Final Drainage Report The Glen at Widefield Filing No. 9 El Paso County, Colorado

Prepared for: Widefield Investment Group 3 Widefield Boulevard Colorado Springs, Colorado 80911

1604 South 21st Street Colorado Springs, Colorado 80904 Ph: (719)630-7342

Kiowa Project No. 17038

July 26, 2018

TABLE OF CONTENTS

Table	of Contents	i.
Staten	nents and Approvalsi	ii
I.	General Location and Description	1
II.	Major Drainage Basins and Subbasins	1
III.	Drainage Design Criteria	3
IV.	Drainage Facility Design	3
	A. Stormwater Detention and Water Quality Design	6
	B. Cost of Proposed Drainage Facilities	6
	C. Drainage and Bridge Fees	6
V.	Conclusions	6
VI.	References	7
Apper	ndix Table of Contents	8

List of Figures and Tables (Refer to the Appendix Table of Contents)

STATEMENTS AND APPROVALS

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Kiowa Engineering Corporation, 1604 South 21st Street, Colorado Springs, Colorado 80904

For and on Behalt of Kiowa Engineering Corporation

DEVELOPER'S STATEMENT:

I, the Developer, have read and will comply with all of the requirements specified in this drainage report and plan.

By:

J. Mark Watson, President Glen Development Company

Print Name: J. Mark Weitsen Address: Glen Development 3 Widefield Boulevard Colorado Springs, Colorado 80911

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 & 2, El Paso County Engineering Criteria Manual, and Land Development Code, as amended.

Jennifer Irvine, P.E. El Paso County Engineer/ECM Administrator Date

3/18

8/6/18

I. GENERAL LOCATION AND DESCRIPTION

The Glen at Widefield Filing No. 9 subdivision will be developed as a single-family residential subdivision located in the Widefield area of El Paso County. The subject property is located to the west of Marksheffel Road and north of proposed Mesa Ridge Parkway. The site is located in the southwest portion of Section 22, Township 15 South, Range 65 West of the 6th Principal Meridian, in El Paso County, Colorado. The site is bounded to the west by the Glen at Widefield Filing No. 6 and the West Fork Jimmy Camp Creek; to the south by the Glen at Widefield Filing No. 7, to the east by Marksheffel Road and to the north by unplatted land. The property covers approximately 24.94 acres and is currently undeveloped. A vicinity map of the site is shown on Figure 1 included in the Appendix.

The existing vegetative cover within the development is in poor to fair condition with minimal grasses throughout the site. The existing ground slopes within the property range from 0.2 to 9 percent. Soils within the subject site are classified to be within Hydrologic Soils Group B/D (Nelson Tassel sandy loam #56) as shown in the El Paso County Soils Survey. For the purposes of computing the existing and proposed hydrology for the site, Hydrologic Soil Group C was used.

The West Fork Jimmy Camp Creek is located along the west side of the site. The West Fork receives runoff from offsite basins to the north of the site, the Glen at Widefield Filing No.'s 5, 6 and 7, Mesa Ridge Parkway and its associated drainage channel, and from the majority of the Glen at Widefield East (future filings). The West Fork conveys the flow south of Mesa Ridge Parkway to where it crosses Marksheffel Road, and ultimately to the Jimmy Camp Creek main branch. Jimmy Camp Creek is a tributary to Fountain Creek.

There are no active irrigation ditches or facilities within or adjacent to the site, only abandoned irrigation ditch laterals in the northwest portion of the site that served a previous sod farm.

Existing utilities within or adjacent to the site include a water line and sanitary sewer line along the north side of Mesa Ridge Parkway that terminate at the Jimmy Camp Lift Station located just west of Spring Glen Drive at the south entrance to the site. There is also a gas main that runs along the easterly property boundary.

II. MAJOR DRAINAGE BASINS AND SUBBASINS

The site lies within the West Fork Jimmy Camp Creek drainage basin. The majority of the site presently drains towards the south and southwest by sheet flow to the West Fork Jimmy Camp Creek just upstream of Mesa Ridge Parkway (Sub-basins EX-1 through EX-4). The northeast portion of the site drains east and south by sheet flow to the existing roadside ditch along Marksheffel Road across from Peaceful Valley Road (Sub-basin EX-5). The remaining portion of the site, or southeast corner, drains by sheet flow to the existing roadside ditch along Marksheffel Road approximately 400 feet north of Mesa Ridge Parkway (Sub-basin EX-6). The existing drainage patterns for the site are shown on Sheet 1 provided in a map pocket at the end of this report.

The reports and plans that were reviewed in the process of preparing this drainage report are included in the References section. The Glen at Widefield East area was studied as a part of the *Master Development Drainage Plan for the Glen at Widefield (MDDP)* and the *West Fork Jimmy Camp Creek Drainage Basin Planning Study (DBPS)*. The detention basin shown on the west side of the creek (DP 3101) was designed and constructed as part of the Filing No. 6 improvements. Two additional regional detention basins were identified for the site in the *MDDP*: one to serve the westerly side of the site with flows released west to the West Fork Jimmy Camp Creek (DP 3091), and the other to serve the easterly side of the site with flows released east across Marksheffel Road to a channel along the north side of Peaceful Valley Road and ultimately to the Jimmy Camp Creek main branch (DP

4021). The detention basin shown in the *MDDP* and *DBPS* at DP 3091 was designed and constructed as part of the Glen at Widefield Filing No. 7 improvements. However, due to the proposed grading and drainage patterns north of Filing No. 7, two additional detention basins to serve the westerly side of the site are proposed: one for Filing No. 8 and one for Filing No. 9 (included in this report), which will be located north of the Filing No. 8 area. The detention basin shown in the *MDDP* and *DBPS* at DP 4021 will be designed and constructed to serve future filings within the Glen at Widefield East area.

Other off-site improvements to the West Fork identified in the *MDDP* and *DBPS* include placing buried riprap at outside bends and construction of check structures between the existing retention pond (known as Spring Lake Reservoir) and the southern property boundary. Installation of a riprap spillway with a low flow outlet structure at Spring Lake Reservoir was also recommended. The water in Spring Lake Reservoir is believed to be owned by the Fountain Mutual Irrigation Ditch Company. The bank linings and improvements to Spring Lake Reservoir and just downstream of the reservoir as discussed in the *Amended MDDP* were constructed when the Glen at Widefield Filing No. 6 area was developed.

Additional off-site improvements include the widening of Mesa Ridge Parkway from Powers Boulevard to Autumn Glen Avenue, the extension of Mesa Ridge Parkway from Autumn Glen Avenue to Marksheffel Road, and a new bridge with channel improvements at the West Fork Jimmy Camp Creek crossing. The roadway and bridge improvements, as well as channel improvements just upstream of Mesa Ridge Parkway (as outlined in the *Amended MDDP*), are currently being constructed by the Glen Development Company as part of a separate project.

As stated in the *Amended MDDP*, poor soils were discovered in the vicinity of the creek. This condition made large portions of Filing No. 6 and Filing No. 7 unsuitable for development. This poor soils condition is also the case for Filing No. 9 and future filings along the east side of the creek. In conformance with the *Amended MDDP*, the creek improvements formerly recommended between Spring Lake Reservoir and Mesa Ridge Parkway (not already included with the Filing No. 6 or Mesa Ridge Parkway improvements) are no longer necessary, and will therefore not be constructed. Not only does the creek appear to be well vegetated and substantially stable, there will be no increase in channel erosion as a result of this development. The portion of the Glen at Widefield property adjacent to the West Fork will remain as open space for this project, and similar to the detention basins constructed to serve Filing No. 6, Filing No. 7, and Filing No. 8, the proposed Detention Basin 'A' to serve the Filing No. 9 area will release runoff at or below historic rates. If this land *is* developed in the future, a re-evaluation of the West Fork will be required at that time to determine what channel improvements are needed.

According to the *DBPS*, several detention basins are called for along the creek to maintain historic conditions at the confluence with Jimmy Camp Creek. Similar to the Filing No. 6, Filing No. 7, and Filing No. 8 areas, the detention basin that is proposed to serve the Filing No. 9 area was located so that development of the basin would not adversely impact any improvements or drainageways downstream.

Offsite runoff enters the site from the north by means of a 48" RCP that empties into the West Fork Jimmy Camp Creek by future permanent drainage easement. Offsite Basin OS-2 conveys runoff by sheet flow from undeveloped land north of the site to the north property boundary, where it combines with runoff from Sub-basin EX-5 and is conveyed by sheet flow to the roadside ditch along Marksheffel Road across from Peaceful Valley Road.

The subject property limits are shown on Flood Insurance Rate Maps (FIRMs) 08041C0956 F and 08041C0957 F (both with effective dates of March 17, 1997) that are included in the Appendix. The portion of the property that will remain as open space for this project (and therefore contains no

buildable lots) is located within a FEMA regulated floodplain based on Flood Insurance Rate Map 08041C0956 F. The FIRMs also show that the portion of the property to be developed with buildable lots is located outside of the FEMA regulated floodplain in an unshaded Zone X area, which is described as "Areas determined to be outside the 500-year floodplain".

III. DRAINAGE DESIGN CRITERIA

Hydrologic and hydraulic calculations for the site were performed using the methods outlined in the *El Paso County Drainage Criteria Manual*. Topography for the site was compiled using a two-foot contour interval and is presented on the Drainage Plan. The hydrologic calculations were made for the existing and proposed site conditions. The Drainage Plan presents the drainage patterns for the site, including the sub-basins. The peak flow rates for the sub-basins were estimated using the Rational Method. The 5-year (Minor Storm) and 100-year (Major Storm) recurrence intervals were determined. The one-hour rainfall depth was determined from Table 6-2 of the *Drainage Criteria Manual*. These depths are shown in the runoff calculations spreadsheet. The peak flow data generated using the rational method was used to verify street capacities and to size inlets and storm sewers within the subdivision. The drainage basin area, time of concentration, and rainfall intensity were determined for each of the sub-basins within the property. The onsite soils were assumed to be Hydrologic Soil Group C, based on the *Soil Survey* and the result of proposed earth-moving operations. For existing conditions, runoff coefficients were determined using a land use of pasture/meadow. The land use for the proposed development will be residential with a density of approximately 4 lots per acre.

The onsite hydraulic structures were sized using the methods outlined in the *El Paso County Drainage Criteria Manual*. The hydraulic capacities of the streets and curb inlets were determined using the UD-Inlet spreadsheet developed by the UDFCD, considering the County criteria for the Minor (5-year) and Major (100-year) storms. Colorado Department of Transportation (CDOT) Type R curb inlets will be used within the site. Ramp curbs will be used throughout the development, except along Spring Glen Drive and between curb returns and at curb inlets, where a 6-inch vertical curb will be used. Storm sewer pipes were initially sized based on their full-flow capacity using the Manning's equation. The UDSewer program was then used to verify storm sewer pipe sizes and perform hydraulic grade line (HGL) and energy grade line (EGL) calculations for the 5-year and 100-year storm events. Hydraulic calculations are provided in Appendix C for the proposed street, inlet and pipe capacities, pipe outlet erosion protection and open channel.

The on-site detention basin is planned to be an Extended Detention Basin that uses Full Spectrum Detention. The UD-Detention spreadsheets created by UDFCD were used to size and design the detention basin with water quality enhancement, per the County's recommendation. The supporting calculations associated with the sizing of the hydraulic facility for this development are included in Appendix B of this report.

IV. DRAINAGE FACILITY DESIGN

The drainage of the site will be accomplished through a combination of sheet flow, gutter flow and storm sewer flow. Curb inlets will be placed at intersections throughout the site (where needed to decrease the amount of gutter flow for the minor and major storms) and at a low point along Spring Glen Drive to accept the developed runoff and convey it to the proposed detention basin prior to being discharged to the West Fork Jimmy Camp Creek. Riprap outlet protection will be placed at the end of the detention basin outlet pipe to reduce erosion.

The proposed drainage patterns for the site are shown on the Final Drainage Plan for the developed condition (Sheet 2) provided in the map pocket at the end of this report. The hydrologic and

hydraulic calculations are provided in the Appendix, refer to the Drainage Design Criteria section for additional information on the hydrologic and hydraulic calculations.

The evaluation related to the sizing of the onsite drainage improvements were carried out in accordance with the City Storm Drainage Criteria Manual. The capacities of the proposed onsite facilities were calculated in accordance with the Criteria Manual.

The primary stormwater conveyance facility will be a storm sewer system ranging in size from an 18-inch diameter reinforced concrete pipe (RCP) to a 24-inch reinforced concrete pipe (RCP) conveying the runoff to the detention basin. Offsite runoff will be conveyed from basin OS-1 by means of the 24-inch RCP while on site runoff will sheet and gutter flow until finally being conveyed by 24-inch RCP to Detention Basin A. The detention basin will include a concrete-lined presedimentation forebay at the proposed storm sewer outlet, a concrete trickle channel, a micropool and water quality orifice plate onto an outlet structure, an emergency spillway and a maintenance access trail. The detention basin will be a private facility and will be maintained by the Glen at Widefield Filing No. 9 Homeowner's Association.

Following is a description of the on-site storm sewer system:

The system will begin with a 25' and 35' Type R curb inlet connected to an 24-inch storm sewer at the low point of Spring Glen Drive within Sub-basin A-5. The 24-inch storm sewer will convey captured runoff west to Detention Basin A, at which point it enters the basin's forebay.

The system will begin with a 10' curb inlet connected to an 18-inch storm sewer at the low point of Peach Leaf Drive within Sub-basin B-4. The 18-inch storm sewer will convey captured runoff south to the existing storm sewer system from Filing No. 8. To the southeast of Golden Buffs Drive a 10' curb inlet will be located along Peachleaf Drive and be connected to an 18-inch storm sewer that will convey captured runoff northwest to the system at Golden Buffs Drive and Peachleaf Drive. The storm sewer system will continue south in Golden Buffs Drive as a 30-inch storm sewer, where a 15' curb inlet just south of Peachleaf Drive will connect to it. At Golden Buffs Drive and Bigtooth Maple Drive, three 10' curb inlets and one 15' curb inlet will be connected to the system, where it will continue in a southerly direction in a 36-inch storm sewer to the low point in Spring Glen Drive where two 25' curb inlets (both in a sump condition) will intercept 100-year flows. The captured flow will then be conveyed to the detention basin in a 43-inch by 68-inch HERCP.

Following is a description of the on-site drainage sub-basins:

<u>Sub-basin B-1.1,2,3,4,5,6,7 & 13</u> are all located within Filing No. 9 but have been accounted for in the Glen at Widefield Filing No. 8 Drainage Report.

<u>Sub-basin A-1</u> is approximately 4.76 acres in area and is located at the west end of Bittercress Place. Undeveloped runoff from this basin will sheet flow south and southwest and will be conveyed directly to the West Fork Jimmy Camp Creek (DP 1).

<u>Sub-basin A-2</u> is approximately 1.12 acres in area and is located west of Spring Glen Drive and on the south side of Bittercress Place. Runoff from this basin will sheet flow and gutter flow north and east towards Spring Glen Drive (DP 2).

<u>Sub-basin A-3</u> is approximately 2.43 acres in area and is located west of Spring Glen Drive and on the north side of Bittercress Place. Runoff from this basin will sheet flow and gutter flow south and east towards Spring Glen Drive (DP 3).

<u>Sub-basin A-4</u> is approximately 0.71 acres in area and is located directly north of sub-basin A-3. Runoff from this basin will sheet flow east towards Spring Glen Drive and gutter flow south once gathered in Spring Glen Drive.

<u>Sub-basin A-5</u> is approximately 0.88 acres in area and is located on the west side of Spring Glen Drive. Runoff from this basin will gather flow from sub-basins A2, A3, and A4 (DP 4) and gutter flow to a 10' curb inlet for Detention Basin A (DP 5).

<u>Sub-basin A-6</u> is approximately 1.53 acres in area and is located east of Spring Glen Drive and north of Bittercress Place. Undeveloped runoff from this basin will sheet flow west towards Spring Glen Drive until it gutter flows south (DP 6).

<u>Sub-basin A-7</u> is approximately 3.28 acres in area and is located east of Spring Glen Drive and includes the north half of Bittercress Place. Runoff from this basin will sheet flow and gutter flow west towards Spring Glen Drive (DP 7).

<u>Sub-basin A-8</u> is approximately 0.75 acres in area and is located east of Spring Glen Drive and includes part of the south half of Bittercress Place. Runoff from this basin will flow west towards Spring Glen Drive (DP 8).

<u>Sub-basin A-9</u> is approximately 1.29 acres in area and is located between Peachleaf Drive and Bigtooth Maple Drive just south of Bittercress Place. Runoff from this basin will flow west towards Bigtooth Maple Drive and gutter flow north towards Bittercress Place (DP 9).

<u>Sub-basin A-10</u> is approximately 0.94 acres in area and is located between Bigtooth Maple Drive and Spring Glen Drive just south of Bittercress Place. Runoff from this basin will sheet flow north east and gutter flow north on Bigtooth Maple Drive. The runoff will collect at the intersection of Bigtooth Maple Drive and Bittercress Place where it will combine with runoff from sub-basins A8 (DP 8) and A9 (DP 9) and gutter flow west towards Spring Glen Drive (DP 10).

<u>Sub-basin A-11</u> is approximately 1.49 acres in area and is located on the east side of Spring Glen Drive. Runoff from this basin will gather flow from sub-basins A6, A7, A8, A9, and A10 (DP 11) and gutter flow to a 15' curb inlet for Detention Basin A (DP 12).

<u>Sub-basin A-12</u> is approximately 0.64 acres in area and is located west of Spring Glen Drive at its low point and represents the area directly tributary to and including Detention Basin 'A'.

Since water quality capture volume (WQCV) will be required for the proposed development, the full spectrum Detention Basin 'A' will also be used for stormwater quality treatment. The required WQCV for a 40-hour drain time is 0.20 acre-feet. The required excess urban runoff volume (EURV) for a 72-hour drain time is 0.45 acre-feet. The storage volume required for detention is 1.135 acre-feet, which includes 1.035 acre-feet for the 100-year storm event plus one-half of the WQCV in accordance with County criteria. The proposed outlet structure will include an external micropool and one chamber that controls the release of the WQCV and the EURV. An orifice plate will drain the WQCV and EURV into the chamber of the outlet structure. Approximately Q_{100} =43.9 cfs (DP-14) will drain to the proposed detention basin. 100-year storm event or greater flows will spill over the top of the chamber through a steel grate. Runoff released from the detention basin will be restricted to 22.1 cfs for the 100-year storm event. A proposed 30-inch RCP equipped with a restrictor plate will convey runoff released from the detention basin to the West Fork Jimmy Camp Creek. If the outlet structure becomes plugged, a 50-foot wide emergency spillway will convey the runoff to the West Fork. Detention Basin A will be owned and maintained by the Glen at Widefield Filing No. 9 Homeowner's Association.

Following is a description of the offsite drainage sub-basins:

<u>Sub-basin E-8</u> is approximately 8.78 acres in area and is located west of the site and north of future Detention Basin 'A'. Undeveloped runoff from this basin will sheet flow southwest and combine with flow released from sub-basin OS-1 (DP 13), where it will become response is the two southwest and combine with conveyed directly to the West Fork Jimmy Camp Creek (DP 102).

Provide sub-basin narrative for the 'B' basins within Filing 9. If the system design of Filing 8 accounted for these ben make sure to note on the narrative. UNRESOLVED - dsdkuehster 08/28/2018 10:38:32 AM Kiowa Engineering Corporation <u>Sub-basin E-9</u> is approximately 3.63 acres in area and is located west of the site and south of future Detention Basin 'A'. Undeveloped runoff from this basin will sheet flow southwest and combine with flow released from proposed Detention Basin 'A', where it will become open channel flow that will be conveyed directly to the West Fork Jimmy Camp Creek (DP 103).

<u>Sub-basin OS-1</u> is approximately 76.2 acres in area and is located to the north of The Glen at Widefield Filing No. 9. Runoff from this basin will be collected and routed through 48" RCP and emptied into sub-basin E-8 (DP 13) where it will become open channel flow and will be conveyed directly to the West Fork Jimmy Camp Creek (DP 102). 48" RCP will be installed in specified location based off existing drainage patterns. Owners of OS-1 have the option to connect to 48" RCP in the future if, and when they decide to develop OS-1. MDDP of Glen East and the DBPS of East Jimmy Camp Creek have identified DP 15 of basin OS-1 to be the design point where flows gather and enter the Glen at Widefield Filing No. 9 area. An inlet and 48" RCP storm pipe will be installed to maintain existing drainage flows and patterns onwards to Jimmy Camp Creek. The inlet for the 48" RCP storm pipe was sized using an orifice equation to ensure that it would accept all of the offsite runoff. Calculations for the open channel and inlet can be seen in Appendix C.

A. STORMWATER DETENTION AND WATER QUALITY DESIGN

Storm water quality measures are required by the County in Volume 2 of the County's Drainage Criteria Manual. The water quality measures to be instituted for the development will include:

1. Water quality enhancement of the detention basin. A presedimentation forebay will be installed at the on-site storm sewer outlet into the detention basin. The outlet structure will include a water quality orifice plate and a micropool.

B. COST OF PROPOSED DRAINAGE FACILITIES

Table 2 presents a cost estimate for the construction of drainage improvements (public and private) for The Glen at Widefield Filing No. 9 development.

C. DRAINAGE AND BRIDGE FEES

The site lies within the West Fork Jimmy Camp Creek Drainage Basin. The current drainage basin fee associated with the West Fork Jimmy Camp Creek Drainage Basin is \$11,775 per impervious acre. The current bridge fee associated with the West Fork Jimmy Camp Creek Drainage Basin is \$3,484 per impervious acre. The Glen at Widefield Filing No. 9 subdivision encompasses 15.05 acres. Table 1 details the fees due as part of this development.

V. CONCLUSIONS

The Glen at Widefield Filing No. 9 will be a single-lot family residential subdivision covering approximately 15.05 acres. Onsite drainage will include the use of curb inlets and storm sewers to route the runoff from the site to the Extended Detention Basin 'A'. Detained runoff from the site will be conveyed to the West Fork Jimmy Camp Creek. With detention serving the site and a large portion of either side of the creek not developed, the development of the Glen at Widefield Filing No. 9 property will not adversely impact or deteriorate improvements or natural drainageways downstream of the property.

VI. REFERENCES

- 1) <u>Preliminary Drainage Report, The Glen at Widefield East</u>, prepared by Kiowa Engineering Corporation, dated December 16, 2015.
- 2) <u>Final Drainage Report, The Glen at Widefield Filing No. 7</u>, prepared by Kiowa Engineering Corporation, dated January 11, 2016.
- 3) <u>Amended Master Development Drainage Plan, The Glen at Widefield</u>, prepared by Kiowa Engineering Corporation, dated June 21, 2007.
- 4) <u>Final Drainage Report, The Glen at Widefield Filing No. 6</u>, prepared by Kiowa Engineering Corporation, dated December 6, 2007.
- 5) <u>Preliminary and Final Drainage Report, Mesa Ridge Parkway Final Design</u>, prepared by Kiowa Engineering Corporation, dated November 29, 2010.
- 6) <u>Mesa Ridge Parkway Roadway Design, Autumn Glen Avenue to Marksheffel Road and</u> <u>Widening from Powers Boulevard to Autumn Glen Avenue</u>, prepared by Kiowa Engineering Corporation, dated December 8, 2010.
- 7) <u>Master Development Drainage Plan for the Glen at Widefield</u>, prepared by Kiowa Engineering Corporation, dated December 10, 1999.
- 8) <u>West Fork Jimmy Camp Creek Drainage Basin Planning Study</u>, prepared by Kiowa Engineering Corporation, dated October 17, 2003.
- 9) <u>City of Colorado Springs and El Paso County Flood Insurance Study</u>, prepared by the Federal Emergency Management Agency, dated March 1997.
- 10) <u>El Paso County Drainage Criteria Manual (Volumes 1 and 2) and Engineering Criteria</u> <u>Manual</u>, current editions.
- 11) <u>Soil Survey of El Paso County Area, Colorado</u>, prepared by United States Department of Agriculture Soil Conservation Service, dated June 1981.

APPENDIX TABLE OF CONTENTS

APPENDIX

Figure 1: Vicinity Map Figure 2: Soils Map FEMA Flood Insurance Rate Map (Panels 956 and 957) Table 1: Impervious Area and Drainage Basin & Bridge Fee Calc Table 2: Opinion of Cost – Drainage Facilities

APPENDIX A

Hydrologic Calculations Existing Condition – Runoff Coef, Time of Concentration and Runoff Calcs Developed Condition – Runoff Coef, Time of Concentration and Runoff Calcs

APPENDIX A.1

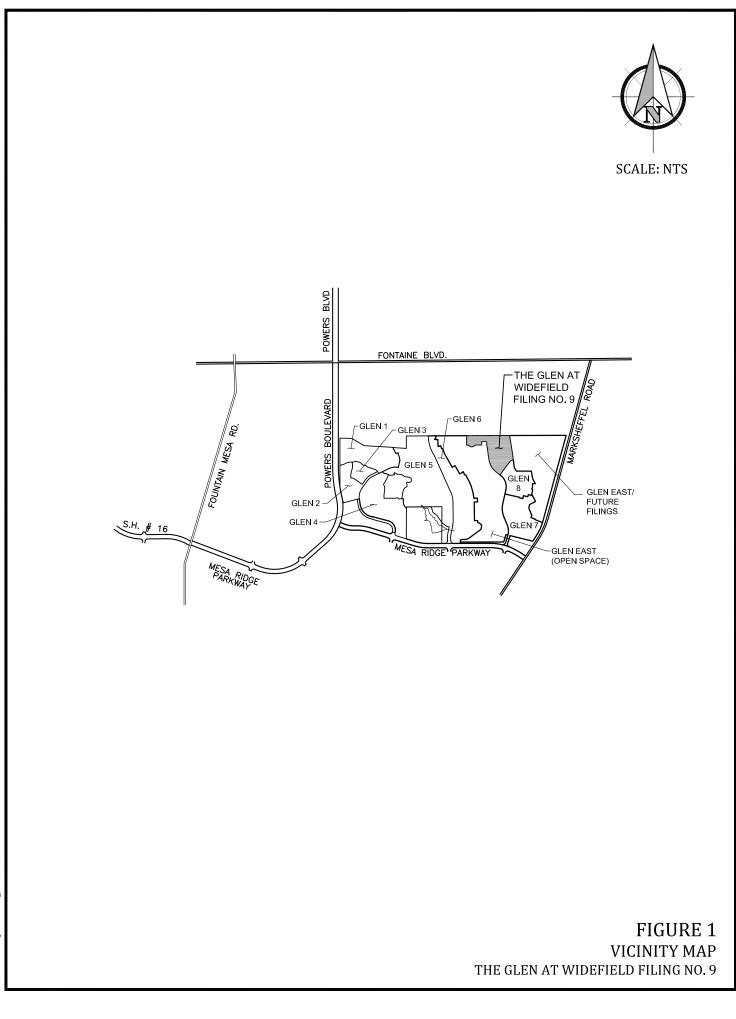
Supporting Hydrologic Tables and Figures

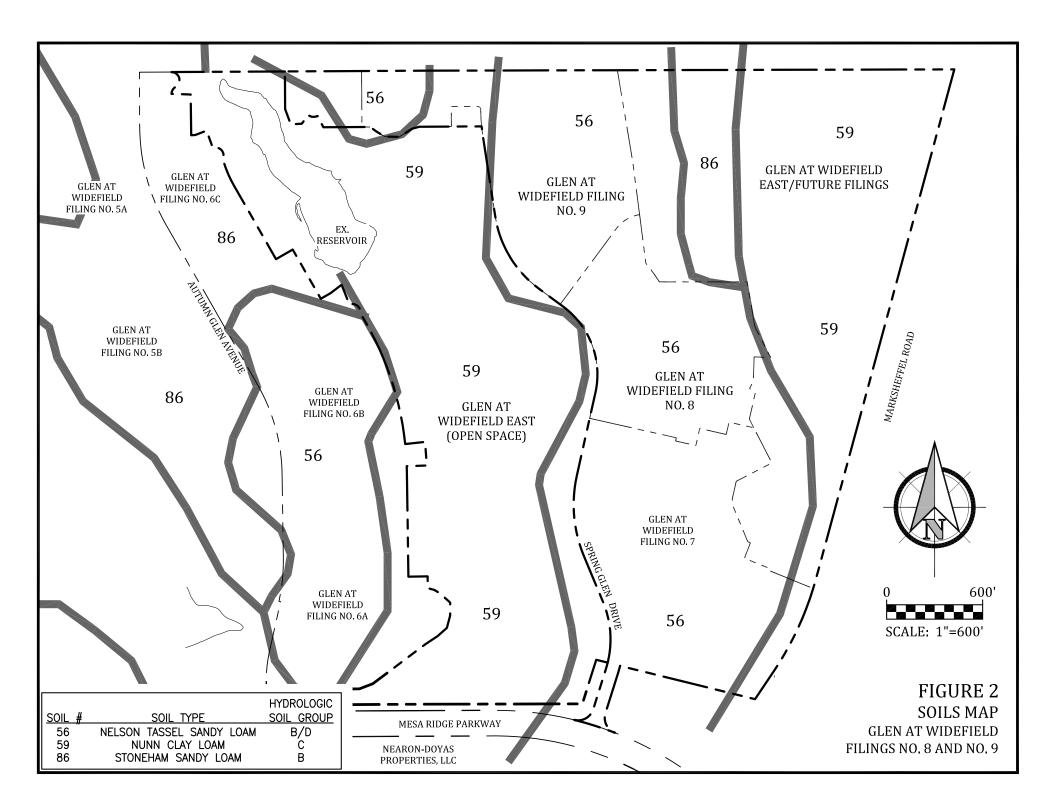
APPENDIX B

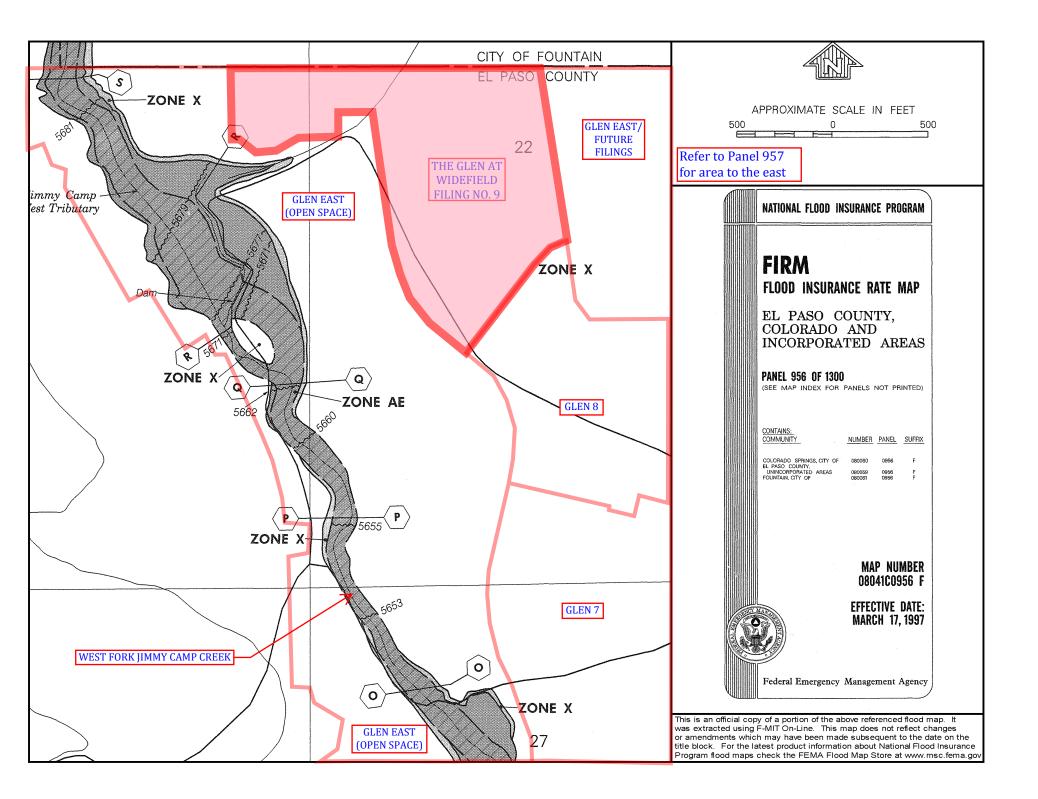
Detention Basin Calculations Full Spectrum Detention Basin/Extended Detention Basin Detention Volume and Emergency Spillway Outlet Structure Calculations Trickle Channel Capacity and Outlet Structure Sizing Trash Rack and Safety Grate Sizing Forebay Sizing Calculations

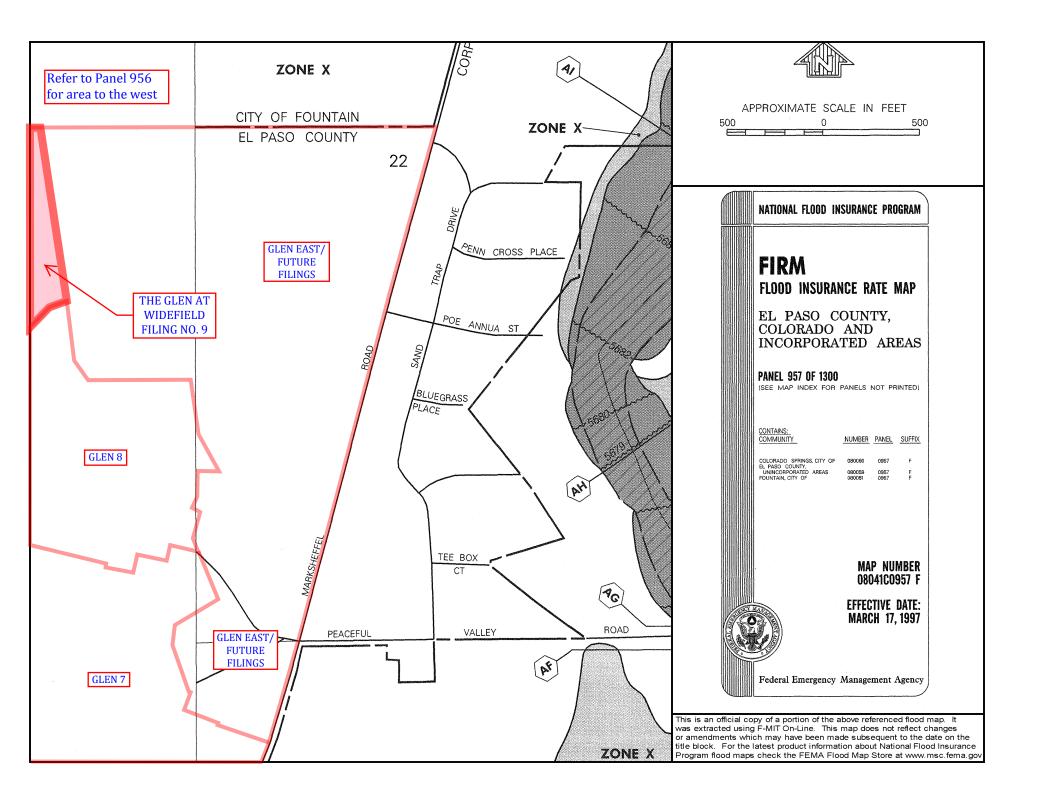
APPENDIX B.1

Supporting Detention Basin Tables and Figures


APPENDIX C


Hydraulic Calculations Inlet Summary and Calculations Street Capacity Calculations – UD Inlet Inlet Capacity Calculations – UD Inlet Pipe Sizing Calculations UDSewer Plan Schematic UDSewer Input and Output Tables: 5-year and 100-year Storm Events Pipe Outlet Erosion Protection Calculations Open Channel Calculations


APPENDIX D


Existing and Proposed Drainage Plans Sheet 1 - Drainage Plan Existing Condition Sheet 2 - Final Drainage Plan Developed Condition

APPENDIX Figure 1: Vicinity Map Figure 2: Soils Map FEMA Flood Insurance Rate Map (Panels 956 and 957) Table 1: Impervious Area and Drainage Basin & Bridge Fee Calc Table 2: Opinion of Cost – Drainage Facilities

Glen at Widefield Filing No. 9 Drainage Basin and Bridge Fees

Table 1: Impervious Area and Drainage Basin & Bridge Fee Calculation

Total Lots =	106 lots
Total Development Area =	28.400 ac
Total Undeveloped Acres =	0.000 ac
Total Developed Area =	28.4 ac
Building/Patio/Drive Per Lot = Total Building/Patio/Drive Area = Total Street/Sidewalk Area = Total Impervious Area =	2,146 sf 5.222 ac 5.853 ac 11.075 ac
% Impervious Area =	39.00 %

West Fork Jimmy Camp Creek Drainage Basin

	D	ainage Basin Fee and Bri	dge Fee Calculations	
Drainage Basi	n Fee =	\$11,775 / ac	Drainage Basin Fee =	\$ 130,410.74
Bridg	e Fee =	\$3,484 / ac	Bridge Fee =	\$ 38,586.07
Less Previous Drain	nage Fee Cred	it (Carry Over from Glen at Widefield Filing No. 7)	\$0.00	\$ 0.00
_	e	Basin Fee Reimbursement	\$0.00	
Tot	al Drainage B	asin Fee Credit Available	\$0.00	
		_	Drainage Basin	Bridge
Total Fees Due	for the Gler	at Widefield Filing No. 9	\$130,410.74	\$ 38,586.07

Glen at Widefield Filing No. 9 Opinion of Cost

Table 2: Opinion of Cost - Public Drainage Facilities

Item	Quantity	Unit	Unit Cost	Item Total
Drainage Structures				
Reinforced Concrete Pipe (RCP)	0	LF	\$ 0.00	\$ 0.00
18" Reinforced Concrete Pipe	520	LF	\$ 69.00	\$ 35,880.00
24" Reinforced Concrete Pipe	82	LF	\$ 84.00	\$ 6,888.00
36" Reinforced Concrete Pipe	241	LF	\$ 124.00	\$ 29,884.00
48" Reinforced Concrete Pipe	423	LF	\$ 178.00	\$ 75,294.00
Flared End Section (FES) RCP 24"	1	EA	\$ 900.00	\$ 900.00
Flared End Section (FES) RCP 30"	1	EA	\$ 1,000.00	\$ 1,000.00
Flared End Section (FES) RCP 48"	1	EA	\$ 1,500.00	\$ 1,500.00
Curb Inlet (Type R) $L = 10'$, 5'-10' Depth	1	EA	\$ 6,694.00	\$ 6,694.00
Curb Inlet (Type R) $L = 10'$, 10'-15' Depth	1	EA	\$ 7,500.00	\$ 7,500.00
Curb Inlet (Type R) L = $25'$, 5' - 10' Depth	2	EA	\$ 10,000.00	\$ 20,000.00
Grated Inlet (Custom), >5' deep	1	EA	\$ 7,500.00	\$ 7,500.00
Storm Sewer Manhole, Slab Base, Depth < 15 feet	3	EA	\$ 4,575.00	\$ 13,725.00
Geotextile (Erosion Control)	0	SY	\$ 5.00	\$ 0.00
Rip Rap, d50 Size from 6" to 24"	20	CY	\$ 98.00	\$ 1,960.00
Channel Lining, Concrete (Trickle Channel)	20	CY	\$ 450.00	\$ 9,000.00
Channel Lining, Rip Rap	75	CY	\$ 98.00	\$ 7,350.00
Concrete Cutoff Wall (30" RCP FES)	1	EA	\$ 500.00	\$ 500.00
Detention Outlet Structure	1	EA	\$ 12,000.00	\$ 12,000.00
Detention Emergency Spillway	1	EA	\$ 18,300.00	\$ 18,300.00
Presedimentation Forebay	1	EA	\$ 7,000.00	\$ 7,000.00
Gravel Maintenance Access Trail	1,055	SY	\$ 20.00	\$ 21,100.00
Type II Bedding	28	CY	\$ 35.00	\$ 980.00
Detention Basin Seeding and Mulch	3	AC	\$ 520.00	\$ 1,528.80
	Fstir	nated Storm Drai	inage Facilities Cost	\$ 297.304.80

Estimated Storm Drainage Facilities Cost \$297,304.80 Engineering 10% \$29,730.48 Contingency 5% \$14,865.24 Total Estimated Cost \$341,900.52

17038 Costs (FDR) Opinion of Cost Date Prepared: 8/1/2018

APPENDIX A

Hydrologic Calculations

Existing Condition – Runoff Coef, Time of Concentration and Runoff Calcs Developed Condition – Runoff Coef, Time of Concentration and Runoff Calcs

14044 - GLEN AT WIDEFIELD EAST IOR 2 1 OF. SHEET NO ... KIOWA ENGINEERING CORPORATION CJC 4/24/15 CALCULATED BY____ DATE __ DATE CHECKED BY____ SCALE __ RUNDEFF COEFF. CALC'S. - EXISTING CONDITION USE UNDEVELOPED - "PASTURE/MEADOW" LAND USE : B Soils - C5 = 0.08 C100 = 0.35 B/D SOILS -CE = 0.15 C100 = 0.50 (ASSUME C/D SOILS) C5 = 0.15 C100 = 0.50 C SOILS -BASIN EX-1 : TYPE CAND B/D SOILS AREA = 48.60 AC (AREAS FROM CAD, TYP.) C5 = 0.15 C100 = 0.50 BASIN EX-2 = TYPE C AND B/D SOILS AREA = 33,12 AC Cs = 0,15 C100 = 0.50 BASIN EX-3 : TYPE C AND B/D SOILS AREA = 61.01 AC C= 20.15 G00 = 0.50 BASH BX-4 : TYPE C AND B/D SOLLS AREA = 10.51 AC C= = 0.15 C100 = 0.50 TYPE B SOIL - 12-2 AC + BASIN Ex-51 FROM TYPE C SOIL - 39.3 AC ± TYPE B/D SOIL - 23.2 AC ± SOILS MAP AREA = 74.74 AC $C_{5,WTD} = \frac{0.08(12.2) + 0.15(39.3 + 23.2)}{74.74} = 0.14$ $C_{100, WTP} = \frac{0.35(12.2) + 0.50(39.3 + 23.2)}{74.74} = 0.48$

KIO	WA ENGINEERING CORPORATION	SHEET NO 2 CALCULATED BYCJC CHECKED BY SCALE	AT WIDEFIFELD EAST OF2 DATEDATE
	BASIN EX-6 = TYPE C A AREA = 8. C5 = 0.15 C100 = 0.5 TIME OF CONCENTRATION CA	83 AC 5	
	BASIN 05-2 : FROM MDD BASIN ARE SCS CURVE SCS LAG T te = BASIN 05-2 : BA = 0.19 : LS = B6 UD = 0.497	P, HE<-1 MODEL INPUTA (BA) = 0.119 SQ.mi.NO.(LS) = 79IME (UD) = 0.257 HRS.1.6 (0.257)(60 min/hr)SQ.mi. × 640 = 121.6 Ac	T : BASIN 3060 × 640 = 76.2 AC = 0.6 tc = 24.7 min. (BASIN 4010)

The Glen at Widefield Existing Condition Runoff Coefficient and Percent Impervious Calculation

				PV	Area 1	Land	Use	HI Area 2 Land Use					Area 3	Land	Use	US2	Area 4	Use	RO	Area 5 Land Use						
Basin / DP	Basin or D (DP contri basins	buting	Soil Type	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	Basin % Imperv		sin noff C ₁₀₀
EX-1	2,117,068 sf	48.60ac	С	100%		0%	0%	0%	48.60ac	100%	0%	85%		0%	0%	78%		0%	0%	90%		0%	0%	0.0%	0.15	0.50
EX-2	1,442,826 sf	33.12ac	С	100%		0%	0%	0%	33.12ac	100%	0%	85%		0%	0%	78%		0%	0%	90%		0%	0%	0.0%	0.15	0.50
EX-3	2,657,513 sf	61.01ac	С	100%		0%	0%	0%	61.01ac	100%	0%	85%		0%	0%	78%		0%	0%	90%		0%	0%	0.0%	0.15	0.50
EX-4	457,877 sf	10.51ac	С	100%		0%	0%	0%	10.51ac	100%	0%	85%		0%	0%	78%		0%	0%	90%		0%	0%	0.0%	0.15	0.50
EX-5	3,255,509 sf	74.74ac	С	100%		0%	0%	0%	74.74ac	100%	0%	85%		0%	0%	78%		0%	0%	90%		0%	0%	0.0%	0.14	0.48
EX-6	384,815 sf	8.83ac	С	100%		0%	0%	0%	8.83ac	100%	0%	85%		0%	0%	78%		0%	0%	90%		0%	0%	0.0%	0.15	0.50

Basin Runoff Coefficient is	based on U	DFCD 9	% Impe	rviousnes	ss Calc	ulatio	n]
Runoff Coefficients and P	ercents Im	pervi	ous						
Hydrologic Soil Type:	С			Runoff (Coef Ca	alc Me	ethod	%Imp	
Land Use	Abb	%	C ₂	C ₅	C ₁₀	C ₂₅	C ₅₀	C ₁₀₀	Weighted
Commercial Area	CO	95%	0.80	0.82	0.84	0.87	0.89	0.89	%lmp
Drives and Walks	DR	90%	0.73	0.75	0.77	0.80	0.83	0.83	А
Streets - Gravel (Packed)	GR	40%	0.28	0.35	0.42	0.50	0.55	0.58	В
Undevelop-Pasture/Meadow	HI	0%	0.04	0.15	0.25	0.37	0.44	0.50	С
Lawns	LA	0%	0.04	0.15	0.25	0.37	0.44	0.50	D
Off-site flow-Undeveloped	OF	45%	0.31	0.37	0.44	0.51	0.56	0.59	
Park	PA	7%	0.09	0.19	0.29	0.40	0.47	0.52	
Playground	PL	13%	0.13	0.23	0.32	0.42	0.49	0.54	
Streets - Paved	PV	100%	0.89	0.90	0.92	0.94	0.96	0.96	
Roofs	RO	90%	0.73	0.75	0.77	0.80	0.83	0.83	
User Input 1	US1	85%	0.66	0.68	0.71	0.75	0.78	0.79]
User Input 2	US2	78%	0.57	0.60	0.64	0.68	0.72	0.73	

Equations (% Impervious Calculation): $C_A = K_A + (1.31 i^3 - 1.44 i^2 + 1.135 i - 0.12)$ [Eqn RO-6] $C_{CD} = K_{CD} + (0.858 i^3 - 0.786 i^2 + 0.774 i + 0.04)$ [Eqn RO-7] Weighted $C_{B} = (C_{A} + C_{CD}) / 2$

I = % imperviousness/100 as a decimal (See Table RO-3) C_A = Runoff coefficient for NRCS Type A Soils

 C_{B} = Runoff coefficient for NRCS Type B Soils

C_{CD} = Runoff coefficient for NRCS Type C and D Soils

Correction Factors - Table RO-4 K_A = For Type A Soils $K_{A}(2-yr) = 0$ $K_A (5-yr) = -0.08i + 0.09$ $K_A (10-yr) = -0.14i + 0.17$ $K_A (25-yr) = -0.19i + 0.24$ $K_A (50-yr) = -0.22i + 0.28$ $K_A (100-yr) = -0.25i + 0.32$ K_{CD}=For Type C & D Soils K_{CD} (2-yr)= 0 K_{CD} (5-yr)= -0.10i + 0.11 K_{CD} (10-yr)= -0.18i + 0.21 K_{CD} (25-yr)= -0.28i + 0.33 K_{CD} (50-yr)= -0.33i + 0.40 K_{CD} (100-yr)= -0.39i + 0.46

The Glen at Widefield Existing Condition Time of Concentration Calculation

	Sub-Basin Data						Time of	Concei	ntrati	on E	stimate				
Basin /				Initial/C)verlan	d Time (t _i)			Trav	el Tir	ne (t _t)		Comp.	Final t _c	Notes
Design Point	Contributing Basins	Area	C ₅	Length	Slope	t _i	Length	Slope	Land Type	Cv	Velocity	t _t	t _c	i iliai te	Notes
EX-1		48.60ac	0.15	300lf	5.3%	17.3 min.	2200lf	1.9%	GW	15	2.1 ft/sec	17.7 min.	35.0 min.	35.0 min.	
EX-2		33.12ac	0.15	300lf	4.8%	17.9 min.	1370lf	3.2%	GW	15	2.7 ft/sec	8.5 min.	26.4 min.	26.4 min.	
EX-3		61.01ac	0.15			0.0 min.	2500lf	0.9%	GW	15	1.4 ft/sec	29.3 min.	29.3 min.	29.3 min.	
EX-4		10.51ac	0.15	300lf	4.0%	19.0 min.	900lf	4.9%	GW	15	3.3 ft/sec	4.5 min.	23.5 min.	23.5 min.	
EX-5		74.74ac	0.14	300lf	5.7%	17.0 min.	3250lf	1.0%	GW	15	1.5 ft/sec	36.1 min.	53.2 min.	53.2 min.	
EX-6		8.83ac	0.15	150lf	0.5%	26.8 min.	630lf	5.5%	GW	15	3.5 ft/sec	3.0 min.	29.8 min.	29.8 min.	
DP 1	OS-1	76.20ac											24.7 min.	24.7 min.	DP 3060 from MDDP
DP 2	OS-1, EX-1	124.80ac	0.15			0.0 min.	1000lf	1.0%	GW	15	1.5 ft/sec	11.1 min.	11.1 min.	35.8 min.	DP 1 routed to DP 2
DP 3	EX-2	33.12ac	0.15	300lf	4.8%	17.9 min.	1370lf	3.2%	GW	15	2.7 ft/sec	8.5 min.	26.4 min.	26.4 min.	
DP 4	OS-1, EX-1, EX-2	157.92ac	0.15			0.0 min.	300lf	0.5%	GW	15	1.1 ft/sec	4.7 min.	5.0 min.	40.8 min.	DP 2 and DP 3 routed to DP 4
DP 5	OS-1, EX-1, EX-2, EX-3	218.93ac	0.15			0.0 min.	800lf	1.3%	GW	15	1.7 ft/sec	7.8 min.	7.8 min.	48.6 min.	DP 4 routed to DP 5
DP 6	EX-4	10.51ac	0.15	300lf	4.0%	19.0 min.	900lf	4.9%	GW	15	3.3 ft/sec	4.5 min.	23.5 min.	23.5 min.	
DP 7	OS-1, EX-1, EX-2, EX-3, EX-4	229.44ac	0.15			0.0 min.	200lf	0.3%	GW	15	0.8 ft/sec	4.1 min.	5.0 min.	53.6 min.	DP 5 and DP 6 routed to DP 7
DP 8	0S-2	121.60ac											47.7 min.	47.7 min.	DP 4011 from MDDP
DP 9	OS-2, EX-5	196.34ac	0.15			0.0 min.	1550lf	0.6%	GW	15	1.1 ft/sec	23.2 min.	23.2 min.	70.9 min.	DP 8 routed to DP 9
DP 10	EX-6	8.83ac	0.15	150lf	0.5%	26.8 min.	630lf	5.5%	GW	15	3.5 ft/sec	3.0 min.	29.8 min.	29.8 min.	

Equations:

$$t_i$$
 (Overland) = 0.395(1.1-C₅)L^{0.5} S^{-0.333}

 C_5 = Runoff coefficient for 5-year

S = Slope of flow path (ft/ft)

tc Check = (L/180)+10 (Developed Cond. Only)

L = Overall Length

Velocity (Travel Time) = $CvS^{0.5}$

Cv = Conveyance Coef (see Table)

S = Watercourse slope (ft/ft)

Land Surface Type	Land Type
Grassed Waterway	GW
Heavy Meadow	HM
Nearly Bare Ground	NBG
Paved Area	PV
Riprap (Not Buried)	RR
Short Pasture/Lawns	SP
Tillage/Fields	TF

The Glen at Widefield **Existing Condition Runoff** Calculation

Basin /	Contributing Paging	Drainage			Time of	Rainfall	Intensity	Ru	noff	Pagin / DD	Notes
Design Point	Contributing Basins	Area	C ₅	C ₁₀₀	Concentration	i ₅	i ₁₀₀	Q_5	Q ₁₀₀	Basin / DP	Notes
EX-1		48.60 ac	0.15	0.50	35.0 min.	2.2 in/hr	3.8 in/hr	16.4 cfs	91.7 cfs	EX-1	
EX-2		33.12 ac	0.15	0.50	26.4 min.	2.7 in/hr	4.5 in/hr	13.3 cfs	74.3 cfs	EX-2	
EX-3		61.01 ac	0.15	0.50	29.3 min.	2.5 in/hr	4.2 in/hr	23.0 cfs	128.9 cfs	EX-3	
EX-4		10.51 ac	0.15	0.50	23.5 min.	2.8 in/hr	4.8 in/hr	4.5 cfs	25.1 cfs	EX-4	
EX-5		74.74 ac	0.14	0.48	53.2 min.	1.6 in/hr	2.7 in/hr	17.0 cfs	97.7 cfs	EX-5	
EX-6		8.83 ac	0.15	0.50	29.8 min.	2.5 in/hr	4.2 in/hr	3.3 cfs	18.5 cfs	EX-6	
DP 1	OS-1	76.20 ac			24.7 min.	2.8 in/hr	4.7 in/hr	48 cfs	163 cfs	DP 1	DP 3060 from MDDP
DP 2	OS-1, EX-1	124.80 ac	0.15	0.50	35.8 min.	2.2 in/hr	3.7 in/hr	41 cfs	232 cfs	DP 2	
DP 3	EX-2	33.12 ac	0.15	0.50	26.4 min.	2.7 in/hr	4.5 in/hr	13 cfs	74 cfs	DP 3	
DP 4	OS-1, EX-1, EX-2	157.92 ac	0.15	0.50	40.8 min.	2.0 in/hr	3.4 in/hr	48 cfs	268 cfs	DP 4	
DP 5	OS-1, EX-1, EX-2, EX-3	218.93 ac	0.15	0.50	48.6 min.	1.8 in/hr	2.9 in/hr	58 cfs	323 cfs	DP 5	
DP 6	EX-4	10.51 ac	0.15	0.50	23.5 min.	2.8 in/hr	4.8 in/hr	4 cfs	25 cfs	DP 6	
DP 7	OS-1, EX-1, EX-2, EX-3, EX-4	229.44 ac	0.15	0.50	53.6 min.	1.6 in/hr	2.7 in/hr	55 cfs	310 cfs	DP 7	
DP 8	OS-2	121.60 ac			47.7 min.	1.8 in/hr	3.0 in/hr	38 cfs	153 cfs	DP 8	DP 4011 from MDDP
DP 9	OS-2, EX-5	196.34 ac	0.15	0.50	70.9 min.	1.2 in/hr	2.0 in/hr	35 cfs	196 cfs	DP 9	
DP 10	EX-6	8.83 ac	0.15	0.50	29.8 min.	2.5 in/hr	4.2 in/hr	3 cfs	18 cfs	DP 10	

Equations (taken from Fig 6-5, City of Colorado Springs DCM): $i_2 = -1.19 \ln(T_c) + 6.035$

Q = CiA

Q = Peak Runoff Rate (cubic feet/second)

C = Runoff coef representing a ration of peak runoff rate to ave rainfall intensity for a duration equal to the runoff time of concentration.

 i_{10} =-1.75 ln(T_c) + 8.847 i_{25} =-2.00 ln(T_c) + 10.111 i_{50} =-2.25 ln(T_c) + 11.375

 i_5 =-1.50 ln(T_c) + 7.583

i = average rainfall intensity in inches per hour

 i_{100} =-2.52 ln(T_c) + 12.735

A = Drainage area in acres

P1	Inches
WQCV	0.60 in
2 yr	1.19 in
5 yr	1.50 in
10 yr	1.75 in
25 yr	2.00 in
50 yr	2.25 in
100 yr	2.52 in

NOWA ENGINEERING CORPORATION

$$\frac{14044 - GLEN AT WIDEFIELD EAST}{2}$$

 SHETMO
 2
 or
 2

 CALCUMED BY
 CTC
 $orter$
 2

 CALCUMED BY
 CTC
 $orter$
 2

 CALCUMED BY
 CTC
 $orter$
 2

 CALL
 CTC
 $orter$
 0

 CRESTOR
 CTC
 0
 0

 CRESTOR
 CTC
 0
 0

 CRESTOR
 CTC
 0
 0

 CTC
 0
 0
 0
 0

 CTC
 0
 0
 0
 0
 0

 CTC
 0
 0
 0
 0
 0
 0

 CTC
 0
 0
 0
 0

The Glen at Widefield Filing No. 9 Developed Condition Runoff Coefficient and Percent Impervious Calculation

					PV	Area 1	Land	Use	LA	A Area 2 Land Use			RS2	Area 3 L	and	Use	RS1	Area 4	Land				
Basin	DP	Basin or Dl (DP contril basins	buting	Soil Type	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	Basin % Imperv	Ru	asin Inoff ficient C ₁₀₀
A-1	DP 1	207,218 sf	4.76ac	С	100%		0%	0%	0%	0.58ac	12%	0%	46%		0%	0%	35%	4.18ac	88%	31%	30.7%	0.31	0.57
A-2	DP 2	48,865 sf	1.12ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	35%	1.12ac	100%	-	35.0%		
A-3	DP 3	105,749 sf	2.43ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	35%	2.43ac	100%	-	35.0%		0.57
A-4		30,939 sf	0.71ac	С	100%	0.09ac			0%	0.62ac	87%	0%	46%		0%	0%	35%		0%	0%	12.7%	-	0.54
A-5		38,440 sf	0.88ac	С	100%	0.57ac	65%	65%	0%	0.31ac	35%	0%	46%		0%	0%	35%		0%	0%	64.9%		0.74
A-6	DP 6	66,445 sf	1.53ac	С	100%	0.10ac	6%	6%	0%	1.43ac	94%	0%	46%		0%	0%	35%		0%	0%	6.3%	0.19	0.52
A-7	DP 7	142,805 sf	3.28ac	С	100%		0%	0%	0%	0.42ac	13%	0%	46%		0%	0%	35%	2.86ac	87%	31%	30.5%		
A-8	DP 8	32,545 sf	0.75ac	С	100%		0%	0%	0%	0.08ac	11%	0%	46%		0%	0%	35%	0.66ac	89%	31%	31.1%		
A-9	DP 9	56,113 sf	1.29ac	C	100%		0%	0%	0%		0%	0%	46%		0%	0%	35%	1.29ac	100%	35%	35.0%		
A-10		40,968 sf	0.94ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	35%	0.94ac	100%	35%	35.0%		
A-11		64,924 sf	1.49ac	C	100%	0.91ac	61%	61%	0%	0.58ac	39%	0%	46%		0%	0%	35%		0%	0%	61.1%		0.64
A-12		27,745 sf	0.64ac	С	100%		0%	0%	0%	0.64ac	100%	0%	46%		0%	0%	35%		0%	0%	0.0%	0.15	0.50
	DP 4	A2, A3, A4	4.26ac	С	100%	0.09ac	2%	2%	0%	0.62ac	15%	0%	46%		0%	0%	35%	3.55ac	83%	29%	31.3%	0.31	0.57
	DP 5	A2, A3, A4, A5	5.14ac	С	100%	0.66ac	13%	13%	0%	0.93ac	18%	0%	46%		0%	0%	35%	3.55ac	69%	24%	37.0%	0.34	0.58
	DP 10	A8 - A10	2.98ac	С	100%	0.00ac	0%	0%	0%	0.08ac	3%	0%	46%		0%	0%	35%	2.89ac	97%	34%	34.0%	0.32	0.57
	DP 11	A6 - A10	7.78ac	С	100%	0.10ac	1%	1%	0%	1.93ac	25%	0%	46%		0%	0%	35%	5.75ac	74%	26%	27.1%	0.29	0.56
	DP 12	A6 - A11	9.27ac	С	100%	1.01ac	11%	11%	0%	2.51ac	27%	0%	46%		0%	0%	35%	5.75ac	62%	22%	32.6%	0.32	0.57
	DP 13	0S-1	76.20ac																				
	DP 14	A2 - A11	14.41ac	С	100%	1.67ac	12%	12%	0%	3.44ac	24%	0%	46%		0%	0%	35%	9.30ac	65%	23%	34.2%	0.32	0.57
	DP 14.1	A2 - A12	15.05ac	С	100%	1.67ac	11%	11%	0%	4.08ac	27%	0%	46%		0%	0%	35%	9.30ac	62%	22%	32.7%	0.32	0.57

Basin Runoff Coefficient is bas	ed on UDFCD	% Impe	erviou	sness Calc	ulatio	1			
Runoff Coefficients and Perc	ents Impervi	ous							
Hydrologic Soil Type:	B			Runoff	Coef C	alc M	ethod	%Imp	
Land Use	Abb	%	C ₂	C ₅	C ₁₀	C ₂₅	C ₅₀	C ₁₀₀	
Commercial Area	CO	95%	0.79	0.81	0.83	0.85	0.87	0.88	1
Drives and Walks	DR	90%	0.71	0.73	0.75	0.78	0.80	0.81	
Streets - Gravel (Packed)	GR	40%	0.23	0.30	0.36	0.42	0.46	0.50	
Undevelop-Historic Flow	HI	2%	0.03	0.08	0.17	0.26	0.31	0.36	
Lawns	LA	0%	0.02	0.08	0.15	0.25	0.30	0.35	
Off-site flow-Undeveloped	OF	45%	0.26	0.32	0.38	0.44	0.48	0.51	
Park	PA	7%	0.05	0.12	0.20	0.29	0.34	0.39	
Playground	PL	13%	0.07	0.16	0.24	0.32	0.37	0.42	
Streets - Paved	PV	100%	0.89	0.90	0.92	0.94	0.95	0.96	
Roofs	RO	90%	0.71	0.73	0.75	0.78	0.80	0.81	
Residential: 3.5 Lots/Acre	RS1	35%	0.20	0.27	0.34	0.41	0.45	0.48	1
Residential: 1/5 Acre	RS2	46%	0.27	0.33	0.39	0.45	0.48	0.51	I

Equations (% Impervious Calculation):

$$\begin{split} &C_A = K_A + (1.31 \ i^3 - 1.44 \ i^2 + 1.135 \ i - 0.12) \ [Eqn \ RO-6] \\ &C_{CD} = K_{CD} + (0.858 \ i^3 - 0.786 \ i^2 + 0.774 \ i + 0.04) \ [Eqn \ RO-7] \\ &C_B = (C_A + C_{CD}) \ / \ 2 \end{split}$$

I = % imperviousness/100 as a decimal (See Table RO-3) C_A = Runoff coefficient for NRCS Type A Soils

 $C_{\rm B}$ = Runoff coefficient for NRCS Type B Soils

 C_{CD} = Runoff coefficient for NRCS Type C and D Soils

 $\begin{array}{l} \mbox{Correction Factors - Table RO-4} \\ \mbox{K}_{A} = \mbox{For Type A Soils} \\ \mbox{K}_{A} (2\mbox{-yr}) = 0 \\ \mbox{K}_{A} (5\mbox{-yr}) = \mbox{-}0.08i + 0.09 \\ \mbox{K}_{A} (10\mbox{-yr}) = \mbox{-}0.14i + 0.17 \\ \mbox{K}_{A} (25\mbox{-yr}) = \mbox{-}0.19i + 0.24 \\ \mbox{K}_{A} (25\mbox{-yr}) = \mbox{-}0.22i + 0.28 \\ \mbox{K}_{A} (100\mbox{-yr}) = \mbox{-}0.22i + 0.32 \\ \mbox{K}_{CD} = \mbox{For Type C \& D Soils} \\ \mbox{K}_{CD} (2\mbox{-yr}) = \mbox{0} \\ \mbox{K}_{CD} (5\mbox{-yr}) = \mbox{-}0.10i + 0.11 \\ \mbox{K}_{CD} (10\mbox{-yr}) = \mbox{-}0.18i + 0.21 \\ \mbox{K}_{CD} (25\mbox{-yr}) = \mbox{-}0.28i + 0.33 \\ \mbox{K}_{CD} (50\mbox{-yr}) = \mbox{-}0.33i + 0.40 \\ \mbox{K}_{CD} (100\mbox{-yr}) = \mbox{-}0.39i + 0.46 \\ \end{array}$

17038 Drainage Calcs Runoff Coeff (A) Date Printed: 5/21/2018

The Glen at Widefield Filing No. 9 Developed Condition Time of Concentration Calculation

	5	Sub-Basin Data	1				[Fime of (Concer	ntrati	on E	stimate			Min. To	: in Urban		
	Desires	Contributions			Initial/O	verlan	d Time (t _i)			Trave	l Tin	ne (t _t)		Comp.	Tc Cheo	ck (urban)	Final t _c	Notes
Basin	Point	Contributing Basins	Area	C ₅	Length	Slope	t _i	Length	Slope	Land Type	Cv	Velocity	t _t	t _c	Total Length	t _c Check	r mar t _c	Notes
A-1	DP 1		4.76ac	0.31	70lf	4.0%	7.6 min.	660lf	2.5%	GW	15	2.4 ft/sec	4.6 min.	12.3 min.	730lf	14.1 min.	12.3 min.	
A-2	DP 2		1.12ac	0.33	70lf	2.0%	9.4 min.	610lf	2.5%	PV	20	3.2 ft/sec	3.2 min.	12.6 min.	680lf	13.8 min.	12.6 min.	
A-3	DP 3		2.43ac	0.33	100lf	4.5%	8.6 min.	570lf	2.5%	PV	20	3.2 ft/sec	3.0 min.	11.6 min.	670lf	13.7 min.	11.6 min.	
A-4			0.71ac	0.22	100lf	7.0%	8.4 min.	540lf	3.3%	GW	15	2.7 ft/sec	3.3 min.	11.7 min.	640lf	13.6 min.	11.7 min.	
A-5			0.88ac	0.61			0.0 min.	515lf	1.2%	PV	20	2.2 ft/sec	3.9 min.	5.0 min.	515lf	12.9 min.	5.0 min.	
A-6	DP 6		1.53ac	0.19	100lf	1.1%	16.2 min.	980lf	4.0%	GW	15	3.0 ft/sec	5.4 min.	21.6 min.	1080lf	16.0 min.	16.0 min.	
A-7	DP 7		3.28ac	0.31	100lf	2.5%	10.7 min.	900lf	4.0%	PV	20	4.0 ft/sec	3.8 min.	14.5 min.	1000lf	15.6 min.	14.5 min.	
A-8	DP 8		0.75ac	0.31	100lf	2.5%	10.7 min.	630lf	4.0%	PV	20	4.0 ft/sec	2.6 min.	13.3 min.	730lf	14.1 min.	13.3 min.	
A-9	DP 9		1.29ac	0.33	100lf	2.0%	11.2 min.	240lf	1.6%	PV	20	2.5 ft/sec	1.6 min.	12.8 min.	340lf	11.9 min.	11.9 min.	
A-10			0.94ac	0.33	100lf	2.0%	11.2 min.	375lf	1.6%	PV	20	2.5 ft/sec	2.5 min.	13.7 min.	475lf	12.6 min.	12.6 min.	
A-11			1.49ac	0.46			0.0 min.	505lf	1.2%	PV	20	2.2 ft/sec	3.8 min.	5.0 min.	505lf	12.8 min.	5.0 min.	
A-12			0.64ac	0.15	20lf	25.0%	2.7 min.	80lf	0.5%	PV	20	1.4 ft/sec	0.9 min.	5.0 min.	100lf	10.6 min.	5.0 min.	
	DP 4	A2, A3, A4	4.26ac	0.31	100lf	4.3%	8.9 min.	640lf	2.4%	PV	20	3.1 ft/sec	3.4 min.	12.3 min.	740lf	14.1 min.	12.3 min.	
	DP 5	A2, A3, A4, A5	5.14ac	0.34	100lf	4.3%	8.6 min.	1090lf	1.9%	PV	20	2.8 ft/sec	6.6 min.	15.2 min.	1190lf	16.6 min.	15.2 min.	
	DP 10	A8 - A10	2.98ac	0.32	100lf	2.5%	10.5 min.	800lf	4.0%	PV	20	4.0 ft/sec	3.3 min.	13.8 min.	900lf	15.0 min.	13.8 min.	
	DP 11	A6 - A10	7.78ac	0.29	100lf	1.1%	14.3 min.	1030lf	3.9%	PV	20	3.9 ft/sec	4.3 min.	18.7 min.	1130lf	16.3 min.	16.3 min.	
	DP 12	A6 - A11	9.27ac	0.32	100lf	1.1%	13.9 min.	1480lf	3.1%	PV	20	3.5 ft/sec	7.0 min.	20.9 min.	1580lf	18.8 min.	18.8 min.	
	DP 13	0S-1	76.20ac														25.2 min.	Basin OS-1 Routed to DP13
	DP 14	A2 - A11	14.41ac	0.32	100lf	1.1%	13.8 min.	1520lf	3.0%	PV	20	3.5 ft/sec	7.3 min.	21.1 min.	1620lf	19.0 min.	19.0 min.	
	DP 14.1	A2 - A12	15.05ac	0.32	100lf	1.1%	13.9 min.	1670lf	2.8%	PV	20	3.3 ft/sec	8.3 min.	22.2 min.	1770lf	19.8 min.	19.8 min.	

Equations:

 t_i (Overland) = 0.395(1.1-C₅)L^{0.5} S^{-0.333}

 C_5 = Runoff coefficient for 5-year

L = Length of overland flow (ft)

S = Slope of flow path (ft/ft)

tc Check = (L/180)+10 (Developed Cond. Only)

L = Overall Length

Velocity (Travel Time) = CvS^{0.5} Cv = Conveyance Coef (see Table) S = Watercourse slope (ft/ft)

Land Surface Type	Land Type	Cv
Grassed Waterway	GW	15
Heavy Meadow	HM	2.5
Nearly Bare Ground	NBG	10
Paved Area	PV	20
Riprap (Not Buried)	RR	6.5
Short Pasture/Lawns	SP	7
Tillage/Fields	TF	5

The Glen at Widefield Filing No. 9 Developed Condition Runoff Calculation

Desta	Design		Drainage			Time of	Rainfall	Intensity	Ru	noff		N
Basin	Point	Contributing Basins	Area	C ₅	C ₁₀₀	Concentration	i ₅	i ₁₀₀	Q_5	Q ₁₀₀	Basin / DP	Notes
A-1	DP 1		4.76 ac	0.31	0.57	12.3 min.	3.8 in/hr	6.4 in/hr	5.6 cfs	17.4 cfs	A-1	
A-2	DP 2		1.12 ac	0.33	0.57	12.6 min.	3.8 in/hr	6.3 in/hr	1.4 cfs	4.1 cfs	A-2	
A-3	DP 3		2.43 ac	0.33	0.57	11.6 min.	3.9 in/hr	6.6 in/hr	3.1 cfs	9.2 cfs	A-3	
A-4			0.71 ac	0.22	0.54	11.7 min.	3.9 in/hr	6.5 in/hr	0.6 cfs	2.5 cfs	A-4	
A-5			0.88 ac	0.61	0.74	5.0 min.	5.2 in/hr	8.7 in/hr	2.8 cfs	5.7 cfs	A-5	
A-6	DP 6		1.53 ac	0.19	0.52	16.0 min.	3.4 in/hr	5.7 in/hr	1.0 cfs	4.6 cfs	A-6	
A-7	DP 7		3.28 ac	0.31	0.57	14.5 min.	3.6 in/hr	6.0 in/hr	3.6 cfs	11.2 cfs	A-7	
A-8	DP 8		0.75 ac	0.31	0.57	13.3 min.	3.7 in/hr	6.2 in/hr	0.9 cfs	2.6 cfs	A-8	
A-9	DP 9		1.29 ac	0.33	0.57	11.9 min.	3.9 in/hr	6.5 in/hr	1.6 cfs	4.8 cfs	A-9	
A-10			0.94 ac	0.33	0.57	12.6 min.	3.8 in/hr	6.3 in/hr	1.2 cfs	3.4 cfs	A-10	
A-11			1.49 ac	0.46	0.64	5.0 min.	5.2 in/hr	8.7 in/hr	3.6 cfs	8.2 cfs	A-11	
A-12			0.64 ac	0.15	0.50	5.0 min.	5.2 in/hr	8.7 in/hr	0.5 cfs	2.8 cfs	A-12	
	DP 4	A2, A3, A4	4.26 ac	0.31	0.57	12.3 min.		6.4 in/hr	5.0 cfs	15.5 cfs	DP 4	
	DP 5	A2, A3, A4, A5	5.14 ac	0.34	0.58	15.2 min.		5.9 in/hr	6.0 cfs	17.5 cfs	DP 5	
	DP 10	A8 - A10	2.98 ac	0.32	0.57	13.8 min.		6.1 in/hr	3.5 cfs	10.4 cfs	DP 10	
	DP 11	A6 - A10	7.78 ac	0.29	0.56	16.3 min.		5.7 in/hr	7.7 cfs	25.0 cfs	DP 11	
	DP 12	A6 - A11	9.27 ac	0.32	0.57	18.8 min.	3.2 in/hr	5.3 in/hr	9.3 cfs	28.3 cfs	DP 12	
	DP 13	OS-1	76.20 ac			25.2 min.	2.7 in/hr	4.6 in/hr	50.0 cfs	165.0 cfs	DP 13	Flow From Basin OS-1
	DP 14	A2 - A11	14.41 ac	0.32	0.57	19.0 min.	3.2 in/hr	5.3 in/hr	14.7 cfs	43.9 cfs	DP 14	
	DP 14.1	A2 - A12	15.05 ac	0.32	0.57	19.8 min.	3.1 in/hr	5.2 in/hr	14.8 cfs	44.8 cfs	DP 14.1	

Equations (taken from Fig 6-5, City of Colorado Springs DCM):

i_2 =-1.19 ln(T _c) + 6.035
i_5 =-1.50 ln(T _c) + 7.583
i_{10} =-1.75 ln(T _c) + 8.847
i_{25} =-2.00 ln(T _c) + 10.111
i_{50} =-2.25 ln(T _c) + 11.375
i_{100} =-2.52 ln(T _c) + 12.735

Q = CiA

Q = Peak Runoff Rate (cubic feet/second)

C = Runoff coef representing a ration of peak runoff rate to ave rainfall

intensity for a duration equal to the runoff time of concentration.

i = average rainfall intensity in inches per hour

A = Drainage area in acres

P1	Inches
WQCV	0.60 in
2 yr	1.19 in
5 yr	1.50 in
10 yr	1.75 in
25 yr	2.00 in
50 yr	2.25 in
100 yr	2.52 in

The Glen at Widefield Filings No. 8 and 9 Developed Condition Runoff Coeficient and Percent Impervious Calculation

					PV	Area 1	Land	Use	LA	Area 2	Land	Use	RS1	Area 3	Land	Use	RS2	Area 4	Land	Use			
Basin	DP	Basin or D (DP contri basin	ibuting	Soil Type	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	Imp	Land Use Area	% Area	Comp Land Use % Imp	du	Land Use Area	% Area	Comp Land Use % Imp	Basin % Imperv		sin 10ff C ₁₀₀
E-8		382,642 sf	8.78ac	С	100%		0%	0%	0%	7.97ac	91%	0%	40%		0%	0%	28%	0.81ac	9%	3%	2.6%	0.17	0.51
E-9	DP 103	157,940 sf	3.63ac	С	100%		0%	0%	0%	3.63ac	100%	0%	40%		0%	0%	28%		0%	0%	0.0%	0.15	0.50
E-10	DP 104	638,898 sf	14.67ac	С	100%		0%	0%	0%	14.67ac	100%	0%	40%		0%	0%	28%		0%	0%	0.0%	0.15	0.50
E-11	DP 105	712,280 sf	16.35ac	С	100%		0%	0%	0%	16.35ac	100%	0%	40%		0%	0%	28%		0%	0%	0.0%	0.15	0.50
	DP 102	OS-1, E-8	84.98ac																				

Basin Runoff Coefficient is ba	sed on UDFC	D % Im	pervio	ousness Ca	alculat	ion			
Runoff Coefficients and Per	cents Imper	vious	-						
Hydrologic Soil Type:	С			Runoff	Coef C	alc M	ethod	%Imp	
Land Use	Abb	%	C ₂	C ₅	C ₁₀	C ₂₅	C ₅₀	C ₁₀₀	V
Commercial Area	CO	95%	0.80	0.82	0.84	0.87	0.89	0.89	9
Drives and Walks	DR	90%	0.73	0.75	0.77	0.80	0.83	0.83	
Streets - Gravel (Packed)	GR	40%	0.28	0.35	0.42	0.50	0.55	0.58	
Historic Flow Analysis	HI	2%	0.06	0.16	0.26	0.38	0.45	0.51	
Lawns	LA	0%	0.04	0.15	0.25	0.37	0.44	0.50	
Off-site flow-Undeveloped	OF	45%	0.31	0.37	0.44	0.51	0.56	0.59	
Park	PA	7%	0.09	0.19	0.29	0.40	0.47	0.52	
Playground	PL	13%	0.13	0.23	0.32	0.42	0.49	0.54	
Streets - Paved	PV	100%	0.89	0.90	0.92	0.94	0.96	0.96	
Roofs	RO	90%	0.73	0.75	0.77	0.80	0.83	0.83	
Residential: 1/4 Acre	RS1	40%	0.28	0.35	0.42	0.50	0.55	0.58	
Residential: 2.5 Lots/Acre	RS2	28%	0.21	0.30	0.37	0.47	0.52	0.56	

Equations (% Impervious Calculation):

$$\begin{split} & C_A = K_A + (1.31 \ i^3 - 1.44 \ i^2 + 1.135 \ i - 0.12) \ [Eqn \ RO-6] \\ & C_{CD} = K_{CD} + (0.858 \ i^3 - 0.786 \ i^2 + 0.774 \ i + 0.04) \ [Eqn \ RO-7] \\ & C_B = (C_A + C_{CD}) \ / \ 2 \end{split}$$

I = % imperviousness/100 as a decimal (See Table RO-3)

- C_A = Runoff coefficient for NRCS Type A Soils
- C_B = Runoff coefficient for NRCS Type B Soils

 C_{CD} = Runoff coefficient for NRCS Type C and D Soils

 $\begin{array}{l} \mbox{Correction Factors - Table RO-4} \\ \mbox{K}_{A} = \mbox{For Type A Soils} \\ \mbox{K}_{A} (2 \mbox{-}\mbox{yr}) = 0 \\ \mbox{K}_{A} (5 \mbox{-}\mbox{yr}) = -0.08i + 0.09 \\ \mbox{K}_{A} (10 \mbox{-}\mbox{yr}) = -0.14i + 0.17 \\ \mbox{K}_{A} (25 \mbox{-}\mbox{yr}) = -0.19i + 0.24 \\ \mbox{K}_{A} (25 \mbox{-}\mbox{yr}) = -0.22i + 0.28 \\ \mbox{K}_{A} (100 \mbox{-}\mbox{yr}) = -0.22i + 0.32 \\ \mbox{K}_{CD} = \mbox{For Type C \& D Soils} \\ \mbox{K}_{CD} = \mbox{For Type C \& D Soils} \\ \mbox{K}_{CD} (2 \mbox{-}\mbox{yr}) = -0.10i + 0.11 \\ \mbox{K}_{CD} (10 \mbox{-}\mbox{yr}) = -0.28i + 0.33 \\ \mbox{K}_{CD} (25 \mbox{-}\mbox{yr}) = -0.28i + 0.33 \\ \mbox{K}_{CD} (50 \mbox{-}\mbox{yr}) = -0.33i + 0.40 \\ \mbox{K}_{CD} (100 \mbox{-}\mbox{yr}) = -0.39i + 0.46 \end{array}$

The Glen at Widefield Filings No. 8 and 9 Developed Condition Time of Concentration Calculation

	:	Sub-Basin Data]	Time of (Concen	tratio	on Es	stimate			Min. To	: in Urban		
	Design	Contributing			Initial/O	Overlan	d Time (t _i)			Trave	el Tin	ne (t _t)		Comp.	Tc Chee	ck (urban)	Final t _c	Notes
Basin	Point	Basins	Area	C 5	Length	Slope	t _i	Length	Slope	Land Type	Cv	Velocity	t _t	t _c	Total Length	t _c Check	i illui te	Hotes
E-8			8.78ac	0.17	100lf	10.0%	7.9 min.	980lf	0.5%	GW	15	1.1 ft/sec	15.4 min.	23.3 min.	1080lf	16.0 min.	16.0 min.	
E-9	DP 103		3.63ac	0.15	300lf	1.1%	29.2 min.	600lf	0.5%	GW	15	1.1 ft/sec	9.4 min.	38.6 min.	900lf	15.0 min.	15.0 min.	
E-10	DP 104		14.67ac	0.15	300lf	1.0%	30.1 min.	1340lf	0.8%	GW	15	1.3 ft/sec	16.6 min.	46.8 min.	1640lf	19.1 min.	19.1 min.	
E-11	DP 105		16.35ac	0.15	300lf	1.0%	30.1 min.	1280lf	1.0%	GW	15	1.5 ft/sec	14.2 min.	44.3 min.	1580lf	18.8 min.	18.8 min.	
	DP 102	OS-1, E-8	84.98ac														40 6 min	DP 13 routed to DP 102

Equations:

 t_i (Overland) = 0.395(1.1-C₅)L^{0.5} S^{-0.333}

 C_5 = Runoff coefficient for 5-year

L = Length of overland flow (ft)

S = Slope of flow path (ft/ft)

tc Check = (L/180)+10 (Developed Cond. Only)

L = Overall Length

Velocity (Travel Time) = CvS^{0.5} Cv = Conveyance Coef (see Table RO-2)

S = Watercourse slope (ft/ft)

Land Surface Type	Туре	Cv
Grassed Waterway	GW	15
Heavy Meadow	HM	2.5
Nearly Bare Ground	NBG	10
Paved Area	PV	20
Riprap (Not Buried)	RR	6.5
Short Pasture/Lawns	SP	7
Tillage/Fields	TF	5

The Glen at Widefield Filings No. 8 and 9 **Developed Condition Runoff Calculation**

Basin	Design	Contributing Desing	Drainage			Time of	Rainfall	Intensity	Ru	noff	Pagin / DD	Notes
Dasili	Point	Contributing Basins	Area	C ₅	C ₁₀₀	Concentration	i ₅	i ₁₀₀	Q_5	Q ₁₀₀	Basin / DP	Notes
E-8			8.78 ac	0.17	0.51	16.0 min.	3.4 in/hr	5.7 in/hr	5.0 cfs	25.7 cfs	E-8	
E-9	DP 103		3.63 ac	0.15	0.50	15.0 min.	3.5 in/hr	5.9 in/hr	1.9 cfs	10.7 cfs	E-9	
E-10	DP 104		14.67 ac	0.15	0.50	19.1 min.	3.2 in/hr	5.3 in/hr	6.9 cfs	38.9 cfs	E-10	
E-11	DP 105		16.35 ac	0.15	0.50	18.8 min.	3.2 in/hr	5.3 in/hr	7.8 cfs	43.7 cfs	E-11	
	DP 102		84.98 ac	0.17	0.51	40.6 min.	2.0 in/hr	3.4 in/hr	28.8 cfs	147.3 cfs	DP 102	DP 13 routed to DP 102

C = Runoff coef representing a ration of peak runoff rate to ave rainfall

intensity for a duration equal to the runoff time of concentration.

Equations (taken from Fig 6-5, City of Colorado Springs DCM): i_2 =-1.19 ln(T_c) + 6.035

Q = CiA

Q = Peak Runoff Rate (cubic feet/second)

 $i_5 = -1.50 \ln(T_c) + 7.583$ i_{10} =-1.75 ln(T_c) + 8.847 i_{25} =-2.00 ln(T_c) + 10.111 i_{50} =-2.25 ln(T_c) + 11.375 i_{100} =-2.52 ln(T_c) + 12.735

i = average rainfall intensity in inches per hour

A = Drainage area in acres

P1	Inches
WQCV	0.60 in
2 yr	1.19 in
5 yr	1.50 in
10 yr	1.75 in
25 yr	2.00 in
50 yr	2.25 in
100 yr	2.52 in

APPENDIX A.1 Supporting Hydrologic Tables and Figures

Land Use or Surface Characteristics	Percent Impervious	Runoff Coefficients											
		2-year		5-year		10-year		25-year		50-year		100-year	
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.83	0.60	0.50	0.63	0.63	0.66	0.66	0.34	0.68	0.33	0.30	0.30
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Type of Land Surface	C_{v}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried) [*]	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20
Paved areas and shallow paved swales	

Table 6-7.	Conveyance	Coefficient, C_{v}
-------------------	------------	----------------------

^{*} For buried riprap, select C_v value based on type of vegetative cover.

The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration (t_c) is then the sum of the overland flow time (t_i) and the travel time (t_i) per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation 6-10. The first design point is defined as the point where runoff first enters the storm sewer system.

$$t_c = \frac{L}{180} + 10 \tag{Eq. 6-10}$$

Where:

 t_c = maximum time of concentration at the first design point in an urban watershed (min)

L = waterway length (ft)

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

For Colorado Springs and much of the Fountain Creek watershed, the 1-hour depths are fairly uniform and are summarized in Table 6-2. Depending on the location of the project, rainfall depths may be calculated using the described method and the NOAA Atlas maps shown in Figures 6-6 through 6-17.

Return Period	1-Hour Depth	6-Hour Depth	24-Hour Depth
2	1.19	1.70	2.10
5	1.50	2.10	2.70
10	1.75	2.40	3.20
25	2.00	2.90	3.60
50	2.25	3.20	4.20
100	2.52	3.50	4.60

 Table 6-2. Rainfall Depths for Colorado Springs

Where Z= 6,840 ft/100

These depths can be applied to the design storms or converted to intensities (inches/hour) for the Rational Method as described below. However, as the basin area increases, it is unlikely that the reported point rainfalls will occur uniformly over the entire basin. To account for this characteristic of rain storms an adjustment factor, the Depth Area Reduction Factor (DARF) is applied. This adjustment to rainfall depth and its effect on design storms is also described below. The UDFCD UD-Rain spreadsheet, available on UDFCD's website, also provides tools to calculate point rainfall depths and Intensity-Duration-Frequency curves² and should produce similar depth calculation results.

2.2 Design Storms

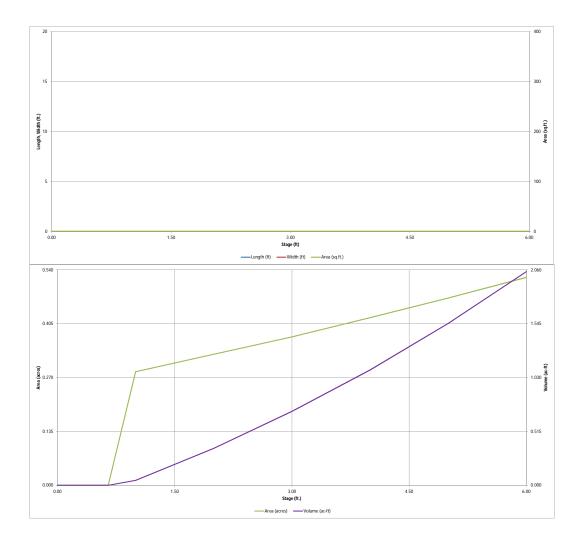
Design storms are used as input into rainfall/runoff models and provide a representation of the typical temporal distribution of rainfall events when the creation or routing of runoff hydrographs is required. It has long been observed that rainstorms in the Front Range of Colorado tend to occur as either short-duration, high-intensity, localized, convective thunderstorms (cloud bursts) or longer-duration, lower-intensity, broader, frontal (general) storms. The significance of these two types of events is primarily determined by the size of the drainage basin being studied. Thunderstorms can create high rates of runoff within a relatively small area, quickly, but their influence may not be significant very far downstream. Frontal storms may not create high rates of runoff within smaller drainage basins due to their lower intensity, but tend to produce larger flood flows that can be hazardous over a broader area and extend further downstream.

• **Thunderstorms**: Based on the extensive evaluation of rain storms completed in the Carlton study (Carlton 2011), it was determined that typical thunderstorms have a duration of about 2 hours. The study evaluated over 300,000 storm cells using gage-adjusted NEXRAD data, collected over a 14-year period (1994 to 2008). Storms lasting longer than 3 hours were rarely found. Therefore, the results of the Carlton study have been used to define the shorter duration design storms.

To determine the temporal distribution of thunderstorms, 22 gage-adjusted NEXRAD storm cells were studied in detail. Through a process described in a technical memorandum prepared by the City of Colorado Springs (City of Colorado Springs 2012), the results of this analysis were interpreted and normalized to the 1-hour rainfall depth to create the distribution shown in Table 6-3 with a 5 minute time interval for drainage basins up to 1 square mile in size. This distribution represents the rainfall

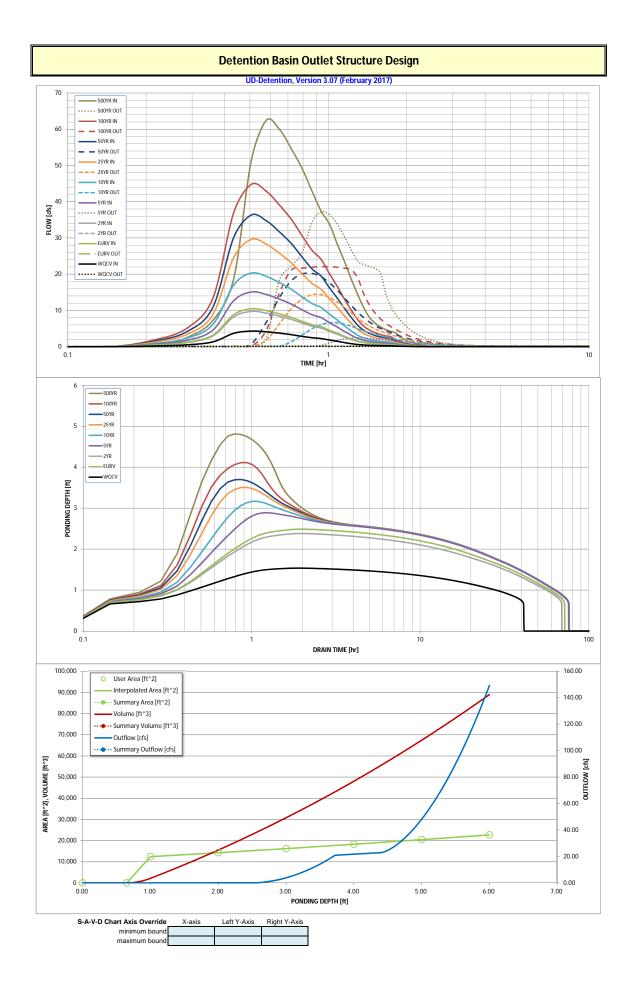
APPENDIX B

Detention Basin Calculations


Full Spectrum Detention Basin/Extended Detention Basin Detention Volume and Emergency Spillway Outlet Structure Calculations Trickle Channel Capacity and Outlet Structure Sizing Trash Rack and Safety Grate Sizing Forebay Sizing Calculations

			DETE	NTION E	ASIN STAGE-S	TORAG	E TABLE	BUILDEF	2					
					etention, Version 3									
Project: The Basin ID: Det			ling No. 9											
ZONE 3 ZONE 2 ZONE 2														
	1	I—		_										
ZONE 1 AND ORIVICES	22	100-YEA	AR E		Depth Increment =		ft Optional				Optional		1	
PERMANENT ORUFICES POOL Example Zone Con	figuration	n (Retentic	on Pond)		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft^2)	Override Area (ft^2)	Area (acre)	Volume (ft^3)	Volume (ac-ft)
Required Volume Calculation	EDR	1			Top of Micropool		0.00				26 26	0.001	17	0.000
	EDB 15.05	acres					1.00				12,400	0.285	2,068	0.000
	1,000 0.030	ft ft/ft					2.00 3.00				14,300 16,200	0.328	15,398 30,791	0.353
Watershed Imperviousness =	39.00%	percent					4.00				18,300	0.420	48,041	1.103
	0.0%	percent percent					5.00 6.00				20,450 22,700	0.469 0.521	67,416 88,991	1.548 2.043
Percentage Hydrologic Soil Groups C/D =	100.0% 40.0	percent												
Location for 1-hr Rainfall Depths = Use	er Input	hours												
	0.222	acre-feet acre-feet	Optional Use 1-hr Precipit	er Override ation										
2-yr Runoff Volume (P1 = 1.19 in.) =	0.506	acre-feet	1.19	inches										
	0.790	acre-feet acre-feet	1.50 1.75	inches inches										
25-yr Runoff Volume (P1 = 2 in.) =	1.560	acre-feet acre-feet	2.00	inches										
100-yr Runoff Volume (P1 = 2.52 in.) =	2.374	acre-feet	2.52	inches										
	3.327 0.474	acre-feet acre-feet	3.20	inches									<u> </u>	
Approximate 5-yr Detention Volume =	0.745	acre-feet												
	0.853 0.939	acre-feet acre-feet								-			L	L
Approximate 50-yr Detention Volume =	0.978	acre-feet acre-feet												-
Stage-Storage Calculation Zone 1 Volume (WQCV) =	0.222	acre-feet												<u> </u>
Zone 2 Volume (EURV - Zone 1) =	0.322	acre-feet												
	0.722	acre-feet acre-feet												
Initial Surcharge Volume (ISV) = Initial Surcharge Depth (ISD) =	user	ft^3												
Total Available Detention Depth (H _{total}) =	user user	ft								-				
Depth of Trickle Channel (H _{TC}) = Slope of Trickle Channel (S _{TC}) =	user user	ft ft/ft												
Slopes of Main Basin Sides (S _{main}) =	user	H:V												
Basin Length-to-Width Ratio (R _{L/W}) =	user	J												
Initial Surcharge Area (A _{ISV}) = Surcharge Volume Length (L _{ISV}) =	user	ft^2												
Surcharge Volume Width (WISV) =	user	ft												
Depth of Basin Floor (H _{FLOOR}) = Length of Basin Floor (L _{FLOOR}) =	user user	ft ft												
Width of Basin Floor (W _{FLODR}) =	user	ft												
(LOUD	user	ft^2 ft^3								-				
Depth of Main Basin (H _{MAIN}) =	user user	ft ft												
Width of Main Basin (W _{MAIN}) =	user	ft												
Area of Main Basin (A _{MAIN}) = Volume of Main Basin (V _{MAIN}) =	user user	ft^2 ft^3												
Calculated Total Basin Volume (V _{total}) =	user	acre-feet								-				
										-				
										-				
										-				-
													<u> </u>	<u> </u>
													L	E
										-				
														<u> </u>
													<u> </u>	1
										-				<u> </u>
										-				1
										-				<u> </u>
										-				<u> </u>
										-				<u> </u>
										-				

7/30/2018, 2:12 PM


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Filing No. 9 UD-Detention_v3.07 CJC, Basin

		Dete	ntion Basin C	Dutlet Struct	ure Design				
Project:				rsion 3.07 (Februar	-				
Project: Basin ID:									
ZONE 3									
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
VOLUME EURY WOCY			Zone 1 (WQCV)	1.58	0.222	Orifice Plate			
	100-YEA		Zone 2 (EURV)	2.56	0.322	Orifice Plate			
ZONE 1 AND 2 ORIFICES	ORIFICE		(100+1/2WQCV)	4.38	0.722	Weir&Pipe (Restrict)			
	Configuration (Ret	ention Pond)	(100+1/200200)	4.50	1.266	Total		0	
User Input: Orifice at Underdrain Outlet (typically u	sed to drain WOCV in	a Filtration BMP)		l	1.200		ed Parameters for Un		
Underdrain Orifice Invert Depth =	N/A		e filtration media sur	face)	Unde	erdrain Orifice Area =		ft ²	
Underdrain Orifice Diameter =	N/A	inches		,	Underdra	ain Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orifices	or Elliptical Slot Weir	(typically used to dra	ain WQCV and/or EU	RV in a sedimentatio	n BMP)	Calcu	lated Parameters for	Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basin b	oottom at Stage = 0 ft)	WQ OI	rifice Area per Row =	8.819E-03	ft ²	
Depth at top of Zone using Orifice Plate =	2.56		oottom at Stage = 0 ft)		lliptical Half-Width =		feet	
Orifice Plate: Orifice Vertical Spacing =	10.20	inches			Elli	ptical Slot Centroid =		feet	
Orifice Plate: Orifice Area per Row =	1.27	sq. inches (diameter	= 1-1/4 inches)			Elliptical Slot Area =	N/A	ft ²	
User Input: Stage and Total Area of Each Orifice	Row (numbered from	lowest to highest)							
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)		0.85	1.71	. /					
Orifice Area (sq. inches)	1.27	1.27	1.27						
			·						i
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)								-	
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Cin	cular or Poctangular)					Calculated	Parameters for Vert	ical Orifice	
User input. Vertical Office (circ	Not Selected	Not Selected	1			Calculateu	Not Selected	Not Selected	1
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin b	ottom at Stage = 0 ft) V	ertical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A		ottom at Stage = 0 ft		al Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
			•						
User Input: Overflow Weir (Dropbox) and (Not Coloria d				Calculated	Parameters for Over		
• • • •	Zone 3 Weir	Not Selected	ft (relativo to basin bot	tom at Stage 0 ft)	Height of Cr		Zone 3 Weir	Not Selected	foot
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 2.56	N/A	ft (relative to basin bot	tom at Stage = 0 ft)		ate Upper Edge, H _t =	Zone 3 Weir 3.81	Not Selected N/A	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Zone 3 Weir 2.56 6.25	N/A N/A	feet		Over Flow	ate Upper Edge, H _t = Weir Slope Length =	Zone 3 Weir	Not Selected	feet
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 2.56	N/A			Over Flow Grate Open Area /	ate Upper Edge, H _t = Weir Slope Length =	Zone 3 Weir 3.81 5.15	Not Selected N/A N/A	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope =	Zone 3 Weir 2.56 6.25 4.00	N/A N/A N/A	feet H:V (enter zero for fl	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area =	Zone 3 Weir 3.81 5.15 9.51	Not Selected N/A N/A N/A	feet should be <u>≥</u> 4
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 2.56 6.25 4.00 5.00	N/A N/A N/A N/A	feet H:V (enter zero for fl feet	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Zone 3 Weir 3.81 5.15 9.51 22.55	Not Selected N/A N/A N/A N/A	feet should be <u>></u> 4 ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % Debris Clogging % =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50%	N/A N/A N/A N/A N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27	Not Selected N/A N/A N/A N/A N/A	feet should be \ge 4 ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri	N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectan	feet H:V (enter zero for fl feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat	feet should be \ge 4 ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor	N/A N/A N/A N/A N/A Ctor Plate, or Rectan Not Selected	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice)	at grate) otal area	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w/ Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected	feet should be ≥ 4 ft ² ft ² e
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slode = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33	N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectan Not Selected N/A	feet H:V (enter zero for fl. feet %, grate open area/t % gular Orifice) ft (distance below basia	at grate)	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area =	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w/ Zone 3 Restrictor 2.37	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A	feet should be \geq 4 ft ² ft ² e ft ²
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectand Not Selected N/A	feet H:V (enter zero for fl. feet %, grate open area/t % gular Orifice) ff (distance below basi inches	at grate) otal area n bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op t)	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid =	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w/ Zone 3 Restrictor 2.37 0.70	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A	feet should be ≥ 4 ft ² ft ² e ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33	N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectan Not Selected N/A	feet H:V (enter zero for fl. feet %, grate open area/t % gular Orifice) ft (distance below basia	at grate) otal area n bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w/ Zone 3 Restrictor 2.37	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A	feet should be \geq 4 ft ² ft ² e ft ²
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60	N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectan Not Selected N/A	feet H:V (enter zero for fl. feet %, grate open area/t % gular Orifice) ff (distance below basi inches	at grate) otal area n bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op t)	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orlfice Area = en Area w/o Debris = ean Area w/ Debris = Calculated Parameter Outlet Orlfice Area = let Orlfice Centroid = rictor Plate on Pipe =	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w/ Zone 3 Restrictor 2.37 0.70	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat N/A N/A N/A N/A N/A N/A	feet should be \geq 4 ft ² ft ² e ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60	N/A N/A N/A N/A N/A Ctor Plate, or Rectan Not Selected N/A N/A	feet H:V (enter zero for fl. feet %, grate open area/t % gular Orifice) ff (distance below basi inches	at grate) otal area n bottom at Stage = 0 f Half-0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (Overflow Grate Op)(Overflow Grate Op (Overflow Grate Op)(Overflow Grate Op)(ate Upper Edge, H _t = Weir Slope Length = 100-yr Orlfice Area = en Area w/o Debris = ean Area w/ Debris = Calculated Parameter Outlet Orlfice Area = let Orlfice Centroid = rictor Plate on Pipe =	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w/ Zone 3 Restrictor 2.37 0.70 1.54	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat N/A N/A N/A N/A N/A N/A	feet should be \geq 4 ft ² ft ² e ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60 gular or Trapezoidal)	N/A N/A N/A N/A N/A Ctor Plate, or Rectan Not Selected N/A N/A	feet H:V (enter zero for fl. feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Out Central Angle of Restr Spillway	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ean Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w// Zone 3 Restrictor 2.37 0.70 1.54 ted Parameters for S	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A pillway	feet should be \geq 4 ft ² ft ² e ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway End Slopes =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60 gular or Trapezoidal) 4.40 15.00 4.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectan N/A N/A N/A ft (relative to basin to feet H:V	feet H:V (enter zero for fl. feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) Out Central Angle of Restu Spillway Stage a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w/ 1 Zone 3 Restrictor 2.37 0.70 1.54 ted Parameters for S 0.88	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A pillway feet	feet should be \geq 4 ft ² ft ² e ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60 gular or Trapezoidal) 4.40 15.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectan N/A Not Selected N/A N/A ft (relative to basin to feet	feet H:V (enter zero for fl. feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) Out Central Angle of Restu Spillway Stage a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 S for Outlet Pipe w/ Zone 3 Restrictor 2.37 0.70 1.54 ted Parameters for S 0.88 6.28	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Planka Planka N/A planka feet feet feet	feet should be \geq 4 ft ² ft ² e ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60 gular or Trapezoidal) 4.40 15.00 4.00 1.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectan N/A N/A N/A ft (relative to basin to feet H:V	feet H:V (enter zero for fl. feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) Out Central Angle of Restu Spillway Stage a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 S for Outlet Pipe w/ Zone 3 Restrictor 2.37 0.70 1.54 ted Parameters for S 0.88 6.28	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Planka Planka N/A planka feet feet feet	feet should be \geq 4 ft ² ft ² e ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway End Slopes =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60 gular or Trapezoidal) 4.40 15.00 4.00 1.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectan N/A N/A N/A ft (relative to basin to feet H:V	feet H:V (enter zero for fl. feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 f Half-0	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) Out Central Angle of Restu Spillway Stage a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 S for Outlet Pipe w/ Zone 3 Restrictor 2.37 0.70 1.54 ted Parameters for S 0.88 6.28	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Planka Planka N/A planka feet feet feet	feet should be \geq 4 ft ² ft ² e ft ² feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Surgta = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60 gular or Trapezoidal) 4.40 15.00 4.00 1.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectan N/A N/A N/A N/A ft (relative to basin b feet H:V feet H:V feet	feet H:V (enter zero for fl. feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19	at grate) otal area n bottom at Stage = 0 f Half-() <u>5 Year 1.50</u>	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op C Contral Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orlfice Area = en Area w/o Debris = ean Area w/ Debris = Calculated Parameter Outlet Orlfice Area = let Orlfice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w/ Zone 3 Restrictor 2.37 0.70 1.54 ted Parameters for S 0.88 6.28 0.52 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat N/A N/A N/A N/A pillway feet feet acres 100 Year 2.52	feet should be ≥ 4 ft ² e ft ² feet radians 500 Year 3.20
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Rester Hour Rainfall Depth (in) = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre ti) =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60 gular or Trapezoidal) 4.40 15.00 4.00 1.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectany N/A N/A N/A ft (relative to basin b feet H:V feet EURV	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year	at grate) otal area n bottom at Stage = 0 f Half-() 5 Year	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (Overflow Grate Op (Stage a Basin Area a (Overflow Grate Op (Overflow Grate Op (Overflow Grate Op (Stage a Basin Area a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w/ / Zone 3 Restrictor 2.37 0.70 1.54 ted Parameters for S 0.88 6.28 0.52 50 Year	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Pillway feet feet acres 100 Year	feet should be ≥ 4 ft ² e ft ² feet radians 500 Year
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acreft) = OPTIONAL Override Runoff Volume (acreft) =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60 gular or Trapezoidal) 4.40 15.00 4.00 1.00 	N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectany N/A N/A ft (relative to basin the feet H:V feet EURV 1.07 0.544	feet H:V (enter zero for fl. feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19	at grate) otal area n bottom at Stage = 0 f Half-() <u>5 Year 1.50</u>	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 1.066	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.560	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w/ // Zone 3 Restrictor 2.37 0.70 1.54 ted Parameters for S 0.88 6.28 0.52 50 Year 2.25 1.921	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Pillway feet feet acres 100 Year 2.52 2.374	feet should be ≥ 4 ft ² e ft ² feet radians 500 Year 3.20 3.327
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60 gular or Trapezoidal) 4.40 1.00 .53 0.222 0.00	N/A N/A N/A N/A N/A N/A Cor Plate, or Rectanger Not Selected N/A N/A If (relative to basin b feet H:V feet 1.07 0.543 0.00	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basis inches inches oottom at Stage = 0 ft 2 Year 1.19 0.506 0.505 0.02	at grate) otal area n bottom at Stage = 0 f Half-() <u>5 Year</u> 1.50 0.790 0.789 0.15	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Spillway Stage a Basin Area a 1.075 1.066 0.41	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ean Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.560 1.559 0.93	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w// Zone 3 Restrictor 2.37 0.70 1.54 ted Parameters for S 0.88 6.28 0.52 50 Year 2.25 1.921 1.919 1.23	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A Sected N/A N/A N/A Sected Sected N/A N/A N/A N/A Sected N/A N/A Sected Sected<	feet should be \geq 4 ft ² ft ² fe fee feet radians 500 Year 3.20 3.327 3.325 2.34
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Sides Horiz. Length of Weir Sides Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrict Ruoter Austra Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acrer-ft) = Inflow Hydrograph Volume (acrer-ft) = Inflow Hydrograph Volume (acreft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60 gular or Trapezoidal) 4.40 15.00 4.00 1.00 .222 0.222 0.00 0.0	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectange Not Selected N/A N/A ft (relative to basin the feet H:V feet H:V 0.544 0.543 0.00 0.0	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basis inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.506 0.02 0.3	at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.50 0.790 0.790 0.15 2.3	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Spillway Stage a Basin Area a 10 Year 1.75 1.066 0.41 6.1	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/o Debris = :alculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.560 1.550 0.93 14.0	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 20ne 3 Restrictor 2.37 0.70 1.54 ted Parameters for S 0.88 6.28 0.52 50 Year 2.25 1.921 1.921 1.921 1.23 1.55	Not Selected N/A Ibloop Ibloop Ibloop Iblop	feet should be ≥ 4 ft ² ft ² e ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert = Spillway Crest Length = Spillway Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Q (cfs) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60 gular or Trapezoidal) 4.40 15.00 4.00 1.00 VOCV 0.53 0.222 0.222 0.022 0.00 4.3	N/A N/A N/A N/A N/A N/A N/A It (relative to basin to feet H:V feet H:V feet 0.543 0.00 0.0 10.4	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) If (distance below basis inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.506 0.505 0.02 0.3 9.7	at grate) otal area n bottom at Stage = 0 f Half-() <u>5 Year</u> 1.50 0.790 0.789 0.789 0.715 2.3 15.1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op C C t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 1.066 1.065 0.41 6.1 20.3	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 2.00 1.560 <u>1.559</u> 0.93 14.0 29.6	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w/ 1 Zone 3 Restrictor 2.37 0.70 1.54 ted Parameters for S 0.88 6.28 0.52 50 Year 2.25 1.921 	Not Selected N/A A <td>feet should be ≥ 4 ft² e ft² feet radians 3.20 3.327 2.34 3.52 62.5</td>	feet should be ≥ 4 ft ² e ft ² feet radians 3.20 3.327 2.34 3.52 62.5
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Sides Horiz. Length of Weir Sides Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrict Rundt Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Rundf Volume (acrer-ft) = Inflow Hydrograph Volume (acrer-ft) = Inflow Hydrograph Volume (acreft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs)	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60 gular or Trapezoidal) 4.40 15.00 4.00 1.00 .222 0.222 0.00 0.0	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectange Not Selected N/A N/A ft (relative to basin the feet H:V feet H:V 0.544 0.543 0.00 0.0	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basis inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.506 0.02 0.3	at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.50 0.790 0.790 0.15 2.3	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Spillway Stage a Basin Area a 10 Year 1.75 1.066 0.41 6.1	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/o Debris = :alculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.560 1.550 0.93 14.0	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 20ne 3 Restrictor 2.37 0.70 1.54 ted Parameters for S 0.88 6.28 0.52 50 Year 2.25 1.921 1.921 1.921 1.23 1.55	Not Selected N/A Ibloop Ibloop Ibloop Iblop	feet should be ≥ 4 ft ² ft ² fe ft ² feet radians 3.20 3.327
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert = Spillway Crest Length = Calculated Runoff Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60 gular or Trapezoidal) 4.40 15.00 4.00 1.00 WOCV 0.53 0.222 0.222 0.00 0.0 4.3 0.1 N/A Plate	N/A N/A N/A N/A N/A N/A N/A N/A It (relative to basin the feet based of the fee	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) If (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 0.506 0.505 0.02 0.3 9.7 0.2 N/A Plate	at grate) otal area n bottom at Stage = 0 f Half-() 5 Year 1.50 0.790 0.789 0.15 2.3 15.1 2.5 1.1 Overflow Grate 1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op C C t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 1.066 1.065 0.41 6.1 20.3 6.6 1.1 Overflow Grate 1	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 1.550 1.550 0.93 14.0 29.6 14.4 1.0 Overflow Grate 1	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w/ Zone 3 Restrictor 2.37 0.70 1.54 ted Parameters for S 0.88 6.28 0.52 50 Year 2.25 1.921 1.919 1.23 1.8.5 36.3 20.2 1.1 Overflow Grate 1	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A Solution N/A N/A N/A N/A N/A N/A Solution N/A N/A N/A N/A <td>feet should be ≥ 4 ft² ft² feet radians 3.325 2.34 35.2 62.5 37.2 1.1 Spillway</td>	feet should be ≥ 4 ft ² ft ² feet radians 3.325 2.34 35.2 62.5 37.2 1.1 Spillway
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert = Spillway (Rectan Spillway Invert Stage= Spillway Ent Stage= Design Storm Return Period = OPTIONAL Override Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volum (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fts) =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60 gular or Trapezoidal) 4.40 15.00 4.00 1.00 WOCV 0.53 0.222 0.00 0.222 0.00 0.0 4.3 0.1 N/A Plate N/A	N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectang Not Selected N/A N/A It (relative to basin b feet H:V feet 0.543 0.00 0.010.4 0.2 N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basis inches inches bottom at Stage = 0 ft 2 Year 1.19 0.506 0.505 0.02 0.3 9.7 0.2 N/A Plate N/A	at grate) otal area n bottom at Stage = 0 f Half-O) 5 Year 1.50 0.789 0.15 2.3 15.1 2.5 1.1 Overflow Grate 1 0.1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate 1 0.3	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orlfice Area = en Area w/o Debris = en Area w/o Debris = calculated Parameter Outlet Orlfice Area = let Orlfice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.550 0.93 14.0 1.559 0.93 14.0 29.6 14.4 1.0 Overflow Grate 1 0.6	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w/ / Zone 3 Restrictor 2.37 0.70 1.54 ted Parameters for S 0.88 6.28 0.52 50 Year 2.25 1.921 - 1.919 1.23 18.5 36.3 20.2 1.1 Overflow Grate 1 0.9	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A A 2.373 1.59 2.3.9 <	feet should be ≥ 4 ft ² e ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfail Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, g (cfs/acre) Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q Ratio Peak Outflow to Predevelopment Piwe Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60 gular or Trapezoidal) 4.40 15.00 4.40 1.00 2.22 0.00 0.222 0.00 0.0 4.3 0.1 N/A Plate N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A Otselected N/A N/A It (relative to basin to feet H:V feet 0.544 0.543 0.00 0.0 10.4 0.2 N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basis inches inches oottom at Stage = 0 ft <u>2 Year</u> <u>1.19</u> 0.506 <u>0.02</u> 0.3 9.7 0.2 N/A Plate N/A N/A	at grate) otal area n bottom at Stage = 0 f Half-0) 5 Year 1.50 0.790 0.15 2.3 15.1 2.5 1.1 0.789 0.15 2.3 15.1 15.1 15.1 0.789 0.15 2.3	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op 1.065 0.41 6.1 20.3 6.6 1.1 Overflow Grate 1 0.3 N/A	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Vear 2.00 1.550 1.550 1.550 1.559 0.93 14.0 29.6 14.4 1.0 Overflow Grate 1 0.6 N/A	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w/ Zone 3 Restrictor 2.37 0.70 1.54 ted Parameters for S 0.88 6.28 0.52 50 Year 2.25 1.921 1.1 0.9 N/A	Not Selected N/A 09 Outlet Plate 1 1.0 N/A	feet should be ≥ 4 ft ² ft ² fee ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Eds Length = Spillway Eds Length = Preeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volum (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fts) =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60 gular or Trapezoidal) 4.40 15.00 4.00 1.00 WOCV 0.53 0.222 0.00 0.222 0.00 0.0 4.3 0.1 N/A Plate N/A	N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectang Not Selected N/A N/A It (relative to basin b feet H:V feet 0.543 0.00 0.010.4 0.2 N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basis inches inches bottom at Stage = 0 ft 2 Year 1.19 0.506 0.505 0.02 0.3 9.7 0.2 N/A Plate N/A	at grate) otal area n bottom at Stage = 0 f Half-O) 5 Year 1.50 0.789 0.15 2.3 15.1 2.5 1.1 Overflow Grate 1 0.1	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate 1 0.3	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orlfice Area = en Area w/o Debris = en Area w/o Debris = calculated Parameter Outlet Orlfice Area = let Orlfice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.550 	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w/ / Zone 3 Restrictor 2.37 0.70 1.54 ted Parameters for S 0.88 6.28 0.52 50 Year 2.25 1.921 - 1.919 1.23 18.5 36.3 20.2 1.1 Overflow Grate 1 0.9	Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A A 2.373 1.59 2.3.9 <	feet should be ≥ 4 ft ² ft ² fe feet radians
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (drs/acre) = Predevelopment Pak Q (drs) = Peak Untflow Q (drs) = Peak Inflow Q (drs) = Max Velocity through Grate 1 (ftps) = Time to Drain 97% of Inflow Volume (hours) =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orifice, Restri Zone 3 Restrictor 0.33 30.00 14.60 gular or Trapezoidal) 4.40 15.00 4.40 15.00 4.00 1.00 WOCV 0.53 0.222 0.00 0.00 0.0 4.3 0.1 N/A Plate N/A N/A 39 41 1.54	N/A N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectang Not Selected N/A N/A It (relative to basin b feet H:V feet 0.543 0.00 0.0 10.4 0.2 N/A Plate N/A 70 2.49	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basis inches inches bottom at Stage = 0 ft 0.505 0.02 0.3 9.7 0.2 N/A Plate N/A N/A 68 2.38	at grate) otal area n bottom at Stage = 0 f Half-C)) 5 Year 1.50 0.789 0.15 2.3 15.1 2.5 1.1 0.789 0.15 2.3 15.1 2.5 1.1 0.1 N/A 69 74 2.89	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate 1 0.065 0.41 6.1 20.3 6.6 1.1 0verflow Grate 1 0.3 N/A 67 73 3.17	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.560 1.559 0.93 14.0 29.6 14.4 1.0 Overflow Grate 1 0.6 N/A 64 71 3.51	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 2007 3 Restrictor 2.37 0.70 1.54 ted Parameters for S 0.88 6.28 0.52 50 Year 2.25 1.921 1.919 1.23 18.5 36.3 20.2 1.1 Overflow Grate 1 0.9 N/A 62 70 3.70	Not Selected N/A Solution N/A<	feet should $be \ge 4$ ft ² ft ² fee feet radians
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length Spillway Crest Length Spillway Ed Slopes Freeboard above Max Water Surface = Spillway Ed Slopes Design Storm Return Period = OPTIONAL Overriche Runoff Volume (acre-ft) Inflow Hydrograph Volume (acre-ft) Predevelopment Unit Peak Flow, q (ds/acre) = Predevelopment Unit Peak A (rds) Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow Max Velocity through Grate 1 (fps) Max Velocity through Grate 1 (fps) Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	Zone 3 Weir 2.56 6.25 4.00 5.00 70% 50% ircular Orlfice, Restri Zone 3 Restrictor 0.33 30.00 14.60 gular or Trapezoidal) 4.40 15.00 4.40 1.00 0.53 0.222 0.222 0.00 0.0 4.3 0.1 N/A Plate N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectang Not Selected N/A N/A It (relative to basin the feet H:V feet H:V 0.543 0.00 0.0 10.4 0.2 N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basis inches inches bottom at Stage = 0 ft 2 Year 1.19 0.506 0.505 0.02 0.3 9.7 0.2 N/A N/A N/A N/A N/A 64 68	at grate) otal area n bottom at Stage = 0 f Half-O) 5 Year 1.50 0.789 0.15 2.3 15.1 2.5 1.1 0verflow Grate 1 0.1 N/A 69 74	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate 1 0 Vear 1.75 1.066 0.41 6.1 20.3 6.6 1.1 0.3 N/XA 67 73	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orlfice Area = en Area w/o Debris = en Area w/o Debris = en Area w/o Debris = Calculated Parameter Outlet Orlfice Area = let Orlfice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = 1.559 0.93 14.0 22.6 14.4 1.0 Overflow Grate 1 0.6 N/A 64 71	Zone 3 Weir 3.81 5.15 9.51 22.55 11.27 s for Outlet Pipe w/ / Zone 3 Restrictor 2.37 0.70 1.54 ted Parameters for S 0.88 6.28 0.52 50 Year 2.25 1.921 9 1.919 1.23 18.5 36.3 20.2 1.1 Overflow Grate 1 0.9 N/A 62 70	Not Selected N/A Solutile trate 1 1.0 N/A Solutile trate 1 1.0 N/A	feet should be ≥ 4 ft ² ft ² feet radians 3.20 3.325 2.34 3.52 2.34 3.52 62.5 37.2 1.1 Spillway 1.1 N/A 54 67

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cf
4.33 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:04:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:08:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:12:59	0.20	0.46	0.43	0.67	0.89	1.28	1.56	1.91	2.63
1.154	0:17:19	0.52	1.25	1.16	1.80	2.41	3.49	4.27	5.24	7.26
-	0:21:39	1.34	3.21	2.99	4.61	6.18	8.96	10.96	13.47	18.64
-	0:25:59 0:30:19	3.68 4.30	8.81 10.44	8.21 9.72	12.68 15.09	16.99 20.31	24.60 29.59	30.09 36.33	36.95 44.79	51.14 62.46
-	0:34:38	4.30	9.95	9.72	15.09	19.41	29.39	34.78	44.79	59.95
	0:38:58	3.72	9.06	8.44	13.12	17.67	25.77	31.66	39.06	54.56
	0:43:18	3.31	8.09	7.53	11.73	15.82	23.12	28.42	35.10	49.11
	0:47:38	2.83	6.97	6.49	10.14	13.70	20.06	24.70	30.56	42.88
_	0:51:58	2.48	6.08	5.66	8.83	11.92	17.44	21.46	26.59	37.39
-	0:56:17	2.24	5.51	5.12	8.00	10.81	15.81	19.46	24.08	33.80
-	1:00:37 1:04:57	1.83 1.48	4.54 3.70	4.22 3.44	6.62 5.41	8.96 7.35	13.16 10.83	16.22 13.37	20.10 16.60	28.28 23.40
-	1:04:37	1.48	2.84	2.64	4.18	5.71	8.46	10.48	13.05	18.48
F	1:13:37	0.82	2.04	1.96	3.12	4.29	6.41	7.98	9.98	14.22
-	1:17:56	0.60	1.53	1.42	2.26	3.11	4.69	5.86	7.37	10.58
F	1:22:16	0.47	1.19	1.10	1.75	2.39	3.58	4.45	5.58	7.96
_	1:26:36	0.39	0.98	0.91	1.44	1.96	2.92	3.63	4.52	6.42
F	1:30:56	0.33	0.83	0.77	1.22	1.66	2.47	3.06	3.82	5.41
ŀ	1:35:16	0.29	0.73	0.68	1.07	1.46	2.16	2.68	3.33 2.99	4.72
ŀ	1:39:35 1:43:55	0.26	0.66	0.61	0.96	1.31 1.21	1.94 1.78	2.40 2.20	2.99	4.22
	1:48:15	0.24	0.01	0.30	0.65	0.88	1.78	1.63	2.03	2.87
	1:52:35	0.13	0.33	0.30	0.48	0.65	0.96	1.18	1.47	2.08
	1:56:55	0.10	0.24	0.22	0.35	0.48	0.70	0.87	1.09	1.54
	2:01:14	0.07	0.18	0.16	0.26	0.35	0.52	0.65	0.81	1.14
-	2:05:34	0.05	0.13	0.12	0.18	0.25	0.38	0.47	0.59	0.83
-	2:09:54	0.03	0.09	0.08	0.13	0.18	0.27	0.33	0.42	0.60
-	2:14:14 2:18:34	0.02	0.06	0.06	0.09	0.13	0.19	0.24	0.30	0.43
-	2:22:53	0.02	0.04	0.04	0.00	0.05	0.08	0.17	0.21	0.30
-	2:27:13	0.00	0.01	0.01	0.02	0.03	0.00	0.06	0.07	0.11
	2:31:33	0.00	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.05
	2:35:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01
-	2:40:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	2:44:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	2:48:52 2:53:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:57:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:01:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	3:06:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	3:14:51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ļ	3:19:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	3:23:31 3:27:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	3:32:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	3:36:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	3:45:10 3:49:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	3:53:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ē	3:58:09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:02:29 4:06:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:06:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
L L	4:15:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:19:48 4:24:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:24:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ē	4:32:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:37:07 4:41:27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:41:27 4:45:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:54:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:58:46 5:03:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
_	5:07:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

The Glen at Widefield Filing No. 9 **Detention Volume Calculations**

Elevation	Area (A)	Avg. Area	Volume	Depth	Cumulativ	e Volume	Elev.
5666	26sf			0.0 ft	0cf	0.00ac-ft	5666
5666.67	26sf	26sf	17cf	0.7 ft	17cf	0.00ac-ft	5666.67
5667	12,400sf	6,213sf	2,050cf	1.0 ft	2,068cf	0.05ac-ft	5667
5668	14,300sf	13,350sf	13,350cf	2.0 ft	15,418cf	0.35ac-ft	5668
5669	16,200sf	15,250sf	15,250cf	3.0 ft	30,668cf	0.70ac-ft	5669
5670	18,300sf	17,250sf	17,250cf	4.0 ft	47,918cf	1.10ac-ft	5670
5671	20,450sf	19,375sf	19,375cf	5.0 ft	67,293cf	1.54ac-ft	5671
5672	22,700sf	21,575sf	21,575cf	6.0 ft	88,868cf	2.04ac-ft	5672
Average End	Area Formul	la: V = (A1+A	2)/2 x Elev Diff	ference			
				WQCV =	9,670 cf	0.22 ac-ft	5667.57 ft
				EURV =	14,026 cf	0.32 ac-ft	5667.90 ft
				100yr Volume =	26,572 cf	0.61 ac-ft	5668.73 ft
			100yr Volun	ne + 1/2 WQCV =	31,450 cf	0.72 ac-ft	5669.05 ft
					Detention Freek	ooard Depth =	1.45 ft
				Spillway Crest =	57,605 cf	1.32 ac-ft	5670.50 ft
			Spillway 100)yr Flow Depth =	67,293 cf	1.54 ac-ft	5671.00 ft
					Spillway Freeb	ooard Depth =	1.00 ft
			Тор с	of Embankment =	88,868 cf	2.04 ac-ft	5672.00 ft

Detention Basin 'A' Earthwork

Emergency Spillway Calculation

ention Area	100-yr Flow	120% 100yr Flow	Water Surf Elev	Crest Elev	Crest Length	d (rad)	Flow Depth	Calc'd Flow
Α	44.8 cfs	53.8 cfs	5,671.00	5,670.5	50.0 ft	2.63	0.50 ft	55.1 cfs

Weir Equation: $Q = CLH^{1.5} + CH^{5/2} tan (d/2)$

C = Weir coefficient (dimensionless), C = 3.0 (most cases) C = 3.0

H = Depth of flow over the crest, in ft

d = Angle of triangle weir portion (radians)

d = 2.63 radians for 4:1 side slope

L = Length of weir at Crest, in ft. Not including sideslopes.

d = 2.49 radians for 3:1 side slope

Outlet Struct Capacity = Inlet Capacity Calculation at the depth to the spillway crest plus flow depth.

The Glen at Widefield Filing No. 9 Detention Calculations

Trickle Channel Capacity Calculation

	Design		Channel Side	e Slope	Flow	Channel	Manning	Тор	Channel	Wetted	Hvdraulic	Flow	Channel Flow
Description	Flow	Bottom Width	Left	Right	Depth	Slope	"n"	Width		Perimeter	Radius	Velocity	Capacity
Trickle Channel	1.5 cfs	1.3 ft	0:1	0:1	0.50 ft	0.5%	0.015	1.3 ft	0.63 sf	2.3 ft	0.28 ft	3.0 ft/sec	1.9 cfs

Equations:

Area (A) = $b(d)+zd^2$	Perimeter (P) = $b+2d^{*}(1+z^{2})^{0.5}$
b = width	z = side slope
d = depth	Hydraulic Radius = A/P

Velocity = $(1.49/n)R_n^{2/3}S^{1/2}$ S = Slope of the channel n = Manning's number R_n = Hydraulic Radius (Reynold's Number) Flow = $(1.49/n)AR_n^{2/3}S^{1/2}$

H = Depth of flow over the crest, in ft

d = 2.63 radians for 4:1 side slope d = 2.49 radians for 3:1 side slope

d = Angle of triangle weir portion (radians)

Outlet Structure Major Storm Grate/Box Calculation

Detention Area	100-yr Flow	120% 100yr Flow	Water Surf Elev	Crest Elev	Calc'd Crest Length	d (rad)	Flow Depth	Calc'd Flow	Crest Length Used*
А	44.8 cfs	53.8 cfs	71.00	70.5	6.0 ft	2.63	1.00 ft	29.5 cfs	5.0 ft

Weir Equation:

 $Q = CLH^{1.5} + CH^{5/2} tan (d/2)$

C = Weir coefficient (dimensionless), C = 3.0 (most cases)

C = 3.0

L = Length of weir at Crest, in ft. Not including sideslopes.

Outlet Struct Capacity = Inlet Capacity Calculation at the depth to the spillway crest plus flow depth.

*Weir calculation shows that sides alone have enough capacity to convey 100-yr flow, but bars for grate will result in a longer required weir length: 32 bars x 1/4" thick = 8 in. or 0.67 ft. So, 0.0 ft (calc'd crest length) + 0.67 ft (additional length needed for bars) = 0.67 ft. Then apply a 50% debris clogging factor: 0.67 ft x 2 = 1.33 ft. However, 1.33 ft is an impractical structure width, so use 4.0 ft as a minimum crest length. Now check the maximum velocity through the grate using a 4.0 ft crest length:

Check Major Storm Grate Conditions

Maximum velocity through grate = 2.0 ft/sec $Q_{100} = 44.8 \text{ cfs}$ Open area of grate required = $Q_{100} / V_{max} = 44.8 \text{ cfs} / 2.0 \text{ ft/sec} = 22.4 \text{ sf}$ Grate has an 70% open area (area of bars = 30% of total grate area) Total grate area required = 22.4 sf / 0.70 = <u>32.0 sf</u> Actual outlet structure opening for grate (from weir calculation) = 5 ft x 4 ft = **20 sf** (20 sf < 30.6 sf, so 5' crest length is too short) 30.6 sf / 5 ft = 6.12 ft min. crest length, use **6.25 ft** Check velocity through grate using outlet structure opening of 5.0 ft x 6.25 ft = 31.25 sf: Actual velocity through grate = 44.8 cfs / (31.25 sf x 0.70) = **1.4 ft/sec** (1.4 ft/sec < 2.0 ft/sec, okay)

The Glen at Widefield Filing No. 9 Drainage Structure Calculations

	Grate	Safety Grate or Trash Rack	Type of Grate (see below)	R Table	Value	Outlet Diameter or Min. Dimension	A _{ot} Total Outlet/ Orifice Area	A _t /A _{ot}	Minimum Gross Grate Area
ł					User Input				
	A1	Trash	WS	0.60		1.3-in	0.0265sf	34.12	1.50sf
	A2	Safety	Other	N/A	0.70	17.2-in	2.41sf	9.12	31.42sf

At / Aot = Ratio of Total Grate Open Area to Total Outlet Area (taken from UDSCM Fig OS-1: Trash Rack Sizing)

A_t = Total Grate Open Area (R-Value x Grate Area) (Example: 1'Wx6'H Well Screen=1'x6'x0.60=3.6ft²)

 A_{ot} = Total Outlet Area (Example: If orifice plate includes 3-1"dia holes A_{ot} =2.356in²=0.016ft²)

Safety Grate: $A_t / A_{ot} = 77e^{-0.124D}$ -- (Outlet Diameter or Minimum Dimension less than 24-inches)

Trash Rack: A_t / A_{ot} = 38.5e^{-0.095D} (Outlet Diameter or Minimum Dimension less than 24-inches)

Outlet Diameter is orifice plate hole size of pipe out of structure

Minimum Gross Grate Area: Calculated from outside dimension of grate

Other

R Val	R Value = Net Open Area / Gross Rack Area								
Туре	of Grate	Abbreviation	R-Valu						
Bar G	rate 2" O.C. Cross Rods	BG 2	0.71						
Bar G	rate 4" O.C. Cross Rods	BG 4	0.77						
Well	Screen	WS	0.60						

Other

<u>Grate A1</u>: 1.50 sf / **1.86' high =** 0.81 ft (9.7 in). Use **15" wide opening** to match opening needed for WQ plate.

<u>Grate A2</u>: 31.42 sf / **5' wide opening** = 6.28 ft (6' - 3") min. for length. However, use **6'-3" length** to satisfy maximum velocity through grate requirement (see Major Storm Grate Conditions calculations).

Safety

The Glen at Widefield Filing No. 9 Detention Calculations

Presedementation / Forebay Sizing

			Total									Calculated
			Detention			Required				Required	Discharge	Opening
Forebay	100 Yr	Detention	Forebay Vol	Tributary	% of Total	Forebay	Forebay	Forebay	Forebay	Forebay	Design Flow	Width
Location	Flow	WQCV	(3% WQCV)	Area	Trib Area	Volume	Area	Depth	Volume	Volume	(2% 100yr)	(1" min)
Det A	44.8cfs	8,712 cf	261cf	15.05ac	100.0%	261cf	180sf	1.50-ft	270 cf	261cf	0.90 cfs	5.6-inch

Openii

 $L = Q / (CH^{1.5}) \times 12 + 0.2 \times H (UD-BMP Spreadsheet -- EDB tab)$

C = 3.0

Forebay Overflow Calculation

Description	Water Surf Elev	Crest Elev	Crest Length	Flow Depth	Calc'd Flow
Det A	69.09	68.4	8.3 ft	0.67 ft	13.6 cfs

Weir Equation: Q = CLH^{1.5}

C = 3.0

C = Weir coefficient (dimensionless), C = 3.0 (most cases)

L = Length of weir at Crest, in ft. Not including sideslopes.

			Total							
			Detention			Required				Ree
orebay	100 Yr	Detention	Forebay Vol	Tributary	% of Total	Forebay	Forebay	Forebay	Forebay	Fo
ocation	Flow	WQCV	(3% WQCV)	Area	Trib Area	Volume	Area	Depth	Volume	Vo
Det A	44.8cfs	8,712 cf	261cf	15.05ac	100.0%	261cf	180sf	1.50-ft	270 cf	2
ing Width E	Equation for	Rectangular	Opening							

APPENDIX B.1 Supporting Detention Basin Tables and Figures

beneficial if a project is being phased or when adequate land is not available to combine all of the elements in one facility.

4.1.1 Flood Control Volume

UDFCD has developed empirical equations for estimating the total required storage volume that can be applied to on-site, multi-level ponds or to on-site or sub-regional FSD ponds. The empirical equations include:

$V_i = K_i A$	Equation 13-1
---------------	---------------

For NRCS soil types B, C and D.

$\mathbf{K}_{100} = (1.78 \cdot \mathbf{I} - 0.002 \mathbf{I}^2 - 3.56) /900$	Equation 13-2
$K_5 = (0.77 \cdot I - 2.65) / 1,000$	Equation 13-3

For NRCS soil Type A:

 $K_{100A} = (-0.00005501 \cdot I^2 + 0.030148 \cdot I - 0.12) / 12$ Equation 13-4

Where:

 V_i = required volume, with i= year storm, acre-feet K_i = empirical volume coefficient, with i= year storm

i = return period for storm event, years

I = fully developed tributary basin imperviousness, %

A = tributary drainage basin area, acres

These equations can be applied to calculate the total detention storage for drainage basins up to about 130 acres. When more than one soil type or land use is present in the drainage basin, the storage volume must be weighted by the proportionate areas of each soil type and/or land use. For FSDs, the EURV need not be added to this volume. See UDFCD Manual Volume 2, Storage Chapter for a full description of this method.

4.1.2 EURV

UDFCD has developed empirical equations for estimating the EURV portion of the storage volume that can be applied to on-site, sub-regional or regional FSD ponds.

The empirical equations are as follows:

For NRCS Soil Group A:

 $EURV_A = 1.1 (2.0491(I/100) - 0.1113)$

Equation 13-5

For NRCS Soil Group B:

 $EURV_B = 1.1 (1.2846(I/100) - 0.0461)$ Equation 13-6

For NRCS Soil Group C/D:

$$EURV_{CD} = 1.1 (1.1381(I/100) - 0.0339)$$
 Equation 13-7

Where:

 $EURV_{K} = Excess$ Urban Runoff Volume in watershed inches, K=A, B or C/D soil group

I = drainage basin imperviousness, %

These equations apply to all FSDs and the EURV need not be added to the flood control volume or to the WQCV. When more than one soil type or land use is present in the drainage basin, the EURV must be weighted by the proportionate areas of each soil type and/or land use. If hydrologic routing is used to size the flood control volume, the EURV remains the same as calculated by these equations and is included in the pond's stage/storage configuration for modeling.

4.1.3 Initial Surcharge Volume

The initial surcharge volume is at least 0.3 percent of the WQCV and should be 4- to 12-inches deep. The initial surcharge volume is included in the WQCV and does not increase the required total storage volume.

4.1.4 Design Worksheets

The Full Spectrum Worksheet in the UD-Detention Spreadsheet performs all of these calculations for the standard designs. For multi-level ponds, the flood control volumes are calculated for the two design storm frequencies: the major storm and the minor storm.

4.2 Allowable Release Rates

Allowable release rates from detention facilities vary with the type of facility and with the storage volume type, as follows:

- **Flood Storage Volume**: The flood storage release rates are determined by the allowable release rates that are intended to approximate storm event runoff rates from the undeveloped upstream drainage basin.
- **EURV**: The EURV release rate is determined based on a72-hour drain time. The purpose of this slow release rate is to mitigate the impacts of increased runoff volumes due to development by reducing the potential for downstream erosion.
- **WQCV**: The WQCV release rate is determined based on a 40-hour drain time for extended detention basins. The purpose of this slow release rate is to provide time for pollutants to settle, The WQCV is incorporated into the EURV and works with it to release less erosive flows. The method for determining this design rate is described in Chapter 3 of Volume 2 of this Manual.

4.2.1 Flood Storage Release Rates

Allowable releases rates from the flood storage element of detention may be based on generalized average unit runoff rates or estimates of pre-development runoff rates. Allowable unit release rates (cfs/ac) may be used for any type of detention, however, when a hydrograph routing method is applied (for regional or

Safety Grates

Safety grates are intended to keep people and animals from inadvertently entering a storm drain. They are sometimes required even when debris entering a storm drain is not a concern. The grate on top of the outlet drop box is considered a safety grate and should be designed accordingly. The danger associated with outlet structures is the potential associated with pinning a person or animal to unexposed outlet pipe or grate. See the *Culverts and Bridges* chapter of Volume 2 of this manual for design criteria related to safety grates.

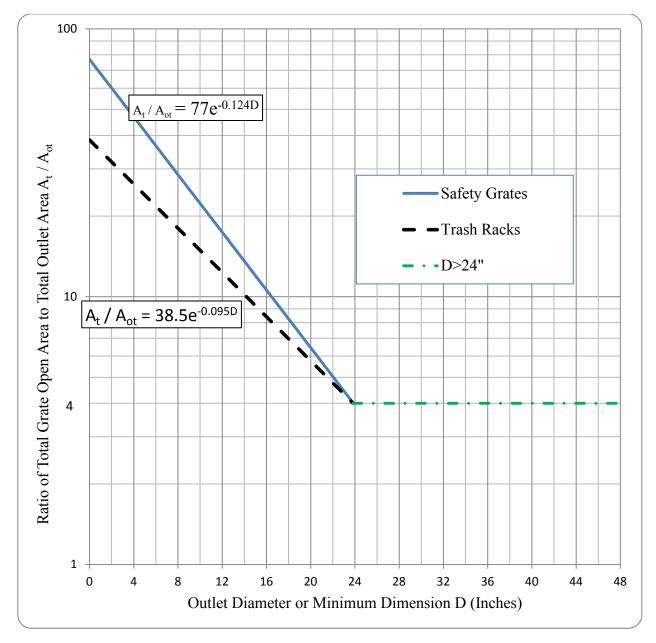
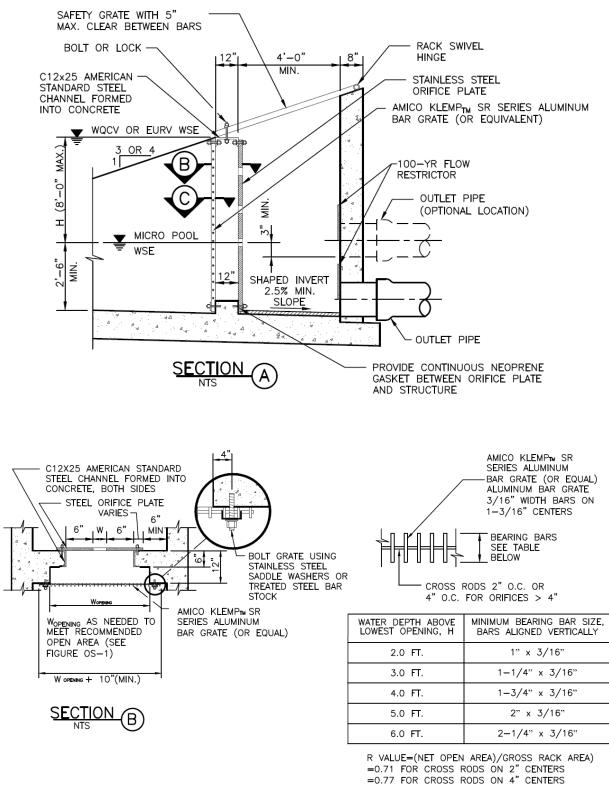



Figure OS-1. Trash Rack Sizing

T-12	

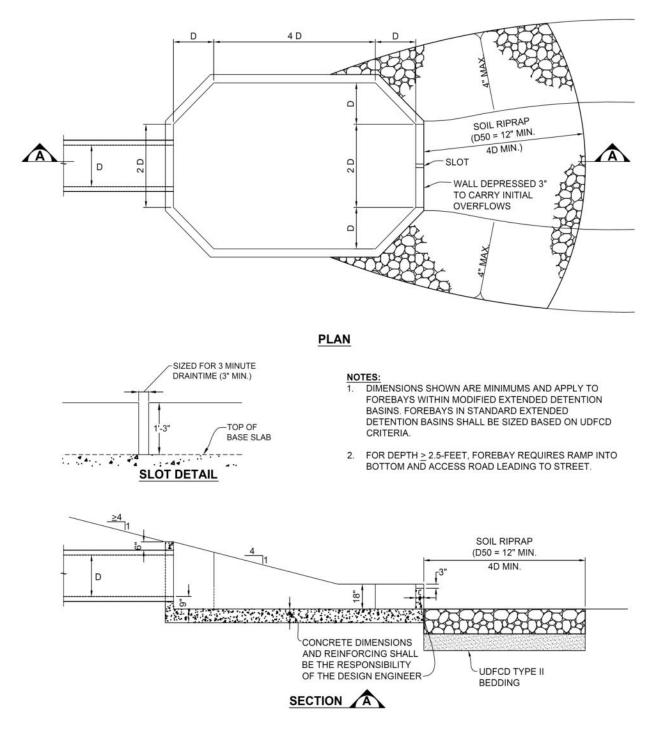
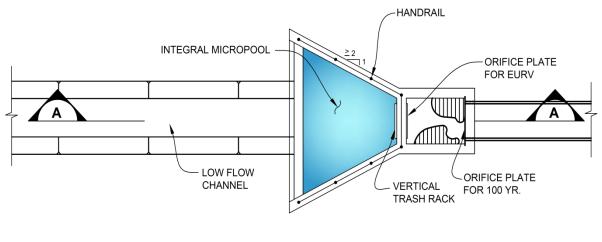
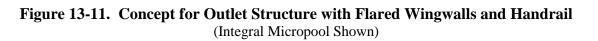

	Steel plate thickness (in inches) based on design depth and span of plate										
	Head (feet)										
		3	4	5	6	7	8	9	10	11	12
(C)	1	0.1875	0.1875	0.1875	0.1875	0.1875	0.1875	0.1875	0.1875	0.1875	0.1875
(feet)	2	0.1875	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500
	3	0.2500	0.2500	0.3750	0.3750	0.3750	0.3750	0.3750	0.3750	0.3750	0.5000
Span	4	0.2500	0.3750	0.3750	0.3750	0.3750	0.5000	0.5000	0.5000	0.5000	0.5000

Table OS-2.	Thickness	of steel	water	quality plate	
-------------	-----------	----------	-------	---------------	--





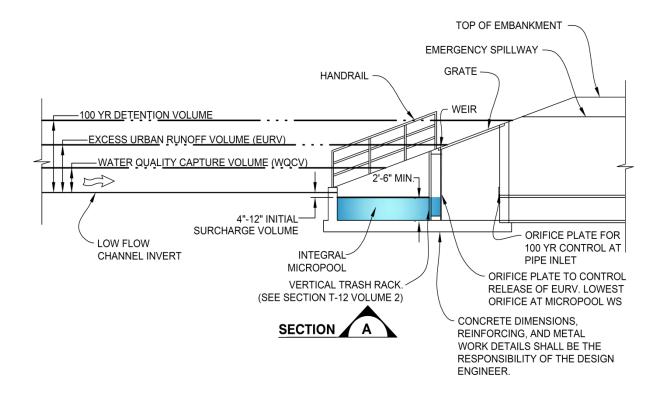


Figure 13-9. Concept for Integral Forebay at Pipe Outfall

PLAN VIEW

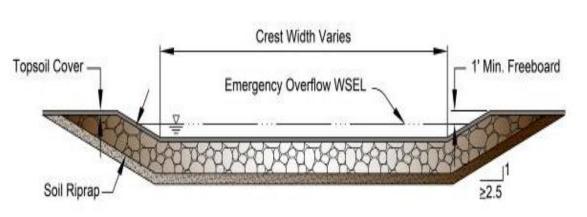
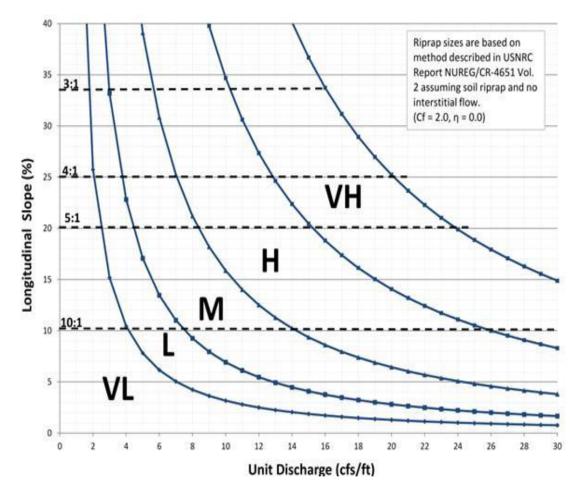
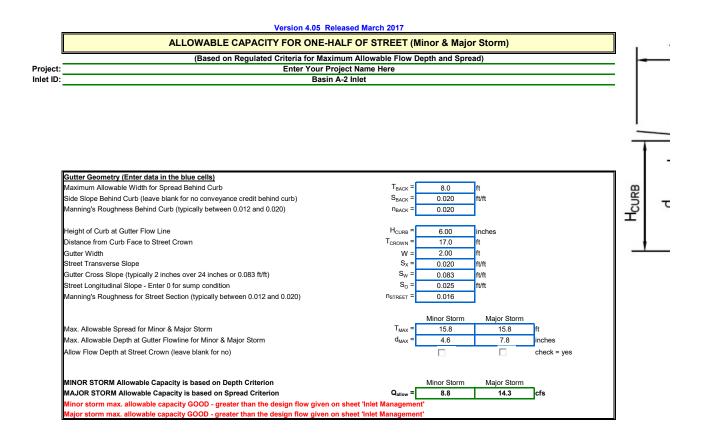
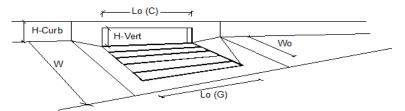
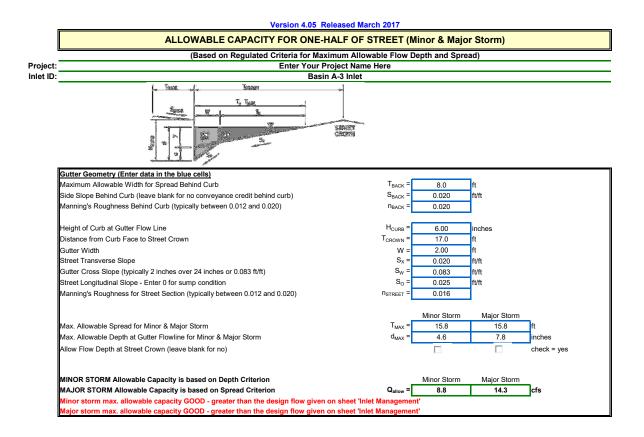



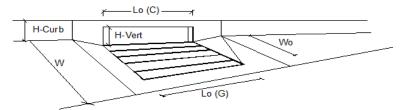
Figure 13-12c. Emergency Spillway Protection

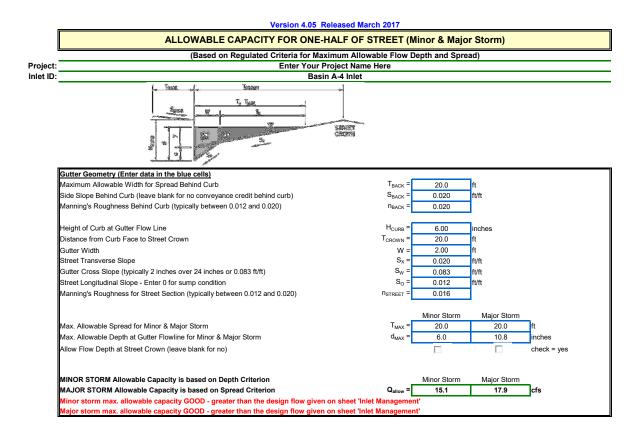

Figure 13-12d. Riprap Types for Emergency Spillway Protection

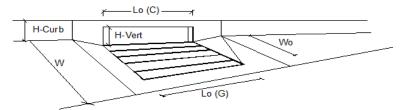

APPENDIX C

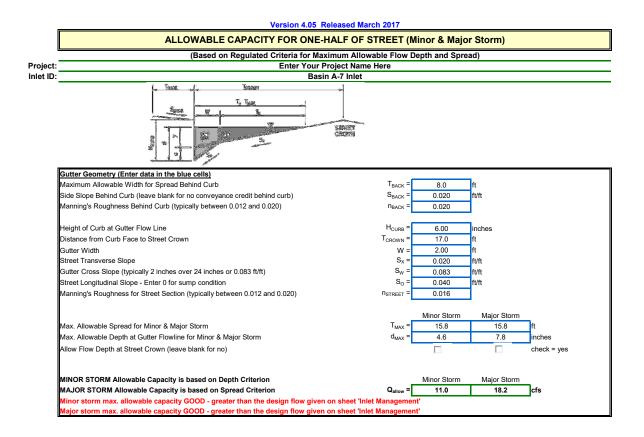
Hydraulic Calculations

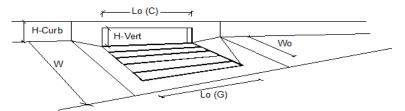

Inlet Summary and Calculations Street Capacity Calculations – UD Inlet Inlet Capacity Calculations – UD Inlet Pipe Sizing Calculations UDSewer Plan Schematic UDSewer Input and Output Tables: 5-year and 100-year Storm Events Pipe Outlet Erosion Protection Calculations Open Channel Calculations

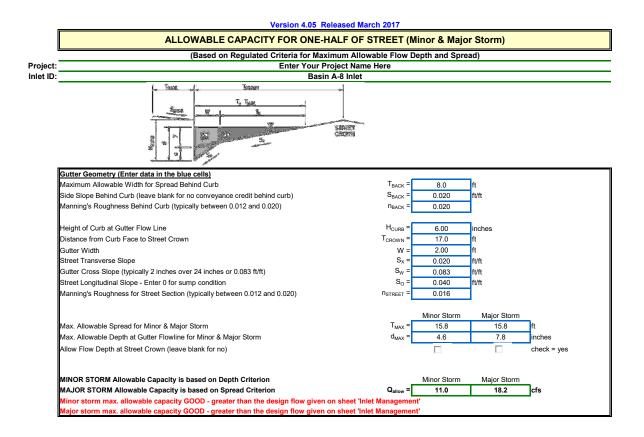


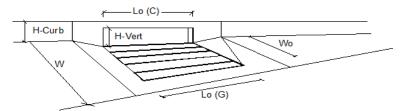

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =			
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =			inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =			
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =			ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =			ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =			
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =			
		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =			cfs
Capture Percentage = Q _a /Q _o =	С% =			%

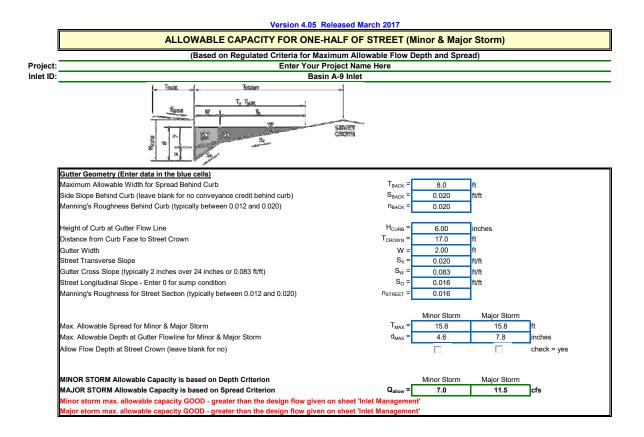


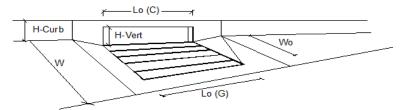

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =			
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =			inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =			
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =			ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =			ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =			
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =			
		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =			cfs
Capture Percentage = Q _a /Q _o =	С% =			%

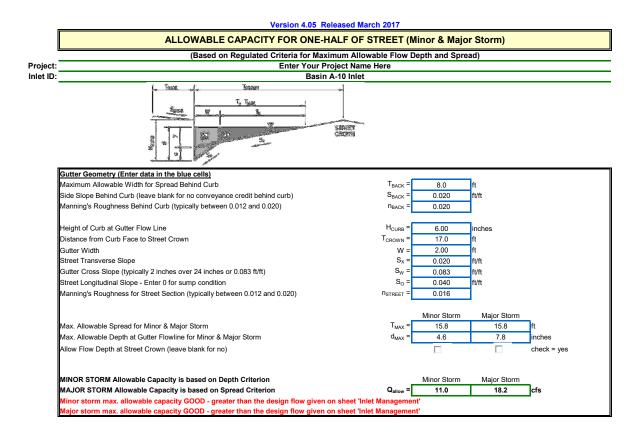


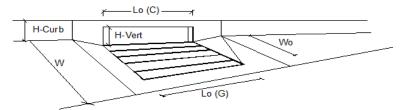

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =			
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =			inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =			
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =			ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =			ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =			
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =			
		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =			cfs
Capture Percentage = Q _a /Q _o =	С% =			%



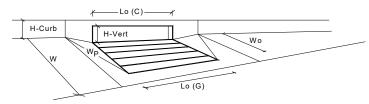

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =			
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =			inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =			
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =			ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =			ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =			
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =			
		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =			cfs
Capture Percentage = Q _a /Q _o =	С% =			%



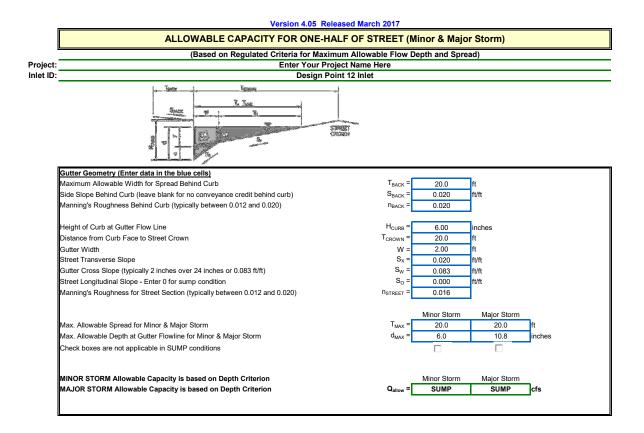

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =			
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =			inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =			
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =			ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =			ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =			
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =			
		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =			cfs
Capture Percentage = Q _a /Q _o =	С% =			%




Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =			
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =			inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =			
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =			ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =			ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =			
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =			
		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =			cfs
Capture Percentage = Q _a /Q _o =	С% =			%

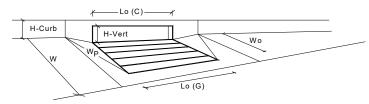


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =			
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =			inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =			
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =			ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =			ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =			
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =			
		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =			cfs
Capture Percentage = Q _a /Q _o =	С% =			%



INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	10.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.67	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.94	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	0.97	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	9.7	32.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	6.0	22.9	cfs

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	10.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.73	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	9.7	35.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	9.3	22.9	cfs

The Glen at Widefield Filing No. 9 Pipe Diameter Calculations

Pipe #	5yr Flow	100yr Flow	Design Flow	Contributing Flows	Manning 'n'		Calculated Pipe Diameter	Pipe	Minimum Slope of Pipe		Wp (ft)	Rh (ft)	Full Pipe Flow Velocity	Head above Pipe Flowline	Н	Pipe Inlet Control Capacity	Mannings Pipe Capacity		Notes
Detention	14.8 cfs	44.8 cfs	44.8 cfs		0.013	1.2%	30-inch	30-inch	1.19%	4.91 sf	7.9 ft	0.6 ft	9.2 ft/sec	4.4 ft	3.1 ft	45.1 cfs	45.1 cfs	OK	
C1	48.0 cfs	163.0 cfs	163.0 cfs		0.013	1.5%	47-inch	48-inch	1.29%	12.57 sf	12.6 ft	1.0 ft	14.0 ft/sec	0.0 ft			176.4 cfs	OK	

Equations:

Pipe Dia=((2.16Qn)/(S^{0.5}))^{0.375} Q = Discharge in cubic feet per second n = Manning's roughness coefficient RCP=0.013, CMP=0.024, HDPE (smooth)=0.012 S = Slope of the pipe R_h = Hydraulic Radius Flow Velocity = $(1.49/n)R_h^{2/3}S^{1/2}$ Pipe Capacity = $(1.49/n)AR_h^{2/3}S^{1/2}$ A = Cross-sectional area of pipe A=p (D²/4) D = Inside Diameter of Pipe
$$\begin{split} R_h &= A_w/W_p \\ A_w &= p(d^2/4) \\ A_w &= Water Cross Sectional Area \\ d &= Flow Depth Within Pipe \\ W_p &= pd (For Capacity Calculation) \\ W_p &= Wetted Perimeter of Pipe \end{split}$$

Orifice Equation:

 $Q = CA(2gH)^{0.5}$

C = Orifice coefficient (dimensionless)C = 0.65

A = Cross-sectional area of opening, in sf

g = Gravitational accel constant, 32.2 ft/sec²

H = Head above centerline of pipe, ft

Kiowa Engineering Corporation

The Glen at Widefield Filing No. 8 and 9 Pipe Diameter Calculations

Pipe #	5yr Flow ¹	100yr Flow ¹	Design Flow	Contributing Flows	Manning 'n'	Pipe Slope	Calculated Pipe Diameter	Pipe Diameter ²	Minimum Slope of Pipe	Full Pipe Flow Velocity	Head above Pipe Flowline	Н	Pipe Inlet Control Capacity	Mannings Pipe Capacity	Capacity Check
S1	3.8 cfs	7.7 cfs	3.8 cfs	Inlet 1	0.013	1.0%	12-inch	18-inch	0.13%	6.0 ft/sec	3.3 ft	2.5 ft	14.6 cfs	10.5 cfs	OK
S2	4.9 cfs	9.3 cfs	4.9 cfs	Inlet 2	0.013	1.87%	12-inch	18-inch	0.22%	8.2 ft/sec	3.3 ft	2.5 ft	14.6 cfs	14.4 cfs	ОК
S 3	8.2 cfs	17.6 cfs	8.2 cfs	Inlet 2,3	0.013	0.83%	17-inch	24-inch	0.13%	6.6 ft/sec	3.3 ft	2.3 ft	24.6 cfs	20.7 cfs	ОК
S4	2.0 cfs	3.5 cfs	2.0 cfs	Inlet 4	0.013	2.99%	8-inch	18-inch	0.04%	10.3 ft/sec	3.3 ft	2.5 ft	14.6 cfs	18.2 cfs	ОК
S5	14.0 cfs	28.8 cfs	14.0 cfs	Inlets 1,2,3,4	0.013	1.89%	18-inch	30-inch	0.12%	11.5 ft/sec	3.3 ft	2.0 ft	36.2 cfs	56.5 cfs	ОК
S6	3.2 cfs	7.3 cfs	3.2 cfs	Inlet 5	0.013	0.67%	12-inch	18-inch	0.09%	4.9 ft/sec	3.3 ft	2.5 ft	14.6 cfs	8.6 cfs	ОК
S7	17.2 cfs	36.1 cfs	17.2 cfs	Inlets 1,2,3,4,5	0.013	3.5%	17-inch	30-inch	0.18%	15.7 ft/sec	4.4 ft	3.2 ft	45.4 cfs	76.9 cfs	ОК
S8	3.5 cfs	13.1 cfs	3.5 cfs	Inlet 6	0.013	1.95%	11-inch	18-inch	0.11%	8.3 ft/sec	3.3 ft	2.5 ft	14.6 cfs	14.7 cfs	ОК
S 9	20.7 cfs	49.2 cfs	20.7 cfs	Inlets 1 through 6	0.013	2.95%	19-inch	30-inch	0.25%	14.4 ft/sec	6.6 ft	5.4 ft	59.2 cfs	70.6 cfs	ОК
S10	3.7 cfs	7.5 cfs	3.7 cfs	Inlet 7	0.013	0.7%	13-inch	18-inch	0.12%	5.0 ft/sec	3.3 ft	2.5 ft	14.6 cfs	8.8 cfs	ОК
S11	1.4 cfs	13.1 cfs	1.4 cfs	Inlet 8	0.013	4.53%	6-inch	18-inch	0.02%	12.7 ft/sec	3.3 ft	2.5 ft	14.6 cfs	22.4 cfs	ОК
S12	6.0 cfs	21.6 cfs	6.0 cfs	Inlets 8,9	0.013	0.48%	17-inch	24-inch	0.07%	5.0 ft/sec	3.8 ft	2.8 ft	27.4 cfs	15.7 cfs	ОК
S13	9.1 cfs	28.3 cfs	9.1 cfs	Inlets 8,9,10	0.013	0.84%	18-inch	30-inch	0.05%	7.7 ft/sec	3.3 ft	2.0 ft	36.2 cfs	37.7 cfs	ОК
S14	33.5 cfs	85.0 cfs	33.5 cfs	Inlets 1 through 10	0.013	0.5%	32-inch	36-inch	0.25%	6.7 ft/sec	4.4 ft	2.9 ft	62.8 cfs	47.3 cfs	ОК
S15	3.1 cfs	17.9 cfs	17.9 cfs	Inlet 11	0.013	1.0%	22-inch	24-inch	0.63%	7.2 ft/sec	3.3 ft	2.3 ft	24.6 cfs	22.7 cfs	ОК
S16	38.8 cfs	117.2 cfs	117.2 cfs	Inlets 1 through 12	0.013	1.0%	44-inch	54-inch	0.36%	12.4 ft/sec	5.5 ft	3.3 ft	149.6 cfs	197.2 cfs	OK

Equations:

Pipe Dia=((2.16Qn)/(S^{0.5}))^{0.375}

Q = Discharge in cubic feet per second

n = Manning's roughness coefficient

RCP=0.013, CMP=0.024, HDPE (smooth)=0.012

S = Slope of the pipe

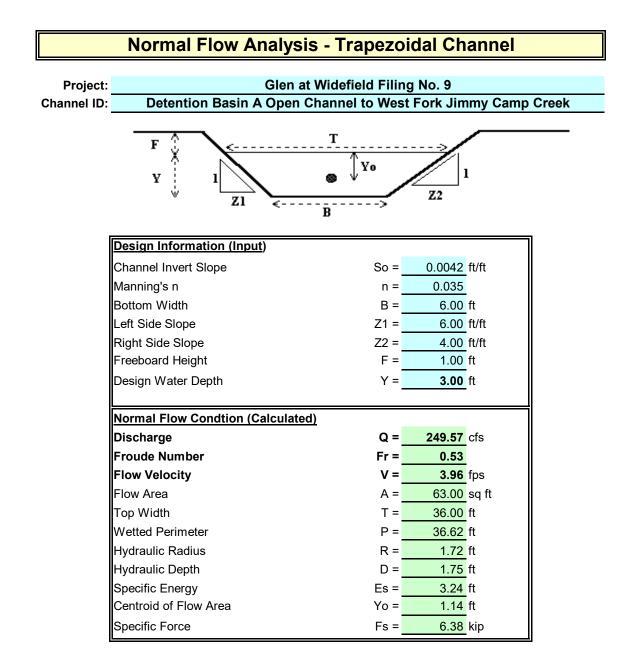
R_h = Hydraulic Radius

Flow Velocity = $(1.49/n)R_h^{2/3} S^{1/2}$ Pipe Capacity = $(1.49/n)AR_h^{2/3} S^{1/2}$ A = Cross-sectional area of pipe A=p (D²/4) D = Inside Diameter of Pipe $\begin{aligned} R_h &= A_w / W_p \\ A_w &= p(d^2/4) \\ A_w &= Water Cross Sectional Area \\ d &= Flow Depth Within Pipe \\ W_p &= pd (For Capacity Calculation) \\ W_p &= Wetted Perimeter of Pipe \end{aligned}$

Orifice Equation:

 $Q = CA(2gH)^{0.5}$

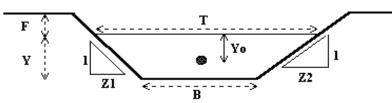
C = Orifice coefficient (dimensionless)

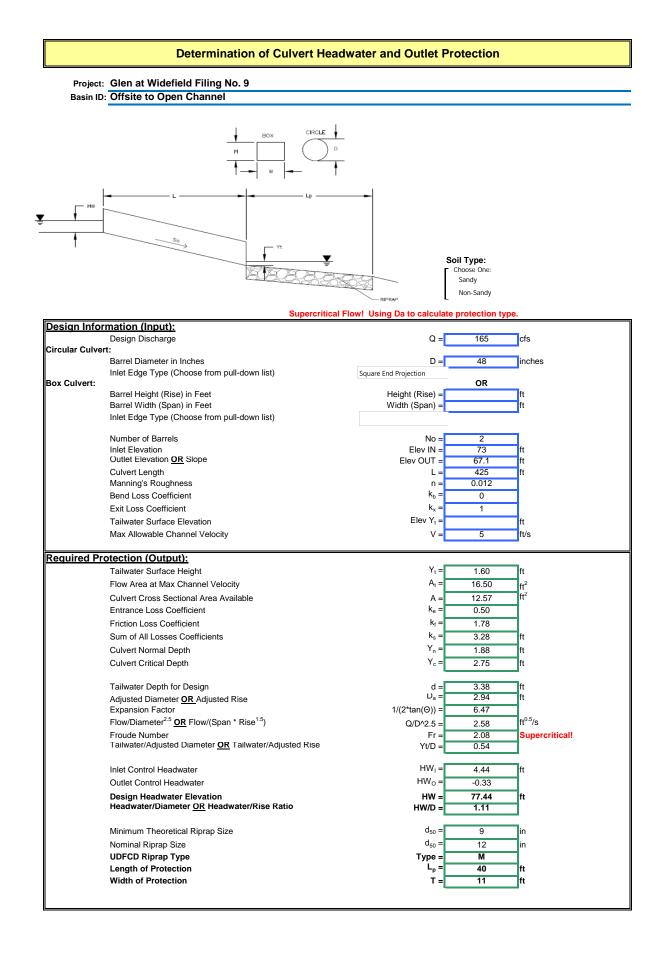

C = 0.65

A = Cross-sectional area of opening, in sf g = Gravitational accel constant, 32.2 ft/sec²

H = Head above centerline of pipe, ft

¹ 5-year and 100-year flows assume a no-clogging condition for inlet.

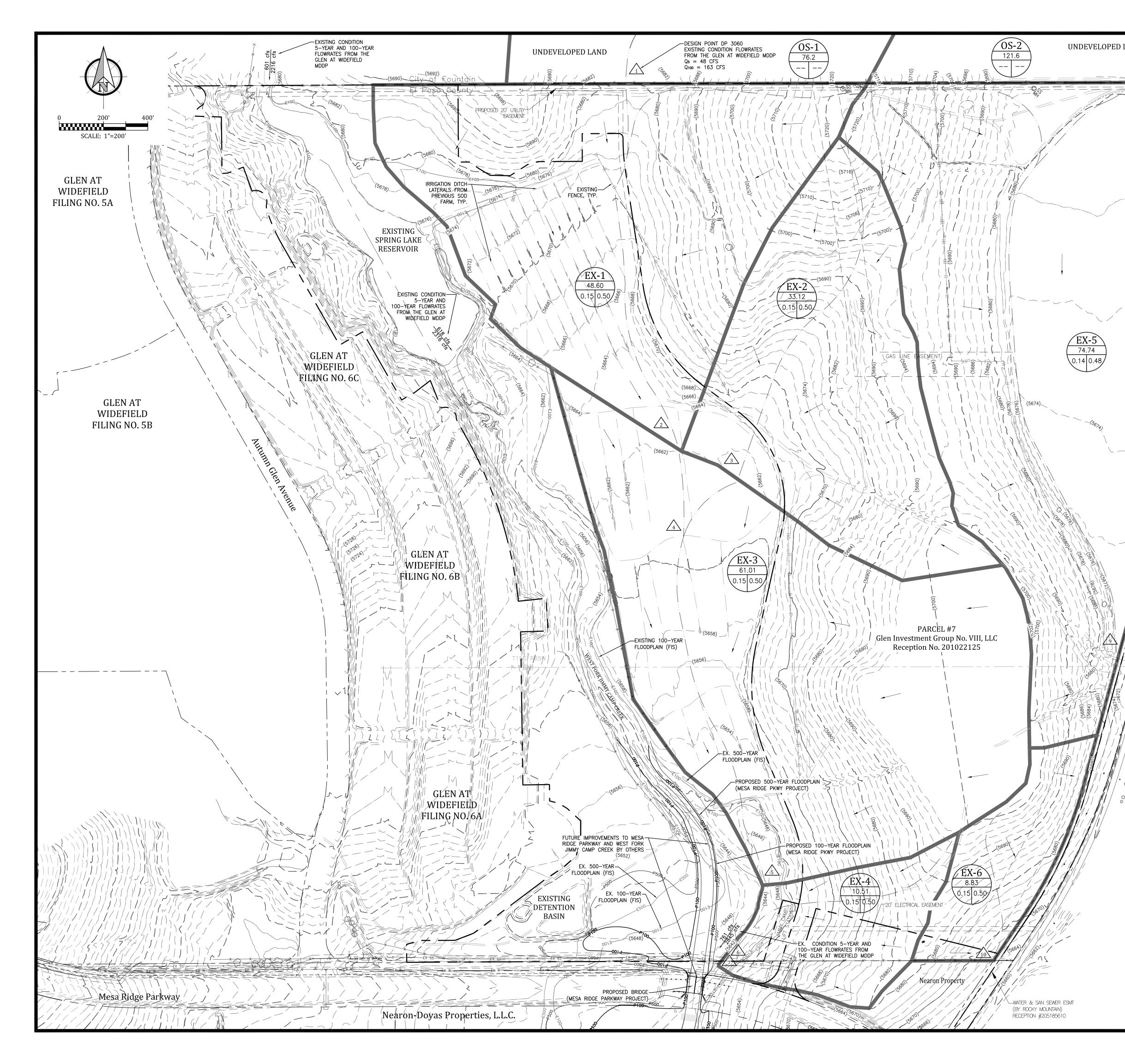

 2 43" x 68" HERCP (54" dia. equivalent) used for Pipe # S16.


Critical Flow Analysis - Trapezoidal Channel

Project: Channel ID: Glen at Widefield Filing No. 9

Detention Basin A Open Channel to West Fork Jimmy Camp Creek

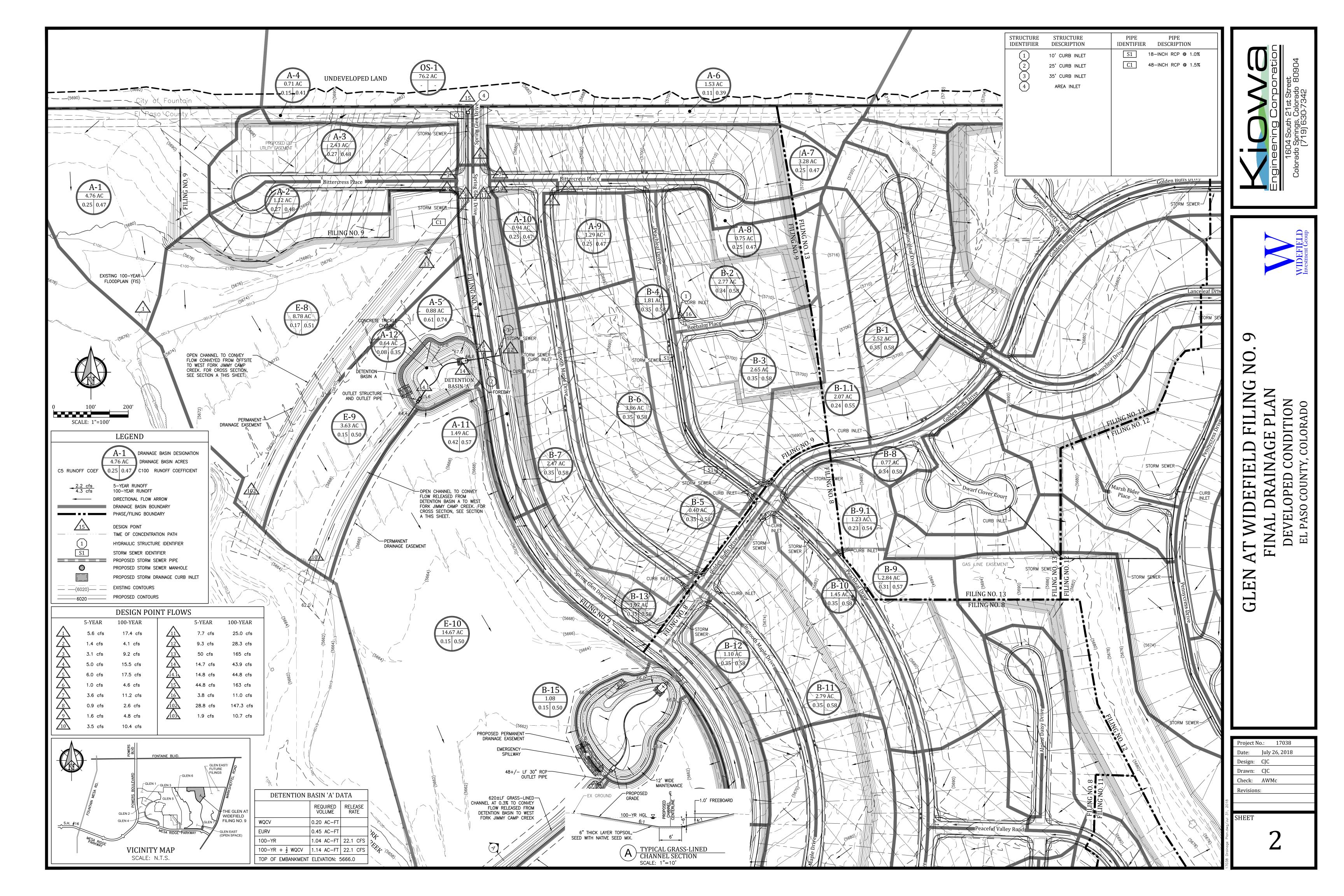
Design Information (Input)			
Bottom Width	В =	6.00	ft
Left Side Slope	Z1 =	6.00	ft/ft
Right Side Slope	Z2 =	4.00	ft/ft
Design Discharge	Q =	249.00	cfs
Critical Flow Condition (Calculated)			
Critical Flow Depth	Y =	2.21	ft
Critical Flow Area	A =	37.82	sq ft
Critical Top Width	T =	28.15	ft
Critical Hydraulic Depth	D =	1.34	ft
Critical Flow Velocity	V =	6.58	fps
Froude Number	Fr =	1.00	
Critical Wetted Perimeter	P =	28.61	ft
Critical Hydraulic Radius	R =	1.32	ft
Critical (min) Specific Energy	Esc =	2.89	ft
Centroid on the Critical Flow Area	Yoc =	0.68	ft
Critical (min) Specific Force	Fsc =	4.78	kip


You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

7038 - GLEN AT LITTLE PEFED FITTING NO.9 JOB. 1 / SHEET NO. OF KIOWA ENGINEERING CORPORATION DATE 7/31/19 CHECKED BY_ DATE SCALE OFFSITE INLET LAPACITY ORIFICE FLOW: Q= CoCBAVZgh WHERE -Q= FLOW (CFS) Co= 0.6 = ORIFICE COEFFICIENT A = GRATE AREA (FTZ) 9= GRAVITY (FT/SECKEL) L= (HEAD (FT). CR= BLOCKAGE LOEFFICIENT - ASSUME 50% MAJOR STORM GRATE SIZENG: 165 (FS = 0.6 × 0.5 × A-12(32.2)(2) A= 48.46 FT2 GRATE DIMENSIONS > W= 8.25', L= 6'

APPENDIX D

Existing and Proposed Drainage Plans


Sheet 1 - Drainage Plan Existing Condition Sheet 2 - Final Drainage Plan Developed Condition

DESIGN POINT DP 4011 EXISTING CONDITION FLOWRA THE GLEN AT WIDEFIELD MD Qs = 38 CFS Q100 = 153 CFS (5680) (DP OL-3 OL	Engineering1604 South 21st Street1709 S30-7342
	Poa Annua Street	WIDEFIELD Investment Group
Peaceful Valley Road	DESIGN POINT FLOWS $5 - YEAR$ 100-YEAR 1 48 cfs163 cfs 2 42 cfs232 cfs 3 13 cfs74 cfs 4 48 cfs268 cfs 5 58 cfs323 cfs 6 4 cfs25 cfs 7 55 cfs310 cfs 8 38 cfs153 cfs 9 35 cfs196 cfs 10 3 cfs18 cfs	GLEN AT WIDEFIELD EAST DRAINAGE PLAN EXISTING CONDITION EL PASO COUNTY, COLORADO
	DIRECTIONAL FLOW ARROW DRAINAGE BASIN BOUNDARY DESIGN POINT TIME OF CONCENTRATION PATH EXISTING 100-YEAR FLOODPLAIN (FIS) EXISTING 500-YEAR FLOODPLAIN (FIS) PROPOSED 100-YEAR FLOODPLAIN (MESA RIDGE PKWY IMPROVEMENTS) PROPOSED 500-YEAR FLOODPLAIN (MESA RIDGE PKWY IMPROVEMENTS) PROPOSED 500-YEAR FLOODPLAIN (MESA RIDGE PKWY IMPROVEMENTS)	Project No.: 16014 Date: August 22, 2016 Design: CJC Drawn: CJC Check: AWMc Revisions: SHEET

MESA RIDGE

VICINITY MAP SCALE: N.T.S.

