THE GARDENS AT NORTH CAREFREE
 FINAL DRAINAGE REPORT EL PASO COUNTY, COLORADO

Prepared for:
MULE DEER INVESTMENTS, LLC
2727 GLEN ARBOR DRIVE COLORADO SPRINGS, CO 80124

Prepared by:
STANTEC CONSULTING, INC
5725 MARK DABLING BLVD, SUITE 190
COLORADO SPRINGS, CO 80919
719.432.6880

CERTIFICATIONS

Design Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Charlene. M. Durham, P.E. \#36727

Owner/Developer's Statement:

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

By (signature): \qquad Date: \qquad
Title:
Address: \qquad
2727 Glen Arbor Drive
Colorado Springs, CO 80124

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

Table of Contents
PURPOSE 5
GENERAL LOCATION \& DESCRIPTION 5
DESCRIPTION OF PROPERTY 5
Climate 5
Floodplain Statement 5
UTILITIES \& OTHER ENCUMBRANCES 6
DRAINAGE DESIGN CRITERIA 6
Development Criteria Reference 6
Hydrologic Criteria 6
Rational Method 6
Storm Sewer Design 6
Detention Storage Criteria 6
Waivers/Deviations 6
DRAINAGE BASINS 7
Offsite Basins 7
EXISTING DRAINAGE ANALYSIS 7
Design Points. 8
Proposed Drainage Analysis 8
Design Points. 10
Deviations 12
DRAINAGE FACILITY DESIGN 12
GENERAL CONCEPT 12
Storm Sewer System 12
On-Site Water Quality 12
Four Step Process 14
Reduce Runoff 14
Treat \& Release WQCV 14
Stabilize Stream Channels. 14
Implement Source Controls 14
DRAINAGE FEES, COST ESTIMATE \& MAINTENANCE 14
MAINTENANCE 14
Drainage Fees 15
Proposed Facilities Estimate 15
EROSION CONTROL 16
GENERAL CONCEPT 16
Silt Fence. 16
Erosion Bales 16
Vehicle Tracking Control 16
SEDIMENTATION POND 17
SUMMARY 17
REFERENCE MATERIALS 18

List of Figures

Figure 1: Vicinity Map
 19
 Figure 2: Existing Drainage Map
 BACK POCKET
 Figure 3: Proposed Drainage Map BACK POCKET

Appendix

Appendix A: NRCS Soil Report
Appendix B: Existing Hydrology Calculations
Appendix C: Proposed Hydrology Calculations
Appendix D: Inlet Calculations
Appendix E: StormCAD
Appendix F: Water Quality Pond Calculations
Appendix G: Deviation Request
Appendix H: Excerpts from Previous Drainage Reports

PURPOSE

The purpose of this Final Drainage Report (FDR) is to identify and analyze on and offsite drainage patterns, locate and identify tributary and downstream drainage features and facilities that impact the proposed site. Runoff quantities and proposed facilities have been calculated using the City of Colorado Springs/El Paso County Drainage Criteria Manual (DCM) revised November 1991; and in accordance with El Paso County ordinance 15-042.

The Gardens at North Carefree is approximately 11.6 acres and is located within El Paso County.

GENERAL LOCATION \& DESCRIPTION

The Gardens at North Carefree is approximately 11.6 acres of single-family development. The site will include the construction of 3 public roads, 71 single family lots and 5 tracts. The project is bounded by North Carefree Circle to the north, Akers Drive to the west, Sika Deer Place to the south and open land to the east. The project is located in the eastern portion of Section 29, Township 13 South, Range 65 West.

The Gardens at North Carefree development site is located within the northern end of the Sand Creek Basin.

Description of Property

The project site is 11.6 acres of vegetation, consisting of short grasses and weeds. The average slope of the site is between 3 and 9%, generally sloping to the west.

The site is composed of a single soil type. From the NRCS report in Appendix A, the site falls into the following soil type:

$$
97 \text { - Truckton sandy loam (3-9\%) - Type A Soil }
$$

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. Group A soil is defined by:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Climate

The climate of the site is typical of a sub-humid to semiarid climate with mild summers and winters. The average temperature is 31 degrees F in the winter and 68.4 degrees in the summer. Total annual precipitation is 15.21 inches.

Floodplain Statement

The Flood Insurance Rate Map (FIRM No. 08041C0539-G dated 12/7/18) indicates that there is no floodplain in the vicinity of the proposed site.

Utilities \& Other Encumbrances

The site is currently undeveloped and there are no known utilities on site.

DRAINAGE DESIGN CRITERIA

Development Criteria Reference

Resolution No. 15-042, Adoption for portions of the El Paso County Drainage Criteria Manual (DCM), El Paso County Engineering Criteria Manual (ECM) and Urban Storm Drainage Criteria Manual (USDCM) by Urban Drainage \& Flood Control District was used in preparation of this report. Additional preliminary and final drainage plans, master development drainage plans, and drainage basin planning studies used in the preparation of the report are listed in the References Section.

Hydrologic Criteria

Rational Method

The rational method was used to determine onsite flows, as required by the current El Paso County Drainage Criteria Manual (DCM). Both the 5 -year and 100 -year storm events were considered in this analysis. Runoff coefficients appropriate to the existing and proposed land uses were selected for an SCS type "B" soil from Table 6-6 of the DCM even though the existing soil type is designated as a type "A" soil. The time of concentration was calculated per DCM requirements. Rational Method results are shown in the Appendix B \& C. USDCM spreadsheets were used to design the detention and water quality pond features.

Storm Sewer Design

Storm Sewer systems have been designed to the 100 -year storm and checked with the 5 -year storm. Inlets are located at sump areas and intersections where street flow is larger than street capacity. UDFCD Inlet spreadsheet will be used to determine the size of all at-grade and sump inlets. Onsite flow captured within the storm system will be released into one of the two water quality facilities. Final design of these facilities is included in the appendix.

Detention Storage Criteria

The proposed Water quality facilities will not be designed as detention structures, as it was determined from previous studies that onsite detention was not necessary. This will be explained and addressed later in the report. Water quality requirements were determined from the UDFCD Volume 3 spreadsheet for an Extended Detention Basin.

Final storage volumes and outflows have been calculated and are included in the appendix.

Waivers/Deviations

No variances are being requested for this development.
A deviation has been requested and approved for El Paso County ECM_Appendix I Section I.7.1.B: 1st Bullet; Providing Water Quality for Entire Development.

The deviation was for Basins D-7, D-11, D-15 and D-17 thru D-20, which drain into Akers Drive and are intercepted by existing inlets and will not reach an on-site water quality facility. These basins
account for approximately 8% (0.94 acres of 11.56) of the overall site area. The remaining 92% of the development area is treated through 1 of the 2 proposed ponds.

The topography of the site will not allow all areas within the site to drain to the proposed ponds. Of the area inside the development boundary that will not reach a facility only 0.19 acres is proposed roadway, and 0.75 acres will be sloped areas at the back of lots along the exterior boundary.

DRAINAGE BASINS

Offsite Basins

There is one off site basin contributing flows to the proposed development. It is located on the east side of the property along the southern half. The basin is 2.25 acres and is currently undeveloped. Flows from the basin are 0.59 cfs and 4.3 cfs for the minor and major storms. If this parcel develops, it will need to provide its own onsite water quality.

Existing Drainage Analysis

Historic drainage analysis was determined by analyzing runoff quantities and patterns for the site. There are 9 existing basins for the proposed site.

- Basin E-1 (5.41 acres) is the top north half of the site between North Carefree Circle and Akers Drive. Flows are diverted through existing drainage swales to where they will release into Akers Drive. Flows for this basin are 1.41 cfs for the 5 -year storm and 10.33 cfs for the 100 -year storm.
- Basin E-2 (0.61 acres) is located south of Basin E-1. Existing drainage swales will divert this flow to an existing low point/detention area. Flows for this basin are 0.23 cfs for the 5 -year storm and 1.72 cfs for the 100 -year storm.
- Basin E-3 (1.59 acres) is south of Basin E-2. Flows are diverted to the west through existing drainage swales to an existing low point. Flows for this basin are 0.56 cfs for the 5 -year storm and 4.11 cfs for the 100 -year storm.
- Basin E-4 (1.28 acres) is south of Basin E-3. Existing drainage swales direct flows to the west to an existing low area. Flows for this basin are 0.46 cfs for the 5 -year storm and 3.35 cfs for the 100 -year storm.
- Basin E-5 (0.36 acres) is south of Basin E-1 and west of Basin E-2. Flows for this basin are 0.15 cfs for the 5 -year storm and 1.08 cfs for the 100-year storm.
- Basin E-6 (1.55 acres) is south of Basin E-4. Existing drainage swales direct flows towards the west, where they will release into Akers Drive. Flows for this basin are 0.55 cfs for the 5 -year storm and 4.03 cfs for the 100-year storm.
- Basin E-7 (0.10 acres) is south of Basin E-5 and west of Basin E-3. Flows for this basin are 0.04 cfs for the 5 -year storm and 0.29 cfs for the 100 -year storm.
- Basin E-9 (0.05 acres) is located between Basin E-7 and Akers Drive. This area is the low area/detention where an existing 30 " rcp collects runoff. Flows for this basin are 0.02 cfs for the 5 -year storm and 0.14 cfs for the 100-year storm.
- Basin E-10 (0.51 acres) is along the south boundary of the project, along the private driveway. Flows for this basin are 0.21 cfs for the 5 -year storm and 1.52 cfs for the 100 -year storm.

Design Points

- Design Point $\mathrm{Z}\left(\mathrm{Q}_{5}=0.6, \mathrm{Q}_{100}=4.4\right)$ consists of flow from Basin OS-1. Flow from this basin release on site and combine with other onsite basins.
- Design Point $\mathrm{A}\left(\mathrm{Q}_{5}=1.4, \mathrm{Q}_{100}=10.6\right)$ consists of flow from Basin $\mathrm{E}-1$. Flow from this basin is released directly into Akers Drive where it is intercepted by an existing Type R inlet.
- Design Point $B\left(Q_{5}=0.2, Q_{100}=1.8\right)$ consists of flow from Basin E-2. It is a natural low point on the site. Flows will release from this location via an existing culvert and continue to DP E.
- Design Point $\mathrm{D}\left(\mathrm{Q}_{5}=0.5, \mathrm{Q}_{100}=3.5\right)$ consists of flow from Basin E-4. Flows will continue over existing ground to combine at DP C.
- Design Point C $\left(\mathrm{Q}_{5}=1.2, \mathrm{Q}_{100}=9.4\right)$ consists of flow from Basins, OS-1 and E-3 and DP D. Flows will continue to the north where they will combine with other flows at DP H.
- Design Point $\mathrm{E}\left(\mathrm{Q}_{5}=0.4, \mathrm{Q}_{100}=2.9\right)$ consists of flow from Basin $\mathrm{E}-5$ and DP B. This is a naturally occurring low spot on site. Flows will continue via an existing pipe to DP G.
- Design Point $\mathrm{F}\left(\mathrm{Q}_{5}=0.6, \mathrm{Q}_{100}=4.2\right)$ consists of flow from Basin E-6. These flows are released directly into Akers Drive where they are intercepted by an existing Type R inlet.
- Design Point $G\left(\mathrm{Q}_{5}=0.4, \mathrm{Q}_{100}=3.22\right)$ consists of flow from Basin $\mathrm{E}-7$ and DP E. This is a sump area which has an existing culvert for flows to continue to DP H.
- Design Point $\left.\mathrm{H}_{(} \mathrm{Q}_{5}=1.5, \mathrm{Q}_{100}=11.4\right)$ consists of flow from Basin E-9 and DP C and DP G. This is the final low point where flows are collected and via a $30 " \mathrm{RCP}$, exit the site and combine with flows from Akers Drive and the Mule Deer development to the west.
- Design Point $\mathrm{I}\left(\mathrm{Q}_{5}=0.2, \mathrm{Q}_{100}=1.6\right)$ consists of flow from Basin E10. Flow will be collected in the curb and gutter of the existing driveway and flow west to Akers Drive.

Proposed Drainage Analysis

The proposed development consists of 20 developed basins and the offsite basin has been divided into 4 separate basins, based on where flows enter onto developed site basins. The majority of the runoff from the site will be collected via inlets and pipes and diverted to one of two water quality ponds for the development. The ponds will then release into the existing inlets in Akers Drive and continue through the existing storm system to the existing drainage channel to the west.

- Basin OS-1 (0.26 acres) is the southern most offsite basin. This flow is released into Basin D-20 Flows for this basin are 0.08 cfs for the 5 -year storm and 0.56 cfs for the 100 -year storm.
- Basin OS-2 (0.27 acres) is north of OS-1. Runoff is directed towards Basin D-13. Flows for this basin are 0.08 cfs for the 5 -year storm and 0.57 cfs for the 100 -year storm.
- Basin OS-3 (0.1.63 acres) is located between OS-2 and OS-4 along the south portion of the eastern boundary of the site. Runoff is directed towards Basin D-2. Flows for this basin are 0.43 cfs for the 5 -year storm and 3.17 cfs for the 100-year storm.
- Basin OS-4 (0.07 acres) is the north of OS-3. Runoff is directed towards Basin D-1. Flows for this basin are 0.02 cfs for the 5 -year storm and 0.17 cfs for the 100 -year storm.
- Basin D-1 (1.24 acres) is the north half of the site along the east boundary to the east leg of Vineyard Circle. This flow is directed towards a sump inlet on the east side of Vineyard Circle. Flows for this basin are 2.34 cfs for the 5 -year storm and 5.15 cfs for the 100 -year storm.
- Basin D-2 (0.99 acres) is the south half of the site along the east boundary to the east leg of Vineyard Circle. Runoff is directed towards a sump inlet on the west side of Vineyard Circle. Flows for this basin are 1.81 cfs for the 5 -year storm and 3.99 cfs for the 100 -year storm.
- Basin D-3 (0.17 acres) is the southeast half of Vineyard Circle. Runoff is directed towards a sump inlet on the west side of the east leg of Vineyard Circle. Flows for this basin are 0.37 cfs for the 5 -year storm and 0.82 cfs for the 100 -year storm.
- Basin D-4 (0.21 acres) is the northeast half of Vineyard Circle. Runoff is directed towards a sump inlet on the west side of the east leg of Vineyard Circle. Flows for this basin are 0.48 cfs for the 5 -year storm and 1.06 cfs for the 100 -year storm.
- Basin D-5 (2.03 acres) is along the north boundary of the site, along North Carefree and along Akers Drive, north of Fallow Lane. Runoff continues to an at-grade inlet on the west side of the west leg of Vineyard Circle. Flows for this basin are 3.85 cfs for the 5 -year storm and 8.47 cfs for the 100-year storm.
- Basin D-6 (0.08 acres) is the east half of Fallow Lane. Flows for this basin are 0.37 cfs for the 5year storm and 0.66 cfs for the 100 -year storm.
- Basin D-7 (0.04 acres) is the southwest half of Fallow Lane. Flows for this basin are 0.18 cfs for the 5 -year storm and 0.33 cfs for the 100 -year storm.
- Basin D-8 (1.90 acres) is the northwest half of the area inside of Vineyard Circle. Runoff is released into the east side of the west leg of Vineyard Circle to an at-grade inlet. Flows for this basin are 3.46 cfs for the 5 -year storm and 7.62 cfs for the 100 -year storm.
- Basin D-9 (0.52 acres) is the area between the west leg of Vineyard Circle, Fallow Lane and Akers Drive. Runoff releases to an at-grade inlet on the west side of Vineyard Circle. Flows for this basin are 0.99 cfs for the 5 -year storm and 2.17 cfs for the 100 -year storm.
- Basin D-10 (0.33 acres) is the North Pond area. Flows for this basin are 0.43 cfs for the 5 -year storm and 1.14 cfs for the 100 -year storm.
- Basin D-11 (0.07 acres) is the north half of Running Deer Way. Flows for this basin are 0.32 cfs for the 5 -year storm and 0.57 cfs for the 100 -year storm.
- Basin D-12 (0.93 acres) is the south half of the area in between the two legs of Vineyard Circle. Runoff will release to a sump inlet in the east side of Vineyard Circle. Flows for this basin are 1.99 cfs for the 5 -year storm and 4.38 cfs for the 100 -year storm.
- Basin D-13 (1.72 acres) is the south portion of the site. Runoff is directed towards a sump inlet on the west half of Vineyard Circle. Flows for this basin are 3.39 cfs and 7.46 cfs for the minor and major storms, respectively.
- Basin D-14 (0.64 acres) is the middle area on the west half of the area between the two legs of Vineyard Circle, across from Running Deer Way. Flows are 1.31 cfs for the 5 -year storm and 2.88 cfs for the 100 -year storm.
- Basin D-15 (0.04 acres) is northwest half of Fallow Lane. Flows are 0.09 cfs for the 5 -year storm and 0.20 cfs for the 100 -year storm.
- Basin D-16 (0.13 acres) is the South Pond area. Flows for this basin are 0.21 cfs for the minor storm and 0.57 cfs for the major storm.
- Basin D-17 (0.08 acres) is the south half of Running Deer Way. Flows are 0.37 cfs and 0.66 cfs or the minor and major storms respectively.
- Basin D-18 (0.19 acres) is the area north of Fallow Land and south of North Carefree which flows towards Akers Drive. Runoff for this basin is 0.42 cfs for the 5 -year storm and 0.92 cfs for the 100-year storm.
- Basin D-19 (0.11 acres) is the area between Fallow Land and Running Deer Way which flows towards Akers Drive. Flows are 0.25 cfs and 0.55 cfs for the minor and major storms, respectively.
- Basin D-20 (0.41 acres) is the area south of Running Deer Way, along the western boundary, which flows towards Akers Drive. Flows are 0.80 cfs for the minor storm and 1.99 cfs for them major storm.

Design Points

- Design Point $\mathrm{Z}\left(\mathrm{Q}_{5}=0.1, \mathrm{Q}_{100}=0.6\right)$ consists of flow from Basin OS-1. Flow from this basin release on site and will combine with Basin D-20.
- Design Point $\mathrm{Y}\left(\mathrm{Q}_{5}=0.1, \mathrm{Q}_{100}=0.6\right)$ consists of flow from Basin OS-2. Flow from this basin release on site and will combine with Basin D-13.
- Design Point $\mathrm{X}\left(\mathrm{Q}_{5}=0.4, \mathrm{Q}_{100}=3.3\right)$ consists of flow from Basin OS-3. Flow from this basin release on site and will combine with Basin D-2.
- Design Point $\mathrm{W}\left(\mathrm{Q}_{5}=0.0, \mathrm{Q}_{100}=0.2\right)$ consists of flow from Basin $\mathrm{OS}-4$. Flow from this basin release on site and will combine with Basin D-1.
- Design Point $\mathrm{A}\left(\mathrm{Q}_{5}=3.4, \mathrm{Q}_{100}=9.9\right)$ consists of flow from Basins D-1 and D-2 and Design Points DP W and DP X. A sump inlet will be installed on the east side of the east leg of Vineyard Circle to intercept this flow. This will connect $\not \mathbf{1}$ ith the storm system which will release into the North Pond.
- Design Point $\mathrm{B}\left(\mathrm{Q}_{5}=0.9, \mathrm{Q}_{10}=2.0\right)$ consists of flow from Basins D-3 and D-4. A, at-grade inlet will be installed on west side of the east leg of Vineyard Circle to intercept the street flow. The inlet will connect with a storm system which releases into the North Pond.
- Design Point $\mathrm{C}\left(\mathrm{Q}_{5}=3.5, \mathrm{Q}_{100}=7.9\right)$ consists of flow from Basin D-8. A sump inlet will be installed on the east side of the west leg of Vineyard Circle to intercept gutter flow. The inlet will be part of a storm system which releases into the North Pond.
- Design Point $\mathrm{V}\left(\mathrm{Q}_{5}=4.2, \mathrm{Q}_{100}=9.4\right)$ combines flow from Basins D-5 and D-6 at the Fallow Lane and Vineyard Circle intersection. Flows will continue as gutter flow to the south along Vineyard Circle.
- Design Point $\mathrm{D}\left(\mathrm{Q}_{5}=4.9, \mathrm{Q}_{100}=11.0\right)$ consists of flow from Basin $\mathrm{D}-9$ and design point DP V . This at-grade inlet will intercept the flows from the west half of the west leg of Vineyard Circle. The inlet will connect to the system which will release into the North Pond.
- Design Point E ($\mathrm{Q}_{5}=3.2, \mathrm{Q}_{100}=7.4$) consists of flow from Basins $\mathrm{D}-12$ and $\mathrm{D}-14$. This is street flow at the east half of Vineyard Circle beginning at the southeast knuckle. Flows will direct towards a sump inlet on the east half of the west leg of Vineyard Circle, which releases into the South Pond.
- Design Point $\mathrm{F}\left(\mathrm{Q}_{5}=2.5, \mathrm{Q}_{100}=6.1\right)$ consists of flow from Basin $\mathrm{D}-13$ and design point DP Y. This is street flow at the west half of Vineyard Circle beginning at the southeast knuckle. Flows will direct towards a sump inlet on the west half of the west leg of Vineyard Circle, which releases into the South Pond.
- Design Point $\mathrm{G}\left(\mathrm{Q}_{5}=0.4, \mathrm{Q}_{100}=1.0\right)$ consists of flow from Basin $\mathrm{D}-18$. This is the street flow which has been released into Akers Drive north of Fallow Lane. Flow is intercepted by an existing type R inlet, north of the Fallow Lane Intersection.
- Design Point $\mathrm{H}\left(\mathrm{Q}_{5}=0.3, \mathrm{Q}_{100}=0.6\right)$ consists of flow from Basins D-7, $\mathrm{D}-15$ and $\mathrm{D}-19$. This is flow from Fallow Lane and street flow from Akers Drive, between Fallow Lane and Running Deer Way. Runoff is intercepted by an existing type R inlet in Akers Drive, north of the Running Deer Way intersection.
- Design Point $\mathrm{I}\left(\mathrm{Q}_{5}=0.9, \mathrm{Q}_{100}=2.0\right)$ consists of flow Basins $\mathrm{D}-11, \mathrm{D}-17$ and $\mathrm{D}-20$. This is the flow from Running Deer Way and the flow released onto Akers Drive from the site south of Running Deer Way. An existing type R inlet, south of the Running Deer Way intersection will intercept these flows.
- Design Point NP $\left(\mathrm{Q}_{5}=10.3, \mathrm{Q}_{100}=25.8\right)$ combines basin $\mathrm{D}-10$ with flows from DP A, DP B, DP C and DP D. This is the flow being released into the North Pond.
- Design Point $\mathrm{SP}\left(\mathrm{Q}_{5}=4.8, \mathrm{Q}_{100}=11.5\right)$ combines basin $\mathrm{D}-16$ with flows from DP E and DP F. This is the flow being released into the South Pond.

Deviations

A deviation has been requested and approved for El Paso County ECM_Appendix I Section I.7.1.B: 1st Bullet; Providing Water Quality for Entire Development.

Basins D-7, D-11, D-15 and D-17 thru D-20 all release into Akers Drive and are intercepted by existing inlets and will not reach an on-site water quality facility. These basins account for approximately 8% (0.94 acres of 11.56) of the overall site area. The remaining 92% of the development area is treated through 1 of the 2 proposed ponds.

The topography of the site will not allow all areas within the site to drain to the proposed ponds. Of the area inside the development boundary that will not reach a facility only 0.19 acres is proposed roadway, and 0.75 acres will be sloped areas at the back of lots along the exterior boundary.

DRAINAGE FACILITY DESIGN

General Concept

The Gardens at North Carefree is located in the Sand Creek Drainage Basin.

Storm Sewer System

All development is anticipated to be urban and will include storm sewer and street inlets. Two storm sewers collect storm water runoff and convey the runoff to the proposed ponds prior to discharging into the existing storm system offsite. The WQ outlet structures will connect to the existing inlets via proposed concrete culverts.

Storm System 1 will connect the set of sump inlets on the east leg of Vineyard Circle with the set of sump inlets on the west leg of Vineyard Circle. This system will release into the South WQ Pond.

Storm System 2 will connect a set of at-grade inlets on the west leg of Vineyard Circle, just north of Running Deer Way. The system will release into the North WQ Pond

On-Site Water Quality

There are two proposed water quality facilities on site that will provide water quality for the proposed improvements. Flows will pass through the outlet structures of one of the two proposed ponds. The existing storm system was designed to account for a 100-year flow of 55 cfs from this development. The two water quality ponds, based on the UDFCD pond spreadsheets, have a rolease rate of 28.8 cfs (South Pond is 8.30 cfs and North Pond is 20.5 cfs). The basins releasing offsite have combined flow of 8.9 cfs. Flows in Akers Drive and the two ponds have a total combined flow of 37.7 Cfs being captured in the existing storm system. Pond sizing calculations are provided in Appendix D.

The two ponds have been designed to act only as water quality, and not detention. From previous reports, it was determined that on-site detention would not be necessary.

From the Sand Creek Drainage Basin Planning Study, the only facility in this area was for a check structure along the southwest property boundary of Mule Deer Crossing. (See Appendix for excerpt)

The detention pond for the southwest corner of the Mule Deer development was mentioned in the Master Development Drainage Plan (MDDP) for Hilltop Subdivision by URS Greiner. It stated that this pond was not necessary if proposed improvements to the downstream channel were sufficient to handle the unattenuated flows. (See excerpt in Appendix)

From the Final Drainage Report for Mule Deer Filing 1, Lots $1 \&$ \& and Preliminary Drainage Report for Mule Deer Filing 1, Lots 3-36 by URS, states that after discussions with the El Paso County Department of Transportation, the proposed detention at the southwest corner of the Mule Deer development was not required, as it was determined that the existing channel was able to handle the upstream flows. (See Appendix for excerpt).

The Preliminary/Final Drainage Report for Mule Deer Crossing has the design and construction of the check structure identified in the Sand Creek DBPS, as well as the mprovements to the channel along the western boundary of the Mule Deer development. (see excerpt in Appendix).

From the Mule Deer FDR report, there are two design points which will tie into the storm system designed in Akers Drive. Design Point 6 (DP-6) designates the \&xisting inlet north of the Running Deer intersection and Design Point 7 (DP-7) designates the existing inlet south of Running Deer. DP-6 had a design flow of 11 cfs and 20 cfs for the 5-and 100-year flows. DP-7 had flows of 36 and 69 cfs , which included flows from the commercial site south of Sika Deer P ace. If these flows are removed (Q5=24 $\mathrm{cfs}, \mathrm{Q} 100=47 \mathrm{cfs}$), DP-7 would have corresponding flows of 12 cfs and 22 cfs for the minor and major storm events. Flows entering the WQ facilities are 10.3 cfs and 25.8 cfs for the North Pond and 5.0 cfs and 16.6 cfs for the South Pond. Even though the two ponds are meant to serve water quality purposes, there is some small detention acquired, which will result in release rates of 8.8 cfs and 20.5 cfs for the North Pond and 3.7 cfs and 8.3 cfs for the South Pond. Released flows are less than the design flows accounted for in the previous report, which indicates that the existing channel, accepting less flows than the approved FDR had accounted for, will still function adequately, as stated in the approved URS report.

The lower run off values as compared to the original design values is primarily due to the change in use from commercial to residential with additional reduction que to the detention attributed to the water quality ponds.

The existing channel has been shown to be able to handle previous design flows. The Gardens at North Carefree, proposed flows are less than those previously designed for (flows exiting ponds are less than previous design flows, as shown above), the need for on-site full spectrum detention is not required.

The WQCV is treated through two proposed extended detention basins, North Pond and South Pond. There are no proposed major drainageways for the site that would need to be stabilized. Some sitespecific source control BMPs that will be implemented include, but are not limited to, silt fencing placed around downstream areas of disturbance, construction vehicle tracking pads at the entrances, designated concre and col

After discussion with engineering manager, staff has determined that Full Spectrum Detention is required. The existing downstream channel in the El Paso County parcel is a wetlands that v:152876l has degradation and is not able to handle the upstream flows. Additionally at the time of the previously approved FDR's the EPC criteria had not adopted full spectrum detention as is currently required. Please revise design accordingly.

The narrative indicates that detention is not provided. Revise.

Temporary Sedimentation Basins

The water quality facilities (North Pond and South Pond) will work as temporary sedimentation ponds, until final construction is complete.

Four Step Process

In accordance with the El Paso County Engineering Criteria Manual, Appendix I, this site has implemented the four-step process to minimize adverse impacts of urbanizatidn and helps with the management of smaller, frequently occurring events. The four-step process includes reducing runoff volumes, treating and slowly releasing the water quality capture volume (H QCV), stabilizing drainageways, and implementing long-term source controls.

Reduce Runoff

In order to reduce runoff volume, the new impervious area for the site was minimized. Existing features will be preserved as all of the offsite basins which are undeveloped open space will continy to be so, and all developable areas will be required to release existing flows and handle their own detention and water quality needs. Existing drainage paths have been maintained as much as possible to also help reduce overall impacts from the site.

Treat \& Release WQCV

The WQCV is treated through 2 separate water quality ponds. The outlet structures for both ponds have been designed according to the FSD spreadsheet by UDFCD to ensure the release times of the facilities meet the requirements.

Stabilize Stream Channels

There are no proposed major drainageways for the site that would need to be stabilized. Downstream of the project, all flows enter into existing storm systems, which are adequate to handle existing released flows, which will be the case as both ponds are designed to release less than existing flows. Therefore, those downstream channel/facilities would also, not see any increase or adverse effects to their functionality.

Implement Source Controls

Some site-specific source control BMPs that will be implemented include, but are not limited to, silt fencing placed around downstream areas of disturbance, construction vehicle tracking pads at the entrances, sediment ponds, designated concrete truck washout basin, designated vehicle fueling areas, covered storage areas, spill containment and control, etc.

Per submitted documents

DRAINAGE FEES, COST ESTIMATE \& MAINTENANCE

 there will be no HOA. A district is intended to be set up. Please revise.
Maintenance

The water quality ponds will be maintained by the Home Owners Association. Facilities located within the project boundary will be private facilities and will also be maintained by Home Owners Association. All facilities located outside of the project boundary and within public right-of-way, will be maintained by the county. A BMP maintenance agreement and easement will be provided for the ponds, as well as an Operations and Maintenance manual. The remaining utilities (gas, phone, electric, cable, etc.) will be owned and maintained by their respective companies. Easements will be issued to ensure each entity is able to access and maintain their facilities.

Drainage Fees

The proposed development falls within the Sand Creek Basin. The entire development occupies approximately 11.6 acres. The project consists of 2.66 acres of right-of-way, 6.96 acres of residential lots, and tracts of open space of 1.98 acres. The following calculations for the imperviousness of this development have been computed as follows:

Average Residential lot size: 6.96 acres / 71 lots $=4270$ sf
Average lot imperviousness $\quad=2200 \mathrm{sf}$
Average Residential Imperviousness 2200/4270 $=51.50 \%$

Current drainage and bridge fees are $\$ 18,940$ and $\$ 5,559$. Revise accordingly.
R.O.W. area 2.66 acres; imperviousness 100 \% Open Space area 1.98 acres; imperviousness 0%

Average imperviousness for developed area:
$(0.5150 \times 6.96)+(1.0 \times 2.66)+(0 \times 1.95) /(11.6)=0.5383=53.83 \%$. The impervious area that the fees will be based on is 6.24 acres ($11.6 \times 53.83 \%$)

Drainage fees in the Sand Creek Basin are $\$ 17,197$ and bridge fees are $\$ 5,210$. The calculated fees due will be as follows:

Drainage Fees: $\quad \$ 107,309(6.24 \times \$ 17,197)$
Bridge Fees:
$\$ 32,510(6.24 \times \$ 5,210)$

Proposed Facilities Estimate

			UNIT			ITEM
ITEM	UNITS		COST	QUANTITY		COST
GRADING AND EROSION CONTROL						
CURB BACKFILL	LF	\$	4.00	4650	\$	18,600
MISC SEEDING AND MULCH	AC	\$	5,000.00	1	\$	5,000
HAY BALE CHECKS	EA	\$	15.00	100	\$	1,500
INLET PROTECTION	EA	\$	500.00	6	\$	3,000
VEHICLE TRACKING CONTROL	EA	\$	2,000.00	2	\$	4,000
SILT FENCING	LF	\$	2.50	1,000	\$	2,500
SUBTOTAL GRADING \& EROSION CONTROL					\$	34,6000
DRAINAGE						
18" RCP	LF	\$	125.00	180	\$	22,500
36 " RCP	LF	\$	220.00	128	\$	28,160
10' Type R Inlet	EA	\$	6,800.00	3	\$	20,400
20' Type R Inlet	EA	\$	10,000.00	3	\$	30,000
Outlet Structure	EA	\$	10,000.00	2	\$	20,000
SUBTOTAL DRAINAGE						121,060
SUBTOTAL DRAINAGE \& GRADING/EROSION CONTROL					\$	155,660
ENGINEERING (10\%)					\$	15,566
CONTINGENCY (25\%)					\$	38,915
TOTAL	\$ 210,141					

EROSION CONTROL

General Concept

During construction, best management practices for erosion control will be employed based on El Paso County criteria and the erosion control plan. The erosion control plan is included at the end of this report.

Ditches will be designed to meet El Paso County criteria for slope and velocity, keeping velocities below scouring levels.

During construction, best management practices (BMP) for erosion control will be employed based on El Paso County Criteria. BMP's will be utilized as deemed necessary by contractor and/or engineer and are not limited to measure shown on construction drawing set. The contractor shall minimize amount of area disturbed during all construction activities.

In general, the following shall be applied in developing the sequence of major activities:

- Install downslope and sideslope perimeter BMP's before the land disturbing activity occurs.
- Do not disturb an area until it is necessary for the construction activity to proceed.
- Cover or stabilize as soon as possible.
- Time the construction activities to reduce the impacts from seasonal climatic changes or weather events.
- The construction of filtration BMP's should wait until the end of the construction project when upstream drainage areas have been stabilized.
- Do not remove temporary perimeter controls until after all upstream areas are stabilized.

Silt Fence

Silt fence will be placed along downstream limits of disturbed areas. This will prevent suspended sediment from leaving the site during infrastructure construction. Silt fencing is to remain in place until vegetation is reestablished.

Erosion Bales

Erosion bales will be placed ten (10) feet from the inlet of all culverts and inlets during construction to prevent culverts from filling with sediment. Erosion bales will remain in place until vegetation is reestablished in graded roadside ditches. Erosion bale ditch checks will be used on slopes greater than 1% to reduce flow velocities until vegetation is reestablished.

Vehicle Tracking Control

This BMP is used to stabilize construction entrances, roads, parking areas and staging areas to prevent the tracking of sediment from the construction site. A vehicle tracking control (VTC) is to be used at all locations where vehicles exit the construction site onto public roads, loading and unloading areas, storage and staging areas, where construction trailers are to be located, any construction area that receives high vehicular traffic, construction roads and parking areas. VTC's should not be installed in areas where soils erode easily or are wet.

Sedimentation Pond

This BMP is used to detain runoff which has become laden with sediment long enough to allow the sediment to settle out. As the construction area is larger than 1 acre, a temporary sediment basin is required per Volume 2 of the Drainage Criteria Manual.

SUMMARY

Development within the site is to be single family residential. The existing storm sewer will connect to the new water quality facilities, allowing flows to continue as they currently are.

REFERENCE MATERIALS

1. "City of Colorado Springs Drainage Criteria Manual Volume 1" May 2014.
2. Soils Survey of El Paso County Area, Natural Resources Conservation Services of Colorado.
3. Flood Insurance Rate Study for El Paso County, Colorado and Incorporated Areas. Federal Emergency Management Agency, Revised March 17, 1997.
4. "City of Colorado Springs Drainage Criteria Manual, Volume 2: Stormwater Quality Policies, Procedures and Best Management Practices (BMPs)" May 2014.
5. "Engineering Criteria Manual El Paso County" January 9, 2006, Revised December, 2016.
6. "Urban Storm Drainage Criteria Manual, Volume 1: Management, Hydrology \& Hydraulics" Original September 1969, Updated January 2016.
7. "Urban Storm Drainage Criteria Manual, Volume 2: Structures, Storage \& Recreation" Original September 1969, Updated January 2016.
8. "Urban Storm Drainage Criteria Manual, Volume 3: Stormwater Quality" Original September 1992, Updated November 2010.
9. "Sand Creek Drainage Basin Planning Study Preliminary Design Report", Kiowa Engineering Corporation.
10. "Master Development Drainage Plan for Hilltop Subdivision" Revised February 1998. Prepared by URS Greiner, Inc
11. Final Drainage Report and Erosion Control for Chateau at
12. "Final Drainage Report for Mule Deer Filing 1, Lots $1 \& 2$ and Preliminary Drainage Report for Mule Deer Filing 1, Lots 3-46" January 2004. Prepared by URS.
13. "Preliminary Drainage Report for Mule Deer Business Park" January 2005. Prepared by URS.
14. "Final Drainage Report for Mule Deer Business Park" April 2005. Prepared by URS.
15. "Preliminary/Final Drainage Report for Mule Deer Crossing" May 2005. Prepared by URS.
16. "Final Drainage Report for Mule Deer Crossing" December 2005. Prepared by URS.

Figure 1: Vicinity Map

5725 MARK DABLING BLVD, SUITE 190

 COLORADO SPRINGS, CO 80919MULE DEER INVESTMENTS, LLC GARDENS AT NORTH CAREFREE

Appendix A: NRCS Soil Report

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for
El Paso County Area, Colorado

मodəy әэınosəy !!os mołsnう

Map Unit Legend

El Paso County Area, Colorado (CO625)							
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI				
97	Truckton sandy loam, 3 to 9 percent slopes	11.5					
Totals for Area of Interest		100.0%					

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,
onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

97-Truckton sandy loam, 3 to 9 percent slopes

Map Unit Setting

National map unit symbol: 36bg
Elevation: 6,000 to 7,000 feet
Mean annual precipitation: 14 to 16 inches
Mean annual air temperature: 46 to 50 degrees F
Frost-free period: 125 to 145 days
Farmland classification: Not prime farmland

Map Unit Composition

Truckton and similar soils: 80 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Truckton

Setting

Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Arkosic alluvium derived from sedimentary rock and/or arkosic residuum weathered from sedimentary rock

Typical profile

A - 0 to 8 inches: sandy loam
Bt - 8 to 24 inches: sandy loam
C-24 to 60 inches: coarse sandy loam

Properties and qualities

Slope: 3 to 9 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 5.7 inches)

Interpretive groups

Land capability classification (irrigated): 4e
Land capability classification (nonirrigated): 6e
Hydrologic Soil Group: A
Ecological site: Sandy Foothill (R049BY210CO)
Hydric soil rating: No

Minor Components

Pleasant
Percent of map unit:
Landform: Depressions
Hydric soil rating: Yes

Haplaquolls
Percent of map unit:
Landform: Marshes
Hydric soil rating: Yes
Other soils
Percent of map unit:
Hydric soil rating: No

Appendix B: Existing Hydrology Calculations
Standard Form SF-1 . Time of Concentration

Project: Section:	Gardens at North Carefree Existing Conditions												Created by: hecked by:			Date: Date:	1/1	2017	
	$\begin{aligned} & \text { Urban } \mathrm{TOC}_{\text {min }}= \\ & \text { Rural TOC }{ }_{\text {min }}= \end{aligned}$																		
	SUB-BASIN DAT			INITIAL/	$\frac{\text { /OVERLAND }}{\left(t_{i}\right)}$	FLOW				TRAVEL TIME $\left(\mathrm{t}_{\mathrm{t}}\right)$							$\begin{aligned} & \text { Tc CHECI } \\ & \text { anized b } \end{aligned}$		$\begin{gathered} \hline \text { FINAL Tc } \\ (\min) \end{gathered}$
										Type of Land Surface				TOTAL					
Basin ID	Description	C_{5}	$\begin{aligned} & \text { Area } \\ & \text { (ac) } \end{aligned}$	Length, L (ft)	$\begin{gathered} \begin{array}{c} \text { Slope, s } \\ (\mathrm{ft} / \mathrm{ft}) \end{array} \end{gathered}$	$\underset{(1)}{\mathbf{m i n}_{i}}$	Length (ft)	$\underset{(f t / f t)}{\substack{S_{w} \\(1)}}$	Code	Description	Convey Coef $\left(C_{v}\right)$ (2)	$\begin{gathered} \text { Velocity }(\mathrm{V}) \\ (\mathrm{ft} / \mathrm{s}) \\ (3) \end{gathered}$	t_{t} Travel Time (min) (4)	$\begin{aligned} & \mathbf{t}_{c}=\mathbf{t}_{\mathbf{t}}+\mathbf{t}_{\mathrm{t}} \\ & (\mathrm{~min}) \end{aligned}$	$\begin{gathered} \text { Urban } \\ \text { (Yes } / \mathrm{No} \text {) } \end{gathered}$	Length (ft)	$\begin{gathered} \mathrm{T}_{\mathrm{c}_{\text {max }}} \\ \left(\begin{array}{c} \min) \\ (5) \end{array}\right. \end{gathered}$	Tc max ${ }_{\text {mat }}$	
OS-1	Offsite Basin @ East Side	0.08	2.25	100	0.035	12.18	555	0.0455	4	Nearly bare ground	10.00	2.13	4.34	16.52	No	655.00	13.64	Check	16.5
E-1	North portion of site	0.08	5.41	45	0.333333	3.88	995	0.0171	4	Nearly bare ground	10.00	1.31	12.68	16.57	No	1040.00	15.78	Check	16.6
E-2	South of E-1	0.08	0.61	30	0.33333	3.17	305	0.0295	4	Nearly bare ground	10.00	1.72	2.96	6.13	No	335.00	11.86	Check	6.1
E-3	South of E-2	0.08	1.59	40	0.333333	3.66	470	0.0319	4	Nearly bare ground	10.00	1.79	4.39	8.05	No	510.00	12.83	Check	8.0
E-4	South of E-3	0.08	1.28	50	0.333333	4.09	370	0.0270	4	Nearly bare ground	10.00	1.64	3.75	7.85	No	420.00	12.33	Check	7.8
E-5	South of E-1 and West of E-2	0.08	0.36	5	0.5	1.13	135	0.0296	4	Nearly bare ground	10.00	1.72	1.31	2.44	No	140.00	10.78	Check	5.0
E-6	South of E-4 and along Akers Dr	0.08	1.55	55	0.333333	4.29	410	0.0366	4	Nearly bare ground	10.00	1.91	3.57	7.87	NO	465.00	12.58	Check	7.9
E-7	South of E-5 and West of E-3	0.08	0.10	5	0.5	1.13	55	0.0545	4	Nearly bare ground	10.00	2.34	0.39	1.52	No	60.00	10.33	Check	5.0
E-9	West of E-7	0.08	0.05	5	0.3333	1.29	30	0.3333	4	Nearly bare ground	10.00	5.77	0.09	1.38	No	35.00	10.19	Check	5.0
E-10	South portion of Site along Private Driveway	0.08	0.51	15	0.5	1.96	105	0.0381	4	Nearly bare ground	10.00	1.95	0.90	2.86	NO	120.00	10.67	Check	5.0
Notes:										UDFCD Table RO-2	Land Surfa	Coefficients							
All Equatio	ons are from UDFCD Drainage Criteria	anual/R	noff							Code	Description				Cv				
(1) $\mathrm{t}=10.3$. $395^{*}\left(1.1-C_{5}\right)^{*}\left(\left\llcorner^{\wedge} 0.5\right) / /\left(S^{\wedge} 0.33\right)\right.$, from U	CD Equ	ion RO-3							1	Heavy mea	dow			2.5				
(2) Cv from	n UDFCD Table RO-2									2	Tillage/field				5				
(3) Veloci	y from $V=C_{*} * S_{w} \wedge 0.5$, from UDFCD Eq	tion Ro								3	Short pastur	re and lawns			7				
(4) $t_{t}=L / 60$										4	Nearly bare	ground			10				
(5) t_{i} max	$=10+L / 180$, from UDFCD Eqn RO-5									5	Grassed w	terway			15				
										${ }^{6}$	Paved are	s and shallow	aved swales		20				
										${ }^{*} 7$	Riprap (no	buried)			7.0				

Standard Form SF-2 Storm Drainage System Design (Rational Method Procedure)
Project:
Section:
$\begin{array}{cc}\text { Created by: } \quad \text { CMD } & \text { Date: } \\ \text { Checked by: } \\ \text { CKC } & \text { Date: } 13 / 2017 \\ \end{array}$

Standard Form SF－2 ．Storm Drainage System Design（Rational Method Procedure） Project：
Section：

LOCATION	DIRECT RUNOFF							TOTAL RUNOFF				STREET		PIPE			TRAVEL TIME			REMARKS
				$*^{\circ} \sum_{\underline{\Sigma}}$	ষ் O	$-\frac{\widetilde{(x}}{\underline{\Sigma}}$	$0 \stackrel{\pi}{4}$	$\infty^{\bar{Z}}$		$-\frac{\overline{\underline{x}}}{\underline{\underline{z}}}$	o ⿹勹⿰亻⿻乚㇒山己	$\begin{aligned} & \text { ü } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { z } \\ & \text { z } \\ & \text { © } \\ & \text { U } \\ & 0 \\ & 0 \\ & u \end{aligned}$	$\begin{aligned} & \underline{u} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$				$\approx \underset{\underline{\sum}}{\underline{Z}}$	
（1）	（3）	（4）	（5）	（6）	（7）	（8）	（9）	（10）	（11）	（12）	（13）	（14）	（15）	（16）	（17）	（18）	（19）	（20）	（21）	（22）
Offsite Basin＠East Side	OS－1	2.25	0.35	16.52	0.79	5.46	4.30													
North portion of site	E－1	5.41	0.35	16.57	1.89	5.45	10.33													
South of E－1	E－2	0.61	0.35	6.13	0.21	8.07	1.72													
South of E－2	E－3	1.59	0.35	8.05	0.56	7.39	4.11													
South of E－3	E－4	1.28	0.35	7.85	0.45	7.46	3.35													
South of E－1 and West of E－ 2	E－5	0.36	0.35	5.00	0.13	8.55	1.08													
South of E－4 and along Akers Dr	E－6	1.55	0.35	7.87	0.54	7.45	4.03													
South of E－5 and West of E－ 3	E－7	0.10	0.35	5.00	0.03	8.55	0.29													
West of E－7	E－9	0.05	0.35	5.00	0.02	8.55	0.14													
South portion of Site along Private Driveway	E－10	0.51	0.35	5.00	0.18	8.55	1.52													

[^0]（13）Sum of Qs
（14）Additional Street Longitudinal Slope
（15）Additional Street Overland Flo
（16）Additional Pipe Design Flow
（17）Additional Pipe Slope
（18）Additional Pipe Size
All Equations follow UDFCD Rational Method

$\begin{array}{ll}\text {（1）Basin Description linked to C－Value Sheet } & \text {（7）}=\text { Column } 4 \times \text { Column } 5 \\ \text {（2）Basin Design Point } & \text {（8）}=28.5^{*} P /(10+\text { Column } 6)^{\wedge} 0.786 \\ \text {（3）Enter the Basin Name from C－Value Sheet } & \text {（9）}=\text { Column } 7 \times \text { Column } 8 \\ \text {（4）Basin Area linked to C－Value Sheet } & \text {（10）}=\text { Column } 6+\text { Column } 21 \\ \text {（5）Composite C linked to C－Value Sheet } & \text {（11）Add the C．A．Values Column } 7 \text { to get the cummulative } \\ \text {（6）Time of Concentration linked to SF－1 Sheet } & \text { C．A．Values } \\ & \\ & \text {（12）}=28.5^{*} \mathrm{P} /(10+\text { Column } 10)^{\wedge 0.786 ~}\end{array}$

GARDENS AT NORTH CAREFREE SURFACE ROUTING

DESIGN POINT	ONTRIBUTINBASINS	CA(equivalent)		$\begin{gathered} \text { Tc } \\ \text { (min.) } \end{gathered}$	INTENSITY		TOTAL FLOWS		
		CA(5)	CA(100)		$\begin{gathered} \mathrm{l}(5) \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{aligned} & \mathrm{I}(100) \\ & \text { (in/hr) } \end{aligned}$	$\begin{aligned} & \hline \text { Q(5) } \\ & \text { (cfs) } \end{aligned}$	$\begin{gathered} Q(100) \\ \text { (cfs) } \end{gathered}$	
Z	OS-1	0.18	0.79	16.5 3.2 5.6			0.6	4.4	
				TRAVEL TIME					
		0.18	0.79	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)	
				Channel	510	3.5	2.4	18.9	
A	E-1	0.43	1.89	16.6 3.2		5.6	1.4	10.6	
				TRAVEL TIME					
		0.43	1.89	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)	
						3.5	0.0	16.6	
B	E-2	0.05	0.21	6.1 4.9		8.5	0.2	1.8	
						TRAVEL TIME			
		0.05	0.21	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)	
				PIPE	25	4.4	0.1	6.2	
D	E-4	0.10	0.45	7.8 4.5		7.8	0.5	3.5	
				TRAVEL TIME					
		0.10	0.45	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)	
				CHANNEL	65	2.8	0.4	8.2	
C	$\begin{aligned} & \mathrm{E}-3 \\ & \mathrm{DP} \text { D } \\ & \mathrm{DP} \mathrm{Z} \end{aligned}$	0.13	0.56	18.9	3.0	5.2	1.2	9.4	
		$\begin{aligned} & 0.10 \\ & 0.18 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.79 \end{aligned}$	TRAVEL TIME					
		0.41	1.79	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)	
					0	4.4	0.0	18.9	
E	$\begin{array}{\|l\|} \hline \mathrm{E}-5 \\ \mathrm{DP} \mathrm{~B} \end{array}$	$\begin{aligned} & 0.03 \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.13 \\ & 0.21 \end{aligned}$	6.2 4.8		8.5	0.4	2.9	
						TRAVEL TIME			
		0.08	0.34	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)	
				PIPE	15	5.0	0.1	6.3	
F	E-6	0.12	0.54	7.9	4.5	7.8	0.6	4.2	
				TRAVEL TIME					
		0.12	0.54	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)	
					270	4.4	1.0	8.9	
G	$\begin{aligned} & \mathrm{E}-7 \\ & \mathrm{DP} \mathrm{E} \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.34 \end{aligned}$	6.3 - 4.8		8.4	0.4	3.2	
				TRAVEL TIME					
		0.09	0.37	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)	
				PIPE	15	5.0	0.1	6.3	
H	$\begin{aligned} & \text { D-9 } \\ & \text { DP C } \\ & \text { DP G } \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.41 \\ & 0.09 \end{aligned}$	0.02						
			1.79						
			0.37	TRAVEL TIME					
		0.50	2.18	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)	
				PIPE	15	5.0	0.1	19.0	
I	E-10	0.04	0.18	5.0	5.2	9.1	0.2	1.6	
				TRAVEL TIME					
		0.04	0.18	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)	
				PIPE	15	5.0	0.1	5.1	

Appendix C: Proposed Hydrology Calculations

Standard Form SF-1 . Time of Concentration $\begin{array}{ll}\text { Project: } & \text { Gardens at North Carefree - FDR } \\ \text { Section: } & \frac{\text { ard }}{\text { Prooosed Condititions }}\end{array}$

Standard Form SF-2 . Storm Drainage System Design (Rational Method Procedure)
Created by: $\begin{array}{ll}\text { CMD } & \text { Date: } \\ \text { Checked by: } \\ & \text { CKC } \\ \end{array}$

	DIRECT RUNOFF							TOTAL RUNOFF				STREET		PIPE			TRAVEL TIME			REMARKS
LOCATION				$\cdots \overline{\underline{Z}}_{\underline{E}}$	ভ	$-\frac{\frac{\widetilde{x}}{\Sigma}}{\underline{\underline{z}}}$	-	$\sim \sum_{\underline{\underline{Z}}}^{\underline{\underline{Z}}}$	$\begin{aligned} & \widehat{\pi} \\ & \hat{0} 0 \\ & \sum_{0} \\ & 0 \end{aligned}$	$-\frac{\underset{\sim}{x}}{\underline{\underline{z}}}$	o								$\sim{\underset{\underline{Z}}{\underline{E}}}^{\underline{E}}$	
	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Offsite Basin @ East Side releases to D-20	OS-1	0.26	0.08	13.35	0.02	3.59	0.08													
Offsite Basin @ East Side releases to D-13	OS-2	0.27	0.08	13.94	0.02	3.52	0.08													
Offsite Basin @ East Side releases to D-2	OS-3	1.63	0.08	15.98	0.13	3.30	0.43													
Offsite Basin @ East Side releases to D-1	OS-4	0.07	0.08	10.81	0.01	3.93	0.02													
East portion of Site btwn North half of Vineyard and East Boundary	D-1	1.24	0.45	9.21	0.56	4.19	2.34													
East portion of Site btwn South half of Vineyard and East Boundary	D-2	0.99	0.45	9.98	0.45	4.06	1.81													
South/Middle portion of Site inside of Vineyard Circle which drains to east	D-3	0.17	0.45	5.77	0.08	4.89	0.37													
North/Middle portion of Site inside of Vineyard Circle which drains to east	D-4	0.21	0.45	5.03	0.09	5.08	0.48													
North portion of site, along Carefree Circle	D-5	2.03	0.45	9.08	0.91	4.21	3.85													
East Half of Fallow Lane which drains to Vineyard Circle	D-6	0.08	0.90	5.00	0.07	5.09	0.37													
Southwest Half of Fallow Lane which drains to Akers	D-7	0.04	0.90	5.00	0.04	5.09	0.18													
North/Middle portion of Site inside of Vineyard Circle which drains to west	D-8	1.90	0.45	10.07	0.86	4.05	3.46													
Portion of site south of Fallow and btwn Akers and Vineyard	D-9	0.52	0.45	9.06	0.23	4.21	0.99													
North Pond	D-10	0.33	0.32	10.15	0.11	4.03	0.43													
North half of Running Deer Way	D-11	0.07	0.90	5.00	0.06	5.09	0.32													
South/Middle portion of Site inside of Vineyard Circle which drains to west	D-12	0.93	0.45	6.37	0.42	4.75	1.99													
Southern portion of site along Sika Deer Place and Akers	D-13	1.72	0.45	8.17	0.77	4.38	3.39													
Along eastern Edge of Vineyard (West Side) opposite North Pond	D-14	0.64	0.45	7.31	0.29	4.55	1.31													
Northwest Half of Fallow Lane which drains to Akers	D-15	0.04	0.45	5.00	0.02	5.09	0.09													

Standard Form SF-2 Storm Drainage System Design (Rational Method Procedure)
$\begin{aligned} & \text { Created by: } \quad \text { CMD } \text { Date: } 1 / 16 / 2019 \\ & \text { Checked by: }\end{aligned}$

	DIRECT RUNOFF							TOTAL RUNOFF				STR	ET	PIPE			TRA	VEL T	ME	REMARKS
LOCATION	$\begin{aligned} & \text { 므́ } \\ & \frac{z}{\omega} \\ & \underset{\infty}{6} \end{aligned}$			$\omega^{\underline{Z}}$	ভ் Ơ	$-\frac{\widetilde{\underline{x}}}{\underline{\underline{z}}}$	-	$\infty^{-} \underset{\underline{\Sigma}}{\underline{Z}}$		$-\frac{\frac{\widetilde{x}}{\underline{\Sigma}}}{\underline{\underline{Z}}}$		$\begin{aligned} & \text { ü } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { u } \\ & \stackrel{\rightharpoonup}{0} \text { o } \\ & \frac{1}{\circ} \end{aligned}$				$\sim \sum_{\underline{\Sigma}}^{\bar{\Sigma}}$	
(1)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Offsite Basin @ East Side releases to D-20	OS-1	0.26	0.35	13.35	0.09	6.04	0.56													
Offsite Basin @ East Side releases to D-13	OS-2	0.27	0.35	13.94	0.10	5.92	0.57													
Offsite Basin @ East Side releases to D-2	OS-3	1.63	0.35	15.98	0.57	5.55	3.17													
Offsite Basin @ East Side releases to D-1	OS-4	0.07	0.35	10.81	0.03	6.61	0.17													
East portion of Site btwn North half of Vineyard and East Boundary	D-1	1.24	0.59	9.21	0.73	7.04	5.15													
East portion of Site btwn South half of Vineyard and East Boundary	D-2	0.99	0.59	9.98	0.58	6.82	3.99													
South/Middle portion of Site inside of Vineyard Circle which drains to east	D-3	0.17	0.59	5.77	0.10	8.22	0.82													
North/Middle portion of Site inside of Vineyard Circle which drains to east	D-4	0.21	0.59	5.03	0.12	8.54	1.06													
North portion of site, along Carefree Circle	D-5	2.03	0.59	9.08	1.20	7.07	8.47													
East Half of Fallow Lane which drains to Vineyard Circle	D-6	0.08	0.96	5.00	0.08	8.55	0.66													
Southwest Half of Fallow Lane which drains to Akers	D-7	0.04	0.96	5.00	0.04	8.55	0.33													
North/Middle portion of Site inside of Vineyard Circle which drains to west	D-8	1.90	0.59	10.07	1.12	6.80	7.62													
Portion of site south of Fallow and btwn Akers and Vineyard	D-9	0.52	0.59	9.06	0.31	7.08	2.17													
North Pond	D-10	0.33	0.51	10.15	0.17	6.78	1.14													
North half of Running Deer Way	D-11	0.07	0.96	5.00	0.07	8.55	0.57													
South/Middle portion of Site inside of Vineyard Circle which drains to west	D-12	0.93	0.59	6.37	0.55	7.98	4.38													
Southern portion of site along Sika Deer Place and Akers	D-13	1.72	0.59	8.17	1.01	7.35	7.46													
Along eastern Edge of Vineyard (West Side) opposite North Pond	D-14	0.64	0.59	7.31	0.38	7.64	2.88													
Northwest Half of Fallow Lane which drains to Akers	D-15	0.04	0.59	5.00	0.02	8.55	0.20													

GARDENS AT NORTH CAREFREE - FDR SURFACE ROUTING

DESIGN POINT	CONTRIBUTING BASINS	CA(equivalent)		$\begin{gathered} \hline \mathrm{Tc} \\ \text { (min.) } \end{gathered}$	INTENSITY		TOTAL FLOWS	
		CA(5)	CA(100)		I(5) (in/hr)	I(100) (in/hr)	Q(5) (cfs)	$\begin{gathered} \hline Q(100) \\ \text { (cfs) } \end{gathered}$
				PIPE	10	2.5	0.1	17.6

Appendix D: Inlet Calculations

INLET ON A CONTINUOUS GRADE

Project: \qquad

Design Information (Input)		MINOR	MAJOR	inches
Type of Inlet		CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W_{0} =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{F}} \mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{r}} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MINOR STORM'	MINOR		MAJOR	fs
Design Discharge for Half of Street (from Sheet Q-Peak)	$\mathrm{Q}_{0}=$	3.9	7.9	
Water Spread Width	T =	8.3	11.5	ft
Water Depth at Flowline (outside of local depression)	d $=$	3.5	4.3	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {crown }}=$	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{\mathrm{o}}=$	0.671	0.511	
Discharge outside the Gutter Section W, carried in Section T_{x}	$Q_{\text {x }}=$	1.3	3.9	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{w}=$	2.6	4.0	cfs
Discharge Behind the Curb Face	$Q_{\text {BACK }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.82	1.45	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	4.8	5.4	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {LOCAL }}=$	6.5	7.3	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{\text {O-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{0}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathbf{Q}_{0}-\mathbf{Q}_{\mathbf{a}}$ (to be applied to curb opening or next d/s inlet)	$\mathrm{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\text {e }}=$	0.146	0.116	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100% Interception	$\mathrm{L}_{\text {T }}=$	10.90	17.36	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{T}$)	=	10.00	10.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	3.9	6.2	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef $=$	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	8.75	8.75	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	3.8	6.0	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(GRATE) }} \mathrm{Q}_{\mathrm{a}}$	$\mathrm{Q}_{\mathrm{b}}=$	0.1	1.9	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.80	6.00	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.1	1.9	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}=$	C\% =	98	76	\%

Project:
Gardens at North Carefree
Inlet ID: \qquad

Design Information (Input)	MINOR	MAJOR	
Type of Inlet \quad Type $=$	CDOT Type R Curb Opening		inches
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow') $\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening) No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening) $\mathrm{L}_{0}=$	10.00	10.00	
Width of a Unit Grate (cannot be greater than W from Q-Allow) $\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$) $\quad \mathrm{C}_{\mathrm{F}} \mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$) $\quad \mathrm{C}_{5} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: WARNING: Q > ALLOWABLE Q FOR MINOR STORM'	MINOR MAJOR		
Design Discharge for Half of Street (from Sheet Q-Peak) Q_{0}	3.9	11.0	fs
Water Spread Width	8.3	13.3	inches
Water Depth at Flowline (outside of local depression)	3.5	4.7	
Water Depth at Street Crown (or at $\mathrm{T}_{\text {Max }}$) ${ }_{\text {crown }}=$	0.0	0.0	
Ratio of Gutter Flow to Design Flow $\mathrm{E}_{0}=$	0.671	0.448	
Discharge outside the Gutter Section W , carried in Section T_{x}	1.3	6.1	cfs
Discharge within the Gutter Section W	2.6	4.9	cfs
Discharge Behind the Curb Face $\mathrm{Q}_{\text {васк }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	0.82	1.89	
Velocity within the Gutter Section W	4.8	5.8	fps
Water Depth for Design Condition d Lochl $^{2}=$	6.5	7.7	inches
Grate Analysis (Calculated)	MINOR	MAJOR	ft
Total Length of Inlet Grate Opening Per surface routing L=	N/A	N/A	
Ratio of Grate Flow to Design Flow $\mathrm{E}_{0-\mathrm{GRATE}}=$	N/A	N/A	
Under No-Clogging Condition calculations, drainage	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-over Befitan and narrative the $\mathrm{v}_{0}=$	N/A	N/A	fps
Interception Rate of Frontal Flow $\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow minor flow at design $\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	cfs
Interception Capacity point D is 49 cfs , $Q_{i}=$	N/A	N/A	
Under Clogging Condition	MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate InletRevise accordingly. GrateCoef =	N/A	N/A	$\mathrm{fft}_{\mathrm{ft}}$
Clogging Factor for Multiple-unit Grate Inlet GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet $\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	
Minimum Velocity Where Grate Splash-Over Begins $\quad \mathrm{V}_{\mathrm{o}}=$	N/A	N/A	
Interception Rate of Frontal Flow $\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	cfs
Interception Rate of Side Flow $\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity $\quad \mathbf{Q}_{\mathbf{a}}=$	N/A	N/A	
Carry-Over Flow $=\mathbf{Q}_{0}-\mathbf{Q}_{\mathbf{a}}$ (to be applied to curb opening or next d/s inlet)	N/A	N/A	
Curb or Slotted Inlet Opening Analysis (Calculated)	MINOR	MAJOR	$\mathrm{flt}_{\mathrm{ft}}$
Equivalent Slope S_{e} (based on grate carry-over) $\mathrm{S}_{\mathrm{e}}=$	0.146	0.104	
Required Length L_{T} to Have 100\% Interception $\mathrm{L}_{T}=$	10.90	21.60	
Under No-Clogging Condition	MINOR	MAJOR	ft
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{T}$) $\mathrm{L}=$	10.00	10.00	
Interception Capacity $\mathrm{Q}_{\mathrm{i}}=$	3.9	7.4	
Under Clogging Condition	MINOR	MAJOR	
Clogging Coefficient CurbCoef $=$	1.25	1.25	ft
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet CurbClog =	0.06	0.06	
Effective (Unclogged) Length $\mathrm{L}_{\mathrm{e}}=$	8.75	8.75	
Actual Interception Capacity $\quad \mathbf{Q}_{\mathbf{a}}=$	3.8	7.1	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(GRate })}-\mathrm{Q}_{\mathrm{a}} \quad \mathrm{Q}_{\mathrm{b}}=$	0.1	3.9	cfs
Summary	MINOR	MAJOR	
Total Inlet Interception Capacity $\quad \mathbf{Q}=$	3.80	7.12	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet) $\mathrm{Q}_{\mathrm{b}}=$	0.1	3.9	\%
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}=\quad \mathrm{C} \%=$	98	65	

Appendix E: StormCAD

Storm System 1

Storm System 1-100 Year

Label	Start Node	Stop Node	Length (Unified) (ft)	Diameter (in)	$\begin{array}{\|c\|} \hline \text { Capacity (Full } \\ \text { Flow) (cfs) } \end{array}$	System Rational Flow (cfs)	Velocity (ft/s)	$\begin{array}{\|l} \text { Elevation } \\ \text { Ground } \\ \text { (Start) (ft) } \end{array}$	Hydraulic Grade Line (In) (ft)	Invert (Start) (ft)	Cover (Start) (ft)	Elevation Ground (Stop) (ft)	Hydraulic Grade Line (Out) (ft)	Invert (Stop) (ft)	Cover (Stop) (ft)	
P-1	DP A	DP B	35.4	18	14.89	5.09	7.63	6,583.72	6,579.59	6,578.72	3.5	6,583.22	6,579.14	6,578.01	3.71	2.00\%
P-2	DP B	DP C	144.4	18	21.83	5.84	10.47	6,583.22	6,578.64	6,577.71	4.01	6,575.61	6,573.30	6,571.47	2.64	4.30\%
P-3	DP C	DP D	35.4	36	66.36	9.63	6.69	6,575.61	6,572.80	6,569.91	2.7	6,575.61	6,572.79	6,569.56	3.05	1.00\%
P-4	DP D	Outfall	26.1	36	66.54	15.01	2.12	6,575.61	6,572.29	6,569.26	3.35	6,573.50	6,572.28	6,569.00	1.5	1.00\%

Provide input values for stormcad modeling. There appears to be an error as the system flow values are the same for the 100yr and 5yr flows.

Station (ft)

9991-GGL-E0Z-レ+

Station (tt)
Storm System 1－5 Year

		¢	\％	O2\％
	$\stackrel{\sim}{\text { nj}}$	＋	－	\cdots
皆	0 ∞ \sim \sim 0 0	$\begin{aligned} & \mathrm{f} \\ & \underset{\sim}{\hat{N}} \\ & \dot{\sigma} \end{aligned}$	\％	（1）
	$\begin{aligned} & \hline \underset{7}{4} \\ & \underset{i}{n} \\ & 0 \\ & 0 \end{aligned}$		N	
	$\begin{aligned} & \tilde{N} \\ & \tilde{n} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l} \hline-\overrightarrow{0} \\ \text { n } \\ \hat{n} \\ 0 \end{array}$	$\begin{aligned} & 2 \\ & \vdots \\ & n \\ & 0 \\ & 0 \end{aligned}$	（10c｜c
	$\stackrel{\sim}{n}$	$\begin{array}{\|c} \underset{子}{O} \\ \hline \end{array}$	N	j
	$\begin{aligned} & \underset{N}{N} \\ & \infty \\ & \hat{n} \\ & 0 \end{aligned}$		$\begin{aligned} & \hat{\sigma} \\ & \dot{0} \\ & \hat{\omega} \\ & 0 \\ & 0 \end{aligned}$	
	\sim n \sim \hat{N} 0 0	0_{0} 0 0 0 0 0		
	$\left.\begin{array}{\|c} \underset{N}{N} \\ \sim \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	$\begin{array}{\|c} \underset{N}{N} \\ \tilde{\sim} \\ \tilde{\sim} \\ \dot{\sigma} \end{array}$		
$\begin{aligned} & 2 \\ & \frac{2}{0} \\ & \frac{0}{0} \end{aligned}$	$\stackrel{\sim}{\bullet}$	$\begin{aligned} & \hat{f} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & 9 \\ & \hline 6 \\ & \hline 6 \end{aligned}$	－
	$\stackrel{\square}{\text { ¢ }}$	$\stackrel{\text { ¢ }}{\text { i }}$	$\stackrel{n}{\circ}$	Nor
	$\begin{aligned} & \infty \\ & \dot{\infty} \\ & \underset{-}{\prime} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \substack{0 \\ i \\ i \\ i} \end{aligned}$	$\stackrel{n}{n}$
	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	¢	¢
	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { J } \\ & \underset{\sim}{\mathcal{J}} \end{aligned}$	$\underset{\sim}{n}$	穴
$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & 2 \\ & 0 \\ & 0 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	
	$\left\|\begin{array}{l} \widetilde{0} \\ 0 \\ 0 \end{array}\right\|$	$\begin{array}{\|l\|l} \infty \\ 0 \\ 0 \end{array}$		$\begin{array}{l\|l} u \\ 0 & 0 \\ 0 & 0 \end{array}$
$\stackrel{\square}{\square}$	$\stackrel{\square}{2}$	N		$\stackrel{j}{2}$

Station (ft)

9991-GGL-E0Z-レ+

Storm System 2

$\stackrel{\square}{0}$

Bentley Systems, Inc. Haestad Methods Solution Center
27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA
$+1-203-755-1666$
Storm System 2-100 Year

Label	Start Node	Stop Node	Length (Unified) (ft)	Diameter (in)	$\begin{gathered} \text { Capacity (Full } \\ \text { Flow) (cfs) } \end{gathered}$	System Rational Flow (cfs)	Velocity (ft/s)	Elevation Ground (Start) (ft)	Hydraulic Grade Line (In) (ft)	Invert (Start) (ft)	$\begin{array}{\|c\|} \hline \text { Cover } \\ (\text { Start })(\mathrm{ft}) \end{array}$	Elevation Ground (Stop) (ft)	Hydraulic Grade Line (Out) (ft)	$\begin{gathered} \text { Invert } \\ \text { (Stop) (ft) } \end{gathered}$	$\begin{array}{\|c\|} \text { Cover } \\ \text { (Stop) }(\mathrm{ft}) \end{array}$	Slope (Calculated) (ft/ft)
P-3	DP E	DP F	35.4	36	56.09	4.21	0.6	6,573.66	6,572.46	6,569.24	1.42	6,573.66	6,572.45	6,568.99	1.67	0.70\%
P-4	DP F	Outfall	31.3	36	47.7	7.24	1.02	6,573.66	6,571.95	6,568.69	1.97	6,573.50	6,571.95	6,568.53	1.97	0.50\%

Does not meet ECM
criteria for min.
velocity ($4 \mathrm{ft} / \mathrm{s}$).

Bentley Systems，Inc．Haestad Methods Solution Center
27 Siemon Company Drive Suite 200 W Watertown，CT 06795 USA
$+1-203-755-1666$ ＋1－203－755－1666
Station
Station（ft）

（み）ио！̣еләョヨ
Storm System 2-5 Year

Label	Start Node	Stop Node	Length (Unified) (ft)	Diameter (in)	$\begin{array}{\|c\|} \hline \text { Capacity (Full } \\ \text { Flow) (cfs) } \end{array}$	System Rational Flow (cfs)	Velocity (ft/s)	Elevation Ground (Start) (ft)	Hydraulic Grade Line (In) (ft)	Invert (Start) (ft)	$\begin{gathered} \text { Cover } \\ (\text { Start })(\mathrm{ft}) \end{gathered}$	Elevation Ground (Stop) (ft)	Hydraulic Grade Line (Out) (ft)	$\begin{array}{\|c\|} \text { Invert } \\ (\text { Stop })(\mathrm{ft}) \end{array}$	$\begin{gathered} \text { Cover } \\ (\text { Stop })(\mathrm{ft}) \end{gathered}$	Slope (Calculated) (ft/ft)
P-3	DP E	DP F	35.4	36	56.09	4.21	4.66	6,573.66	6,572.10	6,569.24	1.42	6,573.66	6,572.10	6,568.99	1.67	0.70\%
P-4	DP F	Outfall	31.3	36	47.7	7.24	4.87	6,573.66	6,571.60	6,568.69	1.97	6,573.50	6,571.60	6,568.53	1.97	0.50\%

Bentley Systems, Inc. Haestad Methods Solution Center
27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA
$+1-203-755-1666$ +1-203-755-1666
Station (
Station (ft)
(孔) иоџеләөヨ

Appendix F: Water Quality Pond Calculations

North Pond

Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.29
Calculated Runoff Volume (acre-ft) $=$	0.187	0.720	0.498	0.647	0.780	0.924	1.065	1.234	1.692
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) $=$	0.186	0.719	0.498	0.646	0.780	0.923	1.064	1.233	1.691
Predevelopment Unit Peak Flow, q (cfs/acre) $=$	0.00	0.00	0.00	0.01	0.02	0.04	0.26	0.63	1.46
Predevelopment Peak Q (cfs) $=$	0.0	0.0	0.0	0.0	0.1	0.2	1.8	4.3	10.0
Peak Inflow Q (cfs) $=$	3.8	14.6	10.1	13.1	15.8	18.7	21.5	24.8	33.9
Peak Outfow Q (cfs) =	0.1	10.3	5.8	8.8	11.4	14.6	17.4	20.5	31.1
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	189.3	105.1	60.1	9.7	4.7	3.1
Structure Controlling Flow =	Plate	Overflow Grate 1	Spillway						
Max Velocity through Grate 1 (fps) $=$	N/A	0.85	0.47	0.7	1.0	1.2	1.5	1.7	2.0
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97% of Inflow Volume (hours) =	42	34	38	35	34	32	30	28	24
Time to Drain 99\% of Inflow Volume (hours) =	46	43	44	43	42	41	40	39	37
Maximum Ponding Depth (ft) $=$	2.11	3.23	2.96	3.15	3.29	3.43	3.55	3.68	3.83
Area at Maximum Ponding Depth (acres) $=$	0.10	0.12	0.12	0.12	0.12	0.13	0.13	0.13	0.13
Maximum Volume Stored (acre-ft) $=$	0.172	0.296	0.264	0.286	0.302	0.321	0.335	0.351	0.373

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:
Storm Inflow Hydrograph
UD-Detention, Version 3.07 (February 2017)
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	WORKBOOK								
Time Interval	TIME	waCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
4.09 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:04:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph Constant	0:08:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:12:16	0.17	0.64	0.45	0.58	0.70	0.82	0.94	1.08	1.47
1.222	0:16:22	0.46	1.74	1.21	1.56	1.88	2.22	2.55	2.94	4.00
	0:20:27	1.19	4.46	3.12	4.02	4.83	5.70	6.54	7.55	10.27
	0:24:32	3.28	12.26	8.57	11.05	13.28	15.65	17.97	20.74	28.18
	0:28:38	3.84	14.57	10.14	13.11	15.80	18.67	21.48	24.85	33.95
	0:32:43	3.65	13.91	9.67	12.51	15.09	17.84	20.53	23.76	32.49
	0:36:49	3.32	12.67	8.80	11.39	13.74	16.24	18.69	21.63	29.57
	0:40:54	2.94	11.32	7.85	10.18	12.28	14.53	16.74	19.38	26.53
	0:44:59	2.52	9.78	6.76	8.78	10.62	12.57	14.49	16.80	23.04
	0:49:05	2.20	8.52	5.90	7.65	9.24	10.94	12.61	14.61	20.01
	0:53:10	1.99	7.72	5.34	6.94	8.38	9.92	11.43	13.24	18.15
	0:57:16	1.62	6.38	4.40	5.72	6.93	8.21	9.48	11.00	15.12
	1:01:21	1.31	5.21	3.58	4.67	5.67	6.73	7.78	9.03	12.45
	1:05:26	0.99	4.02	2.75	3.60	4.38	5.21	6.04	7.03	9.74
	1:09:32	0.72	3.00	2.04	2.68	3.27	3.90	4.54	5.30	7.40
	1:13:37	0.53	2.17	1.48	1.94	2.36	2.82	3.29	3.86	5.42
	1:17:43	0.41	1.68	1.15	1.50	1.83	2.18	2.53	2.96	4.13
	1:21:48	0.34	1.38	0.95	1.24	1.50	1.79	2.08	2.42	3.37
	1:25:53	0.29	1.17	0.80	1.05	1.27	1.52	1.76	2.05	2.84
	1:29:59	0.26	1.03	0.71	0.92	1.12	1.33	1.54	1.79	2.49
	1:34:04	0.23	0.93	0.64	0.83	1.01	1.20	1.39	1.61	2.23
	1:38:10	0.22	0.85	0.59	0.77	0.93	1.10	1.28	1.48	2.05
	1:42:15	0.16	0.63	0.43	0.56	0.68	0.81	0.94	1.09	1.51
	1:46:20	0.12	0.46	0.32	0.41	0.50	0.59	0.69	0.80	1.10
	1:50:26	0.08	0.34	0.23	0.30	0.37	0.44	0.50	0.59	0.81
	1:54:31	0.06	0.25	0.17	0.22	0.27	0.32	0.37	0.43	0.60
	1:58:37	0.04	0.18	0.12	0.16	0.19	0.23	0.27	0.31	0.43
	2:02:42	0.03	0.13	0.09	0.11	0.14	0.16	0.19	0.22	0.31
	2:06:47	0.02	0.09	0.06	0.08	0.10	0.12	0.14	0.16	0.22
	2:10:53	0.01	0.06	0.04	0.05	0.06	0.08	0.09	0.11	0.15
	2:14:58	0.01	0.04	0.02	0.03	0.04	0.05	0.06	0.07	0.09
	2:19:04	0.00	0.02	0.01	0.02	0.02	0.02	0.03	0.03	0.05
	2:23:09	0.00	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.02
	2:27:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:31:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:35:25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:39:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:43:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:47:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:51:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:59:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:04:03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:08:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:12:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:16:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:24:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:28:35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:32:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:36:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:44:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:49:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:53:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:57:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:01:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:09:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:13:35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:17:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:21:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:29:56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:34:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:38:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:42:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:46:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:54:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Designer:	Charlene Durham
Company:	Stantec
Date: January 21, 2019 Project: Gardens at North Carefree Location: North Pond	

8. Initial Surcharge Volume			
A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches)	$\mathrm{D}_{\text {IS }}=$	4	in
B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV)	$\mathrm{V}_{\text {IS }}=$	24.5	cu ft
C) Initial Surcharge Provided Above Micropool	$\mathrm{v}_{\text {s }}=$	3.3	cu ft
9. Trash Rack			
A) Water Quality Screen Open Area: $\mathrm{A}_{t}=\mathrm{A}_{\mathrm{ot}}{ }^{*} 38.5^{*}\left(e^{-0.095 D}\right)$	$\mathrm{A}_{\mathrm{t}}=$	123	square inches
B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.)	Aluminum A	emp SR	s with Cross Rods 2" O.C.
Other (Y / N): \qquad			
C) Ratio of Total Open Area to Total Area (only for type 'Other')	User Ratio =		
D) Total Water Quality Screen Area (based on screen type)	$\mathrm{A}_{\text {total }}=$	173	sq. in.
E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E)	$\mathrm{H}=$	2.26	
F) Height of Water Quality Screen ($\mathrm{H}_{\text {TR }}$)	$\mathrm{H}_{\text {TR }}=$	55.12	inches
G) Width of Water Quality Screen Opening ($\mathrm{W}_{\text {opening }}$) (Minimum of 12 inches is recommended)	$\mathrm{W}_{\text {opening }}=$	12.0	inches

South Pond

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.29
Calculated Runoff Volume (acre-ft) $=$	0.086	0.330	0.229	0.297	0.358	0.424	0.489	0.567	0.777
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) $=$	0.085	0.330	0.228	0.296	0.358	0.423	0.488	0.565	0.776
Predevelopment Unit Peak Flow, q (cfs/acre) $=$	0.00	0.00	0.00	0.00	0.01	0.03	0.19	0.46	1.09
Predevelopment Peak Q (cfs) =	0.0	0.0	0.0	0.0	0.0	0.1	0.6	1.4	3.4
Peak Inflow Q (cfs) $=$	1.4	5.4	3.7	4.8	5.8	6.9	7.9	9.1	12.5
Peak Outflow Q (cfs) =	0.1	4.3	2.4	3.7	4.7	5.9	7.1	8.3	11.7
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	237.9	132.2	73.0	12.0	5.8	3.4
Structure Controlling Flow =	Plate	Overflow Grate 1							
Max Velocity through Grate 1 (fps) =	N/A	-0.01	-0.01	0.0	0.0	0.0	0.0	0.0	0.0
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	39	33	36	34	32	31	29	27	23
Time to Drain 99\% of Inflow Volume (hours) =	42	40	42	41	40	39	38	37	35
Maximum Ponding Depth (ft) $=$	2.46	3.37	3.19	3.32	3.41	3.51	3.59	3.66	3.91
Area at Maximum Ponding Depth (acres) $=$	0.04	0.06	0.05	0.06	0.06	0.06	0.06	0.06	0.06
Maximum Volume Stored (acre-ft) $=$	0.077	0.124	0.113	0.120	0.126	0.131	0.136	0.141	0.156

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:
Storm Inflow Hydrograph
UD-Detention, Version 3.07 (February 2017)
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

	SOURCE	workbook	WORKвоок	WоRквоок	workbook	workbook	WORKBOOK	WORKBOOK	WORKвоок	WORKвоок
Time Interval	time	wacv [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.14 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph Constant	0:10:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:25	0.07	0.24	0.17	0.22	0.26	0.31	0.35	0.41	0.55
0.972	0:20:34	0.17	0.65	0.45	0.58	0.70	0.82	0.95	1.09	1.49
	0:25:42	0.44	1.66	1.16	1.50	1.80	2.12	2.43	2.81	3.83
	0:30:50	1.22	4.57	3.19	4.11	4.94	5.82	6.69	7.72	10.51
	0:35:59	1.42	5.37	3.73	4.83	5.82	6.87	7.91	9.15	12.51
	0:41:07	1.34	5.12	3.55	4.60	5.55	6.55	7.54	8.73	11.95
	0:46:16	1.22	4.66	3.23	4.19	5.05	5.96	6.86	7.94	10.88
	0:51:24	1.08	4.14	2.87	3.72	4.49	5.31	6.12	7.09	9.72
	0:56:32	0.92	3.56	2.46	3.20	3.86	4.57	5.28	6.12	8.40
	1:01:41	0.80	3.11	2.15	2.79	3.37	3.99	4.60	5.33	7.32
	1:06:49	0.72	2.81	1.94	2.53	3.05	3.61	4.17	4.83	6.63
	1:11:58	0.58	2.31	1.59	2.07	2.50	2.97	3.43	3.98	5.48
	1:17:06	0.47	1.87	1.28	1.68	2.03	2.42	2.79	3.25	4.49
	1:22:14	0.35	1.43	0.97	1.27	1.55	1.85	2.14	2.50	3.46
	1:27:23	0.25	1.05	0.71	0.94	1.14	1.37	1.59	1.85	2.59
	1:32:31	0.18	0.77	0.52	0.68	0.83	0.99	1.15	1.34	1.87
	1:37:40	0.15	0.60	0.41	0.53	0.65	0.77	0.90	1.04	1.45
	1:42:48	0.12	0.49	0.34	0.44	0.54	0.64	0.74	0.86	1.19
	1:47:56	0.10	0.42	0.29	0.38	0.46	0.54	0.63	0.73	1.01
	1:53:05	0.09	0.37	0.25	0.33	0.40	0.48	0.55	0.64	0.89
	1:58:13	0.08	0.33	0.23	0.30	0.36	0.43	0.50	0.58	0.80
	2:03:22	0.08	0.31	0.21	0.28	0.33	0.40	0.46	0.53	0.73
	2:08:30	0.06	0.23	0.16	0.20	0.25	0.29	0.34	0.39	0.54
	2:13:38	0.04	0.17	0.11	0.15	0.18	0.21	0.25	0.29	0.40
	2:18:47	0.03	0.12	0.08	0.11	0.13	0.16	0.18	0.21	0.29
	2:23:55	0.02	0.09	0.06	0.08	0.10	0.11	0.13	0.15	0.21
	2:29:04	0.02	0.06	0.04	0.06	0.07	0.08	0.09	0.11	0.15
	2:34:12	0.01	0.04	0.03	0.04	0.05	0.06	0.07	0.08	0.11
	2:39:20	0.01	0.03	0.02	0.03	0.03	0.04	0.05	0.06	0.08
	2:44:29	0.00	0.02	0.01	0.02	0.02	0.03	0.03	0.04	0.05
	2:49:37	0.00	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.03
	2:54:46	0.00	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.02
	2:59:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:41:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:46:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:51:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:56:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:01:35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:06:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:11:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:17:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:22:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:27:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:32:25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:37:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:42:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:47:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:52:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:58:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:03:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:08:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:13:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:18:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:23:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:28:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:34:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:39:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:44:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:49:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:54:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:59:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:04:56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:10:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Designer:	Charlene Durham
Company: Date:	Stantec
Project: Location:	Gardens at North Carefree

8. Initial Surcharge Volume		
A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches)	$\mathrm{D}_{\text {IS }}=$	in
B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV)		cu
C) Initial Surcharge Provided Above Micropool	$\mathrm{V}_{\mathrm{s}}=$	_cuft
9. Trash Rack		
A) Water Quality Screen Open Area: $A_{t}=A_{o t}{ }^{*} 38.5^{*}\left(\mathrm{e}^{-0.095 D}\right)$	$\mathrm{A}_{\mathrm{t}}=$	square inches
B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.)	s	60\% Open Area
Other (Y/N): \qquad		
C) Ratio of Total Open Area to Total Area (only for type 'Other')	User Ratio $=$	
D) Total Water Quality Screen Area (based on screen type)	$\mathrm{A}_{\text {total }}=$	sq. in.
E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E)	$\mathrm{H}=$	
F) Height of Water Quality Screen ($\mathrm{H}_{\text {TR }}$)	$\mathrm{H}_{\text {TR }}=$	inches
G) Width of Water Quality Screen Opening ($\mathrm{W}_{\text {opening }}$) (Minimum of 12 inches is recommended)	$\mathrm{W}_{\text {opening }}=$	inches

Appendix G: Deviation Request

Appendix H: Excerpts from Previous Drainage Reports

Excerpt from Sand Creek Drainage Basin Planning Study

Excerpt from Hilltop Master Development Drainage Plan

LEGEND

EXISTING CONDITIONS HEC-1 SUBBASINS

FIGURE

TABLE 2
HEC. 1 BASIN PEAK FLOWS

BASIN 1			
$\begin{gathered} \text { Basin } \\ \text { No. } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Historle Flows } \\ & \text { Q5 (efs) } \\ & \text { a100 (cfs) } \end{aligned}$	$\begin{aligned} & \text { Developed Flows } \\ & \text { Q5 (cfs) } \\ & 0.00 \text { (cfs) } \end{aligned}$	Difference (cts)
$0-1$	26	42	16
	91	119	28
0-2	69	109	40
	231	302	71
0-3	19	27	8
	56	71	15
0-4	40	57	17
	118	153	35
0-5	59	59	0
	177	177	0
1.1	45	42	${ }^{-3}$
	136	107	-29
1.2	56	94	38
	168	229	61
1.3	50	103	53
	141	206	65
1.4	28	55	27
	86	105	19
1.5	proposed only (was part of 1.1	${ }_{16}^{8}$	
BASIN 2			
$\begin{gathered} \text { Basin } \\ \text { No. } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Historic Flows } \\ & 05 \text { (cfs) } \\ & \text { Q100 (cfs) } \end{aligned}$	$\begin{aligned} & \hline \text { Developed Flows } \\ & \text { Q5 (efs) } \\ & \text { Q100(cfs) } \\ & \hline \end{aligned}$	Difference (cfs)
0.7	111	142	31
	364	417	53
0-8	34	41	7
	94	104	10
2.1	31	48	17
	97	135	38
2.2	49	36	$\begin{array}{r} 88^{\circ} \\ 148^{\circ} \end{array}$
	152	84	
		101	
2.3	proposed only	216	

diverted from Basin 1.1 under proposed conditions

NOTES: ** Basin 2.3 part of Basin 2.2 under existing conditions

TABLE 3
HEC-1 DESIGN POINT PEAK FLOWS

BASIN 1					
$\begin{gathered} \text { Design } \\ \text { Polint } \end{gathered}$	Historic Flows Q5 (cis)	$\begin{aligned} & \text { Design Flows } \\ & \text { Q5 (cts) } \end{aligned}$		rence	NOTES: -" Design Flows use Historic flows from offsite basins and Developed flows from onsite basins. (see Proposed HEC-1 Runs, subsel X)
	0100 (cfs)	Q100 (cfs)	(cis)	(per cent)	
1 A	95 318	95 318	0		
1X		144 481	144 481		
	239	136	-103	-43\%	
18	767	336	-431	-56\%	
	250	352	102	41\%	
1 C	852	995	143	17\%	
	283	398	115	41\%	
10	1003	1155	152	15\%	
	286	427	141	49\%	
1 E	1063	1214	151	14\%	
BASIN 2					
Design Point	Historic Flows 05 (cis) Q100 (cfs)	$\begin{aligned} & \text { Deslgn Flowsm } \\ & \text { Q5 (cis) } \\ & \text { Q100 (cfs) } \\ & \hline \end{aligned}$	Difference		
			(cfs)	(per cent)	
	141	159	18	13\%	
2A	461	498	37	8\%	
	187	275	88	47\%	
2 B	622	786	164	26\%	

B. Existing Drainage Characteristics

Off-site drainage basins entering the site have been identified as $\mathrm{O}-1$ through $\mathrm{O}-5$ (Basin 1) and $\mathrm{O}-7$ and O-8 (Basin 2). The runoff from these sources has been incorporated into the analysis of the site drainage. The existing drainage ways are draws or intermittent streams.

Basin 1
Runoff from basins $\mathrm{O}-1$ and $\mathrm{O}-2$ combines at Design Point 1 A near the northeast comer of the site. The 18" steel culverts under Barnes Road are in poor condition. Erosion on the downstream side of the embankment indicates that seepage is probably occurring either through the silted-in culverts, or around them. Design Point lA discharges to a draw through Basin 1.1.

Basin 1.1 has a 100 -year peak runoff of 136 cfs . Basin 1.2 has a 100 -year peak runoff of 168 cfs . Runoff from Basins 1.1 and 1.2 combines with runoff from Design Point 1A, and basins O-3 and $\mathrm{O}-4$ at the existing stock pond at Design Point 1 B .

Basin 1.3 has a 100-year peak runoff of 141 cfs . Runoff combines with discharge from the stock pond at Design Point 1C before crossing Marksheffel Road via a 24" CMP culvert. Design Point 1 C is routed and combines with basin O-5 at Design Point 1D on the tributary to East Sand Creek.

Basin 1.4 has a 100-year peak runoff of 86 cfs . Runoff is intercepted north of the City Gas facility by a concrete interceptor swale, which conveys flow to Marksheffel Road. Water collects at the low point just north of the Gas facility driveways before sheet flowing across Marksheffel Road. This runoff is conveyed via a swale to the tributary of East Sand Creek where it combines with runoff from Design Point 1D at Design Point 1E.

Basin 2

Basin 2.1 has a 100 -year peak runoff of 97 cfs . Runoff combines with runoff from off-site Basin O-7 at Design Point 2A.

Basin 2.2 has a 100 -year peak runoff of 152 cfs. Design point 2 A is routed and combined with runoff from basins 2.2 and O-8 at the stock pond at Design Point 2B.

VI. DEVELOPED DRAINAGE CONDITIONS

A. General Concept

Storm runoff will continue to follow historic patterns where development does not occur. Subbasin boundaries will be altered by the proposed development. Curb and gutter along the residential and collector roads will intercept overland flow. Storm inlets and sewers will then convey the 5 -year storm runoff to proposed detention ponds. Runoff in excess of the 5 -year storm will follow streets, swales and ditches to the detention ponds. Release rates from the detention ponds will be maintained at or below historic levels for the 100-year storm. Design Points IC, 2B and Basin 1.4 have been established to confirm acceptable flow levels leaving the site.

Improvements to the existing stock ponds at Design Point 1 B and 2 B will incorporate outlet structures and overflow weirs designed to mitigate developed flows and insure design flows leaving the property will be at or below historic levels. The pond at Design Point 1 B will be designed to over-detain runoff from Basins 1.1 and 1.2 to ensure discharge from Design Point 1 C is at or below historic levels. Increased peak flows from Basin 1.4 may be detained in parking lot storage, in a detention pond, in ditch storage or by a combination of methods. The present owner of the Hilltop Development anticipates that different parcels of land may be sold to different parties. The proposed design does not differentiate between ownership lines and is designed to operate within basins based on efficient hydraulic and hydrologic design. All detention facilities will be privately held and maintained. Therefore, all property owners within this development will be required to allow for drainage through their property as planned in this MDDP. Drainage facilities will be designed as part of the preliminary and final drainage reports in accordance with preliminary and final plat submittal.

Developed basin delineations are shown in Figure 4. Peak discharges for historic and developed conditions at specific design points are shown on Figure 4 and are tabulated in Tables 2 and 3.

At the request of El Paso County DOT, the swale along the east property boundary, within the Marksheffel Road future R.O.W. dedicated by this development, will be designed to carry developed flows from all basins it drains. The northeast portion of this swale associated with Phase I development will be designed to convey developed flows from off-site basins $\mathrm{O}-1, \mathrm{O}-2, \mathrm{O}-3$ and $\mathrm{O}-4$ and on site basin 1.5.

Negotiations are currently underway to request the upstream landowner (Basin O-2) to reduce peak flows leaving that property in order to reduce the size of the culvert required at Barnes Road. Developed conditions upstream would require a $6^{\prime} \times 10^{\prime}$ box culvert, or four 60' RCPs. Maintaining flows at existing levels would reduce the necessary culvert size to a single $60^{\prime \prime} \mathrm{RCP}$ or twin $48^{\prime \prime}$ RCPs. This would also impact the size of the drainageway required within the westerly right-of-way of Marksheffel Rd.

B. Developed Drainage Characteristics

Basin 1

Offsite runoff from Basins $\mathrm{O}-1$ and $\mathrm{O}-2$ will be intercepted by a ditch at the northern boundary of the development, Design Point 1A (DP 1A). This runoff will discharge along with runoff from the commercial area, Basin 1.5, into the west Marksheffel Road ditch. Basin 1.5 has a 100 -year runoff of 16 cfs . Offsite Basins O-3 and O-4 also discharge to this ditch via existing culverts under Marksheffel Road and combine with routed flows from DP 1A at Design Point IX.

Basin 1.1 has a 100 -year peak runoff of 107 cfs . Basin 1.2 has a 100 -year peak runoff of 229 cfs. These Basins combine at Design Point IB in Detention Pond \#1. Detention Pond \#1 will be designed to over-detain runoff from Basins 1.1 and 1.2 to ensure that discharge from Design Point 1C downstream is at or below historic levels. Discharge from Pond \#1 will be restricted to 165 cfs for the 100 -year storm.

Routed flows from Detention Pond \#1 (DP 1B), from the west Marksheffel Road ditch (DP IX), and runoff from Basin 1.3 combines at Design Point 1C before being discharged across Marksheffel Road. The developed 100-year runoff from Basin 1.3 is 206 cfs . 100-year peak flows at DP 1X are 481 cfs . Discharge from DP 1C will be restricted to the historic 100-year runoff of 852 cfs . Preliminary and Final drainage reports will be required to ensure that overdetention in Pond \#1 is adequate to provide for a developed design flow at DP 1C at or below historic rates. If historic rates cannot be met, then additional detention (see Potential Pond location in Basin 1.3, Figure 4) or other mitigation will be required.

Basin 1.4 has a 100 -year peak runoff of 105 cfs . Runoff will be intercepted by the extension of North Carefree Circle and conveyed south along the west side of Marksheffel Road to an existing low point where it is detained in Detention Pond \#3 (Design Point 3B). Discharge from Pond \#3 will be restricted to the historic level of 86 cfs for the 100 -year storm.

Basin 2

Basin 2.1 has a 100-year peak discharge of 135 cfs . Runoff combines with Basin O-7 at Design Point 2A for a combined peak flow of 448 cfs .

The existing configuration of Basin 2.2 will be divided by the extension of North Carefree Circle into proposed Basin 2.2 and Basin 2.3. Basin 2.2 has a 100 -year peak discharge of 84 cfs. Basin 2.3 (south of North Carefree Circle) has a 100 -year peak runoff of 216 cfs . Runoff from Design Point 2A and Basin 2.2 is routed, then combined with runoff from Basins 2.3 and $\mathrm{O}-8$ for a combined peak flow of 786 cfs at Design Point 2B.

It is anticipated that runoff from Basin 2 will be detained in detention Pond No. 2 to ensure that flow leaving the site at design point 2B does not exceed historic rates. However, this pond may not be necessary if proposed improvements to the downstream channel (by others) are sufficient to handle the unattenuated developed flows. A possible configuration for Pond No. 2 is described in section C: "Proposed Facilities."

C. Proposed Facilities

1.1 Sand Creek DBPS Facilities

Only one facility is shown in the Sand Creek DBPS for this property. This facility is a check structure in the Basin 2 drainage along the southwest property boundary. This facility is shown on Figure 4, Developed Conditions Drainage Planning Map.

1.2 Detention Ponds

The detention ponds will be designed to maintain flows leaving the property at or below historic levels. Flows are summarized in Tables 2 and 3. Preliminary values for the storage requirements of each pond are tabulated below. Because there will be no detention for Basin 1.3 , the storage volume at Design Point 1 B has taken into account over-detention at Detention Pond \#1 in order to maintain historic peak flows downstream at Design Point 1C.

The existing stock ponds upstream of Design Points $1 B$ and $2 B$ will require additional grading and the construction of outlet and emergency overflow structures. If the existing berm for Pond \#1 is going to be used as an embankment for a road, further investigation will be required to determine its stability and strength.

TABLE 4
DETENTION POND STORAGE VOLUMES

Pond \#	Design Point	Storage Volume (Ac-ft)	Surface Area (Ac)*
1	1 B	6.51	1.30
2	2 B	4.67	0.94
3	Basin 1.4	1.04	0.10

*Assumes 5' depth.

Several alternatives exist for detaining the runoff from Basin 1.4. These include parking lot storage, a detention pond, ditch storage and a combination of the above. Ponds will be

HILLTOP SUBDIVISION MDDP
HEC-1 RESULTS: SUMMARY
URS Greiner Job No. 6742212

BASIN	EXISTING		DEVELOPED ONSITE, EXISTING OFFSITE		DEVELOPED ONSITE AND OFFSITE	
	5-Yr (cfs) $100-\mathrm{Yr}$ (cfs)		$5-\mathrm{Yr}$ (cfs) ${ }^{100-\mathrm{Yr}}$ (cfs)		5-Yr (cfs) ${ }^{100-Y r}$ (cfs)	
O-1	26	91	26	91	42	119
O-2	69	231	69	231	109	302
0.3	19	56	22	63	27	71
0-4	401	118	46.	137	57	153
0-5	59	177	59	177	59	177
1.1	45	136	42	107	42	107
1.2	56	168	94	229	94	229
1.3	50	141	103	206	103	206
1.4	28	86	55	105	55	105
1.5	INCLUDED IN BASIN 1.1		8	16	8	16
0-7	111	364	111	364	142	417
O-8	34	94	34	94	41	104
2.1	31	97	48	135	48	135
2.2	49	152	36	84	36	84
2.3	INCLUDED IN BASIN 2.2		101	216	101	216
$\begin{gathered} \hline \text { DESIGN } \\ \text { POINT } \end{gathered}$						
1A	95	318	95	318	150	420
1 X	INCLUDED IN DP 10		144	481	215	611
1 B	239	767	136	336	136	336
1 C	250	852	352	995	424	1125
10	283	1003	398	1155	471	1287
1E	286	1063	427	1214	505	1348
2 A	141	461	159	498	190	552
28	187	622	275	786	309	850

Excerpt from Preliminary/Final Drainage Report for Mule Deer Crossing

The 10 -foot sump inlet at design point 10 intercepts runoff from Basin D-11 and D-12 as well as the by-passed flows from design point 9 . The routed flows intercepted the 10 -foot inlet at design point 10 are 8.9 cfs and 18.4 cfs for the 5 -year and 100 -year storms.

Basin D-13 covers 3.47 acres that includes the drainage channel and a portion of the adjacent Springs Ranch property to the west. Basin D-13 slopes to the south to design point 12. Basin D13 generates 2.6 and 6.3 cfs for the 5 -year and 100-year storms.

Basin D-14 covers 2.44 acres that includes the drainage channel and a portion of the adjacent Springs Ranch property to the west. Basin D-14 slopes to the south to design point 13. Basin D14 generates 2.0 and 4.8 cfs for the 5 -year and 100 -year storms.

Basin D-15 covers 1.30 acres that includes the drainage channel and a portion of the adjacent Springs Ranch property to the west. Basin D-15 slopes to the south from design point 13 to design point 14 at the southwest corner or the development. The drainage channel discharges onto the adjacent El Paso County property at design point 14. Basin D-15 generates 1.1 cfs and 2.8 cfs for the 5 -year and 100 -year storms.

Routing Analysis

Routing was used to determine both historic and developed flows for the site. Both historic and developed flows were routed to the design point at the southwest corner of the development, DP7 for historic and DP-14 for developed. The largest contributor of runoff flow is from the 72inch culvert from the Pronghorn Meadows development to the north. These flows are from the Pronghorn Meadows subdivision, the Springs Ranch detention pond, and the North Carefree Circle inlets. The time of concentration at the 72-inch culvert was conservatively estimated to be 20.6 minutes. The time of concentration for the development was determined by routing the flows entering the site from the north to the design point at the southwest corner of the site. This time of concentration is conservative and will produce conservative results.

Historic runoff from the site is estimated to be 166 cfs and 327.8 cfs for the 5 -year and 100 -year storms. Developed flows at design point 14 are 192.6 cfs and 384.3 cfs for the 5 -year and 100year storms.

Developed flows at design point 14 continue south along the existing drainage channel. The historic channel section south of the Mule Deer development is a V-shaped section with 5 percent to 6 percent side slopes and a 2 percent longitudinal slope. The existing channel will carry the 100 -year storm of 384.3 cfs at a depth of 1.6 feet, velocity of 7.6 fps , and a top width of 58 feet. No downstream improvements are anticipated for this channel to handle the upstream developed flows. The existing channel vegetation is well established and the cutoff wall and riprap at the south end of the Mule Deer Crossing development will slow velocities at that point.

Sand Creek DBPS

The Sand Creek DBPS was reviewed for this final drainage report. The channel along the western boundary of Mule Deer Crossing is at the upper reaches of the Sand Creek DBPS. The estimated 100 -year storm at this point is 990 cfs . This is much larger than the calculated value of
384.3 cfs as shown in this report. This is possibly due to the fact that the property was initially analyzed as industrial rather than residential.

Storm Drain System

The storm drain system for Mule Deer Crossing is designed to collect runoff from the development and discharge intercepted runoff in the drainage channel along the western property line. There are two storm trunk lines planned for the development. The northern storm system will connect the existing storm system from the Mule Deer Business Park to the east. Two 10foot inlets will be installed to collect runoff. The main trunk line will consist of 42 -inch rcp with a 24 -inch lateral. The storm system will discharge into the drainage channel along the western boundary at design point 12 .

The southern storm system will consist of 24 -inch and 30 -inch rcp with four (4) inlets for storm water collection. The system discharges into the drainage channel at design point 13.

Channel Improvements

The drainage channel along the western boundary of the development will carry developed flows from the northwest corner of the development to the existing channel at the southwest corner of the development. At the north end the channel will be 10 feet wide with 4 to 1 side slopes. After the discharge point at design point 12 , the channel widens to a 20 -foot bottom width with 4 to 1 side slopes along the eastern side of the channel and 2 to 1 side slopes with riprap protection along the west side of the channel. The channel will carry the 100 -year storm with the required freeboard.

The Sand Creek DBPS identifies this reach of the Sand Creek Basin on page EF-26 of the Sand Creek DBPS. The DBPS channel volume through this reach is stated to be 990 cfs , which is much greater than the 384.3 cfs calculated in this report. This is because the Mule Deer development is at the upstream limit of the DBPS. The runoff calculated for the entire basin, that includes this tributary, was assigned to the entire channel. The 990 cfs in this tributary is also shown on page. EF-23, approximately 4,000 south of the Mule Deer development, where it combines with a tributary from an adjacent basin. The actual 990 cfs does not occur at the upstream end of the basin, only at the downstream end.

The DBPS also proposes an improved channel and crossing downstream of the development that includes the crossing at the Chicago Rock Island \& Pacific RR, which is approximately 2,100 feet south of the development. The improved crossing is proposed to be an 8 -foot by 12 -foot concrete box culvert. The existing structure at this location was not identified. The proposed DBPS channel improvements include a riprap lined, 20 -foot wide channel with check structures. The channel in this area will be evaluated with future development.

The area adjacent to the channel downstream of the development is currently undeveloped. The - Sand Creek DBPS proposes check structures from the southern boundary of the Mule Deer development to the RR intersection. One of these check structures will be constructed at the southern boundary of the development. Because the existing channel is established and has gradual longitudinal and side slopes, minimal erosion is anticipated along this channel. There are no adverse impacts expected to occur to adjacent properties.

Mule Deer Filing 1 FDR Lots 1 \& 2 and PDR Lots 3-46

Final Drainage Report for Mule Deer Filing 1, Lots 1 \& 2
 And
 Preliminary Drainage Report for Mule Deer Filing 1, Lots 3-46
 El Paso County, Colorado
 January 2004

Prepared for:
Mule Deer Investments, LLC
520 E. Colorado Ave Colorado Springs, CO 80903

Prepared by:

9960 Federal Drive, Suite 300
Colorado Springs, CO 80921
URS Job No. 21711206

Mule Deer

DRAINAGE PLAN STATEMENTS

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City/County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report.
William D. Chaffin, P.E. 35136
For and on behalf of URS

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all the requirements specified in this drainage report.

By (signature): \qquad Date: \qquad
Address: $\quad 520$ E. Colorado Ave. Colorado Springs, CO 80903

EL PASO COUNTY STATEMENT:

Filed in accordance with Section 51.1 of the El Paso Land Development Code, as amended.

John A. McCarty, County Engineer/Manager
Date
Conditions:

Table of Contents

General Location and Description 4
Location 4
Soil Types 4
Floodplain Statement 7
Drainage Design Criteria 7
Drainage Basins and Sub-basins 7
Hilltop MDDP 7
Historic Drainage Analysis 8
Developed Drainage Analysis 8
Storm Drain System 9
Channel Improvements 10
Erosion Control 10
General Concept 10
Erosion Bales 10
Miscellaneous 10
Cost Estimate 11
Drainage Fees 11
Proposed Facilities 12
Appendix A: Hydrologic and Hydraulic Calculations and other Information 13
Table of Figures
Figure 1: Vicinity Map 5
Figure 2: Soils Map 6
Figure 3: Drainage Plan (existing basins) pocket
Figure 4: Drainage Plan (developed basins) pocket
Figure 5: Grading and Erosion Control Plan pocket

General Location and Description

Location

The Mule Deer development is located west of Marksheffel Road, east of Barnes Road, and south of North Carefree Circle. The site lies within a portion of the east $1 / 2$ of Section 29 of Township 13 South, Range 65 West of the $6^{\text {th }}$ Principal Meridian. The site is approximately 5 miles southwest of Falcon, Colorado in El Paso County (see Figure 1: Vicinity Map). The site is bounded by Colorado Springs Utilities property to the east, North Carefree Circle to the north, Northcrest Heights Subdivision to the west and El Paso County property to the south. The entire site is currently zoned Residential (R-1).

The Mule Deer development contains 39.46 acres and will be constructed in three Filings. Filing 1 consists of Akers Drive and Lots 1 and 2 in the southeast corner of the development, Filing 2 contains 3 commercial lots in the northeast corner and Filing 3 consist of residential development in the area west of Akers Drive. A separate final drainage report for Filings 2 and 3 will be submitted at a later date.

The terrain of the site descends to the west and southwest from a ridge that runs along the eastern property line. Slopes range from 6 percent to 10 percent. The vegetation is typical eastern Colorado prairie grass with Yucca plants but little or no shrubs. There is an existing drainage swale along the west side of the property. This drainage channel will be improved with the construction of Filing 3. Runoff from the site creates intermittent streams that drain into the Sand Creek Basin which ultimately outfalls into Fountain Creek.

There are no irrigation facilities or utilities that affect the drainage analysis of this site

Soil Types

Soil types for the area were derived from the Soil Conservation Services, Scil Study of El Paso County Area, Colorado. The native soils on the proposed site are the Blendon and the Truckton sandy loam. The Blendon Series consists of deep well-drained soils that formed in sandy arkosic alluvium. These soils are on terraces, on flood plains, and in drainageways. They have slopes of 0 to 3 percent. The Truckton sandy loam soils are deep, well drained soils that formed in alluvium residuum derived from arkosic sedimentary rock on uplands. They have slopes of 0 to 3 percent. The Blendon Series and the Truckton sandy loam are both from the "B" Hydrologic Soil Group. The site and surrounding area have soil characterized as \#97, Truckton Sandy Loam (hydrologic soil Group B) as classified by the Soil Conservation Service (see Figure 2: Soils Map).

FIGURE
URS

Floodplain Statement

According to the Federal Emergency Management Agency (FEMA), as depicted on Flood Insurance Rate Maps (FIRM) 08041 CO539 F (March 1997) and 08041 CO543 F (March 1997), no portion of the site lies within a designated FEMA floodplain.

Drainage Design Criteria

The current City of Colorado Springs and El Paso County Drainage Criteria Manual was used in the preparation of this report. The Rational Method was used to determine the runoff quantities as required for basins containing less that 100 acres. Peak runoff was determined for both the 5year and 100 year frequency storms.

Drainage Basins and Sub-basins

Recent development in the area includes the Pronghorn Meadows development directly north of the Mule Deer development, the North Range at Springs Ranch, which is west of the Pronghorn Meadows development and Chateau at Antelope Ridge Filings 1 and 2, which are northeast of the Pronghorn Meadows development. Chateau at Antelope Ridge Filing 3 is directly north of Pronghorn Meadows.

The MDDP for the Hilltop Subdivision (Hilltop MDDP), the Final Drainage Report for Pronghorn Meadows and the Final Drainage Report for North Carefree Circle were consulted in preparation of this report. The Hilltop MDDP was submitted in November 1996. The latest revision to the Hilltop MDDP was submitted in September 2001, but these changes did not pertain to the Mule Deer development area.

The Final Drainage Report for Pronghorn Meadows states that approximately 220 cfs for the 100-year storm flows south from the Pronghorn Meadows development, through the existing 72inch RCP and into the existing drainage channel that runs north to south along the western edge of the Mule Deer property. Flows for the proposed Mule Deer development were also estimated in the FDR for Pronghorn Meadows to determine if the existing channel is adequate. The estimated flows from the FDR for Pronghorn Meadows were approximately 228 cfs for the $100-$ yar storm. The existing channel was determined to be adequate to handle the flows from both Pronghorn Meadows and the proposed Mule development.

Hilltop MDDP

The MDDP for the Hilltop Subdivision (Hilltop MDDP) was consulted in preparation of this report. The Hilltop MDDP was submitted in November 1996. The latest revision to the Hilltop MDDP was submitted in September 2001, but these changes did not pertain to the Mule Deer development site.

The Mule Deer Development is contained in Basin 2.3 of the Hilltop MDDP. The report states that approximately 216 cfs will be generated by this basin and discharge at the southwest comer of the site during the 100 -year storm. This number is very close the 220 cfs calculated for the site in this report.

Historic Drainage Analysis

Historic drainage analysis was determined by analyzing runoff quantities and patterns for the site. Historic storm runoff generally flows from the east to west. (see Figure 3, Mule Deer Existing Basins - pocket). The site is undeveloped with native grasses and plants and slopes to the west.

Basin EX-1 encompasses 0.68 acres of North Carefree Circle in the northern portion of the site. The Final Drainage report for North Carefree Circle indicates that the runoff from this area will be contained in the road and bypass the Akers Drive entrance. However, it appears that a small amount of runoff may discharge into the site at the intersection of Akers Drive and North Carefree Circle. Runoff rates for Basin EX-1 are 3 cfs and 6 cfs for the 5 -year and 100 -year storms respectively.

Basin EX-2 encompasses the majority of the site, 33.27 acres of undeveloped land with native vegetation. This basin includes a portion of the adjacent Colorado Spring Utilities property to the east. Runoff from this basin flows west and into the drainage channel along the western boundary. Flows from Basin EX-2 are 12 cfs and 40 cfs for the 5 and 100 -year storms respectively.

Basin EX-3 encompasses 9.59 acres along the southern portion of the Mule Deer development. The basin includes a portion of the adjacent El Paso County and Colorado Springs Utilities properties. Runoff from the basin flows west and into the drainage channel along the western boundary. Flows from this basin are 5 cfs and 17 cfs for the 5 -year and 100 -year storms respectively.

Developed Drainage Analysis

The Mule Deer development consists of eight developed sub-basins. The runoff from the east half of the site will collect in the three proposed storm inlets in the proposed Akers Road extension and flow via pipe to the drainage channel along the western boundary. The runoff from the west half of the site will sheet flow to the drainage channel. Developed drainage patterns are shown on the Developed Drainage Plan (see Figure 4, pocket). The following is a description of each basin and the proposed runoff patterns and improvements.

Basin D-1 is located at the southeast corner of the Mule Deer development and contains 4.63 acres. This portion of the Mule Deer property is proposed for two commercial buildings and parking and will be developed in Filing I. Runoff from basin D-1 will flow to the northwest to design point 1 (DP-1) and will be collected in the proposed storm drain in Akers Drive. Flows from this basin are 14 cfs and 28 cfs for the $5-\mathrm{yr}$ and $100-\mathrm{yr}$ storm respectively.

Basin D-2 is north of D-1 and contains 2.68 acres. This area will be commercial buildings and associated parking and will be developed in Filing I. Runoff from this basin will flow southwest to DP-2. Approximately $10 \mathrm{cfs}(5-\mathrm{yr})$ and $20 \mathrm{cfs}(100-\mathrm{yr})$ will be discharged into the Akers Drive storm drain from Basin D-2.

Basin D-3 is the northeastern portion of the property and contains 10.07 acres. This portion of the site will be developed as a commercial property as part of Filing II. Runoff from this basin
will flow to DP-5. Runoff for this basin is calculated to be 40 cfs and 77 cfs respectively for the 5 -year and 100-year storm. Flows from this basin will be captured by internal inlets and discharged into the proposed inlets along Akers Drive.

Basin D-4 is northwest of D-3 and covers 1.47 acres. Runoff from this basin will sheet flow west to the proposed access to Akers Drive at DP-4. The runoff will flow south along the curb and gutter and be intercepted by the proposed inlets along Akers Drive. Approximately 7 cfs and 13 cfs will be generated from Basin D-4 for the $5-\mathrm{yr}$ and $100-\mathrm{yr}$ storm.

Basin D-5 encompasses 0.68 acres of North Carefree Circle in the northern portion of the site. The Final Drainage report for North Carefree Circle indicates that the runoff from this area will be contained in the road and bypass the Akers Drive entrance. However, it appears that a small amount of runoff may discharge into the site at the Akers Drive entrance. In order to be conservative, this basin was included in the developed drainage analysis. Runoff rates for Basin D-5 are 3 cfs and 6 cfs for the 5-year and 100-year storms respectively.

Basin D-6 covers 21.83 acres and contains the western half of the site. This area will be residential lots $1 / 8$ acre or less, but the final layout has not been finalized. Runoff will sheet flow to the west and discharge into the drainage channel along the western property line. Approximately 56 cfs and 113 cfs will be generated from this basin for the $5-\mathrm{yr}$ and $100-\mathrm{yr}$ storms respectively. Runoff totals calculated for this basin are conservative because no routing was used to determine the flow totals.

Basin D-7 contains 1.11 acres and consists of the western half of Akers Drive. Runoff rates of 5 cfs and 10 cfs for the $5-\mathrm{yr}$ and $100-\mathrm{yr}$ storm will collect in the street and flow into Basin D-6 at DP-8.

Basin D-8 contains 0.47 acres and consists of a portion of the eastern half of Akers Drive. Runoff rates of 2 cfs and 4 cfs for the $5-\mathrm{yr}$ and $100-\mathrm{yr}$ storm will collect in the street and discharge at the on-grade inlet at DP-6. By-passed flows will be intercepted by the inlet at DP-7.

Basin D-9 contains 0.13 acres and consists of a portion of the eastern half of Akers Drive between the 10 -foot on-grade inlets. Runoff rates of 1 cfs and 1 cfs for the $5-\mathrm{yr}$ and $100-\mathrm{yr}$ storm will collect in the street and discharge into the sump inlet at DP-7.

Basin D-10 contains 0.50 acres and consists of the south portion of the eastern half of Akers Drive. Runoff rates of 2 cfs and 4 cfs for the $5-\mathrm{yr}$ and $100-\mathrm{yr}$ storm will collect in the street and discharge into the on-grade inlet a DP-3. By-passed flows will continue north and be intercepted by the sump inlet at DP-7.

Storm Drain System

The storm drain system for Mule Deer is designed to collect runoff from the site and carry it to the existing drainage channel along the western property line. Although, the site will be built in three Filings, the proposed inlets and pipes in Akers Drive have been sized for the fully developed condition. Three inlets will be placed along Akers Drive to intercept flow along the
eastern curb and gutter. There are two 10 -foot inlets and one 20 -foot inlet to intercept flow. The inlets connect with 24 -inch RCP. A 42 -inch pipe extends to the west from the middle 20 -foot inlet and discharges into the existing channel along the western boundary of the property.

Channel Improvements

The existing channel along the west side of the site will be improved with riprap. The channel will have a 6 -foot bottom with $4: 1$ side slopes. The slope of the channel will be decreased to reduce the velocity of the flow. Riprap will line the bottom of the channel where necessary to prevent channel erosion. Drop structures will be added to the channel with riprap on the upstream and downstream side for protection. A final design for the channel will be provided with the Final Drainage Report for the area west of Akers Drive.

The previously approved Hilltop MDDP shows a detention pond at the southwest corner of the Mule Deer property. From previous conversations with the El Paso Cciunty Department of Transportation, the detention pond is no longer required because is was determined that the existing channel can handle the flows from all of the upstream developments without encroaching on the adjacent property

Erosion Control

General Concept

Due to the steep slopes of the property, erosion may be substantial once the native vegetation is removed. During construction, best management practices for erosion control will be employed based on El Paso County criteria and the erosion control plan.

The site will be developed in three Filings. Filing 1 is 4.72 acres and will be developed beginning in the summer of 2004. The remaining property will be rough graded as needed during Filing 1 construction. The remaining Filings will drain to the west, into Akers Drive or into the existing channel. Erosion bails and silt fence will be used, where necessary, to prevent excess sediment from leaving the site or entering Akers Drive. Seeding will occur on areas in Filing II and Filing III to prevent erosion.

Erosion Bales

Erosion bales will be placed 10 -feet from the inlet of all culverts and discharge pipes during construction to prevent pipes from filling with sedimentation. Erosion bales will remain in place until vegetation is reestablished on pond side slopes and in drainage swales. Erosion bales will also be placed around all inlets to minimize sediment transport.

Miscellaneous

Best erosion control practices will be utilized as deemed necessary by the Contractor or Engineer and are not limited to the measures described above.

Cost Estimate

Drainage Fees

The proposed platted area for Filing 1 contains 9.53 acres in the Sand Creek Basin. Drainage fees for Filing 1 will be paid at the time of platting. The drainage fees for the Sand Creek Basin are calculated based on the imperviousness of the site. Because the site is commercial, the estimated imperviousness of the site is 95 percent.

Sand Creek Fees

Drainage Fee $=\$ 15,000 /$ impervious acre
Fees for this development were calculated as follows:

Filing 1 Drainage Fees

Drainage Fees:
Bridge Fees
TOTAL
9.53 ac . $\mathrm{X} 0.95 \times \$ 15,000 / \mathrm{ac}=\$ 135,803.50$
9.53 ac . X 0.95 X $\$ 1,336 / \mathrm{ac}=\$ 12,095.48$
$=\$ 147,897.98$

Proposed Facilities

Filing 2 Proposed Facilities

ITEM	UNIT	COST
10' Type R Inlet	$3 @ \$ 4,500 / \mathrm{Ea}$	$\$ 9,000$
20' Type R Inlet	1 @ $\$ 12,000 / \mathrm{Ea}$	$\$ 12,000$
$24^{\prime \prime} \mathrm{RCP}$	140 L.F. @ $\$ 34.00$	$\$ 4,760$
$42^{\prime \prime} \mathrm{RCP}$	635 L.F. @ $\$ 55.00$	$\$ 34,925$
$42^{\prime \prime} \mathrm{FES}$	1 @ $\$ 500.00$	$\$ 500$
$42^{\prime \prime}$ Bend	1 @ $\$ 500$	$\$ 500$
Riprap	10 tons @ $\$ 26.00$	$\$ 260$
Total		$\$ 61,945$

Item	Quantity	Unit	Unit Cost	Extension
Erosion Control Measures				
Vehicle Tracking Control	40	CY	\$28	\$ 1,120
Erosion Control Hay Bales	86	EA	\$15	\$ 1,290
Silt Fencing	1,475	LF	\$3	\$ 13,425
Subtotal, Erosion Control Measures				\$ 15,834
Stormwater System				
Inlets, Pipes	1	L.S.	\$54,445	\$ 61,945
Subtotal, Stormwater System				\$ 61,945
Subtotal, All Drainage \& Erosion Control				\$77,779
Contingency (10\%)				\$ 7,778
TOTAL, DRAINAGE \& EROSION CONTROL				\$ 85,557

Mule Deer Existing Conditions
(RATIONAL METHOD Q=CIA)

BASIN	TOTAL FLOWS				$\begin{aligned} & \text { AREA } \\ & \text { TOTAL } \end{aligned}$	WEIGHTED		OVERLAND				CHANNEL				Tc TOTAL	INTENSITY		COMMENTS
	Q(5)	Q(100)	CA(equiv.)			C(S)	C(100)	C(5)	Length	Slope	Tc	Length	Slope	Velocity	Tc		1(5)	I(100)	
	(c.f.f.)	(c.f.s.)	5 YR	100 YR	(Ac)				(ft)	(ft)	(min)	(ft)	(\%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	
EX-1	3	6	0.61	0.65	0.68	0.90	0.95	0.90	5	2.4\%	0.6	460	2.4\%	4.5	1.7	5.0	5.2	9.1	
EX-2	12	40	4.99	9.98	33.27	0.15	0.30	0.15	300	3.5\%	20.4	2,585	3.5\%	4.5	9.6	29.9	2.3	4.1	
EX-3	3	16	1.44	2.88	9.59	0.15	0.30	0.15	115	4.0\%	12.1	1,215	4.0\%	4.5	4.5	16.6	3.2	5.6	

Mule Deer Existing Conditions SURFACE ROUTING

DESIGN POINT	CONTRIBUTING BASINS	CA(equivalent)		$\begin{gathered} \mathrm{Tc} \\ \text { (min.) } \\ \hline \end{gathered}$	INTENSITY		TOTAL FLOWS	
		CA(5)	CA(100)		$\begin{aligned} & 1(5) \\ & (\mathrm{in} / \mathrm{hr}) \end{aligned}$	$\begin{aligned} & 1(100) \\ & (\mathrm{in} / \mathrm{hr}) \end{aligned}$	$\begin{aligned} & Q(5) \\ & \text { (cfs) } \\ & \hline \end{aligned}$	$\begin{gathered} Q(100) \\ \text { (cfs) } \\ \hline \end{gathered}$
1	EX-1	0.61	0.65	5.0	5.2	9.1	3	6
				TRAVEL TIME				
		0.61	0.65	Typeflow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					1700	4.5	6.3	11.3
2	EX-1, EX-2, EX-3	7.04	13.50	29.9	2.3	4.1	16	55
				TRAVEL TIME				
		7.04	13.50	Typeflow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
						4.5	0.0	29.9

Mule Deer Developed Conditions

\sum_{i}^{∞}	
$\bigcirc 0$	
\bigcirc	
\bigcirc	
$\begin{aligned} & 9 \\ & 0 \\ & 4 \\ & 0 \end{aligned}$	
0	
$\begin{aligned} & z \\ & z \\ & \vdots \\ & \underset{\infty}{2} \end{aligned}$	

Mule Deer Developed Conditions SURFACE ROUTING

DESIGN POINT	CONTRIBUTING BASINS	CA(equivalent)		$\begin{gathered} \hline T c \\ (\mathrm{~min} .) \\ \hline \end{gathered}$	INTENSITY		TOTAL FLOWS	
		CA(5)	CA(100)		$\begin{gathered} 1(5) \\ (\mathrm{in} / \mathrm{h}) \end{gathered}$	$\begin{aligned} & \hline \mathrm{I}(100) \\ & (\mathrm{in} / \mathrm{hr}) \end{aligned}$	$\begin{aligned} & \text { Q(5) } \\ & \text { (cfs) } \end{aligned}$	$\begin{gathered} \begin{array}{l} Q(100) \\ \text { (cfs) } \end{array} \\ \hline \end{gathered}$
1	D-1	2.69	3.10	5.0	5.2	9.1	14	28
				TRAVEL TIME				
		2.69	3.10	Type/flow	Length (f)	Velocity (fps)	d. Time (min)	T. Time (min)
					34	5.0	0.1	5.1
2	$\begin{aligned} & \mathrm{D}-1 \\ & \mathrm{D}-2 \end{aligned}$	2.69 3.10 1.96 2.17		5.1	5.2	9.0	24	47
				TRAVEL TIME				
		4.64	5.27	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					365	5.9	1.0	6.1
3	DP-2	4.64 5.27 0.45 0.48		6.1	4.9	8.5	25	49
				TRAVEL TIME				
		5.09	5.75	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					75	5.9	0.2	6.3
4	D-5	0.61	0.65	5.0	5.2	9.1	3	6
				TRAVEL TIME				
		0.61	0.65	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					205	6.2	0.6	5.6
5	$\begin{aligned} & \text { D-5 } \\ & \text { D-4 } \end{aligned}$	0.61 0.65 1.32 1.40		5.6	5.0	8.8	10	18
				TRAVEL TIME				
		1.94	2.04	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					290	5.9	0.8	6.4
6	DP-5	$\begin{aligned} & 1.94 \\ & 0.42 \\ & \hline \hline 2.36 \end{aligned}$	$\begin{aligned} & 2.04 \\ & 0.45 \end{aligned}$	6.4	4.8	8.4	11	21
				TRAVEL TIME				
			2.49	Type/flow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					150	5.9	0.4	6.8
7	$\begin{aligned} & \mathrm{DP}-6, \mathrm{DP}-3, \\ & \mathrm{D}-9 \end{aligned}$	7.45	$\begin{aligned} & 8.24 \\ & 0.12 \\ & \hline \end{aligned}$	6.8	4.7	8.2	36	69
		0.12		TRAVEL TIME				
		7.57	8.36	Type/flow	Length (f)	Velocity (fps)	d. Time (min)	T. Time (min)
					1300	4.5	4.8	11.6
8	D-7	$\begin{aligned} & 1.00 \\ & \hline \hline 1.00 \end{aligned}$	1.05	6.9	4.7	8.2	5	9
				TRAVEL TIME				
			1.05	Typefflow	Length (ft)	Velocity (fps)	d. Time (min)	T. Time (min)
					1245	4.5	4.6	11.5
9	$\begin{aligned} & \mathrm{DP}-7, \mathrm{DP}-8 \\ & \mathrm{D}-6, \mathrm{D}-3 \end{aligned}$	8.57	$\begin{array}{r} 9.41 \\ 23.74 \\ \hline \end{array}$	11.6	3.8	6.6	112	220
		20.85		TRAVEL TIME				
		29.42	33.15	Type/flow	Length (fi)	Velocity (fps)	d. Time (min)	T. Time (min)
						4.5	0.0	11.6

Mule Deer Developed Conditions ON-GRADE INLET CALCULATIONS

						Q							Q_{100}					Bypass	
DP	Inlet size L(i)	CROSS SLOPE	$\begin{array}{\|c\|} \hline \text { STREET } \\ \text { SLOPE } \\ \hline \end{array}$	Q(5)	Q(100)	Qi (5)	T	F_{w}	L1	L2	L3	Qi (100)	T	F_{w}	L1	L2	L3	Q_{5}	Q_{100}
3		2.0\%	0.5\%	24.8	48.8		27	1.0355	22	13	47		35	1.0836	19	9	62	13.4	23.7
6		2.0\%	0.5\%	11.3	20.8	47\%	20	0.9815	15	9	33		26	1.0236	13	6	43	4.3	5.2

Mule Deer Developed Conditions
SUMP INLET CALCULATIONS
Based on formula: $0 i=1.7(L i+1.8 w)(d m a x+w / 12) 1.85$

					Q 5				Q_{100}					
DP	$\begin{gathered} \text { Inlet size } L(i) \\ \text { initial } \end{gathered}$	CROSS SLOPE	Q(5)	Q(100)	Qi (5)	$d_{\text {max }}$	W	a	$\begin{array}{\|c\|} \hline \text { Qi } \\ (100) \\ \hline \end{array}$	$\mathrm{d}_{\text {max }}$	W	a	Clogging Factor	Length Final
7	16	2.0\%	17.6	28.3	17.6	0.5	2	0.17	28.3	1.0	2	0.2	1.25	20800

\qquad
\qquad 21711239 of \qquad

Description \qquad Computed by \qquad Date \qquad
Cakulations for Nonograph in Table 1,2 of El Pase County Drainage Reference crit eric
Assumptions
$n=0013$ for concrete
$Z=\frac{1}{0.02}=50$
$\frac{z}{n}=3846$

$$
S=0.03
$$

$$
Q_{100} \text { at } D P-2=40 \text { cf s }
$$

Using nomograpt on Table 1,2

$$
\text { Depth }=0.44
$$

This is less than 0.5 " max in County Criteria

NONOGRAPH FOR FLOW IN TRIANGULAR GUTTERS
(From U.S. Dept. of Commerce, Bureau of Public Roads, 1965)

The Clity of Colorado Springs / El Paso County Drainiage Criteria Manual	$\sqrt{\text { Ocro. }}$
NOMOGRAPH FON FLOW IN TRIANGULAR GUTTERS.	$\begin{gathered} \text { Fowe } \\ 7-2 \end{gathered}$

STREET CAPACITY
FOR $1 / 2$ STREET SECTION

Scenario: 5-year

Pipe Report

Label	Upstream Node	Downstream Node	$\left\lvert\, \begin{gathered} \text { Section } \\ \text { Size } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { Number } \\ \text { of } \\ \text { Sections } \end{array}\right\|$	$\begin{gathered} \text { Full } \\ \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Total System Flow (cfs)	Length (ft)	Constructed Slope ($\mathrm{ft} / \mathrm{ft}$)		Hydraulic Grade Line Out (ft)
P-2	1-3	1-2	24	1	24.12	7.46	70.35	0.011372	0,566.18	2.565.71
P-4	1-4	1-2	24 inch	1	45.24	39.86	100.00	0.040000	0.570.36	0,565.93
P-1	1-1	1-2	24 inch	1	22.56	4.87	70.35	0.009950	8,565.89	0,565.71
P-5	I-2	$\mathrm{J}-1$	42 inch	1	92.49	73.33	57.98	0.008451	8,565.63	8,565.68
P-6	J-1	J-2	42 in	1	158.94	72.98	500.00	0.024960	0,565.10	2,551.60
P-7	J-2	J-3	42 inch	1	241.79	70.96	76.87	0.057760	0,552.28	2,546.69
P-8	J-3	O-1	42 inch	1	142.28	70.67	10.00	0.020000	0,547.53	0,546.98

Pipe Report

Label	Npstream Node	Downstrean Node	Section Size	$\left\lvert\, \begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Sections } \end{aligned}\right.$	Full Capacity (cfs)	Total System Flow (cfs)	Length (ft)	Constructed Slope (ft / t)	Hydraulid Grade Line In (ft)	Hydraulic Grade Line Out (ft)
P-2	$1-3$	1-2	24	1	24.12	10.88	70.35	0.011372	0,569.08	3,568.92
- 4	1-4	1-2	24	- 1	45.24	77.34	100.00	0.040000	2,580.61	0,568.92
P-1	1-1	1-2	24 in	1	22.56	6.77	70.35	0.009950	3,568.98	0,568.92
P-5	1-2	J-1	42 inc	1	92.49	141.50	57.98	0.008451	3,568.67	0,567.52
P-6	J-1	J-2	42 in	1	158.94	141.10	500.00	0.024960	2,565.78	6,552.51
P-7	J-2	J-3	42 in	1	241.79	138.11	76.87	0.057760	2,552.99	0,547.46
P-8	J-3	O-1	42 inch	1	142.28	137.68	10.00	0.020000	0,548.24	6,547.89

GRADING AND EROSION CONTROL PLAN
GENERAL NOTES

10. onver Is Essones mar be reaured.
EROSION CONTROL

$\substack{\text { chencric } \\ \text { func } \\ \text { fan } \\ \text { Can }}$

THRR Commas

$\underset{\text { SLI EENCE Consiruction Detall }}{\text { N.S. }}$

PRELIMINARY - NOT FOR CONSTRUCTION

REnSIONS:						
	oescripton	date				

URS
 Roobct MULE DEER SUBDIVISION - FILING 1 HeEt The graing and erosion control plan ROM No. 21711239 Job No. 21711239 \qquad

Figure 2: Existing Drainage Map

Figure 3: Proposed Drainage Map

[^0]: （19）Additional Flow Length
 （20）Street or Pipe Velocity
 （20）Street or Pipe Velocity
 （21）$=$ Column 15 OR Column 16 OR Column $20 / 60$

