
COLORADO PUMPKIN PATCH SPECIAL USE TRAFFIC IMPACT STUDY

El Paso County, Colorado

April 2023

Completed By:

Brett Louk, P.E.

TABLE OF CONTENTS

TABLE OF CONTENTS	1
EXECUTIVE SUMMARY	2
INTRODUCTION	2
METHODOLOGY	3
EXISTING CONDITIONS	4
PROJECT DESCRIPTION	6
TRIP GENERATION	7
TRIP DISTRIBUTION	7
EXISTING PLUS DEVELOPMENT	8
SHORT-RANGE HORIZON ANALYSIS	9
LONG-RANGE HORIZON ANALYSIS	11
AUXILIARY LANE ANALYSIS	13
CONCLUSIONS	15
CERTIFICATION PAGE	17

Remove references to access on HWY 105 throughout the report.

EXECUTIVE SUMMARY

Revise to state a deviation has been submitted and has been denied by the Deputy County Engineer.

orado Pumpkin Patch Traffic Impact Study

Remove statement.

SMH Consultants, P.A. completed a traffic impact study, to support the special use application, for the tulip festival and pumpkin patch to be held at the Colorado Pumpkin Patch located at 18065 Saddlewood Road in El Paso County, Colorado. The application also includes a deviation request seeking access from Highway 105 for weekend traffic (Friday, Saturday, and Sunday) to the events. This access will remain closed, and un-used, the rest of the days that the events are open. The tulip festival is planned to take place over two weekends in May and the pumpkin patch is planned to take place the last two weeks of September and all of October.

Attendance information, from last year's events, was utilized to determine the number of trips generated by the tulip festival and pumpkin patch. These generated trips, along with the peak hour counts, were then used to perform a level of service (LOS) analysis for the following intersections: Saddlewood Rd./Canterbury Dr.; Canterbury Dr./Hwy. 105; Cherry Springs Ranch Dr./Hwy. 105; and Appaloosa Rd./Hwy. 105. The LOS analysis for all intersections indicated that the LOS for all approaches to the intersection would continue to operate at LOS B or better, for the A.M. and P.M. peak hours of the events. This remains true for the existing plus development, short-range horizon, and long-range horizon scenarios. It should be noted that the intersection LOS analysis, for each intersection, was completed with the existing lane configuration and no auxiliary lanes were accounted for.

Auxiliary lane analyses showed that a westbound left turn lane and eastbound right turn lane are warranted at the intersection of Canterbury Dr. and Highway 105 during the weekday A.M. and P.M. peak hours. A southbound left turn lane is warranted at the intersection of Canterbury Dr. and Saddlewood Rd. during the weekday and weekend A.M. and P.M. peak hours. A westbound left turn lane is warranted at the intersection of Appaloosa Rd. and Highway 105 during the weekday A.M. peak hour. A westbound left turn lane and eastbound right turn lane are warranted at the intersection of Cherry Springs Ranch Dr. and Highway 105 for the weekend A.M. and P.M. peak hours. No right turn acceleration lanes are warranted at any of the study intersections. Since these events only occur during a small portion of the year, an alternative to constructing the warranted auxiliary anes would be for the property owner to hire traffic flaggers, or off-duty sheriff deputies, to direct traffic during the times that the events are operating.

Based on the analysis presented in this report, the proposed tulip festival and pumpkin patch are not expected to have any negative impacts on the

adway network and existing accesses.

Please indicate why Roller Coaster Rd/Hwy 105, hwy 83/Hwy 105 and Roller coaster/Sahara Rd intersections were not studied. If the threshold per criteria was not met then please state that, otherwise these intersections should be analyzed.

<u>)N</u>

o of the Colorado Pumpkin Patch has requested that SMH A. conduct a Traffic Impact Study (TIS) to support a special use a tulip festival production of the tulip festival is placed to

Submit a deviation request for auxiliary lanes for review by Deputy County Engineer. Deviation should include justification for not constructing lanes and provide regional examples where flaggers are an appropriate alternative. Provide an exhibit at the end of the deviation request that shows a flagging plan that includes signage, amount of flaggers, time of day they will be active, etc. take place over two weekends in May and will operate from 9 A.M. to 5 P.M. on Friday, Saturday, and Sunday. The pumpkin patch is planned to take place the last two weeks of September and the entire month of October and will operate from 9 A.M. to 5 P.M. seven days of the week. The purpose of this study is to determine the traffic impacts of the tulip festival and pumpkin patch on the surrounding transportation network. A vicinity map has been included in the appendix of this report.

This TIS will determine the trips generated by the tulip festival and pumpkin patch, perform a level of service (LOS) analysis for the following intersections: Saddlewood Rd./Canterbury Dr.; Canterbury Dr./Hwy. 105; Cherry Springs Ranch Dr./Hwy. 105; and Appaloosa Rd./Hwy. 105, perform auxiliary lane analyses at each intersection, and identify any improvements that may be required to the surrounding transportation network.

<u>METHODOLOGY</u>

On December 17th and 21st 2022, SMH Consultants conducted weekday and weekend A.M. and P.M. peak hour turning movement counts at the intersections of Saddlewood Rd./Canterbury Dr. and Canterbury Dr./Hwy. 105. Upon further discussion with El Paso County staff, further intersections were identified that would need analyzed. On March 14th and 18th 2023, SMH Consultants conducted weekday and weekend A.M. and P.M. peak hour turning movement counts at the intersections of Cherry Springs Ranch Dr./Hwy. 105 and Appaloosa Rd./Hwy. 105. All turning movement count information has been included in the appendix of this report.

McTrans HCS7 Software was used to analyze the existing, existing plus development, short-range horizon, and long-range horizon scenarios for all aforementioned intersections.

Intersection Level of Service (LOS) is a concept defined by the *Highway Capacity Manual* (HCM) to qualitatively describe operating conditions within a traffic stream. LOS is typically stratified into six categories (A through F). These range from LOS A indicating free-flow, low density, or nearly negligible delay conditions to LOS F where demand exceeds capacity and large queues are experienced.

For unsignalized intersections, the HCM uses control delay, measured in average seconds of delay per vehicle, as the basis for determining LOS. Control delay at an intersection is the average stopped time per vehicle traveling through the intersection plus the movements at slower speeds due to the vehicles moving up in the queue or slowing upstream of the approach. For two-way stopcontrolled intersections, individual approach delays as well as an overall average delay are calculated for each intersection. Table 1 below shows the LOS criteria for an unsignalized intersection.

Level of Service	Control Delay Range (s/veh)
	Unsignalized
A	0-10
В	>10-15
С	>15-25
D	>25-35
E	>35-50
F	>50

Table 1: LOS Criteria

EXISTING CONDITIONS

The existing site is located at 18065 Saddlewood Road in El Paso County, Colorado. The existing site consists of a single-family home, outbuildings, and agricultural ground. The site is bordered by Saddlewood Rd. to the south, residential properties to the east and west, and Highway 105 to the north. Canterbury Dr. is located west of the site and Appaloosa Rd. is located east of the site.

Saddlewood Rd. is a two-lane gravel road that is approximately 28-feet wide, with roadside ditches on both sides, and is classified as a rural local road. At the intersection with Canterbury Dr., westbound Saddlewood Rd. consists of a shared right/left lane. There is no eastbound approach to the intersection of Saddlewood Rd. and Canterbury Dr. Saddlewood Rd. does not have a posted speed limit, however, based on the posted speed limit for Canterbury Dr. and Appaloosa Rd., the speed limit is assumed to be 25 mph. Intersection sight distance at this intersection is adequate in both directions. An intersection sight distance exhibit has been included in the appendix of this report.

Canterbury Dr. is a two-lane paved road that is approximately 28-feet wide, with roadside ditches on both sides, and is classified as a rural local road. At the intersection with Saddlewood Rd., northbound Canterbury Dr. consists of a shared thru/right lane and southbound consists of a shared thru/left lane. At the intersection with Highway 105, northbound Canterbury Dr. consists of a shared right/left lane. There is no southbound approach to the intersection of Canterbury Dr. and Highway 105. Canterbury Dr. has a posted speed limit of 25 mph. Intersection sight distance at this intersection is adequate in both directions. An intersection sight distance exhibit has been included in the appendix of this report.

Cherry Springs Ranch Dr. is a two-lane paved road that is approximately 28-feet wide, with roadside ditches on both sides, and is classified as a rural local road. At the intersection with Highway 105, southbound Cherry Springs Ranch Dr. consists of a shared left/right lane. There is no northbound approach to the intersection of Cherry Springs Ranch Dr. and Highway 105. Cherry Springs

Update to provide ECM sight distance requirements in the narratives above and compare to what is out in the field. Also list ECM criteria for stacking, storage, and taper for every affected auxiliary lane and access and state whether this access can be met. If it cannot be met, state the required modifications so that it can be met

these peak hrs also

Ranch Dr. has a posted speed limit of 30 mph. Intersection sight distance at this intersection is adequate in both directions. An intersection sight distance exhibit has been included in the appendix of this report. please clarify whether

Appaloosa Rd. is a two-lane gravel road that is approximately 28-feet wid apply to the pumpkin roadside ditches on both sides, and is classified as a rural local road. At tpatch or is it strictly intersection with Highway 105, northbound Appaloosa Rd. consists of a stheetulip festival. If left/right lane. There is no southbound approach to the intersection of Ap just the tulip festival Rd. and Highway 105. Appaloosa Rd. has a posted speed limit of 25 mphthen what are the Intersection sight distance at this intersection is adequate in both directio peak hrs for the intersection sight distance exhibit has been included in the appendix of the pumpkin patch and why weren't counts performed at that

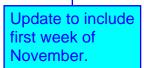
Highway 105 is a two-lane paved road that is approximately 24-feet wide events peak hrs? roadside ditches on both sides, and is classified as a principal arterial. CuPlease address. Highway 105 is undergoing a corridor analysis, from Interstate 25 to Highway 83, to determine improvements that may be necessary along this stretch of Highway 105. At this time, the section of Highway 105, adjacent to the Colorado Pumpkin Patch, is recommended to be a three-lane section with one thru lane in each direction and center left turn lanes at major intersections. It should be noted that the intersections studied in this report for the tulip festival were not studied as part of the El Paso County Highway 105 Traffic Study Update, performed by HDR, as they were considered side roads with insignificant traffic volumes. At the intersection with Canterbury Dr., eastbound Highway 105 consists of a shared thru/right lane and westbound consists of a shared thru/left lane. At the intersection with Cherry Springs Ranch Dr., eastbound Highway 105 consists of a shared thru/left lane and westbound consists of a shared thru/right lane. At the intersection with Appaloosa Rd., eastbound Highway 105 consists of a shared thru/right lane and westbound consists of a shared thru/left lane. Highway 105 has a posted speed limit of 50 mph.

Based on information provided in the El Paso County Highway 105 Traffic Study Update, performed by HDR, Highway 105 has peak hours of 7 A.M. to 8 A.M. and 5 P.M. to 6 P.M. However, these peak hours are different than the A.M. and P.M. peak hours for the tulip festival and pumpkin patch. Based on information provided by the owner, from last year's festivals, the A.M. peak hour is 9 A.M. to 10 A.M. and the P.M. peak hour is 1 P.M. to 2 P.M. Therefore, SMH Consultants performed existing turning movement counts for the timeframes coinciding with the peak hours of the tulip festival. Existing peak hour counts and turning movements can be seen in the appendix of this report.

Table 2 shows the existing weekday level of service for each intersection. Detailed intersection level of service calculations for each intersection are provided in the appendix.

		Weekda	ay A.M.	Peak Hour	Weekda	ay P.M. Pe	eak Hour
Intersection	Movement			95%			95%
		Delay (s)	LOS	Queue	Delay (s)	LOS	Queue
Countourly 0	WB RT/LT	8.4	А	0'	8.5	А	0'
Canterbury & Saddlewood	NB Thru/RT	7.2	А	0'	7.2	А	0'
Saudiewood	SB Thru/RT	7.2	А	0'	7.2	А	0'
	EB Thru/RT	7.6	А	0'	7.5	А	0'
Canterbury & Hwy 105	WB Thru/LT	7.5	А	0'	7.7	А	0'
1100 105	NB RT/LT	9.9	А	0'	11	В	0'
Cherry Springs	EB Thru/LT	7.6	А	0'	7.5	А	0'
Ranch & Hwy	WB Thru/RT	7.5	А	0'	7.5	А	0'
105	SB RT/LT	9.9	А	0'	10.3	В	0'
	EB Thru/RT	7.6	А	0'	7.5	А	0'
Appaloosa & Hwy 105	WB Thru/LT	7.5	А	0'	7.5	А	0'
1100 105	NB RT/LT	9.9	А	0'	9.8	А	0'

Table 2: Existing Intersection Weekday LOS


Table 3 shows the existing weekend level of service for each intersection.

		Weeker	nd A.M.	Peak Hour	Weeker	nd P.M. P	eak Hour
Intersection	Movement			95%			95%
		Delay (s)	LOS	Queue	Delay (s)	LOS	Queue
	WB RT/LT	8.3	А	0'	8.4	А	0'
Canterbury & Saddlewood	NB Thru/RT	7.2	А	0'	7.2	А	0'
Saudiewood	SB Thru/RT	7.2	А	0'	7.2	А	0'
	EB Thru/RT	7.5	А	0'	7.6	А	0'
Canterbury & Hwy 105	WB Thru/LT	7.5	А	0'	7.6	А	0'
1100 105	NB RT/LT	10.4	В	0'	10.6	В	2.5'
Cherry Springs	EB Thru/LT	7.6	А	0'	7.5	А	0'
Ranch & Hwy	WB Thru/RT	7.4	А	0'	7.6	А	0'
105	SB RT/LT	9.8	А	0'	9.5	А	0'
	EB Thru/RT	7.6	А	0'	7.5	А	0'
Appaloosa &	WB Thru/LT	7.5	А	0'	7.6	А	0'
Hwy 105	NB RT/LT	10.3	В	0'	9.2	А	0'

 Table 3: Existing Intersection Weekend LOS

PROJECT DESCRIPTION

The tulip festival event will be held two weekends in May and will operate from 9 A.M. to 5 P.M. Friday, Saturday, and Sunday. The pumpkin patch will be held the last two weeks of September and the entire month of October and will operate from 9 A.M. to 5 P.M. seven days a week. Weekday access to the pumpkin patch will be via Saddlewood Rd. Vehicles will access Saddlewood Rd., from Highway

Adjust analysis to exclude access off HYW 105.

Remove last sentence since deviation was dissaproved.

105, via Canterbury Dr. and Appaloosa Rd. Weekend access, including Fridays, to the tulip festival and pumpkin patch will be via a new driveway off of Highway 105 that will line up with Cherry Springs Ranch Dr.

TRIP GENERATION

Note: if this application is approved, applicant may be required to resubmit a TIS with updated counts events per previous

The Institute of Transportation Engineers (ITE), Trip Generation Report Edition, does not provide trip generation data for events due to the intern use of event venues and wide variability in event attendance. The owner provided SMH Consultants attendance information from last year's festiva based on 2023 SMH then used this information to determine the A.M. and P.M. peak hou for the festivals. A ratio of one vehicle for every two persons was assume conversations with staff. A.M. peak hour was broken into 90% entering and 10% exiting, the P.M. hour was broken into 70% entering and 30% exiting, and the daily trips were broken into 50% entering and 50% exiting. Table 4 shows the weekday daily, A.M. peak hour, and P.M. peak hour trips for the tulip festival and pumpkin patch.

	Attendance	Attendance Daily		A.M. PH			P.M. PH			
	(ppl)	Total	In	Out	Total	In	Out	Total	In	Out
Max. Weekday	908	454	227	227						
A.M. Peak Hr	298				149	134	15			
P.M. Peak Hr	124							62	43	19

Table 4: Weekday Generated Trips

Table 5 shows the weekend daily, A.M. peak hour, and P.M. peak hour trips for the tulip festival and pumpkin patch. The same entering and exiting percentages. as stated above for the weekday trips, were applied for the weekend trips.

	Attendance (ppl)	Attendance Daily		A.M. PH			P.M. PH			
		Total	In	Out	Total	In	Out	Total	In	Out
Max. Weekend	3356	1678	839	839						
A.M. Peak Hr	346				173	156	17			
P.M. Peak Hr	472							236	212	24

Table 5: Weekend Gene	erated Trips
-----------------------	--------------

TRIP DISTRIBUTION

There are many ways to distribute trips that are entering or exiting a proposed development. For the purposes of this study, SMH assumed that 60% of the site generated traffic would be coming from, or going to, the west and 40% would be coming from, or going to, the east. This directional distribution was largely based on Interstate 25 being located west of the site and Highway 83 being located east of the site.

From this initial directional distribution, weekday trips were further distributed amongst the intersections of Canterbury Dr./Hwy. 105 and Appaloosa Rd./Hwy. 105. For the trips coming from, or going to, the west, it was assumed that 90% of those trips would utilize the Canterbury Dr. and Highway 105 intersection and 10% would utilize the Appaloosa Rd. and Highway 105 intersection. For the trips coming from, or going to, the east, it was assumed that 80% of those trips would utilize the Canterbury Dr. and Highway 105 intersection. For the trips coming from, or going to, the east, it was assumed that 80% of those trips would utilize the Canterbury Dr. and Highway 105 intersection and 20% would utilize the Appaloosa Rd. and Highway 105 intersection and 20% would utilize the Appaloosa Rd. is not, and the preferred route for mobile map services that visitors might use to get to the festival. Thus, the intersection of Canterbury Dr. and Highway 105 received a larger distribution of the festival generated trips.

For weekend trips, the site generated trips were distributed amongst the intersections of Canterbury Dr./Hwy. 105, Cherry Springs Ranch Dr./Hwy. 105 and Appaloosa Rd./Hwy. 105. As stated in the deviation request, weekend traffic would be allowed to utilize a new driveway off of Highway 105 that would line up with Cherry Springs Ranch Dr. For the trips coming from, or going to, the west, it was assumed that 85% of those trips would utilize the new driveway, 10% would utilize the Canterbury Dr. and Highway 105 intersection and the remaining 5% would utilize the Appaloosa Rd. and Highway 105 intersection. For the trips coming from, or going to, the east, it was assumed that 85% would utilize the new driveway, 10% would utilize the Canterbury Dr. and Highway 105 intersection. For the trips coming from, or going to, the east, it was assumed that 85% would utilize the new driveway, 10% would utilize the Canterbury Dr. and Highway 105 intersection. For the trips coming from, or going to, the east, it was assumed that 85% would utilize the new driveway, 10% would utilize the Canterbury Dr. and Highway 105 intersection. For the trips coming from, or going to, the east, it was assumed that 85% would utilize the new driveway, 10% would utilize the Canterbury Dr. and Highway 105 intersection. For the trips intersection and the remaining 5% would utilize the Appaloosa Rd.

An exhibit has been included in the appendix of this report showing the distribution of the site generated trips.

EXISTING PLUS DEVELOPMENT

Existing plus development conditions combine the existing A.M. and P.M. peak hour turning movements with the A.M. and P.M. peak hour traffic generated by the site. The existing plus development peak hour turning movements can be seen in the appendix of this report. Detailed intersection level of service calculations for each intersection are provided in the appendix. Table 6 shows the existing plus development weekday level of service for all the study intersections.

Remove HWY 105 access from analysis.

105?

This distribution percentage using Appaloosa Rd seems high. As stated in the narrative, Appaloosa is a gravel road and it is a circuitous route. Per mobile map services it appears Appaloosa Rd is not suggested as a route.

This space intentiona

		Weekda	ay A.M.	Peak Hour	Weekda	ay P.M. Pe	eak Hour
Intersection	Movement			95%			95%
		Delay (s)	LOS	Queue	Delay (s)	LOS	Queue
	WB RT/LT	8.5	А	2.5′	8.5	А	2.5′
Canterbury & Saddlewood	NB Thru/RT	7.2	А	0'	7.2	А	0'
Sautiewoou	SB Thru/RT	7.4	А	7.5′	7.3	А	2.5′
	EB Thru/RT	7.6	А	0'	7.5	А	0'
Canterbury & Hwy 105	WB Thru/LT	7.8	А	2.5′	7.8	А	0'
1100 105	NB RT/LT	11.3	В	2.5′	11.4	В	2.5′
Cherry Springs	EB Thru/LT	7.8	А	0'	7.6	А	0'
Ranch & Hwy	WB Thru/RT	7.5	А	0'	7.5	А	0'
105	SB RT/LT	10.3	В	0'	10.4	В	0'
	EB Thru/RT	7.7	А	0′	7.6	А	0'
Appaloosa & Hwy 105	WB Thru/LT	7.5	А	0'	7.5	А	0'
1100 105	NB RT/LT	10.4	В	0'	9.9	А	0'

Table 6: Existing + Development Weekday Intersection LOS

Table 7 shows the existing plus development weekend level of service for all the study intersections.

		Weeke	end A.N	1. Peak Hour	Weeker	nd P.M. P	eak Hour
Intersection	Movement	Delay		95%			95%
		(s)	LOS	Queue	Delay (s)	LOS	Queue
Cantarbury	WB RT/LT	8.3	А	0'	8.4	А	0'
Canterbury & Saddlewood	NB Thru/RT	7.2	А	0'	7.2	А	0'
Saudiewood	SB Thru/RT	7.3	А	0'	7.3	А	0'
Cantarbury	EB Thru/RT	7.5	А	0'	7.6	А	0'
Canterbury & Hwy 105	WB Thru/LT	7.7	А	0'	8.0	А	0'
1100 105	NB RT/LT	11.4	В	2.5′	12.3	В	2.5′
	EB Thru/LT/RT	7.6	А	0'	7.5	А	0'
Cherry Springs Ranch & Hwy	WB Thru/LT/RT	7.7	А	2.5′	8.1	А	5'
105	NB Thru/LT/RT	11.4	В	2.5′	12.3	В	2.5′
105	SB Thru/LT/RT	10.7	В	2.5′	10.6	В	0'
	EB Thru/RT	7.7	А	0'	7.7	А	0'
Appaloosa & Hwy 105	WB Thru/LT	7.5	А	0'	7.6	А	0'
1100 105	NB RT/LT	10.7	В	0'	10.2	В	0'

Table 7: Existing + Development Weekend Intersection LOS

SHORT-RANGE HORIZON ANALYSIS

El Paso County requires a short-range horizon analysis as part of the traffic impact study for projects. The short-range horizon analysis is intended to analyze

Discuss how 2% was determined to be an appropriate growth rate.

the immediate impacts of the proposed project on the existing and committed roadway network. The short-range horizon year is defined as one year after the full occupancy of the project. To determine the projected peak hour trips for the short-range horizon year, a 2% annual growth rate was applied to the existing peak hour turning movement counts. This growth rate is consistent with the Highway 105 study. The short-range peak hour turning movements can be seen in the appendix of this report. Detailed intersection level of service calculations for each intersection are provided in the appendix.

		Weekda	ay A.M.	Peak Hour	Weekda	ay P.M. Pe	eak Hour
Intersection	Movement			95%			95%
		Delay (s)	LOS	Queue	Delay (s)	LOS	Queue
Canterbury & Saddlewood	WB RT/LT	8.5	А	2.5′	8.5	А	2.5′
	NB Thru/RT	7.2	А	0'	7.2	А	0'
	SB Thru/RT	7.4	А	7.5′	7.3	А	2.5′
	EB Thru/RT	7.6	А	0'	7.5	А	0'
Canterbury & Hwy 105	WB Thru/LT	7.8	А	2.5′	7.8	А	0'
1100 105	NB RT/LT	11.2	В	2.5′	11.3	В	5′
Cherry Springs	EB Thru/LT	7.8	А	0'	7.6	А	0'
Ranch & Hwy	WB Thru/RT	7.5	А	0'	7.5	А	0'
105	SB RT/LT	10.6	В	0'	10.1	В	0'
	EB Thru/RT	7.7	А	0'	7.6	А	0'
Appaloosa & Hwy 105	WB Thru/LT	7.5	А	0'	7.6	А	0'
HWY 105	NB RT/LT	10.3	В	2.5′	9.9	А	0'

Table 8 shows the short-range horizon weekday level of service for all the study intersections.

Table 8: Short-Range Horizon Weekday Intersection LOS

This space intentionally left blank

		Weeke	end A.M	1. Peak Hour	Weeker	nd P.M. P	eak Hour
Intersection	Movement	Delay		95%			95%
		(s)	LOS	Queue	Delay (s)	LOS	Queue
Cantarbury	WB RT/LT	8.3	А	0'	8.4	А	0'
Canterbury & Saddlewood	NB Thru/RT	7.2	А	0'	7.2	А	0'
Sautiewoou	SB Thru/RT	7.3	А	0'	7.3	А	0'
	EB Thru/RT	7.5	А	0'	7.6	А	0'
Canterbury & Hwy 105	WB Thru/LT	7.8	А	0'	8.0	А	0'
1100 105	NB RT/LT	11.5	В	2.5′	12.1	В	2.5′
	EB Thru/LT/RT	7.6	А	0'	7.5	А	0'
Cherry Springs	WB Thru/LT/RT	7.8	А	2.5′	8.1	А	5'
Ranch & Hwy 105	NB Thru/LT/RT	11.5	В	2.5′	12.3	В	2.5′
105	SB Thru/LT/RT	10.5	В	0'	11.5	В	0'
	EB Thru/RT	7.8	А	0'	7.7	А	0'
Appaloosa & Hwy 105	WB Thru/LT	7.5	А	0'	7.6	А	0'
1100 105	NB RT/LT	10.2	В	0'	9.8	А	0'

Table 9 shows the short-range horizon weekend level of service for all the study intersections.

Table 9: Short-Range Horizon Weekend Intersection LOS

LONG-RANGE HORIZON ANALYSIS

El Paso County requires a long-range horizon analysis as part of the traffic impact study for projects. The long-range horizon analysis is intended to analyze the impacts of the proposed project on the long-range traffic condition and is based on the current Master Transportation Corridor Plan planning horizon and related modeling. The long-range peak hour turning movements can be seen in the appendix of this report. Detailed intersection level of service calculations for each intersection are provided in the appendix.

Determine what growth rate was applied for the long range horizon analysis per ECM B.3.2.B

This space intentionally left blank

		Weekda	ay A.M.	Peak Hour	Weekda	ay P.M. Pe	eak Hour
Intersection	Movement			95%			95%
		Delay (s)	LOS	Queue	Delay (s)	LOS	Queue
	WB RT/LT	9.0	А	2.5′	8.7	А	2.5′
Canterbury & Saddlewood	NB Thru/RT	7.2	А	0'	7.2	А	0'
Saudiewood	SB Thru/RT	7.4	А	7.5′	7.3	А	2.5′
	EB Thru/RT	7.7	А	0'	7.7	А	0'
Canterbury & Hwy 105	WB Thru/LT	8.0	А	2.5′	8.0	А	2.5′
1100 105	NB RT/LT	12.4	В	2.5′	13.1	В	5'
Cherry Springs	EB Thru/LT	8.0	А	0'	7.7	А	0'
Ranch & Hwy	WB Thru/RT	7.6	А	0'	7.7	А	0'
105	SB RT/LT	11.6	В	2.5′	10.9	В	0'
	EB Thru/RT	8.0	А	0'	7.7	А	0'
Appaloosa & Hwy 105	WB Thru/LT	7.6	А	0'	7.7	А	0'
HWY 105	NB RT/LT	11.2	В	2.5′	10.9	В	2.5′

Table 10 shows the long-range horizon weekday level of service for all the study intersections.

Table 10: Long-Range Horizon Weekday Intersection LOS

Table 11 shows the long-range horizon weekend level of service for all the study intersections.

		Weekend A.M. Peak Hour			Weekend P.M. Peak Hour		
Intersection	Movement	Delay		95%			95%
		(s)	LOS	Queue	Delay (s)	LOS	Queue
Contorbury	WB RT/LT	8.4	А	0'	8.4	А	0'
Canterbury & Saddlewood	NB Thru/RT	7.2	А	0'	7.2	А	0'
586616 0000	SB Thru/RT	7.3		А	0'		
Cantarkum 8	EB Thru/RT	7.6	А	0'	7.8	А	0'
Canterbury & Hwy 105	WB Thru/LT	7.9	А	0'	8.2	А	0'
HWY 105	NB RT/LT	12.8	В	2.5′	13.9	В	2.5′
Cherry Springs Ranch & Hwy 105	EB Thru/LT/RT	7.8	А	0'	7.6	А	0'
	WB Thru/LT/RT	7.9	А	2.5′	8.3	А	5′
	NB Thru/LT/RT	12.7	В	2.5′	13.8	В	5′
105	SB Thru/LT/RT	11.6	В	2.5′	12.7	В	2.5′
	EB Thru/RT	7.9	А	0'	7.8	А	0'
Appaloosa & Hwy 105	WB Thru/LT	7.6	А	0'	7.8	А	0'
1100 105	NB RT/LT	11.1	В	2.5′	10.4	В	0'

le 11: Long-Range Horizon Weekend Intersection LOS
--

Please indicate the turn movements on the tables 12 & 13. Identify the direction of travel such as westbound left turn on Hwy 105 or northbound left on Canterbury.

AUXILIARY LANE ANALYSIS

Also clarify the movement at

Per the Engineering Criteria Manual (ECM), and on a principal arterial, at an access, when the pr turning volume is 10 vph-or greater. Table 12 sh turn movements at each intersection versus the

> Indicate whether dedicated auxiliary lanes are needed on northbound Canterbury at

Intersection	Peak Hour	Projected are Turns (vp Hw)		on northbo
	Weekday AM	43	10	Yes
Canterbury &	Weekday PM	16	10	Yes
Hwy 105	Weekend AM	7	10	No
	Weekend PM	9	10	No
	Weekday AM	12	10	Yes
Appaloosa &	Weekday PM	8	10	No
Hwy 105	Weekend AM	4	10	No
	Weekend PM	7	10	No
Canterbury & Saddlewood	Weekday AM	117	10	Yes
	Weekday PM	39	- 10	Yes
	Weekend AM	17	10	Yes
	Weekend PM	22	10	Yes
Cherry Springs Ranch & Hwy 105	Weekday AM	0	10	No
	Weekday PM	0	10	No
	Weekend AM	53	10	Yes
	Weekend PM	72	10	Yes

Table 12: Left Turn Lane Analysis

As can be seen from Table 12, an exclusive left turn lane is warranted at the intersection of Canterbury Dr. and Highway 105 for the weekday A.M. and P.M. peak hours, Appaloosa Rd. and Highway 105 for the weekday A.M. peak hour, Canterbury Dr. and Saddlewood Rd. for the weekday and weekend A.M. and P.M. peak hours, and Cherry Springs Ranch Dr. and Highway 105 for the weekend A.M. and P.M. peak hours.

Canterbury is not an arterial roadway therefore the criteria would be 25 vph. revise table accordingly.

Per the ECM, an exclusive right turn lane is required on a principal arterial, at an access, when the projected peak hour right ingress turning volume is 25 vph or greater. Table 13 shows the project generated right turn movements at each intersection versus the ECM criteria.

Intersection	Peak Hour	Projected Right Turns (vph)	ECM Criteria (vph)	Warranted
	Weekday AM	74	25	Yes
Canterbury &	Weekday PM	30	25	Yes
Hwy 105	Weekend AM	10	25	No
	Weekend PM	16	25	No
	Weekday AM	10	25	No
Appaloosa &	Weekday PM	5	25	No
Hwy 105	Weekend AM	5	25	No
	Weekend PM	10	~25~	No
Canterbury & Saddlewood	Weekday AM	0	25	No
	Weekday PM	3	25	No
	Weekend AM	1	25	No
	Weekend PM	1	25	No
	Weekday AM	0	25	No
Cherry Springs Ranch & Hwy 105	Weekday PM	0	25	Np
	Weekend AM	80	25	Yes
	Weekend PM	108	25	Yes

Table 13: Right Turn Lane Analysis

As can be seen from Table 13, an exclusive right turn lane is warranted at the intersection of Canterbury Dr. and Highway 105 for the weekday A.M. and P.M. peak hours and at the intersection of Cherry Springs Ranch Dr. and Highway 105 for the weekend A.M. and P.M. peak hours.

Per the ECM, a right turn acceleration lane is required on a principal arterial when the projected right turning movement volume is 50 vph or greater and the posted speed limit is greater than 40 mph. Table 14 shows the project generated right turn movements at each intersection versus the ECM criteria.

Canterbury and Saddlewood are not an arterial roadway therefore the criteria would be 50 vph. revise table accordingly.

denerally not required per criteria for these ECM Proiected lower classification Peak Hour Intersection Right Turns Criteria Warranted roadways. Revise (vph) (vph) accordingyly. Weekday 8 50 No AM Weekday 8 50 No Canterbury & ΡM Hwy 105 Weekend 8 50 No AM Weekend 4 50 No ΡM Weekday 4 50 No AM Weekday 6 50 No Appaloosa & ΡM Hwy 105 Weekend 2 50 No AM Weekend 2 50 No PM Weekday 14 50 No AM Weekday 3 50 No Canterbury & PM Saddlewood Weekend 5 50 No AM Weekend 21 50 No PM Weekday 0 50 No AM Weekday Cherry Springs 0 50 No PM Ranch & Hwy Weekend 105 5 50 No AM Weekend 8 50 No PM

Colorado Pacceleration lanes are

Special Use Traff

 Table 14: Right Turn Acceleration Lane Analysis

As can be seen from Table 14, a right turn acceleration lane is not warranted at any of the study intersections.

CONCLUSIONS

This traffic impact study analyzed the traffic impacts of the proposed tulip festival and pumpkin patch on the adjacent roadway network.

The LOS analysis for all intersections indicated that the LOS for all approaches to the intersection would continue to operate at LOS B or better, for the A.M. and P.M. peak hours of the events. This remains true for the existing plus development, short-range horizon, and long-range horizon scenarios.

An auxiliary left turn lane is warranted at the intersection of Canterbury Dr. and Highway 105 for the weekday A.M. and P.M. peak hours, Appaloosa Rd. and

Highway 105 for the weekday A.M. peak hour, Canterbury Dr. and Saddlewood Rd. for the weekday and weekend A.M. and P.M. peak hours, and Cherry Springs Ranch Dr. and Highway 105 for the weekend A.M. and P.M. peak hours

An auxiliary right turn lane is warranted at the intersection of Canterbury Dr. and Highway 105 for the weekday A.M. and P.M. peak hours and at the intersection of Cherry Springs Ranch Dr. and Highway 105 for the weekend A.M. and P.M. peak hours

Due to the limited time that these events will operate during a year, and considering that the access off of Highway 105 will only be used on the weekends that the events are occurring, an alternative to constructing the warranted auxiliary lanes would be for the property owner to hire traffic flaggers, or off-duty sheriff deputies, to direct traffic during the times that the events are operating.

Based on the analysis presented in this report, the proposed tulip festival and pumpkin patch are not expected to have any negative impacts on the surrounding roadway network and existing accesses.

Submit a deviation request in the next submittal for the auxiliary lanes that are warranted per analysis for consideration and review from the ECM administrator.

Revise to state whether MTCP calls for improvements in the vicinity and state what they are. Revise to address road impact fees that will be required to be paid.

CERTIFICATION PAGE

Move this page to after the cover page.

Engineer's Statement

The attached traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.

Brett Louk, PE #0055474

Date:

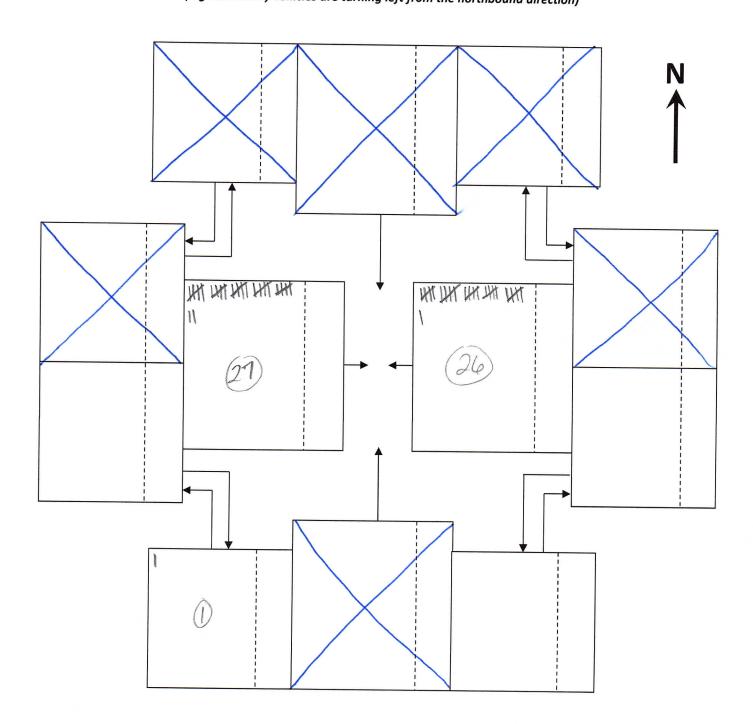
Developer's Statement

I, the Developer, have read and will comply with all commitments made on my behalf within this report.

Colorado Pumpkin Patch LLC 18065 Saddlewood Road Monument, CO 80132 Date:

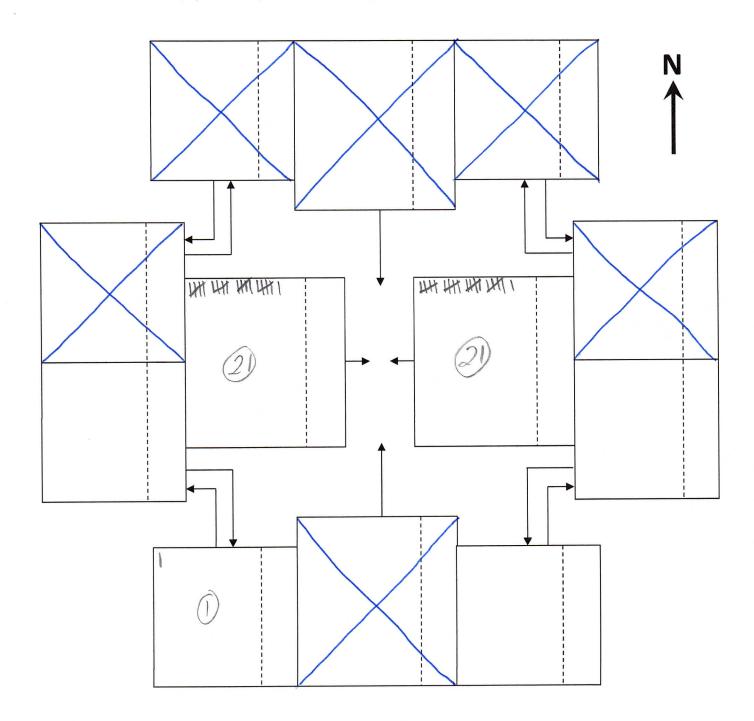
APPENDIX

VICINITY MAP


EXISTING TURNING MOVEMENT COUNTS

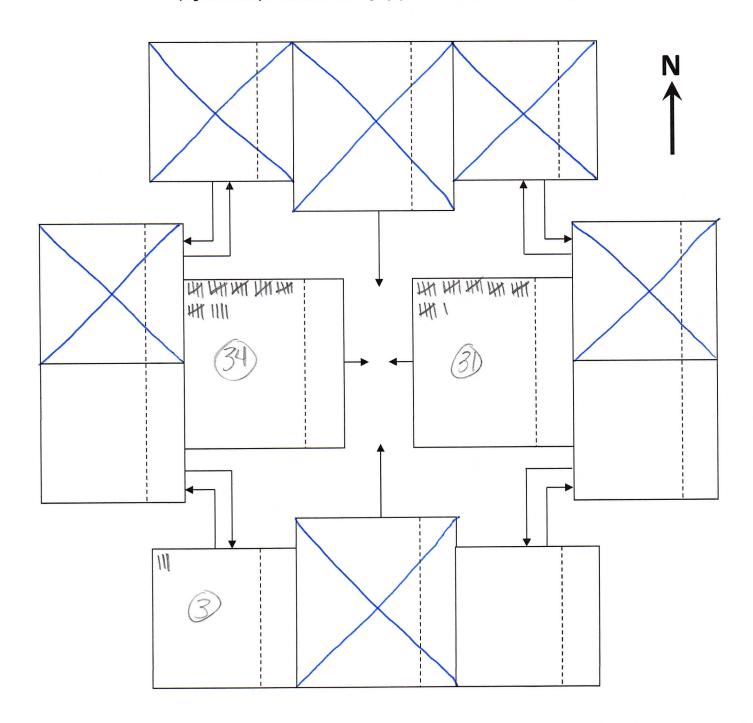
Four Approach Field Sheet

N/S Street:	Canterbury Dr
E/W Street:	105


Time:	9:00 to 9:15
Date:	12/17/22
Weather:	
Observer:	Brett

Four Approach Field Sheet

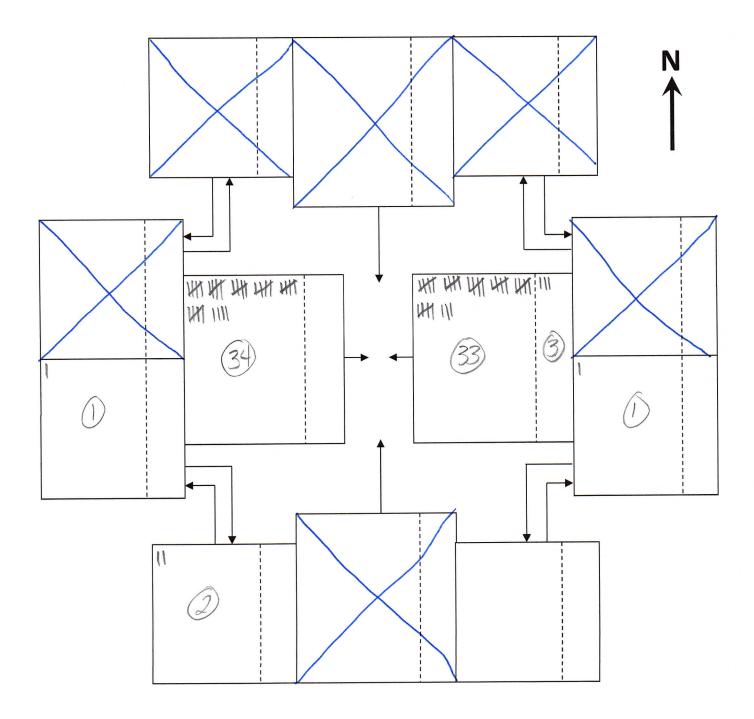
N/S Street:	Carterbury Dr
E/W Street:	105


Time:	9:15 to 9:30
Date:	12/17/22
Weather:	, ,
Observer:	Brett

Four Approach Field Sheet

N/S Street: <u>Canter bury</u> Dr E/W Street: 105

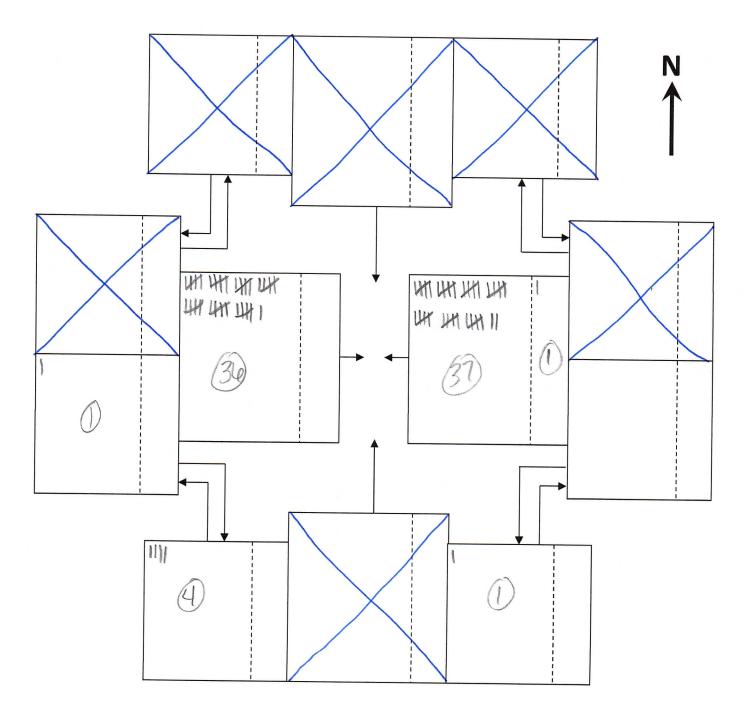
Time:	9:30 to 9:45
Date:	12/17/22
Weather:	
Observer:	Brett



Four Approach Field Sheet

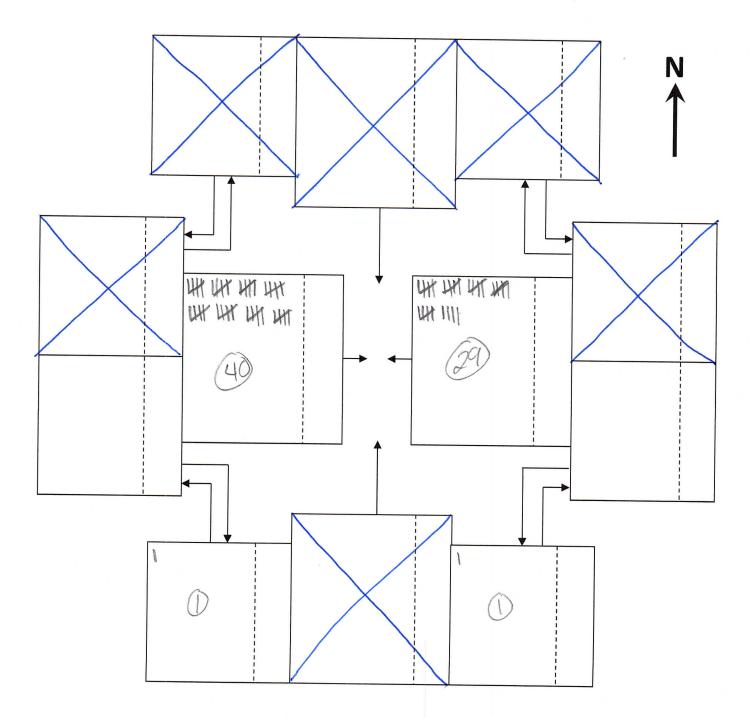
N/S Street:	Canterbury Dr
E/W Street:	105

Time	: 9:45 to 10:00
Date	: 12/17/22
Weather	:
Observer	: Brett


Counts are Conducted From the Direction of Travel

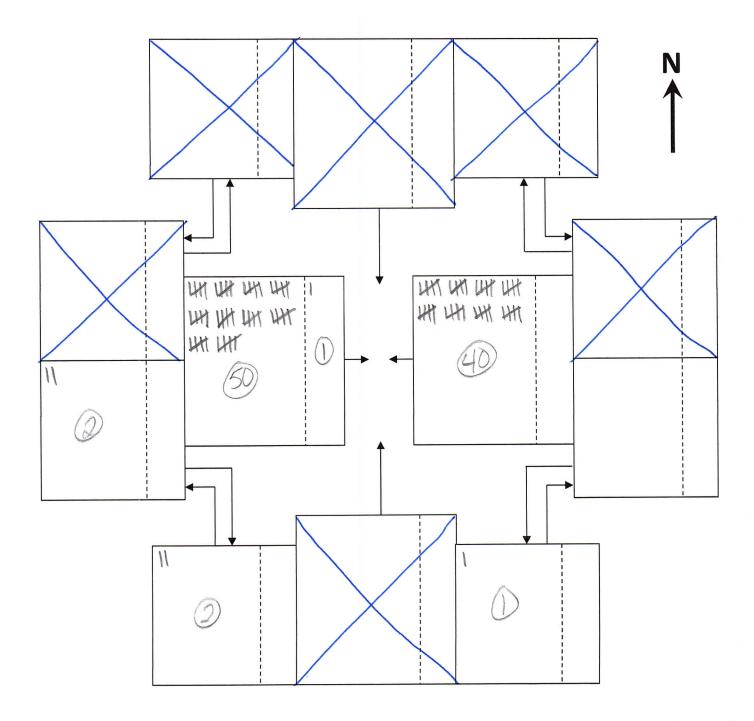
Four Approach Field Sheet

		Time:	1:00 to 1:15	
N/S Street:	Canterbury Dr	Date:	12/17/22	
E/W Street:	105	Weather:		
		Observer:	Brett	


Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

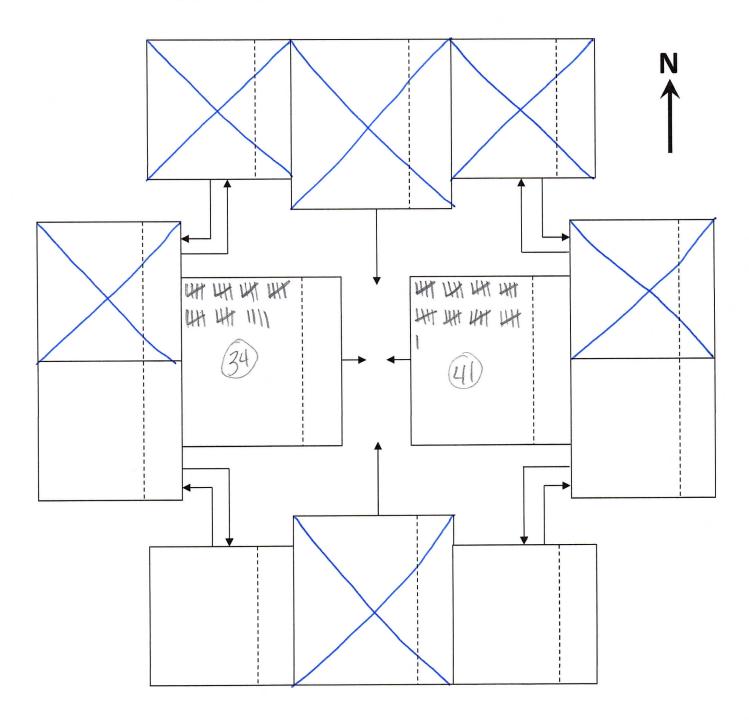
		Time:	1:15 to 1:30	
N/S Street:	Canterbury Dr	Date:	12/17/22	
E/W Street:	105	Weather:		
		Observer:	Brett	


Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

		Time:	1:30 to 1:45
N/S Street:	Canterbury Dr	Date:	12/17/22
E/W Street:	105	Weather:	
		Observer:	Brett

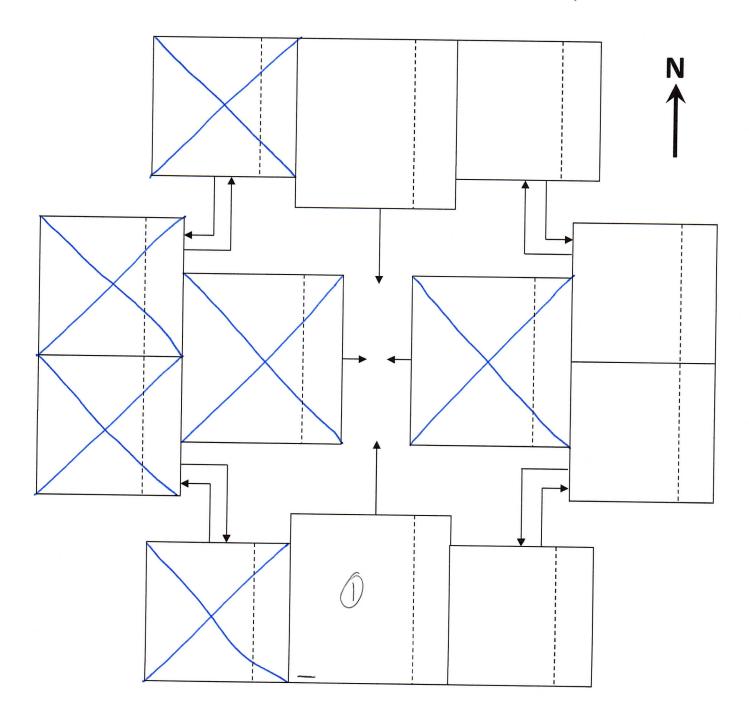
Counts are Conducted From the Direction of Travel



Four Approach Field Sheet

1. 10

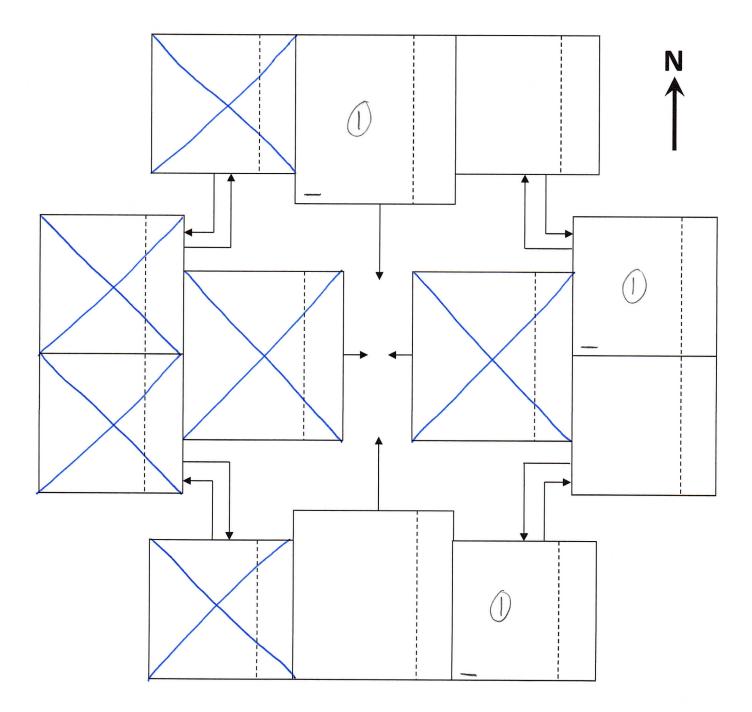
		Time:	1.45 to 2.00
N/S Street:	Canterbury Dr	Date:	12/17/22
E/W Street:	105	Weather:	
		Observer:	Brett


Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street: <u>Canterbury</u> Dr E/W Street: <u>Saddlewood Rd</u>

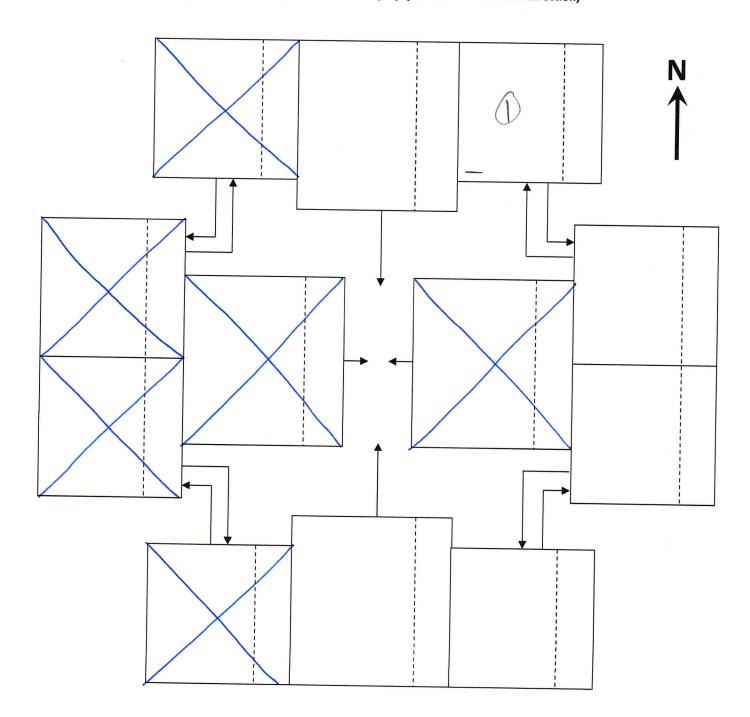
Time:	9:00 to 9:15
Date:	12/17/22
Weather:	7º Sunny
Observer:	Jernifer



Four Approach Field Sheet

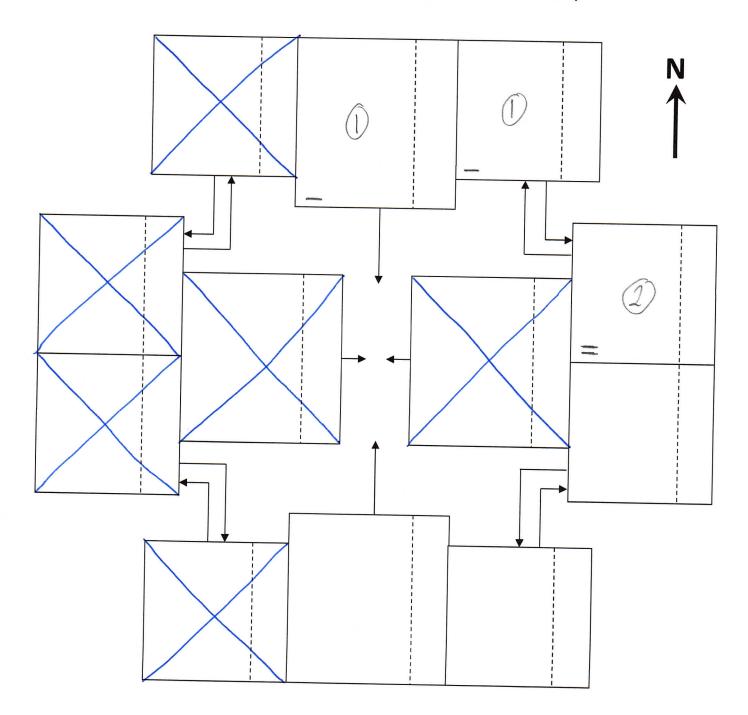
N/S Street: <u>Canterbury</u> Dr E/W Street: <u>Saddle wood</u> Rd

Time:	9:15 to 9:30
Date:	12/17/22
Weather:	7° Sunny
Observer:	Jernite


Counts are Conducted From the Direction of Travel

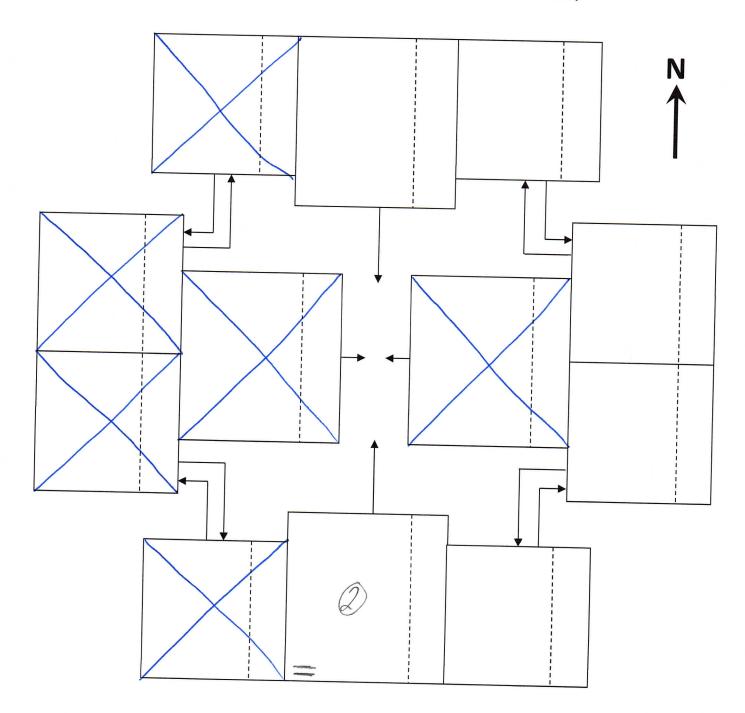
Four Approach Field Sheet

N/S Street: <u>Canterbury</u> Dr E/W Street: <u>Saddlewood</u> Rd


Time:	9:	30	to	9:45	
Date:	12	117	122		
Weather:	70	Jun	NU		
Observer:	Jer	nil	er		

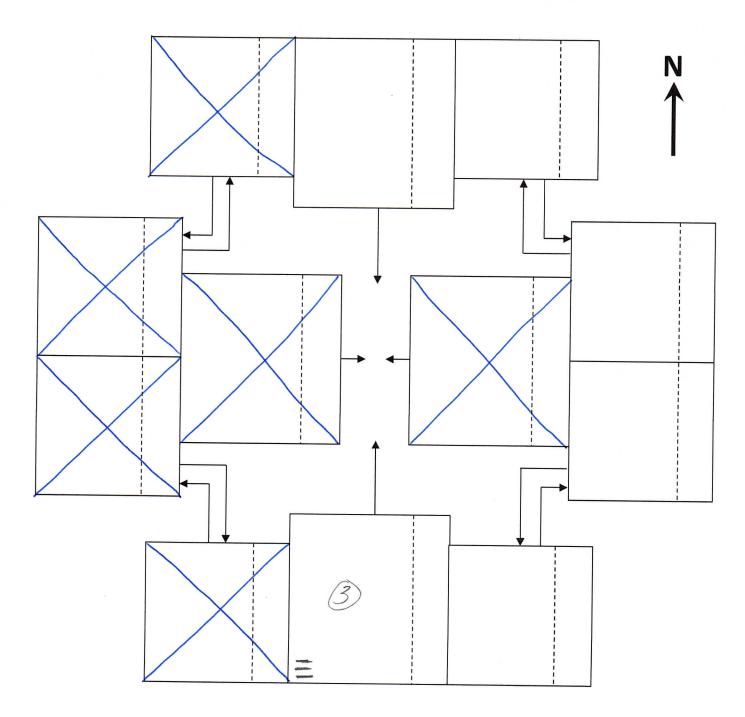
Four Approach Field Sheet

N/S Street: <u>Cantur bury</u> Dr E/W Street: <u>Saddlewood Rd</u>


Time:	9:45 to 10:00	
Date:	12/17/22	-
Weather:	7° Sunny	-
Observer:	Jenniter	-

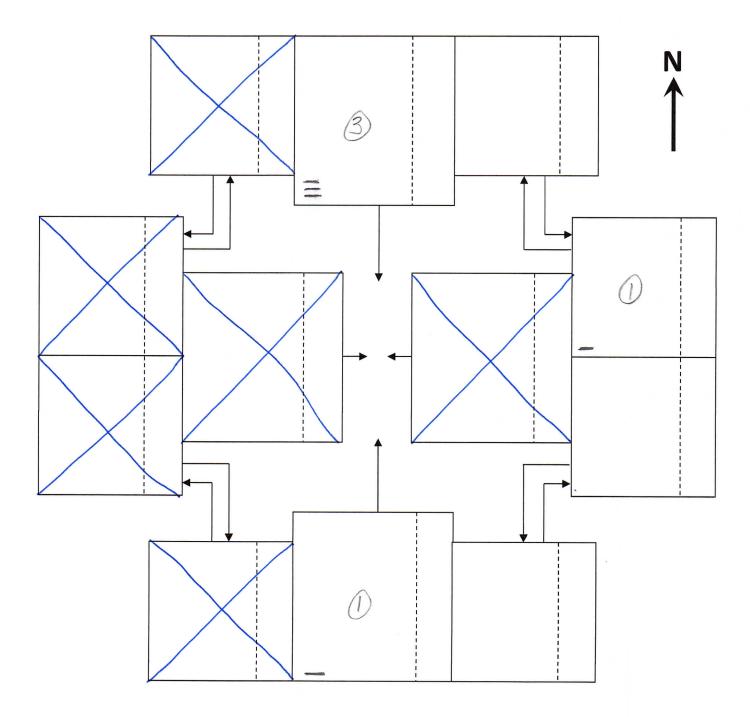
Four Approach Field Sheet

N/C C.		Time:	1:00 to 1:15
N/S Street:	Canterbury Dr	Date:	12/17/22
E/W Street:	Saddlewod Rd	Weather:	, == , ==
		Observer:	Jennifer


Counts are Conducted From the Direction of Travel

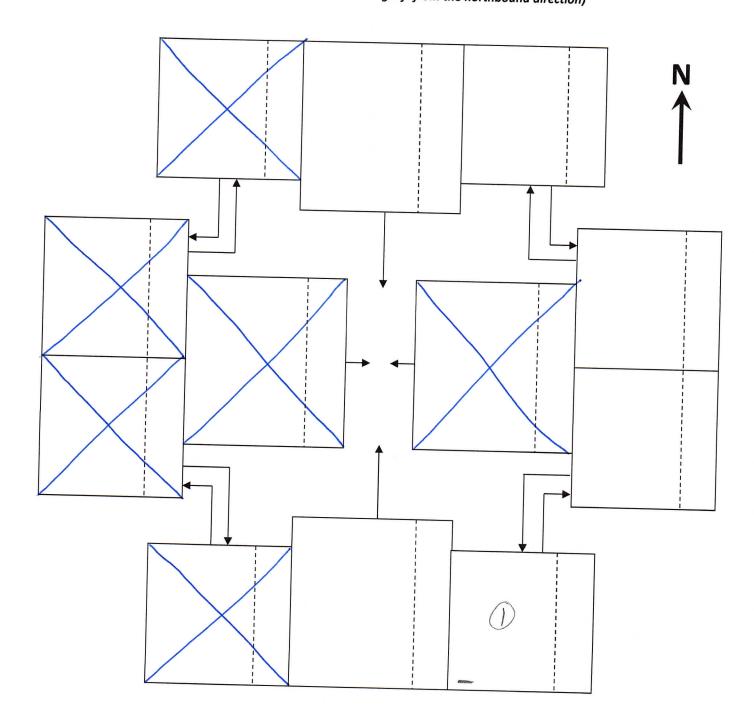
Four Approach Field Sheet

		Time:	1:15 to 1:30
N/S Street:	Canterbury Dr	Date:	12/17/22
E/W Street:	Saddlewod Rd	Weather:	28° Sunny
		Observer:	Jennifer


Counts are Conducted From the Direction of Travel

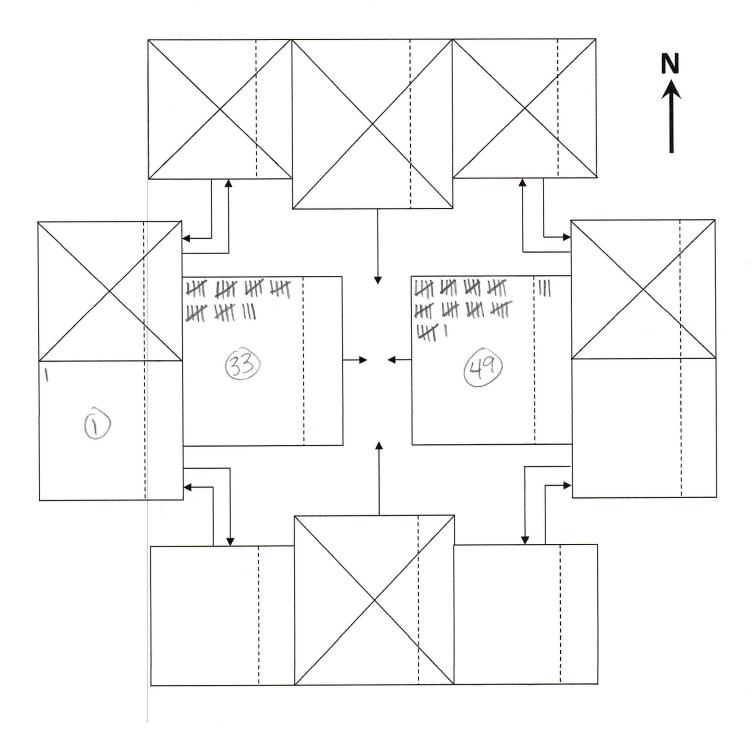
Four Approach Field Sheet

		Time:	1:30 to 1:45	
N/S Street:	Canterbury Dr	Date:	12/17/22	
E/W Street:	Saddlewod Rd	Weather:		
		Observer:	Jennifer	


Counts are Conducted From the Direction of Travel

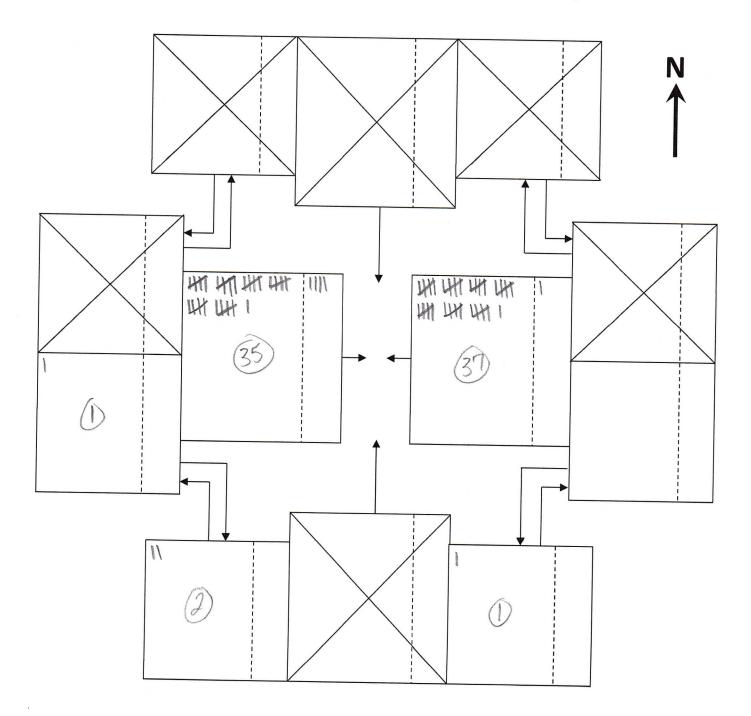
Four Approach Field Sheet

N/C Charles	-	Time:	1:45 to 2:00	
N/S Street: E/W Street:	Canterbury Dr	Date:	12/17/22	
	Saddlewod Rd	Weather:	28° Sunny	
		Observer:	Jennifer	


Counts are Conducted From the Direction of Travel (e.g. how many vehicles are turning left from the northbound direction)

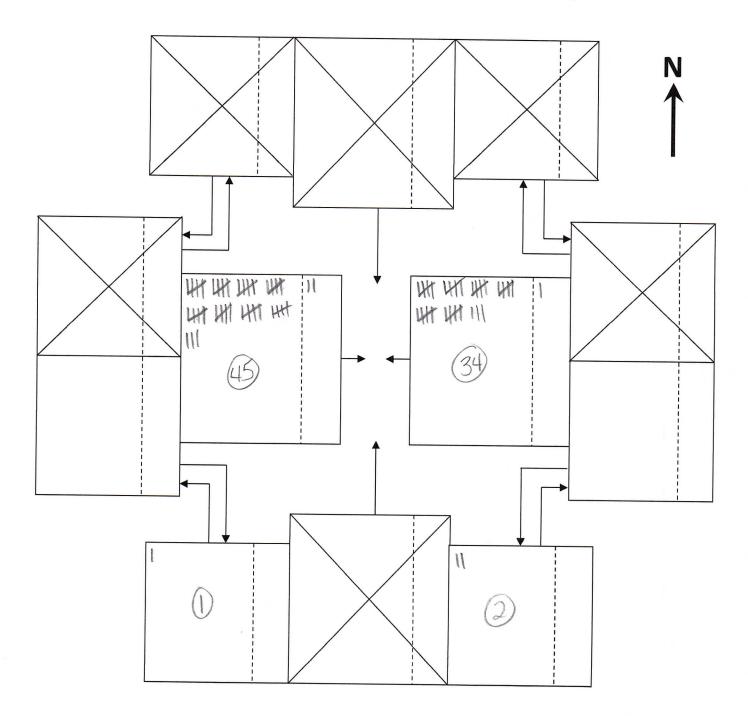
Four Approach Field Sheet

		Time:	9:00 to 9:15
N/S Street:	Canterbury Dr	Date:	12/21/22
E/W Street:	105	Weather:	
		Observer:	Brett


Counts are Conducted From the Direction of Travel

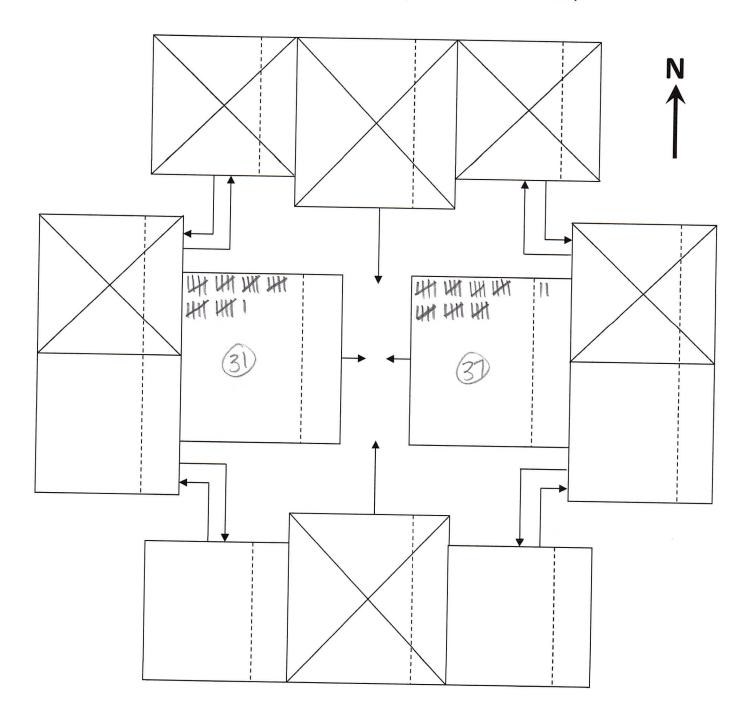
Four Approach Field Sheet

		Time:	9:15 to 9:30
N/S Street:	Canterbury Dr	Date:	12/21/22
E/W Street:	105	Weather:	
		Observer:	Brett


Counts are Conducted From the Direction of Travel

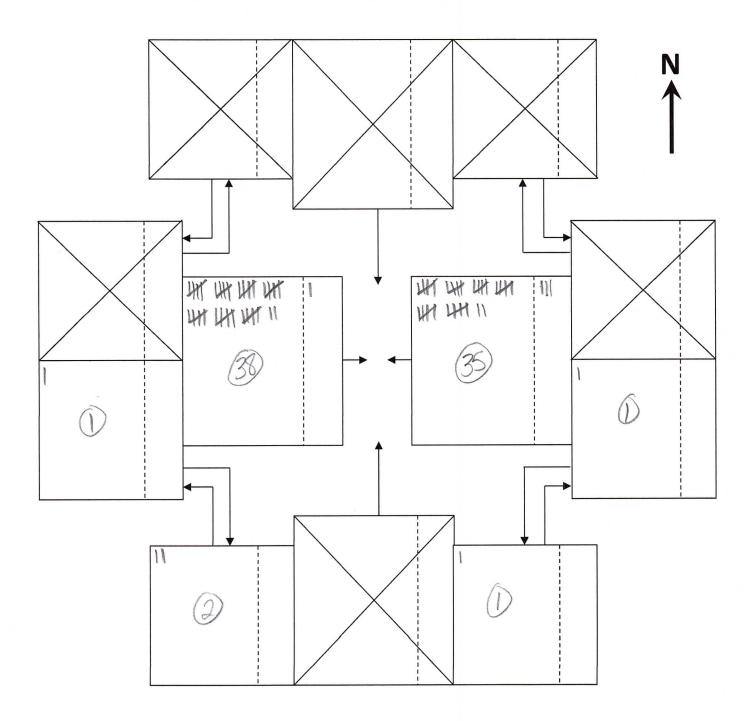
Four Approach Field Sheet

		Time:	9:30 to 9:45	
N/S Street:	Canterbury Dr	Date:	12/21/22	
E/W Street:	105	Weather:		
		Observer:	Brett	


Counts are Conducted From the Direction of Travel

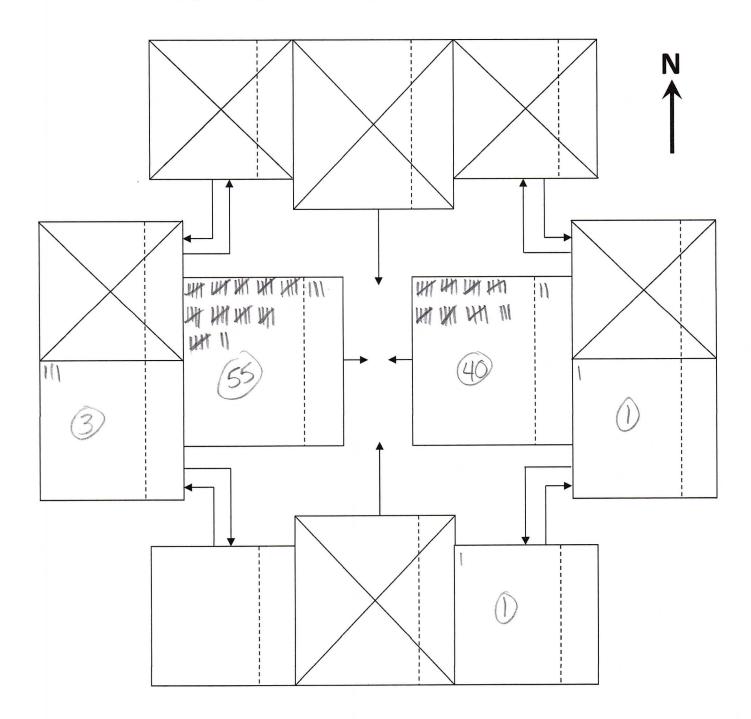
Four Approach Field Sheet

		Time:	9:45 to 10:00
N/S Street:	Canterbury Dr	Date:	12/21/22
E/W Street:	105	Weather:	
		Observer:	Brett


Counts are Conducted From the Direction of Travel

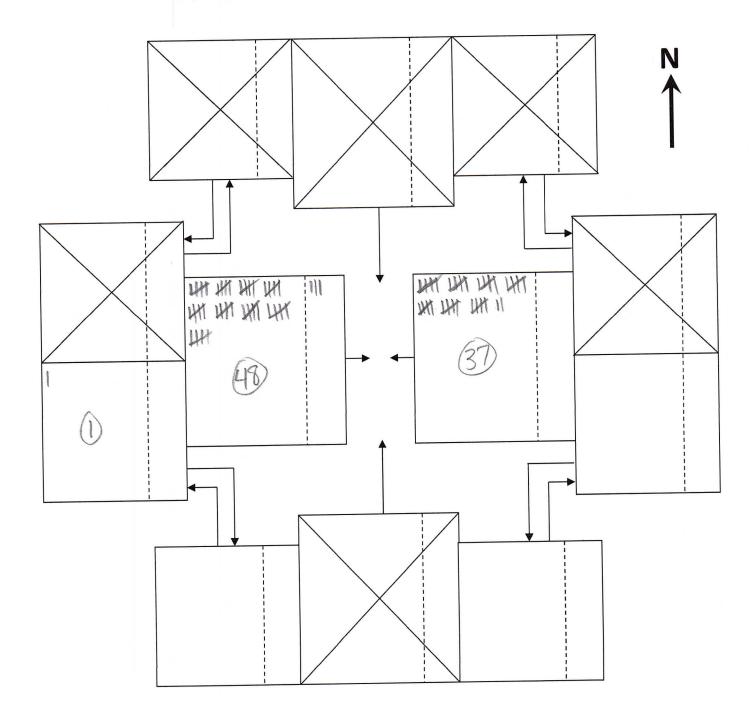
Four Approach Field Sheet

		Time:	1:00 to 1:15
N/S Street:	Canterbury Dr	Date:	12/21/22
E/W Street:	105	Weather:	
		Observer:	Brett

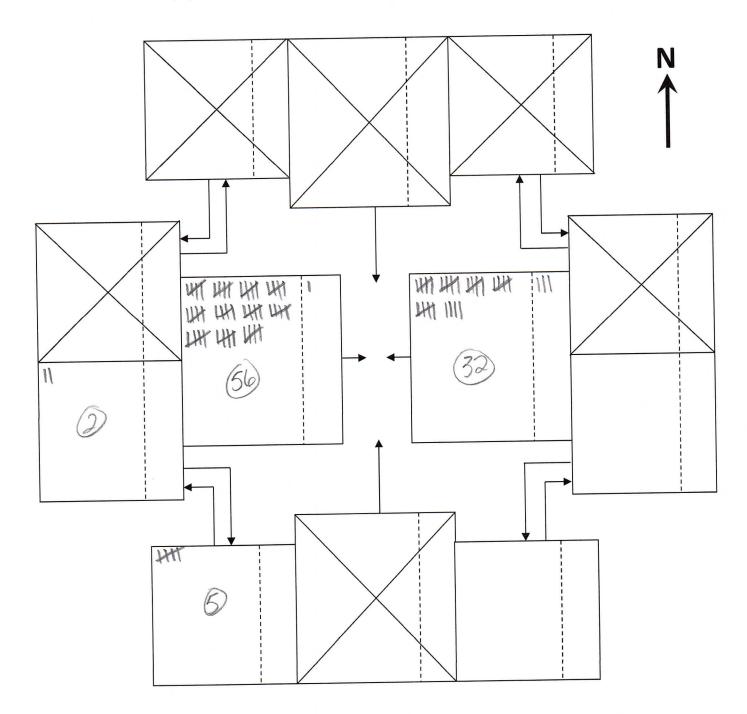

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

		Time:	1:15 to 1:30
N/S Street:	Canterbury Dr	Date:	12/21/22
E/W Street:	105	Weather:	
		Observer:	Brett

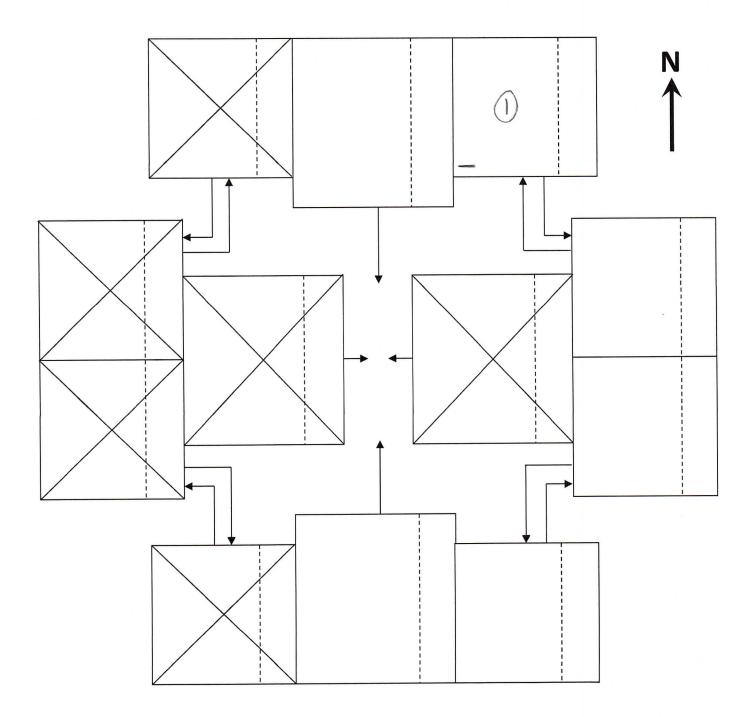

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet


		Time:	1:30 to	1:45
N/S Street:	Canterbury Dr	Date:	12/21	1/22
E/W Street:	105	Weather:		
		Observer:	Bre	ett

Counts are Conducted From the Direction of Travel

Vehicle Turning Movement CountFour Approach Field SheetTime: 1:45 to 2:00N/S Street:Canterbury DrE/W Street:105Weather:Dbserver:Observer:Brett


Counts are Conducted From the Direction of Travel

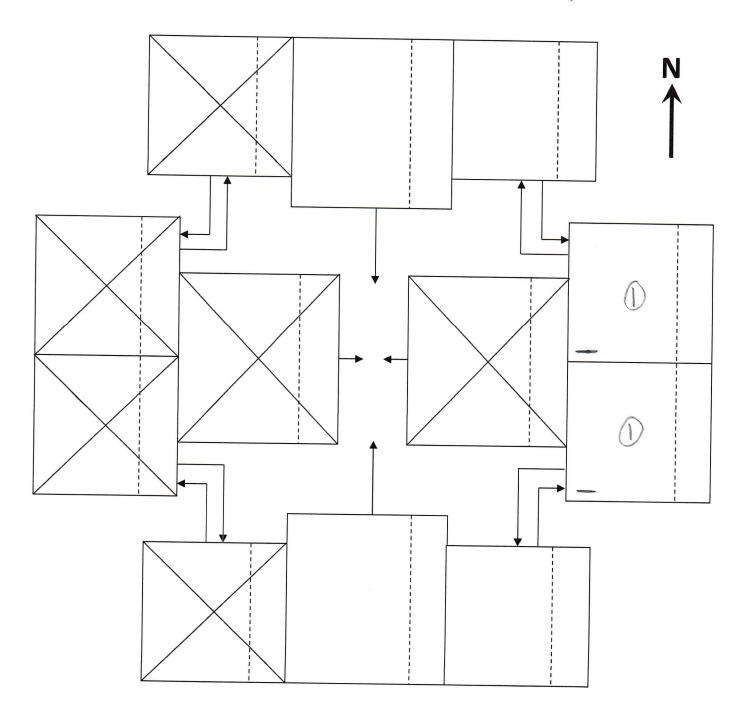
Four Approach Field Sheet

		Time:	9:00 to 9:15
N/S Street:	Canterbury Dr	Date:	12/21/22
E/W Street:	Saddlewood Rd	Weather:	
_		Observer:	Jennifer

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

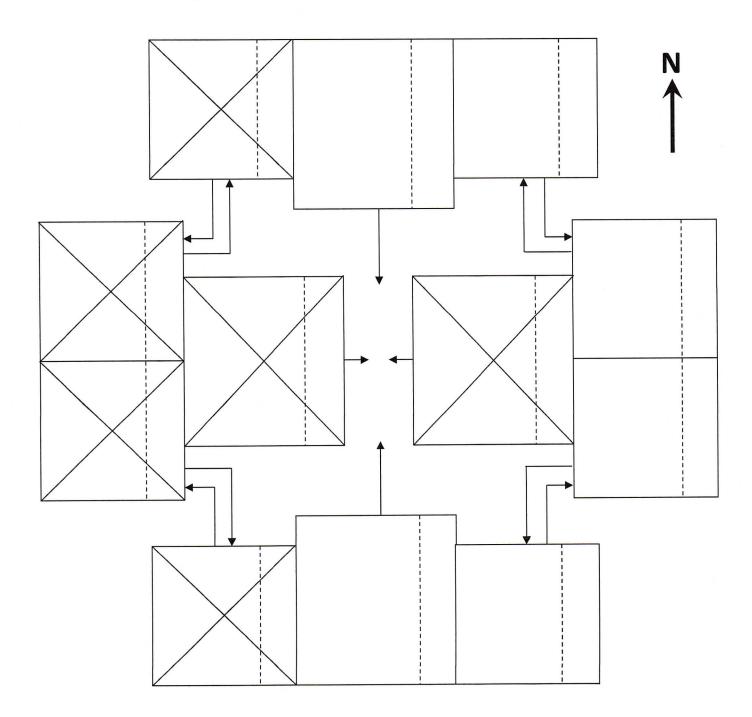
		Time:	9:15 to 9:30
N/S Street:	Canterbury Dr	Date:	12/21/22
E/W Street:	Saddlewood Rd	Weather:	
		Observer:	Jennifer


Counts are Conducted From the Direction of Travel (e.g. how many vehicles are turning left from the northbound direction)

Ν

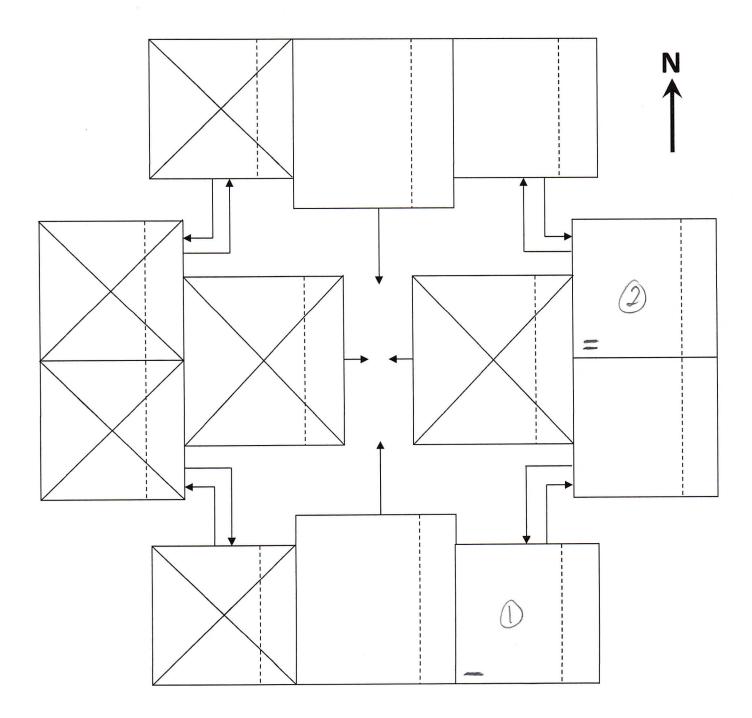
Four Approach Field Sheet

		Time:	9:30 to 9:45	
N/S Street:	Canterbury Dr	Date:	12/21/22	
E/W Street:	Saddlewood Rd	Weather:		
		Observer:	Jennifer	


Counts are Conducted From the Direction of Travel

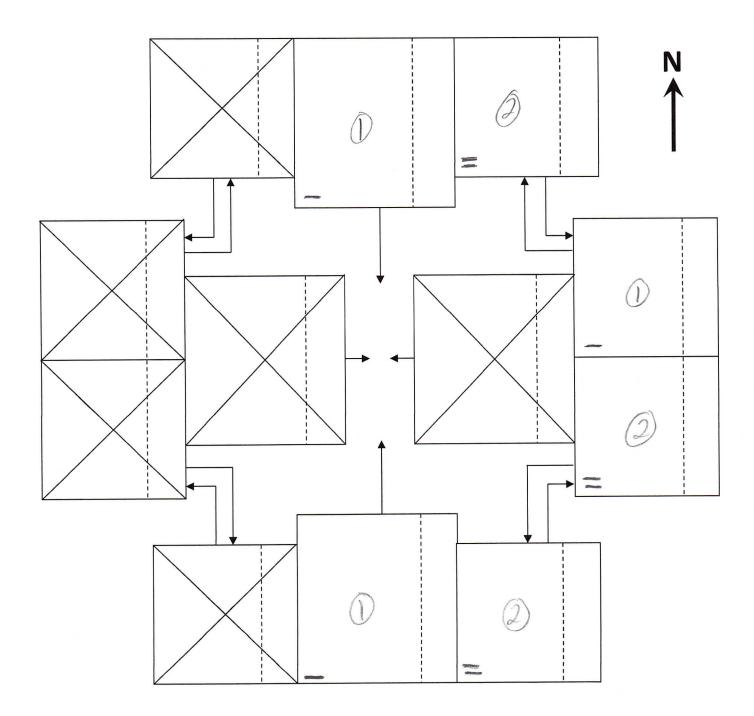
Four Approach Field Sheet

		Time:	9:43 to 10:00
N/S Street:	Canterbury Dr	Date:	12/21/22
E/W Street:	Saddlewood Rd	Weather:	
		Observer:	Jennifer


Counts are Conducted From the Direction of Travel

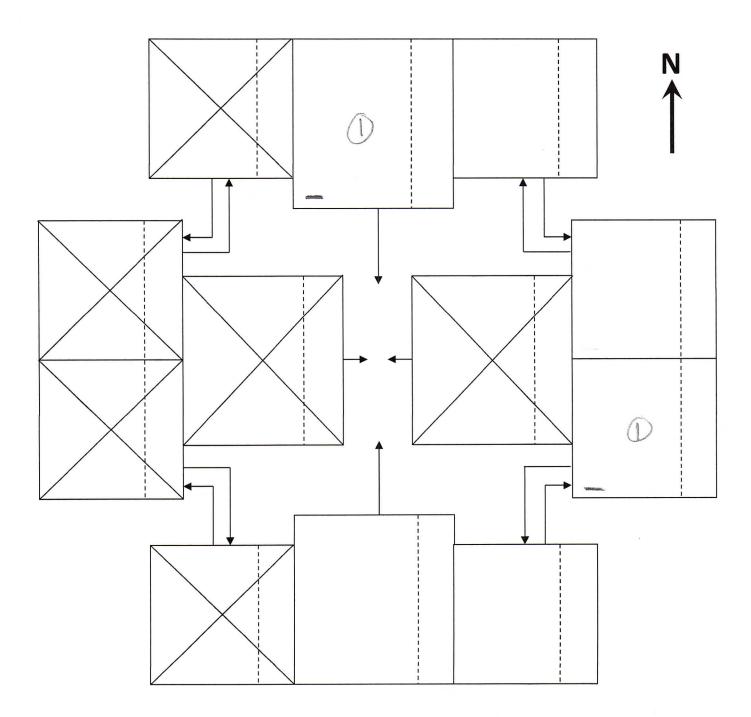
Four Approach Field Sheet

		Time:	1:00	to	1:15
N/S Street:	Canterbury Dr	Date:	1	2/21/	/22
E/W Street:	Saddlewood Rd	Weather:			
		Observer:		lennif	er


Counts are Conducted From the Direction of Travel

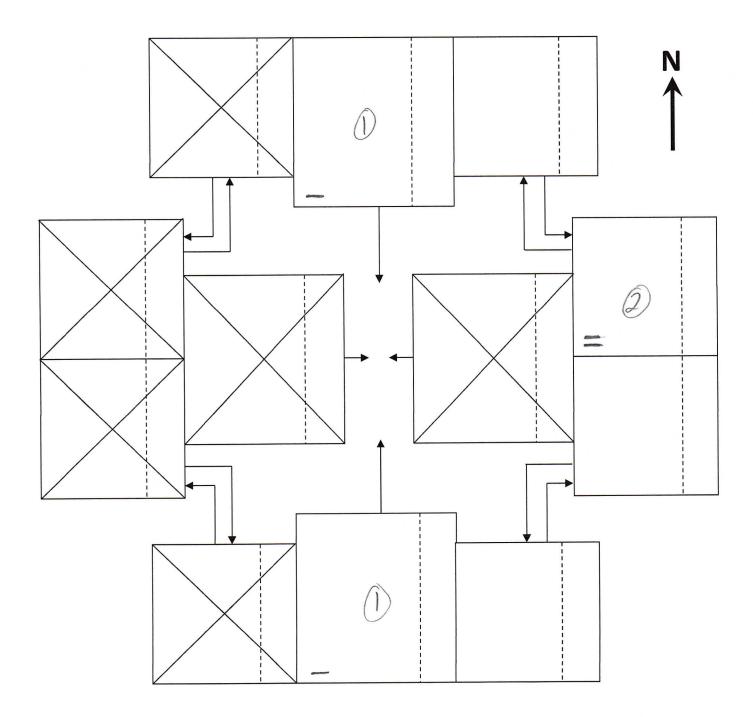
Four Approach Field Sheet

		Time:	1:15	to	1:30	
N/S Street:	Canterbury Dr	Date:	1	2/21,	/22	
E/W Street:	Saddlewood Rd	Weather:				
		Observer:		Jennij	fer	


Counts are Conducted From the Direction of Travel

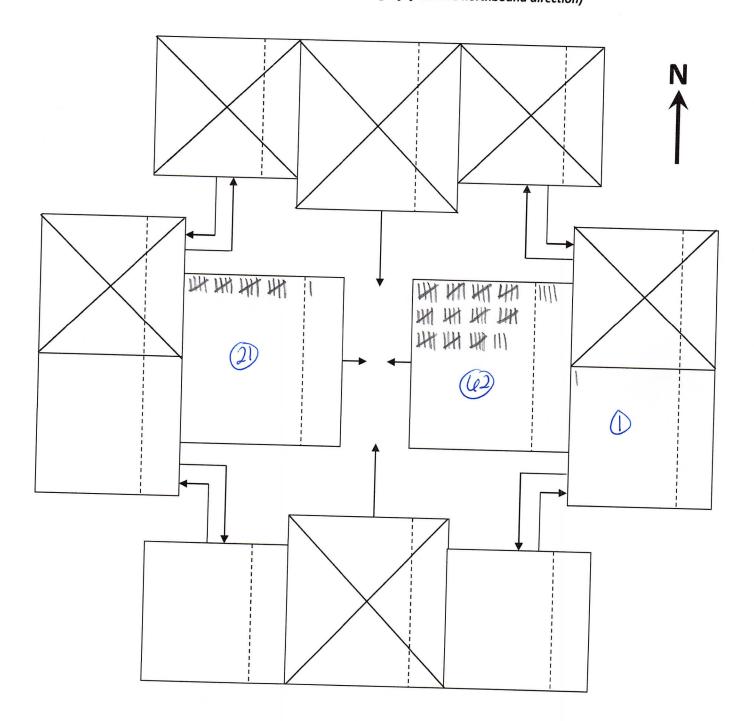
Four Approach Field Sheet

		Time:	1:30 to 1:45	
N/S Street:	Canterbury Dr	Date:	12/21/22	
E/W Street:	Saddlewood Rd	Weather:		
		Observer:	Jennifer	


Counts are Conducted From the Direction of Travel

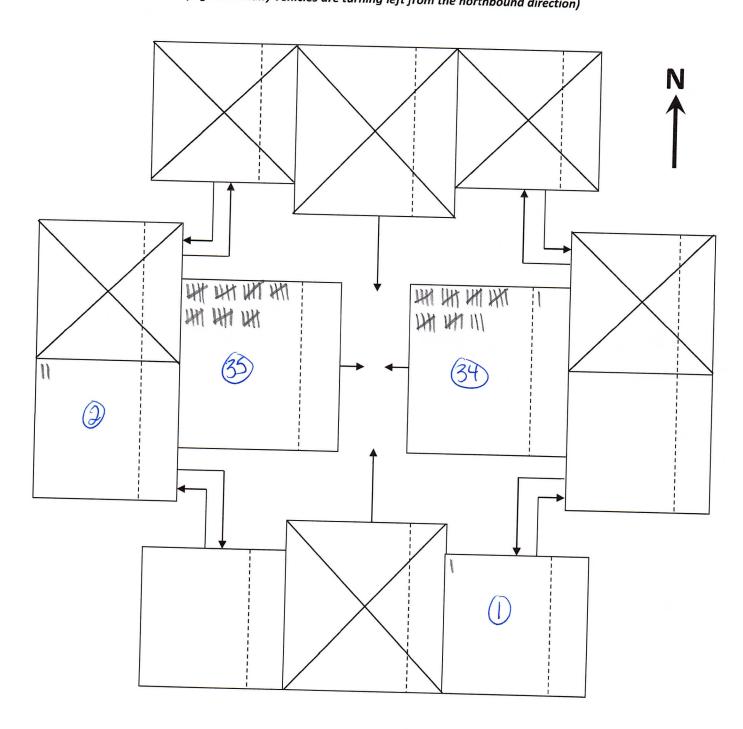
Four Approach Field Sheet

		Time:	1:45	to	2:00
N/S Street:	Canterbury Dr	Date:	1	2/21/	22
E/W Street:	Saddlewood Rd	Weather:			
		Observer:		lennif	er


Counts are Conducted From the Direction of Travel

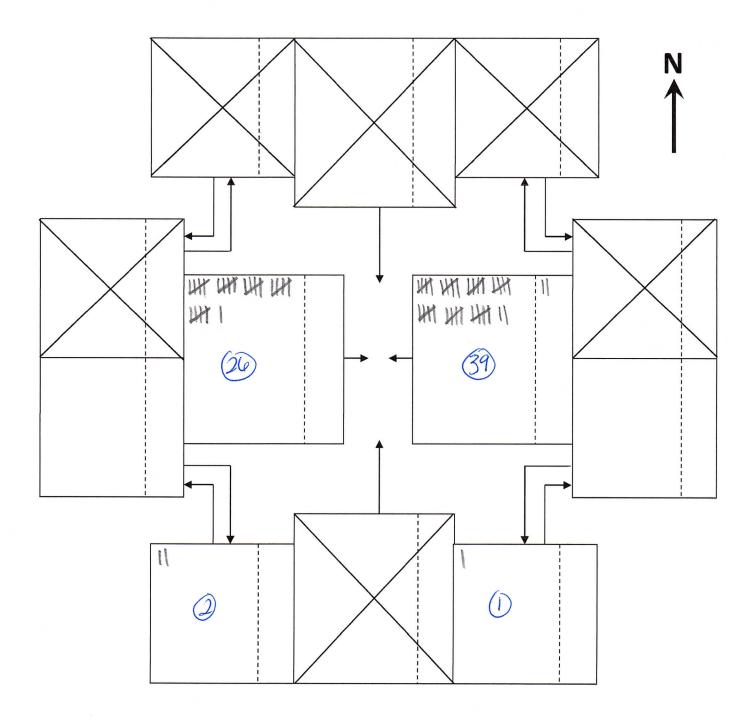
Four Approach Field Sheet

N/C Church		Time:	9:00	to 9:15
	Appaloosa Rd	D'atter	3/14/23	
E/W Street:	Highway 105	Weather:	Partly	claudy
		Observer:	Sreff	Louk


Counts are Conducted From the Direction of Travel (e.g. how many vehicles are turning left from the northbound direction)

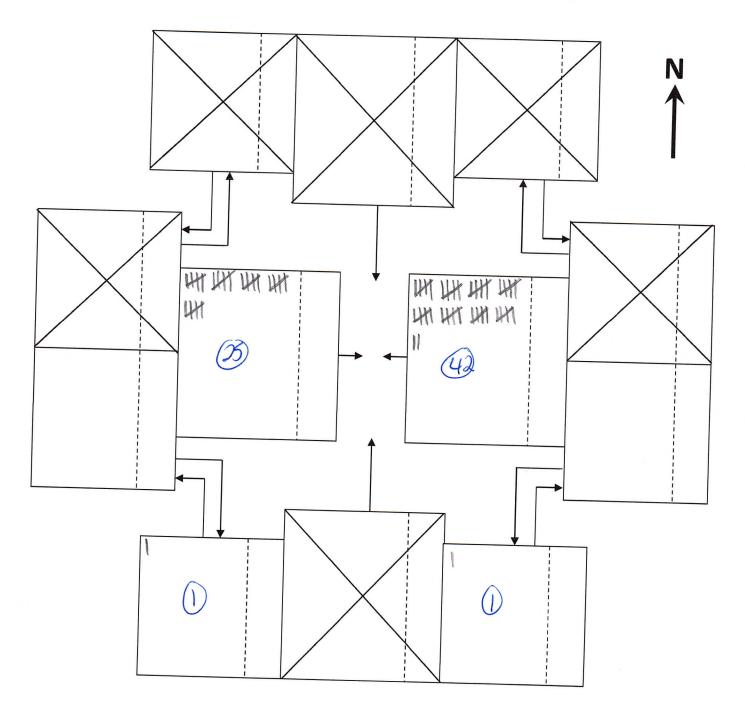
Four Approach Field Sheet

	Appaloosa Rd		<u>9:15</u> 3/14/23	to 9:30	
E/W Street:	Highway 105	Weather:	Partly (cloudy	
		Observer:	Brett L	cuk	


Counts are Conducted From the Direction of Travel (e.g. how many vehicles are turning left from the northbound direction)

Four Approach Field Sheet

		Time:	9:30	to	9:45	
N/S Street:	Appaloosa Rd	Date:	3/14/23			
E/W Street:	Highway 105	Weather:				
		Observer:				


Counts are Conducted From the Direction of Travel

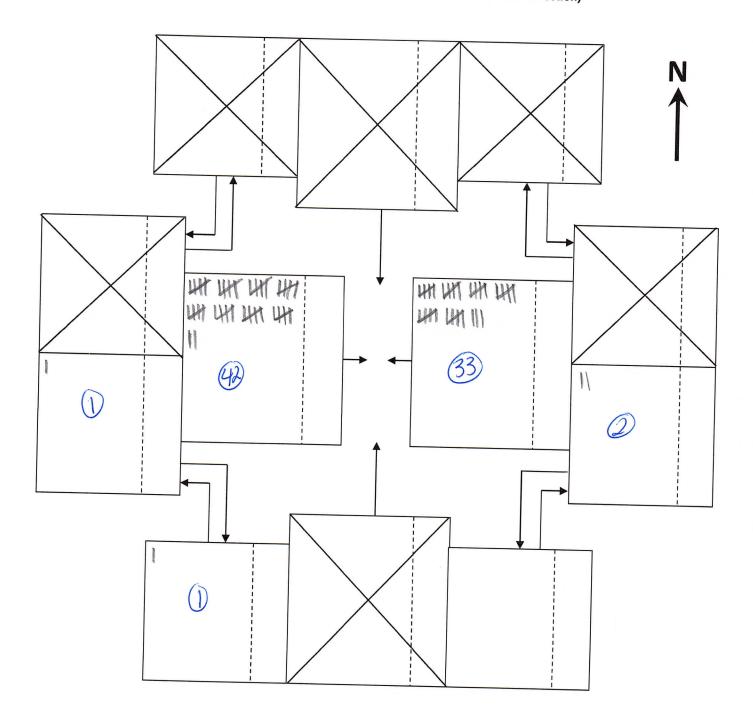
Four Approach Field Sheet

	Appaloosa Rd		<u>9:45</u> 3/14/23	to 10:00	
E/W Street:	Highway 105	Weather: Observer:			_

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

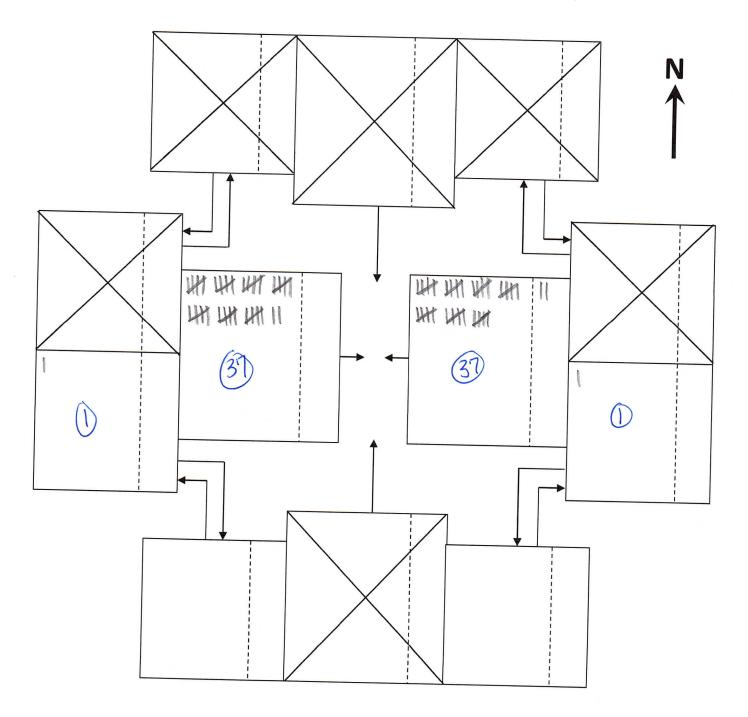
		Time:	1:00	to /:	15
	Appaloosa Rd	Date:	3/14/23		
E/W Street:	Highway 105	Weather:	Parth	Clevely	
		Observer:	Brett	Leuk	


Counts are Conducted From the Direction of Travel

N 州州州州 JH HI HI HI HIT HIT HIT III IN THE THE IN 1

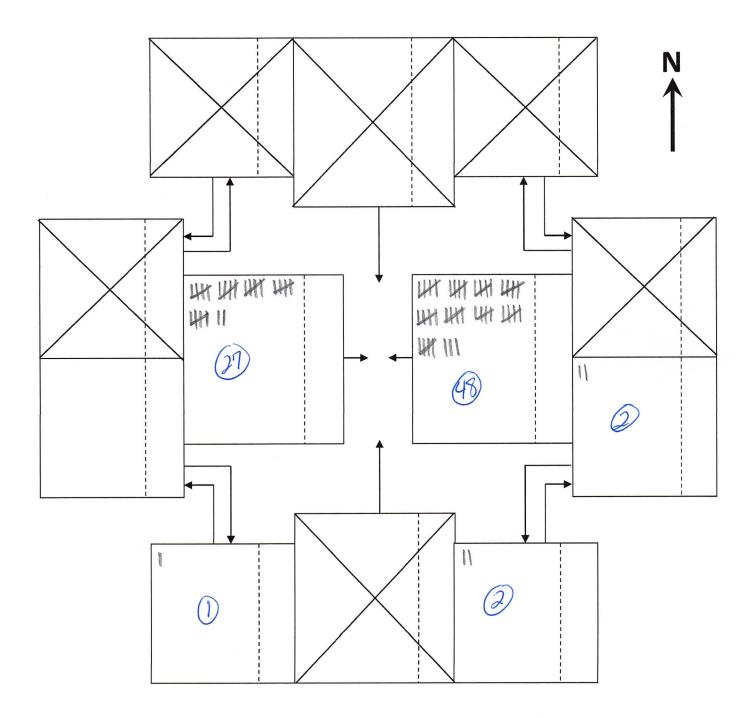
Four Approach Field Sheet

		Time:	1:15	to 1:30	
	Appaloosa Rd	Date:	3/14/23		
E/W Street:	Highway 105	Weather:	Partly	Claudy	
		Observer:	Breff	Louk	


Counts are Conducted From the Direction of Travel (e.g. how many vehicles are turning left from the northbound direction)

Four Approach Field Sheet

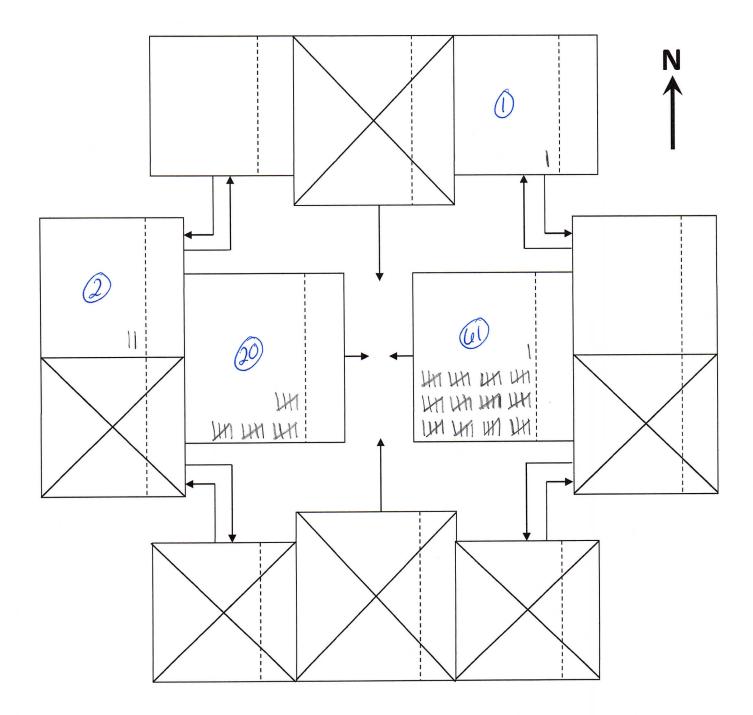
		Time:	1:30	to 1:45	
	Appaloosa Rd	Date:	3/14/23		
E/W Street:	Highway 105	Weather:		Claude	
		Observer:	Breff	Louk	


Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

		Time:	1:45	to Ju	00
N/S Street:	Appaloosa Rd	Date:	3/14/23		
E/W Street:	Highway 105	Weather:	Partly	rlaudy	
		Observer:	Brett	Louk	

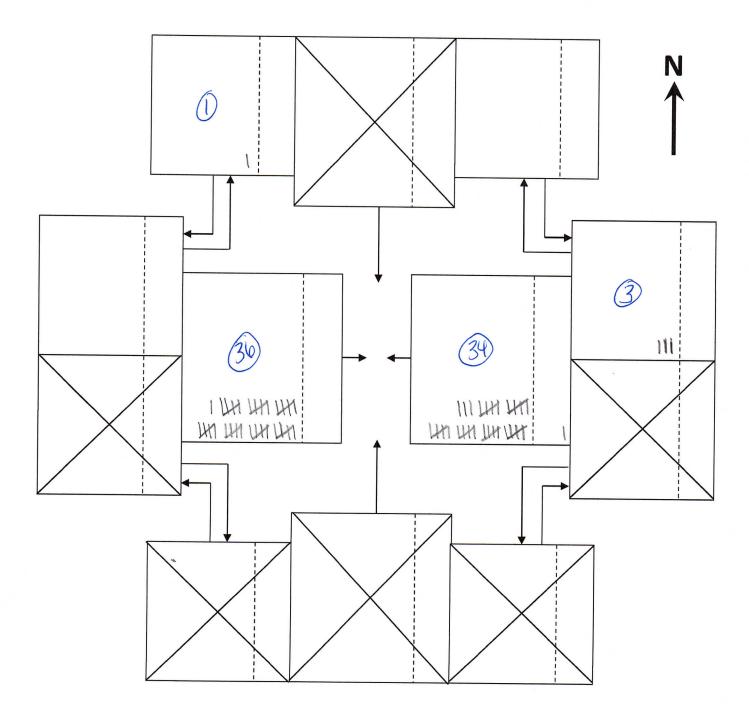
Counts are Conducted From the Direction of Travel



Four Approach Field Sheet

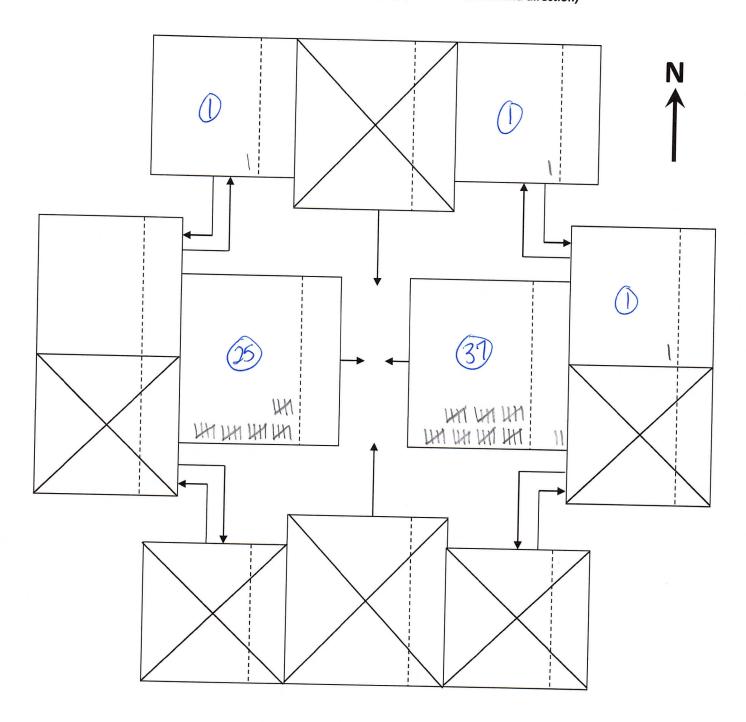
N/S Street: Cherry Springs Ranch Dr *E/W Street:* Highway 105

Time:	9:00	to	9:15	
Date:	3/14/23			
Weather:				
Observer:	Jenni	fer		


Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

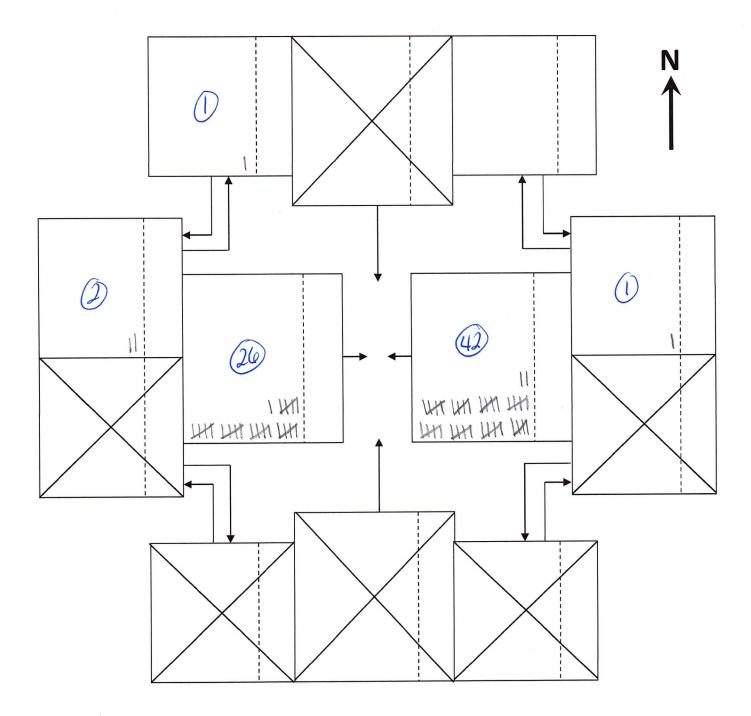
	Time:	9:15	to	9:30	
N/S Street: Cherry Springs Ranch Dr	Date:	3/14/23			
E/W Street: Highway 105	Weather:				
	Observer:	Jenni	fer		


Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

	Time: <u>9:30</u> to 9:45
<i>N/S Street:</i> Cherry Springs Ranch Dr	Date: <u>3/14/23</u>
E/W Street: Highway 105	Weather:
	Observer: opnited

Counts are Conducted From the Direction of Travel (e.g. how many vehicles are turning left from the northbound direction)

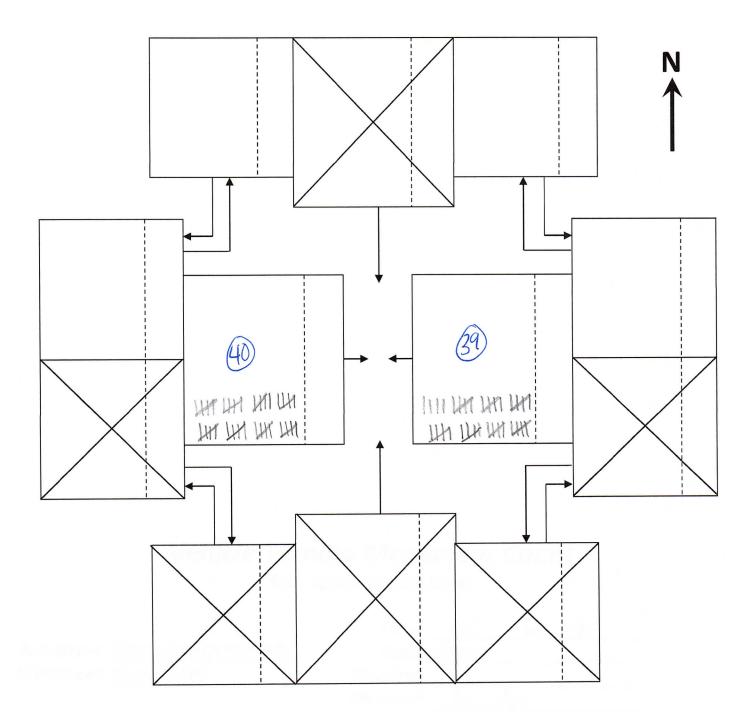


Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr *E/W Street:* Highway 105

Time:	9:45	to 10:00	
Date:	3/14/23		
Weather:			
Observer:	Jennit	el	

Counts are Conducted From the Direction of Travel

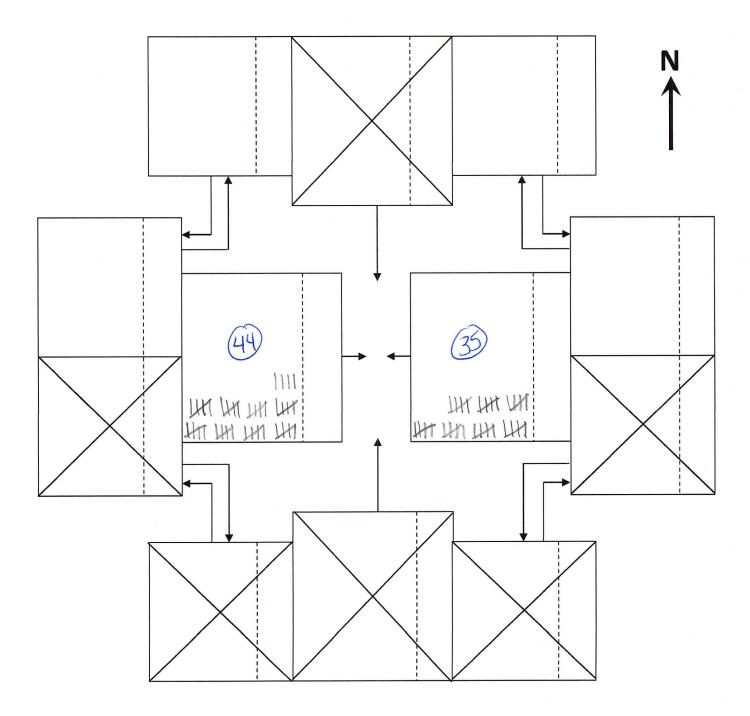


Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr *E/W Street:* Highway 105

Time:	1:00	to	1:15	
Date:	3/14/23			
Weather:				
Observer:	Jennit	er		

Counts are Conducted From the Direction of Travel

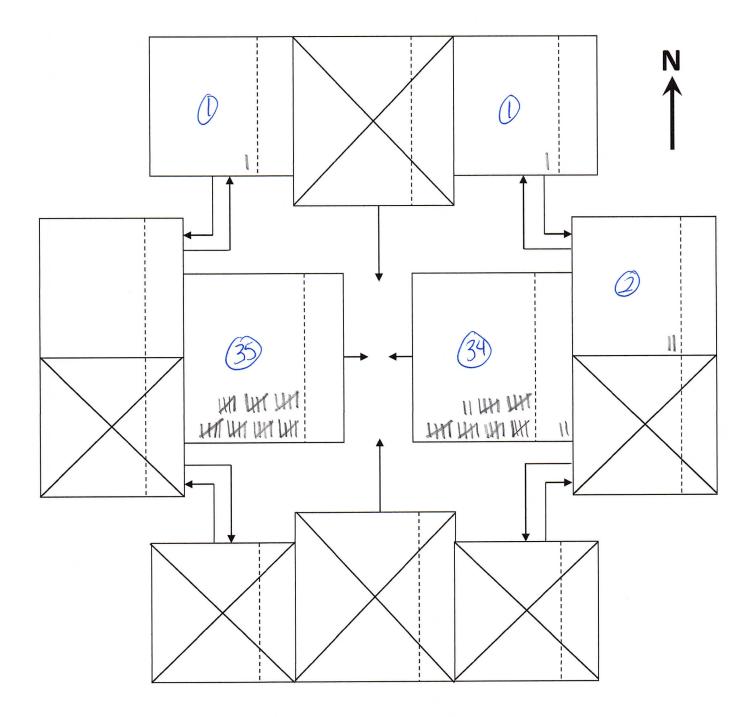


Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr *E/W Street:* Highway 105

Time:	1:15	to	1:30	
Date:	3/14/23			
Weather:	1			
Observer:	Jenni	ter		

Counts are Conducted From the Direction of Travel

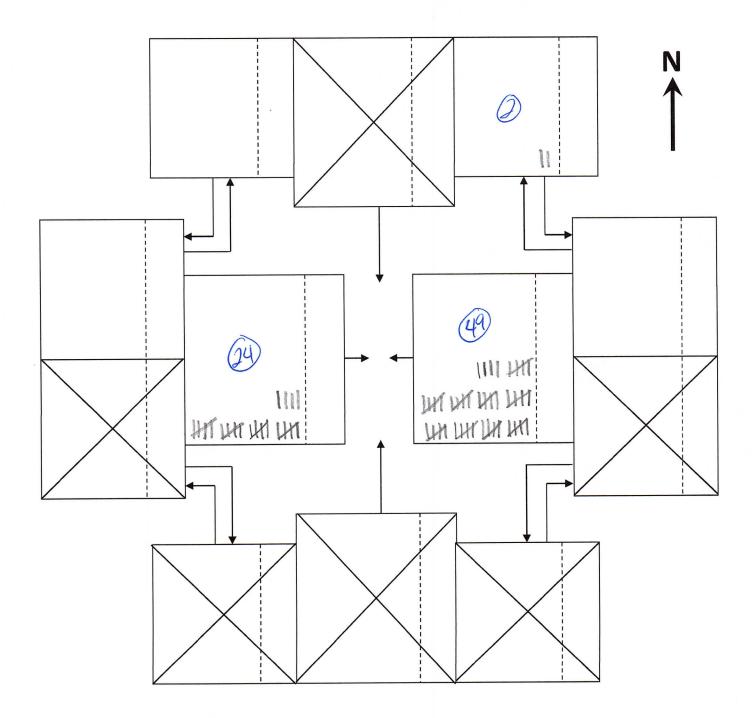


Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr *E/W Street:* Highway 105

Time:	1:30	to	1:45	
Date:	3/14/23			
Weather:				
Observer:	Jenni	ter		

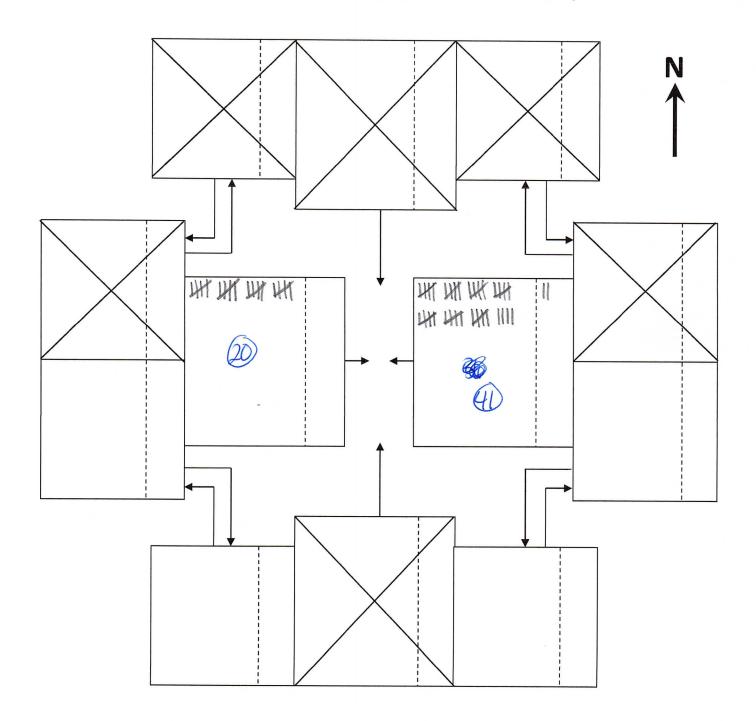
Counts are Conducted From the Direction of Travel



Four Approach Field Sheet

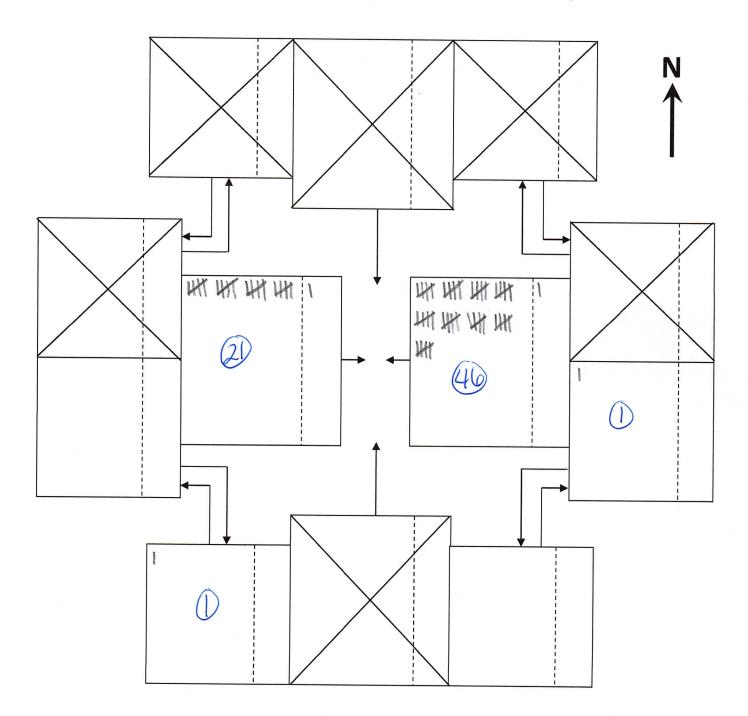
N/S Street: Cherry Springs Ranch Dr *E/W Street:* Highway 105

Time:	1:45	to	2:00	
Date:	3/14/23			
Weather:			-	
Observer:	Jerrit	er		


Counts are Conducted From the Direction of Travel

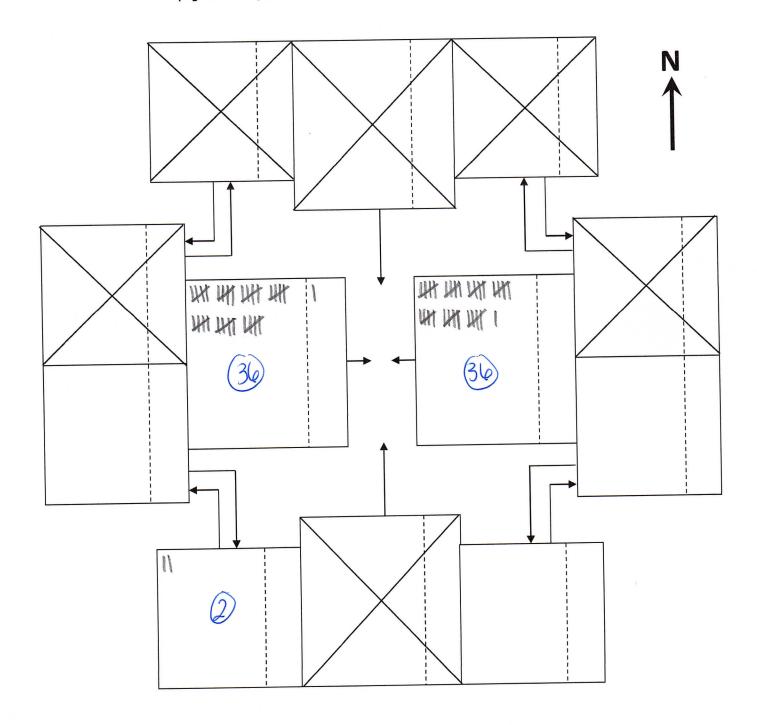
Four Approach Field Sheet

		Time:	9:00	to	9:15
N/S Street:	Appaloosa Rd	Date:	3/18/23		
E/W Street:	Highway 105	Weather:	Sumy	cold	
		Observer:	Brett i	auk	


Counts are Conducted From the Direction of Travel (e.g. how many vehicles are turning left from the northbound direction)

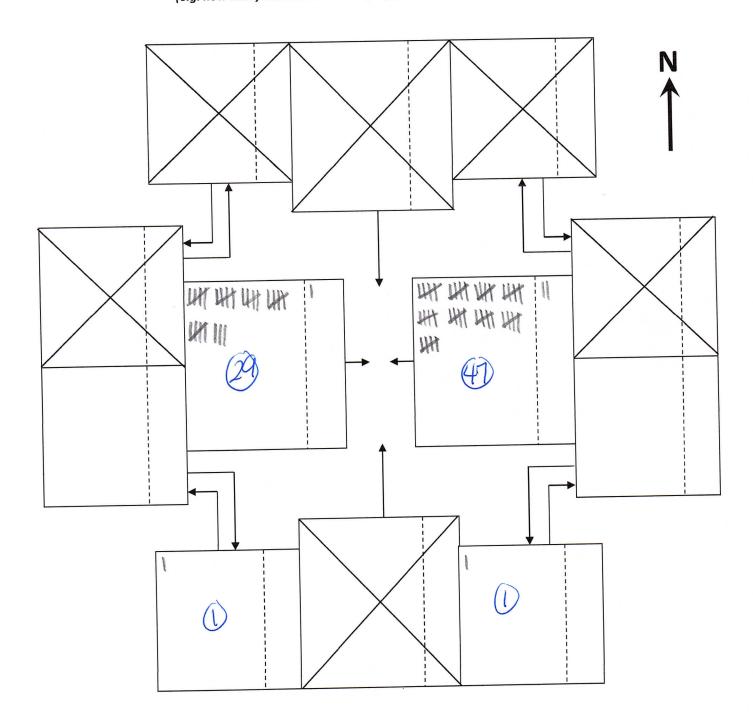
Four Approach Field Sheet

		Time:	9:15	to	9:30	
N/S Street:	Appaloosa Rd	Date:	3/18/23			
E/W Street:	Highway 105	Weather:			×	
		Observer:				


Counts are Conducted From the Direction of Travel

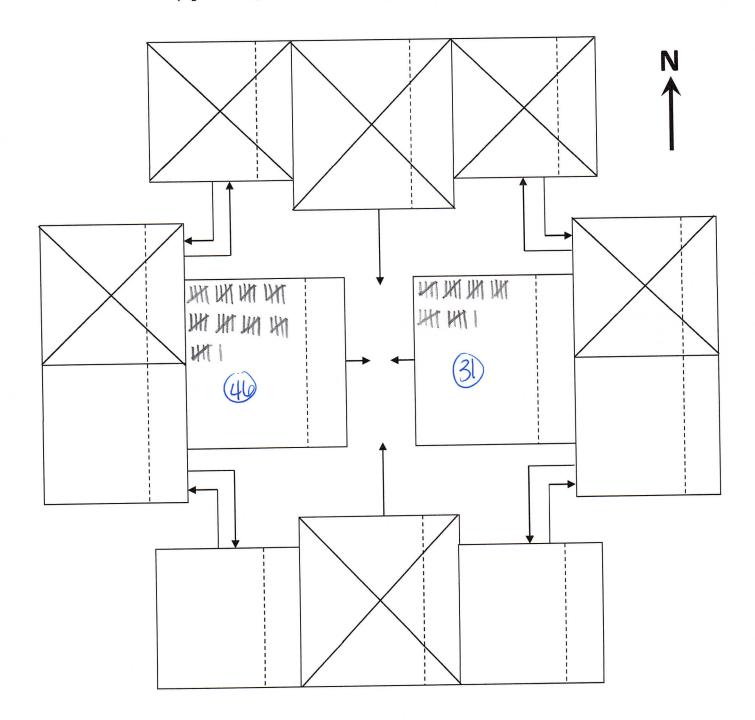
Four Approach Field Sheet

		Time:	9:30	to	9:45	
N/S Street:	Appaloosa Rd	Date:	3/18/23			
E/W Street:	Highway 105	Weather:				
		Observer:				


Counts are Conducted From the Direction of Travel

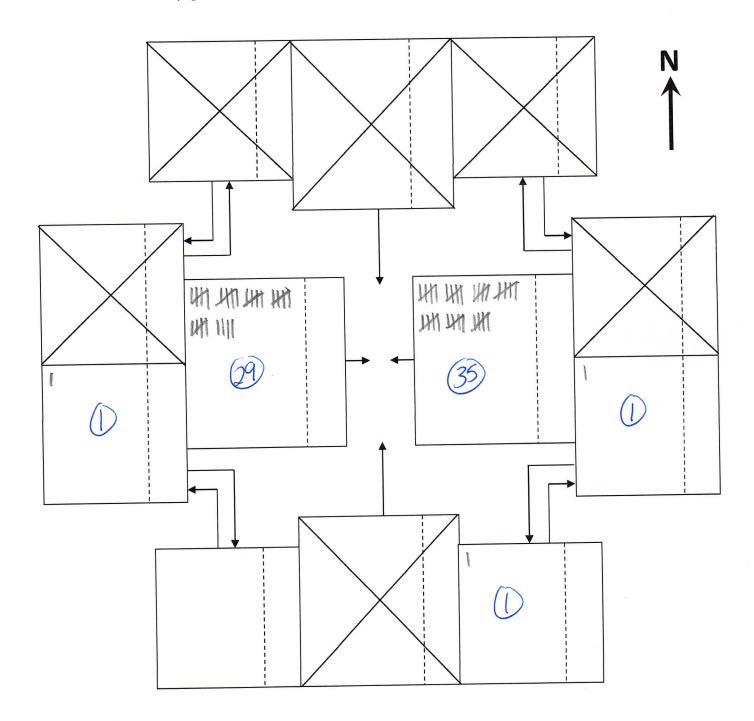
Four Approach Field Sheet

		Time:	9:45	to	10:00
N/S Street:	Appaloosa Rd	Date:	3/18/23		
	Highway 105	Weather:	Sunny		
		Observer:	Breff	Luuk	


Counts are Conducted From the Direction of Travel

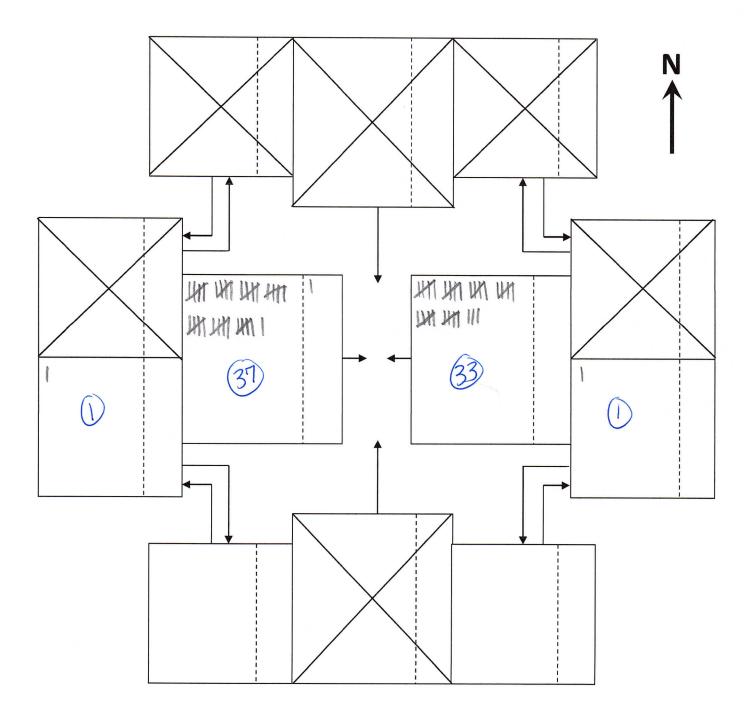
Four Approach Field Sheet

		Time:	1:00	to	1:15
N/S Street:	Appaloosa Rd	Date:	3/18/23		
•	Highway 105	Weather:			
		Observer:	brett 1	- ouk	


Counts are Conducted From the Direction of Travel

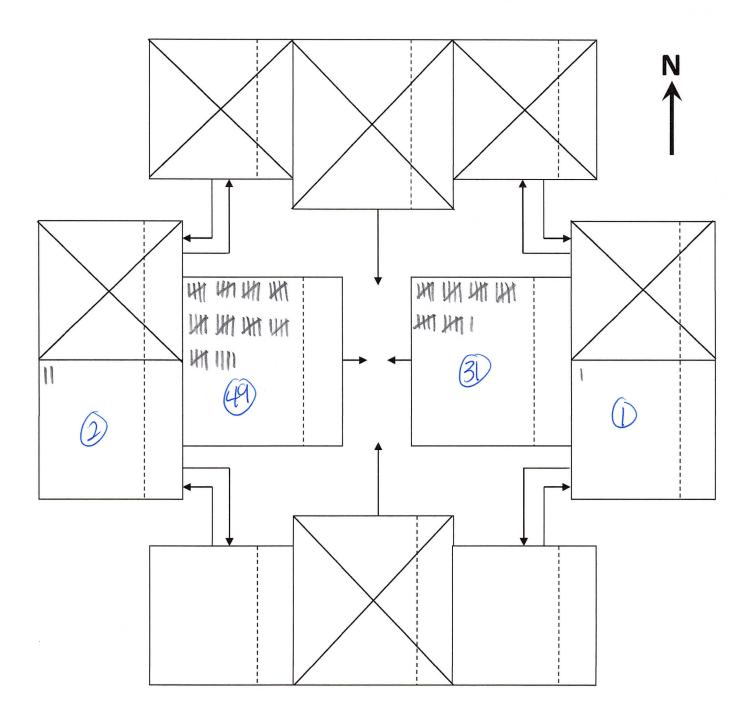
Four Approach Field Sheet

		Time:	1:15	to 1:30	
N/S Street:	Appaloosa Rd	Date:	3/18/23		
	Highway 105	Weather:			
-		Observer:	Brett	Louk	


Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

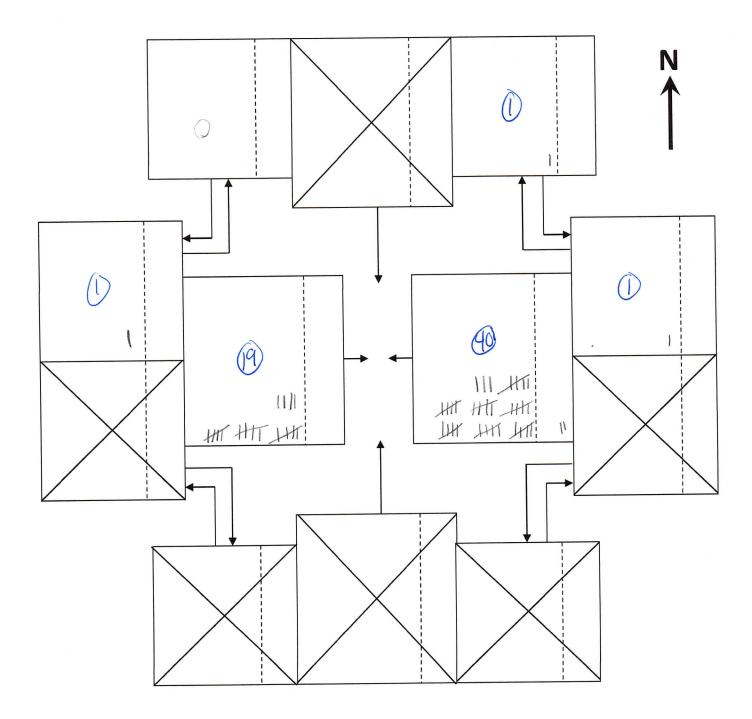
		Time:	1:30	to	1:45
N/S Street:	Appaloosa Rd	Date:	3/18/23		
E/W Street:	Highway 105	Weather:			
		Observer:	Bruff	Louk	


Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

		Time:	1:45	to	2:00
N/S Street:	Appaloosa Rd	Date:	3/18/23		
E/W Street:	Highway 105	Weather:			
		Observer:			

Counts are Conducted From the Direction of Travel

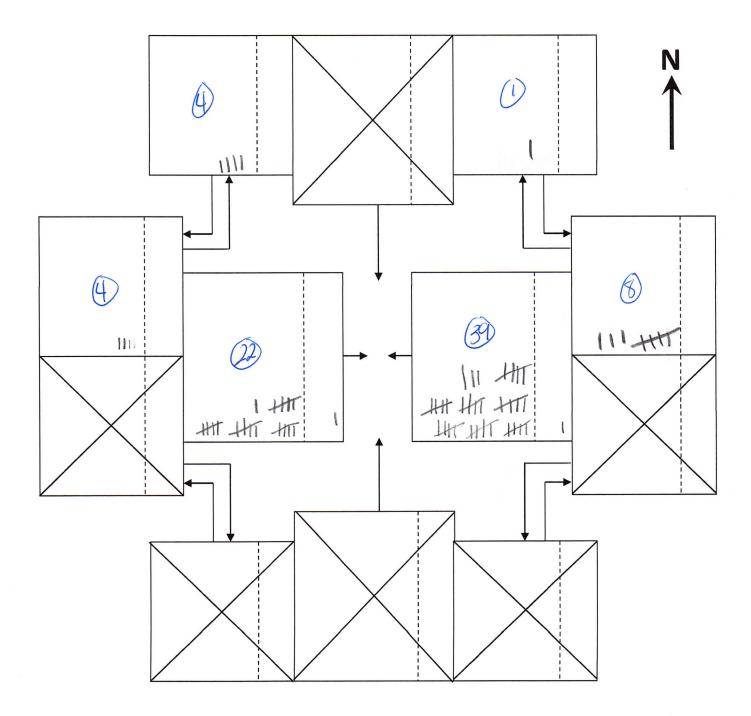


Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr *E/W Street:* Highway 105

Time:	9:00	to 9:15	
Date:	3/25/23	3/18/23	
Weather:	Clear	Dry	
Observer:	Jennifi	er Luedtice	

Counts are Conducted From the Direction of Travel

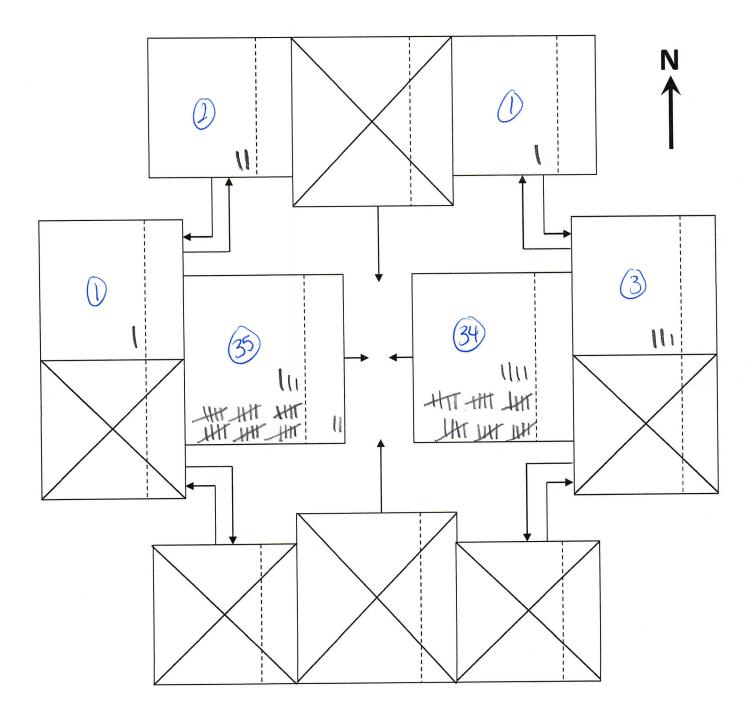


Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr E/W Street: Highway 105

Time:	9:15	to	9:30	
Date:	3/25/23	3/18/	23	
Weather:	Clear	Day		
Observer:	Jennife	r 20	edtke	

Counts are Conducted From the Direction of Travel

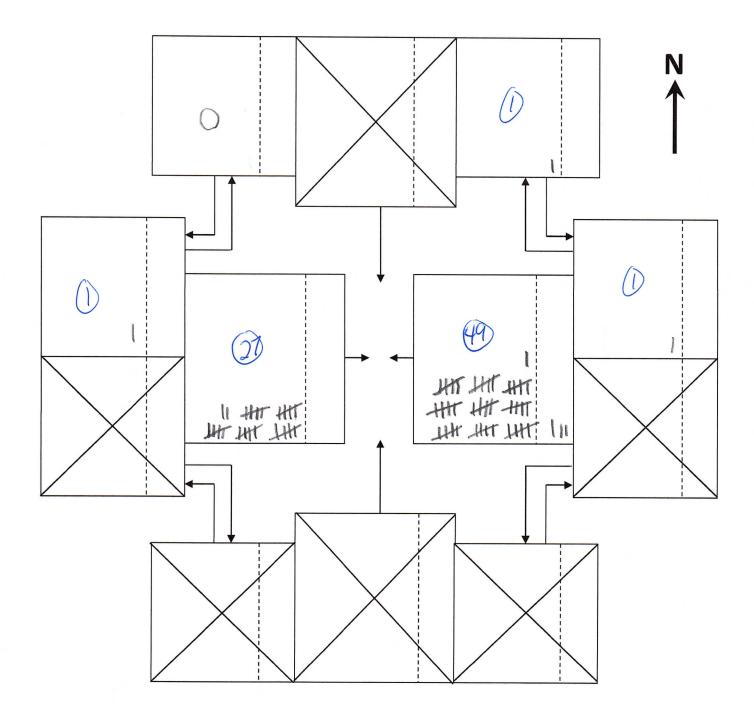


Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr *E/W Street:* Highway 105

Time:	9:30	to 9:45
Date:	3/25/23 3	118/23
Weather:	Clear D	284
Observer:	Jennife	r Lundalist

Counts are Conducted From the Direction of Travel

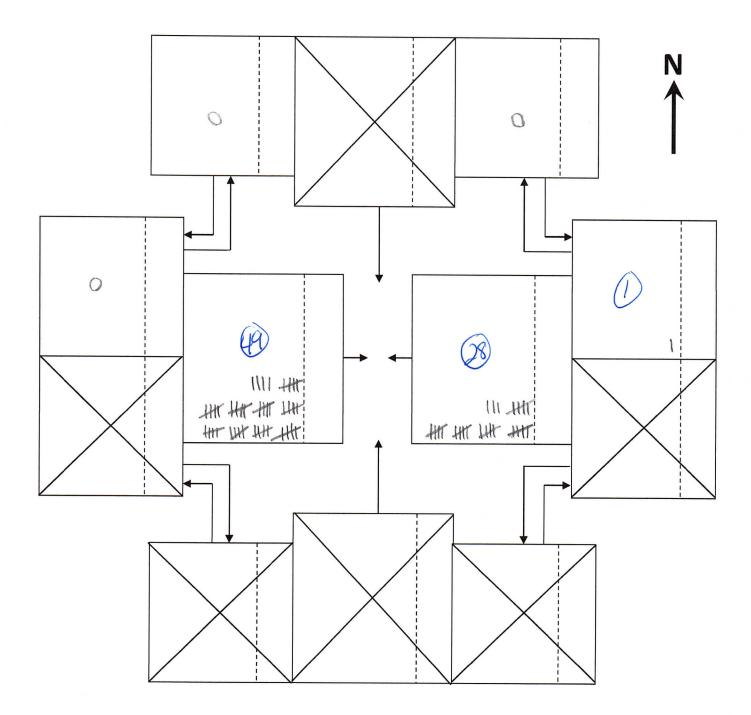


Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr *E/W Street:* Highway 105

Time:	9:45	to 10:00
Date:	3/25/23	3/18/23
Weather:	Clere	Dry
Observer:	Jennifer	r Luedtke

Counts are Conducted From the Direction of Travel (e.g. how many vehicles are turning left from the northbound direction)

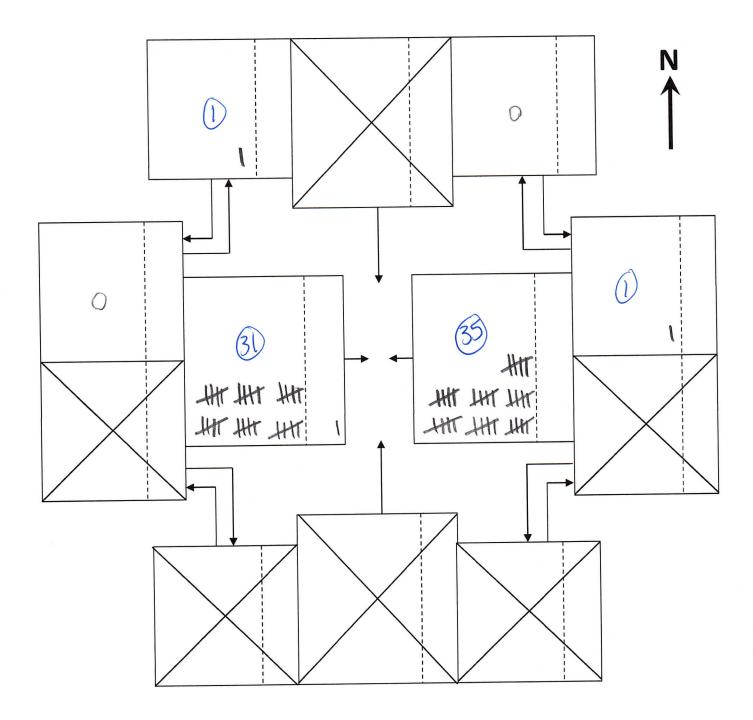


Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr *E/W Street:* Highway 105

Time:	1:00	to	1:15
Date:	3/25/23	3/18/	123
Weather:	Clear	DN	
Observer:	Jennife	~ 1u	e dalk e

Counts are Conducted From the Direction of Travel



Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr *E/W Street:* Highway 105

Time:	1:15	to 1:30	
Date:	3/25/23	3/18/23	
Weather:	Clear	Dev	
Observer:	Jennife	Luchtle	

Counts are Conducted From the Direction of Travel

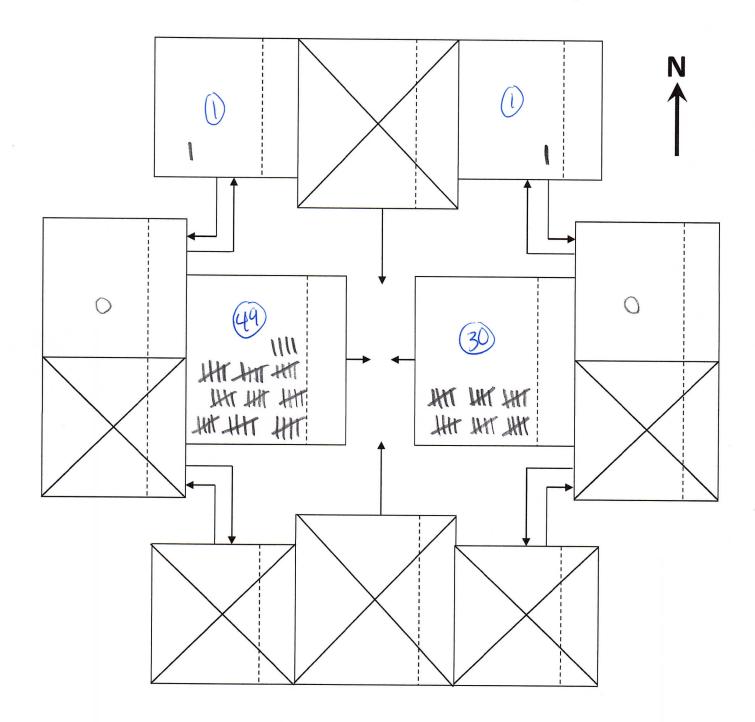


Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr *E/W Street:* Highway 105

Time:	1:30	to 1:45	
Date:	3/25/2 3	3/18/23	
Weather:	Clear	Dril	
Observer:	Luedt	X.	

Counts are Conducted From the Direction of Travel (e.g. how many vehicles are turning left from the northbound direction)



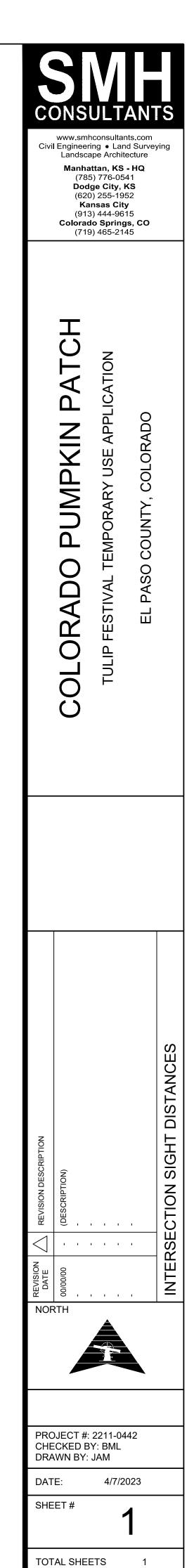
Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr *E/W Street:* Highway 105

Time:	1:45	to	2:00	
Date:	3/25/23	3/18/	23	
Weather:	Clear	Dry		
Observer:	loedt	Le.		

Counts are Conducted From the Direction of Travel (e.g. how many vehicles are turning left from the northbound direction)

INTERSECTION SIGHT DISTANCE EXHIBIT



CANTERBURY DR & HIGHWAY 105 INTERSECTION SIGHT DISTANCE NOT TO SCALE

CHERRY SPRINGS RANCH DR & HIGHWAY 105 INTERSECTION SIGHT DISTANCE NOT TO SCALE

> APPALOOSA RD & HIGHWAY 105 INTERSECTION SIGHT DISTANCE NOT TO SCALE

*EL PASO COUNTY ENGINEERING CRITERIA MANUAL (ECM) REQUIRES THAT THE INTERSECTION SIGHT DISTANCE BE BASED ON THE ROADWAY DESIGN SPEED. HOWEVER, TABLE 2-21, IN THE ECM, DOES NOT PROVIDE AN INTERSECTION SIGHT DISTANCE FOR A DESIGN SPEED OVER 50 MPH. THE DESIGN SPEED FOR HIGHWAY 105 IS 60 MPH. THEREFORE, THE DESIGN INTERSECTION SIGHT DISTANCE SHOWN ON THIS EXHIBIT IS BASED ON THE HIGHEST ROADWAY DESIGN SPEED SHOWN IN THE TABLE. TABLE 2-1 ALSO STATES THAT THE VALUES ARE ONLY APPLICABLE TO TWO-LANE ROADS WITH STOP CONTROL, WHICH IS THE SCENARIO AT ALL INTERSECTIONS ANALYZED.

EXISTING PEAK HOUR CALCULATIONS

Canterbury Dr. 8 12-17-22	& 105	Canterbury D 12-17-2		Canterbury Dr. & 105 12-17-22	Canterbury D 12-17-2		Canterbury D 12-17-2		Canterbury Dr. & 105
Time Period	Volume	Time Period	Volume	Peak Hour Factor	Time Period	Volume	Time Period	Volume	Peak Hour Factor
9:00 to 9:15 am	54	9:00 to 10:00 am	239	= 0.807	1:00 to 1:15 pm	80	1:00 to 2:00 pm	322	= 0.839
9:15 to 9:30 am	43				1:15 to 1:30 pm	71			
9:30 to 9:45 am	68				1:30 to 1:45 pm	96			
9:45 to 10:00 am	74				1:45 to 2:00 pm	75			
Canterbury Dr	. &	Canterbury	Dr. &	Canterbury Dr. &	Canterbury	Dr. &	Canterbury	Dr. &	Canterbury Dr. &
Saddlewood F	Rd.	Saddlewoo	od Rd.	Saddlewood Rd.	Saddlewoo	od Rd.	Saddlewoo	od Rd.	Saddlewood Rd.
12-17-22		12-17-2	22	12-17-22	12-17-2	22	12-17-2	22	12-17-22
Time Period	Volume	Time Period	Volume	Peak Hour Factor	Time Period	Volume	Time Period	Volume	Peak Hour Factor

9:00 to 9:15 am 1 9:15 to 9:30 am 3 9:30 to 9:45 am 1 9:45 to 10:00 am 4 Time Period Volume 9:00 to 10:00 am 9 Peak Hour Factor = 0.563

Time Period Volume 1:00 to 1:15 pm 2 1:15 to 1:30 pm 3 5 1:30 to 1:45 pm 1:45 to 2:00 pm 1

Time Period Volume 1:00 to 2:00 pm 11 Peak Hour Factor = 0.550

Canterbury Dr. & 105 12-21-22 Time Period Volume 9:00 to 9:15 am 83 9:15 to 9:30 am 76 9:30 to 9:45 am 82 9:45 to 10:00 am 68	Canterbury Dr. & 105 12-21-22 Time Period Volume 9:00 to 10:00 am 309	Canterbury Dr. & 105 12-21-22 Peak Hour Factor = 0.931	Canterbury Dr. & 105 12-21-22 Time Period Volume 1:00 to 1:15 pm 78 1:15 to 1:30 pm 100 1:30 to 1:45 pm 86 1:45 to 2:00 pm 95	Canterbury Dr. & 105 12-21-22 Time Period Volume 1:00 to 2:00 pm 359	Canterbury Dr. & 105 Peak Hour Factor = 0.898
Canterbury Dr. & Saddlewood Rd. 12-21-22 Time Period Volume 9:00 to 9:15 am 1 9:15 to 9:30 am 1	Canterbury Dr. & Saddlewood Rd. 12-21-22 Time Period Volume 9:00 to 10:00 am 4	Canterbury Dr. & Saddlewood Rd. 12-21-22 Peak Hour Factor = 0.500	Canterbury Dr. & Saddlewood Rd. 12-21-22 Time Period Volume 1:00 to 1:15 pm 3 1:15 to 1:30 pm 9	Canterbury Dr. & Saddlewood Rd. 12-21-22 Time Period Volume 1:00 to 2:00 pm 18	Canterbury Dr. & Saddlewood Rd. 12-17-22 Peak Hour Factor = 0.500

9:30 to 9:45 am

9:45 to 10:00 am

2

0

1:30 to 1:45 pm 1:45 to 2:00 pm

2

4

105 & Cherry Sp 03-14-2	0	105 & Cherry Springs R 03-14-23	lanch	105 & Cherry Springs 03-14-23	Ranch	105 & Cherry Sp 03-14-	-	105 & Cherry Sp 03-14-	0	105 & Cherry Spi 03-14-2	-
Time Period	Volume	Time Period Volur	ne	Peak Hour Facto	or	Time Period	Volume	Time Period	Volume	Peak Hour	actor
9:00 to 9:15 am	84	9:00 to 10:00 am	295	=	0.878	1:00 to 1:15 pm	79	1:00 to 2:00 pm	306	=	0.968
9:15 to 9:30 am	74					1:15 to 1:30 pm	79				
9:30 to 9:45 am	65					1:30 to 1:45 pm	73				
9:45 to 10:00 am	72					1:45 to 2:00 pm	75				

105 & Appalo 03-14-2		105 & Appaloosa Rd 03-14-23				
Time Period	Volume	Time Period Volume	Peak Hour Factor	Time Period Volume	Time Period Volume	Peak Hour Factor
9:00 to 9:15 am	84	9:00 to 10:00 am 293	= 0.872	1:00 to 1:15 pm 79	1:00 to 2:00 pm 314	= 0.981
9:15 to 9:30 am	72			1:15 to 1:30 pm 79		
9:30 to 9:45 am	68			1:30 to 1:45 pm 76		
9:45 to 10:00 am	69			1:45 to 2:00 pm 80		

105 & Cherry Spi 03-18-2	-	105 & Cherry Springs Ranch 03-18-23				
Time Period	Volume	Time Period Volume	Peak Hour Factor	Time Period Volume	Time Period Volume	Peak Hour Factor
9:00 to 9:15 am	62	9:00 to 10:00 am 295	= 0.934	1:00 to 1:15 pm 78	1:00 to 2:00 pm 297	= 0.917
9:15 to 9:30 am	78			1:15 to 1:30 pm 68		
9:30 to 9:45 am	76			1:30 to 1:45 pm 70		
9:45 to 10:00 am	79			1:45 to 2:00 pm 81		

105 & Appal 03-18-2		105 & Appaloosa Rd 03-18-23				
Time Period	Volume	Time Period Volume	Peak Hour Factor	Time Period Volume	Time Period Volume	Peak Hour Factor
9:00 to 9:15 am	61	9:00 to 10:00 am 282	= 0.904	1:00 to 1:15 pm 77	1:00 to 2:00 pm 299	= 0.901
9:15 to 9:30 am	69			1:15 to 1:30 pm 67		
9:30 to 9:45 am	74			1:30 to 1:45 pm 72		
9:45 to 10:00 am	78			1:45 to 2:00 pm 83		

EXISTING PEAK HOUR TURNING MOVEMENTS

		Canterbur	y/Hwy 105			
	Peak	Hour: 9:00	am to 10:0	0 am		
		Existing	Weekend			
		Hwy	105			
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT	
0	116	1	1	114	0	
		Cante	rbury			
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT	
0	0 0 0 0 7					
Peak Hou	r Volume:	239				

Canterbury/Saddlewood						
	Peak	Hour: 9:00	am to 10:0	0 am		
		Existing \	Weekend			
		Saddle	ewood			
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT	
0 0 0 0 3						
		Cante	erbury			
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT	
0 2 2 1 1 0						
Peak Hou	r Volume:	9				

	Appaloosa/Hwy 105						
	Peak		am to 10:0	00 am			
		Existing	Weekday				
		Hwy	105				
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT		
0 107 2 1 177 0							
		Appa	Iloosa				
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT		
0	0	0	3	0	3		
Peak Hour Volume: 293							

	Cherry Springs Ranch/Hwy 105							
	Peak	Hour: 9:00	am to 10:0	0 am				
		Existing	Weekday					
		Hwy	105					
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT			
4	107	0	0	174	5			
		Cherry Spr	ings Ranch					
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT			
3	0	2	0	0	0			
Peak Hou	r Volume:	295						

		Canterbur	y/Hwy 105									
	Peak	Hour: 9:00	am to 10:0	10 am								
Existing Weekday												
Hwy 105												
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT							
0	144	2	0	157	0							
		Cante	erbury									
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT							
0	0 0 3 0 3											
Peak Hour Volume: 309												

Canterbury/Saddlewood Peak Hour: 9:00 am to 10:00 am Existing Weekday
 EB LT
 EB Thru
 EB RT
 WB LT
 WB Thru
 WB RT

 0
 0
 1
 0
 1

 SB RT
 SB Thru
 SB LT
 NB RT
 NB Thru
 NB LT

 0
 0
 2
 0
 0
 0
 Peak Hour Volume: 4

Appaloosa/Hwy 105 Peak Hour: 9:00 am to 10:00 am Existing Weekend												
Hwy 105												
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT							
0	106	0	1	170	0							
		Appa	loosa									
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT							
0	0	0 0 1 0 4										
Peak Hour Volume: 282												

		rry Springs Hour: 9:00											
Existing Weekend													
Hwy 105													
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT								
7	103	103 0 0 162 13											
		Cherry Spr	ings Ranch										
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT								
6	0	4	0	0	0								
Peak Hour Volume: 295													

Реак но	our vo	iume:	

			y/Hwy 105										
	Peak	Hour: 1:00) pm to 2:0) pm									
Existing Weekend													
Hwy 105													
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT								
0	161	3	0	148	0								
		Cante	erbury										
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT								
0	0	0	3	0	7								
Peak Hou	Peak Hour Volume: 322												

		Canterbury/ k Hour: 1:00										
Existing Weekend Saddlewood												
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT							
0	0	0 0 0 0 1										
		Cante	rbury									
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT							
0	3	3 0 1 6 0										
Peak Hour Volume: 11												

		Appaloosa	a/Hwy 105							
	Peak	Hour: 1:00) pm to 2:0) pm						
		Existing	Weekday							
	0 145 2 5 155 0									
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT					
0	145	2	5	155	0					
		Арра	loosa							
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT					
0	0	0	4	0	3					
Peak Hou	r Volume:	314								

		rry Springs k Hour: 1:00) pm to 2:00									
Existing Weekday												
Hwy 105												
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT							
0	143 0 0 157 2											
		Cherry Spr	ings Ranch									
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT							
1	0	3	0	0	0							
Peak Hou	r Volume:	306										

EXISTING LEVEL OF SERVICE (LOS)

		Н	CS7	Two-	-Way	' Stop	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Intersection Canterb				erbury & Saddlewood					
Agency/Co.	SMH	Consulta	ants				Jurisdiction El Paso Cou				o Count					
Date Performed	4/4/2	023					East/West Street Saddlewood									
Analysis Year	2023						North	n/South :	Street		Cante	erbury				
Time Analyzed	9:00-10:00 pm Weekday							Peak Hour Factor 0.85								
Intersection Orientation	North-South							Analysis Time Period (hrs) 0.25								
Project Description	Colorado Pumpkin Patch Temporary Use TIS															
Lanes																
								1								
					Majo	r Street: Nor	rth-South									
Vehicle Volumes and Ad	justments															
Approach		Eastb	ound			West	bound			North	bound Southbou				bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						1		1		0	0	0		2	0	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)							0									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						7.1		6.2		4.1				4.1		
Critical Headway (sec)						7.12		6.22		4.12				4.12		
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22		
Delay, Queue Length, an	d Leve	l of Se	ervice				-									
Flow Rate, v (veh/h)							2			0				2		
Capacity, c (veh/h)							1049			1623				1623		
v/c Ratio							0.00			0.00				0.00		
95% Queue Length, Q ₉₅ (veh)							0.0			0.0				0.0		
Control Delay (s/veh)							8.4			7.2				7.2		
Level of Service (LOS)							A			A				A		
Approach Delay (s/veh)		1				8	5.4	1							.2	
									1.2							

		H	CS/	IWO-	-vvay	' Stoj	o-Co	ntroi	кер	ort							
General Information							Site	Inforr	natio	n							
Analyst	Brett	Louk					Intersection Ca				Cante	Canterbury & Saddlewood					
Agency/Co.	SMH	Consulta	ants				Jurisdiction El Paso				aso County						
Date Performed	4/4/2	023					East/West Street Sa					Saddlewood					
Analysis Year	2023						North/South Street Canterbury										
Time Analyzed	9:00-10:00 am Weekend							Peak Hour Factor 0.85									
Intersection Orientation	North-South							sis Time	Period (hrs)	0.25						
Project Description	Color	ado Pun	npkin Pa	tch Temp	oorary U	se TIS											
Lanes																	
					Majo	r Street: Nor	rth-South										
Vehicle Volumes and Ad	justme	nts															
Approach	Τ	Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0	
Configuration							LR				LTR				LTR		
Volume (veh/h)						0		3		0	1	1		2	2	0	
Percent Heavy Vehicles (%)						2		2		2				2			
Proportion Time Blocked																	
Percent Grade (%)							0			•							
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)						7.1		6.2		4.1				4.1			
Critical Headway (sec)						7.12		6.22		4.12				4.12			
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2			
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22			
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)	T						4			0				2			
Capacity, c (veh/h)							1083			1620				1620			
v/c Ratio							0.00			0.00				0.00			
95% Queue Length, Q ₉₅ (veh)							0.0			0.0				0.0			
Control Delay (s/veh)							8.3			7.2				7.2			
Level of Service (LOS)							A			A				A			
Approach Delay (s/veh)							8.3	1			.0	1			.6		
									0.0				5.0				

		H	CS7	100-	vvay	Stop	J-CO		Кер							
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Intersection C				Cante	Canterbury & Saddlewood				
Agency/Co.	SMH	Consulta	ints				Jurisdiction El Paso C				•					
Date Performed	4/4/2	023					East/West Street Saddlewood					ewood				
Analysis Year	2023						North/South Street Canterbury									
Time Analyzed	1:00-2:00 pm Weekday							Peak Hour Factor 0.85								
Intersection Orientation	North-South							Analysis Time Period (hrs) 0.25								
Project Description	Colorado Pumpkin Patch Temporary Use TIS															
Lanes	1															
					Major	Street: Nor	th-South									
Vehicle Volumes and Adj	ustme	nts														
Approach	1	Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	-	10	11	12	-	7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						3		5		0	2	3		2	3	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)							0									<u> </u>
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadway	vs														
Base Critical Headway (sec)		, -				7.1		6.2		4.1				4.1		
Critical Headway (sec)						7.12		6.22		4.12				4.12		
Base Follow-Up Headway (sec)	-	_	_	_		3.5		3.3		2.2			_	2.2		<u> </u>
Follow-Up Headway (sec)						3.52		3.32		2.2				2.22		
Delay, Queue Length, and		l of S	rvice			5.52		5.52		<i>L.LL</i>				<i>L.LL</i>		
		. 01 36					9			0				2		
Flow Rate, v (veh/h) Capacity, c (veh/h)							9 1050			1618				2 1615		
v/c Ratio							0.01			0.00				0.00		
V/C Ratio 95% Queue Length, Q ₉₅ (veh)							0.01			0.00				0.00		
							0.0 8.5			0.0 7.2		_		0.0 7.2		
Control Delay (s/veh)							<u> </u>									
Level of Service (LOS)	-						A			A	0			A 2	0	
Approach Delay (s/veh)	<u> </u>					8	8.5 0.0					2.9				

		Н	CS7	Two	Way	' Stoj	p-Co	ntrol	Rep	ort							
General Information							Site	Inforr	natio	n							
Analyst	Brett	Louk					Intersection C				Cante	Canterbury & Saddlewood					
Agency/Co.	SMH	Consulta	ants				Jurisdiction El Paso Co				o Count	-					
Date Performed	4/4/2	023					East/West Street Saddlewood										
Analysis Year	2023						North/South Street Canterbury					erbury					
Time Analyzed	1:00-2:00 pm Weekend							Peak Hour Factor 0.85									
Intersection Orientation	North-South							Analysis Time Period (hrs) 0.25									
Project Description	Colorado Pumpkin Patch Temporary Use TIS																
Lanes																	
					Majo	r Street: No	rth-South										
Vehicle Volumes and Adj	ustme	nts															
Approach	<u> </u>	Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0	
Configuration							LR				LTR				LTR		
Volume (veh/h)						0		1		0	6	1		0	3	0	
Percent Heavy Vehicles (%)						2		2		2				2			
Proportion Time Blocked																	
Percent Grade (%)							0			•							
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up He	eadwa	ys															
Base Critical Headway (sec)						7.1		6.2		4.1				4.1			
Critical Headway (sec)						7.12		6.22		4.12				4.12			
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2			
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22			
Delay, Queue Length, and	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)							1			0				0			
Capacity, c (veh/h)							1075			1618				1612			
v/c Ratio							0.00			0.00				0.00			
95% Queue Length, Q ₉₅ (veh)							0.0			0.0				0.0			
Control Delay (s/veh)							8.4			7.2				7.2			
Level of Service (LOS)							A			А				A			
Approach Delay (s/veh)						. 8	3.4			0	0.0 0.0						
Approach LOS	· · · · · · · · · · · · · · · · ·																

General Information		Site Information	
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105 AM
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/4/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Canterbury
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Temporary Use T	TS	
Lanes			

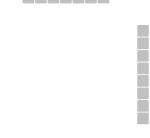
Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	144	2		0	157	0		3		3				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										(0					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				
Critical Headway (sec)		4.12				4.12				7.12		6.22				
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3				
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		0				0					6					
Capacity, c (veh/h)		1409				1423					737					
v/c Ratio		0.00				0.00					0.01					
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0					
Control Delay (s/veh)		7.6				7.5					9.9					
Level of Service (LOS)		А				А					A					
Approach Delay (s/veh)		0	.0			0	.0			9	.9					
Approach LOS											4					

Copyright © 2023 University of Florida. All Rights Reserved.

HCS[™] TWSC Version 7.6 Canterbury & Hwy 105 Ex. AM Weekday.xtw

General Information		Site Information	
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105 AM
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/4/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Canterbury
Time Analyzed	9:00-10:00 AM Weekend	Peak Hour Factor	0.85
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Temporary Use 1	TIS	
Lanes			


Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	116	1		1	114	0		7		0				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)						-				(C	-		-		
Right Turn Channelized																
Median Type Storage				Undi	vided								-			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				
Critical Headway (sec)		4.12				4.12				7.12		6.22				
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3				
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		0				1					8					
Capacity, c (veh/h)		1450				1446					678					
v/c Ratio		0.00				0.00					0.01					
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0					
Control Delay (s/veh)		7.5				7.5					10.4					
Level of Service (LOS)		А				A					В					
Approach Delay (s/veh)		0	.0	-		0	.1			1().4					
Approach LOS										I	В					

Copyright $\ensuremath{\mathbb{C}}$ 2023 University of Florida. All Rights Reserved.

HCS[™] TWSC Version 7.6 Canterbury & Hwy 105 Ex. AM Weekend.xtw

General Information		Site Information	
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105 PM
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/4/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Canterbury
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkn Patch Temporary Use TIS		
Lanes			

Vehicle Volumes and Adjustments

Approach	Т	Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	197	7		2	144	0		7		2				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()				1	<u>.</u>
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				
Critical Headway (sec)		4.12				4.12				7.12		6.22				
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3				
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		0				2					10					
Capacity, c (veh/h)		1419				1342					612					
v/c Ratio		0.00				0.00					0.02					
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0					
Control Delay (s/veh)		7.5				7.7					11.0					
Level of Service (LOS)		A				А					В					
Approach Delay (s/veh)		0	.0			0	.1			11	.0					
Approach LOS										I	3					

Copyright © 2023 University of Florida. All Rights Reserved.

HCS[™] TWSC Version 7.6 Canterbury & Hwy 105 Ex. PM Weekday.xtw

		Н	CS7	Two-	Way	Stop	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Inters	ection			Cante	rbury &	Hwy 10	5		
Agency/Co.	SMH	Consulta	ants				Jurisd	liction			El Pas	o Count	ty			
Date Performed	4/4/2	023					East/\	Nest Stre	eet		Hwy î	105				
Analysis Year	2023						North	/South S	Street		Canterbury					
Time Analyzed	1:00-2	2:00 pm	Weeken	d			Peak	Hour Fac	ctor		0.85					
Intersection Orientation	East-\	Vest					Analy	Analysis Time Period (hrs) 0.25								
Project Description	Color	Colorado Pumpkin Patch Temporary Use TIS														
Lanes																
					Majo	or Street: Ea	st-West									
Vehicle Volumes and Adju	istme	nts														
Approach		Eastbound Wes						tbound North			bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U						5	6		7	8	9		10	11	12

LR

Undivided

LTR

LTR

Critical	and	Follow-up	Headways
----------	-----	-----------	----------

Number of Lanes

Percent Grade (%) Right Turn Channelized

Median Type | Storage

Percent Heavy Vehicles (%) Proportion Time Blocked

Configuration Volume (veh/h)

Critical and Follow-up He	eadwa	ys										
Base Critical Headway (sec)		4.1			4.1			7.1		6.2		
Critical Headway (sec)		4.12			4.12			7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2			3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22			3.52		3.32		
Delay, Queue Length, and	d Leve	l of Se	ervice									
Flow Rate, v (veh/h)		0			0				12			
Capacity, c (veh/h)		1402			1380				650			
v/c Ratio		0.00			0.00				0.02			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0				0.1			
Control Delay (s/veh)		7.6			7.6				10.6			
Level of Service (LOS)		A			A				В			
Approach Delay (s/veh)		0	.0		0	.0		- 10).6			-
Approach LOS								I	3			

Copyright $\ensuremath{\mathbb{C}}$ 2023 University of Florida. All Rights Reserved.

HCS[™] TWSC Version 7.6 Canterbury & Hwy 105 Ex. PM Weekend.xtw

	HCS7 Two-Way Sto		
General Information		Site Information	
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/4/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Cherry Springs Ranch
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.88
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Temporary Use TIS		
Lanes			

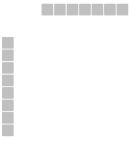
Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration			LTR				LTR								LR	
Volume (veh/h)		4	107	0		0	174	5						2		3
Percent Heavy Vehicles (%)		2				2								2		2
Proportion Time Blocked																
Percent Grade (%)															0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1								7.1		6.2
Critical Headway (sec)		4.12				4.12								7.12		6.22
Base Follow-Up Headway (sec)		2.2				2.2								3.5		3.3
Follow-Up Headway (sec)		2.22				2.22								3.52		3.32
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		5				0									6	
Capacity, c (veh/h)		1368				1466									736	
v/c Ratio		0.00				0.00									0.01	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0									0.0	
Control Delay (s/veh)		7.6				7.5									9.9	
Level of Service (LOS)		A				A									A	
Approach Delay (s/veh)		0	.3			0	.0						9.9			
Approach LOS															4	

Generated: 4/4/2023 2:25:52 PM

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/4/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Cherry Springs Ranch
Time Analyzed	9:00-10:00 am Weekend	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Temporary Use TIS		
Lanes			

Vehicle Volumes and Adjustments


Approach		Eastb	ound			West	bound			North	bound		Southbound					
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0		
Configuration			LTR				LTR								LR			
Volume (veh/h)		7	103	0		0	162	13						4		6		
Percent Heavy Vehicles (%)		2				2								2		2		
Proportion Time Blocked																		
Percent Grade (%)										-	-		0					
Right Turn Channelized																		
Median Type Storage		Undivided											-					
Critical and Follow-up H	eadwa	ys																
Base Critical Headway (sec)		4.1				4.1								7.1		6.2		
Critical Headway (sec)		4.12				4.12								7.12		6.22		
Base Follow-Up Headway (sec)		2.2				2.2								3.5		3.3		
Follow-Up Headway (sec)		2.22				2.22								3.52		3.32		
Delay, Queue Length, an	d Leve	l of Se	ervice															
Flow Rate, v (veh/h)		8				0									11			
Capacity, c (veh/h)		1386				1479									758			
v/c Ratio		0.01				0.00									0.01			
95% Queue Length, Q ₉₅ (veh)		0.0				0.0									0.0			
Control Delay (s/veh)		7.6				7.4									9.8			
Level of Service (LOS)		A				A									A			
Approach Delay (s/veh)		0	.5			0	.0							. 9	.8			
Approach LOS													Α					

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/4/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Cherry Springs Ranch
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Temporary Use TIS		
Lanes			

Vehicle Volumes and Adjustments

Vehicle Volumes and Ad	Justme	nts																	
Approach		Eastb	ound			West	oound			North	bound		Southbound						
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0			
Configuration			LTR				LTR								LR				
Volume (veh/h)		0	143	0		0	157	2						3		1			
Percent Heavy Vehicles (%)		2				2								2		2			
Proportion Time Blocked																			
Percent Grade (%)													0						
Right Turn Channelized																			
Median Type Storage		Undivided																	
Critical and Follow-up H	eadwa	ys																	
Base Critical Headway (sec)		4.1				4.1								7.1		6.2			
Critical Headway (sec)		4.12				4.12								7.12		6.22			
Base Follow-Up Headway (sec)		2.2				2.2								3.5		3.3			
Follow-Up Headway (sec)		2.22				2.22								3.52		3.32			
Delay, Queue Length, an	d Leve	l of Se	ervice																
Flow Rate, v (veh/h)		0				0									4				
Capacity, c (veh/h)		1415				1434									689				
v/c Ratio		0.00				0.00									0.01				
95% Queue Length, Q ₉₅ (veh)		0.0				0.0									0.0				
Control Delay (s/veh)		7.5				7.5									10.3				
Level of Service (LOS)		A				A									В				
Approach Delay (s/veh)		. 0	.0			0	.0				-		10.3						
Approach LOS													В						

HCS7 Two-Way Stop	o-Control Report	
	Site Information	
Brett Louk	Intersection	Cherry Spr R & Hwy 105
SMH Consultants	Jurisdiction	El Paso County
4/4/2023	East/West Street	Hwy 105
2023	North/South Street	Cherry Springs Ranch
1:00-2:00 pm Weekend	Peak Hour Factor	0.92
East-West	Analysis Time Period (hrs)	0.25
Colorado Pumpkin Patch Temporary Use TIS		
	Brett Louk SMH Consultants 4/4/2023 2023 1:00-2:00 pm Weekend East-West	Brett LoukIntersectionSMH ConsultantsJurisdiction4/4/2023East/West Street2023North/South Street1:00-2:00 pm WeekendPeak Hour FactorEast-WestAnalysis Time Period (hrs)

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound		Southbound						
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0			
Configuration			LTR				LTR								LR				
Volume (veh/h)		0	166	0		0	126	2						1		2			
Percent Heavy Vehicles (%)		2				2								2		2			
Proportion Time Blocked																			
Percent Grade (%)													0						
Right Turn Channelized																			
Median Type Storage		Undivided								1									
Critical and Follow-up H	eadwa	ys																	
Base Critical Headway (sec)		4.1				4.1								7.1		6.2			
Critical Headway (sec)		4.12				4.12								7.12		6.22			
Base Follow-Up Headway (sec)		2.2				2.2								3.5		3.3			
Follow-Up Headway (sec)		2.22				2.22								3.52		3.32			
Delay, Queue Length, an	d Leve	l of Se	ervice																
Flow Rate, v (veh/h)		0				0									3				
Capacity, c (veh/h)		1444				1395									795				
v/c Ratio		0.00				0.00									0.00				
95% Queue Length, Q ₉₅ (veh)		0.0				0.0									0.0				
Control Delay (s/veh)		7.5				7.6									9.5				
Level of Service (LOS)		А				Α									А				
Approach Delay (s/veh)		0	.0			0	.0			-	-		9.5						
Approach LOS															4				

	HCS7 Two-Way Stop	p-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/4/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Appaloosa
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.87
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Temporary Use TIS		
Lanes			

Major Street: East-West

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	107	2		1	177	0		3		3				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)						-				(0	-				
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				
Critical Headway (sec)		4.12				4.12				7.12		6.22				
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3				
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		0				1					7					
Capacity, c (veh/h)		1368				1461					745					
v/c Ratio		0.00				0.00					0.01					
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0					
Control Delay (s/veh)		7.6				7.5					9.9					
Level of Service (LOS)		А				А					Α					
Approach Delay (s/veh)		0.	0.0 0.0						9.9			-			-	-
Approach LOS									A							

Copyright $\ensuremath{\mathbb{C}}$ 2023 University of Florida. All Rights Reserved.

		Н	CS7	Two-	Way	' Sto	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Inters	ection			Арра	aloosa &	Hwy 10	5		
Agency/Co.	SMH	Consulta	ants				Jurisc	liction			El Pa	so Count	ty			
Date Performed	4/4/2	023					East/	West Stre	eet		Hwy	105				
Analysis Year	2023	23 North/South Street Appaloosa														
Time Analyzed	9:00-	00-10:00 am Weekend Peak Hour Factor 0.90														
Intersection Orientation	East-\	-West Analysis Time Period (hrs) 0.25														
Project Description	Color	ado Pun	npkin Pa	tch Temp	oorary U	se TIS										
Lanes																
Vehicle Volumes and <i>A</i>	Adjustme	nts			Maj	or Street: Ea	st-West									
Approach			ound			West	bound			Nort	nbound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R

Approach		Lasic	Jouriu			VVESU	Jouna			NOILII	bound			Journ	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	106	0		1	170	0		4		1				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										. ())					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up Ho	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				
Critical Headway (sec)		4.12				4.12				7.12		6.22				
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3				
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32				
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		0				1					6					
Capacity, c (veh/h)		1385				1470					686					
v/c Ratio		0.00				0.00					0.01					
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0					
Control Delay (s/veh)		7.6				7.5					10.3					
Level of Service (LOS)		A				A					В					
Approach Delay (s/veh)		0	.0	-		0	.0			- 1().3	-				-
Approach LOS											В					

Copyright $\ensuremath{\mathbb{C}}$ 2023 University of Florida. All Rights Reserved.

HCS[™] TWSC Version 7.6 Appaloosa & Hwy 105 Ex. AM Weekend.xtw

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105						
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County						
Date Performed	4/4/2023	East/West Street	Hwy 105						
Analysis Year	2023	North/South Street	Appaloosa						
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.98						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Colorado Pumpkin Patch Temporary Use TIS								
Lanes									
	Major Street: Ea	ast-West							

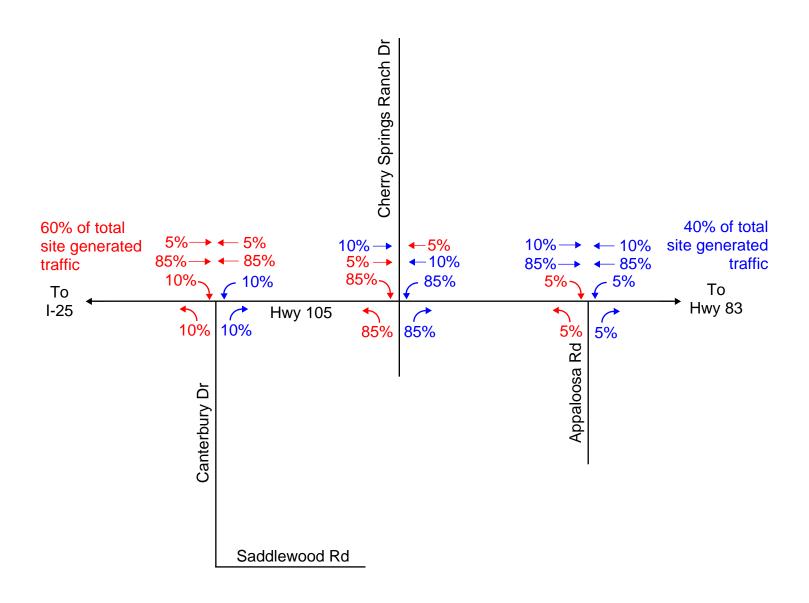
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	145	2		5	155	0		3		4				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)		-				-	-		0					-		-
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				
Critical Headway (sec)		4.12				4.12				7.12		6.22				
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3				
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		0				5					7					
Capacity, c (veh/h)		1421				1431					762					
v/c Ratio		0.00				0.00					0.01					
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0					
Control Delay (s/veh)		7.5				7.5					9.8					
Level of Service (LOS)		A				A					A					
Approach Delay (s/veh)		0.0 0.3					9.8					-		-		
Approach LOS									A							

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105							
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County							
Date Performed	4/4/2023	East/West Street	Hwy 105							
Analysis Year	2023	North/South Street	Appaloosa							
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.90							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	Colorado Pumpkin Patch Temporary Use TIS									
Lanes										
	Major Street: I	East-West								
Vehicle Volumes and Ad	djustments									

Approach		Eastb	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0	
Configuration			LTR				LTR				LR						
Volume (veh/h)		0	161	4		3	130	0		0		1					
Percent Heavy Vehicles (%)		2				2				2		2					
Proportion Time Blocked																	
Percent Grade (%)									0								
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.1		6.2					
Critical Headway (sec)		4.12				4.12				7.12		6.22					
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3					
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32					
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		0				3					1						
Capacity, c (veh/h)		1438				1392					862						
v/c Ratio		0.00				0.00					0.00						
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0						
Control Delay (s/veh)		7.5				7.6					9.2						
Level of Service (LOS)		A				A					Α						
Approach Delay (s/veh)		0.0 0.2						9.2						-			
Approach LOS									i – – –		4						

Copyright $\ensuremath{\mathbb{C}}$ 2023 University of Florida. All Rights Reserved.

HCS[™] TWSC Version 7.6 Appaloosa & Hwy 105 Ex. PM Weekend.xtw


TRIP DISTRIBUTION EXHIBIT

Project Generated Weekday Trip Distribution Percentages Exhibit

Project Generated Weekend Trip Distribution Percentages Exhibit

EXISTING + DEVELOPMENT PEAK HOUR TURNING MOVEMENTS

	Canterbury/Hwy 105												
	Peak	Hour: 9:00	am to 10:0	10 am									
Existing + Development Weekend													
	Hwy 105												
EB LT													
0	201	10	7	123	0								
		Cante	rbury										
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT								
0	0 0 0 1 0 8												
Peak Hou	Peak Hour Volume: 350												

Canterbury/Hwy 105

Peak Hour: 9:00 am to 10:00 am

Existing + Development Weekday

 Hwy 105

 EB LT
 EB Thru
 EB RT
 WB LT
 WB Thru
 WB RT

 0
 152
 74
 43
 158
 0

Canterbury

SB RT SB Thru SB LT NB RT NB Thru NB LT

0 0 0 8 0 11

Canterbury/Hwy 105

Peak Hour: 1:00 pm to 2:00 pm Existing + Development Weekend Hwy 105 EB LT EB Thru EB RT WB LT WB Thru WB RT

0 275 16 9 161 0

Canterbury
 Canteroury

 SB RT
 SB Thru
 SB LT
 NB RT
 NB Thru
 NB LT

 0
 0
 0
 4
 0
 8

 Peak Hour Volume:
 473
 473
 473
 473
 473

446

Canterbury/Saddlewood												
	Peak	Hour: 9:00	am to 10:0	0 am								
	Existi	ng + Develo	pment We	ekend								
Saddlewood												
EB LT EB Thru EB RT WB LT WB Thru WB RT												
0	0	0	0	0	5							
		Cante	rbury									
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT							
0 2 17 1 1 0												
Peak Hou	r Volume:	26										

Appaloosa/Hwy 105												
Peak Hour: 9:00 am to 10:00 am												
Existing + Development Weekday												
Hwy 105												
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT							
0	112	10	12	220	0							
		Арра	loosa									
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT							
0	0	0	4	0	4							
Peak Hour Volume: 362												

Appaloosa/Hwy 105

Peak Hour: 9:00 am to 10:00 am

Existing + Development Weekend

 Hwy 105

 EB LT
 EB Thru
 EB RT
 WB LT
 WB Thru
 WB RT

 0
 112
 5
 4
 229
 0

Appaloosa

SB RT SB Thru SB LT NB RT NB Thru NB LT

0 0 0 2 0 5

357

	Dook		Cherry Springs Ranch/Hwy 105											
	Peak Hour: 9:00 am to 10:00 am													
Existing + Development Weekday														
Hwy 105														
EB LT EB Thru EB RT WB LT WB Thru WB RT														
4	120	0	0	218	5									
		Cherry Spr	ings Ranch											
SB RT S	SB Thru	SB LT	NB RT	NB Thru	NB LT									
3	0	2	0	0	0									
Peak Hour Volume: 352														

_								
		Che	rry Springs	Ranch/Hwy	105			
		Peak	Hour: 9:00	am to 10:0	00 am			
		Existi	ng + Develo	pment We	ekend			
	Cherry Springs Ranch/Hwy 105 Peak Hour: 9:00 am to 10:00 am Existing - Development Weekend Hwy 105 B LT EB Thru EB LT WB Thru WB Thru WB Thru SB RT SB LT SB RT SB LT B RT WB RT SB RT SB LT SB Colspan="2">NB RT SB RT SB LT NB RT NB LT NB O 4 S0 4 S0 4							
EB L	Т	EB Thru	EB RT	WB LT	WB Thru	WB RT		
7		109	80	53	169	13		
	EB LT EB Thru EB RT WB LT WB Thru WB RT 7 109 80 53 169 13 Cherry Springs Ranch							
SB R	T	SB Thru	SB LT	NB RT	NB Thru	NB LT		
6		0	4	5	0	8		
Peak	Hou	r Volume:	454					

	Che	rry Springs	Ranch/Hwy	105					
	Peal	k Hour: 1:00) pm to 2:0) pm					
Existing + Development Weekday									
Hwy 105									
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT				
0	152	0	0	172	2				
		Cherry Spr	ings Ranch						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
1 0 3 0 0 0									
Peak Hou	r Volume:	330							

		k Hour: 1:00			
	Existi	ng + Develo		ekday	
		Hwy	105		
EB LT EB Thru 0 152		EB RT	WB LT	WB Thru	٧
0	152 0 0		0	172	
		Cherry Spr	ings Ranch		
SB RT	SB Thru	SB LT	NB RT	NB Thru	I
1	0	3	0	0	

	Che	rry Springs	Ranch/Hwy	105							
Peak Hour: 1:00 pm to 2:00 pm											
Existing + Development Weekend											
Hwy 105											
EB LT	EB Thru EB RT WB LT WB Thru WB R										
0	173	108	72	136	2						
		Cherry Spr	ings Ranch								
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT						
2	0	0 1 8 0 12									
Peak Hou	Peak Hour Volume: 514										

Canterbury/Saddlewood Peak Hour: 9:00 am to 10:00 am Existing + Development Weekday
 Saddlewod

 EB LT
 EB Thru
 EB RT
 WB LT
 WB Thru
 WB RT

 0
 0
 0
 1
 0
 14
 Canterbury SB RT SB Thru SB LT NB RT NB Thru NB LT 0 0 117 0 0 0 132

	Canterbury/Saddlewood Peak Hour: 1:00 pm to 2:00 pm										
Existing + Development Weekend											
Saddlewood											
EB LT	EB LT EB Thru EB RT WB LT WB Thru WB RT										
0	0	0	0	0	3						
		Cante	erbury								
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT						
0	3 22 1 6 0										
Peak Hou	ir Volume:	35									

	(Canterbury/	Saddlewoo	d					
Peak Hour: 1:00 pm to 2:00 pm									
Existing + Development Weekday									
Saddlewood									
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT				
0	0	0	3	0	21				
		Cante	rbury						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
0	3	39	3	2	0				

Peak Hour Volume: 71

		Appaloosa	a/Hwy 105							
	Peak	Hour: 1:00) pm to 2:0) pm						
Existing + Development Weekend										
Hwy 105										
EB LT	EB Thru EB RT WB LT WB Thru WB RT									
0	170	170 10 7 211 0								
		Арра	Iloosa							
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT					
0	0	0 0 2 0 1								
Peak Hou	r Volume:	401								

	SB Thru	SB LT	NBRI	NB Thru	NBLI	
	3	22	1	6	0	
bu	r Volume:	35				

	Peal) pm				
	Canterbury/Hwy 105 Peak Hour: 1:00 pm to 2:00 pm Existing + Development Weekday Hwy 105 EB Thru SB Thru NB LT NB RT NB LT O O D 17							
		Hwy	105					
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT			
0	200	30	16	145	0			
		Cante	erbury					
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT			
0	0	0	8	0	17			
Peak Hou	r Volume:	416						

Peak Hour Volume:

Peak Hour Volume:

	Appaloosa/Hwy 105 Peak Hour: 1:00 pm to 2:00 pm Existing + Development Weekday									
	Hwy 105									
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT					
0	151	5	8	169	0					
		Appa	loosa							
SB RT	SB Thru	SB Thru SB LT NB RT		NB Thru	NB LT					
0	0	0	6	0	4					

Peak Hour Volume:

	Appaloo									
NB LT	SB RT	SB Thru	SB LT	1						
0	0	0	0							
	Peak Hou	r Volume:	343							

EXISTING + DEVELOPMENT LEVEL OF SERVICE (LOS)

		Н	CS7	Two-	-Way	' Stop	o-Co	ntrol	Rep	ort						
General Information	_	_	_	_	_	_	Site Information						_			
Analyst	Brett	Louk					Intersection Canterbury 8				rbury &	Saddlewood				
Agency/Co.	SMH	Consulta	ants				Jurisd	iction				o Count				
Date Performed	4/24/	4/24/2023					East/\	Nest Stre	eet			ewood				
Analysis Year	2023						North	/South S	Street		Cante	rbury				
Time Analyzed	9:00-	10:00 an	n Weekd	ау			Peak	Hour Fac	tor		0.85					
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pun	npkin Pa	tch Spec	ial Use T	'IS										
Lanes																
Major Street, North-South																
Vehicle Volumes and Adj	Vehicle Volumes and Adjustments															
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						1		14		0	0	0		117	0	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)							0									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)						7.1		6.2		4.1				4.1		
Critical Headway (sec)						7.12		6.22		4.12				4.12		
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22		
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)							18			0				138		
Capacity, c (veh/h)							1036			1623				1623		
v/c Ratio							0.02			0.00				0.08		
95% Queue Length, Q ₉₅ (veh)							0.1			0.0				0.3		
Control Delay (s/veh)							8.5			7.2				7.4		
Level of Service (LOS)							A			A				A		
Approach Delay (s/veh)						8	.5					7	.4			
Approach LOS							A									

Copyright © 2023 University of Florida. All Rights Reserved. HCS [™] TWSC Version 7.6 Canterbury & Saddlewood Ex. + Dev AM Weekday.xtw

Generated: 4/27/2023 4:20:06 PM

		H	ICS7	Two-	-Way	Stop	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Inters	ection			Cante	erbury &	Saddlev	vood		
Agency/Co.	SMH	Consult	ants				Jurisd	liction				o Count				
Date Performed	4/24/	2023					East/\	Nest Stre	eet		Saddl	ewood				
Analysis Year	2023						North	/South S	Street		Cante	erbury				
Time Analyzed	9:00-	10:00 an	n Weeke	nd			Peak	Hour Fac	tor		0.85					
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pur	npkin Pa	tch Spec	ial Use T	'IS										
Lanes																
					Majo	Street: Nor	rth-South									
Vehicle Volumes and Adj	ustme	nts														
Approach	T	Eastk	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						0		5		0	1	1		17	2	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)							0									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up Ho	eadwa	ys														
Base Critical Headway (sec)						7.1		6.2		4.1				4.1		
Critical Headway (sec)						7.12		6.22		4.12				4.12		
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22		
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)							6			0				20		
Capacity, c (veh/h)							1083			1620				1620		
v/c Ratio							0.01			0.00				0.01		
95% Queue Length, Q ₉₅ (veh)							0.0			0.0				0.0		
Control Delay (s/veh)							8.3			7.2				7.3		
Level of Service (LOS)							A			A				A		
Approach Delay (s/veh)			-	-		8	.3			0	.0	-		6	.5	-
Approach LOS							A									

Copyright © 2023 University of Florida. All Rights Reserved. HCS [™] TWSC Version 7.6 Canterbury & Saddlewood Ex. + Dev AM Weekend.xtw

Generated: 4/24/2023 3:20:34 PM

		Н	CS7	Two-	-Way	' Stop	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Inters	ection			Cante	rbury &	Saddlev	vood		
Agency/Co.	SMH	Consulta	ants				Jurisd	iction				o Count				
Date Performed	4/24/	2023					East/\	Nest Stre	eet			ewood	,			
Analysis Year	2023						North	/South S	Street		Cante	rbury				
Time Analyzed	1:00-2	2:00 pm	Weekda	у			Peak	Hour Fac	tor		0.85	-				
Intersection Orientation	North	n-South		-			Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pun	npkin Pa	tch Spec	ial Use T	'IS										
Lanes																
					Majo	r Street: Nor	rth-South									
Vehicle Volumes and Adju	ıstme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						3		21		0	2	3		39	3	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)							0									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)						7.1		6.2		4.1				4.1		
Critical Headway (sec)						7.12		6.22		4.12				4.12		
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)							28			0				46		
Capacity, c (veh/h)							1047			1618				1615		
v/c Ratio							0.03			0.00				0.03		
95% Queue Length, Q ₉₅ (veh)							0.1			0.0				0.1		
Control Delay (s/veh)							8.5			7.2				7.3		
Level of Service (LOS)							A			Α				Α		
Approach Delay (s/veh)						8	5.5			0	.0			6	.8	
Approach LOS							A									

		Н	CS7	Two-	-Way	' Stop	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Inters	ection			Cante	rbury &	Saddlev	vood		
Agency/Co.	SMH	Consulta	ants				Jurisd	iction				o Count				
Date Performed	4/24/	2023					East/\	Nest Stre	eet			ewood				
Analysis Year	2023						North	/South S	Street		Cante	rbury				
Time Analyzed	1:00-2	2:00 pm	Weeken	d			Peak	Hour Fac	tor		0.85					
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pun	npkin Pa	tch Spec	ial Use T	'IS										
Lanes																
					Majo	r Street: Nor	rth-South									
Vehicle Volumes and Adju	ustme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						0		3		0	6	1		22	3	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)							0									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)						7.1		6.2		4.1				4.1		
Critical Headway (sec)						7.12		6.22		4.12				4.12		
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22		
Delay, Queue Length, and	l Leve	l of Se	ervice													
Flow Rate, v (veh/h)							4			0				26		
Capacity, c (veh/h)							1075			1618				1612		
v/c Ratio							0.00			0.00				0.02		
95% Queue Length, Q ₉₅ (veh)							0.0			0.0				0.0		
Control Delay (s/veh)							8.4			7.2				7.3		
Level of Service (LOS)							A			А				А		
Approach Delay (s/veh)						8	3.4			0	.0			6	.4	
Approach LOS							A									

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105 AM
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/24/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Canterbury
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		
Lanes			

Major Street: East-West

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	152	74		43	158	0		11		8				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				
Critical Headway (sec)		4.12				4.12				7.12		6.22				
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3				
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		0				46					20					
Capacity, c (veh/h)		1407				1323					596					
v/c Ratio		0.00				0.03					0.03					
95% Queue Length, Q ₉₅ (veh)		0.0				0.1					0.1					
Control Delay (s/veh)		7.6				7.8					11.3					
Level of Service (LOS)		A				A					В					
Approach Delay (s/veh)		0	.0			1	.9			11	.3					
Approach LOS										F	3					

		Н	CS7	Two-	Way	Sto	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	ouk					Inters	ection			Cante	erbury &	Hwy 10	5 AM		
Agency/Co.	SMH	Consulta	ints				Jurisd	liction			El Pas	o Count	у			
Date Performed	4/24/2	2023					East/\	Nest Stre	eet		Hwy ⁻	105				
Analysis Year	2023						North	/South S	Street		Cante	erbury				
Time Analyzed	9:00-1	0:00 AN	1 Weeke	nd			Peak	Hour Fac	ctor		0.85					
Intersection Orientation	East-V	Vest					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pum	npkin Pa	tch Spec	ial Use T	'IS										
anes																
Vehicle Volumes and	Adjustmo	nte			Majo	or Street: Ea	st-West									
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	C
Configuration			LTR				LTR				LR					

													4 1	1
Number of Lanes	0	0	1	0	0	0	1	0	0	1	0	0	0	ĺ
Configuration			LTR				LTR			LR				ĺ
Volume (veh/h)		0	201	10		7	123	0	8		1			l
Percent Heavy Vehicles (%)		2				2			2		2			ĺ
Proportion Time Blocked														l
Percent Grade (%)									()				
Right Turn Channelized														
Median Type Storage				Undiv	vided									
Critical and Follow-up He	adwa	ys												
Base Critical Headway (sec)		4.1				4.1			7.1		6.2			ĺ
Critical Headway (sec)		4.12				4.12			7.12		6.22			

Delay, Queue Length, and Level of Service

Base Follow-Up Headway (sec)

Follow-Up Headway (sec)

Delay, Queue Lengin, and		er vice								
Flow Rate, v (veh/h)	0		8				11			
Capacity, c (veh/h)	1438		1317				574			
v/c Ratio	0.00		0.01				0.02			
95% Queue Length, Q ₉₅ (veh)	0.0		0.0				0.1			
Control Delay (s/veh)	7.5		7.7				11.4			
Level of Service (LOS)	A		A				В			
Approach Delay (s/veh)	0	.0	0	.5		11	.4			
Approach LOS						E	3			

2.2

2.22

3.5

3.52

3.3

3.32

2.2

2.22

		Н	CS7	Two-	Way	Stop	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Inters	ection			Cante	erbury &	Hwy 10	5 PM		
Agency/Co.	SMH	Consulta	ants				Jurisd	iction			El Pas	o Count	у			
Date Performed	4/24/	2023					East/\	Nest Stre	eet		Hwy	105				
Analysis Year	2023						North	/South	Street		Cante	erbury				
Time Analyzed	1:00-2	2:00 pm	Weekda	у			Peak	Hour Fac	ctor		0.90					
Intersection Orientation	East-\	Vest					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pun	npkn Pat	ch Speci	al Use T	S										
Lanes																
Vehicle Volumes and Adju	ustme	nts			Majo	or Street: Ea	st-West									
Approach			ound			West	bound			North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	Т	R	U	L	Т	R

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	200	30		16	145	0		17		8				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										. ())					
Right Turn Channelized																
Median Type Storage				Undi	vided								-			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				
Critical Headway (sec)		4.12				4.12				7.12		6.22				
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3				
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		0				18					28					
Capacity, c (veh/h)		1418				1309					590					
v/c Ratio		0.00				0.01					0.05					
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.1					
Control Delay (s/veh)		7.5				7.8					11.4					
Level of Service (LOS)		A				Α					В					
Approach Delay (s/veh)		0	.0			0	.9			11	1.4	-				-
Approach LOS										I	В					

		Н	CS7	Two	-Way	Sto	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						_
Analyst	Brett	Louk					Inters	ection			Cante	erbury &	Hwy 10	5		
Agency/Co.	SMH	Consulta	ants				Jurisd	liction			El Pas	o Count	у			
Date Performed	4/24/	2023					East/\	Nest Stre	eet		Hwy ²	105				
Analysis Year	2023						North	/South S	Street		Cante	erbury				
Time Analyzed	1:00-2	2:00 pm	Weeken	d			Peak	Hour Fac	tor		0.85					
Intersection Orientation	East-\	West					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pun	npkin Pat	tch Spec	ial Use T	'IS										
Lanes																
																_
/ehicle Volumes and Adj	ustme	nts		_	Majo	or Street: Ea	st-West	_								
Approach	Τ	Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	I
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	1
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	(
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	275	16		9	161	0		8		4				
Percent Heavy Vehicles (%)		2				2				2		2				
referre field y verificies (70)	1															-
Proportion Time Blocked					-	-)	-	1			
	-									,	J					
Proportion Time Blocked		1									J					
Proportion Time Blocked Percent Grade (%)	-			Undi	vided						J					
Proportion Time Blocked Percent Grade (%) Right Turn Channelized	adwa	ys		Undi	vided						J					

Base Critical Headway (sec)		4.1			4.1			7.1		6.2		
Critical Headway (sec)		4.12			4.12			7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2			3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22			3.52		3.32		
Delay, Queue Length, and	Level	of Se	ervice									
Flow Rate, v (veh/h)		0			11				14			
Capacity, c (veh/h)		1384			1217				510			
v/c Ratio		0.00			0.01				0.03			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0				0.1			
Control Delay (s/veh)		7.6			8.0				12.3			
Level of Service (LOS)		А			А				В			
Approach Delay (s/veh)		0	.0		0	.5		12	2.3			
Approach LOS								E	3			

d. HCS[™] TWSC Version 7.6 Canterbury & Hwy 105 Ex. + Dev PM Weekend.xtw Copyright $\ensuremath{\mathbb{C}}$ 2023 University of Florida. All Rights Reserved.

	p-Control Report	
	Site Information	
Brett Louk	Intersection	Cherry Spr R & Hwy 105
SMH Consultants	Jurisdiction	El Paso County
4/24/2023	East/West Street	Hwy 105
2023	North/South Street	Cherry Springs Ranch
9:00-10:00 am Weekday	Peak Hour Factor	0.88
East-West	Analysis Time Period (hrs)	0.25
Colorado Pumpkin Patch Special Use TIS	<u>.</u>	- -
Major Street: Ea	ist-West	
	SMH Consultants 4/24/2023 2023 9:00-10:00 am Weekday East-West Colorado Pumpkin Patch Special Use TIS	Brett Louk Intersection SMH Consultants Jurisdiction 4/24/2023 East/West Street 2023 North/South Street 9:00-10:00 am Weekday Peak Hour Factor East-West Analysis Time Period (hrs) Colorado Pumpkin Patch Special Use TIS Intersection

Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration			LTR				LTR								LR	
Volume (veh/h)		4	120	0		0	218	5						2		3
Percent Heavy Vehicles (%)		2				2								2		2
Proportion Time Blocked																
Percent Grade (%)															0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys							-							
Base Critical Headway (sec)		4.1				4.1								7.1		6.2
Critical Headway (sec)		4.12				4.12								7.12		6.22
Base Follow-Up Headway (sec)		2.2				2.2								3.5		3.3
Follow-Up Headway (sec)		2.22				2.22								3.52		3.32
Delay, Queue Length, an	d Leve	l of Se	ervice										<u> </u>	<u> </u>	<u> </u>	
Flow Rate, v (veh/h)		5				0									6	
Capacity, c (veh/h)		1312				1448									679	
v/c Ratio		0.00				0.00									0.01	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0									0.0	
Control Delay (s/veh)		7.8				7.5									10.3	
Level of Service (LOS)		A				A									В	
Approach Delay (s/veh)		. 0	.3			. 0	.0							1(0.3	
Approach LOS															В	

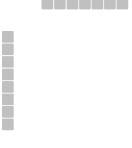
Copyright © 2023 University of Florida. All Rights Reserved. HCS[™] TWSC Version 7.6 Cherry Springs Ranch & Hwy 105 Ex. + Dev AM Weekday.xtw

Generated: 4/24/2023 3:44:33 PM

	HCS7 Two-Way Stop	p-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/24/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Cherry Springs Ranch
Time Analyzed	9:00-10:00 am Weekend	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		
Lanes			

Major Street: East-West

Vehicle Volumes and Adjustments


Approach		Eastb	ound			West	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		7	109	80		53	169	13		8	0	5		4	0	6
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)		-		-				-		()				0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.12	6.52	6.22		7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.52	4.02	3.32		3.52	4.02	3.32
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		8				57					14				11	
Capacity, c (veh/h)		1377				1368					575				645	
v/c Ratio		0.01				0.04					0.02				0.02	
95% Queue Length, Q ₉₅ (veh)		0.0				0.1					0.1				0.1	
Control Delay (s/veh)		7.6				7.7					11.4				10.7	
Level of Service (LOS)		A				Α					В				В	
Approach Delay (s/veh)		0	.3			2	.0			11	.4	-		- 1().7	R
Approach LOS										I	3				В	

		Н	CS7	Two-	Way	Stop	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Inters	ection			Cherr	y Spr R &	k Hwy 1	05		
Agency/Co.	SMH	Consulta	ints				Jurisd	liction			El Pas	o Count	y			
Date Performed	4/24/	2023					East/\	Nest Stre	eet		Hwy ²	105				
Analysis Year	2023						North	/South	Street		Cherr	y Spring	s Ranch			
Time Analyzed	1:00-2	2:00 pm	Weekda	у			Peak	Hour Fac	ctor		0.97					
Intersection Orientation	East-\	Nest					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pun	npkin Pa	tch Spec	ial Use T	'IS										
Lanes																
					Majo	or Street: Ea	st-West									
Vehicle Volumes and Adju	istme	nts														
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12

Priority	10	1	2	3	40	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration			LTR				LTR								LR	
Volume (veh/h)		0	152	0		0	172	2						3		1
Percent Heavy Vehicles (%)		2				2								2		2
Proportion Time Blocked																
Percent Grade (%)														(C	
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1				4.1								7.1		6.2
Critical Headway (sec)		4.12				4.12								7.12		6.22
Base Follow-Up Headway (sec)		2.2				2.2								3.5		3.3
Follow-Up Headway (sec)		2.22				2.22								3.52		3.32
Delay, Queue Length, and	l Leve	l of Se	ervice													
Flow Rate, v (veh/h)		0				0									4	
	1		1			i		i	i				i			

Flow Rate, v (veh/h)		0				0						4	
Capacity, c (veh/h)		1396				1423						666	
v/c Ratio		0.00				0.00						0.01	
95% Queue Length, Q_{95} (veh)		0.0				0.0						0.0	
Control Delay (s/veh)		7.6				7.5						10.4	
Level of Service (LOS)		А				А						В	
Approach Delay (s/veh)		0.0				0	.0				10).4	
Approach LOS											E	3	
C					LCC TM T					 	4/24/202		1 DM

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/24/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Cherry Springs Ranch
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		
Lanes			

Major Street: East-West

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		0	173	108		72	136	2		12	0	8		1	0	2
Percent Heavy Vehicles (%)		2				2				3	3	3		2	3	2
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys							-							
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.13	6.53	6.23		7.12	6.53	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.53	4.03	3.33		3.52	4.03	3.32
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		0				78					22				3	
Capacity, c (veh/h)		1431				1255					515				646	
v/c Ratio		0.00				0.06					0.04				0.01	
95% Queue Length, Q ₉₅ (veh)		0.0				0.2					0.1				0.0	
Control Delay (s/veh)		7.5				8.1					12.3				10.6	
Level of Service (LOS)		А				A					В				В	
Approach Delay (s/veh)		0	.0			. 3	.1			12	2.3			1(0.6	
Approach LOS											В				В	

Generated: 4/24/2023 3:54:32 PM

		Н	CS7	Two-	Way	' Stop	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Inters	ection			Арра	oosa &	Hwy 105	5		
Agency/Co.	SMH	Consulta	nts				Jurisc	liction			El Pas	o Count	y			
Date Performed	4/24/	2023					East/	West Stre	eet		Hwy ⁻	105				
Analysis Year	2023						North	n/South S	Street		Арра	oosa				
Time Analyzed	9:00-	10:00 am	Weekd	ау			Peak	Hour Fac	ctor		0.87					
Intersection Orientation	East-\	West					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pum	ipkin Pa	tch Spec	ial Use T	'IS										
Lanes																
	Major Street: East-West															
Vehicle Volumes and Ac	ljustme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
					0	0	1	0		0		0		0	0	

Number of Lanes	0	0	1	0	0	0	1	0	0	1	0	0	0	0
Configuration			LTR				LTR			LR				
Volume (veh/h)		0	112	10		12	220	0	4		4			
Percent Heavy Vehicles (%)		2				2			2		2			
Proportion Time Blocked														
Percent Grade (%)									()				
Right Turn Channelized														
Median Type Storage				Undi	vided									
Critical and Follow-up He	adwa	vs												

Critical and Follow-up He	adwa	ys										
Base Critical Headway (sec)		4.1			4.1			7.1		6.2		
Critical Headway (sec)		4.12			4.12			7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2			3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22			3.52		3.32		
Delay, Queue Length, and	Leve	l of Se	ervice									
Flow Rate, v (veh/h)		0			14				9			
Capacity, c (veh/h)		1312			1443				682			
v/c Ratio		0.00			0.01				0.01			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0				0.0			
Control Delay (s/veh)		7.7			7.5				10.4			
Level of Service (LOS)		А			А				В			
Approach Delay (s/veh)	0.0			0.	.5		10).4				
Approach LOS								E	3			

		H	CS7	Two-	-Way	Stop	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n				_	_	
Analyst	Brett	Louk					Inters	ection			Appa	oosa &	Hwy 105	;		
Agency/Co.	SMH	Consulta	ants				Jurisd	liction			El Pas	o Count	у			
Date Performed	4/24/	2023					East/\	Nest Stre	eet		Hwy ²	105				
Analysis Year	2023						North	/South S	Street		Appa	oosa				
Time Analyzed	9:00-	10:00 an	n Weekei	nd			Peak	Hour Fac	tor		0.90					
Intersection Orientation	East-	West					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pun	npkin Pat	tch Spec	ial Use T	'IS										
Lanes																
																_
				_				_								
					Majo	or Street: Ea	st-West									
Vehicle Volumes and Ad	justme															
Approach		Eastb	ound	-		West	oound			North	bound	-		South	bound	
	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	
Movement					40	4		6		7	8	9		10	11	R
Priority	1U	1	2	3			5									12
Priority Number of Lanes	1U 0	1 0	1	3	0	4 0	5	0		0	1	0		0	0	-
Priority							<u> </u>			0	1 LR	0		0	0	12
Priority Number of Lanes		0	1			0	1			5		2		0	0	12
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%)		0	1 LTR	0		0	1 LTR	0						0	0	12
Priority Number of Lanes Configuration Volume (veh/h)		0	1 LTR	0		0	1 LTR	0		5		2		0	0	12
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%)		0	1 LTR	0		0	1 LTR	0		5		2		0	0	12
Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked		0	1 LTR	0		0	1 LTR	0		5	LR	2		0	0	12

itical and Follow-up Headways

Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				
Critical Headway (sec)		4.12				4.12				7.12		6.22				
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3				
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32				
Delay, Queue Length, and Level of Service																
Flow Rate, v (veh/h)		0				4					8					
Capacity, c (veh/h)		1311				1455					637					
v/c Ratio		0.00				0.00					0.01					
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0					
Control Delay (s/veh)		7.7				7.5					10.7					
Level of Service (LOS)		А				А					В					
Approach Delay (s/veh)		0	.0			0	.2	-		- 1().7	-				
Approach LOS											В					

		Н	CS7	Two-	Way	Stop	o-Co	ntrol	Rep	ort										
General Information							Site	Inform	natior	า										
Analyst	Brett	Louk					Inters	ection			Appal	oosa &	Hwy 105	;						
Agency/Co.	SMH	Consulta	ants				Jurisd	iction			El Pas	o Count	у							
Date Performed	4/24/	2023					East/\	West Stre	eet		Hwy 1	105								
Analysis Year	2023						North	/South S	Street		Appa	oosa								
Time Analyzed	1:00-2	2:00 pm	Weekda	y			Peak	Hour Fac	ctor		0.98									
Intersection Orientation	East-V	Vest					Analy	sis Time	Period (hrs)	0.25									
Project Description	Color	ado Pun	npkin Pat	tch Spec	ial Use T	'IS														
Lanes																				
Vohicle Volumes and Ad		nto			Majo	or Street: Ea	st-West													
Vehicle Volumes and Adjustments																				
-	T	Eastb	ound			West	bound			North	bound									
Approach Movement	U	Eastb L	ound T	R	U	Westl	bound T	R	U	North L	bound T	R	U	South L	bound T	R				
Approach				R 3	U 4U			R 6	U			R 9	U							
Approach Movement	U	L	Т		-	L	Т		U	L	Т		U	L	Т					
Approach Movement Priority	U 1U	L 1	T 2	3	4U	L 4	Т 5	6	U	L 7	Т 8	9	U	L 10	T 11	12				
Approach Movement Priority Number of Lanes	U 1U	L 1	T 2 1	3	4U	L 4	T 5 1	6	U	L 7	T 8 1	9	U	L 10	T 11	12				
Approach Movement Priority Number of Lanes Configuration	U 1U	L 1 0	T 2 1 LTR	3	4U	L 4 0	T 5 1 LTR	6 0		L 7 0	T 8 1	9 0		L 10	T 11	12				
Approach Movement Priority Number of Lanes Configuration Volume (veh/h)	U 1U	L 1 0	T 2 1 LTR	3	4U	L 4 0 8	T 5 1 LTR	6 0	U	L 7 0 4	T 8 1	9 0 6		L 10	T 11	12				

Critical and Follow-up Headways

Right Turn Channelized Median Type | Storage

Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				
Critical Headway (sec)		4.12				4.12				7.12		6.22				
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3				
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32				
Delay, Queue Length, and Level of Service																
Flow Rate, v (veh/h)		0				8					10					
Capacity, c (veh/h)		1404				1420					749					
v/c Ratio		0.00				0.01					0.01					
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0					
Control Delay (s/veh)		7.6				7.5					9.9					
Level of Service (LOS)		А				А					А					
Approach Delay (s/veh)		0	.0			0	.4			9	.9					
Approach LOS										ļ	4					

Undivided

		Н	CS7	Two	-Way	' Stoj	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Inters	ection			Арра	oosa &	Hwy 105	;		
Agency/Co.	SMH	Consulta	ints				Jurisd	liction			El Pas	o Count	y			
Date Performed	4/24/	2023					East/\	West Stre	eet		Hwy [·]	105				
Analysis Year	2023						North	/South	Street		Арра	oosa				
Time Analyzed	1:00-2	2:00 pm	Weeken	d			Peak	Hour Fac	ctor		0.90					
Intersection Orientation	East-\	Nest					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pun	npkin Pat	tch Spec	ial Use T	'IS										
Lanes																
Vehicle Volumes and Adj	ustme	nts				or Street: Ea										
Approach	<u> </u>	Eastb	ound			West	bound			North	bound			South	bound	_
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	170	10		7	211	0		1		2				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)							1			(0					
Right Turn Channelized																

Critical and Follow-up Headways

Median Type | Storage

Critical and Follow-up H	eadways														
Base Critical Headway (sec)	4	.1			4.1				7.1		6.2				
Critical Headway (sec)	4.	12			4.12				7.12		6.22				
Base Follow-Up Headway (sec)	2.	2			2.2				3.5		3.3				
Follow-Up Headway (sec)	2.2	22			2.22				3.52		3.32				
Delay, Queue Length, and Level of Service															
Flow Rate, v (veh/h)	()			8					3					
Capacity, c (veh/h)	13	33			1372					701					
v/c Ratio	0.0	00			0.01					0.00					
95% Queue Length, Q ₉₅ (veh)	0.	0			0.0					0.0					
Control Delay (s/veh)	7.	7			7.6					10.2					
Level of Service (LOS)	4	4			A					В					
Approach Delay (s/veh)		0.0			0.3	3			- 10).2	-				
Approach LOS	ach LOS B														

Undivided

FUTURE TRAFFIC GROWTH

Canterbury & Saddlewood Projected A.M. Weekday Peak Hour	Canterbury & Saddlewood Projected P.M. Weekday Peak Hour	Canterbury & Highway 105 Projected A.M. Weekday Peak Hour	Canterbury & Highway 105 Projected P.M. Weekday Peak Hour	Cherry Springs Ranch & Highway 105 Projected A.M. Weekday Peak Hour	Cherry Springs Ranch & Highway 105 Projected P.M. Weekday Peak Hour	Appaloosa & Highway 105 Projected A.M. Weekday Peak Hour	Appaloosa & Highway 105 Projected P.M. Weekday Peak Hour
Year Growth Expected PHV	Year Growth Expected PHV	Year Growth Expected PHV	Year Growth Expected PHV	Year Growth Expected PHV	Year Growth Expected PHV	Year Growth Expected PHV	Year Growth Expected PHV
2023 4	2023 18	2023 309	2023 359	2023 295	2023 306	2023 293	2023 314
2024 0.02 5	2024 0.02 19	2024 0.02 316	2024 0.02 367	2024 0.02 301	2024 0.02 313	2024 0.02 299	2024 0.02 321
2025 0.02 6	2025 0.02 20	2025 0.02 323	2025 0.02 375	2025 0.02 308	2025 0.02 320	2025 0.02 305	2025 0.02 328
2026 0.02 7	2026 0.02 21	2026 0.02 330	2026 0.02 383	2026 0.02 315	2026 0.02 327	2026 0.02 312	2026 0.02 335
2027 0.02 8	2027 0.02 22	2027 0.02 337	2027 0.02 391	2027 0.02 322	2027 0.02 334	2027 0.02 319	2027 0.02 342
2028 0.02 9	2028 0.02 23	2028 0.02 344	2028 0.02 399	2028 0.02 329	2028 0.02 341	2028 0.02 326	2028 0.02 349
2029 0.02 10	2029 0.02 24	2029 0.02 351	2029 0.02 407	2029 0.02 336	2029 0.02 348	2029 0.02 333	2029 0.02 356
2030 0.02 11	2030 0.02 25	2030 0.02 359	2030 0.02 416	2030 0.02 343	2030 0.02 355	2030 0.02 340	2030 0.02 364
2031 0.02 12	2031 0.02 26	2031 0.02 367	2031 0.02 425	2031 0.02 350	2031 0.02 363	2031 0.02 347	2031 0.02 372
2032 0.02 13	2032 0.02 27	2032 0.02 375	2032 0.02 434	2032 0.02 357	2032 0.02 371	2032 0.02 354	2032 0.02 380
2033 0.02 14	2033 0.02 28	2033 0.02 383	2033 0.02 443	2033 0.02 365	2033 0.02 379	2033 0.02 362	2033 0.02 388
2034 0.02 15	2034 0.02 29 2035 0.02 30	2034 0.02 391	2034 0.02 452	2034 0.02 373	2034 0.02 387	2034 0.02 370	2034 0.02 396
2035 0.02 16 2036 0.02 17		2035 0.02 399 2036 0.02 407	2035 0.02 462 2036 0.02 472	2035 0.02 381	2035 0.02 395 2036 0.02 403	2035 0.02 378 2036 0.02 386	2035 0.02 404
	2036 0.02 31 2037 0.02 32	2036 0.02 407 2037 0.02 416		2036 0.02 389 2037 0.02 397			2036 0.02 413 2037 0.02 422
2037 0.02 18 2038 0.02 19	2037 0.02 32 2038 0.02 33	2037 0.02 416 2038 0.02 425	2037 0.02 482 2038 0.02 492	2037 0.02 397 2038 0.02 405	2037 0.02 412 2038 0.02 421	2037 0.02 394 2038 0.02 402	2037 0.02 422 2038 0.02 431
2039 0.02 20	2038 0.02 33	2039 0.02 425	2039 0.02 502	2039 0.02 414	2038 0.02 421 2039 0.02 430	2039 0.02 411	2038 0.02 431 2039 0.02 440
2039 0.02 20	2039 0.02 34	2039 0.02 434 2040 0.02 443	2039 0.02 502	2039 0.02 414 2040 0.02 423	2039 0.02 430	2039 0.02 411 2040 0.02 420	2039 0.02 440
Canterbury & Saddlewood Projected A.M. Weekend Peak Hour	Canterbury & Saddlewood Projected P.M. Weekend Peak Hour	Canterbury & Highway 105 Projected	Canterbury & Highway 105 Projected				
	P.W. Weekelid Peak Hour	A.M. Weekend Peak Hour	P.M. Weekend Peak Hour	Cherry Springs Ranch & Highway 105 Projected A.M. Weekend Peak Hour	Cherry Springs Ranch & Highway 105 Projected P.M. Weekend Peak Hour	Appaloosa & Highway 105 Projected A.M. Weekend Peak Hour	Appaloosa & Highway 105 Projected P.M. Weekend Peak Hour
Year Growth Expected PHV	Year Growth Expected PHV	A.M. Weekend Peak Hour Year Growth Expected PHV					
Year Growth Expected PHV 2023 9			P.M. Weekend Peak Hour	Projected A.M. Weekend Peak Hour	Projected P.M. Weekend Peak Hour	A.M. Weekend Peak Hour	P.M. Weekend Peak Hour
	Year Growth Expected PHV	Year Growth Expected PHV	P.M. Weekend Peak Hour Year Growth Expected PHV	Projected A.M. Weekend Peak Hour Year Growth Expected PHV	Projected P.M. Weekend Peak Hour Year Growth Expected PHV	A.M. Weekend Peak Hour Year Growth Expected PHV	P.M. Weekend Peak Hour Year Growth Expected PHV
2023 9	Year Growth Expected PHV 2023 11	Year Growth Expected PHV 2023 239 2024 0.02 244 2025 0.02 249	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 322 2024 0.02 329 2025 0.02 336	Projected A.M. Weekend Peak Hour Year Growth Expected PHV 2023 295	Projected P.M. Weekend Peak Hour Year Growth Expected PHV 2023 297 2024 0.02 303 2025 0.02 310	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 282 2024 0.02 288 2025 0.02 294	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 299
2023 9 2024 0.02 10 2025 0.02 11 2026 0.02 12	Year Growth Expected PHV 2023 11 2024 0.02 12 2025 0.02 13 2026 0.02 14	Year Growth Expected PHV 2023 239 2024 0.02 244 2025 0.02 249 2026 0.02 254	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 322 2024 0.02 329 2025 0.02 346 2026 0.02 343	Projected A.M. Weekend Peak Hour Year Growth Expected PHV 2023 295 2024 0.02 301 2025 0.02 308 2026 0.02 315	Projected P.M. Weekend Peak Hour Year Growth Expected PHV 2023 297 2024 0.02 303 2025 0.02 310 2026 0.02 317	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 282 2024 0.02 288 2025 0.02 294 2026 0.02 300	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 299 2024 0.02 305 2025 0.02 312 2026 0.02 319
2023 9 2024 0.02 10 2025 0.02 11 2026 0.02 12 2027 0.02 13	Year Growth Expected PHV 2023 11 2024 0.02 12 2025 0.02 13 2026 0.02 14 2027 0.02 15	Year Growth Expected PHV 2023 239 2024 0.02 244 2025 0.02 249 2026 0.02 254 2027 0.02 254	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 0.02 229 2025 0.02 336 2026 0.02 343 2027 0.02 350	Projected A.M. Weekend Peak Hour Year Growth Expected PHV 2023 295 2024 0.02 301 2025 0.02 308 2026 0.02 315 2027 0.02 315	Projected P.M. Weekend Peak Hour Year Growth Expected PHV 2023 0.02 303 2005 0.02 310 2005 0.02 310 2006 0.02 317	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 282 2024 0.02 288 2025 0.02 294 2025 0.02 300 2027 0.02 306	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 299 2024 0.02 305 2025 0.02 312 2026 0.02 319 2027 0.02 326
2023 9 2024 0.02 10 2025 0.02 11 2026 0.02 12 2027 0.02 13 2028 0.02 14	Year Growth Expected PHV 2023 11 2024 0.02 12 2025 0.02 13 2026 0.02 14 2027 0.02 15 2028 0.02 16	Year Growth Expected PHV 2023 239 2024 0.02 244 2025 0.02 249 2026 0.02 254 2027 0.02 256	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 322 2026 0.02 336 2026 0.02 343 2027 0.02 350 2028 0.02 357	Projected A.M. Weekend Peak Hour Year Growth Expected PHV 2023 295 2024 0.02 301 2025 0.02 308 2026 0.02 315 2027 0.02 322 2026 0.02 325	Projected P.M. Weekend Peak Hour Year Growth Expected PHV 2023 297 2024 0.02 303 2025 0.02 310 2026 0.02 317 2027 0.02 324 2028 0.02 31	A.M. Wreekend Peak Hour Year Growth Expected PHV 2023 282 2024 0.02 288 2025 0.02 294 2026 0.02 300 2027 0.02 300 2026 0.02 303	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 299 2024 0.02 305 2025 0.02 319 2027 0.02 326 2028 0.02 333
2023 9 2024 0.02 10 2025 0.02 11 2026 0.02 12 2027 0.02 13 2028 0.02 14 2029 0.02 15	Year Growth Expected PHV 2023 11 2024 0.02 12 2025 0.02 13 2026 0.02 14 2027 0.02 15 2028 0.02 16 2029 0.02 17	Year Growth Expected PHV 2023 239 2024 0.02 244 2025 0.02 249 2026 0.02 254 2027 0.02 260 2028 0.02 266 2029 0.02 272	P.M. Weekend Peak Hour Vear Growth Expected PHV 2023 0.2 229 2025 0.2 396 2026 0.2 396 2026 0.2 396 2027 0.2 380 2028 0.02 357 2029 0.02 365	Projected A.M. Weekend Peak Hour Year Growth Expected PHV 2023 0.02 293 2025 0.02 303 2026 0.02 305 2027 0.02 315 2027 0.02 322 2028 0.02 326	Projected P.M. Weekend Peak Hour Year Growth Espected Priv 2003 0.2 393 2005 0.2 310 2006 0.02 317 2007 0.02 324 2008 0.02 331 2009 0.02 338	A.M. Weekend Peak Hour Year Growth Expected PHV 2034 0.02 282 2054 0.02 284 2056 0.02 284 2057 0.02 306 2027 0.02 313 2028 0.02 321	P.M. Weekend Peak Hour Vear Growth Expected PHV 2023 0.02 305 2025 0.02 312 2026 0.02 319 2027 0.02 336 2028 0.02 333 2029 0.02 340
2023 9 2024 0.02 10 2025 0.02 11 2036 0.02 12 2027 0.02 13 2028 0.02 14 2029 0.02 15 2030 0.02 16	Year Growth Expected PHV 2023 11 2024 0.02 12 2025 0.02 14 2026 0.02 15 2029 0.02 16 2029 0.02 17 2029 0.02 18	Year Growth Espected PHV 2023 239 2024 0.02 244 202 0.02 245 2027 0.02 249 2029 0.02 256 2029 0.02 272 2030 0.02 278	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 322 2024 0.02 329 2025 0.02 336 2026 0.02 350 2027 0.02 350 2028 0.02 357 2029 0.02 365 2030 0.02 373	Projected A.M. Weekend Peak Hour Year Growth Expected PHV 2023 295 2024 0.02 301 2025 0.02 385 2027 0.02 325 2029 0.02 325 2029 0.02 329 2029 0.02 336 2039 0.02 343	Projected P.M. Weekend Peak Hour Year Growth Expected PW/ 2023 297 2024 0.02 303 2025 0.02 310 2027 0.02 324 2028 0.02 331 2029 0.02 338 2039 0.02 345	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 282 2024 0.02 284 2025 0.02 294 2026 0.02 300 2027 0.02 300 2028 0.02 301 2029 0.02 326 2029 0.02 327	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 299 2024 0.02 2005 0.02 312 2006 2027 0.02 329 2027 0.02 329 2026 0.02 319 2026 0.02 326 2029 0.02 340 2030 0.02 347
2023 9 2024 0.02 10 2025 0.02 11 2026 0.02 12 2027 0.02 13 2028 0.02 14 2029 0.02 15 2030 0.02 16 2031 0.02 17	Year Growth Espected PHV 2023 11 2024 0.02 12 2025 0.02 13 2026 0.02 14 2027 0.02 15 2028 0.02 16 2029 0.02 17 2030 0.02 18 2031 0.02 19	Year Growth Expected PHV 2023 239 2024 0.02 244 2025 0.02 249 2026 0.02 254 2027 0.02 266 2028 0.02 272 2030 0.02 278 2031 0.02 284	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 322 2024 0.02 336 2025 0.02 350 2026 0.02 350 2028 0.02 357 2030 0.02 375 2030 0.02 373 2031 0.02 381	Projected A.M. Weekend Peak Hour Year Growth Expected PHV 2023 295 2026 022 301 2025 022 302 2026 022 315 2027 022 322 2028 0.02 329 2029 0.02 326 2030 0.02 345 2031 0.02 343 2030 0.02 350	Projected P.M. Weekend Peak Hour Year Growth Expected PHV 2023 297 2040 0.02 313 2050 0.02 317 2063 0.02 312 2063 0.02 314 2028 0.02 334 2029 0.02 338 2030 0.02 345 2031 0.02 352	A.M. Weekend Peak Hour Year Growth Expected PiV 2023 282 2024 0.02 284 2025 0.02 284 2026 0.02 306 2028 0.02 313 2029 0.02 320 2030 0.02 327 2031 0.02 324	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 299 2024 0.02 319 2056 0.02 319 2066 0.02 326 2008 0.02 333 2009 0.02 340 2000 0.02 347 2001 0.02 354
2023 9 2024 0.02 10 2025 0.02 11 2026 0.02 13 2028 0.02 14 2029 0.02 15 2030 0.02 16 2031 0.02 17 2032 0.02 18	Year Growth Expected PHV 2023 11 2024 0.02 12 2025 0.02 13 2026 0.02 14 2027 0.02 16 2029 0.02 17 2020 0.02 18 2021 0.02 19 2021 0.02 20	Year Growth Expected PHV 2023 239 2024 0.02 244 2025 0.02 249 2026 0.02 249 2027 0.02 249 2028 0.02 256 2029 0.02 272 2031 0.02 278 2032 0.02 278 2033 0.02 299	P.M. Weekend Peak Hour Vear Growth Expected PHV 2003 222 2005 0.02 336 2007 0.02 343 2007 0.02 357 2008 0.02 357 2008 0.02 357 2010 0.02 373 2001 0.02 381 2021 0.02 389	Projected A.M. Weekend Peak Hour Veir Growth Expected PHV 203 255 2034 0.02 261 2035 0.02 308 2036 0.02 315 2037 0.02 315 2038 0.02 315 2038 0.02 315 2039 0.02 315 2030 0.02 315 2030 0.02 350 2031 0.02 357	Projected P.M. Weekend Peak Hour Vear Growth Expected Pivi 2023 297 2024 0.02 303 2025 0.02 310 2026 0.02 317 2027 0.02 324 2028 0.02 331 2038 0.02 345 2031 0.02 352 2031 0.02 356	A.M. Weekend Peak Hoar Year Growth Expected PW 203 22 202 2024 0.02 288 2025 0.02 300 2027 0.02 306 2028 0.02 310 2029 0.02 312 2031 0.02 334 2032 0.02 334 2031 0.02 334 2032 0.02 334	P.M. Weekend Peak Hour Veir Growth Expected PW 203 29 2005 0.02 305 2005 0.02 312 2007 0.02 319 2007 0.02 336 2008 0.02 340 2008 0.02 347 2001 0.02 354 2001 0.02 354
2023 9 2024 0.02 10 2025 0.02 11 2066 0.02 12 2027 0.02 13 2028 0.02 14 2029 0.02 15 2030 0.02 16 2031 0.02 17 2032 0.02 18	Year Growth Expected PHV 2023 11 2024 0.02 12 2025 0.02 13 2026 0.02 14 2027 0.02 15 2028 0.02 16 2029 0.02 17 2030 0.02 18 2031 0.02 29 2032 0.02 20 2033 0.02 21	Year Growth Expected PVV 2023 23 2024 0.02 244 2025 0.02 249 2026 0.02 254 2027 0.02 266 2029 0.02 266 2029 0.02 254 2021 0.02 266 2023 0.02 258 2032 0.02 259	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 322 2024 0.02 326 2025 0.02 336 2026 0.02 329 2027 0.02 336 2028 0.02 357 2030 0.02 373 2031 0.02 381 2032 0.02 389 2033 0.02 397	Projected A.M. Weekend Peak Hour Year Growth Espected PHV 2023 295 2024 0.02 301 2025 0.02 308 2026 0.02 328 2027 0.02 329 2020 0.02 326 2030 0.02 336 2031 0.02 336 2032 0.02 336 2033 0.02 350 2034 0.02 365	Projected P.M. Weekend Peak Hour Year Growth Espected PHV 2033 297 2044 0.02 303 2005 0.02 310 2006 0.22 324 2028 0.02 331 2029 0.02 338 2030 0.02 338 2031 0.02 345 2030 0.02 352 2031 0.02 366	A.M. Weekend Peak Hour Vear Growth Expected PHV 2023 282 2024 0.02 284 2025 0.02 294 2026 0.02 284 2027 0.02 345 2028 0.02 320 2030 0.02 327 2031 0.02 344 2032 0.02 344 2031 0.02 344 2032 0.02 344 2032 0.02 344	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 299 2024 0.02 305 2025 0.02 312 2026 0.02 315 2027 0.02 333 2030 0.02 340 2030 0.02 347 2031 0.02 354 2032 0.02 362 2031 0.02 362
2023 9 2024 0.02 10 2025 0.02 11 2020 0.02 13 2029 0.02 14 2029 0.02 15 2030 0.02 16 2031 0.02 17 2032 0.02 18 2033 0.02 19 2034 0.02 20	Year Growth Expected PHV 2023 11 2024 0.02 12 2025 0.02 13 2026 0.02 14 2029 0.02 15 2039 0.02 17 2030 0.02 18 2031 0.02 19 2032 0.02 20 2033 0.02 2 2034 0.02 2	Year Growth Expected PHV 2023 239 2024 0.02 244 2025 0.02 249 2026 0.02 254 2027 0.02 254 2028 0.02 255 2029 0.02 272 2030 0.02 278 2033 0.02 290 2038 0.02 296 2034 0.02 302	P.M. Weekend Peak Hour Year Growth Expected PrV 2024 0.02 329 2025 0.02 336 2026 0.02 336 2027 0.02 336 2028 0.02 357 2029 0.02 337 2031 0.02 337 2033 0.02 397 2034 0.02 397 2034 0.02 397 2034 0.02 397 2034 0.02 397 2034 0.02 397	Projected A.M. Weekend Peak Hour Year Growth Expected PirV 2024 0.02 25 2025 0.02 308 2026 0.02 325 2027 0.02 325 2026 0.02 329 2028 0.02 329 2039 0.02 346 2031 0.02 357 2033 0.02 365 2034 0.02 373	Projected P.M. Weekend Peak Hour Year Growth Expected PirV 2024 0.02 303 2025 0.02 310 2026 0.02 317 2027 0.02 314 2038 0.02 314 2039 0.02 345 2031 0.02 345 2033 0.02 366 2033 0.02 366 2034 0.02 376	A.M. Weekend Peak Hoar Year Growth Expected FW 2023 0.02 288 2025 0.02 294 2026 0.02 306 2027 0.02 313 2028 0.02 310 2029 0.02 320 2029 0.02 321 2031 0.02 324 2033 0.02 341 2034 0.02 348 2034 0.02 355	P.M. Weekend Peak Hour Veir Growth Expected FHV 203 0.2 365 2034 0.2 365 2035 0.02 312 2036 0.22 319 2037 0.22 333 2039 0.02 340 2031 0.02 340 2031 0.02 342 2033 0.22 378 2034 0.22 378
203 9 2054 0.02 0 2055 0.02 1 2066 0.02 1 2077 0.02 1 2088 0.02 1 2099 0.02 1 2010 0.02 1 2020 0.02 1 2030 0.02 1 2030 0.02 1 2031 0.02 1 2034 0.02 2 2035 0.02 21	Year Growth Expected PHV 2033 0.02 11 2045 0.02 13 2026 0.02 14 2027 0.02 15 2028 0.02 16 2039 0.02 17 2030 0.02 18 2031 0.02 19 2032 0.02 21 2030 0.02 22 2034 0.02 23	Year Growth Expected PHV 2023 3.3 2024 0.02 3.44 2025 0.02 249 2026 0.02 254 2027 0.02 260 2028 0.02 254 2029 0.02 266 2029 0.02 272 2030 0.02 329 2031 0.02 396 2034 0.02 309	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 322 2024 0.02 326 2025 0.02 336 2026 0.02 320 2026 0.02 357 2039 0.02 375 2040 0.02 373 2051 0.02 381 2052 0.02 389 2054 0.02 405 2054 0.02 405	Projected A.M. Weekend Peak Hour Year Growth Espected PHV 2023 295 2024 0.02 301 2025 0.02 302 2026 0.02 325 2027 0.02 325 2028 0.02 326 2039 0.02 346 2030 0.02 357 2031 0.02 365 2034 0.02 373 2035 0.02 381	Projected P.M. Weekend Peak Hour Year Growth Espected PHV 2023 297 2024 0.02 303 2035 0.02 310 2045 0.02 314 2059 0.02 314 2060 0.02 345 2010 0.02 345 2010 0.02 346 2012 0.02 366 2013 0.02 376 2014 0.02 384	A.M. Weekend Peak Hoar Vear Growth Expected PHV 2023 282 2024 0.02 284 2025 0.02 294 2026 0.02 306 2028 0.02 300 2029 0.02 320 2030 0.02 327 2031 0.02 324 2032 0.02 344 2034 0.02 353 2034 0.02 363	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 299 2024 0.02 302 2025 0.02 312 2036 0.02 325 2037 0.02 324 2038 0.02 334 2030 0.02 340 2030 0.02 347 2031 0.02 362 2032 0.02 362 2033 0.02 370 2034 0.02 378 2035 0.02 386
2023 9 2024 0.02 10 2025 0.02 11 2020 0.02 13 2029 0.02 15 2030 0.02 15 2031 0.02 15 2033 0.02 19 2034 0.02 19 2035 0.02 20 2035 0.02 21 2036 0.02 22	Year Growth Espected PHV 2023 11 2024 0.02 12 2025 0.02 13 2026 0.02 14 2027 0.02 15 2028 0.02 16 2029 0.02 18 2021 0.02 20 2021 0.02 20 2023 0.02 20 2024 0.02 20 2035 0.02 22 2036 0.02 24	Year Growth Expected PHV 2023 239 2024 0.02 244 2025 0.02 249 2026 0.02 254 2027 0.02 306 2028 0.02 236 2029 0.02 275 2031 0.02 278 2033 0.02 290 2033 0.02 296 2034 0.02 302 2035 0.02 302 2035 0.02 302 2036 0.02 302 2037 0.02 302 2038 0.02 302 2035 0.02 305 2035 0.02 316	P.M. Weekend Peak Hour Ver Crowth Expected PNV 2033 0.2 3.29 2054 0.22 3.36 2005 0.22 3.36 2006 0.22 3.37 2028 0.02 3.65 2030 0.02 3.73 2031 0.02 3.73 2033 0.02 3.73 2034 0.02 3.73 2035 0.02 3.73 2036 0.02 3.74 2037 0.02 3.74 2038 0.02 3.74 2039 0.02 3.74 2034 0.02 3.74 2035 0.02 4.05 2035 0.02 4.14 2036 0.02 4.14	Projected A.M. Weekend Peak Hour Year Growth Expected PivV 2023 0.02 301 2026 0.02 308 2027 0.02 325 2028 0.02 328 2029 0.02 336 2030 0.02 336 2031 0.02 343 2031 0.02 343 2033 0.02 345 2034 0.02 373 2035 0.02 381 2036 0.02 381	Projected P.M. Weekend Peak Hour Year Growth Expected PivV 2024 0.02 301 2025 0.02 310 2026 0.02 310 2026 0.02 312 2026 0.02 334 2028 0.02 338 2030 0.02 345 2031 0.02 352 2033 0.02 364 2034 0.02 376 2035 0.02 384 2036 0.02 384	A.M. Weekend Peak Hoar Year Growth Expected FW/ 2033 0.02 288 2034 0.02 284 2026 0.02 300 2027 0.02 300 2028 0.02 313 2039 0.02 327 2031 0.02 324 2030 0.02 327 2031 0.02 324 2030 0.02 327 2031 0.02 324 2033 0.02 324 2034 0.02 325 2035 0.02 363	P.M. Weekend Peak Hour Year Growth Espected FHV 203 0.2 365 2034 0.2 365 2035 0.02 312 2036 0.02 313 2027 0.02 333 2028 0.02 340 2030 0.02 347 2031 0.2 342 2030 0.02 347 2031 0.02 370 2033 0.22 386 2035 0.02 384
2023 9 2024 0.02 1 2025 0.02 1 2026 0.02 1 2027 0.02 1 2028 0.02 1 2039 0.02 1 2030 0.02 1 2031 0.02 1 2033 0.02 1 2034 0.02 1 2035 0.02 2 2036 0.02 2 2037 0.02 2	Year Growth Expected PHV 2023 11 2035 0/2 2045 0/2 2050 0/2 2060 0/2 2070 0/2 2080 0/2 2080 0/2 2081 0/2	Year Growth Espected PHV 203 0.02 249 2034 0.02 244 2035 0.02 254 2027 0.02 260 2028 0.02 266 2029 0.02 278 2031 0.02 284 2031 0.02 284 2031 0.02 299 2032 0.02 290 2033 0.02 290 2034 0.02 302 2035 0.02 302 2036 0.02 302 2037 0.02 302 2038 0.02 302 2039 0.02 305 2039 0.02 316 2039 0.02 32	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 322 2024 0.02 336 2025 0.02 336 2027 0.02 350 2029 0.02 350 2029 0.02 357 2030 0.02 357 2030 0.02 383 2032 0.02 389 2034 0.02 405 2035 0.02 405 2036 0.02 432	Projected A.M. Weekend Peak Hour Year Growth Espected PHV 2023 295 2024 0.02 301 2025 0.02 302 2026 0.02 332 2027 0.02 336 2029 0.02 336 2030 0.02 336 2030 0.02 357 2032 0.02 357 2034 0.02 373 2035 0.02 381 2036 0.02 389 2037 0.02 389	Projected P.M. Weekend Peak Hour Year Growth Espected PHV 2023 297 2024 0.02 303 2025 0.02 310 2026 0.02 314 2027 324 317 2028 0.02 338 2039 0.02 345 2030 0.02 360 2032 0.02 366 2034 0.02 376 2035 0.02 384 2036 0.02 384 2036 0.02 384 2036 0.02 384 2036 0.02 384	A.M. Wreekend Peak Hoar Year Growth Expected PHV 2023 282 2024 0.02 294 2025 0.02 294 2026 0.02 306 2027 0.02 306 2029 0.02 301 2030 0.02 320 2030 0.02 324 2032 0.02 341 2032 0.02 353 2034 0.02 355 2035 0.02 371 2036 0.02 371 2037 0.02 371	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 299 2024 0.02 312 2026 0.02 319 2027 0.02 324 2029 0.02 324 2020 0.02 324 2021 0.02 347 2030 0.02 347 2031 0.02 362 2032 0.02 362 2034 0.02 370 2035 0.02 386 2036 0.02 386 2035 0.02 386 2036 0.02 384
2023 9 2024 0.02 10 2025 0.02 11 2026 0.02 12 2027 0.02 13 2039 0.02 15 2010 0.02 15 2011 0.02 15 2023 0.02 18 2033 0.02 19 2035 0.02 21 2036 0.02 22 2037 0.02 23 2038 0.02 24	Year Growth Expected PHV 2023 11 2024 0.02 12 2025 0.02 13 2026 0.02 14 2027 0.02 15 2020 0.02 16 2021 0.02 18 2021 0.02 20 2021 0.02 20 2021 0.02 20 2023 0.02 22 2033 0.02 22 2035 0.02 23 2036 0.02 24 2037 0.02 25 2038 0.02 26	Year Growth Expected PHV 2023 239 2024 0.02 244 2025 0.02 249 2026 0.02 254 2027 0.02 266 2038 0.02 284 2039 0.02 284 2031 0.02 290 2033 0.02 290 2034 0.02 302 2035 0.02 302 2038 0.02 302 2038 0.02 302 2037 0.02 316 2038 0.02 330	P.M. Weekend Peak Hour Var Crowth Expected PHV 203 0.2 239 204 0.2 236 205 0.2 336 2006 0.2 343 2007 0.22 357 2028 0.22 357 2030 0.22 335 2031 0.2 389 2033 0.22 349 2034 0.22 341 2035 0.22 414 2036 0.22 432 2037 0.22 432 2035 0.22 432 2036 0.22 432 2037 0.22 432 2038 0.22 432 2037 0.22 432 2037 0.22 432 2038 0.22 432	Projected A.M. Weekend Peak Hour Year Growth Expected PivV 203 20 201 204 0.02 301 2056 0.02 302 2006 0.02 315 2007 0.02 322 2008 0.02 336 2019 0.02 346 2010 0.02 346 2011 0.02 345 2013 0.02 346 2014 0.02 347 2015 0.02 348 2016 0.02 349 2005 0.02 349 2005 0.02 349 2005 0.02 349 2005 0.02 349 2005 0.02 349 2005 0.02 349	Projected P.M. Weekend Peak Hour Year Growth Espected Piv/ 2024 0.02 201 2026 0.02 310 2026 0.02 310 2027 0.02 324 2028 0.02 331 2029 0.02 338 2030 0.02 345 2031 0.02 352 2033 0.02 360 2035 0.02 384 2035 0.02 384 2036 0.02 384 2037 0.02 384 2036 0.02 384 2037 0.02 362	A.M. Weekend Peak Hoar Year Growth Espected PHV 203 0.0 282 205.0 0.02 284 205.0 0.02 300 207.0 0.02 306 207.0 0.02 313 2030 0.02 327 2031 0.02 324 2033 0.02 327 2031 0.02 324 2033 0.02 324 2034 0.02 327 2035 0.02 324 2036 0.02 327 2037 0.02 344 2038 0.02 345 2036 0.02 371 2037 0.02 371 2037 0.02 371 2036 0.02 371 2037 0.02 379 2038 0.02 371	P.M. Weekend Peak Hour Vear Growth Espected PHV 203 0.2 269 204 0.2 365 205 0.22 326 2006 0.22 319 2007 0.22 336 2008 0.22 340 2019 0.22 340 2021 0.2 347 2031 0.2 354 2035 0.22 326 2036 0.22 340 2037 0.22 354 2038 0.22 354 2039 0.22 364 2045 0.22 356 2026 0.22 354 2036 0.22 364 2036 0.22 364 2036 0.22 364 2037 0.22 402 2038 0.22 402 2037 0.22 402 2038 0.24 </td
2023 9 2024 0.02 1 2025 0.02 1 2026 0.02 1 2027 0.02 1 2028 0.02 1 2039 0.02 1 2030 0.02 1 2031 0.02 1 2033 0.02 1 2034 0.02 1 2035 0.02 2 2036 0.02 2 2037 0.02 2	Year Growth Expected PHV 2023 11 2035 0/2 2045 0/2 2050 0/2 2060 0/2 2070 0/2 2080 0/2 2080 0/2 2081 0/2	Year Growth Espected PHV 203 0.02 249 2034 0.02 244 2035 0.02 254 2027 0.02 260 2028 0.02 266 2029 0.02 278 2031 0.02 284 2031 0.02 284 2031 0.02 299 2032 0.02 290 2033 0.02 290 2034 0.02 302 2035 0.02 302 2036 0.02 302 2037 0.02 302 2038 0.02 302 2039 0.02 305 2039 0.02 316 2039 0.02 32	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 322 2024 0.02 336 2025 0.02 336 2027 0.02 350 2029 0.02 350 2029 0.02 357 2030 0.02 357 2030 0.02 383 2032 0.02 389 2034 0.02 405 2035 0.02 405 2036 0.02 432	Projected A.M. Weekend Peak Hour Year Growth Espected PHV 2023 295 2024 0.02 301 2025 0.02 302 2026 0.02 332 2027 0.02 336 2029 0.02 336 2030 0.02 336 2030 0.02 357 2032 0.02 357 2034 0.02 373 2035 0.02 381 2036 0.02 389 2037 0.02 389	Projected P.M. Weekend Peak Hour Year Growth Espected PHV 2023 297 2024 0.02 303 2025 0.02 310 2026 0.02 314 2027 324 317 2028 0.02 338 2039 0.02 345 2030 0.02 360 2032 0.02 366 2034 0.02 376 2035 0.02 384 2036 0.02 384 2036 0.02 384 2036 0.02 384 2036 0.02 384	A.M. Wreekend Peak Hoar Year Growth Expected PHV 2023 282 2024 0.02 294 2025 0.02 294 2026 0.02 306 2027 0.02 306 2029 0.02 301 2030 0.02 320 2030 0.02 324 2032 0.02 341 2032 0.02 353 2034 0.02 355 2035 0.02 371 2036 0.02 371 2037 0.02 371	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 299 2024 0.02 312 2026 0.02 319 2027 0.02 324 2029 0.02 324 2020 0.02 324 2021 0.02 347 2030 0.02 347 2031 0.02 362 2032 0.02 362 2034 0.02 370 2035 0.02 386 2036 0.02 386 2035 0.02 386 2036 0.02 384

SHORT RANGE HORIZON PEAK HOUR TURNING MOVEMENTS

Canterbury/Hwy 105											
Peak Hour: 9:00 am to 10:00 am											
Short Range Weekend											
Hwy 105											
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT						
0	202	12	9	123	0						
	Canterbury										
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT						
0	0 0 0 1 0 8										
Peak Hour Volume: 355											

Peak Hour Volume:

Canterbury/Saddlewood											
Peak Hour: 9:00 am to 10:00 am											
Short Range Weekend											
Saddlewood											
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT						
0	0	0	0	0	5						
Canterbury											
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT						
0 2 17 2 1 0											
Peak Hou	r Volume:	27									

Peak Hour: 9:00 am to 10:00 am Short Range Weekday Hwy 105 EB LT EB Thru EB RT WB IT WB Thru WB Thru 0 102 11 12 222 0 Appaloosa 58 RT SB Thru SB LT NB RT NB Thru NB LT 0 0 6 0 5	Appaloosa/Hwy 105											
Hwy 105 EB LT EB Thru EB RT WB LT WB Thru WB RT 0 112 11 12 222 0 Appaloosa SB RT SB Thru SB LT NB RT NB Thru NB LT												
EB LT EB Thru EB RT WB LT WB Thru WB RT 0 112 11 12 222 0 Appaloosa Appaloosa SB RT SB Thru SB LT NB RT NB Thru NB LT	Short Range Weekday											
0 112 11 12 222 0 Appaloosa SB RT SB Thru SB LT NB RT NB Thru NB LT												
Appaloosa SB RT SB Thru SB LT NB RT NB Thru NB LT												
SB RT SB Thru SB LT NB RT NB Thru NB LT												
	Appaloosa											
0 0 0 6 0 5	SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT						
	0	0	0	6	0	5						
Peak Hour Volume: 368	Peak Hou	r Volume:	368									

Appaloosa/Hwy 105 Peak Hour: 9:00 am to 10:00 am

Cherry Springs Ranch/Hwy 105 Peak Hour: 9:00 am to 10:00 am Short Range Weekday											
Hwy 105											
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT						
3 121 0 0 222 6											
Cherry Springs Ranch											
SB RT SB Thru SB LT NB RT NB Thru NB LT											
3 0 3 0 0 0											
Peak Hour Volume: 358											

Cherry Springs Ranch/Hwy 105											
Peak Hour: 9:00 am to 10:00 am											
Short Range Weekend											
Hwy 105											
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT						
6 111 80 53 173 15											
Cherry Springs Ranch											
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT						
6 0 3 5 0 8											
Peak Hour Volume: 460											

characteristic produktion and									
	Cherry Springs Ranch/Hwy 105								
	Peal	k Hour: 1:00) pm to 2:00) pm					
Short Range Weekday									
Hwy 105									
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT				
0	153	0	0	175	3				
Cherry Springs Ranch									
SB RT SB Thru SB LT NB RT NB Thru NB LT									
3 0 3 0 0 0									
Peak Hour Volume: 337									

Cherry Springs Ranch/Hwy 105								
	Peak Hour: 1:00 pm to 2:00 pm							
	Short Range Weekday							
	Hwy 105							
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT			
0	153	0	0	175	3			
		Cherry Spr	ings Ranch					
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT			
3 0 3 0 0 0								
Peak Hou	r Volume:	337						

	cherry springs ranch/rwy 105							
	Peak Hour: 1:00 pm to 2:00 pm							
		Short Rang	e Weekday					
		Hwy	105					
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB R			
0	153	0	0	175	3			
		Cherry Spr	ings Ranch					
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB L			
3	0	3	0	0	0			
Peak Hou	r Volume:	337						

	Cherry Springs Ranch/Hwy 105							
	Peal	k Hour: 1:00) pm to 2:00	0 pm				
		Short Rang	e Weekend					
	Hwy 105							
EB LT	EB Thru EB RT WB LT WB Thru WB RT							
0	0 173 108 72 137 4							
		Cherry Spr	ings Ranch					
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT			
3	3 0 3 8 0 12							
Peak Hou	r Volume:	520						

	Canterbury/Saddlewood								
	Peak	Hour: 9:00	am to 10:0	00 am					
	Short Range Weekday								
	Saddlewood								
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT				
0	0	0	1	0	14				
		Cante	erbury						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
0	0 0 118 0 0 0								
Peak Hou	Peak Hour Volume: 133								

Canterbury/Saddlewood Peak Hour: 1:00 pm to 2:00 pm

Short Range Weekend Saddlewood
 EBLT
 EB Thru
 EB RT
 WB LT
 WB Thru
 WB RT

 0
 0
 0
 0
 3

 Canterbury

 SB RT
 SB Thru
 SB LT
 NB RT
 NB Thru
 NB LT

 0
 3
 22
 1
 7
 0

36

Short Range Weekend					
		Hwy	105		
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT
0	112	5	6	232	0
Appaloosa					
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT
0	0	0	4	0	4
Peak Hou	r Volume:	363			

			/11 405		
			a/Hwy 105		
	Peal	(Hour: 1:00) pm to 2:0) pm	
		Short Rang	e Weekday		
Hwy 105					
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT
0	154	6	9	171	0
Appaloosa					
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT
0	0	0	6	0	4
Peak Hou	r Volume:	350			

	Appaloosa/Hwy 105								
	Peak Hour: 1:00 pm to 2:00 pm								
		Short Rang	e Weekend						
	Hwy 105								
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT				
0	174	9	7	212	0				
		Арра	Iloosa						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
0	0 0 0 4 0 1								
Peak Hou	Peak Hour Volume: 407								

Canterbury/Hwy 105 Peak Hour: 9:00 am to 10:00 am Short Range Weekday Hwy 105 BLT EB TM WB Thru WB RT 0 153 75 43 162 0 Canterbury BRT NB RT <	
Hwy 105 BLT EB Thru EB RT WB LT WB Thru WB RT 0 153 75 43 162 0 Canterbury B RT SB Thru SB LT NB RT NB Thru NB LT	ſ
0 153 75 43 162 0 Canterbury B RT SB Thru SB LT NB RT NB Thru NB LT	
Canterbury B RT SB Thru SB LT NB RT NB Thru NB LT	
B RT SB Thru SB LT NB RT NB Thru NB LT	
0 0 9 0 11	

453

Canterbury/Hwy 105 Peak Hour: 1:00 pm to 2:00 pm								
	Short Range Weekend							
	Hwy 105							
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT			
0	0 278 17 9 164 0							
		Cante	erbury					
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT			
0	0 0 0 5 0 7							
Peak Hou	Peak Hour Volume: 480							

	Canterbury/Hwy 105							
	Peak	Hour: 1:00) pm to 2:0) pm				
	Short Range Weekday							
		Hwy	105					
EB LT	EB Thru	EB Thru EB RT WB LT WB Thru WB R						
0	201	201 30 18 147 0						
		Cante	erbury					
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT			
0	0	0	11	0	17			
Peak Hou	r Volume:	424						

Canterbury/Saddlewood								
Peak Hour: 1:00 pm to 2:00 pm								
Short Range Weekday								
Saddlewood								
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT			
0	0	0	3	0	21			
Canterbury								
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT			
0	3	40	3	2	0			

Peak Hour Volume: 72

Peak Hour Volume:

0	173	108
		Cherry Sp
SB RT	SB Thru	SBIT

SHORT RANGE HORIZON LEVEL OF SERVICE (LOS)

		Н	CS7	Two-	-Way	' Stop	o-Co	ntrol	Rep	ort								
General Information							Site	Inforr	natio	n								
Analyst	Brett	Louk						ection		-	Cante	Canterbury & Saddlewood						
Agency/Co.		Consulta	ants				Jurisd					o Count						
Date Performed	4/25/						East/	Nest Stre	eet			ewood	, 					
Analysis Year	2023						North	/South S	Street		Cante	erbury						
Time Analyzed	9:00-	10:00 am	n Weekd	ау			Peak	Hour Fac	tor		0.85	-						
Intersection Orientation	North	n-South					Analysis Time Period (hrs) 0.25											
Project Description	Color	ado Pun	npkin Pa	tch Spec	ial Use T	'IS												
Lanes																		
					Majo	r Street: Nor	rth-South											
Vehicle Volumes and Adju	ustme	nts																
Approach		Eastb	ound			West	bound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6		
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0		
Configuration							LR				LTR				LTR			
Volume (veh/h)						1		14		0	0	0		118	0	0		
Percent Heavy Vehicles (%)						2		2		2				2				
Proportion Time Blocked																		
Percent Grade (%)							0											
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up He	adwa	ys																
Base Critical Headway (sec)						7.1		6.2		4.1				4.1				
Critical Headway (sec)						7.12		6.22		4.12				4.12				
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2				
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22				
Delay, Queue Length, and	l Leve	l of Se	ervice															
Flow Rate, v (veh/h)							18			0				139				
Capacity, c (veh/h)							1035			1623				1623				
v/c Ratio							0.02			0.00				0.09				
95% Queue Length, Q_{95} (veh)							0.1			0.0				0.3				
Control Delay (s/veh)							8.5			7.2				7.4				
Level of Service (LOS)							A			А				А				
Approach Delay (s/veh)						8	8.5							7	.4			
Approach LOS							A											

Copyright © 2023 University of Florida. All Rights Reserved. HCS [™] TWSC Version 7.6 Canterbury & Saddlewood Short Range AM Weekday.xtw

Generated: 4/27/2023 4:19:05 PM

		Н	CS7	Two-	-Way	' Stop	o-Co	ntrol	Rep	ort								
General Information	_	_	_	_	_	_	Site	Inforr	natio	n	_	_	_	_	_			
Analyst	Brett	Louk					Inters	ection			Canterbury & Saddlewood							
Agency/Co.	SMH	Consulta	ants				Jurisd	iction				o Count						
Date Performed	4/25/	2023					East/\	Nest Stre	eet			ewood						
Analysis Year	2023						North	/South S	Street		Cante	rbury						
Time Analyzed	9:00-	10:00 am	n Weeke	nd			Peak	Hour Fac	tor		0.85							
Intersection Orientation	North	n-South					Analysis Time Period (hrs) 0.25											
Project Description	Color	ado Pun	npkin Pa	tch Spec	ial Use T	'IS												
Lanes																		
					Majo	r Street: Nor	rth-South											
Vehicle Volumes and Adju	ustme	nts																
Approach		Eastb	ound			West	bound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6		
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0		
Configuration							LR				LTR				LTR			
Volume (veh/h)						0		5		0	1	2		17	2	0		
Percent Heavy Vehicles (%)						2		2		2				2				
Proportion Time Blocked																		
Percent Grade (%)							0											
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up He	adwa	ys																
Base Critical Headway (sec)						7.1		6.2		4.1				4.1				
Critical Headway (sec)						7.12		6.22		4.12				4.12				
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2				
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22				
Delay, Queue Length, and	l Leve	l of Se	ervice															
Flow Rate, v (veh/h)							6			0				20				
Capacity, c (veh/h)							1082			1620				1618				
v/c Ratio							0.01			0.00				0.01				
95% Queue Length, Q ₉₅ (veh)							0.0			0.0				0.0				
Control Delay (s/veh)							8.3			7.2				7.3				
Level of Service (LOS)							A			А				А				
Approach Delay (s/veh)						8	.3			0	.0			6	.5			
Approach LOS							A											

Copyright © 2023 University of Florida. All Rights Reserved. HCS [™] TWSC Version 7.6 Canterbury & Saddlewood Short Range AM Weekend.xtw

Generated: 4/25/2023 4:02:47 PM

		Н	CS7	Two-	-Way	Stop	o-Co	ntrol	Rep	ort								
General Information	_	_	_	_	_	_	Site	Inforr	natio	n	_	_	_	_	_	_		
Analyst	Brett	Louk						ection			Canterbury & Saddlewood							
Agency/Co.		Consulta	ants				Jurisd					o Count						
Date Performed	4/25/						East/\	Nest Stre	eet			ewood	,					
Analysis Year	2023						North	/South S	Street		Cante	rbury						
Time Analyzed	1:00-2	2:00 pm	Weekda	у			Peak	Hour Fac	tor		0.85	-						
Intersection Orientation	North	n-South		-			Analy	Analysis Time Period (hrs) 0.25										
Project Description	Color	ado Pun	npkin Pa	tch Spec	ial Use T	'IS												
Lanes																		
																_		
					Major	Street: Nor	th-South											
Vehicle Volumes and Adju	ustme	nts																
Approach		Eastb	ound			West	bound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6		
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0		
Configuration							LR				LTR				LTR			
Volume (veh/h)						3		21		0	2	3		40	3	0		
Percent Heavy Vehicles (%)						2		2		2				2				
Proportion Time Blocked																		
Percent Grade (%)							0											
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up He	adwa	ys																
Base Critical Headway (sec)						7.1		6.2		4.1				4.1				
Critical Headway (sec)						7.12		6.22		4.12				4.12				
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2				
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22				
Delay, Queue Length, and	l Leve	l of S	ervice															
Flow Rate, v (veh/h)							28			0				47				
Capacity, c (veh/h)							1046			1618				1615				
v/c Ratio							0.03			0.00				0.03				
95% Queue Length, Q ₉₅ (veh)							0.1			0.0				0.1				
Control Delay (s/veh)							8.5			7.2				7.3				
Level of Service (LOS)							A			A				A				
Approach Delay (s/veh)				-		8	.5			0	.0	_		6	.8			
Approach LOS							Ą											

Copyright © 2023 University of Florida. All Rights Reserved. HCS[™] TWSC Version 7.6 Canterbury & Saddlewood Short Range PM Weekday.xtw

Generated: 4/25/2023 4:09:39 PM

		H	ICS7	Two	-Way	Sto	o-Co	ntrol	Rep	ort							
General Information		_	_	_	_	_	Site	Inforr	natio	n	_	_	_	_	_	_	
Analyst	Brett	Louk						ection			Canterbury & Saddlewood						
Agency/Co.		Consult	ants				Jurisd	iction				o Count					
Date Performed	4/25/	2023					East/\	Nest Stre	eet			ewood					
Analysis Year	2023						North	/South S	Street		Cante	erbury					
Time Analyzed	1:00-2	2:00 pm	Weeken	d			Peak	ak Hour Factor 0.85									
Intersection Orientation	North	n-South					Analysis Time Period (hrs) 0.25										
Project Description	Color	ado Pur	npkin Pa	tch Spec	ial Use T	'IS											
Lanes																	
					Majo	Street: Nor	rth-South										
Vehicle Volumes and Ad	justme	nts															
Approach	T	Eastk	ound			West	bound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0	
Configuration							LR				LTR				LTR		
Volume (veh/h)						0		3		0	7	1		22	3	0	
Percent Heavy Vehicles (%)						2		2		2				2			
Proportion Time Blocked																	
Percent Grade (%)							0										
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)						7.1		6.2		4.1				4.1			
Critical Headway (sec)						7.12		6.22		4.12				4.12			
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2			
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22			
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)							4			0				26			
Capacity, c (veh/h)							1073			1618				1610			
v/c Ratio							0.00			0.00				0.02			
95% Queue Length, Q ₉₅ (veh)							0.0			0.0				0.0			
Control Delay (s/veh)							8.4			7.2				7.3			
Level of Service (LOS)							A			А				A			
Approach Delay (s/veh)						8	5.4			0	.0			6	.4		
Approach LOS							A										

Copyright © 2023 University of Florida. All Rights Reserved. HCS[™] TWSC Version 7.6 Canterbury & Saddlewood Short Range PM Weekend.xtw

Generated: 4/25/2023 4:07:18 PM

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105 AM
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/25/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Canterbury
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		
Lanes			

Major Street: East-West

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	bound			North	bound			Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0		
Configuration			LTR				LTR				LR							
Volume (veh/h)		0	153	75		43	162	0		11		9						
Percent Heavy Vehicles (%)		2				2				2		2						
Proportion Time Blocked																		
Percent Grade (%)										()							
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up H	eadwa	ys																
Base Critical Headway (sec)		4.1				4.1				7.1		6.2						
Critical Headway (sec)		4.12				4.12				7.12		6.22						
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3						
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32						
Delay, Queue Length, an	d Leve	l of Se	ervice															
Flow Rate, v (veh/h)		0				46					22							
Capacity, c (veh/h)		1402				1321					600							
v/c Ratio		0.00				0.04					0.04							
95% Queue Length, Q ₉₅ (veh)		0.0				0.1					0.1							
Control Delay (s/veh)		7.6				7.8					11.2							
Level of Service (LOS)		А				Α					В							
Approach Delay (s/veh)		0.	.0			. 1	.9			11	.2							
Approach LOS	1								İ 🗌		3							

		Н	CS7	Two-	Way	Sto	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	ı						
Analyst	Brett	Louk					Inters	ection			Cante	rbury &	Hwy 10	5 AM		
Agency/Co.	SMH	Consulta	nts				Jurisc	liction			El Pas	o Count	у			
Date Performed	4/25/	2023					East/	West Stre	eet		Hwy 1	105				
Analysis Year	2023						North	/South S	Street		Cante	rbury				
Time Analyzed	9:00-7	10:00 AN	1 Weeke	nd			Peak	Hour Fac	tor		0.85					
Intersection Orientation		Analy	sis Time	Period (hrs)	0.25										
Project Description	Color	ado Pum	ipkin Pa	tch Spec												
roject Description Colorado Pumpkin Patch Special Use TIS																
Vehicle Volumes and Ad	justme	nts			Majo	or Street: Ea	ist-west									
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0

Number of Lanes	0	0	1	0	0	0	1	0	0	1	0	0	0	0
Configuration			LTR				LTR			LR				
Volume (veh/h)		0	202	12		9	123	0	8		1			
Percent Heavy Vehicles (%)		2				2			2		2			
Proportion Time Blocked														
Percent Grade (%)									()				
Right Turn Channelized														
Median Type Storage				Undi	vided									

Critical and Fallow up Ha .

Critical and Follow-up He	adway	/S										
Base Critical Headway (sec)		4.1			4.1			7.1		6.2		
Critical Headway (sec)		4.12			4.12			7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2			3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22			3.52		3.32		
Delay, Queue Length, and	l Level	of Se	ervice									
Flow Rate, v (veh/h)		0			11				11			
Capacity, c (veh/h)		1438			1314				567			
v/c Ratio		0.00			0.01				0.02			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0				0.1			
Control Delay (s/veh)		7.5			7.8				11.5			
Level of Service (LOS)		А			А				В			
Approach Delay (s/veh)		0	.0		0	.6		11	.5			
Approach LOS								I	3			

	HCS7 Two-	Way Stop-Contro	l Report	
General Information		Site Infor	mation	
Analyst	Brett Louk	Intersection	Canterbury &	י Hwy 105 PM
Agency/Co.	SMH Consultants	Jurisdiction	El Paso Count	ty
Date Performed	4/25/2023	East/West St	reet Hwy 105	
Analysis Year	2023	North/South	Street Canterbury	
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Fa	ictor 0.90	
Intersection Orientation	East-West	Analysis Tim	e Period (hrs) 0.25	
Project Description	Colorado Pumpkn Patch Specia	al Use TIS		
Lanes				
		Major Street: East-West		
Vehicle Volumes and Adju	istments			
Approach	Eastbound	Westbound	Northbound	Southbound

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	201	30		18	147	0		17		11				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										(C					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				
Critical Headway (sec)		4.12				4.12				7.12		6.22				
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3				
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32				
Delay, Queue Length, and	l Leve	l of Se	ervice													
Flow Rate, v (veh/h)		0				20					31					
Capacity, c (veh/h)		1415				1308					601					
v/c Ratio		0.00				0.02					0.05					
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.2					
Control Delay (s/veh)		7.5				7.8					11.3					
Level of Service (LOS)		А				А					В					
Approach Delay (s/veh)		0	.0			1	.0			11	1.3					
Approach LOS										I	В					

		Н	CS7	Two-	-Way	' Stoj	o-Co	ntrol	Rep	ort						
General Information		_		_	_	_	Site	Inforn	natio	n		_		_	_	_
Analyst	Brett	Louk					Inters	ection			Cante	erbury &	Hwy 10	5		
Agency/Co.	SMH	Consulta	ants				Jurisd	iction			El Pas	o Count	y			
Date Performed	4/25/	2023					East/\	Nest Stre	eet		Hwy [·]	105				
Analysis Year	2023						North	/South S	Street		Cante	erbury				
Time Analyzed	1:00-	2:00 pm	Weeken	d			Peak	Hour Fac	tor		0.85					
Intersection Orientation	East-	West					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pun	npkin Pa	tch Spec	ial Use T	'IS										
Project Description Colorado Pumpkin Patch Special Use TIS anes																
					Маји	or Street: Ea										
Vehicle Volumes and Ad	ustme	nts														
Approach		Eastk	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	278	17		9	164	0		7		5				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)											0					
(-)																
Right Turn Channelized																

Critical and Follow-up Headways

Critical and Follow-up He	adways											
Base Critical Headway (sec)	4.				4.1			7.1		6.2		
Critical Headway (sec)	4.1	2			4.12			7.12		6.22		
Base Follow-Up Headway (sec)	2.2				2.2			3.5		3.3		
Follow-Up Headway (sec)	2.2	2			2.22			3.52		3.32		
Delay, Queue Length, and	Level of	Service	•									
Flow Rate, v (veh/h)	0				11				14			
Capacity, c (veh/h)	138	0			1212				523			
v/c Ratio	0.0)			0.01				0.03			
95% Queue Length, Q ₉₅ (veh)	0.0				0.0				0.1			
Control Delay (s/veh)	7.0				8.0				12.1			
Level of Service (LOS)	A				А				В			
Approach Delay (s/veh)		0.0				.5		12	2.1			
Approach LOS								I	В			

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/25/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Cherry Springs Ranch
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.88
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		
Lanes			
	Major Street: Ea	st-West	

Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration			LTR				LTR								LR	
Volume (veh/h)		3	121	0		0	222	6						3		3
Percent Heavy Vehicles (%)		2				2								2		2
Proportion Time Blocked																
Percent Grade (%)			-			-		-				-		-	0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	Τ	4.1				4.1								7.1		6.2
Critical Headway (sec)		4.12				4.12								7.12		6.22
Base Follow-Up Headway (sec)		2.2				2.2								3.5		3.3
Follow-Up Headway (sec)		2.22				2.22								3.52		3.32
Delay, Queue Length, an	d Leve	l of Se	ervice			<u>.</u>			<u>.</u>				<u>.</u>		<u>.</u>	
Flow Rate, v (veh/h)	T	3				0									7	
Capacity, c (veh/h)		1305				1446									652	
v/c Ratio		0.00				0.00									0.01	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0									0.0	
Control Delay (s/veh)		7.8				7.5									10.6	
Level of Service (LOS)		А				A									В	
Approach Delay (s/veh)		0	.2			. 0	.0							1	0.6	
Approach LOS															В	

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/25/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Cherry Springs Ranch
Time Analyzed	9:00-10:00 am Weekend	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		
Lanes			
	_	_	

Major Street: East-West

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		6	111	80		53	173	15		8	0	5		3	0	6
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)										(C			(0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.12	6.52	6.22		7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.52	4.02	3.32		3.52	4.02	3.32
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		6				57					14				10	
Capacity, c (veh/h)		1370				1366					571				668	
v/c Ratio		0.00				0.04					0.02				0.01	
95% Queue Length, Q ₉₅ (veh)		0.0				0.1					0.1				0.0	
Control Delay (s/veh)		7.6				7.8					11.5				10.5	
Level of Service (LOS)		А				А					В				В	
Approach Delay (s/veh)		0	.3			2	.0			11	1.5			1().5	
Approach LOS										I	В				В	

Copyright © 2023 University of Florida. All Rights Reserved. HCS[™] TWSC Version 7.6 Cherry Springs Ranch & Hwy 105 Short Range AM Weekend.xtw

Generated: 4/25/2023 4:25:45 PM

		Н	CS7	Two-	Way	Stop	o-Co	ntrol	Rep	ort						
General Information	_	_	_	_	_	_	Site	Inforr	natio	n	_	_	_	_	_	_
Analyst	Brett	Louk					Inters	ection			Cherr	y Spr R &	k Hwy 1	05		
Agency/Co.	SMH	Consulta	ants				Jurisd	iction			El Pas	o Count	y			
Date Performed	4/25/	2023					East/\	West Stre	eet		Hwy 1	105				
Analysis Year	2023						North	/South S	Street		Cherr	y Spring	s Ranch			
Time Analyzed	1:00-2	2:00 pm	Weekda	у			Peak	Hour Fac	tor		0.97					
Intersection Orientation	East-\	Vest					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pun	npkin Pa	tch Spec	ial Use T	'IS										
Lanes																
					Majo	or Street: Ea	st-West									
Vehicle Volumes and Adju	istme	nts														
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12

LTR

Undivided

LTR

LR

Number of Lanes

Percent Heavy Vehicles (%)

Proportion Time Blocked Percent Grade (%)

Right Turn Channelized

Median Type | Storage

Configuration Volume (veh/h)

Critical and Follow-up He	adway	S											
Base Critical Headway (sec)		4.1				4.1					7.1		6.2
Critical Headway (sec)		4.12				4.12					7.12		6.22
Base Follow-Up Headway (sec)		2.2				2.2					3.5		3.3
Follow-Up Headway (sec)		2.22				2.22					3.52		3.32
Delay, Queue Length, and	Level	of Se	ervice										
Flow Rate, v (veh/h)		0				0						6	
Capacity, c (veh/h)		1391				1422						717	
v/c Ratio		0.00				0.00						0.01	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0						0.0	
Control Delay (s/veh)		7.6				7.5						10.1	
Level of Service (LOS)		А				А						В	
Approach Delay (s/veh)	0.0					0	.0				1(D.1	
Approach LOS											l	В	

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/25/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Cherry Springs Ranch
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		
Lanes			

Major Street: East-West

Vehicle	Volumes	and A	djustmen	ts

venicie volumes and Adj	astine	ints														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		0	173	108		72	137	4		12	0	8		3	0	3
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)										. ())				0	
Right Turn Channelized																
Median Type Storage				Undi	vided								-			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.12	6.52	6.22		7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.52	4.02	3.32		3.52	4.02	3.32
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		0				78					22				7	
Capacity, c (veh/h)		1427				1255					515				565	
v/c Ratio		0.00				0.06					0.04				0.01	
95% Queue Length, Q ₉₅ (veh)		0.0				0.2					0.1				0.0	
Control Delay (s/veh)		7.5				8.1					12.3				11.5	
Level of Service (LOS)		A				A					В				В	
Approach Delay (s/veh)		. 0	.0			3	.1			12	2.3			1'	1.5	
Approach LOS										I	В				В	

_

		Н	CS7	Two-	Way	Stop	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett I	Louk					Inters	ection			Арра	oosa &	Hwy 105	5		
Agency/Co.	SMH	Consulta	ints				Jurisd	liction			El Pas	o Count	у			
Date Performed	4/25/2	2023					East/\	Nest Stre	eet		Hwy ²	105				
Analysis Year	2023						North	/South S	Street		Арра	oosa				
Time Analyzed	9:00-1	10:00 am	Weekd	ау			Peak	Hour Fac	ctor		0.87					
Intersection Orientation	East-V	Vest					Analy	sis Time	Period (hrs)	0.25					
Project Description	Colora	ado Pum	npkin Pa	tch Spec	ial Use T	'IS										
anes																
anes																
					Majo	or Street: Ea	st-West									
Vehicle Volumes and Adj	ustme															
Approach		Eastb				West	bound			North	bound			South	bound	
Movement Priority	U 1U	L 1	Т 2	R 3	U 4U	L 4	Т 5	R 6	U	L 7	Т 8	R 9	U	L 10	T 11	R 12

Priority	1U	1	2	3	40	4	5	6	7	8	9	10	11	12
Number of Lanes	0	0	1	0	0	0	1	0	0	1	0	0	0	0
Configuration			LTR				LTR			LR				
Volume (veh/h)		0	112	11		12	222	0	5		6			
Percent Heavy Vehicles (%)		2				2			2		2			
Proportion Time Blocked														
Percent Grade (%)									()				
Right Turn Channelized														
Median Type Storage				Undi	vided									
Critical and Callour up IIa	- d													

itical and Follow-up Headways

Critical and Follow-up He	adwa	ys											
Base Critical Headway (sec)		4.1				4.1			7.1		6.2		
Critical Headway (sec)		4.12				4.12			7.12		6.22		
Base Follow-Up Headway (sec)		2.2				2.2			3.5		3.3		
Follow-Up Headway (sec)		2.22				2.22			3.52		3.32		
Delay, Queue Length, and	Leve	l of Se	ervice										
Flow Rate, v (veh/h)		0				14				13			
Capacity, c (veh/h)		1310				1442				696			
v/c Ratio		0.00				0.01				0.02			
95% Queue Length, Q ₉₅ (veh)		0.0				0.0				0.1			
Control Delay (s/veh)		7.7				7.5				10.3			
Level of Service (LOS)		А				А				В			
Approach Delay (s/veh)	0.0					0.	.5		10).3			
Approach LOS									E	3			

		Η	CS7	Two-	Way	' Stoj	p-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	า						
Analyst	Brett	Louk					Inters	ection			Арра	oosa &	Hwy 105	;		
Agency/Co.	SMH	Consulta	ints				Jurisd	liction			El Pas	o Count	y			
Date Performed	4/25/	2023					East/\	Nest Stre	eet		Hwy [·]	105				
Analysis Year	2023						North	/South S	Street		Арра	oosa				
Time Analyzed	9:00-	10:00 am	Weeke	nd			Peak	Hour Fac	ctor		0.90					
Intersection Orientation	East-	West					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pun	npkin Pa	tch Spec	ial Use T	TIS .										
Lanes																
					Maj	or Street: Ea	st-West									
Vehicle Volumes and Adju	ustme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	112	5		6	232	0		4		4				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)											0					
Right Turn Channelized																
	T								1							

Critical and Follow-up Headways

Median Type | Storage

Critical and Follow-up He	adway	'S										
Base Critical Headway (sec)		4.1			4.1			7.1		6.2		
Critical Headway (sec)		4.12			4.12			7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2			3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22			3.52		3.32		
Delay, Queue Length, and	l Level	of Se	ervice									
Flow Rate, v (veh/h)		0			7				9			
Capacity, c (veh/h)		1307			1455				697			
v/c Ratio		0.00			0.00				0.01			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0				0.0			
Control Delay (s/veh)		7.8			7.5				10.2			
Level of Service (LOS)		А			А				В			
Approach Delay (s/veh)		0	.0	-	0	.2	-	- 10).2	-		-
Approach LOS								E	3			

Undivided

			<i>c</i> c7	Ŧ		<u> </u>	6									
		H	CS/	IW0-	vvay	' Stoj	o-Co									
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Inters	ection			Appa	oosa &	Hwy 105	5		
Agency/Co.	SMH	Consulta	ints				Jurisc	liction			El Pas	o Count	:y			
Date Performed	4/25/	2023					East/	West Stre	eet		Hwy ²	105				
Analysis Year	2023						North	n/South	Street		Appa	oosa				
Time Analyzed	1:00-2	2:00 pm	Weekda	у			Peak	Hour Fac	ctor		0.98					
Intersection Orientation	East-	Nest					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pun	npkin Pat	tch Spec	ial Use T	'IS										
Lanes																
					Maj	or Street: Ea	st-West									
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	154	6		9	171	0		4		6				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
	1												1			

Proportion Time Blocked												
Percent Grade (%)								()			
Right Turn Channelized												
Median Type Storage				Undi	vided							
Critical and Follow-up He	adwa	ys										
Base Critical Headway (sec)		4.1				4.1		7.1		6.2		
Critical Headway (sec)		4.12				4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2				2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22				2.22		3.52		3.32		
Delay, Queue Length, and	l Leve	l of Se	ervice									

Delay, Queue Length, and I Flow Rate, v (veh/h) 0 9 10 Capacity, c (veh/h) 1402 1415 743 v/c Ratio 0.00 0.01 0.01 95% Queue Length, Q₉₅ (veh) 0.0 0.0 0.0 Control Delay (s/veh) 7.6 7.6 9.9 Level of Service (LOS) А А А Approach Delay (s/veh) 0.0 0.4 9.9 Approach LOS А

		Η	CS7	Two-	Way	' Stoj	p-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Inters	ection			Арра	loosa &	Hwy 105	5		
Agency/Co.	SMH	Consulta	ants				Jurisd	liction			El Pas	o Count	y			
Date Performed	4/25/	2023					East/\	Nest Stre	reet Hwy 105			105				
Analysis Year	2023	2023				North	North/South Street Appaloosa			loosa						
Time Analyzed	1:00-2	1:00-2:00 pm Weekend				Peak	Hour Fac	ctor		0.90						
Intersection Orientation	East-	East-West				Analy	sis Time	Period (hrs)	0.25						
Project Description	Color	ado Pun	npkin Pat	tch Spec	ial Use T	TIS .										
Lanes																
					Majo	or Street: Ea	ist-West									
Vehicle Volumes and Ad	justme															
Approach			ound			1	bound				bound				bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	174	9		7	212	0		1		4				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)											0					

Right Turn Channelized

Median Type | Storage

Base Critical Headway (sec)		4.1				4.1				7.1		6.2		
Critical Headway (sec)		4.12				4.12				7.12		6.22		
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32		
Delay, Queue Length, and Level of Service														
Flow Rate, v (veh/h)		0				8					6			
Capacity, c (veh/h)		1332				1368					749			
v/c Ratio		0.00				0.01					0.01			
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0			
Control Delay (s/veh)		7.7				7.6					9.8			
Level of Service (LOS)		А				А					А			
Approach Delay (s/veh)		0	.0			0	.3			9	.8			
Approach LOS										ļ	4			

Undivided

LONG RANGE HORIZON PEAK HOUR TURNING MOVEMENTS

		Canterbur	y/Hwy 105							
	Peak Hour: 9:00 am to 10:00 am									
Long Range Weekend										
	Hwy 105									
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT					
0	250	12	9	171	0					
		Cante	rbury							
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT					
0	0	0	1	0	12					
Peak Hou	r Volume:	455								

Canterbury/Hwy 105 Peak Hour: 9:00 am to 10:00 am

Long Range Weekday

 Hwy 105

 EB LT
 EB Thru
 EB RT
 WB LT
 WB Thru
 WB RT

 0
 212
 76
 43
 227
 0

Canterbury

SB RT SB Thru SB LT NB RT NB Thru NB LT

0 0 0 10 0 12

580

Peak Hour Volume:

	Canterbury/Saddlewood									
Peak Hour: 9:00 am to 10:00 am										
	Long Range Weekend									
	Saddlewood									
EB LT	EB Thru EB RT WB LT WB Thru WB RT									
0	0	0	0	0	11					
		Cante	rbury							
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT					
0	0 5 21 3 3 0									
Peak Hou	r Volume:	43								

Canterbury/Saddlewood Peak Hour: 9:00 am to 10:00 am

Canterbury/Saddlewood Peak Hour: 1:00 pm to 2:00 pm Long Range Weekend Saddlewood

		Appaloosa	a/Hwy 105						
Peak Hour: 9:00 am to 10:00 am									
Long Range Weekday									
Hwy 105									
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT				
0	156	156 12 15 295 0							
		Appa	Iloosa						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
0 0 0 6 0 5									
Peak Hour Volume: 489									

Appaloosa/Hwy 105 Peak Hour: 9:00 am to 10:00 am

Long Range Weekend

 Hwy 105

 EB LT
 EB Thru
 EB RT
 WB LT
 WB Thru
 WB RT

 0
 155
 5
 7
 301
 0

Appaloosa

Cherry Springs Ranch/Hwy 105 Peak Hour: 9:00 am to 10:00 am Long Range Weekday									
Hwy 105									
EB LT	EB Thru EB RT WB LT WB Thru WB RT								
5	165	165 0 0 294 8							
		Cherry Spr	ings Ranch						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
4	0	4	0	0	0				
Peak Hou	Peak Hour Volume: 480								

	Che	rry Springs	Ranch/Hwy	105	
	Peak	Hour: 9:00	am to 10:0	0 am	
		Long Range	e Weekend		
		Hwy	105		
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT
8	154	80	53	240	21
		Cherry Spr	ings Ranch		
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT
8	0	5	5	0	8
Peak Hou	r Volume:	582			

	Che	rry Springs	Ranch/Hwy	105					
Peak Hour: 1:00 pm to 2:00 pm									
Long Range Weekday									
Hwy 105									
EB LT	EB Thru	EB Thru EB RT WB LT WB Thru WB R							
0	211	0	0	239	5				
		Cherry Spr	ings Ranch						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
4	4 0 4 0 0 0								
Peak Hou	r Volume:	463							

		Canterbur	y/Hwy 105		
	Peak	Hour: 1:00) pm to 2:0	0 pm	
		Long Range	e Weekend		
		Hwy	105		
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT
0	343	18	9	224	0
		Cante	erbury		
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT
0	0	0	6	0	10
Peak Hou	r Volume:	610			

	Saddlewood							
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT			
0	0	0	0	0	5			
Canterbury								
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT			
0	7	22	3	15	0			
Peak Hou	r Volume:	52						

		Appaloosa	a/Hwy 105						
Peak Hour: 1:00 pm to 2:00 pm									
Long Range Weekday									
Hwy 105									
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT				
0	213	7	12	235	0				
		Appa	Iloosa						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
0 0 0 6 0 5									
Peak Hou	Peak Hour Volume: 478								

		Appaloosa	a/Hwy 105		
	Peak	Hour: 1:00) pm to 2:0) pm	
		Long Range	e Weekend		
		Hwy	105		
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT
0	241	10	8	266	0
		Appa	loosa		
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT
0	0	0	5	0	1
Peak Hou	r Volume:	531			

Peak Hour Volume:

	Peal) pm	
		Hwy	105		
Cherry Springs Ranch/Hwy 105 Peak Hour: 1:00 pm to 2:00 pm Long Range Weekend Hwy 105 EB LT EB RT WB LT WB Thru 0 242 108 72 189 4 Cherry Springs Ranch SB RT SB LT NB RT NB Thru NB LT Genry Springs Ranch SB RT SB LT NB RT NB Thru NB LT 4 0 4 8 0 12					
0	242	108	72	189	4
		Cherry Spr	ings Ranch		
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT
4	0	4	8	0	12
Peak Hou	r Volume:	643			

Peak Hour Volume:

		Canterbur	y/Hwy 105											
	Peak	K Hour: 1:00) pm to 2:0) pm										
		Long Rang	e Weekday											
Hwy 105														
EB LT EB Thru EB RT WB LT WB Thru WB RT														
0	280	33	19	207	0									
		Cante	erbury											
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT									
0	0	0	11	0	20									
Peak Hou	r Volume:	570												

Cantorhup/Saddlowood														
Canterbury/Saddlewood														
	Peal	k Hour: 1:00) pm to 2:00) pm										
		Long Range	e Weekday											
Saddlewood														
EB LT EB Thru EB RT WB LT WB Thru WB RT														
0	0	0	6	0	26									
		Cante	rbury											
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT									
0	6	41	6	3	0									

Peak Hour Volume: 88

		Long Rang	e Weekday		
		Saddle	ewood		
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT
0	0	0	5	0	18
		Cante	erbury		
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT
0	0	126	0	0	0
Peak Hou	ır Volume:	149			

NB Thru	NB LT		SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT
0	0		0	0	0	5	0	5
		-	Peak Hou	ır Volume:	478			

LONG RANGE HORIZON LEVEL OF SERVICE (LOS)

		Н	CS7	Two-	-Way	' Stop	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk						ection		-	Cante	rbury &	Saddlev	vood		
Agency/Co.		Consulta	ants				Jurisd					o Count				
Date Performed	4/26/						East/	Nest Stre	eet			ewood	,			
Analysis Year	2023							/South S			Cante	rbury				
Time Analyzed	9:00-	10:00 am	n Weekd	ау			Peak	Hour Fac	tor		0.85	-				
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pun	npkin Pa	tch Spec	ial Use T	'IS										
Lanes																
				11												
					Majo	r Street: Nor	rth-South									
Vehicle Volumes and Adju	ustme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	Eastbound West						R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						5		18		0	0	0		126	0	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)							0									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)						7.1		6.2		4.1				4.1		
Critical Headway (sec)						7.12		6.22		4.12				4.12		
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22		
Delay, Queue Length, and	l Leve	l of Se	ervice													
Flow Rate, v (veh/h)							27			0				148		
Capacity, c (veh/h)							928			1623				1623		
v/c Ratio							0.03			0.00				0.09		
95% Queue Length, Q ₉₅ (veh)							0.1			0.0				0.3		
Control Delay (s/veh)							9.0			7.2				7.4		
Level of Service (LOS)							A			А				A		
Approach Delay (s/veh)						9	0.0							7	.4	
Approach LOS							A									

Copyright © 2023 University of Florida. All Rights Reserved. HCS [™] TWSC Version 7.6 Canterbury & Saddlewood Long Range AM Weekday.xtw

Generated: 4/27/2023 4:21:06 PM

		H	ICS7	Two	-Way	Sto	o-Co	ntrol	Rep	ort							
General Information							Site	Inforr	natio	n							
Analyst	Brett	Louk					Inters	ection			Cante	erbury &	Saddlev	vood			
Agency/Co.	SMH	Consult	ants				Jurisd	liction				o Count					
Date Performed	4/26/	2023					East/\	Nest Stre	eet		Saddl	ewood	-				
Analysis Year	2023						North	/South S	Street		Cante	Canterbury					
Time Analyzed	9:00-	10:00 an	n Weeke	nd			Peak	Hour Fac	ctor		0.85						
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25						
Project Description	Color	ado Pur	npkin Pa	tch Spec	ial Use T	'IS											
Lanes																	
					Majo	Street: Nor	rth-South										
Vehicle Volumes and Adj	ustme	nts															
Approach	<u> </u>	Eastk	ound			West	bound			North	bound			South	bound		
Movement	U	Eastbound We					Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0	
Configuration							LR				LTR				LTR		
Volume (veh/h)						0		11		0	3	3		21	5	0	
Percent Heavy Vehicles (%)						2		2		2				2			
Proportion Time Blocked																	
Percent Grade (%)							0										
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up He	eadwa	ys															
Base Critical Headway (sec)						7.1		6.2		4.1				4.1			
Critical Headway (sec)						7.12		6.22		4.12				4.12			
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2			
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22			
Delay, Queue Length, and	d Leve	l of S	ervice		-		-	-	-		-						
Flow Rate, v (veh/h)							13			0				25			
Capacity, c (veh/h)							1078			1615				1614			
v/c Ratio							0.01			0.00				0.02			
95% Queue Length, Q ₉₅ (veh)							0.0			0.0				0.0			
Control Delay (s/veh)							8.4			7.2				7.3			
Level of Service (LOS)							A			А				A			
Approach Delay (s/veh)						8	.4			0	.0			5	.9		
Approach LOS							A										

Copyright © 2023 University of Florida. All Rights Reserved. HCS[™] TWSC Version 7.6 Canterbury & Saddlewood Long Range AM Weekend.xtw

Generated: 4/26/2023 2:17:31 PM

		F	ICS7	Two	Way	Sto	o-Co	ntrol	Rep	ort						
General Information		_					Site	Inforr	natio	n						
Analyst	Brett	Louk					Inters	ection			Cante	rbury &	Saddlev	vood		
Agency/Co.	SMH	Consult	ants				Jurisd	liction				o Count				
Date Performed	4/26/	2023					East/\	Nest Stre	eet		Saddl	ewood	-			
Analysis Year	2023						North	/South S	Street		Cante	rbury				
Time Analyzed	1:00-2	2:00 pm	Weekda	у			Peak	Hour Fac	ctor		0.85					
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pur	npkin Pat	tch Spec	ial Use T	'IS										
Lanes																
					Major	Street: Nor	rth-South									
Vehicle Volumes and Adj	ustme	nts														
Approach		East	bound			West	bound			North	bound			South	bound	
Movement	U	Eastbound Westb U L T R U L						R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						6		26		0	3	6		41	6	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)							0									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)						7.1		6.2		4.1				4.1		
Critical Headway (sec)						7.12		6.22		4.12				4.12		
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22		
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)							38			0				48		
Capacity, c (veh/h)							1024			1614				1609		
v/c Ratio							0.04			0.00				0.03		
95% Queue Length, Q ₉₅ (veh)							0.1			0.0				0.1		
Control Delay (s/veh)							8.7			7.2				7.3		
Level of Service (LOS)							A			А				A		
Approach Delay (s/veh)						8	5.7			0	.0			6	.4	
Approach LOS							A									

Copyright © 2023 University of Florida. All Rights Reserved. HCS [™] TWSC Version 7.6 Canterbury & Saddlewood Long Range PM Weekday.xtw

Generated: 4/26/2023 2:25:03 PM

		H	ICS7	Two	-Way	Sto	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Inters	ection			Cante	erbury &	Saddlev	vood		
Agency/Co.	SMH	Consult	ants				Jurisd	liction			El Pas	o Count	у			
Date Performed	4/26/	2023					East/\	Nest Stre	eet		Sadd	ewood				
Analysis Year	2023						North	/South S	Street		Cante	erbury				
Time Analyzed	1:00-2	2:00 pm	Weeken	d			Peak	Hour Fac	ctor		0.85					
Intersection Orientation	North	n-South					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pur	npkin Pa	tch Spec	ial Use T	'IS										
Lanes																
				_				_								
				_												
					Majo	Street: No	rth-South									
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	bound			West	bound			North	bound			South	bound	
Movement	U	Eastbound					Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						0		5		0	15	3		22	7	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)							0									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						7.1		6.2		4.1				4.1		
Critical Headway (sec)						7.12		6.22		4.12				4.12		
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22		
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)							6			0				26		
Capacity, c (veh/h)							1059			1612				1595		
v/c Ratio							0.01			0.00				0.02		
95% Queue Length, Q ₉₅ (veh)							0.0			0.0				0.0		
Control Delay (s/veh)							8.4			7.2				7.3		
Level of Service (LOS)							A			А				А		
Approach Delay (s/veh)						8	3.4			0	.0			5	.6	
Approach LOS							A									

Copyright © 2023 University of Florida. All Rights Reserved. HCS[™] TWSC Version 7.6 Canterbury & Saddlewood Long Range PM Weekend.xtw

Generated: 4/26/2023 2:22:28 PM

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105 AM
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/26/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Canterbury
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		
Lanes			

Major Street: East-West

Vehicle Volumes and Adjustments

Approach	1		ound			Wost	oound			North	bound			South	bound	
Movement	U		T	R	U		T	R	U		Т	R	U		Т	R
		L 1	2		4U	L 4	5	к 6	0	L 7	8	к 9	0	L		к 12
Priority	10			3				-		· ·	-	-		10	11	<u> </u>
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	212	76		43	227	0		12		10				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										(C					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				
Critical Headway (sec)		4.12				4.12				7.12		6.22				
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3				
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		0				46					24					
Capacity, c (veh/h)		1322				1251					508					
v/c Ratio		0.00				0.04					0.05					
95% Queue Length, Q ₉₅ (veh)		0.0				0.1					0.1					
Control Delay (s/veh)		7.7				8.0					12.4					
Level of Service (LOS)		A				A					В					
Approach Delay (s/veh)		. 0	.0			. 1	.6			12	2.4					
Approach LOS										I	В					

		Н	CS7	Two-	Way	' Stoj	p-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Inters	ection			Cante	rbury &	. Hwy 10	5 AM		
Agency/Co.	SMH	Consulta	nts				Jurisd	liction			El Pas	o Count	:y			
Date Performed	4/26/	2023					East/\	Nest Stre	eet		Hwy ^r	105				
Analysis Year	2023						North	/South S	Street		Cante	rbury				
Time Analyzed	9:00-1	0:00 AN	1 Weeke	nd			Peak	Hour Fac	ctor		0.85					
Intersection Orientation	East-V	Vest					Analy	sis Time	Period (hrs)	0.25					
Project Description	Colora	Colorado Pumpkin Patch Special Use TIS														
Lanes																
	A .15				Majı	or Street: Ea	ist-West									
Vehicle Volumes and Approach	Adjustme	Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	Lasic	Т	R	U	L	Т	R	U	L	Т	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6	-	7	8	9		10	11	1
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	C
Configuration			LTR				LTR				LR					
Volumo (voh/h)		0	250	12		0	171	0		12		1				

Volume (veh/h) 250 0 12 9 171 0 12 1 2 2 2 2 Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) 0 Right Turn Channelized Undivided Median Type | Storage **Critical and Follow-up Headways** Base Critical Headway (sec) 4.1 4.1 7.1 6.2 4.12 4.12 7.12 6.22 Critical Headway (sec)

Delay, Queue Length, and Level of Service

Base Follow-Up Headway (sec) Follow-Up Headway (sec)

Delay, Queue Length, and	0150	si vice									
Flow Rate, v (veh/h)	0			11				15			
Capacity, c (veh/h)	1371			1252				475			
v/c Ratio	0.00			0.01				0.03			
95% Queue Length, Q ₉₅ (veh)	0.0			0.0				0.1			
Control Delay (s/veh)	7.6			7.9				12.8			
Level of Service (LOS)	А			А				В			
Approach Delay (s/veh)	0	.0		0.	.5		12	8			
Approach LOS							E	3			

2.2

2.22

3.5

3.52

3.3

3.32

2.2

2.22

		Н	CS7	Two-	Way	Sto	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Inters	ection			Cante	rbury &	Hwy 10	5 PM		
Agency/Co.	SMH	Consulta	nts				Jurisc	liction			El Pas	o Count	у			
Date Performed	4/26/	2023					East/	West Stre	eet		Hwy î	105				
Analysis Year	2023						North	/South S	Street		Cante	rbury				
Time Analyzed	1:00-2	2:00 pm	Weekda	у			Peak	Hour Fac	ctor		0.90					
Intersection Orientation	East-V	Vest					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pum	ipkn Pat	ch Speci	al Use T	S										
Lanes																
Vehicle Volumes and A	diuctmo	atc.			Majo	or Street: Ea	st-West									
	ujustine													<u> </u>		
Approach		Eastb		D		West	_	_		North		D			ibound	-
Movement	U	L	T	R	U	L	Т	R	U		Т	R	U	L	T	R
Priority	10	1	2	3	40	4	5	6		7	8	9		10	11	12

Number of Lanes	0	0	1	0	0	0	1	0	0	1	0	0	0	0
Configuration			LTR				LTR			LR				
Volume (veh/h)		0	280	33		19	207	0	20		11			
Percent Heavy Vehicles (%)		2				2			2		2			
Proportion Time Blocked														
Percent Grade (%)									(C				
Right Turn Channelized														
Median Type Storage				Undi	vided									

Critical and Follow-up Hoadways

Critical and Follow-up He	adwa	ys										
Base Critical Headway (sec)		4.1			4.1			7.1		6.2		
Critical Headway (sec)		4.12			4.12			7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2			3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22			3.52		3.32		
Delay, Queue Length, and	l Leve	l of Se	ervice									
Flow Rate, v (veh/h)		0			21				34			
Capacity, c (veh/h)		1338			1211				479			
v/c Ratio		0.00			0.02				0.07			
95% Queue Length, Q ₉₅ (veh)		0.0			0.1				0.2			
Control Delay (s/veh)		7.7			8.0				13.1			
Level of Service (LOS)		А			А				В			
Approach Delay (s/veh)		0	.0		0	.8		13	3.1			
Approach LOS								E	3			

				Two-	,											
General Information							Site	Inform	natior	ı						
Analyst	Brett	Louk					Inters	ection			Cante	rbury &	Hwy 105	5		
Agency/Co.	SMH	Consulta	ants				Jurisd	iction			El Pas	o Count	у			
Date Performed	4/26/	2023					East/V	Vest Stre	eet		Hwy ²	105				
Analysis Year	2023						North	/South S	Street		Cante	rbury				
Time Analyzed	1:00-2	2:00 pm	Weeken	d			Peak I	Hour Fac	tor		0.85					
Intersection Orientation	East-V	Nest					Analy	sis Time	Period (I	hrs)	0.25					
Project Description	Color	ado Pun	npkin Pat	tch Spec	ial Use T	IS										
Lanes																
					Majo	or Street: Ea	st-West									
Vehicle Volumes and Adj	ustme	nts														
Vehicle Volumes and Adj Approach	ustme		ound			West	pound			North	bound			South	bound	
-	Ustme		ound T	R	U	West	oound T	R	U	North	bound T	R	U	South	bound T	
Approach		Eastb		R 3	U 4U			R 6	U			R 9	U			
Approach Movement	U	Eastb	Т			L	Т		U	L	Т		U	L	Т	1
Approach Movement Priority	U 1U	Eastb L 1	T 2	3	4U	L 4	T 5	6	U	L 7	Т 8	9	U	L 10	T 11	1
Approach Movement Priority Number of Lanes	U 1U	Eastb L 1	T 2 1	3	4U	L 4	T 5 1	6	U	L 7	T 8 1	9	U	L 10	T 11	1
Approach Movement Priority Number of Lanes Configuration	U 1U	Eastb L 1 0	T 2 1 LTR	3	4U	L 4 0	T 5 1 LTR	6 0	U	L 7 0	T 8 1	9		L 10	T 11	1
Approach Movement Priority Number of Lanes Configuration Volume (veh/h)	U 1U	Eastb L 1 0	T 2 1 LTR	3	4U	L 4 0 9	T 5 1 LTR	6 0		L 7 0 10	T 8 1	9 0 6	U	L 10	T 11	
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%)	U 1U	Eastb L 1 0	T 2 1 LTR	3	4U	L 4 0 9	T 5 1 LTR	6 0		L 7 0 10 2	T 8 1	9 0 6		L 10	T 11	1
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked	U 1U	Eastb L 1 0	T 2 1 LTR	3	4U	L 4 0 9	T 5 1 LTR	6 0		L 7 0 10 2	T 8 1 LR	9 0 6		L 10	T 11	1
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%)	U 1U	Eastb L 1 0	T 2 1 LTR	3 0 18	4U	L 4 0 9	T 5 1 LTR	6 0		L 7 0 10 2	T 8 1 LR	9 0 6		L 10	T 11	1
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized	U 1U 0 	Eastb 1 0 2	T 2 1 LTR	3 0 18	4U 0	L 4 0 9	T 5 1 LTR	6 0		L 7 0 10 2	T 8 1 LR	9 0 6		L 10	T 11	

Base Critical Headway (sec)		4.1			4.1			7.1		6.2		
Critical Headway (sec)		4.12			4.12			7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2			3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22			3.52		3.32		
Delay, Queue Length, and	Leve	l of Se	ervice									
Flow Rate, v (veh/h)		0			11				19			
Capacity, c (veh/h)		1301			1135				423			
v/c Ratio		0.00			0.01				0.04			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0				0.1			
Control Delay (s/veh)		7.8			8.2				13.9			
Level of Service (LOS)		А			А				В			
Approach Delay (s/veh)		0	.0		0	.4		13	.9			
Approach LOS								E	3			

	HCS7 Two-	-Way Sto	p-Con	trol	Rep	ort						
General Information			Site Ir	nforr	natio	n						
Analyst	Brett Louk		Interse	tion			Cheri	y Spr R a	& Hwy 1	105		
Agency/Co.	SMH Consultants		Jurisdic	tion			El Pas	so Count	y			
Date Performed	4/26/2023		East/W	est Stre	eet		Hwy	105				
Analysis Year	2023		North/	South S	Street		Cheri	y Spring	s Ranch			
Time Analyzed	9:00-10:00 am Weekday		Peak H	our Fac	ctor		0.88					
Intersection Orientation	East-West		Analysi	s Time	Period (hrs)	0.25					
Project Description	Colorado Pumpkin Patch Spec	ial Use TIS										
Lanes												
Vehicle Volumes and <i>A</i>	Adjustments	Major Street: E	ast-West									
Approach	Eastbound	West	tbound			North	nbound			Sout	hbound	
Movement			т	R			Т	R	11		Т	R

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration			LTR				LTR								LR	
Volume (veh/h)		5	165	0		0	294	8						4		4
Percent Heavy Vehicles (%)		2				2								2		2
Proportion Time Blocked																
Percent Grade (%)														(0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	-															
Base Critical Headway (sec)		4.1				4.1								7.1		6.2
Critical Headway (sec)		4.12				4.12								7.12		6.22
Base Follow-Up Headway (sec)		2.2				2.2								3.5		3.3
Follow-Up Headway (sec)		2.22				2.22								3.52		3.32
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)		6				0									9	
Capacity, c (veh/h)		1216				1387									551	
v/c Ratio		0.00				0.00									0.02	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0									0.1	
Control Delay (s/veh)		8.0				7.6									11.6	
Level of Service (LOS)		А				A									В	
Approach Delay (s/veh)		0	.3			0	.0							11	1.6	
Approach LOS															В	

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/25/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Cherry Springs Ranch
Time Analyzed	9:00-10:00 am Weekend	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		
Lanes			

Major Street: East-West

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		8	154	80		53	240	21		8	0	5		5	0	8
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)				-		-	-			(0	-			0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	Headways															
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.12	6.52	6.22		7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.52	4.02	3.32		3.52	4.02	3.32
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		9				57					14				14	
Capacity, c (veh/h)		1282				1314					482				556	
v/c Ratio		0.01				0.04					0.03				0.03	
95% Queue Length, Q ₉₅ (veh)		0.0				0.1					0.1				0.1	
Control Delay (s/veh)		7.8				7.9					12.7				11.6	
Level of Service (LOS)		А				А					В				В	
Approach Delay (s/veh)		0	.3			1	.7			12	2.7			1	1.6	-
Approach LOS											В				В	

Generated: 4/26/2023 2:40:20 PM

		Η	CS7	Two-	Way	' Stoj	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Inters	ection			Cherr	y Spr R å	& Hwy 1	05		
Agency/Co.	SMH	Consulta	ints				Jurisd	iction			El Pas	o Count	:y			
Date Performed	4/26/	2023					East/\	Nest Str	eet		Hwy	105				
Analysis Year	2023						North	/South :	Street		Cherr	y Spring	s Ranch			
Time Analyzed	1:00-2	2:00 pm	Weekda	у			Peak	Hour Fac	ctor		0.97					
Intersection Orientation	East-	Vest					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pun	npkin Pat	tch Spec	ial Use T	TIS										
Lanes																
					Majo	or Street: Ea	ıst-West									
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	F
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	1
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	(
Configuration			LTR				LTR								LR	
Volume (veh/h)		0	211	0		0	239	5						4		4
Percent Heavy Vehicles (%)	1	2				2								2		

Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) 0 **Right Turn Channelized** Median Type | Storage Undivided **Critical and Follow-up Headways** Base Critical Headway (sec) 4.1 4.1 7.1 6.2 4.12 7.12 Critical Headway (sec) 4.12

6.22 2.2 2.2 Base Follow-Up Headway (sec) 3.5 3.3 Follow-Up Headway (sec) 2.22 2.22 3.52 3.32 Delay, Queue Length, and Level of Service Flow Rate, v (veh/h) 0 0 8 Capacity, c (veh/h) 1314 1352 617 v/c Ratio 0.00 0.00 0.01 95% Queue Length, Q₉₅ (veh) 0.0 0.0 0.0 Control Delay (s/veh) 7.7 7.7 10.9 Level of Service (LOS) В А А Approach Delay (s/veh) 0.0 0.0 10.9 Approach LOS В

HCS[™] TWSC Version 7.6 Copyright © 2023 University of Florida. All Rights Reserved.

Generated: 4/26/2023 2:54:43 PM

Cherry Springs Ranch & Hwy 105 Long Range PM Weekday.xtw

	HCS7 Two-Way Stop	p-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/26/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Cherry Springs Ranch
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		
Lanes			

Major Street: East-West

Vehicle Volumes and Adjustments

Approach		Eastb	ound			West	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		0	242	108		72	189	4		12	0	8		4	0	4
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)				-		-	-			()	-		(0	
Right Turn Channelized		Undivided														
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.12	6.52	6.22		7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.52	4.02	3.32		3.52	4.02	3.32
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		0				78					22				9	
Capacity, c (veh/h)		1361				1178					429				477	
v/c Ratio		0.00				0.07					0.05				0.02	
95% Queue Length, Q ₉₅ (veh)		0.0				0.2					0.2				0.1	
Control Delay (s/veh)		7.6				8.3					13.8				12.7	
Level of Service (LOS)		А				А					В				В	
Approach Delay (s/veh)		0	.0			2	.7			13	3.8	-		12	2.7	-
Approach LOS										E	3			1	В	

Copyright © 2023 University of Florida. All Rights Reserved. HCS[™] TWSC Version 7.6 Cherry Springs Ranch & Hwy 105 Long Range PM Weekend.xtw

Generated: 4/26/2023 2:57:12 PM

		Н	CS7	Two-	Way	Sto	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Inters	ection			Арра	oosa &	Hwy 105	5		
Agency/Co.	SMH	Consulta	ints				Jurisc	liction			El Pas	o Count	у			
Date Performed	4/26/	2023					East/	Nest Stre	eet		Hwy ⁻	105				
Analysis Year	2023						North	/South S	Street		Арра	oosa				
Time Analyzed	9:00-	10:00 am	Weekd	ау			Peak	Hour Fac	ctor		0.87					
Intersection Orientation	East-	Nest					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pun	npkin Pa	tch Spec	ial Use T	'IS										
Lanes																
Vehicle Volumes and Ad	ustmo	nte			Majo	or Street: Ea	st-West									
Approach			ound			West	bound			North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6	-	7	8	9	-	10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
	1															

Humber of Eures	Ŭ	Ŭ	· ·	Ŭ	ľ	Ŭ	· ·	Ŭ	Ŭ	· ·	Ŭ	Ŭ	ľ	Ŭ
Configuration			LTR				LTR			LR				
Volume (veh/h)		0	156	12		15	295	0	5		6			
Percent Heavy Vehicles (%)		2				2			2		2			
Proportion Time Blocked														
Percent Grade (%)		-		-		-		-	(C				
Right Turn Channelized														
Median Type Storage				Undi	vided									
Critical and Follow-up H	eadwa	ys												
Base Critical Headway (sec)		4.1				4.1			7.1		6.2			

Critical and Follow-up He	auway	ys											
Base Critical Headway (sec)		4.1			4.1			7.1		6.2			
Critical Headway (sec)		4.12			4.12			7.12		6.22			
Base Follow-Up Headway (sec)		2.2			2.2			3.5		3.3			
Follow-Up Headway (sec)		2.22			2.22			3.52		3.32			
Delay, Queue Length, and	l Leve	of Se	ervice										
Flow Rate, v (veh/h)		0			17				13				
Capacity, c (veh/h)		1220			1380				594				
v/c Ratio		0.00			0.01				0.02				
95% Queue Length, Q ₉₅ (veh)		0.0			0.0				0.1				
Control Delay (s/veh)		8.0			7.6				11.2				
Level of Service (LOS)		А			Α				В				
Approach Delay (s/veh)		0	.0		0	.5	-	- 11	.2			-	
Approach LOS								I	3				

		H	CS7	Two	Way	Stop	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	า						
Analyst	Brett	Louk					Inters	ection			Appa	oosa &	Hwy 105	;		
Agency/Co.	SMH	Consulta	ints				Jurisd	liction			El Pas	o Count	у			
Date Performed	4/26/	2023					East/\	Nest Stre	eet		Hwy 1	105				
Analysis Year	2023						North	/South S	Street		Appa	oosa				
Time Analyzed	9:00-	10:00 am	Weeker	nd			Peak	Hour Fac	tor		0.90					
Intersection Orientation	East-\	Vest					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pun	npkin Pat	tch Spec	ial Use T	IS										
Lanes																
																_
					Majo	or Street: Ea	st-West									
Vehicle Volumes and A	djustme	nts			Majo	or Street: Ea	st-West								_	
Vehicle Volumes and A	djustme		ound		Majo		st-West			North	bound			South	bound	
	djustme		ound	R	Majo			R	U	North	bound T	R	U	South	bound	R
Approach		Eastb		R 3		West	pound	R 6	U			R 9	U			R 12
Approach Movement	U	Eastb L	Т		U	West L	oound T		U	L	Т		U	L	Т	
Approach Movement Priority	U 1U	Eastb L 1	T 2	3	U 4U	Westl L 4	oound T 5	6	U	L 7	Т 8	9	U	L 10	T 11	12
Approach Movement Priority Number of Lanes	U 1U	Eastb L 1	T 2 1	3	U 4U	Westl L 4	T 5 1	6	U	L 7	T 8 1	9	U 0	L 10	T 11	12
Approach Movement Priority Number of Lanes Configuration	U 1U	Eastb L 1 0	T 2 1 LTR	3 0	U 4U	Westl L 4 0	T 5 1 LTR	6 0		L 7 0	T 8 1	9 0		L 10	T 11	12
Approach Movement Priority Number of Lanes Configuration Volume (veh/h)	U 1U	Eastb L 1 0	T 2 1 LTR	3 0	U 4U	Westl L 4 0 7	T 5 1 LTR	6 0		L 7 0 5	T 8 1	9 0 5		L 10	T 11	12
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%)	U 1U	Eastb L 1 0	T 2 1 LTR	3 0	U 4U	Westl L 4 0 7	T 5 1 LTR	6 0		L 7 0 5 2	T 8 1	9 0 5		L 10	T 11	12
Approach Movement Priority Number of Lanes Configuration Volume (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked	U 1U	Eastb L 1 0	T 2 1 LTR	3 0	U 4U	Westl L 4 0 7	T 5 1 LTR	6 0		L 7 0 5 2	T 8 1 LR	9 0 5		L 10	T 11	12

Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	l Leve	l of Se	ervice	I							
Flow Rate, v (veh/h)		0			8			11			
Capacity, c (veh/h)		1225			1398			602			
v/c Ratio		0.00			0.01			0.02			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0			0.1			
Control Delay (s/veh)		7.9			7.6			11.1			
Level of Service (LOS)		А			А			В			

0.2

0.0

Approach Delay (s/veh)

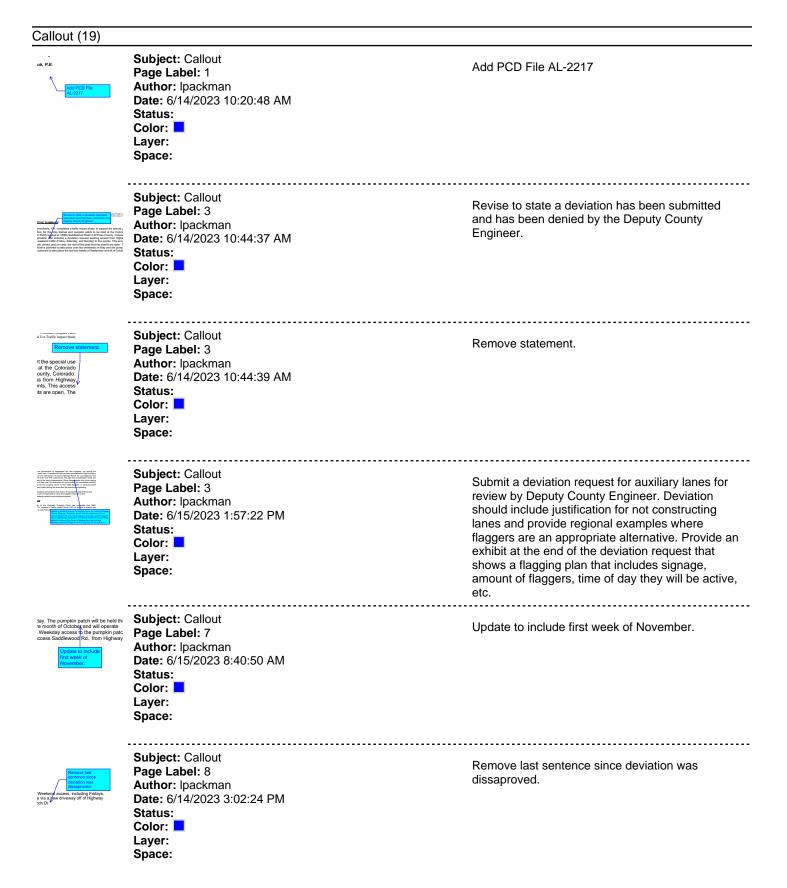
Approach LOS

11.1

В

		Н	CS7	Two-	Way	Sto	o-Co	ntrol	Rep	ort						
General Information							Site	Inforr	natio	n						
Analyst	Brett	Louk					Inters	ection			Арра	oosa &	Hwy 10	5		
Agency/Co.	SMH	Consulta	ints				Jurisc	liction			El Pas	o Count	.y			
Date Performed	4/26/	2023					East/	Nest Stre	eet		Hwy ⁻	105				
Analysis Year	2023						North	/South	Street		Арра	oosa				
Time Analyzed	1:00-2	2:00 pm	Weekda	у			Peak	Hour Fac	ctor		0.98					
Intersection Orientation	East-\	Vest					Analy	sis Time	Period (hrs)	0.25					
Project Description Colorado Pumpkin Patch Special Use TIS																
Lanes																
					Maj	or Street: Ea	st-West									
Vehicle Volumes and Ac	ljustme	nts														
Approach	1	Eastb	ound			West	bound			North	bound			South	bound	_
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	1
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	C
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	213	7		12	235	0		5		6				
				1		2	1			2		2				1
Percent Heavy Vehicles (%)		2				2				2		2				

Percent Grade (%)								()			
Right Turn Channelized												
Median Type Storage				Undi	vided							
Critical and Follow-up H	eadway	ys										
Base Critical Headway (sec)		4.1				4.1		7.1		6.2		
Critical Headway (sec)		4.12				4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2				2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22				2.22		3.52		3.32		
Delay, Queue Length, an	d Leve	l of S	ervice									
Flow Rate, v (veh/h)		0				12			11			


Flow Rate, v (veh/h)	0			12				11			
Capacity, c (veh/h)	1327			1344				626			
v/c Ratio	0.00			0.01				0.02			
95% Queue Length, Q ₉₅ (veh)	0.0			0.0				0.1			
Control Delay (s/veh)	7.7			7.7				10.9			
Level of Service (LOS)	А			А				В			
Approach Delay (s/veh)	0.	0		0.	5		10	.9			
Approach LOS							E	3			

		Н	CS7	Two-	Way	' Stop	o-Co	ntrol	Rep	ort						
General Information		_	_	_	_	_	Site	Inforr	natio	ı	_	_	_	_	_	_
Analyst	Brett	Louk					Inters	ection			Appa	oosa &	Hwy 105	;		
Agency/Co.	SMH	Consulta	ants				Jurisd	iction			El Pas	o Count	y			
Date Performed	4/26/	2023					East/\	Nest Stre	eet		Hwy ²	105				
Analysis Year	2023						North	/South S	Street		Appa	oosa				
Time Analyzed	1:00-2	2:00 pm	Weeken	d			Peak	Hour Fac	tor		0.90					
Intersection Orientation	East-\	Nest					Analy	sis Time	Period (hrs)	0.25					
Project Description	Color	ado Pun	npkin Pa	tch Spec	ial Use T	'IS										
Lanes																
Vehicle Volumes and Adju	ustme	nts			Majı	or Street: Ea	st-West									
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	241	10		8	266	0		1		5				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											

Critical and Follow-up Headways

Critical and Follow-up He	adways										
Base Critical Headway (sec)	4	4.1		4.1			7.1		6.2		
Critical Headway (sec)	4	.12		4.12			7.12		6.22		
Base Follow-Up Headway (sec)		2.2		2.2			3.5		3.3		
Follow-Up Headway (sec)	2	.22		2.22			3.52		3.32		
Delay, Queue Length, and	l Level o	of Serv	vice								
Flow Rate, v (veh/h)		0		9				7			
Capacity, c (veh/h)	1	266		1284				673			
v/c Ratio	0	0.00		0.01				0.01			
95% Queue Length, Q ₉₅ (veh)	(0.0		0.0				0.0			
Control Delay (s/veh)		7.8		7.8				10.4			
Level of Service (LOS)		A		А				В			
Approach Delay (s/veh)		0.0		0	.3		- 10).4		-	-
Approach LOS							I	В			

V1_TIS_Comments.pdf Markup Summary

Subject: Callout Page Label: 8 Author: Ipackman Date: 6/15/2023 8:45:19 AM Status: Color: Layer: Space:

Note: if this application is approved, applicant may be required to resubmit a TIS with updated counts based on 2023 events per previous conversations with staff.

Subject: Callout Page Label: 3 Author: Daniel Torres Date: 6/14/2023 5:16:00 PM Status: Color: Layer: Space:

Subject: Callout Page Label: 6 Author: Daniel Torres Date: 6/15/2023 8:51:54 AM Status: Color: Layer: Space:

vents are open. I ne ay and the pumption r and all of October. I di lo determine the A. These generated The second service that in includes the first vent through the first vent of the second service the second service that is includes the first vent of the second service the se Subject: Callout Page Label: 3 Author: Daniel Torres Date: 6/14/2023 5:19:02 PM Status: Color: Layer: Space: Please indicate why Roller Coaster Rd/Hwy 105, hwy 83/Hwy 105 and Roller coaster/Sahara Rd intersections were not studied. If the threshold per criteria was not met then please state that, otherwise these intersections should be analyzed.

.....

please clarify whether these peak hrs also apply to the pumpkin patch or is it strictly the tulip festival. If just the tulip festival then what are the peak hrs for the pumpkin patch and why weren't counts performed at that events peak hrs? Please address.

The letter of intent indicates events through the first week of November. Revise accordingly.

Allow the Section (2) and adaptives (3) the section (2) and (2

Subject: Callout Page Label: 9 Author: Ipackman Date: 6/15/2023 9:08:48 AM Status: Color: Layer: Space:

Remove HWY 105 access from analysis.

Inset to 2 to 2 how prevent 1 to because point on the sequence of the sequence of the point of the sequence of the sector back point of the sector back of the sec Subject: Callout Page Label: 11 Author: Ipackman Date: 6/15/2023 8:18:58 AM Status: Color: Layer: Space:

Discuss how 2% was determined to be an appropriate growth rate.

Subject: Callout Determine what growth rate was applied for the Page Label: 12 long range horizon analysis per ECM B.3.2.B Author: lpackman Date: 6/15/2023 8:27:16 AM Status: Color: Layer: Space: Subject: Callout 105? Page Label: 9 Author: Daniel Torres Date: 6/15/2023 9:08:53 AM Status: Color: Layer: Space: Subject: Callout This distribution percentage using Appaloosa Rd Page Label: 9 seems high. As stated in the narrative, Appaloosa Author: lpackman is a gravel road and it is a circuitous route. Per Date: 6/15/2023 9:08:44 AM mobile map services it appears Appaloosa Rd is Status: not suggested as a route. Color: Laver: Space: Subject: Callout Canterbury is not an arterial roadway therefore the Page Label: 14 criteria would be 25 vph. revise table accordingly. Author: Daniel Torres Date: 6/15/2023 1:54:23 PM Status: Color: Layer: Space: Subject: Callout Please indicate the turn movements on the tables Page Label: 14 12 & 13. Identify the direction of travel such as Author: Daniel Torres westbound left turn on Hwy 105 or northbound left Date: 6/15/2023 1:57:45 PM on Canterbury. Status: Color: Also clarify the movement at Layer: Canterbury/Saddlewood. Is it southbound on Space: Canterbury or westbound on Saddlewood? we assume its Southbound on Canterbury but it should be stated. Indicate whether dedicated auxiliary lanes are needed on northbound Canterbury at Hwy 105 Subject: Callout Canterbury and Saddlewood are not an arterial Page Label: 15 roadway therefore the criteria would be 50 vph. Author: Daniel Torres revise table accordingly. Date: 6/15/2023 1:53:36 PM Status: Color: 📕 Layer: Space:

_	Printed	204	Specific Te	princip estimates
1 Mar	Index Failed	Lines.	Parantal	malegy, Faultar
-		44	No.	
****		44	No.	
N.		62	No.	
***		44	No.	
No.	8	62	No.	/
****		62	-	/
N.	2	62	No.	/
Real Property lies		2	1	
-		64	No.	
N	8	62	-	

Subject: Callout Page Label: 16 Author: Daniel Torres Date: 6/15/2023 1:53:45 PM Status: Color: Layer: Space:

acceleration lanes are generally not required per criteria for these lower classification roadways. Revise accordingyly.

Cloud (3)

	-		
hd	7	10	No
зу	117	10	Yes
зу	39	10	Yes
٦d	17	10	Yes
٦d	22	10	Yes
зу	0	10	No
зу	^	**	61

Subject: Cloud Page Label: 14 Author: Daniel Torres Date: 6/15/2023 1:13:49 PM Status: Color: Layer: Space:

Subject: Cloud Page Label: 15 Author: Daniel Torres Date: 6/15/2023 1:23:01 PM Status: Color: Layer: Space:

Subject: Cloud Page Label: 16 Author: Daniel Torres Date: 6/15/2023 1:23:37 PM Status: Color: Layer: Space:

Highlight (1)

Subject: Highlight Page Label: 3 Author: Ipackman Date: 6/14/2023 10:36:03 AM Status: Color: Layer: Space:

This access will remain closed, and un-used, the rest of the days that the events are open

Text Box (7)

Subject: Text Box Page Label: 18 Author: Ipackman Date: 6/14/2023 10:21:22 AM Status: Color: Layer: Space:

Move this page to after the cover page.

Remove references to secess on HWY for broughout the report. <u>Executive sounMAR</u> SMH Consultants, P.A. (application, for the fullp	Subject: Text Box Page Label: 3 Author: Ipackman Date: 6/14/2023 4:18:08 PM Status: Color: Layer: Space:	Remove references to access on HWY 105 throughout the report.	
Agent months to realize the second of real 1005. 1006, the Contentury Dr. and Agent to the table feature of anything 1 1006 that will line up with Cherry 1	Subject: Text Box Page Label: 8 Author: Ipackman Date: 6/15/2023 7:13:28 AM Status: Color: Layer: Space:	Adjust analysis to exclude access off HYW 105.	
A strategy data in sprace but when the strategy and an analysis of the strategy of the strateg	Subject: Text Box Page Label: 17 Author: Ipackman Date: 6/15/2023 1:33:03 PM Status: Color: Layer: Space:	Submit a deviation request in the next submittal for the auxiliary lanes that are warranted per analysis for consideration and review from the ECM administrator.	
It is propose to preserve and regarise regards on the cases.	Subject: Text Box Page Label: 17 Author: Ipackman Date: 6/15/2023 9:31:44 AM Status: Color: Layer: Space:	Revise to address road impact fees that will be required to be paid.	
metric di chica chi anno 2000 chi anno 1000 chi anno 10	Subject: Text Box Page Label: 5 Author: Ipackman Date: 6/15/2023 11:03:35 AM Status: Color: Layer: Space:	Update to provide ECM sight distance requirements in the narratives above and compare to what is out in the field. Also list ECM criteria for stacking, storage, and taper for every affected auxiliary lane and access and state whether this access can be met. If it cannot be met, state the required modifications so that it can be met	
Them is also which that which we want the second se	Subject: Text Box Page Label: 17 Author: Ipackman Date: 6/15/2023 11:08:52 AM Status: Color: Layer: Space:	Revise to state whether MTCP calls for improvements in the vicinity and state what they are.	