FINAL DRAINAGE REPORT FOR LATIGO TRAILS FILING NO. 9 AND ADDENDUM TO MASTER DEVELOPMENT/ PRELIMINARY DRAINAGE PLAN FOR LATIGO TRAILS, EL PASO COUNTY, COLORADO

September 2022

Prepared For:

BRJM, LLC 101 N. Cascade, Suite 200 Colorado Springs CO 80903 (719) 475-7474

Prepared By:

JR ENGINEERING

5475 Tech Center Drive Colorado Springs, CO 80919 (719) 593-2593

Job No. 25175.02

PCD File No.: SF2136

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

REG 0 09/27/22 25043 Bryan T. Law, Colorado P.E. # 25043 Date Π 09/27/22 For and On Behalf of JR Engineering, LLC **DEVELOPER'S STATEMENT:**

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:

BRJM, LLC

By:

Title: Address:

Robert C. Irwin	
Manager	
17 S. Wahsatch Ave.	
Colorado Springs CO 80903	

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

Joshua Palmer, P.E. County Engineer/ ECM Administrator

.

Date

Conditions:

CONTENTS

PURPOSE	1
GENERAL LOCATION AND DESCRIPTION	1
LOCATION Description of Property Floodplain Statement	1
MAJOR DRAINAGE BASINS AND SUBBASINS	2
Major Basin Descriptions Addendum to Master Development/ Preliminary Drainage Plan Proposed Sub-basin Drainage	2
DRAINAGE DESIGN CRITERIA	13
DEVELOPMENT CRITERIA REFERENCE Hydrologic Criteria Hydraulic Criteria	13
DRAINAGE FACILITY DESIGN	14
GENERAL CONCEPT SPECIFIC DETAILS Four Step Process to Minimize Adverse Impacts of Urbanization Water Quality Erosion Control Plan Operation & Maintenance	
Drainage and Bridge Fees Construction Cost Opinion	
SUMMARY	
REFERENCES:	21

APPENDICES

- A. Figures and Exhibits
- B. Hydrologic CalculationsC. Hydraulic Calculations
- D. Detention and Water Quality Calculations
- E. Reference Materials
- F. Drainage Maps

Purpose

The purpose of this report is to serve as the Final Drainage Report for Latigo Trails Filing 9 known as the "site" from herein, and to amend the "Master Development/Preliminary Drainage Plan for Latigo Trails" (MDDP) by URS, dated October 2001. The proposed Latigo Trails Development that this report covers, known herein as the "proposed development" consists of five filings (9-13). Filing 9 will be discussed further in this report.

This drainage study identifies and analyzes the proposed drainage patterns, determines proposed runoff quantities, sizes drainage facilities, presents solutions to on and off-site drainage impacts resulting from this development, and safely routes developed storm water runoff to the appropriate outfall facilities as delineated in previous reports.

GENERAL LOCATION AND DESCRIPTION

Location

The Latigo Trails proposed development is located within Sections 8, 9, 16, & 17, Township 12 South, Range 64 West of the 6th Principal Meridian, El Paso County, Colorado. The site is bound by Future Latigo Trails Filing 12 to the East, The Trails Filing 2-B and The Trails Filing 7-A and 7-C to the North, The West line of Section 17, Township 12 South, Range 64 West of the Sixth Principal Meridian to the West, and by the Meridian Ranch development to the south. A vicinity map is presented in Appendix A.

Description of Property

The Latigo Trails proposed development contains approximately 599 acres and will be comprised of 176, 2.5 acre lots or larger. Filing 9 consists of 39 of the lots and is 106.6 acres. The site is currently unoccupied and undeveloped. The existing ground cover is sparse vegetation and open space, typical of a Colorado rolling range land condition. It should be noted that Filings 2, 7, and 8 are currently developed, and therefore, this report covers the undeveloped portions, including Filings 9 – 13. Previously developed areas part of the 2001 MDDP for Latigo Trails by URS, will remain unchanged and as is.

Approximately 305 acres will drain to the Gieck Ranch basin. In general the Gieck Ranch basin flows form northwest to southeast across the proposed development.

Filing 9 known as "the site" from herein is comprised of 39 lots. The site is bound by The Trails Filing No. 2-B to the north, single family residences to the west, and by future Latigo Trails Filing No. 12 to the east.

Per a NRCS web soil survey of the area, the site is made up of B soils. Type B soils are typically moderately deep to deep and moderately well drained to well drained soils that have a moderate infiltration when thoroughly wet. A NRCS soil survey map has been presented in Appendix A.

Floodplain Statement

Based on the FEMA FIRM Map numbers 08041C0339G and 0841C0552G, both dated December 7, 2018, the site lies Zone X. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. All proposed development within the site will occur in Zone X.

MAJOR DRAINAGE BASINS AND SUB-BASINS

Addendum to Master Development/ Preliminary Drainage Plan

For Trails Filing 9, the MDDP will be amended as follows:

- a. Portions of Filing 9 will drain to the existing South Pond. The existing pond, outlet structure, and spillway crest will be revised and the pond designed per 2021 El Paso County Drainage Criteria.
- b. The potential detention areas shown in the MDDP are eliminated and instead developed flows will be conveyed south by a system of swales, and culverts to the two full-spectrum EDBs: the existing South Pond and the proposed G1 pond. The eliminated potential detention areas are shown in Appendix E within the excerpt of the "Master Development/Preliminary Drainage Plan Latigo Trails" by URS, dated October 4, 2001. The eliminated detention areas (labeled with a red X) in general follow the proposed Conestoga Trail South from west to east. More specifically, thesse areas are: north of design point V4c, near design point V18a, near design point V18b, north of design point V21, and north of design point V24.
- c. Proposed Pond G1 has been sized and designed to meet 2021 El Paso County Drainage Criteria. Pond G19 will be evaluated with the development of future Filings (10-12) and the MDDP shall be amended as needed.

Major Basin Descriptions

The site lies within the Gieck Ranch Drainage Basin. A Master Development Drainage Plan (MDDP) has been approved for Latigo Trails and is titled "Master Development/Preliminary Drainage Plan for Latigo Trails", by URS, dated October 2001; it is referenced and used as a Master Plan for the project. The "Final Drainage Report Addendum No. 1 for The Trails Filing No. 7 Subdivision," by URS, dated February 2007, and the "Final Drainage Report for the Trails Filing No. 8 and Addendum to Mater Development/Preliminary Drainage Plan for Latigo Trails", by JR Engineering, dated January, 3 2007 are also referenced for this report. Excerpts of referenced reports can be found in Appendix E.

Existing South Pond-Ultimate

The existing South Pond was built with the Trails Filing 7 as described in the "Final Drainage Report Addendum No. 1 for The Trails Filing No. 7 Subdivision" (PCD No.: SF-04-005). This Filing 9 report proposes to modify the existing South Pond to provide water quality and detention for the

existing off-site drainage areas tributary to the existing South Pond and the proposed Filing 9 site development. The existing and proposed conditions were re-analyzed using the Rational Method for the development of Filing 9. The pond was also re-analyzed to provide water quality and detention per the full-spectrum design methodology to include the future developed areas of Filing No. 12, which will be the ultimate condition. The ultimate condition refers to the future where the Filing 12 area is developed and contributes additional flows to the South Pond. It was assumed that Filing 12 would also be large single-family lots, in concurrence with the surrounding developments. The ultimate condition analysis determined that 42.3 acres of on-site developed flow and 194.8 acres of off-site developed flows contribute to the pond with 15.1% impervious for flows of 98 and 357 cfs for the 5- and 100-year storm events, respectively. It is anticipated that a storage volume of 10.7 ac.ft. will be needed for the ultimate condition. From the approved Filing 7 report, it was determined that the maximum storage volume of the existing South Pond is 7.8 Ac-ft. The pond will be modified with the construction of Filing 9 to support the additional Filing 9 flows, see the Water Quality section for detailed design. Filing 9 modifications will increase the pond's volume to the anticipated ultimate volume required. The ultimate condition information is shown for information only, and upon future development of Filing 12, the South Pond will need to be re-analyzed to determine what additional modifications are needed.

Pond G1

The location of deign point G1 in the MDDP has remained consistent in location, as is shown in Appendix E called out within an excerpt of the original MDDP report. The original MDDP developed flows for this design point with an area of 20.3 acres, are 21 cfs and 48 cfs for the 5-year and 100-year storms respectively. This report re-analyzed the conditions for the contributing on-site and off-site basins and calculated a total tributary area of 15.2 acres (13.2 acres on-site, 2.0 acres off-site) with 10 and 35 cfs for the 5- and 100-year storms, respectively. Pond G1 was sized for the development of Filing 9 and designed per current criteria & full-spectrum design methodology based on WQCV, Excess Urban Runoff Volume (EURV), and 100-year detention. Therefore, the release rates will be less than proposed in the MDDP which will be released south into the Meridian Ranch development. Only the proposed development of Filing 9 and one off-site basin contribute flows to Pong G1, and no future Latigo Trails Filing Developments will affect these pond flows. See the Water Quality section for detailed design of the proposed G1 Pond with the development of Filing 9.

Historical Gieck Ranch Drainage Basin

As stated in the approved MDDP report, runoff from the Gieck Ranch Drainage Basin flows to the south and east across the proposed development and drains to small unnamed ephemeral streams flowing onto the Meridian Ranch development to the south and toward Eastonville Road to the east. The approved MDDP proposed that there would be several drainage points from the Gieck Ranch Drainage Basin that discharge to the south: G1, G2, G5, G6, G11a, G11b, G12, G13, G14a, G14b, G15, G17a, G17b, G18, and G19. These roughly totaled a 100-year discharge of 1,256 cfs along the various design points. See the approved reports for the calculated flows at each design point.

Proposed Gieck Ranch Drainage Basin

This report proposes that the Filing 9 drainage system will be compromised of swales, culverts, and detention ponds. The proposed drainage design is in conformance with the approved "Master Development/Preliminary Drainage Plan for Latigo Trails" report as runoff flows split and go either southeast or southwest towards the Meridian Ranch boundary. Though the drainage direction remained the same, the on-site and off-site areas were re-analyzed using the Rational Method as described in the El Paso County Drainage Criteria. The original MDDP potential detention areas were modified and now four full-spectrum ponds within the Gieck Ranch basin are proposed for the ultimate development of Latigo Trails Filing 9-12: G1, G18, G19, and the existing South Pond.

Pond G18 will be built with the development of Filing 9 and fully built in future Filing 12 as described in the "Final Drainage Report for Latigo Trails Filing No. 9 and Addendum to Master Development/ Preliminary Drainage Plan for Latigo Trails", by JR Engineering, dated September 2021. Pond G19 will be built with future Filings 11-12. Pond G1 shall be built with the development of Filing 9, as described in this report. The existing South Pond outlet structure and spillway crest shall be modified with the development of Filing 9, as described in this report. The existing South Pond outlet structure and spillway crest shall be modified with the development of Filing 9, as described in this report. In the approved "Master Development/Preliminary Drainage Plan for Latigo Trails" report, there are several possible detention areas that are proposed along the north-half Conestoga Trail South roadway. This report proposes the use of the proposed G1 pond as well as the existing South Pond instead of those proposed possible detention areas.

Excerpts of referenced approved reports are shown in Appendix E and a map of proposed basins is presented in Appendix F.

LATIGO TRAILS FILING NO. 9 BASINS AND SUB-BASINS

Existing Sub-basin Drainage

The existing basin delineation for Latigo Trials Filing 9 as shown in Appendix F is as follows;

Existing Basin A is approximately 7.27 acres and in the existing condition is comprised of undeveloped land and a dirt road. Historically runoff from this basin flows from north to south to DP1 where the flows enter an existing culvert and flow off-site. The peak flow rate for the basin at DP1 in the 5 and 100-year storm are 2.0 cfs and 14.4 cfs, respectively.

Basin OS1 is approximately 2.00 acres and in its existing condition is comprised of undeveloped areas to the west of our project site. More information about the existing conditions can be found in the approved MDDP or amendments. Flow will follow the historic path overland from both the north and south towards DP2 where it will enter into Existing Basin B and follow the drainage patterns of that basin as described below towards DP4.1. The peak flow rate for the basin at DP2 in the 5 and 100-year storm are 0.6 cfs and 4.1 cfs, respectively.

Basin OS2 is approximately 2.12 acres and in its existing condition is comprised of parts of 2 rural lots developed in Trails Filing 2 and part of the existing Conestoga Trail South roadway. Additionally, there is an existing roadside swale. More information about the existing conditions can be found in the approved MDDP or amendments. The historic drainage path generally flows southeast and eventually flows towards the Meridian Ranch development. Flow will follow the historic path overland towards DP3 where it will enter Existing Basin B and follow the drainage patterns of that basin as described below towards DP4.1. The peak flow rate for basin at DP3 in the 5 and 100-year storm are 2.1 cfs and 6.9 cfs, respectively.

Existing Basin B is approximately 30.17 acres and in its existing condition is comprised of undeveloped land, part of the existing Conestoga Trail South, and a dirt road. Historically runoff from this basin flows from north to south and west to east to DP4. The peak flow rate for the basin at DP4 in the 5 and 100-year storm are 6.5 cfs and 44.2 cfs respectively. Flows are combined at DP4.1 for a total runoff of 8.2 cfs and 51.1 cfs for the 5 and 100-year storm, respectively. The runoff flows into an existing culvert and flows to the south off-site.

Basin OS3 is approximately 51.16 acres and in its existing condition is comprised of parts of 21 rural lots developed in Trails Filing 2, part of the existing Conestoga Trail South, Oregon Wagon Trail, and Purple Mountain Trail roadways. Additionally, there are some existing buildings, existing swales, and culverts that direct flows from the west to east side of Conestoga Trail South. More information about the existing conditions can be found in the approved MDDP or amendments. The historic drainage path generally flows southeast crosses existing culverts that crosses the existing Conestoga Trail South road and eventually flows towards the Meridian Ranch development. Runoff from this basin will flow south overland and enter into Existing Basin C at DP5. The peak flow rate

for the basin at DP5 in the 5 and 100-year storm are 27.6 cfs and 105.5 cfs, respectively. From there they will follow the drainage patterns as described in Existing Basin C towards DP7.1, and eventually flow south off-site through an existing culvert.

Basin OS4 is approximately 3.70 acres and in its existing condition is comprised of parts of 2 rural lots developed in Trails Filing 2 and part of the Purple Mountain Trail roadway. More information about the existing conditions can be found in the approved MDDP or amendments. The historic drainage path generally flows southeast and eventually flows towards the Meridian Ranch development. Runoff from this basin will flow south overland and enter into Existing Basin C at DP6. The peak flow rate for the basin at DP6 in the 5 and 100-year storm are 2.0 cfs and 8.2 cfs, respectively. From there they will follow the drainage patterns as described in Existing Basin C towards DP7.1, and eventually flow south off-site through an existing culvert.

Existing Basin C is approximately 25.25 acres and in its existing condition is comprised of undeveloped land. Historically runoff from this basin flows from northwest to southeast to DP7. The peak flow rate for the basin at DP7 in the 5 and 100-year storm are 5.0 cfs and 36.9 cfs respectively. Flows are combined at DP7.1 for a total runoff of 30.8 cfs and 135.7 cfs for the 5 and 100-year storm, respectively. The runoff flows into an existing culvert and flows to the south off-site.

Basin OS5 is approximately 3.99 acres and in its existing condition is comprised of parts of 4 rural lots developed in Trails Filing 2. More information about the existing conditions can be found in the approved MDDP or amendments. The historic drainage path generally flows southeast and eventually flows towards the Meridian Ranch development. Runoff from this basin will flow south overland and enter into Existing Basin D at DP8. The peak flow rate for the basin at DP8 in the 5 and 100-year storm are 2.2 cfs and 9.3 cfs, respectively. From there they will follow the drainage patterns as described in Existing Basin D towards DP9.1, and eventually flow south off-site through an existing culvert.

Existing Basin D is approximately 13.42 acres and in its existing condition is comprised of undeveloped land. Historically runoff from this basin flows from north to south to DP8. The peak flow rate for the basin at DP9 in the 5 and 100-year storm are 2.9 cfs and 21.5 cfs respectively. Flows are combined at DP9.1 for a total runoff of 4.7 cfs and 28.9 cfs for the 5 and 100-year storm, respectively. The runoff flows into an existing culvert and flows to the south off-site.

Basin OS6 is approximately 2.33 acres and in its existing condition is comprised of parts of 5 rural lots developed in Trails Filing 2. More information about the existing conditions can be found in the approved MDDP or amendments. The historic drainage path generally flows southeast and eventually flows towards the Meridian Ranch development. Runoff from this basin will flow south overland and enter into Existing Basin E at DP10. The peak flow rate for the basin at DP10 in the 5 and 100-year storm are 1.2 cfs and 4.9 cfs, respectively. From there they will follow the drainage patterns as described in Existing Basin E towards DP11.1, and eventually flows east off-site.

Existing Basin E is approximately 31.05 acres and in its existing condition is comprised of undeveloped land and existing dirt roads. Historically runoff from this basin flows from north to south and west to east to DP11. The peak flow rate for the basin at DP11 in the 5 and 100-year storm are 6.0 cfs and 44.4 cfs respectively. Flows are combined at DP11.1 for a total runoff of 7.0 cfs and 48.4 cfs for the 5 and 100-year storm, respectively. The runoff flows east off-site and then continues south.

Basin OS7 is approximately 63.10 acres and in its existing condition is comprised of parts of 26 rural lots developed in Trails Filing 2, parts of 2 lots developed in Trails Filing 7-C, part of the Conestoga Trail North, and Oregon Wagon Trail roadways. Additionally, there are some existing buildings, existing swales, and culverts that direct flows from the north to south side of Oregon Wagon Trail. More information about the existing conditions can be found in the approved MDDP or amendments. The historic drainage path generally flows southeast and eventually flows towards the Meridian Ranch development. Runoff from this basin will flow south and east overland and enter into Existing Basin F at DP12. The peak flow rate for the basin at DP12 in the 5 and 100-year storm are 29.0 cfs and 111.4 cfs, respectively. From there they will follow the drainage patterns as described in Existing Basin F towards DP13.1, into Basin OS8 and eventually be routed to the existing South Pond.

Basin OS8 is approximately 68.29 acres and in its existing condition is comprised of parts of 10 rural lots developed in Trails Filing 2, parts of 12 lots developed in Trails Filing 7, drainage easements for existing South Pond, part of the Oregon Wagon Trail, and part of the Buffalo River Trail roadways. Additionally, there are some existing swales, and culverts that direct flows from the north to south side of Oregon Wagon Trail. More information about the existing conditions can be found in the approved MDDP or amendments. The historic drainage path generally flows southeast and eventually flows towards the Meridian Ranch development through several existing culverts. Runoff from this basin will flow south overland and will be routed south and east to DP14 and then to DP14.1 where the flows are combined with flows from DP13.1. The peak flow rate for the basin at DP14 in the 5 and 100-year storm are 23.3 cfs and 95.6 cfs. Flows from DP14.1 (Q₅=48.3 cfs, Q₁₀₀=193.8 cfs) represent the total existing flow that is routed to the existing South Pond.

Proposed Drainage Conveyance

In general, developed flows are collected in proposed roadside swales, which convey water to the proposed detention areas. Swales were designed per the typical county rural roadside ditch section. Proposed swale sections were designed to ensure they are stable and have required capacity to satisfy criteria. A swale is considered stable with a velocity of 5 ft/s of less. Where velocities exceed 5 ft/s, swales will be reinforced with the specified SC250 VMax TRM (turf reinforcement mat) product (or approved equivalent) shown in Appendix C. The roadway swale slopes in general follow the roadway slopes and specific locations where the TRM reinforcing is required in swale sections are shown in the Grading and Erosion Control Construction Documents. To ensure capacity, swales will have a minimum of 1 ft. of freeboard over the water surface for flows anticipated in a 100-year storm event. Detailed swale calculations, sections, and TRM specifications are located in Appendix C.

In addition to the swales, a few proposed culverts also convey flows under roadways, maintenance access roads, and future driveways. Culverts under both paved and gravel access roads were sized to not overtop the roadways with flows from a 100-year storm event. For the proposed Filing 9, three culverts are proposed. One for the proposed maintenance road accessing the proposed Pond G1, one for the proposed Buffalo River Trail roadway crossing, and one for the maintenance road accessing the existing south pond. The inlets and outlets of the proposed culverts will be protected with riprap to limit potential erosion. The proposed culverts will be protected with Type L soil riprap. The riprap protection sizing calculations for the pond outfalls are located in Appendix D.

Additionally, future driveway culverts were sized based on anticipated flows. A sizing table is provided on the proposed drainage map and a separate driveway culvert exhibit is also provided in Appendix F. The future driveway culverts were allowed to over-top the roadway by a maximum of 6-inches, measured at the roadway shoulder. For the 18" RCP and (3)-36" RCP future driveway culverts, two HY-8 reports are provided based on the maximum flows for those sizes. For the proposed 30" RCP future driveway culverts, the Pond G1 maintenance access HY-8 report is used since the Pond G1 maintenance access shares the Lot 6 driveway. Future engineered site plans will provide final details for the individual lot driveways and will be constructed by others. See Appendix C for the HY-8 reports.

Proposed Sub-basin Drainage

The proposed basin delineation for Latigo Trials Filing 9 as shown in Appendix F is as follows;

Basin OS2 is an approximately 2.12 acre off-site basin and therefore, no work is proposed within that area other than slight modifications where the proposed roadside swale begins. Flow will follow the historic path overland towards DP1 where it will enter Basin A and follow the drainage patterns of that basin as described below towards DP2.1. The peak flow rate for basin at DP1 in the 5 and 100-year storm are 2.1 cfs and 6.9 cfs, respectively. Flows will follow the routed path until they discharge into the existing South Pond.

Basin A is approximately 1.58 acres and the existing conditions were previously described as part of Existing Basin B. In the proposed condition it will be rural 2.5 acre lots, part of the Conestoga Trail South road, and a roadway swale. Runoff from this basin will be collected in a roadside swale and conveyed east to DP2 and then along Conestoga Trail South to DP2.1 where the flows are combined with flows from DP1. The peak flow rate for the basin at DP2 in the 5 and 100-year storm are 1.6 cfs and 5.1 cfs, respectively. Flows from DP2.1 ($Q_5=3.5$ cfs, $Q_{100}=11.5$ cfs) continue east in the roadside ditch to DP4.1 and eventually the flow will be routed to the existing South Pond.

Basin OS3 is an approximately 51.16 acre off-site basin and therefore, no work is proposed within that area. Runoff from this basin will flow south overland and enter into Basin B at DP3. The peak flow rate for the basin at DP3 in the 5 and 100-year storm are 27.6 cfs and 105.5 cfs, respectively.

From there they will follow the drainage patterns as described in Basin B towards DP4.1, and eventually be routed to the existing South Pond.

Basin B is approximately 8.71 acres and the existing conditions were previously described as part of Existing Basin C. In the proposed condition it will be rural 2.5 acre lots, part of the Conestoga Trail South road, and a roadway swale. Runoff from this basin will be collected in a roadside swale and conveyed east to DP4 and then along Conestoga Trail South to DP4.1 where the flows are combined with flows from DP2.1. The peak flow rate for the basin at DP4 in the 5 and 100-year storm are 4.8 cfs and 19.0 cfs, respectively. Flows from DP4.1 ($Q_5=34.7$ cfs, $Q_{100}=131.6$ cfs) continue east in the roadside ditch to DP6.1 and eventually the flow will be routed to the existing South Pond.

Basin OS4 is an approximately 3.70 acre off-site basin and therefore, no work is proposed within that area. Runoff from this basin will flow south overland and enter into Basin C at DP5. The peak flow rate for the basin at DP5 in the 5 and 100-year storm are 2.0 cfs and 8.2 cfs, respectively. From there they will follow the drainage patterns as described in Basin C towards DP6.1, and eventually be routed to the existing South Pond.

Basin C is approximately 5.43 acres and the existing conditions were previously described as part of Existing Basin C. In the proposed condition it will be rural 2.5 acre lots, part of the Conestoga Trail South road, and a roadway swale. Runoff from this basin will be collected in a roadside swale and conveyed east to DP6 and then along Conestoga Trail South to DP6.1 where the flows are combined with flows from DP4.1. The peak flow rate for the basin at DP6 in the 5 and 100-year storm are 3.1 cfs and 11.8 cfs, respectively. Flows from DP6.1 ($Q_5=37.9$ cfs, $Q_{100}=145.9$ cfs) continue east in the roadside ditch to DP8.1 and eventually the flow will be routed to the existing South Pond.

Basin OS5 is an approximately 3.99 acre off-site basin and therefore, no work is proposed within that area. Runoff from this basin will flow south overland and enter into Basin D at DP7. The peak flow rate for the basin at DP7 in the 5 and 100-year storm are 2.2 cfs and 9.3 cfs, respectively. From there they will follow the drainage patterns as described in Basin D towards DP8.1, and eventually be routed to the existing South Pond.

Basin D is approximately 7.22 acres and the existing conditions were previously described as part of Existing Basin D. In the proposed condition it will be rural 2.5 acre lots, part of the Conestoga Trail South road, and a roadway swale. Runoff from this basin will be collected in a roadside swale and conveyed east to DP8 and then along Conestoga Trail South to DP8.1 where the flows are combined with flows from DP6.1. The peak flow rate for the basin at DP8 in the 5 and 100-year storm are 4.2 cfs and 16.1 cfs, respectively. Flows from DP8.1 (Q_5 =41.9 cfs, Q_{100} =163.8 cfs) continue east in the roadside ditch to DP10.1 and eventually the flow will be routed to the existing South Pond.

Basin OS6 is an approximately 2.33 acre off-site basin and therefore, no work is proposed within that area. Runoff from this basin will flow south overland and enter into Basin E at DP9. The peak flow rate for the basin at DP9 in the 5 and 100-year storm are 1.2 cfs and 4.9 cfs, respectively. From there

they will follow the drainage patterns as described in Basin E towards DP10.1, and eventually be routed to the existing South Pond.

Basin E is approximately 10.46 acres and the existing conditions were previously described as part of Existing Basin E. In the proposed condition it will be rural 2.5 acre lots, part of the Conestoga Trail South road, and a roadway swale. Runoff from this basin will be collected in a roadside swale and conveyed east to DP10 and then along Conestoga Trail South to DP10.1 where the flows are combined with flows from DP8.1. The peak flow rate for the basin at DP10 in the 5 and 100-year storm are 5.6 cfs and 21.3 cfs, respectively. Flows from DP10.1 (Q_5 =46.0 cfs, Q_{100} =182.1 cfs) continue east in the roadside ditch and travel through the proposed dual 29"x45" HERCP to DP12.1 and eventually the flow will be routed to the existing South Pond. The proposed culvert was sized using the peak flow listed and ensured there was enough cover.

Basin OS7 is an approximately 63.10 acre off-site basin and therefore, no work is proposed within that area. Runoff from this basin will flow south and east overland and enter into Basin F near DP11. The peak flow rate for the basin at DP11 in the 5 and 100-year storm are 29.0 cfs and 111.4 cfs, respectively. From there they will follow the drainage patterns as described in Basin F towards DP12.1, and eventually be routed to the existing South Pond.

Basin F is approximately 6.51 acres and the existing conditions were previously described as part of Existing Basin F. In its proposed condition it will be rural 2.5 acre lots, part of the Conestoga Trail South road, part of Buffalo River Trail road, and roadside swales. The proposed flows drain east and uses an existing culvert to cross the existing Buffalo River Trail and conveyed south and east to DP12 and then along Conestoga Trail South to DP12.1 where the flows are combined with flows from DP10.1. The peak flow rate for the basin at DP12 in the 5 and 100-year storm are 4.1 cfs and 14.6 cfs, respectively. Flows from DP12.1 ($Q_5=73.3$ cfs, $Q_{100}=284.7$ cfs) continue east in the roadside ditch to DP13.1 and eventually the flow will be routed to the existing South Pond.

Basin G is approximately 2.42 acres and the existing conditions were previously described as part of Existing Basins B-F. In the proposed condition it will be the south-half of the proposed Conestoga Trail South paved road as well as the south roadside swale. The basin will flow to the south and then is conveyed east to DP13.1 where the flows are combined with flows from DP12.1. The peak flow rate for the basin at DP13 in the 5 and 100-year storm are 3.6 cfs and 7.8 cfs, respectively. Flows from DP13.1 (Q_5 =76.3 cfs, Q_{100} =291.2 cfs) continue east in the roadside ditch to DP14.1 and eventually the flow will be routed to the existing South Pond.

Basin OS8 is approximately 68.37 acres and its existing condition was described in the section above. Runoff from this basin will flow south overland and will be routed south and east to DP14 and then to DP14.1 where the flows are combined with flows from DP13.1. The peak flow rate for the basin at DP14 in the 5 and 100-year storm are 26.2 cfs and 99.6 cfs. Flows from DP14.1 (Q_5 =92.0 cfs, Q_{100} =347.0 cfs) represent the total routed flow that will be routed to the existing South Pond.

Basin OS1 is an approximately 2.01 acre off-site basin and therefore, no work is proposed within that area. Flow will follow the historic path overland from both the north and south towards DP15 where it will enter into Basin H and follow the drainage patterns of that basin as described below. The peak flow rate for the basin at DP15 in the 5 and 100-year storm are 0.6 cfs and 4.1 cfs, respectively. From there they will follow the drainage patterns as described in Basin H towards DP16.1, and eventually be routed to the proposed G1 Pond.

Basin H is approximately 8.65 acres and the existing conditions were previously described as part of Existing Basin B. In the proposed condition it will be rural 2.5 acre lots as well as the part of the south-half of the existing Conestoga Trail South. Runoff from this basin will be collected in roadside swales and conveyed southwest along the proposed Horse Canyon Trail to DP16 and then to DP16.1 where the flows are combined with flows from DP15. The peak flow rate for the basin at DP16 in the 5 and 100-year storm are 5.5 cfs and 20.7 cfs, respectively. Flows from DP16.1 (Q_5 =6.0 cfs, Q_{100} =24.5 cfs) continue southwest in the roadside ditch to DP17.1 and eventually the flow will be routed to proposed G1 Pond.

Basin J is approximately 4.56 acres and the existing conditions were previously described as part of Existing Basin B. In the proposed condition it will be rural 2.5 acre lots, roadside swales, proposed Horse Canyon Trail road, as well as contain the proposed G1 Pond. Runoff from this basin will be collected in roadside swales and conveyed southwest along the proposed Horse Canyon Trail to DP17 and then to DP17.1 where the flows are combined with flows from DP16.1. The peak flow rate for the basin at DP17 in the 5 and 100-year storm are 6.1 cfs and 15.9 cfs, respectively. Flows from DP17.1 (Q_5 =9.9 cfs, Q_{100} =34.9 cfs) represent the total routed flow that will be routed to the proposed G1 Pond.

Basin K is approximately 3.78 acres and the existing conditions were previously described as part of Existing Basin A. In the proposed condition, Basin K will be rural 2.5 acre lots. Runoff from this basin does not include any roadway flows and therefore follows the historic drainage pattern flowing off-site to the south undetained or treated. This is in accordance with Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure. Runoff from this basin enters flows overland towards the existing culvert at DP18. The peak flow rate for the basin at DP18 in the 5 and 100-year storm are 2.3 cfs and 9.7 cfs, respectively. Proposed Basins K, I, and L have a combined area of 6.42 acres and when the flows are directly summed, release $Q_5=3.0$ cfs, $Q_{100}=14.8$ cfs (DP18-20). Compared to the existing release rate of Existing Basin A ($Q_5=2.0$ cfs, $Q_{100}=14.4$ cfs), the proposed release rate of the combined flow is essentially the same as the historic for the 100-year event.

Basin I is approximately 0.62 acres and the existing conditions were previously described as part of Existing Basin A. In the proposed condition, Basin I will be part of rural 2.5 acre lots. Runoff from this basin does not include any roadway flows and therefore follows the historic drainage pattern flowing off-site to the southwest undetained or treated. This is in accordance with Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure. The peak flow rate for the basin at DP19 in the 5 and 100-year storm are 0.2 cfs and 1.3 cfs, respectively. Proposed Basins K, I, and L have a

combined area of 6.42 acres and when the flows are directly summed, release $Q_5=3.0$ cfs, $Q_{100}=14.8$ cfs (DP18-20). Compared to the existing release rate of Existing Basin A ($Q_5=2.0$ cfs, $Q_{100}=14.4$ cfs), the proposed release rate of the combined flow is essentially the same as the historic for the 100-year event.

Basin L is approximately 2.02 acres and the existing conditions were previously described as part of Existing Basin A. In the proposed condition, Basin L will be rural 2.5 acre lots. Runoff from this basin does not include any roadway flows and therefore follows the historic drainage pattern flowing off-site to the south undetained or treated. This is in accordance with Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure. The peak flow rate for the basin at DP20 in the 5 and 100-year storm are 0.5 cfs and 3.8 cfs, respectively. Proposed Basins K, I, and L have a combined area of 6.42 acres and when the flows are directly summed, release $Q_5=3.0$ cfs, $Q_{100}=14.8$ cfs (DP18-20). Compared to the existing release rate of Existing Basin A ($Q_5=2.0$ cfs, $Q_{100}=14.4$ cfs), the proposed release rate of the combined flow is essentially the same as the historic for the 100-year event.

Basin M is approximately 15.65 acres and the existing conditions were previously described as part of Existing Basin B. In the proposed condition, Basin M will be rural 2.5 acre lots. Runoff from this basin does not include any roadway flows and therefore follows the historic drainage pattern flowing off-site to the south undetained or treated. This is in accordance with Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure. The peak flow rate for the basin at DP21 in the 5 and 100-year storm are 7.8 cfs and 33.3 cfs, respectively. Compared to the existing combined release rate of Existing Basin B (Q_5 =8.2 cfs, Q_{100} =51.1 cfs), the proposed release rate is less than historic for both the 5 and 100-year events.

Basin N is approximately 10.54 acres and the existing conditions were previously described as part of Existing Basin C. In the proposed condition, Basin N will be rural 2.5 acre lots. Runoff from this basin does not include any roadway flows and therefore follows the historic drainage pattern flowing off-site to the south undetained or treated. This is in accordance with Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure. The peak flow rate for the basin at DP22 in the 5 and 100-year storm are 4.9 cfs and 20.8 cfs, respectively. Compared to the existing combined release rate of Existing Basin C (Q_5 =30.8 cfs, Q_{100} =135.7 cfs), the proposed release rate is less than historic for both the 5 and 100-year events.

Basin O is approximately 5.87 acres and the existing conditions were previously described as part of Existing Basin D. In the proposed condition, Basin O will be rural 2.5 acre lots. Runoff from this basin does not include any roadway flows and therefore follows the historic drainage pattern flowing off-site to the south undetained or treated. This is in accordance with Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure. The peak flow rate for the basin at DP23 in the 5 and 100-year storm are 2.9 cfs and 12.4 cfs, respectively. Compared to the existing combined release rate of Existing Basin D (Q_5 =4.7 cfs, Q_{100} =28.9 cfs), the proposed release rate is less than historic for both the 5 and 100-year events.

Basin P is approximately 13.14 acres and the existing conditions were previously described as part of Existing Basin E. In the proposed condition, Basin P will be rural 2.5 acre lots. Runoff from this basin does not include any roadway flows and therefore follows the historic drainage pattern flowing off-site to the south undetained or treated. This is in accordance with Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure. The peak flow rate for the basin near DP24 in the 5 and 100-year storm are 6.6 cfs and 28.1 cfs, respectively. Compared to the existing combined release rate of Existing Basin E (Q_5 =7.0 cfs, Q_{100} =48.4 cfs), the proposed release rate is less than historic for both the 5 and 100-year events.

A summary of all basin parameters has been presented in Appendix B.

DRAINAGE DESIGN CRITERIA

Development Criteria Reference

Storm drainage analysis and design criteria for the project were taken from the "City of Colorado Spring/El Paso County Drainage Criteria Manual" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "Urban Storm Drainage Criteria Manual" Volumes 1 - 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual (CCSDCM)", dated May 2014, as adopted by El Paso County, as well as the July 2019 El Paso County Engineering Criteria Manual update.

Hydrologic Criteria

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5-year (minor) storm event and the 100-year (major) storm event. Rainfall intensities for the 5-year and the 100-year storm return frequencies were obtained from Figure 6-5 of the City of Colorado Springs DCM. One hour point rainfall data for the storm events are 1.50 inches for the 5-year and 2.52 inches for the 100-year storm. Rational Method calculations were prepared for sub-basins with areas less than 100 acres, in accordance with EPC DCM Chapter 5.2 for the proposed on-site and off-site drainage basins.

Urban Drainage and Flood Control District's UD-Detention, Version 4.04 workbook was used for pond sizing. Required detention volumes and allowable release rates were designed per USDCM and CCS/EPCDCM. Pond sizing spreadsheets are presented in Appendix D.

Hydraulic Criteria

The Federal Highway Administration's HY-8 program (Volume 7.50) was used to analyze the proposed culverts within the Latigo Trails development. Per Section 6.4.1 of the EPCDCM, culverts under paved and gravel roads were sized as to not overtop the road in the 100-year storm. As shown in the same section, future driveway culverts were sized as to not overtop the road by more than 6-

inches measured from the shoulder in the 100-year storm. Culvert design sheets are presented in Appendix C.

Autodesk Inc.'s Hydraflow Express Extension (Volume 10.5) was used for roadside ditch design. For the purposes of this FDR/MDDP, the maximum roadside ditch size was determined based on peak 100-year flows and minimum swale slopes within each basin. Swales were checked for velocity per the EPC DCM Chapter 10, Table 10-4 based on peak 100-year flows and maximum swale slopes. Swale cross sections with a 100-year velocity greater than 5 ft/s will be lined with the specified SC250 VMax TRM product, or another approved method of stabilization, to limit erosive potential. Swale design sheets are presented in Appendix C.

DRAINAGE FACILITY DESIGN

General Concept-Filing 9

The proposed stormwater conveyance system was designed to convey the developed Latigo Trails Filing 9 flows to one of two full-spectrum EDBs via roadside ditches and local street culverts. Pond G1 is to be fully built and will remain the same in the ultimate condition as no future Latigo Trails developments will contribute additional developed flow. The existing South Pond outlet structure and spillway crest will be modified with the development of Filing 9. EDBs will be designed to release at less than historic rates to minimize adverse impacts downstream. Undeveloped basins are allowed to follow existing drainage patterns.

In accordance with Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure, proposed developed basins with large lot single-family sites on it with a maximum of 10% impervious area shall be allowed to release runoff without a downstream water quality feature. In accordance with Section I.7.1.B.7, sites with land disturbance to undeveloped land that will remain undeveloped shall also be excluded from releasing to a downstream water quality feature. See highlighted areas in the drainage maps presented in Appendix F.

Specific Details

Four Step Process to Minimize Adverse Impacts of Urbanization

In accordance with the El Paso County Drainage Criteria Manual, Volume 2 this site has implemented the four step process to minimize adverse impacts of urbanization. The four step process includes reducing runoff volumes; stabilizing drainageways, treating the water quality capture volume (WQCV), and consider the need for Industrial Commercial BMP's.

Step 1, Reducing Runoff Volumes: The development of the project site is proposed as single family residential (2.5 ac. min.) with lawn areas interspersed within the development which helps disconnect impervious areas and reduce runoff volumes. Roadways will utilize roadside ditches to further disconnect impervious areas. These practices will also allow for increased infiltration and reduce runoff volume.

Step 2, Stabilize Drainageways: This site will utilize roadside ditches with culvert crossings throughout the site. These roadside ditches will then direct the on-site development flows to the multiple detention ponds within the project that will be designed to release at or below historic rates. The roadside ditches will be stabilized in reaches with high velocity (>5 fps) by the use of turf reinforcement mats. Based upon the proposed reduction in released flows compared to the pre-developed flows, no impact to downstream drainageways is anticipated.

Step 3, Provide WQCV: Runoff from this development will be treated through capture and slow release of the WQCV in multiple permanent detention basins that will be designed per current El Paso County drainage criteria.

Step 4, Consider the need for Industrial and Commercial BMP's: No industrial or commercial uses are proposed within this development. However, a site specific storm water quality and erosion control plan and narrative will be prepared for each future Filing. Site specific temporary source control BMPs as well as permanent BMP's will be detailed in this plan and narrative to protect receiving waters.

Water Quality

In accordance with Section 13.3.2.1 of the CCS/EPCDCM, full spectrum water quality and detention will be provided for all of the development site not meeting exclusions present in the ECM - Stormwater Quality Policy and Procedures Section I.7.1.B and C. As previously stated, the applicable exclusions fall under Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure for areas with large single-family lots. Any areas of the development site not being included in the site's permeant stormwater management are presented on the proposed Drainage Maps, presented in Appendix F. Outlet structure release rates will be limited to less than historic rates to minimize adverse impacts to downstream stormwater facilities.

Existing South Pond-Proposed

The existing South Pond is located to the southeast of the site. The existing pond consists of an existing riprap pad at the entrance of the pond, a flat pond bottom, and existing outlet structure with a failed orifice plate. The existing South Pond was built about 15 years ago, and the El Paso County standards for a full-spectrum EDB have been modified since that date. Therefore, there will need to be some retrofit design changes that will ensure the EDB meets current criteria. This includes the installation of a low-tailwater riprap basin, concrete trickle channel, concrete micropool, maintenance access, and revised pond grading to ensure that the pond bottom has a minimum of 3% bottom slope.

The existing pond was built with the development of Filing 7, and was sized for the anticipated entire upstream developed area using a total of 163 acres of area with a 20.0% impervious value. In the referenced Filing 7 report, it states that the flows entering the pond are 104 cfs and 247 cfs for the 5- and 100-year storm events, respectively. The existing on-site and off-site drainage areas tributary to the existing South Pond were re-analyzed using the Rational Method for the development of Filing 9.

From the analysis it was determined that on-site basins A-G and off-site basins OS2-8 will contribute flows towards the existing South Pond. These basins total 42.3 acres of on-site developed flow and 194.8 acres of off-site developed flows that contribute to the South Pond with 13.8% impervious for flows of 92 and 347 cfs for the 5- and 100-year storm events, respectively.

The full-spectrum EDB sizing was determined by using Urban Drainage and Flood Control District's UD-Detention, Version 4.04 workbook and the proposed basin conditions. Inputting the basin parameters for the proposed Filing 9 development, it was determined that the pond needed approximately 1.7 Ac-ft. for the WQCV, 1.4 Ac-ft. for the EURV, 7.1 Ac-ft. for the 100-year detention, and 10.3 Ac-ft. for the total detention volume. The modified pond sizing will provide approximately 7.2 Ac-ft. for the 100-year detention and 12.4 Ac-ft. at the top of pond. These sizes satisfy the required volumes and ensures the 100-year volume will be detained within the pond.

As mentioned previously, a retrofit of the existing riprap pad is proposed to dissipate the flows at the entrance to the pond. A low-tailwater basin was designed using an equivalent size from the trapezoidal swale to a rectangular box culvert based on the sizing guidance from MHFD Volume II Figure 9-37 and 9-39 (see Appendix D). The low-tailwater basin was sized based on the tributary, undetained 100-year peak flow rate and trapezoidal swale section. It was assumed that the top width of the water in the trapezoidal section would be the width of the equivalent box culvert rounded to the nearest half foot. Additionally the depth was determined by taking the water depth in the section, adding a foot of freeboard, and then rounding it to the nearest half foot. Based on that sizing method, the trapezoidal swale section is roughly equivalent to a 31.5'W x 2.5'T rectangular box culvert. Figure 9-37 (see Appendix D) was used to determine the standard sizing (D=2.5', W=31.5', and L=45.5'). Then using Figure 9-39 (see Appendix D), it was determined that the low-tailwater basin shall be protected with Type L soil riprap. For additional erosion protection, a turf reinforcing mat (TRM) shall be used from DP13.1 along the swale to the entrance of the low-tailwater basin. To meet the current full-spectrum EBD criteria, a 7-ft. wide concrete trickle channel is also proposed with a slope of 0.5% from the end of the proposed low-tailwater basin to the proposed concrete micropool and outlet structure. Due to the addition of the proposed concrete trickle channel, the bottom of pond at the entrance of the riprap is now higher than it was in the existing condition. Having reduced the existing drop of the riprap pad and providing the low-tailwater basin, this retrofit solution will prevent erosion and ensures flows enter into the proposed trickle channel as designed.

At the end of the concrete trickle channel, a concrete micropool is proposed to meet the minimum 10 ft² surface area with the required 2.5-ft. depth. This retrofit application provides the required micropool and also provides a hard surface that shows maintenance the depth to which the sediment should be cleared to. The top of the micropool has an elevation of 7087.26', which allowed for a 4-inch drop through the modified outlet structure to the existing outlet RCBC invert of 7086.93'. Additionally, the proposed outlet structure modifications will be raised and a second grate of the same size will be added. The new raised elevation of the combined overflow grates is at 7093.16'. Additionally, a new orifice plate was designed to meet the minimum drain times and will be installed

on the modified outlet structure, which will replace the existing failed orifice plate. The proposed pond modifications will ensure the WQVC drains in 40 hours, continuously releases both the 5-year storm and EURV in less than 72 hours, limit the 5-year and 100-year design storms to approximately pre-development/historic rates or less, and drains completely under 120 hours.

The existing approximate spillway is located on the east side of the pond and has an existing approximate elevation of 7095.50'. The UD-Detention spreadsheet for the Filing 9 development shows that the proposed spillway needs to at approximately 7095.16' to detain the 100-year volume. The proposed spillway location is located further south to ensure the emergency overflow path functions adequately and will follow the historic drainage pattern to the east. The emergency spillway was sized for the undetained peak 100-year flow rate (Q=360.0 cfs) and a minimum of 1-ft. of freeboard provided over the spillway flow depth. The UD-Detention spreadsheet shows with a spillway crest width of 120 ft and 4:1 side slopes, the flow depth over the spillway is 0.97 ft. Therefore, the proposed top of pond is at 7097.16' to ensure required freeboard. The spillway and emergency overflow path are protected by Type M soil riprap, sized per the guidance provided by MHFD (see Appendix D).

Additionally, a 12 ft. wide maintenance access trail with a maximum slope of 12% is proposed to meet the current full-spectrum EDB criteria. The proposed maintenance trail shall follow the proposed swale from the end of the proposed Conestoga Trail South into the South Pond and down towards the concrete trickle channel. It is assumed that the 7 ft. wide concrete trickle channel will allow maintenance vehicles to access both the low-tailwater basin and the concrete micropool/outlet structure for required routine maintenance.

The existing South Pond outlet structure is proposed to be revised to provide full-spectrum detention and water quality for the proposed Filing 9 development. The outlet structure will limit release rates from an existing 8'W x 3'T RCBC storm culvert that will outfall to the east and then south along unnamed ephemeral streams flowing offsite onto the Meridian Ranch development to below historic levels. The previous design utilized Type L riprap at the existing outlet structure outfall and the new analysis confirmed that this size riprap will be adequate.

The pond design is summarized below with bullets:

- WQCV: +/- 1.733 acre-ft
- EURV: +/- 3.161 acre-ft
- 100-Year Volume: +/- 7.222 acre-ft
- Q_{5,in}: +/- 103.7 cfs
- Q_{100,in}: +/- 360.0 cfs
- Q_{5,out}: +/- 51.8 cfs
- Q_{100,out}: +/- 296.0 cfs
- Spillway: 120 ft to be modified from approx. 7095.50' to 7095.16' elevation, sized for undetained peak. Directs water to the east over the spillway.
- Top of Pond: Set to 7097.16' elevation for 0.98 ft. flow over spillway and minimum 1 ft. of freeboard

• Outlet: 8'W x 3'T RCBC storm sewer released to the east.

See Appendices B, C, and D for applicable calculations and supporting design information.

Pond G1

Currently, proposed G1 Pond is undeveloped land at the southwest corner of the Filing 9 site. On-site basins H, J and off-site basin OS1 will contribute flows towards the proposed full-spectrum G1 Pond. This Filing 9 report analyzed the conditions for the contributing on-site and off-site basins using the Rational Method and calculated a total tributary area of 15.2 acres (13.2 acres on-site, 2.0 acres off-site) with 10 and 35 cfs for the 5- and 100-year storms, respectively. Pond G1 was sized for the development of Filing 9 and designed per current criteria & full-spectrum design methodology based on WQCV, Excess Urban Runoff Volume (EURV), and 100-year detention. The full-spectrum EDB was designed to include a rock chute and basin, concrete trickle channel, maintenance access, and a full-spectrum outlet structure.

The full-spectrum EDB sizing was determined by using Urban Drainage and Flood Control District's UD-Detention, Version 4.04 workbook and the proposed basin conditions. Inputting the basin parameters for the proposed Filing 9 development, it was determined that the pond requires approximately 0.1 Ac-ft. for the WQCV, 0.1 Ac-ft. for the EURV, 0.5 Ac-ft. for the 100-year detention, and 0.7 Ac-ft. for the total detention volume. The proposed pond sizing will provide approximately 0.7 Ac-ft. for the 100-year detention and 1.6 Ac-ft. at the top of pond. These sizes satisfy the required volumes and ensures the 100-year volume will be detained within the pond.

A proposed rock chute was designed to accept the flows from the proposed roadway swale and dissipate energy in a riprap basin before entering into the proposed concrete trickle channel. The proposed 7 ft. wide trickle channel has a slope of 0.5% from the end of the proposed rock chute and riprap basin to the proposed outlet structure. See Appendix D for the supporting design spreadsheet.

Using the UD-Detention spreadsheet, an outlet structure with an overflow grate size of 4 ft. by 4 ft. and an orifice plate are proposed to meet the required drain times. The proposed G1 Pond outlet structure will ensure the WQVC drains in 40 hours, continuously releases both the 5-year storm and EURV in less than 72 hours, limit the 5-year and 100-year design storms to approximately predevelopment/historic rates or less, and drains completely under 120 hours.

The UD-Detention spreadsheet for the Filing 9 development shows that the spillway needs to at approximately 7180.00' to detain the 100-year volume. The spillway is located to the southwest of the pond was sized for the undetained peak 100-year flow rate (Q=18.8 cfs) and a minimum of 1-ft. of freeboard provided over the spillway flow depth. The UD-Detention spreadsheet shows with a spillway crest width of 40 ft and 4:1 side slopes, the flow depth over the spillway is 0.28 ft. Therefore, the proposed top of pond is at 7181.50' to ensure required freeboard. The spillway and emergency overflow path are protected by Type VL soil riprap, sized per the guidance provided by

MHFD (see Appendix D). The emergency flows will follow the historic path to the existing 30-inch culvert on the south property line.

Additionally, a 12 ft. wide maintenance access trail with a maximum slope of 12% is proposed to meet the current full-spectrum EDB criteria. The proposed maintenance trail shall start at the end of the proposed Horse Canyon Trial following the proposed swale into the proposed G1 Pond. From there the trail goes down towards the concrete trickle channel. It is assumed that the 7 ft. wide concrete trickle channel will allow maintenance vehicles to access both the riprap basin and the outlet structure for required routine maintenance.

The proposed outlet structure will release flows through a restricted 24-inch RCP, which outfalls near an existing 30-inch culvert located along the south property line. Riprap outfall protection was sized to ensure erosion protection for the outlet structure outfall and it was determined that Type L riprap will be adequate. Flows from the full-spectrum EDB will be released through the proposed full-spectrum outlet structure at below historic rates.

The pond design is summarized below with bullets:

- WQCV: +/- 0.135 acre-ft
- EURV: +/- 0.266 acre-ft
- 100-Year Volume: +/- 0.663 acre-ft
- Q_{5,in}: +/- 5.6 cfs
- Q_{100,in}: +/- 18.8 cfs
- Q_{5,out}: +/- 2.5 cfs
- Q_{100,out}: +/- 11.8 cfs
- Spillway: 40 ft at 7180.00' elevation, sized for undetained peak. Directs water to the southwest over the spillway.
- Top of Pond: Set to 7181.50' elevation for 0.28 ft. flow over spillway and minimum 1 ft. of freeboard
- Outlet: Restricted 24" RCP storm pipe released to the southwest.

See Appendices B and D for applicable calculations and supporting design information.

Erosion Control Plan

The El Paso County Drainage Criteria Manual specifies an Erosion Control Plan and associated Cost Estimate must be submitted with each Final Drainage Report. The Erosion Control Plan and Cost Estimate shall be submitted prior to obtaining a grading permit.

Operation & Maintenance

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. All proposed drainage structures within the any platted County ROW (roadside ditches and local road culverts) will be owned and maintained by El Paso County. All proposed drainage

structures within easements or tracts (full-spectrum water quality and detention ponds, drainageway culverts and drainageway improvements) will be owned and maintained by the Latigo Creek Metropolitan District. Inspection access for El Paso County will be provided through a maintenance easement.

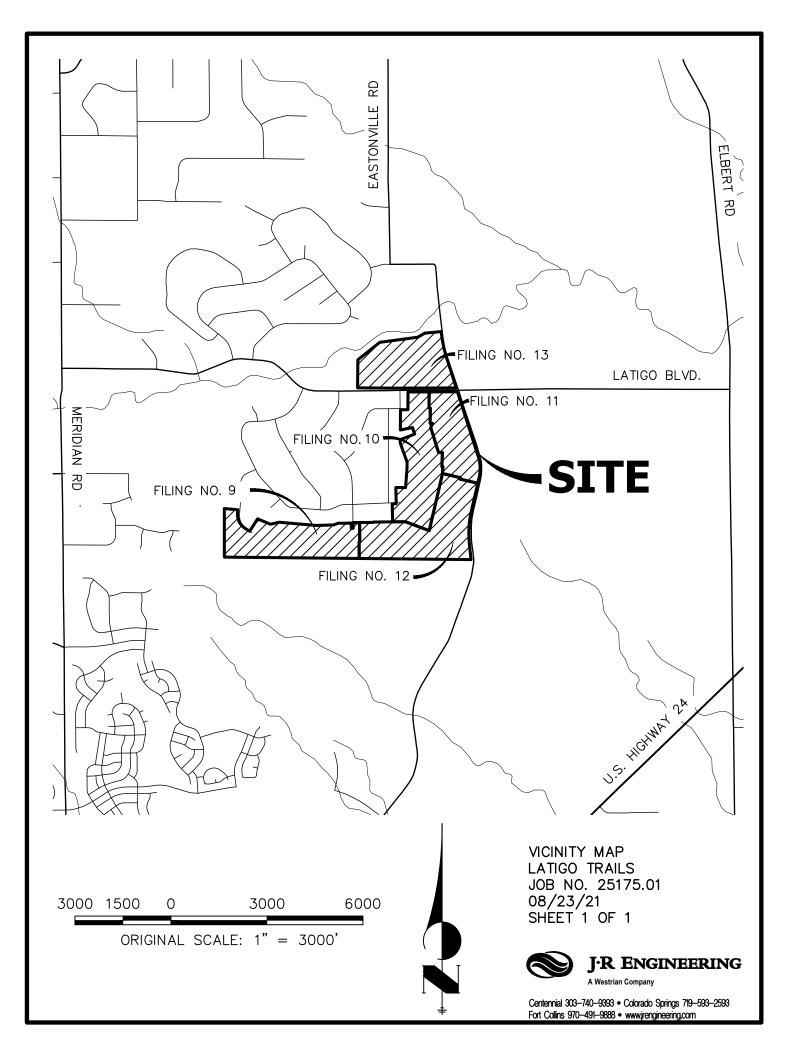
Drainage and Bridge Fees

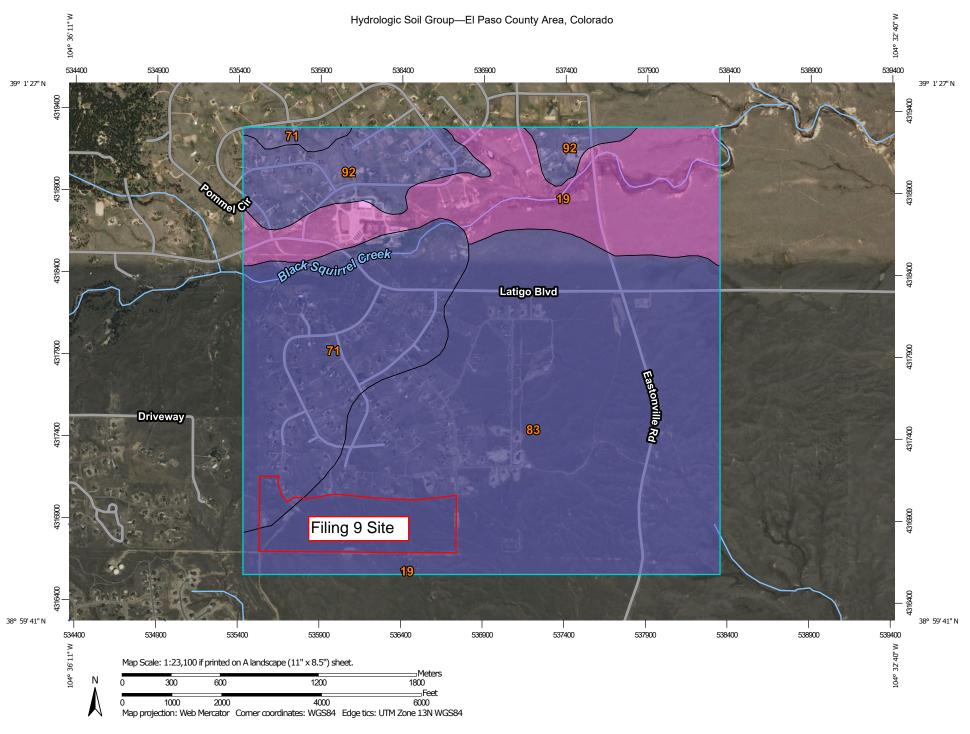
Geich Ranch (CHMS0400) drainage basin is not included in the El Paso County Drainage Basin Fee program therefore; no drainage or bridge fees are due at the time of plat recordation.

Construction Cost Opinion

(For Information Only / Non-Reimbursable) Cost opinion has been presented in Appendix A.

SUMMARY

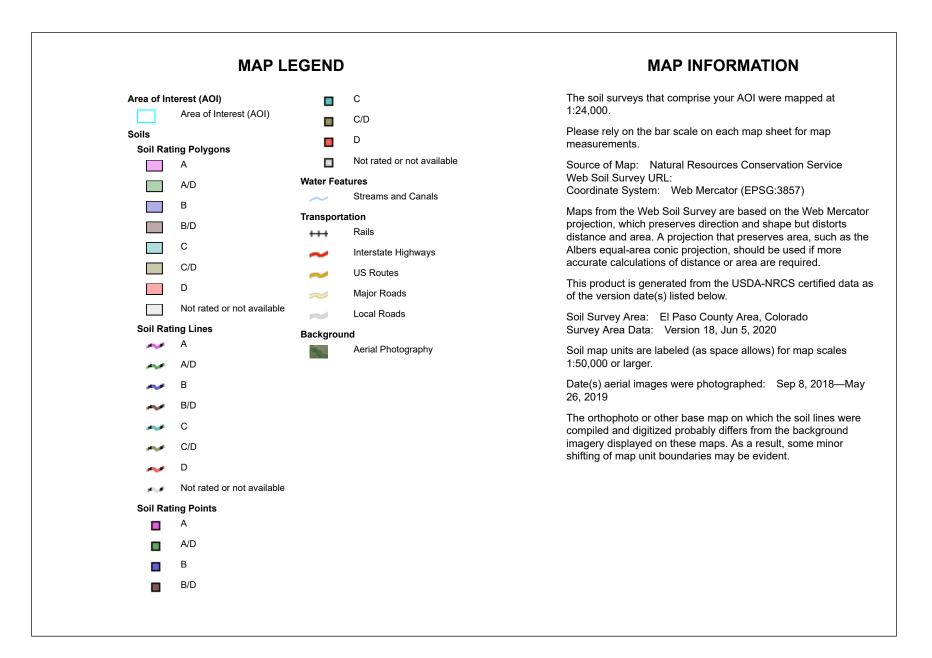

The Final Drainage Report for Latigo Trials Filing No. 9 and Addendum to Master Development/ Preliminary Drainage Plan for Latigo Trails analyzed the proposed drainage patterns, determined proposed runoff quantities, sized drainage facilities, presented solutions to on and off-site drainage impacts resulting from this development, safely routed developed storm water runoff to the appropriate outfall facilities as delineated in previous reports, and amended the Master Development/ Preliminary Drainage Plan (MDDP). The proposed Filing 9 site development remains consistent with pre-development drainage conditions with the construction of the recommended drainage improvements as described in the approved MDDP and amended reports. The proposed development will not adversely affect the offsite major drainageways or surrounding development. This report meets the latest El Paso County Drainage Criteria requirements for this site.


REFERENCES:

- <u>City of Colorado Springs Drainage Criteria Manual Volume 1</u>, City of Colorado Springs, CO, May 2014.
- <u>Urban Storm Drainage Criteria Manual</u>, Urban Drainage and Flood Control District, Latest Revision.
- 3. <u>Gieck Ranch Drainage Basin Planning Study</u>, Drexel, Barrell & Co., October 2007 and revised in February 2010.
- 4. <u>Master Development/ Preliminary Drainage Plan Latigo Trails</u>, URC, October 2001.
- <u>Final Drainage Report Addendum No. 1 for The Trails Filing No. 7 Subdivision</u>, URS, February 2007.
- 6. <u>Final Drainage Report for the Trails Filing No. 8 and Addendum to Master Development/</u> <u>Preliminary Drainage Plan for Latigo Trails, JR Engineering, January 2007.</u>
- Final Drainage Report for Latigo Trails Filing No. 10 and Addendum to Master <u>Development/ Preliminary Drainage Plan for Latigo Trails</u>, JR Engineering, September 2021.

APPENDIX A

FIGURES AND EXHIBITS



USDA Natural Resources

Conservation Service

6/10/2021 Page 1 of 4

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	330.2	16.7%
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	393.4	19.9%
83	Stapleton sandy loam, 3 to 8 percent slopes	В	1,081.8	54.7%
92	Tomah-Crowfoot loamy sands, 3 to 8 percent slopes	В	172.5	8.7%
Totals for Area of Inter	rest	1,977.9	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does of neossarily identify all areas subject to flooding, particularly from local dramage ources of small size. The community map repository should be consulted for ossible updated or additional flood hazard information.

To obtain more dataled information in areas where **Base Flood Elevations** (JETs) and/in **Goodways** have been determined, users are encouraged to constit the Flood Worldes and Floodway. Data and/or Summary of Sillwater Elevations tables constained and/in the Flood Internet Silloy (FIS) proc hild a coorposide the FIRID. Users and the floodways of the flood elevation international solution (SIC) and/or the flood elevation of the flood elevation internation. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRID to puppose of construction end/or thoogian interguent.

Consetti Bate Flood Silvestone shown on the map appropriate structure of 0.000 Month Amateria Neutral Tation of 166 (MANDAB). Unless of the FIRM shows a severe that cossistel flood elevations are also provided in the Summary of Silvettere shown in the Summary of Silvetter Elevations Budy eposit for this impaction. Elevations about in the Summary of Silvetter Elevations about the used for constructions about the Summary of Silvetter Elevations about the used for constructions about the Summary of Silvetter Elevations about the used for constructions about the Summary of Silvetter Elevations about the used for constructions about the Summary of Silvetter Elevations about the used for constructions about the Summary of Silvetter Elevations about the several several about the Summary of Silvetter Elevations about the Summary of Silvettere about the Summary of Silvettere

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with lenger to requirements of the National Flood Insurance Program. Rodoway withts and other pertners floodway data are provided in the Flood Insurance Study report for this jurisdicity.

Certain areas not in Special Flood Hazaró Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for siformation on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse descate (UTM) zone 13. The horizontal statum was MADSS, GRSSS sphericic production of PHMs for adjacent justicitions may result in sight positional differences in map features across jurisdiction boundaries. These differences do not affect the occuracy of this FRMA.

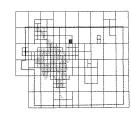
Rood environment of the region environment of the Netrit American Particle Dates of 1986 (NAVCM). These fitted environment to compare to structure and pround elevations references to the same vertical datum. For information regarding contention between the National Globel's Vertical Dates of 1023 and the Nation contention between the National Globel's Vertical Dates of 1023 and the Nation Nation region of the National Globel's Vertical Dates of 1023 and the Nation Nation region of the National Globel's Vertical Dates of 1028 and the Nation Nation region of the National Globel's Vertical Dates of 1028 and the Nation Nation region of the National Globel's Vertical Dates of the National States of the Natio

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-Weet Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench mari shown on this map, please contact the Information Services Branch of the Nation Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noas.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Cotorado Springs URBes, City of Fouritain, Bureau of Land Management, National Oceanic and Almospheria doministration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

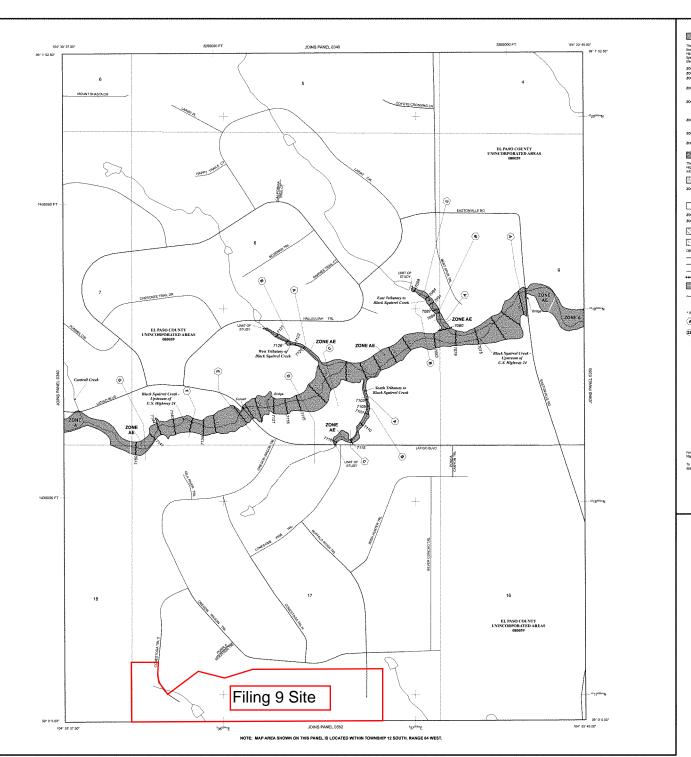
This map reflects more detailed and up-to-date stream channel configurations and floodplane derivations that more shown on the provides "FRM for the infection. They have been adjusted to confirm to these meet steam channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood insuremo Study Report (which contains authoritative yielducid, data) may required statem channel configurations. The state of the state of the state of the state on the more processent the hydraulic modeling baselines that match the flood profiles and Floodway Datas states in projection, the FIS report. As a result, the profile baselines may device dation of the floodway that and may apprecisation of the state and may apprecisation of the floodway.


Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have socurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately primted **Map Index** for an overview map of the county showing the inyout of map panels, continuinty map repository addresses, and a using of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is coated.

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMX) 1477-336-2527 for information on available products associated with hird products and the second secon

If you have guestions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-78EMA.MAP (1-877-336-2627) or visit the FEMA webaite at http://www.forma.com/butinese/hfbp. El Paso Country Vertical Datum Offset Table



This Digital Flood insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWOB) and the Federal Emergency Management Agency (FEMA).

> al Flood Hazard 6 from local o

6

LEGEND SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD The 1% annual chance fixed (100-year flood), also known as the base flood, is the flood that bins a 1% chance of being equated or exceeded in any given year. The Special Root Restard Area is the ense suggets to Shoulding by the Shoulding by the Should should be the Should S ZONE A ZONE AE ZONE AH Bood depths of 1 to 3 feet (usually sheet flow on sitisting terrain); average depths determined. For areas of alluvial fan flooding, velocities also determined ZONE AO understreamed. Special Food Hazard Area Formerly protected from the 1% annual chance fload by a flood carbred system that was subsequently descrifted. Zone-Ar indicates that the former fload carbod system is being restored to provide protection from the 1% annual chance or greater fload. Area to be protected from 1% annual chance flood by a Rederal flood probation system under construction; no Base Pland Elevations ZONE V Costal flood zone with velocity texard (wave action); no Base Rood Bevations distermined. ZONE VE Coastal flood zone with velocity fazzrd (wave action); Base Flood Rewattans determined. FLOODWAY AREAS IN ZONE AE The floodway is the channel of a stream plus any adjacent floodplain areas that must be lept free of exclosionment so that the 1% annual chince flood can be carried without substantial screekes in flood heights. OTHER FLOOD AREAS Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot on with drainage areas less than 1 square mile; and areas proboted by levels from 1% annual chance flood. ZONE X OTHER AREAS ZONE X Areas determined to be outside the 0.2% annual charge floods ZONE D Areas in vetsch flood hazards are undetermined, but possible. ZONE X COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS OTHERWISE PROTECTED AREAS (OPAs) CBRS areas and OPAs are Floodalain boundary Roodway boundary ------ ----Zone D Boundary ********* CRRS and CRA beinder . Boundary dividing Special Rood Hazard Areas of differ Rood Elevations, flood depths or flood velocities. ~~ 513 ~~ Rear Fined Fleveling line and value: elevation in fact* Base Flood Elevation value where uniform within zone; elevation in fact* (Ei. 987) * Referenced to the North American Vertical Datum of 1988 (NAVD 88) Cross section line 23--- 23 Geographic coordinates referenced to the North American Debum of 1963 (NAD 83) 97° 07' 30.09° 32° 22' 30.00° 1000-meter Universal Transverse Mexator grid ticks, 2014 13 47500mN 6000000 FT S000-fost grid ticks: Colorado State Plane coordinate system, osrbiel zone (FIPSZONE 6592), Lambert Conformal Conic Projection DX5510 Bench mark (see explanation in Notes to Use this FIRM panel) M1.5 River Mile MAP REPOSITORIES Refer to Map Repositories list on Map EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP MARCH 17, 1897 EFFECTIVE OATE(s) OF REVISION(S) TO THIS PANEL DECEMBER 7, 2018 - to update comparate limits, to change Base Taxod E Special Plood Hazard Areas, to update map format, to and reads and road to update map formations; issued texture of Map Revision. For community map revision history prior to countywide mapping, refer to the Community Map History Table locatest in the Flood Insurance Study report for this juripdiction. To determine if flood insurance is available in this community, contact your insurance agent or call the National Flood Insurance Program at 1-600-638-6620. MAP SCALE 1" = 500" 500 - m m m 1000 METERS Error Front (NFIP PANEL 0339G FIRM NATATONYAL TALOODAINSUURANKEETAKOKEK FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 339 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) CONTAINS: COMMUNITY NUMBER CANEL SLEED. (8659 0236 ELENSO COUNT Edica to Utar. The Map Norther shown below about be used when placing map orders. Its Conversionity Norther have above should be used on insurance applications for he MAP NUMBER 08041C0339G S) MAP REVISED DECEMBER 7, 2018 Federal Emergency Management Agency

NOTES TO USERS

nce Program. It does map is for use in tot necessarily identify all areas subject to flooding, particularly from local drainage ources of small size. The community map repository should be consulted for residie updated or additional flood hazard information.

o obtain more detailed information in areas where Base Flood Ele To obtain more detailed information in areas where Bake Flood Elevations (EFEs) and/or floodways have been determined, users are encouraged to consult the Flood within the Flood instances Shaky (FIS) inport that accompanies this FIRM. Users should be areas that EFEs shown on the FIRM representation of the Flood elevations. These EFEs area intensed for flood elevation interation. Accounting, flood and the flood presentation of the FIGS report should be under the first report whole not be a be as also source of flood elevation interation. Accounting, flood elevation data presented in the FIG report should be utilized in comparation with the FIRM for purposed of consolution and the flood elevation interation. Accounting, flood elevation data presented is consolution and the FIGM report should be utilized in comparation with the FIRM for purposed of consolution and concigation management.

Costal Base Flood Bevetions shown on this map apply only landward of 0.0' Nort American Varical Datum of 1988 (IAVDB8); Users of this FIRM isolad be asser-tiated to the second Summary Icodplain e Inis FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The foodways were based on hydraulic considerations with regard to requirements of the haloand Flood Insurance Program. Foodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this junktickon.

Certain areas not in Special Flood Hazard Areas may be protected by **flood contro** structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insuranc Study report for Information on flood control structures for this subjection.

The projection used in the proparation of this map was Universal Transverse Mercanic (UTM) zone 13. The horizontal datum was NADBS, 03F859 spin-tol production of PTMRs for adjaced injurisdictions may result in sight positional differences in map features across purisdiction boundaries. These differences do not affect the accuracy of the FIRM.

Flood elevations on this reap are referenced to the North American Vartical Data of 1986 (NAVD83). These flood elevations must be contented to shuture a ground elevations inferenced to the same writed adams. To information regardle conversion takeverse the National Geodece Vertical Datam of 1529 and he No American Vertical Datum of 1589, we the National Geodecic Survey website http://www.ngs.nosa.gov/ or contact the National Geodecic Survey at the follow address:

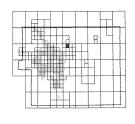
NGS Information Services NOAA, N/NGS12 Notional Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench mark** shown on this map, please contact the information Services Branch of the Nation Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso Caurty, colonado Springs Utätise, City of Fountain, Bureau of Land Management, National Oceanies and Annosphere Administration, United Status Seedogical Survey, and Antiertson Consulting Engineers, Inc. These data are current as of 2006.

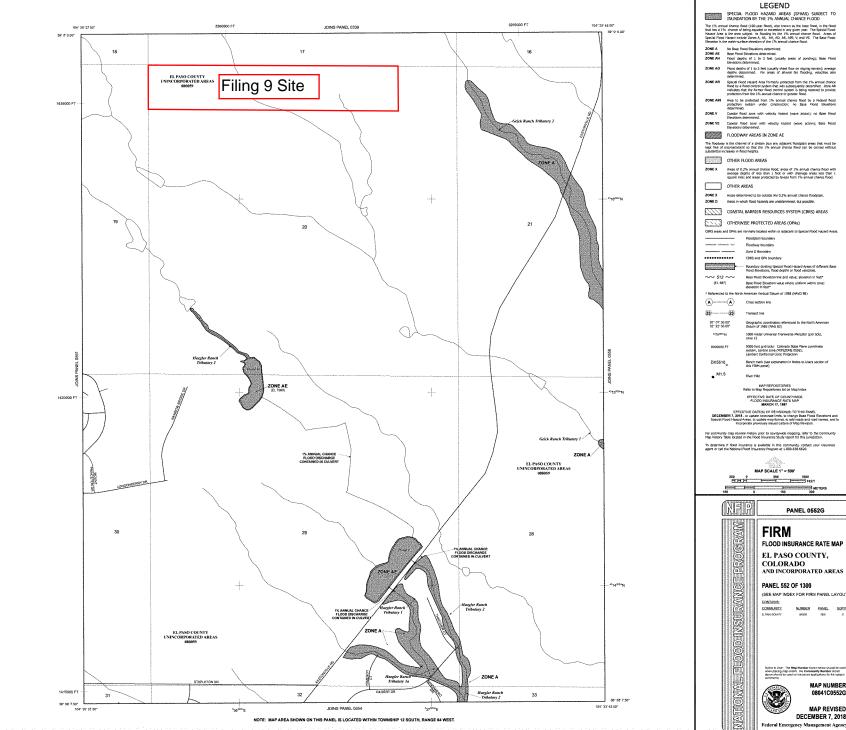
This map effects more datalied and up-to-date stream channel configurations and Bodgalan delineations than those shown on the perioduca FIRM for this juricidian. How been adjusted to confirm to these metament channels and configurations. As a result, the Flood Profiles and Floodeay Date tables in the Flood Insurance Study Report (Inich controls automative vigitation) data is the stream channel of the configurations. As a result, the Flood Profiles and Floodeay Date tables in the Flood Insurance Study Report (Inich controls automative vigitation) data is a stream channel of options and Floodeay Data Tables in profiles in the Flood Insurance Study and Floodeay Data Tables in gradication. In the Floor Botts as a result, the profile baselistics may device of the tooghant.

orporate finites shown on this map are based on the best data available at the time (publication. Because changes due to annorsations or de-annorsations may have courred after this map was published, map users should contact appropriate ammunity officials to verify current corporate limit locations.


Posse refer to the separately printed Map Index for an overview map of the cou-showing the layout of map panets, community map repository addresses, and listing of Communities table containing National Pool focusance Program dates sech community as well as a listing of the panets on which each community coated.

Contact FEMA Map Service Center (MSC) via the FEMA Map Information aXchange (FMIX) 1-877-338-2827 for information on available products associated with the FRMA. Available products may include previously issued. Eathers of Map Charge a PRMA information of the service of the service of the service of the service map of the resolution of the service of the service of the service and the resolution of the service of the service of the service of the Map Zenergy and the service of the service of the service of the service of the Map Zenergy and the service of the service of the service of the service of the Map Zenergy and the service of the servi

If you have questions about this map or questions concerning the National Floor insurance Program in general, please call 1-877-FEMA MAP (1-877-328-2627) or delt the EFMA substrem or bitminium forma merulimitemetricine.



Digital Flood Insurance Rate Map (DFIRM) was produced through a serating Technical Partner (CTP) agreement between the State of Colorado or Conservation Board (CWCB) and the Federal Emergency Management Cooperating Water Con

Boundary dividing Special Flood Hezard Areas of different Base Flood Elevations, flood depths or flood velocities. Base Rood Elevation and and value; elevation in feet* Base Rood Elevation value where uniform within zone; elevation in feet* h American Vertical Datum of 1988 (NAVD 88 Geographic coordinates referenced to the North American Datum of 1983 (NAD 83) 1000-meter Universal Transverse Mercator grid ticks, zinre 13 5000-foot grid tipty: Colorado 58ate Pane coordinate system, central zone (FIPSZONE 0502), Lambert Conformal Conc Projection Bench mark (see explanation in Notes to Users section of this FIRM game') MAP REPOSITORIES Refer to Map Repositories lat on Map Index EFFECTIVE DATE OF COUNTYWO FLOOD INSURANCE RATE MAP MARCH 17, 1997 EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL DECEMBER 7, 2018 - to update corporate limits, to strange Base Flood Ele Special Flood Hasard Arreas, to update program format, to add ready and read in Incorporate providently strange 1 attracts of Man Bavidian For community map revision history prior to countywide mapping, refer to the Community Map History Teble located in the Road Insurance Study report for this jurisdiction. To determine if flood insurance is available in this constantly, contact your insurance agent or call the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1" = 500" METERS PANEL 0552G FIRM FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 552 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT CONTAINS: NUMBER PANEL SUFFIX orato telo d COMMUNITY MAP NUMBER 08041C0552G

MAP REVISED

DECEMBER 7, 2018

APPENDIX B

HYDROLOGIC CALCULATIONS

EXISTING COMPOSITE % IMPERVIOUS/C VALUE CALCULATIONS

Subdivision: Latigo Trails Location: El Paso County

Filing 9 25175.02

GAG

3/21/22

		Hai	rdscape (10	00% Imperv	ious)	Lawns (0% Impervious)				Basin Tota	Basins Total	
Basin ID	Total Area (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted	C ₅	C ₁₀₀	Area (ac)	Weighted		2	Weighted %
	. ,	0	100	. ,	% Imp.	5	100	. ,	% Imp.	C ₅	C ₁₀₀	Imp.
A	7.27	0.90	0.96	0.00	0.0%	0.08	0.35	7.27	0.0%	0.08	0.35	0.0%
В	30.17	0.90	0.96	0.31	1.0%	0.08	0.35	29.86	0.0%	0.09	0.36	1.0%
С	25.25	0.90	0.96	0.00	0.0%	0.08	0.35	25.25	0.0%	0.08	0.35	0.0%
D	13.42	0.90	0.96	0.00	0.0%	0.08	0.35	13.42	0.0%	0.08	0.35	0.0%
E	31.05	0.90	0.96	0.00	0.0%	0.08	0.35	31.05	0.0%	0.08	0.35	0.0%
F	5.74	0.90	0.96	0.23	4.0%	0.08	0.35	5.51	0.0%	0.11	0.37	4.0%
OS1	2.01	0.90	0.96	0.00	0.0%	0.08	0.35	2.01	0.0%	0.08	0.35	0.0%
OS2	2.12	0.90	0.96	0.40	19.0%	0.08	0.35	1.72	0.0%	0.24	0.47	19.0%
OS3	51.16	0.90	0.96	6.86	13.4%	0.08	0.35	44.30	0.0%	0.19	0.43	13.4%
OS4	3.70	0.90	0.96	0.42	11.4%	0.08	0.35	3.28	0.0%	0.17	0.42	11.4%
OS5	3.99	0.90	0.96	0.40	10.0%	0.08	0.35	3.59	0.0%	0.16	0.41	10.0%
OS6	2.33	0.90	0.96	0.23	10.0%	0.08	0.35	2.10	0.0%	0.16	0.41	10.0%
OS7	63.10	0.90	0.96	8.30	13.2%	0.08	0.35	54.80	0.0%	0.19	0.43	13.2%
OS8	68.29	0.90	0.96	7.58	11.1%	0.08	0.35	60.71	0.0%	0.17	0.42	11.1%
TOTAL ON-SITE	112.90											0.5%
TOTAL OFF-SITE	196.70											12.3%
TOTAL SOUTH POND	137.13											11.7%

EXISTING STANDARD FORM SF-2 TIME OF CONCENTRATION

Project Name: Filing 9

Project No.: 25175.02

Calculated By: GAG

Checked By:

Date: 3/21/22

SUB-BASIN																		
		20B-	BASIN			INITIAL/OVERLAND				TRAVEL TIME					tc CHECK			
	DATA					(T _i)				(T _t)					(URBANIZED BASINS)			
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t _i	L _t	S _t	К	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c	
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)	
А	7.27	В	0%	0.08	0.35	200	8.0%	13.1	715	5.7%	15.0	3.6	3.3	16.4	915.0	31.5	16.4	
В	30.17	В	1%	0.09	0.36	200	6.0%	14.3	2420	2.7%	15.0	2.5	16.4	30.7	2620.0	52.7	30.7	
С	25.25	В	0%	0.08	0.35	200	3.8%	16.8	1825	2.4%	15.0	2.3	13.1	29.9	2025.0	47.8	29.9	
D	13.42	В	0%	0.08	0.35	200	3.5%	17.2	1305	3.0%	15.0	2.6	8.4	25.6	1505.0	40.0	25.6	
E	31.05	В	0%	0.08	0.35	200	2.1%	20.4	1500	2.5%	15.0	2.4	10.5	30.9	1700.0	43.6	30.9	
F	5.74	В	4%	0.11	0.37	200	2.6%	18.4	750	3.4%	15.0	2.8	4.5	22.9	950.0	32.4	22.9	

Subdivision: Latigo Trails Location: El Paso County

EXISTING STANDARD FORM SF-2 TIME OF CONCENTRATION

Project Name: Filing 9

Project No.: 25175.02

Calculated By: GAG

Checked By:

Date: 3/21/22

SUB-BASIN INITIAL/OVERLAND TRAVEL TIME tc CHECK																	
		20B-I	BASIN				NITIAL/OVERLAND TRAVEL TIVIE										
		DA	ATA			(T _i)				(T _t)				(L	JRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t,	L _t	S _t	K	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
OS1	2.01	В	0%	0.08	0.35	200	6.0%	14.4	85	0.8%	15.0	1.4	1.0	15.5	285.0	27.7	15.5
OS2	2.12	В	19%	0.24	0.47	30	2.0%	6.8	555	3.9%	15.0	3.0	3.1	9.9	585.0	26.8	9.9
OS3	51.16	В	13%	0.19	0.43	200	5.8%	13.0	1865	3.9%	15.0	2.9	10.5	23.5	2065.0	38.3	23.5
OS4	3.70	В	11%	0.17	0.42	200	3.7%	15.4	515	2.5%	15.0	2.4	3.6	19.0	715.0	29.2	19.0
OS5	3.99	В	10%	0.16	0.41	200	6.4%	13.0	515	2.8%	15.0	2.5	3.4	16.4	715.0	29.3	16.4
OS6	2.33	В	10%	0.16	0.41	200	4.5%	14.6	770	2.0%	15.0	2.1	6.0	20.7	970.0	33.0	20.7
OS7	63.10	В	13%	0.19	0.43	200	7.6%	11.9	2885	2.9%	15.0	2.6	18.8	30.7	3085.0	49.8	30.7
OS8	68.29	В	11%	0.17	0.42	200	4.4%	14.5	3885	2.6%	15.0	2.4	26.9	41.4	4085.0	62.3	41.4

NOTES:

$t_c = t_i + t_t$	Equation	6-2 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S^{0.033}}$	Equation 6-3	Table 6-2. NRCS Conveyance factors, K		
Where:		S, S		Type of Land Surface	Conveyance Factor, K	
		Where:		Heavy meadow	2.5	
t_e = computed time of concentration (minutes)				Tillage/field	5	
t_i = overland (initial) flow time (minutes)		t_i = overland (initial) flow time (minutes) C_5 = runoff coefficient for 5-year frequency (from Table 6-4)		Short pasture and lawns	7	
		$L_i = \text{length of overland flow (ft)}$		Nearly bare ground	10	
$t_{t} = \frac{L_{t}}{L_{t}} = \frac{L_{t}}{L_{t}}$	Equation 6-4	S_0 = average slope along the overland flow path (ft/ft).	Equation 6-5	Grassed waterway	15	
$r_t = 60K\sqrt{S_o} = 60V_t$	Equation o 1	$t_c = (26 - 17i) + \frac{-i}{60(14i + 9)\sqrt{S_r}}$	Equation 0-5	Paved areas and shallow paved swales	20	
Where:		Where:				

 L_t = length of channelized flow path (ft)

i = imperviousness (expressed as a decimal) $S_t =$ slope of the channelized flow path (ft/ft).

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1.

 t_t = channelized flow time (travel time, min) \dot{L}_t = waterway length (ft) So = waterway slope (ft/ft) V_t = travel time velocity (ft/sec) = K $\sqrt{S_o}$

K = NRCS conveyance factor (see Table 6-2).

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

Subdivision: Latigo Trails Location: El Paso County

X:\2510000.all\2517502\Excel\Drainage\2517502_F10_Existing_Drainage_Calcs_v2.07.xlsm

Subdivision: Location: Design Storm:	El Paso	o Coun	<u>ty</u>													P Calc	Project culated hecked	ame: t No.: d By: d By: Date:	25175 GAG	5.02			
		<u> </u>							T (RUNOF		,	STREE	т		PI	DE		TRAV		V.E	
			<u> </u>	DIKL	CTRO					JIALI		<u> </u>	<u> </u>	JIKLL		<u> </u>				INAV			
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	А	7.27	0.08	16.4	0.58	3.38	2.0															Flows overland in the direction of DP1 and flows off-site.
	2	OS1	2.01	0.08	15.5	0.16	3.48	0.6													 		Flows overland towards DP2 and into Basin B. Flows travel overland towards DP4.1 where they combine.
	3	OS2	2.12	0.24	9.9	0.50	4.14	2.1												518	3.4	2.5	Flows in swale towards DP3 and into Basin B. Flows travel overland towards DP4.1 where they combine.
	4	В	30.17	0.09	30.7	2.67	2.45	6.5															Flows overland in the direction of DP4. Flows combine at DP4.1.
	4.1								30.7	3.33	2.45	8.2											Combination of flows from DP2, DP3, and DP4. Flows continue off- site.
	5	OS3	51.16	0.19	23.5	9.71	2.84	27.6															Flows overland towards DP5 and into Basin C. Flows travel overland towards DP7.1 where they combine.
	6	OS4	3.70	0.17	19.0	0.64	3.17	2.0															Flows overland towards DP6 and into Basin C. Flows travel overland towards DP7.1 where they combine.
	7	С	25.25	0.08	29.9	2.02	2.49	5.0															Flows overland in the direction of DP7. Flows combine at DP7.1.
	7.1			 					29.9	12.37	2.49	30.8									 		Combination of flows from DP5, DP6, and DP7. Flows continue off- site.
	8	OS5	3.99	0.16	16.4	0.65	3.38	2.2													 		Flows overland towards DP8 and into Basin D. Flows travel overland towards DP9.1 where they combine.
	9	D	13.42	0.08	25.6	1.07	2.72	2.9															Flows overland in the direction of DP9. Flows combine at DP9.1.
	9.1								25.6	1.72	2.72	4.7											Combination of flows from DP8 and DP9. Flows continue off-site.
	1 /	1 '		, I			'		i			1	1	1 '		i	i I	i I		1	. 1	1	

Project Name:	Filing 9
Project No.:	25175.02
Calculated By:	GAG
Checked By:	

Subdivision: <u>Latigo Trails</u> Location: <u>El Paso County</u> Design Storm: <u>5-Year</u>

Date: 3/21/22

	1	r			CT RUI				т		RUNOF	г		STREE	т		PI	DE		TRAV		4	
				DIRE		NOLL			10	JIALI	KUINUF	F		SIREE	1		PI	PE		IKAV	EL III	/IE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Q _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	10	OS6	2.33	0.16	20.7	0.38	3.04	1.2															Flows overland towards DP10 and into Basin E. Flows travel overland towards DP11.1 where they combine.
	11	E	31.05	0.08	30.9	2.48	2.44	6.0															Flows overland in the direction of DP11. Flows combine at DP11.1.
	11.1								30.9	2.86	2.44	7.0											Combination of flows from DP10 and DP11. Flows continue off-site.
	12	OS7	63.10	0.19	30.7	11.85	2.44	29.0															Flows overland towards DP12 and into Basin F. Flows travel overland towards DP13.1 where they combine.
	13	F	5.74	0.11	22.9	0.65	2.89	1.9															Flows overland in the direction of DP13. Flows combine at DP13.1.
	13.1								30.7	12.50	2.44	30.6											Combination of flows from DP12 and DP13. Flows combine at DP14.1.
	14	OS8	68.29	0.17	41.4	11.68	2.00	23.3															Flows overland in the direction of DP14. Flows combine at DP14.1.
	14.1								41.4	24.18	2.00	48.3											Represents the flow to the existing South Pond. Combines DP13.1 and DP14 flows. Flows are released at pond outlet.

Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

Subdivisior Locatior Design Storn	n: El Paso	Coun	<u>ty</u>													P Calc	roject ulatec hecke	ame: No.: d By: d By: d By: Date:	2517 GAG	5.02			
				DIRE	CT RU	NOFF			1	OTAL	RUNOF	F	0	STREE	T		PI	PE		TRAV	EL TI	ME	
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	А	7.27	0.35	16.4	2.54	5.68	14.4															Flows overland in the direction of DP1 and flows o site.
			1.21	0.00	10.1	2.01	0.00																5HC.
	2	OS1	2.01	0.35	15.5	0.70	5.83	4.1															Flows overland towards DP2 and into Basin B. Flo travel overland towards DP4.1 where they combin
																							Flows in swale towards DP3 and into Basin B. Flow
	3	OS2	2.12	0.47	9.9	0.99	6.96	6.9												518	4.7	1.8	travel overland towards DP4.1 where they combin Flows overland in the direction of DP4. Flows
	4	В	30.17	0.36	30.7	10.75	4.11	44.2															combine at DP4.1.
	4.1								30.7	12.44	4.11	51.1											Combination of flows from DP2, DP3, and DP4. Flo continue off-site.
	5	OS3	51.16	0.43	23.5	22.09	4.77	105 5															Flows overland towards DP5 and into Basin C. Flo travel overland towards DP7.1 where they combi
		000						100.0															Flows overland towards DP6 and into Basin C. Flo
	6	OS4	3.70	0.42	19.0	1.55	5.32	8.2															travel overland towards DP7.1 where they combi Flows overland in the direction of DP7. Flows
	7	С	25.25	0.35	29.9	8.84	4.18	36.9															combine at DP7.1.
	7.1								29.9	32.48	4.18	135.6											Combination of flows from DP5, DP6, and DP7. Fl continue off-site.
	8	OS5	3.99	0.41	16.4	1.64	5.68	9.3															Flows overland towards DP8 and into Basin D. Flo travel overland towards DP9.1 where they combi
	9	D	13.42	0.35	25.6	4.70	4.56	21.5															Flows overland in the direction of DP9. Flows combine at DP9.1.
	9.1								25.6	6.34	4.56	28.9											Combination of flows from DP8 and DP9. Flows continue off-site.

				DIRE	CT RUI	NOFF			Т	OTAL F	RUNOF	F	S	STREE	Γ			Date: PE	3/21/		'EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	10	OS6	2.33	0.41	20.7	0.96	5.10	4.9															Flows overland towards DP10 and into Basin E. Flo travel overland towards DP11.1 where they combi
	11	E	31.05			10.87																	Flows overland in the direction of DP11. Flows combine at DP11.1.
	11.1								30.9	11.83	4.09	48.4											Combination of flows from DP10 and DP11. Flows continue off-site.
	12	OS7	63.10	0.43	30.7	27.15	4.10	111.4															Flows overland towards DP12 and into Basin F. Flo travel overland towards DP13.1 where they comb
	13	F	5.74	0.37	22.9	2.15	4.85	10.4															Flows overland in the direction of DP13. Flows combine at DP13.1.
	13.1								30.7	29.30	4.10	120.2											Combination of flows from DP12 and DP13. Flows combine at DP14.1.
	14	OS8	68.29	0.42	41.4	28.52	3.35	95.6															Flows overland in the direction of DP14. Flows combine at DP14.1.
	14.1								41.4	57.82	3.35	193.8											Represents the flow to the existing South Pond. Combines DP13.1 and DP14 flows. Flows are relea

Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

PROPOSED COMPOSITE % IMPERVIOUS/C VALUE CALCULATIONS

Subdivision: <u>Latigo Trails</u> Location: <u>El Paso County</u>

Filing 9	
25175.02	
GAG	

4/6/22

		Ha	rdscape (10	0% Imperv	ious)		Lawns (0% I	mpervious)		Basin Tota	l Weighted	
Basin ID	Total Area (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted %	C ₅	C ₁₀₀	Area (ac)	Weighted	(C -	Basins Total Weighted % Imp.
Dasin iD	Total Area (ac)	05	0100	Alea (ac)	Imp.	05	°100	Alea (ac)	% Imp.	C ₅	C ₁₀₀	weighted %imp.
A	1.58	0.90	0.96	0.35	22.0%	0.08	0.35	1.23	0.0%	0.26	0.48	22.0%
В	8.71	0.90	0.96	1.09	12.5%	0.08	0.35	7.62	0.0%	0.18	0.43	12.5%
С	5.43	0.90	0.96	0.70	12.9%	0.08	0.35	4.73	0.0%	0.19	0.43	12.9%
D	7.22	0.90	0.96	0.95	13.2%	0.08	0.35	6.27	0.0%	0.19	0.43	13.2%
E	10.46	0.90	0.96	1.44	13.7%	0.08	0.35	9.02	0.0%	0.19	0.43	13.7%
F	6.51	0.90	0.96	1.04	16.0%	0.08	0.35	5.47	0.0%	0.21	0.45	16.0%
G	2.42	0.90	0.96	1.32	54.7%	0.08	0.35	1.10	0.0%	0.53	0.68	54.7%
Н	8.65	0.90	0.96	1.18	13.6%	0.08	0.35	7.48	0.0%	0.19	0.43	13.6%
I	0.62	0.90	0.96	0.00	0.0%	0.08	0.35	0.62	0.0%	0.08	0.35	0.0%
J	4.56	0.90	0.96	1.53	33.5%	0.08	0.35	3.03	0.0%	0.35	0.55	33.5%
К	3.78	0.90	0.96	0.38	10.0%	0.08	0.35	3.40	0.0%	0.16	0.41	10.0%
L	2.02	0.90	0.96	0.00	0.0%	0.08	0.35	2.02	0.0%	0.08	0.35	0.0%
М	15.65	0.90	0.96	1.57	10.0%	0.08	0.35	14.09	0.0%	0.16	0.41	10.0%
Ν	10.54	0.90	0.96	1.05	10.0%	0.08	0.35	9.49	0.0%	0.16	0.41	10.0%
0	5.87	0.90	0.96	0.59	10.0%	0.08	0.35	5.28	0.0%	0.16	0.41	10.0%
Р	13.14	0.90	0.96	1.31	10.0%	0.08	0.35	11.83	0.0%	0.16	0.41	10.0%
OS1	2.01	0.90	0.96	0.00	0.0%	0.08	0.35	2.01	0.0%	0.08	0.35	0.0%
OS2	2.12	0.90	0.96	0.40	19.0%	0.08	0.35	1.72	0.0%	0.24	0.47	19.0%
OS3	51.16	0.90	0.96	6.86	13.4%	0.08	0.35	44.30	0.0%	0.19	0.43	13.4%
OS4	3.70	0.90	0.96	0.42	11.4%	0.08	0.35	3.28	0.0%	0.17	0.42	11.4%
OS5	3.99	0.90	0.96	0.40	10.0%	0.08	0.35	3.59	0.0%	0.16	0.41	10.0%
OS6	2.33	0.90	0.96	0.23	10.0%	0.08	0.35	2.10	0.0%	0.16	0.41	10.0%
OS7	63.10	0.90	0.96	8.30	13.2%	0.08	0.35	54.80	0.0%	0.19	0.43	13.2%
OS8	68.37	0.90	0.96	9.24	13.5%	0.08	0.35	59.14	0.0%	0.19	0.43	13.5%
TOTAL ON-SITE	107.16											13.5%
TOTAL OFF-SITE	196.78											13.1%
TOTAL SOUTH POND	237.10											13.8%
TOTAL G1 POND	15.22											17.7%

PROPOSED STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: <u>Latigo Trails</u> Location: <u>El Paso County</u> Project Name: Filing 9

Project No.: 25175.02

Calculated By: GAG

Checked By:

Date: 4/6/22

		SUB-I	BASIN			INITI	AL/OVERI	LAND		Т	RAVEL TIM	E			tc CHECK		
		DA	ATA				(T _i)				(T _t)			(U	IRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C_5	C ₁₀₀	L	S _o	t _i	L _t	S _t	K	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
А	1.58	В	22%	0.26	0.48	90	5.0%	8.5	480	4.2%	15.0	3.1	2.6	11.1	570.0	25.5	11.1
В	8.71	В	13%	0.18	0.43	200	3.8%	15.1	830	2.7%	15.0	2.5	5.6	20.7	1030.0	31.7	20.7
С	5.43	В	13%	0.19	0.43	200	2.8%	16.6	585	2.3%	15.0	2.3	4.3	20.9	785.0	29.8	20.9
D	7.22	В	13%	0.19	0.43	200	3.5%	15.4	715	2.9%	15.0	2.5	4.7	20.1	915.0	30.2	20.1
E	10.46	В	14%	0.19	0.43	200	4.5%	14.1	1360	2.2%	15.0	2.2	10.3	24.4	1560.0	37.8	24.4
F	6.51	В	16%	0.21	0.45	200	2.6%	16.5	795	3.5%	15.0	2.8	4.7	21.3	995.0	29.6	21.3
G	2.42	В	55%	0.53	0.68	28	2.0%	4.3	3520	2.2%	20.0	2.9	20.0	24.3	3548.0	40.7	24.3
Н	8.65	В	14%	0.19	0.43	200	6.0%	12.9	775	3.4%	15.0	2.8	4.6	17.5	975.0	30.1	17.5
I	0.62	В	0%	0.08	0.35	200	7.1%	13.6	155	7.3%	15.0	4.1	0.6	14.3	355.0	27.1	14.3
J	4.56	В	33%	0.35	0.55	200	7.7%	9.7	650	5.2%	15.0	3.4	3.2	12.9	850.0	23.8	12.9
К	3.78	В	10%	0.16	0.41	200	14.7%	9.9	570	3.9%	15.0	3.0	3.2	13.1	770.0	28.9	13.1
L	2.02	В	0%	0.08	0.35	200	3.0%	18.1	180	3.0%	15.0	2.6	1.2	19.3	380.0	27.9	19.3
М	15.65	В	10%	0.16	0.41	200	6.6%	12.8	995	2.3%	15.0	2.3	7.3	20.1	1195.0	34.8	20.1
Ν	10.54	В	10%	0.16	0.41	200	3.4%	16.0	1065	2.6%	15.0	2.4	7.3	23.4	1265.0	34.9	23.4
0	5.87	В	10%	0.16	0.41	200	3.0%	16.7	625	3.8%	15.0	2.9	3.6	20.2	825.0	29.5	20.2
Р	13.14	В	10%	0.16	0.41	200	7.4%	12.4	1130	2.8%	15.0	2.5	7.5	19.9	1330.0	35.2	19.9

PROPOSED STANDARD FORM SF-2 TIME OF CONCENTRATION

Project Name: Filing 9 Project No.: 25175.02

Calculated By: GAG

Checked By:

Date: 4/6/22

		SUB-I	BASIN			INITI	AL/OVER	LAND		Т	RAVEL TIM	E			tc CHECK		
		DA	ATA				(T _i)				(T _t)			(U	RBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t i	L _t	S _t	К	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
OS1	2.01	В	0%	0.08	0.35	200	6.0%	14.4	85	0.8%	15.0	1.4	1.0	15.5	285.0	27.7	15.5
OS2	2.12	В	19%	0.24	0.47	30	2.0%	6.8	555	3.9%	15.0	3.0	3.1	9.9	585.0	26.8	9.9
OS3	51.16	В	13%	0.19	0.43	200	5.8%	13.0	1865	3.9%	15.0	2.9	10.5	23.5	2065.0	38.3	23.5
OS4	3.70	В	11%	0.17	0.42	200	3.7%	15.4	515	2.5%	15.0	2.4	3.6	19.0	715.0	29.2	19.0
OS5	3.99	В	10%	0.16	0.41	200	6.4%	13.0	515	2.8%	15.0	2.5	3.4	16.4	715.0	29.3	16.4
OS6	2.33	В	10%	0.16	0.41	200	4.5%	14.6	770	2.0%	15.0	2.1	6.0	20.7	970.0	33.0	20.7
OS7	63.10	В	13%	0.19	0.43	200	7.6%	11.9	2885	2.9%	15.0	2.6	18.8	30.7	3085.0	49.8	30.7
OS8	68.37	В	14%	0.19	0.43	200	4.4%	14.2	3885	2.6%	15.0	2.4	26.9	41.1	4085.0	60.7	41.1

NOTES:

$t_c = t_i + t_t$	Equation	6-2 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S^{0.33}}$	Equation 6-3	Table 6-2. NRCS Convey	ance factors, K
Where:		. S _o		Type of Land Surface	Conveyance Factor, K
where.		Where:		Heavy meadow	2.5
t_c = computed time of concentration (minutes)				Tillage/field	5
t_i = overland (initial) flow time (minutes)		t_i = overland (initial) flow time (minutes) C_5 = runoff coefficient for 5-year frequency (from Table 6-4)		Short pasture and lawns	7
		$L_i = $ length of overland flow (ft)		Nearly bare ground	10
$t = \frac{L_t}{L_t} = \frac{L_t}{L_t}$	Equation 6-4	$S_o =$ average slope along the overland flow path (ft/ft).		Grassed waterway	15
$t_t = \frac{-t}{60K\sqrt{S_o}} = \frac{-t}{60V_t}$	Equation of	$t_{e} = (26 - 17i) + \frac{-\tau_{e}}{60(14i + 9)\sqrt{S_{e}}}$	Equation 6-5	Paved areas and shallow paved swales	20
Where:		Where:			
$t_{\rm r}$ = channelized flow time (travel time min)					

 $L_t =$ waterway length (ft) $L_1 - \text{waterway length (h)}$ $S_0 = \text{waterway slope (ft/ft)}$ $V_i = \text{travel time velocity (ft/sec)} = K \sqrt{S_0}$ K = NRCS conveyance factor (see Table 6-2). t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1.

 L_t = length of channelized flow path (ft)

i = imperviousness (expressed as a decimal)

 S_t = slope of the channelized flow path (ft/ft).

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

Subdivision: Latigo Trails Location: El Paso County

Project Name:	Filing 9
Project No.:	25175.02
Calculated By:	GAG
Checked By:	

Subdivision: <u>Latigo Trails</u> Location: <u>El Paso County</u> Design Storm: <u>5-Year</u>

Date: 4/6/22

	-																						
				DIRE	ECT RUI	NOFF			Т	OTAL F	RUNOF	F	0	STREE	T		PI	PE		TRAV	EL TIN	/IE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t_t (min)	REMARKS
																							Flows overland towards DP1 and into A. Flows enter
	1	OS2	2.12	0.24	9.9	0.50	4.14	2.1												518	3.4	2.5	
																							Flows overland towards roadway swale and then to
	2	A	1.58	0.26	11.1	0.41	3.98	1.6															DP2. Flows combine at DP2.1.
																							Combination of flows from DP1 and DP2. Flows along
	2.1								12.4	0.91	3.80	3.5								595	4.0	2.5	
																							Flows overland towards DP3 and into B. Flows
	3	OS3	51.16	0.19	23.5	9.71	2.84	27.6															combine at DP4.1.
		_																					Flows overland towards DP4. Flows enter roadway
	4	В	8.71	0.18	20.7	1.59	3.04	4.8															swale and combine at DP4.1
	4.1								00 F	10.01	2.04	247								4.40	. 1	1.0	Combination of flows from DP2.1, DP3, and DP4. Flows
	4.1								23.5	12.21	2.84	34.7								442	4.1	1.8	along swale to DP6.1. Flows overland towards DP5 and into C. Flows
	_	004	2 70	0.17	10.0	0 / 4	0.17	2.0															
	5	OS4	3.70	0.17	19.0	0.64	3.17	2.0					-										combine at DP6.1. Flows overland towards DP6. Flows enter roadway
	6	С	5.43	0.19	20.9	1.01	3.02	3.1															swale and combine at DP6.1
	0	U	5.45	0.19	20.9	1.01	3.02	J. I															Combination of flows from DP4.1, DP5, and DP6. Flows
	6.1								25.3	13.86	2 7 2	37.9								627	65	1.6	
	0.1								23.3	13.00	2.75	57.7								027	0.5	1.0	Flows overland towards DP7 and into D. Flows
	7	OS5	3 99	0.16	16.4	0.65	3.38	2.2															combine at DP8.1.
	<i>'</i>	000	0.77	0.10	10.1	0.00	0.00	2.2															Flows overland towards DP8. Flows enter roadway
	8	D	7.22	0.19	20.1	1.36	3.08	4.2															swale and combine at DP8.1
	-																						Combination of flows from DP6.1, DP7, and DP8. Flows
	8.1								27.0	15.87	2.64	41.9								1041	7.4	2.3	along swale to DP10.1.
																							Flows overland towards DP9 and into E. Flows combine
	9	OS6	2.33	0.16	20.7	0.38	3.04	1.2															at DP10.1.
																							Flows overland towards DP10. Flows enter roadway
	10	E	10.46	0.19	24.4	2.01	2.79	5.6															swale and combine at DP10.1
																							Combination of flows from DP8.1, DP9, and DP10.
	10.1		1						29.3	18.26	2.52	46.0								189	7.7	0.4	Flows along swale to DP12.1.

Project Name:	
Project No.:	
Calculated By:	GAG
Checked By:	
Date:	4/6/22

Subdivision: <u>Latigo Trails</u> Location: <u>El Paso County</u> Design Storm: <u>5-Year</u>

				DIRE	CT RU	NOFF			T	OTAL F	RUNOF	F	(STREE	T		PI	PE		TRAV	'EL TIN	ЛЕ	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t_t (min)	REMARKS
	11	OS7	62 10	0 10	20.7	11.85	2.44	29.0												425	2.9	2.4	Flows overland towards DP11 and into F. Flows combine at DP12.1.
		037	03.10	0.17	30.7	11.05	Z.44	27.0												42J	2.7	2.4	Flows overland towards DP12. Flows enter roadway
	12	F	6 5 1	0 21	21.3	1.37	3.00	4.1															swale and combine at DP12.1
	12.1		0.01	0.21	2110	1107	0.00		33.2	31.48	2.33	73.3											Combination of flows from DP10.1, DP11, and DP12. Flows along swale to DP13.1.
																							Flow along south roadway towards DP13. Flows
	13	G	2.42	0.53	24.3	1.28	2.80	3.6															combine at DP13.1
																							Combination of flows from DP12.1 and DP13. Flows
	13.1								33.2	32.76	2.33	76.3											along swale to DP14.1.
																							Flows overland towards DP14. Flows enter swale and
	14	058	68.37	0.19	41.1	13.04	2.01	26.2															combine at DP14.1 Combination of flows from DP13.1 and DP14. Flows
	14.1								11 1	45.80	2.01	92.0											
	14.1								41.1	45.60	2.01	92.0											along swale to South Pond.
																							Flows overland towards DP15 and into H. Flows
	15	OS1	2.01	0.08	15.5	0.16	3.48	0.6															combine at DP16.1.
																							Flows overland towards DP16. Flows combine at
	16	Н	8.65	0.19	17.5	1.66	3.29	5.5															DP16.1.
																						_	Combination of flows from DP15 and DP16. Flows
	16.1								17.5	1.82	3.29	6.0								820	2.4	5.7	
	17	J	4.56	0.35	12.9	1.62	3.75	6.1															Flows overland towards DP17. Flows along swale to DP17.1.
																				Combination of flows from DP16.1 and DP17. Total			
	17.1	17.1				23.2	3.44	2.87	9.9											flow into G1 Pond.			

Project Name:	
Project No.:	
Calculated By:	GAG
Checked By:	

Subdivision: <u>Latigo Trails</u> Location: <u>El Paso County</u> Design Storm: <u>5-Year</u>

Date: 4/6/22

		DIRECT RUNOFF TOTAL RUNOFF STREET PIPE																						
				DIRE	CT RUN	NOFF			T	OTAL	runo	FF		STREE	Т		PI	PE		TRAV	'EL TIN	ЛE		
STREET	Design Point	Basin ID	Basin ID Area (Ac) Runoff Coeff. t _c (min) t _c (min) C*A (Ac) I (in/hr) I (cfs) Q (cfs)		Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS				
	18	к	3.78	0.16	13.1	0.61	3.73	2.3															Flows overland in the direction of DP19 and flows off- site.	
																							Flows overland in the direction of DP19 and flows off-	
	19	1	0.62	0.08	14.3	0.05	3.60	0.2															site.	
	20	L	2.02	0.08	19.3	0.16	3.14	0.5															Flows overland in the direction of DP20 and flows off- site.	
	21	М	15.65	0.16	20.1	2.54	3.08	7.8															Flows overland in the direction of DP21 and flows off- site.	
	22	N	10.54	0.16	23.4	1.71	2.86	4.9															Flows overland in the direction of DP22 and flows off- site.	
	23	0					3.07																Flows overland in the direction of DP23 and flows off- site.	
	24	Р					3.10																Flows overland in the direction of DP24 and flows off- site.	

Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

Project Name:	Filing 9
Project No.:	25175.02
Calculated By:	GAG
Checked By:	
Date:	4/6/22

Subdivision: <u>Latigo Trails</u> Location: <u>El Paso County</u> Design Storm: <u>100-Year</u>

				DIRE	CT RU	NOFF				TOTAL R	UNOF	F	0	STREE	Т		PI	IPE		TRAV	EL TIN	1E	
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
																							Flows overland towards DP1 and into A. Flows enter
	1	OS2	2.12	0.47	9.9	0.99	6.96	6.9											-	518	4.7	1.8	
																							Flows overland towards roadway swale and then to
	2	A	1.58	0.48	11.1	0.77	6.68	5.1															DP2. Flows combine at DP2.1.
																							Combination of flows from DP1 and DP2. Flows along
	2.1								11.7	1.76	6.53	11.5								595	5.4	1.8	
																							Flows overland towards DP3 and into B. Flows
	3	OS3	51.16	0.43	23.5	22.09	4.77	105.5															combine at DP4.1.
																							Flows overland towards DP4. Flows enter roadway
	4	В	8.71	0.43	20.7	3.71	5.10	18.9															swale and combine at DP4.1
																							Combination of flows from DP2.1, DP3, and DP4.
	4.1								23.5	27.56	4.77	131.6								442	5.7	1.3	
	-	001	0.70	0.40	10.0	4 55	5 00																Flows overland towards DP5 and into C. Flows
	5	OS4	3.70	0.42	19.0	1.55	5.32	8.2															combine at DP6.1.
	,	0	F 40	0.40	20.0	2.22	F 07	11.0															Flows overland towards DP6. Flows enter roadway
	6	С	5.43	0.43	20.9	2.33	5.07	11.8															swale and combine at DP6.1 Combination of flows from DP4.1, DP5, and DP6.
	4 1								24.8	31.44	4.64	145.9								627	9.1	1.1	
	6.1								24.8	31.44	4.04	145.9								027	9.1	1.1	Flows along swale to DP8.1. Flows overland towards DP7 and into D. Flows
	7	OS5	3.99	0.41	16.4	1.64	5.68	9.3															combine at DP8.1.
	/	035	3.99	0.41	10.4	1.04	5.06	9.5															Flows overland towards DP8. Flows enter roadway
	8	D	7.22	0.43	20.1	3.11	5.18	16.1															swale and combine at DP8.1
	0	U	1.22	0.43	20.1	3.11	5.10	10.1															Combination of flows from DP6.1, DP7, and DP8.
	8.1								26.0	36.19	4.53	163.8								10/1	10.4	1.7	
	0.1								20.0	50.17	ч.55	100.0								1041	10.4	1.7	Flows overland towards DP9 and into E. Flows
	9	OS6	2.33	0.41	20.7	0.96	5.10	4.9															combine at DP10.1.
	,	000	2.00	0.11	20.7	0.70	0.10	1.7															Flows overland towards DP10. Flows enter roadway
	10	Е	10.46	.46 0.43 24.4 4.54 4.68 21.				21.3															swale and combine at DP10.1
																					Combination of flows from DP8.1, DP9, and DP10.		
	10.1								27.7	41.69	4.37	182.1								189	10.9	0.3	Flows along swale to DP12.1.

Project Name:	Filing 9
Project No.:	
Calculated By:	GAG
Checked By:	
Date:	4/6/22

Subdivision: <u>Latigo Trails</u> Location: <u>El Paso County</u> Design Storm: <u>100-Year</u>

				DIRE	CT RU	NOFF				TOTAL I	RUNOF	F	9	STREE	Г		PI	PE		TRAV	'EL TIN	ЛE			
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t_t (min)	REMARKS		
	11	OS7	63.10	0.43	20.7	27.15	4 10	111.4												425	4.2	1.7	Flows overland towards DP11 and into F. Flows combine at DP12.1.		
	12	F	6.51	0.45				14.6												423	4.2	1.7	Flows overland towards DP12. Flows enter roadway swale and combine at DP12.1		
	12.1		0.01	0110	2110	2.77	0.00	1110	32.4	71.75	3.97	284.6											Combination of flows from DP10.1, DP11, and DP12. Flows along swale to DP13.1.		
	13	G	2.42	0.68	24.3	1.65	4.69	7.7															Flow along south roadway towards DP13. Flows combine at DP13.1		
	13.1								32.4	73.40	3.97	291.2											Combination of flows from DP12.1 and DP13. Flows along swale to DP14.1.		
	14	OS8	68.37	0.43	41.1	29.56	3.37	99.6															Flows overland towards DP14. Flows enter swale and combine at DP14.1		
	14.1								41.1	102.96	3.37	347.0											Combination of flows from DP13.1 and DP14. Flows along swale to South Pond.		
																							Flows overland towards DP15 and into H. Flows		
	15	OS1	2.01	0.35	15.5	0.70	5.83	4.1															combine at DP16.1.		
	16	Н	8.65	0.43	17.5	3.74	5.52	20.6															Flows overland towards DP16. Flows combine at DP16.1.		
	16.1								17.5	4.44	5.52	24.5								820	3.4	4.0			
	17	J	4.56	0.55	12.9	2.53	6.30	15.9															Flows overland towards DP17. Flows along swale to DP17.1.		
	17.1								21.5	6.97	5.00	34.9											Combination of flows from DP16.1 and DP17. Total flow into G1 Pond.		

Project Name:	
Project No.:	25175.02
Calculated By:	GAG
Checked By:	

Subdivision: <u>Latigo Trails</u> Location: <u>El Paso County</u> Design Storm: <u>100-Year</u>

Date:	4/6/22
Date.	4/0/22

-									TOTAL RUNOFF STREET PIPE														
				DIRE	CT RUN	NOFF				TOTAL	RUNO	F		STREE	Γ		PI	PE		TRAV	'EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	l (in/hr) Q (cfs)		tc (min) tc (ac) t (in/hr) O (cfs)		Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	18	К	3.78	0.41	13.1	1.55	6.26	9.7															Flows overland in the direction of DP18 and flows off- site.
	19		0.62	0.35	14.3	0.22	6.04	1.3															Flows overland in the direction of DP19 and flows off- site.
	20		2.02				5.28																Flows overland in the direction of DP20 and flows off- site.
		L																					Flows overland in the direction of DP21 and flows off-
	21	Μ	15.65	0.41	20.1	6.43	5.17	33.3															site. Flows overland in the direction of DP22 and flows off-
	22	N	10.54	0.41	23.4	4.33	4.79	20.8															site. Flows overland in the direction of DP23 and flows off-
	23	0	5.87	0.41	20.2	2.41	5.16	12.4															site. Flows overland in the direction of DP24 and flows off-
	24	Р	13.14	0.41	19.9	5.40	5.20	28.1															site.

Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

ULTIMATE COMPOSITE % IMPERVIOUS/C VALUE CALCULATIONS

Subdivision: <u>Latigo Trails</u> Location: <u>El Paso County</u> Filing 9-Ultimate

25175.02 GAG

.....

4/7/22

		На	rdscape (10	0% Imperv	ious)		Lawns (0% I	mpervious)		Basin Tota	Basins Total	
Basin ID	Total Area (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted %	C ₅	C ₁₀₀	Area (ac)	Weighted		C	Weighted %
Businite		55	0100	71100 (00)	Imp.	5	0100	711 CC (UC)	% Imp.	C ₅	C ₁₀₀	Imp.
A	1.58	0.90	0.96	0.35	22.0%	0.08	0.35	1.23	0.0%	0.26	0.48	22.0%
В	8.71	0.90	0.96	1.09	12.5%	0.08	0.35	7.62	0.0%	0.18	0.43	12.5%
С	5.43	0.90	0.96	0.70	12.9%	0.08	0.35	4.73	0.0%	0.19	0.43	12.9%
D	7.22	0.90	0.96	0.95	13.2%	0.08	0.35	6.27	0.0%	0.19	0.43	13.2%
E	10.46	0.90	0.96	1.44	13.7%	0.08	0.35	9.02	0.0%	0.19	0.43	13.7%
F	6.51	0.90	0.96	1.04	16.0%	0.08	0.35	5.47	0.0%	0.21	0.45	16.0%
G	2.42	0.90	0.96	1.32	54.7%	0.08	0.35	1.10	0.0%	0.53	0.68	54.7%
Н	8.65	0.90	0.96	1.18	13.6%	0.08	0.35	7.48	0.0%	0.19	0.43	13.6%
I	0.62	0.90	0.96	0.00	0.0%	0.08	0.35	0.62	0.0%	0.08	0.35	0.0%
J	4.56	0.90	0.96	1.53	33.5%	0.08	0.35	3.03	0.0%	0.35	0.55	33.5%
К	3.78	0.90	0.96	0.38	10.0%	0.08	0.35	3.40	0.0%	0.16	0.41	10.0%
L	2.02	0.90	0.96	0.00	0.0%	0.08	0.35	2.02	0.0%	0.08	0.35	0.0%
М	15.65	0.90	0.96	1.57	10.0%	0.08	0.35	14.09	0.0%	0.16	0.41	10.0%
Ν	10.54	0.90	0.96	1.05	10.0%	0.08	0.35	9.49	0.0%	0.16	0.41	10.0%
0	5.87	0.90	0.96	0.59	10.0%	0.08	0.35	5.28	0.0%	0.16	0.41	10.0%
Р	13.14	0.90	0.96	1.31	10.0%	0.08	0.35	11.83	0.0%	0.16	0.41	10.0%
OS1	2.01	0.90	0.96	0.00	0.0%	0.08	0.35	2.01	0.0%	0.08	0.35	0.0%
OS2	2.12	0.90	0.96	0.40	19.0%	0.08	0.35	1.72	0.0%	0.24	0.47	19.0%
OS3	51.16	0.90	0.96	6.86	13.4%	0.08	0.35	44.30	0.0%	0.19	0.43	13.4%
OS4	3.70	0.90	0.96	0.42	11.4%	0.08	0.35	3.28	0.0%	0.17	0.42	11.4%
OS5	3.99	0.90	0.96	0.40	10.0%	0.08	0.35	3.59	0.0%	0.16	0.41	10.0%
OS6	2.33	0.90	0.96	0.23	10.0%	0.08	0.35	2.10	0.0%	0.16	0.41	10.0%
OS7	63.10	0.90	0.96	8.30	13.2%	0.08	0.35	54.80	0.0%	0.19	0.43	13.2%
OS8	68.37	0.90	0.96	12.20	17.8%	0.08	0.35	56.17	0.0%	0.23	0.46	17.8%
TOTAL ON-SITE	107.16											13.5%
TOTAL OFF-SITE	196.78											14.6%
TOTAL SOUTH POND	237.10											15.1%
TOTAL G1 POND	15.22											17.7%

ULTIMATE STANDARD FORM SF-2 TIME OF CONCENTRATION

Project Name: Filing 9-Ultimate

Project No.: 25175.02

Calculated By: GAG

Checked By:

Date: 4/7/22

		SUB-I	BASIN			INITI	AL/OVERI	AND		Т	RAVEL TIM	E			tc CHECK		
		DA	ATA				(T _i)				(T _t)			(U	JRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t _i	L _t	S _t	К	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
А	1.58	В	22%	0.26	0.48	90	5.0%	8.5	480	4.2%	15.0	3.1	2.6	11.1	570.0	25.5	11.1
В	8.71	В	13%	0.18	0.43	200	3.8%	15.1	830	2.7%	15.0	2.5	5.6	20.7	1030.0	31.7	20.7
С	5.43	В	13%	0.19	0.43	200	2.8%	16.6	585	2.3%	15.0	2.3	4.3	20.9	785.0	29.8	20.9
D	7.22	В	13%	0.19	0.43	200	3.5%	15.4	715	2.9%	15.0	2.5	4.7	20.1	915.0	30.2	20.1
E	10.46	В	14%	0.19	0.43	200	4.5%	14.1	1360	2.2%	15.0	2.2	10.3	24.4	1560.0	37.8	24.4
F	6.51	В	16%	0.21	0.45	200	2.6%	16.5	795	3.5%	15.0	2.8	4.7	21.3	995.0	29.6	21.3
G	2.42	В	55%	0.53	0.68	28	2.0%	4.3	3520	2.2%	20.0	2.9	20.0	24.3	3548.0	40.7	24.3
Н	8.65	В	14%	0.19	0.43	200	6.0%	12.9	775	3.4%	15.0	2.8	4.6	17.5	975.0	30.1	17.5
I	0.62	В	0%	0.08	0.35	200	7.1%	13.6	155	7.3%	15.0	4.1	0.6	14.3	355.0	27.1	14.3
J	4.56	В	33%	0.35	0.55	200	7.7%	9.7	650	5.2%	15.0	3.4	3.2	12.9	850.0	23.8	12.9
К	3.78	В	10%	0.16	0.41	200	14.7%	9.9	570	3.9%	15.0	3.0	3.2	13.1	770.0	28.9	13.1
L	2.02	В	0%	0.08	0.35	200	3.0%	18.1	180	3.0%	15.0	2.6	1.2	19.3	380.0	27.9	19.3
Μ	15.65	В	10%	0.16	0.41	200	6.6%	12.8	995	2.3%	15.0	2.3	7.3	20.1	1195.0	34.8	20.1
Ν	10.54	В	10%	0.16	0.41	200	3.4%	16.0	1065	2.6%	15.0	2.4	7.3	23.4	1265.0	34.9	23.4
0	5.87	В	10%	0.16	0.41	200	3.0%	16.7	625	3.8%	15.0	2.9	3.6	20.2	825.0	29.5	20.2
Р	13.14	В	10%	0.16	0.41	200	7.4%	12.4	1130	2.8%	15.0	2.5	7.5	19.9	1330.0	35.2	19.9

Subdivision: Latigo Trails Location: El Paso County

ULTIMATE STANDARD FORM SF-2 TIME OF CONCENTRATION

Project Name: Filing 9-Ultimate

Project No.: 25175.02

Calculated By: GAG

Checked By:

Date: 4/7/22

		SUB-E	BASIN			INITI	AL/OVERL	AND.		Т	RAVEL TIM	E			tc CHECK		
		DA	TA				(T _i)				(T _t)			(L	JRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t _i	L _t	S _t	K	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
OS1	2.01	В	0%	0.08	0.35	200	6.0%	14.4	85	0.8%	15.0	1.4	1.0	15.5	285.0	27.7	15.5
OS2	2.12	В	19%	0.24	0.47	30	2.0%	6.8	555	3.9%	15.0	3.0	3.1	9.9	585.0	26.8	9.9
OS3	51.16	В	13%	0.19	0.43	200	5.8%	13.0	1865	3.9%	15.0	2.9	10.5	23.5	2065.0	38.3	23.5
OS4	3.70	В	11%	0.17	0.42	200	3.7%	15.4	515	2.5%	15.0	2.4	3.6	19.0	715.0	29.2	19.0
OS5	3.99	В	10%	0.16	0.41	200	6.4%	13.0	515	2.8%	15.0	2.5	3.4	16.4	715.0	29.3	16.4
OS6	2.33	В	10%	0.16	0.41	200	4.5%	14.6	770	2.0%	15.0	2.1	6.0	20.7	970.0	33.0	20.7
OS7	63.10	В	13%	0.19	0.43	200	7.6%	11.9	2885	2.9%	15.0	2.6	18.8	30.7	3085.0	49.8	30.7
OS8	68.37	В	18%	0.23	0.46	200	4.4%	13.7	3885	2.6%	15.0	2.4	26.9	40.6	4085.0	58.0	40.6

NOTES:

$t_c = t_i + t_t$	Equation	6-2 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{0.335(1.1 - C_5)\sqrt{L_i}}$	Equation 6-3	Table 6-2. NRCS Convey	vance factors, K
Where:		S _o		Type of Land Surface	Conveyance Factor, K
		Where:		Heavy meadow	2.5
t_c = computed time of concentration (minutes)		t_i = overland (initial) flow time (minutes)		Tillage/field	5
t_i = overland (initial) flow time (minutes)		$C_5 =$ runoff coefficient for 5-year frequency (from Table 6-4)		Short pasture and lawns	7
		$L_i = $ length of overland flow (ft)		Nearly bare ground	10
$t_t = \frac{L_t}{L_t} = \frac{L_t}{L_t}$	Equation 6-4	S_0 = average slope along the overland flow path (ft/ft).	Equation 6-5	Grassed waterway	15
$V_t = 60K\sqrt{S_o} = 60V_t$	Equation o 1	$t_c = (26 - 17i) + \frac{-\tau}{60(14i + 9)\sqrt{S_t}}$	Equation 0-5	Paved areas and shallow paved swales	20
Where:		Where:			

 L_t = length of channelized flow path (ft)

i = imperviousness (expressed as a decimal) $S_t =$ slope of the channelized flow path (ft/ft).

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1.

 t_t = channelized flow time (travel time, min) \dot{L}_t = waterway length (ft) So = waterway slope (ft/ft) V_t = travel time velocity (ft/sec) = K $\sqrt{S_o}$

K = NRCS conveyance factor (see Table 6-2).

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

Subdivision: Latigo Trails Location: El Paso County

			Project Name: F			
Subdivision: Latigo T	Trails		Project No.: 2	25175.02		
Location: El Paso	County		Calculated By: C	GAG		
Design Storm: 5-Year	•		Checked By:			
			Date: 4	1/7/22		
		STDEET	DIDE			

Subdivision Location Design Storm	: El Pas	o Cour														F Calo	Projec culate hecke	ame: t No.: d By: d By: Date:	2517! GAG	5.02	mate		
				DIRE	CT RUI	NOFF			Т	OTAL I	RUNOF	F		STREE	Т		PI	PE		TRAV	EL TIN	1E	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	000	0.10	0.04	0.0	0.50	4.1.4	0.1												F10	2.4	о г	Flows overland towards DP1 and into A. Flows enter
		OS2	2.12	0.24	9.9	0.50	4.14	2.1		-										518	3.4	2.5	roadside swale and flow towards DP2.1. Flows overland towards roadway swale and then to
	2	А	1.58	0.26	11.1	0.41	3.98	1.6															DP2. Flows combine at DP2.1.
	0.4								40.4	0.01	0.00	0.5								5.05		0.5	Combination of flows from DP1 and DP2. Flows along
	2.1								12.4	0.91	3.80	3.5								595	4.0	2.5	swale to DP4.1. Flows overland towards DP3 and into B. Flows combine
	3	OS3	51.16	0.19	23.5	9.71	2.84	27.6															at DP4.1.
																							Flows overland towards DP4. Flows enter roadway
	4	В	8.71	0.18	20.7	1.59	3.04	4.8															swale and combine at DP4.1
	4.1								22 F	12.21	2 94	34.7								442	4.1	1.8	Combination of flows from DP2.1, DP3, and DP4. Flows along swale to DP6.1.
	5	OS4	3.70	0.17	19.0	0.64	3.17	2.0	23.3	12.21	2.04	54.7								442	4.1	1.0	Flows overland towards DP5 and into C. Flows combine at DP6.1.
																							Flows overland towards DP6. Flows enter roadway
	6	С	5.43	0.19	20.9	1.01	3.02	3.1															swale and combine at DP6.1 Combination of flows from DP4.1, DP5, and DP6. Flow
	6.1								25.3	13.86	2.73	37.9								627	6.5	1.6	
	7	OS5	3.99	0.16	16.4	0.65	3.38	2.2															at DP8.1.
	,	000	0.77	0.10	10.1	0.00	0.00	2.2															Flows overland towards DP8. Flows enter roadway
	8	D	7.22	0.19	20.1	1.36	3.08	4.2															swale and combine at DP8.1
	8.1								27.0	15.87	2.64	41.9								1041	7.4	2.3	Combination of flows from DP6.1, DP7, and DP8. Flows along swale to DP10.1.
	9	OS6	2.33	0.16	20.7	0.38	3.04	1.2															Flows overland towards DP9 and into E. Flows combine at DP10.1.
												1											Flows overland towards DP10. Flows enter roadway
	10	E	10.46	0.19	24.4	2.01	2.79	5.6															swale and combine at DP10.1 Combination of flows from DP8.1, DP9, and DP10.
	10.1								29.3	18.26	2.52	46.0								189	7.7	0.4	Flows along swale to DP12.1.

					Project Name: Filin	g 9-Ultimate	
Subdivision: I	Latigo	Trails			Project No.: 251	75.02	
Location:	El Paso	o County			Calculated By: GAC		
Design Storm:	5-Year	•			Checked By:		
					Date: 4/7/	22	
		DIRECT RUNOFF	TOTAL RUNOFF	STREET	PIPE	TRAVEL TIME	

				DIRE	CT RUI	NOFF			Т	OTAL F	RUNOF	F		STREE	Г		PI	IPE		TRAV	EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t_c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	\mathbf{t}_{t} (min)	REMARKS
	11	057	63.10	0 19	30.7	11.85	2.44	29.0												425	2.9	2.4	Flows overland towards DP11 and into F. Flows combine at DP12.1.
	12	F					3.00													120	2.7	2.1	Flows overland towards DP12. Flows enter roadway swale and combine at DP12.1
	12.1								33.2	31.48	2.33	73.3											Combination of flows from DP10.1, DP11, and DP12. Flows along swale to DP13.1.
	13	G	2.42	0.53	24.3	1.28	2.80	3.6															Flow along south roadway towards DP13. Flows combine at DP13.1
	13.1								33.2	32.76	2.33	76.3											Combination of flows from DP12.1 and DP13. Flows along swale to DP14.1.
	14	OS8	68.37	0.23	40.6	15.47	2.03	31.4															Flows overland towards DP14. Flows enter swale and combine at DP14.1
	14.1								40.6	48.23	2.03	97.9											Combination of flows from DP13.1 and DP14. Flows along swale to South Pond.
	15	OS1	2.01	0.08	15.5	0.16	3.48	0.6															Flows overland towards DP15 and into H. Flows combine at DP16.1.
	16	Н	8.65	0.19	17.5	1.66	3.29	5.5															Flows overland towards DP16. Flows combine at DP16.1.
	16.1								17.5	1.82	3.29	6.0								820	2.4	5.7	Combination of flows from DP15 and DP16. Flows along swale to DP17.1.
	17	J	4.56	0.35	12.9	1.62	3.75	6.1															Flows overland towards DP17. Flows along swale to DP17.1.
	17.1								23.2	3.44	2.87	9.9											Combination of flows from DP16.1 and DP17. Total flow into G1 Pond.

Subdivision:	Latigo Trails	
Location:	El Paso County	
Design Storm:	5-Year	

Project Name:	Filing 9-Ultimate
Project No.:	25175.02
Calculated By:	GAG
Checked By:	
Date:	4/7/22

				DIRE	ECT RU	NOFF			1	OTAL	RUNO	FF		STREE	Т		PI	PE		TRAV	'EL TIN	ΛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	18	К	3.78	0.16	13.1	0.61	3.73	2.3															Flows overland in the direction of DP18 and flows off- site.
	19	1	0.62	0.08	14.3	0.05	3.60	0.2															Flows overland in the direction of DP19 and flows off- site.
	20	L				0.16																	Flows overland in the direction of DP20 and flows off- site.
	21	м				2.54																	Flows overland in the direction of DP21 and flows off- site.
	22	N				1.71																	Flows overland in the direction of DP22 and flows off- site.
	23	0	5.87	0.16	20.2	0.95	3.07	2.9															Flows overland in the direction of DP23 and flows off- site.
	24	Р	13.14	0.16	19.9	2.13	3.10	6.6															Flows overland in the direction of DP24 and flows off- site.

Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

	Project Name: Filing 9-Ultimate
Subdivision: Latigo Trails	Project No.: 25175.02
Location: El Paso County	Calculated By: GAG
Design Storm: 100-Year	Checked By:
	Date: 4/7/22

				DIRE	CT RUI	NOFF				TOTAL I	RUNOF	F	0,	STREE	T		Р	IPE		TRAV	EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t_t (min)	REMARKS
																							Flows overland towards DP1 and into A. Flows enter
	1	OS2	2.12	0.47	9.9	0.99	6.96	6.9												518	4.7	1.8	
																							Flows overland towards roadway swale and then to
	2	Α	1.58	0.48	11.1	0.77	6.68	5.1															DP2. Flows combine at DP2.1.
																							Combination of flows from DP1 and DP2. Flows along
	2.1								11.7	1.76	6.53	11.5								595	5.4	1.8	
																							Flows overland towards DP3 and into B. Flows
	3	OS3	51.16	0.43	23.5	22.09	4.77	105.5															combine at DP4.1.
																							Flows overland towards DP4. Flows enter roadway
	4	В	8.71	0.43	20.7	3.71	5.10	18.9															swale and combine at DP4.1
																							Combination of flows from DP2.1, DP3, and DP4.
	4.1								23.5	27.56	4.77	131.6								442	5.7	1.3	
																							Flows overland towards DP5 and into C. Flows
	5	OS4	3.70	0.42	19.0	1.55	5.32	8.2															combine at DP6.1.
	,		5 40				5 07	44.0															Flows overland towards DP6. Flows enter roadway
-	6	С	5.43	0.43	20.9	2.33	5.07	11.8															swale and combine at DP6.1
	11									01.44		1 45 0								(07	0.1		Combination of flows from DP4.1, DP5, and DP6.
	6.1								24.8	31.44	4.64	145.9								627	9.1	1.1	Flows along swale to DP8.1. Flows overland towards DP7 and into D. Flows
	-	000	2.00	0.41	1/ 4	1/4	F (0	0.2															
	/	OS5	3.99	0.41	16.4	1.64	5.68	9.3															combine at DP8.1. Flows overland towards DP8. Flows enter roadway
	8	D	7.22	0.43	20.1	3.11	5.18	16.1															swale and combine at DP8.1
	0	U	1.22	0.43	20.1	3.11	0.10	10.1															Combination of flows from DP6.1, DP7, and DP8.
	8.1								26.0	36.19	4.53	163.8								1041	10.4	17	
-	0.1								20.0	30.19	4.05	103.0								1041	10.4	1.7	Flows overland towards DP9 and into E. Flows
	9	OS6	2.33	0.41	20.7	0.96	5.10	4.9															combine at DP10.1.
	7	030	2.33	0.41	20.7	0.90	5.10	4.7															Flows overland towards DP10. Flows enter roadway
	10	Е	10.46	0.43	24.4	4.54	4.68	21.3															swale and combine at DP10.1
	1.0		10.10	0.10	21.7	1.04	1.00	21.0										1					Combination of flows from DP8.1, DP9, and DP10.
	10.1								27.7	41.69	4.37	182.1								189	10.9	0.3	

	Project Name: Filing 9-Ultimate
Subdivision: Latigo Trails	Project No.: 25175.02
Location: El Paso County	Calculated By: GAG
Design Storm: 100-Year	Checked By:
	Date: 4/7/22

	DIRECT RUNOFF TOTAL RUN									TAL RUNOFF STREET PIPE TRAVEL TIME													
				DIRE	CT RUN	NOFF				TOTAL I	RUNOF	F		STREE	Γ		P	IPE		TRAV	'EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t_c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	11	OS7	63.10	0.43	30.7	27.15	4.10	111.4												425	4.2	1.7	Flows overland towards DP11 and into F. Flows combine at DP12.1.
	12	F	6.51	0.45	21.3	2.91	5.03	14.6															Flows overland towards DP12. Flows enter roadway swale and combine at DP12.1
	12.1								32.4	71.75	3.97	284.6											Combination of flows from DP10.1, DP11, and DP12. Flows along swale to DP13.1.
	13	G	2.42	0.68	24.3	1.65	4.69	7.7															Flow along south roadway towards DP13. Flows combine at DP13.1
	13.1								32.4	73.40	3.97	291.2											Combination of flows from DP12.1 and DP13. Flows along swale to DP14.1.
	14	OS8	68.37	0.46	40.6	31.37	3.40	106.8															Flows overland towards DP14. Flows enter swale and combine at DP14.1
	14.1								40.6	104.77	3.40	356.7											Combination of flows from DP13.1 and DP14. Flows along swale to South Pond.
	15	OS1	2.01	0.35	15.5	0.70	5.83	4.1															Flows overland towards DP15 and into H. Flows combine at DP16.1.
	16	Н	8.65	0.43	17.5	3.74	5.52	20.6															Flows overland towards DP16. Flows combine at DP16.1.
	16.1								17.5	4.44	5.52	24.5								820	3.4	4.0	
	17	J	4.56	0.55	12.9	2.53	6.30	15.9															Flows overland towards DP17. Flows along swale to DP17.1.
	17.1								21.5	6.97	5.00	34.9											Combination of flows from DP16.1 and DP17. Total flow into G1 Pond.

Project Name:	Filing 9-Ultimate
Project No.:	25175.02
Calculated By:	GAG
Checked By:	
Date:	4/7/22

Subdivision: Latigo Trails Location: El Paso County Design Storm: 100-Year

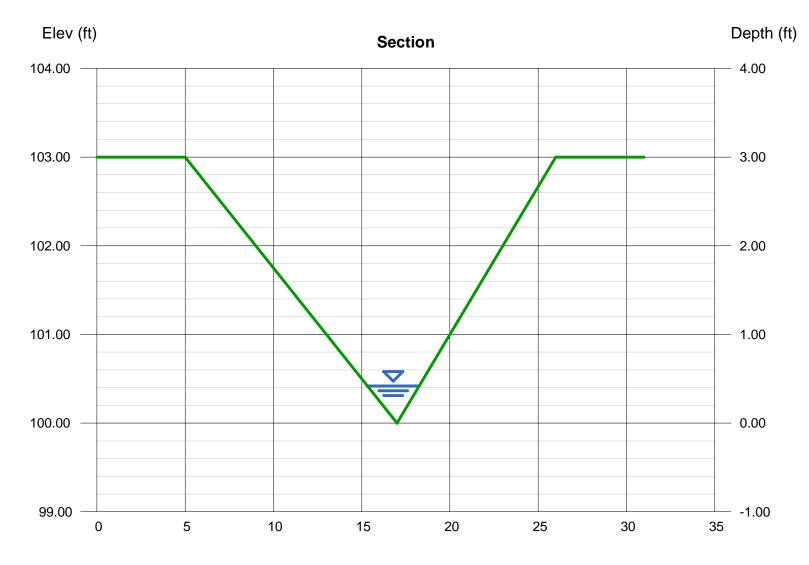
				DIRE	CT RUI	NOFF				TOTAL	RUNO	F	0	STREE	Г		PI	PE		TRAV	'EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	${f t}_t$ (min)	REMARKS
	18	к	3.78	0.41	13.1	1.55	6.26	9.7															Flows overland in the direction of DP18 and flows off- site.
																							Flows overland in the direction of DP19 and flows off-
	19		0.62	0.35	14.3	0.22	6.04	1.3															site.
	20	L	2.02	0.35	19.3	0.71	5.28	3.7															Flows overland in the direction of DP20 and flows off- site.
	21	М	15.65	0.41	20.1	6.43	5.17	33.3															Flows overland in the direction of DP21 and flows off- site.
	22	N	10.54				4.79																Flows overland in the direction of DP22 and flows off- site.
	23	0	5.87		20.2		5.16																Flows overland in the direction of DP23 and flows off- site.
	24	Р		_	19.9		5.20																Flows overland in the direction of DP24 and flows off- site.

Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

APPENDIX C

HYDRAULIC CALCULATIONS

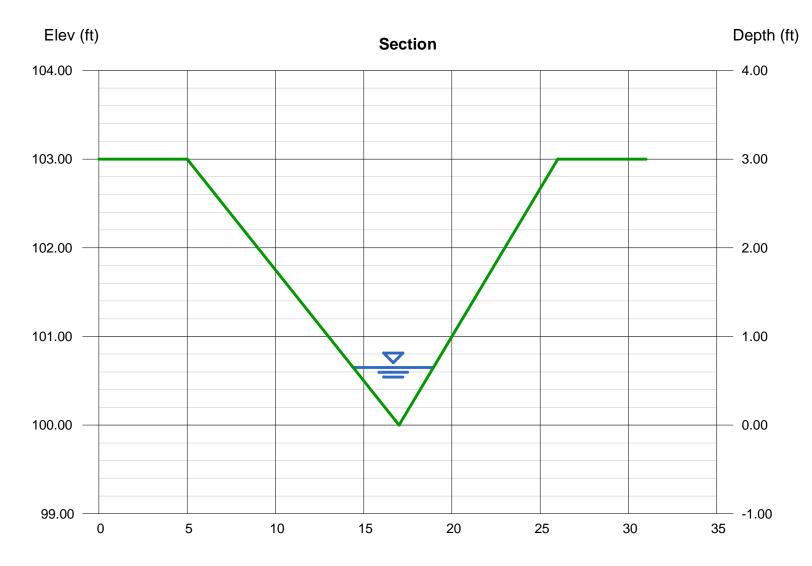

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 16 2021

5: DP1 to DP2.1

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 0.42
Total Depth (ft)	= 3.00	Q (cfs)	= 2.100
		Area (sqft)	= 0.62
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.40
Slope (%)	= 4.21	Wetted Perim (ft)	= 3.06
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.47
		Top Width (ft)	= 2.94
Calculations		EGL (ft)	= 0.60
Compute by:	Known Q		
Known Q (cfs)	= 2.10		

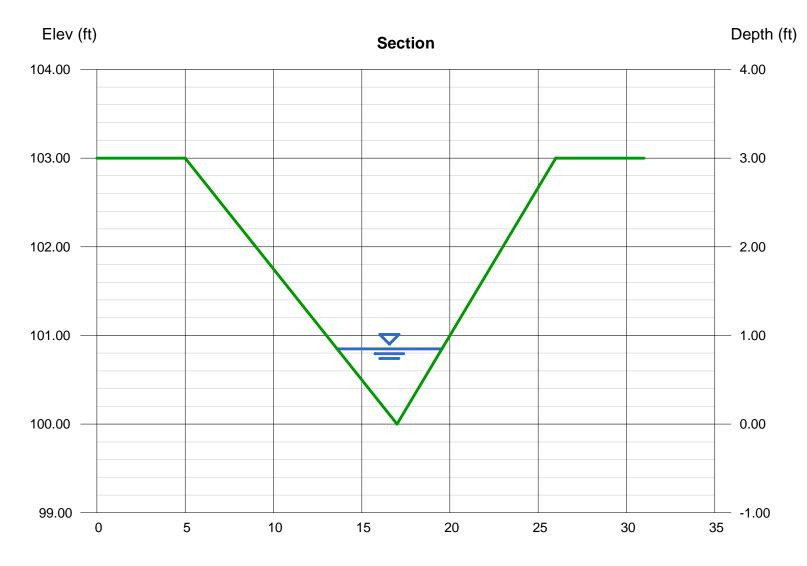

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 16 2021

100: DP1 to DP2.1

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 0.65
Total Depth (ft)	= 3.00	Q (cfs)	= 6.900
		Area (sqft)	= 1.48
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.67
Slope (%)	= 4.21	Wetted Perim (ft)	= 4.74
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.76
		Top Width (ft)	= 4.55
Calculations		EGL (ft)	= 0.99
Compute by:	Known Q		
Known Q (cfs)	= 6.90		

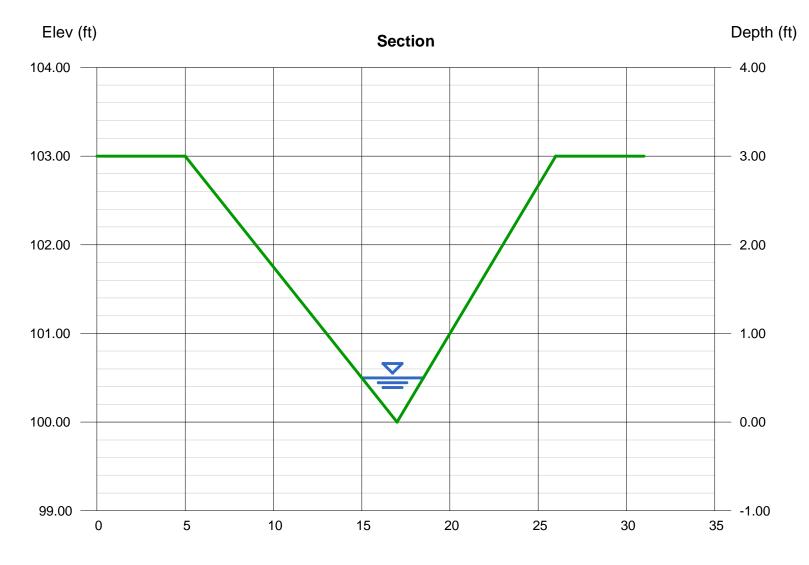

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 16 2021

100: DP1 to DP2.1- Capacity

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 0.85
Total Depth (ft)	= 3.00	Q (cfs)	= 6.900
		Area (sqft)	= 2.53
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.73
Slope (%)	= 1.06	Wetted Perim (ft)	= 6.19
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.76
		Top Width (ft)	= 5.95
Calculations		EGL (ft)	= 0.97
Compute by:	Known Q		
Known Q (cfs)	= 6.90		

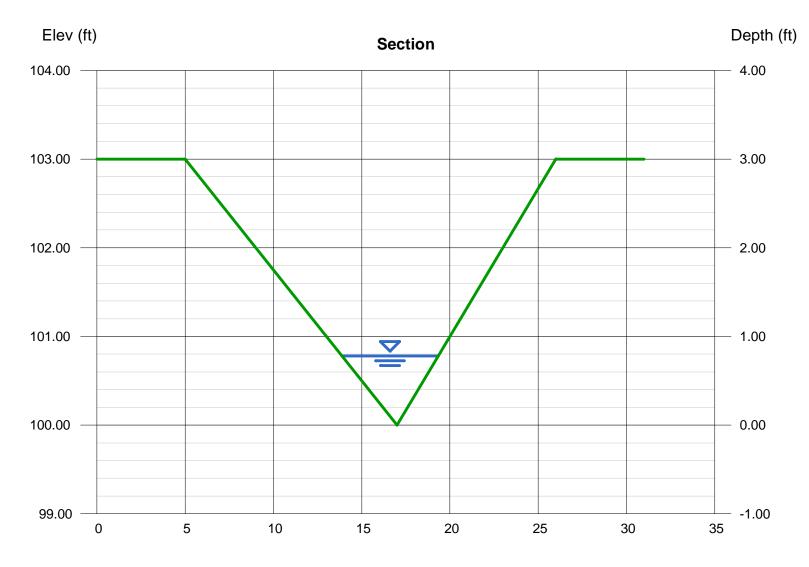

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 16 2021

5: DP2.1 to DP4.1

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 0.50
Total Depth (ft)	= 3.00	Q (cfs)	= 3.500
		Area (sqft)	= 0.87
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.00
Slope (%)	= 4.59	Wetted Perim (ft)	= 3.64
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.58
		Top Width (ft)	= 3.50
Calculations		EGL (ft)	= 0.75
Compute by:	Known Q		
Known Q (cfs)	= 3.50		

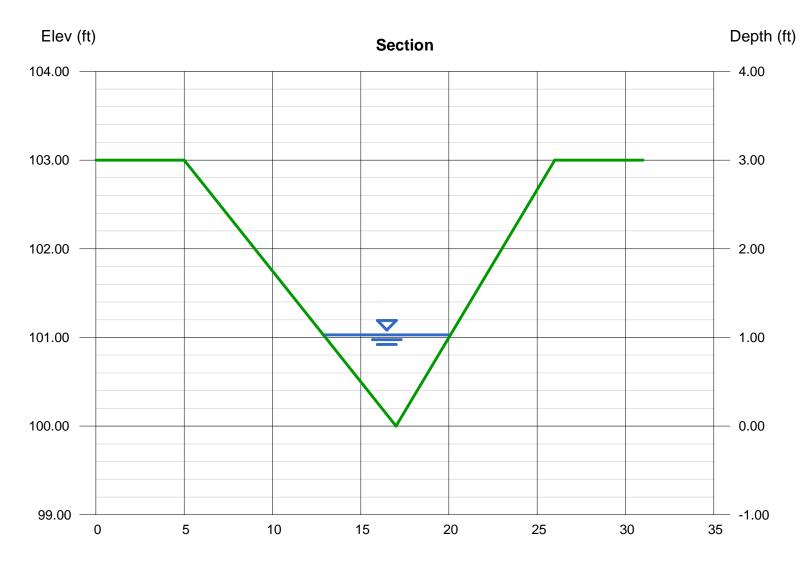

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 16 2021

100: DP2.1 to DP4.1

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 0.78
Total Depth (ft)	= 3.00	Q (cfs)	= 11.50
		Area (sqft)	= 2.13
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 5.40
Slope (%)	= 4.59	Wetted Perim (ft)	= 5.68
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.93
		Top Width (ft)	= 5.46
Calculations		EGL (ft)	= 1.23
Compute by:	Known Q		
Known Q (cfs)	= 11.50		

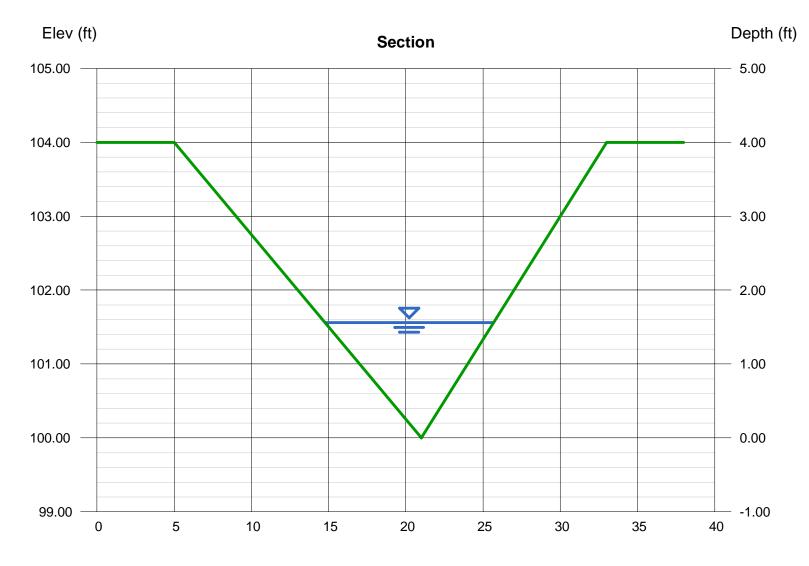

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 16 2021

100: DP2.1 to DP4.1-Capacity

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 1.03
Total Depth (ft)	= 3.00	Q (cfs)	= 11.50
		Area (sqft)	= 3.71
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.10
Slope (%)	= 1.00	Wetted Perim (ft)	= 7.50
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.93
		Top Width (ft)	= 7.21
Calculations		EGL (ft)	= 1.18
Compute by:	Known Q		
Known Q (cfs)	= 11.50		

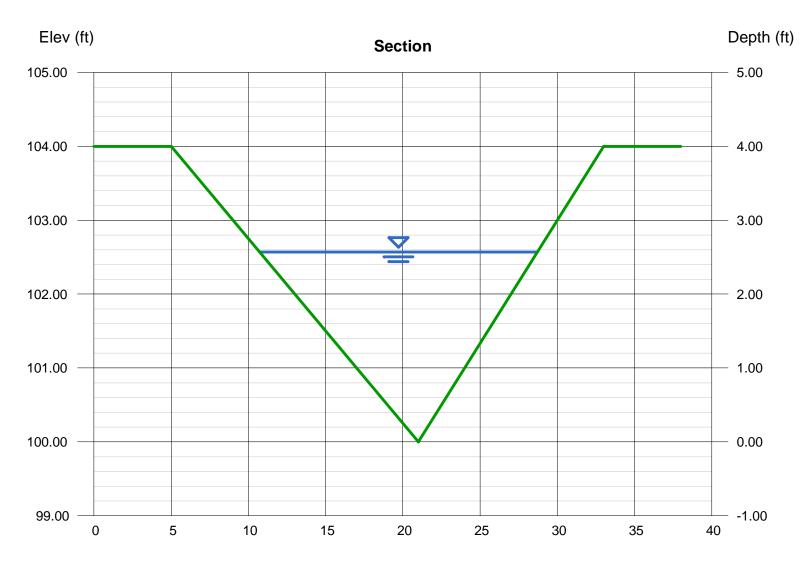

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 16 2021

5: DP4.1 to DP6.1

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 1.56
Total Depth (ft)	= 4.00	Q (cfs)	= 34.70
		Area (sqft)	= 8.52
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.07
Slope (%)	= 1.00	Wetted Perim (ft)	= 11.37
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.44
		Top Width (ft)	= 10.92
Calculations		EGL (ft)	= 1.82
Compute by:	Known Q		
Known Q (cfs)	= 34.70		


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

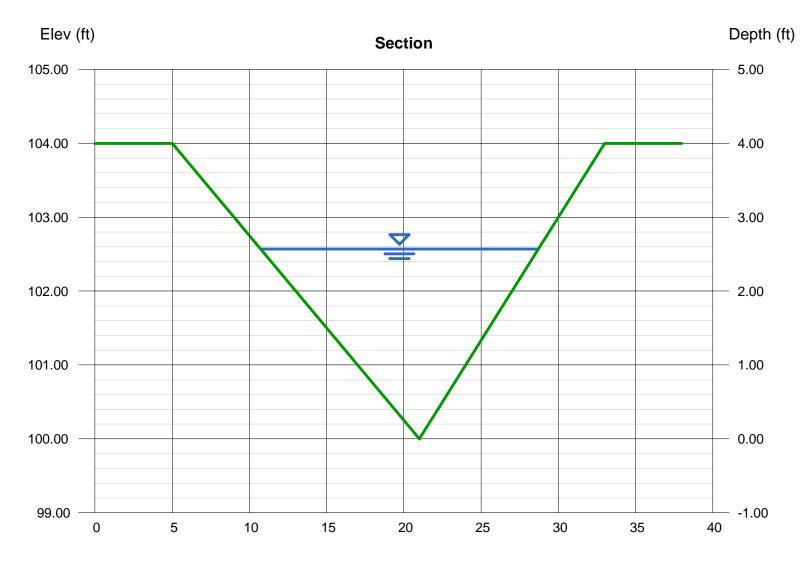
Thursday, Sep 16 2021

100: DP4.1 to DP6.1

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 2.57
Total Depth (ft)	= 4.00	Q (cfs)	= 131.60
		Area (sqft)	= 23.12
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 5.69
Slope (%)	= 1.00	Wetted Perim (ft)	= 18.72
N-Value	= 0.030	Crit Depth, Yc (ft)	= 2.45
		Top Width (ft)	= 17.99
Calculations		EGL (ft)	= 3.07
Compute by:	Known Q		
Known Q (cfs)	= 131.60		

Reach (ft)

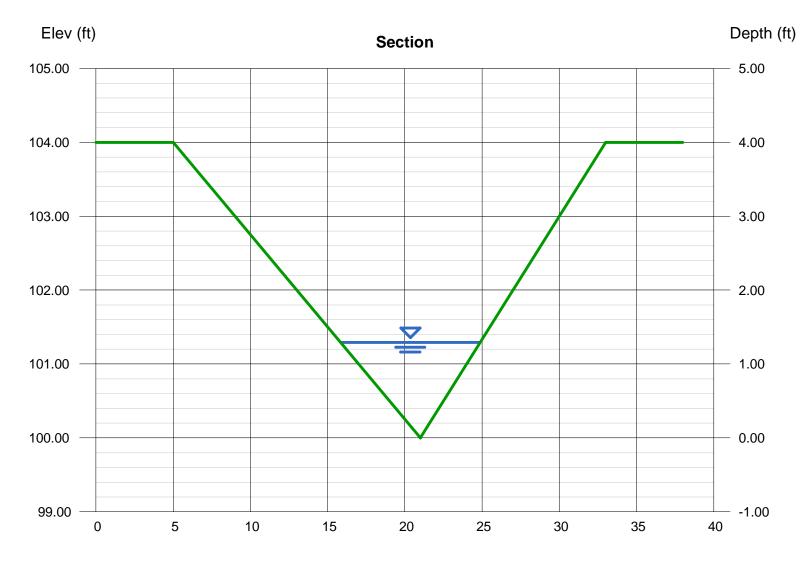

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 16 2021

100: DP4.1 to DP6.1-Capacity

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 2.57
Total Depth (ft)	= 4.00	Q (cfs)	= 131.60
		Area (sqft)	= 23.12
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 5.69
Slope (%)	= 1.00	Wetted Perim (ft)	= 18.72
N-Value	= 0.030	Crit Depth, Yc (ft)	= 2.45
		Top Width (ft)	= 17.99
Calculations		EGL (ft)	= 3.07
Compute by:	Known Q		
Known Q (cfs)	= 131.60		

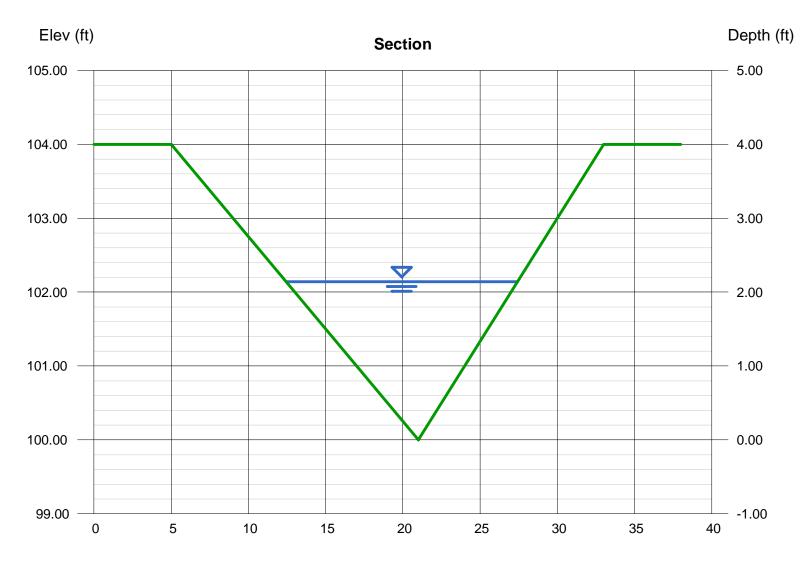

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 16 2021

5: DP6.1 to DP8.1

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 1.29
Total Depth (ft)	= 4.00	Q (cfs)	= 37.90
		Area (sqft)	= 5.82
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 6.51
Slope (%)	= 3.32	Wetted Perim (ft)	= 9.40
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.49
		Top Width (ft)	= 9.03
Calculations		EGL (ft)	= 1.95
Compute by:	Known Q		
Known Q (cfs)	= 37.90		

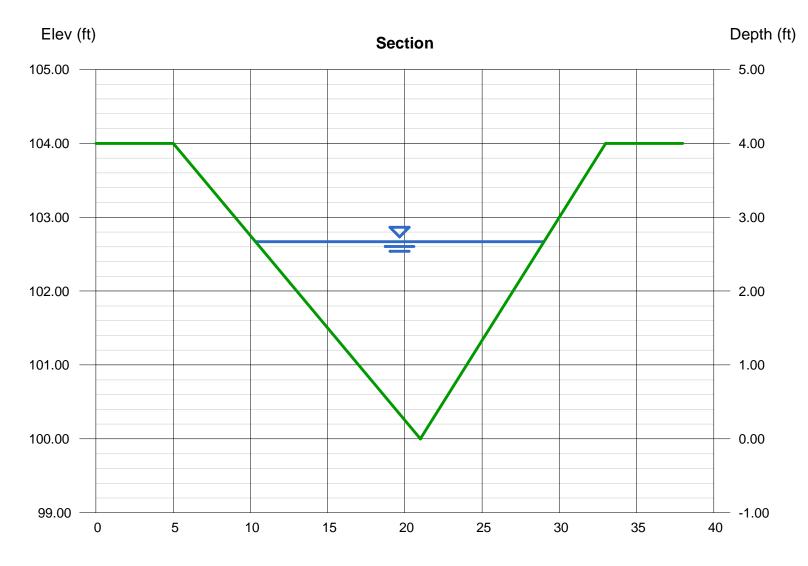

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 16 2021

100: DP6.1 to DP8.1

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 2.14
Total Depth (ft)	= 4.00	Q (cfs)	= 145.90
		Area (sqft)	= 16.03
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 9.10
Slope (%)	= 3.32	Wetted Perim (ft)	= 15.59
N-Value	= 0.030	Crit Depth, Yc (ft)	= 2.56
		Top Width (ft)	= 14.98
Calculations		EGL (ft)	= 3.43
Compute by:	Known Q		
Known Q (cfs)	= 145.90		

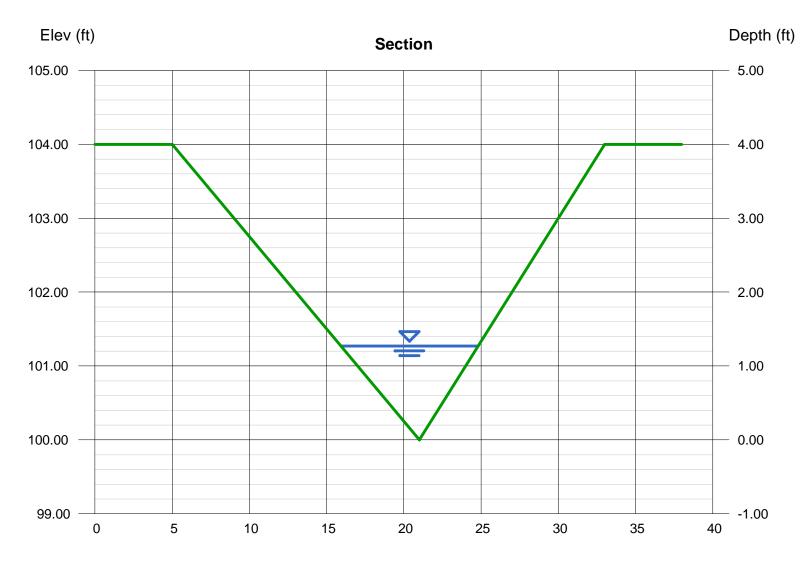

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 16 2021

100: DP6.1 to DP8.1-Capacity

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 2.67
Total Depth (ft)	= 4.00	Q (cfs)	= 145.90
		Area (sqft)	= 24.95
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 5.85
Slope (%)	= 1.00	Wetted Perim (ft)	= 19.45
N-Value	= 0.030	Crit Depth, Yc (ft)	= 2.56
		Top Width (ft)	= 18.69
Calculations		EGL (ft)	= 3.20
Compute by:	Known Q		
Known Q (cfs)	= 145.90		

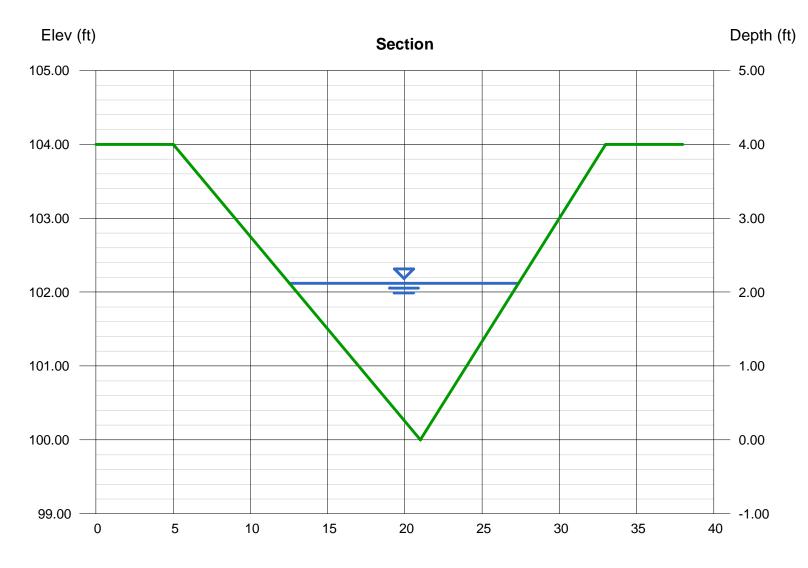

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 16 2021

5: DP8.1 to DP10.1

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 1.27
Total Depth (ft)	= 4.00	Q (cfs)	= 41.90
		Area (sqft)	= 5.65
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 7.42
Slope (%)	= 4.35	Wetted Perim (ft)	= 9.25
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.55
		Top Width (ft)	= 8.89
Calculations		EGL (ft)	= 2.13
Compute by:	Known Q		
Known Q (cfs)	= 41.90		

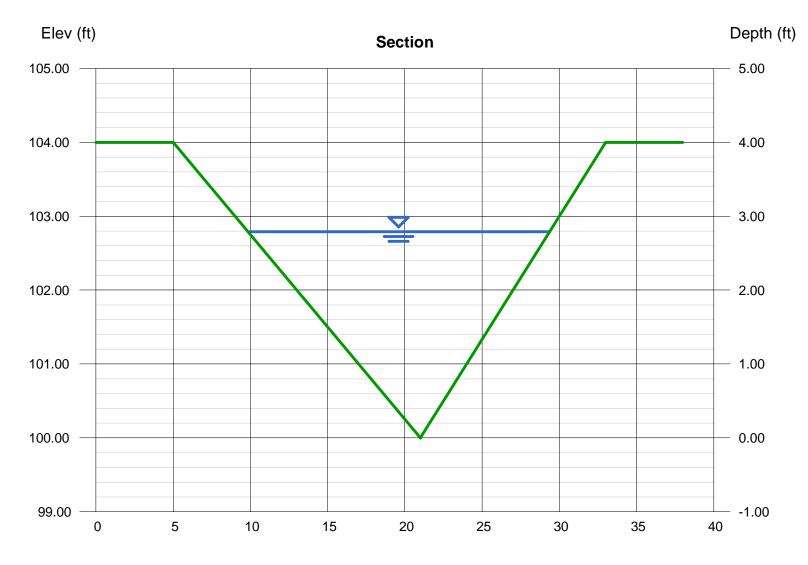

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 16 2021

100: DP8.1 to DP10.1

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 2.12
Total Depth (ft)	= 4.00	Q (cfs)	= 163.80
		Area (sqft)	= 15.73
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 10.41
Slope (%)	= 4.35	Wetted Perim (ft)	= 15.45
N-Value	= 0.030	Crit Depth, Yc (ft)	= 2.68
		Top Width (ft)	= 14.84
Calculations		EGL (ft)	= 3.81
Compute by:	Known Q		
Known Q (cfs)	= 163.80		


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 16 2021

100: DP8.1 to DP10.1-Capacity

Triangular

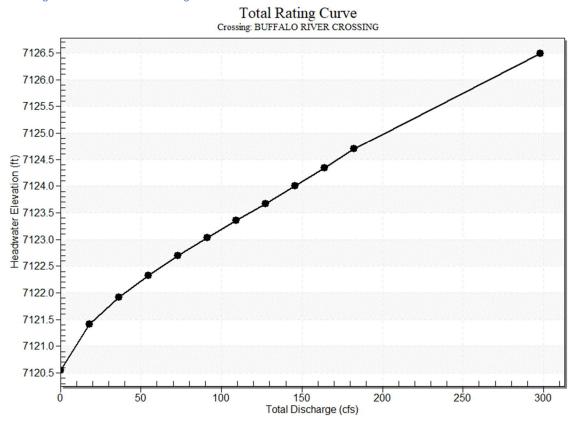
Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 2.79
Total Depth (ft)	= 4.00	Q (cfs)	= 163.80
		Area (sqft)	= 27.24
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 6.01
Slope (%)	= 1.00	Wetted Perim (ft)	= 20.33
N-Value	= 0.030	Crit Depth, Yc (ft)	= 2.68
		Top Width (ft)	= 19.53
Calculations		EGL (ft)	= 3.35
Compute by:	Known Q		
Known Q (cfs)	= 163.80		

HY-8 Culvert Analysis Report: Buffalo River Trail Culvert

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 0.00 cfs


Design Flow: 182.10 cfs

Maximum Flow: 182.10 cfs

Table 1 Summar	u of Culvert Elowe	at Croccina		RIVER CROSSING
Table L - Sulling		at u ussinu	. DUFFALU	

Headwater	Total	Culvert	Roadway	Iterations
Elevation (ft)	Discharge	Discharge	Discharge	
	(cfs)	(cfs)	(cfs)	
7120.55	0.00	0.00	0.00	1
7121.41	18.21	18.21	0.00	1
7121.91	36.42	36.42	0.00	1
7122.33	54.63	54.63	0.00	1
7122.69	72.84	72.84	0.00	1
7123.03	91.05	91.05	0.00	1
7123.35	109.26	109.26	0.00	1
7123.67	127.47	127.47	0.00	1
7124.00	145.68	145.68	0.00	1
7124.34	163.89	163.89	0.00	1
7124.70	182.10	182.10	0.00	1
7125.97	236.50	236.50	0.00	Overtopping

Hw/D = 4.15/3 = 1.38

Rating Curve Plot for Crossing: BUFFALO RIVER CROSSING

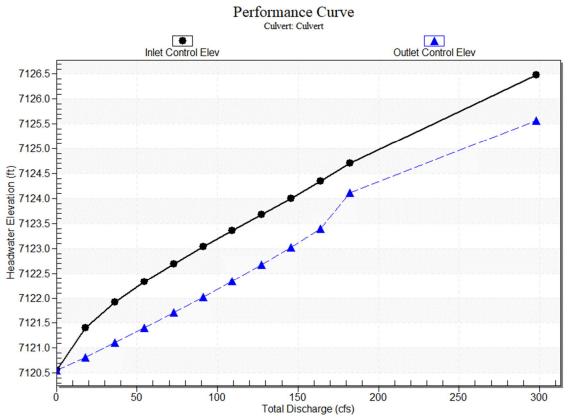
Culvert Data: Culvert

Total	Culvert	Headwater	Inlet	Outlet	Flow	Normal	Critical	Outlet	Tailwater	Outlet	Tailwater
Discharge (cfs)	Discharge (cfs)	Elevation (ft)	Control Depth (ft)	Control Depth	Туре	Depth (ft)	Depth (ft)	Depth (ft)	Depth (ft)	Velocity (ft/s)	Velocity (ft/s)
0.00	0.00	7120.55	0.00	(ft) 0.000	0-NF	0.00	0.00	0.00	0.00	0.00	0.00
18.21	18.21	7121.41	0.86	0.265	1-S2n	0.42	0.50	0.42	0.55	4.81	2.94
36.42	36.42	7121.91	1.36	0.561	1-S2n	0.65	0.80	0.66	0.81	6.15	3.66
54.63	54.63	7122.33	1.78	0.854	1-S2n	0.84	1.05	0.86	1.01	7.03	4.13
72.84	72.84	7122.69	2.14	1.159	1-S2n	1.01	1.27	1.05	1.18	7.70	4.50
91.05	91.05	7123.03	2.48	1.470	1-S2n	1.16	1.47	1.23	1.33	8.24	4.79
109.26	109.26	7123.35	2.80	1.792	1-S2n	1.31	1.66	1.39	1.46	8.71	5.05
127.47	127.47	7123.67	3.12	2.127	5-S2n	1.45	1.84	1.55	1.58	9.12	5.27
145.68	145.68	7124.00	3.45	2.478	5-S2n	1.59	2.01	1.71	1.69	9.48	5.47
163.89	163.89	7124.34	3.79	2.846	5-S2n	1.72	2.18	1.86	1.79	9.82	5.65
182.10	182.10	7124.70	4.15	3.565	5-S2n	1.84	2.33	2.00	1.89	10.12	5.82

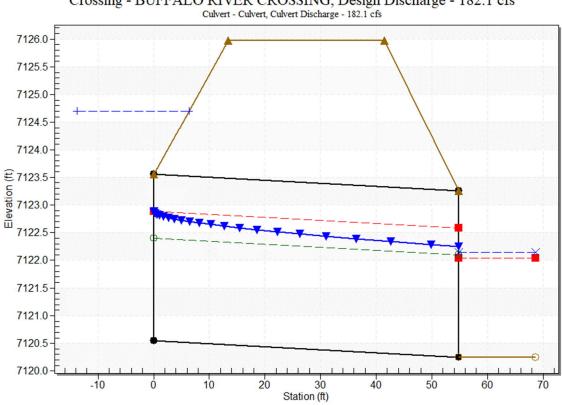
Table 2 - Culvert Summary Table: Culvert

Culvert Barrel Data

Culvert Barrel Type Straight Culvert


Inlet Elevation (invert): 7120.55 ft,

Outlet Elevation (invert): 7120.25 ft


Culvert Length: 54.90 ft,

Culvert Slope: 0.0055

Culvert Performance Curve Plot: Culvert

Water Surface Profile Plot for Culvert: Culvert

Crossing - BUFFALO RIVER CROSSING, Design Discharge - 182.1 cfs Culvert - Culvert, Culvert Discharge - 182.1 cfs

Site Data - Culvert

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 7120.55 ft

Outlet Station: 54.90 ft

Outlet Elevation: 7120.25 ft

Number of Barrels: 1

Culvert Data Summary - Culvert

Barrel Shape: Concrete Box

Barrel Span: 9.00 ft

Barrel Rise: 3.00 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Square Edge (90°) Headwall (Ke=0.5)

Inlet Depression: None

Tailwater Data for Crossing: BUFFALO RIVER CROSSING

Table 3 - Downstream Channel Rating Curve (Crossing: BUFFALO RIVER CROSSING)						
Flow (cfs)	Water Surface Elev (ft)	Velocity (ft/s)	Depth (ft)	Shear (psf)	Froude Number	
0.00	7120.25	0.00	0.00	0.00	0.00	
18.21	7120.80	0.55	2.94	0.34	0.76	
36.42	7121.06	0.81	3.66	0.51	0.80	
54.63	7121.26	1.01	4.13	0.63	0.83	
72.84	7121.43	1.18	4.50	0.74	0.85	
91.05	7121.58	1.33	4.79	0.83	0.86	
109.26	7121.71	1.46	5.05	0.91	0.87	
127.47	7121.83	1.58	5.27	0.99	0.88	
145.68	7121.94	1.69	5.47	1.05	0.89	
163.89	7122.04	1.79	5.65	1.12	0.89	
182.10	7122.14	1.89	5.82	1.18	0.90	

Tailwater Channel Data - BUFFALO RIVER CROSSING

Tailwater Channel Option: Trapezoidal Channel

Bottom Width: 9.00 ft

Side Slope (H:V): 4.00 (_:1)

Channel Slope: 0.0100

Channel Manning's n: 0.0300

Channel Invert Elevation: 7120.25 ft

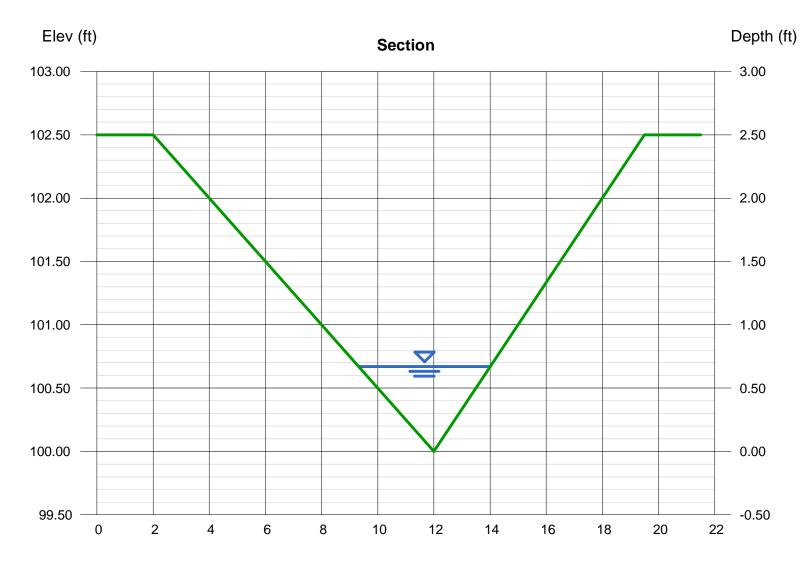
Roadway Data for Crossing: BUFFALO RIVER CROSSING

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 38.00 ft

Crest Elevation: 7125.97 ft

Roadway Surface: Paved


Roadway Top Width: 28.00 ft

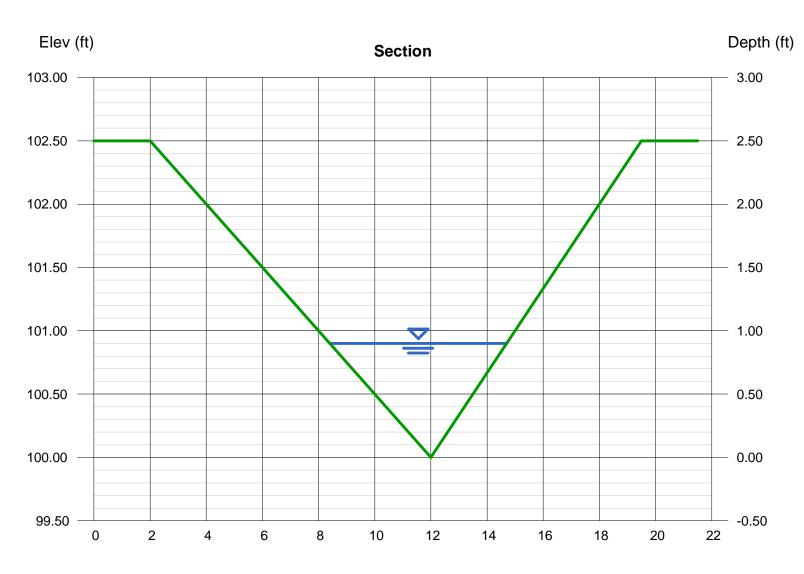
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 16 2021

100: DP13

	Highlighted	
= 4.00, 3.00	Depth (ft)	= 0.67
= 2.50	Q (cfs)	= 7.700
	Area (sqft)	= 1.57
= 100.00	Velocity (ft/s)	= 4.90
= 4.59	Wetted Perim (ft)	= 4.88
= 0.030	Crit Depth, Yc (ft)	= 0.79
	Top Width (ft)	= 4.69
	EGL (ft)	= 1.04
Known Q		
= 7.70		
	= 2.50 = 100.00 = 4.59 = 0.030 Known Q	= 4.00, 3.00 Depth (ft) = 2.50 Q (cfs) Area (sqft) = 100.00 Velocity (ft/s) = 4.59 Wetted Perim (ft) = 0.030 Crit Depth, Yc (ft) Top Width (ft) EGL (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


Thursday, Sep 16 2021

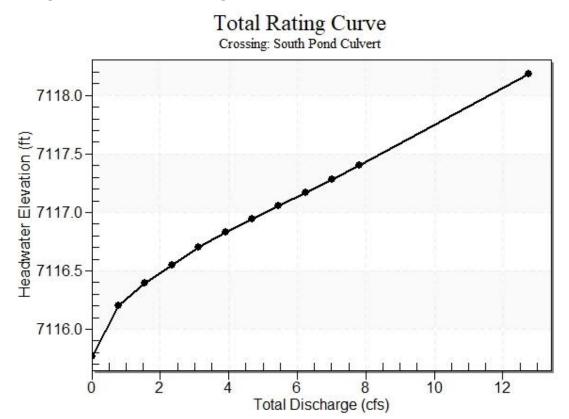
100: DP13-Capacity

Calculations	
Invert Elev (ft)	= 100.00
Slope (%)	= 0.95
N-Value	= 0.030
Side Slopes (z:1)	= 4.00, 3.00
Total Depth (ft)	= 2.50

Compute by:	Known Q
Known Q (cfs)	= 7.70

Highlighted	
Depth (ft)	= 0.90
Q (cfs)	= 7.700
Area (sqft)	= 2.83
Velocity (ft/s)	= 2.72
Wetted Perim (ft)	= 6.56
Crit Depth, Yc (ft)	= 0.79
Top Width (ft)	= 6.30
EGL (ft)	= 1.01

HY-8 Culvert Analysis Report


South Pond Maint. Trail Culvert

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs Design Flow: 7.8 cfs Maximum Flow: 7.8 cfs

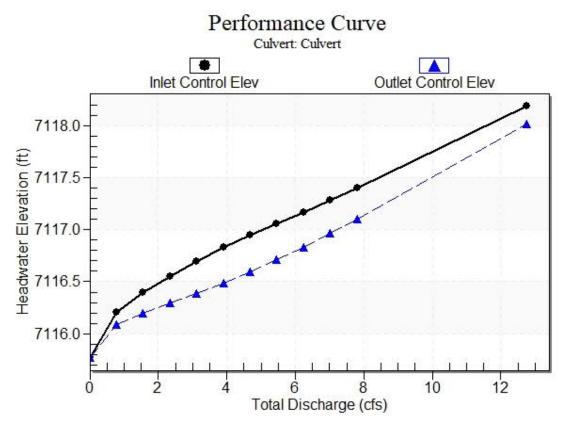
Headwater Elevation (ft)	Total Discharge (cfs)	Culvert Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7115.77	0.00	0.00	0.00	1
7116.20	0.78	0.78	0.00	1
7116.39	1.56	1.56	0.00	1
7116.55	2.34	2.34	0.00	1
7116.70	3.12	3.12	0.00	1
7116.83	3.90	3.90	0.00	1
7116.95	4.68	4.68	0.00	1
7117.06	5.46	5.46	0.00	1
7117.17	6.24	6.24	0.00	1
7117.28	7.02	7.02	0.00	1
7117.40	7.80	7.80	0.00	1
7118.14	11.60	11.60	0.00	Overtopping

Table 1 - Summary of Culvert Flows at Crossing: South Pond Culvert

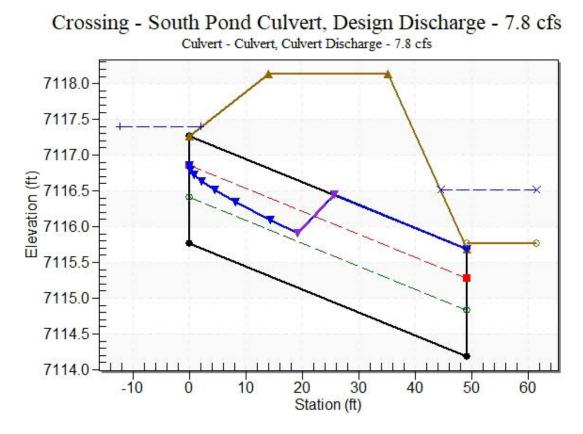
Rating Curve Plot for Crossing: South Pond Culvert

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7115.77	0.000	0.000	0-NF	0.000	0.000	1.500	0.000	0.000	0.000
0.78	0.78	7116.20	0.434	0.318	1-JS1f	0.200	0.328	1.500	0.313	0.441	2.278
1.56	1.56	7116.39	0.624	0.429	1-JS1f	0.280	0.469	1.500	0.406	0.883	2.709
2.34	2.34	7116.55	0.779	0.525	1-JS1f	0.343	0.578	1.500	0.472	1.324	2.998
3.12	3.12	7116.70	0.928	0.620	1-JS1f	0.396	0.672	1.500	0.526	1.766	3.221
3.90	3.90	7116.83	1.057	0.719	1-JS1f	0.444	0.755	1.500	0.572	2.207	3.406
4.68	4.68	7116.95	1.176	0.825	1-JS1f	0.488	0.831	1.500	0.612	2.648	3.565
5.46	5.46	7117.06	1.288	0.939	1-JS1f	0.530	0.901	1.500	0.649	3.090	3.705
6.24	6.24	7117.17	1.398	1.061	1-JS1f	0.569	0.965	1.500	0.682	3.531	3.831
7.02	7.02	7117.28	1.512	1.193	5-JS1f	0.607	1.026	1.500	0.713	3.973	3.945
7.80	7.80	7117.40	1.632	1.334	5-JS1f	0.643	1.082	1.500	0.742	4.414	4.051

Table 2 - Culvert Summary Table: Culvert


Straight Culvert

Inlet Elevation (invert): 7115.77 ft, Outlet Elevation (invert): 7114.19 ft


Culvert Length: 49.32 ft, Culvert Slope: 0.0321

Hw/D = 1.63/1.5 = 1.09

Culvert Performance Curve Plot: Culvert

Water Surface Profile Plot for Culvert: Culvert

Site Data - Culvert

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7115.77 ft Outlet Station: 49.29 ft Outlet Elevation: 7114.19 ft Number of Barrels: 1

Culvert Data Summary - Culvert

Barrel Shape: Circular Barrel Diameter: 1.50 ft Barrel Material: Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Grooved End Projecting Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	7115.77	0.00	0.00	0.00	0.00
0.78	7116.08	0.31	2.28	0.62	1.02
1.56	7116.18	0.41	2.71	0.81	1.06
2.34	7116.24	0.47	3.00	0.94	1.09
3.12	7116.30	0.53	3.22	1.05	1.11
3.90	7116.34	0.57	3.41	1.14	1.12
4.68	7116.38	0.61	3.57	1.22	1.14
5.46	7116.42	0.65	3.71	1.30	1.15
6.24	7116.45	0.68	3.83	1.36	1.16
7.02	7116.48	0.71	3.95	1.42	1.16
7.80	7116.51	0.74	4.05	1.48	1.17

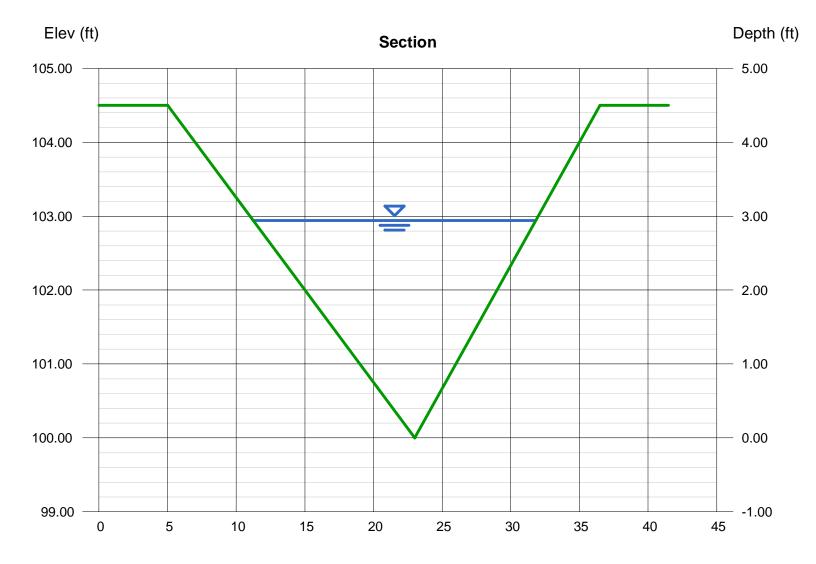
Table 3 - Downstream Channel Rating Curve (Crossing: South Pond Culvert)

Tailwater Channel Data - South Pond Culvert

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 3.50 (_:1) Channel Slope: 0.0320 Channel Manning's n: 0.0330 Channel Invert Elevation: 7115.77 ft

Roadway Data for Crossing: South Pond Culvert

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 35.00 ft Crest Elevation: 7118.14 ft Roadway Surface: Gravel Roadway Top Width: 21.00 ft


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 16 2021

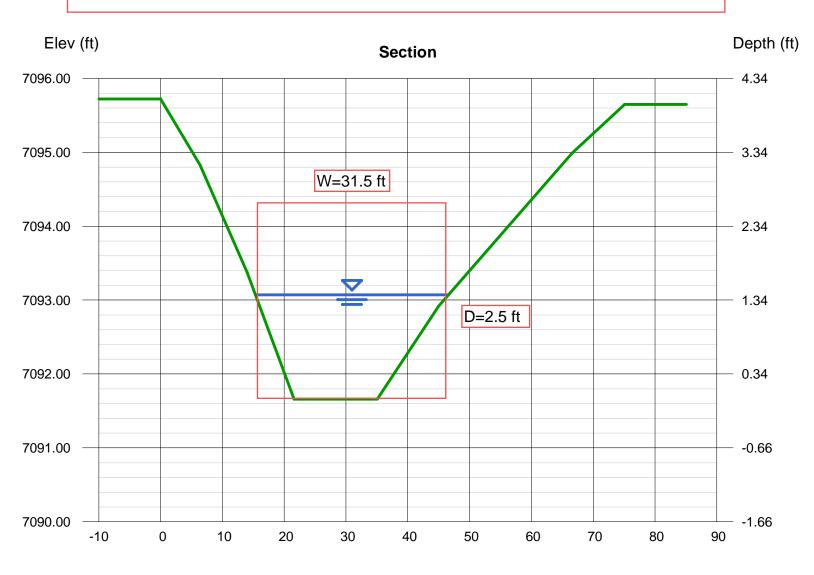
100: 13.1 to DP14.1

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 2.94
Total Depth (ft)	= 4.50	Q (cfs)	= 291.20
		Area (sqft)	= 30.25
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 9.63
Slope (%)	= 2.42	Wetted Perim (ft)	= 21.42
N-Value	= 0.030	Crit Depth, Yc (ft)	= 3.37
		Top Width (ft)	= 20.58
Calculations		EGL (ft)	= 4.38
Compute by:	Known Q		
Known Q (cfs)	= 291.20		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Sep 7 2022

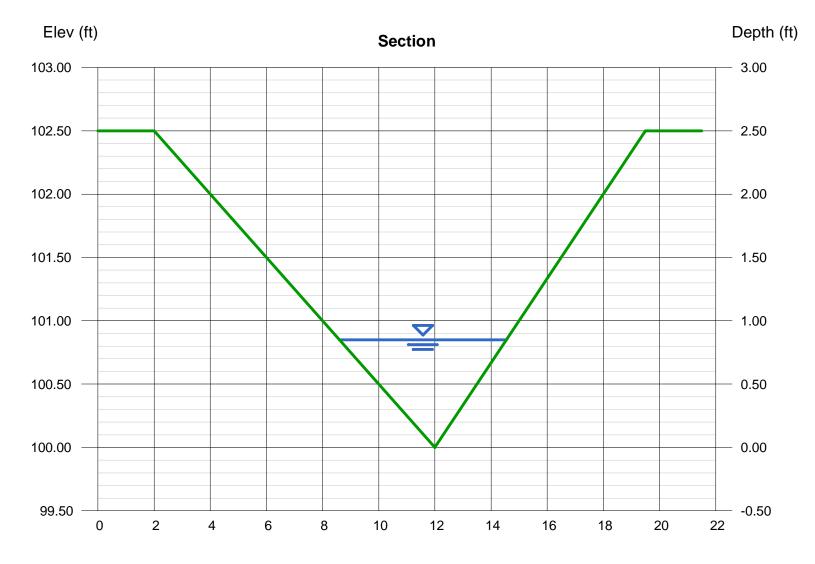

100: DP14.1 to Low-Tailwater Basin

User-defined		Highlighted	
Invert Elev (ft)	= 7091.66	Depth (ft)	= 1.41
Slope (%)	= 6.87	Q (cfs)	= 347.00
N-Value	= 0.035	Area (sqft)	= 31.29
		Velocity (ft/s)	= 11.09
Calculations		Wetted Perim (ft)	= 31.47
Compute by:	Known Q	Crit Depth, Yc (ft)	= 2.03
Known Q (cfs)	= 347.00	Top Width (ft)	= 31.23
		EGL (ft)	= 3.32

(Sta, El, n)-(Sta, El, n)...

(0.00, 7095.72) -(6.34, 7094.83, 0.035) -(13.96, 7093.38, 0.035) -(21.58, 7091.66, 0.035) -(35.08, 7091.66, 0.035) -(44.99, 7092.92, 0.035) -(66.58, 7094.99, 0.035) -(75.09, 7095.65, 0.035)

Proposed swale is trapezoidal section to the low-tailwater basin. Top width of water rounded to nearest half foot is 31.5 feet. Water depth with freeboard rounded to the nearest half foot is 2.5 feet. See low-tailwater basin standard sizing based on an equivalent shape.

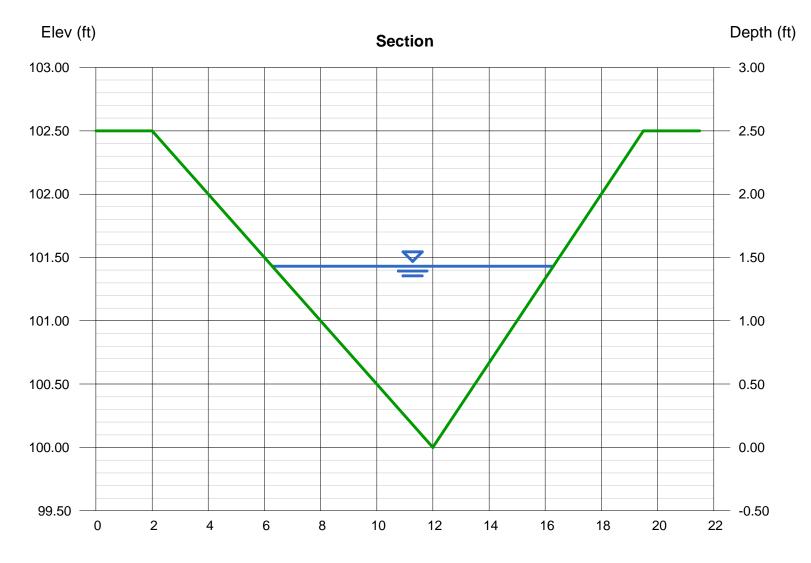

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Mar 31 2022

5: DP16.1 to DP17.1

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 0.85
Total Depth (ft)	= 2.50	Q (cfs)	= 6.000
		Area (sqft)	= 2.53
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.37
Slope (%)	= 0.80	Wetted Perim (ft)	= 6.19
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.72
		Top Width (ft)	= 5.95
Calculations		EGL (ft)	= 0.94
Compute by:	Known Q		
Known Q (cfs)	= 6.00		

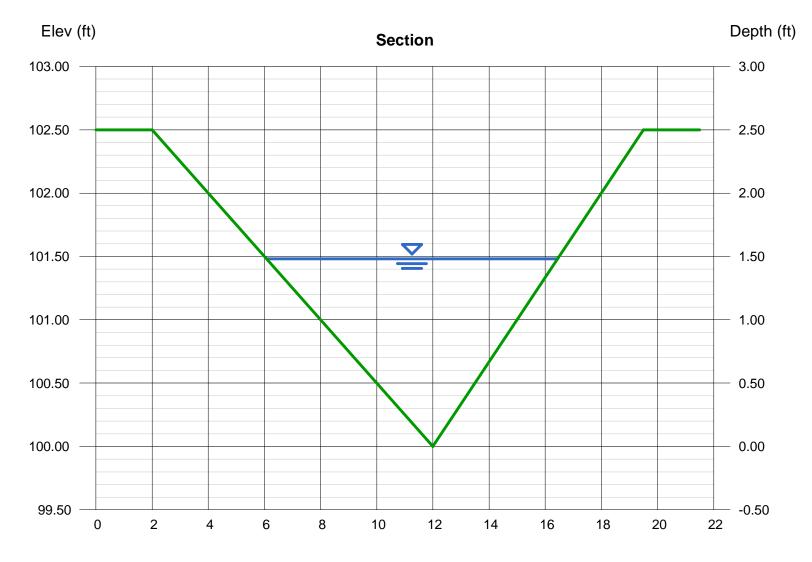

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Mar 31 2022

100: DP16.1 to DP17.1

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 1.43
Total Depth (ft)	= 2.50	Q (cfs)	= 24.50
		Area (sqft)	= 7.16
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.42
Slope (%)	= 0.80	Wetted Perim (ft)	= 10.42
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.25
		Top Width (ft)	= 10.01
Calculations		EGL (ft)	= 1.61
Compute by:	Known Q		
Known Q (cfs)	= 24.50		


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Apr 7 2022

100: DP16.1 to DP17.1-Capacity

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 1.48
Total Depth (ft)	= 2.50	Q (cfs)	= 24.50
		Area (sqft)	= 7.67
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.20
Slope (%)	= 0.68	Wetted Perim (ft)	= 10.78
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.25
		Top Width (ft)	= 10.36
Calculations		EGL (ft)	= 1.64
Compute by:	Known Q		
Known Q (cfs)	= 24.50		

HY-8 Culvert Analysis Report: Pond G1 Culvert

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 0.00 cfs

Design Flow: 34.90 cfs

Maximum Flow: 34.90 cfs

Table 1 - Summary of Culvert Flows at Crossing: G1 Pond Culvert

Headwater Elevation (ft)	Total Discharge	Culvert Discharge	Roadway Discharge	Iterations
	(cfs)	(cfs)	(cfs)	
7183.21	0.00	0.00	0.00	1
7184.04	3.49	3.49	0.00	1
7184.41	6.98	6.98	0.00	1
7184.73	10.47	10.47	0.00	1
7185.00	13.96	13.96	0.00	1
7185.25	17.45	17.45	0.00	1
7185.48	20.94	20.94	0.00	1
7185.71	24.43	24.43	0.00	1
7185.96	27.92	27.92	0.00	1
7186.23	31.41	31.41	0.00	1
7186.53	34.90	34.90	0.00	1
7186.91	38.90	38.90	0.00	Overtopping

Hw/D = 3.32/2.5 = 1.33

Rating Curve Plot for Crossing: G1 Pond Culvert

Culvert Data: Culvert

		-	/								
Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7183.21	0.00	0.000	0-NF	0.00	0.00	0.31	0.00	0.00	0.00
3.49	3.49	7184.04	0.83	0.486	1-JS1t	0.52	0.61	0.78	0.47	2.65	4.44
6.98	6.98 cfs	7184.41	1.20	0.663	1-S2n	0.74	0.88	0.75	0.61	5.67	5.28
10.47	10.47	7184.73	1.52	0.881	1-S2n	0.91	1.08	0.93	0.72	6.30	5.85
13.96	13.96	7185.00	1.79	1.142	1-S2n	1.06	1.26	1.09	0.80	6.79	6.28
17.45	17.45	7185.25	2.04	1.408	1-S2n	1.21	1.41	1.24	0.87	7.19	6.64
20.94	20.94	7185.48	2.27	1.683	1-S2n	1.35	1.55	1.38	0.93	7.54	6.95
24.43	24.43	7185.71	2.50	1.970	5-S2n	1.48	1.68	1.52	0.98	7.85	7.23
27.92	27.92	7185.96	2.75	2.271	5-S2n	1.62	1.80	1.65	1.03	8.12	7.47
31.41	31.41	7186.23	3.02	2.881	5-S2n	1.77	1.91	1.79	1.08	8.36	7.70
34.90	34.90	7186.53	3.32	3.161	5-S2n	1.93	2.01	1.94	1.12	8.54	7.90

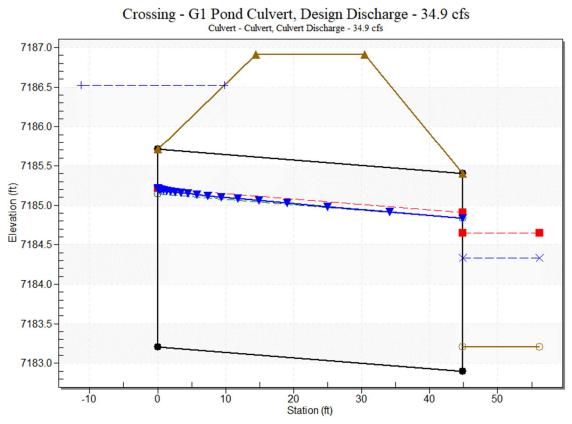
Table 2 - Culvert Summary Table: Culvert

Culvert Barrel Data

Culvert Barrel Type Straight Culvert

Inlet Elevation (invert): 7183.21 ft,

Outlet Elevation (invert): 7182.90 ft


Culvert Length: 44.92 ft,

Culvert Slope: 0.0069

Water Surface Profile Plot for Culvert: Culvert

Site Data - Culvert

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 7183.21 ft

Outlet Station: 44.92 ft

Outlet Elevation: 7182.90 ft

Number of Barrels: 1

Culvert Data Summary - Culvert

Barrel Shape: Circular

Barrel Diameter: 2.50 ft

Barrel Material: Concrete

Embedment: 0.00 in

Barrel Manning's n: 0.0120

Culvert Type: Straight

Inlet Configuration: Grooved End Projecting

Inlet Depression: None

Tailwater Data for Crossing: G1 Pond Culvert

Flow (cfs)	Water Surface Elev (ft)	Velocity (ft/s)	Depth (ft)	Shear (psf)	Froude Number
0.00	7183.21	0.00	0.00	0.00	0.00
3.49	7183.68	0.47	4.44	2.07	1.61
6.98	7183.82	0.61	5.28	2.68	1.68
10.47	7183.93	0.72	5.85	3.12	1.72
13.96	7184.01	0.80	6.28	3.48	1.75
17.45	7184.08	0.87	6.64	3.78	1.78
20.94	7184.14	0.93	6.95	4.05	1.80
24.43	7184.19	0.98	7.23	4.29	1.82
27.92	7184.24	1.03	7.47	4.51	1.83
31.41	7184.29	1.08	7.70	4.72	1.85
34.90	7184.33	1.12	7.90	4.91	1.86

Table 3 - Downstream Channel Rating Curve (Crossing: G1 Pond Culvert)

Tailwater Channel Data - G1 Pond Culvert

Tailwater Channel Option: Triangular Channel

Side Slope (H:V): 3.50 (_:1)

Channel Slope: 0.0700

Channel Manning's n: 0.0330

Channel Invert Elevation: 7183.21 ft

Roadway Data for Crossing: G1 Pond Culvert

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 35.00 ft

Crest Elevation: 7186.91 ft

Roadway Surface: Gravel

Roadway Top Width: 16.02 ft

VMax[®] TRMs

ROLLED EROSION CONTROL

A Permanent Turf Reinforcement Mat Solution for Every Design

The VMax system of permanent TRMs are ideal for high-flow channels, streambanks, shorelines, and other areas needing permanent vegetation reinforcement and protection from water and wind. Our VMax TRMs combine a three-dimensional matting and a fiber matrix material for allout erosion protection, vegetation establishment and reinforcement. The VMax TRMs are available with various performance capabilities and support reinforced vegetative lining development from germination to maturity.

VMax[®] Unique Three-Dimensional Design

North American Green VMax TRMs are each designed to maximize performance through all development phases of a reinforced vegetative lining. The corrugated matting structure lends a true reinforcement zone for vegetation entanglement, especially compared to flat net mats. The unique design of the corrugated matting also helps to create a shear plane that deflects flowing water away from the soil surface. And the incorporation of a fiber matrix supplements the 3-D structure by creating a ground cover that blocks soil movement and aids in vegetation establishment.

	S200	SC250	C350	P550
Matrix Fiber	100% Straw	70% Straw / 30% Coconut	100% Coconut	100% Polypropylene
Netting Types	Top and Bottom light-weight UV-stabilized PP, Crimped PP center net	Top and Bottom UV-stabilized PP, Crimped PP center net	Top and Bottom heavy-weight UV-stabilized PP, Crimped PP center net	Top and Bottom ultra heavy- weight UV-stabilized PP, Crimped PP center net
Typical Slope Applications (H:V)	1:1 and greater	1:1 and greater	1:1 and greater	1:1 and greater
Channel Shear Stress Threshold	Unvegetated: 2.3 psf Vegetated: 10.0 psf	Unvegetated: 3.0 psf Vegetated: 10.0 psf	Unvegetated: 3.2 psf Vegetated: 12.0 psf	Unvegetated: 4.0 psf Vegetated: 14.0 psf
Channel Velocity Threshold	Unvegetated: 8.5 fps Vegetated: 18 fps	Unvegetated: 9.5 fps Vegetated: 15 fps	Unvegetated: 10.5 fps Vegetated: 20 fps	Unvegetated: 12.5 fps Vegetated: 25 fps

Four VMax Turf Reinforcement Mats Designed for Every Level of Performance

Selected product that will work for all swales above 5 ft/s. Has maximum of 15 ft/s. Copyright 2021.

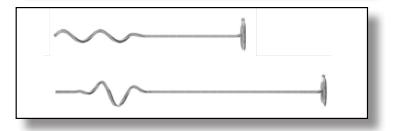
North American Green, LLC. 4609 E. Boonville-New Harmony Rd., Evansville, IN (800) 772-2040 | www.nagreen.com

VMax[®] TRMs cont.

Selecting the Right VMax TRM

Choosing the right VMax TRM can be made easy by utilizing our Erosion Control Materials Design Software (www.ecmds.com), which allows users to input project specific parameters for channels, slopes, spillways, and more and ensures proper evaluation, design, and product selection in return. Our four VMax TRMs offer varying performance values, fiber matrix longevities, and price points, to help you meet your project specific goals.

Twist Pin + VMax TRM - an Ideal Installation


Utilizing the VMax TRMs in conjunction with Twist Pin fastener technology can result in an installed system that pushes TRM performance with increased factors of safety. The combined system has been shown to have superior pullout strength performance up to 200 lbs when compared to installation with traditional wire staples and pins. This is up to 10x the pullout resistance of wire staples and pins. Additionally, the use of the twist pins provides intimate contact between the TRM and the soil, and have been shown to be effective in a wide range of soil types. With a quick and easy installation using an electric drill and custom chuck, the TRM+Twist Pin system can eliminate time and labor costs from day 1 through project release.

VMax turf reinforcement mat being installed on a channel application (top right), twist pins installed with TRMs can have increased system performance and pullout resistance (middle right), twist pins are available in 8" and 12" lengths and two coil configurations designed for hard or soft soil types (lower right).

Comparison of common TRM fasteners based on pullout performance and typical application (below).

Fastener	Pullout Resistance (lb)	Comment
6" Round Top Pin	14	Best for hardened soils where other fasteners are damaged during installation.
6" Regular U-staple	42	Standard fastener that develops additional pullout as legs may deflect and add friction during installation.
12" Pin with Washer	35	Standard fastener good for soils where staples can be bent frequently and are too difficult to install.
18" Pin with Washer	27	Standard fastener good for soils where staples are frequently bent and 12" straight pins fail to provide sufficient pullout because surface soil is wet or loose.
Twist Pin	170	Upgraded fastener that provides high pullout and ideal for loose or soft soils.

Copyright 2021.

North American Green, LLC. 4609 E. Boonville-New Harmony Rd., Evansville, IN (800) 772-2040 | www.nagreen.com

PIPE OUTFALL RIPRAP SIZING CALCULATIONS

Subdivision: Latigo Trails Location: El Paso County

Project Name:	
Project No.:	25175.02
Calculated By:	GAG
Checked By:	
Date:	4/6/22

	S	TORM DRAIN SYSTEM				
	South Maint. Trail	G1 Maint. Trail	Buffalo River	Notes		
Q ₁₀₀ (cfs):	7.8	34.9	182.1	Flows are the greater of proposed vs. future		
Conduit	Pipe	Pipe	Box Culvert			
D_c , Pipe Diameter (in):	18	30	N/A			
W, Box Width (ft):	N/A	N/A	9			
H, Box Height (ft):	N/A	N/A	3			
Y _t , Tailwater Depth (ft):	0.60	1.00	1.80	If unknown, use Y_t/D_c (or H)=0.4		
Y_t/Dc or Y_t/H	0.40	0.40	0.60			
Q/D ^{2.5} or Q/(WH ^{3/2})	2.83	3.53	3.89			
Supercritical?	No	Yes	No			
Y _n , Normal Depth (ft) [Supercritical]:		1.93				
D_a , H_a (in) [Supercritical]:	N/A	2.22	N/A	$D_a = (D_c + Y_n)/2$		
Riprap <i>d</i> 50 (in) [Supercritical]:	N/A	7.59	N/A			
Riprap <i>d</i> 50 (in) [Subcritical]:	3.52	N/A	3.27			
Required Riprap Size:	L	L	L	Fig. 9-38 or Fig. 9-36		
<i>d</i> ₅₀ (in):	9	9	9			
Expansion Factor, $1/(2 \tan \theta)$:	4.70	3.00	6.40	Read from Fig. 9-35 or 9-36		
θ:	0.11	0.17	0.08			
Erosive Soils?	No	No	No			
Area of Flow, A_t (ft ²):	1.11	4.99	26.01	$A_t = Q/V$		
Length of Protection, L_p (ft):	1.7	7.5	34.9	L=(1/(2 tan θ))(At/Yt - D)		
Min Length (ft)	4.5	7.5	27.0	Min L=3D or 3H		
Max Length (ft)	15.0	25.0	30.0	Max L=10D or 10H		
Min Bottom Width, 7 (ft):	1.9	5.0	8.4	$T=2*(L_p*tan\theta)+W$		
Design Length (ft)	4.5	7.5	30.0			
Design Width (ft)	1.9	5.0	8.4			
Riprap Depth (in)	18	18	18	Depth=2(d ₅₀)		
Type II Bedding Depth (in)*	6	6	6	*Not used if Soil Riprap		
Cutoff Wall	No	No	No			
Cutoff Wall Depth (ft)				Depth of Riprap and Base		
Cutoff Wall Width (ft)						

Note: No Type II Base to be used if Soil Riprap is specified within the plans

* For use when the flow in the culvert is supercritical (and less than full).

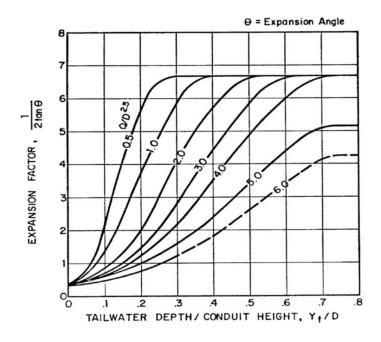


Figure 9-35. Expansion factor for circular conduits

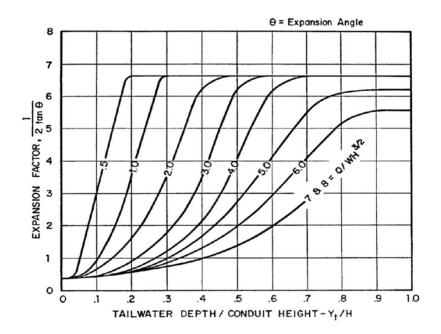
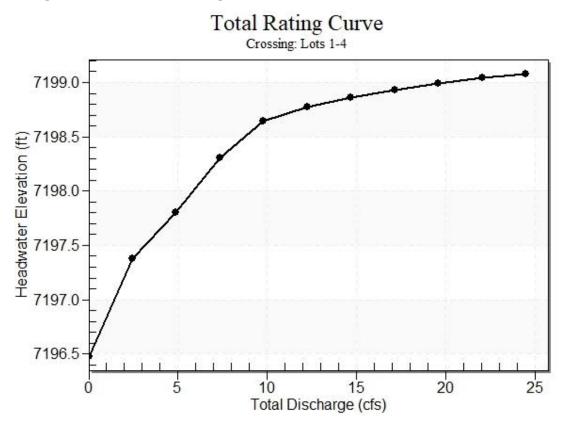


Figure 9-36. Expansion factor for rectangular conduits

Future Driveway Culvert Analysis- 18" RCP HY-8 Culvert Analysis Report

The sizing of this future driveway analyzed Lots 1-4 and it was determined that an 18" RCP culvert will be sufficient. Additionally, Lots 7-5 and 39 will also use an 18" RCP culvert for future driveways. Future engineered site plans will provide final details for the individual lot driveways and will be constructed by others.


Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs Design Flow: 24.51 cfs Maximum Flow: 24.51 cfs

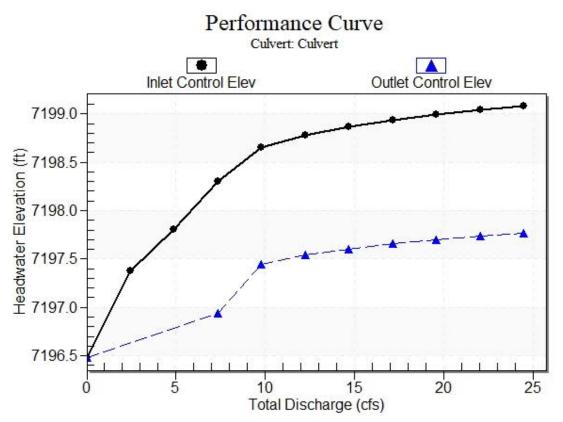
Headwater Elevation (ft)	Total Discharge (cfs)	Culvert Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7196.48	0.00	0.00	0.00	1
7197.38	2.45	2.45	0.00	1
7197.81	4.90	4.90	0.00	1
7198.30	7.35	7.35	0.00	1
7198.65	9.80	8.67	1.10	15
7198.78	12.26	9.11	3.11	8
7198.86	14.71	9.40	5.27	6
7198.93	17.16	9.62	7.49	5
7198.99	19.61	9.80	9.78	5
7199.04	22.06	9.96	12.05	4
7199.08	24.51	10.08	14.39	3
7199.05	7.75	7.75	0.00	Overtopping

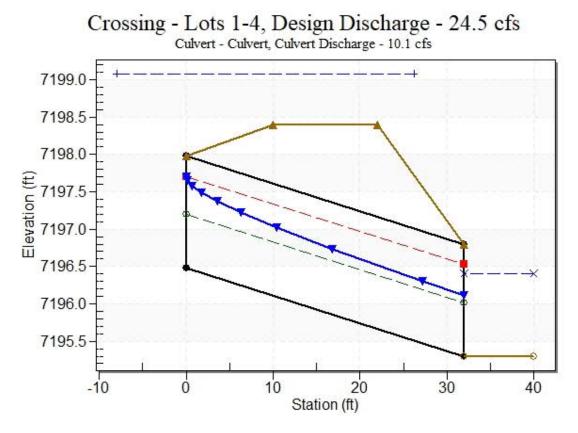
 Table 1 - Summary of Culvert Flows at Crossing: Lots 1-4

Rating Curve Plot for Crossing: Lots 1-4

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7196.48	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
2.45	2.45	7197.38	0.897	0.0*	1-S2n	0.339	0.593	0.353	0.465	7.716	3.238
4.90	4.90	7197.81	1.327	0.0*	1-S2n	0.482	0.851	0.522	0.603	8.953	3.851
7.35	7.35	7198.30	1.823	0.460	5-S2n	0.599	1.050	0.666	0.702	9.709	4.262
9.80	8.67	7198.65	2.168	0.961	5-S2n	0.656	1.140	0.737	0.782	10.037	4.580
12.26	9.11	7198.78	2.294	1.058	5-S2n	0.674	1.167	0.761	0.850	10.123	4.842
14.71	9.40	7198.86	2.382	1.125	5-S2n	0.686	1.184	0.776	0.911	10.184	5.068
17.16	9.62	7198.93	2.452	1.178	5-S2n	0.696	1.197	0.788	0.965	10.234	5.267
19.61	9.80	7198.99	2.511	1.223	5-S2n	0.703	1.208	0.797	1.014	10.275	5.446
22.06	9.96	7199.04	2.561	1.260	5-S2n	0.710	1.216	0.805	1.060	10.310	5.609
24.51	10.08	7199.08	2.602	1.291	5-S2n	0.715	1.223	0.811	1.103	10.338	5.759

Table 2 - Culvert Summary Table: Culvert


* Full Flow Headwater elevation is below inlet invert.


Straight Culvert Inlet Elevation (invert): 7196.48 ft, Outlet Elevation (invert): 7195.30 ft Culvert Length: 32.02 ft, Culvert Slope: 0.0369

The maximum headwater elevation is 7199.08'. The elevation at the shoulder is 7199.05'. Therefore, the maximum overtopping does not exceed the elevation at the shoulder of the roadway by more than 6 inches.

Culvert Performance Curve Plot: Culvert

Water Surface Profile Plot for Culvert: Culvert

Site Data - Culvert

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7196.48 ft Outlet Station: 32.00 ft Outlet Elevation: 7195.30 ft Number of Barrels: 1

Culvert Data Summary - Culvert

Barrel Shape: Circular Barrel Diameter: 1.50 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Mitered to Conform to Slope Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	7195.30	0.00	0.00	0.00	0.00
2.45	7195.77	0.47	3.24	0.91	1.18
4.90	7195.90	0.60	3.85	1.19	1.24
7.35	7196.00	0.70	4.26	1.38	1.27
9.80	7196.08	0.78	4.58	1.54	1.29
12.26	7196.15	0.85	4.84	1.67	1.31
14.71	7196.21	0.91	5.07	1.79	1.32
17.16	7196.26	0.96	5.27	1.90	1.34
19.61	7196.31	1.01	5.45	1.99	1.35
22.06	7196.36	1.06	5.61	2.08	1.36
24.51	7196.40	1.10	5.76	2.17	1.37

Table 3 - Downstream Channel Rating Curve (Crossing: Lots 1-4)

Tailwater Channel Data - Lots 1-4

Tailwater Channel Option: Triangular Channel

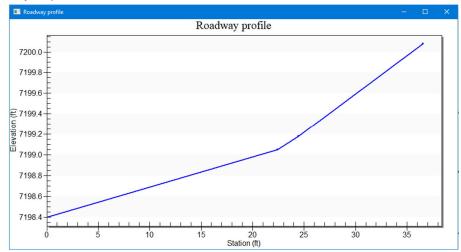
Side Slope (H:V): 3.50 (_:1)

Channel Slope: 0.0315

Channel Manning's n: 0.0300

Channel Invert Elevation: 7195.30 ft

Roadway Data for Crossing: Lots 1-4


Roadway Profile Shape: Irregular Roadway Shape (coordinates)

Irregular Roadway Cross-Section:

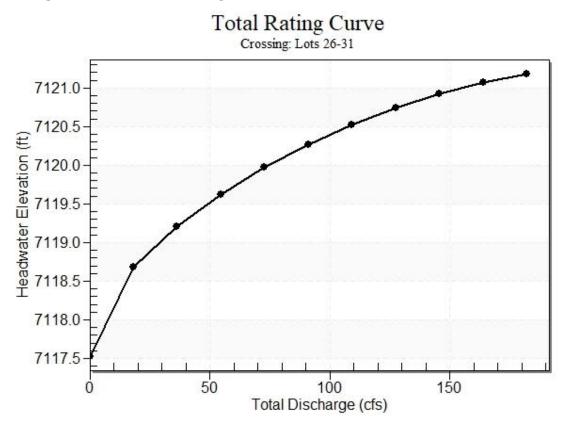
Coord No.	Station (ft)	Elevation (ft)
0	0.00	7198.40
1	22.42	7199.05
2	24.42	7199.18
3	36.53	7200.08

Roadway Surface: Paved

Roadway Top Width: 12.00 ft

Future Driveway Culvert Analysis- (3) 36" RCP HY-8 Culvert Analysis Report

The sizing of this future driveway analyzed Lots 26-31 and it was determined that three 36" RCP culverts are required. Additionally, Lots 32-38 will also use three 36" RCP culverts for future driveways. Future engineered site plans will provide final details for the individual lot driveways and will be constructed by others.


Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs Design Flow: 182.13 cfs Maximum Flow: 182.13 cfs

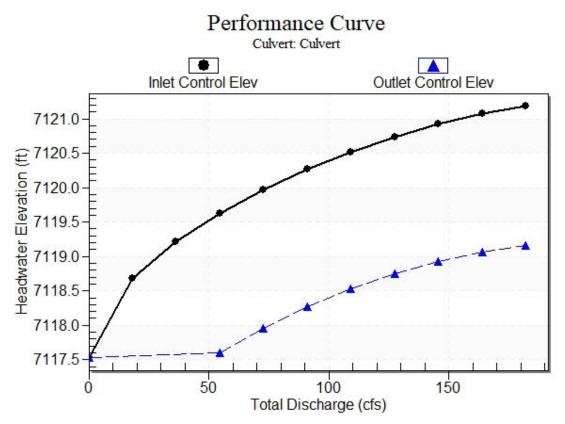
Headwater Elevation (ft)	Total Discharge (cfs)	Culvert Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7117.53	0.00	0.00	0.00	1
7118.69	18.21	18.21	0.00	1
7119.21	36.43	36.43	0.00	1
7119.62	54.64	54.64	0.00	1
7119.97	72.85	72.16	0.67	5
7120.27	91.06	86.75	4.27	5
7120.52	109.28	98.37	10.82	6
7120.74	127.49	107.74	19.64	8
7120.93	145.70	115.25	30.31	9
7121.07	163.92	120.72	43.02	7
7121.19	182.13	124.84	57.14	6
7119.70	58.53	58.53	0.00	Overtopping

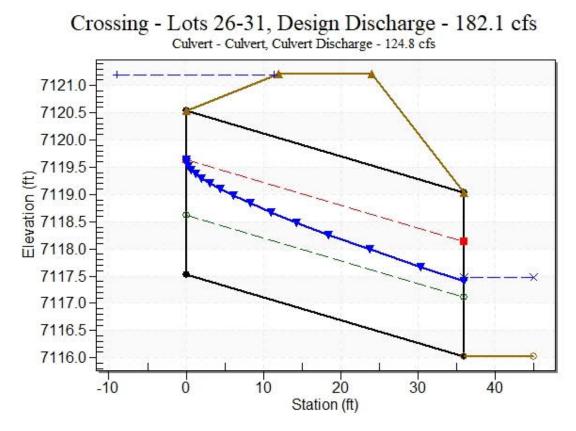
 Table 1 - Summary of Culvert Flows at Crossing: Lots 26-31

Rating Curve Plot for Crossing: Lots 26-31

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	7117.53	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
18.21	18.21	7118.69	1.158	0.0*	1-S2n	0.413	0.773	0.444	0.391	9.297	3.489
36.43	36.43	7119.21	1.680	0.0*	1-S2n	0.580	1.106	0.656	0.584	10.622	4.441
54.64	54.64	7119.62	2.090	0.064	1-S2n	0.710	1.366	0.833	0.737	11.368	5.087
72.85	72.16	7119.97	2.442	0.426	1-S2n	0.818	1.580	0.980	0.867	11.987	5.586
91.06	86.75	7120.27	2.738	0.740	1-S2n	0.899	1.740	1.096	0.983	12.378	5.999
109.28	98.37	7120.52	2.990	1.000	1-S2n	0.960	1.858	1.184	1.088	12.648	6.352
127.49	107.74	7120.74	3.209	1.218	5-S2n	1.007	1.948	1.249	1.185	12.894	6.663
145.70	115.25	7120.93	3.398	1.398	5-S2n	1.043	2.017	1.303	1.275	13.044	6.941
163.92	120.72	7121.07	3.543	1.532	5-S2n	1.069	2.065	1.341	1.360	13.161	7.193
182.13	124.84	7121.19	3.657	1.635	5-S2n	1.089	2.101	1.368	1.440	13.254	7.424

Table 2 - Culvert Summary Table: Culvert


* Full Flow Headwater elevation is below inlet invert.


Straight Culvert Inlet Elevation (invert): 7117.53 ft, Outlet Elevation (invert): 7116.03 ft Culvert Length: 36.03 ft, Culvert Slope: 0.0417

The maximum headwater elevation is 7121.19'. The elevation at the shoulder is 7120.82'. Therefore, the maximum overtopping does not exceed the elevation at the shoulder of the roadway by more than 6 inches.

Culvert Performance Curve Plot: Culvert

Water Surface Profile Plot for Culvert: Culvert

Site Data - Culvert

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7117.53 ft Outlet Station: 36.00 ft Outlet Elevation: 7116.03 ft Number of Barrels: 3

Culvert Data Summary - Culvert

Barrel Shape: Circular Barrel Diameter: 3.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Mitered to Conform to Slope Inlet Depression: None

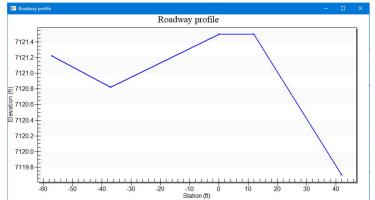
Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	7116.03	0.00	0.00	0.00	0.00
18.21	7116.42	0.39	3.49	0.49	1.03
36.43	7116.61	0.58	4.44	0.73	1.10
54.64	7116.77	0.74	5.09	0.92	1.13
72.85	7116.90	0.87	5.59	1.08	1.16
91.06	7117.01	0.98	6.00	1.23	1.18
109.28	7117.12	1.09	6.35	1.36	1.20
127.49	7117.21	1.18	6.66	1.48	1.21
145.70	7117.31	1.28	6.94	1.59	1.22
163.92	7117.39	1.36	7.19	1.70	1.23
182.13	7117.47	1.44	7.42	1.80	1.24

Table 3 - Downstream Channel Rating Curve (Crossing: Lots 26-31)

Tailwater Channel Data - Lots 26-31

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 12.00 ft Side Slope (H:V): 3.50 (_:1) Channel Slope: 0.0200 Channel Manning's n: 0.0300 Channel Invert Elevation: 7116.03 ft

Roadway Data for Crossing: Lots 26-31


Roadway Profile Shape: Irregular Roadway Shape (coordinates)

Irregular Roadway Cross-Section:

Coord No.	Station (ft)	Elevation (ft)
0	-57.00	7121.22
1	-37.00	7120.82
2	0.00	7121.50
3	12.00	7121.50
4	42.00	7119.70

Roadway Surface: Paved

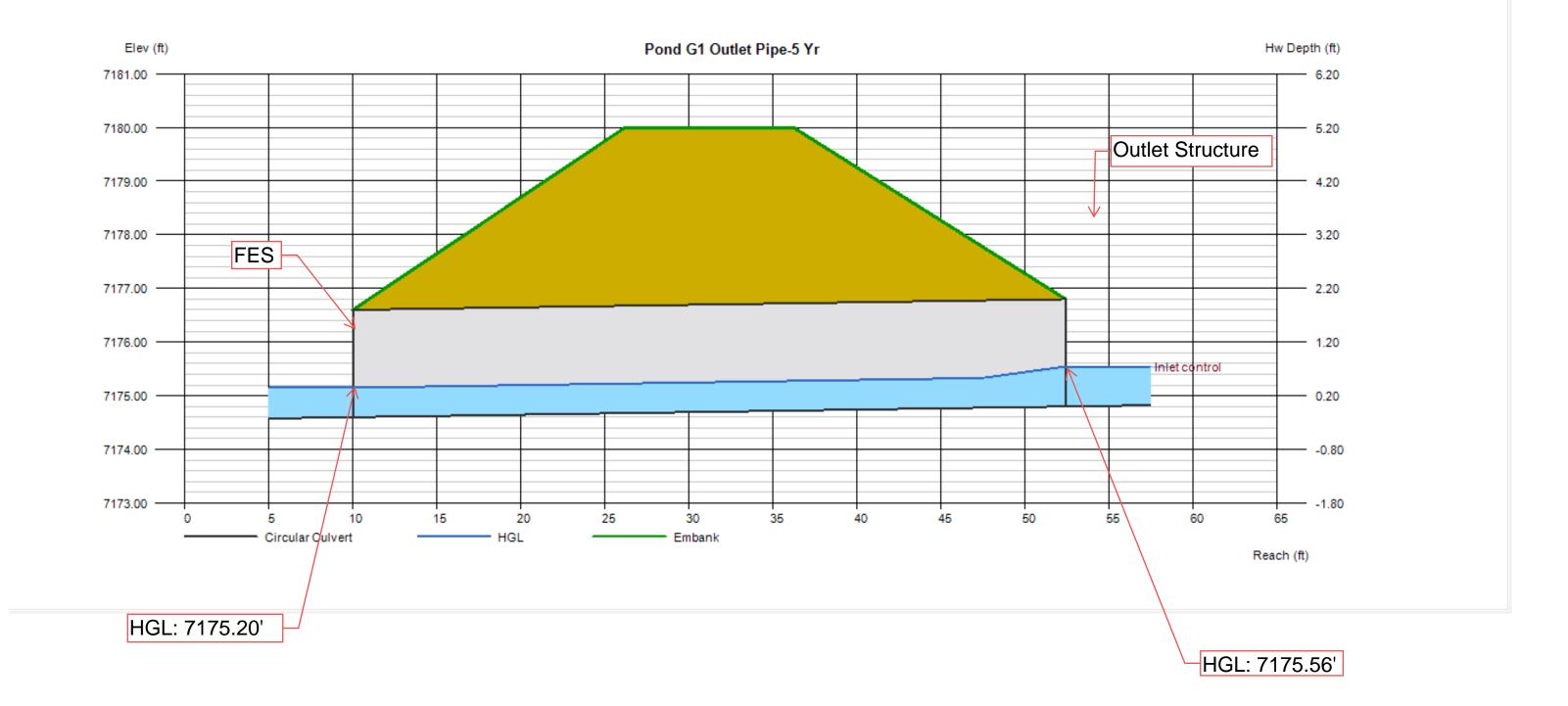
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Pond G1 Outlet Pipe-5 Yr

Invert Elev Dn (ft)	= 7174.60
Pipe Length (ft)	= 42.41
Slope (%)	= 0.47
Invert Elev Up (ft)	= 7174.80
Rise (in)	= 24.0
Shape	= Circular
Span (in)	= 24.0
No. Barrels	= 1
n-Value	= 0.013
Culvert Type	= Circular Concrete
Culvert Entrance	 Groove end projecting (C)
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2
Embankment	
Top Elevation (ft)	= 7180.00

Top Elevation (II) Top Width (ft) Crest Width (ft)

=	7180.00
=	10.00
=	40.00


Tuesday, Jun 14 2022

Calculations

Qmin (cfs)	= 2.50
Qmax (cfs)	= 2.50
Tailwater Elev (ft)	= Normal

Highlighted

Qtotal (cfs)	= 2.50
Qpipe (cfs)	= 2.50
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 3.56
Veloc Up (ft/s)	= 3.52
HGL Dn (ft)	= 7175.15
HGL Up (ft)	= 7175.35
Hw Elev (ft)	= 7175.55
Hw/D (ft)	= 0.37
Flow Regime	= Inlet Control

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

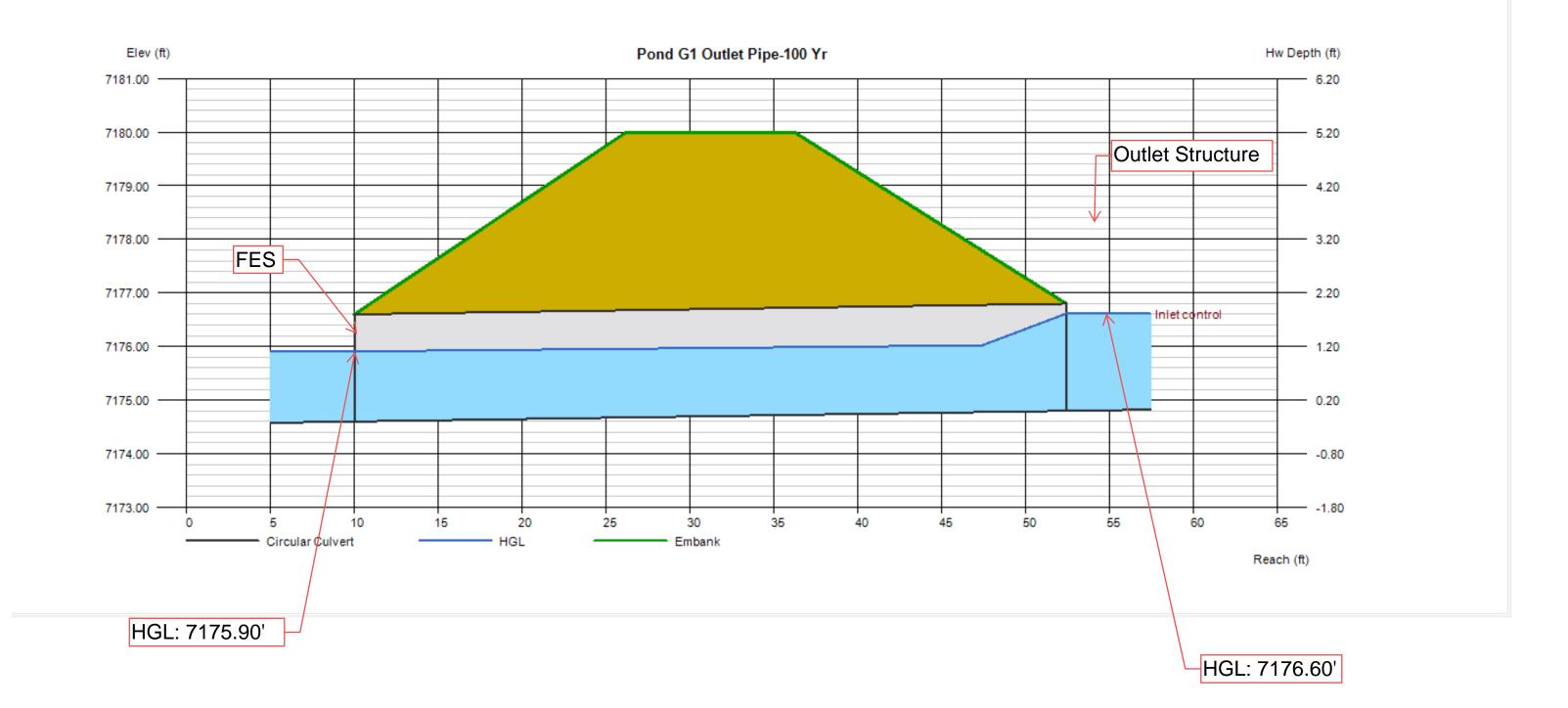
= 40.00

Pond G1 Outlet Pipe-100 Yr

Invert Elev Dn (ft)	= 7
Pipe Length (ft)	= 4
Slope (%)	= 0
Invert Elev Up (ft)	= 7
Rise (in)	= 2
Shape	= C
Span (in)	= 2
No. Barrels	= 1
n-Value	= 0
Culvert Type	= C
Culvert Entrance	= 0
Coeff. K,M,c,Y,k	= 0

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)


= 7174.60	Calo
= 42.41	Qmi
= 0.47	Qma
= 7174.80	Tail
= 24.0	
= Circular	Higl
= 24.0	Qtot
= 1	Qpip
= 0.013	Qov
= Circular Concrete	Velo
= Groove end projecting (C)	Velo
= 0.0045, 2, 0.0317, 0.69, 0.2	HGL
	HGL
	Hw
= 7180.00	Hw/
= 10.00	Flov

alculations

Qmin (cfs)	= 11.80
Qmax (cfs)	= 11.80
Tailwater Elev (ft)	= Normal

Highlighted

Qtotal (cfs)	= 11.80
Qpipe (cfs)	= 11.80
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 5.42
Veloc Up (ft/s)	= 5.78
HGL Dn (ft)	= 7175.91
HGL Up (ft)	= 7176.04
Hw Elev (ft)	= 7176.62
Hw/D (ft)	= 0.91
Flow Regime	= Inlet Control

Tuesday, Jun 14 2022

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

= 40.00

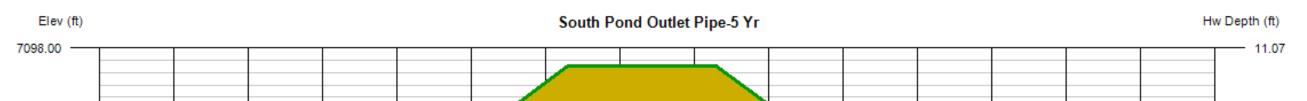
South Pond Outlet Pipe-5 Yr

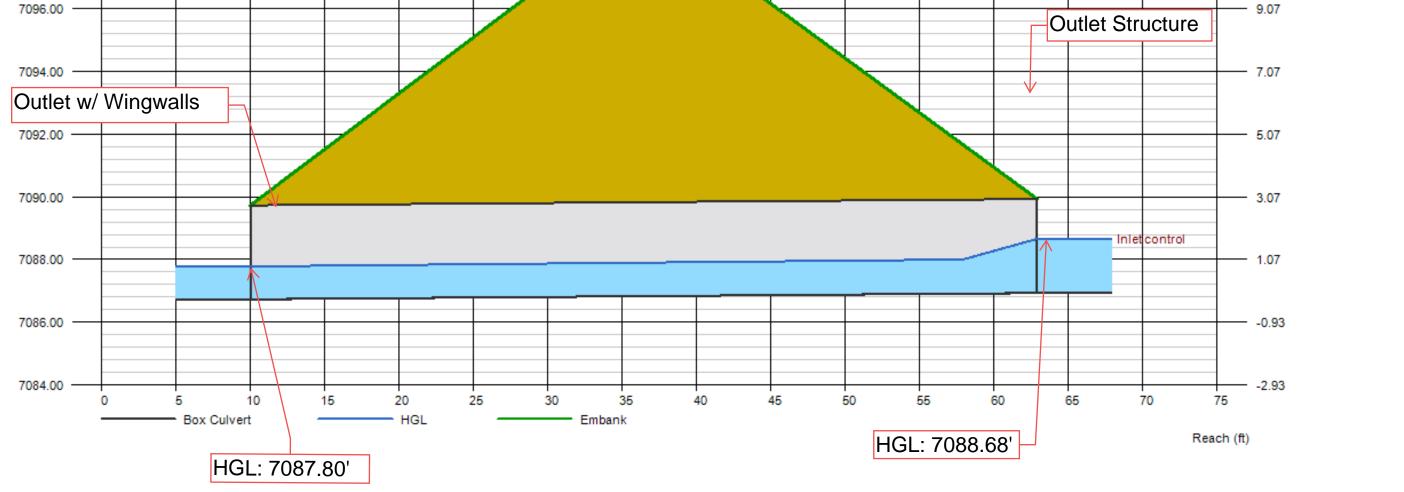
Invert Elev Dn (ft)	= 7
Pipe Length (ft)	= ;
Slope (%)	= (
Invert Elev Up (ft)	= 7
Rise (in)	= (
Shape	=
Span (in)	= 9
No. Barrels	= '
n-Value	= (
Culvert Type	=
Culvert Entrance	= (
Coeff. K,M,c,Y,k	= (

Embankment

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)

= 52.90	Qmin
= 0.38	Qma
= 7086.93	Tailw
= 36.0	
= Box	High
= 96.0	Qtota
= 1	Qpip
= 0.013	Qove
= Flared Wingwalls	Veloc
= 30D to 75D wingwall flares	Velo
= 0.026, 1, 0.0347, 0.81, 0.4	HGL
	HGL
	Hw E
= 7097.40	Hw/D
= 10.00	Flow


Tuesday, Jun 14 2022


Calculations

min (cfs)	= 51.80
max (cfs)	= 51.80
ailwater Elev (ft)	= Normal

Highlighted

Qtotal (cfs)	=	51.80
Qpipe (cfs)	=	51.80
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	6.17
Veloc Up (ft/s)	=	5.92
HGL Dn (ft)	=	7087.78
HGL Up (ft)	=	7088.02
Hw Elev (ft)	=	7088.66
Hw/D (ft)	=	0.58
Flow Regime	=	Inlet Control

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

= 40.00

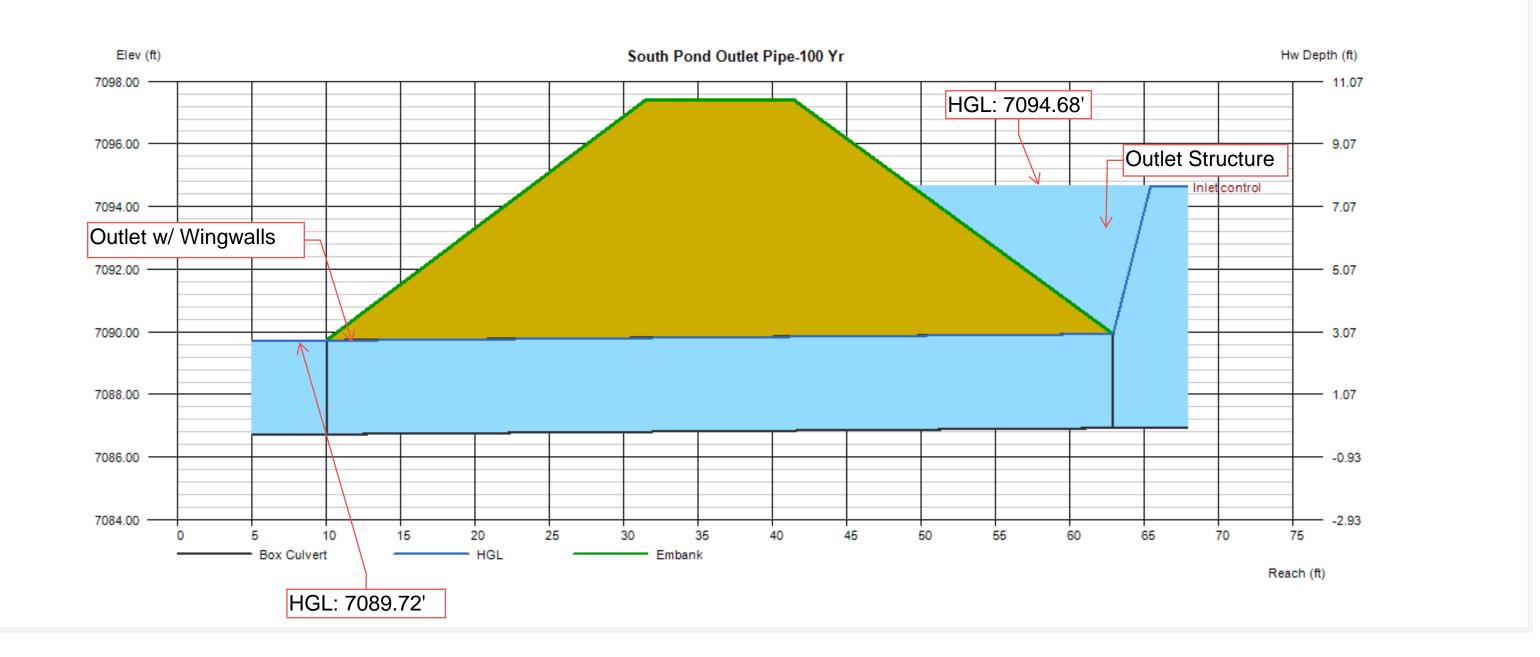
South Pond Outlet Pipe-100 Yr

Invert Elev Dn (ft)	= 7086.73
Pipe Length (ft)	= 52.90
Slope (%)	= 0.38
Invert Elev Up (ft)	= 7086.93
Rise (in)	= 36.0
Shape	= Box
Span (in)	= 96.0
No. Barrels	= 1
n-Value	= 0.013
Culvert Type	= Flared W
Culvert Entrance	= 30D to 7
Coeff. K,M,c,Y,k	= 0.026, 1,

Embankment

Top Elevation (ft) Top Width (ft) Crest Width (ft)

	- u
= 52.90	Qrr
= 0.38	Qm
= 7086.93	Tai
= 36.0	
= Box	Hig
= 96.0	Qto
= 1	Qp
= 0.013	Qo
= Flared Wingwalls	Vel
= 30D to 75D wingwall flares	Vel
= 0.026, 1, 0.0347, 0.81, 0.4	HG
	HG
	Hw
= 7097.40	Hw
= 10.00	Flo

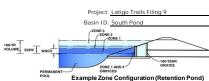

Tuesday, Jun 14 2022

Calculations

min (cfs)	= 296.00
max (cfs)	= 296.00
ailwater Elev (ft)	= Normal

Highlighted

Qtotal (cfs)	=	296.00
Qpipe (cfs)	=	296.00
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	12.37
Veloc Up (ft/s)	=	12.33
HGL Dn (ft)	=	7089.72
HGL Up (ft)	=	7089.93
Hw Elev (ft)	=	7094.63
Hw/D (ft)	=	2.57
Flow Regime	=	Inlet Control



Final Drainage Report for Latigo Trails Filing No. 9 & Addendum to MDDP/Preliminary Plan for Latigo Trails

APPENDIX D

WATER QUALITY AND DETENTION CALCULATIONS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Watershed Information

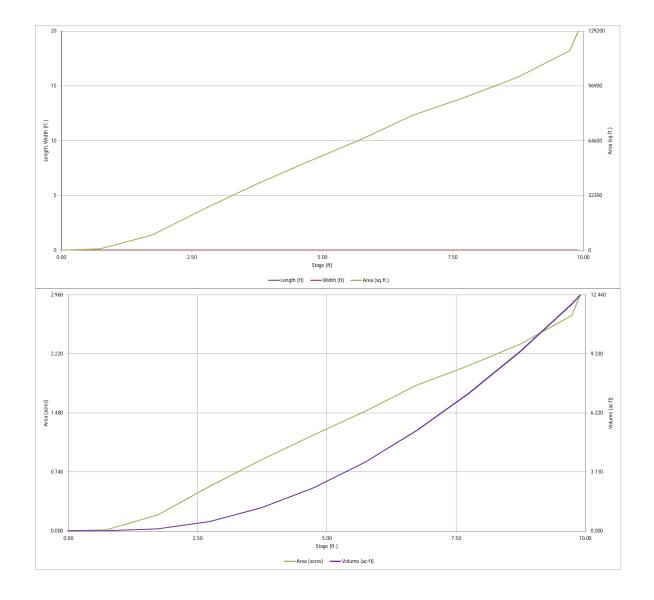
ershed Information		
Selected BMP Type =	EDB	
Watershed Area =	237.10	acres
Watershed Length =	4,610	ft
Watershed Length to Centroid =	1,845	ft
Watershed Slope =	0.035	ft/ft
Watershed Imperviousness =	13.80%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban nyurc	graphinocedu	no.
Water Quality Capture Volume (WQCV) =	1.726	acre-feet
Excess Urban Runoff Volume (EURV) =	3.156	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	3.918	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	7.929	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	11.853	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	18.594	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	23.283	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	29.934	acre-feet
500-yr Runoff Volume (P1 = 3 in.) =	39.350	acre-feet
Approximate 2-yr Detention Volume =	2.083	acre-feet
Approximate 5-yr Detention Volume =	3.181	acre-feet
Approximate 10-yr Detention Volume =	5.803	acre-feet
Approximate 25-yr Detention Volume =	7.671	acre-feet
Approximate 50-yr Detention Volume =	8.080	acre-feet
Approximate 100-yr Detention Volume =	10.228	acre-feet

Define	Zones	and	Basin	Geometry

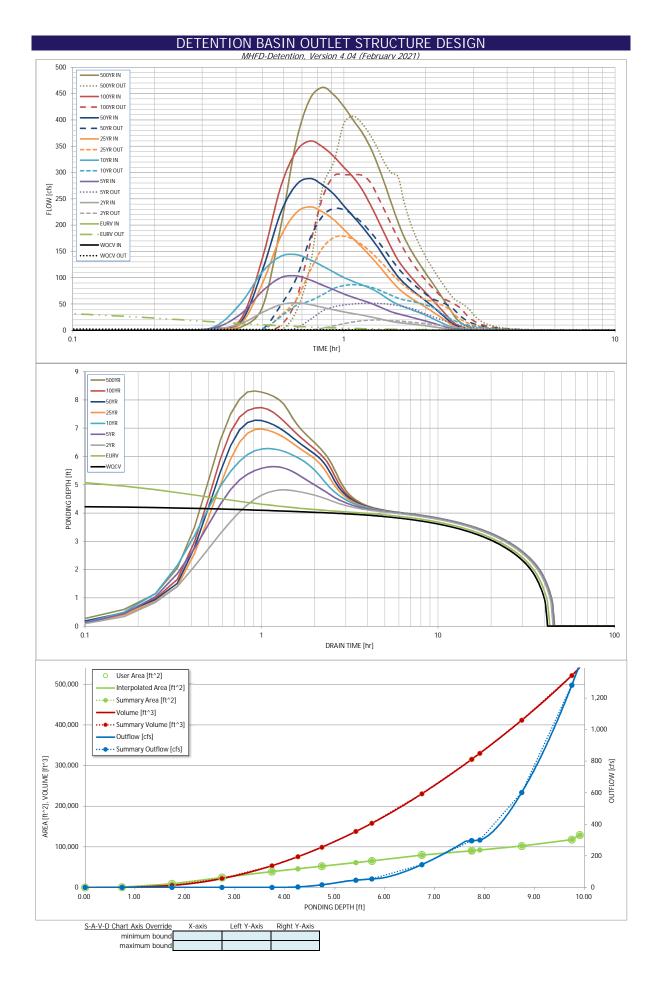
Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	1.726	acre-feet
Zone 2 Volume (EURV - Zone 1) =	1.429	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	7.073	acre-feet
Total Detention Basin Volume =	10.228	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	


Initial Surcharge Area (A _{ISV}) =	user	ft 2
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W_{ISV}) =	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W_{FLOOR}) =		ft
Area of Basin Floor $(A_{FLOOR}) =$		ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin (L_{MAIN}) =	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$		ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft ³

v Calculated Total Basin Volume (Vtotal) = user acre-feet

ion Pond)	Depth Increment = Stage - Storage	Stage	ft Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
	Top of Micropool		0.00				0	0.000	200	0.00/
	7088 7089		0.74				757 8.862	0.017	280 5,089	0.006
	7089		2.74				24,382	0.203	21,711	0.498
	7091		3.74				39,017	0.896	53,411	1.226
	7092		4.74				52,356	1.202	99,097	2.275
	7093		5.74				65,385	1.501	157,968	3.626
	7094		6.74				79,696	1.830	230,508	5.292 7.243
	7095 7096		7.74 8.74				90,272 102,009	2.072	315,492 411,633	9.450
	7097		9.74				117,693	2.702	521,484	11.972
	7097.16		9.90				128,850	2.958	541,207	12.424
Optional User Overrides acre-feet										
acre-feet										
1.19 inches										
1.50 inches										
1.75 inches										
2.00 inches 2.25 inches										
2.52 inches										
3.00 inches										
_										
				-						
										<u> </u>
										<u> </u>
									-	
									-	
								-		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER


MHFD-Detention, Version 4.04 (February 2021)

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)									
	Latigo Trails Filing South Pond	19							
ZONE 3				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
VOLUME EURV WOCV			Zone 1 (WQCV)	4.26	1.726	Orifice Plate			
	100-YEAR		Zone 2 (EURV)	5.42	1.429	Rectangular Orifice			
PERMANENT ORIFICES	ORIFICE		Zone 3 (100-year)	9.07	7.073	Weir&Pipe (Rect.)			
	Configuration (Re	etention Pond)	2011c 3 (100-year)	Total (all zones)	10.228	Weirdi ipe (Neet.)			
User Input: Orifice at Underdrain Outlet (typical	lly used to drain W()CV in a Filtration F	(MD)	Total (all zones)	10.226		Calculated Parame	eters for Underdrair	,
Underdrain Orifice Invert Depth =	N/A		the filtration media	surface)	Underd	rain Orifice Area =	N/A	ft ²	1
Underdrain Orifice Diameter =	N/A	inches		Surrace)		Orifice Centroid =	N/A	feet	
							· · · · · · · · · · · · · · · · · · ·	_	
User Input: Orifice Plate with one or more orific	ces or Elliptical Slot	Weir (typically use	d to drain WQCV a	nd/or EURV in a see	dimentation BMP)		Calculated Parame	eters for Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basin	n bottom at Stage =	= 0 ft)	WQ Orific	ce Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	4.26	ft (relative to basir	n bottom at Stage =	= 0 ft)	Ellip	otical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches				cal Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	inches			EI	liptical Slot Area =	N/A	ft ²	
Here have to Change and Tabel Area of Fach Orific	Deve (even have d								
User Input: Stage and Total Area of Each Orific				Bow / (anti)	Dow E (anti1)	Dow ((anti)	Dow 7 (anti	Dow 0 (anti	1
Stong of Orifles Controld (E)	Row 1 (required) 0.00	Row 2 (optional) 0.00	Row 3 (optional) 0.00	Row 4 (optional) 0.50	Row 5 (optional) 0.50	Row 6 (optional) 0.50	Row 7 (optional) 1.00	Row 8 (optional) 1.00	
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)		1.11	1.11	1.00	1.00	1.00	1.00	1.00	
Grance Area (sq. illilles)	1.11	1.11	1.11	1.00	1.00	1.00	1.00	1.00	1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Orifice Centroid (ft)	1.00	(((==	(spreadly)	(((ip iii)	1
Orifice Area (sq. inches)									
									-
User Input: Vertical Orifice (Circular or Rectang	jular)						Calculated Parame	eters for Vertical Or	ifice
	Zone 2 Rectangula	Not Selected					Zone 2 Rectangula	Not Selected	
Invert of Vertical Orifice =	3.98	N/A		n bottom at Stage =		tical Orifice Area =	10.42	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	5.42	N/A		n bottom at Stage =	= 0 ft) Vertical	Orifice Centroid =	0.63	N/A	feet
Vertical Orifice Height =	15.00	N/A	inches						
Vertical Orifice Width =	100.00		inches						
User Input: Overflow Weir (Dropbox with Flat of	ar Slanad Crata and		stongular/Transzai	dal Wair (and No C	utlat Dina)		Colculated Darama	eters for Overflow V	Noir
Oser Input. Overnow well (Dropbox with Flat C	Zone 3 Weir	Not Selected	ctangular/mapezoi		<u>utiet Pipe)</u>		Zone 3 Weir	Not Selected	ven
Overflow Weir Front Edge Height, Ho =	5.90	N/A	ft (relative to basin l	nottom at Stage – 0 t	ft) Height of Grate	Upper Edge H. =	5.90	N/A	feet
Overflow Weir Front Edge Length =	8.33	N/A	feet	Jottom at Stage - 0		eir Slope Length =	5.84	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V	Gra	ate Open Area / 100	, ,	1.41	N/A	
Horiz. Length of Weir Sides =	5.84	N/A	feet		erflow Grate Open	-	33.86	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A		0	verflow Grate Oper	Area w/ Debris =	33.86	N/A	ft ²
Debris Clogging % =	0%	N/A	%						
			-						
User Input: Outlet Pipe w/ Flow Restriction Plate	e (Circular Orifice, I	Restrictor Plate, or	Rectangular Orifice)	<u>Cal</u>	culated Parameters	s for Outlet Pipe w/	Flow Restriction P	late
	Zone 3 Rectangula	Not Selected					Zone 3 Rectangula	Not Selected	
Depth to Invert of Outlet Pipe =	0.33	N/A		asin bottom at Stage	. ,	utlet Orifice Area =	24.00	N/A	ft ²
Rectangular Orifice Width =	96.00	N/A	inches			Orifice Centroid =	1.50	N/A	feet
Rectangular Orifice Height =	36.00		inches	Half-Centr	ral Angle of Restrict	tor Plate on Pipe =	N/A	N/A	radians
User Input: Emergency Spillway (Rectangular or	r Tranozoidal)						Calculated Parame	tors for Spillway	
User Input: Emergency Spillway (Rectangular of Spillway Invert Stage=	7.90	ft (relative to beek	n bottom at Stage =	- 0 ft)	Spillway D	esign Flow Depth=	0.97	feet	
Spillway Crest Length =	120.00	feet	i porroni ar srada :	- 010	1 2	op of Freeboard =	9.87	feet	
Spillway End Slopes =	120.00	H:V			Juge di T		2.91	acres	
Spillway End Slopes =	4 00								
	4.00					•		acre-ft	
Spillway End Slopes = Freeboard above Max Water Surface =	4.00	feet			Basin Area at T Basin Volume at T	•	12.34	acre-ft	
Freeboard above Max Water Surface =	1.00	feet			Basin Volume at T	op of Freeboard =	12.34	<u>.</u>	
Freeboard above Max Water Surface = Routed Hydrograph Results	1.00 The user can over	feet ride the default CU			Basin Volume at T y entering new valu	op of Freeboard =	12.34 ydrographs table (0	Columns W through	
Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period =	1.00 The user can over WQCV	feet <i>ride the default CU</i> EURV	2 Year	5 Year	Basin Volume at T y entering new valu 10 Year	op of Freeboard = ues in the Inflow H 25 Year	12.34 ydrographs table (0 50 Year	Columns W through	500 Year
Freeboard above Max Water Surface = Routed Hydrograph Results	1.00 The user can over	feet ride the default CU			Basin Volume at T y entering new valu	op of Freeboard =	12.34 ydrographs table (0	Columns W through	
Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft)	1.00 The user can over WQCV N/A 1.726 N/A	feet ride the default CU EURV N/A 3.156 N/A	2 Year 1.19 3.918 3.918	5 Year 1.50 7.929 7.929	Basin Volume at T y entering new value 1.0 Year 1.75 11.853 11.853	op of Freeboard = <u>ues in the Inflow H</u> <u>25 Year</u> <u>2.00</u> 18.594 18.594	12.34 ydrographs table (0 50 Year 2.25 23.283 23.283	Columns W through 100 Year 2.52 29.934 29.934	500 Year 3.00 39.350 39.350
Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	1.00 The user can over WQCV N/A 1.726 N/A N/A	feet ride the default CU EURV N/A 3.156 N/A N/A	2 Year 1.19 3.918	5 Year 1.50 7.929	Basin Volume at T y entering new value 10 Year 1.75 11.853	op of Freeboard = <u>ues in the Inflow H</u> <u>25 Year</u> <u>2.00</u> 18.594	12.34 ydrographs table (0 50 Year 2.25 23.283	<i>Columns W through</i> 100 Year 2.52 29.934	500 Year 3.00 39.350
Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = UHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	1.00 The user can over WOCV N/A 1.726 N/A N/A N/A	feet ride the default CU EURV N/A N/A N/A N/A	2 Year 1.19 3.918 3.918 26.9	5 Year 1.50 7.929 7.929 76.5	Basin Volume at T y entering new valid 10 Year 1.75 11.853 11.853 116.4	ues in the Inflow H 25 Year 2.00 18.594 18.594 206.4	12.34 vdrographs table (t 50 Year 2.25 23.283 23.283 259.5	Columns W through 100 Year 2.52 29.934 29.934 328.3	500 Year 3.00 39.350 39.350 428.1
Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = CUHP Redevelopment Peak Q (cfs) =	1.00 The user can over WQCV N/A 1.726 N/A N/A	feet ride the default CU EURV N/A 3.156 N/A N/A	2 Year 1.19 3.918 3.918	5 Year 1.50 7.929 7.929	Basin Volume at T y entering new value 1.0 Year 1.75 11.853 11.853	op of Freeboard = <u>ues in the Inflow H</u> <u>25 Year</u> <u>2.00</u> 18.594 18.594	12.34 ydrographs table (0 50 Year 2.25 23.283 23.283	Columns W through 100 Year 2.52 29.934 29.934	500 Year 3.00 39.350 39.350
Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	1.00 <i>The user can over</i> WOCV N/A 1.726 N/A N/A N/A N/A N/A N/A 3.0	feet ride the default CU EURV N/A 3.156 N/A N/A N/A N/A N/A N/A N/A 42.8	2 Year 1.19 3.918 3.918 26.9 0.11 52.3 20.0	5 Year 1.50 7.929 7.929 76.5 0.32 103.7 51.8	Basin Volume at T y entering new value 10 Year 1.75 11.853 11.853 116.4 0.49 144.0 86.9	ues in the Inflow H 25 Year 2.00 18.594 18.594 206.4 0.87 234.8 179.1	12.34 vdrographs table (U 50 Year 2.25 23.283 259.5 1.09 288.8 231.7	Columns W through 100 Year 2.52 29.934 328.3 1.38 360.0 295.9	500 Year 3.00 39.350 39.350 428.1 1.81 461.8 407.1
Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Unflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	1.00 The user can over WOCV N/A 1.726 N/A N/A N/A N/A N/A N/A N/A	feet ride the default CU EURV N/A N/A N/A N/A N/A N/A N/A N/A	2 Year 1.19 3.918 26.9 0.11 52.3 20.0 N/A	5 Year 1.50 7.929 7.929 76.5 0.32 103.7 51.8 0.7	Basin Volume at T y entering new valid 10 Year 1.75 11.853 11.853 11.853 116.4 0.49 144.0 86.9 0.7	ues in the Inflow H 25 Year 2.00 18.594 206.4 0.87 234.8 179.1 0.9	12.34 vdrographs table (0 50 Year 2.25 23.283 23.283 259.5 1.09 288.8 231.7 0.9	Columns W through 100 Year 2.52 29.934 29.934 328.3 1.38 360.0 295.9 0.9	500 Year 3.00 39.350 39.350 428.1 1.81 461.8 407.1 1.0
Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow C Predevelopment Q = Structure Controlling Flow =	1.00 The user can over WOCV N/A 1.726 N/A N/A N/A N/A N/A N/A N/A Vertical Orifice 1	feet ride the default CU EURV N/A 3.156 N/A N/A N/A N/A N/A N/A N/A Vertical Orifice 1	2 Year 1.19 3.918 3.918 26.9 0.11 52.3 20.0 N/A Vertical Orifice 1	5 Year 1.50 7.929 7.929 76.5 0.32 103.7 51.8 0.7 Vertical Orifice 1	Basin Volume at T y entering new valid 10 Year 1.75 11.853 11.853 11.6.4 0.49 144.0 86.9 0.7 Overflow Weir 1	ep of Freeboard = <i>tes in the Inflow H</i> 25 Year 2.00 18.594 18.594 206.4 0.87 234.8 179.1 0.9 Overflow Weir 1	12.34 vdrographs table (0 50 Year 2.25 23.283 23.283 259.5 1.09 288.8 231.7 0.9 Overflow Weir 1	Columns W through 100 Year 2.52 29.934 29.934 328.3 1.38 360.0 295.9 0.9 Outlet Plate 1	500 Year 3.00 39.350 39.350 428.1 1.81 461.8 407.1 1.0 Spillway
Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Unflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	1.00 The user can over WOCV N/A 1.726 N/A N/A N/A N/A N/A N/A N/A	feet ride the default CU EURV N/A N/A N/A N/A N/A N/A N/A N/A	2 Year 1.19 3.918 26.9 0.11 52.3 20.0 N/A	5 Year 1.50 7.929 7.929 76.5 0.32 103.7 51.8 0.7	Basin Volume at T y entering new valid 10 Year 1.75 11.853 11.853 11.853 116.4 0.49 144.0 86.9 0.7	ues in the Inflow H 25 Year 2.00 18.594 206.4 0.87 234.8 179.1 0.9	12.34 vdrographs table (0 50 Year 2.25 23.283 23.283 259.5 1.09 288.8 231.7 0.9	Columns W through 100 Year 2.52 29.934 29.934 328.3 1.38 360.0 295.9 0.9	500 Year 3.00 39.350 39.350 428.1 1.81 461.8 407.1 1.0
Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = UHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	1.00 The user can over WOCV N/A 1.726 N/A N/A N/A N/A N/A N/A Vertical Orifice 1 N/A N/A 3.0 N/A	feet ride the default CU EURV N/A 3.156 N/A N/A N/A N/A N/A N/A Vertical Orifice 1 N/A N/A 38	2 Year 1.19 3.918 3.918 26.9 0.11 52.3 20.0 N/A Vertical Orifice 1 N/A N/A 39	5 Year 1.50 7.929 7.929 7.6.5 0.32 103.7 51.8 0.7 Vertical Orifice 1 N/A N/A 35	Basin Volume at T y entering new valid 10 Year 1.75 11.853 11.853 116.4 0.49 144.0 86.9 0.7 Overflow Weir 1 0.6 N/A 32	a po of Freeboard = ues in the Inflow H 25 Year 2.00 18.594 206.4 0.87 234.8 179.1 0.9 Overflow Weir 1 3.0 N/A 27	12.34 vdrographs table (t 50 Year 2.25 23.283 23.283 259.5 1.09 288.8 231.7 0.9 Overflow Weir 1 4.4 N/A 24	Columns W through 100 Year 2.52 29.934 29.934 328.3 1.38 360.0 295.9 0.9 Outlet Plate 1 6.1 N/A 19	500 Year 3.00 39.350 428.1 461.8 407.1 1.0 Spillway 6.2 N/A 13
Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow O (cfs) = Ratio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	1.00 The user can over WOCV N/A 1.726 N/A N/A N/A N/A N/A N/A Vertical Orifice 1 N/A N/A 38 40	feet ride the default CU EURV N/A 3.156 N/A N/A N/A N/A N/A N/A Vertical Orifice 1 N/A N/A Vertical Orifice 1 N/A A 38 41	2 Year 1.19 3.918 3.918 26.9 0.11 52.3 20.0 N/A Vertical Orifice 1 N/A N/A N/A 39 42	5 Year 1.50 7.929 7.929 76.5 0.32 103.7 51.8 0.7 Vertical Orifice 1 N/A N/A N/A 35 41	Basin Volume at T y entering new valit 10 Year 1.75 11.853 11.853 116.4 0.49 144.0 86.9 0.7 Overflow Weir 1 0.6 N/A 32 39	er of Freeboard = tes in the Inflow H 25 Year 2.00 18.594 18.594 206.4 0.87 234.8 179.1 0.9 Overflow Weir 1 3.0 N/A 27 37	12.34 vdrographs table (U 50 Year 2.25 23.283 259.5 1.09 288.8 231.7 0.9 Overflow Weir 1 4.4 N/A N/A 24 36	Columns W through 100 Year 2.52 29.934 328.3 1.38 360.0 295.9 0.9 Outlet Plate 1 6.1 N/A 19 34	500 Year 3.00 39.350 428.1 1.81 461.8 407.1 1.0 Spillway 6.2 N/A 13 31
Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	1.00 The user can over WOCV N/A 1.726 N/A N/A N/A N/A N/A N/A Vertical Orifice 1 N/A N/A 3.0 N/A	feet ride the default CU EURV N/A 3.156 N/A N/A N/A N/A N/A N/A Vertical Orifice 1 N/A N/A 38	2 Year 1.19 3.918 3.918 26.9 0.11 52.3 20.0 N/A Vertical Orifice 1 N/A N/A 39	5 Year 1.50 7.929 7.929 7.6.5 0.32 103.7 51.8 0.7 Vertical Orifice 1 N/A N/A 35	Basin Volume at T y entering new valid 10 Year 1.75 11.853 11.853 116.4 0.49 144.0 86.9 0.7 Overflow Weir 1 0.6 N/A 32	a po of Freeboard = ues in the Inflow H 25 Year 2.00 18.594 206.4 0.87 234.8 179.1 0.9 Overflow Weir 1 3.0 N/A 27	12.34 vdrographs table (t 50 Year 2.25 23.283 23.283 259.5 1.09 288.8 231.7 0.9 Overflow Weir 1 4.4 N/A 24	Columns W through 100 Year 2.52 29.934 29.934 328.3 1.38 360.0 295.9 0.9 Outlet Plate 1 6.1 N/A 19	500 Year 3.00 39.350 428.1 461.8 407.1 1.0 Spillway 6.2 N/A 13

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	The user can o	verride the calcu	ulated inflow hy	drographs from	this workbook v	vith inflow hydro	ographs develop	oed in a separate	program.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interva	I TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.01	0.13
	0:15:00	0.00	0.00	0.46	0.75	0.93	0.62	0.83	0.77	1.14
	0:20:00	0.00	0.00	2.04	4.76	7.12	2.16	2.58	3.43	6.28
	0:25:00	0.00	0.00	12.94	31.39	51.97	12.57	15.84	21.48	43.77
	0:30:00	0.00	0.00	34.10	74.62	111.11	89.16	113.91	136.95	195.01
	0:35:00	0.00	0.00	48.79	100.07	140.66	177.27	222.56	271.44	358.61
	0:40:00	0.00	0.00	52.32	103.67	144.00	223.52	276.51	340.26	440.40
	0:45:00	0.00	0.00	49.14	95.96	134.27	234.82	288.78	359.95	461.81
	0:55:00	0.00	0.00	43.74 39.20	86.04 77.44	122.30 110.81	225.33 210.59	276.46 259.12	348.93 330.82	447.84 425.17
	1:00:00	0.00	0.00	35.15	69.27	100.58	191.38	236.63	309.72	399.16
	1:05:00	0.00	0.00	31.99	62.76	92.83	173.99	216.41	290.73	376.18
	1:10:00	0.00	0.00	29.04	57.37	86.44	157.54	197.20	267.71	348.19
	1:15:00	0.00	0.00	25.89	51.96	80.21	141.30	177.88	239.57	313.96
	1:20:00	0.00	0.00	22.75	46.16	72.66	125.07	157.94	210.42	277.09
	1:25:00	0.00	0.00	19.66	40.28	63.68	109.01	137.77	181.82	239.77
	1:30:00	0.00	0.00	16.94	35.15	55.44	93.60	118.36	155.55	205.61
	1:35:00	0.00	0.00	14.94	31.55	49.35	80.44	101.98	133.68	177.40
	1:40:00	0.00	0.00	13.57	28.67	44.64	70.77	89.98	117.48	156.24
	1:45:00	0.00	0.00	12.40	25.81	40.48	62.94	80.17	104.24	138.77
	1:50:00	0.00	0.00	11.30 10.14	23.07 20.44	36.66 32.91	56.13 49.94	71.57	92.51 81.85	123.27 109.18
	2:00:00	0.00	0.00	8.95	17.92	28.95	49.94	63.76 56.48	71.93	96.04
	2:05:00	0.00	0.00	7.70	15.34	24.77	38.35	49.06	62.24	83.09
	2:10:00	0.00	0.00	6.42	12.72	20.57	32.50	41.58	52.85	70.45
	2:15:00	0.00	0.00	5.17	10.16	16.54	26.76	34.26	43.79	58.26
	2:20:00	0.00	0.00	3.95	7.69	12.72	21.13	27.12	34.84	46.33
	2:25:00	0.00	0.00	2.79	5.35	9.18	15.63	20.18	26.07	34.73
	2:30:00	0.00	0.00	1.83	3.54	6.59	10.41	13.59	17.74	24.05
	2:35:00	0.00	0.00	1.25	2.54	5.06	6.79	9.13	11.93	16.66
	2:40:00	0.00	0.00	0.95	1.99	4.03	4.61	6.40	8.26	11.85
	2:45:00 2:50:00	0.00	0.00	0.75	1.59	3.21	3.22	4.58	5.71	8.40
	2:55:00	0.00	0.00	0.60	1.27	2.56 2.01	2.25	3.27 2.36	3.86 2.54	5.84 3.96
	3:00:00	0.00	0.00	0.40	0.79	1.56	1.15	1.70	1.59	2.59
	3:05:00	0.00	0.00	0.30	0.61	1.18	0.82	1.22	0.99	1.68
	3:10:00	0.00	0.00	0.24	0.46	0.88	0.61	0.91	0.72	1.21
	3:15:00	0.00	0.00	0.20	0.35	0.65	0.47	0.69	0.57	0.93
	3:20:00	0.00	0.00	0.15	0.26	0.49	0.36	0.53	0.45	0.73
	3:25:00	0.00	0.00	0.12	0.18	0.37	0.27	0.41	0.35	0.57
	3:30:00	0.00	0.00	0.09	0.12	0.27	0.20	0.31	0.27	0.43
	3:35:00	0.00	0.00	0.06	0.08	0.19	0.15	0.22	0.19	0.32
	3:40:00	0.00	0.00	0.04	0.05	0.12	0.10	0.15	0.13	0.21
	3:45:00 3:50:00	0.00	0.00	0.02	0.03	0.07	0.06	0.10	0.08	0.13
	3:50:00	0.00	0.00	0.01	0.02	0.03	0.03	0.05	0.04	0.07
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.03
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 E:0E:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5.20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

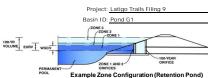
DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Outflow [cfs]	
Top of Micropool-7087.26	0.00	0	0.000	0	0.000	0.00	For best results, include the
7088.00	0.74	757	0.017	280	0.006	0.14	stages of all grade slope
7089.00	1.74	8,862	0.203	5,089	0.117	0.34	changes (e.g. ISV and Floo
7090.00	2.74	24,382	0.560	21,711	0.498	0.47	from the S-A-V table on
7091.00	3.74	39,017	0.896	53,411	1.226	0.56	Sheet 'Basin'.
WQCV WSEL-7091.52	4.26	45,953	1.055	75,503	1.733	3.25	Also include the inverts of
7092.00	4.74	52,356	1.202	99,097	2.275	16.75	outlets (e.g. vertical orifice
EURV WSEL-7092.68	5.42	61,216	1.405	137,712	3.161	45.97	overflow grate, and spillwa
7093.00	5.74	65,385	1.501	157,968	3.626	54.15	where applicable).
7094.00	6.74	79,696	1.830	230,508	5.292	144.36	-
100 Yr WSEL-7094.99	7.73	90,166	2.070	314,590	7.222	295.98	
7095.00	7.74	90,272 92,150	2.072 2.115	315,492 330,086	7.243 7.578	296.20 299.79	-
Spillway Crest-7095.16 7096.00	7.90 8.74	102,009	2.115	411,633	9.450	601.31	
7097.00	9.74	117,693	2.702	521,484	11.972	1,280.91	-
Top of Pond-7097.16	9.90	128,850	2.958	541,207	12.424	1,413.98	
							4
							-
							1
							1
		-	-	-		-	1
							-
							-
							-
							-
							-
							-
							-
							-
							-
							1
							1
							4
				<u> </u>			-
							1
							1
							4
							4
							1
							4
							1
							1
]

DETENTION BASIN STAGE-STORAGE TABLE BUILDER


Stage (ft)

Stage (ft)

Depth Increment =

Stage - Storage

Description

Watershed Information

atershed Information		
Selected BMP Type =	EDB	
Watershed Area =	15.22	acres
Watershed Length =	1,775	ft
Watershed Length to Centroid =	785	ft
Watershed Slope =	0.030	ft/ft
Watershed Imperviousness =	17.70%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded colorado orban nyard	graphinoceue	10.
Water Quality Capture Volume (WQCV) =	0.134	acre-feet
Excess Urban Runoff Volume (EURV) =	0.265	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.302	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.570	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.828	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	1.255	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	1.557	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	1.981	acre-feet
500-yr Runoff Volume (P1 = 3 in.) =	2.587	acre-feet
Approximate 2-yr Detention Volume =	0.179	acre-feet
Approximate 5-yr Detention Volume =	0.268	acre-feet
Approximate 10-yr Detention Volume =	0.450	acre-feet
Approximate 25-yr Detention Volume =	0.569	acre-feet
Approximate 50-yr Detention Volume =	0.601	acre-feet
Approximate 100-yr Detention Volume =	0.747	acre-feet

Define	Zones	and	Basin	Geometry

Jerine Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.134	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.131	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.482	acre-feet
Total Detention Basin Volume =	0.747	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft 2
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W_{ISV}) =	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$		ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin (L_{MAIN}) =	user	ft
Width of Main Basin (W_{MAIN}) =		ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³

Calculated Total Basin Volume (Vtotal) = user acre-feet

		Top of Micropool		0.00				10	0.000	(11)	(dc-11)
		7176		0.87				897	0.021	395	0.009
		7177		1.87				6,282	0.144	3,984	0.091
		7178		2.87				11,930	0.274	13,090	0.301
		7179		3.87				14,157	0.325	26,133	0.600
		7180 7181		4.87 5.87				16,502 18,983	0.379 0.436	41,463 59,205	0.952
		7181.5		6.37				23,460	0.539	69,816	1.603
		/181.5		0.37				23,400	0.559	09,010	1.003
Optional Use	r Overrides										
	acre-feet										
	acre-feet										
1.19	inches										
1.50	inches										
1.75	inches										
2.00	inches										
2.25	inches inches										
3.00	inches										
0.00	1										
										-	
					-		-				
					-		-		_		
					-		-				
				-							
										-	
			~								
										-	
					: :		: :				└─── ┤
									-		
										-	
					: :						└─── ┤
							: :				L]
						1					

Area (ft ²)

Width

(ft)

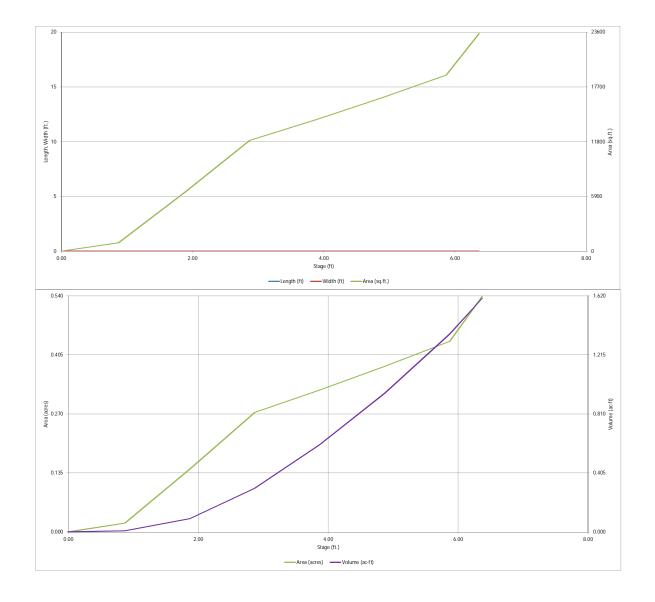
Length

(ft)

Area (acre)

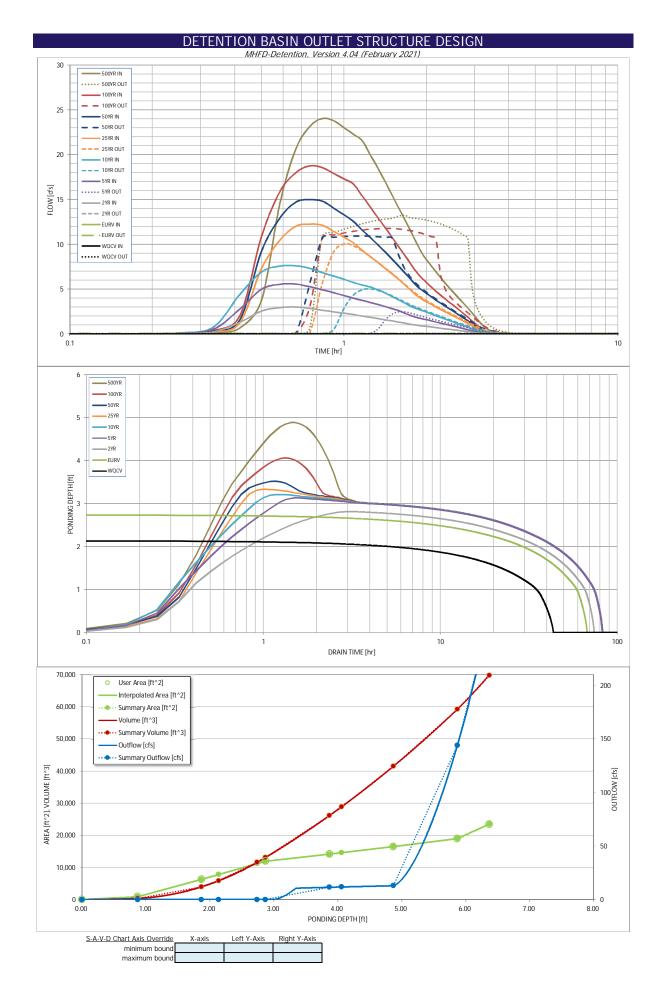
Override

Area (ft 2


Volume (ft 3)

Volume (ac-ft)

MHFD-Detention_v4 04_G1.xlsm, Basin


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

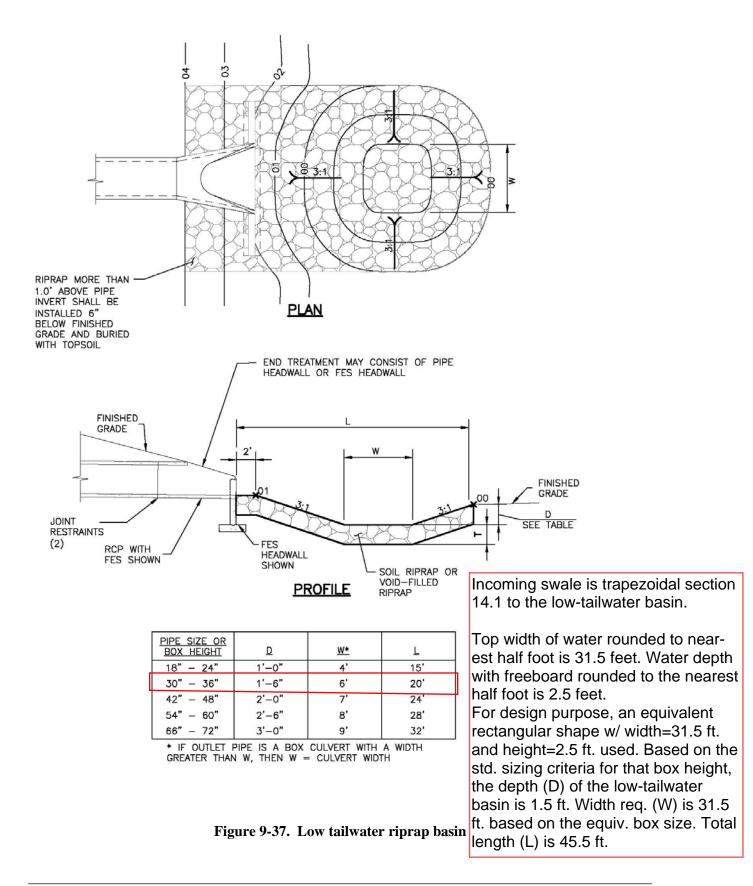
DETENTION BASIN OUTLET STRUCTURE DESIGN

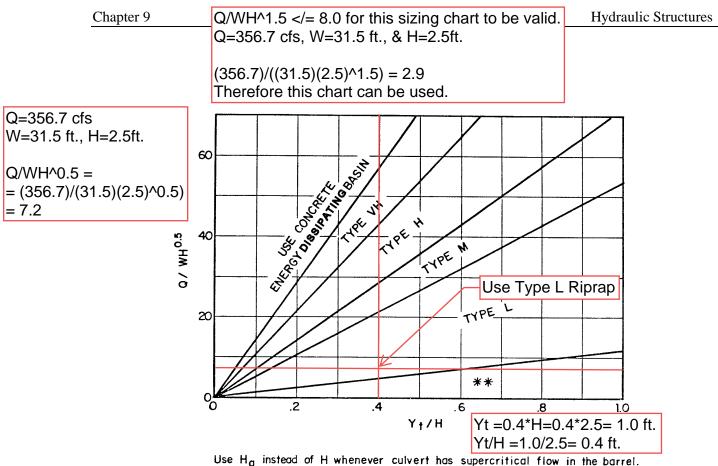
		MHF	D-Detention, Ver	SIOIT 4.04 (FEDIUAI	y 2021)				
	Latigo Trails Filing	g 9							
Basin ID: ZONE 3	Pond G1								
ZONE 2 ZONE 1		-101		Estimated	Estimated	0.41.4.7			
			7 4 44000	Stage (ft)	Volume (ac-ft)	Outlet Type	1		
Truntwach			Zone 1 (WQCV)	2.14	0.134	Orifice Plate			
ZONE 1 AND 2	0RIFICE		Zone 2 (EURV)	2.74	0.131	Orifice Plate			
PERMANENT ORIFICES	Configuration (Re	tontion Bond)	Zone 3 (100-year)	4.31	0.482	Weir&Pipe (Restrict)			
				Total (all zones)	0.747	J			
User Input: Orifice at Underdrain Outlet (typical							r	eters for Underdrain	<u>1</u>
Underdrain Orifice Invert Depth =	N/A		the filtration media	surface)		drain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrair	n Orifice Centroid =	N/A	feet	
	Ell's d'act Clat				DMD)				
User Input: Orifice Plate with one or more orific Invert of Lowest Orifice =	0.00					a Araa par Daw	Calculated Parame N/A	ft ²	
Depth at top of Zone using Orifice Plate =	2.45		n bottom at Stage = n bottom at Stage =			ce Area per Row = iptical Half-Width =	N/A N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	i bollom al stage -	010)		ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	inches				Elliptical Slot Area =	N/A	ft ²	
office flate. Office filed per Now -	14/74	indico			L		10/71	In	
User Input: Stage and Total Area of Each Orific	e Row (numbered f	rom lowest to high	est)						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Stage of Orifice Centroid (ft)	0.00	1.20	2.25	(2p.10101)	(cpuonal)	= (=pilonal)	(uonal)	(c_uonar)	1
Orifice Area (sq. inches)	0.72	0.58	0.55						1
									•
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									-
							-		•
User Input: Vertical Orifice (Circular or Rectang	ular)						Calculated Parame	eters for Vertical Or	ifice
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basir	bottom at Stage =	= 0 ft) Ver	tical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basir	bottom at Stage =	= 0 ft) Vertica	I Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
User Input: Overflow Weir (Dropbox with Flat of	r Sloped Grate and	Outlet Pipe OR Red	ctangular/Trapezoid	al Weir (and No Ou	itlet Pipe)		Calculated Parame	eters for Overflow V	Veir
	7								
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	3.00	Not Selected N/A	ft (relative to basin	pottom at Stage = 0 1	ft) Height of Grate	e Upper Edge, H _t =	Zone 3 Weir 3.00	Not Selected N/A	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =			ft (relative to basin feet	pottom at Stage = 0 t	-	e Upper Edge, H _t = /eir Slope Length =			feet feet
	3.00 4.00 0.00	N/A			-	/eir Slope Length =	3.00	N/A	
Overflow Weir Front Edge Length =	3.00 4.00	N/A N/A	feet	Gra	Overflow W	/eir Slope Length = 0-yr Orifice Area =	3.00 4.00	N/A N/A	
Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	3.00 4.00 0.00	N/A N/A N/A N/A N/A	feet H:V	Gra	Overflow W ate Open Area / 10	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris =	3.00 4.00 8.99	N/A N/A N/A	feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	3.00 4.00 0.00 4.00	N/A N/A N/A N/A	feet H:V	Gra	Overflow W ate Open Area / 10 verflow Grate Open	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris =	3.00 4.00 8.99 11.14	N/A N/A N/A N/A	feet ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	3.00 4.00 0.00 4.00 Type C Grate 0%	N/A N/A N/A N/A N/A N/A	feet H:V feet %	Gra	Overflow W ate Open Area / 10 verflow Grate Open Iverflow Grate Open	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	3.00 4.00 8.99 11.14 11.14	N/A N/A N/A N/A N/A	feet ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =	3.00 4.00 0.00 4.00 Type C Grate 0%	N/A N/A N/A N/A N/A estrictor Plate. or R	feet H:V feet %	Gra	Overflow W ate Open Area / 10 verflow Grate Open Iverflow Grate Open	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	3.00 4.00 8.99 11.14 11.14 s for Outlet Pipe w.	N/A N/A N/A N/A / Flow Restriction Pl	feet ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u>	3.00 4.00 0.00 4.00 Type C Grate 0% Circular Orifice, R Zone 3 Restrictor	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected	feet H:V feet % <u>ectangular Orifice)</u>	Gr: Ov C	Overflow W ate Open Area / 10 verflow Grate Open overflow Grate Open <u>Ca</u>	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameters	3.00 4.00 8.99 11.14 11.14 s for Outlet Pipe w. Zone 3 Restrictor	N/A N/A N/A N/A / Flow Restriction Pl Not Selected	feet ft ² ft ² ate
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe =	3.00 4.00 0.00 Type C Grate 0% (Circular Orifice, R Zone 3 Restrictor 0.33	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A	feet H:V feet % <u>Rectangular Orifice)</u> ft (distance below b	Gra	Overflow W ate Open Area / 10 verflow Grate Open vverflow Grate Open <u>Ca</u> = 0 ft) O	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>Iculated Parameters</u> utlet Orifice Area =	3.00 4.00 8.99 11.14 11.14 s for Outlet Pipe w. Zone 3 Restrictor 1.24	N/A N/A N/A N/A / Flow Restriction Pl Not Selected N/A	feet ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	3.00 4.00 0.00 4.00 Type C Grate 0% Clicular Orifice, R Zone 3 Restrictor 0.33 24.00	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected	feet H:V feet % <u>Rectangular Orifice)</u> ft (distance below b inches	Gra Ov C	Overflow W ate Open Area / 10 rerflow Grate Open Iverflow Grate Open <u>Ca</u> = 0 ft) Or Outle	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>Iculated Parameters</u> utlet Orifice Area = t Orifice Centroid =	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48	N/A N/A N/A N/A N/A VFlow Restriction PI Not Selected N/A N/A	feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe =	3.00 4.00 0.00 Type C Grate 0% (Circular Orifice, R Zone 3 Restrictor 0.33	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A	feet H:V feet % <u>Rectangular Orifice)</u> ft (distance below b	Gra Ov C	Overflow W ate Open Area / 10 verflow Grate Open vverflow Grate Open <u>Ca</u> = 0 ft) O	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>Iculated Parameters</u> utlet Orifice Area = t Orifice Centroid =	3.00 4.00 8.99 11.14 11.14 s for Outlet Pipe w. Zone 3 Restrictor 1.24	N/A N/A N/A N/A / Flow Restriction Pl Not Selected N/A	feet ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	3.00 4.00 0.00 4.00 Type C Grate 0% (Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A	feet H:V feet % <u>Rectangular Orifice)</u> ft (distance below b inches	Gra Ov C	Overflow W ate Open Area / 10 rerflow Grate Open Iverflow Grate Open <u>Ca</u> = 0 ft) Or Outle	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>Iculated Parameters</u> utlet Orifice Area = t Orifice Centroid =	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w, Zone 3 Restrictor 1.24 0.48 1.40	N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or	3.00 4.00 0.00 4.00 Type C Grate 0% (Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal)	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A	feet H:V feet % tectangular Orifice) ft (distance below b inches inches	Gr: Ov C asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 rerflow Grate Open iverflow Grate Open <u>Ca</u> = 0 ft) Or Outle ral Angle of Restric	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = luculated Parameter; utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe =	3.00 4.00 8.99 11.14 11.14 20ne 3 Restrictor 1.24 0.48 1.40 <u>Calculated Parame</u>	N/A N/A N/A N/A N/A VFlow Restriction Pl N/A N/A N/A N/A N/A	feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage =	3.00 4.00 0.00 Type C Grate 0% C(ircular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A	feet H:V feet % <u>Rectangular Orifice)</u> ft (distance below b inches	Gr: Ov C asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 rerflow Grate Open Iverflow Grate Open Ca = 0 ft) Or Outle ral Angle of Restric Spillway D	/eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = besign Flow Depth=	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame	N/A N/A N/A N/A N/A / Flow Restriction Pl Not Selected N/A N/A N/A N/A N/A eters for Spillway feet	feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length =	3.00 4.00 0.00 4.00 Type C Grate 0% Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet	feet H:V feet % tectangular Orifice) ft (distance below b inches inches	Gr: Ov C asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 verflow Grate Open verflow Grate Open verflow Grate Open <u>Ca</u> = 0 ft) O Uutle ral Angle of Restric Spillway D Stage at T	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = liculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Fop of Freeboard =	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame 0.28 6.15	N/A N/A N/A N/A N/A / Flow Restriction Pl Not Selected N/A N/A N/A N/A ters for Spillway feet feet	feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Invert Stage = Spillway Ind Slopes =	3.00 4.00 0.00 Type C Grate 0% (Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00 4.00	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V	feet H:V feet % tectangular Orifice) ft (distance below b inches inches	Gr: Ov C asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 rerflow Grate Open iverflow Grate Open <u>Ca</u> = 0 ft) Or Outle ral Angle of Restric Spillway D Stage at T Basin Area at T	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = liculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Fop of Freeboard = Fop of Freeboard =	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 <u>Calculated Parame</u> 0.28 6.15 0.49	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres	feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length =	3.00 4.00 0.00 4.00 Type C Grate 0% Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet	feet H:V feet % tectangular Orifice) ft (distance below b inches inches	Gr: Ov C asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 rerflow Grate Open iverflow Grate Open <u>Ca</u> = 0 ft) Or Outle ral Angle of Restric Spillway D Stage at T Basin Area at T	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = liculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Fop of Freeboard =	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame 0.28 6.15	N/A N/A N/A N/A N/A / Flow Restriction Pl Not Selected N/A N/A N/A N/A ters for Spillway feet feet	feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Invert Stage = Spillway Ind Slopes =	3.00 4.00 0.00 Type C Grate 0% (Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00 4.00	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V	feet H:V feet % tectangular Orifice) ft (distance below b inches inches	Gr: Ov C asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 rerflow Grate Open iverflow Grate Open <u>Ca</u> = 0 ft) Or Outle ral Angle of Restric Spillway D Stage at T Basin Area at T	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = liculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Fop of Freeboard = Fop of Freeboard =	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 <u>Calculated Parame</u> 0.28 6.15 0.49	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres	feet ft ² ft ² ate ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Invert Stage = Spillway Ind Slopes =	3.00 4.00 0.00 Type C Grate 0% (Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00 1.00	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet	feet H:V feet % tectangular Orifice) ft (distance below b inches inches inches	Gr: Ov asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 rerflow Grate Open iverflow Grate Open verflow Grate Open Ca = 0 ft) Or Outle ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Volume at T	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = In Area w/ Debris = Idulated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard =	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame 0.28 6.15 0.49 1.49	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres	feet ft ² ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	3.00 4.00 0.00 Type C Grate 0% (Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00 1.00	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet	feet H:V feet % tectangular Orifice) ft (distance below b inches inches inches	Gr: Ov asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 rerflow Grate Open iverflow Grate Open verflow Grate Open Ca = 0 ft) Or Outle ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Volume at T	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = In Area w/ Debris = Idulated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard =	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame 0.28 6.15 0.49 1.49	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	3.00 4.00 0.00 4.00 Type C Grate 0% (Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00 1.00 The user can over WOCV N/A	N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet	feet H:V feet <u>Rectangular Orifice)</u> ft (distance below b inches inches n bottom at Stage = <u>HP hydrographs ann</u> <u>2 Year</u> 1.19	Gri Ov Casin bottom at Stage Half-Cent • 0 ft) <u>6 runoff volumes by</u> <u>5 Year</u> 1.50	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open verflow Grate Open can be can be can be can can be can be can be can can be can be can be can can be can be can be can be can can be can be can be can be can be can be can be can be can be can can be can be can be can be can be can be can be can be can be can can be can be can be can be can be can be can be can be can be can be can be can	/eir Slope Length = /0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = in Area w/ Debris = in Area w/ Debris = idulated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = besign Flow Depth = rop of Freeboard = 0 of Freeboard = 20 of Stear 2.00	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame 0.28 6.15 0.49 1.49 drographs Table (Col 50 Year 2.25	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² ft ² feet radians 500 Year 3.00
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre.1) =	3.00 4.00 0.00 4.00 Type C Grate 0% Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00 1.00 The user can over WOCV N/A 0.134	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet <i>the default CU</i> / N/A 0.265	feet H:V feet % Rectangular Orifice) ft (distance below b inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.302	Gri Ov asin bottom at Stage Half-Cent 4 <i>runoff volumes by</i> 5 Year 1.50 0.570	Overflow W ate Open Area / 10 verflow Grate Open Verflow Grate Open Verflow Grate Open Carter Spillway D Stage at T Basin Area at T Basin Volume at T Centering new Value 1.75 0.828	<pre>/eir Slope Length = //eir Slope Length = //eix Slope Length = //eix Slope Length = //eix Slope Lenk = /</pre>	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 6.15 0.49 1.49	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² ft ² feet radians 500 Year 3.00 2.587
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Max Water Surface = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	3.00 4.00 0.00 4.00 Type C Grate 0% Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00 1.00 The user can over WOCV N/A 0.134 N/A	N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet N/A O.265 N/A	feet H:V feet % Rectangular Orifice) ft (distance below b inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.302 0.302	Gra Ov Casin bottom at Stage Half-Cent I runoff volumes by 5 Year 1.50 0.570 0.570	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open verflow Grate Open (<u>Ca</u> = 0 ft) Outle ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Volume at T (<u>entering new valu</u> 10 Year 1.75 0.828 0.828	<pre>/eir Slope Length = //eir Slope Length = //eir Slope Length = //eir Slope Length = //eir Area w/ Debris = //e</pre>	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 1.557 1.557	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² ft ² feet radians 500 Year 3.00 2.587 2.587
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrict Plate Height Above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	3.00 4.00 0.00 4.00 Type C Grate 0% (Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00 4.00 1.00 The user can over WQCV N/A 0.134 N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet ride the default CU N/A 0.265 N/A N/A	feet H:V feet % Rectangular Orifice) ft (distance below b inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.302	Gri Ov asin bottom at Stage Half-Cent 4 <i>runoff volumes by</i> 5 Year 1.50 0.570	Overflow W ate Open Area / 10 verflow Grate Open Verflow Grate Open Verflow Grate Open Carter Spillway D Stage at T Basin Area at T Basin Volume at T Centering new Value 1.75 0.828	<pre>/eir Slope Length = //eir Slope Length = //eix Slope Length = //eix Slope Length = //eix Slope Lenk = /</pre>	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 6.15 0.49 1.49	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² ft ² feet radians 500 Year 3.00 2.587
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Max Water Surface = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	3.00 4.00 0.00 4.00 Type C Grate 0% Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00 1.00 The user can over WOCV N/A 0.134 N/A	N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet N/A O.265 N/A	feet H:V feet % Rectangular Orifice) ft (distance below b inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.302 0.302	Gra Ov Casin bottom at Stage Half-Cent I runoff volumes by 5 Year 1.50 0.570 0.570	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open verflow Grate Open (<u>Ca</u> = 0 ft) Outle ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Volume at T (<u>entering new valu</u> 10 Year 1.75 0.828 0.828	<pre>/eir Slope Length = //eir Slope Length = //eir Slope Length = //eir Slope Length = //eir Area w/ Debris = //e</pre>	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 1.557 1.557	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² ft ² feet radians 500 Year 3.00 2.587 2.587
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway Kectangular or Spillway Invert Stage = Spillway End Slopes = Freeboard above Max Water Surface = CuHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) =	3.00 4.00 0.00 4.00 Type C Grate 0% (Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00 1.00 The user can over WOCV N/A 0.134 N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet EURV N/A 0.265 N/A N/A N/A N/A N/A N/A N/A	feet H:V feet 9% tectangular Orifice) ft (distance below b inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 0.302 0.302 1.3 0.09 3.0	Gri Ov Ov asin bottom at Stage Half-Cent = 0 ft) = 0 ft) = 5 Year 1.50 0.570 0.570 0.570 3.7	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open verflow Grate Open (<u>Ca</u> = 0 ft) Ou Outle ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Volume at T (<u>entering new valu</u> 10 Year 1.75 0.828 0.828 5.6 0.37 7.6	<pre>/eir Slope Length = //eir Slope Length = //eir</pre>	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame 0.28 6.15 0.49 1.49 drographs table (CC 50 Year 2.25 1.557 1.557 12.8 0.84 15.0	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² ft ² feet radians 500 Year 3.00 2.587 2.587 2.1.4 1.41 2.4.1
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Max Water Surface = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Neume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Unflow Q (cfs) =	3.00 4.00 0.00 4.00 Type C Grate 0% (Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00 4.00 1.00 The user can over WQCV N/A 0.134 N/A N/A 0.1	N/A	feet H:V feet % tectangular Orifice) ft (distance below b inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.302 0.302 1.3 0.09 3.0 0.1	Gri Ov C asin bottom at Stage Half-Cent • 0 ft) • 0 ft) • 7 Year 1.50 0.570 0.570 0.570 3.7 0.24 5.6 2.5	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open verflow Grate Open (<u>Ca</u> = 0 ft) Or Outle ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Area at T Basin Volume at T (<u>entering new valu</u> <u>10 Year</u> 1.75 0.828 0.828 5.6 	<pre>/eir Slope Length = //eir Slope Length = //eir Slope Length = //eir Slope Length = //eir Area w/ Debris = //e</pre>	3.00 4.00 8.99 11.14 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 0.49 1.557 1.557 1.557 1.2.8 0.84 15.0 10.9	N/A	feet ft ² ft ² ft ² feet radians 500 Year 3.00 2.587 2.587 2.587 2.587 2.1.4 1.41 1.3.3
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = UNE Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Redevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Untflow Q (cfs) = Peak Outflow Q (cfs) =	3.00 4.00 0.00 4.00 Type C Grate 0% Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00 4.00 1.00 The user can over WOCV N/A 0.134 N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet ride the default CU/ EURV N/A 0.265 N/A	feet H:V feet % Rectangular Orifice) ft (distance below b inches inches h bottom at Stage = <u>HP hydrographs and 2 Year</u> 1.19 0.302 0.302 1.3 0.09 3.0 0.1 N/A	Gri Ov Casin bottom at Stage Half-Cent to ft) 5 Year 1.50 0.570 0.570 3.7 0.24 5.6 2.5 0.7	Overflow W ate Open Area / 10 verflow Grate Open verflow Grate Open verflow Grate Open verflow Grate Open and the open state of the open stage at T Basin Area at T Basin Volume at T dentering new value 10 Year 1.75 0.828 0.828 5.6 0.37 7.6 5.0 0.9	<pre>/eir Slope Length = //eir Slope Length = //eir Slope Length = //eir Slope Length = //eir Area w/ Debris = //e</pre>	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 6.15 0.49 1.49 Conception table (CC) 50 Year 2.25 1.557 1.557 1.557 1.2.8 0.84 15.0 10.9 0.9	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² feet feet radians <i>F()</i> 500 Year 3.00 2.587 2.587 2.1.4 1.41 24.1 1.3.3 0.6
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (arce-ft) = CUHP Runoff Volume (arce-ft) = CUHP Runoff Volume (arce-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/arce) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q	3.00 4.00 0.00 4.00 Type C Grate 0% Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00 1.00 Trapezoidal) 7he user can over WOCV N/A N/A N/A N/A N/A Plate	N/A	feet H:V feet 9% Rectangular Orifice) ft (distance below b inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 0.302 0.302 1.3 0.302 0.302 1.3 0.09 3.0 0.1 N/A Plate	Gri Ov Ov asin bottom at Stage Half-Cent : 0 ft) 1.50 0.570 0.77 0.77	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open verflow Grate Open verflow Grate Open and the open state of the open content open state of the open state	<pre>/eir Slope Length = //eir Slope Length = //eir</pre>	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 0.49 1.49 Calculated Parame 0.28 0.49 1.49 Calculated Parame 0.28 0.49 1.49 Calculated Parame 0.28 0.49 1.49 Calculated Parame 0.28 0.49 1.49 Calculated Parame 0.28 0.49 1.557 1.557 1.557 1.557 0.84 15.0 0.9 Outlet Plate 1	N/A N/A N/A N/A N/A N/A N/A N/A N/A VFlow Restriction PI Not Selected N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acres acres ters acres acre.ft 100 Year 2.52 1.981 1.981 1.981 1.981 1.981 1.981 1.981 1.981 0.7 Outlet Plate 1	feet ft ² ft ² feet radians 500 Year 3.00 2.587 2.587 2.587 2.1.4 1.41 2.4.1 1.3.3 0.6 Spillway
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway Kectangular or Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fps) =	3.00 4.00 0.00 4.00 Type C Grate 0% (Circular Orlfice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00 4.00 1.00 The user can over WOCV N/A N/A N/A N/A N/A N/A Plate N/A	N/A	feet H:V feet % Rectangular Orifice) ft (distance below b inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.302 0.302 1.3 0.09 3.0 0.1 N/A Plate N/A	Gri Ov Ov Assin bottom at Stage Half-Cent F 0 ft) G ft) Half-Cent F 0 ft) G ft G ft G ft G ft G ft G ft G ft G ft	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open verflow Grate Open verflow Grate Open (Ca) 0 Outle ral Angle of Restrice Spillway D Stage at T Basin Area at T Basin Volume at T (Centering new Value) 10 Year 1.75 0.828 0.828 5.6 0.37 7.6 5.0 0.9 0.9 0.4	<pre>/eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = cop of Freeboard = fop of Freeboard = fop of Freeboard = fop of Freeboard = fop of Freeboard = cop of Freeboard = fop of Freeboard = cop of Freeboard =</pre>	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame 0.28 6.15 0.49 1.49 drographs table (CC 50 Year 2.25 1.557 12.8 0.84 15.0 10.9 0.9 Outlet Plate 1 1.0	N/A N/A N/A N/A N/A N/A N/A N/A VFlow Restriction PI Not Selected N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft acres acre-ft 100 Year 2.52 1.981 1.981 1.08 18.8 11.8 0.7 Outlet Plate 1 1.0	feet ft ² ft ² ft ² feet radians 500 Year 3.00 2.587 21.4 1.41 2.4.1 1.3.3 0.6 Spillway 1.2
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (arce-ft) = CUHP Runoff Volume (arce-ft) = CUHP Runoff Volume (arce-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/arce) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q	3.00 4.00 0.00 4.00 Type C Grate 0% Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00 1.00 Trapezoidal) 7he user can over WOCV N/A N/A N/A N/A N/A Plate	N/A	feet H:V feet 9% Rectangular Orifice) ft (distance below b inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 0.302 0.302 1.3 0.302 0.302 1.3 0.09 3.0 0.1 N/A Plate	Gri Ov Ov asin bottom at Stage Half-Cent : 0 ft) 1.50 0.570 0.77 0.77	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open verflow Grate Open verflow Grate Open and the open state of the open content open state of the open state	<pre>/eir Slope Length = //eir Slope Length = //eir</pre>	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 6.15 0.49 1.49 Calculated Parame 0.28 0.49 1.49 Calculated Parame 0.28 0.49 1.49 Calculated Parame 0.28 0.49 1.49 Calculated Parame 0.28 0.49 1.49 Calculated Parame 0.28 0.49 1.49 Calculated Parame 0.28 0.49 1.557 1.557 1.557 1.557 0.84 15.0 0.9 Outlet Plate 1	N/A N/A N/A N/A N/A N/A N/A N/A N/A VFlow Restriction PI Not Selected N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acres acres ters acres acre.ft 100 Year 2.52 1.981 1.981 1.981 1.981 1.981 1.981 1.981 1.981 0.7 Outlet Plate 1	feet ft ² ft ² feet radians 500 Year 3.00 2.587 2.587 2.587 2.1.4 1.41 2.4.1 1.3.3 0.6 Spillway
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	3.00 4.00 0.00 4.00 Type C Grate 0% Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00 1.00 Trapezoidal) 7he user can over WOEV N/A N/A N/A N/A N/A N/A N/A N/A	N/A	feet H:V feet 9% Rectangular Orifice) ft (distance below b inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 0.302 0.302 1.3 0.302 0.302 1.3 0.09 3.0 0.1 N/A Plate N/A N/A 68 71	Gri Ov Ov Casin bottom at Stage Half-Cent E 0 ft) Control Con	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open verflow Grate Open verflow Grate Open and the open state of the open ral Angle of Restrice Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T 10 Year 1.75 0.828 0.828 5.6 0.37 7.6 5.0 0.9 0.9 0.9 0.04 N/A N/A 69 77	<pre>/eir Slope Length = //eir Slope Length = //eir</pre>	3.00 4.00 8.99 11.14 11.14 s for Outlet Pipe w, Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame 0.28 6.15 0.49 1.49 drographs table (CC 50 Year 2.25 1.557 1.57 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.	N/A N/A N/A N/A N/A N/A N/A N/A N/A VFlow Restriction PI Not Selected N/A N/A N/A N/A N/A terrs for Spillway feet feet acres acre-ft 100 Year 2.52 1.981 1.981 1.981 1.981 1.981 1.981 1.08 18.8 11.8 0.7 Outlet Plate 1 1.0 N/A 58 71	feet ft ² ft ² feet radians 500 Year adians 500 Year adians 2.587 2.587 2.1.4 2.587 2.1.4 2.587 2.1.4 2.587 2.1.4 2.587 2.1.4 2.587 5.537 2.587 5.5375 5.5375 5.5375555555555
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) Ratio Peak Outflow to Predevelopment Q (cfs) = Ratio Peak Outflow to Predevelopment Q (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	3.00 4.00 0.00 4.00 Type C Grate 0% Circular Orlfice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00 1.00 Trapezoidal) 7.00 Trapezoidal) 0.134 N/A N/A N/A N/A N/A N/A N/A N/A	N/A	feet H:V feet % Rectangular Orifice) ft (distance below b inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.302 0.302 1.3 0.09 3.0 0.1 N/A Plate N/A N/A 68 71 2.81	Gri Ov Ov Casin bottom at Stage Half-Cent For ft) Grift Grift Grift Half-Cent For ft Grift	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open verflow Grate Open verflow Grate Open (Ca e 0 ft) Outle ral Angle of Restrice Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T (entering new value 10 Year 1.75 0.828 5.6 0.828 5.6 0.828 5.6 0.37 7.6 5.0 0.9 0.4 N/A 69 77 3.21	<pre>/eir Slope Length = //eir Slope Length = //eir</pre>	3.00 4.00 8.99 11.14 11.14 5 for Outlet Pipe w. Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame 0.28 6.15 0.49 1.49 drographs table (CC 50 Year 2.25 1.557 12.8 0.84 15.0 10.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	N/A N/A N/A N/A N/A N/A N/A N/A N/A NA ters for Spillway feet acres acres	feet ft ² ft ² ft ² feet radians 500 Year 3.00 2.587 21.4 1.41 2.4.1 1.3.3 0.6 Spillway 1.2 N/A 53 68 4.89
Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoft Volume (acre-ft) = CUHP Runoft Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q (cfs) = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	3.00 4.00 0.00 4.00 Type C Grate 0% Circular Orifice, R Zone 3 Restrictor 0.33 24.00 10.00 Trapezoidal) 4.87 40.00 1.00 Trapezoidal) 7he user can over WOEV N/A N/A N/A N/A N/A N/A N/A N/A	N/A	feet H:V feet 9% Rectangular Orifice) ft (distance below b inches inches n bottom at Stage = HP hydrographs and 2 Year 1.19 0.302 0.302 1.3 0.302 0.302 1.3 0.09 3.0 0.1 N/A Plate N/A N/A 68 71	Gri Ov Ov Casin bottom at Stage Half-Cent E 0 ft) Control Con	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open verflow Grate Open verflow Grate Open and the open state of the open ral Angle of Restrice Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T 10 Year 1.75 0.828 0.828 5.6 0.37 7.6 5.0 0.9 0.9 0.9 0.04 N/A N/A 69 77	<pre>/eir Slope Length = //eir Slope Length = //eir</pre>	3.00 4.00 8.99 11.14 11.14 s for Outlet Pipe w, Zone 3 Restrictor 1.24 0.48 1.40 Calculated Parame 0.28 6.15 0.49 1.49 drographs table (CC 50 Year 2.25 1.557 1.57 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.	N/A N/A N/A N/A N/A N/A N/A N/A N/A VFlow Restriction PI Not Selected N/A N/A N/A N/A N/A terrs for Spillway feet feet acres acre-ft 100 Year 2.52 1.981 1.981 1.981 1.981 1.981 1.981 1.08 18.8 11.8 0.7 Outlet Plate 1 1.0 N/A 58 71	feet ft ² ft ² feet radians 500 Year adians 500 Year adians 2.587 2.587 2.1.4 2.587 2.1.4 2.587 2.1.4 2.587 2.1.4 2.587 2.1.4 2.587 5.537 2.587 5.5375 5.5375 5.5375555555555

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.


	The user can o	verride the calcu	ulated inflow hyd	frographs from	this workbook w	ith inflow hydro	graphs develop	ed in a separate	program.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.02
	0:15:00	0.00	0.00	0.06	0.11	0.13	0.09	0.11	0.11	0.15
	0:20:00	0.00	0.00	0.24	0.54	0.77	0.24	0.31	0.41	0.68
	0:25:00	0.00	0.00	1.32	2.79	4.42	1.28	1.59	2.02	3.78
	0:30:00	0.00	0.00	2.57	5.01	6.94	7.30	9.22	10.86	14.54
	0:35:00	0.00	0.00	2.96	5.56	7.59	10.47	12.93	15.88	20.61
	0:40:00	0.00	0.00	3.03 2.87	5.58 5.29	7.63 7.34	12.02 12.27	14.72 15.01	17.99 18.77	23.15 24.06
	0:50:00	0.00	0.00	2.67	4.95	6.87	12.27	14.84	18.58	23.81
	0:55:00	0.00	0.00	2.49	4.62	6.47	11.47	14.06	17.93	23.02
	1:00:00	0.00	0.00	2.34	4.31	6.11	10.81	13.30	17.33	22.29
	1:05:00	0.00	0.00	2.19	4.01	5.75	10.17	12.57	16.74	21.57
	1:10:00	0.00	0.00	2.02	3.76	5.47	9.34	11.59	15.38	19.95
	1:15:00	0.00	0.00	1.87	3.53	5.26	8.63	10.75	14.15	18.48
	1:20:00	0.00	0.00	1.73	3.29	4.94	7.95	9.92	12.96	16.95
	1:25:00	0.00	0.00	1.60	3.07	4.57	7.33	9.14	11.83	15.48
	1:30:00 1:35:00	0.00	0.00	1.47 1.35	2.84	4.20 3.82	6.70 6.09	8.36 7.60	10.78 9.78	14.11 12.79
	1:40:00	0.00	0.00	1.35	2.61	3.82	5.49	6.86	9.78	12.79
	1:45:00	0.00	0.00	1.10	2.09	3.40	4.91	6.13	7.86	10.29
	1:50:00	0.00	0.00	1.00	1.88	2.86	4.35	5.45	6.97	9.16
	1:55:00	0.00	0.00	0.92	1.73	2.66	3.94	4.94	6.30	8.30
	2:00:00	0.00	0.00	0.86	1.61	2.46	3.61	4.55	5.77	7.61
	2:05:00	0.00	0.00	0.79	1.48	2.26	3.31	4.16	5.26	6.94
	2:10:00	0.00	0.00	0.72	1.35	2.06	3.02	3.80	4.79	6.32
	2:15:00 2:20:00	0.00	0.00	0.66	1.23	1.87	2.76	3.47	4.36	5.75
	2:25:00	0.00	0.00	0.60	1.12	1.69 1.52	2.51 2.27	3.15 2.85	3.96 3.58	5.21 4.71
	2:30:00	0.00	0.00	0.48	0.90	1.35	2.05	2.56	3.23	4.24
	2:35:00	0.00	0.00	0.43	0.79	1.20	1.83	2.29	2.89	3.79
	2:40:00	0.00	0.00	0.37	0.69	1.04	1.61	2.02	2.55	3.34
	2:45:00	0.00	0.00	0.32	0.59	0.90	1.40	1.75	2.22	2.90
	2:50:00	0.00	0.00	0.27	0.49	0.75	1.19	1.49	1.88	2.46
	2:55:00	0.00	0.00	0.22	0.39	0.61	0.98	1.22	1.55	2.03
	3:00:00 3:05:00	0.00	0.00	0.17	0.30	0.47	0.77	0.96	1.22	1.60
	3:10:00	0.00	0.00	0.12	0.21 0.15	0.34	0.56	0.71	0.90	1.17 0.80
	3:15:00	0.00	0.00	0.06	0.13	0.20	0.25	0.33	0.42	0.57
	3:20:00	0.00	0.00	0.05	0.09	0.17	0.18	0.24	0.30	0.41
	3:25:00	0.00	0.00	0.04	0.08	0.14	0.13	0.18	0.21	0.30
	3:30:00	0.00	0.00	0.03	0.06	0.11	0.10	0.13	0.15	0.21
	3:35:00	0.00	0.00	0.03	0.05	0.09	0.07	0.10	0.10	0.15
	3:40:00	0.00	0.00	0.02	0.04	0.07	0.06	0.08	0.07	0.10
	3:45:00 3:50:00	0.00	0.00	0.02	0.03	0.06	0.04	0.06	0.05	0.07
	3:55:00	0.00	0.00	0.01	0.02	0.04	0.03	0.04	0.04	0.06
	4:00:00	0.00	0.00	0.01	0.02	0.03	0.03	0.03	0.03	0.04
	4:05:00	0.00	0.00	0.01	0.01	0.02	0.01	0.02	0.02	0.03
	4:10:00	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.02
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

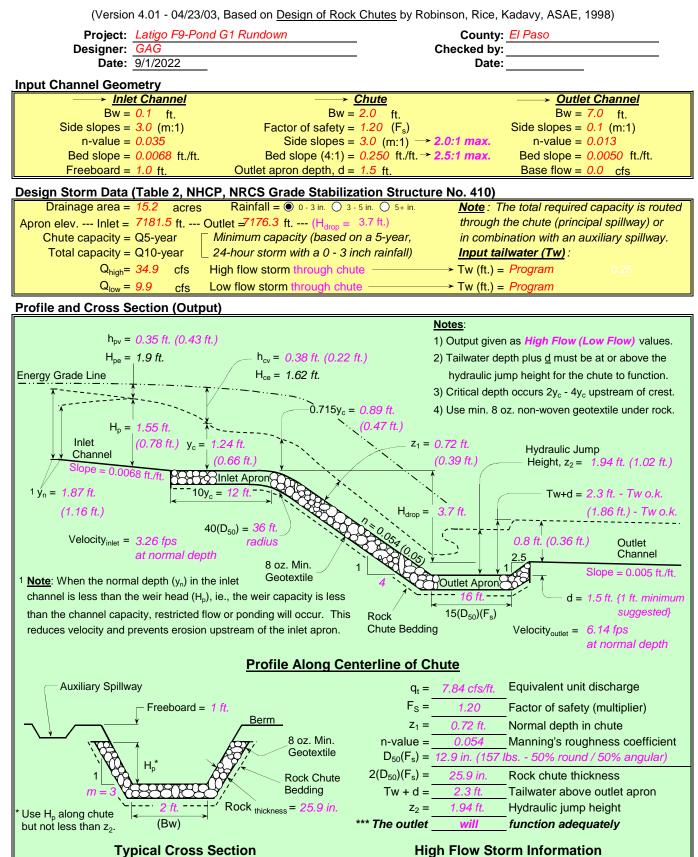

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

he user should graphically con Stage - Storage	Stage	Area	Area	Volume	Volume	Total	
Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]	Outflow [cfs]	
Top of Micropool-7175.13	0.00	10	0.000	0	0.000	0.00	For best results, include the
7176.00	0.87	897	0.021	395	0.009	0.02	stages of all grade slope
7177.00	1.87	6,282	0.144	3,984	0.091	0.05	changes (e.g. ISV and Floor from the S-A-V table on
WQVC WSEL-7177.27	2.14	7,807	0.179	5,886	0.135	0.05	Sheet 'Basin'.
EURV WSEL-7177.87	2.74	11,196	0.257	11,587	0.266	0.08	
7178.00	2.87	11,930	0.274	13,090	0.301	0.08	Also include the inverts of a outlets (e.g. vertical orifice,
7179.00 100-Yr WSEL-7179.19	3.87	14,157 14,603	0.325	26,133 28,866	0.600	11.50 11.79	overflow grate, and spillwa
Spillway Crest-7180.00	4.06 4.87	16,502	0.335	41,463	0.952	12.96	where applicable).
7181.00	5.87	18,983	0.436	59,205	1.359	143.86	
Top of Pond-7181.50	6.37	23,460	0.539	69,816	1.603	261.78	
							-
							-
							-
							4
		ļ					1
		L					1
							-
							-
							-
							-
							-
							-
							-
			ļ	ļ			4
							4
							1
							1
							1
							4
							1
							1
							4
							1
]
							1
							1
							-
							-
							-

^{**}Use Type L for a distance of 3H downstream.


Figure 9-39. Riprap erosion protection at rectangular conduit outlet (valid for Q/WH1.5 \leq 8.0)

3.2.4 Outfalls and Rundowns

A grouted boulder outfall or "rundown" dissipates energy and provides erosion control protection. Grouted boulder outfalls are most commonly used in large rivers like the South Platte. Figure 9-40 provides a plan view and cross section for a standard grouted boulder rundown. See the grouted boulder drop profiles (A1, A2, and A3) in Figure 9-12 for site specific profile options, (i.e., depressed or freedraining basin for use with a stable downstream channel or with no basin for use in channels subject to degradation). Figure 9-41 provides a plan view of the same structure for use when the structure is in-line with the channel. Evaluate the following when designing a grouted boulder outfall or rundown:

- Minimize disturbance to channel bank
- Determine water surface elevation in receiving channel for base flow and design storm(s)
- Determine flow rate, velocity, depth, etc. of flow exiting the outfall pipe for the design storm(s)
- Evaluate permitting procedures and requirements for construction adjacent to large river system.

Rock Chute Design Data

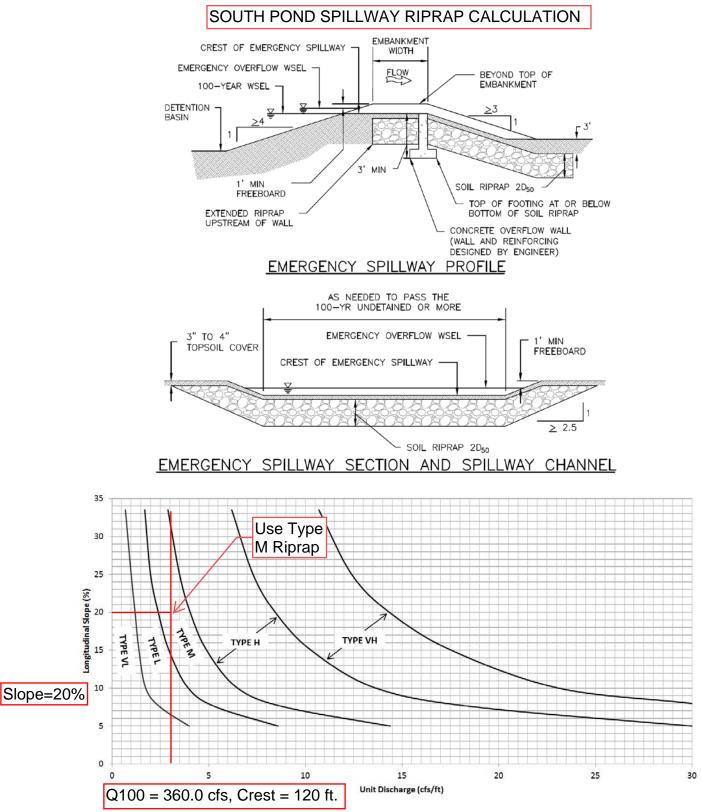


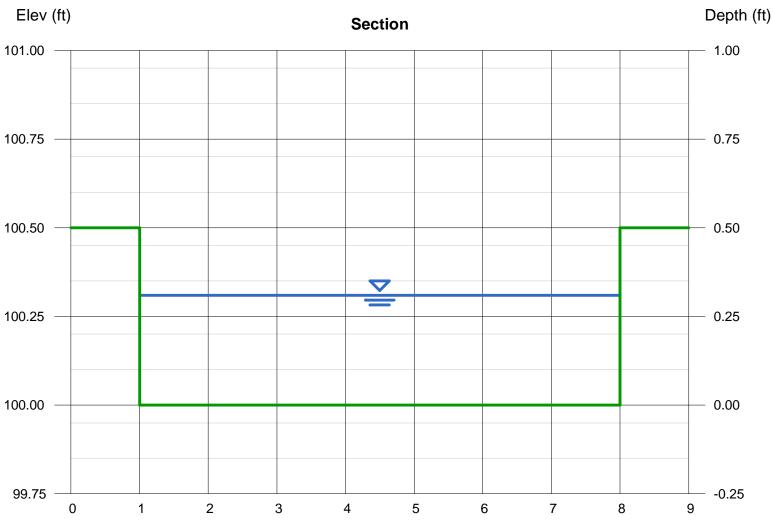
Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County)

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

South Pond TC Capacity

Rectangular


Bottom Width (ft)	= 7.00
Total Depth (ft)	= 0.50
Invert Elev (ft)	= 100.00
Slope (%)	= 0.50
N-Value	= 0.013
Calculations	

culations

Compute by	: K	(nown Q
Known Q (c	fs) =	7.20
	Q100=360 cfs	, 2%=7.2 cfs

Highlighted	
Depth (ft)	=
Q (cfs)	=
Area (sqft)	=
Velocity (ft/s)	=

Velocity (ft/s)	= 3.32
Wetted Perim (ft)	= 7.62
Crit Depth, Yc (ft)	= 0.33
Top Width (ft)	= 7.00
EGL (ft)	= 0.48

Thursday, Apr 7 2022

0.31

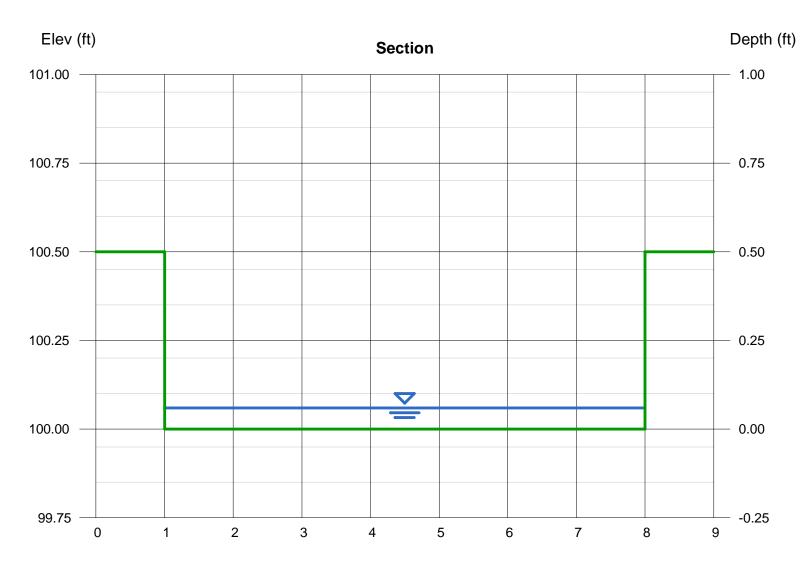
7.200 2.17

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

G1 Pond TC Capacity

Rectangular


Bottom Width (ft)	= 7.00
Total Depth (ft)	= 0.50
Invert Elev (ft)	= 100.00
Slope (%)	= 0.50
N-Value	= 0.013
Coloulations	

Calculations

Compute by	:	Known Q
Known Q (c	fs)	= 0.38
	Q100=18.8	cfs, 2%=0.38 cfs

_	_	
Hia	hlic	phted
IIIM	1 III S	jiiicu

Depth (ft)	=	0.06
Q (cfs)	=	0.380
Area (sqft)	=	0.42
Velocity (ft/s)	=	0.90
Wetted Perim (ft)	=	7.12
Crit Depth, Yc (ft)	=	0.05
Top Width (ft)	=	7.00
EGL (ft)	=	0.07

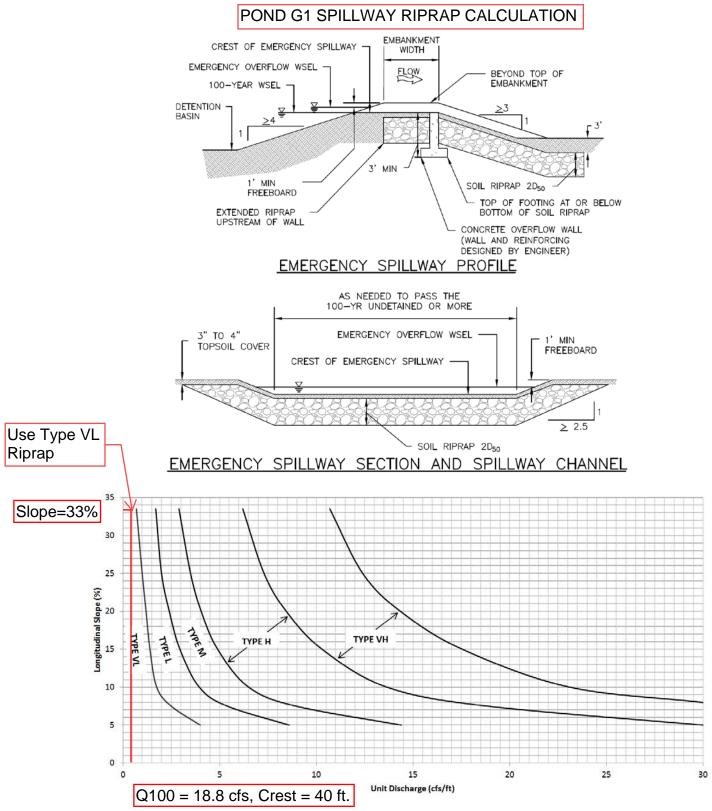


Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County)

PIPE OUTFALL RIPRAP SIZING CALCULATIONS

Subdivision: Latigo Trails Location: El Paso County			Project Name: Project No.:	25175.02
G1 Pond 100-yr Calculated By: Checked By:				GAG
Release Flor				4/6/22
South Pond 100-yr		STORM DRAIN SYSTEN	Λ	
Release Flow	DESIGN POINT	DESIGN POINT	DESIGN POINT	Notes
Q ₁₀₀ (cfs):	296.0	11.8		Flows are the greater of proposed vs. future
Conduit	Box Culvert	Pipe		
D_c , Pipe Diameter (in):	N/A	24		
W, Box Width (ft):	8	N/A		
H, Box Height (ft):	3	N/A		
Y_t , Tailwater Depth (ft):	1.20	0.80		If unknown, use Y_t/D_c (or H)=0.4
Y_t/Dc or Y_t/H	0.40	0.40		
Q/D ^{2.5} or Q/(WH ^{3/2})	7.12	2.09		
Supercritical?	No	No		
Y _n , Normal Depth (ft) [Supercritical]:	0.00			
D_a , H_a (in) [Supercritical]:	N/A	N/A		$D_a = (D_c + Y_n)/2$
Riprap d_{50} (in) [Supercritical]:	N/A	N/A		
Riprap d_{50} (in) [Subcritical]:	8.97	3.46		
Required Riprap Size:	L	L		Fig. 9-38 or Fig. 9-36
<i>d</i> ₅₀ (in):	9	9		
Expansion Factor, $1/(2 \tan \theta)$:	1.00	4.90		Read from Fig. 9-35 or 9-36
θ:	0.46	0.10		
Erosive Soils?	No	No		
Area of Flow, A_t (ft ²):	42.29	1.69		$A_t = Q/V$
Length of Protection, L_p (ft):	27.2	0.5		L=(1/(2 tan θ))(At/Yt - D)
Min Length (ft)	24.0	6.0		Min L=3D or 3H
Max Length (ft)	30.0	20.0		Max L=10D or 10H
Min Bottom Width, T (ft):	28.3	2.1		$T=2^{*}(L_{p}^{*}tan\theta)+W$
Design Length (ft)	28.0	6.0		
Design Width (ft)	28.3	2.1		
Riprap Depth (in)	18	18		Depth=2(d ₅₀)
Type II Bedding Depth (in)*	6	6		*Not used if Soil Riprap
Cutoff Wall	No	No		
Cutoff Wall Depth (ft)				Depth of Riprap and Base
Cutoff Wall Width (ft)				

Note: No Type II Base to be used if Soil Riprap is specified within the plans

* For use when the flow in the culvert is supercritical (and less than full).

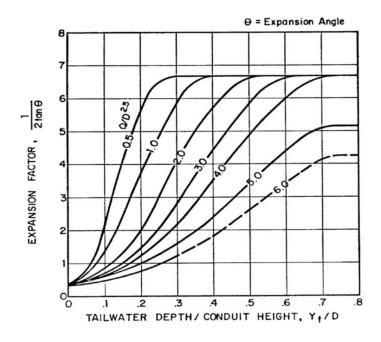


Figure 9-35. Expansion factor for circular conduits

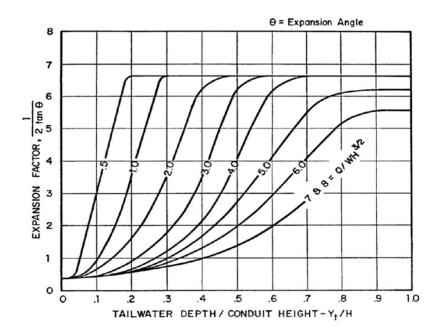


Figure 9-36. Expansion factor for rectangular conduits

Final Drainage Report for Latigo Trails Filing No. 9 & Addendum to MDDP/Preliminary Plan for Latigo Trails

APPENDIX E

REFERENCE MATERIALS

•

MASTER DEVELOPMENT / PRELIMINARY DRAINAGE PLAN LATIGO TRAILS EL PASO COUNTY, COLORADO

.

October 4, 2001

.

Prepared for:

RMBG, LLC #2 5170 Mark Dabling Blvd. COLORADO SPRINGS, CO 80918

PREPARED BY:

9960 Federal Drive, Suite 300 Colorado Springs, CO 80921

URS PROJECT NO. 67-00042443

Four sub-basins, varying from 3 to 53 acres, lie north of Latigo Blvd, draining mainly to the east, with excess runoff ponding at Eastonville Road and eventually overtopping it. One of these basins (9.71) drains directly to Upper Black Squirrel Creek. There is a Zone-A, unstudied FEMA floodplain to the north of the proposed development, in the open space / Upper Black Squirrel Creek area.

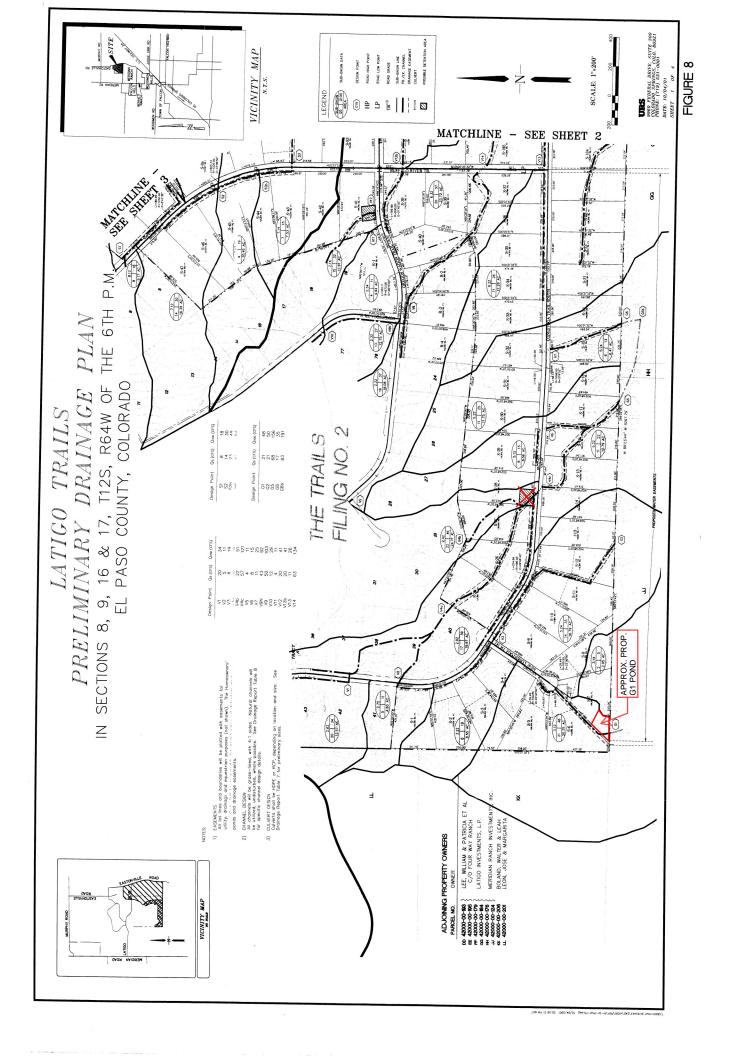
Gieck Ranch Basin

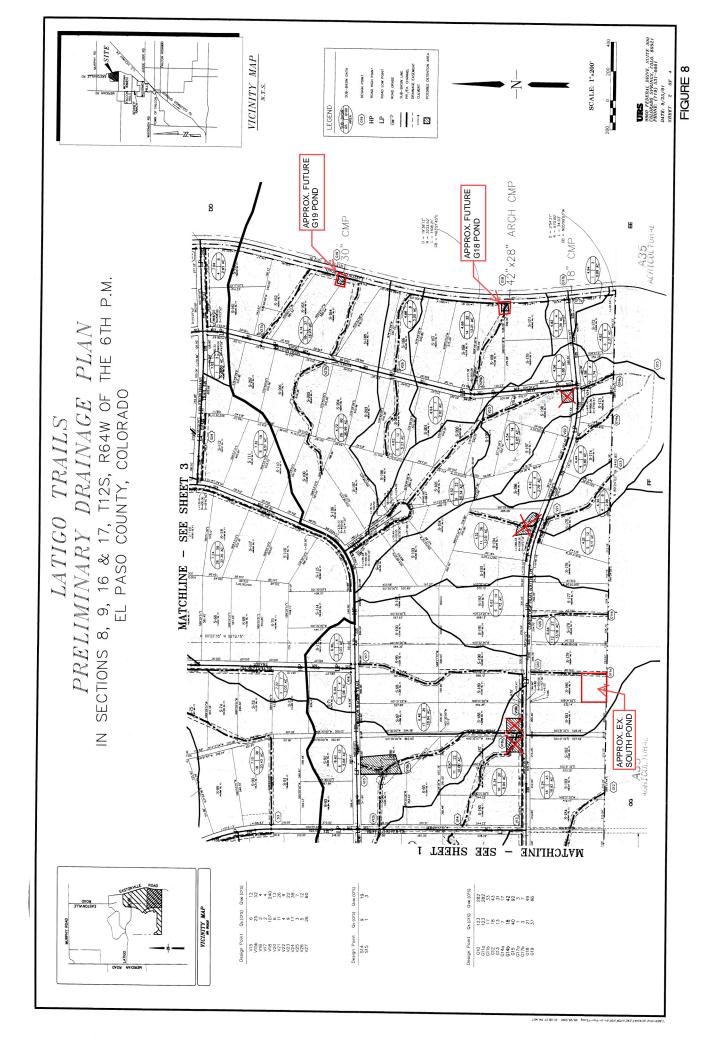
The Gieck Ranch Basin covers the southern half of the subject area. Runoff is generally southeasterly, draining to Meridian Ranch to the south, and crossing Eastonville Road at three points to the east. As with the Upper Black Squirrel Creek Basin, many of the existing drainageways (mainly to the south) are not clearly defined.

The major drainage course begins at the west-central portion of the site, traversing the Gieck Ranch Basin to design point G11 to the southeast. Six sub-basins, varying from 19 to 39 acres, contribute to this drainage course, which collects approximately 65% of the runoff generated within the Gieck Basin in Latigo Trails. To the west of this, eight sub-basins drain to five design points along the Meridian Ranch boundary, two of which (G5 and G6) combine shortly after entering Meridian Ranch, at G6b.

There are eight small sub-basins east of the major drainage course, varying from 2 to 41 acres. All but one drain at their own design point, either crossing Eastonville Road or onto Meridian Ranch. The three culverts crossing Eastonville Road include an 18" CMP, a 30" CMP, and a 42"x28" Arch CMP. The 30" CMP has the capacity for 31 cfs, which is inadequate for existing flows. The other two pipes are adequate for existing and developed flows. The drainageways entering Meridian Ranch are not very well defined.

Four stock ponds exist on the site, but are assumed to be full at the beginning of a storm as part of this analysis. If the ponds were empty, flows at G2 may be reduced by about 30 cfs, flows at G10 and G11 may be reduced by about 34 cfs, flows at G13 may be reduced by about 23 cfs, and flows at B1, B2 and B3 may be reduced by about 45 cfs (for flows up to 100-year storm estimates).


See Tables 3 and 4 for flow calculations at specific design points and further comments.


THE TRAILS MDDP HYDROLOGY OUTPUT: DESIGN POINTS URS Job No. 6742443

	DESIG	N FLOW	VS (cfs)								
DESIGN F	POINT		1	EXIST	ING	DE	VELOPED-BA	SE		DEVELOPED-DETN	
DP		Basin		5-YR	100-YR	Method	5-YR**	100-YR	Area*	5-YR	100-YR
GIEGKIRAN	CH BAS	SIN 1965	ALC: NO DE LA COMPANY	RMEGxxx.OU	IT: Co	in the Til	RMDGxxx.O	UT. N			
G1	В	3.12		15	38	rat	21	48	20.3		
G2	В	+		22	55		21	50	25.3		
V1	D	2.62				SCS	20	34	12.6		
V2	D	2.72			1993 - H. M.	SCS	5	11	4.8		-
V3	D	3.22			ter an factor	rat	8	19	8.6		
1 G3	创始 主義部	2 61			34		201111-000		West Lingel		
G4/V4	В	÷		24	95		57	121	61.8	48	108
V5	D	2.52		Made B. K.		SCS	4	11	4.3		
V6	D	5.12		SEMINAR		SCS	8	15	8.6		
G5	В	+		24	107	a a aanan in	68	156	81.1	58	137
V7	D	5.22		1111111222		rat	11	25	11.8		
G6	B	+		4	20		17	35	18.2		Renard I
G6b	В	+		28	122		83	191		10111-0111-0575-75	R TYPEFER OF T
V10	D	2.12				SCS	12	29	13.3		
V9N	D	+					43	92	44.1		
V9	D	+		1.1.2.2.2.2.2.2.2.1			50	103	48.4		
	UNE GH	2:21	Salitati A	810	44	N. BIRK		经推动推进	the states of		34 C. 44
V11	D	2.34					4	11	4.9		
V12	В	+	100 C	7.1	34,1		20	41	17.9	20	35
G8/V14	В	+		17	75		63	134	72.1		
V15	D	6.42				SCS	6	12	5.7		
V15b							25	52	23.5	10	45
V16	D	6.44		1 Profession		SCS	2	4	2.1		
V17	D	6.46		144 2 2 2		SCS	2	4	2.0		
DA5				HUMBERS	A Contract		84	182	107.9	80	170
DA6					1.1.1		107	240	117.9	90	165
G10/V19	В	+		38	184		123	282	140.9	107	207
G11a	В	+		43	208		123	282	147.4	107	207
V20	D	6.62	0	tright the			6	13	6.7		
G11b				in the set	a hadab		17	33	13.3		
V13	D	6.22			nan esta	rat	11	26	12.3		
G12	В	6.24		18	44	rat	18	43	19.9		
V21	D	4.32		also a finh		rat	11	26	12.5	5	15
G13	В	+		10	24		13	31	15.5	7	20
V22	D	4.42		parate nte	Concernance of the second second	rat	4	9	3.7		
V23	D	4.52				rat	9	_22	10.3		
V24	D	+ .		Den Harris			17	39	18.8	15	25
G14a		0.000		6	15		7	17	7.5		
G14b	В	+		13	31		18	42	20.5	16	
G15	В	+		29	70		40	92	48.5	38	78
G16	В	4.82		2	5	rat	3	6	2.4		_
G17a	D	4.94			NOR HOLDE		1	3	0.9		L
G17b	В	+		3	6		3	7	2.3		
V25	D	4.64					3	7	2.9		
V26	D	4.62				rat	5	12	5.2		
G18	В	+		18	42		21	49	24.6	18	40
V27	D	4.72		h that we de t			26	60	21.0		
G19	В	+		28	67		37	86	37.2	28	65

*Area in acres

**If SCS, multiplied by 1.67 (Average correlation SCS/Rational calculation) (5-year flows only)

SF-04-005

Final Drainage Report Addendum No. 1 for

The Trails Filing No. 7 Subdivision El Paso County, Colorado

RECEIVED

MAY 2 1 2007

EPC DEVELOPMENT SERVICES

Prepared for:

RMBG, LLC #1 5170 Mark Dabling Blvd. Colorado Springs, CO 80918

Prepared by:

February 2007

Addendum Description

Latigo Trails Filing No. 7 was designed with minimal grading on site, to allow drainage patterns to remain near existing conditions. Existing drainage swales were to be maintained and easements were put around these swales. However, on Lots 5, 6, 7 and 8, these easements run through the lots, limiting the area available to construct a house. Therefore, new drainage easements have been dedicated along the northern property lines for these lots. New swales were designed for lots 5, 7 and 8 (See Figure 3: Developed Drainage Plan). Due to changes in the field and a more accurate model, some items have been altered to more accurately determine the flows for Filing 7. One revision was to refine the runoff coefficients used for the developed conditions. The Filing 7 FDR document that the coefficients to be used for the rational method calculations are $C_5=0.20$, $C_{10}=0.30$ and $C_{100}=0.40$. However, the coefficients used in the rational method calculations are dor the rational calculations were those prescribed by the El Paso County DCM (Table 5-1, Recommended Average Runoff Coefficients and Percent Impervious) for 1 acre lots ($C_{10}=0.30$ and $C_{100}=0.40$). The C_{10} value was used for the 5-year coefficient. Using these values provides conservative runoff values since the developed lot size for The Trails Filing 7 is about 2.5 acres.

New swales were installed along roads to convey flow (See Figure 3: Developed Drainage Plan). Culverts were installed as needed to transport flows under the proposed roadways. Based on the analysis of the existing and proposed drainage during construction, the culvert at approximately Sta 21+40, just south of the Buffalo River Trail and Oregon Wagon Trail intersection, was removed (DP V12b from Filing 7 FDR). The flow from Design Point V12, which originally flowed to this culvert, was forced to continue along the existing drainage path to the proposed culvert at Design Point V14. With the addition of this flow, a 36" RCP is needed next to the existing 68" X 43" elliptical RCP in order to pass the 100-year flow without overtopping the road. Finally, due to the removal of the culvert at STA 21+40, an additional drainage easement has been created where the natural drainage channel crosses Lot 2 of Filing 7. This easement will connect to the revised drainage easement in Lot 1 of Filing 7 that terminates at DP V14.

Developed Drainage Analysis

The new swales will be located on the north property lines for Lots 5, 7 and 8. Each of these swales will tie into the proposed roadside ditch along Buffalo River Trail. From there, the flow will continue to Design Point S2b, where it will enter a 36" RCP underneath Buffalo River Trail. The flow at this design point has changed from 76 cfs in the approved Final Drainage Report to 72 cfs in this analysis.

Each of the lots will have a 2-foot high V-ditch swale with 5 (H):1(V) side slopes (See Figure 2: Channel Detail). The flow depths range from 0.71 feet to 1.11 feet. The velocities in the swale range from 3.2 to 3.5 feet per second (fps). The construction of these new swales does not affect

the overall drainage pattern of the site, but does allow a larger area for the construction of a house.

Since the culvert at STA 21+40 was not built, the flow originally going to DP V12b now continues down the natural drainage channel to DP V14 and the 68" X 43" elliptical culvert. The 5- and 100-year flows now directed to Design Point V14 are 67 and 159 cfs, respectively. This additional flow requires that a second culvert be placed at DP V14. The proposed additional RCP will be a 36" circular pipe set at the same slope with the same inlet/outlet elevations. The elliptical pipe will pass 106 cfs during the 100-year storm and the circular pipe will pass the remaining 53 cfs during the same storm. The outlet velocities of the culverts are 9.07 fps for the elliptical and 8.85fps for the circular pipe. The headwater elevation has changed from 7124.71 to 7123.93 ft. The decrease in headwater elevation, with an increase of flow, is due to the addition of the roadway "weir" in the culvert analysis. With this additional culvert, the 100-year flows will now pass without overtopping Buffalo River Trail.

From Design Point V14, the flow will continue through an existing channel to the south detention pond at Design Point G10. Revised flows entering the pond are 104 and 247 cfs, respectively, for the 5- and 100-year storm events. The original flows calculated entering the pond were 89 and 336 cfs. However, the original 100-year flow is significantly higher due to an error in the HEC-1 model, which allowed 2 basins to contribute flow to the pond even though they do not and cannot flow to the pond. This lower inflow to the pond will also lower the release rates from the pond.

The Trails Filing No. 7 Addendum 1 Developed Conditions (RATIONAL METHOD Q=CIA)

	Q: (c.f.s.)	Ou				AREA	w e	IGHT	ED	<u> </u>	VERI	LAND			CHAI	NNEL		Tc	IN	TENSI	ΤY				
	(c.f.s.)		Q100	CA(ec	puiv.)	TOTAL	Cs	Cio	C100	Cı	Length	Slope	Tco	Length	Slope	Velocity	Tcc	TOTAL	15	110	1100		COMMEN	IT\$	
	1	(c.f.s.)	(c.f.s.)	5 YR	100 YR	(Ac)					(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(in/hr)	•	. •		
7.12a	7.8	9.1	18.4	2.56	3,41	8.53	0,30	0.30	0.40	0.30	300	4.7%	15.5	1,095	2.5%	4.3	4.2	19.8	3.0	3.5	5.4				•
7.12Ь	8.4	9.8	20.0	2.82	3.76	9.39	0.30	0.30	0.40	0.30	300	4.7%	15.5	1,202	2.4%	4.2	4,7	20.3	3.0	3.5	5.3				
7.13a	5.4	6.3	12.8	1.61	2.15	5.38	0.30	0.30	0.40	0.30	200	4.5%	12.9	929	2.8%	4.6	3.4	16.3	3.3	3.9	5.9				
7.13b	. 3.8	4,4	9.0	1.18	1.57	3.92	0.30	0.30	0.40	0.30	291	4.8%	15.2	580	2.6%	4,4	2.2	17,4	3.2	3.8	5.7	•			
7.14a	3.4	3.9	8.0	0.98	1,30	3.25	0.30	0.30	0.40	0.30	· 205	4.9%	12.7	766	3.4%	5.0	2.5	15.2	3.4	. 4.0	6.1				
7.146	4.6	5.3	10.8	1.28	1.71	4.28	0.30	0.30	0.40	0.30	237	6.8%	12.2	540	2.9%	4.7	1.9	14.2	3.6	4.1	6.3				
2.14	12.2	14.2	28.9	3.74	4.98	12.45	0.30	0.30	0.40	0.30	88	2.3%	10.7	1.837	3.0%	4.7	6.5	17.1	3.3	3.8	5.8				
2.34	6.0	7.0	[4.2	1,49	1.99	4.98	0.30	0.30	0.40	0.30	46	5.4%	5.8	1,089	1.9%	3.8	4.8	10.6	4.0	4.7	- 7,1				
6.32a	7.5	8.8	17.9	2.18	2.91	7,28	0.30	0.30	0,40	0.30	160	3.8%	12.2	852	3.1%	4.8	2.9	15.1	3.4	4.0	6.1				
6.32b	16.4	19.2	39.0	4.92	6.56	16.39	0.30	0.30	0.40	0.30	81	6.2%	7.4	2,520	3.0%	4.7	8.9	16.2	· 3.3	3.9	5.9	. •			
2.12	13.7	15.9	32.4	3.90	5.20	13.00	0.30	0.30	0.40	0.30	209	11.0%	9.8	1,641	4.3%	5.7	4.8	. 14.6	3.5	4.1	6.2				
2.22	15.3	17.8	36.2	5.15	6.87	17.18	0.30	0.30	0.40	0.30	300	6.3%	14.1	2,191	4.1%	5.5	6.6	20.7	3.0	3.5	5.3				
2.32	13.6	15.9	32.4	4.17	5.56	13.91	0.30	0.30	0.40	0.30	300	12.0%	11.4	1,816	4.0%	5.5	5.5	16.9	3.3	3.8	5.8	·			
2.52	5.0	5.9	12.0	1.29	1.72	4.30	0.30	0.30	0.40	0.30	68	2.9%	8.7	1,036	5.7%	6.5	2.6	11.3	3.9	4.6	7.0				
6.22	12.8	14.9	30.3	3.68	4.91	12.28	0.30	0.30	0.40	0.30	140	7.9%	8.9	1,587	2.6%	4,4	6.0	14.9	3.5	. 4.0	6.2				
6.47a	6.1	7.1	14.5	1.95	2.60	6.51	0,30	0.30	0.40	0.30	300	4,0%	16.4	531	2.4%	4.2	2.1	18.5	3.1	3.7	5.6				
6.34	7.3	8.5	17.2	2.46	3.28	8.21	0.30	0.30	0.40	0.30	300	4.3%	16.0	1,295	2.6%	4.4	4.9	20.9	2.9	3.4	5.2	•			
6.42a	5.2	6.1	12.4	1.34	· 1.78	4,45	0.30	0.30	• 0.40	0.30	· 78	3.8%	8.5	602	1.8%	3.7	2.7	11.2	3.9	4.6	7.0				
6.47	4.2	4.9	9.9	1,11	1.48	3.69	0.30	0.30	0.40	0.30	163	6.7%	10.2	681	3.5%	· 5.1	2.2	12.4	3.8	4,4	6.7				
6.48	22.8	26.6	54.1	7.24	9.66	24.14	0.30	0.30	0.40	0.30	241	6.3%	12.7	1,675	3.2%	4.9	5.7	18.4	3.1	3.7	5.6	· ·			
POND	5.5	6.4	13.0	1.48	1.97	4.92	0.30	0.30	0.40	0.30	140	5.0%	10.4	656	2.7%	4.5	2.4	12.8	3.7	· 43	6.6		۰.		
	•7	•7	•7				÷					-	•1			•2 20	•3	Tco+Tcc	•4	· •5	*6 2.67				· ·

Total South Pond Area: 153.69 Acres

ngoDEVELOPED Rational Cales 84-23-06

\\$031arfile1\21711260\Admin\Rep

1: Tco = 1.87(1.1-C5)*(L^0.5)*((S*100)^-0.33) (DCM page 5-11)

*2: Vc = Manning's Equation, n=0.040, Side Slopes 5:1, Assumed 1' depth equal to bankfull (DCM p. 5-11 Provided no ditch section is specified) *3: Tcc = 1/V*L/60

*4: Is = (26.65*1.50)/(10+Tc)*0.76 (City Letter of 1/7/2003)

*5: 110 = (26.65*1.75)/(10+Tc)*0.76 (City Letter of 1/7/2003)

*6: I100 =(26.65*2.67)/(10+Tc)*0.76 (City Letter of 1/7/2003)

•7: Q--CiA

1/01/2007 8:35 AM

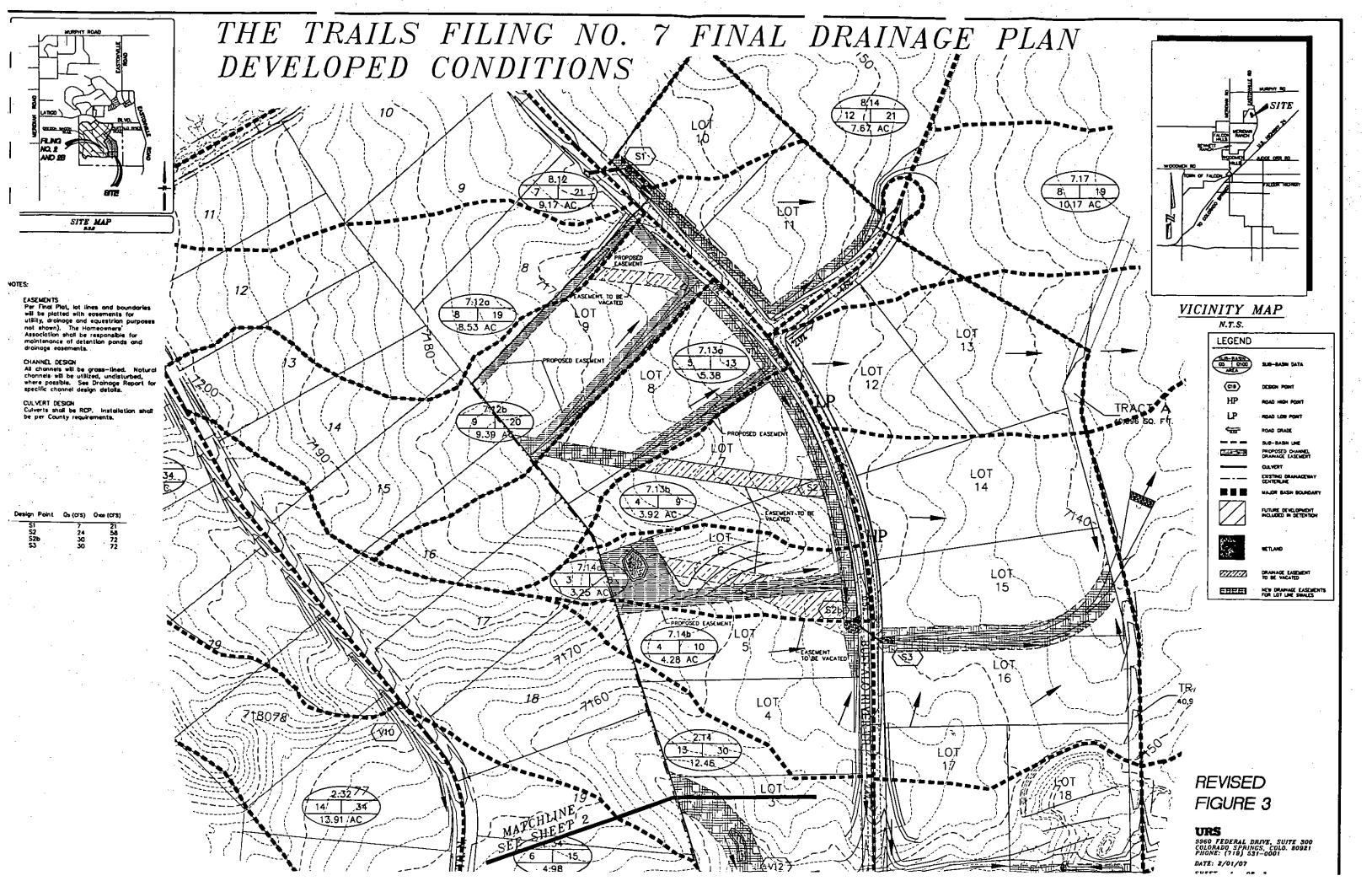
DESIGN	CONTRIBUTING	CA(equ	ivalent)	Tc	INTE	NSITY	TOTAL	FLOWS
POINT	BASINS	CA(5)	CA(100)		l(5)	l(100)	Q(5)	Q(100)
	·			(min.)	(in/hr)	(in/hr)	(cfs)	(cfs)
V15	6.4 2a	1.34	1.78	11.2	3.9	7.0	5	12
		·			,	TRAVEL	TIME	
	· · ·	1.34	1.78	Type/flow	Length (#)		d. Time (min)	T. Time (mir
				Channel	607	2.7	3.8	15.0
V15b	6.47 <u>a</u>	1.95	2.60	18.5	3.1	5.6	10	24
	V15 ·	1.34	1.78			TRAVEL	TIME	
		3.29	4.38	Type/flow	Length (tt)	Velocity (fps)	d. Time (min)	T. Time (mir
				Channel	370	3.4	1.8	20.
V16	V15b	3.29	4,38	20.3	3.0	5.3	13	3
	6.47	1.11	1.48			TRAVEL	TIME	<u> </u>
		4.40	5.86	Type/flow	Length (tt)	Velocity (lps)	d. Tìme (min)	T. Time (mi
				Channel			3.5	23.
G10		•			· · · .		•	
		,		32.2	2.3	4.1	. 104	24
	6.34	2.46	3.28					
	6.48	7.24	9.66	•				•
	V13	3.68	4.91				· · · · ·	
	<u>V14</u>	26.85	35.80			·	· · · ·	
	V16	4.40	5.86			TRAVEL		· · ·
		. 44.63	59.51			Velocity (fps)		T. Time (mi
	•	it.		Channel	433	4.3	1.7	33.
G11a	G10	44.63	59.51	33.9	2.3	4.0	104	24
	Pond	1.48	1.97			TRAVEL		
		46.11	61.48		Length (#)	Velocity (fps)	d. Time (min)	T. Time (mi
			-	Channel				

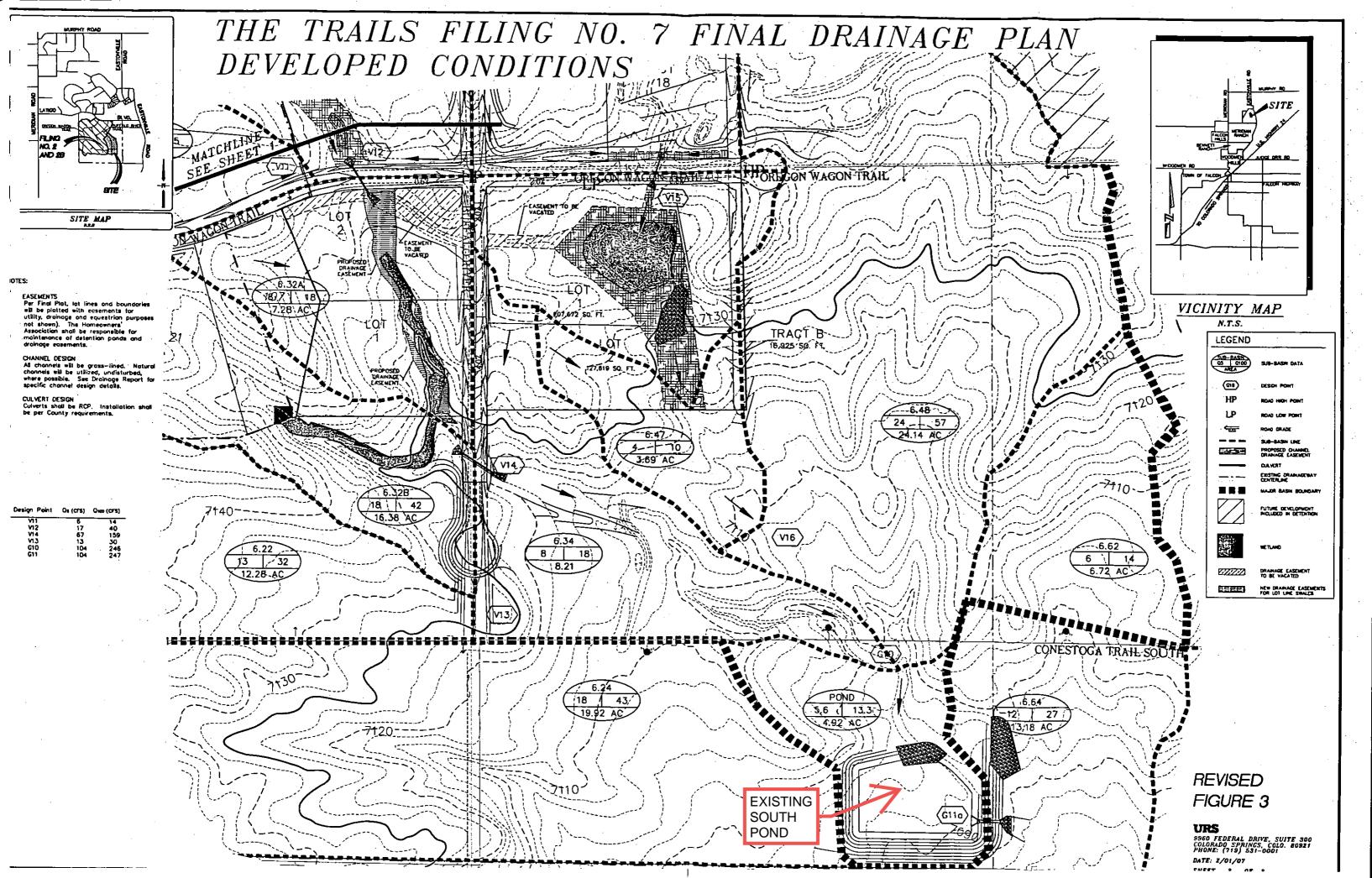
Englandin 1/2171126014 mini Dessent Ciller Tr Designer DD/CL ODED Designer (Cater Or DC OD

Table 1: Channels Revised

Location by Design Point / Lot	Road side/ Cross-	Q ₁₀₀ Flow (cfs)	Min. Slope	Max. Slope	Bottom Width (ft)	Max. Flow Depth	Design Depth (ft)	Max. Velocity (fps)	Max. Top Width / Easement*	Channel Erosion Control Protection***
	Lot			· ·	(*)	(ft)				
S1-S6a	R	21	1.8%	2.0%	6	0.72	2.00	. 3.4-4.2	12.0' / 16'*	None
Lot 9-Lot 7	·R	34	1.8%	1.8%	6	0.93	2.25	3.8-4.6	13.5' / 22'*	Temporary, 550'x24'
Lot 6-S3	R	56-72	0.5%	0.5%	6	1.90	3.25	. 3.0	21.5' / 24'*	None
S3-S5a	C	72-104	1.7%	1.7%	6	1.65	3.00	4.6-5.7	19.5' / 40'	Permanent, 785'x30'
S5a-S12	C	104-118	0.8%	1.8%	6	1.97	varies	4.35**	37.0' / unplatted	As necessary
V12-V12b	С	40	1.7%	1.7%	2	1.44	2.75	4.1-5.1	13.5' / varies	Permanent, 190'x24'
V12b-Pond	C.	40	2.0%	2.0%	2	1.37	2.75	4.4-5.5	13.0' / 30'	Permanent, 180'x24'
V15-Pond	С	12	3.2%	3.2%	· 2 ·	0.94	2.25	3.8-4.2	8.0' / 20'	Temporary, 70'x20'
Pond-G10	С	52-77	1.6%	3.8%	. >6	1.44	2.75	4.97**	27.5' / 100'	As necessary
V14a-V14	C	159	1.7%	6.0%	6	1.81	varies	8.73**	22.5' / unplatted	As necessary
V14-G10	С	159	1.0%	5.3%	7	1.62	varies	8.56**	40.0' / unplatted	As necessary
G10-G11a	C ·	246	1.1%	2.0%	6	2.10	varies	5.37**	56.5' / unplatted	As necessary
Note: Proposed dete See complete calcul	ention ponds a ations in App	at design poir bendix D:	nts S12 ("No	orth Pond'	') and G11a	("South Por	ıd").			

* - 8 feet of ditch section is within ROW; 10 foot utility easement (interior lot side) is not included here.


** - Developer to monitor these natural channels and repair as necessary. (See next section for requirements.)


*** "Temporary" (photodegradable or biodegradable) soil retention blanket per CDOT Spec. Section 216, with a minimum permissible shear stress of 1.75 lbs/ft² and 24 month minimum longevity.

"Permanent" soil retention blanket per CDOT Spec. Section 216, with a minimum permissible shear stress of 3.00 lbs/ft² and "permanent" longevity (non-degradable).

"As necessary" requires "Permanent" soil retention blanket (or riprap) upon evidence of erosion (natural channels). See Construction Drawings for extents of soil retention blanket ("SRB" or "ECB")

\\S031w2kfile1\PROJECTS\21711260\Admin\Reports\Filing 7\Drainage\Amended final drainage report F7 01-07.doc

IV. DRAINAGE FACILITY DESIGN

A. General Concept

Existing condition and developed condition rational basin delineation are shown in Figures 5 and 6 respectively. Peak discharges for each basin are summarized in Appendix C.

Historic flows in the Upper Black Squirrel Creek Basin are conveyed through several small existing drainageways to design points, B1a, B1b, B1c, and B7a. Historic flows in the Gieck Ranch Basin are conveyed to design points G10a and G10b (see Figure 5). Design point G8 is an offsite flow taken from the Latigo Trails MDDP/PDP.

Developed flows in the Upper Black Squirrel Creek Basin are conveyed through a network of roadside ditches, culverts and channels to design points S5a, S5b, and S6a (see Figure 6). Developed flows in the Gieck Ranch Basin are conveyed to design points at V14b and V15b (see Figure 6). Design points S1 and V14a are offsite flows taken from the Latigo Trails MDDP/PDP.

B. Roadside Ditches

Roadside ditches will be constructed at the locations listed in Table 1, below, and are designed to meet El Paso County criteria for slope and velocity. Roadside ditches will have a 6' bottom width, with 4:1 side slopes, and a slope which varies between 0.5% and 2.0%.

C. Constructed Channels

Cross-lot channels will be constructed/improved at several locations, and are designed to meet El Paso County criteria for slope and velocity. These channels will have a 2' to 6' bottom width, with 4:1 side slopes, and a slope which varies between 1.7% and 2.0%. The locations of these channels are in Table 1, below. Temporary or permanent erosion control blankets (soil retention blankets), are called out for areas where channel velocities could be erosive before or after vegetation stabilization. In the cases where erosive velocities may exist for 100-year flows in localized sections of existing channels (off-site, within the developer's unplatted property), erosion control blankets, riprap, and/or grade control structures will be installed as necessary, if required by observation before the land is platted. There are four such locations listed in Table 1, where 100-year storm velocities could exceed 5 feet per second.

D. Detention

Two detention ponds have been designed for their respective entire upstream developed areas, with release rates at or below historic levels, in accordance with the MDDP/PDP. The upstream basins also include potential future developed area that may utilize the ponds temporarily or permanently. A berm is provided to direct applicable flows into the north detention pond, while an existing diversion will be graded out and re-channelized to allow applicable flows into the south detention pond. Pond designs are based on the HEC-1 model, included in Appendix D, with spreadsheet calculations of stage/storage/discharge volume relationships. The ponds are sized for water quality, 5-year detention and 100-year detention. Incidental storage at upstream culverts and the existing stock pond, originally intended for use in the MDDP/PDP, were neglected.

The south detention pond will receive flows of $Q_5=89$ cfs and $Q_{100}=336$ cfs and release at $Q_5=20$ cfs and $Q_{100}=159$ cfs, with a maximum storage volume of 7.8 Ac-ft at elevation 7094.2 and capacity for 11.2 Ac-ft at elevation 7096.13. The north detention pond will receive flows of $Q_5=68$ cfs and $Q_{100}=257$ cfs and release at $Q_5=14$ cfs and $Q_{100}=73$ cfs, with a maximum storage volume of 7.7 Ac-ft at elevation 7104.3 and capacity for 13.2 Ac-ft at elevation 7107.0.

C2 South Pond The Trails Filing 7 Total Total Volum **Total Volume** Outflow elevation Incr Volume Elevation Area STAGE AC-FT ft2 ft3 cfs ft ft ft3 0.00 7088.00 0.00 24934 0 0 7088.00 0.33 1629 14481 0.59 7088.50 7088.50 32991 0.76 2032 32991 0.94 7089.00 41048 7089.00 1.27 7089.50 WQCV 49104 55529 2.77 7089.50 2435 1.88 82095 9.66 7090.00 7090.00 57161 2838 2.55 111156 19.38 7090.50 2949 7090.50 59085 31.25 3.24 141180 7091.00 61008 3046 7091.00 3.95 172164 42.21 7091.50 V5 62932 3142 7091.50 4.69 3238 204111 49.74 7092.00 64855 7092.00 5.43 7092.50 80.92 7092.50 3242 236534 64835 7093.00 6.17 268946 114.75 7093.00 64816 3241 7093.50 6.92 301349 131.91 3240 7093.50 64796 146.82 7094.00 7.66 333742 64776 7094.00 3239 7094.25 8.04 153.53 7094.25 66820 1668 350192 160.23 7094.50 VIOO 8.43 367152 7094.50 68864 1719 166.38 7094.75 8.83 384624 70908 1770 7094.75 9.24 7095.00 172.53 7095.00 72952 1821 402606 7095.38 9.88 178.25 75077 430361 2811 7095.38 183.97 7095.75 10.54 458914 77202 2891 7095.75 11.21 7096.13 V100 CAP 488263 189.34 2971 79326 7096.13

		Sheet 1 of
Designer:	Jeffrey D. Rice, PE	
Company:	URS	
Date:	October 11, 2004	
Project:	The Trails Filing No. 7	
Location:	South Pond - G11a	
1. Basin Sto	rage Volume	l _a = 20.00 %
A) Tributa	ry Area's Imperviousness Ratio (i = I _a / 100)	$i_a = \underbrace{-20.00}_{i} = \underbrace{-0.20}_{-0.20}$
B) Contri	buting Watershed Area (Area)	Area = <u>163.00</u> acres
	Quality Capture Volume (WQCV)	WQCV = <u>0.12</u> watershed inches
	CV =1.0 * (0.91 * l ³ - 1.19 * l ² + 0.78 * l)) n Volume: Vol = (WQCV / 12) * Area * 1.2	Vol = <u>1.886</u> acre-feet
2. Outlet Wo	orks	
A) Outlet	t Type (Check One)	X Orifice Plate Perforated Riser Pipe Other:
B) Depth	at Outlet Above Lowest Perforation (H)	H = <u>1.00</u> feet
C) Requ	ired Maximum Outlet Area per Row, (A_o)	$A_o = 11.81$ square inches
	ration Dimensions (enter one only):	
	rcular Perforation Diameter OR Height Rectangular Perforation Width	D = <u>2.070</u> inches, OR W = inches
NOTE: 2 inches	is the maximum recommended diameter for cell L35.	
	per of Columns (nc, See Table 6a-1 For Maximum)	nc = <u>3</u> number
F) Actua	ll Design Outlet Area per Row (A₀)	A _o = <u>10.10</u> square inches
G) Num	ber of Rows (nr)	nr = <u>3</u> number
H) Total	Outlet Area (A _{ot})	A _{ot} = <u>30.29</u> square inches
3. Trash Ra	ack	
A) Need	led Open Area: At = 0.5 * (Figure 7 Value) * A _{ot}	A _t = <u>902</u> square inches
В) Туре	of Outlet Opening (Check One)	X ≤ 2" Diameter <u>Round</u> 2" High <u>Rectangular</u> Other:
C) For 2	", or Smaller, <u>Round Opening</u> (Ref.: Figure 6a):	
	dth of Trash Rack and Concrete Opening (W _{conc}) m Table 6a-1	W _{conc} ≃ <u>45</u> inches
	eight of Trash Rack Screen (H _{TR})	H _{TR} = 42 inches

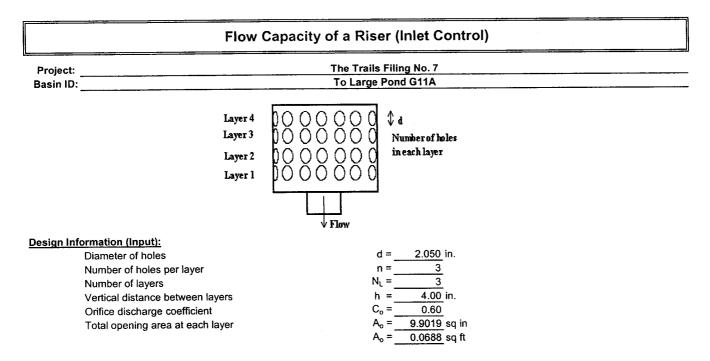
28

Designer		Sheet 2 of
Designer: Company:	Jeffrey D. Rice, PE URS	
Date:	October 11, 2004	
Project:	The Trails Filing No. 7	
Location:	South Pond - G11a	
iii) Ty	rpe of Screen (Based on Depth H), Describe if "Other"	X S.S. #93 VEE Wire (US Filter)
iv) Sc	reen Opening Slot Dimension, Describe if "Other"	0.139" (US Filter) Other:
	pacing of Support Rod (O.C.) ype and Size of Support Rod (Ref.: Table 6a-2)	inches
vi) T	ype and Size of Holding Frame (Ref.: Table 6a-2)	
D) For 2	2" High <u>Rectangular Opening</u> (Refer to Figure 6b):	
I) W	idth of Rectangular Opening (W)	W = inches
ii) W	idth of Perforated Plate Opening ($W_{conc} = W + 12"$)	W _{∞nc} =inches
iii) W	idth of Trashrack Opening (W _{opening}) from Table 6b-1	W _{opening} =inches
iv) H	leight of Trash Rack Screen (H _{TR})	H _{TR} =inches
v) Ty	ype of Screen (based on depth H) (Describe if "Other")	Klemp [™] KPP Series Aluminum Other:
	Cross-bar Spacing (Based on Table 6b-1, Klemp [™] KPP Grating). Describe if "Other"	inches Other:
vii) M	Minimum Bearing Bar Size (Klemp [™] Series, Table 6b-2) (Based on depth of WQCV surcharge)	
4. Detenti	on Basin length to width ratio	(L/W)
5 Pre-sec	dimentation Forebay Basin - Enter design values	
A) Volu	ume (no less than 5% of Design Volume from 1D)	acre-feet
B) Sur	face Area	acres
	nnector Pipe Diameter ize to drain this volume in 5-minutes under inlet control)	inches
D) Dei	ved/Hard Bottom and Sides	yes/no

Designer:	Jeffrey D. Rice, PE		
Company:	URS		
Date:	October 11, 2004		
Project:	The Trails Filing No. 7		
Location:	South Pond - G11a		
6. Two-Stag	e Design - See Figure EDB-1		
-	tage (Depth D _{wo} = 2' Minimum)	D _{wo} =feet Storage=acre-feet	
B) Botto Botto	m Stage Depth (D _{BS} = 1.0' Minimum, 2.0' Maximum) om Stage Storage (no less than 3% of Design Volume (0.05656752 acre-feet.)	D _{BS} =feet Storage=acre-feet Surf. Area=acres	
	Pool (Minimum Depth = the Larger of Top Stage Depth or 2.5 Feet)	Depth=feet Storage=acre-feet Surf. Area=acres	
	I Volume: Vol _{tot} = Storage from 5A + 6A + 6B st be > Design Volume in 1D, or 1.885584 acre-feet.)	Vol _{tot} =acre-feet	
	de Slopes (Z, horizontal distance per unit vertical) z = 4, Flatter Preferred	Z = <u>4.00</u> (horizontal/ve	rtical)
8. Dam Em per unit v	bankment Side Slopes (Z, horizontal distance) vertical) Minimum Z = 3, Flatter Preferred	Z = <u>3.00</u> (horizontal/ve	rtical)
9. Vegetati	on (Check the method or describe "Other")	X Native Grass	
Notes:			
Notes:			

 \dot{A}

-19

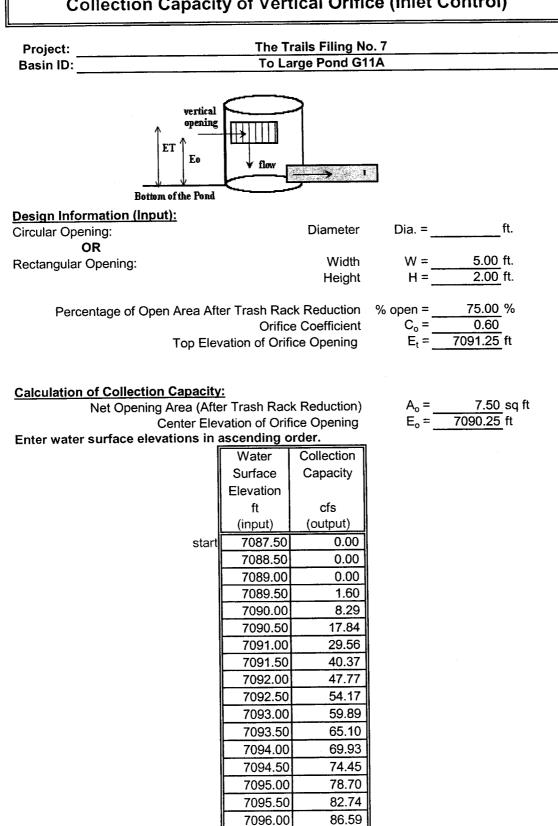

ŝ.

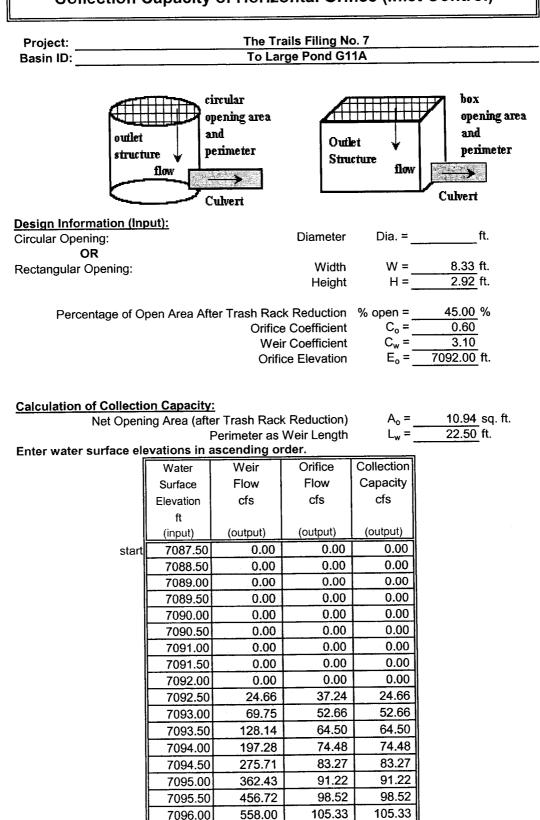
 \dot{x}

¥.

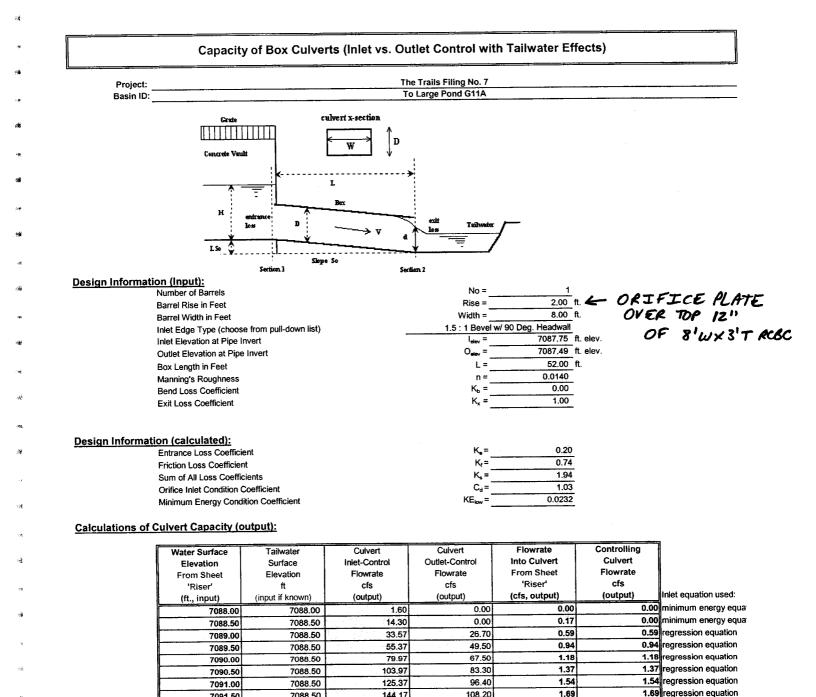
1ġ

- 148


Calculation of Collection Capacity :


: 48

The starting water surface elevation must be \geq the central elevation of the first layer. Enter water surface elevations in ascending order.


ſ	Water			(Central Ele	vations of l	ayers of H	oles in fee	t			
	Surface	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7	Layer 8	Layer 9	Layer 10	Flow
	Elevation	7087.75	7088.08	7088.42								Rate
	ft			Co	lection Ca	pacity for E	ach Laver	of Holes in	cfs			cfs
	(input)											
start	7087.50	0.00	0.00	0.00								0.00
	7088.50	0.29	0.21	0.09						<u> </u>		0.59
	7089.00	0.37	0,32	0.25							-	0.94
	7089.50	0.44	0.39	0.34							ļ	1.18
	7090.00	0.50	0.46	0.42								1.37
	7090.50	0.55	0.52	0.48								1.54
	7091.00	0.60	0.57	0.53								1.69
	7091.50	0.64	0.61	0.58								1.83
	7092.00	0.68	0.66	0.63								1.96
	7092.50	0.72	0.70	0.67					Į			2.09
	7093.00	0.76	0.73	0.71					· · · · · · · · · · · · · · · · · · ·		ļ	2.20
	7093.50	0.79	0.77	0.75			ļ	ļ		·		2.31
	7094.00	0.83	0.81	0.78				ļ	·			2.42
	7094.50	0.86	0.84	0.82								2.52
	7095.00	0.89	0.87	0.85							<u> </u>	2.61
	7095.50		0.90	0.88			ļ	ļ	ļ			2.70
	7096.00	0.95	0.93	0.91						Į	<u> </u>	2.79
		0.00	0.00	0.00]		I	1	<u>i</u>		0.00

-1**1**

- 20

144.17

160.97

176.07

189.97

202.87

214.18

224.18

233.68

242.88

251.68

108.20

119.00

129.40 139.80

149.50

158.60

167.20

175.40

183.20

190.70

7088.50

7088.50

7088.50

7088.50

7088.50

7088 50

7088.50

7088.50

7088.50

7088.50

7091.50

7092.00

7092.50

7093.00

7093.50

7094.00

7094.50

7095,00

7095.50

7096.00

1.83 regression equation

1.96 regression equation

2.09 regression equation

2.20 regression equation

2.31 orifice equation

2.42 orifice equation

2.52 orifice equation

2.61 orifice equation

2.70 orifice equation

1.69

1.83

1.96

2.09

2.20

2.31

2.42

2.52

2.61

2.70

0.00

Plunge Pool Design

South Detention Pond

220.00	Q (cfs)	Box Cu			Circular Diamete	r (in)		
16.12	Tailwater (in)		36 Height (in 96 Width (ir		Diamete			
10.12	Tanwater (iii)		50 Wildin (ii	Box Culver	t			
			28.46 Normal I	Depth (in)				
		N/A	Q/D^(2.5) Rounded	N/A			
		N/A	TW/D	Rounded	N/A			
		N/A	Yo/D		N/A			
			28.46 Brink De	epth (in)				
			0.57 TW/yo		LOW TAILW	ATER DEPTH		
			2732 Brink Ar	ea (sq in)				
			11.60 Brink Ve					
			28.46 Equivale	nt Brink Depth	(in)			
			1.33 Froude					
Rip Rap S	izing							
Туре		x (in) d50/Y		Hs (in)	Hs/d50 2 <hs d<="" td=""><td>50<4</td><td></td><td></td></hs>	50<4		
VL	6	12		.89 25.33				
L	9	15		.63 18.05				
М	12	21		.37 10.59				
Н	18	30		.03 0.88		TIEI		
VH	24	42	0.84 N/A	#VALUE!	#VALUE! #VAL	OE:		
Rip Rap								
Туре		x (in) Hs (in						
L	9	15	18.05					
г	Dissapator Lengt	h	Apron Lei	ngth	Thickness of A	Approach	Thickness of Basi	
	4 10*hs (ft)	Max (ft)	7.52 5*hs (ft)		2.25 3*d50 (1.50 2*d50 (ft)	Max (ft)
) 3*Wo (ft)	24.00	8.00 Wo (ft)	8.00		c (ft) 2.50	1.88 1.5*dmax (ft)	1.88
1.1.0								

ar.

8

Riprap Quantities

Ĵ,

Hs (ft)	1.50	
W (ft)	8.00	
thickness approach (ft)	2.50	
thickness basin (ft)	1.88	
dissapator length (ft)	24.00	
apron length (ft)	8.00	
channel bottom (ft)	44.00	Channel Bottom must be larger than W
tailwater (ft)	1.34	

4

波

*

£.,

-

Areas	(ft^3)	(ft^2)	length (ft)	width (ft)	depth (ft)
А	67.71	27.0	8 3.01	9.00	2.50
В	669.22	356.9	2 20.99	17.00	1.88
С	510.00	272.0	0 8.00	34.00	1.88
D	411.82	164.7	3 7.70	10.70	2.50
Е	518.93	276.7	6 17.98	7.70	1.88
F	441.85	235.6	5 11.01	10.70	1.88

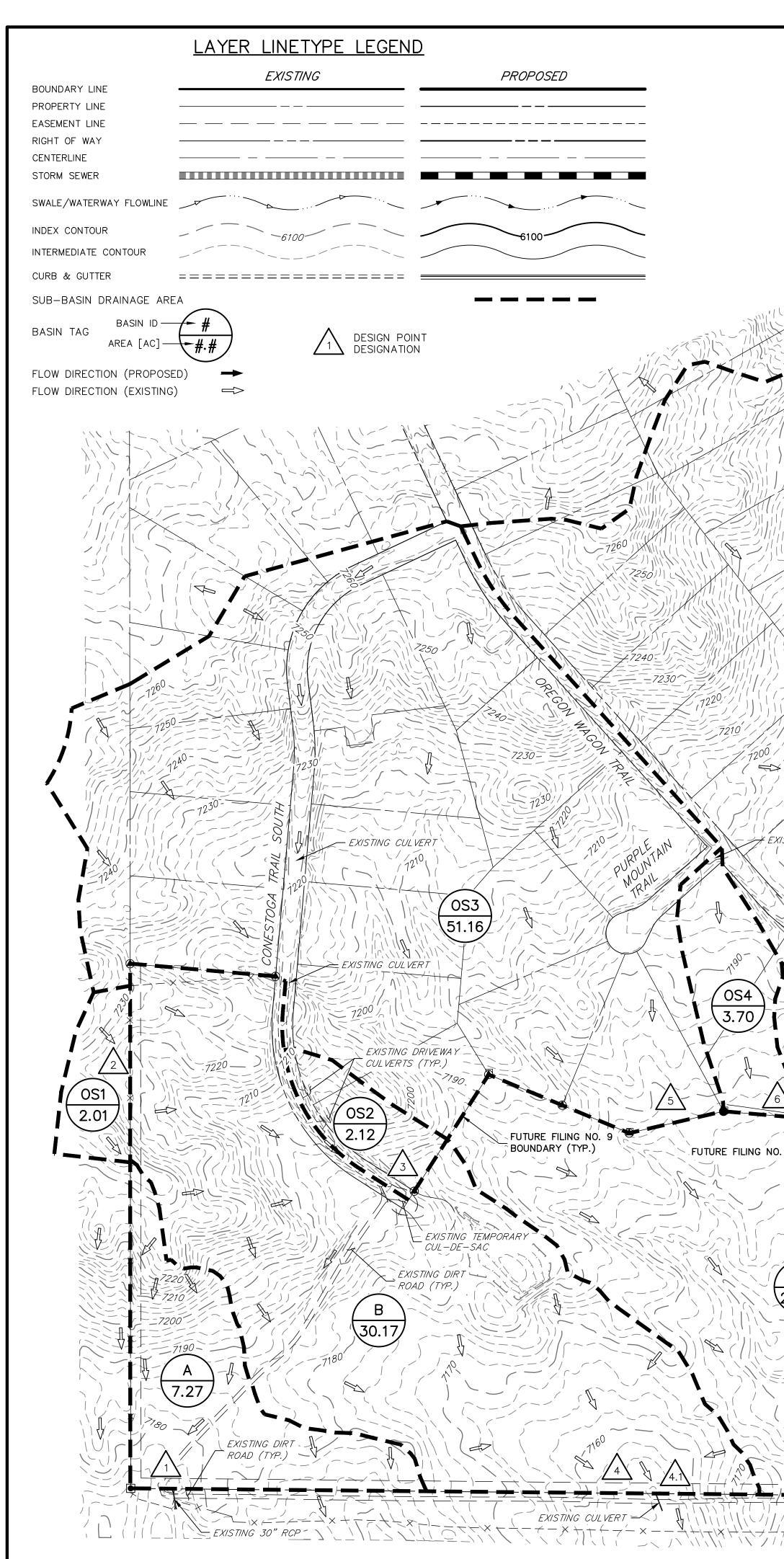
Total (cy)	97 Riprap D50= 9
Total (sy)	148 Geotextile (Erosion Control) (Class A)

ŝ.

ÿ

à 1

<u>.</u>

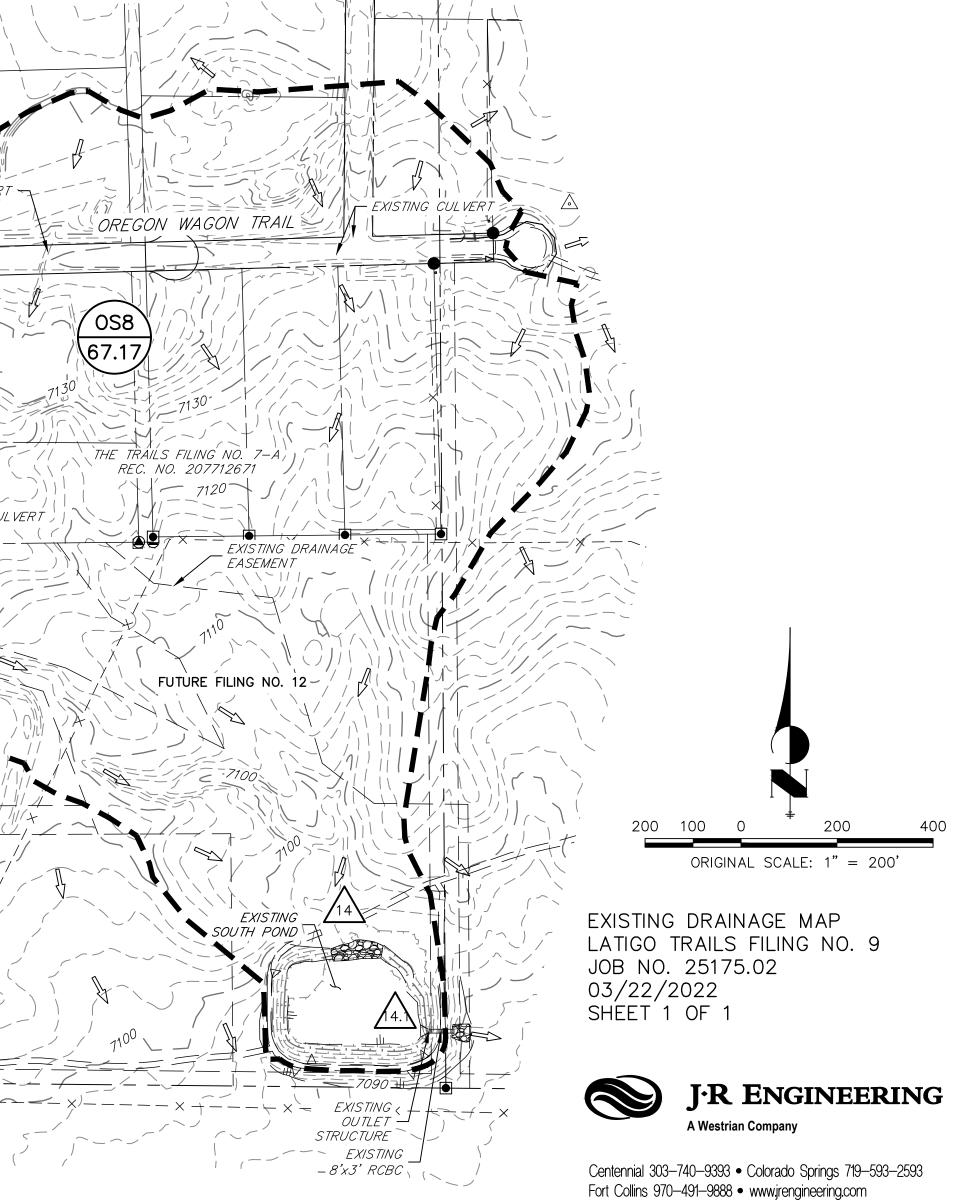

á, 2

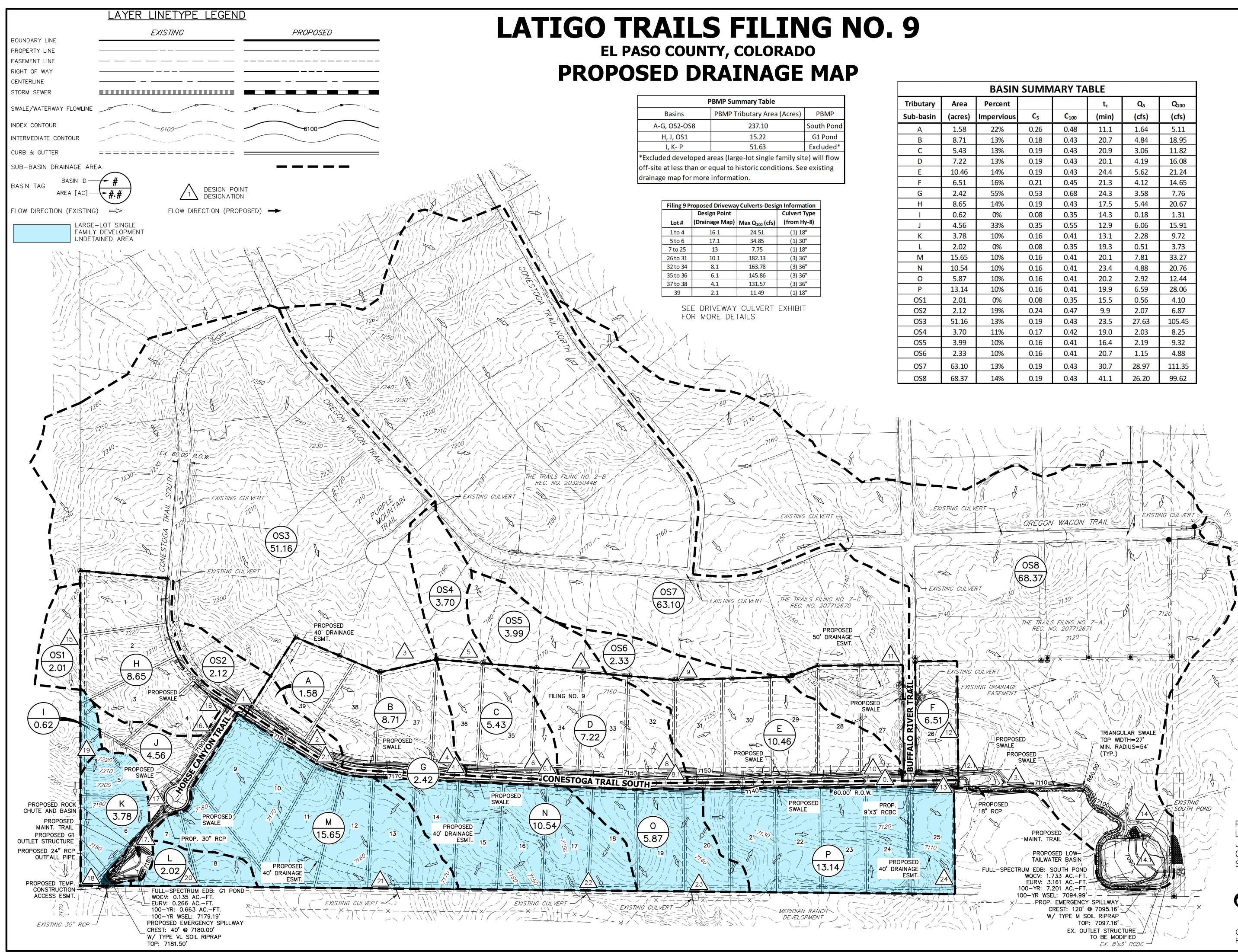
÷. .

1. i 1. j

APPENDIX F

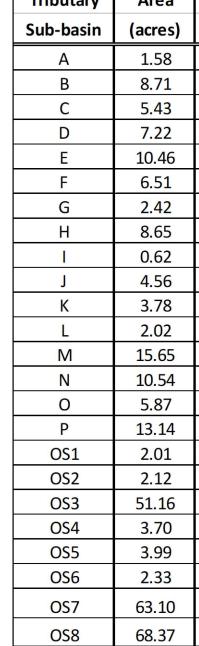
DRAINAGE MAPS



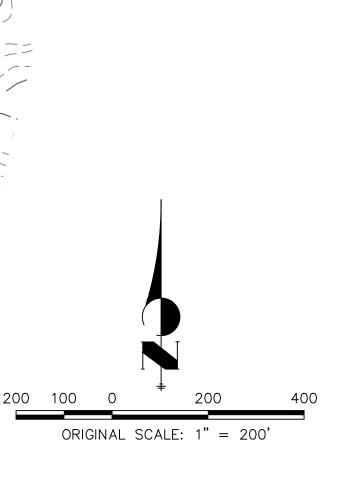

LATIGO TRAILS FILING NO. 9 EL PASO COUNTY, COLORADO EXISTING DRAINAGE MAP

			BASIN		IARY TA	ABLE		
	Tributary	Area	Percent			t _c	Q₅	Q ₁₀₀
	Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)
	A	7.27	0%	0.08	0.35	16.4	1.97	14.45
	В	30.17	1%	0.09	0.36	30.7	6.53	44.16
	C	25.25	0% 0%	0.08	0.35	29.9	5.03	36.91
	D E	13.42 31.05	0%	0.08 0.08	0.35 0.35	25.6 30.9	2.92 6.05	21.44 44.42
	F	5.74	4%	0.11	0.37	22.9	1.87	10.42
	OS1	2.01	0%	0.08	0.35	15.5	0.56	4.10
	OS2	2.12	19%	0.24	0.47	<mark>9.</mark> 9	2.07	6.87
CONTROL OF	OS3	51.16	13%	0.19	0.43	23.5	27.63	105.45
ST ST	OS4	3.70	11%	0.17	0.42	19.0	2.03	8.25
	OS5 OS6	3.99 2.33	10% 10%	0.16 0.16	0.41	16.4 20.7	2.19 1.15	9.32 4.88
	OS7	63.10	13%	0.10	0.41	30.7	28.97	111.35
	OS8	68.29	11%	0.17	0.42	41.4	23.32	95.58
S THE TRAILS FILING NO. 2-B' REC. NO. 203250448 EXISTING CULVERT 10 10 10 10 10 10 10 10 10 10	EXISTING CULVERT	BUFFALO RIVER 7	XISTING CULVERT	-11	OREGON V	VAGON TRA		
$ \begin{array}{c} & OS7 \\ & OS5 \\ & 3.99 \\ & & OS6 \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	ISTING CULVERT THE TRAILS FILING NO. 7-C REC. NO. 207712670		STING CULVERT	7130	OS8 7.17 THE TRAILS FOR	130 1207712671 7120 EXISTIN	G DRAINAGE	
NO. 9 7160 C 25.25	FUTURE FILING NO. 9 BOUNDARY (TYP.) F 5.74 E EXISTING TEMPORARY CUL-DE-SAC				FUT	URE FILING NO		
EXISTING DIRT ROAD (TYP.) 99.9 91.	31.05				7100	EXIST SOUTH PC		
EXISTING CULVERT	MERIDIAN RANCH						X = EXISTI OUTL STRUCTU - EXIS - 8'x3' H	

DESIGN POINT SUMMARY TABLE

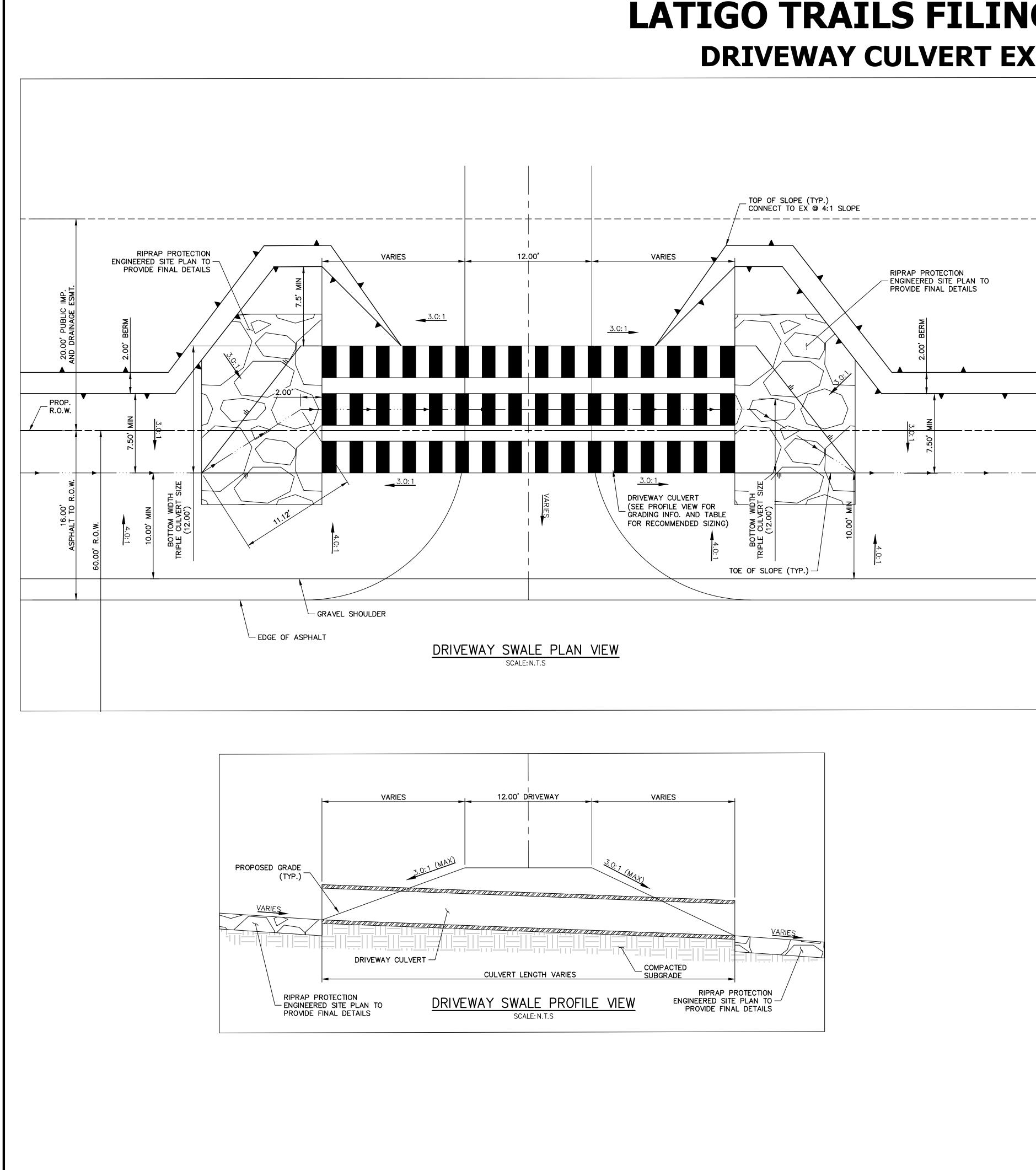

DP#	Q₅	Q ₁₀₀
1	1.96	14.43
2	0.56	4.08
3	2.07	6.89
4	6.54	44.17
4.1	8.15	51.11
5	27.62	105.46
6	2.03	8.24
7	5.03	36.92
7.1	30.78	135.65
8	2.20	9.32
9	2.91	21.45
9.1	4.68	28.94
10	1.15	4.90
11	6.04	44.43
11.1	6.97	48.35
12	28.96	111.36
13	1.88	10.42
13.1	30.55	120.18
14	23.33	95.57
14.1	48.29	193.75

PBMP Summary Table				
Basins	PBMP Tributary Area (Acres)	PBMP		
A-G, OS2-OS8	237.10	South Pond		
H, J, OS1	15.22	G1 Pond		
I, K- P	51.63	Excluded*		
*Excluded developed areas (large-lot single family site) will flow off-site at less than or equal to historic conditions. See existing				

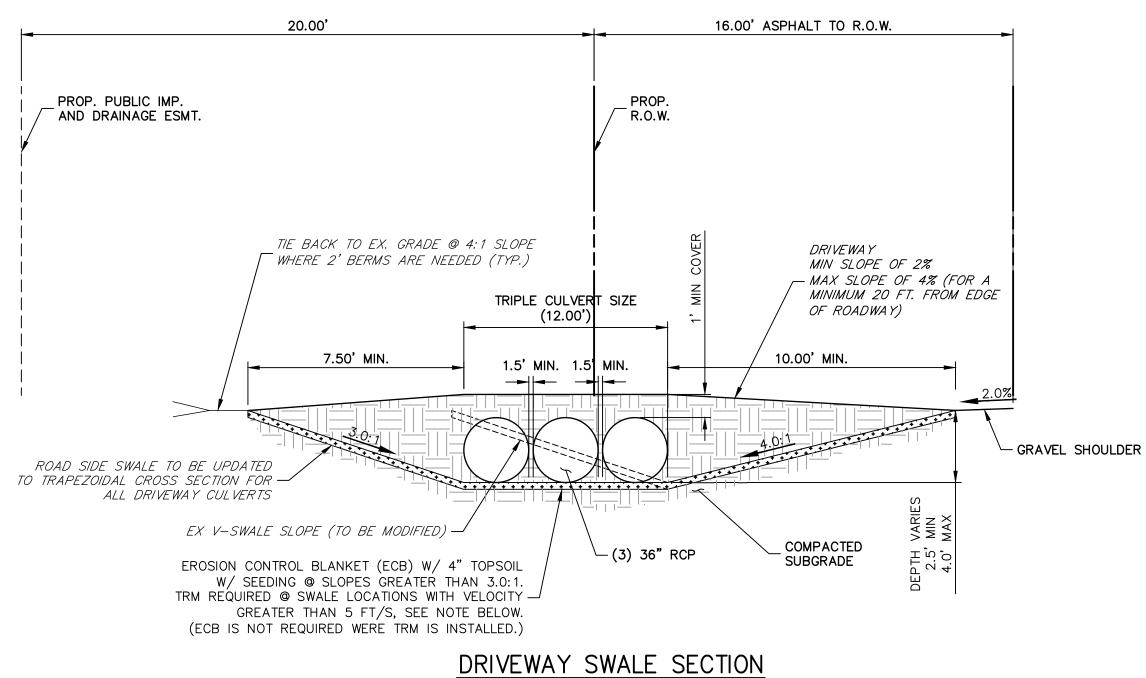

Filing 9 Proposed Driveway Culverts-Design Information				
	Design Point		Culvert Type	
Lot #	(Drainage Map)	Max Q ₁₀₀ (cfs)	(from Hy-8)	
1to 4	16.1	24.51	(1) 18"	
5 to 6	17.1	34.85	(1) 30"	
7 to 25	13	7.75	(1) 18"	
26 to 31	10.1	182.13	(3) 36"	
32 to 34	8.1	163.78	(3) 36"	
35 to 36	6.1	145.86	(3) 36"	
37 to 38	4.1	131.57	(3) 36"	
39	2.1	11.49	(1) 18"	

BASIN	SUMM	IARY TA	BLE		
Percent			t _c	Q₅	Q ₁₀₀
Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)
22%	0.26	0.48	11.1	1.64	5.11
13%	0.18	0.43	20.7	4.84	18.95
13%	0.19	0.43	20.9	3.06	11.82
13%	0.19	0.43	20.1	4.19	16.08
14%	0.19	0.43	24.4	5.62	21.24
16%	0.21	0.45	21.3	4.12	14.65
55%	0.53	0.68	24.3	3.58	7.76
14%	0.19	0.43	17.5	5.44	20.67
0%	0.08	0.35	14.3	0.18	1.31
33%	0.35	0.55	12.9	6.06	15.91
10%	0.16	0.41	13.1	2.28	9.72
0%	0.08	0.35	19.3	0.51	3.73
10%	0.16	0.41	20.1	7.81	33.27
10%	0.16	0.41	23.4	4.88	20.76
10%	0.16	0.41	20.2	2.92	12.44
10%	0.16	0.41	19.9	6.59	28.06
0%	0.08	0.35	15. <mark>5</mark>	0.56	4.10
19%	0.24	0.47	9.9	2.07	6.87
13%	0.19	0.43	23.5	27.63	105.45
11%	0.17	0.42	19.0	2.03	8.25
10%	0.16	0.41	16.4	2.19	9.32
10%	0.16	0.41	20.7	1.15	4.88
13%	0.19	0.43	30.7	28.97	111.35
14%	0.19	0.43	41.1	26.20	99.62

DP#	Q ₅	Q ₁₀₀
1	2.07	6.89
2	1.63	5.14
2.1	3.46	11.49
3	27.62	105.46
4	4.83	18.93
4.1	34.73	131.57
5	2.03	8.24
6	3.05	11.82
6.1	37.89	145.86
7	2.20	9.32
8	4.19	16.10
8.1	41.93	163.78
9	1.15	4.90
10	5.61	21.25
10.1	45.95	182.13
11	28.96	111.36
12	4.10	14.63
12.1	73.33	284.65
13	3.58	7.75
13.1	76.31	291.19
14	26.19	99. <mark>61</mark>
14.1	91.99	346.96
15	0.56	4.08
16	5.46	20.65
16.1	5.99	24.51
17	6.08	15.93
17.1	9.86	34.85
18	2.27	9.70
19	0.18	1.33
20	0.50	3.75
21	7.83	33.26
22	4.88	20.75
23	2.92	12.42
24	6.59	28.06



PROPOSED DRAINAGE MAP LATIGO TRAILS FILING NO. 9 JOB NO. 25175.02 09/07/2022 SHEET 1 OF 1



J·R ENGINEERING A Westrian Company

Centennial 303-740-9393 • Colorado Springs 719-593-2593 Fort Collins 970-491-9888 • www.jrengineering.com

LATIGO TRAILS FILING NO. 9 DRIVEWAY CULVERT EXHIBIT

	SCALE: N.T.	S	

Filing 9 Proposed Driveway Culverts-Design Information				
	Design Point		Culvert Type	
Lot #	(Drainage Map)	Max Q ₁₀₀ (cfs)	(from Hy-8)	
1 to 4	16.1	24.51	(1) 18"	
5 to 6	17.1	34.85	(1) 30"	
7 to 25	13	7.75	(1) 18"	
26 to 31	10.1	182.13	(3) 36"	
32 to 34	8.1	163.78	(3) 36"	
35 to 36	6.1	145.86	(3) 36"	
37 to 38	4.1	131.57	(3) 36"	
39	2.1	11.49	(1) 18"	

NOTES:

1. FUTURE ENGINEERED SITE PLANS WILL PROVIDE FINAL DETAILS FOR THE INDIVIDUAL LOT DRIVEWAYS AND WILL BE CONSTRUCTED BY OTHERS.

2. SEE FINAL DRAINAGE REPORT FOR DRIVEWAY CULVERT SIZING CALCULATIONS.

> LATIGO TRAILS FILING NO. 9 DRIVEWAY CULVERT EXHIBIT JOB NO. 2517502 9/9/2022 SHEET 1 OF 1

J·R ENGINEERING A Westrian Company

Centennial 303–740–9393 • Colorado Springs 719–593–2593 Fort Collins 970-491-9888 • www.jrengineering.com

	BASIN SUMMARY TABLE					
Area	Percent			t _c	Q₅	Q ₁₀₀
(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)
1.58	22%	0.26	0.48	11.1	1.64	5.11
8.71	13%	0.18	0.43	20.7	4.84	18.95
5.43	13%	0.19	0.43	20.9	3.06	11.82
7.22	13%	0.19	0.43	20.1	4.19	16.08
10.46	14%	0.19	0.43	24.4	5.62	21.24
6.51	16%	0.21	0.45	21.3	4.12	14.65
2.42	55%	0.53	0.68	24.3	3.58	7.76
8.65	14%	0.19	0.43	17.5	5.44	20.67
0.62	0%	0.08	0.35	14.3	0.18	1.31
4.56	33%	0.35	0.55	12.9	6.06	15.91
3.78	10%	0.16	0.41	13.1	2.28	9.72
2.02	0%	0.08	0.35	19.3	0.51	3.73
15.65	10%	0.16	0.41	20.1	7.81	33.27
10.54	10%	0.16	0.41	23.4	4.88	20.76
5.87	10%	0.16	0.41	20.2	2.92	12.44
13.14	10%	0.16	0.41	19.9	6.59	28.06
2.01	0%	0.08	0.35	15.5	0.56	4.10
2.12	19%	0.24	0.47	9.9	2.07	<mark>6.87</mark>
51.16	13%	0.19	0.43	23.5	27.63	105.45
3.70	11%	0.17	0.42	19.0	2.03	8.25
3.99	10%	0.16	0.41	16.4	2.19	9.32
2.33	10%	0.16	0.41	20.7	1.15	4.88
63.10	13%	0.19	0.43	30.7	28.97	111.35
68.37	18%	0.23	0.46	40.6	31.39	106.79

ESIGN POINT SUMMARY TABLE				
DP#	Q ₅	Q ₁₀₀		
1	2.07	6.89		
2	1.63	5.14		
2.1	3.46	11.49		
3	27.62	105.46		
4	4.83	18.93		
4.1	34.73	131.57		
5	2.03	8.24		
6	3.05	11.82		
6.1	37.89	145.86		
7	2.20	9.32		
8	4.19	16.10		
8.1	41.93	163.78		
9	1.15	4.90		
10	5.61	21.25		
10.1	45.95	182.13		
11	28.96	111.36		
12	4.10	14.63		
12.1	73.33	284.65		
13	3.58	7.75		
13.1	76.31	291.19		
14	31.39	106.79		
14.1	97.86	356.66		
15	0.56	4.08		
16	5.46	20.65		
16.1	5.99	24.51		
17	6.08	15.93		
17.1	9.86	34.85		
18	2.27	9.70		
19	0.18	1.33		
20	0.50	3.75		
21	7.83	33.26		
22	4.88	20.75		
23	2.92	12.42		
24	6.59	28.06		