Final Drainage Report The Glen at Widefield Filing No. 9 El Paso County, Colorado

Prepared for: Widefield Investment Group 3 Widefield Boulevard Colorado Springs, Colorado 80911

1604 South 21st Street Colorado Springs, Colorado 80904 Ph: (719)630-7342

Kiowa Project No. 17038

June 8, 2018

PCD Project No. SF-18-005

TABLE OF CONTENTS

Table	of Contents	.i
Staten	nents and Approvals	iII
I.	General Location and Description	1
II.	Major Drainage Basins and Subbasins	1
III.	Drainage Design Criteria	3
IV.	Drainage Facility Design	3
	A. Stormwater Detention and Water Quality Design	6
	B. Cost of Proposed Drainage Facilities	6
	C. Drainage and Bridge Fees	6
V.	Conclusions	6
VI.	References	7
Apper	ndix Table of Contents	8

List of Figures and Tables (Refer to the Appendix Table of Contents)

STATEMENTS AND APPROVALS

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Kiowa Engineering Corporation, 1604 South 21st Street, Colorado Springs, Colorado 80904

Richard N. Wray (PE #19310) For and on Behalf of Kiowa Engineering Corporation

DEVELOPER'S STATEMENT:

I, the Developer, have read and will comply with all of the requirements specified in this drainage report and plan.

By:

J. Mark Watson, President Glen Development Company

Date

Date

Print Name: _____

Address: <u>Glen Development</u> <u>3 Widefield Boulevard</u> <u>Colorado Springs, Colorado 80911</u>

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 & 2, El Paso County Engineering Criteria Manual, and Land Development Code, as amended.

Jennifer Irvine, P.E. El Paso County Engineer/ECM Administrator Date

I. GENERAL LOCATION AND DESCRIPTION

The Glen at Widefield Filing No. 9 subdivision will be developed as a single-family residential subdivision located in the Widefield area of El Paso County. The subject property is located to the west of Marksheffel Road and north of proposed Mesa Ridge Parkway. The site is located in the southwest portion of Section 22, Township 15 South, Range 65 West of the 6th Principal Meridian, in El Paso County, Colorado. The site is bounded to the west by the Glen at Widefield Filing No. 6 and the West Fork Jimmy Camp Creek; to the south by the Glen at Widefield Filing No. 7, to the east by Marksheffel Road and to the north by unplatted land. The property covers approximately 24.94 acres and is currently undeveloped. A vicinity map of the site is shown on Figure 1 included in the Appendix.

The existing vegetative cover within the development is in poor to fair condition with minimal grasses throughout the site. The existing ground slopes within the property range from 0.2 to 9 percent. Soils within the subject site are classified to be within Hydrologic Soils Group B/D (Nelson Tassel sandy loam #56) as shown in the El Paso County Soils Survey. For the purposes of computing the existing and proposed hydrology for the site, Hydrologic Soil Group C was used.

The West Fork Jimmy Camp Creek is located along the west side of the site. The West Fork receives runoff from offsite basins to the north of the site, the Glen at Widefield Filing No.'s 5, 6 and 7, Mesa Ridge Parkway and its associated drainage channel, and from the majority of the Glen at Widefield East (future filings). The West Fork conveys the flow south of Mesa Ridge Parkway to where it crosses Marksheffel Road, and ultimately to the Jimmy Camp Creek main branch. Jimmy Camp Creek is a tributary to Fountain Creek.

There are no active irrigation ditches or facilities within or adjacent to the site, only abandoned irrigation ditch laterals in the northwest portion of the site that served a previous sod farm.

Existing utilities within or adjacent to the site include a water line and sanitary sewer line along the north side of Mesa Ridge Parkway that terminate at the Jimmy Camp Lift Station located just west of Spring Glen Drive at the south entrance to the site. There is also a gas main that runs along the easterly property boundary.

II. MAJOR DRAINAGE BASINS AND SUBBASINS

The site lies within the West Fork Jimmy Camp Creek drainage basin. The majority of the site presently drains towards the south and southwest by sheet flow to the West Fork Jimmy Camp Creek just upstream of Mesa Ridge Parkway (Sub-basins EX-1 through EX-4). The northeast portion of the site drains east and south by sheet flow to the existing roadside ditch along Marksheffel Road across from Peaceful Valley Road (Sub-basin EX-5). The remaining portion of the site, or southeast corner, drains by sheet flow to the existing roadside ditch along Marksheffel Road approximately 400 feet north of Mesa Ridge Parkway (Sub-basin EX-6). The existing drainage patterns for the site are shown on Sheet 1 provided in a map pocket at the end of this report.

The reports and plans that were reviewed in the process of preparing this drainage report are included in the References section. The Glen at Widefield East area was studied as a part of the *Master Development Drainage Plan for the Glen at Widefield (MDDP)* and the *West Fork Jimmy Camp Creek Drainage Basin Planning Study (DBPS)*. The detention basin shown on the west side of the creek (DP 3101) was designed and constructed as part of the Filing No. 6 improvements. Two additional regional detention basins were identified for the site in the *MDDP*: one to serve the westerly side of the site with flows released west to the West Fork Jimmy Camp Creek (DP 3091), and the other to serve the easterly side of the site with flows released east across Marksheffel Road to a channel along the north side of Peaceful Valley Road and ultimately to the Jimmy Camp Creek main branch (DP

4021). The detention basin shown in the *MDDP* and *DBPS* at DP 3091 was designed and constructed as part of the Glen at Widefield Filing No. 7 improvements. However, due to the proposed grading and drainage patterns north of Filing No. 7, two additional detention basins to serve the westerly side of the site are proposed: one for Filing No. 8 and one for Filing No. 9 (included in this report), which will be located north of the Filing No. 8 area. The detention basin shown in the *MDDP* and *DBPS* at DP 4021 will be designed and constructed to serve future filings within the Glen at Widefield East area.

Other off-site improvements to the West Fork identified in the *MDDP* and *DBPS* include placing buried riprap at outside bends and construction of check structures between the existing retention pond (known as Spring Lake Reservoir) and the southern property boundary. Installation of a riprap spillway with a low flow outlet structure at Spring Lake Reservoir was also recommended. The water in Spring Lake Reservoir is believed to be owned by the Fountain Mutual Irrigation Ditch Company. The bank linings and improvements to Spring Lake Reservoir and just downstream of the reservoir as discussed in the *Amended MDDP* were constructed when the Glen at Widefield Filing No. 6 area was developed.

Additional off-site improvements include the widening of Mesa Ridge Parkway from Powers Boulevard to Autumn Glen Avenue, the extension of Mesa Ridge Parkway from Autumn Glen Avenue to Marksheffel Road, and a new bridge with channel improvements at the West Fork Jimmy Camp Creek crossing. The roadway and bridge improvements, as well as channel improvements just upstream of Mesa Ridge Parkway (as outlined in the *Amended MDDP*), are currently being constructed by the Glen Development Company as part of a separate project.

As stated in the *Amended MDDP*, poor soils were discovered in the vicinity of the creek. This condition made large portions of Filing No. 6 and Filing No. 7 unsuitable for development. This poor soils condition is also the case for Filing No. 9 and future filings along the east side of the creek. In conformance with the *Amended MDDP*, the creek improvements formerly recommended between Spring Lake Reservoir and Mesa Ridge Parkway (not already included with the Filing No. 6 or Mesa Ridge Parkway improvements) are no longer necessary, and will therefore not be constructed. Not only does the creek appear to be well vegetated and substantially stable, there will be no increase in channel erosion as a result of this development. The portion of the Glen at Widefield property adjacent to the West Fork will remain as open space for this project, and similar to the detention basins constructed to serve Filing No. 6, Filing No. 7, and Filing No. 8, the proposed Detention Basin 'A' to serve the Filing No. 9 area will release runoff at or below historic rates. If this land *is* developed in the future, a re-evaluation of the West Fork will be required at that time to determine what channel improvements are needed.

According to the *DBPS*, several detention basins are called for along the greek to maintain historic conditions at the confluence with Jimmy Camp Creek. Similar to the Fi Show the 36" RCP & and provide a callout label I so that development of the basin would not adversely impact any improvide a callout label I so on the drainage map. Unresolved. This isn't shown on the

Offsite runoff enters the site from the north by means of a 36" RCP that existing drainage Jimmy Camp Creek by future permanent drainage easement. Offsite Ba map. by sheet flow from undeveloped land north of the site to the north property boundary, where it combines with runoff from Sub-basin EX-5 and is conveyed by sheet flow to the roadside ditch along

Marksheffel Road across from Peaceful Valley Road. The subject property limits are shown on Flood Insurance Rate Maps (FIRMs) 08041C0956 F and 08041C0957 F (both with effective dates of March 17, 1997) that are included in the Appendix. The portion of the property that will remain as open space for this project (and therefore contains no buildable lots) is located within a FEMA regulated floodplain based on Flood Insurance Rate Map 08041C0956 F. The FIRMs also show that the portion of the property to be developed with buildable lots is located outside of the FEMA regulated floodplain in an unshaded Zone X area, which is described as "Areas determined to be outside the 500-year floodplain".

III. DRAINAGE DESIGN CRITERIA

Hydrologic and hydraulic calculations for the site were performed using the methods outlined in the *El Paso County Drainage Criteria Manual*. Topography for the site was compiled using a two-foot contour interval and is presented on the Drainage Plan. The hydrologic calculations were made for the existing and proposed site conditions. The Drainage Plan presents the drainage patterns for the site, including the sub-basins. The peak flow rates for the sub-basins were estimated using the Rational Method. The 5-year (Minor Storm) and 100-year (Major Storm) recurrence intervals were determined. The one-hour rainfall depth was determined from Table 6-2 of the *Drainage Criteria Manual*. These depths are shown in the runoff calculations spreadsheet. The peak flow data generated using the rational method was used to verify street capacities and to size inlets and storm sewers within the subdivision. The drainage basin area, time of concentration, and rainfall intensity were determined for each of the sub-basins within the property. The onsite soils were assumed to be Hydrologic Soil Group C, based on the *Soil Survey* and the result of proposed earth-moving operations. For existing conditions, runoff coefficients were determined using a land use of pasture/meadow. The land use for the proposed development will be residential with a density of approximately 4 lots per acre.

The onsite hydraulic structures were sized using the methods outlined in the *El Paso County Drainage Criteria Manual*. The hydraulic capacities of the streets and curb inlets were determined using the UD-Inlet spreadsheet developed by the UDFCD, considering the County criteria for the Minor (5-year) and Major (100-year) storms. Colorado Department of Transportation (CDOT) Type R curb inlets will be used within the site. Ramp curbs will be used throughout the development, except along Spring Glen Drive and between curb returns and at curb inlets, where a 6-inch vertical curb will be used. Storm sewer pipes were initially sized based on their full-flow capacity using the Manning's equation. The UDSewer program was then used to verify storm sewer pipe sizes and perform hydraulic grade line (HGL) and energy grade line (EGL) calculations for the 5-year and 100-year storm events. Hydraulic calculations are provided in Appendix C for the proposed street, inlet and pipe capacities, pipe outlet erosion protection and open channel.

The on-site detention basin is planned to be an Extended Detention Basin that uses Full Spectrum Detention. The UD-Detention spreadsheets created by UDFCD were used to size and design the detention basin with water quality enhancement, per the County's recommendation. The supporting calculations associated with the sizing of the hydraulic facility for this development are included in Appendix B of this report.

IV. DRAINAGE FACILITY DESIGN

The drainage of the site will be accomplished through a combination of sheet flow, gutter flow and storm sewer flow. Curb inlets will be placed at intersections throughout the site (where needed to decrease the amount of gutter flow for the minor and major storms) and at a low point along Spring Glen Drive to accept the developed runoff and convey it to the proposed detention basin prior to being discharged to the West Fork Jimmy Camp Creek. Riprap outlet protection will be placed at the end of the detention basin outlet pipe to reduce erosion.

The proposed drainage patterns for the site are shown on the Final Drainage Plan for the developed condition (Sheet 2) provided in the map pocket at the end of this report. The hydrologic and

hydraulic calculations are provided in the Appendix, refer to the Drainage Design Criteria section for additional information on the hydrologic and hydraulic calculations.

The evaluation related to the sizing of the onsite drainage improvements were carried out in accordance with the City Storm Drainage Criteria Manual. The capacities of the proposed onsite facilities were calculated in accordance with the Criteria Manual.

The primary stormwater conveyance facility will be a storm sewer system ranging in size from an 18-inch diameter reinforced concrete pipe (RCP) to a 24-inch reinforced concrete pipe (RCP) conveying the runoff to the detention basin. Offsite runoff will be conveyed from basin OS-1 by means of the 24-inch RCP while on site runoff will sheet and gutter flow until finally being conveyed by 24-inch RCP to Detention Basin A. The detention basin will include a concrete-lined presedimentation forebay at the proposed storm sewer outlet, a concrete trickle channel, a micropool and water quality orifice plate onto an outlet structure, an emergency spillway and a maintenance access trail. The detention basin will be a private facility and will be maintained by the Glen at Widefield Filing No. 9 Homeowner's Association.

Following is a description of the on-site storm sewer system:

The system will begin with a 25' and 35' Type R curb inlet connected to an 24-inch storm sewer at the low point of Spring Glen Drive within Sub-basin A-5. The 24-inch storm sewer will convey captured runoff west to Detention Basin A, at which point it enters the basin's forebay.

The system will begin with a 10' curb inlet connected to an 18-inch storm sewer at the low point of Peach Leaf Drive within Sub-basin B-4. The 18-inch storm sewer will convey captured runoff south to the existing storm sewer system from Filing No. 8. To the southeast of Golden Buffs Drive a 10' curb inlet will be located along Peachleaf Drive and be connected to an 18-inch storm sewer that will convey captured runoff northwest to the system at Golden Buffs Drive and Peachleaf Drive. The storm sewer system will continue south in Golden Buffs Drive as a 30-inch storm sewer, where a 15' curb inlet just south of Peachleaf Drive will connect to it. At Golden Buffs Drive and Bigtooth Maple Drive, three 10' curb inlets and one 15' curb inlet will be connected to the system, where it will continue in a southerly direction in a 36-inch storm sewer to the low point in Spring Glen Drive where two 25' curb inlets (both in a sump condition) will intercept 100-year flows. The captured flow will then be conveyed to the detention basin in a 43-inch by 68-inch HERCP.

Following is a description of the on-site drainage sub-basins:

<u>Sub-basin A-1</u> is approximately 4.76 acres in area and is located at the west end of Bittercress Place. Undeveloped runoff from this basin will sheet flow south and southwest and will be conveyed directly to the West Fork Jimmy Camp Creek (DP 1).

<u>Sub-basin A-2</u> is approximately 1.12 acres in area and is located west of Spring Glen Drive and on the south side of Bittercress Place. Runoff from this basin will sheet flow and gutter flow north and east towards Spring Glen Drive (DP 2).

<u>Sub-basin A-3</u> is approximately 2.43 acres in area and is located west of Spring Glen Drive and on the north side of Bittercress Place. Runoff from this basin will sheet flow and gutter flow south and east towards Spring Glen Drive (DP 3).

<u>Sub-basin A-4</u> is approximately 0.71 acres in area and is located directly north of sub-basin A-3. Runoff from this basin will sheet flow east towards Spring Glen Drive and gutter flow south once gathered in Spring Glen Drive.

<u>Sub-basin A-5</u> is approximately 0.88 acres in area and is located on the west side of Spring Glen Drive. Runoff from this basin will gather flow from sub-basins A2, A3, and A4 (DP 4) and gutter flow to a 10' curb inlet for Detention Basin A (DP 5). <u>Sub-basin A-6</u> is approximately 1.53 acres in area and is located east of Spring Glen Drive and north of Bittercress Place. Undeveloped runoff from this basin will sheet flow west towards Spring Glen Drive until it gutter flows south (DP 6).

<u>Sub-basin A-7</u> is approximately 3.28 acres in area and is located east of Spring Glen Drive and includes the north half of Bittercress Place. Runoff from this basin will sheet flow and gutter flow west towards Spring Glen Drive (DP 7).

<u>Sub-basin A-8</u> is approximately 0.75 acres in area and is located east of Spring Glen Drive and includes part of the south half of Bittercress Place. Runoff from this basin will flow west towards Spring Glen Drive (DP 8).

<u>Sub-basin A-9</u> is approximately 1.29 acres in area and is located between Peachleaf Drive and Bigtooth Maple Drive just south of Bittercress Place. Runoff from this basin will flow west towards Bigtooth Maple Drive and gutter flow north towards Bittercress Place (DP 9).

<u>Sub-basin A-10</u> is approximately 0.94 acres in area and is located between Bigtooth Maple Drive and Spring Glen Drive just south of Bittercress Place. Runoff from this basin will sheet flow north east and gutter flow north on Bigtooth Maple Drive. The runoff will collect at the intersection of Bigtooth Maple Drive and Bittercress Place where it will combine with runoff from sub-basins A8 (DP 8) and A9 (DP 9) and gutter flow west towards Spring Glen Drive (DP 10).

<u>Sub-basin A-11</u> is approximately 1.49 acres in area and is located on the east side of Spring Glen Drive. Runoff from this basin will gather flow from sub-basins A6, A7, A8, A9, and A10 (DP 11) and gutter flow to a 15' curb inlet for Detention Basin A (DP 12).

<u>Sub-basin A-12</u> is approximately 0.64 acres in area and is located west of Spring Glen Drive at its low point and represents the area directly tributary to and including Detention Basin 'A'.

Since water quality capture volume (WQCV) will be required for the proposed development, the full spectrum Detention Basin 'A' will also be used for stormwater quality treatment. The required WQCV for a 40-hour drain time is 0.20 acre-feet. The required excess urban runoff volume (EURV) for a 72-hour drain time is 0.45 acre-feet. The storage volume required for detention is 1.135 acre-feet, which includes 1.035 acre-feet for the 100-year storm event plus one-half of the WQCV in accordance with County criteria. The proposed outlet structure will include an external micropool and one chamber that controls the release of the WQCV and the EURV. An orifice plate will drain the WQCV and EURV into the chamber of the outlet structure. Approximately Q_{100} =43.9 cfs (DP-14) will drain to the proposed detention basin. 100-year storm event or greater flows will spill over the top of the chamber through a steel grate. Runoff released from the detention basin will be restricted to 22.1 cfs for the 100-year storm event. A proposed 30-inch RCP equipped with a restrictor plate will convey runoff released from the detention basin to the West Fork Jimmy Camp Creek. If the outlet structure becomes plugged, a 50-foot wide emergency spillway will convey the runoff to the West Fork. Detention Basin A will be owned and maintained by XXX.

Following is a description of the offsite drainage sub-basins

<u>Sub-basin E-8</u> is approximately 8.78 acres in area and is located west of the site and north of future Detention Basin 'A'. Undeveloped runoff from this basin will sheet flow southwest and combine with flow released from sub-basin OS-1 (DP 13), where it will become open channel flow that will be conveyed directly to the West Fork Jimmy Camp Creek (DP 102).

<u>Sub-basin E-9</u> is approximately 3.63 acres in area and is located west of the site and south of future Detention Basin 'A'. Undeveloped runoff from this basin will sheet flow southwest and combine with flow released from proposed Detention Basin 'A', where it will become open channel flow that will be conveyed directly to the West Fork Jimmy Camp Creek (DP 103).

Provide sub-basin narrative for the 'B' basins within Filing 9. If the system design of Filing 8 accounted for these then make sure to note on the narrative.

Kiowa Engineering Corporation

this sub-basin and design point are not identified in the proposed drainage map.

<u>Sub-basin OS-1</u> is approximately 76.2 acres in area and is located to the north of The Glen at Widefield Filing No. 9. Runoff from this basin will be collected and routed through 48" RCP and emptied into sub-basin E-8 (DP 13) where it will become open channel flow and will be conveyed directly to the West Fork Jimmy Camp Creek (DP 102).

A. STORMWATER DETENTION AND WATER QUALITY DESIGN

Storm water quality measures are required by the County in Volume 2 of the County's Drainage Criteria Manual. The water quality measures to be instituted for the development will include:

1. Water quality enhancement of the detention basin. A presedimentation forebay will be installed at the on-site storm sewer outlet into the detention basin. The outlet structure will include a water quality orifice plate and a micropool.

B. COST OF PROPOSED DRAINAGE FACILITIES

Table 2 presents a cost estimate for the construction of drainage improvements (public and private) for The Glen at Widefield Filing No. 9 development.

C. DRAINAGE AND BRIDGE FEES

The site lies within the West Fork Jimmy Camp Creek Drainage Basin. The current drainage basin fee associated with the West Fork Jimmy Camp Creek Drainage Basin is \$11,775 per impervious acre. The current bridge fee associated with the West Fork Jimmy Camp Creek Drainage Basin is \$3,484 per impervious acre. The Glen at Widefield Filing No. 9 subdivision encompasses 15.05 acres. Table 1 details the fees due as part of this development.

V. CONCLUSIONS

The Glen at Widefield Filing No. 9 will be a single-lot family residential subdivision covering approximately 15.05 acres. Onsite drainage will include the use of curb inlets and storm sewers to route the runoff from the site to the Extended Detention Basin 'A'. Detained runoff from the site will be conveyed to the West Fork Jimmy Camp Creek. With detention serving the site and a large portion of either side of the creek not developed, the development of the Glen at Widefield Filing No. 9 property will not adversely impact or deteriorate improvements or natural drainageways downstream of the property.

VI. REFERENCES

- 1) <u>Preliminary Drainage Report, The Glen at Widefield East</u>, prepared by Kiowa Engineering Corporation, dated December 16, 2015.
- 2) <u>Final Drainage Report, The Glen at Widefield Filing No. 7</u>, prepared by Kiowa Engineering Corporation, dated January 11, 2016.
- 3) <u>Amended Master Development Drainage Plan, The Glen at Widefield</u>, prepared by Kiowa Engineering Corporation, dated June 21, 2007.
- 4) <u>Final Drainage Report, The Glen at Widefield Filing No. 6</u>, prepared by Kiowa Engineering Corporation, dated December 6, 2007.
- 5) <u>Preliminary and Final Drainage Report, Mesa Ridge Parkway Final Design</u>, prepared by Kiowa Engineering Corporation, dated November 29, 2010.
- 6) <u>Mesa Ridge Parkway Roadway Design, Autumn Glen Avenue to Marksheffel Road and</u> <u>Widening from Powers Boulevard to Autumn Glen Avenue</u>, prepared by Kiowa Engineering Corporation, dated December 8, 2010.
- 7) <u>Master Development Drainage Plan for the Glen at Widefield</u>, prepared by Kiowa Engineering Corporation, dated December 10, 1999.
- 8) <u>West Fork Jimmy Camp Creek Drainage Basin Planning Study</u>, prepared by Kiowa Engineering Corporation, dated October 17, 2003.
- 9) <u>City of Colorado Springs and El Paso County Flood Insurance Study</u>, prepared by the Federal Emergency Management Agency, dated March 1997.
- 10) <u>El Paso County Drainage Criteria Manual (Volumes 1 and 2) and Engineering Criteria</u> <u>Manual</u>, current editions.
- 11) <u>Soil Survey of El Paso County Area, Colorado</u>, prepared by United States Department of Agriculture Soil Conservation Service, dated June 1981.

APPENDIX TABLE OF CONTENTS

APPENDIX

Figure 1: Vicinity Map Figure 2: Soils Map FEMA Flood Insurance Rate Map (Panels 956 and 957) Table 1: Impervious Area and Drainage Basin & Bridge Fee Calc Table 2: Opinion of Cost – Drainage Facilities

APPENDIX A

Hydrologic Calculations Existing Condition – Runoff Coef, Time of Concentration and Runoff Calcs Developed Condition – Runoff Coef, Time of Concentration and Runoff Calcs

APPENDIX A.1

Supporting Hydrologic Tables and Figures

APPENDIX B

Detention Basin Calculations Full Spectrum Detention Basin/Extended Detention Basin Detention Volume and Emergency Spillway Outlet Structure Calculations Trickle Channel Capacity and Outlet Structure Sizing Trash Rack and Safety Grate Sizing Forebay Sizing Calculations

APPENDIX B.1

Supporting Detention Basin Tables and Figures

APPENDIX C

Hydraulic Calculations Inlet Summary and Calculations Street Capacity Calculations – UD Inlet Inlet Capacity Calculations – UD Inlet Pipe Sizing Calculations UDSewer Plan Schematic UDSewer Input and Output Tables: 5-year and 100-year Storm Events Pipe Outlet Erosion Protection Calculations Open Channel Calculations

APPENDIX D

Existing and Proposed Drainage Plans Sheet 1 - Drainage Plan Existing Condition Sheet 2 - Final Drainage Plan Developed Condition

APPENDIX Figure 1: Vicinity Map Figure 2: Soils Map FEMA Flood Insurance Rate Map (Panels 956 and 957) Table 1: Impervious Area and Drainage Basin & Bridge Fee Calc Table 2: Opinion of Cost – Drainage Facilities

Glen at Widefield Filing No. 9 Drainage Basin and Bridge Fees

Table 1: Impervious Area and Drainage Basin & Bridge Fee Calculation

Total Lots =	106 lots	
Total Development Area =	24.938 ac	Area does not match the plat
Total Undeveloped Acres =	0.000 ac	(Filing 9 minus Tracts A B and
Total Developed Area =	24.938 ac <	D is approximately 28.4 ac)
Building/Patio/Drive Per Lot =	2,146 sf	
Total Building/Patio/Drive Area =	5.222 ac	
Total Street/Sidewalk Area =	5.853 ac	
Total Impervious Area =	11.075 ac	
% Impervious Area =	44.41 %	

West Fork Jimmy Camp Creek Drainage Basin

Drainage Basin Fee and Bridge Fee Calculations													
Drainage Basin Fee =	\$11,775 / ac	Drainage Basin Fee =	\$ 130,410.74										
Bridge Fee =	\$3,484 / ac	Bridge Fee =	\$ 38,586.07										
Less Previous Drainage Fee Credit (Drainage Ba Total Drainage Basin	Carry Over from Glen at Widefield Filing No. 7) asin Fee Reimbursement n Fee Credit Available	\$0.00 <u>\$0.00</u> \$0.00	\$ 0.00										
		Drainage Basin	Bridge										
Total Fees Due for the Glen at	Widefield Filing No. 9	\$130,410.74	\$ 38,586.07										

Glen at Widefield Filing No. 9 Opinion of Cost

Table 2: Opinion of Cost - Public Drainage Facilities

Item	Quantity	Unit	Unit Cost	Item Total
Drainage Structures				
Reinforced Concrete Pipe (RCP)	0	LF	\$ 0.00	\$ 0.00
18" Reinforced Concrete Pipe	520	LF	\$ 69.00	\$ 35,880.00
24" Reinforced Concrete Pipe	82	LF	\$ 84.00	\$ 6,888.00
Flared End Section (FES) RCP 24"	1	EA	\$ 900.00	\$ 900.00
Flared End Section (FES) RCP 30"	1	EA	\$ 1,000.00	\$ 1,000.00
Flared End Section (FES) HERCP 43"x68"	1	EA	\$ 1,500.00	\$ 1,500.00
Curb Inlet (Type R) L=5', Depth < 5 feet	1	EA	\$ 3,791.00	\$ 3,791.00
Curb Inlet (Type R) L =10', Depth < 5 feet	5	EA	\$ 5,528.00	\$ 27,640.00
Curb Inlet (Type R) $L = 10'$, 5'-10' Depth	1	EA	\$ 6,694.00	\$ 6,694.00
Curb Inlet (Type R) $L = 10'$, 10'-15' Depth	2	EA	\$ 7,500.00	\$ 15,000.00
Curb Inlet (Type R) L =15', Depth < 5 feet	2	EA	\$ 7,923.00	\$ 15,846.00
Curb Inlet (Type R) L = $25'$, $<5'$ Depth	1	EA	\$ 9,000.00	\$ 9,000.00
Curb Inlet (Type R) L = $25'$, 5' - 10' Depth	2	EA	\$ 10,000.00	\$ 20,000.00
Storm Sewer Manhole, Slab Base, Depth < 15 feet	3	EA	\$ 4,575.00	\$ 13,725.00
Geotextile (Erosion Control)	0	SY	\$ 5.00	\$ 0.00
Rip Rap, d50 Size from 6" to 24"	20	CY	\$ 98.00	\$ 1,960.00
Channel Lining, Concrete (Trickle Channel)	20	CY	\$ 450.00	\$ 9,000.00
Channel Lining, Rip Rap	62	CY	\$ 98.00	\$ 6,076.00
Concrete Cutoff Wall (30" RCP FES)	1	EA	\$ 500.00	\$ 500.00
Detention Outlet Structure	1	EA	\$ 12,000.00	\$ 12,000.00
Detention Emergency Spillway	1	EA	\$ 18,300.00	\$ 18,300.00
Presedimentation Forebay	1	EA	\$ 7,000.00	\$ 7,000.00
Gravel Maintenance Access Trail	1,055	SY	\$ 20.00	\$ 21,100.00
Type II Bedding	28	CY	\$ 35.00	\$ 980.00
Detention Basin Seeding and Mulch	3	AC	\$ 520.00	\$ 1,528.80
				# 252 222 00

Estimated Storm Drainage Facilities Cost \$273,222.80 Engineering 10% \$27,322.28 Contingency 5% \$13,661.14 Total Estimated Cost \$314,206.22

17038 Costs (FDR) Opinion of Cost Date Prepared: 12/15/2017

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

<u>APPENDIX A</u> Hydrologic Calculations

Existing Condition – Runoff Coef, Time of Concentration and Runoff Calcs Developed Condition – Runoff Coef, Time of Concentration and Runoff Calcs

14044 - GLEN AT WIDEFIELD EAST IOR 2 1 OF. SHEET NO ... KIOWA ENGINEERING CORPORATION CJC 4/24/15 CALCULATED BY___ DATE __ DATE CHECKED BY____ SCALE __ RUNDEFF COEFF. CALC'S. - EXISTING CONDITION USE UNDEVELOPED - "PASTURE/MEADOW" LAND USE : B Soils - C5 = 0.08 C100 = 0.35 B/D SOILS -CE = 0.15 C100 = 0.50 (ASSUME C/D SOILS) C5 = 0.15 C100 = 0.50 C SOILS -BASIN EX-1 : TYPE CAND B/D SOILS AREA = 48.60 AC (AREAS FROM CAD, TYP.) C5 = 0.15 C100 = 0.50 BASIN EX-2 = TYPE C AND B/D SOILS AREA = 33,12 AC Cs = 0,15 C100 = 0.50 BASIN EX-3 : TYPE C AND B/D SOILS AREA = 61.01 AC C= 20.15 G100 = 0.50 BASH BX-4 : TYPE C AND B/D SOLLS AREA = 10.51 AC C= = 0.15 C100 = 0.50 TYPE B SOIL - 12-2 AC + BASIN Ex-51 FROM TYPE C SOIL - 39.3 AC ± TYPE B/D SOIL - 23.2 AC ± SOILS MAP AREA = 74.74 AC $C_{5,WTD} = \frac{0.08(12.2) + 0.15(39.3 + 23.2)}{74.74} = 0.14$ $C_{100, WTP} = \frac{0.35(12.2) + 0.50(39.3 + 23.2)}{74.74} = 0.48$

K	IOWA ENGINEERING CORPORATION	JOB_14044 - GLEN SHEET NO2 CALCULATED BYCJC CHECKED BY SCALE	AT WIDEFIELD EAST OF 2 DATE 4/24/15 DATE
	BASIN EX-6 = TYPE C A AREA = 8. $C_5 = 0.15$ $C_{100} = 0.5$	ND B/D SOILS 83 AC 5 50	
	BASIN 05-2 = BA = 0.19 BASIN 05-2 = BA = 0.49 LS = B6 UD = 0.497 $t_c = 1$	P = NEC-1 MODEL INPUA (BA) = 0.119 SQ.mi.NO. (LS) = 79IME (UD) = 0.257 HRS.1.6 (0.257)(60 min/hr)SQ.mi. × 640 = 121.6 AHRS6 (0.497)(60) = 47.7	min.

The Glen at Widefield Existing Condition Runoff Coefficient and Percent Impervious Calculation

					Area 1	Land	Use	HI	Area 2 Land Use		US1	US1 Area 3 Land U		Use	US2	Area 4	Land	Use	RO	Area 5	Land	Use				
Basin /	Basin or D (DP contri	P Area buting	Type	nperv	d Use rea	Area	p Land % Imp	nperv	d Use rea	Area	p Land % Imp	nperv	d Use rea	Area	p Land % Imp	nperv	d Use rea	Area	p Land % Imp	nperv	d Use rea	Area	p Land % Imp	in % perv	Ba Rui	sin 10ff
DP	DP (Dr contribut basins)		Soil	% Ir	Lan A	%	Com) Use '	% Ir	Lan A	%	Com Use	% Ir	Lan A	%	Com] Use ⁽	% Ir	Lan A	%	Com] Use '	% Ir	Lan A	%	Com] Use '	Bas Imj	C ₅	C ₁₀₀
EX-1	2,117,068 sf	48.60ac	С	100%		0%	0%	0%	48.60ac	100%	0%	85%		0%	0%	78%		0%	0%	90%		0%	0%	0.0%	0.15	0.50
EX-2	1,442,826 sf	33.12ac	С	100%		0%	0%	0%	33.12ac	100%	0%	85%		0%	0%	78%		0%	0%	90%		0%	0%	0.0%	0.15	0.50
EX-3	2,657,513 sf	61.01ac	С	100%		0%	0%	0%	61.01ac	100%	0%	85%		0%	0%	78%		0%	0%	90%		0%	0%	0.0%	0.15	0.50
EX-4	457,877 sf	10.51ac	С	100%		0%	0%	0%	10.51ac	100%	0%	85%		0%	0%	78%		0%	0%	90%		0%	0%	0.0%	0.15	0.50
EX-5	3,255,509 sf	74.74ac	С	100%		0%	0%	0%	74.74ac	100%	0%	85%		0%	0%	78%		0%	0%	90%		0%	0%	0.0%	0.14	0.48
EX-6	384,815 sf	8.83ac	С	100%		0%	0%	0%	8.83ac	100%	0%	85%		0%	0%	78%		0%	0%	90%		0%	0%	0.0%	0.15	0.50

Basin Runoff Coefficient is based on UDFCD % Imperviousness Calculation												
Runoff Coefficients and P	ercents Im	pervi	ous									
Hydrologic Soil Type:	С			Runoff (Coef C	alc Me	ethod	%Imp				
Land Use	Abb	%	% C ₂ C ₅ C ₁₀ C ₂₅ C ₅₀ C ₁₀₀									
Commercial Area	CO	95%	0.80	0.82	0.84	0.87	0.89	0.89	%lmp			
Drives and Walks	DR	90%	0.73	0.75	0.77	0.80	0.83	0.83	А			
Streets - Gravel (Packed)	GR	40%	0.28	0.35	0.42	0.50	0.55	0.58	В			
Undevelop-Pasture/Meadow	HI	0%	0.04	0.15	0.25	0.37	0.44	0.50	С			
Lawns	LA	0%	0.04	0.15	0.25	0.37	0.44	0.50	D			
Off-site flow-Undeveloped	OF	45%	0.31	0.37	0.44	0.51	0.56	0.59				
Park	PA	7%	0.09	0.19	0.29	0.40	0.47	0.52				
Playground	PL	13%	0.13	0.23	0.32	0.42	0.49	0.54				
Streets - Paved	PV	100%	0.89	0.90	0.92	0.94	0.96	0.96				
Roofs	RO	90%	0.73	0.75	0.77	0.80	0.83	0.83				
User Input 1	US1	85%	0.66	0.68	0.71	0.75	0.78	0.79]			
User Input 2	US2	78%	0.57	0.60	0.64	0.68	0.72	0.73				

Equations (% Impervious Calculation): $C_A = K_A + (1.31 i^3 - 1.44 i^2 + 1.135 i - 0.12)$ [Eqn RO-6] $C_{CD} = K_{CD} + (0.858 i^3 - 0.786 i^2 + 0.774 i + 0.04)$ [Eqn RO-7] Weighted $C_{B} = (C_{A} + C_{CD}) / 2$

I = % imperviousness/100 as a decimal (See Table RO-3) C_A = Runoff coefficient for NRCS Type A Soils

 C_{B} = Runoff coefficient for NRCS Type B Soils

C_{CD} = Runoff coefficient for NRCS Type C and D Soils

Correction Factors - Table RO-4 K_A = For Type A Soils $K_{A}(2-yr) = 0$ $K_A (5-yr) = -0.08i + 0.09$ $K_A (10-yr) = -0.14i + 0.17$ $K_A (25-yr) = -0.19i + 0.24$ $K_A (50-yr) = -0.22i + 0.28$ $K_A (100-yr) = -0.25i + 0.32$ K_{CD}=For Type C & D Soils $K_{CD} (2-yr) = 0$ K_{CD} (5-yr)= -0.10i + 0.11 K_{CD} (10-yr)= -0.18i + 0.21 K_{CD} (25-yr)= -0.28i + 0.33 K_{CD} (50-yr)= -0.33i + 0.40 K_{CD} (100-yr)= -0.39i + 0.46

The Glen at Widefield Existing Condition Time of Concentration Calculation

	Sub-Basin Data						Time of	Conce	ntrati	on E	stimate				
Basin /				Initial/0	Overlan	d Time (t _i)			Trav	el Tir	ne (t _t)		Comp.	Final t.	Notes
Design Point	Contributing Basins	Area	C ₅	Length	Slope	t _i	Length	Slope	Land Type	Cv	Velocity	t _t	t _c	vi	noces
EX-1		48.60ac	0.15	300lf	5.3%	17.3 min.	2200lf	1.9%	GW	15	2.1 ft/sec	17.7 min.	35.0 min.	35.0 min.	
EX-2		33.12ac	0.15	300lf	4.8%	17.9 min.	1370lf	3.2%	GW	15	2.7 ft/sec	8.5 min.	26.4 min.	26.4 min.	
EX-3		61.01ac	0.15			0.0 min.	2500lf	0.9%	GW	15	1.4 ft/sec	29.3 min.	29.3 min.	29.3 min.	
EX-4		10.51ac	0.15	300lf	4.0%	19.0 min.	900lf	4.9%	GW	15	3.3 ft/sec	4.5 min.	23.5 min.	23.5 min.	
EX-5		74.74ac	0.14	300lf	5.7%	17.0 min.	3250lf	1.0%	GW	15	1.5 ft/sec	36.1 min.	53.2 min.	53.2 min.	
EX-6		8.83ac	0.15	150lf	0.5%	26.8 min.	630lf	5.5%	GW	15	3.5 ft/sec	3.0 min.	29.8 min.	29.8 min.	
DP 1	OS-1	76.20ac											24.7 min.	24.7 min.	DP 3060 from MDDP
DP 2	OS-1, EX-1	124.80ac	0.15			0.0 min.	1000lf	1.0%	GW	15	1.5 ft/sec	11.1 min.	11.1 min.	35.8 min.	DP 1 routed to DP 2
DP 3	EX-2	33.12ac	0.15	300lf	4.8%	17.9 min.	1370lf	3.2%	GW	15	2.7 ft/sec	8.5 min.	26.4 min.	26.4 min.	
DP 4	OS-1, EX-1, EX-2	157.92ac	0.15			0.0 min.	300lf	0.5%	GW	15	1.1 ft/sec	4.7 min.	5.0 min.	40.8 min.	DP 2 and DP 3 routed to DP 4
DP 5	OS-1, EX-1, EX-2, EX-3	218.93ac	0.15			0.0 min.	800lf	1.3%	GW	15	1.7 ft/sec	7.8 min.	7.8 min.	48.6 min.	DP 4 routed to DP 5
DP 6	EX-4	10.51ac	0.15	300lf	4.0%	19.0 min.	900lf	4.9%	GW	15	3.3 ft/sec	4.5 min.	23.5 min.	23.5 min.	
DP 7	OS-1, EX-1, EX-2, EX-3, EX-4	229.44ac	0.15			0.0 min.	200lf	0.3%	GW	15	0.8 ft/sec	4.1 min.	5.0 min.	53.6 min.	DP 5 and DP 6 routed to DP 7
DP 8	OS-2	121.60ac											47.7 min.	47.7 min.	DP 4011 from MDDP
DP 9	OS-2, EX-5	196.34ac	0.15			0.0 min.	1550lf	0.6%	GW	15	1.1 ft/sec	23.2 min.	23.2 min.	70.9 min.	DP 8 routed to DP 9
DP 10	EX-6	8.83ac	0.15	150lf	0.5%	26.8 min.	630lf	5.5%	GW	15	3.5 ft/sec	3.0 min.	29.8 min.	29.8 min.	

Equations:

$$t_i$$
 (Overland) = 0.395(1.1-C₅)L^{0.5} S^{-0.333}

 C_5 = Runoff coefficient for 5-year

S = Slope of flow path (ft/ft)

tc Check = (L/180)+10 (Developed Cond. Only)

L = Overall Length

Velocity (Travel Time) = $CvS^{0.5}$

Cv = Conveyance Coef (see Table)

S = Watercourse slope (ft/ft)

Land Surface Type	Land Type
Grassed Waterway	GW
Heavy Meadow	HM
Nearly Bare Ground	NBG
Paved Area	PV
Riprap (Not Buried)	RR
Short Pasture/Lawns	SP
Tillage/Fields	TF

The Glen at Widefield **Existing Condition Runoff** Calculation

Basin /	Contributing Paging	Drainage			Time of	Rainfall	Intensity	Ru	noff	Pagin / DD	Notos
Design Point	Contributing Dashis	Area	C ₅	C ₁₀₀	Concentration	i ₅	i ₁₀₀	Q_5	Q ₁₀₀	Dasili / Dr	Notes
EX-1		48.60 ac	0.15	0.50	35.0 min.	2.2 in/hr	3.8 in/hr	16.4 cfs	91.7 cfs	EX-1	
EX-2		33.12 ac	0.15	0.50	26.4 min.	2.7 in/hr	4.5 in/hr	13.3 cfs	74.3 cfs	EX-2	
EX-3		61.01 ac	0.15	0.50	29.3 min.	2.5 in/hr	4.2 in/hr	23.0 cfs	128.9 cfs	EX-3	
EX-4		10.51 ac	0.15	0.50	23.5 min.	2.8 in/hr	4.8 in/hr	4.5 cfs	25.1 cfs	EX-4	
EX-5		74.74 ac	0.14	0.48	53.2 min.	1.6 in/hr	2.7 in/hr	17.0 cfs	97.7 cfs	EX-5	
EX-6		8.83 ac	0.15	0.50	29.8 min.	2.5 in/hr	4.2 in/hr	3.3 cfs	18.5 cfs	EX-6	
DP 1	0S-1	76.20 ac			24.7 min.	2.8 in/hr	4.7 in/hr	48 cfs	163 cfs	DP 1	DP 3060 from MDDP
DP 2	OS-1, EX-1	124.80 ac	0.15	0.50	35.8 min.	2.2 in/hr	3.7 in/hr	41 cfs	232 cfs	DP 2	
DP 3	EX-2	33.12 ac	0.15	0.50	26.4 min.	2.7 in/hr	4.5 in/hr	13 cfs	74 cfs	DP 3	
DP 4	OS-1, EX-1, EX-2	157.92 ac	0.15	0.50	40.8 min.	2.0 in/hr	3.4 in/hr	48 cfs	268 cfs	DP 4	
DP 5	OS-1, EX-1, EX-2, EX-3	218.93 ac	0.15	0.50	48.6 min.	1.8 in/hr	2.9 in/hr	58 cfs	323 cfs	DP 5	
DP 6	EX-4	10.51 ac	0.15	0.50	23.5 min.	2.8 in/hr	4.8 in/hr	4 cfs	25 cfs	DP 6	
DP 7	OS-1, EX-1, EX-2, EX-3, EX-4	229.44 ac	0.15	0.50	53.6 min.	1.6 in/hr	2.7 in/hr	55 cfs	310 cfs	DP 7	
DP 8	0S-2	121.60 ac			47.7 min.	1.8 in/hr	3.0 in/hr	38 cfs	153 cfs	DP 8	DP 4011 from MDDP
DP 9	OS-2, EX-5	196.34 ac	0.15	0.50	70.9 min.	1.2 in/hr	2.0 in/hr	35 cfs	196 cfs	DP 9	
DP 10	EX-6	8.83 ac	0.15	0.50	29.8 min.	2.5 in/hr	4.2 in/hr	3 cfs	18 cfs	DP 10	

Equations (taken from Fig 6-5, City of Colorado Springs DCM): $i_2 = -1.19 \ln(T_c) + 6.035$

Q = CiA

Q = Peak Runoff Rate (cubic feet/second)

C = Runoff coef representing a ration of peak runoff rate to ave rainfall intensity for a duration equal to the runoff time of concentration.

 i_{10} =-1.75 ln(T_c) + 8.847 i_{25} =-2.00 ln(T_c) + 10.111 i_{50} =-2.25 ln(T_c) + 11.375

 i_5 =-1.50 ln(T_c) + 7.583

i = average rainfall intensity in inches per hour

 i_{100} =-2.52 ln(T_c) + 12.735

A = Drainage area in acres

P1	Inches
WQCV	0.60 in
2 yr	1.19 in
5 yr	1.50 in
10 yr	1.75 in
25 yr	2.00 in
50 yr	2.25 in
100 yr	2.52 in

NOWA ENGINEERING CORPORATION

$$\frac{14044 - GLEN AT WIDEFIELD EAST}{2}$$

 SHETMO
 2
 or
 2

 CALCUMED BY
 CTC
 $orter$
 2

 CALCUMED BY
 CTC
 $orter$
 2

 CALCUMED BY
 CTC
 $orter$
 2

 CALL
 CTC
 $orter$
 0

 CRESTOR
 CTC
 0
 0

 CRESTOR
 CTC
 0
 0

 CRESTOR
 CTC
 0
 0

 CTC
 0
 0
 0
 0

 CTC
 0
 0
 0
 0
 0

 CTC
 0
 0
 0
 0
 0
 0

 CTC
 0
 0
 0
 0

The Glen at Widefield Filing No. 9 Developed Condition Runoff Coefficient and Percent Impervious Calculation

					PV	Area 1	Land	Use	LA	Area 2	Land I	Use	RS2	2 Area 3 Land Use			RS1	Area 4 Land Use		Use							
Basin	DP	Basin or DP Area (DP contributing basins)		Basin or DP Area (DP contributing basins)		Basin or DP Area (DP contributing basins)		Soil Type	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	% Imperv	Land Use Area	% Area	Comp Land Use % Imp	Basin % Imperv	Ba Ru Coef C ₅	ısin noff icient C ₁₀₀
A-1	DP 1	207,218 sf	4.76ac	С	100%		0%	0%	0%	0.58ac	12%	0%	46%		0%	0%	35%	4.18ac	88%	31%	30.7%	0.31	0.57				
A-2	DP 2	48,865 sf	1.12ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	35%	1.12ac	100%	35%	35.0%	0.33	0.57				
A-3	DP 3	105,749 sf	2.43ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	35%	2.43ac	100%	35%	35.0%	0.33	0.57				
A-4		30,939 sf	0.71ac	С	100%	0.09ac	13%	13%	0%	0.62ac	87%	0%	46%		0%	0%	35%		0%	0%	12.7%	0.22	0.54				
A-5		38,440 sf	0.88ac	С	100%	0.57ac	65%	65%	0%	0.31ac	35%	0%	46%		0%	0%	35%		0%	0%	64.9%	0.61	0.74				
A-6	DP 6	66,445 sf	1.53ac	С	100%	0.10ac	6%	6%	0%	1.43ac	94%	0%	46%		0%	0%	35%		0%	0%	6.3%	0.19	0.52				
A-7	DP 7	142,805 sf	3.28ac	С	100%		0%	0%	0%	0.42ac	13%	0%	46%		0%	0%	35%	2.86ac	87%	31%	30.5%	0.31	0.57				
A-8	DP 8	32,545 sf	0.75ac	С	100%		0%	0%	0%	0.08ac	11%	0%	46%		0%	0%	35%	0.66ac	89%	31%	31.1%	0.31	0.57				
A-9	DP 9	56,113 sf	1.29ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	35%	1.29ac	100%	35%	35.0%	0.33	0.57				
A-10		40,968 sf	0.94ac	С	100%		0%	0%	0%		0%	0%	46%		0%	0%	35%	0.94ac	100%	35%	35.0%	0.33	0.57				
A-11		64,924 sf	1.49ac	С	100%	0.91ac	61%	61%	0%	0.58ac	39%	0%	46%		0%	0%	35%		0%	0%	61.1%	0.46	0.64				
A-12		27,745 sf	0.64ac	С	100%		0%	0%	0%	0.64ac	100%	0%	46%		0%	0%	35%		0%	0%	0.0%	0.15	0.50				
	DP 4	A2, A3, A4	4.26ac	С	100%	0.09ac	2%	2%	0%	0.62ac	15%	0%	46%		0%	0%	35%	3.55ac	83%	29%	31.3%	0.31	0.57				
	DP 5	A2, A3, A4, A5	5.14ac	С	100%	0.66ac	13%	13%	0%	0.93ac	18%	0%	46%		0%	0%	35%	3.55ac	69%	24%	37.0%	0.34	0.58				
	DP 10	A8 - A10	2.98ac	С	100%	0.00ac	0%	0%	0%	0.08ac	3%	0%	46%		0%	0%	35%	2.89ac	97%	34%	34.0%	0.32	0.57				
	DP 11	A6 - A10	7.78ac	С	100%	0.10ac	1%	1%	0%	1.93ac	25%	0%	46%		0%	0%	35%	5.75ac	74%	26%	27.1%	0.29	0.56				
	DP 12	A6 - A11	9.27ac	С	100%	1.01ac	11%	11%	0%	2.51ac	27%	0%	46%		0%	0%	35%	5.75ac	62%	22%	32.6%	0.32	0.57				
	DP 13	OS-1	76.20ac																				l				
	DP 14	A2 - A11	14.41ac	С	100%	1.67ac	12%	12%	0%	3.44ac	24%	0%	46%		0%	0%	35%	9.30ac	65%	23%	34.2%	0.32	0.57				
	DP 14.1	A2 - A12	15.05ac	С	100%	1.67ac	11%	11%	0%	4.08ac	27%	0%	46%		0%	0%	35%	9.30ac	62%	22%	32.7%	0.32	0.57				

Basin Runoff Coefficient is based on UDFCD % Imperviousness Calculation											
Runoff Coefficients and Perce	Runoff Coefficients and Percents Impervious										
Hydrologic Soil Type:	В	Runoff Coef Calc Method %Imp									
Land Use	Abb	%	C ₂	C ₅	C ₁₀	C ₂₅	C ₅₀	C ₁₀₀	W		
Commercial Area	CO	95%	0.79	0.81	0.83	0.85	0.87	0.88	9		
Drives and Walks	DR	90%	0.71	0.73	0.75	0.78	0.80	0.81			
Streets - Gravel (Packed)	GR	40%	0.23	0.30	0.36	0.42	0.46	0.50			
Undevelop-Historic Flow	HI	2%	0.03	0.08	0.17	0.26	0.31	0.36			
Lawns	LA	0%	0.02	0.08	0.15	0.25	0.30	0.35			
Off-site flow-Undeveloped	OF	45%	0.26	0.32	0.38	0.44	0.48	0.51			
Park	PA	7%	0.05	0.12	0.20	0.29	0.34	0.39			
Playground	PL	13%	0.07	0.16	0.24	0.32	0.37	0.42			
Streets - Paved	PV	100%	0.89	0.90	0.92	0.94	0.95	0.96			
Roofs	RO	90%	0.71	0.73	0.75	0.78	0.80	0.81			
Residential: 3.5 Lots/Acre	RS1	35%	0.20	0.27	0.34	0.41	0.45	0.48	1		
Residential: 1/5 Acre	RS2	46%	0.27	0.33	0.39	0.45	0.48	0.51			

Equations (% Impervious Calculation):

$$\begin{split} &C_A = K_A + (1.31 \ i^3 - 1.44 \ i^2 + 1.135 \ i - 0.12) \ [Eqn \ RO-6] \\ &C_{CD} = K_{CD} + (0.858 \ i^3 - 0.786 \ i^2 + 0.774 \ i + 0.04) \ [Eqn \ RO-7] \\ &C_B = (C_A + C_{CD}) \ / \ 2 \end{split}$$

I = % imperviousness/100 as a decimal (See Table RO-3) C_A = Runoff coefficient for NRCS Type A Soils

 $C_{\rm B}$ = Runoff coefficient for NRCS Type B Soils

 C_{CD} = Runoff coefficient for NRCS Type C and D Soils

 $\begin{array}{l} \mbox{Correction Factors - Table RO-4} \\ \mbox{K}_{A} = \mbox{For Type A Soils} \\ \mbox{K}_{A} (2\mbox{-yr}) = 0 \\ \mbox{K}_{A} (5\mbox{-yr}) = \mbox{-}0.08i + 0.09 \\ \mbox{K}_{A} (10\mbox{-yr}) = \mbox{-}0.14i + 0.17 \\ \mbox{K}_{A} (25\mbox{-yr}) = \mbox{-}0.19i + 0.24 \\ \mbox{K}_{A} (25\mbox{-yr}) = \mbox{-}0.22i + 0.28 \\ \mbox{K}_{A} (100\mbox{-yr}) = \mbox{-}0.22i + 0.32 \\ \mbox{K}_{CD} = \mbox{For Type C \& D Soils} \\ \mbox{K}_{CD} (2\mbox{-yr}) = \mbox{0} \\ \mbox{K}_{CD} (5\mbox{-yr}) = \mbox{-}0.10i + 0.11 \\ \mbox{K}_{CD} (10\mbox{-yr}) = \mbox{-}0.18i + 0.21 \\ \mbox{K}_{CD} (25\mbox{-yr}) = \mbox{-}0.28i + 0.33 \\ \mbox{K}_{CD} (50\mbox{-yr}) = \mbox{-}0.33i + 0.40 \\ \mbox{K}_{CD} (100\mbox{-yr}) = \mbox{-}0.39i + 0.46 \\ \end{array}$

17038 Drainage Calcs Runoff Coeff (A) Date Printed: 5/21/2018

The Glen at Widefield Filing No. 9 Developed Condition Time of Concentration Calculation

	2	Sub-Basin Data	a			Time of Concentration Estimate								Min. Tc in Urban				
	Design	Contributing			Initial/C	verlan	d Time (t _i)			Trave	el Tin	ne (t _t)		Comp.	Tc Cheo	ck (urban)	Final t	Notos
Basin	Point	Basins	Area	C ₅	Length	Slope	t _i	Length	Slope	Land Type	Cv	Velocity	t _t	t _c	Total Length	t _c Check	i indi t _c	Notes
A-1	DP 1		4.76ac	0.31	70lf	4.0%	7.6 min.	660lf	2.5%	GW	15	2.4 ft/sec	4.6 min.	12.3 min.	730lf	14.1 min.	12.3 min.	
A-2	DP 2		1.12ac	0.33	70lf	2.0%	9.4 min.	610lf	2.5%	PV	20	3.2 ft/sec	3.2 min.	12.6 min.	680lf	13.8 min.	12.6 min.	
A-3	DP 3		2.43ac	0.33	100lf	4.5%	8.6 min.	570lf	2.5%	PV	20	3.2 ft/sec	3.0 min.	11.6 min.	670lf	13.7 min.	11.6 min.	
A-4			0.71ac	0.22	100lf	7.0%	8.4 min.	540lf	3.3%	GW	15	2.7 ft/sec	3.3 min.	11.7 min.	640lf	13.6 min.	11.7 min.	
A-5			0.88ac	0.61			0.0 min.	515lf	1.2%	PV	20	2.2 ft/sec	3.9 min.	5.0 min.	515lf	12.9 min.	5.0 min.	
A-6	DP 6		1.53ac	0.19	100lf	1.1%	16.2 min.	980lf	4.0%	GW	15	3.0 ft/sec	5.4 min.	21.6 min.	1080lf	16.0 min.	16.0 min.	
A-7	DP 7		3.28ac	0.31	100lf	2.5%	10.7 min.	900lf	4.0%	PV	20	4.0 ft/sec	3.8 min.	14.5 min.	1000lf	15.6 min.	14.5 min.	
A-8	DP 8		0.75ac	0.31	100lf	2.5%	10.7 min.	630lf	4.0%	PV	20	4.0 ft/sec	2.6 min.	13.3 min.	730lf	14.1 min.	13.3 min.	
A-9	DP 9		1.29ac	0.33	100lf	2.0%	11.2 min.	240lf	1.6%	PV	20	2.5 ft/sec	1.6 min.	12.8 min.	340lf	11.9 min.	11.9 min.	
A-10			0.94ac	0.33	100lf	2.0%	11.2 min.	375lf	1.6%	PV	20	2.5 ft/sec	2.5 min.	13.7 min.	475lf	12.6 min.	12.6 min.	
A-11			1.49ac	0.46			0.0 min.	505lf	1.2%	PV	20	2.2 ft/sec	3.8 min.	5.0 min.	505lf	12.8 min.	5.0 min.	
A-12			0.64ac	0.15	20lf	25.0%	2.7 min.	80lf	0.5%	PV	20	1.4 ft/sec	0.9 min.	5.0 min.	100lf	10.6 min.	5.0 min.	
	DP 4	A2, A3, A4	4.26ac	0.31	100lf	4.3%	8.9 min.	640lf	2.4%	PV	20	3.1 ft/sec	3.4 min.	12.3 min.	740lf	14.1 min.	12.3 min.	
	DP 5	A2, A3, A4, A5	5.14ac	0.34	100lf	4.3%	8.6 min.	1090lf	1.9%	PV	20	2.8 ft/sec	6.6 min.	15.2 min.	1190lf	16.6 min.	15.2 min.	
	DP 10	A8 - A10	2.98ac	0.32	100lf	2.5%	10.5 min.	800lf	4.0%	PV	20	4.0 ft/sec	3.3 min.	13.8 min.	900lf	15.0 min.	13.8 min.	
	DP 11	A6 - A10	7.78ac	0.29	100lf	1.1%	14.3 min.	1030lf	3.9%	PV	20	3.9 ft/sec	4.3 min.	18.7 min.	1130lf	16.3 min.	16.3 min.	
	DP 12	A6 - A11	9.27ac	0.32	100lf	1.1%	13.9 min.	1480lf	3.1%	PV	20	3.5 ft/sec	7.0 min.	20.9 min.	1580lf	18.8 min.	18.8 min.	
	DP 13	0S-1	76.20ac														25.2 min.	Basin OS-1 Routed to DP13
	DP 14	A2 - A11	14.41ac	0.32	100lf	1.1%	13.8 min.	1520lf	3.0%	PV	20	3.5 ft/sec	7.3 min.	21.1 min.	1620lf	19.0 min.	19.0 min.	
	DP 14.1	A2 - A12	15.05ac	0.32	100lf	1.1%	13.9 min.	1670lf	2.8%	PV	20	3.3 ft/sec	8.3 min.	22.2 min.	1770lf	19.8 min.	19.8 min.	

Equations:

 t_i (Overland) = 0.395(1.1-C₅)L^{0.5} S^{-0.333}

 C_5 = Runoff coefficient for 5-year

L = Length of overland flow (ft)

S = Slope of flow path (ft/ft)

tc Check = (L/180)+10 (Developed Cond. Only)

L = Overall Length

Velocity (Travel Time) = CvS^{0.5} Cv = Conveyance Coef (see Table) S = Watercourse slope (ft/ft)

Land Surface Type	Land Type	Cv
Grassed Waterway	GW	15
Heavy Meadow	HM	2.5
Nearly Bare Ground	NBG	10
Paved Area	PV	20
Riprap (Not Buried)	RR	6.5
Short Pasture/Lawns	SP	7
Tillage/Fields	TF	5

The Glen at Widefield Filing No. 9 Developed Condition Runoff Calculation

Dagin	Design	Contributing Paging	Drainage			Time of	Rainfall	Intensity	Ru	noff	Pagin / DD	Notos
Dasiii	Point	Contributing Basins	Area	C ₅	C ₁₀₀	Concentration	i ₅	i ₁₀₀	Q ₅	Q ₁₀₀	Dasiii / DP	Notes
A-1	DP 1		4.76 ac	0.31	0.57	12.3 min.	3.8 in/hr	6.4 in/hr	5.6 cfs	17.4 cfs	A-1	
A-2	DP 2		1.12 ac	0.33	0.57	12.6 min.	3.8 in/hr	6.3 in/hr	1.4 cfs	4.1 cfs	A-2	
A-3	DP 3		2.43 ac	0.33	0.57	11.6 min.	3.9 in/hr	6.6 in/hr	3.1 cfs	9.2 cfs	A-3	
A-4			0.71 ac	0.22	0.54	11.7 min.	3.9 in/hr	6.5 in/hr	0.6 cfs	2.5 cfs	A-4	
A-5			0.88 ac	0.61	0.74	5.0 min.	5.2 in/hr	8.7 in/hr	2.8 cfs	5.7 cfs	A-5	
A-6	DP 6		1.53 ac	0.19	0.52	16.0 min.	3.4 in/hr	5.7 in/hr	1.0 cfs	4.6 cfs	A-6	
A-7	DP 7		3.28 ac	0.31	0.57	14.5 min.	3.6 in/hr	6.0 in/hr	3.6 cfs	11.2 cfs	A-7	
A-8	DP 8		0.75 ac	0.31	0.57	13.3 min.	3.7 in/hr	6.2 in/hr	0.9 cfs	2.6 cfs	A-8	
A-9	DP 9		1.29 ac	0.33	0.57	11.9 min.	3.9 in/hr	6.5 in/hr	1.6 cfs	4.8 cfs	A-9	
A-10			0.94 ac	0.33	0.57	12.6 min.	3.8 in/hr	6.3 in/hr	1.2 cfs	3.4 cfs	A-10	
A-11			1.49 ac	0.46	0.64	5.0 min.	5.2 in/hr	8.7 in/hr	3.6 cfs	8.2 cfs	A-11	
A-12			0.64 ac	0.15	0.50	5.0 min.	5.2 in/hr	8.7 in/hr	0.5 cfs	2.8 cfs	A-12	
	DP 4	A2, A3, A4	4.26 ac	0.31	0.57	12.3 min.	3.8 in/hr	6.4 in/hr	5.0 cfs	15.5 cfs	DP 4	
	DP 5	A2, A3, A4, A5	5.14 ac	0.34	0.58	15.2 min.	3.5 in/hr	5.9 in/hr	6.0 cfs	17.5 cfs	DP 5	
	DP 10	A8 - A10	2.98 ac	0.32	0.57	13.8 min.	3.6 in/hr	6.1 in/hr	3.5 cfs	10.4 cfs	DP 10	
	DP 11	A6 - A10	7.78 ac	0.29	0.56	16.3 min.	3.4 in/hr	5.7 in/hr	7.7 cfs	25.0 cfs	DP 11	
	DP 12	A6 - A11	9.27 ac	0.32	0.57	18.8 min.	3.2 in/hr	5.3 in/hr	9.3 cfs	28.3 cfs	DP 12	
	DP 13	0S-1	76.20 ac			25.2 min.	2.7 in/hr	4.6 in/hr	50.0 cfs	165.0 cfs	DP 13	Flow From Basin OS-1
	DP 14	A2 - A11	14.41 ac	0.32	0.57	19.0 min.	3.2 in/hr	5.3 in/hr	14.7 cfs	43.9 cfs	DP 14	
	DP 14.1	A2 - A12	15.05 ac	0.32	0.57	19.8 min.	3.1 in/hr	5.2 in/hr	14.8 cfs	44.8 cfs	DP 14.1	

Equations (taken from Fig 6-5, City of Colorado Springs DCM):

i_2 =-1.19 ln(T _c) + 6.035
i_5 =-1.50 ln(T _c) + 7.583
i_{10} =-1.75 ln(T _c) + 8.847
i_{25} =-2.00 ln(T _c) + 10.111
i_{50} =-2.25 ln(T _c) + 11.375
i_{100} =-2.52 ln(T _c) + 12.735

Q = CiA

Q = Peak Runoff Rate (cubic feet/second)

C = Runoff coef representing a ration of peak runoff rate to ave rainfall

intensity for a duration equal to the runoff time of concentration.

i = average rainfall intensity in inches per hour

A = Drainage area in acres

P1	Inches
WQCV	0.60 in
2 yr	1.19 in
5 yr	1.50 in
10 yr	1.75 in
25 yr	2.00 in
50 yr	2.25 in
100 yr	2.52 in

APPENDIX A.1 Supporting Hydrologic Tables and Figures

Runoff Coefficients													
Characteristics	Impervious	2-year		5-y	ear	10-y	/ear	ץ-25	/ear	50-1	year	100-	year
		HSG A&B	HSG C&D										
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0 34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Lindovalanad Areas													
Listeria Flave Analysia													
Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when	45												
landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Type of Land Surface	C_{v}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried) [*]	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20
* For buried riprop select C velue based on two of ve	actative cover

Table 6-7.	Conveyance	Coefficient,	C_{v}
------------	------------	--------------	---------

^{*} For buried riprap, select C_v value based on type of vegetative cover.

The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration (t_c) is then the sum of the overland flow time (t_i) and the travel time (t_i) per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation 6-10. The first design point is defined as the point where runoff first enters the storm sewer system.

$$t_c = \frac{L}{180} + 10 \tag{Eq. 6-10}$$

Where:

 t_c = maximum time of concentration at the first design point in an urban watershed (min)

L = waterway length (ft)

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

For Colorado Springs and much of the Fountain Creek watershed, the 1-hour depths are fairly uniform and are summarized in Table 6-2. Depending on the location of the project, rainfall depths may be calculated using the described method and the NOAA Atlas maps shown in Figures 6-6 through 6-17.

Return Period	1-Hour Depth	6-Hour Depth	24-Hour Depth
2	1.19	1.70	2.10
5	1.50	2.10	2.70
10	1.75	2.40	3.20
25	2.00	2.90	3.60
50	2.25	3.20	4.20
100	2.52	3.50	4.60

 Table 6-2. Rainfall Depths for Colorado Springs

Where Z= 6,840 ft/100

These depths can be applied to the design storms or converted to intensities (inches/hour) for the Rational Method as described below. However, as the basin area increases, it is unlikely that the reported point rainfalls will occur uniformly over the entire basin. To account for this characteristic of rain storms an adjustment factor, the Depth Area Reduction Factor (DARF) is applied. This adjustment to rainfall depth and its effect on design storms is also described below. The UDFCD UD-Rain spreadsheet, available on UDFCD's website, also provides tools to calculate point rainfall depths and Intensity-Duration-Frequency curves² and should produce similar depth calculation results.

2.2 Design Storms

Design storms are used as input into rainfall/runoff models and provide a representation of the typical temporal distribution of rainfall events when the creation or routing of runoff hydrographs is required. It has long been observed that rainstorms in the Front Range of Colorado tend to occur as either short-duration, high-intensity, localized, convective thunderstorms (cloud bursts) or longer-duration, lower-intensity, broader, frontal (general) storms. The significance of these two types of events is primarily determined by the size of the drainage basin being studied. Thunderstorms can create high rates of runoff within a relatively small area, quickly, but their influence may not be significant very far downstream. Frontal storms may not create high rates of runoff within smaller drainage basins due to their lower intensity, but tend to produce larger flood flows that can be hazardous over a broader area and extend further downstream.

• **Thunderstorms**: Based on the extensive evaluation of rain storms completed in the Carlton study (Carlton 2011), it was determined that typical thunderstorms have a duration of about 2 hours. The study evaluated over 300,000 storm cells using gage-adjusted NEXRAD data, collected over a 14-year period (1994 to 2008). Storms lasting longer than 3 hours were rarely found. Therefore, the results of the Carlton study have been used to define the shorter duration design storms.

To determine the temporal distribution of thunderstorms, 22 gage-adjusted NEXRAD storm cells were studied in detail. Through a process described in a technical memorandum prepared by the City of Colorado Springs (City of Colorado Springs 2012), the results of this analysis were interpreted and normalized to the 1-hour rainfall depth to create the distribution shown in Table 6-3 with a 5 minute time interval for drainage basins up to 1 square mile in size. This distribution represents the rainfall

APPENDIX B

Detention Basin Calculations

Full Spectrum Detention Basin/Extended Detention Basin Detention Volume and Emergency Spillway Outlet Structure Calculations Trickle Channel Capacity and Outlet Structure Sizing Trash Rack and Safety Grate Sizing Forebay Sizing Calculations

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Stage (ft)

UD-Detention, Version 3.07 (February 2017)

Depth Increment =

Stage - Storage Description Top of Micropoo

Project: The Glen at Widefield Filing No. 9 Basin II: Detention Basin "A"

-

	Basin ID: Detention Bas	sin "A"
	ZONE 3 ZONE 2 ZONE 1	
VOLUME EURY WOCV		
BEQUILLENT	ZONE 1 AND 2	100-YEAR ORIFICE

PERMANENT		OHIFICI	15		
POOL	Example	Zone	Configuration	(Retention	Pond)

Required Volume Calculation		-			
Selected BMP Type =	EDB				
Watershed Area =	15.05	acres			
Watershed Length =	1,000	ft			
Watershed Slope =	0.030	ft/ft			
Watershed Imperviousness =	32.70%	percent			
Percentage Hydrologic Soil Group A =	0.0%	percent			
Percentage Hydrologic Soil Group B =	0.0%	percent			
Percentage Hydrologic Soil Groups C/D =	100.0%	percent			
Desired WQCV Drain Time =	40.0	hours			
Location for 1-hr Rainfall Depths = User Input					
Water Quality Capture Volume (WQCV) =	0.200	acre-feet	Optional User Overrid		
Excess Urban Runoff Volume (EURV) =	0.450	acre-feet	1-hr Precipitation		
2-yr Runoff Volume (P1 = 1.19 in.) =	0.414	acre-feet	1.19	inches	
5-yr Runoff Volume (P1 = 1.5 in.) =	0.673	acre-feet	1.50	inches	
10-yr Runoff Volume (P1 = 1.75 in.) =	0.945	acre-feet	1.75	inches	
25-yr Runoff Volume (P1 = 2 in.) =	1.454	acre-feet	2.00	inches	
50-yr Runoff Volume (P1 = 2.25 in.) =	1.818	acre-feet	2.25	inches	
100-yr Runoff Volume (P1 = 2.52 in.) =	2.279	acre-feet	2.52	inches	
500-yr Runoff Volume (P1 = 3.2 in.) =	3.233	acre-feet	3.20	inches	
Approximate 2-yr Detention Volume =	0.388	acre-feet			
Approximate 5-yr Detention Volume =	0.635	acre-feet			
Approximate 10-yr Detention Volume =	0.733	acre-feet			
Approximate 25-yr Detention Volume =	0.819	acre-feet			
Approximate 50-yr Detention Volume =	0.855	acre-feet			
Approximate 100-yr Detention Volume =	1.035	acre-feet			

Stage-Storage Calculation
Zono 1 Volumo (MOC)/) -

Zone 1 Volume (WQCV) =	0.200	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.250	acre-feet
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	0.685	acre-feet
Total Detention Basin Volume =	1.135	acre-feet
Initial Surcharge Volume (ISV) =	user	ft/3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (STC) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft'2
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L _{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft*2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft*2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (V _{total}) =	user	acre-fee

)	inches					
;	inches	-				
)	inches	-				
	inchor					
	IIIC1105	-	-	-	-	
-	inches	 -	-	-	-	
)	inches					
		-				
		-	-	-	-	
		-	-	-	-	
		 -				
		-			-	
					-	
		-			-	
					-	
					-	
		-	-		-	
		-	-	-	-	
		 -	-	-	-	
		-			-	
		-			-	
		-			-	
		-				
		-			-	
		-	-	-	-	
		 -	-	-	-	
					-	
					-	
					-	
		-	-	-	-	
		-				
		-			-	
		-	-	-	-	
		 -	-	-	-	
					-	
					-	
					-	
		-	-	-	-	
		-			-	
		 -			-	
		-	-	-	-	
					-	
		-		-	-	
		 -	-		-	
		-		-	-	
		-			-	
		 			-	
		-	-	-	-	
					-	
		-		-	-	
		-			-	
		-			-	
		-			-	
		-		-	-	
		 -	 -		-	
		-	-		-	
		-			-	
		-	-		-	
		 	 		-	
		-	-		-	
		-	-	-	-	
		-			-	
		-			-	-
					-	

 Optional Area (ft/s)
 Area (acre)
 Volume (m3)
 Volume (a-ft)

 26
 0.001
 17
 0.000

 12.60
 0.255
 1.945
 0.041

 14.300
 0.228
 15.274
 0.351

 15.200
 0.372
 30.667
 0.740

 15.300
 0.420
 47.917
 1.100

 20.450
 0.469
 67.292
 1.545

 22.700
 0.521
 88.967
 2.040

Width (ft)

Area (ft^r2)

Length (ft)

 Stage (ft)

 0.00

 0.67

 1.00

 2.00

 3.00

 4.00

 5.00

6.00

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Detention Basin Outlet Structure Design											
Project:			UD-Detention, Ve	rsion 3.07 (Februar	ry 2017)						
Basin ID:											
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type					
			Zone 1 (WOCV)	1.52	0.200	Orifice Plate					
± ± +	100-YEA	R	Zone 2 (EURV)	2.29	0.250	Orifice Plate					
ZONE 1 AND 2 ORIFICES	ORIFICE		(100+1/2WOCV)	4.09	0.685	Weir&Pipe (Restrict)					
POOL Example Zone	Configuration (Re	etention Pond)	(,,,		1.135	Total					
User Input: Orifice at Underdrain Outlet (typically u	sed to drain WQCV in	a Filtration BMP)				Calculate	d Parameters for Un	derdrain			
Underdrain Orifice Invert Depth =	N/A	ft (distance below th	e filtration media sur	face)	Unde	erdrain Orifice Area =	N/A	ft ²			
Underdrain Orifice Diameter =	N/A	inches			Underdra	ain Orifice Centroid =	N/A	feet			
User Input: Orifice Plate with one or more orifices of	or Elliptical Slot Weir	(typically used to dra	in WOCV and/or EUF	RV in a sedimentatio	n BMP)	Calcu	ated Parameters for	Plate			
Invert of Lowest Orifice =	0.00	ft (relative to basin b	oottom at Stage = 0 ft))	WQ 0	rifice Area per Row =	N/A	ft ²			
Depth at top of Zone using Orifice Plate =	2.29	ft (relative to basin b	oottom at Stage = 0 ft))	E	lliptical Half-Width =	N/A	feet			
Orifice Plate: Orifice Vertical Spacing =	9.20	inches			Elli	ptical Slot Centroid =	N/A	feet			
Orifice Plate: Orifice Area per Row =	N/A	inches				Elliptical Slot Area =	N/A	ft²			
User Input: Stage and Total Area of Each Orifice	Row (numbered from	m lowest to highest)								
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)			
Stage of Orifice Centroid (ft)	0.00	0.76	1.53								
Orifice Area (sq. inches)	1.10	1.10	1.10								
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (ontional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)			
Stage of Orifice Centroid (ft)	now e (optional)	Now to (optional)	(optional)	TOW 12 (Optional)	Now 13 (optional)	Now 14 (optional)	now to (optional)	Now to (optional)			
Orifice Area (sq. inches)											
User Input: Vertical Orifice (Cir	cular or Rectangular)		1			Calculated	Parameters for Vert	ical Orifice	1		
Invest of Vestical Orifice -	Not Selected	Not Selected	ft (ralative to basin b	ottom at Stago - 0 ft		ortical Orifica Araa -	Not Selected	Not Selected	c. ²		
Denth at top of Zone using Vertical Orlice =	N/A N/A	N/A N/A	ft (relative to basin b	ottom at Stage = 0 ft) v Verti	ral Orifice Centroid =	N/A N/A	N/A N/A	tt feet		
Vertical Orifice Diameter =	N/A	N/A	inches	ottom ut stuge - o h	, vera		,	,			
			4		Vertical Orifice Diameter = N/A N/A inches						
User Input: Overflow Weir (Dropbox) and 0	Grate (Flat or Sloped)	Not Selected	1			Calculated	Parameters for Over	rflow Weir			
User Input: Overflow Weir (Dropbox) and O	Grate (Flat or Sloped) Zone 3 Weir 2.29	Not Selected	ft (relative to basin bo	ttom		Calculated	Parameters for Ove Zone 3 Weir	rflow Weir Not Selected			
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Grate (Flat or Sloped) Zone 3 Weir 2.29 6.00	Not Selected	ft (relative to basin bo feet	^{ttom} Pipe D	ia and hei	Calculated	Parameters for Ove Zone 3 Weir pipe inve	Not Selected	ot		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope =	Grate (Flat or Sloped) Zone 3 Weir 2.29 6.00 4.00	Not Selected N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl	^{ttom} Pipe D	ia and hei the consti	Calculated ght above ruction pla	Parameters for Ove Zone 3 Weir pipe inve ns. Upda	not Selected Not Selected Prt does not	ot the ≟⁴		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	Grate (Flat or Sloped) Zone 3 Weir 2.29 6.00 4.00 5.00	Not Selected N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet	^{ttom} Pipe D at gr match	ia and hei the constr	calculated ght above ruction pla	Parameters for Ove Zone 3 Weir e pipe inve ns. Upda	nt Selected Not Selected Not Selected Not Selected Not Selected	ot the ^{₂≥4}		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	Zone 3 Weir 2.29 6.00 4.00 5.00 70%	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t	^{ttom} Pipe D ^{at gr} match otal other to	ia and hei the constr o match.	calculated ght above ruction pla	Parameters for Ove Zone 3 Weir pipe inve ns. Upda	rflow Weir Not Selected ert does no ite one or	ot the ₃≥₄		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Strate (Flat or Sloped) Zone 3 Weir 2.29 6.00 4.00 5.00 70% 50%	Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t %	^{ttom} Pipe D ^{at gr} match other to Unres	ia and hei the consti o match. olved. Co	Calculated ght above uction pla	Parameters for Ove Zone 3 Weir pipe inve ns. Upda	rflow Weir Not Selected ert does no ite one or ngs show	ot the ^{₃≥4}		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Strate (Flat or Sloped) Zone 3 Weir 2.29 6.00 4.00 5.00 70% 50% rcular Orifice, Resynchronia	Not Selected N/A N/A N/A N/A N/A N/A CorPlate, or Rectang	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice)	^{ttom} Pipe D ^{at gr} match other to Unres 30" dia	ia and hei the constr o match. olved. Co a w/ 15" a	Calculated ght above uction pla onstructio bove inve	Parameters for Ove Zone 3 Weir pipe inve ns. Upda on Drawir ert.	rflow Weir <u>Not Selected</u> ert does no ite one or ngs show	ot the ²≥⁴ a		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C	Trate (Flat or Sloped) Zone 3 Weir 2.29 6.00 4.00 5.00 70% 5.00 70% 5.00 70% 5.00 70% 2.29 6.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	Not Selected N/A N/A N/A N/A N/A N/A N/A torPlate, or Rectang Not Selected	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice)	^{ttom} Pipe D ^{at gr} match other to Unreso 30" dia	ia and hei the constr o match. olved. Co a w/ 15" a	Calculated ght above uction pla onstructio bove inve	Parameters for Over Zone 3 Weir e pipe inver ns. Upda on Drawir ert.	rflow Weir <u>Not Selected</u> ert does no te one or ngs show	ot the ^{₂≥4}		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	State (Flat or Sloped) Zone 3 Weir 2.29 6.00 4.00 5.00 70% 50% 50% rculal Orifler, Respic Zone 3 Restrictor 0.33 0.33	Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below basis	ttom Pipe D at gr match other to Unreso 30" dia	ia and hei the constr o match. olved. Co a w/ 15" a	Calculated ght above uction pla onstructio bove inve	Parameters for Over Zone 3 Weir e pipe inver ns. Upda on Drawir ert.	rflow Weir <u>Not Selected</u> ert does no te one or ngs show	ot the ^{₂≥4}		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (O Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Cone 3 Weir 2.29 6.00 4.00 5.00 70% 50% rculal Orifice, Respic Zone 3 Restrictor 0.33 24.00 17.70	Not Selected N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	ft (relative to basin bo feet H-V (enter zero for fl feet %, grate open area/t % (ular Orifice) ft (distance below basis inches	ttom Pipe D at gr match other to Unrese 30" dia	ia and hei the constr o match. olved. Co a w/ 15" a	Calculated ght above cuction pla onstruction bove inve	Parameters for Over Zone 3 Weir e pipe inver ns. Upda on Drawin ert.	rflow Weir Not Selected ert does no te one or ngs show	ot the ≥≥4 ′a		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (O Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Cone 3 Weir 2.29 6.00 4.00 5.00 70% 50% rculal Orifice, Respice Zone 3 Restrictor 0.33 24.00 17.70	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches	ttom Pipe D at gr match other to Unrese 30" dia	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest	Calculated ght above cuction pla onstruction bove invo	Parameters for Over Zone 3 Weir e pipe inver ns. Upda on Drawin ert. 0.82 2.07	rflow Weir <u>Not Selected</u> ert does no te one or ngs show	Dt the ≥≥4 ′a		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (O Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant	Cone 3 Weir 2.29 6.00 4.00 5.00 70% 50% rculal Orifice, Respice Zone 3 Restrictor 0.33 24.00 17.70	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches	ttom Pipe D at gr match other to Unreso 30" dia	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest	Calculated ght above ruction pla onstruction bove invo let Orifice Centroid = rictor Plate on Pipe = Calcula	Parameters for Over Zone 3 Weir e pipe inver ns. Upda on Drawin ert. 0.82 2.07 ted Parameters for S	rflow Weir <u>Not Selected</u> ert does no te one or ngs show <u>N/A</u> <u>N/A</u> pillway	Dt the ≥≥4 ′a		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Invert Stage=	Cone 3 Weir 2.29 6.00 4.00 5.00 70% 50% cone 3 Restrictor 0.33 24.00 17.70 sular on Treperondally 4.50	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % vular Orifice) ft (distance below basi inches inches option at Stage = 0 ft)	ttom Pipe D match other to Unreso 30" dia Half-	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest Spillway	Calculated ght above ruction pla onstruction bove inve let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	Parameters for Ove Zone 3 Weir Pipe inve ns. Upda on Drawir ert. 0.82 2.07 ted Parameters for S 0.42	rflow Weir Not Selected ert does no te one or ngs show N/A N/A pillway feet	ot the ³≥4 ′a		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Invert Stage= Spillway Crest Length =	Cone 3 Weir 2.29 6.00 4.00 5.00 70% 50% Cone 3 Restrictor 0.33 24.00 17.70 sular on Treperondal) 4.50 50.00	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A N/A ft (relative to basin the feet	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % vular Orifice) ft (distance below basi inches inches optiom at Stage = 0 ft)	ttom Pipe D match other to Unreso 30" dia Half-	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest Spillway Stage a	Calculated ght above ruction pla onstruction bove inve let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Parameters for Ove Zone 3 Weir Pipe inve ns. Upda on Drawir ert. 0.82 2.07 ted Parameters for S 0.42 5.92	rflow Weir Not Selected ert does no te one or ngs show N/A N/A N/A pillway feet feet	ot the ³ ≥4 ′ a feet radians		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Stodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Stopes =	Cone 3 Weir 2.29 6.00 4.00 5.00 70% 50% cone 3 Restrictor 0.33 24.00 17.70 sular on Tropezoidal) 4.50 50.00	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A tor Pigto, or Rectang Not Selected N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % vular Orifice) ft (distance below basi inches inches optiom at Stage = 0 ft)	ttom Pipe D match other to Unres 30" dia Half-	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest Spillway Stage a Basin Area a	Calculated ght above ruction pla onstruction bove inve let Orifice Centroid = rictor Plate on Pipe = Calcula Posign Flow Depth= it Top of Freeboard = t Top of Freeboard =	Parameters for Ove Zone 3 Weir Pipe investing on Drawin ert. 0.82 2.07 ted Parameters for S 0.42 5.92 0.52	rflow Weir Not Selected ert does no te one or ngs show N/A N/A pillway feet feet acres	ot the ⇒≥4 ′a		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sloes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Irvert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Cone 3 Weir 2.29 6.00 4.00 5.00 70% 50% Cone 3 Restrictor 0.33 24.00 17.70 sular on Texperondal 4.50 50.00 4.00	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A N/A ft (relative to basin the feet H:V feet	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % vular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft)	ttom Pipe D match other to Unreso 30" dia	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest Spillway Stage a Basin Area a	Calculated ght above ruction pla onstruction bove inve let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= It Top of Freeboard = t Top of Freeboard =	Parameters for Ove Zone 3 Weir Pipe inversions. Upda on Drawin ert. 0.82 2.07 ted Parameters for S 0.42 5.92 0.52	rflow Weir Not Selected ert does no te one or ngs show N/A N/A N/A pillway feet feet acres	ot the ⇒≥4 ′a		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Cone 3 Weir 2.29 6.00 4.00 5.00 70% 50% Cone 3 Restrictor 0.33 24.00 17.70 pular on Treperordal 4.50 50.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Vot Selected N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft)	ttom at gr botal in bo Malf-	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest Spillway Stage a Basin Area a	Calculated ght above ruction pla onstruction bove inve let Orifice Centroid = rictor Plate on Pipe = Calcula Pesign Flow Depth= it Top of Freeboard =	Parameters for Ove Zone 3 Weir Pipe inversions. Upda on Drawin ert. 0.82 2.07 ted Parameters for S 0.42 5.92 0.52	rflow Weir Not Selected ert does no te one or ngs show N/A N/A N/A pillway feet feet acres	ot the ⇒≥4 ′a		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Stodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	Cone 3 Weir 2.29 6.00 4.00 5.00 70% 50% cone 3 Restrictor 0.33 24.00 17.70 sular on Trepezoidal) 4.50 50.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A N/A ft (relative to basin the feet H:V feet EURV	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year	ttom Pipe D match otal other to Unreso 30" dia half-	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest Spillway Stage a Basin Area a	Calculated ght above ruction pla onstruction bove inve let Orifice Centroid = rictor Plate on Pipe = Calcula Posign Flow Depth= it Top of Freeboard = t Top of Freeboard =	Parameters for Ove Zone 3 Weir Pipe inversions. Upda on Drawin ert. 0.82 2.07 ted Parameters for S 0.42 5.92 0.52	rflow Weir Not Selected ert does no te one or ngs show N/A N/A N/A pillway feet feet acres 100 Year	Dt the ≥≥4 7 a feet radians		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (the Depth to Invert of Outlet Pipe = Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	Cone 3 Weir 2.29 6.00 4.00 5.00 70% 50% cone 3 Restrictor 0.33 24.00 17.70 sular on Tropezoidal) 4.50 50.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A N/A tor Plate, or Rectang Lot Selected N/A N/A Lot Selected N/A N/A Lot Selected N/A N/A D Control Selected N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 1.19	ttom Pipe D at gr match otal other to Unreso 30" dia Half-	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest Spillway Stage a Basin Area a	Calculated ght above ruction pla onstruction bove invo let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = 1 Top of Freeboard = 25 Year 2.00	Parameters for Ove Zone 3 Weir Pipe inversions. Upda Dn Drawin ert. 0.82 2.07 ted Parameters for S 0.42 5.92 0.52 50 Year 2.25 1.850	rflow Weir Not Selected ert does not te one or ngs show N/A N/A N/A pillway feet feet acres 100 Year 2.52 2.370	Dt the ≥≥4 7 a feet radians		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe W/ Flow Restriction Plate (the Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Ed Slopes Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Overfide Runoff Volume (acre-ft) =	Come 3 Weir 2.29 6.00 4.00 5.00 5.0% 50% Come 3 Restrictor 0.33 24.00 17.70 Solution of the periodical o	Not Selected N/A N/A N/A N/A N/A N/A N/A tor Pigto, or Rectang Not Selected N/A N/A N/A tor Pigto, or Rectang tor Selected N/A N/A E tor Pigto, or Rectang Not Selected N/A N/A E tor Pigto, or Rectang Not Selected N/A N/A D tor Pigto, or Rectang Not Selected N/A N/A D tor Pigto, or Rectang Not Selected N/A N/A D tor Pigto, or Rectang Not Selected N/A N/A N/A D tor Pigto, or Rectang Not Selected N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 1.19 0.414	ttom at gr botal in bo S Year 1.50 0.673	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest Spillway Stage a Basin Area a	Calculated ght above ruction pla onstruction bove inve let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.454	Parameters for Ove Zone 3 Weir Pipe investing on Drawin ert. 0.82 2.07 ted Parameters for S 0.42 5.92 0.52 50 Year 2.25 1.818	rflow Weir Not Selected ert does not te one or ngs show N/A N/A N/A pillway feet feet acres 100 Year 2.52 2.279	Dt the ≥≥4 7 a feet radians		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe W/ Flow Restriction Plate (M Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Invert Stage Spillway Invert Stage Spillway End Slopes Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert Spillway End Slopes Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	Come 3 Weir 2.29 6.00 4.00 5.00 70% 50% Come 3 Restrictor 0.33 24.00 17.70 Restrictor 0.33 24.00 17.70 Restrictor 0.33 24.00 17.70 Restrictor 0.33 24.00 1.00 4.50 50.00 4.00 1.00 200	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A to Plate or Rectang Not Selected N/A N/A N/A to Plate or Betted N/A N/A Etter betted EURV L.07 0.450 0.449	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % cular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) <u>2 Year</u> 1.19 0.414	ttom Pipe D match otal other to Unreso 30" dia in bo Half-	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest Spillway Stage a Basin Area a	Calculated ght above ruction pla onstruction bove inve let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.454	Parameters for Ove Zone 3 Weir Pipe investing on Drawin ert. 0.82 2.07 ted Parameters for S 0.42 5.92 0.52 50 Year 2.25 1.818 1.817	rflow Weir Not Selected ert does not te one or ngs show N/A N/A N/A pillway feet feet acres 100 Year 2.52 2.279 2.277	Dt the ≥≥4 a feet radians		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (to Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectar Spillway Invert Stage Spillway Invert Stage Spillway Ent Stage Stage Stage Stage Sta	Victor Victor 2.29 6.00 4.00 5.00 70% 50% 2001 70% 50% 50% Cular Orifice, Respice 200 0.33 24.00 17.70 17.70 904 4.50 50.000 4.00 1.00 1.00 WQCV 0.53 0.200 0.00 0.200 0.00	Not Selected N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 1.19 0.414 0.414 0.2	ttom Pipe D match otal other to Unreso 30" dia in bo Half-	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.945 0.944 0.41	Calculated ght above ruction pla onstructio bove inve it or plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.454 1.453 0.93 1.40	Parameters for Ove Zone 3 Weir Pippe inve ns. Upda Dn Drawin ert. 0.82 2.07 ted Parameters for S 0.42 5.92 0.52 50 Year 2.25 1.818 1.817 1.23 1.9 c	rflow Weir Not Selected ert does no te one or ngs show N/A N/A N/A piltway feet feet acres 100 Year 2.52 2.279 2.277 1.59 3.0	500 Year 3.20 3.233 3.232 2.34 27.2		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (10 Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invut = User Input: Emergency Spillway (Rectar Spillway Invert Stage Spillway End Slopes Freeboard above Max Water Surface = Spillway End Slopes Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volum (acre-ft) = Predevelopment Unit Peak Riow, q (cfs/acre) = Predevelopment Unit Peak Riow, q (cfs/acre) = Peak Inflow O (cfs) = Peak Inflow O (cfs) =	View 2.29 6.00 4.00 5.00 70% 50% Culai Orifle, Respic Zone 3 Restrictor 0.33 24.00 17.70 uaa or Tropezoidal) 4.50 50.00 4.00 1.00 WQCV 0.53 0.200 0.00 0.00 0.33	Not Selected N/A Itor Plate, or Rectang N/A N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ft (distance below basi inches inches bottom at Stage = 0 ft) <u>2 Year</u> 1.19 0.414 0.414 0.02 0.3 8.0	ttom Pipe D at gr match other to Unreso 30" dia in bo Half-	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.945 0.944 0.41 6.1 18.0	Calculated ght above ouction pla onstruction bove inver- it or plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = Calcula 25 Year 2.00 1.454 1.453 0.93 14.0 27.6	Parameters for Ove Zone 3 Weir pipe inve ns. Upda on Drawin ert. 0.82 2.07 ted Parameters for S 0.42 5.92 0.52 50 Year 2.25 1.818 1.817 1.23 18.5 34.4	rflow Weir Not Selected ert does no te one or ngs show N/A N/A N/A pillway feet feet acres 100 Year 2.52 2.277 1.59 23.9 43.0	500 Year 3.20 3.233 3.232 2.34 35.2 60.7		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (M Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest = Spi	Weir 2.29 6.00 4.00 5.00 70% 50% culai Orifice, Resvic Zone 3 Restrictor 0.33 24.00 17.70 gulai Or Tropezoidal) 4.50 50.00 4.00 1.00 WQCV 0.53 0.200 0.00 0.3.9 0.1	Not Selected N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ft (distance below basi inches inches bottom at Stage = 0 ft) <u>2 Year</u> 1.19 0.414 0.414 0.02 0.3 8.0 0.1	ttom Pipe D at gr match other to Unreso 30" dia in bo Half- 0 5 Year 1.50 0.672 0.15 2.3 12.9 2.2	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.945 0.944 0.41 6.1 18.0 6.3	Calculated ght above ouction pla onstruction bove inver- inter Plate on Pipe = Calcula Design Flow Depth= it Top of Freeboard = it Top of Freeboard = 25 Year 2.00 1.454 	Parameters for Over Zone 3 Weir Pipe inver- ns. Upda Dn Drawin ert. 0.82 2.07 ted Parameters for S 0.42 5.92 0.52 ted Parameters for S 0.42 5.92 0.52 1.818 1.817 1.23 1.8.5 3.4.4 20.1	rflow Weir Not Selected Prt does no te one or ngs show N/A N/A N/A pillway feet feet acres 100 Year 2.277 1.59 23.9 43.0 22.0	500 Year 3.20 3.233		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (M Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Unflow Q (cfs) = Peak Unflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	Weir 2.29 6.00 4.00 5.00 70% 50% culai Orifile, Resvic Zone 3 Restrictor 0.33 24.00 17.70 gular Or Tropezoidal 4.50 50.00 4.00 100 WQCV 0.53 0.200 0.00 0.01 N/A 0.1	Not Selected N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ft (distance below basi inches inches bottom at Stage = 0 ft) <u>2 Year</u> 1.19 0.414 0.414 0.02 0.3 8.0 0.1 N/A	ttom Pipe D at gr match otal other to Unreso 30" dia in bo Half-	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.945 0.944 0.41 6.1 1.80 6.3 1.0	Calculated ght above uction pla onstruction bove inver- inter Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.454 1.453 0.93 14.0 27.6 14.2 1.0 0 9 =	Parameters for Over Zone 3 Weir Pipe inver- ns. Upda Dn Drawin ert. 0.82 2.07 ted Parameters for S 0.42 5.92 0.52 ted Parameters for S 0.42 5.92 0.52 1.818 1.817 1.23 1.8.5 34.4 20.1 1.1 0.4 2.5 3.4 2.07	rflow Weir Not Selected Prt does not te one or ngs show N/A N/A N/A pillway feet feet acres 100 Year 2.277 1.59 23.9 43.0 22.0 0.9 4.4 5 1 1 1	500 Year 3.20 3.233 3.232 2.34 35.2 60.7 37.3 1.1 6.11		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Slope = Horiz. Length of Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (M Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = Spillway Crest Length = Calculated Runoff Volume (acre-ft) = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak Q(cfs) = Peak Outflow Q(cfs) = Peak Outflow Q(cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity thround Norate 1 (frost = Max Velocity thround Norate 1 (frost = Max Velocity thround Norate 1 (frost = 1	Weir 2.29 6.00 4.00 5.00 70% 50% culai Orifile, Resvic Zone 3 Restrictor 0.33 24.00 17.70 sular Orifile, Resvic 0.33 24.00 17.70 sular Or Tropezordall 4.50 50.00 4.00 0.00 0.200 0.200 0.200 0.00 0.1 N/A Plate N/A	Not Selected N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % tlar Orifice) ft (distance below basi inches inches inches bottom at Stage = 0 ft) 0.414 0.414 0.02 0.3 8.0 0.1 N/A Plate N/A	ttom Pipe D at gr match otal other to Unreso 30" dia in bo Half-	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.945 0.944 0.41 6.1 1.8.0 6.3 1.0 Overflow Grate 1 0.3	Calculated ght above uction pla onstruction bove inver- bove inver- bove inver- bove inver- bove inver- calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.454 	Parameters for Over Zone 3 Weir Pipe inver Ins. Upda Don Drawin Parameters for S 0.82 2.07 ted Parameters for S 0.42 5.92 0.52 ted Parameters for S 0.42 5.92 0.52 1.818 1.817 1.23 1.8.5 34.4 2.01 1.1 Overflow Grate 1 0.9	rflow Weir Not Selected Prt does no te one or ngs show N/A N/A N/A pillway feet feet acres 2.277 1.59 2.277 1.59 2.277 1.59 2.20 0.9 Outlet Plate 10	500 Year 3.20 3.233 3.232 2.34 35.2 60.7 37.3 1.1 Spillway 1		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % Debris Clogging % User Input: Outlet Pipe w/ Flow Restriction Plate (Q Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invit = Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Neuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Unflow Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	Weir 2.29 6.00 4.00 5.00 70% 50% Cone 3 Restrictor 0.33 24.00 17.70 gular or Treperordall 4.50 50.00 4.00 17.70 gular or Treperordall 4.50 50.00 4.00 1.00 WQCV 0.200 0.00 0.00 0.01 N/A N/A	Not Selected N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches inches outtom at Stage = 0 ft) <u>2 Year</u> 119 0.414 0.02 0.3 8.0 0.1 N/A Plate N/A N/A	ttom Pipe D at gr match otal other to Unreso 30" dia in bo Half-	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest Spillway Stage a Basin Area a 0.944 0.41 6.1 18.0 0.944 0.41 6.3 1.0 Overflow Grate 1 0.3 N/A	Calculated ght above onstruction pla onstruction bove invo bove invo bo	Parameters for Over Zone 3 Weir character Strategy pipe inversion on Drawin ert. 0.82 2.07 ted Parameters for S 0.42 5.92 0.52 ted Parameters for S 0.42 5.92 0.52 ted Parameters for S 0.42 5.92 0.52 ted Parameters for S 0.42 5.92 0.52 ted Parameters for S 0.42 5.92 0.52	rflow Weir Not Selected ert does no ngs show N/A N/A N/A pillway feet feet acres 2.277 1.59 2.3.9 4.3.0 0.9 Outlet Plate 1 1.0 N/A	Solvear 3.20 3.233 3.232 2.34 35.2 60.7 37.3 1.1 Spillway 1.1 N/A		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Q Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invit = Restrictor Plate Height Above Pipe Invit = Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invit = Spillway End Slopes = Freeboard above Max Water Surface = Rester Surface Above Max Water Surface = One-Hour Rainfall Depth (in) Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Weir 2.29 6.00 4.00 5.00 70% 50% Could Orifie, Respired 24.00 17.70 gular or Treperordall 4.50 50.00 4.00 17.70 gular or Treperordall 4.50 50.00 4.00 1.00 WQCV 0.200 0.200 0.00 0.1 N/A Plate N/A N/A	Not Selected N/A	ft (relative to basin bo feet H:V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches inches bottom at Stage = 0 ft) 2 Year 1.19 0.414 0.02 0.3 8.0 0.1 N/A Plate N/A N/A 61	ttom Pipe D at gr match otal other to Unreso 30" dia in bo Half- 0.672 0.673 0.673 0.673 0.673 0.053 2.3 12.9 2.2 1.0 Overflow Grate 1 0.1 N/A 67	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.945 0.944 0.41 6.1 18.0 6.3 1.0 Overflow Grate 1 0.3 N/A 65	Calculated ght above ouction pla onstruction bove invo bove invo bove invo bove invo bove invo bove invo bove invo calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 1.454 1.453 0.93 14.0 27.6 14.2 1.0 Overflow Grate 1 0.7 N/A 61	Parameters for Over Zone 3 Weir characters for Second con Drawin ert. 0.82 2.07 ted Parameters for S 0.42 5.92 0.52 ted Parameters for S 0.42 5.92 0.52 ted Parameters for S 0.42 5.92 0.52 ted Parameters for S 0.42 5.92 0.52	rflow Weir Not Selected Prt does not te one or ngs show N/A N/A N/A pillway feet feet acres 100 Year 2.277 1.59 2.3.9 4.3.0 0.9 Outlet Plate 1 1.0 N/A 56	500 Year r a feet radians 500 Year 3.20 3.233		
User Input: Overflow Weir (Dropbox) and O Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate IC Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage Spillway Crest Length Spillway Crest Length Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Hourd Staff Restricts Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (drs/acre) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	Weir 2.29 6.00 4.00 5.00 70% 50% Culai Orifile, Respired 24.00 17.70 24.00 17.70 24.00 17.70 24.00 17.70 24.00 1.00 4.50 50.00 4.00 1.00 0.200 0.200 0.00 0.1 N/A Plate N/A 39 40 1.4%	Not Selected N/A ft (relative to basin the feet H:V feet H:V 0.449 0.00 0.01 N/A Plate N/A 64 67 2.33	ft (relative to basin bo feet H-V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches inches obttom at Stage = 0 ft) 2 Year 1.19 0.414 0.02 0.3 8.0 0.1 N/A Plate N/A Plate N/A 61 64 2.12	ttom Pipe D at gr match otal other to Unrese 30" dia in bo Half- 0.672 0.673 0.673 0.673 0.673 0.673 0.673 0.23 12.9 2.2 1.0 Overflow Grate 1 0.1 N/A 67 70 2.5	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest Spillway Stage a Basin Area a 0.944 0.41 6.1 1.75 0.945 0.944 0.41 6.1 1.8.0 6.3 1.0 Overflow Grate 1 0.3 N/A 65 70 2.20	Calculated ght above ruction pla onstruction bove invo bove invo bove invo bove invo bove invo bove invo calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.454 1.453 0.93 14.0 27.6 14.2 1.0 Overflow Grate 1 0.7 N/A 61 68 2.25	Parameters for Over Zone 3 Weir e pipe inversion on Drawin ert. 0.82 2.07 ted Parameters for S 0.42 5.92 0.52 ted Parameters for S 0.42 5.92 0.52 ted Parameters for S 0.42 5.92 0.52 ted Parameters for S 0.42 5.92 0.52	rflow Weir Not Selected ert does no te one or ngs show N/A N/A N/A pillway feet feet acres 100 Year 2.52 2.279 2.277 1.59 23.9 43.0 0.9 Outlet Plate 1 1.0 N/A 56 66 2.00	S00 Year 7 a feet radians 500 Year 3.20 3.233		
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Ed Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Olume (acre-ft) = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Depeak Outlow (of s) Beak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Peak Structure Controlling Flow Max Velocity through Grate 1 (fps) = Maximum Ponding Depth (ft) = Area at Maximum Ponding Depth (ft) =	With control of the second s	Not Selected N/A ft (relative to basin b feet H:V feet 1.07 0.450 0.00 0.00 0.00 0.01 N/A Plate N/A 64 67 2.23 0.34	ft (relative to basin bo feet H-V (enter zero for fl feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches inches inches obttom at Stage = 0 ft) 2 Year 1.19 0.414 0.02 0.3 8.0 0.1 N/A Plate N/A Plate N/A 61 61 64 2.13 0.33	ttom Pipe D at gr match otal other to Unrese 30" dia in bo Half- 0 5 Year 1.50 0.673 0.673 0.673 0.673 0.673 0.055 2.3 12.9 2.2 1.0 Overflow Grate 1 0.1 N/A 67 70 2.61 0.35	ia and hei the constr o match. olved. Co a w/ 15" a Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.945 0.944 0.41 6.1 1.80 6.3 1.0 Overflow Grate 1 0.3 N/A 65 70 2.89 0.37	Calculated ght above ruction pla onstruction bove invo bove invo bove invo bove invo bove invo bove invo calcula Design Flow Depth= t Top of Freeboard = 25 Year 2.00 1.454 1.453 0.93 14.0 27.6 14.2 1.0 Overflow Grate 1 0.7 N/A 61 68 3.25 0.38	Parameters for Over Zone 3 Weir pipe inver on Drawin ent. 0.82 2.07 ted Parameters for S 0.42 5.92 0.52 ted Parameters for S 0.42 5.92 0.52 50 Year 2.25 1.818 1.817 1.23 1.8.5 34.4 20.1 1.1 Overflow Grate 1 0.9 N/A 59 67 3.44 0.39	rflow Weir Not Selected erf does no te one or ngs show N/A N/A N/A N/A pillway feet feet acres 100 Year 2.52 2.279 2.279 2.279 2.279 0.159 2.3.9 4.3.0 22.0 0.9 Outlet Plate 1 1.0 N/A 56 66 3.88 0.41	500 Year r a feet radians 500 Year 3.20 3.203 3.203 3.233 3.233 3.233 3.233 3.233 3.233 3.233 3.233 3.233 3.233 3.233 3.20 3.233 3.20 3.233 1.1 Spillway 1.1 N/A 51 64 4.69 0.45		

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

	Storm Inflow H	ydrographs	UD-Dete	ention, Versio	n <mark>3.07 (Febr</mark> ua	ry 2017)				
	The user can o	verride the calcu	lated inflow hyd	drographs from t	this workbook w	ith inflow hydrog	raphs develope	d in a separate p	rogram.	
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WOCV [cfs]	FURV [cfs]	2 Vear [cfs]	5 Vear [cfs]	10 Year [cfs]	25 Vear [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
	0:00:00	WQCV [cl3]	EORV [ei3]	2 rear [ers]	5 rear [ers]	10 real [el3]	25 Tear [e15]	So rear [el3]		500 (cai [ci3]
4.33 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:04:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:08:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:12:59	0.18	0.39	0.36	0.57	0.79	1.20	1.48	1.84	2.56
1.154	0:17:19	0.47	1.04	0.96	1.54	2.14	3.26	4.05	5.04	7.07
	0:21:39	1.21	2.66	2.46	3.95	5.50	8.36	10.39	12.94	18.14
	0:25:59	3.32	7.33	6.76	10.85	15.10	22.97	28.54	35.51	49.77
	0:30:19	3.88	8.65	7.97	12.88	18.02	27.59	34.41	43.00	60.73
	0:34:38	3.69	8.25	7.60	12.29	17.22	26.40	32.95	41.20	58.28
	0:38:58	3.36	7.51	6.92	11.19	15.67	24.03	29.99	37.50	53.04
	0:43:18	2.98	6.69	6.16	10.00	14.03	21.54	26.91	33.69	47.73
	0:47:38	2.55	5.77	5.31	8.63	12.14	18.69	23.38	29.32	41.67
	0:51:58	2.23	5.03	4.63	7.52	10.56	16.25	20.30	25.50	36.33
	0:56:17	2.02	4.55	4.19	6.82	9.58	14.73	18.42	23.11	32.85
	1:00:37	1.64	3.74	3.44	5.63	7.93	12.25	15.35	19.28	27.47
	1:04:57	1.33	3.05	2.80	4.60	6.50	10.08	12.65	15.92	22.73
	1:09:17	1.00	2.33	2.14	3.54	5.04	7.86	9.90	12.50	17.94
	1:13:37	0.73	1.73	1.58	2.64	3.77	5.95	7.53	9.55	13.80
	1:17:56	0.54	1.26	1.15	1.91	2.73	4.35	5.53	7.05	10.26
	1:22:16	0.42	0.98	0.90	1.48	2.10	3.32	4.20	5.34	7.72
	1:26:36	0.35	0.80	0.74	1.22	1.73	2.71	3.42	4.33	6.24
	1:30:56	0.30	0.68	0.63	1.03	1.46	2.29	2.89	3.66	5.25
	1:35:16	0.26	0.60	0.55	0.91	1.28	2.01	2.53	3.19	4.58
	1:39:35	0.24	0.54	0.50	0.82	1.16	1.80	2.27	2.86	4.10
	1.45.55	0.22	0.50	0.46	0.75	1.06	1.66	2.08	2.63	3.76
	1.46.15	0.16	0.37	0.34	0.55	0.78	1.22	1.54	1.94	2.79
	1.52.55	0.12	0.27	0.25	0.41	0.57	0.89	1.12	1.41	2.02
	2:01:14	0.09	0.20	0.18	0.30	0.42	0.66	0.62	0.77	1.49
	2:05:34	0.08	0.14	0.13	0.22	0.31	0.48	0.61	0.77	0.81
	2:09:54	0.07	0.10	0.03	0.10	0.22	0.35	0.21	0.30	0.59
	2:05:54	0.03	0.07	0.07	0.11	0.18	0.25	0.31	0.40	0.58
	2:18:34	0.02	0.03	0.03	0.08	0.02	0.13	0.25	0.29	0.42
	2:22:53	0.01	0.03	0.03	0.03	0.05	0.12	0.10	0.13	0.23
	2:27:13	0.00	0.01	0.02	0.02	0.02	0.04	0.05	0.07	0.10
	2:31:33	0.00	0.00	0.00	0.02	0.02	0.02	0.02	0.03	0.05
	2:35:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01
	2:40:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:44:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:48:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:53:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:57:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:01:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:06:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:14:51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:19:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:23:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:27:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:32:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:36:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:49:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:58:09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:02:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:06:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:11:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:19:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4.24:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:32:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:37:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:41:27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:54:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:58:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:07:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:11:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft^2]	[acres]	[ft^3]	[ac-ft]	[cfs]	
-							For best results, include the
							changes (e.g. ISV and Floor)
							from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice,
							overflow grate, and spillway, where applicable)
							where applicable).

The Glen at Widefield Filing No. 9 Detention Volume Calculations

Elevation	Area (A)	Avg. Area	Volume	Depth	Cumulativ	e Volume	Elev.
5666	26sf			0.0 ft	0cf	0.00ac-ft	5666
5666.67	26sf	26sf	17cf	0.7 ft	17cf	0.00ac-ft	5666.67
5667	12,400sf	6,213sf	2,050cf	1.0 ft	2,068cf	0.05ac-ft	5667
5668	14,300sf	13,350sf	13,350cf	2.0 ft	15,418cf	0.35ac-ft	5668
5669	16,200sf	15,250sf	15,250cf	3.0 ft	30,668cf	0.70ac-ft	5669
5670	18,300sf	17,250sf	17,250cf	4.0 ft	47,918cf	1.10ac-ft	5670
5671	20,450sf	19,375sf	19,375cf	5.0 ft	67,293cf	1.54ac-ft	5671
5672	22,700sf	21,575sf	21,575cf	6.0 ft	88,868cf	2.04ac-ft	5672
Average End	Area Formula	a: V = (A1+A2)/2 x Elev Diff	erence			
				WQCV =	8,581 cf	0.20 ac-ft	5667.49 ft
		l		EURV =	19,689 cf	0.45 ac-ft	5668.28 ft
		l		100yr Volume =	45,085 cf	1.04 ac-ft	5669.84 ft
		l	100yr Volu	me + 1/2 WQCV =	49,441 cf	1.14 ac-ft	5670.08 ft
				Ľ	Detention Freeb	ooard Depth =	0.42 ft
				Spillway Crest =	57,605 cf	1.32 ac-ft	5670.50 ft
		1	Spillway 10	00yr Flow Depth =	67,293 cf	1.54 ac-ft	5671.00 ft

Detention Basin 'A' Earthwork

Emergency Spillway Calculation

Detention Area	100-yr Flow	120% 100yr Flow	Water Surf Elev	Crest Elev	Crest Length	d (rad)	Flow Depth	Calc'd Flow
А	44.8 cfs	53.8 cfs	5,671.00	5,670.5	50.0 ft	2.63	0.50 ft	55.1 cfs

Top of Embankment =

Weir Equation:

 $Q = CLH^{1.5} + CH^{5/2} \tan (d/2)$

C = Weir coefficient (dimensionless), C = 3.0 (most cases) C = 3.0 H = Depth of flow over the crest, in ft

Spillway Freeboard Depth =

2.04 ac-ft

88,868 cf

1.00 ft

5672.00 ft

d = Angle of triangle weir portion (radians)

d = 2.63 radians for 4:1 side slope

L = Length of weir at Crest, in ft. Not including sideslopes.

d = 2.49 radians for 3:1 side slope

Outlet Struct Capacity = Inlet Capacity Calculation at the depth to the spillway crest plus flow depth.

Trickle Channel Capacity Calculation

			Channel Side	e Slope									Channel
	Design				Flow	Channel	Manning	Тор	Channel	Wetted	Hydraulic	Flow	Flow
Description	Flow	Bottom Width	Left	Right	Depth	Slope	"n"	Width	Area	Perimeter	Radius	Velocity	Capacity
Trickle Channel	1.5 cfs	1.3 ft	0:1	0:1	0.50 ft	0.5%	0.015	1.3 ft	0.63 sf	2.3 ft	0.28 ft	3.0 ft/sec	1.9 cfs

Equations:

Area (A) = $b(d)+zd^2$ b = width d = depth Perimeter (P) = $b+2d^{*}(1+z^{2})^{0.5}$ z = side slope Hydraulic Radius = A/P $\begin{array}{l} \mbox{Velocity} = (1.49/n) R_n^{2/3} S^{1/2} \\ \mbox{S} = \mbox{Slope of the channel} \\ \mbox{n} = \mbox{Manning's number} \\ \mbox{R}_n = \mbox{Hydraulic Radius (Reynold's Number)} \\ \mbox{Flow} = (1.49/n) A R_n^{2/3} S^{1/2} \end{array}$

Outlet Structure Major Storm Grate/Box Calculation

Detention Area	100-yr Flow	120% 100yr Flow	Water Surf Elev	Crest Elev	Calc'd Crest Length	d (rad)	Flow Depth	Calc'd Flow	Crest Length Used*
А	44.8 cfs	53.8 cfs	71.00	70.5	0.0 ft	2.63	0.50 ft	2.0 cfs	8.0 ft

Weir Equation:

 $Q = CLH^{1.5} + CH^{5/2} tan (d/2)$

C = Weir coefficient (dimensionless), C = 3.0 (most cases)

C = 3.0 L = Length of weir at Crest, in ft. Not including sideslopes.

Outlet Struct Capacity = Inlet Capacity Calculation at the depth to the spillway crest plus flow depth.

H = Depth of flow over the crest, in ft
d = Angle of triangle weir portion (radians)
d = 2.63 radians for 4:1 side slope
d = 2.49 radians for 3:1 side slope

*Weir calculation shows that sides alone have enough capacity to convey 100-yr flow, but bars for grate will result in a longer required weir length: 32 bars x 1/4" thick = 8 in. or 0.67 ft. So, 0.0 ft (calc'd crest length) + 0.67 ft (additional length needed for bars) = 0.67 ft. Then apply a 50% debris clogging factor: 0.67 ft x 2 = 1.33 ft. However, 1.33 ft is an impractical structure width, so use 4.0 ft as a minimum crest length. Now check the maximum velocity through the grate using a 4.0 ft crest length:

Check Major Storm Grate Conditions

Maximum velocity through grate = 2.0 ft/sec $Q_{100} = 42.9 \text{ cfs}$ Open area of grate required = $Q_{100} / V_{max} = 42.9 \text{ cfs} / 2.0 \text{ ft/sec} = 21.45 \text{ sf}$ Grate has an 70% open area (area of bars = 30% of total grate area) Total grate area required = 21.45 sf / 0.70 = <u>30.6 sf</u> Actual outlet structure opening for grate (from weir calculation) = 4 ft x 4 ft = **16 sf** (16 sf < 30.3 sf, so 4' crest length is too short) 30.6 sf / 4 ft = 7.7 ft min. crest length, use **8.0 ft** Check velocity through grate using outlet structure opening of 8.0 ft x 4.0 ft = 32 sf: Actual velocity through grate = 42.9 cfs / (32 sf x 0.70) = **1.9 ft/sec** (1.9 ft/sec < 2.0 ft/sec, okay)

Therefore, use **8.0 ft** for crest length.

The Glen at Widefield Filing No. 8 Drainage Structure Calculations

Grate	Safety Grate	Type of Grate	R	Value	Outlet Diameter or Min.	A _{ot} Total Outlet/	A _t /A _{ot}	Minimum Gross	
	of frash Rack	(see below)	Table	User Input	Dimension	Orifice Area		Grate Area	
A1	Trash	WS	0.60		1.2-in	0.0229sf	34.39	1.31sf	
A2	Safety	Other	N/A	0.70	17.7-in	2.48sf	8.58	30.38sf	

At / Aot = Ratio of Total Grate Open Area to Total Outlet Area (taken from UDSCM Fig OS-1: Trash Rack Sizing)

A_t = Total Grate Open Area (R-Value x Grate Area) (Example: 1'Wx6'H Well Screen=1'x6'x0.60=3.6ft²)

 A_{ot} = Total Outlet Area (Example: If orifice plate includes 3-1"dia holes A_{ot} =2.356in²=0.016ft²)

Safety Grate: $A_t / A_{ot} = 77e^{-0.124D}$ -- (Outlet Diameter or Minimum Dimension less than 24-inches)

Trash Rack: $A_t / A_{ot} = 38.5e^{-0.095D}$ (Outlet Diameter or Minimum Dimension less than 24-inches)

Outlet Diameter is orifice plate hole size of pipe out of structure

Minimum Gross Grate Area: Calculated from outside dimension of grate

R Value = Net Open Area / Gross Rack Area

Type of Grate	Abbreviation	R-Value
Bar Grate 2" O.C. Cross Rods	BG 2	0.71
Bar Grate 4" O.C. Cross Rods	BG 4	0.77
Well Screen	WS	0.60
Other	Other	

Grate A1: 1.31 sf / 1.86' high = 0.70 ft (8.5 in). Use 15" wide opening to match opening needed for WQ plate.

<u>Grate A2</u>: 30.38 sf / **5' wide opening** = 6.08 ft (6' - 1") min. for length. However, use **6'-1" length** to satisfy maximum velocity through grate requirement (see Major Storm Grate Conditions calculations).

Date Printed: 12/15/2017

Safety

The Glen at Widefield Filing No. 8 Detention Calculations

Presedementation / Forebay Sizing

			Total									Calculated
			Detention			Required				Required	Discharge	Opening
Forebay	100 Yr	Detention	Forebay Vol	Tributary	% of Total	Forebay	Forebay	Forebay	Forebay	Forebay	Design Flow	Width
Location	Flow	WQCV	(3% WQCV)	Area	Trib Area	Volume	Area	Depth	Volume	Volume	(2% 100yr)	(1" min)
Det A	44.8cfs	8,712 cf	261cf	15.05ac	100.0%	261cf	180sf	1.50-ft	270 cf	261cf	0.90 cfs	5.6-inch

Opening Width Equation for Rectangular Opening

L = Q / (CH^{1.5}) x 12 + 0.2xH (UD-BMP Spreadsheet -- EDB tab)

C = 3.0

Forebay Overflow Calculation

Description	Water Surf Elev	Crest Elev	Crest Length	Flow Depth	Calc'd Flow
Det A	69.09	68.4	8.3 ft	0.67 ft	13.6 cfs

Weir Equation:

 $Q = CLH^{1.5}$

C = Weir coefficient (dimensionless), C = 3.0 (most cases)

L = Length of weir at Crest, in ft. Not including sideslopes.

C =	3.0

APPENDIX B.1 Supporting Detention Basin Tables and Figures

beneficial if a project is being phased or when adequate land is not available to combine all of the elements in one facility.

4.1.1 Flood Control Volume

UDFCD has developed empirical equations for estimating the total required storage volume that can be applied to on-site, multi-level ponds or to on-site or sub-regional FSD ponds. The empirical equations include:

$V_i = K_i A$	Equation 13-1
---------------	---------------

For NRCS soil types B, C and D.

$\mathbf{K}_{100} = (1.78 \cdot \mathbf{I} - 0.002 \mathbf{I}^2 - 3.56) /900$	Equation 13-2
$\mathbf{K}_{5} = (0.77 \cdot \mathbf{I} - 2.65) / 1,000$	Equation 13-3

For NRCS soil Type A:

 $K_{100A} = (-0.00005501 \cdot I^2 + 0.030148 \cdot I - 0.12) / 12$ Equation 13-4

Where:

 V_i = required volume, with i= year storm, acre-feet K_i = empirical volume coefficient, with i= year storm

i = return period for storm event, years

I = fully developed tributary basin imperviousness, %

A = tributary drainage basin area, acres

These equations can be applied to calculate the total detention storage for drainage basins up to about 130 acres. When more than one soil type or land use is present in the drainage basin, the storage volume must be weighted by the proportionate areas of each soil type and/or land use. For FSDs, the EURV need not be added to this volume. See UDFCD Manual Volume 2, Storage Chapter for a full description of this method.

4.1.2 EURV

UDFCD has developed empirical equations for estimating the EURV portion of the storage volume that can be applied to on-site, sub-regional or regional FSD ponds.

The empirical equations are as follows:

For NRCS Soil Group A:

 $EURV_A = 1.1 (2.0491(I/100) - 0.1113)$

For NRCS Soil Group B:

 $EURV_B = 1.1 (1.2846(I/100) - 0.0461)$ Equation 13-6

Equation 13-5

For NRCS Soil Group C/D:

$$EURV_{CD} = 1.1 (1.1381(I/100) - 0.0339)$$
 Equation 13-7

Where:

 $EURV_{K} = Excess$ Urban Runoff Volume in watershed inches, K=A, B or C/D soil group

I = drainage basin imperviousness, %

These equations apply to all FSDs and the EURV need not be added to the flood control volume or to the WQCV. When more than one soil type or land use is present in the drainage basin, the EURV must be weighted by the proportionate areas of each soil type and/or land use. If hydrologic routing is used to size the flood control volume, the EURV remains the same as calculated by these equations and is included in the pond's stage/storage configuration for modeling.

4.1.3 Initial Surcharge Volume

The initial surcharge volume is at least 0.3 percent of the WQCV and should be 4- to 12-inches deep. The initial surcharge volume is included in the WQCV and does not increase the required total storage volume.

4.1.4 Design Worksheets

The Full Spectrum Worksheet in the UD-Detention Spreadsheet performs all of these calculations for the standard designs. For multi-level ponds, the flood control volumes are calculated for the two design storm frequencies: the major storm and the minor storm.

4.2 Allowable Release Rates

Allowable release rates from detention facilities vary with the type of facility and with the storage volume type, as follows:

- **Flood Storage Volume**: The flood storage release rates are determined by the allowable release rates that are intended to approximate storm event runoff rates from the undeveloped upstream drainage basin.
- **EURV**: The EURV release rate is determined based on a72-hour drain time. The purpose of this slow release rate is to mitigate the impacts of increased runoff volumes due to development by reducing the potential for downstream erosion.
- **WQCV**: The WQCV release rate is determined based on a 40-hour drain time for extended detention basins. The purpose of this slow release rate is to provide time for pollutants to settle, The WQCV is incorporated into the EURV and works with it to release less erosive flows. The method for determining this design rate is described in Chapter 3 of Volume 2 of this Manual.

4.2.1 Flood Storage Release Rates

Allowable releases rates from the flood storage element of detention may be based on generalized average unit runoff rates or estimates of pre-development runoff rates. Allowable unit release rates (cfs/ac) may be used for any type of detention, however, when a hydrograph routing method is applied (for regional or

Safety Grates

Safety grates are intended to keep people and animals from inadvertently entering a storm drain. They are sometimes required even when debris entering a storm drain is not a concern. The grate on top of the outlet drop box is considered a safety grate and should be designed accordingly. The danger associated with outlet structures is the potential associated with pinning a person or animal to unexposed outlet pipe or grate. See the *Culverts and Bridges* chapter of Volume 2 of this manual for design criteria related to safety grates.

Figure OS-1. Trash Rack Sizing

T-12	

	Steel plate thickness (in inches) based on design depth and span of plate										
Head (feet)											
		3	4	5	6	7	8	9	10	11	12
(1	0.1875	0.1875	0.1875	0.1875	0.1875	0.1875	0.1875	0.1875	0.1875	0.1875
fee	2	0.1875	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500
an (3	0.2500	0.2500	0.3750	0.3750	0.3750	0.3750	0.3750	0.3750	0.3750	0.5000
$\mathbf{S}\mathbf{p}$	4	0.2500	0.3750	0.3750	0.3750	0.3750	0.5000	0.5000	0.5000	0.5000	0.5000

Table OS-2	. Thickness	of steel	water	quality	plate
------------	-------------	----------	-------	---------	-------

Figure 13-9. Concept for Integral Forebay at Pipe Outfall

PLAN VIEW

Figure 13-12c. Emergency Spillway Protection

Figure 13-12d. Riprap Types for Emergency Spillway Protection

Hydraulic Calculations will be reviewed with the resubmittal since the proposed condition hydrologic calculations are missing. Unresolved. Pipe Sizing Calculations included were for Filing 8.

APPENDIX C

Hydraulic Calculations

Filing 8. Inlet Summary and Calculations Street Capacity Calculations – UD Inlet Inlet Capacity Calculations – UD Inlet Pipe Sizing Calculations UDSewer Plan Schematic UDSewer Input and Output Tables: 5-year and 100-year Storm Events Pipe Outlet Erosion Protection Calculations Open Channel Calculations

3

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =			
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =			inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =			
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =			ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =			ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =			
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =			
		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =			cfs
Capture Percentage = Q _a /Q _o =	C% =			%

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =			
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =			inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =			
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =			ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =			ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =			
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =			
		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =			cfs
Capture Percentage = Q _a /Q _o =	C% =			%

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =			
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =			inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =			
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =			ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =			ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =			
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =			
		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =			cfs
Capture Percentage = Q _a /Q _o =	C% =			%

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =			
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =			inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =			
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =			ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =			ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =			
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =			
		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =			cfs
Capture Percentage = Q _a /Q _o =	C% =			%

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =			
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =			inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =			
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =			ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =			ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =			
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =			
		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =			cfs
Capture Percentage = Q _a /Q _o =	C% =			%

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =			
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =			inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =			
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =			ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =			ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =			
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =			
		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =			cfs
Capture Percentage = Q _a /Q _o =	C% =			%

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =			
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =			inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =			
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =			ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =			ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =			
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =			
		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =			cfs
Capture Percentage = Q _a /Q _o =	C% =			%

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Decign Information (Input)			MINOR	MAIOR	
Type of inlet	CDOT Type R Curb Opening	Tupe -			1
acal Depression (additional to continuous dutter depression 'a' from above)		aloosi =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)		No =	1	1	mones
Water Depth at Flowline (outside of local depression)		Ponding Depth =	6.0	10.0	inches
Grate Information		· · · · · · · · · · · · · · · · · · ·	MINOR	MAJOR	Override Depths
Length of a Unit Grate		L _o (G) =	N/A	N/A	feet
Width of a Unit Grate		W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)		A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)		C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)		C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)		C _o (G) =	N/A	N/A	
Curb Opening Information			MINOR	MAJOR	-
Length of a Unit Curb Opening		L _o (C) =	15.00	15.00	feet
Height of Vertical Curb Opening in Inches		H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches		H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)		Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)		W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)		C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)		C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)		C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)			MINOR	MAJOR	
Depth for Grate Midwidth		d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation		d _{Curb} =	0.33	0.67	ft
Combination Inlet Performance Reduction Factor for Long Inlets		RF _{Combination} =	0.57	0.94	
Curb Opening Performance Reduction Factor for Long Inlets		RF _{Curb} =	0.79	0.97	
Grated Inlet Performance Reduction Factor for Long Inlets		RF _{Grate} =	N/A	N/A	
			MINOR	MAJOR	
Total Inlet Interception Capa	Total Inlet Interception Capacity (assumes clogged condition)		9.7	32.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)		Q PEAK REQUIRED =	6.0	22.9	cfs

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)			MINOR	MAIOR	
Type of Inlet	CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	٦
Local Depression (additional to continuous gutter depression 'a' from above)		a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)		No =	1	1	
Water Depth at Flowline (outside of local depression)		Ponding Depth =	6.0	10.8	inches
Grate Information			MINOR	MAJOR	Override Depths
Length of a Unit Grate		L _o (G) =	N/A	N/A	feet
Width of a Unit Grate		W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)		A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)		C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)		C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)		C _o (G) =	N/A	N/A	
Curb Opening Information			MINOR	MAJOR	-
Length of a Unit Curb Opening		L _o (C) =	15.00	15.00	feet
Height of Vertical Curb Opening in Inches		H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches		H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)		Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)		W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)		C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)		C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)		C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)			MINOR	MAJOR	
Depth for Grate Midwidth		d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation		d _{Curb} =	0.33	0.73	ft
Combination Inlet Performance Reduction Factor for Long Inlets		RF _{Combination} =	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets		RF _{Curb} =	0.79	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets		RF _{Grate} =	N/A	N/A	
			MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)		Q _a =	9.7	35.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)		Q PEAK REQUIRED =	9.3	22.9	cfs
The Glen at Widefield Filing No. 9 Pipe Diameter Calculations

Pipe #	5yr Flow	100yr Flow	Design Flow	Contributing Flows	Manning 'n'	Pipe Slope	Calculated Pipe Diameter	Pipe Diameter	Minimum Slope of Pipe	A (sf)	Wp (ft)	Rh (ft)	Full Pipe Flow Velocity	Head above Pipe Flowline	Н	Pipe Inlet Control Capacity	Mannings Pipe Capacity	Capacity Check	Notes
Outfall	14.8 cfs	44.8 cfs	44.8 cfs	Entire Area	0.013	1.2%	30-inch	30-inch	1.19%	4.91 sf	7.9 ft	0.6 ft	9.2 ft/sec	4.4 ft	3.1 ft 	45.1 cfs	45.1 cfs	ОК	

Equations:

Pipe Dia=((2.16Qn)/(S^{0.5}))^{0.375}

- Q = Discharge in cubic feet per second
- n = Manning's roughness coefficient
- RCP=0.013, CMP=0.024, HDPE (smooth)=0.012
- S = Slope of the pipe
- R_h = Hydraulic Radius

- Flow Velocity = $(1.49/n)R_h^{2/3}S^{1/2}$ Pipe Capacity = $(1.49/n)AR_h^{2/3}S^{1/2}$ A = Cross-sectional area of pipe A=p ($D^2/4$) D = Inside Diameter of Pipe
- $$\begin{split} R_h &= A_w/W_p \\ A_w &= p(d^2/4) \\ A_w &= Water \mbox{ Cross Sectional Area} \\ d &= Flow \mbox{ Depth Within Pipe} \\ W_p &= pd \mbox{ (For Capacity Calculation)} \\ W_p &= Wetted \mbox{ Perimeter of Pipe} \end{split}$$

Orifice Equation:

 $Q = CA(2gH)^{0.5}$

C = Orifice coefficient (dimensionless)

C = 0.65

A = Cross-sectional area of opening, in sf

g = Gravitational accel constant, 32.2 ft/sec²

H = Head above centerline of pipe, ft

The Glen at Widefield Filing No. 8 K Pipe Diameter Calculations

Provide the pipe sizing calculation for the Filing 9 system.

												Update	the drain	age	
Pipe #	5yr	100yr	Design	Contributing Flows	Manning	Pipe	Calculated	Pipe	Minimum Slope of	Full Pipe Flow	Head ab Pipe	map to i	nclude th	e Mannings	Capacity
F -	Flow	Flow	Flow		'n'	Slope	Pipe Diameter	Diameter ²	Pipe	Velocity	Flowlin	pipe ID.	Capacity	Pipe Capacity	Check
S1	3.8 cfs	7.7 cfs	3.8 cfs	Inlet 1	0.013	1.0%	12-inch	18-inch	0.13%	6.0 ft/sec	3.3 ft	2.5 ft	14.6 cfs	10.5 cfs	OK
S2	4.9 cfs	9.3 cfs	4.9 cfs	Inlet 2	0.013	1.87%	12-inch	18-inch	0.22%	8.2 ft/sec	3.3 ft	2.5 ft	14.6 cfs	14.4 cfs	OK
S3	8.2 cfs	17.6 cfs	8.2 cfs	Inlet 2,3	0.013	0.83%	17-inch	24-inch	0.13%	6.6 ft/sec	3.3 ft	2.3 ft	24.6 cfs	20.7 cfs	OK
S4	2.0 cfs	3.5 cfs	2.0 cfs	Inlet 4	0.013	2.99%	8-inch	18-inch	0.04%	10.3 ft/sec	3.3 ft	2.5 ft	14.6 cfs	18.2 cfs	OK
S5	14.0 cfs	28.8 cfs	14.0 cfs	Inlets 1,2,3,4	0.013	1.89%	18-inch	30-inch	0.12%	11.5 ft/sec	3.3 ft	2.0 ft	36.2 cfs	56.5 cfs	OK
S6	3.2 cfs	7.3 cfs	3.2 cfs	Inlet 5	0.013	0.67%	12-inch	18-inch	0.09%	4.9 ft/sec	3.3 ft	2.5 ft	14.6 cfs	8.6 cfs	OK
S7	17.2 cfs	36.1 cfs	17.2 cfs	Inlets 1,2,3,4,5	0.013	3.5%	17-inch	30-inch	0.18%	15.7 ft/sec	4.4 ft	3.2 ft	45.4 cfs	76.9 cfs	OK
S8	3.5 cfs	13.1 cfs	3.5 cfs	Inlet 6	0.013	1.95%	11-inch	18-inch	0.11%	8.3 ft/sec	3.3 ft	2.5 ft	14.6 cfs	14.7 cfs	OK
S9	20.7 cfs	49.2 cfs	20.7 cfs	Inlets 1 through 6	0.013	2.95%	19-inch	30-inch	0.25%	14.4 ft/sec	6.6 ft	5.4 ft	59.2 cfs	70.6 cfs	OK
S10	3.7 cfs	7.5 cfs	3.7 cfs	Inlet 7	0.013	0.7%	13-inch	18-inch	0.12%	5.0 ft/sec	3.3 ft	2.5 ft	14.6 cfs	8.8 cfs	OK
S11	1.4 cfs	13.1 cfs	1.4 cfs	Inlet 8	0.013	4.53%	6-inch	18-inch	0.02%	12.7 ft/sec	3.3 ft	2.5 ft	14.6 cfs	22.4 cfs	OK
S12	6.0 cfs	21.6 cfs	6.0 cfs	Inlets 8,9	0.013	0.48%	17-inch	24-inch	0.07%	5.0 ft/sec	3.8 ft	2.8 ft	27.4 cfs	15.7 cfs	OK
S13	9.1 cfs	28.3 cfs	9.1 cfs	Inlets 8,9,10	0.013	0.84%	18-inch	30-inch	0.05%	7.7 ft/sec	3.3 ft	2.0 ft	36.2 cfs	37.7 cfs	OK
S14	33.5 cfs	85.0 cfs	33.5 cfs	Inlets 1 through 10	0.013	0.5%	32-inch	36-inch	0.25%	6.7 ft/sec	4.4 ft	2.9 ft	62.8 cfs	47.3 cfs	OK
S15	3.1 cfs	17.9 cfs	17.9 cfs	Inlet 11	0.013	1.0%	22-inch	24-inch	0.63%	7.2 ft/sec	3.3 ft	2.3 ft	24.6 cfs	22.7 cfs	OK
S16	38.8 cfs	117.2 cfs	117.2 cfs	Inlets 1 through 12	0.013	1.0%	44-inch	54-inch	0.36%	12.4 ft/sec	5.5 ft	3.3 ft	149.6 cfs	197.2 cfs	ОК

Equations:

Pipe Dia=((2.16Qn)/(S^{0.5}))^{0.375}

Q = Discharge in cubic feet per second

n = Manning's roughness coefficient

RCP=0.013, CMP=0.024, HDPE (smooth)=0.012

S = Slope of the pipe

R_h = Hydraulic Radius

Flow Velocity = $(1.49/n)R_h^{2/3} S^{1/2}$ Pipe Capacity = $(1.49/n)AR_h^{2/3} S^{1/2}$ A = Cross-sectional area of pipe A=p (D²/4) D = Inside Diameter of Pipe

$R_h = A_w / W_p$
$A_{\rm w} = p(d^2/4)$
A _w = Water Cross Sectional Area
d = Flow Depth Within Pipe
W _p = pd (For Capacity Calculation)
W _p =Wetted Perimeter of Pipe

Orifice Equation:

$Q = CA(2gH)^{0.5}$

C = Orifice coefficient (dimensionless)C = 0.65

A = Cross-sectional area of opening, in sf

g = Gravitational accel constant, 32.2 ft/sec²

H = Head above centerline of pipe, ft

¹ 5-year and 100-year flows assume a no-clogging condition for inlet.

² 43" x 68" HERCP (54" dia. equivalent) used for Pipe # S16.

The Glen at Widefield Filing No. 8 Storm Sewer System UDSewer Input Data

Manhole	Manhole	Ground	Outgoing	Number of	First	Second	Third	Fourth
ID	Name	Elevation	Sewer ID	Incoming	Incoming	Incoming	Incoming	Incoming
Number			Number	Sewers	Sewer ID	Sewer ID	Sewer ID	Sewer ID
		ft						
Outfall	Outfall	5664.4		1	1			
1	S16	5666.6	Outfall	2	2	4		
2	S14-3	5667.5	1	1	3			
3	S14-2	5668.2	2	1	24			
4	S15	5666.6	1	0				
5	S9	5681.81	24	2	6	18		
6	S7	5683.08	5	2	7	10		
7	S6-3	5684.21	6	1	8			
8	S6-2	5685.42	7	1	9			
9	S6-1	5684.97	8	0				
10	S5	5683.62	6	3	11	15	17	
11	S1-4	5685.9	10	1	12			
12	S1-3	5686.7	11	1	13			
13	S1-2	5690.8	12	1	14			
14	S1-1	5690.38	13	0				
15	S3	5683.11	10	1	16			
16	S2	5684.25	15	0				
17	S4	5683.11	10	0				
18	S8	5681.29	5	0				
19	S10-2	5673.19	24	1	20			
20	S10-1	5672.81	19	0				
21	S13	5672.69	24	1	22			
22	S12	5672.69	21	1	23			
23	S11	5673.81	22	0				
24	S14-1	5672.4	3	3	5	19	21	

The Glen at Widefield Filing No. 8 Storm Sewer System UDSewer Input Data

Manhole	Manhole	Known	Known	Basin	Design	5-yr	Overland	Overland	Gutter	Gutter
ID	Name	5 year	100 year	Area	Runoff	Runoff	Flow	Flow	Flow	Flow
Number		Flow	Flow		Coeff	Coef	Length	Slope	Length	Velocity
		cfs	cfs	acre			ft	percent	ft	fps
Outfall	Outfall	33.4	97							
1	S16	33.4	97							
2	S14-3	27.4	62.6							
3	S14-2	27.4	62.6							
4	S15	4.1	17.9							
5	S9	17.6	38.8							
6	S7	14.1	30							
7	S6-3	2.2	3.9							
8	S6-2	2.2	3.9							
9	S6-1	2.2	3.9							
10	S5	11.9	26.1							
11	S1-4	3.2	7							
12	S1-3	3.2	7							
13	S1-2	3.2	7							
14	S1-1	3.2	7							
15	S3	6.9	15.9							
16	S2	4.1	8.5							
17	S4	1.8	3.2							
18	S8	3.5	8.8							
19	S10-2	2.5	4							
20	S10-1	2.5	4							
21	S13	7.3	19.8							
22	S12	5.1	16.1							
23	S11	1	8.2							
24	S14-1	27.4	62.6							

The Glen at Widefield Filing No. 8 Storm Sewer System UDSewer Input Data

Sewer	Sewer	Length	Slope	Upstream	Downstream	Manning's	Bend	Lateral	Shape	Existing	Sewer
ID	Name			Invert	Invert	Ν	Loss	Loss	1,2 or 3	Dia (inch)	
Number				Elevation	Elevation		Coef	Coef		Rise (inch)	Span (inch)
		ft	percent	ft	ft					Height (ft)	Width (Ft)
1	S16	45	1	5661.35	5660.9	0.013	0	0	1	43	68
2	S14-3	60	0.5	5662.2	5661.9	0.013	0.84	0.26	1	36	
3	S14-2	60	0.5	5662.6	5662.3	0.013	0.7	1	1	36	
4	S15	41.5	1	5663.37	5662.95	0.013	0.03	0	1	24	
5	S9	272.3	2.95	5675.61	5667.58	0.013	0.03	0.25	1	30	
6	S7	36.9	3.5	5678.08	5676.79	0.013	0.03	0.25	1	30	
7	S6-3	102.4	1	5680.2	5679.18	0.013	1	0	1	18	
8	S6-2	114.5	1	5681.44	5680.29	0.013	0.04	0	1	18	
9	S6-1	28.5	0.67	5681.73	5681.54	0.013	0.7	0	1	18	
10	S5	50.2	1.89	5679.13	5678.18	0.013	1	0.25	1	30	
11	S1-4	183.2	1	5682.06	5680.23	0.013	0.03	0.25	1	18	
12	S1-3	68.9	1.2	5682.99	5682.16	0.013	0.1	1	1	18	
13	S1-2	300.8	1.2	5686.7	5683.09	0.013	0.11	1	1	18	
14	S1-1	27.7	1.19	5687.13	5686.8	0.013	1	0	1	18	
15	S3	27.7	0.83	5679.46	5679.23	0.013	1	0	1	24	
16	S2	26.7	1.87	5680.66	5680.16	0.013	0.29	0	1	18	
17	S4	7.7	2.99	5680.06	5679.83	0.013	1	0	1	18	
18	S8	7.7	1.95	5678.04	5677.89	0.013	1	0	1	18	
19	S10-2	28.8	0.7	5668.77	5668.57	0.013	0.73	0	1	18	
20	S10-1	28.6	0.7	5669.57	5669.37	0.013	0.68	0	1	18	
21	S13	47.7	0.84	5667.97	5667.57	0.013	1	0	1	30	
22	S12	35.3	0.48	5668.74	5668.57	0.013	1	0	1	24	
23	S11	26.7	4.53	5670.55	5669.34	0.013	0.29	0	1	18	
24	S14-1	120.9	3.61	5667.07	5662.71	0.013	0.05	1	1	36	

The Glen at Widefield Filing No. 8 Storm Sewer System UDSewer Output Data 5-year Storm

Program: UDSEWER Math Model Interface 2.2.1.2 Run Date: 6/28/2016 14:12

UDSewer Results Summary

Project Title: Glen at Widefield Filing No. 8 Project Description: Storm Sewer System

System Input Summary

Rainfall Parameters

Rainfall Return Period: 5 Rainfall Calculation Method: Formula

One Hour Depth (in): 1.50 Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: No

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 5661.40

The Glen at Widefield Filing No. 8 Storm Sewer System UDSewer Output Data 5-year Storm

Sewer Flow Summary:

	Full Flow (Capacity	Critical Flo	w	Normal Flo	w				
Element	Flow	Velocity	Depth	Velocity	Depth	Velocity	Froude	Flow	Flow	Surcharged Comment
Name	(cfs)	(fps)	(in)	(fps)	(in)	(fps)	Number	Condition	(cfs)	Length
										(ft)
S16	200.61	. 14.36	19.73	6.24	14.89	9.21	1.73	Supercritical	33.4	0
S14-3	47.29	6.69	20.3	6.67	19.67	6.94	1.06	Supercritical	27.4	0
S14-2	47.29	6.69	20.3	6.67	19.67	6.94	1.06	Supercritical	27.4	0
S14-1	127.07	17.98	20.3	6.67	11.35	14.34	3.05	Supercritical	27.4	0
S10-2	8.81	4.99	7.18	3.8	6.56	4.29	1.19	Supercritical	2.5	0
S10-1	8.81	4.99	7.18	3.8	6.56	4.29	1.19	Supercritical	2.5	0
S9	70.64	14.39	17.04	6.12	10.21	11.95	2.67	Supercritical	17.6	0
S7	76.94	15.67	15.17	5.66	8.7	11.94	2.92	Supercritical	14.1	0
S5	56.54	11.52	13.88	5.36	9.34	9.12	2.14	Supercritical	11.9	0
S3	20.67	6.58	11.18	4.81	9.55	5.92	1.35	Supercritical	6.9	0
S2	14.4	8.15	9.3	4.45	6.57	7.02	1.95	Supercritical	4.1	0
S1-4	10.53	5.96	8.17	4.1	6.81	5.23	1.42	Supercritical	3.2	0
S1-3	11.54	6.53	8.17	4.1	6.48	5.59	1.56	Supercritical	3.2	0
S1-2	11.54	6.53	8.17	4.1	6.48	5.59	1.56	Supercritical	3.2	0
S1-1	11.49	6.5	8.17	4.1	6.5	5.57	1.55	Supercritical	3.2	0
S4	18.21	. 10.31	6.06	3.45	3.82	6.57	2.45	Supercritical	1.8	0
S6-3	10.53	5.96	6.72	3.65	5.58	4.71	1.43	Supercritical	2.2	0
S6-2	10.53	5.96	6.72	3.65	5.58	4.71	1.43	Supercritical	2.2	0
S6-1	8.62	4.88	6.72	3.65	6.2	4.08	1.17	Supercritical	2.2	0
S8	14.71	. 8.32	8.56	4.22	5.98	6.82	2	Supercritical	3.5	0
S13	37.69	7.68	10.76	4.61	8.95	5.94	1.43	Supercritical	7.3	0
S12	15.72	2 5	9.55	4.38	9.4	4.47	1.03	Supercritical	5.1	0
S11	22.42	12.69	4.47	2.92	2.59	6.39	2.92	Supercritical	1	0
S15	22.8	3 7.26	8.52	4.1	6.89	5.5	1.51	Supercritical	4.1	0

A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.

If the sewer is pressurized, full flow represents the pressurized flow conditions.

The Glen at Widefield Filing No. 8 Storm Sewer System UDSewer Output Data 5-year Storm

Grade Line Summary:

Tailwater Elevation (ft): 5661.40

	Invert Elev.		Downstream M	lanhole	HGL		EGL		
			Losses						
Element	Downstream	Upstream	Bend	Lateral	Downstream	Upstream	Downstream	Friction	Upstream
Name	(ft)	(ft)	Loss	Loss	(ft)	(ft)	(ft)	Loss	(ft)
			(ft)	(ft)				(ft)	
S16	5660.9	5661.35	0	0	5662.14	5662.99	5663.46	0.14	5663.6
S14-3	5661.9	5662.2	0.2	0.03	5663.54	5663.89	5664.29	0.3	5664.58
S14-2	5662.3	5662.6	0.16	C	5664.26	5664.29	5664.75	0.24	5664.98
S14-1	5662.71	5667.07	0.01	C	5664.3	5668.76	5666.84	2.61	5669.45
S10-2	5668.57	5668.77	0.02	C	5669.04	5669.37	5669.48	0.12	5669.59
S10-1	5669.37	5669.57	0.02	0	5669.92	5670.17	5670.2	0.19	5670.39
S9	5667.58	5675.61	0.01	0.18	5668.96	5677.03	5670.65	6.97	5677.61
S7	5676.79	5678.08	0.01	0.17	5677.51	5679.34	5679.73	0.12	5679.84
S5	5678.18	5679.13	0.09	0.11	5679.54	5680.29	5680.25	0.48	5680.73
S3	5679.23	5679.46	0.07	0	5680.68	5680.68	5680.81	0.06	5680.87
S2	5680.16	5680.66	0.02	C	5680.71	5681.44	5681.47	0.27	5681.74
S1-4	5680.23	5682.06	0	0.08	5680.8	5682.74	5681.22	1.78	5683
S1-3	5682.16	5682.99	0.01	0	5682.75	5683.67	5683.19	0.74	5683.93
S1-2	5683.09	5686.7	0.01	C	5683.68	5687.38	5684.11	3.53	5687.64
S1-1	5686.8	5687.13	0.05	0	5687.43	5687.81	5687.82	0.25	5688.07
S4	5679.83	5680.06	0.02	0	5680.3	5680.73	5680.82	0	5680.82
S6-3	5679.18	5680.2	0.02	C	5679.64	5680.76	5679.99	0.98	5680.97
S6-2	5680.3	5681.44	0	0	5680.76	5682	5681.1	1.1	5682.21
S6-1	5681.54	5681.73	0.02	0	5682.06	5682.29	5682.31	0.18	5682.5
S8	5677.89	5678.04	0.06	C	5678.46	5678.75	5678.96	0.07	5679.03
S13	5667.57	5667.97	0.03	0	5669.43	5669.43	5669.49	0.04	5669.53
S12	5668.57	5668.74	0.04	C	5669.47	5669.54	5669.66	0.17	5669.83
S11	5669.34	5670.55	0	0	5669.56	5670.92	5670.19	0.86	5671.06
S15	5662.95	5663.37	0	C	5663.53	5664.08	5663.99	0.35	5664.34

Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.

Bend loss = Bend K * V_fi ^ 2/(2*g)

Lateral loss = $V_{fo} ^ 2/(2*g)$ - Junction Loss K * $V_{fi} ^ 2/(2*g)$.

Friction loss is always Upstream EGL - Downstream EGL.

The Glen at Widefield Filing No. 8 Storm Sewer System UDSewer Output Data 100-year Storm

Program: UDSEWER Math Model Interface 2.2.1.2 Run Date: 6/28/2016 14:51

UDSewer Results Summary

Project Title: Glen at Widefield Filing No. 8 Project Description: Storm Sewer System

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100 Rainfall Calculation Method: Formula

One Hour Depth (in): 2.52 Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: No

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 5661.90

The Glen at Widefield Filing No. 8 Storm Sewer System UDSewer Output Data 100-year Storm

Sewer Flow Summary:

	Full Flow C	Capacity	Critical Flo	w	Normal Flo	w					
Element	Flow	Velocity	Depth	Velocity	Depth	Velocity	Froude	Flow	Flow	Surcharged	Comment
Name	(cfs)	(fps)	(in)	(fps)	(in)	(fps)	Number	Condition	(cfs)	Length	
										(ft)	
S16	200.61	14.36	34.42	8.86	26.34	12.34	1.67	Supercritical	97	0	
S14-3	47.29	6.69	36	8.86	36	8.86	0	Pressurized	62.6	60	
S14-2	47.29	6.69	36	8.86	36	8.86	0	Pressurized	62.6	60	
S14-1	127.07	17.98	30.56	9.79	17.84	17.91	2.92	Supercritical	62.6	70.76	
								Jump			
S10-2	8.81	4.99	9.18	4.41	8.51	4.87	1.16	Pressurized	4	28.8	
S10-1	8.81	4.99	9.18	4.41	8.51	4.87	1.16	Pressurized	4	28.6	
S9	70.64	14.39	25.23	8.81	15.87	14.73	2.53	Supercritical	38.8	52.45	
								Jump			
S7	76.94	15.67	22.4	7.63	13.01	14.7	2.86	Supercritical	30	0	
S5	56.54	11.52	20.9	7.15	14.32	11.29	2.07	Pressurized	26.1	50.2	
S3	20.67	6.58	17.25	6.58	15.79	7.26	1.19	Pressurized	15.9	27.7	
S2	14.4	8.15	13.55	5.96	9.95	8.49	1.82	Pressurized	8.5	26.7	
S1-4	10.53	5.96	12.29	5.45	10.72	6.38	1.3	Supercritical	7	135.95	
								Jump			
S1-3	11.54	6.53	12.29	5.45	10.12	6.84	1.45	Supercritical	7	0	
S1-2	11.54	6.53	12.29	5.45	10.12	6.84	1.45	Supercritical	7	0	
S1-1	11.49	6.5	12.29	5.45	10.15	6.82	1.45	Supercritical	7	0	
S4	18.21	10.31	8.17	4.1	5.11	7.76	2.47	Pressurized	3.2	7.7	
S6-3	10.53	5.96	9.06	4.37	7.58	5.51	1.41	Supercritical	3.9	64.08	
								Jump			
S6-2	10.53	5.96	9.06	4.37	7.58	5.51	1.41	Supercritical	3.9	0	
S6-1	8.62	4.88	9.06	4.37	8.49	4.76	1.13	Supercritical	3.9	0	
S8	14.71	8.32	13.78	6.06	10.03	8.69	1.86	Supercritical	8.8	0	
S13	37.69	7.68	18.12	6.39	15.45	7.77	1.36	Pressurized	19.8	47.7	
S12	15.72	5	24	5.12	24	5.12	0	Pressurized	16.1	35.3	
S11	22.42	12.69	13.31	5.85	7.53	11.7	3	Pressurized	8.2	26.7	
S15	22.8	7.26	18.29	6.97	16.02	8.03	1.3	Supercritical	17.9	0	

A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.

If the sewer is pressurized, full flow represents the pressurized flow conditions.

The Glen at Widefield Filing No. 8 Storm Sewer System UDSewer Output Data 100-year Storm

Grade Line Summary:

Tailwater Elevation (ft): 5661.90

	Invert Elev.		Downstream M	anhole	HGL		EGL		
			Losses						
Element	Downstream	Upstream	Bend	Lateral	Downstream	Upstream	Downstream	Friction	Upstream
Name	(ft)	(ft)	Loss	Loss	(ft)	(ft)	(ft)	Loss	(ft)
			(ft)	(ft)				(ft)	
S16	5660.9	5661.35	0	0	5663.32	5664.22	5665.16	0.28	5665.44
S14-3	5661.9	5662.2	1.02	0.43	5665.68	5666.2	5666.89	0.53	5667.42
S14-2	5662.3	5662.6	0.85	0	5667.05	5667.58	5668.27	0.53	5668.8
S14-1	5662.71	5667.07	0.06	0	5667.64	5669.62	5668.86	2.25	5671.1
S10-2	5668.57	5668.77	0.06	0	5671.08	5671.12	5671.16	0.04	5671.2
S10-1	5669.37	5669.57	0.05	0	5671.18	5671.22	5671.26	0.04	5671.3
S9	5667.58	5675.61	0.05	0.98	5671.16	5677.71	5672.13	6.79	5678.92
S7	5676.79	5678.08	0.03	0.83	5678.57	5680.65	5681.23	0	5681.23
S5	5678.18	5679.13	0.44	0.47	5681.7	5681.9	5682.14	0.2	5682.34
S3	5679.23	5679.46	0.4	0	5682.34	5682.48	5682.74	0.14	5682.87
S2	5680.16	5680.66	0.1	0	5682.62	5682.79	5682.98	0.17	5683.15
S1-4	5680.23	5682.06	0.01	0.38	5682.49	5683.08	5682.73	0.81	5683.54
S1-3	5682.16	5682.99	0.02	0	5683.11	5684.01	5683.73	0.74	5684.47
S1-2	5683.09	5686.7	0.03	0	5684.04	5687.72	5684.66	3.52	5688.18
S1-1	5686.8	5687.13	0.24	0	5688.16	5688.16	5688.43	0.19	5688.61
S4	5679.83	5680.06	0.05	0	5682.34	5682.35	5682.39	0.01	5682.4
S6-3	5679.18	5680.2	0.08	0	5681.23	5681.26	5681.3	0.09	5681.39
S6-2	5680.3	5681.44	0	0	5681.26	5682.2	5681.4	1.09	5682.49
S6-1	5681.54	5681.73	0.05	0	5682.25	5682.49	5682.6	0.18	5682.78
S8	5677.89	5678.04	0.39	0	5678.73	5679.51	5679.9	0	5679.9
S13	5667.57	5667.97	0.25	0	5671.1	5671.21	5671.36	0.11	5671.47
S12	5668.57	5668.74	0.41	0	5671.62	5671.8	5672.03	0.18	5672.21
S11	5669.34	5670.55	0.1	0	5671.97	5672.13	5672.3	0.16	5672.47
S15	5662.95	5663.37	0.03	0	5664.24	5664.89	5665.46	0.19	5665.65

Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.

Bend loss = Bend K * V_fi ^ 2/(2*g)

Lateral loss = $V_{fo} ^ 2/(2*g)$ - Junction Loss K * $V_{fi} ^ 2/(2*g)$.

Friction loss is always Upstream EGL - Downstream EGL.

CULVERT STAGE-DISCHARGE SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS)

Calculations of Culvert Capacity (output):

Minimum Energy Condition Coefficient

Water Surface	Tailwater	Culvert	Culvert	Controlling	Inlet	Flow
Elevation	Surface	Inlet-Control	Outlet-Control	Culvert	Equation	Control
	Elevation	Flowrate	Flowrate	Flowrate	Used:	Used
	ft	cfs	cfs	cfs		
(ft., linked)				(output)		
5661.50	5660.38	33.00	24.16	24.16	Regression Eqn.	OUTLET
5661.60	5660.38	33.90	25.22	25.22	Regression Eqn.	OUTLET
5661.70	5660.38	34.80	26.23	26.23	Regression Eqn.	OUTLET
5661.80	5660.38	35.70	27.21	27.21	Regression Eqn.	OUTLET
5661.90	5660.38	36.60	28.16	28.16	Regression Eqn.	OUTLET
5662.00	5660.38	37.40	29.07	29.07	Regression Eqn.	OUTLET
5662.10	5660.38	38.20	29.95	29.95	Regression Eqn.	OUTLET
5662.20	5660.38	39.00	30.81	30.81	Regression Eqn.	OUTLET
5662.30	5660.38	39.80	31.64	31.64	Regression Eqn.	OUTLET
5662.40	5660.38	40.60	32.46	32.46	Regression Eqn.	OUTLET
5662.50	5660.38	41.30	33.25	33.25	Regression Eqn.	OUTLET
5662.60	5660.38	42.10	34.03	34.03	Regression Eqn.	OUTLET
5662.70	5660.38	42.80	34.78	34.78	Regression Eqn.	OUTLET
5662.80	5660.38	43.50	35.53	35.53	Regression Eqn.	OUTLET
5662.90	5660.38	44.20	36.24	36.24	Regression Eqn.	OUTLET
5663.00	5660.38	44.90	36.96	36.96	Regression Eqn.	OUTLET
5663.10	5660.38	45.50	37.65	37.65	Regression Eqn.	OUTLET
5663.20	5660.38	46.20	38.35	38.35	Regression Eqn.	OUTLET
5663.30	5660.38	46.80	39.02	39.02	Regression Eqn.	OUTLET
5663.40	5660.38	47.50	39.68	39.68	Regression Eqn.	OUTLET
5663.50	5660.38	48.10	40.34	40.34	Regression Eqn.	OUTLET
5663.60	5660.38	48.70	40.98	40.98	Regression Eqn.	OUTLET
5663.70	5660.38	49.30	41.60	41.60	Regression Eqn.	OUTLET
5663.80	5660.38	49.90	42.23	42.23	Regression Eqn.	OUTLET
5663.90	5660.38	50.50	42.84	42.84	Regression Eqn.	OUTLET
5664.00	5660.38	51.10	43.45	43.45	Regression Eqn.	OUTLET
5664.10	5660.38	51.70	44.04	44.04	Regression Eqn.	OUTLET
5664.20	5660.38	52.30	44.63	44.63	Regression Eqn.	OUTLET
5664.30	5660.38	52.90	45.21	45.21	Regression Eqn.	OUTLET
5664.40	5660.38	53.40	45.78	45.78	Regression Eqn.	OUTLET

KE_{low}

0.0152

Processing Time: 16.70 Seconds

Project: Glen at Widefield Filing No. 8 Basin ID: Detention Basin 'B' Outlet Pipe

Critical Flow Analysis - Trapezoidal Channel

Project: Channel ID: Glen at Widefield Filing No. 9

Detention Basin A Open Channel to West Fork Jimmy Camp Creek

Design Information (Input)			
Bottom Width	B =	6.00	ft
Left Side Slope	Z1 =	6.00	ft/ft
Right Side Slope	Z2 =	4.00	ft/ft
Design Discharge	Q =	249.00	cfs
Critical Flow Condition (Calculated)			
Critical Flow Depth	Y =	2.21	ft
Critical Flow Area	A =	37.82	sq ft
Critical Top Width	Т =	28.15	ft
Critical Hydraulic Depth	D =	1.34	ft
Critical Flow Velocity	V =	6.58	fps
Froude Number	Fr =	1.00	
Critical Wetted Perimeter	P =	28.61	ft
Critical Hydraulic Radius	R =	1.32	ft
Critical (min) Specific Energy	Esc =	2.89	ft
Centroid on the Critical Flow Area	Yoc =	0.68	ft
Critical (min) Specific Force	Fsc =	4.78	kip

Critical Flow Analysis - Trapezoidal Channel

Project: Channel ID: Glen at Widefield Filing No. 9

Offsite Runoff Open Channel to West Fork Jimmy Camp Creek

Design Information (Input)			
Bottom Width	B =	6.00	ft
Left Side Slope	Z1 =	6.00	ft/ft
Right Side Slope	Z2 =	4.00	ft/ft
Design Discharge	Q =	220.00	cfs
Critical Flow Condition (Calculated)			
Critical Flow Depth	Y =	2.08	ft
Critical Flow Area	A =	34.25	sq ft
Critical Top Width	Т =	26.85	ft
Critical Hydraulic Depth	D =	1.28	ft
Critical Flow Velocity	V =	6.42	fps
Froude Number	Fr =	1.00	
Critical Wetted Perimeter	P =	27.28	ft
Critical Hydraulic Radius	R =	1.26	ft
Critical (min) Specific Energy	Esc =	2.73	ft
Centroid on the Critical Flow Area	Yoc =	0.65	ft
Critical (min) Specific Force	Fsc =	4.12	kip

APPENDIX D

Existing and Proposed Drainage Plans

Sheet 1 - Drainage Plan Existing Condition Sheet 2 - Final Drainage Plan Developed Condition

Kiowa Engineering Corporation

LAND 8 (5680)	DESIGN POINT DP 4011 EXISTING CONDITION FLOWRATES FROM THE CLEN AT WIDEFIELD MDDP Os = 38 CFS Q100 = 153 CFS CS + KW (5682) - C + KW - C + C + C + C + C + C + C + C + C + C	Image: Non-American State Image: Non-American State 1604 South 21st Street 1604 South 21st Street 1604 South 21st Street 179) 630-7342
	Lot 63 Poa Annua Street	WIDEFIELD Investment Group
Peace Peace	DESIGN POINT FLOWS Image: Strain of the strain of t	GLEN AT WIDEFIELD EAST DRAINAGE PLAN EXISTING CONDITION EL PASO COUNTY, COLORADO
	PONTAINE BLVD. FONTAINE BLVD. GLEN 1 GLEN 2 GLEN 4 GLEN 4	Project No.: 16014 Date: August 22, 2016 Design: CJC Drawn: CJC Check: AWMc Revisions: SHEET

MESA RIDGE

VICINITY MAP SCALE: N.T.S.

