PRELIMINARY DRAINAGE REPORT for HAVEN VALLEY

El Paso County, Colorado

August 2021

EL PASO COUNTY PCD FILE NO. PUDSP-21-007

Prepared for:

Richmond American Homes

4350 S. Monaco Street Denver, CO 80237 Contact: Matthew Jenkins (303) 773-1100

Prepared by:

Drexel, Barrell & Co.

3 South 7th Street Colorado Springs, CO 80905 Contact: Tim McConnell, P.E. (719) 260-0887

TABLE OF CONTENTS

1.0	CERTIFICATION STATEMENTS	1
2.0	PURPOSE	2
3.0	GENERAL SITE DESCRIPTION	2
4.0	EXISTING CONDITION HYDROLOGY SUMMARY	3
5.0	PROPOSED HYDROLOGY (RATIONAL METHOD) & HYDRAULIC SUMMARY	5
6.0	PROPOSED DETENTION/WATER QUALITY FACILITIES	8
7.0	FOUR-STEP PROCESS	9
8.0	GEOTECHNICAL HAZARDS	9
9.0	DRAINAGE & BRIDGE FEES	9
10.0	CONSTRUCTION COST ESTIMATE	10
11.0	CONCLUSIONS	11
12.0	REFERENCES	11

APPENDICES

VICINITY MAP SOILS MAP FLOODPLAIN MAP DBPS SHEET 22 HYDROLOGY CALCULATIONS HYDRAULIC CALCULATIONS DRAINAGE MAPS

PRELIMINARY DRAINAGE REPORT

for HAVEN VALLEY

Security, Colorado

1.0 CERTIFICATION STATEMENTS

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports, and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omission on my part in preparing this report.

Tim D. McConnell, P.E. Colorado P.E. License No. 33797 For and on Behalf of Drexel, Barrell & Co.

DEVELOPER'S STATEMENT

I, the developer have read and will comply with all the requirements specified in this drainage report and plan.

Business Name:

Richmond American Homes

By:

Title: Address: Matthew Jenkins Director, Land Acquisition 4350 S. Monaco Street Denver, CO 80237 Date

Date

EL PASO COUNTY

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

Jennifer Irvine, P.E. County Engineer/ECM Administrator CONDITIONS: Date

PRELIMINARY DRAINAGE REPORT for HAVEN VALLEY Security, Colorado

2.0 PURPOSE

This report is prepared by Drexel, Barrell & Co in support of the Haven Valley in Security, CO. The purpose of this report is to identify onsite and offsite drainage patterns, storm sewer, inlet locations, and areas tributary to the site, and to safely route developed storm water runoff to adequate outfall facilities.

3.0 GENERAL SITE DESCRIPTION

<u>Location</u>

Haven Valley is a 11.768 acre subdivision within the northwest quarter of Section 12, Township 15 South, Range 66 West of the 6th Principle Meridian in El Paso County, Colorado. The site is located southwest of Cable Ln and west of Hunters Run. The site is bounded on the north by Calvary Fellowship Fountain Valley church and Cable Ln, the west by Good Shepherd United Methodist church, and the south and the east by residential subdivision Pheasant Run Ranch Filing No. 1. See Vicinity Map in Appendix.

Existing Site Conditions

The site is approximately 11.768 acres in size surrounded by existing development. There are no existing structures on the site, only native grasses, a few trees and shrubs. There are no existing irrigation facilities on the project site. The project site slopes moderately from the northeast to southwest at approximately 5-7%. Existing drainage flows to the southwest where it drains overland between two houses to Pecos Drive, then south on Widefield Drive. Severe flooding has been observed between these two houses and one of the houses has experienced mold issues in the past.

Proposed Site Conditions

Haven Valley is a small lot single-family development, consisting of approximately 98 lots, streets, landscape areas and open space. A proposed full-spectrum detention pond is proposed to be constructed in an existing off-site drainage easement adjacent to the west side of the site. The flows will be released from the detention pond and be carried by pipe between the two houses and outlet via a bubbler in Widefield Drive. There is an existing drainage and utility easement located between the two houses.

<u>Soils</u>

According to the Soil Survey of El Paso County Area, Colorado, prepared by the U.S.

Department of Agriculture Soil Conservation Service, the site is underlain by the Blakeland loamy sand (Soil No. 8). This soil is a type 'A' hydrologic soil group. This type of soil typically exhibits rapid infiltration rates and slow runoff characteristics with moderate erosion potential. See appendix for Soil Map.

<u>Climate</u>

This area of El Paso County can be described as the foothills, with total precipitation amounts typical of a semi-arid region. Winters are generally cold and dry, and summers relatively warm and dry. Precipitation ranges from 12 to 14 inches per year, with the majority of this moisture occurring in the spring and summer in the form of rainfall. Thunderstorms are common during the summer months.

Floodplain Statement

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel 08041C0763G (December 7, 2018), the site does not lie within a designated 100-year floodplain. The site is in Zone X, an area of minimal flood hazard. See Appendix for FIRMette map.

Previous Drainage Studies

The site is located within the Security Drainage Basin, as studied in the Little Johnson/Security Drainage Basin Planning Study, prepared by Simons Li & Associates, Inc., 1987.

4.0 EXISTING CONDITION HYDROLOGY SUMMARY

Basin OS1 is an offsite basin to the north. This basin drains the Elm Grove Subdivision (town homes, age restricted) and several commercial buildings on the east side of Main St. and the Wilson Elementary School on the west side of Main St. The runoff path begins on Main Street near the intersection of Bradley Road, then flows southerly down Main Street via curb and gutter. The runoff at this intersection is collected by a storm sewer constructed as part of the 1993 Main Street reconstruction by El Paso County. The storm drain system conveys runoff east underground via storm sewer and discharges in to a valley gutter within the Elm Grove Subdivision. The valley gutter drains south to an existing detention pond (roughly 3-4' deep) where it is detained slightly. The pond discharges via a 24" CMP to the south. The 24" CMP is undersized for the 100-year which overtops the pond and drains into a swale which in turn drains south overland between two houses in the Security Colorado Addition 4, then south to the curb and gutter in Pecos Drive and Widefield Drive. The runoff generated by Basin OS1 is calculated to be 46.0 cfs and 88.8 cfs for the 5-year and 100-year storm respectively into the detention pond. After detention, the pond outflows are 18.1 cfs and 52.3 cfs respectively for the 5-year and 100-year storms.

Basin OS2 is an offsite basin to the north of the site. Runoff from this basin is primarily generated from roof, parking lot and vacant land. The runoff path begins on Cable Lane and generally flows southerly along the west property line until it reaches Design Point A. Design Point A collects the flow from Basin OS2 and the release from the detention pond

in Basin OS1. This flow is routed southerly through a small swale that divides Basins OS3 and H1. The calculated runoff from Basin OS2 is 11.8 cfs and 21.5 cfs for the 5-year and 100-year storm respectively.

Design Point A. The drainage swale previously mentioned conveys the flow from Design Point A to Design Point B. The calculated flow at Design Point A is 29.9 cfs and 73.8 cfs for the 5-year and 100-year storm respectively. This flow includes detained flow from the Elm Grove pond and from Basin OS-2 which is conveyed south in an existing swale to a historic low point just north of Security Colorado Addn. No. 4 (Des. Pt. B).

Basin OS3 is an offsite basin to the west of the site. Runoff from this basin is generated from roof, street, parking lot and vacant land. The runoff path flows southerly down Main Street via curb and gutter and then easterly onto Leta Drive. The flow then continues south through a parking lot until it empties onto vacant land, then travels to the southeast to Design Point B. Design Point B collects the flow from all basins; OS1, OS2, OS3 and H1 and drains them overland between two houses in the Security Colorado Addition 4, then south to the curb and gutter in Pecos Drive and Widefield Drive. Severe flooding between these houses has been observed on numerous occasions in the past. The calculated runoff from Basin OS3 is 15.6 cfs and 37.4 cfs for the 5-year and 100-year storm respectively.

Basin H1 is an onsite basin which drains the site plus street runoff from Alturas Drive and Cable Lane. The east half of Alturas Drive drains is not included in this basin which drains overland eastward into the Windmill Creek Subdivision per the approved drainage report by Jefferies Engineering, October 10, 2001. Runoff from the undeveloped lot west of Alturas Drive is currently collected in a swale west of the ROW and directed south into a detention pond which outlets into the FMIC superditch. Future conditions for this undeveloped lot will need to remain the same as existing since additional runoff down Alturas would severely affect downstream properties. Runoff from Alturas Drive is included in this basin per existing conditions. The runoff path for Basin H1 begins near the intersection of Alturas Drive and Bradley Road (west half), and then flows southwesterly via an asphalt curb southward and over the top of the FMIC superditch. The flow then crosses Cable Lane and generally flows southwesterly through vacant land to Design Point B. The calculated runoff for Basin H1 is 69 cfs and 30.4 cfs for the 5 year and 100 year storm Please detail which side(s) of these roads the flow is directed to so it can be compared to the

Design Point B includes flow from Design Point A, Basin OS-3, and H1. Design Point B discharges through the Security Colorado Addition No. 4 Refile Subdivision overland between two houses, then south to curb and gutter Pecos Drive and Widefield Drive. The total flow at Design Point B is 46.1 cfs and 129.0 cfs for the 5-year and 100-year storm respectively between the two houses. Both of these two homeowners have indicated that they have experienced severe flooding of the backyard and crawl spaces of their homes.

Basin OS4 is an offsite basin to the west of the site including Main Street and a portion of land west of Main Street. Runoff from this basin is generated from roof, street, and parking lot. The runoff path flows southerly down Main Street via curb and gutter to the intersection of Pecos Drive. An existing storm sewer system was constructed in 1993 as part of the 1993 Main Street reconstruction project by El Paso County. The storm system picks up street flow and discharges it to a 15' bubbler located just east of the intersection of Pecos Drive and Please detail which side(s) of these roads the flow is directed to so it can be compared to the proposed condition.

Main Street. From the bubbler, all runoff is carried overland east to Widefield Drive (Design Pt C), then south on Widefield Drive via curb and gutter. There is no existing storm sewer system within Pecos or Widefield Drive. The calculated runoff from Basin OS4 is 39.6 cfs and 82.3 cfs for the 5-year and 100-year storm respectively. The existing street capacity of Widefield Drive (0.54% street slope) as it flows south from Pecos Drive is 12 cfs and 54 cfs for the 5-year and 100-year storm respectively. As shown, the flow from this basin alone exceeds the street capacity of Widefield Drive.

Design Point C is located at the intersection of Pecos Drive and Widefield Drive and includes flow from Design Point B and Basin OS-4. At Design Point C the existing flow with detention from the Elm Grove pond is 80.3 cfs and 200.0 cfs for the 5-year and 100-year storm respectively, which is all overland flow. The existing street capacity of Widefield Drive as it flows south (0.54% street slope) from Pecos Drive is 12 cfs and 54 cfs for the 5-year and 100-year storm events. As shown, the existing street capacity is severely exceeded in existing conditions which is echoed by the residents in this area experiencing chronic flooding at this intersection. This development is proposing to reduce the flooding issues in this area which will be discussed later in this report.

5.0 PROPOSED HYDROLOGY (RATIONAL METHOD) & HYDRAULIC SUMMARY

The Rational Method was used to determine runoff quantities for the 5- and 100-year storm recurrence intervals. Urban Drainage UD-Detention and Flowmaster were used to determine pond and storm system sizing. UD-Inlet and UD-Sewer were also used to identify pond and storm system sizing (see appendix for calculations). See below for a summary runoff table of the basins and for descriptions of each design point. See appendix for Proposed Drainage Map showing the proposed drainage basin locations.

BASIN	AREA (AC)	Q5 (cfs)	Q100 (cfs)
A	0.44	0.5	1.5
OS-1	16.90	46.0	88.8
OS-2	2.85	11.8	21.5
В	1.42	3.2	6.6
С	3.43	6.4	14.0
D	0.98	1.2	3.5
E	1.59	3.1	6.7
F	3.29	6.9	15.3
G	0.83	1.0	3.0
OS-3	9.74	15.6	37.4
Н	1.77	2.4	6.1
OS-4	20.04	39.6	82.3

Rational Method Runoff Summary

Design Point 1 (DP-1) represents flows generated from existing Elm Grove pond release in

revise to private

offsite basin OS-1, as well as flows from offsite basin OS-2 and onsite Basin A. The flows are conveyed via a swale and are then captured by a proposed public Double Type D area inlet. The flows leave this inlet via a proposed public 36" RCP storm pipe and are conveyed to the proposed Extended Detention Basin to the south. The total flow at DP-1 is 28.1 cfs and 71.0 cfs for the 5-year and 100-year storm respectively. The Double Type D area inlet can capture all of the DP-1 flows.

Design Point 2 (DP-2) represents flows generated from onsite Basin B. The flows are captured by a proposed private at-grade 5' Type R inlet in Basin B. The flows leave this inlet via a proposed private 18" RCP storm pipe and are carried south to DP-J1. The total flow at DP-2 is 3.2 cfs and 6.6 cfs for the 5-year and 100-year storm respectively.

Design Point 3 (DP-3) represents flows generated from Basin C. The flows are captured by a proposed private at-grade 15' Type R inlet in Basin C. The flows leave this inlet via a proposed private 24" RCP storm pipe and are carried west to DP-J1. The total flow at DP-3 is 6.4 cfs and 14.0 cfs for the 5-year and 100-year storm respectively.

Design Point J1 (DP-J1) represents flows generated from Basins B and C. This design point is located at a proposed junction with a Type II manhole in Basin C. The flows leave this manhole via a proposed private 24" RCP storm pipe and are carried south to DP-J3. The total flow at DP-J1 is 9.5 cfs and 20.3 cfs for the 5-year and 100-year storm respectively.

Design Point 4 (DP-4) represents flows generated from Basin D. The flows are conveyed via a swale and are then captured by a proposed private sump condition Type C area inlet in Basin D. The flows leave this inlet via a proposed private 18" RCP storm pipe and are carried west to DP-J2. The total flow at DP-4 is 1.2 cfs and 3.5 cfs for the 5-year and 100-year storm respectively.

Design Point 5 (DP-5) represents flows generated from Basin E, which includes a portion of Cable Ln as shown on the proposed drainage map in the Appendix. The flows are captured by a proposed private at-grade 5' Type R inlet in Basin E. The flows leave this inlet via a proposed private 18" RCP storm pipe and are carried south to DP-J2. The total flow at DP-5 is 3.1 cfs and 6.7 cfs for the 5-year and 100-year storm respectively. Cable Lane is an existing public two-lane paved roadway. As part of this project, the roadway will be widened and curb and gutter added. Basin E will collect runoff from a portion the existing and proposed Cable Lane. The remainder of the roadway drainage will follow historic patterns.

Design Point J2 (DP-J2) represents flows generated from Basins D and E. This design point is located at a proposed junction with a Type II manhole in Basin E. The flows leave this manhole via a proposed private 18" RCP storm pipe and are carried west to DP-J3. The total flow at DP-J2 is 4.3 cfs and 10.0 cfs for the 5-year and 100-year storm respectively.

Design Point J3 (DP-J3) represents flows generated from Basins B, C, D and E. This design point is located at a proposed junction with a Type II manhole in Basin F. The flows leave this manhole via a proposed private 24" RCP storm pipe and are carried west to DP-6. The total flow at DP-J3 is 13.5 cfs and 29.8 cfs for the 5-year and 100-year storm respectively.

Unresolved comment from Review 1: See ECM Appendix I.7.1.C.1 - it is only acceptable for 1 acre to not be captured for water quality control. Please address this in regards to Basin H in the report text.

Review 2 clarification: another option is to show runoff reduction calcs for this basin. See MHFD UD-BMP spreadsheet for calc assistance/go-by.

Design Point 6 (DP-6) represents flows generated from Basins B, C, D, E and F. The flows are captured by a proposed private sump 15' Type R inlet in Basin F. The flows leave this inlet via a proposed private 24'' RCP storm pipe and are carried west to the proposed Extended Detention Basin. The total flow at DP-6 is 19.2 cfs and drainage plant and 100-year storm respectively.

Design Point 7 (DP-7) represents flows generated from Basin G only. The flows from the existing Elm Grove pond release are captured by the area inlet it Basin A as discussed under DP-1. The flows are captured by a proposed swale and are carried to the proposed Extended Detention Basin. The total flow at DP-7 is 1.0 cfs and 3.0 cfs for the 5-year and 100-year storm respectively.

revise to private

Design Point P1 (DP-P1) represents all of the flows generated from Basins OS-1, Exist. Elm Pond release and Basins A through G. These are all of the flows that are captured by the proposed Extended Detention Basin. Further detail is provided on the EDB in the following section of this report. The total flows at DP-P1 is 63.1 cfs and 152.1 cfs for the 5-year and 100-year storm respectively.

Design Point 8 (DP-8) represents flows generated from Basin H. OS-5 and OS-6 combined with the released flows from the proposed EDB. The flows are conveyed via a swale and are then captured by a proposed public sump condition Type C area inlet in Basin H. The flows leave this inlet via a proposed public 24" RCP storm pipe and are carried south to DP-J4. By piping these flows between the two houses, flooding for these two existing residences will be eliminated in this area. In the event of a storm event that overtops the EDB spillway, a concrete channel is proposed between the two existing residences to help prevent flooding. The concrete channel is to be 2.5' high x 6.5' wide and is directly over the 24" RCP pipe below. The total flow at DP-8 is 2.3 cfs and 21.5 cfs for the 5-year and 100-year storm respectively.

Page 5 above indicates the street

Design Point O4 (DP-O4) represents flows general capacity as 54 cfs (100yr) yet the flow of at-grade 15' Type R inlet is to be installed on exit going south is 62 cfs. It does not appear that the roadway can handle the 100yr, but will capture some and improve the flooding the flows. Please revise accordingly is area. The total flow at DP-O4 is 39.6 cfs and 82.3 cfs for the 5-year and 100-year storm respectively. The proposed 15' Type R inlet can capture approximately 20 cfs. The remaining approximate 62 cfs will continue to the south along Widefield Drive along historic drainage routes as outlined in the DBPS. The street capacity of Pecos Dr. and Widefield Dr. can handle the 100-yr flows, but not the 5-yr flows.

Identify the depth of flow along widefield int J4 (DP-J4) represents flows generated from Basins H, OS-4, OS-5, OS-6 and drive the flows released from the proposed EDB. This design point is located at a proposed junction with a Type I manhole in Basin OS-4. The total flow at DP-J4 is 41.9 cfs and 103.8 cfs for the 5-year and 100-year storm respectively. The flows leave this manhole via a proposed public 34"x 53" elliptical RCP storm pipe and are carried south where they will outlet via a proposed 25' Type R inlet to be used as a bubbler in Widefield Drive and continue to the south along historic drainage routes as outlined in the DBPS. The bubbler inlet will serve to release the developed upstream flows into Widefield Drive as street flow at the end of the storm sewer system. The inlet will fill and overtop/exit the inlet throat into Review 1: Please also provide the flow being conveyed by Widefield drive and the flows that is ance

being piped to the proposed 25' bubbler.

Review 2: Per the information provided above it appears that 62 cfs is conveyed by Widefield drive and 41.8 cfs is conveyed by the 34x53" RCP. Please confirm and indicate the flow that is being conveyed by the pipe and the flow conveyed by Widefield drive in your narrative.

flows and allow the inlet to drain after filling. $\not\vdash$

Describe plan to keep this small pipe from clogging. The upstream bubbler at Pecos and Main is a constant maintenance issue, always clogging with the sediment/muck that settles out in the inlet/bubbler. That amount of maintenance is unacceptable.

None of the proposed streets exceed capacity, see Appendix for Street Capacity Charts. See also inlet capacity charts for inlet sizing in the Appendix to identify whether or not any

of the storm infrastructure within Widefield

6.0 PROPOSED DETENTION/WATER QUALITY FACILITIES

The proposed private full spectrum Extended Detention Basin (EDB) is located southwest of the project site within a 1.29 acre drainage easement. This detention pond will fulfill on-site detention needs as well as providing detention for upstream properties, since there is a lack up detention facilities upstream which has caused chronic flooding issues between the two residences that the flows currently pass between on their way to Widefield Dr. The 1.29 acre easement is proposed to be a private drainage/detention easement and the pond to be maintained by Homeowners Association. The Security DBPS does not address the need for a pond in this area, rather if shows roughly 188 cfs (100-year storm) passing between the two houses with only a 24" storm sewer and no swale to convey the flow. The developed peak 100-year flow calculated in this report is 152.1 cfs at this location. The difference in flow is attributed to the DBPS bypassing Elm Grove Pond. The proposal shown in the DBPS does not work and will flood the two residences. Even though the DBPS does not adequately address flooding issues in this area, we are proposing to construct a facility ne necessary to detain runoff from our project site c

The proposed detention facility has been design 2, OS-3 and Basins A through G. A total of 41.47 acres is tributary to this EDB with a composite imperviousness of 57.8%. The required pond volume for 100-year detention is 4.409 acre-feet. The actual pond volume will be 4.542 acre-feet. Concrete forebays with energy dissipaters will be placed where the flows enter the pond on the northeast and the east sides of the pond. The combined volume of the two forebays will be 3% of the WQCV volume for the pond and will be divided proportionally. The flows will exit the forebays through a notch and into the concrete trickle channel at the bottom of the pond that conveys the flows to the micropool. It will capture then release the flows at a reduced flow rate with the use of a plate with orifice holes into a proposed 18" pipe with a restrictor plate. The 18" pipe continues to the south, between the two existing residences, and outfalls into a bubbler in Widefield Dr. where they continue in historic patterns to the south.

In accordance with El Paso County criteria, the modified Type C outlet structure with a permanent micropool will release the WQCV over a 40-hour period. The outlet structure will result in release rates of 0.9 cfs and 17.6 cfs for the 5-year and 100-year storm respectively.

A 30-ft wide riprap emergency spillway will be located on the south side of the pond. In the event that water overtops the spillway, flow will discharge into a 2.5' high x 6.5' wide concrete channel between the two residences before discharging into Widefield Dr. curb and gutter and continuing to the south.

Provide calculation of this channel conveying the 100yr flow, forebay volumes, micropool Staff has to ensure that the 100yr undetained flow overtopping the spillway will be conveyed to this channel and contained within this channel before approving this design. Additionally, how is the discharge from the channel addressed? is riprap proposed from the channel to the back of the sidewalk? Stabilized access ramp shall be a minimum of 15ft wide and no greater than 12% slope, in accordance with DCMv1, Chap 11.2.2

sizing, outlet structure design, dishcharge pipe and spillway design.

The pond will have a 10' wide maintenance access that will provide access to the pond bottom. Private maintenance agreements and O&M manuals will be established for this pond as required by the County.

7.0 FOUR-STEP PROCESS

This project conforms to the City of Colorado Springs/El Paso County Four Step Process. The process focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls.

- 1. **Employ Runoff Reduction Practices:** Proposed impervious areas on this site (roofs, asphalt/sidewalk) will sheet flow across landscaped ground as much as possible to slow runoff and increase time of concentration prior to being conveyed to the proposed public streets and storm sewer system. This will minimize directly connected impervious areas within the project site.
- 2. Implement BMP's that provide a Water Quality Capture Volume with slow release: Runoff from this project will be treated through capture and slow release of the WQCV in a permanent Extended Detention Basin facility designed per current City of Colorado Springs/El Paso County drainage criteria.
- 3. **Stabilize Drainage Ways:** Flows from the pond are released into Widefield Dr. curb and gutter and no stabilization will be necessary.
- 4. **Implement Site Specific and Other Source Control BMP's:** The site is proposed as a residential development, and as such standard household source control will be utilized in order to minimize potential pollutants entering the storm system. Example source control measures consist of: garages for storage of household chemicals, trash receptacles for individual households and in common areas for pet waste. The need for Industrial and Commercial BMP's was considered, however per ECM 1.7.2.A the need for industrial and commercial BMPs are not applicable for this project.

8.0 GEOTECHNICAL HAZARDS

In accordance with geotechnical recommendations, the project design is intended to direct runoff away from structures at a minimum slope of six inches over ten feet, and into the receiving water quality basin. This will be accomplished by a variety of means, i.e. curb and gutter and storm sewer.

9.0 DRAINAGE & BRIDGE FEES

Drainage and Bridge Fees

The project lies within the Security Drainage Basin and is previously un-platted. The following fees are required at time of plat recordation:

Impervious area = 11.768 acres x 58.1% = 6.84 acres

Drainage Fees

\$19,752 x 6.84 Impervious Acres = \$135,103.68

Bridge Fees

None

Reimbursement for construction of some of the drainage facilities for Haven Valley and the storm sewer outfall in accordance with DCM Section 3.3, is anticipated as identified by the Little Johnson/Security Drainage Basin Planning Study. See Appendix for Sheet 22 of this DBPS for the reimbursable facilities. Construction costs are listed below and the drainage fee is requested to be adjusted accordingly.

10.0 CONSTRUCTION COST ESTIMATE

Private (Non-Reimb	ursable)		
Description	Quantity	Unit Cost	Cost
Type C Area Inlet	1 EA	\$4,800/EA	\$4,800
5' Type R Inlet	2 EA	\$5,700/EA	\$11,400
15' Type R Inlet	2 EA	\$10,300/EA	\$20,600
Type II Manhole	3 EA	\$5,000/EA	\$15,000
18" RCP storm	865 LF	\$67/LF	\$57,955
24" RCP storm	180 LF	\$81/LF	\$14,580
		Subtotal	\$124,335
	Engineering	& Contingency (10%)	<u>\$12,434</u>
\sim	\sim	TOTAL	\$136,769
			•
Public/Private (Reim	nbursable) 🖌		
<u>Description</u>	Quantity	Unit Cost	Cost
Type C Area Inlet	↓ ↓ I EA	\$4,800/EA	\$4,800
Double Type D Area	i Inlet 刘 1 EA	\$11,800/EA	\$11,800
15' Type R Inlet)1 EA	\$10,300/EA	\$10,300
25' Type R Inlet)1 EA	\$15,000/EA	\$15,000
Type I Manhole	3 EA	\$7,000/EA	\$21,000
18'' RCP storm)65 LF	\$67/LF	\$4,355
24'' RCP storm) 105 LF	\$81/LF	\$8,505
36" RCP storm	385 LF	\$124/LF	\$47,740
48" RCP storm	315 LF	\$184/LF	\$2,760
34"x53" elliptical RC	P 330 LF	\$184/LF	\$60,720
Water Quality/Deter	ntion Pond 31 EA	\$50,000/LS	\$50,000
mm	un	Subtotal	\$236,980
	Engineering	& Contingency (10%)	<u>\$23,698</u>
			\$040 478
	Only items identified in the	DBPS would be remabur	sable.0,0,0
	Please revise the list accor	dingly. Alternatively it ma	ay be
	infractructure will be determ	reinbursable storm	ao hut
	place revise the title se the	nineu al the linal plat sta	
	piease revise the title so the	at it does not imply that a	

11.0 CONCLUSIONS

The Haven Valley project has been designed in accordance with El Paso County criteria. The detention pond and water quality basin have been designed to limit the release of storm runoff to historic flows. This development will not negatively impact the downstream facilities.

12.0 REFERENCES

The sources of information used in the development of this study are listed below:

- 1. City of Colorado Springs/El Paso County Drainage Criteria Manual, May 2014.
- 2. Urban Storm Drainage Criteria Manuals, Urban Drainage and Flood Control District. June 2001, Revised April 2008.
- 3. Preliminary & Final Drainage Report for Patriot Village. Prepared by Core Engineering Group, LLC, December 2013.
- 4. Natural Resources Conservation Service (NRCS) Web Soil Survey
- 5. Federal Emergency Management Agency, Flood Insurance Rate Map, El Paso County, Colorado and Unincorporated Areas, Map Number 08041C0763G, Effective Date December 7, 2018
- 6. EL Paso County Board Resolution No 15-042: El Paso County adoption of Chapter 6 and Section 3.2.1, Chapter 13 of the City of Colorado Springs Drainage Criteria Manual, May 2014.
- 7. Little Johnson/Security Drainage Basin Planning Study. Prepared by Simons Li & Associates, Inc., 1988.
- 8. Soil Investigation Report for Patriot Village. Prepared by Colorado Enginering & Geotechnical Group, Inc., November 15, 2004.

APPENDIX

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	12.7	100.0%
Totals for Area of Intere	st		12.7	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified

USDA

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) Zone A. V. A9 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D - — – – Channel, Culvert, or Storm Sewer GENERAL STRUCTURES LIIII Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation **AREAOF MINIMAL FLOOD HAZARD** EL PASO COUNTY **Coastal Transect** Mase Flood Elevation Line (BFE) Limit of Study Jurisdiction Boundary **Coastal Transect Baseline** OTHER **Profile Baseline** 08041C0763G FEATURES Hydrographic Feature eff. 12/7/2018 **Digital Data Available** No Digital Data Available SITE MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 4/8/2021 at 1:19 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

Feet 1:6,000 2.000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

104°43'49"W 38°45'46"N

n

250

500

104°44'26"W 38°46'14"N

080059

1,000

			Re	eview 1 co	mment: E	I Paso C	ounty.	
PROJECT IN	FORMATION	N		evise acco	prdingly th	roughout		
PROJECT:	Haven Valle	ey 🖊						
PROJECT NO:	21085-03			D		TILO		
DESIGN BY:	SBN			Review 1	commen	t: l able 6-	6 of Chrex	, Barrell & Co.
REV. BY:	TDM			should be	e referenc	ed. It app	ears that	the
AGENCY:	City of Colo	rado Springs		coefficien	ts shown	in the tab	le match	
REPORT TYPE:	Final			those sho	wn on ta	ble 6-6		
DATE:	4/29/2021			Review 2				
Soil Type: A					. Onesoi	veu		
				C2*	C5*	C10*	C100*	% IMPERV
Pasture/Meadow	1				0.08		0.35	0
Commercial					0.00		0.00	95
1/8 Acre Resider	ntial				0.01		0.50	65
Acabalt/Sidowal	L				0.40		0.00	100
Aspilali/Sidewal					0.90		0.90	100
*C-Values and Basin Im	perviousness based o	n Table 5-1. Citv of	Colorado Springs	s "Drainage Criteria	a Manual"			
FXISTING		,,,,,,		g				
SUB-BASIN	SURFACE DE	SIGNATION	AREA	COMPOSITE		EFFICIENTS		% IMPERV
			ACRE	C2	C5	C10	C100	
OS-1	Pasture/Meade	w	0.00		0.08		0.35	0
	Commercial		8.10		0.81		0.88	95
	1/8 Acre Resid	lential	7.20		0.45		0.59	65
	Asphalt/Sidew	alk	1.60		0.90		0.96	100
	WEIGHTED A	VERAGE			0.67		0.76	83%
TOTAL OS-1			16.90					
OS-2	Pasture/Meado	w	0.00		0.08		0.35	0
	Commercial		2.85		0.81		0.88	95
	1/8 Acre Resid	lential	0.00		0.45		0.59	65
	Asphalt/Sidew	alk	0.00		0.90		0.96	100
	WEIGHTED A	VERAGE			0.81		0.88	95%
TOTAL OS-2		_	2.85					
OS-3	Pasture/Meado	w	4.93		0.08		0.35	0
	Commercial		4.05		0.81		0.88	95
	1/8 Acre Resid	lential	0.76		0.45		0.59	65
	Asphalt/Sidew	alk	0.00		0.90		0.96	100
			0.00		0.00		0.50	150
	WEIGHTEDA	VERAGE	0.74		0.41		0.09	45%
101AL 05-3			9.74					
08-4	Pasturo/Moad	2)4/	0.00		0.08		0.35	0
00-4	Commercial	Jvv	4.20		0.00		0.33	05
		lantial	4.20		0.01		0.00	95
	1/o Acre Resid		15.04	-	0.45		0.59	00
	Asphalt/Sidew	aik	0.00		0.90		0.90	100
	WEIGHTED A	VERAGE	00.04		0.53		0.05	/1%
101AL 05-4			20.04					
H-1	Pasture/Mead	WC	12 03		0.08		0 35	0
11-1	Commorcial		0.00		0.00		0.00	05
		lantial	0.00		0.01		0.00	90 65
			0.39		0.45		0.59	00
	Asphalt/Sidew		1.02		0.90		0.96	100
		VERAGE	40.44		0.15		0.40	9%
IUIAL H-1			13.44					
TOTAL SITE			60.07		0.40		0.60	E0 40/
IUTAL SITE			02.97		U.4ŏ		0.03	30.1%

PROJECT:	Haven Valley
PROJECT NO:	21085-03
DESIGN BY:	SBN
REV. BY:	TDM
AGENCY:	City of Colorado Springs
REPORT TYPE:	Final
DATE:	4/29/2021

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF EXISTING TIME OF CONCENTRATION STANDARD FORM SF-2

	:	SUB-BASI	N		INITIAL/OVERLAND			TRAVEL TIME				TIME OF CONC.		FINAL		
		DATA				TIME (t _i)			(t _t)				tc		t _c	
BASIN	DESIGN PT:	C ₅	C ₁₀₀	AREA	LENGTH	HT	SLOPE	ti	LENGTH	HT	SLOPE	VEL.	t	COMP.	MINIMUM	
				Ac	Ft	FT	%	Min	Ft	FT	%	FPS	Min	t _c	tc	Min
OS-1		0.67	0.76	16.90	100	2	2.0	6.5	1600	26	1.6	7.4	3.6	10.1	5	10.1
OS-2		0.81	0.88	2.85	100	2	2.0	4.3	400	13	3.3	10.6	0.6	4.9	5	5.0
	А	0.69	0.78	19.75										10.1	5	10.1
OS-3		0.41	0.59	9.74	100	2.5	2.5	9.5	1200	34	2.8	9.8	2.0	11.5	5	11.5
H-1		0.15	0.40	13.44	100	2	2.0	14.1	1600	73	4.6	12.5	2.1	16.2	5	16.2
	В	0.32	0.52	26.03					700	20	2.9	5.28	2.2	16.2	5	16.2
OS-4		0.53	0.65	20.04	100	2	2.0	8.5	2000	41	2.1	8.48	3.9	12.5	5	12.5
	С	0.41	0.58	46.07					100	1	1	3.10	0.5	16.7	5	16.7

PROJECT:		
PROJECT NO:		
DESIGN BY:		
REV. BY:		
AGENCY:		
REPORT TYPE:		
DATE:		

Haven Valley 21085-03 SBN TDM City of Colorado Springs Final 4/29/2021

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

EXISTING	RUNOFF	UNOFF 5 YR STORM				P1=	1.50
			DIRECT RUNC	DFF			
BASIN (S)	DESIGN POINT	AREA (AC)	RUNOFF COEFF	t _c (MIN)	C * A	I (IN/HR)	Q (CFS)
OS-1		16.90	0.67	10.1	11.24	4.09	46.0
Exist. Elm Grove Pond Release							18.1
OS-2		2.85	0.81	5.0	2.31	5.10	11.8
	A						29.9
OS-3		9.74	0.41	11.5	4.02	3.88	15.6
H-1		13.44	0.15	16.2	2.06	3.34	6.9
	В	26.03	0.32	16.2	8.38	3.34	46.1
OS-4		20.04	0.53	12.5	10.53	3.76	39.6
	C	46.07	0.41	16.7	18.91	3.29	80.3

Drexel, Barrell & Co.

PROJECT:	Haven Valley
PROJECT NO:	21085-03
DESIGN BY:	SBN
REV. BY:	TDM
AGENCY:	City of Colorado Springs
REPORT TYPE:	Final
DATE:	4/29/2021

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

EXISTING	RUNOFF	10	00 YR STOF		P1=	2.52	
			DIRECT RUNC	DFF			
BASIN (S)	DESIGN POINT	AREA (AC)	RUNOFF COEFF	t _c (MIN)	C * A	I (IN/HR)	Q (CFS)
OS-1		16.90	0.76	10.1	12.91	6.88	88.8
Exist. Elm Grove Pond Release							52.3
OS-2		2.85	0.88	5.0	2.51	8.58	21.5
	Α						73.8
OS-3		9.74	0.59	11.5	5.74	6.52	37.4
H-1		13.44	0.40	16.2	5.42	5.62	30.4
	В	26.03	0.52	16.2	13.67	5.62	129.0
OS-4		20.04	0.65	12.5	13.04	6.31	82.3
	С	46.07	0.58	16.7	26.71	5.53	200.0

PROJECT INF	ORMATIO	Ν						
PROJECT:	Haven Valle	ey						
PROJECT NO:	21085-03							
DESIGN BY:	SBN						Drexe	I, Barrell & Co.
REV. BY:	TDM							
	El Paso Col	unty						
	Filiai 8/19/2021							
Soil Type: A	0/10/2021							
				C2*	C5*	C10*	C100*	% IMPERV
Pasture/Meadow					0.08		0.35	0
1/8 acre Residenti	al				0.00		0.59	65
Asphalt/Sidewalk	~.				0.90		0.96	100
					0.00		0.00	
*C-Values and Basin Imper	rviousness based o	n Table 6-6, El Pas	o County "Draina	age Criteria Manual"	1			
PROPOSED								
SUB-BASIN	SURFACE DE	SIGNATION	AREA	COMPOSITE	RUNOFF CO	EFFICIENTS		% IMPERV
			ACRE	C2	C5	C10	C100	
Α	Pasture/Meade	w	0.20		0.08		0.35	0
	1/8 acre Resid	ential	0.24		0.45		0.59	65
	Asphalt/Sidew	alk	0.00		0.90		0.96	100
	WEIGHTED A	VERAGE			0.28		0.48	35%
TOTAL A			0.44					
В	Pasture/Mead	w	0.00		0.08		0.35	0
	1/8 acre Resid	ential	1.11		0.45		0.59	65
	Asphalt/Sidew	alk	0.31		0.90		0.96	100
	WEIGHTED A	VERAGE			0.55		0.67	73%
TOTAL B			1.42					
C	Pasture/Mead	w	0.32	_	0.08		0.35	0
	1/8 acre Resid	ential	2.69	-	0.45		0.59	65
	Asphalt/Sidew		0.42		0.90		0.96	100
TOTAL C		VERAGE	3 / 3		0.47		0.01	03%
D	Pasture/Mead	w	0.40		0.08		0.35	0
	1/8 acre Resid	ential	0.55		0.45		0.59	65
	Asphalt/Sidew	alk	0.00		0.90		0.96	100
	WEIGHTED A	VERAGE			0.29		0.48	36%
TOTAL D			0.98					
E	Pasture/Meade	W	0.12		0.08		0.35	0
	1/8 acre Resid	ential	1.27	_	0.45		0.59	65
	Asphalt/Sidew	alk	0.20		0.90		0.96	100
τοτλί ε	WEIGHTEDA	VERAGE	1 50		0.40		0.02	04 %
F	Pasture/Mead	ow.	0.00		0.08		0.35	0
-	1/8 acre Resid	ential	3.81		0.45		0.59	65
	Asphalt/Sidew	alk	0.00		0.90		0.96	100
	WEIGHTED A	VERAGE			0.45		0.59	65%
TOTAL F			3.81					
G	Pasture/Meade	w	0.40		0.08		0.35	0
	1/8 acre Resid	ential	0.44	_	0.45		0.59	65
	Asphalt/Sidew	alk	0.00	-	0.90		0.96	100
	WEIGHTED A	VERAGE	0.94		0.27		0.48	34%
H	Pasturo/Moad	214/	0.04		0.08		0.35	0
	1/8 acre Resid	ential	0.47		0.00		0.59	65
	Asphalt/Sidew	alk	0.00		0.90		0.96	100
	WEIGHTED A	VERAGE			0.20		0.43	21%
TOTAL H			0.69					
TOTAL			13.20		0.43		0.58	57.9%
			25 10		0.47		0 62	58 በ%
		1	20.10	1	1 0.71		J.UZ	1 00.070

PROJECT:	Haven Valley
PROJECT NO:	21085-03
DESIGN BY:	SBN
REV. BY:	TDM
AGENCY:	El Paso County
REPORT TYPE:	Final
DATE:	8/19/2021

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF PROPOSED TIME OF CONCENTRATION STANDARD FORM SF-2

SUB-BASIN					INITIAL/OVERLAND			TRAVEL TIME				PIPE TRAVEL TIME				TIME OF CONC.		FINAL		
		DATA			TIME (t _i)					(t _t)					(t _p)			t _c	:	t _c
BASIN	DESIGN PT:	C ₅	C ₁₀₀	AREA	LENGTH	HT	SLOPE	ti	LENGTH	HT	SLOPE	VEL.	t	LENGTH	SLOPE	VEL.	tt	COMP.	MINIMUM	
				Ac	Ft	FT	%	Min	Ft	FT	%	FPS	Min	Ft	%	FPS	Min	t _c	t _c	Min
A	1	0.28	0.48	0.44	100	8	8.0	7.7	350	14	4.0	6.2	0.9					8.6	5	8.6
OS-1		0.67	0.76	16.90	100	2	2	6.5	1600	26	1.6	7.4	3.6					10.1	5	10.1
OS-2		0.81	0.88	2.85	100	2	2	4.3	400	13	3.3	10.6	0.6					4.9	5	5.0
В	2	0.55	0.67	1.42	100	2	2.0	8.2	1300	57.0	4.4	12.3	1.8					10.0	5	10.0
С	3	0.47	0.61	3.43	100	2	2.0	9.3	250	11	4.4	6.5	0.6	600	3.3	10.6	0.9	10.9	5	10.9
	J1	0.49	0.63	4.85										5	0.5	3.4	0.0	10.9	5	10.9
D	4	0.29	0.48	0.98	100	7	7.0	7.9	250	9	3.6	5.9	0.7					8.6	5	8.6
Е	5	0.48	0.62	1.59	100	2	2.0	9.2	600	22	3.7	11.3	0.9					10.1	5	10.1
	J2	0.41	0.57	2.57										5	0.5	3.4	0.0	10.1	5	10.1
	J3	0.46	0.61	7.42										450	2.2	7.2	1.0	11.2	5	11.2
F		0.45	0.59	3.81	100	10	10.0	5.6	600	14	2.3	8.9	1.1					6.8	5	6.8
	6	0.46	0.60	11.23										110	2.7	12.6	0.1	11.3	5	11.3
G	7	0.27	0.48	0.84	100	9	9.0	7.4										7.4	5	7.4
OS-3		0.41	0.59	9.74	100	2.5	2.5	9.5	1200	34	2.8	9.8	2.0					11.5	5	11.5
	P1	0.47	0.62	25.10														11.5	5	11.5
н	8	0.20	0.43	0.69	100	5	5.0	9.9	800	16	2.0	4.4	3.0					12.9	5	12.9
OS-4	O4	0.53	0.65	20.04	100	2	2	8.5	2000	41	2.1	8.5	3.9					12.5	5	12.5

PROJECT INFORMATION	
PROJECT:	Haven Valley
PROJECT NO:	21085-03
DESIGN BY:	SBN
REV. BY:	TDM
AGENCY:	El Paso County
REPORT TYPE:	Final
DATE:	8/19/2021

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

PROPOSED	RUNOFF	:	SYR STOR		P1=	1.50	
			DIRECT RUNG	DFF			
BASIN (S)	DESIGN POINT	AREA (AC)	RUNOFF COEFF	t _c (MIN)	C * A	I (IN/HR)	Q (CFS)
A		0.44	0.28	8.6	0.12	4.34	0.5
OS-1		16.90	0.67	10.1	11.24	4.09	46.0
Exist. Elm Grove Pond Release							18.1
OS-2		2.85	0.81	5.0	2.31	5.10	11.8
	1	3.29	0.74	10.1	2.43	4.09	28.1
В	2	1.42	0.55	10.0	0.78	4.11	3.2
С	3	3.43	0.47	10.9	1.61	3.96	6.4
	J1	4.85	0.49	10.9	2.39	3.96	9.5
D	4	0.98	0.29	8.6	0.28	4.33	1.2
E	5	1.59	0.48	10.1	0.76	4.08	3.1
	J2	2.57	0.41	10.1	1.04	4.08	4.3
	J3	7.42	0.46	11.2	3.44	3.93	13.5
F		3.81	0.45	6.8	1.71	4.69	8.0
	6	11.23	0.46	11.3	5.15	3.91	20.1
G	7	0.84	0.27	7.4	0.23	4.55	1.0
OS-3		9.74	0.41	11.5	4.02	3.88	15.6
	P1	25.10	0.47	11.5	11.83	3.88	64.0
POND RELEASE							0.9
H		0.69	0.20	12.9	0.14	3.70	0.5
OS-5		0.15	0.45	12.9	0.07	3.70	0.2
OS-6	-	0.41	0.45	12.9	0.18	3.70	0.7
	8						2.3
US-4	04	20.04	0.53	12.5	10.53	3.76	39.6
	J4						41.9

PROJECT:	Haven Valley
PROJECT NO:	21085-03
DESIGN BY:	SBN
REV. BY:	TDM
AGENCY:	El Paso County
REPORT TYPE:	Final
DATE:	8/19/2021

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

PROPOSED	RUNOFF	10	0 YR STOF	RM					P1=	2.52
			DIRECT RUNC)FF					PIPE SIZI	NG
BASIN (S)	DESIGN POINT	AREA (AC)	RUNOFF COEFF	t _c (MIN)	C * A	I (IN/HR)	Q (CFS)	n	Slope (ft/ft)	Pipe Diameter (in)
A		0.44	0.48	8.6	0.21	7.29	1.5			
OS-1		16.90	0.76	10.1	12.91	6.88	88.8			
Exist. Elm Grove Pond Release							52.3			
OS-2		2.85	0.88	5.0	2.51	8.58	21.5			
	1	3.29	0.83	10.1	2.72	6.88	71.0	0.016	0.038	36
В	2	1.42	0.67	10.0	0.95	6.90	6.6	0.016	0.035	18
C	3	3.43	0.61	10.9	2.10	6.66	14.0	0.016	0.005	24
	J1	4.85	0.63	10.9	3.05	6.65	20.3	0.016	0.035	24
D	4	0.98	0.48	8.6	0.48	7.27	3.5	0.016	0.023	18
E	5	1.59	0.62	10.1	0.98	6.86	6.7	0.016	0.005	18
	J2	2.57	0.57	10.1	1.46	6.86	10.0	0.016	0.023	18
	J3	7.42	0.61	11.2	4.51	6.60	29.8	0.016	0.023	24
F		3.81	0.59	6.8	2.25	7.88	17.7			
	6	11.23	0.60	11.3	6.76	6.56	44.4	0.016	0.125	24
G	7	0.84	0.48	7.4	0.40	7.65	3.1			
OS-3		9.74	0.59	11.5	5.74	6.52	37.4			
	P1	25.10	0.62	11.5	15.62	6.52	154.1			
POND RELEASE							17.6	0.016	0.006	18
Н		0.69	0.43	12.9	0.29	6.22	1.8			
OS-5		0.15	0.59	12.9	0.09	6.22	0.6			
OS-6		0.41	0.59	12.9	0.24	6.22	1.5			
	8						21.5	0.016	0.029	24
OS-4	04	20.04	0.65	12.5	13.04	6.31	82.3	0.016	0.005	48
	J4						103.8	0.016	0.006	34"x53" elpt

Worksheet Worksheet for Trapezoidal Channel

Project Description							
Worksheet	North Swale						
Flow Element	Trapezoidal Cha						
Method	Manning's Form						
Solve For	Channel Depth						
Input Data							
Mannings Coeffic	0.030						
Slope 0	040000 ft/ft						
Left Side Slope	0.25 V:H						
Right Side Slope	10.00 V:H						
Bottom Width	4.00 ft						
Discharge	23.00 cfs						
Results							
Depth	0.69 ft						
Flow Area	3.7 ft ²						
Wetted Perime	7.52 ft						
Top Width	6.82 ft						
Critical Depth	0.86 ft						
Critical Slope 0.	017463 ft/ft						
Velocity	6.19 ft/s						
Velocity Head	0.60 ft						
Specific Enerç	1.28 ft						
Froude Numb	1.48						
Flow Type Supe	ercritical						

Worksheet Worksheet for Trapezoidal Channel

Project Descript	ion						
Worksheet	East Swale						
Flow Element	Trapezoidal Cha						
Method	Manning's Form						
Solve For	Channel Depth						
Input Data							
Mannings Coeff	ic 0.030						
Slope	030000 ft/ft						
Left Side Slope	0.25 V:H						
Right Side Slop	e 0.25 V:H						
Bottom Width	2.00 ft						
Discharge	3.50 cfs						
Results							
Depth	0.33 ft						
Flow Area	1.1 ft ²						
Wetted Perime	4.70 ft						
Top Width	4.62 ft						
Critical Depth	0.36 ft						
Critical Slope	0.021252 ft/ft						
Velocity	3.23 ft/s						
Velocity Head	0.16 ft						
Specific Enerç	0.49 ft						
Froude Numb	1.17						
Flow Type 30	upercritical						

Worksheet Worksheet for Trapezoidal Channel

Project Description						
Worksheet	South Swale					
Flow Element	Trapezoidal Cha					
Method	Manning's Form					
Solve For	Channel Depth					
Input Data						
Mannings Coeffic	0.030					
Slope 0	20000 ft/ft					
Left Side Slope	0.15 V:H					
Right Side Slope	0.25 V:H					
Bottom Width	4.00 ft					
Discharge	3.90 cfs					
Results						
Depth	0.28 ft					
Flow Area	1.5 ft ²					
Wetted Perime	7.04 ft					
Top Width	6.98 ft					
Critical Depth	0.27 ft					
Critical Slope 0.02	22123 ft/ft					
Velocity	2.54 ft/s					
Velocity Head	0.10 ft					
Specific Enerç	0.38 ft					
Froude Numb	0.95					
Flow Type Subc	critical					

Figure 7-9. Street Capacity Charts Minor Residential (Attached Sidewalk)

These charts shall only be used for the standard street sections as shown. The capacity shown is based on $\frac{1}{2}$ the street section as calculated by the UD-Inlet spreadsheets. Minor storm capacities are based on no crown overtopping, curb height or maximum allowable spread widths. Major storm capacities are based on flow being containing within the public right-of-way, including conveyance capacity behind the curb. The UDFCD Safety Reduction Factor was applied. An 'nstreet' of 0.016 and 'n_{BACK}' of 0.020 was used. Calculations were done using UD-Inlet 3.00.xls, March, 2011.

City of Colorado Springs Drainage Criteria Manual, Volume 1

Type 16 and Type 14 Inlets for Sump Conditions

01/2006 City and County of Denver

Figure 8-9. Inlet Capacity Chart Continuous Grade Conditions, Minor Residential (Local) (Attached Sidewalk)

Street Width Flowline to Flowline = 28' Street Section Data: Type of Curb and Gutter = 6" vertical

The standard street section parameters as defined in Chapter 7 must apply to use these charts. For non-standard sections, the inlet capacity shall be calculated using the UDFCD spreadsheets. The maximum spread width is limited by the curb height based on no curb overtopping during a minor storm and flow being contained within the public right-of-way during the major storm. Calculations were done using UD-Inlet 3.00.xls, Mar., 2011 with the default clogging factors.

-2: Q100= 6.6

Figure 8-10. Inlet Capacity Chart Sump Conditions, Area (Type C) Inlet

Notes:

DP-4: Q100 = 3.5 cfs

1. The standard inlet parameters must apply to use these charts.

Figure 8-11. Inlet Capacity Chart Sump Conditions, Curb Opening (Type R) Inlet

DP-6: Q100 = 15.3 cfs -> 15' in let

Notes:

1. The standard inlet parameters must apply to use this chart.

DETENTION BASIN STAGE-STORAGE TABLE BUILDER														
	UD-Detention, Version 3.07 (February 2017)													
Project:	Haven Valley	y												
Basin ID: ZONE 3														
	2 ONE 1													
		-												
	/0	100-YE	AR		Depth Increment =		h lt							
	1 AND 2	(5.1.1)					Optional				Optional			
Example Zone	Configuration	on (Retenti	ion Pona)		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft^2)	Area (ft ²)	Area (acre)	(ft^3)	(ac-ft)
Required Volume Calculation		-			Top of Micropool		0.00		-		120	0.003		
Selected BMP Type =	EDB				12		0.50		-		120	0.003	59	0.001
Watershed Area =	41.47	acres			13		1.50		-		21,871	0.502	10,837	0.249
Watershed Length =	2,000	ft			14		2.50				23,886	0.548	33,934	0.779
Watershed Slope =	0.023	ft/ft			15		3.50				25,960	0.596	58,857	1.351
Percentage Hydrologic Soil Group A =	100.0%	percent			16		4.50	-	-		30,279	0.695	115.066	2.642
Percentage Hydrologic Soil Group B =	0.0%	percent			18		6.50		-		32,525	0.747	146,468	3.362
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			19		7.50				34,829	0.800	180,145	4.136
Desired WQCV Drain Time =	40.0	hours			19.5-Spillway		8.00				36,003	0.827	197,853	4.542
Location for 1-hr Rainfall Depths =	User Input	-			20	-	8.50	-	-		37,191	0.854	216,152	4.962
Water Quality Capture Volume (WQCV) =	0.791	acre-feet	Optional Use	er Override	21		9.50				39,611	0.909	254,553	5.844
Excess Urban Runoff Volume (EURV) =	2.878	acre-feet	1-nr Precipita		21.5		10.00		-		40,842	0.938	274,666	6.305
2-yr Runoff Volume (P1 = 1.19 in.) =	2 583	acre-feet	1.19	inches					-					
10-vr Runoff Volume (P1 = 1.75 in.) =	3.161	acre-feet	1.75	inches										
25-yr Runoff Volume (P1 = 2 in.) =	3.877	acre-feet	2.00	inches										
50-yr Runoff Volume (P1 = 2.25 in.) =	4.717	acre-feet	2.25	inches										
100-yr Runoff Volume (P1 = 2.52 in.) =	5.696	acre-feet	2.52	inches					-					
500-yr Runoff Volume (P1 = 3.49 in.) =	8.827	acre-feet	3.49	inches					-					
Approximate 2-yr Detention Volume =	1.863	acre-feet												
Approximate 5-yr Detention Volume =	2.443	acre-feet							-					
Approximate 10-yr Detention Volume =	2.901	acre-feet							-					
Approximate 50-yr Detention Volume =	3.976	acre-feet				-			-					
Approximate 100-yr Detention Volume =	4.409	acre-feet												
Stage-Storage Calculation		-												
Zone 1 Volume (WQCV) =	0.791	acre-feet											ļ	
Zone 2 Volume (EURV - Zone 1) =	2.087	acre-feet							-					
Total Detention Basin Volume =	4 409	acre-feet				-			-					
Initial Surcharge Volume (ISV) =	user	acre-reet							-					
Initial Surcharge Depth (ISD) =	user	ft												
Total Available Detention Depth (H _{total}) =	user	ft							-					
Depth of Trickle Channel (H_{TC}) =	user	ft							-					
Slope of Trickle Channel (S_{TC}) =	user	ft/ft							-				L	
Slopes of Main Basin Sides (S _{main}) =	user	H:V				-			-					
Basin Length-to-Width Ratio (R _{L/W}) =	user								-					
Initial Surcharge Area (A) =	user	-							-					
Surcharge Volume Length (Lisu) =	user	ff												
Surcharge Volume Width (W _{ISV}) =	user	ft							-					
Depth of Basin Floor (H _{FLOOR}) =	user	ft							-					
Length of Basin Floor (L _{FLOOR}) =	user	ft							-					
Width of Basin Floor (W _{FLOOR}) =	user	ft							-				ļ	
Area of Basin Floor (A _{FLOOR}) =	user	ft^2											├ ───	
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3				-			-					
Length of Main Basin (1) =	user					-		-	-	-				
Width of Main Basin (W _{MAIN}) =	user	ft							-					
Area of Main Basin (A _{MAIN}) =	user	ft^2												
Volume of Main Basin (V_{MAIN}) =	user	ft^3												
Calculated Total Basin Volume (V_{total}) =	user	acre-feet							-					
						-		-	-					
								-						
						-		-	-	-				
						-			-				<u>├</u>	

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

		Dete	antion basin		ure Design							
Project:	Haven Valley		UD-Detention, Ve	ersion 3.07 (Februa	y 2017)							
Basin ID:												
ZONE 2 ZONE 2 ZONE 1				Stage (ft)	Zana Valuma (as ft)	Outlet Ture						
			Zone 1 (WOCV)	2 53	0 791	Orifice Plate	1					
1 100 YEAR Zone 2 (EURV) 5.84 2 0.87 Orifice Plate												
ZONE 1 AND 2 PERMANENT ORIFICES	ORIFICE		one 3 (100-year)	7.84	1.531	Weir&Pipe (Restrict)	-					
POOL Example Zone	Configuration (Re	tention Pond)			4.409	Total	1					
Input: Orifice at Underdrain Outlet (typically ι	sed to drain WQCV i	n a Filtration BMP)			L	Calculate	ed Parameters for U	nderdrain				
Underdrain Orifice Invert Depth =	N/A	ft (distance below th	he filtration media su	rface)	Unde	erdrain Orifice Area =	N/A	ft ²				
Underdrain Orifice Diameter =	N/A	inches			Underdra	ain Orifice Centroid =	N/A	feet				
Input: Orifice Plate with one or more orifices	or Elliptical Slot Wei	r (typically used to d	rain WQCV and/or E	URV in a sedimentat	on BMP)	Calcu	lated Parameters fo	r Plate				
Invert of Lowest Orifice =	0.00	ft (relative to basin I	bottom at Stage = 0 f	t)	WQ OI	rifice Area per Row =	3.625E-02	ft ²				
Depth at top of Zone using Orifice Plate =	6.00	ft (relative to basin l	bottom at Stage = 0 f	t)	E	lliptical Half-Width =	N/A	feet				
Orifice Plate: Orifice Vertical Spacing =	27.00	inches	angular anonings)		Ellip	ptical Slot Centroid =	N/A	feet				
Office Plate: Office Area per Row =	5.22	lsd. inches (use recta	ingular openings)			Elliptical Slot Area =	N/A]# ⁻				
User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)												
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	-			
Stage of Orifice Centroid (ft)	0.00	2.00	4.00						-			
Onlive Area (sq. III0165)	0.22	0.22	0.22						1			
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)]			
Stage of Orifice Centroid (ft)									-			
Orifice Area (sq. inches)]			
User Input: Vertical Orifice (Cire	ular or Rectangular)					Calculated	Parameters for Ver	tical Orifice				
	Not Selected	Not Selected]				Not Selected	Not Selected]			
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin l	bottom at Stage = 0 f	t) V	ertical Orifice Area =	N/A	N/A	ft ²			
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin I	bottom at Stage = 0 f	t) Vertio	cal Orifice Centroid =	N/A	N/A	feet			
vertical Orifice Diameter =	N/A	N/A	linches									
User Input: Overflow Weir (Dropbox) and G	irate (Flat or Sloped)					Calculated	Parameters for Ove	erflow Weir				
User Input: Overflow Weir (Dropbox) and G	irate (Flat or Sloped) Zone 3 Weir	Not Selected]			Calculated	Parameters for Ove	erflow Weir Not Selected]			
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Trate (Flat or Sloped) Zone 3 Weir 6.90	Not Selected	ft (relative to basin bo	ottom at Stage = 0 ft)	Height of Gr	Calculated	Zone 3 Weir 6.90	Not Selected	feet			
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00	Not Selected N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for f	ottom at Stage = 0 ft) ilat grate)	Height of Gr Over Flow Grate Open Area /	Calculated rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area =	Zone 3 Weir 6.90 4.00 9.69	erflow Weir Not Selected N/A N/A N/A	feet feet should be			
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	rate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00	Not Selected N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for f feet	ottom at Stage = 0 ft) lat grate)	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope	Calculated rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Zone 3 Weir 6.90 4.00 9.69 11.20	erflow Weir Not Selected N/A N/A N/A N/A	feet feet should be ft ²			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	rate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70%	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/	ottom at Stage = 0 ft) ilat grate) total area	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	Calculatec ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Parameters for Ove Zone 3 Weir 6.90 4.00 9.69 11.20 5.60	rflow Weir Not Selected N/A N/A N/A N/A N/A	feet feet should be ft ² ft ²			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50%	Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ %	ottom at Stage = 0 ft) lat grate) total area	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	Calculated ate Upper Edge, H, = Weir Slope Length 100-yr Orifice Area = en Area w/ Debris = pen Area w/ Debris =	Zone 3 Weir 6.90 4.00 9.69 11.20 5.60	Not Selected N/A N/A N/A N/A N/A N/A	feet feet should be ft ² ft ²			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Virular Orifice Restr	Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ %	ottom at Stage = 0 ft) lat grate) total area	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = pen Area w/ Debris =	Parameters for Ove Zone 3 Weir 6.90 4.00 9.69 11.20 5.60	Prilow Weir N/A N/A N/A N/A N/A Elow Restriction Pla	feet feet should be ft ² ft ²			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Circular Orifice, Restr Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ngular Orifice)	ottom at Stage = 0 ft) lat grate) total area	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = pen Area w/ Debris = Calculated Parameter	Parameters for Ove Zone 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/	Prilow Weir N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected	feet feet should be ft ² ft ²			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = r Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Circular Orifice, Restri Zone 3 Restrictor 2.50	Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ngular Orifice) ft (distance below bas	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t)	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area =	I Parameters for Ove Zone 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 1.16	Flow Weir N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A	feet feet should be ft ² ft ²			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Circular Orifice, Restri Zone 3 Restrictor 2.50 18.00	Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ngular Orifice) ft (distance below bas inches	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ft)	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid =	I Parameters for Ove Zone 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 1.16 0.53	Flow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A	feet feet should be ft ² ft ² ft ²			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Circular Orifice, Restr Zone 3 Restrictor 2.50 18.00 11.20	Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ngular Orifice) ft (distance below bas inches inches	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) ft) Out Central Angle of Restra	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	Zone 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 1.16 0.53 1.82	Flow Weir N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A	feet feet should be ft ² ft ² ft ft feet radians			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Circular Orifice, Restr Zone 3 Restrictor 2.50 18.00 11.20	Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ngular Orifice) ft (distance below bas inches inches	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) ft) Out Central Angle of Restr	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calculated	Zone 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 1.16 0.53 1.82 1.82	Prilow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway	feet feet should be ft ² ft ² te ft ² feet radians			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage=	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Circular Orifice, Restr Zone 3 Restrictor 2.50 18.00 11.20 gular or Trapezoidal) 8.00	Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ngular Orifice) ft (distance below bas inches inches	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Central Angle of Restr Spillway	Calculated Tate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calculat Design Flow Depth=	Zone 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 1.16 0.53 1.82	Prilow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet	feet feet should be ft ² ft ² te ft ² feet radians			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Invert Stage= Spillway Crest Length =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Circular Orifice, Restr Zone 3 Restrictor 2.50 18.00 11.20 gular or Trapezoidal) 8.00 30.00	Not Selected N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin feet	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ngular Orifice) ft (distance below bas inches inches	t) total area sin bottom at Stage = 0 Half-1	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Central Angle of Restr Spillway Stage a	Calculated weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 1.16 0.53 1.82 	Priow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet	feet feet should be ft ² ft ² ft ² ft ² feet radians			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Curcular Orifice, Restr Zone 3 Restrictor 2.50 18.00 11.20 gular or Trapezoidal) 8.00 30.00 4.00	Not Selected N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin feet H:V	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ngular Orifice) ft (distance below bas inches inches bottom at Stage = 0 f	bottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Central Angle of Restr Spillway Stage a Basin Area a	Calculated Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Zone 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 1.16 0.53 1.82 1.82 ated Parameters for 3 0.94 9.94 0.93	Flow Weir NA Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres	feet feet should be ft ² ft ² ft ² ft ² feet radians			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Circular Orifice, Restr Zone 3 Restrictor 2.50 18.00 11.20 gular or Trapezoidal) 8.00 30.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin feet H:V feet	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ngular Orifice) ft (distance below bas inches inches bottom at Stage = 0 f	bttom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) ft) Out Central Angle of Restr Spillway Stage a Basin Area a	Calculated Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Zone 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 1.16 0.53 1.82 1.82	Priow Weir NA Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres	feet feet should be ft ² ft ² ft ft feet radians			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Unput: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Circular Orifice, Restr Zone 3 Restrictor 2.50 18.00 11.20 gular or Trapezoidal) 8.00 30.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V feet	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ngular Orifice) ft (distance below bas inches inches bottom at Stage = 0 f	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1 t)	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Cotral Angle of Restr Spillway Stage a Basin Area a	Calculated ate Upper Edge, H, = Weir Slope Lengt, 100-yr Orifice Area = en Area w/ Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Zone 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 1.16 0.53 1.82 0.94 9.94 0.93	Priow Weir NA Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres	feet feet should be ft ² ft ² feet radians			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = Ore Hour Painfell Deable (n) =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Circular Orifice, Restr Zone 3 Restrictor 2.50 18.00 11.20 gular or Trapezoidal) 8.00 30.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V feet EURV 1.07	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ngular Orifice) ft (distance below bas inches inches bottom at Stage = 0 f	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1 t)	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) ft) Out Central Angle of Restr Spillway Stage a Basin Area a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = pen Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year	Zone 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 1.16 0.53 1.82 1.82 sted Parameters for 9.94 0.94 9.94 0.93 50 Year	Prilow Weir Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet acres 100 Year 2,52	feet feet should be ft ² ft ² feet radians			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Circular Orifice, Restr Zone 3 Restrictor 2.50 18.00 11.20 gular or Trapezoidal) 8.00 30.00 4.00 1.00 1.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V feet EURV 1.07 2.878	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ngular Orifice) ft (distance below bas inches inches inches bottom at Stage = 0 f	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1 t) <u>5 Year</u> 1.50 2.583	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Contral Angle of Restr Spillway Stage a Basin Area a 1.75 3.161	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = pen Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 3.877	Zone 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 1.16 0.53 1.82 1.82 sted Parameters for 9.94 0.94 9.94 0.93 2.25	Prilow Weir Not Selected N/A N/A N/A N/A N/A Plow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 5.696	feet feet should be ft ² ft ² feet radians			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Debris Clogging % = Outlet Pipe Univert = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Circular Orifice, Restr Zone 3 Restrictor 2.50 18.00 11.20 gular or Trapezoidal) 8.00 30.00 4.00 1.00 WQCV 0.53 0.791	Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V feet EURV 1.07 2.878	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ngular Orifice) ft (distance below bas inches inches inches bottom at Stage = 0 f	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1 t) <u>5 Year</u> 1.50 2.583	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Contral Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 3.161	Calculated Weir Slope Length = 100-yr Orifice Area = en Area w/ Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 3.877	Zone 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 1.16 0.53 1.82 1.82 sted Parameters for 20.94 9.94 0.93	Prilow Weir Not Selected N/A N/A N/A N/A N/A Plow Restriction Pla Not Selected N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 5.696	feet feet should be ft ² ft ² fee feet radians			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Unput: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Circular Orifice, Restr Zone 3 Restrictor 2.50 18.00 11.20 gular or Trapezoidal) 8.00 30.00 4.00 1.00 WQCV 0.53 0.791 0.00	Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V feet EURV 1.07 2.878 2.877 0.00	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ngular Orifice) ft (distance below bas inches inches inches bottom at Stage = 0 f <u>2 Year</u> 1.19 1.972 <u>0.00</u>	tottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1 t) <u>5 Year</u> 1.50 2.583 2.583	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Contral Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 3.161 3.161	Calculated Weir Slope Length = 100-yr Orifice Area = ben Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.00 3.877 3.876 0.02	Zone 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 1.16 0.53 1.82 1.82 reter Parameters for 2.94 0.94 9.94 0.93 2.25 4.717 4.716	Prilow Weir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ft ² ft ² feet radians			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slotes = Overflow Grate Open Area % = Debris Clogging % = Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Q (cfs) =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Circular Orifice, Restr Zone 3 Restrictor 2.50 18.00 11.20 gular or Trapezoidal) 8.00 30.00 4.00 1.00 WQCV 0.53 0.791 0.00 0.0	Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V feet EURV 1.07 2.878 2.877 0.00 0.0	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ft (distance below bas inches inches bottom at Stage = 0 f 2 Year 1.19 1.972 	bitom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1 t) <u>5 Year</u> <u>1.50</u> <u>2.583</u> <u>2.582</u> 0.01 0.2	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 3.161 0.01 0.5	Calculated Weir Slope Length = 100-yr Orifice Area = Interpret and the second secon	Iteration Second State 20ne 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ 20ne 3 Restrictor 1.16 0.53 1.82 1.82 sted Parameters for 3 0.94 9.94 0.93 0.93	Interface N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 5.696	feet feet should be ft ² ft ² feet radians			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Deak C(sc) = Peak Inflow Q (cfs) =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Circular Orifice, Restr Zone 3 Restrictor 2.50 18.00 11.20 gular or Trapezoidal) 8.00 30.00 4.00 1.00 WQCV 0.53 0.791 0.00 0.0 13.0	Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V feet EURV 1.07 2.878 2.877 0.00 0.0 46.4	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ft (distance below basinches inches bottom at Stage = 0 f <u>2 Year</u> 1.19 1.971 0.00 0.0 32.0	bitom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1 t) <u>5 Year</u> <u>1.50</u> <u>2.583</u> <u>0.2</u> <u>41.7</u>	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (ft) Out Eentral Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 3.161 0.01 0.5 50.3	Calculated Weir Slope Length = 100-yr Orifice Area = pen Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 3.877 3.876 0.03 1.1 6.3	Iteration Second State 20ne 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ 20ne 3 Restrictor 1.16 0.53 1.82 1.82 sted Parameters for 3 0.94 9.94 0.93 0.93	Priow Weir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ft ² ft ² ft ² feet radians			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Restriction Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Unflow Q (cfs) = Peak Unflow Q (cfs) =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Circular Orifice, Restrictor 2.50 18.00 11.20 gular or Trapezoidal) 8.00 30.00 4.00 1.00 WQCV 0.53 0.791 0.00 13.0 0.0 13.0 0.4 N/5	Not Selected N/A Ictor Plate, or Rectar Not Selected N/A ft (relative to basin l feet H:V feet 2.877 0.00 46.4 1.0 N/4	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ft (distance below basinches inches bottom at Stage = 0 f 2 Year 1.19 1.972 1.971 0.00 0.0 32.0 0.7	bitom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1 t) t) <u>5 Year 1.50 2.583 2.582 0.01 0.2 41.7 0.9</u>	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ft) Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 3.161 0.01 0.5 50.9	Calculated Weir Slope Length = 100-yr Orifice Area = ben Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 3.877 	Image: Parameters for Owe Zone 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 1.16 0.53 1.82 sted Parameters for 3 0.94 9.94 0.93 50 Year 2.25 4.717 4.716 0.19 8.0	Interface Nome N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet feet 3cres 100 Year 2.52 5.696	feet feet should be ft ² ft ² feet radians 500 3. 8.1 1. 44 4. 1.1			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Nufflow Q (cfs) = Peak Nufflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q	rate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Circular Orifice, Restrictor 2.50 18.00 11.20 gular or Trapezoidal) 8.00 30.00 4.00 1.00 WQCV 0.53 0.791 0.00 13.0 0.0 13.0 0.4 N/A Plate	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V feet EURV 1.07 2.878 EURV 1.07 2.877 0.00 0.0 46.4 1.0 N/A Plate	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ft (distance below basinches inches bottom at Stage = 0 f 2 Year 1.19 1.972 1.971 0.00 0.0 32.0 0.7 N/A Plate	bitom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1 t) <u>5 Year</u> <u>1.50</u> <u>2.583</u> <u>2.582</u> 0.01 0.2 <u>4.3</u> Plate	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 3.161 3.161 0.01 0.5 50.2 1.0 2.1 Plate	Calculated Weir Slope Length = 100-yr Orifice Area = pen Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 3.877 	Image: Parameters for Owe Zone 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 1.16 0.53 1.82 sted Parameters for 3 0.94 9.94 0.93 50 Year 2.25 4.717 4.716 0.19 8.0 \$\$\scillet 5.5\$ 1.6 Overflow Grate 1	Interface Nome N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A Solilway feet feet 3cres 100 Year 2.52 5.696 0.47 0.47 0.7 17.6 0.9 Outlet Plate 1 10	feet feet should be ft ² ft ² feet radians 500 3. 8.8 8.8 1. 49 13 7.7 1 501			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storn Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fps) =	rate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Srcular Orifice, Restr Zone 3 Restrictor 2.50 18.00 11.20 gular or Trapezoidal) 8.00 11.20 gular or Trapezoidal) 8.00 11.20 0.00 4.00 1.00 0.0 1.00 0.791 0.791 0.00 0.0 13.0 0.4 N/A Plate N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V feet EURV 1.07 2.878 EURV 1.07 2.877 0.00 0.0 46.4 1.0 N/A Plate N/A	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ft (distance below basinches inches bottom at Stage = 0 f 2 Year 1.19 1.972 1.971 0.00 0.0 32.0 0.7 N/A Plate N/A	tottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1 t) t) <u>5 Year</u> 1.50 2.583 2.582 0.01 0.2 4.3 Plate N/A	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (ft) Out Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 3.161 0.01 3.161 0.05 50.9 1.0 2.1 Plate V/A	Calculated Weir Slope Length = 100-yr Orifice Area = pen Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 3.877 	Iteration Second State 1.20 5.60 2000 4.00 9.69 11.20 5.60 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 1.16 0.53 0.53 1.82 sted Parameters for 3 0.94 9.94 0.93 0.93 50 Year 2.25 4.717 4.716 0.19 8.0 0.5.5 12.6 1.6 0.0verflow Grate 1 1.0 10	rflow Weir Not Selected N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ft ² ft ² ft ² feet radians 500 3. 8.8 8.8 1. 49 133 7.7 1 5pii 1 1			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = Coverflow Grate Open Area % = Debris Clogging % = Clogging % =	rate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Srcular Orifice, Restr Zone 3 Restrictor 2.50 18.00 11.20 gular or Trapezoidal) 8.00 11.20 gular or Trapezoidal) 8.00 11.20 0.00 4.00 1.00 0.0 1.00 0.791 0.791 0.00 0.0 1.3.0 0.4 N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A It (relative to basin feet H:V feet U.07 2.878 2.877 0.00 0.0 46.4 1.0 N/A Plate N/A	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ft (distance below basinches inches inches bottom at Stage = 0 f 2 Year 1.19 1.972 1.971 0.00 0.0 32.0 0.7 N/A Plate N/A N/A N/A	bitom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1 t) S Year 1.50 2.583 2.582 0.01 0.2 4.3 Plate N/A N/A 70	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op ft) Out Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 3.161 0.01 3.161 0.5 505 1.0 2.1 Plate N/A N/A	Calculated Weir Slope Length = 100-yr Orifice Area = pen Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 3.877 	Parameters for Ove Zone 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 1.16 0.53 1.82 rted Parameters for 3 0.94 9.94 0.93 50 Year 2.25 4.717 4.716 0.19 8.0 \$5.5 12.6 1.6 0verflow Grate 1 1.0 4.70	Interface Nome N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet feet 3cres 100 Year 2.52 5.696 0.47 19.5 90.7 17.6 0.9 Outlet Plate 1 1.5 N/A 70	feet feet should be ft ² ft ² ft ² feet radians 500 3. 8.8 8.8 1. 49 13 7,7 1 1 5piil 1 1 N			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Boriz Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = Cureflow Clogen Area % = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Calculated Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fps) =	irate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Crcular Orifice, Restr Zone 3 Restrictor 2.50 18.00 11.20 gular or Trapezoidal) 8.00 11.20 gular or Trapezoidal) 8.00 10.00 0.00 4.00 1.00 0.791 0.791 0.791 0.791 0.791 0.00 0.0 13.0 0.4 N/A Plate N/A N/A 39 40	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Itor Plate, or Rectar Not Selected N/A It (relative to basin feet H:V feet U.07 2.878 2.877 0.00 0.0 Q 46.4 1.0 N/A Plate N/A 73 77	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ft (distance below basinches inches inches bottom at Stage = 0 f 2 Year 1.19 1.972 1.971 0.00 0.0 32.0 0.7 N/A Plate N/A N/A 63 65	bitom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1 t) <u>5 Year</u> 1.50 2.583 <u>2.582</u> 0.01 0.2 <u>4.3</u> Plate <u>N/A</u> <u>70</u> 74	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Control (C) Control (C) Co	Calculated Weir Slope Length = 100-yr Orifice Area = ben Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 3.877 0.03 1.1 0.3 1.4 1.3 Overflow Grate 1 0.0 W/A 82 87	Parameters for Ove Zone 3 Weir 6.90 4.00 9.69 11.20 5.60 rs for Outlet Pipe w/ Zone 3 Restrictor 1.16 0.53 1.82 ted Parameters for 3 0.94 9.94 0.93 50 Year 2.25 4.717 4.716 0.19 8.0 V5.5 12.6 1.6 Overflow Grate 1 1.0 MA 81 87	Interface Nome N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet feet 3cres 100 Year 2.52 5.696	feet feet should be ft ² ft ² feet radians			
User Input: Overflow Weir (Dropbox) and C Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = Coreflow Grate Open Area % = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stages Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	rate (Flat or Sloped) Zone 3 Weir 6.90 4.00 0.00 4.00 70% 50% Srcular Orifice, Restr Zone 3 Restrictor 2.50 18.00 11.20 gular or Trapezoidal) 8.00 30.00 4.00 1.00 WQCV 0.53 0.791 0.791 0.00 0.0 0.0 13.0 0.4 N/A N/A N/A 39 40 2.42	Not Selected N/A Not Selected N/A N/A It (relative to basin I feet H:V feet H:V 1.07 2.878 2.877 0.00 0.0 46.4 1.0 N/A Plate N/A 73 77	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ft (distance below basinches inches bottom at Stage = 0 f 2 Year 1.19 1.971 0.00 0.0 32.0 0.7 N/A Plate N/A N/A 65 4.34	bittom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1 t) 5 Year 1.50 2.583 2.582 0.01 0.2 41.7 0.9 4.3 Plate N/A 70 74 5.22	Height of Gr Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (th) Out Central Angle of Restrict Spillway Stage a Basin Area a Basin Area a 10 Year 1.75 3.161 0.5 5.0 1.0 2.1 Plate N/A N/A 76 80 6.02	Calculated Weir Slope Length = 100-yr Orifice Area = pen Area w/o Debris = pen Area w/o Debris = calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 1.1 0.0 1.1 0.3 1.4 1.3 Overflow Grate 1 0.0 NYA 87 6.94	Solution Solution 50 Year 2.25 4.717 4.716 0.94 9.94 0.93 9.94 0.94 9.94 0.93 9.94 0.94 9.94 0.93 9.94 0.93 9.94 0.93 9.94 0.93 9.94 0.93 9.94 0.93 9.94 0.93 9.94 0.93 9.94 0.93 9.94 0.93 9.94 0.93 9.94 0.93 9.94 0.93 9.94 0.93 9.94 0.93 9.94 0.93 9.94 0.94 9.94 0.95 12.6 1.6 0verflow Grate 1 1.0 10 9.7.38 9.7.38	Interface Nome N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A Spillway feet feet 3cres 100 Year 2.52 5.696	feet feet should be ft ² ft ² feet radians			

acceptable but the 50yr storm should be adjusted. At this preliminary plan stage this can move forward but shall be revisited at the final drainage report stage. Consider using the latest UD detention sheet as I have heard it may yeild better results.

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

	Storm Inflow H	ydrographs	UD-Det	ention, Versio						
	The user can o	verride the calc	ulated inflow hy	drographs from	this workbook v	vith inflow hydro	graphs develop	ed in a separate j	program.	
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.05 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 1111	0:05:03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:10:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:15:09	0.57	1.97	1.38	1.78	2.15	2.60	3.10	3.64	5.23
0.990	0:20:12	1.54	5.42	3.76	4.88	5.93	7.20	8.65	10.28	15.23
	0:25:15	3.97	13.91	9.65	12.53	15.23	18.49	22.21	26.40	39.12
	0:30:18	10.90	38.17	26.48	34.38	41.77	50.70	60.87	72.33	106.98
	0:35:21	12.97	46.44	31.98	41.73	50.94	62.27	75.46	90.67	138.96
	0:40:24	12.39	44.53	30.63	40.01	48.88	59.86	72.75	87.74	136.05
	0:45:27	11.28	40.53	27.88	36.41	44.48	54.49	66.32	80.11	124.77
	0:55:33	10.08	30.45	25.03	32./3	40.03	49.08	59.76	62.22	112.57
	1:00:36	7.59	27.70	18.90	24.83	30.45	37.45	45.71	55.35	86.70
	1:05:39	6.88	25.06	17.14	22.48	27.54	33.82	41.22	49.84	77.77
	1:10:42	5.69	20.94	14.29	18.77	23.03	28.33	34.60	41.93	65.86
	1:15:45	4.65	17.31	11.78	15.51	19.05	23.47	28.69	34.80	54.77
	1:20:48	3.60	13.65	9.24	12.20	15.03	18.57	22.77	27.71	43.91
	1:25:51	2.69	10.47	7.04	9.35	11.56	14.33	17.62	21.50	34.25
	1:30:54	1.94	7.77	5.18	6.92	8.59	10.69	13.19	16.15	25.90
	1:35:57	1.50	5.86	3.93	5.23	6.47	8.03	9.87	12.05	19.18
	1:46:03	1.23	4.74	3.20	4.23	5.22	5.46	6.66	9.64	15.24
	1:51:06	0.92	3.48	2.36	3.12	3.84	4.73	5.79	7.03	11.06
	1:56:09	0.83	3.12	2.12	2.79	3.43	4.23	5.18	6.28	9.85
	2:01:12	0.76	2.86	1.94	2.56	3.15	3.88	4.74	5.74	8.99
	2:06:15	0.56	2.12	1.43	1.89	2.34	2.89	3.55	4.32	6.88
	2:11:18	0.41	1.54	1.04	1.38	1.69	2.09	2.56	3.12	4.96
	2:16:21	0.30	1.14	0.77	1.02	1.25	1.55	1.90	2.31	3.68
	2:21:24	0.22	0.84	0.57	0.75	0.93	1.15	1.41	1.72	2.73
	2:26:27	0.16	0.61	0.41	0.55	0.68	0.84	1.03	1.26	2.02
	2:31:30	0.11	0.44	0.29	0.39	0.49	0.60	0.74	0.91	1.46
	2:41:36	0.08	0.32	0.21	0.28	0.35	0.44	0.34	0.00	0.75
	2:46:39	0.03	0.14	0.09	0.12	0.16	0.20	0.25	0.30	0.50
	2:51:42	0.02	0.08	0.05	0.07	0.09	0.11	0.14	0.18	0.29
	2:56:45	0.01	0.03	0.02	0.03	0.04	0.05	0.07	0.08	0.14
	3:01:48	0.00	0.01	0.00	0.01	0.01	0.01	0.02	0.02	0.05
	3:06:51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:11:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3.10.57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:27:03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:32:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:37:09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:42:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:47:15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:52:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:57:21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:02:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:12:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:17:33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:22:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:27:39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:32:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:42:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:47:51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:52:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:57:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:08:03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:13:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:18:09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:23:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:28:15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:38:21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:43:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:48:27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:53:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:03:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

TOTAL FOREBAY VOLUME

V=3% x WQCV

WQCV=	0.92 ac-ft
V=	0.0276 ac-ft

Qin NE=	75.3 cfs
Qin E=	42.4 cfs
Qtotal=	117.7 cfs

NORTHEAST FOREBAY VOLUME

 75.3	cfs	=	х	ac-ft
117.7	cfs		0.0276	ac-ft

x =	0.0177 ac-ft	
=[769.2 ft ³	

EAST FOREBAY VOLUME

42.4	cfs	=	х	ac-ft
117.7	cfs		0.0276	ac-ft
x =	0.0	0099	ac-ft	_
=	4	33.1	ft ³]

FOREBAY RELEASE NOTCH WIDTH

Q=CLH^{2/3}

Q ₁₀₀ =	75.3 cfs
2% of Q=	1.51 cfs
C=	2.6
H (height of forebay wall)=	1 ft
L=	7.0 in

FOREBAY RELEASE NOTCH WIDTH

Q=CLH^{2/3}

L=

Q ₁₀₀ =	42.4 cfs
2% of Q=	0.85 cfs
C=	2.6
H (height of forebay wall)=	1 ft

4 in
ST.

Figure 1 – Micropool surface area (SA) determination chart

The tributary impervious area is the effective number of impervious acres that will be treated by the extended detention basin (EDB). It is calculated by multiplying the tributary area to be treated by the $\frac{68}{100} \times 41.47 = 28.2$ ac impervious fraction of that area.

$$TIA = I \times A$$

- TIA = Tributary impervious area (acres)
- = Imperviousness (fraction) 1
- Α = Tributary catchment area upstream (acres)

For EDBs with tributary impervious areas greater than 100 acres, the micropool surface area is 400 sf. The initial surcharge depth (ISD) is defined as the depth of the initial surcharge volume (ISV). The surface area determined using Figure 1 assumes an ISD of 4 inches. The initial surcharge volume is thus calculated by multiplying the micropool surface area by 4 inches.

$$ISV = SA \times 4$$
 inches

= Surface area (from Figure 1, sf) SA

and how impacts have been mitgated. This is part of showing that there is a suitable outfall for this site.