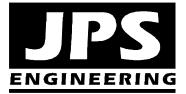
DRAINAGE LETTER REPORT

for


1450 VALLEY STREET – WAREHOUSE BUILDING LOT 2, BLOCK 2, CIMARRON INDUSTRIAL NO. 2

Prepared for:

Hammers Construction Inc. 1411 Woolsey Heights Colorado Springs, CO 80915

October 26, 2022 Revised January 20, 2023 Revised March 6, 2023

Prepared by:

19 E. Willamette Ave. Colorado Springs, CO 80903 (719)-477-9429 www.jpsengr.com

JPS Project No. 062201 PCD File No. PPR-22-058

1450 VALLEY STREET – WAREHOUSE BUILDING LOT 2, BLOCK 2, CIMARRON INDUSTRIAL NO. 2 <u>DRAINAGE REPORT STATEMENTS</u>

1. Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan for the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report:

John P. Schwab Colorado P.E. No. 29891

2. Developer's Statement:

I, the developer, have read and will comply with all the requirements specified in this drainage report and plan.

By:

Printed Name: Phillip Holli-Arcus Date Title: Project Manger Hammers Construction, Inc., 1411 Woolsey Heights, Colorado Springs, CO 80915

3. El Paso County Statement:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

County Engineer / ECM Administrator

Date

Conditions:

1450 VALLEY STREET – LOT 2, BLOCK 2, CIMARRON INDUSTRIAL NO. 2 DRAINAGE REPORT <u>TABLE OF CONTENTS</u>

PAGE

	DRAINAGE STATEMENT	i
I.	INTRODUCTION	1
II.	EXISTING AND PROPOSED DRAINAGE CONDITIONS	2
III.	DRAINAGE PLANNING FOUR STEP PROCESS	3
IV.	FLOODPLAIN IMPACTS	4
V.	STORMWATER DETENTION AND WATER QUALITY	4
VI.	DRAINAGE BASIN FEES	4
VII.	SUMMARY	4

APPENDICES

APPENDIX A	Hydrologic Calculations
APPENDIX B	Hydraulic Calculations
APPENDIX C	Figures
Figure FIRM	Floodplain Map
Sheet EX1	Existing Conditions Drainage Plan
Sheet D1	Developed Drainage Plan

I. INTRODUCTION

A. Property Location and Description

Carson Investment Properties LLC (Owner) is planning to construct a new 18,800 square-foot commercial warehouse building on the south side of the developed 2.6-acre lot at 1450 Valley Street in El Paso County. The property is platted as Lot 2, Block 1, Cimarron Industrial No. 2 (El Paso County Assessor's Parcel No. 54072-03-013), located along the west side of Valley Street, south of Omaha Boulevard. The property is currently developed with an existing manufacturing building on the north side of the site (Tumbleweed Tiny House Company) and existing asphalt parking and storage areas on the south side of the property.

The site is zoned Industrial (I-2), and the property adjoins developed commercial / industrial properties on all sides. Valley Street is a fully improved local public road along the east boundary of the site. An existing public drainage channel (Outlot B, Cimarron Industrial No. 2) adjoins the west boundary of the property. Existing commercial buildings are located along the north boundary of the site (Lot 1, Block 1, Cimarron Industrial No. 2) and the south boundary of the site (Lot 1, Boatman Subdivision).

The proposed Site Development Plan consists of a new 18,800 square-foot single-story Warehouse Building with associated parking and site improvements. Access will be provided by the existing driveway connections to Valley Street along the eastern site boundary of the site.

The total disturbed area associated with this project is approximately 0.97 acres. Recognizing that the land disturbance is under one acre, permanent water quality facilities are not required as the project is not classified as an "applicable construction activity" in accordance with Section I.6.1 of the El Paso County Engineering Criteria Manual (ECM).

B. Scope

In support of the Site Development Plan submittal to El Paso County, this report is intended to meet the requirements of a Drainage Letter Report in accordance with El Paso County drainage criteria. This report will provide a summary of site drainage issues impacting the proposed development. The report is based on the guidelines and criteria presented in the City of Colorado Springs and El Paso County "Drainage Criteria Manual."

C. References

City of Colorado Springs & El Paso County "Drainage Criteria Manual, Volumes 1 and 2," revised May, 2014.

El Paso County "Engineering Criteria Manual," December 13, 2016.

II. EXISTING AND PROPOSED DRAINAGE CONDITIONS

According to the Natural Resources Conservation Service (NRCS) Soil Survey for this site, on-site soils are comprised of "Blendon sandy loam" soils, and these well drained soils are classified as hydrologic soils group "B" (high infiltration rate; see Appendix A).

Existing Site Drainage Conditions

No subdivision drainage report was found on file for "Cimarron Industrial No. 2." As shown on the enclosed "Existing Conditions Drainage Plan" (Figure EX1), the majority of the existing Lot 2 site has been delineated as Basin A (2.45 acres), and surface drainage from Basin A sheet flows southwesterly to Design Point #1 at the southwest corner of the property. The site is not impacted by any significant off-site drainage. Existing peak flows at Design Point #1 are calculated as $Q_5 = 9.0$ cfs and $Q_{100} = 17.2$ cfs.

Drainage at the southwest corner of the site (Design Point #1) is intended to flow into the adjoining concrete-lined public drainage channel along the west boundary of the property. As noted in the survey and visual inspection of the property, there is currently a significant eroded area in the southwest corner of the property, which needs to be repaired.

The east edge of the site has been delineated as Basin B (0.09 acres), and surface drainage from Basin B flows southeasterly into the existing curb and gutter along the west side of Valley Street (Design Point #2) at the southeast corner of the property. Existing peak flows at Design Point #2 are calculated as $Q_5 = 0.05$ cfs and $Q_{100} = 0.2$ cfs.

Proposed Site Drainage Conditions

As shown on the enclosed "Developed Drainage Plan" (Figure D1), the developed area of this project is limited to approximately 0.97 acres. Developed drainage from Basin A (2.2 acres) will continue to flow southwesterly across the site by sheet flow and drainage swales to Design Point #1 at the southwest corner of the property. The proposed grading for the new Warehouse building pad will provide positive drainage away from the new building, and a new concrete crosspan will convey developed flows westerly in the parking lot along the north face of the new building.

Recognizing that the proposed Warehouse building will be constructed over an existing paved parking area, there will be no net increase in the site impervious area within Basin A. Developed peak flows at Design Point #1 are calculated as $Q_5 = 8.9$ cfs and $Q_{100} = 16.7$ cfs, equivalent to the calculated existing condition peak flows.

A new 10-foot Type R Private Storm Inlet (Inlet A1) will be constructed to capture developed drainage in the southwest corner of the property, and new Private Storm Sewer A1 (18" HDPE) will convey the flow into the existing public drainage channel.

The proposed private inlet and storm sewer connection will restore a stable connection to the existing public drainage channel, providing a suitable outfall for the developed drainage from the majority of this site.

The east edge of the existing site, including the new parking area in the southeast corner of the property, has been delineated as Basin B (0.34 acres), and surface drainage from Basin B will flow southeasterly into Valley Street (Design Point #2) at the southeast corner of the property. A 2-foot concrete curb chase will convey the flow from the southeast parking lot into the existing curb and gutter along the west side of Valley Street (see enclosed hydraulic calculation in Appendix B). Developed peak flows at Design Point #2 are calculated as $Q_5 = 1.0$ cfs and $Q_{100} = 1.9$ cfs. While the developed flow at DP2 increases in comparison to the existing flows at Design Point #2 (based on enlargement of Basin B), the developed flows remain negligible in comparison to the existing street capacity of Valley Street.

Valley Street provides an allowable street capacity of $Q_5 = 18.0$ cfs and $Q_{100} = 144.3$ cfs, providing a suitable outfall for drainage from the east side of this site. With the small amount of additional developed flow from Design Point #2, there is more than sufficient existing street capacity within Valley Street.

Hydrologic calculations for the site are detailed in the attached spreadsheets (Appendix A), and peak flows are identified on Figures EX1 and D1 (Appendix A).

III. DRAINAGE PLANNING FOUR STEP PROCESS

El Paso County Drainage Criteria require drainage planning to include a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls. The Four Step Process has been implemented as follows in the planning of this project:

Step 1: Employ Runoff Reduction Practices

• Minimize Impacts: The proposed site development consists of a new commercial warehouse building on a previously platted and developed industrial lot which has been planned for full industrial development. The proposed warehouse building will be constructed within an existing asphalt-paved parking and storage area. This infill, re-development project will have minimal drainage impacts in comparison to new construction on an undeveloped site.

Step 2: Stabilize Drainageways

- An existing concrete-lined public drainage channel (Sand Creek Center Tributary Channel) adjoins the west boundary of this site.
- The drainage outfall at the southwest corner of this site will be improved with a new storm inlet and storm sewer pipe connection to the existing drainage channel, providing a stabilized connection to repair the existing erosion in the southwest corner of the property.

 $C: \label{eq:linear} C: \label{eq:linear} C: \label{eq:linear} Owner \label{$

Step 3: Provide Water Quality Capture Volume (WQCV)

• This site is excluded from permanent Water Quality control measure requirements based on the disturbed area remaining under one acre.

Step 4: Consider Need for Industrial and Commercial BMPs

• The Owner is responsible for maintaining proper housekeeping practices and spill containment procedures.

IV. FLOODPLAIN IMPACTS

Floodplain limits in vicinity of this site are delineated in the applicable Flood Insurance Rate Map, FIRM Panel No. 08041C0752G dated December 7, 2018 (FIRM exhibit enclosed in Appendix A). The Sand Creek Center Tributary Channel flows south within the existing concrete-lined public drainage channel along the west boundary of this site. According to the FEMA floodplain map, the 100-year floodplain limits are contained within the existing channel.

V. STORMWATER DETENTION AND WATER QUALITY

No stormwater detention is required based on the limited impervious area impact of this re-development project. The proposed Warehouse Building will be constructed in an area of the site currently covered with asphalt pavement, so there will be no significant developed drainage impact associated with the project.

As previously discussed, this site is excluded from water quality control measure requirements based on the disturbed area being smaller than one acre.

VI. DRAINAGE BASIN FEES

The site lies within the Sand Creek Drainage Basin. No public drainage improvements are required for development of this project. Required drainage fees have been paid during the previous subdivision platting process, so there are no applicable drainage fees required with the Site Development Plan.

VII. SUMMARY

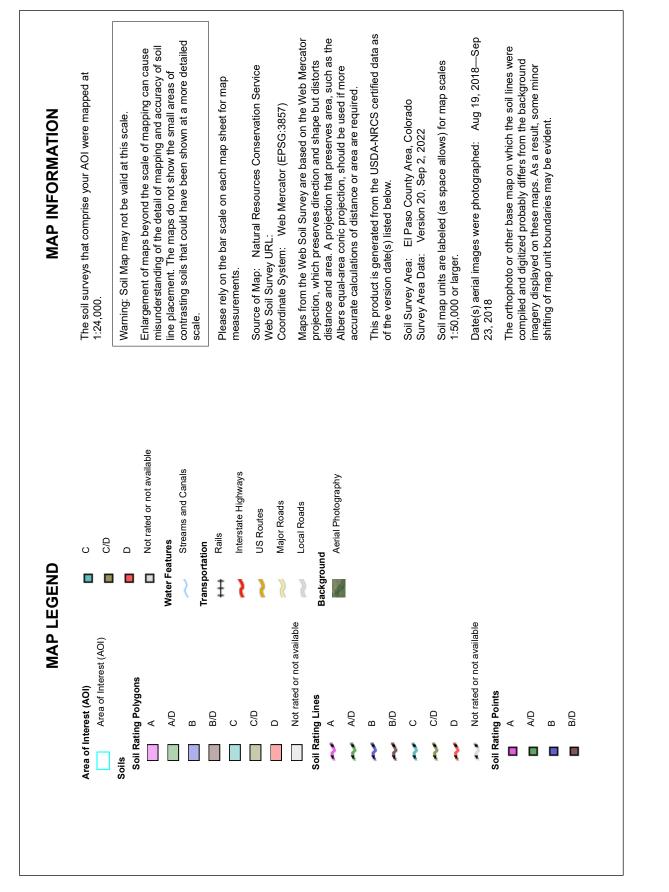
The developed drainage patterns associated with the proposed Warehouse Building project at 1450 Valley Street (Lot, Block 1, Cimarron Industrial No. 2) will remain consistent with the established drainage conditions for this subdivision. The proposed Warehouse Building project is a re-development of a part of the existing paved parking lot within this industrial lot, so there will be no significant impact on existing site drainage conditions.

The project will include construction of a new private storm inlet and storm sewer connection to the adjoining public drainage channel, which will restore proper functioning of the drainage outfall at the southwest corner of this property. C:\Users\Owner\Dropbox\jpsprojects\062201.hammers-1450-valley\admin\drainage\Drg-Ltr-1450-Valley-0223.docx Developed drainage from the majority of the site (Basin A) will flow to the southwest corner of the site where the existing concrete-lined channel provides a suitable ultimate downstream drainage outfall. Developed drainage from the southeast fringe of the site (Basin B) will flow to the southeast corner of the property, where the existing curb and gutter along Valley Street provides a suitable ultimate drainage outfall.

Proper establishment and maintenance of positive drainage within the site, in conjunction with proper erosion control practices, will ensure that this developed site has no significant adverse impact on downstream or surrounding areas.

APPENDIX A

HYDROLOGIC CALCULATIONS


Hydrologic Soil Group-El Paso County Area, Colorado (1450 Valley Street)

National Cooperative Soil Survey

Conservation Service

Hydrologic Soil Group—El Paso County Area, Colorado (1450 Valley Street)

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
10	Blendon sandy loam, 0 to 3 percent slopes	В	2.6	100.0%
Totals for Area of Intere	st		2.6	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified

USDA

Tie-break Rule: Higher

Land Use or Surface	Percent						Runoff Co	efficients					
Characteristics	Impervious	2-у	ear	5-y	rear	۱0- ۲	year	ץ-25	/ear	י-50	year	100-	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.12	0.23	0.20	0.31	0.32	0.40	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

$$t_c = t_i + t_t \tag{Eq. 6-7}$$

Where:

 t_c = time of concentration (min)

 t_i = overland (initial) flow time (min)

 t_t = travel time in the ditch, channel, gutter, storm sewer, etc. (min)

3.2.1 Overland (Initial) Flow Time

The overland flow time, t_i , may be calculated using Equation 6-8.

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$
(Eq. 6-8)

Where:

 t_i = overland (initial) flow time (min)

- C_5 = runoff coefficient for 5-year frequency (see Table 6-6)
- L = length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
- S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_t , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_t , can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

$$V = C_v S_w^{0.5}$$

Where:

V = velocity (ft/s)

 C_v = conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

(Eq. 6-9)

Type of Land Surface	C_{v}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20
* For buried ripran select C value based on type of y	agetative cover

Table 6-7.	Conveyance	Coefficient, C_{ν}
-------------------	------------	------------------------

For buried riprap, select C_v value based on type of vegetative cover.

The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration (t_c) is then the sum of the overland flow time (t_i) and the travel time (t_i) per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation 6-10. The first design point is defined as the point where runoff first enters the storm sewer system.

$$t_c = \frac{L}{180} + 10 \tag{Eq. 6-10}$$

Where:

 t_c = maximum time of concentration at the first design point in an urban watershed (min)

L = waterway length (ft)

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

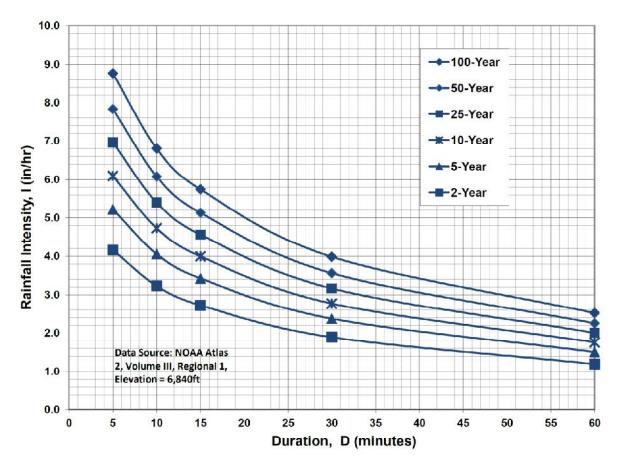


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$I_{100} = -2.52 \ln(D) + 12.735$
$I_{50} = -2.25 \ln(D) + 11.375$
$I_{25} = -2.00 \ln(D) + 10.111$
$I_{10} = -1.75 \ln(D) + 8.847$
$I_5 = -1.50 \ln(D) + 7.583$
$I_2 = -1.19 \ln(D) + 6.035$
Note: Values calculated by equations may not precisely duplicate values read from figure.

1450 VALLEY STREET COMPOSITE RUNOFF COEFFICIENTS

EXISTING CONDITIONS

5-YEAR C-VALUES	s										
BASIN	TOTAL AREA (AC)	AREA (AC)	SUB-AREA 1 DEVELOPMENT/ COVER	U	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	U	AREA (AC)	SUB-AREA 3 DEVELOPMENT/ COVER	v	WEIGHTED C VALUE
∢	2.45	1.93	BUILDING / PAVEMENT	06:0	0.52	LANDSCAPE	0.08				0.726
Ш	0.09	0.005	BUILDING / PAVEMENT	06.0	0.09	LANDSCAPE	0.08				0.126
100-YEAR C-VALUES											
BASIN	TOTAL AREA (AC)	AREA (AC)	SUB-AREA 1 DEVELOPMENT/ COVER	υ	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	U	AREA (AC)	SUB-AREA 3 DEVELOPMENT/ COVER	U	WEIGHTED C VALUE
A	2 45	1.93	BUILDING / PAVEMENT	0.96	0.52	I ANDSCAPE	0.35				0 831
E B	0.09	0.005	BUILDING / PAVEMENT	0.96	0.09	LANDSCAPE	0.35				0.384
EXISTING CONDITIONS IMPERVIOUS AREAS	TIONS IMPE	RVIOUS AREA	S								
BASIN	TOTAL AREA (AC)	AREA (AC)	SUB-AREA 1 DEVELOPMENT/ COVER	PERCENT	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	PERCENT	AREA (AC)	SUB-AREA 3 DEVELOPMENT/ COVER	PERCENT	WEIGHTED % IMP
	` `	Ň			, ,			~			
A	2.45	1.93	BUILDING / PAVEMENT	100	0.52	LANDSCAPE	0				78.776
В	0.09	0.005	BUILDING / PAVEMENT	100	0.09	LANDSCAPE	0				5.556

1450 VALLEY STREET COMPOSITE RUNOFF COEFFICIENTS

DEVELOPED CONDITIONS

5-YEAR C-VALUES	s										
	TOTAL AREA	AREA	SUB-AREA 1 DEVELOPMENT/		AREA	SUB-AREA 2 DEVELOPMENT/		AREA	SUB-AREA 3 DEVELOPMENT/		WEIGHTED
BASIN	(AC)	(AC)	COVER	υ	(AC)	COVER	U	(AC)	COVER	с	C VALUE
A	2.22	1.89	BUILDING / PAVEMENT	06.0	0.33	LANDSCAPE	0.08				0.778
В	0.32	0.21	BUILDING / PAVEMENT	0:90	0.11	LANDSCAPE	0.08				0.618
			_								
100-YEAR C-VALUES	JES										
	AREA	AREA	SUB-AREA 1 DEVELOPMENT/	¢	AREA	SUB-AREA 2 DEVELOPMENT/	¢	AREA	SUB-AREA 3 DEVELOPMENT/	(WEIGHTED
BASIN	(AC)	(AC)	COVER	د	(AC)	COVER	J	(AC)	COVER	5	C VALUE
A	2.22	1.89	BUILDING / PAVEMENT	0.96	0.33	LANDSCAPE	0.35				0.869
В	0.32	0.21	BUILDING / PAVEMENT	0.96	0.11	LANDSCAPE	0.35				0.750
DEVELOPED CONDITIONS IMPERVIOUS AREAS		WPERVIOUS AF	TEAS								
	TOTAL AREA	AREA	SUB-AREA 1 DEVELOPMENT/	PERCENT	AREA	SUB-AREA 2 DEVELOPMENT/	PERCENT	AREA	SUB-AREA 3 DEVELOPMENT/	PERCENT	WEIGHTED
BASIN	(AC)	(AC)	COVER	IMPERVIOUS	(AC)	COVER	IMPERVIOUS	(AC)	COVER	IMPERVIOUS	% IMP
				007	000						
A	2.2.2	1.89	BUILDING / PAVEMEN I	100	0.33	LANDSCAPE	0				85.135
В	0.32	0.21	BUILDING / PAVEMENT	100	0.11	LANDSCAPE	0				65.625

1450 VALLEY STREET RATIONAL METHOD

EXISTING CONDITION FLOWS

BASIN BASIN POINTCCCCHANNEL CARECONVEYANCE RAMESCS (3) RAMETOTAL T (3)TOTAL RAMETOTAL RAMETOTAL RAMEINTENSITY (6) RAMEEABASIN POINTACU (AC)ACU (AC)ENCH (FT)SCS (3) (MIN)TOTAL (FT)TOTAL (MIN)INTENSITY (6) (MIN)INTENSITY (6) (MIN)						ó	Verland Flow	>		Cha	Channel flow								
DESIGN AREA 5-YEAR 100-YEAR LENGTH SLOPE Tco ⁽¹⁾ LENGTH SLOPE VELOCITY Tc ⁽³⁾ Tc ⁽⁴⁾ Tc ⁽⁴⁾ Tc ⁽⁴⁾ Formation S-YR 100-YR					U				CHANNEL	CONVEYANCE		SCS ⁽²⁾			TOTAL	INTENS	ЫТҮ ⁽⁵⁾	PEAK FLOW	LOW
0.726 0.831 40 0.050 2.5 530 20 0.023 3.03 2.9 5.4 5.4 8.46 0.126 0.384 40 0.020 9.0 210 15 0.015 1.84 1.9 10.9 4.01 6.73	BASIN	DESIGN	AREA (AC)	5-YEAR	100-YEAR	LENGTH (FT)		Tco ⁽¹⁾ (MIN)	LENGTH (FT)			VELOCITY (FT/S)	Tt ⁽³⁾ (MIN)		Tc ⁽⁴⁾ (MIN)	5-YR (IN/HR)	100-YR (IN/HR)	Q5 ⁽⁶⁾ (CFS)	Q100 ⁽⁶⁾ (CFS)
0.726 0.831 40 0.050 2.5 530 20 0.023 3.03 2.9 5.4 5.4 5.04 8.46 0.126 0.384 40 0.020 9.0 210 15 0.015 1.84 1.9 10.9 4.01 6.73																			
0.126 0.384 40 0.020 9.0 210 15 0.015 1.84 1.9 10.9 4.01 6.73	A	-	2.45	0.726	0.831	40	0.050	2.5	530	20	0.023	3.03	2.9	5.4	5.4	5.04	8.46	8.97	17.23
0.126 0.384 40 0.020 9.0 210 15 0.015 1.84 1.9 10.9 4.01 6.73																			
	В	2	0.09	0.126	0.384	40	0.020	9.0	210	15	0.015	1.84	1.9	10.9	10.9	4.01	6.73	0.05	0.23

DEVELOPED FLOWS

			ó	Dverland Flow	Ň		Cha	Channel flow								
		0				CHANNEL	CONVEYANCE		SCS ⁽²⁾		TOTAL	TOTAL	INTENS	ытү ⁽⁵⁾	PEAK FI	-ow
B	5-YEAR	100-YEAR	LENGTH	SLOPE	Tco ⁽¹⁾	LENGTH	COEFFICIENT	SLOPE	VELOCITY	Tt ⁽³⁾	Tc ⁽⁴⁾	Tc ⁽⁴⁾	5-YR	100-YR	Q5 ⁽⁶⁾	Q100 ⁽⁶⁾
<u>ວ</u>			-	(FT/FT)	(MIN)	(FT)	υ	(FT/FT)	(FT/S)	(MIN)	(MIN)	(MIN)	(IN/HR)	(IN/HR)	(CFS)	(CFS)
2.22	0.778	0.869	40	0.050	2.2	530	20	0.023	3.03	2.9	5.1	5.1	5.14	8.63	8.88	16.65
0.32	0.618	0.750	40	0.020	4.4	210	15	0.015	1.84	1.9	6.3	6.3	4.81	8.08	0.95	1.94
				-					-						-	
	AREA (AC) 2.22 0.32	AREA 5-YEAR (AC) 2.22 0.778 0.32 0.618	AREA 5-YEAR C (AC) 5-YEAR 100-YEAR (2C) 0.778 0.869 0.32 0.618 0.750	C C C 5-YEAR 100-YEAR LENGTH 0.778 0.869 40 0.618 0.750 40	C C C 5-YEAR 100-YEAR LENGTH 0.778 0.869 40 0.618 0.750 40	C C C C 5-YEAR 100-YEAR LENGTH SLOPE Tco ⁽¹⁾ 0.778 0.869 40 0.050 2.2 0.618 0.750 40 0.020 4.4	C C <thc< th=""> <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<></thc<>	C C OWERTIATIO OWERTIATION OWERTIATION	C C	C Contanto Flow Channel Flow Channel Flow 5-YEAR 100-YEAR LENGTH SLOPE Tco ⁽¹⁾ LENGTH CONVEYANCE 6 5-YEAR 100-YEAR LENGTH SLOPE Tco ⁽¹⁾ LENGTH CONVEYANCE 6 0.778 0.869 40 0.050 2.2 530 20 0.023 0.618 0.750 40 0.020 4.4 210 15 0.015	C Overtand Flow Channel 10w Channel 10w Channel 10w Channel 10w SCS ⁽²⁾ 5-YEAR 100-YEAR LENGTH SLOPE Tco ⁽¹⁾ LENGTH CONVEYANCE SCS ⁽²⁾ 0.778 0.869 40 0.050 2.2 530 20 0.023 3.03 0.618 0.750 40 0.020 4.4 210 15 0.015 1.84	C Overtand Flow Channel 10w Channel 10w Channel 10w Channel 10w Comment 10w SCS (2) T(3) C(3) C(3) <th< td=""><td>C Contanta riow Channel now Channel no Channel now Chane Channel now</td><td>C Contanta Flow Channel How Channel How Channel How Channel How Clainel How FOTAL TOTAL TOTAL TOTAL TOTAL INTEN 5-VEAR 100-VEAR LENGTH SLOPE Tco⁽¹⁾ LENGTH CONVEYANCE SCS⁽²⁾ TOTAL TOTAL TOTAL INTEN 6.7 (FT) (min) (FT) (min) (FT) Tc⁽⁴⁾ 5.7K 5.7K 0.778 0.869 40 0.050 2.2 530 20 0.023 3.03 2.9 5.1 5.14 0.618 0.750 40 0.050 2.2 530 20 0.015 1.84 1.9 6.3 6.3 4.81</td><td>C Cuentant Flow Channel Flow Channel Flow SCS (2) TOTAL TOTAL TOTAL INTENSIT 5-YEAR 100-YEAR LENGTH SLOPE Tco (11) LENGTH CHANNEL CONVEYANCE SCS (2) TOTAL TOTAL INTENSIT 6.778 0.0050 40 0.050 2.2 530 20 0.023 3.03 2.9 5.1 5.14 10 0.618 0.750 40 0.020 4.4 2.10 15 0.015 1.84 1.9 6.3 4.81 1.81<</td><td>C Contanta Flow Flore FloreFlore Flore</td></th<>	C Contanta riow Channel now Channel no Channel now Chane Channel now	C Contanta Flow Channel How Channel How Channel How Channel How Clainel How FOTAL TOTAL TOTAL TOTAL TOTAL INTEN 5-VEAR 100-VEAR LENGTH SLOPE Tco ⁽¹⁾ LENGTH CONVEYANCE SCS ⁽²⁾ TOTAL TOTAL TOTAL INTEN 6.7 (FT) (min) (FT) (min) (FT) Tc ⁽⁴⁾ 5.7K 5.7K 0.778 0.869 40 0.050 2.2 530 20 0.023 3.03 2.9 5.1 5.14 0.618 0.750 40 0.050 2.2 530 20 0.015 1.84 1.9 6.3 6.3 4.81	C Cuentant Flow Channel Flow Channel Flow SCS (2) TOTAL TOTAL TOTAL INTENSIT 5-YEAR 100-YEAR LENGTH SLOPE Tco (11) LENGTH CHANNEL CONVEYANCE SCS (2) TOTAL TOTAL INTENSIT 6.778 0.0050 40 0.050 2.2 530 20 0.023 3.03 2.9 5.1 5.14 10 0.618 0.750 40 0.020 4.4 2.10 15 0.015 1.84 1.9 6.3 4.81 1.81<	C Contanta Flow Flore FloreFlore Flore

OVERLAND FLOW Tco = (0.395*(1.1-RUNOFF COEFFICIENT)*(OVERLAND FLOW LENGTH*(0.5)/(SLOPE*(0.333))
 SCS VELOCITY = C * ((SLOPE(FT/FT)*0.5) C = 2.5 FOR HEAVY MEADOW

C = 5 FOR TILLAGE/FIELD C = 7 FOR SHORT PASTURE AND LAWNS C = 10 FOR NEARLY BARE GROUND C = 15 FOR GRASSED WATERWAY C = 20 FOR PAVED AREAS AND SHALLOW PAVED SWALES

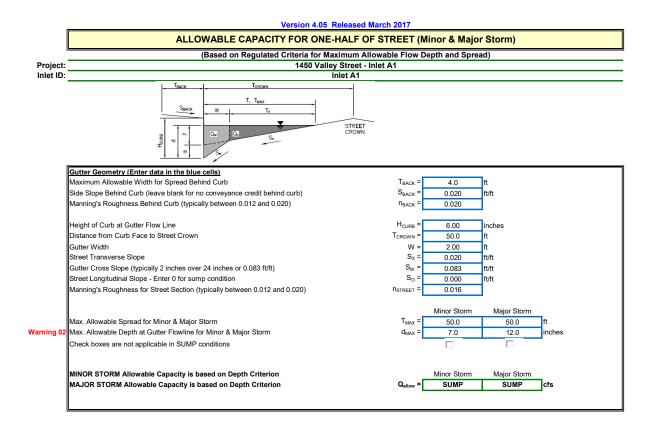
3) MANNING'S CHANNEL TRAVEL TIME = L/V (WHEN CHANNEL VELOCITY IS KNOWN)

4) Tc = Tco + Tt
 *** IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED
 5) INTENSITY BASED ON I-D-F EQUATIONS IN CITY OF COLORADO SPRINGS DRAINAGE CRITERIA MANUAL

 $I_5 = -1.5 * \ln(Tc) + 7.583$

l₁₀₀ = -2.52 * ln(Tc) + 12.735 6) Q = CiA

RATL.1450-VALLEY-1022


10/26/2022

APPENDIX B

HYDRAULIC CALCULATIONS

1450 VALLEY STREET STORM INLET SIZING SUMMARY

	BASIN F	LOW		INLET FLO	W				
		Q5	Q100	INLET	Q5	Q100	INLET		INLET
		FLOW	FLOW	FLOW %	FLOW	FLOW	CONDITION /	INLET	CAPACITY
INLET	DP	(CFS)	(CFS)	OF BASIN	(CFS)	(CFS)	TYPE	SIZE (FT)	(CFS)
A1	1	8.9	16.7	100	8.9	16.7	SUMP TYPE R	10'	25.5

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	CDOT Type R Curb Opening			
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	7.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) = N/A N/A			
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.42	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.66	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.99	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	12.2	25.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	8.8	16.6	cfs

1450 VALLEY STREET STORM SEWER SIZING SUMMARY

	PIPE FLOW			1	PIPE CAPACITY			
PIPE	INLET	Q5 FLOW (CFS)	Q100 FLOW (CFS)		PIPE SIZE	MIN. PIPE SLOPE	FULL PIPE CAPACITY (CFS)	
A1	A1	8.9	16.7		18	4.1%	16.7	

ASSUMPTIONS:

1. STORM DRAIN PIPE ASSUMED TO BE RCP OR HDPE

Hydraulic Analysis Report

Project Data

Project Title:Project - 1450 Valley Street - SDDesigner:JPSProject Date:Tuesday, October 25, 2022Project Units:U.S. Customary UnitsNotes:

Channel Analysis: SD-A1

Notes:

Input Parameters

Channel Type: Circular Pipe Diameter: 1.5000 ft Longitudinal Slope: 0.0410 ft/ft Manning's n: 0.0130 Depth: 1.0000 ft

Result Parameters

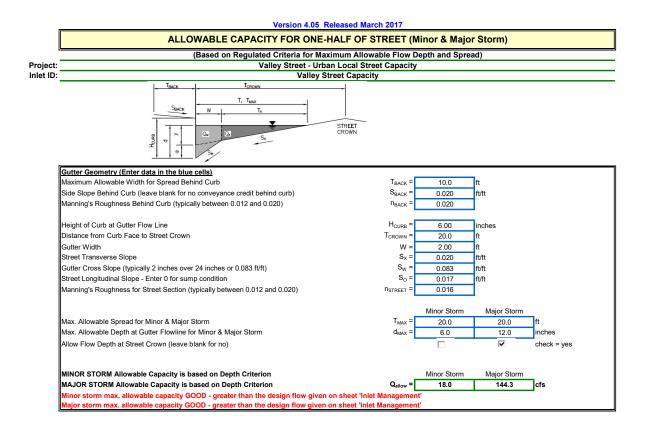
Flow: 16.6729 cfs Area of Flow: 1.2515 ft² Wetted Perimeter: 2.8659 ft Hydraulic Radius: 0.4367 ft Average Velocity: 13.3222 ft/s Top Width: 1.4142 ft Froude Number: 2.4957 Critical Depth: 1.4348 ft Critical Velocity: 9.5803 ft/s Critical Slope: 0.0219 ft/ft Critical Top Width: 0.61 ft Calculated Max Shear Stress: 2.5584 lb/ft² Calculated Avg Shear Stress: 1.1172 lb/ft²

Hydraulic Analysis Report

Project Data

Project Title:Project - 1450 Valley Street - Curb ChaseDesigner:JPSProject Date:Monday, March 6, 2023Project Units:U.S. Customary UnitsNotes:

Channel Analysis: Channel Analysis-Curb Chase-DP2

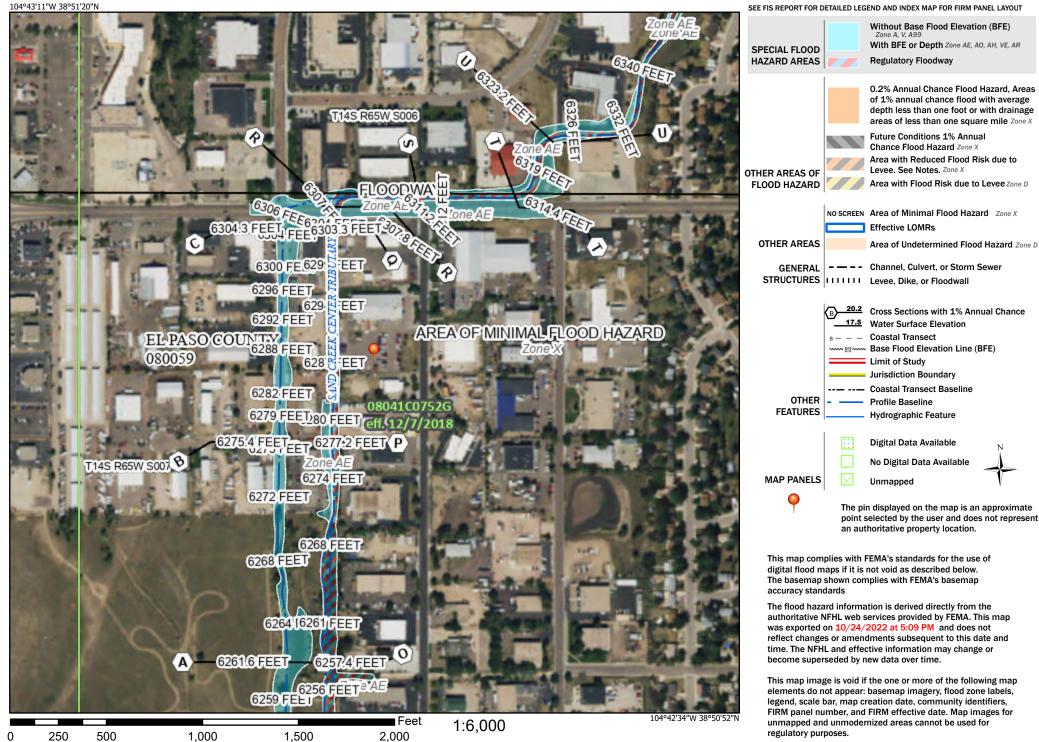

Notes:

Input Parameters

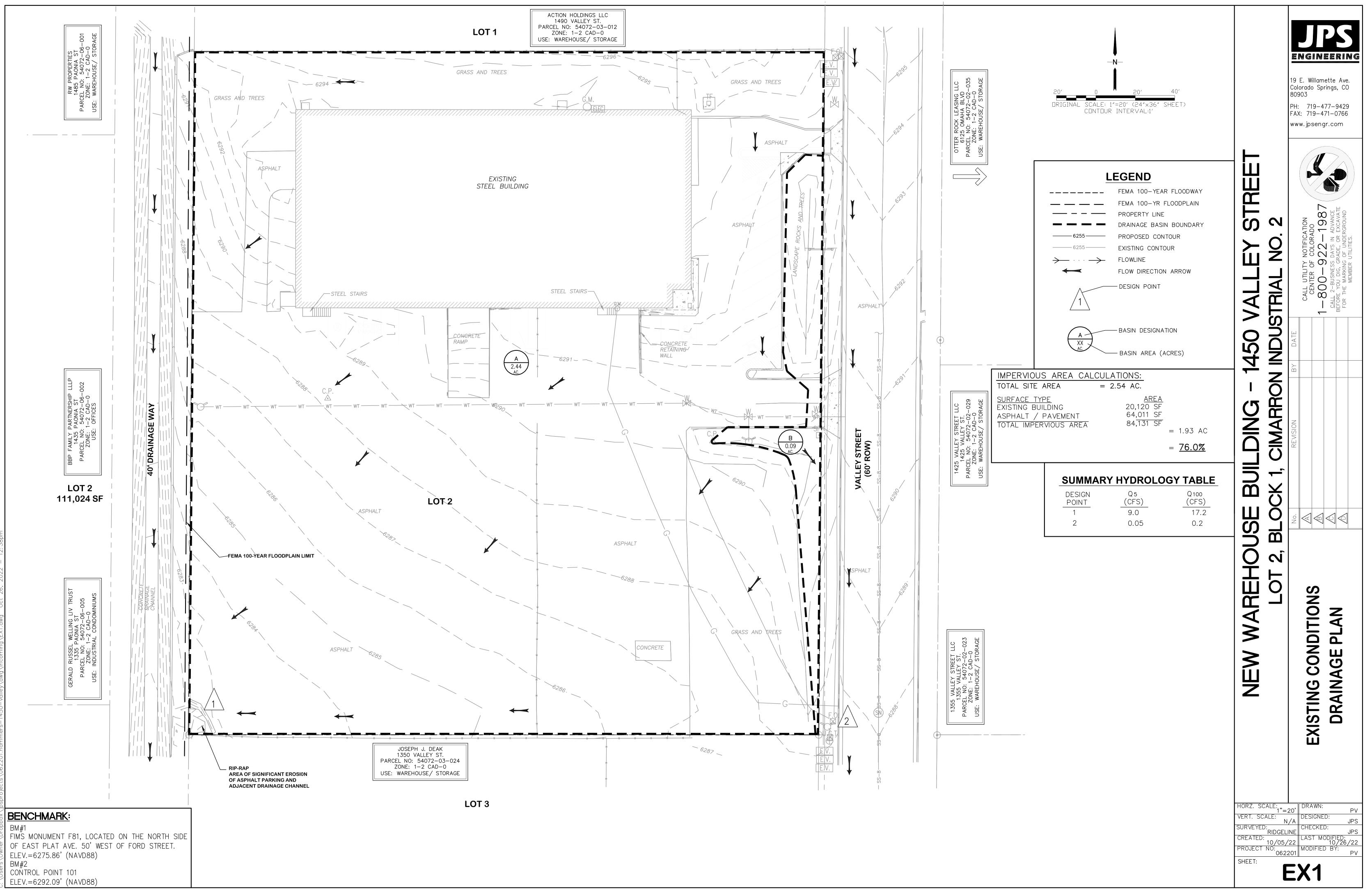
Channel Type: Rectangular Channel Width: 2.0000 ft Longitudinal Slope: 0.0260 ft/ft Manning's n: 0.0130 Flow: 1.9000 cfs

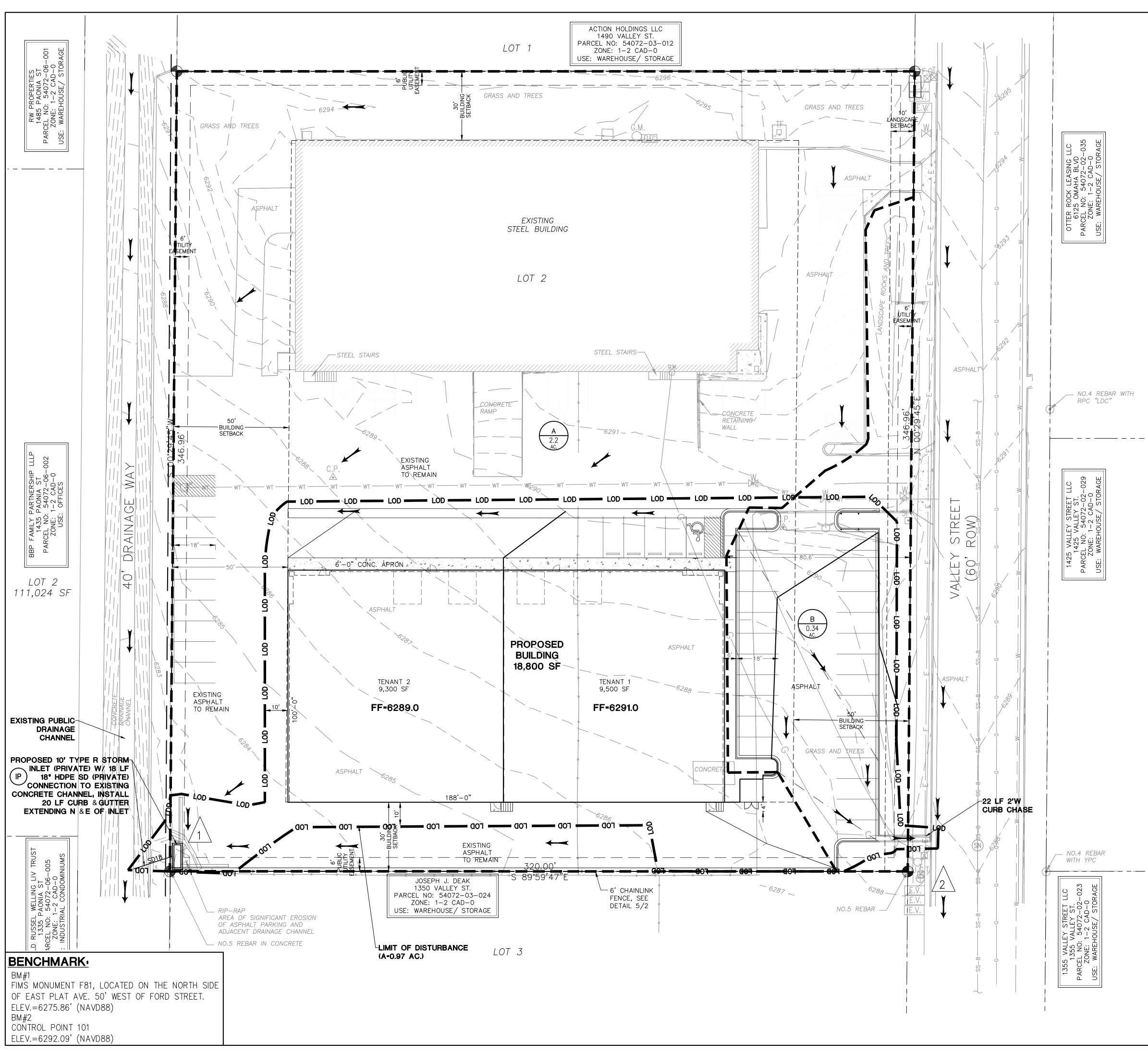
Result Parameters

Depth: 0.1805 ft Area of Flow: 0.3609 ft² Wetted Perimeter: 2.3609 ft Hydraulic Radius: 0.1529 ft Average Velocity: 5.2644 ft/s Top Width: 2.0000 ft Froude Number: 2.1839 Critical Depth: 0.3038 ft Critical Depth: 0.3038 ft Critical Velocity: 3.1275 ft/s Critical Slope: 0.0052 ft/ft Critical Top Width: 2.00 ft Calculated Max Shear Stress: 0.2928 lb/ft² Calculated Avg Shear Stress: 0.2480 lb/ft²


APPENDIX C

FIGURES


National Flood Hazard Layer FIRMette



Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

20' 0 20' 40' DRIGINAL SCALE: 1"=20' (24"×36" SHEET) CONTOUR INTERVAL:1' EEGEND	REET	USA ENGINEERING ENGINEERING 19 E. Willamette Ave. Colorado Springs, CO 80903 PH: 719–477–9429 FAX: 719–471–0766 www.jpsengr.com
FEMA 100-YEAR FLOODWAY FEMA 100-YR FLOODPLAIN PROPERTY LINE DRAINAGE BASIN BOUNDARY 6255 PROPOSED CONTOUR 6255 EXISTING CONTOUR FLOWLINE FLOW DIRECTION ARROW DESIGN POINT	VALLEY ST JSTRIAL NO. 2	CALL UTILITY NOTIFICATION CENTER OF COLORADO 1-800-922-1987 CALL 2-BUSINESS DAYS IN ADVANCE BEFORE YOU DIG, GRADE, OR EXCAVATE FOR THE MARKING OF UNDERGROUND MEMBER UTILITIES.
A BASIN DESIGNATION VX BASIN AREA (ACRES) IMPERVIOUS AREA CALCULATIONS: DASIN AREA (ACRES) TOTAL BASIN SITE AREA = 2.54 AC. SURFACE TYPE SURFACE TYPE AREA EXISTING BUILDING 20,120 SF PROPOSED BUILDING 18,800 SF ASPHALT / PAVEMENT 52,589 SF TOTAL IMPERVIOUS AREA 91,509 SF = 2.1 AC EXEMPARTY HYDROLOGY TABLE SUMMARY HYDROLOGY TABLE	ILDING - 1450 , CIMARRON INDL	REVISION BY DATE Image: Display to the second seco
DESIGN Q5 Q100 1 8.9 16.7 2 1.0 1.9	NEW WAREHOUSE BU LOT 2, BLOCK 1	DEVELOPED BRAINAGE PLAN
	HORZ. SCALE: 1"=: VERT. SCALE: N SURVEYED: RIDGEL CREATED: 10/05/ PROJECT NO: 0622 SHEET:	A DESIGNED: JPS CHECKED: JPS INE LAST MODIFIED: (22 03/06/23 MODIFIED BY: