STERLING RANCH RECYCLING FACILITY

Prepared For:

SR Land, LLC 20 Boulder Crescent, Suite 200 Colorado Springs, CO 80903 (719) 491-3024

August 2023 Project No. 25188.14 PCD Filing No: PPR-23-XXX

Prepared By: JR Engineering, LLC 5475 Tech Center Drive, Suite 235 Colorado Springs, CO 80919 719-593-2593

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage letter has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Mike Bramlett, Colorado P.E. 32314 For and On Behalf of JR Engineering, LLC

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:

SR Land, LLC

By:

Title: Address:

20 Boulder Crescent, Suite 200 Colorado Springs, CO 80903

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

County Engineer/ ECM Administrator

Table of Contents

Purpose	1
General Site Description	
General Location	1
Description of Property	1
Floodplain Statement	1
Existing Drainage Conditions	2
Major Basin Descriptions	2
Existing Sub-basin Drainage	2
Proposed Drainage Conditions	3
Proposed Sub-basin Drainage	3
Ultimate Sub-basin Drainage	5
Drainage Design Criteria	6
Development Criteria Reference	6
Hydrologic Criteria	6
Hydraulic Criteria	6
Drainage Facility Design	7
General Concept	7
Four Step Process to Minimize Adverse Impacts of Urbanization	8
Water Quality	9
Erosion Control Plan	
Operation & Maintenance	10
Drainage and Bridge Fees	10
Summary	
References	11

APPENDICES

- Appendix A Vicinity Map, Soil Descriptions, FEMA Floodplain Map
- Appendix B Hydrologic Calculations
- Appendix C Hydraulic Calculations
- Appendix D Reference Material
- Appendix E Drainage Maps

PURPOSE

This document is the Final Drainage Report for Sterling Ranch Recycling Facility. The purpose of this report is to identify on-site and off-site drainage patterns, areas tributary to the site, and compare existing and proposed drainage conditions.

GENERAL SITE DESCRIPTION

GENERAL LOCATION

Sterling Ranch Recycling Facility (hereby referred to as the "site") is a proposed development within the Sterling Ranch master planned community with a total area of approximately 32 acres. The site is presently used as a concrete and asphalt recycling facility.

The site is located in the north half of Section 5, Township 13 South, Range 65 West of the Sixth Principal Meridian in El Paso County, State of Colorado. The site is bounded by Marksheffel Road to the east, Pioneer Sand CO land to the west and south, and unplatted land to the north. Refer to the vicinity map in Appendix A for additional information.

DESCRIPTION OF PROPERTY

In the existing condition analysis, the property was analyzed at the time of the parcel sale in 2021. Before the sale of the site in 2021, the parcel had been used as a crushing facility for a nearby mining operation. The crushing business halted operations and vegetation was established on portions of the site prior to the sale. There was an asphalt access road and compacted gravel roads on the site at the time of sale. The site generally slope(s) to the south at 1 to 6% towards an existing 8' berm on the southern edge of the property. In the proposed interim condition, the property will be used as an asphalt and concrete recycling facility with asphalt drives, a staging area and some existing grasslands. In the ultimate condition, the site and surrounding properties are assumed to be developed per their land use which includes heavy industrial, multi-family residential, and commercial.

Soils located on the project site are Blakeland Loamy Sand (8) and Columbine Gravelly Sandy Loam (19). These soils are classified as Hydrologic Soil Group A. Group A soils exhibit high infiltration rates when thoroughly wet, and consist mainly of deep, well drained to excessively drained sands or gravelly sands. Refer to the soil survey map in Appendix A for additional information.

There are no known irrigation facilities located on the project site.

FLOODPLAIN STATEMENT

Based on the FEMA FIRM Maps number 08041C0533G, dated December 7, 2018, the entire site lies within Zone X. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher

than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. Refer to the FIRM Map in Appendix A for additional information.

EXISTING DRAINAGE CONDITIONS

MAJOR BASIN DESCRIPTIONS

The site lies within the upper Sand Creek Drainage Basin based on the "Sand Creek Drainage Basin Planning Study" (DBPS) completed by Kiowa Engineering Corporation in January 1993, revised March 1996. The Sand Creek Drainage Basin covers approximately 54 square miles and is divided into 7 major sub-basins. The site is within the respective upper basin Sand Creek sub-basin as shown in Appendix D. Sand Creek ultimately enters Fountain Creek about two miles upstream of the Academy Boulevard bridge over Fountain Creek.

The site generally drains from north to southwest. Sand Creek is located to the east of the site and runs from north to south. This reach of drainage conveyance does not currently have any improvements. As of the date of this report, Kiowa is performing studies and plans to address Sand Creek stabilization adjacent to the site.

EXISTING SUB-BASIN DRAINAGE

The existing condition analyzes the parcel at the latest time of sale in 2021. The existing condition of the site was broken into seven sub-basins including six on-site basins and one off-site basin. The basin delineation is shown in the existing drainage map in Appendix E and is described as follows:

Basin EXA ($Q_5=1.1$ cfs, $Q_{100}=5.4$ cfs) is 2.68 acres with an 8 percent impervious and is located on the northwestern portion of the site. This basin is comprised of part of an existing paved access road, existing vegetation and undeveloped area. Runoff from this basin sheet flows southwest onto the adjacent property to the west at design point (DP) 1. Runoff follows historical drainage patterns offsite and outfalls to Sand Creek.

Basin EXB ($Q_5=0.6$ cfs, $Q_{100}=4.3$ cfs) is 2.60 acres with a 2 percent impervious and is located on the western portion of the site. This basin is comprised of existing vegetation and undeveloped area. Runoff from this basin sheet flows southwest onto the adjacent property to the west at DP2. Runoff follows historical drainage patterns off-site and outfalls to Sand Creek.

Basin EXC ($Q_5=1.0$ cfs, $Q_{100}=4.3$ cfs) is 2.11 acres with a 14 percent impervious and is located on the southwest portion of the site. This basin is comprised of several existing gravel roads, existing vegetation and undeveloped area. Runoff from this basin sheet flows southwest to DP3 located along the existing 8' berm. Runoff from DP3 infiltrates the ground along the berm's toe of slope.

Basin EXD ($Q_5=7.6$ cfs, $Q_{100}=28.1$ cfs) is 13.44 acres with a 17 percent impervious and is located on the western central portion of the site. This basin is comprised of part of an existing paved access road, several existing gravel roads, existing vegetation and undeveloped area. Runoff from this basin sheet flows south to DP4 located along the existing 8' berm. Runoff from DP4 flows south across the existing berm via an existing 12" PVC pipe. Runoff follows historical drainage patterns off-site and outfalls to Sand Creek.

Basin OS1 ($Q_5=1.5$ cfs, $Q_{100}=9.8$ cfs) is 9.42 acres with a 2 percent impervious and is located to the north of the site. This basin is comprised of off-site undeveloped area tributary to the site. Runoff from this basin sheet flows south and then east along the existing off-site berm to DP5. Runoff from DP5 flows south entering into Basin EXE. Runoff follows historical drainage patterns within Basin EXE and combines at DP6.1.

Basin EXE ($Q_5=2.0 \text{ cfs}$, $Q_{100}=13.4 \text{ cfs}$) is 8.51 acres with a 2 percent impervious and is located on the eastern central portion of the site. This basin is comprised of part of several existing dirt access roads, existing vegetation and undeveloped area. Runoff from this basin sheet flows south and then east to DP6 located along the existing 8' berm. Runoff from DP5 and DP6 combine at DP6.1 ($Q_5=2.8 \text{ cfs}$, $Q_{100}=18.7 \text{ cfs}$). Runoff from DP6.1 continues to flow southeast through the neighboring property to the south. Flow becomes concentrated off-site in a natural stream section that ultimately follows the historical drainage patterns into Sand Creek.

Basin EXF ($Q_5=0.8$ cfs, $Q_{100}=5.2$ cfs) is 3.09 acres with a 2 percent impervious and is located on the eastern portion of the site. This basin is comprised of part of an existing dirt access road and undeveloped area. Runoff from this basin sheet flows southeast to DP7 located along the eastern side of the site. Runoff from DP7 continues to flow south through the neighboring sanitary lift station property to the east. Flow becomes concentrated off-site in a natural stream section that ultimately follows the historical drainage patterns into Sand Creek.

PROPOSED DRAINAGE CONDITIONS

PROPOSED CONVEYANCE

In general, developed flows are collected in proposed swales, which convey water to the proposed water quality and detention area. Proposed swale sections were designed to ensure they are stable and have required capacity to satisfy criteria. A swale is considered stable with a velocity of 5 ft/s of less. To ensure capacity, swales will have a minimum of 1 ft. of freeboard over the water surface for flows anticipated in a 100-year storm event. In addition to the swales, a proposed culvert also conveys flows under the access roadway. The culvert was sized to not overtop the roadways with flows from a 100-year storm event. Detailed swale calculations, sections, and culvert calculations are located in Appendix C.

PROPOSED SUB-BASIN DRAINAGE

The proposed condition analyzes the parcel for the interim use of a recycling facility. The Rational Method produced flows that were used to design the proposed interim swales, culverts, storm sewer, and pond forebays. The proposed site was broken into eight basins including six on-site basins and two off-site basins. The proposed basin delineation is shown on the drainage basin map within Appendix E and is described as follows:

Basin A ($Q_5=0.2$ cfs, $Q_{100}=1.0$ cfs) is 0.30 acres with a 2 percent impervious and is located on the western property line of the site. This basin is comprised of proposed undeveloped area. Runoff from this basin sheet flows southwest to DP1 and then off-site to the adjacent property to the west. Runoff then follows historical drainage patterns off-site and outfalls to Sand Creek. In the existing condition, Basins EXA and EXB both flow off-site in this same direction for a total flow of $Q_5=1.7$ cfs, $Q_{100}=9.7$ cfs, which is more than is proposed.

Basin B ($Q_5=7.8$ cfs, $Q_{100}=26.0$ cfs) is 14.43 acres with a 20 percent impervious and is located on the western central portion of the site. This basin is comprised of part of a paved roadway, raw concrete stockpile, raw concrete with rebar stockpile, asphalt stockpile, weighing station, mobile crusher, fence, part of temporary gravel road, swales and undeveloped land. Runoff from this basin sheet flows overland south to a proposed swale that directs flows east to DP2. Runoff from DP2 is combined at the proposed 30" FES at DP4.2.

Basin OS1 ($Q_5=1.5$ cfs, $Q_{100}=9.8$ cfs) is 9.42 acres with a 2 percent impervious and is located to the north of the site. This basin is comprised of off-site undeveloped area tributary to the site. Runoff from this basin sheet flows south and then east along the existing off-site berm to DP3. Runoff from DP3 flows south entering into Basin C. Runoff follows the drainage patterns within Basin C and combines at the proposed 24" RCP culvert at DP4.1.

Basin C ($Q_5=3.5$ cfs, $Q_{100}=17.7$ cfs) is 10.64 acres with a 7 percent impervious and is located on the eastern central portion of the site. This basin is comprised of a part of a paved roadway, swales and undeveloped land. Runoff from this basin sheet flows overland south to proposed swales that directs flows east to DP4. Runoff from DP4 is combined with flows from DP3 at the proposed 24" RCP culvert at DP4.1 ($Q_5=3.9$ cfs, $Q_{100}=21.9$ cfs). Runoff from DP4.1 enters the proposed culvert into Basin B and a proposed swale directs flows to the proposed 30" FES at DP4.2 ($Q_5=9.7$ cfs, $Q_{100}=41.5$ cfs). DP4.2 flows are piped to the west forebay within the pond and combine at DP8.1.

Basin D ($Q_5=1.4$ cfs, $Q_{100}=5.6$ cfs) is 2.69 acres with a 12 percent impervious and is located on the eastern boundary of the site. This basin is comprised of a part of a paved roadway, paved access, swale and undeveloped land. Runoff from this basin sheet flows overland southeast to a proposed swale that directs flows south to DP5. Runoff from DP5 is combined at the proposed Type C sump inlet at DP7.1 within Basin E.

Basin E ($Q_5=1.3$ cfs, $Q_{100}=5.3$ cfs) is 2.49 acres with a 13 percent impervious and is located on the eastern portion of the site. This basin is comprised of a part of a paved roadway, part of a temporary gravel road, swale and undeveloped land. Runoff from this basin sheet flows overland southeast to a proposed swale that directs flows east to DP6. Runoff from DP6 is combined at the proposed Type C sump inlet at DP7.1.

Basin OS2 ($Q_5=0.1$ cfs, $Q_{100}=0.7$ cfs) is 0.36 acres with a 2 percent impervious and is located to the east of the site. This basin is comprised of off-site undeveloped area tributary to the proposed pond. Runoff from this basin sheet flows west and then south along the property boundary to DP7. Runoff from DP7 is combined with DP5 and DP6 flows at the proposed Type C sump inlet at DP7.1 ($Q_5=2.6$ cfs, $Q_{100}=10.8$ cfs). DP7.1 flows are piped to the north forebay within the pond and combine at DP8.1.

Basin F ($Q_5=0.6$ cfs, $Q_{100}=4.4$ cfs) is 2.26 acres with a 2 percent impervious and is located on the southeast portion of the site. This basin is comprised of a proposed full-spectrum extended detention basin (EDB) within Tract A and the proposed off-site detention pond easement. Runoff from this basin sheet flows overland to a proposed trickle channel that directs flows east to DP8. Runoff from DP8 is combined with flows from DP4.2 and DP7.1 at the proposed full-spectrum EDB outlet structure at DP8.1 ($Q_5=11.7$ cfs, $Q_{100}=50.5$ cfs). DP8.1 represents the total proposed flows that will enter the proposed full-spectrum EDB in the interim condition. Flows will be released through the outlet structure at DP8.2 ($Q_5=0.1$ cfs, $Q_{100}=8.0$ cfs) and connect into the existing storm infrastructure sending the flows east where they will eventually follow the historical drainage patterns into Sand Creek.

ULTIMATE SUB-BASIN DRAINAGE

The ultimate condition analyzes the parcel and tributary properties for the future development based on the land use in order to design the ultimate full-spectrum EDB and spillway overflow path. The ultimate site was broken into five land uses. The land uses are shown on the proposed drainage map within Appendix E and is described as follows.

- Lot 1 is 24.06 acres and is zoned as Residential-1/8 Acre or Less (65% impervious)
- Urban Non-Residential Collector Roadway (80' R.O.W.) is 1.78 acres (100% impervious for roadway, curb & gutter, and sidewalk width, 2% impervious for other areas)
- Lot 2 is 4.74 acres and is zoned as Heavy Industrial Area (90% impervious)
- Tract A is 1.85 acres and is used as detention pond area (2% impervious)
- Off-site vacant land to the north is 9.42 acres and is zoned as Commercial Area (95% impervious)
- Off-site Tract/ Lift Station land to the east is 1.87 acres and is zoned as Heavy Industrial Area (90% impervious)
- Off-site land to the east is 0.44 acres and is used as detention pond area (2% impervious)

• Total Area = 44.16 acres with 72.4% impervious

The ultimate condition was used overall to size the full-spectrum EDB and ensure it will operate for future developments.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

Storm drainage analysis and design criteria for this project were taken from the "*City of Colorado Springs/El Paso County Drainage Criteria Manual*" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "*Urban Storm Drainage Criteria Manual*" Volumes 1 to 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "*Colorado Springs Drainage Criteria Manual*" (CSDCM), dated May 2014, as adopted by El Paso County.

HYDROLOGIC CRITERIA

All hydrologic data was obtained from the "*El Paso Drainage Criteria Manual*" Volumes 1 and 2, and the "*Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual*" Volumes 1, 2, and 3. On-site drainage improvements were designed based on the 5-year (minor) storm event and the 100-year (major) storm event. Runoff was calculated using the Rational Method, and rainfall intensities for the 5-year and the 100-year storm return frequencies were obtained from Table 6-2 of the CSDCM. One-hour point rainfall data for the storm events is identified in the chart below. Runoff coefficients were determined based on proposed land use and from data in Table 6-6 from the CSDCM. Time of concentrations were developed using equations from CSDCM. All runoff calculations and applicable charts and graphs are included in the Appendices.

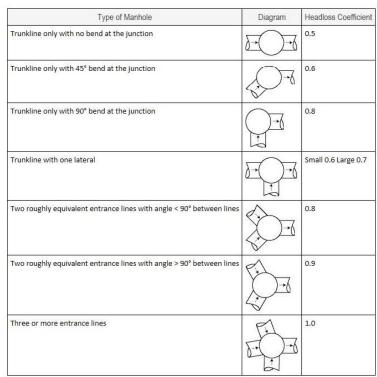

Storm	Rainfall (in.)
5-year	1.50
100-year	2.52

Table 1: 1-hr Point Rainfall Data

HYDRAULIC CRITERIA

The Rational Method and USDCM's SF-2 and SF-3 forms were used to determine the runoff from the minor and major storms on the site. Autodesk Hydraflow Express was used to size the overflow channel and drainage swales per criteria. The MHFD-Detention_v4.06 spreadsheet was utilized for evaluating proposed detention and water quality for Pond A. Bentley StormCAD v8i was used to analyze the hydraulic grade lines and energy grade lines for the storm sewer network. Manhole and pipe losses for the model were obtained from the standard head-loss coefficients (Table 2) as recommended by Bentley. Calculations can be found in Appendix C.

Table 2: StormCAD Head-loss Coefficients

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

The project site is anticipated to be developed in phases, beginning with the development of the Sterling Ranch Recycling Facility portion of Lot 1. This is known as the "interim condition". In the future, it is anticipated that Lot 1 will develop as multi-family, Lot 2 will develop as a heavy industrial area, proposed Sterling Ranch Road R.O.W. will develop as an urban non-residential collector roadway, unplatted land to the north of the site will develop as a commercial area, tract land to the east of the site will develop as heavy industrial, and Tract A will develop as the full-spectrum EDB. The timing and specific site details are largely unknown at this time. The fully developed site and tributary properties is referred to as the "ultimate condition".

All on-site swales, culverts, and conveyances were designed for the interim phase. The proposed fullspectrum EDB was designed for the interim condition, although, to limit the amount of required modifications and re-work upon ultimate developed conditions, the outlet pipe, emergency spillway, pond volume, 6-ft trickle channel, and emergency overflow inlet structure, were all sized per the anticipated ultimate conditions. The forebays and orifice plate were all designed per the interim condition, to ensure the pond will function as required until the site further develops. Upon development of the remaining undeveloped lots, lot specific drainage report(s) must be submitted to ensure the proposed full-spectrum EDB and drainage system designs herein are adequate to accommodate the developed flows. The reports shall identify any proposed modification, if needed,

to ensure proposer functionality of the drainage system(s) and compliance with the current EPC criteria. Treated water will outfall to the existing storm infrastructure to the east of the site and will eventually outfall into Sand Creek. A proposed drainage map is provided in Appendix E.

FOUR STEP PROCESS TO MINIMIZE ADVERSE IMPACTS OF URBANIZATION

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four-step process to minimize adverse impacts of urbanization. The four-step process includes reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls.

Step 1 – Reducing Runoff Volumes: In the interim site development, the site will remain largely undeveloped. Runoff is routed by sheet flow and grass-lined swales to promote infiltration and reduce runoff. The ultimate site development partly consists of multi-family homes with open spaces and lawn areas interspersed within the development which helps disconnect impervious areas and reduce runoff volumes. Roof drains from the structures will discharge to lawn areas, where feasible, to allow for infiltration and runoff volume reduction.

Step 2 – Stabilize Drainageways: The site lies within the Sand Creek Drainage Basin. Basin and bridge fees will be due at time of platting. These funds will be used for the future channel stabilization being designed by Kiowa adjacent to the site and on future projects within the basin to stabilize drainageways. The site does not discharge directly into the open drainageway of Sand Creek, therefore no downstream stabilization will be accomplished with this project.

Step 3 – Treat the WQCV: Water Quality treatment for this site is provided in a proposed fullspectrum extended detention basin (Pond A). The runoff from this site will be collected within swales to inlets and conveyed to the proposed pond via storm sewer. Upon entrance to the ponds, flows will be captured in forebays designed to promote settlement of suspended solids. A concrete trickle channel is also incorporated into the pond to minimize the amount of standing water. The outlet structure has been designed to detain the water quality capture volume (WQCV) for 40 hours, and the extended urban runoff volume (EURV) for 72 hours. Major flows released from the ponds will be reduced to less than historic rates.

Step 4 –BMPs will be utilized to minimize off-site contaminants and to protect the downstream receiving waters. Site specific temporary source control BMPs that will be implemented include, but are not limited to, silt fencing placed around downstream areas of disturbance, construction vehicle tracking pads at the entrances, designated concrete truck washout basin, designated vehicle fueling areas, covered storage areas, spill containment and control, etc. The permanent erosion control BMPs include asphalt drives, storm inlets, storm pipe, the full-spectrum EDB Pond A and permanent vegetation. Maintenance responsibilities and plans will be defined at the time of final platting.

WATER QUALITY

In accordance with Section 13.3.2.1 of the CCS/EPCDCM, full-spectrum water quality and detention are provided for all developed basins. The ultimate condition was used to size the full-spectrum EDB to ensure the required volume, outlet structure and orifice plate design to ensure drain times, trickle channels to ensure capacity for double the 2% peak inflow, and emergency spillway and overflow structure design to ensure freeboard and capacity. The emergency overflow structure (triple Type C sump inlets), was sized to have the capacity for the ultimate peak undetained 100-year flow for Pond A and connects to the existing storm infrastructure that crosses Marksheffel Rd. The interim condition will utilize the same pond grading design and outlet structure, but will have different inlet structures and orifice plate design to ensure the interim design meets criteria. The interim condition forebays (West and North) were sized per the tributary areas for each to ensure they had the required volumes and release rates. Upon development of the surrounding properties (unplatted land to the north and tract land to the east) and the ultimate site, a lot specific drainage report shall be prepared to confirm the adequacy of Pond A to accept, treat, and detain the developed flows per EPC requirements and acceptable criteria.

Where possible, flows were routed through proposed swales to promote infiltration and reduce runoff. Flows for the interim site are routed through the proposed swales and the proposed storm sewer system to a proposed full-spectrum extended detention basin, Pond A. The proposed ultimate WQCV for the pond shall be released within 40 hours and the ultimate EURV shall be released within 72 hours. Proposed interim Basins B-F, OS1, and OS2 are tributary to the proposed Pond A. The table below provides the volumes required for the proposed pond, along with the release rates for the 5-year and 100-year storm. The proposed pond will utilize forebays, trickle channels, and an outlet structure to dissipate energy and treat flows. The proposed outlet structure for this pond shall reduce the release rates for the major storm events to less than historic rates to minimize adverse impacts to downstream stormwater facilities. For some minor storm events, the release rate is higher than the existing predevelopment flows. Due to the Type A soils on the site, the predevelopment calculated flows are low for the 2 through 10 year storms. Therefore, the outlet structure was designed to meet drain times for the WQCV, EURV, and 100-year events.

A broad crested weir lined with Type L buried soil riprap is provided as an emergency spillway for Pond A. The emergency spillway provided will convey flows into a proposed outfall channel that will direct flows to the proposed emergency overflow structure (Triple Type C sump inlet) to the south of the existing sanitary lift station. This will ensure that emergency flows are captured within existing infrastructure and are directed away from Aspen Meadows Subdivision Filing No. 2. The released flows from Pond A discharges into the proposed emergency overflow structure and then connects to an existing 10.33'x10.33' storm junction box. Flows upstream from the north of this junction within the existing 54" RCP storm line are Q₅=30.7 cfs, Q₁₀₀=233.4 cfs. The proposed released flows combine with these existing flows and then continues within an existing 66" RCP storm pipe. The existing 66" RCP has adequate capacity to convey the additional flows in both the interim and ultimate conditions per the StormCAD calculations presented in Appendix C. Pond A Page | 9

will be private and maintained by the property owner. Access shall be granted to the owner and El Paso County for maintenance of the private full-spectrum EDB.

	Required	Provided	WQCV	EURV	5-year	100-year
	Volume	Volume	(ac-ft)	(ac-ft)	Release	Release
	(ac-ft)	(ac-ft)			(cfs)	(cfs)
Interim	1.062	6.608	0.259	0.355	0.1	8.0
Ultimate	6.004	6.608	1.066	4.133	1.4	21.8

EROSION CONTROL PLAN

We respectfully request that the Erosion Control Plan be submitted in conjunction with the Grading and Erosion Control Plan prior to obtaining a grading permit.

OPERATION & MAINTENANCE

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. The property owner shall be responsible for the inspection, maintenance, rehabilitation and repair of stormwater and erosion control facilities located on the property unless another party accepts such responsibility in writing and responsibility is properly assigned through legal documentation. This includes swales, inlets, and storm sewer that is to be maintained by the property owner. Access is provided from on-site facilities and easements for proposed infrastructure located off-site. The maintenance road access is off future Sterling Ranch Road and wraps around the top of the pond providing access to the inflow pipes, wingwalls and outlet structure for the pond.

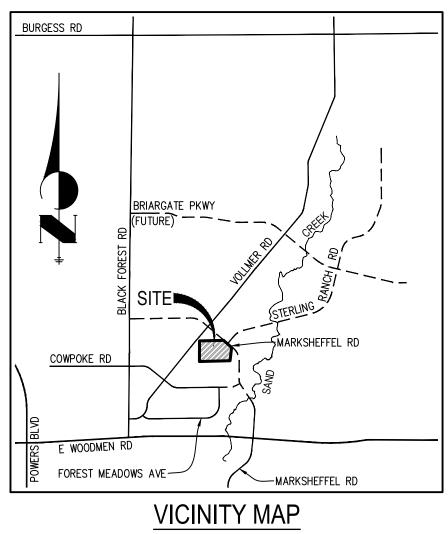
DRAINAGE AND BRIDGE FEES

The site lies within the Sand Creek Drainage Basin. Anticipated drainage and bridge fees are presented below and will be due at time of platting (depending on date of plat submittal):

2023 D	RAINAGE AND BRID	OGE FEES – STERLIN	IG RANCH RECYCLI	NG FACILITY
Impervious Acres (ac)	Drainage Fee (Per Imp. Acre)	Bridge Fee (Per Imp. Acre)	Sterling Ranch Drainage Fee	Sterling Ranch Bridge Fee
4.3	\$23,821	\$9,743	\$102,430	\$41,895

SUMMARY

The proposed Sterling Ranch Recycling Facility drainage improvements were designed to meet or exceed the El Paso County Drainage Criteria. The proposed development will not adversely affect the off-site drainage ways or surrounding development. This report is in conformance and meets the latest El Paso County Storm Drainage Criteria requirements for this site.

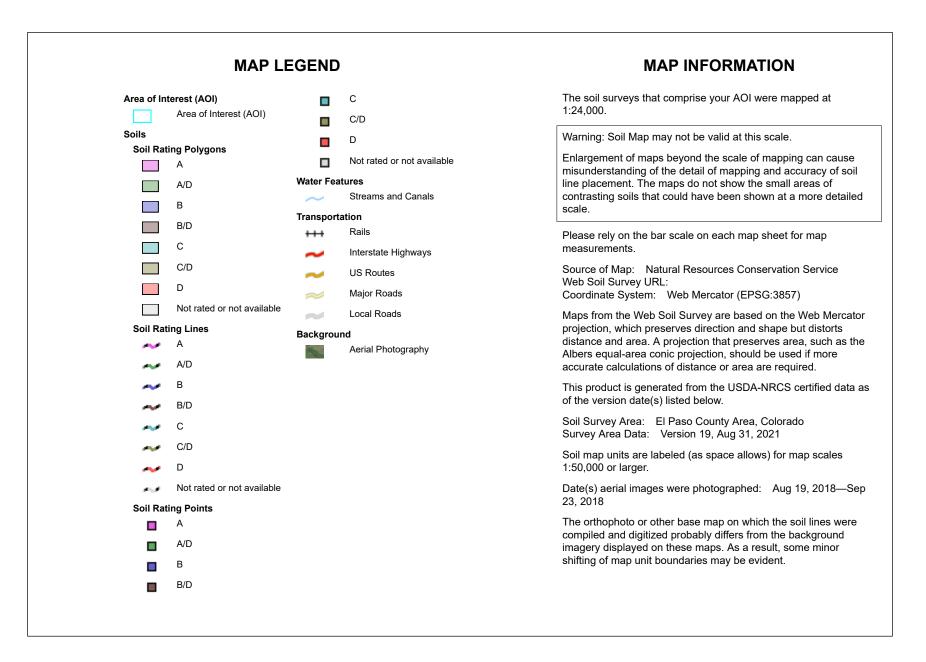

REFERENCES

- 1. "El Paso County and City of Colorado Springs Drainage Criteria Manual, Vol I & II".
- 2. <u>Sand Creek Drainage Basin Planning Study</u>, prepared Kiowa Engineering Corporation, January 1993, revised March 1996.
- 3. <u>Urban Storm Drainage Criteria Manual</u> (Volumes 1, 2, and 3), Urban Drainage and Flood Control District, June 2001.

Appendix A Vicinity Map, Soil Descriptions, FEMA Floodplain Map

N.T.S.

STERLING RECYCLING FACILITY VICINITY MAP JOB NO. 25188.00 6/3/22 SHEET 1 OF 1


Centennial 303-740-9393 • Colorado Springs 719-593-2593 Fort Collins 970-491-9888 • www.jrengineering.com

5/31/2022 Page 1 of 4

Conservation Service

Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Mon unit overhol	Man unit name	Dating	Acres in AOI	Percent of AOI
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	46.2	51.5%
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	43.6	48.5%
Totals for Area of Intere	est		89.8	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage cources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

Location or detailed information in answer them taken the action flowed based information in answer the take Flood Elevations (RFEs) action flowed based to the flowed action of the flowed within the Flood traverse based (RFEs) within the Flood traverse based (RFE) provide the account the FIRM. Uncertainty action of the second traverse based (RFE) account to the taken action of the second traverse based (RFE) account action of the second traverse based (RFE) action of the second traverse action of the second traverse action of the rest of the second traverse action of the rest of th

Coastal Base Flood Elevations shown on this map apply only landward of 0.0° North Amarican Vertical Datum of 1989 (NAVD89), Users of this FIRM Hould be aware that coastal flood develosms are aired provided in the Summary of Sillwate Elevations table in the Flood Insurance Study report for this jurisdicion. Elevations shown in the Summary of Sillwate Elevations table should be used for construction and/or floodpian maragement purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway width and other partinent floodway data are provided in the Flood Insurance Study report for this jurisdicture.

Certain areas not in Special Flood Hazard Areas may be protected by **flood contrn** structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insuranc Study report for information on flood control structures for this jurisdiction.

The projection used in the propagation of this may use Universal Transverse Mercekio (ICTN) point 13. The horizontal datam was MASS. GR850 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIMRs for adjacent juridicitors may result in sight positional differences in may features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD68), Thesis flood elevations must be compared to structure are compared to structure and the structure of the structure and conversion between the National Geodelic Vertical Datum of 1528 and the North American Vertical Datum of 1988, visit the National Geodelic Survey at the Holm/ American Service and Service and Service and the Islaming Service and Service and

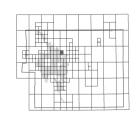
... NGS Information Services NOAA, NNGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the Information Services Branch of the National Seodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Ublities, and Anderson Consulting Engineers, Inc. These data are current as of 2008.

This map infects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FRM for the junction. This was a stream of the stream of th

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, may users should contact appropriate community officials to verify current corporate limit locations.


Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a siting of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is conted.

Contact ERUA Mag Service Center (MSC) via the FEMA Mag information at/change FHMV 1 5477-032827 for information on savalable products associated with the FIRM. Available products may include previously issued Latters of Map Change, a FiRM. Available product organization of the MSC may also be reached by Fax at 1-800-358-8620 and its websile at http://www.msc.fema.gov/.

f you have **questions about this map** or questions concerning the National Flood nsurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Water Conservation Board

tional Flood Hazaro Information and resource lable from local communities and the Col-

3235000 FT JOINS PANEL 0535 1047 307 33 607 104" 41" 15.00" 381 581 7 501 38" 58' 7 50" Sand Creek ZONEAE Ø EL PASO COUNTY UNINCORPORATED AREAS 080059 -424-2000mai (DC) VOLLMER F 33 32 34 ZONE (C) (cx) 4312000mN 1410000 F T. 12 S T. 13 S MOJAVE DR 12 S. EL PASO COUNTY UNINCORPORATED AREAS 080059 ZONEAE 070 C/p MUSTANO à ZONE AE cs SITE LOCATION KENOSHA DR EL PASO COUNTY CITY OF COLORADO SPRINGS PONCA RD 3 4 5 EL PASO COUNTY NINCORPORATED AREAS 080059 CITY OF COLORADO SPRINGS 1405000 F 6886 WOODMEN FRONTAGE RD E WOODMEN RD Bridge E WOODMEN DE co AREAS (000159 10 ZONE AE 8 43-10.000mN Sand Creek 381 561 15 00 381 561 15.001 104° 41' 15.00" JOINS PANEL 0545 104" 39' 22.50' \$-000mp NOTE: MAP AREA SHOWN ON THIS PANEL IS LOCATED WITHIN TOWNSHIP 12 SOUTH, RANGE 65 WEST, AND TOWNSHIP 13 SOUTH, RANGE 65 WEST.

Appendix B Hydrologic Calculations

COMPOSITE % IMPERVIOUS & COMPOSITE PRE-DEVELOPMENT RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Location:

Sterling Ranch Recycling Facility

El Paso County

Project Name: Sterling Ranch

Project No.: 25188.14 Calculated By: GAG

Checked By:

Date: 7/17/23

	Total			ets-Pavec mpervio				eets-Grav Impervio	-			cal Analy nperviou		0	s Total nted C ues	Basins Total Weighted %
Basin ID	Area (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C_5	C ₁₀₀	Area (ac)	Weighted % Imp.	C_5	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Imp.
EXA	2.68	0.90	0.96	0.16	6.0%	0.59	0.70	0.00	0.0%	0.09	0.36	2.52	1.9%	0.14	0.40	7.9%
EXB	2.60	0.90	0.96	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	2.60	2.0%	0.09	0.36	2.0%
EXC	2.11	0.90	0.96	0.00	0.0%	0.59	0.70	0.33	12.5%	0.09	0.36	1.78	1.7%	0.17	0.41	14.2%
EXD	13.44	0.90	0.96	0.86	6.4%	0.59	0.70	1.48	8.8%	0.09	0.36	11.10	1.7%	0.20	0.44	16.9%
EXE	8.51	0.90	0.96	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	8.51	2.0%	0.09	0.36	2.0%
EXF	3.09	0.90	0.96	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	3.09	2.0%	0.09	0.36	2.0%
OS1	9.42	0.90	0.96	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	9.42	2.0%	0.09	0.36	2.0%
TOTAL	41.85															7.8%

PRE-DEVELOPMENT STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Sterling Ranch Recycling Facility

Location: El Paso County

Project Name: <u>Sterling Ranch</u> Project No.: 25188.14 Calculated By: GAG Checked By: Date: 7/17/23

Equation 6-3

Equation 6-5

		SUB-I	BASIN			INITI	AL/OVERI	AND			TRAVEL TI	ME					
		DA	ATA				(T _i)				(T _t)			(L	IRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t i	L _t	S _t	K	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
EXA	2.68	А	8%	0.14	0.40	300	4.0%	19.0	190	2.3%	10.0	1.5	2.1	21.1	490.0	26.7	21.1
EXB	2.60	А	2%	0.09	0.36	300	2.5%	23.3	240	2.5%	10.0	1.6	2.5	25.9	540.0	28.4	25.9
EXC	2.11	А	14%	0.17	0.41	300	2.6%	21.3	135	1.7%	15.0	2.0	1.2	22.4	435.0	25.2	22.4
EXD	13.44	А	17%	0.20	0.44	300	3.6%	18.5	810	3.4%	15.0	2.8	4.9	23.4	1110.0	29.6	23.4
EXE	8.51	А	2%	0.09	0.36	300	4.0%	20.0	800	3.0%	10.0	1.7	7.7	27.7	1100.0	34.0	27.7
EXF	3.09	А	2%	0.09	0.36	300	3.5%	20.9	400	4.3%	10.0	2.1	3.2	24.1	700.0	29.1	24.1
OS1	9.42	А	2%	0.09	0.36	150	2.0%	17.8	850	0.2%	10.0	0.4	31.7	49.4	1000.0	59.8	49.4

NOTES:

 $t_c = t_i + t_t$

Where:

 t_c = computed time of concentration (minutes)

ti = overland (initial) flow time (minutes)

 t_t = channelized flow time (minutes).

 $t_l = \text{overland} (\text{initial}) \text{ flow time (minutes})$ $C_S = \text{runoff coefficient for S-year frequency (from Table 6-4)}$ $L_l = \text{length of overland flow (fh)}$ $S_{\mathbf{e}} = \text{average slope along the overland flow path (ft/ft)}.$

 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.33}}$

Where:

Equation 6-4 $t_c = (26 - 17i) + \frac{L_t}{60(14i + 9)\sqrt{S_t}}$

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

Equation 6-2

	L	L,
<i>t</i> _t = 6	$0K\sqrt{S_o}$	60V,

Where:

el time, min)

Where: $t_c = \min t_c$ from Equation 6-1.
 Type of Land Surface
 Conveyance Factor, K

 Heavy meadow
 2.5

 Tillage/field
 5

 Short pasture and lawns
 7

 Nearly bare ground
 10

 Grassed waterway
 15

 Paved areas and shallow paved swales
 20

Table 6-2. NRCS Conveyance factors, K

ic - maintain of the of contention of the steagy point when easily point when easily point when easily the point of the point of the channelized flow path (ft) i = imperviousness (expressed as a decimal) S_i = slope of the channelized flow path (ft/ft).

 $\begin{array}{l} t_t = \text{channelized flow time (travel time, min)} \\ L_t = \text{waterway length (ft)} \\ S_o = \text{waterway slope (ft/ft)} \\ V_t = \text{travel time velocity (ft/sec)} = K \sqrt{S_o} \\ K = \text{NRCS conveyance factor (see Table 6-2)}. \end{array}$

									S	TANI	STO	RM D	RM SF RAINA NAL ME	AGE S'	YSTEI	M DE	SIGN	MEN	IT				
Subdivision Location Design Storm	: El Pas	io Cour	ch Recyc nty	cling Fa	acility							- - -				Са	oject N Projec culate Checke	t No.: d By:	2518 GAG	8.14	nch		
	DIRECT RUNOFF TOTAL RUNOFF STREET/SWALE PIPE TRAVEL TIME																						
STREET	Image: state of the second state of															REMARKS							
	1 EXA 2.68 0.14 21.1 0.37 3.01 1.1 Image: Control of the sector of																						
	Image: Normal State															Sheet flows overland to DP2 Flows off-site to the west							
	3	EXC	2.11	0.17	22.4	0.35	2.92	1.0															Sheet flows overland and along berm to DP3 Flows off-site to the south
	4	EXD	13.44	0.20	23.4	2.65	2.85	7.6															Sheet flows overland and along berm to DP4 Flows off-site to the south
	5	OS1	9.42	0.09	49.4	0.85	1.73	1.5															Sheet flows overland and along berm to DP5 Flows on-site and combines at DP6.1
	6	EXE	8.51	0.09	27.7	0.77	2.60	2.0															Sheet flows overland and along berm to DP6 Combines flows at DP6.1
	6.1								49.4	1.62	1.73	2.8											Combines the flows from DP5 and DP6 Flows off-site to the south
	7	EXF	3.09	0.09	24.1	0.28	2.81	0.8															Sheet flows overland to DP7 Flows off-site to the east
Notes: Street and Pipe (All pipes are priv																							

									S		STOR	M DR	M SF-: AINAG AL METH	E SYST	EM D	DESIGN		ΙT					
Subdivision: Location: Design Storm:	El Pas	o Coun	ty	ling Fa	acility												alculate Checke	ct No.: ed By:	2518 GAG	8.14	nch		
				DIR	RECT R	UNOFF			1	FOTAL F	RUNO	FF	STRE	ET/SW	ALE		PIP	E		TRAV	'EL TIN	ЛE	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Qstreet/swale (CfS)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	tt (min)	REMARKS		
	1	EXA	2.68	0.40	21.1	1.06															Sheet flows overland to DP1 Flows off-site to the west		
																					Sheet flows overland to DP2		
	2	EXB	2.60	0.36	25.9	0.94	4.54	4.3															Flows off-site to the west Sheet flows overland and along berm to DP3
	3	EXC	2.11	0.41	22.4	0.87	4.90	4.3															Flows off-site to the south
	4	EXD	13.44	0.44	23.4	5.86	4.79	28.1															Sheet flows overland and along berm to DP4 Flows off-site to the south
	5	OS1	9.42			3.39	2.90																Sheet flows overland and along berm to DP5 Flows on-site and combines at DP6.1
	6	EXE	8.51	0.36	27.7	3.06	4.37	13.4															Sheet flows overland and along berm to DP6 Combines flows at DP6.1
	6.1								49.4	6.45	2.90	18.7											Combines the flows from DP5 and DP6 Flows off-site to the south
	7	EXF	3.09	0.36	24.1	1.11	4.72	5.2															Sheet flows overland to DP7 Flows off-site to the east
Notes: Street and Pipe C All pipes are priva	*A valu ate and	es are c RCP un	determir lless oth	ned by erwise	Q/i usir noted.	ng the ca Pipe size	tchment' shown i	's intensi n table c	ty valu olumn	e.													

COMPOSITE % IMPERVIOUS & COMPOSITE PROPOSED RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Location: Sterling Ranch Recycling Facility

El Paso County

Project Name: Sterling Ranch

Project No.: 25188.14

Calculated By: GAG

Checked By:

Date: 7/20/23

	Total			ets-Paveo Impervio				eets-Grav Impervio	-			cal Analy nperviou		0	nted C	Basins Total Weighted %
Basin ID	Area (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C_5	C ₁₀₀	Area (ac)	Weighted % Imp.	Val C ₅	ues C ₁₀₀	Imp.
А	0.30	0.90	0.96	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	0.30	2.0%	0.09	0.36	2.0%
В	14.43	0.90	0.96	2.53	17.5%	0.59	0.70	0.10	0.6%	0.09	0.36	11.80	1.6%	0.24	0.47	19.7%
С	10.64	0.90	0.96	0.52	4.9%	0.59	0.70	0.00	0.0%	0.09	0.36	10.12	1.9%	0.13	0.39	6.8%
D	2.69	0.90	0.96	0.27	10.0%	0.59	0.70	0.00	0.0%	0.09	0.36	2.42	1.8%	0.17	0.42	11.8%
E	2.49	0.90	0.96	0.11	4.4%	0.59	0.70	0.22	7.1%	0.09	0.36	2.16	1.7%	0.17	0.42	13.2%
F	2.26	0.90	0.96	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	2.26	2.0%	0.09	0.36	2.0%
OS1	9.42	0.90	0.96	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	9.42	2.0%	0.09	0.36	2.0%
OS2	0.36	0.90	0.96	0.00	0.0%	0.59	0.70	0.00	0.0%	0.09	0.36	0.36	2.0%	0.09	0.36	2.0%
TOTAL (W. FOREBAY)	34.49															10.9%
TOTAL (N. FOREBAY)	5.18															12.5%
TOTAL (POND)	42.29															10.5%

PROPOSED STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Sterling Ranch Recycling Facility

Location: El Paso County

Project Name: Sterling Ranch Project No.: 25188.14 Calculated By: GAG Checked By: Date: 7/20/23

Equation 6-3

Equation 6-5

		SUB-I	BASIN			INITI	AL/OVERI	LAND			TRAVEL TI	ME					
DATA							(T _i)				(T _t)			(L	IRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t i	L _t	L _t S _t K		VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
А	0.30	А	2%	0.09	0.36	20	33.0%	2.6	0	0.0%	10.0	0.0	0.0	2.6	20.0	25.7	5.0
В	14.43	А	20%	0.24	0.47	300	2.7%	19.5	1600	1.5%	15.0	1.8	14.5	34.0	1900.0	41.2	34.0
С	10.64	А	7%	0.13	0.39	300	2.7%	21.9	750	1.5%	15.0	1.8	6.8	28.7	1050.0	35.1	28.7
D	2.69	А	12%	0.17	0.42	245	3.0%	18.3	400	1.5%	15.0	1.8	3.6	21.9	645.0	29.1	21.9
E	2.49	А	13%	0.17	0.42	190	3.8%	14.9	440	1.5%	10.0	1.2	6.0	20.9	630.0	29.3	20.9
F	2.26	А	2%	0.09	0.36	40	25.0%	4.0	615	0.5%	10.0	0.7	14.5	18.5	655.0	41.3	18.5
OS1	9.42	А	2%	0.09	0.36	150	2.0%	17.8	850	0.2%	10.0	0.4	31.7	49.4	1000.0	59.8	49.4
OS2	0.36	А	2%	0.09	0.36	115	3.0%	13.6	300	3.0%	10.0	1.7	2.9	16.5	415.0	28.8	16.5

NOTES:

 $t_c = t_i + t_t$

Where:

 t_c = computed time of concentration (minutes)

 t_i = overland (initial) flow time (minutes)

 t_t = channelized flow time (minutes).

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

$$t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$$

Where:

 $\begin{array}{l} t_t = \text{channelized flow time (travel time, min)} \\ L_t = \text{waterway length (ft)} \\ S_o = \text{waterway slope (ft/ft)} \\ V_t = \text{travel time velocity (ft/sec)} = K \sqrt{S_o} \\ K = \text{NRCS conveyance factor (see Table 6-2).} \end{array}$

Equation 6-4
$$t_c = (26 - 17i) + \frac{L_t}{60(14i + 9)\sqrt{S_t}}$$

Where:

Where:

Equation 6-2

 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.03}}$

t_i = overland (initial) flow time (minutes)

 $L_i =$ length of overland flow (ft)

 $C_5 = \text{runoff coefficient for 5-year frequency (from Table 6-4)}$

 S_0 = average slope along the overland flow path (ft/ft).

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1. L_r = length of channelized flow path (ft) i = imperviousness (expressed as a decimal) S_t = slope of the channelized flow path (ft/ft).

Table 6-2. NRCS Conveyance factors, K

Type of Land Surface	Conveyance Factor, K
Heavy meadow	2.5
Tillage/field	5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

												TAN	חאח			25.2								
	STANDARD FORM SF-3 - PROPOSED STORM DRAINAGE SYSTEM DESIGN																							
	(RATIONAL METHOD PROCEDURE)																							
	Project Name: Sterling Ranch																							
Subdivision	Subdivision: Sterling Ranch Recycling Facility															PD	Oject N Projec				ncn			
Location:	El Pas	o Cour	nty										Calculated By: GAG											
Design Storm:	5-Yea	r														(Checke			/22				
	Date: 7/20/23 DIRECT RUNOFF TOTAL RUNOFF STREET/SWALE PIPE TRAVEL TIME																							
				DIRE	CT RU	NOFF			T	OTAL I	RUNO	FF	STRE	ET/SV	VALE		PI	PE		TRA\	/EL TI	ME		
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Qstreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS	
	1	A	0.30	0.09	5.0	0.03	5.17	0.2		İ						Ī				Î			Flows overland along the western site boundary to DP1 Flows off-site to the west	
	2	В	14.43	0.24				7.8															Sheet flows overland to swale and then to DP2 Combines flow at FES at DP4.2	
	3	OS1	9.42					1.5															Sheet flows overland and along berm to DP3 Flows on-site and combines at culvert at DP4.1	
	5													<u> </u>	+								Sheet flows overland to swale and then to DP4	
	4	С	10.64	0.13	28.7	1.38	3 2.55	3.5								_							Combines flow at culvert at DP4.1 Combined flow of DP3 and DP4 within culvert	
	4.1								49.4	2.23	1.73	3.9											Swale to FES at DP4.2	
	4.2								191	5.63	1 73	9.7											Combined flow of DP2 and DP4.1 at sump inlet Piped to pond forebay, combines flow at DP8.1	
							+		77.1	0.00	1.75	7.1			+								Sheet flows overland to swale and then to DP5	
	5	D	2.69	0.17	21.9	0.46	2.95	1.4								_				I			Combines flow at sump inlet at DP7.1 Sheet flows overland to swale and then to DP6	
	6	Е	2.49	0.17	20.9	0.42	3.02	1.3															Combines flow at sump inlet at DP7.1	
														<u> </u>	1	1							Sheet flows overland to DP7	
	7	OS2	0.36	0.09	16.5	0.03	3.38	0.1						──	──	—				<u> </u>			Combines flow at sump inlet at DP7.1 Combined flow of DP5, DP6, and DP7 at sump inlet	
	7.1								21.9	0.91	2.95	2.7											Piped to pond forebay, combines flow at DP8.1	
	8	F	2.26	0.00	19.5	0.20) 3.21	0.6															Flows along trickle channel to DP8 at outlet structure Combines flow at DP8.1	
	0	Г	2.20	0.07	10.5	0.20	J.Z 1	0.0						+	+	-	+						Combined flow of DP4.2, DP6.1, and DP8. Total interim pond inflow.	
	8.1								49.4	6.74	1.73	11.7											Released though pond outlet structure at DP8.2	
	8.2								-	-	-	0.1											Released flow through interim outlet structure from MHFD_Det Piped to existing junction box and storm infrastructure	
Notes: Street and Pipe C All pipes are priva																								

All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

	STANDARD FORM SF-3 - PROPOSED											STAN	DARE) FOR	M SF	-3 - P	ROPO	SED					
	STORM DRAINAGE SYSTEM DESIGN																						
	(RATIONAL METHOD PROCEDURE)																						
	Project Name: Sterling Ranch																						
Subdivision	Subdivision: Sterling Ranch Recycling Facility Project No.: 25188.14 Location: El Paso County Calculated By: GAG																						
	Design Storm: 100-Year Checked By:																						
Design etermi	Date: 7/20/23																						
DIRECT RUNOFF TOTAL RUNOFF										STD	ET/SW			PIP	F		TPA	/EL TI	ME				
				DIN								1					1 11		6	INA			
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Qstreet/swale (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	А	0.30	0.36	5.0	0.11	8.68	1.0															Flows overland along the western site boundary to DP1 Flows off-site to the west
																							Sheet flows overland to swale and then to DP2
	2	В	14.43	0.47	34.0	6.75	3.85	26.0															Combines flow at FES at DP4.2 Sheet flows overland and along berm to DP3
	3	OS1	9.42	0.36	49.4	3.39	2.90	9.8															Flows on-site and combines at culvert at DP4.1
	-																						Sheet flows overland to swale and then to DP4
	4	С	10.64	0.39	28.7	4.14	4.28	17.7															Combines flow at culvert at DP4.1
	4.1								49.4	7 5 2	2.90	21.9											Combined flow of DP3 and DP4 within culvert Swale to FES at DP4.2
	4.1								47.4	7.55	2.70	21.7											Combined flow of DP2 and DP4.1 at sump inlet
	4.2								49.4	14.28	2.90	41.5											Piped to pond forebay, combines flow at DP8.1
	_	_																					Sheet flows overland to swale and then to DP5
-	5	D	2.69	0.42	21.9	1.13	4.96	5.6															Combines flow at sump inlet at DP7.1 Sheet flows overland to swale and then to DP6
	6	F	2.49	0.42	20.9	1.04	5.08	5.3															Combines flow at sump inlet at DP7.1
-	Ű	-	2.17	0.12	2017		0.00	0.0															Sheet flows overland to DP7
	7	OS2	0.36	0.36	16.5	0.13	5.67	0.7															Combines flow at sump inlet at DP7.1
																							Combined flow of DP5, DP6, and DP7 at sump inlet
	7.1								21.9	2.30	4.96	11.4											Piped to pond forebay, combines flow at DP8.1 Flows along trickle channel to DP8 at outlet structure
	8	F	2.26	0.36	18.5	0.81	5.38	4.4															Combines flow at DP8.1
	Ť		2.20	0.00		0.01	0.00											-					Combined flow of DP4.2, DP6.1, and DP8. Total interim pond inflow.
	8.1								49.4	17.39	2.90	50.5											Released though pond outlet structure at DP8.2
	8.2								-	-	-	8.0											Released flow through interim outlet structure from MHFD_Det Piped to existing junction box and storm infrastructure
Notes:	ptes:																						
Street and Pipe C All pipes are priva	t and Pipe C*A values are determined by Q/i using the catchment's intensity value. ipes are private and RCP unless otherwise noted. Pipe size shown in table column.																						

X:\2510000.all\2518814\Excel\Drainage\2518814_Proposed Conditions.xlsm

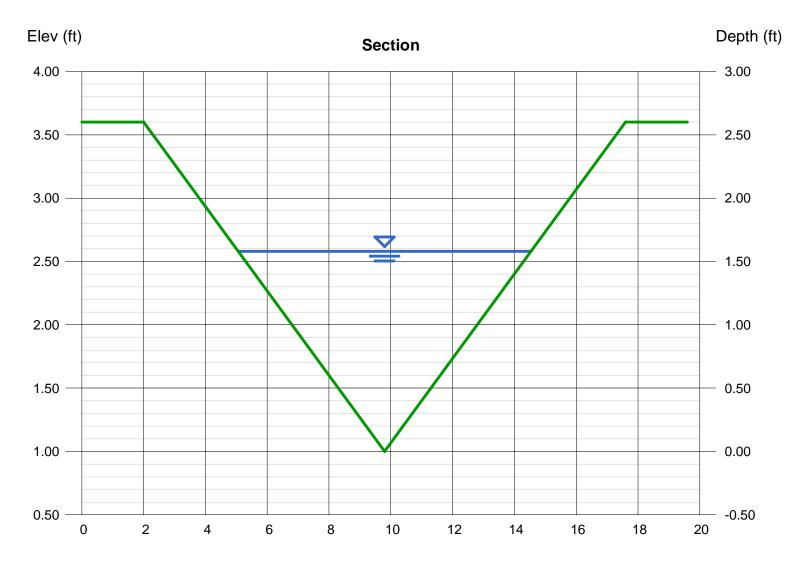
COMPOSITE % IMPERVIOUS & COMPOSITE PROPOSED RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Location: Sterling Ranch Recycling Facility El Paso County

Project Name:	Sterling Ranch
Project No.:	25188.14
Calculated By:	GAG
Checked By:	
Date:	7/18/23

	Total			al-Hea Imper	vy Areas vious)	Bus		Comme Imper	ercial Areas vious)	Resi		I-1/8 Ao Imperv	re or Less ious)			reets-Pa % Imper				rical A Imper	nalysis vious)	Basins Weigh Val	nted C	Basins Total
Basin ID	Area (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Weighted % Imp.
POND A	44.16	0.73	0.81	6.61	13.5%	0.81	0.88	9.42	20.3%	0.45	0.59	24.06	35.4%	0.90	0.96	1.40	3.2%	0.09	0.36	2.67	0.1%	0.56	0.68	72.4%
TOTAL	44.16																							72.4%

Appendix C Hydraulic Calculations


Channel Report

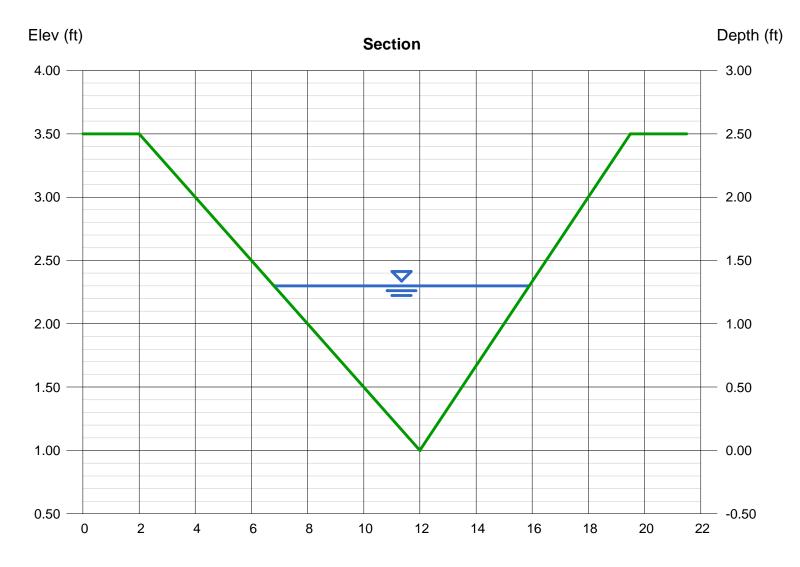
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Jul 20 2023

Swale DP2

Triangular		Highlighted	
Side Slopes (z:1)	= 3.00, 3.00	Depth (ft)	= 1.58
Total Depth (ft)	= 2.60	Q (cfs)	= 26.00
		Area (sqft)	= 7.49
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 3.47
Slope (%)	= 1.00	Wetted Perim (ft)	= 9.99
N-Value	= 0.035	Crit Depth, Yc (ft)	= 1.37
		Top Width (ft)	= 9.48
Calculations		EGL (ft)	= 1.77
Compute by:	Known Q		
Known Q (cfs)	= 26.00		

Reach (ft)


Channel Report

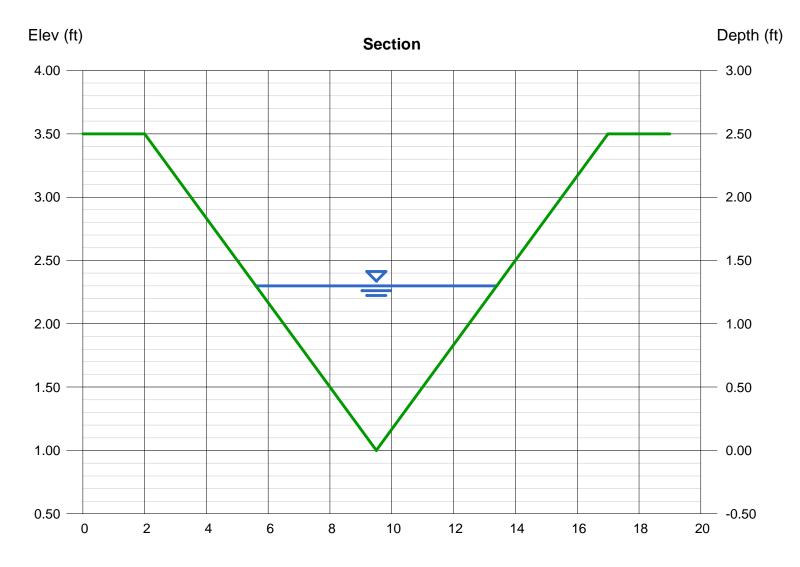
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Jul 20 2023

Swale DP4

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 1.30
Total Depth (ft)	= 2.50	Q (cfs)	= 18.00
		Area (sqft)	= 5.91
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 3.04
Slope (%)	= 1.00	Wetted Perim (ft)	= 9.47
N-Value	= 0.035	Crit Depth, Yc (ft)	= 1.11
		Top Width (ft)	= 9.10
Calculations		EGL (ft)	= 1.44
Compute by:	Known Q		
Known Q (cfs)	= 18.00		

Reach (ft)


Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Jul 31 2023

Swale DP4.1

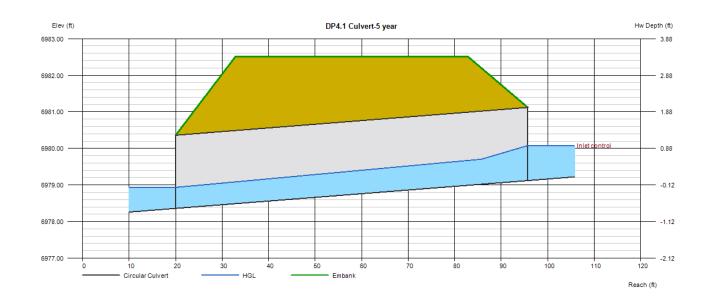
	Highlighted	
= 3.00, 3.00	Depth (ft)	= 1.30
= 2.50	Q (cfs)	= 22.00
	Area (sqft)	= 5.07
= 1.00	Velocity (ft/s)	= 4.34
= 2.00	Wetted Perim (ft)	= 8.22
= 0.035	Crit Depth, Yc (ft)	= 1.28
	Top Width (ft)	= 7.80
	EGL (ft)	= 1.59
Known Q		
= 22.00		
	= 2.50 = 1.00 = 2.00 = 0.035 Known Q	= 3.00, 3.00 Depth (ft) = 2.50 Q (cfs) Area (sqft) = 1.00 Velocity (ft/s) = 2.00 Wetted Perim (ft) = 0.035 Crit Depth, Yc (ft) Top Width (ft) EGL (ft)

Reach (ft)

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

DP4.1 Culvert-5 year


Invert Elev Dn (ft)	= 6978.36	Calculations	
Pipe Length (ft)	= 75.70	Qmin (cfs)	= 4.00
Slope (%)	= 1.00	Qmax (cfs)	= 4.00
Invert Elev Up (ft)	= 6979.12	Tailwater Elev (ft)	= 0.00
Rise (in)	= 24.0		
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 4.00
No. Barrels	= 1	Qpipe (cfs)	= 4.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 5.38
Culvert Entrance	 Groove end projecting (C) 	Veloc Up (ft/s)	= 4.08
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6978.93
		HGL Up (ft)	= 6979.82
Embankment		Hw Elev (ft)	= 6980.08

Top Elevation (ft) Top Width (ft) Crest Width (ft)

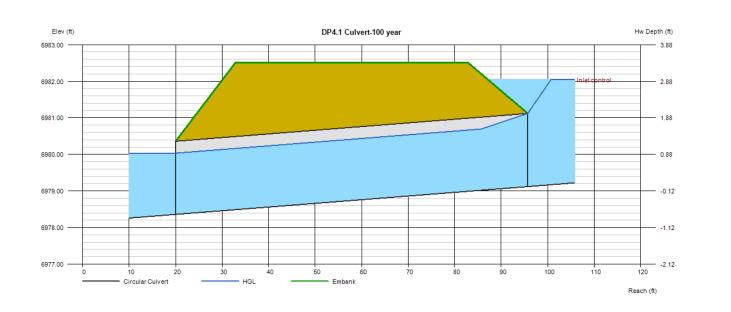
=	6982.51
=	50.00
=	125.00

Thursday, Jul 20 2023

Qtotal (cfs)	= 4.00
Qpipe (cfs)	= 4.00
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 5.38
Veloc Up (ft/s)	= 4.08
HGL Dn (ft)	= 6978.93
HGL Up (ft)	= 6979.82
Hw Elev (ft)	= 6980.08
Hw/D (ft)	= 0.48
Flow Regime	= Inlet Control

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


DP4.1 Culvert-100 year

Invert Elev Dn (ft) Pipe Length (ft) Slope (%)	= 6978.36 = 75.70 = 1.00	Calculations Qmin (cfs) Qmax (cfs)	= 22.00 = 22.00
Invert Elev Up (ft)	= 6979.12	Tailwater Élev (ft)	= 0.00
Rise (in)	= 24.0		
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 22.00
No. Barrels	= 1	Qpipe (cfs)	= 22.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 7.83
Culvert Entrance	= Groove end projecting (C)	Veloc Up (ft/s)	= 7.84
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6980.03
		HGL Up (ft)	= 6980.79
Embankment		Hw Elev (fť)	= 6982.04
Top Elevation (ft)	= 6982.51	Hw/D (ft)	= 1.46

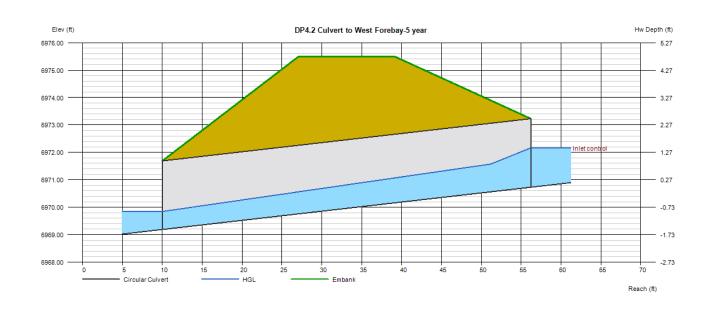
Top Elevation (ft) Top Width (ft) Crest Width (ft)

=	6982.51
=	50.00
=	125.00

= 0.00
= 7.83
= 7.84
= 6980.03
= 6980.79
= 6982.04
= 1.46
= Inlet Control

Thursday, Jul 20 2023

Tuesday, Jul 25 2023


DP4.2 Culvert to West Forebay-5 year

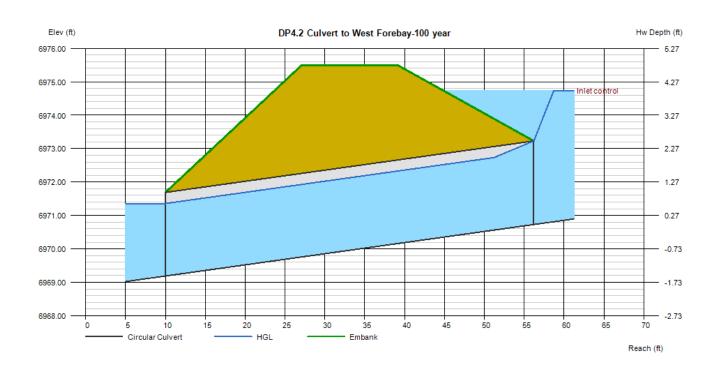
Invert Elev Dn (ft)	= 6969.19	Calculations	
Pipe Length (ft)	= 46.20	Qmin (cfs)	= 10.00
Slope (%)	= 3.33	Qmax (cfs)	= 10.00
Invert Elev Up (ft)	= 6970.73	Tailwater Elev (ft)	= 6967.53
Rise (in)	= 30.0		
Shape	= Circular	Highlighted	
Span (in)	= 30.0	Qtotal (cfs)	= 10.00
No. Barrels	= 1	Qpipe (cfs)	= 10.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 9.75
Culvert Entrance	 Groove end projecting (C) 	Veloc Up (ft/s)	= 5.08
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6969.85
		HGL Up (ft)	= 6971.79
Embankment		Hw Elev (ft)	= 6972.16
Top Elevation (ft)	= 6975.50	Hw/D (ft)	= 0.57
	40.00		

Top Width (ft) Crest Width (ft)

=	6975.50
=	12.00
=	78.00

Qpipe (cis)	=	10.00
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	9.75
Veloc Up (ft/s)	=	5.08
HGL Dn (ft)	=	6969.85
HGL Up (ft)	=	6971.79
Hw Elev (ft)	=	6972.16
Hw/D (ft)	=	0.57
Flow Regime	=	Inlet Control

Friday, Jul 28 2023

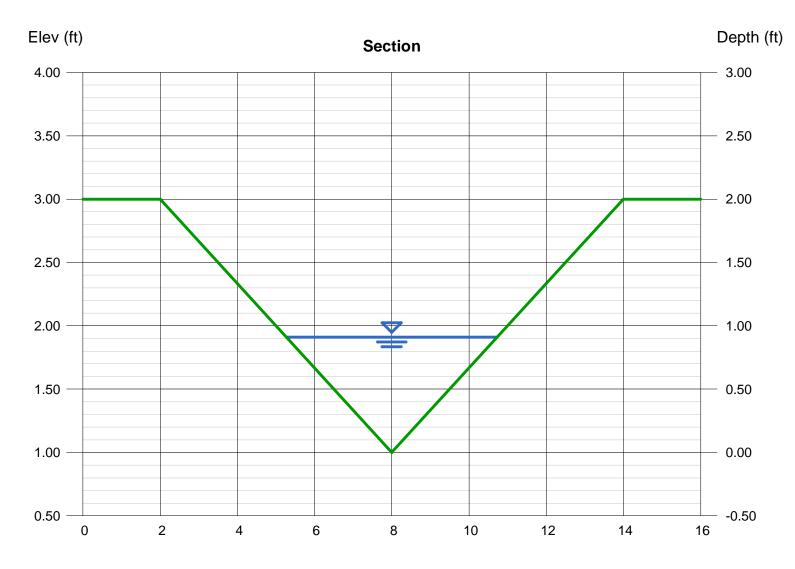

DP4.2 Culvert to West Forebay-100 year

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 6969.19 = 46.20 = 3.33 = 6970.73 = 30.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 42.00 = 42.00 = 6969.54
Shape	= Circular	Highlighted	
Span (in) No. Barrels	= 30.0 = 1	Qtotal (cfs) Qpipe (cfs)	= 42.00 = 42.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 9.28
Culvert Entrance	 Groove end projecting (C) 	Veloc Up (ft/s)	= 9.29
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 6971.36
		HGL Up (ft)	= 6972.90
Embankment		Hw Elev (ft)	= 6974.73
Top Elevation (ft)	= 6975.50	Hw/D (ft)	= 1.60
	10.00		

Top Width (ft) Crest Width (ft)

=	6975.50	
=	12.00	
=	78.00	

Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 9.28
Veloc Up (ft/s)	= 9.29
HGL Dn (ft)	= 6971.36
HGL Up (ft)	= 6972.90
Hw Elev (ft)	= 6974.73
Hw/D (ft)	= 1.60
Flow Regime	= Inlet Control


Channel Report

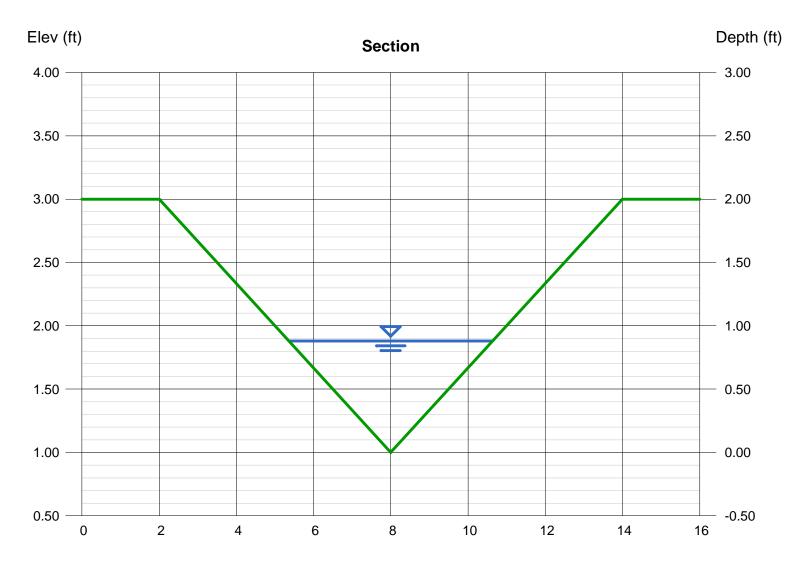
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Jul 20 2023

Swale DP5

Triangular		Highlighted	
Side Slopes (z:1)	= 3.00, 3.00	Depth (ft)	= 0.91
Total Depth (ft)	= 2.00	Q (cfs)	= 6.000
		Area (sqft)	= 2.48
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 2.42
Slope (%)	= 1.00	Wetted Perim (ft)	= 5.76
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.76
		Top Width (ft)	= 5.46
Calculations		EGL (ft)	= 1.00
Compute by:	Known Q		
Known Q (cfs)	= 6.00		

Reach (ft)

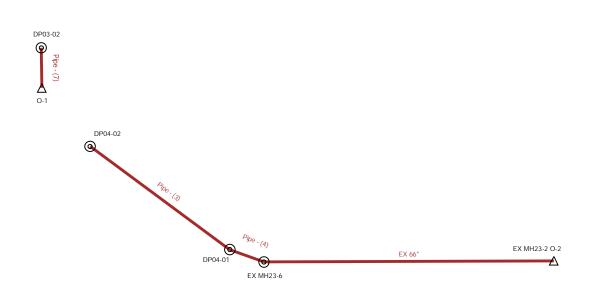

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Jul 20 2023

Swale DP6

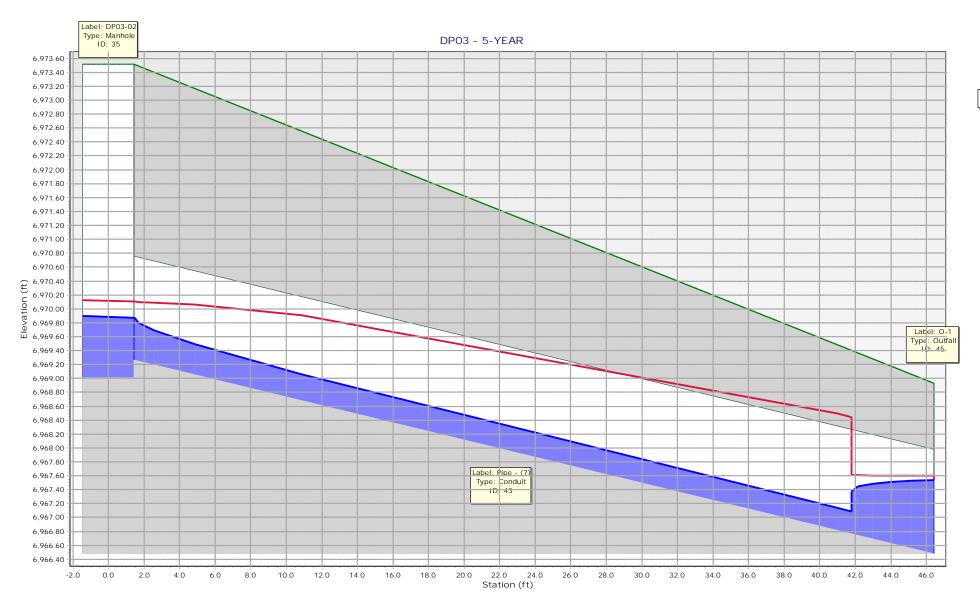
Triangular		Highlighted	
Side Slopes (z:1)	= 3.00, 3.00	Depth (ft)	= 0.88
Total Depth (ft)	= 2.00	Q (cfs)	= 5.500
		Area (sqft)	= 2.32
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 2.37
Slope (%)	= 1.00	Wetted Perim (ft)	= 5.57
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.74
		Top Width (ft)	= 5.28
Calculations		EGL (ft)	= 0.97
Compute by:	Known Q	. ,	
Known Q (cfs)	= 5.50		



Reach (ft)

Design Point 7.1 (Single Type C Grate) Orifice Flow Calculation				
$Q = C^*A^*$ square root (2gH)				
C = 0.6 A = 8.53 sq ft g = 32.2				
Head (ft)	CA	(2GH)	Sqrt (2GH)	Capacity
1	5.118	64.40	8.025	41.1
2	5.118	128.80	11.349	58.1
3	5.118	193.20	13.900	71.1
4	5.118	257.60	16.050	82.1
5	5.118	322.00	17.944	91.8
6	5.118	386.40	19.657	100.6

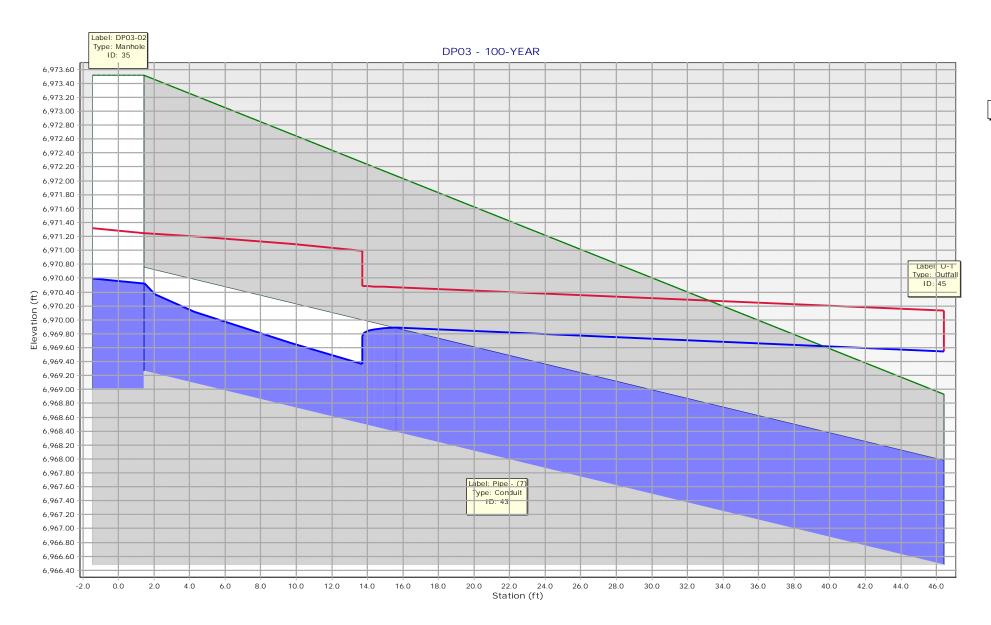
 Q_{100} DP7.1 = 11.4 cfs Available Head = 2 ft


Scenario: 5-YEAR

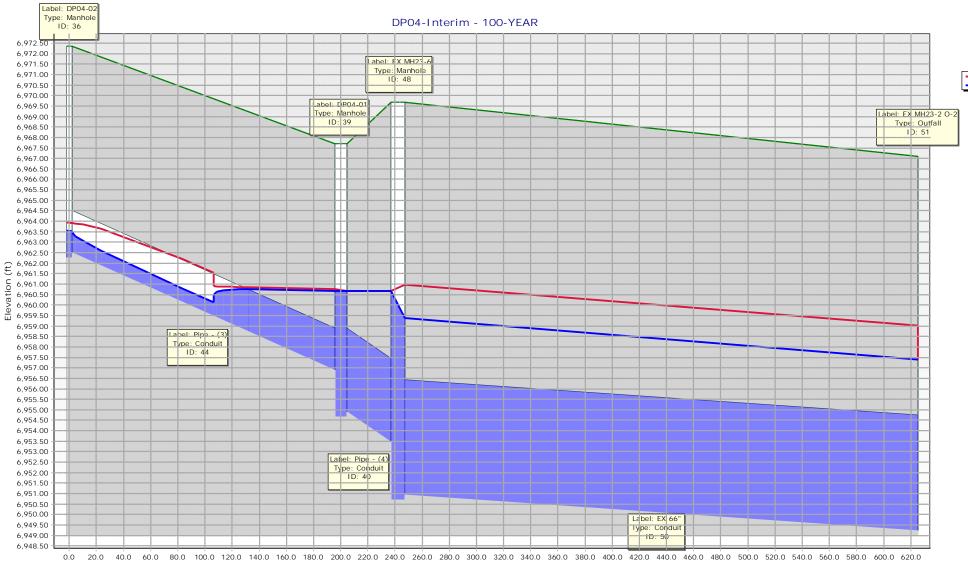
2518814 StormCAD-Interim.stsw 7/25/2023

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 StormCAD [10.03.02.04] Page 1 of 1

									5-year In	terim Report							
Upstream Structure	Label	Flow (cfs)	Capacity (Full Flow) (cfs)	Diameter (in)	Manning's n	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	HGL (In) (ft)	HGL (Out) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Velocity (ft/s)	Upstream Structure Headloss Coefficient
EX MH23-6	EX 66"	30.8	224.37	66	0.013	383	0.004	6,950.95	6,949.24	6,969.69	6,967.11	6,952.45	6,951.03	6,952.98	6,951.36	6.62	0.8
DP04-02	Pipe - (3)	0.1	37.87	24	0.013	200.3	0.028	6,962.51	6,956.90	6,972.35	6,967.70	6,962.62	6,956.98	6,962.66	6,957.08	2.58	0.1
DP04-01	Pipe - (4)	0.1	266.77	48	0.013	41.9	0.034	6,954.90	6,953.45	6,967.70	6,969.69	6,954.99	6,953.51	6,955.02	6,953.61	2.51	0.6
DP03-02	Pipe - (7)	2.6	25.71	18	0.013	46.4	0.06	6,969.26	6,966.48	6,973.52	6,968.93	6,969.87	6,967.54	6,970.10	6,967.60	9.34	0.1
	100-year Interim Report																
Upstream Structure	Label	Flow (cfs)	Capacity (Full Flow) (cfs)	Diameter (in)	Manning's n	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	HGL (In) (ft)	HGL (Out) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Velocity (ft/s)	Upstream Structure Headloss Coefficient
EX MH23-6	EX 66"	241.4	224.37	66	0.013	383	0.004	6,950.95	6,949.24	6,969.69	6,967.11	6,959.38	6,957.40	6,960.98	6,959.00	10.16	0.8
DP04-02	Pipe - (3)	8.0	37.87	24	0.013	200.3	0.028	6,962.51	6,956.90	6,972.35	6,967.70	6,963.52	6,960.67	6,963.92	6,960.77	9.56	0.1
DP04-01	Pipe - (4)	8.0	266.77	48	0.013	41.9	0.034	6,954.90	6,953.45	6,967.70	6,969.69	6,960.66	6,960.66	6,960.67	6,960.67	0.64	0.6
DP03-02	Pipe - (7)	10.8	25.71	18	0.013	46.4	0.06	6,969.26	6,966.48	6,973.52	6,968.93	6,970.52	6,969.55	6,971.24	6,970.13	13.91	0.1

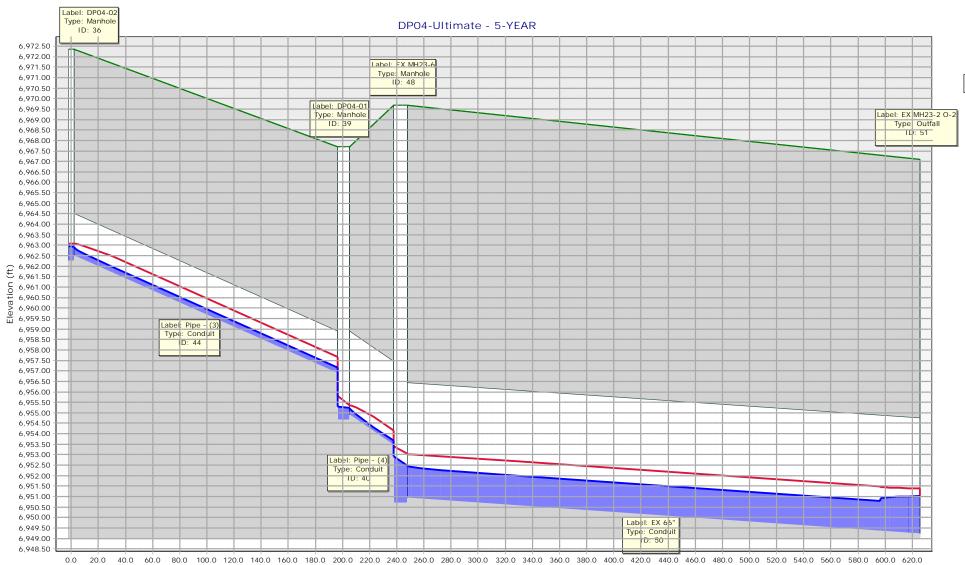


EGLHGL

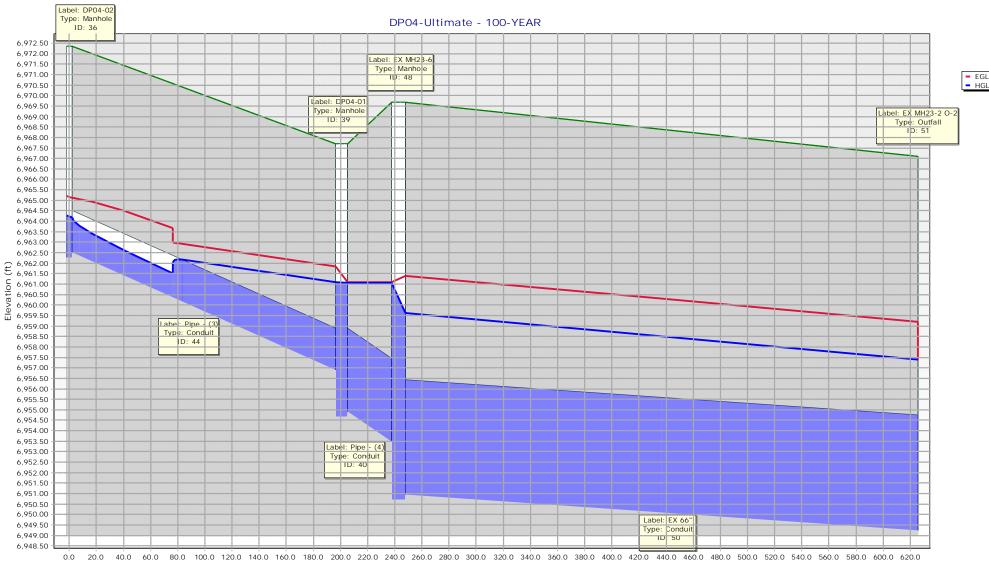


Station (ft)

= EGL = HGL



EGLHGL



= EGL = HGL

									5-year Ult	imate Report							
Upstream Structure	Label	Flow (cfs)	Capacity (Full Flow) (cfs)	Diameter (in)	Manning's n	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	HGL (In) (ft)	HGL (Out) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Velocity (ft/s)	Upstream Structure Headloss Coefficient
EX MH23-6	EX 66"	32.1	224.37	66	0.013	383	0.004	6,950.95	6,949.24	6,969.69	6,967.11	6,952.48	6,951.03	6,953.03	6,951.39	6.7	0.8
DP04-02	Pipe - (3)	1.4	37.83	24	0.013	200.7	0.028	6,962.51	6,956.90	6,972.35	6,967.70	6,962.92	6,957.16	6,963.07	6,957.67	5.74	0.1
DP04-01	Pipe - (4)	1.4	266.77	48	0.013	41.9	0.034	6,954.90	6,953.45	6,967.70	6,969.69	6,955.24	6,953.66	6,955.35	6,954.15	5.59	0.6
	100-year Ultimate Report																
Upstream Structure	Label	Flow (cfs)	Capacity (Full Flow) (cfs)	Diameter (in)	Manning's n	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Invert (Start) (ft)	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	HGL (In) (ft)	HGL (Out) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Velocity (ft/s)	Upstream Structure Headloss Coefficient
EX MH23-6	EX 66"	255.2	224.37	66	0.013	383	0.004	6,950.95	6,949.24	6,969.69	6,967.11	6,959.61	6,957.40	6,961.41	6,959.19	10.74	0.8
DP04-02	Pipe - (3)	21.8	37.83	24	0.013	200.7	0.028	6,962.51	6,956.90	6,972.35	6,967.70	6,964.18	6,961.08	6,965.12	6,961.83	12.47	0.1
DP04-01	Pipe - (4)	21.8	266.77	48	0.013	41.9	0.034	6,954.90	6,953.45	6,967.70	6,969.69	6,961.06	6,961.05	6,961.10	6,961.09	1.73	0.6

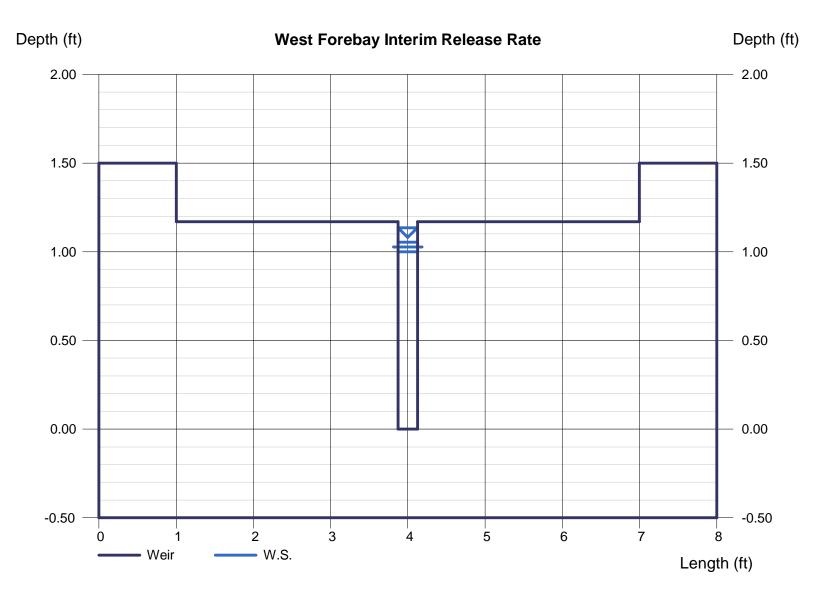
EGLHGL

Design Procedure Form: Extended Detention Basin (EDB)				
		(Version 3.07, March 2018) Sheet 1 of 3		
Designer:	Gabe Gonzales			
Company:	JR Engineering			
Date:	July 20, 2023			
Project: Location:	Sterling Ranch Recycling Facility West Forebay			
Eocation:	West Forebay			
1. Basin Storage	Volume			
A) Effective Imp	perviousness of Tributary Area, I _a	l _a = <u>11.0</u> %		
B) Tributary Are	ea's Imperviousness Ratio (i = $I_a/100$)	i = 0.110		
C) Contributing	g Watershed Area	Area = 34.490 ac		
	heds Outside of the Denver Region, Depth of Average ducing Storm	d ₆ = in		
E) Design Con (Select EUR	cept V when also designing for flood control)	Choose One O Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)		
	ıme (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.209 ac-ft		
Water Qual	heds Outside of the Denver Region, ity Capture Volume (WQCV) Design Volume $_{\rm RR} = (d_e^*(V_{\rm DESIGN}/0.43))$	V _{DESIGN} OTHER= ac-ft		
	of Water Quality Capture Volume (WQCV) Design Volume (fferent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft		
i) Percenta ii) Percenta	ologic Soil Groups of Tributary Watershed age of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils tage of Watershed consisting of Type C/D Soils	$ HSG_{A} = 100 \% HSG_{B} = 0 \% HSG_{CD} = 0 \% $		
For HSG A For HSG B	an Runoff Volume (EURV) Design Volume \therefore EURV _A = 1.68 * i ^{1.28} \therefore EURV _B = 1.36 * i ^{1.08} \therefore /D: EURV _{CD} = 1.20 * i ^{1.08}	EURV _{DESIGN} = 0.286 ac-f t		
	of Excess Urban Runoff Volume (EURV) Design Volume ifferent EURV Design Volume is desired)	EURV _{DESIGN USER} = ac-f t		
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W = 9.0 : 1		
3. Basin Side Slop	Des			
	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 4.00 ft / ft		
4. Inlet				
	once of providing operate discipation of concentrated			
 A) Describe me inflow locati 	eans of providing energy dissipation at concentrated ions:			
5. Forebay				
A) Minimum Fo (V _{FMIN}		V _{FMN} = 0.004 ac-ft		
B) Actual Forel		$V_F = 0.005$ ac-ft		
C) Forebay Dep (D _F	pth	$D_F = 18.0$ in		
D) Forebay Dise				
	ed 100-year Peak Discharge	Q ₁₀₀ = 42.00 cfs		
ii) Forebay (Q _F = 0.0	Discharge Design Flow $12 \times Q_{100}$	Q _F = cfs		
E) Forebay Disc	charge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir		
F) Discharge Pi	ipe Size (minimum 8-inches)	Calculated D _P = in		
G) Rectangular	Notch Width	Calculated W _N = in		

Design Procedure Form: Extended Detention Basin (EDB)				
	UD-BMP (Version 3.07, March 2018) Sheet 1 of 3			
Designer: Gabe Gonzales				
Company: JR Engineering				
Date: July 20, 2023				
Project: Sterling Ranch Recycling Facility				
Location: North Forebay				
1. Basin Storage Volume				
A) Effective Imperviousness of Tributary Area, \mathbf{I}_{a}	l _a = 13.0 %			
B) Tributary Area's Imperviousness Ratio (i = $I_{\rm a}/$ 100)	i = 0.130			
C) Contributing Watershed Area	Area = <u>5.180</u> ac			
D) For Watersheds Outside of the Denver Region, Depth of Average Runoff Producing Storm	e d ₆ = in			
 E) Design Concept (Select EURV when also designing for flood control) 	Choose One OWater Quality Capture Volume (WQCV)			
	Excess Urban Runoff Volume (EURV)			
F) Design Volume (WQCV) Based on 40-hour Drain Time (V_{DESIGN} = (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.036 ac-ft			
G) For Watersheds Outside of the Denver Region, Water Quality Capture Volume (WQCV) Design Volume (V _{WQCV OTHER} = (d ₆ *(V _{DESIGN} /0.43))	V _{DESIGN OTHER} =ac-ft			
 H) User Input of Water Quality Capture Volume (WQCV) Design Volu (Only if a different WQCV Design Volume is desired) 	ume V _{DESIGN USER} =ac-ft			
 NRCS Hydrologic Soil Groups of Tributary Watershed Percentage of Watershed consisting of Type A Soils Percentage of Watershed consisting of Type B Soils Percentage of Watershed consisting of Type C/D Soils 	$HSG_{A} = 100 \%$ $HSG_{B} = 0 \%$ $HSG_{CD} = 0 \%$			
J) Excess Urban Runoff Volume (EURV) Design Volume For HSG A: EURV _A = 1.68 * $i^{1.28}$ For HSG B: EURV _B = 1.36 * $i^{1.08}$ For HSG C/D: EURV _{C/D} = 1.20 * $i^{1.08}$	EURV _{DESIGN} = 0.053 ac-f t			
 K) User Input of Excess Urban Runoff Volume (EURV) Design Volum (Only if a different EURV Design Volume is desired) 	ne EURV _{DESIGN USER} =ac-f t			
 Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction 	L : W = 9.0 : 1			
3. Basin Side Slopes				
	7 400 1010			
 A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) 	Z = 4.00 ft / ft			
4. Inlet				
 A) Describe means of providing energy dissipation at concentrated inflow locations: 				
5. Forebay				
A) Minimum Forebay Volume (V _{FMIN} = <u>0%</u> of the WQCV)	V _{FMIN} = 0.000 ac-ft A FOREBAY MAY NOT BE NECESSARY FOR THIS SIZE SITE			
B) Actual Forebay Volume	v _F = Under the required effective			
C) Forebay Depth $(D_{\rm F} = 12 \text{ inch maximum})$	impervious, sized for minimum			
D) Forebay Discharge	volume constraints. V _{Design} = 0.036 ac-ft			
i) Undetained 100-year Peak Discharge	$Q_{100} = 11.00$ cfs $V_{\text{Required}} = 1\% \text{ of WQCV} = 16 \text{ ft}^3$			
ii) Forebay Discharge Design Flow $(Q_F = 0.02 * Q_{100})$	$Q_{\rm F} = 0.22$ cfs $V_{\rm Provided} = 46 {\rm ft}^3$			
E) Forebay Discharge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir			
F) Discharge Pipe Size (minimum 8-inches)	Calculated D _P = in			
G) Rectangular Notch Width	Calculated W _N = in			

West Forebay Interim Release Rate

Comp	ound	Weir
------	------	------


= Sharp
= 6.00
= 1.50
= 0.25
= 1.17

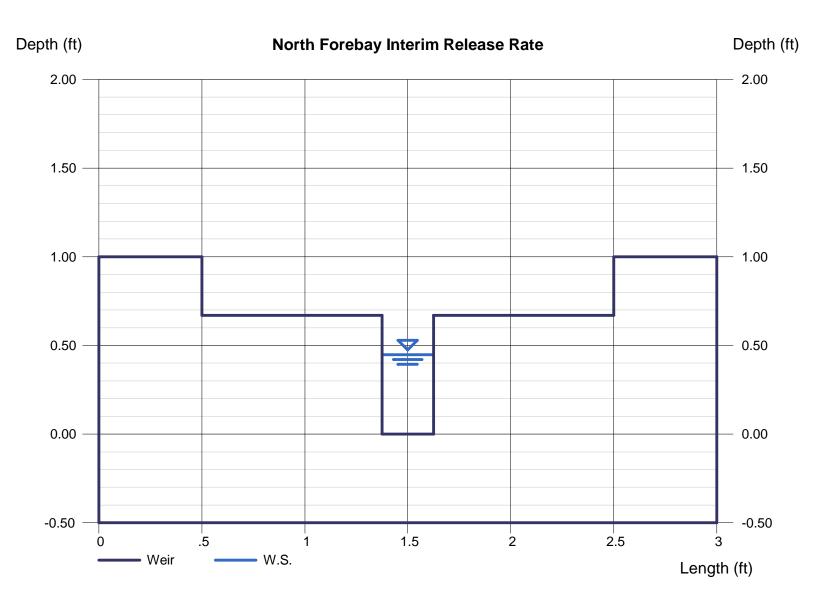
Calculations

Weir Coeff. Cw	= 3.33
Compute by:	Known Q
Known Q (cfs)	= 0.90

I Li avla l	
HIGN	lighted
- ingin	ignica

Depth (ft)	=	1.05
Q (cfs)	=	0.900
Area (sqft)	=	0.26
Velocity (ft/s)	=	3.42
Top Width (ft)	=	0.25

North Forebay Interim Release Rate


Compo	ound	Weir
-------	------	------

= Sharp
= 2.00
= 1.00
= 0.25
= 0.67

Calculations

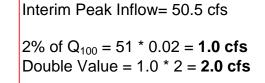
Weir Coeff. Cw	= 3.33
Compute by:	Known Q
Known Q (cfs)	= 0.25

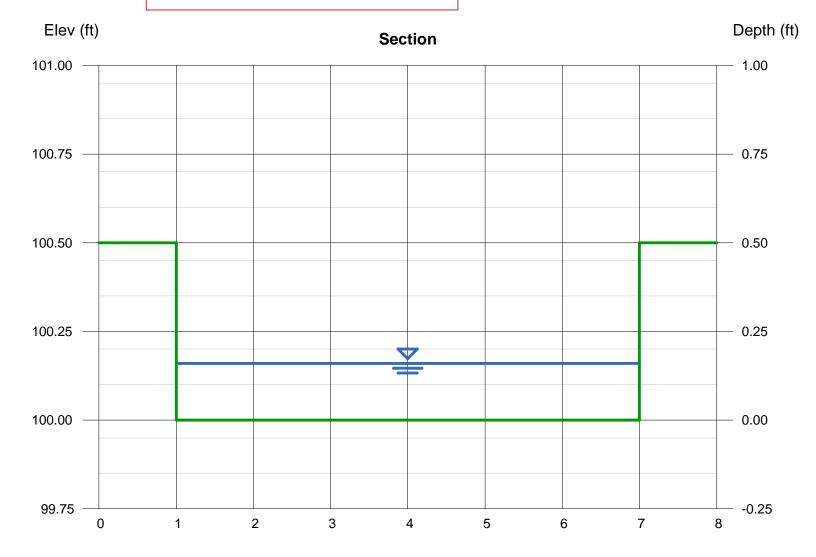
Highlighted		
Depth (ft)	=	0.45
Q (cfs)	=	0.250
Area (sqft)	=	0.11
Velocity (ft/s)	=	2.23
Top Width (ft)	=	0.25

Monday, Jul 31 2023

Trickle Channel Capacity-Interim

Rectangular


Bottom Width (ft) Total Depth (ft)	= 6.00 = 0.50
Invert Elev (ft)	= 100.00
Slope (%)	= 0.50
N-Value	= 0.013


Calculations

Compute by: Known Q (cfs) Known Q = 2.00

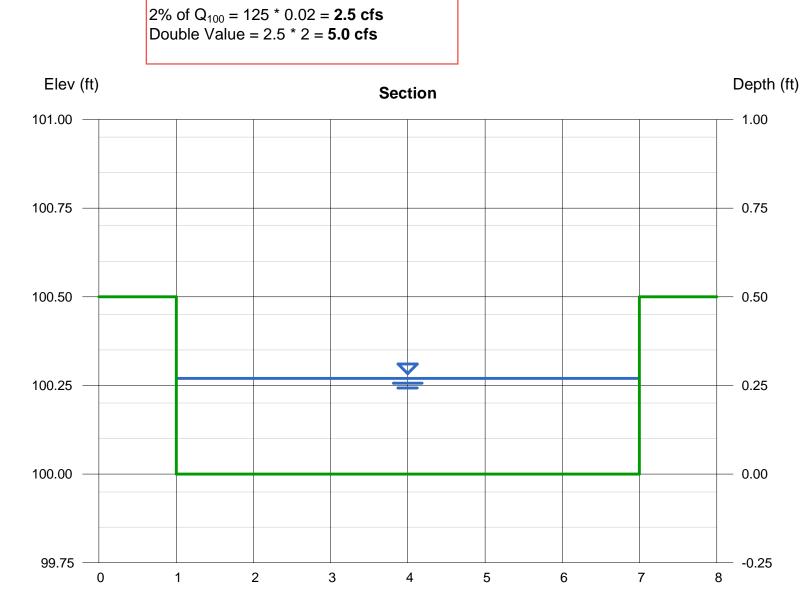
Depth (ft)	=	0.16
Q (cfs)	=	2.000
Area (sqft)	=	0.96
Velocity (ft/s)	=	2.08
Wetted Perim (ft)	=	6.32
Crit Depth, Yc (ft)	=	0.16
Top Width (ft)	=	6.00
EGL (ft)	=	0.23

Thursday, Jul 20 2023

Trickle Channel Capacity-Ultimate

Rectangular

Bottom Width (ft) Total Depth (ft)	= 6.00 = 0.50
Invert Elev (ft)	= 100.00
Slope (%)	= 0.50
N-Value	= 0.013


Calculations

Compute by: Known Q (cfs) Known Q = 5.00

Ultimate Peak Inflow= 123.1 cfs

Depth (ft)	= 0.27
Q (cfs)	= 5.000
Area (sqft)	= 1.62
Velocity (ft/s)	= 3.09
Wetted Perim (ft)	= 6.54
Crit Depth, Yc (ft)	= 0.28
Top Width (ft)	= 6.00
EGL (ft)	= 0.42

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

100-YR VOLUME EURV WQCV -100-YEAR ORIFICE ZONE 1 AND 2-ORIFICES PERM Example Zone Configuration (Retention Pond)

Watershed Information

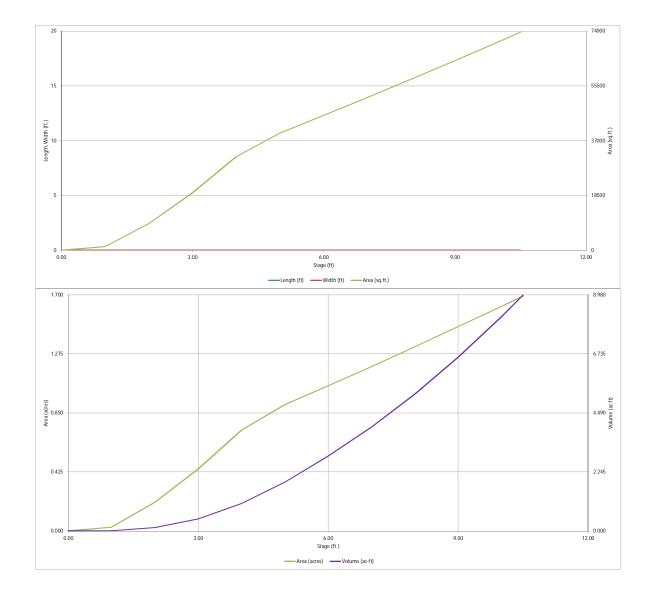
Selected BMP Type =	EDB	
Watershed Area =	42.29	acres
Watershed Length =	2,265	ft
Watershed Length to Centroid =	1,455	ft
Watershed Slope =	0.030	ft/ft
Watershed Imperviousness =	11.00%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban nyard	graphinoceue	10.
Water Quality Capture Volume (WQCV) =	0.256	acre-feet
Excess Urban Runoff Volume (EURV) =	0.351	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.181	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.298	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.397	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.979	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	1.558	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	2.370	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	4.158	acre-feet
Approximate 2-yr Detention Volume =	0.211	acre-feet
Approximate 5-yr Detention Volume =	0.289	acre-feet
Approximate 10-yr Detention Volume =	0.379	acre-feet
Approximate 25-yr Detention Volume =	0.510	acre-feet
Approximate 50-yr Detention Volume =	0.674	acre-feet
Approximate 100-yr Detention Volume =	1.062	acre-feet

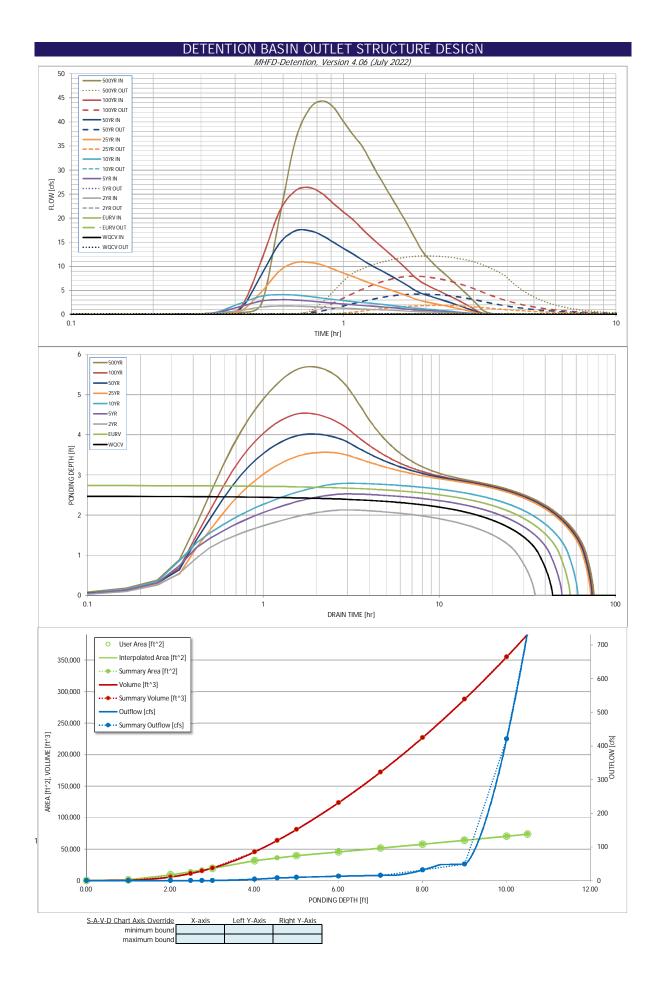
Define	Zones	and	Basi	in	Geome	etry
		ž	Zone	1	Volume	(W0

Jerine Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.256	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.095	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.711	acre-feet
Total Detention Basin Volume =	1.062	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	


Initial S	urcharge Area (A _{ISV})	=	user	ft 2
Surcharge \	Volume Length (L _{ISV})	=	user	ft
Surcharge \	Volume Width (W _{ISV})	=	user	ft
Depth of	Basin Floor (H _{FLOOR})	=	user	ft
Length of	F Basin Floor (L _{FLOOR})	=	user	ft
Width of	Basin Floor (W _{FLOOR})	=	user	ft
Area of	Basin Floor (A _{FLOOR})	=		ft ²
Volume of	Basin Floor (V _{FLOOR})	=	user	ft ³
Depth o	of Main Basin (H _{MAIN})	=	user	ft
Length	of Main Basin (L _{MAIN})	=	user	ft
Width o	f Main Basin (W _{MAIN})	=	user	ft
Area o	of Main Basin (A _{MAIN})	=	user	ft ²
Maluma -	A Main Deale (M			- 2

Volume of Main Basin (V_{MAIN}) = ft ³ user Calculated Total Basin Volume (Vtotal) = user acre-feet

tion Pond)		Depth Increment = Stage - Storage Description	Stage (ft)	ft Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft 2)	Optional Override Area (ft ²)	Area (acre)	Volume (ft 3)	Volume (ac-ft)
		Top of Micropool		0.00				10	0.000		
		6966		1.00				1,237	0.028	623	0.014
		6967		2.00	-			9,028	0.207	5,756	0.132
		6968		3.00				19,414	0.446	19,977	0.459
		6969		4.00				31,638	0.726	45,503	1.045
		6970		5.00				39,589	0.909	81,116	1.862
		6971		6.00				45,537	1.045	123,679	2.839
		6972		7.00				51,596	1.184	172,246	3.954
		6973		8.00				57,766	1.326	226,927	5.210
		6974 (Crest)		9.00				64,047	1.470	287,833	6.608
		6975		10.00				70,449	1.617	355,081	8.152
		6975.5		10.50				73,681	1.691	391,114	8.979
Optional Us	er Overrides										
	acre-feet										
	acre-feet										
1.19	inches										
1.50	inches										
1.75	inches										
2.00	inches										
2.25	inches										-
2.52	inches										
	inches										
											
											
											L
											L
											L
											L
											L
											L
					1						
									-		
					: :						
										-	
										-	
											——
								1		-	


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

DETENTION BASIN OUTLET STRUCTURE DESIGN

	DE		BASIN OUT IHFD-Detention, V			SIGN			
Project:	Sterling Ranch Re		INFD-Detention, V	ersion 4.00 (July .	2022)				
-	Pond A-Interim								
ZONE 3				Estimated	Estimated				
100-YB				Stage (ft)	Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	2.48	0.256	Orifice Plate			
	100-YEAR		Zone 2 (EURV)	2.75	0.095	Rectangular Orifice			
PERMANENT ORIFICES	ORIFICE		Zone 3 (100-year)	4.03	0.711	Weir&Pipe (Restrict)			
0001	Configuration (Re	tention Pond)	Zone 5 (100 year)	Total (all zones)	1.062	tronui ipo (nostriot)	<u>.</u>		
User Input: Orifice at Underdrain Outlet (typical	ly used to drain WC	ICV in a Filtration F	MD)		1.002	1	Calculated Parame	ters for Underdrair	
Underdrain Orifice Invert Depth =	N/A		the filtration media	surface)	Underd	Irain Orifice Area =	N/A	ft ²	-
Underdrain Orifice Diameter =		inches		,		Orifice Centroid =		feet	
User Input: Orifice Plate with one or more orifi	ces or Elliptical Slot	Weir (typically use	d to drain WQCV an	d/or EURV in a sed	imentation BMP)		Calculated Parame	ters for Plate	
Centroid of Lowest Orifice =	0.00	ft (relative to basi	n bottom at Stage =	= 0 ft)	WQ Orific	ce Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	2.75	ft (relative to basi	n bottom at Stage =	= 0 ft)	Elli	ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =		inches			Ellipti	ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	sq. inches			E	Illiptical Slot Area =	N/A	ft ²	
User Input: Stage and Total Area of Each Orific						1	1		1
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)		1.00							
Orifice Area (sq. inches)	1.00	1.10							1
									1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									1
User Input: Vertical Orifice (Circular or Rectand	ular)						Calculated Parame	ters for Vertical Or	ifice
oser input. Vertical onnee (elicular of Rectand	Zone 2 Rectangular	Not Selected	1				Zone 2 Rectangula	Not Selected	ince.
Invert of Vertical Orifice =	2.80	N/A	ft (relative to basir	bottom at Stage =	= 0 ft) Ver	tical Orifice Area =	1.75	N/A	ft ²
Depth at top of Zone using Vertical Orifice =		N/A		bottom at Stage =		I Orifice Centroid =	0.88	N/A	feet
Vertical Orifice Height =		N/A	inches	<u>-</u>					
Vertical Orifice Width =			inches						
User Input: Overflow Weir (Dropbox with Flat	or Sloped Grate and	Outlet Pipe OR Re	ctangular/Trapezoid	lal Weir and No Ou	tlet Pipe)		Calculated Parame	ters for Overflow V	Veir
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	7.35	N/A	ft (relative to basin I	pottom at Stage = 0	ft) Height of Grate	e Upper Edge, $H_t =$	7.35	N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet		Overflow W	/eir Slope Length =	4.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V	Gra	ate Open Area / 10	0-yr Orifice Area =	4.03	N/A	
Horiz. Length of Weir Sides =		N/A	feet	Ov	erflow Grate Open	Area w/o Debris =	12.66	N/A	ft ²
Overflow Grate Type =		N/A	-	0	verflow Grate Oper	n Area w/ Debris =	6.33	N/A	ft ²
Debris Clogging % =	50%	N/A	%						
User Input: Outlet Pipe w/ Flow Restriction Plate	-		Rectangular Orifice)		<u>Ca</u>	Iculated Parameter			ate
	Zone 3 Restrictor	Not Selected					Zone 3 Restrictor	Not Selected	2
Depth to Invert of Outlet Pipe =	2.50	N/A		asin bottom at Stage		utlet Orifice Area =	3.14	N/A	ft ²
Outlet Pipe Diameter =		N/A	inches			t Orifice Centroid =	1.00	N/A	feet
Restrictor Plate Height Above Pipe Invert =	24.00		inches	Half-Cent	ral Angle of Restric	tor Plate on Pipe =	3.14	N/A	radians
User Input: Emergency Spillway (Rectangular or	Trapozoidal)						Calculated Parame	tors for Spillwov	
Spillway Invert Stage=	i i apezuidal)		n bottom at Stago -	0.51					
Spillway Crest Length =	9.00	tt (relative to baci	basin bottom at Stage = 0 ft) Spillway Design Flow Depth=				0.48		
Spliway crest Length =		-	ii bolloii al Slaye -	= 0 ft)		0	0.48	feet	
Spillway End Slopes -	120.00	feet	n bottom at Stage -	= 0 ft)	Stage at T	op of Freeboard =	10.48	feet	
Spillway End Slopes = Ereeboard above Max Water Surface =	120.00 4.00	feet H:V	n bottom at Stage -	= 0 ft)	Stage at T Basin Area at T	op of Freeboard = op of Freeboard =	10.48 1.69	feet acres	
Spillway End Slopes = Freeboard above Max Water Surface =	120.00 4.00	feet	n bottom at Stage -	= 0 ft)	Stage at T Basin Area at T	op of Freeboard =	10.48	feet	
Freeboard above Max Water Surface =	120.00 4.00 1.00	feet H:V feet	Ĵ		Stage at T Basin Area at T Basin Volume at T	op of Freeboard = op of Freeboard = op of Freeboard =	10.48 1.69 8.94	feet acres acre-ft	
Freeboard above Max Water Surface = Routed Hydrograph Results	120.00 4.00 1.00	feet H:V feet	IHP hydrographs and	d runoff volumes b	Stage at T Basin Area at T Basin Volume at T <u>y entering new valu</u>	op of Freeboard = op of Freeboard = op of Freeboard = <i>les in the Inflow Hy</i>	10.48 1.69 8.94 /drographs table (C	feet acres acre-ft <i>olumns W through</i> .	
Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	120.00 4.00 1.00 <i>The user can over</i> WQCV	feet H:V feet ride the default CL EURV	IHP hydrographs and 2 Year	d runoff volumes b 5 Year	Stage at T Basin Area at T Basin Volume at T y entering new valu 10 Year	op of Freeboard = op of Freeboard = op of Freeboard = <u>ues in the Inflow Hy</u> 25 Year	10.48 1.69 8.94 ////////////////////////////////////	feet acres acre-ft olumns W through . 100 Year	500 Year
Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	120.00 4.00 1.00 <i>The user can over</i> WOCV N/A	feet H:V feet <u>ride the default CL</u> EURV N/A	IHP hydrographs and 2 Year 1.19	d runoff volumes b 5 Year 1.50	Stage at T Basin Area at T Basin Volume at T V entering new valu 10 Year 1.75	op of Freeboard = op of Freeboard = op of Freeboard = <i>ies in the Inflow Hy</i> 25 Year 2.00	10.48 1.69 8.94 <i>drographs table (C</i> 50 Year 2.25	feet acres acre-ft <u>olumns W through 100 Year</u> 2.52	500 Year 3.14
Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	120.00 4.00 1.00 <i>The user can over</i> WQCV	feet H:V feet ride the default CL EURV	IHP hydrographs and 2 Year	d runoff volumes b 5 Year	Stage at T Basin Area at T Basin Volume at T y entering new valu 10 Year	op of Freeboard = op of Freeboard = op of Freeboard = <u>ues in the Inflow Hy</u> 25 Year	10.48 1.69 8.94 ////////////////////////////////////	feet acres acre-ft olumns W through . 100 Year	500 Year
Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	120.00 4.00 1.00 <i>The user can over</i> WOCV N/A 0.256 N/A N/A	feet H:V feet <u>EURV</u> N/A 0.351 N/A N/A	IHP hydrographs and 2 Year 1.19 0.181	d runoff volumes b 5 Year 1.50 0.298	Stage at T Basin Area at T Basin Volume at T <u>v entering new valu</u> 10 Year 1.75 0.397	op of Freeboard = op of Freeboard = op of Freeboard = ues in the Inflow Hy 25 Year 2.00 0.979	10.48 1.69 8.94 <i>idrographs lable (C</i> 50 Year 2.25 1.558	feet acres acre-ft <u>100 Year</u> 2.52 2.370	500 Year 3.14 4.158
Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	120.00 4.00 1.00 <i>The user can over</i> N/A 0.256 N/A N/A N/A	feet H:V feet <u>EURV</u> N/A 0.351 N/A N/A N/A	HP hydrographs and 2 Year 1.19 0.181 0.3	d runoff volumes b 5 Year 1.50 0.298 0.298 0.5	Stage at T Basin Area at T Basin Volume at T V entering new value 10 Year 1.75 0.397 0.397 0.7	op of Freeboard = op of Freeboard = op of Freeboard = <u>ves in the Inflow Hy</u> <u>25 Year</u> <u>2.00</u> 0.979 0.979 <u>6.4</u>	10.48 1.69 8.94 drographs table (C 50 Year 2.25 1.558 1.558 12.8	feet acres acre-ft <u>100 Year</u> <u>2.52</u> <u>2.370</u> <u>2.370</u> <u>21.4</u>	500 Year 3.14 4.158 4.158 39.0
Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) =	120.00 4.00 1.00 <i>The user can over</i> N/A 0.256 N/A N/A N/A N/A	feet H:V feet EURV N/A 0.351 N/A N/A N/A N/A N/A	HP hydrographs and 2 Year 1.19 0.181 0.3 0.3	d runoff volumes b 5 Year 1.50 0.298 0.298 0.298 0.5 0.01	Stage at T Basin Area at T Basin Volume at T 9 <u>ventering new value</u> 10 <u>Year</u> 1.75 0.397 0.397 0.7 0.2	op of Freeboard = op of Freeboard = op of Freeboard = <u>ves in the Inflow Hy</u> <u>25 Year</u> 2.00 0.979 0.979 0.979 6.4 0.15	10.48 1.69 8.94 <i>drographs table (C</i> 50 Year 2.25 1.558 1.558 1.558 1.558 0.30	feet acres acre-ft <u>100 Year</u> 2.52 2.370 2.370 2.370 2.370 2.370 0.51	500 Year 3.14 4.158 4.158 39.0 0.92
Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Pea	120.00 4.00 1.00 <i>The user can over</i> WOCV N/A 0.256 N/A N/A N/A N/A N/A	feet H:V feet EURV N/A 0.351 N/A N/A N/A N/A N/A N/A	<i>IHP hydrographs and</i> 2 Year 1.19 0.181 0.3 0.01 1.8	d runoff volumes b 5 Year 1.50 0.298 0.298 0.5 	Stage at T Basin Area at T Basin Volume at T 10 Year 1.75 0.397 0.397 0.7 0.7 0.02 4.1	op of Freeboard = op of Freeboard = op of Freeboard = <u>ves in the Inflow Hy</u> <u>25 Year</u> 2.00 0.979 0.979 6.4 0.15 10.8	10.48 1.69 8.94 <i>idrographs table (C</i> 50 Year 2.25 1.558 1.558 12.8 0.30 17.4	feet acres acre-ft <u>100 Year</u> 2.52 2.370 2.370 21.4 <u>0.51</u> 26.4	500 Year 3.14 4.158 4.158 39.0 0.92 44.4
Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) =	120.00 4.00 1.00 <i>The user can over</i> N/A 0.256 N/A N/A N/A N/A	feet H:V feet EURV N/A 0.351 N/A N/A N/A N/A N/A	HP hydrographs and 2 Year 1.19 0.181 0.3 0.3	d runoff volumes b 5 Year 1.50 0.298 0.298 0.298 0.5 0.01	Stage at T Basin Area at T Basin Volume at T 9 <u>ventering new value</u> 10 <u>Year</u> 1.75 0.397 0.397 0.7 0.2	op of Freeboard = op of Freeboard = op of Freeboard = <u>ves in the Inflow Hy</u> <u>25 Year</u> 2.00 0.979 0.979 0.979 6.4 0.15	10.48 1.69 8.94 <i>drographs table (C</i> 50 Year 2.25 1.558 1.558 1.558 1.558 0.30	feet acres acre-ft <u>100 Year</u> 2.52 2.370 2.370 2.370 2.370 2.370 0.51	500 Year 3.14 4.158 4.158 39.0 0.92
Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Structure Controlling Flow =	120.00 4.00 1.00 <i>The user can over</i> WQCV N/A 0.256 N/A N/A N/A N/A N/A N/A N/A Plate	feet H:V feet EURV N/A 0.351 N/A N/A N/A N/A N/A N/A N/A N/A Plate	HP hydrographs and 2 Year 1.19 0.181 0.381 0.3 0.01 1.8 0.1 1.8 0.1 N/A Plate	d runoff volumes b 5 Year 1.50 0.298 0.298 0.5 0.01 3.1 0.1 0.2 Plate	Stage at T Basin Area at T Basin Volume at T 10 Year 1.75 0.397 0.397 0.7 0.2 4.1 0.1 0.1 Plate	op of Freeboard = op of Freeboard = op of Freeboard = 25 Year 2.00 0.979 0.979 6.4 0.15 10.8 1.9 0.3 Vertical Orifice 1	10.48 1.69 8.94 drographs table (C 50 Year 2.25 1.558 1.558 12.8 0.30 17.4 4.2 0.3 Vertical Orifice 1	feet acres acre-ft 100 Year 2.52 2.370 2.370 2.370 2.1.4 0.51 2.6.4 8.0 0.4 Vertical Orifice 1	500 Year 3.14 4.158 4.158 39.0 0.92 44.4 12.2 0.3 ertical Orific
Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow to (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow D redevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	120.00 4.00 1.00 <i>The user can over</i> 0.256 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V feet EURV N/A 0.351 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	IHP hydrographs and 2 Year 1.19 0.181 0.3 0.01 1.8 0.1 N/A Plate N/A	d runoff volumes b 5 Year 1.50 0.298 0.5 0.01 3.1 0.1 0.2 Plate N/A	Stage at T Basin Area at T Basin Volume at T Ventering new value 10 Year 1.75 0.397 0.397 0.397 0.7 0.7 0.02 4.1 0.1 0.1 0.1 0.1 0.1 0.1 N/A	op of Freeboard = op of Freeboard = op of Freeboard = 25 Year 2.00 0.979 0.979 6.4 0.15 10.8 1.9 0.3 Vertical Orifice 1 N/A	10.48 1.69 8.94 <i>idrographs table (C</i> 50 Year 2.25 1.558 1.558 12.8 0.30 17.4 4.2 0.3 Vertical Orifice 1 N/A	feet acres acre-ft 100 Year 2.52 2.370 2.370 21.4 0.51 26.4 8.0 0.4 Vertical Orifice 1 N/A	500 Year 3.14 4.158 4.158 39.0 0.92 44.4 12.2 0.3 ertical Orific N/A
Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	120.00 4.00 1.00 <i>The user can over</i> N/A 0.256 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V feet EURV N/A O.351 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	HP hydrographs and 2 Year 1.19 0.181 0.3 0.01 1.8 0.1 1.8 0.1 N/A Plate N/A N/A	d runoff volumes b 5 Year 1.50 0.298 0.298 0.5 0.01 3.1 0.1 0.2 Plate N/A N/A	Stage at T Basin Area at T Basin Volume at T V entering new value 10 Year 1.75 0.397 0.397 0.397 0.397 0.7 0.02 4.1 0.1 0.1 0.1 Plate N/A N/A	op of Freeboard = op of Freeboard = op of Freeboard = 20 of Freeboard = 2.00 0.979 0.9700 0.9700 0.9700 0.970000000000	10.48 1.69 8.94 drographs lable (C 50 Year 2.25 1.558 1.558 1.558 1.558 0.30 17.4 4.2 0.3 Vertical Orifice 1 N/A	feet acres acre-ft 100 Year 2.52 2.370 2.370 2.370 2.370 2.370 2.370 2.370 2.370 2.370 2.4 0.51 2.6.4 8.0 0.4 Vertical Orifice 1 N/A	500 Year 3.14 4.158 4.158 39.0 0.92 44.4 12.2 0.3 'ertical Orifit N/A N/A
Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak O (cfs) = OPTIONAL Override Predevelopment Peak O (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow O (cfs) = Peak Nuflow O (cfs) = Peak Outflow O (cfs) = Ratio Peak Outflow to Predevelopment O = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	120.00 4.00 1.00 <i>The user can over</i> WOCV N/A 0.256 N/A N/A N/A N/A N/A N/A N/A N/A A N/A A N/A 40	feet H:V feet <u>EURV</u> N/A 0.351 N/A N/A N/A N/A N/A N/A N/A N/A S0	HP hydrographs and 2 Year 1.19 0.181 0.3 0.1 1.8 0.1 1.8 0.1 N/A Plate N/A N/A 32	d runoff volumes b 5 Year 1.50 0.298 0.298 0.5 0.01 3.1 0.1 0.2 Plate N/A N/A 45	Stage at T Basin Area at T Basin Volume at T Ventering new value 10 Year 1.75 0.397 0.397 0.397 0.7 0.02 4.1 0.1 0.1 0.1 Plate N/A N/A 55	op of Freeboard = op of Freeboard = op of Freeboard = <u>ves in the Inflow Hy</u> <u>25 Year</u> 2.00 0.979 0.979 0.979 6.4 0.15 10.8 1.9 0.3 Vertical Orifice 1 N/A N/A 62	10.48 1.69 8.94 1.69 1.69 1.558	feet acres acre-ft <u>100 Year</u> 2.52 2.370 2.370 2.370 2.370 2.370 2.370 2.370 2.4 4 0.51 2.6.4 8.0 0.4 Vertical Orifice 1 N/A N/A 56	500 Year 3.14 4.158 4.158 39.0 0.92 44.4 12.2 0.3 ertical Orifid N/A N/A 49
Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	120.00 4.00 1.00 <i>The user can over</i> N/A 0.256 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V feet EURV N/A O.351 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	HP hydrographs and 2 Year 1.19 0.181 0.3 0.01 1.8 0.1 1.8 0.1 N/A Plate N/A N/A	d runoff volumes b 5 Year 1.50 0.298 0.298 0.5 0.01 3.1 0.1 0.2 Plate N/A N/A	Stage at T Basin Area at T Basin Volume at T V entering new value 10 Year 1.75 0.397 0.397 0.397 0.397 0.7 0.02 4.1 0.1 0.1 0.1 Plate N/A N/A	op of Freeboard = op of Freeboard = op of Freeboard = 25 Year 2.00 0.979 0.979 6.4 0.15 10.8 1.9 0.3 Vertical Orifice 1 N/A N/A	10.48 1.69 8.94 drographs lable (C 50 Year 2.25 1.558 1.558 1.558 1.558 0.30 17.4 4.2 0.3 Vertical Orifice 1 N/A	feet acres acre-ft 100 Year 2.52 2.370 2.370 2.370 2.370 2.370 2.370 2.370 2.370 2.370 2.4 4 0.51 2.6.4 8.0 0.4 Vertical Orifice 1 N/A	500 Year 3.14 4.158 4.158 39.0 0.92 44.4 12.2 0.3 'ertical Orifik N/A
Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Nufflow D (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) = CUMP Predevelopment	120.00 4.00 1.00 <i>The user can over</i> WQCV N/A 0.256 N/A N/A N/A N/A N/A N/A N/A Plate N/A N/A N/A 40 42	feet H:V feet EURV N/A 0.351 N/A N/A N/A N/A N/A N/A N/A N/A Plate N/A N/A S0 50 53	IHP hydrographs and 2 Year 1.19 0.181 0.181 0.3 	d runoff volumes b 5 Year 1.50 0.298 0.298 0.5 0.01 3.1 0.1 0.2 Plate N/A N/A N/A 45 48	Stage at T Basin Area at T Basin Volume at T 10 Year 1.75 0.397 0.397 0.7 0.02 4.1 0.1 Plate N/A N/A 55 59	op of Freeboard = op of Freeboard = op of Freeboard = <u>ves in the Inflow Hy</u> <u>25 Year</u> 2.00 0.979 0.979 6.4 <u>0.15</u> 10.8 1.9 0.3 <u>Vertical Orifice 1</u> N/A N/A N/A 62 67	10.48 1.69 8.94 drographs table (C 50 Year 2.25 1.558 1.558 12.8 0.30 17.4 4.2 0.3 Vertical Orifice 1 N/A N/A N/A 60 66	feet acres acre-ft 100 Year 2.52 2.370 2.370 2.370 2.1.4 0.51 2.6.4 8.0 0.4 Vertical Orifice 1 N/A N/A N/A S6 65	500 Year 3.14 4.158 4.158 4.158 39.0 0.92 44.4 12.2 0.3 'ertical Orific N/A N/A 49 63

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

	The user can o	verride the calc	ulated inflow hy	drographs from	this workbook v	with inflow hydro	ographs develop	oed in a separate	program.	
]	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5.00 11111	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
	0:15:00	0.00	0.00	0.05	0.09	0.11	0.07	0.09	0.09	0.14
	0:20:00	0.00	0.00	0.22	0.29	0.35	0.22	0.26	0.28	0.37
	0:25:00	0.00	0.00	0.83	1.62	2.28	0.68	1.08	1.33	2.30
	0:30:00	0.00	0.00	1.54	2.80	3.78	4.72	8.32	11.31	20.33
	0:35:00	0.00	0.00	1.76	3.07	4.12	9.09	14.81	21.51	36.18
-	0:40:00	0.00	0.00	1.74	2.99	4.01	10.78	17.39	25.70	42.69
-	0:50:00	0.00	0.00	1.65 1.52	2.79	3.73 3.39	10.81 10.30	17.40 16.44	26.35 25.12	44.35 43.09
-	0:55:00	0.00	0.00	1.32	2.35	3.39	9.41	15.01	23.08	40.05
	1:00:00	0.00	0.00	1.31	2.18	2.89	8.57	13.71	21.26	37.33
	1:05:00	0.00	0.00	1.22	2.01	2.66	7.87	12.57	19.68	35.08
	1:10:00	0.00	0.00	1.14	1.87	2.47	7.16	11.41	17.89	32.09
	1:15:00	0.00	0.00	1.06	1.75	2.35	6.51	10.37	16.22	29.21
	1:20:00	0.00	0.00	1.00	1.64	2.21	5.97	9.50	14.81	26.68
	1:25:00	0.00	0.00	0.93	1.53	2.05	5.49	8.72	13.53	24.31
-	1:30:00	0.00	0.00	0.87	1.42	1.89	5.02	7.95	12.31	22.08
ŀ	1:35:00	0.00	0.00	0.80	1.30	1.72	4.56	7.20	11.13	19.94
	1:40:00	0.00	0.00	0.74	1.18	1.56 1.40	4.10 3.65	6.45 5.71	9.97 8.81	17.84
ł	1:50:00	0.00	0.00	0.68	0.97	1.40	3.65	4.99	7.70	13.78
	1:55:00	0.00	0.00	0.60	0.91	1.21	2.87	4.46	6.85	12.29
	2:00:00	0.00	0.00	0.56	0.86	1.14	2.64	4.10	6.25	11.20
	2:05:00	0.00	0.00	0.52	0.80	1.06	2.44	3.78	5.75	10.25
	2:10:00	0.00	0.00	0.47	0.73	0.97	2.24	3.48	5.28	9.39
-	2:15:00	0.00	0.00	0.43	0.66	0.88	2.05	3.19	4.84	8.58
	2:20:00	0.00	0.00	0.39	0.60	0.79	1.87	2.90	4.41	7.80
	2:25:00 2:30:00	0.00	0.00	0.35	0.54	0.71	1.69	2.63	3.99	7.05
-	2:35:00	0.00	0.00	0.31	0.48	0.63	1.52 1.35	2.35	3.58	6.34 5.63
	2:40:00	0.00	0.00	0.27	0.42	0.33	1.18	1.82	2.78	4.93
	2:45:00	0.00	0.00	0.24	0.30	0.40	1.01	1.55	2.38	4.24
	2:50:00	0.00	0.00	0.17	0.25	0.33	0.84	1.29	1.98	3.54
	2:55:00	0.00	0.00	0.14	0.20	0.26	0.68	1.03	1.59	2.85
	3:00:00	0.00	0.00	0.11	0.15	0.19	0.51	0.77	1.19	2.16
	3:05:00	0.00	0.00	0.08	0.10	0.13	0.35	0.51	0.80	1.47
-	3:10:00	0.00	0.00	0.06	0.08	0.10	0.20	0.27	0.43	0.84
-	3:15:00 3:20:00	0.00	0.00	0.05	0.06	0.08	0.11	0.15	0.23	0.51
	3:25:00	0.00	0.00	0.04	0.05	0.07	0.08	0.10	0.15	0.33
	3:30:00	0.00	0.00	0.04	0.04	0.05	0.05	0.06	0.08	0.15
-	3:35:00	0.00	0.00	0.03	0.03	0.04	0.04	0.05	0.05	0.10
	3:40:00	0.00	0.00	0.02	0.03	0.04	0.03	0.04	0.04	0.06
	3:45:00	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.03	0.04
	3:50:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	3:55:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.02
ŀ	4:00:00	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.02
ŀ	4:05:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
ŀ	4:15:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ł	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ł	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
		10		0			
6965-Top of Micropool	0.00		0.000		0.000	0.00	For best results, include the stages of all grade slope
6966	1.00	1,237	0.028	623 5,756	0.014	0.03	changes (e.g. ISV and Floor
6967	2.00	9,028 14,013	0.207	5,756	0.132	0.08	from the S-A-V table on
6967.48-WQCV WSEL 6967.75-EURV WSEL	2.48	16,817	0.322	15,448	0.259	0.10	Sheet 'Basin'.
6968	3.00	19,414	0.446	19,977	0.459	0.27	Also include the inverts of a
6969	4.00	31,638	0.726	45,503	1.045	4.11	outlets (e.g. vertical orifice,
6969.54-100 yr WSEL	4.54	35,932	0.825	63,747	1.463	7.94	overflow grate, and spillway
6970	5.00	39,589	0.909	81,116	1.862	9.85	where applicable).
6971	6.00	45,537	1.045	123,679	2.839	13.01	
6972	7.00	51,596	1.184	172,246	3.954	15.54	-
6973	8.00	57,766	1.326	226,927	5.210	31.64	
6974-Spillway Crest	9.00	64,047	1.470	287,833	6.608	49.02	
6975	10.00	70,449 73,681	1.617 1.691	355,081 391,114	8.152 8.979	420.90 740.22	
6976-Top of Pond	10.50	73,001	1.091	391,114	0.979	740.22	
							-
							-
							-
							-
							-
							1
							4
							4
							-
							-
							-
							-
							-
							1
							1
							1
							4
							4
							4
		-					1
							1
						1	-1

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

-100-YEAR ORIFICE ZONE 1 AND 2-ORIFICES PERM Example Zone Configuration (Retention Pond)

Watershed Information

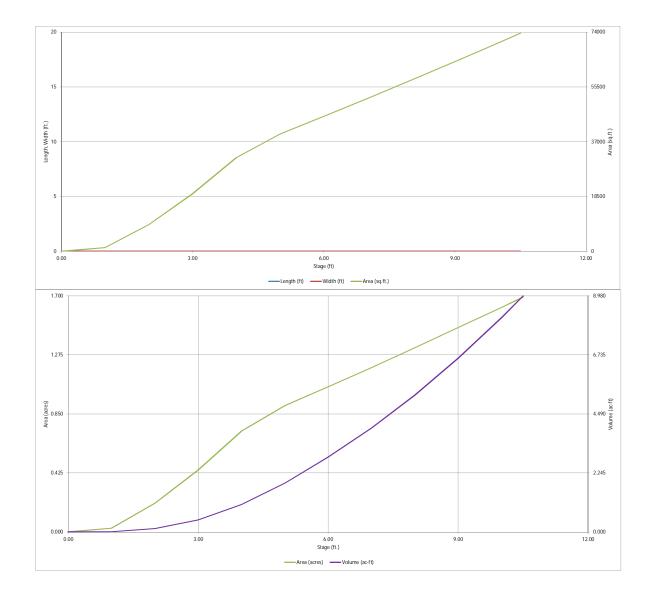
Selected BMP Type =	EDB	
Watershed Area =	44.16	acres
Watershed Length =	2,265	ft
Watershed Length to Centroid =	1,455	ft
Watershed Slope =	0.030	ft/ft
Watershed Imperviousness =	73.00%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded oblorddo orbannydro	graphinoceae	
Water Quality Capture Volume (WQCV) =	1.064	acre-feet
Excess Urban Runoff Volume (EURV) =	4.132	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	3.020	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	3.935	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	4.670	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	5.573	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	6.455	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	7.502	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	9.804	acre-feet
Approximate 2-yr Detention Volume =	2.702	acre-feet
Approximate 5-yr Detention Volume =	3.522	acre-feet
Approximate 10-yr Detention Volume =	4.222	acre-feet
Approximate 25-yr Detention Volume =	5.044	acre-feet
Approximate 50-yr Detention Volume =	5.530	acre-feet
Approximate 100-yr Detention Volume =	6.004	acre-feet

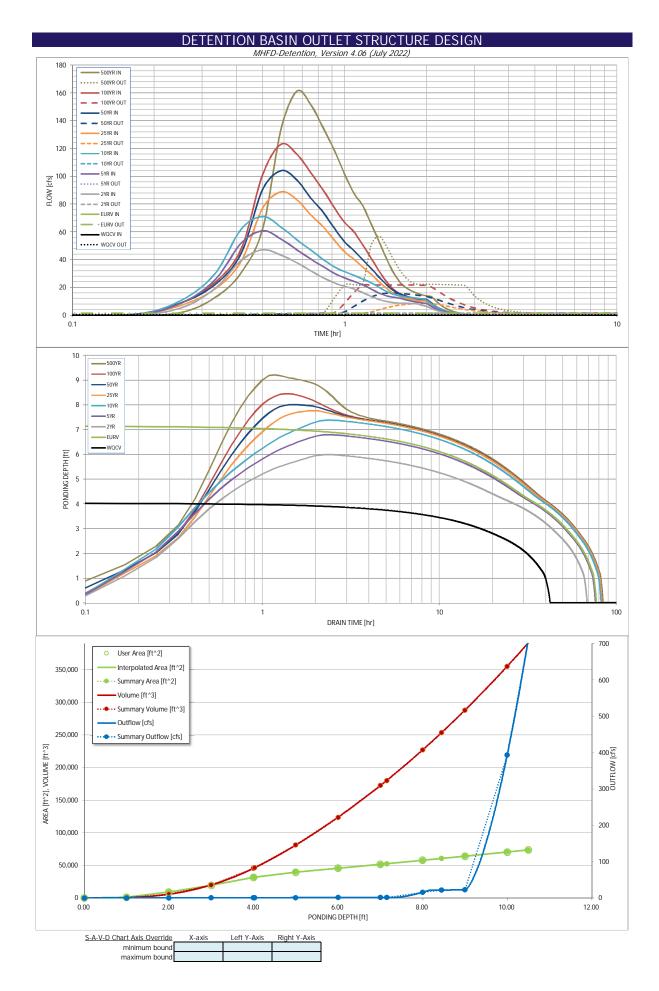
Define	Zones	and	Basin	Geome	etry
		7	Zone 1	Volume	(WQ

Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	1.064	acre-feet
Zone 2 Volume (EURV - Zone 1) =	3.068	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	1.871	acre-feet
Total Detention Basin Volume =	6.004	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	


Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W_{ISV}) =	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W_{FLOOR}) =		ft
Area of Basin Floor $(A_{FLOOR}) =$		ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L_{MAIN}) =	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =		ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³

v Calculated Total Basin Volume (Vtotal) = user acre-feet

٩		Depth Increment =		ft							
		_ optimizer official =		Optional				Optional			
ion Pond)		Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
, , ,		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
		Top of Micropool		0.00				10	0.000		
										4.00	0.014
		6966		1.00				1,237	0.028	623	0.014
		6967		2.00				9,028	0.207	5,756	0.132
		6968		3.00				19,414	0.446	19,977	0.459
		6969		4.00				31,638	0.726	45,503	1.045
		6970		5.00				39,589	0.909	81,116	1.862
		6971		6.00				45,537	1.045	123,679	2.839
		6972		7.00				51,596	1.184	172,246	3.954
		6973		8.00				57,766	1.326	226,927	5.210
		6974 (Crest)		9.00				64,047	1.470	287,833	6.608
		6975		10.00				70,449	1.617	355,081	8.152
		6975.5		10.50				73,681	1.691	391,114	8.979
Optional Use	er Overrides										
	acre-feet										
	acre-feet										
	+										
1.19	inches										
1.50	inches										
1.75	inches										
	-										
2.00	inches										
2.25	inches				-						
2.52	inches										
	inches										
	1.101103										
										L	
											7
											7
									_		
					-					l	
					-						
					~	~					
										-	
									-		
					: :						
					-					l	


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

DETENTION BASIN OUTLET STRUCTURE DESIGN

One-Hour Rainfall Depth (in) CUHP Runoff Volume (acre-ft) = N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3. CUHP Runoff Volume (acre-ft) = 1.064 4.132 3.020 3.935 4.670 5.573 6.455 7.502 9.5 CUHP Predevelopment Peak 0 (cfs) = N/A N/A 0.3 0.02 3.935 4.670 5.573 6.455 7.502 9.5 CUHP Predevelopment Peak 0 (cfs) = N/A N/A 0.3 0.5 0.8 6.8 13.6 22.7 9.6 OPTIONAL Override Predevelopment Peak 0 (cfs) = N/A N/A 0.3 0.5 0.8 6.8 13.6 22.7 9.6 Predevelopment Unit Peak Flow, q (cfs/acre) = N/A N/A 0.01 0.01 0.02 0.15 0.31 0.51 0.0 Peak Inflow O (cfs) = N/A N/A N/A N/A 1.4 1.7 8.7 16.0 21.8 57 Ratio Peak Outflow to Predevelopment Q = N/A N/A <th></th> <th></th> <th></th> <th>HFD-Detention, V</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>				HFD-Detention, V							
			cycling Facility								
	ZONE 3	Fond A-ontimate			Estimated	Estimated					
							Outlet Type				
		1			_			1			
Image: Description of the sector of	± ± ••••										
Image: Description (Participation Participation Partinano Partinano Participation Participation Participation Participa		ORIFICE									
Instrume Local		Configuration (Re	tention Pond)	Zone 3 (100-year)			Weir&Pipe (Restrict)				
Understand führe landers Telefolder führe hander führe Telefolder führe führe Telefolder führe führe Telefolder führe </td <td></td> <td></td> <td></td> <td>(D)</td> <td>l otal (all zones)</td> <td>6.004</td> <td></td> <td>Coloulated Decema</td> <td>tono for Undordesia</td> <td></td>				(D)	l otal (all zones)	6.004		Coloulated Decema	tono for Undordesia		
Understand Ortice Densities NM refu Understand Ortice Contract NM Understand Ortice Contract NM NM Der Inder Ortice Ortice Ortice Ortice Contract 0.00 fr. (Fallelle Statu) Statu					surface)	Underd	Irain Orifice Area -				
Long Other Bills will not a: mere at the or Digital Gride Digital word Digital word Digital word Digital word Digital State 1000 Loss Boundary Digital State Digital Stat			•	the fill attor filedia	surrace)						
Detroit of low low (Drive) for low low (Drive) is block of an it Stage = 0 f) WD before Area per allow is a stage is 0 f) NA Pri Detroit and the form of the form is share of the is block of an it Stage = 0 f) Upta it and the form of the fo		14/74	inches			onderdran		10/71	leet		
Depti a tag of Zare Gaigo Cher, Prinz, et al. Depti Cher Metrical Space Cher Metrical	User Input: Orifice Plate with one or more orific	es or Elliptical Slot '	Weir (typically used	to drain WQCV an	d/or EURV in a sedi	mentation BMP)		Calculated Parame	eters for Plate		
Unite who, other with a process spreame = who in process Unite who is process of control = who is proces of control = who is process of control = who is proce	Centroid of Lowest Orifice =	0.00	ft (relative to basir	n bottom at Stage =	= 0 ft)	WQ Orifi	ce Area per Row =	N/A	ft ²		
Office Fest: Ontice Area prices NA Particle Parties Control Price Stop of Ontice Area prices NA NA NA NA NA Stop of Ontice Area prices NA NA NA NA NA NA NA Stop of Ontice Area prices NA <	Depth at top of Zone using Orifice Plate =	4.03	ft (relative to basir	n bottom at Stage =	= 0 ft)	Elli	ptical Half-Width =	N/A	feet		
Loss Input. Shaps and Loss Area of Exh. Office. Brow (spectrom) Box 2 (spectrom) Row 3 (spectrom) Row 4 (spectrom) Row 5 (spectrom) Row 5 (spectrom) Row 6 (spectrom) Row 7 (spectrom) Row 8 (spectrom) Stage of Office Control (th) 100 100 3.00 100											
Suge of Orlice Currence (b) The origination of the 2 (partners) The 4 (partners)	Orifice Plate: Orifice Area per Row =	N/A	sq. inches			E	Iliptical Slot Area =	N/A	ft ²		
Bige of Office Central (IP) Bige of Office Central (IP) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
Bige of Office Central (IP) Bige of Office Central (IP) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
Single of Data Control (n) Data Data <th< td=""><td>User input: stage and Total Area of Each Orific</td><td></td><td></td><td></td><td>Pow ((ontional)</td><td>Pow 5 (optional)</td><td>Pow 6 (ontional)</td><td>Pow 7 (optional)</td><td>Dow 8 (ontional)</td><td>l</td></th<>	User input: stage and Total Area of Each Orific				Pow ((ontional)	Pow 5 (optional)	Pow 6 (ontional)	Pow 7 (optional)	Dow 8 (ontional)	l	
Ontice Area Ga, Indesi 3.00 3.00 3.00 3.00 3.00 3.00 1.0	Stane of Orifice Controld (ft)					Now 5 (optional)	Now o (optional)	Now 7 (optional)	now o (optional)		
Image of order contract (0) crite are (0) The order (0) The order (0) The order (0) The order (0) Image of order contract (0) Image of order contra											
Stage of Orice Crime (IP) Interview (IP) Interview (IP) Interview (IP) User Insul: Vertical Office (Enclose or Restandate) Three 1 of Vertical Office (Enclose or Restandate) Interview (IP)	Grince Area (sq. IIICITES)	3.00	3.00	3.00						I	
Stage of Onice Central (PD Inclusion Inclusio		Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)		
Orfice Avea (q. Index) Image: Normal of the second of the se	Stage of Orifice Centroid (ft)		() ()	(),	()	() () () () () () () () () ()	() · · · · · · · · · · · · · · · · · ·				
Just Insul: Verifial Office (Cruder or Netranzia): Calculated Parameters for Vertical Office Vertical Office Parameters for Office Parameters for Office Parameters for Vertical Office Parameters for O											
Invert of Vertical Orlico. Zone 2 Cradur NM Selected 2.15 NMA Freshber to basin bottom at Stage = 0 (f) Vertical Orlico. Area + 2.00 Zone 2.000 NMA NMA Freshber to basin bottom at Stage = 0 (f) Vertical Orlico. Area + 0.18 Zone 2.000 NMA NMA Freshber to basin bottom at Stage = 0 (f) Vertical Orlico. Area + 0.18 Zone 2.000 NMA NMA Freshber to 0.18 Zone 2.000 NMA NMA Freshber to 0.18 Zone 2.000 NMA NMA Freshber to 0.18 Zone 2.000 NMA Freshber to 0.18 Zone 2.000 NMA Freshber to 0.18 Zone 2.000 NMA Freshber to 0.18 Zone 2.000 NMA Freshber to 0.000 Zone 2.000											
Invest of Varical Orfice 4.03 N/A Profestive to basin bottom at Stage = 0 (t) Vertical Orfice Centrols 0.18 N/A Pref Depth at rop of zone using Varical Orfice Dimeter 4.20 N/A inches 0.18 N/A Free User Insut: Duerflow Weir (Drosbox with Flat or Steped Grahe and Dufter Ene DE Bestangter/Transcradal Weir and No Dufter Pine) Cabulated Farameters for Overflow Weir Stepe Length 2.06 N/A Free Overflow Weir Front Edge Height, Ho 2.02 N/A free the basin bottom at Stage = 0 (t) Deerflow Weir Stepe Length 2.05 N/A Free the Dimeter is the basin bottom at Stage = 0 (t) Deerflow Weir Stepe Length 2.05 N/A Free the Dimeter is the basin bottom at Stage = 0 (t) Deerflow Weir Stepe Length 2.00 N/A Free the Dimeter is the basin bottom at Stage = 0 (t) Deerflow Weir Stepe Length 0.01 N/A Free the Dimeter is the Dime	User Input: Vertical Orifice (Circular or Rectang		·		· · · · · · · ·			Calculated Parame		fice	
Depth at top of Zone using Vertical Office 7.15 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Office Controld 0.18 N/A Sect User Input. Overflow Weir (Drockox with Fait or Skoed Grate and Outlet Pipe OR Rectanudar /Tracezoidal Weir and No Dulist Pipe) Calculated Parameters for Overflow Weir Overflow Weir from Edge Height, He Zone 3 Wer Mol Selected Vertical Office Calculated Parameters for Overflow Weir Overflow Weir from Edge Height, He Zone 3 Wer Mol Selected Vertical Office 20.01 N/A Overflow Weir from Edge Height, He Zone 3 Wer Mol Selected 0.00 N/A Feet Overflow Weir Stope = 0.01 N/A Overflow Weir Stope = 0.00 N/A Feet Overflow Grate Open Area wir Debris = 0.01 N/A Debris Cogging % = Edge Meir Selected N/A % Overflow Grate Open Area wir Debris = 0.02 N/A Debris Cogging % = Cone 3 Bestrictor Nice Selected 0.02 N/A % 0.02 N/		Zone 2 Circular	Not Selected						Not Selected		
Vertical Orifice Diameter 4.20 N/A Inches User Insut: Overflow Weir Foret Edge Height, He Zone 3 Weir Avia Staticted Transcription Calculated Parameters for Overflow Weir Foret Edge, He Zone 3 Weir N/A Feet Overflow Weir Foret Edge Height, He Zone 3 Weir Avia Staticted F(restave to basin bottom at Stage - 01) Height of Grate Upper Edge, He Zone 3 Weir Avia Staticted Feet Overflow Weir Foret Edge Height, He Zone 3 Weir Avia Avia Staticted Overflow Weir Stope Length 4.00 N/A Feet Overflow Weir Foret Edge Height, He Zone 3 Weir Staticted Parameters Avia Stope Length 9.01 N/A Overflow Vier Foret Edge Height Avia Staticter Overflow Vier Staticter Avia Staticter Overflow Area v/D Debris 9.01 N/A Debris Cloging % Close Mesh Grate N/A N/A Deverflow Grate Open Area w/D Debris 6.33 N/A N/2 Debris Cloging % Zone 3 Restrictor Not Staticter Parameters for Outlet Restriction Restriction Restriction Restriction Para Calculated Parameters for Statice 1.40 N/A East Incor 1 Fould Elgine Restrictor Metric St					-						
Inset Insut: Overflow Weir (Dropbox with Elar or Stoped Carba and Outlet Pipe OB Prevanduar/Trapezaidal Weir and No Outlet Pipo). Catalitied Parameters for Overflow Weir Tront Edge Height, Ho Catalitied Parameters for Overflow Weir Tront Edge Height, Ho Catalitied Parameters for Overflow Weir Front Edge Height, Ho Catalitied Parameters for Overflow Weir Front Edge Height, Ho Catalitied Parameters for Overflow Weir Soles. Catalited Parameters for Solitweir Weir Soles. Catalit				ft (relative to basir	n bottom at Stage =	= 0 ft) Vertica	Orifice Centroid =	0.18	N/A	feet	
Zore:3 W/r Not Selected 7.35 Not Selected 7.40	Vertical Orifice Diameter =	4.20	N/A	inches							
Zore:3 W/r Not Selected 7.35 Not Selected 7.40											
Zore:3 W/r Not Selected 7.35 Not Selected 7.40			0.41.4.12			Let D's a)			1	1.1.	
Overflow Weir Forn Edge Height, Ho- 7.35 N/A freet Overflow Weir Forn Edge Length 7.35 N/A freet Overflow Weir Forn Edge Length 4.00 N/A freet Overflow Weir Sige Length 4.00 N/A Overflow Weir Forn Edge Length 4.00 N/A freet Overflow Grate Open Area wid Debris 9.01 N/A Overflow Grate Type Clock Mesh Grate N/A freet Overflow Grate Open Area wid Debris 12.66 N/A n² Overflow Grate Open Area wid Debris 59% N/A r% 6.33 N/A n² User Input: Cutlet Plee wide Fibre Clocker 20.0 N/A r% 0 6.33 N/A n² Outer Type Diameter 24.00 N/A r/k fit distance below basin bottom at Stage - 0 rt) Outer Orfice Area 1.40 N/A refer Outer Type Diameter 24.00 N/A rickes Outer Orfice Area 0.53 N/A refer Nota rickes nches Hair-Central Angle of Restrictor Plate Netre 0.48 feet <	User Input: Overflow Weir (Dropbox with Flat o			tangular/Trapezolo	al weir and No Out	let Pipe)				leir	
Overflow Weir Front Edge Length 4.00 N/A feet Overflow Weir Stope Length 4.00 N/A feet Overflow Weir States 0.000 N/A Hiv Grate Open Area / 100-yr Office Area 9.01 N/A Hiv Overflow Weir States 0.000 N/A Het Overflow Grate Open Area 100-yr Office Area 9.01 N/A Hiv Overflow Grate Open Area V/O office Area 0.03 N/A Ys 0 0 N/A Hiv 0 0 N/A Hiv 0 0 N/A Hiv 0 0 N/A Hiv 0 0 0 N/A Hiv 0 <t< td=""><td>Overflow Weir Front Edge Height He -</td><td></td><td></td><td>ft (rolativo to bacin</td><td>nottom at Stago - 0 f</td><td>ft) Hoight of Crat</td><td>Upper Edge U -</td><td></td><td></td><td>foot</td></t<>	Overflow Weir Front Edge Height He -			ft (rolativo to bacin	nottom at Stago - 0 f	ft) Hoight of Crat	Upper Edge U -			foot	
Overflow Weir Grate Sope - Horiz Length of Weir Sides - Obes Mesh Grate N/A H-V Oral Calls Open Area v100-yr Orfice Area - 901 N/A Horiz Length of Weir Sides - Deverflow Grate Type - Debris Clogging % - Des Mesh Grate N/A Obes Mesh Grate N/A -	° °				bollom at stage = 0 i	-					
Horiz Length of Wer Sides = Overflow Grate Type = Design Sim Return Proto Splitway Crest Length = Splitway Crest Length = Split					Gra					1001	
Overflow Grate Type Close Mesh Grate N/A PA Detris Clogging % = 50% N/A % User Input: Outlet Pipe w/ Flow Restriction Plate (Cricular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate 70° Depth to Invert of Outlet Pipe Cance 3 Restrictor Not Selected 2.50 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Central = 1.40 N/A ft² Depth to Invert of Outlet Pipe Cance 3 Restrictor Nat Selected 0.010 N/A ft² Restrictor Plate Height Above Pipe Invert = 1.00 inches Half-Central Angle of Restrictor Plate on Pipe = 1.40 N/A ft² Splilway Invert Stage = 9.00 ft (relative to basin bottom at Stage = 0 ft) Splilway Design Flow Depth = 0.48 feet 1.69 acres Splilway Crest Length = 1.00 Feet Stage at Top of Freeboard = 1.69 acres 1.69 acres 3.60 0.48 feet 0.48 feet 0.48 feet 0.48 feet 0.48 feet										ft ²	
Debris Gloging % 50% NA % User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orffice, Restrictor Plate, or Rectangular Orffice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe 250 NA % Outlet Pipe Diameter Zone 3 Restrictor NA ft (distance below basin bottom at Stage = 0 ft) Outlet Orffice Area Zone 3 Restrictor NA ft ? Outlet Pipe Diameter Zde 00 N/A inches Half-Central Angle of Restrictor Plate on Pipe Zone 3 Restrictor NA ft ? Restrictor Plate Height Above Pipe Invert 10.00 inches Half-Central Angle of Restrictor Plate on Pipe Zone 3 Restrictor Plate Not State Plate Not Not Plate Plate Not Not Plate Plate Not State Plate Not Not Plate Plate Not Not Plate Plate Not State Plate Not Not Plate Plate Not	-										
User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, original provided in the structure of outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, pla				%							
Depth to Invert of Outlet Pipe Zone 3 Restrictor Not Selected ft (distance below basin bottom at Stage – 0 ft) Outlet Orfice Area Zone 3 Restrictor Not Selected ft ² Outlet Dipe Diameter 2.50 N/A Inches Outlet Orfice Area 1.40 N/A ft ² Restrictor Plate Height Above Pipe Invert = 11.00 inches Half-Central Angle of Restrictor Plate on Pipe 0.53 N/A fteet Splitway Invert Stage 9.00 ft (relative to basin bottom at Stage = 0 ft) Splitway Design Flow Depth 0.48 feet Splitway Invert Stage 9.00 ft (relative to basin bottom at Stage = 0 ft) Splitway Design Flow Depth 0.48 feet Splitway Invert Stage 9.00 ft (relative to basin bottom at Stage = 0 ft) Splitway Design Flow Depth 0.48 feet Splitway Invert Stage 4.00 H·V Basin Volume at Top of Freeboard = 1.69 acres Cuted Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF) Cuther Pundfored Peakologinem Peako (Gt) N/A N/A 1	55 5			1							
Depth to Invert of Outlet Pipe 2.50 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 0.40 1.40 N/A ft ² Restrictor Plate Height Above Pipe Invert = 24.00 N/A inches Outlet Orifice Centroid = 0.53 N/A ftet User Input: Emergency Splitway (Rectangular or Trapezoidal) inches Half-Central Angle of Restrictor Plate NPIpe 0.48 feet Splitway Invert Stage 9.00 ft (relative to basin bottom at Stage = 0 ft) Splitway Design Flow Depth 0.48 feet Splitway End Stopes = 4.00 H.V Basin Area at Top of Freeboard = 1.69 acres Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). 8.94 acres CuHP Runof Volume (acret ft) = N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3. CUHP Runof Volume (acret ft) = N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3. Orifoux Unvertide Predevelopment Peak 0 (cfs) = <td>User Input: Outlet Pipe w/ Flow Restriction Plate</td> <td>(Circular Orifice, R</td> <td>estrictor Plate, or R</td> <td>ectangular Orifice)</td> <td></td> <td>Ca</td> <td>Iculated Parameters</td> <td>s for Outlet Pipe w/</td> <td>Flow Restriction Pla</td> <td>ate</td>	User Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, R	estrictor Plate, or R	ectangular Orifice)		Ca	Iculated Parameters	s for Outlet Pipe w/	Flow Restriction Pla	ate	
Outlet Pipe Diameter 24.00 N/A Inches Outlet Orlice Centrold 0.53 N/A feet Restrictor Plate Height Above Pipe Invert 11.00 inches Half-Central Angle of Restrictor Plate on Pipe 1.49 N/A radiant User Input: Emergency Spillway (Rectangular or Trapezoidal) freet Spillway Invert Stage 9.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth 0.48 feet Spillway Invert Stage 9.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth 0.48 feet Spillway Invert Stage 10.00 feet Basin Area at Top of Freeboard = 10.49 acres Spillway Invert Stage 1.00 feet Basin Volume at Top of Freeboard = 1.69 acres Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs lable (Columns W Itrough AF) Design Storm Return Period N/A N/A 1.19 5.00 5.573 6.455 7.502 9.8 OPTIONAL Override Predevelopment Peak (Cfs) N/A N/A 0.01 <td></td> <td>Zone 3 Restrictor</td> <td>Not Selected</td> <td></td> <td></td> <td></td> <td></td> <td>Zone 3 Restrictor</td> <td>Not Selected</td> <td></td>		Zone 3 Restrictor	Not Selected					Zone 3 Restrictor	Not Selected		
Restrictor Plate Height Above Pipe Invert = 11.00 inches Half-Central Angle of Restrictor Plate on Pipe = 1.49 N/A radiance User Input: Emergency Spillway (Rectangular or Trapezoldal) Spillway (Rectangular or Trapezoldal) Spillway Crest Length = 9.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth = 0.48 feet Spillway Crest Length = 120.00 feet Spillway Crest Length = 1.69 acres Spillway End Slopes = 1.00 feet Basin Area at Top of Freeboard = 1.69 acres Spillway Crest Length = 1.00 feet Basin Volume at Top of Freeboard = 8.94 acre-ft Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrograph Slable (Columns W through AF). Design Storm Return Period = N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 30 CUHP Prodevelopment Peak Q (rs) = N/A N/A 3.020 3.935 4.670 5.573 6.455 7.502 9.8 Predevelopment Peak Q (rs) = <t< td=""><td>Depth to Invert of Outlet Pipe =</td><td>2.50</td><td>N/A</td><td>ft (distance below b</td><td>asin bottom at Stage</td><td>= 0 ft) Ot</td><td>utlet Orifice Area =</td><td>1.40</td><td>N/A</td><td>ft²</td></t<>	Depth to Invert of Outlet Pipe =	2.50	N/A	ft (distance below b	asin bottom at Stage	= 0 ft) Ot	utlet Orifice Area =	1.40	N/A	ft ²	
Liser Input: Emergency Spillway (Rectangle or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage = Spillway Invert Stage = Calculated Parameters for Spillway Spillway Crest Length = Spillway Crest Length = Calculated Parameters for Spillway Spillway Crest Length = Spillway End Stopes = A 0.00 H: V Basin Volume at Top of Freeboard = Calculated Parameters for Spillway Spillway Crest Length = Calculated Parameters for Spillway Spillway End Stopes = A 0.00 H: V Design Storm Return Peridd = Calculated Parameters for Spillway OPE-Inform Peridd = WOCV E URV V V Sear 50 Vear 10.04 Vear 20 2.25 2.52	Outlet Pipe Diameter =		N/A	inches		Outlet	Orifice Centroid =	0.53	N/A	feet	
Spillway Invert Stage 9.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.48 feet Spillway Crest Length = 120.00 feet Stage at Top of Freeboard = 10.48 feet Spillway End Stopes = 4.00 H:V Basin Area at Top of Freeboard = 1.69 acres. Freeboard above Max Water Surface = 1.00 feet Basin Volume at Top of Freeboard = 8.94 acres. Design Storm Return Period 0 feet 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year 500 One-Hour Rainfall Depth (in) N/A N/A N/A 1.19 1.50 1.75 2.00 2.25 2.62 3.02 OPTIONLO Over/de Predevelopment Peak O (ds) N/A N/A 3.020 3.935 4.670 5.573 6.455 7.502 9.82 OPTIONLO Over/de Predevelopment Peak O (ds) N/A N/A 0.01 0.01 0.02 0.15 0.31 0.51 0.0 Predevelopment Vint Peak Flow q (ds/acre) = N/A	Restrictor Plate Height Above Pipe Invert =	11.00		inches	Half-Cent	ral Angle of Restric	tor Plate on Pipe =	1.49	N/A	radians	
Spillway Invert Stage 9.00 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.48 feet Spillway Crest Length = 120.00 feet Stage at Top of Freeboard = 10.48 feet Spillway End Stopes = 4.00 H:V Basin Area at Top of Freeboard = 1.69 acres. Freeboard above Max Water Surface = 1.00 feet Basin Volume at Top of Freeboard = 8.94 acres. Design Storm Return Period 0 feet 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year 500 One-Hour Rainfall Depth (in) N/A N/A N/A 1.19 1.50 1.75 2.00 2.25 2.62 3.02 OPTIONLO Over/de Predevelopment Peak O (ds) N/A N/A 3.020 3.935 4.670 5.573 6.455 7.502 9.82 OPTIONLO Over/de Predevelopment Peak O (ds) N/A N/A 0.01 0.01 0.02 0.15 0.31 0.51 0.0 Predevelopment Vint Peak Flow q (ds/acre) = N/A											
Spillway Crest Length = Spillway End Slopes = H.00 120.00 Feet feet 4.00 Stage at Top of Freeboard = Basin Area at Top of Freeboard = Basin Area at Top of Freeboard = Basin Volume at Top of Freeboard = CutPrease 1.69 acres 8.94 Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). One-Hour Rainfall Depth (in) One-Hour Rainfall Depth (in) CUHP Runoff Volume (acre-ft) URIP Revent Volume (acre-ft) CUHP Predevelopment Peak (cfs) = N/A N/A N/A 1.9 1.50 1.75 2.00 2.25 2.52 3.0 OPTIONAL Override Predevelopment Peak (cfs) = N/A N/A N/A 3.020 3.935 4.670 5.573 6.455 7.502 9.6 OPTIONAL Override Predevelopment Peak (cfs) = N/A N/A N/A 0.1 0.01 0.02 0.15 0.31 0.51 0.0 Predevelopment Peak (cfs) = N/A N/A N/A N/A N/A 1.0 1 1.0 1 1.0 1 Ratio Peak Outflow 0 (cfs) = Peak Outflow 0 (cfs) = N/A N/A N/A <td></td> <td></td> <td></td> <td></td> <td></td> <td><i></i></td> <td></td> <td></td> <td>1</td> <td></td>						<i></i>			1		
Spillway End Stops = Freeboard above Max Water Surface = 4.00 1.00 H:V feet Basin Area at Top of Freeboard = Basin Volume (four for top Vear 100 Vear			-	n bottom at Stage =	= U ft)	1 5	0 1				
Freeboard above Max Water Surface = 1.00 feet Basin Volume at Top of Freeboard = acre-ft Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). Outer Houre Rainfall Depth (in) = MA N/A N/A <th colsp<="" td=""><td>Spillway Crest Length =</td><td colspan="6"></td><td>10.48</td><td>reet</td><td></td></th>	<td>Spillway Crest Length =</td> <td colspan="6"></td> <td>10.48</td> <td>reet</td> <td></td>	Spillway Crest Length =							10.48	reet	
The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). Design Storm Return Period WQCV EURV 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year 500 One-Hour Rainfall Depth (in) - - - - - - 500 - - - 500 - - 500 - - 500 - - 500 - - 500 - - 500 - - 500 - - 500 - - 500 - - 500 - - 500 - <						-			aaraa		
Design Storm Return Period One-Hour Rainfall Depth (in) CUHP Runoff Volume (acre-ft) Inflow Hydrograph Volume (acre-ft) Inflow Hydrograph Volume (acre-ft) Inflow Hydrograph Volume (acre-ft) CUHP Predevelopment Peak Q (cfs) Predevelopment Peak Q (cfs) Predevelopment Unit Peak Flow, q (cfs/acre) Peak Inflow Q (cfs) Ratio Peak Outflow Q (cfs) Peak Outflow Q (cfs) Ratio Peak Outflow Q (cfs) Peak Outflow Q (cfs) Ratio Peak Outflow	Spillway End Slopes =	4.00	H:V			Basin Area at T	op of Freeboard =	1.69			
Design Storm Return Period One-Hour Rainfall Depth (in) CUHP Runoff Volume (acre-ft) Inflow Hydrograph Volume (acre-ft) Inflow Hydrograph Volume (acre-ft) Inflow Hydrograph Volume (acre-ft) CUHP Predevelopment Peak Q (cfs) Predevelopment Peak Q (cfs) Predevelopment Unit Peak Flow, q (cfs/acre) Peak Inflow Q (cfs) Ratio Peak Outflow Q (cfs) Peak Outflow Q (cfs) Ratio Peak Outflow Q (cfs) Peak Outflow Q (cfs) Ratio Peak Outflow	Spillway End Slopes =	4.00	H:V			Basin Area at T	op of Freeboard =	1.69			
One-Hour Rainfall Depth (in) CUHP Runoff Volume (acre-ft) Inflow Hydrograph Volume (acre-ft) CUHP Predevelopment Peak O (cfs) CUHP Predevelopment Peak O (cfs) Predevelopment Peak O (cfs) Predevelopment Unit Peak Flow, q (cfs/acre) Peak Inflow O (cfs) Peak Outflow O (cfs) Ratio Peak Outflow O (cfs) Peak Outflow O (cfs) M/A N/A N/A N/A N/A O.01 O.01 O.02 0.5 0.31 0.51 0.01 0.02 0.15 0.31 0.51 0.01 0.02 0.15 0.31 0.51 0.01 0.02 0.15 0.31 0.51 0.01 0.02 0.15 0.31 0.51 0.01 0.02 0.15 0.31 0.51 0.01 0.02 0.15 0.31 0.51 0.01 0.02 0.15 0.31 0.51 0.01 0.02 0.15 0.31 0.51 0.01 0.02 0.15 0.31 0.51 0.01 0.02 0.15 0.31 0.51 0.01 0.02 0.15 0.31 0.51 0.01 0.02 0.15 0.31 0.51 0.01 0.02 0.15 0.31 0.51 0.01 0.02 0.55 1.3 1.4 1.7 8.7 16.0 21.8 57 57 0.64 0.11 0.16 1.4 1.7 1.3 1.4 1.7 1.3	Spillway End Slopes =	4.00	H:V			Basin Area at T	op of Freeboard =	1.69			
CUHP Runoff Volume (acre-ft) = 1.064 4.132 3.020 3.935 4.670 5.573 6.455 7.502 9.5 Inflow Hydrograph Volume (acre-ft) = N/A N/A 3.020 3.935 4.670 5.573 6.455 7.502 9.5 CUHP Predevelopment Peak Q (cfs) = N/A N/A 0.3 0.5 0.8 6.8 13.6 22.7 4.1 OPTIONAL Override Predevelopment Peak Q (cfs) = N/A N/A 0.01 0.01 0.02 0.15 0.31 0.51 0.0 Predevelopment Unit Peak Flow, q (cfs/acre) = N/A N/A N/A 0.01 0.01 0.02 0.15 0.31 0.51 0.0 Predevelopment Unit Peak Flow, q (cfs/acre) = N/A N/A N/A 1.4 1.7 8.7 16.0 21.8 57 Ratio Peak Outflow to Predevelopment Q = N/A N/A N/A N/A 2.7 2.3 1.3 1.2 1.0 1 Max Velocity through Grate 1 (fps) = N/A N/A <td>Spillway End Slopes = Freeboard above Max Water Surface =</td> <td>4.00 1.00 <i>The user can over</i></td> <td>H:V feet <i>ride the default CUI</i></td> <td>HP hydrographs and</td> <td>1 runoff volumes by</td> <td>Basin Area at T Basin Volume at T <u>entering new value</u></td> <td>op of Freeboard = op of Freeboard = es in the Inflow Hyd</td> <td>1.69 8.94 drographs table (Co</td> <td>acre-ft Dlumns W through A</td> <td></td>	Spillway End Slopes = Freeboard above Max Water Surface =	4.00 1.00 <i>The user can over</i>	H:V feet <i>ride the default CUI</i>	HP hydrographs and	1 runoff volumes by	Basin Area at T Basin Volume at T <u>entering new value</u>	op of Freeboard = op of Freeboard = es in the Inflow Hyd	1.69 8.94 drographs table (Co	acre-ft Dlumns W through A		
Inflow Hydrograph Volume (acre-ft) N/A N/A 3.020 3.935 4.670 5.573 6.455 7.502 9.8 CUHP Predevelopment Peak Q (cfs) N/A N/A 0.3 0.5 0.8 6.8 13.6 22.7 41 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A 0.3 0.5 0.8 6.8 13.6 22.7 41 OPTIONAL Override Predevelopment Peak Q (cfs) N/A N/A 0.01 0.01 0.02 0.15 0.31 0.51 0.0 Predevelopment Unit Peak Flow, q (cfs/arce) N/A N/A 0.71 60.8 71.0 88.8 104.1 123.1 16 Peak Outflow Q (cfs) 0.5 1.5 1.3 1.4 1.7 8.7 16.0 21.8 57 Ratio Peak Outflow D predevelopment O N/A N/A N/A N/A 2.7 2.3 1.3 1.2 1.0 1 Max Velocity through Grate 1 (fps) N/A N/A N/A N/A N/	Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	4.00 1.00 The user can overn WQCV	H:V feet <i>ride the default CUI</i> EURV	2 Year	5 Year	Basin Area at T Basin Volume at T <i>centering new value</i> 10 Year	op of Freeboard = op of Freeboard = es in the Inflow Hyd 25 Year	1.69 8.94 <i>drographs table (Cc</i> 50 Year	acre-ft <i>plumns W through A</i> 100 Year	500 Year	
CUHP Predevelopment Peak Q (cfs) N/A N/A 0.3 0.5 0.8 6.8 13.6 22.7 41 OPTIONAL Override Predevelopment Peak Q (cfs) N/A	Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	4.00 1.00 The user can overn WQCV N/A	H:V feet ride the default CUI EURV N/A	2 Year 1.19	5 Year 1.50	Basin Area at T Basin Volume at T <i>entering new valu</i> 10 Year 1.75	op of Freeboard = op of Freeboard = es in the Inflow Hyd 25 Year 2.00	1.69 8.94 drographs table (CC 50 Year 2.25	acre-ft blumns W through A 100 Year 2.52	500 Year 3.14	
Predevelopment Unit Peak Flow, q (cfs/acre) = N/A N/A 0.01 0.01 0.02 0.15 0.31 0.51 0.9 Peak Inflow Q (cfs) = N/A N/A N/A 47.1 60.8 71.0 88.8 104.1 123.1 16 Peak Outflow Q (cfs) = 0.5 1.5 1.3 1.4 1.7 8.7 16.0 21.8 57 Ratio Peak Outflow to Predevelopment Q = N/A N/A N/A 2.7 2.3 1.3 1.2 1.0 1 Structure Controlling Flow = Plate Vertical Orifice 1 Vertical Orifice 1 Vertical Orifice 1 Overflow Weir 1 Overflow Weir 1 Outflow Wei	Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	4.00 1.00 <i>The user can overn</i> WOCV N/A 1.064	H:V feet ride the default CUI EURV N/A 4.132	2 Year 1.19 3.020	5 Year 1.50 3.935	Basin Area at T Basin Volume at T <i>centering new value</i> 10 Year 1.75 4.670	op of Freeboard = op of Freeboard = es in the Inflow Hyd 25 Year 2.00 5.573	1.69 8.94 drographs table (CC 50 Year 2.25 6.455	acre-ft blumns W through A 100 Year 2.52 7.502	500 Year	
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow Q (cfs) = Max Velocity through Grate 2 (fps) = N/A N/A 47.1 60.8 71.0 88.8 104.1 123.1 16 Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) = N/A N/A N/A N/A N/A N/A 0.0 0.6 1.1 1.0 11 Time to Drain 97% of Inflow Volume (hours) = Maximum Ponding Depth ((ft) = 40 72 64 71 77 77 77 76 7 Area at Maximum Ponding Depth (area) = 0.73 1.21 1.04 1.15 1.24 1.2 0.0 1.6 1	Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	4.00 1.00 <i>The user can over</i> . <u>WQCV</u> N/A 1.064 N/A N/A	H:V feet EURV N/A 4.132 N/A N/A	2 Year 1.19 3.020 3.020	5 Year 1.50 3.935 3.935	Basin Area at T Basin Volume at T rentering new value 10 Year 1.75 4.670 4.670	op of Freeboard = op of Freeboard = <u>es in the Inflow Hyd</u> <u>25 Year</u> <u>2.00</u> <u>5.573</u> <u>5.573</u>	1.69 8.94 drographs table (Co 50 Year 2.25 6.455 6.455	acre-ft blumns W through A 100 Year 2.52 7.502 7.502	500 Year 3.14 9.804	
Peak Outflow Q (cfs) = 0.5 1.5 1.3 1.4 1.7 8.7 16.0 21.8 57 Ratio Peak Outflow to Predevelopment O = N/A N/A N/A 2.7 2.3 1.3 1.2 1.0 1 Max Velocity through Grate 1 (fps) = Plate Vertical Orifice 1 Vertical Orifice 1 Vertical Orifice 1 Overflow Weir 1 Overflow Weir 1 Outelt Plate 1 57 Max Velocity through Grate 2 (fps) = N/A N/A N/A N/A 0.0 0.0 0.0 0.1 0.0 0.01 <td< td=""><td>Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =</td><td>4.00 1.00 <i>The user can overn</i> WOCV N/A 1.064 N/A N/A N/A</td><td>H:V feet ride the default CU/I EURV N/A 4.132 N/A N/A N/A</td><td>2 Year 1.19 3.020 3.020 0.3</td><td>5 Year 1.50 3.935 3.935 0.5</td><td>Basin Area at T Basin Volume at T <i>entering new valuu</i> 10 Year 1.75 4.670 4.670 0.8</td><td>op of Freeboard = op of Freeboard = es in the Inflow Hyd 25 Year 2.00 5.573 5.573 6.8</td><td>1.69 8.94 drographs table (Ccc 50 Year 2.25 6.455 6.455 13.6</td><td>acre-ft 100 Year 2.52 7.502 7.502 22.7</td><td>500 Year 3.14 9.804 9.804 41.4</td></td<>	Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	4.00 1.00 <i>The user can overn</i> WOCV N/A 1.064 N/A N/A N/A	H:V feet ride the default CU/I EURV N/A 4.132 N/A N/A N/A	2 Year 1.19 3.020 3.020 0.3	5 Year 1.50 3.935 3.935 0.5	Basin Area at T Basin Volume at T <i>entering new valuu</i> 10 Year 1.75 4.670 4.670 0.8	op of Freeboard = op of Freeboard = es in the Inflow Hyd 25 Year 2.00 5.573 5.573 6.8	1.69 8.94 drographs table (Ccc 50 Year 2.25 6.455 6.455 13.6	acre-ft 100 Year 2.52 7.502 7.502 22.7	500 Year 3.14 9.804 9.804 41.4	
Ratio Peak Outflow to Predevelopment 0 = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = N/A N/A N/A N/A 2.7 2.3 1.3 1.2 1.0 1 Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Plate Vertical Orifice 1 Vertical Orifice 1 Vertical Orifice 1 Overflow Weir 1 Overflow Weir 1 Outelt Plate 1 Split Max Velocity through Grate 2 (fps) = N/A N	Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) =	4.00 1.00 <i>The user can oven</i> WOCV N/A 1.064 N/A N/A N/A	H:V feet ride the default CUI EURV N/A 4.132 N/A N/A N/A N/A	2 Year 1.19 3.020 3.020 0.3 0.01	5 Year 1.50 3.935 3.935 0.5 0.01	Basin Area at T Basin Volume at T e entering new value 10 Year 1.75 4.670 4.670 0.8 0.02	Top of Freeboard = Top of Freeboard = es in the Inflow Hyde 25 Year 2.00 5.573 5.573 6.8 0.15	1.69 8.94 drographs table (Ccc 50 Year 2.25 6.455 6.455 13.6 0.31	acre-ft 100 Year 2.52 7.502 7.502 22.7 0.51	500 Year 3.14 9.804 9.804 41.4 0.94	
Structure Controlling Flow = Plate Vertical Orifice 1 Vertical Orifice 1 Overflow Weir 1 O	Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) =	4.00 1.00 <i>The user can overn</i> WOCV N/A 1.064 N/A N/A N/A N/A N/A	H:V feet EURV N/A 4.132 N/A N/A N/A N/A N/A N/A	2 Year 1.19 3.020 3.020 0.3 0.01 47.1	5 Year 1.50 3.935 3.935 0.5 0.01 60.8	Basin Area at T Basin Volume at T <i>entering new value</i> 10 Year 1.75 4.670 4.670 0.8 0.02 71.0	op of Freeboard = op of Freeboard = <u>es in the Inflow Hyde</u> <u>25 Year</u> <u>2.00</u> <u>5.573</u> <u>5.573</u> <u>6.8</u> <u>0.15</u> <u>88.8</u>	1.69 8.94 drographs table (Co 50 Year 2.25 6.455 6.455 13.6 0.31 104.1	acre-ft blumns W through A 100 Year 2.52 7.502 22.7 0.51 123.1	500 Year 3.14 9.804 9.804 41.4 0.94 161.3	
Max Velocity through Grate 2 (fps) = N/A	Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	4.00 1.00 <i>The user can overr.</i> WQCV N/A 1.064 N/A N/A N/A N/A N/A 0.5	H:V feet EURV N/A 4.132 N/A N/A N/A N/A N/A N/A 1.5	2 Year 1.19 3.020 3.020 0.3 0.01 47.1 1.3	5 Year 1.50 3.935 3.935 0.5 0.01 60.8 1.4	Basin Area at T Basin Volume at T entering new value 10 Year 1.75 4.670 4.670 0.8 0.02 71.0 1.7	Top of Freeboard = Top of Freeboard = es in the Inflow Hyre 2.00 5.573 5.573 6.8 0.15 88.8 8.7	1.69 8.94 frographs table (Cco 50 Year 2.25 6.455 6.455 13.6 0.31 104.1 16.0	acre-ft 100 Year 2.52 7.502 7.502 22.7 0.51 123.1 21.8	500 Year 3.14 9.804 9.804 41.4 0.94	
Time to Drain 97% of Inflow Volume (hours) = 38 67 60 66 71 71 69 68 66 Time to Drain 99% of Inflow Volume (hours) = 40 72 64 71 77 77 76 7 Maximum Ponding Depth (ft) = 4.03 7.15 5.99 6.79 7.38 7.77 8.01 8.45 9 Area at Maximum Ponding Depth (acres) = 0.73 1.21 1.04 1.15 1.24 1.29 1.33 1.39 1	Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow = Structure Controlling Flow =	4.00 1.00 <i>The user can over</i> N/A 1.064 N/A N/A N/A N/A N/A N/A Plate	H:V feet EURV N/A 4.132 N/A N/A N/A N/A N/A N/A 1.5 N/A Vertical Orifice 1	2 Year 1.19 3.020 0.3 0.01 47.1 1.3 N/A Vertical Orifice 1	5 Year 1.50 3.935 3.935 0.5 0.01 60.8 1.4 2.7 Vertical Orifice 1	Basin Area at T Basin Volume at T (entering new value 10 Year 1.75 4.670 4.670 0.8 0.02 71.0 1.7 2.3 Overflow Weir 1	op of Freeboard = op of Freeboard = es in the Inflow Hyd 25 Year 2.00 5.573 5.573 6.8 0.15 88.8 8.7 1.3 Overflow Weir 1	1.69 8.94 drographs table (CCC 50 Year 2.25 6.455 13.6 0.31 104.1 16.0 1.2 Overflow Weir 1	acre-ft 100 Year 2.52 7.502 7.502 22.7 0.51 123.1 21.8 1.0 Outlet Plate 1	500 Year 3.14 9.804 9.804 41.4 0.94 161.3 57.0 1.4 Spillway	
Time to Drain 99% of Inflow Volume (hours) = 40 72 64 71 77 77 76 7 Maximum Ponding Depth (ft) = 4.03 7.15 5.99 6.79 7.38 7.77 8.01 8.45 9 Area at Maximum Ponding Depth (acres) = 0.73 1.21 1.04 1.15 1.24 1.29 1.33 1.39 1	Spillway End Slopes = Freeboard above Max Water Surface = Cell Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow to C(cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	4.00 1.00 The user can over N/A 1.064 N/A N/A N/A N/A N/A N/A N/A N/A	H:V feet EURV N/A 4.132 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2 Year 1.19 3.020 0.3 0.01 47.1 1.3 N/A Vertical Orifice 1 N/A	5 Year 1.50 3.935 0.5 0.01 60.8 1.4 2.7 Vertical Orifice 1 N/A	Basin Area at T Basin Volume at T entering new value 10 Year 1.75 4.670 0.8 0.02 71.0 1.7 2.3 Overflow Weir 1 0.0	The second secon	1.69 8.94 drographs table (Cco 50 Year 2.25 6.455 13.6 0.31 104.1 16.0 1.2 Overflow Weir 1 1.1	acre-ft 100 Year 2.52 7.502 22.7 22.7 0.51 123.1 21.8 1.0 Outlet Plate 1 1.6	500 Year 3.14 9.804 9.804 41.4 0.94 161.3 57.0 1.4 Spillway 1.6	
Maximum Ponding Depth (ft) = 4.03 7.15 5.99 6.79 7.38 7.77 8.01 8.45 9 Area at Maximum Ponding Depth (acres) = 0.73 1.21 1.04 1.15 1.24 1.29 1.33 1.39 1.1	Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Notflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	4.00 1.00 <i>The user can over.</i> N/A 1.064 N/A N/A N/A N/A N/A N/A N/A N/A	H:V feet Fide the default CU/ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	2 Year 1.19 3.020 0.3 0.01 47.1 1.3 N/A Vertical Orifice 1 N/A N/A	5 Year 1.50 3.935 0.5 0.01 60.8 1.4 2.7 Vertical Orifice 1 N/A N/A	Basin Area at T Basin Volume at T entering new value 10 Year 1.75 4.670 4.670 0.8 0.02 71.0 1.7 2.3 Overflow Weir 1 0.0 N/A	Top of Freeboard = Top of Freeboard = es in the Inflow Hyre 25 Year 2.00 5.573 5.573 6.8 0.15 88.8 8.7 1.3 Overflow Weir 1 0.6 N/A	1.69 8.94 <i>trographs table (Cc</i> 50 Year 2.25 6.455 6.455 13.6 0.31 104.1 16.0 1.2 Overflow Weir 1 1.1 N/A	acre-ft 100 Year 2.52 7.502 7.502 22.7 0.51 123.1 21.8 1.0 Outlet Plate 1 1.6 N/A	500 Year 3.14 9.804 9.804 41.4 0.94 161.3 57.0 1.4 Spillway N/A	
	Spillway End Slopes = Freeboard above Max Water Surface = Cone-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	4.00 1.00 <i>The user can overn</i> WOCV N/A 1.064 N/A N/A N/A N/A N/A N/A N/A N/A	H:V feet ide the default CU// N/A 4.132 N/A N/A N/A N/A N/A N/A 1.5 N/A Vertical Orifice 1 N/A N/A 67	2 Year 1.19 3.020 0.3 0.01 47.1 1.3 N/A Vertical Orifice 1 N/A 60	5 Year 1.50 3.935 0.5 0.01 60.8 1.4 2.7 Vertical Orifice 1 N/A N/A 66	Basin Area at T Basin Volume at T (entering new value) 10 Year 1.75 4.670 4.670 0.8 0.02 71.0 1.7 2.3 Overflow Weir 1 0.0 N/A 71	The properties of the second s	1.69 8.94 drographs table (Ccc 50 Year 2.25 6.455 6.455 13.6 0.31 104.1 16.0 1.2 Overflow Weir 1 1.1 N/A 69	acre-ft 100 Year 2.52 7.502 7.502 22.7 0.51 123.1 21.8 1.0 Outlet Plate 1 1.6 N/A 68	500 Year 3.14 9.804 9.804 41.4 0.94 161.3 57.0 1.4 Spillway 1.6	
Maximum Volume Stored (acre-ft) = 1.066 4.133 2.818 3.697 4.415 4.895 5.223 5.807 6.0	Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Nutflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	4.00 1.00 <i>The user can over</i> WOCV N/A 1.064 N/A N/A N/A N/A N/A Plate N/A N/A N/A N/A A N/A A N/A A A A A A A A A A A A A A	H:V feet EURV N/A 4.132 N/A N/A N/A N/A N/A N/A N/A Vertical Orifice 1 N/A Vertical Orifice 1 N/A Orifice 1 N/A	2 Year 1.19 3.020 3.020 0.3 0.01 47.1 1.3 N/A Vertical Orifice 1 N/A N/A N/A 60 64	5 Year 1.50 3.935 0.5 0.01 60.8 1.4 2.7 Vertical Orifice 1 N/A N/A N/A 66 71	Basin Area at T Basin Volume at T (entering new value 10 Year 1.75 4.670 0.8 0.02 71.0 1.7 2.3 Overflow Weir 1 0.0 N/A 71 77	The provided and a second seco	1.69 8.94 drographs table (Co 50 Year 2.25 6.455 6.455 13.6 0.31 104.1 16.0 1.2 Overflow Weir 1 1.1 N/A 69 77	acre-ft 100 Year 2.52 7.502 7.502 22.7 0.51 123.1 21.8 1.0 Outlet Plate 1 1.6 N/A 68 76	500 Year 3.14 9.804 9.804 41.4 0.94 161.3 57.0 1.4 Spillway 1.6 N/A 65	
	Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Notflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) = Maximum Ponding Depth (rt) = Area at Maximum Ponding Depth (acres) =	4.00 1.00 <i>The user can over.</i> N/A 1.064 N/A N/A N/A N/A N/A N/A N/A Plate N/A N/A N/A 0.5 N/A Plate N/A 0.73	H:V feet EURV N/A 4.132 N/A N/A N/A N/A N/A 1.5 N/A 1.5 N/A Vertical Orifice 1 N/A N/A 67 72 7.15 1.21	2 Year 1.19 3.020 0.3 0.01 47.1 1.3 N/A Vertical Orifice 1 N/A N/A 60 64 5.99 1.04	5 Year 1.50 3.935 0.5 0.01 60.8 1.4 2.7 Vertical Orifice 1 N/A N/A N/A 66 71 6.79 1.15	Basin Area at T Basin Volume at T entering new value 10 Year 1.75 4.670 4.670 0.8 0.02 71.0 1.7 2.3 Overflow Weir 1 0.0 N/A 71 77,38 1.24	Top of Freeboard = Top of Freeboard = es in the Inflow Hyre 2.00 5.573 5.573 6.8 0.15 88.8 8.7 1.3 Overflow Weir 1 0.6 N/A 71 7.77 1.29	1.69 8.94 frographs table (Cco 50 Year 2.25 6.455 1.3.6 0.31 104.1 16.0 1.2 Overflow Weir 1 1.1 N/A 69 77 8.01 1.33	acre-ft 100 Year 2.52 7.502 7.502 22.7 0.51 123.1 21.8 1.0 Outlet Plate 1 1.6 N/A 68 76 8.45 1.39	500 Year 3.14 9.804 9.804 41.4 0.94 161.3 57.0 1.4 Spillway 1.6 N/A 65 75	

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

								ed in a separate		011110
Time Interval	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
	TIME 0:00:00	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]		50 Year [cfs]	100 Year [cfs]	
5.00 min		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:00	0.00	0.00	0.00	0.00 8.54	0.00	0.00	0.59 8.93	0.06 8.67	1.91 12.63
	0:20:00	0.00	0.00	19.20	25.32	29.80	18.83	21.97	23.47	30.59
	0:25:00	0.00	0.00	39.45	51.94	61.97	38.88	44.61	47.85	62.61
	0:30:00	0.00	0.00	47.13	60.83	71.05	77.28	90.70	101.38	133.80
	0:35:00	0.00	0.00	43.24	54.87	63.48	88.83	104.10	123.11	161.33
	0:40:00	0.00	0.00	37.83	47.14	54.41	83.30	97.46	116.03	151.78
	0:45:00	0.00	0.00	32.03	40.50	47.05	72.36	84.47	102.89	134.92
	0:50:00 0:55:00	0.00	0.00	27.03	35.02	40.22	63.77	74.26	90.23	118.62
	1:00:00	0.00	0.00	23.25 20.80	30.13 26.82	34.78 31.37	53.91 45.64	62.53 52.72	77.27 66.75	101.40 87.53
	1:05:00	0.00	0.00	18.89	24.26	28.66	40.15	46.30	59.93	78.69
	1:10:00	0.00	0.00	16.20	21.84	26.00	34.61	39.78	50.31	65.77
	1:15:00	0.00	0.00	13.60	18.95	23.42	29.53	33.82	41.23	53.60
	1:20:00	0.00	0.00	11.44	16.08	20.34	24.27	27.69	32.27	41.73
	1:25:00	0.00	0.00	9.96	14.06	17.28	19.82	22.50	24.68	31.73
	1:30:00	0.00	0.00	9.18	13.01	15.38	16.12	18.22	19.21	24.57
	1:35:00	0.00	0.00	8.78	12.43	14.20	13.82	15.59	15.99	20.34
	1:40:00 1:45:00	0.00	0.00	8.55 8.40	11.27	13.36 12.75	12.39 11.44	13.96 12.88	14.04 12.69	17.76 15.97
	1:50:00	0.00	0.00	8.40	9.52	12.75	11.44	12.88	12.69	15.97
	1:55:00	0.00	0.00	7.32	8.98	11.75	10.34	11.64	11.12	13.90
	2:00:00	0.00	0.00	6.41	8.34	10.73	10.03	11.28	10.68	13.31
	2:05:00	0.00	0.00	4.89	6.39	8.17	7.74	8.71	8.20	10.21
	2:10:00	0.00	0.00	3.56	4.62	5.88	5.58	6.26	5.91	7.35
	2:15:00	0.00	0.00	2.58	3.35	4.25	4.03	4.53	4.29	5.34
	2:20:00 2:25:00	0.00	0.00	1.85	2.40	3.06	2.92	3.27	3.12	3.88
	2:30:00	0.00	0.00	1.31 0.89	1.66 1.13	2.16 1.50	2.05	2.30 1.60	2.20 1.53	2.73
	2:35:00	0.00	0.00	0.89	0.77	1.02	1.43	1.12	1.07	1.32
	2:40:00	0.00	0.00	0.35	0.50	0.64	0.64	0.72	0.69	0.85
	2:45:00	0.00	0.00	0.18	0.28	0.35	0.37	0.41	0.39	0.48
	2:50:00	0.00	0.00	0.08	0.13	0.15	0.17	0.19	0.18	0.22
	2:55:00	0.00	0.00	0.02	0.04	0.04	0.05	0.05	0.05	0.06
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00 3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00 3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
6965-Top of Micropool	0.00	10	0.000	0	0.000	0.00	For best results, include th
6966	1.00	1,237	0.028	623	0.014	0.10	stages of all grade slope
6967	2.00	9,028	0.207	5,756	0.132	0.22	changes (e.g. ISV and Floc
6968	3.00	19,414	0.446	19,977	0.459	0.36	from the S-A-V table on
6969	4.00	31,638	0.726	45,503	1.045	0.48	Sheet 'Basin'.
5969.03-WQCV WSEL	4.03	31,877	0.732	46,456	1.066	0.48	Also include the inverts of
6970	5.00	39,589	0.909	81,116	1.862	0.98	outlets (e.g. vertical orifice
6971	6.00	45,537	1.045	123,679	2.839	1.27	overflow grate, and spillw
6972	7.00	51,596	1.184	172,246	3.954	1.49	where applicable).
6972.15-EURV WSEL	7.15	52,521	1.206	180,055	4.133	1.52	
6973	8.00	57,766	1.326	226,927	5.210	15.61	
6973.45-100 yr WSEL	8.45	60,592	1.391	253,557	5.821	21.83	
6974-Spillway Crest	9.00	64,047	1.470	287,833	6.608	22.40	
6975	10.00	70,449	1.617	355,081	8.152	392.99	
6975.50-Top of Pond	10.50	73,681	1.691	391,114	8.979	711.69	
]
]
							1
							-
							-
							-
							-
							-
]
							1
							4
							4
							4
							1
			1				1

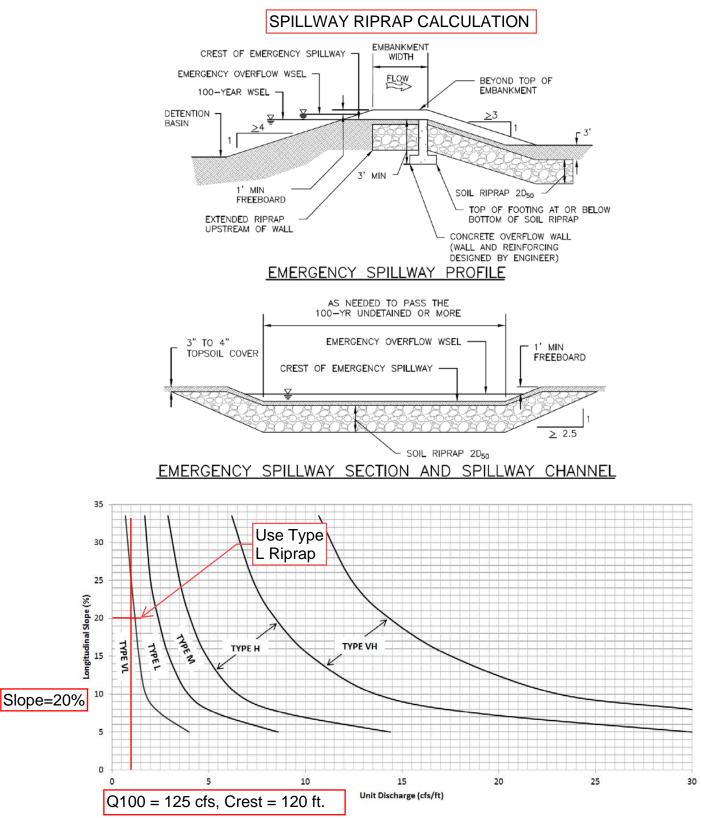
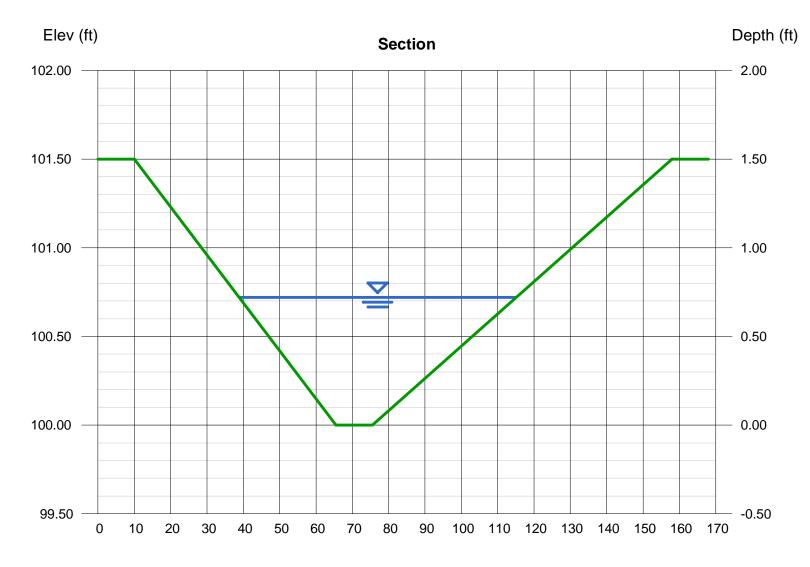
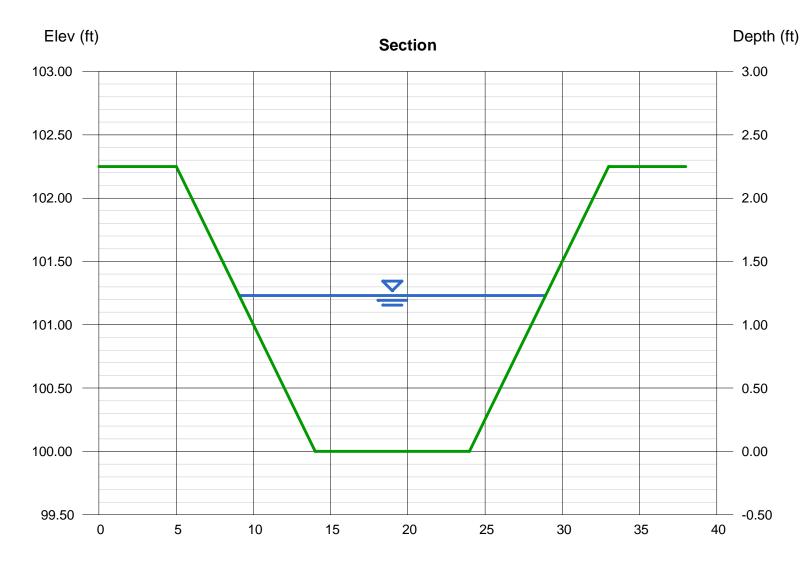



Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County)


Spillway Overflow Channel (Wide)

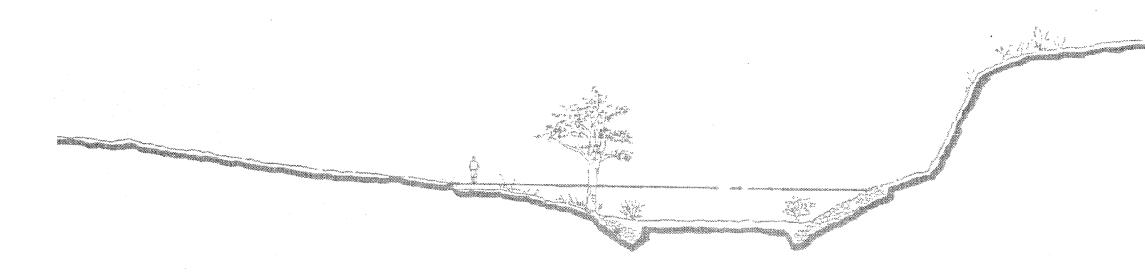
Trapezoidal		Highlighted	
Bottom Width (ft)	= 10.00	Depth (ft)	= 0.72
Side Slopes (z:1)	= 37.00, 55.00	Q (cfs)	= 125.00
Total Depth (ft)	= 1.50	Area (sqft)	= 31.05
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.03
Slope (%)	= 3.00	Wetted Perim (ft)	= 76.26
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.76
		Top Width (ft)	= 76.24
Calculations		EGL (ft)	= 0.97
Compute by:	Known Q		
Known Q (cfs)	= 125.00		

Spillway Overflow Channel (Narrow)

Trapezoidal		Highlighted	
Bottom Width (ft)	= 10.00	Depth (ft)	= 1.23
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 125.00
Total Depth (ft)	= 2.25	Area (sqft)	= 18.35
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 6.81
Slope (%)	= 3.00	Wetted Perim (ft)	= 20.14
N-Value	= 0.035	Crit Depth, Yc (ft)	= 1.40
		Top Width (ft)	= 19.84
Calculations		EGL (ft)	= 1.95
Compute by:	Known Q		
Known Q (cfs)	= 125.00		

Reach (ft)

Emergency Spillway Overflow (Triple Type C Grate)							
	Orifice Flow Calculation						
$Q = C^*A^* sc$	quare root (2	2gH)					
C = 0.6		A = 25.58 s	q ft	g = 32.2			
			-	_			
Head (ft)	СА	(2GH)	Sqrt (2GH)	Capacity			
1	15.348	64.40	8.025	123.2			
2	15.348	128.80	11.349	174.2			
3	15.348	193.20	13.900	213.3			
4	15.348	257.60	16.050	246.3			
5	15.348	322.00	17.944	275.4			
6	15.348	386.40	19.657	301.7			


Peak Q₁₀₀ Inflow = 123.1 cfs Available Head = 2 ft Appendix D Reference Materials

SAND CREEK DRAINAGE BASIN PLANNING STUDY

PRELIMINARY DESIGN REPORT

CITY OF COLORADO SPRINGS, EL PASO COUNTY, COLORADO

PREPARED FOR:

City of Colorado Springs Department of Comprehensive Planning, Development and Finance Engineering Division 30 S. Nevada Colorado Springs, Colorado 80903

PREPARED BY:

Kiowa Engineering Corporation 1011 North Weber Colorado Springs, CO 80903

STUDY AREA DESCRIPTION II.

The Sand Creek drainage basin is a left-bank tributary to the Fountain Creek lying in the west-central portions of El Paso County. Sand Creek's drainage area at Fountain Creek is approximately 54 square miles of which approximately 18.8 square miles are inside the City of Colorado Springs corporate limits. The basin is divided into five major sub-basins, the Sand Creek mainstem, the East Fork Sand Creek, the Central Tributary to East Fork, the West Fork, and the East Fork Subtributary. Figure II-1 shows the location of the Sand Creek basin.

Basin Description

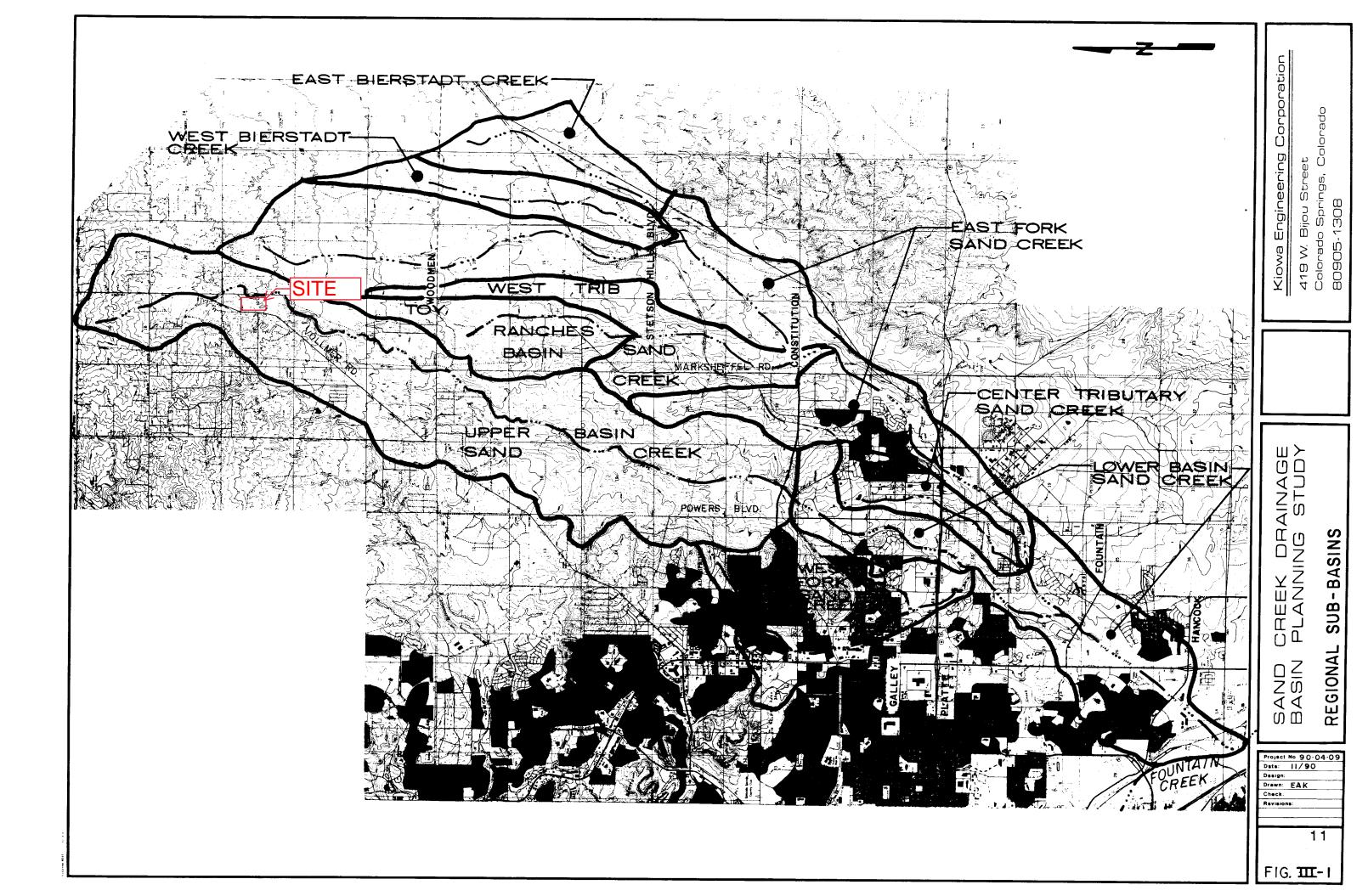
The Sand Creek basin covers a total of 54 square miles in unincorporated El Paso County and Colorado Springs, Colorado. Of this total, approximately 28 square miles is encompassed by the Sand Creek basin, and 26 square miles for the East Fork Sand Creek basin. The basin trends in generally a south to southwesterly direction, entering the Fountain Creek approximately two miles upstream of the Academy Boulevard bridge over Fountain Creek. Two main tributaries drain the basin, those being the mainstem of Sand Creek and East Fork Sand Creek. Development presence in most evident along the mainstream. At this time, approximately 25 percent of the basin is developed. This alternative evaluation focuses upon the Sand Creek basin only.

The maximum basin elevation is approximately 7,620 feet above mean sea level, and falls to approximately 5,790 feet at the confluence with Fountain Creek. The headwaters of the basin originate in the conifer covered areas of The Black Forest. The middle eastern portions of the basin are typified by rolling range land with fair to good vegetative cover associated with semi-arid climates.

Climate

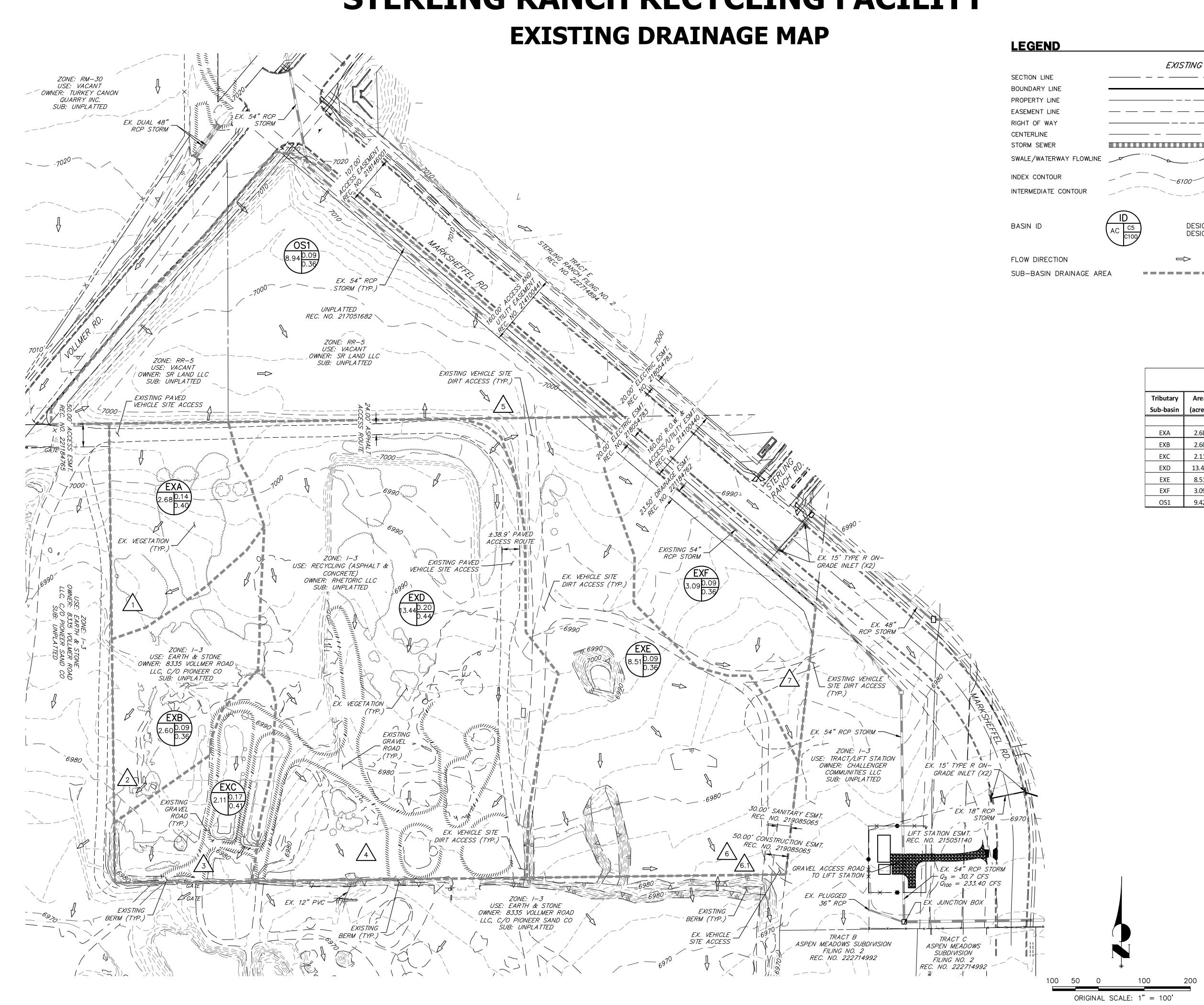
This area of El Paso County can be described, in general as high plains, with total precipitation amounts typical of a semi-arid region. Winters are generally cold and dry. Precipitation ranges from 14 to 16 inches per year, with the majority of this precipitation occurring in spring and summer in the form of rainfall. Thunderstorms are common during the summer months, and are typified by quick-moving low pressure cells which draw moisture from the Gulf of Mexico into the region. Average temperatures range from about 30°F in the winter to 75° in the summer. The relative humidity ranges from about 25 percent in the summer to 45 percent in the winter.

Soils and Geology

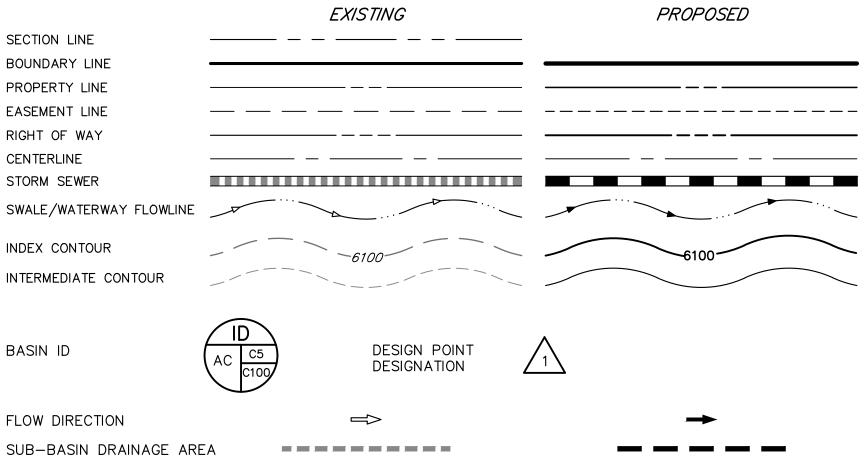

Soils within the Sand Creek basin vary between soil types A through D, as identified by the U.S. Department of Agriculture, Soil Conservation Service. The predominant soil groupings are in the Truckton and Bresser soil associations. The soils consist of deep, well drained soils that formed in alluvium and residium, derived from sedimentary rock. The soils have high to moderate infiltration rates, and are extremely susceptible to wind and water erosion where poor vegetation cover exists. In undeveloped areas, the predominance of Type A and B soils give this basin a lower runoff per unit area as compared to basins with soils dominated by Types C and D. Presented on Figure II-2 is the Hydrologic Soil distribution map for the Sand Creek basin.

Property Ownership and Impervious Land Densities

Property ownership along the major drainageway within the Sand Creek basin vary from public to private. Along the developed reaches, drainage right-of-ways and greenbelts have been dedicated during the development of the adjacent residential and commercial land. Where development has not occurred, the drainageways remain under private ownership with no delineated drainage right-of-way or easements. There are several public parks which abut the mainstem of Sand Creek. Roadway and utility easements abutting or crossing the major drainageways occur most frequently in the developed portions of the basin.


Land use information for the existing and future conditions were reviewed as part of the planning effort. This information is used in the hydrologic analysis to predict runoff rates and volumes for the purposes of facility evaluation. The identification of land uses abutting the drainageways is also useful in the identification of feasible plans for stabilization and aesthetic treatment of the creek. Presented on Figure II-3 is the proposed land use map used in the evaluation of impervious land densities discussed in the hydrologic section of this report. Figure II-3 is not intended to reflect the future zoning or land use policies of the City or the County.

The land use information within the Banning-Lewis Ranch property was obtained from Aries Properties during the time the draft East Fork Sand Creek Drainage Basin Planning Study was being prepared. The land use information was again reviewed with the City of Colorado Springs Department of Planning and was found to be appropriate for use in the estimation of hydrology for the East Fork Basin. The location of future arterial streets and roadways within

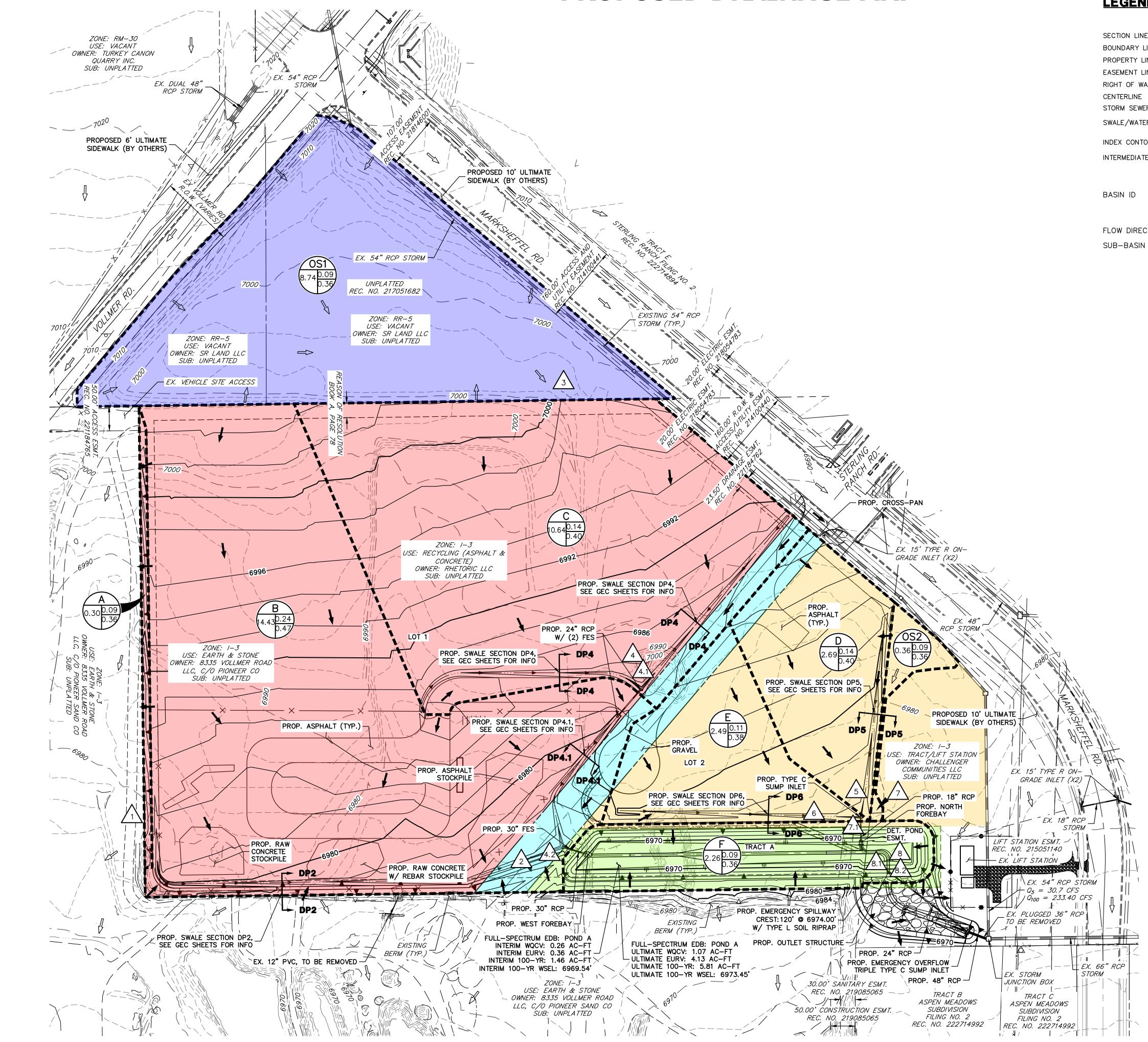


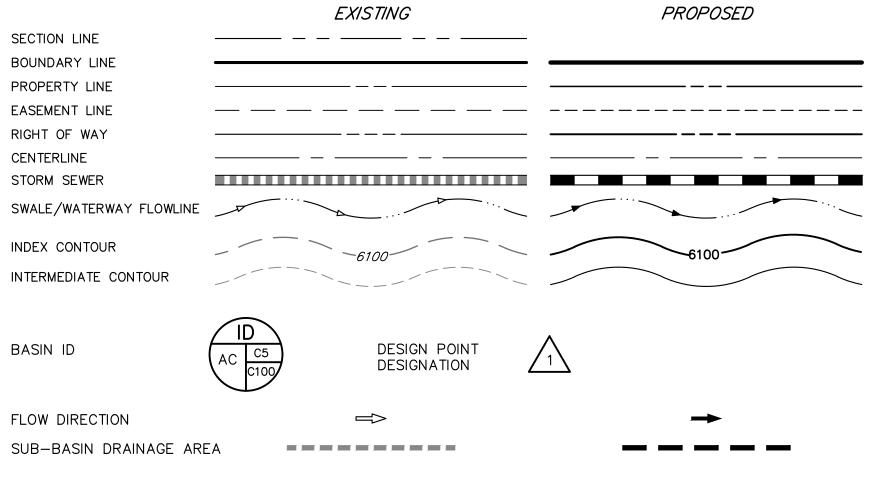
Appendix E Drainage Maps

STERLING RANCH RECYCLING FACILITY

BASIN SUMMARY TABLE							
Tributary Sub-basin	Area (acres)	Percent Impervious	C₅	C ₁₀₀	t _c (min)	Q₅ (cfs)	Q ₁₀₀ (cfs)
EXA	2.68	8%	0.14	0.40	21.1	1.1	5.4
EXB	2.60	2%	0.09	0.36	25.9	0.6	4.3
EXC	2.11	14%	0.17	<mark>0.41</mark>	22.4	1.0	4.3
EXD	13.44	17%	0.20	0.44	23.4	7.6	28.1
EXE	<mark>8.51</mark>	2%	0.09	0.36	27.7	2.0	13.4
EXF	3.09	2%	0.09	0.36	24.1	0.8	5.2
OS1	9.42	2%	0.09	0.36	49.4	1.5	9.8

DES	DESIGN POINT					
	Q5	Q100				
DP	Total	Total				
1	1.1	5.4				
2	0.6	4.3				
3	1.0	4.3				
4	7.6	28.1				
5	1.5	9.8				
6	2.0	13.4				
6.1	2.8	18.7				
7	0.8	5.2				

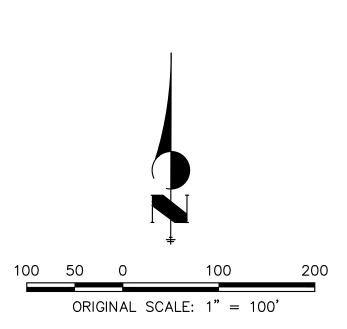

PCD FILE NO. PPR-23-XXX STERLING RANCH RECYCLING FACILITY EXISTING DRAINAGE MAP JOB NO. 25188.14 07/31/2023 SHEET 1 OF 1


J·R ENGINEERING A Westrian Company

Centennial 303-740-9393 • Colorado Springs 719-593-2593 Fort Collins 970-491-9888 • www.jrengineering.com

STERLING RANCH RECYCLING FACILITY PROPOSED DRAINAGE MAP

LEGEND



ULTIMATE LAND USE LEGEND INDUSTRIAL-HEAVY AREAS (90% IMPERVIOUS)

SINESS COMMERCIAL AREAS % IMPERVIOUS)	
SIDENTIAL-1/8 ACRE OR LESS % IMPERVIOUS)	
N-RESIDENTIAL COLLECTOR-80' R.O.W. 0% AND 2% IMPERVIOUS)	
TORICAL ANALYSIS & IMPERVIOUS)	

BASIN SUMMARY TABLE							
Tributary	Area	Percent			t _c	Q₅	Q ₁₀₀
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)
А	0.30	2%	0.09	0.36	5.0	0.2	1.0
В	14.43	20%	0.24	0.47	34.0	7.8	26.0
С	10.64	7%	0.13	0.39	28.7	3.5	17.7
D	2.69	12%	0.17	0.42	21.9	1.4	5.6
E	2.49	13%	0.17	0.42	20.9	1.3	5.3
F	2.26	2%	0.09	0.36	18.5	0.6	4.4
OS1	9.42	2%	0.09	0.36	49.4	1.5	9.8
OS2	0.36	2%	0.09	0.36	16.5	0.1	0.7

DESIGN POINT					
	Q5	Q100			
DP	Total	Total			
1	0.2	1.0			
2	7.8	26.0			
3	1.5	9.8			
4	3.5	17.7			
4.1	3.9	21.9			
4.2	9.7	41.5			
5	1.4	5.6			
6	1.3	5.3			
7	0.1	0.7			
7.1	2.7	11.4			
8	0.6	4.4			
8.1	11.7	50.5			
8.2	0.1	8.0			

PCD FILE NO. PPR-23-XXX STERLING RANCH RECYCLING FACILITY PROPOSED DRAINAGE MAP JOB NO. 25188.14 07/31/23 SHEET 1 OF 1

J·R ENGINEERING A Westrian Company

Centennial 303-740-9393 • Colorado Springs 719-593-2593 Fort Collins 970–491–9888 • www.jrengineering.com