PRELIMINARY DRAINAGE REPORT AMENDMENT FOR TRAILS AT ASPEN RIDGE

Prepared for:

EL PASO COUNTY

Engineering Development Review Team

2880 International Circle Colorado Springs, CO 80910

On Behalf of:

COLA, LLC.

555 Middle Creek Parkway, Suite 380 Colorado Springs, CO 80921

Prepared by:

2435 Research Parkway, Suite 300 Colorado Springs, CO 80920 (719) 575-0100 fax (719) 572-0208

February 2021

Project No. 20.866.028

the criteria established by the County	nd belief. Said drainage for drainage reports ar basin. I accept respo	e report has been prepared according to ad said report is in conformity with the nsibility for any liability caused by any
		SEAL
Jesse Sullivan	Date	
Registered Professional Engineer		
State of Colorado		
No. 55600		
Developer's Statement: I the owner/developer have read on	d will comply with al	Lof the requirements specified in this
-	u wiii compiy with an	l of the requirements specified in this
drainage report and plan.		
COLA, LLC		
Business Name		

El Paso County:

Address: 555 Middle Creek Parkway, Suite 380 Colorado Springs, CO 80921

Engineer's Statement:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

Date

Jennifer Irvine, P.E.	Date	
County Engineer / ECM Administrator		

Conditions:

<i>J01</i> 1	rans ai rispen r	TABLE OF CONTENTS	
TITL	E PAGE & CE	RTIFICATION	11-111
I.]	INTRODUC	TION	1
II.	PROJECT (CHARACTERISTICS	4
III.	HYDROLO	OGIC ANALYSIS	8
IV.	STRUCTUI	RE IMPROVEMENTS	25
V.	FLOODPL	AINS	26
VI.	ENVIRON	MENTAL EVALUATIONS	26
VII.		ATIVES EVALUATION	
VIII	. SELECTI	ED PLAN (IMPLEMENTATION OF DBPS)	27
IX.	FEE DEVI	ELOPMENT	27
Χ.	REFEREN	CES	28
XI.		CES	
	ENDIX		
	A. Hydrol	logic and Hydraulic Calculations	
	1.	Basin and Design Point Summary	
	2.	SWMM Model input and output information	
	3.	MHFD/UDFCD Detention Basin Design Workbooks	
	B. Standa	rd Design Charts and Tables	
	1.	El Paso County Drainage Basin Fees	
	2.	DCM 2-hour Design Storm Distribution	
	3.	DCM Runoff Coefficients	
	4.	DCM Shallow Flow Velocities	
	-	References	
	1.	DBPS excerpts	
	2.	FIRMette	
	3.	Soil Maps	
	D. Maps		
	1.	Vicinity Map	
	2.	Existing Conditions Drainage Basin Map	
	3.	Proposed Conditions Drainage Basin Map	

I. Introduction

The Trails at Aspen Ridge PUDSP and Filing No. 1 developments are within the Waterview East (Waterview II) Subdivision which is within El Paso County jurisdiction and is comprised of a total of 168.801 acres (PUDSP=117.98 acres, Filing No. 1 55.820 acres, Note: 5.003 acres of overlap between PUDSP and Filing No. 1) of single-family residential, open space, and public right-of-way. The site is located within the 721.8-acre Waterview Development in the 419.8-acre portion of the development east of Powers. The Trails at Aspen Ridge development was referred to as Waterview East or Waterview II in the original Water View Master Development Drainage Study (MDDP).

A. PURPOSE AND SCOPE OF STUDY

The purpose of this Preliminary Drainage Report Amendment is to update the onsite drainage patterns associated with modifications to the Trails at Aspen Ridge layout and, accordingly, updated hydrologic and hydraulic analyses of this area to ensure that the development remains in compliance with the El Paso County Drainage Criteria Manual (DCM), as well as provide effective, safe routing to downstream outfalls.

Detention provided by the Trails at Aspen Ridge developments does not accommodate developed flows from the upstream offsite properties. These properties will all be required to provide on-site detention in accordance with county and DBPS criteria.

The report shows the drainage area added to the West Fork Jimmy Camp Creek drainage basin from the Big Johnson Reservoir basin by CDOT construction of Powers Boulevard. Development of that drainage basin will require detention and routing the diverted drainage area back into the Big Johnson Reservoir basin in order to comply with the existing DBPS for Big Johnson and West Fork Jimmy Camp Creek.

There have been multiple approved studies completed for the Waterview Subdivision, the most recent being:

"Master Development Drainage Plan Amendment for Waterview East & Preliminary Drainage Plan Amendment for Trails at Aspen Ridge", completed by Matrix Design Group, dated January 2020 (MDDP-2020)

This report will amend the PDR portion of the above referenced report.

B. DBPS-RELATED INVESTIGATIONS

Approximately 125.8 acres of the proposed development lies at the upper end of the West Fork Jimmy Camp Creek Drainage Basin. This drainage basin was studied in "West Fork Jimmy Camp Creek Drainage Basin Planning Study", by Kiowa Engineering, dated October 2003 (DBPS-WFJCC).

On the west side of the project, along Powers Boulevard, approximately 36.1 acres of the study area is within the Big Johnson Reservoir/Crews Gulch Drainage Basin "Big Johnson Reservoir/Crews Gulch Drainage Basin Planning Study", by Kiowa Engineering, Dated September 1991 (DBPS-BJR/CG).

On the northeast side of the proposed development another 6.9 acres of the proposed development is inside the drainage basin for the Marksheffel Tributary to the Jimmy Camp Creek Drainage Basin *Planning Study: Development of Alternatives and Design of Selected Plan Report*", by Kiowa Engineering, dated March 2015. (DBPS-JCC)

The proposed development of Trails at Aspen Ridge (PUDSP/Filings No. 1-6) and amendment to the Waterview MDDP will comply with the above referenced drainage basin planning studies by providing onsite detention and water quality treatment for developed runoff flows. Offsite areas upstream will be required to provide on-site detention to maintain compliance when they are developed.

C. STAKEHOLDER PROCESS

As no amendment to any of the above referenced Drainage Basin Planning Studies is being proposed, there is no required stakeholder process.

D. AGENCY JURISDICTIONS

This project is located within El Paso County and is subject to the design criteria set forth in the City of Colorado Springs & El Paso County Drainage Criteria Manual, Volumes I and II, dated May 2014 (DCM) as well as the El Paso County DCM, El Paso County Engineering Criteria Manual (ECM) and El Paso County Resolutions 15-042 and 19-245.

E. GENERAL PROJECT DESCRIPTION

Trails at Aspen Ridge is within the Waterview subdivision, which extends from Grinnell Road on the west to approximately one-half mile east of the north-south portion of Powers Boulevard. The west portion of the subdivision (Waterview I) is bounded on the north by an east-west portion of Powers Boulevard and on the south by Bradley Road. The east portion of the subdivision (Waterview East/Waterview II) is bounded on the north by the Colorado Springs Airport and on the south, approximately 3,260 feet south of the Bradley and Powers intersection by property owned by the State of Colorado. The subject of this report, Trails at Aspen Ridge, is in the Waterview East portion of the overall Waterview Subdivision and located southeast of the intersection of Powers Boulevard and Bradley Road. More specifically, the study area is located as follows:

1. <u>General Location</u>: All the southwest ½ and a portion of the northwest ¼ of Section 9, Township 15 South, Range 65 West of the 6th P.M. in the County of El Paso, State of Colorado.

2. <u>Surrounding Streets and Developments:</u>

- **a.** North: A portion of the north bound of the proposed project is bounded by currently undeveloped, commercially zoned land owned by CPR Entitlement, LLC. The remainder of the project area is bounded on this side by Bradley Road with undeveloped land owned by Rankin Holdings, LP. These properties are all contained within the Waterview Subdivision. Ultimate bound of Waterview East Subdivision to the north is Colorado Springs Airport property.
- **b.** East: Several undeveloped properties. See DR-02 for location and ownership
- **c.** South: Undeveloped property owned by the State of Colorado

- **d.** West: Powers Boulevard, Big Johnson Reservoir, and the Waterview I Subdivision (Filings 1 through 7).
- 3. <u>Drainageway:</u> Portions of the site are within three different major drainage basins.
- a. West Fork Jimmy Camp Creek: Prior to development there appeared to be a broad swale running through the middle of this portion of the project area. Flows were conveyed in a southeasterly direction. Total area of basin considered in this report is approximately 165.2 acres. This includes approximately 52.8 acres in Trails at Aspen Ridge Filing No. 1, 77.3 acres of the Trails at Aspen Ridge PUD, and 35.1 acres of offsite
- **b.** Marksheffel Tributary Jimmy Camp Creek: A small portion of the site on the northeast side of the studied area is within the Marksheffel Tributary sub-basin of the Jimmy Camp Creek Drainage Basin. The total basin area considered in this report is 12.2 acres. Approximately 4.6 acres along Bradley Road are outside of Trails at Aspen Ridge and the other 7.6 acres are within the proposed development.
- c. <u>Big Johnson Reservoir/Crews Gulch:</u> The final major drainage basin in the studied area is on the west side and is within the Big Johnson Reservoir/Crews Gulch Drainage Basin. Total area of the Big Johnson Reservoir basin considered by this report is 35.8 acres.

An area of approximately 11.4 acres, located at the intersection of Powers and Bradley and extending south 1,316 feet is within Waterview East, as well. This area currently drains to the Powers Boulevard ditch and, under proposed development, grading will ensure areas which drain onto the Trails at Aspen Ridge development under existing conditions continue to drain to the Powers Boulevard ditch.

Refer to Appendix D for the Vicinity Map.

F. DATA SOURCES

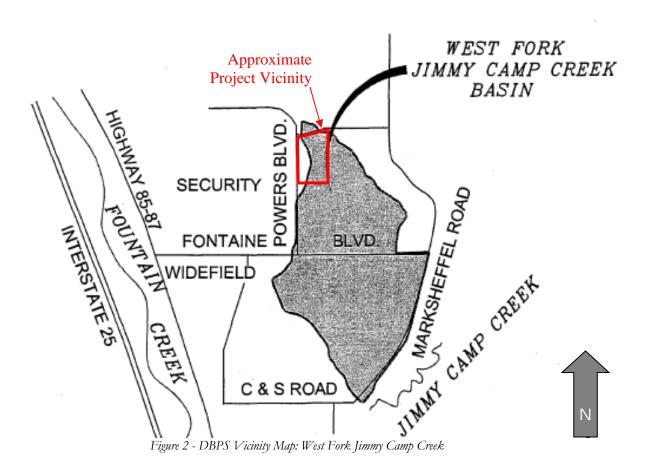
Topographical information for the site was found using a combination of *United States Geological Survey* (USGS) mapping as well as field surveying. The *Web Soil Survey* created by the *Natural Resources Conservation Service* was utilized to investigate the existing general soil types within the site. El Paso County LIDAR data was also used to define offsite drainage basins.

G. APPLICABLE CRITERIA AND STANDARDS

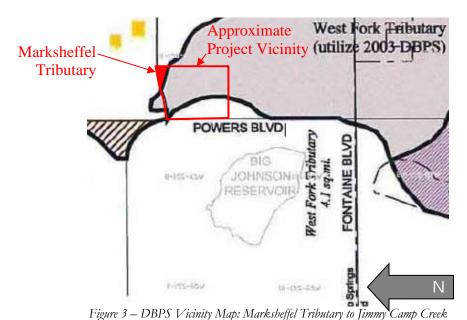

This report has been prepared in accordance to the criteria set forth in the City of Colorado Springs and El Paso County DCM, El Paso County Engineering Criteria Manual (ECM) and El Paso County Resolutions 15-042 and 19-245. In addition to the DCM, the *Urban Storm Drainage Criteria Manuals, Volumes 1 through 3*, dated 2016 have been used to supplement the County's Criteria Manual.

II. Project Characteristics

A. BASIN LOCATION AND FLOWS


As mentioned in Section I. E. 3., the Trails at Aspen Ridge project is divided between three different major drainage basins. The project location in each of these major drainage basins is at or near the head of each basin.

1. <u>Big Johnson Reservoir:</u> The portion of the project within the Big Johnson Reservoir basin is at the east boundary of the drainage basin. Runoff in this portion of the site sheet flows to the west at slopes ranging from 3 to 5 percent until reaching Powers Boulevard, crossing Powers Boulevard via 48-inch and 60-inch CMP crossroad pipes. Approximately 7.3 acres of this basin has been diverted into the West Fork Jimmy Camp Creek drainage basin by CDOT construction of Powers Boulevard.



2. West Fork Jimmy Camp Creek: Most of this portion of the project is located at the north bounds of the major basin. There is approximately 19.6 acres (12.3 acres of the West Fork Jimmy Camp Creek Basin plus an additional 7.3 acres of Big Johnson Reservoir drainage area diverted into the West Fork Jimmy Camp Creek by CDOT construction of Powers Boulevard) located across Bradley Road, approximately 14.5 acres of commercially zoned property south of Bradley Road, and Trails at Aspen Ridge takes up the final 125.09 acres of this major basin. Prior to the most recent phase of development flows from the offsite portion of the basin north of Bradley Road sheet flow to Bradley Road where they are collected in the road ditch and conveyed across Bradley Road and onto the project via two 42-inch CMPs. Development in accordance with MDDP 2020 design has plugged one of the crossroad culverts and restricted the flow in the other down to the level of a 24-inch pipe.

Predevelopment runoff for the majority of the site sheet flowed to the south and slightly east within the West Fork Jimmy Camp Creek Drainage Basin (DBPS-WFJCC) at slopes ranging from 2 to 9 percent. Predevelopment, there appeared to be a broad swale running along the middle of this basin in a southeasterly direction.

3. Marksheffel Tributary to Jimmy Camp Creek: This portion of the project is located at the most northwestern extent of the Marksheffel Tributary to Jimmy Camp Creek. Runoff from the approximately 7.6 acres of this basin within the project area sheet flow to the northeast towards Bradley Road at slopes between 7 and 8 percent and flows channelized in the road ditch then run to the east at a slope of approximately 3 percent. The other 4.6 acres of this basin considered by this report are along Bradley Road. Flows from this portion of the basin sheet flow off Bradley Road and into the road ditch to be carried east at slopes of approximately 3 percent.

B. COMPLIANCE WITH DBPS

Because of the uncertainty associated with the Regional Detention Facilities associated with the DBPS for the three different major basins represented in the project area, the proposed development will comply with DBPS requirements by providing full spectrum onsite detention to treat and detain runoff from the development.

In the West Fork Jimmy Camp Creek Basin, offsite developments upstream of Trails at Aspen Ridge will be required to construct their own full spectrum detention and release to the proposed storm sewer at historic rates. Water Quality treatment volume for these offsite areas will also be provided in the proposed East Detention pond since the treated water from those sites will be mixed with untreated runoff as it is conveyed through the development.

Per the Jimmy Camp Creek DBPS, the Marksheffel Tributary to Jimmy Camp Creek may already have detention to accommodate 100-year events, but, because the status and condition of this detention pond is unconfirmed, full spectrum detention will be provided for the portion of the development covered by the Jimmy Camp Creek DBPS.

A portion of OS1 (approximately 7.3 acres) is shown within the Big Johnson Reservoir Drainage Basin by previous DBPS and MDDP reports. However, the CDOT construction of Powers Boulevard and Bradley Road rerouted these flows to the West Fork Jimmy Camp Creek drainage basin. Storm sewer and detention proposed for the Trails at Aspen Ridge development has been sized to accommodate

undeveloped flows from this area, however, future development of the misrouted drainage area must return these flows to the Big Johnson Reservoir Drainage Basin to return the area to compliance with the DBPS for the two major basins.

C. GEOLOGY

Soils can be classified in four different hydrologic groups, A, B, C, or D to help predict stormwater runoff rates. Hydrologic group "A" is characterized by deep, well-drained coarse-grained soils with a rapid infiltration rate when thoroughly wet and having a low runoff potential. Group "D" typically has a clay layer at or near to the surface, or a very shallow depth to impervious bedrock and has a very slow infiltration rate and a high runoff potential. See Soils Map, Appendix C. The following soil types are present in the development area:

Table 1.1 – NRCS Soil Survey for El Paso County

SOIL ID NUMBER	SOIL	HYDROLOGIC CLASSIFICATION	PERMEABILITY	PERCENT ON SITE
8	Blakeland loamy sand (1% - 9% slopes)	A	Rapidly Drained	8.6%
52	Manzanst clay loam, 0 to 3 percent slopes	С	Well Drained	10.2%
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	В	Well Drained	66.8%
86	Stoneham sandy loam, 3 to 8 percent slopes	В	Well Drained	2.6%
108	Wiley silt loam, 3 to 9 percent slopes	В	Well Drained	11.8%

Pre-project site conditions are undeveloped and ground cover consists of sparse natural vegetative land cover.

D. MAJOR DRAINAGEWAYS

The Trails at Aspen Ridge site is divided between three major drainage basins. The basins within the Marksheffel Tributary to Jimmy Camp Creek and the Big Johnson Reservoir drainage basins are small enough to be analyzed as single major basins. The portion of the project within the West Fork Jimmy Camp Creek drainage basin is much larger and, while it can be considered as a single major basin under pre-project conditions, it will be broken into three basins for the proposed analysis.

E. LAND USES

Presently, there is an approved preliminary plan for the proposed Trails at Aspen Ridge development. The proposed land use for Trails at Aspen Ridge Filing No. 1 and PUDSP is single-family residential. There is also commercially zoned property north of Trails at Aspen Ridge along both sides of Bradley Road.

III. Hydrologic Analysis

A. MAJOR BASINS AND SUBBASINS

As mentioned in previous sections, the Trails as Aspen Ridge development must be broken into three major basins to reflect areas within three different drainage basin planning studies. Approximately 21.2 percent of the Trails at Aspen Ridge development is in the Big Johnson Reservoir drainage basin, with 74.1 percent in the West Fork Jimmy Camp Creek drainage basin, and the remainder, 4.7 percent, in the Marksheffel Tributary to Jimmy Camp Creek.

1. <u>Big Johnson Reservoir:</u>

Proposed flows from this basin will be captured and routed to the Full Spectrum Detention basin at the west side of Trails at Aspen Ridge (West Pond). This major drainage basin is reflected in sub-basins N, O, P, and Q. Basin Q is impracticable to detain. Please see sub-basin description for references to criteria and/or code allowing for exclusion from detention and WQ treatment.

2. West Fork Jimmy Camp Creek:

Under proposed conditions the storm sewer serving this area is broken into three primary legs. The east leg of the storm sewer will run north/south along Big Johnson Drive. The west leg of storm sewer will run along Sunday Gulch to Legacy Drive and then follow Legacy Drive north to Bradley Road. The upstream end of this basin includes several undeveloped offsite areas (Sub-basins OS-1 and A). Future development of these areas must include full spectrum detention to comply with El Paso county drainage criteria and maintain compliance with the DBPS. The third basin runs along Buffalo Horn Drive at the south end of the studied area. Proposed flows in these three major basins will be directed to the East Pond, a Full Spectrum Detention basin on the east side of the development.

3. <u>Marksheffel Tributary to Jimmy Camp Creek:</u>

This sub-basin represents a very small portion of the northeastern most corner of the proposed Trails at Aspen Ridge PUD. Proposed storm sewer in this basin will direct runoff from the developed area to a full spectrum detention pond in the northeast corner of the sub-basin. The detention pond will discharge to the ditch along Bradley Road.

B. METHODOLOGY

Because this report will require onsite detention at the offsite commercial sub-basins (OS-1 and most of Sub-basin A), there will be several ponds in series with the East Detention Pond. Per the DCM, analysis of the ponds in series must be completed utilizing the U.S. Environmental Protection Agency Stormwater Management Model (EPA SWMM) as recommended by the Drainage Criteria Manual for the minor and major storms. The EPA SWMM Method is used for drainage basins less than 650-acres in size.

The EPA SWMM Method uses a variation of the Manning's which is as follows:

 $Q = \frac{1.49}{n} W S^{\frac{1}{2}} (d - d_s)^{\frac{5}{3}}$

Where:

Q = Runoff flow rate in cubic feet per second (cfs)
n = Runoff coefficient (DCM Table 6-11, shown below)

W = Average subcatchment width (ft)

 $d-d_s$ = Height (ft)

S = Average slope of subcatchment (ft)

Table 6-11. Roughness Coefficients (Manning's n) for NRCS Overland Flow

Surface description	n¹
Smooth surfaces (concrete, asphalt, gravel, bare soil, etc.)	0.011
Fallow (no residue)	0.05
Cultivated Soils:	
Residue cover ≤20%	0.06
Residue cover >20%	0.17
Grass:	
Short grass prairie	0.15
Dense grasses ²	0.24
Bermuda grass	0.41
Range (natural)	0.13
Woods ³	
Light underbrush	0.40
Dense underbrush	0.80

As the predevelopment conditions for the site could be described as short grass prairie, a value of 0.15 will be used in the SWMM model for undeveloped drainage areas. For developed conditions a composite "n" value of 0.092 is used. (The composite is based on 35% dense grasses (n=0.24) and 65% impervious surfaces (n=.013)).

Depression losses are taken from table 6-6 in chapter 6 "Runoff" of the MHFD/UDFCD criteria manual, shown below. For this report the minimum value of 0.05 was used.

Table 6-6. Typical depression losses for various land covers

(All values in inches for use with the CUHP.)

Land Cover	Range in Depression (Retention) Losses	Recommended	
Impervious:			
Large paved areas	0.05 - 0.15	0.1	
Roofs-flat	0.1 - 0.3	0.1	
Roofs-sloped	0.05 - 0.1	0.05	
Pervious:			
Lawn grass	0.2 - 0.5	0.35	
Wooded areas and open fields	0.2 - 0.6	0.4	

Runoff in SWMM was analyzed utilizing the Horton Method as recommended in the DCM. Parameters for this method used the Hydrologic Soil Group C and D values from table 6-7 (shown below) in "Chapter 6 - Runoff" of the MHFD/UDFCD criteria manual.

Table 6-7. Recommended Horton's equation parameters

NRCS Hydrologic	Infiltration (in	Decay	
Soil Group	Initial—fi	Final— f_o	Coefficient—a
A	5.0	1.0	0.0007
В	4.5	0.6	0.0018
C	3.0	0.5	0.0018
D	3.0	0.5	0.0018

Please note that the decay coefficient listed in the table above is in units 1/s and the SWMM input for the Horton equation uses 1/Hr. Converting 0.0018 to 1/hours gives a value of 6.48 for the coefficient.

Percentages of imperviousness were used based on the anticipated use of each subcatchment in the runoff calculations.

The hypothetical rainfall depths for the 1-hour storm duration were derived using Table 2.1 of the DCM (shown below). These 1-hour rainfall depths were used to calculate the 2-hour design storm using Table 6-3 from the DCM which lists the "2-Hour Storm Distribution" (see Appendix B).

Table 2.1 - Colorado Springs 1-Hour Rainfall Depth

	1
Storm Recurrence Interval	Rainfall Depth (inches)
5-year	1.50
100-year	2.52

As mentioned in the previous section, the WQCV has been addressed by utilizing Extended Detention in the Full Spectrum Detention Basin at the downstream end of each major basin, which is sized to

discharge the "initial flush" of stormwater over an extended (40-hour) period. For situations with multiple detention ponds "in series," sizing to accommodate the WQCV, the EURV, the major (100-year), and the minor (5-year) storms has been completed using EPA SWMM, in accordance with El Paso County Criteria.

As the offsite areas will be expected to provide detention, initial design of the East Pond utilized UD-Detention spreadsheets considering these sites as developed to acquire hydrographs for each storm listed in UD-Detention. These hydrographs were entered into the East Pond UD-Detention model for design of the detention basin. This analysis is further described in **Section III.C.c SWMM Analysis – West Fork Jimmy Camp Creek Basin**.

Where it is possible to treat and detain runoff with a single, full spectrum, extended detention basin (Big Johnson Reservoir Basin and Marksheffel Tributary to Jimmy Camp Creek Basin), sizing and discharge design has been completed using only the MHFD/UDFCD UD-Detention spreadsheet.

C. BASIN HYDROLOGY

a. The <u>undeveloped conditions</u> for the site have been analyzed and are presented by design points (Table 3.2) and are described as follows:

1. <u>Big Johnson Reservoir:</u>

Under existing conditions, the westernmost drainage basin (Big Johnson Reservoir) of the study area runoff sheet flows west to the Powers Boulevard road ditch where flows are conveyed to an existing 60-inch CMP crossroad pipe at Design Point BJR-1 ($Q_5 = 6.4$ cfs, $Q_{100} = 43.2$ cfs). Flows in the south portion of this basin follow the same pattern and are conveyed to an existing 48-inch CMP crossroad pipe south of Design Point BJR-2 ($Q_5 = 2.1$ cfs, $Q_{100} = 14.3$ cfs). The total existing discharge from the study area to the Big Johnson Reservoir basin is approximately 8.6 cfs for the Q_5 event and 57.5 cfs for the Q_{100} event.

2. West Fork Jimmy Camp Creek (SWMM Flows):

The middle portion of the studied area is within the West Fork tributary to Jimmy Camp Creek. A portion of this basin is upstream of Bradley Road. Flows in that sub-basin (OS-1: $Q_5 = 11.8$ cfs, $Q_{100} = 47.4$ cfs) sheet flow to the road ditch and are conveyed to two 42-inch CMP crossroad pipes which direct the water across Bradley Road and on to the proposed development area.

It should be noted that a portion of the OS-1 sub-basin was formerly in the Big Johnson Reservoir drainage basin and was rerouted into the West Fork Jimmy Camp Creek drainage basin by CDOT construction of Powers Boulevard and Bradley Road. Future development of that basin will be required to route runoff back into the Big Johnson Reservoir basin to maintain compliance with the DBPS for these two major basins.

The next downstream sub-basin is WF-1 ($Q_5 = 33.2$ cfs, $Q_{100} = 139.1$ cfs). Flows in this sub-basin sheet flow towards the middle of the sub-basins where they join flows from OS-1 and are conveyed via a broad swale in a southeasterly direction and out of the study area.

The third sub-basin within the West Fork basin is sub-basin WF-2 ($Q_5 = 5.5$ cfs, $Q_{100} = 31.1$ cfs). Flows in this basin sheet flow in an easterly direction where they are captured by another broad swale at the south limit of the study area and conveyed in a southeasterly direction.

Total discharge to the West Fork Jimmy Camp Creek basin is approximately 37.0 cfs for the Q5 event and 170.0 cfs for the Q100 event.

3. Marksheffel Tributary to Jimmy Camp Creek:

The eastern portion of the studied area is within the Marksheffel Tributary to Jimmy Camp Creek. This basin is represented by Sub-basin MKT-1 ($Q_5 = 5.4$ cfs, $Q_{100} = 36.5$ cfs). Flows in this sub basin sheet flow to the northeast to the Bradley Road ditch where they are conveyed eastward. The total discharge from the studied area under predevelopment conditions is approximately 5.4 cfs for the Q_5 event and 36.5 cfs for the Q_{100} event.

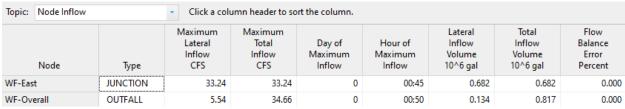

Existing conditions consider all areas as undeveloped. Sub-basins and Design points are summarized in the tables below and on the following page:

Table 3.1 <u>Trails at Aspen Ridge</u> MDDPA & PDR Existing Conditions Sub-Basin Summary Table							
Area ID	Area (Acres)	Q5 (cfs)	Q100 (cfs)				
Big Johnson Reservoir / BJR-1	39.94	6.4	43.2				
Big Johnson Reservoir / BJR-2	8.85	2.1	14.3				
West Fork Jimmy Camp Creek / OS - 1	19.60	11.8*	47.4*				
West Fork Jimmy Camp Creek / WF-1	119.08	33.2*	139.1*				
West Fork Jimmy Camp Creek / WF-2	21.15	5.5*	31.1*				
Marksheffel Tributary to Jimmy Camp Creek / MKT-1	7.21	1.6	10.9				

^{*}SWMM Values

Table 3.2 <u>Trails at Aspen Ridge</u> MDDPA & PDR Existing Design Point Summary							
Design Point	Sub-Basins	Total Area (ac.)	Q(5) (cfs)	Q(100) (cfs)			
BJR-1	BJR-1	39.94	6.4	43.2			
BJR-2	BJR-2	8.85	2.1	14.3			
TO BIG JOHNSON RESERVOIR	BJR-1 & BJR-2 (Basins are parallel, so this is a sum of BJR-1 & BJR-2.)	48.79	8.6	57.5			
OS-1	OS-1 (7.3 Acres diverted by CDOT from Big Johnson)	19.60	11.8*	47.4*			
WF-1	WF-1 & OS-1	138.69	33.2*	139.1*			
WF-2	WF-2	21.15	5.5*	31.1*			
TO WEST FORK JIMMY CAMP CREEK	WF-1, WF-2, & OS-1 (Basins are parallel, so this is a sum of WF-1 & WF-2.)	159.84	37.0*	170.0*			
MKT-1 TO MARKSHEFFEL TRIBUTARY TO JIMMY CAMP CREEK	MKT-1	7.21	1.63	10.95			
*SWMM Values	Overall Totals:	215.84	47.22	238.47			

West Fork – Jimmy Camp Creek SWMM outfall values for the Predevelopment Q5 and Q100 storms are shown below:

Q5 Runoff

Topic: Node Inflow Click a column header to sort the column.								
Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal	Flow Balance Error Percent
WF-East	JUNCTION	139.24	139.24	0	00:55	4.84	4.84	0.000
WF-Overall	OUTFALL	31.10	169.80	0	00:56	0.887	5.73	0.000

Q100 Runoff

b. The *fully developed conditions* for the site are as follows:

1. <u>Big Johnson Reservoir:</u>

Under proposed conditions, developed flows for the westernmost drainage basin (Big Johnson Reservoir) will be directed into a proposed full spectrum detention pond on the west side of the site approximately 2,030 feet south of the intersection of Bradley Road and Powers Boulevard. Sub-basins and Design Points within this major basin are summarized in Tables 3.3, 3.4, and 3.5 below:

Table 3.3 <u>Trails at Aspen Ridge</u> Big Johnson Reservoir Proposed Conditions - Sub-basin Summary						
Basin	Area	Q5	Q100			
	acres	cfs	cfs			
Big Johnson Reservoir N	13.76	20.7	45.7			
O	11.37	16.9	37.3			
P1	6.40	5.9	16.6			
P2 (Excluded from detention per ECM Section I.7.1.B.7)	1.88	0.4	2.9			
Q	2.43	1.8	5.9			
OS-2	11.44	1.7	11.7			

Table 3.4 <u>Trails at Aspen Ridge</u> Big Johnson Reservoir Proposed Design Point Summary							
Design Point	Sub-Basins	Downstream Design Point	Total Area (ac.)	Q(5) (cfs)	Q(100) (cfs)		
N	N	P	13.8	20.7	45.7		
О	О	P	11.7	16.8	37.1		
P (Into West Pond)	N, O, P	West Pond Discharge	31.9	35.2	80.9		
West Pond Discharge (UD-Detention)	N, O, P	Powers Ditch		0.8	23.3		
Q	Q	Powers Ditch	2.4	1.8	5.9		
OS-2 (This sub-basin is just southeast of the Powers and Bradley intersection. Flows which might have flowed across TAR to the Powers ditch will be diverted to the ditch prior to entering the TAR property.)	OS-2	Powers Ditch	11.4	1.7	11.7		

	Table 3.5 <u>Trails at Aspen Ridge</u> Big Johnson Reservoir Proposed Design Point Flow Description						
Design Point	Description						
N	Flows to this design point will sheet flow off the residential lots to adjacent streets where flows will be channelized in the curb and gutter. Flows will then be conveyed south via curb and gutter to sump inlets along Natural Bridge Trail. From there flows will be directed to this design point via a combination of gutter and storm sewer piped flows.						
О	Flows to this design point will sheet flow off of the residential lots to adjacent streets where flows will be channelized in the curb and gutter. Flows will then be conveyed to this design point via a combination of gutter and storm sewer piped flows.						
P (Into West Pond)	This design point summarizes all flows into the West Pond. Flows from sub-basins N and O will be conveyed into the pond via storm sewer and will enter at forebays designed in accordance with the DCM.						
West Pond Discharge (UD-Detention)	This design point represents the discharge structure from the future full spectrum detention pond. Flows will be metered out as determined by the UD-Detention spreadsheet. As the grading for this detention pond is preliminary, there may be slight changes in future UD-Detention information. UD-Detention sheets for this detention pond can be found in Appendix A.						
Q	 Flows in the sub-basin tributary to this design point will sheet flow to the west until reaching the Powers Boulevard road ditch where they will be conveyed to the south via channelized ditch flow to a 48" CMP crossroad culvert. These flows are not practicable to detain or treat because they are on the outside edge of the property and lower than the proposed detention basin. However, because this design point will contribute less than one acre (0.87 Acres or 2.4% of the applicable development area) of developed area to the Big Johnson Reservoir Basin, according to ECM Section 1.7.1.C.1, compliance with the county's MS4 permit is maintained. In accordance with ECM Section I.7.1.B.7, regarding sites excluded from the requirements of Section 1.7 "Post Construction Storm Water Management", since approximately 1.53 acres of this sub-basin may be disturbed but will remain undeveloped green spaces after stabilization of the site this area qualifies as an excluded site. 						
OS-2	 Flows in the OS-2 Sub-basin will generally sheet flow to the west until reaching the Powers Boulevard road ditch. Once flows reach the ditch they will be conveyed to the south via channelized flow until reaching the 60" CMP crossroad pipe which will convey them across Powers Boulevard. Eventually flows will enter the Big Johnson Reservoir. A portion of this sub-basin has historically drained across a corner of the proposed Trails at Aspen Ridge development on its way to the Powers Boulevard ditch. Under proposed conditions these flows will be directed to the ditch prior to crossing onto the Trails at Aspen Ridge development. Future development of this sub-basin will require onsite detention and an FDR. 						

Drawings of these sub-basins and design points are illustrated in Drawing DR-02 in Appendix D.

2. West Fork – Jimmy Camp Creek:

Under proposed conditions flows for this central, and largest, basin within the study area will be directed to a proposed detention pond near the southeast corner of the proposed Trails at Aspen Ridge development. Sub-basins and Design Points and SWMM Outfall summary information for this major basin are summarized in the Q5 and Q100 SWMM outfall tables and hydrology Tables 3.6, 3.7, and 3.8 below and on the following pages:

Table 3.6 <u>Trails at Aspen Ridge</u> West Fork - Jimmy Camp Creek Proposed Conditions - Sub-basin Summary							
Basin	Area	Q5	Q100				
	acres	cfs	cfs				
West Fork-Jimmy Camp Creek OS-1	19.60	4.0	26.7				
A	18.47	7.0	28.0				
В	1.06	1.9	4.1				
С	14.77	26.1	56.8				
D	2.21	2.4	6.3				
E	8.57	9.1	21.4				
F	13.07	19.7	43.3				
G	1.11	2.1	4.6				
Н	23.82	34.1	75.8				
I	7.90	13.4	29.3				
J	9.16	15.1	33.3				
K	26.69	36.6	80.5				
West Fork-Jimmy Camp Creek M	10.29	3.6	19.7				
R	1.87	1.2	6.3				

Table 3.7 <u>Trails at Aspen Ridge</u> West Fork - Jimmy Camp Creek Proposed Design Point Summary

Design Point	Sub-Basins	Sub-Basins Downstream Design Point		Q(5) (cfs)	Q(100) (cfs)
OS-1	OS-1	A	19.6	4.0	26.7
A	OS-1 & A	В	38.1	11.6	57.5
В	OS-1, A, B	С	39.1	12.4	58.5
С	OS-1, A, B, C	D	53.9	27.2	90.0
D	OS-1, A, B, C, D	Е	56.1	28.4	92.7
E	OS-1, A, B, C, D, E	G	64.7	33.1	101.7
F	F	G	13.1	19.7	43.3
G	OS-1, A, B, C, D, E, F, G	М	78.9	41.4	117.1
Н	Н	M	23.8	34.1	75.9
J	J	K	9.2	15.1	33.3
K	J, K	I	40.0	49.2	113.5
I	J, K, I	M	47.9	52.5	119.8
M (Into East Pond	OS-1, A, B, C, D, E, F, G, J, K, I, H, M	East Pond Discharge	160.9	99.6	256.2
East Pond Discharge (SWMM)	OS-1, A, B, C, D, E, F, G, J, K, I, H, M	Offsite Swale	160.9	5.8	139.5
R	R	Offsite Swale	1.9	1.2	6.3

All flows in this table unless otherwise indicated are taken from SWMM.

^{*}UD-Detention Discharge

Table 3.8 <u>Trails at Aspen Ridge</u> West Fork - Jimmy Camp Creek Proposed Design Point Flow Description						
Design Point	Description					
OS-1	 This design point is at the downstream end of the offsite sub-basin north of Bradley Road. Flows in this sub-basin will sheet flow to the road ditch running along Bradley and Powers Boulevard. Once channelized in the ditch flows will be directed to a proposed 24-inch RCP storm pipe sleeved into one of the existing 42-inch CMP crossroad pipes and conveyed on to design point A. Please note that approximately 7.3 acres of the area tributary to this design point have been diverted from the Big Johnson Reservoir by CDOT construction of Powers Boulevard. Future development of that portion of the tributary sub-basin must redirect these flows to the Big Johnson Reservoir to maintain compliance with the two relevant DBPS reports. Development of the OS-1 Sub-basin will require onsite detention and an FDR. 					
A	 This design point is at the manhole (MH-3) receiving flows from DP OS-1 to the north and flows from Sub-basin A captured in the two pairs of inlets on Frontside Drive to the east and west of its intersection with Legacy Drive. These flows will be conveyed on via 30-inch storm pipe to design point B. Flows from the required onsite detention from the two commercial lots on either side of Legacy Drive will be picked up in the back of the inlets. A 24-inch storm pipe will be stubbed out for the west commercial lot (Inlet 1-A) and an 18-inch will be stubbed out for the east commercial lot (Inlet 3-A). 					
В	- This design point is at a manhole (MH-108) just downstream of an on-grade inlet (1-B) capturing gutter flows from the west half of Legacy Drive reflected in Sub-basin B. These flows are carried downstream via 30-inch storm pipe to design point C.					
С	- This design point is a manhole (MH-6) which combines storm sewer flows from design point B with storm sewer flows from Sub-basin C. Flows in Sub-basin C will sheet flow off the residential lots and into the street curb and gutter. The road gutters will convey these flows on to be captured in four pairs of sump inlets (1-C through 8-C) and conveyed to the design point. The combined flows will be conveyed downstream via 42-inch storm pipe to design point D.					
D	- This design point is at a manhole (MH-117) just downstream of an at-grade inlet (1-D) capturing flows from Sub-basin D. Flows in Sub-basin D will sheet flow to the Legacy Road curb and gutter. These gutter flows are captured in the at-grade inlet and combined with storm sewer flows from design point C and carried on via 42-inch storm pipe to design point E.					
Е	- This design point is located at a manhole (MH-15) just downstream of a pair of sump inlets capturing flows from Sub-basin E. Flows in Sub-basin E will sheet flow across the park area until being captured in the curb and gutter along Falling Rock Drive. Concentrated gutter flows will then be captured by the sump inlets and conveyed on via storm sewer to the design point. These flows will be combined with flows from design point D and carried on via 48-inch storm pipe to design point G.					

Table 3.8b <u>Trails at Aspen Ridge</u> West Fork - Jimmy Camp Creek Proposed Design Point Flow Description						
Design Point	Description					
F	 Design point F represents the combination of runoff from Sub-basin F with storm sewer flows from design point E at manhole MH-20. Runoff in Sub-basin F will sheet flow off the residential lots to the adjacent street curb and gutter. The gutters on Wagon Hammer and Lazy Ridge Drive will then convey the concentrated storm water on to be captured by at-grade inlets (1-F through 4-F) and conveyed to the design point via storm sewer. Gutter flows for the cul-de-sac Lookout Court and the west half of Legacy Drive will be conveyed to sump inlets near the intersection of these roads. From this point the combined flows will be combined with flows from Design point E and conveyed via 48-inch storm pipe to design point G. Note: A portion of the Q100 flows will bypass some of the at-grade inlets and be conveyed on to the sump inlets in Sub-basin H. These flows are quantified in the FDR for Filing 1 of Trails at Aspen Ridge. 					
G	- Flows in Sub-basin G sheet flow from the residential lots to Legacy Drive where flows are conveyed onward via gutter flows. Design point G is located at an at-grade inlet (1-G) which will capture the gutter flows, combine them with flows from design point F and convey them on via 48-inch storm pipe to the East Pond for detention and water quality treatment.					
Н	 This design point represents the most downstream inlet in Sub-basin H. Flows in this sub-basin will sheet flow from the residential lots towards the street curb and gutter. Gutter flows will convey the runoff downstream to sump inlets located just north of the three side roads (Lazy Ridge Drive (Inlets: 1-H &2-H), Wagon Hammer Drive (Inlets: 3-H & 4-H) and Sunday Gulch Drive (Inlets: 7-H & 8-H)) intersections with Buffalo Horn Drive. Some flows along Buffalo Horn Drive north of Windy Pass Court and south of Wagon Hammer drive will be captured by at-grade inlets (5-H &6-H). The final portion of gutter flows in the sub-basin will be captured in the sump inlet (11-H) and at-grade inlet (10-H) near design point H. Some flows along the backside of the residential lots south of Buffalo Horn Drive will be captured in a swale to a pipe end section or to a Type C Inlet (9-H) and conveyed north via storm pipe to the design point. Storm sewer and surface flows combined at the design point will be conveyed north via 42-inch storm pipe into the East Pond for detention and water quality treatment. 					
J	- Runoff from Sub-basin J will sheet flow off residential lots towards the street gutters in this sub-basin. These flows will then be conveyed via gutter flow to the design point at a pair of sump inlets (1-J & 2-J) located near the intersection of Red Shirt Point and Big Johnson Drive. From this point storm sewer flows will be conveyed via storm sewer flow on to design point K near the intersection of Roundhouse and Big Johnson Drives.					

Table 3.8c <u>Trails at Aspen Ridge</u> West Fork - Jimmy Camp Creek Proposed Design Point Flow Description						
Design Point	Description					
К	 This design point is located at a manhole (MH-30) just downstream of a pair of sump inlets capturing flows from Sub-basin K. Flows in Sub-basin K will sheet flow across residential lots towards the adjacent streets until being captured in the curb and gutter. Note: There will be several additional sump inlet locations in this sub-basin. These will be set in the future FDR for this location. 					
I	 Design point I is located at a sump inlet (5-I) at the end of the cul-de-sac for Falling Rock Drive. This design point combines storm sewer flows from design point K and sump inlets 1-I and 2-I with gutter flows from Sub-basin I. Runoff in sub-basin I will sheet flow off the residential lots and green space towards adjacent street curb and gutters. Once flows reach the gutters, they will be conveyed to design point I via gutter flow. Flows combined at design point I will be conveyed on to the East Pond for detention and water quality treatment. 					
M (Into East Pond)	- This design point represents the combination of all flows directed into the East Pond for water quality treatment and detention.					
East Pond Discharge (SWMM)	 This design point reflects the discharge structure for the East Pond. Initial sizing of the structure was done utilizing the UD-Detention spreadsheet. However, because the commercial lots in Sub-basins A and OS-1 will be required to provide their own full spectrum detention, it was necessary to analyze the in-series detention ponds using EPA SWMM in order to maintain compliance with the DCM. Further discussion of this analysis is provided in Section III.C.c. 					
R	 This design point reflects the sheet flows discharging from the sub-basin just downstream of the proposed East Pond. These flows are not practicable to detain because the area is on a slope at the outer edge of the property and at a lower elevation than the pond, and per ECM Section 1.7.1.C.1, as less than 1 acre (0.67 Acres or 0.5% of the applicable development area) of the undetained flows within the West Fork – Jimmy Camp Creek basin will be developed lots, compliance with the MS4 permit is maintained. Per ECM Section I.7.1.B.7, regarding sites excluded from the requirements of Section 1.7 "Post Construction Storm Water Management", approximately 1.23 acres of the tributary area may be disturbed but will remain undeveloped green spaces after stabilization of the site. 					

3. Marksheffel Tributary to Jimmy Camp Creek:

Under proposed conditions flows for this small basin at the northeast corner of the study area will be directed to a small proposed detention pond near the northeast corner of the proposed Trails at Aspen Ridge development. Sub-basins and Design Points within this major basin are summarized and described in Tables 3.9, 3.10, and 3.11 on the following pages:

Table 3.9 <u>Trails at Aspen Ridge</u> Marksheffel Tributary to Jimmy Camp Creek Proposed Conditions - Sub-basin Summary							
Basin	Area	Q5 (cfs)	Q100 (cfs)				
Marksheffel Tributary to Jimmy Camp Creek, L	(ac.) 8.97	13.3	30.8				
BR1-Bradley Road Median	0.31	0.8	1.6				
BR2 – Filing No. 1 (Worst Case)	4.49	3.4	10.0				
– Full Buildout	2.81	2.9	7.4				

Table 3.10 <u>Trails at Aspen Ridge</u> Marksheffel Tributary to Jimmy Camp Creek Proposed Design Point Summary								
Design Point	Sub-Basins Downstream Design Point Total Area (ac.) Q5 (cfs)							
L	L Northeast Pond Discharge 8.97 13.3 30.8				30.8			
Northeast Pond Discharge	L	Bradley Road Ditch		0.3	8.1			
BR1	BR1	Bradley Road Median Ditch	0.31	0.8	1.6			
BR2 - Filing No. 1 - Full Buildout	BR2 Bradley Road Ditch		4.49 2.81	3.4 2.9	10.0 7.4			

	Table 3.11 <u>Trails at Aspen Ridge</u> Marksheffel Tributary to Jimmy Camp Creek Proposed Design Point Flow Description
Design Point	Description
L	This design point demonstrates the flows total flows into the proposed Northeast detention basin. The portion of the Marksheffel Tributary to Jimmy Camp Creek included in the proposed project is small enough that only one sub-basin is used to model the proposed conditions. Flows in this sub-basin will sheet flow off the residential lots and green spaces towards the adjacent streets where the flows will be conveyed downstream via gutter flow. Street flows will be captured by a pair of sump inlets just upstream of the proposed detention pond. Flows from the back of lots along Bradley Road will drain southward onto the private street and eventually into the Northeast Pond.
BR1	 This design point reflects a Type C inlet located in the existing Bradley Road median ditch upstream of the proposed access to Trails at Aspen Ridge Filing No. 1, Legacy Hill Drive. Flows will sheet flow off the upstream Bradley Road pavement (existing), eventually channelized in the Bradley Road median ditch and conveyed to the proposed Type C inlet.
BR2	- Flows in the tributary area will sheet flow to the Bradley Road ditch where they will be conveyed downstream to a proposed 18-inch Flared End Section (FES) and crossroad pipe which will convey the flows across the proposed access for Blackmer Street. Flows will continue down the Bradley Road ditch following historical flow patterns. No detention will be required, as this subbasin will remain green space and falls under ECM section I.7.B.7.
Northeast Pond Discharge	The discharge from the proposed Northeast detention basin will be metered out to the Bradley Road ditch via a concrete structure designed in UD-Detention. This structure will maintain historic discharges and provide for extended detention of water quality and EURV flows.

c. Detention

A summation of the proposed detention and water quality ponds is found below. These numbers are preliminary and will be finalized in the individual Final Drainage Reports for each portion of the development, as will pond locations and volumes. The East Pond will be finalized in the FDR for Trails at Aspen Ridge Filing No. 1. Supporting UD-Detention spreadsheets for each detention pond and SWMM analysis for the East Pond can be found in Appendix A. Detention ponds will be privately owned and maintained by the Waterview II Metropolitan District.

	Table 3.12 Pond Summary Table										
26.			o		imate Det Volumes	tention	ntion EX		EX	PR	
Major Basin	Pond ID	Analysis Method	Contributing Basins	WQCV	EURV	Q100	5-YR	5-YR	100 YR	100 YR	
					AcFt.	AcFt.	AcFt.	(CFS)	(CFS)	(CFS)	(CFS)
Big Johnson Reservoir	West Pond	UD-Detention	N, O, P1	0.558	1.863	3.515	8.6	0.80	57.5	23.3	
West Fork - Jimmy Camp Creek	East Pond	SWMM Flows into UD-Detention	OS-1, OS-East Side, A, B, C, D, E, F, G, J, K, I, H, M	4.833	6.581	17.92	22.3	5.8	144.6	139.5	
Marksheffel Tributary to Jimmy Camp Creek	Northeast Pond	UD-Detention	L	0.162	0.534	0.978	1.6	0.3	10.9	8.1	

Note: The SWMM pre-development flows discharging at the same location as the East Pond are indicated in Table 3.12 above by an asterisk*. These values are greater than the proposed discharges (UD-Detention), therefore the requirements for a "suitable outfall" from section 3.2.4 of the ECM are fulfilled. See also the below Outfall Analysis section. Under predevelopment conditions the West Fork Jimmy Camp Creek basin received an additional Q100: 5.1 cfs and Q5: 16.5 cfs.

Emergency Overflows									
	Table 3.13								
		Emergency Overflow Weirs							
Major Basin	Zerintian at Emergency Uvertian Weir								
Big Johnson Reservoir		Emergency Overflows from this pond will flow directly into the Powers Boulevard Road Ditch. Flows will then follow historic drainage patterns.							
West Fork – Jimmy Camp Creek	Pond	The emergency overflow weir for this pond will outlet water into a proposed swale along the edge of the development boundary and direct the flows south and into an existing swale flowing to the southeast. Flows will then follow historic patterns. Hydraflow Express calculations indicate that the swale, at its most constricted point just downstream of the pond outlet, will carry the East Pond Q100 Discharge at a depth of approximately 0.77 feet (9.2 inches).							
Marksheffel Tributary to Jimmy Camp Creek		The emergency overflow weir for this pond will outlet water into the Bradley Road ditch. Flows will continue to the east as they have historically.							

Outfall Analysis

The outfall for the East Pond has been analyzed to confirm that the receiving swale should remain stable after construction of the pond. Hydraflow Express was utilized to check the velocity of the anticipated Q100 Discharge and calculated a velocity in the 48" outfall pipe of 13.0 feet per second. A second Hydraflow calculation was performed at the narrowest point in the swale receiving the outfall. The results of this calculation indicated that the anticipated velocity of a Q100 discharge from the pond is around 3.8 feet per second which is well below the Maximum 100-year velocity and barely above the Maximum Low Flow Velocity indicated for erosive soils in Table 12-3 (shown below) of the DCM regarding Hydraulic Design Criteria for natural unlined channels.

Table 12-3. Hydraulic Design Criteria for Natural Unlined Channels

Design Parameter	Erosive Soils or Poor Vegetation	Erosion Resistant Soils and Vegetation
Maximum Low-flow Velocity (ft/sec)	3.5 ft/sec	5.0 ft/sec
Maximum 100-year Velocity (ft/sec)	5.0 ft/sec	7.0 ft/sec
Froude No., Low-flow	0.5	0.7
Froude No., 100-year	0.6	0.8
Maximum Tractive Force, 100-year	0.60 lb/sf	1.0 lb/sf

¹ Velocities, Froude numbers and tractive force values listed are average values for the cross section.

The Web Soil Survey for the site indicates that the Soils for the receiving swale are are classified as Stoneham sandy loam which is likely an erosive soil.

After receiving the East Pond Discharge, the existing swale will convey the stormwater to an existing pond on an adjacent property. According to the West Fork – Jimmy Camp Creek DBPS (See DPBS plan Sheet 6 in Appendix C) this pond is expected to receive up to 380 cfs for a Q100 event. The tributary drainage area treated by the East Pond makes up approximately 70 percent of the area tributary to the existing offsite pond. As the anticipated discharge from the East Pond is much lower than the flow listed in the DBPS, the existing structure should be adequate to handle the proposed discharge.

Analysis of the West Pond and Northeast Pond outfalls will be completed in the FDR for the associated filing.

SWMM Analysis: West Fork – Jimmy Camp Creek

1. Why SWMM Analysis is necessary:

The commercially zoned lots at the north end of this major basin on either side of Bradley Road will be required to provide onsite detention in the future to comply with this report and county criteria. The detention for these three areas will be in series with the East Pond. Because these ponds will be in series, the DCM requires analysis of the ponds using EPA SWMM.

² "Erosion resistant" soils are those with 30% or greater clay content. Soils with less than 30% clay content shall be considered "erosive soils."

2. Methodology

To provide results as close to UD-Detention as possible, the upstream ponds were approximated in UD-Detention and the resulting Hydrographs were input into SWMM as Time Series hydrograph data. These hydrographs were used as flow inputs to the nodes representing the inlets just downstream of each respective area (Inlets 1-OS, 1-A, and 3-A). An image of each time-series table used can be found in Appendix A. Additionally, the WQCV was calculated in a separate UD-Detention model with all the commercial offsite areas included as 95 percent impervious. This value was utilized in sizing of the ponds forebays. (Please see the Filing No. 1 FDR for calculations).

Flow analysis of the other sub-basins which are tributary to the East Pond was done utilizing the Horton method in accordance with DCM recommendations. The pipe network used for Filing 1 was imported into SWMM from AutoCAD and the relatively large sub-basins were connected to the appropriate node closest to the downstream end of the sub-basin. SWMM was then used to calculate the inflow hydrograph to the east pond for the WQCV, EURV, 2-year, 5-year, 10-year, 25-year, 50-year, 100-year, and 500-year storm events. These hydrographs were then input to the Detention Basin Outlet Structure Design Hydrograph input table in the East Pond UD-Detention. The UD-Detention model was then used to design the outlet structure to reduce developed flows to levels equal to or lower than the predevelopment values calculated by the UD-Detention model and to provide the appropriate attenuation of the WQCV and EURV storm events, all in accordance with MHFD/UDFCD and DCM requirements.

Phasing:

Detention ponds will be constructed as required to provide treatment and detention for the proposed developments. The East Pond was constructed along with Trails at Aspen Ridge Filing No. 1.

A very small portion of Filing No. 1 drains to the West Pond, however most of the storm sewer to convey storm water to this pond will be constructed in Filing No. 3. To provide treatment and detention for the runoff from this portion of Filing No. 1, a swale was graded to convey the runoff into the West Pond. The West Pond in Filing No. 1 is a sand filter. Development of Filing No. 3 will trigger an upgrade of the West Pond to a full spectrum detention pond.

The Northeast Pond will be constructed along with the rest of the development of Sub-basin L in the northeast corner of the Trails at Aspen Ridge PUD.

Jurisdictional Dam Determination:

A previous iteration of the East Pond submitted to the county was determined to be a low hazard dam. Subsequent design of the pond has lowered the embankment elevations for the pond so that the pond is now shallower and no longer considered a jurisdictional dam. The West and Northeast ponds are also below the criteria for a jurisdictional dam. A notice of intent to construct a "Non-jurisdictional Water Impoundment Structure" was submitted along with the Final Drainage Report for Trails at Aspen Ridge Filing No. 1.

IV. STRUCTURE IMPROVEMENTS

Because all flows from Trails at Aspen Ridge (Waterview East) are to be treated for water quality and detention on site, additional construction in any downstream Regional Detention Pond will not be required.

V. FLOODPLAINS

Per the *Flood Insurance Rate Map (FIRM)* 08041C0768-G, effective date December 7, 2018, published by the Federal Emergency Management Agency (FEMA), no portion of Trails at Aspen Ridge (Waterview East) lies within any designated 100-year floodplain. This map can be found in Appendix C.

VI. Environmental Evaluations

A. WETLAND IMPACTS

There are no designated wetland or riparian areas on site, and no anticipated impacts.

B. STORMWATER QUALITY

All on-site detention facilities shall be designed to accommodate water quality requirements. As the development of each parcel progresses, the detention guidelines outlined in this report are to be upheld.

Per Chapter 4, Section 4.1, of the El Paso County DCM, Volume 2, the DCM requires a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

Step 1: Employ Runoff Reduction Practices

• Site specific landscaping will be done on each lot to decrease the connectivity of impervious areas. Grass lined swales will be used where possible to allow ground infiltration.

Step 2: Stabilize Drainageways.

• The site is in the Big Johnson Reservoir, Jimmy Camp Creek (Marksheffel Tributary), and West Fork – Jimmy Camp Creek basins. Drainage fees, to be paid by the relevant Trails at Aspen Ridge (Waterview East) developers at the time of platting, will help fund proposed channel improvements. Information on future improvements to the respective channels was unavailable for this report.

Step 3: Provide Water Quality Capture Volume

• Each pond, or series of ponds, meets the DCM standards for the release rates of Full Spectrum Detention Ponds for Water Quality Capture Volumes.

Step 4: Consider Need for Industrial and Commercial BMPs

• There are no commercial or industrial components to this development, therefore no BMPs of this nature are required. The Full Spectrum Detention BMP is provided for the proposed Development by the East Pond, the West Pond and the Northeast Pond.

A. PERMITTING REQUIREMENTS

No additional permitting requirements are expected at this time.

VII. Alternatives Evaluation

Analysis of the site in both the existing and developed conditions is in accordance with the most recent Drainage Basin Planning Studies (DBPS-JCC, DBPS-WFJCC, & DBPS-BJR/CG). As such, no alternatives have been evaluated.

VIII. Selected Plan (Implementation of DBPS)

A. PLAN HYDROLOGY

The hydrology for the site has been provided above and complies with the latest DBPS studies.

B. SYSTEM IMPROVEMENTS

No improvements to the existing system are anticipated.

C. SYSTEM PRIORITIES/PHASING

The proposed development has been divided into 6 different filings. Filing No. 1 has been approved and is under construction. Once development of any portion of the site begins, the owner will be responsible for providing detention and water quality in accordance with this MDDP, before releasing downstream.

D. GOVERNMENTAL AGENCY REQUIREMENTS

There are no governmental agency requirements for this development.

E. MAINTENANCE REQUIREMENTS

Maintenance requirements for all stormwater quality and erosion control procedures will be outlined in each filing's individual Erosion Control and Storm Water Management Plans. The detention and water quality treatment ponds proposed in this report will be privately owned and maintained by the Waterview II Metro District or, for lot specific detention and water quality ponds, by the owners of the lots on which they are constructed.

F. RECOMMENDATION FOR IMPLEMENTATION

It is recommended that any development of the site initiates the implementation of the detention and water quality procedures that have been detailed in this report. In doing so, the developed conditions will produce runoff comparable to that of Add the first two continue to adhere to the DPBS and protect (sentence from the illities.

previous PDR

(highlighted)

IX. Fee Development

A. UNDEVELOPED PLATTABLE LAND

The Waterview II area, which includes the Trails at Aspen Ridge PUDSP and Trails at Aspen Ridge Filing No. 1, is made up almost entirely of undeveloped and unplatted land. Filing No. 1 has been platted and has an approved FDR.

The site is located within three different basins, the Big Johnson Reservoir, the West Fork-Jimmy Camp Creek, and the larger Jimmy Camp Creek (Marksheffel Tributary) Drainage Fee Basins. The fees are based upon the platted acreage and will be detailed in the FDRs for specific phases of the development. DDPS-BJR/CG indicates that water quality ponds are eligible for reimbursement, therefore some of the costs of the West Pond may be reimbursable. The Jimmy Camp Creek DBPS

X. Construction Cost Opinion

Specific construction costs will be or have been provided in the FDR for each phase of the development.

XI. References

- 1. El Paso County and City of Colorado Springs Drainage Criteria Manual, Volume 1 & 2, El Paso County, May 2014
- 2. *El Paso County Engineering Criteria Manual*, El Paso County, Rev. December 2016
- 3. Web Soil Survey of El Paso County Area, Colorado. Unites States Department of Agriculture Soil Conservation Service.
- 4. Flood Insurance Rate Maps for El Paso County, Colorado and Incorporated Areas, Panel 768 of 1300, Federal Emergency Management Agency, Effective Date December 7, 2018.
- 5. *Urban Storm Drainage Criteria Manual, Vol. 1-3* by Urban Drainage and Flood Control District (MHFD/UDFCD), January 2016
- 6. West Fork Jimmy Camp Creek Drainage Basin Planning Study by Kiowa Engineering, revised October 2003
- 7. Jimmy Camp Creek Drainage Basin Planning Study, Development of Alternatives & Design of Selected Plan, Report by Kiowa Engineering, March 2015
- 8. **Big Johnson Reservoir/Crews Gulch Drainage Basin Planning Study,** by Kiowa Engineering, September 1991.
- 9. **"Amendment to Waterview Master Drainage Development Plan"**, completed by Springs Engineering, dated July 2014 (MDDP-2014)

XII. Appendices

APPENDIXA

HYDROLOGIC AND HYDRAULIC CALCULATIONS

Project Name: Trails at Aspen Ridge (Waterview II)
Project Location: El Paso County, CO
Designer JTS
Notes: Existing Condition

Average Channel Velocity 5 ft/s
Average Slope for Initial Flow 0.04 ft/ft

Channel Flow Type Key
Heavy Meadow 2
Tillage/Field 3
Short Pasture and Lawns 4
Nearly Bare Ground 5
Grassed Waterway 6
Paved Areas 7

		Area Rational 'C' Values											Flow L	-engths		Initia	l Flow		Channel I	Tc	Rainfall	Intensity &	Rational F	low Rate	SWMM	Values		
				S	Surface Type	e 2	5	Surface Typ	e 3									Average	Channel Flow Type	Velocity								
					(Impervious			Undevelop		Com	posite	Initial	True Initial	Channel	rue Channe	Average	Initial	(%)	(See Key above)	Velocity	Channel	Total	i5	Q5	i100	Q100	Q5	Q100
Major Basin / Sub-basin	Comments	sf	acres	C5	C100	Area (SF)	C5	C100	Area	C5	C100	ft	Length ft	ft	Length ft	Slope	Tc (min)	Slope	Ground Type	(ft/s)	Tc (min)	(min)	in/hr	cfs	in/hr	cfs	cfs	cfs
Big Johnson Reservoir / BJR-1		1,739,574.1	39.94	0.90	0.96		0.09	0.36	1,739,574	0.09	0.36	709.00	300.00		2503.00		27.91	3.599	5.000	1.9	22.3	50.2	1.8	6.4	3.0	43.2		
Big Johnson Reservoir / BJR-2	Located at south end of study area.	385,700.5	8.85	0.90	0.96		0.09	0.36	385,701	0.09	0.36	300.00	300.00	760.00	760.00	0.040	19.84	5.014	5.000	2.2	5.7	25.5	2.7	2.1	4.5	14.3		
West Fork Jimmy Camp Creek / OS - 1	- The most northwestern portion of this basin (7.268 Acres) outside of the proposed Trails at Aspen Ridge development was rerouted out of the Big Johnson Reservoir basin by CDOT construction of Powers Boulevard and Bradley Road. Future development of the rerouted area will require routing the flows back to the Big Johnson Reservoir to return the area to compliance with the relevant DBPS studies.	853,953.7	19.60	0.90	0.96	42031.00	0.09	0.36	811,923	0.13	0.39	621.00	300.00	2146.00	2467.00	0.106	19.79	2.470	5.000	1.5	26.5	46.3	1.9	4.8	3.1	24.1	11.8	47.4
West Fork Jimmy Camp Creek / WF-1	The small area just outside the east boundary of Trails at Aspen Ridge will be kept off of the proposed project by raising the elevation of the proposed trail along this side of the development.	5,187,332.2	119.08	0.90	0.96		0.09	0.36	5,187,332	0.09	0.36	530.00	300.00	3811.00	4041.00	0.089	20.22	2.940	5.000	1.7	39.5	59.8	1.6	17.1	2.7	115.2	21.4	97.6
West Fork Jimmy Camp Creek / WF-2	Located at south end of study area.	921,440.7	21.15	0.90	0.96		0.09	0.36	921,441	0.09	0.36	300.00	300.00	1014.00	1014.00	0.080	15.74	6.114	5.000	2.5	6.8	22.6	2.8	5.4	4.8	36.5	5.5	31.1
Marksheffel Tributary to Jimmy Camp Creek / MKT-1	Located at northeast corner of Trails at Aspen Ridge PUD	314,083.1	7.21	0.90	0.96		0.09	0.36	314,083	0.09	0.36	300.00	300.00	1125.00	1125.00	0.056	17.74	3.000	5.000	1.7	10.8	28.6	2.5	1.6	4.2	10.9		ĺ
	The state of the s																											
EXISTING CONDITIONS - DESIGN POINTS	INCLUDED SUB-BASINS																											
BJR-1	BJR-1	1,739,574.1	39.94	0.90	0.96	0.00	0.09	0.36	1,739,574	0.09	0.36	709.00	300.00	2094.00	2503.00	0.052	27.91	3.599	5.000	1.9	22.3	50.2	1.8	6.4	3.0	43.2		
BJR-2	BJR-2	385,700.5	8.85	0.90	0.96		0.09	0.36	385,701	0.09	0.36	300.00	300.00	760.00	760.00	0.040	19.84	5.014	5.000	2.2	5.7	25.5	2.7	2.1	4.5	14.3		
TO BIG JOHNSON RESERVOIR	BJR-1 & BJR-2 (Basins are parallel so this is a sum of BJR-1 & BJR-2.)	2,125,274.6	48.79	0.90	0.96	0.00	0.09	0.36	2,125,275	0.09	0.36	709.00	300.00	2854.00	3263.00	0.052	27.91	5.014	5.000					8.6		57.5		
OS-1	OS-1 (Note: 7.3 Acres diverted by CDOT from Big Johnson)	853,953.7	19.60	0.90	0.96	42031.00	0.09	0.36	811,923	0.13	0.39	621.00		2146.00		0.106	19.79	2.470	5.000	1.5	26.5	46.3	1.9	4.8	3.1	24.1	11.8	47.4
WF-1 (SWMM WF-East)	WF-1 & OS-1	6,041,285.9	138.69	0.90	0.96	42031.00	0.09	0.36	5,999,255	0.10	0.36	621.00	300.00	5957.00	6278.00	0.106	20.49	2.771	5.000	1.6	63.7	84.2	1.3	16.9	2.1	108.1	33.2	139.1
WF-2	WF-2	921,440.7	21.15	0.90	0.96	0.00	0.09	0.36	921,441	0.09	0.36	300.00	300.00	1014.00	1014.00	0.080	15.74	6.114	5.000	2.5	6.8	22.6	2.8	5.4	4.8	36.5	5.5	31.1
TO WEST FORK JIMMY CAMP CREEK	WF-1, WF-2, & OS-1 (Basins are parallel so this is a sum of WF- 1 & WF-2.)	6,962,726.5	159.84	0.90	0.96	42031.00	0.09	0.36	6,920,696	0.09	0.36		0.00		0.00		#DIV/0!		5.000					22.3		144.6	37.0	170.0
MKT-1 TO MARKSHEFFEL TRIBUTARY TO JIMMY CAMP CREEK	MKT-1	314,083.1	7.21	0.90	0.96	0.00	0.09	0.36	314,083	0.09	0.36	300.00	300.00	1125.00	1125.00	0.056	17.74	3.000	5.000	1.7	10.8	28.6	2.5	1.6	4.2	10.9		

Note: -SWMM values are listed for the West Fork Jimmy Camp Creek Basin due to the required analysis of pond in series for that basin.

 Project Loane:
 Trails at Aspen Rige PUDSP

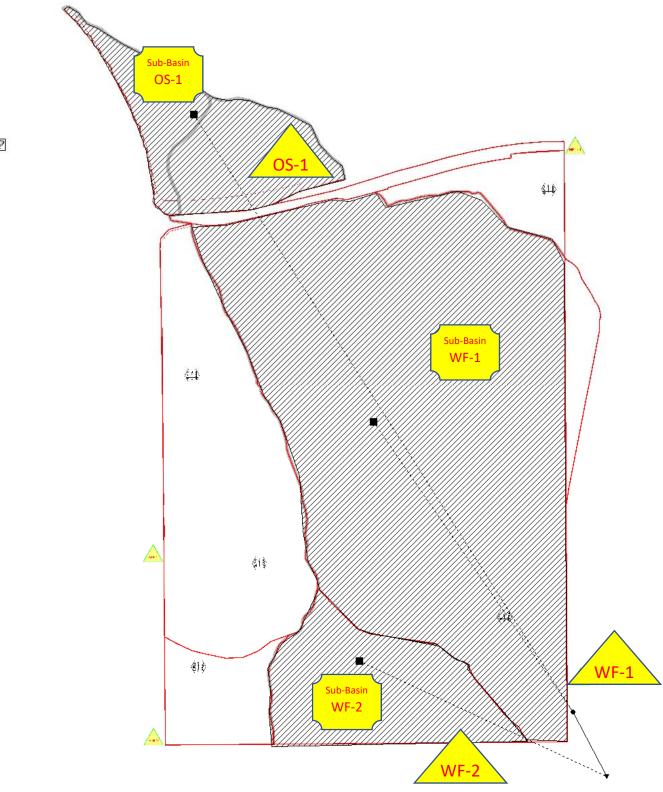
 Project Location:
 El Paso County, CO

 Designer
 JTS

 Proposed County
 Proposed County

age Channel Velocity 4 ft/s (If specific channel vel is used, this will be ignored)
age Slope for Initial Flow 0.04 ft/ft (If Elevations are used, this will be ignored)

Channel Flow Type Key
Heavy Meadow 2
Tillage/Field 3
Short Pasture and Lawns 4
Nearly Bare Ground 5
Grassed Waterway 6
Paved Areas 7


		Ar	ea						Ration	nal 'C' Valu	es									Flo	w Lengths								Tc	Rainfall	I Intensity 8	& Rational F	low Rate	SWMN	1 Values
Sub-basin	Comments				Surface Type dential 1/8 or less	(65% Imp.)		Surface Type Pavement (100% Imp	e 2 ! .)	Si Pi	urface Type ark (7% Imp	.)		Surface Typ developed (2 ^s	% Imp.)			Percent Impervious	Initial	True Initial	Channel	True Channel	(decimal)	miliai	Average (%)	Channel Flow Type (See Key above)	Velocity	Channel	Total	i5	Q5	i100	Q100	Q5	Q100 cfs
West Fork-Jimmy Camp Creek OS-1	- The most northwestern portion of this basin (7.268 Acres) outside of the proposed Trails at Aspen Ridge development was rerouted out of the Big Johnson Reservoir basin by CDOT construction of Powers Boulevard and Bradley Road. Future development of the rerouted area will require routing the flows back to the Big Johnson Reservoir to return the area to compliance with the relevant DBPS studies.	sf 853,954	19.60		0.59	Area (SF)	0.90	0.96	Area (SF)	0.12	0.39		0.09	0.36		0.09			780.00	300.00	300.00	Length ft 780.00	0.10	23.57	1.40	Ground Type	1.2	Tc (min)	34.6	in/hr 2.23	4.0	in/hr 3.75	26.7	1.1	16.2
OS-East Side	-Offsite basin east of property boundary	180,740	4.15	0.45	0.59		0.90	0.96		0.12	0.39		0.09	0.36	180740	0.09	0.36	2.00	1099.00	300.00	314.00	1113.00	0.07	31.51	2.00	2	0.4	52.5	84.0	1.27	0.5	2.13	3.2		
A	-Drainage area is upstream of two pairs of inlets near roundabout at intersection of Frontside Dr. and Legacy DrDevelopment of adjacent commercial lots will require FDR and onsite detentionNote: The Commercial development will have 95% impervious (per DCM), but since it is required to detain prior to discharging to storm sewer the C values reflect undeveloped commercial areas.	204.000	18.47	0.45	0.59	22315	0.90	0.96	78609	0.12	0.39		0.09	0.36	703698	0.18	0.42	13.32	861.00	300.00	869.00	1430.00	0.06	26.77	1.10	7	2.1	11.4	38.1	2.10	7.0	3.54	28.0	5.0	34.6
В	- At grade inlet approximately 400 feet downstream of roundabout.	46,101	1.06	0.45	0.59	46101	0.90	0.96		0.12	0.39		0.09	0.36		0.45	0.59	65.00	185.00	185.00	400.00	400.00	0.04	9.86	3.40	7	3.7	1.8	11.7	3.86	1.9	6.48	4.1	2.5	7.0
с	Includes the area north of Moose Meadow Street and between Beartrack Point and Sidewinder Drive and four pairs of sump inlets	643,556	14.77	0.45	0.59	622522	0.90	0.96	21034	0.12	0.39		0.09	0.36		0.46	0.60	66.14	162.00	162.00	822.00	822.00	0.05	8.51	3.29	7	3.6	3.8	12.3	3.77	26.1	6.34	56.8	19.5	58.9
D	-drainage area upstream of at grade inlet approximately 575 feet south of Moose Meadow Street. -impervious area updated this report	96,065	2.21	0.45	0.59	33394	0.90	0.96	14,978	0.12	0.39	47693	0.09	0.36		0.36	0.55	41.66	473.00	300.00	555.00	728.00	0.06	16.02	4.00	7	4.0	3.0	19.1	3.09	2.4	5.19	6.3	4.1	14.2
E	- Located at a pair of sump inlets at the intersection of Sunday Gulch and Falling Rock Drive. -impervious area updated this report	373,189	8.57	0.45	0.59	234111	0.90	0.96	40601	0.12	0.39	98477	0.09	0.36		0.41	0.58	53.50	859.00	300.00	1450.00	2009.00	0.07	18.98	4.00	7	4.0	8.4	27.3	2.55	9.1	4.29	21.4	12.8	39.1
F	-Represents area captured by at grade inlets on Lazy Ridge Drive and Wagon Hammer Drive, as well as sump inlets west of the intersection of Lookout Court and Sunday Gulch.	569,234	13.07	0.45	0.59	569234	0.90	0.96		0.12	0.39		0.09	0.36		0.45	0.59	65.00	332.00	300.00	868.00	900.00	0.07	11.14	2.00	7	2.8	5.3	16.4	3.32	19.7	5.57	43.3	15.4	46.2
G	-At grade inlet on the east side of Sunday Gulch near intersection with Lookout Court.	48,227	1.11	0.45	0.59	48227	0.90	0.96		0.12	0.39		0.09	0.36		0.45	0.59	65.00	80.00	80.00	667.00	667.00	0.05	6.12	2.45	7	3.1	3.6	9.7	4.15	2.1	6.97	4.6	2.1	6.1
н	-This represents the area draining to Buffalo Horn Drive with the exception any flow by from the at grade inlets in Sub- basin F.	1,037,644	23.82	0.45	0.59	936581	0.90	0.96	39,492	0.12	0.39	61571	0.09	0.36		0.45	0.59	62.89	250.00	250.00	1074.00	1074.00	0.04	11.70	2.00	7	2.8	6.3	18.0	3.17	34.1	5.33	75.8	26.8	80.4

		Are		I					Dations	al 'C' Value	•						-			Elou	v Lenaths								- Poin	all Intensity	& Rational	Flour Pate	SWMM Values
		Are	ea		Surface Type	4		Surface Type			rface Type 3			Surface Type	. 4		-									Channel Flow			c Rain	all intensity	& Rational	low Rate	SWIMIW Values
Sub-basin	Comments			Reside	ntial 1/8 or less (Pavement (100% lmp.			rk (7% lmp.)			eveloped (2%		Comp		ercent	Initial	True Initial	Channel	True Channe	(decimal)	Initial	Average (%)	Type (See Key above)	Velocity	Channel To	tal i5	Q5	i100	Q100	Q5 Q100
		sf	acres	C5	C100	Area (SF)	C5		Area (SF)	C5	C100	Area	C5	C100	Area	C5	C100		ft	Length ft	ft	Length ft	Slope	Tc (min)	Slope	(See Key above) Ground Type	(ft/s)	Tc (min) (m	in) in/hr	cfs	in/hr	cfs	Q5 Q100 cfs cfs
ı	-Represents area draining to the proposed sump inlet at the end of the cul- de-sac on Falling Rock Drive.	344,236	7.90	0.45	0.59	292758	0.90	0.96	31104	0.12	0.39	20374	0.09	0.36		0.47	0.61	64.73	153.00	153.00	1104.00	1104.00	0.05	8.19	2.61	7	3.2	5.7 1:	.9 3.58	13.4	6.02	29.3	10.5 31.8
J	-Represents drainage area tributary to sump inlets near intersection of Redshirt Point and Big Johnson Drive.	399,107	9.16	0.45	0.59	399107	0.90	0.96	0	0.12	0.39		0.09	0.36		0.45	0.59	65.00	266.00	266.00	909.00	909.00	0.09	9.17	3.20	7	3.6	4.2 1:	.4 3.64	15.1	6.12	33.3	11.1 32.7
к	-This sub-basin is tributary to the future sump inlets near the intersection of Big Johnson Drive and Roundhouse Drive.	1,162,761	26.69	0.45	0.59	1162761	0.90	0.96		0.12	0.39		0.09	0.36		0.45	0.59	65.00	400.00	300.00	1400.00	1500.00	0.06	13.26	3.50	7	3.7	6.7	.9 3.02	36.6	5.07	80.5	33.3 101.7
Marksheffel Tributary to Jimmy Camp Creek L	-Represents entire drainage area to the Northeast Pond.	390,524	8.97	0.45	0.59	347721	0.90	0.96		0.12	0.39	42803	0.09	0.36		0.41	0.57	58.64	290.00	290.00	490.00	490.00	0.05	12.30	5.40	7	4.6	1.8 1	.1 3.57	13.3	5.99	30.8	
West Fork-Jimmy Camp Creek M	Drainage area in and around East Full Spectrum Detention Pond	447,971	10.29	0.45	0.59		0.90	0.96		0.12	0.39	447971	0.09	0.36		0.12	0.39	7.00	437.00	300.00	10.00	147.00	0.06	20.29	1.00	7	2.0	1.2 2	.5 2.90	3.6	4.88	19.7	14.2 61.8
<u>Big Johnson Reservoir</u> N	-Represents area upstream of sump inlets near intersection of Natural Bridge Trail and Blue Miner Street.	599,560	13.76	0.45	0.59	599560	0.90	0.96		0.12	0.39		0.09	0.36		0.45	0.59	65.00	150.00	150.00	1229.00	1229.00	0.03	9.94	2.50	7	3.2	6.5	.4 3.32	20.7	5.58	45.7	
o	-Represents area upstream of sump inlet at intersection of Rainy Creek Trail and Triple Tree Loop	495,217	11.37	0.45	0.59	510,492	0.90	0.96	0	0.12	0.39	0	0.09	0.36	0	0.46	0.61	67.00	104.00	104.00	1230.00	1230.00	0.02	9.27	1.40	7	2.4	8.7	3.18	16.9	5.35	37.3	
P1	-Drainage area in and east of the West Pond.	278,663	6.40	0.45	0.59		0.90	0.96	70,884	0.12	0.39	207779		0.36		0.32				300.00	378.00	638.00	0.06	18.32	2.00	7	2.8	3.8 2		5.9	4.81	16.6	
P2	-Drainage area west of the West Pond.	82,098	1.88	0.45	0.59		0.90	0.96		0.12	0.39		0.09	0.36	82098	0.09	0.36	2.00	560.00	300.00	378.00	638.00	0.06	23.68	2.00	7	2.8	3.8 2	.4 2.55	0.4	4.28	2.9	
q	-This area is infeasible to detain and discharges to the Powers Boulevard Ditch Less than one acre (0.31 Acres) of developed area is within the Big Johnson Reservoir Basin, therefore, compliance with the county's MS4 permit is maintained.	106,017	2.43	0.45	0.59	38,063	0.90	0.96	0	0.12	0.39	67,954	0.09	0.36	0	0.24	0.46 2	27.82	143.00	143.00	687.00	687.00	0.06	10.04	3.35	4	1.3	9.0 1	.0 3.09	1.8	5.19	5.9	
R	-This area is infeasible to detain and discharges to the swale at the southeast corner of the property. -Less than one acre (0.67 Acres) of developed area is within the West Fork Jimmy Campr Creek Basin, therefore, compliance with the county's MS4 permit is maintained.	81,300	1.87	0.45	0.59		0.90	0.96		0.12	0.39	81300	0.09	0.36		0.12	0.39	7.00	21.00	21.00	220.00	220.00	0.33	2.52	10.00	5	3.2	1.2 5	0 5.10	1.2	8.58	6.3	1.7 7.8
OS-2	Commercially zoned lot just southeast of the intersection of Bradley and Powers. This area will be required to provide its own detention which must discharge to the Powers Boulevard Ditch.		11.44	0.45	0.59		0.90	0.96		0.12	0.39		0.09	0.36	498467	0.09	0.36	2.00	971.00	300.00	1411.00	2082.00	0.04	34.50	2.83	5	1.7	20.7 5	.2 1.67	1.7	2.81	11.7	

		Are	ea						Ration	al 'C' Value	s									Flov	w Lengths								Tc	Rainfall I	Intensity &	Rational F	low Rate	SWMM Values
PROPOSED CONDITIONS - DESIGN POINTS	Included Sub-basins			Reside	Surface Type ential 1/8 or less			Surface Type Pavement (100% Imp	2	Su	rface Type : ark (7% Imp.			Surface Typ eveloped (2°		Com	posite	Percent Impervious	Initial	True Initial	Channel	True Channe	Average (decimal)		Average (%)	Channel Flow Type (See Key above)	Velocity	Channel	Total	i5	Q5	i100	Q100	Q5 Q10
		sf	acres	C5	C100	Area (SF)	C5	C100	Area (SF)	C5	C100	Area	C5	C100	Area	C5	C100		ft	Length ft	ft	Length ft	Slope	Tc (min)	Slope	Ground Type	(ft/s)	Tc (min)	(min)	in/hr	cfs	in/hr	cfs	cfs cfs
West Fork-Jimmy Camp Creek Basin																																		
OS-1	OS-1	853,954			0.59	0	0.90	0.96	0	0.12	0.39	0		0.36	853954	0.00						780.00		23.57	1.40	5	1.2	11.0			4.0	3.75	26.7	1.1 16.
<u>A</u>		1,658,576		0.45	0.59	22315	0.90	0.96	78609	0.12	0.39	0	0.09	0.36	1557652		0.39		780.00	300.00	1169.00	1649.00	0.10	22.56	1.62	7	2.5	10.9		2.28	11.6	3.82	57.5	4.4 46.3
В		1,704,677			0.59	68416	0.90	0.96	78,609	0.12	0.39	0	0.09	0.36	1557652					300.00	1569.00	2049.00	0.10	22.36	1.96	7	2.8	12.4			12.4	3.74	58.5	6.1 48.
C		2,348,233			0.59	690938	0.90	0.96	99643	0.12	0.39	0	0.09	0.36	1557652	0.20	0.45		780.00	300.00	2391.00		0.10	20.29	2.34	7	3.0	15.8	36.1	2.18		3.66	90.0	25.6 88.
D		2,444,298			0.59	724332	0.90	0.96	114,621	0.12	0.39	47693	0.09	0.36	1557652		0.46				2946.00	3426.00		20.18	2.81	7	3.3	17.1		2.13	28.4	3.59	92.7	28.3 97.
E		2,817,487			0.59	958443	0.90	0.96	155222	0.12	0.39	146170	0.09	0.36	1557652	0.26					4396.00		0.10	19.63	3.17	7	3.5	23.1	42.7	1.96		3.30	101.7	39.5 132
F		569,234			0.59	569234	0.90	0.96	0	0.12	0.39	0	0.09	0.36	0	0.45			332.00		868.00	900.00	0.07	11.14	2.00	7	2.8	5.3		3.32	19.7	5.57	43.3	54.5 172
G		3,434,947			0.59	1575904	0.90	0.96	155222	0.12	0.39	146170	0.09	0.36	1557652				780.00		5931.00		0.10	18.83	2.94	7	3.4	31.4			41.4	2.98	117.1	56.5 178
Н		1,037,644		0.45	0.59	936581	0.90	0.96	39,492	0.12	0.39	61571	0.09	0.36	0	0.45				250.00				11.70	2.00	7	2.8			3.17		5.33	75.9	26.8 80.
J		399,107		0.45	0.59	399107	0.90	0.96	0	0.12	0.39	0	0.09	0.36	0	0.45	0.59				909.00	909.00	0.09	9.17	3.20	7	3.6	4.2	13.4		15.1	6.12	33.3	11.1 32.
K		1,742,608		0.45	0.59	1,561,868	0.90	0.96	0	0.12	0.39	0	0.09	0.36	180,740		0.57		266.00		2409.00	2409.00	0.09	9.70	3.39	7	3.6	11.1			49.2	4.97	113.5	44.2 131
1		2,086,844	47.91	0.45	0.59	1854626	0.90	0.96	31104	0.12	0.39	20374	0.09	0.36	180740	0.42	0.57		266.00	266.00	3613.00	3613.00	0.09	9.56	3.06	7	3.5	17.4	26.9	2.57	52.5	4.32	119.8	54.0 163
M (Into East Pond)	OS-1, OS-East Side, A, B, C, D, E, F, G, J, K, I, H, M	7,007,406	160.87	0.45	0.59	4,367,111	0.90	0.96	225,818	0.12	0.39	676,086	0.09	0.36	1,738,39	2 0.34	0.53	44.90	780.00	300.00	5931.00	6411.00	0.10	17.66	2.86	7	3.3	31.9	49.6	1.79	99.6	3.01	256.2	145.2 462
East Pond Discharge (SWMM)	OS-1, OS-East Side, A, B, C, D, E, F, G, J, K, I, H, M																														5.8		139.5	N/A N/A
R		81.300	1.87	0.45	0.59		0.90	0.96		0.12	0.39	81300	0.09	0.36		0.12	0.39	7.00	21.00	21.00	220.00	220.00	0.33	2.52	10.00	5	3.2	1.2	5.0	5.10	1.2	8.58	6.3	1.7 7.8
Marksheffel Tributary to Jimmy Camp Creek																																		
L	L	390.524	8.97	0.45	0.59	347721	0.90	0.96	0	0.12	0.39	42803	0.09	0.36	0	0.41	0.57	58.64	290.00	290.00	490.00	490.00	0.05	12.30	5.40	7	4.6	1.8	14.1	3.57	13.3	5.99	30.8	
Northeast Pond Discharge	L																													7	0.3		8.0	
Big Johnson Reservoir Basin																																		
N	N	599,560	13.76	0.45	0.59	599560	0.90	0.96	0	0.12	0.39	0	0.09	0.36	0	0.45	0.59		150.00	150.00	1229.00	1229.00	0.03	9.94	2.50	7	3.2	6.5	16.4	3.32	20.7	5.58	45.7	
0	0	510,492	11.72	0.45	0.59	510492	0.90	0.96	0	0.12	0.39	0	0.09	0.36	0	0.45	0.59		104.00	104.00	1230.00	1230.00	0.02	9.47	1.40	7	2.4	8.7	18.1	3.17	16.8	5.32	37.1	
P (Into West Pond)	N, O, P1	1,388,715	31.88	0.45	0.59	1110052	0.90	0.96	70,884	0.12	0.39	207779	0.09	0.36	0	0.42	0.58	58.11	150.00	150.00	2837.00	2837.00	0.03	10.34	2.14	7	2.9	16.3	26.7	2.59	35.2	4.35	80.9	
West Pond Discharge (UD-Detention)	N, O, P1																													7	0.8		23.3	
Q	Q	106,017	2.43	0.45	0.59	38063	0.90	0.96		0.12	0.39	67954	0.09	0.36		0.24	0.46		143.00	143.00	687.00	687.00	0.06	10.04	3.35	4	1.3	9.0	19.0	3.09	1.8	5.19	5.9	
OS-2 (This area is just southeast of the Powers and Bradley intersection. Flows which might have flowed across TAR to the Powers ditch will be diverted to the ditch prior to entering the TAR	OS-2	498,467	11.44	0.45	0.59		0.90	0.96		0.12	0.39		0.09	0.36	498467	0.09	0.36		971.00	300.00	1411.00	2082.00	0.04	34.50	2.83	5	1.7	20.7	55.2	1.67	1.7	2.81	11.7	

Note: Q2, Q5 & Q10 are based on C5; Q25, Q50 & Q100 are based on C100

			SWMM	1 Model 2-F	lour Storm	Inputs				
1-H	lour Depth	0.43	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.14
						-			-	
CO Springs Multiplier	time	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
0	0	0	0	0	0	0	0	0	0	0
0.014	0:05	0.006	0.015	0.017	0.021	0.025	0.028	0.032	0.035	0.044
0.046	0:10	0.020	0.049	0.055	0.069	0.081	0.092	0.104	0.116	0.144
0.079	0:15	0.034	0.085	0.094	0.119	0.138	0.158	0.178	0.199	0.248
0.12	0:20	0.052	0.128	0.143	0.180	0.210	0.240	0.270	0.302	0.377
0.179	0:25	0.077	0.192	0.213	0.269	0.313	0.358	0.403	0.451	0.562
0.258	0:30	0.111	0.276	0.307	0.387	0.452	0.516	0.581	0.650	0.810
0.421	0:35	0.181	0.450	0.501	0.632	0.737	0.842	0.947	1.061	1.322
0.712	0:40	0.306	0.762	0.847	1.068	1.246	1.424	1.602	1.794	2.236
0.824	0:45	0.354	0.882	0.981	1.236	1.442	1.648	1.854	2.076	2.587
0.892	0:50	0.384	0.954	1.061	1.338	1.561	1.784	2.007	2.248	2.801
0.935	0:55	0.402	1.000	1.113	1.403	1.636	1.870	2.104	2.356	2.936
0.972	1:00	0.418	1.040	1.157	1.458	1.701	1.944	2.187	2.449	3.052
1.004	1:05	0.432	1.074	1.195	1.506	1.757	2.008	2.259	2.530	3.153
1.018	1:10	0.438	1.089	1.211	1.527	1.782	2.036	2.291	2.565	3.197
1.03	1:15	0.443	1.102	1.226	1.545	1.803	2.060	2.318	2.596	3.234
1.041	1:20	0.448	1.114	1.239	1.562	1.822	2.082	2.342	2.623	3.269
1.052	1:25	0.452	1.126	1.252	1.578	1.841	2.104	2.367	2.651	3.303
1.063	1:30	0.457	1.137	1.265	1.595	1.860	2.126	2.392	2.679	3.338
1.072	1:35	0.461	1.147	1.276	1.608	1.876	2.144	2.412	2.701	3.366
1.082	1:40	0.465	1.158	1.288	1.623	1.894	2.164	2.435	2.727	3.397
1.091	1:45	0.469	1.167	1.298	1.637	1.909	2.182	2.455	2.749	3.426
1.1	1:50	0.473	1.177	1.309	1.650	1.925	2.200	2.475	2.772	3.454
1.109	1:55	0.477	1.187	1.320	1.664	1.941	2.218	2.495	2.795	3.482
1.119	2:00	0.481	1.197	1.332	1.679	1.958	2.238	2.518	2.820	3.514

EPA SWMM 5.1 UNDEVELOPED MODEL

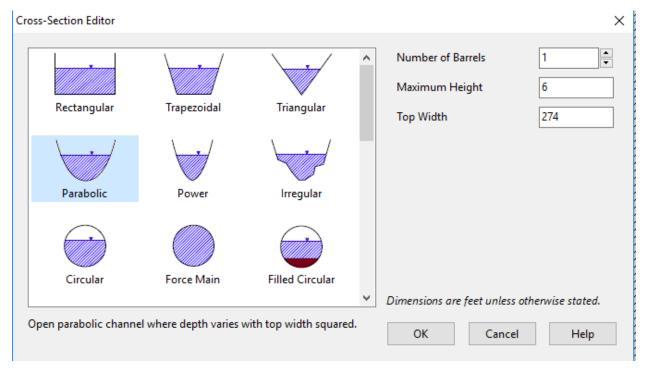
Project Data		
Data Category	Option	Value
[TITLE]	FLOW_UNITS	CFS
[OPTIONS]	INFILTRATION	HORTON
[EVAPORATION]	FLOW_ROUTING	KINWAVE
[RAINGAGES]	LINK_OFFSETS	DEPTH

Project Data									
Data Category	Name	Rain Gage	Outlet	Area	%Imperv	Width	%Slope	CurbLen	SnowPack
[TITLE]	OS-1	RAIN_EVENT	WF-East	19.6	6.83	346	10.7	0	
[OPTIONS]	WF-1	RAIN_EVENT	WF-East	119.08	2	1283	2.5	0	
[EVAPORATION]	WF-2	RAIN_EVENT	WF-Overall	21.15	2	310	6	0	
[RAINGAGES]									
(SUBCATCHMENTS)									

Data Category	Subcatchment	N-Imperv	N-Perv	S-Imperv	S-Perv	PctZero	RouteTo
[TITLE]	OS-1	0.013	.15	0.05	0.05	25	OUTLET
[OPTIONS]	WF-1	0.013	.15	0.05	0.05	25	OUTLET
[EVAPORATION]	WF-2	0.013	.15	0.05	0.05	25	OUTLET
[RAINGAGES]							
[SUBCATCHMENTS]							
[SUBAREAS]							

Data Category	Subcatchment	MaxRate	MinRate	Decay	DryTime	MaxInfil
[TITLE]	OS-1	3.0	0.5	6.48	7	0
[OPTIONS]	WF-1	3.0	0.5	6.48	7	0
[EVAPORATION] [RAINGAGES]	WF-2	3.0	0.5	6.48	7	0
SUBCATCHMENTS]						
[SUBAREAS] [INFILTRATION]						

Rain Gage RAIN_EVENT


Property	Value
Name	RAIN_EVENT
X-Coordinate	1248.217
Y-Coordinate	7631.954
Description	
Tag	
Rain Format	CUMULATIVE
Time Interval	0:05
Snow Catch Factor	1.0
Data Source	TIMESERIES
TIME SERIES:	
- Series Name	TS-5
DATA FILE:	
- File Name	*
- Station ID	*
- Rain Units	IN

Junction WF-East

x

Property	Value
Name	WF-East
X-Coordinate	7754.663
Y-Coordinate	1205.165
Description	
Tag	
Inflows	NO
Treatment	NO
Invert El.	5814
Max. Depth	10
Initial Depth	0
Surcharge Depth	0
Ponded Area	0

Conduit 1	x
Property	Value
Name	1
Inlet Node	WF-East
Outlet Node	WF-Overall
Description	
Tag	
Shape	PARABOLIC
Max. Depth	6
Length	400
Roughness	0.01
Inlet Offset	0
Outlet Offset	0
Initial Flow	0
Maximum Flow	0
Entry Loss Coeff.	0
Exit Loss Coeff.	0
Avg. Loss Coeff.	0
Seepage Loss Rate	0
Flap Gate	NO
Culvert Code	

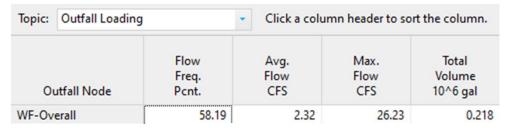
Property	Value
Name	WF-Overall
X-Coordinate	8138.374
Y-Coordinate	470.756
Description	
Tag	
Inflows	NO
Treatment	NO
Invert El.	5812
Tide Gate	NO
Route To	
Туре	FREE
Fixed Outfall	
Fixed Stage	0
Tidal Outfall	
Curve Name	*
Time Series Outfall	
Series Name	*

SWMM OUTPUT TABLES PRE-DEVELOPMENT CONDITIONS

WQCV Storm

Topic: Subcatchment	Runoff	Click a colun	nn header to sort	the column.						
Subcatchment	Total Precip in	Total Runon in	Total Evap in	Total Infil in	Imperv Runoff in	Perv Runoff in	Total Runoff in	Total Runoff 10^6 gal	Peak Runoff CFS	Runoff Coeff
OS-1	1.04	0.00	0.00	0.92	0.07	0.05	0.12	0.06	11.02	0.116
WF-1	1.04	0.00	0.00	1.01	0.02	0.02	0.04	0.12	19.78	0.036
WF-2	1.04	0.00	0.00	0.99	0.02	0.03	0.05	0.03	4.81	0.052

Topic: Node Inflov	V	▼ Click a colu	ımn header to so	rt the column.				
Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal	Flow Balance Error Percent
WF-East	JUNCTION	30.80	30.80	0	01:35	0.186	0.186	0.000
WF-Overall	OUTFALL	4.81	26.23	0	01:38	0.0311	0.218	0.000


Node Inflow

Topic:	Node Depth -		 Click a colu 	Click a column header to sort the column.							
	Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Day of Maximum Depth	Hour of Maximum Depth	Maximum Reported Depth Feet			
WF-East	t	JUNCTION	0.05	0.45	5814.45	0	01:35	0.23			
WF-Ove	erall	OUTFALL	0.05	0.40	5812.40	0	01:39	0.28			

Node Depth

Topic:	Link Flow		▼ Click a colu	Click a column header to sort the column.							
	Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec	Max / Full Flow	Max / Full Depth			
1		CONDUIT	23.23	0	01:39	1.58	0.00	0.06			

Link Flow

EURV Storm

Topic: Subcatchment	Runoff	Click a colun	nn header to sort	the column.	lumn.							
Subcatchment	Total Precip in	Total Runon in	Total Evap in	Total Infil in	Imperv Runoff in	Perv Runoff in	Total Runoff in	Total Runoff 10^6 gal	Peak Runoff CFS	Runoff Coeff		
OS-1	1.20	0.00	0.00	1.05	0.08	0.06	0.14	0.08	6.65	0.120		
WF-1	1.20	0.00	0.00	1.15	0.02	0.02	0.05	0.15	11.89	0.039		
WF-2	1.20	0.00	0.00	1.13	0.02	0.04	0.07	0.04	2.69	0.057		

Topic: Node Inflov	V	Click a column header to sort the column.								
Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal	Flow Balance Error Percent		
WF-East	JUNCTION	18.54	18.54	0	00:45	0.228	0.228	0.000		
WF-Overall	OUTFALL	2.69	17.79	0	00:49	0.0391	0.268	0.000		

Node Inflow

Topic: Node Dept	Node Depth		Click a column header to sort the column.								
Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Day of Maximum Depth	Hour of Maximum Depth	Maximum Reported Depth Feet				
WF-East	JUNCTION	0.06	0.36	5814.36	0	00:45	0.35				
WF-Overall	OUTFALL	0.06	0.33	5812.33	0	00:49	0.27				

Node Depth

Topic:	Link Flow		▼ Click a	Click a column header to sort the column.								
	Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec	Max / Full Flow	Max / Full Depth				
1		CONDUIT	15.	56 0	00:49	1.19	0.00	0.05				

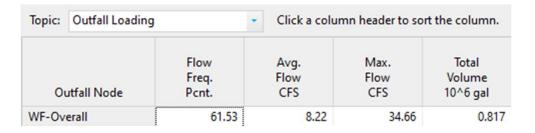
Link Flow

Topic: Outfall Loading)	*	Click a colun	nn header to sor	t the column.
Outfall Node	Flow Freq. Pcnt.		Avg. Flow CFS	Max. Flow CFS	Total Volume 10^6 gal
WF-Overall	58.06		2.85	17.79	0.268

5-Year Storm

Topic: Subcatchment	Runoff	Click a colun	Click a column header to sort the column.								
Subcatchment	Total Precip in	Total Runon in	Total Evap in	Total Infil in	Imperv Runoff in	Perv Runoff in	Total Runoff in	Total Runoff 10^6 gal	Peak Runoff CFS	Runoff Coeff	
OS-1	1.66	0.00	0.00	1.29	0.11	0.26	0.37	0.20	11.85	0.223	
WF-1	1.66	0.00	0.00	1.51	0.03	0.12	0.15	0.49	21.39	0.091	
WF-2	1.66	0.00	0.00	1.42	0.03	0.20	0.23	0.13	5.54	0.141	

Topic:	Node Inflow -		 Click a colu 	Click a column header to sort the column.								
	Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal	Flow Balance Error Percent			
WF-Eas	t	JUNCTION	33.24	33.24	0	00:45	0.682	0.682	0.000			
WF-Ove	erall	OUTFALL	5.54	34.66	0	00:50	0.134	0.817	0.000			


Node Inflow

Topic: Node D	epth	Click a column header to sort the column.								
Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Day of Maximum Depth	Hour of Maximum Depth	Maximum Reported Depth Feet			
WF-East	JUNCTION	0.11	0.47	5814.47	0	00:45	0.46			
WF-Overall	OUTFALL	0.10	0.44	5812.44	0	00:50	0.41			

Node Depth

Topic:	ic: Link Flow Click a column header to sort the column.								
	Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec	Max / Full Flow	Max / Full Depth	
1		CONDUIT	29.26	0	00:50	1.37	0.00	0.07	

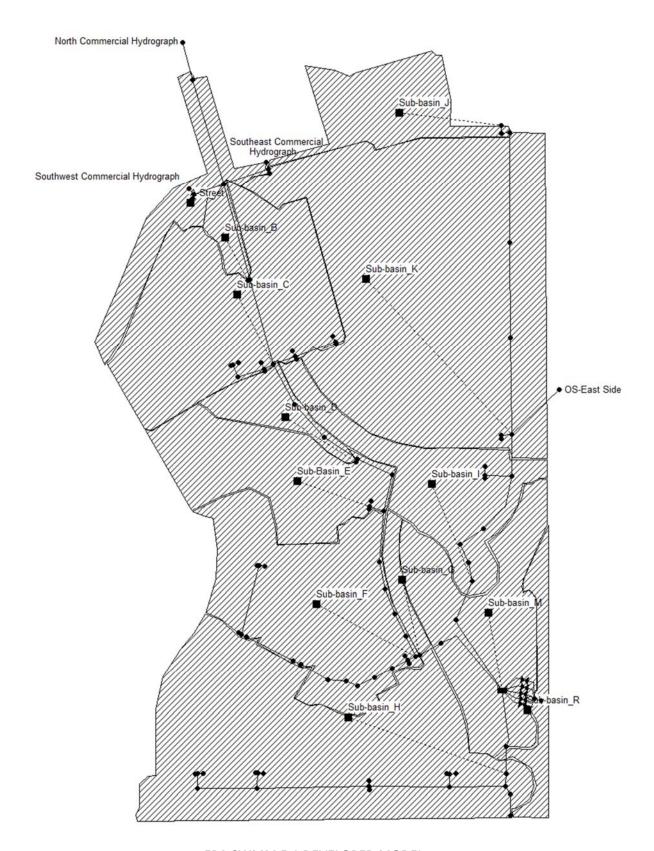
Link Flow

100-Year Storm

Topic: Subcatchmen	t Runoff	 Click a colun 	Click a column header to sort the column.								
Subcatchment	Total Precip in	Total Runon in	Total Evap in	Total Infil in	Imperv Runoff in	Perv Runoff in	Total Runoff in	Total Runoff 10^6 gal	Peak Runoff CFS	Runoff Coeff	
OS-1	3.51	0.00	0.00	1.67	0.24	1.61	1.85	0.98	47.41	0.525	
WF-1	3.51	0.00	0.00	2.32	0.07	1.12	1.19	3.85	97.65	0.339	
WF-2	3.51	0.00	0.00	1.97	0.07	1.48	1.55	0.89	31.10	0.440	

Topic: Node Inflow	V	 Click a colu 	mn header to so	rt the column.				
Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal	Flow Balance Error Percent
WF-East	JUNCTION	139.24	139.24	0	00:55	4.84	4.84	0.000
WF-Overall	OUTFALL	31.10	169.80	0	00:56	0.887	5.73	0.000

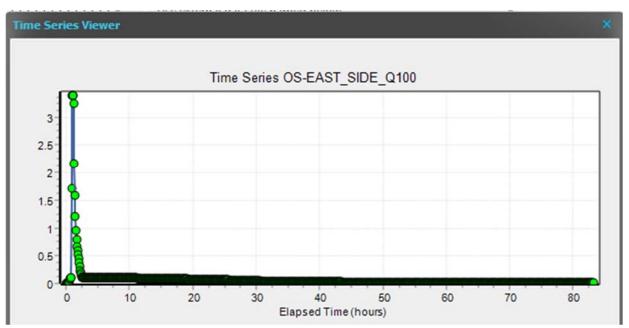

Node Inflow

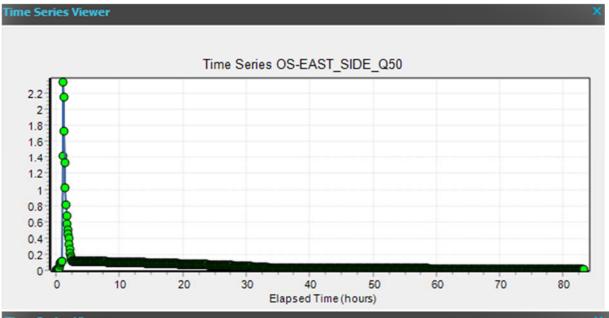

Topic: No	de Depth	 Click a c 	Click a column header to sort the column.				
No	de Type	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Day of Maximum Depth	Hour of Maximum Depth	Maximum Reported Depth Feet
WF-East	JUNCTION	0.3	0.91	5814.91	0	00:55	0.90
WF-Overall	OUTFALL	0.3	0.91	5812.91	0	00:56	0.90

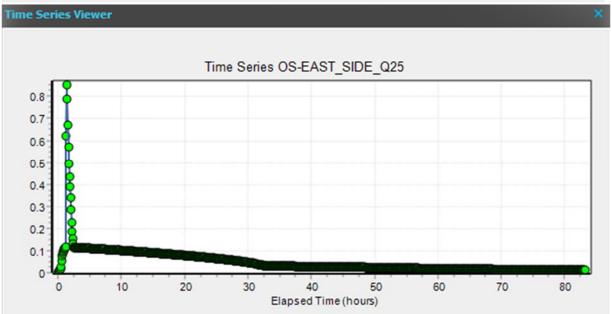
Node Depth

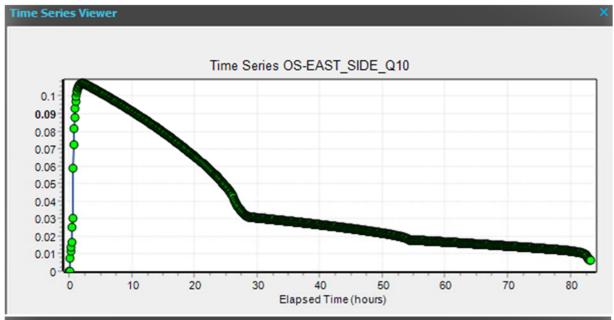
Topic:	Link Flow		▼ Click a colu	ımn header to so	rt the column.			
	Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec	Max / Full Flow	Max / Full Depth
1		CONDUIT	138.93	0	00:56	2.16	0.02	0.15

Link Flow

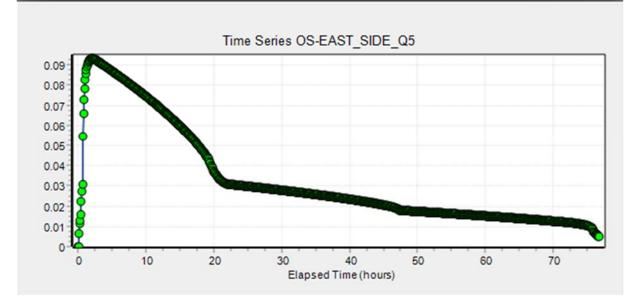

EPA SWMM 5.1 DEVELOPED MODEL

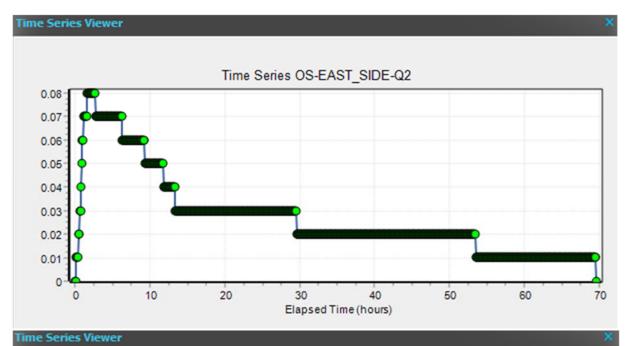

Project Data		
Data Category	Option	Value
[TITLE]	FLOW_UNITS	CFS
[OPTIONS]	INFILTRATION	HORTON
[EVAPORATION]	FLOW_ROUTING	DYNWAVE
[RAINGAGES]	LINK_OFFSETS	DEPTH

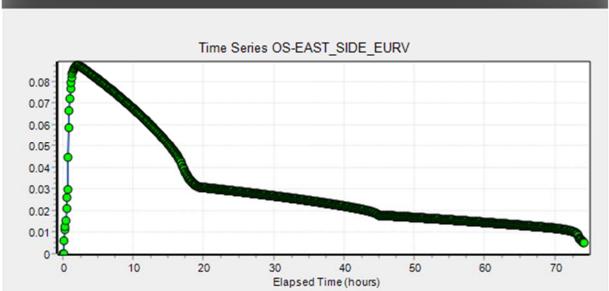

Data Category	Name	Rain Gage	Outlet	Area	%Imperv	Width	%Slope	CurbLen	SnowPack
[TITLE]	A-Street	Rain_Gage	MH - 3 (STM-JC)	4.0	95	16	1	0	
[OPTIONS]	Sub-basin_J	Rain_Gage	MH - 27 (STM-JC)	9.2	65	50	3.2	0	
[EVAPORATION]	Sub-basin_B	Rain_Gage	INLET 1-B (STM-JO	1.06	65	15	3.4	0	
[RAINGAGES]	Sub-basin_C	Rain_Gage	MH - 6 (STM-JC)	14.8	66.1	74	3.29	0	
[SUBCATCHMENTS]	Sub-basin_D	Rain_Gage	INLET 1-D (STM-JO	2.21	41.66	132	4	0	
[SUBAREAS]	Sub-Basin_E	Rain_Gage	MH - 15 (STM-JC)	8.57	53.5	186	4	0	
[INFILTRATION]	Sub-basin_F	Rain_Gage	MH - 20 (STM-JC)	13.07	65	70	2	0	
[JUNCTIONS]	Sub-basin_G	Rain_Gage	INLET 1-G (STM-JC	2) 1.11	65	12	2.45	0	
[OUTFALLS]	Sub-basin_I	Rain_Gage	INLET 5-I (STM-JC	7.9	64.73	45	2.61	0	
[STORAGE]	Sub-basin_K	Rain_Gage	MH - 30 (STM-JC)	26.7	65	105	3.5	0	
[CONDUITS]	Sub-basin_M	Rain_Gage	East_Pond	10.29	7	1700	1	0	
[ORIFICES]	Sub-basin_H	Rain_Gage	INLET 11-H (STM-J	JC) 23.82	62.9	122	2	0	
[WEIRS] [XSECTIONS]	Sub-basin_R	Rain_Gage	WF-JCC_Outfall	1.87	7	50	10	0	

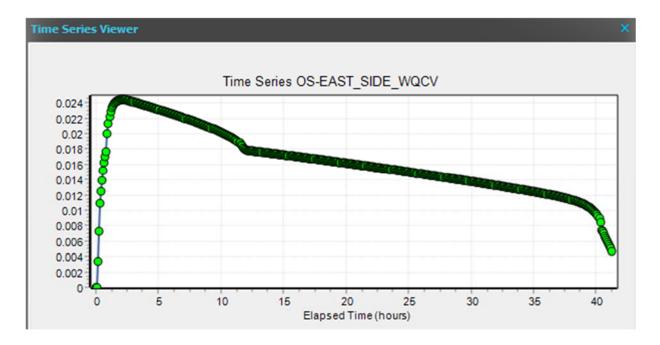

Project Data							
Data Category	Subcatchment	N-Imperv	N-Perv	S-Imperv	S-Perv	PctZero	RouteTo
[TITLE]	A-Street	.013	.092	.05	.05	25	OUTLET
[OPTIONS]	Sub-basin_J	.013	.092	.05	.05	25	OUTLET
[EVAPORATION]	Sub-basin_B	.013	.092	.05	.05	25	OUTLET
[RAINGAGES]	Sub-basin_C	.013	.092	.05	.05	25	OUTLET
[SUBCATCHMENTS]	Sub-basin_D	.013	.092	.05	.05	25	OUTLET
[SUBAREAS]	Sub-Basin_E	.013	.092	.05	.05	25	OUTLET
[INFILTRATION]	Sub-basin_F	.013	.092	.05	.05	25	OUTLET
[JUNCTIONS]	Sub-basin_G	.013	.092	.05	.05	25	OUTLET
[OUTFALLS]	Sub-basin_I	.013	.092	.05	.05	25	OUTLET
[STORAGE]	Sub-basin_K	.013	.092	.05	.05	25	OUTLET
[CONDUITS]	Sub-basin_M	.013	.092	.05	.05	25	OUTLET
[ORIFICES]	Sub-basin_H	.013	.092	.05	.05	25	OUTLET
[WEIKS]	Subbasin_R	.013	.092	.05	.05	25	OUTLET

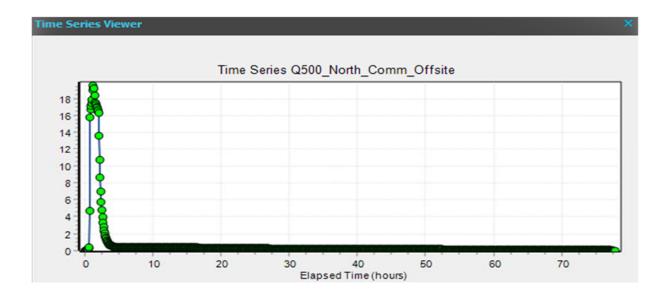
🤁 Project Data						
Data Category	Subcatchment	MaxRate	MinRate	Decay	DryTime	MaxInfil
[TITLE]	A-Street	3.0	0.5	6.48	7	0
[OPTIONS]	Sub-basin_J	3.0	0.5	6.48	7	0
[EVAPORATION]	Sub-basin_B	3.0	0.5	6.48	7	0
[RAINGAGES]	Sub-basin_C	3.0	0.5	6.48	7	0
[SUBCATCHMENTS]	Sub-basin_D	3.0	0.5	6.48	7	0
[SUBAREAS]	Sub-Basin_E	3.0	0.5	6.48	7	0
[INFILTRATION]	Sub-basin_F	3.0	0.5	6.48	7	0
[JUNCTIONS]	Sub-basin_G	3.0	0.5	6.48	7	0
[OUTFALLS]	Sub-basin_I	3.0	0.5	6.48	7	0
[STORAGE]	Sub-basin_K	3.0	0.5	6.48	7	0
[CONDUITS]	Sub-basin_M	3.0	0.5	6.48	7	0
[ORIFICES]	Sub-basin_H	3.0	0.5	6.48	7	0
[WEIRS]	Subbasin_R	3.0	0.5	6.48	7	0

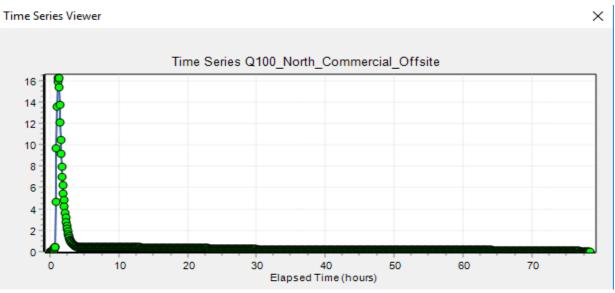


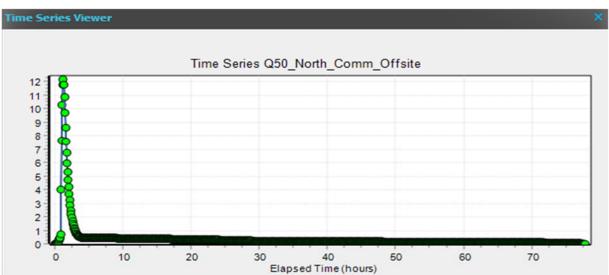


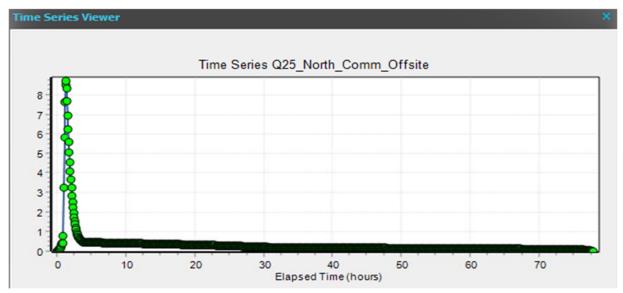


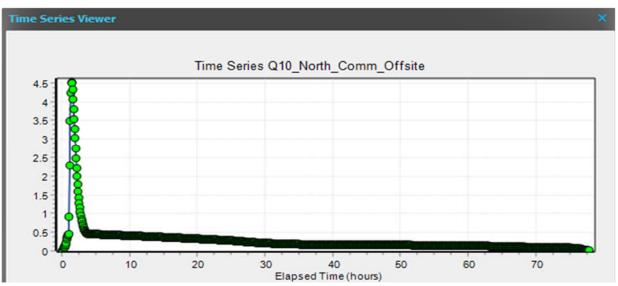


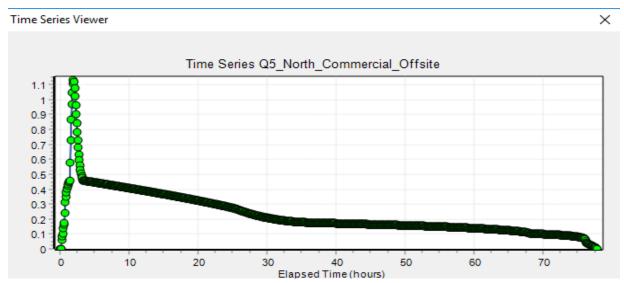


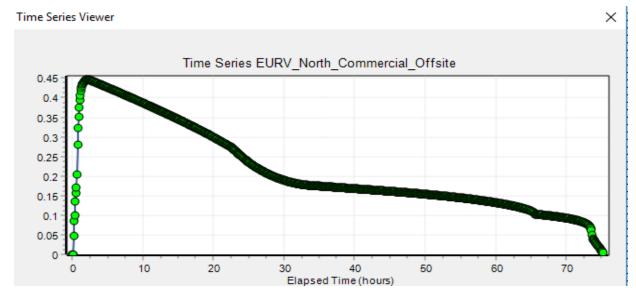


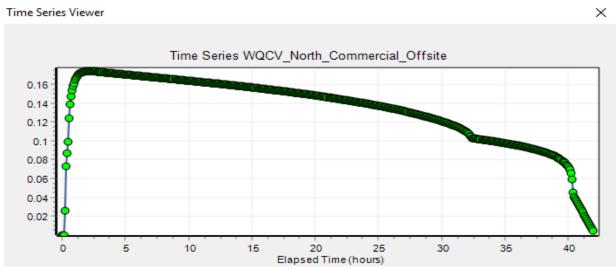




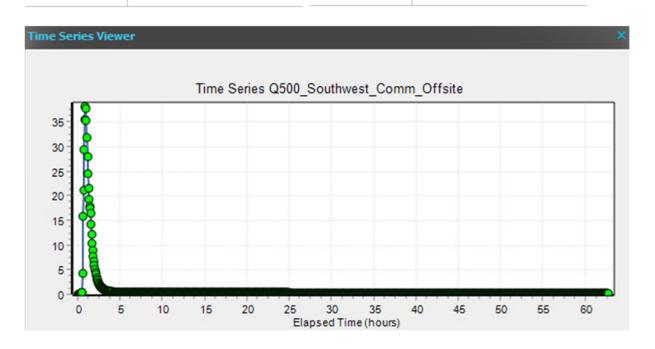

Junction INLET 1-OS (STM-JC)		
Property	Value	
Name	INLET 1-OS (STM-JC)	
X-Coordinate	12523.500	
Y-Coordinate	8759.660	
Description	CULVERT INLET	
Tag		
Inflows	YES	
Treatment	NO	
Invert El.	5924.238	
Max. Depth	4.417	
Initial Depth	0	
Surcharge Depth	0	
Ponded Area	0	

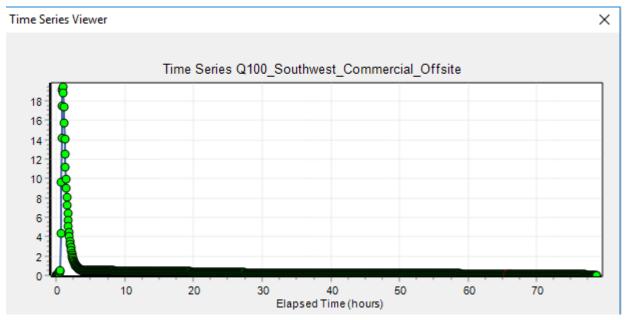


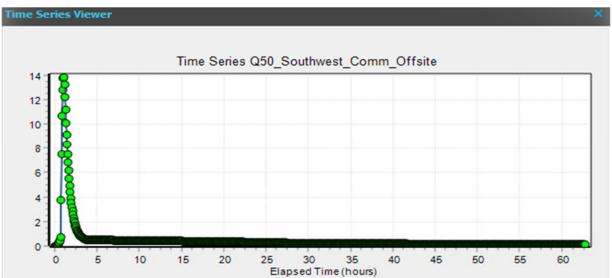


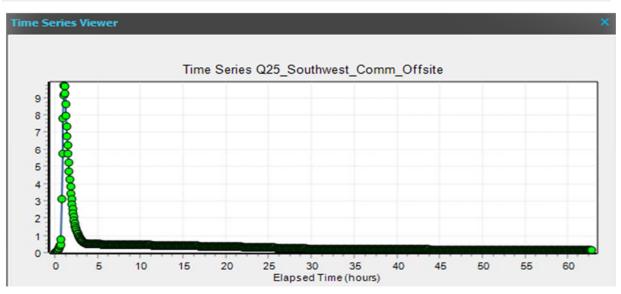


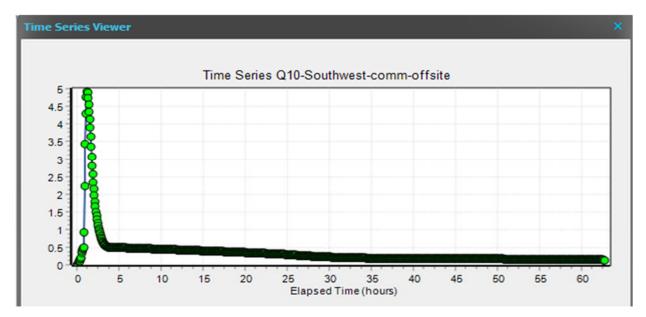
Conduit (STM-JC).PIPE - 1 (STM-JC)

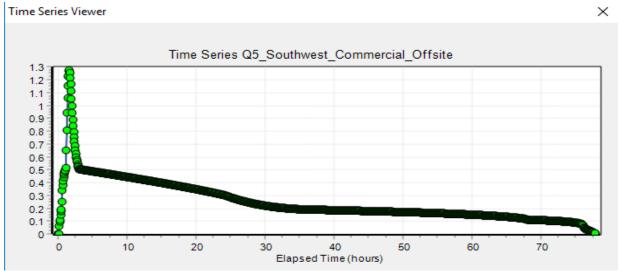

Property	Value
Name	(STM-JC).PIPE - 1 (STM-JC)
Inlet Node	INLET 1-OS (STM-JC)
Outlet Node	MH - 2 (STM-JC)
Description	24" RCP
Tag	
Shape	CIRCULAR
Max. Depth	2
Length	168.396
Roughness	0.013
Inlet Offset	0
Outlet Offset	1
Initial Flow	0
Maximum Flow	0
Entry Loss Coeff.	0.5
Exit Loss Coeff.	0.5
Avg. Loss Coeff.	0
Seepage Loss Rate	0
Flap Gate	NO
Culvert Code	

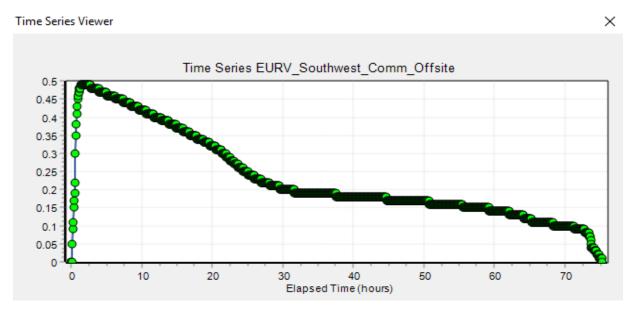

Junction MH - 2 (STM-JC)

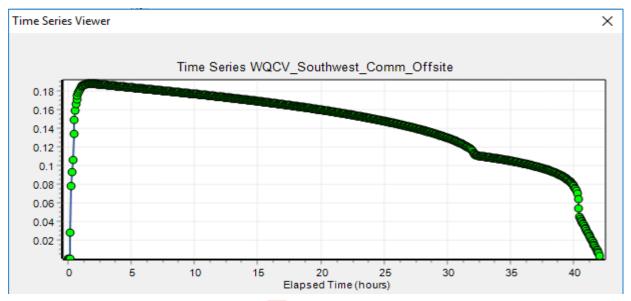

x


Property	Value
Name	MH - 2 (STM-JC)
X-Coordinate	12568.390
Y-Coordinate	8597.450
Description	4' STM MH
Tag	
Inflows	NO
Treatment	NO
Invert El.	5917.588
Max. Depth	7.757
Initial Depth	0
Surcharge Depth	0
Ponded Area	0


Conduit (STM-JC)	PIPE - 2 (STM-JC)	x	
Property	Value		
Name	(STM-JC).PIPE - 2 (STM-JC)		
Inlet Node	MH - 2 (STM-JC)		
Outlet Node	MH - 3 (STM-JC)		
Description	24" RCP		
Tag			
Shape	CIRCULAR	Junction INLET 1	-A (STM-JC)
Max. Depth	2	Property	Value
Length	489.245	Name	INLET 1-A (STM-JC)
Roughness	0.013	X-Coordinate	12553.954
Inlet Offset	0	Y-Coordinate	8123.746
Outlet Offset	1	Description	10' SUMP TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	YES
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5907.847
Avg. Loss Coeff.	0	Max. Depth	9.122
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

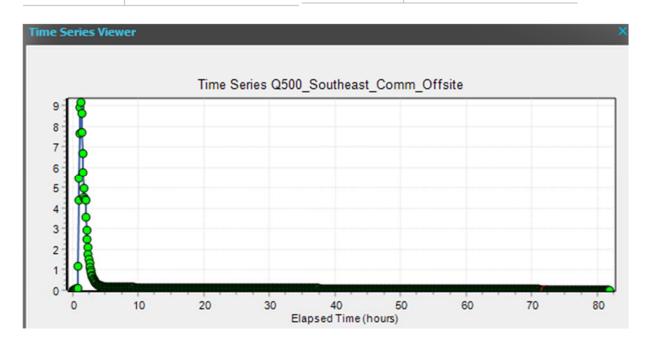


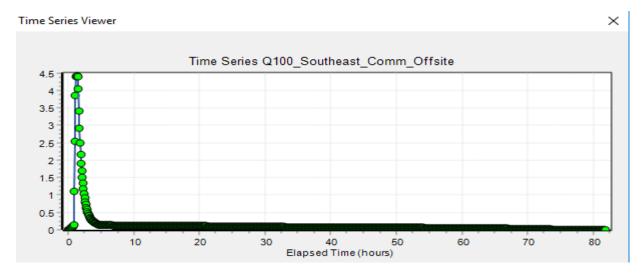


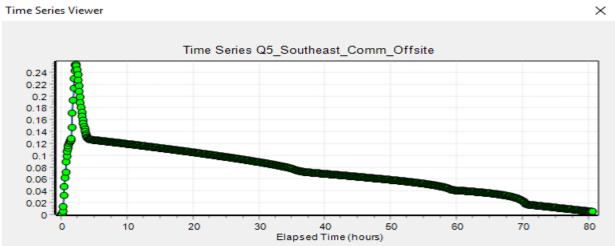


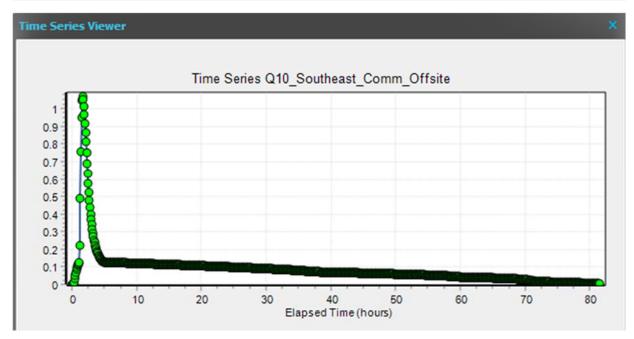
Conduit	{STM-JC	}.PIPE - 4 ((STM-JC)
---------	---------	--------------	----------

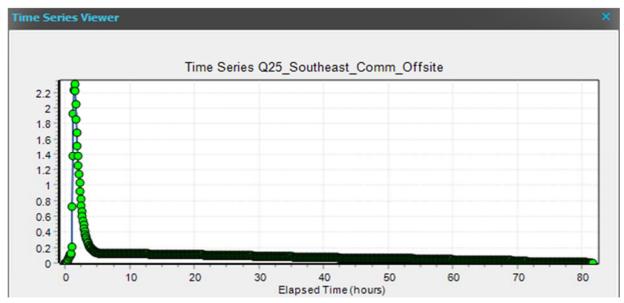
Property	Value
Name	(STM-JC).PIPE - 4 (STM-JC)
Inlet Node	MH - 4 (STM-JC)
Outlet Node	INLET 1-A (STM-JC)
Description	18" RCP
Tag	

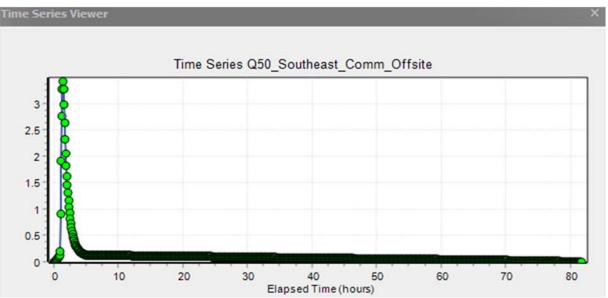

-			
Shape	CIRCULAR	Junction INLET 2	-A (STM-JC)
Max. Depth	1.5	Property	Value
Length	33.9	Name	INLET 2-A (STM-JC)
Roughness	0.013	X-Coordinate	12568.935
Inlet Offset	0.3	Y-Coordinate	8080.967
Outlet Offset	0	Description	5' SUMP TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5908.15
Avg. Loss Coeff.	0	Max. Depth	8.295
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

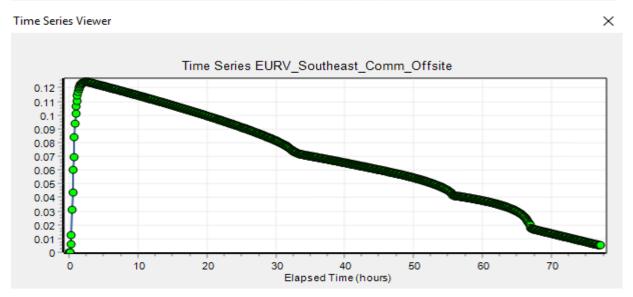

Conduit (STM-JC).PIPE - 45 (STM-JC)

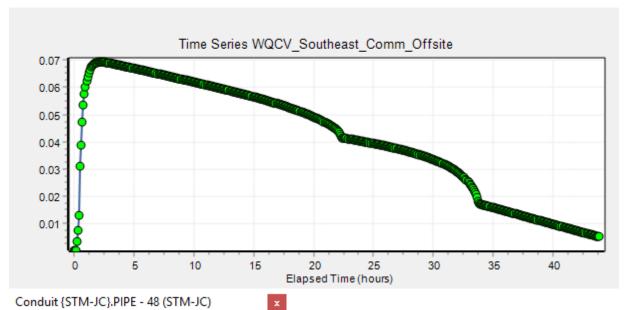

x


Property	Value		
Name	(STM-JC).PIPE - 45 (STM-JC)		
Inlet Node	MH - 4 (STM-JC)		
Outlet Node	INLET 2-A (STM-JC)		
Description	18" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 4	(STM-JC)
Max. Depth	1.5	Property	Value
Length	17.669	Name	MH - 4 (STM-JC)
Roughness	0.013	X-Coordinate	12572.621
Inlet Offset	0.8	Y-Coordinate	8096.911
Outlet Offset	0	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5907.208
Avg. Loss Coeff.	0	Max. Depth	9.162
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0


Conduit (STM-JC)).PIPE - 145 (STM-JC)		
Property	Value		
Name	(STM-JC).PIPE - 145 (STM-JC)	-	
Inlet Node	MH - 3 (STM-JC)		
Outlet Node	MH - 4 (STM-JC)	_	
Description	24" RCP	_	
Tag		_	
Shape	CIRCULAR	Junction INLET 3	-A (STM-JC)
Max. Depth	2	Property	Value
Length	145.44	Name	INLET 3-A (STM-JC)
Roughness	0.013	X-Coordinate	12888.805
Inlet Offset	1	Y-Coordinate	8241.002
Outlet Offset	0	Description	15' ON-GRADE TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	YES
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5908.087
Avg. Loss Coeff.	0	Max. Depth	5.122
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0







Time Series Viewer X

Property	Value
Name	(STM IC) DIDE 49 (STM IC)

Fioperty	value
Name	(STM-JC).PIPE - 48 (STM-JC)
Inlet Node	MH - 53 (STM-JC)
Outlet Node	INLET 3-A (STM-JC)
Description	18" RCP
Tag	

rug		
Shape	CIRCULAR	
Max. Depth	1.5	P
Length	36.12	N
Roughness	0.013	X
Inlet Offset	0.502	Υ
Outlet Offset	0	D
Initial Flow	0	Т
Maximum Flow	0	lr
Entry Loss Coeff.	0.5	Т
Exit Loss Coeff.	0.5	lr
Avg. Loss Coeff.	0	N
Seepage Loss Rate	0	Ir
Flap Gate	NO	S
Culvert Code		P

Property	Value
Name	INLET 4-A (STM-JC)
X-Coordinate	12902.222
Y-Coordinate	8190.250
Description	10' ON-GRADE TYPE R INLET
Tag	
Inflows	NO
Treatment	NO
Invert El.	5907.909
Max. Depth	5.237
Initial Depth	0
Surcharge Depth	0
Ponded Area	0

Conduit (STM-JC).PIPE - 47 (STM-JC)

	1	
Value		
(STM-JC).PIPE - 47 (STM-JC)		
MH - 53 (STM-JC)		
INLET 4-A (STM-JC)		
18" RCP		
CIRCULAR	Junction MH - 53	3 (STM-JC)
1.5	Property	Value
17.122	Name	MH - 53 (STM-JC)
0.013	X-Coordinate	12898.347
0.502	Y-Coordinate	8208.285
0	Description	4' STM MH
0	Tag	
0	Inflows	NO
0.5	Treatment	NO
0.5	Invert El.	5907.236
0	Max. Depth	5.856
0	Initial Depth	0
NO	Surcharge Depth	0
	Ponded Area	0
	(STM-JC), PIPE - 47 (STM-JC) MH - 53 (STM-JC) INLET 4-A (STM-JC) 18" RCP CIRCULAR 1.5 17.122 0.013 0.502 0 0 0 0 0 0 0 0 0 0	\[\{\text{STM-JC}\}.\text{PIPE - 47 (STM-JC)} \] \[\text{MH - 53 (STM-JC)} \] \[\text{INLET 4-A (STM-JC)} \] \[\text{18" RCP} \] \[20 Inction MH - 53 Inction M

Conduit (STM-JC).PIPE - 46 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 46 (STM-JC)	****	
Inlet Node	MH - 3 (STM-JC)		
Outlet Node	MH - 53 (STM-JC)		
Description	30" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 3	(STM-JC)
Max. Depth	2.5	Property	Value
Length	210.511	Name	MH - 3 (STM-JC)
Roughness	0.013	X-Coordinate	12703.756
Inlet Offset	1	Y-Coordinate	8145.869
Outlet Offset	0	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5897.938
Avg. Loss Coeff.	0	Max. Depth	14.76
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Property	Value		
Name	{STM-JC}.PIPE - 5 (1) (STM-JC)		
Inlet Node	MH - 3 (STM-JC)		
Outlet Node	MH - 108 (STM-JC)		
Description	30" RCP		
Tag			
Shape	CIRCULAR	Junction INLET 1	-B (STM-JC)
Max. Depth	2.5	Property	Value
Length	444.253	Name	INLET 1-B (STM-JC)
Roughness	0.013	X-Coordinate	12806.836
Inlet Offset	0	Y-Coordinate	7726.952
Outlet Offset	0.998	Description	10' ON-GRADE TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5883.75
Avg. Loss Coeff.	0	Max. Depth	16.827
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Property	Value		
Name	(STM-JC).PIPE - 137 (STM-JC)		
Inlet Node	MH - 108 (STM-JC)		
Outlet Node	INLET 1-B (STM-JC)		
Description	18" RCP	_	
Tag		_	
Shape	CIRCULAR	Junction MH - 10	08 (STM-JC)
Max. Depth	1.5	Property	Value
Length	13.139	Name	MH - 108 (STM-JC)
Roughness	0.013	X-Coordinate	12817.540
Inlet Offset	0.998	Y-Coordinate	7729.628
Outlet Offset	0	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5882.62
Avg. Loss Coeff.	0	Max. Depth	17.792
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 5 (1) (1) (STM-JC)

Property	Value	
Name	{STM-JC}.PIPE - 5 (1) (1) (STM-JC	
Inlet Node	MH - 108 (STM-JC)	
Outlet Node	MH - 6 (STM-JC)	
Description	30" RCP	
Tag		Junct
Shape	CIRCULAR	
Max. Depth	2.5	Prope
Length	396.917	
Roughness	0.013	X-Coo
Inlet Offset	0	Y-Coo
Outlet Offset	1.002	Descrip
Initial Flow	0	Tag
Maximum Flow	0	Inflows
Entry Loss Coeff.	0.5	Treatm
Exit Loss Coeff.	0.5	Invert I
Avg. Loss Coeff.	0	Max. D
Seepage Loss Rate	0	Initial [
Flap Gate	NO	Surcha
Culvert Code		Ponde
Carreit Couc		

Junction INLET 2-C (STM-JC)

Property	Value
Name	INLET 2-C (STM-JC)
X-Coordinate	12769.370
Y-Coordinate	7365.674
Description	5' SUMP TYPE R INLET
Tag	
Inflows	NO
Treatment	NO
Invert El.	5879.78
Max. Depth	10.794
Initial Depth	0
Surcharge Depth	0
Ponded Area	0

Property	Value		
Name	{STM-JC}.PIPE - 136 (STM-JC)		
Inlet Node	MH - 128 (STM-JC)		
Outlet Node	INLET 2-C (STM-JC)		
Description	18" RCP		
Tag			
Shape	CIRCULAR	Junction INLET 1	-C (STM-JC)
Max. Depth	1.5	Property	Value
Length	29.222	Name	INLET 1-C (STM-JC)
Roughness	0.013	X-Coordinate	12733.242
Inlet Offset	0.301	Y-Coordinate	7352.294
Outlet Offset	0	Description	10' SUMP TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5879.55
Avg. Loss Coeff.	0	Max. Depth	10.933
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC), PIPE - 135 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 135 (STM-JC)		
Inlet Node	MH - 128 (STM-JC)		
Outlet Node	INLET 1-C (STM-JC)		
Description	18" RCP		
Tag		_	
Shape	CIRCULAR	Junction MH - 12	28 (STM-JC)
Max. Depth	1.5	Property	Value
Length	6.163	Name	MH - 128 (STM-JC)
Roughness	0.013	X-Coordinate	12743.947
Inlet Offset	0.301	Y-Coordinate	7356.308
Outlet Offset	0	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5879.188
Avg. Loss Coeff.	0	Max. Depth	10.956
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Property	Value		
Name	(STM-JC).PIPE - 134 (STM-JC)	-	
Inlet Node	MH - 127 (STM-JC)		
Outlet Node	MH - 128 (STM-JC)		
Description	24" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 12	27 (STM-JC)
Max. Depth	2	Property	Value
Length	61.937	Name	MH - 127 (STM-JC)
Roughness	0.013	X-Coordinate	12765.356
Inlet Offset	0.402	Y-Coordinate	7302.785
Outlet Offset	0	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5878.166
Avg. Loss Coeff.	0	Max. Depth	12.175
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC), PIPE - 133 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 133 (STM-JC)	····	
Inlet Node	MH - 7 (STM-JC)		
Outlet Node	MH - 127 (STM-JC)		
Description	24" RCP		
Tag			
Shape	CIRCULAR	Junction INLET 4	-C (STM-JC)
Max. Depth	2	Property	Value
Length	124.013	Name	INLET 4-C (STM-JC)
Roughness	0.013	X-Coordinate	12881.768
Inlet Offset	0.712	Y-Coordinate	7329.547
Outlet Offset	0	Description	10' SUMP TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5877.342
Avg. Loss Coeff.	0	Max. Depth	9.614
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 49 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 49 (STM-JC)	****	
Inlet Node	MH - 7 (STM-JC)		
Outlet Node	INLET 4-C (STM-JC)		
Description	18" RCP		
Tag			
Shape	CIRCULAR	Junction INLET 3	-C (STM-JC)
Max. Depth	1.5	Property	Value
Length	6.161	Name	INLET 3-C (STM-JC)
Roughness	0.013	X-Coordinate	12867.049
Inlet Offset	1.004	Y-Coordinate	7365.674
Outlet Offset	0	Description	10' SUMP TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5877.808
Avg. Loss Coeff.	0	Max. Depth	9.8
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 7 (STM-JC)

×

Property	Value		
Name	(STM-JC).PIPE - 7 (STM-JC)		
Inlet Node	MH - 7 (STM-JC)		
Outlet Node	INLET 3-C (STM-JC)		
Description	18" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 7	(STM-JC)
Max. Depth	1.5	Property	Value
Length	29.498	Name	MH - 7 (STM-JC)
Roughness	0.013	X-Coordinate	12877.753
Inlet Offset	1.004	Y-Coordinate	7338.913
Outlet Offset	0	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5876.214
Avg. Loss Coeff.	0	Max. Depth	10.625
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 6 (STM-JC) Property Value Name (STM-JC).PIPE - 6 (STM-JC) Inlet Node MH - 6 (STM-JC) Outlet Node MH - 7 (STM-JC) Description 30" RCP Tag Shape CIRCULAR Junction INLET 7-C (STM-JC) Max. Depth 2.5 Property Value Name INLET 7-C (STM-JC) Length 50.17 Roughness 0.013 X-Coordinate 13178.818 Inlet Offset 1.002 Y-Coordinate 7482.086 Outlet Offset 0 Description 5' SUMP TYPE R INLET Initial Flow 0 Tag 0 Maximum Flow Inflows NO Entry Loss Coeff. Treatment NO 0.5

Exit Loss Coeff.

Avg. Loss Coeff.

Flap Gate

Culvert Code

Seepage Loss Rate 0

0.5

0

NO

Invert El.

Max. Depth

Initial Depth

Ponded Area

Surcharge Depth

5881.64

4.664

0

0

0

Conduit (STM-JC).PIPE - 52 (STM-JC)

x

Conduct (STM 7C)	11 11 2 32 (311V1 3C)
Property	Value
Name	(STM-JC).PIPE - 52 (STM-JC)
Inlet Node	MH - 58 (STM-JC)
Outlet Node	INLET 7-C (STM-JC)
Description	18" RCP
Tag	
Shape	CIRCULAR
Max. Depth	1.5
Length	29.155
Roughness	0.013
Inlet Offset	0.3
Outlet Offset	0
Initial Flow	0
Maximum Flow	0
Entry Loss Coeff.	0.5
Exit Loss Coeff.	0.5
Avg. Loss Coeff.	0
Seepage Loss Rate	0
Flap Gate	NO
Culvert Code	

Junction INLET 8-C (STM-JC)

Property	Value
Name	INLET 8-C (STM-JC)
X-Coordinate	13192.199
Y-Coordinate	7449.973
Description	5' SUMP TYPE R INLET
Tag	
Inflows	NO
Treatment	NO
Invert El.	5881.41
Max. Depth	4.894
Initial Depth	0
Surcharge Depth	0
Ponded Area	0

Property	Value		
Name	(STM-JC).PIPE - 53 (STM-JC)		
Inlet Node	MH - 58 (STM-JC)		
Outlet Node	INLET 8-C (STM-JC)		
Description	18" RCP	_	
Tag		_	
Shape	CIRCULAR	Junction MH - 58	S (STM-JC)
Max. Depth	1.5	Property	Value
Length	6.147	Name	MH - 58 (STM-JC)
Roughness	0.013	X-Coordinate	13189.523
Inlet Offset	0.3	Y-Coordinate	7458.001
Outlet Offset	0	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5881.048
Avg. Loss Coeff.	0	Max. Depth	4.919
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 51 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 51 (STM-JC)		
Inlet Node	MH - 57 (STM-JC)		
Outlet Node	MH - 58 (STM-JC)		
Description	24" RCP		
Tag			
Shape	CIRCULAR	Junction INLET 5	-C (STM-JC)
Max. Depth	2	Property	Value
Length	193.788	Name	INLET 5-C (STM-JC)
Roughness	0.013	X-Coordinate	13002.194
Inlet Offset	1.004	Y-Coordinate	7417.859
Outlet Offset	0	Description	10' SUMP TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5879.341
Avg. Loss Coeff.	0	Max. Depth	7.323
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 54 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 54 (STM-JC)	****	
Inlet Node	MH - 57 (STM-JC)		
Outlet Node	INLET 5-C (STM-JC)		
Description	24" RCP	_	
Tag		_	
Shape	CIRCULAR	Junction INLET 6	-C (STM-JC)
Max. Depth	2	Property	Value
Length	29.159	Name	INLET 6-C (STM-JC)
Roughness	0.013	X-Coordinate	13019.588
Inlet Offset	1.004	Y-Coordinate	7380.393
Outlet Offset	0	Description	5' SUMP TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5878.881
Avg. Loss Coeff.	0	Max. Depth	7.783
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Property	Value		
Name	(STM-JC).PIPE - 85 (STM-JC)	**	
Inlet Node	MH - 57 (STM-JC)		
Outlet Node	INLET 6-C (STM-JC)		
Description	18" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 57	7 (STM-JC)
Max. Depth	1.5	Property	Value
Length	6.158	Name	MH - 57 (STM-JC)
Roughness	0.013	X-Coordinate	13014.236
Inlet Offset	1.004	Y-Coordinate	7392.436
Outlet Offset	0	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5877.755
Avg. Loss Coeff.	0	Max. Depth	8.574
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 50 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 50 (STM-JC)		
Inlet Node	MH - 6 (STM-JC)		
Outlet Node	MH - 57 (STM-JC)		
Description	30" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 6	(STM-JC)
Max. Depth	2.5	Property	Value
Length	101.457	Name	MH - 6 (STM-JC)
Roughness	0.013	X-Coordinate	12919.233
Inlet Offset	1.002	Y-Coordinate	7360.322
Outlet Offset	0	Description	5' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5869.716
Avg. Loss Coeff.	0	Max. Depth	16.932
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 105 (STM-JC)

×

Property	Value		
Name	(STM-JC).PIPE - 105 (STM-JC)	····	
Inlet Node	MH - 6 (STM-JC)		
Outlet Node	MH - 118 (STM-JC)		
Description	42" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 11	8 (STM-JC)
Max. Depth	3.5	Property	Value
Length	201.728	Name	MH - 118 (STM-JC)
Roughness	0.013	X-Coordinate	13010.222
Inlet Offset	0	Y-Coordinate	7183.697
Outlet Offset	0.999	Description	5' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5864.179
Avg. Loss Coeff.	0	Max. Depth	15.461
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 105 (1) (STM-JC)

Property	Value		
Name	{STM-JC}.PIPE - 105 (1) (STM-JC)	:	
Inlet Node	MH - 118 (STM-JC)	•	
Outlet Node	MH - 100 (STM-JC)		
Description	42" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 10	00 (STM-JC)
Max. Depth	3.5	Property	Value
Length	193.416	Name	MH - 100 (STM-JC)
Roughness	0.013	X-Coordinate	13141.352
Inlet Offset	0	Y-Coordinate	7041.862
Outlet Offset	1.004	Description	5' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5858.825
Avg. Loss Coeff.	0	Max. Depth	13.275
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 119 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 119 (STM-JC)		
Inlet Node	MH - 100 (STM-JC)		
Outlet Node	MH - 117 (STM-JC)		
Description	42" RCP		
Tag			
Shape	CIRCULAR	Junction INLET 1	-D (STM-JC)
Max. Depth	3.5	Property	Value
Length	184.777	Name	INLET 1-D (STM-JC)
Roughness	0.013	X-Coordinate	13277.835
Inlet Offset	0	Y-Coordinate	6934.817
Outlet Offset	1	Description	15' ON-GRADE TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5855.312
Avg. Loss Coeff.	0	Max. Depth	9.766
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 138 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 138 (STM-JC)		
Inlet Node	MH - 117 (STM-JC)		
Outlet Node	INLET 1-D (STM-JC)		
Description	24" RCP	_	
Tag		_	
Shape	CIRCULAR	Junction MH - 11	17 (STM-JC)
Max. Depth	2	Property	Value
Length	14.415	Name	MH - 117 (STM-JC)
Roughness	0.013	X-Coordinate	13285.864
Inlet Offset	1.5	Y-Coordinate	6946.860
Outlet Offset	0	Description	5' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5853.668
Avg. Loss Coeff.	0	Max. Depth	11.172
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 119 (1) (STM-JC)

Property	Value		
Name	{STM-JC}.PIPE - 119 (1) (STM-JC)		
Inlet Node	MH - 117 (STM-JC)	'	
Outlet Node	MH - 14 (STM-JC)		
Description	42" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 14	(STM-JC)
Max. Depth	3.5	Property	Value
Length	169.747	Name	MH - 14 (STM-JC)
Roughness	0.013	X-Coordinate	13435.727
Inlet Offset	0	Y-Coordinate	6879.956
Outlet Offset	0.999	Description	5' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5847.409
Avg. Loss Coeff.	0	Max. Depth	11.027
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 14 (STM-JC)

×

Property	Value		
Name	(STM-JC).PIPE - 14 (STM-JC)		
Inlet Node	MH - 14 (STM-JC)		
Outlet Node	MH - 15 (STM-JC)		
Description	42" RCP		
Tag			
Shape	CIRCULAR	Junction INLET 1	-E (STM-JC)
Max. Depth	3.5	Property	Value
Length	172.526	Name	INLET 1-E (STM-JC)
Roughness	0.013	X-Coordinate	13343.400
Inlet Offset	0	Y-Coordinate	6764.883
Outlet Offset	1.097	Description	10' SUMP TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5848.651
Avg. Loss Coeff.	0	Max. Depth	6.412
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 16 (STM-JC)

Property	Value		
Name	{STM-JC}.PIPE - 16 (STM-JC)	•	
Inlet Node	MH - 16 (STM-JC)		
Outlet Node	INLET 1-E (STM-JC)		
Description	18" RCP		
Tag			
Shape	CIRCULAR	Junction INLET 2	-E (STM-JC)
Max. Depth	1.5	Property	Value
Length	28.129	Name	INLET 2-E (STM-JC)
Roughness	0.013	X-Coordinate	13335.372
Inlet Offset	0	Y-Coordinate	6730.093
Outlet Offset	0	Description	10' SUMP TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5848.226
Avg. Loss Coeff.	0	Max. Depth	7.213
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 56 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 56 (STM-JC)	•	
Inlet Node	MH - 16 (STM-JC)		
Outlet Node	INLET 2-E (STM-JC)		
Description	18" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 16	(STM-JC) x
Max. Depth	1.5	Property	Value
Length	6.882	Name	MH - 16 (STM-JC)
Roughness	0.013	X-Coordinate	13338.048
Inlet Offset	0	Y-Coordinate	6739.459
Outlet Offset	0	Description	5' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5848.088
Avg. Loss Coeff.	0	Max. Depth	8.023
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 15 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 15 (STM-JC)		
Inlet Node	MH - 15 (STM-JC)	•	
Outlet Node	MH - 16 (STM-JC)		
Description	30" RCP		
Tag		-	
Shape	CIRCULAR	Junction MH - 15	(STM-JC) x
Max. Depth	2.5	Property	Value
Length	68.472	Name	MH - 15 (STM-JC)
Roughness	0.013	X-Coordinate	13399.599
Inlet Offset	1.597	Y-Coordinate	6718.050
Outlet Offset	0.298	Description	5' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5842.432
Avg. Loss Coeff.	0	Max. Depth	13.618
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 126 (STM-JC)

×

Property	Value		
Name	(STM-JC).PIPE - 126 (STM-JC)		
Inlet Node	MH - 15 (STM-JC)		
Outlet Node	MH - 122 (STM-JC)		
Description	48" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 12	22 (STM-JC)
Max. Depth	4	Property	Value
Length	226.663	Name	MH - 122 (STM-JC)
Roughness	0.013	X-Coordinate	13380.866
Inlet Offset	0.096	Y-Coordinate	6498.607
Outlet Offset	0.996	Description	5' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5837.453
Avg. Loss Coeff.	0	Max. Depth	16.369
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 126 (1) (STM-JC)

Property	Value		
Name	{STM-JC}.PIPE - 126 (1) (STM-JC)		
Inlet Node	MH - 122 (STM-JC)		
Outlet Node	MH - 125 (STM-JC)		
Description	48" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 12	25 (STM-JC)
Max. Depth	4	Property	Value
Length	129.151	Name	MH - 125 (STM-JC)
Roughness	0.013	X-Coordinate	13403.613
Inlet Offset	0	Y-Coordinate	6380.858
Outlet Offset	1.001	Description	5' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5834.127
Avg. Loss Coeff.	0	Max. Depth	18.458
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 126 (1) (1) (STM-JC)

Property	Value		
Name	{STM-JC}.PIPE - 126 (1) (1) (STM-		
Inlet Node	MH - 125 (STM-JC)	,	
Outlet Node	MH - 101 (STM-JC)		
Description	48" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 10)1 (STM-JC)
Max. Depth	4	Property	Value
Length	114.955	Name	MH - 101 (STM-JC)
Roughness	0.013	X-Coordinate	13449.108
Inlet Offset	0	Y-Coordinate	6273.812
Outlet Offset	0.996	Description	5' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5831.063
Avg. Loss Coeff.	0	Max. Depth	18.469
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 127 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 127 (STM-JC)	m.	
Inlet Node	MH - 101 (STM-JC)		
Outlet Node	MH - 126 (STM-JC)	_	
Description	48" RCP	_	
Tag		_	
Shape	CIRCULAR	Junction MH - 12	26 (STM-JC)
Max. Depth	4	Property	Value
Length	108.963	Name	MH - 126 (STM-JC)
Roughness	0.013	X-Coordinate	13493.264
Inlet Offset	0	Y-Coordinate	6176.134
Outlet Offset	1	Description	5' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5827.449
Avg. Loss Coeff.	0	Max. Depth	17.769
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 127 (1) (STM-JC)

Property	Value		
Name	{STM-JC}.PIPE - 127 (1) (STM-JC)		
Inlet Node	MH - 126 (STM-JC)		
Outlet Node	MH - 20 (STM-JC)		
Description	48" RCP		
Tag			
Shape	CIRCULAR	Junction INLET 2	-F (STM-JC) ×
Max. Depth	4	Property	Value
Length	102.963	Name	INLET 2-F (STM-JC)
Roughness	0.013	X-Coordinate	12883.106
Inlet Offset	0	Y-Coordinate	6479.875
Outlet Offset	1.003	Description	5' ON-GRADE TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5871.648
Avg. Loss Coeff.	0	Max. Depth	5.77
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 140 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 140 (STM-JC)		
Inlet Node	MH - 134 (STM-JC)		
Outlet Node	INLET 2-F (STM-JC)		
Description	18" RCP		
Tag			
Shape	CIRCULAR	Junction INLET 1	-F (STM-JC) x
Max. Depth	1.5	Property	Value
Length	29.001	Name	INLET 1-F (STM-JC)
Roughness	0.013	X-Coordinate	12846.978
Inlet Offset	0.299	Y-Coordinate	6482.551
Outlet Offset	0	Description	5' ON-GRADE TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5871.418
Avg. Loss Coeff.	0	Max. Depth	6
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 141 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 141 (STM-JC)	***	
Inlet Node	MH - 134 (STM-JC)		
Outlet Node	INLET 1-F (STM-JC)		
Description	18" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 13	34 (STM-JC)
Max. Depth	1.5	Property	Value
Length	6	Name	MH - 134 (STM-JC)
Roughness	0.013	X-Coordinate	12857.682
Inlet Offset	0.299	Y-Coordinate	6481.213
Outlet Offset	0	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5871.06
Avg. Loss Coeff.	0	Max. Depth	6.025
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC), PIPE - 139 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 139 (STM-JC)	•	
Inlet Node	MH - 133 (STM-JC)	•	
Outlet Node	MH - 134 (STM-JC)	-	
Description	18" RCP		
Tag		-	
Shape	CIRCULAR	Junction INLET 3	-F (STM-JC)
Max. Depth	1.5	Property	Value
Length	318.914	Name	INLET 3-F (STM-JC)
Roughness	0.013	X-Coordinate	12769.370
Inlet Offset	0	Y-Coordinate	6192.190
Outlet Offset	0	Description	10' ON-GRADE TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5868.251
Avg. Loss Coeff.	0	Max. Depth	6.916
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC), PIPE - 62 (1) (STM-JC)

Property	Value		
Name	{STM-JC}.PIPE - 62 (1) (STM-JC)	•	
Inlet Node	MH - 133 (STM-JC)	•	
Outlet Node	INLET 3-F (STM-JC)		
Description	18" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 13	33 (STM-JC)
Max. Depth	1.5	Property	Value
Length	6.002	Name	MH - 133 (STM-JC)
Roughness	0.013	X-Coordinate	12780.075
Inlet Offset	0.2	Y-Coordinate	6184.162
Outlet Offset	0	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5867.871
Avg. Loss Coeff.	0	Max. Depth	6.963
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 62 (STM-JC)

Property	Value		
Name	{STM-JC}.PIPE - 62 (STM-JC)		
Inlet Node	INLET 4-F (STM-JC)	****	
Outlet Node	MH - 133 (STM-JC)		
Description	18" RCP		
Tag			
Shape	CIRCULAR	Junction INLET 4	-F (STM-JC)
Max. Depth	1.5	Property	Value
Length	28.423	Name	INLET 4-F (STM-JC)
Roughness	0.013	X-Coordinate	12801.484
nlet Offset	1.004	Y-Coordinate	6173.457
Outlet Offset	0.2	Description	10' ON-GRADE TYPE R INLET
nitial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5866.214
Avg. Loss Coeff.	0	Max. Depth	8.774
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Property	Value		
Name	(STM-JC).PIPE - 61 (STM-JC)	-	
Inlet Node	INLET 5-F (STM-JC)		
Outlet Node	INLET 4-F (STM-JC)	_	
Description	18" RCP	_	
Tag		_	
Shape	CIRCULAR	Junction INLET 5	-F (STM-JC) x
Max. Depth	1.5	Property	Value
Length	237.622	Name	INLET 5-F (STM-JC)
Roughness	0.013	X-Coordinate	13006.208
Inlet Offset	0.997	Y-Coordinate	6069.088
Outlet Offset	0	Description	10' ON-GRADE TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5855.601
Avg. Loss Coeff.	0	Max. Depth	7.79
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 60 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 60 (STM-JC)		
Inlet Node	INLET 6-F (STM-JC)		
Outlet Node	INLET 5-F (STM-JC)		
Description	18" RCP		
Tag			
Shape	CIRCULAR	Junction INLET 6	-F (STM-JC)
Max. Depth	1.5	Property	Value
Length	33.702	Name	INLET 6-F (STM-JC)
Roughness	0.013	X-Coordinate	13038.321
Inlet Offset	0.998	Y-Coordinate	6054.369
Outlet Offset	0	Description	10' ON-GRADE TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5852.92
Avg. Loss Coeff.	0	Max. Depth	10.48
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 59 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 59 (STM-JC)	***	
Inlet Node	MH - 65 (STM-JC)		
Outlet Node	INLET 6-F (STM-JC)		
Description	18" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 65	5 (STM-JC)
Max. Depth	1.5	Property	Value
Length	140.953	Name	MH - 65 (STM-JC)
Roughness	0.013	X-Coordinate	13156.071
Inlet Offset	1.003	Y-Coordinate	5986.128
Outlet Offset	0	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5844.878
Avg. Loss Coeff.	0	Max. Depth	5.515
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 58 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 58 (STM-JC)		
Inlet Node	MH - 64 (STM-JC)		
Outlet Node	MH - 65 (STM-JC)		
Description	18" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 64	(STM-JC) x
Max. Depth	1.5	Property	Value
Length	82.357	Name	MH - 64 (STM-JC)
Roughness	0.013	X-Coordinate	13235.017
Inlet Offset	0.997	Y-Coordinate	5980.776
Outlet Offset	0	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5841.171
Avg. Loss Coeff.	0	Max. Depth	7.066
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 57 (1) (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 57 (1) (STM-JC)	•	
Inlet Node	MH - 94 (STM-JC)	•	
Outlet Node	MH - 64 (STM-JC)		
Description	18" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 94	(STM-JC)
Max. Depth	1.5	Property	Value
Length	56.402	Name	MH - 94 (STM-JC)
Roughness	0.013	X-Coordinate	13284.526
Inlet Offset	1.001	Y-Coordinate	5959.367
Outlet Offset	0	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5838.197
Avg. Loss Coeff.	0	Max. Depth	9.462
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Property	Value		
Name	(STM-JC).PIPE - 57 (2) (STM-JC)	•	
Inlet Node	MH - 119 (STM-JC)	`	
Outlet Node	MH - 94 (STM-JC)	-	
Description	18" RCP	-	
Tag		-	
Shape	CIRCULAR	Junction MH - 11	9 (STM-JC)
Max. Depth	1.5	Property	Value
Length	82.306	Name	MH - 119 (STM-JC)
Roughness	0.013	X-Coordinate	13358.119
Inlet Offset	1	Y-Coordinate	5996.833
Outlet Offset	0	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5834.318
Avg. Loss Coeff.	0	Max. Depth	11.541
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC), PIPE - 57 (3) (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 57 (3) (STM-JC)		
Inlet Node	MH - 124 (STM-JC)	•	
Outlet Node	MH - 119 (STM-JC)	-	
Description	18" RCP	-	
Tag		-	
Shape	CIRCULAR	Junction MH - 12	24 (STM-JC)
Max. Depth	1.5	Property	Value
Length	90.042	Name	MH - 124 (STM-JC)
Roughness	0.013	X-Coordinate	13437.065
Inlet Offset	0.997	Y-Coordinate	6035.637
Outlet Offset	0	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5830.171
Avg. Loss Coeff.	0	Max. Depth	12.988
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 57 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 57 (STM-JC)	**	
Inlet Node	MH - 21 (STM-JC)		
Outlet Node	MH - 124 (STM-JC)		
Description	18" RCP		
Tag			
Shape	CIRCULAR	Junction INLET 7	-F (STM-JC)
Max. Depth	1.5	Property	Value
Length	80.418	Name	INLET 7-F (STM-JC)
Roughness	0.013	X-Coordinate	13491.926
Inlet Offset	0.995	Y-Coordinate	6091.835
Outlet Offset	0	Description	10' SUMP TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5827.643
Avg. Loss Coeff.	0	Max. Depth	13.713
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Property	Value		
Name	(STM-JC).PIPE - 21 (STM-JC)	****	
Inlet Node	MH - 21 (STM-JC)		
Outlet Node	INLET 7-F (STM-JC)		
Description	18" RCP		
Tag		_	
Shape	CIRCULAR	Junction INLET 8	-F (STM-JC)
Max. Depth	1.5	Property	Value
Length	28.431	Name	INLET 8-F (STM-JC)
Roughness	0.013	X-Coordinate	13510.659
Inlet Offset	0.995	Y-Coordinate	6058.384
Outlet Offset	0	Description	5' SUMP TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5827.413
Avg. Loss Coeff.	0	Max. Depth	13.812
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 84 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 84 (STM-JC)	****	
Inlet Node	MH - 21 (STM-JC)		
Outlet Node	INLET 8-F (STM-JC)		
Description	18" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 21	(STM-JC)
Max. Depth	1.5	Property	Value
Length	5.417	Name	MH - 21 (STM-JC)
Roughness	0.013	X-Coordinate	13502.630
Inlet Offset	0.995	Y-Coordinate	6071.764
Outlet Offset	0	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5826.363
Avg. Loss Coeff.	0	Max. Depth	14.884
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Property	Value		
Name	(STM-JC),PIPE - 20 (STM-JC)		
Inlet Node	MH - 20 (STM-JC)	•	
Outlet Node	MH - 21 (STM-JC)		
Description	30" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 20	(STM-JC)
Max. Depth	2.5	Property	Value
Length	39.591	Name	MH - 20 (STM-JC)
Roughness	0.013	X-Coordinate	13537.420
Inlet Offset	1.003	Y-Coordinate	6087.821
Outlet Offset	0	Description	5' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5823.976
Avg. Loss Coeff.	0	Max. Depth	17.99
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 86 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 86 (STM-JC)		
Inlet Node	INLET 1-G (STM-JC)		
Outlet Node	MH - 20 (STM-JC)		
Description	48" RCP		
Tag			
Shape	CIRCULAR	Junction INLET 1	-G (STM-JC)
Max. Depth	4	Property	Value
Length	30.225	Name	INLET 1-G (STM-JC)
Roughness	0.013	X-Coordinate	13556.153
Inlet Offset	0.998	Y-Coordinate	6093.173
Outlet Offset	0	Description	10' ON-GRADE TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5822.691
Avg. Loss Coeff.	0	Max. Depth	19.468
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Property	Value		
Name	(STM-JC).PIPE - 22 (STM-JC)	****	
Inlet Node	INLET 1-G (STM-JC)		
Outlet Node	MH - 123 (STM-JC)		
Description	48" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 12	23 (STM-JC)
Max. Depth	4	Property	Value
Length	98.752	Name	MH - 123 (STM-JC)
Roughness	0.013	X-Coordinate	13648.480
Inlet Offset	0	Y-Coordinate	6145.358
Outlet Offset	0.998	Description	5' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5820.691
Avg. Loss Coeff.	0	Max. Depth	13.021
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Property	Value		
Name	(STM-JC).PIPE - 22 (1) (STM-JC)		
Inlet Node	MH - 123 (STM-JC)		
Outlet Node	East_Pond		
Description	48" RCP		
Tag		_	
Shape	CIRCULAR	Junction MH - 27	(STM-JC)
Max. Depth	4	Property	Value
Length	69.928	Name	MH - 27 (STM-JC)
Roughness	0.013	X-Coordinate	13910.178
Inlet Offset	0	Y-Coordinate	8398.755
Outlet Offset	0	Description	5' TYPE R
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5893.281
Avg. Loss Coeff.	0	Max. Depth	8.329
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 25 (STM-JC)

Property	Value		
Name	{STM-JC}.PIPE - 25 (STM-JC)		
Inlet Node	MH - 27 (STM-JC)		
Outlet Node	MH - 28 (STM-JC)		
Description	24" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 28	S (STM-JC)
Max. Depth	2	Property	Value
Length	30.509	Name	MH - 28 (STM-JC)
Roughness	0.013	X-Coordinate	13909.668
Inlet Offset	0	Y-Coordinate	8366.120
Outlet Offset	0.886	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5892.242
Avg. Loss Coeff.	0	Max. Depth	9.104
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 26 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 26 (STM-JC)		
Inlet Node	MH - 28 (STM-JC)		
Outlet Node	MH - 29 (STM-JC)		
Description	24" RCP		
Tag		_	
Shape	CIRCULAR	Junction MH - 29	(STM-JC) x
Max. Depth	2	Property	Value
Length	38.19	Name	MH - 29 (STM-JC)
Roughness	0.013	X-Coordinate	13946.383
Inlet Offset	0.587	Y-Coordinate	8368.159
Outlet Offset	0.3	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5892.339
Avg. Loss Coeff.	0	Max. Depth	7.928
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Property	Value		
Name	{STM-JC}.PIPE - 27 (STM-JC)		
Inlet Node	MH - 29 (STM-JC)		
Outlet Node	MH - 114 (STM-JC)		
Description	24" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 11	14 (STM-JC)
Max. Depth	2	Property	Value
Length	491.831	Name	MH - 114 (STM-JC)
Roughness	0.013	X-Coordinate	13947.603
Inlet Offset	0	Y-Coordinate	7890.190
Outlet Offset	1.002	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5878.068
Avg. Loss Coeff.	0	Max. Depth	6.824
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Property	Value]	
		J	
Name	(STM-JC).PIPE - 27 (1) (STM-JC)		
Inlet Node	MH - 114 (STM-JC)		
Outlet Node	MH - 115 (STM-JC)		
Description	24" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 11	15 (STM-JC) ×
Max. Depth	2	Property	Value
Length	425.472	Name	MH - 115 (STM-JC)
Roughness	0.013	X-Coordinate	13950.462
Inlet Offset	0	Y-Coordinate	7475.533
Outlet Offset	1.002	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5860.048
Avg. Loss Coeff.	0	Max. Depth	8.478
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 27 (1) (1) (STM-JC)

Property	Value		
Name	{STM-JC}.PIPE - 27 (1) (1) (STM-J		
Inlet Node	MH - 115 (STM-JC)		
Outlet Node	MH - 30 (STM-JC)		
Description	36" RCP		
Tag		-	
Shape	CIRCULAR	Junction MH - 14	11 (STM-JC)
Max. Depth	3	Property	Value
Length	433.537	Name	MH - 141 (STM-JC)
Roughness	0.013	X-Coordinate	13910.741
Inlet Offset	0	Y-Coordinate	7036.510
Outlet Offset	0.996	Description	5' TYPE R
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5840.676
Avg. Loss Coeff.	0	Max. Depth	10.633
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 146 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 146 (STM-JC)	~	
Inlet Node	MH - 31 (STM-JC)	м.	
Outlet Node	MH - 141 (STM-JC)	_	
Description	18" RCP	_	
Tag		_	
Shape	CIRCULAR	Junction MH - 31	I (STM-JC)
Max. Depth	1.5	Property	Value
Length	6.782	Name	MH - 31 (STM-JC)
Roughness	0.013	X-Coordinate	13910.741
Inlet Offset	1.004	Y-Coordinate	7052.567
Outlet Offset	0	Description	4' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5839.605
Avg. Loss Coeff.	0	Max. Depth	11.352
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 28 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 28 (STM-JC)		
Inlet Node	MH - 30 (STM-JC)		
Outlet Node	MH - 31 (STM-JC)		
Description	24" RCP		
Tag		_	
Shape	CIRCULAR	Junction MH - 30	(STM-JC)
Max. Depth	2	Property	Value
Length	43.644	Name	MH - 30 (STM-JC)
Roughness	0.013	X-Coordinate	13956.235
Inlet Offset	1.996	Y-Coordinate	7053.905
Outlet Offset	0	Description	6' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5837.172
Avg. Loss Coeff.	0	Max. Depth	14.027
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 31 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 31 (STM-JC)		
Inlet Node	MH - 30 (STM-JC)		
Outlet Node	MH - 34 (STM-JC)		
Description	48" RCP		
Tag		_	
Shape	CIRCULAR	Junction INLET 1	-I (STM-JC)
Max. Depth	4	Property	Value
Length	187.317	Name	INLET 1-I (STM-JC)
Roughness	0.013	X-Coordinate	13838.485
Inlet Offset	0	Y-Coordinate	6916.084
Outlet Offset	0.102	Description	10' SUMP TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5841.223
Avg. Loss Coeff.	0	Max. Depth	8.054
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 78 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 78 (STM-JC)		
Inlet Node	MH - 84 (STM-JC)		
Outlet Node	INLET 1-I (STM-JC)	_	
Description	18" RCP		
Tag			
Shape	CIRCULAR	Junction INLET 2	-I (STM-JC)
Max. Depth	1.5	Property	Value
Length	45.506	Name	INLET 2-I (STM-JC)
Roughness	0.013	X-Coordinate	13839.823
Inlet Offset	1.004	Y-Coordinate	6863.900
Outlet Offset	0	Description	5' SUMP TYPE R INLET
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5840.863
Avg. Loss Coeff.	0	Max. Depth	8.413
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 79 (STM-JC)

x

Property	Value	
Name	(STM-JC).PIPE - 79 (STM-JC)	
Inlet Node	MH - 84 (STM-JC)	
Outlet Node	INLET 2-I (STM-JC)	
Description	18" RCP	
Tag		
Shape	CIRCULAR	Junction M
Max. Depth	1.5	Property
Length	9.48	Name
Roughness	0.013	X-Coordinat
Inlet Offset	1.004	Y-Coordinat
Outlet Offset	0	Description
Initial Flow	0	Tag
Maximum Flow	0	Inflows
Entry Loss Coeff.	0.5	Treatment
Exit Loss Coeff.	0.5	Invert El.
Avg. Loss Coeff.	0	Max. Depth
Seepage Loss Rate	0	Initial Depth
Flap Gate	NO	Surcharge D
Culvert Code		Ponded Area

Junction MH - 84 (STM-JC)

Property	Value
Name	MH - 84 (STM-JC)
X-Coordinate	13839.823
Y-Coordinate	6875.942
Description	4' STM MH
Tag	
Inflows	NO
Treatment	NO
Invert El.	5839.764
Max. Depth	9.28
Initial Depth	0
Surcharge Depth	0
Ponded Area	0

Conduit (STM-JC).PIPE - 77 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 77 (STM-JC)	***	
Inlet Node	MH - 34 (STM-JC)		
Outlet Node	MH - 84 (STM-JC)		
Description	24" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 34	(STM-JC) x
Max. Depth	2	Property	Value
Length	118.76	Name	MH - 34 (STM-JC)
Roughness	0.013	X-Coordinate	13954.897
Inlet Offset	2.002	Y-Coordinate	6871.928
Outlet Offset	0	Description	6' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5836.976
Avg. Loss Coeff.	0	Max. Depth	13.03
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC), PIPE - 128 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 128 (STM-JC)		
Inlet Node	MH - 34 (STM-JC)		
Outlet Node	MH - 112 (STM-JC)		
Description	48" RCP		
Tag		_	
Shape	CIRCULAR	Junction MH - 11	12 (STM-JC)
Max. Depth	4	Property	Value
Length	279.606	Name	MH - 112 (STM-JC)
Roughness	0.013	X-Coordinate	13833.133
Inlet Offset	0	Y-Coordinate	6641.781
Outlet Offset	0.101	Description	6' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5835.478
Avg. Loss Coeff.	0	Max. Depth	8.141
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC), PIPE - 36 (1) (STM-JC)

Property	Value		
Name	{STM-JC}.PIPE - 36 (1) (STM-JC)	•	
Inlet Node	MH - 112 (STM-JC)		
Outlet Node	MH - 39 (STM-JC)		
Description	48" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 39	(STM-JC)
Max. Depth	4	Property	Value
Length	123.132	Name	MH - 39 (STM-JC)
Roughness	0.013	X-Coordinate	13732.778
Inlet Offset	0	Y-Coordinate	6576.215
Outlet Offset	1.004	Description	6' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5833.858
Avg. Loss Coeff.	0	Max. Depth	10.179
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 130 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 130 (STM-JC)		
Inlet Node	MH - 39 (STM-JC)		
Outlet Node	MH - 120 (STM-JC)		
Description	48" RCP		
Tag			
Shape	CIRCULAR	Junction MH - 12	20 (STM-JC)
Max. Depth	4	Property	Value
Length	88.293	Name	MH - 120 (STM-JC)
Roughness	0.013	X-Coordinate	13768.905
Inlet Offset	0	Y-Coordinate	6495.931
Outlet Offset	1	Description	6' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5830.949
Avg. Loss Coeff.	0	Max. Depth	10.317
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Conduit (STM-JC).PIPE - 39 (STM-JC)

Property	Value		
Name	(STM-JC).PIPE - 39 (STM-JC)	·····	
Inlet Node	MH - 120 (STM-JC)		
Outlet Node	INLET 5-I (STM-JC)		
Description	48" RCP		
Tag			
Shape	CIRCULAR	Junction INLET 5	-I (STM-JC)
Max. Depth	4	Property	Value
Length	87.533	Name	INLET 5-I (STM-JC)
Roughness	0.013	X-Coordinate	13782.286
Inlet Offset	0	Y-Coordinate	6414.309
Outlet Offset	1	Description	10' TYPE R
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5828.199
Avg. Loss Coeff.	0	Max. Depth	12.231
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

Property	Value		
Name	{STM-JC}.PIPE - 82 (1) (STM-JC)	•	
Inlet Node	INLET 5-I (STM-JC)		
Outlet Node	MH - 91 (STM-JC)		
Description	48" RCP	_	
Tag		_	
Shape	CIRCULAR	Junction MH - 91	(STM-JC)
Max. Depth	4	Property	Value
Length	188.037	Name	MH - 91 (STM-JC)
Roughness	0.013	X-Coordinate	13712.707
Inlet Offset	0	Y-Coordinate	6247.051
Outlet Offset	0.3	Description	6' STM MH
Initial Flow	0	Tag	
Maximum Flow	0	Inflows	NO
Entry Loss Coeff.	0.5	Treatment	NO
Exit Loss Coeff.	0.5	Invert El.	5825.078
Avg. Loss Coeff.	0	Max. Depth	6.268
Seepage Loss Rate	0	Initial Depth	0
Flap Gate	NO	Surcharge Depth	0
Culvert Code		Ponded Area	0

FIFE - 03 (311VI-3C)
Value
(STM-JC).PIPE - 83 (STM-JC)
MH - 91 (STM-JC)
East_Pond
48" RCP
CIRCULAR
4
16.474
0.013
0
0
0
0
0.5
0.5
0
0
NO

Property	Value
Name	(STM-JC).PIPE - 24 (STM-JC)
Inlet Node	MH - 25 (STM-JC)
Outlet Node	East_Pond
Description	42" RCP
Tag	
Shape	CIRCULAR
Max. Depth	3.5
Length	20.102
Roughness	0.013
Inlet Offset	0
Outlet Offset	0
Initial Flow	0
Maximum Flow	0
Entry Loss Coeff.	0.5
Exit Loss Coeff.	0.5
Avg. Loss Coeff.	0
Seepage Loss Rate	0
Flap Gate	NO
Culvert Code	

Property Name Value

(STM-JC).PIPE - 23 (STM-JC)

			<u> </u>
		Inlet Node	INLET 11-H (STM-JC)
		Outlet Node	MH - 25 (STM-JC)
		Description	42" RCP
		Tag	
Junction MH - 25	S (STM-JC)	Shape	CIRCULAR
Property	Value	Max. Depth	3.5
Name	MH - 25 (STM-JC)	Length	121.67
X-Coordinate	13932.150	Roughness	0.013
Y-Coordinate	5698.444	Inlet Offset	0
Description	5' STM MH	Outlet Offset	0.2
Tag		Initial Flow	0
Inflows	NO	Maximum Flow	0
Treatment	NO	Entry Loss Coeff.	0.5
Invert El.	5820.088	Exit Loss Coeff.	0.5
Max. Depth	7.591	Avg. Loss Coeff.	0
Initial Depth	0	Seepage Loss Rate	0
Surcharge Depth	0	Flap Gate	NO
Ponded Area	0	Culvert Code	

Property	Value
Name	(STM-JC).PIPE - 68 (STM-JC)
Inlet Node	MH - 75 (STM-JC)
Outlet Node	INLET 11-H (STM-JC)
Description	36" RCP
Tag	
Shape	CIRCULAR
Max. Depth	3
Length	56.274
Roughness	0.013
Inlet Offset	0
Outlet Offset	0.502
Initial Flow	0
Maximum Flow	0
Entry Loss Coeff.	0.5
Exit Loss Coeff.	0.5
Avg. Loss Coeff.	0
Seepage Loss Rate	0
Flap Gate	NO
Culvert Code	

Junction INLET 11-H (STM-JC)

Property	Value
Name	INLET 11-H (STM-JC)
X-Coordinate	13932.150
Y-Coordinate	5582.032
Description	15' SUMP TYPE R INLET
Tag	
Inflows	NO
Treatment	NO
Invert El.	5820.897
Max. Depth	6.455
Initial Depth	0
Surcharge Depth	0
Ponded Area	0

Value

(STM-JC).PIPE - 63 (STM-JC)

			(
		Inlet Node	INLET 1-H (STM-JC)
		Outlet Node	MH - 71 (STM-JC)
		Description	18" RCP
		Tag	
Junction INLET 1-	H (STM-JC)	Shape	CIRCULAR
roperty	Value	Max. Depth	1.5
lame	INLET 1-H (STM-JC)	Length	6.074
-Coordinate	12579.365	Roughness	0.013
-Coordinate	5578.018	Inlet Offset	0
escription	10' SUMP TYPE R INLET	Outlet Offset	0.545
ag		Initial Flow	0
nflows	NO	Maximum Flow	0
reatment	NO	Entry Loss Coeff.	0.5
nvert El.	5865.626	Exit Loss Coeff.	0.5
Nax. Depth	4.323	Avg. Loss Coeff.	0
nitial Depth	0	Seepage Loss Rate	0
urcharge Depth	0	Flap Gate	NO
onded Area	0	Culvert Code	

Property Name

Ju

Property	Value
Name	INLET 1-H (STM-JC)
X-Coordinate	12579.365
Y-Coordinate	5578.018
Description	10' SUMP TYPE R INLET
Tag	
Inflows	NO
Treatment	NO
Invert El.	5865.626
Max. Depth	4.323
Initial Depth	0
Surcharge Depth	0
Ponded Area	0

Property	Value
Name	(STM-JC).PIPE - 76 (STM-JC)
Inlet Node	MH - 71 (STM-JC)
Outlet Node	INLET 2-H (STM-JC)
Description	18" RCP
Tag	
Shape	CIRCULAR
Max. Depth	1.5
Length	27.579
Roughness	0.013
Inlet Offset	0.545
Outlet Offset	0
Initial Flow	0
Maximum Flow	0
Entry Loss Coeff.	0.5
Exit Loss Coeff.	0.5
Avg. Loss Coeff.	0
Seepage Loss Rate	0
Flap Gate	NO
Culvert Code	

Junction INLET 2-H (STM-JC)

Property	Value
Name	INLET 2-H (STM-JC)
X-Coordinate	12614.154
Y-Coordinate	5580.694
Description	5' SUMP TYPE R INLET
Tag	
Inflows	NO
Treatment	NO
Invert El.	5865.703
Max. Depth	4.25
Initial Depth	0
Surcharge Depth	0
Ponded Area	0

Property	Value
Name	(STM-JC).PIPE - 64 (STM-JC)
Inlet Node	MH - 71 (STM-JC)
Outlet Node	MH - 72 (STM-JC)
Description	24" RCP
Tag	
Shape	CIRCULAR
Max. Depth	2
Length	63.161
Roughness	0.013
Inlet Offset	0
Outlet Offset	0.301
Initial Flow	0
Maximum Flow	0
Entry Loss Coeff.	0.5
Exit Loss Coeff.	0.5
Avg. Loss Coeff.	0
Seepage Loss Rate	0
Flap Gate	NO
Culvert Code	

Junction MH - 71 (STM-JC)

Property	Value
Name	MH - 71 (STM-JC)
X-Coordinate	12588.731
Y-Coordinate	5579.356
Description	4' STM MH
Tag	
Inflows	NO
Treatment	NO
Invert El.	5865.02
Max. Depth	5,25
Initial Depth	0
Surcharge Depth	0
Ponded Area	0

Property	Value
Name	(STM-JC).PIPE - 65 (STM-JC)
Inlet Node	MH - 72 (STM-JC)
Outlet Node	MH - 73 (STM-JC)
Description	24" RCP
Tag	
Shape	CIRCULAR
Max. Depth	2
Length	270.178
Roughness	0.013
Inlet Offset	0
Outlet Offset	0.999
Initial Flow	0
Maximum Flow	0
Entry Loss Coeff.	0.5
Exit Loss Coeff.	0.5
Avg. Loss Coeff.	0
Seepage Loss Rate	0
Flap Gate	NO
Culvert Code	

Junction MH - 72 (STM-JC)

Property	Value
Name	MH - 72 (STM-JC)
X-Coordinate	12590.069
Y-Coordinate	5516.467
Description	4' STM MH
Tag	
Inflows	NO
Treatment	NO
Invert El.	5864.088
Max. Depth	6.9
Initial Depth	0
Surcharge Depth	0
Ponded Area	0

Value

	Name	(STM-JC).PIPE - 74 (STM-JC)
	Inlet Node	MH - 80 (STM-JC)
	Outlet Node	INLET 3-H (STM-JC)
	Description	18" RCP
	Tag	
-H (STM-JC)	Shape	CIRCULAR
Value	Max. Depth	1.5
INLET 3-H (STM-JC)	Length	6.072
12841.626	Roughness	0.013
5584.708	Inlet Offset	0.304
10' SUMP TYPE R INLET	Outlet Offset	0
	Initial Flow	0
NO	Maximum Flow	0
NO	Entry Loss Coeff.	0.5
5854.609	Exit Loss Coeff.	0.5
4.514	Avg. Loss Coeff.	0
0		0
0		NO
0	Culvert Code	
	Value INLET 3-H (STM-JC) 12841.626 5584.708 10' SUMP TYPE R INLET NO NO S854.609 4.514 0 0	Inlet Node Outlet Node Description Tag Shape Max. Depth Length Roughness Inlet Offset Outlet Offset Initial Flow NO NO NO S854.609 4.514 Avg. Loss Coeff. Seepage Loss Rate O Inlet Node Outlet Node Description Tag Shape Max. Depth Length Roughness Inlet Offset Initial Flow Maximum Flow Entry Loss Coeff. Seepage Loss Rate Flap Gate

Property

Junction II

Property Name X-Coordina Y-Coordina Description Tag Inflows Treatment Invert El. Max. Depth Initial Deptl Surcharge Ponded Are

Property	Value
Name	(STM-JC).PIPE - 75 (STM-JC)
Inlet Node	MH - 80 (STM-JC)
Outlet Node	INLET 4-H (STM-JC)
Description	18" RCP
Tag	
Shape	CIRCULAR
Max. Depth	1.5
Length	27.58
Roughness	0.013
Inlet Offset	0.304
Outlet Offset	0
Initial Flow	0
Maximum Flow	0
Entry Loss Coeff.	0.5
Exit Loss Coeff.	0.5
Avg. Loss Coeff.	0
Seepage Loss Rate	0
Flap Gate	NO
Culvert Code	

Junction INLET 4-H (STM-JC)

Property	Value
Name	INLET 4-H (STM-JC)
X-Coordinate	12875.077
Y-Coordinate	5580.694
Description	5' SUMP TYPE R INLET
Tag	
Inflows	NO
Treatment	NO
Invert El.	5854.824
Max. Depth	4,304
Initial Depth	0
Surcharge Depth	0
Ponded Area	0

	Property	Value
	Name	(STM-JC).PIPE - 73 (STM-JC)
	Inlet Node	MH - 73 (STM-JC)
	Outlet Node	MH - 80 (STM-JC)
	Description	24" RCP
_	Tag	
x	Shape	CIRCULAR
	Max. Depth	2
	Length	66.644
	Roughness	0.013
	Inlet Offset	0.499
	Outlet Offset	0
	Initial Flow	0
	Maximum Flow	0
	Entry Loss Coeff.	0.5
	Exit Loss Coeff.	0.5
	Avg. Loss Coeff.	0
	Seepage Loss Rate	0
	Flap Gate	NO
	Culvert Code	

Junction MH - 80 (STM-JC)

Property	Value
Name	MH - 80 (STM-JC)
X-Coordinate	12852.330
Y-Coordinate	5583.370
Description	4' STM MH
Tag	
Inflows	NO
Treatment	NO
Invert El.	5854.245
Max. Depth	4.782
Initial Depth	0
Surcharge Depth	0
Ponded Area	0

Property	Value
Name	(STM-JC).PIPE - 66 (STM-JC)
Inlet Node	MH - 73 (STM-JC)
Outlet Node	MH - 74 (STM-JC)
Description	24" RCP
Tag	
Shape	CIRCULAR
Max. Depth	2
Length	503.252
Roughness	0.013
Inlet Offset	0
Outlet Offset	0.612
Initial Flow	0
Maximum Flow	0
Entry Loss Coeff.	0.5
Exit Loss Coeff.	0.5
Avg. Loss Coeff.	0
Seepage Loss Rate	0
Flap Gate	NO
Culvert Code	

Junction MH - 73 (STM-JC)

Property	Value
Name	MH - 73 (STM-JC)
X-Coordinate	12848.316
Y-Coordinate	5516.467
Description	4' STM MH
Tag	
Inflows	NO
Treatment	NO
Invert El.	5853.28
Max. Depth	6.935
Initial Depth	0
Surcharge Depth	0
Ponded Area	0

Property	Value
Name	(STM-JC),PIPE - 71 (STM-JC)
Inlet Node	MH - 74 (STM-JC)
Outlet Node	INLET 5-H (STM-JC)
Description	18" RCP
Tag	
Shape	CIRCULAR
Max. Depth	1.5
Length	26.917
Roughness	0.013
Inlet Offset	1
Outlet Offset	0
Initial Flow	0
Maximum Flow	0
Entry Loss Coeff.	0.5
Exit Loss Coeff.	0.5
Avg. Loss Coeff.	0
Seepage Loss Rate	0
Flap Gate	NO
Culvert Code	

Junction INLET 5-H (STM-JC)

Property	Value
Name	INLET 5-H (STM-JC)
X-Coordinate	13335.372
Y-Coordinate	5548.580
Description	10' ON-GRADE TYPE R INLET
Tag	
Inflows	NO .
Treatment	NO
Invert El.	5837.617
Max. Depth	3.902
Initial Depth	0
Surcharge Depth	0
Ponded Area	0

Conduit (STM-JC).PIPE - 72 (STM-JC)

x

Conduit (31W-3C), PIPE - 72 (31W-3C)		
Property	Value	
Name	(STM-JC).PIPE - 72 (STM-JC)	
Inlet Node	MH - 74 (STM-JC)	
Outlet Node	INLET 6-H (STM-JC)	
Description	18" RCP	
Tag		
Shape	CIRCULAR	
Max. Depth	1.5	
Length	6.078	
Roughness	0.013	
Inlet Offset	1.004	
Outlet Offset	0	
Initial Flow	0	
Maximum Flow	0	
Entry Loss Coeff.	0.5	
Exit Loss Coeff.	0.5	
Avg. Loss Coeff.	0	
Seepage Loss Rate	0	
Flap Gate	NO	
Culvert Code		

Junction INLET 6-H (STM-JC)

Property	Value
Name	INLET 6-H (STM-JC)
X-Coordinate	13336.710
Y-Coordinate	5511.115
Description	10' ON-GRADE TYPE R INLET
Tag	
Inflows	NO .
Treatment	NO
Invert El.	5837.534
Max. Depth	4.271
Initial Depth	0
Surcharge Depth	0
Ponded Area	0

Property	Value	
Name	(STM-JC).PIPE - 67 (STM-JC)	
Inlet Node	MH - 74 (STM-JC)	
Outlet Node	MH - 137 (STM-JC)	
Description	30" RCP	
Tag		
Shape	CIRCULAR	
Max. Depth	2.5	
Length	361.144	
Roughness	0.013	
Inlet Offset	0	
Outlet Offset	0.103	
Initial Flow	0	
Maximum Flow	0	
Entry Loss Coeff.	0.5	
Exit Loss Coeff.	0.5	
Avg. Loss Coeff.	0	
Seepage Loss Rate	0	
Flap Gate	NO	
Culvert Code		

Junction MH - 74 (STM-JC)

Property	Value	
Name	MH - 74 (STM-JC)	
X-Coordinate	13335.372	
Y-Coordinate	5524.495	
Description	4' STM MH	
Tag		
Inflows	NO	
Treatment	NO	
Invert El.	5836.468	
Max. Depth	5.862	
Initial Depth	0	
Surcharge Depth	0	
Ponded Area	0	

Property	Value	
Name INLET 7-H (STM-JC)		
X-Coordinate	13672.565	
Y-Coordinate	5580.694	
Description	10' ON-GRADE TYPE R INLET	
Tag		
Inflows	NO	

NO

6.304

0

0

5829.378

Junction INLET 7-H (STM-JC)

Treatment

Max. Depth

Initial Depth

Ponded Area

Surcharge Depth

Invert El.

Property	Value	
Name	(STM-JC).PIPE - 143 (STM-JC)	
Inlet Node	MH - 138 (STM-JC)	
Outlet Node	INLET 7-H (STM-JC)	
Description	18" RCP	
Tag		
Shape	CIRCULAR	
Max. Depth	1.5	
Length	6	
Roughness	0.013	
Inlet Offset	0.296	
Outlet Offset	0	
Initial Flow	0	
Maximum Flow	0	
Entry Loss Coeff.	0.5	
Exit Loss Coeff.	0.5	
Avg. Loss Coeff.	0	
Seepage Loss Rate	0	
Flap Gate	NO	
Culvert Code		

Value

			7
		Name	(STM-JC).PIPE - 144 (STM-JC)
		Inlet Node	MH - 138 (STM-JC)
		Outlet Node	INLET 8-H (STM-JC)
		Description	18" RCP
		Tag	
ınction INLET 8-	-H (STM-JC)	Shape	CIRCULAR
operty	Value	Max. Depth	1.5
me	INLET 8-H (STM-JC)	Length	29.001
Coordinate	13712.707	Roughness	0.013
Coordinate	5580.694	Inlet Offset	0.296
scription	10' ON-GRADE TYPE R INLET	Outlet Offset	0
g		Initial Flow	0
lows	NO	Maximum Flow	0
eatment	NO	Entry Loss Coeff.	0.5
ert El.	5829.608	Exit Loss Coeff.	0.5
x. Depth	6.057	Avg. Loss Coeff.	0
tial Depth	0	Seepage Loss Rate	0
rcharge Depth	0	Flap Gate	NO
nded Area	0	Culvert Code	

Property

Jun

Proj Nan X-C Y-C Desc Tag Inflo Trea Inve Max Initia Surc Pon

Property	Value
Name	(STM-JC),PIPE - 142 (STM-JC)
Inlet Node	MH - 137 (STM-JC)
Outlet Node	MH - 138 (STM-JC)
Description	24" RCP
Tag	
Shape	CIRCULAR
Max. Depth	2
Length	58.428
Roughness	0.013
Inlet Offset	0.303
Outlet Offset	0
Initial Flow	0
Maximum Flow	0
Entry Loss Coeff.	0.5
Exit Loss Coeff.	0.5
Avg. Loss Coeff.	0
Seepage Loss Rate	0
Flap Gate	NO
Culvert Code	

Junction MH - 138 (STM-JC)

Property	Value
Name	MH - 138 (STM-JC)
X-Coordinate	13684.607
Y-Coordinate	5578.018
Description	4' STM MH
Tag	
Inflows	NO
Treatment	NO
Invert El.	5829.023
Max. Depth	6.325
Initial Depth	0
Surcharge Depth	0
Ponded Area	0

Property	Value
Name	{STM-JC}.PIPE - 67 (1) (STM-JC)
Inlet Node	MH - 137 (STM-JC)
Outlet Node	MH - 75 (STM-JC)
Description	30" RCP
Tag	
Shape	CIRCULAR
Max. Depth	2.5
Length	252.565
Roughness	0.013
Inlet Offset	0
Outlet Offset	0.629
Initial Flow	0
Maximum Flow	0
Entry Loss Coeff.	0.5
Exit Loss Coeff.	0.5
Avg. Loss Coeff.	0
Seepage Loss Rate	0
Flap Gate	NO
Culvert Code	

Junction MH - 137 (STM-JC)

Value
MH - 137 (STM-JC)
13684.607
5523.157
4' STM MH
NO
NO
5828.136
7.062
0
0
0

Value

Property

		1 /	
		Name	{STM-JC}.PIPE - 69 (STM-JC)
		Inlet Node	MH - 75 (STM-JC)
		Outlet Node	INLET 10-H (STM-JC)
		Description	30" RCP
		Tag	
Junction MH - 75	i (STM-JC)	× Shape	CIRCULAR
Property	Value	Max. Depth	2.5
Name	MH - 75 (STM-JC)	Length	39.446
X-Coordinate	13929.473	Roughness	0.013
Y-Coordinate	5524.495	Inlet Offset	0.499
Description	5' STM MH	Outlet Offset	0
Tag		Initial Flow	0
Inflows	NO	Maximum Flow	0
Treatment	NO	Entry Loss Coeff.	0.5
Invert El.	5821.68	Exit Loss Coeff.	0.5
Max. Depth	6.451	Avg. Loss Coeff.	0
Initial Depth	0	Seepage Loss Rate	0
Surcharge Depth	0	Flap Gate	NO
Ponded Area	0	Culvert Code	
	1		

Property	Value
Name	(STM-JC).PIPE - 70 (STM-JC)
Inlet Node	INLET 10-H (STM-JC)
Outlet Node	INLET 9-H (STM-JC)
Description	30" RCP
Tag	
Shape	CIRCULAR
Max. Depth	2.5
Length	96.213
Roughness	0.013
Inlet Offset	0.203
Outlet Offset	0
Initial Flow	0
Maximum Flow	0
Entry Loss Coeff.	0.5
Exit Loss Coeff.	0.5
Avg. Loss Coeff.	0
Seepage Loss Rate	0
Flap Gate	NO
Culvert Code	

Junction INLET 10-H (STM-JC)

	_
Property	Value
Name	INLET 10-H (STM-JC)
X-Coordinate	13949.544
Y-Coordinate	5492.382
Description	5' SUMP TYPE R INLET
Tag	
Inflows	NO
Treatment	NO
Invert El.	5822.376
Max. Depth	6.408
Initial Depth	0
Surcharge Depth	0
Ponded Area	0

Property

Value

		Name	East_Pond
		X-Coordinate	13913.649
		Y-Coordinate	5941.560
		Description	
		Tag	
		Inflows	NO
Junction INLET 9	-H (STM-JC)	Treatment	NO
Property	Value	Invert El.	5820
Name	INLET 9-H (STM-JC)	Max. Depth	10
X-Coordinate	13949.544	Initial Depth	0
Y-Coordinate	5400.055	Surcharge Depth	0
Description	10' SUMP TYPE R INLET	Evap. Factor	0
Tag		Seepage Loss	NO
Inflows	NO	Storage Curve	TABULAR
Treatment	NO	Functional Curve	
Invert El.	5823.059	Coefficient	1000
Max. Depth	4.292	Exponent	0
Initial Depth	0	Constant	0
Surcharge Depth	1	Tabular Curve	
Ponded Area	300	Curve Name	East_Pond_Stage_Area

Weir Emergency_Spillway

· · · · · · · · · · · · · · · · · · ·		
Property	Value	
Name	Emergency_Spillway	
Inlet Node	East_Pond	
Outlet Node	East_Pond_Discharge_Structure	
Description		
Tag		
Туре	TRAPEZOIDAL	
Height	1.95	

136

8.05

3.33

NO

0

0

0

PAVED

YES

Storage Curve Editor

Curve Name	_	
East_Pond_Stage_Area		
Description		
		4
Denth Ar	ea 🛕	V:

	Depth (ft)	Area (ft2)	^	View
1	0.00	50		Load
2	1.00	1795		Load
3	2.00	10792		C
4	3.00	33227		Save
5	4.00	80330		
6	5.00	143075		
7	6.00	158782		OK
8	7.00	164044		
9	8.00	169368		Cancel
10	9.00	174764		
11	10.00	180213	~	Help

×

Length

Side Slope Inlet Offset

Flap Gate

End Coeff.

Can Surcharge

Coeff. Curve Roadway Weir Road Width

Road Surface

Discharge Coeff.

End Contractions

Property	Value
Name	Zone_3_Weir
Inlet Node	East_Pond
Outlet Node	East_Pond_Discharge_Structure
Description	
Tag	
Туре	TRAPEZOIDAL
Height	5.1
Length	9
Side Slope	0
Inlet Offset	5.1
Discharge Coeff.	3.33
Flap Gate	NO
End Contractions	0
End Coeff.	0
Can Surcharge	YES
Coeff. Curve	
Roadway Weir	
Road Width	0
Road Surface	PAVED

Orific	e Orific	-a Daw	. 2

x

	_
Property	Value
Name	Orifice_Row_2
Inlet Node	East_Pond
Outlet Node	East_Pond_Discharge_Structure
Description	
Tag	
Туре	SIDE
Shape	RECT_CLOSED
Height	.27
Width	.27
Inlet Offset	1.73
Discharge Coeff.	0.65
Flap Gate	NO
Time to Open/Clos	0

Orifice Orifice_Row_3

x

Property	Value
Name	Orifice_Row_3
Inlet Node	East_Pond
Outlet Node	East_Pond_Discharge_Structure
Description	
Tag	
Туре	SIDE
Shape	RECT_CLOSED
Height	.29
Width	.333
Inlet Offset	3.47
Discharge Coeff.	0.65
Flap Gate	NO
Time to Open/Clos	0

Orifice Orifice_Row_1

×

Property	Value
Name	Orifice_Row_1
Inlet Node	East_Pond
Outlet Node	East_Pond_Discharge_Structure
Description	
Tag	
Туре	SIDE
Shape	RECT_CLOSED
Height	.27
Width	.27
Inlet Offset	0
Discharge Coeff.	0.65
Flap Gate	NO
Time to Open/Clos	0

Conduit 1

Property

Name Inlet Node Value

East_Pond_Discharge_Structure

		Outlet Node	WF-JCC_Outfall
		Description	
		Tag	
Junction East_Po	ond_Discharge_Structure x	Shape	CIRCULAR
Property	Value	Max. Depth	3.89
Name	East_Pond_Discharge_Structure	Length	80
X-Coordinate	14055.053	Roughness	.013
Y-Coordinate	5903.194	Inlet Offset	0
Description		Outlet Offset	0
Гад		Initial Flow	0
nflows	NO	Maximum Flow	0
Treatment	NO	Entry Loss Coeff.	0
nvert El.	5818.5	Exit Loss Coeff.	0
Max. Depth	6	Avg. Loss Coeff.	0
nitial Depth	0	Seepage Loss Rate	0

Flap Gate

Culvert Code

NO

Property	Value
Name	East_Pond_Discharge_Structure
X-Coordinate	14055.053
Y-Coordinate	5903.194
Description	
Tag	
Inflows	NO
Treatment	NO
Invert El.	5818.5
Max. Depth	6
Initial Depth	0
Surcharge Depth	0
Ponded Area	0

Property	Value
Name	WF-JCC_Outfall
X-Coordinate	14085.602
Y-Coordinate	5892.242
Description	
Tag	
Inflows	NO
Treatment	NO
Invert El.	5814
Tide Gate	NO
Route To	
Туре	FREE
Fixed Outfall	
Fixed Stage	0
Tidal Outfall	
Curve Name	*
Time Series Outfall	
Series Name	*

Rain Gage Rain_Gage	
Property	Value
Name	Rain_Gage
X-Coordinate	11480.972
Y-Coordinate	7962.470
Description	
Tag	
Rain Format	CUMULATIVE
Time Interval	0:05
Snow Catch Factor	1.0
Data Source	TIMESERIES
TIME SERIES:	
- Series Name	TS_Q5 v
DATA FILE:	
- File Name	*
- Station ID	*
- Rain Units	IN

SWMM OUTPUT TABLES POST-DEVELOPMENT CONDITIONS

WQCV Storm

Topic: Subcatchment Runoff Click a column header to sort the column.										
Subcatchment	Total Precip in	Total Runon in	Total Evap in	Total Infil in	Imperv Runoff in	Perv Runoff in	Total Runoff in	Total Runoff 10^6 gal	Peak Runoff CFS	Runoff Coeff
A-Street	1.04	0.00	0.00	0.05	0.96	0.00	0.96	0.10	2.32	0.921
Sub-basin_J	1.04	0.00	0.00	0.35	0.66	0.01	0.67	0.17	9.10	0.644
Sub-basin_B	1.04	0.00	0.00	0.34	0.66	0.03	0.69	0.02	1.89	0.666
Sub-basin_C	1.04	0.00	0.00	0.34	0.67	0.01	0.68	0.27	14.09	0.653
Sub-basin_D	1.04	0.00	0.00	0.52	0.43	0.10	0.53	0.03	5.96	0.509
Sub-Basin_E	1.04	0.00	0.00	0.44	0.55	0.05	0.60	0.14	18.17	0.575
Sub-basin_F	1.04	0.00	0.00	0.35	0.66	0.01	0.67	0.24	10.99	0.640
Sub-basin_G	1.04	0.00	0.00	0.34	0.66	0.02	0.68	0.02	1.54	0.654
Sub-basin_l	1.04	0.00	0.00	0.35	0.65	0.01	0.67	0.14	7.54	0.641
Sub-basin_K	1.04	0.00	0.00	0.35	0.66	0.01	0.67	0.48	22.02	0.640
Sub-basin_M	1.04	0.00	0.00	0.84	0.07	0.14	0.21	0.06	12.11	0.205
Sub-basin_H	1.04	0.00	0.00	0.38	0.63	0.01	0.65	0.42	19.23	0.620
Sub-basin_R	1.04	0.00	0.00	0.88	0.07	0.10	0.17	0.01	1.52	0.160

Link Flow Summary

Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec
{STM-JC}.PIPI	E - 1 270(S/DW/HJK	38.99	0	01:36	11.17
{STM-JC}.PIPI	E - 1 3370(S/DM/HJI C	1.88	0	01:35	3.76
{STM-JC}.PIPI	E - 13CO(ISTDIVILIC	28.74	0	01:38	9.82
{STM-JC}.PIPI	E - 1 4CO(ISTDM/HJIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 57C(2)N(19WMT-	JC) 0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 8 2CON(SWM -	JC) 35.08	0	01:38	9.73
{STM-JC}.PIPI	E - 1 260(N)D(U)T(S	TM-JC) 38.95	0	01:36	10.12
{STM-JC}.PIPI	E - 6 2CON(SWM -	JC) 0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 67CON(SWM-	JC) 0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 5 CONSTINITION - 5	C) 2.68	0	01:36	7.03
{STM-JC}.PIPI	E - 1 4C2Q(STD)VIHJI C	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 280(ISTDM/HJK	28.82	0	01:37	5.93
{STM-JC}.PIPI	E - 1 3380(ISTENULLIC	5.95	0	01:35	4.91
{STM-JC}.PIPI	E - 27CONDJUIST	M-JC) 8.65	0	01:37	7.36
{STM-JC}.PIPI	E - 57CON(SWM-	JC) 0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 (CO(N)D(S/TTV	I-JC) 23.04	0	01:36	11.58
{STM-JC}.PIPI	E - 10050(IN)D(ISTIV	I-JC) 18.05	0	01:35	9.78
{STM-JC}.PIPI	E - 1 260(N)D(STT V	I-JC) 38.91	0	01:36	10.26
{STM-JC}.PIPI	E - 1 270(N)D(STT V	I-JC) 39.02	0	01:36	10.40
{STM-JC}.PIPI	E - 10050(ISTENULLIC	18.04	0	01:35	9.81
{STM-JC}.PIPI	E - 13350(ISTDIVILIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1450(STDWHJK	0.19	0	01:46	3.96
{STM-JC}.PIPI	E - 3 CONSUM -	JC) 28.73	0	01:38	6.14
{STM-JC}.PIPI	E - 57CONISUM-	JC) 0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 333(ISTENJI) K	0.00	0	00:00	0.00

Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec
{STM-JC}.PIPI	E - 1 339QISTDIVIHJI C	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 14CIQISTDIVIHIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 4C3Q(S)TD)VIHJI C	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 14 C IQIST DIVIHI C	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 27CON(SWM-	JC) 8.68	0	01:36	10.85
{STM-JC}.PIPI	E - 2 2CON(SWM -	JC) 50.51	0	01:36	4.19
{STM-JC}.PIPI	E - 1 (SCINDLA) T	0.17	0	02:07	3.21
{STM-JC}.PIPI	E - 2 (SINDIA)	0.17	0	02:09	3.37
{STM-JC}.PIPI	E - 4 (SINDIA)	0.19	0	01:45	2.19
{STM-JC}.PIPI	E - 6 (SINDIA)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 7 (SINDIA)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 5 (CO) NID (ST	M-JC) 4.37	0	01:36	7.88
{STM-JC}.PIPI	E - 1 ICO (ISTENUI-LIC	18.05	0	01:36	9.75
{STM-JC}.PIPI	E - 1 260(STDMHJ IC	38.87	0	01:36	10.84
{STM-JC}.PIPI	E - 1306O(STDN/HJIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1339QISTDNUHJIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 466QISTDIVIHJI C	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 14C(SNIMUJICI)	23.03	0	01:36	10.29
{STM-JC}.PIPI	E - 15C(SNIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 C(SNIMUIC)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 200(SINIMUJO)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 21C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 2 1C(SINIMUJICI)	50.76	0	01:36	6.39
{STM-JC}.PIPI	E - 23C(SINIMUJICI)	18.03	0	01:35	1.93
{STM-JC}.PIPI	E - 24C(SNIMUJICI)	17.98	0	01:35	1.87
{STM-JC}.PIPI	E - 25C(SNIMUJICI)	9.08	0	01:35	4.48

Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec
{STM-JC}.PIPI	E - 26C(SINIMUICI)	9.07	0	01:35	4.51
{STM-JC}.PIPI	E - 27C(SINIDALIICI)	8.76	0	01:36	9.45
{STM-JC}.PIPI	E - 28C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 3 C(SNIMUIC)	28.80	0	01:37	4.72
{STM-JC}.PIPI	E - 3 ©(SNIMUICI)	28.74	0	01:38	9.54
{STM-JC}.PIPI	E - 45C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 4 C(SNIMUICI)	0.07	0	02:17	2.51
{STM-JC}.PIPI	E - 47C(SINIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 48C(SINIMUJICI)	0.07	0	02:16	1.62
{STM-JC}.PIPI	E - 4 ©(SNIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 50 C(SINIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 5 C(SINIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 5 2C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 53C(SINIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 54C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 5 (C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 57C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 58C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 5 ©(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 (C(S)N)M+J(C)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 22 (SIN MILJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 3C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 64C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 5C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 C(SNIMUICI)	0.00	0	00:00	0.00

Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec
	E - 67C(SINIMUJICT)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 8C(SINIMUIKI)	1.37	0	01:35	0.36
{STM-JC}.PIPI	E - 6 C(SNIMUICI)	0.61	0	01:34	0.24
{STM-JC}.PIPI	E - 70 C(SINIMUICI)	0.33	0	01:36	0.22
{STM-JC}.PIPI	E - 7 C(SINIMUIC)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 7 2C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 73 C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 74 C(SINIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 75 C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 7 C(SNIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 77C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 78C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 7 9C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 8 C(SNIMUJICI)	35.99	0	01:38	4.85
{STM-JC}.PIPI	E - 84 C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 85 C(SNIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 8 C(SNIMUI)	49.35	0	01:36	7.97
1	CONDUIT	3.40	0	04:09	8.71
2	DUMMY	0.02	0	02:05	
Orifice_Row_1	ORIFICE	0.86	0	04:09	1.00
Orifice_Row_2	ORIFICE	0.70	0	04:09	1.00
Orifice_Row_3	ORIFICE	0.64	0	04:09	1.00
Zone_3_Weir	WEIR	1.21	0	04:09	0.02
Emergency_Spi	llway WEIR	0.00	0	00:00	0.00

Link Flow Summary

	Max /	Max /	
Link	Full Flow	Full Depth	1
{STM-JC}.PIPI	E - 127 (STIMILIKO	•	0.32
{STM-JC}.PIPI	E - 137 (STIMILIKO	()	0.33
{STM-JC}.PIPI	E - 130 (ST IXI1.H C	()	0.28
{STM-JC}.PIPI	E - 140 (ST IM 1900	()	0.00
{STM-JC}.PIPI	E - 57 (2) (SOLOO-	JC)	0.00
{STM-JC}.PIPI	E - 82 (1) (SOT2 MO -	JC)	0.33
{STM-JC}.PIPI	E - 126 (1) (0.)2(8	TM-JC)	0.35
{STM-JC}.PIPI	E - 62 (1) (SOTO00-	JC)	0.00
{STM-JC}.PIPI	E - 67 (1) (SOLOO-	JC)	0.50
{STM-JC}.PIPI	E - 5 (1) (STOM04J	C)	0.13
{STM-JC}.PIPI	E - 142 (STIMOTO	;)	0.00
{STM-JC}.PIPI	E - 128 (STIM2NC	5)	0.41
{STM-JC}.PIPI	E - 138 (ST IM2K C	5)	0.41
{STM-JC}.PIPI	E - 27 (1) (1 0.0 61	M-JC)	0.30
{STM-JC}.PIPI	E - 57 (1) (SOCOMO-	JC)	0.00
{STM-JC}.PIPI	E - 119 (1) (S.T.%	I-JC)	0.26
{STM-JC}.PIPI	E - 105 (1) (S.T2V	I-JC)	0.25
{STM-JC}.PIPI	E - 126 (1) (S.TO)	I-JC)	0.34
{STM-JC}.PIPI	E - 127 (1) (S.T 8/	I-JC)	0.34
{STM-JC}.PIPI	E - 105 (STIMALIC	()	0.25
{STM-JC}.PIPI	E - 135 (STIM1900	()	0.00
{STM-JC}.PIPI	E - 145 (STIM19100	()	0.04
{STM-JC}.PIPI	E - 36 (1) (SOL78 8-	JC)	0.40
{STM-JC}.PIPI	E - 57 (3) (SOTO 0 -	JC)	0.00
{STM-JC}.PIPI	E - 133 (STIM1000	()	0.00

Link	Max / Full Flow	Max / Full Depth
{STM-JC}.PIPI	E - 134 (ST IM 1000	0.00
{STM-JC}.PIPI	E - 141 (STIM1900	0.00
{STM-JC}.PIPI	E - 143 (ST IM 1900)	0.00
{STM-JC}.PIPI	E - 144 (ST IM 1900)	0.00
{STM-JC}.PIPI	E - 27 (1) (SOCIM9-	JC) 0.30
{STM-JC}.PIPI	E - 22 (1) (SOTM)-	JC) 1.00
{STM-JC}.PIPI	E - 1 (STM- 00 0)	0.05
{STM-JC}.PIPI	E - 2 (STM- 00 0)	0.05
{STM-JC}.PIPI	E - 4 (STM- 00)2	0.10
{STM-JC}.PIPI	E - 6 (STM- 00 0)	0.00
{STM-JC}.PIPI	E - 7 (STM- 00 0)	0.00
{STM-JC}.PIPI	E - 5 (1) (1) (15)	M-JC) 0.17
{STM-JC}.PIPI	E - 119 (ST IMAD	0.25
{STM-JC}.PIPI	E - 126 (ST M2 00	0.33
{STM-JC}.PIPI	E - 136 (ST IM 900	0.00
{STM-JC}.PIPI	E - 139 (STIMONO	0.00
{STM-JC}.PIPI	E - 146 (ST IM 1900)	0.00
{STM-JC}.PIPI	E - 14 (STM)J (3)	0.28
{STM-JC}.PIPI	E - 15 (STM).00)	0.00
{STM-JC}.PIPI	E - 16 (STM).00)	0.00
{STM-JC}.PIPI	E - 20 (STM).J00)	0.26
{STM-JC}.PIPI	E - 21 (STM).J00)	0.00
{STM-JC}.PIPI	E - 22 (STM).R5)	0.76
{STM-JC}.PIPI	E - 23 (STM).125)	1.00
{STM-JC}.PIPI	E - 24 (STM).127)	1.00
{STM-JC}.PIPI	E - 25 (STM). E (7)	0.62

Link	Max / Full	Max / Full
Link {STM-JC}.PIPI	Flow E - 26 (STM 9.57)	Depth 0.61
, ,	E - 27 (STM). I (4)	
	E - 28 (STM).J00)	
, ,	E - 31 (STM).500)	
, ,	E - 39 (STM)J(4)	
, ,	E - 45 (STM).00)	
{STM-JC}.PIPI	E - 46 (STM).00)	0.02
{STM-JC}.PIPI	E - 47 (STM).00)	0.00
{STM-JC}.PIPI	E - 48 (STM).J(1)	0.06
{STM-JC}.PIPI	E - 49 (STM).00)	0.00
{STM-JC}.PIPI	E - 50 (STM).00)	0.00
{STM-JC}.PIPI	E - 51 (STM).J00)	0.00
{STM-JC}.PIPI	E - 52 (STM).J00)	0.00
{STM-JC}.PIPI	E - 53 (STM9.100)	0.00
{STM-JC}.PIPI	E - 54 (STM).100)	0.00
{STM-JC}.PIPI	E - 56 (STM).00)	0.00
{STM-JC}.PIPI	E - 57 (STM).00)	0.00
{STM-JC}.PIPI	E - 58 (STM).J00)	0.00
{STM-JC}.PIPI	E - 59 (STM). J)(0)	0.00
{STM-JC}.PIPI	E - 60 (STM).100)	0.00
{STM-JC}.PIPI	E - 61 (STM).00)	0.00
{STM-JC}.PIPI	E - 62 (STM).J00)	0.00
{STM-JC}.PIPI	E - 63 (STM).J00)	0.00
{STM-JC}.PIPI	E - 64 (STM).J00)	0.00
{STM-JC}.PIPI	E - 65 (STM).100)	0.00
{STM-JC}.PIPI	E - 66 (STM).J00)	0.00

Link	Max / Full Flow	Max / Full Depth
{STM-JC}.PIPI	E - 67 (STM).100)	0.00
{STM-JC}.PIPI	E - 68 (STM).103)	1.00
{STM-JC}.PIPI	E - 69 (STM).102)	1.00
{STM-JC}.PIPI	E - 70 (STM).J01)	0.93
{STM-JC}.PIPI	E - 71 (STM).000)	0.00
{STM-JC}.PIPI	E - 72 (STM).00)	0.00
{STM-JC}.PIPI	E - 73 (STM).00)	0.00
{STM-JC}.PIPI	E - 74 (STM).00)	0.00
{STM-JC}.PIPI	E - 75 (STM).00)	0.00
{STM-JC}.PIPI	E - 76 (STM).00)	0.00
{STM-JC}.PIPI	E - 77 (STM).00)	0.00
{STM-JC}.PIPI	E - 78 (STM).00)	0.00
{STM-JC}.PIPI	E - 79 (STM).00)	0.00
{STM-JC}.PIPI	E - 83 (STM).10 (4)	0.57
{STM-JC}.PIPI	E - 84 (STM).00)	0.00
{STM-JC}.PIPI	E - 85 (STM).100)	0.00
{STM-JC}.PIPI	E - 86 (STM).R3)	0.49
1	0.01	0.07
2		
Orifice_Row_1		
Orifice_Row_2		
Orifice_Row_3		
Zone_3_Weir		
Emergency_Spi	llway	

Node Depth Summary

Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Day of Maximum Depth
INLET 5-F (ST	M-JU)NCTION	0.00	0.00	5855.60	0
MH - 71 (STM-	JC)JUNCTION	0.00	0.00	5865.02	0
MH - 31 (STM-	JC)JUNCTION	0.00	0.00	5839.60	0
MH - 21 (STM-	JC)JUNCTION	0.00	0.00	5826.36	0
MH - 91 (STM-	JC)JUNCTION	0.05	0.57	5825.65	0
MH - 53 (STM-	JC)JUNCTION	0.02	0.06	5907.29	0
INLET 8-C (ST	M-JC)NCTION	0.00	0.00	5881.41	0
MH - 73 (STM-	JC)JUNCTION	0.00	0.00	5853.28	0
INLET 8-H (ST	M-JC)NCTION	0.00	0.00	5829.61	0
INLET 4-A (ST	M-JC)NCTION	0.00	0.00	5907.91	0
INLET 3-C (ST	M-JC)NCTION	0.00	0.00	5877.81	0
INLET 1-C (ST	M-JC)NCTION	0.00	0.00	5879.55	0
INLET 1-E (ST	M-JC)NCTION	0.00	0.00	5848.65	0
MH - 16 (STM-	JC)JUNCTION	0.00	0.00	5848.09	0
MH - 108 (STM	1-JC)JUNCTION	0.08	0.43	5883.05	0
MH - 100 (STM	1-JC)JUNCTION	0.10	0.91	5859.74	0
MH - 101 (STM	1-JC)JUNCTION	0.11	1.44	5832.50	0
INLET 7-H (ST	M-JC)NCTION	0.00	0.00	5829.38	0
MH - 27 (STM-	JC)JUNCTION	0.08	1.39	5894.67	0
MH - 57 (STM-	JC)JUNCTION	0.00	0.00	5877.76	0
INLET 3-H (ST	M-JC)NCTION	0.00	0.00	5854.61	0
INLET 8-F (ST	M-JAL)NCTION	0.00	0.00	5827.41	0
INLET 9-H (ST	M-JC)NCTION	0.74	2.16	5825.22	0
INLET 1-H (ST	M-JC)NCTION	0.00	0.00	5865.63	0
INLET 2-F (ST	M-JU)NCTION	0.00	0.00	5871.65	0

Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Day of Maximum Depth
INLET 2-A (ST	M-JC)NCTION	0.00	0.00	5908.15	0
INLET 5-C (ST	M-JC)NCTION	0.00	0.00	5879.34	0
MH - 28 (STM-	JC)JUNCTION	0.66	1.96	5894.20	0
MH - 58 (STM-	JC)JUNCTION	0.00	0.00	5881.05	0
MH - 15 (STM-	JC)JUNCTION	0.21	1.50	5843.93	0
MH - 65 (STM-	JC)JUNCTION	0.00	0.00	5844.88	0
MH - 75 (STM-	JC)JUNCTION	1.49	3.54	5825.22	0
MH - 25 (STM-	JC)JUNCTION	2.42	5.13	5825.22	0
INLET 1-A (ST	M-JC)NCTION	0.07	0.15	5907.99	0
INLET 1-F (ST	M-JU)NCTION	0.00	0.00	5871.42	0
INLET 10-H (S	TMJIONCTION	1.10	2.84	5825.22	0
INLET 11-H (S	TMJIONCTION	1.95	4.32	5825.22	0
MH - 127 (STM	1-JC)JUNCTION	0.00	0.00	5878.17	0
MH - 128 (STM	1-JC)JUNCTION	0.00	0.00	5879.19	0
MH - 122 (STM	1-JC)JUNCTION	0.12	1.52	5838.97	0
MH - 125 (STM	1-JC)JUNCTION	0.12	1.54	5835.67	0
MH - 126 (STM	I-JC)JUNCTION	0.11	1.44	5828.89	0
MH - 124 (STM	1-JC)JUNCTION	0.00	0.00	5830.17	0
MH - 120 (STM	1-JC)JUNCTION	0.09	1.30	5832.25	0
MH - 123 (STM	1-JC)JUNCTION	2.07	4.53	5825.22	0
MH - 141 (STM	1-JC)JUNCTION	0.00	0.00	5840.68	0
INLET 7-F (ST	M-JU)NCTION	0.00	0.00	5827.64	0
INLET 6-C (ST	M-JC)NCTION	0.00	0.00	5878.88	0
INLET 6-F (ST	M-JU)NCTION	0.00	0.00	5852.92	0
MH - 80 (STM-	JC)JUNCTION	0.00	0.00	5854.24	0
MH - 30 (STM-	JC)JUNCTION	0.21	2.32	5839.49	0

Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Day of Maximum Depth
MH - 20 (STM-	JC)JUNCTION	0.40	2.31	5826.29	0
INLET 4-H (ST	M-JC)NCTION	0.00	0.00	5854.82	0
INLET 1-OS (S	TMJUNCTION	0.04	0.09	5924.33	0
INLET 5-I (ST	M-JOUNCTION	0.10	1.42	5829.62	0
INLET 4-F (ST	M-JU)NCTION	0.00	0.00	5866.21	0
INLET 1-B (ST	M-JC)NCTION	0.02	0.55	5884.30	0
INLET 6-H (ST	M-JC)NCTION	0.00	0.00	5837.53	0
INLET 3-A (ST	M-JC)NCTION	0.04	0.09	5908.18	0
MH - 2 (STM-J	C) JUNCTION	0.04	0.09	5917.68	0
MH - 4 (STM-J	C) JUNCTION	0.04	0.09	5907.29	0
MH - 3 (STM-J	C) JUNCTION	0.08	0.33	5898.27	0
MH - 7 (STM-J	C) JUNCTION	0.00	0.00	5876.21	0
MH - 6 (STM-J	C) JUNCTION	0.10	0.91	5870.62	0
INLET 1-I (ST	M-JOUNCTION	0.00	0.00	5841.22	0
MH - 14 (STM-	JC)JUNCTION	0.10	1.06	5848.47	0
MH - 34 (STM-	JC)JUNCTION	0.12	1.66	5838.63	0
MH - 84 (STM-	JC)JUNCTION	0.00	0.00	5839.76	0
MH - 64 (STM-	JC)JUNCTION	0.00	0.00	5841.17	0
MH - 94 (STM-	JC)JUNCTION	0.00	0.00	5838.20	0
MH - 74 (STM-	JC)JUNCTION	0.00	0.00	5836.47	0
MH - 72 (STM-	JC)JUNCTION	0.00	0.00	5864.09	0
MH - 114 (STM	1-JC)JUNCTION	0.04	0.61	5878.68	0
MH - 118 (STM	1-JCJUNCTION	0.10	0.91	5865.09	0
MH - 115 (STM	1-JC)JUNCTION	0.03	0.49	5860.54	0
MH - 117 (STM	1-JC)JUNCTION	0.10	0.97	5854.64	0
MH - 119 (STM	I-JC)JUNCTION	0.00	0.00	5834.32	0

	_	Average Depth	Maximum Depth	Maximum HGL	Day of Maximum
Node	Туре	Feet	Feet	Feet	Depth
MH - 112 (STM	I-JC)JUNCTION	0.13	1.74	5837.22	0
INLET 4-C (ST	M-JC)NCTION	0.00	0.00	5877.34	0
INLET 1-D (ST	M-JC)NCTION	0.02	0.94	5856.25	0
MH - 29 (STM-	JC)JUNCTION	0.04	0.68	5893.02	0
MH - 39 (STM-	JC)JUNCTION	0.09	1.27	5835.13	0
INLET 3-F (ST	M-JU)NCTION	0.00	0.00	5868.25	0
INLET 1-G (ST	M-JC)NCTION	0.95	2.53	5825.22	0
MH - 134 (STM	I-JC)JUNCTION	0.00	0.00	5871.06	0
MH - 133 (STM	I-JC)JUNCTION	0.00	0.00	5867.87	0
MH - 138 (STM	I-JC)JUNCTION	0.00	0.00	5829.02	0
MH - 137 (STM	I-JC)JUNCTION	0.00	0.00	5828.14	0
INLET 2-H (ST	M-JC)NCTION	0.00	0.00	5865.70	0
INLET 7-C (ST	M-JC)NCTION	0.00	0.00	5881.64	0
INLET 2-C (ST	M-JC)NCTION	0.00	0.00	5879.78	0
INLET 2-E (ST	M-JC)NCTION	0.00	0.00	5848.23	0
INLET 5-H (ST	M-JC)NCTION	0.00	0.00	5837.62	0
INLET 2-I (STI	M-JOUNCTION	0.00	0.00	5840.86	0
East_Pond_Disc	char yd <u>N</u>Strtiboln e	0.12	0.28	5818.78	0
OS-EAST_SID	E JUNCTION	0.00	0.00	5840.00	0
WF-JCC_Outfa	ll OUTFALL	0.12	0.28	5814.28	0
East_Pond	STORAGE	2.48	5.22	5825.22	0

Node Depth Summary

Node	Hour of Maximum Depth		Maximum Reported Depth Feet
INLET 5-F (ST	M-JC)	00:00	0.00
MH - 71 (STM-	JC)	00:00	0.00
MH - 31 (STM-	JC)	00:00	0.00
MH - 21 (STM-	JC)	00:00	0.00
MH - 91 (STM-	JC)	01:38	0.51
MH - 53 (STM-	JC)	02:17	0.06
INLET 8-C (ST	M-JC)	00:00	0.00
MH - 73 (STM-	JC)	00:00	0.00
INLET 8-H (ST	M-JC)	00:00	0.00
INLET 4-A (ST	M-JC)	00:00	0.00
INLET 3-C (ST	M-JC)	00:00	0.00
INLET 1-C (ST	M-JC)	00:00	0.00
INLET 1-E (ST	M-JC)	00:00	0.00
MH - 16 (STM-	JC)	00:00	0.00
MH - 108 (STM	I-JC)	01:36	0.37
MH - 100 (STM	I-JC)	01:36	0.74
MH - 101 (STM	I-JC)	01:36	0.93
INLET 7-H (ST	M-JC)	00:00	0.00
MH - 27 (STM-	JC)	01:35	1.01
MH - 57 (STM-	JC)	00:00	0.00
INLET 3-H (ST	M-JC)	00:00	0.00
INLET 8-F (ST	M-JC)	00:00	0.00
INLET 9-H (ST	M-JC)	04:09	2.16
INLET 1-H (ST	M-JC)	00:00	0.00
INLET 2-F (ST	M-JC)	00:00	0.00

Node	Hour of Maximum Depth		Maximum Reported Depth Feet
INLET 2-A (ST	M-JC)	00:00	0.00
INLET 5-C (ST	M-JC)	00:00	0.00
MH - 28 (STM-	JC)	01:35	1.59
MH - 58 (STM-	JC)	00:00	0.00
MH - 15 (STM-	JC)	01:35	1.00
MH - 65 (STM-	JC)	00:00	0.00
MH - 75 (STM-	JC)	04:09	3.54
MH - 25 (STM-	JC)	04:09	5.13
INLET 1-A (ST	M-JC)	01:45	0.15
INLET 1-F (ST	M-JC)	00:00	0.00
INLET 10-H (S	TM-JC)	04:09	2.84
INLET 11-H (S	TM-JC)	04:09	4.32
MH - 127 (STM	I-JC)	00:00	0.00
MH - 128 (STM	I-JC)	00:00	0.00
MH - 122 (STM	I-JC)	01:36	0.97
MH - 125 (STM	I-JC)	01:36	0.99
MH - 126 (STM	I-JC)	01:36	0.94
MH - 124 (STM	I-JC)	00:00	0.00
MH - 120 (STM	I-JC)	01:38	1.13
MH - 123 (STM	I-JC)	04:08	4.53
MH - 141 (STM	I-JC)	00:00	0.00
INLET 7-F (ST	M-JC)	00:00	0.00
INLET 6-C (ST	M-JC)	00:00	0.00
INLET 6-F (ST	M-JC)	00:00	0.00
MH - 80 (STM-	JC)	00:00	0.00
MH - 30 (STM-	JC)	01:37	1.99

Node	Hour of Maximum Depth		Maximum Reported Depth Feet
MH - 20 (STM-	JC)	01:36	1.61
INLET 4-H (ST	M-JC)	00:00	0.00
INLET 1-OS (S	TM-JC)	02:07	0.09
INLET 5-I (ST	M-JC)	01:38	1.24
INLET 4-F (ST	M-JC)	00:00	0.00
INLET 1-B (ST	M-JC)	01:35	0.32
INLET 6-H (ST	M-JC)	00:00	0.00
INLET 3-A (ST	M-JC)	02:16	0.09
MH - 2 (STM-J	C)	02:09	0.09
MH - 4 (STM-J	C)	01:46	0.09
MH - 3 (STM-J	C)	01:36	0.31
MH - 7 (STM-J	C)	00:00	0.00
MH - 6 (STM-J	C)	01:35	0.73
INLET 1-I (ST	M-JC)	00:00	0.00
MH - 14 (STM-	JC)	01:36	0.78
MH - 34 (STM-	JC)	01:37	1.40
MH - 84 (STM-	JC)	00:00	0.00
MH - 64 (STM-	JC)	00:00	0.00
MH - 94 (STM-	JC)	00:00	0.00
MH - 74 (STM-	JC)	00:00	0.00
MH - 72 (STM-	JC)	00:00	0.00
MH - 114 (STM	I-JC)	01:36	0.50
MH - 118 (STM	I-JC)	01:35	0.73
MH - 115 (STM	I-JC)	01:37	0.41
MH - 117 (STM	I-JC)	01:36	0.71
MH - 119 (STM	I-JC)	00:00	0.00

Node	Hour of Maximum Depth		Maximum Reported Depth Feet
MH - 112 (STM		01:38	1.50
INLET 4-C (ST	M-JC)	00:00	0.00
INLET 1-D (ST	M-JC)	01:35	0.39
MH - 29 (STM-	JC)	01:36	0.55
MH - 39 (STM-	JC)	01:38	1.10
INLET 3-F (ST	M-JC)	00:00	0.00
INLET 1-G (ST	M-JC)	04:08	2.53
MH - 134 (STM	I-JC)	00:00	0.00
MH - 133 (STM	I-JC)	00:00	0.00
MH - 138 (STM	I-JC)	00:00	0.00
MH - 137 (STM	I-JC)	00:00	0.00
INLET 2-H (ST	M-JC)	00:00	0.00
INLET 7-C (ST	M-JC)	00:00	0.00
INLET 2-C (ST	M-JC)	00:00	0.00
INLET 2-E (ST	M-JC)	00:00	0.00
INLET 5-H (ST	M-JC)	00:00	0.00
INLET 2-I (STI	M-JC)	00:00	0.00
East_Pond_Disc	charge_S	Str 04t09 e	0.28
OS-EAST_SID	E	00:00	0.00
WF-JCC_Outfa	11	04:09	0.28
East_Pond		04:09	5.22

Node Inflow Summary

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow
INLET 5-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
MH - 71 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 31 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 21 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 91 (STM-	JC)JUNCTION	0.00	35.08	0	01:38
MH - 53 (STM-	JC)JUNCTION	0.00	0.07	0	02:16
INLET 8-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
MH - 73 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
INLET 8-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 4-A (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 3-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 1-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 1-E (ST	M-JUCINCTION	0.00	0.00	0	00:00
MH - 16 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 108 (STM	1-JC)JUNCTION	0.00	4.43	0	01:35
MH - 100 (STM	1-JC)JUNCTION	0.00	18.05	0	01:35
MH - 101 (STM	1-JC)JUNCTION	0.00	38.95	0	01:36
INLET 7-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
MH - 27 (STM-	JC)JUNCTION	9.10	9.10	0	01:35
MH - 57 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
INLET 3-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 8-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 9-H (ST	M-JC)NCTION	0.00	0.33	0	01:36
INLET 1-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 2-F (ST	M-JU)NCTION	0.00	0.00	0	00:00

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow
INLET 2-A (ST	M- JC)NCTION	0.00	0.00	0	00:00
INLET 5-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
MH - 28 (STM-	JC)JUNCTION	0.00	9.08	0	01:35
MH - 58 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 15 (STM-	JC)JUNCTION	18.17	38.82	0	01:35
MH - 65 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 75 (STM-	JC)JUNCTION	0.00	1.37	0	01:35
MH - 25 (STM-	JC)JUNCTION	0.00	18.03	0	01:35
INLET 1-A (ST	M-JC)NCTION	0.19	0.19	0	01:45
INLET 1-F (ST	M-JAC)NCTION	0.00	0.00	0	00:00
INLET 10-H (S	TMJIONCTION	0.00	0.61	0	01:34
INLET 11-H (S	TMJUNCTION	19.23	19.23	0	01:35
MH - 127 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 128 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 122 (STM	1-JC)JUNCTION	0.00	38.87	0	01:36
MH - 125 (STM	1-JC)JUNCTION	0.00	38.91	0	01:36
MH - 126 (STM	1-JC)JUNCTION	0.00	38.99	0	01:36
MH - 124 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 120 (STM	1-JC)JUNCTION	0.00	28.74	0	01:38
MH - 123 (STM	1-JC)JUNCTION	0.00	50.76	0	01:36
MH - 141 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
INLET 7-F (ST	M-J X)NCTION	0.00	0.00	0	00:00
INLET 6-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 6-F (ST	M-JAL)NCTION	0.00	0.00 0.00		00:00
MH - 80 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 30 (STM-	JC)JUNCTION	22.02	29.32	0	01:36

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow
MH - 20 (STM-	JC)JUNCTION	10.99	49.38	0	01:36
INLET 4-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 1-OS (S	TMJIOSCTION	0.17	0.17	0	02:06
INLET 5-I (ST	M-JOUNCTION	7.54	35.07	0	01:38
INLET 4-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 1-B (ST	M-JC)NCTION	1.89	1.89	0	01:35
INLET 6-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 3-A (ST	M-JC)NCTION	0.07	0.07	0	02:16
MH - 2 (STM-J	C) JUNCTION	0.00	0.17	0	02:07
MH - 4 (STM-J	C) JUNCTION	0.00	0.19	0	01:45
MH - 3 (STM-J	C) JUNCTION	2.32	2.75	0	01:35
MH - 7 (STM-J	C) JUNCTION	0.00	0.00	0	00:00
MH - 6 (STM-J	C) JUNCTION	14.09	18.03	0	01:35
INLET 1-I (ST	M-JOUNCTION	0.00	0.00	0	00:00
MH - 14 (STM-	JC)JUNCTION	0.00	23.04	0	01:36
MH - 34 (STM-	JC)JUNCTION	0.00	28.80	0	01:37
MH - 84 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 64 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 94 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 74 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 72 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 114 (STM	1-JC)JUNCTION	0.00	8.76	0	01:36
MH - 118 (STM	1-JCJUNCTION	0.00	18.04	0	01:35
MH - 115 (STM	I-JCJUNCTION	0.00	8.68	0	01:36
MH - 117 (STM	1-JCJUNCTION	0.00	23.05	0	01:36
MH - 119 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00

		Maximum Lateral Inflow	Maximum Total Inflow	Day of Maximum	Hour of Maximum
Node	Туре	CFS	CFS	Inflow	Inflow
MH - 112 (STM	I-JC)JUNCTION	0.00	28.82	0	01:37
INLET 4-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 1-D (ST	M-JC)NCTION	5.96	5.96	0	01:35
MH - 29 (STM-	JC)JUNCTION	0.00	9.07	0	01:35
MH - 39 (STM-	JC)JUNCTION	0.00	28.73	0	01:38
INLET 3-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 1-G (ST	M-JC)NCTION	1.54	50.73	0	01:36
MH - 134 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 133 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 138 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 137 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
INLET 2-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 7-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 2-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 2-E (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 5-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 2-I (STI	M-JOUNCTION	0.00	0.00	0	00:00
East_Pond_Disc	char ye<u>N</u>XtiTiLOIN e	0.00	3.40	0	04:09
OS-EAST_SID	E JUNCTION	0.02	0.02	0	02:05
WF-JCC_Outfa	ll OUTFALL	1.52	3.40	0	04:09
East_Pond	STORAGE	12.11	109.74	0	01:36

Node Inflow Summary

Node	Lateral Inflow Volume 10^6 gal		Total Inflow Volume 10^6 gal	Flow Balance Error Percent
INLET 5-F (ST		0	0	0.000
MH - 71 (STM-	JC)	0	0	0.000
MH - 31 (STM-	JC)	0	0	0.000
MH - 21 (STM-	JC)	0	0	0.000
MH - 91 (STM-	JC)	0	0.812	-0.008
MH - 53 (STM-	JC)	0	0.0486	0.000
INLET 8-C (ST	M-JC)	0	0	0.000
MH - 73 (STM-	JC)	0	0	0.000
INLET 8-H (ST	M-JC)	0	0	0.000
INLET 4-A (ST	M-JC)	0	0	0.000
INLET 3-C (ST	M-JC)	0	0	0.000
INLET 1-C (ST	M-JC)	0	0	0.000
INLET 1-E (ST	M-JC)	0	0	0.000
MH - 16 (STM-	JC)	0	0	0.000
MH - 108 (STM	I-JC)	0	0.486	0.003
MH - 100 (STM	I-JC)	0	0.76	-0.002
MH - 101 (STM	I-JC)	0	0.931	-0.002
INLET 7-H (ST	M-JC)	0	0	0.000
MH - 27 (STM-	JC) 0.16	8	0.168	-0.003
MH - 57 (STM-	JC)	0	0	0.000
INLET 3-H (ST	M-JC)	0	0	0.000
INLET 8-F (ST	M-JC)	0	0	0.000
INLET 9-H (ST	M-JC)	0	0.00294	0.000
INLET 1-H (ST	M-JC)	0	0	0.000
INLET 2-F (ST	M-JC)	0	0	0.000

Node	Later Inflo Volun 10^6	w ne	Total Inflow Volume 10^6 gal	Flow Balance Error Percent
INLET 2-A (ST		0	0	0.000
INLET 5-C (ST	M-JC)	0	0	0.000
MH - 28 (STM-	JC)	0	0.168	0.034
MH - 58 (STM-	JC)	0	0	0.000
MH - 15 (STM-	JC)	0.139	0.931	-0.003
MH - 65 (STM-	JC)	0	0	0.000
MH - 75 (STM-	JC)	0	0.0204	-0.154
MH - 25 (STM-	JC)	0	0.421	-0.092
INLET 1-A (ST	M-JC)	0.163	0.163	0.000
INLET 1-F (ST	M-JC)	0	0	0.000
INLET 10-H (S	TM-JC)	0	0.01	0.065
INLET 11-H (S	TM-JC)	0.418	0.432	-0.033
MH - 127 (STM	I-JC)	0	0	0.000
MH - 128 (STM	I-JC)	0	0	0.000
MH - 122 (STM	I-JC)	0	0.931	-0.001
MH - 125 (STM	I-JC)	0	0.931	-0.003
MH - 126 (STM	I-JC)	0	0.931	0.002
MH - 124 (STM	I-JC)	0	0	0.000
MH - 120 (STM	I-JC)	0	0.669	0.000
MH - 123 (STM	I-JC)	0	1.19	-0.047
MH - 141 (STM	I-JC)	0	0	0.000
INLET 7-F (ST	M-JC)	0	0	0.000
INLET 6-C (ST	M-JC)	0	0	0.000
INLET 6-F (ST	M-JC)	0	0	0.000
MH - 80 (STM-	JC)	0	0	0.000
MH - 30 (STM-	JC)	0.484	0.67	0.039

Node	Late Inflo Volum 10^6	ow me	Total Inflow Volume 10^6 gal	Flow Balance Error Percent
MH - 20 (STM-		0.237	1.17	0.032
INLET 4-H (ST	M-JC)	0	0	0.000
INLET 1-OS (S	TM-JC)	0.15	0.15	0.000
INLET 5-I (STI	M-JC)	0.143	0.812	-0.001
INLET 4-F (ST	M-JC)	0	0	0.000
INLET 1-B (ST	M-JC)	0.02	0.02	0.000
INLET 6-H (ST	M-JC)	0	0	0.000
INLET 3-A (ST	M-JC)	0.0486	0.0486	0.000
MH - 2 (STM-J	C)	0	0.15	-0.000
MH - 4 (STM-J	C)	0	0.163	-0.000
MH - 3 (STM-J	C)	0.104	0.466	-0.007
MH - 7 (STM-J	C)	0	0	0.000
MH - 6 (STM-J	C)	0.274	0.76	-0.003
INLET 1-I (ST	M-JC)	0	0	0.000
MH - 14 (STM-	JC)	0	0.792	0.001
MH - 34 (STM-	JC)	0	0.669	0.161
MH - 84 (STM-	JC)	0	0	0.000
MH - 64 (STM-	JC)	0	0	0.000
MH - 94 (STM-	JC)	0	0	0.000
MH - 74 (STM-	JC)	0	0	0.000
MH - 72 (STM-	JC)	0	0	0.000
MH - 114 (STM	I-JC)	0	0.168	0.002
MH - 118 (STM	I-JC)	0	0.76	-0.002
MH - 115 (STM	I-JC)	0	0.168	-0.057
MH - 117 (STM	I-JC)	0	0.792	-0.006
MH - 119 (STM	I-JC)	0	0	0.000

	Late Infl Volu	ow	Total Inflow Volume	Flow Balance Error
Node	10^	6 gal	10^6 gal	Percent
MH - 112 (STM	I-JC)	0	0.668	-0.083
INLET 4-C (ST	M-JC)	0	0	0.000
INLET 1-D (ST	M-JC)	0.0318	0.0318	0.000
MH - 29 (STM-	JC)	0	0.168	-0.012
MH - 39 (STM-	JC)	0	0.669	-0.006
INLET 3-F (ST	M-JC)	0	0	0.000
INLET 1-G (ST	M-JC)	0.0206	1.19	0.020
MH - 134 (STM	I-JC)	0	0	0.000
MH - 133 (STM	I-JC)	0	0	0.000
MH - 138 (STM	I-JC)	0	0	0.000
MH - 137 (STM	I-JC)	0	0	0.000
INLET 2-H (ST	M-JC)	0	0	0.000
INLET 7-C (ST	M-JC)	0	0	0.000
INLET 2-C (ST	M-JC)	0	0	0.000
INLET 2-E (ST	M-JC)	0	0	0.000
INLET 5-H (ST	M-JC)	0	0	0.000
INLET 2-I (ST	M-JC)	0	0	0.000
East_Pond_Disc	charge_	Structu@	2.48	0.000
OS-EAST_SID	E	0.0181	0.0181	0.000
WF-JCC_Outfa	11	0.00848	2.49	0.000
East_Pond		0.0598	2.48	-0.113

EURV Storm

		-			1		7.1	7.1		
Total Precip Subcatchment in	Total Runon in	Total Evap in	Total Infil in	Imperv Runoff in	Perv Runoff in	Total Runoff in	Total Runoff 10^6 gal	Peak Runoff CFS	Runoff Coeff	
A-Street	1.20	0.00	0.00	0.05	1.10	0.01	1.11	0.12	2.05	0.925
Sub-basin_J	1.20	0.00	0.00	0.40	0.76	0.02	0.77	0.19	7.71	0.64
Sub-basin_B	1.20	0.00	0.00	0.38	0.76	0.04	0.80	0.02	1.55	0.66
Sub-basin_C	1.20	0.00	0.00	0.39	0.77	0.02	0.79	0.32	11.97	0.65
Sub-basin_D	1.20	0.00	0.00	0.59	0.49	0.11	0.59	0.04	3.86	0.496
Sub-Basin_E	1.20	0.00	0.00	0.50	0.62	0.06	0.68	0.16	13.89	0.570
Sub-basin_F	1.20	0.00	0.00	0.40	0.76	0.02	0.77	0.27	9.38	0.64
Sub-basin_G	1.20	0.00	0.00	0.39	0.76	0.03	0.79	0.02	1.27	0.656
Sub-basin_I	1.20	0.00	0.00	0.40	0.75	0.02	0.77	0.17	6.39	0.64
Sub-basin_K	1.20	0.00	0.00	0.40	0.76	0.02	0.77	0.56	18.80	0.64
Sub-basin_M	1.20	0.00	0.00	0.96	0.08	0.16	0.24	0.07	6.39	0.202
Sub-basin_H	1.20	0.00	0.00	0.43	0.73	0.01	0.75	0.48	16.42	0.623
Sub-basin_R	1.20	0.00	0.00	1.00	0.08	0.11	0.20	0.01	0.85	0.164

Link Flow Summary

Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec
{STM-JC}.PIPI	E - 1 (SCINIDICI)T	0.45	0	02:11	4.28
{STM-JC}.PIPI	E - 1 050(N)D(S/TI V	I-JC) 15.92	0	00:50	9.47
{STM-JC}.PIPI	E - 1 050(ISTDM/HJIC	15.92	0	00:50	9.50
{STM-JC}.PIPI	E - 1 1390(N)D(STT M	I-JC) 18.20	0	00:47	10.93
{STM-JC}.PIPI	E - 1 CSQ(S/D)VIHJIC	(15.91)	0	00:51	9.44
{STM-JC}.PIPI	E - 1 260(N)D(U)T(S	TM-JC) 30.80	0	00:47	9.62
{STM-JC}.PIPI	E - 1 260(N)D(S/TI V	I-JC) 30.80	0	00:46	9.74
{STM-JC}.PIPI	E - 1 260(ISTDM/HJIC	30.79	0	00:46	10.25
{STM-JC}.PIPI	E - 1 270(N)D(S/TN	I-JC) 30.81	0	00:47	10.46
{STM-JC}.PIPI	E - 1 270(STDWHJ IC	30.80	0	00:47	10.63
{STM-JC}.PIPI	E - 1 280(ISTDM/HJIC	26.33	0	00:52	5.82
{STM-JC}.PIPI	E - 13000(ISTDN/HJIC	26.32	0	00:53	9.63
{STM-JC}.PIPI	E - 1 3330(STDWHJI C	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 339QISTDIVIHJIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 3350(ISTDM/HJIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 360(ISTDM/HJIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 3370(ISTDM/HJI C	2) 1.55	0	00:45	3.58
{STM-JC}.PIPI	E - 1 3380(ISTDM/HJIC	3.86	0	00:45	4.39
{STM-JC}.PIPI	E - 1 3390(ISTDM/HJIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 14C(SINIDALIICI)	18.20	0	00:47	9.71
{STM-JC}.PIPI	E - 1 4CO(STDN/HJK	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1400(S/DWHJK	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 420(STDWHJK	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 430(S/DV/HJK	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 14CIQISTDIVIHIC	0.00	0	00:00	0.00

Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec
{STM-JC}.PIPI	E - 1465QISTDIVIHJIC	0.49	0	01:54	5.28
{STM-JC}.PIPI	E - 1 460(ISTDMIHJIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 15C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 C(SNIMUIC)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 2 (SINDLA)	0.45	0	02:11	4.50
{STM-JC}.PIPI	E - 200(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 2 C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 2 2CON(SWM -	JC) 40.60	0	00:47	4.16
{STM-JC}.PIPI	E - 2 2C(SNIMUJICI)	40.91	0	00:47	7.84
{STM-JC}.PIPI	E - 23C(SNIMUJICI)	14.93	0	00:50	1.92
{STM-JC}.PIPI	E - 24C(SNIMUJICI)	14.90	0	00:53	1.55
{STM-JC}.PIPI	E - 25C(SNIMUJICI)	7.70	0	00:50	4.30
{STM-JC}.PIPI	E - 26C(SNIMUJICI)	7.70	0	00:50	4.32
{STM-JC}.PIPI	E - 27CONDUIST	M-JC) 7.65	0	00:51	7.41
{STM-JC}.PIPI	E - 27CON(SWM-	JC) 7.65	0	00:51	10.48
{STM-JC}.PIPI	E - 27C(SNIMUJICI)	7.67	0	00:50	9.11
{STM-JC}.PIPI	E - 28C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 3 C(SNIMUICI)	26.32	0	00:51	4.59
{STM-JC}.PIPI	E - 3 CONBUM -	JC) 26.31	0	00:52	6.02
{STM-JC}.PIPI	E - 3 ©(SNIMUJICI)	26.32	0	00:53	9.36
{STM-JC}.PIPI	E - 4 (SIMDIU)	0.49	0	01:23	2.83
{STM-JC}.PIPI	E - 45C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 46C(SNIMUICI)	0.12	0	02:26	2.99
{STM-JC}.PIPI	E - 47C(SINIDALJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 48C(SINIDALJICI)	0.12	0	02:26	1.92
{STM-JC}.PIPI	E - 490(SNIMUJICI)	0.00	0	00:00	0.00

Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec
{STM-JC}.PIPI	E - 5 COONDUST	M-JC) 4.01	0	00:51	7.69
{STM-JC}.PIPI	E - 5 (CIO) (SETIMA)	C) 2.99	0	01:05	7.26
{STM-JC}.PIPI	E - 500(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 5 C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 52C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 53C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 54C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 56C(SINIDILIICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 57CON(SWM-	JC) 0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 57C(2)N(ISWM-	JC) 0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 57C(3)N(3)WM-	JC) 0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 57C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 58C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 5 C(SNIMUIC)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 (SIMDIA)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 60 C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 C(SNIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 20NBUM -	JC) 0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 2C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 63C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 64C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 65C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 6C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 7CONISWM -	JC) 0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 67C(SINIDALJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 68C(SINIMUJICI)	1.52	0	00:47	0.41

Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec
{STM-JC}.PIPI	E - 6 C(SNIMUICI)	0.61	0	00:47	0.40
{STM-JC}.PIPI	E - 7 (SINDLA)T	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 700(SNIMUICI)	0.28	0	00:47	0.50
{STM-JC}.PIPI	E - 7 C(SNIMUIC)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 72C(SNIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 73C(SNIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 74 C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 75C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 76C(SNIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 77C(SNIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 78C(SNIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 7 C(SNIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 8 2CON(SWM -	JC) 32.49	0	00:53	9.55
{STM-JC}.PIPI	E - 8 C(SNIMUICI)	33.40	0	00:53	5.21
{STM-JC}.PIPI	E - 84C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 85C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 8 C(SNIMUIC)	39.74	0	00:47	7.54
1	CONDUIT	7.19	0	02:58	10.98
2	DUMMY	0.09	0	02:05	
Orifice_Row_1	ORIFICE	0.87	0	02:58	1.00
Orifice_Row_2	ORIFICE	0.71	0	02:58	1.00
Orifice_Row_3	ORIFICE	0.67	0	02:58	1.00
Emergency_Spi	llway WEIR	0.00	0	00:00	0.00
Zone_3_Weir	WEIR	4.93	0	02:58	0.06

Link Flow Summary

	Max / Full	Max / Full	
Link	Flow	Depth	
{STM-JC}.PIPI	E - 1 (STM- 00)1		0.07
{STM-JC}.PIPI	E - 105 (1) (STM	I-JC)	0.23
{STM-JC}.PIPI	E - 105 (STIMAJIC	;)	0.23
{STM-JC}.PIPI	E - 119 (1) (S.TO)	I-JC)	0.23
{STM-JC}.PIPI	E - 119 (STIMILIIC)	0.23
{STM-JC}.PIPI	E - 126 (1) (0.)168	TM-JC)	0.30
{STM-JC}.PIPI	E - 126 (1) (S.T 8/	I-JC)	0.30
{STM-JC}.PIPI	E - 126 (STIMILIO	C)	0.29
{STM-JC}.PIPI	E - 127 (1) (%.T4 /	I-JC)	0.29
{STM-JC}.PIPI	E - 127 (STIMILIA	;)	0.28
{STM-JC}.PIPI	E - 128 (STIM2160	C)	0.39
{STM-JC}.PIPI	E - 130 (STIMILEC	C)	0.27
{STM-JC}.PIPI	E - 133 (STIM1000)	0.00
{STM-JC}.PIPI	E - 134 (STIM1000)	0.00
{STM-JC}.PIPI	E - 135 (STIM1000	C)	0.00
{STM-JC}.PIPI	E - 136 (STIM1000)	0.00
{STM-JC}.PIPI	E - 137 (STIMARO	;)	0.29
{STM-JC}.PIPI	E - 138 (STIMAJA)	0.32
{STM-JC}.PIPI	E - 139 (STIMOTO	;)	0.00
{STM-JC}.PIPI	E - 14 (STM)J(2)		0.25
{STM-JC}.PIPI	E - 140 (ST M 1900	()	0.00
{STM-JC}.PIPI	E - 141 (STIM19000	()	0.00
{STM-JC}.PIPI	E - 142 (STIM19100	;)	0.00
{STM-JC}.PIPI	E - 143 (STIM1900	()	0.00
{STM-JC}.PIPI	E - 144 (STM)000	;)	0.00

Link	Max / Full Flow	Max / Full Depth	
	E - 145 (STIMOTO	•	0.07
{STM-JC}.PIPI	E - 146 (ST IM 900	;)	0.00
{STM-JC}.PIPI	E - 15 (STM).000)		0.00
{STM-JC}.PIPI	E - 16 (STM).000)		0.00
{STM-JC}.PIPI	E - 2 (STM- 0 0)1		0.07
{STM-JC}.PIPI	E - 20 (STM).00)		0.21
{STM-JC}.PIPI	E - 21 (STM).00)		0.00
{STM-JC}.PIPI	E - 22 (1) (SOC288-	JC)	1.00
{STM-JC}.PIPI	E - 22 (STM).I (8)		0.80
{STM-JC}.PIPI	E - 23 (STM).ICI)		1.00
{STM-JC}.PIPI	E - 24 (STM). I (2)		1.00
{STM-JC}.PIPI	E - 25 (STM). JA(8)		0.56
{STM-JC}.PIPI	E - 26 (STM). JAS)		0.55
{STM-JC}.PIPI	E - 27 (1) (1 0.05 1	M-JC)	0.28
{STM-JC}.PIPI	E - 27 (1) (SOTM-	JC)	0.28
{STM-JC}.PIPI	E - 27 (STM). E (1)		0.31
{STM-JC}.PIPI	E - 28 (STM).00)		0.05
{STM-JC}.PIPI	E - 31 (STM). 82)		0.47
{STM-JC}.PIPI	E - 36 (1) (SOC 26 -	JC)	0.38
{STM-JC}.PIPI	E - 39 (STM)J(3)		0.28
{STM-JC}.PIPI	E - 4 (STM- 00)5		0.15
{STM-JC}.PIPI	E - 45 (STM).100)		0.00
{STM-JC}.PIPI	E - 46 (STM).100)		0.03
{STM-JC}.PIPI	E - 47 (STM).100)		0.00
{STM-JC}.PIPI	E - 48 (STM).J (I)		0.08
{STM-JC}.PIPI	E - 49 (STM).J00)		0.00

Link	Max / Full Flow	Max / Full Depth	
{STM-JC}.PIPI	E - 5 (1) (1) ((S)) 61	_	0.16
{STM-JC}.PIPI	E - 5 (1) (S TOM04	C)	0.14
{STM-JC}.PIPI	E - 50 (STM).J00)		0.00
{STM-JC}.PIPI	E - 51 (STM).J00)		0.00
{STM-JC}.PIPI	E - 52 (STM).J00)		0.00
{STM-JC}.PIPI	E - 53 (STM).J00)		0.00
{STM-JC}.PIPI	E - 54 (STM).J00)		0.00
{STM-JC}.PIPI	E - 56 (STM).100)		0.00
{STM-JC}.PIPI	E - 57 (1) (SOLOO -	JC)	0.00
{STM-JC}.PIPI	E - 57 (2) (SOLOO -	JC)	0.00
{STM-JC}.PIPI	E - 57 (3) (SOLOO -	JC)	0.00
{STM-JC}.PIPI	E - 57 (STM).J00)		0.00
{STM-JC}.PIPI	E - 58 (STM).J00)		0.00
{STM-JC}.PIPI	E - 59 (STM).100)		0.00
{STM-JC}.PIPI	E - 6 (STM- 0(0))		0.00
{STM-JC}.PIPI	E - 60 (STM).100)		0.00
{STM-JC}.PIPI	E - 61 (STM).100)		0.00
{STM-JC}.PIPI	E - 62 (1) (SOCOMO-	JC)	0.00
{STM-JC}.PIPI	E - 62 (STM).100)		0.00
{STM-JC}.PIPI	E - 63 (STM).100)		0.00
{STM-JC}.PIPI	E - 64 (STM).100)		0.00
{STM-JC}.PIPI	E - 65 (STM). J00)		0.00
{STM-JC}.PIPI	E - 66 (STM). J00)		0.00
{STM-JC}.PIPI	E - 67 (1) (SOLOO -	JC)	0.50
{STM-JC}.PIPI	E - 67 (STM).100)		0.00
{STM-JC}.PIPI	E - 68 (STM).J03)		1.00

Link	Max / Full Flow	Max / Full Depth
{STM-JC}.PIPI	E - 69 (STM).102)	1
{STM-JC}.PIPI	E - 7 (STM- 00 0)0	0.00
{STM-JC}.PIPI	E - 70 (STM 9.10 1)	0.97
{STM-JC}.PIPI	E - 71 (STM).00)	0.00
{STM-JC}.PIPI	E - 72 (STM).00)	0.00
{STM-JC}.PIPI	E - 73 (STM).00)	0.00
{STM-JC}.PIPI	E - 74 (STM).00)	0.00
{STM-JC}.PIPI	E - 75 (STM).00)	0.00
{STM-JC}.PIPI	E - 76 (STM).100)	0.00
{STM-JC}.PIPI	E - 77 (STM).00)	0.00
{STM-JC}.PIPI	E - 78 (STM).00)	0.00
{STM-JC}.PIPI	E - 79 (STM).00)	0.00
{STM-JC}.PIPI	E - 82 (1) (SOTIM8 -	JC) 0.32
{STM-JC}.PIPI	E - 83 (STM).10 (4)	0.57
{STM-JC}.PIPI	E - 84 (STM).100)	0.00
{STM-JC}.PIPI	E - 85 (STM).00)	0.00
{STM-JC}.PIPI	E - 86 (STM).IX 8)	0.44
1	0.02	0.10
2		
Orifice_Row_1		
Orifice_Row_2		
Orifice_Row_3		
Emergency_Spi	llway	
Zone_3_Weir		

Node Depth Summary

Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Day of Maximum Depth
INLET 5-F (ST	M-JUJNCTION	0.00	0.00	5855.60	0
MH - 71 (STM-	JC)JUNCTION	0.00	0.00	5865.02	0
MH - 31 (STM-	JC)JUNCTION	0.00	0.00	5839.60	0
MH - 21 (STM-	JC)JUNCTION	0.00	0.00	5826.36	0
MH - 91 (STM-	JC)JUNCTION	0.06	0.55	5825.62	0
MH - 53 (STM-	JC)JUNCTION	0.04	0.07	5907.31	0
INLET 8-C (ST	M-JC)NCTION	0.00	0.00	5881.41	0
MH - 73 (STM-	JC)JUNCTION	0.00	0.00	5853.28	0
INLET 8-H (ST	M-JC)NCTION	0.00	0.00	5829.61	0
INLET 4-A (ST	M-JC)NCTION	0.00	0.00	5907.91	0
INLET 3-C (ST	M-JC)NCTION	0.00	0.00	5877.81	0
INLET 1-C (ST	M-JC)NCTION	0.00	0.00	5879.55	0
INLET 1-E (ST	M-JC)NCTION	0.00	0.00	5848.65	0
MH - 16 (STM-	JC)JUNCTION	0.00	0.00	5848.09	0
MH - 108 (STM	1-JC)JUNCTION	0.13	0.41	5883.03	0
MH - 100 (STM	1-JC)JUNCTION	0.15	0.85	5859.68	0
MH - 101 (STM	1-JC)JUNCTION	0.15	1.25	5832.31	0
INLET 7-H (ST	M-JC)NCTION	0.00	0.00	5829.38	0
MH - 27 (STM-	JC)JUNCTION	0.08	1.25	5894.53	0
MH - 57 (STM-	JC)JUNCTION	0.00	0.00	5877.76	0
INLET 3-H (ST	M-JC)NCTION	0.00	0.00	5854.61	0
INLET 8-F (ST	M-JCC)NCTION	0.00	0.00	5827.41	0
INLET 9-H (ST	M-JC)NCTION	0.87	2.34	5825.40	0
INLET 1-H (ST	M-JC)NCTION	0.00	0.00	5865.63	0
INLET 2-F (ST	M-JUJNCTION	0.00	0.00	5871.65	0

Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Day of Maximum Depth
INLET 2-A (ST	M-JC)NCTION	0.00	0.00	5908.15	0
INLET 5-C (ST	M-JC)NCTION	0.00	0.00	5879.34	0
MH - 28 (STM-	JC)JUNCTION	0.66	1.82	5894.06	0
MH - 58 (STM-	JC)JUNCTION	0.00	0.00	5881.05	0
MH - 15 (STM-	JC)JUNCTION	0.25	1.32	5843.76	0
MH - 65 (STM-	JC)JUNCTION	0.00	0.00	5844.88	0
MH - 75 (STM-	JC)JUNCTION	1.74	3.72	5825.40	0
MH - 25 (STM-	JC)JUNCTION	2.85	5.31	5825.40	0
INLET 1-A (ST	M-JC)NCTION	0.12	0.24	5908.09	0
INLET 1-F (ST	M-JU)NCTION	0.00	0.00	5871.42	0
INLET 10-H (S	TMJJOYCTION	1.28	3.03	5825.40	0
INLET 11-H (S	TMJJOYCTION	2.28	4.50	5825.40	0
MH - 127 (STM	1-JC)JUNCTION	0.00	0.00	5878.17	0
MH - 128 (STM	1-JC)JUNCTION	0.00	0.00	5879.19	0
MH - 122 (STM	1-JC)JUNCTION	0.16	1.31	5838.77	0
MH - 125 (STM	1-JC)JUNCTION	0.16	1.34	5835.46	0
MH - 126 (STM	1-JC)JUNCTION	0.15	1.25	5828.70	0
MH - 124 (STM	1-JC)JUNCTION	0.00	0.00	5830.17	0
MH - 120 (STM	1-JC)JUNCTION	0.10	1.23	5832.18	0
MH - 123 (STM	1-JC)JUNCTION	2.43	4.71	5825.40	0
MH - 141 (STM	I-JC)JUNCTION	0.00	0.00	5840.68	0
INLET 7-F (ST	M-JACINCTION	0.00	0.00	5827.64	0
INLET 6-C (ST	M-JC)NCTION	0.00	0.00	5878.88	0
INLET 6-F (ST	M-JU)NCTION	0.00	0.00	5852.92	0
MH - 80 (STM-	JC)JUNCTION	0.00	0.00	5854.24	0
MH - 30 (STM-	JC)JUNCTION	0.23	2.21	5839.38	0

Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Day of Maximum Depth
MH - 20 (STM-	JC)JUNCTION	0.49	2.04	5826.01	0
INLET 4-H (ST	M-JC)NCTION	0.00	0.00	5854.82	0
INLET 1-OS (S	TMJIONCTION	0.08	0.15	5924.39	0
INLET 5-I (ST	M-JOUNCTION	0.11	1.36	5829.56	0
INLET 4-F (ST	M-JU)NCTION	0.00	0.00	5866.21	0
INLET 1-B (ST	M-JC)NCTION	0.02	0.49	5884.24	0
INLET 6-H (ST	M-JC)NCTION	0.00	0.00	5837.53	0
INLET 3-A (ST	M-JC)NCTION	0.07	0.12	5908.21	0
MH - 2 (STM-J	C) JUNCTION	0.08	0.14	5917.73	0
MH - 4 (STM-J	C) JUNCTION	0.07	0.14	5907.34	0
MH - 3 (STM-J	C) JUNCTION	0.12	0.35	5898.29	0
MH - 7 (STM-J	C) JUNCTION	0.00	0.00	5876.21	0
MH - 6 (STM-J	C) JUNCTION	0.15	0.85	5870.56	0
INLET 1-I (ST	M-JOUNCTION	0.00	0.00	5841.22	0
MH - 14 (STM-	JC)JUNCTION	0.15	0.92	5848.33	0
MH - 34 (STM-	JC)JUNCTION	0.13	1.57	5838.55	0
MH - 84 (STM-	JC)JUNCTION	0.00	0.00	5839.76	0
MH - 64 (STM-	JC)JUNCTION	0.00	0.00	5841.17	0
MH - 94 (STM-	JC)JUNCTION	0.00	0.00	5838.20	0
MH - 74 (STM-	JC)JUNCTION	0.00	0.00	5836.47	0
MH - 72 (STM-	JC)JUNCTION	0.00	0.00	5864.09	0
MH - 114 (STM	1-JC)JUNCTION	0.04	0.57	5878.64	0
MH - 118 (STM	1-JCJUNCTION	0.15	0.85	5865.03	0
MH - 115 (STM	1-JC)JUNCTION	0.03	0.46	5860.51	0
MH - 117 (STM	1-JC)JUNCTION	0.14	0.85	5854.52	0
MH - 119 (STM	1-JC)JUNCTION	0.00	0.00	5834.32	0

N	T	Average Depth	Maximum Depth	Maximum HGL	Day of Maximum
Node	Туре	Feet	Feet	Feet	Depth
MH - 112 (STM	I-JC))UNCTION	0.14	1.65	5837.13	0
INLET 4-C (ST	M-JC)NCTION	0.00	0.00	5877.34	0
INLET 1-D (ST	M-JC)NCTION	0.02	0.74	5856.05	0
MH - 29 (STM-	JC)JUNCTION	0.04	0.64	5892.98	0
MH - 39 (STM-	JC)JUNCTION	0.10	1.20	5835.06	0
INLET 3-F (ST	M-JU)NCTION	0.00	0.00	5868.25	0
INLET 1-G (ST	M-JC)NCTION	1.11	2.71	5825.40	0
MH - 134 (STM	I-JC)JUNCTION	0.00	0.00	5871.06	0
MH - 133 (STM	I-JC)JUNCTION	0.00	0.00	5867.87	0
MH - 138 (STM	I-JC)JUNCTION	0.00	0.00	5829.02	0
MH - 137 (STM	I-JC)JUNCTION	0.00	0.00	5828.14	0
INLET 2-H (ST	M-JC)NCTION	0.00	0.00	5865.70	0
INLET 7-C (ST	M-JC)NCTION	0.00	0.00	5881.64	0
INLET 2-C (ST	M-JC)NCTION	0.00	0.00	5879.78	0
INLET 2-E (ST	M-JC)NCTION	0.00	0.00	5848.23	0
INLET 5-H (ST	M-JC)NCTION	0.00	0.00	5837.62	0
INLET 2-I (STI	M-JOUNCTION	0.00	0.00	5840.86	0
East_Pond_Disc	char ye<u>N</u>SfrTibOiN e	0.16	0.41	5818.91	0
OS-EAST_SID	E JUNCTION	0.00	0.00	5840.00	0
WF-JCC_Outfa	ll OUTFALL	0.16	0.40	5814.40	0
East_Pond	STORAGE	2.91	5.40	5825.40	0

Node Depth Summary

Node	Hour of Maximum Depth		Maximum Reported Depth Feet
INLET 5-F (ST	M-JC)	00:00	0.00
MH - 71 (STM-	JC)	00:00	0.00
MH - 31 (STM-	JC)	00:00	0.00
MH - 21 (STM-	JC)	00:00	0.00
MH - 91 (STM-	JC)	00:53	0.52
MH - 53 (STM-	JC)	02:26	0.07
INLET 8-C (ST	M-JC)	00:00	0.00
MH - 73 (STM-	JC)	00:00	0.00
INLET 8-H (ST	M-JC)	00:00	0.00
INLET 4-A (ST	M-JC)	00:00	0.00
INLET 3-C (ST	M-JC)	00:00	0.00
INLET 1-C (ST	M-JC)	00:00	0.00
INLET 1-E (ST	M-JC)	00:00	0.00
MH - 16 (STM-	JC)	00:00	0.00
MH - 108 (STM	I-JC)	00:51	0.40
MH - 100 (STM	I-JC)	00:50	0.80
MH - 101 (STM	I-JC)	00:47	1.14
INLET 7-H (ST	M-JC)	00:00	0.00
MH - 27 (STM-	JC)	00:50	1.19
MH - 57 (STM-	JC)	00:00	0.00
INLET 3-H (ST	M-JC)	00:00	0.00
INLET 8-F (ST	M-JC)	00:00	0.00
INLET 9-H (ST	M-JC)	02:56	2.34
INLET 1-H (ST	M-JC)	00:00	0.00
INLET 2-F (ST	M-JC)	00:00	0.00

Node	Hour of Maximum Depth		Maximum Reported Depth Feet
INLET 2-A (ST	M-JC)	00:00	0.00
INLET 5-C (ST	M-JC)	00:00	0.00
MH - 28 (STM-	JC)	00:50	1.75
MH - 58 (STM-	JC)	00:00	0.00
MH - 15 (STM-	JC)	00:46	1.28
MH - 65 (STM-	JC)	00:00	0.00
MH - 75 (STM-	JC)	02:56	3.72
MH - 25 (STM-	JC)	02:57	5.31
INLET 1-A (ST	M-JC)	01:23	0.24
INLET 1-F (ST	M-JC)	00:00	0.00
INLET 10-H (S	TM-JC)	02:56	3.03
INLET 11-H (S	TM-JC)	02:56	4.50
MH - 127 (STM	I-JC)	00:00	0.00
MH - 128 (STM	I-JC)	00:00	0.00
MH - 122 (STM	I-JC)	00:46	1.24
MH - 125 (STM	I-JC)	00:47	1.24
MH - 126 (STM	I-JC)	00:47	1.13
MH - 124 (STM	I-JC)	00:00	0.00
MH - 120 (STM	I-JC)	00:53	1.18
MH - 123 (STM	I-JC)	02:57	4.71
MH - 141 (STM	I-JC)	00:00	0.00
INLET 7-F (ST	M-JC)	00:00	0.00
INLET 6-C (ST	M-JC)	00:00	0.00
INLET 6-F (ST	M-JC)	00:00	0.00
MH - 80 (STM-	JC)	00:00	0.00
MH - 30 (STM-	JC)	00:51	2.10

Node	Hour of Maximum Depth		Maximum Reported Depth Feet
MH - 20 (STM-	JC)	00:47	1.86
INLET 4-H (ST	M-JC)	00:00	0.00
INLET 1-OS (S	TM-JC)	02:11	0.15
INLET 5-I (ST	M-JC)	00:52	1.30
INLET 4-F (ST	M-JC)	00:00	0.00
INLET 1-B (ST	M-JC)	00:45	0.49
INLET 6-H (ST	M-JC)	00:00	0.00
INLET 3-A (ST	M-JC)	02:26	0.12
MH - 2 (STM-J	C)	02:11	0.14
MH - 4 (STM-J	C)	01:55	0.14
MH - 3 (STM-J	C)	01:05	0.35
MH - 7 (STM-J	C)	00:00	0.00
MH - 6 (STM-J	C)	00:50	0.79
INLET 1-I (ST	M-JC)	00:00	0.00
MH - 14 (STM-	JC)	00:47	0.86
MH - 34 (STM-	JC)	00:52	1.48
MH - 84 (STM-	JC)	00:00	0.00
MH - 64 (STM-	JC)	00:00	0.00
MH - 94 (STM-	JC)	00:00	0.00
MH - 74 (STM-	JC)	00:00	0.00
MH - 72 (STM-	JC)	00:00	0.00
MH - 114 (STM	I-JC)	00:51	0.53
MH - 118 (STM	I-JC)	00:50	0.79
MH - 115 (STM	I-JC)	00:51	0.43
MH - 117 (STM	I-JC)	00:46	0.80
MH - 119 (STM	I-JC)	00:00	0.00

Node	Hour of Maximum Depth		Maximum Reported Depth Feet
MH - 112 (STM		00:52	1.57
INLET 4-C (ST	M-JC)	00:00	0.00
INLET 1-D (ST	M-JC)	00:45	0.73
MH - 29 (STM-	JC)	00:50	0.58
MH - 39 (STM-	JC)	00:52	1.15
INLET 3-F (ST	M-JC)	00:00	0.00
INLET 1-G (ST	M-JC)	02:57	2.71
MH - 134 (STM	I-JC)	00:00	0.00
MH - 133 (STM	I-JC)	00:00	0.00
MH - 138 (STM	I-JC)	00:00	0.00
MH - 137 (STM	I-JC)	00:00	0.00
INLET 2-H (ST	M-JC)	00:00	0.00
INLET 7-C (ST	M-JC)	00:00	0.00
INLET 2-C (ST	M-JC)	00:00	0.00
INLET 2-E (ST	M-JC)	00:00	0.00
INLET 5-H (ST	M-JC)	00:00	0.00
INLET 2-I (ST	M-JC)	00:00	0.00
East_Pond_Disc	charge_S	tr 02t5 8e	0.41
OS-EAST_SID	E	00:00	0.00
WF-JCC_Outfa	11	02:58	0.40
East_Pond		02:58	5.40

Node Inflow Summary

Node	Type	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow
East_Pond_Disc	char ye<u>N</u>Striktin e	0.00	7.19	0	02:58
INLET 10-H (S	TMJUNCTION	0.00	0.61	0	00:47
INLET 11-H (S	TMJIOYCTION	16.42	16.42	0	00:50
INLET 1-A (ST	M-JC)NCTION	0.49	0.49	0	01:22
INLET 1-B (ST	M-JC)NCTION	1.55	1.55	0	00:45
INLET 1-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 1-D (ST	M-JC)NCTION	3.86	3.86	0	00:45
INLET 1-E (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 1-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 1-G (ST	M-JC)NCTION	1.27	40.98	0	00:47
INLET 1-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 1-I (ST	M-JOUNCTION	0.00	0.00	0	00:00
INLET 1-OS (S	TMJIOYCTION	0.45	0.45	0	02:11
INLET 2-A (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 2-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 2-E (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 2-F (ST	M-JACINCTION	0.00	0.00	0	00:00
INLET 2-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 2-I (ST	M-JOUNCTION	0.00	0.00	0	00:00
INLET 3-A (ST	M-JC)NCTION	0.12	0.12	0	02:26
INLET 3-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 3-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 3-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 4-A (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 4-C (ST	M-JC)NCTION	0.00	0.00	0	00:00

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow
INLET 4-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 4-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 5-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 5-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 5-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 5-I (ST	M-JOUNCTION	6.39	32.49	0	00:52
INLET 6-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 6-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 6-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 7-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 7-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 7-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 8-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 8-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 8-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 9-H (ST	M-JC)NCTION	0.00	0.28	0	00:47
MH - 100 (STM	1-JC)JUNCTION	0.00	15.92	0	00:50
MH - 101 (STM	1-JC)JUNCTION	0.00	30.80	0	00:47
MH - 108 (STM	1-JC)JUNCTION	0.00	4.01	0	00:50
MH - 112 (STM	1-JC)JUNCTION	0.00	26.33	0	00:52
MH - 114 (STM	1-JC)JUNCTION	0.00	7.67	0	00:50
MH - 115 (STM	1-JC)JUNCTION	0.00	7.65	0	00:51
MH - 117 (STM	1-JCJJUNCTION	0.00	18.20	0	00:46
MH - 118 (STM	1-JCJUNCTION	0.00	15.92	0	00:50
MH - 119 (STM	1-JCJUNCTION	0.00	0.00	0	00:00
MH - 120 (STM	1-JC)JUNCTION	0.00	26.32	0	00:53

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow
MH - 122 (STM	1-JC)JUNCTION	0.00	30.79	0	00:46
MH - 123 (STM	1-JC)JUNCTION	0.00	40.91	0	00:47
MH - 124 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 125 (STM	1-JC)JUNCTION	0.00	30.80	0	00:46
MH - 126 (STM	1-JC)JUNCTION	0.00	30.80	0	00:47
MH - 127 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 128 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 133 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 134 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 137 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 138 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 14 (STM-	JC)JUNCTION	0.00	18.20	0	00:47
MH - 141 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 15 (STM-	JC)JUNCTION	13.89	30.80	0	00:46
MH - 16 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 2 (STM-J	C) JUNCTION	0.00	0.45	0	02:11
MH - 20 (STM-	JC)JUNCTION	9.38	39.74	0	00:47
MH - 21 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 25 (STM-	JC)JUNCTION	0.00	14.93	0	00:50
MH - 27 (STM-	JC)JUNCTION	7.71	7.71	0	00:50
MH - 28 (STM-	JC)JUNCTION	0.00	7.70	0	00:50
MH - 29 (STM-	JC)JUNCTION	0.00	7.70	0	00:50
MH - 3 (STM-J	C) JUNCTION	2.05	2.99	0	01:05
MH - 30 (STM-	JC)JUNCTION	18.80	26.41	0	00:50
MH - 31 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 34 (STM-	JC)JUNCTION	0.00	26.32	0	00:51

Node	Tuno	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow
	Type JC)JUNCTION	0.00	26.31	0	00:52
,	C) JUNCTION	0.00	0.49	0	01:23
`	JC)JUNCTION	0.00	0.12	0	02:26
,	JC)JUNCTION	0.00	0.00	0	00:00
	JC)JUNCTION	0.00	0.00	0	00:00
,	C) JUNCTION	11.97	15.94	0	00:50
`	JC)JUNCTION	0.00	0.00	0	00:00
,	JC)JUNCTION	0.00	0.00	0	00:00
,	C) JUNCTION	0.00	0.00	0	00:00
`	JC)JUNCTION	0.00	0.00	0	00:00
MH - 72 (STM-	·	0.00	0.00	0	00:00
,	JC)JUNCTION	0.00	0.00	0	00:00
	JC)JUNCTION	0.00	0.00	0	00:00
`	JC)JUNCTION	0.00	1.52	0	00:47
,	JC)JUNCTION	0.00	0.00	0	00:00
,	JC)JUNCTION	0.00	0.00	0	00:00
,	JC)JUNCTION	0.00	32.49	0	00:53
,	JC)JUNCTION	0.00	0.00	0	00:00
OS-EAST_SID	,	0.09	0.09	0	02:05
WF-JCC_Outfa		0.85	7.19	0	02:58
East_Pond	STORAGE	6.39	91.07	0	00:49

Node Inflow Summary

Node	Late: Inflo Volui 10^6	ow me	Total Inflow Volume 10^6 gal	Flow Balance Error Percent
East_Pond_Disc				0.000
INLET 10-H (S	TM-JC)	0	0.00873	-0.053
INLET 11-H (S	TM-JC)	0.482	0.496	-0.080
INLET 1-A (ST	M-JC)	0.468	0.468	0.000
INLET 1-B (ST	M-JC)	0.0229	0.0229	0.000
INLET 1-C (ST	M-JC)	0	0	0.000
INLET 1-D (ST	M-JC)	0.0356	0.0356	0.000
INLET 1-E (ST	M-JC)	0	0	0.000
INLET 1-F (ST	M-JC)	0	0	0.000
INLET 1-G (ST	M-JC)	0.0237	1.99	0.062
INLET 1-H (ST	M-JC)	0	0	0.000
INLET 1-I (ST	M-JC)	0	0	0.000
INLET 1-OS (S	TM-JC)	0.432	0.432	0.000
INLET 2-A (ST	M-JC)	0	0	0.000
INLET 2-C (ST	M-JC)	0	0	0.000
INLET 2-E (ST	M-JC)	0	0	0.000
INLET 2-F (ST	M-JC)	0	0	0.000
INLET 2-H (ST	M-JC)	0	0	0.000
INLET 2-I (ST	M-JC)	0	0	0.000
INLET 3-A (ST	M-JC)	0.14	0.14	0.000
INLET 3-C (ST	M-JC)	0	0	0.000
INLET 3-F (ST	M-JC)	0	0	0.000
INLET 3-H (ST	M-JC)	0	0	0.000
INLET 4-A (ST	M-JC)	0	0	0.000
INLET 4-C (ST	M-JC)	0	0	0.000

Node	Later Inflo Volur 10^6	ow me	Total Inflow Volume 10^6 gal	Flow Balance Error Percent
INLET 4-F (ST		0	0	0.000
INLET 4-H (ST	M-JC)	0	0	0.000
INLET 5-C (ST	M-JC)	0	0	0.000
INLET 5-F (ST	M-JC)	0	0	0.000
INLET 5-H (ST	M-JC)	0	0	0.000
INLET 5-I (ST	M-JC)	0.165	0.978	-0.002
INLET 6-C (ST	M-JC)	0	0	0.000
INLET 6-F (ST	M-JC)	0	0	0.000
INLET 6-H (ST	M-JC)	0	0	0.000
INLET 7-C (ST	M-JC)	0	0	0.000
INLET 7-F (ST	M-JC)	0	0	0.000
INLET 7-H (ST	M-JC)	0	0	0.000
INLET 8-C (ST	M-JC)	0	0	0.000
INLET 8-F (ST	M-JC)	0	0	0.000
INLET 8-H (ST	M-JC)	0	0	0.000
INLET 9-H (ST	M-JC)	0	0.00281	0.000
MH - 100 (STM	I-JC)	0	1.5	-0.001
MH - 101 (STM	I-JC)	0	1.69	-0.000
MH - 108 (STM	I-JC)	0	1.18	0.001
MH - 112 (STM	I-JC)	0	0.812	-0.038
MH - 114 (STM	I-JC)	0	0.193	0.004
MH - 115 (STM	I-JC)	0	0.193	-0.021
MH - 117 (STM	I-JC)	0	1.53	-0.003
MH - 118 (STM	I-JC)	0	1.5	-0.001
MH - 119 (STM	I-JC)	0	0	0.000
MH - 120 (STM	I-JC)	0	0.813	0.001

Node	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal	Flow Balance Error Percent
MH - 122 (STM		1.69	0.000
MH - 123 (STM	1 -JC) 0	1.99	-0.076
MH - 124 (STM	I-JC) 0	0	0.000
MH - 125 (STM	I -JC) 0	1.69	-0.002
MH - 126 (STM	I -JC) 0	1.69	0.012
MH - 127 (STM	1 -JC) 0	0	0.000
MH - 128 (STM	I-JC) 0	0	0.000
MH - 133 (STM	I-JC) 0	0	0.000
MH - 134 (STM	1 -JC) 0	0	0.000
MH - 137 (STM	1 -JC) 0	0	0.000
MH - 138 (STM	1 -JC) 0	0	0.000
MH - 14 (STM-	JC) 0	1.53	0.001
MH - 141 (STM	1-JC) 0	0	0.000
MH - 15 (STM-	JC) 0.159	1.69	-0.001
MH - 16 (STM-	JC) 0	0	0.000
MH - 2 (STM-J	C) 0	0.432	-0.000
MH - 20 (STM-	JC) 0.273	1.97	0.015
MH - 21 (STM-	JC) 0	0	0.000
MH - 25 (STM-	JC) 0	0.486	-0.817
MH - 27 (STM-	JC) 0.193	0.193	-0.004
MH - 28 (STM-	JC) 0	0.193	0.030
MH - 29 (STM-	JC) 0	0.193	-0.010
MH - 3 (STM-J	C) 0.12	1.16	-0.003
MH - 30 (STM-	JC) 0.558	0.813	0.008
MH - 31 (STM-	JC) 0	0	0.000
MH - 34 (STM-	JC) 0	0.813	0.093

	Lateral Inflow Volume	Total Inflow Volume	Flow Balance Error
Node	10^6 gal	10^6 gal	Percent
MH - 39 (STM-	JC) 0	0.813	-0.005
MH - 4 (STM-J	C) 0	0.468	0.000
MH - 53 (STM-	JC) 0	0.14	0.000
MH - 57 (STM-	JC) 0	0	0.000
MH - 58 (STM-	JC) 0	0	0.000
MH - 6 (STM-J	C) 0.316	1.5	-0.002
MH - 64 (STM-	JC) 0	0	0.000
MH - 65 (STM-	JC) 0	0	0.000
MH - 7 (STM-J	C) 0	0	0.000
MH - 71 (STM-	JC) 0	0	0.000
MH - 72 (STM-	JC) 0	0	0.000
MH - 73 (STM-	JC) 0	0	0.000
MH - 74 (STM-	JC) 0	0	0.000
MH - 75 (STM-	JC) 0	0.019	-0.429
MH - 80 (STM-	JC) 0	0	0.000
MH - 84 (STM-	JC) 0	0	0.000
MH - 91 (STM-	JC) 0	0.978	-0.019
MH - 94 (STM-	JC) 0	0	0.000
OS-EAST_SID	E 0.0614	0.0614	0.000
WF-JCC_Outfa	11 0.00994	3.53	0.000
East_Pond	0.0675	3.53	-0.044

5-Year Storm

Subcatchment	Total Precip in	Total Runon in	Total Evap in	Total Infil in	Imperv Runoff in	Perv Runoff in	Total Runoff in	Total Runoff 10^6 gal	Peak Runoff CFS	Runoff Coeff
A-Street	1.66	0.00	0.00	0.06	1.54	0.02	1.56	0.17	3,44	0.941
Sub-basin_J	1.66	0.00	0.00	0.50	1.06	0.08	1.14	0.28	12.47	0.686
Sub-basin_B	1.66	0.00	0.00	0.45	1.06	0.13	1.19	0.03	2.47	0.718
Sub-basin_C	1.66	0.00	0.00	0.49	1.07	0.08	1.15	0.46	19.48	0.694
Sub-basin_D	1.66	0.00	0.00	0.67	0.68	0.30	0.98	0.06	6.21	0.591
Sub-Basin_E	1.66	0.00	0.00	0.58	0.87	0.19	1.06	0.25	21.64	0.641
Sub-basin_F	1.66	0.00	0.00	0.51	1.05	0.07	1.12	0.40	15.41	0.679
Sub-basin_G	1.66	0.00	0.00	0.47	1.06	0.11	1.17	0.04	2.07	0.704
Sub-basin_I	1.66	0.00	0.00	0.51	1.05	0.08	1.13	0.24	10.38	0.682
Sub-basin_K	1.66	0.00	0.00	0.51	1.05	0.07	1.12	0.81	30.95	0.678
Sub-basin_M	1.66	0.00	0.00	1.09	0.11	0.46	0.57	0.16	14.15	0.346
Sub-basin_H	1.66	0.00	0.00	0.55	1.02	0.07	1.09	0.70	27.00	0.658
Sub-basin_R	1.66	0.00	0.00	1.17	0.11	0.38	0.49	0.02	1.73	0.296

Link Flow Summary

Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec
{STM-JC}.PIPI	E - 1 270(ISTDMIHJIC	(2) 49.68	0	00:47	11.74
{STM-JC}.PIPI	E - 1 3370(ISTDM/HJIC	2.47	0	00:45	4.03
{STM-JC}.PIPI	E - 1300QISTDIVIHIC	3.10	0	00:52	10.69
{STM-JC}.PIPI	E - 1 4000(STDN/HJI C	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 57C(2)N(ISWM-	JC) 0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 8 20NBWM -	JC) 53.13	0	00:52	10.67
{STM-JC}.PIPI	E - 1 260(N)D(U)I(IS	TM-JC) 49.68	0	00:47	10.66
{STM-JC}.PIPI	E - 6 20NBUM -	JC) 0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 67CON(SWM-	JC) 0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 5 CONSTINITI	C) 4.37	0	00:57	8.11
{STM-JC}.PIPI	E - 1 4C2Q(STD)VIHJI C	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 280(ISTDMIHJIC	3.14	0	00:51	6.29
{STM-JC}.PIPI	E - 1 380(ISTENULLIC	6.20	0	00:45	4.96
{STM-JC}.PIPI	E - 27CONDUIST	M-JC) 12.42	0	00:51	7.31
{STM-JC}.PIPI	E - 57CON(SWM-	JC) 0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 (SQIN)D(15/171/	I-JC) 29.96	0	00:46	12.31
{STM-JC}.PIPI	E - 10050(IN)D(IS/TIV	I-JC) 25.54	0	00:50	10.63
{STM-JC}.PIPI	E - 1 260(N)D(S/T IV	I-JC) 49.67	0	00:46	10.81
{STM-JC}.PIPI	E - 1 270(IN)D(ISTI V	I-JC) 49.69	0	00:47	10.19
{STM-JC}.PIPI	E - 10050(ISTDN/HJIC	25.55	0	00:50	10.67
{STM-JC}.PIPI	E - 1 3350(ISTDVIHJI C	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 450(NDVIHJ C	1.28	0	01:38	7.01
{STM-JC}.PIPI	E - 3 CONISWM -	JC) 43.10	0	00:52	6.73
{STM-JC}.PIPI	E - 57C(3)N(3)WM-	JC) 0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 13C3Q(S/TDM/HJIC	0.00	0	00:00	0.00

Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec
{STM-JC}.PIPI	E - 13290(ISTENULLIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1400 STDWHJC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 4C3Q(S)TD)VIHJI C	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 14 C/Q/S/TDM/HJ/C	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 27CON(SWM-	JC) 12.42	0	00:50	11.93
{STM-JC}.PIPI	E - 2 2CON(SWM -	JC) 65.93	0	00:47	5.56
{STM-JC}.PIPI	E - 1 (SOINDLAI)	1.13	0	01:57	5.63
{STM-JC}.PIPI	E - 2 (SINDLA)	1.13	0	01:58	5.94
{STM-JC}.PIPI	E - 4 (SIMDIA)	1.28	0	01:37	3.61
{STM-JC}.PIPI	E - 6 (SINDIA)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 7 (SIMDIA)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 5 (CIO) (SIT)	M-JC) 6.12	0	00:51	8.67
{STM-JC}.PIPI	E - 1 ISQISTDIVIHIC	25.54	0	00:50	10.59
{STM-JC}.PIPI	E - 1 260(ISTENULLIC	(2) 49.66	0	00:46	11.46
{STM-JC}.PIPI	E - 1 360(ISTENULLIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 3590(ISTENULLIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 460(ISIDIVIHI C	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 14C(SNIMUJICI)	29.98	0	00:46	10.93
{STM-JC}.PIPI	E - 15C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 16C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 200(SNIMUJICI)	0.17	0	00:44	0.14
{STM-JC}.PIPI	E - 2 C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 212 (SINI MILJICI)	66.41	0	00:47	7.71
{STM-JC}.PIPI	E - 23C(SINIMUJICI)	25.59	0	00:51	2.66
{STM-JC}.PIPI	E - 24C(SNIMUJICI)	25.57	0	00:51	2.66
{STM-JC}.PIPI	E - 25C(SINIMUJICI)	12.47	0	00:50	4.64

Link	Type	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec
{STM-JC}.PIPI	E - 26C(SINIMUICI)	12.46	0	00:50	4.98
{STM-JC}.PIPI	E - 27C(SINIMUJICI)	12.44	0	00:50	10.35
{STM-JC}.PIPI	E - 28C(SINIMUICI)	0.15	0	00:45	0.41
{STM-JC}.PIPI	E - 3 C(SINIMUJICI)	43.17	0	00:50	5.25
{STM-JC}.PIPI	E - 3 ©(SNIMUJICI)	43.11	0	00:52	10.39
{STM-JC}.PIPI	E - 45C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 4 C(SNIMUICI)	0.25	0	02:16	3.71
{STM-JC}.PIPI	E - 47C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 48C(SINIMUJICI)	0.25	0	02:16	2.34
{STM-JC}.PIPI	E - 4 ©(SNIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 50 C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 5 C(SINIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 52C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 53C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 54C(SINIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 56C(SINIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 57C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 58C(SINIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 5 ©(SNIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 60 C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 C(SNIMUIC)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 2 (SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 3C(SNIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 64C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 65C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 C(SNIMUICI)	0.00	0	00:00	0.00

Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec
	E - 67C(SINIMUJICT)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 68C(SINIMUJICI)	2.45	0	00:44	0.51
{STM-JC}.PIPI	E - 6 C(SNIMUICI)	0.98	0	00:44	0.47
{STM-JC}.PIPI	E - 70 C(SINIMUICI)	0.43	0	00:44	0.62
{STM-JC}.PIPI	E - 7 C(SINIMUIC)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 72C(SINIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 73 C(SINIMUIKI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 74C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 75C(SINIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 76C(SINIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 77C(SINIMEJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 78C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 7 9C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 8 C(SNIMUJICI)	53.12	0	00:52	6.61
{STM-JC}.PIPI	E - 84 C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 85 C(SNIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 8 C(SNIMUI)	64.54	0	00:47	8.56
1	CONDUIT	24.69	0	02:08	15.84
2	DUMMY	0.09	0	02:05	
Orifice_Row_1	ORIFICE	0.92	0	02:08	1.00
Orifice_Row_2	ORIFICE	0.77	0	02:08	1.00
Orifice_Row_3	ORIFICE	0.51	0	02:08	1.00
Zone_3_Weir	WEIR	22.50	0	02:08	0.16
Emergency_Spi	llway WEIR	0.00	0	00:00	0.00

Link Flow Summary

	Max / Full	Max / Full	
Link	Flow	Depth	ı
{STM-JC}.PIPI	E - 127 (STIM2DC)	0.37
{STM-JC}.PIPI	E - 137 (STIM2BC)	0.38
{STM-JC}.PIPI	E - 130 (ST M2 00)	0.36
{STM-JC}.PIPI	E - 140 (STIM19100)	0.00
{STM-JC}.PIPI	E - 57 (2) (SOCOM)-	JC)	0.00
{STM-JC}.PIPI	E - 82 (1) (SOC'MO-	JC)	0.42
{STM-JC}.PIPI	E - 126 (1) (0.)26	TM-JC)	0.40
{STM-JC}.PIPI	E - 62 (1) (SOT.000-	JC)	0.00
{STM-JC}.PIPI	E - 67 (1) (SOCOM)-	JC)	0.50
{STM-JC}.PIPI	E - 5 (1) (STOMOG	C)	0.17
{STM-JC}.PIPI	E - 142 (STIMOTO	")	0.00
{STM-JC}.PIPI	E - 128 (STIM4DC	")	0.54
{STM-JC}.PIPI	E - 138 (STIM2TC	")	0.42
{STM-JC}.PIPI	E - 27 (1) (1).() \$1	M-JC)	0.42
{STM-JC}.PIPI	E - 57 (1) (SOCOM)-	JC)	0.00
{STM-JC}.PIPI	E - 119 (1) (S.T7 V	I-JC)	0.30
{STM-JC}.PIPI	E - 105 (1) (S.TW	I-JC)	0.30
{STM-JC}.PIPI	E - 126 (1) (S.T)	I-JC)	0.39
{STM-JC}.PIPI	E - 127 (1) (S.T.)	I-JC)	0.42
{STM-JC}.PIPI	E - 105 (STM/4)70	;)	0.30
{STM-JC}.PIPI	E - 135 (STIM1900	()	0.00
{STM-JC}.PIPI	E - 145 (STIMORC	()	0.11
{STM-JC}.PIPI	E - 36 (1) (STM2 -	JC)	0.51
{STM-JC}.PIPI	E - 57 (3) (STDO -	JC)	0.00
{STM-JC}.PIPI	E - 133 (STIM19100	")	0.00

Link	Max / Full Flow	Max / Full Depth
{STM-JC}.PIPI	E - 134 (ST IM 1000	(2) 0.00
{STM-JC}.PIPI	E - 141 (ST IM 1900)	2) 0.00
{STM-JC}.PIPI	E - 143 (ST IM 1000	0.00
{STM-JC}.PIPI	E - 144 (ST IM 900	(2) 0.00
{STM-JC}.PIPI	E - 27 (1) (SOCM)-	JC) 0.37
{STM-JC}.PIPI	E - 22 (1) (SOTAM6-	JC) 1.00
{STM-JC}.PIPI	E - 1 (STM- 00)3	0.11
{STM-JC}.PIPI	E - 2 (STM- 00)8	0.11
{STM-JC}.PIPI	E - 4 (STM- 0 C)2	0.25
{STM-JC}.PIPI	E - 6 (STM- 00 0)0	0.02
{STM-JC}.PIPI	E - 7 (STM- 00 0)	0.00
{STM-JC}.PIPI	E - 5 (1) (1) (15) (5)	M-JC) 0.20
{STM-JC}.PIPI	E - 119 (ST M 4) 7	0.30
{STM-JC}.PIPI	E - 126 (ST M)2K C	0.38
{STM-JC}.PIPI	E - 136 (ST IM 900	0.00
{STM-JC}.PIPI	E - 139 (ST IM 1900	0.00
{STM-JC}.PIPI	E - 146 (ST IM 900	0.00
{STM-JC}.PIPI	E - 14 (STM). EO)	0.33
{STM-JC}.PIPI	E - 15 (STM).100)	0.03
{STM-JC}.PIPI	E - 16 (STM).00)	0.00
{STM-JC}.PIPI	E - 20 (STM).100)	0.41
{STM-JC}.PIPI	E - 21 (STM).J00)	0.00
{STM-JC}.PIPI	E - 22 (STM).46)	0.91
{STM-JC}.PIPI	E - 23 (STM).R6)	1.00
{STM-JC}.PIPI	E - 24 (STM).R8)	1.00
{STM-JC}.PIPI	E - 25 (STM)J(8)	0.80

Link	Max / Full Flow	Max / Full Depth
{STM-JC}.PIPI	E - 26 (STM) J(8)	•
{STM-JC}.PIPI	E - 27 (STM). I (3)	0.41
{STM-JC}.PIPI	E - 28 (STM).JQ)	0.36
{STM-JC}.PIPI	E - 31 (STMI- .13 21)	0.62
{STM-JC}.PIPI	E - 39 (STM).I (1)	0.36
{STM-JC}.PIPI	E - 45 (STM).00)	0.00
{STM-JC}.PIPI	E - 46 (STM).000)	0.04
{STM-JC}.PIPI	E - 47 (STM).00)	0.00
{STM-JC}.PIPI	E - 48 (STM).102)	0.11
{STM-JC}.PIPI	E - 49 (STM).00)	0.00
{STM-JC}.PIPI	E - 50 (STM).100)	0.02
{STM-JC}.PIPI	E - 51 (STM).00)	0.00
{STM-JC}.PIPI	E - 52 (STM).00)	0.00
{STM-JC}.PIPI	E - 53 (STM).00)	0.00
{STM-JC}.PIPI	E - 54 (STM).00)	0.00
{STM-JC}.PIPI	E - 56 (STM).00)	0.00
{STM-JC}.PIPI	E - 57 (STM).00)	0.00
{STM-JC}.PIPI	E - 58 (STM). 100)	0.00
{STM-JC}.PIPI	E - 59 (STM).00)	0.00
{STM-JC}.PIPI	E - 60 (STM). 100)	0.00
{STM-JC}.PIPI	E - 61 (STM)J00)	0.00
{STM-JC}.PIPI	E - 62 (STM)J00)	0.00
{STM-JC}.PIPI	E - 63 (STM).100)	0.00
{STM-JC}.PIPI	E - 64 (STM)J00)	0.00
{STM-JC}.PIPI	E - 65 (STM).J00)	0.00
{STM-JC}.PIPI	E - 66 (STM).100)	0.00

Link	Max / Full Flow	Max / Full Depth
{STM-JC}.PIPI	E - 67 (STM).100)	0.00
{STM-JC}.PIPI	E - 68 (STM).105)	1.00
{STM-JC}.PIPI	E - 69 (STM).103)	1.00
{STM-JC}.PIPI	E - 70 (STM).J01)	1.00
{STM-JC}.PIPI	E - 71 (STM).000)	0.00
{STM-JC}.PIPI	E - 72 (STM).00)	0.00
{STM-JC}.PIPI	E - 73 (STM).00)	0.00
{STM-JC}.PIPI	E - 74 (STM).00)	0.00
{STM-JC}.PIPI	E - 75 (STM).00)	0.00
{STM-JC}.PIPI	E - 76 (STM).00)	0.00
{STM-JC}.PIPI	E - 77 (STM).00)	0.04
{STM-JC}.PIPI	E - 78 (STM).00)	0.00
{STM-JC}.PIPI	E - 79 (STM).00)	0.00
{STM-JC}.PIPI	E - 83 (STM).106)	0.61
{STM-JC}.PIPI	E - 84 (STM).00)	0.00
{STM-JC}.PIPI	E - 85 (STM).100)	0.00
{STM-JC}.PIPI	E - 86 (STM).#6)	0.58
1	0.08	0.19
2		
Orifice_Row_1		
Orifice_Row_2		
Orifice_Row_3		
Zone_3_Weir		
Emergency_Spi	llway	

Node Depth Summary

Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Day of Maximum Depth
INLET 5-F (ST	M-JU)NCTION	0.00	0.00	5855.60	0
MH - 71 (STM-	JC)JUNCTION	0.00	0.00	5865.02	0
MH - 31 (STM-	JC)JUNCTION	0.01	0.51	5840.12	0
MH - 21 (STM-	JC)JUNCTION	0.00	0.34	5826.70	0
MH - 91 (STM-	JC)JUNCTION	0.11	0.89	5825.97	0
MH - 53 (STM-	JC)JUNCTION	0.04	0.10	5907.34	0
INLET 8-C (ST	M-JC)NCTION	0.00	0.00	5881.41	0
MH - 73 (STM-	JC)JUNCTION	0.00	0.00	5853.28	0
INLET 8-H (ST	M-JC)NCTION	0.00	0.00	5829.61	0
INLET 4-A (ST	M-JC)NCTION	0.00	0.00	5907.91	0
INLET 3-C (ST	M-JC)NCTION	0.00	0.00	5877.81	0
INLET 1-C (ST	M-JC)NCTION	0.00	0.00	5879.55	0
INLET 1-E (ST	M-JU)NCTION	0.00	0.00	5848.65	0
MH - 16 (STM-	JC)JUNCTION	0.00	0.00	5848.09	0
MH - 108 (STM	1-JC)JUNCTION	0.14	0.51	5883.13	0
MH - 100 (STM	1-JC)JUNCTION	0.17	1.12	5859.94	0
MH - 101 (STM	1-JC)JUNCTION	0.18	1.68	5832.74	0
INLET 7-H (ST	M-JC)NCTION	0.00	0.00	5829.38	0
MH - 27 (STM-	JC)JUNCTION	0.10	1.79	5895.07	0
MH - 57 (STM-	JC)JUNCTION	0.00	0.00	5877.76	0
INLET 3-H (ST	M-JC)NCTION	0.00	0.00	5854.61	0
INLET 8-F (ST	M-JU)NCTION	0.00	0.00	5827.41	0
INLET 9-H (ST	M-JC)NCTION	1.03	2.88	5825.94	0
INLET 1-H (ST	M-JC)NCTION	0.00	0.00	5865.63	0
INLET 2-F (ST	M-JAC)NCTION	0.00	0.00	5871.65	0

Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Day of Maximum Depth
INLET 2-A (ST	M-JC)NCTION	0.00	0.00	5908.15	0
INLET 5-C (ST	M-JC)NCTION	0.00	0.00	5879.34	0
MH - 28 (STM-	JC)JUNCTION	0.68	2.29	5894.53	0
MH - 58 (STM-	JC)JUNCTION	0.00	0.00	5881.05	0
MH - 15 (STM-	JC)JUNCTION	0.28	1.73	5844.16	0
MH - 65 (STM-	JC)JUNCTION	0.00	0.00	5844.88	0
MH - 75 (STM-	JC)JUNCTION	1.95	4.26	5825.94	0
MH - 25 (STM-	JC)JUNCTION	3.10	5.84	5825.93	0
INLET 1-A (ST	M-JC)NCTION	0.14	0.41	5908.26	0
INLET 1-F (ST	M-JU)NCTION	0.00	0.00	5871.42	0
INLET 10-H (S	TMJIONCTION	1.47	3.56	5825.94	0
INLET 11-H (S	TMJIOYCTION	2.52	5.04	5825.94	0
MH - 127 (STM	1-JC)JUNCTION	0.00	0.00	5878.17	0
MH - 128 (STM	1-JC)JUNCTION	0.00	0.00	5879.19	0
MH - 122 (STM	1-JC)JUNCTION	0.19	1.77	5839.22	0
MH - 125 (STM	1-JC)JUNCTION	0.19	1.80	5835.93	0
MH - 126 (STM	1-JC)JUNCTION	0.17	1.67	5829.12	0
MH - 124 (STM	1-JC)JUNCTION	0.00	0.00	5830.17	0
MH - 120 (STM	1-JC)JUNCTION	0.12	1.67	5832.62	0
MH - 123 (STM	1-JC)JUNCTION	2.67	5.25	5825.94	0
MH - 141 (STM	1-JC)JUNCTION	0.00	0.00	5840.68	0
INLET 7-F (ST	M-JU)NCTION	0.00	0.00	5827.64	0
INLET 6-C (ST	M-JC)NCTION	0.00	0.00	5878.88	0
INLET 6-F (ST	M-JU)NCTION	0.00	0.00	5852.92	0
MH - 80 (STM-	JC)JUNCTION	0.00	0.00	5854.24	0
MH - 30 (STM-	JC)JUNCTION	0.28	2.94	5840.11	0

Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Day of Maximum Depth
MH - 20 (STM-	JC)JUNCTION	0.61	2.72	5826.70	0
INLET 4-H (ST	M-JC)NCTION	0.00	0.00	5854.82	0
INLET 1-OS (S	TMJUNCTION	0.08	0.23	5924.47	0
INLET 5-I (ST	M-JOUNCTION	0.14	1.84	5830.04	0
INLET 4-F (ST	M-JU)NCTION	0.00	0.00	5866.21	0
INLET 1-B (ST	M-JC)NCTION	0.03	0.64	5884.39	0
INLET 6-H (ST	M-JC)NCTION	0.00	0.00	5837.53	0
INLET 3-A (ST	M-JC)NCTION	0.07	0.17	5908.26	0
MH - 2 (STM-J	C) JUNCTION	0.08	0.22	5917.81	0
MH - 4 (STM-J	C) JUNCTION	0.08	0.22	5907.43	0
MH - 3 (STM-J	C) JUNCTION	0.14	0.42	5898.36	0
MH - 7 (STM-J	C) JUNCTION	0.00	0.00	5876.21	0
MH - 6 (STM-J	C) JUNCTION	0.17	1.11	5870.82	0
INLET 1-I (ST	M-JOUNCTION	0.00	0.00	5841.22	0
MH - 14 (STM-	JC)JUNCTION	0.17	1.24	5848.65	0
MH - 34 (STM-	JC)JUNCTION	0.16	2.15	5839.13	0
MH - 84 (STM-	JC)JUNCTION	0.00	0.00	5839.76	0
MH - 64 (STM-	JC)JUNCTION	0.00	0.00	5841.17	0
MH - 94 (STM-	JC)JUNCTION	0.00	0.00	5838.20	0
MH - 74 (STM-	JC)JUNCTION	0.00	0.00	5836.47	0
MH - 72 (STM-	JC)JUNCTION	0.00	0.00	5864.09	0
MH - 114 (STM	1-JC)JUNCTION	0.05	0.75	5878.82	0
MH - 118 (STM	I-JCJUNCTION	0.17	1.11	5865.29	0
MH - 115 (STM	I-JCJUNCTION	0.04	0.58	5860.63	0
MH - 117 (STM	I-JCJUNCTION	0.16	1.13	5854.80	0
MH - 119 (STM	1-JC)JUNCTION	0.00	0.00	5834.32	0

		Average Depth	Maximum Depth	Maximum HGL	Day of Maximum
Node	Туре	Feet	Feet	Feet	Depth
MH - 112 (STM	I-JC)JUNCTION	0.17	2.24	5837.72	0
INLET 4-C (ST	M-JC)NCTION	0.00	0.00	5877.34	0
INLET 1-D (ST	M-JC)NCTION	0.03	0.96	5856.27	0
MH - 29 (STM-	JC)JUNCTION	0.05	0.83	5893.17	0
MH - 39 (STM-	JC)JUNCTION	0.12	1.63	5835.49	0
INLET 3-F (ST	M-JACINCTION	0.00	0.00	5868.25	0
INLET 1-G (ST	M-JC)NCTION	1.30	3.27	5825.96	0
MH - 134 (STM	I-JC)JUNCTION	0.00	0.00	5871.06	0
MH - 133 (STM	I-JC)JUNCTION	0.00	0.00	5867.87	0
MH - 138 (STM	I-JC)JUNCTION	0.00	0.00	5829.02	0
MH - 137 (STM	I-JC)JUNCTION	0.00	0.00	5828.14	0
INLET 2-H (ST	M-JC)NCTION	0.00	0.00	5865.70	0
INLET 7-C (ST	M-JC)NCTION	0.00	0.00	5881.64	0
INLET 2-C (ST	M-JC)NCTION	0.00	0.00	5879.78	0
INLET 2-E (ST	M-JC)NCTION	0.00	0.00	5848.23	0
INLET 5-H (ST	M-JC)NCTION	0.00	0.00	5837.62	0
INLET 2-I (STI	M-JOUNCTION	0.00	0.00	5840.86	0
East_Pond_Disc	char ye<u>l</u>NGTikQin e	0.19	0.74	5819.24	0
OS-EAST_SID	E JUNCTION	0.00	0.00	5840.00	0
WF-JCC_Outfa	ll OUTFALL	0.19	0.73	5814.73	0
East_Pond	STORAGE	3.16	5.93	5825.93	0

Node Depth Summary

Node	Hour of Maximum Depth		Maximum Reported Depth Feet
INLET 5-F (ST	M-JC)	00:00	0.00
MH - 71 (STM-	JC)	00:00	0.00
MH - 31 (STM-	JC)	00:50	0.25
MH - 21 (STM-	JC)	00:47	0.11
MH - 91 (STM-	JC)	00:53	0.84
MH - 53 (STM-	JC)	02:16	0.10
INLET 8-C (ST	M-JC)	00:00	0.00
MH - 73 (STM-	JC)	00:00	0.00
INLET 8-H (ST	M-JC)	00:00	0.00
INLET 4-A (ST	M-JC)	00:00	0.00
INLET 3-C (ST	M-JC)	00:00	0.00
INLET 1-C (ST	M-JC)	00:00	0.00
INLET 1-E (ST	M-JC)	00:00	0.00
MH - 16 (STM-	JC)	00:00	0.00
MH - 108 (STM	I-JC)	00:50	0.49
MH - 100 (STM	I-JC)	00:50	1.02
MH - 101 (STM	I-JC)	00:47	1.54
INLET 7-H (ST	M-JC)	00:00	0.00
MH - 27 (STM-	JC)	00:50	1.73
MH - 57 (STM-	JC)	00:00	0.00
INLET 3-H (ST	M-JC)	00:00	0.00
INLET 8-F (ST	M-JC)	00:00	0.00
INLET 9-H (ST	M-JC)	02:05	2.87
INLET 1-H (ST	M-JC)	00:00	0.00
INLET 2-F (ST	M-JC)	00:00	0.00

Node	Hour of Maximum Depth		Maximum Reported Depth Feet
INLET 2-A (ST	M-JC)	00:00	0.00
INLET 5-C (ST	M-JC)	00:00	0.00
MH - 28 (STM-	JC)	00:50	2.23
MH - 58 (STM-	JC)	00:00	0.00
MH - 15 (STM-	JC)	00:46	1.67
MH - 65 (STM-	JC)	00:00	0.00
MH - 75 (STM-	JC)	02:04	4.25
MH - 25 (STM-	JC)	02:07	5.84
INLET 1-A (ST	M-JC)	01:37	0.40
INLET 1-F (ST	M-JC)	00:00	0.00
INLET 10-H (S	TM-JC)	02:04	3.56
INLET 11-H (S	TM-JC)	02:05	5.04
MH - 127 (STM	I-JC)	00:00	0.00
MH - 128 (STM	I-JC)	00:00	0.00
MH - 122 (STM	I-JC)	00:46	1.67
MH - 125 (STM	I-JC)	00:46	1.67
MH - 126 (STM	I-JC)	00:47	1.52
MH - 124 (STM	I-JC)	00:00	0.00
MH - 120 (STM	I-JC)	00:52	1.55
MH - 123 (STM	I-JC)	02:05	5.25
MH - 141 (STM	I-JC)	00:00	0.00
INLET 7-F (ST	M-JC)	00:00	0.00
INLET 6-C (ST	M-JC)	00:00	0.00
INLET 6-F (ST	M-JC)	00:00	0.00
MH - 80 (STM-	JC)	00:00	0.00
MH - 30 (STM-	JC)	00:50	2.69

Node	Hour of Maximum Depth		Maximum Reported Depth Feet
MH - 20 (STM-	JC)	00:47	2.49
INLET 4-H (ST	M-JC)	00:00	0.00
INLET 1-OS (S	TM-JC)	01:57	0.23
INLET 5-I (ST	M-JC)	00:52	1.70
INLET 4-F (ST	M-JC)	00:00	0.00
INLET 1-B (ST	M-JC)	00:45	0.64
INLET 6-H (ST	M-JC)	00:00	0.00
INLET 3-A (ST	M-JC)	02:16	0.17
MH - 2 (STM-J	C)	01:58	0.22
MH - 4 (STM-J	C)	01:38	0.21
MH - 3 (STM-J	C)	00:57	0.42
MH - 7 (STM-J	C)	00:00	0.00
MH - 6 (STM-J	C)	00:50	1.05
INLET 1-I (ST	M-JC)	00:00	0.00
MH - 14 (STM-	JC)	00:46	1.15
MH - 34 (STM-	JC)	00:51	1.97
MH - 84 (STM-	JC)	00:00	0.00
MH - 64 (STM-	JC)	00:00	0.00
MH - 94 (STM-	JC)	00:00	0.00
MH - 74 (STM-	JC)	00:00	0.00
MH - 72 (STM-	JC)	00:00	0.00
MH - 114 (STM	I-JC)	00:50	0.67
MH - 118 (STM	I-JC)	00:50	1.04
MH - 115 (STM	I-JC)	00:51	0.53
MH - 117 (STM	I-JC)	00:46	1.07
MH - 119 (STM	I-JC)	00:00	0.00

Nada	Hour of Maximum Depth		Maximum Reported Depth Feet
Node MH - 112 (STM		00:51	2.07
INLET 4-C (ST	·	00:00	0.00
INLET 1-D (ST	<u> </u>	00:45	0.96
MH - 29 (STM-		00:50	0.78
MH - 39 (STM-		00:52	1.52
INLET 3-F (ST	·	00:00	0.00
INLET 1-G (ST		02:04	3.26
MH - 134 (STM	I-JC)	00:00	0.00
MH - 133 (STM	I-JC)	00:00	0.00
MH - 138 (STM	I-JC)	00:00	0.00
MH - 137 (STM	I-JC)	00:00	0.00
INLET 2-H (ST	M-JC)	00:00	0.00
INLET 7-C (ST	M-JC)	00:00	0.00
INLET 2-C (ST	M-JC)	00:00	0.00
INLET 2-E (ST	M-JC)	00:00	0.00
INLET 5-H (ST	M-JC)	00:00	0.00
INLET 2-I (STI	M-JC)	00:00	0.00
East_Pond_Disc	charge_	Str02t08e	0.73
OS-EAST_SID	E	00:00	0.00
WF-JCC_Outfa	11	02:08	0.73
East_Pond		02:08	5.92

Node Inflow Summary

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow
INLET 5-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
MH - 71 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 31 (STM-	JC)JUNCTION	0.00	0.15	0	00:45
MH - 21 (STM-	JC)JUNCTION	0.00	0.17	0	00:44
MH - 91 (STM-	JC)JUNCTION	0.00	53.13	0	00:52
MH - 53 (STM-	JC)JUNCTION	0.00	0.25	0	02:16
INLET 8-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
MH - 73 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
INLET 8-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 4-A (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 3-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 1-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 1-E (ST	M-JJC)NCTION	0.00	0.00	0	00:00
MH - 16 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 108 (STM	1-JC)JUNCTION	0.00	6.13	0	00:50
MH - 100 (STM	1-JC)JUNCTION	0.00	25.54	0	00:50
MH - 101 (STM	1-JC)JUNCTION	0.00	49.68	0	00:47
INLET 7-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
MH - 27 (STM-	JC)JUNCTION	12.47	12.47	0	00:50
MH - 57 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
INLET 3-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 8-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 9-H (ST	M-JC)NCTION	0.00	0.43	0	00:44
INLET 1-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 2-F (ST	M-J A)NCTION	0.00	0.00	0	00:00

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow
INLET 2-A (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 5-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
MH - 28 (STM-	JC)JUNCTION	0.00	12.47	0	00:50
MH - 58 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 15 (STM-	JC)JUNCTION	21.64	49.67	0	00:46
MH - 65 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 75 (STM-	JC)JUNCTION	0.00	2.45	0	00:44
MH - 25 (STM-	JC)JUNCTION	0.00	25.59	0	00:51
INLET 1-A (ST	M-JC)NCTION	1.28	1.28	0	01:37
INLET 1-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 10-H (S	TMJUNCTION	0.00	0.98	0	00:44
INLET 11-H (S	TMJIONCTION	27.00	27.00	0	00:50
MH - 127 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 128 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 122 (STM	1-JC)JUNCTION	0.00	49.66	0	00:46
MH - 125 (STM	1-JC)JUNCTION	0.00	49.67	0	00:46
MH - 126 (STM	1-JC)JUNCTION	0.00	49.68	0	00:47
MH - 124 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 120 (STM	1-JC)JUNCTION	0.00	43.10	0	00:52
MH - 123 (STM	1-JC)JUNCTION	0.00	66.41	0	00:47
MH - 141 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
INLET 7-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 6-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 6-F (ST	M-JC)NCTION	0.00	0.00	0	00:00
MH - 80 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 30 (STM-	JC)JUNCTION	30.95	43.37	0	00:50

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow
MH - 20 (STM-	JC)JUNCTION	15.41	64.54	0	00:47
INLET 4-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 1-OS (S	TMJIOSCTION	1.13	1.13	0	01:57
INLET 5-I (ST	M-JOUNCTION	10.38	53.12	0	00:51
INLET 4-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 1-B (ST	M-JC)NCTION	2.47	2.47	0	00:45
INLET 6-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 3-A (ST	M-JC)NCTION	0.25	0.25	0	02:16
MH - 2 (STM-J	C) JUNCTION	0.00	1.13	0	01:57
MH - 4 (STM-J	C) JUNCTION	0.00	1.28	0	01:37
MH - 3 (STM-J	C) JUNCTION	3.44	4.37	0	00:56
MH - 7 (STM-J	C) JUNCTION	0.00	0.00	0	00:00
MH - 6 (STM-J	C) JUNCTION	19.48	25.58	0	00:50
INLET 1-I (ST	M-JOUNCTION	0.00	0.00	0	00:00
MH - 14 (STM-	JC)JUNCTION	0.00	29.96	0	00:46
MH - 34 (STM-	JC)JUNCTION	0.00	43.17	0	00:50
MH - 84 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 64 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 94 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 74 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 72 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 114 (STM	1-JC)JUNCTION	0.00	12.44	0	00:50
MH - 118 (STM	I-JC)JUNCTION	0.00	25.55	0	00:50
MH - 115 (STM	1-JC)JUNCTION	0.00	12.42	0	00:50
MH - 117 (STM	I-JC)JUNCTION	0.00	29.95	0	00:46
MH - 119 (STM	I-JC)JUNCTION	0.00	0.00	0	00:00

Node	Tuno	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow
MH - 112 (STM	Type I-JCMUNCTION	0.00	43.14	0	00:51
INLET 4-C (ST	·	0.00	0.00	0	00:00
INLET 1-D (ST	,	6.21	6.21	0	00:45
`	,				
MH - 29 (STM-	JC)JUNCTION	0.00	12.46	0	00:50
MH - 39 (STM-	JC)JUNCTION	0.00	43.10	0	00:52
INLET 3-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 1-G (ST	M-JC)NCTION	2.07	66.53	0	00:47
MH - 134 (STM	I-JC)JUNCTION	0.00	0.00	0	00:00
MH - 133 (STM	I-JC)JUNCTION	0.00	0.00	0	00:00
MH - 138 (STM	I-JC)JUNCTION	0.00	0.00	0	00:00
MH - 137 (STM	I-JC)JUNCTION	0.00	0.00	0	00:00
INLET 2-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 7-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 2-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 2-E (ST	M-JUNCTION	0.00	0.00	0	00:00
INLET 5-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 2-I (ST	M-JOUNCTION	0.00	0.00	0	00:00
East_Pond_Disc	char ye<u>N</u>Striktin e	0.00	24.69	0	02:08
OS-EAST_SID	E JUNCTION	0.09	0.09	0	02:05
WF-JCC_Outfa	ll OUTFALL	1.73	24.70	0	02:07
East_Pond	STORAGE	14.15	153.34	0	00:49

Node Inflow Summary

Node	Lateral Inflow Volume 10^6 gal	Total Inflow Volume 10^6 gal	Flow Balance Error Percent
INLET 5-F (ST	M -JC) 0	0	0.000
MH - 71 (STM-	JC) 0	0	0.000
MH - 31 (STM-	JC) 0	0.00015	0.487
MH - 21 (STM-	JC) 0	8.81e-05	0.242
MH - 91 (STM-	JC) 0	1.41	-0.062
MH - 53 (STM-	JC) 0	0.156	0.000
INLET 8-C (ST	M-JC) 0	0	0.000
MH - 73 (STM-	JC) 0	0	0.000
INLET 8-H (ST	M-JC) 0	0	0.000
INLET 4-A (ST	M-JC) 0	0	0.000
INLET 3-C (ST	M-JC) 0	0	0.000
INLET 1-C (ST	M-JC) 0	0	0.000
INLET 1-E (ST	M-JC) 0	0	0.000
MH - 16 (STM-	JC) 0	0	0.000
MH - 108 (STM	I-JC) 0	1.36	0.001
MH - 100 (STM	I-JC) 0	1.82	-0.001
MH - 101 (STM	I-JC) 0	2.13	-0.001
INLET 7-H (ST	M-JC) 0	0	0.000
MH - 27 (STM-	JC) 0.284	0.284	0.000
MH - 57 (STM-	JC) 0	0	0.000
INLET 3-H (ST	M-JC) 0	0	0.000
INLET 8-F (ST	M-JC) 0	0	0.000
INLET 9-H (ST	M-JC) 0	0.00325	0.000
INLET 1-H (ST	M-JC) 0	0	0.000
INLET 2-F (ST	M-JC) 0	0	0.000

Node	Lateral Inflow Volume 10^6 gal		Total Inflow Volume 10^6 gal	Flow Balance Error Percent
INLET 2-A (ST		0	0	0.000
INLET 5-C (ST	M-JC)	0	0	0.000
MH - 28 (STM-	JC)	0	0.284	0.018
MH - 58 (STM-	JC)	0	0	0.000
MH - 15 (STM-	JC)	0.247	2.13	-0.001
MH - 65 (STM-	JC)	0	0	0.000
MH - 75 (STM-	JC)	0	0.0204	-0.191
MH - 25 (STM-	JC)	0	0.71	-0.413
INLET 1-A (ST	M-JC)	0.521	0.521	0.000
INLET 1-F (ST	M-JC)	0	0	0.000
INLET 10-H (S	TM-JC)	0	0.00984	-0.329
INLET 11-H (S	TM-JC)	0.705	0.719	-0.110
MH - 127 (STM	I-JC)	0	0	0.000
MH - 128 (STM	I-JC)	0	0	0.000
MH - 122 (STM	I-JC)	0	2.13	0.000
MH - 125 (STM	I-JC)	0	2.13	-0.001
MH - 126 (STM	I-JC)	0	2.13	0.045
MH - 124 (STM	I-JC)	0	0	0.000
MH - 120 (STM	I-JC)	0	1.17	0.000
MH - 123 (STM	I-JC)	0	2.56	-0.076
MH - 141 (STM	I-JC)	0	0	0.000
INLET 7-F (ST	M-JC)	0	0	0.000
INLET 6-C (ST	M-JC)	0	0	0.000
INLET 6-F (ST	M-JC)	0	0	0.000
MH - 80 (STM-	JC)	0	0	0.000
MH - 30 (STM-	JC)	0.814	1.17	0.037

Node	Latera Inflov Volum 10^6	w ne	Total Inflow Volume 10^6 gal	Flow Balance Error Percent
MH - 20 (STM-		0.399	2.53	0.014
INLET 4-H (ST	M-JC)	0	0	0.000
INLET 1-OS (S	TM-JC)	0.481	0.481	0.000
INLET 5-I (STI	M-JC)	0.242	1.41	0.030
INLET 4-F (ST	M-JC)	0	0	0.000
INLET 1-B (ST	M-JC)	0.0342	0.0342	0.000
INLET 6-H (ST	M-JC)	0	0	0.000
INLET 3-A (ST	M-JC)	0.156	0.156	0.000
MH - 2 (STM-J	C)	0	0.481	-0.000
MH - 4 (STM-J	C)	0	0.521	0.000
MH - 3 (STM-J	C)	0.169	1.33	-0.002
MH - 7 (STM-J	C)	0	0	0.000
MH - 6 (STM-J	C)	0.462	1.82	-0.001
INLET 1-I (ST	M-JC)	0	0	0.000
MH - 14 (STM-	JC)	0	1.88	0.000
MH - 34 (STM-	JC)	0	1.17	0.029
MH - 84 (STM-	JC)	0	0	0.000
MH - 64 (STM-	JC)	0	0	0.000
MH - 94 (STM-	JC)	0	0	0.000
MH - 74 (STM-	JC)	0	0	0.000
MH - 72 (STM-	JC)	0	0	0.000
MH - 114 (STM	I-JC)	0	0.284	0.001
MH - 118 (STM	I-JC)	0	1.82	-0.001
MH - 115 (STM	I-JC)	0	0.284	-0.016
MH - 117 (STM	I-JC)	0	1.88	-0.003
MH - 119 (STM	I-JC)	0	0	0.000

	Lateral Inflow Volume		Total Inflow Volume	Flow Balance Error
Node	10^	6 gal	10^6 gal	Percent
MH - 112 (STM	I-JC)	0	1.16	-0.051
INLET 4-C (ST	M-JC)	0	0	0.000
INLET 1-D (ST	M-JC)	0.0587	0.0587	0.000
MH - 29 (STM-	JC)	0	0.284	-0.007
MH - 39 (STM-	JC)	0	1.17	-0.004
INLET 3-F (ST	M-JC)	0	0	0.000
INLET 1-G (ST	M-JC)	0.0351	2.56	0.031
MH - 134 (STM	I-JC)	0	0	0.000
MH - 133 (STM	I-JC)	0	0	0.000
MH - 138 (STM	I-JC)	0	0	0.000
MH - 137 (STM	I-JC)	0	0	0.000
INLET 2-H (ST	M-JC)	0	0	0.000
INLET 7-C (ST	M-JC)	0	0	0.000
INLET 2-C (ST	M-JC)	0	0	0.000
INLET 2-E (ST	M-JC)	0	0	0.000
INLET 5-H (ST	M-JC)	0	0	0.000
INLET 2-I (ST	M-JC)	0	0	0.000
East_Pond_Disc	charge_	Structu 0 e	4.84	-0.000
OS-EAST_SID	E	0.0678	0.0678	0.000
WF-JCC_Outfa	11	0.0249	4.87	0.000
East_Pond		0.16	4.84	-0.063

100-Year Storm

Topic: Subcatchment	Runoff	· Click a colun	nn header to sort	the column.						
Subcatchment	Total Precip in	Total Runon in	Total Evap in	Total Infil in	Imperv Runoff in	Perv Runoff in	Total Runoff in	Total Runoff 10^6 gal	Peak Runoff CFS	Runoff Coeff
A-Street	3.51	0.00	0.00	0.08	3.31	0.10	3.40	0.37	10.69	0.969
Sub-basin_J	3.51	0.00	0.00	0.67	2.27	0.56	2.83	0.71	37.85	0.805
Sub-basin_B	3.51	0.00	0.00	0.55	2.27	0.68	2.95	0.09	6.96	0.841
Sub-basin_C	3.51	0.00	0.00	0.66	2.31	0.54	2.84	1.14	58.81	0.809
Sub-basin_D	3.51	0.00	0.00	0.82	1.46	1.25	2.71	0.16	17.90	0.770
Sub-Basin_E	3.51	0.00	0.00	0.71	1.87	0.93	2.80	0.65	59.81	0.798
Sub-basin_F	3.51	0.00	0.00	0.71	2.27	0.52	2.79	0.99	46.17	0.793
Sub-basin_G	3.51	0.00	0.00	0.60	2.27	0.63	2.91	0.09	6.09	0.827
Sub-basin_l	3.51	0.00	0.00	0.69	2.26	0.55	2.81	0.60	31.42	0.801
Sub-basin_K	3.51	0.00	0.00	0.72	2.27	0.52	2.78	2.02	92.57	0.792
Sub-basin_M	3.51	0.00	0.00	1.32	0.24	1.97	2.22	0.62	61.83	0.631
Sub-basin_H	3.51	0.00	0.00	0.77	2.19	0.53	2.73	1.76	80.86	0.776
Sub-basin_R	3.51	0.00	0.00	1.43	0.24	1.85	2.10	0.11	7.75	0.597

Link Flow Summary

Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec
{STM-JC}.PIPI	E - 1 270(STDWHJK	2) 140.15	0	00:46	17.77
{STM-JC}.PIPI	E - 1 3370(ISTDM/HJIC	6.95	0	00:45	5.15
{STM-JC}.PIPI	E - 1 3000/STDM/HJK	128.02	0	00:48	12.58
{STM-JC}.PIPI	E - 1 4000(ISTDM/HJI C	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 57C(2)N(13WMT-	JC) 1.35	0	00:45	1.43
{STM-JC}.PIPI	E - 8 CONBUM -	JC) 158.56	0	00:46	13.64
{STM-JC}.PIPI	E - 1 260(N)D(U)T(S	TM-JC) 140.14	0	00:46	12.25
{STM-JC}.PIPI	E - 6 2CON(SWM -	JC) 0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 7CQ)N(ISWM -	JC) 0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 5 (CIO) (STIME)	C) 46.18	0	01:06	14.89
{STM-JC}.PIPI	E - 1 4C2Q(S/ID)V/HJIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 280(STDM/HJIC	128.04	0	00:48	10.19
{STM-JC}.PIPI	E - 1 3380(STDM/HJIC	17.91	0	00:45	6.39
{STM-JC}.PIPI	E - 27COMOJUIST	M-JC) 35.76	0	00:49	7.41
{STM-JC}.PIPI	E - 57CON(SWM-	JC) 0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 CSQ(N)D(S/TT /	I-JC) 100.44	0	00:54	15.40
{STM-JC}.PIPI	E - 1 050(N)D(STT V	I-JC) 88.90	0	00:51	13.75
{STM-JC}.PIPI	E - 1 260(N)D(S/TI V	I-JC) 140.15	0	00:46	12.55
{STM-JC}.PIPI	E - 1 270(N)D(S/TN /	I-JC) 140.15	0	00:46	12.79
{STM-JC}.PIPI	E - 1 0350(ISTDN/HJIC	38.28	0	00:54	13.82
{STM-JC}.PIPI	E - 1 3350(ISTDIVIHJIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 450(STDWHJ K	19.43	0	01:00	14.32
{STM-JC}.PIPI	E - 3 60NBWM -	JC) 128.04	0	00:48	10.56
{STM-JC}.PIPI	E - 57CONISUM-	JC) 4.94	0	00:45	5.32
{STM-JC}.PIPI	E - 1 330(STDMHJ K	0.00	0	00:00	0.00

Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec
{STM-JC}.PIPI	E - 1 3300 STDWHJ IC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1400(ISTDWHJIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1433QISTDWHJIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 14 CIQISTDIVIHIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 27CONISUM-	JC) 35.76	0	00:49	15.08
{STM-JC}.PIPI	E - 2 2CONBUM -	JC) 191.66	0	00:47	15.25
{STM-JC}.PIPI	E - 1 (SINDIA)	16.22	0	01:10	11.36
{STM-JC}.PIPI	E - 2 (SIMDIA)	16.21	0	01:11	12.58
{STM-JC}.PIPI	E - 4 (SIMDLA) T	19.44	0	01:00	11.00
{STM-JC}.PIPI	E - 6 (SIMDIA) T	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 7 (SIMDLA) T	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 5 CIONID (SIT)	M-JC) 48.27	0	01:06	14.48
{STM-JC}.PIPI	E - 1 COONTINUE	92.79	0	00:54	13.67
{STM-JC}.PIPI	E - 1 260(ISTDIVILI C	2) 140.15	0	00:46	13.48
{STM-JC}.PIPI	E - 1 3660(ISTDM/HJIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 3390(ISTDM/HJIC	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 1 460(SIDVILI C	3.06	0	00:41	2.27
{STM-JC}.PIPE	E - 14C(SINIMULICI)	100.45	0	00:54	13.58
{STM-JC}.PIPE	E - 15 C(SNIMUJICI)	13.71	0	00:45	15.64
{STM-JC}.PIPE	E - 1 6C(SINIMULICI)	5.89	0	00:47	3.34
{STM-JC}.PIPE	E - 200(SINIMULICI)	372.03	5	11:31	>50.00
{STM-JC}.PIPE	E - 2 C(SNIMUIC)	12.53	5	17:20	10.23
{STM-JC}.PIPI	E - 2 2C(SINIMUJICI)	191.66	0	00:47	15.25
{STM-JC}.PIPE	E - 230(SINIMUJICI)	75.71	0	00:44	7.87
{STM-JC}.PIPI	E - 24C(SINIMUJICI)	75.72	0	00:44	7.87
{STM-JC}.PIPI	E - 25C(SINIMUJICI)	37.86	0	00:45	12.05

Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec
{STM-JC}.PIPE	E - 26C(SINIMUJICI)	37.86	0	00:45	12.05
{STM-JC}.PIPE	E - 27C(SINIMUJICI)	35.76	0	00:47	12.77
{STM-JC}.PIPE	E - 28C(SINI DILLIICI)	4.95	0	00:41	1.58
{STM-JC}.PIPE	E - 3 C(SINIMUICI)	128.04	0	00:48	10.19
{STM-JC}.PIPE	E - 390(31111101)	128.03	0	00:49	11.60
{STM-JC}.PIPE	E - 45C(SINIMUJICI)	0.00	0	00:56	0.07
{STM-JC}.PIPE	E - 46C(SINIMUJICI)	4.42	0	01:23	8.60
{STM-JC}.PIPE	E - 47C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPE	E - 48C(SINIMUJICI)	4.42	0	01:18	4.84
{STM-JC}.PIPE	E - 490(3111MUICT)	0.00	0	00:00	0.00
{STM-JC}.PIPE	E - 500(31111011101)	0.00	0	00:00	0.00
{STM-JC}.PIPE	E - 5 C(SINIMUIC)	0.00	0	00:00	0.00
{STM-JC}.PIPE	E - 52C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPE	E - 53C(3)N1MUJICT)	0.00	0	00:00	0.00
{STM-JC}.PIPE	E - 54C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPE	E - 5 (C)(S)(N)(M)(J)(C)	5.40	0	00:45	3.23
{STM-JC}.PIPE	E - 57C(SINIMUJICI)	34.21	5	20:13	20.17
{STM-JC}.PIPE	E - 58C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPE	E - 590(31111MLJICT)	0.00	0	00:00	0.00
{STM-JC}.PIPE	E - 60 C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPE	E - 6 C(SIN MUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPE	E - 6 2C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPE	E - 63C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPE	E - 64C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPE	E - 65C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPE	E - 6 C(SNIMUIC)	0.00	0	00:00	0.00

Link	Туре	Maximum Flow CFS	Day of Maximum Flow	Hour of Maximum Flow	Maximum Velocity ft/sec
{STM-JC}.PIPI	E - 67C(SINIMUJICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 6 8C(SINI MULIKI)	5.32	0	00:40	1.80
{STM-JC}.PIPI	E - 6 9C(SINIMUIKI)	4.81	0	00:41	0.98
{STM-JC}.PIPI	E - 70 C(SINIDALIKI)	2.97	0	00:41	0.63
{STM-JC}.PIPI	E - 7 C(SINIMUIC)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 72C(SINIMUIC)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 73 C(SINIMUIKI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 74 C(SINIDILLICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 75C(SINIDALIKI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 76C(SINIMUICI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 77C(SINIMUIKT)	6.59	0	00:43	2.10
{STM-JC}.PIPE	E - 78C(SINIMUICI)	5.77	0	00:43	3.27
{STM-JC}.PIPI	E - 79 C(SINIMUIKI)	2.01	0	00:43	1.91
{STM-JC}.PIPI	E - 83 C(3)N1M(JICI)	158.53	0	00:46	13.28
{STM-JC}.PIPI	E - 84C(SINI DALJICI)	61.67	5	11:31	34.90
{STM-JC}.PIPI	E - 85C(SINIDALIACI)	0.00	0	00:00	0.00
{STM-JC}.PIPI	E - 8 (C(S)N) DALJIC ()	1461.29	5	11:31	>50.00
1	CONDUIT	132.31	0	01:21	25.43
2	DUMMY	3.39	0	01:04	
Orifice_Row_1	ORIFICE	1.04	0	01:21	1.00
Orifice_Row_2	ORIFICE	0.92	0	01:21	1.00
Orifice_Row_3	ORIFICE	1.02	0	01:21	1.00
Zone_3_Weir	WEIR	129.32	0	01:21	0.52
Emergency_Spi	llway WEIR	0.00	0	00:00	0.00

Link Flow Summary

Link	Max / Full Flow	Max / Full Depth	
	E - 127 (STM680	•	1.00
{STM-JC}.PIPI	E - 137 (ST M66 0	")	0.71
{STM-JC}.PIPI	E - 130 (STM6)C	()	1.00
{STM-JC}.PIPI	E - 140 (STIM19100	;)	0.00
{STM-JC}.PIPI	E - 57 (2) (SOTO/1 -	JC)	0.91
{STM-JC}.PIPI	E - 82 (1) (SOT940 -	JC)	0.91
{STM-JC}.PIPI	E - 126 (1) (0.7 (8	TM-JC)	1.00
{STM-JC}.PIPI	E - 62 (1) (SOTOO -	JC)	0.00
{STM-JC}.PIPI	E - 67 (1) (SOLOO -	JC)	0.50
{STM-JC}.PIPI	E - 5 (1) (STOM6-3)	C)	0.60
{STM-JC}.PIPI	E - 142 (STIM1900	")	0.00
{STM-JC}.PIPI	E - 128 (ST M2K C	()	1.00
{STM-JC}.PIPI	E - 138 (ST IM79 0)	1.00
{STM-JC}.PIPI	E - 27 (1) (1).28 ¶	M-JC)	0.67
{STM-JC}.PIPI	E - 57 (1) (SOCOMO-	JC)	0.07
{STM-JC}.PIPI	E - 119 (1) (S.TT)	I-JC)	1.00
{STM-JC}.PIPI	E - 105 (1) (S.T9)	I-JC)	0.90
{STM-JC}.PIPI	E - 126 (1) (S.T3 /	I-JC)	1.00
{STM-JC}.PIPI	E - 127 (1) (S.763 /	I-JC)	1.00
{STM-JC}.PIPI	E - 105 (ST IM5R C)	0.63
{STM-JC}.PIPI	E - 135 (STIM1000)	0.00
{STM-JC}.PIPI	E - 145 (STM)360	()	0.45
{STM-JC}.PIPI	E - 36 (1) (SILM6-	JC)	0.92
{STM-JC}.PIPI	E - 57 (3) (SOTM -	JC)	1.00
{STM-JC}.PIPI	E - 133 (STM)000)	0.00

Link	Max / Full Flow	Max / Full Depth
{STM-JC}.PIPI	E - 134 (ST IM 1900)	•
{STM-JC}.PIPI	E - 141 (STIM1900	0.00
{STM-JC}.PIPI	E - 143 (STIM1900	0.00
{STM-JC}.PIPI	E - 144 (ST M 1900	0.00
{STM-JC}.PIPI	E - 27 (1) (SOCTA9-	JC) 0.71
{STM-JC}.PIPI	E - 22 (1) (SI TM -	JC) 1.00
{STM-JC}.PIPI	E - 1 (STM -0/3)	0.46
{STM-JC}.PIPI	E - 2 (STM- 0/3)7	0.43
{STM-JC}.PIPI	E - 4 (STM- J (8)5	1.00
{STM-JC}.PIPI	E - 6 (STM- 00 0)	0.30
{STM-JC}.PIPI	E - 7 (STM- 00 0)	0.00
{STM-JC}.PIPI	E - 5 (1) (1) (35B)	M-JC) 0.64
{STM-JC}.PIPI	E - 119 (ST IM 6TIC	1.00
{STM-JC}.PIPI	E - 126 (ST IM7B C	1.00
{STM-JC}.PIPI	E - 136 (ST IM 1000	0.00
{STM-JC}.PIPI	E - 139 (ST IM 1000	0.00
{STM-JC}.PIPI	E - 146 (ST IM2D C	1.00
{STM-JC}.PIPI	E - 14 (STM).167)	1.00
{STM-JC}.PIPI	E - 15 (STM)J(3)	1.00
{STM-JC}.PIPI	E - 16 (STMD J40)	1.00
{STM-JC}.PIPI	E - 20 (STM 4.83)	1.00
{STM-JC}.PIPI	E - 21 (STMI-JIO)	1.00
{STM-JC}.PIPI	E - 22 (STMI-JR2)	1.00
{STM-JC}.PIPI	E - 23 (STMI-J06)	1.00
{STM-JC}.PIPI	E - 24 (STMI-JIQ)	1.00
{STM-JC}.PIPI	E - 25 (STM2.RG)	1.00

	Max / Full	Max / Full
Link	Flow E - 26 (STM 2.K7)	Depth 1.00
, ,		
	E - 27 (STM) J(6)	0.89
, ,	E - 28 (STM).I(2)	1.00
, ,	E - 31 (STMB.J98)	1.00
, ,	E - 39 (STM) (ST)	1.00
, ,	E - 45 (STM).00)	0.06
,	E - 46 (STM).05)	
,	E - 47 (STMO.J00)	0.00
, ,	E - 48 (STM). (S	0.51
,	E - 49 (STM).00)	0.00
{STM-JC}.PIPI	E - 50 (STM).00)	0.30
{STM-JC}.PIPI	E - 51 (STM).000)	0.00
{STM-JC}.PIPI	E - 52 (STM).00)	0.00
{STM-JC}.PIPI	E - 53 (STM).00)	0.00
{STM-JC}.PIPI	E - 54 (STM).00)	0.00
{STM-JC}.PIPI	E - 56 (STM).R6)	1.00
{STM-JC}.PIPI	E - 57 (STM I-J74)	1.00
{STM-JC}.PIPI	E - 58 (STM).00)	0.00
{STM-JC}.PIPI	E - 59 (STM).00)	0.00
{STM-JC}.PIPI	E - 60 (STM).00)	0.00
{STM-JC}.PIPI	E - 61 (STM).00)	0.00
{STM-JC}.PIPI	E - 62 (STM).J00)	0.00
{STM-JC}.PIPI	E - 63 (STM).J00)	0.00
{STM-JC}.PIPI	E - 64 (STM).00)	0.00
{STM-JC}.PIPI	E - 65 (STM). J)(0)	0.00
{STM-JC}.PIPI	E - 66 (STM).100)	0.00

	Max /	Max /
Link	Full Flow	Full Depth
	E - 67 (STM).J00)	0.00
{STM-JC}.PIPI	E - 68 (STM)J(I)	1.00
{STM-JC}.PIPI	E - 69 (STM)JI(7)	1.00
{STM-JC}.PIPI	E - 70 (STM)JIO)	1.00
{STM-JC}.PIPI	E - 71 (STM9.000)	0.00
{STM-JC}.PIPI	E - 72 (STM).00)	0.00
{STM-JC}.PIPI	E - 73 (STM9.000)	0.00
{STM-JC}.PIPI	E - 74 (STM9.100)	0.00
{STM-JC}.PIPI	E - 75 (STM).00)	0.00
{STM-JC}.PIPI	E - 76 (STM).00)	0.00
{STM-JC}.PIPI	E - 77 (STMO.RG)	1.00
{STM-JC}.PIPI	E - 78 (STM).5 (3)	1.00
{STM-JC}.PIPI	E - 79 (STM)J(9)	1.00
{STM-JC}.PIPI	E - 83 (STM)J(9)	0.95
{STM-JC}.PIPI	E - 84 (STM 5.83)	1.00
{STM-JC}.PIPI	E - 85 (STM).00)	0.00
{STM-JC}.PIPI	E - 86 (ST M) 4 (2)	1.00
1	0.42	0.45
2		
Orifice_Row_1		
Orifice_Row_2		
Orifice_Row_3		
Zone_3_Weir		
Emergency_Spi	llway	

Node Depth Summary

Node	Type	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Day of Maximum Depth
INLET 5-F (ST	M-JU)NCTION	0.00	0.00	5855.60	0
MH - 71 (STM-	JC)JUNCTION	0.00	0.00	5865.02	0
MH - 31 (STM-	JC)JUNCTION	0.17	9.51	5849.11	0
MH - 21 (STM-	JC)JUNCTION	0.41	14.88	5841.25	5
MH - 91 (STM-	JC)JUNCTION	0.29	3.60	5828.68	0
MH - 53 (STM-	JC)JUNCTION	0.05	0.41	5907.65	0
INLET 8-C (ST	M-JC)NCTION	0.00	0.00	5881.41	0
MH - 73 (STM-	JC)JUNCTION	0.00	0.00	5853.28	0
INLET 8-H (ST	M-JC)NCTION	0.00	0.00	5829.61	0
INLET 4-A (ST	M-JC)NCTION	0.00	0.00	5907.91	0
INLET 3-C (ST	M-JC)NCTION	0.00	0.00	5877.81	0
INLET 1-C (ST	M-JC)NCTION	0.00	0.00	5879.55	0
INLET 1-E (ST	M-JUCINCTION	0.06	6.41	5855.06	0
MH - 16 (STM-	JC)JUNCTION	0.34	8.02	5856.11	0
MH - 108 (STM	I-JC)JUNCTION	0.18	1.70	5884.32	0
MH - 100 (STM	I-JC)JUNCTION	0.25	11.00	5869.83	0
MH - 101 (STM	I-JC)JUNCTION	0.45	15.43	5846.49	0
INLET 7-H (ST	M-JC)NCTION	0.00	0.00	5829.38	0
MH - 27 (STM-	JC)JUNCTION	0.24	8.33	5901.61	0
MH - 57 (STM-	JC)JUNCTION	0.00	0.00	5877.76	0
INLET 3-H (ST	M-JC)NCTION	0.00	0.00	5854.61	0
INLET 8-F (ST	M-JU)NCTION	0.33	13.81	5841.22	5
INLET 9-H (ST	M-JC)NCTION	1.00	4.29	5827.35	0
INLET 1-H (ST	M-JC)NCTION	0.00	0.00	5865.63	0
INLET 2-F (ST	M-JU)NCTION	0.00	0.00	5871.65	0

Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Day of Maximum Depth
INLET 2-A (ST	M-JC)NCTION	0.00	0.01	5908.16	0
INLET 5-C (ST	M-JC)NCTION	0.00	0.00	5879.34	0
MH - 28 (STM-	JC)JUNCTION	0.79	8.20	5900.44	0
MH - 58 (STM-	JC)JUNCTION	0.00	0.00	5881.05	0
MH - 15 (STM-	JC)JUNCTION	0.46	13.62	5856.05	0
MH - 65 (STM-	JC)JUNCTION	0.00	0.00	5844.88	0
MH - 75 (STM-	JC)JUNCTION	1.74	5.71	5827.39	0
MH - 25 (STM-	JC)JUNCTION	2.70	7.51	5827.59	0
INLET 1-A (ST	M-JC)NCTION	0.25	4.20	5912.05	0
INLET 1-F (ST	M-JU)NCTION	0.00	0.00	5871.42	0
INLET 10-H (S	TMJIONCTION	1.35	5.02	5827.40	0
INLET 11-H (S	TMJIONCTION	2.21	6.46	5827.35	0
MH - 127 (STM	1-JC)JUNCTION	0.00	0.00	5878.17	0
MH - 128 (STM	1-JC)JUNCTION	0.00	0.00	5879.19	0
MH - 122 (STM	1-JC)JUNCTION	0.41	16.37	5853.82	0
MH - 125 (STM	1-JC)JUNCTION	0.44	15.57	5849.69	0
MH - 126 (STM	I-JC)JUNCTION	0.51	15.58	5843.03	0
MH - 124 (STM	1-JC)JUNCTION	0.19	12.99	5843.16	5
MH - 120 (STM	1-JC)JUNCTION	0.22	4.98	5835.93	0
MH - 123 (STM	1-JC)JUNCTION	2.44	13.02	5833.71	5
MH - 141 (STM	1-JC)JUNCTION	0.12	8.51	5849.18	0
INLET 7-F (ST	M-JU)NCTION	0.31	13.71	5841.36	5
INLET 6-C (ST	M-JC)NCTION	0.00	0.00	5878.88	0
INLET 6-F (ST	M-JU)NCTION	0.00	0.00	5852.92	0
MH - 80 (STM-	JC)JUNCTION	0.00	0.00	5854.24	0
MH - 30 (STM-	JC)JUNCTION	0.48	11.40	5848.57	0

Node	Туре	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Day of Maximum Depth
MH - 20 (STM-	JC)JUNCTION	0.98	15.50	5839.48	0
INLET 4-H (ST	M-JC)NCTION	0.00	0.00	5854.82	0
INLET 1-OS (S	TMJIONCTION	0.11	0.99	5925.23	0
INLET 5-I (ST	M-JOUNCTION	0.24	5.43	5833.63	0
INLET 4-F (ST	M-JU)NCTION	0.00	0.00	5866.21	0
INLET 1-B (ST	M-JC)NCTION	0.05	1.25	5885.00	0
INLET 6-H (ST	M-JC)NCTION	0.00	0.00	5837.53	0
INLET 3-A (ST	M-JC)NCTION	0.10	0.85	5908.94	0
MH - 2 (STM-J	C) JUNCTION	0.10	0.88	5918.47	0
MH - 4 (STM-J	C) JUNCTION	0.10	0.96	5908.16	0
MH - 3 (STM-J	C) JUNCTION	0.18	1.59	5899.52	0
MH - 7 (STM-J	C) JUNCTION	0.00	0.00	5876.21	0
MH - 6 (STM-J	C) JUNCTION	0.23	2.49	5872.20	0
INLET 1-I (ST	M-JOUNCTION	0.05	8.05	5849.28	0
MH - 14 (STM-	JC)JUNCTION	0.32	11.03	5858.44	0
MH - 34 (STM-	JC)JUNCTION	0.32	8.97	5845.94	0
MH - 84 (STM-	JC)JUNCTION	0.09	9.18	5848.95	0
MH - 64 (STM-	JC)JUNCTION	0.00	0.00	5841.17	0
MH - 94 (STM-	JC)JUNCTION	0.01	1.22	5839.42	0
MH - 74 (STM-	JC)JUNCTION	0.00	0.00	5836.47	0
MH - 72 (STM-	JC)JUNCTION	0.00	0.00	5864.09	0
MH - 114 (STM	1-JC)JUNCTION	0.08	1.49	5879.55	0
MH - 118 (STM	1-JCJUNCTION	0.23	2.78	5866.96	0
MH - 115 (STM	1-JC)JUNCTION	0.06	1.00	5861.05	0
MH - 117 (STM	1-JC)JUNCTION	0.26	11.17	5864.84	0
MH - 119 (STM	1-JC)JUNCTION	0.07	11.54	5845.86	0

Node	Tuno	Average Depth Feet	Maximum Depth Feet	Maximum HGL Feet	Day of Maximum Depth
	Type I-JC))UNCTION	0.30	6.40	5841.88	Depth 0
	M-JC)NCTION	0.00	0.00	5877.34	0
`	,				
INLET 1-D (ST	M-JC)NCTION	0.10	9.77	5865.08	0
MH - 29 (STM-	JC)JUNCTION	0.10	7.15	5899.49	0
MH - 39 (STM-	JC)JUNCTION	0.21	4.38	5838.24	0
INLET 3-F (ST	M-JAC)NCTION	0.00	0.00	5868.25	0
INLET 1-G (ST	M-JC)NCTION	1.45	19.47	5842.16	5
MH - 134 (STM	I-JC)JUNCTION	0.00	0.00	5871.06	0
MH - 133 (STM	I-JC)JUNCTION	0.00	0.00	5867.87	0
MH - 138 (STM	I-JC)JUNCTION	0.00	0.00	5829.02	0
MH - 137 (STM	I-JC)JUNCTION	0.00	0.00	5828.14	0
INLET 2-H (ST	M-JC)NCTION	0.00	0.00	5865.70	0
INLET 7-C (ST	M-JC)NCTION	0.00	0.00	5881.64	0
INLET 2-C (ST	M-JC)NCTION	0.00	0.00	5879.78	0
INLET 2-E (ST	M-JC)NCTION	0.20	7.21	5855.44	0
INLET 5-H (ST	M-JC)NCTION	0.00	0.00	5837.62	0
INLET 2-I (STI	M-JOUNCTION	0.06	8.29	5849.16	0
East_Pond_Disc	char ye<u>n</u>strikon e	0.25	1.76	5820.26	0
OS-EAST_SID	E JUNCTION	0.00	0.00	5840.00	0
WF-JCC_Outfa	ll OUTFALL	0.25	1.75	5815.75	0
East_Pond	STORAGE	2.76	7.75	5827.75	0

Node Depth Summary

Node	Hour of Maximum Depth		Maximum Reported Depth Feet
INLET 5-F (ST	M-JC)	00:00	0.00
MH - 71 (STM-	JC)	00:00	0.00
MH - 31 (STM-	JC)	00:43	8.27
MH - 21 (STM-	JC)	11:31	9.79
MH - 91 (STM-	JC)	00:55	3.46
MH - 53 (STM-	JC)	01:23	0.41
INLET 8-C (ST	M-JC)	00:00	0.00
MH - 73 (STM-	JC)	00:00	0.00
INLET 8-H (ST	M-JC)	00:00	0.00
INLET 4-A (ST	M-JC)	00:00	0.00
INLET 3-C (ST	M-JC)	00:00	0.00
INLET 1-C (ST	M-JC)	00:00	0.00
INLET 1-E (ST	M-JC)	00:45	0.03
MH - 16 (STM-	JC)	00:45	1.02
MH - 108 (STM	I-JC)	01:06	1.62
MH - 100 (STM	I-JC)	00:46	2.47
MH - 101 (STM	I-JC)	00:44	9.29
INLET 7-H (ST	M-JC)	00:00	0.00
MH - 27 (STM-	JC)	00:46	7.82
MH - 57 (STM-	JC)	00:00	0.00
INLET 3-H (ST	M-JC)	00:00	0.00
INLET 8-F (ST	M-JC)	17:20	8.74
INLET 9-H (ST	M-JC)	00:48	4.29
INLET 1-H (ST	M-JC)	00:00	0.00
INLET 2-F (ST	M-JC)	00:00	0.00

Node	Hour of Maximum Depth		Maximum Reported Depth Feet
INLET 2-A (ST	M-JC)	01:00	0.01
INLET 5-C (ST	M-JC)	00:00	0.00
MH - 28 (STM-	JC)	00:46	5.75
MH - 58 (STM-	JC)	00:00	0.00
MH - 15 (STM-	JC)	00:44	6.48
MH - 65 (STM-	JC)	00:00	0.00
MH - 75 (STM-	JC)	00:57	5.71
MH - 25 (STM-	JC)	01:20	7.48
INLET 1-A (ST	M-JC)	01:00	4.19
INLET 1-F (ST	M-JC)	00:00	0.00
INLET 10-H (S	TM-JC)	00:45	4.98
INLET 11-H (S	TM-JC)	00:44	6.45
MH - 127 (STM	I-JC)	00:00	0.00
MH - 128 (STM	I-JC)	00:00	0.00
MH - 122 (STM	I-JC)	00:44	7.99
MH - 125 (STM	I-JC)	00:44	8.71
MH - 126 (STM	I-JC)	00:06	10.71
MH - 124 (STM	I-JC)	20:13	5.99
MH - 120 (STM	I-JC)	00:48	3.96
MH - 123 (STM	I-JC)	17:20	9.42
MH - 141 (STM	I-JC)	00:43	7.17
INLET 7-F (ST	M-JC)	17:20	8.51
INLET 6-C (ST	M-JC)	00:00	0.00
INLET 6-F (ST	M-JC)	00:00	0.00
MH - 80 (STM-	JC)	00:00	0.00
MH - 30 (STM-	JC)	00:43	10.72

Node	Hour of Maximum Depth		Maximum Reported Depth Feet
MH - 20 (STM-	JC)	00:45	12.17
INLET 4-H (ST	M-JC)	00:00	0.00
INLET 1-OS (S	TM-JC)	01:10	0.99
INLET 5-I (ST	M-JC)	00:46	4.48
INLET 4-F (ST	M-JC)	00:00	0.00
INLET 1-B (ST	M-JC)	00:45	1.25
INLET 6-H (ST	M-JC)	00:00	0.00
INLET 3-A (ST	M-JC)	01:18	0.85
MH - 2 (STM-J	C)	01:11	0.88
MH - 4 (STM-J	C)	01:00	0.96
MH - 3 (STM-J	C)	01:06	1.50
MH - 7 (STM-J	C)	00:00	0.00
MH - 6 (STM-J	C)	00:54	2.42
INLET 1-I (ST	M-JC)	00:43	3.60
MH - 14 (STM-	JC)	00:45	2.87
MH - 34 (STM-	JC)	00:43	7.83
MH - 84 (STM-	JC)	00:43	5.06
MH - 64 (STM-	JC)	00:00	0.00
MH - 94 (STM-	JC)	00:47	0.01
MH - 74 (STM-	JC)	00:00	0.00
MH - 72 (STM-	JC)	00:00	0.00
MH - 114 (STM	I-JC)	00:49	1.41
MH - 118 (STM	I-JC)	00:49	2.45
MH - 115 (STM	I-JC)	00:49	0.95
MH - 117 (STM	I-JC)	00:45	2.36
MH - 119 (STM	I-JC)	00:45	1.85

Node	Hour of Maximum Depth		Maximum Reported Depth Feet
MH - 112 (STM		00:43	5.55
INLET 4-C (ST	M-JC)	00:00	0.00
INLET 1-D (ST	M-JC)	00:45	2.07
MH - 29 (STM-	JC)	00:46	1.78
MH - 39 (STM-	JC)	00:48	3.57
INLET 3-F (ST	M-JC)	00:00	0.00
INLET 1-G (ST	M-JC)	11:31	10.88
MH - 134 (STM	I-JC)	00:00	0.00
MH - 133 (STM	I-JC)	00:00	0.00
MH - 138 (STM	I-JC)	00:00	0.00
MH - 137 (STM	I-JC)	00:00	0.00
INLET 2-H (ST	M-JC)	00:00	0.00
INLET 7-C (ST	M-JC)	00:00	0.00
INLET 2-C (ST	M-JC)	00:00	0.00
INLET 2-E (ST	M-JC)	00:45	0.19
INLET 5-H (ST	M-JC)	00:00	0.00
INLET 2-I (ST	M-JC)	00:43	3.91
East_Pond_Disc	charge_S	Str Q&t20 e	1.73
OS-EAST_SID	E	00:00	0.00
WF-JCC_Outfa	11	01:21	1.73
East_Pond		01:21	7.71

Node Inflow Summary

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow
INLET 5-F (ST	M-JC)NCTION	0.00	0.00	0	00:00
MH - 71 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 31 (STM-	JC)JUNCTION	0.00	4.95	0	00:41
MH - 21 (STM-	JC)JUNCTION	0.00	372.03	5	11:31
MH - 91 (STM-	JC)JUNCTION	0.00	158.56	0	00:46
MH - 53 (STM-	JC)JUNCTION	0.00	4.42	0	01:18
INLET 8-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
MH - 73 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
INLET 8-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 4-A (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 3-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 1-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 1-E (ST	M-JC)NCTION	0.00	5.89	0	00:47
MH - 16 (STM-	JC)JUNCTION	0.00	14.44	0	00:45
MH - 108 (STM	1-JC)JUNCTION	0.00	48.28	0	01:06
MH - 100 (STM	1-JC)JUNCTION	0.00	88.90	0	00:51
MH - 101 (STM	1-JC)JUNCTION	0.00	140.14	0	00:46
INLET 7-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
MH - 27 (STM-	JC)JUNCTION	37.85	37.85	0	00:45
MH - 57 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
INLET 3-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 8-F (ST	M-JAC)NCTION	0.00	41.70	5	17:20
INLET 9-H (ST	M-JC)NCTION	0.00	2.97	0	00:41
INLET 1-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 2-F (ST	M-JU)NCTION	0.00	0.00	0	00:00

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow
INLET 2-A (ST	M- JC)NCTION	0.00	0.00	0	00:56
INLET 5-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
MH - 28 (STM-	JC)JUNCTION	0.00	37.86	0	00:45
MH - 58 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 15 (STM-	JC)JUNCTION	59.81	145.73	0	00:47
MH - 65 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 75 (STM-	JC)JUNCTION	0.00	5.32	0	00:40
MH - 25 (STM-	JC)JUNCTION	0.00	75.71	0	00:44
INLET 1-A (ST	M-JC)NCTION	19.44	19.44	0	01:00
INLET 1-F (ST	M-JAC)NCTION	0.00	0.00	0	00:00
INLET 10-H (S	TMJIONCTION	0.00	4.81	0	00:41
INLET 11-H (S	TMJUNCTION	80.86	80.86	0	00:45
MH - 127 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 128 (STM	1-JC)JUNCTION	0.00	0.00	0	00:00
MH - 122 (STM	1-JC)JUNCTION	0.00	140.15	0	00:46
MH - 125 (STM	1-JC)JUNCTION	0.00	140.15	0	00:46
MH - 126 (STM	1-JC)JUNCTION	0.00	140.15	0	00:46
MH - 124 (STM	1-JC)JUNCTION	0.00	34.59	5	20:13
MH - 120 (STM	1-JC)JUNCTION	0.00	128.02	0	00:48
MH - 123 (STM	1-JC)JUNCTION	0.00	191.66	0	00:47
MH - 141 (STM	1-JC)JUNCTION	0.00	3.06	0	00:41
INLET 7-F (ST	M-J X)NCTION	0.00	12.53	5	17:20
INLET 6-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 6-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
MH - 80 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 30 (STM-	JC)JUNCTION	92.57	128.04	0	00:48

Node	Туре	Maximum Lateral Inflow CFS	Maximum Total Inflow CFS	Day of Maximum Inflow	Hour of Maximum Inflow
MH - 20 (STM-	JC)JUNCTION	46.17	186.15	0	00:46
INLET 4-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 1-OS (S	TMJIOSCTION	16.22	16.22	0	01:10
INLET 5-I (ST	M-JOUNCTION	31.42	158.57	0	00:46
INLET 4-F (ST	M-JU)NCTION	0.00	0.00	0	00:00
INLET 1-B (ST	M-JC)NCTION	6.96	6.96	0	00:45
INLET 6-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 3-A (ST	M-JC)NCTION	4.42	4.42	0	01:18
MH - 2 (STM-J	C) JUNCTION	0.00	16.22	0	01:10
MH - 4 (STM-J	C) JUNCTION	0.00	19.44	0	01:00
MH - 3 (STM-J	C) JUNCTION	10.69	46.20	0	01:06
MH - 7 (STM-J	C) JUNCTION	0.00	0.00	0	00:00
MH - 6 (STM-J	C) JUNCTION	58.81	88.29	0	00:53
INLET 1-I (ST	M-JOUNCTION	0.00	5.77	0	00:43
MH - 14 (STM-	JC)JUNCTION	0.00	100.44	0	00:54
MH - 34 (STM-	JC)JUNCTION	0.00	128.04	0	00:48
MH - 84 (STM-	JC)JUNCTION	0.00	7.07	0	00:43
MH - 64 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 94 (STM-	JC)JUNCTION	0.00	1.35	0	00:45
MH - 74 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 72 (STM-	JC)JUNCTION	0.00	0.00	0	00:00
MH - 114 (STM	1-JC)JUNCTION	0.00	35.76	0	00:47
MH - 118 (STM	1-JCJUNCTION	0.00	88.28	0	00:54
MH - 115 (STM	1-JC)JUNCTION	0.00	35.76	0	00:49
MH - 117 (STM	1-JC)JUNCTION	0.00	100.36	0	00:54
MH - 119 (STM	I-JC)JUNCTION	0.00	4.94	0	00:45

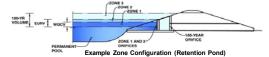
		Maximum Lateral Inflow	Maximum Total Inflow	Day of Maximum	Hour of Maximum
Node	Type	CFS	CFS	Inflow	Inflow
MH - 112 (STM	I-JC)JUNCTION	0.00	128.04	0	00:48
INLET 4-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 1-D (ST	M-JC)NCTION	17.90	17.90	0	00:45
MH - 29 (STM-	JC)JUNCTION	0.00	37.86	0	00:45
MH - 39 (STM-	JC)JUNCTION	0.00	128.04	0	00:48
INLET 3-F (ST	M-JUJNCTION	0.00	0.00	0	00:00
INLET 1-G (ST	M-JC)NCTION	6.09	1461.29	5	11:31
MH - 134 (STM	I-JC)JUNCTION	0.00	0.00	0	00:00
MH - 133 (STM	I-JC)JUNCTION	0.00	0.00	0	00:00
MH - 138 (STM	I-JC)JUNCTION	0.00	0.00	0	00:00
MH - 137 (STM	I-JC)JUNCTION	0.00	0.00	0	00:00
INLET 2-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 7-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 2-C (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 2-E (ST	M-JU)NCTION	0.00	5.40	0	00:45
INLET 5-H (ST	M-JC)NCTION	0.00	0.00	0	00:00
INLET 2-I (STI	M-JOUNCTION	0.00	2.01	0	00:43
East_Pond_Disc	char ye<u>r</u>striktin e	0.00	132.31	0	01:21
OS-EAST_SID	E JUNCTION	3.39	3.39	0	01:04
WF-JCC_Outfa	ll OUTFALL	7.75	134.10	0	01:20
East_Pond	STORAGE	61.83	478.42	0	00:46

Node Inflow Summary

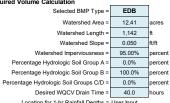
Node	Lateral Inflow Volume 10^6 ga	1	Total Inflow Volume 10^6 gal	Flow Balance Error Percent
INLET 5-F (ST	Ŭ	0	0	0.000
MH - 71 (STM-	JC)	0	0	0.000
MH - 31 (STM-	JC)	0	0.00134	-2.490
MH - 21 (STM-	JC)	0	0.102	56.598
MH - 91 (STM-	JC)	0	3.48	-0.238
MH - 53 (STM-	JC)	0	0.281	-0.123
INLET 8-C (ST	M-JC)	0	0	0.000
MH - 73 (STM-	JC)	0	0	0.000
INLET 8-H (ST	M-JC)	0	0	0.000
INLET 4-A (ST	M-JC)	0	0	0.000
INLET 3-C (ST	M-JC)	0	0	0.000
INLET 1-C (ST	M-JC)	0	0	0.000
INLET 1-E (ST	M-JC)	0	0.00718	0.000
MH - 16 (STM-	JC)	0	0.0308	16.137
MH - 108 (STM	I-JC)	0	2.53	-0.113
MH - 100 (STM	I-JC)	0	3.68	-0.015
MH - 101 (STM	I-JC)	0	4.49	-0.085
INLET 7-H (ST	M-JC)	0	0	0.000
MH - 27 (STM-	JC) 0.	706	0.706	-0.000
MH - 57 (STM-	JC)	0	0	0.000
INLET 3-H (ST	M-JC)	0	0	0.000
INLET 8-F (ST	M-JC)	0	0.00172	0.000
INLET 9-H (ST	M-JC)	0	0.00322	0.000
INLET 1-H (ST	M-JC)	0	0	0.000
INLET 2-F (ST	M-JC)	0	0	0.000

Node	Lateral Inflow Volume 10^6 gal		Total Inflow Volume 10^6 gal	Flow Balance Error Percent
INLET 2-A (ST		0	1.49e-06	0.000
INLET 5-C (ST	M-JC)	0	0	0.000
MH - 28 (STM-	JC)	0	0.705	0.005
MH - 58 (STM-	JC)	0	0	0.000
MH - 15 (STM-	JC)	0.652	4.49	0.046
MH - 65 (STM-	JC)	0	0	0.000
MH - 75 (STM-	JC)	0	0.0209	-1.585
MH - 25 (STM-	JC)	0	1.4	-0.183
INLET 1-A (ST	M-JC)	0.934	0.934	0.000
INLET 1-F (ST	M-JC)	0	0	0.000
INLET 10-H (S	TM-JC)	0	0.0101	-1.281
INLET 11-H (S	TM-JC)	1.76	2.25	-0.018
MH - 127 (STM	I-JC)	0	0	0.000
MH - 128 (STM	I-JC)	0	0	0.000
MH - 122 (STM	I-JC)	0	4.48	-0.008
MH - 125 (STM	I-JC)	0	4.48	0.004
MH - 126 (STM	I-JC)	0	4.49	-0.871
MH - 124 (STM	I-JC)	0	0.00807	-9.062
MH - 120 (STM	I-JC)	0	2.88	-0.001
MH - 123 (STM	1-JC)	0	5.65	-0.372
MH - 141 (STM	I-JC)	0	0.000278	0.000
INLET 7-F (ST	M-JC)	0	0.00044	0.000
INLET 6-C (ST	M-JC)	0	0	0.000
INLET 6-F (ST	M-JC)	0	0	0.000
MH - 80 (STM-	JC)	0	0	0.000
MH - 30 (STM-	JC)	2.02	2.88	0.003

Node	Later Inflo Volun 10^6	w ne	Total Inflow Volume 10^6 gal	Flow Balance Error Percent
MH - 20 (STM-	JC)	0.989	5.53	-6.991
INLET 4-H (ST	M-JC)	0	0	0.000
INLET 1-OS (S	TM-JC)	0.863	0.863	0.000
INLET 5-I (ST	M-JC)	0.603	3.48	0.307
INLET 4-F (ST	M-JC)	0	0	0.000
INLET 1-B (ST	M-JC)	0.085	0.085	0.000
INLET 6-H (ST	M-JC)	0	0	0.000
INLET 3-A (ST	M-JC)	0.281	0.281	0.000
MH - 2 (STM-J	C)	0	0.863	-0.000
MH - 4 (STM-J	C)	0	0.934	-0.000
MH - 3 (STM-J	C)	0.37	2.45	0.016
MH - 7 (STM-J	C)	0	0	0.000
MH - 6 (STM-J	C)	1.14	3.68	0.046
INLET 1-I (ST	M-JC)	0	0.000337	0.000
MH - 14 (STM-	JC)	0	3.84	-0.046
MH - 34 (STM-	JC)	0	2.88	0.012
MH - 84 (STM-	JC)	0	0.00302	0.099
MH - 64 (STM-	JC)	0	0	0.000
MH - 94 (STM-	JC)	0	0.0006	0.389
MH - 74 (STM-	JC)	0	0	0.000
MH - 72 (STM-	JC)	0	0	0.000
MH - 114 (STM	I-JC)	0	0.706	0.000
MH - 118 (STM	I-JC)	0	3.68	-0.006
MH - 115 (STM	I-JC)	0	0.706	-0.001
MH - 117 (STM	I-JC)	0	3.84	-0.003
MH - 119 (STM	I-JC)	0	0.00267	-2.277


	Lateral Inflow Volume		Total Inflow Volume	Flow Balance Error
Node		6 gal	10^6 gal	Percent
MH - 112 (STM	1-JC)	0	2.88	-0.042
INLET 4-C (ST	M-JC)	0	0	0.000
INLET 1-D (ST	M-JC)	0.162	0.162	0.000
MH - 29 (STM-	JC)	0	0.705	-0.031
MH - 39 (STM-	JC)	0	2.88	0.005
INLET 3-F (ST	M-JC)	0	0	0.000
INLET 1-G (ST	M-JC)	0.0876	5.94	2.281
MH - 134 (STM	I-JC)	0	0	0.000
MH - 133 (STM	I-JC)	0	0	0.000
MH - 138 (STM	I-JC)	0	0	0.000
MH - 137 (STM	I-JC)	0	0	0.000
INLET 2-H (ST	M-JC)	0	0	0.000
INLET 7-C (ST	M-JC)	0	0	0.000
INLET 2-C (ST	M-JC)	0	0	0.000
INLET 2-E (ST	M-JC)	0	0.0169	0.000
INLET 5-H (ST	M-JC)	0	0	0.000
INLET 2-I (ST	M-JC)	0	0.000196	0.000
East_Pond_Disc	charge_S	Structu ß e	10.2	-0.000
OS-EAST_SID	E	0.153	0.153	0.000
WF-JCC_Outfa	11	0.107	10.3	0.000
East_Pond		0.619	10.7	0.045

UD-Detention, Version 3.07 (February 2017)


Project: <u>Trails at Aspen Ridge</u>

Approximation of Detention for full development of Offsite Area North of Bradley Road

Basin ID: <u>(Big Johnson Reservoir CDOT flows considered as routed back to correct basin and are not included)</u>

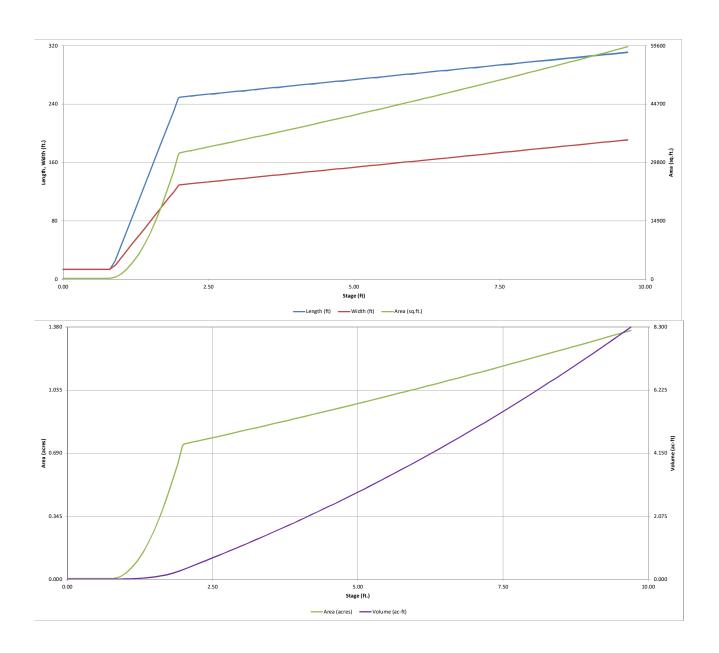
Required Volume Calculation

hours	40.0	Desired WQCV Drain Time =
_	User Input	Location for 1-hr Rainfall Depths =
acre-feet	0.463	Water Quality Capture Volume (WQCV) =
acre-feet	1.327	Excess Urban Runoff Volume (EURV) =
acre-feet	1.140	2-yr Runoff Volume (P1 = 1.19 in.) =
acre-feet	1.478	5-yr Runoff Volume (P1 = 1.5 in.) =
acre-feet	1.780	10-yr Runoff Volume (P1 = 1.75 in.) =
acre-feet	2.081	25-yr Runoff Volume (P1 = 2 in.) =
acre-feet	2.326	50-yr Runoff Volume (P1 = 2.25 in.) =
acre-feet	2.649	100-yr Runoff Volume (P1 = 2.52 in.) =
acre-feet	3.798	500-yr Runoff Volume (P1 = 3.55 in.) =
acre-feet	1.070	Approximate 2-yr Detention Volume =
acre-feet	1.390	Approximate 5-yr Detention Volume =
acre-feet	1.692	Approximate 10-yr Detention Volume =
acre-feet	1.814	Approximate 25-yr Detention Volume =
acre-feet	1.883	Approximate 50-yr Detention Volume =
acre-feet	1.942	Approximate 100-yr Detention Volume =

Optional User Override

1-hr Precipitation		
1.19	inches	
1.50	inches	
1.75	inches	
2.00	inches	
2.25	inches	
2.52	inches	
3.55	inches	

Stage-Storage Calculation

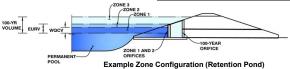

ge-Storage Calculation		
Zone 1 Volume (WQCV) =	0.463	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.864	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.616	acre-feet
Total Detention Basin Volume =	1.942	acre-feet
Initial Surcharge Volume (ISV) =	60	ft^3
Initial Surcharge Depth (ISD) =	0.33	ft
Total Available Detention Depth (H _{total}) =	4.00	ft
Depth of Trickle Channel (H _{TC}) =	0.50	ft
Slope of Trickle Channel (S _{TC}) =	0.005	ft/ft
Slopes of Main Basin Sides (S _{main}) =	4	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	2	
		-

Initial Surcharge Area (A _{ISV}) =	183	ft^2
Surcharge Volume Length (L _{ISV}) =	13.5	ft
Surcharge Volume Width (W _{ISV}) =	13.5	ft
Depth of Basin Floor (H _{FLOOR}) =	1.15	ft
Length of Basin Floor (L_{FLOOR}) =	249.1	ft
Width of Basin Floor (W _{FLOOR}) =	129.0	ft
Area of Basin Floor (A _{FLOOR}) =	32,144	ft^2
Volume of Basin Floor (V _{FLOOR}) =	13,379	ft^3
Depth of Main Basin (H _{MAIN}) =	2.02	ft
Length of Main Basin (L _{MAIN}) =	265.3	ft
Width of Main Basin (W _{MAIN}) =	145.1	ft
Area of Main Basin (A _{MAIN}) =	38,500	ft^2
Volume of Main Basin (V _{MAIN}) =	71,081	ft^3
Calculated Total Basin Volume (Vtotal) =	1.942	acre-fee

Depth Increment =	0.1	ft Optional		Г	T	Optional		T	1
Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft^2)	Override Area (ft^2)	Area (acre)	Volume (ft^3)	Volume (ac-ft)
Top of Micropool	0.00		13.5	13.5	183		0.004		
ISV	0.33		13.5	13.5	183		0.004	59	0.001
	0.40		13.5	13.5	183		0.004	71	0.002
	0.50		13.5	13.5	183		0.004	90	0.002
	0.60		13.5	13.5	183		0.004	108	0.002
	0.70		13.5	13.5	183		0.004	126	0.003
	0.80		13.5	13.5	183		0.004	145	0.003
	0.90		25.8	19.5	503		0.012	172	0.004
	1.00		46.2	29.5	1,364		0.031	262	0.006
	1.10		66.6	39.5	2,632		0.060	458	0.011
	1.20		87.0	49.5	4,308		0.099	802	0.018
	1.30		107.4	59.5	6,392		0.147	1,333	0.031
	1.40		127.8	69.5	8,885		0.204	2,094	0.048
	1.50		148.2	79.5	11,785		0.271	3,124	0.072
	1.60		168.6	89.5	15,093		0.346	4,464	0.102
	1.70		189.0	99.5	18,809		0.432	6,156	0.141
	1.80		209.4	109.5	22,933		0.526	8,240	0.189
	1.90		229.8	119.5	27,466		0.631	10,756	0.247
Floor	1.98		248.1	128.5	31,893		0.732	13,425	0.308
	2.00		249.2	129.1	32,159		0.738	13,745	0.316
7 4 (1400)	2.10		250.1	129.9	32,493		0.746	17,301	0.397
Zone 1 (WQCV)	2.19		250.8 250.9	130.7	32,767		0.752	20,238	0.465
	2.20			130.7	32,798			20,566	0.472
	2.30		251.7 252.5	131.5 132.3	33,104 33,411		0.760	23,861 27,187	0.548
	2.50		253.3	133.1	33,719		0.774	30,543	0.701
	2.60		253.3	133.9	34,029		0.774	33,930	0.779
	2.70		254.9	134.7	34,340		0.788	37,349	0.857
	2.80		255.7	135.5	34,652		0.796	40,799	0.937
	2.90		256.5	136.3	34,966		0.803	44,279	1.017
	3.00		257.3	137.1	35,281		0.810	47,792	1.097
	3.10		258.1	137.9	35,597		0.817	51,336	1.179
	3.20		258.9	138.7	35,915		0.824	54,911	1.261
Zone 2 (EURV)	3.28		259.5	139.4	36,169		0.830	57,795	1.327
	3.30		259.7	139.5	36,233		0.832	58,519	1.343
	3.40		260.5	140.3	36,553		0.839	62,158	1.427
	3.50		261.3	141.1	36,875		0.847	65,829	1.511
	3.60		262.1	141.9	37,197		0.854	69,533	1.596
	3.70		262.9	142.7	37,521		0.861	73,269	1.682
	3.80		263.7	143.5	37,846		0.869	77,037	1.769
	3.90		264.5	144.3	38,172		0.876	80,838	1.856
Zone 3 (100-year)	4.00		265.3	145.1	38,500		0.884	84,672	1.944
	4.10		266.1	145.9	38,829		0.891	88,538	2.033
	4.20		266.9	146.7	39,159		0.899	92,437	2.122
	4.30		267.7	147.5	39,491		0.907	96,370	2.212
	4.40		268.5	148.3	39,824		0.914	100,336	2.303
	4.50		269.3	149.1	40,158		0.922	104,335	2.395
	4.60		270.1	149.9	40,493		0.930	108,367	2.488
	4.70		270.9 271.7	150.7 151.5	40,830 41,168		0.937	112,433	2.581 2.675
	4.80		271.7	151.5	41,168		0.945	116,533 120,667	2.770
	5.00		273.3	152.3	41,847		0.961	124,835	2.866
	5.10		274.1	153.9	42,189		0.969	129,036	2.962
	5.20		274.9	154.7	42,532		0.976	133,273	3.060
	5.30		275.7	155.5	42,876		0.984	137,543	3.158
	5.40		276.5 277.3	156.3 157.1	43,222 43,569		0.992	141,848 146,187	3.256 3.356
	5.60		278.1	157.9	43,917		1.008	150,562	3.456
-	5.70 5.80		278.9 279.7	158.7 159.5	44,266 44,617		1.016 1.024	154,971 159,415	3.558 3.660

6/16/2019, 5:09 PM North Commercial Site.xlsm, Basin

UD-Detention, Version 3.07 (February 2017)



North Commercial Site.xlsm, Basin 6/16/2019, 5:09 PM

UD-Detention, Version 3.07 (February 2017)

Project: Trails at Aspen Ridge

Basin ID: Approximation of Detention for full development of Offsite Area North of Bradley Road (Big Johnson Reservoir CDOT flows considered as routed back to correct basin and are no

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.19	0.463	Orifice Plate
Zone 2 (EURV)	3.28	0.864	Circular Orifice
Zone 3 (100-year)	4.00	0.616	Weir&Pipe (Restrict)
		1.042	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface)
Underdrain Orifice Diameter = N/A inches

relate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

User Input: Orifice Plate with one or more orifices of	r Elliptical Slot Weir	(typically used to drain WQCV and/or EUR\
Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	2.19	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	8.80	inches
Orifice Plate: Orifice Area per Row =	1.49	sq. inches (diameter = 1-3/8 inches)

50%

N/A

Calcu	lated Parameters for	Plate
WQ Orifice Area per Row =	1.035E-02	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

Underdrain Orifice Area

Underdrain Orifice Centroid

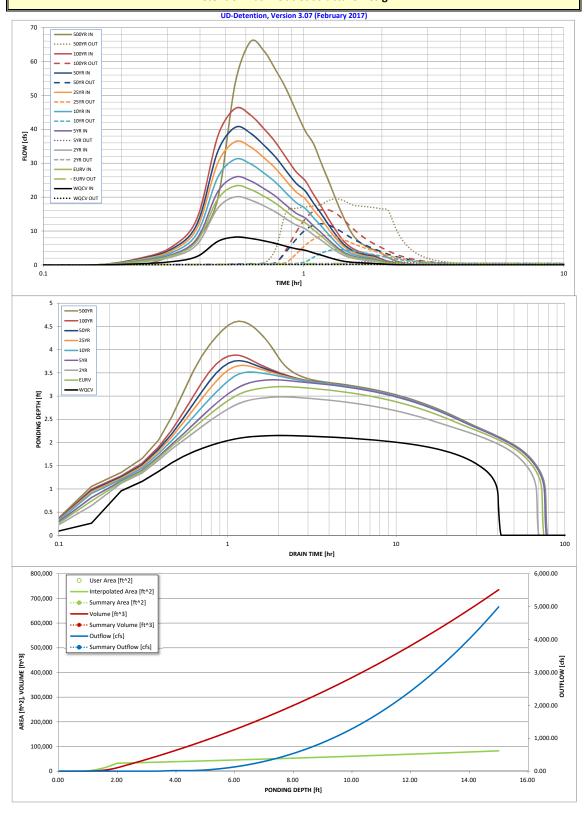
Calculated Parameters for Underdrain

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

Debris Clogging % =

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.73	1.46					
Orifice Area (sq. inches)	1.49	1.49	1.49					

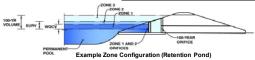
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								


User Input: Vertical Orifice (Circ	ular or Rectangular)			Calculated Parameters for Vertical Orifice				
	Zone 2 Circular	Not Selected			Zone 2 Circular	Not Selected		
Invert of Vertical Orifice =	2.19	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertice	al Orifice Area =	0.05	N/A	ft ²	
Depth at top of Zone using Vertical Orifice =	3.28	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical O	rifice Centroid =	0.12	N/A	feet	
Vertical Orifice Diameter =	2.93	N/A	inches	-				

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Calculated Parameters for Overflow Weir Zone 3 Weir Not Selected Zone 3 Weir **Not Selected** Overflow Weir Front Edge Height, Ho 3.28 N/A ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H. 3.28 N/A feet Overflow Weir Front Edge Length = 4.00 N/A feet Over Flow Weir Slope Length 4.00 N/A feet Overflow Weir Slope 0.00 N/A H:V (enter zero for flat grate) Grate Open Area / 100-yr Orifice Area 6.34 N/A should be > 4 Horiz. Length of Weir Sides = 4.00 N/A feet Overflow Grate Open Area w/o Debris 11.20 N/A Overflow Grate Open Area % 70% N/A %, grate open area/total area Overflow Grate Open Area w/ Debris = 5.60 N/A

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)					s for Outlet Pipe w/	Flow Restriction Plat	e
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.50	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	1.77	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.75	N/A	feet
Restrictor Plate Height Above Pipe Invert =	18.00		inches Half-Central Angle	of Restrictor Plate on Pipe =	3.14	N/A	radians

User Input: Emergency Spillway (Rectang	ular or Trapezoidal)		Calculat	ed Parameters for S	pillway
Spillway Invert Stage=	4.50	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	0.90	feet
Spillway Crest Length =	15.00	feet	Stage at Top of Freeboard =	6.40	feet
Spillway End Slopes =	4.00	H:V	Basin Area at Top of Freeboard =	1.07	acres
Freeboard above Max Water Surface =	1.00	feet	·		-


Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.55
Calculated Runoff Volume (acre-ft) =	0.463	1.327	1.140	1.478	1.780	2.081	2.326	2.649	3.798
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.462	1.325	1.139	1.476	1.779	2.079	2.324	2.647	3.795
Predevelopment Unit Peak Flow, q (cfs/acre) =		0.00	0.01	0.02	0.21	0.70	0.97	1.30	2.17
Predevelopment Peak Q (cfs) =	0.0	0.0	0.2	0.3	2.6	8.7	12.0	16.1	26.9
Peak Inflow Q (cfs) =	8.2	23.3	20.1	25.9	31.2	36.4	40.6	46.1	65.8
Peak Outflow Q (cfs) =	0.2	0.4	0.4	1.1	4.5	8.7	12.1	16.2	19.5
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	4.1	1.7	1.0	1.0	1.0	0.7
Structure Controlling Flow =		Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.1	0.4	0.7	1.0	1.4	1.5
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	69	64	71	70	69	68	67	64
Time to Drain 99% of Inflow Volume (hours) =	40	72	67	74	74	74	74	74	72
Maximum Ponding Depth (ft) =	2.15	3.20	2.98	3.35	3.52	3.66	3.76	3.88	4.61
Area at Maximum Ponding Depth (acres) =	0.75	0.82	0.81	0.84	0.85	0.86	0.87	0.87	0.93
Maximum Volume Stored (acre-ft) =	0.435	1.261	1.081	1.385	1.520	1.648	1.734	1.838	2.497

UD-Detention, Version 3.07 (February 2017)

Project: Trails at Aspen Ridge

Basin ID: Approximated future detention for Commercial lot South of Bradley Road and West of Legacy Drive

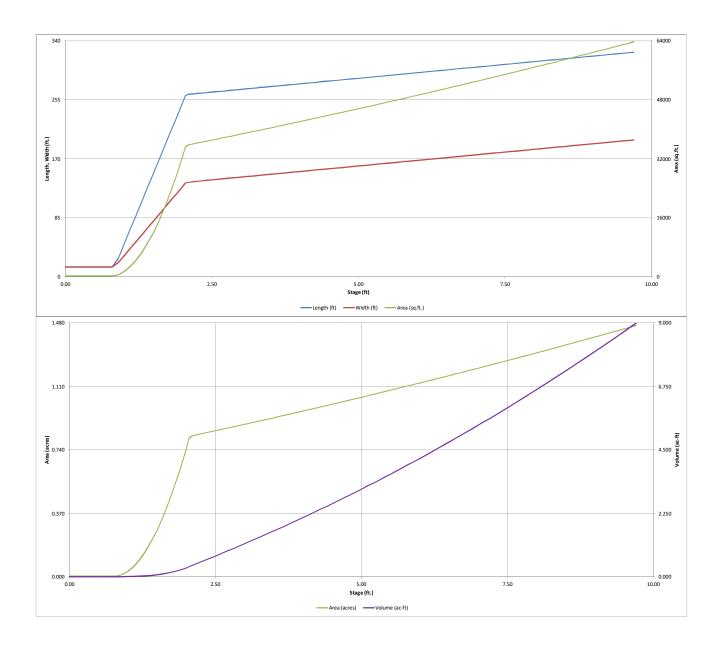
Requ

uired Volume Calculation		_			
Selected BMP Type =	EDB				
Watershed Area =	13.43	acres			
Watershed Length =	894	ft			
Watershed Slope =	0.070	ft/ft			
Watershed Imperviousness =	95.00%	percent			
Percentage Hydrologic Soil Group A =	0.0%	percent			
Percentage Hydrologic Soil Group B =	100.0%	percent			
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			
Desired WQCV Drain Time =	40.0	hours			
Location for 1-hr Rainfall Depths = User Input					
Water Quality Capture Volume (WQCV) =	0.501	acre-feet			

Desired WQCV Drain Time =	40.0	nours
Location for 1-hr Rainfall Depths =	User Input	=
Water Quality Capture Volume (WQCV) =	0.501	acre-feet
Excess Urban Runoff Volume (EURV) =	1.436	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	1.234	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	1.600	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	1.926	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	2.252	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	2.517	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	2.867	acre-feet
500-yr Runoff Volume (P1 = 3.55 in.) =	4.110	acre-feet
Approximate 2-yr Detention Volume =	1.158	acre-feet
Approximate 5-yr Detention Volume =	1.504	acre-feet
Approximate 10-yr Detention Volume =	1.831	acre-feet
Approximate 25-yr Detention Volume =	1.964	acre-feet
Approximate 50-yr Detention Volume =	2.037	acre-feet
Approximate 100-yr Detention Volume =	2.102	acre-feet

i-ni Precipitation					
1.19	inches				
1.50	inches				
1.75	inches				
2.00	inches				
2.25	inches				
2.52	inches				
3.55	inches				

Stage-Storage Calculation

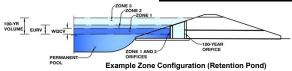

Zone 1 Volume (WQCV) =	0.501	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.935	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.666	acre-feet
Total Detention Basin Volume =	2.102	acre-feet
Initial Surcharge Volume (ISV) =	65	ft^3
Initial Surcharge Depth (ISD) =	0.33	ft
Total Available Detention Depth (H _{total}) =	4.00	ft
Depth of Trickle Channel (H _{TC}) =	0.50	ft
Slope of Trickle Channel $(S_{TC}) =$	0.005	ft/ft
Slopes of Main Basin Sides (Smain) =	4	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	2	Ī

Initial Surcharge Area (A _{ISV}) =	198	ft^2
Surcharge Volume Length (L _{ISV}) =	14.1	ft
Surcharge Volume Width (W _{ISV}) =	14.1	ft
Depth of Basin Floor (H _{FLOOR}) =	1.22	ft
Length of Basin Floor (L _{FLOOR}) =	262.3	ft
Width of Basin Floor (W _{FLOOR}) =	135.8	ft
Area of Basin Floor (A _{FLOOR}) =	35,621	ft^2
Volume of Basin Floor (V _{FLOOR}) =	15,609	ft^3
Depth of Main Basin (H _{MAIN}) =	1.95	ft
Length of Main Basin (L _{MAIN}) =	278.0	ft
Width of Main Basin (W _{MAIN}) =	151.4	ft
Area of Main Basin (A _{MAIN}) =	42,086	ft^2
Volume of Main Basin (V _{MAIN}) =	75,793	ft^3
Calculated Total Basin Volume (Vtotal) =	2.102	acre-fee

Depth Increment =	0.1	ft							
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft^2)	Area (ft^2)	(acre)	(ft^3)	(ac-ft)
Top of Micropool	0.00		14.1	14.1	198		0.005		
ISV	0.33		14.1	14.1	198		0.005	63	0.001
	0.40		14.1	14.1	198		0.005	77	0.002
	0.50		14.1	14.1	198		0.005	97	0.002
	0.60		14.1	14.1	198		0.005	117	0.003
	0.70		14.1	14.1	198		0.005	137	0.003
	0.80		14.1	14.1	198		0.005	157	0.004
	0.90		26.3	20.1	528		0.012	186	0.004
	1.00		46.7	30.1	1,405		0.032	279	0.006
	1.10		67.1	40.1	2,690		0.062	480	0.011
	1.20		87.5	50.1	4,383		0.101	830	0.019
	1.30		107.9	60.1	6,484		0.149	1,370	0.031
	1.40		128.3	70.1	8.992		0.206	2,141	0.049
	1.50		148.7	80.1	11,909		0.273	3,182	0.073
	1.60		169.1	90.1	15,234		0.350	4,536	0.104
	1.70		189.5	100.1	18,967		0.435	6,243	0.143
	1.80		209.9	110.1	23,108		0.530	8,343	0.192
	1.90		230.3	120.1	27,656		0.635	10,878	0.250
	2.00		250.7	130.1	32,613		0.749	13,888	0.319
Floor	2.05		260.9	135.1	35,245		0.809	15,584	0.358
	2.10		262.8	136.2	35,790		0.822	17,724	0.407
	2.20		263.6	137.0	36,110		0.829	21,319	0.489
Zone 1 (WQCV)	2.22		263.7	137.2	36,174		0.830	22,042	0.506
	2.30		264.4	137.8	36,431		0.836	24,946	0.573
	2.40		265.2	138.6	36,753		0.844	28,605	0.657
	2.50		266.0	139.4	37,077		0.851	32,297	0.741
	2.60		266.8	140.2	37.402		0.859	36,021	0.827
	2.70		267.6	141.0	37.728		0.866	39.777	0.913
	2.80		268.4	141.8	38,056		0.874	43,566	1.000
	2.90		269.2	142.6	38,384		0.881	47.388	1.088
	3.00		270.0	143.4	38.715		0.889	51,243	1.176
	3.10		270.8	144.2	39,046		0.896	55,131	1.266
	3.20		271.6	145.0	39,378		0.904	59,053	1.356
Zone 2 (EURV)	3.29		272.3	145.7	39,679		0.911	62,610	1.437
,	3.30		272.4	145.8	39,712		0.912	63,007	1.446
	3.40		273.2	146.6	40,048		0.919	66,995	1.538
	3.50		274.0	147.4	40,384		0.927	71,017	1.630
	3.60		274.8	148.2	40,722		0.935	75,072	1.723
	3.70		275.6	149.0	41,061		0.943	79,161	1.817
	3.80		276.4	149.8	41,401		0.950	83,284	1.912
	3.90		277.2	150.6	41,743		0.958	87,441	2.007
Zone 3 (100-year)	4.00		278.0	151.4	42,086		0.966	91,633	2.104
	4.10		278.8	152.2	42,430		0.974	95,858	2.201
	4.20		279.6	153.0	42,775		0.982	100,119	2.298
	4.30		280.4	153.8	43,122		0.990	104,413	2.397
	4.40		281.2	154.6	43,470		0.998	108,743	2.496
	4.50		282.0	155.4	43,819		1.006	113,107	2.597
	4.60		282.8	156.2	44,170		1.014	117,507	2.698
	4.70		283.6	157.0	44,521		1.022	121,941	2.799
	4.80		284.4	157.8	44,874		1.030	126,411	2.902
	4.90		285.2	158.6	45,229		1.038	130,916	3.005
-	5.00		286.0	159.4	45,585		1.046	135,457	3.110
	5.10		286.8	160.2	45,941		1.055	140,033	3.215
	5.20		287.6	161.0	46,300		1.063	144,645	3.321
	5.30 5.40		288.4 289.2	161.8 162.6	46,659 47,020		1.071	149,293 153,977	3.427 3.535
	5.50		290.0	163.4	47,382		1.088	158,697	3.643
•	5.60		290.8	164.2	47,745		1.096	163,454	3.752
	5.70 5.80		291.6 292.4	165.0 165.8	48,110 48,476		1.104 1.113	168,246 173,076	3.862 3.973
	5.90		293.2	166.6	48,843		1.113	177,942	4.085

South West Commercial Site.xlsm, Basin 6/16/2019, 5:23 PM

UD-Detention, Version 3.07 (February 2017)



South West Commercial Site.xism, Basin 6/16/2019, 5:23 PM

UD-Detention, Version 3.07 (February 2017)

Project: Trails at Aspen Ridge

Basin ID: Approximated future detention for Commercial lot South of Bradley Road and West of Legacy Drive

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.22	0.501	Orifice Plate
Zone 2 (EURV)	3.29	0.935	Circular Orifice
!one 3 (100-year)	4.00	0.666	Weir&Pipe (Restrict)
•		2.102	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface)
Underdrain Orifice Diameter = N/A inches

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft)

Depth at top of Zone using Orifice Plate = 2.22 ft (relative to basin bottom at Stage = 0 ft)

Orifice Plate: Orifice Vertical Spacing = 8.90 inches

Orifice Plate: Orifice Area per Row = 1.60 sq. inches (diameter = 1-7/16 inches)

Calculated Parameters for Plate						
WQ Orifice Area per Row =	1.111E-02	ft ²				
Elliptical Half-Width =	N/A	feet				
Elliptical Slot Centroid =	N/A	feet				
Elliptical Slot Area =	N/A	ft ²				

Underdrain Orifice Area =

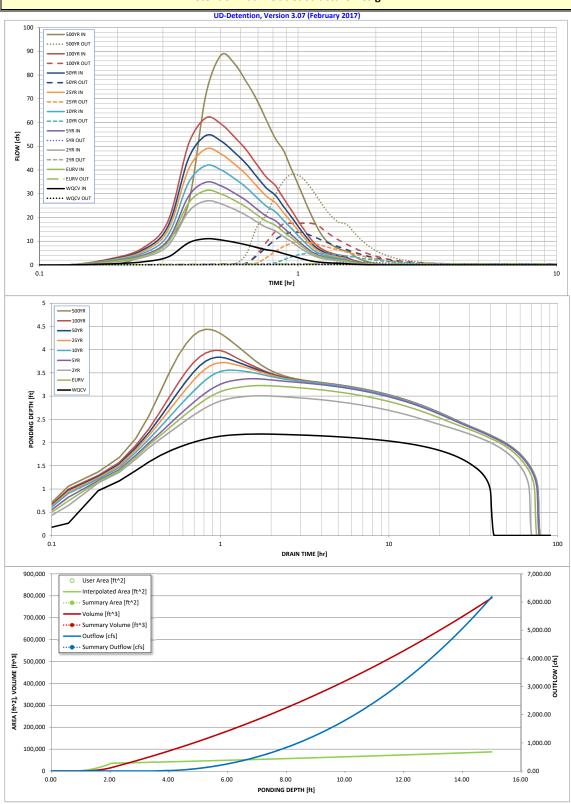
Underdrain Orifice Centroid =

Calculated Parameters for Underdrain

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.74	1.48					
Orifice Area (sq. inches)	1.60	1.60	1.60					

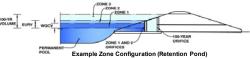
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								


User Input: Vertical Orifice (Circ	ular or Rectangular)			Calculated	Calculated Parameters for Vertical Orifice			
	Zone 2 Circular	Not Selected			Zone 2 Circular	Not Selected	1	
Invert of Vertical Orifice =	2.22	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Area =	0.05	N/A	ft ²	
Depth at top of Zone using Vertical Orifice =	3.29	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Centroid =	0.13	N/A	feet	
Vertical Orifice Diameter =	3.13	N/A	inches	-				

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Calculated					Parameters for Ove		
	Zone 3 Weir	Not Selected			Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	3.29	N/A	ft (relative to basin bottom at Stage = 0 ft)	Height of Grate Upper Edge, H_t =	4.29	N/A	feet
Overflow Weir Front Edge Length =	18.00	N/A	feet	Over Flow Weir Slope Length =	4.12	N/A	feet
Overflow Weir Slope =	4.00	N/A	H:V (enter zero for flat grate)	Grate Open Area / 100-yr Orifice Area =	27.07	N/A	should be ≥ 4
Horiz. Length of Weir Sides =	4.00	N/A	feet	Overflow Grate Open Area w/o Debris =	51.95	N/A	ft ²
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area	Overflow Grate Open Area w/ Debris =	25.98	N/A	ft ²
Debris Clogging % =	50%	N/A	%				

User Input: Outlet Pipe w/ Flow Restriction Plate (Ci	ircular Orifice, Restri	ctor Plate, or Rectan	gular Orifice)	Calculated Parameters for Outlet Pipe w/ Flow Restriction			ate
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	1
Depth to Invert of Outlet Pipe =	0.30	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	1.92	N/A	ft ²
Outlet Pipe Diameter =	24.00	N/A	inches	Outlet Orifice Centroid =	0.67	N/A	feet
Restrictor Plate Height Above Pipe Invert =	14.10		inches Half-Ce	entral Angle of Restrictor Plate on Pipe =	1.75	N/A	radians

User Input: Emergency Spillway (Rectang	ular or Trapezoidal)		Calculat	ted Parameters for	Spillway
Spillway Invert Stage=	4.00	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	0.90	feet
Spillway Crest Length =	21.00	feet	Stage at Top of Freeboard =	5.90	feet
Spillway End Slopes =	4.00	H:V	Basin Area at Top of Freeboard =	1.12	acres
Freehoard above Max Water Surface =	1.00	feet	-		-


Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.55
Calculated Runoff Volume (acre-ft) =	0.501	1.436	1.234	1.600	1.926	2.252	2.517	2.867	4.110
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.500	1.436	1.233	1.599	1.926	2.253	2.517	2.867	4.110
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.02	0.03	0.27	0.87	1.19	1.59	2.64
Predevelopment Peak Q (cfs) =	0.0	0.0	0.2	0.4	3.7	11.6	16.0	21.4	35.5
Peak Inflow Q (cfs) =	11.0	31.3	27.0	34.8	41.9	48.9	54.5	62.0	88.3
Peak Outflow Q (cfs) =	0.2	0.5	0.4	1.3	4.9	9.7	13.8	17.6	38.1
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	3.5	1.3	0.8	0.9	0.8	1.1
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.0	0.1	0.2	0.3	0.3	0.3
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	69	64	70	70	69	68	67	64
Time to Drain 99% of Inflow Volume (hours) =	40	72	67	74	75	74	74	74	72
Maximum Ponding Depth (ft) =	2.18	3.23	3.01	3.38	3.56	3.72	3.84	3.99	4.44
Area at Maximum Ponding Depth (acres) =	0.83	0.91	0.89	0.92	0.93	0.94	0.95	0.96	1.00
Maximum Volume Stored (acre-ft) =	0.473	1.374	1.176	1.510	1.677	1.836	1.940	2.084	2.526

UD-Detention, Version 3.07 (February 2017)

Project: Trails at Aspen Ridge

Basin ID: Approximation of Commercial Area Detention in South of Bradley Road and East of Legacy Drive

Required Volume Calculation

uired volume Calculation		
Selected BMP Type =	EDB	
Watershed Area =	4.04	acres
Watershed Length =	550	ft
Watershed Slope =	0.011	ft/ft
Watershed Imperviousness =	95.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	Denver - Capit	ol Building

Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	Denver - Capit	ol Building
Water Quality Capture Volume (WQCV) =	0.150	acre-feet
Excess Urban Runoff Volume (EURV) =	0.431	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.371	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.481	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.579	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.677	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.756	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	0.861	acre-feet
500-yr Runoff Volume (P1 = 3.55 in.) =	1.235	acre-feet
Approximate 2-yr Detention Volume =	0.348	acre-feet
Approximate 5-yr Detention Volume =	0.452	acre-feet
Approximate 10-yr Detention Volume =	0.550	acre-feet
Approximate 25-yr Detention Volume =	0.590	acre-feet
Approximate 50-yr Detention Volume =	0.612	acre-feet
Approximate 100-yr Detention Volume =	0.632	acre-feet

Optional User Override 1-hr Precipitation

1-hr Precipitation				
1.19	inches			
1.50	inches			
1.75	inches			
2.00	inches			
2.25	inches			
2.52	inches			
3.55	inches			

Stage-Storage Calculation

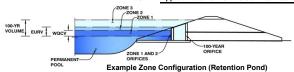
acre-feet	0.150	Zone 1 Volume (WQCV) =
acre-feet	0.281	Zone 2 Volume (EURV - Zone 1) =
acre-feet	0.200	Zone 3 Volume (100-year - Zones 1 & 2) =
acre-feet	0.632	Total Detention Basin Volume =
ft^3	197	Initial Surcharge Volume (ISV) =
ft	0.33	Initial Surcharge Depth (ISD) =
ft	4.50	Total Available Detention Depth (H _{total}) =
ft	0.50	Depth of Trickle Channel (H _{TC}) =
ft/ft	0.010	Slope of Trickle Channel (S_{TC}) =
H:V	4	Slopes of Main Basin Sides (Smain) =
Ī	3	Basin Length-to-Width Ratio (R _{L/W}) =
_		

Initial Surcharge Area (A _{ISV}) =	596	ft^2
Surcharge Volume Length (LISV) =	24.4	ft
Surcharge Volume Width (W _{ISV}) =	24.4	ft
Depth of Basin Floor (H _{FLOOR}) =	0.93	ft
Length of Basin Floor (L _{FLOOR}) =	121.3	ft
Width of Basin Floor (W _{FLOOR}) =	55.4	ft
Area of Basin Floor (A _{FLOOR}) =	6,724	ft^2
Volume of Basin Floor (V _{FLOOR}) =	2,893	ft^3
Depth of Main Basin (H _{MAIN}) =	2.74	ft
Length of Main Basin (L _{MAIN}) =	143.2	ft
Width of Main Basin (W _{MAIN}) =	77.4	ft
Area of Main Basin (A _{MAIN}) =	11,075	ft^2
Volume of Main Basin (V _{MAIN}) =	24,127	ft^3
Calculated Total Basin Volume (Vtotal) =	0.632	acre-fee

Stage - Storage	Depth Increment =	0.1	ft							
Description		C+	Optional	Laurette	14/5-444	A	Optional	A	Values	Vehine
Top of Micropool 0.00 24.4 24.4 596 0.014 191 0.004 18V 0.33 24.4 24.4 596 0.014 191 0.004 0.004 0.004 0.004 0.004 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.006 0.007 0.007 0.006 0.007										
0.40										1
0.50	ISV	0.33		24.4	24.4	596		0.014	191	0.004
0.50		0.40		24.4	24.4	596		0.014	232	0.005
0.60										
0.70										
				24.4	24.4	596				
1.00				30.6	26.4	809			536	
1.10										
1.30					33.1				783	
1.40		1.20		61.8	36.4	2,251		0.052	980	0.022
1.50		1.30		72.2	39.7	2,871		0.066	1,235	0.028
1.60		1.40		82.6	43.1	3,560		0.082	1,556	0.036
		1.50		93.0	46.4	4,318		0.099	1,950	0.045
Floor		1.60		103.4	49.7	5,145		0.118	2,422	0.056
1.80		1.70		113.8	53.1	6,042		0.139	2,981	0.068
1.90	Floor	1.76		121.1	55.4	6,711		0.154	3,427	0.079
2,00		1.80		121.5	55.7	6,764		0.155	3,629	0.083
2.10		1.90		122.3	56.5	6,907		0.159	4,313	0.099
		2.00		123.1	57.3	7,050		0.162	5,011	0.115
Table 1		2.10		124.0	58.2	7,210		0.166	5,795	0.133
2.30		2.20		124.8	59.0	7,356		0.169	6,523	0.150
2.40	Zone 1 (WQCV)	2.21		124.9	59.0	7,371		0.169	6,597	0.151
2.50				125.6						
2.60		2.40		126.4	60.6	7,653		0.176	8,024	0.184
270		2.50		127.2		7,803		0.179	8,797	0.202
2.80						<u> </u>				
2.90										
3.00										
3.10										
320										
3.30										
3.40										
3.50						-,			-,	
3.60										
Zone 2 (EURV) 3.65										
3.70	7 2 (FUD)()					-,				
3.80	Zone 2 (EURV)									
3.90										
4.00										
4.10										
4.20										
4.30										
A440 1424 76.6 10,900 0.250 26,491 0.608 Zone 3 (100-year) 4.50 143.2 77.4 11,075 0.254 27,590 0.633 4.60 144.0 78.2 11,252 0.258 28,706 0.659 4.70 144.8 79.0 11,431 0.262 29,840 0.685 4.80 145.6 79.8 11,610 0.267 30,993 0.711 4.90 146.4 80.6 11,791 0.271 32,163 0.738 5.00 147.2 81.4 11,973 0.275 33,351 0.766 5.10 148.0 82.2 12,167 0.279 34,557 0.793 5.20 148.8 83.0 12,342 0.283 35,782 0.821 5.30 149.6 83.8 12,528 0.288 2.888 0.879 5.50 151.2 85.4 12,904 0.296 39,688 0.998 5.50										
200		4.40			76.6	-7.				
4.60 144.0 78.2 11,252 0.258 28,706 0.659 4.70 144.8 79.0 11,431 0.262 29,840 0.685 4.80 145.6 79.8 11,610 0.267 30,993 0.711 4.90 146.4 80.6 11,791 0.271 32,163 0.738 5.00 147.2 81.4 11,973 0.275 33,351 0.766 5.10 148.0 82.2 12,157 0.279 34,557 0.793 5.20 148.8 83.0 12,342 0.283 35,762 0.821 5.30 149.6 83.8 12,528 0.288 37,026 0.850 5.40 150.4 84.6 12,715 0.292 39,569 0.908 5.50 151.2 85.4 12,904 0.296 39,699 0.908 5.60 152.0 86.2 13,093 0.301 42,188 0.988 5.70 152.8 <t< td=""><td>Zone 3 (100-year)</td><td>4.50</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Zone 3 (100-year)	4.50								
4.70 144.8 79.0 11,431 0.262 29,840 0.685 4.80 145.6 79.8 11,610 0.267 30,993 0.711 4.90 146.4 80.6 11,791 0.271 32,163 0.738 5.00 147.2 81.4 11,973 0.275 33,351 0.766 5.10 148.0 82.2 12,157 0.279 34,557 0.793 5.20 148.8 83.0 12,342 0.283 35,782 0.821 5.30 149.6 83.8 12,528 0.288 37,026 0.850 5.40 150.4 84.6 12,715 0.292 38,288 0.879 5.50 151.2 85.4 12,904 0.296 39,569 0.908 5.60 152.0 862 13,993 0.301 42,188 0.968 5.70 152.8 87.0 13,285 0.305 42,188 0.998 5.80 153.6 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
4.90 146.4 80.6 11,791 0.271 32,163 0.738 5.00 147.2 81.4 11,973 0.275 33,351 0.766 5.10 148.0 82.2 12,157 0.279 34,557 0.793 5.20 148.8 83.0 12,342 0.283 35,782 0.850 5.30 149.6 83.8 12,528 0.288 37,026 0.850 5.40 150.4 84.6 12,715 0.292 38,288 0.879 5.50 151.2 85.4 12,904 0.296 39,569 0.908 5.60 152.0 86.2 13,093 3.0301 40,869 0.938 5.70 152.8 87.0 13,285 0.305 42,188 0.968 5.80 153.6 87.8 13,477 0.309 43,626 0.999		4.70		144.8	79.0			0.262	29,840	0.685
5.00 147.2 81.4 11.973 0.275 33.351 0.766 5.10 148.0 82.2 12.157 0.279 34.557 0.793 5.20 148.8 83.0 12.342 0.283 35.762 0.821 5.30 149.6 83.8 12.528 0.288 37.026 0.850 5.40 150.4 84.6 12.715 0.292 38.288 0.879 5.50 151.2 85.4 12.904 0.296 39.569 0.908 5.60 152.0 86.2 13.093 0.301 40.869 0.938 5.70 152.8 87.0 13.285 0.305 42.188 0.969 5.80 153.6 87.8 13.477 0.309 43.568 0.999		4.80		145.6	79.8	11,610		0.267	30,993	0.711
5.10 148.0 82.2 12,157 0.279 34,557 0.793 5.20 148.8 83.0 12,342 0.283 35,782 0.821 5.30 149.6 83.8 12,528 0.288 37,026 0.850 5.40 150.4 84.6 12,715 0.292 38,288 0.879 5.50 151.2 85.4 12,904 0.296 39,569 0.908 5.60 152.0 862 13,093 0.301 40,689 0,938 5.70 152.8 87.0 13,285 0.305 42,188 0.968 5.80 153.6 87.8 13,477 0.309 43,568 0,999		4.90		146.4	80.6	11,791		0.271	32,163	
5 20 148.8 83.0 12,342 0.283 35,782 0.821 5 30 149.6 83.8 12,528 0.288 37,026 0.850 5 40 150.4 84.6 12,715 0.292 38,288 0.879 5 50 151.2 85.4 12,904 0.296 39,569 0.908 5 60 152.0 86.2 13,093 0.301 40,869 0.938 5 .70 152.8 87.0 13,285 0.305 42,188 0.968 5 .80 153.6 87.8 13,477 0.309 43,626 0.999										
5.30 149.6 83.8 12,528 0.288 37,026 0.850 5.40 150.4 84.6 12,715 0.292 38,288 0.879 5.50 151.2 85.4 12,904 0.296 39,569 0,908 5.60 152.0 86.2 13,093 0.301 40,869 0.938 5.70 152.8 87.0 13,285 0.305 42,188 0.968 5.80 153.6 87.8 13,477 0.309 43,526 0.999										
5.40 150.4 84.6 12,715 0.292 38,288 0.879 5.50 151.2 85.4 12,904 0.296 39,569 0.908 5.60 152.0 86.2 13,093 0.301 40,869 0.938 5.70 152.8 87.0 13,285 0.305 42,188 0.969 5.80 153.6 87.8 13,477 0.309 43,568 0.999										
5.50 151.2 85.4 12,904 0.296 39,569 0.908 5.60 152.0 86.2 13,093 0.301 40,669 0.938 5.70 152.8 87.0 13,285 0.305 42,188 0.968 5.80 153.6 87.8 13,477 0.309 43,526 0.999										
5.70 152.8 87.0 13,285 0.305 42,188 0.968 5.80 153.6 87.8 13,477 0.309 43,526 0.999		5.50		151.2	85.4	12,904		0.296	39,569	0.908
5.80 153.6 87.8 13,477 0.309 43,526 0.999						13,093				

South East Commercial Site.xism, Basin 6/16/2019, 5:27 PM

UD-Detention, Version 3.07 (February 2017)



South East Commercial Site.xism, Basin 6/16/2019, 5:27 PM

UD-Detention, Version 3.07 (February 2017)

Project: Trails at Aspen Ridge

Basin ID: Approximation of Commercial Area Detention in South of Bradley Road and East of Legacy Drive

_	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.21	0.150	Orifice Plate
Zone 2 (EURV)	3.65	0.281	Circular Orifice
one 3 (100-year)	4.50	0.200	Weir&Pipe (Restrict)
•		0.632	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface)

Underdrain Orifice Diameter = N/A

Calculate	ed Parameters for U	nderdrain
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	foot

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate ft (relative to basin bottom at Stage = 0 ft)

Orifice Plate: Orifice Vertical Spacing 8.80

Orifice Plate: Orifice Area per Row = sq. inches (diameter = 7/8 inch) 0.60

Calcu	lated Parameters for	Plate
WQ Orifice Area per Row =	4.167E-03	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.74	1.47					
Orifice Area (sq. inches)	0.60	0.60	0.60					

Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft Orifice Area (sq. inches)

User Input: Vertical Orifice (Circular or Rectangular) Not Selected Zone 2 Circular Invert of Vertical Orifice 2.21 N/A ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Vertical Orifice ft (relative to basin bottom at Stage = 0 ft) 3.65 N/A Vertical Orifice Diameter = 0.89 N/A inches

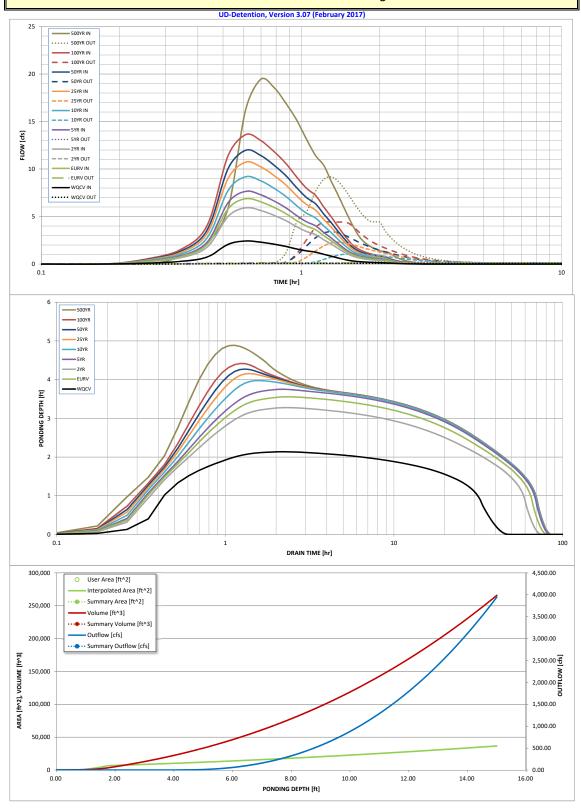
Calculated Parameters for Vertical Orifice					
	Zone 2 Circular	Not Selected			
Vertical Orifice Area =	0.00	N/A	ft ²		
Vertical Orifice Centroid =	0.04	N/A	feet		

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

i input. Overnow wen (bropbox) and d			
	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	3.65	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	2.00	N/A	feet
Overflow Weir Slope =	4.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	4.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated Parameters for Overflow Weir					
	Zone 3 Weir	Not Selected			
Height of Grate Upper Edge, H_t =	4.65	N/A	feet		
Over Flow Weir Slope Length =	4.12	N/A	feet		
Grate Open Area / 100-yr Orifice Area =	13.29	N/A	should be ≥ 4		
Overflow Grate Open Area w/o Debris =	5.77	N/A	ft ²		
Overflow Grate Open Area w/ Debris =	2.89	N/A	ft ²		

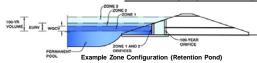
User Input: Outlet Pipe


iput: Outlet Pipe w/ Flow Restriction Plate (C	rcular Orifice, Restric	ctor Plate, or Rectan	guiar Orifice)	Calculated Parameter	s for Outlet Pipe w/	riow Restriction Plat	ie
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.30	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.43	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.26	N/A	feet
Restrictor Plate Height Above Pipe Invert =	5.30		inches Half-Central Angle	of Restrictor Plate on Pipe =	1.15	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	4.50	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	5.00	feet
Spillway End Slopes =	4.00	H:V
oard above Max Water Surface =	1.00	feet

Calcula	ted Parameters for S	pillway
Spillway Design Flow Depth=	0.72	feet
Stage at Top of Freeboard =	6.22	feet
Basin Area at Top of Freeboard =	0.33	acres


Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.55
Calculated Runoff Volume (acre-ft) =	0.150	0.431	0.371	0.481	0.579	0.677	0.756	0.861	1.235
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =		0.431	0.370	0.480	0.578	0.676	0.756	0.861	1.234
Predevelopment Unit Peak Flow, q (cfs/acre) =		0.00	0.01	0.02	0.19	0.63	0.88	1.18	1.97
Predevelopment Peak Q (cfs) =		0.0	0.0	0.1	0.8	2.6	3.5	4.8	8.0
Peak Inflow Q (cfs) =	2.4	6.9	5.9	7.7	9.2	10.7	12.0	13.6	19.4
Peak Outflow Q (cfs) =		0.1	0.1	0.3	1.1	2.3	3.4	4.4	9.2
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	3.2	1.4	0.9	1.0	0.9	1.2
Structure Controlling Flow =		Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.0	0.2	0.4	0.6	0.7	0.8
Max Velocity through Grate 2 (fps) =		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	66	61	68	68	67	67	66	62
Time to Drain 99% of Inflow Volume (hours) =	43	72	67	75	75	74	74	73	71
Maximum Ponding Depth (ft) =	2.14	3.56	3.28	3.75	3.98	4.16	4.27	4.42	4.89
Area at Maximum Ponding Depth (acres) =	0.17	0.22	0.21	0.22	0.23	0.24	0.25	0.25	0.27
Maximum Volume Stored (acre-ft) =	0.138	0.410	0.350	0.454	0.504	0.547	0.576	0.611	0.733

UD-Detention, Version 3.07 (February 2017)

Project: Trails at Aspen Ridge

Basin ID: West Fork of Jimmy Camp Creek: East Pond(located in Sub-basin M)

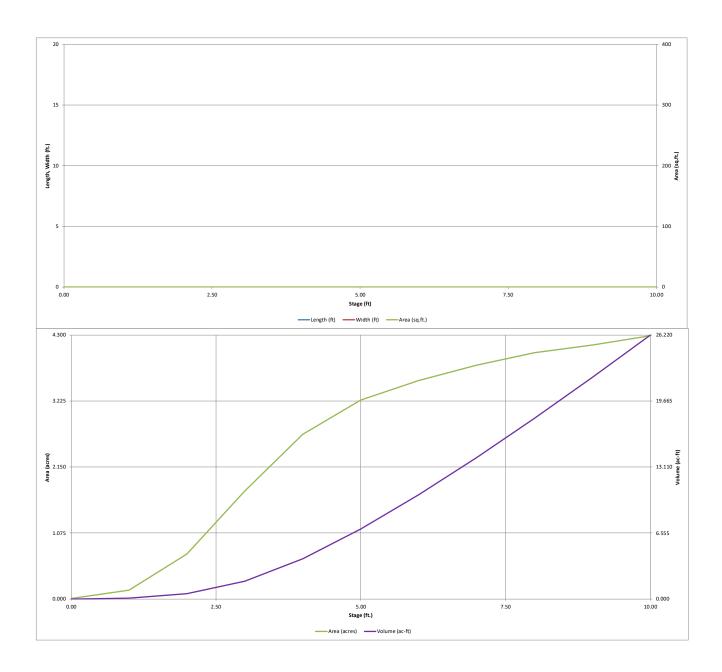
Required Volume Calculation

unca volume calculation		_
Selected BMP Type =	EDB	
Watershed Area =	160.87	acres
Watershed Length =	3,742	ft
Watershed Slope =	0.030	ft/ft
Watershed Imperviousness =	44.95%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	87.0%	percent
Percentage Hydrologic Soil Groups C/D =	13.0%	percent
Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Denths =	User Innut	

Location for 1-hr Rainfall Depths = User Input							
Water Quality Capture Volume (WQCV) =	2.585	acre-feet					
Excess Urban Runoff Volume (EURV) =	7.550	acre-feet					
2-yr Runoff Volume (P1 = 1.19 in.) =	6.146	acre-feet					
5-yr Runoff Volume (P1 = 1.5 in.) =	8.580	acre-feet					
10-yr Runoff Volume (P1 = 1.75 in.) =	11.782	acre-feet					
25-yr Runoff Volume (P1 = 2 in.) =	16.952	acre-feet					
50-yr Runoff Volume (P1 = 2.25 in.) =	20.524	acre-feet					
100-yr Runoff Volume (P1 = 2.52 in.) =	25.177	acre-feet					
500-yr Runoff Volume (P1 = 3.55 in.) =	39.142	acre-feet					
Approximate 2-yr Detention Volume =	5.750	acre-feet					
Approximate 5-yr Detention Volume =	8.061	acre-feet					
Approximate 10-yr Detention Volume =	10.622	acre-feet					
Approximate 25-yr Detention Volume =	11.715	acre-feet					
Approximate 50-yr Detention Volume =	12.257	acre-feet					
Approximate 100-yr Detention Volume =	13.894	acre-feet					

Optional User Override

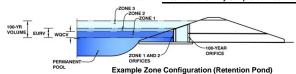
1-hr Precipitation					
1.19	inches				
1.50	inches				
1.75	inches				
2.00	inches				
2.25	inches				
2.52	inches				
3.55	inches				


Stage-Storage Calculation

ago otorago oaroaration		
Zone 1 Volume (WQCV) =	2.585	acre-fee
Zone 2 Volume (EURV - Zone 1) =	4.965	acre-fee
Zone 3 Volume (100-year - Zones 1 & 2) =	6.343	acre-fee
Total Detention Basin Volume =	13.894	acre-fee
Initial Surcharge Volume (ISV) =	user	ft/3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel $(S_{TC}) =$	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

ft^2	user	Initial Surcharge Area (A _{ISV}) =
ft	user	Surcharge Volume Length (L _{ISV}) =
ft	user	Surcharge Volume Width (W _{ISV}) =
ft	user	Depth of Basin Floor (H _{FLOOR}) =
ft	user	Length of Basin Floor (L _{FLOOR}) =
ft	user	Width of Basin Floor (W _{FLOOR}) =
ft^2	user	Area of Basin Floor (A _{FLOOR}) =
ft^3	user	Volume of Basin Floor (V _{FLOOR}) =
ft	user	Depth of Main Basin (H _{MAIN}) =
ft	user	Length of Main Basin (L _{MAIN}) =
ft	user	Width of Main Basin (W _{MAIN}) =
ft^2	user	Area of Main Basin (A _{MAIN}) =
ft^3	user	Volume of Main Basin (V _{MAIN}) =
acre-fe	user	Calculated Total Basin Volume (V _{total}) =
•		

Depth Increment =	11	ft Optional				Optional			
Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft^2)	Area (ft^2)	(acre)	(ft^3)	(ac-ft)
Top of Micropool		0.00	-			443	0.010		
5817	-	1.00	-			6,211	0.143	3,265	0.075
5818	-	2.00	-			31,782	0.730	22,007	0.505
5819		3.00	-			76,551	1.757	76,490	1.756
5820	-	4.00	-	-	-	116,770	2.681	173,150	3.975
5821		5.00	-			141,034	3.238	302,052	6.934
5822	-	6.00	-			154,951	3.557	450,045	10.332
5823	-	7.00				165,754	3.805	610,397	14.013
	-		-						
5824		8.00				174,708	4.011	780,628	17.921
5825	-	9.00	-			180,233	4.138	958,098	21.995
5826	-	10.00	-			186,799	4.288	1,141,614	26.208
			-						
	-		-						
								-	
	-		-					1	ļ
	-		-						
	-		-						
	-		-						
	-		-						
	-							1	
	-		_						
	-		-						
	-		-						
	-		-						
	-		-						
	-		-						
	-		-						
	-		-						
	-		-						
	-		-						
	-		-						
	-		-						
	-		-						
	-		-					1	
	-		_					 	
								1	
	-		-					1	
	-		-						
			-					<u> </u>	<u> </u>
	-		-						
	-		-						
	-							1	
								1	-
			-					1	
	-		-						
	-		-						
	-		-						
	-		-						
	_		_						
	-		-					1	-
	-		-					†	
	-		-						
			-						
	-		-					 	-
								 	-
								1	


UD-Detention, Version 3.07 (February 2017)

UD-Detention, Version 3.07 (February 2017)

Project: Trails at Aspen Ridge

Basin ID: West Fork of Jimmy Camp Creek-East Pond. (Full Buildout with SWMM Hydrographs-PDR Amendment)

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	3.33	2.371	Orifice Plate
Zone 2 (EURV)	5.00	4.554	Rectangular Orifice
one 3 (100-year)	6.67	5.818	Weir&Pipe (Restrict)
•		12.744	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface)
Underdrain Orifice Diameter = N/A inches

Calculate	ed Parameters for Un	derdra
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices of	r Elliptical Slot Weir	(typically used to drain WQCV and/or EURV in a se	edimentation BMP) Calcul	lated Parameters for	r Plate
Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)	WQ Orifice Area CHECK CELLS AB84:BE84	N/A	ft ²
Depth at top of Zone using Orifice Plate =	3.33	ft (relative to basin bottom at Stage = 0 ft)	Elliptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	Elliptical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row =	N/A	inches	Elliptical Slot Area =	N/A	ft ²

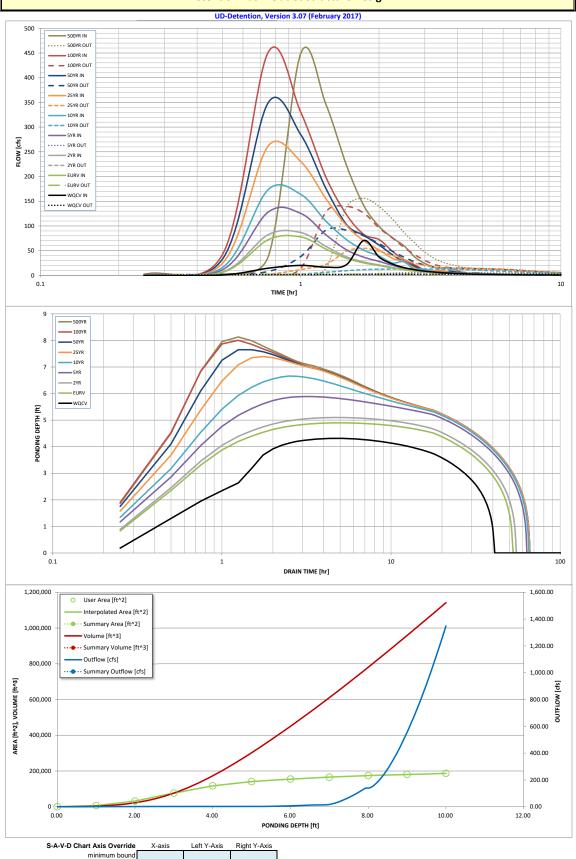
User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

Vertical Orifice Width =

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00							
Orifice Area (sq. inches)	32.50							

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circ	ular or Rectangular)		Calculated Parameters for Vertical Orifice				
	Zone 2 Rectangular	Not Selected		Zone 2 Rectangular	Not Selected	1	
Invert of Vertical Orifice =	5.22	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Are	a = 2.33	N/A	ft ²	
Depth at top of Zone using Vertical Orifice =	6.95	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centro	d = 0.58	N/A	feet	
Vertical Orifice Height =	14.00	N/A	inches			•	


User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Calculated Parameters for Overflow Weir Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho 6.94 N/A Height of Grate Upper Edge, H_{t} Overflow Weir Front Edge Length 14.50 N/A Over Flow Weir Slope Length 9.50 N/A Overflow Weir Slope N/A Grate Open Area / 100-yr Orifice Area 9.23 0.00 H:V (enter zero for flat grate) N/A should be <u>></u> 4 Horiz. Length of Weir Sides 9.50 Overflow Grate Open Area w/o Debris 103.31 N/A N/A feet Overflow Grate Open Area % 75% Overflow Grate Open Area w/ Debris = 56.82 N/A %, grate open area/total area N/A Debris Clogging % = 45% N/A

User Input: Outlet Pipe w/ Flow Restriction Plate (Ci	gular Orifice) Calculated Paramete	rs for Outlet Pipe w/	Flow Restriction Plat	:e		
	Zone 3 Restrictor	Not Selected		Zone 3 Restrictor	Not Selected	İ
Depth to Invert of Outlet Pipe =	0.50	N/A	ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area	11.19	N/A	ft ²

	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.50	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	11.19	N/A	ft ²
Outlet Pipe Diameter =	48.00	N/A	inches	Outlet Orifice Centroid =	1.80	N/A	feet
Restrictor Plate Height Above Pipe Invert =	40.00		inches Half-Central Ar	ngle of Restrictor Plate on Pipe =	2.30	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal) **Calculated Parameters for Spillway** Spillway Invert Stage= Spillway Design Flow Depth= ft (relative to basin bottom at Stage = 0 ft) 8.02 1.02 feet Stage at Top of Freeboard Spillway Crest Length = 136.00 10.04 feet Spillway End Slopes 4.00 H:V Basin Area at Top of Freeboard = 4.29 Freeboard above Max Water Surface = 1.00

Routed Hydrograph Results_									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.55
Calculated Runoff Volume (acre-ft) =	2.371	6.925	5.637	7.870	10.807	15.550	18.826	23.094	35.904
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	6.426	8.837	9.369	12.837	16.730	22.692	26.955	31.615	33.910
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.01	0.04	0.23	0.71	0.97	1.30	2.16
Predevelopment Peak Q (cfs) =	0.0	0.0	1.9	5.3	33.8	104.4	143.4	191.8	319.3
Peak Inflow Q (cfs) =	70.8	77.8	86.7	128.3	173.8	262.1	349.6	451.5	448.9
Peak Outflow Q (cfs) =	2.3	2.4	2.5	5.8	13.2	54.8	91.7	139.5	155.9
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.1	0.4	0.5	0.6	0.7	0.5
Structure Controlling Flow =	Plate	Plate	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	0.4	0.7	1.2	1.2
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	50	52	60	61	60	59	58	58
Time to Drain 99% of Inflow Volume (hours) =	40	52	54	62	63	64	63	63	63
Maximum Ponding Depth (ft) =	4.32	4.90	5.10	5.89	6.66	7.40	7.65	8.01	8.13
Area at Maximum Ponding Depth (acres) =	2.85	3.18	3.27	3.52	3.72	3.89	3.94	4.01	4.03
Maximum Volume Stored (acre-ft) =	4.833	6.581	7.227	9.907	12.733	15.512	16.530	17.921	18.443

Outflow Hydrograph Workbook Filename:

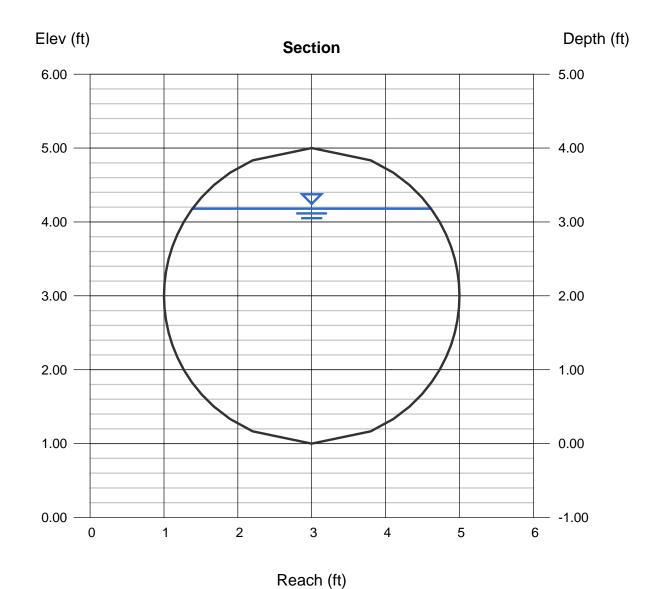
Storm Inflow Hydrographs

UD-Detention, Version 3.07 (February 2017)

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

SOURCE UISER UISER UISER UISER UISER UISER UISER

User-Defined	SOURCE	USER								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
15.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
13.00 11111	0:15:00	0.05			0.50					
Hydrograph	0:30:00	0.86	0.16 6.19	0.20 6.90	11.37	0.84 15.89	1.46 24.35	1.96 32.72	1.98 41.96	2.59 38.17
Constant	0:45:00	14.59	72.22	82.41	128.26	173.76	262.12	349.57	451.53	448.91
1.035	1:00:00	20.26	77.83	86.71	125.47	164.01	230.42	284.89	330.27	346.20
	1:15:00	16.66	53.21	58.69	82.08	109.73	155.23	176.00	198.88	222.45
	1:30:00	21.81	34.61	37.49	51.69	72.34	100.66	102.80	122.84	140.70
	1:45:00	70.78	25.32	27.05	36.78	50.97	69.72	80.85	82.80	99.35
	2:00:00 2:15:00	37.20	20.01	21.02	28.35	39.21	51.27	61.54	72.60	76.35
	2:30:00	23.23 15.71	15.22 11.27	15.91 11.69	20.49 14.20	25.16 27.85	34.72 27.48	41.92 27.15	48.89 31.29	59.38 36.74
	2:45:00	11.39	8.76	9.00	11.68	10.26	14.46	18.19	20.89	24.07
	3:00:00	8.61	7.04	7.18	7.32	12.43	11.79	8.43	10.54	16.48
	3:15:00	6.74	5.83	5.91	6.76	6.67	9.19	9.45	6.82	14.94
	3:30:00	5.43	4.94	4.97	5.63	6.37	10.11	5.00	9.65	13.91
	3:45:00	4.47	4.28	4.28	4.80	5.66	5.64	8.57	4.66	10.21
	4:00:00	3.76	3.76	3.73	4.18	4.47	3.31	6.50	5.93	3.86
	4:15:00 4:30:00	3.21 2.78	3.35	3.31 2.97	3.69 3.31	3.92 3.49	4.26 3.69	4.80 3.85	6.20 3.32	4.43 5.36
	4:45:00	2.44	2.76	2.70	3.00	3.49	3.30	3.41	3.48	3.59
	5:00:00	2.16	2.54	2.48	2.75	2.87	3.00	3.08	3.16	3.26
	5:15:00	1.94	2.36	2.29	2.55	2.65	2.75	2.82	2.88	2.96
	5:30:00	1.76	2.21	2.13	2.37	2.46	2.55	2.61	2.66	2.71
	5:45:00	1.60	2.08	1.93	2.23	2.31	2.38	2.43	2.48	2.50
	6:00:00	1.46	1.99	1.85	2.06	2.13	2.24	2.28	2.32	2.33
	6:15:00 6:30:00	1.44 1.26	1.98 1.62	2.27 1.81	1.97 1.90	2.04 1.85	2.09	2.24 1.97	2.33	2.32 1.98
	6:45:00	1.20	2.07	1.45	1.86	1.56	1.94	2.21	1.58	1.95
	7:00:00	1.09	1.47	1.55	1.65	2.02	1.87	1.80	2.37	1.80
	7:15:00	1.05	1.79	1.45	1.80	1.76	1.81	1.72	1.59	1.71
	7:30:00	0.99	1.55	1.32	1.91	1.97	1.75	1.72	1.39	1.94
	7:45:00	0.95	1.50	1.35	1.34	1.83	1.48	1.66	1.65	1.63
	8:00:00	0.90	1.43	1.38	1.37	1.61	1.64	1.46	1.63	1.32
	8:15:00 8:30:00	0.86	1.54 1.54	1.37	1.42	1.41	1.56 1.34	1.87 1.75	1.32	1.43
	8:45:00	0.80	1.32	1.14	1.61	1.51	1.51	1.64	1.47	1.45
	9:00:00	0.77	1.34	1.21	1.73	1.35	1.46	1.37	1.51	1.31
	9:15:00	0.75	1.36	1.02	1.35	1.46	1.59	1.66	1.65	1.50
	9:30:00	0.73	1.28	1.20	1.35	1.47	1.42	1.27	1.28	1.38
	9:45:00	0.71	1.23	1.15	1.16	1.41	1.34	1.47	1.33	1.35
	10:00:00	0.69	1.23	1.12	1.31	1.24	1.31	1.52	1.35	1.29
	10:15:00 10:30:00	0.67	1.21	1.10	1.27 1.29	1.13	1.24	1.39	1.47	1.37 1.45
	10:35:00	0.64	1.18	1.06	1.15	1.29	1.23	1.44	1.25	1.45
	11:00:00	0.63	1.16	1.05	1.23	1.26	1.29	1.30	1.15	1.15
	11:15:00	0.61	1.14	1.03	1.19	1.24	1.24	1.29	1.30	1.10
	11:30:00	0.60	1.13	1.02	1.20	1.22	1.24	1.24	1.25	1.16
	11:45:00	0.59	1.12	1.00	1.18	1.21	1.23	1.23	1.23	1.16
	12:00:00 12:15:00	0.58	1.10	0.98	1.16	1.20	1.21	1.22	1.22	1.15
	12:15:00	0.57 0.56	1.09	0.97 0.96	1.15 1.14	1.18 1.17	1.20 1.19	1.20 1.19	1.21 1.19	1.13
	12:45:00	0.56	1.07	0.94	1.13	1.16	1.17	1.18	1.18	1.11
	13:00:00	0.55	1.05	0.93	1.11	1.15	1.16	1.16	1.17	1.09
	13:15:00	0.54	1.04	0.92	1.10	1.13	1.15	1.15	1.16	1.08
	13:30:00 13:45:00	0.53 0.53	1.03	0.91	1.09 1.08	1.12 1.11	1.14	1.14	1.15 1.14	1.07 1.06
	14:00:00	0.52	1.01	0.88	1.07	1.10	1.12	1.12	1.13	1.05
	14:15:00	0.52	1.00	0.87	1.06	1.09	1.11	1.11	1.12	1.04
	14:30:00 14:45:00	0.51 0.51	0.99	0.86 0.85	1.05 1.04	1.08	1.10 1.09	1.10 1.09	1.10 1.09	1.03
	15:00:00	0.50	0.97	0.84	1.03	1.06	1.08	1.08	1.08	1.02
	15:15:00	0.50	0.96	0.83	1.02	1.06	1.07	1.07	1.07	1.00
	15:30:00 15:45:00	0.49	0.95 0.95	0.82	1.01	1.05	1.06 1.05	1.06 1.06	1.06	0.99
	16:00:00	0.49	0.95	0.82	1.01	1.04	1.05	1.05	1.05	0.98
	16:15:00	0.48	0.92	0.80	0.99	1.02	1.04	1.04	1.04	0.97
	16:30:00	0.48	0.92	0.79	0.98	1.01	1.03	1.03	1.03	0.96
	16:45:00 17:00:00	0.47 0.47	0.91	0.78 0.77	0.97 0.96	1.01	1.02	1.02	1.02	0.95 0.94
	17:15:00	0.47	0.89	0.76	0.96	0.99	1.01	1.02	1.02	0.94
	17:30:00	0.46	0.88	0.75	0.95	0.98	1.00	1.00	1.00	0.93
	17:45:00	0.46	0.88	0.74	0.94	0.97	0.99	0.99	0.99	0.92
	18:00:00	0.46	0.86	0.73	0.93	0.97	0.98	0.98	0.99	0.91


Channel Report

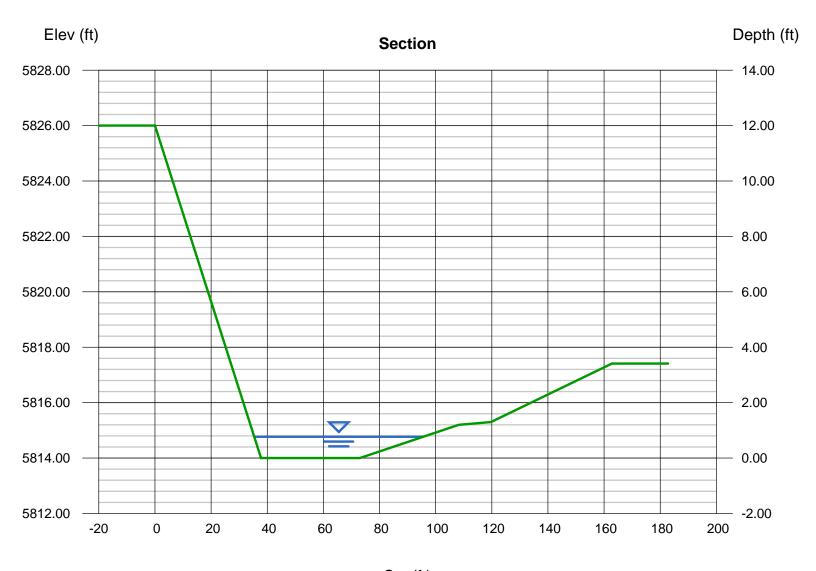
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Jan 19 2021

East Pond-Outfall Pipe

Circular		Highlighted	
Diameter (ft)	= 4.00	Depth (ft)	= 3.18
. ,		Q (cfs)	= 139.50
		Area (sqft)	= 10.73
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 13.00
Slope (%)	= 1.00	Wetted Perim (ft)	= 8.82
N-Value	= 0.013	Crit Depth, Yc (ft)	= 3.51
		Top Width (ft)	= 3.22
Calculations		EGL (ft)	= 5.81
Compute by:	Known Q		
Known Q (cfs)	= 139.50		

Channel Report

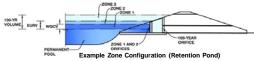

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Jan 19 2021

East Pond-Swale Recieving Outfall

User-defined		Highlighted	
Invert Elev (ft)	= 5814.00	Depth (ft)	= 0.77
Slope (%)	= 1.59	Q (cfs)	= 139.50
N-Value	= 0.035	Area (sqft)	= 36.74
		Velocity (ft/s)	= 3.80
Calculations		Wetted Perim (ft)	= 60.35
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.71
Known Q (cfs)	= 139.50	Top Width (ft)	= 60.22
		EGL (ft)	= 0.99

(Sta, El, n)-(Sta, El, n)... (0.00, 5826.00)-(37.80, 5814.00, 0.035)-(73.02, 5814.00, 0.035)-(108.20, 5815.20, 0.035)-(119.70, 5815.30, 0.035)-(162.80, 5817.41, 0.035)


Sta (ft)

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Project: Trails at Aspen Ridge - MDDPA and PDR

Basin ID: West Pond: Big Johnson Reservoir Basin

Required Volume Calculation

uired volume Calculation		
Selected BMP Type =	EDB	
Watershed Area =	31.88	acres
Watershed Length =	2,691	ft
Watershed Slope =	0.020	ft/ft
Watershed Imperviousness =	58.11%	percent
Percentage Hydrologic Soil Group A =	8.6%	percent
Percentage Hydrologic Soil Group B =	81.2%	percent
Percentage Hydrologic Soil Groups C/D =	10.2%	percent
Desired WQCV Drain Time =	40.0	hours
Language Control to Delated Death	t to a set to see a	

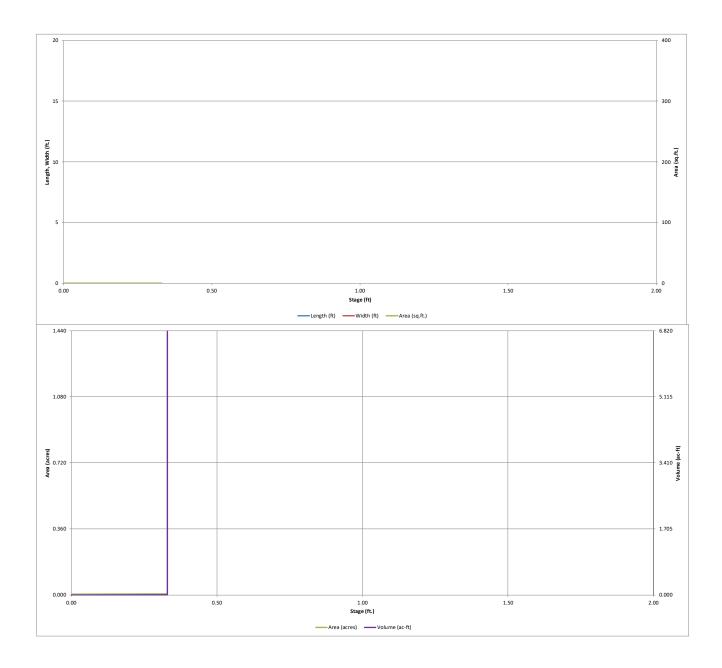
Location for 1-hr Rainfall Depths =	User Input	
Water Quality Capture Volume (WQCV) =	0.611	acre-feet
Excess Urban Runoff Volume (EURV) =	2.000	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	1.635	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	2.216	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	2.879	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	3.803	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	4.487	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	5.372	acre-feet
500-yr Runoff Volume (P1 = 3.55 in.) =	8.163	acre-feet
Approximate 2-yr Detention Volume =	1.532	acre-feet
Approximate 5-yr Detention Volume =	2.084	acre-feet
Approximate 10-yr Detention Volume =	2.649	acre-feet
Approximate 25-yr Detention Volume =	2.892	acre-feet
Approximate 50-yr Detention Volume =	3.028	acre-feet
Approximate 100-vr Detention Volume =	3.327	acre-feet

Optional User Override

1-hr Precipitation					
1.19	inches				
1.50	inches				
1.75	inches				
2.00	inches				
2.25	inches				
2.52	inches				
3.55	inches				

Stage-Storage Calculation

ige-Storage Calculation		
Zone 1 Volume (WQCV) =	0.611	acre-feet
Zone 2 Volume (EURV - Zone 1) =	1.389	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	1.327	acre-feet
Total Detention Basin Volume =	3.327	acre-feet
Initial Surcharge Volume (ISV) =	user	ft/3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel $(S_{TC}) =$	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

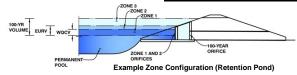

Initial Surcharge Area (A _{ISV}) =	user	ft^2
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L _{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (V _{total}) =	user	acre-fe
		•

Depth Increment =	0.5	ft							
		Optional				Optional			
Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft^2)	Area (ft^2)	(acre)	(ft^3)	(ac-ft)
Top of Micropool	-	0.00	-			212	0.005		
5868.65		0.33	-			256	0.006	75	0.002
5869	-	0.68			-	1,142	0.026	322	0.007
5870	-	1.68				15,000	0.344	8,393	0.193
5871		2.68	-	-	-	30,636	0.703		0.716
								31,211	
5872	-	3.68	-			50,852	1.167	71,955	1.652
5873	-	4.68	-			53,184	1.221	123,973	2.846
5874	-	5.68	-			56,152	1.289	178,641	4.101
5875		6.68				59,075	1.356	236,254	5.424
5876	-	7.68	-			62,000	1.423	296,792	6.813
	-								
	-		-						
	_		-						
	_		_						-
	-		-						
	-		-						
	-								
	1		-		1				
	-		-		-				
	-		-						
	-		-						
	-								
	-		-						-
	-								
	-		-						
	-				-				
			-						
	-								
	-		-						
	-		-						
	-								
	-		-						
	-								
	-		-						
	-								
	-		-						
	-		-						
	-		-						
	-								
	_		-						
	-		-						
	-		-						
	-		-						
	-		-						
	-		-						
	-		-						
	-		-		-				
	-		-						
	-		-						
	-		-		-				
	-		-						
	-		-						
	-								
	-		-						
	-								
	-		-		-				
	-								
	-								
	-		-		-				

West Pond-Full Buildout 9-9-2019.xlsm, Basin 1/19/2021, 12:01 PM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)


West Pond-Full Buildout 9-9-2019.xlsm, Basin 1/19/2021, 12:01 PM

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

Project: Trails at Aspen Ridge - MDDPA and PDR

Basin ID: West Pond: Big Johnson Reservoir Basin

		Stage (ft)	Zone Volume (ac-ft)	Outlet Type
	Zone 1 (WQCV)	2.53	0.611	Orifice Plate
	Zone 2 (EURV)	3.98	1.389	Orifice Plate
!	one 3 (100-year)	5.07	1.327	Weir&Pipe (Restrict)
			3.327	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface)
Underdrain Orifice Diameter = N/A inches

Calculate	ed Parameters for Ur	iderd
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	4.15	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	N/A	inches
Orifice Plate: Orifice Area per Row =	N/A	inches

Calcu	lated Parameters for	Plate
WQ Orifice Area per Row =	N/A	ft ²
Elliptical Half-Width =		feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

Total 7 Each of Mice for (Hamberto Home of Home)									
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	1.00	2.53	3.00	3.61				
Orifice Area (sq. inches)	4.20		9.40	0.39	4.75				

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Diameter =	N/A	N/A	inches

Calculated Parameters for Vertical Offfice						
	Not Selected	Not Selected				
Vertical Orifice Area =	N/A	N/A	ft ²			
Vertical Orifice Centroid =	N/A	N/A	feet			

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

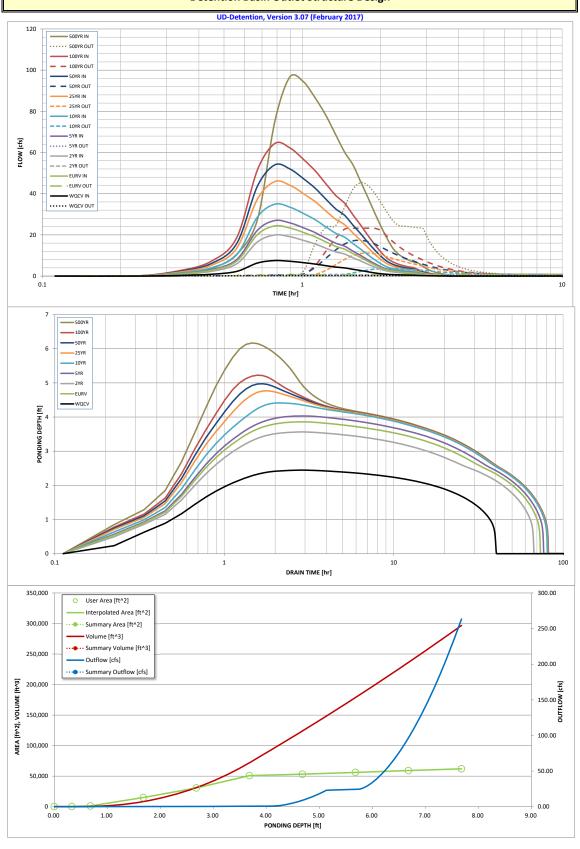
	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	4.13	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	10.00	N/A	feet
Overflow Weir Slope =	4.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	4.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated Parameters for Overflow Weir				
	Zone 3 Weir	Not Selected		
Height of Grate Upper Edge, H_t =	5.13	N/A	feet	
Over Flow Weir Slope Length =	4.12	N/A	feet	
Grate Open Area / 100-yr Orifice Area =	12.97	N/A	should be 2	
Overflow Grate Open Area w/o Debris =	28.86	N/A	ft ²	
Overflow Grate Open Area w/ Debris =	14.43	N/A	ft ²	

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Outlet ripe wy riow kestriction riate (circular Office, kestrictor riate, or kectangular Office)			Calculated Parameter	s for Outlet Pipe w/	riow kestriction Plai	.e	
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	2.22	N/A	ft ²
Outlet Pipe Diameter =	24.00	N/A	inches	Outlet Orifice Centroid =	0.75	N/A	feet
estrictor Plate Height Above Pipe Invert =	16.00		inches Half-Central A	Angle of Restrictor Plate on Pipe =	1.91	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

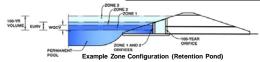

Spillway Invert Stage=	5.75	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	23.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Calcula	teu raranneters ion 3	piliway
Spillway Design Flow Depth=	0.93	feet
Stage at Top of Freeboard =	7.68	feet
Basin Area at Top of Freeboard =	1.42	acres

Douted	Hydrograph	Doculto
nouteu	nyurugrapii	nesuits

WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.55
0.611	2.000	1.635	2.216	2.879	3.803	4.487	5.372	8.163
0.610	1.999	1.634	2.216	2.878	3.802	4.486	5.371	8.158
0.00	0.00	0.01	0.02	0.13	0.44	0.61	0.84	1.44
0.0	0.0	0.2	0.6	4.2	13.9	19.4	26.8	45.8
7.5	24.4	20.0	27.0	34.9	45.9	54.0	64.4	96.8
0.2	0.7	0.6	0.8	3.6	11.2	17.4	23.3	45.4
N/A	N/A	N/A	1.2	0.9	0.8	0.9	0.9	1.0
Plate	Plate	Plate	Plate	Overflow Grate 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Spillway
N/A	N/A	N/A	N/A	0.1	0.4	0.6	0.8	0.8
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
38	68	63	71	73	72	70	69	64
40	71	65	74	78	78	77	77	75
2.45	3.86	3.56	4.03	4.41	4.77	4.98	5.23	6.17
0.62	1.18	1.11	1.19	1.21	1.23	1.24	1.26	1.32
0.558	1.863	1.515	2.064	2.518	2.944	3.203	3.515	4.728
	0.53 0.611 0.610 0.00 0.0 7.5 0.2 N/A Plate N/A N/A N/A 38 40 2.45 0.62	0.53 1.07 0.611 2.000 0.610 1.999 0.00 0.00 0.0 0.0 7.5 24.4 0.2 0.7 N/A N/A Plate Plate N/A N/A N/A N/A N/A N/A 38 68 40 71 2.45 3.86 0.62 1.18	0.53 1.07 1.19 0.611 2.000 1.635 0.610 1.999 1.634 0.00 0.00 0.01 0.0 0.0 0.2 7.5 24.4 20.0 0.2 0.7 0.6 N/A N/A N/A N/A Plate Plate Plate N/A 1.11 65 2.45 3.86 3.56 0.62 1.18 1.11	0.53 1.07 1.19 1.50 0.611 2.000 1.635 2.216 0.610 1.999 1.634 2.216 0.00 0.00 0.01 0.02 0.0 0.0 0.2 0.6 7.5 24.4 20.0 27.0 0.2 0.7 0.6 0.8 N/A N/A N/A 1.2 Plate Plate Plate Plate N/A N/A N/A N/A N/A N/A	0.53 1.07 1.19 1.50 1.75 0.611 2.000 1.635 2.216 2.879 0.610 1.999 1.634 2.216 2.878 0.00 0.00 0.01 0.02 0.13 0.0 0.0 0.2 0.6 4.2 7.5 24.4 20.0 27.0 34.9 0.2 0.7 0.6 0.8 3.6 N/A N/A N/A 1.2 0.9 Plate Plate Plate Plate Overflow Grate 1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A <	0.53 1.07 1.19 1.50 1.75 2.00 0.611 2.000 1.635 2.216 2.879 3.803 0.610 1.999 1.634 2.216 2.878 3.802 0.00 0.00 0.01 0.02 0.13 0.44 0.0 0.0 0.2 0.6 4.2 13.9 7.5 24.4 20.0 27.0 34.9 45.9 0.2 0.7 0.6 0.8 3.6 11.2 N/A N/A N/A 1.2 0.9 0.8 Plate Plate Plate Plate Overflow Grate 1 Overflow Grate 1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.53 1.07 1.19 1.50 1.75 2.00 2.25 0.611 2.000 1.635 2.216 2.879 3.803 4.487 0.610 1.999 1.634 2.216 2.878 3.802 4.486 0.00 0.00 0.01 0.02 0.13 0.44 0.61 0.0 0.0 0.2 0.6 4.2 13.9 19.4 7.5 24.4 20.0 27.0 34.9 45.9 54.0 0.2 0.7 0.6 0.8 3.6 11.2 17.4 N/A N/A N/A N/A 1.2 0.9 0.8 0.9 Plate Plate Plate Plate Overflow Grate 1 Overflow Grate 1 Overflow Grate 1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.53 1.07 1.19 1.50 1.75 2.00 2.25 2.52 0.611 2.000 1.635 2.216 2.879 3.803 4.487 5.372 0.610 1.999 1.634 2.216 2.878 3.802 4.486 5.371 0.00 0.00 0.01 0.02 0.13 0.44 0.61 0.84 0.0 0.0 0.2 0.6 4.2 13.9 19.4 26.8 7.5 24.4 20.0 27.0 34.9 45.9 54.0 64.4 0.2 0.7 0.6 0.8 3.6 11.2 17.4 23.3 N/A N/A N/A N/A 1.2 0.9 0.8 0.9 0.9 Plate Plate Plate Plate Overflow Grate 1 Overflow Grate 1 Overflow Grate 1 Overflow Grate 1 Outlet Plate 1 N/A N/A N/A N/A N/A N/A N/A N/A <t< td=""></t<>

Detention Basin Outlet Structure Design



DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Basin ID: Marksheffel Tributary to Jimmy Camp Creek: Sub-basin L

Required Volume Calculation

juired Volume Calculation		_
Selected BMP Type =	EDB	
Watershed Area =	8.97	acres
Watershed Length =	1,058	ft
Watershed Slope =	0.060	ft/ft
Watershed Imperviousness =	58.64%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Desired WQCV Drain Time =	40.0	hours
Leasting for 4 he Dainfall Doubles	Hann banch	

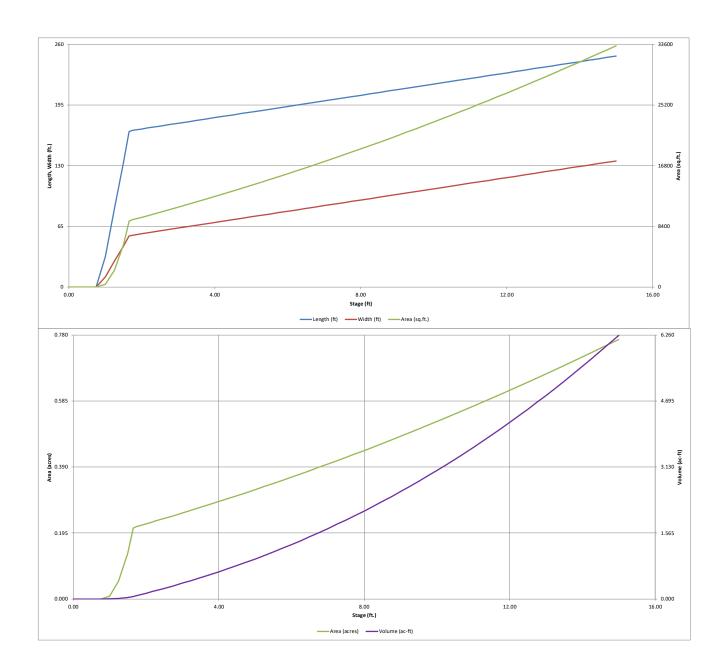
Location for 1-hr Rainfall Depths =	User Input	
Water Quality Capture Volume (WQCV) =	0.173	acre-feet
Excess Urban Runoff Volume (EURV) =	0.569	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.466	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.629	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.824	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	1.093	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	1.284	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	1.536	acre-feet
500-yr Runoff Volume (P1 = 3.55 in.) =	2.327	acre-feet
Approximate 2-yr Detention Volume =	0.437	acre-feet
Approximate 5-yr Detention Volume =	0.591	acre-feet
Approximate 10-yr Detention Volume =	0.764	acre-feet
Approximate 25-yr Detention Volume =	0.827	acre-feet
Approximate 50-yr Detention Volume =	0.862	acre-feet
Approximate 100-yr Detention Volume =	0.944	acre-feet

Optional User Overrid

1-hr Precipitation				
1.19	inches			
1.50	inches			
1.75	inches			
2.00	inches			
2.25	inches			
2.52	inches			
3.55	inches			

Stage-Storage Calculation

acre-fe	0.173	Zone 1 Volume (WQCV) =
acre-fe	0.396	Zone 2 Volume (EURV - Zone 1) =
acre-fe	0.375	Zone 3 Volume (100-year - Zones 1 & 2) =
acre-fe	0.944	Total Detention Basin Volume =
ft^3	0	Initial Surcharge Volume (ISV) =
ft	0.33	Initial Surcharge Depth (ISD) =
ft	5.00	Total Available Detention Depth (H _{total}) =
ft	0.50	Depth of Trickle Channel (H _{TC}) =
ft/ft	0.005	Slope of Trickle Channel $(S_{TC}) =$
H:V	3	Slopes of Main Basin Sides (S _{main}) =
	3	Basin Length-to-Width Ratio (R _{L/W}) =

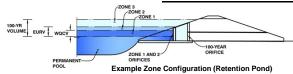

Initial Surcharge Area (A _{ISV}) =	0	ft^2
Surcharge Volume Length (L _{ISV}) =	0.0	ft
Surcharge Volume Width (W _{ISV}) =	0.0	ft
Depth of Basin Floor (H _{FLOOR}) =	0.82	ft
Length of Basin Floor (L _{FLOOR}) =	167.2	ft
Width of Basin Floor (W _{FLOOR}) =	54.9	ft
Area of Basin Floor (A _{FLOOR}) =	9,189	ft^2
Volume of Basin Floor (V _{FLOOR}) =	2,524	ft^3
Depth of Main Basin (H _{MAIN}) =	3.35	ft
Length of Main Basin (L _{MAIN}) =	187.3	ft
Width of Main Basin (W _{MAIN}) =	75.0	ft
Area of Main Basin (A _{MAIN}) =	14,053	ft^2
Volume of Main Basin (V _{MAIN}) =	38,601	ft^3
Calculated Total Basin Volume (V _{total}) =	0.944	acre-fe
		_

Depth Increment =	0.25	ft			I	Ontingal		I	
Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft^2)	Optional Override Area (ft^2)	Area (acre)	Volume (ft^3)	Volume (ac-ft)
Top of Micropool	0.00	Olago (II)	0.0	0.0	0	7 ii du (ii 2)	0.000	(11.0)	(GO II)
ISV	0.33		0.0	0.0	0		0.000	0	0.000
	0.50		0.0	0.0	0		0.000	0	0.000
	0.75		0.0	0.0	0		0.000	0	0.000
	1.00		32.5	10.7	348		0.008	19	0.000
	1.25		83.3	27.4	2.279		0.052	312	0.007
	1.50		134.0	44.0	5,902		0.135	1,299	0.030
Floor	1.65		166.5	54.7	9,109		0.209	2,491	0.057
	1.75		167.7	55.5	9,304		0.214	3,322	0.076
	2.00		169.2	57.0	9,641		0.221	5,691	0.131
Zone 1 (WQCV)	2.18		170.4	58.1	9,900		0.227	7,547	0.173
	2.25		170.8	58.5	9,997		0.229	8,243	0.189
	2.50		172.3	60.0	10,343		0.237	10,786	0.248
	2.75		173.8	61.5	10,694		0.245	13,415	0.308
	3.00		175.3	63.0	11,049		0.254	16,133	0.370
	3.25		176.8	64.5	11,409		0.262	18,940	0.435
	3.50		178.3	66.0	11,773		0.270	21,837	0.501
Zone 2 (EURV)	3.75		179.8	67.5	12,142		0.279	24,827	0.570
	4.00		181.3	69.0	12,515		0.287	27,909	0.641
	4.25		182.8	70.5	12,893		0.296	31,084	0.714
	4.50		184.3	72.0	13,275		0.305	34,355	0.789
	4.75		185.8	73.5	13,662		0.314	37,722	0.866
Zone 3 (100-year)	5.00		187.3	75.0	14,053		0.323	41,186	0.946
	5.25		188.8	76.5	14,449		0.332	44,749	1.027
	5.50		190.3	78.0	14,849		0.341	48,411	1.111
	5.75		191.8	79.5	15,254		0.350	52,174	1.198
	6.00		193.3 194.8	81.0 82.5	15,663		0.360	56,038	1.286
	6.50		194.8	82.5 84.0	16,077 16,495		0.369	60,006 64.077	1.378
	6.75		196.3	85.5	16,495		0.379	68.253	1.471
	7.00		199.3	87.0	17.345		0.398	72.536	1.665
	7.25		200.8	88.5	17,777		0.408	76,926	1.766
	7.50		202.3	90.0	18,213		0.418	81,425	1.869
	7.75		203.8	91.5	18,654		0.428	86,033	1.975
	8.00		205.3	93.0	19.099		0.438	90,752	2.083
	8.25		206.8	94.5	19,549		0.449	95,583	2.194
	8.50		208.3	96.0	20,003		0.459	100,526	2.308
	8.75		209.8	97.5	20,462		0.470	105,584	2.424
	9.00		211.3	99.0	20,925		0.480	110,758	2.543
	9.25		212.8	100.5	21,393		0.491	116,047	2.664
	9.50		214.3	102.0	21,865		0.502	121,454	2.788
	9.75		215.8	103.5	22,342		0.513	126,980	2.915
	10.00		217.3	105.0	22,823		0.524	132,625	3.045
	10.25		218.8	106.5	23,309		0.535	138,392	3.177
	10.50		220.3	108.0	23,799		0.546	144,280	3.312
	10.75		221.8	109.5	24,294		0.558	150,292	3.450
	11.00		223.3	111.0	24,793		0.569	156,427	3.591
	11.25		224.8	112.5	25,297		0.581	162,688	3.735
	11.50		226.3	114.0	25,805		0.592	169,076	3.881
	11.75		227.8	115.5	26,318		0.604	175,591	4.031
	12.00		229.3	117.0	26,835		0.616	182,235	4.184
	12.25		230.8	118.5	27,357		0.628	189,009	4.339
	12.50		232.3	120.0	27,883		0.640	195,914	4.498
	12.75		233.8	121.5	28,414		0.652	202,951	4.659
	13.00 13.25		235.3 236.8	123.0 124.5	28,949 29,489		0.665	210,121 217,425	4.824 4.991
	13.50		238.3	126.0	30,033		0.689	224,865	5.162
	13.75 14.00		239.8 241.3	127.5 129.0	30,582 31,135		0.702	232,442 240,157	5.336 5.513
	14.25		242.8	130.5	31,693		0.728	248,010	5.694
	14.50		244.3	132.0	32,255		0.740	256,003	5.877

+NE POND-Sizing,xlsm, Basin 1/18/2021, 4:40 PM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)


+NE POND-Sizing,xlsm, Basin 1/18/2021, 4:40 PM

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

Project: Trails at Aspen Ridge

Basin ID: Marksheffel Tributary to Jimmy Camp Creek: Sub-basin L

		Stage (ft)	Zone Volume (ac-ft)	Outlet Type
	Zone 1 (WQCV)	2.18	0.173	Orifice Plate
	Zone 2 (EURV)	3.75	0.396	Circular Orifice
!	one 3 (100-year)	5.00	0.375	Weir&Pipe (Restrict)
			0.944	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface)
Underdrain Orifice Diameter = N/A inches

Calculate	ed Parameters for Ur	iderd
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Orifi

Depth at top of Zone using Orifice Plate = 2.21 ft (relative to basin bottom at Stage = 0 ft) Elli

Orifice Plate: Orifice Area per Row = 0.58 sq. inches (diameter = 7/8 inch)

Calcul	lated Parameters for	Plate
WQ Orifice Area per Row =	4.028E-03	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

a rotal rate of Later of the framework from to not to mightest										
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)		
Stage of Orifice Centroid (ft)	0.00	0.74	1.47							
Orifice Area (sq. inches)	0.58	0.58	0.58							

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

Zone 2 Circular	Not Selected	
2.18	N/A	ft (relative to basin bottom at Stage = 0 ft)
3.75	N/A	ft (relative to basin bottom at Stage = 0 ft)
2.18	N/A	inches
	2.18 3.75	2.18 N/A 3.75 N/A

Calculated Parameters for Vertical Orifice								
	Zone 2 Circular	Not Selected						
Vertical Orifice Area =	0.03	N/A	ft ²					
Vertical Orifice Centroid =	0.09	N/A	feet					

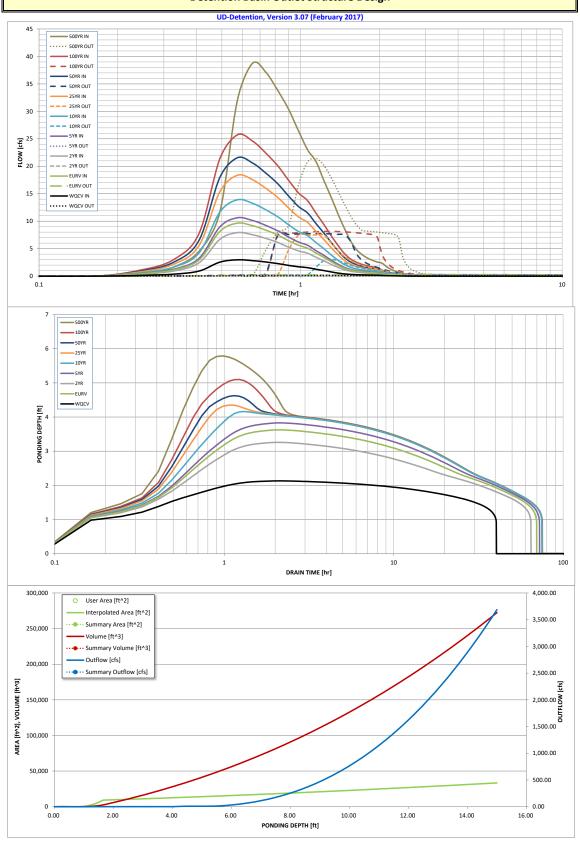
User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

input. Overnow wen (brophox) and drate (riat or sloped)								
	Zone 3 Weir	Not Selected						
Overflow Weir Front Edge Height, Ho =	4.00	N/A	ft (relative to basin bottom at Stage = 0 ft)					
Overflow Weir Front Edge Length =	6.00	N/A	feet					
Overflow Weir Slope =	0.00	N/A	H:V (enter zero for flat grate)					
Horiz. Length of Weir Sides =	4.00	N/A	feet					
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area					
Debris Clogging % =	50%	N/A	%					

Calculated Parameters for Overflow Weir							
	Zone 3 Weir	Not Selected					
Height of Grate Upper Edge, H_t =	4.00	N/A	feet				
Over Flow Weir Slope Length =	4.00	N/A	feet				
Grate Open Area / 100-yr Orifice Area =	22.14	N/A	should be >				
Overflow Grate Open Area w/o Debris =	16.80	N/A	ft ²				
Overflow Grate Open Area w/ Debris =	8.40	N/A	ft ²				

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Zone 3 Restrictor Not Selected					3 for Outlet Fipe w/	low Restriction Flat	
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.76	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.39	N/A	feet
Restrictor Plate Height Above Pipe Invert =	8.00		inches Half-Central Angle of	Restrictor Plate on Pipe =	1.46	N/A	radians


User Input: Emergency Spillway (Rectangular or Trapezoidal)

· · · · · · · · · · · · · · · · · · ·	,,	
Spillway Invert Stage=	5.25	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	9.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Calcula	Calculated Farailleters for Spilly							
Spillway Design Flow Depth=	0.84	feet						
Stage at Top of Freeboard =	7.09	feet						
Basin Area at Top of Freeboard =	0.40	acres						

Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.55
Calculated Runoff Volume (acre-ft) =	0.173	0.569	0.466	0.629	0.824	1.093	1.284	1.536	2.327
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.173	0.569	0.466	0.628	0.824	1.093	1.285	1.536	2.328
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.01	0.02	0.20	0.66	0.91	1.22	2.04
Predevelopment Peak Q (cfs) =	0.0	0.0	0.1	0.2	1.8	5.9	8.1	11.0	18.3
Peak Inflow Q (cfs) =	3.0	9.6	7.9	10.6	13.9	18.4	21.5	25.7	38.7
Peak Outflow Q (cfs) =	0.1	0.2	0.2	0.3	3.1	7.5	7.7	8.1	21.4
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.4	1.7	1.3	1.0	0.7	1.2
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.2	0.4	0.4	0.5	0.5
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	64	60	66	67	65	63	61	56
Time to Drain 99% of Inflow Volume (hours) =	40	68	63	70	72	71	71	70	68
Maximum Ponding Depth (ft) =	2.13	3.63	3.26	3.83	4.16	4.35	4.63	5.10	5.79
Area at Maximum Ponding Depth (acres) =	0.23	0.27	0.26	0.28	0.29	0.30	0.31	0.33	0.35
Maximum Volume Stored (acre-ft) =	0.162	0.534	0.435	0.590	0.687	0.740	0.826	0.978	1.208

Detention Basin Outlet Structure Design

APPENDIX B

STANDARD DESIGN CHARTS AND TABLES

El Paso County Drainage Basin Fees

Resolution No. 19-441

Basin	Receiving	Year	Drainage Basin Name	2020 Drainage Fee	2020 Bridge Fee
Number	Waters	Studied		(per Impervious Acre)	(per Impervious Acre)
Drainage Basins	with DBPS's:				
CHMS0200	Chico Creek	2013	Haegler Ranch	\$10,737	\$1,585
CHWS1200	Chico Creek	2001	Bennett Ranch	\$12,020	\$4,611
CHWS1400	Chico Creek	2013	Falcon	\$30,807	\$4,232
FOFO2000	Fountain Creek	2001	West Fork Jimmy Camp Creek	\$13,066	\$3,866
FOFO2600	Fountain Creek	1991*	Big Johnson / Crews Gulch	\$19,084	\$2,464
FOFO2800	Fountain Creek	1988*	Widefield	\$19,084	\$0
FOFO2900	Fountain Creek	1988*	Security	\$19,084	\$0
FOFO3000	Fountain Creek	1991*	Windmill Gulch	\$19,084	\$286
FOFO3100 / FOFO3	3200 Fountain Creek	1988*	Carson Street / Little Johnson	\$11,640	\$0
FOFO3400	Fountain Creek	1984*	Peterson Field	\$13,764	\$1,044
FOFO3600	Fountain Creek	1991*	Fisher's Canyon	\$19,084	\$0
FOFO4000	Fountain Creek	1996	Sand Creek	\$19,698	\$8,057
FOFO4200	Fountain Creek	1977	Spring Creek	\$9,897	\$0
FOFO4600	Fountain Creek	1984*	Southwest Area	\$19,084	\$0
FOFO4800	Fountain Creek	1991	Bear Creek	\$19,084	\$1,044
FOFO5400	Fountain Creek	1977	21st Street	\$5,742	\$0
FOFO5600	Fountain Creek	1964	19th Street	\$3,756	\$0
FOFO5800	Fountain Creek	1964	Camp Creek	\$2,115	\$0
FOMO0400	Monument Creek	1986*	Mesa	\$9,982	\$0
FOMO1000	Monument Creek	1981	Douglas Creek	\$12,001	\$265
FOMO1200	Monument Creek	1977	Templeton Gap	\$12,320	\$286
FOMO1400	Monument Creek	1976	Pope's Bluff	\$3,823	\$652
FOMO1600	Monument Creek	1976	South Rockrimmon	\$4,486	\$0
FOMO1800	Monument Creek	1973	North Rockrimmon	\$5,742	\$0
FOMO2000	Monument Creek	1971	Pulpit Rock	\$6,328	\$0
FOMO2200	Monument Creek	1994	Cottonwood Creek / S. Pine	\$19,084	\$1,044
FOMO2400	Monument Creek	1966	Dry Creek	\$15,065	\$545
FOMO3600	Monument Creek	1989*	Black Squirrel Creek	\$8,664	\$545
FOMO3700	Monument Creek	1987*	Middle Tributary	\$15,925	\$0
FOMO3800	Monument Creek	1987*	Monument Branch	\$19,084	\$0
FOMO4000	Monument Creek	1996	Smith Creek	\$7,780	\$1,044
FOMO4200	Monument Creek	1989*	Black Forest	\$19,084	\$520
FOMO5200	Monument Creek	1993*	Dirty Woman Creek	\$19,084	\$1,044
FOMO5300	Fountain Creek	1993*	Crystal Creek	\$19,084	\$1,044
Miscellaneous Di	rainage Basins: 1		•		
			Dook Donah	¢47.000	#2.502
CHBS0800 CHEC0400	Chico Creek		Book Ranch Upper East Chico	\$17,906	\$2,592
	Chico Creek		-11	\$9,755	\$283 \$251
CHWS0200	Chico Creek Chico Creek		Telephone Exchange	\$10,718	\$251 \$210
CHWS0400			Livestock Company	\$17,655	
CHWS0600 CHWS0800	Chico Creek Chico Creek		West Squirrel	\$9,203 \$10,084	\$3,819 \$0
FOFO1200	Fountain Creek		Solberg Ranch Crooked Canyon	\$19,084 \$5,761	\$0 \$0
FOFO1200 FOFO1400	Fountain Creek		Calhan Reservoir	\$5,761 \$4,810	\$0 \$280
FOFO1400	Fountain Creek		Sand Canyon	\$4,810 \$3,475	\$280 \$0
FOFO2000	Fountain Creek		Jimmy Camp Creek ³	\$19,084	\$893
FOFO2200	Fountain Creek		Fort Carson	\$15,065	\$545
FOFO2700	Fountain Creek		West Little Johnson	\$1,257	\$0
FOFO3800	Fountain Creek		Stratton	\$9,154	\$409 \$545
FOFO5000	Fountain Creek		Midland	\$15,065	\$545
FOFO6000	Fountain Creek		Palmer Trail	\$15,065	\$545
FOFO6800	Fountain Creek		Black Canyon	\$15,065	\$545
FOMO4600	Monument Creek		Beaver Creek	\$11,409 \$10,305	\$0 ***
FOMO3000	Monument Creek		Kettle Creek	\$10,305	\$0 \$0
FOMO3400	Monument Creek		Elkhorn	\$1,731 \$8,272	\$0 \$0
FOMO5000	Monument Creek		Monument Rock	\$8,272	\$0 #0
FOMO5400	Monument Creek		Palmer Lake	\$13,226	\$0 #0
FOMO5600	Monument Creek		Raspberry Mountain	\$4,449 \$0,494	\$0 *0
PLPL0200	Monument Creek		Bald Mountain	\$9,481	\$0
Interim Drainage			Little Fermatain O	#0.440	^
FOFO1800 FOMO4400	Fountain Creek		Little Fountain Creek	\$2,440 \$7,554	\$0 \$0
FOMO4800	Monument Creek Monument Creek		Jackson Creek Teachout Creek	\$7,554 \$5,245	\$0 \$788
C.VIC-000	MOHUMEN CIECK		i cacilout Oreen	Ψυ,Δ4υ	ΨΙΟΟ

^{1.} The miscellaneous drainage fee previous to September 1999 resolution was the average of all drainage fees for basins with Basin Planning Studies performed within the last 14 years.

	,	,	•	,	
EPC Stormwater Management		Jennifer Irvine, P.E.			

^{2.} Interim Drainage Fees are based upon draft Drainage Basin Planning Studies or the Drainage Basin Identification and Fee Estimation Report. (Best available information suitable for setting a fee.)

^{3.} This is an interim fee and will be adjusted when a DBPS is completed. In addition to the Drainage Fee a surety in the amount of \$7,285 per impervious acre shall be provided to secure payment of additional fees in the event that the DBPS results in a fee greater than the current fee. Fees paid in excess of the future revised fee will be reimbursed. See Resolution 06-326 (9/14/06) and Resolution 16-320 (9/07/16).

Chapter 6 Hydrology

depths over the duration of the storm as a fraction of the 1-hour depth and is also shown in Figure 6-19. By applying the 1-hour depths shown in Table 6-2 to the values shown in Table 6-3, a short-duration project design storm can be developed for any return period storm from a 2-year up to 100-year frequency. By applying the appropriate 1-hour depth for other project locations, a project design storm can be created for any location.

Table 6-3. 2-Hour Design Storm Distribution, $\leq 1 \text{ mi}^2$

Time (minutes)	Fraction of 1-Hour Rainfall Depth	Time (minutes)	Fraction of 1-Hour Rainfall Depth
5	0.014	65	1.004
10	0.046	70	1.018
15	0.079	75	1.030
20	0.120	80	1.041
25	0.179	85	1.052
30	0.258	90	1.063
35	0.421	95	1.072
40	0.712	100	1.082
45	0.824	105	1.091
50	0.892	110	1.100
55	0.935	115	1.109
60	0.972	120	1.119

• Frontal Storms: The characteristics of longer-duration "frontal storms" (general) is less well understood than the shorter duration thunderstorms and should be studied further. However, some events of this nature have been observed, such as the April 1999 storm which produced flooding on Fountain Creek, showing that these types of events do occur and tend to produce hazardous flood flows. In addition, modeling of the Jimmy Camp Creek drainage basin using the 24-hour, Type II distribution shows that it produces results reasonably comparably to recorded flow data. Therefore, the NRCS 24-hour Type II distribution has replaced the Type IIa distribution as the standard, long-duration design storm. This distribution can be applied to drainage basins up to 10 square miles without a DARF correction and is shown in Table 6-4. This distribution is included as a standard storm option in the HEC-HMS program.

Chapter 6 Hydrology

Table 6-6. Runoff Coefficients for Rational Method

(Source: UDFCD 2001)

Land Use or Surface	Percent	Runoff Coefficients											
Characteristics	Impervious	2-у	ear	5-у	5-year		year	25-year		50-year		100-year	
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_t) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Hydrology Chapter 6

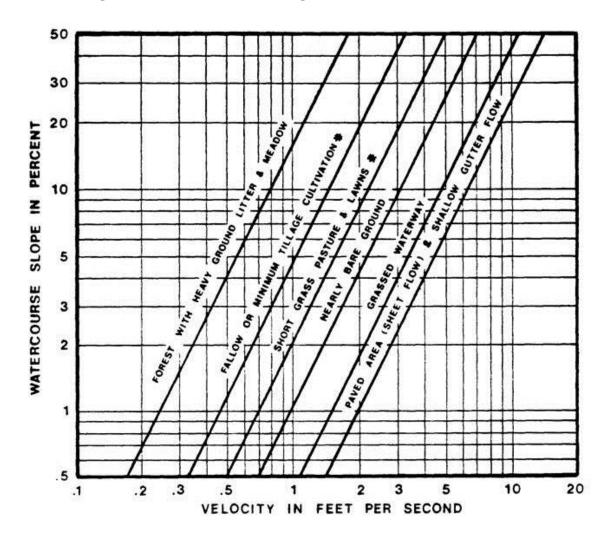
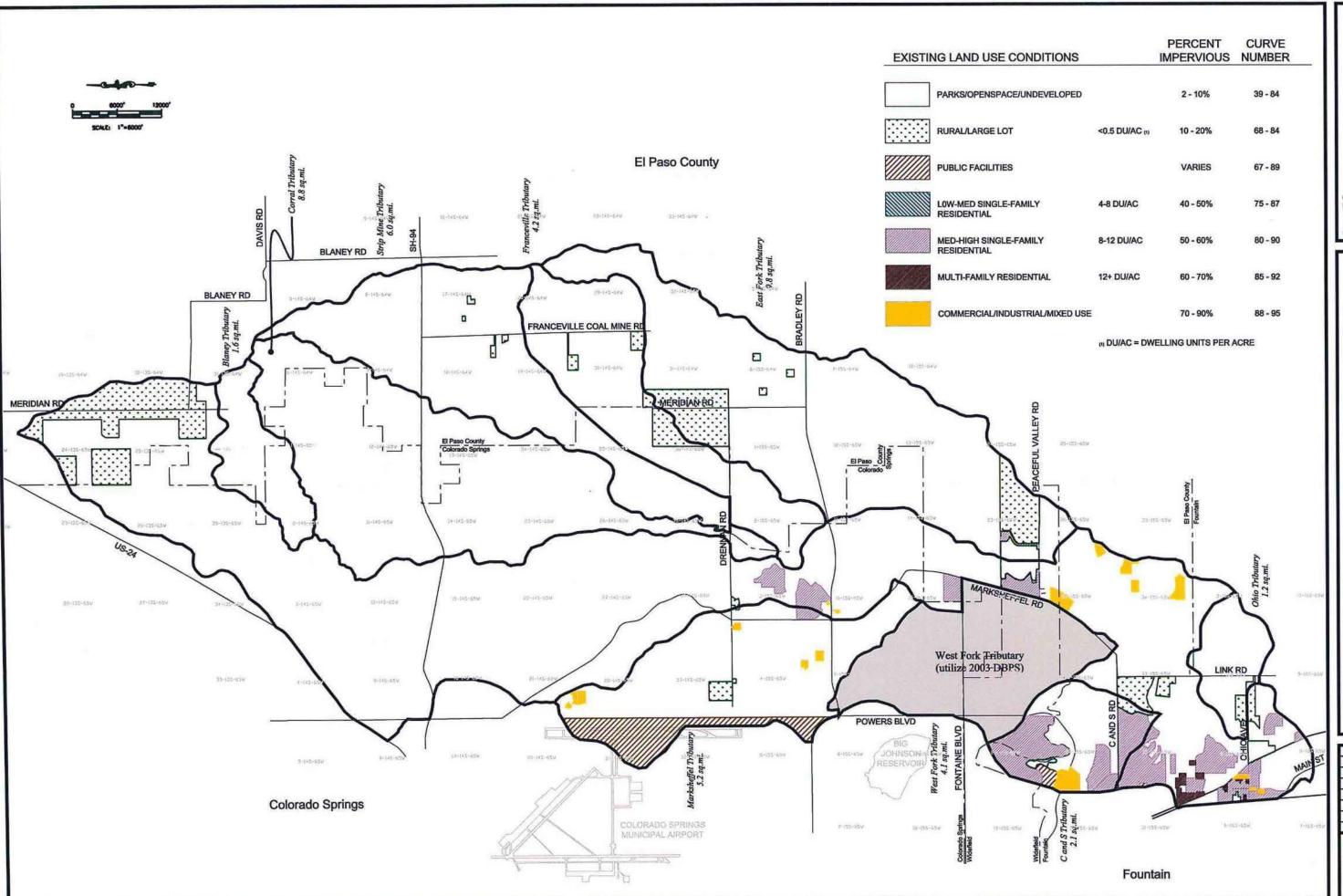



Figure 6-25. Estimate of Average Concentrated Shallow Flow

APPENDIX C

REPORT REFERENCES

EXCERPTS FROM DBPS JIMMY CAMP CREEK

JIMMY CAMP CREEK WATERSHED DRAINAGE BASIN PLANNING STUDY EXISTING CONDITIONS LAND USE MAP CITY OF COLORADO SPRINGS

Project No.: 14008
Dote: OCT 2014
Design:
Drown: BJW
Check:
Revisions:

II-1

VII. IMPLEMENTATION OF SELECTED PLAN

7.1 General

The results of the analyses summarized in Chapter 6 represent a concept level design process. The selected plan improvements shown on the conceptual design drawings will be subject to refinement as the development of the land within the Jimmy Camp Creek Basin commences. The size and location of the channel conveyances will have to be determined based upon a higher level of engineering analysis that is typically carried out during the preparation of the master development drainage and final drainage planning reports. It is an underlying intent of the selected to plan to preserve to the greatest extent practical the existing condition 100-year floodplain and environmental resources that exist therein. It will be important that the major drainageway channel conveyances that have been identified in this DBPS be followed and major deviations from the concepts presented herein should be discouraged when land development applications are made to the City of Colorado Springs.

With respect to FSD as presented in this DBPS, the location of future FSD basins will be refined during the land development process. Guidelines for locating FSD's have been provided in previous sections of the DBPS. If implemented, FSD will result in the limitation of peak discharges released from developing areas to pre-development conditions. As such, the future major drainageway conveyances and road crossings need only to be designed to be able to carry the pre-development condition discharges. Consolidation of FSD sites should be encouraged in order to limit long-term maintenance costs so long as the intent of the FSD system is achieved. Implementation of the concepts in this DBPS will reduce the level of planning and engineering that will be required during later drainage planning phases associated with the land development process.

7.2 Cost Estimates

Presented on Table VII-1 are the costs estimates for the major drainageway conveyances for Jimmy Camp Creek and its major sub-tributaries within the City of Colorado Springs. Presented on Table VII-2 are conveyance costs for sub-drainageways for the City of Colorado Springs. There has been no cost estimate made for local storm sewer systems. An estimate for the cost to replace roadway crossings found to be deficient when the hydraulic analysis was prepared has also not been made in this DBPS. Unit costs applied when calculating the conveyance costs are prepared on the tables. Engineering design costs have been estimated at 10 percent of the construction. A contingency allowance of 10 percent off the construction has been assumed. No allowance for the relocation of utilities has been assumed when developing the conveyance cost estimates.

Presented on tables within the DBPS are costs estimates for the major drainageway conveyances for Jimmy Camp Creek and its major sub-tributaries within the City of Colorado Springs. There has been no cost estimate made for local storm sewer systems. An estimate for the cost to replace roadway crossings found to be deficient when the hydraulic analysis was prepared has also not been made in this DBPS. Unit costs applied when calculating the conveyance costs are prepared on the tables. The estimated cost of the FSD

basins was presented in Chapter 5 of the DBPS. The cost and acreage data associated with FSD has been provided in the DBPS and used in the development of a storage fee. Since the effect of implementing the FSD alternative is to maintain rates of runoff to be conveyed by the receiving drainageways to pre-development conditions it is has been concluded to be reasonable to spread only the cost of the major drainage conveyances in amongst all un-platted property within Colorado Springs.

The total cost for future roadway culverts and bridges has not been made in this DBPS. This is primarily because the number and location of the future roadway crossing cannot be accurately determined at this time. All future roadway crossings should be sized to convey the pre-development condition discharge. Because runoff will be controlled to existing peak discharges, there is no additional costs for culverts and bridges associated with providing capacity because of increased runoff due to development.

7.3 Unplatted Acreage

Presented on Figure VII-1 are the jurisdictional limits and corresponding acreage of the three governmental entities in the Jimmy Camp Creek watershed. Presented on Figure VII-2 are the un-plattable acreage that lies within the City of Colorado Springs, City of Fountain and El Paso County. Using El Paso County Tax Assessor maps, plats and ownership records the amount of un-platted and developable acreage was estimated. From these records the following total un-platted acreages were determined:

City of Colorado Spring outside BLR	148 acres
City of Colorado Spring inside BLR	13,341acres
City of Colorado Springs Total	13,489 acres

El Paso County 14,018 acres

City of Fountain 664 acres

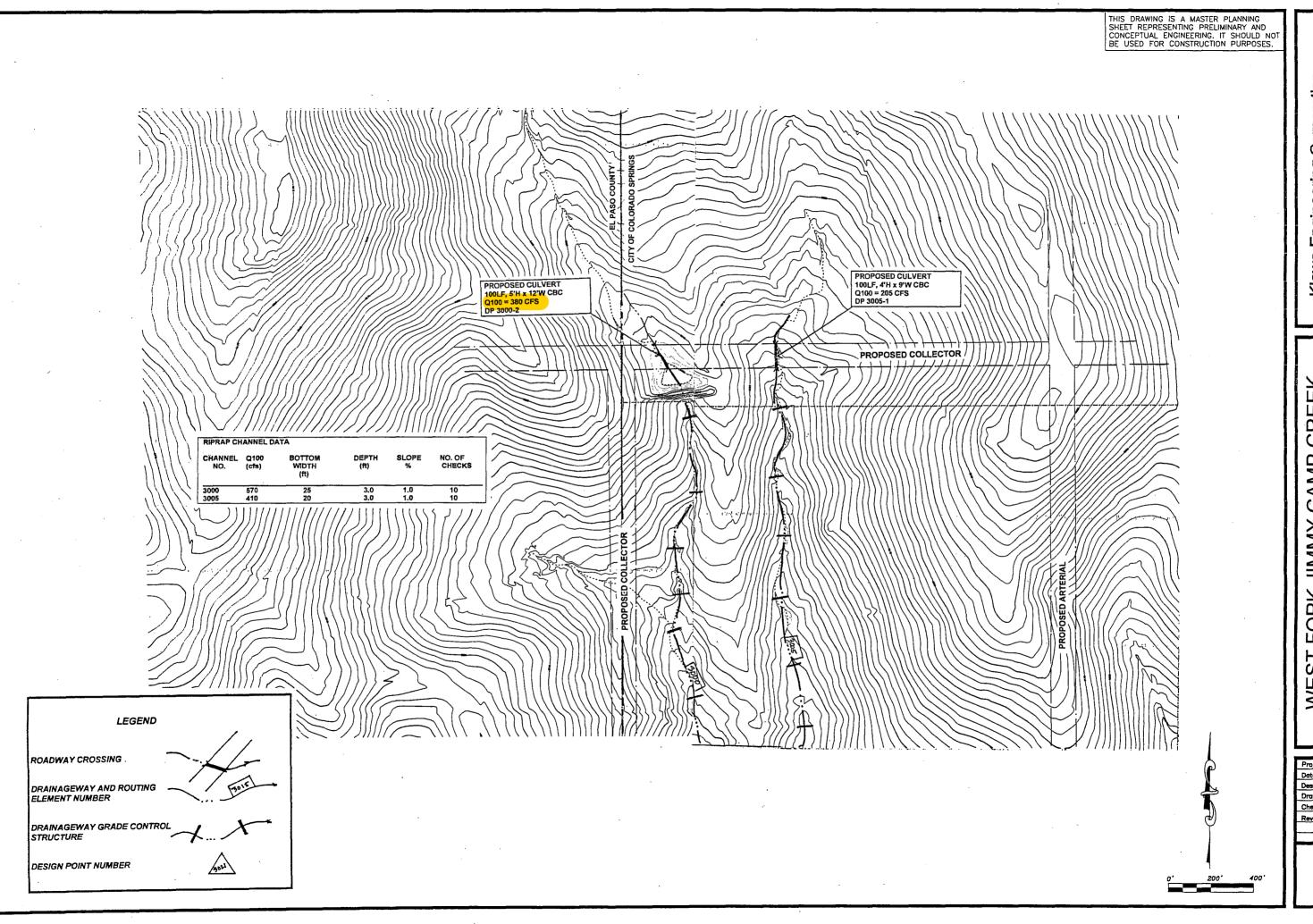
The unplatted acreage shown on Figure VII-2 excludes the existing 100-year floodplains, large regional parks, school sites and public utility easement corridors. Land that is already platted has not been accounted for in the estimate of the plattable acreage unless the platted parcel exceeded 15 acres in size. Most of these large acreage platted parcels occur within the County. The un-platted acreage listed in the report is the land that is considered developable and would be subject to drainage and storage fees.

The weighted percent imperviousness was estimated for the entire watershed. Based upon the land use planning information accumulated and applied in this DBPS, the weighted percent imperviousness for the watershed was determined to be 57.5 percent.

7.4 Unit Drainage Costs

Presented on Table VII-3 of the DBPS and this Executive Summary are the unit major drainageway and FSD storage fee calculations for the City of Colorado Springs. All of the improvements that were used in the calculation of the unit drainage costs are considered public facilities subject to maintenance by the Colorado Springs in accordance with this DBPS and applicable drainage criteria. The unit drainage costs can

Jimmy Camp Creek DBPS, Page 72


be used to structure a fee system for the Jimmy Camp Creek watershed to replace the present fee system that has been established using the 1987 Wilson DBPS. It is recommended that a drainage fee be established within each of the jurisdictions to cover the capital improvement costs associated with the stabilization of the major and sub-drainageways identified in this DBPS. Since FSD is the selected storage option for the watershed, it may be possible to have the fees associated with the unit drainage costs accumulate during the initial phases of land development until such time that major drainageway or sub-drainageway stabilization is needed. Having the drainage fund accumulate by not requiring a developer to install major drainageway improvements during the initial phase of the land development process will help the keep the drainage fund from becoming immediately in debt. It will also give the City time and some greater flexibility in focusing the capital improvement funds generated by the fee system. Managing the fees system in this way may also help the land development process by not front-end loading the very initial phases of development with the costs of major and sub-drainageway improvements that could very well be offsite from the land development activity itself.

The FSD storage cost can be used to develop a FSD storage fee. The unit storage fee can be assessed at the time of platting if the parcel subject to platting is so limited in size as to not to be feasible to site a regional FSD. In developing the FSD unit storage fee 15 percent has been added to the unit acre-foot construction cost presented on Table V-4 of the DBPS to bring the unit storage cost to 2014 dollars. Fees that accumulate in the FSD storage fund could later be used to reimburse a property owner that would be required because of its size to construct and FSD. It is however preferable to construct the regional FSD's at the earliest possible time during the development of a sub-watershed so that the impact of develop runoff on the receiving drainageway is mitigated.

Because the land area within the watershed and the land that is within the City is controlled by one major land owner it may be feasible to "close" the basin to fees. This would then end the need to collect drainage and FSD fees at the time of platting land. Accordingly, no reimbursement for any public major drainageway or FSD facilities would occur.

A bridge fee has not been calculated for this watershed. This is primarily because the number and location of bridges cannot be accurately determined, and the fact that any bridge or major roadway crossing would only have to be sized to convey pre-development condition discharges. In this regard, the cost of a bridge or culvert associated with a future road is based on the need for transportation and not storm water conveyance. It may be necessary to establish some form of interim fee to cover the cost of reimbursements already established under the present Jimmy Camp Creek bridge fee system.

Jimmy Camp Creek DBPS, Page 78

WEST FORK JIMMY CAMP CREEK

DRAINAGE BASIN PLANNING STUDY

PRELIMINARY PLAN

EL PASO COUNTY, COLORADO

(719)

Klowa Engineering Corporation 1604 South 21st Street Colorado Springs, Colorado 80904 (719) 630-7342

Project No.: 9893
Date: 2/00
Design: RNW
Drawn: CAD
Check: RNW
Revisions:

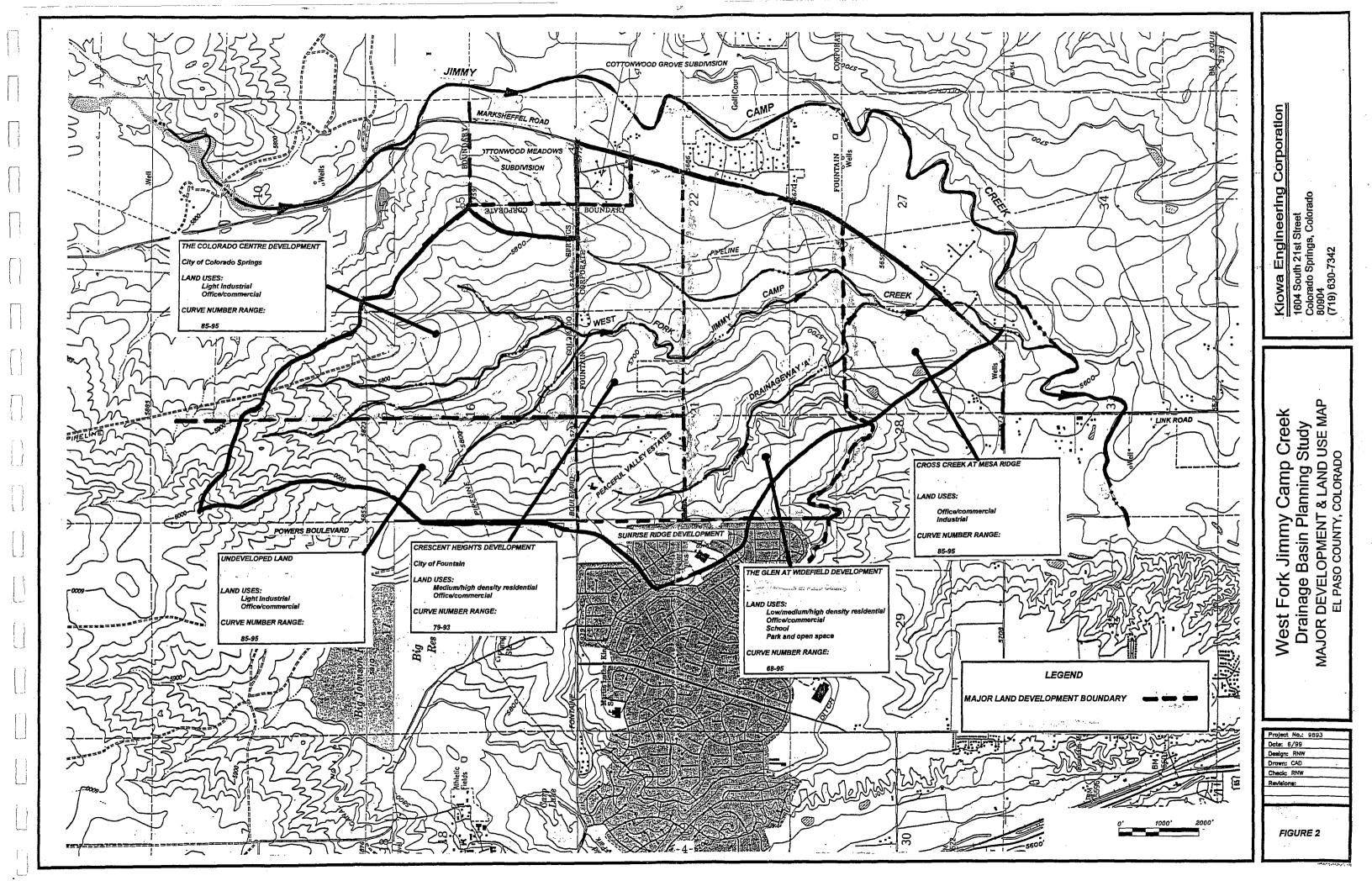
6

EXCERPTS FROM DBPS WEST FORK JIMMY CAMP CREEK

on the design plans. The purpose of the detention basins is to limit peak discharges at the basin's outfall to Jimmy Camp Creek to the existing hydrologic condition. The regional basins have also been sited within each of the major land developments to more locally control runoff to existing levels. Wherever practical, the regional detention basins should be designed so as to take advantage of the adjacent roadway embankments. It is not anticipated that any of the regional detention basins will be subject to State Engineer's regulations. Stormwater quality measures should be designed into the regional stormwater detention basins. These measures would include the provision of a water quality and sediment pool area in addition to the volume required for stormwater detention.

Right-of-Way

For the most part the main channels within the basin which pass through undeveloped areas and the right-of-way can be dedicated as part of the land development process. For those segments of the drainageway where floodplain preservation is the recommended plan, a combination of open space dedication (such as park-land and greenbelts), in combination with a more narrow dedicated right-of-way along the low flow area of the drainageway should be obtained through the land development process. Land acquisition will be required for the regional detention basins. The dedication of easements and right-of-way for the drainageways and detention basins would be accomplished at the time of development planning and platting of the parcels that lie adjacent to or upstream of the stormwater facility.


Cost Estimates and Drainage Basin Fees

Cost estimates have been prepared and are contained within the DBPS. The cost of the major drainageway facilities has been determined for each jurisdiction. The facility cost estimate will be used in the determination of the drainage and bridge fees for this basin. Bridge crossing costs have been determined as well for the basin.

Presented on Table 17 through 19 is the cost and plattable acreage (i.e., that area available for platting into subdivisions), data associated with the determination of drainage and bridge fees for the basin. The plattable acreage has been determined using a combination of assessor's maps, aerial photographs and topographic mapping that covering the watershed. As presented on Table 17, the reductions in the area available for platting have been listed. The reductions are mostly attributable to areas that are already platted, known roadway or planned road right-of-ways for minor and major arterials, and the area underlying the proposed detention basins.

Drainage basin fees have been determined for those areas that are within the City of Colorado Springs and El Paso County. The City of Fountain does not have a drainage basin fee system and therefore no fees have been calculated for the areas within the City of Fountain. The

area of the basin within the City of Colorado Springs lies within the Colorado Centre development and the Banning-Lewis Ranch Flood Conservancy District (District). It is the intent of the City of Colorado Springs that the District will be responsible for all drainage, detention and bridge improvement construction and maintenance. Prior to any development within the City, specific agreements will have to be finalized between the City and the District. The drainage and bridge fees calculated for the County areas have been determined in accordance with Resolution No. 99-383. The percent impervious values listed on Exhibit 3 of this resolution where applied when calculating the weighted percent impervious value for the sub-basins within the County.

EXCERPTS FROM DBPS BIG JOHNSON RESERVOIR/CREWS GULCH

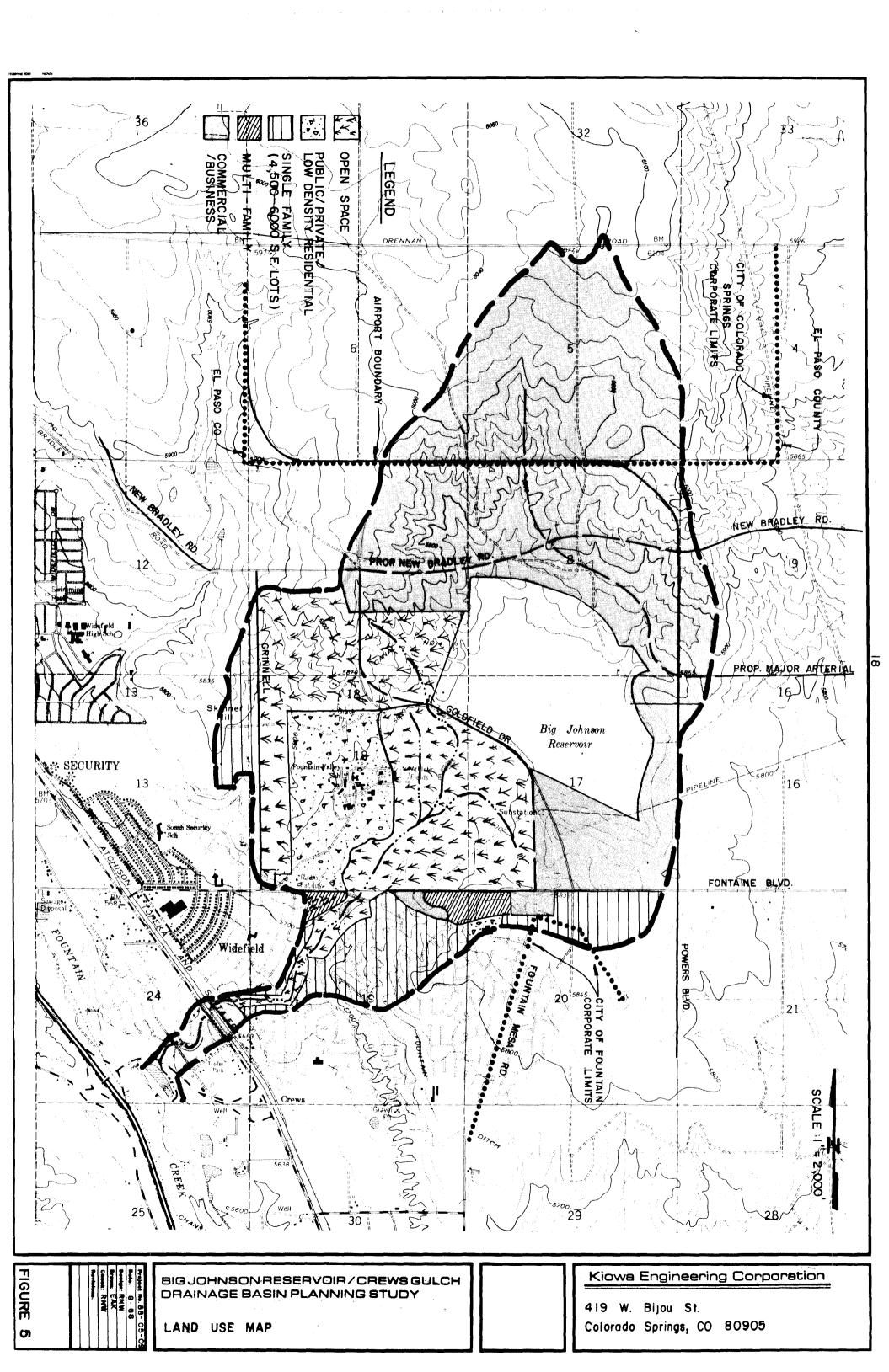
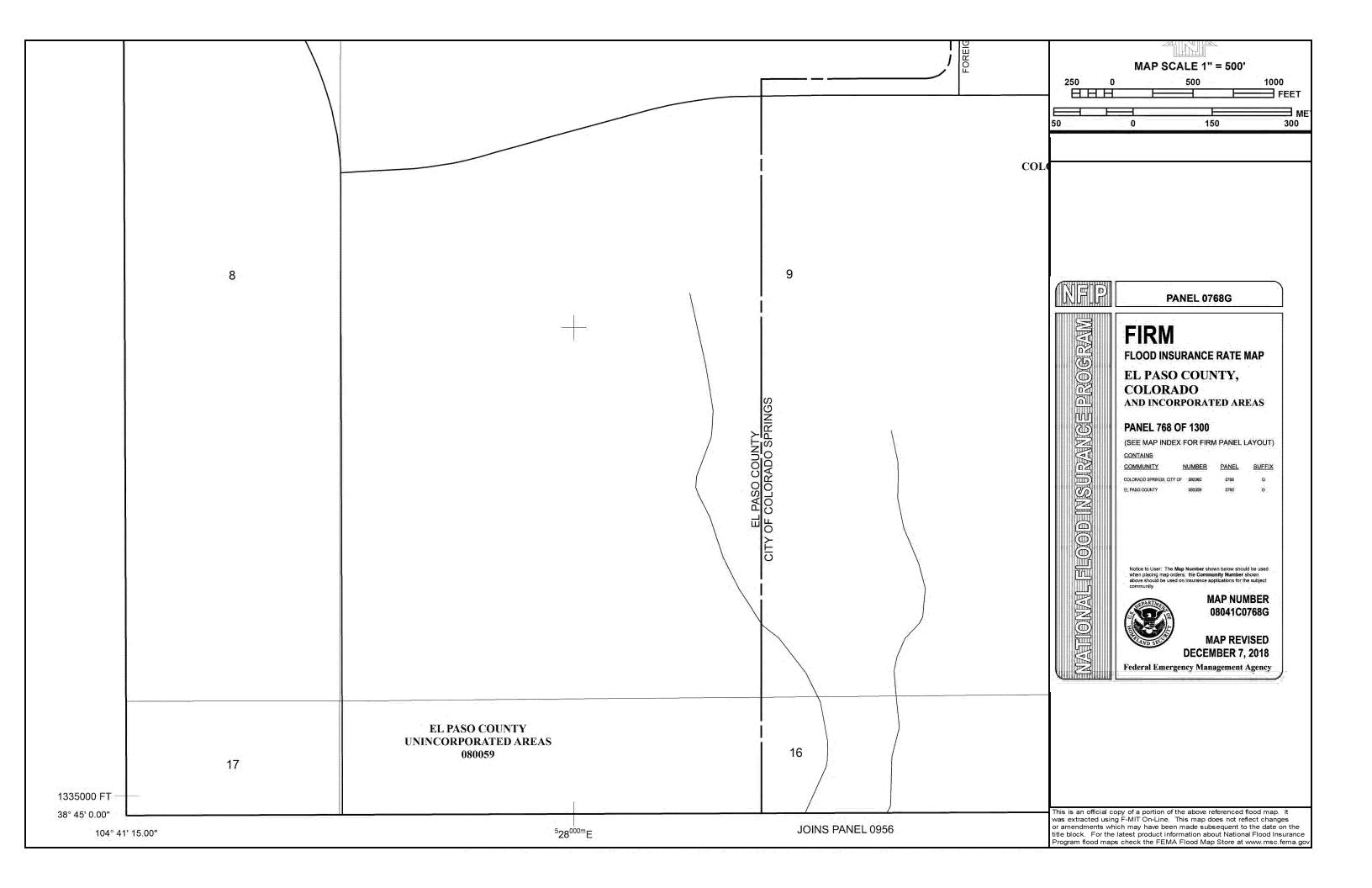


TABLE 15

FIG SCHOSON RESERVOIR/CREWS GULCH DRAINAGE PLANNING STUDY ORAINAGEWAY SOSTS
PRELIMINARY DEGIGN COST ESTIMATE

DESCRIPTION	QUENTITY		UNIT COST	TOTAL	NOK- REIMBURSABLE COSTS	RECMBURS ABOU 68078
					!	
REACH & BOULDER LOW FLOW STA 95+00 TO 122+20	4180	<u>.</u> 7	\$ 58	\$242,440	. \$€	: 1 \$240.44
ST 32+85 GRADE CONTROL STRUCTURES (2 TOTAL)	100				. \$ 0	
- 141-15 DROF STRUCTURES STA 109+25, 112-25, 117+25	120					
EMERGY DISSAPATOR STA 82+85	1	LS	\$80,000	\$80.000	\$40,000	
2.3′x8′ CBC. STA 106÷75	50	LF	\$380	\$19,000	\$19,000	\$ \(\psi \)
34" PCCP AND HEADWALL	520	1.5	\$150	\$ 79,∂00	\$0	1 478.000
PRESSURE MANHOLE	1				10	±5,000
MC RAE RESERVOIR IMPROVEMENTS					!	ţ.
	27900		\$ 20	\$558 ,000	\$279,000	±279,000
GUTLET RECONSTRUCTION (18"CSP)	1	LS	\$8,00 0	≨8,000	! \$ 8,000	\$(*)
TWIN 48"INCH REHABILITATION	÷ E				! \$0	\$10,000
201 MAINTENANCE BENCH	£70	LF	\$ 30	\$2 6, 100	\$0	1 \$26,100
RIPRAF EMBANKMENT PROTECT. FONTAINE BLVD	820	CY	\$24	\$19,680	\$ 0	\$19,480
EARTHWORK	2000	۲V	\$3	\$6,000	\$0	: 95.00 0
BIS JOHNSON RESERVOIR IMPROVEMENTS					!	:
WATER QUALITY PONDS	67 . 0	AS-FT	\$10,000	\$6 7 0,000		! \$670 , 000
EMBANKMENT ROAD RECONSTRUCTION	1500	LF	\$25	\$37,50 0	\$6	437.500
RIPRAP SPILLWAY CREST PROTECTION	1960			\$4 7,040		\$47.U40
DROP INLET AND TRASH RACK	ĺ	LS	\$ 7,000	\$ 7,000	50	1 \$7,000
3' FDST HIGH CONTOUR BERMS	4400	LF	\$i5 -	\$46,000	}	! \$€5,000 !
SUPTOTAL REACH 4				\$1, 925 ,880	! ! \$346,000	! \$2, <mark>582 881</mark>

correcting existing deficiencies within the basin (non-reimbursable costs). Construction funding for these facilities will have to be provided through other funding mechanisms. A suggested allocation of the non-reimbursable cost has been presented on Table 18. The construction of initial systems within the basin will not be reimbursable, and shall be the responsibility of the property owner or developer.


Table 19 presents the fee calculation for the Johnson/Crews Gulch Basin. Drainage fees have been calculated using the reimbursable costs shown on Table 15. Reimbursable road crossing replacement costs at locations where there is an existing inadequacy have been calculated using the bridge costsharing formula, as per Resolution number 89-31. The land fee has been estimated without the acreage associated with channel right-of-ways, McRae Reservoir, and the detention/water quality ponds above Powers Boulevard. Easements establishing long-term construction and maintenance access for the channels crossing the Fountain Valley School property and for the water quality ponds at Big Johnson Reservoir, as well as for all public facilities, will be needed.

Implementation

The proposed plan separates the basin into three distinct systems, namely, the Crews Gulch system (Reaches 1 through 4), the Big Johnson system (Reach 5), and the Fountain Mesa Tributary system (Reach 3A). These systems will be impacted differently by land development, and therefore, the prioritization of improvements is dependent upon differing factors in each of these basins. A discussion of implementation follows:

Crews Gulch: Of primary importance in this basin are the improvements to McRae Reservoir. Substantial park improvements exist downstream of McRae Reservoir, and more are proposed at Fountain Creek Regional Park. Adjacent to Harvard Street the potential for flood damages to residences exists for the 100-year event. McRae Reservoir's flood history is well documented, and

FIRMETTE

USDA NRCS WEB SOIL SURVEY REPORT

Web Soil Survey National Cooperative Soil Survey

Natural Resources Conservation Service

USDA

5/23/2019 Page 1 of 4

MAP INFORMATION MAP LEGEND

Not rated or not available Streams and Canals Interstate Highways Major Roads Local Roads US Routes Rails S Water Features **Fransportation** ပ **Background** ŧ Not rated or not available Area of Interest (AOI) Soil Rating Polygons Area of Interest (AOI) Soil Rating Lines Soils

The soil surveys that comprise your AOI were mapped at 1:24,000.

contrasting soils that could have been shown at a more detailed misunderstanding of the detail of mapping and accuracy of soil Enlargement of maps beyond the scale of mapping can cause line placement. The maps do not show the small areas of Warning: Soil Map may not be valid at this scale. scale

Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator distance and area. A projection that preserves area, such as the projection, which preserves direction and shape but distorts Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

Aerial Photography

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 16, Sep 10, 2018

Soil map units are labeled (as space allows) for map scales

1:50,000 or larger.

Date(s) aerial images were photographed: Apr 12, 2017—Nov

Not rated or not available

B/D

Ą Ш Soil Rating Points

⋖

ΑD

ш

B/D

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

National Cooperative Soil Survey Web Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	В	4.8	41.2%
86	Stoneham sandy loam, 3 to 8 percent slopes	В	5.7	49.2%
108	Wiley silt loam, 3 to 9 percent slopes	В	1.1	9.6%
Totals for Area of Intere	est	11.6	100.0%	

Description

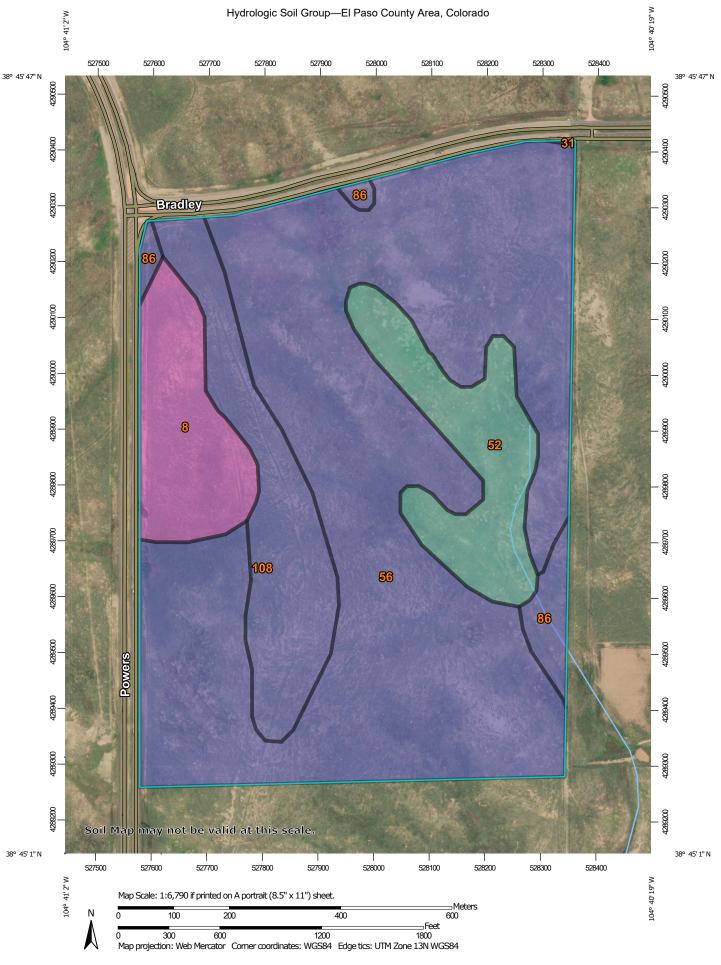
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.


Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified

Tie-break Rule: Higher

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed В Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 16, Sep 10, 2018 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Apr 12. 2017—Nov 17. 2017 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI						
8	Blakeland loamy sand, 1 to 9 percent slopes	А	17.8	8.6%						
31	Fort Collins loam, 3 to 8 percent slopes	В	0.0	0.0%						
52	Manzanst clay loam, 0 to 3 percent slopes	С	21.0	10.2%						
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	В	137.7	66.8%						
86	Stoneham sandy loam, 3 to 8 percent slopes	В	5.3	2.6%						
108	Wiley silt loam, 3 to 9 percent slopes	В	24.3	11.8%						
Totals for Area of Interes	est		206.0	100.0%						

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

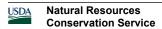
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

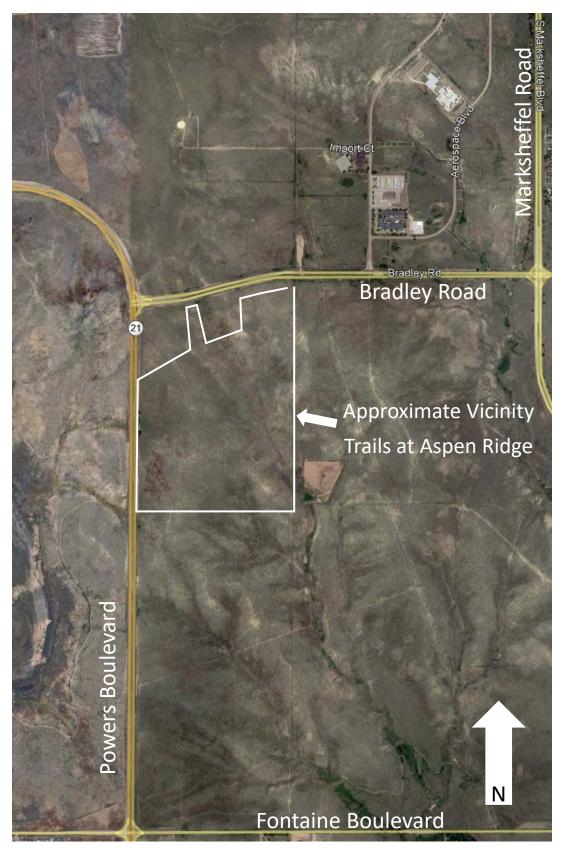
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

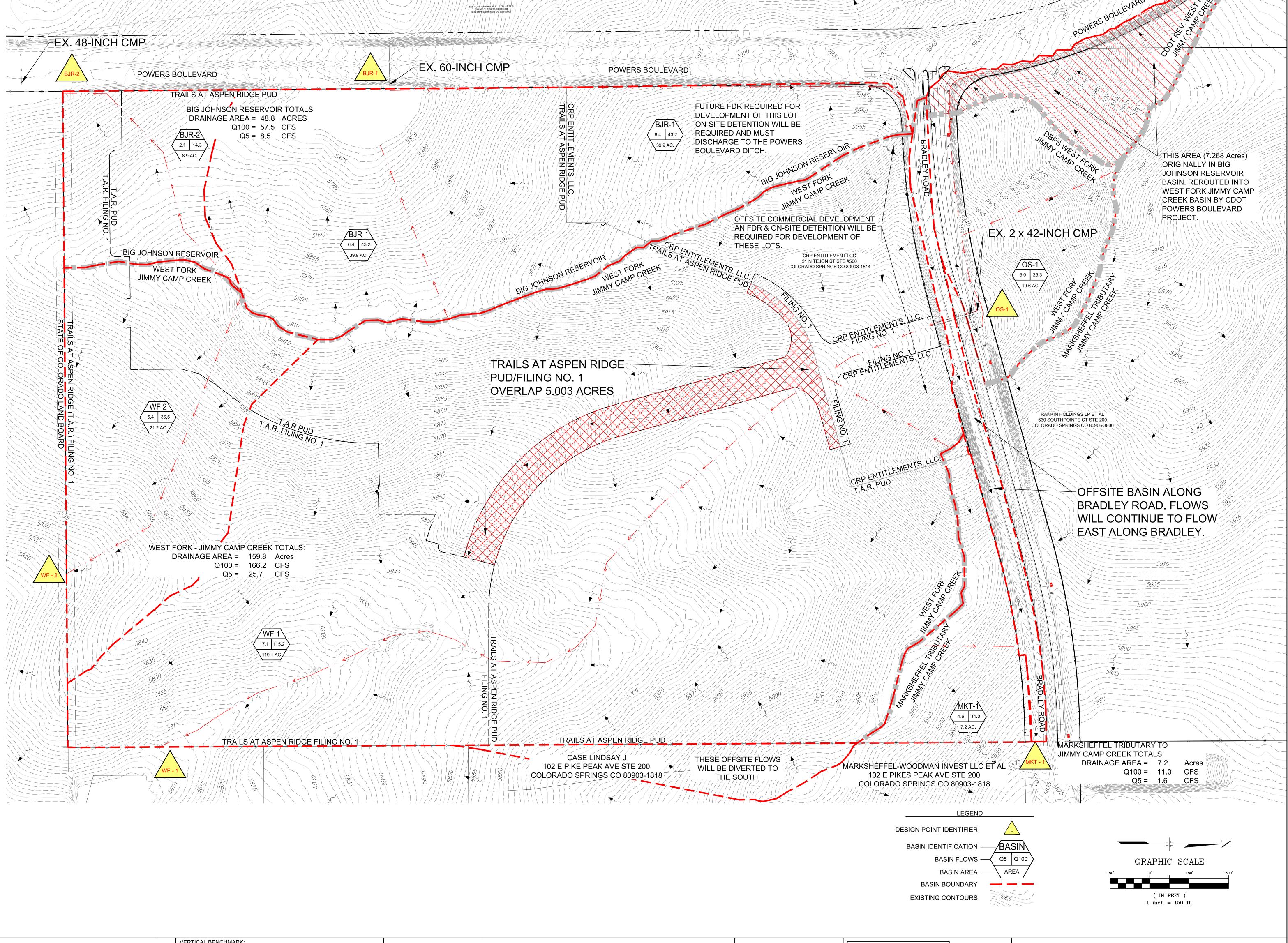
Aggregation Method: Dominant Condition


Component Percent Cutoff: None Specified

Tie-break Rule: Higher

APPENDIX D

MAPS


Trails at Aspen Ridge Vicinity Map

<u>Trails at Aspen Ridge</u> MDDPA & PDR Existing DP Summary						
Design Point	Sub-Basins	Total Area (ac.)	Q(5) (cfs)	Q(100) (cfs)		
BJR-1	BJR-1	39.94	6.43	43.22		
BJR-2	BJR-2	8.85	2.13	14.32		
TO BIG JOHNSON RESERVOIR	BJR-1 & BJR-2 (Basins are parallel so this is a sum of BJR-1 & BJR-2.)	48.79	8.56	57.54		
OS-1	OS-1	19.60	11.8*	47.4*		
WF-1	WF-1 & OS-1	138.69	33.2*	139.1*		
WF-2	WF-2	21.15	5.5*	31.1*		
TO WEST FORK JIMMY CAMP CREEK	WF-1, WF-2, & OS-1 (Basins are parallel so this is a sum of WF-1 & WF-2.)	159.84	37.0*	170.0*		
MKT-1 TO MARKSHEFFEL TRIBUTARY TO JIMMY CAMP CREEK	MKT-1	7.21	1.63	10.95		
*SWMM Values	Overall Totals:	215.84	32.63	213.84		

<u>Trails at Aspen Ridge</u> MDDPA & PDR Existing Conditions Basin Summary Table						
Area ID	Area (Acres)	Q5 (cfs)	Q100 (cfs)			
Big Johnson Reservoir / BJR-1	39.94	6.43	43.22			
Big Johnson Reservoir / BJR-2	8.85	2.13	14.32			
West Fork Jimmy Camp Creek / OS - 1	19.60	11.8*	47.4*			
West Fork Jimmy Camp Creek / WF-1	119.08	33.2*	139.1*			
West Fork Jimmy Camp Creek / WF-2	21.15	5.5*	31.1*			
Marksheffel Tributary to Jimmy Camp Creek / MKT-1	7.21	1.63	10.95			

*SWMM Values

VERTICAL BENCHMARK: REFERENCE DRAWINGS X-886-PR SITE FI X-886-PR SITE 10415-Storm Base-201 886-PR Legacy Drive X-886-EX SURVEY DATE DESCRIPTION X-Title(Drainage) $\underline{\text{BASIS OF BEARING:}}$ REVISIONS BENCHMARK DATA(ELEV.) NAME: S:\19.886.008 Trails at Aspen Ridge\200 Drainage\201 Drainage Reports\MDDP\DWG\DR01 dwg (DATUM) PCP: Matrix.ctb
PLOT DATE: Mon Aug 05, 2019 3:09pm (DESCRIPTION/LOCATION)

2435 Research Parkway, Suite 300 Colorado Springs, CO 80920 Phone 719-575-0100 Fax 719-575-0208

PREPARED UNDER MY

DESIGN GROUP, INC.

DIRECT SUPERVISION, FOR AND ON BEHALF OF MATRIX

TRAILS AT ASPEN RIDGE: FILING #1 & PUD MDDP-AMENDMENT &

COLA, LLC.

PRELIMINARY DRAINAGE REPORT

DESIGNED BY: JTS SCALE
DRAWN BY: JTS HORIZ:
CHECKED BY: VERT: SHEET NO. 1 OF 2 SHEETS

Trails at Aspen Ridge Proposed Conditions - Sub-basin Summary						
Basin	Area Q5		Q100			
	acres	cfs	cfs			
West Fork-Jimmy Camp Creek						
West Fork-Jimmy Camp Creek OS-1	19.6	1.1	16.2			
А	18.5	5.0	34.6			
В	1.1	2.5	7.0			
C	14.8	19.5	58.9			
D	2.2	4.1	14.2			
Е	8.6	12.8	39.1			
F	13.1	15.4	46.2			
G	1.1	2.1	6.1			
Н	23.8	26.8	80.4			
ļ	7.9	10.5	31.8			
J	9.2	11.1	32.7			
K	26.7	33.3	101.7			
West Fork-Jimmy Camp Creek M	10.3	14.2	61.8			
R	1.9	1.7	7.8			
	Big Johnso	n Reservoir				
Big Johnson Reservoir N	13.76	20.7	45.7			
0	11.37	16.9	37.3			
P1	6.40	5.9	16.6			
P2	1.88	0.4	2.9			
Q	2.43	1.8	5.9			
OS-2	11.44	1.7	11.7			
Marksheffel Tributary to Jimmy Camp Creek						
Marksheffel Tributary to Jimmy Camp Creek L	9.0	13.3	30.8			
BR1	0.3	0.8	1.6			
BR2	2.8	2.9	7.4			

Trails at Aspen Ridge Big Johnson Reservoir Proposed Design Point Summary						
Design Point	Sub-Basins	Downstream Design Point	Total Area (ac.)	Q(5) (cfs)	Q(100) (cfs)	
N	N	Р	13.8	20.7	45.7	
0	0	Р	11.7	16.8	37.1	
P (Into West Pond)	N, O, P	West Pond Discharge	31.9	35.2	80.9	
West Pond Discharge (UD-Detention)	N, O, P	Powers Ditch		0.8	23.3	
Q	Q	Powers Ditch	2.4	1.8	5.9	
OS-2	OS-2	Powers Ditch	11.4	1.7	11.7	

Trails at Aspen Ridge West Fork - Jimmy Camp Creek Proposed Design Point Summary						
Design Point	Sub-Basins	Downstream Design Point	Total Area (ac.)	Q(5) (cfs)	Q(100) (cfs)	
OS-1	OS-1	A	19.6	4.0	26.7	
A	OS-1 & A	В	38.1	11.6	57.5	
В	OS-1, A, B	C	39.1	12.4	58.5	
С	OS-1, A, B,	D	53.9	27.2	90.0	
D	OS-1, A, B, C, D	E	56.1	28.4	92.7	
E	OS-1, A, B, C, D, E	F	64.7	33.1	101.7	
F	F	G	13.1	19.7	43.3	
G	OS-1, A, B, C, D, E, F, G	М	78.9	41.4	117.1	
Н	Н	М	23.8	34.1	75.9	
J	J	K	9.2	15.1	33.3	
K	J, K	I	40.0	49.2	113.5	
l	J, K, I	М	47.9	52.5	119.8	
M (Into East Pond	OS-1, A, B, C, D, E, F, G, J, K, I, H, M	East Pond Discharge	160.9	99.6	256.2	
East Pond Discharge (SWMM)	OS-1, A, B, C, D, E, F, G, J, K, I, H, M	Offsite Swale		5.8	139.5	
R	R	Offsite Swale	1.9	1.2	6.3	

Trails at Aspen Ridge Marksheffel Tributary to Jimmy Camp Creek Proposed Design Point Summary						
Design Point	Sub-Basins	Downstream Design Point	Total Area (ac.)	Q(5) (cfs)	Q(100) (cfs)	
L	L	Northeast Pond Discharge	9.0	13.3	30.8	
Northeast Pond Discharge	L	Bradley Road Ditch		0.3	8	
BR1	BR1	Bradley Road Ditch	0.3	0.8	1.6	
BR2	BR2	Bradley Road Ditch	2.8	2.9	7.4	

DESCRIPTION

BENCHMARK DATA(ELEV.)

(DESCRIPTION/LOCATION)

REVISIONS

NAME: S:\20.886.028 Trails PUDSP Major Amend\200 Drainage\201 Drainage Reports\MDDP\DWG\DR02-MDDP Basins 2020-11-11.dwg
PCP: Matrix.ctb

BY

BASIS OF BEARING:

REFERENCE

DRAWINGS

X-Title(Drainage) X-886-PR STORM_F1

886-PR Legacy Drive

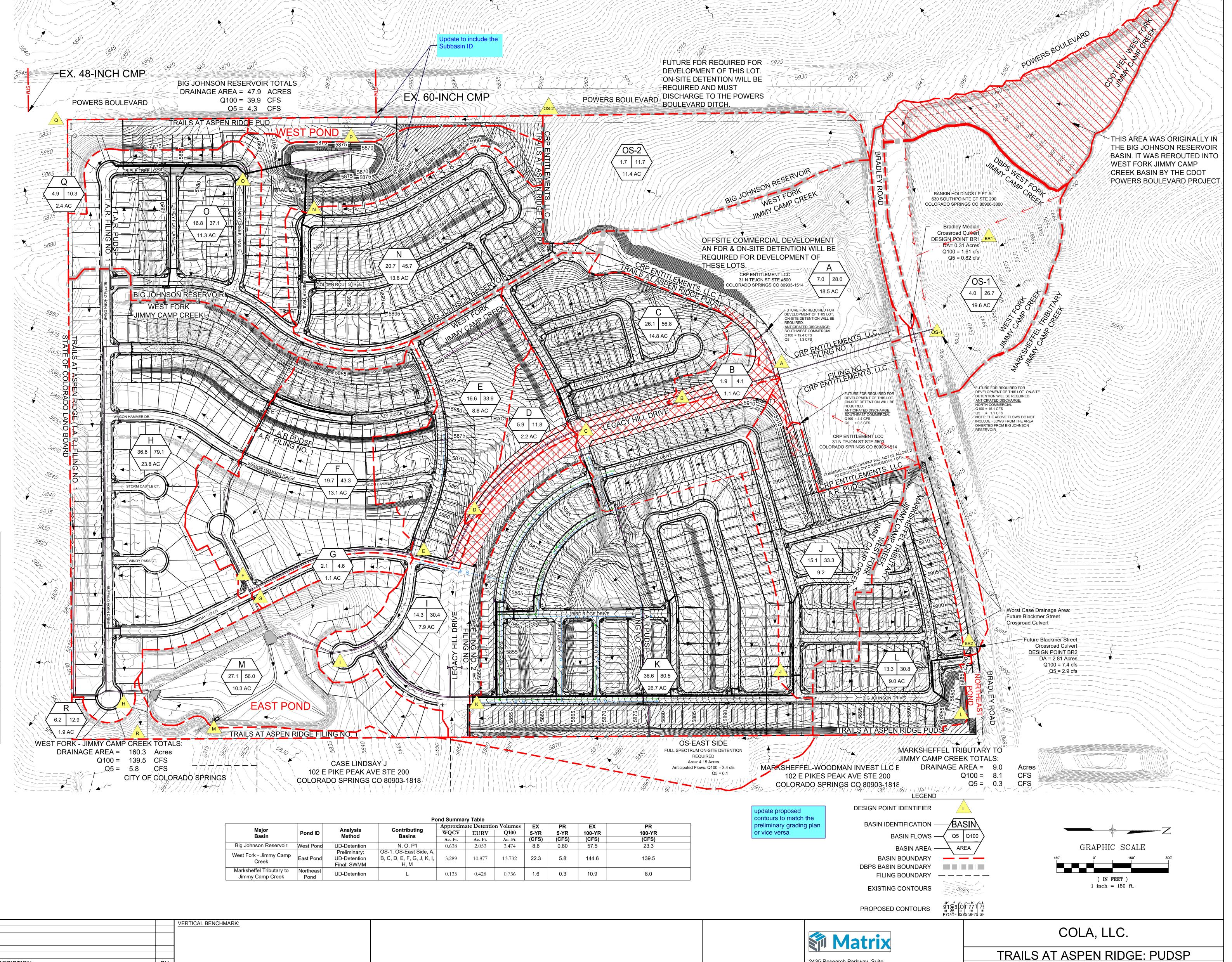
TaR Yield Study_2020 X-886.028-PR-SITE

X-886-PR-SITE - F6

X-886-PR-SITE - F5

X-886-PR-SITE - F4

X-886-PR-SITE - F3


X-886-PR SITE-F2

X-886-PR-UTIL-F2

886-PR Legacy Drive-Roundabout

NO. DATE

PLOT DATE: Tue Jan 19, 2021 3:56pm

2435 Research Parkway, Suite 300 Colorado Springs, CO 80920 Phone 719-575-0100 Fax 719-575-0208

PREPARED UNDER MY DIRECT SUPERVISION, FOR

AND ON BEHALF OF MATRIX

DESIGN GROUP, INC.

PRELIMINARY DRAINAGE REPORT

AMMENDMENT

DESIGNED BY: JTS

DRAWN BY: JTS

CHECKED BY:

DATE ISSUED: January 2021

SHEET NO. 2 OF 2 SHEETS

DR-02