Architecture Structural Geotechnical

Materials Testing Forensic Civil/Planning

ROCKY MOUNTAIN GROUP EMPLOYEE OWNED

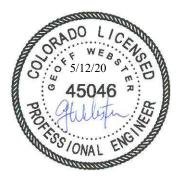
PAVEMENT DESIGN REPORT

The Gardens at North Carefree El Paso County, Colorado

PREPARED FOR:

Covington Properties, LLC 13725 Struthers Road, Suite 201 Colorado Springs, CO 80921

JOB NO. 171800


May 12, 2020

Respectfully Submitted,

RMG – Rocky Mountain Group

Geoff Webster, P.E. Sr. Geotechnical Project Engineer

EPC: SF 195

TABLE OF CONTENTS

GENERAL SITE AND PROJECT DESCRIPTION	3
Location	3
Existing Conditions	3
Project Description	3
FIELD INVESTIGATION AND SUBSURFACE CONDITIONS	3
Drilling	3
Subsurface Materials	3
Groundwater	
LABORATORY TESTING	4
Laboratory Testing	
PAVEMENT DESIGN	6
Pavement Thickness	7
Pavement Materials	
Soil Mitigation	
Subgrade Preparation	
Surface Drainage	
Subgrade Observations and Testing	8
CLOSING	8

FIGURES

Site Vicinity Map	1
Test Boring Location Plan	
Recommended Pavement Section	
Explanation of Test Boring Logs	3
Test Boring Logs	4-7
Summary of Laboratory Test Results	8
Soil Classification Data	
Swell/Consolidation Test Results	11-12
Moisture-Density Relationship Curve	13
California Bearing Ratio Test Results	14-15

APPENDIX A

1993 AASHTO Empirical Equation for Flexible Pavements

Location

The Gardens at North Carefree is located at the southeast intersection of Akers Drive and North Carefree Circle. The location of the site is shown on the Site Vicinity Map, Figure 1.

Existing Conditions

At the time of our field investigation, the proposed streets were close to grade and utility mains and services had been installed. Curb and gutter had not been installed.

Project Description

This Pavement Design Report was performed to determine the subsurface conditions present along the roadway alignments and to develop recommendations for the design and construction of the proposed flexible pavements.

The proposed streets included in this investigation are shown on Figure 2. The streets considered below are classified as Urban Local Residential as shown on Sheet 3 of 34 of *The Gardens at North Carefree* Construction Drawings (SF-195). Fallow Lane and Running Deer Way have 50-foot wide Right- of-Ways (ROW) and two 15-foot wide travel lanes. Vineyard Circle has a 45-foot ROW with two 15-foot wide travel lanes.

FIELD INVESTIGATION AND SUBSURFACE CONDITIONS

Drilling

The subsurface conditions on the site were investigated by drilling eight (8) exploratory test borings at maximum 500-foot spacing along the roadways. The approximate locations of the test borings are presented in the Test Boring Location Plan, Figure 2.

The test borings were advanced with a power-driven, continuous-flight auger drill rig to depths of about 5 to 10 feet below the existing ground surface. Samples were obtained in general accordance with ASTM D-3550 utilizing a 2¹/₂-inch OD modified California sampler. Representative bulk samples of subsurface materials were obtained from each boring at a depth of approximately 0 to 2 feet below the existing ground surface. An Explanation of Test Boring Logs is presented in Figure 3. The Test Boring Logs are presented in Figures 4 through 7.

Subsurface Materials

The subsurface materials encountered in the test borings consisted primarily of silty and clayey sand. Combined bulk samples of the material classified as SM and SC according to the Unified Classification System. For pavement design, bulk samples of the soil were classified as A-2-4, A-4, and A-6 soil in accordance with the American Association of State Highway and Transportation Officials (ASSHTO) classification system. This soil is suitable as subgrade material when prepared as recommended below.

Groundwater

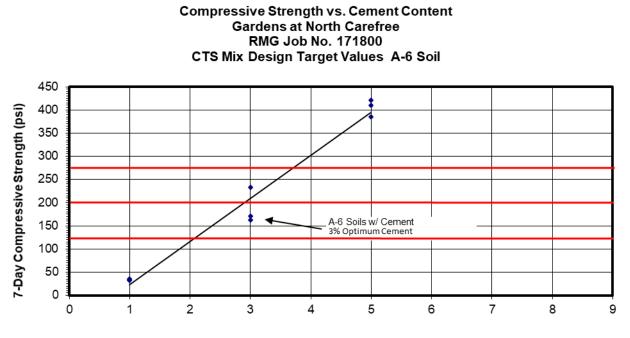
Groundwater was not encountered in the test borings at the time of drilling. Groundwater is not expected to affect the construction of the pavements. Fluctuations in groundwater and subsurface moisture conditions may occur due to variations in precipitation and other factors not readily apparent at this time. Development of the property and adjacent properties may also affect groundwater levels.

LABORATORY TESTING

Laboratory Testing

The moisture content for the recovered samples was obtained in the laboratory. Grain-size analysis and Atterberg Limits tests were performed on selected samples to classify the soil and to develop pertinent engineering properties. Swell/Consolidation tests were performed to determine the expansive potential of the soil. A Summary of Laboratory Test Results is presented in Figure 8. Soil Classification Data are presented in Figures 9 and 10.

Swell/Consolidation tests were performed on A-6 soil with PI greater than 10. Laboratory testing indicates the subgrade soil exhibited a maximum swell potential of 1.1 percent, with an average swell potential of 0.73 percent. As this value is less than the 2 percent stipulated in the Engineering Criteria Manual, mitigative measures are not applicable. Swell test results are presented in Figures 11 and 12.


As A-6 soil represents the least favorable subgrade classification, California Bearing Ratio tests (CBR) were performed on a combined bulk sample of A-6 soil. The optimum moisture-density relationship was determined in accordance with ASTM D-698 (Standard Proctor compaction test). CBR tests were performed at varying densities with moisture content near optimum. At 95% of the maximum Standard Proctor Density, the CBR of the A-6 soil was 5.1. The Moisture-Density Relation Curve is presented in Figure 13. CBR Test Results are presented in Figures 14 and 15.

The developer intends to install a composite roadway section consisting of Hot Mix Asphalt over Cement-Treated Subgrade (CTS). RMG performed a CTS Mix Design for this composite section.

Specimens of soil composed of the A-6 subgrade materials and Portland cement were prepared by varying the "percent cement by weight" at target values of 1, 3, and 5 percent cement. Three specimens (pucks) were prepared for each target cement value, compacted to 95% of the maximum Standard Proctor density and cured in a saturated condition for 7-days. The compressive strength of each specimen was then determined upon completion of the 7-day curing process. The A-6 compressive strengths are presented in the table below:

CTS Puck	Age/Day	Cap & Plate	Area of Sample	Dial Reading	Load LBF	Total Load	PSI
1A	7	2.12	12.566	40	404.7	406.8	32
1B	7	2.12	12.566	40	404.7	406.8	32
1C	7	2.12	12.566	44	445.1	447.3	36
3A	7	2.12	12.566	212	2144.8	2146.9	171
3B	7	2.12	12.566	289	2923.8	2925.9	233
3C	7	2.12	12.566	202	2043.6	2045.8	163
5A	7	2.12	12.566	509	5149.6	5151.7	410
5B	7	2.12	12.566	478	4835.9	4838.0	385
5C	7	2.12	12.566	523	5291.2	5293.3	421

The data values were then plotted as a function of "7-day Compressive Strength versus Percent Cement by Weight". In accordance with the El Paso County Engineering Criteria Manual, the target "percent cement by weight" was selected to obtain strengths in the lower Strength Coefficient (SC) categories (SC = 0.11, 125-200 psi; SC = 0.12, 200-275 psi). A target SC = 0.11 is used for CTS soil in the pavement design procedure presented below. Based upon an evaluation of the test data, a target range of 3.0 percent cement is recommended in all roadway sections to maintain strengths below the 275-psi threshold stipulated in the Engineering Criteria Manual. See CTS Graph below.

% Cement By Weight

PAVEMENT DESIGN

The discussion presented below is based on the subsurface conditions encountered in the test borings, laboratory test results and the project characteristics previously described. The conclusions and recommendations presented in this report should be verified by RMG during construction.

The pavement design was performed in accordance with the El Paso County Engineering Criteria Manual, Appendix D. Pavement design parameters and design calculations are presented below utilizing the CBR value for A-6 subgrade soil.

Street Classification – Urban Local Residential

- 1) Vineyard Circle, Fallow Lane, Running Deer Way ESAL = 292,000 (Table D-2) Serviceability Index = 2.0 (Table D-1) Reliability = 80% (Table D-1)
- 2) Strength coefficients (Table D-3) Asphalt (HMA): a₁ = 0.44 Cement Treated Subgrade (CTS): a₂ = 0.11
- 3) Subgrade $M_r = CBR \ge 1500 = 5.1 \ge 1500 = 7,650 \text{ psi}$
- 4) Structural number (SN) = 2.60 (1993 AASHTO Empirical Equation, Appendix A)
- 5) Composite asphalt/cement treated subgrade section Minimum HMA thickness = D_1 = 3 inches (Table D-2) CTS thickness = D_2 = {SN - (D_1 x a₁)} / a₂ = {2.60 - (3 x 0.44)} / 0.11 = 11.6 inches
- 6) In accordance with El Paso County ECM, Section D.4, Paragraph F, *The base course thickness selected cannot exceed 2.5 times the HMA thickness selected.* Therefore, try Asphalt thickness = 3.75 inches CTS thickness = D₂ = {SN - (D₁ x a₁)} / a₂ = {2.60 - (3.75 x 0.44)} / 0.11 = 8.6 inches Use HMA = 3.75 inches and CTS = 9 inches

Check $SN = (3.75 \times 0.44) + (9 \times 0.11) = 2.64 > 2.60$ (Min. SN required) => OK

Pavement Thickness

Based on the soil types and the design calculations, the recommended pavement section is presented below and on Figure 2.1.

Streets	HMA (in)	CTS (in)
Vineyard Circle, Fallow Lane, Running Deer Way	3.75	9.0

Recommended Pavement Section

Pavement Materials

Pavement materials should be selected, prepared, and placed in accordance with El Paso County specifications and the *Pikes Peak Region Asphalt Paving Specifications*. Tests should be performed in accordance with the applicable procedures presented in the specifications.

Soil Mitigation

The PDCM notes that mitigation measures may be required for expansive soils, shallow ground water, subgrade instability, etc. Based on the AASHTO classification of the soils in the subdivision and laboratory swell testing, the subgrade soils evaluated for this pavement design will have nil to low expansive potential. Groundwater or wet and unstable soils were not encountered in the borings. Therefore, special mitigation measures do not appear to be necessary for subgrade preparation.

Subgrade Preparation

Subgrade for The Gardens at North Carefree shall be Cement Treated Subgrade (CTS) composed of a mixture of local soil, water, and Portland cement compacted at optimum moisture. Prior to CTS construction, the existing soil should be proof-rolled to a firm and unyielding condition. Areas that deform under wheel loads should be removed and replaced. The soil should then be scarified, pulverized, mixed with cement and water, compacted, finished and cured in lengths that allow the full roadway width to be completed in not more than 4 hours from the time that cement is exposed to water.

The quantity of cement shall be by weight as a percentage of the dry weight of the soil as specified herein (3% optimum), and should be applied uniformly on the soil to create a cement and water mixture for the full design width and depth. Mixing should be continuous until the mixture is at optimum moisture and ready for compacting and finishing. Compaction should begin within 30 minutes of mixing. CTS should be maintained in a moist condition during the curing process, and all traffic except for necessary construction equipment should be kept off the CTS for a minimum of 7 days.

CTS testing shall be in accordance with the El Paso County Engineering Criteria Manual. CTS compressive strength test results shall be submitted to the County prior to the placement of the asphalt, in part to confirm the requirement for micro fracturing (MF). Micro fracturing of the CTS shall be performed when 7-day compressive strength test results indicate CTS strength in excess of 275 psi. The subgrade should be kept in a moist cured condition for 48 to 72 hours before any micro fracturing is performed by a heavy (12-ton) steel drum vibratory roller operating at maximum amplitude. After satisfactory completion of micro fracturing, the subgrade should continue to be moist cured by sprinkling or other means.

Surface Drainage

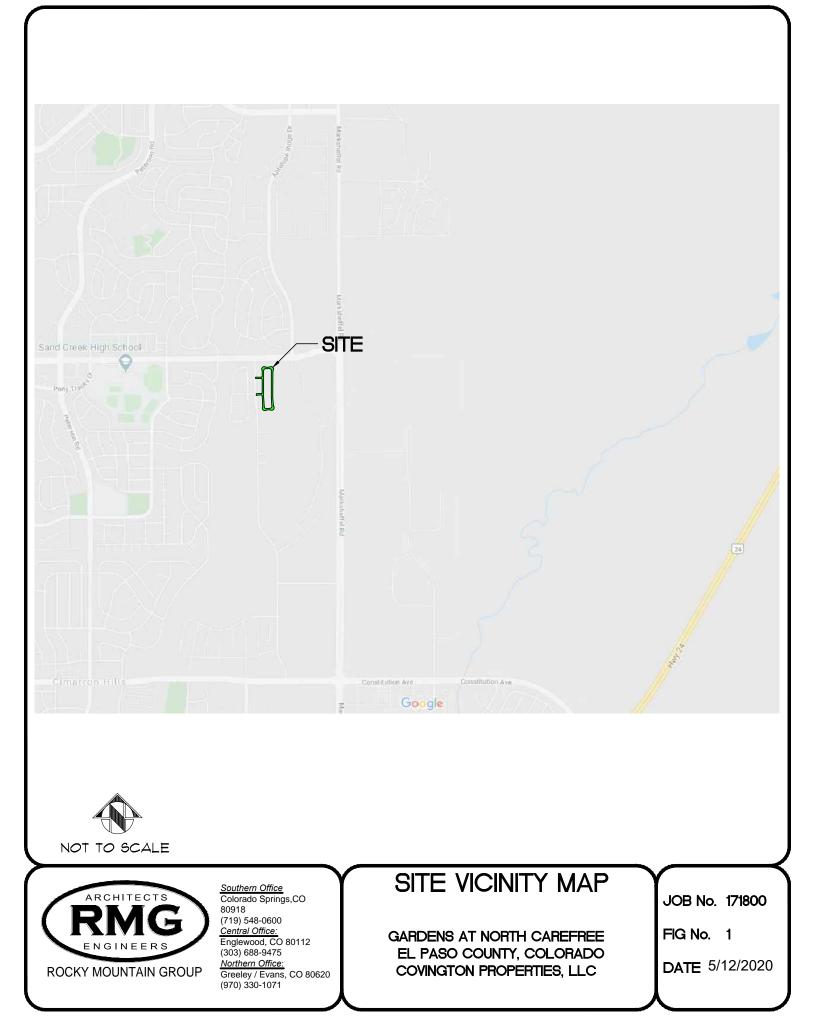
Surface drainage is important for the satisfactory performance of pavement. Wetting of the subgrade soils or base course will cause a loss of strength that can result in pavement distress. Surface drainage should provide for efficient removal of storm-water runoff. Water should not pond on the pavement or at the edges of the pavement.

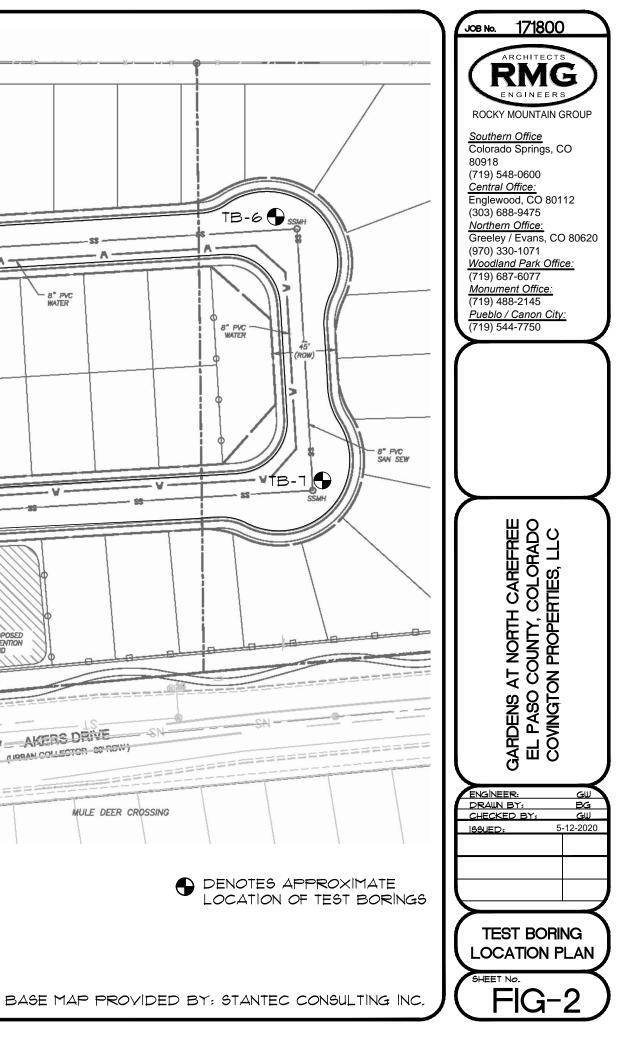
Subgrade Observations and Testing

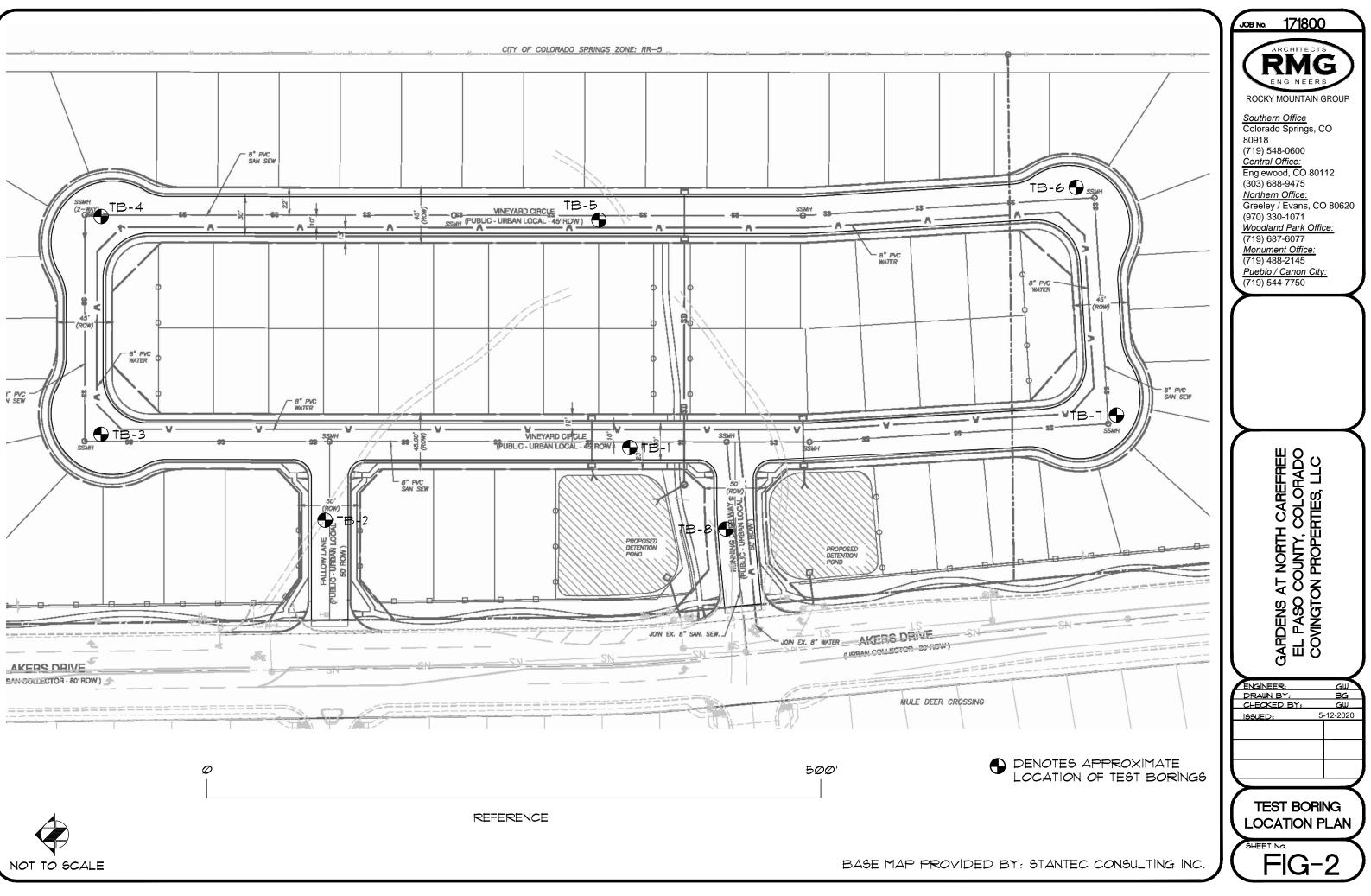
The pavement thicknesses presented above assume pavement construction is completed in accordance with El Paso County specifications and the *Pikes Peak Region Asphalt Paving Specifications*. RMG should be present at the site during subgrade preparation, placement of fill, and construction of pavements to perform site observations and testing.

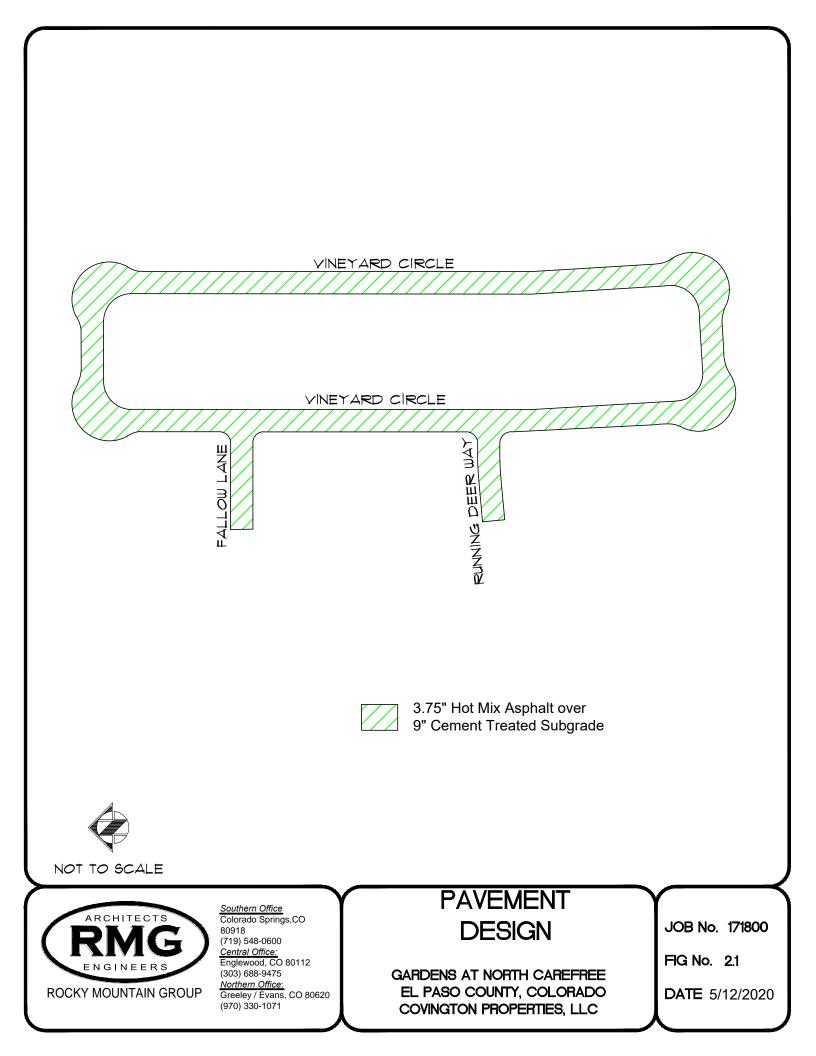
CLOSING

Our field exploration was conducted to provide geotechnical information for pavement thickness design. Variations in subsurface conditions not indicated by the borings may be encountered. This report has been prepared for **Covington Properties, LLC** for application as an aid in the design of the proposed development in accordance with generally accepted geotechnical engineering practices. The analyses and recommendations in this report are based in part upon data obtained from exploratory borings and test pits, site observations and the information presented in referenced reports. The nature and extent of variations may not become evident until construction. If variations then become evident, RMG should be retained to re-evaluate the recommendations of this report, if necessary.


Our professional services were performed using that degree of care and skill ordinarily exercised, under similar circumstances, by geotechnical engineers practicing in this or similar localities. RMG Engineers does not warrant the work of regulatory agencies or other third parties supplying information that may have been used during the preparation of this report. No warranty, express or implied is made. Any contractor reviewing this report for bidding purposes must draw his own conclusions regarding site conditions and specific construction techniques to be used on this project.

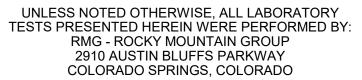

This report is for the exclusive purpose of providing geotechnical information and pavement thickness design recommendations. The scope of services for this project does not include, either specifically or by implication, environmental assessment of the site or identification of contaminated or hazardous materials or conditions. Development of recommendations for the mitigation of environmentally related conditions, including but not limited to biological or toxicological issues, are beyond the scope of this


report. If the Client desires investigation into the potential for such contamination or conditions, other studies should be undertaken.

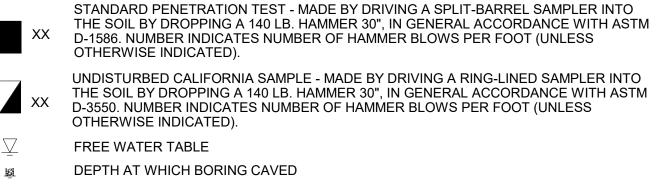

If we can be of further assistance in discussing the contents of this report or analysis of the proposed development, from a geotechnical engineering point-of-view, please feel free to contact us.

FIGURES

SOILS DESCRIPTION

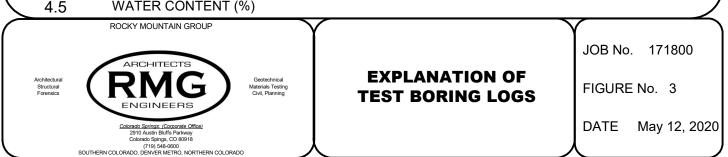


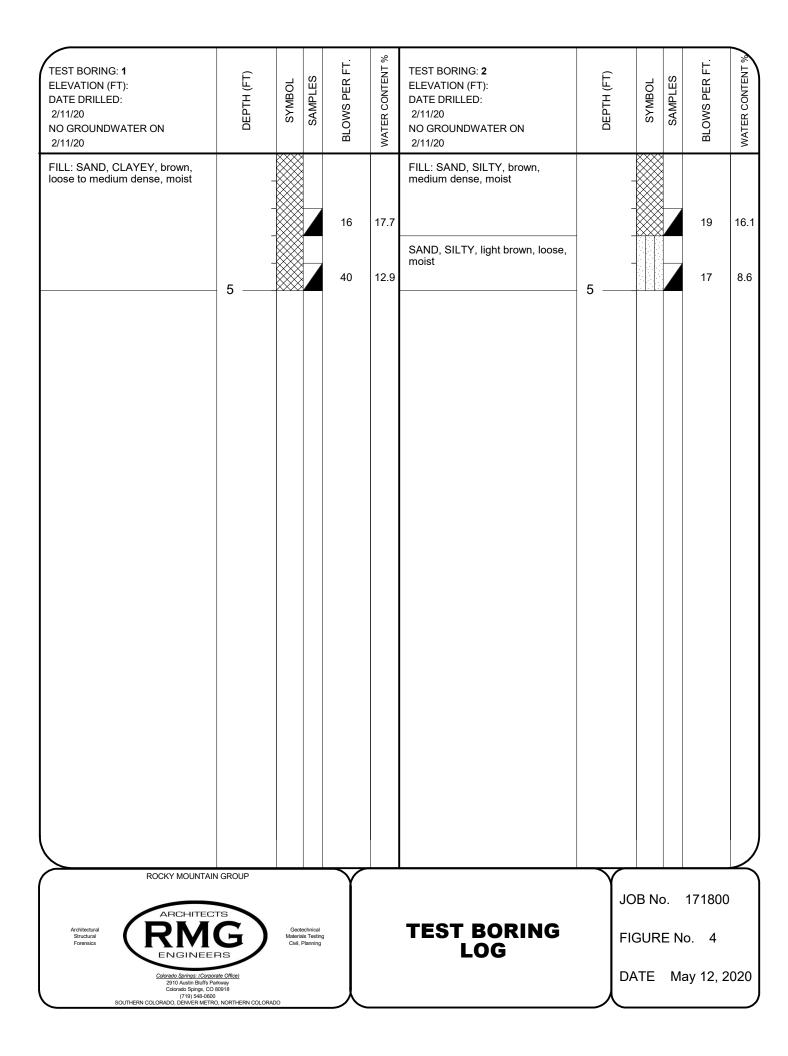
FILL: SAND, SILTY TO CLAYEY

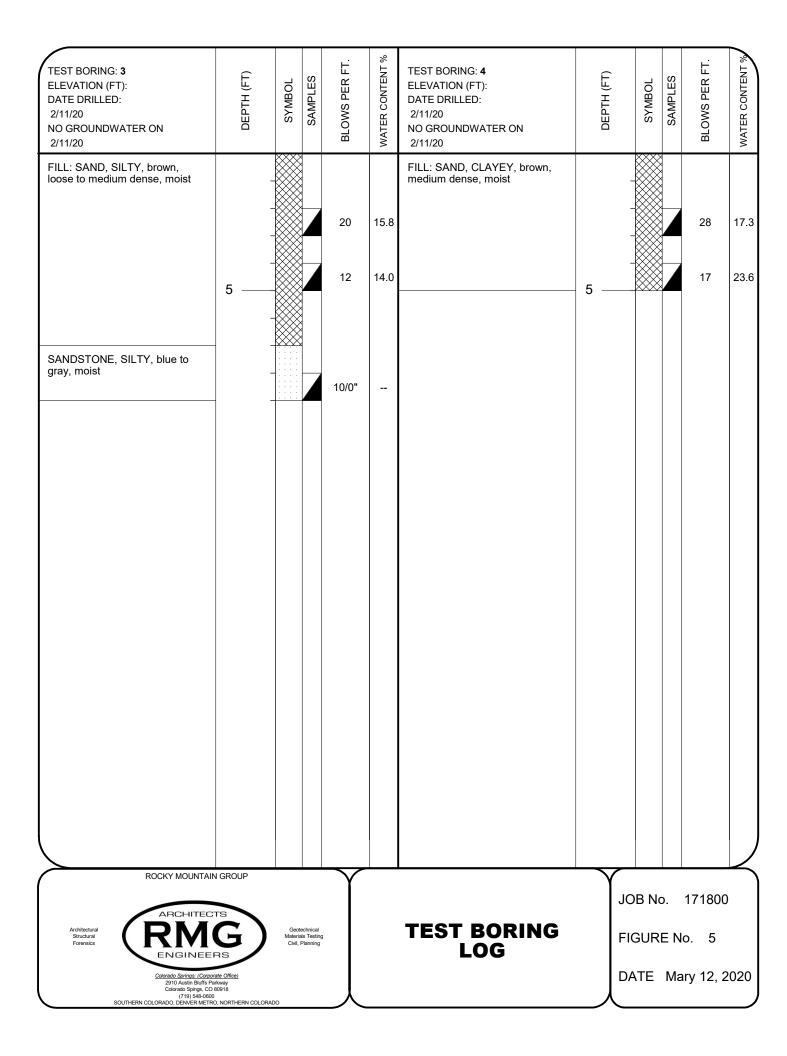


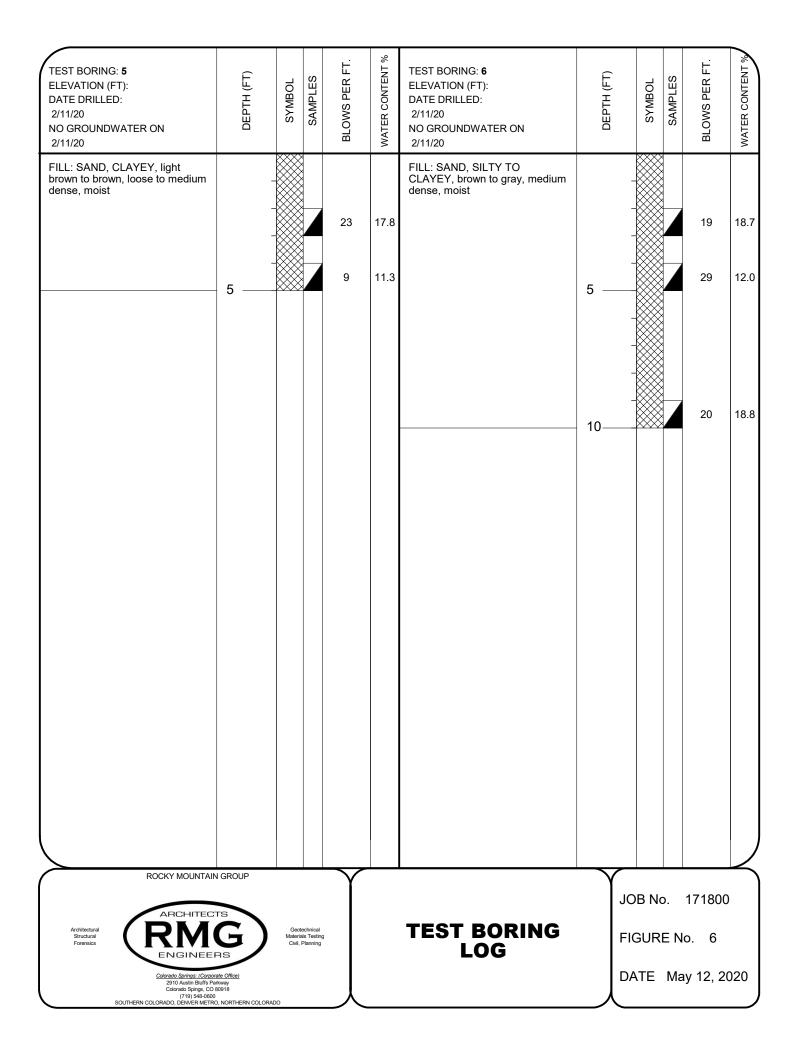
SANDSTONE

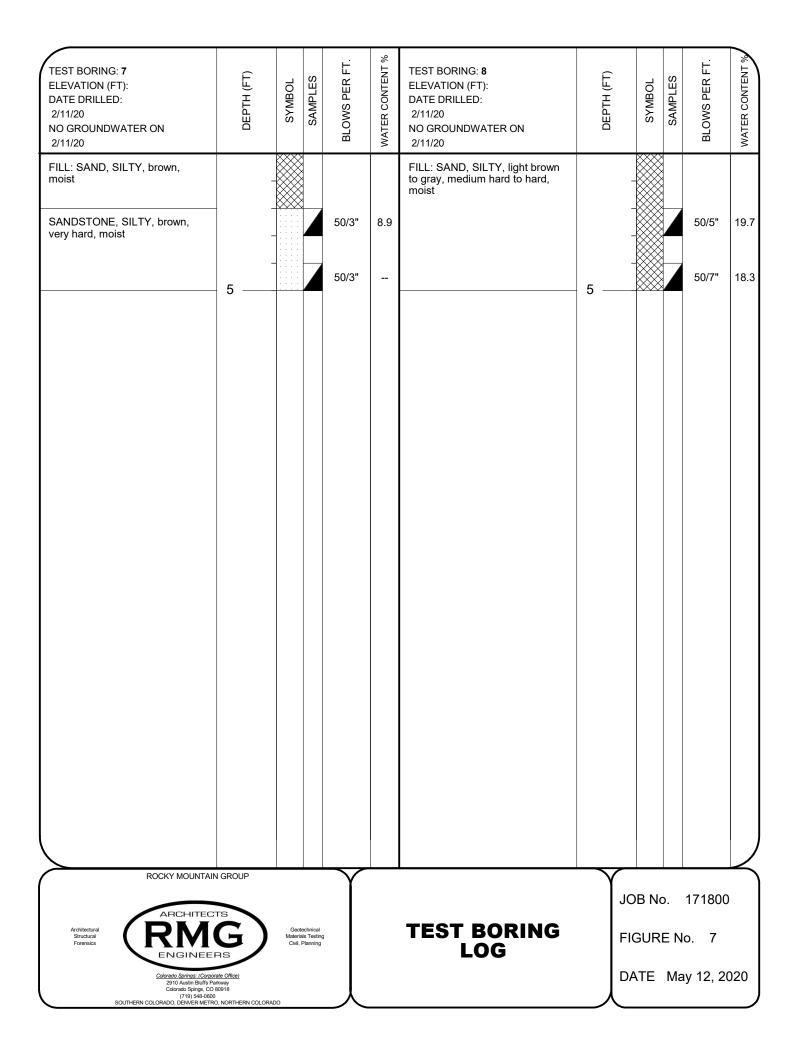
SILTY SAND

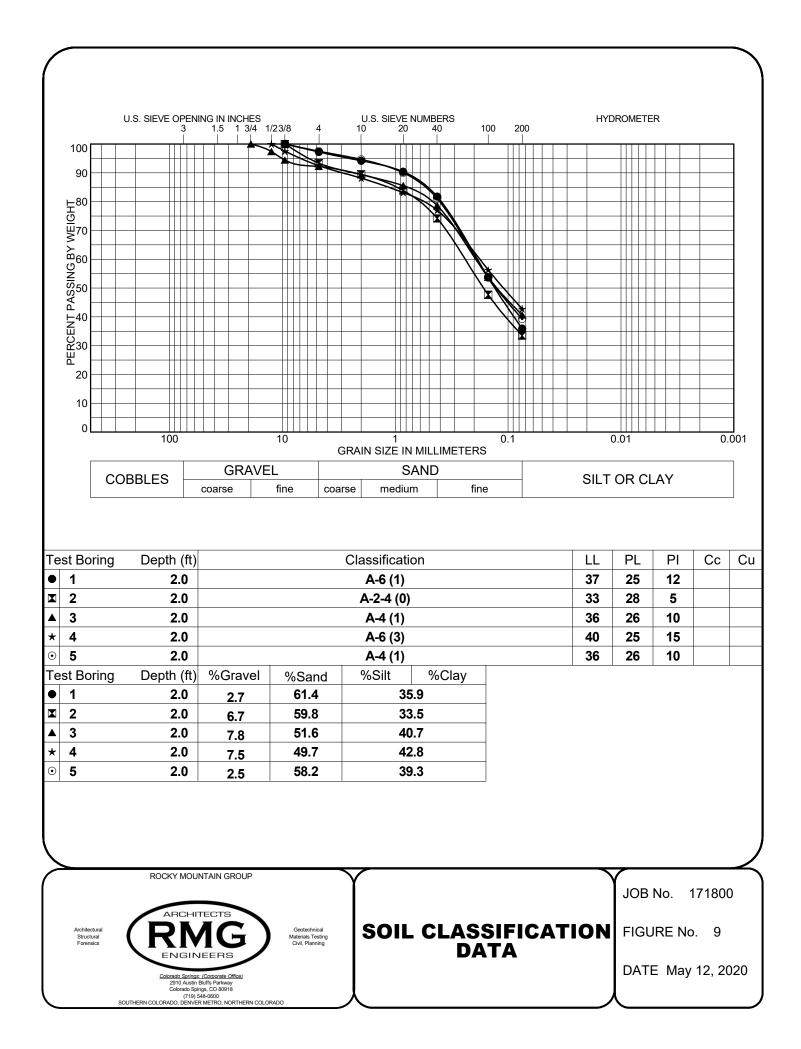

SYMBOLS AND NOTES

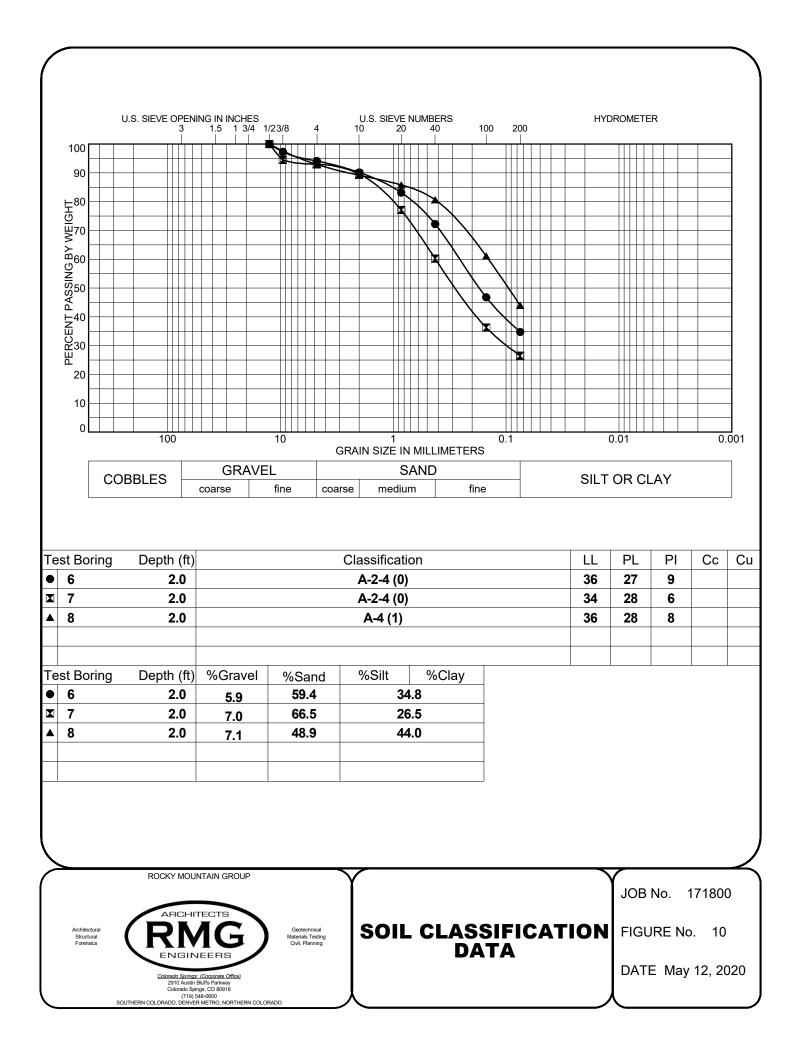


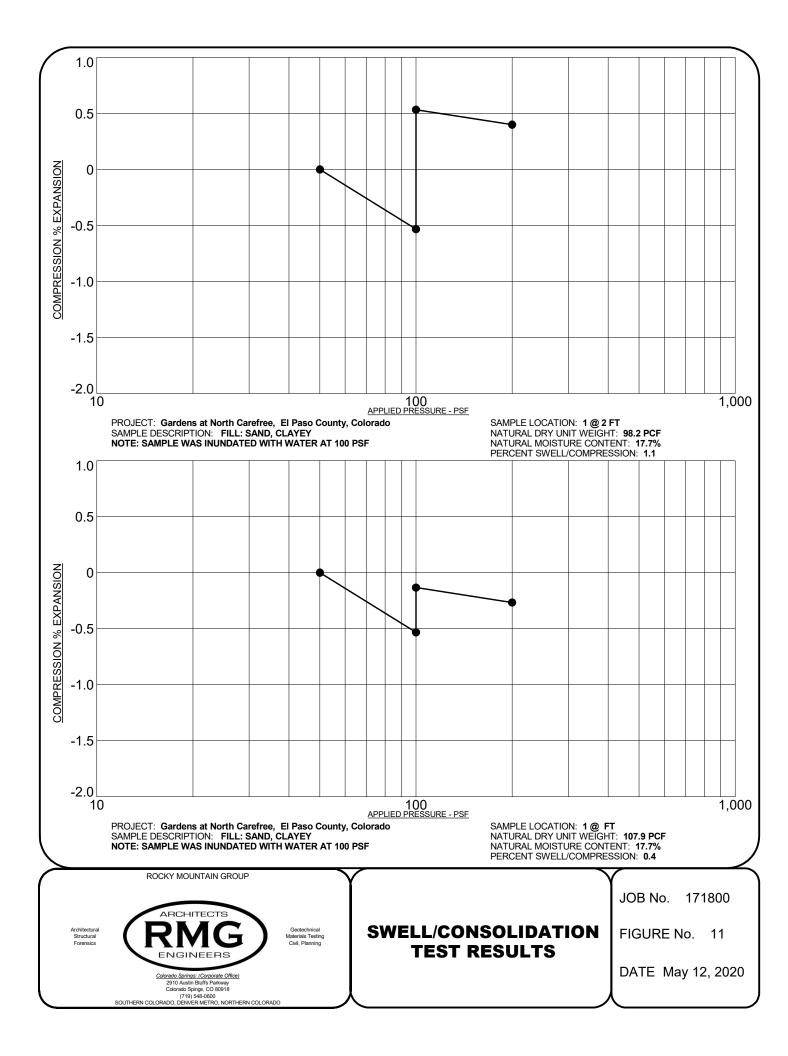


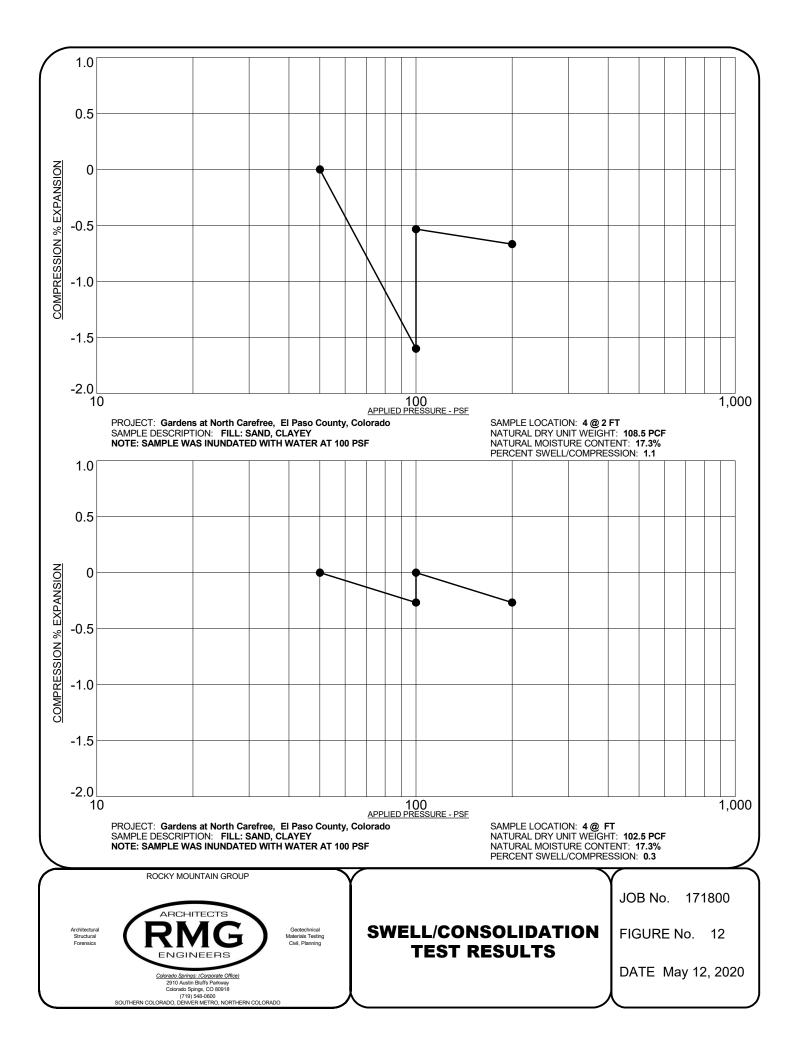

AUG AUGER "CUTTINGS"

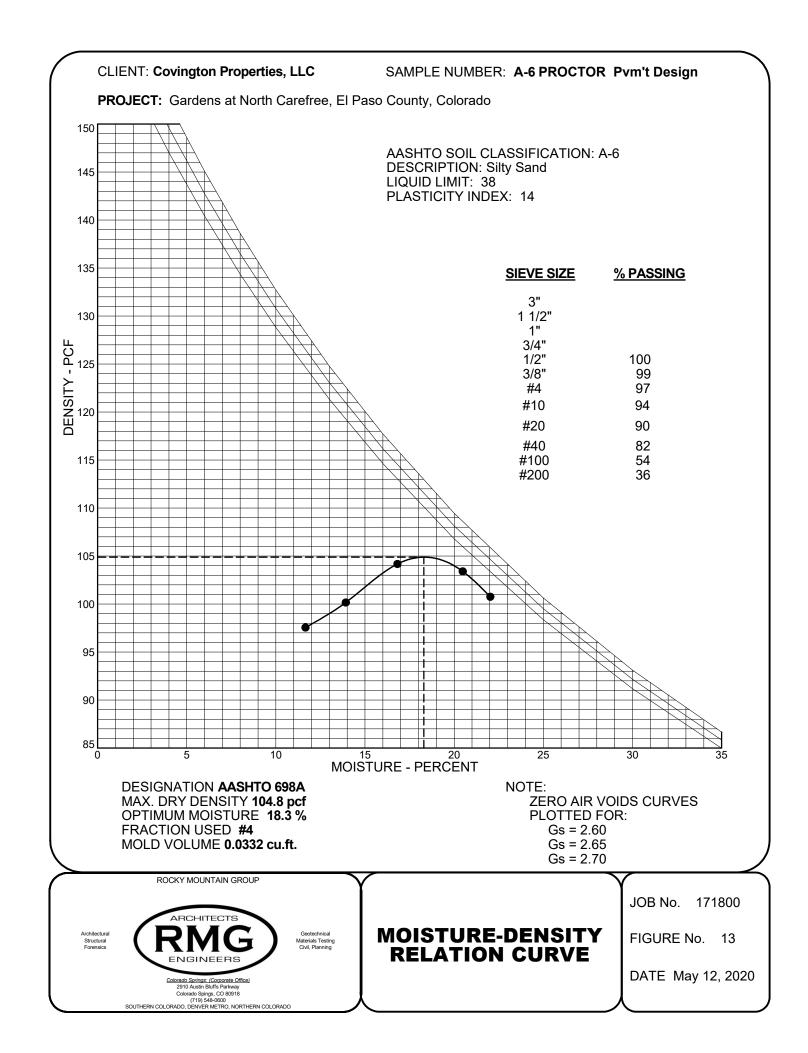

WATER CONTENT (%)

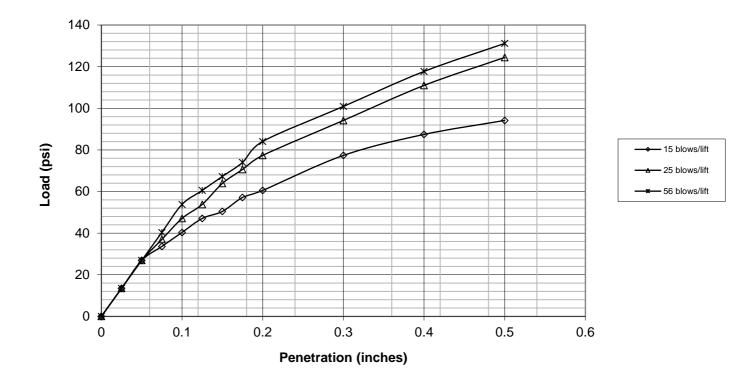

Test Boring No.	Depth	Water Content (%)	Dry Density (pcf)	Liquid Limit	Plasticity Index	% Retained No.10 Sieve	% Retained No.40 Sieve	% Passing No. 200 Sieve	% Swell @ 100 psf	AASHTO Classification
1	2.0	17.7	98.2	37	12	5.8	18.6	35.9	1.1	A-6 (1)
1	2.1	17.7	107.9						0.4	
1	4.0	12.9								
2	2.0	16.1		33	5	10.5	26.1	33.5		A-2-4 (0)
2	4.0	8.6								
3	2.0	15.8		36	10	10.7	21.7	40.7		A-4 (1)
3	4.0	14.0								
4	2.0	17.3	108.5	40	15	11.9	23.2	42.8	1.1	A-6 (3)
4	2.1	17.3	102.5						0.3	
4	4.0	23.6								
5	2.0	17.8		36	10	5.4	19.2	39.3		A-4 (1)
5	4.0	11.3								
6	2.0	18.7		36	9	9.9	28.1	34.8		A-2-4 (0)
6	4.0	12.0								
6	9.0	18.8								
7	2.0	8.9		34	6	10.3	40.1	26.5		A-2-4 (0)
8	2.0	19.7		36	8	10.9	19.6	44.0		A-4 (1)
8	4.0	18.3								


ROCKY MOUNTAIN GROUP




SUMMARY OF LABORATORY TEST RESULTS


JOB No. 171800 FIGURE No. 8 PAGE 1 OF 1 DATE May 12, 2020



CALIFORNIA BEARING RATIO TEST RESULTS

PROJECT: JOB NUMBER: AASHTO SAMPLE NUMBER: SAMPLE LOCATION: SOIL DESCRIPTION:	Gardens at North Carefree - Covington 171800 A-6 CBR Combined Bulk Sample Silty Sand			TEST DATE: 3/13/2020
		15 blows/lift	25 blows/lift	56 blows/lift
	Penetration	Load	Load	Load
	(in)	(psi)	(psi)	(psi)
	0.000	0.0	0.0	0.0
	0.025	13.5	13.5	13.5
	0.050	26.9	26.9	26.9
	0.075	33.6	37.0	40.4
	0.100	40.4	47.1	53.8
	0.125	47.1	53.8	60.5
	0.150	50.4	63.9	67.3
	0.175	57.2	70.6	74.0
	0.200	60.5	77.3	84.1
	0.300	77.3	94.2	100.9
	0.400	87.4	111.0	117.7
	0.500	94.2	124.4	131.2

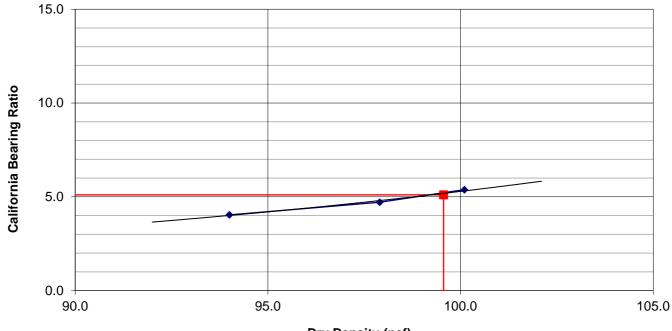

	15 blows/lift	25 blows/lift	56 blows/lift
Corrected	Corrected	Corrected	Corrected
Penetration	Load	Load	Load
(in)	(psi)	(psi)	(psi)
0.1	4.0	4.7	5.4
0.2	4.0	5.2	5.6

Figure No. 14

CALIFORNIA BEARING RATIO TEST RESULTS

PROJECT: JOB NUMBER: AASHTO CLASSIFICATION: SAMPLE NUMBER: SAMPLE LOCATION: SOIL DESCRIPTION:	Gardens at N 171800 A-6 CBR Combined B Silty Sand	North Carefre ulk Sample	e - Covingto	n TEST DATE: 3/13/2020
Corrected California Bearing Ratio Dry Density (pcf) Percent Compaction Percent Moisture After Soaking Percent Expansion/Compression Surcharge Weight (lbs)	15 blows/lift 4.0 94.0 29.7 0.5 12.60	25 blows/lift 4.7 97.9 93 29.4 0.5 12.60	56 blows/lift 5.4 100.1 96 27.2 0.3 12.60	:

Dry Density (pcf)

California Bearing Ratio	5.1
Dry Density (pcf)	104.8
Percent Compaction	95.00%
Target Dry Density	99.6
Compaction Test Method	ASTM D-698
Condition of sample	Soaked

Figure No. 15

APPENDIX A

AASHTO Structural Number

1993 AASHTO Empirical Equation for Flexible Pavements

Equation Solver Variable Descriptions	and Typical Values Precautions		
Type in data in the grey boxes and click the c additional calculations, change the desired in Click on the text descriptions of the input or c	put data and click the calculate button again.		
INPUT	OUTPUT		
1. Loading	1. Calculation Parameters		
Total Design ESALs (W ₁₈): 292000	Standard Normal Deviate (z _R): -0.841		
2. Reliability	∆ PSI: 2.2		
Reliability Level in percent (R): 80 💌	Design Structural Number (SN): 2.595		
Combined Standard Error (S ₀): 0.45	2. Layer Depths (to the nearest 1/2 inch)		
3. Serviceability	Surface: 6		
Initial Serviceability Index (p _i): 4.2	Total SN based on layer depths: 2.64		
Terminal Serviceability Index (p _t): 2			
4. Layer Parameters Number of Base Layers: 0 ▼ a m M _R Min. Depth Surface 0.44 1.0 N/A 0 Subgrade N/A N/A 7650 N/A	See Solution Details Comments		
Calcu	llate		