Final Drainage Report

Hale Sand Pit Expansion El Paso County, Colorado

Prepared for: **S&K NO1, LLC PO Box 49681 Colorado Springs, CO 80949** (719) 491-2287

Prepared by: Kimley-Horn and Associates, Inc. 2 N Nevada Ave Suite 300 Colorado Springs, CO 80903 (719) 453-0180 Contact: John Heiberger, P.E.

Project #: 096769000

Prepared: January 25, 2019 Resubmitted: March 25, 2019 Resubmitted: May 7, 2019 Resubmitted: June 26, 2019 Resubmitted: July 17, 2019 Resubmitted: December 19, 2019 Resubmitted: March 18, 2021

PCD File No. AL1829 File No. PPR1914

CERTIFICATION

DESIGN ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparation of this report.

SIGNATURE (Affix Seal):

John Heiberger, P.E. Colorado P.E. No. 50096

OWNER/DEVELOPER'S STATEMENT

I, the developer, have read and will comply with all of the requirements specified in this Drainage Report and Plan.

Name of Developer Authorized Signature

Printed Name

Title

ORADO SPRW65 CO 80949 Address:

EL PASO COUNTY STATEMENT

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E. County Engineer/ECM Administrator Date

Conditions:

TABLE OF CONTENTS

CERTIFICATION
DESIGN ENGINEER'S STATEMENT
TABLE OF CONTENTS
PURPOSE AND SCOPE OF STUDY4
GENERAL LOCATON AND DESCRIPTION4
LOCATION
DRAINAGE BASINS AND SUB-BASINS5
MAJOR BASIN DESCRIPTIONS
DRAINAGE DESIGN CRITERIA5
DEVELOPMENT CRITERIA REFERENCE
DRAINAGE FACILITY DESIGN
GENERAL CONCEPT
SUMMARY7
REFERENCES8
APPENDIX9
FEMA FIRM MAP

PURPOSE AND SCOPE OF STUDY

The purpose of this Final Drainage Report (FDR) is to provide the hydrologic and hydraulic calculations and to document and finalize the drainage design methodology in support of the proposed Hale Sand Pit Expansion ("the Project") for S&K NO1, LLC. The Project is located within the jurisdictional limits of El Paso County ("the County"). Thus, the guidelines for the hydrologic and hydraulic design components were based on the criteria for the County and City of Colorado Springs, described below.

GENERAL LOCATON AND DESCRIPTION

LOCATION

The proposed Hale Sand Pit Expansion is located on a 150-acre tract of land approximately seven miles east from the town of Peyton off of McClelland Road. It is located at W2SWR, W2E2SW4, SE4NE4SQ4, E2SE4SW4 SEC 24-12-63 County of El Paso, State of Colorado. It is bound by McClelland road to the west and private property (undeveloped/agricultural) on all other sides. A vicinity map has been provided in this report.

The site is owned and will be mined by S&K NO1, LLC.

DESCRIPTION OF PROPERTY

The site currently contains a 9.9-acre sand mining area located at the southwest corner of the property. The proposed expansion will permit an additional 52.5 acres of land for sand mining. The proposed expansion will be performed in 10-acre maximum blocks. Each block will be disturbed, mined, and then reclaimed before mining activities begin in the next block. Brackett Creek passes through the site from west to east and is designated as Zone A (subject to flooding during 100-year storm events) per FEMA Floodplain Map Number 08041C0585G (effective date December 7, 2018). Brackett Creek is dry creek bed that flows temporarily during storm events.

From the south portion of the site (where the 40-acre mining area will be) flows generally travel to the north and east at approximately 1.0%. From the north portion of the site (where the 12.5-acre mining area will be) flows generally travel south at approximately 1.0%. The existing site consists of undeveloped grassland.

NRCS soil data is available for this Site and it has been noted that soils onsite are generally USCS Type A and B. Reference the Custom Soil Resource Report from NRCS and 1981 Geologic Report for additional information located in the appendix on specific soil types and other geotechnical information.

When mining activities commence, the topsoil from the site will be used to create an earthen berm and diversion dike along the Brackett Creek Floodplain boundary. The diversion dike will transport runoff to a proposed sediment basin that will allow for desilting, and release at historical rates into Brackett Creek. This will control stormwater sediment transport to the creek. In addition to sediment control, an overflow path was sized for each temporary sediment basin to ensure that the basins release no faster than the 100-year historical rate. A Stormwater

Management Report and Grading and Erosion Control Plans will be in place to identify necessary best management practices.

DRAINAGE BASINS AND SUB-BASINS

MAJOR BASIN DESCRIPTIONS

There are no previous drainage studies, master plans or site constraints for this Site. The drainage basin is located in the Upper Bracket Creek CHBR0600 basin.

A portion of the Project is located within the 100-year floodplain as determined by the Flood Insurance Rate Map (FIRM) numbers 08041C0585G, effective date December 7, 2018 (see Appendix).

EXISTING SUB-BASIN DESCRIPTIONS

The entire site historically drains either south (north portion of land) or north (south portion of land) into Brackett Creek. These conditions will not be changed because of the mining activities. When mining is active, flows will be routed to the temporary sediment basins and released at a controlled rate into the creek. Final conditions will closely match existing conditions except for minor changes in the finished grade where mining operations occurred. There will be a minor dip in the finished grade which will be seeded and reclaimed to natural vegetative conditions.

Off-site flows that enter the Project site sheet flow into Brackett Creek to match on-site historical flow patterns. The Project does not propose to change the routing of these off-site flows

The existing site was divided into two sub-basins E1 and E2 which contains the entire site area of 52.5 acres. This sub-basins consist of undeveloped grassland both north (E2) and south (E1) of Brackett Creek. The runoff developed within this existing basin follows historical flows into Brackett Creek. The cumulative runoff for existing conditions is 87.28 cubic feet per second (cfs) for the 100-year event.

An Existing Drainage Conditions Map and hydrologic calculations are included in the Appendix of this report for reference.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

The proposed storm facilities are designed to be in compliance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)" dated November 1991 ("the MANUAL"), the El Paso County "Engineering Criteria Manual" ("the Engineering Manual"). Site drainage is not significantly impacted by such constraints as utilities or existing development.

HYDROLOGIC CRITERIA

The 10-year and 100-year design storm events were used in determining rainfall and runoff for the proposed drainage analysis per the MANUAL. Table 6-2 of the Colorado Springs MANUAL is the source for rainfall data for the 10-year and 100-year design storm events. Design runoff

was calculated using the Rational Method for developed conditions as established in the MANUAL.

The Project provides sediment control for active mining areas (disturbed areas that will not exceed 10 acres) through the use of temporary sediment basins. These basins will be removed once permanent stabilization through revegetation has been achieved.

There are no additional provisions selected or deviations from the criteria in both the MANUAL and Engineering Manual.

HYDRAULIC CRITERIA

No hydraulic analysis is required as there will be no permanent stormwater sewers, channels, or facilities on site.

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

There are no permanent drainage facilities required for this site. Temporary sediment basins will be provided downstream of disturbed areas to prevent sediment transport into the creek, and release at controlled rates. Flows will be conveyed to the sediment basins via temporary diversion dikes along the boundary of the approved mining area. The maximum disturbed area at any one time will be 10-acres. Stabilization through re-vegetation will occur prior to disturbing the next area. Design information regarding these BMPs can be found in the Grading and Erosion Control Plan and the Storm Water Management Report.

The site was divided into three sub-basins, F1, F2, and I1. Sub-Basins F1 and F2 represent the final conditions of the reclaimed site. I1 represents the 10-acre disturbed mining site that will occur in increments. The total cumulative flow when mining operations are occurring in 10-acre increments is 76.20 cfs for the 100 year event for the disturbed mining area and sub-basin F1. This flow is ultimately conveyed to Brackett Creek and released at the historic runoff rate to Design Point I1 and F1.

SPECIFIC DETAILS

Sub-Basin F1

Sub-Basin F1 is 30.0 acres and consists of the reclaimed area south of Brackett Creek. The runoff developed within this sub-basin will follow historical patterns and sheet flow north to Brackett Creek. The runoff from this sub-basin is 49.84 cfs for the 100-year event.

Sub-Basin F2

Sub-Basin F2 is 12.50 acres and consists of the reclaimed area north of Brackett Creek. The runoff developed within this sub-basin will follow historical patterns and sheet flow south to Brackett Creek. The runoff from this sub-basin is 20.77 cfs for the 100-year event.

Sub-Basin I1

Sub-Basin I1 is 10.0 acres and consists of the intermediate mined area. The runoff developed within this sub-basin will convey to diversion dikes which will route flow to the temporary sediment basins. The runoff from this sub-basin is 25.12 cfs for the 100-year event.

DRAINAGE FACILITY DESIGN

Four-Step Process

The four-step process per the Engineering Manual provides guidance and requirements for the selection of siting of structural Best Management Practices (BMPs) for new development and significant redevelopment.

Step 1: Employ Runoff Reduction Practices

Currently the site is vacant agricultural land. Development of the site will not increase current runoff conditions. Final conditions will closely match existing conditions with respect to imperviousness and grading.

Step 2: Stabilize Drainageways

There is a floodplain (Brackett Creek) passing through the Site. The proposed Project will not disturb any area within the floodplain. Sediment control measures (temporary sediment basins, diversion dikes, silt fences) are proposed to prevent destabilization of the drainageway.

Step 3: Provide Water Quality Capture Volume (WQCV)

Water quality capture volume will not be provided on site. WQCV is not provided for this site because no permanent infrastructure is proposed. Mining operations will occur in 10-acre increments and then will be reclaimed with native vegetation prior to moving to the next 10-acre location. Therefore, the imperviousness of the final site, at the conclusion of all mining activities, will not be changed from the existing conditions. The temporary sediment basins provide sediment control and are designed per Urban Drainage Flood Control District Criteria Manual 3.

Step 4: Consider need for Industrial and Commercial BMPs

The Site does not require "Covering of Storage/Handling Areas" or "Spill Containment and Control" (specialized BMPs) in the final constructed condition.

SUMMARY

The proposed drainage design includes diversion dikes and temporary sediment basins to convey runoff and control sediment from mining areas. Per the reclamation plan, the mined area will be revegetated and returned to its historic state and drainage pattern. Runoff from the Site will flow overland to Brackett Creek in the final reclaimed condition, just as it flows overland to Brackett Creek in the existing condition. The drainage design presented within this report conforms to the criteria presented in both the MANUAL and the Engineering Manual. Additionally, the Site runoff will not adversely affect the downstream and surrounding developments.

REFERENCES

- 1. City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)", dated November 1991
- 2. El Paso County "Engineering Criteria Manual" Revision 6, dated December 13, 2016
- 3. Chapter 6 and Section 3.2.1. of Chapter 13-City of Colorado Springs Drainage Criteria Manual, May 2014.
- 4. Urban Drainage and Flood Control District Drainage Criteria Manual (UDFCDCM), Vol. 1, prepared by Wright-McLaughlin Engineers, June 2001, with latest revisions.
- 5. Flood Insurance Rate Map, El Paso County, Colorado and Incorporated Areas, Map Number 08041C1058G, Effective Date December 7, 2018, prepared by the Federal Emergency Management Agency (FEMA).
- 6. Hydrologic Response of Solar Farms, prepared by Lauren M. Cook and Richard H. McCuen, University of Maryland, May 2018.

APPENDIX

FEMA FIRM MAP

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The **community map repository** should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control structures**. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The **projection** used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The **horizontal datum** was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the **North American Vertical Datum** of **1988** (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services

NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202

1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench marks** shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

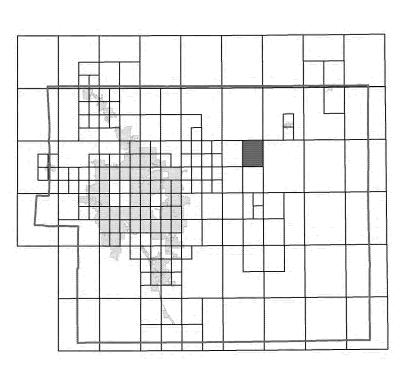
Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, and Anderson Consulting Engineers, Inc. These data are current as of 2008.

This map reflects more detailed and up-to-date **stream channel configurations and floodplain delineations** than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed **Map Index** for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

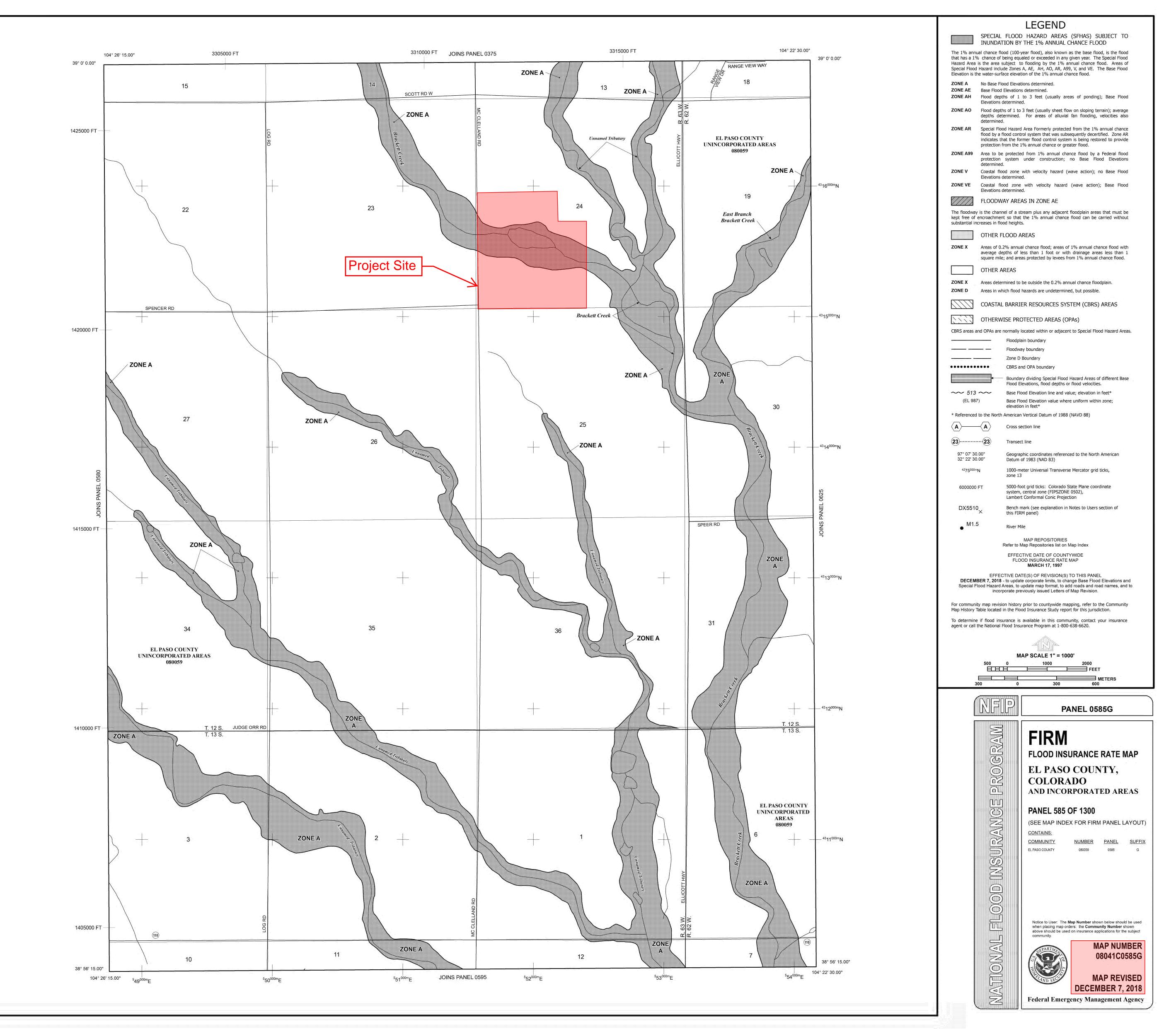
Contact **FEMA Map Service Center** (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.


If you have **questions about this map** or questions concerning the National Flood Insurance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

Flooding Source

El Paso County Vertical Datum Offset Table Vertical Datum

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION


Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

SOILS MAP

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	10
Map Unit Legend	
Map Unit Descriptions	
El Paso County Area, Colorado	
8—Blakeland loamy sand, 1 to 9 percent slopes	13
10—Blendon sandy loam, 0 to 3 percent slopes	14
28—Ellicott loamy coarse sand, 0 to 5 percent slopes	
96—Truckton sandy loam, 0 to 3 percent slopes	16
101—Ustic Torrifluvents, loamy	17
109—Yoder gravelly sandy loam, 1 to 8 percent slopes	
110—Yoder gravelly sandy loam, 8 to 25 percent slopes	19
References	21

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

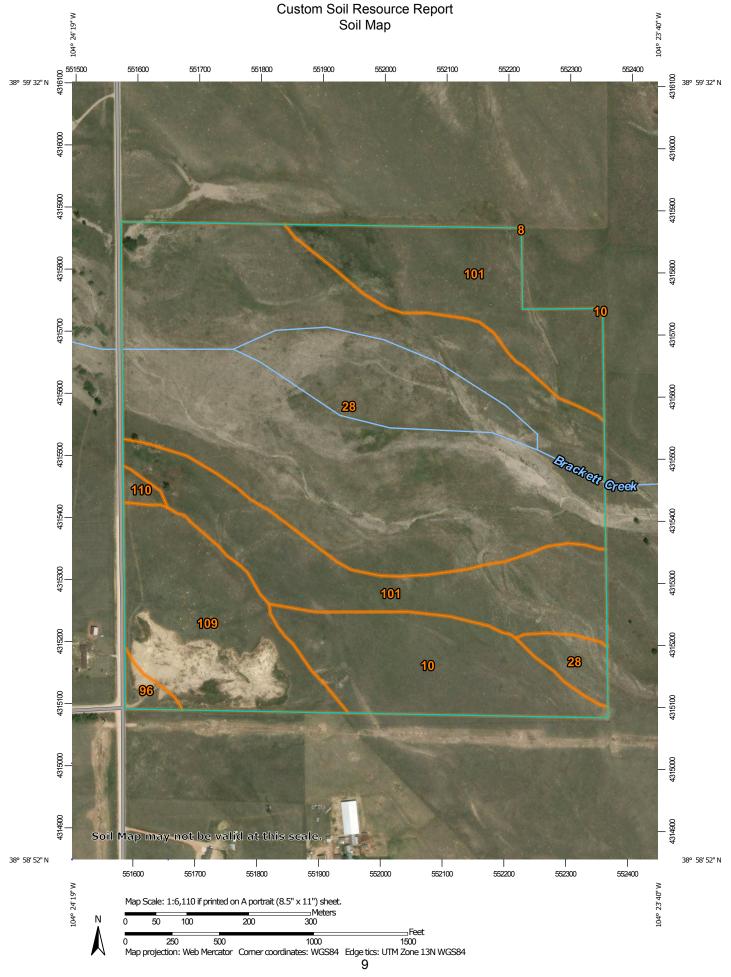
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP L	EGEND		MAP INFORMATION
Area of In	terest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soils	Soil Map Unit Polygons	Ø	Very Stony Spot Wet Spot	Warning: Soil Map may not be valid at this scale.
~	Soil Map Unit Lines	\$	Other	Enlargement of maps beyond the scale of mapping can cause
	Soil Map Unit Points	~	Special Line Features	misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of
Special	Point Features Blowout	Water Fea	atures	contrasting soils that could have been shown at a more detailed scale.
×	Borrow Pit	\sim	Streams and Canals	
×	Clay Spot	Transport	tation Rails	Please rely on the bar scale on each map sheet for map measurements.
\diamond	Closed Depression	~	Interstate Highways	
X	Gravel Pit	~	US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
0 0 0	Gravelly Spot	\sim	Major Roads	Coordinate System: Web Mercator (EPSG:3857)
0	Landfill	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
A.	Lava Flow	Backgrou		projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the
<u>لله</u>	Marsh or swamp	and the second s	Aerial Photography	Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
*	Mine or Quarry Miscellaneous Water			
0	Perennial Water			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Š	Rock Outcrop			Soil Survey Area: El Paso County Area, Colorado
+	Saline Spot			Survey Area Data: Version 15, Oct 10, 2017
÷.	Sandy Spot			Soil map units are labeled (as space allows) for map scales
-	Severely Eroded Spot			1:50,000 or larger.
\$	Sinkhole			Date(s) aerial images were photographed: May 22, 2016—Mar
≫	Slide or Slip			9, 2017
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
8	Blakeland loamy sand, 1 to 9 percent slopes	0.0	0.0%	
10	Blendon sandy loam, 0 to 3 percent slopes		10.6%	
28	Ellicott loamy coarse sand, 0 to 5 percent slopes 77.0		52.1%	
96	Truckton sandy loam, 0 to 3 percent slopes	1.1	0.7%	
101	Ustic Torrifluvents, loamy	35.6	24.1%	
109	Yoder gravelly sandy loam, 1 to 8 percent slopes	17.7	12.0%	
110	Yoder gravelly sandy loam, 8 to 25 percent slopes	0.7	0.4%	
Totals for Area of Interest		147.7	100.0%	

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor

components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

8—Blakeland loamy sand, 1 to 9 percent slopes

Map Unit Setting

National map unit symbol: 369v Elevation: 4,600 to 5,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Blakeland and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Blakeland

Setting

Landform: Flats, hills Landform position (three-dimensional): Side slope, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from sedimentary rock and/or eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand C - 27 to 60 inches: sand

Properties and qualities

Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Available water storage in profile: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: Sandy Foothill (R049BY210CO) Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

10—Blendon sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 3671 Elevation: 6,000 to 6,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Blendon and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Blendon

Setting

Landform: Alluvial fans, terraces Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium derived from arkose

Typical profile

A - 0 to 10 inches: sandy loam Bw - 10 to 36 inches: sandy loam C - 36 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 2 percent
Available water storage in profile: Moderate (about 6.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: Sandy Foothill (R049BY210CO) Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

28—Ellicott loamy coarse sand, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 3680 Elevation: 5,500 to 6,500 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 47 to 50 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Ellicott and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Ellicott

Setting

Landform: Flood plains, stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium

Typical profile

A - 0 to 4 inches: loamy coarse sand *C - 4 to 60 inches:* stratified coarse sand to sandy loam

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Frequent
Frequency of ponding: None
Available water storage in profile: Low (about 4.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7w Hydrologic Soil Group: A Ecological site: Sandy Bottomland LRU's A & B (R069XY031CO) Other vegetative classification: SANDY BOTTOMLAND (069AY031CO) Hydric soil rating: No

Minor Components

Fluvaquentic haplaquoll

Percent of map unit: Landform: Swales Hydric soil rating: Yes

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

96—Truckton sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 36bf Elevation: 6,000 to 7,000 feet Mean annual precipitation: 14 to 15 inches Mean annual air temperature: 46 to 50 degrees F Frost-free period: 125 to 145 days Farmland classification: Prime farmland if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60

Map Unit Composition

Truckton and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Truckton

Setting

Landform: Flats Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock and/or arkosic residuum weathered from sedimentary rock

Typical profile

A - 0 to 8 inches: sandy loam

Bt - 8 to 24 inches: sandy loam

C - 24 to 60 inches: coarse sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 5.7 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 3e Hydrologic Soil Group: A Ecological site: Sandy Foothill (R049BY210CO) Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

101—Ustic Torrifluvents, loamy

Map Unit Setting

National map unit symbol: 3673 Elevation: 5,500 to 7,000 feet Mean annual precipitation: 13 to 16 inches Mean annual air temperature: 47 to 52 degrees F Frost-free period: 125 to 155 days Farmland classification: Not prime farmland

Map Unit Composition

Ustic torrifluvents and similar soils: 85 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Ustic Torrifluvents

Setting

Landform: Flood plains, stream terraces

Down-slope shape: Linear *Across-slope shape:* Linear *Parent material:* Sandy, clayey, stratified loamy

Typical profile

A - 0 to 6 inches: variable C - 6 to 60 inches: stratified loamy sand to clay loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 10 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Moderate (about 8.6 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: Saline Overflow LRU's A & B (R069XY037CO) Other vegetative classification: OVERFLOW (069BY036CO) Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

109—Yoder gravelly sandy loam, 1 to 8 percent slopes

Map Unit Setting

National map unit symbol: 367c Elevation: 6,200 to 6,900 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 50 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Yoder and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Yoder

Setting

Landform: Flats, hills Landform position (three-dimensional): Side slope, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Noncalcareous alluvium derived from arkose

Typical profile

A - 0 to 6 inches: gravelly sandy loam
Bt - 6 to 12 inches: gravelly sandy clay loam
2C - 12 to 60 inches: very gravelly loamy coarse sand

Properties and qualities

Slope: 1 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 4.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: Gravelly Foothill (R049BY214CO) Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

110—Yoder gravelly sandy loam, 8 to 25 percent slopes

Map Unit Setting

National map unit symbol: 367f Elevation: 6,200 to 6,900 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 50 degrees F *Frost-free period:* 125 to 145 days *Farmland classification:* Not prime farmland

Map Unit Composition

Yoder and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Yoder

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Noncalcareous alluvium derived from arkose

Typical profile

A - 0 to 6 inches: gravelly sandy loam Bt - 6 to 12 inches: gravelly sandy clay loam 2C - 12 to 60 inches: very gravelly loamy coarse sand

Properties and qualities

Slope: 8 to 25 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 4.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: Gravelly Foothill (R049BY214CO) Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

SEDIMENT BASIN CALCULATIONS

South Pond Volume Calculations

Method:	Use the average-end area method to determine volume of storage of the pond and determine the 100-year storm high water level				
Where:	Volume = (1/2)*(Area of top contour + High Water Elevation High Water Elevation + 1' freeboard	Area of bottom contour)*depth increment feet feet			
	The water Elevation + 1 needoard	leet			
Goal:	Calculated 100-yr storage	144,000 cubic fe	et (From UDFCD Detail SC-7 3,600 ft ³ /acre x 40 acres)		
Calculations:			,		

			Incremental		Total	
	Elevation	Area	Volume		Volume	
	(feet)	(sq. ft.)	(cubic ft.)	(ac. ft.)	(ac. ft.)	(cubic ft.)
	6460.00	44,464.0				
	6461.00	47,942.0	46,203.0	1.061	1.061	46,203
	6462.00	51,521.0	49,731.5	1.142	2.202	95,935
High Water Elevation	6463.00	55,200.0	53,360.5	1.225	3.427	149,295
High Water Elevation						
+ 1' freeboard	6464.00	58,981.0	57,090.5	1.311	4.738	206,386

North Pond Volume Calculations

Method:	Use the average-end area method to dete of the pond and determine the 100-year s		8	
Where:	Volume = $(1/2)$ *(Area of top contour + A	Area of bot	ttom contour)*depth increment	
	High Water Elevation		feet	
	High Water Elevation + 1' freeboard		feet	
Goal:	Calculated 100-yr storage	45,000	cubic feet (From UDFCD Detail SC-7 3,600 ft ³ /acre x 12.5 acres)	
Calculations:	Increment	ntal	Total	

			meren	entui	1.	Juli
	Elevation	Area	Volume (cubic ft.) (ac. ft.)		Vol	lume
	(feet)	(sq. ft.)			(ac. ft.)	(cubic ft.)
	6470.00	12,390.0				
	6471.00	14,186.0	13,288.0	0.305	0.305	13,288
	6472.00	16,082.0	15,134.0	0.347	0.652	28,422
High Water Elevation	6473.00	18,078.0	17,080.0	0.392	1.045	45,502
High Water Elevation						
+ 1' freeboard	6474.00	20,175.0	19,126.5	0.439	1.484	64,629

Worksheet for South Temp Sediment Basin Emergency Spillway

Project Description

Solve For	Crest Length	
Input Data		
Discharge	66.46	ft³/s
Headwater Elevation	4.00	ft
Crest Elevation	3.00	ft
Tailwater Elevation	0.00	ft
Crest Surface Type	Gravel	
Crest Breadth	2.00	ft
Results		
Crest Length	21.53	ft
Headwater Height Above Crest	1.00	ft
Tailwater Height Above Crest	-3.00	ft
Weir Coefficient	3.09	US
Submergence Factor	1.00	
Adjusted Weir Coefficient	3.09	US
	0.00	
Flow Area	21.53	
		ft²
Flow Area	21.53	ft² ft/s

Project Description		
Solve For	Crest Length	
Input Data		
Discharge	20.77 cfs	
Headwater Elevation	4.00 ft	
Crest Elevation	3.00 ft	
Tailwater Elevation	0.00 ft	
Crest Surface Type	Gravel	
Crest Breadth	2.00 ft	
Crest Length	6.7 ft	
Crest Length	6.7 ft	
Headwater Height Above Crest	1.00 ft	
Tailwater Height Above Crest	-3.00 ft	
Weir Coefficient	3.09 ft^(1/2)/s	
Submergence Factor	1.000	
Adjusted Weir Coefficient	3.09 ft^(1/2)/s	
Flow Area	6.7 ft ²	
Velocity	3.09 ft/s	
Wetted Perimeter	8.7 ft	
Top Width	6.73 ft	

Worksheet for North Temp Sediment Basin Emergency Spillway

Description

A sediment basin is a temporary pond built on a construction site to capture eroded or disturbed soil transported in storm runoff prior to discharge from the site. Sediment basins are designed to capture site runoff and slowly release it to allow time for settling of sediment prior to discharge. Sediment basins are often constructed in locations that will later be modified to serve as post-construction stormwater basins.

Appropriate Uses

Most large construction sites (typically greater than 2 acres) will require one or more sediment basins for effective

Photograph SB-1. Sediment basin at the toe of a slope. Photo courtesy of WWE.

management of construction site runoff. On linear construction projects, sediment basins may be impractical; instead, sediment traps or other combinations of BMPs may be more appropriate.

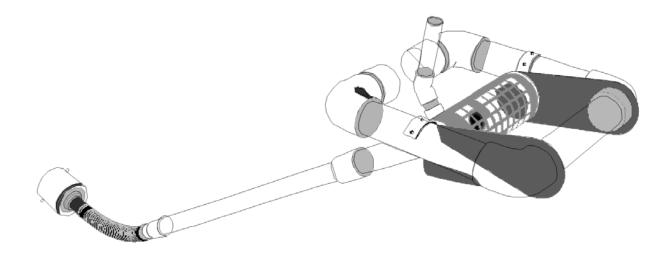
Sediment basins should not be used as stand-alone sediment controls. Erosion and other sediment controls should also be implemented upstream.

When feasible, the sediment basin should be installed in the same location where a permanent postconstruction detention pond will be located.

Design and Installation

The design procedure for a sediment basin includes these steps:

- Basin Storage Volume: Provide a storage volume of at least 3,600 cubic feet per acre of drainage area. To the extent practical, undisturbed and/or off-site areas should be diverted around sediment basins to prevent "clean" runoff from mixing with runoff from disturbed areas. For undisturbed areas (both on-site and off-site) that cannot be diverted around the sediment basin, provide a minimum of 500 ft³/acre of storage for undeveloped (but stable) off-site areas in addition to the 3,600 ft³/acre for disturbed areas. For stable, developed areas that cannot be diverted around the sediment basin, storage volume requirements are summarized in Table SB-1.
- Basin Geometry: Design basin with a minimum length-to-width ratio of 2:1 (L:W). If this cannot be achieved because of site space constraints, baffling may be required to extend the effective distance between the inflow point(s) and the outlet to minimize short-circuiting.
 Sediment Basins
- **Dam Embankment**: It is recommended that embankment slopes be 4:1 (H:V) or flatter and no steeper than 3:1 (H:V) in any location.


Sediment Basins							
Functions							
Erosion Control	No						
Sediment Control	Yes						
Site/Material Management	No						

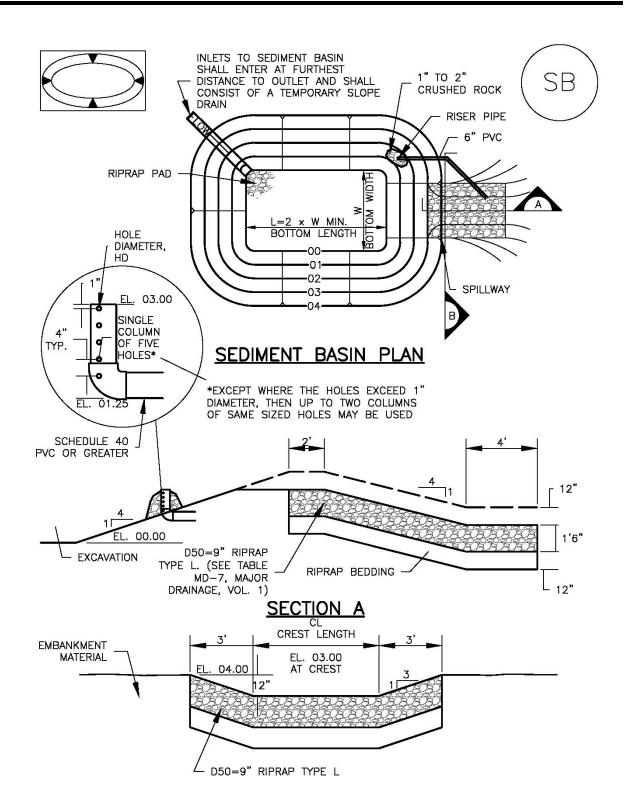
• **Inflow Structure**: For concentrated flow entering the basin, provide energy dissipation at the point of inflow.

Imperviousness (%)	Additional Storage Volume (ft ³) Per Acre of Tributary Area
Undeveloped	500
10	800
20	1230
30	1600
40	2030
50	2470
60	2980
70	3560
80	4360
90	5300
100	6460

Table SB-1. Additional Volume Requirements for Undisturbed and Developed Tributary Areas Draining through Sediment Basins

- **Outlet Works**: The outlet pipe shall extend through the embankment at a minimum slope of 0.5 percent. Outlet works can be designed using one of the following approaches:
 - **Riser Pipe (Simplified Detail):** Detail SB-1 provides a simplified design for basins treating no more than 15 acres.
 - **Orifice Plate or Riser Pipe**: Follow the design criteria for Full Spectrum Detention outlets in the EDB Fact Sheet provided in Chapter 4 of this manual for sizing of outlet perforations with an emptying time of approximately 72 hours. In lieu of the trash rack, pack uniformly sized 1¹/₂ to 2-inch gravel in front of the plate or surrounding the riser pipe. This gravel will need to be cleaned out frequently during the construction period as sediment accumulates within it. The gravel pack will need to be removed and disposed of following construction to reclaim the basin for use as a permanent detention facility. If the basin will be used as a permanent extended detention basin for the site, a trash rack will need to be installed once contributing drainage areas have been stabilized and the gravel pack and accumulated sediment have been removed.
 - Floating Skimmer: If a floating skimmer is used, install it using manufacturer's recommendations. Illustration SB-1 provides an illustration of a Faircloth Skimmer Floating OutletTM, one of the more commonly used floating skimmer outlets. A skimmer should be designed to release the design volume in no less than 48 hours. The use of a floating skimmer outlet can increase the sediment capture efficiency of a basin significantly. A floating outlet continually decants cleanest water off the surface of the pond and releases cleaner water than would discharge from a perforated riser pipe or plate.

Illustration SB-1. Outlet structure for a temporary sediment basin - Faircloth Skimmer Floating Outlet. Illustration courtesy of J. W. Faircloth & Sons, Inc., FairclothSkimmer.com.


- **Outlet Protection and Spillway:** Consider all flow paths for runoff leaving the basin, including protection at the typical point of discharge as well as overtopping.
 - **Outlet Protection:** Outlet protection should be provided where the velocity of flow will exceed the maximum permissible velocity of the material of the waterway into which discharge occurs. This may require the use of a riprap apron at the outlet location and/or other measures to keep the waterway from eroding.
 - **Emergency Spillway:** Provide a stabilized emergency overflow spillway for rainstorms that exceed the capacity of the sediment basin volume and its outlet. Protect basin embankments from erosion and overtopping. If the sediment basin will be converted to a permanent detention basin, design and construct the emergency spillway(s) as required for the permanent facility. If the sediment basin will not become a permanent detention basin, it may be possible to substitute a heavy polyvinyl membrane or properly bedded rock cover to line the spillway and downstream embankment, depending on the height, slope, and width of the embankments.

Maintenance and Removal

Maintenance activities include the following:

- Dredge sediment from the basin, as needed to maintain BMP effectiveness, typically when the design storage volume is no more than one-third filled with sediment.
- Inspect the sediment basin embankments for stability and seepage.
- Inspect the inlet and outlet of the basin, repair damage, and remove debris. Remove, clean and replace the gravel around the outlet on a regular basis to remove the accumulated sediment within it and keep the outlet functioning.
- Be aware that removal of a sediment basin may require dewatering and associated permit requirements.
- Do not remove a sediment basin until the upstream area has been stabilized with vegetation.

Final disposition of the sediment basin depends on whether the basin will be converted to a permanent post-construction stormwater basin or whether the basin area will be returned to grade. For basins being converted to permanent detention basins, remove accumulated sediment and reconfigure the basin and outlet to meet the requirements of the final design for the detention facility. If the sediment basin is not to be used as a permanent detention facility, fill the excavated area with soil and stabilize with vegetation.

TABLE SB-1. SI	ZING INFORMATION FO	OR STANDARD SEDIMENT	BASIN
Upstream Drainage Area (rounded to nearest acre), (ac)	Basin Bottom Width (W), (ft)	Spillway Crest Length (CL), (ft)	Hole Diameter (HD), (in)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	12 ½ 21 28 33 ½ 43 47 ¼ 51 55 58 ¼ 61 64 67 ½ 70 ½ 73 ¼	2 3 5 6 8 9 11 12 13 15 16 18 19 21 22	932 13/6 12 9%6 21/32 25/32 25/32 27/32 27/32 78 15/6 31/36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SEDIMENT BASIN INSTALLATION NOTES

- 1. SEE PLAN VIEW FOR:
 - -LOCATION OF SEDIMENT BASIN.

-TYPE OF BASIN (STANDARD BASIN OR NONSTANDARD BASIN).

-FOR STANDARD BASIN, BOTTOM WIDTH W, CREST LENGTH CL, AND HOLE DIAMETER, HD.

-FOR NONSTANDARD BASIN, SEE CONSTRUCTION DRAWINGS FOR DESIGN OF BASIN INCLUDING RISER HEIGHT H, NUMBER OF COLUMNS N, HOLE DIAMETER HD AND PIPE DIAMETER D.

2. FOR STANDARD BASIN, BOTTOM DIMENSION MAY BE MODIFIED AS LONG AS BOTTOM AREA IS NOT REDUCED.

3. SEDIMENT BASINS SHALL BE INSTALLED PRIOR TO ANY OTHER LAND-DISTURBING ACTIVITY THAT RELIES ON ON BASINS AS AS A STORMWATER CONTROL.

4. EMBANKMENT MATERIAL SHALL CONSIST OF SOIL FREE OF DEBRIS, ORGANIC MATERIAL, AND ROCKS OR CONCRETE GREATER THAN 3 INCHES AND SHALL HAVE A MINIMUM OF 15 PERCENT BY WEIGHT PASSING THE NO. 200 SIEVE.

5. EMBANKMENT MATERIAL SHALL BE COMPACTED TO AT LEAST 95 PERCENT OF MAXIMUM DENSITY IN ACCORDANCE WITH ASTM D698.

6. PIPE SCH 40 OR GREATER SHALL BE USED.

7. THE DETAILS SHOWN ON THESE SHEETS PERTAIN TO STANDARD SEDIMENT BASIN(S) FOR DRAINAGE AREAS LESS THAN 15 ACRES. SEE CONSTRUCTION DRAWINGS FOR EMBANKMENT, STORAGE VOLUME, SPILLWAY, OUTLET, AND OUTLET PROTECTION DETAILS FOR ANY SEDIMENT BASIN(S) THAT HAVE BEEN INDIVIDUALLY DESIGNED FOR DRAINAGE AREAS LARGER THAN 15 ACRES.

SEDIMENT BASIN MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. SEDIMENT ACCUMULATED IN BASIN SHALL BE REMOVED AS NEEDED TO MAINTAIN BMP EFFECTIVENESS, TYPICALLY WHEN SEDIMENT DEPTH REACHES ONE FOOT (I.E., TWO FEET BELOW THE SPILLWAY CREST).

5. SEDIMENT BASINS ARE TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND GRASS COVER IS ACCEPTED BY THE LOCAL JURISDICTION.

6. WHEN SEDIMENT BASINS ARE REMOVED, ALL DISTURBED AREAS SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED AS APPROVED BY LOCAL JURISDICTION.

(DETAILS ADAPTED FROM DOUGLAS COUNTY, COLORADO)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

EXISTING DRAINAGE CALCULATIONS AND DRAINAGE MAP

$$I = \frac{28.5 P_1}{(10+T_D)^{0.786}}$$

Where:

- I = rainfall intensity (inches per hour)
- P₁ = one-hour rainfall depth (inches) from Table 6-2 One-hour Point Rainfall Depth City of Colorado Springs Drainage Design

T_c = storm duration (minutes)

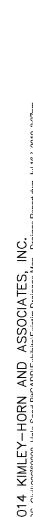
	<u>2-yr</u>	<u>5-yr</u>	<u>10-yr</u>	<u>100-yr</u>
P ₁ =	1.19	1.50	1.75	2.52

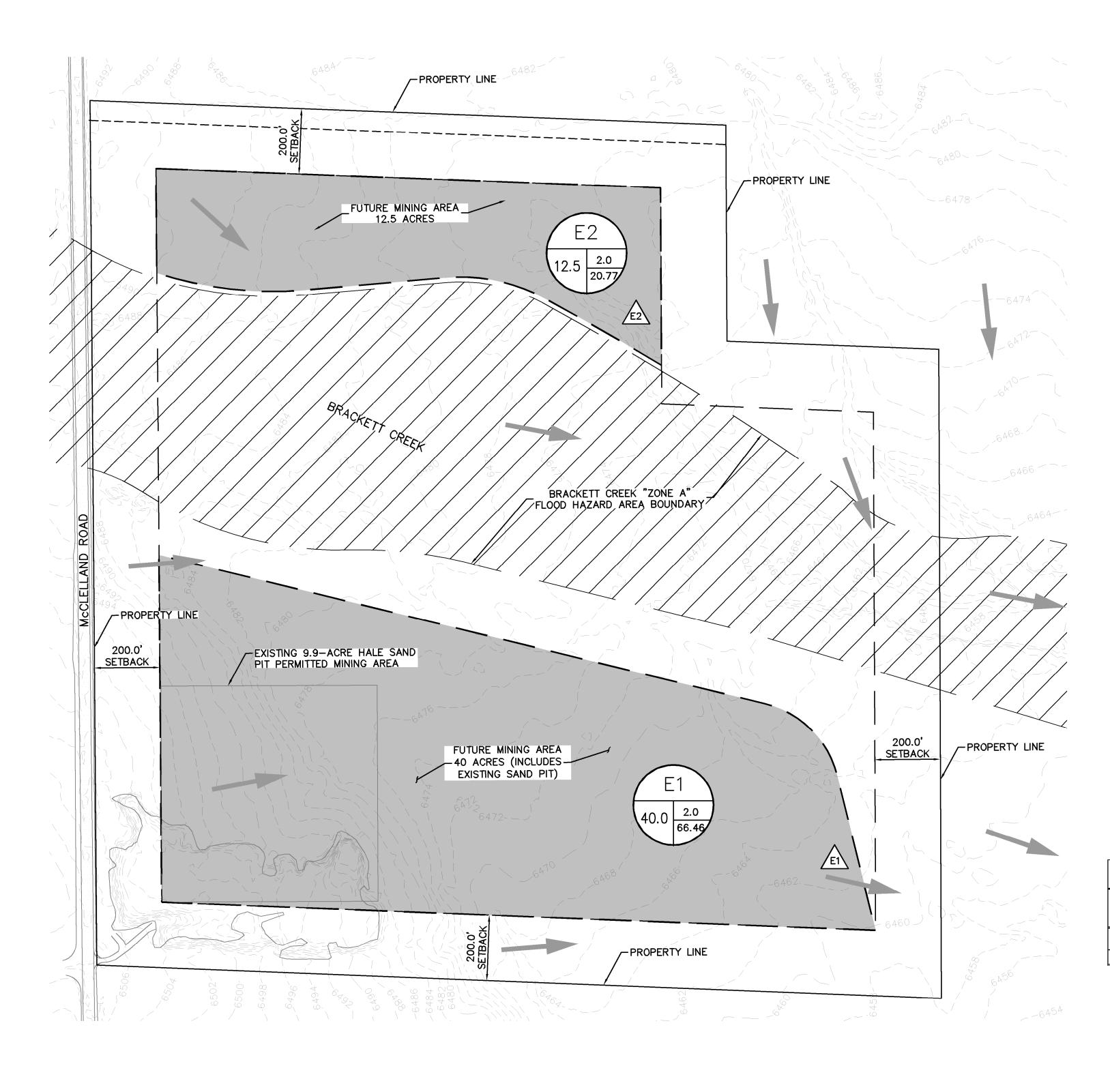
Time Intensity Frequency Tabulation									
TIME	2 YR	5 YR	10 YR	100 YR					
5	4.04	5.09	5.94	8.55					
10	3.22	4.06	4.73	6.82					
15	2.70	3.41	3.97	5.72					
30	1.87	2.35	2.75	3.95					
60	1.20	1.52	1.77	2.55					
120	0.74	0.93	1.09	1.57					

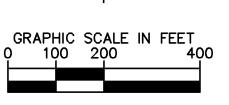
Time Intensity Frequency Tabulation

Weighted Imperviousness Calculations

SUB-	AREA	AREA	GRASSLAND	PASTURE/MEADOW		
BASIN	(SF)	(Acres)	AREA	IMPERVIOUSNESS	C10	C100
E1	1,742,400	40.00	1,742,400	2%	0.25	0.35
E2	544,500	12.50	544,500	2%	0.25	0.35
TOTAL	544,500	12.50	544,500	2%	0.25	0.35

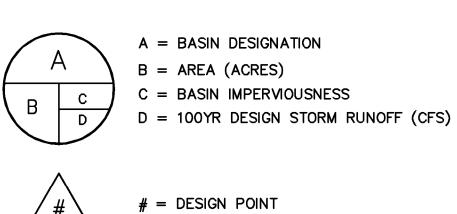

9/28/2018 Calculated by: RDW


10675 M									Watercou	Irse Coeffic	ient					
Existing	Runoff Calcu	ulations			Forest	& Meadow	2.50	Short Gi	ass Pastur	e & Lawns	7.00			Grasse	d Waterway	15.00
Time of (Concentratio	on			Fallow or	Cultivation	5.00		Nearly Ba	re Ground	10.00		Paved	Area & Sha	llow Gutter	20.00
		SUB-BASIN			INIT	IAL / OVERL	AND	T	RAVEL TIN	IE				T(c) CHECK		FINAL
		DATA				TIME			T(t)				(URE	BANIZED BA	SINS)	T(c)
DESIGN	DRAIN	AREA	AREA	C(10)	Length	Slope	T(i)	Length	Slope	Coeff.	Velocity	T(t)	COMP.	TOTAL	L/180+10	
POINT	BASIN	sq. ft.	ac.		ft.	%	min	ft.	%		fps	min.	T(c)	LENGTH		min.
E1	E1	1,742,400	40.00	0.02	1000	1.0%	62.6	1100	1.0%	6.00	0.6	30.6	93.2	2100	21.7	21.7
E2	E2	544,500	12.50	0.25	1000	1.0%	49.2	1100	1.0%	7.00	0.7	26.2	75.4	2100	21.7	21.7


10675 McClelland Road - Hale Sand Pit Expansion Existing Runoff Calculations Design Storm 100 Year (Rational Method Procedure)												
В	ASIN INFORMATIO	N		DIF	RECT RUNG	OFF		C	UMMULAT	IVE RUNO	FF	
DESIGN	DRAIN	AREA	RUNOFF	T(c)	СхА		Q	T(c)	СхА	I	Q	NOTES
POINT	BASIN	ac.	COEFF	min		in/hr	cfs	min		in/hr	cfs	
E1	E1	40.00	0.35	21.7	14.00	4.75	66.46					
E2	E2	12.50	0.35	21.7	4.38	4.75	20.77					

10675 McClelland Road - Hale Sand Pit Expansion Existing Runoff Calculations Design Storm 10 Year (Rational Method Procedure)												
	BASIN INFORMA	ATION			DIRECT	RUNOFF		C	JMMULAT	IVE RUNO	FF	
DESIGN	DRAIN	AREA	RUNOFF	T(c)	СхА	I	Q	T(c)	СхА	I	Q	Notes
POINT	BASIN	ac.	COEFF	min		in/hr	cfs	min		in / hr	cfs	
E1	E1	40	0.25	21.7	10	2.24	22.42					
E2	E2	12.5	0.25	21.7	3.125	2.24	7.01					

SUMMARY - EXISTING RUNOFF TABLE									
DESIGN POINT									
E1	E1	40.00	66.46	22.42					
E2	E2	12.50	20.77	7.01					



NORTH

EXISTING DRAINAGE MAP 07/17/2019

Kimley»Horn

SUMMARY - EXISTING RUNOFF TABLE									
DESIGN POINT									
E1	E1	40.00	66.46	22.42					
E2	E2	12.50	20.77	7.01					

A = BASIN DESIGNATION

B = AREA (ACRES)

HISTORIC FLOW ARROW

EXISTING MINOR CONTOUR

EXISTING MAJOR CONTOUR

PROPOSED MINING AREA

"ZONE A" SPECIAL FLOOD HAZARD AREA PER FEMA MAP NUMBER 08041C0600 G

EXISTING GRAVEL ROAD

PROPERTY LINE 200' SETBACK LINE

DRAINAGE BASIN DELINEATION

<u>LEGEND</u>

INTERMEDIATE/FINAL DRAINAGE CALCULATIONS AND DRAINAGE MAP

$$I = \frac{28.5 P_1}{(10+T_D)^{0.786}}$$

Where:

- I = rainfall intensity (inches per hour)
- P₁ = one-hour rainfall depth (inches) from Table 6-2 One-hour Point Rainfall Depth City of Colorado Springs Drainage Design

T_c = storm duration (minutes)

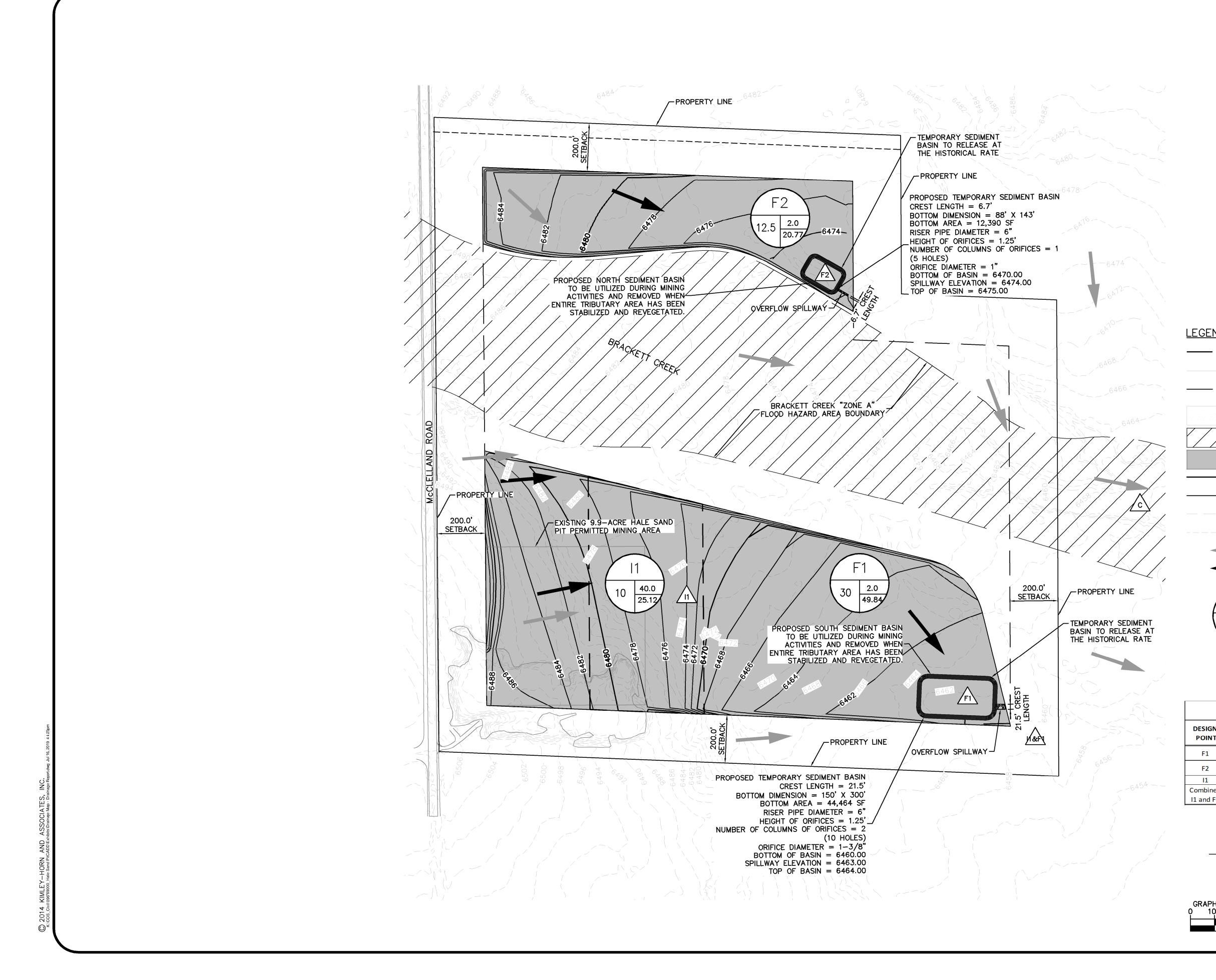
	<u>2-yr</u>	<u>5-yr</u>	<u>10-yr</u>	<u>100-yr</u>
P ₁ =	1.19	1.50	1.75	2.52

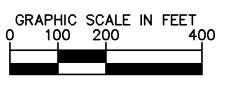
Time Intensity Frequency Tabulation											
TIME	2 YR	5 YR	10 YR	100 YR							
5	4.04	5.09	5.94	8.55							
10	3.22	4.06	4.73	6.82							
15	2.70	3.41	3.97	5.72							
30	1.87	2.35	2.75	3.95							
60	1.20	1.52	1.77	2.55							
120	0.74	0.93	1.09	1.57							

Time Intensity Frequency Tabulation

Weighted Imperviousness Calculations

SUB-	AREA	AREA	GRASSLAND	MINING	MINING AREA	MININ	g area	PASTURE/MEADOW	PASTURE	/MEADOW
BASIN	(SF)	(Acres)	AREA	AREA	IMPERVIOUSNESS	C10	C100	IMPERVIOUSNESS	C10	C100
F1	1,306,800	30.00	1,306,800	0	40%	0.38	0.48	2%	0.25	0.35
F2	544,500	12.50	544,500	0	40%	0.38	0.48	2%	0.25	0.35
1	435,600	10.00	0	435,600	40%	0.38	0.48	2%	0.25	0.35
TOTAL	2,286,900	52.50	1,851,300	435,600	40%	0.38	0.48	2%	0.25	0.35


9/28/2018 Calculated by: RDW


10675 M	cClelland Ro	oad - Hale	Sand Pit E			Watercourse Coefficient										
Intermed	Intermediate/Final Runoff Calculations Forest & Mead							Short Gi	ass Pastur	e & Lawns	7.00			Grasse	d Waterway	15.00
Time of (Time of Concentration					Cultivation	5.00		Nearly Ba	re Ground	10.00		Paveo	d Area & Sha	allow Gutter	20.00
		SUB-BASIN			INIT	IAL / OVERL	AND	T	RAVEL TIN	1E				T(c) CHECK		FINAL
		DATA				TIME			T(t)				(URE	BANIZED BA	SINS)	T(c)
DESIGN	DRAIN	AREA	AREA	C(10)	Length	Slope	T(i)	Length	Slope	Coeff.	Velocity	T(t)	COMP.	TOTAL	L/180+10	
POINT	BASIN	sq. ft.	ac.		ft.	%	min	ft.	%		fps	min.	T(c)	LENGTH		min.
F1	F1	1,306,800	30.00	0.25	1000	1.0%	49.2	1100	1.0%	5.00	0.5	36.7	85.9	2100	21.7	21.7
F2	F2	544,500	12.50	0.25	1000	1.0%	49.2	1100	1.0%	5.00	0.5	36.7	85.9	2100	21.7	21.7
11	11	435,600	10.00	0.25	1000	1.0%	49.2	435	1.0%	7.00	0.7	10.4	59.6	1435	18.0	18.0

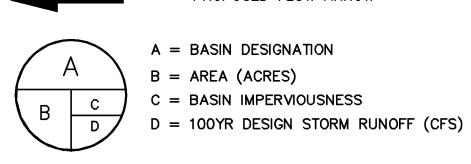
Intermedia	lelland Road - H te/Final Runoff hod Procedure)			ansion	Des	ign Storm	100 Year					
В	ASIN INFORMATIO	N		DIF	ECT RUN	OFF		С	UMMULAT	IVE RUNO	FF	
DESIGN	DRAIN	AREA	RUNOFF	T(c)	СхА	I	Q	T(c)	СхА	I	Q	NOTES
POINT	BASIN	ac.	COEFF	min		in/hr	cfs	min		in/hr	cfs	
F1	F1	30.00	0.35	21.7	10.50	4.75	49.84					
F2	F2	12.50	0.35	21.7	4.38	4.75	20.77					
11	11	10.00	0.48	18.0	4.80	5.23	25.12					
Combined I1 and F1	I1 and F1	40.00						21.7	15.30	4.98	76.20	Combined flow of Basins F1 and I1 that enter Brackett Creek.

10675 McClelland Road - Hale Sand Pit Expansion Intermediate/Final Runoff Calculations Design Storm 10 Year (Rational Method Procedure)												
	BASIN INFORMAT	ION			DIRECT	RUNOFF		(CUMULATI	VE RUNOF	F	
DESIGN	DRAIN	AREA	RUNOFF	T(c)	СхА	Ι	Q	T(c)	СхА	I	Q	
POINT	BASIN	ac.	COEFF	min		in/hr	cfs	min		in/hr	cfs	
F1	F1	30	0.25	21.7	7.5	2.24	16.81					
F2	F2	12.5	0.25	21.7	3.125	2.24	7.01					
11	11	10	0.38	18	3.8	2.47	9.39					
Combined I1 and F1	I1 and F1	40						21.7	11.30	3.46	39.12	Combined flow of Basins F1 and I1 that enter Brackett Creek.

SUMMARY - INTERMEDIATE/FINAL RUNOFF TABLE									
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	CUMULATIVE 100-YR RUNOFF (CFS)	CUMULATIVE 10-YR RUNOFF (CFS)					
F1	F1	30.00	49.84	16.81					
F2	F2	12.50	20.77	7.01					
11	1	10.00	25.12	9.39					
Combined I1 and F1	I1 and F1	40.00	76.20	39.12					

FINAL DRAINAGE MAP 07/17/2019

Kimley»Horn


NORTH

	SUMMARY - INTERMEDIATE/FINAL RUNOFF TABLE											
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	CUMULATIVE 100-YR RUNOFF (CFS)	CUMULATIVE 10-1 RUNOFF (CFS)								
F1	F1	30.00	49.84	16.81								
F2	F2	12.50	20.77	7.01								
11	l1	10.00	25.12	9.39								
Combined I1 and F1	I1 and F1	40.00	76.20	39.12								

SUMMARY - INTERMEDIATE/FINAL RUNOFF TABLE						
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	CUMULATIVE 100-YR RUNOFF (CFS)	CUMULATIVE 10-YR RUNOFF (CFS)		
F1	F1	30.00	49.84	16.81		
F2	F2	12.50	20.77	7.01		
11	I 1	10.00	25.12	9.39		
Combined	I1 and F1	40.00	76.20	39.12		

SUMMARY - INTERMEDIATE/FINAL RUNOFF TABLE						
DESIGN POINT	BASIN DESIGNATION	BASIN AREA (ACRES)	CUMULATIVE 100-YR RUNOFF (CFS)	CUMULATIVE 10- RUNOFF (CFS)		
F1	F1	30.00	49.84	16.81		
F2	F2	12.50	20.77	7.01		
11	<mark> </mark> 1	10.00	25.12	9.39		
Combined						

	#	# = DESIGN	POINT				
SUMMARY - INTERMEDIATE/FINAL RUI							
SIGN	BASIN	BASIN AREA	CUMULATIVE 1				
	DECICNATION						

-6500----

-6502-

EXISTING MAJOR CONTOUR EXISTING MINOR CONTOUR

HISTORIC FLOW ARROW

PROPOSED FLOW ARROW

A = BASIN DESIGNATION

- PROPOSED MAJOR CONTOUR
- PROPOSED MAJOR CONTOUR
- MAP NUMBER 08041C0600 G PROPOSED MINING AREA
- "ZONE A" SPECIAL FLOOD HAZARD AREA PER FEMA
- EXISTING GRAVEL ROAD
- 200' SETBACK LINE
- PROPERTY LINE

DRAINAGE BASIN DELINEATION

<u>LEGEND</u>