FINAL DRAINAGE LETTER FOR LOT 2 CLAREMONT BUSINESS PARK 2 FILING NO. 2 EL PASO COUNTY, COLORADO

Prepared for:

DTV Meadowbrook LLC 106 S. Kyrene Road #2 Chandler, AZ 85226 (480) 313-2724

Prepared by:

M&S Civil Consultants 212 N. Wahsatch Avenue Suite 305 Colorado Springs, CO 80903 (719) 955-5485

February 2023

Project #10-025 PCD Filing No.: PPR2345

FINAL DRAINAGE LETTER FOR LOT 2 CLAREMONT BUSINESS PARK 2 FILING NO. 2 EL PASO COUNTY COLORADO

DRAINAGE PLAN STATEMENTS

ENGINEERS STATEMENT

The attached drainage plan and report was prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Virgil A. Sanchez, P.E. #37160	
For and on Behalf of M&S Civil C	onsultants, Ind

DEVELOPER'S STATEMENT

I, the developer(s) have read and will comply with all the requirements specified in this drainage report and plan.

BY:	J. J		-		
	TITLE: Ma	nager	DATE:	02-07-24	
	ADDRESS:	Brian Zurek 106 S. Kryene Road Chandler, AZ 85226			

EL PASO COUNTY'S STATEMENT

Filed in accordance with the requirements of El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Manual, as amended.

BY:_		DATE:	
	Joshua Palmer, P.E. County Engineer / ECM Administrator		

CONDITIONS:

FINAL DRAINAGE LETTER FOR CLAREMONT BUSINESS PARK 2 FILING NO. 2 EL PASO COUNTY COLORADO

TABLE OF CONTENTS

Purpose	4
General Location and Description	4
Soils	5
Previous Studies	5
Drainage Criteria	5
Floodplain Statement	6
Existing Drainage Conditions	7
Four Step Process	7
Proposed Drainage Conditions	8
Water Quality Provisions and Maintenance	11
Erosion Control	11
Construction Cost Opinion	11
Drainage & Bridge Fees	12
Summary	12
References	13

APPENDIX

Vicinity Map
Soils Map
FEMA FIRM Panel
Hydrologic Calculations
Hydraulic Calculations / SFB WQCV Calculations
BOCC Resolution 16-426
Existing Drainage Map
Proposed Drainage Map

FINAL DRAINAGE LETTER FOR LOT 2 CLAREMONT BUSINESS PARK 2 FILING NO. 2 EL PASO COUNTY COLORADO

Purpose

This Final Drainage Letter for Lot 2 Claremont Business Park 2 Filing No. 2 is in support of the commercial layout for the south half of Lot 2 and Construction Drawings of the subject site and to show the general conformance with the drainage patterns established by the **Final Drainage Report for Claremont Business Park 2 Filing No. 2** prepared by M&S Civil Consultants, Inc. This letter functions to identify the existing and proposed runoff patterns and recommend proposed drainage improvements which are intended to safely convey runoff through the properties. The arguments and adjacent properties. The arguments are forth by El Paso County and remains in compliance with the runal Drainage Report for Claremont Business Park 2 Filing No. 2 by M&S Civil Consultants.

General Location and Description

The Lot 2 Claremont Business Park 2 Filing No.2 is the commercial layout for the south half of Lot 2 of Claremont Business Park 2 Filing No.2. The site is located in the Northeast ¼ of the Northeast ¼ of Section 8, and the Southeast ¼ of the Southeast ¼ of Section 5, Township 14 South, Range 65 West of the 6th P.M. in El Paso County, Colorado. The site is bordered to the northeast by N. Marksheffel Road, to the northwest by Meadowbrook Parkway, and to the south by Claremont Business Park 2 Filing No. 1 (Lots 1-7). See Vicinity Map in Appendix for details.

The site consists of 1.808 acres which is currently vacant land. The development project will connect with the existing drive entrance and construct a commercial building, drive thru, drive aisles, parking, landscaping and utilities through the south half of the site. The Claremont Business Park 2 Filing 2 site is currently zoned "CS" and the proposed principal use for the site will be neighborhood commercial and light industrial.

In addition to the construction of the commercial building, drive aisles and utilities, an existing storm sewer system was constructed that will function to collect runoff from the Lot 2 and route to an existing sand filter basin water quality pond 3 that will be provided to treat runoff from aforementioned improvements. Modifications are to be provided to the existing storm sewer, such as install a proposed 5' Type R inlet and remove sections of existing storm sewer to route Lot 2 runoff into the pond 3. The existing pond 3 will tie into an existing system near Meadowbrook Parkway, which ultimately conveys runoff southwest into the East Fork of Sand Creek.

Per Resolution 16-426 of the BoCC, on-site WQCV is required but on-site stormwater detention is not required. (Refer to appendix).

Individual drainage letter and/or report shall be required with the development of the north half of Lot 2.

Soils

The Natural Resources Conservation Service, United States Department of Agriculture, Web Soil Survey, indicates that the soils for this project are: Blakeland Loamy Sand (8), Blendon Sandy Loam (10) and Ellicott Loamy Coarse Sand (28). These soils have been characterized as having Hydrologic Soil Types "A" & "B". The soils classification used for this study is "B". Refer to the Soils Map located in the Appendix of this report

Previous Studies

The proposed site and surrounding existing drainage facilities have been included in multiple drainage letters and reports. The following is a list of existing documents that were pertinent to analyzing this site.

- Final Drainage Report for Claremont Business Park 2 Filing No. 1, by M&S Civil Consultants, approved 2/11/2021.
- Final Drainage Report for Claremont Business Park 2 Filing No. 2, by M&S Civil Consultants, approved 11/13/2023 PCD Filing No. VR233.
- Final Drainage Letter for Lot 5 of Claremont Business Park 2 Filing No.1, by M&S Civil Consultants, approved 03/03/2021.
- Final Drainage Letter for Lot 6 of Claremont Business Park 2 Filing No.1, by M&S Civil Consultants, approved 07/08/2021.

Drainage Criteria

As required by El Paso County, Colorado, this report has been prepared in accordance to the criteria set forth in the El Paso County Drainage Criteria Manual Volume 1 & 2 (DCM), the El Paso County Engineering Criteria Manual (ECM), and El Paso County Resolutions 15-042 and 19-245.

Design Event Frequency

The 100-year storm event was used as the major storm for the project, and the 5-year storm event was used as the minor storm.

Method of Analysis

The rational method was used to calculate peak flows as the tributary areas are less than 100 acres.

Where: Q=C*i*A

Q = Maximum runoff rate in cubic feet per second (cfs)

C = Runoff coefficient

i = Average rainfall intensity (inches per hour)

A = Area of drainage sub-basin (acres)

Runoff Coefficient

Rational Method coefficients from Table 6-6 of the Drainage Criteria Manual for developed land were utilized in the Rational Method calculations. Composite percent impervious and C values were calculated using roofs, commercial areas, asphalt drives, landscaped areas and parks found within the aforementioned table.

Time of Concentration

The time of concentration consists of the initial time of overland flow and the travel time (street or channel, etc) to a downstream structure or point of interest. A minimum time of concentrations of 5 minutes is utilized for urban areas.

Rainfall Intensity

The hypothetical rainfall depths for the 1-hour storm duration were taken from Table 6-2 of the Drainage Criteria Manual.

Project 1-Hour Rainfall Depth Storm Recurrence Interval Rainfall Depth (inches) 5-year 1.50" 100-year 2.52"

The rainfall intensity equation for the Rational Method was taken from Drainage Criteria Manual Volume 1 Figure 6-5.

Hydraulic Grade Line Analysis

StormCAD was utilized to analyze the proposed storm sewer system and determine the Hydraulic Grade Line (HGL's) profiles for the major and minor storms. The standard method was used to calculate head loss in the system with K coefficients taken from Table 9-4 of the Colorado Springs DCM.

In addition to the DCM, The Mile High Flood District BMP Sizing (UD-BMPv.3.07) and Detention Design (MHFD Detention v4.06) worksheets were utilized to verify the existing water quality ponds still functions with the revised tributary areas and impervious values. The MFHD-Inlet v5.02 worksheet was utilized to calculate both the street capacities and evaluate inlet capacities.

Floodplain Statement

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel No. 08041C0756G, revised December 7, 2018. No portion of this site is located within the 100-year floodplain. See Appendix.

Existing Drainage Conditions

As the site has been graded previously with the development of Filing 1, the vegetation is sparse, consisting primarily of native grasses and weeds. Existing site terrain generally slopes from north to southwest at grade rates that vary between 1.2% and 2%. A soil retention wall runs along the eastside of the proposed site, next to U.S. Highway 24 and N. Marksheffel Road, and borders a large portion of the back of the proposed lot. An existing WQ Sand Filter Pond 3 has been constructed on the southwest corner and along the west edge of the site, which will serve as a singular water quality pond for Lot 2 and El Jefe Heights (private street). An existing 18"/24" ADS private storm drain has been constructed along the east side of Meadowbrook Parkway and into Claremont Business Park 2 Filing No.2 that extends to this existing WQ Sand Filter Pond 3.

The proposed project will construct a commercial building, drive thru, drive aisles, parking, landscaping and utilities through the south half of the site, the existing and proposed drainage analysis will be expanded to evaluate changes in drainage patterns to ensure no negative affects to downstream facilities. An existing conditions drainage map is included in the appendix of this report to accompany the following discussion.

Basins that have remained unchanged from the Final Drainage Report for Claremont Business Park 2 Filing No. 2 prepared by M&S Civil Consultants, Inc., will herein be identified with ** within the report, rational sheets and drainage maps.

Existing Conditions Detailed Drainage Discussion

Design Point 1 (Q5 = 0.6 cfs, Q100 = 3.9 cfs) consists of runoff from undeveloped **Basins **C**, ****C1**, **D**, and **D1**. **Basins **C** and ****C1** are 0.12 and 0.17 acres of existing roadway embankment located generally between the subject site and existing Marksheffel Road. **Basins D** and **D1** are 0.77 and 0.63 acres of undeveloped portions of the subject site. Runoff from the four basins is conveyed to an existing 30" dome grate inline storm system, located south and west of the site at **DP1**. An existing 18" RCP (**Pipe Run 1** (**PR1**)) will outfall the captured flows into an existing WQ Sand Filter Pond 3, located at the southwest corner of the site.

<u>Design Point 2</u> (Q5 = 2.2 cfs, Q100 = 6.9 cfs) consists of runoff from **Basin D2**, **Basin*E1**, ****E2** and **Design Point 1** (**DP1**). **Basin D2** is 0.15 acres of existing WQ Sand Filter Pond 3, **Basins **E1** and ****E2** consists 0.27 and 0.21 acres of existing El Jefe Heights (asphalt paving, curb and gutter and landscaped areas) and **DP1**. Runoff from these basins flow into an existing WQ Sand Filter Pond 3 via existing 18" RCP pipes from El Jefe Heights and from **DP1**. Runoff will be routed via an existing outfall structure and into the existing storm system which ultimately conveys runoff southwest into the East Fork of Sand Creek.

Four Step Process

The development will follow the "Four Step Process" as outlined below:

Step 1 - Employ Runoff Reduction Practices

The proposed development uses Low Impact Development (LID) practices to reduce runoff. When possible, runoff is to be directed to pervious areas to promote infiltration and limit directly connected impervious areas.

Step 2 - Stabilize Drainageways

There are no drainageways on-site to stabilize. The site is upstream of an existing 42"/48" RCP storm sewer system that discharges directly into the Sand Creek Channel via an outlet structure with wingwalls (privately owned and maintained by the Central Marksheffel Metropolitan District). The Claremont Business Park 2 Filing No.2 site has a Sand Filter Water Quality Facility, that will be constructed and/or concurrently constructed with development of this site, that will treat runoff prior to discharging to the existing storm sewer system. There will be no adverse effects on downstream developments as a result of the development of this subdivision.

Step 3 - Provide Water Quality Capture Volume

One (1) Sand Filter Basin Water Quality Facility is existing or will be constructed concurrently with the development of Lot 2 Claremont Business Park 2 Filing No.2 to provide WQCV at the time of the writing of this report.

Step 4 - Consider Need for Industrial and Commercial BMP's

This submittal provides a Preliminary Grading and Erosion Control plan. A Final GEC plan with BMPs in place shall be required with final approval of this report, Grading Plan and construction drawings. The proposed project will use silt fence, a vehicle tracking control pad, a concrete washout area, mulching and reseeding to mitigate the potential for erosion across the site.

Proposed Drainage Characteristics

General Concept Drainage Discussion

The "Final Drainage Report for Claremont Business Park 2 Filing No. 2", dated February 2023, by M&S Civil Consultants, Inc. indicated that flows discharged from the subject site were to be collected and conveyed to the East Fork of Sand Creek Channel via a storm system that was to parallel Meadowbrook Parkway. As a portion of the construction of Claremont Business Park 2 Filing No.2 the existing storm sewer system was extended along the eastern side of Meadowbrook Parkway to collect runoff from the Lots 1, 2 & 3 of Claremont Business Park 2 Filing No.2 re-plat and thus remain in compliance with the previous drainage plans and studies.

A permanent water quality pond (WQ Sand Filter Pond 3) has been constructed at the southwest corner of Lot 2 to provide treatment for the proposed roadway and Lot 2. An existing private 18" RCP has been installed to capture runoff from Lot 2 and outfalls into existing WQ Sand Filter Pond 3.

A proposed conditions drainage map is included in the Appendix of this report to accompany the following discussion.

Basins that have remained unchanged from the Final Drainage Report for Claremont Business Park 2 Filing No. 2 prepared by M&S Civil Consultants, Inc., approved 11/13/2023, will herein be identified with ** within the report, rational sheets and drainage maps. Basins that have changed from the Final Drainage Report for Claremont Business Park 2 Filing No. 2 prepared by M&S Civil Consultants, Inc., will herein be identified with # within the report, rational sheets and drainage maps. Basins, Design Points and Pipe Runs that are describing the ultimate build out (fully developed) of Lot 2, will herein be identified with *** within the report, rational sheets and drainage maps.

The ultimate build out models Lot 2 in the future should it get developed, showing the runoff coefficient for the 5- and 100-year events, as well as calculating proposed flows to the existing WQ Sand Filter Pond 3. The following Proposed Conditions Detailed Drainage Discussion Design Point 1, 2, and 3 describes the interim, where the interim includes only the proposed building shown in the Proposed Conditions Drainage Map and does not account for future development on Lot 2. The Design Point ***1 (Ultimate Build Out, 2 Ultimate Build Out (the same for interim and ultimate), and ***3 (Ultimate Build Out) models a proposed future development on Lot 2. There is no planned second development for Lot 2 at this time, however this Ultimate Build Out accounts for future development and proposed future flows to WQ Sand Filter Pond 3.

An individual drainage letter and/or report will be required with the development of the north half of Lot 2. The ultimate build out model is used to size and demonstrate the runoff routing and proposed storm system is designed properly if and when Lot 2 north gets developed. The drainage letter for the north half must demonstrate the same runoff routing and flow calculations or show the system still works if there are changes to this proposed design.

Proposed Conditions Detailed Drainage Discussion

Design Point 1 (Q5 = 0.3 cfs, Q100 = 1.6 cfs) consists of runoff from undeveloped **Basins #C** and partially developed Basin #D. Basins #C is 0.04 acres of existing roadway embankment located generally between the subject site and existing Marksheffel Road. Basins #D is 0.47 acres of partially developed land with asphalt roadway, a 5' Type R Inlet and curb and gutter, the majority of this basin is undeveloped. Runoff from these basins is routed to a proposed 5' Type R sump inlet. Runoff to this inlet will be conveyed via a proposed 15" PP pipe (Pipe Run 1 (PR1, Q5 = 0.3 cfs, Q100 = 1.6 cfs)) to Design Point 2 (DP2) and eventually Please discuss the to existing WQ Sand Filter Pond 3.

emergency pathway

in case the sump inlet Design Point 2 (Q5 = 3.7 cfs, Q100 = 7.2 cfs) consists of rui becomes clogged. Basin #C1 is 0.26 acres of existing roadway embankment | This comment is existing Marksheffel Road. Basins #D1 is 0.93 acres of applied to 2 proposed Development includes connection with the existing drive sump inlets. building, drive thru, drive aisles, parking, landscaping and ut portion of the site is undeveloped. Runoff from these basins is routed to a proposed 5' Type R inlet.

eloped Basin #D1. ne subject site and the subject site. n of a commercial of the site. A small

Removal of approximately 12' of existing 18" RCP will be required to install the proposed inlet. The inlet shall be installed with non-shrink cementitious grout to fill voids and fasten the inlet and pipe together. The remaining existing 18" RCP (Pipe Run 2 (PR2, Q5 = 4.0 cfs, Q100 = 8.8 cfs)) will route the combined captured flows from **DP1** and **DP2** and will outfall into an existing WQ Sand Filter Pond 3, located at the southwest corner of the site. The flows routed to existing WQ Sand Filter Pond 3 from Lot 2 are less than the flows cited in the approved Claremont Business Park 2 Filing No.2 Final Drainage Report (**PR6A**, Q5 = 6.0 cfs, Q100 = 11.6 cfs), hence there will be no negative impact on the downstream storm system.

Design Point 3 (Q5 = 6.1 cfs, Q100 = 12.9 cfs) consists of runoff from Basin #D2, Basin**E1, **E2 and PR2. Basin D2 is 0.15 acres of existing WQ Sand Filter Pond 3, Basins **E1 and **E2 consists 0.27 and 0.21 acres of existing El Jefe Heights (asphalt paving, curb and gutter and landscaped areas) and PR2. Runoff from these basins flow into an existing WQ Sand Filter Pond 3 via existing 18" RCP pipes from El Jefe Heights and from PR2. Runoff will be treated and routed via an existing outfall structure and into the existing storm system which ultimately conveys runoff southwest into the East Fork of Sand Creek. The flows routed to existing WQ Sand Filter Pond 3 are less than the flows cited in the approved Claremont Business Park 2 Filing No.2 Final Drainage Report (DP6, Q5 = 7.8 cfs, Q100 = 14.6 cfs), hence there will be no negative impact on the existing WQ Pond 3 and the downstream storm system.

<u>Design Point ***1 (Ultimate Build Out)</u> (Q5 = 1.8 cfs, Q100 = 3.4 cfs) consists of runoff from undeveloped **Basins #C** and future developed **Basin ***D**. **Basins #C** is 0.04 acres of existing roadway embankment located generally between the subject site and existing Marksheffel Road. **Basins ***D** has no current builder but has been assigned a commercial area runoff coefficient number (5-yr 0.81 and 100-yr 0.88) applied to it. **Basins ***D** is 0.47 acres of future developed land and will route flows to a 5' Type R sump inlet. Runoff to this inlet will be conveyed via a proposed 15" PP pipe (**Pipe Run 1** (**PR1**, Q5 = 1.8 cfs, Q100 = 3.4 cfs)) to **Design Point 2** (**DP2**) and eventually to existing WQ Sand Filter Pond 3.

Design Point 2 (Ultimate Build Out) (Q5 = 3.7 cfs, Q100 = 7.2 cfs) consists of runoff from **Basin #C1** and developed **Basin #D1**. **Basin #C1** is 0.26 acres of existing roadway embankment located generally between the subject site and existing Marksheffel Road. **Basins #D1** is 0.93 acres of the fully developed portion of the subject site. Development includes connection with the existing drive entrance and construction of a commercial building, drive thru, drive aisles, parking, landscaping and utilities through the south half of the site. Runoff from these basins is routed to a proposed 5' Type R sump inlet. Removal of approximately 12' of existing 18" RCP will be required to install the proposed inlet. The inlet shall be installed with non-shrink cementitious grout to fill voids and fasten the inlet and pipe together. The remaining existing 18" RCP (**Pipe Run ***2** (**PR***2**, Q5 = 5.5 cfs, Q100 = 10.6 cfs)) will route the combined captured flows from **DP1** and **DP2** and will outfall into an existing WQ Sand Filter Pond 3, located at the southwest corner of the site. The flows routed to existing WQ Sand Filter Pond 3 from Lot 2 are less than the flows cited in the Claremont Business Park 2 Filing No.2 Final Drainage Report (**PR6A**, Q5 = 6.0 cfs, Q100 = 11.6 cfs), hence there will be no negative impact on the downstream storm system.

<u>Design Point***3</u> (Q5 = 7.3 cfs, Q100 = 14.6 cfs) consists of runoff from **Basin #D2**, **Basin**E1**, ****E2** and **PR***2**. **Basin #D2** is 0.15 acres of existing WQ Sand Filter Pond 3, **Basins **E1** and ****E2** consists 0.27 and 0.21 acres of existing El Jefe Heights (asphalt paving, curb and gutter and landscaped areas) and

PR*2**. Runoff from these basins flow into an existing WQ Pond 3 via existing 18" RCP pipes from El Jefe Heights and from **PR***2**. Runoff will be treated and routed via an existing outfall structure and into the existing storm system which ultimately conveys runoff southwest into the East Fork of Sand Creek. The flows routed to existing WQ Sand Filter Pond 3 are equivalent to the flows cited in the approved Claremont Business Park 2 Filing No.2 Final Drainage Report (**DP6**, Q5 = 7.8 cfs, Q100 = 14.6 cfs), hence there will be no negative impact on the existing WQ Sand Filter Pond 3 and the downstream storm system.

Water Quality Provision and Maintenance

The subject site was previously analyzed within the Final Drainage Report for Claremont Business Park 2 Filing No. 2 prepared by M&S Civil Consultants, Inc. Per Resolution 16-426 of the BoCC, on-site WQCV is required but on-site stormwater detention is not required per the FDR for Claremont Business Park Filing 2. The water quality volume required for the site has been determined using the MHFD UD-Detention workbook per the guidelines set forth in the City of Colorado Springs/El Paso County Drainage Criteria Manual - Volume II.

As previously discussed, water quality for the site will be provided by an existing WQ Sand Filter Basin Pond 3, PCD Filing NO. VR233. WQ Sand Filter Pond 3 is to be constructed prior to development of Lot 2 or concurrently with development of Lot 2 and will function to treat runoff from the newly constructed improvements (roadway, sidewalks) and Lot 2 or approximately 2.32 acres at 80.3% imperviousness. WQ Sand Filter Pond 3 will provide 0.051 acre-feet of water quality storage and shall be maintained by the property owners. Flows tributary to the WQ Sand Filter Pond 3 are released through outlet structure into an existing storm sewer system located along Meadowbrook Parkway. Access shall be granted to the owner and El Paso County for access and maintenance of the private WQ Sand Filter Basin Pond 3 facility. A private maintenance agreement document shall accompany the final drainage report submittal with construction of the WQ Sand Filter Pond 3.

Erosion Control

It is the policy of the El Paso County that a grading and erosion control plan (GEC) with the drainage report. The GEC incorporates silt fence, vehicle traffic control, inlet and outlet controls, sediment basin and other best management practices (BMP's) as identified in the DCM Volume 2.

Construction Cost Opinion

Private Drainage Facilities (NON-Reimbursable) Including Sand Filter WQ Pond 3:

Item	Description	Quantity	Unit Cost	Cost
	Remove 18" RCP & 30" Grate inline			
1.	storm	12 LF	\$50 /LF	\$600.00
2.	15" PP	66 LF	\$55 /LF	\$3,630.00
3.	Type R 5' Sump Inlet	1 EA	\$6,500 /EA	\$6,500.00
2.	Type R 5' Sump Inlet connect to Ex. RCP	1 EA	\$7,500 /EA	\$7,500.00

	\$18,230.00
Engineering Costs (10%)	\$1,823.00
Total	\$20,053.00

M & S Civil Consultants, Inc. (M & S) cannot and does not guarantee the construction cost will not vary from these opinions of probable costs. These opinions represent our best judgment as design professionals familiar with the construction industry and this development in particular. The above is only an estimate of the facility cost in 2023.

Drainage and Bridge Fees

This site is in the Sand Creek Drainage Basin. The site was previously subdivided into ten commercial lots as a portion of Claremont Business Park 2, Filing No.1. The proposed site has been re-platted as Claremont Business Park 2, Filing No.2.

<u>Drainage fees were paid at the time of the previous platting as Tract C of Claremont Business Park Filing No. 2 (Reception No. 207712506), therefore no additional Drainage Bridge and/or Pond fees are required.</u>

Summary

The proposed design meets the design assumptions utilized in the "Final Drainage Report for Claremont Business Park 2 Filing No. 2", by M&S Civil Consultants, Inc. The "Final Drainage Report for Claremont Business Park 2 Filing No. 2" calculated that DP 6 generated of (Q5=7.8 cfs and Q100=14.6). The proposed development (Lot 2, DP3) will generate Q5=6.1 cfs and Q100=12.9 which is less than what was anticipated by the Final Drainage Report for Claremont Business Park 2 Filing No. 2. Also, the ultimate build out of the proposed development (Lot 2, DP***3) will generate Q5=7.5 cfs and Q100=14.6 which is less than what was anticipated by the Final Drainage Report for Claremont Business Park 2 Filing No. 2. Therefore, the proposed development shall not have a negative impact on the downstream storm system and is adequately sized to convey the proposed generated flows. Thus, the development of Lot 2 Claremont Business Park 2 Filing No.2 shall not adversely affect the surrounding development. The proposed drainage facilities will adequately convey, detain and route runoff from the onsite & offsite flows to existing facilities. Owner/developer of the lot shall comply with this final drainage report that will be submitted. Care will be taken to accommodate overland emergency flow routes on site and temporary drainage conditions.

References

- 1. "El Paso County and City of Colorado Springs Drainage Criteria Manual".
- 2. "Urban Storm Drainage Criteria Manual"
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at the following link: http://websoilsurvey.sc.egov.usda.gov/. Accessed: February 02, 2023.
- 4. Flood Insurance Rate Map (FIRM), Federal Emergency Management Agency, Effective dated December 7, 2018.
- 5. "Final Drainage Report for Claremont Business Park 2 Filing No. 1", by M&S Civil Consultants, approved 2/11/2021.
- 6. Final Drainage Report for Claremont Business Park 2 Filing No. 2, by M&S Civil Consultants, approved 11/13/2023.
- 7. "Final Drainage Letter for Lot 5 of Claremont Business Park 2 Filing No.1", by M&S Civil Consultants, approved 03/03/2021.
- 8. "Final Drainage Letter for Lot 6 of Claremont Business Park 2 Filing No.1", by M&S Civil Consultants, approved 07/08/2021.



Appendix

Vicinity Map

$\frac{\text{VICINITY MAP}}{\text{N.T.S.}}$

Soils Map

Zurel	Map unit symbol	Map unit name	Rating
ian	8	Blakeland loamy sand, 1 to 9 percent slopes	Α
2\Br	10	Blendon sandy loam, 0 to 3 percent slopes	В
Lot	28	Ellicott loamy coarse sand, 0 to 5 percent slopes	Α

SOILS MAP

212 N. WAHSATCH AVE., STE 305 COLORADO SPRINGS, CO 80903 PHONE: 719.955.5485

FEMA FIRM Panel

FLOOD HAZARD INFORMATION

LEGEND

SITE BOUNDARY

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR DRAFT FIRM PANEL LAYOUT

Future Conditions 1% Annual Chance Flood Hazard Zone X

Area with Reduced Flood Risk due to Levee See Notes Zone X

Area with Flood Risk due to Levee Zone D

Cross Sections with 1% Annual Chance

NOTES TO USERS

National Flood Insurance Program

PANEL 0756 0756

1 inch = 500 feet

0

250

||

Scale in Feet FIRM MAP

LOT 2 CLAREMONT BUSINESS PARK 2 FILING NO. 2

HYDROLOGIC CALCULATIONS

FINAL DRAINAGE REPORT FOR LOT 2 CLAREMONT BUSINESS PARK 2 FILING NO.2 EXISTING DRAINAGE CALCULATIONS

(Area Runoff Coefficient Summary)

				OOFS 0.73-0 LT DRIVES		YARD 0.3 AREAS 0.	2-0.39 GRAVE 30-0.50 LIGHT 59-0.70 COM REAS 0.81-0.	T INDUST MERCIAL	GREEN	BELTS/AGRI.	WEIGHTED		
BASIN	BASIN TOTAL TOTAL (SF) (Acres) (Acres) Control TOTAL TOTAL AREA AREA AREA C5 C100					AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	C ₅	C ₁₀₀
**C	5372.3	0.12	0.00	0.90	0.96	0.00	0.12	0.39	0.12	0.09	0.36	0.09	0.36
**C1	7457.3	0.17	0.00	0.90	0.96	0.00	0.12	0.39	0.17	0.09	0.36	0.09	0.36
D	33587.9	0.77	0.00	0.90	0.96	0.03	0.12	0.39	0.74	0.09	0.36	0.09	0.36
D1	27332.4	0.63	0.00	0.90	0.96	0.15	0.12	0.39	0.48	0.09	0.36	0.10	0.37
D2	6696.0	0.15	0.00	0.90	0.96	0.03	0.12	0.39	0.12	0.09	0.36	0.10	0.37
**E1	11683.7	0.27	0.22	0.90	0.96	0.05	0.81	0.88	0.00	0.09	0.36	0.88	0.95
**E2	9082.0	0.21	0.17	0.90	0.96	0.04	0.81	0.88	0.00	0.09	0.36	0.88	0.95

^{**~} Claremont Business Park 2 Filing No.2 FDR, prepared by MS Civil Consultants, Inc.

Calculated by: GT

Date: 8/2/2023

FINAL DRAINAGE REPORT FOR LOT 2 CLAREMONT BUSINESS PARK 2 FILING NO.2 EXISTING DRAINAGE CALCULATIONS

(Area Drainage Summary)

From Area	Runoff Coefficient Sum	nary			ST	STREET / CHANNEL FLOW				$Travel(T_t)$	INTENSITY *		TOTAL FLOWS					
BASIN	TOTAL		RASIN C. C. C.		C ₅	Length	Height	T_{C}	Length	Slope	Velocity	T _t	*TOTAL	CHECK	I ₅	I ₁₀₀	Q_5	Q ₁₀₀
	(Acres)	From DCI	M Table 5-1		(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	
**C	0.12	0.09	0.36	0.09	40	16.0	3.4	0	0.0%	0.0	0.0	5.0	10.2	5.2	8.7	0.1	0.4	
**C1	0.17	0.09	0.36	0.09	60	22.0	4.3	0	0.0%	0.0	0.0	5.0	10.3	5.2	8.7	0.1	0.5	
D	0.77	0.09	0.36	0.09	60	1.2	11.2	250	1.6%	1.9	2.2	13.4	11.7	3.9	6.5	0.3	1.8	
D1	0.63	0.10	0.37	0.10	60	1.2	11.2	250	1.6%	1.9	2.2	13.4	11.7	3.9	6.5	0.2	1.5	
D2	0.15	0.10	0.37	0.10	15	6.0	2.1	63	0.5%	0.7	1.5	5.0	10.4	5.2	8.7	0.1	0.5	
**E1	0.27	0.88	0.95	0.88	30	0.6	1.7	280	2.0%	2.8	1.6	5.0	11.7	5.2	8.7	1.2	2.2	
**E2	0.21	0.88	0.95	0.88	30	0.6	1.7	280	2.0%	2.8	1.6	5.0	11.7	5.2	8.7	1.0	1.7	

^{*} Intensity equations assume a minimum travel time of 5 minutes.

Calculated by: GT

Date: 8/2/2023

^{**~} Claremont Business Park 2 Filing No.2 FDR, prepared by MS Civil Consultants, Inc.

FINAL DRAINAGE REPORT FOR LOT 2 CLAREMONT BUSINESS PARK 2 FILING NO.2 EXISTING DRAINAGE CALCULATIONS

(Basin Routing Summary)

	From Area Runoff Coefficient Summary	_			OVI	ERLAND		PIPE	/ CHA	NNEL FLO	W	Time of Travel (T ,)	INTEN	VSITY *	TOTAL	FLOWS	
DESIGN POINT	CONTRIBUTING BASINS	CA ₅	CA ₁₀₀	C ₅	C ₅ Length Height T _C			Length	Slope	Velocity	T _t	*TOTAL	I ₅	I ₁₀₀	Q_5	Q_{100}	COMMENTS
	DPS AND/OR PIPES				(ft) (ft) (min)			(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	
1	**C, **C1, D, D1	0.16	0.61		Basin D Tc used +			+ Basin D1 routing			12.3	3.8	6.4	0.6	3.9	Existing 30" Dome Grate	
							11.7	56	1.0%	1.5	0.6						
2	D2, **E1, **E2, DP1	0.59	1.12		DP1 Tc used				ting			13.8	3.6	6.1	2.2	6.9	Existing WQ Pond 3
							12.3	63	0.5%	0.7	1.5						

^{*} Intensity equations assume a minimum travel time of 5 minutes.

Calculated by: GT

Date: 8/2/2023

^{**~} Claremont Business Park 2 Filing No.2 FDR, prepared by MS Civil Consultants, Inc.

FINAL DRAINAGE REPORT FOR LOT 2 CLAREMONT BUSINESS PARK 2 FILING NO.2 EXISTING DRAINAGE CALCULATIONS

(Storm Sewer Routing Summary)

					Inten	sity*	Fle	ow	Pipe Size
PIPE RUN	Contributing Pipes/Design Points	Equivalent CA 5	Equivalent CA ₁₀₀	Maximum T _C	I_5	I_{100}	Q 5 Q 100		
1	DP1	0.16	0.61	12.3	3.8	6.4	0.6	3.9	EX 18" RCP

^{*} Intensity equations assume a minimum travel time of 5 minutes.

DP - Design Point

FB- Flow By from Design Point

PR - Pipe Run

INT- Intercepted Flow from Design Point

Calculated by: GT

Date: 8/2/2023

FINAL DRAINAGE REPORT FOR LOT 2 CLAREMONT BUSINESS PARK 2 FILING NO.2 PROPOSED DRAINAGE CALCULATIONS

(Area Runoff Coefficient Summary)

	ROOFS 0.73-0.81 ASPHALT DRIVES 0.90-0.96				LANDSC GRAVEL S LIGHT IN	ARKS 0.12-0 APED AREAS TORAGE YAI VDUST AREA RCIAL AREAS	0.16-0.41 RD 0.30-0.50 S 0.59-0.70	GREEN	BELTS/AGRI.	WEIGHTED			
BASIN	TOTAL AREA (SF)	TOTAL AREA (Acres)	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	AREA C ₅ C ₁₀₀ (Acres)		C ₁₀₀	C ₅ C ₁₀₀	
# <i>C</i>	1664.0	0.04	0.00	0.90	0.96	0.00	0.16	0.41	0.04	0.09	0.36	0.09	0.36
#C1	11176.5	0.26	0.00	0.90	0.96	0.00	0.16	0.41	0.26	0.09	0.36	0.09	0.36
# D	20496.0	0.47	0.03	0.90	0.96	0.07	0.12	0.39	0.37	0.09	0.36	0.15	0.40
***D	20496.0	0.47	0.00	0.90	0.96	0.47	0.81	0.88	0.00	0.09	0.36	0.81	0.88
# D 1	40410.0	0.93	0.00	0.90	0.96	0.93	0.81	0.88	0.00	0.09	0.36	0.81	0.88
# D 2	6696.0	0.15	0.00	0.90	0.96	0.15	0.12	0.39	0.00	0.09	0.36	0.12	0.39
**E1	11683.7	0.27	0.22	0.90	0.96	0.05	0.81	0.88	0.00	0.09	0.36	0.88	0.95
**E2	9082.0	0.21	0.17	0.90	0.96	0.04	0.81	0.88	0.00	0.09	0.36	0.88	0.95

^{**~} Claremont Business Park 2 Filing No.2 FDR Prepared by MS Civil Consultants, Inc.

Calculated by: GT

Date: 2/2/2024

^{#~} Basin area revised from Claremont Business Park 2 Filing No.2 FDR Prepared by MS Civil Consultants, Inc.

^{***~} Ultimate build out. Development of Lot 2 (North half)

FINAL DRAINAGE REPORT FOR LOT 2 CLAREMONT BUSINESS PARK 2 FILING NO.2 PROPOSED DRAINAGE CALCULATIONS

(Area Drainage Summary)

From Area Rui	noff Coefficient Sum	mary			OVERL.	4ND		ST	REET / CH	ANNEL FLO	OW .	Time of T	ravel (T _t)	INTEN	SITY *	TOTAL	FLOWS
BASIN	AREA TOTAL	C ₅	C ₁₀₀	C ₅	Length	Height	T _C	Length	Slope	Velocity	T _t	*TOTAL	CHECK	I ₅	I ₁₀₀	Q ₅	Q ₁₀₀
	(Acres)	From DC	M Table 5-1		(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
# <i>C</i>	0.04	0.09	0.36	0.09	40	16.0	3.4	0	0.0%	0.0	0.0	5.0	10.2	5.2	8.7	0.0	0.1
#C1	0.26	0.09	0.36	0.09	60	22.0	4.3	0	0.0%	0.0	0.0	5.0	10.3	5.2	8.7	0.1	0.8
# D	0.47	0.15	0.40	0.15	60	2.0	9.0	215	3.0%	2.6	1.4	10.3	11.5	4.1	6.8	0.3	1.3
*** D	0.47	0.81	0.88	0.81	40	1.5	2.1	268	2.6%	3.2	1.4	5.0	11.7	5.2	8.7	2.0	3.6
# D 1	0.93	0.81	0.88	0.81	30	2.0	1.5	250	1.4%	2.4	1.8	5.0	11.6	5.2	8.7	3.9	7.1
#D2	0.15	0.12	0.39	0.12	15	6.0	2.0	63	0.5%	1.4	0.7	5.0	10.4	5.2	8.7	0.1	0.5
**E1	0.27	0.88	0.95	0.88	30	0.6	1.7	280	2.0%	2.8	1.7	5.0	11.7	5.2	8.7	1.2	2.2
**E2	0.21	0.88	0.95	0.88	30	0.6	1.7	280	2.0%	2.8	1.7	5.0	11.7	5.2	8.7	1.0	1.7

^{*} Intensity equations assume a minimum travel time of 5 minutes.

Calculated by: GT

Date: 2/2/2024

^{**~} Claremont Business Park 2 Filing No.2 FDR Prepared by MS Civil Consultants, Inc.

^{#~} Basin area revised from Claremont Business Park 2 Filing No.2 FDR Prepared by MS Civil Consultants, Inc.

^{***~} Ultimate build out. Development of Lot 2 (North half)

FINAL DRAINAGE REPORT FOR LOT 2 CLAREMONT BUSINESS PARK 2 FILING NO.2 PROPOSED DRAINAGE CALCULATIONS

(Basin Routing Summary)

	From Area Runoff Coefficient Summary				OVE	RLAND		PIPE	/ CHA	NNEL FLOW Time of Travel (T_t)		INTENSITY *		TOTAL FLOWS			
DESIGN POINT	CONTRIBUTING BASINS	CA ₅	CA ₁₀₀	C ₅	Length	Height	T _C	Length	Slope	Velocity	T_t	*TOTAL	I_5	I ₁₀₀	Q_5	Q_{100}	COMMENTS
	DPS AND/OR PIPES				(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)	
1	#C, #D	0.07	0.20			Bas	in #C Tc + B	asin D routing	g used			6.4	4.8	8.1	0.3	1.6	Proposed 5' Type R Inlet
							5.0	215	3.0%	2.6	1.4						
***1	#C, ***D	0.38	0.43			Basin	#C Tc + Bas	in ***D routi	ing used		1	6.4	4.8	8.1	1.8	3.4	Proposed 5' Type R Inlet
							5.0	268	2.6%	3.2	1.4						
2	#C1, #D1	0.77	0.91			Basin	#C1 Tc used	+ Basin #D1	routing			6.8	4.7	7.9	3.7	7.2	Proposed 5' Type R Inlet
							5.0	250	1.4%	2.4	1.8						
3	#D2, PR2, **E1, **E2	1.29	1.62				DP2	Tc used				6.8	4.7	7.9	6.1	12.9	Existing WQ Pond 3
***3	#D2, ***PR2, **E1, **E2	1.60	1.85	DP2 Tc used					6.8	4.7	7.9	7.5	14.6	Existing WQ Pond 3			

^{*} Intensity equations assume a minimum travel time of 5 minutes.

Calculated by: GT

Date: 2/2/2024

Date. 2/2/2024

^{**~} Claremont Business Park 2 Filing No.2 FDR Prepared by MS Civil Consultants, Inc.

^{#~} Basin area revised from Claremont Business Park 2 Filing No.2 FDR Prepared by MS Civil Consultants, Inc.

^{***~} Ultimate build out. Development of Lot 2 (North half)

FINAL DRAINAGE REPORT FOR LOT 2 CLAREMONT BUSINESS PARK 2 FILING NO.2 PROPOSED DRAINAGE CALCULATIONS

(Storm Sewer Routing Summary)

					Intensity*		Fle	ow	Pipe Size
PIPE RUN	Contributing Pipes/Design Points	Equivalent CA 5	Equivalent CA ₁₀₀	Maximum T _C	I_5	I_{100}	Q 5	Q 100	
1	DP1	0.07	0.20	6.4	4.8	8.1	0.3	1.6	PROP 15" PP
***1	***DP1	0.38	0.43	6.4	4.8	8.1	1.8	3.4	PROP 15" PP
2	DP2, PR1	0.85	1.11	6.8	4.7	7.9	4.0	8.8	EX 18" RCP
***2	DP2, ***PR1	1.16	1.34	6.8	4.7	7.9	5.5	10.6	EX 18" RCP

^{*} Intensity equations assume a minimum travel time of 5 minutes.

DP - Design Point

PR - Pipe Run

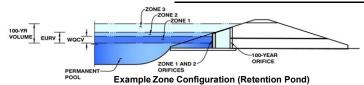
FB- Flow By from Design Point

INT- Intercepted Flow from Design Point

Calculated by: GT

Date: 2/2/2024 Checked by: VAS

***Ulitmate build out. Development of Lot 2 (north half)


HYDRAULIC CALCULATIONS / SFB WQCV CALCULATIONS

MHFD-Detention, Version 4.06 (July 2022)

Project: Claremont Business Park 2 Filing No. 2

Basin ID: Lot 2 - Pond 3 (EX WQ SAND FILTER POND 3 DESIGNED AND CONSTRUCTED WITH PCD FILING NO. VR 233)

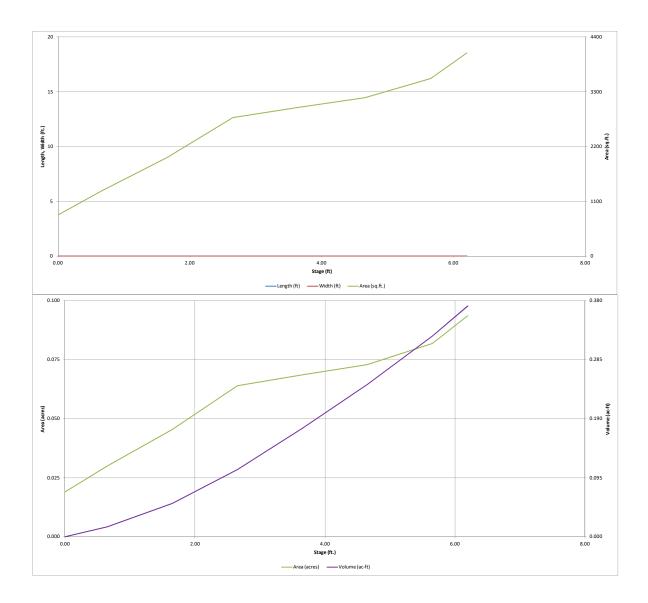
Watershed Information

Selected BMP Type =	SF	
Watershed Area =	2.32	acres
Watershed Length =	383	ft
Watershed Length to Centroid =	150	ft
Watershed Slope =	0.036	ft/ft
Watershed Imperviousness =	80.30%	percent
Percentage Hydrologic Soil Group A =	70.0%	percent
Percentage Hydrologic Soil Group B =	30.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	12.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydrograph Procedure.

Water Quality Capture Volume (WQCV) =	0.051	acre-feet
Excess Urban Runoff Volume (EURV) =	0.234	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.161	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.208	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.249	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.297	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.341	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	0.393	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	0.506	acre-feet
Approximate 2-yr Detention Volume =	0.162	acre-feet
Approximate 5-yr Detention Volume =	0.211	acre-feet
Approximate 10-yr Detention Volume =	0.255	acre-feet
Approximate 25-yr Detention Volume =	0.294	acre-feet
Approximate 50-yr Detention Volume =	0.316	acre-feet
Approximate 100-yr Detention Volume =	0.339	acre-feet

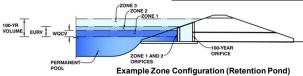

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.051	acre-feet
Zone 2 Volume (100-year - Zone 1) =	0.288	acre-feet
Select Zone 3 Storage Volume (Optional) =		acre-feet
Total Detention Basin Volume =	0.339	acre-feet
Initial Surcharge Volume (ISV) =	N/A	ft ³
Initial Surcharge Depth (ISD) =	N/A	ft
Total Available Detention Depth $(H_{total}) =$	user	ft
Depth of Trickle Channel $(H_{TC}) =$	N/A	ft
Slope of Trickle Channel (S_{TC}) =	N/A	ft/ft
Slopes of Main Basin Sides $(S_{main}) =$	user	H:V
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	

Optional User Overrides

	acre-feet
	acre-feet
1.19	inches
1.50	inches
1.75	inches
2.00	inches
2.25	inches
2.52	inches
	inches

	i i									
	Depth Increment =		ft							
			Optional				Optional			
	Stage - Storage	Stage	Override	Length	Width	Area (ft²)	Override Area (ft ²)	Area	Volume (ft ³)	Volume
	Description Media Surface	(ft) 	Stage (ft) 0.00	(ft) 	(ft) 		1,045	(acre) 0.024	(11.)	(ac-ft)
6370.35	rieula Surface								022	0.040
			0.65				1,487	0.034	823	0.019
			1.65				2,280	0.052	2,706	0.062
			2.65				3,273	0.075	5,483	0.126
			3.65		-		3,616	0.083	8,927	0.205
			4.65				3,890	0.089	12,680	0.291
			5.65		-		4,175	0.096	16,713	0.384
			6.20		-		4,780	0.110	19,176	0.440
					-					
					-					
verrides										
re-feet										
re-feet										
ches										
ches										
ches										
ches					-					
ches										
ches										
ches										
					-					
					-					
					-					
					-					
					-					
					-					
					-					
									l	


MHFD-Detention_v4-06 (Lot 2 Pond 3).xlsm, Basin 2/23/2023, 7:25 PM

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)

Project: Claremont Business Park 2 Filing No. 2

Basin ID: Lot 2 - Pond 3 (EX WQ SAND FILTER POND 3 DESIGNED AND CONSTRUCTED WITH PCD FILING NO. VR 233)

	Estimated	Estimated	
_	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	1.44	0.051	Filtration Media
Zone 2 (100-year)	5.18	0.288	Weir&Pipe (Restrict)
Zone 3			
•	Total (all zones)	0.339	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

2.50 ft (distance below the filtration media surface) Underdrain Orifice Invert Depth = Underdrain Orifice Diameter = 0.84 inches

Calculated Parameters for Underdrain Underdrain Orifice Area 0.0 Underdrain Orifice Centroid : feet 0.04

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Centroid of Lowest Orifice = N/A ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate N/A ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing N/A inches Orifice Plate: Orifice Area per Row = N/A sa, inches

Calculated Parameters for Plate WQ Orifice Area per Row N/A ft² Elliptical Half-Width N/A feet Elliptical Slot Centroid N/A feet Elliptical Slot Area = ft² N/A

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	N/A							
Orifice Area (sq. inches)	N/A							

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Orifice Area (sq. inches)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

User Input: Vertical Orifice (Circular or Rectangular)

Not Selected Not Selected Invert of Vertical Orifice ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Vertical Orifice : ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Diameter inches

Calculated Parameters for Vertical Orif Not Selected Not Selected Vertical Orifice Area Vertical Orifice Centroid :

Calculated Parameters for Overflow W

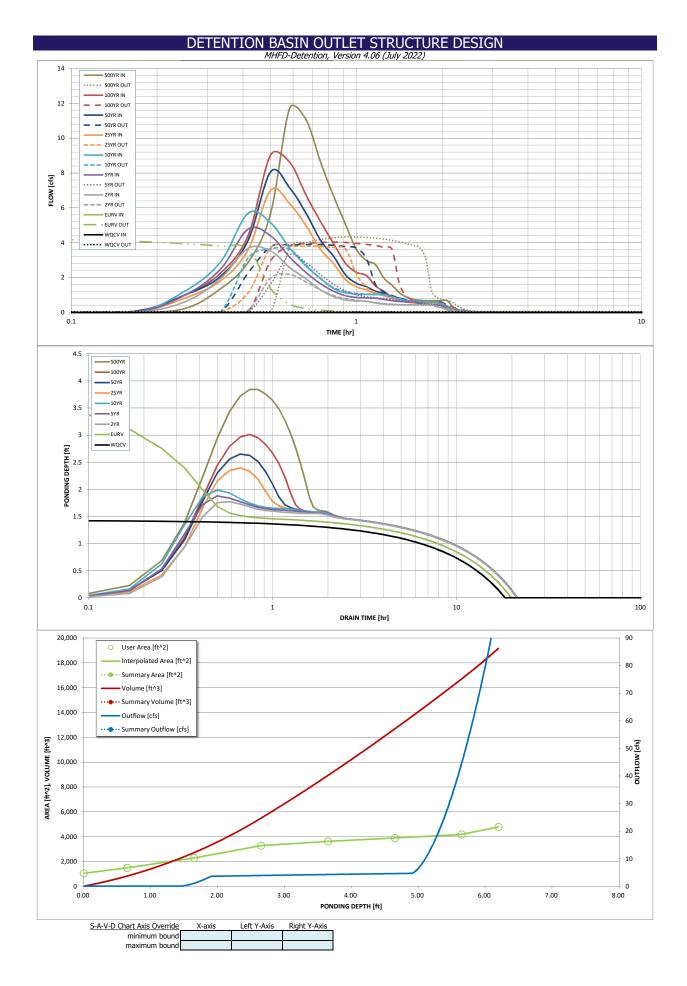
User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe)

	Zone 2 Weir	Not Selected		Zone 2 Weir	Not Selecte
Overflow Weir Front Edge Height, Ho =	1.45		ft (relative to basin bottom at Stage = 0 ft) $$ Height of Grate Upper Edge, H_t =	1.45	
Overflow Weir Front Edge Length =	3.00		feet Overflow Weir Slope Length =	3.00	
Overflow Weir Grate Slope =	0.00		H:V Grate Open Area / 100-yr Orifice Area =	17.58	
Horiz. Length of Weir Sides =	3.00		feet Overflow Grate Open Area w/o Debris =	6.26	
Overflow Grate Type =	Type C Grate		Overflow Grate Open Area w/ Debris =	1.88	
Debris Clogging % =	70%		%		·

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla Zone 2 Restrictor Not Selected Zone 2 Restrictor Not Selected Depth to Invert of Outlet Pipe Outlet Orifice Area 0.36 2.75 ft (distance below basin bottom at Stage = 0 ft) 18.00 Outlet Orifice Centroid 0.23 Outlet Pipe Diameter inches Restrictor Plate Height Above Pipe Invert = Half-Central Angle of Restrictor Plate on Pipe = 4.60 inches 1.06 N/A

User Input: Emergency Spillway (Rectangular or Trapezoidal)


ft (relative to basin bottom at Stage = 0 ft) Spillway Invert Stage= 4.90 Spillway Crest Length 18.00 feet Spillway End Slopes H:V 4.00 Freeboard above Max Water Surface = 1.00 feet

Calculated Parameters for Spillway Spillway Design Flow Depth= 0.19 feet Stage at Top of Freeboard : 6.09 feet Basin Area at Top of Freeboard 0.11 acres Basin Volume at Top of Freeboard = 0.43 acre-ft

Routed Hydrograph Results Design Storm Return Period

0.0	CUHP Runoff Volume (acre-ft) =
N	Inflow Hydrograph Volume (acre-ft) =
N	CUHP Predevelopment Peak Q (cfs) =
N	OPTIONAL Override Predevelopment Peak Q (cfs) =
N	Predevelopment Unit Peak Flow, q (cfs/acre) =
N	Peak Inflow Q (cfs) =
0	Peak Outflow Q (cfs) =
N	Ratio Peak Outflow to Predevelopment Q =
Filtratio	Structure Controlling Flow =
N	Max Velocity through Grate 1 (fps) =
N	Max Velocity through Grate 2 (fps) =
1	Time to Drain 97% of Inflow Volume (hours) =
1	Time to Drain 99% of Inflow Volume (hours) =
1.	Maximum Ponding Depth (ft) =
0.	Area at Maximum Ponding Depth (acres) =

ograpii kesuits	The user can over	ide the deladit Cor	ip nyuroyrapiis and	Turion volumes by	entering new value	s in the millow mya	rograpiis table (Col	unins W Unrough Ar
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52
CUHP Runoff Volume (acre-ft) =	0.051	0.234	0.161	0.208	0.249	0.297	0.341	0.393
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.161	0.208	0.249	0.297	0.341	0.393
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.0	0.1	0.5	1.4	2.0	2.8
verride Predevelopment Peak Q (cfs) =	N/A	N/A						
lopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.02	0.03	0.20	0.61	0.86	1.20
Peak Inflow Q (cfs) =	N/A	N/A	3.7	4.8	5.7	7.0	8.1	9.0
Peak Outflow Q (cfs) =	0.0	4.3	2.2	3.3	3.6	3.8	3.9	4.0
Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	49.0	7.8	2.7	2.0	1.4
Structure Controlling Flow =	Filtration Media	Outlet Plate 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	0.69	0.34	0.5	0.6	0.6	0.6	0.6
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Drain 97% of Inflow Volume (hours) =	18	17	19	19	18	18	17	17
Drain 99% of Inflow Volume (hours) =	18	19	21	21	20	20	20	20
Maximum Ponding Depth (ft) =	1.43	4.00	1.77	1.88	1.98	2.39	2.65	3.01
at Maximum Ponding Depth (acres) =		0.09	0.06	0.06	0.06	0.07	0.07	0.08
Maximum Volume Stored (acre-ft) =	0.051	0.234	0.069	0.074	0.081	0.107	0.125	0.153

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

Ī	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]				100 Year [cfs]	
	0:00:00									
5.00 min	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:00	0.00	0.00	0.00	0.00	0.00 1.22	0.00	0.07 1.00	0.01	0.22 1.35
	0:20:00	0.00	0.00	1.94	2.48	2.89	1.80	2.07	2.25	2.87
	0:25:00	0.00	0.00	3.68	4.78	5.69	3.59	4.13	4.41	5.68
	0:30:00	0.00	0.00	3.52	4.40	5.15	7.01	8.07	9.04	11.71
	0:35:00	0.00	0.00	2.58	3.17	3.69	6.24	7.15	8.62	11.03
	0:40:00	0.00	0.00	1.91	2.29	2.66	4.96	5.68	6.71	8.58
	0:45:00	0.00	0.00	1.29	1.64	1.94	3.59	4.12	5.18	6.63
	0:50:00	0.00	0.00	0.90	1.21	1.37	2.78	3.20	3.92	5.03
	0:55:00	0.00	0.00	0.72	0.95	1.13	1.87	2.14	2.81	3.61
	1:00:00 1:05:00	0.00	0.00	0.66	0.86	1.05	1.46	1.67	2.31	2.98
	1:10:00	0.00	0.00	0.64 0.54	0.83 0.81	1.03 1.03	1.29 1.07	1.47 1.22	2.12 1.52	1.95
	1:15:00	0.00	0.00	0.48	0.74	1.03	0.96	1.09	1.21	1.56
	1:20:00	0.00	0.00	0.45	0.67	0.91	0.80	0.91	0.88	1.12
	1:25:00	0.00	0.00	0.44	0.63	0.76	0.72	0.81	0.69	0.88
	1:30:00	0.00	0.00	0.43	0.61	0.68	0.61	0.68	0.59	0.74
	1:35:00	0.00	0.00	0.43	0.60	0.63	0.55	0.62	0.56	0.70
	1:40:00	0.00	0.00	0.43	0.50	0.61	0.52	0.59	0.54	0.68
	1:45:00	0.00	0.00	0.43	0.45	0.60	0.51	0.57	0.54	0.67
	1:50:00 1:55:00	0.00	0.00	0.43	0.43	0.60 0.57	0.50	0.56	0.54	0.67
	2:00:00	0.00	0.00	0.33 0.27	0.41	0.57	0.50 0.50	0.56 0.56	0.54 0.54	0.67 0.67
	2:05:00	0.00	0.00	0.14	0.20	0.45	0.26	0.29	0.28	0.35
	2:10:00	0.00	0.00	0.07	0.10	0.13	0.14	0.15	0.15	0.18
	2:15:00	0.00	0.00	0.03	0.05	0.06	0.06	0.07	0.07	0.09
	2:20:00	0.00	0.00	0.01	0.02	0.02	0.02	0.03	0.03	0.03
	2:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:40:00 2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00 3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00 4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00 4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Inlet, Version 5.02 (August 2022) INLET MANAGEMENT

Worksheet Protected

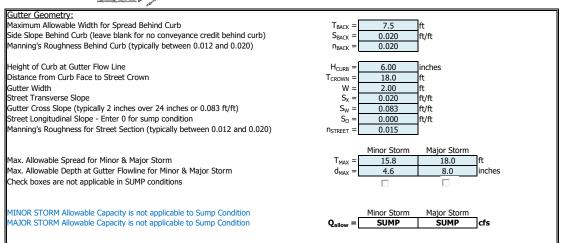
INLET NAME

INLE I NAME	<u>iniel I (DPI)</u>	<u>iniel T (DPT) Oilimale</u>	iniel 2 (DP2) Ullimale
Site Type (Urban or Rural)	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET
lydraulic Condition	In Sump	In Sump	In Sump
nlet Type	CDOT Type R Curb Opening	CDOT Type R Curb Opening	CDOT Type R Curb Opening
,,	71 . 3	, , , , , , , , , , , , , , , , , , , ,	71
ER-DEFINED INPUT			
Jser-Defined Design Flows			
linor Q _{Known} (cfs)	0.3	1.8	3.7
Najor Q _{Known} (cfs)	1.6	3.4	7.2
Bypass (Carry-Over) Flow from Upstream	Inlets must be organized from upstrea	am (left) to downstream (right) in order fo	or bypass flows to be linked.
Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0
Subcatchment Area (acres)			
Subcatchment Area (acres)			
Percent Impervious			
NRCS Soil Type			
Watershed Profile			
Overland Slope (ft/ft)			
Overland Length (ft)			
Channel Slope (ft/ft)			
Channel Length (ft)			
Minor Storm Rainfall Input			
Design Storm Return Period, T _r (years)			
One-Hour Precipitation, P ₁ (inches)			
Major Storm Rainfall Input			
Design Storm Return Period, T _r (years)			
One-Hour Precipitation, P ₁ (inches)			
1 / 1 / /			

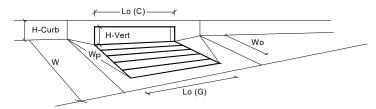
Inlet 1 (DP1)

Inlet 1 (DP1) Ultimate

Inlet 2 (DP2) Ultimate


CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	0.3	1.8	3.7
Major Total Design Peak Flow, Q (cfs)	1.6	3.4	7.2
Minor Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	N/A	N/A	N/A


ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

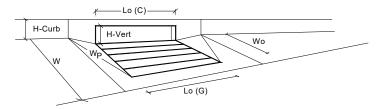
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)



Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.6	8.0	inches
Grate Information	ronding Depart =	MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	Ifeet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C₀ (G) =	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	_
Length of a Unit Curb Opening	L₀ (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	7ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.22	0.50	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Combination Inlet Performance Reduction Factor for Long Inlets	$RF_{Combination} =$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.8	9.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	Q PEAK REQUIRED =	0.3	1.6	cfs

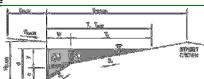
CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

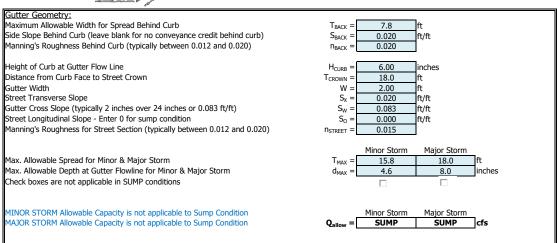

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Lot 2 Claremont Business Park 2 Filing 2 (Proposed Conditions)
Inlet ID: Inlet 1 (DP1) Ultimate

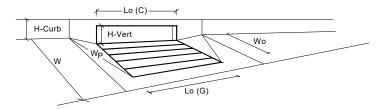
Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 7.5 TRACK : Side Slope Behind Curb (leave blank for no conveyance credit behind curb) ft/ft SBACK 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 n_{RACK} Height of Curb at Gutter Flow Line H_{CURB} 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 18.0 Gutter Width 2.00 Street Transverse Slope S_{χ} 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) $S_{W} \\$ 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_0 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) $n_{\text{STREET}} \\$ 0.015 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 15.8 18.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm d_{MAX} 4.6 8.0 inches Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is not applicable to Sump Condition MAJOR STORM Allowable Capacity is not applicable to Sump Condition Major Storm Minor Storm SUMP SUMP

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)




Design Information (Innut)		MINOR	MAJOR	
Design Information (Input) Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3,00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	inches
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.6	8.0	inches
Grate Information	ronding Deptir =	MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	$L_{n}(G) =$	N/A	N/A	Ifeet
Width of a Unit Grate	$W_0 =$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1000
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_0(G) =$	N/A	N/A	1
Curb Opening Information	-0 (-)	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_D =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	Tft .
Depth for Curb Opening Weir Equation	d _{Curb} =	0.22	0.50	ft
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	1
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes cloqued condition)	Q _a =	2.8	9.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	Q PEAK REQUIRED =	1.8	3.4	cfs
zmet capacity 15 3000 for rimor and riajor Storins (>Q reak)	≺ PEAK KEQUIKED —	1.0	3.1	10.0

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

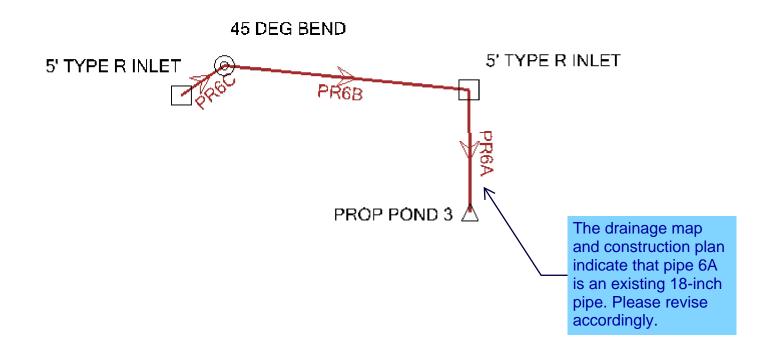
Project: Lot 2 Claremont Business Park 2 Filing 2 (Proposed Conditions)
Inlet ID: Inlet 2 (DP2) Ultimate

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.02 (August 2022)

Type of Inlet Local Depression (additional to continuous gutter depression 'a' from above) Number of Unit Inlets (Grate or Curb Opening) Water Depth at Flowline (outside of local depression) Water Depth at Flowline (outside of local depression) Grate Information Length of a Unit Grate Width of a Unit Grate Open Area Ratio for a Grate (typical values 0.15-0.90) Clogging Factor for a Single Grate (typical value 0.50 - 0.70) Grate Weir Coefficient (typical value 0.50 - 0.80) Curb Opening Information Length of a Unit Curb Opening in Inches Height of Vertical Curb Opening in Inches Height of Vertical Curb Opening in Inches Height of Popenssion Pan (typically the gutter width of 2 feet) Clogging Factor for a Single Curb Opening (typical value 0.10) Curb Opening Weir Coefficient (typical value 0.60 - 0.70) Curb Opening Opening in Inches Height of Curb Office Throat in Inches Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 2 feet) Clogging Factor for a Single Curb Opening (typical value 0.10) Curb Opening Weir Coefficient (typical value 0.60 - 0.70) Curb Opening Weir Coefficient (typical value 0.60 - 0.70) Curb Opening Weir Coefficient (typical value 0.60 - 0.70) Curb Opening Weir Coefficient (typical value 0.60 - 0.70) Curb Opening Weir Coefficient (typical value 0.60 - 0.70) Curb Opening Weir Coefficient (typical value 0.60 - 0.70) Curb Opening Weir Coefficient (typical value 0.60 - 0.70) Curb Opening Weir Coefficient (typical value 0.60 - 0.70) Curb Opening Weir Coefficient (typical value 0.60 - 0.70) Curb Opening Weir Equation Grate of Curb Opening Weir Equation Grate Open	Design Information (Input)		MINOR	MAJOR	
Number of Unit Inlets (Grate or Curb Opening) Water Depth at Flowline (outside of local depression) Grate Information Length of a Unit Grate Width of a Unit Grate Wighth of Coefficient (typical value 0.50 - 0.70) Grate Orifice Coefficient (typical value 0.60 - 0.80) Care Orifice Throat in Inches Huert = 6.0.00 Hinnor Hi		Type =	CDOT Type R	Curb Opening	
Water Depth at Flowline (outside of local depression) Grate Information Log (G) = N/A N/A N/A Feet Width of a Unit Grate Woe N/A N/A N/A Feet Width of a Unit Grate Upen Area Ratio for a Grate (typical value 0.15-0.90) Clogging Factor for a Single Grate (typical value 0.50 - 0.70) Grate Weir Coefficient (typical value 2.15 - 3.60) Grate Orifice Coefficient (typical value 0.60 - 0.80) Curb Opening Information Log (G) = N/A N/A N/A Log (G) = N/A N/A N/A MINOR MINO	Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Grate Information Length of a Unit Grate Lo (G) = N/A N/A N/A feet	Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Length of a Unit Grate	Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.5	8.0	inches
Width of a Unit Grate Open Area Ratio for a Grate (typical values 0.15-0.90) Clogging Factor for a Single Grate (typical value 0.50 - 0.70) Grate Weir Coefficient (typical value 0.50 - 0.70) Grate Weir Coefficient (typical value 0.60 - 0.80) Curb Opening Information Length of a Unit Curb Opening in Inches Height of Vertical Curb Opening in Inches Height of Curb Orifice Throat in Inches Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typical value 0.10) Curb Opening Weir Coefficient (typical value 0.60 - 0.70) Curb Opening Weir Coefficient (typical value 0.60 - 0.70) Curb Opening Weir Coefficient (typical value 0.60 - 0.70) Curb Opening Weir Coefficient (typical value 0.60 - 0.70) Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets Total Inlet Interception Capacity (assumes clogged condition) Page 1 N/A	Grate Information	_	MINOR	MAJOR	Override Depths
$\begin{array}{c} \text{Open Area Ratio for a Grate (typical values 0.15-0.90)} \\ \text{Clogging Factor for a Single Grate (typical value 0.50 - 0.70)} \\ \text{Clogging Factor for a Single Grate (typical value 0.50 - 0.70)} \\ \text{Grate Weir Coefficient (typical value 0.60 - 0.80)} \\ \text{Care Orifice Coefficient (typical value 0.60 - 0.80)} \\ \text{Curb Opening Information} \\ \text{Length of a Unit Curb Opening in Inches} \\ \text{Height of Vertical Curb Opening in Inches} \\ \text{Height of Vertical Curb Opening in Inches} \\ \text{Height of Firoat in Inches} \\ \text{Hapitot of Throat (see USDCM Figure ST-5)} \\ \text{Side Width for Depression Pan (typically the gutter width of 2 feet)} \\ \text{Clogging Factor for a Single Curb Opening (typical value 0.10)} \\ \text{Curb Opening Weir Coefficient (typical value 2.3-3.7)} \\ \text{Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)} \\ \text{Cow Head Performance Reduction (Calculated)} \\ \text{Depth for Grate Midwidth} \\ \text{Depth for Grate Midwidth} \\ \text{Curb Opening Performance Reduction Factor for Long Inlets} \\ \text{Combination Inlet Performance Reduction Factor for Long Inlets} \\ \text{Combination Inlet Performance Reduction Factor for Long Inlets} \\ \text{Combination Inlet Performance Reduction Factor for Long Inlets} \\ \text{Total Inlet Interception Capacity (assumes clogged condition)} \\ \text{Aratic Single Single Grate (spical value 0.60 - 0.70)} \\ \text{Corb Opening Performance Reduction Factor for Long Inlets} \\ Corb Minor Major $	Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Clogging Factor for a Single Grate (typical value $0.50 - 0.70$) Grate Weir Coefficient (typical value $2.15 - 3.60$) Grate Orifice Coefficient (typical value $0.60 - 0.80$) Curb Opening Information Length of a Unit Curb Opening in Inches Height of Vertical Curb Opening in Inches Height of Curb Orifice Throat in Inches Haltmost = 6.00	Width of a Unit Grate	W _o =	N/A	N/A	feet
Grate Weir Coefficient (typical value $2.15 - 3.60$) Grate Orifice Coefficient (typical value $0.60 - 0.80$) Curb Opening Information Length of a Unit Curb Opening in Inches Height of Vertical Curb Opening in Inches Height of Curb Orifice Throat in Inches Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 2 feet) Clogging Factor for a Single Curb Opening (typical value 0.10) Curb Opening Weir Coefficient (typical value $0.60 - 0.70$) Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Grate Midwidth Depth for Grate Midwidth Curb Opening Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Capacity (assumes clogged condition) Combination Inlet Interception Capacity (assumes clogged condition)		$A_{ratio} =$	N/A	N/A	
Grate Orifice Coefficient (typical value $0.60 - 0.80$) Co (G) = N/A N/A MINOR MAJOR Length of a Unit Curb Opening in Inches Height of Vertical Curb Opening in Inches Height of Curb Orifice Throat in Inches Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 2 feet) Clogging Factor for a Single Curb Opening (typical value 0.10) Curb Opening Weir Coefficient (typical value 0.10) Curb Opening Orifice Coefficient (typical value $0.60 - 0.70$) Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets MINOR MAJOR MINOR MAJOR MINOR MAJOR Focumbination N/A N/A N/A N/A MINOR MAJOR MINOR MAJOR MINOR MAJOR MINOR MAJOR Focumbination Inlet Performance Reduction Factor for Long Inlets RFCombination MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition)				N/A	
	,	C_w (G) =		N/A	
Length of a Unit Curb Opening Height of Vertical Curb Opening in Inches Height of Vertical Curb Opening in Inches Height of Curb Orifice Throat in Inches Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 2 feet) Clogging Factor for a Single Curb Opening (typical value 0.10) Curb Opening Weir Coefficient (typical value 2.3-3.7) Curb Opening Orifice Coefficient (typical value 0.60 - 0.70) Low Head Performance Reduction (Calculated) Depth for Carbe Midwidth Depth for Carbe Midwidth Depth for Carbe Midwidth Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets NA N/A	, , ,	$C_o(G) =$,	
Height of Vertical Curb Opening in Inches Height of Curb Orifice Throat in Inches Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 2 feet) Clogging Factor for a Single Curb Opening (typical value 0.10) Curb Opening Weir Coefficient (typical value 0.3-3.7) Curb Opening Orifice Coefficient (typical value 0.60 - 0.70) Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Grate Midwidth Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition)		_			_
Height of Curb Orifice Throat in Inches Angle of Throat (see USDCM Figure ST-5) Side Width for Depression Pan (typically the gutter width of 2 feet) Clogging Factor for a Single Curb Opening (typical value 0.10) Curb Opening Weir Coefficient (typical value 2.3-3.7) Curb Opening Orifice Coefficient (typical value 0.60 - 0.70) Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets Total Inlet Interception Capacity (assumes clogged condition) Hthroat = 6.0.0 6.00 6.00 inches degrees 6.00 6.00 inches degrees 6.00 6.00 inches degrees 6.00 6.00 inches degrees 6.00 6.00 inches degrees 6.00 6.00 inches degrees 6.00 6.00 inches degrees 6.00 6.00 inches degrees 6.00 6.00 inches degrees 6.00 6.00 inches degrees 6.00 6.00 inches degrees 6.00 6.00 inches degrees 6.00 6.00 inches degrees 6.00 6.00 inches degrees 6.00 6.00 inches degrees 6.00 6.00 inches degrees 6.00 6.00 inches degrees 6.00 6.00 inches degrees 6.00 6.00 inches degrees 6.04 63.40 degrees 6.04 63.40 degrees 6.05 40 63.40 degrees 6.00 6.00 inches degrees 6.04 0.40 degrees 6.00 6.00 inches degrees 6.04 0.40 degrees 6.04 degrees 6.04 0.40 degrees 6.04 degrees 6.06 de	, ,	$L_{o}(C) =$		5.00	feet
Angle of Throat (see USDCM Figure ST-5) Theta = 63.40	· 5 · · · · · · · · · · · · · · · · ·				
Side Width for Depression Pan (typically the gutter width of 2 feet) Clogging Factor for a Single Curb Opening (typical value 0.10) Curb Opening Weir Coefficient (typical value 2.3-3.7) Curb Opening Orifice Coefficient (typical value 0.60 - 0.70) Corb Opening Orifice Coefficient (typical value 0.60 - 0.70) Corb Opening Orifice Coefficient (typical value 0.60 - 0.70) Corb Opening Orifice Coefficient (typical value 0.60 - 0.70) Corb Opening Orifice Coefficient (typical value 0.60 - 0.70) Corb Opening Orifice Coefficient (typical value 0.60 - 0.70) MINOR MAJOR Depth for Grate Midwidth Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Rich Signate Ni/A Ni/A Curb Opening Performance Reduction Factor for Long Inlets Rich Signate Ni/A Ni/A Rich Depth for Curb Opening Performance Reduction Factor for Long Inlets Rich Signate Ni/A Ni/A Rich Depth for Curb Opening Performance Reduction Factor for Long Inlets Rich Signate Ni/A Ni/A Rich Depth for Curb Opening Performance Reduction Factor for Long Inlets Rich Signate Ni/A Ni/A Rich Depth for Curb Opening Performance Reduction Factor for Long Inlets Rich Signate Ni/A Ni/A Rich Depth for Curb Opening Performance Reduction Factor for Long Inlets Rich Signate Ni/A Ni/A Rich Depth for Curb Opening Performance Reduction Factor for Long Inlets Rich Signate Ni/A Ni/A Rich Depth for Curb Opening Performance Reduction Factor for Long Inlets Rich Signate Ni/A Ni/A Rich Depth for Curb Opening Performance Reduction Factor for Long Inlets Rich Signate Ni/A Ni/A Rich Depth for Curb Opening Performance Reduction Factor for Long Inlets Rich Signate Ni/A Ni/A	<u> </u>	$H_{throat} =$			
Clogging Factor for a Single Curb Opening (typical value 0.10) $ C_{f}\left(C\right) = 0.10 \qquad 0.10 \\ Curb Opening Weir Coefficient (typical value 2.3-3.7) \\ Curb Opening Orifice Coefficient (typical value 0.60 - 0.70) \\ C_{o}\left(C\right) = 3.60 \qquad 3.60 \\ C_{o}\left(C\right) = 0.67 \qquad 0.67 \qquad 0.67 \\ C_{o}\left(C\right) = 0.67 $		Theta =	63.40	63.40	degrees
Curb Opening Weir Coefficient (typical value 2.3-3.7) Curb Opening Orifice Coefficient (typical value 0.60 - 0.70) $ \begin{array}{c} C_{w}(C) = 3.60 & 3.60 \\ C_{o}(C) = 0.67 & 0.67 \end{array} $ Low Head Performance Reduction (Calculated) Depth for Grate Midwidth Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets RF _{Curb} = 1.00 1.00 RF _{Combination} = N/A N/A MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) Qa = 4.4 9.3 cfs	Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Curb Opening Orifice Coefficient (typical value $0.60 - 0.70$) $C_{o}(C) = 0.67 $	Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
				3.60	
Depth for Grate Midwidth $ d_{Grate} = \frac{N/A}{N/A} \frac{N/A}{N/A} ft $ Depth for Curb Opening Weir Equation $ d_{Curb} = \frac{0.29}{0.50} \frac{0.50}{ft} $ Grated Inlet Performance Reduction Factor for Long Inlets $ RF_{Crate} = \frac{N/A}{N/A} \frac{N/A}{N/A} $ Curb Opening Performance Reduction Factor for Long Inlets $ RF_{Curb} = \frac{1.00}{1.00} \frac{1.00}{1.00} $ Combination Inlet Performance Reduction Factor for Long Inlets $ RF_{Combination} = \frac{N/A}{N/A} \frac{N/A}{N/A} $ Total Inlet Interception Capacity (assumes clogged condition) $ Q_a = \frac{4.4}{4.4} \frac{9.3}{9.3} $	Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Depth for Grate Midwidth $ d_{Grate} = \frac{N/A}{N/A} \frac{N/A}{N/A} ft $ Depth for Curb Opening Weir Equation $ d_{Curb} = \frac{0.29}{0.50} \frac{0.50}{ft} $ Grated Inlet Performance Reduction Factor for Long Inlets $ RF_{Crate} = \frac{N/A}{N/A} \frac{N/A}{N/A} $ Curb Opening Performance Reduction Factor for Long Inlets $ RF_{Curb} = \frac{1.00}{1.00} \frac{1.00}{1.00} $ Combination Inlet Performance Reduction Factor for Long Inlets $ RF_{Combination} = \frac{N/A}{N/A} \frac{N/A}{N/A} $ Total Inlet Interception Capacity (assumes clogged condition) $ Q_a = \frac{4.4}{4.4} \frac{9.3}{9.3} $	Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Grate} = N/A N/A N/A $ Curb Opening Performance Reduction Factor for Long Inlets $RF_{Curb} = 1.00 1.00 $ Combination Inlet Performance Reduction Factor for Long Inlets $RF_{Curb} = N/A N/A $ MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) $Q_a = 4.4 9.3 $ cfs	Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Curb Opening Performance Reduction Factor for Long Inlets $RF_{Curb} = \frac{1.00}{1.00}$ Combination Inlet Performance Reduction Factor for Long Inlets $RF_{Combination} = \frac{N/A}{N/A}$ $MINOR \qquad MAJOR$ Total Inlet Interception Capacity (assumes clogged condition) $\mathbf{Q_a} = \frac{4.4}{4.4} \qquad 9.3 \qquad \text{cfs}$	Depth for Curb Opening Weir Equation	d _{Curb} =	0.29	0.50	ft
Curb Opening Performance Reduction Factor for Long Inlets $RF_{Curb} = 1.00 \qquad 1.00$ Combination Inlet Performance Reduction Factor for Long Inlets $RF_{Combination} = \frac{N/A}{N/A} \qquad \frac{N/A}{N/A}$ Total Inlet Interception Capacity (assumes clogged condition) $\mathbf{Q}_{a} = \frac{4.4}{9.3} \qquad \mathbf{cfs}$	Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Total Inlet Interception Capacity (assumes clogged condition) $Q_a = \begin{bmatrix} MINOR & MAJOR \\ 4.4 & 9.3 \end{bmatrix}$ cfs	Curb Opening Performance Reduction Factor for Long Inlets		1.00	1.00	
Total Inlet Interception Capacity (assumes clogged condition) $Q_a = 4.4$ 9.3 cfs	Combination Inlet Performance Reduction Factor for Long Inlets	$RF_{Combination} =$	N/A	N/A]
Total Inlet Interception Capacity (assumes clogged condition) $Q_a = 4.4$ 9.3 cfs			MINOR	MAIOR	
Total Trice Trice copusity (assumes disgged contactin)	Total Inlet Interception Capacity (assumes clouded condition)	0. =			cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>O Peak) QPEAK REQUIRED = 3.7 7.2 Cfs	Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	Q PEAK REQUIRED =	3.7	7.2	cfs

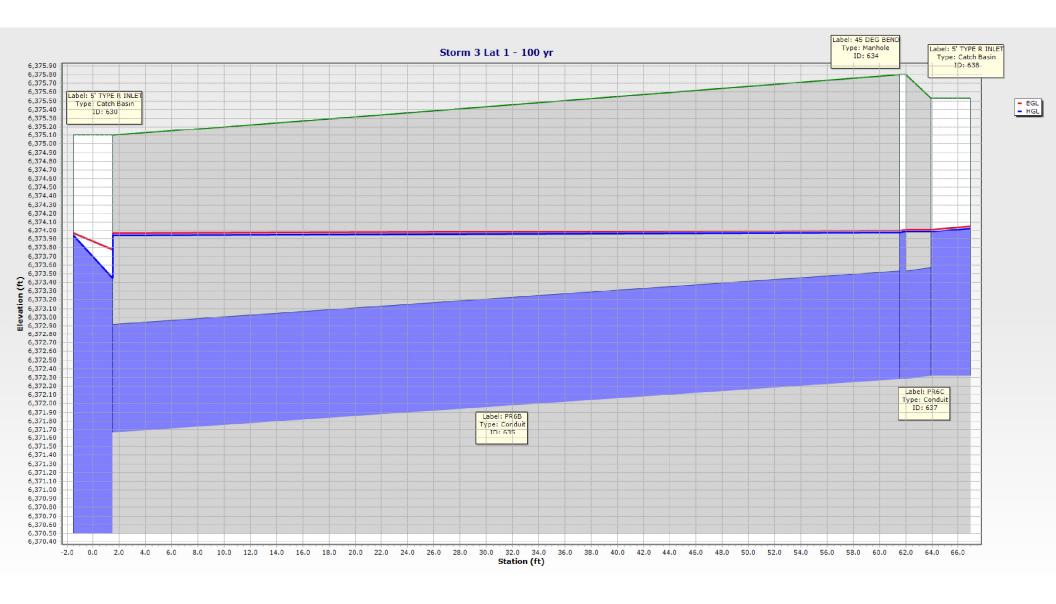
Worksheet for East Swale Q100=0.2cfs

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.007 ft/ft	
Left Side Slope	3.000 H:V	
Right Side Slope	3.000 H:V	
Discharge	0.20 cfs	
Results		
Normal Depth	3.1 in	
Flow Area	0.2 ft ²	
Wetted Perimeter	1.6 ft	
Hydraulic Radius	1.5 in	
Top Width	1.54 ft	
Critical Depth	2.3 in	
Critical Slope	0.031 ft/ft	
Velocity	1.02 ft/s	
Velocity Head	0.02 ft	
Specific Energy	0.27 ft	
Froude Number	0.501	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	3.1 in	
Critical Depth	2.3 in	
Channel Slope	0.007 ft/ft	
Critical Slope	0.031 ft/ft	


Worksheet for North Swale Q100=0.4cfs

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.083 ft/ft	
Constructed Depth	15.0 in	
Constructed Top Width	25.00 ft	
Discharge	0.40 cfs	
Results		
Normal Depth	0.8 in	
Flow Area	0.2 ft ²	
Wetted Perimeter	5.6 ft	
Hydraulic Radius	0.5 in	
Top Width	5.59 ft	
Critical Depth	0.9 in	
Critical Slope	0.035 ft/ft	
Velocity	1.72 ft/s	
Velocity Head	0.05 ft	
Specific Energy	0.11 ft	
Froude Number	1.481	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	0.8 in	
Critical Depth	0.9 in	
Channel Slope	0.083 ft/ft	
Critical Slope	0.035 ft/ft	

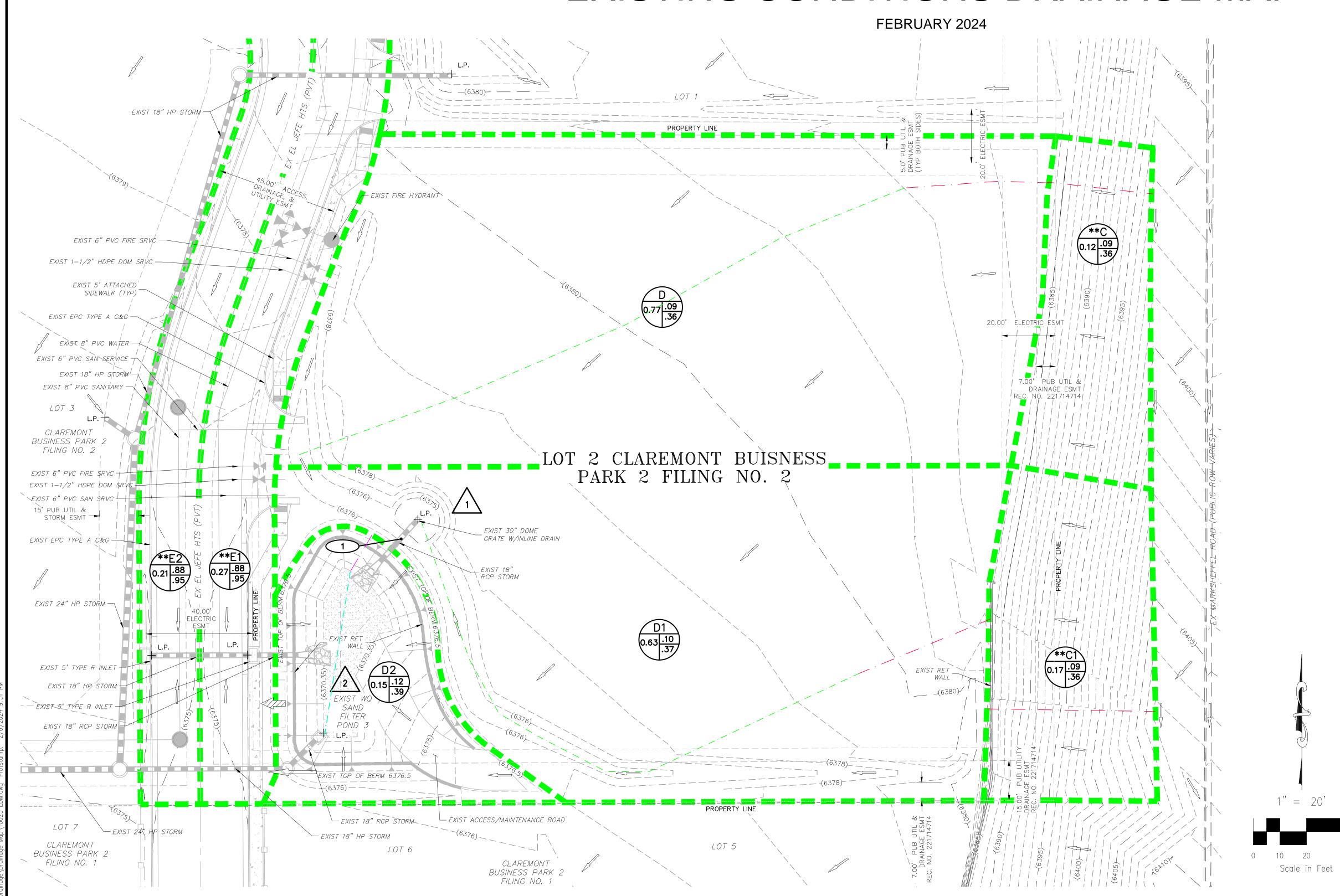
Parabolic West Swale Q100 = 0.2 cfs

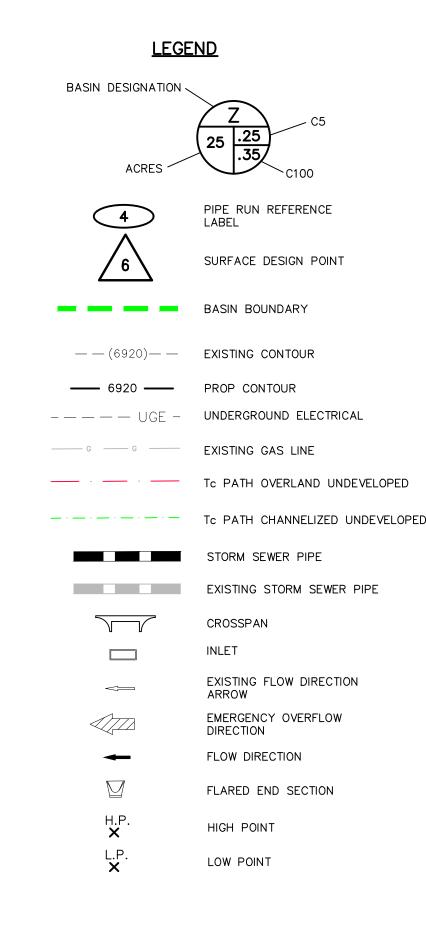

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.030	
Channel Slope	0.038 ft/ft	
Constructed Depth	18.0 in	
Constructed Top Width	30.00 ft	
Discharge	0.20 cfs	
Results		
Normal Depth	0.6 in	
Flow Area	0.2 ft ²	
Wetted Perimeter	5.6 ft	
Hydraulic Radius	0.4 in	
Top Width	5.59 ft	
Critical Depth	0.6 in	
Critical Slope	0.040 ft/ft	
Velocity	1.03 ft/s	
Velocity Head	0.02 ft	
Specific Energy	0.07 ft	
Froude Number	0.973	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	0.6 in	
Critical Depth	0.6 in	
Channel Slope	0.038 ft/ft	
Critical Slope	0.040 ft/ft	

STORM 3 & LAT 1 INDEX MAP

FlexTable: Conduit Table

Label	ID	Upstream Structure	Flow (cfs)	Length (Unified) (ft)	Velocity (ft/s)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
PR6A PR6B PR6C	631 635 637	5' TYPE R INLET 45 DEG BEND 5' TYPE R INLET	8.80 1.60 1.60	14.9 61.8 3.7	4,98 1.30 1.30	6,373.85 6,374.11 6,374.12	6,373.75 6,374.07 6,374.12	6,373.46 6,374.08 6,374.09	6,374.04
Headloss (ft)	Upstream Structure Energy Grade Line (In) (ft)	Upstream Structure Headloss Coefficient	Upstream Structure Headloss (ft)	Invert (Start) (ft)	Invert (Stop)	Manning's n	Friction Slope (ft/ft)	Slope (Calculated) (ft/ft)	Conduit Description
0.10 0.04 0.00	6,374.07 6,374.12 6,374.16	1.500 0.400 1.500	0.58 0.01 0.04	6,370.35 6,371.67 6,372. 2 8	6,370.50 6,372.28 6,372.32	0.013 0.013 0.013	0.007 0.001 0.001	<i></i>	Circle - 18.0 in Circle - 15.0 in Circle - 15.0 in
			the req per Sec	e velocity is b minimum uirement of 2 ECM, Chapt ction 6.3.3. Pl	5 fps er 6,		Why is the slonegative? Please revise calcula	ease	


EXISTING DRAINAGE MAP



FINAL DRAINAGE REPORT FOR LOT 2 CLAREMONT BUSINESS PARK 2 FILING NO.2

COUNTY OF EL PASO, STATE OF COLORADO

EXISTING CONDITIONS DRAINAGE MAP

BASIN SUMMARY							
5 4 60 1	AREA (ACRES)						
BASIN	(ACKES)	Q_5	Q_{100}				
**C	0.12	0.1	0.4				
**C1	0.17	0.1	0.5				
D	0.77	0.3	1.8				
D1	0.63	0.2	1.5				
D2	0.15	0.1	0.5				
**E1	0.27	1.2	2.2				
**E2	0.21	1.0	0.1				

**~CLAREMONT BUSINESS PARK 2 FILING NO.2 FDR PREPARED BY MS CIVIL CONSULTANTS, INC.

DESIGN POINT SUMMARY						
DESIGN POINT	Q ₅	Q ₁₀₀	BASIN	STRUCTURE		
1	0.6	3.9	**C, **C1, D, D1	EX 30" DOME GRATE		
2	2.2	6.9	D2, **E1, **E2, DP1	EX WQ SAND FILTER POND 3		

STORM SEWER SUMMARY						
PIPE RUN	Q ₅	Q ₁₀₀	PIPE SIZE	CONTRIBUTING DP/BASIN/PIPES		
1	0.6	3 a	FV 18"	DP1		

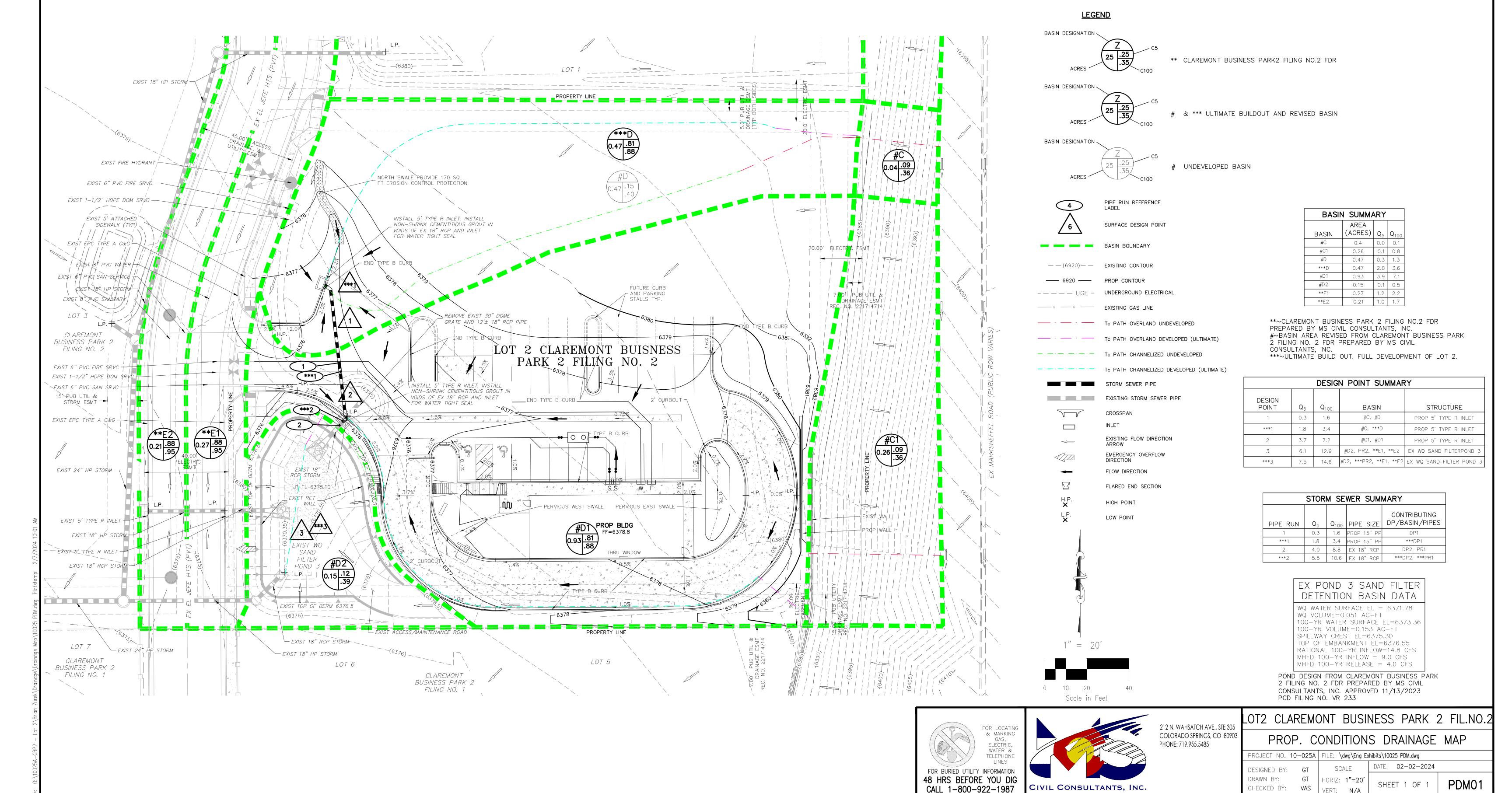
LOT2 CLAREMONT BUSINESS PARK 2 FIL.NO.2

COLORADO SPRINGS, CO 80903
PHONE: 719,955.5485

COLORADO SPRINGS, CO 80903
PHONE: 719,955.5485

ROJECT NO. 10-025A	FILE: \dwg\Eng Ex	FILE: \dwg\Eng Exhibits\10025 EDM.dwg					
ESIGNED BY: GT	SCALE						
RAWN BY: DLM	HORIZ: 1"=20'	CHEET 1 OF 1					
HECKED BY: VAS	VERT: N/A	SHEET 1 OF 1	EDM01				

PROPOSED DRAINAGE MAP



FINAL DRAINAGE REPORT FOR LOT 2 CLAREMONT BUSINESS PARK 2 FILING NO.2

COUNTY OF EL PASO, STATE OF COLORADO

PROPOSED CONDITIONS DRAINAGE MAP

FEBRUARY 2024

BOCC RESOLUTION 16-426

5000

Unuck Broerman 11/28/2016 11:50:04 AM Doc \$0.00 2

Rec \$0.00 Pages

21613/149

RESOLUTION NO. 16-426

BOARD OF COUNTY COMMISSIONERS COUNTY OF EL PASO, STATE OF COLORADO

Resolution Denying an Appeal by Hammers Construction LLC (APP-16-002) of the Administrative Determination made by the Planning and Community Development Department Executive Director regarding the requirement for permanent/post construction Water Quality (permanent stormwater quality best management practices or BMP's).

WHEREAS, pursuant to §§30-11-101(1)(e) and 30-11-107(1)(e), C.R.S., the Board of County Commissioners of El Paso County, Colorado (hereinafter "Board) has the legislative authority to manage the concerns of El Paso County when deemed by the Board to be in the best interests of the County and its inhabitants; and

WHEREAS, after consultation with the County Attorney's Office, the Executive Director of Planning and Community Development on August 4, 2016 issued an administrative determination finding made an administrative determination that all undeveloped lots within the Claremont Business Park are subject to installation of permanent stormwater management best management practices (BMP's) associated with development, and that the terms of a 2008 approved deviation relieving the developer of the requirements have not been met.; and

WHEREAS, an appeal of the administrative determination was filed by Hammers Construction on August 10, 2016, and a hearing date was set for September 27, 2016 to hear the appeal; and

WHEREAS, the hearing was continued to a date certain of November 22, 2016; and

WHEREAS, at the Applicant's appeal hearing on November 22, 2016, testimony from the Applicant and the Applicant's representatives was heard by the Board in favor of the appeal, testimony from representatives of Planning and Community Development Department and was presented, and such testimony and associated evidence was weighed by the Board; and

Resolution No. 16- 426 Page 2

WHEREAS, the Board, having reviewed the testimony and evidence, hereby finds and determines that the requested appeal of the administrative determination by the Planning and Community Development Executive Director by the Applicant did not satisfy the criteria of approval to overturn the administrative determination.

NOW, THEREFORE, BE IT RESOLVED that the Board of County Commissioners of El Paso County, Colorado, hereby denies the appeal of the administrative determination by Hammers Construction and determines that permanent stormwater management best management practices (BMP's) are required with new development within the Claremont Business Park: and

BE IT FURTHER RESOLVED that Sallie Clark, duly elected, qualified member and Chair of the Board of County Commissioners, or Darryl Glenn, duly elected, qualified member and Vice Chair of the Board of County Commissioners, be and is hereby authorized on behalf of the Board to execute any and all documents necessary to carry out the intent of the Board as described herein.

DONE THIS 22nd day of November, 2016, at Colorado Springs Colorado.

BOARD OF COUNTY COMMISSIONERS EL PASO COUNTY, COLORADO

_ by.—€

Copply-Charte Recorder