THE GARDENS AT NORTH CAREFREE FINAL DRAINAGE REPORT EL PASO COUNTY, COLORADO

PROJECT NO. 187608744

Prepared for: MULE DEER INVESTMENTS, LLC 2727 GLEN ARBOR DRIVE COLORADO SPRINGS, CO 80124

Prepared by: STANTEC CONSULTING, INC 5725 MARK DABLING BLVD, SUITE 190 COLORADO SPRINGS, CO 80919 719.432.6880

December 2, 2019

CERTIFICATIONS

Design Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report

ing part in proparing and report	NUM DO REO		
/h. / E		G 1	
Charles K. Catherry D.E. No. 24002		Seal	
Charles K. Cothern, P.E. No. 24997	3.? 3.8		
		10 - A	
			•
Owner/Developer's Statement.			

Owner/Developer's Statement:

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

By (signature):		Date:	
Title:			
Address:	2727 Glen Arbor Drive		
	Colorado Springs, CO 80124		

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

Jennifer Irvine, P.E.,
County Engineer / ECM Administrator

Date

· **

 $\ell_{\rm Hy}$

PURPOSE	5
GENERAL LOCATION & DESCRIPTION	5
DESCRIPTION OF PROPERTY	5
CLIMATE	
Floodplain Statement	
Utilities & Other Encumbrances	
DRAINAGE DESIGN CRITERIA	6
Development Criteria Reference	6
Hydrologic Criteria	6
Rational Method	6
Storm Sewer Design	6
Detention Storage Criteria	6
Waivers	6
DRAINAGE BASINS	6
OFFSITE BASINS	6
Existing Drainage Analysis	
Design Points	7
PROPOSED DRAINAGE ANALYSIS	8
Design Points	10
Deviations	12
DRAINAGE FACILITY DESIGN	12
GENERAL CONCEPT	12
STORM SEWER SYSTEM	13
ON-SITE WATER QUALITY	13
Four Step Process	
Reduce Runoff	14
Treat & Release WQCV	14
Stabilize Stream Channels	14
Implement Source Controls	14
DRAINAGE FEES, COST ESTIMATE & MAINTENANCE	14
MAINTENANCE	14
Drainage Fees	14
PROPOSED FACILITIES ESTIMATE	15
EROSION CONTROL	15
GENERAL CONCEPT	15
SILT FENCE	
EROSION BALES	
VEHICLE TRACKING CONTROL	
SEDIMENTATION POND	
SUMMARY	
REFERENCE MATERIALS	
	•••••1/

List of Figures

Figure 1:	Vicinity Map	
-	Existing Drainage Map	
U	Proposed Drainage Map	

Appendix

Appendix A: NRCS Soil Report Appendix B: Existing Hydrology Calculations Appendix C: Proposed Hydrology Calculations Appendix D: Inlet Calculations Appendix E: StormCAD Appendix F: Detention & Water Quality Pond Calculations

PURPOSE

The purpose of this Final Drainage Report (FDR) is to identify and analyze on and offsite drainage patterns, locate and identify tributary and downstream drainage features and facilities that impact the proposed site. Runoff quantities and proposed facilities have been calculated using the City of Colorado Springs/El Paso County Drainage Criteria Manual (DCM) revised November 1991; and in accordance with El Paso County ordinance 15-042.

The Gardens at North Carefree is approximately 11.6 acres and is located within El Paso County.

GENERAL LOCATION & DESCRIPTION

The Gardens at North Carefree is approximately 11.6 acres of single-family development. The site will include the construction of 3 public roads, 70 single family lots and 5 tracts. The project is bounded by North Carefree Circle to the north, Akers Drive to the west, Sika Deer Place to the south and open land to the east. The project is located in the eastern portion of Section 29, Township 13 South, Range 65 West.

The Gardens at North Carefree development site is located within the northern end of the Sand Creek Basin.

Description of Property

The project site is 11.6 acres of vegetation, consisting of short grasses and weeds. The average slope of the site is between 3 and 9%, generally sloping to the west.

The site is composed of a single soil type. From the NRCS report in Appendix A, the site falls into the following soil type:

97 - Truckton sandy loam (3-9%) - Type A Soil

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. Group A soil is defined by:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Climate

The climate of the site is typical of a sub-humid to semiarid climate with mild summers and winters. The average temperature is 31 degrees F in the winter and 68.4 degrees in the summer. Total annual precipitation is 15.21 inches.

Floodplain Statement

The Flood Insurance Rate Map (FIRM No. 08041C0539-G dated 12/7/18) indicates that there is no floodplain in the vicinity of the proposed site.

Utilities & Other Encumbrances

The site is currently undeveloped and there are no known utilities on site.

DRAINAGE DESIGN CRITERIA

Development Criteria Reference

Resolution No. 15-042, Adoption for portions of the El Paso County Drainage Criteria Manual (DCM), El Paso County Engineering Criteria Manual (ECM) and Urban Storm Drainage Criteria Manual (USDCM) by Urban Drainage & Flood Control District was used in preparation of this report. Additional preliminary and final drainage plans, master development drainage plans, and drainage basin planning studies used in the preparation of the report are listed in the References Section.

Hydrologic Criteria

Rational Method

The rational method was used to determine onsite flows, as required by the current El Paso County Drainage Criteria Manual (DCM). Both the 5-year and 100-year storm events were considered in this analysis. Runoff coefficients appropriate to the existing and proposed land uses were selected for an SCS type "B" soil from Table 6-6 of the DCM even though the existing soil type is designated as a type "A" soil. The time of concentration was calculated per DCM requirements. Rational Method results are shown in the Appendix B & C. USDCM spreadsheets were used to design the detention and water quality pond features.

Storm Sewer Design

Storm Sewer systems have been designed to the 100-year storm and checked with the 5-year storm. Inlets are located at sump areas and intersections where street flow is larger than street capacity. UDFCD Inlet spreadsheet will be used to determine the size of all at-grade and sump inlets. Onsite flow captured within the storm system will be released into one of the two full spectrum detention ponds. Final design of these facilities is included in the appendix.

Detention Storage Criteria

Proposed Water quality will be incorporated into the full spectrum detention ponds. This will be explained and addressed later in the report. Water quality requirements were determined from the UDFCD Volume 3 spreadsheet for an Extended Detention Basin.

Final storage volumes and outflows have been calculated and are included in the appendix.

Waivers

No variances are being requested for this development.

DRAINAGE BASINS

Offsite Basins

There is one off site basin contributing flows to the proposed development. It is located on the east side of the property along the southern half. The basin is 2.25 acres and is currently undeveloped. Flows from the basin are 0.59 cfs and 4.3 cfs for the minor and major storms. If this parcel develops, it will need to provide its own onsite water quality.

Existing Drainage Analysis

Historic drainage analysis was determined by analyzing runoff quantities and patterns for the site. There are 9 existing basins for the proposed site.

- Basin E-1 (5.41 acres) is the top north half of the site between North Carefree Circle and Akers Drive. Flows are diverted through existing drainage swales to where they will release into Akers Drive. Flows for this basin are 1.41 cfs for the 5-year storm and 10.33 cfs for the 100-year storm.
- Basin E-2 (0.61 acres) is located south of Basin E-1. Existing drainage swales will divert this flow to an existing low point/detention area. Flows for this basin are 0.23 cfs for the 5-year storm and 1.72 cfs for the 100-year storm.
- Basin E-3 (1.59 acres) is south of Basin E-2. Flows are diverted to the west through existing drainage swales to an existing low point. Flows for this basin are 0.56 cfs for the 5-year storm and 4.11 cfs for the 100-year storm.
- Basin E-4 (1.28 acres) is south of Basin E-3. Existing drainage swales direct flows to the west to an existing low area. Flows for this basin are 0.46 cfs for the 5-year storm and 3.35 cfs for the 100-year storm.
- Basin E-5 (0.36 acres) is south of Basin E-1 and west of Basin E-2. Flows for this basin are 0.15 cfs for the 5-year storm and 1.08 cfs for the 100-year storm.
- Basin E-6 (1.55 acres) is south of Basin E-4. Existing drainage swales direct flows towards the west, where they will release into Akers Drive. Flows for this basin are 0.55 cfs for the 5-year storm and 4.03 cfs for the 100-year storm.
- Basin E-7 (0.10 acres) is south of Basin E-5 and west of Basin E-3. Flows for this basin are 0.04 cfs for the 5-year storm and 0.29 cfs for the 100-year storm.
- Basin E-9 (0.05 acres) is located between Basin E-7 and Akers Drive. This area is the low area/detention where an existing 30" rcp collects runoff. Flows for this basin are 0.02 cfs for the 5-year storm and 0.14 cfs for the 100-year storm.
- Basin E-10 (0.51 acres) is along the south boundary of the project, along the private road, Sika Deer Place. The basin includes half of the private road, along with the adjoining area which drains to the south towards the road. Flows for this basin are 0.21 cfs for the 5-year storm and 1.52 cfs for the 100-year storm.

Design Points

- Design Point Z (Q₅=0.6, Q₁₀₀=4.4) consists of flow from Basin OS-1. Flow from this basin release on site and combine with other onsite basins.
- Design Point A (Q₅=1.4, Q₁₀₀=10.6) consists of flow from Basin E-1. Flow from this basin is released directly into Akers Drive where it is intercepted by an existing Type R inlet.

- Design Point B (Q₅=0.2, Q₁₀₀=1.8) consists of flow from Basin E-2. It is a natural low point on the site. Flows will release from this location via an existing culvert and continue to DP E.
- Design Point D (Q₅=0.5, Q₁₀₀=3.5) consists of flow from Basin E-4. Flows will continue over existing ground to combine at DP C.
- Design Point C (Q₅=1.2, Q₁₀₀=9.4) consists of flow from Basins, OS-1and E-3 and DP D. Flows will continue to the north where they will combine with other flows at DP H.
- Design Point E ($Q_5=0.4$, $Q_{100}=2.9$) consists of flow from Basin E-5 and DP B. This is a naturally occurring low spot on site. Flows will continue via an existing pipe to DP G.
- Design Point F (Q₅=0.6, Q₁₀₀=4.2) consists of flow from Basin E-6. These flows are released directly into Akers Drive where they are intercepted by an existing Type R inlet.
- Design Point G (Q₅=0.4, Q₁₀₀=3.22) consists of flow from Basin E-7 and DP E. This is a sump area which has an existing culvert for flows to continue to DP H.
- Design Point H (Q₅=1.5, Q₁₀₀=11.4) consists of flow from Basin E-9 and DP C and DP G. This is the final low point where flows are collected and via a 30" RCP, exit the site and combine with flows from Akers Drive and the Mule Deer development to the west.
- Design Point I (Q₅=0.2, Q₁₀₀=1.6) consists of flow from Basin E10. Flow will be collected in the curb and gutter of the existing driveway and flow west to Akers Drive.

Proposed Drainage Analysis

The proposed development consists of 21 developed basins and the offsite basin has been divided into 4 separate basins, based on where flows enter onto developed site basins. The majority of the runoff from the site will be collected via inlets and pipes and diverted to one of two detention ponds for the development. The ponds will then release into the existing inlets in Akers Drive and continue through the existing storm system to the existing drainage channel to the west.

- Basin OS-1 (0.26 acres) is the southern most offsite basin. This flow is released into Basin D-21 Flows for this basin are 0.08 cfs for the 5-year storm and 0.56 cfs for the 100-year storm.
- Basin OS-2 (0.27 acres) is north of OS-1. Runoff is directed towards Basin D-13. Flows for this basin are 0.08 cfs for the 5-year storm and 0.57 cfs for the 100-year storm.
- Basin OS-3 (1.63 acres) is located between OS-2 and OS-4 along the south portion of the eastern boundary of the site. Runoff is directed towards Basin D-2. Flows for this basin are 0.43 cfs for the 5-year storm and 3.17 cfs for the 100-year storm.
- Basin OS-4 (0.07 acres) is the north of OS-3. Runoff is directed towards Basin D-1. Flows for this basin are 0.02 cfs for the 5-year storm and 0.17 cfs for the 100-year storm.

- Basin D-1 (1.24 acres) is the north half of the site along the east boundary to the east leg of Vineyard Circle. This flow is directed towards a sump inlet on the east side of Vineyard Circle. Flows for this basin are 2.34 cfs for the 5-year storm and 5.15 cfs for the 100-year storm.
- Basin D-2 (0.99 acres) is the south half of the site along the east boundary to the east leg of Vineyard Circle. Runoff is directed towards a sump inlet on the west side of Vineyard Circle. Flows for this basin are 1.81 cfs for the 5-year storm and 3.99 cfs for the 100-year storm.
- Basin D-3 (0.17 acres) is the southeast half of Vineyard Circle. Runoff is directed towards a sump inlet on the west side of the east leg of Vineyard Circle. Flows for this basin are 0.37 cfs for the 5-year storm and 0.82 cfs for the 100-year storm.
- Basin D-4 (0.21 acres) is the northeast half of Vineyard Circle. Runoff is directed towards a sump inlet on the west side of the east leg of Vineyard Circle. Flows for this basin are 0.48 cfs for the 5-year storm and 1.06 cfs for the 100-year storm.
- Basin D-5 (1.83 acres) is along the north boundary of the site, along North Carefree and along Akers Drive, north of Fallow Lane. Runoff continues to a sump inlet on the west side of the west leg of Vineyard Circle. Flows for this basin are 3.47 cfs for the 5-year storm and 7.64 cfs for the 100-year storm.
- Basin D-6 (0.09 acres) is the east portion of Fallow Lane, from the high point in to the road, draining back to the east towards the site. Flows for this basin are 0.41 cfs for the 5-year storm and 0.74 cfs for the 100-year storm.
- Basin D-7 (0.07 acres) is the southwest half of Fallow Lane, flowing away from the site towards Akers Drive. Flows for this basin are 0.32 cfs for the 5-year storm and 0.57 cfs for the 100-year storm.
- Basin D-8 (1.90 acres) is the northwest half of the area inside of Vineyard Circle. Runoff is released into the east side of the west leg of Vineyard Circle to a sump inlet. Flows for this basin are 3.46 cfs for the 5-year storm and 7.62 cfs for the 100-year storm.
- Basin D-9 (0.43 acres) is the area between the west leg of Vineyard Circle, Fallow Lane and Akers Drive. Runoff releases to a sump inlet on the west side of Vineyard Circle. Flows for this basin are 0.82 cfs for the 5-year storm and 1.80 cfs for the 100-year storm.
- Basin D-10 (0.33 acres) is the North Pond area. Flows for this basin are 0.43 cfs for the 5-year storm and 1.14 cfs for the 100-year storm.
- Basin D-11 (0.11 acres) is the north half of Running Deer Way. Flows for this basin are 0.50 cfs for the 5-year storm and 0.90 cfs for the 100-year storm.
- Basin D-12 (0.93 acres) is the south half of the area in between the two legs of Vineyard Circle. Runoff will release to an at-grade inlet in the east side of Vineyard Circle. Flows for this basin are 1.99 cfs for the 5-year storm and 4.38 cfs for the 100-year storm.

- Basin D-13 (1.70 acres) is the south portion of the site. Runoff is directed towards an at-grade inlet on the west half of Vineyard Circle. Flows for this basin are 3.35 cfs and 7.37 cfs for the minor and major storms, respectively.
- Basin D-14 (0.64 acres) is the middle area on the west half of the area between the two legs of Vineyard Circle, across from Running Deer Way. Flows are 1.31 cfs for the 5-year storm and 2.88 cfs for the 100-year storm.
- Basin D-15 (0.21 acres) is northwest half of Fallow Lane. Flows are 0.41 cfs for the 5-year storm and 0.89 cfs for the 100-year storm.
- Basin D-16 (0.13 acres) is the South Pond area. Flows for this basin are 0.21 cfs for the minor storm and 0.57 cfs for the major storm.
- Basin D-17 (0.09 acres) is the south half of Running Deer Way. Flows are 0.41 cfs and 0.74 cfs or the minor and major storms respectively.
- Basin D-18 (0.19 acres) is the area north of Fallow Land and south of North Carefree which flows towards Akers Drive. Runoff for this basin is 0.42 cfs for the 5-year storm and 0.92 cfs for the 100-year storm.
- Basin D-19 (0.12 acres) is the area between Fallow Land and Running Deer Way which flows towards Akers Drive. Flows are 0.27 cfs and 0.61 cfs for the minor and major storms, respectively.
- Basin D-20 (0.13 acres) is the area south of Running Deer Way, along the western boundary, which flows towards Akers Drive. Flows are 0.30 cfs for the minor storm and 0.66 cfs for them major storm.
- Basin D-21 (0.28 acres) is the area along the south boundary, which includes Sika Deer Place and the adjacent ROW area draining towards the private road. Flows are 0.64 cfs for the minor storm and 1.41 cfs for them major storm.

Design Points

- Design Point Z (Q₅=0.1, Q₁₀₀=0.6) consists of flow from Basin OS-1. Flow from this basin release on site and will combine with Basin D-21.
- Design Point Y (Q₅=0.1, Q₁₀₀=0.6) consists of flow from Basin OS-2. Flow from this basin release on site and will combine with Basin D-13.
- Design Point X (Q₅=0.4, Q₁₀₀=3.3) consists of flow from Basin OS-3. Flow from this basin release on site and will combine with Basin D-2.
- Design Point W (Q₅=0.0, Q₁₀₀=0.2) consists of flow from Basin OS-4. Flow from this basin release on site and will combine with Basin D-1.
- Design Point A (Q₅=3.4, Q₁₀₀=9.9) consists of flow from Basins D-1 and D-2 and Design Points DP W and DP X. A sump inlet will be installed on the east side of the east leg of Vineyard Circle

to intercept this flow. This will connect with the storm system which will release into the North Pond.

- Design Point B (Q₅=0.9, Q₁₀₀=2.0) consists of flow from Basins D-3 and D-4. A sump inlet will be installed on west side of the east leg of Vineyard Circle to intercept the street flow. The inlet will connect with a storm system which releases into the North Pond.
- Design Point C (Q₅=4.6, Q₁₀₀=10.8) consists of flow from Basins D-8 and D-14 and flow by from the at-grade inlet located at DP E. A sump inlet will be installed on the east side of the west leg of Vineyard Circle to intercept gutter flow. The inlet will be part of a storm system which releases into the North Pond. During the 5-year storm, ponding at this inlet will not overtop the curb and will spread less than 12 feet into the roadway. During the 100-year storm, ponding will not spread beyond the back of the sidewalk.
- Design Point V (Q₅=3.8, Q₁₀₀=8.6) combines flow from Basins D-5 and D-6 at the Fallow Lane and Vineyard Circle intersection. Flows will continue as gutter flow to the south along Vineyard Circle.
- Design Point D (Q₅=4.4, Q₁₀₀=9.9) consists of flow from Basin D-9, design point DP V and flow-by from the at-grade inlet located at DP F. This sump inlet will intercept the flows from the west half of the west leg of Vineyard Circle. The inlet will connect to the system which will release into the North Pond. During the 5-year storm, ponding at this inlet will not overtop the curb and will spread less than 12 feet into the roadway. During the 100-year storm, ponding will not exceed the roadway crown.
- Design Point E (Q₅=2.0, Q₁₀₀=4.6) consists of flow from Basin D-12. This is street flow at the east half of Vineyard Circle beginning at the southeast knuckle. Flows will be intercepted by an at-grade inlet on the east half of the west leg of Vineyard Circle. Flow-by from this inlet will continue as gutter flow in Vineyard Circle to DP C. The inlet will connect to the storm system which releases into the South Pond.
- Design Point F (Q₅=2.5, Q₁₀₀=6.0) consists of flow from Basin D-13, and design point DP Y. This is street flow at the west half of Vineyard Circle beginning at the southeast knuckle. Flows will be intercepted by an at-grade inlet on the west half of the west leg of Vineyard Circle, which releases directly into the South Pond. Flow-by from the inlet will continue as street flow to the sump inlet at DP D.
- Design Point G (Q₅=0.4, Q₁₀₀=1.0) consists of flow from Basin D-18. This is the street flow which has been released into Akers Drive north of Fallow Lane. Flow is intercepted by an existing type R inlet, north of the Fallow Lane Intersection.
- Design Point H (Q₅=1.1, Q₁₀₀=2.4) consists of flow from Basins D-7, D-15 and D-19. This is flow from Fallow Lane and street flow from Akers Drive, between Fallow Lane and Running Deer Way. Runoff is intercepted by an existing type R inlet in Akers Drive, north of the Running Deer Way intersection.
- Design Point I (Q₅=1.1, Q₁₀₀=2.7) consists of flow Basins D-11, D-17, D-20 and DP U. This is the flow from Running Deer Way and the flow released onto Akers Drive from the site south of

Running Deer Way. An existing type R inlet, south of the Running Deer Way intersection will intercept these flows.

- Design Point U (Q₅=0.4, Q₁₀₀=1.3) consists of flow Basin D-21 and DP Z. This is the street flow from Sika Deer Place, along with the offsite flow from Basin OS-1. Flows continue along their existing path as gutter flow in the private road and release into Akers Drive where it is intercepted by an existing type R inlet.
- Design Point NP (Q₅=9.9, Q₁₀₀=25.1) combines basin D-10 with flows from DP A, DP B, DP C, and DP D. This is the flow being released into the North Pond.
- Design Point SP ($Q_5=4.8$, $Q_{100}=11.4$) combines basin D-16 with flows from DP E and DP F. This is the flow being released into the South Pond.

Deviations

A deviation has been requested and approved for El Paso County ECM_Appendix I Section I.7.1.B: 1st Bullet; Providing Water Quality for Entire Development.

The deviation was for Basins D-7, D-11, D-15 and D-17 thru D-20, which drain into Akers Drive and are intercepted by existing inlets and will not reach an on-site water quality facility. These basins account for approximately 8% (0.92 acres of 11.56) of the overall site area. The remaining 92% of the development area is treated through 1 of the 2 proposed ponds.

In addition to the "on-site" basins described above and specifically addressed in the deviation request, there is an additional basin outside of the proposed developed area that is graded to tie into adjacent land uses that needs to be considered. This basin is D-21 and is located on the very southern end of the project outside of the proposed fencing that encloses the proposed residential development. This basin receives of site flow from the east (both historically Basin E-10 and as developed Basin D-21) and conveys storm flow to Akers Drive via the existing access road, Sika Drive. The only grading accruing in this basin is to tie grade from the proposed development at the fence line to the existing grade adjacent to Sika Drive. We have conservatively estimated the maximum disturbance to tie the proposed grade and expiating grade together would be 0.07 acres. This disturbance added to the other areas in Basins D-7, D-11, D-15 and D-17 thru D-20 that do not receive treatment would be less than one acre (0.92 + 0.07=0.99) acres meeting the requirements of the El Paso County MS-4 permit.

The topography of the site will not allow all areas within the site to drain to the proposed ponds. Of the area inside the development boundary that will not reach a facility 0.49 acres is proposed roadway, and 0.44 acres will be sloped areas at the back of lots along the exterior boundary, releasing into the existing Akers Drive.

DRAINAGE FACILITY DESIGN

General Concept

The Gardens at North Carefree is located in the Sand Creek Drainage Basin.

storm systems should be labeled on the plan.

not resolved

Review 2: south Review 3: unresolved

show the connection to the existing pipe system.

Storm Sever System

All development is anticipated to be urban and will include storm sewer and street inlets Two storm sewers collect storm water runoff and convey the runoff to the proposed ponds prior to discharging into the existing storm system offsite. The WQ outlet structure will connect to the existing inlet via proposed concrete culverts.

Storm System 1 will connect the set of sump inlets on the east leg of Vineyard Circle with the set of sump inlets on the west leg of Vineyard Circle. This system will release into the North Pond.

Storm System 2 will connect an at-grade inlet on the west leg of Vineyard Circle, just north of Running Deer Way. The system will release into the South Pond this structure should be called out on the plans. does it go through the inlet in Akers? Please

On-Site Water Quality

Water quality and detention for the proposed improvements will be provided by two interconnected ponds (labeled North and South) that function as a single facility. The South Pond drains to the North Pond. Flows will pass through an outlet structure in the North Pond to the existing storm system in Akers Drive. The 100-year release rate from the pond is 5.3 cfs, which is 90% of the predevelopment 100-year peak flow of 5.7 cfs. The basins releasing directly offsite have a combined flow of 6.1 cfs. The total combined 100-year flow (detained and undetained) to the existing storm system in Akers Drive will be 11.4 cfs. These flows are much less than the original flows which the existing storm system was designed for. The existing storm system was designed to account for a 100-year flow of 104 cfs from this development. This flow is shown in the StormCAD 100-year table for System Rational Flow, Filing 1 Flow in the "PDR-FDR for Mule Deer Crossing" excerpt prepared by URS (see appendix in back of report). The existing storm system is adequate to handle the developed flows from the site.

The pond has been designed to provide water quality treatment and detention. The WQCV is treated by the proposed extended detention basin. Previous reports stated that on-site detention would not be necessary, but with updated criteria, the pond was designed to meet 5-year and 100-year detention requirements. Pond sizing calculations are provided in Appendix D.

There are no proposed major drainageways for the site that would need to be stabilized. Some sitespecific source control BMPs that will be implemented include, but are not limited to, silt fencing placed around downstream areas of disturbance, construction vehicle tracking pads at the entrances, designated concrete truck washout basin, designated vehicle fueling areas, covered storage areas, spill containment and control, etc.

Temporary Sedimentation Basins

The North Pond and South Pond will serve as temporary sedimentation ponds until final construction is complete.

Four Step Process

In accordance with the El Paso County Engineering Criteria Manual, Appendix I, this site has implemented the four-step process to minimize adverse impacts of urbanization and helps with the management of smaller, frequently occurring events. The four-step process includes reducing runoff volumes, treating and slowly releasing the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

Reduce Runoff

In order to reduce runoff volume, the new impervious area for the site was minimized. Existing features will be preserved as all of the offsite basins which are undeveloped open space will continue to be so, and all developable areas will be required to release existing flows. Existing drainage paths have been maintained as much as possible to also help reduce overall impacts from the site.

Treat & Release WQCV

The WQCV is treated through an extended detention basin. The outlet structure has been designed with the UD-Detention spreadsheet by UDFCD to ensure the release times of the facilities meet the requirements.

Stabilize Stream Channels

There are no proposed major drainageways for the site that would need to be stabilized. Downstream of the project, all flows enter into existing storm systems which were designed to handle the proposed flows. Therefore, those downstream channel/facilities would not see any adverse effects to their functionality.

Implement Source Controls

Some site-specific source control BMPs that will be implemented include, but are not limited to, silt fencing placed around downstream areas of disturbance, construction vehicle tracking pads at the entrances, sediment ponds, designated concrete truck washout basin, designated vehicle fueling areas, covered storage areas, spill containment and control, etc.

DRAINAGE FEES, COST ESTIMATE & MAINTENANCE

Maintenance

The ponds will be maintained by the Gardens at North Carefree Metropolitan District. Facilities located within the project boundary will be private facilities and will also be maintained by the District. All facilities located outside of the project boundary and within public right-of-way, will be maintained by the county. A BMP maintenance agreement and easement will be provided for the ponds, as well as an Operations and Maintenance manual. The remaining utilities (gas, phone, electric, cable, etc.) will be owned and maintained by their respective companies. Easements will be issued to ensure each entity is able to access and maintain their facilities.

Drainage Fees

The proposed development falls within the Sand Creek Basin. The entire development occupies approximately 11.6 acres. The project consists of 2.66 acres of right-of-way, 6.84 acres of residential lots, and tracts of open space of 2.10 acres. The following calculations for the imperviousness of this development have been computed as follows:

Average Residential lot size: 6.84 acres / 70 lots = 4257 sf

Average lot imperviousness = 2200 sf

Average Residential Imperviousness 2200/4257 = 51.68%

R.O.W. area 2.66 acres; imperviousness 100 %

Open Space area 2.10 acres; imperviousness 0%

Average imperviousness for developed area:

 $(0.5168 \ge 6.84) + (1.0 \ge 2.66) + (0 \ge 2.10)/(11.6) = 0.5340 = 53.40\%$. The impervious area that the fees will be based on is 6.19 acres (11.6 \xexts 53.40\%)

Drainage fees in the Sand Creek Basin are \$18,940 and bridge fees are \$5,559. The calculated fees due will be as follows:

Drainage Fees:	\$117,289 (6.19 x \$18,940)		
Bridge Fees:	\$34,410 (6.19 x \$5,559)		

Proposed Facilities Estimate

		UNIT		ITEM
ITEM	UNITS	COST	QUANTITY	COST
GRADING AND EROSION CONTROL				
CURB BACKFILL	LF	\$ 4.00	4650	\$ 18,600
TEMPORARY SEEDING	AC	\$ 485.00	2.5	\$ 1,213
TEMPORARY MULCHING	AC	\$ 507.00	2.5	\$ 1,268
EROSION BALES	EA	\$ 21.00	120	\$ 2,520
INLET PROTECTION	EA	\$ 153.00	9	\$ 1,377
VEHICLE TRACKING CONTROL	EA	\$ 2,000.00	2	\$ 4,000
CONCRETE WASHOUT BASIN	EA	\$ 776.00	1	\$ 776
SILT FENCING	LF	\$ 4.00	1,100	\$ 4,400
SUBTOTAL GRADING & EROSION CONTROL				\$ 34,154
DRAINAGE				
18" RCP	LF	\$ 95.00	180	\$ 17,100
24" RCP	LF	\$ 140.00	28	\$ 2,920
30" RCP	LF	\$ 175.00	151	\$ 26,425
36" RCP	LF	\$ 225.00	32	\$ 28,160
42" RCP	LF	\$ 250.00	35	\$ 7,200
5' Type R Inlet	EA	\$ 4,500.00	1	\$ 4,500
10' Type R Inlet	EA	\$ 10,000.00	1	\$ 10,000
15' Type R Inlet	EA	\$ 15,000.00	1	\$ 15,000
20' Type R Inlet	EA	\$ 20,000.00	3	\$ 60,000
Outlet Structure	EA	\$ 10,000.00	1	\$ 10,000
SUBTOTAL DRAINAGE				\$ 181,305
SUBTOTAL DRAINAGE & GRADING/EROSION CONTROL				\$ 215,459
ENGINEERING (10%)				\$ 21,546
CONTINGENCY (25%)				\$ 53,865
TOTAL				\$ 290,870

EROSION CONTROL

General Concept

During construction, best management practices for erosion control will be employed based on El Paso County criteria and the erosion control plan. The erosion control plan is included at the end of this report. Ditches will be designed to meet El Paso County criteria for slope and velocity, keeping velocities below scouring levels.

During construction, best management practices (BMP) for erosion control will be employed based on El Paso County Criteria. BMP's will be utilized as deemed necessary by contractor and/or engineer and are not limited to measure shown on construction drawing set. The contractor shall minimize amount of area disturbed during all construction activities.

In general, the following shall be applied in developing the sequence of major activities:

- Install downslope and sideslope perimeter BMP's before the land disturbing activity occurs.
- Do not disturb an area until it is necessary for the construction activity to proceed.
- Cover or stabilize as soon as possible.
- Time the construction activities to reduce the impacts from seasonal climatic changes or weather events.
- The construction of filtration BMP's should wait until the end of the construction project when upstream drainage areas have been stabilized.
- Do not remove temporary perimeter controls until after all upstream areas are stabilized.

Silt Fence

Silt fence will be placed along downstream limits of disturbed areas. This will prevent suspended sediment from leaving the site during infrastructure construction. Silt fencing is to remain in place until vegetation is reestablished.

Erosion Bales

Erosion bales will be placed ten (10) feet from the inlet of all culverts and inlets during construction to prevent culverts from filling with sediment. Erosion bales will remain in place until vegetation is reestablished in graded roadside ditches. Erosion bale ditch checks will be used on slopes greater than 1% to reduce flow velocities until vegetation is reestablished.

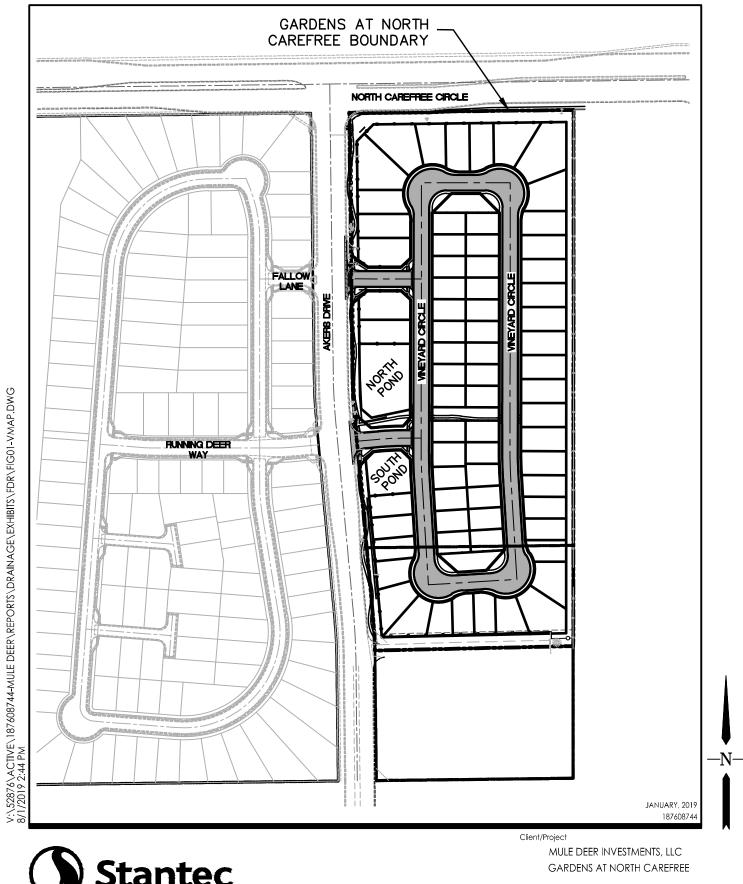
Vehicle Tracking Control

This BMP is used to stabilize construction entrances, roads, parking areas and staging areas to prevent the tracking of sediment from the construction site. A vehicle tracking control (VTC) is to be used at all locations where vehicles exit the construction site onto public roads, loading and unloading areas, storage and staging areas, where construction trailers are to be located, any construction area that receives high vehicular traffic, construction roads and parking areas. VTC's should not be installed in areas where soils erode easily or are wet.

Sedimentation Pond

This BMP is used to detain runoff which has become laden with sediment long enough to allow the sediment to settle out. As the construction area is larger than 1 acre, a temporary sediment basin is required per Volume 2 of the Drainage Criteria Manual.

SUMMARY


Development within the site is to be single family residential. The existing storm sewer will connect to the new water quality facilities, allowing flows to continue as they currently are.

REFERENCE MATERIALS

- 1. "City of Colorado Springs Drainage Criteria Manual Volume 1" May 2014.
- 2. Soils Survey of El Paso County Area, Natural Resources Conservation Services of Colorado.
- 3. Flood Insurance Rate Study for El Paso County, Colorado and Incorporated Areas. Federal Emergency Management Agency, Revised March 17, 1997.
- 4. "City of Colorado Springs Drainage Criteria Manual, Volume 2: Stormwater Quality Policies, Procedures and Best Management Practices (BMPs)" May 2014.
- 5. "Engineering Criteria Manual El Paso County" January 9, 2006, Revised December, 2016.
- 6. "Urban Storm Drainage Criteria Manual, Volume 1: Management, Hydrology & Hydraulics" Original September 1969, Updated January 2016.
- 7. "Urban Storm Drainage Criteria Manual, Volume 2: Structures, Storage & Recreation" Original September 1969, Updated January 2016.
- 8. "Urban Storm Drainage Criteria Manual, Volume 3: Stormwater Quality" Original September 1992, Updated November 2010.
- 9. "Sand Creek Drainage Basin Planning Study Preliminary Design Report", Kiowa Engineering Corporation.
- 10. "Master Development Drainage Plan for Hilltop Subdivision" Revised February 1998. Prepared by URS Greiner, Inc
- 11. "Final Drainage Report and Erosion Control for Chateau at Antelope Ridge" December 18, 1998. Prepared by URS Greiner Woodward Clyde
- 12. "Final Drainage Report for Mule Deer Filing 1, Lots 1 & 2 and Preliminary Drainage Report for Mule Deer Filing 1, Lots 3-46" January 2004. Prepared by URS.
- 13. "Preliminary Drainage Report for Mule Deer Business Park" January 2005. Prepared by URS.
- 14. "Final Drainage Report for Mule Deer Business Park" April 2005. Prepared by URS.
- 15. "Preliminary/Final Drainage Report for Mule Deer Crossing" May 2005. Prepared by URS.
- 16. "Final Drainage Report for Mule Deer Crossing" December 2005. Prepared by URS.

Figure 1: Vicinity Map

18

Stantec

5725 MARK DABLING BLVD, SUITE 190 COLORADO SPRINGS, CO 80919 www.stantec.com

Figure No. 1.0 Title VICINITY MAP **Appendix A: NRCS Soil Report**

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
Soil Map	
Soil Map	
Legend	
Map Unit Legend	
Map Unit Descriptions	8
El Paso County Area, Colorado	10
97—Truckton sandy loam, 3 to 9 percent slopes	10
References	12

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

ſ

Map Unit Legend

El Paso County Area, Colorado (CO625)			
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
97	Truckton sandy loam, 3 to 9 percent slopes	11.5	100.0%
Totals for Area of Interest		11.5	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

97—Truckton sandy loam, 3 to 9 percent slopes

Map Unit Setting

National map unit symbol: 36bg Elevation: 6,000 to 7,000 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 50 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Truckton and similar soils: 80 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Truckton

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock and/or arkosic residuum weathered from sedimentary rock

Typical profile

A - 0 to 8 inches: sandy loam Bt - 8 to 24 inches: sandy loam C - 24 to 60 inches: coarse sandy loam

Properties and qualities

Slope: 3 to 9 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 5.7 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: Sandy Foothill (R049BY210CO) Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Haplaquolls Percent of map unit: Landform: Marshes Hydric soil rating: Yes

Other soils

Percent of map unit: Hydric soil rating: No

Appendix B: Existing Hydrology Calculations

20

Standard Form SF-1 . Time of Concentration

1/13/2017 Date: Date: CKC Created by: Checked by:

5 min	10 min
Urban TOC _{min} =	Rural TOC min =

	SUB-BASIN DATA	A		INITIAL/	INITIAL/OVERLAND FLOW	O FLOW				TRAVEL TIME							Tc CHECK		FINAL TC
					(Ľ)					لب) Type of Land Surface				TOTAL		In	(urbanized basins)	us)	(uiu)
Basin ID	Description	ۍ	Area (ac)	Length, L (ft)	Slope, s (ft/ft)	t _i (min) (1)	Length (ft)	S _w (ft/ft)	Code	Description	Convey Coef (C,) (2)	Velocity (V) (ft/s) (3)	t _t Travel Time (min) (4)	t _c = t _i + t _t (min)	Urban (Yes /No)	Length (ft)	T _{c max} (min) (5)	Tc _{max} > t _c	
0S-1	Offsite Basin @ East Side	0.08	2.25	100	0.035	12.18	555	0.0455	4	Nearly bare ground	10.00	2.13	4.34	16.52	ON	655.00	13.64	Check	16.5
<u>г</u>	North portion of site	0.08	5.41	45	0.333333	3.88	995	0.0171	4	Nearly bare ground	10.00	1.31	12.68	16.57	ON	1040.00	15.78	Check	16.6
E-2	South of E-1	0.08	0.61	30	0.33333	3.17	305	0.0295	4	Nearly bare ground	10.00	1.72	2.96	6.13	ON	335.00	11.86	Check	6.1
Ш-3 Ш-3	South of E-2	0.08	1.59	40	0.333333	3.66	470	0.0319	4	Nearly bare ground	10.00	1.79	4.39	8.05	ON	510.00	12.83	Check	8.0
E-4	South of E-3	0.08	1.28	50	0.333333	4.09	370	0.0270	4	Nearly bare ground	10.00	1.64	3.75	7.85	ON	420.00	12.33	Check	7.8
E-5	South of E-1 and West of E-2	0.08	0.36	5	0.5	1.13	135	0.0296	4	Nearly bare ground	10.00	1.72	1.31	2.44	ON	140.00	10.78	Check	5.0
9-9 Е-6	South of E-4 and along Akers Dr	0.08	1.55	55	0.333333	4.29	410	0.0366	4	Nearly bare ground	10.00	1.91	3.57	7.87	ON	465.00	12.58	Check	7.9
E-7	South of E-5 and West of E-3	0.08	0.10	5	0.5	1.13	55	0.0545	4	Nearly bare ground	10.00	2.34	0.39	1.52	ON	60.00	10.33	Check	5.0
6-Д	West of E-7	0.08	0.05	5	0.3333	1.29	30	0.3333	4	Nearly bare ground	10.00	5.77	0.09	1.38	ON	35.00	10.19	Check	5.0
E-10	South portion of Site along Private Driveway	0.08	0.51	15	0.5	1.96	105	0.0381	4	Nearly bare ground	10.00	1.95	06.0	2.86	ON	120.00	10.67	Check	5.0
Notec.										IIDECD Table RO-2	and Surfac	and Surface Coefficients							

Notes:

All Equations are from UDFCD Drainage Criteria Manual/Runoff (1) t₁= [0.395 *[1.1-C₂)*(1.^0.5])/[5^o0.33], from UDFCD Equation RO-3 (2) Cv from UDFCD Table RO-2 (3) Velocity from V = C₄*S₄^0.5, from UDFCD Equation RO-4 (4) t₁=L/60V (5) t₁ max = 10+L/180, from UDFCD Eqn RO-5

5 CV 10 15 20 7.0 ~ 5 Grassed waterway 6 Paved areas and shallow paved swales *7 Riprap (not burried) * determined for the project based on UDFCD equations (Equation RO-4) and Surface Coefficients Short pasture and lawns Nearly bare ground Heavy meadow Tillage/field Description UDFCD Table RO-2 Code 2 ო 4

Checked by: CKC Date:	STREET PIPE TRAVEL TIME	(۱) (۱) <td< th=""><th>(14) (15) (16) (17) (18) (19) (20) (21) (22)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	(14) (15) (16) (17) (18) (19) (20) (21) (22)										
-	TOTAL RUNOFF	о (IN / НВ) I	(12) (13)										
1.50 in	OTAL R	(A*D) MUS (AC) AC)	(11)										
" C	Ť	(NIW) 2	(10)										
5-yr		(CES) Q	(6)	0.59	1.41	0.23	0.56	0.46	0.15	0.55	0.04	0.02	0.21
		(ЯН / NI) I	(8)	3.25	3.25	4.81	4.40	4.44	5.09	4.43	5.09	5.09	5.09
Design Storm:	40FF	.A.D (DA)	(2)	0.18	0.43	0.05	0.13	0.10	0.03	0.12	0.01	0.00	0.04
Design	DIRECT RUNOFF	(NIM) 2	(9)	16.52	16.57	6.13	8.05	7.85	5.00	7.87	5.00	5.00	5.00
S	DIRE	COEFF (C) RUNOFF	(2)	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
ondition		(A) АЯЯА (ЭА)	(4)	2.25	5.41	0.61	1.59	1.28	0.36	1.55	0.10	0.05	0.51
Existing Conditions		ABRA Design	(3)	0S-1	E-1	E-2	E-3	E-4	E-5	E-6	E-7	E-9	E-10
Section:		LOCATION	(1)	Offsite Basin @ East Side	North portion of site	South of E-1	South of E-2	South of E-3	South of E-1 and West of E- 2	South of E-4 and along Akers Dr	South of E-5 and West of E- 3	West of E-7	South portion of Site along Private Driveway

Standard Form SF-2 . Storm Drainage System Design (Rational Method Procedure) Project: Gardens at North Carefree

2.25 0.35 16.52 0.79 5.41 0.35 16.57 1.89 0.61 0.35 6.13 0.21 1.59 0.35 8.05 0.56 1.59 0.35 7.85 0.45 1.28 0.35 7.87 0.54 1.55 0.35 7.87 0.54 1.55 0.35 5.00 0.13 0.10 0.35 5.00 0.03 0.110 0.35 5.00 0.03 0.51 0.35 5.00 0.03 0.51 0.35 5.00 0.03 0.51 0.35 5.00 0.03 0.51 0.35 5.00 0.03 0.51 0.35 5.00 0.03 0.51 0.35 5.00 0.03 0.51 0.35 5.00 0.03 0.51 0.35 5.00 0.03 0.51 0.35 5.00 0.18
LocATION LocATION (1) (1) Offisite Basin @ East Side (3) North portion of site (3) South of E-1 (3) South of E-1 (3) South of E-2 (4) South of E-3 (4) South of E-1 (4) South of E-1 (4) South of E-2 (4) South of E-3 (4) South of E-4 (4) South of E-4 (4) South of E-4 (4) South of E-5 (4) All Equations follow UDFCD Rational Method Private Driveway (1) Basin Design Point (2) Basin Design Point (3) Ert of Driveway

Standard Form SF-2 . Storm Drainage System Design (Rational Method Procedure) Project: Gardens at North Carefree Section: Existing Conditions

Created by: CMD Date: 1/13/2017 Checked by: CKC Date:

GARDENS AT NORTH CAREFREE SURFACE ROUTING

DESIGN	ONTRIBUTIN	C A (e q u	ivalent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	BASINS	CA(5)	CA(100)	1	l(5)	I(100)	Q(5)	Q(100)
		. ,	. ,	(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
Z	OS-1	0.18	0.79	16.5	3.2	5.6	0.6	4.4
						TRAVEL T	IME	
		0.18	0.79	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Channel	510		2.4	18.9
Α	E-1	0.43	1.89	16.6	3.2	5.6	1.4	10.6
						TRAVEL T		
		0.43	1.89	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
		0.10		.)po/on	Longar (ry	3.5	0.0	16.6
В	E-2	0.05	0.21	6.1	4.9	8.5	0.2	
Ľ		0.00	0.21	0.1		TRAVEL T		1.0
		0.05	0.21	Type/flow	Length (ft)	Velocity (fps)		T. Time (min)
		0.00	0.21	PIPE	25	4.4	0.1	6.2
D	E-4	0.10	0.45	7.8	4.5	7.8	0.5	
D	L-4	0.10	0.45	7.0		TRAVEL T		5.5
		0.10	0.45	Type/flow				T. Time (min)
		0.10	0.45	CHANNEL	Length (ft) 65	2.8	0.4	1. me (mm) 8.2
С	E-3	0.13	0.56	18.9	3.0	5.2	1.2	
U	E-3 DP D	0.13		10.9				9.4
	DP D DP Z	0.10	0.45 0.79			TRAVEL T	INE	
	DP Z			T	1 (1 //)			
		0.41	1.79	Type/flow	Length (ft)	Velocity (fps)		T. Time (min)
	F c	0.00	0.40	0.0	v	4.4	0.0	18.9
E	E-5	0.03	0.13	6.2	4.8	8.5	0.4	2.9
	DP B	0.05	0.21			TRAVEL T		
		0.08	0.34	Type/flow	Length (ft)	Velocity (fps)		T. Time (min)
				PIPE	15	5.0	0.1	6.3
F	E-6	0.12	0.54	7.9	4.5	7.8	0.6	4.2
						TRAVEL T	1	
		0.12	0.54	Type/flow	Length (ft)	Velocity (fps)		T. Time (min)
					270		1.0	8.9
G	E-7	0.01	0.03	6.3	4.8	8.4	0.4	3.2
	DP E	0.08	0.34			TRAVEL T		
		0.09	0.37	Type/flow	Length (ft)		,	T. Time (min)
				PIPE	15	5.0	0.1	6.3
Н	D-9	0.00	0.02	18.9	3.0	5.2	1.5	11.4
	DP C	0.41	1.79					
	DP G	0.09	0.37		-	TRAVEL T	IME	
		0.50	2.18	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				PIPE	15		0.1	19.0
	E-10	0.04	0.18	5.0	5.2	9.1	0.2	1.6
						TRAVEL T		
		0.04	0.18	Type/flow	Length (ft)			T. Time (min)
		0.01	0.10	PIPE	15		0.1	5.1
					10	0.0	V . 1	0.1

Appendix C: Proposed Hydrology Calculations

Runoff Coefficients (C-Values) Project: Mule Deer Villas Section: Proposed Conditions

Created by: Checked by:

CMD CKC

6/9/2017		
Date:	Date:	

	Sub-Basin Data		Composite C	site C		Existing		Sub Are	Sub Area (Gravel/Ballast)	Ballast)	Sub ,	Sub Area (Pervious)	ous)
Basin ID	Description	Total Area (ac)	ථ	C ₁₀₀	ථ	C ₁₀₀	Area (ac)	ථ	C ₁₀₀	Area (ac)	රී	C ₁₀₀	Area (ac)
0S-1	Offsite Basin @ East Side releases to D [.] 20	0.26	0.08	0.35	0.08	0.35	4.09	0.35	0.58	0.00	0.18	0.52	0.00
OS-2		0.27	0.08	0.35	0.08	0.35	4.09	0.35	0.58	0.00	0.18	0.52	0.00
OS-3	Offsite Basin @ East Side releases to D [.] 2	1.63	0.08	0.35	0.08	0.35	4.09	0.35	0.58	0.00	0.18	0.52	0.00
0S-4	Offsite Basin @ East Side releases to D [.] 1	0.07	0.08	0.35	0.08	0.35	4.09	0.35	0.58	0.00	0.18	0.52	0.00
D-1	East portion of Site btwn North half of Vineyard and East Boundary	1.24	0.45	0.59	0.08	0.35	1.23	0.35	0.58	0.00	0.18	0.52	0.00
D-2	East portion of Site btwn South half of Vineyard and East Boundary	0.99	0.45	0.59	06.0	0.95	0.86	0.35	0.58	00.0	0.18	0.52	0.00
D-3	South/Middle portion of Site inside of Vineyard Circle which drains to east	0.17	0.45	0.59	0.08	0.35	0.49	0.35	0.58	0.00	0.18	0.52	0.00
D4	North/Middle portion of Site inside of Vineyard Circle which drains to east	0.21	0.45	0.59	0.08	0.35	0.72	0.35	0.58	0.00	0.18	0.52	0.00
D-5	North portion of site, along Carefree Circle	1.83	0.45	0.59	0.08	0.35	1.83	0.35	0.58	0.00	0.18	0.52	0.00
D-6	East Half of Fallow Lane which drains to Vineyard Circle	0.09	06.0	0.96	0.08	0.35	0.09	0.35	0.58	0.00	0.18	0.52	0.00
D-7	Southwest Half of Fallow Lane which drains to Akers	0.07	06.0	0.96	0.08	0.35	0.07	0.35	0.58	0.00	0.18	0.52	0.00
D-8	North/Middle portion of Site inside of Vineyard Circle which drains to west	1.90	0.45	0.59	0.08	0.35	1.13	0.35	0.58	0.00	0.18	0.52	0.00
6-Q	Portion of site south of Fallow and btwn Akers and Vineyard	0.43	0.45	0.59	0.08	0.35	0.43	0.35	0.58	0.00	0.18	0.52	0.00
D-10	North Pond	0.33	0.32	0.51	0.08	0.35	0.20	0.35	0.58	0.00	0.18	0.52	0.00
D-11	North half of Kunning Deer Way South/Middle portion of Site inside of	0.11	0.90	0.96	0.08	0.35	0.11	0.35	0.58	0.00	0.18	0.52	0.00
D-12		0.93	0.45	0.59	0.08	0.35	0.64	0.35	0.58	0.00	0.18	0.52	0.00
D-13	Southern portion of site along Sika Deer Place and Akers	1.70	0.45	0.59	0.08	0.35	1.70	0.35	0.58	0.00	0.18	0.52	0.00
D-14	Along eastern Edge of Vineyard (West Side) opposite North Pond	0.64	0.45	0.59	0.08	0.35	0.32	0.35	0.58	0.00	0.18	0.52	0.00
	Northwest Half of Fallow Lane which drains to Akers	0.21	0.45	0.59	0.08	0.35	0.22	0.35	0.58	0.00	0.18	0.52	0.00
D-16		0.13	0.32	0.51	0.08	0.35	0.15	0.35	0.58	0.00	0.18	0.52	0.00
D-17		0.09	06.0	0.96	0.08	0.35	0.09	0.35	0.58	00.0	0.18	0.52	0.00
D-18	ROW north of Fallow which drains towards Akers	0.19	0.45	0.59	0.08	0.35	0.33	0.35	0.58	0.00	0.18	0.52	0.00
D-19	ROW btwn Fallow & Running Deer which drains towards Akers	0.12	0.45	0.59	0.08	0.35	0.12	0.35	0.58	0.00	0.18	0.52	0.00
D-20	ROW south of Running Deer which drains towards Akers	0.13	0.45	0.59	0.08	0.35	0.13	0.35	0.58	0.00	0.18	0.52	0.00
D-21	ROW along north edge of Sika Deer Place	0.28	0.45	0.59	0.08	0.35	0.28	0.35	0.58	0.00	0.18	0.52	0.00
Notes:						1							

1. Runoff Coefficients (C-Values) determined by Runoff Coefficient Table 6-6 in Drainage Criteria Manual Vol 1 sf

Standard Form SF-1 . Time of Concentration

Project: Gardens at North Carefree - FDR Section: Proposed Conditions

1/16/2019

Date: Date:

CKC

Created by: Checked by:

5 min 10 min Urban TOC _{min} = Rural TOC _{min} =

	Officite Bacin @ Eact Side releases to D-20	to D-20	F		INITIAL/OVERLAND ELOW					TRAVIEL TIME							Tr CHECK		EINAL TC
					(t;)					(t.)			_			(Urt	(Urbanized basins)	s)	(min)
			Ħ					H		Type of Land Surface				TOTAL					
Basin ID	Description	c	Area L (ac)	Length, L (ft)	Slope, s (ft/ft)	t _i (min) (1)	Length (ft)	S _w (ft/ft) 0	Code	Description	Convey Coef (C _v) (2)	Velocity (V) (ft/s) (3)	t _t Travel Time (min) (4)	t _c = t _i + t _t (min)	Urban (Yes /No)	Length (ft)	T _{c max} (min) (5)	Tc _{max} > t _c	
0S-1	Offsite Basin @ East Side releases to D-20	0.08	0.26	100	0.035	12.18	150	0.0455	4	Nearly bare ground	10.00	2.13	1.17	13.35	YES	250.00	11.39	Check	13.4
OS-2	Offsite Basin @ East Side releases to D-13	0.08	0.27	100	0.035	12.18	225	0.0455	4	Nearly bare ground	10.00	2.13	1.76	13.94	YES	325.00	11.81	Check	13.9
OS-3	Offsite Basin @ East Side releases to D-2	0.08	1.63	100	0.035	12.18	480	0.0444	4	Nearly bare ground	10.00	2.11	3.80	15.98	YES	580.00	13.22	Check	16.0
0S-4	Offsite Basin @ East Side releases to D-1	0.08	0.07	86	0.040	10.81			4	Nearly bare ground	10.00	0.00	0.00	10.81	YES	86.00	10.48	Check	10.8
D-1	East portion of Site btwn North half of Vineyard and East Boundary	0.45	1.24	100	0.062	6.43	383	0.0132	6 s	Paved areas and shallow paved swales	20.00	2.30	2.78	9.21	YES	483.00	12.68	Check	9.2
D-2	East portion of Site btwn South half of Vineyard and East Boundary	0.45	0.99	100	0.060	6.50	310	0.0055	6 S	Paved areas and shallow paved swales	20.00	1.48	3.48	9.98	YES	410.00	12.28	Check	10.0
D-3	South/Middle portion of Site inside of Vineyard Circle which drains to east	0.45	0.17	6	0.020	2.29	310	0.0055	6 S	Paved areas and shallow paved swales	20.00	1.48	3.48	5.77	YES	316.00	11.76	Check	5.8
D-4	North/Middle portion of Site inside of Vineyard Circle which drains to east	0.45	0.21	S	0.020	2.09	405	0.0132	9 8	Paved areas and shallow paved swales	20.00	2.30	2.94	5.03	YES	410.00	12.28	Check	5.0
D-5	North portion of site, along Carefree Circle	0.45	1.83	100	0.064	6.36	450	0.0190	9 8	Paved areas and shallow paved swales	20.00	2.76	2.72	9.08	YES	550.00	13.06	Check	9.1
D-6	East Half of Fallow Lane which drains to Vineyard Circle	0.90	0.09	100	0.020	2.87	60	0.0250	9 8	Paved areas and shallow paved swales	20.00	3.16	0.32	3.19	YES	160.00	10.89	Check	5.0
D-7	Southwest Half of Fallow Lane which drains to Akers	0.90	0.07	5	0.029	0.57	80	0.0450	6 S	Paved areas and shallow paved swales	20.00	4.24	0.31	0.88	YES	85.00	10.47	Check	5.0
D-8	North/Middle portion of Site inside of Vineyard Circle which drains to west	0.45	1.90	58	0.020	7.11	490	0.0190	s 9	Paved areas and shallow paved swales	20.00	2.76	2.96	10.07	YES	548.00	13.04	Check	10.1
6-D	Portion of site south of Fallow and btwn Akers and Vineyard	0.45	0.43	100	0.027	8.46	100	0.0190	9 8	Paved areas and shallow paved swales	20.00	2.76	09.0	9.06	YES	200.00	11.11	Check	9.1
D-10	North Pond	0.32	0.33	100	0.027	10.15			9 8	Paved areas and shallow paved swales	20.00	0.00	0.00	10.15	YES	100.00	10.56	Check	10.1
D-11	North half of Running Deer Way	0.90	0.11	5	0.020	0.64	105	0.0600	9 8	Paved areas and shallow paved swales	20.00	4.90	0.36	1.00	YES	110.00	10.61	Check	5.0
D-12	South/Middle portion of Site inside of Vineyard Circle which drains to west	0.45	0.93	30	0.020	5.11	295	0.0380	s 9	Paved areas and shallow paved swales	20.00	3.90	1.26	6.37	YES	325.00	11.81	Check	6.4
D-13	Southern portion of site along Sika Deer Place and Akers	0.45	1.38	06	0.060	6.16	470	0.0380	6 S	Paved areas and shallow paved swales	20.00	3.90	2.01	8.17	YES	560.00	13.11	Check	8.2
D-14	Along eastern Edge of Vineyard (West Side) opposite North Pond	0.45	0.64	100	0.056	6.65	110	0.0190	6 S	Paved areas and shallow paved swales	20.00	2.76	0.67	7.31	YES	210.00	11.17	Check	7.3
D-15	Northwest Half of Fallow Lane which drains to Akers	0.45	0.21	100	0.029	8.26	100	0.0450	9 8	Paved areas and shallow paved swales	20.00	4.24	0.39	8.65	YES	200.00	11.11	Check	8.7

	Offsite Basin @ East Side releases to D-20	o D-20		INITIAL/(INITIAL/OVERLAND FLOW	FLOW				TRAVEL TIME							Tc CHECK		FINAL Tc
					(t;)					(t.)						(Urb	(Urbanized basins)	s)	(min)
										Type of Land Surface				TOTAL					
				<u> </u>		÷					Convey	Walacity (W	t _t Travel Timo				F		
			Area	Length, L	Slope, s	, (min)	Length	Sw		0	Coef (C _v)	(ft/s) (ft/s)	(min)	t _c = t _i + t _t	Urban		'c max (min)		
Basin ID	Description	c,	(ac)	(ft)	(ft/ft)	(1)	(ft)	(ft/ft)	Code	Description	(2)	(3)	(4)	(min)	(Ves /No) I	Length (ft)	(5)	$Tc_{max} > t_c$	
D-16	South Pond	0.32	0.15	25	0.250	2.43			9	Paved areas and shallow paved swales	20.00	0.00	0.00	2.43	YES	25.00	10.14	Check	5.0
D-17	South half of of Running Deer Way	0.90	0.09	10	0.020	0.91	75	0.0600	9	Paved areas and shallow paved swales	20.00	4.90	0.26	1.16	YES	85.00	10.47	Check	5.0
D-18	ROW north of Fallow which drains towards Akers	0.45	0.19	55	0.091	4.20	285	0.0200	9	Paved areas and shallow paved swales	20.00	2.83	1.68	5.88	YES	340.00	11.89	Check	5.9
D-19	ROW btwn Fallow & Running Deer which drains towards Akers	0.45	0.12	5	0.333	0.83			9	Paved areas and shallow paved swales	20.00	0.00	0.00	0.83	YES	5.00	10.03	Check	5.0
D-20	ROW south of Running Deer which drains towards Akers	0.45	0.13	10	0.020	2.95	335	0.0236	9	Paved areas and shallow paved swales	20.00	3.07	1.82	4.77	YES	345.00	11.92	Check	5.0
D-21	ROW along north edge of Sika Deer Place	0.45	0.28	45	0.333	2.47	350	0.0236	رب ص	Paved areas and shallow paved swales	20.00	3.07	1.90	4.37	YES	395.00	12.19	Check	5.0

Notes:

All Equations are from UDFCD Drainage Criteria Manual/Runoff (1) $t_1 = (0.395^*(1.1-C_5)^*(1.40.33)$, from UDFCD Equation RO-3 (2) Cv from UDFCD Table RO-2 (3) Velocity from V = C_*S_*^0.0.5, from UDFCD Equation RO-4 (4) $t_1 = L/60V$ (5) $t_1 = max = 10+L/180$, from UDFCD Eqn RO-5

Code	Description	S
Ł	Heavy meadow	2.5
2	Tillage/field	2
3	Short pasture and lawns	2
4	Nearly bare ground	10
5	Grassed waterway	15
9	Paved areas and shallow paved swales	20
L*	Riprap (not buried)	7.0

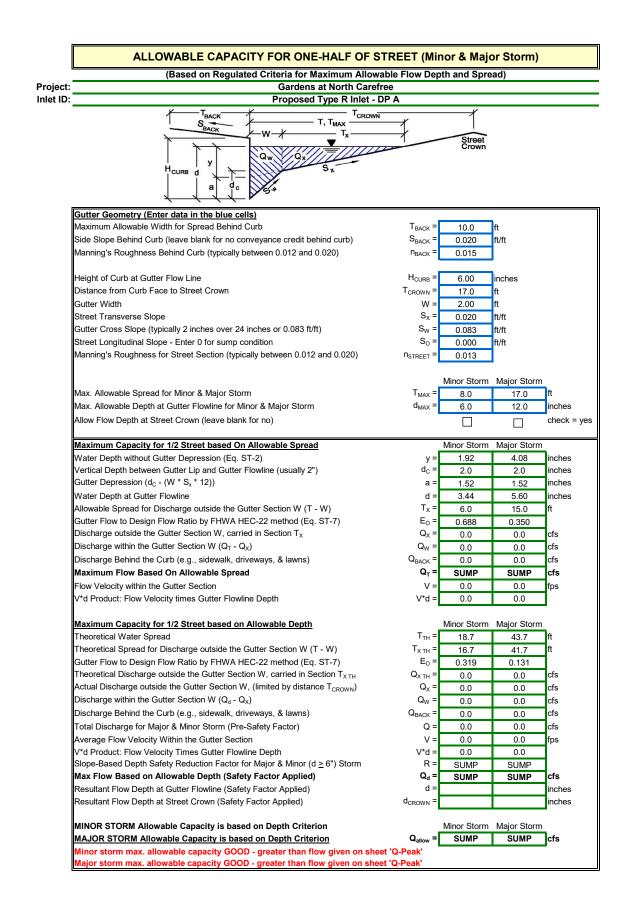
Standard Form SF-2 . Storm Drainage System Design (Rational Method Procedure) Project:

Project: Created by: CMD Date: 11/6/2019 Settion: Created by: CMD Date: 11/6/2019 Settion: Project: Created by: CKD Date: 11/6/2019 South Pond D-16 0.13 0.32 5.00 0.04 5.09 0.21 D <td< th=""><th>n</th><th>standard Form SF-2 . Storm Drainage System Design (Kational Method Procedure)</th><th>stem Des</th><th>sign (Ki</th><th>ational</th><th>Metho</th><th></th><th>eaure)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	n	standard Form SF-2 . Storm Drainage System Design (Kational Method Procedure)	stem Des	sign (Ki	ational	Metho		eaure)									
Proposed Conditions D-16 0.13 0.32 5.00 0.04 5.09 0.21 Checked Dy: CKC D-17 0.09 0.90 5.00 0.04 5.09 0.41 P			Gardens at	t North C	arefree -	FDR						ō	eated by:	CMD	Date:	1/16/2019	
D-16 0.13 0.32 5.00 0.04 5.09 0.21 0			Proposed (Condition	S							Che	cked by:		Date:		
D-17 0.09 0.90 5.00 0.08 5.09 D-18 0.19 0.45 5.88 0.09 4.86 D-19 0.12 0.45 5.00 0.05 5.09 D-19 0.12 0.45 5.00 0.05 5.09 D-20 0.13 0.45 5.00 0.05 5.09 D-21 0.28 0.45 5.00 0.05 5.09 D-21 0.28 0.45 5.00 0.13 5.09		South Pond		0.13			0.04 5	60.	.21								
D-18 0.19 0.45 5.88 0.09 4.86 D-19 0.12 0.45 5.00 0.05 5.09 D-19 0.12 0.45 5.00 0.05 5.09 D-20 0.13 0.45 5.00 0.06 5.09 D-21 0.28 0.45 5.00 0.06 5.09 D-21 0.28 0.45 5.00 0.06 5.09	1	South half of of Running Deer Way	D-17	0.09			0.08 5	60.	.41								
D-19 0.12 0.45 5.00 0.05 5.09 D-20 0.13 0.45 5.00 0.06 5.09 D-21 0.28 0.45 5.00 0.06 5.09		ROW north of Fallow which drains towards Akers							.42								
D-20 0.13 0.45 5.00 0.06 5.09 D-21 0.28 0.45 5.00 0.13 5.09		ROW btwn Fallow & Running Deer which drains towards Akers	D-19						1.27								
D-21 0.28 0.45 5.00 0.13 5.09		ROW south of Running Deer which drains towards Akers	D-20						.30								
		ROW along north edge of Sika Deer Place	D-21						.64	 							

Standard Form SF-2 . Storm Drainage System Design (Rational Method Procedure)

		Project: Section:	Proposed Conditions	Condition	JS	5								Che	Checked by:	CKC CKC	Date:		1/ 10/2013	5		
Piecer relation Piecer re						Design S	torm:	100	ŀ-yr	Ш												
Image: Sector	L				DIREC	T RUNO			H	TO	AL RUN	OFF	STR	EET		IPE		TRAVE	el time	_	REMARKS	
(3) (4) (5) (7) <th></th> <th>LOCATION</th> <th>ai nisaa</th> <th>(A) АЗЯА (ЭА)</th> <th>COEFF (C) RUNOFF</th> <th>(NIM)</th> <th>(DA)</th> <th>(и / нв)</th> <th>(CES)</th> <th>(MIN) SUM (C*A)</th> <th>I</th> <th>Q</th> <th></th> <th></th> <th></th> <th>(%)</th> <th>(INCHES)</th> <th>(FT)</th> <th><i>t</i>, (FPS)</th> <th>(NIM)</th> <th></th> <th></th>		LOCATION	ai nisaa	(A) АЗЯА (ЭА)	COEFF (C) RUNOFF	(NIM)	(DA)	(и / нв)	(CES)	(MIN) SUM (C*A)	I	Q				(%)	(INCHES)	(FT)	<i>t</i> , (FPS)	(NIM)		
OS-1 0.26 0.35 13.35 0.09 6.04 OS-2 0.27 0.35 13.94 0.10 5.92 OS-3 163 0.35 15.98 0.57 5.55 OS-3 163 0.35 15.98 0.57 5.55 OS-3 163 0.35 10.81 0.03 6.61 OS-3 10.35 10.81 0.03 6.61 OS-4 0.07 0.35 10.81 0.03 6.61 OS-4 0.07 0.35 10.81 0.03 6.61 D-1 1.24 0.59 9.21 0.70 8.24 D-3 0.17 0.59 9.08 7.04 8.54 D-4 0.21 0.59 9.08 7.04 8.54 D-5 183 0.59 9.08 7.05 7.08 D-4 0.21 0.59 9.09 7.04 7.07 D-5 1.83 0.59 <t< th=""><th></th><th>(1)</th><th>(3)</th><th>(4)</th><th>(2)</th><th>(9)</th><th></th><th></th><th>H</th><th></th><th></th><th></th><th>(14)</th><th>(15)</th><th>(16)</th><th>\square</th><th>H</th><th></th><th></th><th>1)</th><th>(22)</th><th></th></t<>		(1)	(3)	(4)	(2)	(9)			H				(14)	(15)	(16)	\square	H			1)	(22)	
OS-2 0.27 0.35 13.94 0.10 5.92 OS-3 163 0.35 15.98 0.57 5.55 OS-4 007 0.35 10.81 003 6.61 OS-4 007 0.35 10.81 003 6.61 OS-4 007 0.35 10.81 003 6.61 D-1 1.24 0.35 9.21 0.73 7.04 D-1 1.24 0.59 9.21 0.73 7.04 D-2 0.99 0.59 9.21 0.70 8.25 D-3 0.17 0.59 9.08 0.58 8.25 D-4 0.21 0.59 9.08 1.08 7.07 D-5 1.83 0.59 5.03 0.12 8.55 D-4 0.21 0.59 5.03 7.04 D-5 1.08 5.02 0.09 7.07		Offsite Basin @ East Side releases to D-20	0S-1	0.26			60		.56													
OS-3 1.63 0.35 15.98 0.57 5.56 OS-4 0.07 0.35 10.81 0.03 6.61 D-1 1.24 0.35 10.81 0.03 6.61 D-1 1.24 0.59 9.21 0.73 7.04 D-1 1.24 0.59 9.98 0.83 6.82 D-2 0.99 0.59 9.98 0.73 7.04 D-3 0.17 0.59 9.98 0.73 7.04 D-3 0.17 0.59 9.98 0.75 7.04 D-4 0.21 0.59 9.08 1.08 7.07 D-5 1.83 0.59 9.08 7.07 8.54 D-6 0.09 0.59 5.03 7.07 8.55 D-7 0.07 0.59 5.03 7.07 8.55 D-6 0.09 0.59 5.03 7.07 8.55 D-9 0.43 0.59 5.0		Offsite Basin @ East Side releases to D-13	OS-2	0.27				0	.57													
		Offsite Basin @ East Side releases to D-2	OS-3	1.63			57		.17													
1 1.24 0.59 9.21 7.04 1.24 0.59 9.24 0.73 7.04 1.24 0.59 9.98 0.82 6.82 1.24 0.59 0.59 0.98 6.82 1.24 0.17 0.59 5.77 0.10 8.22 1.24 0.21 0.59 5.03 0.12 8.54 1.24 0.21 0.59 5.03 0.17 8.54 1.24 0.21 0.59 5.03 0.17 8.54 1.24 0.29 0.59 5.03 0.17 8.54 1.26 0.29 0.59 0.07 8.55 7.08 1.26 0.29 0.59 0.07 1.12 6.80 1.27 0.29 0.59 0.21 0.76 7.08 1.27 0.29 0.29 0.29 0.20 7.20 1.2		Offsite Basin @ East Side releases to D-1	OS-4	0.07			.03		.17													
d D-2 0.99 0.55 9.98 0.68 6.82 D-3 0.17 0.59 5.77 0.10 8.22 D-4 0.21 0.59 5.77 0.10 8.22 D-5 1.83 0.59 5.03 0.12 8.54 D-5 1.83 0.59 9.08 1.08 7.07 D-6 0.09 0.59 9.08 1.08 7.07 D-6 0.09 0.59 9.08 1.08 7.07 D-6 0.09 0.59 9.08 1.08 7.07 D-7 0.07 8.55 7.08 8.55 7.08 D-9 0.43 0.59 9.06 7.07 8.55 7.08 D-9 0.43 0.59 9.06 7.17 6.80 7.08 D-9 0.41 0.95 9.06 7.16 7.08 7.08 D-10 0.33 0.51 10.15 0.75 7.98 <tr< td=""><td></td><td>East portion of Site btwn North half of Vineyard and East Boundary</td><td>D-1</td><td>1.24</td><td>0.59</td><td></td><td></td><td></td><td>.15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>		East portion of Site btwn North half of Vineyard and East Boundary	D-1	1.24	0.59				.15													
D-30.170.595.770.108.22D-40.210.595.030.128.54D-51.830.599.081.087.07D-61.830.599.081.087.07D-60.090.965.000.098.55D-70.070.965.000.078.55D-80.090.965.000.078.55D-90.070.965.000.078.55D-90.430.599.060.078.55D-90.430.599.060.727.08D-90.430.599.060.757.08D-90.410.965.000.118.55D-100.330.5110.150.176.78D-110.110.965.000.118.55D-120.930.596.370.557.98D-131.700.598.171.007.35D-140.640.597.310.387.64D-150.510.598.650.127.20D-150.210.598.650.127.20D-150.210.598.650.127.20		East portion of Site btwn South half of Vineyard and East Boundary	D-2	0.99	0.59		58		66													
D.4 0.21 0.59 5.03 0.12 8.54 $D-5$ 1.83 0.59 9.08 1.08 7.07 $D-6$ 1.83 0.59 9.08 1.08 7.07 $D-6$ 0.09 0.96 5.00 0.09 8.55 $D-7$ 0.07 0.96 5.00 0.07 8.56 $D-7$ 0.07 0.96 5.00 0.07 8.56 $D-9$ 0.43 0.59 10.07 1.12 6.80 $D-9$ 0.43 0.59 9.06 0.25 7.08 $D-9$ 0.43 0.59 9.06 0.77 6.78 $D-9$ 0.43 0.59 9.06 0.77 6.78 $D-10$ 0.33 0.51 10.15 0.76 7.08 $D-11$ 0.11 0.96 5.00 0.11 8.55 $D-11$ 0.11 0.96 5.00 0.11 8.55 $D-12$ 0.93 0.59 6.37 0.56 7.98 $D-12$ 0.93 0.59 8.17 1.00 7.36 $D-14$ 0.64 0.59 7.31 0.98 7.64 $D-14$ 0.21 0.59 8.65 0.12 7.20		South/Middle portion of Site inside of Vineyard Circle which drains to east	D-3	0.17	0.59			.22	.82													
D-5 1.83 0.59 9.08 1.08 7.07 D-6 0.09 0.56 5.00 0.09 8.55 D-7 0.07 0.96 5.00 0.09 8.55 D-7 0.07 0.96 5.00 0.07 8.55 D-8 1.90 0.59 10.07 1.12 6.80 D-9 0.43 0.59 9.06 0.25 7.08 D-9 0.43 0.51 10.15 0.17 6.70 D-10 0.33 0.51 10.15 0.11 8.55 D-11 0.11 0.96 5.00 0.11 8.55 D-11 0.11 0.96 5.00 0.11 8.55 D-13 1.70 0.59 8.17 1.00 7.36 D-14 0.14 0.59 8.17 1.00 7.36 D-14 0.64 0.59 8.17 1.00 7.36 D-14 0.64 0.59 <t< td=""><td></td><td>North/Middle portion of Site inside of Vineyard Circle which drains to east</td><td>D-4</td><td>0.21</td><td>0.59</td><td></td><td>12</td><td>54</td><td>90.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		North/Middle portion of Site inside of Vineyard Circle which drains to east	D-4	0.21	0.59		12	54	90.													
D-6 0.09 0.96 5.00 0.09 8.55 D-7 0.07 0.96 5.00 0.07 8.55 D-8 1.90 0.59 5.00 0.07 8.55 D-8 1.90 0.59 10.07 1.12 6.80 D-9 0.43 0.59 906 0.25 7.08 D-9 0.43 0.51 10.15 0.17 6.78 D-10 0.33 0.51 10.15 0.17 6.78 D-11 0.11 0.96 5.00 0.11 8.55 D-11 0.11 0.96 5.00 0.11 8.55 D-12 0.93 0.59 6.37 0.55 7.98 D-13 1.70 0.96 5.00 7.94 7.94 D-13 1.70 0.59 8.17 1.00 7.35 D-14 0.64 0.59 8.17 1.00 7.34 D-14 0.64 0.59 <t< td=""><td></td><td>North portion of site, along Carefree Circle</td><td>D-5</td><td>1.83</td><td>0.59</td><td></td><td>08</td><td></td><td>.64</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		North portion of site, along Carefree Circle	D-5	1.83	0.59		08		.64													
D-7 0.07 0.96 5.00 0.07 8.55 D-8 1.90 0.59 10.07 1.12 6.80 D-9 1.90 0.59 10.07 1.12 6.80 D-9 0.43 0.59 906 0.25 7.08 D-9 0.43 0.51 10.15 0.17 6.78 D-10 0.33 0.51 10.15 0.17 6.78 D-11 0.11 0.96 5.00 0.11 8.55 D-11 0.11 0.96 5.00 0.11 8.55 D-12 0.93 0.59 8.17 1.00 7.36 D-13 1.70 0.59 8.17 1.00 7.35 D-14 0.64 0.59 8.17 1.00 7.36 D-14 0.64 0.59 8.17 1.00 7.36 D-14 0.64 0.59 8.65 7.08 7.64 D-15 0.21 0.59		East Half of Fallow Lane which drains to Vineyard Circle	D-6	0.09	0.96		60		.74													
D-8 1.90 0.59 10.07 1.12 6.80 D-9 0.43 0.59 906 0.25 7.08 D-9 0.43 0.59 906 0.25 7.08 D-10 0.33 0.51 10.15 0.17 6.78 D-11 0.11 0.56 500 0.11 8.55 D-11 0.11 0.96 5.00 0.11 8.55 D-11 0.11 0.96 5.00 0.11 8.55 D-11 0.11 0.96 6.37 0.55 7.98 D-12 0.93 0.59 8.17 1.00 7.36 D-13 1.70 0.59 8.17 1.00 7.35 D-14 0.64 0.59 7.31 0.38 7.64 D-14 0.64 0.59 8.65 0.12 7.20		Southwest Half of Fallow Lane which drains to Akers	D-7	0.07	0.96		.07	55	.57													
D-9 0.43 0.59 9.06 0.25 7.08 D-10 0.33 0.51 10.15 0.17 6.78 D-11 0.11 0.96 5.00 0.11 8.55 D-11 0.11 0.96 5.00 0.11 8.55 D-12 0.93 0.59 6.37 0.55 7.98 D-12 0.93 0.59 6.37 0.55 7.98 D-13 1.70 0.59 8.17 1.00 7.35 D-14 0.64 0.59 8.17 1.00 7.35 D-14 0.64 0.59 8.17 1.00 7.35 D-14 0.64 0.59 8.17 1.00 7.35 D-15 0.21 0.59 8.65 0.12 7.64		North/Middle portion of Site inside of Vineyard Circle which drains to west	D-8	1.90			12		.62													
D-10 0.33 0.51 10.15 0.17 6.78 D-11 0.11 0.96 5.00 0.11 8.55 D-12 0.93 0.59 6.37 0.55 7.98 D-12 0.93 0.59 6.37 0.55 7.98 D-13 1.70 0.59 8.17 1.00 7.35 D-14 0.64 0.59 8.17 1.00 7.35 D-14 0.64 0.59 8.17 1.00 7.35 D-15 0.21 0.59 8.17 1.00 7.35 D-14 0.64 0.59 8.17 1.00 7.36 D-15 0.21 0.59 8.65 0.12 7.64		Portion of site south of Fallow and btwn Akers and Vineyard	D-9	0.43	0.59		.25		.80													
D-11 0.11 0.96 5.00 0.11 8.55 D-12 0.93 0.59 6.37 0.55 7.98 D-13 1.70 0.59 8.17 1.00 7.36 D-14 0.64 0.59 8.17 1.00 7.35 D-14 0.69 7.31 0.38 7.64 D-15 0.29 8.65 0.12 7.20		North Pond	D-10	0.33			17		.14													
D-12 0.93 0.59 6.37 0.55 7.98 D-13 1.70 0.59 8.17 1.00 7.35 D-14 0.64 0.59 8.17 1.00 7.35 D-14 0.64 0.59 7.31 0.38 7.64 D-15 0.21 0.59 8.65 0.12 7.20		North half of Running Deer Way	D-11	0.11	0.96			.55	.90													
D-13 1.70 0.59 8.17 1.00 7.35 D-14 0.64 0.59 7.31 0.38 7.64 D-15 0.21 0.59 8.65 0.12 7.20		South/Middle portion of Site inside of Vineyard Circle which drains to west	D-12	0.93	0.59		.55		.38													
D-14 0.64 0.59 7.31 0.38 7.64 D-15 0.21 0.59 8.65 0.12 7.20		Southern portion of site along Sika Deer Place and Akers	D-13	1.70	0.59		8		.37													
D-15 0.21 0.59 8.65 0.12 7.20		Along eastern Edge of Vineyard (West Side) opposite North Pond	D-14	0.64	0.59		38		88.													
		Northwest Half of Fallow Lane which drains to Akers	D-15	0.21					68.													

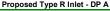
Standard Form SF-2 . Storm Drainage System Design (Rational Method Procedure)
Project:

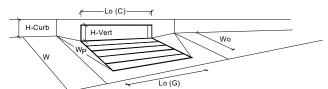

Star	Standard Form SF-2 . Storm Drainage System Design (Rational Method	stem De	sign (R	ational	Metho	d Proc	Procedure)	_										
	Project:	Gardens at North Carefree - FDR	it North C	arefree	- FDR							Ū	Created by:	CMD	Date:	1/16/2019	19	
ļ	Section:	Proposed Conditions	Conditior	JS								Ch	Checked by:	CKC	Date:			
	South Pond	D-16	0 13	0 51	5 00	0.07	8 55	0 57										
		2	0	0	_		200	5										
	South half of of Running Deer Way	D-17	0.09	0.96	5.00	0.09	8.55	0.74										
	ROW north of Fallow which drains towards																	
	Akers	D-18	0.19	0.59	5.88	0.11	8.17	0.92										
	ROW btwn Fallow & Running Deer which drains towards Akers	D-19	0.12	0.59	5.00	0.07	8.55	0.61										
	ROW south of Running Deer which drains	D-20	0 13	0 59	5 00	0.08	8 55	0.66										
		ì	0	200	-	1	200	0										
	ROW along north edge of Sika Deer Place	D-21	0.28	0.59	5.00	0.17	8.55	1.41										
All Ec	All Equations follow UDFCD Rational Method																	
(1)	(1) Basin Description linked to C-Value Sheet		(2)	=Column	(7) =Column 4 x Column 5	5			(13) Sum of Qs	1 of Qs			7 (13)	(19) Additional Flow Length	v Length			
(2)	(2) Basin Design Point		(8)	=28.5*P/(;	(8) =28.5*P/(10+Column 6)^0.786	6)^0.786			(14) Addi	(14) Additional Street Longitudinal Slope	Longitudina	I Slope	(20) 5	(20) Street or Pipe Velocity	Velocity			
(3)	Enter the Basin Name from C-Value Sheet		(6)	=Column	(9) =Column 7 x Column 8	8			(15) Addi	(15) Additional Street Overland Flow	Overland F	low	(21) =	(21) =Column 15 OR Column 16 OR Column 20 / 60	R Column 1	6 OR Colur	mn 20 / 60	
(4)	Basin Area linked to C-Value Sheet		(10)	=Column ((10) =Column 6 + Column 21	21			(16) Addi	(16) Additional Pipe Design Flow	Jesign Flow							
(2)	Composite C linked to C-Value Sheet		(11)	Add the C	.A. Values	Column 7	'o get the c	(11) Add the C.A. Values Column 7 to get the cummulative	(17) Addi	(17) Additional Pipe Slope	slope							
(9)	(6) Time of Concentration linked to SF-1 Sheet			C.A. Values	Sé				(18) Add	(18) Additional Pipe Size	Size							
			(12)	=28.5*P/((12) =28.5*P/(10+Column 10)^0.786	10)^0.786												

GARDENS AT NORTH CAREFREE - FDR SURFACE ROUTING

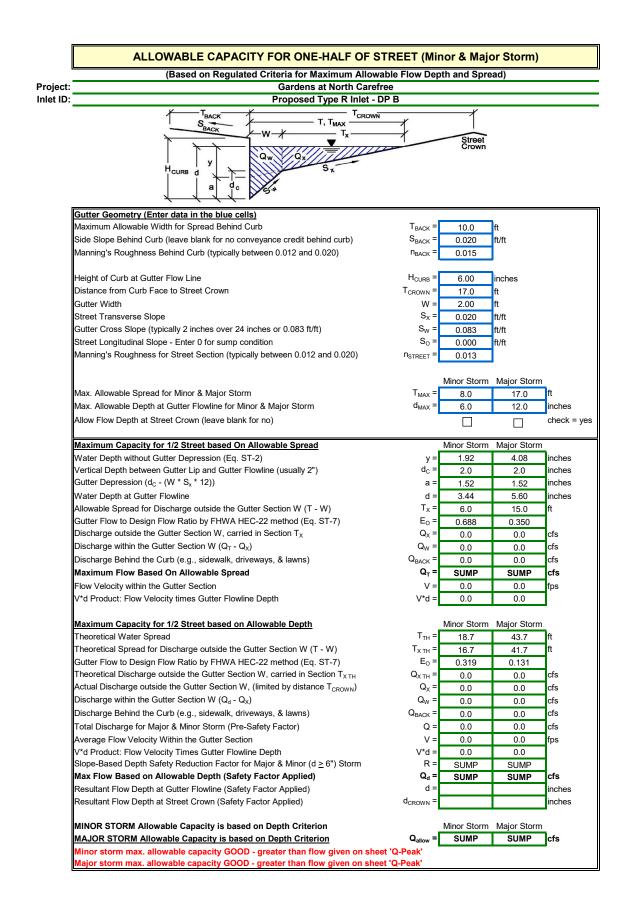
DESIGN	CONTRIBUTING	CA(equi	valent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	BASINS	CA(5)	CA(100)		l(5)	I(100)	Q(5)	Q(100)
				(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
Z	OS-1	0.02	0.09	13.4	3.6	6.2	0.1	0.6
						FRAVEL T	IME	
		0.02	0.09	Type/flow	Length (ft)		d. Time (min)	T. Time (min)
					750	2.1	6.0	19.3
Y	OS-2	0.02	0.10	13.9	3.5	6.1	0.1	0.6
						FRAVEL T		
		0.02	0.10	Type/flow	Length (ft)		d. Time (min)	T. Time (min)
			-		450	2.1	3.6	17.5
Х	OS-3	0.13	0.57	16.0	3.3	5.7	0.4	3.3
						FRAVEL T		•
		0.13	0.57	Type/flow	Length (ft)		d. Time (min)	T. Time (min)
					115	2.1	0.9	16.9
W	OS-4	0.01	0.03	10.8	3.9	6.8	0.0	0.2
						FRAVEL T		
		0.01	0.03	Type/flow	Length (ft)		d. Time (min)	T. Time (min)
-					115	2.1	0.9	11.7
А	D-1	0.56	0.73	19.3	3.0	5.2	3.4	9.9
	D-2	0.45	0.58					
	DP W	0.01	0.03					
	DP X	0.13	0.57	– 10		FRAVEL T	-	
		1.14	1.91	Type/flow	Length (ft)		d. Time (min) 0.2	T. Time (min)
Р	D-3	0.00	0.10	PIPE	34	2.5	-	19.5
В	D-3 D-4	0.08 0.09	0.10	5.0	5.2	9.0 FRAVEL T	0.9	2.0
	D-4		0.12	T				
		0.17	0.22	Type/flow PIPE	Length (ft) 205	2.5	d. Time (min) 1.4	T. Time (min) 6.4
С	D-8	0.86	1.12	10.1	4.0	7.1	4.6	10.8
U	D-0 D-14	0.80	0.38	10.1	4.0	7.1	4.0	10.0
	FB Inlet E	0.29	0.03			FRAVEL T	IME	
		1.14	1.53	Type/flow	Length (ft)		d. Time (min)	T. Time (min)
		1.14	1.55	CHANNEL	34	2.5		10.3
V	D-5	0.82	1.08	9.1	4.2	7.4	3.8	
v	D-6	0.02	0.09	0.1	۲.۲	<i>г.</i> т	0.0	0.0
	- •	0.90	1.17	Type/flow	Length (ft)	Velocity (fns)	d. Time (min)	T. Time (min)
		0.00	1.17	STREET	205	2.8	1.2	10.3
D	D-9	0.19	0.25	10.3	4.0	7.0	4.4	9.9
-	DP V	0.90	1.17					0.0
	FB Inlet F	0.00	0.00					
		1.10	1.42	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				PIPE	10	2.5	0.1	10.4
E	D-12	0.42	0.55	6.4	4.8	8.4	2.0	4.6
						RAVEL T		
		0.42	0.55	Type/flow			d. Time (min)	T. Time (min)
				PIPE		2.5	0.2	6.6

DESIGN	CONTRIBUTING	C A (e q u	ivalent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	BASINS	CA(5)	CA(100)		l(5)	I(100)	Q(5)	Q(100)
				(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
F	D-13	0.77	1.00	17.5	3.1	5.5	2.5	6.0
	DP Y	0.02	0.10		-	TRAVEL T	IME	
					1	1	1	
		0.79	1.10	Type/flow	Length (ft)			T. Time (min)
	D 40	0.00	0.44	PIPE	10	2.5	0.1	17.6
G	D-18	0.09	0.11	5.9	4.9	8.6 TRAVEL T	0.4	1.0
		0.09	0.11	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
		0.05	0.11	туре/пом	25	5.0	0.1	6.0
Н	D-15	0.09	0.12	5.0	5.2	9.1	1.1	
	D-7	0.06	0.07			TRAVEL T		
	D-19	0.05	0.07					
		0.21	0.26	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					25	5.0	0.1	5.1
U	D-21	0.13	0.17	19.3	3.0	5.2	0.4	1.3
	DP Z	0.02	0.09		1	TRAVEL T		
		0.15	0.26	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
	D-11	0.10	0.11	19.3	3.0	5.0 5.2	0.0	19.3 2.7
I	D-17	0.10	0.09	19.5	5.0	J.Z	1.1	2.1
	D-20	0.06	0.03					
	DP U	0.15	0.26			TRAVEL T	IME	
		0.39	0.53	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
						5.0	0.0	19.3
NP	D-10	0.11	0.17	19.5	3.0	5.2	10.8	27.1
	DP A	1.14	1.91					
	DP B	0.17	0.22					
	DP C DP D	1.14 1.10	1.53 1.42					
	טר ט	1.10	1.42			TRAVEL T	IME	
		3.66	5 25	Type/flow				T. Time (min)
		0.00	0.20	1,100,11011	80	4.0	0.3	19.9
SP	D-16	0.04	0.07	17.6	3.1	5.4	3.9	
	DP E	0.42	0.55					
	DP F	0.79	1.10		-	TRAVEL T	IME	
		1.25	1.71	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
						5.0	0.0	17.6

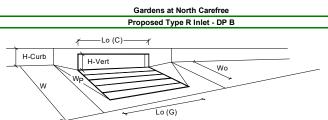

Appendix D: Inlet Calculations

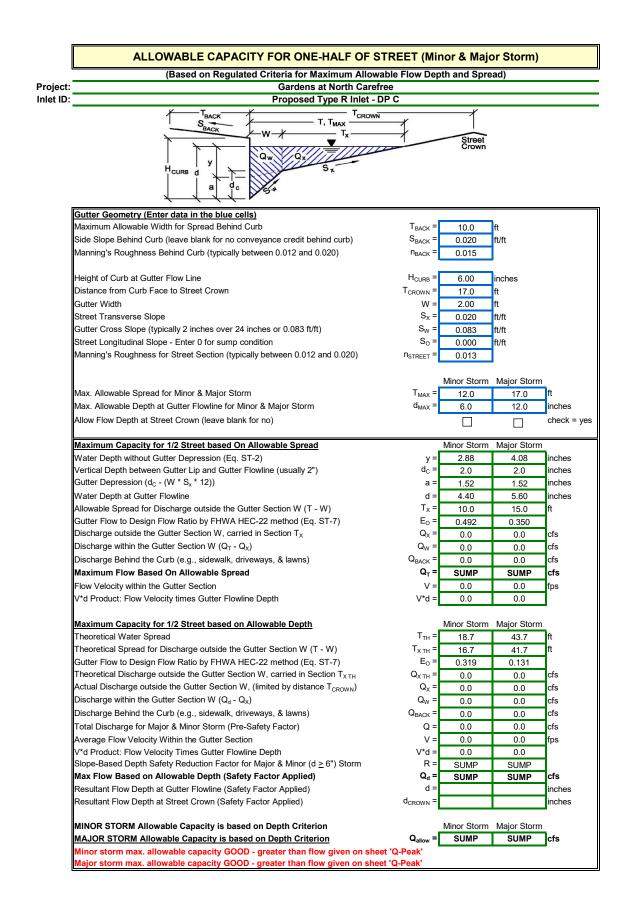


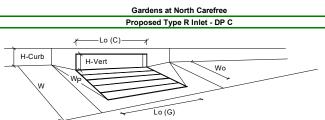
Project =

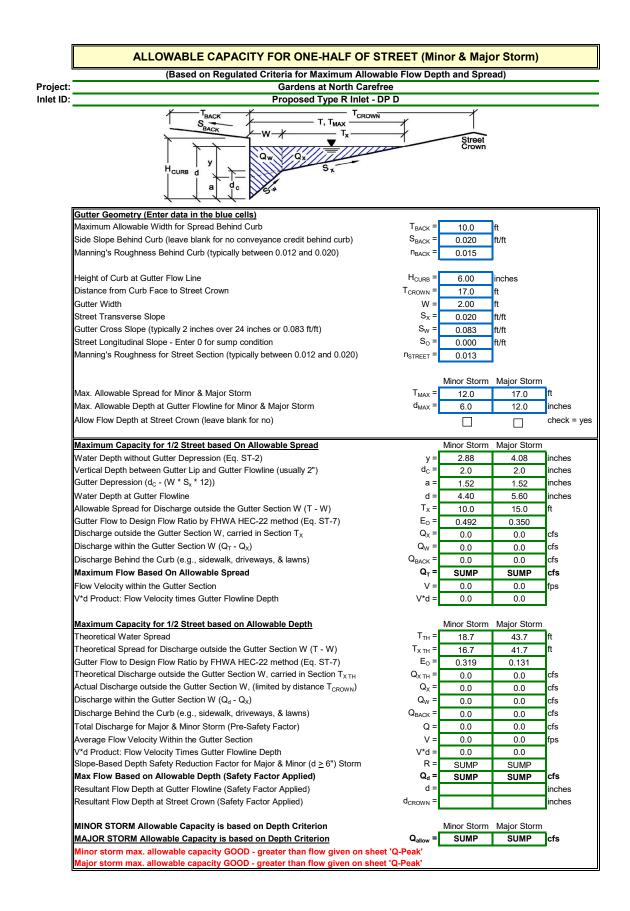

Inlet ID =

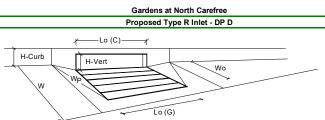
Gardens at North Carefree Proposed Type R Inlet - DP A

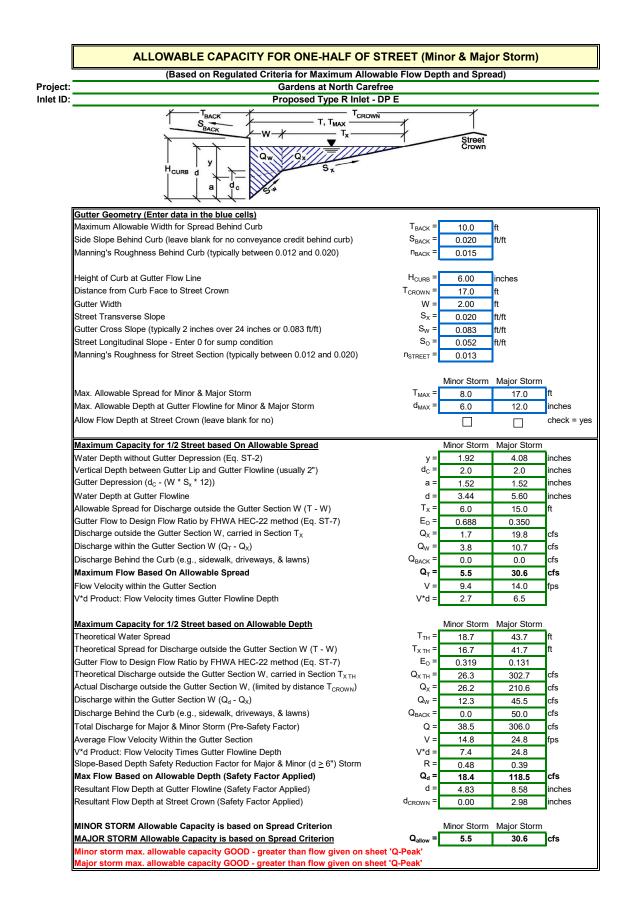



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type F	R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	3.4	5.6	inches
Grate Information		MINOR	MAJOR	Override Dept
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	20.00	20.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{0}(C) =$	0.67	0.67	-
Grate Flow Analysis (Calculated)	-0(-)	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	-
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)	Clog -	MINOR	MAJOR	1
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
	Q _{wa} =	N/A N/A	N/A N/A	cfs
Interception with Clogging	Q _{wa} –	MINOR	MAJOR	cis
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)	Q _{oi} =	N/A	N/A	
Interception without Clogging	Q _{oi} =			cfs
Interception with Clogging	Q _{oa} –	N/A	N/A	cfs
Grate Capacity as Mixed Flow	o -F	MINOR	MAJOR	٦.
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	-	MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	1.33	1.33	
Clogging Factor for Multiple Units	Clog =	0.03	0.03	
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	-
Interception without Clogging	Q _{wi} =	2.06	10.63	cfs
Interception with Clogging	Q _{wa} =	1.99	10.28	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	-	MINOR	MAJOR	-
Interception without Clogging	Q _{oi} =	30.08	37.75	cfs
Interception with Clogging	Q _{oa} =	29.08	36.50	cfs
Curb Opening Capacity as Mixed Flow	_	MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	7.32	18.63	cfs
Interception with Clogging	Q _{ma} =	7.07	18.01	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	1.99	10.28	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L =	20.00	20.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	т =	8.0	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
	-	MINOR	MAJOR	-
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.0	10.3	cfs
WARNING: Inlet Capacity less than Q Peak for Minor Storm	Q PEAK REQUIRED =	3.4	9.9	cfs

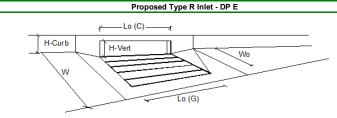

Project = Inlet ID =

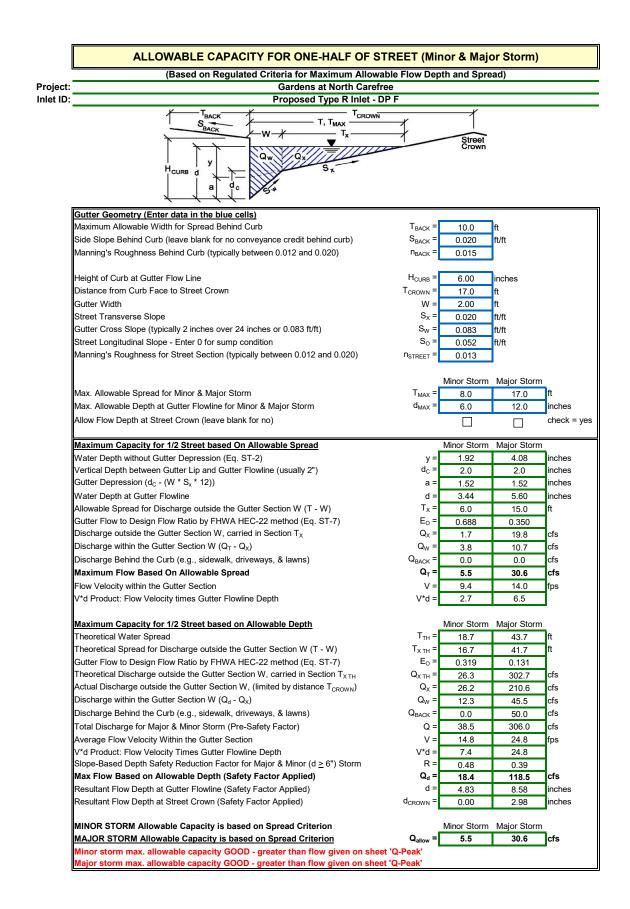

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	3.4	5.6	inches
Grate Information		MINOR	MAJOR	Override Depth
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
- Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	-
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	_
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	L	MINOR	MAJOR	_
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	- Olde	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	٦
Clogging Factor for Multiple Units	Clog =	0.10	0.10	-
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)	olog –	MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	1.26	5.09	cfs
Interception with Clogging	Q _{wa} =	1.14	4.58	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	-wa	MINOR	MAJOR	010
Interception without Clogging	Q _{oi} =	7.52	9.44	cfs
Interception with Clogging	Q ₀₀ =	6.77	8.49	cfs
Curb Opening Capacity as Mixed Flow	-08	MINOR	MAJOR	010
Interception without Clogging	Q _{mi} =	2.87	6.44	cfs
Interception with Clogging	Q _{ma} =	2.58	5.80	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	1.14	4.58	cfs
Resultant Street Conditions	«Curb –	MINOR	4.36 MAJOR	010
Total Inlet Length	L =	5.00	5.00	feet
Resultant Street Flow Spread (based on sheet <i>Q-Allow</i> geometry)	С- Т=	8.0	17.0	ft
Resultant Street Flow Spread (based on sheet Q-Anow geometry)	d _{CROWN} =	0.0	0.0	π inches
	GROWN -	MINOR	0.0 MAJOR	incides
	Q _a =			٦.
Total Inlet Interception Capacity (assumes clogged condition)	(J. = 1	1.1	4.6	cfs


Project = Inlet ID =


Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.4	5.8	inches
Grate Information		MINOR	MAJOR	Override Deptr
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	20.00	20.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)	··· L	MINOR	MAJOR	_
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	L	MINOR	MAJOR	_
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	Orace	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.33	1.33	7
Clogging Factor for Multiple Units	Clog =	0.03	0.03	-
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)	olog	MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	5.11	11.73	cfs
Interception with Clogging	Q _{wa} =	4.94	11.34	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	- wa	MINOR	MAJOR	
Interception without Clogging	Q _{ni} =	33.71	38.39	cfs
Interception with Clogging	Q _{oa} =	32.59	37.11	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	12.20	19.74	cfs
Interception with Clogging	Q _{mi} = Q _{ma} =	12.20	19.74	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{curb} =	4.94	19.08	cfs
Resultant Street Conditions	≪Curb =	4.94 MINOR	MAJOR	010
Resultant Street Conditions Total Inlet Length	, _ F			foot
i otal inlet Length Resultant Street Flow Spread (based on sheet Q-Allow geometry)	L = T =	20.00	20.00	feet
		12.0	17.8	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0 MINOR	0.2 MAJOR	inches
Total Inlat Intercontion Consolity (accument along at a sudifier)	Q _a =	MINOR 4.9	MAJOR 11.3	cfs
Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	4.9 4.6	11.3	cfs

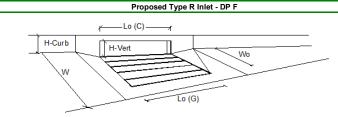
Project = Inlet ID =


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.4	5.6	inche <u>s</u>
Grate Information		MINOR	MAJOR	Override Depth
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	20.00	20.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	7
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)	L	MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	L	MINOR	MAJOR	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.33	1.33	٦
Clogging Factor for Multiple Units	Clog =	0.03	0.03	
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	5.11	10.63	cfs
Interception with Clogging	Q _{wa} =	4.94	10.28	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	_
Interception without Clogging	Q _{oi} =	33.71	37.75	cfs
Interception with Clogging	Q _{oa} =	32.59	36.50	cfs
Curb Opening Capacity as Mixed Flow	-04	MINOR	MAJOR	_
Interception without Clogging	Q _{mi} =	12.20	18.63	cfs
Interception with Clogging	Q _{ma} =	11.80	18.01	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	4.94	10.01	cfs
Resultant Street Conditions		MINOR	MAJOR	1
Total Inlet Length	L =	20.00	20.00	feet
Resultant Street Flow Spread (based on sheet <i>Q-Allow</i> geometry)	T=	12.0	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
	GROWN -	MINOR	MAJOR	110100
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.9	10.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	4.9	9,9	cfs
mer Capacity is GOOD for Minor and Major Storms (PQ PEAN)	✓ PEAK REQUIRED =	4.4	9.9	015


INLET ON A CONTINUOUS GRADE

Project: Inlet ID:

Gardens at North Carefree

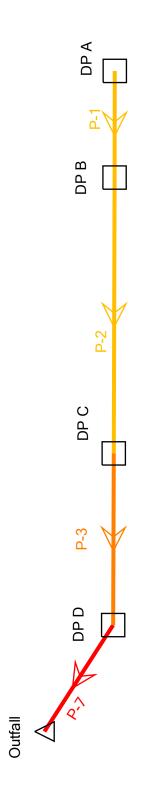

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	1
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	1
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	•
Design Discharge for Half of Street (from Sheet Q-Peak)	Q ₀ =	2.0	4.6	cfs
Water Spread Width	т =	4.3	7.3	ft
Water Depth at Flowline (outside of local depression)	d =	2.6	3.3	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.935	0.735	1
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	0.1	1.2	cfs
Discharge within the Gutter Section W	Q _w =	1.9	3.4	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.31	0.66	sq ft
Velocity within the Gutter Section W	V _W =	6.4	7.0	fps
Water Depth for Design Condition	d _{LOCAL} =	5.6	6.3	inches
Grate Analysis (Calculated)	-LOUAL	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	-
Under No-Clogging Condition		MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V., =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	0.0
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	٦
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Actual Interception Capacity	$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = Q_0-Q_a (to be applied to curb opening or next d/s inlet)	$Q_{b} =$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	-0	MINOR	MAJOR	0.0
Equivalent Slope Se (based on grate carry-over)	S _e =	0.196	0.158	ft/ft
Required Length L_T to Have 100% Interception	L _T =	7.12	12.00	ft
Under No-Clogging Condition	· •	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	7.12	10.00	ft
Interception Capacity	Q; =	2.0	4.4	cfs
Under Clogging Condition		MINOR	MAJOR	_
Clogging Coefficient	CurbCoef =	1.25	1.25	7
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	-
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	2.0	4.3	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	0.0	0.3	cfs
Summarv	чb –	MINOR	0.5 MAJOR	0.0
Total Inlet Interception Capacity	Q =	2.00	4.33	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q = Q _b =	0.0	4.33	cis
	- uch	0.0	0.3	

INLET ON A CONTINUOUS GRADE

Project: Inlet ID:

Gardens at North Carefree

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W., =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	Cr-C =	0.10	0.10	-
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Q-Peak)	Q _o =	2.5	6.0	cfs
Water Spread Width	т =	5.1	8.4	ft
Water Depth at Flowline (outside of local depression)	d =	2.7	3.5	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.887	0.669	mones
Discharge outside the Gutter Section W, carried in Section T_x	L ₀ =	0.3	2.0	cfs
	Q _x =	2.2	4.0	cfs
Discharge within the Gutter Section W Discharge Behind the Curb Face		0.0	4.0	cfs
	Q _{BACK} =			_
Flow Area within the Gutter Section W	A _W =	0.38	0.82	sq ft
Velocity within the Gutter Section W	V _w =	6.6	7.3	fps
Water Depth for Design Condition	d _{LOCAL} =	5.7	6.5	inches
Grate Analysis (Calculated)		MINOR	MAJOR	٦.
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	٦.
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	-	MINOR	MAJOR	_
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q _o -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.187	0.146	ft/ft
Required Length L _T to Have 100% Interception	L _T =	8.15	14.28	ft
Under No-Clogging Condition	-	MINOR	MAJOR	_
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	8.15	14.28	ft
Interception Capacity	Q _i =	2.5	6.0	cfs
Under Clogging Condition		MINOR	MAJOR	_
Clogging Coefficient	CurbCoef =	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	L _e =	13.03	13.03	ft
Actual Interception Capacity	Q _a =	2.5	6.0	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	Q _b =	0.0	0.0	cfs
Summary	чс _р –	MINOR	MAJOR	0.0
Total Inlet Interception Capacity	Q =	2.50	6.00	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	100	%

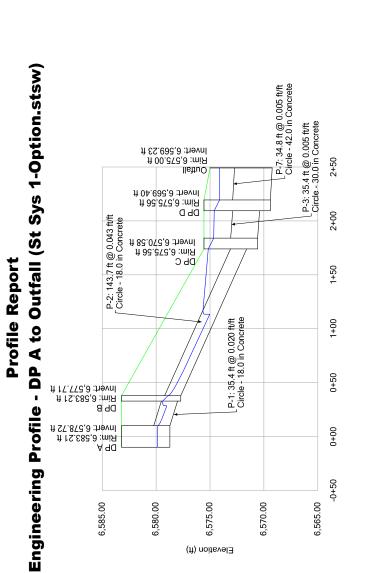

Storm System 1

shouldn't this page come after the title to appendix E cover sheet?

24

Appendix E: StormCAD

Scenario: 100-Year


Bentley StormCAD CONNECT Edition [10.00.00.45] Page 1 of 1

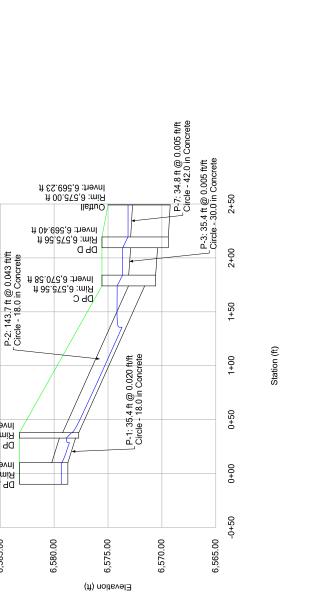
> Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

St Sys 1-Option.stsw 10/16/2019

<u>Storm System 1 - 100 Year</u>

			Length (Unified)	Diameter	Length Unified) Diameter Capacity (Full	System Rational	Velocity	Hydraulic Elevation Grade Ground Line (In)		Invert	Cover (Start)	Elevation Ground	Hydraulic Grade Line (Out)	Invert	Cover (Stop)	Slope (Calculated)
Label	Start Node	Stop Node	(f t)	(in)	Flow) (cfs)	Flow (cfs)	(ft/s)	(Start) (ft)	(ft)	(Start) (ft)	(ft) (5	stop) (ft)	(ft)	(Stop) (ft)	(ft)	(ft/ft)
P-1	DP A	DP B	35.4	18	14.89	8.53		6,583.21	6,579.85	8.71 6,583.21 6,579.85 6,578.72		6,583.21	6,579.40	6,578.01	3.7	2.00%
P-2	DP B	DP C	143.7	18	21.66	9.5	11.86	11.86 6,583.21 6,578.90 6,577.71	6,578.90	6,577.71	4	6,575.56	4 6,575.56 6,575.16 6,571.60	6,571.60	2.46	4.30%
P-7	DP D	Outfall	34.8	42	70.32	20.78		2.16 6,575.56 6,574.11 6,569.40	6,574.11	6,569.40	2.66	6,575.00	6,574.10	6,569.23	2.27	0.50%
P-3	DP C	DP D	35.4	30	29.25	14.57	2.97	2.97 6,575.56 6,574.66 6,570.58	6,574.66	6,570.58		6,575.56	6,574.61	6,570.40	2.66	0.50%

Station (ft)


Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

St Sys 1-Option.stsw 10/18/2019

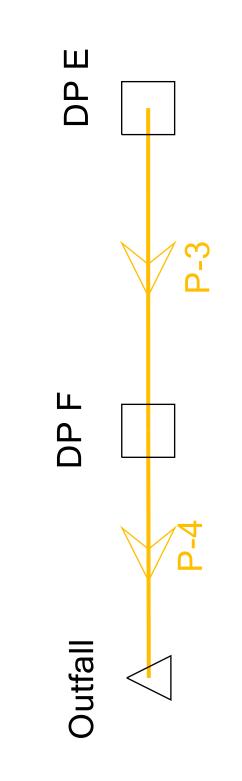
Bentley StormCAD CONNECT Edition [10.00.00.45] Page 1 of 1

<u> Storm System 1 - 5 Year</u>

0.50%	2.66	2.48 6,575.56 6,573.64 6,570.40	6,573.64	6,575.56	2.48	1.03 6,575.56 6,573.65 6,570.58	6,573.65	6,575.56		5.04	29.25	30	35.4	DP D	DP C	P-3
0.50%	2.27	2.66 6,575.00 6,573.14 6,569.23	6,573.14	6,575.00	2.66	0.78 6,575.56 6,573.14 6,569.40	6,573.14	6,575.56		7.5	70.32	42	34.8	Outfall	DP D	P-7
4.30%	2.46	4 6,575.56 6,574.15 6,571.60	6,574.15	6,575.56	4	8.67 6,583.21 6,578.38 6,577.71	6,578.38	6,583.21		3.06	21.66	18	143.7	DP C	DP B	P-2
2.00%	3.7	6,578.01	6,578.88	6,583.21	2.99	6.37 6,583.21 6,579.34 6,578.72 2.99 6,583.21 6,578.88 6,578.01	6,579.34	6,583.21		2.67	14.89	18	35.4	DP B	DP A	P-1
(ft/ft)	(ft)	(Stop) (ft)	(tt) (3	(Stop) (ft)	(ft)	(ft) (Start) (ft)	(ft)	(Start) (ft)	(ft/s)	Flow (cfs)	Flow) (cfs)	(in)	(ft)	Stop Node	Start Node	Label
(Calculated)	(Stop)	Invert	Ground Line (Out)	Ground	(Start)		Line (In)	Ground Line (In) Invert	Rational Velocity	Rational	Unified) Diameter Capacity (Full	Diameter	(Unified)			
Slope	Cover		Grade	Elevation	Cover		Grade	Elevation		System			Length			
			Hydraulic				Hydraulic									

Engineering Profile - DP A to Outfall (St Sys 1-Option.stsw) **Profile Report** Rim: 6,583.21 ft DP B DP B PP A Rim: 6,583.21 ft Drvert: 6,578.72 ft

6,585.00


Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

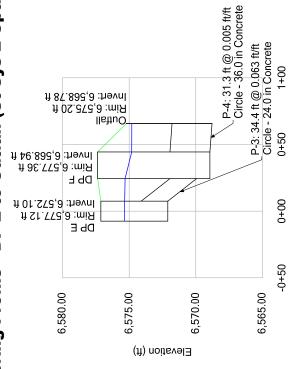
St Sys 1-Option.stsw 10/18/2019

Bentley StormCAD CONNECT Edition [10.00.00.45] Page 1 of 1

Storm System 2

Scenario: 100-Year

Bentley StormCAD CONNECT Edition [10.00.00.45] Page 1 of 1


Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

St Sys 2-Option.stsw 10/16/2019

<u>Storm System 2 - 100 Year</u>

(ft/ft) 0.50% 6.30%	(Stop) (ft) 3.42 5.42	(Stop) (ft) 6,568.78 6,569.94	(Start) (ft) (Start) (ft) (Stop) (ft) (ft) (Stop) (ft) (Stop) (ft) 6,568.94 5.42 6,577.20 6,574.00 6,568.78 3.42 6,572.10 3.02 6,577.36 6,574.50 6,569.94 5.42	(Stop) (ft) 6,575.20 6,577.36	(Start) (ft) 5.42 3.02	(Start) (ft) 6,568.94 6,572.10	(ft) (ft) 6,574.00 6,574.50	(ff) (ff) <th< th=""><th>(ft/s) 0.52 0.77</th><th>Flow (cfs) 3.65 2.43</th><th></th><th>(in) 36 24</th><th>-</th><th>Stop Node Outfall DP F</th><th>Start Node DP F DP E</th><th>Label P-4 P-3</th></th<>	(ft/s) 0.52 0.77	Flow (cfs) 3.65 2.43		(in) 36 24	-	Stop Node Outfall DP F	Start Node DP F DP E	Label P-4 P-3
(Calculated)	Cover	Invert	Rational Velocity Ground Line (In) Invert Cover Ground Line (Out) Invert	Ground	Cover	Invert	Line (In)	Ground	Velocity	Rational	Unified) Diameter Capacity (Full	Diameter	\sim	-		-
Slope			Grade	Elevation Grade			Grade	Elevation Grade		System			Length			
			Hydraulic				Hydraulic									

Profile Report Engineering Profile - DP E to Outfall (St Sys 2-Option.stsw)

Station (ft)

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666


St Sys 2-Option.stsw 10/18/2019

Bentley StormCAD CONNECT Edition [10.00.00.45] Page 1 of 1

Storm System 2 - 5 Year

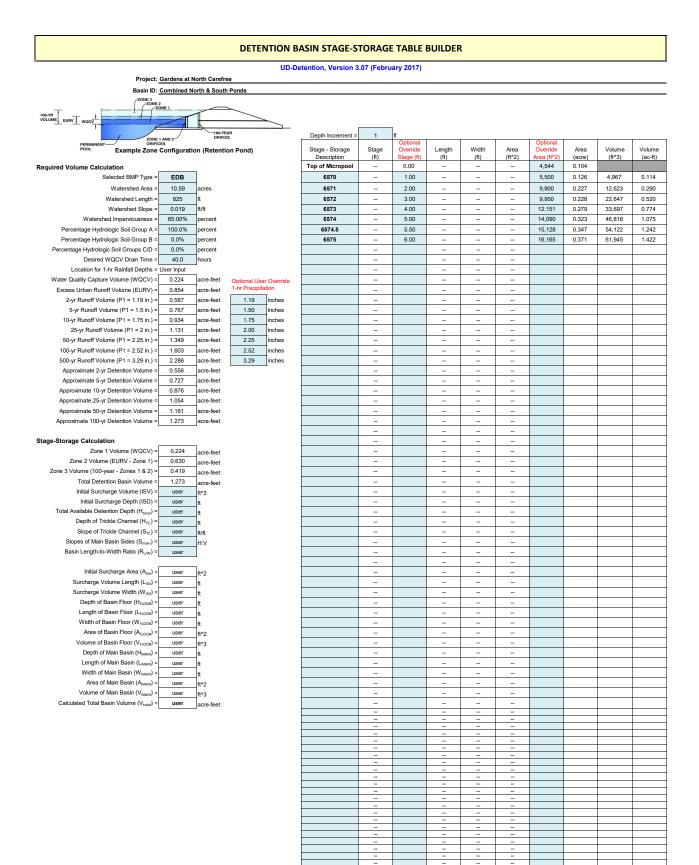
6.30%	5.42	6,569.94	6,574.50	6,577.36	3.02	6,572.10	6,574.50	6,577.12	0.77		56.68	24	34.4	DP F	DP E	P-3
0.50%	3.65 0.52 6,577.36 6,574.00 6,568.94 5.42 6,575.20 6,574.00 6,568.78 3.42	6,568.78	6,574.00	6,575.20	5.42	6,568.94	6,574.00	6,577.36	0.52	3.65	47.7	36	31.3	Outfall	DP F	P-4
(ft/ft)	(cfs) (ft/s) (Start) (ft) (ft) (Start) (ft) (Start) (ft) (Stop) (ft) (ft) (ft) (Stop) (ft) (Stop) (ft) (ft) (ft/ft)	(Stop) (ft)	(ft)	(Stop) (ft)	(Start) (ft)	(Start) (ft)	(ft)	(Start) (ft)	(ft/s)	Flow (cfs)	Flow) (cfs) Flow	(in)	(ft)	Stop Node	Start Node	Label
(Calculated)	Cover	onal Velocity Ground Line (In) Invert Cover Ground Line (Out) Invert Cover	Line (Out)	Ground	Cover	Invert	Line (In)	Ground	Velocity	Rational	Jnified) Diameter Capacity (Full Ratic	Diameter	(Unified)			
Slope			Grade	Elevation Grade			Grade	Elevation Grade		System			Length			
			Hydraulic				Hydraulic									

Profile Report Engineering Profile - DP E to Outfall (St Sys 2-Option.stsw)

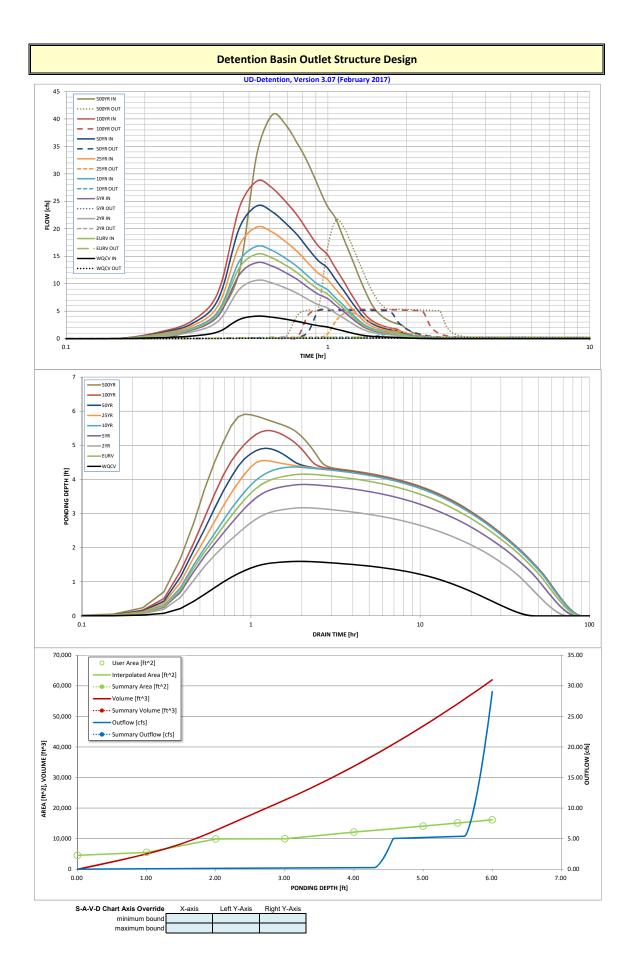
Station (ft)

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

St Sys 2-Option.stsw 10/18/2019


Bentley StormCAD CONNECT Edition [10.00.00.45] Page 1 of 1 Appendix F: Detention & Water Quality Pond Calculations

Combined Pond


North Pond					South Por	d				Combined (Sum of Nor	Pond th & South P	onds)		
Depth [ft]	Elevation [ft]	Updated Area [sf]	Volume* [cf]	Volume* [ac-ft]	Depth [ft]	Elevation [ft]	Updated Area [sf]	Volume* [cf]	Volume* [ac-ft]	Depth [ft]	Elevation [ft]	Area [sf]	Volume** [cf]	Volume** [ac-ft]
0	6569	4,544	0	0	-1	6569	0	0	0	0	6569	4,544	0	0.000
1	6570	5,494	4,964	0.114	0	6570	1,646	0	0	1	6570	7,140	4,964	0.114
2	6571	6,508	10,955	0.251	1	6571	2,166	1,884	0.043	2	6571	8,674	12,839	0.295
3	6572	7,592	18,070	0.415	2	6572	2,753	4,338	0.100	3	6572	10,345	22,408	0.514
4	6573	8,745	26,238	0.602	3	6573	3,406	7,445	0.171	4	6573	12,151	33,683	0.773
5	6574	9,968	35,595	0.817	4	6574	4,122	11,209	0.257	5	6574	14,090	46,804	1.074
5.5	6574.5	10,615	40,741	0.935	4.5	6574.5	4,513	13,368	0.307	5.5	6574.5	15,128	54,108	1.242
6	6575	11,261	46,209	1.061	5	6575	4,904	15,722	0.361	6	6575	16,165	61,931	1.422

* Volumes for North & South Ponds obtained from UD-Detention workbook for each pond separately

** Areas adjusted on UD-Detention workbook for the Combined Pond to approximate these volumes

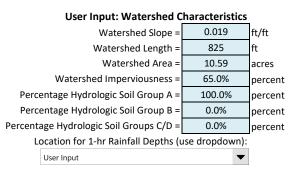
		Dete	ntion Basin C	Dutlet Struct	ure Design				
			UD-Detention, Ve	rsion 3.07 (Februa	ry 2017)				
-	Gardens at North C Combined North &								
ZONE 3									
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	1.68	0.224	Orifice Plate	1		
	100-YEA	R	Zone 2 (EURV)	4.29	0.630	Orifice Plate			
ZONE 1 AND 2- ORIFICES	ORIFICE		'one 3 (100-year)	5.59	0.419	Weir&Pipe (Restrict)			
	Configuration (Re	etention Pond)	,		1.273	Total	J		
ser Input: Orifice at Underdrain Outlet (typically us	sed to drain WQCV i	n a Filtration BMP)			1.275	1	ed Parameters for Ur	nderdrain	
Underdrain Orifice Invert Depth =	N/A	T	e filtration media sur	face)	Unde	erdrain Orifice Area =	N/A	ft²	
Underdrain Orifice Diameter =	N/A	inches			Underdra	ain Orifice Centroid =	N/A	feet	
ser Input: Orifice Plate with one or more orifices o Invert of Lowest Orifice =	0.00	T	oottom at Stage = 0 ft			rifice Area per Row =	lated Parameters for N/A	r Plate	
Depth at top of Zone using Orifice Plate =	4.29	•	oottom at Stage = 0 ft			illiptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	ottom at stage of t	,		ptical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	inches				Elliptical Slot Area =	N/A	ft ²	
		-						-	
ser Input: Stage and Total Area of Each Orifice R	Row (numbered fron Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	7
Stage of Orifice Centroid (ft)	0.00	1.50	3.00	now 4 (optional)	now 5 (optional)	Now o (optional)	now r (optional)	row o (optional)	1
Orifice Area (sq. inches)	2.41	1.11	1.11						1
() · · · · · · · · · · · · · · · · · ·									-
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									_
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Circ	cular or Rectangular)					Calculated	Parameters for Vert	tical Orifice	
oser input. Vertical office (ene	Not Selected	Not Selected	1			Calculatee	Not Selected	Not Selected	1
Invert of Vertical Orifice =	N/A		ft (relative to basin b	ottom at Stage = 0 fi	t) V	ertical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin b	ottom at Stage = 0 ft	t) Verti	cal Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						_
User Input: Overflow Mair (Drepher) and G	rate (Flat or flaged)					Calculator	Daramators for Oue	rflow Moir	
User Input: Overflow Weir (Dropbox) and G			1			Calculated	Parameters for Ove	1	1
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho =	Trate (Flat or Sloped) Zone 3 Weir 4.30	Not Selected	ft (relative to basin bot	tom at Stage = 0 ft)	Height of Gr	Calculated	Zone 3 Weir 4.30	rflow Weir Not Selected	feet
	Zone 3 Weir	Not Selected	ft (relative to basin bot feet	tom at Stage = 0 ft)			Zone 3 Weir	Not Selected	feet feet
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 4.30	Not Selected N/A N/A			Over Flow	ate Upper Edge, H _t =	Zone 3 Weir 4.30	Not Selected	feet should be <u>></u> 4
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 4.30 4.00 0.00 4.00	Not Selected N/A N/A N/A N/A	feet H:V (enter zero for fl feet	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Zone 3 Weir 4.30 4.00 27.96 11.20	Not Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	Zone 3 Weir 4.30 4.00 0.00 4.00 70%	Not Selected N/A N/A N/A N/A N/A N/A N/A	feet H:V (enter zero for fl	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area =	Zone 3 Weir 4.30 4.00 27.96	Not Selected N/A N/A N/A	feet should be <u>></u> 4
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 4.30 4.00 0.00 4.00	Not Selected N/A N/A N/A N/A	feet H:V (enter zero for fl feet	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Zone 3 Weir 4.30 4.00 27.96 11.20	Not Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50%	Not Selected N/A N/A N/A N/A N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60	Not Selected N/A N/A N/A N/A N/A N/A	feet should be \ge 4 ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri	Not Selected N/A N/A N/A N/A N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 rs for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla	feet should be \ge 4 ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50%	Not Selected N/A N/A N/A N/A N/A Ctor Plate, or Rectan	feet H:V (enter zero for fl feet %, grate open area/t %	at grate) otal area	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60	Not Selected N/A N/A N/A N/A N/A N/A	feet should be \ge 4 ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectan Not Selected N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice)	at grate) otal area	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected	feet should be ≥ 4 ft ² ft ² te
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48	Not Selected N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectang Not Selected N/A N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi	at grate) otal area n bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 0.40	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A	feet should be \geq 4 ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00	Not Selected N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectang Not Selected N/A N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) If (distance below basi inches	at grate) otal area n bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t)	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 s for Outlet Pipe w/ Zone 3 Restrictor 0.40 0.25 1.11	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Rot Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ² ft ² ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sidss = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 gular or Trapezoidal)	Not Selected N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calculat	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 0.40 0.25 1.11 ted Parameters for S	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway	feet should be ≥ 4 ft ² ft ² ft ² ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage=	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 gular or Trapezoidal) 5.60	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectan Not Selected N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) If (distance below basi inches	at grate) otal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O (t) Out Central Angle of Rest Spillway	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 xs for Outlet Pipe w/ Zone 3 Restrictor 0.40 0.25 1.11 ted Parameters for S 0.45	Not Selected N/A N/A N/A N/A N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² ft ² ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 gular or Trapezoidal) 5.60 30.00	Not Selected N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Central Angle of Rest Spillway Stage a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 S.60 S.60 Zone 3 Restrictor 0.40 0.25 1.11 ted Parameters for S 0.45 7.05	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² ft ² ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage=	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 gular or Trapezoidal) 5.60	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectan Not Selected N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Central Angle of Rest Spillway Stage a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 xs for Outlet Pipe w/ Zone 3 Restrictor 0.40 0.25 1.11 ted Parameters for S 0.45	Not Selected N/A N/A N/A N/A N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² ft ² ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 gular or Trapezoidal) 5.60 30.00 3.00	Not Selected N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectang N/A N/A time for the selected N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Central Angle of Rest Spillway Stage a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 S.60 S.60 Zone 3 Restrictor 0.40 0.25 1.11 ted Parameters for S 0.45 7.05	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 gular or Trapezoidal) 5.60 30.00 3.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectan Not Selected N/A N/A ft (relative to basin t feet H:V feet	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches inches	at grate) otal area n bottom at Stage = 0 f Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Central Angle of Rest Spillway Stage a Basin Area a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 S for Outlet Pipe w/ Zone 3 Restrictor 0.40 0.25 1.11 ted Parameters for S 0.45 7.05 0.37	Not Selected N/A N/A N/A N/A N/A N/A N/A Spillway feet feet acres	feet should be ≥ 4 ft ² ft ² te ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ber Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 gular or Trapezoidal) 5.60 30.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectang Not Selected N/A N/A ft (relative to basin t feet H:V feet EURV	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basis inches inches bottom at Stage = 0 ft 2 Year	at grate) otal area n bottom at Stage = 0 f Half-1) 5 Year	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 xs for Outlet Pipe w/ Zone 3 Restrictor 0.40 0.25 1.11 xted Parameters for S 0.45 7.05 0.37 50 Year	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year	feet should be ≥ 4 ft ² ft ² te ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 gular or Trapezoidal) 5.60 30.00 3.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectan Not Selected N/A N/A ft (relative to basin t feet H:V feet	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches inches	at grate) otal area n bottom at Stage = 0 f Half-1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Central Angle of Rest Spillway Stage a Basin Area a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 S for Outlet Pipe w/ Zone 3 Restrictor 0.40 0.25 1.11 ted Parameters for S 0.45 7.05 0.37	Not Selected N/A N/A N/A N/A N/A N/A N/A Spillway feet feet acres	feet should be ≥ 4 ft ² ft ² te ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrict Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 gular or Trapezoidal) 5.60 30.00 3.00 1.00 WQCV 0.53 0.224	Not Selected N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectan N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 0.854	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> <u>1.19</u> 0.587	at grate) otal area n bottom at Stage = 0 f Half-1) <u>5 Year 1.50</u> 0.767	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op () () () ())))))))))))	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.131	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 S.60 Zone 3 Restrictor 0.40 0.25 1.11 ted Parameters for S 0.45 7.05 0.37 S0 Year 2.25 1.349	Not Selected N/A	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 3.29 2.286
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Debris Clogging % = Debris Clogging % = Outlet Pipe Dutlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Nouted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 gular or Trapezoidal) 5.60 30.00 3.00 1.00 WQCV 0.53 0.224 0.224	Not Selected N/A It (relative to basin the feet H:V feet H:O 0.854 0.853	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.587	at grate) otal area n bottom at Stage = 0 f Half-1) <u>5 Year 1.50 0.767</u>	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op ((t) Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.934 0.934	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.131	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 0.40 0.25 1.11 tted Parameters for S 0.45 7.05 0.37 50 Year 2.25 1.349 1.348	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 1.603 1.603	feet should be \geq 4 ft ² ft ² ft ² feet radians 500 Year 3.29 2.286 2.285
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ter Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Resting Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 3.00 3.00 1.00 WQCV 0.53 0.224 0.224 0.00	Not Selected N/A It (relative to basin the feet H:V feet 0.854 0.00	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 0.587 0.587 0.00	at grate) otal area n bottom at Stage = 0 f Half-1) 5 Year 1.50 0.767 0.767 0.01	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Coverflow Grate O Cover	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.131 	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 xs for Outlet Pipe w/ Zone 3 Restrictor 0.40 0.25 1.11 xted Parameters for S 0.45 7.05 0.37 50 Year 2.25 1.349 1.348 0.22	Not Selected N/A Spillway feet feet acres 100 Year 2.52 1.603 0.54	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet radians 500 Year 3.29 2.286 2.285 1.26
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = Ber Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrict Height Above Max Water Surface = Cone-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 gular or Trapezoidal) 5.60 30.00 3.00 1.00 WQCV 0.53 0.224 0.224	Not Selected N/A It (relative to basin the feet H:V feet H:O 0.854 0.853	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.587	at grate) otal area n bottom at Stage = 0 f Half-1) <u>5 Year 1.50 0.767</u>	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op ((t) Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.934 0.934	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.131	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 0.40 0.25 1.11 tted Parameters for S 0.45 7.05 0.37 50 Year 2.25 1.349 1.348	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 1.603 1.603	feet should be \geq 4 ft ² ft ² ft ² feet radians 500 Year 3.29 2.286 2.285
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Debris Clogging % = Debris Clogging % = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Deak Q (cfs) =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 gular or Trapezoidal) 5.60 30.00 3.00 1.00 WQCV 0.53 0.224 0.224 0.224 0.00 0.1	Not Selected N/A Not Selected N/A Itriangle A N/A Itriangle A Itritriangle A Itriangle A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 0.587 0.587 0.00 0.0 10.6 0.2	at grate) otal area n bottom at Stage = 0 f Half-1) <u>5 Year 1.50 0.767 0.767 0.01 0.1 13.8 0.2</u>	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.934 0.01 0.1	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = pen Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.131 0.03 0.3 0.3 20.3 4.7	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 0.40 0.25 1.11 ted Parameters for S 0.45 7.05 0.37 50 Year 2.25 1.349 1.348 0.22 2.4 24.2 5.2	Not Selected N/A Spillway feet feet acres 1.603 0.54 5.7 28.7 5.3	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 3.29 2.286 2.285 1.26 1.3.4
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ever Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs)acre) = Peak Inflow Q (cfs) = Peak Unflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% rcular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 gular or Trapezoidal) 5.60 30.00 3.00 1.00 WQCV 0.53 0.224 0.224 0.00 0.0 4.1 0.1 N/A	Not Selected N/A Not Selected N/A N/A It (relative to basin the feet H:V feet H:O 0.854 0.00 0.0 0.3 N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basis inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.587 0.00 0.0 10.6 0.2 N/A	at grate) otal area n bottom at Stage = 0 f Half-1) 5 Year 1.50 0.767 0.767 0.767 0.01 0.1 13.8 0.2 4.1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op () (t) Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 0.934 0.01 0.1 16.8 0.8 6.0	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 1.131 <u>25 Year</u> 2.00 1.131 <u>1.131</u> 0.03 0.3 20.3 4.7 14.9	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 xs for Outlet Pipe w/ Zone 3 Restrictor 0.40 0.25 1.11 ted Parameters for S 0.45 7.05 0.37 xs for Outlet Pipe w/ 2.25 1.349 1.348 0.22 2.4 24.2 5.2 2.2	Not Selected N/A Spillway feet feet 1.603 0.54 5.7 2.87 5.3 0.9	feet should be ≥ 4 ft ² ft ² ft ² feet radians 500 Year 3.29 2.286 2.285 1.26 1.3.4 40.7 21.5 1.6
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length - Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Debris Clogging % = Overflow Grate Open Area % = Debris Clogging % = Coverflow Grate Open Area % = Debris Clogging % = Overflow Grate Open Area % = Overflow Clogging % = Ster Input: Emergency Spillway (Rectang Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 gular or Trapezoidal) 5.60 30.00 3.00 1.00 WQCV 0.53 0.224 0.224 0.00 0.0 4.1 0.1 N/A Plate	Not Selected N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet H:V feet EURV 1.07 0.854 0.853 0.00 0.0 15.4 0.3 N/A Plate	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basis inches inches bottom at Stage = 0 ft 2 Year 1.19 0.587 0.00 0.0 10.6 0.2 N/A Plate	at grate) otal area n bottom at Stage = 0 f Half-1) 5 Year 1.50 0.767 0.767 0.767 0.01 13.8 0.2 4.1 Plate	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op t) Control Angle of Rest Spillway Stage a Basin Area a 0.934 0.934 0.01 0.1 16.8 0.8 0.8 0.0 0.0 10 Vear 1.75	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.131 0.03 0.3 20.3 4.7 14.9 Outlet Plate 1	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 S.60 Zone 3 Restrictor 0.40 0.25 1.11 ted Parameters for S 0.45 7.05 0.37 S0 Year 2.25 1.349 1.348 0.22 2.4 24.2 5.2 Outlet Plate 1	Not Selected N/A Spillway feet acres 1.603 0.54 5.7 28.7 5.3 0.9 Outlet Plate 1	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ever Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs)acre) = Peak Inflow Q (cfs) = Peak Unflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% rcular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 gular or Trapezoidal) 5.60 30.00 3.00 1.00 WQCV 0.53 0.224 0.224 0.00 0.0 4.1 0.1 N/A	Not Selected N/A Not Selected N/A N/A It (relative to basin the feet H:V feet H:O 0.854 0.00 0.0 0.3 N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basis inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.587 0.00 0.0 10.6 0.2 N/A	at grate) otal area n bottom at Stage = 0 f Half-1) 5 Year 1.50 0.767 0.767 0.767 0.01 0.1 13.8 0.2 4.1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op () (t) Central Angle of Rest Spillway Stage a Basin Area a Basin Area a 0.934 0.01 0.1 16.8 0.8 6.0	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 1.131 <u>25 Year</u> 2.00 1.131 <u>1.131</u> 0.03 0.3 20.3 4.7 14.9	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 xs for Outlet Pipe w/ Zone 3 Restrictor 0.40 0.25 1.11 ted Parameters for S 0.45 7.05 0.37 xs for Outlet Pipe w/ 2.25 1.349 1.348 0.22 2.4 24.2 5.2 2.2	Not Selected N/A Spillway feet feet 1.603 0.54 5.7 2.87 5.3 0.9	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet radians 500 Year 3.29 2.286 1.26 1.26 1.3.4 40.7 21.5 1.6
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = One-Hour Rainfall Depth (In) = Calculated Ruonoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Deak Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 gular or Trapezoidal) 5.60 30.00 1.00 WQCV 0.53 0.224 0.024 0.224 0.00 0.0 4.1 0.1 N/A Plate N/A	Not Selected N/A fet H:V feet 0.853 0.00 0.0 15.4 0.3 N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 0.587 0.00 0.0 0.0 10.6 0.2 N/A Plate N/A	at grate) otal area n bottom at Stage = 0 f Half-1) <u>5 Year</u> 1.50 0.767 0.767 0.01 0.1 13.8 0.2 4.1 Plate N/A	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 0.934 0.934 0.01 0.1 16.8 0.8 6.0 Overflow Grate 1 0.1	ate Upper Edge, H ₁ = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 1.131 0.03 0.3 0.3 0.3 4.7 14.9 Outlet Plate 1 0.4	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 x for Outlet Pipe w/ Zone 3 Restrictor 0.40 0.25 1.11 xted Parameters for S 0.45 7.05 0.37 xted Parameters for S 0.37 xted Parameters for S 0.45 7.05 0.37 xted Parameters for S 0.45 0.45 0.37 xted Parameters for S 0.45 0.37 xted Parameters for S 0.37 xted Parameters for S 0.45 0.37 xted Parameters for S 0.45 0.37 xted Parameters for S 0.37 xted Parameters for S 0.45 0.37 xted Parameters for S 0.45 0.37 xted Parameters for S 0.37 xted Parameters for S 0.4 xted Parame	Not Selected N/A Spillway feet feet 3cres 1.603 0.54 5.7 28.7 5.3 0.9 Outlet Plate 1 0.4	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet radians 2.285 1.26 1.3.4 40.7 21.5 1.6 Spillway 0.5
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway (Crest Length = Spillway (Crest Length = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 gular or Trapezoidal) 5.60 30.00 1.00 WQCV 0.53 0.224 0.224 0.00 0.0 4.1 0.1 N/A Plate N/A N/A N/A 40 43	Not Selected N/A Image: Not Selected N/A N/A N/A Image: N/A Image: N/A 0.853 0.00 15.4 0.3 N/A Plate N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basis inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.587 0.00 0.0.587 0.00 10.6 0.2 N/A Plate N/A N/A N/A N/A Stage 2 Stage 2	at grate) otal area n bottom at Stage = 0 f Half-1)) 5 Year 1.50 0.767 0.767 0.1 1.3.8 0.2 4.1 Plate N/A N/A N/A N/A N/A N/A N/A	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Contral Angle of Rest Spillway Stage a Basin Area a 0.934 0.934 0.01 0.1 16.8 0.8 0.934 0.01 0.1 16.8 0.8 0.0 0.0verflow Grate 1 0.1 N/A N/A 81	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.131 1.131 0.03 0.3 20.3 4.7 14.9 Outlet Plate 1 0.4 N/A N/A N/A N/A	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 Xone 3 Restrictor 0.40 0.25 1.11 ted Parameters for S 0.45 7.05 0.37 Xos 0.37 Xos 1.349 1.348 0.22 2.4 24.2 5.2 0.44 N/A N/A N/A 7.1 80	Not Selected N/A Spillway feet feet 1.603 0.54 5.7 28.7 5.3 0.9 Outlet Plate 1 0.4 N/A 70 79	feet should be ≥ 4 ft ² ft ² ftet radians 500 Year feet radians 2.286 2.285 1.26 1.3.4 40.7 2.1.5 1.6 Spillway 0.5 N/A 666 77
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (Ci Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (drs/acre) = Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) Max Velocity through Grate 2 (fps) = Max Velocity through Grate 2 (fps) = Max Velocity through Crate 2 (fps) = Max Velocity through Crate 2 (fps) =	Zone 3 Weir 4.30 4.00 0.00 4.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 2.48 18.00 5.00 gular or Trapezoidal) 5.60 30.00 3.00 1.00 WQCV 0.53 0.224 0.224 0.224 0.224 0.224 0.224 0.00 0.0 4.1 0.1 N/A Plate N/A 40	Not Selected N/A It (relative to basin the feet H:V feet H:V feet 0.07 0.853 0.00 15.4 0.3 N/A Plate N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basis inches inches bottom at Stage = 0 ft 2 Year 1.19 0.587 0.00 0.0 10.6 0.2 N/A Plate N/A N/A 62	at grate) otal area n bottom at Stage = 0 f Half-1) 5 Year 1.50 0.767 0.767 0.01 0.1 13.8 0.2 0.2 4.1 Plate N/A N/A 70	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (Control Angle of Rest Spillway Stage a Basin Area a 0.934 0.934 0.01 0.1 16.8 0.8 0.8 0.0 0.0 10 Vear 1.75 0.934 0.0 10 Vear 1.75 0.7 10 Vear 1.75 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.131 0.03 0.3 20.3 4.7 14.9 Outlet Plate 1 0.4 N/A 73	Zone 3 Weir 4.30 4.00 27.96 11.20 5.60 Sofor Outlet Pipe w/ Zone 3 Restrictor 0.40 0.25 1.11 ted Parameters for S 0.45 7.05 0.37 S0 Year 2.25 1.349 1.348 0.22 2.4 2.4 2.4 2.4 2.2 5.2 Outlet Plate 1 0.4 N/A 71	Not Selected N/A Spillway feet feet acres 1.603 0.54 5.7 28.7 5.3 0.9 Outlet Plate 1 0.4 N/A	feet should be ≥ 4 ft ² ft ² ft ² feet radians

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

	Storm Inflow H				n 3.07 (Februa					
								in a separate pro		
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
4.59 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	0:04:35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:09:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant 1.090	0:13:46 0:18:22	0.19	0.68	0.47	0.61	0.74	0.89	1.05	1.24	1.74
1.090	0:22:57	0.49	1.83 4.70	1.27 3.26	1.65 4.23	2.00	2.41 6.18	2.86	3.38 8.68	4.77
	0:27:32	3.50	12.92	8.97	11.64	14.10	16.98	20.15	23.84	33.62
	0:32:08	4.10	15.39	10.63	13.84	16.82	20.32	24.18	28.69	40.71
	0:36:43	3.90	14.70	10.14	13.22	16.07	19.42	23.12	27.45	39.01
	0:41:19	3.55	13.38	9.23	12.03	14.63	17.68	21.05	24.99	35.50
	0:45:54	3.15	11.97	8.24	10.76	13.09	15.84	18.87	22.41	31.90
	0:50:29	2.70	10.35	7.11	9.30	11.33	13.72	16.36	19.46	27.76
	0:55:05 0:59:40	2.36	9.01	6.20	8.10	9.86 8.94	11.93	14.22	16.91	24.15
	1:04:16	2.13	8.17 6.76	5.62 4.63	7.34	8.94 7.40	10.82 8.98	12.90 10.72	15.33 12.76	21.88 18.26
	1:04:10	1.74	5.53	3.78	4.96	6.06	7.37	8.81	12.70	15.07
	1:13:26	1.06	4.28	2.91	3.83	4.70	5.73	6.87	8.21	11.84
	1:18:02	0.78	3.20	2.16	2.86	3.52	4.31	5.19	6.23	9.05
	1:22:37	0.57	2.31	1.57	2.07	2.54	3.13	3.78	4.56	6.68
	1:27:13	0.45	1.79	1.21	1.60	1.96	2.40	2.89	3.47	5.05
	1:31:48	0.37	1.47	1.00	1.32	1.61	1.97	2.37	2.84	4.10
	1:36:23	0.31	1.25	0.85	1.12	1.37	1.67	2.00	2.40	3.46
	1:40:59	0.28	1.09	0.74	0.98	1.20	1.46	1.75	2.10	3.02
	1:45:34 1:50:10	0.25	0.98	0.67	0.88	1.08	1.31	1.57	1.88	2.71
	1:54:45	0.23	0.66	0.62	0.60	0.99	0.89	1.45	1.73	1.84
	1:59:20	0.17	0.49	0.33	0.00	0.53	0.65	0.78	0.93	1.34
	2:03:56	0.09	0.36	0.24	0.32	0.39	0.48	0.57	0.68	0.99
	2:08:31	0.07	0.26	0.18	0.24	0.29	0.35	0.42	0.51	0.73
	2:13:07	0.05	0.19	0.13	0.17	0.21	0.25	0.31	0.37	0.53
	2:17:42	0.03	0.13	0.09	0.12	0.15	0.18	0.22	0.26	0.38
	2:22:17	0.02	0.10	0.06	0.09	0.11	0.13	0.16	0.19	0.28
	2:26:53	0.01	0.06	0.04	0.06	0.07	0.09	0.11	0.13	0.19
	2:31:28	0.01	0.04	0.02	0.03	0.04	0.05	0.07	0.08	0.12
	2:36:04 2:40:39	0.00	0.02	0.01	0.02	0.02	0.03	0.03	0.04	0.07
	2:40:39	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.02	0.03
	2:49:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	2:54:25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:59:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:03:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:08:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:12:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:17:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:21:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:26:33 3:31:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:44:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:49:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:54:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:58:41 4:03:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:03:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:12:27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:17:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:21:38 4:26:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:26:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:39:59			0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:44:35	0.00	0.00		0.00					0.00
	4:44:35 4:49:10	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00
	4:44:35				0.00 0.00 0.00	0.00 0.00 0.00	0.00	0.00	0.00 0.00 0.00	0.00 0.00 0.00
	4:44:35 4:49:10 4:53:46	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:44:35 4:49:10 4:53:46 4:58:21 5:02:56 5:07:32	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
	4:44:35 4:49:10 4:53:46 4:58:21 5:02:56 5:07:32 5:12:07	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
	4:44:35 4:49:10 4:53:46 4:58:21 5:02:56 5:07:32 5:12:07 5:16:43	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
	4:44:35 4:49:10 4:53:46 4:58:21 5:02:56 5:07:32 5:12:07	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00

Stormwater Detention and Infiltration Design Data Sheet


Workbook Protected

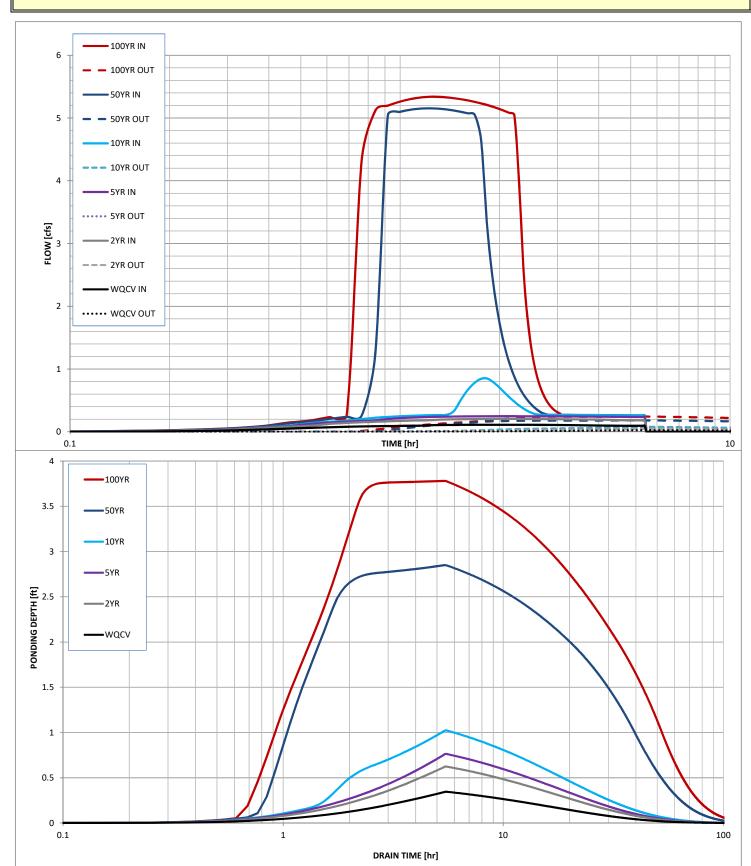
•

Norksheet Protected

Stormwater Facility Name: Combined North & South Ponds - Gardens at North Carefree

Facility Location & Jurisdiction: NW Corner Akers Dr and Running Deer Way - El Paso County

WQCV Treatment Method = Extended Detention


User Defin	iea	User Defined	User Defined	User Defined
Stage [ff	t]	Area [ft^2]	Stage [ft]	Discharge [cfs]
0.00		4,544	0.00	0.00
1.00		5,500	1.00	0.08
2.00		9,900	2.00	0.14
3.00		9,950	3.00	0.19
4.00		12,151	4.00	0.26
5.00		14,090	5.00	5.19
5.50		15,128	5.50	5.36
6.00		16,165	6.00	29.03

User Defined User Defined User Defined User Defined

After completing and printing this worksheet to a pdf, go to: <u>https://maperture.digitaldataservices.com/gvh/?viewer=cswdif</u> create a new stormwater facility, and

attach the pdf of this worksheet to that record.

Routed Hydrograph Results								
Design Storm Return Period =	WQCV	2 Year	5 Year	10 Year	50 Year	100 Year		
One-Hour Rainfall Depth =	0.53	1.19	1.50	1.75	2.25	2.52	in	
Calculated Runoff Volume =	0.224	0.587	0.767	0.934	1.349	1.603	acre-ft	
OPTIONAL Override Runoff Volume =							acre-ft	
Inflow Hydrograph Volume =	0.044	0.081	0.100	0.139	0.549	0.797	acre-ft	
Time to Drain 97% of Inflow Volume =	59.1	59.7	60.0	60.3	71.8	78.9	hours	
Time to Drain 99% of Inflow Volume =	76.6	77.1	77.4	77.7	89.4	96.5	hours	
Maximum Ponding Depth =	0.35	0.62	0.76	1.02	2.85	3.78	ft	
Maximum Ponded Area =	0.11	0.12	0.12	0.13	0.23	0.27	acres	
Maximum Volume Stored =	0.037	0.069	0.086	0.118	0.485	0.713	acre-ft	

Stormwater Detention and Infiltration Design Data Sheet

North Pond Forebay

Design: Charlen Durham Company: Stante: Design: Conternant Worth Cartfore Location: Number Provide 1: Basin Storage Volume I. =		Design Procedure Form	n: Extended Detention Basin (EDB)
A) Effective Imperviousness of Tributary Area, I, B) Tributary Area's Imperviousness Ratio (i = I_a/100) C) Contributing Watershed Area D) For Watersheds Outside of the Deriver Region, Depth of Average Runoff Producing Stom E) Design Volume (WQCV) Based on 40-hour Drain Time (Watersheds Outside of the Deriver Region, Depth of Average (R) (Vestave = (10 ⁺ 0.10 ⁺ 1 ⁺ 1.10 ⁺ f ⁺ 0.73 ⁺ 1) 12 ⁺ Area) G) For Watersheds Outside of the Deriver Region, Water Quality Capture Volume (WQCV) Design	Company: Date: Project:	Charlene Durham Stantec October 16, 2019 Gardens at North Carefree	P (Version 3.06, November 2016) Sheet 1 of
B) Tribulary Area's Imperviousness Ratio (= l _x / 100) i =	1. Basin Storage	Volume	
C) Contributing Watershed Area Area = $\frac{7,190}{1}$ ac D) For Watersheds Outside of the Denver Region, Depth of Average Runoff Producing Storm in E) Design Concept (Select EURV wine also designing for flood control) in F) Design Volume (WQCV) Based on 40-hour Drain Time (Vascore $^{-1}(1, ^{0}(0, ^{+1}, ^$	A) Effective Imp	perviousness of Tributary Area, I _a	I _a = <u>80.0</u> %
D) For Watersheds Outside of the Denver Region, Depth of Average Rundf Producing Storm $d_{i} = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ $	B) Tributary Are	ea's Imperviousness Ratio (i = I _a / 100)	i =0.800
Rundf Producing Stom Design Concept (Select EURV when also designing for flood control) Design Volume (WQCV) Based on 40-hour Drain Time (Vaceson = (1.0 * (0.91 * i² + 1.19 * i² + 0.78 * i) / 12 * Area.) Design Volume (WQCV) Based on 40-hour Drain Time (Vaceson = (1.0 * (0.91 * i² - 1.19 * i² + 0.78 * i) / 12 * Area.) For Watersheds Outside of the Derver Region, where (Vace Yolume Yolume (VACV) Design Volume (VACV) Design Vo	C) Contributing	Watershed Area	Area = <u>7.190</u> ac
E) Design Concept (Select EURV when also designing for flood control)			d ₆ = in
(Voessen = (1.0 + (0.91 + i ² - 1.19 + i ² + 0.78 + i) / 12 + Area) (G) For Watersheds Outside of the Deriver Region, Water Quality Capture Volume (WQCV) Design Volume (Wouvornes = (der Voessen/0.43)) (H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) (I) Predominant Watershed NRCS Soil Group (J) Excess Urban Runoff Volume (EURV) Design Volume For HSG A: EURV, = 1.68 + 1 ¹²⁴ For HSG CD: EURV _{c0} = 1.20 + 1 ¹²⁴ (A basin Stape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.) (J) Basin Stape Shopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) (A. Inlet (A) Describe means of providing energy dissipation at concentrated	E) Design Con	cept	Water Quality Capture Volume (WQCV)
Water Quality Capture Volume (WQCV) Design Volume (Vwocv ornes = (d ₀ ⁺ (Vocsidv0.43)) H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) I) Predominant Watershed NRCS Soil Group Vocsidv0.43) WQCV selected. Soil group not required. I) Predominant Watershed NRCS Soil Group Image: Comparison of the selected of the			V _{DESIGN} = 0.197 ac-ft
(Only if a different WQCV besign Volume is desired) Image: Choose One ima	Water Qual	ity Capture Volume (WQCV) Design Volume	V _{DESIGN OTHER} =ac-ft
() Predominant Watershed NRCS Soil Group $\begin{bmatrix} Choose One \\ Q A \\ Q B \\ C / D \end{bmatrix} WQCV selected. Soil group not required. \begin{bmatrix} Q A \\ Q B \\ C / D \end{bmatrix} WQCV selected. Soil group not required.\begin{bmatrix} Q A \\ Q B \\ C / D \end{bmatrix} WQCV selected. Soil group not required.\begin{bmatrix} Q A \\ Q B \\ C / D \end{bmatrix} \begin{bmatrix} Q C / D \end{bmatrix} \hline $			V _{DESIGN USER} =ac-ft
For HSG A: EURV _A = 1.68 * $i^{1/20}$ EURV =acft For HSG B: EURV _B = 1.36 * $i^{1.00}$ EURV =acft 2. Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.) L : W =15 : 1 INCREASE FLOW PATH FOR 2:1 RATIO 3. Basin Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) Z =ft / ft 4. Inlet A) Describe means of providing energy dissipation at concentrated			O A WQCV selected. Soil group not required. O B B
(A basin length to width ratio of at least 2:1 will improve TSS reduction.) 3. Basin Side Slopes A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) 4. Inlet A) Describe means of providing energy dissipation at concentrated	For HSG A For HSG B	:: $EURV_{A} = 1.68 * i^{1.28}$:: $EURV_{B} = 1.36 * i^{1.08}$	EURV = ac-f t
A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) Z =ft / ft 4. Inlet			L : W = <u>1.5</u> : 1 INCREASE FLOW PATH FOR 2:1 RATIO
(Horizontal distance per unit vertical, 4:1 or flatter preferred) 4. Inlet A) Describe means of providing energy dissipation at concentrated	3. Basin Side Slop	pes	
A) Describe means of providing energy dissipation at concentrated	,	•	Z = <u>4.00</u> ft / ft
	4. Inlet		
inflow locations:			

			Sheet 2 of 4
Designer: Company:	Charlene Durham Stantec		-
Company: Date:	October 16, 2019		-
Project:	Gardens at North Carefree		-
Location:	North Pond		-
5. Forebay			
A) Minimum Fe (V _{FMIN}	orebay Volume _N = <u>3%</u> of the WQCV)	V _{FMIN} = <u>0.006</u> ac-ft	
B) Actual Fore	abay Volume	V _F = ac-ft	
C) Forebay De (D _F	pth ⊭ = <u>18</u> inch maximum)	D _F = <u>12.0</u> in	
D) Forebay Dis	scharge		
	i) Undetained 100-year Peak Discharge	Q ₁₀₀ = cfs	
	ii) Forebay Discharge Design Flow $(Q_F$ = 0.02 * $Q_{100})$	$Q_F = 0.52$ cfs	
E) Forebay Dis	scharge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir	(flow too small for berm w/ pipe)
F) Discharge P	Pipe Size (minimum 8-inches)	Calculated $D_P =$ in	
G) Rectangular	r Notch Width	Calculated W _N = <u>4.3</u> in	
6. Trickle Channe	9	Choose One	
A) Type of Trid	ckle Channel	Soft Bottom	
, ,			
F) Slope of Tri	ickle Channel	S = <u>0.0050</u> ft / ft	
7. Micropool and	Outlet Structure		
A) Depth of M	icropool (2.5-feet minimum)	D _M =ft	
B) Surface Are	ea of Micropool (10 ft ² minimum)	A _M = <u>10</u> sq ft	
C) Outlet Type	9		
		Choose One Orifice Plate	
		O Other (Describe):	
D) Smallest Di (Use UD-Det	imension of Orifice Opening Based on Hydrograph Routing tention)	D _{orifice} = <u>1.25</u> inches	
E) Total Outlet	Area	A _{ot} = <u>3.60</u> square in	icnes

Designer: Charlene Durham Company: Sanite: Date: October 16, 2019 Project: October 16, 2019 Project: Nerth Pond 8. Initial Surcharge Volume $D_{15} = _ 4$ in (Minimum recommended depth is 4 inches) $D_{15} = _ 4$ in B) Minimum Initial Surcharge Volume (Minimum recommended depth is 4 inches) $V_{15} = _ 25.7$ ou ft C) Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) $V_{15} = _ 25.7$ ou ft C) Initial Surcharge Provided Above Micropool $V_{15} = _ 25.7$ ou ft 9. Trash Rack A) Water Quality Screen Open Area: $A_1 = A_{15} * 38.5'(e^{-0.050})$ 8. Trash Rack A) Water Quality Screen Open Area: $A_1 = A_{15} * 38.5'(e^{-0.050})$ 9. Trash Rack A) Water Quality Screen Area (only for type 'Other) Uher (V/N): N C) Ratio of Total Open Area: $A_1 = A_{15} * 38.5'(e^{-0.050})$ $A_{15} = _ 123$ square inches B) Disconding the total open are to the total open are to the total open are to the total screen are for the material specified.) Image: _ 173 _ sq. in. C) Ratio of Total Open Area to Total Area (only for type 'Other) User Ratio = D) Total Water Quality Screen Area (based on screen type) $A_{155} = _ 173 _ sq. in.$ <		Sheet 3 of
Date: Cotober 16, 2019 Project: Gardens at North Carefree Location: North Pond 8. Initial Surcharge Volume $D_{15} = _4__in$ A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) $D_{15} = _4__in$ B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) $V_{15} = _25.7_cu ft$ C) Initial Surcharge Provided Above Micropool $V_{12} = _3.3_cu ft$ 9. Trash Rack A) Water Quality Screen Open Area: $A_1 = A_{ct} * 38.5'(e^{0.000})$ B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) $A_1 = _123_square inches$ C) Ratio of Total Open Area to Total Area (only for type "Other") User Ratio = D) Total Water Quality Screen Area (based on screen type) $A_{total} = _173_sq. in.$ E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) H= _2.26_feet		
Project: Gardens at North Carefree Location: North Pond 8. Initial Surcharge Volume Dis =in A) Depth of Initial Surcharge Volume Dis =in Minimum recommended depth is 4 inches) Dis =in B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) Vis =ST cu ft C) Initial Surcharge Provided Above Micropool Vis =ST cu ft 9. Trash Rack A) Water Quality Screen Open Area: A ₁ = A _{nt} * 38.5*(e ^{0.0560}) B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) A =		
8. Initial Surcharge Volume $D_{15} = 4$ in A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) $D_{15} = 4$ in B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) $V_{15} = 25.7$ cu ft C) Initial Surcharge Provided Above Micropool $V_{2} = 3.3$ cu ft 9. Trash Rack A) Water Quality Screen Open Area: $A_1 = A_{xt} * 38.5^* (e^{0.095D})$ B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) $A_1 = 123$ square inches Qther (Y/N): N C) Ratio of Total Open Area to Total Area (only for type 'Other') User Ratio = D) Total Water Quality Screen Area to Total Area (only for type 'Other') $A_{500} = \frac{173}{173}$ sq. in. E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) $H = 2.26$ feet		
A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) $D_{1s} = _ 4$ in $V_{1s} = _ 25.7$ cu ft $V_{1s} = _ 25.7$ cu ft B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) $V_{1s} = _ 25.7$ cu ft $V_{1s} = _ 3.3$ cu ft C) Initial Surcharge Provided Above Micropool $V_{a} = _ 3.3$ cu ft 9. Trash Rack $A_{1} = A_{at} * 38.5^{*}(e^{-0.050})$ A) Water Quality Screen Open Area: $A_{1} = A_{at} * 38.5^{*}(e^{-0.050})$ $A_{1} = _ 123$ square inches B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) $A_{1} = _ 123$ square inches C) Ratio of Total Open Area to Total Area (only for type 'Other') User Ratio = User Ratio = D) Total Water Quality Screen Area (based on screen type) $A_{total} = _ 173$ sq. in. $H = _ 2.26$ feet $A_{total} = _ 173$ sq. in.	Location: North Pond	
(Minimum recommended depth is 4 inches) $V_{18} = 25.7$ cu ft B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) $V_{18} = 25.7$ cu ft c) Initial Surcharge Provided Above Micropool $V_{18} = 3.3$ cu ft 9. Trash Rack $A_1 = 123$ square inches A) Water Quality Screen Open Area: $A_1 = A_{at} * 38.5'(e^{0.0850})$ $A_1 = 123$ square inches B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) $A_1 = 123$ square inches D Total Open Area to Total Area (only for type 'Other') User Ratio = D) Total Water Quality Screen Area (based on screen type) $A_{total} = 173$ sq. in. E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) H= 2.26 feet	8. Initial Surcharge Volume	
(Minimum volume of 0.3% of the WQCV) V=		D _{IS} = in
9. Trash Rack A) Water Quality Screen Open Area: A _t = A _{nt} * 38.5*(e ^{-0.065D}) B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) Other (Y/N): N C) Ratio of Total Open Area to Total Area (only for type 'Other') User Ratio = D) Total Water Quality Screen Area (based on screen type) A _{total} = <u>173</u> sq. in. E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) H= <u>2.26</u> feet		V _{IS} = cu ft
A) Water Quality Screen Open Area: At = Act * 38.5*(e ^{-0.095D}) B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) D(ther (Y/N):N C) Ratio of Total Open Area to Total Area (only for type 'Other') D) Total Water Quality Screen Area (based on screen type) E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) At = square inches At minum Amico-Klemp SR Series with Cross Rods 2" O.C. Image: Concept Co	C) Initial Surcharge Provided Above Micropool	V _s = <u>3.3</u> cu ft
B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) Aluminum Amico-Klemp SR Series with Cross Rods 2" O.C. Other (Y/N): N C) Ratio of Total Open Area to Total Area (only for type 'Other') User Ratio = D) Total Water Quality Screen Area (based on screen type) Atotal = 173 sq. in. E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) H = 2.26 feet	9. Trash Rack	
in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) Other (Y/N): N C) Ratio of Total Open Area to Total Area (only for type 'Other') User Ratio = D) Total Water Quality Screen Area (based on screen type) Atotal = 173 sq. in. E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) H= 2.26 feet	A) Water Quality Screen Open Area: $A_t = A_{ot} * 38.5^*(e^{-0.095D})$	A _t = <u>123</u> square inches
C) Ratio of Total Open Area to Total Area (only for type 'Other') User Ratio = D) Total Water Quality Screen Area (based on screen type) $A_{total} = 173$ sq. in. E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) $H = 2.26$ feet	in the USDCM, indicate "other" and enter the ratio of the total open are to the	Aluminum Amico-Klemp SR Series with Cross Rods 2" O.C.
D) Total Water Quality Screen Area (based on screen type) Atotal = <u>173</u> sq. in. E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) H= <u>2.26</u> feet	Other (Y/N): N	
E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E)	C) Ratio of Total Open Area to Total Area (only for type 'Other')	User Ratio =
(Based on design concept chosen under 1E)	D) Total Water Quality Screen Area (based on screen type)	$A_{total} = $ 173 sq. in.
F) Height of Water Quality Screen (H _{TR}) H _{TR} = 55.12 inches		H= <u>2.26</u> feet
	F) Height of Water Quality Screen (H_{TR})	H _{TR} = <u>55.12</u> inches
G) Width of Water Quality Screen Opening (W _{opening}) (Minimum of 12 inches is recommended) W _{opening} = <u>12.0</u> inches		W _{opening} = <u>12.0</u> inches

Designer:	Charlene Durham	Sheet 4 of 4
Company:	Stantec	
Date:	October 16, 2019	
Project:	Gardens at North Carefree	
Location:	North Pond	
10. Overflow Emba	ankment	
	nbankment protection for 100-year and greater overtopping:	
A) Describe er	indankment protection for 100-year and greater overtopping.	
	verflow Embankment	
(Horizontal	distance per unit vertical, 4:1 or flatter preferred)	
11. Vegetation		Choose One
The ogenation		O Irrigated
		O Not Irrigated
12. Access		
12. Access		
A) Describe Se	ediment Removal Procedures	
Notes:		

South Pond Forebay

28

Design Procedure Form	n: Extended Detention Basin (EDB)
UD-BM Designer: Charlene Durham Company: Stantec Date: October 16, 2019 Project: Gardens at North Carefree Location: South Pond	IP (Version 3.06, November 2016) Sheet 1 of 4
1. Basin Storage Volume	
A) Effective Imperviousness of Tributary Area, Ia	I _a = <u>80.0</u> %
B) Tributary Area's Imperviousness Ratio (i = $I_a/100$)	i =0.800
C) Contributing Watershed Area	Area = <u>3.400</u> ac
D) For Watersheds Outside of the Denver Region, Depth of Average	d ₆ = in
Runoff Producing Storm E) Design Concept (Select EURV when also designing for flood control)	Choose One Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)
F) Design Volume (WQCV) Based on 40-hour Drain Time (V _{DESIGN} = (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.093 ac-ft
G) For Watersheds Outside of the Denver Region, Water Quality Capture Volume (WQCV) Design Volume $(V_{WQCV OTHER} = (d_6^*(V_{DESIGN}/0.43))$	V _{DESIGN OTHER} = ac-ft
 H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) 	V _{DESIGN USER} =ac-ft
I) Predominant Watershed NRCS Soil Group	Choose One A B C / D WQCV selected. Soil group not required.
J) Excess Urban Runoff Volume (EURV) Design Volume For HSG A: EURV _A = $1.68 * 1^{128}$ For HSG B: EURV _B = $1.36 * 1^{1.08}$ For HSG C/D: EURV _{CD} = $1.20 * 1^{1.08}$	EURV = ac-f t
 Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.) 	L : W = <u>1.0</u> : 1 INCREASE FLOW PATH FOR 2:1 RATIO
3. Basin Side Slopes	
 A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) 	Z = <u>4.00</u> ft / ft
4. Inlet	
 A) Describe means of providing energy dissipation at concentrated inflow locations: 	

			Sheet 2 of 4
Designer:	Charlene Durham		-
Company:	Stantec		-
Date:	October 16, 2019 Gardens at North Carefree		-
Project: Location:	South Pond		-
Elication.			
5. Forebay			
A) Minimum Fo (V _{FMIN}	prebay Volume =2%of the WQCV)	V _{FMIN} = <u>0.002</u> ac-ft	
B) Actual Foreb	bay Volume	V _F = <u>0.002</u> ac-ft	
C) Forebay Dep (D _F		D _F = <u>6.0</u> in	
D) Forebay Disc	charge		
	i) Undetained 100-year Peak Discharge	Q ₁₀₀ = <u>16.60</u> cfs	
	ii) Forebay Discharge Design Flow $(Q_F = 0.02 * Q_{100})$	$Q_F = 0.33$ cfs	
E) Forebay Disc	charge Design	Choose One O Berm With Pipe Wall with Rect. Notch O Wall with V-Notch Weir	(flow too small for berm w/ pipe)
F) Discharge Pi	ipe Size (minimum 8-inches)	Calculated $D_P = $ in	
G) Rectangular	Notch Width	Calculated W _N = <u>4.6</u> in	
6. Trickle Channel	I	Choose One	
A) Type of Tricl	kle Channel	Soft Bottom	
F) Slope of Tric	ckle Channel	S = 0.0050 ft / ft	
7. Micropool and C	Dutlet Structure		
A) Depth of Mic	cropool (2.5-feet minimum)	D _M = <u>2.5</u> ft	
B) Surface Are	a of Micropool (10 ft ² minimum)	A _M = sq ft	
C) Outlet Type			
-, - , , , , , , , , , , , , , , , , ,		Choose One	
		 Orifice Plate Other (Describe): 	
		O'dulei (Describe).	
		. <u> </u>	
D) Smallest Dir (Use UD-Dete	mension of Orifice Opening Based on Hydrograph Routing ention)	D _{orifice} = <u>0.50</u> inches	
E) Total Outlet	Area	A _{ot} = <u>1.50</u> square ir	nches

Design Procedure Form:	Extended Detention Basin	(EDB)
Design i recedure i enni.	Extended Detention Dusin	

					Sheet 3 of 4
Designer: Company:	Charlene Durham Stantec				
Date:	October 16, 2019				
Project:	Gardens at North Carefree				
Location:	South Pond				
8. Initial Surcharge Volume					
 A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) 		D _{IS} =	4	in	
 B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) 		$V_{\rm IS} =$		cu ft	
C) Initial Surcha	rge Provided Above Micropool	V _s =	3.3	cu ft	
9. Trash Rack					
A) Water Qualit	A _t =	55	square inches		
B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.)		5	S. Well Screen with	n 60% Open Area	_
	Other (Y/N): N				_
C) Ratio of Tota	I Open Area to Total Area (only for type 'Other')	User Ratio =			
D) Total Water (Quality Screen Area (based on screen type)	A _{total} =	92	sq. in.	
	ign Volume (EURV or WQCV) sign concept chosen under 1E)	H=	2.64	_feet	
F) Height of Wat	ter Quality Screen (H _{TR})	H _{TR} =	59.68	inches	
	ter Quality Screen Opening (W _{opening}) 2 inches is recommended)	W _{opening} =	12.0	inches	
(Minimuth of 1					

Designer:	Charlene Durham	Sheet 4 of 4
Company:	Stantec	
Date:	October 16, 2019	
Project:	Gardens at North Carefree	
Location:	South Pond	
		1
10. Overflow Emba	nkment	
	nbankment protection for 100-year and greater overtopping:	
A) Describe en	IDARKMENT protection for 100-year and greater overtopping.	
	verflow Embankment	
(Horizontal	distance per unit vertical, 4:1 or flatter preferred)	
11. Vegetation		Choose One
The Vegetation		O Irrigated
		O Not Irrigated
12. Access		
A) Describe Se	ediment Removal Procedures	
Notes:		

Excerpts from Previous Reports

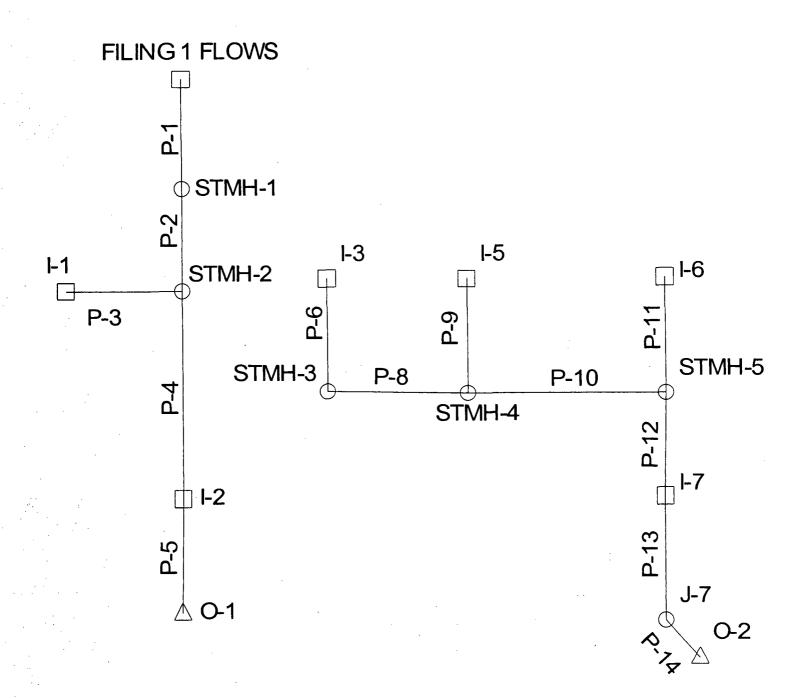
29

Preliminary/Final Drainage Report for Mule Deer Crossing

El Paso County, Colorado May 2005

- 1 -

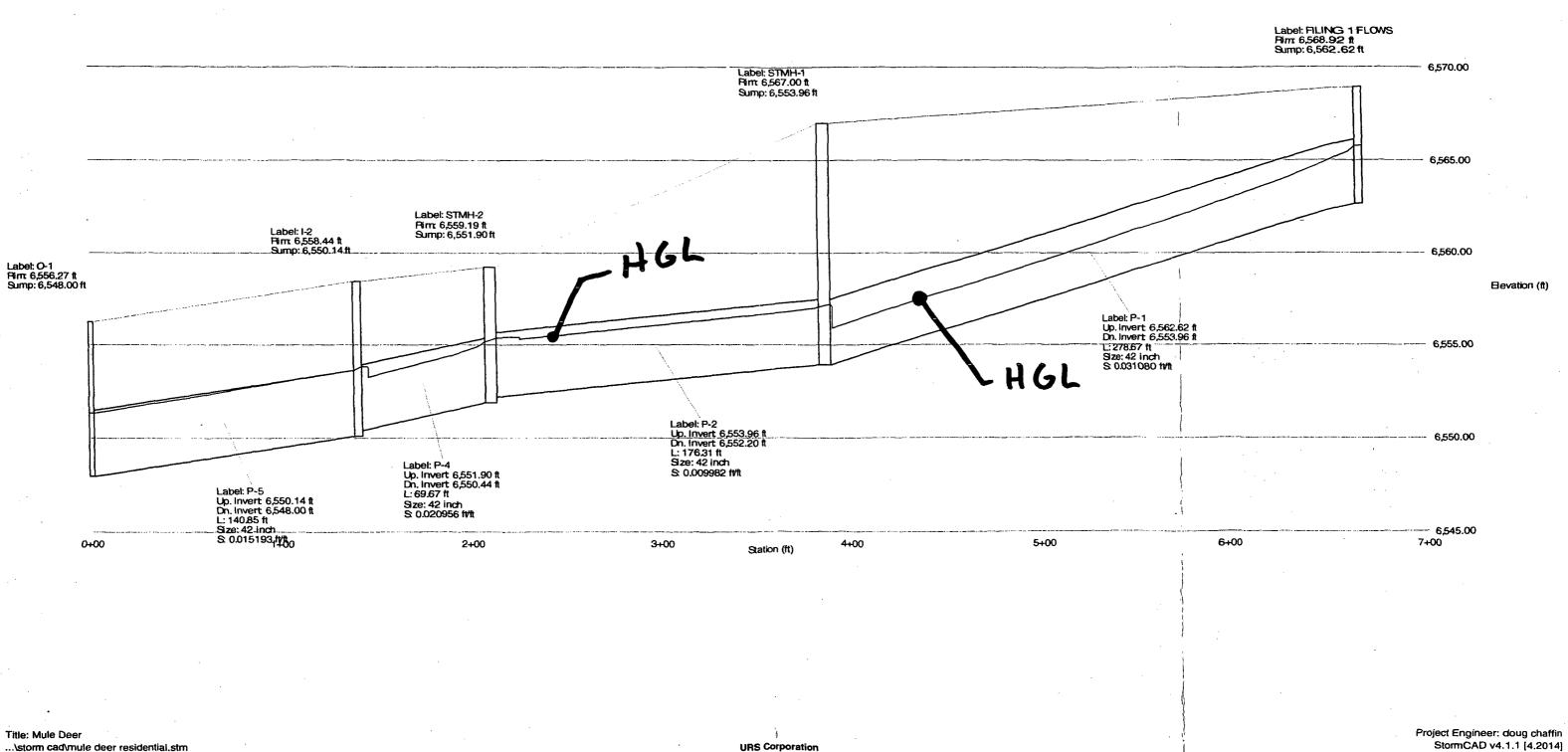
Prepared for: MZT, LLC 520 E. Colorado Ave Colorado Springs, CO 80903


Prepared by:

9960 Federal Drive, Suite 300 Colorado Springs, CO 80921 URS Job No. 21711206

\\S031ntfile1\21711239\Admin\Reports\FDR-Filing2\Pre-FDR-final072705.doc

Scenario: 100-year



Scenario: 100-year

Combined Pipe\Node Report

Label	Upstream Node	Downstream Node	Length (ft)	Section Size	System Rational Flow (cfs)	Full Capacity (cfs)	Average Velocity (ft/s)	Upstream Invert Elevation (ft)	Downstream Invert Elevation (ft)	Constructed Slope (ft/ft)	Hydraulic Grade Line In (ft)	Hydraulic Grade Line Out (ft)
P-1	FILING 1 FLOW	STMH-1	278.67	42 inch	104.66	177.36	11.37	6,562.62	6,553.96	0.031080	6,565.74	6,557.23
P-2	STMH-1	STMH-2	176.31	42 inch	103.74	100.52	11.36	6,553.96	6,552.20	0.009982	6,557.07	6,555.41
P-3	1-1	STMH-2	6.67	24 inch	28.90	31.58	9.20	6,554.03	6,553.90	0.019490	6,557.30	6,557.20
P-4	STMH-2	1-2	69.67	42 inch	124.78	145.64	13.18	6,551.90	6,550.44	0.020956	6,555.18	6,553.86
P-5	1-2	0-1	140.85	42 inch	133.38	124.01	14.00	6,550.14	6,548.00	0.015193	6,553.64	6,551.33
P-6	1-3	STMH-3	4.67	24 inch	8.12	31.40	5.66	6,551.87	6,551.78	0.019272	6,552.88	6,552.64
P-9	1-5	STMH-4	4.67	12 inch	5.96	6.43	7.68	6,550.34	6,550.25	0.019272	6,551.29	6,551.23
P-8	STMH-3	STMH-4	123.16	24 inch	8.11	22.61	5.84	6,551.48	6,550.25	0.009987	6,552.49	6,551.08
P-10	STMH-4	STMH-5	112.41	24 inch	12.64	22.58	4.99	6,549.95	6,548.83	0.009964	6,551.23	6,551.15
P-11	1-6	STMH-5	4.67	24 inch	17.04	133.23	5.45	6,548.92	6,547.30	0.346895	6,550.86	6,550.84
P-12	STMH-5	1-7	24.67	30 inch	26.44	59.55	5.39	6,548.33	6,547.81	0.021078	6,550.80	6,550.70
P-13	1-7	J-7	149.02	30 inch	41.88	59.44	11.06	6,547.51	6,544.38	0.021004	6,549.68	6,545.95
P-14	J-7	0-2	14.72	30 inch	41.55	65.90	10.12	6,544.38	6,544.00	0.025815	6,546.54	6,545.79

Profile Scenario: 100-year

...\storm cad\mule deer residential.stm 11/01/04 09:16:48 AM

S. . .

Page 1 of 1

Profile Scenario: 100-year

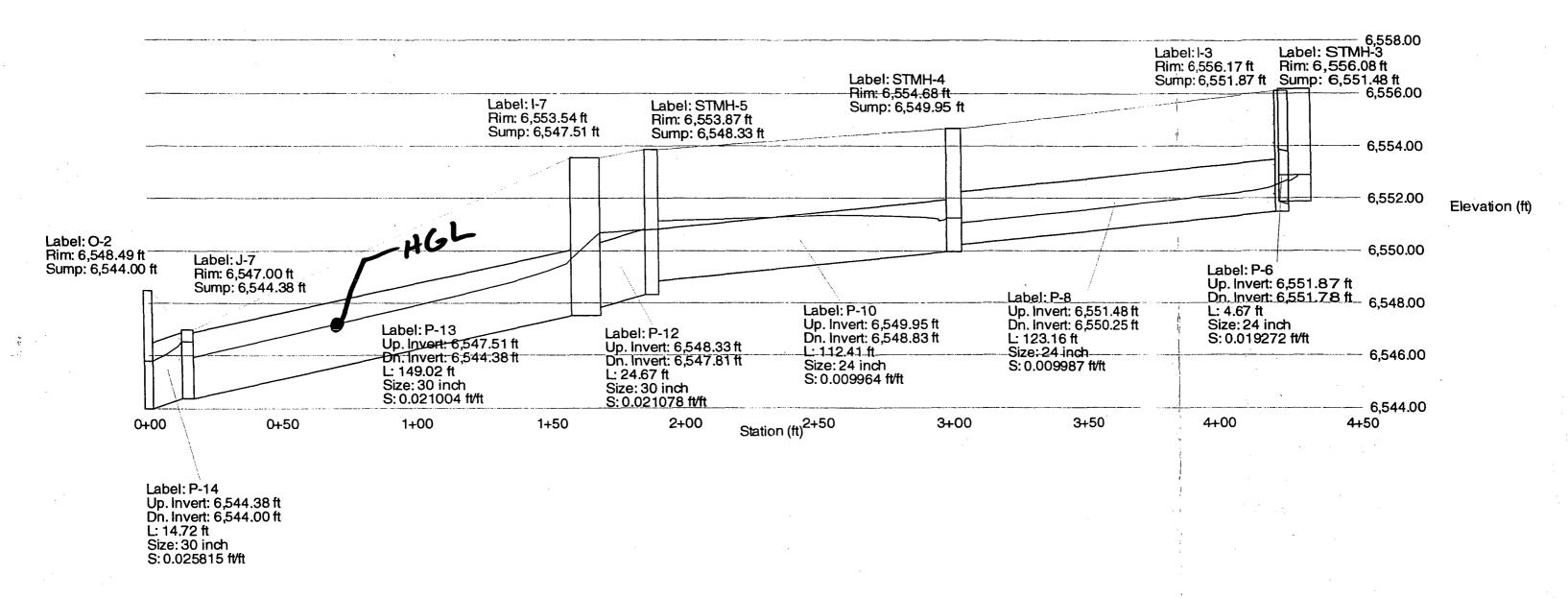


Figure 2: Existing Drainage Map

30

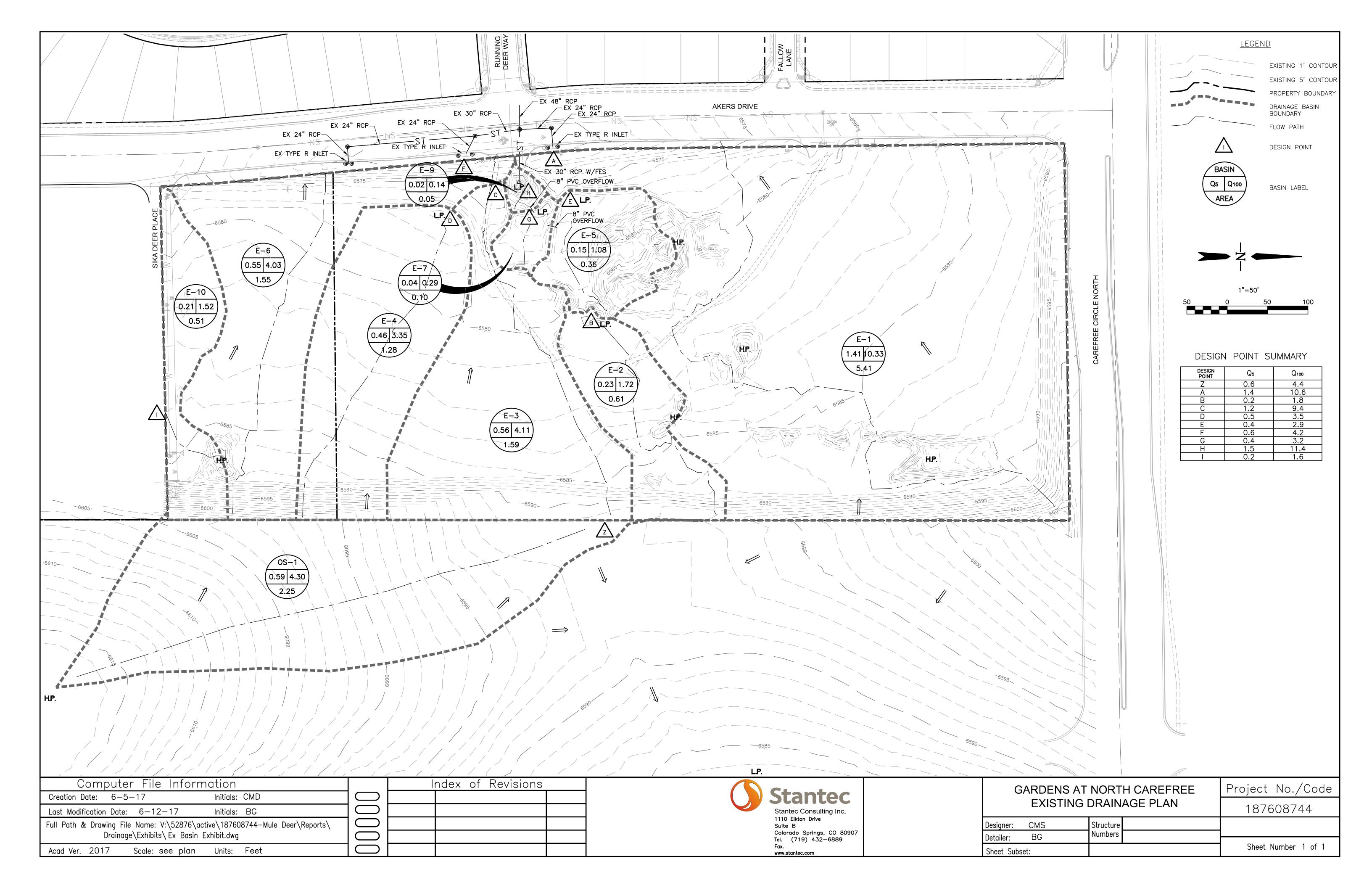
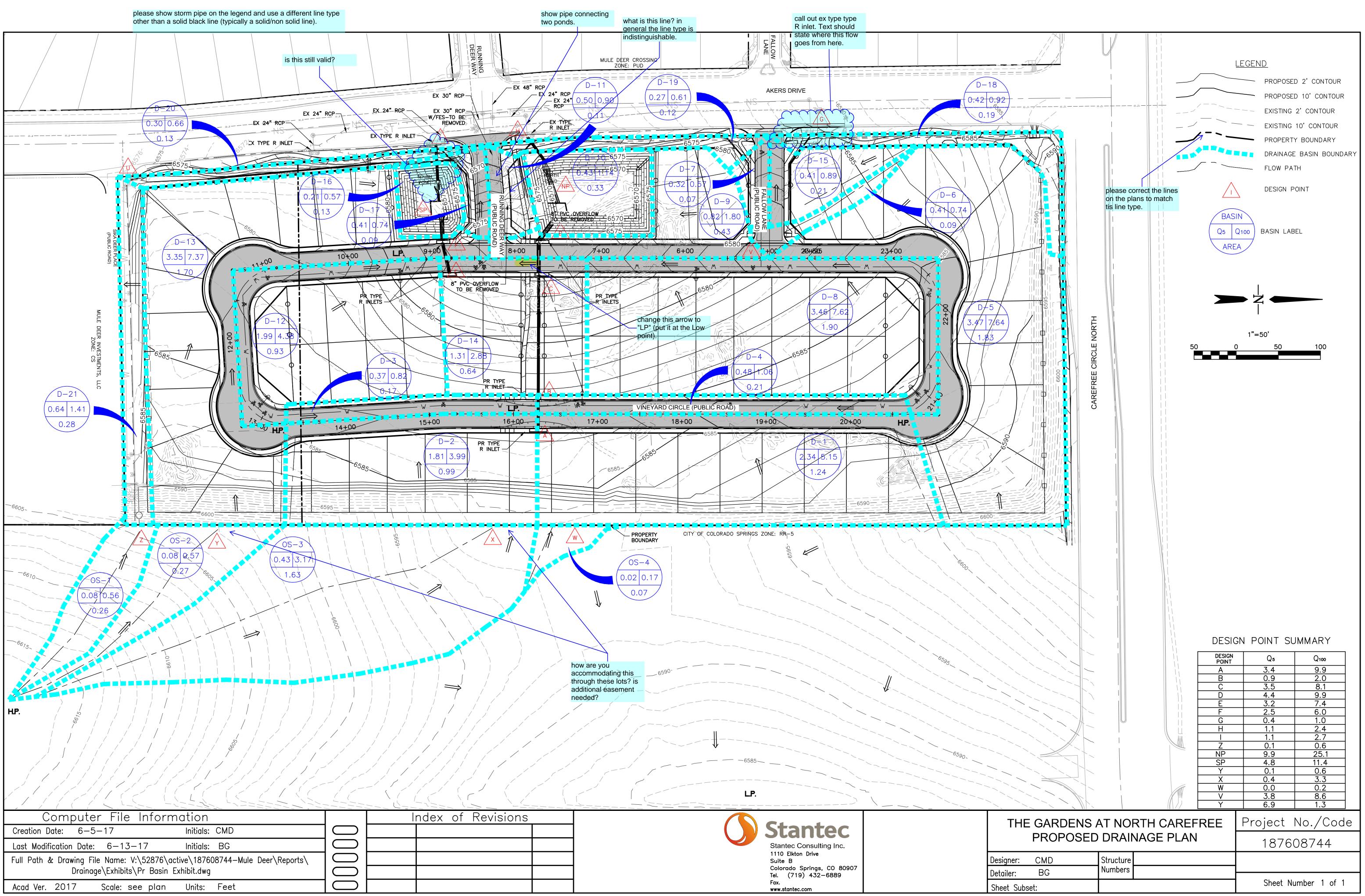



Figure 3: Proposed Drainage Map

