

505 ELKTON DRIVE COLORADO SPRINGS, CO 80907 PHONE (719) 531-5599 FAX (719) 531-5238

SUBSURFACE SOIL INVESTIGATION STERLING RANCH BRIDGES STERLING RANCH ROAD OVER SAND CREEK EL PASO COUNTY, COLORADO

Prepared for:

C&C Land 20 Boulder Crescent, 2nd Floor Colorado Springs, Colorado 80903

Attn: Chaz Collins

November 4, 2021 Revised March 24, 2022

Respectfully Submitted,

ENTECH ENGINEERING, INC.

Mrg/

Stuart Wood Geologist

SW/bs

Encl.

Entech Job No. 200045 F:\AA projects\2020\200045-C&C LAnd-Sterling Ranch Bridges-220-SSi\200045 ssi - 2.doc

Table of Contents

1.0	INTRODUCTION	1
2.0	PROJECT AND SITE DESCRIPTION	2
3.0	SUBSURFACE EXPLORATIONS AND LABORATORY TESTING	2
4.0	SUBSURFACE CONDITIONS	3
	4.1 Soil and Rock	
	4.2 Groundwater	5
5.0	GEOTECHNICAL EVALUATION AND RECOMMENDATIONS	5
	5.1 Foundation Recommendations	6
	5.1.1 Shallow Foundation Parameters	6
	5.1.2 Retaining Wall Parameters	7
	5.2 Site Seismic Classification	
	5.3 Surface and Subsurface Drainage	
	5.4 Concrete	
	5.5 Foundation Excavation Observations	9
	5.6 Structural Fill	9
	5.7 Utility Trench Backfill	10
	5.8 General Backfill	11
	5.9 Excavation Stability	11
	5.10 Winter Construction	11
	5.11 Construction Observations	12
6.0	CLOSURE	12

<u>Tables</u> Table 1

Table 1Summary of Laboratory Test ResultsTable 2Sterling Ranch Bridges – Bearing Capacity

<u>Figures</u>

Figure 1: Vicinity Map Figure 2: Test Boring Location Map

List of Appendices

Appendix A Laboratory Testing Results Appendix B Laboratory Testing Results

i

SUBSURFACE SOIL INVESTIGATION STERLING RANCH BRIDGES STERLING RANCH ROAD OVER SAND CREEK EL PASO COUNTY, COLORADO

1.0 INTRODUCTION

C&C Land is planning the construction of a vehicular bridge over Sand Creek for the proposed Sterling Ranch Road in El Paso County northeast of Colorado Springs, Colorado. The approximate location of the site is shown on the Vicinity Map, Figure 1. The planned layout of the proposed bridge is shown on Figure 2, Test Boring Location Map.

This report describes the subsurface investigation conducted for the planned bridge and provides recommendations for foundation design and construction. The subsurface soil investigation included drilling test borings at four (4) locations, in the creek bed near the bridge crossing and in the footprint of the proposed bridge abutments, collecting samples of soil, and conducting a geotechnical evaluation of the investigation findings. All drilling and subsurface investigation activities were performed by Entech Engineering, Inc. (Entech). The contents of this report, including the geotechnical evaluation and recommendations, are subject to the limitations and assumptions presented in Section 6.0.

2.0 PROJECT AND SITE DESCRIPTION

It is Entech's understanding that the project will consist of the construction of a vehicular bridge spanning Sand Creek with shallow spread footings and associated site improvements. At the time of drilling, the site for the proposed bridge was vacant. The crossing for the proposed Sterling Ranch Road had been rough graded at the time of drilling. Sand Creek flows to the south and east. Current vegetation on the site consisted of grasses and small shrubs.

3.0 SUBSURFACE EXPLORATIONS AND LABORATORY TESTING

The subsurface conditions were investigated by drilling four (4) exploratory test borings, in the creek bed near the proposed bridge crossing and in the footprint of the proposed bridge abutments. The borings were drilled to depths of 20 and 30 feet below the existing ground surface using a truck-mounted continuous flight auger-drilling rig supplied and operated by Entech Engineering, Inc. Boring Logs descriptive of the subsurface conditions encountered during drilling and subsequent to drilling are presented in Appendix A. At the conclusion of drilling, observations of groundwater levels were made in each of the open borings. The approximate locations of the test borings are indicated on Figure 2.

Soil samples were obtained from the borings utilizing the Standard Penetration Test (ASTM D-1586) using a California Sampler. Results of the Standard Penetration Test (SPT) are included on the Test Boring Logs in terms of N-values expressed in blows per foot (bpf). Soil samples recovered from the borings were visually classified and recorded on the Test Boring Logs. The soil classifications were later verified utilizing laboratory testing and grouped by soil type. The soil type numbers are included on the Test Boring Logs. It should be understood that the soil descriptions shown on the Test Boring Logs may vary between boring location and sample depth. It should also be noted that the lines of stratigraphic separation shown on the Test Boring Logs represent approximate boundaries between soil types and the actual stratigraphic transitions may be more gradual and vary with location. The Test Boring Logs are presented in Appendix A.

Moisture Content, ASTM D-2216, was obtained in the laboratory for all recovered samples. Grain-Size, ASTM D-422, and Atterberg Limits, ASTM D-4318, were determined for various samples for the purpose of classification and to obtain pertinent engineering characteristics. Volume change testing was performed on selected samples using the Swell/Consolidation Test (ASTM D-4546) in order to evaluate potential expansion/consolidation characteristics of the bedrock. Sulfate testing was performed on select samples to determine the corrosive characteristics of the soils. The Laboratory Test Results are included in Appendix B and summarized in Table 1.

4.0 SUBSURFACE CONDITIONS

One (1) soil type and two (2) bedrock types were encountered in the borings drilled for the subsurface investigation: Type 1: slightly silty to well graded sand (SM-SW, SW), Type 2: silty to slightly silty sandstone (SM, SM-SW), and Type 3: very sandy claystone to siltstone bedrock (CL, ML). The soils were classified in accordance with the Unified Soil Classification System (USCS) using the laboratory testing results and the observations made during drilling.

4.1 Soil and Rock

<u>Soil Type 1</u> is a slightly silty to well graded clean sand (SM-SW, SW). The sand was encountered in all the test borings at the existing ground surface extending to a depth of up to 9 feet. Standard Penetration Testing conducted on the sand resulted in N-values of 8 to 21 blows per foot (bpf), which indicates loose to medium dense states. Moisture content and grain size testing resulted in moisture contents of 10 to 15 percent with approximately 5 to 10 percent of the soil size particles passing the No. 200 sieve. Atterberg limit testing was performed on a sample of native sand and resulted in a liquid limit of no value with a plastic index of non-plastic.

Sulfate testing on the sand resulted in 0.00 percent soluble sulfate by weight, indicating negligible potential for below grade concrete degradation due to sulfate attack.

<u>Soil Type 2</u> is a silty to slightly silty sandstone (SM, SM-SW). The sandstone was encountered in three of the test borings at depths ranging from 2 to 4 feet bgs and extending to depths of 25 feet or the depths explored (20 feet). Standard Penetration Testing conducted on the sandstone resulted in N-values of 50 to greater than 50 blows per foot (bpf), indicating the sandstone is very dense in terms of density. Moisture content and grain size testing resulted in moisture contents of 9 to 21 percent with approximately 10 percent of the soil size particles passing the No. 200 sieve in the sample tested. Atterberg limit testing resulted in liquid limits of no value and plastic indexes of non-plastic. Sulfate testing on the sandstone resulted in 0.00 percent soluble sulfate by weight, indicating negligible potential for below grade concrete degradation due to sulfate attack.

<u>Soil Type 3</u> is very sandy claystone to very sandy siltstone (CL, ML). The claystone/siltstone was encountered in Test Borings 1 and 4 at a depth of 9 to 25 feet bgs and extending to the termination of the borings (20 to 30 feet). Standard Penetration Testing conducted on the bedrock resulted in N-values of greater than 50 blows per foot (bpf), indicating the bedrock is hard in terms of consistency. Moisture content and grain size testing resulted in moisture contents of 10 to 22 percent with approximately 52 and 59 percent of the soil size particles passing the No. 200 sieve. Atterberg limit testing on the siltstone resulted in a liquid limit no value and a plastic index of non-plastic. Swell/Consolidation Testing on samples of the claystone/siltstone resulted in volume changes of 0.0 to 0.1 percent, indicating a low potential for expansion/consolidation. Sulfate testing on the sandstone resulted in 0.00 percent soluble sulfate by weight, indicating negligible potential for below grade concrete degradation due to sulfate attack.

Additional descriptions and engineering properties of the soil encountered during drilling are included on the boring logs. Laboratory Testing Results are summarized on Table 1 and presented in Appendix B. It should be understood that the soil descriptions reported on the boring logs may vary between boring locations and sampling depths. Similarly, the lines of

4

stratigraphic separation shown on the boring logs represent approximate boundaries between soil types and the actual transitions between types may be more gradual or variable.

4.2 Groundwater

Groundwater was encountered at depths of 1 foot during and subsequent to drilling. Groundwater will affect development of significant foundation excavations or during installation of deep utilities depending on the final grading plans. Creek flow will vary due to rainfall, drainage, and other factors not readily apparent at this time. It should be noted that groundwater levels, observed at the time of the subsurface investigation, could change due to seasonal variations, changes in land runoff characteristics and future development including nearby areas.

5.0 GEOTECHNICAL EVALUATION AND RECOMMENDATIONS

The following discussion is based on the subsurface conditions encountered in the borings drilled in the creek bed near the planned bridge. If subsurface conditions different from those described herein are encountered during construction or if the project elements change from those described, Entech Engineering, Inc. should be notified so that the evaluation and recommendations presented can be reviewed and revised if necessary.

The site will be developed by constructing a vehicle traffic bridge over Sand Creek and associated site improvements on Sterling Ranch Road. The proposed bridge is expected to utilize shallow spread footings.

Subsurface soil conditions encountered in the test borings drilled for the planned bridge structure consisted of fine to coarse grained to well graded sand overlying silty to slightly silty sandstone and very sandy claystone and siltstone. Bedrock was encountered at depths of 2 to 9 feet in the test borings. The surficial sands were encountered at loose to medium dense states. The underlying sandstone was encountered in very dense states, and the underlying claystone/siltstone were encountered at hard consistencies.

5.1 Foundation Recommendations

The main purpose of the subsurface investigation was to gather soil and bedrock information for the proposed bridge abutments for use in providing foundation recommendations and design values. Recommendations for bridge supports using shallow spread footings and parameters for retaining walls are provided.

5.1.1 Shallow Foundation Parameters

Structures associated with the bridges can be supported with shallow foundations resting on the native sands, recompacted loose sands, or sandstone. It should be noted that due to potential shallow groundwater on this site (due to the proximity to Sand Creek), extensive subgrade improvements are anticipated to support shallow foundations. The foundation members should bear on the native site sands, sandstone, or granular soils compacted according to the "Structural Fill" paragraph. Any topsoil must be removed and the existing subgrade cleared of any debris to expose suitable native soils prior to fill placement. Loose soils or uncontrolled fill material beneath foundation components will require removal and recompaction. Any expansive soils encountered beneath the foundation will require removal and replacement with non-expansive structural fill compacted according to the "Structural Fill" paragraph. Any new fill should be placed to the requirements of the "Structural Fill" paragraph. On-site granular sands may be used as structural fill as approved by Entech. Any import material should be approved by Entech prior to hauling to the site.

Provided the above recommendations are followed, a maximum ultimate bearing pressure (LRFD) of 4000 psf is recommended for the native sands. For recompacted sands or imported granular structural fill, a maximum ultimate bearing pressure of 5000 psf is recommended. A maximum ultimate bearing capacity of 5800 psf is recommended for undisturbed sandstone. For footings bearing a minimum of 5 feet below adjacent grades on undisturbed sandstone, a maximum ultimate bearing capacity of 14,500psf is recommended. A resisting factor of 0.45 is recommended for the sand and structural fill referenced above and 0.6 is recommended for the above referenced bedrock (sandstone) soils. Additional bearing capacity information, including allowable stress design recommendations (ASD) can be found in Table 2.

Footings should extend a minimum of 30 inches below the adjacent exterior surface grade for frost protection. Following the above foundation subgrade preparation recommendations, and adhering to the recommended maximum allowable bearing pressure, it is expected to result in foundation designs which should limit total and differential vertical movements.

Foundation excavations are recommended to extend at least 3 feet horizontally beyond the foundation limits in order to provide adequate space for installation of drain materials (if necessary) and placement of controlled fill. All foundation excavation side slopes should be inclined at angles of $1^{1}/_{2}$ horizontal to 1 vertical or flatter, as necessary, to provide for excavation sidewall stability during construction or as required by OSHA regulations.

Entech should observe overexcavated subgrades as well as the overall foundation excavation subgrade and evaluate if the exposed conditions are consistent with those described in this report. Entech should also provide recommendations for overexcavation depth and other subgrade improvements, if necessary, and the need for drain systems and stabilization methods based on the excavation conditions observed at that time.

5.1.2 Retaining Wall Parameters

The following values are recommended for use in designing retaining walls with unbalanced lateral loading that may be associated with this project. Roadway/Vehicle surcharge loading is required for wall design.

Recommended Design Values – Lateral Loading	
Equivalent fluid density for lateral earth pressure (active), pcf	45
(site granular soils)	
Equivalent fluid density for lateral earth pressure (passive), pcf	300
Equivalent fluid density for lateral earth pressure (at rest), pcf	60
Soil density (compacted sand), pcf	125
Angle of Internal Friction (loose silty sand and sandy clay-silt)	26°
Angle of Internal Friction (compacted silty sand)	34°
Coefficient of sliding between concrete and silty gravelly sand	0.35
Bearing capacity of sand (ultimate), psf	4000 psf

Subsurface Soil Investigation - Revised Sterling Ranch Bridges Sterling Ranch Road over Sand Creek El Paso County, Colorado Job No. 200045

Bearing capacity of sandstone (ultimate), psf	5800 psf
Resisting Factor (Sand)	0.45
Resisting Factor (Sandstone)	0.60

*Note: The above lateral loading design values are for level back slope angles and no surcharge loads. If wall backfill is submerged, water pressures must be taken into account as additional wall loading. If backfill slope angles are greater than zero degrees, or if the backfill is surcharged, the design values must be adjusted to account for additional lateral loading.

5.2 Site Seismic Classification

Based on the subsurface conditions encountered at the site and in accordance with Section 1613 of the 2015 International Building Code (IBC), the site meets the conditions of a Site Class C.

5.3 Surface and Subsurface Drainage

Positive surface drainage must be maintained around structures to minimize infiltration of surface water. A minimum gradient of 5 percent in the first 10 feet adjacent to foundation components is recommended. A minimum gradient of 2 percent is recommended for paved areas. All grades should be directed away from structures.

To help minimize infiltration of water into foundation zones, vegetative plantings placed close to foundation components should be limited to those species having low watering requirements and irrigated grass should not be located within 5 feet of foundation components. Similarly, sprinklers are not recommended to discharge water within 5 feet of foundation components. Irrigation near foundations should be limited to the minimum amount sufficient to maintain vegetation. Application of more irrigation water than necessary can increase the potential for foundation movement.

5.4 Concrete

Soluble sulfate testing was conducted on three samples of the site soils to evaluate the potential for sulfate attack on concrete placed below the surface grade. The test results indicated 0.00

8

percent soluble sulfate by weight for the site soils. The test results indicate the sulfate component of the in-place site soils present a negligible exposure threat to concrete placed below grade that comes into contact with the site soils.

Type II cement is recommended for concrete at this site. To further avoid concrete degradation during construction it is recommended that concrete not be placed on frozen or wet ground. Care should be taken to prevent the accumulation or ponding of water in foundation excavations prior to the placement of concrete. If standing water is present in the foundation excavations, it should be removed by ditching to sumps and pumping the water away from the foundation area prior to concrete placement. If concrete is placed during periods of cold temperatures, the concrete must be kept from freezing. This may require covering the concrete with insulated blankets and adding heat to prohibit freezing.

5.5 Foundation Excavation Observations

Subgrade preparation for bridge foundations and associated improvements should be observed by Entech Engineering prior to construction of the foundation elements in order to verify that (1) no anomalies are present, (2) materials of the proper bearing capacity have been encountered or placed, and (3) no soft, loose, uncontrolled fill material, expansive soil or debris are present in the foundation area prior to concrete placement or backfilling. Pile driving should be observed to verify proper embedment or refusal. Piles should be driven 10 feet into bedrock or refusal. Entech should make final recommendations for over-excavation or stabilization, if required, at the time of excavation observation, if necessary.

5.6 Structural Fill

Areas to receive fill should have all topsoil, organic material or debris removed. Fill must be properly benched. The surface should be scarified and moisture conditioned to within ±2 percent of its optimum moisture content and compacted to 95 percent of its maximum Modified Proctor Dry Density (ASTM D-1557) beneath footings or floor slabs prior to placing new fill. New fill beneath footings should be non-expansive and be placed in thin lifts not to exceed 6 inches after compaction while maintaining at least 95 percent of its maximum Modified Proctor Dry Density (ASTM D-1557). These materials should be placed at a moisture content

conducive to compaction, usually ±2 percent of Proctor optimum moisture content. The placement and compaction of fill should be observed and tested by Entech Engineering, Inc. Imported soils should be approved by Entech Engineering, Inc. prior to being hauled to the site and on-site granular soils prior to placement.

Compacted, non-expansive granular soil, free of organics, debris and cobbles greater than 3inches in diameter, is recommended for filling foundation components. All fill placed within the foundation areas should be non-expansive and be compacted to a minimum of 95 percent of the soils maximum dry density as determined by the Modified Proctor Test (ASTM D-1557). Fill material placed beneath floor slabs should be compacted to a minimum of 95 percent of its maximum Modified Proctor Dry Density, ASTM D-1557. Fill material should be placed in horizontal lifts such that each finished lift has a compacted thickness of six inches or less. Fill should be placed at water contents conducive to achieving adequate compaction, usually within ±2 percent of the optimum water content as determined by ASTM D-1557. Mechanical methods can be used for placement and compaction of fill; however, heavy equipment should be kept at distance from foundation walls and below slab infrastructure to avoid overstressing. No water flooding techniques of any type should be used for compaction or placement of foundation or floor slab fill material.

5.7 Utility Trench Backfill

Fill placed in utility trenches should be compacted to a minimum of 95 percent of its maximum dry density as determined by the Standard Proctor Test (ASTM D-698) for cohesive soils and 95 percent as determined by the Modified Proctor Test (ASTM D-1557) for cohesionless soils. Fill should be placed in horizontal lifts having a compacted thickness of six inches or less and at a water content conducive to adequate compaction, within ±2 percent of the optimum water content. Mechanical methods should be used for fill placement; however, heavy equipment should be kept at a distance from foundation walls. No water flooding techniques of any type should be used for compaction or placement of utility trench fill.

Trench backfill placement should be performed in accordance with El Paso County specifications. All excavation and excavation shoring/bracing should be performed in accordance with OSHA guidelines.

5.8 General Backfill

Any areas to receive fill outside the foundation limits should have all topsoil, organic material, and debris removed. Fill must be properly benched into existing slopes in order to be adequately compacted. The fill receiving surface should be scarified to a depth of 12-inches and moisture conditioned to ± 2 percent of the optimum water content, and compacted to a minimum of 95 percent of the ASTM D-1557 maximum dry density before the addition of new fill. Fill should be placed in thin lifts not to exceed 6 inches in thickness after compaction while maintaining at least 95 percent of the ASTM D-1557 maximum dry density. Fill material should be free of vegetation and other unsuitable material and shall not contain rocks or fragments greater than 3-inches. Topsoil and strippings should be segregated from all other fill sources on the site. Fill placement and compaction beneath and around foundations, in utility trenches, beneath roadways or other structural features of the project should be observed and tested by Entech during construction.

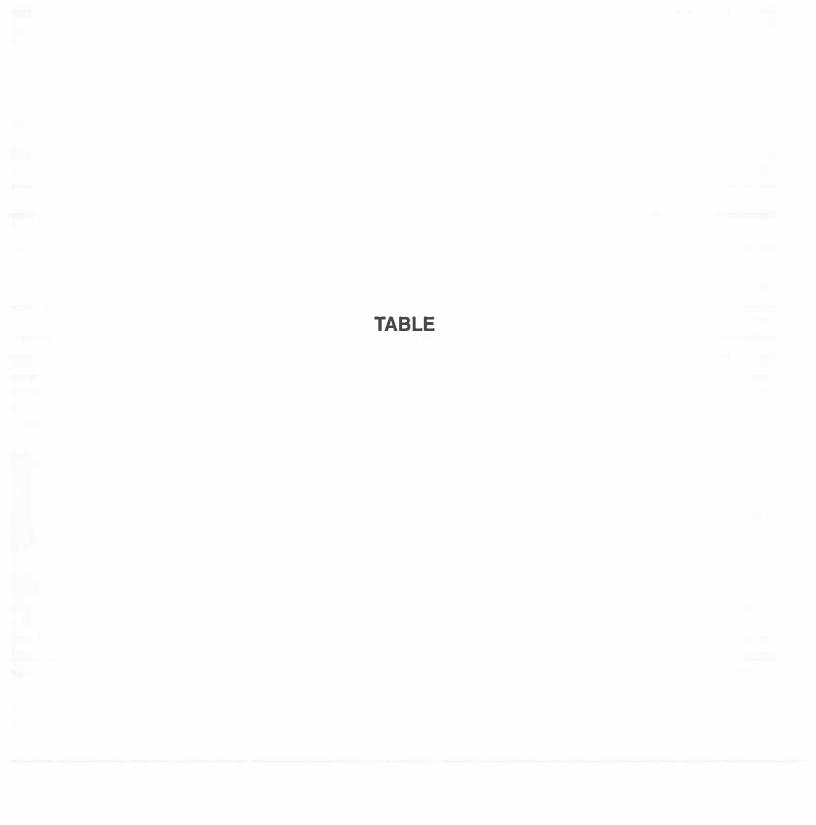
5.9 Excavation Stability

Excavation sidewalls must be properly sloped, benched and/or otherwise supported in order to maintain stable conditions. All excavation openings and work completed therein shall conform to OSHA Standards as put forward in CFR 29, Part 1926.650-652, (Subpart P).

5.10 Winter Construction

In the event construction of the planned facility occurs during winter, foundations and subgrades should be protected from freezing conditions. Concrete should not be placed on frozen soil and once concrete has been placed, it should not be allowed to freeze. Similarly, once exposed, the foundation subgrade should not be allowed to freeze. During site grading and subgrade preparation, care should be taken to eliminate burial of snow, ice or frozen material within the planned construction area.

5.11 Construction Observations


It is recommended that Entech observe and document the following activities during construction of the building foundations.

- Excavated subgrades and subgrade preparation.
- Placement of drains (if installed).
- Placement/compaction of fill material for the foundation components and retaining walls.
- Placement/compaction of utility bedding and trench backfill.

6.0 CLOSURE

The subsurface investigation, geotechnical evaluation and recommendations presented in this report are intended for use of C&C Land with application to the proposed bridge over Sand Creek at Sterling Ranch Road and the associated site improvements, in El Paso County northeast of Colorado Springs, Colorado. In conducting the subsurface investigation, laboratory testing, engineering evaluation and reporting, Entech Engineering, Inc. endeavored to work in accordance with generally accepted professional geotechnical and geologic practices and principles consistent with the level of care and skill ordinarily exercised by members of the geotechnical profession currently practicing in same locality and under similar conditions. No other warranty, expressed or implied is made. During final design and/or construction, if conditions are encountered which appear different from those described in this report, Entech Engineering, Inc. requests that it be notified so that the evaluation and recommendations presented herein can be reviewed and modified as appropriate.

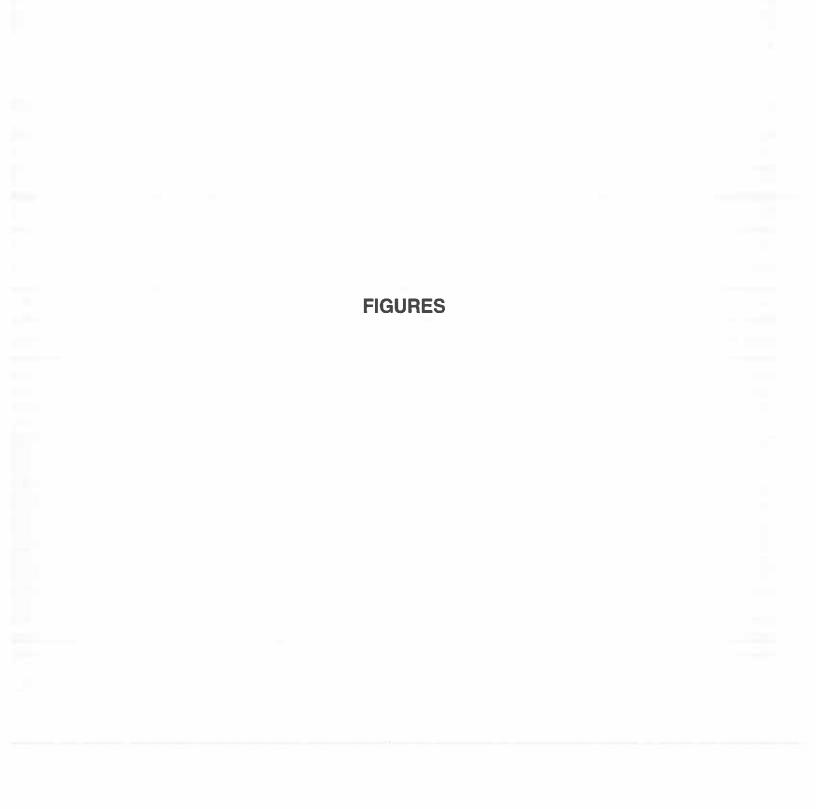
If there are any questions regarding the information provided herein or if Entech Engineering, Inc. can be of further assistance, please do not hesitate to contact us.

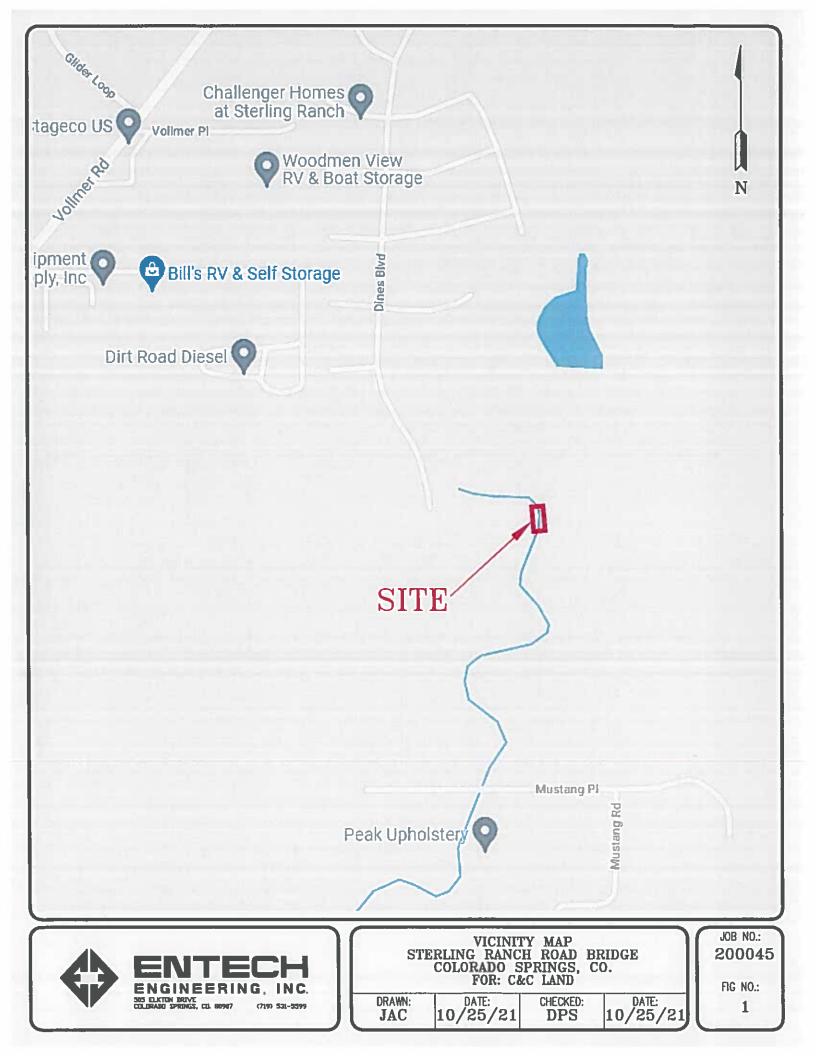
TABLE 1

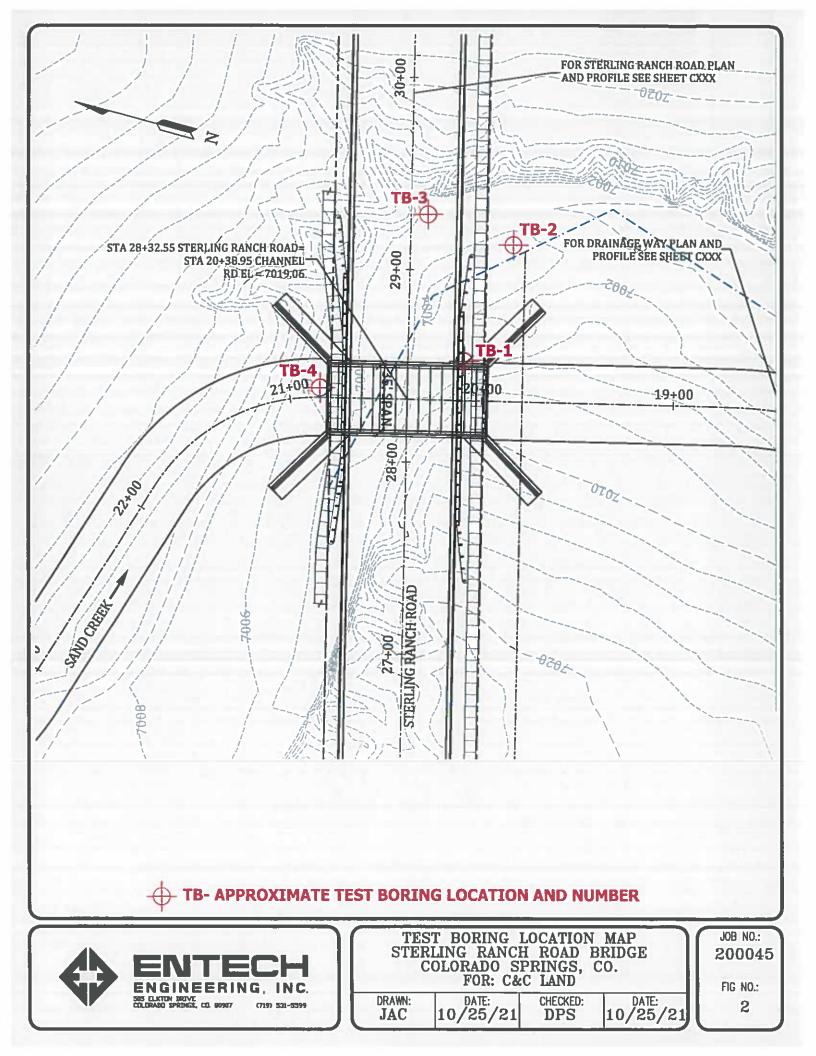
SUMMARY OF LABORATORY TEST RESULTS

C&C LIENT C&C LAND <u>PROJECT</u> STERLING RANCH BRIDGES <u>JOB NO.</u> 200045

SOIL DESCRIPTION	SAND, SLIGHTLY SILTY	SAND, SLIGHTLY SILTY	SAND =	SANDSTONE, SLIGHTLY SILTY	CLAYSTONE, VERY SANDY	SILTSTONE, VERY SANDY
UNIFIED CLASSIFICATION	SM-SW	SM-SW	SW	WS-WS	CL	ML
(%) SWELL/ CONSOL	1			-	0.1	0.0
FHA SWELL (PSF)						
SULFATE (WT %)	0.00			0.00		0.00
PLASTIC INDEX (%)	NP			NP		NP
LIQUID LIMIT (%)	N			N		NV
PASSING NO. 200 SIEVE (%)	10.0	7.5	4.5	6.6	59.0	51.9
DRY DENSITY (PCF)		-			114.3	113.5
DEPTH WATER (FT) (%)					16.1	14.4
	'n	9	2-3	20	15	8
TEST BORING NO.	-	2	4	0	4	-
SOIL	-	-	-	0	n	e

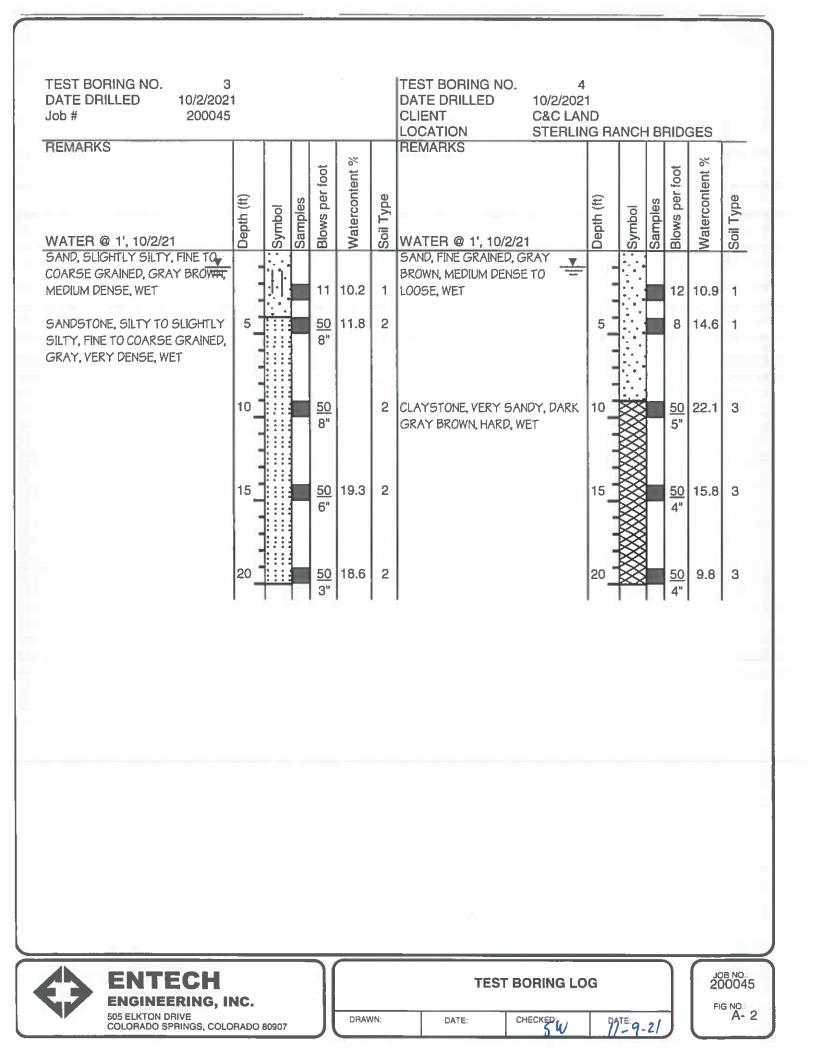

TABLE 2


CLIENT PROJECT JOB NO.


BEARING CAPACITY C & C Land Sterling Ranch Road Over Sand Creek 200045

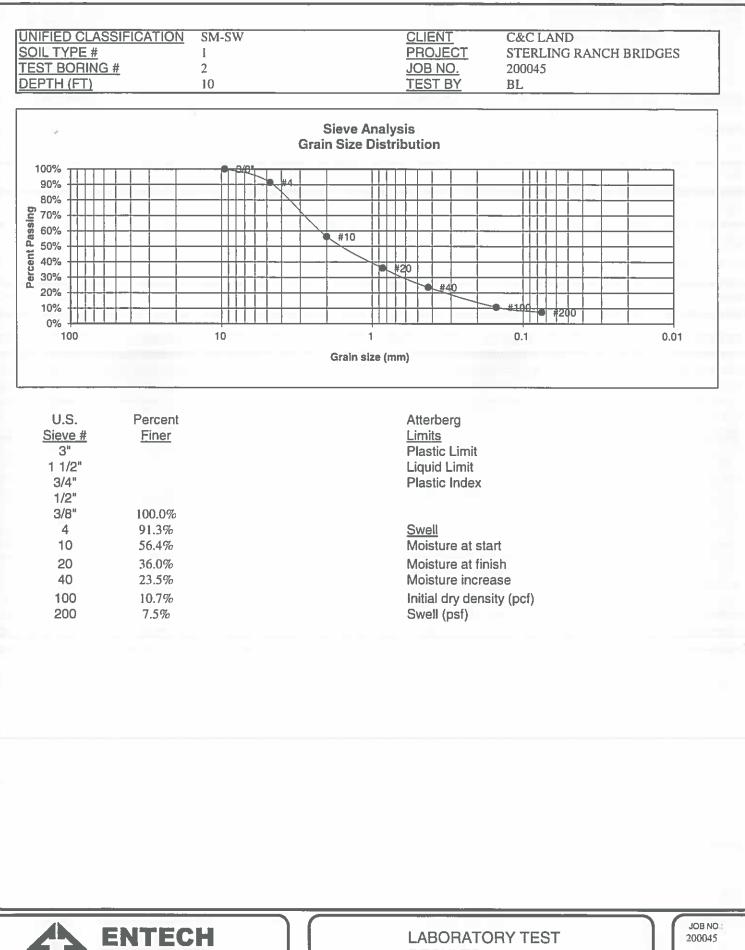
		Ď	Design Methodology	
		ASD	LRFD	D:
Soil Type	Minimum Embedment	Allowable Bearing	Ultimate Bearing Resisting Factor	Resisting Factor
	(from adjacent	(psf)	(psf)	
	slab/grade)			
Sand (Native)	3 feet	2400	4000	0.45
Structural Fill 3 feet	3 feet	3000	2000	0.45
Sandstone	3 feet	3500	2800	9.0
Sandstone*	5 feet	8500	14,500	0.6
	-	-		

*Foundation component must bear on undisturbed sandstone



APPENDIX A: Test Boring Logs

TEST BORING NO. 1 DATE DRILLED 10/2/2021 Job # 200045		······				D. Cl	ATE DRI LIENT DCATIOI	N	10 C(2 /2/202 &C LAN TERLIN	1 ND	NCH	1 BF		GES	
REMARKS WATER @ 1', 10/2/21	Depth (ft)	Symbol	Samples	Materrontent %	Coil Tuno	Soli 1 ype	EMARKS	2 1', 10/2	2/21		Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	- Soil Type
SAND, SLIGHTLY SILTY, FINE TO COARSE GRAINED, GRAY BROWA, MEDIUM DENSE, WET SANDSTONE, SLIGHTLY SILTY,	5			1 13		1 5, W 2 F1	ND, SILT NDSTON TH THIN S NE TO CO/	E, SLIGH DILTSTON ARSE GR	IE INTER	BEDS,	5			50 <u>50</u>	5.2 20.5	1 2 2
FINE TO COARSE GRAINED, GRAY, VERY DENSE, WET	10			<u>i0</u> 13	.8 2	2	RY DENS	e, wet			10			6" <u>50</u> 8"	14.9	2
	15		5	<u>;0</u> 5"	.0	2					15 -			50 7"	9.7	2
	20 20		5	<u>;0</u> 8. 7"	8 2	2					20			<u>50</u> 6"	11.6	2
SILTSTONE, VERY SANDY, GRAY BROWN, HARD, MOIST	25															
	30		5	<u>i0</u> 12	.3	3										
												_				_


APPENDIX B: Laboratory Testing Results

UNIFIED CLAS SOIL TYPE <u>#</u> TEST BORING DEPTH (FT)		SM-SW I I 5	PRO	ENT DJECT 3 NO. 5T BY	C&C LAND STERLING RANCH BR 200045 BL	IDGES
			Sieve Analysis Grain Size Distributio	on		
100% 90% 80% 50% 50% 20% 10% 10% 100		10	1 Grain size (mm)	#40		0.01
U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2"	Percent <u>Finer</u> 100.0%		<u>Lim</u> Plas Liqu	erberg its stic Limit uid Limit stic Index	NP NV NP	
3/8" 4 10 20 40 100	97.8% 92.3% 61.0% 40.1% 26.5% 13.2%		Moi Moi	<u>ell</u> sture at sta sture at fin sture incre al dry dens	ish ease	

ENTECH ENGINEERING, INC. 505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

JOB NO 200045
FIG NO

DATE 18-21

505 ELKTON DRIVE	SINEERING, INC.
	KTON DRIVE RADO SPRINGS, COLORADO 80907

	LABOR RESUL	ATORY TEST
DRAWN:	DATE	

ſ	JOB NO : 200045
	FIG NO

date: /0-**(8-2**1

NIFIED CLASS DIL TYPE # EST BORING EPTH (FT)	SIFICATION #	SW 1 4 2-3	<u>CLIENT</u> <u>PROJEC</u> <u>JOB NO.</u> <u>TEST BY</u>	200045	HBRIDGES
W		Gr	Sieve Analysis ain Size Distribution		-
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%		10	#10 #10 1 Grain size (mm)		0.01
U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2" 3/8" 4 10 20 40	Percent <u>Finer</u> 100.0% 79.2% 54.5% 32.2% 17.2% 6.4%		Atterberg <u>Limits</u> Plastic Lin Liquid Lin Plastic In Moistic In Moisture Moisture Initial dry	mit nit dex at start at finish	

ITECH		LABOR	ATORY TEST			B NO.: 0045
SINEERING, INC.		RESUL	TS		FIG	NO.
KTON DRIVE RADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED:	DATE (0-18-2)	B	-3

\bigcirc	•

EN ENGH 505 ELKT

IL TYPE # ST BORING PTH (FT)	<u>#</u>	SM-SW 2 3 20	JOB	ENT DJECT 3 NO. 3T BY	C&C LAND STERLING RANCH I 200045 BL	3RIDGES
		(Sieve Analysis Grain Size Distributio	on		
100% 90% 80% 70% 60% 50% 40% 20% 10% 0% 100			#10 #10 #20 1 Grain size (mm)		-#100 0.1	0.01
U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2"	Percent <u>Finer</u>		<u>Limi</u> Plas Liqu	erberg i <u>ts</u> stic Limit uid Limit stic Index	NP NV NP	
3/8" 4 10 20 40	100.0% 98.6% 66.1% 41.0% 29.8% 14.4%		Moi: Moi:	<u>ell</u> sture at sta sture at finis sture increa al dry densi	sh ase	

	ENTECH ENGINEERING, INC. 505 ELKTON DRIVE COLORADO SPENSES COLORADO 80907
	COLORADO SPRINGS, COLORADO 80907

r	LABOR RESUL	ATORY TEST TS		
DRAWN	DATE	CHECKED;	DATE: 10-18-21	

JOB NO.: 200045	
FIG NO	

NIFIED CLAS DIL TYPE # EST BORING EPTH (FT)	SSIFICATION	CL 3 4 15	Ciava An	CLIENT PROJECT JOB NO. TEST BY	C&C LAND STERLING RANCH 1 200045 BL	BRIDGES
100% 90% 80% 70% 60% 40% 20% 10% 10% 100 U.S. <u>Sieve #</u> 3" 1 1/2"	Percent	10	Sieve Ana Grain Size Dis	stribution	0.1	0.01
3/4" 1/2" 3/8" 4 10 20 40 100 200	100.0% 99.7% 97.3% 91.9% 83.0% 68.3% 59.0%			Plastic Index <u>Swell</u> Moisture at st Moisture at fir Moisture increa Initial dry dens Swell (psf)	nish ease	
	ENTEC			LABORATO	OBY TEST	JOB N 20004

11

ENGINEERING, INC.

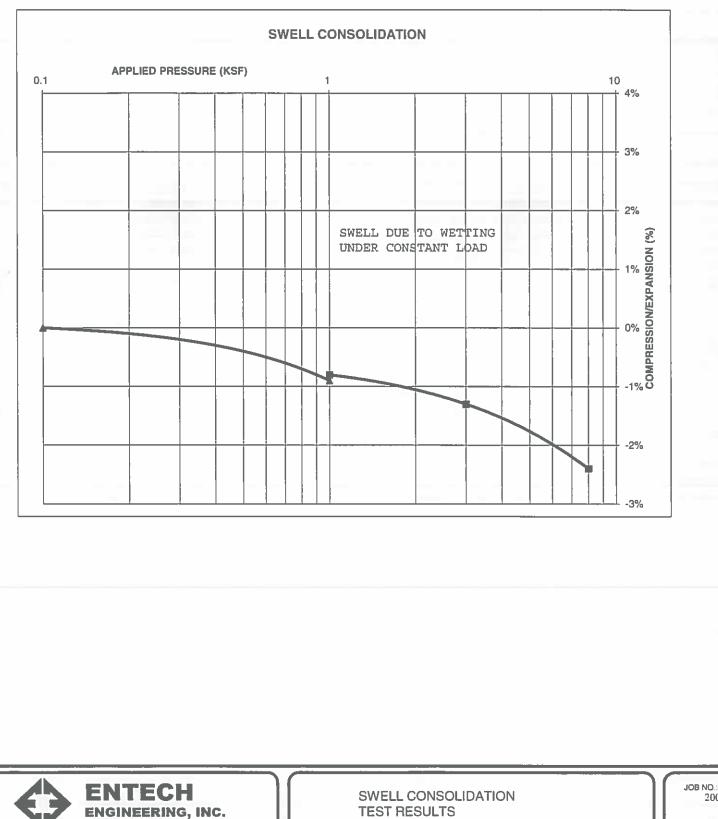
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

LABORATORY TEST RESULTS					
DRAWN:	DATE:	CHECKED:	98-18.21		
		1			

FIGNO: B-5

IFIED CLASS IL TYPE # ST BORING : PTH (FT)	<u><u></u></u>	ML CLIENT C&C LAND B PROJECT STERLING RANCH BRIDGES JOB NO. 200045 B0 TEST BY
		Sieve Analysis Grain Size Distribution
100% 90% 80% 70% 60% 50% 40% 30% 10% 100		10 1 0.1 0.01 Grain size (mm)
U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit NP Liquid Limit NV Plastic Index NP
3/8" 4 10	100.0% 96.2% 91.0%	<u>Swell</u> Moisture at start
20 40	87.6% 84.2%	Moisture at finish Moisture increase
100	64.7% 51.9%	Initial dry density (pcf) Swell (psf)

U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2"	Percent <u>Finer</u>	Atterberg <u>Limits</u> Plastic Limit NP Liquid Limit NV Plastic Index NP
3/8"	100.0%	
4	96.2%	Swell
10	91.0%	Moisture at start
20	87.6%	Moisture at finish
40	84.2%	Moisture increase
100	64.7%	Initial dry density (pcf)
200	51.9%	Swell (psf)


ENTECH ENGINEERING, INC.		LABOF	ATORY TEST		JOB NO.: 200045 FIG NO :
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN	DATE	CHECKED:	DATE: 10-18-21	B-6

CONSOLIDATION TEST RESULTS

TEST BORING #	4	DEPTH(ft)	15
DESCRIPTION	CL	SOIL TYPE	3
NATURAL UNIT DRY	WEIG	HT (PCF)	114
NATURAL MOISTUR	E CON	TENT	16.1%
SWELL/CONSOLIDA	TION (%)	0.1%

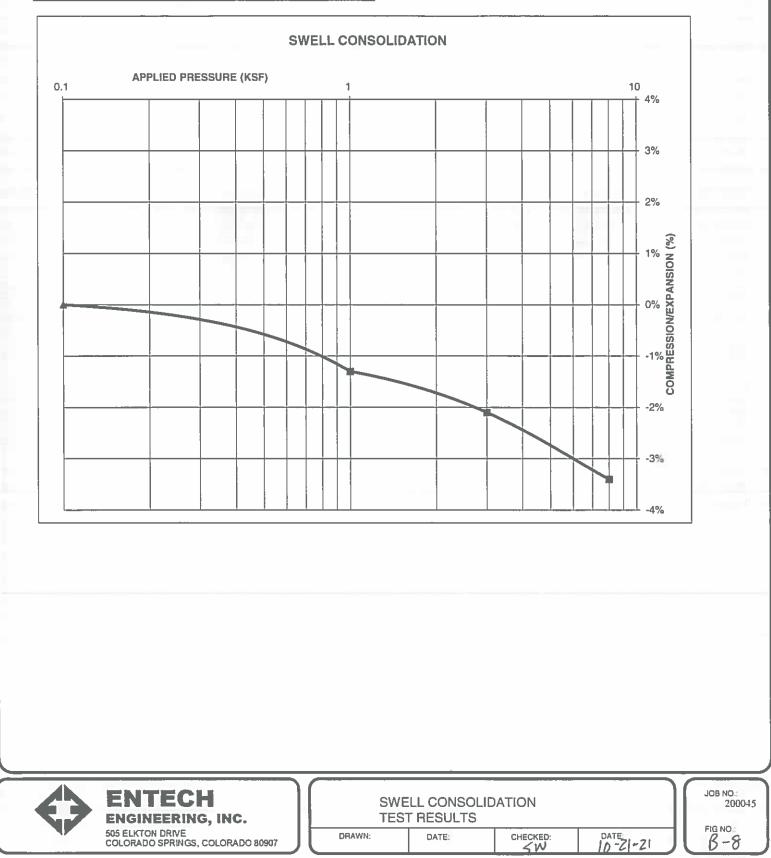
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

JOB NO.200045CLIENTC&C LANDPROJECTSTERLING RANCH BRIDGES

DRAWN:

DATE:

200045 FIG NO.: B-7


CHECKED:

10-18-21

CONSOLIDATION TEST RESULTS

TEST BORING #	1	DEPTH(ft)	30
DESCRIPTION	ML	SOIL TYPE	3
NATURAL UNIT DRY	113		
NATURAL MOISTUR	14.4%		
SWELL/CONSOLIDA			0.0%

JOB NO.200045CLIENTC&C LANDPROJECTSTERLING RANCH BRIDGES

CLIENT	C&C LAND	JOB NO.	200045
PROJECT	STERLING RANCH BRIDGES	DATE	10/13/2021
LOCATION	STERLING RANCH BRIDGES	TEST BY	BL

BORING NUMBER	DEPTH, (ft)	SOIL TYPE NUMBER	UNIFIED CLASSIFICATION	WATER SOLUBLE SULFATE, (wt%)
TB-1	5	1	SM-SW	0.00
TB-1	30	3	ML	0.00
TB-3	20	2	SM-SW	0.00
			1.0	

OC BLANK PASS

		JOB NO.: 200045		
DRAWN:	DATE:	CHECKED	10-18-21	B-9