FINAL DRAINAGE REPORT FOR SCHMIDT PARCEL EARLY GRADING

Prepared For:<br>Turkey Canon Quarry, LLC<br>20 Boulder Crescent, Suite 200<br>Colorado Springs, CO 80903<br>(719) 491-3024

## SEPTEMBER 2022

Project No. 25188.13

Prepared By:<br>JR Engineering, LLC<br>5475 Tech Center Drive, Suite 235<br>Colorado Springs, CO 80919<br>719-593-2593<br>PCD Filing No.:<br>CDR-22-007

FINAL DRAINAGE REPORT FOR
SCHMDT PARCEL

## ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Mike Bramlett, Colorado P.E. 32314
For and On Behalf of JR Engineering, LLC

## DEVELOPER'S STATEMENT:



I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name: Turkey Canon Quarry, LLC

By:
Title:
Address:


Colorado_Springs, CO 80903

## El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes I and 2 and Engineering Criteria Manual, as amended.


Conditions:

## Table of Contents

Purpose ..... 1
General Site Description ..... 1
General Location ..... 1
D escription of Property ..... 1
Floodplain statement ..... 1
Existing Drainage Conditions ..... 2
Major Basin Descriptions ..... 2
Existing Sub-basin Drainage ..... 2
Proposed Drainage Conditions ..... 4
Proposed Sub-basin Drainage ..... 4
Drainage Design Criteria ..... 6
D evelopment Criteria Reference ..... 6
Hydrologic Criteria ..... 7
Hydraulic Criteria ..... 7
Drainage Facility Design ..... 7
Four Step Process to Minimize Adverse Impacts of Urbanization ..... 7
W ater Q uality ..... 8
Erosion Control Plan ..... 9
O peration \& Maintenance ..... 9
Drainage and Bridge Fees ..... 9
Summary ..... 9
References ..... 10

## APPENDIX

Appendix A - Vicinity Map, Soil Descriptions, FEMA Floodplain Map
Appendix B - Hydrologic Calculations
Appendix C - Hydraulic Calculations
Appendix D - Reference Material
Appendix E - Drainage Maps

## Purpose

This document is the Final Drainage Report for the Schmidt Parcel. The purpose of this report is to identify on-site and off-site drainage patterns, areas tributary to the site, and to safely route storm water to adequate outfall facilities.

## General Site Description

## General Location

The Schmidt Parcel (hereby referred to as the "site") is a proposed development with a total area of approximately 97 acres.

The site is located in the southwest quarter of Section 32, Township 12 South, Range 65 West of the Sixth Principal Meridian in the County of El Paso, State of Colorado. The site is located between Black Forest Road and Vollmer Road. The site is bounded by the Trails at Forest Meadows Fillings 3 and 4 to the south, by Silver Pond subdivision and Holiday Hills Filing No. 1 to the north, by Black Forest Road to the West and by Vollmer Road to the East. The parcel is planned to be platted after approval of the Preliminary Plan. Refer to the vicinity map in Appendix A for additional information.

## Description of Property

The site is currently being designed to partly fill in the large pit in the middle of the site. Eventually the parcel will be platted as single and multi-family residential lots and associated development. The site is comprised of variable sloping grasslands that generally slope(s) downward to the west at 2 to $25 \%$ towards the Cottonwood Creek tributary basin.

Per a NRCS web soil survey, the site is made up of Type A and B soils. Type A soils have a high infiltration rate when thoroughly wet, while Type B soils have a moderate infiltration when thoroughly wet. Refer to the soil survey map in Appendix A for additional information.

Cottonwood Creek is within the western portion of the site. However there is no proposed disturbance within the creek.

There are no known irrigation facilities located on the project site.

## Floodplain Statement

Based on the FEMA Firm Maps Number 08041C0529G revised December 7, 2018, the vast majority of the development is located within Zone X, or areas area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. A portion of the site is within Zone AE directly adjacent to Cottonwood Creek. The area of disturbance
for site grading is located outside of the delineated floodway within Zone X. The FEMA map containing the site has been presented in Appendix A.

## Existing Drainage Conditions

## MAJOR BASIN DESCRIPTIONS

The site lies within the Sand Creek and Cottonwood Creek Drainage Basins. Approximately 16 acres on the sites eastern property line is in the Sand Creek Drainage Basin, while the remainder of the site lies within the Cottonwood Creek Drainage Basin.

Cottonwood Creek transverse the site on the west side of the property running north to south. The reach that runs through the site was studied in the "Cottonwood Creek Drainage Basin Planning Study" (Cottonwood DBPS) completed by Matrix Design Group in July 2019. According to the Cottonwood Creek DBPS reach RUC160 runs through the site, and has been identified as being in stable condition.

The Sand Creek Basin was studied by the City of Colorado Springs in "Sand Creek Drainage Basin Planning Study" (Sand DBPS) completed by Stantec in January 2021. The Sand Creek DBPS assumed the Schmidt Parcel property to have an "Open Space" use for the majority of the site, which is consistent with the proposed development at this time. However, the Cottonwood Creek DBPS assumed a 2.5 Acre Rural Residential Land use for the majority of the site. The site generally drains from northeast to southwest consisting of slopes that range from 2 to $25 \%$. Currently, the site is undeveloped and a large pit exists in the middle.

## Existing Sub-BaSin Drainage

The existing condition consists of nine onsite basins and four offsite basins. Values for Basins OSI4 and OSB4 came from "Silver Ponds Subdivision Filing No. 1 Final Drainage Report", by M.V.E Inc. revised May $5^{\text {th }} 1996$.

Basin OSI4 (Q5 = 19.0 cfs , Q100 $=44.2 \mathrm{cfs}$ ) is 27.16 acres of an existing developed subdivision know as Silver Ponds Subdivision Filing 1.Values for this basin were taken from "Silver Ponds Subdivision Filing No. 1 Final Drainage Report", by M.V.E Inc. revised May $5^{\text {th }}$ 1996. Runoff from this basin flows south and enters the site across the northern property line at DPI4. Flow from this basin is routed through Basin EX3 to DP3.1 (Q5 = $17.0 \mathrm{cfs}, \mathrm{Q} 100=40.0 \mathrm{cfs}$ ) where flow enters Cottonwood Creek.

Basin OSB4 (Q5 = 39.1 cfs, Q100 $=89.8$ cfs) is 52.02 acres of an existing developed subdivision know as Silver Ponds Subdivision Filing 1.Values for this basin were taken from "Silver Ponds Subdivision Filing No. 1 Final Drainage Report", by M.V.E Inc. revised May $5^{\text {th }}$ 1996. Runoff from this basin flows south and enters the site across the northern property line at DPB4. Flow from this
basin is routed through Basin EX7 to DP7.1 (Q5 $=43.1$, Q100 $=97.9 \mathrm{cfs}$ ) where flow enters the adjacent property.

Basin OS1 (Q5 = 0.2 cfs , Q100 $=1.5 \mathrm{cfs}$ ) is 0.61 acres of dirt roadway. Runoff from this basin flows south and enters the site across the northern property line at DP10. Flow from this basin is routed through Basins EX2 and EX4 to DP4.1 (Q5 = 7.6cfs, Q100 = 50.9 cfs ) where flow remains in the existing pit until it evaporates or infiltrates.

Basin OS2 (Q5 = $0.1 \mathrm{cfs}, \mathrm{Q} 100=0.6 \mathrm{cfs}$ ) is 0.22 acres of dirt roadway. Runoff from this basin flows south and enters the site across the northern property line at DP11. Flow from this basin is routed through Basin EX1 to DP1.1 (Q5 = $2.8 \mathrm{cfs}, \mathrm{Q} 100=19.0 \mathrm{cfs}$ ) where flow enters Vollmer Road right of way.

Basin EX1 ( $\mathrm{Q} 5=2.8 \mathrm{cfs}, \mathrm{Q} 100=18.8 \mathrm{cfs}$ ) is 15.6 acres of undeveloped land at the eastern portion of the site. Runoff from this basin drains to Vollmer Road right of way at DP1. Flows from Basin OS2 is routed through Basin EX1, and exists the site at DP1.1 (Q5 $=2.8 \mathrm{cfs}, \mathrm{Q} 100=19.0 \mathrm{cfs})$. Flow continues southwest along Vollmer Road right of way and follows existing drainage patterns. There is no drainage infrastructure at DP1.1 in the existing condition. Runoff that enters Vollmer Road right of way is assumed to overtop the crown of Vollmer Road and continues to flow southeast towards Sand Creek.

Basin EX2 (Q5 = 3.1 cfs , Q100 $=20.6 \mathrm{cfs}$ ) is 22.9 acres of undeveloped land. Runoff from this basin overland flows south where it meets the bottom of an existing berm along the southern boundary. Flow is directed into the existing pit at DP2. Flow enters the basin at DP10 from basin OS1 and is routed through basin EX2 to DP2.1 (Q5 $=3.2 \mathrm{cfs}, \mathrm{Q} 100=21.1 \mathrm{cfs})$. Flows from DP2.1 continue to flow to DP4.1 (Q5 = 7.6cfs, Q100 $=50.9 \mathrm{cfs})$ where runoff remains in the pit.

Basin EX3 (Q5 = 0.5 cfs , Q100 $=3.1 \mathrm{cfs}$ ) is 2.50 acres of undeveloped land adjacent to the northern property line. Runoff from this basin flows north down slope of the existing berm and is routed along the base of the berm to DP3. Off-site runoff enters the basin along the northern property line from Basin OSI4. Flows are routed together at DP3.1 (Q5 $=17.0 \mathrm{cfs}, \mathrm{Q} 100=40.0 \mathrm{cfs})$ and then flow west and enter Cottonwood Creek.

Basin EX4 (Q5 = 7.6 cfs , Q100 $=51.0 \mathrm{cfs}$ ) is 33.1 acres of undeveloped land that mainly consists of an existing pit that is approximately 31 acres in area and 15 feet deep. Runoff from this basin flows south to DP4. Flow enters the basin at DP $2.1(\mathrm{Q} 5=3.2 \mathrm{cfs}, \mathrm{Q} 100=21.1 \mathrm{cfs})$ and is routed to DP4.1 (Q5 = 7.6cfs, Q100 = 50.9 cfs). Currently there is no outlet for the pit and runoff remains in the pit and either evaporates or infiltrates over time.

Basin EX5 (Q5 = $2.2 \mathrm{cfs}, \mathrm{Q} 100=14.7 \mathrm{cfs})$ is 8.0 acres of undeveloped land that drains to the west, directly into Cottonwood Creek. Flows from DP5 and DP6 combine at DP6.1 (Q5 = 3.1 cfs , Q100 $=$ 21.0 cfs). Flow leaves the site at DP6.1 and continues to flow in Cottonwood Creek to the southwest.

Basin EX6 (Q5 $=0.9 \mathrm{cfs}, \mathrm{Q} 100=6.3 \mathrm{cfs})$ is 3.4 acres of undeveloped land that drains to the east, directly into Cottonwood Creek. Flows from DP5 and DP6 combine at DP6.1 (Q5 = 3.1 cfs , Q100 $=$ 21.0 cfs ). Flow leaves the site at DP6.1 and continues to flow in Cottonwood Creek to the southwest.

Basin EX7 (Q5 = 0.9, Q100 $=5.7 \mathrm{cfs}$ ) is 2.9 acres of undeveloped land that drains southwest to DP7. Off-site flows enter the site at DPB4 (Q5 $=39.1, \mathrm{Q} 100=89.8 \mathrm{cfs})$. Flows from OSB4 are routed through the basin via overland flow to DP7.1 (Q5 $=43.1, \mathrm{Q} 100=97.9 \mathrm{cfs})$ where flow leaves the site and enters the adjacent property.

Basin EX8 (Q5 = $1.3 \mathrm{cfs}, \mathrm{Q} 100=8.5 \mathrm{cfs}$ ) is 6.40 acres of undeveloped land that drains to the south via overland flow to DP8. Flow exists the site at DP8 and continues to flow onto the adjacent property to the south known as the Trails at Forest Meadows Filing 4.

Basin EX9 (Q5 $=0.9 \mathrm{cfs}, \mathrm{Q} 100=6.0 \mathrm{cfs}$ ) is 2.4 acres of undeveloped land that drains south down slope of the existing berm via overland flow. Runoff from this basin leaves the site across the southern boundary and enters the subdivision to the south at DP9.

## Proposed Drainage Conditions

## Proposed Sub-basin Drainage

The proposed basin (and sub-basin) delineation is shown on the drainage basin map within Appendix D and is described as follows.

Basin $\mathbf{A}\left(\mathrm{Q}_{5}=1.9 \mathrm{cfs}, \mathrm{Q}_{100}=13.0 \mathrm{cfs}\right)$ is 11.7 acres of native and stabilized vegetation. Runoff from this basin drains south east and enters purposed swale B1-B1. Flow for Basin A enters Basin B at design point 1 . Flow from DP1 is routed through Basins $B$ and $F$ where flow is ultimately routed to the proposed sediment basin at DP6.1 ( $\left.\mathrm{Q}_{5}=10.1 \mathrm{cfs}, \mathrm{Q}_{100}=68.7 \mathrm{cfs}\right)$.

Basin B ( $\mathrm{Q}_{5}=3.5 \mathrm{cfs}, \mathrm{Q}_{100}=23.8 \mathrm{cfs}$ ) is 22.0 acres of native and stabilized vegetation. Runoff from this basin drains south west and enters purposed swale B1-B1. Flow for Basin B enters Basin F at design point 2. Flow is routed through Basin F to the purposed sediment basin at $\mathrm{DP6.1}\left(\mathrm{Q}_{5}=10.1 \mathrm{cfs}\right.$, $\mathrm{Q}_{100}=68.7 \mathrm{cfs}$ ).

Basin $\mathbf{C}\left(\mathrm{Q}_{5}=0.8 \mathrm{cfs}, \mathrm{Q}_{100}=5.5 \mathrm{cfs}\right)$ is 4.0 acres of undeveloped land with native vegetation. Runoff from this basin drains south east to DP3, where flow enters Vollmer Road right of way. There is no drainage infrastructure at DP3. Runoff that enters Vollmer Road right of way flows existing drainage patterns and is assumed to overtop the crown of Vollmer Road and continues to flow southeast towards Sand Creek. Total runoff entering the right of way has decreased from $\left(\mathrm{Q}_{5}=2.8 \mathrm{cfs}\right.$, $\left.\mathrm{Q}_{100}=19.0 \mathrm{cfs}\right)$ in the existing condition to $\left(\mathrm{Q}_{5}=0.8 \mathrm{cfs}, \mathrm{Q}_{100}=5.5 \mathrm{cfs}\right)$ in the proposed condition.
$\operatorname{Basin} \mathbf{D}\left(\mathrm{Q}_{5}=0.6 \mathrm{cfs}, \mathrm{Q}_{100}=4.3 \mathrm{cfs}\right)$ is 2.6 acres of native and stabilized vegetation. Runoff from this basin drains south to DP4. Flow from Basin D overland flows to the adjacent site to the south known as Trails at Forest Meadows Filings 3. Runoff from the site was accounted for in "Trails at Forest Meadows Filing No. 3 Final Drainage Report" (Trails No. 3 FDR) completed by M\&S Civil Consultants in August 2015. In the Trails No. 3 FDR flows from the Schmidt parcel were accounted for in Basins OS2 and OS3. The basins total 1.56 acres and send a total flow of $\mathrm{Q}_{5}=1.0 \mathrm{cfs}$ and $\mathrm{Q}_{100}=$ 3.6 cfs. Proposed condition flows remain reasonable consistent with accounted for flows from the Trails No. 3 FDR. There are no expected negative downstream impacts expected from basin D.
$\operatorname{Basin} \mathbf{E}\left(\mathrm{Q}_{5}=0.2 \mathrm{cfs}, \mathrm{Q}_{100}=1.5 \mathrm{cfs}\right)$ is 1.6 acres of stabilized earthen channel known as Swale B2-B2. Runoff from this basin drains west to DP5. Off-site flow enters the basin at DPI4 from the neighboring site the north known as Silver Ponds Subdivision Filing No. 1. Flows from Basin E and OSI4 combine and enter Cottonwood Creek at DP5.1 ( $\mathrm{Q}_{5}=13.2 \mathrm{cfs}, \mathrm{Q}_{100}=30.5 \mathrm{cfs}$ ).

Basin $\mathbf{F}\left(\mathrm{Q}_{5}=5.7 \mathrm{cfs}, \mathrm{Q}_{100}=42.6 \mathrm{cfs}\right)$ is 36.6 acres of native and stabilized vegetation. Grading efforts in this basin are to provide a sediment basin to provide water quality and detention for the parcel as well as providing a smooth $\sim 2.0 \%$ plane to convey runoff to the sediment basin. Runoff from this basin drains southwest to DP6. Flow enters the basin at DP2.1 ( $\mathrm{Q}_{5}=5.3 \mathrm{cfs}, \mathrm{Q}_{100}=36.2 \mathrm{cfs}$ ) from Basins A and B. Flow combines in the proposed sediment basin at DP6.1 ( $\mathrm{Q}_{5}=10.1 \mathrm{cfs}$, $\mathrm{Q}_{100}=68.7$ cfs).

Basin $\mathbf{G}\left(\mathrm{Q}_{5}=1.0 \mathrm{cfs}, \mathrm{Q}_{100}=7.0 \mathrm{cfs}\right)$ is 4.3 acres of undeveloped land that drains to the south at DP7. Runoff from this basin overland flow to DP7 and continues to flow onto the adjacent property to the south known as the Trails at Forest Meadows Filing 4. This basin was studied in "Trails at Forest Meadows Filing No. 4 Final Drainage Report" (Trails No. 4 FDR) completed by M\&S Civil Consultants in April 2016, as basin OS5. Basin OS5 from the Trails No. 4 FDR had an area of 4.46 acres with flows of $\mathrm{Q}_{5}=2.1 \mathrm{cfs}$ and $\mathrm{Q}_{100}=9.0 \mathrm{cfs}$. Developed runoff remains relatively consistent with expected flows for the Trails No. 4 FDR. There are no expected negative downstream impacts expected from this basin.

Basin $\mathbf{H}\left(\mathrm{Q}_{5}=1.9 \mathrm{cfs}, \mathrm{Q}_{100}=12.7 \mathrm{cfs}\right)$ is 10.2 acres of undeveloped land that drains to the west, directly into Cottonwood Creek at DP8. Flows from DP8 and DP9 combine at DP9.1 ( $\mathrm{Q}_{5}=2.6 \mathrm{cfs}$,
$\mathrm{Q}_{100}=18.7$ cfs) where flow leaves the site and continues to flow in Cottonwood Creek to the southwest.

Basin I ( $\mathrm{Q}_{5}=0.6 \mathrm{cfs}, \mathrm{Q}_{100}=4.2 \mathrm{cfs}$ ) is 3.4 acres of undeveloped land that drains to the east, directly into Cottonwood Creek at DP9. Flows from DP8, DP9 and outflow from the Sediment Basin combine at DP9.1 ( $\mathrm{Q}_{5}=2.6 \mathrm{cfs}, \mathrm{Q}_{100}=18.7 \mathrm{cfs}$ ) where flow leaves the site and continues to flow in Cottonwood Creek to the southwest.

Basin J ( $\left.\mathrm{Q}_{5}=0.7 \mathrm{cfs}, \mathrm{Q}_{100}=4.7 \mathrm{cfs}\right)$ is 2.9 of undeveloped land that drains southwest to DP10. Offsite flows enter the site at DPB4 $\left(\mathrm{Q}_{5}=39.1 \mathrm{cfs}, \mathrm{Q}_{100}=89.8 \mathrm{cfs}\right)$. Flows from OSB4 are routed through the basin via overland flow to $\mathrm{DP} 10.1\left(\mathrm{Q}_{5}=43.1 \mathrm{cfs}, \mathrm{Q}_{100}=97.9 \mathrm{cfs}\right)$ where flow leaves the site and enters the adjacent property.

Basin OSI4 (Q5 = $19.0 \mathrm{cfs}, \mathrm{Q} 100=44.2 \mathrm{cfs}$ ) is 27.16 acres of an existing developed subdivision know as Silver Ponds Subdivision Filing 1.Values for this basin were taken from "Silver Ponds Subdivision Filing No. 1 Final Drainage Report", by M.V.E Inc. revised May 5 ${ }^{\text {th }}$ 1996. Runoff from this basin flows south and enters the site across the northern property line at DPI4. Flow from this basin is routed through Basin E to DP5.1 (Q5 = 13.2 cfs, Q100 $=30.5$ cfs) where flow enters Cottonwood Creek. There is no significant change in flows going to Cottonwood Creek in the proposed condition than there was in the existing condition, as the flows were already concentrated towards the creek.

Basin OSB4 (Q5 = 39.1 cfs , $\mathrm{Q} 100=89.8 \mathrm{cfs}$ ) is 52.02 acres of an existing developed subdivision know as Silver Ponds Subdivision Filing 1.Values for this basin were taken from "Silver Ponds Subdivision Filing No. 1 Final Drainage Report", by M.V.E Inc. revised May $5^{\text {th }}$ 1996. Runoff from this basin flows south and enters the site across the northern property line at DPB4. Flow from this basin is routed through Basin J to DP10.1 (Q5 = 43.1 cfs , Q100 = 97.9 cfs) where flow enters the adjacent property. Since there is no proposed changes made in basin J, flows remain the same as in the proposed condition as the existing condition.

## Drainage Design Criteria

## Development Criteria Reference

Storm drainage analysis and design criteria for this project were taken from the "City of Colorado Springs/El Paso County Drainage Criteria Manual" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "Urban Storm Drainage Criteria Manual" Volumes 1 to 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual" (CSDCM), dated May 2014, as adopted by El Paso County.

## Hydrologic Criteria

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100 -year (major) storm event. Runoff was calculated using the Rational Method, and rainfall intensities for the 5 -year and the 100-year storm return frequencies were obtained from Table 6-2 of the CSDCM. One hour point rainfall data for the storm events is identified in the chart below. Runoff coefficients were determined based on proposed land use and from data in Table 6-6 from the CSDCM. Time of concentrations were developed using equations from CSDCM. All runoff calculations and applicable charts and graphs are included in the Appendices.

Table 1-1-hr Point Rainfall Data

| Storm | Rainfall (in.) |
| :---: | :---: |
| 5-year | 1.50 |
| 100-year | 2.52 |

## Hydraulic Criteria

The Rational Method and USDCM's SF-2 and SF-3 forms were used to determine the runoff from the minor and major storms on the site, and the UDFCD MHFD-Detention v4.05 spreadsheet was utilized for evaluating the proposed sediment basin. Hydraflow Express was used to model swale capacity calculations as shown in Appendix C. Proposed swales B1, B2, and C have been designed to meet El Paso County criteria for velocity, freeboard, and stability. All proposed swales will be temporary until the time of construction for the proposed single and multi-family developments proposed for this site.

## Drainage Facility Design

## Four Step Process to Minimize Adverse Impacts of Urbanization

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four step process to minimize adverse impacts of urbanization. The four step process includes reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls.

Flow from the site enters Cottonwood Creek in two locations. At the northwestern corner of the property known as DP3.1 $(\mathrm{Q} 5=17.0 \mathrm{cfs}, \mathrm{Q} 100=40.0 \mathrm{cfs})$ in existing condition \& DP5.1 $\left(\mathrm{Q}_{5}=13.2\right.$ cfs, $\mathrm{Q}_{100}=30.5 \mathrm{cfs}$ ) in proposed condition. Flow also enters Cottonwood Creek at the western boundary known a DP $6.1(\mathrm{Q} 5=3.1 \mathrm{cfs}, \mathrm{Q} 100=21.0 \mathrm{cfs})$ in existing condition \& DP9.1 $\left(\mathrm{Q}_{5}=2.6 \mathrm{cfs}\right.$, $\mathrm{Q}_{100}=18.7 \mathrm{cfs}$ ) in proposed condition. Flow entering Cottonwood Creek has slightly decreased in the
proposed condition at both locations. There is no expected changes in water surface elevations in Cottonwood Creek with the development of this site.

Step 1 - Reducing Runoff Volumes: The Schmidt Parcel development project does not consists of any proposed hardscape or roofs and therefor all runoffs associated with this development are routed via overland flow or through grass lined swales.

Step 2 - Stabilize Drainageways: The majority of the site lies within the Cottonwood Creek Drainage Basin, while the eastern most portion on the property is within the Sand Creek Drainage Basin. Cottonwood Creek transvers the western portion of the site. Basin and bridge fees will be due at time of platting. There are no proposed improvements with the 100 -year flood plain. According "Cottonwood Creek Drainage Basin Planning Study" (Cottonwood DBPS) completed by Matrix Design Group in July 2019, the creek reach that transvers the site is known as RUC160. This reach has been categorized as having no know or future expected erosion issues according to the Cottonwood DBPS Figure 4-7. Proposed outfalls will be analysis in the final design stage for stability. Applicable excerpts from Cottonwood DBPS can be found in Appendix D.

Step 3 - Treat the WQCV: The sites water quality will be provided by a temporary sediment basin. Long term water quality for the site will be provided by on site full spectrum water quality and detention ponds that will be designed at the time of construction documents associated with the single and multi-family developments planed for the site. The runoff from this site will be routed to the proposed sediment basin via overland flow and grassed lined swales. The proposed sediment basin has been designed to promote settlement of suspended solids. The outlet structure has been designed to detain the water quality capture volume (WQCV) for 72 hours per Mile High Flood District guidelines. All flows released from the sediment basin and future ponds will be reduced to less than historic rates.

Step 4 - Consider Need for Industrial and Commercial BMPs: There are no commercial or industrial components to this development; therefore no BMPs of this nature are required. BMPs will be utilized to minimize off-site contaminants and to protect the downstream receiving waters. The site is not a high-risk site per Figure I-1 in ECM Appendix I, therefore specialized BMPs do not need to be considered. Site specific temporary source control BMPs that will be implemented include, but are not limited to, silt fencing placed around downstream areas of disturbance, construction vehicle tracking pads at the entrances, designated vehicle fueling areas, covered storage areas, spill containment and control, etc. The permanent erosion control BMPs include permanent vegetation, permanent swale, and sediment basin.

## Water Quality

The sites water quality will be provided by a temporary sediment basin. Long term water quality for the site will be provided by on site full spectrum water quality and detention ponds that will be designed at the time of construction documents associated with the single and multi-family
developments planed for the site. The proposed sediment basin was designed per Urban Drainage and Flood Control District guidelines. Flow shall be released per detail per Mile High Flood District detail SC-7. The riser pipe shall be 12 " in diameter to be connected to a 12 " outfall pipe that will direct flow to swale C-C. An emergency overflow spillway is provided for the sediment basin that is directed into Cottonwood Creek from swale C-C. For this drainage report the design points are discussed in the Proposed Drainage Conditions section of this report. The corresponding design points and basin are shown within the Proposed Drainage Map within Appendix E. For additional information on the proposed sediment basin and outlet characteristics see the MHFD sheets within Appendix C.

## Erosion Control Plan

We respectfully request that the Erosion Control Plan and Cost Estimate be submitted in conjunction with the grading and erosion control plan and construction assurances posted prior to obtaining a grading permit.

## Operation \& Maintenance

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. The property owner shall be responsible for the inspection, maintenance, rehabilitation and repair of stormwater and erosion control facilities located on the property unless another party accepts such responsibility in writing and responsibility is properly assigned through legal documentation. We respectfully request that the Operation \& Maintenance Manual be submitted in conjunction with the construction documents, prior to obtaining a grading permit.

## Drainage and Bridge Fees

The site lies within the Cottonwood Creek and Sand Creek Drainage Basins. Anticipated drainage and bridge fees will be provided at time of platting.

## SUMMARY

The proposed Schmidt Parcel drainage improvements were designed to meet or exceed the El Paso County Drainage Criteria. The proposed development will not adversely affect the offsite drainage ways or surrounding development. This report is in conformance and meets the latest El Paso County Storm Drainage Criteria requirements.

## References

1. "El Paso County and City of Colorado Springs Drainage Criteria Manual, Vol I \& II".
2. El Paso County ECM, 2019
3. El Paso County DCM Vol. 1 Update, 2015
4. Urban Storm Drainage Criteria Manual (Volumes 1, 2, and 3), Urban Drainage and Flood Control District, June 2001.
5. Final Drainage Report For Silver Ponds Subdivision Filing No. 1, M.V.E. Inc., Febuary 2, 1995, Revised May 5, 1996.
6. Sand Creek Drainage Basin Planning Study, Stantec, January 2021
7. Cottonwood Creek Drainage Basin Planning Study, Matrix Design Group, July 2019
8. Trails at Forest Meadows Filing No. 3 Final Drainage Report M\&S Civil Consultants Inc., August 2015
9. Trails at Forest Meadows Filing No. 4 Final Drainage Report M\&S Civil Consultants Inc., April 2016

## Appendix A <br> Vicinity Map, Soil Descriptions, FEMA Floodplain Map


2000100002000
ORIGINAL SCALE: $1^{\prime \prime}=2000^{\prime}$



## MAP LEGEND



## MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 19, Aug 31, 2021
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Aug 19, 2018-Sep 23, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident

## Hydrologic Soil Group

| Map unit symbol | Map unit name | Rating | Acres in AOI | Percent of AOI |
| :--- | :--- | :--- | ---: | ---: |
| 8 | Blakeland loamy sand, 1 <br> to 9 percent slopes | A | 22.3 | $19.5 \%$ |
| 19 | Columbine gravelly <br> sandy loam, 0 to 3 <br> percent slopes | A | 64.2 | $56.2 \%$ |
| 71 | Pring coarse sandy <br> loam, 3 to 8 percent <br> slopes | B | 12.1 | $10.6 \%$ |
| 85 | Stapleton-Bernal sandy <br> loams, 3 to 20 percent <br> slopes | B | 15.6 | $13.6 \%$ |
| Totals for Area of Interest | $\mathbf{1 1 4 . 1}$ | $\mathbf{1 0 0 . 0 \%}$ |  |  |

## Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

## Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher



## Appendix B Hydrologic Calculations

## COMPOSITE \% IMPERVIOUS CALCULATIONS -EXISTING CONDITIONS

Subdivision:
Location: El Paso County

Project Name: Schmidt Parcel
Project No.: 25188.13
Calculated By: APL
Checked By: $\qquad$
Date: 9/2/22

| Basin ID | Total Area (ac) | PASTURE/MEADOW (2\% Imp.) |  |  |  | Basins Total Weighted C |  | Basins Total Weighted \% Imp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | Area (ac) | Weighted \% Imp. |  |  |  |
| EX1 | 15.60 | 0.09 | 0.36 | 15.60 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| EX2 | 22.90 | 0.09 | 0.36 | 22.90 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| EX3 | 2.50 | 0.09 | 0.36 | 2.50 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| EX4 | 33.10 | 0.09 | 0.36 | 33.10 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| EX5 | 8.00 | 0.09 | 0.36 | 8.00 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| EX6 | 3.40 | 0.09 | 0.36 | 3.40 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| EX7 | 2.90 | 0.09 | 0.36 | 2.90 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| EX8 | 6.40 | 0.09 | 0.36 | 6.40 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| EX9 | 2.40 | 0.09 | 0.36 | 2.40 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| OS1 | 0.61 | 0.09 | 0.36 | 0.61 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| OS2 | 0.22 | 0.09 | 0.36 | 0.22 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| TOTAL | 98.03 |  |  |  |  |  |  | 2.0\% |

## STANDARD FORM SF-2 - EXISTING CONDITIONS

 TIME OF CONCENTRATIONSubdivision:
Location: El Paso County

Project Name: Schmidt Parcel
Project No.: 25188.13
Calculated By: APL
Checked By:
Date: $\qquad$ 9/2/22

| SUB-BASIN |  |  |  |  |  | INITIAL/OVERLAND |  |  | TRAVEL TIME |  |  |  |  | tc CHECK |  |  | FINAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DATA |  |  |  |  |  | $\left(\mathrm{T}_{\mathrm{i}}\right)$ |  |  | ( $\mathrm{T}_{\mathrm{t}}$ ) |  |  |  |  | (URBANIZED BASINS) |  |  |  |
| $\begin{gathered} \hline \text { BASIN } \\ \text { ID } \\ \hline \end{gathered}$ | D.A. <br> (ac) | Hydrologic <br> Soils Group | Impervious <br> (\%) | C | $\mathrm{C}_{100}$ | L <br> (ft) | $S$ 。 <br> (\%) | $\begin{gathered} t_{i} \\ (\min ) \\ \hline \end{gathered}$ | $L_{t}$ <br> (ft) | $S_{t}$ <br> (\%) | $K$ | $\begin{aligned} & \text { VEL. } \\ & (\mathrm{ft} / \mathrm{s}) \end{aligned}$ | $\begin{gathered} t_{t} \\ (\mathrm{~min}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { COMP. } t_{c} \\ (\min ) \\ \hline \end{gathered}$ | TOTAL <br> LENGTH (ft) | $\begin{gathered} \text { Urbanized } t_{c} \\ (\min ) \\ \hline \end{gathered}$ | $\begin{gathered} t_{c} \\ (\min ) \\ \hline \end{gathered}$ |
| EX1 | 15.60 | A | 2\% | 0.09 | 0.36 | 300.0 | 2.5\% | 23.2 | 872 | 2.5\% | 5.0 | 0.8 | 18.4 | 41.6 | 1172.3 | 35.6 | 41.6 |
| EX2 | 22.90 | A | 2\% | 0.09 | 0.36 | 300.0 | 2.3\% | 23.9 | 1412 | 1.9\% | 5.0 | 0.7 | 34.1 | 58.1 | 1712.0 | 44.1 | 58.1 |
| EX3 | 2.50 | A | 2\% | 0.09 | 0.36 | 38.0 | 18.1\% | 4.3 | 1278 | 1.4\% | 5.0 | 0.6 | 36.2 | 40.6 | 1315.5 | 45.2 | 40.6 |
| EX4 | 33.10 | A | 2\% | 0.09 | 0.36 | 300.0 | 5.4\% | 18.1 | 945 | 2.2\% | 10.0 | 1.5 | 10.6 | 28.7 | 1244.7 | 37.0 | 28.7 |
| EX5 | 8.00 | B | 2\% | 0.09 | 0.36 | 227.0 | 11.0\% | 12.5 | 1054 | 2.1\% | 15.0 | 2.2 | 8.1 | 20.5 | 1281.0 | 38.7 | 20.5 |
| EX6 | 3.40 | B | 2\% | 0.09 | 0.36 | 202.0 | 10.4\% | 12.0 | 1054 | 2.1\% | 15.0 | 2.2 | 8.1 | 20.0 | 1256.0 | 38.7 | 20.0 |
| EX7 | 2.90 | B | 2\% | 0.09 | 0.36 | 175.0 | 2.6\% | 17.6 | 0 | 0.0\% | 5.0 | 0.0 | 0.0 | 17.6 | 175.0 | 25.7 | 17.6 |
| EX8 | 6.40 | A | 2\% | 0.09 | 0.36 | 300.0 | 2.0\% | 25.3 | 453 | 2.0\% | 5.0 | 0.7 | 10.7 | 36.0 | 753.0 | 31.4 | 36.0 |
| EX9 | 2.40 | A | 2\% | 0.09 | 0.36 | 53 | 9.0\% | 6.4 | 0 | 0.0\% | 5.0 | 0.0 | 0.0 | 6.4 | 53.0 | 25.7 | 10.0 |
| OS1 | 0.61 | A | 2\% | 0.09 | 0.36 | 30.1 | 1.8\% | 8.2 | 0 | 0.0\% | 10.0 | 0.0 | 0.0 | 8.2 | 30.1 | 25.7 | 10.0 |
| OS2 | 0.22 | A | 2\% | 0.09 | 0.36 | 34.7 | 1.8\% | 8.8 | 0 | 0.0\% | 10.0 | 0.0 | 0.0 | 8.8 | 34.7 | 25.7 | 10.0 |


| SUB-BASIN |  |  |  |  |  | INITIAL/OVERLAND |  |  | TRAVEL TIME |  |  |  |  | tc CHECK |  |  | FINAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DATA |  |  |  |  |  | $\left(\mathrm{T}_{\mathrm{i}}\right)$ |  |  | ( $\mathrm{T}_{\mathrm{t}}$ ) |  |  |  |  | (URBANIZED BASINS) |  |  |  |
| $\begin{gathered} \hline \text { BASIN } \\ \text { ID } \\ \hline \end{gathered}$ | D.A. <br> (ac) | Hydrologic <br> Soils Group | Impervious <br> (\%) | C | $\mathrm{C}_{100}$ | L <br> (ft) | $S$ 。 <br> (\%) | $\begin{gathered} t_{i} \\ (\min ) \\ \hline \end{gathered}$ | $L_{t}$ <br> (ft) | $S_{t}$ <br> (\%) | $K$ | $\begin{aligned} & \text { VEL. } \\ & (\mathrm{ft} / \mathrm{s}) \end{aligned}$ | $\begin{gathered} t_{t} \\ (\mathrm{~min}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { COMP. } t_{c} \\ (\min ) \\ \hline \end{gathered}$ | TOTAL <br> LENGTH (ft) | $\begin{gathered} \text { Urbanized } t_{c} \\ (\min ) \\ \hline \end{gathered}$ | $\begin{gathered} t_{c} \\ (\min ) \\ \hline \end{gathered}$ |
| EX1 | 15.60 | A | 2\% | 0.09 | 0.36 | 300.0 | 2.5\% | 23.2 | 872 | 2.5\% | 5.0 | 0.8 | 18.4 | 41.6 | 1172.3 | 35.6 | 41.6 |
| EX2 | 22.90 | A | 2\% | 0.09 | 0.36 | 300.0 | 2.3\% | 23.9 | 1412 | 1.9\% | 5.0 | 0.7 | 34.1 | 58.1 | 1712.0 | 44.1 | 58.1 |
| EX3 | 2.50 | A | 2\% | 0.09 | 0.36 | 38.0 | 18.1\% | 4.3 | 1278 | 1.4\% | 5.0 | 0.6 | 36.2 | 40.6 | 1315.5 | 45.2 | 40.6 |
| EX4 | 33.10 | A | 2\% | 0.09 | 0.36 | 300.0 | 5.4\% | 18.1 | 945 | 2.2\% | 10.0 | 1.5 | 10.6 | 28.7 | 1244.7 | 37.0 | 28.7 |
| EX5 | 8.00 | B | 2\% | 0.09 | 0.36 | 227.0 | 11.0\% | 12.5 | 1054 | 2.1\% | 15.0 | 2.2 | 8.1 | 20.5 | 1281.0 | 38.7 | 20.5 |
| EX6 | 3.40 | B | 2\% | 0.09 | 0.36 | 202.0 | 10.4\% | 12.0 | 1054 | 2.1\% | 15.0 | 2.2 | 8.1 | 20.0 | 1256.0 | 38.7 | 20.0 |
| EX7 | 2.90 | B | 2\% | 0.09 | 0.36 | 175.0 | 2.6\% | 17.6 | 0 | 0.0\% | 5.0 | 0.0 | 0.0 | 17.6 | 175.0 | 25.7 | 17.6 |
| EX8 | 6.40 | A | 2\% | 0.09 | 0.36 | 300.0 | 2.0\% | 25.3 | 453 | 2.0\% | 5.0 | 0.7 | 10.7 | 36.0 | 753.0 | 31.4 | 36.0 |
| EX9 | 2.40 | A | 2\% | 0.09 | 0.36 | 53 | 9.0\% | 6.4 | 0 | 0.0\% | 5.0 | 0.0 | 0.0 | 6.4 | 53.0 | 25.7 | 10.0 |
| OS1 | 0.61 | A | 2\% | 0.09 | 0.36 | 30.1 | 1.8\% | 8.2 | 0 | 0.0\% | 10.0 | 0.0 | 0.0 | 8.2 | 30.1 | 25.7 | 10.0 |
| OS2 | 0.22 | A | 2\% | 0.09 | 0.36 | 34.7 | 1.8\% | 8.8 | 0 | 0.0\% | 10.0 | 0.0 | 0.0 | 8.8 | 34.7 | 25.7 | 10.0 |

NOTES:
$t_{c}=t_{i}+t_{t}$
Where:
$t_{c}=$ computed time of concentration (minutes)
$t_{i}=$ overland (initial) flow time (minutes)
$t_{t}=$ channelized flow time (minutes)
$t_{t}=\frac{L_{t}}{60 K \sqrt{S_{o}}}=\frac{L_{t}}{60 V_{t}}$
Where:
$t_{t}=$ channelized flow time (travel time, $\left.\min \right)$
$L_{\text {a }}=$ waterway lensth
$L_{t}=$ waterway length (ff)
$\mathrm{S}_{0}=$ waterway slope (ffif)
$V_{I}=$ travel tite velocity $(\mathrm{ft} / \mathrm{sec})=\mathrm{K} / \mathrm{S}_{\mathrm{o}}$
$K=$ NRCS conveyance factor (see Table $6-2)$.
Use a minimum $t_{c}$ value of 5 minutes for urbanized areas and a minimum $t_{c}$ value of 10 minutes for areas
that are not considered urban. Use minimum values even when calculations result in a lesser time of
concentration.

Equation 6-3
$t_{i}=$ overland (initial) flow time (minutes)
$C_{s}=$ runoff coefficient for 5 -year frequency (from Table 6-4)
$L_{i}=$ length of overland flow (ft)
$S_{o}=$ average slope along the overland flow path (ff/ft).
Equation 6-4 $\quad t_{e}=(26-17 i)+\frac{L_{t}}{60(14 i+9) \sqrt{S_{t}}}$
Where:
$t_{c}=$ minimum time of concentration for first design point when less than $t_{c}$ from Equation 6-1
$L_{t}=$ length of channelized flow path (ff)
$L_{t}=$ length of channelized flow path (ft)
$i=$ imperviousness (expressed as a decimal)
$S_{t}=$ slope of the channelized flow path (f/ft)

STANDARD FORM SF-3 - EXISITNG CONDITIONS

## STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)


[^0]STANDARD FORM SF-3 - EXISITNG CONDITIONS
STORM DRAINAGE SYSTEM DESIGN
(RATIONAL METHOD PROCEDURE)

Subdivision:
Project Name: Schmidt Parcel
Project No.: 25188.13
Location: El Paso County
Calculated By:
Checked By:
Design Storm: 100-Year
Date: $\overline{9 / 2 / 22}$

| STREET |  | DIRECT RUNOFF |  |  |  |  |  |  | TOTAL RUNOFF |  |  |  | STREET |  |  | PIPE |  |  |  | TRAVEL TIME |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 듵 | $\begin{aligned} & \frac{J}{0} \\ & \begin{array}{l} \text { N } \\ \hline \end{array} \\ & \hline \end{aligned}$ | $\underset{\underline{E}}{\stackrel{y}{E}}$ | $\frac{\bar{\pi}}{\mathbf{y}}$ |  | $\begin{aligned} & \frac{0}{0} \\ & \begin{array}{l} \pi \\ \hline \end{array} \\ & \hline \end{aligned}$ | $\stackrel{\Sigma}{\text { 들 }}$ | $\frac{\pi}{3}$ |  |  | $\begin{aligned} & \text { ō } \\ & \stackrel{0}{0} \\ & \text { in } \end{aligned}$ |  | $$ | $\begin{aligned} & \text { O} \\ & \stackrel{0}{0} \\ & \stackrel{0}{n} \end{aligned}$ | $$ |  | $\begin{aligned} & \bar{n} \\ & \frac{3}{4} \\ & : \vec{\lambda} \\ & \frac{0}{0} \\ & \frac{0}{0} \end{aligned}$ | $\underset{\sim}{\underline{E}}$ | REMARKS |
|  | 1 | EX1 | 15.60 | 0.36 | 41.6 | 5.62 | 3.34 | 18.8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff overland flows across exisitng field to DP1 where flow enters Vollmer ROW |
|  | 1.1 |  |  |  |  |  |  |  | 41.6 | 5.70 | 3.34 | 19.0 |  |  |  |  |  |  |  |  |  |  | Flow for Basin EX1 and OS2 combine at DP 1.1 and enters Vollmer ROW |
|  | 2 | EX2 | 22.90 | 0.36 | 58.1 | 8.24 | 2.50 | 20.6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin EX2, overland flows across exsiting field to DP 2 where flow contiues into Basin EX4 |
|  | 2.1 |  |  |  |  |  |  |  | 58.1 | 8.46 | 2.50 | 21.1 |  |  |  |  |  |  |  |  |  |  | Flows Form Basin EX2 and OS1 combine at DP2.1 and enters Basin EX4 |
|  | 3 | EX3 | 2.50 | 0.36 | 40.6 | 0.90 | 3.40 | 3.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin EX3 overland flows down berm and flows along bottom of berm to DP3. |
|  | 3.1 |  |  |  |  |  |  |  | 40.6 | 11.76 | 3.40 | 40.0 |  |  |  |  |  |  |  |  |  |  | Flows from Basin EX3 and DP 14 combine at DP3.1 and enters Cottonwood Creek |
|  | 4 | EX4 | 33.10 | 0.36 | 28.7 | 11.92 | 4.28 | 51.0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff form basin EX4 overland flows across steep side slopes into the exisitng pit, flow contuies to travel south and remains in the pit at DP4 |
|  | 4.1 |  |  |  |  |  |  |  | 58.1 | 20.38 | 2.50 | 50.9 |  |  |  |  |  |  |  |  |  |  | Flow for Basin EX4 and desing point DP2.1 combine at DP 4.1 |
|  | 5 | EX5 | 8.00 | 0.36 | 20.5 | 2.88 | 5.12 | 14.7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin EX5 overland flows down the Cottonwood Creek enbankment slopes \& contuies to flow along the thalweg axis of the creek |
|  | 6 | EX6 | 3.40 | 0.36 | 20.0 | 1.22 | 5.18 | 6.3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin EX6 overland flows down the Cottonwood Creek enbankment slopes \& contuies to flow along the thalweg axis of the creek |
|  | 6.1 |  |  |  |  |  |  |  | 20.5 | 4.10 | 5.12 | 21.0 |  |  |  |  |  |  |  |  |  |  | Flow from basin EX5 and EX6 combine at DP6.1 and contuines to flow in Cottonwood Creek to the Southwest |
|  | 7 | EX7 | 2.90 | 0.36 | 17.6 | 1.04 | 5.51 | 5.7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin EX7, overland flows southwest to the adjacent property at DP7 |
|  | 7.1 |  |  |  |  |  |  |  | 28.7 | 22.89 | 4.28 | 97.9 |  |  |  |  |  |  |  |  |  |  | Flows from Basin EX7 and DP B4 combine at DP7.1 and flow contuines on to neighboring property |
|  | 8 | EX8 | 6.40 | 0.36 | 36.0 | 2.30 | 3.70 | 8.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin EX8, overland flows south to DP8 where flow leaves the site and enters the subdivision to the south |
|  | 9 | EX9 | 2.40 | 0.36 | 10.0 | 0.86 | 6.93 | 6.0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin EX9, overland flows south and enters the adjacent property to the south |
|  | 10 | OS1 | 0.61 | 0.36 | 10.0 | 0.22 | 6.93 | 1.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin OS1, overland flows south and enters the site at DP10 |
|  | 11 | OS2 | 0.22 | 0.36 | 10.0 | 0.08 | 6.93 | 0.6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin OS2, overland flows south and enters the site at DP11 |
|  | B4 | OSB4 | 52.02 | 0.42 | 28.7 | 21.85 | 4.11 | 89.8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Off-site basin OSB4 Values from Sliver Pond FDR (Bains OS1- B4 \& DP8) |
|  | 14 | OSI4 | 27.16 | 0.40 | 29.2 | 10.86 | 4.07 | 44.2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Off-site Basin OSI4 Values from Sliver Pond FDR (Bains I4 \& DP21) |

Street and Pipe C*A values are determined by $\mathrm{Q} / \mathrm{i}$ using the catchment's intensity value.

## COMPOSITE \% IMPERVIOUS CALCULATIONS -PROPOSED CONDITIONS

Subdivision:
Location: El Paso County

Project Name: Schimidt Parcel
Project No.: 25188.13
Calculated By: APL
Checked By:
Date: 9/2/22

| Basin ID | $\begin{array}{\|c} \text { Total Area } \\ \text { (ac) } \end{array}$ | Graviel (80\% Imp.) |  |  |  | PASTURE/MEADOW (0\% Imp.) |  |  |  | Basins Total Weighted C |  | Basins Total Weighted \% Imp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | Area (ac) | $\begin{array}{c\|} \hline \text { Weighted } \\ \% \text { Imp. } \\ \hline \hline \end{array}$ | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | Area (ac) | Weighted \% Imp. |  |  |  |
| A | 11.70 | 0.59 | 0.70 | 0.00 | 0.0\% | 0.09 | 0.36 | 11.70 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| B | 22.00 | 0.59 | 0.70 | 0.45 | 1.6\% | 0.09 | 0.36 | 21.55 | 2.0\% | 0.10 | 0.37 | 3.6\% |
| C | 4.00 | 0.59 | 0.70 | 0.00 | 0.0\% | 0.09 | 0.36 | 4.00 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| D | 2.60 | 0.59 | 0.70 | 0.00 | 0.0\% | 0.09 | 0.36 | 2.60 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| E | 1.60 | 0.59 | 0.70 | 0.00 | 0.0\% | 0.09 | 0.36 | 1.60 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| F | 36.60 | 0.59 | 0.70 | 0.36 | 0.8\% | 0.09 | 0.36 | 36.24 | 2.0\% | 0.09 | 0.36 | 2.8\% |
| G | 4.30 | 0.59 | 0.70 | 0.00 | 0.0\% | 0.09 | 0.36 | 4.30 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| H | 10.20 | 0.59 | 0.70 | 0.00 | 0.0\% | 0.09 | 0.36 | 10.20 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| 1 | 3.40 | 0.59 | 0.70 | 0.00 | 0.0\% | 0.09 | 0.36 | 3.40 | 2.0\% | 0.09 | 0.36 | 2.0\% |
| J | 2.90 | 0.59 | 0.70 | 0.00 | 0.0\% | 0.09 | 0.36 | 2.90 | 2.0\% | 0.09 | 0.36 | 2.0\% |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| TOTAL | 99.30 |  |  |  |  |  |  |  |  |  |  | 2.6\% |
|  | 70.30 |  |  |  |  |  |  |  |  |  |  | 2.90\% |

## STANDARD FORM SF-2 - PROPOSED CONDITIONS

 TIME OF CONCENTRATIONSubdivision:
Location: El Paso County

Project Name: Schimidt Parce
Project No.: 25188.13
Calculated By: APL
Checked By:
Date: $\qquad$ 9/2/22

| SUB-BASIN |  |  |  |  |  | INITIAL/OVERLAND |  |  | TRAVEL TIME |  |  |  |  | tc CHECK |  |  | FINAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DATA |  |  |  |  |  | $\left(\mathrm{T}_{\mathrm{i}}\right)$ |  |  | $\left(\mathrm{T}_{\mathrm{t}}\right.$ ) |  |  |  |  | (URBANIZED BASINS) |  |  |  |
| BASIN <br> ID | D.A. <br> (ac) | Hydrologic Soils Group | Impervious (\%) | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | $L$ (ft) | $S$ 。 <br> (\%) | $\begin{gathered} t_{i} \\ (\min ) \end{gathered}$ | $L_{t}$ <br> (ft) | $\begin{aligned} & S_{t} \\ & (\%) \\ & \hline \end{aligned}$ | $\boldsymbol{K}$ | VEL. <br> (ft/s) | $\begin{gathered} t_{t} \\ (\mathrm{~min}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { COMP. } t_{c} \\ (\min ) \end{gathered}$ | TOTAL <br> LENGTH (ft) | $\begin{gathered} \text { Urbanized } t_{c} \\ \text { (min) } \end{gathered}$ | $\begin{gathered} t_{c} \\ (\min ) \\ \hline \end{gathered}$ |
| A | 11.70 | A | 2.0\% | 0.09 | 0.36 | 300.0 | 2.8\% | 22.6 | 1324 | 1.8\% | 7.0 | 0.9 | 23.6 | 46.2 | 1623.7 | 43.5 | 46.2 |
| B | 22.00 | A | 3.6\% | 0.10 | 0.37 | 300.0 | 2.3\% | 23.8 | 1402 | 1.8\% | 7.0 | 0.9 | 24.9 | 48.6 | 1701.7 | 43.7 | 48.6 |
| C | 4.00 | A | 2.0\% | 0.09 | 0.36 | 300.0 | 2.1\% | 24.8 | 423 | 2.1\% | 5.0 | 0.7 | 9.8 | 34.6 | 722.7 | 30.9 | 34.6 |
| D | 2.60 | A | 2.0\% | 0.09 | 0.36 | 231.8 | 2.6\% | 20.3 | 0 | 0.0\% | 5.0 | 0.0 | 0.0 | 20.3 | 231.8 | 25.7 | 25.7 |
| E | 1.60 | A | 2.0\% | 0.09 | 0.36 | 35.0 | 2.9\% | 7.6 | 1372 | 0.8\% | 7.0 | 0.6 | 36.5 | 44.1 | 1406.5 | 53.2 | 53.2 |
| F | 36.60 | A | 2.8\% | 0.09 | 0.36 | 300.0 | 2.8\% | 22.3 | 1554 | 2.7\% | 5.0 | 0.8 | 31.6 | 53.9 | 1853.8 | 42.4 | 53.9 |
| G | 4.30 | B | 2.0\% | 0.09 | 0.36 | 300.0 | 2.0\% | 25.1 | 0 | 0.0\% | 5.0 | 0.0 | 0.0 | 25.1 | 300.0 | 25.7 | 25.7 |
| H | 10.20 | B | 2.0\% | 0.09 | 0.36 | 227.0 | 11.0\% | 12.5 | 1054 | 2.1\% | 15.0 | 2.2 | 8.1 | 20.6 | 1281.0 | 38.8 | 38.8 |
| 1 | 3.40 | B | 2.0\% | 0.09 | 0.36 | 202 | 10.4\% | 12.0 | 1054 | 2.1\% | 15.0 | 2.2 | 8.1 | 20.1 | 1256.0 | 38.7 | 38.7 |
| J | 2.90 | B | 2.0\% | 0.09 | 0.36 | 175 | 2.6\% | 17.7 | 0 | 0.0\% | 5.0 | 0.0 | 0.0 | 17.7 | 175.0 | 25.7 | 25.7 |

NOTES:


Use a minimum $t_{c}$ value of 5 minutes for urbanized areas and a minimum $t_{c}$ value of 10 minutes for areas
that are not considered urban. Use minimum values even when calculations result in a lesser time of
concentration.

## STANDARD FORM SF-3 - PROPOSED CONDITIONS

## STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision:
Location: El Paso County
Design Storm: $5-\mathrm{Year}$

Project Name: Schimidt Parcel
Project No.: 25188.13
Calculated By: APL
Checked By:
Date: 9/2/22

| STREET |  | DIRECT RUNOFF |  |  |  |  |  |  | TOTAL RUNOFF |  |  |  | STREET |  |  | PIPE |  |  |  | TRAV | EL TI |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | E气 |  |  | $\frac{\sqrt[3]{4}}{0}$ |  | $$ | $\stackrel{\text { 들 }}{\text { 들 }}$ | $\frac{\bar{n}}{\frac{\pi}{6}}$ |  | $\begin{aligned} & \frac{0}{\sigma} \\ & \frac{\pi}{\pi} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { ò } \\ & 0 . \\ & \stackrel{0}{0} \\ & \hline \hline \end{aligned}$ | $\begin{aligned} & \frac{\pi}{4} \\ & \underset{y}{\frac{0}{2}} \\ & \sigma^{2} \\ & \hline \hline \end{aligned}$ |  | $\begin{aligned} & \text { ò } \\ & 0 \\ & \stackrel{0}{0} \\ & \hline \hline \end{aligned}$ |  |  | $\begin{aligned} & \frac{\pi}{3} \\ & \frac{3}{2} \\ & \frac{\lambda}{3} \\ & \frac{0}{0} \\ & \hline \end{aligned}$ | $\stackrel{\overline{\underline{E}}}{\underline{E}}$ | REMARKS |
|  | 1 | A | 11.70 | 0.09 | 46.2 | 1.05 | 1.83 | 1.9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff overland flows to proposed swale and contuies into Basin B at DP1 |
|  | 2 | B | 22.00 | 0.09 | 48.6 | 1.98 | 1.76 | 3.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin B, overland flows to proposed swale and contuies into Basin F at DP2 |
|  | 2.1 |  |  |  |  |  |  |  | 48.6 | 3.03 | 1.76 | 5.3 |  |  |  |  |  |  |  |  |  |  | Flows Form Basin A and B combine at DP2.1 and enters Basin F |
|  | 3 | C | 4.00 | 0.09 | 34.6 | 0.36 | 2.27 | 0.8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff overland flows across exisitng field to DP3 where flow enters Vollmer ROW |
|  | 4 | D | 2.60 | 0.09 | 25.7 | 0.23 | 2.72 | 0.6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff form basin D overland flows south and enters the adjacent property to the south |
|  | 5 | E | 1.60 | 0.09 | 53.2 | 0.14 | 1.62 | 0.2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin E is collected in the proposed swale and routed west to Cottonwood Creek |
|  | 5.1 |  |  |  |  |  |  |  | 53.2 | 8.29 | 1.62 | 13.4 |  |  |  |  |  |  |  |  |  |  | Flows from Basins E and DP I4 combine at DP5.1 and contunie into Cottonwood Creek |
|  | 6 | F | 36.60 | 0.09 | 53.9 | 3.29 | 1.60 | 5.3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff form basin F overland flows across steep side slopes into the pit, flow contuies to travel south and remains in the pit at DP6 |
|  | 6.1 |  |  |  |  |  |  |  | 53.9 | 6.33 | 1.60 | 10.1 |  |  |  |  |  |  |  |  |  |  | Flow from Basin F and DP2.1 combine at DP6.1 and remain in the pit at DP6.1 |
|  | 7 | G | 4.30 | 0.09 | 25.7 | 0.39 | 2.72 | 1.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin G, overland flows southwest to the adjacent property at DP7 |
|  | 8 | H | 10.20 | 0.09 | 38.8 | 0.92 | 2.10 | 1.9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin H overland flows down the Cottonwood Creek enbankment slopes \& contuies to flow along the thalweg axis of the creek |
|  | 9 | 1 | 3.40 | 0.09 | 38.7 | 0.31 | 2.10 | 0.6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin I overland flows down the Cottonwood Creek enbankment slopes \& contuies to flow along the thalweg axis of the creek |
|  | 9.1 |  |  |  |  |  |  |  | 38.8 | 1.22 | 2.10 | 2.7 |  |  |  |  |  |  |  |  |  |  | Flow from Basins H and I combine at DP9. 1 and contunie to flow in Cottonwood creek offsite, Emergany Spillway Flows are accouned for in 9.1 |
|  | 10 | J | 2.90 | 0.09 | 25.7 | 0.26 | 2.72 | 0.7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin J, overland flows south and enters the site at DP10 |
|  | 10.1 |  |  |  |  |  |  |  | 28.7 | 16.91 | 2.55 | 43.1 |  |  |  |  |  |  |  |  |  |  | Flows from Basins J and DP B4 combine at DP10.1 and enters the adjacent proporerty |
|  | B4 | OSB4 | 52.02 | 0.32 | 28.7 | 16.65 | 2.35 | 39.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Off-site basin OSB4 Values from Sliver Pond FDR (Bains OS1- B4 \& DP8) |
|  | 14 | OSI4 | 27.16 | 0.30 | 29.2 | 8.15 | 2.33 | 19.0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Off-site Basin OSI4 Values from Sliver Pond FDR (Bains I4 \& DP21) |

[^1]
## STANDARD FORM SF-3 - PROPOSED CONDITIONS

## STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)
Project Name: Schimidt Parcel

Subdivision:
Project No.: 25188.13

Location: El Paso County
Design Storm: 100-Year

Calculated By: APL
Checked By:
Date: 9/2/22

| StREET | $\begin{aligned} & \stackrel{\rightharpoonup}{\overline{0}} \\ & . \\ & 0 . \\ & .0 .0 \\ & .00 \\ & 0.0 \\ & \hline \hline \end{aligned}$ | DIRECT RUNOFF |  |  |  |  |  |  | TOTAL RUNOFF |  |  |  | STREET |  |  | PIPE |  |  |  | TRAVEL TIME |  |  | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 厄्= | $$ |  | $\frac{\frac{\pi}{4}}{0}$ |  | $\begin{aligned} & \frac{0}{0} \\ & \frac{\pi}{\pi} \\ & \hline \end{aligned}$ | $\underset{\equiv}{\text { 들 }}$ | $\frac{\sqrt[\pi]{4}}{0}$ |  | $\begin{aligned} & \underset{\sim}{0} \\ & \frac{\pi}{4} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \stackrel{0}{0} \\ & \stackrel{0}{n} \\ & \hline \end{aligned}$ |  |  | $\begin{aligned} & \text { ō } \\ & \stackrel{0}{0} \\ & \stackrel{0}{n} \\ & \hline \end{aligned}$ | Pipe Size (inches) |  | $\bar{n}$ $\frac{3}{4}$ $2 \lambda$ 릉 $\frac{0}{0}$ | $\underset{\underbrace{}}{\underline{\xi}}$ |  |
|  | 1 | A | 11.70 | 0.36 | 46.2 | 4.21 | 3.08 | 13.0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff overland flows to proposed swale and contuies into Basin B at DP1 |
|  | 2 | B | 22.00 | 0.37 | 48.6 | 8.07 | 2.95 | 23.8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin B, overland flows to proposed swale and contuies into Basin F at DP2 |
|  | 2.1 |  |  |  |  |  |  |  | 48.6 | 12.28 | 2.95 | 36.2 |  |  |  |  |  |  |  |  |  |  | Flows Form Basin A and B combine at DP2.1 and enters Basin F |
|  | 3 | C | 4.00 | 0.36 | 34.6 | 1.44 | 3.80 | 5.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff overland flows across exisitng field to DP3 where flow enters Vollmer ROW |
|  | 4 | D | 2.60 | 0.36 | 25.7 | 0.94 | 4.56 | 4.3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff form basin D overland flows south and enters the adjacent property to the south |
|  | 5 | E | 1.60 | 0.36 | 53.2 | 0.58 | 2.72 | 1.6 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin E is collected in the proposed swale and routed west to Cottonwood Creek |
|  | 5.1 |  |  |  |  |  |  |  | 53.2 | 11.44 | 2.72 | 31.1 |  |  |  |  |  |  |  |  |  |  | Flows from Basins E and DP I4 combine at DP5.1 and contunie into Cottonwood |
|  | 6 | F | 36.60 | 0.36 | 53.9 | 13.30 | 2.69 | 35.7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff form basin $F$ overland flows across steep side slopes into the pit, flow contuies to travel south and remains in the pit at DP6 |
|  | 6.1 |  |  |  |  |  |  |  | 53.9 | 25.58 | 2.69 | 68.7 |  |  |  |  |  |  |  |  |  |  | Flow from Basin F and DP2.1 combine at DP6.1 and remain in the pit at DP6.1 |
|  | 7 | G | 4.30 | 0.36 | 25.7 | 1.55 | 4.56 | 7.1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin G, overland flows southwest to the adjacent property at DP7 |
|  | 8 | H | 10.20 | 0.36 | 38.8 | 3.67 | 3.52 | 12.9 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin H overland flows down the Cottonwood Creek enbankment slopes \& contuies to flow along the thalweg axis of the creek |
|  | 9 | 1 | 3.40 | 0.36 | 38.7 | 1.22 | 3.52 | 4.3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin I overland flows down the Cottonwood Creek enbankment slopes \& contuies to flow along the thalweg axis of the creek |
|  | 9.1 |  |  |  |  |  |  |  | 38.8 | 4.89 | 3.52 | 18.9 |  |  |  |  |  |  |  |  |  |  | Flow from Basins H and I combine at DP9. 1 and contunie to flow in Cottonwood creek, Emergancy Spillway flows are accouted for in 9.1 |
|  | 10 | J | 2.90 | 0.36 | 25.7 | 1.04 | 4.56 | 4.7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Runoff from Basin J, overland flows south and enters the site at DP10 |
|  | 10.1 |  |  |  |  |  |  |  | 28.7 | 22.89 | 4.28 | 97.9 |  |  |  |  |  |  |  |  |  |  | Flows from Basins J and DP B4 combine at DP10.1 and enters the adjacent proporerty |
|  | B4 | OSB4 | 52.02 | 0.42 | 28.7 | 21.85 | 4.11 | 89.8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Off-site basin OSB4 Values from Sliver Pond FDR (Bains OS1- B4 \& DP8) |
|  | 14 | OSI4 | 27.16 | 0.40 | 29.2 | 10.86 | 4.07 | 44.2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Off-site Basin OSI4 Values from Sliver Pond FDR (Bains I4 \& DP21) |

Street and Pipe $C^{*}$ A values are determined by $Q / i u s i n g$ the catchment's intensity value.

## Appendix C Hydraulic Calculations


Sediment Basin not

| 72 hr drain time, per |
| :--- |
| MHFD SC-07 |


| EDB Selected BMP Typr | EDB | acres |  |
| :---: | :---: | :---: | :---: |
| EDB Watershed Area | 70.20 |  |  |
| $\begin{aligned} \text { Watershed Length } & = \\ \text { Watershed Length to Centroid } & =\end{aligned}$ | 3,434 | f |  |
|  | 1,103 | ft |  |
| Watershed Slope $=$ | 0.014 | f/ft |  |
| Watershed Imperviousness $=$ | 2.90\% | percent |  |
| Percentage Hydrologic Soil Group A = | 100.0\% |  |  |
| Percentage Hydrologic Soil Group B $=$ | 0.0\% | percent |  |
| Percentage Hydrologic Soil Groups C/D $=$ | 0.0\% | percent | Drain Time Too Long |
| Target WQCV Drain Time $=$ | 72.0 | hours |  |
| ion for 1-hr Rainfall Depth | Input |  |  |
| After providing required inputs above including 1 -hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure. |  |  |  |
| Water Quality Capture Volume (WQCV) $=$ Excess Urban Runoff Volume (EURV) $=$ 2-yr Runoff Volume ( $\mathrm{P} 1=1.19 \mathrm{in}$.) = | 5.800 | acre-feet | 5.800 acre-feet |
|  | 6.000 | acre-feet acre-feet | 6.000 acre-feet |
|  | 0.055 |  | 1.19 inches |
| $5-\mathrm{yr}$ Runoff Volume ( $\mathrm{P} 1=1.5 \mathrm{in}$.) $=$ | 0.104 | acre-feet | 1.50 inches |
| $10-\mathrm{yr}$ Runoff Volume ( $\mathrm{P} 1=1.75$ in.) $=$ | 0.147 | acre-feet | 1.75 inch |
| $25-$ yr Runoff Volume (P1 = 2 in .) $=$ | 0.951 |  | 2.00 inches |
| $50-$-r Runoff Volume ( $\mathrm{P} 1=2.25 \mathrm{in}$.) $=$ | 1.850 | acre-feet <br> acre-feet | 2.25 inches |
| $100-\mathrm{yr}$ Runoff Volume ( $\mathrm{P} 1=2.52 \mathrm{in}$.) $=$ | 3.087 |  | 2.52 inches |
| $500-\mathrm{yr}$ Runoff Volume ( $\mathrm{P} 1=4 \mathrm{in}$.) = | 10.624 | acre-feet acre-feet | 4.00 inches |
| Approximate 2-yr Detention Volume $=$ | 0.060 | acre-feet |  |
| Approximate 5 -yr Detention Volume $=$ | 0.085 | acre-feet |  |
| Approximate 10-yr Detention Volume $=$ | 0.119 | acre-feet |  |
| Approximate 25 -yr Detention Volume $=$ | 0.174 | acre-feet |  |
| Approximate $50-\mathrm{yr}$ Detention Volume $=$ | 0.353 | acre-feet |  |
| Approximate 100-yr Detention Volume $=$ | 0.873 | acre-feet |  |



| Zones and Basin Geometry |  |
| :---: | :---: |
| Zone 1 Volume (WQCV) $=$ | 5.800 |
| Select Zone 2 Storage Volume (Optional) = |  |
| Select Zone 3 Storage Volume (Optional) = |  |
| Total Detention Basin Volume $=$ | 5.800 |
| Initial Surcharge Volume (ISV) $=$ | user |
| Initial Surcharge Depth (ISD) $=$ | user |
| Total Available Detention Depth ( $\mathrm{H}_{\text {total }}$ ) $=$ | user |
| Depth of Trickle Channel $\left(\mathrm{H}_{\text {Tc }}\right)=$ | use |
| Slope of Trickle Channel ( $\mathrm{S}_{\text {TC }}$ ) $=$ | user |
| Slopes of Main Basin Sides ( $\mathrm{S}_{\text {main }}$ ) $=$ | user |
| Basin Length-to-Width Ratio ( $\mathrm{L}_{\text {L }}$ ) $=$ | user |



Drain Time Too Long



DETENTION BASIN OUTLET STRUCTURE DESIGN


User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

|  | Row 1 (required) | Row 2 (optional) | Row 3 (optional) | Row 4 (optional) | Row 5 (optional) | Row 6 (optional) | Row 7 (optional) | Row 8 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stage of Orifice Centroid (ft) | 0.00 | 1.25 | 1.55 | 1.85 | 2.15 | 2.45 |  |  |
| Orifice Area (sq. inches) | 6.07 | 6.07 | 6.07 | 6.07 | 6.07 | 6.07 |  |  |


| Stage of Orifice Centroid (ft) | Row 9 (optional) | Row 10 (optional) | Row 11 (optional) | Row 12 (optional) | Row 13 (optional) | Row 14 (optional) | Row 15 (optional) | Row 16 (optional) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| Orifice Area (sq. inches) |  |  |  |  |  |  |  |  |


| User Input: Vertical Orifice (Circular or Rectangular) |  |  | Calculated Parameters for Vertical Orifice |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Not Selected | Not Selected | ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) inches | Vertical Orifice Area = <br> Vertical Orifice Centroid = | Not Selected | Not Selected |  |
| Invert of Vertical Orifice = |  |  |  |  |  |  | $\mathrm{ft}^{2}$ |
| Vertical Orifice Diameter $=$ |  |  |  |  |  |  |  |




|  | Calculated Parameters for Spillway |  |
| :---: | :---: | :---: |
| Spillway Design Flow Depth= | 0.43 | feet |
| Stage at Top of Freeboard = | 6.53 | feet |
| Basin Area at Top of Freeboard = | 2.64 | acres |
| Basin Volume at Top of Freeboard | 9.52 | re-ft |


| Routed Hydrograph Results | ser can | defa | rograp | ff volur | ering ne | the Infl | aphs ta | nns W thro |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Design Storm Return Period $=$ | WQCV | EURV | 2 Year | 5 Year | 10 Year | 25 Year | 50 Year | 100 Year | 500 Year |
| One-Hour Rainfall Depth (in) = | N/A |  |  |  |  |  |  |  |  |
| CUHP Runoff Volume (acre-ft) $=$ | 5.800 | 6.00 |  |  |  |  |  |  |  |
| Inflow Hydrograph Volume (acre-ft) $=$ | N/A |  |  |  |  |  |  |  |  |
| CUHP Predevelopment Peak Q (cfs) = | N/A |  |  |  |  |  |  |  |  |
| OPTIONAL Override Predevelopment Peak Q (cfs) = | N/A |  |  |  |  |  |  |  |  |
| Predevelopment Unit Peak Flow, q (cfs/acre) = | N/A |  |  |  |  |  |  |  |  |
| Peak Inflow Q (cfs) $=$ | N/A |  |  |  |  |  |  |  |  |
| Peak Outflow Q (cfs) = | 2.2 |  |  |  |  |  |  |  |  |
| Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$ | N/A | N/A | N/A |  |  |  |  |  |  |
| Structure Controlling Flow $=$ | Plate |  |  |  |  |  |  |  |  |
| Max Velocity through Grate 1 (fps) = | N/A |
| Max Velocity through Grate $2(\mathrm{fps})=$ | N/A |
| Time to Drain 97\% of Inflow Volume (hours) = | 63 |  |  |  |  |  |  |  |  |
| Time to Drain 99\% of Inflow Volume (hours) = | 72 |  |  |  |  |  |  |  |  |
| Maximum Ponding Depth (ft) = | 4.99 |  |  |  |  |  |  |  |  |
| Area at Maximum Ponding Depth (acres) $=$ | 2.22 |  |  |  |  |  |  |  |  |
| Maximum Volume Stored (acre-ft) $=$ | 5.807 |  |  |  |  |  |  |  |  |

DETENTION BASIN OUTLET STRUCTURE DESIGN


| S-A-V-D Chart Axis Override | Left Y-Axis | Right $Y$-Axis |  |
| ---: | :--- | :--- | :--- | :--- |
| $\begin{array}{c}\text { minimum bound } \\ \text { maximum bound }\end{array}$ |  |  |  |

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

|  | SOURCE | CUHP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Interval | TIME | WQCV [cfs] | EURV [cfs] | 2 Year [cfs] | 5 Year [cfs] | 10 Year [cfs] | 25 Year [cfs] | 50 Year [cfs] | 100 Year [cfs] | 500 Year [cfs] |
| 5.00 min | 0:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 0:15:00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 |
|  | 0:20:00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.14 |
|  | 0:25:00 | 0.00 | 0.00 | 0.18 | 0.42 | 0.63 | 0.13 | 0.25 | 0.32 | 3.71 |
|  | 0:30:00 | 0.00 | 0.00 | 0.46 | 0.97 | 1.37 | 2.68 | 6.52 | 9.69 | 37.01 |
|  | 0:35:00 | 0.00 | 0.00 | 0.61 | 1.19 | 1.66 | 7.65 | 15.76 | 24.64 | 78.24 |
|  | 0:40:00 | 0.00 | 0.00 | 0.61 | 1.19 | 1.66 | 10.74 | 20.88 | 33.49 | 99.70 |
|  | 0:45:00 | 0.00 | 0.00 | 0.58 | 1.12 | 1.56 | 11.23 | 21.85 | 35.86 | 107.80 |
|  | 0:50:00 | 0.00 | 0.00 | 0.53 | 1.00 | 1.40 | 10.79 | 20.86 | 34.85 | 108.26 |
|  | 0:55:00 | 0.00 | 0.00 | 0.47 | 0.90 | 1.26 | 9.83 | 18.89 | 31.81 | 102.61 |
|  | 1:00:00 | 0.00 | 0.00 | 0.43 | 0.82 | 1.15 | 8.79 | 16.99 | 28.72 | 96.77 |
|  | 1:05:00 | 0.00 | 0.00 | 0.40 | 0.75 | 1.04 | 7.98 | 15.41 | 26.14 | 91.95 |
|  | 1:10:00 | 0.00 | 0.00 | 0.36 | 0.67 | 0.94 | 7.23 | 13.95 | 23.68 | 85.45 |
|  | 1:15:00 | 0.00 | 0.00 | 0.33 | 0.62 | 0.88 | 6.48 | 12.49 | 21.23 | 77.41 |
|  | 1:20:00 | 0.00 | 0.00 | 0.31 | 0.57 | 0.82 | 5.86 | 11.35 | 19.25 | 70.62 |
|  | 1:25:00 | 0.00 | 0.00 | 0.28 | 0.53 | 0.76 | 5.39 | 10.41 | 17.64 | 64.45 |
|  | 1:30:00 | 0.00 | 0.00 | 0.26 | 0.48 | 0.70 | 4.94 | 9.54 | 16.14 | 58.62 |
|  | 1:35:00 | 0.00 | 0.00 | 0.24 | 0.44 | 0.63 | 4.50 | 8.67 | 14.68 | 53.21 |
|  | 1:40:00 | 0.00 | 0.00 | 0.21 | 0.39 | 0.56 | 4.06 | 7.81 | 13.24 | 47.98 |
|  | 1:45:00 | 0.00 | 0.00 | 0.19 | 0.35 | 0.50 | 3.62 | 6.95 | 11.80 | 42.84 |
|  | 1:50:00 | 0.00 | 0.00 | 0.17 | 0.30 | 0.43 | 3.18 | 6.09 | 10.36 | 37.81 |
|  | 1:55:00 | 0.00 | 0.00 | 0.15 | 0.28 | 0.39 | 2.74 | 5.25 | 8.94 | 33.04 |
|  | 2:00:00 | 0.00 | 0.00 | 0.14 | 0.26 | 0.37 | 2.42 | 4.68 | 7.94 | 29.68 |
|  | 2:05:00 | 0.00 | 0.00 | 0.13 | 0.24 | 0.34 | 2.24 | 4.31 | 7.29 | 27.08 |
|  | 2:10:00 | 0.00 | 0.00 | 0.12 | 0.22 | 0.32 | 2.08 | 4.00 | 6.74 | 24.79 |
|  | 2:15:00 | 0.00 | 0.00 | 0.11 | 0.20 | 0.29 | 1.92 | 3.70 | 6.24 | 22.72 |
|  | 2:20:00 | 0.00 | 0.00 | 0.10 | 0.19 | 0.27 | 1.77 | 3.41 | 5.75 | 20.78 |
|  | 2:25:00 | 0.00 | 0.00 | 0.09 | 0.17 | 0.24 | 1.62 | 3.12 | 5.26 | 18.93 |
|  | 2:30:00 | 0.00 | 0.00 | 0.08 | 0.15 | 0.21 | 1.47 | 2.83 | 4.77 | 17.17 |
|  | 2:35:00 | 0.00 | 0.00 | 0.07 | 0.13 | 0.19 | 1.32 | 2.54 | 4.29 | 15.51 |
|  | 2:40:00 | 0.00 | 0.00 | 0.07 | 0.12 | 0.17 | 1.17 | 2.25 | 3.82 | 13.85 |
|  | 2:45:00 | 0.00 | 0.00 | 0.06 | 0.10 | 0.14 | 1.03 | 1.96 | 3.34 | 12.20 |
|  | 2:50:00 | 0.00 | 0.00 | 0.05 | 0.08 | 0.12 | 0.88 | 1.67 | 2.86 | 10.55 |
|  | 2:55:00 | 0.00 | 0.00 | 0.04 | 0.07 | 0.09 | 0.73 | 1.39 | 2.38 | 8.90 |
|  | 3:00:00 | 0.00 | 0.00 | 0.03 | 0.05 | 0.07 | 0.58 | 1.10 | 1.90 | 7.25 |
|  | 3:05:00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.05 | 0.43 | 0.81 | 1.42 | 5.61 |
|  | 3:10:00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.29 | 0.53 | 0.94 | 3.96 |
|  | 3:15:00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.14 | 0.24 | 0.47 | 2.38 |
|  | 3:20:00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.05 | 0.08 | 0.18 | 1.43 |
|  | 3:25:00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.03 | 0.07 | 0.90 |
|  | 3:30:00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.02 | 0.03 | 0.57 |
|  | 3:35:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.02 | 0.34 |
|  | 3:40:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.19 |
|  | 3:45:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.09 |
|  | 3:50:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 |
|  | 3:55:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
|  | 4:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
|  | 4:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
|  | 4:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
|  | 4:15:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:20:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:25:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:30:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:35:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:40:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:45:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:50:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 4:55:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:05:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:10:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:15:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:20:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:25:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:30:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:35:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:40:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:45:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:50:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 5:55:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|  | 6:00:00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

DETENTION BASIN OUTLET STRUCTURE DESIGN
MHFD-Detention, Version 4.05 (January 2022)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

| Stage - Storage Description | Stage <br> [ft] | Area $\left[\mathrm{ft}^{2}\right]$ | $\begin{aligned} & \text { Area } \\ & \text { [acres] } \end{aligned}$ | Volume $\left[\mathrm{ft}^{3}\right]$ | $\begin{aligned} & \text { Volume } \\ & \text { [ac-ft] } \end{aligned}$ | $\begin{gathered} \text { Total } \\ \text { Tutfow } \\ \text { [cfs] } \\ \hline \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | best results, include the |
|  |  |  |  |  |  |  | stages of all grade slope |
|  |  |  |  |  |  |  | anges (e.g. ISV and Floor) |
|  |  |  |  |  |  |  | Sheet 'Basin'. |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | Also include the inverts of all |
|  |  |  |  |  |  |  | outlets (e.g. vertical orifice, |
|  |  |  |  |  |  |  | overflow grate, and spillway, |
|  |  |  |  |  |  |  | where applicable). |
|  |  |  |  |  |  |  |  |

## Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

## Sediment Basin Outlet Pipe

| Circular <br> Diameter (ft) | $=1.00$ |
| :--- | :--- |
|  | $=1.00$ |
| Invert Elev (ft) | $=0.50$ |
| Slope (\%) | $=0.009$ |
| N-Value |  |
|  |  |
| Calculations | Known Q |
| Compute by: | $=2.84$ |

Highlighted
Depth (ft)
$=0.67$
Q (cfs)
$=2.840$
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
$=0.56$

Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=5.07$
$=1.92$
$=0.73$
$=0.94$
$=1.07$


## Channel Report

## EAST SWALE B-B (B1)

## Trapezoidal

| Bottom Width (ft) | $=6.00$ |
| :--- | :--- |
| Side Slopes (z:1) | $=4.00,4.00$ |
| Total Depth (ft) | $=2.25$ |
| Invert Elev (ft) | $=1.00$ |
| Slope (\%) | $=1.80$ |
| N-Value | $=0.035$ |
|  |  |
| Calculations |  |
| Compute by: | Known Q |
| Known Q (cfs) | $=38.50$ |

Highlighted
Depth (ft)
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=0.93$
$=38.50$
$=9.04$
$=4.26$
$=13.67$
$=0.89$
$=13.44$
$=1.21$

| Elev (ft) |
| :--- |
| 4.00 |

Reach (ft)

## Channel Report

## NORTH SWALE B-B (B2)

## Trapezoidal

| Bottom Width (ft) | $=6.00$ |
| :--- | :--- |
| Side Slopes $(z: 1)$ | $=4.00,4.00$ |
| Total Depth (ft) | $=2.25$ |
| Invert Elev (ft) | $=1.00$ |
| Slope (\%) | $=0.50$ |
| N-Value | $=0.035$ |
|  |  |
| Calculations |  |
| Compute by: | Known Q |
| Known Q (cfs) | $=36.40$ |

Highlighted
Depth (ft)
$=1.25$
Q (cfs)
= 36.40
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
= 13.75
= 2.65
$=16.31$
$=0.86$
$=16.00$
$=1.36$

| Elev (ft) |
| :--- |

Reach (ft)

## Spillway C-C

## Trapezoidal

Bottom Width (ft)
Side Slopes (z:1)
Total Depth (ft) Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Depth (ft)
$=40.00$
$=4.00,4.00$
$=1.90$
= 1.00
$=1.80$
$=0.035$

Known Depth
$=0.43$

Highlighted
Depth (ft)
$=0.43$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft) $\quad=0.40$
Top Width (ft)
EGL (ft)
$=43.44$
$=56.56$
$=17.94$
$=3.15$
$=43.55$
$=0.58$

Elev (ft)
Section
Depth (ft)


Reach (ft)

## Appendix D Reference Material

# SILVER PONDS SUBDIVISION FILING NO. 1 <br> FINAL DRAINAGE REPORT 

February 2, 1995
Revised May 5, 1996
Project No. 60572

PREPARED FOR:

The Campbell Corporation<br>4975 Austin Bluffs Parkway<br>Colorado Springs, CO 80918

## PREPARED BY:

M.V.E., Inc.

1911 Lelaray St. Colorado Springs, CO 80909

Table 3.1 - Developed Condition Hydrologic Data
5 -year and 100-Year

| Design <br> Point | Included Basins | Cumulative Drainage Area (Ac) | $5-\mathrm{yr}$ <br> Discharge (cfs) | $100-\mathrm{yr}$ <br> Discharge <br> (cfs) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | OSA1 | 18.14 | 13.1 | 30.4 |
| 2 | OSA2 | 8.72 | 7.0 | 16.3 |
| 3 | OSA1 thru A3 | 29.05 | 20.5 | 47.7 |
| 4 | OSA1 thru A4 | 31.04 | 24.3 | 53.6 |
| 5 | OSB1 | 39.26 | 29.8 | 69.3 |
| 6 | OSB1 thru B2 | 44.66 | 25.9 | 60.3 |
| 7 | OSB1 thru B3 | 50.03 | 35.7 | 83.1 |
| 8 | OSB1 thru B4 | 52.02 | 39.2 | 89.8 |
| 9 | OSD1 | 8.26 | 7.9 | 18.4 |
| 10 | OSD1 thru D2 | 19.95 | 24.1 | 52.9 |
| 11 | D3 | 3.41 | 4.5 | 9.9 |
| 12 | E1 | 4.24 | 5.5 | 12.1 |
| 13 | F1 | 4.26 | 6.6 | 14.4 |
| 14 | OSG1 | 6.66 | 7.0 | 16.4 |
| 15 | OSG1 thru G2 | 9.22 | 10.5 | 24.0 |
| 16 | OSH1 | 17.22 | 17.5 | 38.4 |
| 17 | OSH1 thru H2 | 28.28 | 27.9 | 61.3 |
| 18 | OSI1 | 3.67 | 3.3 | 7.8 |
| 19 | OSI1 thru I2 | 11.05 | 7.9 | 18.4 |
| 20 | I3 | 8.01 | 6.3 | 14.6 |
| 21 | OSI1 thru I4 | 27.16 | 19.0 | 44.2 |
| 22 | J1 | 4.19 | 3.0 | 6.9 |

M.V.E. , Inc.

Colorado Springe, Colorado

Proj. No.: 60572 Project: SILVER PONDS
Date: 1-31-96

DEVELOPED OISCHARGES
RAINFALL/RUNOFF ANALYSIS - RATIONAL METHOD

| Design <br> Point | Area (Ac) | CS | c100 | Tc (min) | $\begin{gathered} \text { is } \\ \text { (in/hr) } \end{gathered}$ | $\begin{aligned} & \text { i } 100 \\ & (\text { in } / h r) \end{aligned}$ | Q5 <br> (cfs) | $\begin{aligned} & \text { Q100 } \\ & (c f s) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 18.14 | 0.30 | 0.40 | 27.7 | 2.40 | 4.20 | 13.1 | 30.4 |
| 2 | 8.72 | 0.30 | 0.40 | 22.9 | 2.68 | 4.68 | 7.0 | 16.3 |
| 5 | 39.26 | 0.30 | 0.40 | 25.4 | 2.53 | 4.41 | 29.8 | 69.3 |
| 9 | 8.26 | 0.30 | 0.40 | 16.5 | 3.19 | 5.57 | 7.9 | 18.4 |
| 14 | 6.66 | 0.30 | 0.40 | 13.5 | 3.52 | 6.15 | 7.0 | 16.4 |
| 16 | 17.22 | 0.39 | 0.49 | 24.1 | 2.60 | 4.55 | 17.5 | 38.4 |
| 18 | 3.67 | 0.30 | 0.40 | 18.2 | 3.03 | 5.30 | 3.3 | 7.8 |
| 3 | 29.05 | 0.30 | 0.40 | 20.7 | 2.35 | 4.11 | 20.5 | 47.7 |
| 4 | 31.04 | 0.34 | 0.43 | 29.8 | 2.30 | 4.02 | 24.3 | 53.6 |
| 6 | 44.66 | 0.30 | 0.40 | 39.5 | 1.93 | 3.38 | 25.9 | 60.3 |
| 33 | 5.37 | 0.30 | 0.40 | 26.7 | 2.45 | 4.29 | 4.0 | 9.2 |
| 7 | 50.03 | 0.30 | 0.40 | 28.2 | 2.38 | 4.15 | 35.7 | 83.1 |
| 8 | 52.02 | 0.32 | 0.42 | 28.7 | 2.35 | 4.11 | 39.2 | 89.8 |
| D2 | 11.69 | 0.39 | 0.49 | 17.6 | 3.09 | 5.39 | 14.1 | 30.9 |
| 10 | 19.95 | 0.39 | 0.49 | 17.5 | 3.10 | 5.41 | 24.1 | 52.9 |
| 11 | 3.41 | 0.39 | 0.49 | 14.5 | 3.40 | 5.94 | 4.5 | 9.9 |
| 12 | 4.24 | 0.39 | 0.49 | 15.0 | 3.35 | 5.85 | 5.5 | 12.1 |
| 13 | 4.26 | 0.39 | 0.49 | 10.5 | 3.94 | 6.89 | 6.6 | 14.4 |
| G2 | 2.56 | 0.39 | 0.49 | 13.1 | 3.57 | 6.24 | 3.6 | 7.8 |
| 15 | 9.22 | 0.33 | 0.43 | 14.0 | 3.46 | 6.04. | 10.5 | 24.0 |
| H2 | 11.06 | 0.39 | 0.49 | 17.5 | 3.10 | 5.41 | 13.4 | 29.3 |
| 17 | 28.28 | 0.39 | 0.49 | 25.3 | 2.53 | 4.42 | 27.9 | 61.3 |
| 19 | 11.05 | 0.30 | 0.40 | 28.0 | 2.39 | 4.17 | 7.9 | 18.4 |
| 20 | 8.01 | 0.30 | 0.40 | 23.9 | 2.62 | 4.57 | 6.3 | 14.6 |
| 14 | 8.10 | 0.30 | 0.40 | 23.1 | 2.67 | 4.66 | 6.5 | 15.1 |
| 21 | 27.16 | 0.30 | 0.40 | 29.2 | 2.33 | 4.07 | 19.0 | 44.2 |
| 22 | 4.19 | 0.30 | 0.40 | 28.8 | 2.35 | 4.10 | 3.0 | 6.9 |



[^2]SUVER PONDS FIC.

# TRAILS AT FOREST MEADOWS 

FILING NO. 3 FINAL DRAINAGE REPORT

## AMENDMENT TO:

MASTER DEVELOPMENT DRAINAGE PLAN UPDATE FOR WOODMEN HEIGHTS AND FINAL DRAINAGE REPORT FOR FOREST MEADOWS FILING NO.1AND NO. 4

August 2015

Prepared for:
Rivers Development, Inc.
13530 Northgate Estates Drive, Suite 200
Colorado Springs, CO 80921

Prepared by:


CIVIL CONSULTANTS, INC.
20 Boulder Crescent, Suite 110
Colorado Springs, CO 80903 (719) 955-5485

Basin U is located in the easterly portion of the site and contains 1.23 acres of Vollmer Road asphalt and curb and gutter. Basin $U$ has proposed design flows of 4.3 cfs for the minor storm event ( 5 -Year) and 8.1 cfs for the major storm event (100-Year). Runoff from Basin U will flow, via curb and gutter to Design Point E3, an existing 20' D-10-R inlet, in an at-grade condition. The inlet at Design Point E3 has been sized to accept flows from Basin T, U and portions of historic flows from Basins EX1 and EX2 (capacity of $\sim 30 \mathrm{cfs}$ ). Collected flows from Design Point E3 will be conveyed in an existing 30" RCP (pipe 10) to pipe 11, an existing 48" RCP. Combined flows in 9,10 and 11 have been sized to accept these developed flows and do not exceed the pipe design flows in FDR2. Additional discussion the runoff reaching Design Point 3 is discussed in upcoming paragraphs.

Basin OS2 is located off-site, in the northerly portion of the site and contains 1.22 acres of undeveloped land. Basin OS2 has undeveloped flows of 0.8 cfs for the minor storm event ( $5-Y e a r$ ) and 3.6 cfs for the major storm event (100-Year). Runoff from Basin OS2 will be directed around Basin Q, via the proposed perimeter berm to Design Point 9 (accumulated flows 10.2 cfs- 5 year, $22.4 \mathrm{cfs}-100$ year) and a proposed diversion swale. The diversion swale will route flows to an existing 48" RCP (pipe 14). Pipe 14 and 3 have been sized to accept these developed flows and do not exceed the pipe design flows in FDR2. Any increase in flows due to future development of Basin OS1/OS2 will require the construction of a proposed detention facility, as per the Sand Creek DBPS.

Basin OS3 is located off-site, in the northerly portion of the site and contains 0.34 acres of undeveloped land. Basin OS3 has undeveloped flows of 0.2 cfs for the minor storm event ( 5 -Year) and 1.0 cfs for the major storm event ( 100 -Year). Runoff from Basin OS3 will be directed westward via the proposed perimeter berm to Design Point 9 (accumulated flows 10.2 cfs- 5 year, $22.4 \mathrm{cfs}-100$ year) and a proposed diversion swale. The aforementioned diversion swale will route flows to an existing 48 RCP (pipe 14).

Flows reaching Design Point E3 are historic and tributary to Vollmer Road (EX1, EX2 and EX3, see Historic drainage map DP-1). A portion of these Historic (EX1 and EX2) and proposed flows (Basin T and U), will be routed into the existing Vollmer Road infrastructure at the north end of the Dry Needle Place/Vollmer Road intersection and the northerly boundary of Filing No. 2. If sufficient conveyance capacity were to exist within the Vollmer ROW to convey runoff from the historic upstream watersheds, flows rates as high as 87.8 cfs for the minor storm event ( $5-\mathrm{Year}$ ) and 388.7 cfs for the major storm event ( $100-\mathrm{Year}$ ) could be expected to reach Design Point E3. These calculated flows differ by 2 cfs in the 5 -year event and 1 cfs in the 100 - year event from those estimated within the FDR2 report. A field inspection of the existing roadside ditch and roadway was conducted by M\&S Civil Consultants in the Early Summer of 2015 and the estimated conveyance capacity was determined using Bentley's FlowMaster program. Based upon the observed longitudinal slope and geometry, the capacity of the street/ditch section at the northern boundary was found to be as high as approximately 135 cfs , thereby limiting the maximum amount of upstream runoff which is able to reach the subject site and Design Point 3. Runoff upstream of the site, in excess of ditch capacity, is believed to intermittently overtop Vollmer Road continue east toward Sand Creek. Recent storms during the summer months of 2015 (June \& July) have aided in additional sediment transport in the area, thus likely further decreasing the available conveyance capacity. In the proposed condition grading will occur along portions of the west side of Vollmer Road to add width to the existing roadway and a vertical curb and gutter section along the west side of the street. A proposed cross section was analyzed upstream of Design Point 3 which indicates an estimated street conveyance capacity of 131 cfs for the west side of Vollmer Road when ponding reaches a depth of 1 ' at the flowline.

A temporary radial asphalt curb with a riprap transition will be constructed at the confluence of the roadway section and the existing ditch, at the north end of the subdivision, to aid in directing runoff from the existing ditch to the proposed curb and guttered street section. The proposed improvements will be detailed in the street improvement plans for Trails at Forest Meadows Filing No. 3. The proposed improvements will be constructed within the right of way in a manner so that they do not impact lots or offsite property.

It should be noted that based upon the Preliminary Drainage Report of Sterling Ranch Phase 1, dated March 2015 by M\&S Consultants, the construction of the Sterling Ranch Subdivision and Marksheffel Road will

| TRAILS AT FOREST MEADOWS FILING NO. 3 <br> FINAL DRAINAGE REPORT <br> (Area Drainage Summary) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \mathrm{CA}_{5} \\ & 1.69 \end{aligned}$ | Basin F2-P | $\mathrm{CA}_{100}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | OVBRLAND |  |  |  | STTEEET / CHANNEL FLOW |  |  |  | Yime of Travel $(T)$, <br> Total <br> (whel | INTENSITY* |  | TOTAL FLOMS |  |  |  |  |
| BASN | $\begin{array}{\|l\|} \hline \text { AREA } \\ \text { TOTAL } \\ \text { (Creet } \\ \hline \end{array}$ | C5 |  | $c_{4}$ | $\begin{array}{\|c} \hline \text { Leogth } \\ \text { (itit } \\ \hline \end{array}$ | Hctghe $\text { ( })^{2}$ | $\begin{gathered} \mathbf{T}_{\boldsymbol{c}} \\ (\min (x) \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { Length } \\ \hline \text { of } \\ \hline \end{array}$ | $\begin{gathered} \text { slope } \\ \text { (18) } \end{gathered}$ | $\begin{gathered} \text { Veloctly } \\ \text { (blese } \end{gathered}$ | $\begin{gathered} \mathbf{r}_{\mathbf{t}} \\ (\operatorname{mon}(\operatorname{mon} \end{gathered}$ |  | $\begin{gathered} 1 \\ \text { nenti } \end{gathered}$ | $\mathrm{I}_{\mathrm{tan} \times \mathrm{tan}}$ | $\begin{gathered} Q_{5} \\ (\operatorname{cof} s) \end{gathered}$ | Q10 <br> (efic) |  |  |  |
| $\begin{gathered} \text { F2-F } \\ \text { FILING 2 } \end{gathered}$ | 2.95 | 0.57 | ${ }^{0.67}$ | 0.25 | 117 | 5 | 10.6 | 842 | 1.8\% | ${ }^{4.7}$ | 3 | - | $\frac{3}{}$ | ${ }^{\text {cound }}$ | (c.fs) | (efers |  |  | 1.99 |
| $\begin{array}{c\|} \hline F 2-I \\ \text { FILING 2 } \end{array}$ | 1.72 | 0.57 | 0.67 | 0.25 | 194 | 3.2 | 18.8 | 714 | 1.9\% | 4.9 | 2.4 | 21.2 | 29 | 5.2 | 2.9 | 6.0 | 0.99 | F2-1 | 1.16 |
| $\begin{array}{c\|} \hline \text { F2-J } \\ \text { FIIING } 2 \\ \hline \end{array}$ | 3.12 | 0.57 | 0.67 | 0.25 | 164 | 4 | 15.2 | 623 | 1.9\% | 4.8 | 22 | 17.3 | 3.2 | 5.8 | 5.8 | 12.0 | 1.78 | F2-J | 2.09 |
| $\boldsymbol{K}$ | 0.92 | 0.37 | 0.67 | 0.25 | 131 | 2.6 | 14.5 | 0 | 1.0\% | 3.5 | 0.0 | 14.5 | 3.5 | 6.3 | 1.8 | 3.9 | 0.52 | K | 0.62 |
| $\boldsymbol{L}$ | 0.55 | 0.57 | 0.67 | 0.3 | 80 | 1.5 | 11.6 | 0 | 1.0\% | 3.5 | 0.0 | 11.6 | 3.9 | 6.9 | 1.2 | 2.5 | 0.31 | L | 0.37 |
| M | 2.62 | 0.57 | 0.67 | 0.25 | 76 | 1.5 | 11.1 | 843 | 2.5\% | 5.5 | 2.6 | 13.6 | 3.6 | 6.4 | 5.4 | 11.3 | 1.49 | M | 1.76 |
| M-I | 0.65 | 0.57 | 0.67 | 0.23 | 118 | 2.4 | 13.7 | 170 | 1.0\% | 3.5 | 0.8 | 14.5 | 3.5 | 6.3 | 1.3 | 2.7 | 0.37 | M-1 | 0.44 |
| 0 | 0.70 | 0.57 | 0.67 | 0.25 | 155 | 10 | 10.7 | 0 | 2.5\% | 5.6 | 0.0 | 10.7 | 4.0 | 7.1 | 1.6 | 3.3 | 0.40 | 0 | 0.47 |
| $P$ | 2.14 | 0.57 | 0.67 | 0.25 | 76 | 1.5 | 11.1 | ${ }^{920}$ | 1.1\% | 3.7 | 4.2 | 15.2 | 3.4 | 6.1 | 4.2 | 8.8 | 1.22 | P | 1.43 |
| 2 | 3.66 | 0.57 | 0.67 | 0.25 | 170 | 3.4 | 16.5 | 1016 | 1.3\% | 3.7 | 4.6 | 21.1 | 29 | 5.2 | 6.1 | 12.8 | 2.09 | Q | 2.45 |
| $\boldsymbol{R}$ | 2.37 | 0.57 | 0.67 | 0.25 | 112 | 2.2 | 13.5 | 369 | 1.9\% | 4.8 | 1.3 | 14.7 | 3.5 | 6.2 | 4.7 | 9.9 | 1.35 | R | 1.59 |
| $s$ | ${ }^{3} .09$ | 0.57 | 0.67 | 0.25 | 298 | 6 | 21.8 | 1015 | 2.5\% | 5.5 | 3.1 | 24.8 | 2.7 | 4.8 | 4.7 | 9.9 | 1.76 | $s$ | 2.07 |
| $\boldsymbol{T}$ | ${ }^{1.73}$ | 0.57 | 0.67 | 0.25 | 62 | 1.2 | 10.1 | 0 | 2.5\% | 5.6 | 0.0 | 10.1 | 4.1 | ${ }^{7}$ | 4.0 | 8.4 | 0.59 | T | 1.16 |
| 0 | ${ }^{1.23}$ | 0.90 | 0.95 | 0.23 | 34 | 0.7 | 7.3 | 1284 | 23\% | 5.3 | 4.0 | 11.3 | 3.9 | 7.0 | 4.3 | 8.1 | 1.11 | U | 1.17 |
| OS2 | 1.22 | 0.13 | 0.33 | 0.13 | 52 | 8 | 5.3 | 0 | 2.5\% | 5.6 | 0.0 | 5.3 | 5.0 | 8.9 | 0.8 | 3.6 | 0.16 | OS2 | 0.40 |
| as3 | 0.34 | 0.13 | 0.33 | 0.13 | 40 | 8 | 4.3 | 0 | 2.5\% | 5.6 | 0.0 | 5.0 | 5.1 | 9.1 | 0.2 | 1.0 | 0.04 | OS3 | 0.11 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



# TRAILS AT FOREST MEADOWS FILING NO. 4 FINAL DRAINAGE REPORT 

AMENDMENT TO:<br>MASTER DEVELOPMENT DRAINAGE PLAN UPDATE FOR WOODMEN HEIGHTS AND FINAL DRAINAGE REPORT FOR FOREST MEADOWS FILING NO.1AND NO. 4

April 2016

Prepared for:
Challenger Homes, Inc. 13530 Northgate Estates Drive, Suite 200

Colorado Springs, CO 80921
(719) 598-5192


Filing No. 3 - Basins **OS2, **P $\mathbf{P}_{2} * * \mathbf{Q}$ are located to the northeast of the subject site, in the north portions of the Filing 3 site. The flows from these basins were previously analyzed as part of "The Trails at Forest Meadows Filing No. 3 Preliminary/Final Drainage Report" (TRM 3 FDR). Runoff produced within Basins ${ }^{* *} \mathrm{OS} 2(0.8 \mathrm{cfs} / 3.6 \mathrm{cfs})$, ${ }^{* *} \mathrm{P}(4.2 \mathrm{cfs} / 8.8 \mathrm{cfs})$, and ${ }^{* *} \mathrm{Q}(6.1 \mathrm{cfs} / 12.8 \mathrm{cfs})$ flows have been accounted for and are included in this Final Drainage Report.

Basin V is located in the northerly portion of the site, north of Vanderwood Road, and contains 2.48 acres of singie family residential lots and streets. Basin V has proposed design flows of 3.2 cfs for the minor storm event ( 5 -Year) and 7.6 cfs for the major storm event ( $100-\mathrm{Year}$ ). Runoff from Basin V will flow, overland via side lot swales, to the curb and gutter of proposed Vanderwood Road. These flows will combine with flows from Basin ${ }^{* *}$ Q and be conveyed west via curb and gutter to Design Point 11 ( $11.0 \mathrm{cfs} / 25.2 \mathrm{cfs}$ ), a proposed $8^{1}$ D-10-R inlet in a sump condition. Design Point 11 ( $11.0 \mathrm{cfs} / 25.2 \mathrm{cfs}$ ) cumulative flows include Basin X. The inlet at Design Point 11 has been sized to accept flows in the developed condition. Collected flows from Design Point 11 will be conveyed in a $48^{\prime \prime}$ RCP (Pipe 2) to Design Point 12, a proposed 10' D-10-R inlet in the sump condition. In the event of clogging or total inlet failure, flows from Design Point 11 will overtop crown/curb and flow southeast over Tract I to a temporary sediment basin located in the Trails at Forest Meadows Filing No. 1.

Basin W is located in the northerly portion of the site, south of Vanderwood Road, and contains 2.2 acres of single family residential lots and streets. Basin W has proposed design flows of 3.1 cfs for the minor storm event ( 5 -Year) and 7.1 cfs for the major storm event ( 100 -Year). Runoff from Basin W will flow, overland via side lot swales, to the curb and gutter of proposed Vanderwood Road. These flows will combine with flows from Basin ${ }^{* * P}$ and be conveyed west via curb and gutter to Design Point 12 ( $7.5 \mathrm{cfs} / 16.8 \mathrm{cfs}$ ), a proposed $10^{\prime}$ D-10-R inlet in a sump condition. Design Point 12 ( $7.5 \mathrm{cfs} / 16.8 \mathrm{cfs}$ ) cumulative flows include Basin Y. The inlet at Design Point 12 has been sized to accept flows in the developed condition. Collected flows from Design Point 12 will be conveyed in an existing 48" RCP (Pipe 3). In the event of clogging or total inlet failure, flows from Design Point 12 will overtop curb and flow southeast over Tract I to a temporary sediment basin located in the Trails at Forest Meadows Filing No. 1.

Basin X is located in the northerly portion of the site, north of Vanderwood Road, and contains 2.03 acres of single family residential lots and streets. Basin X has proposed design flows of 2.7 cfs for the minor storm event ( 5 -Year) and 6.4 cfs for the major storm event ( $100-\mathrm{Year}$ ). Runoff from Basin X will flow, overland via side lot swales, to the curb and gutter of proposed Vanderwood Road. These flows will be conveyed east via curb and gutter and be combined with flows from Basin ${ }^{* *} \mathrm{Q}$ and Basin V to Design Point 11 ( $11.0 \mathrm{cfs} / 25.2$ cfs), a proposed $8^{\prime}$ D-10-R inlet in a sump condition. The inlet at Design Point 11 has been sized to accept flows in the developed condition. Collected flows from Design Point 11 will be conveyed in a 48" RCP (Pipe 2) to Design Point 12, a proposed $10^{\prime} \mathrm{D}-10-\mathrm{R}$ inlet in the sump condition.. In the event of clogging or total inlet failure, flows from Design Point 11 will overtop crown/curb and flow southeast over Tract I to a temporary sediment basin located in the Trails at Forest Meadows Filing No. 1.

Basin Y is located in the northerly portion of the site, south of Vanderwood Road, and contains 0.78 acres of single family residential lots and streets. Basin Y has proposed design flows of 1.2 cfs for the minor storm event ( $5-Y e a r$ ) and 2.8 cfs for the major storm event (100-Year). Runoff from Basin Y will flow, overland via side lot swales, to the curb and gutter of proposed Vanderwood Road. These flows will be conveyed east via curb and gutter and be combined with flows from Basin ${ }^{* * P}$ and Basin W to Design Point 12 ( $7.5 \mathrm{cfs} / 16.8 \mathrm{cfs}$ ), a proposed $10^{\prime} \mathrm{D}-10-\mathrm{R}$ inlet in a sump condition. The inlet at Design Point 12 has been sized to accept flows in the developed condition. Collected flows from Design Point 12 will be conveyed in an existing 48" RCP (Pipe 3). In the event of clogging or total inlet failure, flows from Design Point 12 will overtop curb and flow southeast over Tract I to a temporary sediment basin located in the Trails at Forest Meadows Filing No. 1.

Basin Z is located in the northerly portion of the site, south of Leaf Wood Court, and contains 1.2 acres of
( $30.5 \mathrm{cfs} / 63.9 \mathrm{cfs}$ ). Hence flows to this Design Point are less and will not adversely affect the existing subdivision or storm infrastructure.

Basin OS4 is located north of the site and contains 0.83 acres of offsite undeveloped land. In the interim, Basin OS4 has existing design flows of 0.4 cfs for the minor storm event ( $5-\mathrm{Year}$ ) and 1.8 cfs for the major storm event ( 100 -Year). Runoff from Basin OS4 will sheet flow overland to a proposed swale/berm along the north property line. These flows will be conveyed west and combine with flows from Basins $* *$ OS2 ( $0.8 \mathrm{cfs} / 3.6$ cfs) to Design Point $10(1.0 \mathrm{cfs} / 4.7 \mathrm{cfs})$. These flows will be routed to a riprap lined depression and a 48 PP storm sewer with FES (Pipe Run 1). Pipe 1, 2 and 3 have been sized to accept these developed flows and do not exceed the pipe design flows in the Trails at Forest Meadows Filing No. 2 Final Drainage Report. In the event of clogging and/or failure, an overflow route will be graded in between lots 39 and 40 to design point 11 and will be limited to historic flows ( $\mathrm{Q} 100=84 \mathrm{cfs}$ ). Any increase in flows due to future development of Basin OSI MDDP will require the construction of a proposed detention facility, as per the Sand Creek DBPS. Upon development of Basin OS1 the riprap depression will be filled in and the storm sewer system will be routed to the north to collect the developed flows.

Basin OS5 is located to the north of the site and contains 4.46 acres of offsite undeveloped land. In the interim, Basin OS5 has existing design flows of 2.1 cfs for the minor storm event ( 5 -Year) and 9.0 cfs for the major storm event (100-Year). Runoff from Basin OS5 will sheet flow overland to a proposed swale/berm along the north property line and existing Black Forest Road. These flows will be conveyed south and combine with flows from Basins DD and OS6 to Design Point 17 ( $4.2 \mathrm{cfs} / 14.5 \mathrm{cfs}$ ). These flows donot exceed the 100 year flows at Design Point EX1 ( $3.7 \mathrm{cfs} / 16.7 \mathrm{cfs}$ ), see Existing Drainage Plan DP-1. Any increase in flows due to future development of Basin OS5 will require the construction of a proposed detention facility.

Basin OS6 is located to the north of the site and contains 0.45 acres of offsite undeveloped land. In the interim, Basin OS6 has existing design flows of 0.1 cfs for the minor storm event ( 5 -Year) and 0.6 cfs for the major storm event ( 100 -Year). Runoff from Basin OS6 will sheet flow overland to a proposed swale/berm along the north property line and existing Black Forest Road. These flows will be conveyed south and combine with flows from Basins DD and OS5 to Design Point 17 ( $4.2 \mathrm{cfs} / 14.5 \mathrm{cfs}$ ). These flows donot exceed the 100 year flows at Design Point EX1 ( $3.7 \mathrm{cfs} / 16.7 \mathrm{cfs}$ ), see Existing Drainage Plan DP-1. Basin OS6 (see Existing Drainage Plan DP-1) is tributary to the Cottonwood Creek Basin. In the interim, conveyance of flows from OS6 will be tributary to the Sand Creek Basin. Upon future development of Basin OS6 all runoff will required to be routed to the Cattonwood Creek Basin.

Basin OS1 MDDP is located off-site, in the northerly portion of the site and contains 78.0 acres of undeveloped land. Basin OS1 is composed of Basins OS2, OS4, OS5 and OS6. Upon development of Basin OS1, flows of 34.4 cfs for the minor storm event ( 5 -Year) and 84.1 cfs for the major storm event ( $100-\mathrm{Year}$ ) will be routed, via a storm sewer, to the proposed $48^{\prime \prime}$ RCP (Pipe Run $1(34.4 \mathrm{cfs} / 84.1 \mathrm{cfs})$ ) storm sewer within the property site. Pipe Run 1 will route flows to and combine with flows at Pipe Run 2 ( $41.3 \mathrm{cfs} / 100.0 \mathrm{cfs}$ ), a proposed 48" RCP storm sewer. Pipe Run 2 will route flows to and combine with flows at Pipe Run 3 (45.8 $\mathrm{cfs} / 110.0 \mathrm{cfs}$ ), an existing 48" RCP storm sewer. These flows donot exceed the flows designed for the north future filings ( $48.8 \mathrm{cfs} / 118.2 \mathrm{cfs}$ ), as noted in the Trails at Forest Meadows Filing No. 2 report. Basin OS1 will be conveyed through and combined with the flows of Trails at Forest Meadows Filings to Sand Creek Regional Detention Facility No. 6. See the Trails at Forest Meadows Filing No. 2 for historic drainage map and calculations. Any increase in flows due to future development of Basin OS1 will require the construction of a proposed detention facility, as per the Sand Creek DBPS.

## EROSION CONTROL

It is the policy of the City of Colorado Springs that we submit an erosion control plan with the drainage report. At this time we respectfully request that the erosion control plan be submitted in conjunction with the final grading plan. Proposed straw bale check dams, silt fence, vehicle traffic control, and reseeding are proposed as erosion control measures. The proposed 90 single family lots will not adversely impact the existing surrounding residential infrastructure. The proposed BMP's in the plan and report shall be installed and maintained to accomplish this task.

## TRAILS AT FOREST MEADOWS FILING NO. 4 PRELIMINARY DRAINAGE REPORT <br> (Area Drainage Summary)

| From Area Runoff Coeffictent Summany |  |  |  | OVERLAND |  |  |  | STREET / CHANNEL FLOW |  |  |  | of Travel <br> TOTAL <br> (min) | INTENSITY * |  | TOTAL FLOWS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BASIN | AREA TOTAL (Acres) | $\mathrm{C}_{5}$ | $\mathrm{C}_{100}$ | $\mathrm{C}_{5}$ | Length (f) | Height <br> (f) | $\begin{gathered} \mathbf{T}_{\mathbf{C}} \\ (\text { min }) \end{gathered}$ | Length <br> (t) | $\begin{gathered} \text { Slope } \\ (\%) \\ \hline \end{gathered}$ | Velocity <br> (fos) | $\begin{gathered} \mathbf{T}_{t} \\ (\min ) \end{gathered}$ |  | $\begin{gathered} \mathbf{I}_{5} \\ (\mathrm{in} / h r) \end{gathered}$ | $\begin{gathered} \mathbf{I}_{100} \\ (i \mathrm{i} / h r) \end{gathered}$ | $\begin{gathered} \mathbf{Q}_{\mathbf{5}} \\ (c . f, \mathrm{~s}) \end{gathered}$ | $\begin{gathered} \mathbf{Q}_{100} \\ (c . f \mathrm{~s}) \end{gathered}$ |
| Existing Area Drainage Summary |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \#OS1 Historic | 78 | 0.24 | 0.33 |  |  |  |  |  |  |  |  | 47.6 |  |  | 34.4 | 84.1 |
| **OS2 | 1.22 | 0.13 | 0.33 |  |  |  |  |  |  |  |  | 5.3 |  |  | 0.8 | 3.6 |
| OS4 | 0.83 | 0.13 | 0.33 | 0.13 | 48 | 12 | 4.5 | 950 | $1.3 \%$ | 23 | 7.0 | 11.4 | 3.9 | 6.6 | 0.4 | 1.8 |
| OS5 | 4.46 | 0.13 | 0.33 | 0.13 | 64 | 12 | 5.7 | 1138 | 1.9\% | 23 | 8.3 | 14.0 | 3.6 | 6.1 | 2.1 | 9.0 |
| OS6 | 0.45 | 0.13 | 0.33 | 0.13 | 200 | 2 | 28.1 | 232 | 4.3\% | 3.0 | 13 | 29.4 | 25 | 4.2 | 0.1 | 0.6 |
| EX5 | 6.47 | 0.13 | 0.33 | 0.13 | 26 | 2 | 52 | 1545 | 13\% | 08 | 34.0 | 39.1 | 21 | 3.5 | 1.8 | 7.5 |
| EX6 | 038 | 0.13 | 0.33 | 0.13 | 95 | 1 | 19.0 | 91 | 11.0\% | 1.1 | 1.4 | 205 | 3.1 | 5.1 | 0.2 | 0.6 |
| EX7 | 0.72 | 0.13 | 0.33 | 0.13 | 127 | 3 | 19.3 | 215 | 1.95 | 0.8 | 4.7 | 24.0 | 2.8 | 4.7 | 0.3 | 1.1 |
| EX8 | 91 | 0.13 | 033 | 0.13 | 128 | 4 | 15.4 | 530 | 268 | 0.8 | 11.6 | 27.1 | 2,6 | 4.4 | 3.1 | 13.3 |
| EX9 | 6.3 | 0.13 | 0.33 | 0.13 | 165 | 7 | 13.8 | 1017 | 2.18 | 0.8 | 22.4 | 38,2 | 2.1 | 3.6 | 1.7 | 7.4 |
| EX10 | 4.9 | 0.13 | 0.33 | 0.19 | 216 | 4 | 23.8 | 382 | 2.1\% | 0.8 | 8.4 | 32.2 | 2.4 | 4.0 | 1.5 | 6.4 |
| EX11 | 6.8 | 0.13 | 0.33 | 0.13 | 204 | 4 | 22.7 | 1310 | 2.006 | 0.8 | 28.8 | 51.5 | 17 | 2.8 | 1.5 | 6.3 |
| **P | 2.14 | 0.57 | 0.67 |  |  |  |  |  |  |  |  | 15.2 |  |  | 4.2 | 2.3 |
| **Q | 3.68 | 0.57 | 0.67 |  |  |  |  |  |  |  |  | 211 |  |  | 61 | 12.8 |
| \#B | 289 | 0.57 | 0.67 |  |  |  |  |  |  |  |  | 11.4 |  |  | 6.4 | 13.4 |
| \#D | 1.36 | 0.58 | 0.68 |  |  |  |  |  |  |  |  | 9.2 |  |  | 3.3 | 2.0 |
| \#F | 128 | 0.58 | 0.68 |  |  |  |  |  |  |  |  | 102 |  |  | 3.0 | 6.3 |
| \#H | 132 | 0.58 | 0.68 |  |  |  |  |  |  |  |  | 10.2 |  |  | 3.1 | 6.5 |
| \# | 137 | 0.58 | 0.68 |  |  |  |  |  |  |  |  | 10.1 |  |  | 3.2 | 6.8 |
| \#L | 146 | 0.57 | 0.67 |  |  |  |  |  |  |  |  | 10.3 |  |  | 31 | 54 |
| \#O | 1.63 | 0.56 | 0.68 |  |  |  |  |  |  |  |  | 10.7 |  |  | 3.6 | 7.6 |
| Proposed Area Drainage Summary |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $V$ | 248 | 0.38 | 0.54 | 0.38 | 139 | 2.78 | 33.1 | 604 | 159\% | 3.0 | 3.3 | 16.4 | 3.4 | 5.7 | 32 | 7.4 |
| W | 22 | 0.40 | 0.54 | 0.40 | 112 | 2.24 | 112 | 604 | 15\% | 3.0 | 33 | 14.6 | 3.6 | 80 | 21 | 31 |
| $\boldsymbol{X}$ | 2.03 | 0.38 | 0.53 | 0.38 | 128 | 2.56 | 125 | 427 | 13\% | 3.0 | 2.3 | 14.8 | 3.5 | 5.9 | 2.7 | 6 ! |
| $\boldsymbol{Y}$ | 0.78 | 0.43 | 0.57 | 0.43 | 115 | 23 | 10.9 | 427 | 13\% | 3.0 | 23. | 133 | 3.7 | 6.2 | 7.2 | 2.8 |
| $Z$ | 0.63 | 0.40 | 0.54 | 0.40 | 56 | 2.2 | 6.4 | 0 | $1.39 \%$ | 2.3 | 0.0 | 6.4 | 4.8 | 8.1 | 1.2 | 2.7 |
| AA | 47 | 0.43 | 0.57 | 0.43 | 111 | 22 | 10.8 | 732 | 2.0\% | 3.0 | 4.0 | 14.8 | 3.5 | 59 | 7.2 | 15.9 |
| BB | 1.56 | 0.43 | 0.57 | 0.43 | 107 | 2.1 | 10.6 | 732 | $2.0 \%$ | 3.0 | 4.0 | 14.6 | 3.6 | 6.0 | 2.4 | 5.3 |
| CC | 3.12 | 0.43 | 0.57 | 0.43 | 118 | 236 | 11.1 | 261 | 4.0\% | 3.0 | 1.4 | 125 | 3.8 | 6.4 | 5.1 | 11.3 |
| DD | 1.61 | 0.40 | 0.54 | 0.40 | 83 | 4.9 | 6.8 | 590 | 1.1\% | 23 | 4.3 | $1: 1$ | 4.0 | 67 | 2.6 | 5.8 |
| EE | 129 | 0.40 | 0.54 | 0.40 | 68 | 2.7 | 72 | 111 | 20\% | 23 | 0.8 | 18 | 45 | 76 | 23 | 53 |

* Intensity equations assume a minimum travel time of 5 minutes.
${ }^{n *}$ Data from Trails at Forest Meadows Filing No, 3 Final Drainage Report (TFM 3 FDR)
\# Data from Master Development Drainage Plan Update for Woodmen Heights and Final Drainage Report for Forest Meadows Filing No. 1 \& No. 4 (MDDP)

| \#REFI |  | HREF! |
| :---: | :---: | :---: |
| $\mathrm{CA}_{5}$ | Basin | $\mathrm{CA}_{100}$ |
| 18.72 | \#OS1 Historic | 25.74 |
| 0.16 | **OS2 | 0.40 |
| 0.11 | OS4 | 0.27 |
| 0.58 | OS5 | 1.47 |
| 0.06 | OS6 | 0.15 |
| 0.84 | EX5 | 2.14 |
| 0.05 | EX6 | 0.13 |
| 0.09 | EX7 | 0.24 |
| 1.18 | EX8 | 3.00 |
| 0.82 | EX9 | 2.08 |
| 0.64 | EX10 | 1.62 |
| 0.88 | EXII | 2.24 |
| 1.22 | ** | 1.43 |
| 2.09 | ** Q | 2.45 |
| 1.65 | \#B | 1.94 |
| 0.79 | \#D | 0.92 |
| 0.74 | \#F | 0.87 |
| 0.77 | \#H | 0.90 |
| 0.79 | \#J | 0.93 |
| 0.83 | \#L | 0.98 |
| 0.91 | \#0 | 1.08 |
| 0.94 | v | 1.34 |
| 0.88 | w | 1.19 |
| 0.77 | X | 1.07 |
| 0.34 | Y | 0.44 |
| 0.25 | Z | 0.34 |
| 2.02 | AA | 2.68 |
| 0.67 | BB | 0.89 |
| 1.34 | CC | 1.78 |
| 0.64 | DD | 0.87 |
| 0.52 | EE | 0.70 |

Calculated by: ET Date: 12/9/2015 Checked by: VAS

HREF! $\mathrm{CA}_{100}$



Department of Public Works Water Resources Engineering

## repared by












Figure 2-7: NWI Wetlands Located in Sand Creek Drainage Basin (Page 4)

Hydrology


Figure 3-15. Future Land Use MapFuture Condition Model

# Appendix E Maps 

## SCHIMIDT PARCEL

## EXISTING DRAINAGE MAP



[^3]
## SCHMIDT PARCEL

## PROPOSED DRAINAGE MAP




[^0]:    Street and Pipe $C^{*} A$ values are determined by $\mathrm{Q} / \mathrm{i}$ using the catchment's intensity value.

[^1]:    Street and Pipe C*A values are determined by $\mathrm{Q} / \mathrm{i}$ using the catchment's intensity value

[^2]:    | PROJECT: |
    | :--- |
    | SILVER PONDS SUBDIVISION FILING NO. 1 |
    | TRE: |
    | DRAINAGE IMPROVEMENT DETAILS | $\stackrel{41}{\stackrel{14}{\gtrless}}$

    
    

[^3]:    LEGEND: $\qquad$
    
    
    

