LOTS 3, 4, AND 5 NORTHCREST CENTER FILING NO 2 PHASE 1 SUBDIVISION REFERRED TO AS: "NORTHCREST CENTER" FINAL DRAINAGE REPORT

2510 & 2522 CANADA DRIVE COLORADO SPRINGS, COLORADO 80922

PREPARED FOR: LEISURE CONSTRUCTION 3443 TAMPA ROAD, SUITE B PALM HARBOR, FL 34684 (727) 242-5121

PCD FILE NO. PPR-21-036

February 8th, 2023

Prepared by David Walker, P.E. Rocky Mountain Group 2910 Austin Bluffs Blvd. | Colorado Springs, CO 80918 | 719-434-5638

SIGNATURE PAGE

LOTS 3, 4, AND 5 NORTHCREST CENTER FILING NO 2 PHASE 1 SUBDIVISION

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by negligent acts, errors or omissions on my part in preparing this report.

12/16/22 Date: SIGNATURE (Affix Seal) No.: 51909

DEVELOPER'S STATEMENT

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

K&S Development, LLC

Name of Developer

Edwards, MM 11-14-22

Authorized Signature

Date

Sean L. Edwards Printed Name

Managing Member

Title

3442 Tampa Rd., Suite B, Palm Harbor, FL 34684 Address

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Joshua Palmer, P.E.
County Engineer / ECM Administrator

Date

Conditions:

TABLE OF CONTENTS

I.	PURPOSE
II.	GENERAL LOCATION AND DESCRIPTION
А	LOCATION
В	DESCRIPTION OF PROPERTY – EXISTING CONDITIONS
С	EXISTING SOILS
D	EXISTING DRAINAGE
E.	DESCRIPTION OF PROPERTY – PROPOSED CONDITIONS
III.	DRAINAGE BASINS AND SUB-BASINS
А	EXISTING MAJOR DRAINAGE BASIN AND SUB-BASINS
В	DEVELOPED MAJOR DRAINAGE BASIN AND SUB-BASINS
IV.	DRAINAGE DESIGN CRITERIA 12
А	REGULATIONS
A	REGULATIONS 12
B	
	DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS
В	DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS
B C	DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS
B C D	DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS
B C D V.	Development Criteria Reference and Constraints.12Hydrological Criteria12Four-Step Process.12Drainage Infrastructure Costs and Fees13Drainage and Bridge Fees13
B C D V. A	Development Criteria Reference and Constraints.12Hydrological Criteria12Four-Step Process.12Drainage Infrastructure Costs and Fees13Drainage And Bridge Fees13
B C D V. A B	Development Criteria Reference and Constraints.12Hydrological Criteria12Four-Step Process.12Drainage Infrastructure Costs and Fees13Drainage and Bridge Fees13Storm Drain System Quantities and Costs Estimate14Conclusions.14
B C D V. A B VI.	Development Criteria Reference and Constraints.12Hydrological Criteria12Four-Step Process.12Drainage Infrastructure Costs and Fees.13Drainage and Bridge Fees13Storm Drain System Quantities and Costs Estimate14Conclusions.14

APPENDICES

- A Vicinity Map
- B Hydrologic and Hydraulic Computations
- C FEMA Floodplain Map
- D-USGS Soils Survey Map
- E Drainage Plans

I. PURPOSE

This report is a Final Drainage Report for Lots 3, 4 & 5 Northcrest Center Subdivision, a currently unaddressed set of lots, for the development for a multi-unit commercial development, Northcrest Center.

The purpose of this report is to identify on-site and off-site drainage patterns, assess stormwater conditions per delineated basin and sub-basins, demonstrate adequate design standards for storm water flow and release into the existing storm water system or right-of-way, and provide a narrative for any other drainage considerations related to the development of this parcel.

II. GENERAL LOCATION AND DESCRIPTION

A. LOCATION

The proposed development of thirteen 2,280 square foot commercial buildings, is located at the address of Northcrest Center (formerly Lots 3, 4, & 5) in the City of Colorado Springs, Colorado in El Paso County within the Northcrest Center Subdivision. The parcel schedule numbers are 5332309004, 5332309006, and 5332309005 and the legal descriptions are Lot 3 Northcrest Center, A Vacation & Replat Of Tract B Northcrest Fil No 2 Phase 1, Lot 5 Northcrest Center, A Vacation & Replat Of Tract B Northcrest Fil No 2 Phase 1, and Lot 4 Northcrest Center, A Vacation & Replat Of Tract B Northcrest Fil No 2 Phase 1. The parcel is located to the north of Constitution Avenue, west of Canada Drive, east of Peterson Road, and south of Bismark Road.

The surrounding parcels are as follows:

North of Lots 3, 4 & 5 Northcrest Center, A Vacation & Replat of Tract B Northcrest Fil No 2 Phase 1 (Northcrest Center (formerly Lots 3, 4, & 5)) from west to east:

2508 Weyburn Way, Schedule No. 5332308031, Zoning RS-6000 CAD-O, Plat No. 10281, Lot 15 Constitution Hills Fil No 8

2507 Weyburn Way, Schedule No. 5332308032, Zoning RS-6000 CAD-O, Plat No. 10281, Lot 14 Constitution Hills Fil No 8

2630 Tibburn Way, Schedule No. 5332308040, Zoning RS-6000 CAD-O, Plat No. 10281, Lot 6 Constitution Hills Fil No 8

2610 Tibburn Way, Schedule No. 5332308041, Zoning RS-6000 CAD-O, Plat No. 10281, Lot 5 Constitution Hills Fil No 8

2605 Tibburn Way, Schedule No. 5332308042, Zoning RS-6000 CAD-O, Plat No. 10281, Lot 4 Constitution Hills Fil No 8

2624 Tibburn Way, Schedule No. 5332308043, Zoning RS-6000 CAD-O, Plat No. 10281, Lot 3 Constitution Hills Fil No 8

East of Lots 3, 4 & 5 Northcrest Center, A Vacation & Replat of Tract B Northcrest Fil No 2 Phase 1 (Northcrest Center (formerly Lots 3, 4, & 5)) from north to south:

2535 Canada Drive, Schedule No. 5332310002, Zoning RS-6000 CAD-O, Plat No. 8956, Lot 1 Living Waters Sub

2525 Canada Drive, Schedule No. 5332310003, Zoning PUD CAD-O, Plat No. 8956, Lot 2 Living Waters Sub

2455 Canada Drive, Schedule No. 5405207050, Zoning RM-30 CAD-O, Plat No. 7588, Lot 2 Northcrest Fil No 4

South of Lots 3, 4 & 5 Northcrest Center, A Vacation & Replat of Tract B Northcrest Fil No 2 Phase 1 (Northcrest Center (formerly Lots 3, 4, & 5)) from west to east:

6855 Constitution Avenue, Schedule No. 5405218002, Zoning CC CAD-O, Plat No. 9808, Lot 1 Eight Line Sub

West of Lots 3, 4 & 5 Northcrest Center, A Vacation & Replat of Tract B Northcrest Fil No 2 Phase 1 (Northcrest Center (formerly Lots 3, 4, & 5)) from north to south:

6805 Bismark Road, Schedule No. 5332309007, Zoning CC CAD-O, Plat No. 7776, Lots 1 & 2 Northcrest Center, A Vacation & Replat of Tract B Northcrest Fil No 2 Phase 1

B. DESCRIPTION OF PROPERTY – EXISTING CONDITIONS

Lots 3, 4, and 5 (Northcrest Center (formerly Lots 3, 4, & 5)) is approximately 144,776 square feet combined (3.32 acres) and is located on the north side of Constitution Avenue, east side of Peterson Road, West of Canada Drive, and south of Bismark Road. The parcels fall within the SW 1/4 of Section 32, Township 13 South, Range 65 West of the 6th P.M. of Colorado Springs, El Paso County, Colorado.

The property currently consists of undeveloped natural vegetation. There is existing curb and gutter along Bismark Drive, Canada Drive, and Constitution Avenue.

The existing percent imperviousness is approximately 1.5 percent on Lots 3, 4, and 5.

The existing topography consists of grades between 5.3 and 19.17 percent. Drainage patterns sheet flow across the parcel southeasterly to the corner of Canada Drive and Constitution Avenue.

C. EXISTING SOILS

The soils indicative to the site are classified as Truckton sandy loam by the USDA Soil Conservation Service and are listed as NRCS (National Resources Conservation Service) Hydrologic Soil Group A. A USDA Soil Map is provided in the Appendix.

A subsurface soils investigation was conducted for Commercial Development Site Constitution and Peterson, with a letter entitled *Geotechnical Report* by RMG – Rocky Mountain Group dated

February 23, 2021. The investigation "revealed similar substance subsurface soil conditions across the site, being primarily silty sand extending from the ground surface to the extent of the test borings. Neither expansive clay soil not bedrock were encountered in the borings."

"Test Borings for structures and storage yards were advanced with a power-driven, continuousflight auger drill rig to depths of 15 and 20-feet below the existing ground surface. Pavement Borings were advanced to 5 and 10-foot depths."

The study found that "groundwater was not encountered in the test borings during field exploration."

D. EXISTING DRAINAGE

The existing topography consists of grades between 5.3 and 19.17 percent within the entire parcel that ultimately flows southeast. The existing imperviousness of the lot is approximately 1.5 percent. The existing vegetation consists of native grasses and has been identified via site visits and aerial photography as well as survey data and pictures.

The existing drainage pattern from storm runoff is generally characterized as overland flow to the southeast of the parcel across pervious landscaped yard. The runoff from this parcel and the surrounding neighborhood flows via curb and gutter in the public right of way of Bismark Road, Constitution Avenue, and Canada Drive. The runoff flows south on Canada Drive into the existing Public 15' CDOT Type R Curb Inlet located at the northwest corner of the intersection of Canada Drive and Constitution Avenue. This Public Storm Inlet is a branch of the Public 24" RCP Storm Main that flows west to east along the north side of Constitution Avenue and ultimately outfalls into Jimmy Camp Creek.

Lots 3, 4, and 5 do not lie within a designated floodplain according to information published in the Federal Emergency Management Agency Floodplain Map No. 08041C0752G, dated December 7, 2018. The FEMA Floodplain map is provided in Appendix C showing it lies within Zone X, a minimal flood hazard area.

There are no known non-stormwater discharges that contribute to the storm water systems on site and downstream, both private and public.

E. DESCRIPTION OF PROPERTY – PROPOSED CONDITIONS

The proposed development consists of thirteen 2,280 square foot commercial units and approximately 69,000 square feet of concrete and asphalt pavement for drive accesses, sidewalks, and curb and gutter. Other on-site features includes approximately 29,000 square feet of landscaping, 760 linear feet of retaining wall, and 2,800 square feet for a full spectrum detention pond.

There is no existing access point to the property. Two new curb cuts are proposed along Canada Drive.

III. DRAINAGE BASINS AND SUB-BASINS

A. EXISTING MAJOR DRAINAGE BASIN AND SUB-BASINS

The parcel is delineated into sub-basins according to the existing and proposed grading for existing and developed conditions.

Basin \mathbf{E} is the entirety of the parcel representing existing conditions and consists of one on-site sub-basin. There are no off-site flows that enter the property due to the slope of the existing drive aisle between this lot and the neighboring lot.

Sub-basin E-1 (3.24 ac.; $Q_{10} = 2.15$ cfs, $Q_{100} = 6.86$ cfs) is the entirety of Lots 3, 4, and 5 to be replatted via vacation into a single lot which contains natural vegetation that flows to the right of ways of Bismark Road, Canada Drive, and Constitution Ave. Those right of ways have curb and gutter directly adjacent to the lot that flow to a Public 15' CDOT Type R Curb Inlet. This public stormwater system is connected to a Public 24" RCP Storm Main that runs west to east along the south side of the lot within Constitution Avenue. The Public 15' & 5' CDOT Type R Curb Inlets located at the northwest and northeast corners, respectively, of the intersection of Canada Drive and Constitution Avenue. The public stormwater main within Constitution Avenue. The public stormwater main within Constitution Avenue.

EP1 is the existing conditions design point representing the Public 15' CDOT Type R Curb Inlet at the northwest corner at the intersection of Canada Drive and Constitution Avenue where subbasin E-1 flows over the pervious lot containing native grasses and vegetation to the public roadways. The emergency flow route of this public storm inlet is due east along the north side of Constitution Avenue.

B. DEVELOPED MAJOR DRAINAGE BASIN AND SUB-BASINS

Basin D is the entirety of the developed parcel representing developed conditions and consists of nine sub-basins. Some off-site flows will enter the proposed site from the western paved drive access currently serving the existing school.

Sub-basin D-1 (0.29 ac. ; $Q_{10} = 1.14$ cfs, $Q_{100} = 1.80$ cfs) is the northwestern area of the development consisting of an asphalt drive access off of the common drive access for this property and the neighboring lot from Bismark Road as well as enclosed storage and large vehicle parking area that consists of compacted gravel. The sub-basin is sloped southeast and overland flow is directed to a concrete drainage pan within the drive aisle and channeled to a Private 3'x3' CDOT Type C Depressed Inlet with Grate.

DP1 is the Design Point representing the Private 3'x3' CDOT Type C Depressed Inlet with Grate for Sub-basin D-1. The Private Storm Inlet flows downstream to subsequent Design Point 6 before entering the Full Spectrum Extended Detention Basin via the Private Storm Sewer system. The total peak runoff flowing into DP1 is 1.14 cfs for the 10-year peak flow and 1.80 cfs for the 100-year peak flow. The emergency flow route for DP1 is an overflow condition of the Private Storm Inlet that would cause storm water pooling within the northern drive aisle and

would flow due east into Canada Drive and ultimately to the Public 15' CDOT Type R Curb Inlet at the northwest corner of the intersection of Canada Drive and Constitution Avenue.

Sub-basin D-2 (0.45 ac. ; $Q_{10} = 1.86$ cfs, $Q_{100} = 2.90$ cfs) is the middle-north area of the development consisting of an asphalt drive access off of the common drive access for this property as well as enclosed storage and large vehicle parking area that consists of compacted gravel. The sub-basin is sloped southeast and overland flow is directed to the concrete drain pan within the drive aisle and channeled to a Private 3'x3' CDOT Type C Depressed Inlet with Grate, the second in a series of storm inlets in the northern area.

DP2 is the Design Point representing the Private 3'x3' CDOT Type C Depressed Inlet with Grate for Sub-basin D-2. The Private Storm Inlet flows downstream to subsequent Design Points 1 and 6 before entering the Full Spectrum Extended Detention Basin via the Private Storm Sewer system. The total peak runoff flowing into DP2 is 1.86 cfs for the 10-year peak flow and 2.90 cfs for the 100-year peak flow. The emergency flow route for DP2 is an overflow condition of the Private Storm Inlet that would cause storm water pooling within the northern drive aisle and would flow due east into Canada Drive and ultimately to the Public 15' CDOT Type R Curb Inlet at the northwest corner of the intersection of Canada Drive and Constitution Avenue.

Sub-basin D-3 (0.37 ac. ; $Q_{10} = 1.70$ cfs, $Q_{100} = 2.63$ cfs) is the northeast area of the development consisting of an asphalt drive access off of the common drive access for this property as well as enclosed storage and large vehicle parking area that consists of compacted gravel. The sub-basin is sloped southeast and overland flow is directed to the concrete drain pan within the drive aisle and channeled to a Private 3'x3' CDOT Type C Depressed Inlet with Grate, the third in a series of storm inlets in the northern area.

DP3 is the Design Point representing the Private 3'x3' CDOT Type C Depressed Inlet with Grate for Sub-basin D-3. The Private Storm Inlet flows downstream to subsequent Design Points 2, 1, and 6 before entering the Full Spectrum Extended Detention Basin via the Private Storm Sewer system. The total peak runoff flowing into DP3 is 1.70 cfs for the 10-year peak flow and 2.63 cfs for the 100-year peak flow. The emergency flow route for DP3 is an overflow condition of the Private Storm Inlet that would cause storm water pooling within the northern drive aisle and would flow due east into Canada Drive and ultimately to the Public 15' CDOT Type R Curb Inlet at the northwest corner of the intersection of Canada Drive and Constitution Avenue.

Sub-basin D-4 (0.73 ac. ; $Q_{10} = 3.29$ cfs, $Q_{100} = 5.12$ cfs) is the roof of the proposed building within the center of the lot. This sub-basin captures stormwater runoff from the roof and distributes it to roof drains along the northern edge of the building. Roof drains will be connected to the underground storm drain line under the concrete drainage pan within the north drive aisle. Runoff from this sub-basin is only included in the detention basin design point DP4.

DP4 is the Design Point representing the proposed roof runoff. The total peak runoff flowing into DP4 is 3.29 cfs for the 10-year peak flow and 5.12 cfs for the 100-year peak flow.

Sub-basin D-5 (0.50 ac. ; $Q_{10} = 2.69$ cfs, $Q_{100} = 4.07$ cfs) is the southern area of the development consisting of the south frontage parking lot. The sub-basin is generally sloped southeast within the parking lot with storm water conveyances via overland flow and curb and

gutter. The sub-basin flows to a proposed Private 10' CDOT Type R Curb Inlet and conveys it to the Full Spectrum Extended Detention Basin via the Private Storm Sewer system.

DP5 is the Design Point representing the Private 10' CDOT Type R Curb Inlet for Sub-basin D-5. The Private Storm Inlet flows downstream to the Full Spectrum Extended Detention Basin via the Private Storm Sewer system. The total peak runoff flowing into DP5 is 2.69 cfs for the 10-year peak flow and 4.07 cfs for the 100-year peak flow. The emergency flow route for DP5 is to the east following proposed curb and gutter into Canada Drive and ultimately to the Public 15' CDOT Type R Curb Inlet at the northwest corner of the intersection of Canada Drive and Constitution Avenue.

Sub-basin D-6 (0.31 ac. ; $Q_{10} = 1.58$ cfs, $Q_{100} = 2.42$ cfs) is the tributary area within the property boundary that consists of the common drive access off of Bismark Road to be extended to the south parking lot frontage of the development. This sub-basin previously flowed southeast to the public storm system and is proposed to flow southeast to the proposed curb inlet within the south parking lot, DP-6. The existing drainage pattern along the western property line will be preserved to accomplish this.

DP6 is the Design Point representing the Private 10' CDOT Type R Curb Inlet for Sub-basin D-6. The Private Storm Inlet flows downstream to the Full Spectrum Extended Detention Basin via the Private Storm Sewer system. The total peak runoff flowing into DP6 is 1.58 cfs for the 10-year peak flow and 2.42 cfs for the 100-year peak flow. The emergency flow route for DP6 is to the east following proposed curb and gutter into Canada Drive and ultimately to the Public 15' CDOT Type R Curb Inlet at the northwest corner of the intersection of Canada Drive and Constitution Avenue.

Sub-basin D-7 (0.14 ac. ; $Q_{10} = 0.26$ cfs, $Q_{100} = 0.56$ cfs) accounts for the tributary area of the development that consists of the Full Spectrum Extended Detention Basin footprint. Runoff in this area is directly collected by the basin.

DP7 is the Design Point representing the Full Spectrum Extended Detention Basin that is designed to detain a major storm event for the developed lot and provide Water Quality. The EDB is proposed to consist of 5.5-foot high structural walls with a detention volume of 24,000 cubic feet. The EDB consists of two forebays, concrete trickle channel, micropool, and outlet structure with an engineered orifice plate to comply with release rates for Water Quality Capture Volume, Excess Urban Runoff Volume, and the 100-Year Major Storm Event. The foundation drain of the EDB will be directed into the EDB and will have no effect on the design of the EDB. The emergency spillway of the detention basin is via a 6' wide wall notch in the westerly wall that discharges into a riprap lined slope flowing due south to Constitution Avenue, ultimately flowing into the existing Public 15' CDOT Type R Curb Inlet at the northwest corner of the intersection of Canada Drive and Constitution Avenue.

Sub-basin D-8 (0.21 ac. ; $Q_{10} = 0.17$ cfs, $Q_{100} = 0.66$ cfs) is the southwest area of the development consisting of landscaping. The sub-basin flow is directed to the grass swale within the landscape area and channeled to a Private 3'x3' CDOT Type C Depressed Inlet with Grate.

DP8 is the Design Point representing the Private 3'x3' CDOT Type C Depressed Inlet with Grate for Sub-basin D-8. The Private Storm Inlet flows downstream to subsequent Design Points via the Private Storm Sewer system. The total peak runoff flowing into DP8 is 0.17 cfs for the 10-year peak flow and 0.58 cfs for the 100-year peak flow. The emergency flow route for DP8 is to the east into Canada Drive and ultimately to the Public 15' CDOT Type R Curb Inlet at the northwest corner of the intersection of Canada Drive and Constitution Avenue.

Sub-basin D-9 (0.63 ac. ; $Q_{10} = 1.20$ cfs, $Q_{100} = 2.54$ cfs) is the tributary area within the property boundary that flows toward the adjacent right of ways of Bismark Road, Canada Drive, and Constitution Avenue. The sub-basin consists mostly of proposed landscaped areas, public concrete sidewalk, and ingress/egress curb cuts. The sub-basin flows to Design Point 9 via the adjacent roadways' curb and gutter, ultimately to the Public 15' CDOT Type R Curb Inlet at the northwest corner of the intersection of Canada Drive and Constitution Avenue.

DP9 is the Design Point representing the Public 15' CDOT Type R Curb Inlet at the northwest corner of the intersection of Canada Drive and Constitution Avenue. This Public Storm Inlet is a branch line of the Public Storm Main that runs west to east within Constitution Avenue and is the ultimate recipient of storm water flow from the developed lot as it is proposed to connect to the outlet structure of the EDB (DP7). The emergency flow route of this public storm inlet is due east along the north side of Constitution Avenue.

There is an existing Water Quality Capture Volume BMP/control measure constructed for the neighboring lot (Northcrest Center Fil No 2 Lots 1 & 2). This feature will not see additional runoff due to the proposed development, and was not evaluated for its current conditions.

The difference between Basin E and Basin D results in an overall increase of the 100-year storm Water volume of 14.71 cfs overall due to increased impervious surfaces.

2.65 acres (83.9% imperviousness) of on-site flows, and 0.31 acres of off-site flows drain to the Full Spectrum Detention Basin, with a total runoff of 20.19 cfs (100-yr storm) being captured.

A Full Spectrum Extended Detention Basin is proposed for the site to provide water quality and detention prior to attenuated storm water release to the public storm system. The vertical concrete walls on all four sides of the Extended Detention Basin are due to site constraints including an existing electric vault and existing easement where the pond is being constructed. The Full Spectrum Extended Detention Basin does include a 10' wide concrete maintenance access ramp with a grass bottom that slopes to the trickle channel.

It is anticipated that there will be no negative impact to downstream developments or infrastructure as a result of this development.

IV. DRAINAGE DESIGN CRITERIA

A. REGULATIONS

The hydrological and hydraulic calculations and design of the site conform to the City of Colorado Springs Drainage Criteria Manuals I and II (latest revision, May 2014) as well as the Mile High Flood District Drainage Criteria manuals revised August 2018.

B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS

The parcel falls within the Sand Creek major drainage basin (East Fork Sand Creek) designated by the City of Colorado Springs Water Resources Engineering Department with the ultimate receiving waters of Arkansas River. The drainage on this parcel will have no effect on downstream infrastructure or facilities, streets, utilities, transit, or further development of adjacent lots. Relevant criteria for the calculations shown further include equations and design criteria for the rational method, volumes and runoff of carious storm events.

C. HYDROLOGICAL CRITERIA

The rational method was used to calculate the peak runoff of the delineated sub-basins using the manuals referenced prior with the C, I, and P1 values from the Design Criteria Manual Volume I, Chapter 6 as well as the Colorado Springs designated IDF curve values. Specific calculations and tables are provided further with inputs including design rainfall, sub-basin acreage and percent imperviousness, runoff coefficients, one-hour rainfall depths, rainfall intensities, time of concentration, and peak discharge of various storm events. The default rainfall intensities and volumes use runoff coefficients based on soil types. Weighted runoff coefficients were calculated for each basin and sub-basin due to the mix of impervious surfaces, shown in the Appendix exhibits.

D. FOUR-STEP PROCESS

The selection of appropriate control measures is based on the characteristics of the site and potential pollutants. The Four-Step Process provides a method of going through the selection process. The following applies the four-step process to the Development Plan for the Northcrest Center.

Step 1: Employ Runoff Reduction Practices

The Development Plan including the Landscape Plan utilizes landscaping areas for plantings and grass or mulch wherever possible without obstructing utilities or drainageways. Given the proposed land use, the majority of the site is to be paved for vehicular use. Within the mostly-impervious site, the storm water runoff is kept to the site limits where possible by use of grading, a private storm system and all other areas are to be landscaped, including the right of way landscape buffer areas.

Step 2: Provide Water Quality Capture Volume

The Development Plan and Final Drainage Report indicate the use of a storm water detention pond as a control measure for capturing storm water runoff and properly treating the storm water prior to release either via percolation into the soil or attenuated to the public storm system. The detention pond is to be installed and the configuration is sized for capture of the WQCV as well as the EURV and full-spectrum detention, and 100-year detention.

Step 3: Stabilize Drainageways

The drainage within the site is stabilized by way of pavement with features such as drainage pans, curb and gutter, and sloped pavement to direct storm water to the private storm system. There are no unpaved or unstabilized drainageways on this site.

Step 4: Implement Site Specific and Other Source Control BMPs

No control measures beyond the Full Spectrum Extended Detention Basin are proposed as there are no unusual land uses that would result in the need for other source control BMPs.

V. DRAINAGE INFRASTRUCTURE COSTS AND FEES

A. DRAINAGE AND BRIDGE FEES

The development falls within the Sand Creek drainage basin (FOFO4000) which has a drainage basin fee of \$20,387 per impervious acre and a bridge fee of \$8,339 per impervious acre according to the 2021 El Paso County Drainage Basin Fees document. The development has a total impervious acreage of 2.72acres (3.24acres * 83.9% imperviousness).

Drainage Basin Fee: \$20,387/impervious acre * 2.72 impervious acres = \$55,452.64

Bridge Fee: \$8,339/impervious acre * 2.72 impervious acres = \$22,682.08

Since the site is already platted, drainage fees are assumed to have already been paid. Since this development is increasing imperviousness, the County shall review their records and make a decision on fee requirements.

Any outstanding fees must be paid prior to plat recordation.

B. STORM DRAIN SYSTEM QUANTITIES AND COSTS ESTIMATE

The following summarizes the Engineer's Opinion of Probable Cost for the proposed storm facilities for the development (installation plus materials).

Private System

Description	Quantity	Unit	Unit Price	Cost
Earthwork for cut of Pond (Less than 1,000)	612	CY	\$ 8	\$ 4,896
12" RCP	230	LF	\$ 55	\$ 12,650
18" RCP	226	LF	\$ 65	\$ 14,690
24" RCP	74	LF	\$ 78	\$ 5,772
Curb Inlet (Type R) L=10' $5' \leq \text{Depth} < 10'$	2	EA	\$ 8,136	\$ 16,272
Pond Outlet Structure	1	EA	\$ 10,000	\$ 10,000
Grated Inlet (Type C) Depth < 5'	4	EA	\$ 4,802	\$ 19,208
Storm Sewer Manhole, Box Base	2	EA	\$ 12,034	\$ 24,068
Concrete Basin Walls and Safety Railing	1	EA	\$20,000	\$20,000

Total Cost	\$127,556.00
Engineering	

Contingency (10%) \$ 12,755.60

Grand Total (w/ Contingency) Non-Reimbursable \$140,311.60

VI. CONCLUSIONS

A. COMPLIANCE WITH STANDARDS

The criteria used to design the storm water runoff volumes are formulas and figures within the City of Colorado Springs Drainage Manuals as well as the Mile High Flood District Drainage Criteria manual. Grading practices for optimal drainage shall comply with the geotechnical investigative report and City standards. The development of Lots 3-5 is within compliance and standards and meets the requirements for the Northcrest Center.

The proposed grading and drainage is within substantial conformance for the master drainage plan for the Subdivision and Drainage Basin. There is no impact on major drainageway planning studies within the larger drainage basin. This development will not adversely affect downstream development.

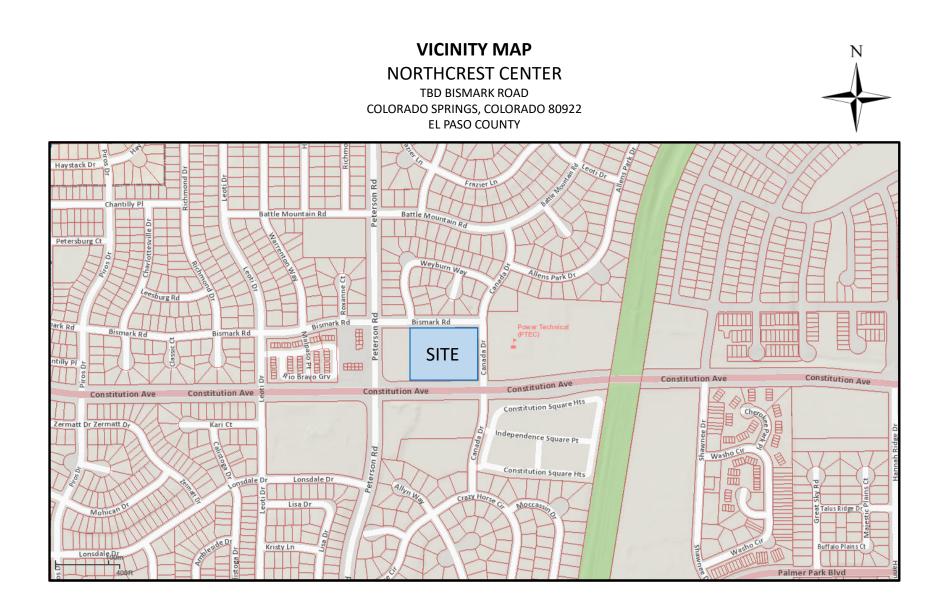
VII. REFERENCES

Colorado Springs Drainage Manual Volumes I & II (May 2014)

Colorado Urban Drainage and Flood Control District Drainage Criteria Manual, Volume I (August 2018)

Colorado Urban Drainage and Flood Control District Drainage Criteria Manual, Volume III (April 2018)

Urban Storm Drainage Criteria Manual, Volume III (November, 2015)


FEMA Flood Map Service Center

United States Department of Agriculture National Resources Conservation Service

Subsurface Soil Investigation prepared by RMG-Rocky Mountain Group Engineers dated February 23, 2021

VIII. Appendices

APPENDIX A – VICINITY MAP

Northcrest Center PEMBs Development - EXISTING CONDITIONS David Walker, PE 11/11/2022 2510 & 2522 Canada Dr

Project: Engineer: Date: Address:

Sub-Basin:	E-1	(IDF Curve Equations from Figure 6-5 of the DCM										
t, Duration:	ne 1)											
12	ls	I ₁₀	l ₂₅	Iso	I100							
2.800816441	3.506298035	4.0908477	4.6753974	5.2599471	5.8861407							

Г

Hydrologic Soil Type: A

	Coefficient (Table 6-6)																				
	Land Use or Surface Characteristic	Square Feet	Acreage	Coefficient 2	Coefficient 5	Coefficient 10	Coefficient 25	Coefficient 50	Coefficient 100	<u>2 Yr: Ci * Ai</u>	<u>5 Yr: Ci * Ai</u>	<u>10 Yr: Ci * A</u>	<u>25 Yr: Ci * Ai</u>	<u>50 Yr: Ci * Ai</u>	100 Yr: Ci * Ai	$2 \text{Yr} \text{C}_c$	5 Yr C _c	$10\text{Yr}\text{C}_{c}$	$25YrC_c$	50 Yr C _c	100 Yr C _c
7	Roof	0	0.000	0.71	0.73	0.75	0.78	0.80	0.81	0.000	0.000	0.000	0.000	0.000	0.000	0.033	0.093	0.162	0.261	0.310	0.359
-	Pavement	2155	0.049	0.89	0.90	0.92	0.94	0.95	0.96	0.044	0.045	0.046	0.047	0.047	0.047						
	Lawn	139193	3.195	0.02	0.08	0.15	0.25	0.30	0.35	0.064	0.256	0.479	0.799	0.959	1.118						
	A _t :	141348.11	3.245																		

Q Peak Flow (cfs)														
2 Year Q	5 Year Q	10 Year Q	25 Year Q	50 Year Q	100 Year Q									
0.30	1.05	2.15	3.95	5.29	6.86									

Design Points									
Design Point	Q10	Q ₁₀₀							
EX DP1	2.15	6.86							
TOTAL SITE	2.15	6.86							

3.2.1 - Overland (Initial) Flow Time

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$
(Eq. 6-8)

Where:

 t_i = overland (initial) flow time (min) C_5 = runoff coefficient for 5-year frequency (see Table 6-6) L = length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)

S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	E-1	
C ₁₀ :	0.16	[Table 6-6. Runoff Coefficients for Rational Method]
L:	100	ft
S:	0.045	ft/ft

Composite Runoff Coefficient Calculation:

 $C_{c} = (C_{1}A_{1} + C_{2}A_{2} + C_{3}A_{3} + \dots + C_{i}A_{i})/A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	C10
Roof	0	0.00	0.75
Pavement	2155	0.05	0.92
Lawn	139193	3.20	0.15
A _t :	141348	3.24	
C _c = (0.92*0.05 + 0.15	*3.20) / 3.24 =		0.16

 $t_i = (0.395^*(1.1\text{-}C10)^* sqrt(L)) / (S^{0.33})$

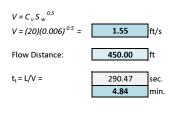
```
t_i = (0.395*(1.1-0.09)*sqrt(550))/(0.045 ^0.33) =
```

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_n , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_n can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

10.31

mins


 $V = C_v S_w^{0.5}$

Where:

V = velocity (ft/s)

 C_v = conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

 $t_{c} = t_{i} + t_{t} =$ 15.15 min.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

Final t_c:

15.15 min. Table 6-7. Conveyance Coefficient, C.

Type of Land Surface	C,
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20
For buried riprap, select Cy value based on type of ve	getative cover

Northcrest Center PEMBs Commercial Development - DEVELOPED CONDITIONS David Walliar, PE 11/8/2022 2510 & 2522 Canada Dr

DF Curve Equations from Figure 6-5 of the DCM Volume 1)

I₅₀

I100

Land Use or Surface Characteristic

Roof Pavement

Lawn Gravel

A.:

A.:

Land Use or Surface

Characteristic

Roof

Pavement

Lawn

A_c:

Square Feet

6183

13359 19542

16191

Square Feet

0

20994 784

Project: Engineer: Date: Address:

Sub-Basin:

12

12

Sub-Basin: t, Duration:	D-1 5.91	(IDF Curve Equations from Figure 6-5 of the DCM Volume 1)												Coefficient (Ta	ble 6-6)												
12	I ₅	I ₅₀	I ₂₅	1 ₅₀	I ₁₀₀		Land Use or Surface Characteristic	Square Feet	Acreage	Coefficient -	Coefficient .	Coefficient 10	Coefficient 25	Coefficient on	Coefficient 100	<u>2 Yr: C, * A,</u>	<u>5 Yr: C, * A,</u>	<u>10 Yr: C, * A,</u>	25 Yr: C, * A,	50 Yr: C, * A,	100 Yr: C; * A	2 Yr C $_{\rm c}$	5 Yr C _c	10 Yr C $_{\rm c}$	$25 { m Yr} { m C}_c$	50 Yr C _c	100 Yr C _c
3.919923358	4.916937006	5.7365932	6.5562493	7.3759055	8.2560142		Roof	0	0.000	0.71	0.73	0.75	0.78	0.80	0.81	0.000	0.000	0.000	0.000	0.000	0.000	0.638	0.658	0.693	0.726	0.745	0.764
					Pavement	4720	0.108	0.89	0.90	0.92	0.94	0.95	0.96	0.096	0.098	0.100	0.102	0.103	0.104						· · ·		
							Lawn	1217	0.028	0.02	0.08	0.15	0.25	0.30	0.35	0.001	0.002	0.004	0.007	0.008	0.010						
Hydrologic St	oil Type:	A					Gravel	6507	0.149	0.57	0.59	0.63	0.66	0.68	0.70	0.085	0.088	0.094	0.099	0.102	0.105						
							A.:	12444	0.29																		

Coefficient 10

Coefficient 35

Coefficient ,

0.73

0.08

Coefficient ,

0.71

0.02

		Q Peak I	low (cfs)		
2 Year Q	5 Year Q	10 Year Q	25 Year Q	50 Year Q	100 Year Q
0.71	0.92	1.14	1.36	1.57	1.80

		Q Peak I	Flow (cfs)		
2 Year Q	5 Year Q	10 Year Q	25 Year Q	50 Year Q	100 Year Q
1.18	1.52	1.86	2.21	2.54	2.90

(IDF Curve Equations from Figure 6-5 of the DCM Volume 1) Coefficient (Table 6-6) Land Use or Surface Characteristic Roof Pavement Lawn Gravel I₁₀ I25 II50 I100 Coefficient 50 Square Feet Acreage Coefficient 2 Coefficient 5 Coefficient 30 Coefficient 25
 Contention
 Conteni 0.73 0.90 0.08 0.59 0.75 0.92 0.15 0.63 0.80 0.95 0.30 0.68 0.71 0.89 0.02 0.57 0.78 0.94 0.25 0.66 0.000 0.164 0.000 0.208 6.0304837 6.8921242 7.7537647 8.679216 0 7141 Hydrologic Soil Type: A 0 9050

0.75 0.78 0.92 0.94 0.15 0.25 0.63 0.66

Coefficient (Table 6-6)

Coefficient on

		Q Peak I	low (cfs)		
2 Year Q	5 Year Q	10 Year Q	25 Year Q	50 Year Q	100 Year O
1.09	1.40	1.70	2.01	2.30	2.63

Г

Г

Sub-Basin:	D-4	(IDF Curv		m Figure 6-5 of	the DCM									Coefficient (Ta	hl- (()												
t, Duration:	5.00		Volu	me 1)										coefficient (Ta	ible 6-6]												
I ₂	I ₅	I ₅₀	I ₂₅	1 ₅₀	I ₁₀₀	ſ	Land Use or Surface. Characteristic	Square Feet	Acreage	Coefficient 3	Coefficient ,	Coefficient 10	Coefficient 25	Coefficient so	Coefficient 100	<u>2 Yr: C; * A;</u>	<u>5 Yr: C; * A</u>	<u>10 Yr: C, * A,</u>	25 Yr: C, * A	<u>50 Yr: C; * A</u>	100 Yr: C, * A	2 Yr C _c	5 Yr C $_{\rm c}$	10 Yr C $_{\rm c}$	$25{\rm Yr}{\rm C_c}$	50 Yr C,	100
4.119768884	5.168843131	6.0304837	6.8921242	7.7537647	8.6792165	ſ	Roof	31733	0.728	0.71	0.73	0.75	0.78	0.80	0.81	0.517	0.532	0.546	0.568	0.583	0.590	0.710	0.730	0.750	0.780	0.800	0.3
						ſ	Pavement	0	0.000	0.89	0.90	0.92	0.94	0.95	0.96	0.000	0.000	0.000	0.000	0.000	0.000						
			_			Γ	Lawn	0	0.000	0.02	0.08	0.15	0.25	0.30	0.35	0.000	0.000	0.000	0.000	0.000	0.000	1					
Hydrologic S	oil Type:	A				Γ																1					
						Γ																1					
						Γ																1					
						Γ																1					
						Г	A	31733	0.73																		

Acreage

0.000

0.482

0.37

Acreage

0.000

0.000

0.45

				1																			
				Coefficient (Ta	ble 6-6)															Q Peak F	low (cfs	1	-
Coefficient :	Coefficient s	Coefficient 10	Coefficient 35	Coefficient so	Coefficient	2 Yr: C: * A:	5 Yr: C * A	10 Yr: C * A	25 Yr: C * A	50 Yr: C * A	100 Yr: C: * A:	$2 \; Yr \; C_c$	5 Yr C $_{\rm c}$	$10 \text{Yr} \text{C}_{c}$	$25YrC_c$	$50YrC_c$	$100 \text{Yr} \text{C}_{c}$	2 Year Q	5 Year Q	10 Year Q	25 Year Q	50 Year Q	100 Year
0.71	0.73	0.75	0.78	0.80	0.81	0.000	0.000	0.000	0.000	0.000	0.000	0.859	0.870	0.892	0.915	0.927	0.938	1.77	2.25	2.69	3.15	3.59	4.07
0.89	0.90	0.92	0.94	0.95	0.96	0.429	0.434	0.443	0.453	0.458	0.463												
0.02	0.08	0.15	0.25	0.30	0.35	0.000	0.001	0.003	0.004	0.005	0.006												

 0.80
 0.61
 0.000
 0.000
 0.000
 0.000
 0.000
 0.671
 0.688
 0.722
 0.749
 0.785
 0.782

 0.55
 0.56
 0.126
 0.131
 0.133
 0.135
 0.166
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000</

		Q Peak	Flow (cfs))	
2 Year Q	5 Year Q	10 Year Q	25 Year Q	50 Year Q	100 Year Q
2.13	2.75	3.29	3.92	4.52	5.12

tions from Figure 6-5 of the DCM Volume 1) Is Is I₂₀ I25 I₅₀ I_100 6.03048 7.7537647 8.679216

Hydrologic Soil Type: A

Sub-Basin: t, Duration:

D-2 5.89

I₅ I.,. 1₂₅

D-3 5.00

ls.

4 5.1688431

Hydrologic Soil Type: A

3.925794957 4.924338181 5.7452279 6.5661176 7.3870073 8.2684

Sub-Basin: , Duration:	D-6 5.00	(IDF Curve	Equations from Volum		f the DCM								Coefficient (Ta	ble 6-6)												
I2	l _s	I ₅₀	I ₂₅	I ₅₀	I ₁₀₀	Land Use or Surface Characteristic	Square Feet	Acreage	Coefficient -	Coefficient .	Coefficient st	Coefficient 35	Coefficient on	Coefficient 100	2 Yr: C; * A;	<u>5 Yr: C, * A,</u>	10 Yr: C, * A,	25 Yr: C. * A.	50 Yr: C, * A,	100 Yr: C; * A	$\rm 2 \; Yr \; C_c$	5 Yr C $_{\rm c}$	10 Yr C $_{\rm c}$	$25{\rm Yr}{\rm C_c}$	$\rm 50YrC_c$	100 Yr
4.119768884	5.168843131	6.0304837	6.8921242	7.7537647	8.6792165	Roof	0	0.000	0.71	0.73	0.75	0.78	0.80	0.81	0.000	0.000	0.000	0.000	0.000	0.000	0.818	0.832	0.856	0.883	0.896	0.910
						Pavement	12249	0.281	0.89	0.90	0.92	0.94	0.95	0.96	0.250	0.253	0.259	0.264	0.267	0.270						
						Lawn	1104	0.025	0.02	0.08	0.15	0.25	0.30	0.35	0.001	0.002	0.004	0.006	0.008	0.009						
Hydrologic S	ioil Type:	A																								

Coefficient +=

0.31

		Q Peak	Flow (cfs)		
2 Year Q	5 Year Q	10 Year Q	25 Year Q	50 Year Q	100 Year Q
1.03	1.32	1.58	1.87	2.13	2.42

		Q Peak I	low (cfs)		
2 Year Q	5 Year Q	10 Year Q	25 Year Q	50 Year Q	100 Year Q
0.17	0.25	0.33	0.45	0.55	0.66

Hydrologic Soil T

Hydrologic Soll Type: A

D-7 5.49

ь

12	I ₅₀	I ₂₅	1 ₅₀	I ₁₀₀	Land Use or Surface Characteristic	Square Feet	Acreage	Coefficient 3	Coefficient s
5.028669204	5.8669474	6.7052256	7.5435038	8.4437243	Roof	0	0.000	0.71	0.73
					Pavement	1985	0.046	0.89	0.90
					Lawn	4290	0.098	0.02	0.08
il Type:	A								
					A _t :	6275	0.14		
D-8	(IDF Curve	Equations from	m Figure 6-5 of	the DCM					
6.40		Volur	ne 1)						

A.: 13353

[Coefficient (Ta	ble 6-6)												
	Land Use or Surface Characteristic	Square Feet	Acreage	Coefficient 2	Coefficient 5	Coefficient 30	Coefficient 25	Coefficient 50	Coefficient 100	2 Yr: C; * A;	<u>5 Yr: Ci * Ai</u>	10 Yr: C; * A;	25 Yr: C * A	50 Yr: Ci * Ai	100 Yr: C; * A;	$2 \; \text{Yr} \; \text{C}_{c}$	$5 \ {\rm Yr} \ {\rm C_c}$	10 Yr C $_{\rm c}$	$25YrC_c$	$50YrC_c$	100 Yr C _c
	Roof	0	0.000	0.71	0.73	0.75	0.78	0.80	0.81	0.000	0.000	0.000	0.000	0.000	0.000	0.020	0.080	0.150	0.250	0.300	0.350
ſ	Pavement	0	0.000	0.89	0.90	0.92	0.94	0.95	0.96	0.000	0.000	0.000	0.000	0.000	0.000						
	Lawn	8969	0.206	0.02	0.08	0.15	0.25	0.30	0.35	0.004	0.016	0.031	0.051	0.062	0.072						
[Α,:	8969	0.21																		

		Q Peak I	low (cfs)		
2 Year Q	5 Year Q	10 Year Q	25 Year Q	50 Year Q	100 Year Q
0.02	0.08	0.17	0.33	0.44	0.58

Sub-Basin: t, Duration:	D-9 11.17	(IDF Curve	Equations from Volue		the DCM
l ₂	I _S	I ₅₀	I ₂₅	I ₅₀	I100
3.163099546	3.962957411	4.623617	5.2842765	5.9449361	6.6533285

Les. I25

(IDF Curve Equations from Figure 6-5 of the DCM Volume 1)

> 1₅₀ I_{100}

Hydrologic Soil Type:	A

D	esign Points	
Design Points	Q ₁₀	Q ₆₀₀
DP1	1.14	1.80
DP2	1.86	2.90
DP3	1.70	2.63
DP4	3.29	5.12
DP5	2.69	4.07
DP6	1.58	2.42
DP7	0.33	0.66
DP8	0.17	0.58
TOTAL ON-SITE	12.77	20.19
DP9	1.20	2.54
TOTAL OFF-SITE	1.20	2.54

							Coefficient (Ta	ble 6-6)												
Land Use or Surface Characteristic	Square Feet	Acreage	Coefficient 2	Coefficient .	Coefficient 10	Coefficient 25	Coefficient co	Coefficient 100	<u>2 Yr: C, * A,</u>	<u>5 Yr: C; * A;</u>	<u>10 Yr: C; * A;</u>	<u>25 Yr: C. * A.</u>	50 Yr: C; * A;	<u>100 Yr: C; * A;</u>	$\rm 2 \; Yr \; C_c$	5 Yr C $_{\rm c}$	10 Yr C $_{\rm c}$	$25{\rm Yr}{\rm C_c}$	50 Yr C _c	100 Yr C
Roof	0	0.000	0.71	0.73	0.75	0.78	0.80	0.81	0.000	0.000	0.000	0.000	0.000	0.000	0.232	0.280	0.338	0.418	0.459	0.499
Pavement	6715	0.154	0.89	0.90	0.92	0.94	0.95	0.96	0.137	0.139	0.142	0.145	0.146	0.148						
Lawn	20812	0.478	0.02	0.08	0.15	0.25	0.30	0.35	0.010	0.038	0.072	0.119	0.143	0.167						
Ac:	27527	0.63																		

Coefficient (Table 6-6)

 Coefficient_a
 Coefficient_a
 Coefficient_a
 Livr.c+A
 Livr.c

Q Peak Flow (cfs)						
2 Year Q	5 Year Q	10 Year Q	25 Year Q	50 Year Q	100 Year Q	
0.56	0.85	1.20	1.69	2.09	2.54	

3.2.1 - Overland (Initial) Flow Time

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$

(Eq. 6-8)

Where:

- t_i = overland (initial) flow time (min) C_5 = runoff coefficient for 5-year frequency (see Table 6-6) L = length of overland flow (300 ft <u>maximum</u> for non-urban land uses, 100 ft <u>maximum</u> for urban land uses)
- S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	D-1	
C ₁₀ :	0.69	[Table 6-6. Runoff Coefficients for Rational Method]
L:	100	ft
S:	0.025	ft/ft

Composite Runoff Coefficient Calculation:

 $C_{c} = (C_{1}A_{1} + C_{2}A_{2} + C_{3}A_{3} + \dots C_{i}A_{i})/A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	C ₁₀
Roof	0	0.00	0.75
Pavement	4720	0.11	0.92
Lawn	1217	0.03	0.15
Gravel	6507	0.15	0.63
A _t :	12444	0.29	
$C_c = (0.92 * 0.11 + 0.15)$	5*0.03 + 0.63*0.	15) / 0.29 =	0.69

 $t_i = (0.395^*(1.1-C_{10})^* sqrt(L))/(S^{0.33})$

```
t i = (0.395*(1.1-0.48)*sqrt(145))/(0.055 ^0.33) =
```

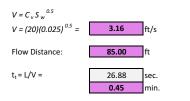
3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_h , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_h can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

5.47

mins

 $V = C_v S_w^{0.5}$


(Eq. 6-9)

Where:

V = velocity (ft/s)

 $C_v =$ conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

$\mathbf{t}_{\mathbf{c}} = \mathbf{t}_{\mathbf{i}} + \mathbf{t}_{\mathbf{t}} =$	5.91	min.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

Final t_c:

Table 6-7. Conveyance Coefficient, C_v

Type of Land Surface	C,
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

3.2.1 - Overland (Initial) Flow Time

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$

(Eq. 6-8)

Where:

- t_i = overland (initial) flow time (min) C_5 = runoff coefficient for 5-year frequency (see Table 6-6) L = length of overland flow (300 ft <u>maximum</u> for non-urban land uses, 100 ft <u>maximum</u> for urban land uses)
- S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	D-2	
C ₁₀ :	0.72	[Table 6-6. Runoff Coefficients for Rational Method]
L:	100	ft
S:	0.025	ft/ft

Composite Runoff Coefficient Calculation:

 $C_{c} = (C_{1}A_{1} + C_{2}A_{2} + C_{3}A_{3} + \dots C_{i}A_{i})/A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	C ₁₀
Roof	0	0.00	0.75
Pavement	6183	0.14	0.92
Lawn	0	0.00	0.15
Gravel	13359	0.31	0.63
A _t :	19542	0.45	
C _c = (0.92*0.14 + 0.63	3*0.31) / 0.45 =		0.72

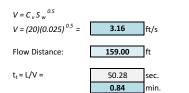
 $t_i = (0.395^*(1.1-C_{10})^* sqrt(L))/(S^{0.33})$

```
t ; = (0.395*(1.1-0.39)*sqrt(124))/(0.03 ^0.33) =
                                                             5.05
                                                                      mins
```

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_h , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_h can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

 $V = C_v S_w^{0.5}$


(Eq. 6-9)

Where:

V = velocity (ft/s)

 $C_v =$ conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

Type of Land Surface	C,
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15

20

Paved areas and shallow paved swales

Table 6-7. Conveyance Coefficient, C_v

$\mathbf{t}_{\mathbf{c}} = \mathbf{t}_{\mathbf{i}} + \mathbf{t}_{\mathbf{t}} =$	5.89	min.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

Final t_c:

3.2.1 - Overland (Initial) Flow Time

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$

(Eq. 6-8)

Where:

 t_i = overland (initial) flow time (min) C_5 = runoff coefficient for 5-year frequency (see Table 6-6) L = length of overland flow (300 ft <u>maximum</u> for non-urban land uses, 100 ft <u>maximum</u> for urban land uses)

S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	D-3	
C ₁₀ :	0.76	[Table 6-6. Runoff Coefficients for Rational Method]
L:	100	ft
S:	0.025	ft/ft

Composite Runoff Coefficient Calculation:

 $C_{c} = (C_{1}A_{1} + C_{2}A_{2} + C_{3}A_{3} + \dots C_{i}A_{i})/A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	C ₁₀
Roof	0	0.00	0.75
Pavement	7141	0.16	0.92
Lawn	0	0.00	0.15
Gravel	9050	0.21	0.63
A _t :	16191	0.37	
C _ = (0.92*0.16 + 0.63	*0.21) / 0.37 =		0.76

 $C_c = (0.92*0.16 + 0.63*0.21) / 0.37 =$

 $t_i = (0.395^*(1.1-C_{10})^* sqrt(L))/(S^{0.33})$

t ; = (0.395*(1.1-0.90)*sqrt(124))/(0.03 ^0.33) =

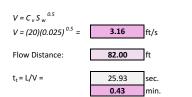
3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_b , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_b can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

4.56

mins

 $V = C_v S_w^{0.5}$


(Eq. 6-9)

Where:

V = velocity (ft/s)

 C_v = conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

Type of Land Surface	C _v
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

Table 6-7. Conveyance Coefficient, Cv

 $t_{c} = t_{i} + t_{t} =$ 5.00 min.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

Final t_c:

3.2.1 - Overland (Initial) Flow Time

$$t_i = \frac{0.395(1.1 - C_s)\sqrt{L}}{S^{0.33}}$$
(Eq. 6-8)

Where:

 t_i = overland (initial) flow time (min) C_5 = runoff coefficient for 5-year frequency (see Table 6-6) L = length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)

S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	D-4	
C ₁₀ :	0.75	[Table 6-6. Runoff Coefficients for Rational Method]
L:	95	ft
S:	0.083	ft/ft

Composite Runoff Coefficient Calculation:

 $C_{c} = (C_{1}A_{1} + C_{2}A_{2} + C_{3}A_{3} + \dots C_{i}A_{i})/A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	C ₁₀
Roof	31714	0.73	0.75
Pavement	0	0.00	0.92
Lawn	0	0.000	0.15
A _t :	31714	0.73	

 $C_c = (0.75*0.73) / 0.73 =$

 $t_i = (0.395^*(1.1\text{-}C_{10})^* sqrt(L))/(S^{0.33})$

t ; = (0.395*(1.1-0.87)*sqrt(90))/(0.035 ^0.33) =

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_n , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_n can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

0.75

3.06

mins

 $V = C_v S_w^{0.5}$

Where:

V = velocity (ft/s)

 C_v = conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

3.06

min.

 $t_{c} = t_{i} + t_{t} =$

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

Final t_c: 5.00 min. Table 6-7. Conveyance Coefficient, C_v

Type of Land Surface	C,
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20
For buried riprap, select C_v value based on type of v	egetat

3.2.1 - Overland (Initial) Flow Time

$$t_i = \frac{0.395(1.1 - C_s)\sqrt{L}}{S^{0.33}}$$
(Eq. 6-8)

Where:

 t_i = overland (initial) flow time (min) C_5 = runoff coefficient for 5-year frequency (see Table 6-6) L = length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)

S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	D-5	
C ₁₀ :	0.89	[Table 6-6. Runoff Coefficients for Rational Method]
L:	100	ft
S:	0.035	ft/ft

Composite Runoff Coefficient Calculation:

 $C_{c} = (C_{1}A_{1} + C_{2}A_{2} + C_{3}A_{3} + \dots + C_{i}A_{i})/A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	C ₁₀
Roof	0	0.00	0.75
Pavement	21716	0.50	0.92
Lawn	784	0.018	0.15
A _t :	22500	0.517	

 $C_c = (0.92*0.50 + 0.15*0.018) / 0.515 =$

 $t_i = (0.395^*(1.1\text{-}C_{10})^* sqrt(L))/(S^{0.33})$

t ; = (0.395*(1.1-0.88)*sqrt(125))/(0.035 ^0.033) =

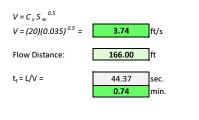
3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_n , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_n can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

0.89

2.47

mins


 $V = C_v S_w^{0.5}$

Where:

V = velocity (ft/s)

 C_v = conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

$t_c = t_i + t_t =$	3.21	min.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

min.

Final t_c: 5.00 Table 6-7. Conveyance Coefficient, C_v

2.5
5
6.5
7
10
15
20

3.2.1 - Overland (Initial) Flow Time

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$
(Eq. 6-8)

Where:

 t_i = overland (initial) flow time (min) C_5 = runoff coefficient for 5-year frequency (see Table 6-6) L = length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)

S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	D-6	
C ₁₀ :	0.86	[Table 6-6. Runoff Coefficients for Rational Method]
L:	100	ft
S:	0.07	ft/ft

Composite Runoff Coefficient Calculation:

 $C_{c} = (C_{1}A_{1} + C_{2}A_{2} + C_{3}A_{3} + \dots + C_{i}A_{i})/A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	C ₁₀	
Roof	0	0.00	0.75	
Pavement	12249	0.28	0.92	
Lawn	1104	0.03	0.15	
A _t :	13353	0.31		

 $C_c = (0.92*0.28 + 0.15*0.03) / 0.31 =$

 $t_i = (0.395*(1.1-C_{10})*sqrt(L))/(S^{0.33})$

t _i = (0.395*(1.1-0.33)*sqrt(7))/(0.1 ^0.33) =

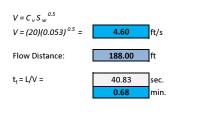
3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_n , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_n can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

0.86

2.31

mins


 $V = C_v S_w^{0.5}$

Where:

V = velocity (ft/s)

 C_v = conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

$\mathbf{t}_{\mathbf{c}} = \mathbf{t}_{\mathbf{i}} + \mathbf{t}_{\mathbf{t}} =$	3.00	min.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes

Final t_c: 5.00 min. Table 6-7. Conveyance Coefficient, C_v

2.5
5
6.5
7
10
15
20

3.2.1 - Overland (Initial) Flow Time

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$
(Eq. 6-8)

Where:

 t_i = overland (initial) flow time (min) C_5 = runoff coefficient for 5-year frequency (see Table 6-6) L = length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)

S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	D-7	
C ₁₀ :	0.40	[Table 6-6. Runoff Coefficients for Rational Method]
L:	15	ft
S:	0.01	ft/ft

Composite Runoff Coefficient Calculation:

 $C_{c} = (C_{1}A_{1} + C_{2}A_{2} + C_{3}A_{3} + \dots + C_{i}A_{i})/A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	C ₁₀
Roof	0	0.00	0.75
Pavement	1985	0.05	0.92
Lawn	4119	0.09	0.15
A _t :	6104	0.14	

 $C_c = (0.75*0.0 + 0.92*0.10 + 0.15*0.07) / 0.08 =$

 $t_i = (0.395^*(1.1\text{-}C_{10})^* sqrt(L))/(S^{0.33})$

t ; = (0.395*(1.1-0.20)*sqrt(15))/(0.01 ^0.33) =

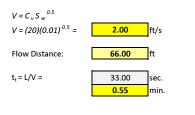
3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_n , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_n can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

0.40

4.89

mins


 $V = C_v S_w^{0.5}$

Where:

V = velocity (ft/s)

 C_v = conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

 $t_{c} = t_{i} + t_{t} =$ 5.44 min.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

min.

Final t_c: 5.44 Table 6-7. Conveyance Coefficient, C_v

2.5
5
6.5
7
10
15
20

3.2.1 - Overland (Initial) Flow Time

$$t_i = \frac{0.395(1.1 - C_s)\sqrt{L}}{S^{0.33}}$$
(Eq. 6-8)

Where:

 t_i = overland (initial) flow time (min) C_5 = runoff coefficient for 5-year frequency (see Table 6-6) L = length of overland flow (300 ft <u>maximum</u> for non-urban land uses, 100 ft <u>maximum</u> for urban land uses)

S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	D-8	
C ₁₀ :	0.15	[Table 6-6. Runoff Coefficients for Rational Method]
L:	25	ft
S:	0.04	ft/ft

Composite Runoff Coefficient Calculation:

 $C_{c} = (C_{1}A_{1} + C_{2}A_{2} + C_{3}A_{3} + \dots + C_{i}A_{i})/A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	C10
Roof	0	0.00	0.75
Pavement	0	0.00	0.92
Lawn	8402	0.19	0.15
A _t :	8402	0.19	
$C_c = (0.15^* 0.25) / 0.25 =$			0.15

 $t_i = (0.395^*(1.1\text{-}C_{10})^* sqrt(L))/(S^{0.33})$

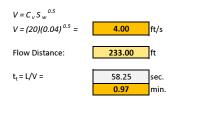
t ; = (0.395*(1.1-0.35)*sqrt(46))/(0.25^0.33) =

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_n , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_n can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

5 43

mins


 $V = C_v S_w^{0.5}$

Where:

V = velocity (ft/s)

 C_v = conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

 $t_{c} = t_{i} + t_{t} =$ 6.40 min.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

min.

Final t_c: 6.40

(Eq. 6-9)

Type of Land Surface	C,
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20
For buried riprap, select Cv value based on type of v	egetat

Table 6-7. Conveyance Coefficient, C_v

Type of Land Surface	C,
leavy meadow	2.5
illage/field	5
iprap (not buried)*	6.5
hort pasture and lawns	7
learly bare ground	10

3.2.1 - Overland (Initial) Flow Time

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$
(Eq. 6-8)

Where:

- t_i = overland (initial) flow time (min) C_5 = runoff coefficient for 5-year frequency (see Table 6-6) L = length of overland flow (300 ft <u>maximum</u> for non-urban land uses, 100 ft <u>maximum</u> for urban land uses)
- S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

Sub-Basin or DP:	D-9	
C ₁₀ :	0.34	[Table 6-6. Runoff Coefficients for Rational Method]
L:	100	ft
S:	0.04	ft/ft

Composite Runoff Coefficient Calculation:

 $C_{c} = (C_{1}A_{1} + C_{2}A_{2} + C_{3}A_{3} + \dots + C_{i}A_{i})/A_{t}$

Land Use or Surface Characteristic	Square Feet	Acreage	C ₁₀
Roof	0	0.00	0.75
Pavement	6715	0.15	0.92
Lawn	20727	0.48	0.15
A _t :	27442	0.63	

 $C_c = (0.15*0.39 + 0.92*0.10) / 0.50 =$

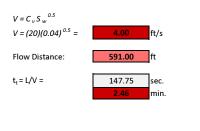
 $t_i = (0.395^*(1.1\text{-}C_{10})^* sqrt(L))/(S^{0.33})$

t ; = (0.395*(1.1-0.35)*sqrt(46))/(0.25^0.33) =

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_n , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_n can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

 $V = C_v S_w^{0.5}$


Where:

 $t_{c} = t_{i} + t_{t} =$

V = velocity (ft/s)

 C_v = conveyance coefficient (from Table 6-7)

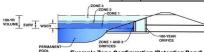
 S_w = watercourse slope (ft/ft)

11.16

min.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.


Final t_c: min. Table 6-7. Conveyance Coefficient, C_v

(Eq. 6-9)

Type of Land Surface	C,
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

mins

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

ZONE 1 AND 2 ORIFICES Example Zone Configuration (Retention Pond)

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	3.02	acres
Watershed Length =	400	ft
Watershed Length to Centroid =	175	ft
Watershed Slope =	0.050	ft/ft
Watershed Imperviousness =	86.46%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

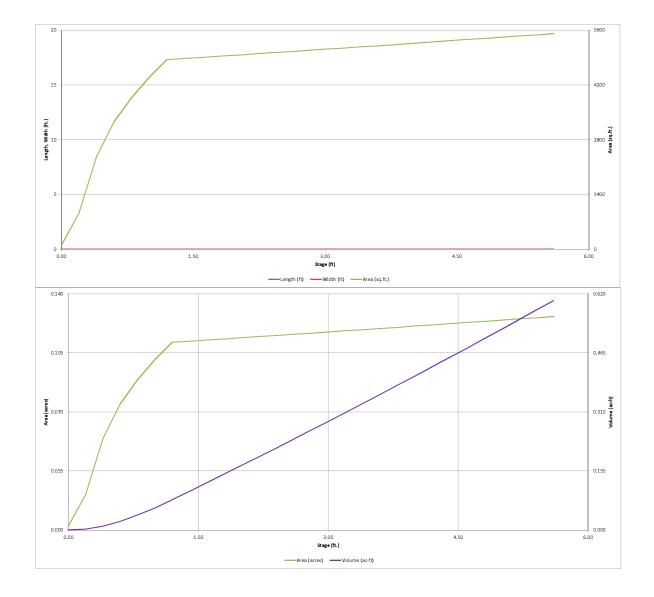
After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

are embedded colorado orbarrigaro	graphinoceau		
Water Quality Capture Volume (WQCV) =	0.094	acre-feet	ſ
Excess Urban Runoff Volume (EURV) =	0.351	acre-feet	
2-yr Runoff Volume (P1 = 1.19 in.) =	0.219	acre-feet	
5-yr Runoff Volume (P1 = 1.5 in.) =	0.283	acre-feet	
10-yr Runoff Volume (P1 = 1.75 in.) =	0.334	acre-feet	
25-yr Runoff Volume (P1 = 2 in.) =	0.391	acre-feet	
50-yr Runoff Volume (P1 = 2.25 in.) =	0.447	acre-feet	
100-yr Runoff Volume (P1 = 2.52 in.) =	0.511	acre-feet	
500-yr Runoff Volume (P1 = 3.48 in.) =	0.731	acre-feet	
Approximate 2-yr Detention Volume =	0.231	acre-feet	Ì
Approximate 5-yr Detention Volume =	0.300	acre-feet	
Approximate 10-yr Detention Volume =	0.357	acre-feet	
Approximate 25-yr Detention Volume =	0.422	acre-feet	
Approximate 50-yr Detention Volume =	0.460	acre-feet	
Approximate 100-yr Detention Volume =	0.493	acre-feet	

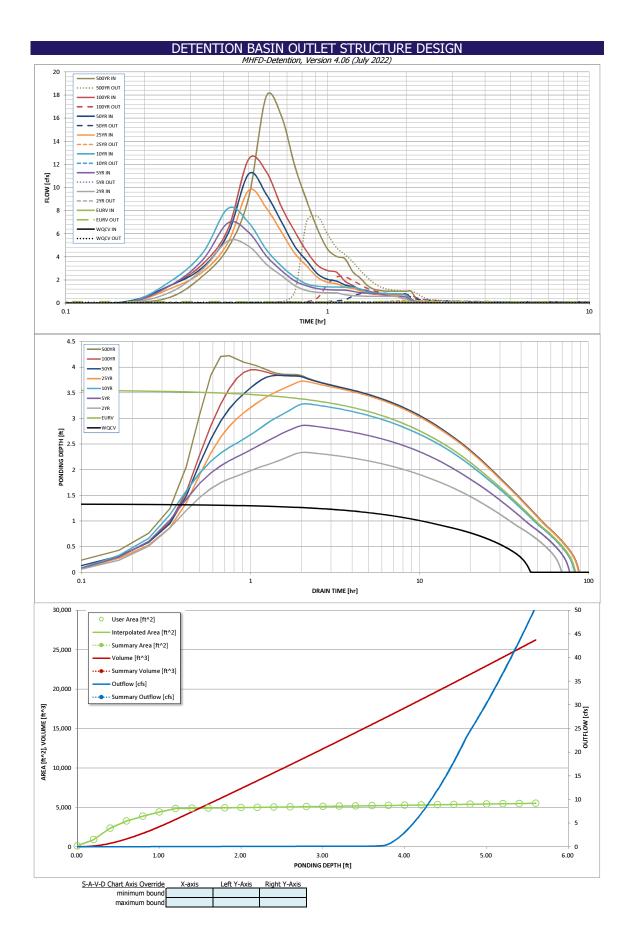
Define Zones and Basin Geometry

efine Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.094	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.257	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.142	acre-feet
Total Detention Basin Volume =	0.493	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S_{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio ($R_{L/W}$) =	user	
		•
Initial Surcharge Area (Area) =	USOF	ft 2

Initial Surcharge Area (A _{ISV}) =	user	ft -
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W_{1SV}) =	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$		ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W_{MAIN}) =		ft
Area of Main Basin $(A_{MAIN}) =$		ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³


Calculated Total Basin Volume (V_{total}) = user acre-feet

			_							
AR E	Depth Increment =	0.20	ft							
	Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
ntion Pond)	Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	(ft)	Area (ft ²)	Area (ft ²)	Area (acre)	(ft ³)	Volume (ac-ft)
	Top of Micropool		0.00	-			100	0.002		
			0.20				907	0.021	101	0.002
			0.40				2,357	0.054	427	0.010
			0.60				3,257	0.075	988	0.023
			0.80				3,873	0.089	1,701	0.039
			1.00				4,400	0.101	2,529	0.059
			1.00				4,846	0.111	3,453	0.079
			1.40				4,876	0.112	4,426	0.102
			1.60				4,905	0.112	5,404	0.124
			1.80				4,935	0.113	6,388	0.147
			2.00				4,964	0.114	7,378	0.169
			2.20				4,994	0.115	8,373	0.192
			2.40				5,024	0.115	9,375	0.215
			2.60				5,053	0.116	10,383	0.238
Optional User Overrides			2.80				5,083	0.117	11,396	0.262
acre-feet		-	3.00	-			5,113	0.117	12,416	0.285
acre-feet			3.20				5,142	0.118	13,442	0.309
1.19 inches		-	3.40	-	-		5,172	0.119	14,473	0.332
1.50 inches			3.60				5,202	0.119	15,510	0.356
1.75 inches			3.80				5,232	0.120	16,554	0.380
2.00 inches			4.00				5,267	0.121	17,604	0.404
2.25 inches			4.20				5,297	0.122	18,660	0.428
2.52 inches			4.40				5,327	0.122	19,722	0.453
3.48 inches			4.60				5,358	0.123	20,791	0.477
·			4.80				5,388	0.124	21,866	0.502
			5.00				5,419	0.124	22,946	0.527
			5.20				5,451	0.125	24,033	0.552
			5.40				5,480	0.126	25,126	0.577
			5.60				5,513	0.127	26,226	0.602
										ĺ
		-								
		-								
		-								
		-								
		-								
		-								
										l
								-		
		-								1
				-						
						-			-	


Northcrest-MHFD-Detention_v4-06, Basin

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

	DE		BASIN OUT			SIGN			
	Northcrest Center	M	1HFD-Detention, V	ersion 4.06 (July .	2022)				
	EDB, Full Spectrun	n Extended Detent	ion Basin						
ZONE 3	/			Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)			Orifice Plate	1		
± ± +	100-YEAR		Zone 2 (EURV)	3.56		Orifice Plate			
ZONE 1 AND 2 PERMANENT ORIFICES	ORIFICE		Zone 3 (100-year)		0.237	Weir&Pipe (Restrict)			
PERMANENT	Configuration (Re	tention Pond)	2011e 3 (100-year)	Total (all zones)	0.142	weirdPipe (Restrict)	J		
User Input: Orifice at Underdrain Outlet (typicall	v used to drain WO(V in a Filtration B	NP)	Total (all 2011es)	0.495		Calculated Parame	ters for Underdrain	
Underdrain Orifice Invert Depth =			the filtration media	surface)	Underd	Irain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	-	inches		,		Orifice Centroid =	N/A	feet	
								1	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot \	Veir (typically used	to drain WQCV and	l/or EURV in a sedii	mentation BMP)		Calculated Parame	ters for Plate	
Centroid of Lowest Orifice =			h bottom at Stage =		WQ Orifi	ce Area per Row =	N/A	ft²	
Depth at top of Zone using Orifice Plate =			n bottom at Stage =	0 ft)		ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =		inches				cal Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	sq. inches			E	lliptical Slot Area =	N/A	ft ²	
User Input: Stage and Total Area of Each Orifice	Pow (numbered fr	om lowest to highs	oct)						
User Input. Stage and Total Area of Each office	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Stage of Orifice Centroid (ft)	0.00	0.89	1.78	2.67	non o (optional)	non o (optional)	(optional)	non e (optional)	
Orifice Area (sq. inches)	0.79	0.79	0.44	0.44					
									-
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Circular or Rectange			1					ters for Vertical Ori	fice
	Not Selected	Not Selected			0.0X		Not Selected	Not Selected	e.2
Invert of Vertical Orifice =	N/A N/A	N/A	ft (relative to basin	-		tical Orifice Area =	N/A N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice = Vertical Orifice Diameter =	N/A N/A	N/A N/A	ft (relative to basin inches	i bottom at Stage =	UTC) Vertical	Orifice Centroid =	N/A	N/A	feet
	IN/A	N/A	inches						
User Input: Overflow Weir (Dropbox with Flat o	⁻ Sloped Grate and (Outlet Pipe OR Rec	tangular/Trapezoida	al Weir and No Out	et Pipe)		Calculated Parame	ters for Overflow W	/eir
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and C Zone 3 Weir	<u>Outlet Pipe OR Rec</u> Not Selected	tangular/Trapezoida	I Weir and No Out	et Pipe)		Calculated Parame Zone 3 Weir	ters for Overflow W Not Selected	<u>/eir</u>
User Input: Overflow Weir (Dropbox with Flat o Overflow Weir Front Edge Height, Ho =			tangular/Trapezoida ft (relative to basin t			e Upper Edge, H _t =			<u>Veir</u> feet
	Zone 3 Weir	Not Selected			ft) Height of Grat	e Upper Edge, H _t = 'eir Slope Length =	Zone 3 Weir	Not Selected]
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	Zone 3 Weir 3.56 1.25 3.00	Not Selected N/A N/A N/A	ft (relative to basin I feet H:V	oottom at Stage = 0 f Gi	t) Height of Grat Overflow W rate Open Area / 10	/eir Slope Length = 0-yr Orifice Area =	Zone 3 Weir 4.39 2.64 5.72	Not Selected N/A N/A N/A	feet feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 3.56 1.25 3.00 2.50	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin I feet	oottom at Stage = 0 i Gi O	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open	/eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 4.39 2.64 5.72 2.29	Not Selected N/A N/A N/A N/A	feet feet ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin I feet H:V feet	oottom at Stage = 0 i Gi O	t) Height of Grat Overflow W rate Open Area / 10	/eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 4.39 2.64 5.72	Not Selected N/A N/A N/A	feet feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 3.56 1.25 3.00 2.50	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin I feet H:V	oottom at Stage = 0 i Gi O	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open	/eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 4.39 2.64 5.72 2.29	Not Selected N/A N/A N/A N/A	feet feet ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0%	Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin l feet H:V feet %	oottom at Stage = 0 i Gi O	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open	/eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29	Not Selected N/A N/A N/A N/A N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or R	ft (relative to basin l feet H:V feet %	oottom at Stage = 0 i Gi O	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open	/eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 s for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pl	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected	ft (relative to basin t feet H:V feet % ectangular Orifice)	oottom at Stage = 0 1 Gi O (t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open	teir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameters	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 s for Outlet Pipe w/ Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pl Not Selected	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or R	ft (relative to basin l feet H:V feet %	oottom at Stage = 0 1 Gi O (t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or	/eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 s for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pl	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Ra Zone 3 Restrictor 2.50	Not Selected N/A N/A N/A N/A N/A N/A Setrictor Plate, or R Not Selected N/A	ft (relative to basin l feet H:V feet % ectangular Orifice) ft (distance below ba	oottom at Stage = 0 I Gi O (asin bottom at Stage	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = : Orifice Centroid =	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 5 for Outlet Pipe w/ Zone 3 Restrictor 0.40	Not Selected N/A N/A N/A N/A Flow Restriction Pl Not Selected N/A	feet feet ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re Zone 3 Restrictor 2.50 18.00	Not Selected N/A N/A N/A N/A N/A N/A Setrictor Plate, or R Not Selected N/A	ft (relative to basin l feet H:V feet % ectangular Orifice) ft (distance below ba inches	oottom at Stage = 0 I Gi O (asin bottom at Stage	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or Outlet	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = : Orifice Centroid =	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 2.29 Zone 3 Restrictor 0.40 0.25	Not Selected N/A N/A N/A N/A N/A Elow Restriction Pl Not Selected N/A N/A	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re Zone 3 Restrictor 2.50 18.00 5.00	Not Selected N/A N/A N/A N/A N/A N/A Setrictor Plate, or R Not Selected N/A	ft (relative to basin l feet H:V feet % ectangular Orifice) ft (distance below ba inches	oottom at Stage = 0 I Gi O (asin bottom at Stage	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or Outlet	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = : Orifice Centroid =	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 2.29 Zone 3 Restrictor 0.40 0.25	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction PI Not Selected N/A N/A N/A N/A	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A	ft (relative to basin l feet H:V feet % ectangular Orifice) ft (distance below ba inches	bottom at Stage = 0 1 Gi O c asin bottom at Stage Half-Cen	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open <u>Ca</u> = 0 ft) Or Outlet tral Angle of Restric Spillway D	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth=	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 2.29 2.001 3 Restrictor 0.40 0.25 1.11 Calculated Parame 0.78	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction PI Not Selected N/A N/A N/A N/A	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00	Not Selected N/A N/A N/A N/A N/A N/A Selected N/A N/A ft (relative to basir feet	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 1 Gi O c asin bottom at Stage Half-Cen	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Ca ca = 0 ft) Or Outlet tral Angle of Restrict Spillway D Stage at 1	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard =	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 2.29 2.00 2.00 2.29 2.000 2.00	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway End Slopes =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00 0.00	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 1 Gi O c asin bottom at Stage Half-Cen	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or Outlet tral Angle of Restric Spillway D Stage at T Basin Area at T	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard =	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 2.29 2.00 3 Restrictor 0.40 0.25 1.11 Calculated Parame 0.78 5.53 0.13	Not Selected N/A N/A N/A N/A N/A NA N/A N/A N/A ters for Spillway feet feet feet	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00 0.00	Not Selected N/A N/A N/A N/A N/A N/A Selected N/A N/A ft (relative to basir feet	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 1 Gi O c asin bottom at Stage Half-Cen	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or Outlet tral Angle of Restric Spillway D Stage at T Basin Area at T	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard =	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 2.29 2.00 2.00 2.29 2.000 2.00	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway End Slopes =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00 0.00	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	bottom at Stage = 0 1 Gi O c asin bottom at Stage Half-Cen	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or Outlet tral Angle of Restric Spillway D Stage at T Basin Area at T	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard =	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 2.29 2.00 3 Restrictor 0.40 0.25 1.11 Calculated Parame 0.78 5.53 0.13	Not Selected N/A N/A N/A N/A N/A NA N/A N/A N/A ters for Spillway feet feet feet	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway End Slopes =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00 0.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basir feet H:V feet	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches	oottom at Stage = 0 I Gi O o (asin bottom at Stage Half-Cen 0 ft)	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Ca ca ca ca ca ca ca ca ca ca ca ca ca ca	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard =	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 2.29 Zone 3 Restrictor 0.40 0.25 1.11 <u>Calculated Parame</u> 0.78 5.53 0.13 0.59	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Slides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00 0.00 1.00 The user can over WQCV	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A ft (relative to basin feet H:V feet H:V feet	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches inches bottom at Stage = +/P hydrographs and 2 Year	oottom at Stage = 0 I Gi O o asin bottom at Stage Half-Cen 0 ft) <u>(runoff volumes by</u> 5 Year	t) Height of Grat Overflow Wrate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Carl Carl Carl Carl Carl Carl Carl Carl	teir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Top of Freeboard = Top of Freeboard = to n <i>the Inflow Hyto</i> 25 Year	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 2.29 Zone 3 Restrictor 0.40 0.25 1.11 Calculated Parame 0.78 5.53 0.13 0.59 10.59	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% .(Circular Orifice, Re Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00 0.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet	ft (relative to basin li feet H:V feet % ectangular Orifice) ft (distance below be inches inches h bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> 1.19	oottom at Stage = 0 I Gi O O (asin bottom at Stage Half-Cen 0 ft) (<u>runoff volumes by</u> <u>5 Year</u> 1.50	t) Height of Grat Overflow Wr ate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Care = 0 ft) Or Outlet tral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T entering new value 10 Year 1.75	teir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = tor Inflow Hyo 25 Year 2.00	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 2.29 2.29 2.00 3 Restrictor 0.40 0.25 1.11 <u>Calculated Parame</u> 0.78 5.53 0.13 0.59 <i>tographs table (Co.</i> 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrict above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre.h) =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00 0.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.351	ft (relative to basin I feet H:V feet % ectangular Orifice) ft (distance below ba inches inches h bottom at Stage = // <i>P hydrographs and</i> 2 Year 1.19 0.219	oottom at Stage = 0 1 Gi O asin bottom at Stage Half-Cen 0 ft) (<u>runoff volumes by</u> <u>5 Year</u> <u>1.50</u> 0.283	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Ca = 0 ft) Or Outlet tral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T entering new value 10 Year 1.75 0.334	teir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = corifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = cop of Freeboard = 25 Year 2.00 0.391	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 2.29 Zone 3 Restrictor 0.40 0.25 1.11 Calculated Parame 0.78 5.53 0.13 0.59 10.59	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% .(Circular Orifice, Re Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00 0.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet	ft (relative to basin li feet H:V feet % ectangular Orifice) ft (distance below be inches inches h bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> 1.19	oottom at Stage = 0 I Gi O O (asin bottom at Stage Half-Cen 0 ft) (<u>runoff volumes by</u> <u>5 Year</u> 1.50	t) Height of Grat Overflow Wr rate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Care = 0 ft) Or Outlet tral Angle of Restrice Spillway D Stage at T Basin Area at T Basin Volume at T entering new value 10 Year 1.75	teir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = tor Inflow Hyo 25 Year 2.00	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 2.29 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.05 2.03 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.447 2.25 0.45 2.25 0.45 2.25 0.457 2.57 0.457 2.57 0.457	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Net-Hour Rainfall Depth (in) = CUHP Runoff Volume (arce-t) = CUHP Runoff Volume (arce-t) = Inflow Hydrograph Volume (arce-t) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00 0.00 1.00 The user can over WQCV N/A 0.094 N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.351 N/A N/A N/A	ft (relative to basin I feet H:V feet % ectangular Orifice) ft (distance below ba inches inches h bottom at Stage = <u>HP hydrographs and</u> <u>2 Year 1.19 0.219 0.219 0.219 0.3</u>	bottom at Stage = 0 1 Gi O O asin bottom at Stage Half-Cen 0 ft) . 1.50 0.283 0.1 1.1	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Ca = 0 ft) Or Outlet tral Angle of Restrict Spillway D Stage at T Basin Volume at T Basin Volume at T entering new value 10 Year 1.75 0.334 0.1 2.2	teir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = Iculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Streeboard =	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 2.29 2.09 2.09 2.000 2.00	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	F). 500 Year 3.48 0.731 0.731 6.2 8.0
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Nour Reiturn Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00 0.00 1.00 The user can overr WQCV N/A 0.094 N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A ft (relative to basin feet H:V feet <i>ide the default CUI</i> Feet H:V feet N/A N/A N/A N/A N/A	ft (relative to basin I feet H:V feet % ectangular Orifice) ft (distance below ba inches inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.219 0.219 0.219 0.3 0.10	bottom at Stage = 0 I Gi O asin bottom at Stage Half-Cen 0 ft) . 1 runoff volumes by 0 ft) . 0 ft) . 0.283 0.1 1.1 0.35	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Carl Carl Carl Carl Carl Carl Carl Carl	teir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = ilculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = : Orifice Centroid = tor Plate on Pipe = : Orifice Centroid = tor pof Freeboard = : Op of Freeboard = : Op of Freeboard = : Op of Freeboard = : Op of Freeboard = : On <i>the Inflow Hyo</i> 0.391 0.391 0.9 4.0 1.31	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 Zone 3 Restrictor 0.40 0.25 1.11 Calculated Parame 0.78 5.53 0.13 0.59 Vear 2.25 0.447 0.447 1.75 5.3 1.75	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	F). 500 Year 3.48 0.731 6.2 8.0 2.65
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (arce-ft) = Inflow Hydrograph Volume (arce-ft) = Inflow Hydrograph Volume (arce-ft) = OHTONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/arce) = Peak Inflow Q (cfs) =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Ra Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00 0.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet N/A 0.351 N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin I feet H:V feet % ectangular Orifice) ft (distance below be inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.219 0.219 0.0 0.3 0.10 5.4	bottom at Stage = 0 I Gi O O asin bottom at Stage Half-Cen 0 ft) . 1.50 0.283 0.283 0.1 1.1 0.35 6.9	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Ca = 0 ft) Or Outlet tral Angle of Restrict Spillway D Stage at 1 Basin Area at 1 Basin Volume at 1 entering new value 10 Year 1.75 0.334 0.334 0.1 2.2 0.71 8.2	teir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = Iculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = is in the Inflow Hyoo 0.391 0.391 0.9 4.0 1.31 9.8	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 2.29 2.29 2.00 2.29 2.29 2.00 2.29 2.000 2.0000 2.000 2.000 2.000 2.000 2.0000 2.000 2.000 2.	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	F). 500 Year ate radians F). 500 Year 3.48 0.731 6.2 8.0 2.65 17.9
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Nour Reiturn Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00 0.00 1.00 The user can overr WQCV N/A 0.094 N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A ft (relative to basin feet H:V feet <i>ide the default CUI</i> Feet H:V feet N/A N/A N/A N/A N/A	ft (relative to basin I feet H:V feet % ectangular Orifice) ft (distance below ba inches inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.219 0.219 0.219 0.3 0.10	bottom at Stage = 0 I Gi O asin bottom at Stage Half-Cen 0 ft) . 1 runoff volumes by 0 ft) . 0 ft) . 1.50 0.283 0.1 1.1 0.35	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Carl Carl Carl Carl Carl Carl Carl Carl	teir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = ilculated Parameter: utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = : Orifice Centroid = tor Plate on Pipe = : Orifice Centroid = tor pof Freeboard = : Op of Freeboard = : Op of Freeboard = : Op of Freeboard = : Op of Freeboard = : On <i>the Inflow Hyo</i> 0.391 0.391 0.9 4.0 1.31	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 Zone 3 Restrictor 0.40 0.25 1.11 Calculated Parame 0.78 5.53 0.13 0.59 Vear 2.25 0.447 0.447 1.75 5.3 1.75	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	F). 500 Year 3.48 0.731 6.2 8.0 2.65
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (arce-ft) = Inflow Hydrograph Volume (arce-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/arce) = Peak Inflow Q (cfs) = Ratio Peak Outflow V (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Ra Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00 0.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin I feet H:V feet % ectangular Orifice) ft (distance below be inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.219 0.219 0.219 0.0 0.3 0.10 5.4 0.1 N/A Plate	bottom at Stage = 0 1 Gi Half-Cen 0 ft) 5 Year 1.50 0.283 0.1 1.1 0.35 6.9 0.1 Plate	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Care = 0 ft) Or Outlet tral Angle of Restrict Spillway D Stage at 1 Basin Area at 1 Basin Volume at 1 entering new value 10 Year 1.75 0.334 0.334 0.1 2.2 0.71 8.2 0.1 Plate	teir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Top of Freeboard = is in the Inflow Hydo 0.391 0.391 0.391 0.9 4.0 1.31 9.8 0.2 0.1 Overflow Weir 1	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 Zone 3 Restrictor 0.40 0.25 1.11 Calculated Parame 0.78 5.53 0.13 0.59 Cographs table (Coo 50 Year 2.25 0.447 1.7 5.3 1.75 1.2 0.9 0.2 Spillway	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft² ft² ft² feet feet food feet soo Year 3.48 0.731 6.2 8.0 2.65 17.9 7.5 0.9 Spillway
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow Q (cfs) = Ratio Peak Outflow to Grade 1 (fps) = Ratio Peak Outflow Grade 1 (fps) = Max Velocity through Grade 1 (fps) =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00 0.00 1.00 The user can over WQCV N/A 0.094 N/A N/A N/A N/A Plate N/A	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basir feet H:V feet EURV K/A 0.351 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin I feet H:V feet % ectangular Orifice) ft (distance below be inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.210 0.219 0.219 0.210 0.219 0.210 0.219 0.210 0.219 0.2100 0.200 0.200 0.200 0.20000000000	bottom at Stage = 0 1 Gi O O asin bottom at Stage Half-Cen 0 ft) . (runoff volumes by 5 Year 1.50 0.283 0.283 0.1 1.1 0.35 6.9 0.1 Plate N/A	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Dverflow Grate Open Outlet tral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T entering new value 10 Year 1.75 0.334 0.334 0.334 0.334 0.334 0.1 2.2 0.1 0.1 Plate N/A	teir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = Iculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Cop of Co	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 2.29 2.29 2.000 2.0000 2.000 2.000 2.000 2.000 2.0000 2.000 2.000 2.	Not Selected N/A	F). 500 Year 3.48 0.731 0.9 Spillway 0.6
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Results OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, Q (Cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q Ratio Peak Outflow to Predevelopment Q Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Ra Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00 0.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.351 N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin I feet H:V feet % ectangular Orifice) ft (distance below ba inches inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.219 0.219 0.219 0.219 0.219 0.219 0.3 0.10 5.4 0.1 N/A Plate N/A N/A	Dottom at Stage = 0 I Gi O Dottom at Stage Half-Cen 0 ft)	t) Height of Gratu Overflow Wrate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Case (Case) (Ca	teir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = in Area w/o Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Top of Freeboard = is in the Inflow Hydo 0.391 0.391 0.391 0.9 4.0 1.31 9.8 0.2 0.1 Overflow Weir 1	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 Zone 3 Restrictor 0.40 0.25 1.11 Calculated Parame 0.78 5.53 0.13 0.59 1.78 5.53 0.13 0.59 1.75	Not Selected N/A	F). 500 Year ate ft ² feet radians F). 500 Year 3.48 0.731 6.2 8.0 2.65 17.9 5.0 9.5 0.9 Spillway 0.6 N/A
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow Q (cfs) = Ratio Peak Outflow to Grade 1 (fps) = Ratio Peak Outflow Grade 1 (fps) = Max Velocity through Grade 1 (fps) =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00 0.00 1.00 The user can overn WQCV N/A 0.094 N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A t (relative to basir feet H:V feet H:V feet H:V feet N/A 0.351 N/A 0.351 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin I feet H:V feet % ectangular Orifice) ft (distance below be inches inches h bottom at Stage = -// hydrographs and 2 Year 1.19 0.210 0.2100 0.200 0.200 0.20000000000	bottom at Stage = 0 1 Gi O O asin bottom at Stage Half-Cen 0 ft) . <i>runoff volumes by</i> 0 ft) . 0.1 0.1 0.1 0.1 0.1 N/A N/A N/A 89 74	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Dverflow Grate Open Outlet tral Angle of Restrict Spillway D Stage at 1 Basin Area at 1 Basin Volume at 1 Basin Volume at 1 entering new value 10 Year 1.75 0.334 0.334 0.334 0.334 0.1 2.2 0.1 0.1 2.2 0.1 0.1 73 79	teir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = in Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = in the Inflow Hyto 25 Year 2.000 0.391 0.391 0.9 4.0 1.31 9.8 0.2 0.1 Overflow Weir 1 0.0 N/A 77 83	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 2.29 2.29 2.29 2.29 2.29 2.000 2.0000 2.000 2.000 2.000 2.0000 2.0000 2.000 2.000 2	Not Selected N/A	F). 500 Year ate ft ² feet radians 500 Year 3.48 0.731 0.75 0.9 5pillway 0.6 N/A 8.0 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.75 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway End Slopes = Freeboard above Max Water Surface = CuHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) = Maximum Ponding Depth (ft) =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00 0.00 1.00 The user can over WQCV N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin I feet H:V feet 9% ectangular Orifice) ft (distance below be inches inches inches bottom at Stage = HP hydrographs and 2 Year 1.19 0.219 0.219 0.219 0.219 0.219 0.3 0.10 5.4 0.1 N/A Plate N/A Plate N/A 66 2.34	Doottom at Stage = 0 1 Gi O Doottom at Stage Half-Cen 0 ft)	t) Height of Grat Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Case Spillway D Stage at 1 Basin Volume at 1 Basin Volume at 1 Basin Volume at 1 Basin Volume at 1 Constant	teir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = in Area w/ Debris = lculated Parameters utlet Orifice Area = c Orifice Centroid = tor Plate on Pipe = cop of Freeboard = rop of Freeboard = rop of Freeboard = rop of Freeboard = cop of Freeboard	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 Zone 3 Restrictor 0.40 0.25 1.11 Calculated Parame 0.78 5.53 0.13 0.59 Calculated Parame 0.78 5.3 0.75 0.447 0.9 0.2 5.3 0.17 0.17 0.1 N/A 76 83 3.84	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	F). 500 Year ate ft ² feet radians 500 Year 3.48 0.731 0.6 0.6 0.6 0.6 0.71 0.71 0.721 0.721 0.721 0.731 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Redevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, Q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	Zone 3 Weir 3.56 1.25 3.00 2.50 Type C Grate 0% (Circular Orifice, Re Zone 3 Restrictor 2.50 18.00 5.00 Trapezoidal) 3.75 6.00 0.00 1.00 The user can overn WQCV N/A 0.094 N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A t (relative to basir feet H:V feet H:V feet H:V feet N/A 0.351 N/A 0.351 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin I feet H:V feet % ectangular Orifice) ft (distance below be inches inches h bottom at Stage = -// hydrographs and 2 Year 1.19 0.210 0.2100 0.200 0.200 0.20000000000	bottom at Stage = 0 1 Gi O O asin bottom at Stage Half-Cen 0 ft) . <i>runoff volumes by</i> 0 ft) . 0.1 0.1 0.1 0.1 0.1 N/A N/A N/A 89 74	t) Height of Grat Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Dverflow Grate Open Outlet tral Angle of Restrict Spillway D Stage at 1 Basin Area at 1 Basin Volume at 1 Basin Volume at 1 entering new value 10 Year 1.75 0.334 0.334 0.334 0.334 0.1 2.2 0.1 0.1 2.2 0.1 0.1 73 79	teir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = in Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = in the Inflow Hyto 25 Year 2.000 0.391 0.391 0.9 4.0 1.31 9.8 0.2 0.1 Overflow Weir 1 0.0 N/A 77 83	Zone 3 Weir 4.39 2.64 5.72 2.29 2.29 2.29 2.29 2.29 2.29 2.29 2.29 2.000 2.0000 2.000 2.000 2.000 2.0000 2.0000 2.000 2.000 2	Not Selected N/A	F). 500 Year ate ft ² feet radians 500 Year 3.48 0.731 0.75 0.9 5pillway 0.6 N/A 8.0 0.9 5pillway 0.6 0.71 8.0 0.9 5pillway 0.6 0.71 8.0 0.9 5pillway 8.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

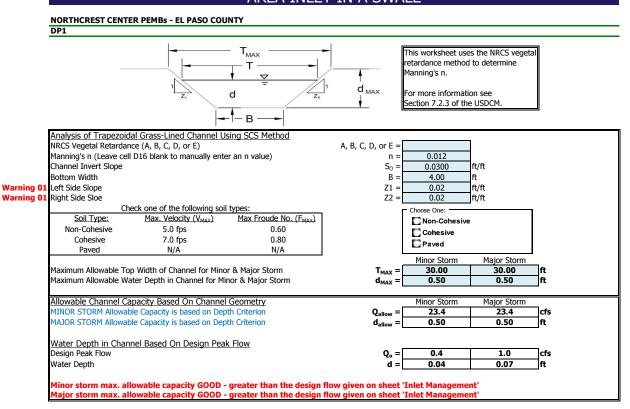
Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

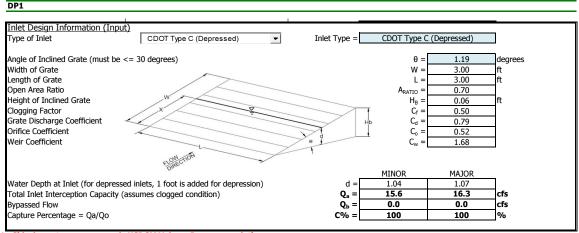
	The user can ov	verride the calcu	lated inflow hyd	rographs from t	his workbook w	ith inflow hydro	graphs develope	ed in a separate p	program.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.01	0.51
	0:15:00	0.00	0.00	0.93	1.51	1.86	1.25	1.52	1.51	2.34
	0:20:00	0.00	0.00	2.94	3.74	4.35	2.71	3.10	3.38	4.79
	0:25:00	0.00	0.00	5.38	6.95	8.20	5.25	6.02	6.41	9.17
	0:30:00	0.00	0.00	4.92	6.11	6.95	9.75	11.18	12.47	17.90
	0:35:00	0.00	0.00	3.37	4.09	4.63	8.24	9.41	11.37	16.17
	0:40:00	0.00	0.00	2.39	2.82	3.20	6.15	7.03	8.33	11.86
	0:50:00	0.00	0.00	1.51 1.08	1.92 1.49	2.24	4.30 3.21	4.90 3.65	6.19 4.46	8.83 6.38
	0:55:00	0.00	0.00	0.94	1.45	1.05	2.22	2.52	3.27	4.68
	1:00:00	0.00	0.00	0.89	1.16	1.41	1.81	2.06	2.82	4.04
	1:05:00	0.00	0.00	0.88	1.13	1.39	1.67	1.90	2.67	3.83
	1:10:00	0.00	0.00	0.73	1.12	1.38	1.39	1.57	1.89	2.70
	1:15:00	0.00	0.00	0.65	1.01	1.38	1.27	1.43	1.52	2.16
	1:20:00	0.00	0.00	0.61	0.91	1.22	1.06	1.20	1.10	1.54
	1:25:00	0.00	0.00	0.59	0.85	1.01	0.96	1.08	0.87	1.21
	1:30:00 1:35:00	0.00	0.00	0.59	0.83	0.90	0.81	0.91	0.79	1.09
	1:40:00	0.00	0.00	0.59	0.82	0.85	0.74	0.83	0.75	1.04
	1:45:00	0.00	0.00	0.59	0.68	0.83	0.69	0.80	0.75	1.03
	1:50:00	0.00	0.00	0.59	0.58	0.82	0.69	0.78	0.75	1.03
	1:55:00	0.00	0.00	0.43	0.56	0.78	0.69	0.78	0.75	1.03
	2:00:00	0.00	0.00	0.36	0.52	0.66	0.69	0.78	0.75	1.03
	2:05:00	0.00	0.00	0.16	0.24	0.31	0.33	0.37	0.35	0.49
	2:10:00	0.00	0.00	0.07	0.11	0.13	0.14	0.16	0.16	0.21
	2:15:00	0.00	0.00	0.03	0.04	0.05	0.06	0.07	0.06	0.09
	2:20:00 2:25:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02
	2:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00 3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00 4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.06 (July 2022)

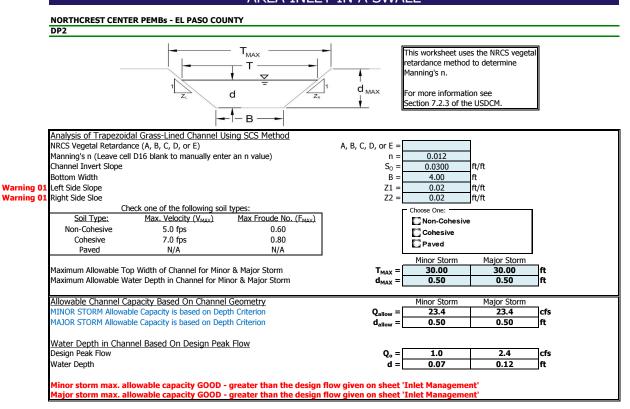
Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

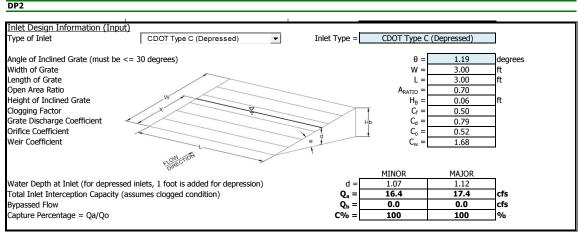

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor) from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice, overflow grate, and spillway,
							where applicable).
							· FF - · · · · · · · · · · · · · · ·
							İ
							İ
							ļ
							ļ
							ł
							ł
							ł
							t
							İ
							ļ
							ł
							ł
							İ
							ł
							ł
							ł
							1
							ļ
							İ
							Į
							ł
							ł
						•	
							T
							I I
							* * * * * * * *

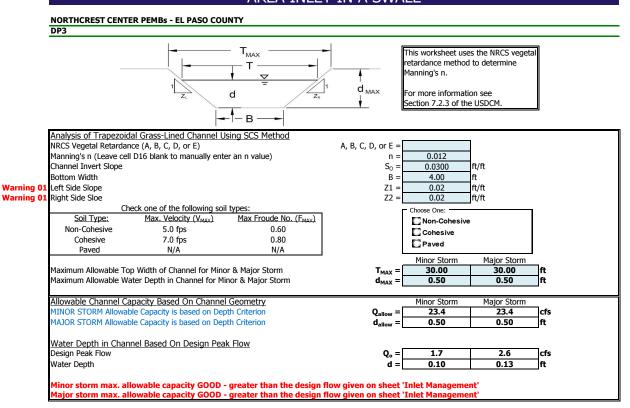
MHFD-Inlet, Version 5.01 (April 2021) INLET MANAGEMENT

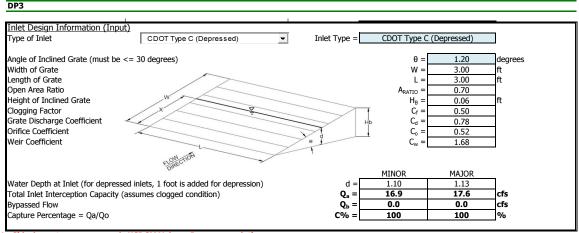

INLET NAME	DP1	DP2	DP6	DP5	DP3	DP8
Site Type (Urban or Rural)						
Inlet Application (Street or Area)	AREA	AREA	STREET	STREET	AREA	AREA
Hydraulic Condition	Swale	Swale	On Grade	On Grade	Swale	Swale
Inlet Type	CDOT Type C (Depressed)	CDOT Type C (Depressed)	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type C (Depressed)	CDOT Type C (Depressed)

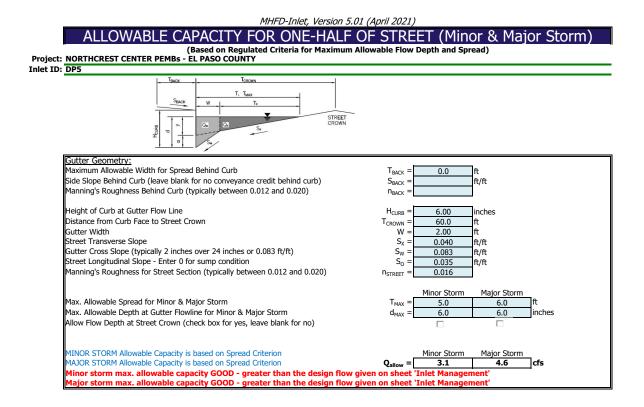
R-DEFINED INPUT						
Iser-Defined Design Flows						
linor Q _{Known} (cfs)	0.4	1.0	1.4	2.3	1.7	0.1
lajor Q _{Known} (cfs)	1.0	2.4	2.4	4.1	2.6	0.4
Bypass (Carry-Over) Flow from Upstream						
eceive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
linor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
fajor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
Vatershed Characteristics						
ubcatchment Area (acres)						
ercent Impervious						
RCS Soil Type						
Watershed Profile				1		
Overland Slope (ft/ft)						
Overland Length (ft)						
Channel Slope (ft/ft)						
hannel Length (ft)						
Minor Storm Rainfall Input						
esign Storm Return Period, T _r (years)						1
Dine-Hour Precipitation, P ₁ (inches)						
the right receptation, r1 (menes)						
Major Storm Rainfall Input						
Design Storm Return Period, Tr (years)						
One-Hour Precipitation, P1 (inches)						
CULATED OUTPUT						
Minor Total Design Peak Flow, O (cfs)	0.4	1.0	1.4	2.3	1.7	0.1

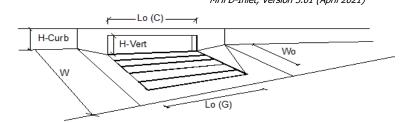

	Minor Total Design Peak Flow, Q (cfs)	0.4	1.0	1.4	2.3	1./	0.1
L	Major Total Design Peak Flow, Q (cfs)	1.0	2.4	2.4	4.1	2.6	0.4
L	Minor Flow Bypassed Downstream, Qb (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
L	Major Flow Bypassed Downstream, Qb (cfs)	0.0	0.0	0.0	0.0	0.0	0.0
L							

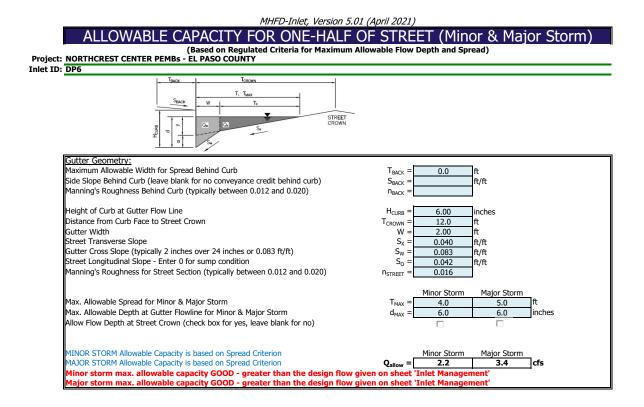

NORTHCREST CENTER PEMBs - EL PASO COUNTY

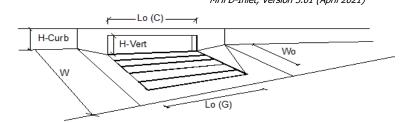

Warning 01: Sideslope steepness exceeds USDCM Volume I recommendation. Warning 02: Depth (d) exceeds USDCM Volume I recommendation.

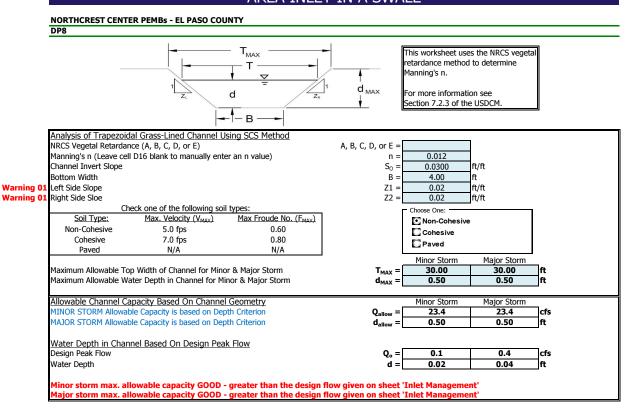

NORTHCREST CENTER PEMBs - EL PASO COUNTY

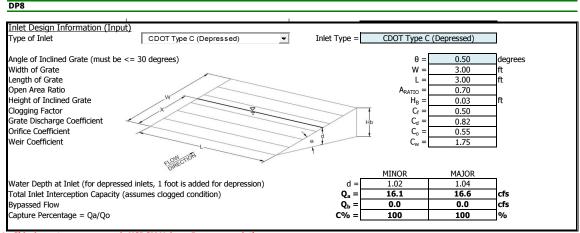

Warning 01: Sideslope steepness exceeds USDCM Volume I recommendation. Warning 02: Depth (d) exceeds USDCM Volume I recommendation.


NORTHCREST CENTER PEMBs - EL PASO COUNTY


Warning 01: Sideslope steepness exceeds USDCM Volume I recommendation. Warning 02: Depth (d) exceeds USDCM Volume I recommendation.


INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)


Design Information (Input)	1	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	2.3	4.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	100	%


INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input)		MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.3	2.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q_a/Q_o =	C% =	100	100	%

NORTHCREST CENTER PEMBs - EL PASO COUNTY

Warning 01: Sideslope steepness exceeds USDCM Volume I recommendation. Warning 02: Depth (d) exceeds USDCM Volume I recommendation.

Warning 04: Froude No. exceeds USDCM Volume I recommendation.

	Design Procedure Form: Extended Detention Basin (EDB)						
	UD-BM	IP (Version 3.07, March 2018)	Sheet 1 of 3				
Designer:	Destru Mountain Oreun						
Company: Date:	Rocky Mountain Group February 8, 2023						
Project:	Northcrest						
Location:							
1. Basin Storage V	/olume						
A) Effective Imp	erviousness of Tributary Area, I _a	I _a = 86.5 %					
B) Tributarv Are	a's Imperviousness Ratio (i = I _a / 100)	i = 0.865					
C) Contributing	Watershed Area	Area = <u>3.020</u> ac					
D) For Watersh Runoff Prod	neds Outside of the Denver Region, Depth of Average ucing Storm	d ₆ = in					
	-	Choose One					
E) Design Cond (Select EUR)	cept V when also designing for flood control)	O Water Quality Capture Volume (WQCV)					
		Excess Urban Runoff Volume (EURV)					
	me (WQCV) Based on 40-hour Drain Time I.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} =ac-ft					
	neds Outside of the Denver Region,	V _{DESIGN OTHER} = ac-ft					
Water Quali	ty Capture Volume (WQCV) Design Volume						
(Vwqcv other	$R = (d_6^*(V_{\text{DESIGN}}/0.43))$						
	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} = 0.094 ac-ft					
	logic Soil Groups of Tributary Watershed ge of Watershed consisting of Type A Soils	HSG _A = 100 %					
ii) Percenta	age of Watershed consisting of Type B Soils	HSG _B = 0%					
	age of Watershed consisting of Type C/D Soils	HSG _{cr0} = 0%					
	n Runoff Volume (EURV) Design Volume : EURV _A = 1.68 * i ^{1.28}	EURV _{DESIGN} = ac-f t					
For HSG B:	: EURV _B = 1.36 * i ^{1.08}						
	/D: EURV _{C/D} = 1.20 * i ^{1.08}						
	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} = 0.257 ac-f t					
	ength to Width Ratio	L : W = <u>3.0</u> : 1					
(A basin length t	to width ratio of at least 2:1 will improve TSS reduction.)						
3. Basin Side Slop	es.						
 A) Basin Maxim (Horizontal of the second seco	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 1.00 ft / ft TOO STEEP (< 3)					
4. Inlet							
A) Describe me	eans of providing energy dissipation at concentrated						
inflow location	ons:						
5. Forebay							
A) Minimum Fo	rebay Volume = 2% of the WQCV)	V _{FMIN} = ac-ft					
B) Actual Foreb	bay Volume	$V_{\rm F} = 0.003$ ac-ft					
C) Forebay Dep (D _F		D _F = 8.0 in					
D) Forebay Disc	charge						
i) Undetaine	ed 100-year Peak Discharge	Q ₁₀₀ = 10.33 cfs					
	Discharge Design Flow	Q _F =cfs					
(Q _F = 0.02	2 ~ Q ₁₀₀)						
E) Forebay Disc	charge Design	Choose One					
		Berm With Pipe Flow too small for berm w/ pip Wall with Rect. Notch	e				
		Wall with Kect. Notch					
E) Discharge Di-	ne Size (minimum &inches)	Calculated $D_p =$					
	pe Size (minimum 8-inches)						
G) Rectangular	Notch Width	Calculated $W_N = 3.0$ in	I				
180649_UD-BMP_	_v3.07, EDB	Forebay #1 (West)	2/8/2023, 9:25 AM				

	Design Procedure Form: Extended Detention Basin (EDB)						
	UD-BM	P (Version 3.07, March 2018)	Sheet 1 of 3				
Designer:	Destru Mountain Oreun						
Company: Date:	Rocky Mountain Group February 8, 2023						
Project:	Northcrest						
Location:							
1. Basin Storage V	/olume						
A) Effective Imp	erviousness of Tributary Area, I _a	l _a = 86.5 %					
B) Tributary Are	a's Imperviousness Ratio (i = I _a / 100)	i = 0.865					
C) Contributing	Watershed Area	Area = <u>3.020</u> ac					
D) For Watersh Runoff Prod	neds Outside of the Denver Region, Depth of Average ucing Storm	d ₆ = in					
	-	Choose One					
E) Design Cond (Select EUR)	cept V when also designing for flood control)	O Water Quality Capture Volume (WQCV)					
		Excess Urban Runoff Volume (EURV)					
	me (WQCV) Based on 40-hour Drain Time I.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} =ac-ft					
	neds Outside of the Denver Region,	V _{DESIGN OTHER} ≡ac-ft					
Water Quali	ty Capture Volume (WQCV) Design Volume						
(Vwqcv other	$R = (d_6^*(V_{\text{DESIGN}}/0.43))$						
	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} = 0.094 ac-ft					
	logic Soil Groups of Tributary Watershed ge of Watershed consisting of Type A Soils	HSG _A = 100 %					
ii) Percenta	age of Watershed consisting of Type B Soils	HSG _B = 0 %					
	age of Watershed consisting of Type C/D Soils	$HSG_{C/D} = 0$ %					
	n Runoff Volume (EURV) Design Volume : EURV _A = 1.68 * i ^{1.28}	EURV _{DESIGN} = ac-f t					
For HSG B:	: EURV _B = 1.36 * i ^{1.08}						
	/D: EURV _{C/D} = 1.20 * i ^{1.08}						
	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} = 0.257 ac-f t					
	ength to Width Ratio	L : W = <u>3.0</u> : 1					
(A basin length t	to width ratio of at least 2:1 will improve TSS reduction.)						
3. Basin Side Slop	es.						
 A) Basin Maxim (Horizontal of the second seco	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 1.00 ft / ft TOO STEEP (< 3)					
4. Inlet							
A) Describe me	eans of providing energy dissipation at concentrated						
inflow location	ons:						
5. Forebay							
A) Minimum Fo	rebay Volume = 2% of the WQCV)	V _{FMIN} = 0.002 ac-ft					
B) Actual Foreb	bay Volume	$V_{\rm F} = 0.003$ ac-ft					
C) Forebay Dep (D _F		D _F = 8.0 in					
D) Forebay Disc	charge						
i) Undetaine	ed 100-year Peak Discharge	Q ₁₀₀ = 4.07 cfs					
	Discharge Design Flow	Q _F = 0.08 cfs					
(Q _F = 0.02	2 ~ Q ₁₀₀)						
E) Forebay Disc	charge Design	Choose One					
		Berm With Pipe Flow too small for Wall with Rect. Notch	berm w/ pipe				
		Wall with Kect. Notch					
E) Discharge Di-	ne Size (minimum &inches)	Calculated D _e =in					
	pe Size (minimum 8-inches)						
G) Rectangular	Notch Width	Calculated $W_N = 2.1$ in	I				
180649_UD-BMP_	_v3.07, EDB	Forebay #2 (East)	2/8/2023, 9:26 AM				

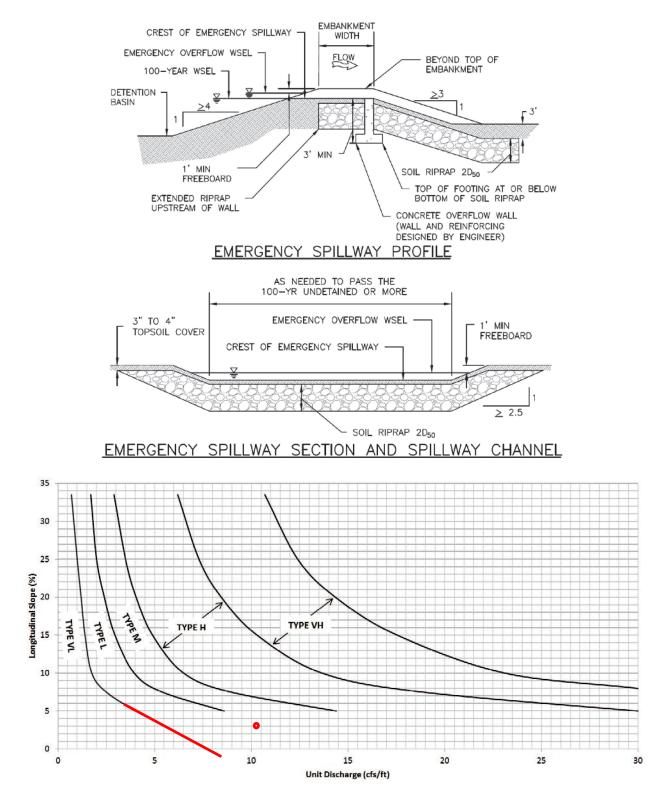


Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County)

Forebay #1 (West) ~~ Slope = 3% and 100-Year Peak Discharge = 10.33 cfs

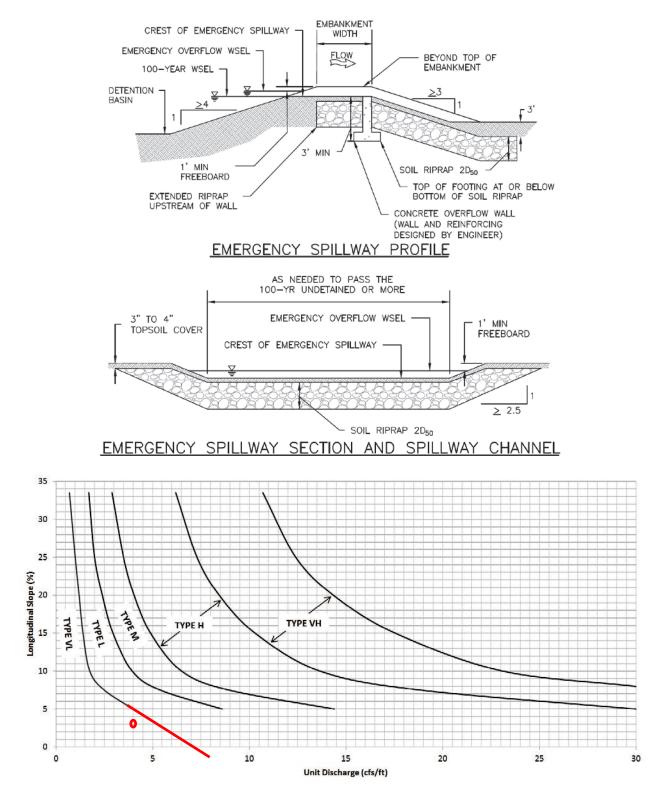


Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County) Forebay #2 (East)~~ Slope = 3% and 100-Year Peak Discharge = 4.07 cfs

Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County)

Emergency Spillway ~~ Slope = 1% and 100-Year Peak Discharge = 2.3 cfs

APPENDIX C – FEMA FLOODPLAIN MAP

National Flood Hazard Layer FIRMette

250

n

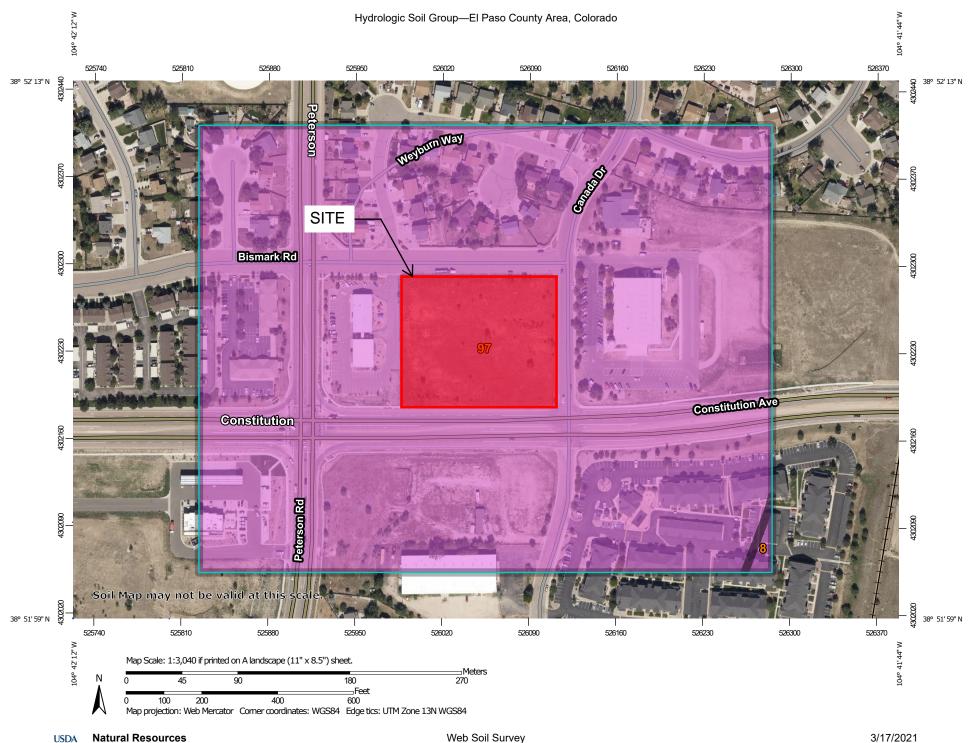
500

1,000

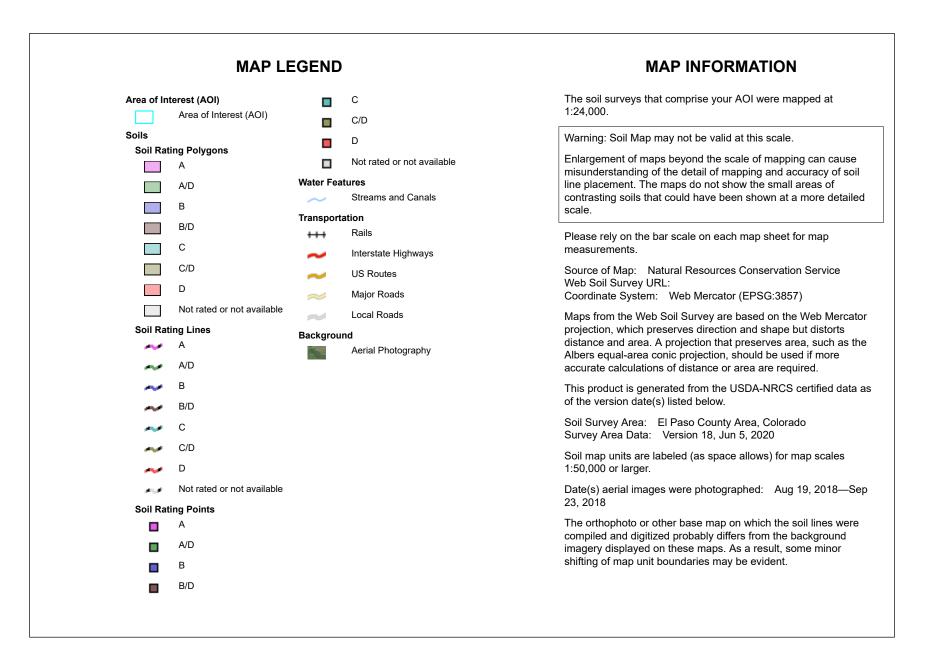
1,500

Legend

unmapped and unmodernized areas cannot be used for


regulatory purposes.

104°42'18"W 38°52'21"N SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Zone A. V. A9 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X T13S R65W S032 T13S R65W S031 Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D - — – – Channel, Culvert, or Storm Sewer SITE GENERAL STRUCTURES LIIII Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation ARE TO MINIMAL FLOOL HAZARD EL PASO COUNTY **Coastal Transect** Base Flood Elevation Line (BFE) 080059 Limit of Study Jurisdiction Boundary ---- Coastal Transect Baseline OTHER **Profile Baseline** FEATURES Hydrographic Feature **Digital Data Available** No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. T14S R65W S005 14S R65W S006 The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 3/17/2021 at 3:21 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 104°41'41"W 38°51'53"N


Feet 1:6,000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

 $\label{eq:appendix} Appendix \ D-USGS \ Soils \ Survey \ Map$

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 3/17/2021 Page 1 of 4

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	0.2	0.4%
97	Truckton sandy loam, 3 to 9 percent slopes	A	40.9	99.6%
Totals for Area of Intere	est		41.1	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

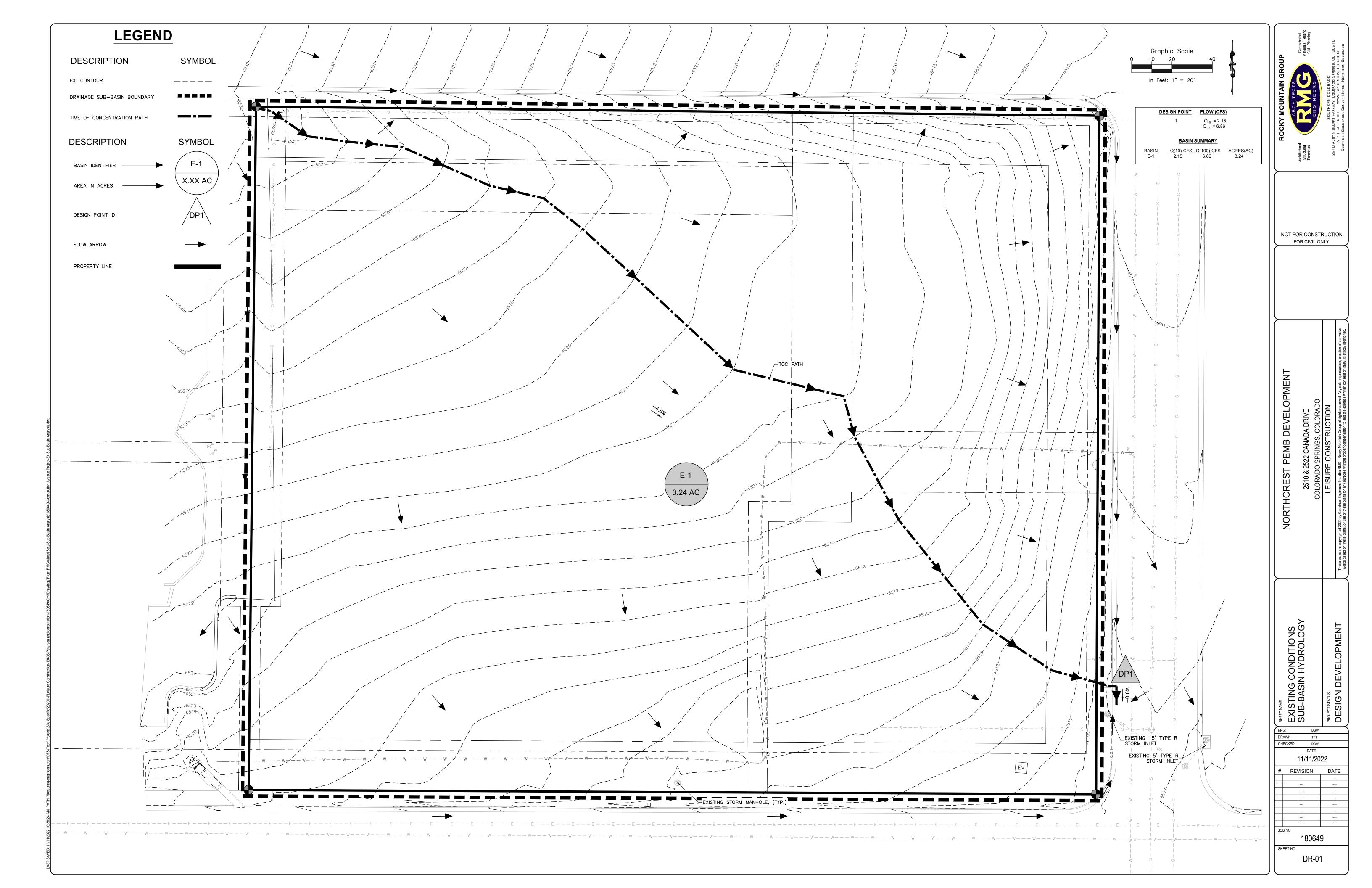
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

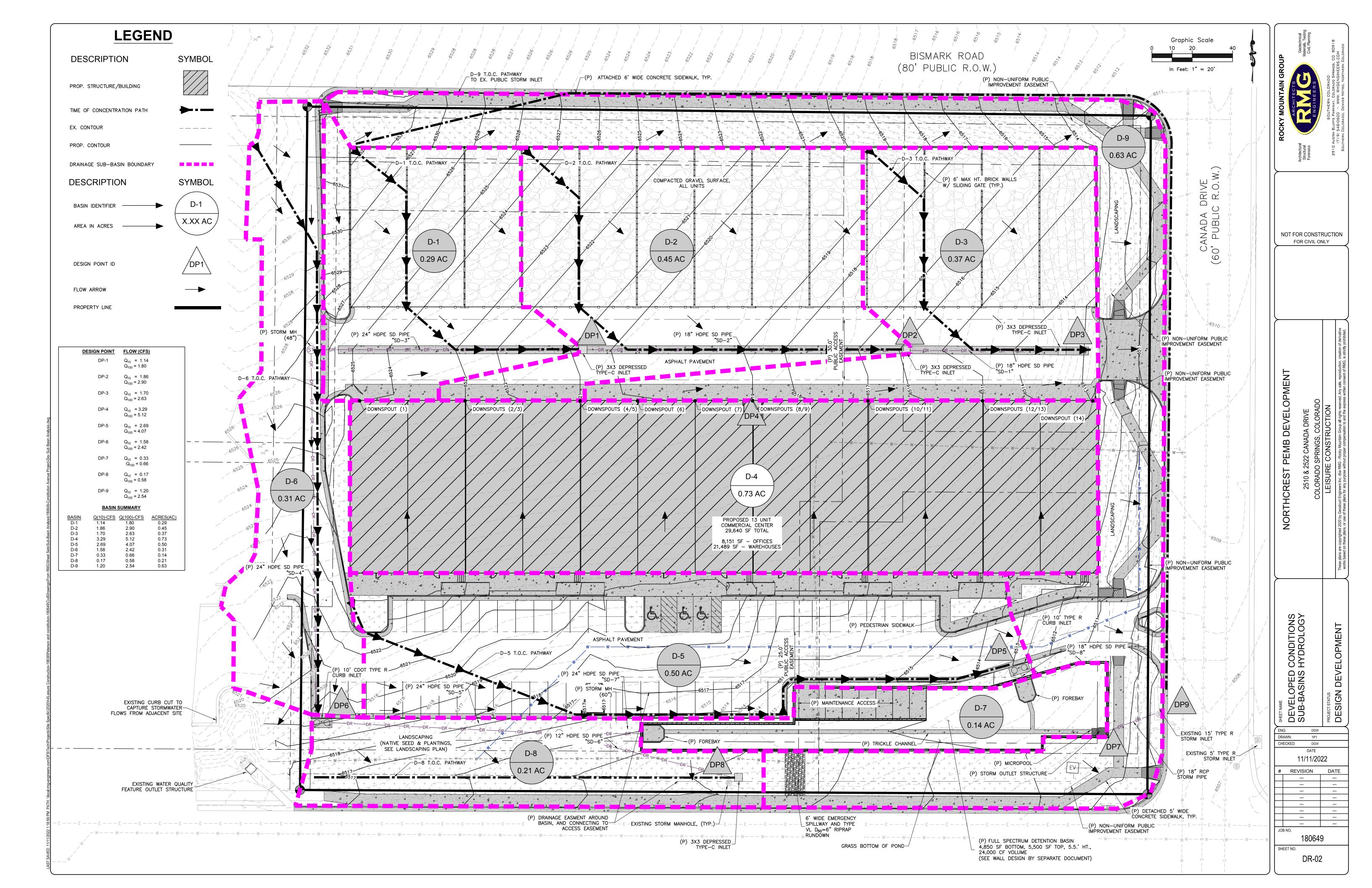
Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


Rating Options


Aggregation Method: Dominant Condition

USDA

Component Percent Cutoff: None Specified Tie-break Rule: Higher

APPENDIX E - DRAINAGE PLANS

