THE GARDENS AT NORTH
CAREFREE
FINAL DRAINAGE REPORT
EL PASO COUNTY, COLORADO

PROJECT NO. 187608744

Prepared for: MULE DEER INVESTMENTS, LLC 2727 GLEN ARBOR DRIVE COLORADO SPRINGS, CO 80124

Prepared by: STANTEC CONSULTING, INC 5725 MARK DABLING BLVD, SUITE 190 COLORADO SPRINGS, CO 80919 719.432.6880

January 21, 2019

PCD File No:

PCD File No. SF195

CERTIFICATIONS

Desi	gn Ei	ngine	er's	State	ment:
------	-------	-------	------	-------	-------

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Seal

Owner/Developer's Statement:

Charlene. M. Durham, P.E. #36727

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

By (signature):		Date:	
Title:		-	
Address:	2727 Glen Arbor Drive		
	Colorado Springs, CO 80124	_	

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

Jennifer Irvine, P.E.,	Date
County Engineer / ECM Administrator	

Table of Contents

PURPOSE	5
GENERAL LOCATION & DESCRIPTION	5
DESCRIPTION OF PROPERTY	5
CLIMATE	5
FLOODPLAIN STATEMENT	
UTILITIES & OTHER ENCUMBRANCES	
DRAINAGE DESIGN CRITERIA	6
DEVELOPMENT CRITERIA REFERENCE	6
Hydrologic Criteria	-
Rational Method	6
Storm Sewer Design	
Detention Storage Criteria.	
Waivers/Deviations	
DRAINAGE BASINS	7
OFFSITE BASINS	7
EXISTING DRAINAGE ANALYSIS	7
Design Points	8
PROPOSED DRAINAGE ANALYSIS	
Design Points	
Deviations	
DRAINAGE FACILITY DESIGN	12
GENERAL CONCEPT	12
STORM SEWER SYSTEM	12
On-SITE WATER QUALITY	
FOUR STEP PROCESS	14
Reduce Runoff	
Treat & Release WQCV	
Stabilize Stream Channels	
Implement Source Controls	
DRAINAGE FEES, COST ESTIMATE & MAINTENANCE	14
MAINTENANCE	14
Drainage Fees	
PROPOSED FACILITIES ESTIMATE	15
EROSION CONTROL	16
GENERAL CONCEPT	16
SILT FENCE	16
EROSION BALES	16
VEHICLE TRACKING CONTROL	16
SEDIMENTATION POND	
SUMMARY	17
REFERENCE MATERIALS	18

List of Figures

Figure 1:	Vicinity Map	
_	Existing Drainage Map	
_	Proposed Drainage Map	

Appendix

Appendix A: NRCS Soil Report

Appendix B: Existing Hydrology Calculations Appendix C: Proposed Hydrology Calculations

Appendix D: Inlet Calculations

Appendix E: StormCAD

Appendix F: Water Quality Pond Calculations

Appendix G: Deviation Request

Appendix H: Excerpts from Previous Drainage Reports

PURPOSE

The purpose of this Final Drainage Report (FDR) is to identify and analyze on and offsite drainage patterns, locate and identify tributary and downstream drainage features and facilities that impact the proposed site. Runoff quantities and proposed facilities have been calculated using the City of Colorado Springs/El Paso County Drainage Criteria Manual (DCM) revised November 1991; and in accordance with El Paso County ordinance 15-042.

The Gardens at North Carefree is approximately 11.6 acres and is located within El Paso County.

GENERAL LOCATION & DESCRIPTION

The Gardens at North Carefree is approximately 11.6 acres of single-family development. The site will include the construction of 3 public roads, 71 single family lots and 5 tracts. The project is bounded by North Carefree Circle to the north, Akers Drive to the west, Sika Deer Place to the south and open land to the east. The project is located in the eastern portion of Section 29, Township 13 South, Range 65 West.

The Gardens at North Carefree development site is located within the northern end of the Sand Creek Basin.

Description of Property

The project site is 11.6 acres of vegetation, consisting of short grasses and weeds. The average slope of the site is between 3 and 9%, generally sloping to the west.

The site is composed of a single soil type. From the NRCS report in Appendix A, the site falls into the following soil type:

97 – Truckton sandy loam (3-9%) – Type A Soil

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. Group A soil is defined by:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Climate

The climate of the site is typical of a sub-humid to semiarid climate with mild summers and winters. The average temperature is 31 degrees F in the winter and 68.4 degrees in the summer. Total annual precipitation is 15.21 inches.

Floodplain Statement

The Flood Insurance Rate Map (FIRM No. 08041C0539-G dated 12/7/18) indicates that there is no floodplain in the vicinity of the proposed site.

Utilities & Other Encumbrances

The site is currently undeveloped and there are no known utilities on site.

DRAINAGE DESIGN CRITERIA

Development Criteria Reference

Resolution No. 15-042, Adoption for portions of the El Paso County Drainage Criteria Manual (DCM), El Paso County Engineering Criteria Manual (ECM) and Urban Storm Drainage Criteria Manual (USDCM) by Urban Drainage & Flood Control District was used in preparation of this report. Additional preliminary and final drainage plans, master development drainage plans, and drainage basin planning studies used in the preparation of the report are listed in the References Section.

Hydrologic Criteria

Rational Method

The rational method was used to determine onsite flows, as required by the current El Paso County Drainage Criteria Manual (DCM). Both the 5-year and 100-year storm events were considered in this analysis. Runoff coefficients appropriate to the existing and proposed land uses were selected for an SCS type "B" soil from Table 6-6 of the DCM even though the existing soil type is designated as a type "A" soil. The time of concentration was calculated per DCM requirements. Rational Method results are shown in the Appendix B & C. USDCM spreadsheets were used to design the detention and water quality pond features.

Storm Sewer Design

Storm Sewer systems have been designed to the 100-year storm and checked with the 5-year storm. Inlets are located at sump areas and intersections where street flow is larger than street capacity. UDFCD Inlet spreadsheet will be used to determine the size of all at-grade and sump inlets. Onsite flow captured within the storm system will be released into one of the two water quality facilities. Final design of these facilities is included in the appendix.

Detention Storage Criteria

The proposed Water quality facilities will not be designed as detention structures, as it was determined from previous studies that onsite detention was not necessary. This will be explained and addressed later in the report. Water quality requirements were determined from the UDFCD Volume 3 spreadsheet for an Extended Detention Basin.

Final storage volumes and outflows have been calculated and are included in the appendix.

Waivers/Deviations

No variances are being requested for this development.

A deviation has been requested and approved for El Paso County ECM_Appendix I Section I.7.1.B: 1st Bullet; Providing Water Quality for Entire Development.

The deviation was for Basins D-7, D-11, D-15 and D-17 thru D-20, which drain into Akers Drive and are intercepted by existing inlets and will not reach an on-site water quality facility. These basins

account for approximately 8% (0.94 acres of 11.56) of the overall site area. The remaining 92% of the development area is treated through 1 of the 2 proposed ponds.

The topography of the site will not allow all areas within the site to drain to the proposed ponds. Of the area inside the development boundary that will not reach a facility only 0.19 acres is proposed roadway, and 0.75 acres will be sloped areas at the back of lots along the exterior boundary.

DRAINAGE BASINS

Offsite Basins

There is one off site basin contributing flows to the proposed development. It is located on the east side of the property along the southern half. The basin is 2.25 acres and is currently undeveloped. Flows from the basin are 0.59 cfs and 4.3 cfs for the minor and major storms. If this parcel develops, it will need to provide its own onsite water quality.

Existing Drainage Analysis

Historic drainage analysis was determined by analyzing runoff quantities and patterns for the site. There are 9 existing basins for the proposed site.

- Basin E-1 (5.41 acres) is the top north half of the site between North Carefree Circle and Akers Drive. Flows are diverted through existing drainage swales to where they will release into Akers Drive. Flows for this basin are 1.41 cfs for the 5-year storm and 10.33 cfs for the 100-year storm.
- Basin E-2 (0.61 acres) is located south of Basin E-1. Existing drainage swales will divert this flow to an existing low point/detention area. Flows for this basin are 0.23 cfs for the 5-year storm and 1.72 cfs for the 100-year storm.
- Basin E-3 (1.59 acres) is south of Basin E-2. Flows are diverted to the west through existing drainage swales to an existing low point. Flows for this basin are 0.56 cfs for the 5-year storm and 4.11 cfs for the 100-year storm.
- Basin E-4 (1.28 acres) is south of Basin E-3. Existing drainage swales direct flows to the west to an existing low area. Flows for this basin are 0.46 cfs for the 5-year storm and 3.35 cfs for the 100-year storm.
- Basin E-5 (0.36 acres) is south of Basin E-1 and west of Basin E-2. Flows for this basin are 0.15 cfs for the 5-year storm and 1.08 cfs for the 100-year storm.
- Basin E-6 (1.55 acres) is south of Basin E-4. Existing drainage swales direct flows towards the west, where they will release into Akers Drive. Flows for this basin are 0.55 cfs for the 5-year storm and 4.03 cfs for the 100-year storm.
- Basin E-7 (0.10 acres) is south of Basin E-5 and west of Basin E-3. Flows for this basin are 0.04 cfs for the 5-year storm and 0.29 cfs for the 100-year storm.

- Basin E-9 (0.05 acres) is located between Basin E-7 and Akers Drive. This area is the low area/detention where an existing 30" rcp collects runoff. Flows for this basin are 0.02 cfs for the 5-year storm and 0.14 cfs for the 100-year storm.
- Basin E-10 (0.51 acres) is along the south boundary of the project, along the private driveway. Flows for this basin are 0.21 cfs for the 5-year storm and 1.52 cfs for the 100-year storm.

Design Points

- Design Point Z (Q₅=0.6, Q₁₀₀=4.4) consists of flow from Basin OS-1. Flow from this basin release on site and combine with other onsite basins.
- Design Point A ($Q_5=1.4$, $Q_{100}=10.6$) consists of flow from Basin E-1. Flow from this basin is released directly into Akers Drive where it is intercepted by an existing Type R inlet.
- Design Point B ($Q_5=0.2$, $Q_{100}=1.8$) consists of flow from Basin E-2. It is a natural low point on the site. Flows will release from this location via an existing culvert and continue to DP E.
- Design Point D ($Q_5=0.5$, $Q_{100}=3.5$) consists of flow from Basin E-4. Flows will continue over existing ground to combine at DP C.
- Design Point C ($Q_5=1.2$, $Q_{100}=9.4$) consists of flow from Basins, OS-1 and E-3 and DP D. Flows will continue to the north where they will combine with other flows at DP H.
- Design Point E (Q_5 =0.4, Q_{100} =2.9) consists of flow from Basin E-5 and DP B. This is a naturally occurring low spot on site. Flows will continue via an existing pipe to DP G.
- Design Point F (Q₅=0.6, Q₁₀₀=4.2) consists of flow from Basin E-6. These flows are released directly into Akers Drive where they are intercepted by an existing Type R inlet.
- Design Point G (Q₅=0.4, Q₁₀₀=3.22) consists of flow from Basin E-7 and DP E. This is a sump area which has an existing culvert for flows to continue to DP H.
- Design Point H (Q₅=1.5, Q₁₀₀=11.4) consists of flow from Basin E-9 and DP C and DP G. This is the final low point where flows are collected and via a 30" RCP, exit the site and combine with flows from Akers Drive and the Mule Deer development to the west.
- Design Point I ($Q_5=0.2$, $Q_{100}=1.6$) consists of flow from Basin E10. Flow will be collected in the curb and gutter of the existing driveway and flow west to Akers Drive.

Proposed Drainage Analysis

The proposed development consists of 20 developed basins and the offsite basin has been divided into 4 separate basins, based on where flows enter onto developed site basins. The majority of the runoff from the site will be collected via inlets and pipes and diverted to one of two water quality ponds for the development. The ponds will then release into the existing inlets in Akers Drive and continue through the existing storm system to the existing drainage channel to the west.

- Basin OS-1 (0.26 acres) is the southern most offsite basin. This flow is released into Basin D-20 Flows for this basin are 0.08 cfs for the 5-year storm and 0.56 cfs for the 100-year storm.
- Basin OS-2 (0.27 acres) is north of OS-1. Runoff is directed towards Basin D-13. Flows for this basin are 0.08 cfs for the 5-year storm and 0.57 cfs for the 100-year storm.
- Basin OS-3 (0.1.63 acres) is located between OS-2 and OS-4 along the south portion of the eastern boundary of the site. Runoff is directed towards Basin D-2. Flows for this basin are 0.43 cfs for the 5-year storm and 3.17 cfs for the 100-year storm.
- Basin OS-4 (0.07 acres) is the north of OS-3. Runoff is directed towards Basin D-1. Flows for this basin are 0.02 cfs for the 5-year storm and 0.17 cfs for the 100-year storm.
- Basin D-1 (1.24 acres) is the north half of the site along the east boundary to the east leg of Vineyard Circle. This flow is directed towards a sump inlet on the east side of Vineyard Circle. Flows for this basin are 2.34 cfs for the 5-year storm and 5.15 cfs for the 100-year storm.
- Basin D-2 (0.99 acres) is the south half of the site along the east boundary to the east leg of Vineyard Circle. Runoff is directed towards a sump inlet on the west side of Vineyard Circle. Flows for this basin are 1.81 cfs for the 5-year storm and 3.99 cfs for the 100-year storm.
- Basin D-3 (0.17 acres) is the southeast half of Vineyard Circle. Runoff is directed towards a sump inlet on the west side of the east leg of Vineyard Circle. Flows for this basin are 0.37 cfs for the 5-year storm and 0.82 cfs for the 100-year storm.
- Basin D-4 (0.21 acres) is the northeast half of Vineyard Circle. Runoff is directed towards a sump inlet on the west side of the east leg of Vineyard Circle. Flows for this basin are 0.48 cfs for the 5-year storm and 1.06 cfs for the 100-year storm.
- Basin D-5 (2.03 acres) is along the north boundary of the site, along North Carefree and along Akers Drive, north of Fallow Lane. Runoff continues to an at-grade inlet on the west side of the west leg of Vineyard Circle. Flows for this basin are 3.85 cfs for the 5-year storm and 8.47 cfs for the 100-year storm.
- Basin D-6 (0.08 acres) is the east half of Fallow Lane. Flows for this basin are 0.37 cfs for the 5-year storm and 0.66 cfs for the 100-year storm.
- Basin D-7 (0.04 acres) is the southwest half of Fallow Lane. Flows for this basin are 0.18 cfs for the 5-year storm and 0.33 cfs for the 100-year storm.
- Basin D-8 (1.90 acres) is the northwest half of the area inside of Vineyard Circle. Runoff is released into the east side of the west leg of Vineyard Circle to an at-grade inlet. Flows for this basin are 3.46 cfs for the 5-year storm and 7.62 cfs for the 100-year storm.
- Basin D-9 (0.52 acres) is the area between the west leg of Vineyard Circle, Fallow Lane and Akers Drive. Runoff releases to an at-grade inlet on the west side of Vineyard Circle. Flows for this basin are 0.99 cfs for the 5-year storm and 2.17 cfs for the 100-year storm.

- Basin D-10 (0.33 acres) is the North Pond area. Flows for this basin are 0.43 cfs for the 5-year storm and 1.14 cfs for the 100-year storm.
- Basin D-11 (0.07 acres) is the north half of Running Deer Way. Flows for this basin are 0.32 cfs for the 5-year storm and 0.57 cfs for the 100-year storm.
- Basin D-12 (0.93 acres) is the south half of the area in between the two legs of Vineyard Circle. Runoff will release to a sump inlet in the east side of Vineyard Circle. Flows for this basin are 1.99 cfs for the 5-year storm and 4.38 cfs for the 100-year storm.
- Basin D-13 (1.72 acres) is the south portion of the site. Runoff is directed towards a sump inlet on the west half of Vineyard Circle. Flows for this basin are 3.39 cfs and 7.46 cfs for the minor and major storms, respectively.
- Basin D-14 (0.64 acres) is the middle area on the west half of the area between the two legs of Vineyard Circle, across from Running Deer Way. Flows are 1.31 cfs for the 5-year storm and 2.88 cfs for the 100-year storm.
- Basin D-15 (0.04 acres) is northwest half of Fallow Lane. Flows are 0.09 cfs for the 5-year storm and 0.20 cfs for the 100-year storm.
- Basin D-16 (0.13 acres) is the South Pond area. Flows for this basin are 0.21 cfs for the minor storm and 0.57 cfs for the major storm.
- Basin D-17 (0.08 acres) is the south half of Running Deer Way. Flows are 0.37 cfs and 0.66 cfs or the minor and major storms respectively.
- Basin D-18 (0.19 acres) is the area north of Fallow Land and south of North Carefree which flows towards Akers Drive. Runoff for this basin is 0.42 cfs for the 5-year storm and 0.92 cfs for the 100-year storm.
- Basin D-19 (0.11 acres) is the area between Fallow Land and Running Deer Way which flows towards Akers Drive. Flows are 0.25 cfs and 0.55 cfs for the minor and major storms, respectively.
- Basin D-20 (0.41 acres) is the area south of Running Deer Way, along the western boundary, which flows towards Akers Drive. Flows are 0.80 cfs for the minor storm and 1.99 cfs for them major storm.

Design Points

- Design Point Z ($Q_5=0.1$, $Q_{100}=0.6$) consists of flow from Basin OS-1. Flow from this basin release on site and will combine with Basin D-20.
- Design Point Y (Q₅=0.1, Q₁₀₀=0.6) consists of flow from Basin OS-2. Flow from this basin release on site and will combine with Basin D-13.
- Design Point X (Q₅=0.4, Q₁₀₀=3.3) consists of flow from Basin OS-3. Flow from this basin release on site and will combine with Basin D-2.

Include discussion regarding the bypass flow at design points C and D.

- Design Point W (Q₅=0.0, Q₁₀₀=0.2) consists of flow from Basin OS-4. Flow from this basin release on site and will combine with Basin D-1.
- Design Point A (Q₅=3.4, Q₁₀₀=9.9) consists of flow from Basins D-1 and D-2 and Design Points DP W and DP X. A sump inlet will be installed on the east side of the east leg of Vineyard Circle to intercept this flow. This will connect with the storm system which will release into the North Pond.
- Design Point B (Q₅=0.9, Q₁₀₀=2.0) consists of flow from Basins D-3 and D-4. A, at-grade inlet will be installed on west side of the east leg of Vineyard Circle to intercept the street flow. The inlet will connect with a storm system which releases into the North Pond.
- Design Point C (Q₅=3.5, Q₁₀₀=7.9) consists of flow from Basin D-8. A sump inlet will be installed on the east side of the west leg of Vineyard Circle to intercept gutter flow. The inlet will be part of a storm system which releases into the North Pond.
- Design Point V (Q₅=4.2, Q₁₀₀=9.4) combines flow from Basins D-5 and D-6 at the Fallow Lane and Vineyard Circle intersection. Flows will continue as gutter flow to the south along Vineyard Circle.
- Design Point D (Q₅=4.9, Q₁₀₀=11.0) consists of flow from Basin D-9 and design point DP V. This at-grade inlet will intercept the flows from the west half of the west leg of Vineyard Circle. The inlet will connect to the system which will release into the North Pond.
- Design Point E (Q₅=3.2, Q₁₀₀=7.4) consists of flow from Basins D-12 and D-14. This is street flow at the east half of Vineyard Circle beginning at the southeast knuckle. Flows will direct towards a sump inlet on the east half of the west leg of Vineyard Circle, which releases into the South Pond.
- Design Point F (Q₅=2.5, Q₁₀₀=6.1) consists of flow from Basin D-13 and design point DP Y. This is street flow at the west half of Vineyard Circle beginning at the southeast knuckle. Flows will direct towards a sump inlet on the west half of the west leg of Vineyard Circle, which releases into the South Pond.
- Design Point G (Q₅=0.4, Q₁₀₀=1.0) consists of flow from Basin D-18. This is the street flow which has been released into Akers Drive north of Fallow Lane. Flow is intercepted by an existing type R inlet, north of the Fallow Lane Intersection.
- Design Point H (Q₅=0.3, Q₁₀₀=0.6) consists of flow from Basins D-7, D-15 and D-19. This is flow from Fallow Lane and street flow from Akers Drive, between Fallow Lane and Running Deer Way. Runoff is intercepted by an existing type R inlet in Akers Drive, north of the Running Deer Way intersection.
- Design Point I (Q₅=0.9, Q₁₀₀=2.0) consists of flow Basins D-11, D-17 and D-20. This is the flow from Running Deer Way and the flow released onto Akers Drive from the site south of Running Deer Way. An existing type R inlet, south of the Running Deer Way intersection will intercept these flows.

- Design Point NP (Q₅=10.3, Q₁₀₀=25.8) combines basin D-10 with flows from DP A, DP B, DP C and DP D. This is the flow being released into the North Pond.
- Design Point SP (Q₅=4.8, Q₁₀₀=11.5) combines basin D-16 with flows from DP E and DP F. This is the flow being released into the South Pond.

Deviations

A deviation has been requested and approved for El Paso County ECM_Appendix I Section I.7.1.B: 1st Bullet; Providing Water Quality for Entire Development.

Basins D-7, D-11, D-15 and D-17 thru D-20 all release into Akers Drive and are intercepted by existing inlets and will not reach an on-site water quality facility. These basins account for approximately 8% (0.94 acres of 11.56) of the overall site area. The remaining 92% of the development area is treated through 1 of the 2 proposed ponds.

The topography of the site will not allow all areas within the site to drain to the proposed ponds. Of the area inside the development boundary that will not reach a facility only 0.19 acres is proposed roadway, and 0.75 acres will be sloped areas at the back of lots along the exterior boundary.

DRAINAGE FACILITY DESIGN

General Concept

The Gardens at North Carefree is located in the Sand Creek Drainage Basin.

Storm Sewer System

All development is anticipated to be urban and will include storm sewer and street inlets. Two storm sewers collect storm water runoff and convey the runoff to the proposed ponds prior to discharging into the existing storm system offsite. The WQ outlet structures will connect to the existing inlets via proposed concrete culverts.

Storm System 1 will connect the set of sump inlets on the east leg of Vineyard Circle with the set of sump inlets on the west leg of Vineyard Circle. This system will release into the South WQ Pond.

Storm System 2 will connect a set of at-grade inlets on the west leg of Vineyard Circle, just north of Running Deer Way. The system will release into the North WQ Pond

On-Site Water Quality

There are two proposed water quality facilities on site that will provide water quality for the proposed improvements. Flows will pass through the outlet structures of one of the two proposed ponds. The existing storm system was designed to account for a 100-year flow of 55 cfs from this development. The two water quality ponds, based on the UDFCD pond spreadsheets, have a release rate of 28.8 cfs (South Pond is 8.30 cfs and North Pond is 20.5 cfs). The basins releasing offsite have a combined flow of 8.9 cfs. Flows in Akers Drive and the two ponds have a total combined flow of 37.7 cfs being captured in the existing storm system. Pond sizing calculations are provided in Appendix D.

The two ponds have been designed to act only as water quality, and not detention. From previous reports, it was determined that on-site detention would not be necessary.

From the Sand Creek Drainage Basin Planning Study, the only facility in this area was for a check structure along the southwest property boundary of Mule Deer Crossing. (See Appendix for excerpt)

The detention pond for the southwest corner of the Mule Deer development was mentioned in the Master Development Drainage Plan (MDDP) for Hilltop Subdivision by URS Greiner. It stated that this pond was not necessary if proposed improvements to the downstream channel were sufficient to handle the unattenuated flows. (See excerpt in Appendix)

From the Final Drainage Report for Mule Deer Filing 1, Lots 1 & 2 and Preliminary Drainage Report for Mule Deer Filing 1, Lots 3-36 by URS, states that after discussions with the El Paso County Department of Transportation, the proposed detention at the southwest corner of the Mule Deer development was not required, as it was determined that the existing channel was able to handle the upstream flows. (See Appendix for excerpt).

The Preliminary/Final Drainage Report for Mule Deer Crossing has the design and construction of the check structure identified in the Sand Creek DBPS, as well as the improvements to the channel along the western boundary of the Mule Deer development. (see excerpt in Appendix).

From the Mule Deer FDR report, there are two design points, which will tie into the storm system designed in Akers Drive. Design Point 6 (DP-6) designates the existing inlet north of the Running Deer intersection and Design Point 7 (DP-7) designates the existing inlet south of Running Deer. DP-6 had a design flow of 11 cfs and 20 cfs for the 5- and 100-year flows. DP-7 had flows of 36 and 69 cfs, which included flows from the commercial site south of Sika Deer Place. If these flows are removed (Q5=24 cfs, Q100=47 cfs), DP-7 would have corresponding flows of 1/2 cfs and 22 cfs for the minor and major storm events. Flows entering the WQ facilities are 10.3 cfs and 25.8 cfs for the North Pond and 5.0 cfs and 16.6 cfs for the South Pond. Even though the two ponds are meant to serve water quality purposes, there is some small detention acquired, which will result in release rates of 8.8 cfs and 20.5 cfs for the North Pond and 3.7 cfs and 8.3 cfs for the South Pond. Released flows are less than the design flows accounted for in the previous report, which indicates that the existing channel, accepting less flows than the approved FDR had accounted for, will still function adequately, as stated in the approved URS report.

The lower run off values as compared to the original design values is primarily due to the change in use from commercial to residential with additional reduction due to the detention attributed to the water quality ponds.

The existing channel has been shown to be able to handle previous design flows. The Gardens at North Carefree, proposed flows are less than those previously designed for (flows exiting ponds are less than previous design flows, as shown above), the need for on-site full spectrum detention is not required.

The WQCV is treated through two proposed extended detention basins, North Pond and South Pond. There are no proposed major drainageways for the site that would need to be stabilized. Some sitespecific source control BMPs that will be implemented include, but are not limited to, silt fencing placed around downstream areas of disturbance, construction vehicle tracking pads at the entrances, designated

After discussion with engineering manager, staff has determined that Full Spectrum Detention is required. The existing downstream channel in the El Paso County parcel is a wetlands that v:\52876\ has degradation and is not able to handle the upstream flows. Additionally at the time of the previously approved FDR's the EPC criteria had not adopted full spectrum detention as is currently required. Please revise design accordingly.

The narrative indicates that detention is not provided. Revise.

Temporary Sedimentation Basins

The water quality facilities (North Pond and South Pond) will work as temporary sedimentation ponds, until final construction is complete.

Four Step Process

In accordance with the El Paso County Engineering Criteria Manual, Appendix I, this site has implemented the four-step process to minimize adverse impacts of urbanization and helps with the management of smaller, frequently occurring events. The four-step process includes reducing runoff volumes, treating and slowly releasing the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

Reduce Runoff

In order to reduce runoff volume, the new impervious area for the site was minimized. Existing features will be preserved as all of the offsite basins which are undeveloped open space will continue to be so, and all developable areas will be required to release existing flows and handle their own detention and water quality needs. Existing drainage paths have been maintained as much as possible to also help reduce overall impacts from the site.

Treat & Release WQCV

The WQCV is treated through 2 separate water quality ponds. The outlet structures for both ponds have been designed according to the FSD spreadsheet by UDFCD to ensure the release times of the facilities meet the requirements.

Stabilize Stream Channels

There are no proposed major drainageways for the site that would need to be stabilized. Downstream of the project, all flows enter into existing storm systems, which are adequate to handle existing released flows, which will be the case as both ponds are designed to release less than existing flows. Therefore, those downstream channel/facilities would also, not see any increase or adverse effects to their functionality.

Implement Source Controls

Some site-specific source control BMPs that will be implemented include, but are not limited to, silt fencing placed around downstream areas of disturbance, construction vehicle tracking pads at the entrances, sediment ponds, designated concrete truck washout basin, designated vehicle fueling areas, covered storage areas, spill containment and control, etc.

DRAINAGE FEES, COST ESTIMATE & MAINTENANCE there will be no HOA. A district is intended to be

Per submitted documents there will be no HOA. A district is intended to be set up. Please revise.

Maintenance

The water quality ponds will be maintained by the Home Owners Association. Facilities located within the project boundary will be private facilities and will also be maintained by Home Owners Association. All facilities located outside of the project boundary and within public right-of-way, will be maintained by the county. A BMP maintenance agreement and easement will be provided for the ponds, as well as an Operations and Maintenance manual. The remaining utilities (gas, phone, electric, cable, etc.) will be owned and maintained by their respective companies. Easements will be issued to ensure each entity is able to access and maintain their facilities.

Drainage Fees

The proposed development falls within the Sand Creek Basin. The entire development occupies approximately 11.6 acres. The project consists of 2.66 acres of right-of-way, 6.96 acres of residential lots, and tracts of open space of 1.98 acres. The following calculations for the imperviousness of this development have been computed as follows:

Average Residential lot size: 6.96 acres / 71 lots = 4270 sf

Average lot imperviousness = 2200 sf

Average Residential Imperviousness 2200/4270 = 51.50%

Current drainage and bridge fees are \$18,940 and \$5,559. Revise accordingly.

R.O.W. area 2.66 acres; imperviousness 100 % Open Space area 1.98 acres; imperviousness 0%

Average imperviousness for developed area:

 $(0.5150 \times 6.96) + (1.0 \times 2.66) + (0 \times 1.95)/(11.6) = 0.5383 = 53.83\%$. The impervious area that the fees will be based on is 6.24 acres (11.6 x 53.83%)

Drainage fees in the Sand Creek Basin are \$17,197 and bridge fees are \$5,210. The calculated fees due will be as follows:

Drainage Fees: \$107,309 (6.24 x \$17,197)

Bridge Fees: \$32,510 (6.24 x \$5,210)

Proposed Facilities Estimate

		UNIT		ITEM
ITEM	UNITS	COST	QUANTITY	COST
GRADING AND EROSION CONTROL				
CURB BACKFILL	LF	\$ 4.00	4650	\$ 18,600
MISC SEEDING AND MULCH	AC	\$ 5,000.00	1	\$ 5,000
HAY BALE CHECKS	EA	\$ 15.00	100	\$ 1,500
INLET PROTECTION	EA	\$ 500.00	6	\$ 3,000
VEHICLE TRACKING CONTROL	EA	\$ 2,000.00	2	\$ 4,000
SILT FENCING	LF	\$ 2.50	1,000	\$ 2,500
SUBTOTAL GRADING & EROSION CONTROL				\$ 34,6000
DRAINAGE				
18" RCP	LF	\$ 125.00	180	\$ 22,500
36" RCP	LF	\$ 220.00	128	\$ 28,160
10' Type R Inlet	EA	\$ 6,800.00	3	\$ 20,400
20' Type R Inlet	EA	\$ 10,000.00	3	\$ 30,000
Outlet Structure	EA	\$ 10,000.00	2	\$ 20,000
SUBTOTAL DRAINAGE				\$ 121,060
SUBTOTAL DRAINAGE & GRADING/EROSION CONTROL				\$ 155,660
ENGINEERING (10%)				\$ 15,566
CONTINGENCY (25%)				\$ 38,915
TOTAL			l	\$ 210,141

EROSION CONTROL

General Concept

During construction, best management practices for erosion control will be employed based on El Paso County criteria and the erosion control plan. The erosion control plan is included at the end of this report.

Ditches will be designed to meet El Paso County criteria for slope and velocity, keeping velocities below scouring levels.

During construction, best management practices (BMP) for erosion control will be employed based on El Paso County Criteria. BMP's will be utilized as deemed necessary by contractor and/or engineer and are not limited to measure shown on construction drawing set. The contractor shall minimize amount of area disturbed during all construction activities.

In general, the following shall be applied in developing the sequence of major activities:

- Install downslope and sideslope perimeter BMP's before the land disturbing activity occurs.
- Do not disturb an area until it is necessary for the construction activity to proceed.
- Cover or stabilize as soon as possible.
- Time the construction activities to reduce the impacts from seasonal climatic changes or weather events.
- The construction of filtration BMP's should wait until the end of the construction project when upstream drainage areas have been stabilized.
- Do not remove temporary perimeter controls until after all upstream areas are stabilized.

Silt Fence

Silt fence will be placed along downstream limits of disturbed areas. This will prevent suspended sediment from leaving the site during infrastructure construction. Silt fencing is to remain in place until vegetation is reestablished.

Erosion Bales

Erosion bales will be placed ten (10) feet from the inlet of all culverts and inlets during construction to prevent culverts from filling with sediment. Erosion bales will remain in place until vegetation is reestablished in graded roadside ditches. Erosion bale ditch checks will be used on slopes greater than 1% to reduce flow velocities until vegetation is reestablished.

Vehicle Tracking Control

This BMP is used to stabilize construction entrances, roads, parking areas and staging areas to prevent the tracking of sediment from the construction site. A vehicle tracking control (VTC) is to be used at all locations where vehicles exit the construction site onto public roads, loading and unloading areas, storage and staging areas, where construction trailers are to be located, any construction area that receives high vehicular traffic, construction roads and parking areas. VTC's should not be installed in areas where soils erode easily or are wet.

Sedimentation Pond

This BMP is used to detain runoff which has become laden with sediment long enough to allow the sediment to settle out. As the construction area is larger than 1 acre, a temporary sediment basin is required per Volume 2 of the Drainage Criteria Manual.

SUMMARY

Development within the site is to be single family residential. The existing storm sewer will connect to the new water quality facilities, allowing flows to continue as they currently are.

REFERENCE MATERIALS

- 1. "City of Colorado Springs Drainage Criteria Manual Volume 1" May 2014.
- 2. Soils Survey of El Paso County Area, Natural Resources Conservation Services of Colorado.
- 3. Flood Insurance Rate Study for El Paso County, Colorado and Incorporated Areas. Federal Emergency Management Agency, Revised March 17, 1997.
- 4. "City of Colorado Springs Drainage Criteria Manual, Volume 2: Stormwater Quality Policies, Procedures and Best Management Practices (BMPs)" May 2014.
- 5. "Engineering Criteria Manual El Paso County" January 9, 2006, Revised December, 2016.
- 6. "Urban Storm Drainage Criteria Manual, Volume 1: Management, Hydrology & Hydraulics" Original September 1969, Updated January 2016.
- 7. "Urban Storm Drainage Criteria Manual, Volume 2: Structures, Storage & Recreation" Original September 1969, Updated January 2016.
- 8. "Urban Storm Drainage Criteria Manual, Volume 3: Stormwater Quality" Original September 1992, Updated November 2010.
- 9. "Sand Creek Drainage Basin Planning Study Preliminary Design Report", Kiowa Engineering Corporation.
- 10. "Master Development Drainage Plan for Hilltop Subdivision" Revised February 1998. Prepared by URS Greiner, Inc
- 11. Final Drainage Report and Erosion Control for Chateau at
- 12. "Final Drainage Report for Mule Deer Filing 1, Lots 1 & 2 and Preliminary Drainage Report for Mule Deer Filing 1, Lots 3-46" January 2004. Prepared by URS.
- 13. "Preliminary Drainage Report for Mule Deer Business Park" January 2005. Prepared by URS.
- 14. "Final Drainage Report for Mule Deer Business Park" April 2005. Prepared by URS.
- 15. "Preliminary/Final Drainage Report for Mule Deer Crossing" May 2005. Prepared by URS.
- 16. "Final Drainage Report for Mule Deer Crossing" December 2005. Prepared by URS.

Figure 1: Vicinity Map

5725 MARK DABLING BLVD, SUITE 190 COLORADO SPRINGS, CO 80919 www.stantec.com

Client/Project

MULE DEER INVESTMENTS, LLC GARDENS AT NORTH CAREFREE

Figure No.

1.0

Title

VICINITY MAP

Appendix A: NRCS Soil Report

VRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

MAP LEGEND

Area of Interest (AOI) Soils Soil Map Unit Lines Soil Map Unit Points Other Soil Map Unit Points Soil Map Unit Points

Special Point Features

Blowout

Streams and Canals

Nater Features

- Borrow Pit

 Clay Spot
- Closed Depression

Interstate Highways

Rails

ŧ

Fransportation

Major Roads Local Roads

US Routes

- Gravel Pit
- Gravelly Spot
- A Lava Flow

Landfill

Marsh or swamp

Aerial Photography

3ackground

Mine or Quarry

Miscellaneous Water

- Perennial Water
 - Rock Outcrop
- + Saline Spot
- Sandy Spot

 Severely Eroded Spot
- Sinkhole
- Slide or Slip

Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 14, Sep 23, 2016

Soil map units are labeled (as space allows) for map scales

1:50,000 or larger.

Date(s) aerial images were photographed: Jun 3, 2014—Jun 17,

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

	El Paso County Are	a, Colorado (CO625)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
97	Truckton sandy loam, 3 to 9 percent slopes	11.5	100.0%
Totals for Area of Interest		11.5	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

Custom Soil Resource Report

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

97—Truckton sandy loam, 3 to 9 percent slopes

Map Unit Setting

National map unit symbol: 36bg Elevation: 6,000 to 7,000 feet

Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 50 degrees F

Frost-free period: 125 to 145 days

Farmland classification: Not prime farmland

Map Unit Composition

Truckton and similar soils: 80 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Truckton

Setting

Landform: Hills

Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Arkosic alluvium derived from sedimentary rock and/or arkosic

residuum weathered from sedimentary rock

Typical profile

A - 0 to 8 inches: sandy loam Bt - 8 to 24 inches: sandy loam

C - 24 to 60 inches: coarse sandy loam

Properties and qualities

Slope: 3 to 9 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 5.7 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e

Hydrologic Soil Group: A

Ecological site: Sandy Foothill (R049BY210CO)

Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Custom Soil Resource Report

Haplaquolls

Percent of map unit: Landform: Marshes Hydric soil rating: Yes

Other soils

Percent of map unit: Hydric soil rating: No

Appendix B: Existing Hydrology Calculations

Standard Form SF-1. Time of Concentration

Project: Gardens at North Carefree Section: Existing Conditions

1/13/2017 Date: Date: CMD Created by: 5 min 10 min Urban TOC _{min}= Rural TOC min =

	SUB-BASIN DATA	4		INITIAL/	INITIAL/OVERLAND FLOW	FLOW				TRAVEL TIME							Tc CHECK		FINAL TC
					(t _i)					(t)						(Urb	(Urbanized basins)	(S)	(min)
										Type of Land Surface				TOTAL					
Basin ID	Description	უ	Area (ac)	Length, L Slope, s (ft) (ft/ft)	Slope, s (ft/ft)	t _i (min) (1)	Length (ft)	S., (ft/ft)	Code	Description	Convey Coef (C,)	Velocity (V) (ft/s) (3)	t _t Travel Time (min) (4)	$\mathbf{t}_{c} = \mathbf{t}_{i} + \mathbf{t}_{t}$ (min)	Urban (Yes /No)	Length (ft)	T _{c max} (min) (5)	Tc _{max} > t _c	
OS-1	Offsite Basin @ East Side	0.08	2.25	100	0.035	12.18	555	0.0455	4	Nearly bare ground	10.00	2.13	4.34	16.52	ON	655.00	13.64	Check	16.5
E-1	North portion of site	0.08	5.41	45	0.333333	3.88	995	0.0171	4	Nearly bare ground	10.00	1.31	12.68	16.57	NO	1040.00	15.78	Check	16.6
E-2	South of E-1	80.0	0.61	30	0.33333	3.17	305	0.0295	4	Nearly bare ground	10.00	1.72	2.96	6.13	ON	335.00	11.86	Check	6.1
E-3	South of E-2	80.0	1.59	40	0.333333	3.66	470	0.0319	4	Nearly bare ground	10.00	1.79	4.39	8.05	ON	510.00	12.83	Check	8.0
E-4	South of E-3	80.0	1.28	20	0.333333	4.09	370	0.0270	4	Nearly bare ground	10.00	1.64	3.75	7.85	ON	420.00	12.33	Check	7.8
E-5	South of E-1 and West of E-2	80.0	0.36	2	0.5	1.13	135	0.0296	4	Nearly bare ground	10.00	1.72	1.31	2.44	ON	140.00	10.78	Check	5.0
E-6	South of E-4 and along Akers Dr	80.0	1.55	55	0.333333	4.29	410	0.0366	4	Nearly bare ground	10.00	1.91	3.57	7.87	ON	465.00	12.58	Check	7.9
E-7	South of E-5 and West of E-3	80.0	0.10	5	0.5	1.13	55	0.0545	4	Nearly bare ground	10.00	2.34	0.39	1.52	ON	00.09	10.33	Check	5.0
E-9	West of E-7	80.0	0.05	5	0.3333	1.29	30	0.3333	4	Nearly bare ground	10.00	5.77	0.09	1.38	ON	35.00	10.19	Check	5.0
E-10	South portion of Site along Private Driveway	0.08	0.51	15	0.5	1.96	105	0.0381	4	Nearly bare ground	10.00	1.95	06:0	2.86	ON	120.00	10.67	Check	5.0

UDFCD Table RO-2	Land Surface Coefficients	
Code	Description	రే
1	Heavy meadow	2.5
2	Tillage/field	2
3	Short pasture and lawns	7
4	Nearly bare ground	10
5	Grassed waterway	15
9	Paved areas and shallow paved swales	20
L *	Riprap (not buried)	7.0

All Equations are from UDFCD Drainage Criteria Manual/Runoff (1) $t_1=(0.395^*(1.1-c_s)^*(1.4-c_s)$

^{*} determined for the project based on UDFCD equations (Equation RO-4)

Standard Form SF-2 . Storm Drainage System Design (Rational Method Procedure)

Project: Gardens at North Carefree
Section: Existing Conditions

P = 1.50 in5-yr Design Storm:

Created by: CMD Date: 1/13/2017
Checked by: CKC Date:

Г												
	REMARKS	(22)										
W W	(NIM)	(21)										
TRAVEL TIME	VELOCITY	(20)										
TRA	LENGTH (FT)	(19)										
	(INCHES)	(18)										
PIPE	(%) SCOPE	(17)										
	EFOM (CE8) DE8IGN	(16)										
ET	STREET FLOW (CFS)	(12)										
STREET	(%)	(14)										
H	(CFS)	(13)										
TOTAL RUNOFF	(IN / HR)	(12)										
TOTAL	(A*O) MUS (DA)	(11)										
	, (NIM)	(10)										
	(CES)	(6)	0.59	1.41	0.23	0.56	0.46	0.15	0.55	0.04	0.02	0.21
	(IN / HR)	(8)	3.25	3.25	4.81	4.40	4.44	5.09	4.43	5.09	5.09	5.09
냺	.A.O (DA)	(7)	0.18	0.43	0.05	0.13	0.10	0.03	0.12	0.01	0.00	0.04
DIRECT RUNOFF	(NIM)	(9)	16.52	16.57	6.13	8.05	7.85	5.00	78.7	5.00	5.00	5.00
DIRE	COEFF (C)	(2)	0.08	0.08	0.08	80.0	0.08	80:0	80:0	80:0	0.08	0.08
	(A) A3AA (DA)	(4)	2.25	5.41	0.61	1.59	1.28	0.36	1.55	0.10	0.05	0.51
	AREA DESIGN	(3)	0S-1	E-1	E-2	E-3	E-4	E-5	E-6	E-7	E-9	E-10
	LOCATION	(1)	Offsite Basin @ East Side	North portion of site	South of E-1	South of E-2	South of E-3	South of E-1 and West of E-2	South of E-4 and along Akers Dr	South of E-5 and West of E-3	West of E-7	South portion of Site along Private Driveway
Ī												

Standard Form SF-2 . Storm Drainage System Design (Rational Method Procedure)

Gardens at North Carefree Existing Conditions

Project: Section:

100-yr Design Storm:

2.52 П

1/13/2017

Created by: CMD Date: Checked by: CKC Date:

REMARKS (22) (MIM) (21) TRAVEL TIME ţ (FPS) (20) VELOCITY (TT) (19) **ГЕИ**СТН (иснея) (18) **BIPE SIZE** (%) PIPE (17) SLOPE FLOW (CFS) (16) DESIGN LLOW (CFS) (15) STREET STREET (%) (14) ЗГОРЕ (CE2) (13) Ø **FOTAL RUNOFF** (IN / HB) (12) (AC) 11 SUM (C*A) (MIM) (10) ĵ 10.33 (c_E2) 4.1 4.30 1.72 1.08 0.29 0.14 1.52 3.35 4.03 (6) Ø 5.46 5.45 8.55 8.55 8.55 (IN / HB) 7.46 7.45 8.55 8.07 8 ı (AC) 0.13 0.18 0.79 0.56 0.45 0.03 0.02 1.89 6 0.21 0.54 DIRECT RUNOFF C.A. 16.52 ئ (MIM) 16.57 5.00 6.13 8.05 7.85 5.00 5.00 5.00 7.87 (9) COEFF (C) 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 (2) RUNOFF 0.51 (AC) 0.10 0.05 2.25 1.59 0.36 1.55 5.41 1.28 0.61 (4) (A) A3AA E-10 OS-1 E-2 E-5 E-9 E-1 E-3 E-4 9-E-9 E-7 (3) **BASIN ID** South of E-1 and West of E-South of E-5 and West of E-South portion of Site along Offsite Basin @ East Side South of E-4 and along North portion of site LOCATION Private Driveway South of E-2 South of E-3 South of E-1 West of E-7 Akers Dr

- (1) Basin Description linked to C-Value Sheet

- (2) Basin Design Point
 (3) Enter the Basin Name from C-Value Sheet
 (4) Basin Area linked to C-Value Sheet
 (5) Composite C linked to C-Value Sheet
 (6) Time of Concentration linked to SF-1 Sheet

(8) =28.5*P/(10+Column 6)^0.786

(7) =Column 4 x Column 5

(9) =Column 7 x Column 8 (10) =Column 6 + Column 21

- (14) Additional Street Longitudinal Slope(15) Additional Street Overland Flow

 - (16) Additional Pipe Design Flow (17) Additional Pipe Slope (18) Additional Pipe Size

(11) Add the C.A. Values Column 7 to get the cummulative C.A. Values

(12) =28.5*P/(10+Column 10)^0.786

- (19) Additional Flow Length (20) Street or Pipe Velocity (21) =Column 15 OR Column 16 OR Column 20 / 60

Equations follow UDFCD Rational Method

GARDENS AT NORTH CAREFREE SURFACE ROUTING

DESIGN	ONTRIBUTIN	C A (e q u	ivalent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	BASINS	CA(5)	CA(100)	1	I(5)	I(100)	Q(5)	Q(100)
				(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
Z	OS-1	0.18	0.79	16.5	3.2	5.6	0.6	4.4
					•	TRAVEL T	IME	
		0.18	0.79	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
				Channel	510	3.5	2.4	18.9
Α	E-1	0.43	1.89	16.6	3.2	5.6	1.4	10.6
	l [•	TRAVEL T	IME	
		0.43	1.89	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
						3.5	0.0	16.6
В	E-2	0.05	0.21	6.1	4.9	8.5	0.2	1.8
	l [TRAVEL T		
		0.05	0.21	Type/flow	Length (ft)	Velocity (fps)		T. Time (min)
				PIPE	25	4.4	0.1	6.2
D	E-4	0.10	0.45	7.8	4.5	7.8	0.5	3.5
	l .					TRAVEL T		
		0.10	0.45	Type/flow	Length (ft)	Velocity (fps)	\ /	T. Time (min)
				CHANNEL	65	2.8	0.4	8.2
С	E-3	0.13	0.56	18.9	3.0	5.2	1.2	9.4
	DP D	0.10	0.45		•	TRAVEL T	IME	
	DP Z	0.18	0.79		T	1	1	I
		0.41	1.79	Type/flow	Length (ft)	Velocity (fps)		T. Time (min)
_			2.12		0	4.4	0.0	18.9
E	E-5	0.03	0.13	6.2	4.8	8.5	0.4	2.9
	DP B	0.05	0.21		I	TRAVEL T		I =
		0.08	0.34	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
		0.40	0.54	PIPE	15	5.0	0.1	6.3
F	E-6	0.12	0.54	7.9	4.5	7.8	0.6	4.2
		0.40	0.54	T (0	T	TRAVEL T		T T' (')
		0.12	0.54	Type/flow	Length (ft)	Velocity (fps)		T. Time (min)
G	 	0.04	0.00	6.0	270	4.4	1.0	8.9
G	E-7 DP E	0.01 0.08	0.03 0.34	6.3	4.8	8.4 TRAVEL T	0.4	3.2
	טר כ		0.34	Typo/flour		_		T Time /min
		0.09	0.37	Type/flow PIPE	Length (ft) 15	Velocity (fps) 5.0	d. Time (min) 0.1	T. Time (min) 6.3
Н	D-9	0.00	0.02	18.9	3.0	5.0	1.5	
П	D-9 DP C	0.00	1.79	10.9	ა.0	5.2	1.3	11.4
	DP C DP G	0.41	0.37		-	TRAVEL T	IME	
	51 0	0.09	2.18	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
		0.50	2.10	PIPE	Length (It)	5.0	a. rime (min)	1. Time (min)
ı	E-10	0.04	0.18	5.0	5.2	9.1	0.1	
1	L-10	0.04	0.10	5.0		TRAVEL T		1.0
		0.04	0.18	Typo/flow	T		•	T. Time (min)
		0.04	0.18	Type/flow PIPE	Length (ft) 15	Velocity (fps) 5.0	d. Time (min)	T. Time (min) 5.1
				PIPE	15	5.0	U. I	ე. I

Appendix C: Proposed Hydrology Calculations

Standard Form SF-1 . Time of Concentration

Project: Section:	Gardens at North Carefree - FDR Proposed Conditions											O	Created by: Checked by:	CMD	Q (3)	Date:	1/16/2019	019	
	Urban TOC min= Rural TOC min=	_	5 min 10 min																
			ļ			ŀ													
	Offsite Basin @ East Side releases to D-20	o D-20		INITIAL/	INITIAL/OVERLAND FLOW (t.)	FLOW				TRAVEL TIME (t.)						Š	Tc CHECK (Urbanized basins)	(5)	FINAL Tc (min)
					Ē					Type of Land Surface				TOTAL					
Basin ID	Description	ڻ	Area I	Length, L (ft)	Slope, s (ft/ft)	t _i (min)	Length (ft)	S,, (ft/ft) C	Code		Convey Coef (C _v)	Velocity (V) (ft/s) (3)	t _t Travel Time (min) (4)	t _c = t _i + t _t (min)	Urban (Yes /No)	Length (ft)	T _{c max} (min) (5)	Tc _{max} > t _c	
OS-1	Offsite Basin @ East Side releases to D-20	0.08	0.26	100	0.035	12.18	150	0.0455	4	Nearly bare ground	10.00	2.13	1.17	13.35	YES	250.00	11.39	Check	13.4
0S-2	Offsite Basin @ East Side releases to D-13	0.08	0.27	100	0.035	12.18	225	0.0455	4	Nearly bare ground	10.00	2.13	1.76	13.94	YES	325.00	11.81	Check	13.9
OS-3	Offsite Basin @ East Side releases to D-2	0.08	1.63	100	0.035	12.18	480	0.0444	4	Nearly bare ground	10.00	2.11	3.80	15.98	YES	580.00	13.22	Check	16.0
0S-4	Offsite Basin @ East Side releases to D-1	0.08	0.07	86	0.040	10.81			4	Nearly bare ground	10.00	0.00	0.00	10.81	YES	86.00	10.48	Check	10.8
D-1	East portion of Site btwn North half of Vineyard and East Boundary	0.45	1.24	100	0.062	6.43	383	0.0132	9	Paved areas and shallow paved swales	20.00	2.30	2.78	9.21	YES	483.00	12.68	Check	9.2
D-2	East portion of Site btwn South half of Vineyard and East Boundary	0.45	0.99	100	0.060	6.50	310	0.0055	9	Paved areas and shallow paved swales	20.00	1.48	3.48	9.98	YES	410.00	12.28	Check	10.0
D-3	South/Middle portion of Site inside of Vineyard Circle which drains to east	0.45	0.17	9	0.020	2.29	310	0.0055	9 sh	Paved areas and shallow paved swales	20.00	1.48	3.48	5.77	YES	316.00	11.76	Check	5.8
D-4	North/Middle portion of Site inside of Vineyard Circle which drains to east	0.45	0.21	5	0.020	2.09	405	0.0132	9	Paved areas and shallow paved swales	20.00	2.30	2.94	5.03	YES	410.00	12.28	Check	5.0
D-5	North portion of site, along Carefree Circle	0.45	2.03	100	0.064	6.36	450	0.0190	9	Paved areas and shallow paved swales	20.00	2.76	2.72	9.08	YES	550.00	13.06	Check	9.1
D-6	East Haif of Fallow Lane which drains to Vineyard Circle	0.90	0.08	25	0.020	4.1	40	0.0200	9	Paved areas and shallow paved swales	20.00	2.83	0.24	1.67	YES	65.00	10.36	Check	5.0
D-7	Southwest Half of Fallow Lane which drains to Akers	0.90	0.04	5	0.020	0.64	80	0.0450	e sh	Paved areas and shallow paved swales	20.00	4.24	0.31	0.96	YES	85.00	10.47	Check	5.0
D-8	North/Middle portion of Site inside of Vineyard Circle which drains to west	0.45	1.90	58	0.020	7.11	490	0.0190	9	Paved areas and shallow paved swales	20.00	2.76	2.96	10.07	YES	548.00	13.04	Check	10.1
D-9	Portion of site south of Fallow and btwn Akers and Vineyard	0.45	0.52	100	0.027	8.46	100	0.0190	9	Paved areas and shallow paved swales	20.00	2.76	09:0	9.06	YES	200.00	11.11	Check	9.1
D-10	North Pond	0.32	0.33	100	0.027	10.15			9	Paved areas and shallow paved swales	20.00	0.00	0.00	10.15	YES	100.00	10.56	Check	10.1
D-11	North half of Running Deer Way	0.90	0.07	20	0.020	1.28	105	0.0600	9	Paved areas and shallow paved swales	20.00	4.90	0.36	1.64	YES	125.00	10.69	Check	5.0
D-12	South/Middle portion of Site inside of Vineyard Circle which drains to west	0.45	0.93	30	0.020	5.11	295	0.0380	9	Paved areas and shallow paved swales	20.00	3.90	1.26	6.37	YES	325.00	11.81	Check	6.4
D-13	Southern portion of site along Sika Deer Place and Akers	0.45	1.38	06	090.0	6.16	470	0.0380	9	Paved areas and shallow paved swales	20.00	3.90	2.01	8.17	YES	560.00	13.11	Check	8.2
D-14	Along eastern Edge of Vineyard (West Side) opposite North Pond	0.45	0.64	100	0.056	6.65	110	0.0190	9	Paved areas and shallow paved swales	20.00	2.76	0.67	7.31	YES	210.00	11.17	Check	7.3
D-15	Northwest Half of Fallow Lane which drains to Akers	0.45	0.04	25	0.020	4.67	80	0.0450	9	Paved areas and shallow paved swales	20.00	4.24	0.31	4.98	YES	105.00	10.58	Check	5.0

	Offsite Basin @ East Side releases to D-20	، D-20		INITIAL/	INITIAL/OVERLAND FLOW	FLOW				TRAVEL TIME							Tc CHECK		FINAL TC
					(t,)					(t,)						5	(Urbanized basins)	(St	(min)
										Type of Land Surface				TOTAL					
				Length, L Slope, s		t _i (min)	Length		-		Convey Coef (C _v)	Velocity (V) (ft/s)	t _t Travel Time (min)	$\mathbf{t}_{c} = \mathbf{t}_{l} + \mathbf{t}_{t}$		1	T _{c max} (min)		
Basin ID	Description	Ç	(ac)	(±)	(#/#)	(1)	(¥)	(#t/#t)	Code	Description	(2)	(3)	(4)	(min)	(Yes /No)	Length (tt)	(5)	Tc _{max} > t _c	
D-16	D-16 South Pond	0.32	0.15	25	0.250	2.43			φ	Paved areas and shallow paved swales	20.00	00:00	0.00	2.43	YES	25.00	10.14	Check	5.0
D-17	D-17 South half of of Running Deer Way	0.90	0.08	10	0.020	0.91	75	0.0600	9	Paved areas and shallow paved swales	20.00	4.90	0.26	1.16	YES	85.00	10.47	Check	5.0
D-18	ROW north of Fallow which drains towards Akers	0.45	0.19	55	0.091	4.20	285	0.0200	9	Paved areas and shallow paved swales	20.00	2.83	1.68	5.88	YES	340.00	11.89	Check	5.9
D-19	ROW btwn Fallow & Running Deer which drains towards Akers	0.45	0.11	5	0.333	0.83			9	Paved areas and shallow paved swales	20.00	00:00	0.00	0.83	YES	5.00	10.03	Check	5.0
D-20	ROW south of Running Deer which drains D-20 towards Akers	0.45	0.41	45	0.333	2.47	720	0.0236	9	Paved areas and shallow paved swales	20.00	3.07	3.90	6.38	YES	765.00	14.25	Check	6.4

UDI CO Table NO-2	Land Sallace Coefficients	
Code	Description	S
1	Heavy meadow	2.5
2	Tillage/field	2
3	Short pasture and lawns	7
4	Nearly bare ground	10
9	Grassed waterway	15
9	Paved areas and shallow paved swales	20
<i>L</i> *	Riprap (not buried)	7.0
* dotormino d for the n	* dottowning of far the medical based on IIDFOD constitute (Farset)	

determined for the project based on UDFCD equations (Equation RO-4)

Standard Form SF-2 . Storm Drainage System Design (Rational Method Procedure) Project: Section: Proposed Conditions

5-yr Design Storm:

.⊑ 1.50

П

1/16/2019

Date:

Created by: CMD Checked by: CKC

REMARKS (22)(MIM) TRAVEL TIME ţ (FPS) VELOCITY (TT) **ГЕИСТН** (иснега) PIPE SIZE (%) PIPE ЗГОРЕ ELOW (CFS) DESIGN LOW (CFS) STREET STREET (%) SLOPE (c_E2) Ø (IN / HB) (AC) SUM (C*A) (MIM) ŗ 0.08 0.43 0.37 3.85 0.18 0.99 0.43 0.32 3.39 0.09 (CES) 3.46 0.08 0.02 2.34 0.37 1.99 1.3 1.8 Ø 3.59 4.19 4.06 4.89 5.09 4.05 5.09 4.75 4.38 4.55 5.09 (IN / HB) 3.52 3.30 3.93 4.03 5.08 4.21 5.09 4.21 Т 0.45 0.08 0.04 0.11 (AC) 0.02 0.13 0.01 0.56 0.09 0.91 0.86 0.23 90.0 0.29 0.02 0.02 0.07 0.42 0.77 .A.D DIRECT RUNOFI 10.15 13.35 13.94 15.98 10.81 9.08 10.07 (MIM) 9.98 5.03 90.6 5.00 8.17 5.00 5.77 5.00 5.00 6.37 7.31 9.21 °Į 0.45 0.45 COEFF (C) 0.08 0.08 0.08 0.08 0.45 0.45 0.45 0.45 0.45 0.32 06.0 0.45 0.45 0.45 0.45 06.0 06.0 RUNOFF (AC) 0.26 0.17 0.99 2.03 0.08 1.90 0.33 0.93 1.72 0.27 1.63 0.07 1.24 0.04 0.52 0.07 0.64 0.04 0.21 (A) A3AA OS-3 **0S-4 OS-2** D-10 D-12 D-13 D-14 D-15 DESIGN OS-1 <u>-1</u> D-3 6-0 7 D-2 4 0-5 9 D-7 8 ABRA East portion of Site btwn South half of Vineyard East portion of Site btwn North half of Vineyard Southern portion of site along Sika Deer Place South/Middle portion of Site inside of Vineyard Southwest Half of Fallow Lane which drains to South/Middle portion of Site inside of Vineyard Northwest Half of Fallow Lane which drains to North/Middle portion of Site inside of Vineyard Portion of site south of Fallow and btwn Akers North/Middle portion of Site inside of Vineyard Along eastern Edge of Vineyard (West Side) Offsite Basin @ East Side releases to D-13 Offsite Basin @ East Side releases to D-20 Offsite Basin @ East Side releases to D-1 North portion of site, along Carefree Circle Offsite Basin @ East Side releases to D-2 East Half of Fallow Lane which drains to North half of Running Deer Way LOCATION Circle which drains to west Circle which drains to east Circle which drains to east Circle which drains to west opposite North Pond and East Boundary and East Boundary Vineyard Circle and Vineyard North Pond and Akers Akers

Standard Form SF-2 . Storm Drainage System Design (Rational Method Procedure)
Project:

Gardens at North Carefree - FDR

,																
	Project:	Gardens at North Carefree - FDR	t North C	arefree	- FDR						_	reated by:	CMD	Date:	Created by: CMD Date: 1/16/2019	
	Section:	Proposed Conditions	Condition	SI							Ö	Checked by:	CKC	Date:		
	South Pond	D-16	D-16 0.13 0.32		5.00	0.04	5.09	0.21								
	South half of of Running Deer Way	D-17 0.08 0.90	0.08		5.00	0.07	5.09	0.37								
	ROW north of Fallow which drains towards															
	Akers	D-18	D-18 0.19 0.45		5.88	0.09	4.86	0.42								
	ROW btwn Fallow & Running Deer which															
	drains towards Akers	D-19	D-19 0.11 0.45		5.00	0.05	5.09	0.25								
	ROW south of Running Deer which drains															
	towards Akers	D-20	D-20 0.41 0.45	0.45	6.38	0.18	4.75	0.88								

Page 5

Standard Form SF-2 . Storm Drainage System Design (Rational Method Procedure) Project: Section:

P = 2.52 in 100-yr Design Storm:

Created by: CMD Date: 1/16/2019
Checked by: CKC Date:

				DIREC	DIRECT RUNOFF	出			TC	TOTAL RUNOFF	NOFF	ST	STREET		PIPE		TRA	TRAVEL TIME	ш	REMARKS
	LOCATION	BASIN ID	(A) ABRA (DA)	COEFF (C)	(MIM)	.A.၁ (AC)	(AH \ NI)	(CFS)	€ (MIN) SUM (C*A)	(AC)	(IN / HR)	(%) SFOPE	STREET FLOW (CFS)	EFOM (CES) DESIGN	(%) STOPE	(INCHES) blbe Size	LENGTH (FT)	VELOCITY (FPS) t,	(NIM)	
	(1)	(3)	(4)	(2)	(9)	(7)	(8)	(6)	(10)	(11) (12)	2) (13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
J	Offsite Basin @ East Side releases to D-20	0S-1	0.26	0.35	13.35	0.09	6.04	0.56												
O	Offsite Basin @ East Side releases to D-13	OS-2	0.27	0.35	13.94	0.10	5.92	0.57												
J	Offsite Basin @ East Side releases to D-2	OS-3	1.63	0.35	15.98	0.57	5.55	3.17												
O	Offsite Basin @ East Side releases to D-1	0S-4	0.07	0.35	10.81	0.03	6.61	0.17												
II (V	East portion of Site btwn North half of Vineyard and East Boundary	D-1	1.24	0.59	9.21	0.73	7.04	5.15												
. E	East portion of Site btwn South half of Vineyard and East Boundary	D-2	0.99	0.59	9.98	0.58	6.82	3.99												
5, 0	South/Middle portion of Site inside of Vineyard Circle which drains to east	D-3	0.17	0.59	5.77	0.10	8.22	0.82												
0	North/Middle portion of Site inside of Vineyard Circle which drains to east	D-4	0.21	0.59	5.03	0.12	8.54	1.06												
۷	North portion of site, along Carefree Circle	D-5	2.03	0.59	9.08	1.20	7.07	8.47												
П /	East Half of Fallow Lane which drains to Vineyard Circle	D-6	0.08	96.0	2.00	0.08	8.55	99.0												
5) Y	Southwest Half of Fallow Lane which drains to Akers	D-7	0.04	96.0	2.00	0.04	8.55	0.33												
_ 0	North/Middle portion of Site inside of Vineyard Circle which drains to west	D-8	1.90	0.59	10.07	1.12	08.9	7.62												
<u></u> (0	Portion of site south of Fallow and btwn Akers and Vineyard	D-9	0.52	0.59	9.06	0.31	7.08	2.17												
۷	North Pond	D-10	0.33	0.51	10.15	0.17	6.78	1.14												
۷	North half of Running Deer Way	D-11	0.07	96.0	2.00	0.07	8.55	0.57												
υ, O	South/Middle portion of Site inside of Vineyard Circle which drains to west	D-12	0.93	0.59	6.37	0.55	7.98	4.38												
υ) (U	Southern portion of site along Sika Deer Place and Akers	D-13	1.72	0.59	8.17	1.01	7.35	7.46												
7 0	Along eastern Edge of Vineyard (West Side) opposite North Pond	D-14	0.64	0.59	7.31	0.38	7.64	2.88												
۷ ۷	Northwest Half of Fallow Lane which drains to Akers	D-15	0.04	0.59	2.00	0.02	8.55	0.20												

orgination of 2 : ordin plantage dystem pessign (rational method i rocedare)		(I) IIBIO			2	, ביים									
Project:	Gardens at North Carefree - FDR	at North C	arefree.	·FDR						Created	oy:	ء و	ate: 1	/16/2019	
Section:	Proposed Conditions	Condition	JS							Checked by: CKC Date:	y: Ck	C D	ate:		
South Pond	D-16	0.13 0.51		5.00	3 20.0	8.55	0.57								
South half of of Running Deer Way	D-17	80 0	96 0	00 3	800	א ה	99 0								
(S. 100) Similar (S. 100)	5		9	+	-	4	20.5					Ī			
ROW north of Fallow which drains towards Akers	D-18	0.19 0.59	0.59	5.88	0.11	8.17	0.92								
ROW btwn Fallow & Running Deer which drains towards Akers	D-19	0.11	0.59	5.00	90.0	8.55	0.55								
ROW south of Running Deer which drains	í														
towards Akers	02-0	0.41 0.59	0.59	6.38	0.24	7.98	1.93								
All Equations follow UDFCD Rational Method															

- Ani Equations foliow UDF-UJ Rational Wethor
 (1) Basin Description linked to C-Value Sheet
 (2) Basin Design Point
 (3) Enter the Basin Name from C-Value Sheet
 (4) Basin Area linked to C-Value Sheet
 (5) Composite C linked to C-Value Sheet
 (6) Time of Concentration linked to SF-1 Sheet

- (13) Sum of Qs
 (14) Additional Street Longitudinal Slope
 (15) Additional Street Overland Flow
 (16) Additional Pipe Design Flow
 (17) Additional Pipe Slope
 (18) Additional Pipe Size

(11) Add the C.A. Values Column 7 to get the cummulative C.A. Values

(8) =28.5*P/(10+Column 6)^0.786 (9) =Column 7 x Column 8 (10) =Column 6 + Column 21

(7) =Column 4 x Column 5

(12) =28.5*P/(10+Column 10)^0.786

- (19) Additional Flow Length
 (20) Street or Pipe Velocity
 (21) =Column 15 OR Column 20 / 60

GARDENS AT NORTH CAREFREE - FDR SURFACE ROUTING

DESIGN	CONTRIBUTING	C A (e q u i	valent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	BASINS	CA(5)	CA(100)		I(5)	I(100)	Q(5)	Q(100)
				(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
Z	OS-1	0.02	0.09	13.4	3.6	6.2	0.1	0.6
					-	TRAVEL T	IME	
		0.02	0.09	Type/flow	Length (ft)		d. Time (min)	T. Time (min)
					750		6.0	19.3
Υ	OS-2	0.02	0.10	13.9	3.5	6.1	0.1	0.6
					-	TRAVEL T	IME	
		0.02	0.10	Type/flow	Length (ft)	Velocity (fps)		T. Time (min)
					450	2.1	3.6	17.5
Х	OS-3	0.13	0.57	16.0	3.3	5.7	0.4	3.3
					-	TRAVEL T		
		0.13	0.57	Type/flow	Length (ft)	Velocity (fps)		T. Time (min)
					115		0.9	16.9
W	OS-4	0.01	0.03	10.8	3.9	6.8	0.0	0.2
					-	TRAVEL T	IME	
		0.01	0.03	Type/flow	Length (ft)	Velocity (fps)		T. Time (min)
					115		0.9	11.7
Α	D-1	0.56	0.73	19.3	3.0	5.2	3.4	9.9
	D-2	0.45	0.58					
	DP W	0.01	0.03					
	DP X	0.13	0.57		1	TRAVEL T		_
		1.14	1.91	Type/flow	Length (ft)	Velocity (fps)		T. Time (min)
				PIPE	34		0.2	19.5
В	D-3	0.08	0.10	5.0	5.2	9.0	0.9	2.0
	D-4	0.09	0.12			TRAVEL T		
		0.17	0.22	Type/flow	Length (ft)	Velocity (fps)	\ /	T. Time (min)
				PIPE	205	2.5	1.4	6.4
С	D-8	0.86	1.12	10.1	4.0	7.1	3.5	7.9
						TRAVEL T		T
		0.86	1.12	Type/flow	Length (ft)	Velocity (fps)		T. Time (min)
				CHANNEL	34	2.5	0.2	10.3
V	D-5	0.91	1.20	9.1	4.2	7.4	4.2	9.4
	D-6	0.07	0.08				T	T
		0.99	1.27	Type/flow	Length (ft)	Velocity (fps)		T. Time (min)
				STREET	205		1.2	10.3
D	D-9	0.23	0.31	10.3	4.0	7.0	4.9	11.0
	DP V	0.99	1.27				T	T
		1.22	1.58	Type/flow	Length (ft)		d. Time (min)	T. Time (min)
				PIPE	10		0.1	10.4
E	D-12	0.42	0.55	7.3	4.6	8.0	3.3	9.3
	D-14	0.29	0.38		-	TRAVEL T	IME	
	FB Inlet C	0.02	0.24	- <i>I</i> C	1 (1 (4)	17 1 12 15 15 1		I = -: / · · ·
		0.73	1.16	Type/flow	Length (ft)	Velocity (fps)		T. Time (min)
	D 40	2		PIPE	34		0.2	7.5
F	D-13	0.77	1.01	17.5	3.1	5.5	2.6	10.0
	DP Y	0.02	0.10		-	TRAVEL T	IME	
1	FB Inlet D	0.03	0.71					
	P	0.83		Type/flow			d. Time (min)	

ı	DESIGN	CONTRIBUTING	CA(equ	ivalent)	Tc	INTE	NSITY	TOTAL	FLOWS
ı	POINT	BASINS	CA(5)	CA(100)		I(5)	I(100)	Q(5)	Q(100)
					(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
					PIPE	10	2.5	0.1	17.6

DESIGN	CONTRIBUTING	C A (e q u	ivalent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	BASINS	CA(5)	CA(100)		I(5)	I(100)	Q(5)	Q(100)
				(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
G	D-18	0.09	0.11	5.9	4.9	8.6	0.4	1.0
					-	TRAVEL T	IME	
		0.09	0.11	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					25	5.0	0.1	6.0
Н	D-15	0.02	0.02	5.0	5.2	9.1	0.3	0.6
	D-7	0.04	0.04		•	TRAVEL T	IME	
	D-19	0.05	0.06					
		0.05	0.06	Type/flow	Length (ft)	Velocity (fps)		T. Time (min)
					25	5.0	0.1	5.1
I	D-11	0.06	0.07	19.3	3.0	5.2	0.9	2.0
	D-17	0.07	0.08					
	D-20	0.18	0.24					
	DP Z	0.02	0.09		-	TRAVEL T	IME	
		0.32	0.39	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
						5.0	0.0	19.3
NP	D-10	0.11	0.17	19.5	3.0	5.2	10.3	25.8
	DP A	1.14	1.91					
	DP B	0.17	0.22					
	DP C	0.86	1.12					
	DP D	1.22	1.58		•	TRAVEL T	IME	
		3.49	5.01	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					80	4.0	0.3	19.9
SP	D-16	0.04	0.07	17.6	3.1	5.4	5.0	16.6
	DP E	0.73	1.16					
	DP F	0.83	1.83		-	TRAVEL T	IME	
		1.60	3.06	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
						5.0	0.0	17.6

Appendix D: Inlet Calculations

INLET IN A SUMP OR SAG LOCATION

 Project =
 Gardens at North Carefree

 Inlet ID =
 Proposed Type R Inlet - DP A

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =		Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	3.4	5.6	inches
Grate Information	r oriding Deptir =	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	1
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	┪
Curb Opening Information	• • • • • • • • • • • • • • • • • • • •	MINOR	MAJOR	_
Length of a Unit Curb Opening	L ₀ (C) =	20.00	20.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _D =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	1 "
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	┪
Grate Flow Analysis (Calculated)	017	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	┪
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)	9	MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	_
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	_
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.33	1.33	1
Clogging Factor for Multiple Units	Clog =	0.03	0.03	7
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	3.68	10.63	cfs
Interception with Clogging	Q _{wa} =	3.56	10.28	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	_	MINOR	MAJOR	_
Interception without Clogging	Q _{oi} =	32.25	37.75	cfs
Interception with Clogging	Q _{oa} =	31.18	36.50	cfs
Curb Opening Capacity as Mixed Flow	-	MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	10.14	18.63	cfs
Interception with Clogging	Q _{ma} =	9.80	18.01	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	3.56	10.28	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L =	20.00	20.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	T =	10.3	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.6	10.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	3.4	9.9	cfs

DP A - Pr Type R.xlsm, Inlet In Sump 1/21/2019, 11:19 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project:

Gardens at North Carefree

Inlet ID:

Proposed Type R Inlet - DP A

Transport

Torown

Hours d

A dc

Torown

a qc Ves				
Gutter Geometry (Enter data in the blue cells)				
Maximum Allowable Width for Spread Behind Curb	T _{BACK} =	10.0	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =	0.020	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.015]	
Height of Curb at Gutter Flow Line	H _{CURB} =	6.00	inches	
Distance from Curb Face to Street Crown	T _{CROWN} =	17.0	ft	
Gutter Width	W =	2.00	ft	
Street Transverse Slope	S _x =	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _w =	0.020	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	S _o =	0.000	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} =	0.000	10/10	
(), , , , , , , , , , , , , , , , , , ,	J. C.	0.010		
	-		Major Storn	
Max. Allowable Spread for Minor & Major Storm	T _{MAX} =	8.0	17.0	ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	6.0	12.0	inches
Allow Flow Depth at Street Crown (leave blank for no)				check = yes
Maximum Capacity for 1/2 Street based On Allowable Spread		Minor Storm	Major Storn	1
Water Depth without Gutter Depression (Eq. ST-2)	y =	1.92	4.08	inches
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	$d_C =$	2.0	2.0	inches
Gutter Depression (d _C - (W * S _x * 12))	a =	1.52	1.52	inches
Water Depth at Gutter Flowline	d =	3.44	5.60	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T _X =	6.0	15.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.688	0.350	
Discharge outside the Gutter Section W, carried in Section T_X	Q _X =	0.0	0.0	cfs
Discharge within the Gutter Section W (Q_T - Q_X)	Q _W =	0.0	0.0	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	0.0	cfs
Maximum Flow Based On Allowable Spread	Q _τ =	SUMP	SUMP	cfs
Flow Velocity within the Gutter Section	V =	0.0	0.0	fps
V*d Product: Flow Velocity times Gutter Flowline Depth	V*d =	0.0	0.0	
Maximum Capacity for 1/2 Street based on Allowable Depth		Minor Storm	Major Storn	1
Theoretical Water Spread	T _{TH} =	18.7	43.7	ft
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	T _{x TH} =	16.7	41.7	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.319	0.131	
Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH}	$Q_{XTH} =$	0.0	0.0	cfs
Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	Q _X =	0.0	0.0	cfs
Discharge within the Gutter Section W (Q_d - Q_X)	$Q_W =$	0.0	0.0	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	0.0	cfs
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	0.0	0.0	cfs
Average Flow Velocity Within the Gutter Section	V =	0.0	0.0	fps
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	0.0	0.0	╛
Slope-Based Depth Safety Reduction Factor for Major & Minor (d <u>></u> 6") Storm	R =	SUMP	SUMP	↓ .
Max Flow Based on Allowable Depth (Safety Factor Applied)	Q _d =	SUMP	SUMP	cfs
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	d =			inches
Resultant Flow Depth at Street Crown (Safety Factor Applied)	d _{CROWN} =			inches
MINOR STORM Allowable Capacity is based on Depth Criterion	_	Minor Storm	Major Storn	<u>1</u>
MAJOR STORM Allowable Capacity is based on Depth Criterion	$Q_{allow} =$	SUMP	SUMP	cfs
Minor storm max. allowable capacity GOOD - greater than flow given on shee				_
Major storm max. allowable capacity GOOD - greater than flow given on shee	et 'Q-Peak'			

DP A - Pr Type R.xlsm, Q-Allow 1/21/2019, 11:18 AM

INLET IN A SUMP OR SAG LOCATION

 Project =
 Gardens at North Carefree

 Inlet ID =
 Proposed Type R Inlet - DP B

Design Information (Input)			MINOR	MAJOR	
Type of Inlet		Inlot Type -	CDOT Type R		ا ا
Type of Inlet Local Depression (additional to continuou	o guttor depression of from 10 Alleud	Inlet Type = a _{local} =	3.00	3.00	inches
,	- ·	-		3.00	inches
Number of Unit Inlets (Grate or Curb Ope	=:	No =	1	'	┨
Water Depth at Flowline (outside of local	depression)	Ponding Depth =	3.4	5.6	inches Override Depths
Grate Information		. (0)	MINOR	MAJOR	_
Length of a Unit Grate		L _o (G) =	N/A	N/A	feet
Width of a Unit Grate		W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical va	•	A _{ratio} =	N/A	N/A	-
Clogging Factor for a Single Grate (typical		C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15	-3FMe construction	C _w (G) =	N/A	N/A	4
Grate Orifice Coefficient (typical value 0.6	drawings indicate a	C _o (G) =	N/A	N/A	_
Curb Opening Information	drawings indicate a		MINOR	MAJOR	_
Length of a Unit Curb Opening	10' inlet. Revise so	L₀ (C) ∋	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	that they match.	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	that they match.	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-	5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically t	the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Openin	g (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical va	lue 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical	value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)		_	MINOR	MAJOR	_
Clogging Coefficient for Multiple Units		Coef =	N/A	N/A	
Clogging Factor for Multiple Units		Clog =	N/A	N/A	
Grate Capacity as a Weir (based on UD	FCD - CSU 2010 Study)	_	MINOR	MAJOR	
Interception without Clogging		Q _{wi} =	N/A	N/A	cfs
Interception with Clogging		Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on U	IDFCD - CSU 2010 Study)	_	MINOR	MAJOR	
Interception without Clogging		Q _{oi} =	N/A	N/A	cfs
Interception with Clogging		Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		_	MINOR	MAJOR	
Interception without Clogging		Q _{mi} =	N/A	N/A	cfs
Interception with Clogging		Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes close	gged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculate	d)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units		Coef =	1.00	1.00	
Clogging Factor for Multiple Units		Clog =	0.10	0.10	
Curb Opening as a Weir (based on UDF	FCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging		Q _{wi} =	1.26	5.09	cfs
Interception with Clogging		Q _{wa} =	1.14	4.58	cfs
Curb Opening as an Orifice (based on U	JDFCD - CSU 2010 Study)		MINOR	MAJOR	-
Interception without Clogging	27	Q _{oi} =	7.52	9.44	cfs
Interception with Clogging		Q _{oa} =	6.77	8.49	cfs
Curb Opening Capacity as Mixed Flow			MINOR	MAJOR	-
Interception without Clogging		Q _{mi} =	2.87	6.44	cfs
Interception with Clogging		Q _{ma} =	2.58	5.80	cfs
Resulting Curb Opening Capacity (assu	imes cloaged condition)	Q _{Curb} =	1.14	4.58	cfs
Resultant Street Conditions			MINOR	MAJOR	1
Total Inlet Length		L =	5.00	5.00	feet
Resultant Street Flow Spread (based on s	sheet Q-Allow geometry)	T =	8.0	17.0	ft
Resultant Flow Depth at Street Crown		d _{CROWN} =	0.0	0.0	inches
toodian i low Dopurat Office Clown		-citowin	MINOR	MAJOR	
Total Inlet Intercention Canaci	ty (assumes clogged condition)	Q _a =	1.1	4.6	cfs
Inlet Capacity IS GOOD for Minor and M		Q _{PEAK REQUIRED} =	0.9	2.0	cfs
mice Supacity is GOOD for millor and w	agor otornia (PQ P EAR)	→ FEAR REQUIRED -	0.0	2.0	010

DP B - Pr Type R.xlsm, Inlet In Sump 1/21/2019, 11:22 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Gardens at North Carefree Proposed Type R Inlet - DP B Inlet ID: T_{BACK} Street

a dc				
Gutter Geometry (Enter data in the blue cells)				
Maximum Allowable Width for Spread Behind Curb	T _{BACK} =	10.0	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =	0.020	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.015	1	
Height of Curb at Gutter Flow Line	H _{CURB} =	6.00	inches	
Distance from Curb Face to Street Crown	T _{CROWN} =	17.0	ft	
Gutter Width	W =	2.00	ft	
Street Transverse Slope	S _x =	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _w =	0.083	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	S ₀ =	0.000	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} =	0.013	1	
	•			
Max. Allowable Spread for Minor & Major Storm	T _{MAX} =		Major Storm	ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	8.0	17.0 12.0	inches
,	u _{MAX} –	6.0		
Allow Flow Depth at Street Crown (leave blank for no)				check = yes
Maximum Capacity for 1/2 Street based On Allowable Spread	_	Minor Storm	Major Storm	_
Water Depth without Gutter Depression (Eq. ST-2)	y =	1.92	4.08	inches
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	d _C =	2.0	2.0	inches
Gutter Depression (d _C - (W * S _x * 12))	a =	1.52	1.52	inches
Water Depth at Gutter Flowline	d =	3.44	5.60	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T _X =	6.0	15.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.688	0.350	
Discharge outside the Gutter Section W, carried in Section T_X	Q _X =	0.0	0.0	cfs
Discharge within the Gutter Section W (Q_T - Q_X)	Q _W =	0.0	0.0	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	0.0	cfs
Maximum Flow Based On Allowable Spread	Q _τ =	SUMP	SUMP	cfs
Flow Velocity within the Gutter Section	V =	0.0	0.0	fps
V*d Product: Flow Velocity times Gutter Flowline Depth	V*d =	0.0	0.0	
Maximum Capacity for 1/2 Street based on Allowable Depth		Minor Storm	Major Storm	
Theoretical Water Spread	T _{TH} =	18.7	43.7	ft
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	T _{X TH} =	16.7	41.7	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.319	0.131	1
Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH}	Q _{X TH} =	0.0	0.101	cfs
Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	Q _X =	0.0	0.0	cfs
Discharge within the Gutter Section W (Q _d - Q _x)	Q _w =	0.0	0.0	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	0.0	cfs
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	0.0	0.0	cfs
Average Flow Velocity Within the Gutter Section	V =	0.0	0.0	fps
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	0.0	0.0	, , , , , , , , , , , , , , , , , , ,
Slope-Based Depth Safety Reduction Factor for Major & Minor (d ≥ 6") Storm	R=	SUMP	SUMP	1

Sutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.319	0.131	
heoretical Discharge outside the Gutter Section W, carried in Section T _{X TH}	$Q_{XTH} =$	0.0	0.0	cfs
ctual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	Q _X =	0.0	0.0	cfs
scharge within the Gutter Section W (Q _d - Q _X)	Q _W =	0.0	0.0	cfs
sischarge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	0.0	cfs
otal Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	0.0	0.0	cfs
verage Flow Velocity Within the Gutter Section	V =	0.0	0.0	fps
*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	0.0	0.0	
lope-Based Depth Safety Reduction Factor for Major & Minor (d ≥ 6") Storm	R =	SUMP	SUMP	
lax Flow Based on Allowable Depth (Safety Factor Applied)	$Q_d =$	SUMP	SUMP	cfs
lesultant Flow Depth at Gutter Flowline (Safety Factor Applied)	d =			inches
lesultant Flow Depth at Street Crown (Safety Factor Applied)	d _{CROWN} =			inches
	_			
IINOR STORM Allowable Capacity is based on Depth Criterion		Minor Storm	Major Storm	1

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak' Major storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak'

DP B - Pr Type R.xlsm, Q-Allow 1/21/2019, 11:21 AM

SUMP

SUMP

INLET ON A CONTINUOUS GRADE

 Project:
 Gardens at North Carefree

 Inlet ID:
 Proposed Type R Inlet - DP C

Design Information (Input)	-	MINOR	MAJOR	-
Type of Inlet	Type =		Curb Opening	_
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	4
Length of a Single Unit Inlet (Grate or Curb Opening)	L ₀ =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	_
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MINOR STORM	_	MINOR	MAJOR	_
Design Discharge for Half of Street (from Sheet Q-Peak)	Q ₀ =	3.9	7.9	cfs
Water Spread Width	T =	8.3	11.5	ft
Water Depth at Flowline (outside of local depression)	d =	3.5	4.3	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.671	0.511	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	1.3	3.9	cfs
Discharge within the Gutter Section W	Q _w =	2.6	4.0	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.82	1.45	sq ft
Velocity within the Gutter Section W	V _W =	4.8	5.4	fps
Water Depth for Design Condition	d _{LOCAL} =	6.5	7.3	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L=	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	7
Under No-Clogging Condition	_	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	1
Interception Rate of Side Flow	R _x =	N/A	N/A	1
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	_
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	⊣ ՝
Interception Rate of Side Flow	R _v =	N/A	N/A	┪
Actual Interception Capacity	Q a =	N/A	N/A	cfs
Carry-Over Flow = Q ₀ -Q ₃ (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	0	MINOR	MAJOR	
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.146	0.116	ft/ft
Required Length L _T to Have 100% Interception	L _T =	10.90	17.36	ft
Under No-Clogging Condition	-, L	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L=	10.00	10.00	ft
Interception Capacity	Q; =	3.9	6.2	cfs
Under Clogging Condition	۵, -	MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.25	1.25	7
Clogging Coefficient Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	-
Effective (Unclogged) Length		8.75	8.75	ft
, 55 / 5	L _e =	3.8	6.0	cfs
Actual Interception Capacity	-	0.1	1.9	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =			us
Summary The block between the Connection	. ٦	MINOR	MAJOR	٦.,,
Total Inlet Interception Capacity	Q =	3.80	6.00	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.1	1.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	98	76	%

DP C - Pr Type R.xlsm, Inlet On Grade 1/21/2019, 11:24 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project:

Inlet ID:

Gardens at North Carefree

Proposed Type R Inlet - DP C

TBACK
T, TMAX
TCROWN
T, TMAX
TX
Street
Crown

a ic Dea				
Gutter Geometry (Enter data in the blue cells)				
Maximum Allowable Width for Spread Behind Curb	T _{BACK} =	10.0	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =	0.020	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.015	1	
Height of Curb at Gutter Flow Line	H _{CURB} =	6.00	inches	
Distance from Curb Face to Street Crown	T _{CROWN} =	17.0	ft	
Gutter Width	W =	2.00	ft	
Street Transverse Slope	S _x =	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _w =	0.020	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	S _O =	0.023	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} =	0.023	1011	
Invarining's Roughness for Street Section (typically between 0.012 and 0.020)	IISTREET -	0.013	ı	
	r	Minor Storm		_
Max. Allowable Spread for Minor & Major Storm	T _{MAX} =	8.0	17.0	ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	6.0	12.0	inches
Allow Flow Depth at Street Crown (leave blank for no)				check = yes
Maximum Capacity for 1/2 Street based On Allowable Spread		Minor Storm	Major Storr	n
Water Depth without Gutter Depression (Eq. ST-2)	y =	1.92	4.08	inches
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	d _C =	2.0	2.0	inches
Gutter Depression (d _C - (W * S _x * 12))	a =	1.52	1.52	inches
Water Depth at Gutter Flowline	d =	3.44	5.60	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T _x =	6.0	15.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.688	0.350	⊣ "
Discharge outside the Gutter Section W, carried in Section T _x	Q _X =	1.1	13.0	cfs
Discharge within the Gutter Section W ($Q_T - Q_X$)	Q _W =	2.5	7.0	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	0.0	cfs
Maximum Flow Based On Allowable Spread	Q _T =	3.6	20.1	cfs
•	V =	6.1	9.2	fps
Flow Velocity within the Gutter Section V*d Product: Flow Velocity times Gutter Flowline Depth	v – V*d =	1.8	4.3	ips
Maximum Capacity for 1/2 Street based on Allowable Depth	- 1	Minor Storm		_
Theoretical Water Spread	Т _{тн} =	18.7	43.7	ft
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	T _{X TH} =	16.7	41.7	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.319	0.131	
Theoretical Discharge outside the Gutter Section W, carried in Section T _{XTH}	Q _{X TH} =	17.3	198.7	cfs
Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	Q _X =	17.2	138.3	cfs
Discharge within the Gutter Section W (Q_d - Q_X)	Q _W =	8.1	29.9	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	32.8	cfs
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	25.3	200.9	cfs
Average Flow Velocity Within the Gutter Section	V =	9.7	16.3	fps
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	4.8	16.3	_
Slope-Based Depth Safety Reduction Factor for Major & Minor (d ≥ 6") Storm	R =	0.94	0.76	
Max Flow Based on Allowable Depth (Safety Factor Applied)	$Q_d =$	23.7	152.5	cfs
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	d =	5.89	10.82	inches
Resultant Flow Depth at Street Crown (Safety Factor Applied)	d _{CROWN} =	0.29	5.22	inches
MINOR STORM Allowable Capacity is based on Spread Criterion		Minor Storm	Major Storr	n
MAJOR STORM Allowable Capacity is based on Spread Criterion	$Q_{allow} =$	3.6	20.1	cfs
WARNING: MINOR STORM max. allowable capacity is less than flow given or				_
Major storm max. allowable capacity GOOD - greater than flow given on shee				

DP C - Pr Type R.xlsm, Q-Allow 1/21/2019, 11:23 AM

INLET ON A CONTINUOUS GRADE

 Project:
 Gardens at North Carefree

 Inlet ID:
 Proposed Type R Inlet - DP D

Design Information (Input)				MINOR	MAJOR	
Type of Inlet			Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gu	tter depression 'a' from 'Q-	Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Cu	•	,	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Op			L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than			W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typic	•		C _f -G =	N/A	N/A	- · ·
Clogging Factor for a Single Unit Curb Openir	·		C _f -C =	0.10	0.10	-
Street Hydraulics: WARNING: Q > ALLOWA	0 () ,	DM'	O ₁ -0 -	MINOR	MAJOR	
Design Discharge for Half of Street (from S		KW	Q _o =	3.9	11.0	cfs
Water Spread Width	neet Q-reak)		~ , − ⊤	8.3	13.3	ft
Water Depth at Flowline (outside of local depr			d≡	3.5	4.7	inches
· · · · · · · · · · · · · · · · · · ·	ession)					_
Water Depth at Street Crown (or at T _{MAX})			d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	adia Oadiaa T		E₀ =	0.671	0.448	┥,
Discharge outside the Gutter Section W, carrie	ed in Section 1 _x		Q _x =	1.3	6.1	cfs
Discharge within the Gutter Section W			Q _w =	2.6	4.9	cfs
Discharge Behind the Curb Face			Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W			A _W =	0.82	1.89	sq ft
Velocity within the Gutter Section W		ſ	V _W =	4.8	5.8	fps
Water Depth for Design Condition			d _{LOCAL} =	6.5	7.7	inches
Grate Analysis (Calculated)				MINOR	MAJOR	
Total Length of Inlet Grate Opening	Per surface	e routing	L=	N/A	N/A	ft
Ratio of Grate Flow to Design Flow		_	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	calculation			MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over E	Begittan and ne	arrative the	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	•		R _f =	N/A	N/A	
Interception Rate of Side Flow	minor flow	at design	R _x =	N/A	N/A	
Interception Capacity			Q _i =	N/A	N/A	cfs
Under Clogging Condition	point D is 4		•	MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inl	eRevise acc	ordingly	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	1101100 400	or unigry.	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit G	Grate Inlet		L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over B			V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	5		R _f =	N/A	N/A	-
Interception Rate of Side Flow			R _v =	N/A	N/A	_
Actual Interception Capacity			Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to co	urb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Cale		,	~0 □	MINOR	MAJOR	15.0
Equivalent Slope S _e (based on grate carry-ove			S _e =	0.146	0.104	ft/ft
Required Length L _T to Have 100% Interceptio	•		L _T =	10.90	21.60	ft
Under No-Clogging Condition			-r -[MINOR	MAJOR	⊐ "
Effective Length of Curb Opening or Slotted In	nlet (minimum of L. L)		L=	10.00	10.00	ft
Interception Capacity	mot (minimum of E, ET)		Q; =	3.9	7.4	cfs
			ų −	J.9 MINOR	MAJOR	
Under Clogging Condition Clogging Coefficient			CurbCoef =	1.25	MAJOR 1.25	7
55 5	a or Clottod Inlat			0.06	0.06	-
Clogging Factor for Multiple-unit Curb Opening	y or Stotted miet		CurbClog =			ft
Effective (Unclogged) Length			L, =	8.75	8.75	
Actual Interception Capacity			Q _a =	3.8	7.1	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a			Q _b =	0.1	3.9	cfs
Summary				MINOR	MAJOR	٦.
Total Inlet Interception Capacity			Q=	3.80	7.12	cfs
Total Inlet Carry-Over Flow (flow bypassing	g inlet)		Q _b =	0.1	3.9	cfs
Capture Percentage = Q _a /Q _o =			C%=	98	65	%

DP D - Pr Type R.xlsm, Inlet On Grade 1/21/2019, 11:25 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project:

Gardens at North Carefree

Inlet ID:

Proposed Type R Inlet - DP D

Transfer Torrown

a dc				
Gutter Geometry (Enter data in the blue cells)				
Maximum Allowable Width for Spread Behind Curb	T _{BACK} =	10.0	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =	0.020	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.015	J	
Height of Curb at Gutter Flow Line	H _{CURB} =	6.00	inches	
Distance from Curb Face to Street Crown	T _{CROWN} =	17.0	ft	
Gutter Width	W =	2.00	ft	
Street Transverse Slope	S _X =	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =	0.083	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	S ₀ =	0.023	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} =	0.013	l	
		Minor Storm	Major Storm	_
Max. Allowable Spread for Minor & Major Storm	T _{MAX} =	8.0	17.0	ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	6.0	12.0	inches
Allow Flow Depth at Street Crown (leave blank for no)	•			check = ye
Maximum Capacity for 1/2 Street based On Allowable Spread		Minor Storm	Major Storm	
Water Depth without Gutter Depression (Eq. ST-2)	y =	1.92	4.08	inches
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	d _C =	2.0	2.0	inches
Gutter Depression (d _C - (W * S _x * 12))	a =	1.52	1.52	inches
Water Depth at Gutter Flowline	d =	3.44	5.60	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T _X =	6.0	15.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.688	0.350	
Discharge outside the Gutter Section W, carried in Section T_X	Q _X =	1.1	13.0	cfs
Discharge within the Gutter Section W ($Q_T - Q_X$)	Q _W =	2.5	7.0	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	0.0	cfs
Maximum Flow Based On Allowable Spread	\mathbf{Q}_{T} =	3.6	20.1	cfs
Flow Velocity within the Gutter Section	V =	6.1	9.2	fps
V*d Product: Flow Velocity times Gutter Flowline Depth	V*d =	1.8	4.3	
Maximum Capacity for 1/2 Street based on Allowable Depth		Minor Storm	Major Storm	_
Theoretical Water Spread	T _{TH} =	18.7	43.7	ft
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	T _{X TH} =	16.7	41.7	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.319	0.131	
Theoretical Discharge outside the Gutter Section W, carried in Section T_{XTH}	$Q_{XTH} =$	17.3	198.7	cfs
Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN})	Q _X =	17.2	138.3	cfs
Discharge within the Gutter Section W $(Q_d - Q_X)$	Q _W =	8.1	29.9	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	32.8	cfs
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	25.3	200.9	cfs
Average Flow Velocity Within the Gutter Section	V =	9.7	16.3	fps
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	4.8	16.3	
Slope-Based Depth Safety Reduction Factor for Major & Minor (d ≥ 6") Storm	R =	0.94	0.76	J
Max Flow Based on Allowable Depth (Safety Factor Applied)	Q _d =	23.7	152.5	cfs
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	d =	5.89	10.82	inches
Resultant Flow Depth at Street Crown (Safety Factor Applied)	d _{CROWN} =	0.29	5.22	inches
MINOR STORM Allowable Capacity is based on Spread Criterion		Minor Storm		-
MAJOR STORM Allowable Capacity is based on Spread Criterion	$Q_{allow} =$	3.6	20.1	cfs
WARNING: MINOR STORM max. allowable capacity is less than flow given or		k'	· · · · · · · · · · · · · · · · · · ·	
lajor storm max. allowable capacity GOOD - greater than flow given on shee	et 'Q-Peak'			

DP D - Pr Type R.xlsm, Q-Allow 1/21/2019, 11:25 AM

INLET IN A SUMP OR SAG LOCATION

 Project =
 Gardens at North Carefree

 Inlet ID =
 Proposed Type R Inlet - DP E

Design Information (Innex)		MINOR	MAJOR	
Design Information (Input) Type of Inlet	Inlet Type =	CDOT Type R		1
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	liicies
Water Depth at Flowline (outside of local depression)	Ponding Depth =	3.4	5.6	inebee
Grate Information	Ponding Depth =	MINOR	MAJOR	inches Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	leet
Clogging Factor for a Single Grate (typical values 0.13-0.90)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 2.15 - 3.50)	C _o (G) =	N/A	N/A	-
	00 (0)	MINOR		_
Curb Opening Information Length of a Unit Curb Opening	L ₀ (C) =	20.00	MAJOR 20.00	feet
	H _{vert} =	6.00	6.00	inches
Height of Vertical Curb Opening in Inches	H _{throat} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	-			
Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 2 feet)	Theta = W _p =	63.40 2.00	63.40 2.00	degrees feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	leet
5 . 5(),	C _w (C) =	3.60	3.60	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _o (C) =			4
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C₀ (C) -	0.67	0.67	
Grate Flow Analysis (Calculated)	Coef =	MINOR N/A	MAJOR N/A	1
Clogging Coefficient for Multiple Units	<u>-</u>			4
Clogging Factor for Multiple Units	Clog =	N/A MINOR	N/A MAJOR	_
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)	o - F			1
Interception without Clogging	Q _{wi} =	N/A N/A	N/A N/A	cfs cfs
Interception with Clogging	Q _{wa} =	MINOR	MAJOR	crs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)	Q _{oi} =	N/A	N/A	7.40
Interception without Clogging Interception with Clogging	Q _{oi} =	N/A N/A	N/A N/A	cfs cfs
	3 08 −			CIS
Grate Capacity as Mixed Flow Interception without Clogging	Q _{mi} =	MINOR N/A	MAJOR N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
	<u> </u>	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	MINOR	MAJOR	CIS
Curb Opening Flow Analysis (Calculated)	Coef =	1.33	1.33	7
Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units	Clog =	0.03	0.03	-
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)	Clog -	MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	3.36	10.63	cfs
Interception with Clogging	Q _{wa} =	3.25	10.03	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	Swa	MINOR	MAJOR	CIS
Interception without Clogging	Q _{oi} =	31.88	37.75	cfs
Interception with Clogging	Q ₀₈ =	30.82	36.50	cfs
	≪ ₀₈ −	MINOR	MAJOR	1 5.5
Curb Opening Capacity as Mixed Flow Interception without Clogging	Q _{mi} =	9.63	18.63	cfs
Interception with Clogging	Q _{mi} – Q _{ma} =	9.83	18.01	cfs
	Q _{Curb} =	3.25	10.01	cfs
Resulting Curb Opening Capacity (assumes clogged condition) Resultant Street Conditions	G Curb =	MINOR	MAJOR	UIO
Total Inlet Length	L = Γ	20.00	20.00	feet
	L = T =			-
Resultant Street Flow Spread (based on sheet Q-Allow geometry) Resultant Flow Depth at Street Crown	d _{CROWN} =	9.9	17.0 0.0	ft inches
integuitant i low Deput at Street Grown	GCROWN -	MINOR	MAJOR	inchies
Total Inlet Interception Capacity (assumes clogged condition)	Q _a = [3.3	10.3	cfs
WARNING: Inlet Capacity less than Q Peak for Minor Storm	Q PEAK REQUIRED =	3.3	9.3	cfs
PERMITTED. HITEL CAPACITY 1855 THAT IS FEAR FOR WILLOUT STORTH	✓ PEAK REQUIRED =	ა.ა	შ.ა	uio

DP E - Pr Type R.xlsm, Inlet In Sump 1/21/2019, 11:27 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Gardens at North Carefree Proposed Type R Inlet - DP E Inlet ID: TBACK Street Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 10.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020

Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.015	
Height of Curb at Gutter Flow Line	H _{CURB} =	6.00	inches
Distance from Curb Face to Street Crown	T _{CROWN} =	17.0	ft
Gutter Width	W =	2.00	ft
Street Transverse Slope	S _X =	0.020	ft/ft
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =	0.083	ft/ft
Street Longitudinal Slope - Enter 0 for sump condition	S _o =	0.000	ft/ft
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{STREET} =	0.013	
		Minor Storm	Major Storm
NA All	т _		47.0

		IVIIIIOI SLOTTII	wajor Storm	
Max. Allowable Spread for Minor & Major Storm	T _{MAX} =	8.0	17.0	ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	6.0	12.0	inches
Allow Flow Depth at Street Crown (leave blank for no)				check = yes

Maximum Capacity for 1/2 Street based On Allowable Spread		Minor Storm	Major Storm	_
Water Depth without Gutter Depression (Eq. ST-2)	y =	1.92	4.08	inches
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")	$d_C =$	2.0	2.0	inches
Gutter Depression (d _C - (W * S _x * 12))	a =	1.52	1.52	inches
Water Depth at Gutter Flowline	d =	3.44	5.60	inches
Allowable Spread for Discharge outside the Gutter Section W (T - W)	T _X =	6.0	15.0	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E _o =	0.688	0.350	
Discharge outside the Gutter Section W, carried in Section T _X	$Q_X =$	0.0	0.0	cfs
Discharge within the Gutter Section W (Q_T - Q_X)	$Q_W =$	0.0	0.0	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	0.0	cfs
Maximum Flow Based On Allowable Spread	$Q_T =$	SUMP	SUMP	cfs
Flow Velocity within the Gutter Section	V =	0.0	0.0	fps
V*d Product: Flow Velocity times Gutter Flowline Depth	V*d =	0.0	0.0	

v a riodact. How velocity times dutter riowine Deptir	v u –	0.0	0.0
Maximum Capacity for 1/2 Street based on Allowable Depth	_	Minor Storm	Major Storm
Theoretical Water Spread	T _{TH} =		
,	***	18.7	43.7
Theoretical Spread for Discharge outside the Gutter Section W (T - W)	$T_{XTH} =$	16.7	41.7
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)	E ₀ =	0.319	0.131
Theoretical Discharge outside the Gutter Section W, carried in Section T _{XTH}	$Q_{XTH} =$	0.0	0.0
Actual Discharge outside the Gutter Section W, (limited by distance T _{CROWN})	Q _X =	0.0	0.0
Discharge within the Gutter Section W (Q_d - Q_X)	Q _W =	0.0	0.0
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	Q _{BACK} =	0.0	0.0
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	Q =	0.0	0.0
Average Flow Velocity Within the Gutter Section	V =	0.0	0.0
V*d Product: Flow Velocity Times Gutter Flowline Depth	V*d =	0.0	0.0
Slope-Based Depth Safety Reduction Factor for Major & Minor (d ≥ 6") Storm	R =	SUMP	SUMP
Max Flow Based on Allowable Depth (Safety Factor Applied)	$Q_d =$	SUMP	SUMP

Resultant Flow Depth at Street Crown (Safety Factor Applied)	d _{CROWN} =			inche
MINOR STORM Allowable Capacity is based on Depth Criterion		Minor Storm	Major Storm	
MAJOR STORM Allowable Capacity is based on Depth Criterion	$Q_{allow} =$	SUMP	SUMP	cfs
Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'Q	-Peak'			•
Martin and the second s	December 1			

Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)

fps

inches

DP E - Pr Type R.xlsm, Q-Allow 1/21/2019, 11:26 AM

INLET IN A SUMP OR SAG LOCATION

 Project =
 Gardens at North Carefree

 Inlet ID =
 Proposed Type R Inlet - DP F

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =		Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	3.4	5.6	inches
Grate Information	r oriding Deptir =	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	1
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	┪
Curb Opening Information	• • • • • • • • • • • • • • • • • • • •	MINOR	MAJOR	_
Length of a Unit Curb Opening	L ₀ (C) =	20.00	20.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _D =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	-
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	┪
Grate Flow Analysis (Calculated)	017	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	┪
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)	9	MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	_
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	_
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.33	1.33	1
Clogging Factor for Multiple Units	Clog =	0.03	0.03	7
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	2.76	10.63	cfs
Interception with Clogging	Q _{wa} =	2.67	10.28	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	_	MINOR	MAJOR	_
Interception without Clogging	Q _{oi} =	31.11	37.75	cfs
Interception with Clogging	Q _{oa} =	30.08	36.50	cfs
Curb Opening Capacity as Mixed Flow	-	MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	8.62	18.63	cfs
Interception with Clogging	Q _{ma} =	8.33	18.01	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	2.67	10.28	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L =	20.00	20.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	T =	9.1	17.0	ft
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	0.0	inches
	_	MINOR	MAJOR	- -
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.7	10.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	2.6	10.0	cfs

DP F - Pr Type R.xlsm, Inlet In Sump 1/21/2019, 11:29 AM

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Gardens at North Carefree Inlet ID: Proposed Type R Inlet - DP F T_{BACK} SBACK T, T_{MAX} Street Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb TBACK 10.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} = 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 Height of Curb at Gutter Flow Line HCURR : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width W = 2.00 Street Transverse Slope S_X = 0 020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w 0.083 ft/ft S_o Street Longitudinal Slope - Enter 0 for sump condition 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.013 n_{STREET} = Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm T_{MAX} : 8.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes Maximum Capacity for 1/2 Street based On Allowable Spread Minor Storm Major Storm Water Depth without Gutter Depression (Eq. ST-2) 1.92 4 08 inches Vertical Depth between Gutter Lip and Gutter Flowline (usually 2") inches 2.0 Gutter Depression (d_C - (W * S_x * 12)) a 1 52 inches Water Depth at Gutter Flowline 3.44 5.60 d: inches Allowable Spread for Discharge outside the Gutter Section W (T - W) T_X : 6.0 15.0 Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) E₀ : 0.688 0.350 Discharge outside the Gutter Section W, carried in Section Tx Q_X 0.0 0.0 cfs Discharge within the Gutter Section W $(Q_T - Q_X)$ Q_W 0.0 0.0 cfs Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) Q_{BACK} = cfs 0.0 0.0 SUMP Maximum Flow Based On Allowable Spread Q_T : SUMP cfs Flow Velocity within the Gutter Section 0.0 0.0 V*d Product: Flow Velocity times Gutter Flowline Depth V*d = 0.0 0.0 Maximum Capacity for 1/2 Street based on Allowable Depth Minor Storm Major Storm Theoretical Water Spread T_{TH} : 18 7 43 7 Theoretical Spread for Discharge outside the Gutter Section W (T - W) T_{X TH} = 16.7 41.7 Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7) Eo: 0.319 0.131 Theoretical Discharge outside the Gutter Section W, carried in Section $T_{X\,TH}$ Q_{X TH} = 0.0 0.0 Actual Discharge outside the Gutter Section W, (limited by distance T_{CROWN}) $Q_X =$ 0.0 0.0 cfs Discharge within the Gutter Section W (Q_d - Q_X) Q_w = 0.0 cfs 0.0 Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns) cfs Q_{BACK} 0.0 0.0 Total Discharge for Major & Minor Storm (Pre-Safety Factor) Q= 0.0 0.0 cfs Average Flow Velocity Within the Gutter Section 0.0 nn V/ = fps /*d Product: Flow Velocity Times Gutter Flowline Depth V*d = 0.0 0.0 Slope-Based Depth Safety Reduction Factor for Major & Minor (d ≥ 6") Storm R: SUMP SLIME Max Flow Based on Allowable Depth (Safety Factor Applied) Q_d = SUMP SUMP cfs Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) inches Resultant Flow Depth at Street Crown (Safety Factor Applied) d_{CROWN} = MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP Minor storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak lajor storm max. allowable capacity GOOD - greater than flow given on sheet 'Q-Peak'

DP F - Pr Type R.xlsm, Q-Allow 1/21/2019, 11:28 AM

Appendix E: StormCAD

Storm System 1

Outfall

Bentley StormCAD CONNECT Edition [10.00.00.45] Page 1 of 1

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Storm System 1 - 100 Year

									Hydraulic				Hydraulic			
			Length			System		Elevation Grade	Grade		Cover	Elevation Grade	Grade		Cover	Slope
			(Unified)	Diameter	Unified) Diameter Capacity (Full	Rational	ational Velocity	Ground Line (In) Invert	Line (In)		(Start)	Ground	(Start) Ground Line (Out) Invert	Invert		(Stop) (Calculated)
Label	Label Start Node	Stop Node	(ft)	(in)	Flow) (cfs)	Flow (cfs) (ft/s)		(Start) (ft) (ft) (Start) (ft)	(ft)		(ft)	(ft) (Stop) (ft)	(ft) (Stop) (ft)	(Stop) (ft)	(ft)	(ft/ft)
P-1	DP A	DP B	35.4	18	14.89	5.09		7.63 6,583.72 6,579.59 6,578.72	6,579.59	6,578.72		6,583.22	3.5 6,583.22 6,579.14 6,578.01	6,578.01	3.71	2.00%
P-2	DP B	DPC	144.4	18	21.83	5.84		10.47 6,583.22 6,578.64 6,577.71	6,578.64	6,577.71		6,575.61	4.01 6,575.61 6,573.30 6,571.47	6,571.47	2.64	4.30%
P-3	DP C	DP D	35.4	36	96.39	69.63		6.69 6,575.61 6,572.80 6,569.91	6,572.80	6,569.91		6,575.61	2.7 6,575.61 6,572.79 6,569.56	95.695'9	3.05	1.00%
P-4	DP D	Outfall	26.1	36	66.54	15.01		2.12 6,575.61 6,572.29 6,569.26	6,572.29	6,569.26	3.35	6,573.50	3.35 6,573.50 6,572.28 6,569.00	6,569.00	1.5	1.00%

Provide input values for stormcad modeling. There appears to be an error as the system flow values are the same for the 100yr and 5yr flows.

Station (ft)

Storm System 1 - 5 Year

									Hydraulic				Hydraulic			
			Length			System		Elevation Grade	Grade		Cover	Elevation Grade	Grade		Cover	Slope
			(Unified)	Diameter	Unified) Diameter Capacity (Full	Rational	Rational Velocity	Ground Line (In) Invert	Line (In)	Invert	(Start)	Ground	(Start) Ground Line (Out) Invert	Invert	(Stop)	(Stop) (Calculated)
Label	Start Node	Stop Node	(ft)	(in)	Flow) (cfs)	Flow (cfs)	(tt/s)	(ft/s) (Start) (ft) (ft) (Start) (ft)	(ft)		(ft)	(Stop) (ft)	(Stop) (ft) (ft) (Stop) (ft)	(Stop) (ft)	(ft)	(ft/ft)
P-1	DP A	DP B	35.4	18	14.89	5.09		7.63 6,583.72 6,579.59 6,578.72	6,579.59	6,578.72		6,583.22	3.5 6,583.22 6,579.14 6,578.01	6,578.01	3.71	2.00%
P-2	DP B	DP C	144.4	18	21.83	5.84		10.47 6,583.22 6,578.64 6,577.71	6,578.64	6,577.71	4.01	6,575.61	4.01 6,575.61 6,572.74 6,571.47	6,571.47	2.64	4.30%
P-3	DP C	DP D	35.4	36	96.36	9.63		6.69 6,575.61 6,572.24 6,569.91	6,572.24	6,569.91	2.7	6,575.61	2.7 6,575.61 6,572.24 6,569.56	95.695'9	3.05	1.00%
P-4	DP D	Outfall	26.1	98	66.54	15.01		7.6 6,575.61 6,571.74 6,569.26	6,571.74	6,569.26		6,573.50	3.35 6,573.50 6,571.74 6,569.00	6,569.00	1.5	1.00%

Station (ft)

Storm System 2

Storm System 2 - 100 Year

	:	;	Length (Unified)	Diameter	Length Unified) Diameter Capacity (Full	System	Velocity	Hydrauli Elevation Grade Ground Line (In	Hydraulic Grade Line (In)	Invert	Cover	Hydrauli Elevation Grade Ground Line (Ou	Hydraulic Grade Line (Out)	Invert	Cover	System Elevation Grade Shope Rational Velocity Ground Line (In) Invert Cover Ground Line (Out) Invert Cover (Calculated)
Label	Start Node	Stop Node	(#t)	(in)	Flow) (cfs) Flow (cfs) (tf/s) (Start) (tt) (Start) (tt) (Start) (tt) (Stop) (tt) (Stop) (tt) (Stop) (tt)	Flow (cts)	(tt/s)	(Start) (tt)	(tt)	Start) (ft)	(Start) (ft)	(Stop) (ft)	(#t)	(Stop) (tt)	(Stop) (tt)	(#t/#t)
P-3	DP E	DP F	35.4	36	56.09	4.21	9.0	4.21 0.6 6,573.66 6,572.46 6,569.24 1.42 6,573.66 6,572.45 6,568.99	6,572.46	6,569.24	1.42	6,573.66	6,572.45	6,568.99	1.67	0.70%
P-4	DP F	Outfall	31.3	36	47.7	7.24	1.02	6,573.66	6,571.95	6,568.69	1.97	6,573.50	6,571.95	6,568.53	1.97	0.50%

Does not meet ECM criteria for min. velocity (4 ft/s).

Station (ft)

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Storm System 2 - 5 Year

0.50%	1.97	1.97 6,573.50 6,571.60 6,568.53	6,571.60	6,573.50	1.97	6,568.69	6,571.60	7.24 4.87 6,573.66 6,571.60 6,568.69	4.87		47.7	98	31.3	Outfall	DP F	P-4
0.70%	1.67	4.21 4.66 6,573.66 6,572.10 6,569.24 1.42 6,573.66 6,572.10 6,568.99	6,572.10	99.873.66	1.42	6,569.24	6,572.10	6,573.66	4.66		60'95	36	35.4	DP F	DP E	P-3
(ft/ft)	(cfs) (ft/s) (Start) (ft) (ft) (Start) (ft) (Start) (ft) (Start) (ft) (Stop) (ft) (ft) (Stop) (ft)	(Stop) (ft)	(ft)	(Stop) (ft)	(Start) (ft)	(Start) (ft)	(ft)	(Start) (ft)	(ft/s)	Flow (cfs)	Flow) (cfs) Flow	(in)	(ft)	Stop Node	Start Node	Label
Calculated)	onal Velocity Ground Line (In) Invert Cover Ground Line (Out) Invert Cover (Calculated)	Invert	Line (Out)	Ground	Cover	Invert	Line (In)	Ground	Velocity	Rati	Jnified) Diameter Capacity (Full	Diameter	(Unified)			
Slope			Grade	Elevation Grade			Grade	Elevation Grade		System			Length			
			Hydraulic				Hydraulic									

Station (ft)

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Appendix F: Water Quality Pond	Calculations
--------------------------------	---------------------

North Pond

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

UD-Defention \(\sigma \) 07-North Pond.xism, Basin 1/21/2019, 11-44 AM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

UD-Delention_v3.07-North Pond.xiam, Basin 1/21/2019, 11:44 AM

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.26	0.187	Orifice Plate
Zone 2			Weir&Pipe (Rect.)
Zone 3			
•		0.187	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Calculate	ed Parameters for Or	iderarain
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	2.26	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	12.00	inches
Orifice Plate: Orifice Area per Row =	1.40	sq. inches (diameter = 1-5/16 inches)

Calcu	lated Parameters for	Plate
WQ Orifice Area per Row =	9.722E-03	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.00	2.00					
Orifice Area (sq. inches)	1.40	1.40	1.40					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected	
Invert of Vertical Orifice =			ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =			ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Diameter =			inches

Calculated Parameters for Vertical Orifice						
	Not Selected	Not Selected				
Vertical Orifice Area =			ft ²			
Vertical Orifice Centroid =			fee			

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 2 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	2.26		ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	4.00		feet
Overflow Weir Slope =	3.00		H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	4.00		feet
Overflow Grate Open Area % =	70%		%, grate open area/total area
Debris Clogging % =	50%		%

Calculated Parameters for Overflow Weir					
	Zone 2 Weir	Not Selected			
Height of Grate Upper Edge, H_t =	3.59		feet		
Over Flow Weir Slope Length =	4.22		feet		
Grate Open Area / 100-yr Orifice Area =	5.25		should be ≥ 4		
Overflow Grate Open Area w/o Debris =	11.81		ft ²		
Overflow Grate Open Area w/ Debris =	5.90		ft ²		
·			_		

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

. ipe in, from restriction rate (encular or mee, nestrictor rate) or nestran			guiai etilice)	calculated i alameter	5 101 Outliet 1 1pc 11/ 1	.ou nestriction in	~
	Zone 2 Rectangular	Not Selected			Zone 2 Rectangular	Not Selected	
Depth to Invert of Outlet Pipe =	2.50		ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	2.25		ft ²
Rectangular Orifice Width =	18.00		inches	Outlet Orifice Centroid =	0.75		feet
Rectangular Orifice Height =	18.00		inches Half-Centra	al Angle of Restrictor Plate on Pipe =	N/A	N/A	radians

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate					
Zone 2 Rectangular Not Selected					
Outlet Orifice Area =	2.25		ft ²		
Outlet Orifice Centroid =	0.75		feet		

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	3.70	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	50.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Calcula	ted Parameters for S	pillway
Spillway Design Flow Depth=	0.29	feet
Stage at Top of Freeboard =	4.99	feet
Basin Area at Top of Freeboard =	0.16	acres

Routed	Hydrograph	Results

Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.29
Calculated Runoff Volume (acre-ft) =	0.187	0.720	0.498	0.647	0.780	0.924	1.065	1.234	1.692
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.186	0.719	0.498	0.646	0.780	0.923	1.064	1.233	1.691
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.00	0.01	0.02	0.04	0.26	0.63	1.46
Predevelopment Peak Q (cfs) =	0.0	0.0	0.0	0.0	0.1	0.2	1.8	4.3	10.0
Peak Inflow Q (cfs) =	3.8	14.6	10.1	13.1	15.8	18.7	21.5	24.8	33.9
Peak Outflow Q (cfs) =	0.1	10.3	5.8	8.8	11.4	14.6	17.4	20.5	31.1
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	189.3	105.1	60.1	9.7	4.7	3.1
Structure Controlling Flow =	Plate	Overflow Grate 1	Spillway						
Max Velocity through Grate 1 (fps) =	N/A	0.85	0.47	0.7	1.0	1.2	1.5	1.7	2.0
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	42	34	38	35	34	32	30	28	24
Time to Drain 99% of Inflow Volume (hours) =	46	43	44	43	42	41	40	39	37
Maximum Ponding Depth (ft) =	2.11	3.23	2.96	3.15	3.29	3.43	3.55	3.68	3.83
Area at Maximum Ponding Depth (acres) =	0.10	0.12	0.12	0.12	0.12	0.13	0.13	0.13	0.13
Maximum Volume Stored (acre-ft) =	0.172	0.296	0.264	0.286	0.302	0.321	0.335	0.351	0.373

Detention Basin Outlet Structure Design UD-Detention, Version 3.07 (February 2017) ---- 500YR OUT - 100YR IN 35 - 100YR OUT = 50YR IN — 50YR OUT 30 25YR IN 25YR OUT 10YR IN 25 = 10YR OUT SYR IN FLOW [cfs] 50 5YR OUT 2YR OUT EURV IN 15 • EURV OUT - WQCV IN ••••• WQCV OUT 10 5 0 ---10 TIME [hr] 4.5 -500YR -100YR 10YR 3.5 -SYR 2YR EURV **EDATH [ft]**2.5 2 -wocv 1.5 0.5 0.1 10 100 DRAIN TIME [hr] 25,000 O User Area [ft^2] Interpolated Area [ft^2] ··• · · Summary Area [ft^2] 250.00 20,000 Volume [ft^3] ··• Summary Volume [ft^3] Outflow [cfs] 200.00 · • · · Summary Outflow [cfs] 15,000 AREA [ft^2], VOLUME [ft^3] 120.00 [cfs] 10,000 100.00 5,000 50.00 0.00 1.00 0.00 2.00 4.00 5.00 6.00 3.00 PONDING DEPTH [ft]

S-A-V-D Chart Axis Override X-axis Left Y-Axis Right Y-Axis
minimum bound
maximum bound

| Left Y-Axis Right Y-Axis | Right Y-

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

Storm Inflow Hydrographs

UD-Detention, Version 3.07 (February 2017)

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

SOURCE WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK WORKBOOK

Teal Burd Mar		SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
March 1999 1998 1998 1999	Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
Hydrogram		0.00.00									
	4.09 min		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0:04:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1222	Hydrograph	0:08:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Q-20-27 139	Constant	0:12:16	0.17	0.64	0.45	0.58	0.70	0.82	0.94	1.08	1.47
Dec Dec	1.222	0:16:22	0.46	1.74	1.21	1.56	1.88	2.22	2.55	2.94	4.00
0.24.43 0.24.83 0.24.84 0.24.85 0.24.85 0.24.85 0.24.85 0.24.85 0.24.85 0.24.85 0.22		0:20:27								7.55	
0.24.24 3.86 1.91 1.97 10.14 13.11 13.80 18.67 12.48 33.50 13.24 12.24		0:24:32									
0.32-03 3.60 3.13-1 8.67 12.23 15.09 12.84 20.33 23.76 32.88											
0.16-09 1.32											
Dec 1985 1986 1											
0.4459											
D-90											
0.53-10 1.99											
1.00											
10121											
105.26											
109.32						4.67					
111373											
11743			0.72	3.00	2.04	2.68	3.27	3.90	4.54	5.30	7.40
121.48		1:13:37	0.53	2.17	1.48	1.94	2.36	2.82	3.29	3.86	5.42
12553 0.39 1.17 0.30 1.05 1.27 1.52 1.75 2.05 2.84 1.2959 0.56 1.05 0.71 0.92 1.12 1.33 1.54 1.79 2.49 1.3404 0.23 0.93 0.64 0.83 1.01 1.20 1.30 1.38 1.61 2.23 1.3810 0.22 0.85 0.59 0.77 0.93 1.10 1.28 1.48 2.05 1.41115 0.16 0.63 0.64 0.22 0.44 0.50 0.59 0.69 0.69 0.69 0.59 0.69			0.41	1.68	1.15	1.50	1.83	2.18	2.53	2.96	4.13
12959 0.26 1.03 0.71 0.92 1.12 1.13 1.154 1.79 2.49 1.134.044 0.23 0.93 0.64 0.83 1.19 1.20 1.39 1.68 2.23 1.181.00 0.22 0.85 0.59 0.77 0.93 1.10 1.28 1.48 2.25 1.421.55 0.16 0.43 0.43 0.58 0.58 0.481 0.99 0.69			0.34	1.38	0.95	1.24	1.50	1.79	2.08	2.42	3.37
13404 0.23		1:25:53									
138.10		1:29:59	0.26	1.03	0.71	0.92	1.12	1.33	1.54	1.79	2.49
14215 0.16			0.23	0.93	0.64	0.83	1.01	1.20	1.39	1.61	2.23
14-62.00			0.22	0.85	0.59	0.77	0.93	1.10	1.28	1.48	2.05
150/26		1:42:15	0.16	0.63	0.43	0.56	0.68	0.81	0.94	1.09	1.51
1:54:31		1:46:20	0.12	0.46	0.32	0.41	0.50	0.59	0.69	0.80	1.10
1:58:37		1:50:26	0.08	0.34	0.23	0.30	0.37	0.44	0.50	0.59	0.81
2-02-42		1:54:31	0.06	0.25	0.17	0.22	0.27	0.32	0.37	0.43	0.60
2-0647		1:58:37	0.04	0.18	0.12	0.16	0.19	0.23	0.27	0.31	0.43
2:10:53 0.01 0.06 0.04 0.05 0.06 0.08 0.09 0.11 0.15 2:14:58 0.01 0.04 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.05 2:23:09 0.00 0.01 0.00		2:02:42	0.03	0.13	0.09	0.11	0.14	0.16	0.19	0.22	0.31
2:14:58 0.01 0.04 0.02 0.03 0.04 0.05 0.06 0.07 0.09 2:19:04 0.00 0.02 0.01 0.02 0.02 0.03 0.03 0.05 2:27:14 0.00		2:06:47	0.02	0.09	0.06	0.08	0.10	0.12	0.14	0.16	0.22
2:14:58 0.01 0.04 0.02 0.03 0.04 0.05 0.06 0.07 0.09 2:19:04 0.00 0.01 0.02 0.02 0.03 0.03 0.05 2:23:09 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.02 2:27:14 0.00		2:10:53									
2:19:04 0.00 0.02 0.01 0.02 0.02 0.03 0.03 0.03 0.05 2:23:09 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.00		2:14:58									
2:23:09 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.00											
2.27:14 0.00											
2:31:20 0.00											
2:35:25 0.00											
2:39:31 0.00											
2:43:36 0.00											
2:47:41 0.00											
2:51:47 0.00											
2:55:52 0.00											
2:59:58 0.00											
3:04:03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0											
3:08:08 0.00 0.00 0.00 0.00 0.00 0.00 0.0											
3:12:14 0.00											
3:16:19 0.00											
3:20:25 0.00											
3:24:30 0.00											
3:28:35 0.00											
3:32:41 0.00											
3:36:46 0.00											
3:40:52 0.00											
3:44:57 0.00											
3:49:02 0.00											
3:53:08 0.00											
4:01:19 0.00		3:53:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:05:24 0.00											
4:09:29 0.00											
4:13:35 0.00											
4:17:40 0.00											
4:21:46 0.00											
4:25:51 0.00											
4:29:56 0.00											
4:34:02 0.00											
4:38:07 0.00											
4:42:13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4:46:18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4:50:23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00											
4:50:23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.											
		4:46:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4:54:29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.											
		4:54:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

UD-BMP (Version 3.06, November 2016)

Sheet 1 of 4

Designer: Charlene Durham
Company: Stantec
Date: January 21, 2019
Project: Gardens at North Carefree
Location: North Pond

Basin Storage Volume	
A) Effective Imperviousness of Tributary Area, $\rm I_a$	I _a = <u>80.0</u> %
B) Tributary Area's Imperviousness Ratio (i = $I_a/100$)	i =
C) Contributing Watershed Area	Area =ac
 For Watersheds Outside of the Denver Region, Depth of Average Runoff Producing Storm 	d ₆ = in
E) Design Concept (Select EURV when also designing for flood control)	Choose One Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)
F) Design Volume (WQCV) Based on 40-hour Drain Time $(V_{DESIGN} = (1.0 * (0.91 * i^3 - 1.19 * i^2 + 0.78 * i) / 12 * Area)$	V _{DESIGN} = 0.187 ac-ft
G) For Watersheds Outside of the Denver Region, Water Quality Capture Volume (WQCV) Design Volume ($V_{\text{WQCV OTHER}} = (d_6^*(V_{\text{DESIGN}}/0.43))$	V _{DESIGN} OTHER= ac-ft
 H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) 	V _{DESIGN USER} =ac-ft
Predominant Watershed NRCS Soil Group	Choose One A B C / D
J) Excess Urban Runoff Volume (EURV) Design Volume For HSG A: EURV _A = 1.68 * i ^{1.28}	EURV = ac-ft
For HSG B: EURV _B = 1.36 * i ^{1.08}	4011
For HSG C/D: EURV _{C/D} = 1.20 * i ^{1.08}	
Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.)	L:W= 1.5 :1 INCREASE FLOW PATH FOR 2:1 RATIO
3. Basin Side Slopes	
A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred)	Z = <u>4.00</u> ft / ft
4. Inlet	
A) Describe means of providing energy dissipation at concentrated	
inflow locations:	

MD North Pond Forebay.xlsm, EDB 1/21/2019, 11:51 AM

Sheet 2 of 4

Designer:	Charlene Durham
Company:	Stantec
Date:	January 21, 2019
Project:	Gardens at North Carefree
Location:	North Pond

5. Forebay	
A) Minimum Forebay Volume (V _{FMIN} = 3% of the WQCV)	V _{FMIN} = ac-ft
B) Actual Forebay Volume	$V_F = \underline{0.006}$ ac-ft
C) Forebay Depth $(D_F = \underbrace{18}_{\text{inch maximum}} \text{inch maximum})$	D _F = <u>12.0</u> in
D) Forebay Discharge	
i) Undetained 100-year Peak Discharge	Q ₁₀₀ = <u>27.80</u> cfs
ii) Forebay Discharge Design Flow (Q _F = 0.02 * Q ₁₀₀)	$Q_F = \frac{0.56}{}$ cfs
E) Forebay Discharge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir Choose One (flow too small for berm w/ pipe)
F) Discharge Pipe Size (minimum 8-inches)	Calculated D _P = in
G) Rectangular Notch Width	Calculated W _N = in
6. Trickle Channel	Choose One Concrete
A) Type of Trickle Channel	○ Soft Bottom
F) Slope of Trickle Channel	S = <u>0.0050</u> ft / ft
7. Micropool and Outlet Structure	
A) Depth of Micropool (2.5-feet minimum)	$D_{M} = \underbrace{2.5}_{ft} ft$
B) Surface Area of Micropool (10 ft² minimum)	A _M = 10 sq ft
C) Outlet Type	Choose One Orifice Plate Other (Describe):
D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing	
(Use UD-Detention)	D _{orifice} = <u>1.25</u> inches
E) Total Outlet Area	$A_{ct} = \underline{3.60}$ square inches

Sheet 3 of 4

Designer:	Charlene Durham
Company:	Stantec
Date:	January 21, 2019
Project:	Gardens at North Carefree
Location:	North Pond

Design Procedure Form: Extended Detention Basin (EDB) Sheet 4 of 4 Charlene Durham Designer: Stantec Company: January 21, 2019 Date: Gardens at North Carefree Project: Location: North Pond 10. Overflow Embankment A) Describe embankment protection for 100-year and greater overtopping: B) Slope of Overflow Embankment . (Horizontal distance per unit vertical, 4:1 or flatter preferred) Choose One 11. Vegetation Irrigated O Not Irrigated 12. Access A) Describe Sediment Removal Procedures Notes:

MD North Pond Forebay.xlsm, EDB 1/21/2019, 11:51 AM

South Pond

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

UD-Detention \(\si_0.0^*\) South Pond.xtsm, Basin 1/21/2019, 11:52 AM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

UD-Delention_v3.07-South Pond.xtmr, Basin 1/21/2019, 11:52 AM

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.64	0.086	Orifice Plate
Zone 2			Weir&Pipe (Rect.)
Zone 3			
•		0.086	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) inches Underdrain Orifice Diameter = N/A

Calculate	d Parameters for O	iueruran
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	2.64	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	14.00	inches
Orifice Plate: Orifice Area per Row =	0.60	sq. inches (diameter = 7/8 inch)

Calculated Parameters for Plate						
WQ Orifice Area per Row =	4.174E-03	ft ²				
Elliptical Half-Width =	N/A	feet				
Elliptical Slot Centroid =	N/A	feet				
Elliptical Slot Area =	N/A	ft ²				

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.20	2.40					
Orifice Area (sq. inches)	0.60	0.60	0.60					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

oser input. Vertical office (circ	uiai oi nectaligulai j		Calculated	raiailleteis ioi veit	icai Office	
	Not Selected	Not Selected		Not Selected	Not Selected	1
Invert of Vertical Orifice =			ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area =			ft ²
Depth at top of Zone using Vertical Orifice =			ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid =			feet
Vertical Orifice Diameter =			inches			•

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 2 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	2.70		ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	2.92		feet
Overflow Weir Slope =	3.00		H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	2.92		feet
Overflow Grate Open Area % =	70%		%, grate open area/total area
Debris Clogging % =	50%		%

Calculated Parameters for Overflow Weir								
	Zone 2 Weir	Not Selected						
Height of Grate Upper Edge, H_t =	3.67		feet					
Over Flow Weir Slope Length =	3.07		feet					
Grate Open Area / 100-yr Orifice Area =	#DIV/0!		should be ≥ 4					
Overflow Grate Open Area w/o Debris =	6.28		ft ²					
Overflow Grate Open Area w/ Debris =	3.14		ft ²					
·								

User Input: Outlet Pip

Pipe w/ Flow Restriction Plate (C	ircular Orifice, Restric	ctor Plate, or Rectan	gular Orifice) Calculated Parameter	s for Outlet Pipe w/	low Restriction Plat	<u>.</u> e
	Zone 2 Rectangular	Not Selected		Zone 2 Rectangular	Not Selected	
Depth to Invert of Outlet Pipe =	2.50		ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area =	0.00		ft ²
Rectangular Orifice Width =	18.00		inches Outlet Orifice Centroid =	0.00		feet
Rectangular Orifice Height =			inches Half-Central Angle of Restrictor Plate on Pipe =	N/A	N/A	radians

ser Input: Emergency Spillway (Rectangular or Trapezoidal)										
Spillway Invert Stage=	4.00	ft (relative to basin bottom at Stage = 0 ft)								
Spillway Crest Length =	10.00	feet								
Spillway End Slopes =	4.00	H:V								
Freeboard above Max Water Surface =	1.00	feet								

ted Parameters for S	pillway
0.41	feet
5.41	feet
0.09	acres
	0.41 5.41

Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.29
Calculated Runoff Volume (acre-ft) =	0.086	0.330	0.229	0.297	0.358	0.424	0.489	0.567	0.777
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	0.085	0.330	0.228	0.296	0.358	0.423	0.488	0.565	0.776
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.00	0.00	0.01	0.03	0.19	0.46	1.09
Predevelopment Peak Q (cfs) =	0.0	0.0	0.0	0.0	0.0	0.1	0.6	1.4	3.4
Peak Inflow Q (cfs) =	1.4	5.4	3.7	4.8	5.8	6.9	7.9	9.1	12.5
Peak Outflow Q (cfs) =	0.1	4.3	2.4	3.7	4.7	5.9	7.1	8.3	11.7
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	237.9	132.2	73.0	12.0	5.8	3.4
Structure Controlling Flow =	Plate	Overflow Grate 1							
Max Velocity through Grate 1 (fps) =	N/A	-0.01	-0.01	0.0	0.0	0.0	0.0	0.0	0.0
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	33	36	34	32	31	29	27	23
Time to Drain 99% of Inflow Volume (hours) =	42	40	42	41	40	39	38	37	35
Maximum Ponding Depth (ft) =	2.46	3.37	3.19	3.32	3.41	3.51	3.59	3.66	3.91
Area at Maximum Ponding Depth (acres) =	0.04	0.06	0.05	0.06	0.06	0.06	0.06	0.06	0.06
Maximum Volume Stored (acre-ft) =	0.077	0.124	0.113	0.120	0.126	0.131	0.136	0.141	0.156

Detention Basin Outlet Structure Design UD-Detention, Version 3.07 (February 2017) 14 500YR OUT - 100YR IN - 100YR OUT 50YR IN — 50YR OUT 25YR IN 10 25YR OUT 10YR IN 10YR OUT SYR IN FLOW [cfs] SYR OUT 2YR OUT EURV IN • EURV OUT - WQCV IN ····· wacv out 2 0 ---10 TIME [hr] 4.5 -500YR -100YR 10YR 3.5 -SYR 2YR EURV **EDATH [ft]**2.5 2 -wocv 1.5 0.5 0.1 10 100 DRAIN TIME [hr] 14,000 O User Area [ft^2] Interpolated Area [ft^2] 12,000 · Summary Area [ft^2] 100.00 Volume [ft^3] ··• Summary Volume [ft^3] 10,000 Outflow [cfs] 80.00 · • · · Summary Outflow [cfs] AREA [ft^2], VOLUME [ft^3] 8,000 00.09 OUTFLOW [cfs] 6,000 40.00 4,000 20.00 2,000 0.00 1.00 0.00 2.00 5.00 6.00 4.00 3.00 PONDING DEPTH [ft]

S-A-V-D Chart Axis Override	X-axis	Left Y-Axis	Right Y-Axis
minimum bound			
maximum bound			

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

Storm Inflow Hydrographs

UD-Detention, Version 3.07 (February 2017)

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	The user can o	verride the calcu	lated inflow hydi	rographs from th	nis workbook wit	h inflow hydrogr	aphs developed	in a separate pro	gram.	
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.14 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.14 11111	0:05:08					0.00				
		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00
Hydrograph	0:10:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:15:25	0.07	0.24	0.17	0.22	0.26	0.31	0.35	0.41	0.55
0.972	0:20:34	0.17	0.65	0.45	0.58	0.70	0.82	0.95	1.09	1.49
	0:25:42	0.44	1.66	1.16	1.50	1.80	2.12	2.43	2.81	3.83
	0:30:50	1.22	4.57	3.19	4.11	4.94	5.82	6.69	7.72	10.51
	0:35:59	1.42	5.37	3.73	4.83	5.82	6.87	7.91	9.15	12.51
	0:41:07	1.34	5.12	3.55	4.60	5.55	6.55	7.54	8.73	11.95
	0:46:16	1.22	4.66	3.23	4.19	5.05	5.96	6.86	7.94	10.88
	0:51:24	1.08	4.14	2.87	3.72	4.49	5.31	6.12	7.09	9.72
	0:56:32	0.92	3.56	2.46	3.20	3.86	4.57	5.28	6.12	8.40
	1:01:41	0.80	3.11	2.15	2.79	3.37	3.99	4.60	5.33	7.32
	1:06:49	0.72	2.81	1.94	2.53	3.05	3.61	4.17	4.83	6.63
	1:11:58	0.58	2.31	1.59	2.07	2.50	2.97	3.43	3.98	5.48
	1:17:06	0.47	1.87	1.28	1.68	2.03	2.42	2.79	3.25	4.49
	1:22:14	0.35	1.43	0.97	1.27	1.55	1.85	2.14	2.50	3.46
	1:27:23	0.25	1.05	0.71	0.94	1.14	1.37	1.59	1.85	2.59
	1:32:31	0.18	0.77	0.52	0.68	0.83	0.99	1.15	1.34	1.87
	1:37:40	0.15	0.60	0.41	0.53	0.65	0.77	0.90	1.04	1.45
	1:42:48	0.12	0.49	0.34	0.44	0.54	0.64	0.74	0.86	1.19
	1:47:56	0.10	0.42	0.29	0.38	0.46	0.54	0.63	0.73	1.01
	1:53:05	0.09	0.37	0.25	0.33	0.40	0.48	0.55	0.64	0.89
	1:58:13	0.08	0.33	0.23	0.30	0.36	0.43	0.50	0.58	0.80
	2:03:22	0.08	0.31	0.21	0.28	0.33	0.40	0.46	0.53	0.73
	2:08:30	0.06	0.23	0.16	0.20	0.25	0.29	0.34	0.39	0.54
	2:13:38	0.04	0.17	0.11	0.15	0.18	0.21	0.25	0.29	0.40
	2:18:47	0.03	0.12	0.08	0.11	0.13	0.16	0.18	0.21	0.29
	2:23:55	0.02	0.09	0.06	0.08	0.10	0.11	0.13	0.15	0.21
	2:29:04	0.02	0.06	0.04	0.06	0.07	0.08	0.09	0.11	0.15
	2:34:12	0.01	0.04	0.03	0.04	0.05	0.06	0.07	0.08	0.11
	2:39:20	0.01	0.03	0.02	0.03	0.03	0.04	0.05	0.06	0.08
	2:44:29	0.00	0.02	0.01	0.02	0.02	0.03	0.03	0.04	0.05
	2:49:37	0.00	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.03
	2:54:46	0.00	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.02
	2:59:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:41:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:46:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:51:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:56:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:01:35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:06:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:11:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:17:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:22:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:27:17 4:32:25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:32:25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:42:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:47:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:52:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:58:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:03:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:08:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:13:32 5:18:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:18:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:23:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:34:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:39:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:44:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:49:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:54:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:59:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:04:56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:10:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

UD-BMP (Version 3.06, November 2016)

Designer: Charlene Durham

Company: Stantec

Date: January 21, 2019

Project: Gardens at North Carefree

Location: South Pond

Basin Storage Volume	
A) Effective Imperviousness of Tributary Area, $\rm I_a$	I _a = <u>80.0</u> %
B) Tributary Area's Imperviousness Ratio (i = $I_a/100$)	i =
C) Contributing Watershed Area	Area = <u>3.140</u> ac
 For Watersheds Outside of the Denver Region, Depth of Average Runoff Producing Storm 	d ₆ = in
E) Design Concept (Select EURV when also designing for flood control)	Choose One Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)
F) Design Volume (WQCV) Based on 40-hour Drain Time $(V_{DESIGN} = (1.0 * (0.91 * i^3 - 1.19 * i^2 + 0.78 * i) / 12 * Area)$	V _{DESIGN} = 0.086 ac-ft
G) For Watersheds Outside of the Denver Region, Water Quality Capture Volume (WQCV) Design Volume ($V_{\text{WQCV OTHER}} = (d_6^*(V_{\text{DESIGN}}/0.43))$	V _{DESIGN} OTHER= ac-ft
 H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) 	V _{DESIGN USER} = ac-ft
Predominant Watershed NRCS Soil Group	Choose One A B C / D
J) Excess Urban Runoff Volume (EURV) Design Volume For HSG A: EURV _A = 1.68 * i ^{1.28}	EURV = ac-ft
For HSG B: EURV _B = 1.36 * i ^{1.08}	4011
For HSG C/D: EURV _{C/D} = 1.20 * i ^{1.08}	
Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.)	L:W= 1.0 :1 INCREASE FLOW PATH FOR 2:1 RATIO
3. Basin Side Slopes	
A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred)	Z = ft / ft
4. Inlet	
A) Describe means of providing energy dissipation at concentrated	
inflow locations:	

MD South Pond Forebay.xlsm, EDB

Sheet 1 of 4

Sheet 2 of 4

Designer:	Charlene Durham
Company:	Stantec
Date:	January 21, 2019
Project:	Gardens at North Carefree
Location:	South Pond

5. Forebay	
A) Minimum Forebay Volume (V _{FMIN} = 2% of the WQCV)	V _{FMIN} = ac-ft
B) Actual Forebay Volume	V _F = <u>0.002</u> ac-ft
C) Forebay Depth ($D_F = 18$ inch maximum)	$D_F = \underline{\qquad 6.0 \qquad}$ in
D) Forebay Discharge	
i) Undetained 100-year Peak Discharge	Q ₁₀₀ = <u>6.40</u> cfs
ii) Forebay Discharge Design Flow (Q _F = 0.02 * Q ₁₀₀)	Q _F = <u>0.13</u> cfs
E) Forebay Discharge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir Choose One (flow too small for berm w/ pipe)
F) Discharge Pipe Size (minimum 8-inches)	Calculated D _P =in
G) Rectangular Notch Width	Calculated W _N = 2.5 in
6. Trickle Channel	Choose One © Concrete
A) Type of Trickle Channel	○ Soft Bottom
F) Slope of Trickle Channel	S = <u>0.0050</u> ft/ft
7. Micropool and Outlet Structure	
A) Depth of Micropool (2.5-feet minimum)	$D_{M} = \underline{2.5}$ ft
B) Surface Area of Micropool (10 ft² minimum)	$A_{M} = \underline{10}$ sq ft
C) Outlet Type	Choose One Orifice Plate Other (Describe):
D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing (Use UD-Detention)	D _{crifice} = 0.50 inches
E) Total Outlet Area	$A_{ct} = \underline{1.50}$ square inches

Sheet 3 of 4

Designer:	Charlene Durham
Company:	Stantec
Date:	January 21, 2019
Project:	Gardens at North Carefree
Locations	South Bond

Design Procedure Form: Extended Detention Basin (EDB) Sheet 4 of 4 Charlene Durham Designer: Stantec Company: January 21, 2019 Date: Gardens at North Carefree Project: Location: South Pond 10. Overflow Embankment A) Describe embankment protection for 100-year and greater overtopping: B) Slope of Overflow Embankment . (Horizontal distance per unit vertical, 4:1 or flatter preferred) Choose One 11. Vegetation Irrigated O Not Irrigated 12. Access A) Describe Sediment Removal Procedures Notes:

MD South Pond Forebay.xlsm, EDB 1/21/2019, 11:57 AM

Appendix G: Deviation Request

Appendix H: Excerpts from Previous Drainage	e Reports
--	-----------

Excerpt from Sand Creek Drainage Basin Planning Stud	y

Corporation 419 W. Bijou Street Colorado Springs, Colorado 80905-1308 Kiowa Engineering

JO CREEK DRAINAGE SIN PLANNING STUDY PRELIMINARY DESIGN PLANS

Project No Design: Check: Revisions:

EF-26

Excerpt from Hilltop Master Development Drainage l
--

URS Greiner

PROJ NO. 6742212

EXISTING CONDITIONS **SUBBASINS** HEC-1

HILLTOP SUBDIVISION MDDP

3

TABLE 2
HEC-1 BASIN PEAK FLOWS

	HEC-1 BAS	IN PEAK FLOWS	
BASIN	1		
	Historic Flows	Developed Flows	
Basin	Q5 (cfs)	Q5 (cfs)	Difference
No.	Q100 (cfs)	Q100 (cfs)	(cts)
	26	42	16
0-1	91	119	28
	69	109	40
0-2	231	302)	71
	19	27	8
0-3	_ 56	71	15
	49	57	17
0-4	118	153	35
	59	59	0
0-5	177	177	Q
	45	42	-3 •
1,1	136	107	-29 *
	56	94	38
1.2	168	229	61
	50	103	53
1.3	141	206	65
	28	55	27
1.4	86	105	19
	proposed only	8	
1.5	(was part of 1.1)	16	
BASIN	2		
	Historic Flows	Developed Flows	
Basin	Q5 (cfs)	Q5 (cfs)	Difference
No.	Q100 (cfs)	Q100 (cfs)	(cfs)
	111	142	31
0-7	364	417	53
	34	41	7
0-8	94	104	10
	31	48	17
2.1	97	135	38
	49	36	88
2.2	152	84	148 **
<u> </u>	1	101	
2.3	proposed only		

NOTES: * Offsite flow and commercial Basin 1.5 diverted from Basin 1.1 under proposed conditions

NOTES: ** Basin 2.3 part of Basin 2.2 under existing conditions

TABLE 3
HEC-1 DESIGN POINT PEAK FLOWS

		LSIGN FOINT FLA	11 1 LO113	
BASIN	1		_	
	Historic Flows	Design Flows***		
Design	Q5 (cfs)	Q5 (cfs)	Dif	ference
Point	Q100 (cfs)	Q100 (cfs)	(cfs)	(per cent)
_	95	95	0	
1A]	318	318	0]]
		144	144	
1X		481	481	<u> </u>
	239	136	-103	-43%
1B	767	336	431	-56%
	250	352	102	41%
1C	852	995	143	17%
	283	398	115	41%
1D	1003	1155	152	15%
	. 286	427	141	49%
1E	1063	1214	151	14%
BASIN	2			
	Historic Flows	Design Flows		
Design	Q5 (cfs)	Q5 (cfs)	Difference	
Point	Q100 (cfs)	Q100 (cfs)	(cfs)	(per cent)
	141	159	18	13%
2A	461	498	37	8%
	187	275	88	47%
28	622	786	164	26%

NOTES: *** Design Flows use Historic flows from offsite basins and Developed flows from onsite basins. (see Proposed HEC-1 Runs, subset X)

B. Existing Drainage Characteristics

Off-site drainage basins entering the site have been identified as O-1 through O-5 (Basin 1) and O-7 and O-8 (Basin 2). The runoff from these sources has been incorporated into the analysis of the site drainage. The existing drainage ways are draws or intermittent streams.

Basin 1

Runoff from basins O-1 and O-2 combines at Design Point 1A near the northeast corner of the site. The 18" steel culverts under Barnes Road are in poor condition. Erosion on the downstream side of the embankment indicates that seepage is probably occurring either through the silted-in culverts, or around them. Design Point 1A discharges to a draw through Basin 1.1.

Basin 1.1 has a 100-year peak runoff of 136 cfs. Basin 1.2 has a 100-year peak runoff of 168 cfs. Runoff from Basins 1.1 and 1.2 combines with runoff from Design Point 1A, and basins O-3 and O-4 at the existing stock pond at Design Point 1B.

Basin 1.3 has a 100-year peak runoff of 141 cfs. Runoff combines with discharge from the stock pond at Design Point 1C before crossing Marksheffel Road via a 24" CMP culvert. Design Point 1C is routed and combines with basin 0-5 at Design Point 1D on the tributary to East Sand Creek.

Basin 1.4 has a 100-year peak runoff of 86 cfs. Runoff is intercepted north of the City Gas facility by a concrete interceptor swale, which conveys flow to Marksheffel Road. Water collects at the low point just north of the Gas facility driveways before sheet flowing across Marksheffel Road. This runoff is conveyed via a swale to the tributary of East Sand Creek where it combines with runoff from Design Point 1D at Design Point 1E.

Basin 2

Basin 2.1 has a 100-year peak runoff of 97 cfs. Runoff combines with runoff from off-site Basin O-7 at Design Point 2A.

Basin 2.2 has a 100-year peak runoff of 152 cfs. Design point 2A is routed and combined with runoff from basins 2.2 and O-8 at the stock pond at Design Point 2B.

COLORADO SPRINGS, COLORADO

PROJ NO. 6742212

DRAINAGE PLANNING MAP

HILLTOP SUBDIVISION MDDP

4

VI. DEVELOPED DRAINAGE CONDITIONS

A. General Concept

Storm runoff will continue to follow historic patterns where development does not occur. Subbasin boundaries will be altered by the proposed development. Curb and gutter along the residential and collector roads will intercept overland flow. Storm inlets and sewers will then convey the 5-year storm runoff to proposed detention ponds. Runoff in excess of the 5-year storm will follow streets, swales and ditches to the detention ponds. Release rates from the detention ponds will be maintained at or below historic levels for the 100-year storm. Design Points 1C, 2B and Basin 1.4 have been established to confirm acceptable flow levels leaving the site.

Improvements to the existing stock ponds at Design Point 1B and 2B will incorporate outlet structures and overflow weirs designed to mitigate developed flows and insure design flows leaving the property will be at or below historic levels. The pond at Design Point 1B will be designed to over-detain runoff from Basins 1.1 and 1.2 to ensure discharge from Design Point 1C is at or below historic levels. Increased peak flows from Basin 1.4 may be detained in parking lot storage, in a detention pond, in ditch storage or by a combination of methods. The present owner of the Hilltop Development anticipates that different parcels of land may be sold to different parties. The proposed design does not differentiate between ownership lines and is designed to operate within basins based on efficient hydraulic and hydrologic design. All detention facilities will be privately held and maintained. Therefore, all property owners within this development will be required to allow for drainage through their property as planned in this MDDP. Drainage facilities will be designed as part of the preliminary and final drainage reports in accordance with preliminary and final plat submittal.

Developed basin delineations are shown in Figure 4. Peak discharges for historic and developed conditions at specific design points are shown on Figure 4 and are tabulated in Tables 2 and 3.

At the request of El Paso County DOT, the swale along the east property boundary, within the Marksheffel Road future R.O.W. dedicated by this development, will be designed to carry developed flows from all basins it drains. The northeast portion of this swale associated with Phase I development will be designed to convey developed flows from off-site basins O-1, O-2, O-3 and O-4 and on site basin 1.5.

Negotiations are currently underway to request the upstream landowner (Basin O-2) to reduce peak flows leaving that property in order to reduce the size of the culvert required at Barnes Road. Developed conditions upstream would require a 6' x 10' box culvert, or four 60" RCPs. Maintaining flows at existing levels would reduce the necessary culvert size to a single 60" RCP or twin 48" RCPs. This would also impact the size of the drainageway required within the westerly right-of-way of Marksheffel Rd.

B. Developed Drainage Characteristics

Basin 1

Offsite runoff from Basins O-1 and O-2 will be intercepted by a ditch at the northern boundary of the development, Design Point 1A (DP 1A). This runoff will discharge along with runoff from the commercial area, Basin 1.5, into the west Marksheffel Road ditch. Basin 1.5 has a 100-year runoff of 16 cfs. Offsite Basins O-3 and O-4 also discharge to this ditch via existing culverts under Marksheffel Road and combine with routed flows from DP 1A at Design Point 1X.

Basin 1.1 has a 100-year peak runoff of 107 cfs. Basin 1.2 has a 100-year peak runoff of 229 cfs. These Basins combine at Design Point 1B in Detention Pond #1. Detention Pond #1 will be designed to over-detain runoff from Basins 1.1 and 1.2 to ensure that discharge from Design Point 1C downstream is at or below historic levels. Discharge from Pond #1 will be restricted to 165 cfs for the 100-year storm.

Routed flows from Detention Pond #1 (DP 1B), from the west Marksheffel Road ditch (DP 1X), and runoff from Basin 1.3 combines at Design Point 1C before being discharged across Marksheffel Road. The developed 100-year runoff from Basin 1.3 is 206 cfs. 100-year peak flows at DP 1X are 481 cfs. Discharge from DP 1C will be restricted to the historic 100-year runoff of 852 cfs. Preliminary and Final drainage reports will be required to ensure that overdetention in Pond #1 is adequate to provide for a developed design flow at DP 1C at or below historic rates. If historic rates cannot be met, then additional detention (see Potential Pond location in Basin 1.3, Figure 4) or other mitigation will be required.

Basin 1.4 has a 100-year peak runoff of 105 cfs. Runoff will be intercepted by the extension of North Carefree Circle and conveyed south along the west side of Marksheffel Road to an existing low point where it is detained in Detention Pond #3 (Design Point 3B). Discharge from Pond #3 will be restricted to the historic level of 86 cfs for the 100-year storm.

Basin 2

Basin 2.1 has a 100-year peak discharge of 135 cfs. Runoff combines with Basin O-7 at Design Point 2A for a combined peak flow of 448 cfs.

The existing configuration of Basin 2.2 will be divided by the extension of North Carefree Circle into proposed Basin 2.2 and Basin 2.3. Basin 2.2 has a 100-year peak discharge of 84 cfs. Basin 2.3 (south of North Carefree Circle) has a 100-year peak runoff of 216 cfs. Runoff from Design Point 2A and Basin 2.2 is routed, then combined with runoff from Basins 2.3 and O-8 for a combined peak flow of 786 cfs at Design Point 2B.

It is anticipated that runoff from Basin 2 will be detained in detention Pond No. 2 to ensure that flow leaving the site at design point 2B does not exceed historic rates. However, this pond may not be necessary if proposed improvements to the downstream channel (by others) are sufficient to handle the unattenuated developed flows. A possible configuration for Pond No. 2 is described in section C: "Proposed Facilities."

C. Proposed Facilities

1.1 Sand Creek DBPS Facilities

Only one facility is shown in the Sand Creek DBPS for this property. This facility is a check structure in the Basin 2 drainage along the southwest property boundary. This facility is shown on Figure 4, Developed Conditions Drainage Planning Map.

1.2 Detention Ponds

The detention ponds will be designed to maintain flows leaving the property at or below historic levels. Flows are summarized in Tables 2 and 3. Preliminary values for the storage requirements of each pond are tabulated below. Because there will be no detention for Basin 1.3, the storage volume at Design Point 1B has taken into account over-detention at Detention Pond #1 in order to maintain historic peak flows downstream at Design Point 1C.

The existing stock ponds upstream of Design Points 1B and 2B will require additional grading and the construction of outlet and emergency overflow structures. If the existing berm for Pond #1 is going to be used as an embankment for a road, further investigation will be required to determine its stability and strength.

TABLE 4
DETENTION POND STORAGE VOLUMES

Pond #	Design Point	Storage Volume (Ac-ft)	Surface Area (Ac)*
1	1B	6.51	1.30
22	2B	4.67	0.94
3	Basin 1.4	1.04	0.10

^{*}Assumes 5' depth.

Several alternatives exist for detaining the runoff from Basin 1.4. These include parking lot storage, a detention pond, ditch storage and a combination of the above. Ponds will be

HILLTOP SUBDIVISION MDDP HEC-1 RESULTS: SUMMARY URS Greiner Job No. 6742212

	DEVELOPED ONSITE,		DEVELOPED ONSITE			
1	EXISTING		EXISTING OFFSITE		AND OFFSITE	
BASIN	5-Yr (cfs)	100-Yr (cfs)	5-Yr (cfs)	100-Yr (cfs)	5-Yr (cfs)	100-Yr (cfs)
O-1	26	91	26	91	42	119
0-2	69	231	69	231	109	302
0-3	19	56	22	63	27	71
0-4	40	118	46	137	57	153
O-5	59	177	59	177	59	177
1.1	45	136	42	107	42	107
1.2	56	168	94	229	94	229
1.3	50	141	103	206	103	206
1.4	28	86	55	105	55	105
1.5	INCLUDED	IN BASIN 1.1	8	16	8	16
0-7	111	364	111	364	142	417
0-8	34	94	34	94	41	104
2.1	31	97	48	135	48	135
2.2	49	152	36		36	84
2.3		IN BASIN 2.2	101	216	101	216
DESIGN		}				
POINT	<u> </u>	L				
1A	95	318	95	318	150	420
1X	INCLUDE	D IN DP 1C	144	481	215	611
1B	239	767	136	336	136	336
1C	250	852	352	995	424	1125
1D		1003	398	1155	471	1287
1E	286	1063	427	1214	505	1348
2A	141	461	159	498	190	552
2B	187	622	275	786	309	850

Excerpt from Preliminary/Final Drainage Report for Mule Deer Crossing				

The 10-foot sump inlet at design point 10 intercepts runoff from Basin D-11 and D-12 as well as the by-passed flows from design point 9. The routed flows intercepted the 10-foot inlet at design point 10 are 8.9 cfs and 18.4 cfs for the 5-year and 100-year storms.

Basin D-13 covers 3.47 acres that includes the drainage channel and a portion of the adjacent Springs Ranch property to the west. Basin D-13 slopes to the south to design point 12. Basin D-13 generates 2.6 and 6.3 cfs for the 5-year and 100-year storms.

Basin D-14 covers 2.44 acres that includes the drainage channel and a portion of the adjacent Springs Ranch property to the west. Basin D-14 slopes to the south to design point 13. Basin D-14 generates 2.0 and 4.8 cfs for the 5-year and 100-year storms.

Basin D-15 covers 1.30 acres that includes the drainage channel and a portion of the adjacent Springs Ranch property to the west. Basin D-15 slopes to the south from design point 13 to design point 14 at the southwest corner or the development. The drainage channel discharges onto the adjacent El Paso County property at design point 14. Basin D-15 generates 1.1 cfs and 2.8 cfs for the 5-year and 100-year storms.

Routing Analysis

Routing was used to determine both historic and developed flows for the site. Both historic and developed flows were routed to the design point at the southwest corner of the development, DP-7 for historic and DP-14 for developed. The largest contributor of runoff flow is from the 72-inch culvert from the Pronghorn Meadows development to the north. These flows are from the Pronghorn Meadows subdivision, the Springs Ranch detention pond, and the North Carefree Circle inlets. The time of concentration at the 72-inch culvert was conservatively estimated to be 20.6 minutes. The time of concentration for the development was determined by routing the flows entering the site from the north to the design point at the southwest corner of the site. This time of concentration is conservative and will produce conservative results.

Historic runoff from the site is estimated to be 166 cfs and 327.8 cfs for the 5-year and 100-year storms. Developed flows at design point 14 are 192.6 cfs and 384.3 cfs for the 5-year and 100-year storms.

Developed flows at design point 14 continue south along the existing drainage channel. The historic channel section south of the Mule Deer development is a V-shaped section with 5 percent to 6 percent side slopes and a 2 percent longitudinal slope. The existing channel will carry the 100-year storm of 384.3 cfs at a depth of 1.6 feet, velocity of 7.6 fps, and a top width of 58 feet. No downstream improvements are anticipated for this channel to handle the upstream developed flows. The existing channel vegetation is well established and the cutoff wall and riprap at the south end of the Mule Deer Crossing development will slow velocities at that point.

Sand Creek DBPS

The Sand Creek DBPS was reviewed for this final drainage report. The channel along the western boundary of Mule Deer Crossing is at the upper reaches of the Sand Creek DBPS. The estimated 100-year storm at this point is 990 cfs. This is much larger than the calculated value of

384.3 cfs as shown in this report. This is possibly due to the fact that the property was initially analyzed as industrial rather than residential.

Storm Drain System

The storm drain system for Mule Deer Crossing is designed to collect runoff from the development and discharge intercepted runoff in the drainage channel along the western property line. There are two storm trunk lines planned for the development. The northern storm system will connect the existing storm system from the Mule Deer Business Park to the east. Two 10-foot inlets will be installed to collect runoff. The main trunk line will consist of 42-inch rcp with a 24-inch lateral. The storm system will discharge into the drainage channel along the western boundary at design point 12.

The southern storm system will consist of 24-inch and 30-inch rcp with four (4) inlets for storm water collection. The system discharges into the drainage channel at design point 13.

Channel Improvements

The drainage channel along the western boundary of the development will carry developed flows from the northwest corner of the development to the existing channel at the southwest corner of the development. At the north end the channel will be 10 feet wide with 4 to 1 side slopes. After the discharge point at design point 12, the channel widens to a 20-foot bottom width with 4 to 1 side slopes along the eastern side of the channel and 2 to 1 side slopes with riprap protection along the west side of the channel. The channel will carry the 100-year storm with the required freeboard.

The Sand Creek DBPS identifies this reach of the Sand Creek Basin on page EF-26 of the Sand Creek DBPS. The DBPS channel volume through this reach is stated to be 990 cfs, which is much greater than the 384.3 cfs calculated in this report. This is because the Mule Deer development is at the upstream limit of the DBPS. The runoff calculated for the entire basin, that includes this tributary, was assigned to the entire channel. The 990 cfs in this tributary is also shown on page EF-23, approximately 4,000 south of the Mule Deer development, where it combines with a tributary from an adjacent basin. The actual 990 cfs does not occur at the upstream end of the basin, only at the downstream end.

The DBPS also proposes an improved channel and crossing downstream of the development that includes the crossing at the Chicago Rock Island & Pacific RR, which is approximately 2,100 feet south of the development. The improved crossing is proposed to be an 8-foot by 12-foot concrete box culvert. The existing structure at this location was not identified. The proposed DBPS channel improvements include a riprap lined, 20-foot wide channel with check structures. The channel in this area will be evaluated with future development.

The area adjacent to the channel downstream of the development is currently undeveloped. The Sand Creek DBPS proposes check structures from the southern boundary of the Mule Deer development to the RR intersection. One of these check structures will be constructed at the southern boundary of the development. Because the existing channel is established and has gradual longitudinal and side slopes, minimal erosion is anticipated along this channel. There are no adverse impacts expected to occur to adjacent properties.

Mule Deer Filing 1 FDR Lots 1 & 2 and PDR Lots 3-46

Final Drainage Report for Mule Deer Filing 1, Lots 1 & 2 And Preliminary Drainage Report for Mule Deer Filing 1, Lots 3-46

> El Paso County, Colorado January 2004

Prepared for:

Mule Deer Investments, LLC

520 E. Colorado Ave Colorado Springs, CO 80903

Prepared by:

URS

9960 Federal Drive, Suite 300 Colorado Springs, CO 80921 URS Job No. 21711206

Mule Deer

DRAINAGE PLAN STATEMENTS

ENGINEER'S STATEMENT:

	HEIVIETVI.		
to the best of my known established by the Ci	e plan and report were prepared wledge and belief. Said drainage ty/County for drainage reports at accept responsibility for liabilitis report.	ge report has been prepa nd said report is in conf	ared according to the criteria formity with the master plan
William D. Chaffin, I For and on behalf of		Date	
DEVELOPER'S ST	ATEMENT:		
I, the developer, have	read and will comply with all th	e requirements specified	d in this drainage report.
By (signature):		Date:
Address:	520 E. Colorado Ave. Colorado Springs, CO 80903		
EL PASO COUNTY	STATEMENT:		
Filed in accordance w	rith Section 51.1 of the El Paso I	Land Development Code	e, as amended.
John A. McCarty, Co	unty Engineer/Manager		Date

Conditions:

Table of Contents

General Location and Description	4
Location	
Soil Types	
Floodplain Statement	
Drainage Design Criteria	
Drainage Basins and Sub-basins	
Hilltop MDDP	
Historic Drainage Analysis	
Developed Drainage Analysis	
Storm Drain System	
Channel Improvements	
Erosion Control	
General Concept	
Erosion Bales	
Miscellaneous	
Cost Estimate	
Drainage Fees	
Proposed Facilities	
Appendix A: Hydrologic and Hydraulic Calculations and other Information	
	·
Table of Figures	
Tuble of Figures	
Figure 1: Vicinity Map	
Figure 2: Soils Map	
Figure 3: Drainage Plan (existing basins)	
Figure 4: Drainage Plan (developed basins)	
Figure 5: Grading and Erosion Control Plan	pocket

General Location and Description

Location

The Mule Deer development is located west of Marksheffel Road, east of Barnes Road, and south of North Carefree Circle. The site lies within a portion of the east ½ of Section 29 of Township 13 South, Range 65 West of the 6th Principal Meridian. The site is approximately 5 miles southwest of Falcon, Colorado in El Paso County (see Figure 1: Vicinity Map). The site is bounded by Colorado Springs Utilities property to the east, North Carefree Circle to the north, Northcrest Heights Subdivision to the west and El Paso County property to the south. The entire site is currently zoned Residential (R-1).

The Mule Deer development contains 39.46 acres and will be constructed in three Filings. Filing 1 consists of Akers Drive and Lots 1 and 2 in the southeast corner of the development, Filing 2 contains 3 commercial lots in the northeast corner and Filing 3 consist of residential development in the area west of Akers Drive. A separate final drainage report for Filings 2 and 3 will be submitted at a later date.

The terrain of the site descends to the west and southwest from a ridge that runs along the eastern property line. Slopes range from 6percent to 10 percent. The vegetation is typical eastern Colorado prairie grass with Yucca plants but little or no shrubs. There is an existing drainage swale along the west side of the property. This drainage channel will be improved with the construction of Filing 3. Runoff from the site creates intermittent streams that drain into the Sand Creek Basin which ultimately outfalls into Fountain Creek.

There are no irrigation facilities or utilities that affect the drainage analysis of this site

Soil Types

Soil types for the area were derived from the Soil Conservation Services, Soil Study of El Paso County Area, Colorado. The native soils on the proposed site are the Blendon and the Truckton sandy loam. The Blendon Series consists of deep well-drained soils that formed in sandy arkosic alluvium. These soils are on terraces, on flood plains, and in drainageways. They have slopes of 0 to 3 percent. The Truckton sandy loam soils are deep, well drained soils that formed in alluvium residuum derived from arkosic sedimentary rock on uplands. They have slopes of 0 to 3 percent. The Blendon Series and the Truckton sandy loam are both from the "B" Hydrologic Soil Group. The site and surrounding area have soil characterized as #97, Truckton Sandy Loam (hydrologic soil Group B) as classified by the Soil Conservation Service (see Figure 2: Soils Map).

URS

11503Intfile[12]712391CadNExhibits/E01VMAP01.awg 01/07/2004 02:45.01 PM MS1

VICINITY MAP

MULE DEER SUBDIVISION

1

PROJ NO. 21711239

Mule Deer Subdivision

\\S031ntfile1\21711239\Cod\Exhlbits\E01S0IL02.dwg Printed: Wed 21-Jan-2004 - 06:44PM; By. chaffin;

Soils Map

9960 FEDERAL DRIVE, SUITE 300 COLORADO SPRINGS, COLORADO 80921 TEL: (719) 531-0001 FAX: (719) 531-0007

Figure 2

PROJECT NO. 21711239

Floodplain Statement

According to the Federal Emergency Management Agency (FEMA), as depicted on Flood Insurance Rate Maps (FIRM) 08041 CO539 F (March 1997) and 08041 CO543 F (March 1997), no portion of the site lies within a designated FEMA floodplain.

Drainage Design Criteria

The current City of Colorado Springs and El Paso County Drainage Criteria Manual was used in the preparation of this report. The Rational Method was used to determine the runoff quantities as required for basins containing less that 100 acres. Peak runoff was determined for both the 5-year and 100 year frequency storms.

Drainage Basins and Sub-basins

Recent development in the area includes the Pronghorn Meadows development directly north of the Mule Deer development, the North Range at Springs Ranch, which is west of the Pronghorn Meadows development and Chateau at Antelope Ridge Filings 1 and 2, which are northeast of the Pronghorn Meadows development. Chateau at Antelope Ridge Filing 3 is directly north of Pronghorn Meadows.

The MDDP for the Hilltop Subdivision (Hilltop MDDP), the Final Drainage Report for Pronghorn Meadows and the Final Drainage Report for North Carefree Circle were consulted in preparation of this report. The Hilltop MDDP was submitted in November 1996. The latest revision to the Hilltop MDDP was submitted in September 2001, but these changes did not pertain to the Mule Deer development area.

The Final Drainage Report for Pronghorn Meadows states that approximately 220 cfs for the 100-year storm flows south from the Pronghorn Meadows development, through the existing 72-inch RCP and into the existing drainage channel that runs north to south along the western edge of the Mule Deer property. Flows for the proposed Mule Deer development were also estimated in the FDR for Pronghorn Meadows to determine if the existing channel is adequate. The estimated flows from the FDR for Pronghorn Meadows were approximately 228 cfs for the 100-yar storm. The existing channel was determined to be adequate to handle the flows from both Pronghorn Meadows and the proposed Mule development.

Hilltop MDDP

The MDDP for the Hilltop Subdivision (Hilltop MDDP) was consulted in preparation of this report. The Hilltop MDDP was submitted in November 1996. The latest revision to the Hilltop MDDP was submitted in September 2001, but these changes did not pertain to the Mule Deer development site.

The Mule Deer Development is contained in Basin 2.3 of the Hilltop MDDP. The report states that approximately 216 cfs will be generated by this basin and discharge at the southwest corner of the site during the 100-year storm. This number is very close the 220 cfs calculated for the site in this report.

Historic Drainage Analysis

Historic drainage analysis was determined by analyzing runoff quantities and patterns for the site. Historic storm runoff generally flows from the east to west. (see Figure 3, Mule Deer Existing Basins - pocket). The site is undeveloped with native grasses and plants and slopes to the west.

Basin EX-1 encompasses 0.68 acres of North Carefree Circle in the northern portion of the site. The Final Drainage report for North Carefree Circle indicates that the runoff from this area will be contained in the road and bypass the Akers Drive entrance. However, it appears that a small amount of runoff may discharge into the site at the intersection of Akers Drive and North Carefree Circle. Runoff rates for Basin EX-1 are 3 cfs and 6 cfs for the 5-year and 100-year storms respectively.

Basin EX-2 encompasses the majority of the site, 33.27 acres of undeveloped land with native vegetation. This basin includes a portion of the adjacent Colorado Spring Utilities property to the east. Runoff from this basin flows west and into the drainage channel along the western boundary. Flows from Basin EX-2 are 12 cfs and 40 cfs for the 5 and 100-year storms respectively.

Basin EX-3 encompasses 9.59 acres along the southern portion of the Mule Deer development. The basin includes a portion of the adjacent El Paso County and Colorado Springs Utilities properties. Runoff from the basin flows west and into the drainage channel along the western boundary. Flows from this basin are 5 cfs and 17 cfs for the 5-year and 100-year storms respectively.

Developed Drainage Analysis

The Mule Deer development consists of eight developed sub-basins. The runoff from the east half of the site will collect in the three proposed storm inlets in the proposed Akers Road extension and flow via pipe to the drainage channel along the western boundary. The runoff from the west half of the site will sheet flow to the drainage channel. Developed drainage patterns are shown on the Developed Drainage Plan (see Figure 4, pocket). The following is a description of each basin and the proposed runoff patterns and improvements.

Basin D-1 is located at the southeast corner of the Mule Deer development and contains 4.63 acres. This portion of the Mule Deer property is proposed for two commercial buildings and parking and will be developed in Filing I. Runoff from basin D-1 will flow to the northwest to design point 1 (DP-1) and will be collected in the proposed storm drain in Akers Drive. Flows from this basin are 14 cfs and 28 cfs for the 5-yr and 100-yr storm respectively.

Basin D-2 is north of D-1 and contains 2.68 acres. This area will be commercial buildings and associated parking and will be developed in Filing I. Runoff from this basin will flow southwest to DP-2. Approximately 10 cfs (5-yr) and 20 cfs (100-yr) will be discharged into the Akers Drive storm drain from Basin D-2.

Basin D-3 is the northeastern portion of the property and contains 10.07 acres. This portion of the site will be developed as a commercial property as part of Filing II. Runoff from this basin

will flow to DP-5. Runoff for this basin is calculated to be 40 cfs and 77 cfs respectively for the 5-year and 100-year storm. Flows from this basin will be captured by internal inlets and discharged into the proposed inlets along Akers Drive.

Basin D-4 is northwest of D-3 and covers 1.47 acres. Runoff from this basin will sheet flow west to the proposed access to Akers Drive at DP-4. The runoff will flow south along the curb and gutter and be intercepted by the proposed inlets along Akers Drive. Approximately 7 cfs and 13 cfs will be generated from Basin D-4 for the 5-yr and 100-yr storm.

Basin D-5 encompasses 0.68 acres of North Carefree Circle in the northern portion of the site. The Final Drainage report for North Carefree Circle indicates that the runoff from this area will be contained in the road and bypass the Akers Drive entrance. However, it appears that a small amount of runoff may discharge into the site at the Akers Drive entrance. In order to be conservative, this basin was included in the developed drainage analysis. Runoff rates for Basin D-5 are 3 cfs and 6 cfs for the 5-year and 100-year storms respectively.

Basin D-6 covers 21.83 acres and contains the western half of the site. This area will be residential lots 1/8 acre or less, but the final layout has not been finalized. Runoff will sheet flow to the west and discharge into the drainage channel along the western property line. Approximately 56 cfs and 113 cfs will be generated from this basin for the 5-yr and 100-yr storms respectively. Runoff totals calculated for this basin are conservative because no routing was used to determine the flow totals.

Basin D-7 contains 1.11 acres and consists of the western half of Akers Drive. Runoff rates of 5 cfs and 10 cfs for the 5-yr and 100-yr storm will collect in the street and flow into Basin D-6 at DP-8.

Basin D-8 contains 0.47 acres and consists of a portion of the eastern half of Akers Drive. Runoff rates of 2 cfs and 4 cfs for the 5-yr and 100-yr storm will collect in the street and discharge at the on-grade inlet at DP-6. By-passed flows will be intercepted by the inlet at DP-7.

Basin D-9 contains 0.13 acres and consists of a portion of the eastern half of Akers Drive between the 10-foot on-grade inlets. Runoff rates of 1 cfs and 1 cfs for the 5-yr and 100-yr storm will collect in the street and discharge into the sump inlet at DP-7.

Basin D-10 contains 0.50 acres and consists of the south portion of the eastern half of Akers Drive. Runoff rates of 2 cfs and 4 cfs for the 5-yr and 100-yr storm will collect in the street and discharge into the on-grade inlet a DP-3. By-passed flows will continue north and be intercepted by the sump inlet at DP-7.

Storm Drain System

The storm drain system for Mule Deer is designed to collect runoff from the site and carry it to the existing drainage channel along the western property line. Although, the site will be built in three Filings, the proposed inlets and pipes in Akers Drive have been sized for the fully developed condition. Three inlets will be placed along Akers Drive to intercept flow along the eastern curb and gutter. There are two 10-foot inlets and one 20-foot inlet to intercept flow. The inlets connect with 24-inch RCP. A 42-inch pipe extends to the west from the middle 20-foot inlet and discharges into the existing channel along the western boundary of the property.

Channel Improvements

The existing channel along the west side of the site will be improved with riprap. The channel will have a 6-foot bottom with 4:1 side slopes. The slope of the channel will be decreased to reduce the velocity of the flow. Riprap will line the bottom of the channel where necessary to prevent channel erosion. Drop structures will be added to the channel with riprap on the upstream and downstream side for protection. A final design for the channel will be provided with the Final Drainage Report for the area west of Akers Drive.

The previously approved Hilltop MDDP shows a detention pond at the southwest corner of the Mule Deer property. From previous conversations with the El Paso County Department of Transportation, the detention pond is no longer required because is was determined that the existing channel can handle the flows from all of the upstream developments without encroaching on the adjacent property

Erosion Control

General Concept

Due to the steep slopes of the property, erosion may be substantial once the native vegetation is removed. During construction, best management practices for erosion control will be employed based on El Paso County criteria and the erosion control plan.

The site will be developed in three Filings. Filing 1 is 4.72 acres and will be developed beginning in the summer of 2004. The remaining property will be rough graded as needed during Filing 1 construction. The remaining Filings will drain to the west, into Akers Drive or into the existing channel. Erosion bails and silt fence will be used, where necessary, to prevent excess sediment from leaving the site or entering Akers Drive. Seeding will occur on areas in Filing II and Filing III to prevent erosion.

Erosion Bales

Erosion bales will be placed 10-feet from the inlet of all culverts and discharge pipes during construction to prevent pipes from filling with sedimentation. Erosion bales will remain in place until vegetation is reestablished on pond side slopes and in drainage swales. Erosion bales will also be placed around all inlets to minimize sediment transport.

Miscellaneous

Best erosion control practices will be utilized as deemed necessary by the Contractor or Engineer and are not limited to the measures described above.

Cost Estimate

Drainage Fees

The proposed platted area for Filing 1 contains 9.53 acres in the Sand Creek Basin. Drainage fees for Filing 1 will be paid at the time of platting. The drainage fees for the Sand Creek Basin are calculated based on the imperviousness of the site. Because the site is commercial, the estimated imperviousness of the site is 95 percent.

Sand Creek Fees

Drainage Fee = \$15,000/impervious acre

Fees for this development were calculated as follows:

Filing 1 Drainage Fees

Drainage Fees:	9.53 ac. X 0.95 X \$15,000/ac	=	\$ 135,803.50
Bridge Fees	9.53 ac. X 0.95 X \$ 1,336/ac	=	\$ 12,095.48
TOTAL		=	\$ 147,897.98

Proposed Facilities

Filing 2 Proposed Facilities

ITEM	UNIT	COST
10' Type R Inlet	3 @ \$ 4,500/Ea	\$ 9,000
20' Type R Inlet	1 @ \$ 12,000/Ea	\$ 12,000
24" RCP	140 L.F. @ \$34.00	\$ 4,760
42" RCP	635 L.F. @ \$55.00	\$ 34,925
42" FES	1 @ \$500.00	\$ 500
42" Bend	1 @ \$500	\$ 500
Riprap	10 tons @\$26.00	\$ 260
Total		\$ 61,945

Item	Quantity	Unit	Unit Cost	Extension
			·	
Erosion Control Measures				
Vehicle Tracking Control	40	CY	\$28	\$ 1,120
Erosion Control Hay Bales	86	EA	\$15	\$ 1,290
Silt Fencing	4,475	LF	\$3	\$ 13,425
Subtotal, Erosion Control M	easures			\$ 15,834
Stormwater System				
Inlets, Pipes	1	L.S.	\$54,445	\$ 61,945
Subtotal, Stormwater System	1	: .		\$ 61,945
Subtotal, All Drainage & Ero	osion Control	to the state of th		\$ 77,779
Contingency (10%)				\$ 7,778
TOTAL, DRAINAGE & ER	OSION CONT	ROL		\$ 85,557

	·					
	A: Hydrologic					
A	A. U. dualacia			Calaulatiana		- Indowsorios
AUDOUDIA	A. MANITONOUR	ann H	voranne	t.airmanne	and othe	r mmamamm
ADDCHUIA :	A. IIIValoidaid		valuulio	Calculations	and one	I IIIIOIIIIUUVII

Mule Deer Existing Conditions (RATIONAL METHOD Q=CIA)

	COMMENTS				
Å		(E)	9.1	T:	9.9
INTENSITY	(5) ((100)	(in/hr) (in/hr)	5.2	2.3	3.2
Tc	TOTAL	(min)	5.0	29.9	16.6
	Tc	(mim)	1.7	9.6	4.5
CHANNEL	Velocity	(sdj)	4.5	4.5	4.5
CHAI	Slope	(%)	2.4%	3.5%	4.0%
	Length	(₩)	460	20.4 2,585	1,215
	Тс	(min)	9.0	20.4	12.1
OVERLAND	Length Slope	(tt)	2.4%	3.5%	4.0%
OVER	Lengt	(tr)	5	300	115
	C(S)		0.90	0.15	0.15
HTED	C(100)		0.95	08'0	0.30
WEIGHTED	C(5)		0.90	0.15	0.15
AREA	TOTAL	(Ac)	89.0	33.27	65.6
S	CA(equiv.)	5 YR 100 YR	0.65	86.6	2.88
TOTAL FLOWS	CA(¢	5 YR	19:0	4.99	1.44
TAL	Q(100)	(c.f.s.)	9	4	16
TO.	(5)0	(c.f.s.)	3	12	\$
	BASIN		EX-1	EX-2	EX-3

Mule Deer Existing Conditions SURFACE ROUTING

DESIGN	CONTRIBUTING	CA(equ	ivalent)	Тс	INTE	NSITY	TOTAL	FLOWS
POINT	BASINS	CA(5)	CA(100)	(min.)	l(5) (in/hr)	l(100) (in/hr)	Q(5) (cfs)	Q(100) (cfs)
1	EX-1	0.61	0.65	5.0	5.2	9.1	3	6
						TRAVEL	TIME	
		0.61	0.65	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1700	4.5	6.3	11.3
2	EX-1, EX-2, EX-3	7.04	13.50	29.9	2.3	4.1	16	55
}	f 					TRAVEL	TIME	
	[7.04	13.50	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
]	·				4.5	0.0	29.9

Mule Deer Developed Conditions (RATIONAL METHOD Q=CIA)

	COMMENTS											
VSITY	I(100)	(in/hr)	9.1	9.1	9.1	9.1	9.1	7.4	9.1	9.1	9.1	0
INTENSITY	(5)	(in/hr)					5.2					
Tc	TOTAL	(min)	5.0	5.0	5.0	5.0	5.0	8.9	5.0	5.0	5.0	6.0
	Tc	(min)	2.4	2.1	3.7	1.4	1.7	9.9	5.6	<u>8.1</u>	0.5	2.0
CHANNEL	Velocity	(tps)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
CHA	Slope	(%)	2.0%	3.0%	2.0%	2.0%	2.4%	2.0%	3.0%	3.0%	7.0%	3 0%
	Length	(U)	635	260	1,010	370	460	1,775	700	485	140	770
	Tc	(min)	1.0	8.0	8.0	1.3	9.0	2.4	0.7	0.7	-	0.7
OVERLAND	Length Slope	(tt)	33.0%	18.0%	14.0%	7.0%	2.4%	2.0%	2.0%	7.0%	0.5%	2 0%
OVER	Length	(ff)	10	01	10	20	ς,	10	5	5	5	4
	C(5)		0.58	0.73	0.77	0.00	06:0	09.0	0.90	0.90	0.90	060
HTED	C(100)		19:0	0.81	0.84	0.95	0.95	0.70	0.95	0.95	0.95	0.05
WEIGHTED	(s)		85.0	0.73	0.77	0.90	06.0	09.0	0.00	0.90	0.90	060
AREA	TOTAL	(Ac)	4.63	2.68	10.07	1.47	99.0	21.83	1.1	0.47	0.13	0.50
S	quiv.)	100 YR	3.10	2.17	8.46	1.40	0.65	15.28	1.05	0.45	0.12	0.48
FLOWS	CA(equiv.)	5 YR					19.0	_				
TOTAL FLOWS	(001)	(c.f.s.)					Φ					
TO	(5)0	(c.f.s.)	4	<u>o</u>	\$	۲	n	\$. 40	.~		•
	ASIN		D-1	D-2	D-3	D4	D-5	9-Q	D-7	D-8	D-9	01-0

Mule Deer Developed Conditions SURFACE ROUTING

DESIGN	CONTRIBUTING	CA(equ	ivalent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	BASINS	CA(5)	CA(100)		l(5)	I(100)	Q(5)	Q(100)
				(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
1	D-1	2.69	3.10	5.0	5.2	9.1	14	28
						TRAVEL	TIME	
İ		2.69	3.10	Type/flow		Velocity (fps)		T. Time (min)
		<u> </u>			34	5.0	0.1	5.1
2	D-1	2.69	3.10	5.1	5.2	9.0	24	47
	D-2	1.96	2.17			TRAVEL	···	
]	4.64	5.27	Type/flow	Length (ft)			T. Time (min)
					365	5.9	1.0	6.1
3	DP-2	4.64	5.27	6.1	4.9	8.5	25	49
	D-10	0.45	0.48				TIME	
		5.09	5.75	Type/flow	Length (ft)			T. Time (min)
					75	5.9	0.2	6.3
4	D-5	0.61	0.65	5.0	5.2	9.1	3	6
				· · · · · · · · · · · · · · · · · · ·	r		TIME	
J		0.61	0.65	Type/flow	Length (ft)			T. Time (min)
				-	205	6.2	0.6	5.6
5	D-5	0.61	0.65	5.6	5.0	8.8	10	18
}	D-4	1.32	1.40	- '0		TRAVEL		()
		1.94	2.04	1 ype/flow	Length (ft) 290	Velocity (fps) 5.9	d. Time (min) 0.8	T. Time (min) 6.4
					_	-		
6	DP-5	1.94	2.04	6.4	4.8	8.4 TRAVEL	TIME 11	21
	D-8	0.42 2.36	0.45 2.49	Typoffou	Length (ft)		d. Time (min)	T. Time (min)
		2.30	2.43	Type/ilow	150	5.9	0.4	6.8
7	DP-6, DP-3,	7.45	8.24	6.8	4.7	8.2	36	69
	D-9	0.12	0.12	0.0	1	TRAVEL	L	
		7.57	8.36	Type/flow	Lenath (ft)	Velocity (fps)		T. Time (min)
		,,,,,			1300		4.8	11.6
8				6.9	4.7	8.2	5	9
ľ	D-7	1.00	1.05			TRAVEL		1
		1.00	1.05	Type/flow	Length (ft)			T. Time (min)
					1245		4.6	11.5
9	DP-7, DP-8	8.57	9.41	11.6	3.8	6.6	112	220
	D-6, D-3	20.85	23.74		<u> </u>	TRAVEL		<u> </u>
		29.42	33.15	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
		l	L			4.5	0.0	11.6

ON-GRADE INLET CALCULATIONS Mule Deer Developed Conditions

Based on Table 7-2 Drainage Criteria Manual

						ď						Q			Byp	Bypass
FET PE ((5)	DP Inlet size L(i) CROSS SLOPE STREET Q(5) Q(100) Qi (0) Qi (5) T	Fw	L1	7	13	Qi (100)	⊢	Fw	1	1.2	ยา	ď	Q 100
% 2	8.	0.5% 24.8 48.8		27	1.0355	22	13	47	-52.1	35	1.0836	19	6	62	13.4	23.7
11.	رن	3.02	3 7.0	20	0.9815	15	6	33	#9'SI	56	1.0236	13	9	43	4.3	5.2

Mule Deer Developed Conditions SUMP INLET CALCULATIONS

Based on formula: Qi = 1.7(Li + 1.8w)(dmax + w/12)1.85

			•										
					ď	2			Ø	Ğ			
Inlet size L(i) initial	et size L(i) CROSS SLOPE initial	Q(5) Q(100) Qi (5)	Q(100)	Qi (5)	d _{max}	W	в	Oi (100)	d _{max}	W	а	Clogging Length Factor Final	Length Final
16	2.0%	17.6	176 283 176 05	17.6	50	٥	0.17	28.3	017 283 10	6	0.0	561	00,000

Project No. _21711239 Job Mule Deer Subdivision _ of ____ Computed by Checked by Table 7.2 of El Paso County Drainage Criteria Cakulations for Nomograph in Assumptions n=6013 for concrete $Z = \frac{1}{002} = 50$ $\frac{Z}{D} = 3846$ 5=0.03 Q100 DP-2 = 40 cf 5 Using nomograph on Table \$7.2 Depth = 0.44" This is less than 0.5" max in County Criteria

NONOGRAPH FOR FLOW IN TRIANGULAR GUTTERS (From U.S. Dept. of Commerce, Bureau of Public Roads, 1965)

The City of Colorado Springs / El Paso County Drainage Criteria Manual

NOMOGRAPH FOR FLOW IN TRIANGULAR GUTTERS.

OCT. 1987

Figure

7 - 2

STREET CAPACITY

FOR 1/2 STREET SECTION

	Comments	County ramp curb is 6"															
	Ö	12.0	17.0	20.8	24.1	26.9	29.5	31.8	34.0	12.0	17.0	20.8	24.1	26.9	29.5	31.8	34.0
	Q _{max}	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34
Depth of	flow	0.5								0.5			-				
	Туре	V/R								^							
	u	0.016								0.016							
Cross	Slope	0.02								0.02							
Longitudinal	Slope	0.5%	1.0%	1.5%	2.0%	2.5%	3.0%	3.5%	4.0%	0.5%	1.0%	1.5%	2.0%	2.5%	3.0%	3.5%	4.0%
	Formula	Q=170.2 S ^{1/2}								Q=171.7 S ^{1/2}							
		Residential								Collector/Arterial							

Title: Mule Deer ...\admin\reports\fdr\drainage calcs\mule deer.stm

01/21/04 06:50:20 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666

Project Engineer: doug chaffin StormCAD v4.1.1 [4.2014] Page 1 of 1

Scenario: 5-year

Pipe Report

Label	Upstream Node	Downstream Node	Size		Full Capacity (cfs)	Total System Flow (cfs)		Constructed Slope (ft/ft)	Hydraulid Grade Line In (ft)	Hydraulic Grade Line Out (ft)
P-2	1-3	1-2	24 inch	1	24.12	7.46	70.35	0.011372	6,566.18	6,565.71
P-4	1-4	1-2	24 inch	1	45.24	39.86	100.00	0.040000	6,570.36	6,565.93
P-1	I-1	1-2	24 inch	1	22.56	4.87	70.35	0.009950	6,565.89	6,565.71
P-5	I-2	J-1	42 inch	1	92.49	73.33	57.98	0.008451	6,565.63	6,565.68
P-6	J-1	J-2	42 inch	1	158.94	72.98	500.00	0.024960	6,565.10	6,551.60
P-7	J-2	J-3	42 inch	1	241.79	70.96	76.87	0.057760	6,552.28	6,546.69
P-8	J-3	O-1	42 inch	1	142.28	70.67	10.00	0.020000	6,547.53	6,546.98

Scenario: 100-year

Pipe Report

Label	Upstream Node	Downstream Node	Section Size		Full Capacity (cfs)	Total System Flow (cfs)		Constructed Slope (ft/ft)	Hydraulid Grade Line In (ft)	Hydraulic Grade Line Out (ft)
P-2	I-3	1-2	24 inch	1	24.12	10.88	70.35	0.011372	6,569.08	6,568.92
P-4	1-4	1-2	24 inch	1	45.24	77.34	100.00	0.040000	6,580.61	6,568.92
P-1	1-1	1-2	24 inch	. 1	22.56	6.77	70.35	0.009950	6,568.98	6,568.92
P-5	1-2	J-1	42 inch	1	92.49	141.50	57.98	0.008451	6,568.67	6,567.52
P-6	J-1	J-2	42 inch	1	158.94	141.10	500.00	0.024960	6,565.78	6,552.51
P-7	J-2	J-3	42 inch	1	241.79	138.11	76.87	0.057760	6,552.99	6,547.46
P-8	J-3	O-1	42 inch	1	142.28	137.68	10.00	0.020000	6,548.24	6,547.89

MULE [DEER
EXISTING	BASINS

SURFACE FLOW DESIGN POINT CONTRIBUTING BASINS Q - 5 yr. (cfs) Q - 100 yr. (cfs) 1 EX-1 3 6 2 EX-1, EX-2, EX-3 16 55

LEGEND

0

DRAINAGE BASIN

DIRECTION OF FLOW

URS

GRADING AND EROSION CONTROL PLAN

N.T.S

- BOTTOM OF

6" DEEP TRENCH

EXIST GROUND

GENERAL NOTES

- 1. ALL DRAINAGE CONSTRUCTION SHALL MEET THE SPECIFICATIONS OF THE CITY OF COLORADO SPRINGS/EL PASO COUNTY DRAINAGE CRITERIA MANUAL, VOLUME 2.
- 2. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE NOTIFICATION AND FIELD LOCATION OF ALL EXISTING UTILITIES, WHETHER SHOWN ON THE PLANS OR NOT, BEFORE BEGINNING CONSTRUCTION. LOCATION OF EXISTING UTILITIES SHALL BE VERIFIED BY THE CONTRACTOR PRIOR TO CONSTRUCTION.
- 3. THE SOILS REPORT FOR THIS SITE SHALL BE CONSIDERED A PART OF THESE PLANS AND SHALL BE ADHERED TO.
- 4. THE CONTRACTOR SHALL HAVE AT LEAST ONE (1) SIGNED COPY OF THESE APPROVED PLANS AND SOILS REPORT AND AT LEAST ONE (1) COPY OF THE APPROPRIATE DESIGN AND CONSTRUCTION STANDARDS AND SPECIFICATIONS AT THE JOB SITE AT ALL TIMES. MANUALS SHALL INCLUDE, BUT NOT LIMITED TO THE FOLLOWING:
- A. STATE OF COLORADO SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION. B. EL PASO COUNTY SUBDIVISION CRITERIA MANUAL.
- C. CITY OF COLORADO SPRINGS/ EL PASO COUNTY DRAINAGE CRITERIA MANUAL. D. CDOT, M & S STANDARDS.
- 5. ALL DISTURBED AREAS OUTSIDE OF PROPOSED PAVEMENT SHALL BE REVEGETATED WITH THE SEED MIX DETAILED ON THIS SHEET OF THESE PLANS. OR AN APPROVED EQUAL WITHIN TWO WEEKS AFTER FINAL GRADE IS ESTABLISHED. EROSION CONTROL FABRIC SHALL BE USED ON SANDY SLOPES WHICH ARE EQUAL TO OR GREATER THAN
- 6. EROSION CONTROL WILL CONSIST OF BUT NOT LIMITED TO STRAW BALES PLACED AT THE LOCATIONS SHOWN ON THIS PLAN, AND TOPSOIL MIXED WITH GRASS SEED, WHICH WILL BE WATERED UNTIL VEGETATION HAS BEEN REESTABLISHED.
- 7. THE EROSION CONTROL MEASURES OUTLINED ON THIS PLAN ARE THE RESPONSIBILITY OF THE DEVELOPER TO MONITOR AND REPLACE, REGRADE AND REBUILD AS
- 8. EROSION CONTROL MEASURES SHALL BE IMPLEMENTED IN A MANNER THAT WILL PROTECT ADJACIENT PROPERTIES AND PUBLIC FACILITIES FROM THE ADVERSE EFFECTS OF EROSION AND SEDIMENTATION AS A RESULT OF CONSTRUCTION AND EARTHWORK ACTIVITIES WITHIN THE PROJECT SITE.
- 9. ADDITIONAL MEASURES MAY BE REQUIRED.
- 10. OWNER IS RESPONSIBLE FOR IMPLEMENTATION OF STORM WATER MANAGEMENT PLAN.

EROSION CONTROL

STEPS FOR CONSTRUCTION

THE ANTICIPATED START FOR THIS PROJECT IS MAY 2004 WITH AN ANTICIPATED COMPLETION DATE OF MAY 2005. BELOW IS A BRIEF OUTLINE OF THE CONSTRUCTION SEQUENCE FOR THIS PROJECT.

- * SANITARY SEWER
- * STORM SEWER AND CULVERTS
- * ELECTRIC
- * PHONE
- * FINISH ROAD GRADING AND PAVING

EROSION AND SEDIMENT CONTROLS EROSION CONTROL WILL CONSIST OF HAY BALES PLACED AT THE POSITION SHOWN ON THE EROSION CONTROL PLAN, AND TOP SOIL MIXED WITH GRASS SEED WHICH WILL BE WATERED UNTIL VEGETATION HAS BEEN REESTABLISHED, AT A MINIMUM. OTHER MEASURES

EROSION CONTROL MEASURES SHALL BE IMPLEMENTED IN A MANNER THAT WILL PROTECT ADJACENT PROPERTIES AND PUBLIC FACILITIES FROM THE ADVERSE EFFECTS OF EROSION AND SEDIMENTATION AS A RESULT OF CONSTRUCTION AND EARTHWORK ACTIVITIES WITHIN THE PROJECT SITE. OWNER IS RESPONSIBLE FOR IMPLEMENTATION OF STORM WATER MANAGEMENT PLAN. THE EROSION CONTROL MEASURES OUTLINED ON THE EROSION CONTROL ARE THE RESPONSIBILITY OF THE DEVELOPER TO MONITOR AND REPLACE, REGRADE AND REBUILD AS NECESSARY UNTIL VEGETATION IS ESTABLISHED.

THE MOST PROBABLE SOURCE OF NON-STORMWATER POLLUTION IS REFUELING AND DAILY MAINTENANCE OPERATIONS. IF MOBILE FUEL TRUCKS ARE USED TO SERVICE EQUIPMENT, ABSORBENT MATERIALS AND CONTAINERS FOR THE STORAGE OF USED ABSORBENT MATERIAL WILL BE CLOSE BY. IF A FUEL TANK IS LEFT ON SITE, BERMS WILL BE BUILT AROUND THE TANK TO CAPTURE ANY SPILLED FUEL. AGAIN, ABSORBENT MATERIALS AND THEIR CONTAINERS WILL BE ON HAND.

FINAL STABILIZATION AND LONG TERM STORMWATER MANAGEMENT

ONCE THE MAJOR ROADS ARE PAVED AND THE SURROUNDING DISTURBED AREAS ARE 70% ESTABLISHED WITH VEGETATION AND UPON ACCEPTANCE BY THE MERIDIAN RANCH SERVICE DISTRICT, THE STRAW BALE CHECK DAMS AND SILT FENCES AROUND THE STREETS CAN BE REMOVED. AFTER COMPLETION OF THE STORM SEWER SYSTEM. THE STRAW BALES AROUND THE TEMPORARY DETENTION POND CAN BE REMOVED. AFTER ALL GROUND-DISTURBING CONSTRUCTION HAS BEEN COMPLETED AND ALL SLOPES ARE 70% ESTABLISHED WITH VEGETATION AND UPON ACCEPTANCE BY THE MERIDIAN RANCH SERVICE DISTRICT, REMAINING STRAW BALE CHECK DAMS AND SILT FENCES CAN BE REMOVED. THE RIP RAP ON ANY OF THE OUTLETS WILL REMAIN AFTER CONSTRUCTION TO REDUCE EROSION OF THE CHANNELS. ALL PERMANENT SWALES WILL BE LINED WITH LANDSCAPING TO SLOW RUNOFF AND FILTER

OTHER CONTROLS

THERE ARE SEVERAL BEST MANAGEMENT PRACTICES THAT CAN BE EMPLOYED TO PREVENT OR MITIGATE THE SOURCE OF POLLUTANTS AND CONTAMINATION OF STORMWATER RUNOFF. SOME OF THESE ARE:

- * ALL REFUSE DUMPSTERS AND RECEPTACLES SHALL BE EQUIPPED WITH FUNCTIONAL LIDS TO PREVENT RAIN AND SNOW FROM
- * STORAGE CONTAINERS, DRUMS AND BAGS SHALL BE STORED AWAY FROM DIRECT TRAFFIC ROUTES TO PREVENT ACCIDENTAL SPILLS.

* EMPTY DRUMS SHALL BE COVERED TO PREVENT COLLECTION OF PRECIPITATION. * CONTAINERS SHALL BE STORED ON PALLETS OR OTHER DUNNAGE TO PREVENT CORROSION OF CONTAINERS, WHICH CAN

- RESULT WHEN CONTAINERS COME IN CONTACT WITH MOISTURE ON THE GROUND. * REGULARLY SCHEDULED REMOVAL OF CONSTRUCTION TRASH AND DEBRIS.
- THE CONTRACTOR IS CERTAINLY NOT LIMITED TO THESE GOOD HOUSEKEEPING MEASURES, AND MAY IMPLEMENT FURTHER CONTROLS AS PRUDENCE AND GOOD JUDGMENT DEEM NECESSARY.

INSPECTION AND MAINTENANCE

A THOROUGH INSPECTION OF THE STORMWATER MANAGEMENT SYSTEM SHALL BE PERFORMED EVERY 14 DAYS AS WELL AS AFTER ANY RAIN OR SNOWMELT EVENT THAT CAUSES SURFACE EROSION: * WHEN STRAW BALE CHECK DAMS HAVE SILTED UP TO HALF THEIR HEIGHT, THE SILT SHALL BE REMOVED, CHANNEL GRADE REESTABLISHED, AND SIDE SLOPES RE-SEEDED IF NECESSARY. ANY STRAW BALES THAT HAVE SHIFTED OR DECAYED SHALL BE

REPAIRED OR REPLACED. * ANY ACCUMULATED TRASH OR DEBRIS SHALL BE REMOVED FROM OUTLETS.
AN INSPECTION AND MAINTENANCE LOG FOLLOWS THIS STORMWATER MANAGEMENT PLAN.

ALL DISTURBED AREA SHALL REQUIRE SEEDING WITHIN TWO (2) WEEKS FOLLOWING THE ESTABLISHMIENT OF FINAL GRADE. AREAS TO RECEIVE PAVEMENT DURING THE CONSTRUCTION OF THE ROAD SYSTEM SHALL NOT RECEIVE ANY SEEDING. SEEDING SHOUD BE ACCOMPLISHED USING AN APPROPRIATE GRASS DRILL, BY BROADCASTING OR BY HYDROMULCHING. IF SEEDING BY THE BROADCAST METHOD IS SELECTED. THE APPLICATION RATE SHOULD BE DOUBLED. IF HYDROMULCHING IS SELECTED TWO OPERATIONS SHOULD BE CONSIDERED, APPLYING THE SEED FIRST AND THE MULCH IN A SECOND OPERATION. UPON COMPLETION OF THE SEEDING OPERATION THE SITE SHOULD BE COVERED WITH WEED FREE MULCH AT A RATE OF 4,000 LBS. PER ACRE. BELOW IS THE ACCEPTED GRASS MIX FOR SANDY SOILS:

VARIETY	AMOUNT IN PLS LBS. PER ACRE
EL RENO	3.0
BARTON	2.5
NATIVE	2.0
PASTURA	2.0
NATIVE	0.5
	3.0
MORPHA	1.0
	EL RENO BARTON NATIVE PASTURA NATIVE NEBRASKA

PRELIMINARY - NOT FOR CONSTRUCTION

Jan 28 2004

EVISIONS:		ENGINEER: DESIGNED BY: DDS DATE: 01/23/04	URS
DESCRIPTION	DATE	DRAWN BY: DATE:	9960 FEDERAL DRIVE #300 PHONE: (719) 531-0001 COLORADO SPRINGS, COLORADO 80921 FAX: (719) 531-0007
		CHECKED BY: WDC DATE: 01/26/04	PROJECT MULE DEER SUBDIVISION - FILING 1
		48 HOURS BEFORE YOU DIG, CALL UTILITY LOCATORS	SHEET TITLE GRADING AND EROSION CONTROL PLAN
		1-800-922-1987	FROMTO
		(SEE COVER FOR LIST OF UTILITY CONTACTS)	JOB NO. 21711239 SHEET 8 OF 8

LEGEND

PROPOSED COUNTOURS	
DEVELOPED BASINS	
TOC LINE	
DIRECTION OF FLOW	
DRAINAGE BASIN AREA	BASIN DESIGNATION
Q 5 YR	Q 100 YR

		SURFACE FLOW					
	DESIGN POINT	CONTRIBUTING BASINS	Q — 5 yr. (cfs)	Q - 100 yr. (cfs)			
	1	D-1	14	28			
	2	D-1, D-2	24	4 7			
	3	DP-2, D-10	25	49			
	4	D5	3	6			
	5	D-4, D-5	10	18			
	6	DP-5, D-8	11	20			
	7	DP-3, DP-6, D-3, D-9	72	138			
	8	DP-7, D-7	76	146			
	9	DP-8, D-6	112	221			
ı	1			i			

MULE DEER DEVELOPED BASINS

CALL UTILITY LOCATORS

1-800-922-1987 CITY OF COLORADO SPRINGS DEPT. OF UTILITIES GAS, ELECTRIC, WATER AND WASTEWATER

9960 Federal Drive, Suite 300 PHONE: (719) 531-0001 Colorado Springs, Colorado 80918 FAX: (719) 531-0007 PROJECT MULE DEER

SHEET TITLE DEVELOPED DRAINAGE BASINS

JOB NO. 2171129

SHEET <u>4</u> OF ___

Figure 2: Existing Drainage Map

Figure 3: Proposed Drainage Map

