

Prepared for: **TIMBERRIDGE DEVELOPMENT GROUP, LLC** 2138 FLYING HORSE CLUB DRIVE COLORADO SPRINGS CO 80921 (719) 592-9333

> Prepared by: CLASSIC CONSULTING 619 N. CASCADE AVE SUITE 200 COLORADO SPRINGS CO 80903 (719) 785-0790

> > Job No. 1185.20

PCD Project No. SF-21-021

619 N. Cascade Ave, Suite 200 | Colorado Springs, CO 80903 | (719) 785-0790

FINAL DRAINAGE REPORT FOR RETREAT AT TIMBERRIDGE FILING NO. 2

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

NOT AN WE CHI	
No Chan Who are	
37155 2	
Marc A. Whorton Colorado P. #37155	
SIONAL ENTITIE	

3/23/2022

Date

OWNER'S/DEVELOPER'S STATEMENT:

I, the owner/developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:	TIMBERRIDGE DEVELOPMENT GROUP, LLC
Ву:	A. L. P.
Title:	Vice Frisdy+
Address:	2138 Flying Horse Club Drive
	Colorado Springs, CO 80921

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

For County Engineer, / ECM Administrator

Date

Conditions:

FINAL DRAINAGE REPORT FOR RETREAT AT TIMBERRIDGE FILING NO. 2

TABLE OF CONTENTS:

PURPOSE	Page	4
GENERAL DESCRIPTION	Page	4
EXISTING DRAINAGE CONDITIONS	Page	4
PROPOSED DRAINAGE CONDITIONS	Page	7
DETENTION/SWQ FACILITIES	Page	17
SAND CREEK CHANNEL IMPROVEMENTS	Page	17
DRAINAGE CRITERIA	Page	23
FLOODPLAIN STATEMENT	Page	26
DRAINAGE AND BRIDGE FEES	Page	26
SUMMARY	Page	30
REFERENCES	Page	31

APPENDICES

VICINITY MAP SOILS MAP (WEB SOIL SURVEY) F.E.M.A. MAP / LOMR (08-08-0541P) RECOMMENDATIONS PER SAND CREEK DBPS HYDROLOGIC / HYDRAULIC CALCULATIONS STORMWATER QUALITY / DETENTION POND CALCULATIONS HEC-RAS CALCULATIONS SECTION 404 PERMITTING / WETLAND IMPACT MAP (CORE Consultants) DRAINAGE MAPS

FINAL DRAINAGE REPORT FOR RETREAT AT TIMBERRIDGE FILING NO. 2

PURPOSE

The purpose of this Final Drainage Report is to address on-site and off-site drainage patterns and identify specific drainage improvements and facilities required to minimize impacts to the adjacent properties.

GENERAL DESCRIPTION

The Retreat at TimberRidge Filing No. 2 is 75.829-acre site located in portions sections 27 and 28, township 12 south, range 65 west of the sixth principal meridian. The site is bounded on the north by future development phases within the TimberRidge property, to the south, east and west by Sterling Ranch property (zoned for future urban development), TimberRidge Filing No. 1 and Vollmer Road. The site is in the upper portion of the Sand Creek Drainage Basin. Both large lot rural single family residential and urban single family residential are proposed in this Filing.

The average soil condition reflects Hydrologic Group "B" (Pring coarse sandy loam and Kettle gravelly loamy sand) as determined by the "Web Soil Survey of El Paso County Area," prepared by the Natural Resources Conservation Service (see map in Appendix).

EXISTING DRAINAGE CONDITIONS

The Retreat at TimberRidge Filing No. 2 property is located in the upper portion of the Sand Creek drainage basin on the south edge of Black Forest. Nearly the entire site, other than the Sand Creek corridor, is mainly covered with native grasses with few or no pine trees. The Sand Creek channel bisects the site in a north-south direction. A wetlands delineation was prepared by CORE Consultants, Inc., which included the entire TimberRidge property and submitted along with Filing No. 1. (See Appendix) This document reflects some wetlands throughout the Sand Creek channel. Any effect on these wetlands within jurisdictional waters will be described later in this report along with the appropriate permitting.

Portions of this site have been previously studied in the "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Engineering Corporation, March 1996. The portion of Sand Creek that traverses the site is defined as Reach SC-9 in the DBPS. 1000+ acres north of this property is tributary to this reach of the channel. (See Off-site Drainage Map in Appendix) According to the DBPS, this reach of Sand Creek all contained within the channel has the following flow characteristics: $Q_{10} = 630$ cfs $Q_{100} = 2170$ cfs. However, the 100 yr. flow recognized by FEMA in the LOMR 08-08-0541P with effective date of July 23, 2009, equals nearly Q_{100} = 2600 cfs. Also, Sterling Ranch has finalized their MDDP which includes modeling of this property as well as the large acreage north up to the top of the Sand Creek Basin. The MDDP proposes developed flows within Sand Creek that are significantly lower than both the DBPS and FEMA currently show. These flows are as follows: At Arroya Lane crossing Q_{10} = 430 cfs Q_{100} = 1487 cfs and TimberRidge south property line $Q_{10} = 452$ cfs $Q_{100} = 1523$ cfs. Even with the County approval of the MDDP and these adjusted flows, a CLOMR/LOMR will be required to be prepared, submitted and approved by FEMA prior to utilizing these flows in any Final Drainage Reports within this development. Based on the anticipated 12–18-month timing of the CLOMR/LOMR process, this development will continue to utilize the much larger FEMA recognized flows for all proposed channel improvements through this property, including the culvert crossing at Poco Road. This is how Filing No. 1 was developed as well.

The majority of these off-site flows enter the property at the north end of the site conveying flows from the northwest (Black Forest area) and the off-site stock ponds to the north (both tributary to hundreds of acres of property in Black Forest). There are multiple existing culvert crossings of Vollmer Rd. just north of Arroya Lane to facilitate these historic flow patterns. The following are the few key culverts that directly feed the Sand Creek channel north of Arroya Lane: Approximately 1,000 feet north of Arroya Lane, an existing 36" CMP crosses Vollmer Road (Basin SC-1 on Off-site Drainage Map). A small basin and natural ravine just west of Vollmer feeds this facility. From a recent field visit, this small facility seems to be in good working condition, however, not labeled in the DBPS. Another 700 feet+ north along Vollmer a much larger basin exists west of the roadway. This off-site basin is approximately 350+ acres northwest of Vollmer

Road (Basin SC-2 on Off-site Drainage Map). As shown within the DBPS, this existing crossing is a 60" CMP with some very dense and tall vegetation at both the entrance and exit of this facility. But, based on a recent field visit this facility seems to be in good working condition. The DBPS depicts this facility and recommends an additional 60" CMP at this location. However, there are no signs of erosion or over topping the road at this location at this time based on the current development within the tributary area to this facility. Based on the existing surrounding topography and roadway configuration, the 100 yr. historic flows at this location would appear to spill over the roadway and continue in their historic drainage pattern downstream within the upper reach of Sand Creek.

The following descriptions represent the pre-development flow design points for the property excluding the major off-site flows within Sand Creek just described:

EX DP-1 (Q₂ = 1 cfs, Q₅ = 3 cfs, Q₁₀₀ = 18 cfs) consists of small portion of the property at the SE corner that currently sheet flows in a southwesterly direction. These pre-development flows travel off-site directly onto Sterling Ranch property prior to eventually entering the Sand Creek channel.

Basin EX-2 ($Q_2 = 2 \text{ cfs}$, $Q_5 = 7 \text{ cfs}$, $Q_{100} = 44 \text{ cfs}$) consists of approximately 50% off-site and 50% on-site property. The off-site property is part of the future Sterling Ranch development and is conveyed in a southwesterly direction directly on-site via a natural ravine. Portions of the on-site property were graded along with Filing No. 1 to allow for this area to be captured in two temporary sediment basins and away from the Filing No. 1 lot development. These two facilities will be removed along with Filing No. 2 construction.

Basin EX-3 ($Q_2 = 1 \text{ cfs}$, $Q_5 = 2 \text{ cfs}$, $Q_{100} = 16 \text{ cfs}$ **)** consists of again both off-site and on-site property. These flows are conveyed in a southwesterly direction and captured in a graded ditch and routed towards another temporary sediment basin constructed with Filing No. 1. This facility will remain during Filing No. 2 construction as it captures undeveloped flows further north.

Basin EX-4 ($Q_2 = 4 \text{ cfs}$, $Q_5 = 13 \text{ cfs}$, $Q_{100} = 90 \text{ cfs}$ **)** consists of the remaining portion of the yet undeveloped TimberRidge property along with off-site future Sterling Ranch property. This entire area sheet flows in a southwesterly direction towards Sand Creek. Along with the development of Filing No. 1 and the secondary emergency access road up to Arroya Lane, several storm system were installed to convey portions of these flows under the access road. The existing on-site stock pond will continue to remain as it captures much of the off-site tributary area.

EX DP-5 (Q_2 = 3 cfs, Q_5 = 12 cfs, Q_{100} = 73 cfs) consists of combined flows from basins EX-5 and EX-7. Basin EX-5 (Q_2 = 2 cfs Q_5 = 7 cfs, Q_{100} = 50 cfs) is the northwest portion of the TimberRidge property with some spruce trees and a very defined natural ravine that conveys flows in a southeast direction towards Sand Creek. Vollmer Road is the westerly boundary of this basin. Basin EX-7 (Q_2 = 2 cfs Q_5 = 6 cfs, Q_{100} = 34 cfs) consists of an off-site basin west of Vollmer Road (not a part of this development) that drains under Vollmer into the TimberRidge property via an existing 48" CMP culvert. These off-site flows enter Basin EX-5 and then travel within the on-site ravine towards Sand Creek. Dual 30" RCP culverts were installed along with Filing No. 1 where the future road crosses this ravine. This condition will remain with the development of Filing 2 and these off-site flows will be accounted for in downstream design.

PROPOSED DRAINAGE CONDITIONS

Proposed development within the Retreat at TimberRidge Filing No. 2 will consist of a variety of different residential lot sizes ranging from 1.0 - 2.5-acre large rural lots to 12,000 SF min. urban lots. The rural lots will have paved streets and roadside ditches while the urban lots paved streets with County standard curb, gutter and sidewalk. Development of the urban lots proposed will consist of overlot grading for the planned roadways and lots. Development of rural lots proposed within the site will be limited to roadways and building pads, conserving the natural feature areas. Individual home sites on these lots are to be left generally in their natural condition with minimal disturbance to existing conditions per individual lot construction. Per the El Paso County

ECM, Section I.7.1.B.5, rural lots of 2.5 ac. and larger are not required to provide Water Quality Capture Volume (WQCV). However, based on the current County/Urban Drainage stormwater guality standards, a WQCV component is automatically built into the UD Detention spreadsheet utilized in the detention basin design. Thus, the proposed facilities within both the rural and urban portions of this development will provide WQCV along with an Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume with an outlet control device. Frequent and infrequent inflows are released at rates approximating undeveloped conditions. This concept provides some mitigation of increased runoff volume by releasing a portion of the increased runoff at a low rate over an extended period of time, up to 72 hours. This means that frequent storms, smaller than the 2-year event, will be reduced to very low flows near or below the sediment carrying threshold value for downstream drainage ways. Also, by incorporating an outlet structure that limits the 100-year runoff to the undeveloped condition rate, the discharge hydrograph for storms between the 2 year and the 100-year event will approximate the hydrograph for the undeveloped conditions and will help effectively mitigate the effects of development. As reasonably possible, WQCV will be provided for all new roads and urban lots. The following describes how this development proposes to handle both the off-site and on-site drainage conditions:

As mentioned previously, the majority of the off-site flows are already within the Sand Creek channel prior to entering the property. However, the few off-site basins that must travel through the proposed site development areas prior to entering Sand Creek have been accounted for.

The following represent the basins and design points west of Sand Creek:

As mentioned previously, Basin Ex-7 ($Q_2 = 2 \text{ cfs } Q_5 = 6 \text{ cfs}$, $Q_{100} = 34 \text{ cfs}$) consists of the off-site basin west of Vollmer Road (not a part of this development) that drains under Vollmer into the TimberRidge property via an existing 48" CMP culvert. These flows are then combined with the flows from basins OS-1 and OS-2. Basins OS-1 ($Q_2 = 1 \text{ cfs } Q_5 = 2 \text{ cfs}$, $Q_{100} = 9 \text{ cfs}$) and OS-2 ($Q_2 = 1 \text{ cfs } Q_5 = 2 \text{ cfs}$, $Q_{100} = 7 \text{ cfs}$) represent off-site flows from future TimberRidge development

adjacent to Vollmer Rd. and Arroya Lane. These flows calculated as future development flows will continue to travel in a southerly direction within the existing natural ravine and enter Basin B. Basin B ($Q_2 = 2 \text{ cfs } Q_5 = 4 \text{ cfs}$, $Q_{100} = 14 \text{ cfs}$) consists of two rural lots and the natural ravine conveying the off-site flows from the north towards Design Point 1.

Design Point 1 (Q₅ = **12 cfs, Q**₁₀₀ = **57 cfs)** represents this combined total where the existing dual 30" RCP culverts crossing Aspen Valley Rd. will convey the flows under the road and towards Design Point 3. (See Appendix for culvert and rip-rap calculations) The natural ravine within lots 4 and 5 is contained within a drainage esmt. as shown on the drainage map and final plat. Permanent rock check dams are planned through this corridor to mitigate erosion and sediment transfer potential. These improvements within the drainage esmt. will be maintained by the Retreat Metropolitan District No. 1.

Design Point 2 (Q₅ = 5 cfs, Q_{100} = 20 cfs) represents developed flows from Basin A. At this location a proposed 24" RCP culvert crossing Aspen Valley Rd. will convey the flows under the road into the natural drainage area within the drainage easement on lot 7. (See Appendix for culvert and rip-rap calculations)

Basin D ($Q_2 = 1 \text{ cfs } Q_5 = 2 \text{ cfs}$, $Q_{100} = 6 \text{ cfs}$) represents a portion of the proposed 2.5 ac. rural lots adjacent to Aspen Valley Road. Developed flows from this basin will continue to sheet flow in a southeasterly direction towards Design Point 3 and combine with the upstream flows. **Design Point 3 (Q_5 = 17 \text{ cfs}, Q_{100} = 74 \text{ cfs})** represents this combined flow total where a proposed 42" RCP will collect and convey the developed flows under Falcon Nest Court towards Pond 3. The proposed channel within lot 7 is contained within a drainage esmt. as shown on the drainage map and final plat. It will convey the developed flows from Design Points 1 and 2 towards Design Point 3 and be lined with Turf Reinforcement Matting and permanent rock check dams. These improvements within the drainage esmt. will be maintained by the Retreat Metropolitan District No. 1. (See Appendix for channel calculations)

Basin C ($Q_2 = 2 \text{ cfs } Q_5 = 3 \text{ cfs}$, $Q_{100} = 8 \text{ cfs}$) represents a portion of the proposed 2.5 ac. rural lots with developed flows that sheet flow in a southeasterly direction towards Design Point 4. At this location a proposed 24" RCP will collect and convey these flows to where they combine with the previously mentioned developed flows from Design Point 3. The ponding for this facility will be contained within a public drainage esmt. within lot 7 as shown on the Final Plat.

Basin E1 ($Q_2 = 2 \text{ cfs } Q_5 = 4 \text{ cfs}$, $Q_{100} = 15 \text{ cfs}$) represents a portion of the proposed 2.5 ac. rural lots (Lots 10-12) that will continue to sheet flow in a southeasterly direction towards the natural ravine. The majority of the upstream pre-development flows will be collected by the previously described proposed 42" RCP at Design Point 3. Only the developed flows from lots 10-12 will now contribute to this area and thus, the natural ravine will remain native with no further improvements required. This natural drainage corridor will be protected and placed in a drainage esmt. across these lots as shown on the Final Plat. Given the size of these lots, minimal unconnected impervious area introduced and sizeable receiving pervious areas per lot, the WQCV reduction = 100% with 0 untreated WQCV within this basin. (See UD-BMP Runoff Reduction Sheet – Ver. 3.07 in Appendix)

Basin E2 ($Q_2 = 0.5 \text{ cfs } Q_5 = 1.2 \text{ cfs}$, $Q_{100} = 6 \text{ cfs}$) represents a portion of lots 9 & 10 that will continue to sheet flow in a southerly direction towards Pond 3. These flows are accounted for in the Design Point 5 and Pond 3 calculations.

Basin F ($Q_2 = 1 \text{ cfs } Q_5 = 3 \text{ cfs}$, $Q_{100} = 19 \text{ cfs}$) represents a portion of the proposed 2.5 ac. rural lots (Lots 6, 8 and 9) that will continue to sheet flow in a southeasterly direction towards Sand Creek (contained within Tract B). Given the size of these lots, minimal unconnected impervious area introduced and sizeable receiving pervious areas per lot, the WQCV reduction = 100% with 0 untreated WQCV within this basin. (See UD-BMP Runoff Reduction Sheet – Ver. 3.07 in Appendix)

Basin OS-3 ($Q_2 = 0.1 \text{ cfs } Q_5 = 0.4 \text{ cfs}$, $Q_{100} = 2 \text{ cfs}$) represents a small portion of the extreme rear yard of the proposed lots 11 & 12 that continues to sheet flow towards Sand Creek as originally anticipated.

Design Point 5 (Q₅ = **18 cfs, Q**₁₀₀ = **79 cfs)** represents the total developed flows entering the proposed **Pond 3.** A proposed full-spectrum EDB is proposed at this location to release less than the pre-development flows currently seen. The following describes the design of this facility. (See Appendix for MHFD-Detention Pond design sheets):

Detention Pond 3 (Full Spectrum EDB – see multiple storm release data below) 0.395 Ac.-ft. WQCV required 0.309 Ac.-ft. EURV required with 4:1 max. slopes 1.700 Ac.-ft. 100-yr. Storage 2.404 Ac.-ft. Total Total Peak In-flow: $Q_2 = 10.3 \text{ cfs}, Q_5 = 20.8 \text{ cfs}, Q_{100} = 74.7 \text{ cfs}$ Pond Peak Design Release: $Q_2 = 1.0 \text{ cfs}, Q_5 = 10.1 \text{ cfs}, Q_{100} = 59.6 \text{ cfs}$ Pre-development Release: $Q_2 = 5.6 \text{ cfs}, Q_5 = 15.8 \text{ cfs}, Q_{100} = 69.2 \text{ cfs}$ (Ownership and maintenance by the Retreat at TimberRidge Metro District 1)

At this proposed outfall location, the overall channel flows will not significantly change based on Detention Pond 3 peak release of Q_{100} = 59.6 cfs which is less than the predevelopment flows at this location of Q_{100} = 69.2 cfs. (See Appendix for culvert outlet and rip-rap calculations)

The following represent the basins east of Sand Creek:

Design Point 6 (Q₅ = **3 cfs, Q**₁₀₀ = **8 cfs)** represents developed flows from on-site Basin G (Q₂ = $1.7 \text{ cfs } Q_5 = 2.4 \text{ cfs}, Q_{100} = 5 \text{ cfs}$) and off-site Basin OS-9 (Q₂ = $0.5 \text{ cfs } Q_5 = 0.9 \text{ cfs}, Q_{100} = 3 \text{ cfs}$). These flows remain consistent with the previous Filing No. 1 report where an existing 10' Type R at-grade inlet was installed with Filing No. 1. This facility continues to intercept 100% of the 5 yr. and 79% of the 100 yr. developed flows. The flow-by that will continue down the west side

of the street into Filing No. 1 remains consistent with the previous report and equals $Q_5 = 0$ cfs, $Q_{100} = 1.7$ cfs. (See Appendix for calculations)

Basins H1 ($Q_2 = 0.6 \text{ cfs } Q_5 = 0.9 \text{ cfs}$, $Q_{100} = 2 \text{ cfs}$), H2 ($Q_2 = 0.6 \text{ cfs } Q_5 = 0.8 \text{ cfs}$, $Q_{100} = 2 \text{ cfs}$) and I ($Q_2 = 0.2 \text{ cfs } Q_5 = 0.3 \text{ cfs}$, $Q_{100} = 0.8 \text{ cfs}$) represents the rear yards of proposed lots 13-16. As previously accounted for in the Filing No. 1 report, these rear yard developed flows will sheet flow directly off-site and into the open space tract in Filing No. 1. Given the minimal unconnected impervious area introduced and sizeable receiving pervious areas per lot, the WQCV reduction = 100% with 0 untreated WQCV within these basins. The anticipated impervious areas within these basins exceeds that allowed by the Declaration of Covenants and Restrictions as recorded for this subdivision. (See UD-BMP Runoff Reduction Sheet – Ver. 3.07 in Appendix)

Design Point 7 (Q₅ = 9 cfs, Q_{100} = 39 cfs) represents developed flows from on-site Basin J (Q_2 = 4 cfs $Q_5 = 7$ cfs, $Q_{100} = 18$ cfs), off-site Basin OS-4 ($Q_2 = 0.2$ cfs $Q_5 = 0.7$ cfs, $Q_{100} = 5$ cfs) and a 70% portion of the anticipated future Sterling Ranch development within off-site Basin OS-5 ($Q_2 = 1$ cfs $Q_5 = 4$ cfs, $Q_{100} = 26$ cfs). In the interim, the pre-development off-site flows from Basin OS-5 will be captured in an off-site temporary sediment basin at the east termination point of Elk Antler Lane. This facility sizing is based on the 13.7 ac. off-site basin OS-5 and is shown on the grading and erosion control plan. Both the overflow spillway and outlet pipe will be routed into the proposed curb line of Elk Antler Lane. Appropriate temporary grading and drainage easements will be acquired from the adjacent property owner prior to construction. However, the proposed downstream storm system has been sized and accounts for these anticipated offsite basins. Upon future development within the off-site basins OS-4 and OS-5, developed release must adhere to these anticipated flows described above. Ultimately, the total developed flows will combine and travel in a southerly direction to Design Point 7 where a proposed 15' Type R sump inlet will completely intercept both the 5 yr. and 100 yr. developed flows. The emergency overflow will be 12" and then down the street to the west within Elk Antler Lane.

Design Point 8 (Q₅ = 2 cfs, Q₁₀₀ = 10 cfs) represents developed flows from on-site Basin N (Q₂ = 0.7 cfs Q₅ = 1 cfs, Q₁₀₀ = 2 cfs) and a 30% portion of the anticipated future Sterling Ranch development within off-site Basin OS-5 (Q₂ = 1 cfs Q₅ = 4 cfs, Q₁₀₀ = 26 cfs). Again, in the interim, the pre-development off-site flows from Basin OS-5 will be captured in the off-site temporary sediment basin at the east termination point of Elk Antler Lane. (See GEC Plan) The proposed downstream storm system has been sized and accounts for this anticipated off-site basin. Ultimately, the total developed flows will combine at Design Point 8 where a proposed 10' Type R sump inlet will completely intercept both the 5 yr. and 100 yr. developed flows. The emergency overflow will be 12" and then down the street to the west within Elk Antler Lane.

Basin K ($Q_2 = 1$ cfs $Q_5 = 2$ cfs, $Q_{100} = 5$ cfs) represents a portion of the rear yards of proposed lots 21-26. These developed flows will continue to sheet flow in a westerly direction towards a temporary sediment basin constructed with Filing No. 1. Given the minimal unconnected impervious area introduced and sizeable receiving pervious areas per lot, the WQCV reduction = 100% with 0 untreated WQCV within this basin. (See UD-BMP Runoff Reduction Sheet – Ver. 3.07 in Appendix) **Basin L** ($Q_2 = 0.3$ cfs $Q_5 = 0.6$ cfs, $Q_{100} = 2$ cfs) represents the rear yard of the proposed lot 27. These minor developed flows will continue to sheet flow in a westerly direction towards another temporary sediment basin constructed with Filing No. 1. Again, given the minimal unconnected impervious area introduced and sizeable receiving pervious area for this lot, the WQCV reduction = 100% with 0 untreated WQCV within this basin. (See UD-BMP Runoff Reduction Sheet – Ver. 3.07 in Appendix) Both of these temporary sediment basins will remain in place with the construction of Filing 2 not for treatment but for sediment control. Upon the imminent construction of Filing 3, these facilities will then be removed and these basins will be formally captured and treated in the existing pond 2. Basin M ($Q_2 = 0.9$ cfs $Q_5 = 1.2$ cfs, $Q_{100} = 3$ cfs) represents the developed flows from proposed lots 19-20. These developed flows were accounted for in the Filing No. 1 report and will continue to sheet flow in a southwesterly direction directly into the north side of Elk Antler Lane. The existing downstream 15' Type R At-grade Inlet, just south of the intersection of Elk Antler Lane and Antelope Ravine Dr., will continue to adequately collect these flows.

Design Point 9 (Q₅ = 4 cfs, Q₁₀₀ = 14 cfs) represents the developed flows from Basins OS-8 (Q₂ = 2 cfs Q₅ = 3 cfs, Q₁₀₀ = 10 cfs) and Q (Q₂ = 0.4 cfs Q₅ = 1.2 cfs, Q₁₀₀ = 6 cfs). At this location, an existing 10' Type R Sump Inlet was installed with Filing No. 1 to completely intercept both the 5 yr. and 100 yr. developed flows. These flows remain consistent with the Filing No. 1 report as anticipated as Q₅ = 5 cfs, Q₁₀₀ = 15 cfs.

Design Point 10 (Q_5 = 3 cfs, Q_{100} = 11 cfs) represents developed flows from Basins O (Q_2 = 2 cfs Q_5 = 3 cfs, Q_{100} = 9 cfs) and OS-6 (Q_2 = 0.1 cfs Q_5 = 0.4 cfs, Q_{100} = 3 cfs). These developed flows sheet flow in a southwesterly direction towards Design Point 10 where a proposed 10' Type R Sump Inlet will be installed to completely intercept both the 5 yr. and 100 yr. developed flows. The emergency overflow will be 12" and then south over the highpoint. It is planned with this report that with the future development of this portion of Sterling Ranch (Basin OS-6) developed flows equal to pre-development quantities are accounted for downstream in the existing on-site Pond 2. These future flows quantities will be treated and detained within Pond 2. Any developed flows above these quantities will need to be routed further downstream within the Sterling Ranch development.

Design Point 11 ($Q_5 = 2 \text{ cfs}$, $Q_{100} = 4 \text{ cfs}$ **)** represents developed flows from Basin P. At this location, a proposed 5' Type R Sump Inlet will be installed to completely intercept both the 5 yr. and 100 yr. developed flows. The emergency overflow will be 12" and then southerly over the highpoint of Owl Perch Loop.

Design Point 12 (Q_5 = 4 cfs, Q_{100} = 9 cfs) represents the developed flows from Basin R. At this location, a proposed 10' Type R At-grade Inlet will be installed to intercept 99% of the 5 yr. and 75% of the 100 yr. developed flows. The flow-by (Q_5 = 0 cfs, Q_{100} = 2.3 cfs) will then continue down the street to the west towards Design Point 13. (See Appendix for calculations)

Design Point 13 (Q₅ = 8 cfs, Q₁₀₀ = 23 cfs) represents flows from Basin S (Q₂ = 5 cfs Q₅ = 8 cfs, $Q_{100} = 22$ cfs) and the flow-by from Basin R mentioned above. At this location, a proposed 15'

Type R Sump Inlet will be installed to completely intercept both the 5 yr. and 100 yr. developed flows. The emergency overflow will be 12" and then southerly over the highpoint in Bison Valley Trail.

Design Point 14 ($Q_5 = 1 \text{ cfs}$, $Q_{100} = 3 \text{ cfs}$ **)** represents flows from Basin T. At this location, a proposed 5' Type R Sump Inlet will be installed to completely intercept both the 5 yr. and 100 yr. developed flows. Again, the emergency overflow will be 12" and then southerly over the highpoint in Bison Valley Trail.

Pipe Run 15 (Q₅ = **25 cfs, Q**₁₀₀ = **85 cfs)** represents the total developed flows entering the existing Pond 2 at the NE corner via the existing 42" RCP storm stub provided with Filing No. 1 construction. These flows are compared to the anticipated flows at this location in the Filing No. 1 report of Q₅ = 19 cfs, Q₁₀₀ = 74 cfs. The existing Pond 2 continues to adequately provide detention and stormwater quality per County criteria with these additional flows.

The following represents the existing Pond 2 with the minor adjusted developed flows: (See revised MHFD-Detention Pond Design Sheets in Appendix)

Existing Detention Pond 2 (Full Spectrum EDB – see multiple storm release data below)1.03 Ac.-ft. WQCV required1.16 Ac.-ft. EURV required with 4:1 max. slopes3.36 Ac.-ft. 100-yr. Storage5.55 Ac.-ft. TotalTotal In-flow: $Q_2 = 24.5 \text{ cfs}, Q_5 = 43.1 \text{ cfs}, Q_{100} = 135.8 \text{ cfs}$ Pond Design Release: $Q_2 = 0.9 \text{ cfs}, Q_5 = 13.5 \text{ cfs}, Q_{100} = 96.2 \text{ cfs}$ Pre-development Release: $Q_2 = 9.1 \text{ cfs}, Q_5 = 25.4 \text{ cfs}, Q_{100} = 115.0 \text{ cfs}$ (Existing ownership and maintenance by the Retreat at TimberRidge Metro District 2)

Basin U ($Q_2 = 1$ cfs $Q_5 = 2$ cfs, $Q_{100} = 5$ cfs) represents a portion of the rear yards of proposed lots 61-67. These developed flows were accounted for in the previous report for Filing No. 1 and remain consistent with the anticipated flows at this location of $(Q_5 = 2 \text{ cfs}, Q_{100} = 5 \text{ cfs})$. **Basin V** ($Q_2 = 1$ cfs $Q_5 = 2$ cfs, $Q_{100} = 6$ cfs) represents the rear yards of the proposed lots 44-54. These developed flows will sheet flow in a southeasterly direction and directly into the proposed off-site swale and ultimately into the temporary sediment basin proposed at the southerly termination point of Bison Valley Trail. Based on the extremely large lot depths (215'+), given the minimal unconnected impervious area anticipated at the rear of these lots and the sizeable receiving pervious area per lot, the WQCV reduction = 100% with 0 untreated WQCV within this basin. (See UD-BMP Runoff Reduction Sheet – Ver. 3.07 in Appendix) Basin **OS-7** ($Q_2 = 0.2$ cfs $Q_5 = 0.8$ cfs, $Q_{100} = 5$ cfs) represents an off-site basin within the future Sterling Ranch development that will continue to sheet flow in its historic drainage pattern. The TimberRidge development will coordinate with the Sterling Ranch property owner for the acquisition of appropriate temporary grading and permanent drainage easements along the eastern property line to facility this drainage condition. Basin W ($Q_2 = 1 \text{ cfs } Q_5 = 2 \text{ cfs}, Q_{100} = 5$ cfs) represents the rear yards of the proposed lots 54-60. Given the minimal unconnected impervious area introduced and sizeable receiving pervious area per lot, the WQCV reduction = 100% with 0 untreated WQCV within this basin. (See UD-BMP Runoff Reduction Sheet – Ver. 3.07 in Appendix) Regardless, these rear yard developed flows sheet flow in a southerly direction directly into the off-site swale and ultimately into the temporary sediment basin proposed at the southerly termination point of Bison Valley Trail. **Design Point 15 (Q_5 = 4 \text{ cfs},** $Q_{100} = 15 \text{ cfs}$ represents the combined flows from basins OS-7, V and W described above. At this location, a temporary sediment basin proposed at the southerly termination point of Bison Valley Trail will provide sediment control for these developed flows until a permanent downstream facility is constructed within this portion of the future Sterling Ranch development. Coordination with the Sterling Ranch property owner is taking place for the acquisition of appropriate temporary grading and permanent drainage easements along the southern property line to facilitate these facilities. Upon future development of Sterling Ranch

in this area, Basins V, W and OS-7 will be further analyzed to determine how to potentially eliminate the swale along the property line.

DETENTION / STORMWATER QUALITY FACILITES

As required, storm water quality measures will be utilized in order to reduce the amount of sediment, debris and pollutants that are allowed to enter Sand Creek. These features include but are not limited to Full Spectrum Detention Basins and temporary sediment basins. Site Planning and design techniques for the large lot, rural areas should help limit impervious area, minimize directly impervious area, lengthen time of travel and increase infiltration in order to decrease the rate and volume of stormwater runoff. Urban areas that require detention will provide a Water Quality Capture Volume (WQCV) and Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume that will release the more frequent storms at a slower rate to help minimize the effects of development of the property. The proposed detention/SWQ facilities are to be private facilities with ownership and maintenance by the TimberRidge Metropolitan District 1. After completion of construction and upon the Board of County Commissioners acceptance, the Sand Creek channel and proposed structural improvements will be owned and maintained by the El Paso County along with all drainage facilities within the public Right of Way. Access ramps are provided in multiple locations and constructed along with the channel improvements and are accessed from the proposed regional trail along the west side of the channel.

SAND CREEK CHANNEL IMPROVEMENTS

As stated in the Sand Creek DBPS, this Reach SC-9 is recommended as a floodplain preservation design concept. Given the fact of the current requirements for detention/SWQ facilities planned for the property with designed release at or below pre-development flows, the existing Sand Creek drainageway is expected to remain stable. From the existing HEC-RAS model provided in the appendix, channel velocities through this portion of the reach range from 2.5 - 7.8 ft/s and the shear stress range from 1.3 - 10.2 lb/sq ft. Although, based on the findings from the CORE

Consultants, Inc. Impact Identification Report, no significant erosion or channel degradation through this property currently exists at this time. Specifically located grade control structures (See Appendix) were specified in the DBPS through this reach in order to slow the channel velocity to the DBPS recommended 7 feet per second and to prevent localized and long-term stream degradation affecting channel linings and overbanks. The allowable velocity and shear stress will vary depending upon the existing riparian vegetation/wetlands found within the channel and overbank floodplain terrace areas. The following general criteria taken from the Mile High Flood Control District (Table 8-3) has been utilized for this channel design with adjustments made for site specific riparian vegetation through this reach (See HEC-RAS Modeling Section below):

A HEC-RAS hydraulic analysis for this portion of Reach SC-9 has been provided in order to determine the necessary channel improvements for the proposed Filing No. 2 development and future Filings. A separate wetland impact report along with the Section 404 permitting, prepared by CORE Consultants, has been developed based on these proposed channel improvements and submitted directly to the U.S. Army Corps of Engineers with necessary consult with U.S. Fish and Wildlife for their review and approval. This report and documentation can be found in the Appendix for El Paso County staff review.

Chapter 8	Chap	ter	8
-----------	------	-----	---

Design Parameter	Design Value	
Maximum 100-year depth outside of bankfull channel	5 ft	
Roughness values	Per Table 8-5	1
Maximum 5-year velocity, main channel (within bankfull channel width) (ft/s)	5 ft/s	
Maximum 100-year velocity, main channel (within bankfull channel width) (ft/s)	7 ft/s	
Froude No., 5-year, main channel (within bankfull channel width)	0.7	
Froude No., 100-year, main channel (within bankfull channel width)	0.8	
Maximum shear stress, 100-year, main channel (within bankfull channel width)	1.2 lb/sf	(See page 22 below for allowable shear
Minimum bankfull capacity of bankfull channel (based on future development conditions)	70% of 2-year discharge or 10% of 100-yr discharge, whichever is greater ¹	stress adjustments)
Minimum bankfull channel geometry	Per Table 8-2	
Minimum bankfull channel width/depth ratio (Equation 8-3)	9	
Minimum entrenchment ratio (Equation 8-4)	3	
Maximum longitudinal slope of low flow channel (assuming unlined, unvegetated low flow channel)	0.2 percent	
Bankfull channel sinuosity (Equation 8-5)	1.1 to 1.3	
Maximum overbank side slope	4(H):1(V)	1
Maximum bankfull side slope	2.5(H):1(V)	1
Minimum radius of curvature	2.5 times top width	

Table 8-3. Design parameters for naturalized channels

¹Roughly equivalent to a 1.5-year event based on extrapolation of regional data.

HEC-RAS MODELING

Autodesk River and Flood Analysis Module 2019 and HEC-RAS ver. 5.0.6 were used to perform an updated one-dimensional, steady flow hydraulic model of the upper portion of Reach SC-9 from Arroya Lane down to approximately 500 feet north of the Poco Road culvert crossing constructed with Retreat at TimberRidge Filing No. 1. This AutoCAD River Module was used to define the stream centerline, overbanks, cross-sections and manning's n values. The stream centerline follows the channel thalweg to define the reach network. Cross-section topography data was obtained by using the generated surface from the 2-ft. flown contours utilized for all site design. This data was then utilized within the AutoCAD River Module containing three-dimensional coordinates for the stream centerline, cross-sections, reach stations, overbank stations and reach lengths. Two separate models defining the existing condition and proposed condition were prepared using the same centerline stationing. Different Manning's n values were applied across the various channel cross-sections to reflect the changes in vegetative cover within the channel and overbanks. The selected Manning's n values for the channel and overbanks were determined using Tables 10-1 and 10-2 from the DCM and Table 3 from the USGS Guide for selecting Manning's Roughness Coefficients based on numerous site visits in an effort to photograph and document each cross-section. (See Appendix) The following table summarizes the selected Manning's n values:

Table 1 N	1anning's n Values
-----------	--------------------

Feature	Manning's n Value
Main Channel	0.03 - 0.10
Overbank Floodplain Terraces	0.12 – 0.16

Steady flow data was entered starting just south of Arroya Lane, channel station 27+00.00 down to approximately 500 feet north of the Poco Road crossing, channel station 1+00.00 all within the Sand Creek DBPS segment 171. Steady flow data corresponding to recurrence intervals of 100 Yr. for the FEMA and DBPS conditions was entered. The models were run in subcritical mode to

evaluate hydraulic conditions. Boundary conditions for the entire reach were based on normal depth calculations for the upstream and downstream channel slopes. The following table summarizes the flows used in the models:

Flood Event / Location	Flow Value (cfs)
DBPS Segment 171	
FEMA 100 Yr.	2600
DBPS 100 Yr.	2170

Table 2 Model Flow Values

Per the approved DBPS, the anticipated developed flows just upstream of this project are $Q_{10} = 630$ cfs and $Q_{100} = 2170$ cfs as depicted within DBPS segment no. 171. As discussed earlier, the FEMA FIS flows appear to be significantly higher than both those presented in the DBPS and the Sterling Ranch MDDP. However, we have continued to utilize the significantly larger flows as determined by the FEMA FIS (2600 cfs) in the channel improvement designs. The proposed public roadway crossing of Sand Creek at Poco Road was constructed with Filing No. 1 and consisted of a two cell multi-plate steel single radius arch (24' x 10.33') with concrete headwalls to facilitate the conveyance of the 100 yr. flow.

Based on site visits during May and July of 2019, the entire Sand Creek drainage corridor through the Retreat at TimberRidge development was walked and photographed for documentation purposes and aide in the HEC-RAS modeling. (See Appendix) As discovered in the field and documented in the photos taken at each HEC-RAS station, this reach of the Sand Creek channel appears very stable with no signs of erosion within the main channel or channel overbanks. This is mainly due to the significant vegetal cover throughout the reach. The classification of the vegetal cover seems to have a range from Retardance Class A-C as defined by HEC-15 chart (See Appendix) This type of vegetation retardance significantly increases the allowable shear stress within the channel while reducing the velocity. The following table defines the retardance level based on the vegetation class:

Table 3

SCS Retardance Class	Retardance Curve Index
А	10.0
В	7.64
С	5.60
D	4.44
E	2.88

Vegetal Retardance Curve Index by SCS Retardance Class

Based on this information, the maximum allowable sheer stress is found by the flowing equation:

T = 0.75Curve Index

Thus, the allowable range of shear stress for this reach of Sand Creek equals 4.2 – 7.5 (lb/ft²). With the proposed channel improvements/structures, all sections within this reach fall within the shear stress range above.

Referencing the HEC-RAS model existing conditions calculations in the Appendix shows that several station sections showed velocity between the recommended 5.0 - 7.0 ft./sec. per Table 8.3 and shear stress exceeding the limit above. These stations are as follows: 5+00 - 8+00, 20+00 and 22+00. Improvements constructed with Filing No. 1 included a sheet pile check structure installed at approximately Station 6+40. The channel improvements proposed within Filing No. 2 consist of widening of the floodplain from stations 6+50 - 10+00, installation of rip-rap stabilization from stations 6+50 - 11+00 and installation of three additional check structure located at stations 2+00, 9+00 and 22+00.

The DBPS recommended to provide selective rip-rap channel stabilization located at culvert crossings, pipe outlets and outside bends of the channel. Based on the mean channel slope of 1.58% for this stretch and maximum allowable velocity criteria of 7.0 fps, Type L Rip-Rap stabilization will be provided at select locations within Filing No. 2. (See Appendix for d_{50}

calculation and tables describing slope, velocity, shear, Froude No., etc.) Between stations 6+50 and 10+00, the north side of the natural channel floodplain is proposed to be widened to help mitigate the existing velocity and sheer in this area. Then both sides of the channel through this stretch will be provided with rip-rap stabilization. The existing channel slope throughout this reach ranges from 0.7% to 2.5%. Per the HEC-RAS model, the proposed channel velocities, after improvements range from 2.6 ft./sec. to 5.6 ft./sec. All stations are within the allowable velocity of 7.0 ft./sec. and check structure improvements are proposed at the specific stations where velocity is over 5.0 ft/sec. and shear stress is above 5.0 based on the SCS Retardance Index above. The proposed model calculations also shows a few stations with Froude Nos. over the 0.8 criteria. However, at this specific areas, the proposed check structures are planned.

The DBPS does not depict any structures along this stretch of channel. However, three additional structures are being planned to further limit degradation and help control the elevation of the channel invert as well as aide in the adjacent wetland mitigation self-irrigation plan. The check structures are designed to be sheet piling with a concrete cap per Urban Drainage Vol. 2 Figures 9-27 thru 9-28. The intent of this structure is to hold grade so if the stream wants to flatten its equilibrium slope, the incision is limited. Thus, the plan is for this structure to eventually become drop structures as dictated by future channel characteristics.

A public trail/ access road along the west side of Sand Creek is planned and will allow for maintenance access to associated channel improvements. Maintenance access along east side of channel is also provided. (See channel plans for exact ramp locations and details)

DRAINAGE CRITERIA

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014. Individual on-site developed basin design used for

detention/SWQ basin sizing, inlet sizing and storm system routing was calculated using the Rational Method. Runoff Coefficients are based on the imperviousness of the particular land use and the hydrologic soil type in accordance with Table 6-6. The average rainfall intensity, by recurrence interval found in the Intensity-Duration-Frequency (IDF) curves in Figure 6-5. (See Appendix)

The City of Colorado Springs/El Paso County DCM requires the Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls. The Four Step Process pertains to management of smaller, frequently occurring storm events, as opposed to larger storms for which drainage and flood control infrastructure are sized. Implementation of these four steps helps to achieve storm water permit requirements.

This site adheres to this Four Step Process as follows:

1. Employ Runoff Reduction Practices: Proposed rural lot impervious area (roof tops, patios, etc.) will sheet flow across lengthy landscape/natural areas within the large lots and proposed urban lot impervious areas (roof tops, patios, etc.) will sheet flow across landscaped yards and through open space areas to slow runoff and increase time of concentration prior to being conveyed to the proposed public streets or detention facilities. This will minimize directly connected impervious areas within the project site.

Reference the Water Quality Treatment Plan Map in the Appendix for the following calculations:

Area qualifies for exclusion E – large lot single family	11.07 ac.
Area qualifies for exclusion H – stream stabilization	7.73 ac.
Area treated in proposed permanent Pond 3	22.89 ac.
Area treated in existing permanent Pond 2	26.83 ac.

Area of runoff reduction water quality treatment	7.31 ac.
(Reference Runoff Reduction Calculations in Appendix for	these areas)

Filing No. 2 Total platted area	<u>75.83 ac.</u>
Off-site area treated in temporary sediment basins	16.40 ac.

- 2. Stabilize Drainageways: After developed flows utilize the runoff reduction practices through the front and rear yards, developed flows will travel via roadside ditches in the large lot, rural portions of the development, curb and gutter within the public streets in the urban portions of the development and eventually public storm systems. These collected flows are then routed directly to multiple extended detention basins (full-spectrum facilities). Where developed flows are not able to be routed to public street, sheet flows will travel across landscaped rear yards and then through undeveloped property prior to entering Sand Creek. The Sand Creek channel corridor will be protected with various channel improvements as recommended in the Sand Creek DBPS and proposed with this Filing in order to reduce velocities to erosive levels.
- 3. Provide Water Quality Capture Volume (WQCV): Runoff from this development will be treated through capture and slow release of the WQCV and excess urban runoff volume (EURV) in the proposed Full-Spectrum permanent Extended Detention Basins designed per current El Paso County drainage criteria. For the 7.31 ac. that is not able to be captured and routed to one of the permanent EDB's, Runoff Reduction practices are required and provided in the 25' rear setbacks of the lots within these specific basins. Reference Runoff Reduction Calculations in Appendix for these areas that show an 87% WQCV Reduction and meets El Paso County standards.
- 4. **Consider need for Industrial and Commercial BMPs**: No industrial or commercial uses are proposed within this development. However, a site-specific storm water quality and erosion control plan and narrative has been submitted along with the grading and erosion

control plan. Details such as site-specific sediment and erosion control construction BMP's as well as temporary and permanent BMP's were detailed in this plan and narrative to protect receiving waters. Multiple temporary BMP's are proposed based on specific phasing of the overall development. BMP's will be constructed and maintained as the development has been graded and erosion control methods employed.

FLOODPLAIN STATEMENT

Portions of this site are located within a floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Number 08041C 0535G with effective date of December 7, 2018 and the previously mentioned LOMR 08-08-0541P with an effective date of July 23, 2009. (See Appendix).

DRAINAGE AND BRIDGE FEES

This site lies entirely within the Sand Creek Drainage Basin boundaries.

The fees are calculated using the following impervious acreage method approved by El Paso County. The Retreat at TimberRidge Filing No. 2 has a total area of 75.83 acres with the following different land uses proposed:

7.74 Ac.	Sand Creek Drainage corridor (Tract B)
0.96 Ac.	Detention Facility (Tract A)
34.30 Ac.	2.5 Ac. lots (Rural Lots 1-12 incl. ROW dedication)
32.83 Ac.	1/3 Ac. lots (Urban Lots 13-90 with avg. size 15,575 SF)
75.83	Total

The percent imperviousness for this subdivision is calculated as follows:

Fees for Sand Creek Drainage Corridor

(Per El Paso County Percent Impervious Chart: 2%)

7.74 Ac. x 2% = **0.15 Impervious Ac.**

Fees for Detention Facilities & Park

(Per El Paso County Percent Impervious Chart: 7%)0.96 Ac. x 7% = 0.07 Impervious Ac.

Fees for 2.5 Ac. lots

(Per El Paso County Percent Impervious Chart: 11% with 25% fee reduction for
2.5 ac. lots planned – ECM 3.10.2a) – *Reduction for Drainage Fees only*34.30 Ac. x 11% x 75% = 2.83 Impervious Ac. (Drainage Fees)
34.30 Ac. x 11% = 3.77 Impervious Ac. (Bridge Fees)

Fees for 1/3 Ac. lots (Avg. lot size of 15,575 SF)
(Per El Paso County Percent Impervious Chart: 30%)
32.83 Ac. x 30% = 9.85 Impervious Ac.

Total Impervious Acreage:	12.90 Imp. Ac. (Drainage Fees)
Total Impervious Acreage:	13.84 Imp. Ac. (Bridge Fees)

The following calculations are based on the 2021 Sand Creek drainage/bridge fees:

ESTIMATED FEE TOTALS:

Bridge Fees		
\$ 8,339.00 x 13.84 Impervious Ac.	=	<u>\$ 115,411.76</u>
Drainage Fees		
\$ 20,387.00 x 12.90 Impervious Ac.	=	<u>\$ 262,992.30</u>

In order to ascertain the current drainage fee versus reimbursable drainage facility obligations, the Sand Creek Drainage Basin Planning Study (Kiowa Engineering Corporations, dated March 1996) was consulted.

For the TimberRidge Filing No. 2 community, the reimbursable drainage facilities identified in the DBPS are as follows:

<u>ltem</u>	Location	<u>1992 Cost</u>	2021 Cost (adjusted)
Check Structure	std. 907+100	\$15,300	\$42,610.00
	(reach SC-9)		
	Total Reimbursable / Improvements		\$42,610.00
	10% Engineering		\$ 4,261.00
	Total		\$46,871.00

Based upon the 1992 DBPS recommendations, the actual required Sand Creek improvements far exceed the anticipated reimbursable improvement estimates primarily due to additional regulatory requirements at the local and federal level. The \$46,871.00 will be used to offset drainage fees for Filing No. 2, and a future drainage board request will be made to propose adding required channel improvements to the DBPS.

An excerpt from the approved Filing No. 1 report is as follows:

ESTIMATED FEE TOTALS:		
Bridge Fees		
\$ 5,559.00 x 11.36 Impervious Ac.	=	<u>\$ 63,150.24</u>
Drainage Fees		
\$ 18,940.00 x 10.43 Impervious Ac.	=	<u>\$ 197,544.20</u>

Per the ECM 3.10.5.a, this development requests a reduction of drainage fees based on the onsite regional channel improvements for this stretch of Sand Creek Reach SC-9 as shown in the

DBPS. The following facilities within the Sand Creek Drainage Basin seem to meet the criteria for this reduction:

Sand Creek Channel Improvements per DBPS	=	\$175,000
Proposed Sand Creek Channel Improvements:		
Sheet Pile Check Structure w/ Conc. Cap	\$35,000 EA x 5 =	\$175,000
Selective Bank Stabilization (Buried Rip-Rap)	\$60/LF x 1400 LF =	\$ 84,000
Selective Bank Stabilization (Grading & Reveg.)	=	\$120,000
Total	=	\$379,000

Actual construction costs incurred for the non-Poco roadway structure/crossing were \$598,142.48 (per Tezak billing summary.)

(Exact facility costs provided upon construction and acceptance by County. Any credits may be used for future Filings)

This indicates that the Filing No. 1 drainage fees of \$197,544.20 were offset by Filing No. 1 channel facility cost per above which allows \$181,455.80 to be used for Filing No. 2 drainage fees (\$379,000 - \$197,544.20). The Filing No. 2 reimbursable facility costs total \$46,871.00 which will require \$34,665.50 in drainage fees to be paid with the recordation of the Filing No. 2 Plat (along with the Filing No. 2 bridge fees of \$115,411.76).

Fees required to record the Filing No. 2 plat

Drainage:	\$34,665.50
Bridge:	<u>\$115,411.76</u>
Total:	\$150,077.26

SUMMARY

The proposed Retreat at TimberRidge Filing No. 2 is within the Sand Creek Drainage Basin. Recommendations are made within this report concerning necessary improvements that will be required as a result of development of this property. The points of storm water release from the proposed site are required to be at or below the calculated historic flow quantities. The development of the proposed site does not significantly impact any downstream facility or property to an extent greater than that which currently exists in the pre-development conditions. All drainage facilities within this report were sized according to the Drainage Criteria Manuals and the full-spectrum storm water quality requirements.

PREPARED BY:

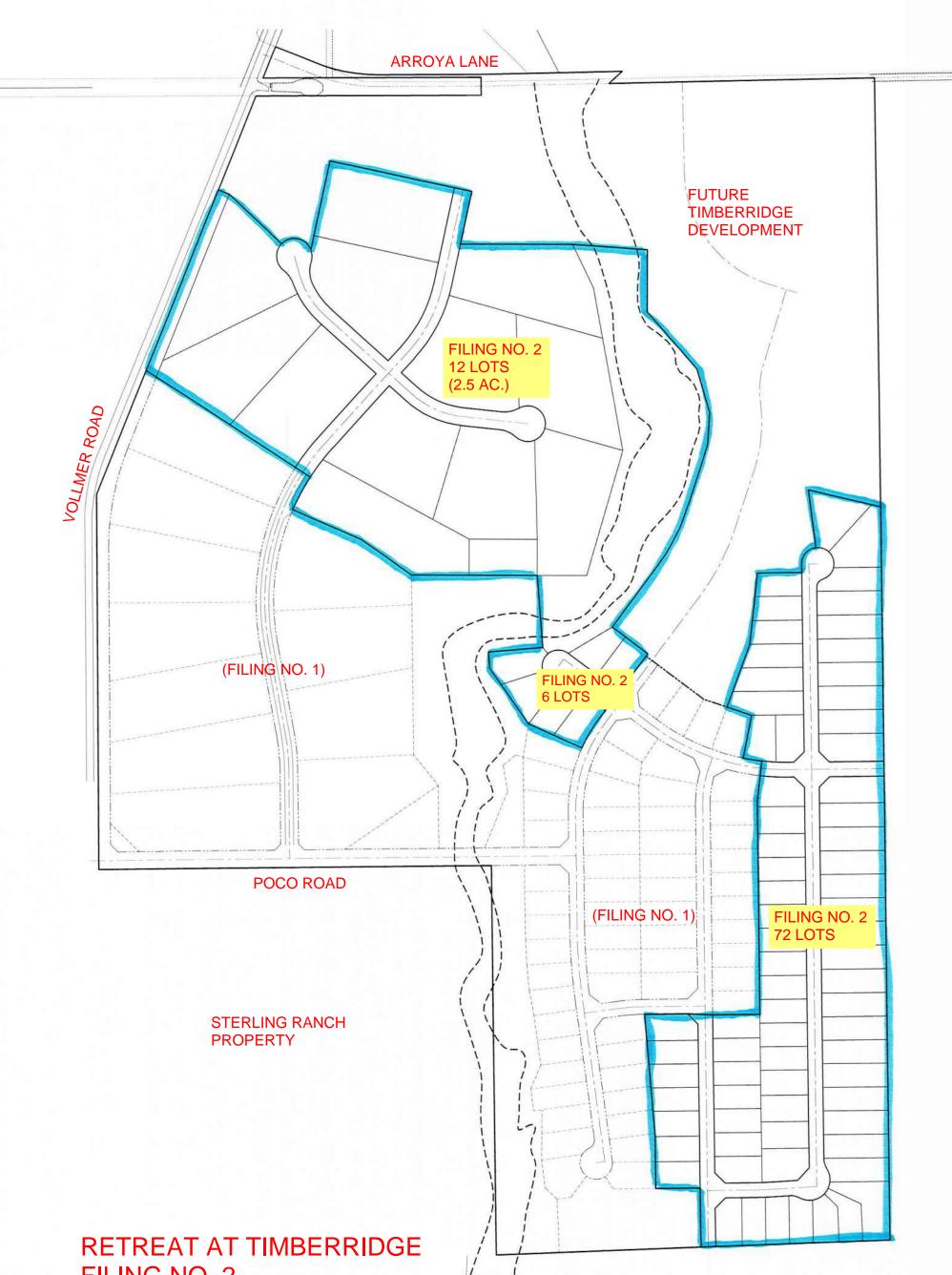
Classic Consulting Engineers & Surveyors, LLC

Marc A. Whorton, P.E. Project Manager

maw/118520/FDR Fil. 2.doc

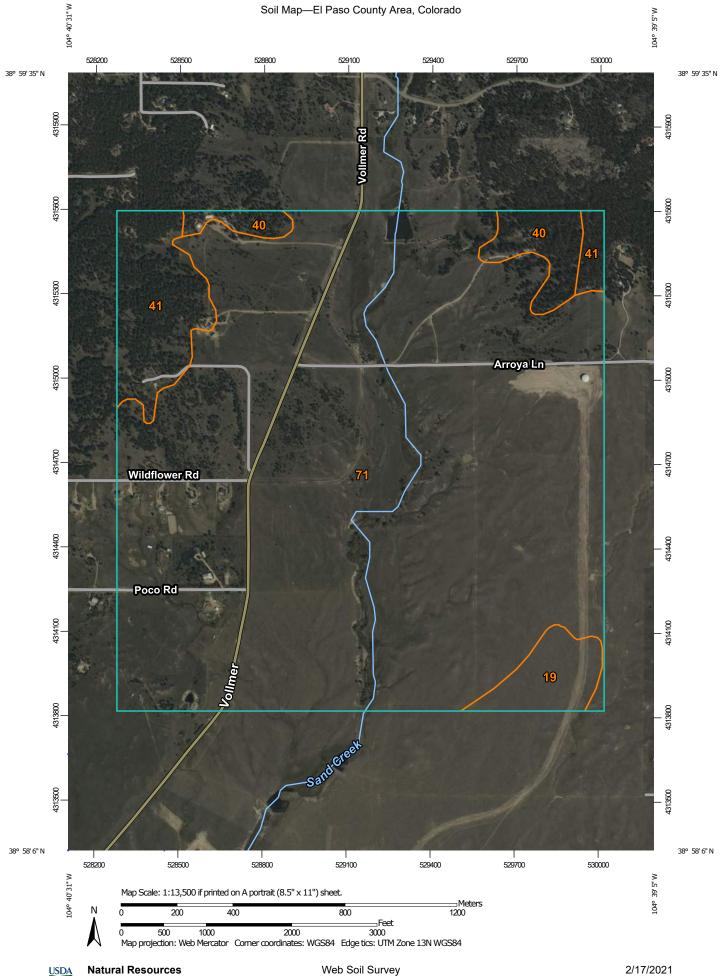
REFERENCES

- 1. City of Colorado Springs/County of El Paso Drainage Criteria Manual as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.
- 2. "Urban Storm Drainage Criteria Manual Volume 1, 2 & 3" Urban Drainage and Flood Control District, dated January 2016.
- 3. "Final Drainage Report for Forest Gate Subdivision" Law & Mariotti Consultants, Inc. dated October 2004.
- 4. "Sand Creek Drainage Basin Planning Study," Kiowa Engineering Corporation, dated March 1996.
- 5. "Master Development Drainage Plan for The Retreat at TimberRidge", Classic Consulting, approved March 2018.
- 6. "Preliminary Drainage Report for The Retreat at TimberRidge Preliminary Plan South of Arroya Lane", Classic Consulting, approved October 2018.
- 7. "2018 Sterling Ranch MDDP", M&S Civil Consultants, Inc., June 2018
- 8. "Final Drainage Report for Retreat at TimberRidge Filing No. 1", Classic Consulting, approved November, 2020.



APPENDIX

VICINITY MAP


FILING NO. 2

VICINITY MAP

STERLING RANCH PROPERTY

SOILS MAP (S.C.S SURVEY)

MAP	LEGEND	MAP INFORMATION
Area of Interest (AOI) Soils Soil Map Unit Polygons Image: Soil Map Unit Points Soil Map Unit Points Soil Map Unit Points Special Pirt Features Image: Special Pirt Pirt Pirt Pirt Pirt Pirt Pirt Pirt	 Spoil Area Stony Spot Very Stony Spot 	<section-header><section-header><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></section-header></section-header>
-		

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	21.7	2.8%
40	Kettle gravelly loamy sand, 3 to 8 percent slopes	26.1	3.4%
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	51.7	6.7%
71	Pring coarse sandy loam, 3 to 8 percent slopes	667.8	87.0%
Totals for Area of Interest		767.3	100.0%

Map Unit Legend

El Paso County Area, Colorado

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369k Elevation: 6,800 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Pring and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pring

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam C - 14 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: R048AY222CO Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes Other soils Percent of map unit: Hydric soil rating: No

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 18, Jun 5, 2020

F.E.M.A. MAP / LOMR (08-08-0541P)

NOTES TO USERS

s map is for use in administence the National Flood Insurance Program. It does necessarily identify all areas subject to flooding, particularly from local dramege ross of small suce. The community maps repository should be consulted for sible updeted or additional flood hazard information. his map is for use in adr ot nece

obtain more detailed information in areas where Base Flood Elevations (BFE: To obtain more detailed information in areas where Base Flood Elevations (BFEs and/or flood/way base been deteemhed, users are encouraged to consult the Flood Profiles and Flood/way Data and/or Summary of Siliwater Elevations tables containers whin the Flood Insurance Study (FIS) report that accompanies this FIRM, User should be aware that BFEs shown on the FIRM represent rounded whole-do levations. These BFEs are included for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplan management

Coastal Base Flood Elevations shown on this map apply only landward of 0.0 North American Vertical Datum of 1988 (NAVD86). Users of this FIRM should be avere that coastal flood elevations are also provided in the Summary of SiGNuell Elevations table in the Flood Insurance Study report for this phosicition. Elevations shown in the Summary of SiGNuell Elevations table should be used for constructor and/or Anodphin management purposes when they are higher than the elevations shown on this FIRM.

Soundaries of the floodways were computed at cross sections and interpolated setween cross sections. The floodways were based on hydraulic considerations with egard to requirements of the National Flood Insurance Program Floodway widths and other perferent floodway data are provided in the Flood Insurance Study report r this jurisolic

ertain areas not in Special Flood Hazard Areas may be protected by flood contro Injectures. Refer to section 2.4 'Flood Protection Measures' of the Flood Insurance tudy report for information on flood control structures for this jurisdiction

The projection used in the preparation of this map use Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NADB3, GRSS6 spheroid Differences in datum, spherod, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in alight postional differences in map features across jurisdiction boundaries. These differences do not effect the accuracy of Inis FIRM.

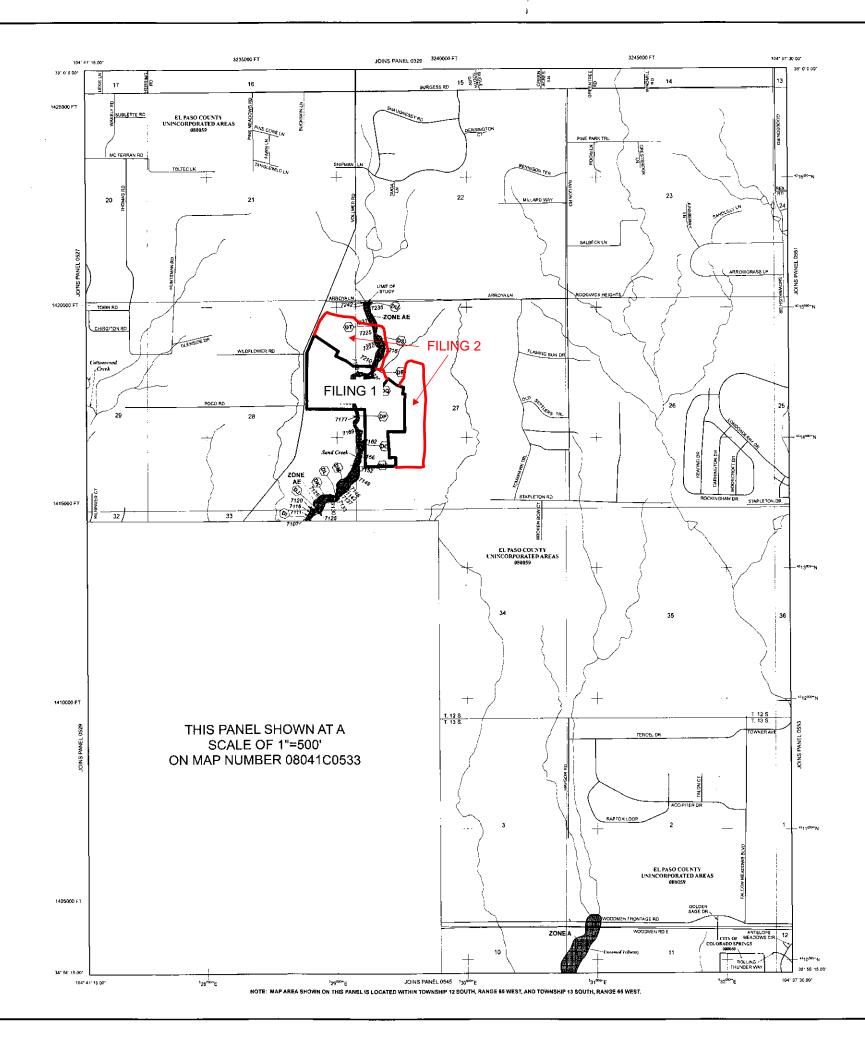
Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the Nabonal Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1980, with the Nabional Geodetic Survey webste at http://www.ngs.ncsa.gov/ or contact the National Geodetic Survey at the following address: iress:

NGS information Services NOAA, N/NGS12 NUAA, NINGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the Nationa Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.ncaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Pasc County, Colorado Springs Ulúlties, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more delialed and up-to-date stream channel configurations and floodplain delineations; than those shown on the previous FIRM for this jurisdiction. The floodplain delineations; that where transferred from the previous FIRM may have been adjusted to confirm to lines new viterem channel configurations. As a result, the Flood Profiles and Floodway Date tables in the Flood insurance Study Report (which contains authoritable hydraucid data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling basefines that match the flood profiles and Floodway Date Tables if applicable, in the FIS report. As a result, the profile basefines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.


orporate limits shown on this map are based on the best data available at the time publication. Because changes due to annexations or de-annexations may have ocurred after this map was published, map users should contact appropriate smmunity officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an ovendew map of the county showing the layout of map panels; community map repository addresse; and a buting of Communities table containing National Rood inspraces Program dates for each community as well as a listing of the panels on which each community is

Contact FEMA Map Service Center (MSC) via the FEMA Map Information exchange (FMX) 1-877-335-5627 for information on available products associated with this FIRM. Available products may include previously issued Leiters of Map Change, a Flood insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax et 1-800-338-8620 end its webaite of the floww.msc.fema.gov/.

If you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FEMA MAP (1-877-338-2627) or visil the FEMA wabsite at http://www.fema.gov/business/nfp

E) Paso County Vertical Datum Offset Table Vertical Datum	
Flooding Source Offant (h)	
REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STU FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION	DY N
Panel Location Map	
┝╌┎┿┿╦╦┿┿┯┼╌┞──╀──┼┼┼╌┥	
┝╋┱┥	
This Digital Flood Insurance Rate Map (DFIRM) was produced th Cooperating Technical Partner (CTP) agreement between the State of (Colorado
Nater Conservation Soard (CWCB) and the Federal Emergency Man. Agency (FEMA).	egement
Additional Flood Hazard information and res	ources are
available from local communities and the Water Conservation Board	Colorado

	SPECIAL FLOO	LEGEND D HAZARD AREAS (SFHAS) SUBJECT TO Y THE 1% ANNUAL CHANCE FLOOD
		The The ANNOVAL CHARGE FLOOD ivear force), also known as the base flood, is the flood based or excessed in any given year. The Speciel Flood to flooding by the 1% annual chance flood. Ansas of is A, AE, AH, AD, AB, ABP, V, and VE. The Base Flood ation of the 1% annual thanker flood.
ZONE A ZONE AE	No Base Flood Elev Base Flood Elevatio	ations determined.
ZONE AH	Flood depths of Elevations determs	to 3 feet (usually areas of ponding); Base Flood red
ZONE AD	Flood depths of 1 i depths peterminer determined	a 3 feet (usually sheet flow on sloping terrain); average 1. For areas of alluvial fan Rooding, velocibes also
ZONE AR	Special Rood Haza fixed by a flood of AR indextes that provide protector	II Area Formerly protected from the 1% annual chance ontrol system that was subsequently decettified. Zone the former food carriers system is being restand to from the 1% annual chance or greater food.
ZONE A99	Area to be protec	ted httm 1% annual chance flood by a Federal flood 1 under construction: no Base Flood Elevations
ZONE V	Coasta ficcos zon	with velocity hazard (wave action); no Base Flood
ZONE VE	Coasta flood zo: Elevations determine	ved w with velocity hazard (wave action); Base Flood red.
1.465		EAS IN ZONE AE
The floodway kept free of	is the channel of a encroachment so th	stream prus any adjacent filosopian areas that must be at the 1% annual chance flood can be carried without hts.
	OTHER FLOOD	
ZONE X		us: chance flood; areas of 1% annual crance flood; with less than 1 foot or with dramage areas less than 1 reas protected by levees from 1% armau' chance flood.
	OTHER AREAS	
ZONE X		to be outside the 0.2% annual chance floodplain. dinazands are undetermined, but possible.
		VER RESOURCES SYSTEM (CBRS) AREAS
223		ROTECTED AREAS (OPAS)
		y rocalled within or adjacent to Special Rood Hazard Areas.
		piert boundary way boundary
	Zone	D Boundery and OPA boundary
		anti cervi boundary Sary dividing Special Rood Hazard Areas of different Base Elevations, flood depths or flood velocities
~~ 513		Elevations, flood depths ar flood velocities Flood Elevation line and value; elevation is feet"
IEL 983	eleva	Flood Elevation value where uniform within zone; tion in feet*
* Referenced		en Verboe Datum of 1988 (NAYD 88) section kne
23		ect line
97° 07' 30 37' 27' 30	~	raphic coordinates referenced to the Sorth American n of 1963 (NAD 83)
427530	N 1000	meter Universal Transverse Nercator prió ticks.
6000000	дле FT 5000	
		foot gnd tocks: Colorado State Plane coordinate m, central zone (FIPSZONE 0502), ert Conformal Conic Projection
DX5510		n mark (see explanation in Notes to Users section of IRM panel)
● ^{M1.8}	5 Rver	Mie
	Refer t	MAP REPOSITORIES Map Repositores I st on Map Index
	EFF FI	ECTIVE DATE OF COUNTYWIDE OOD INSURANCE RATE MAP MARCH 17, 1997
DECEM Specar F	EFFECTIVE (MARCH 17, 1397 INTE(S) DF REVISION(S) TO THIS PAREL late componet know, to change Base Flood Elevations and a update mess format, to add roads and road names, and to arevulatly assued Labets of Mar Revision
		ary prior to countywide matping, refer to the Community Roos Insurance Study report for this jurisdiction.
		Roos Insurance Study report for this jurisdiction. is available in this community, contact your insurance isurance Program at 1-800-638-5620.
	жэ о ННН	MAP SCALE 1" = 1000' 1000 2000
:		6 300 600
[NFIP	PANEL 0535G
		FIRM
	RYAN	FLOOD INSURANCE RATE MAP
	Q	EL PASO COUNTY.
	RC	COLORADO
	R.	AND INCORPORATED AREAS
	ЦЦ С	PANEL 535 OF 1300
	2	(SEE MAP INDEX FOR FIRM PANEL LAYOUT
		CONTAINS COMMUNITY NUMBER PANEL SUFFL
	Ð	CONCREADE SPRINGS (THY DF DELOSE 1625 6 16. FASIE COUNTY 166035 1635 9
	SN	
	\odot	
	E C	Notice to user. The Map Number shoen before should be
	j	Notice to user. The Map Number shown before should be used when second map orders the Community Number phone solve should be used on insulance sphile tobe for the subject of through
	NVI.	MAP NUMBER
	R	08041C0535G
	<u>JHK</u>	MAP REVISED
	AV.	DECEMBER 7, 2018 Federal Emergency Management Agency
,		J

Page 1 of 4	Issue Date: March 6, 2009	Effective Dat	e: July 23, 2009	Case No.:	08-08-0541P	LOMR-APP
	Feder		gency Mana hington, D.C. 2047	0	Agency	
			MAP REVISION ON DOCUMEN	г		
	COMMUNITY AND REVISION INFORMAT	ION	PROJECT DESCR	IPTION	BASIS OF RI	EQUEST
COMMUNITY	El Paso County Colorado (Unincorporated Are	as)	NO PROJECT		YDRAULIC ANAL EW TOPOGRAPH	
	COMMUNITY NO.: 080059			_		
IDENTIFIER	Sand Creek Letter of Map Revision, Mustang Place to Arroya Lane	_	APPROXIMATE LATITUD SOURCE: USGS QUADR		38.971, -104.668 M: NAD 27	
	ANNOTATED MAPPING ENCLOSURES		ANN	OTATED STUDY	ENCLOSURES	
TYPE: FIRM*	ct changes to flooding sources affected by this	arch 17, 1997 s revision.	DATE OF EFFECTIVE FLO PROFILE(S): 204P(a), FLOODWAY DATA TAE	204P(b), 204P(c) / BLE: 5		3, 1999
* FIRM - Flood In	surance Rate Map; ** FBFM - Flood Boundar			loundary Map		
Sand Creek - froi	m approximately 360 feet downstream of Mus		6) & REVISED REACH(ES) wwnstream of Arroya Lane			
			OF REVISIONS			
Flooding Source Sand Creek		Effective Floo Zone A No BFEs* No Floodway	oding Revised Flooding Zone AE BFEs Floodway	Increases YES YES YES	Decreases YES NONE NONE	
* BFEs - Base Flo	ood Elevations					
		DETERM	AINATION			
regarding a rec a revision to th warranted. Th panels revised This determinatic any questions ab	provides the determination from the De quest for a Letter of Map Revision (LOM) e flood hazards depicted in the Flood Ins is document revises the effective NFIP n by this LOMR for floodplain management on is based on the flood data presently availat out this document, please contact the FEMA 01 Eisenhower Avenue, Alexandria, VA 2230	R) for the area des surance Study (FI nap, as indicated in nt purposes and fo ole. The enclosed do Map Assistance Cer 4. Additional Inform	scribed above. Using the i S) report and/or National F n the attached documents or all flood insurance polici ocuments provide additional in the toll free at 1-877-336-262 ation about the NFIP is availa	information subn Flood Insurance ation. Please us ies and renewals nformation regardii 7 (1-877-FEMA M	nitted, we have de Program (NFIP) m e the enclosed an i in your communi i n your communi ng this determination AP) or by letter addr	termined that hap is notated map ty. h. If you have essed to the
	E	David N. Bascom, Pr Engineering Manage Mitigation Directorate	ment Branch	112553	10.3.1.08080541	102-I-A-0

Page 2 of 4	Issue Date: March 6, 2009	Effective Date: July 23, 2009	Case No.: 08-08-0541P	LOMR-APF
	Fede	eral Emergency Man Washington, D.C. 204		
		ETTER OF MAP REVISION		

COMMUNITY INFORMATION

APPLICABLE NFIP REGULATIONS/COMMUNITY OBLIGATION

We have made this determination pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93-234) and in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65. Pursuant to Section 1361 of the National Flood Insurance Act of 1968, as amended, communities participating in the NFIP are required to adopt and enforce floodplain management regulations that meet or exceed NFIP criteria. These criteria, including adoption of the FIS report and FIRM, and the modifications made by this LOMR, are the minimum requirements for continued NFIP participation and do not supersede more stringent State/Commonwealth or local requirements to which the regulations apply.

We provide the floodway designation to your community as a tool to regulate floodplain development. Therefore, the floodway revision we have described in this letter, while acceptable to us, must also be acceptable to your community and adopted by appropriate community action, as specified in Paragraph 60.3(d) of the NFIP regulations.

COMMUNITY REMINDERS

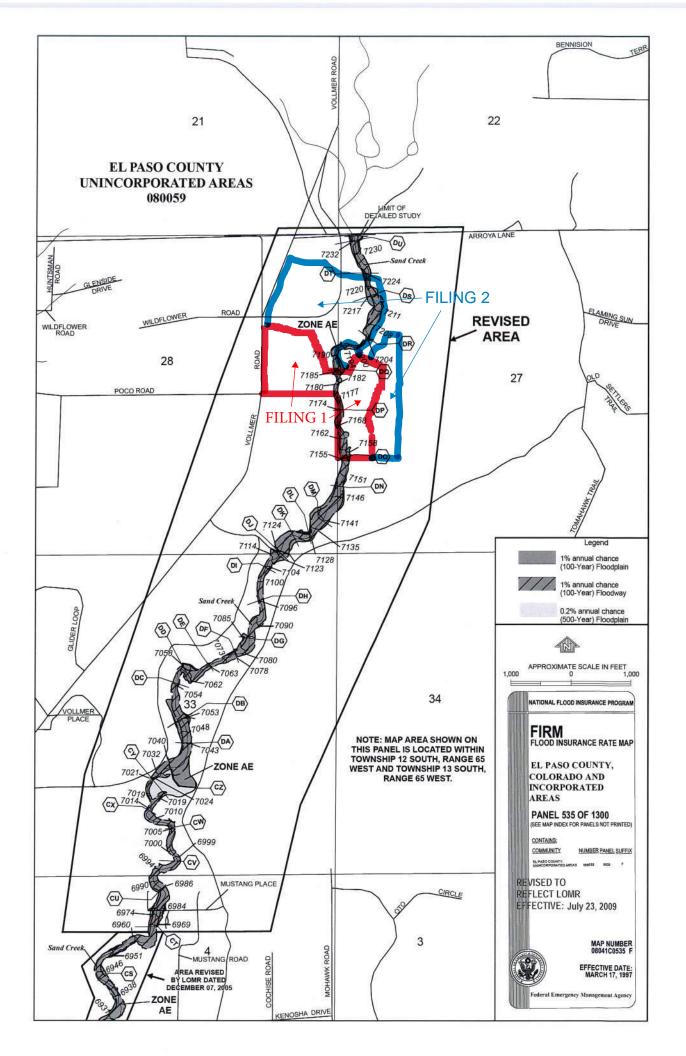
We based this determination on the 1-percent-annual-chance flood discharges computed in the FIS for your community without considering subsequent changes in watershed characteristics that could increase flood discharges. Future development of projects upstream could cause increased flood discharges, which could cause increased flood hazards. A comprehensive restudy of your community's flood hazards would consider the cumulative effects of development on flood discharges subsequent to the publication of the FIS report for your community and could, therefore, establish greater flood hazards in this area.

Your community must regulate all proposed floodplain development and ensure that permits required by Federal and/or State/Commonwealth law have been obtained. State/Commonwealth or community officials, based on knowledge of local conditions and in the interest of safety, may set higher standards for construction or may limit development in floodplain areas. If your State/Commonwealth or community has adopted more restrictive or comprehensive floodplain management criteria, those criteria take precedence over the minimum NFIP requirements.

We will not print and distribute this LOMR to primary users, such as local insurance agents or mortgage lenders; instead, the community will serve as a repository for the new data. We encourage you to disseminate the information in this LOMR by preparing a news release for publication in your community's newspaper that describes the revision and explains how your community will provide the data and help interpret the NFIP maps. In that way, interested persons, such as property owners, insurance agents, and mortgage lenders, can benefit from the information.

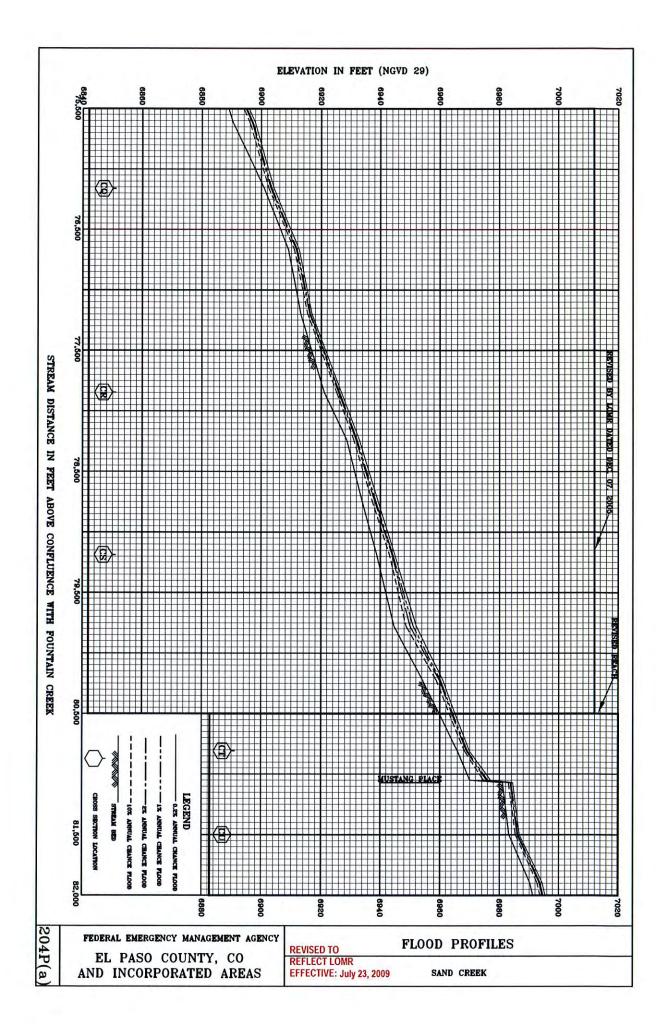
This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

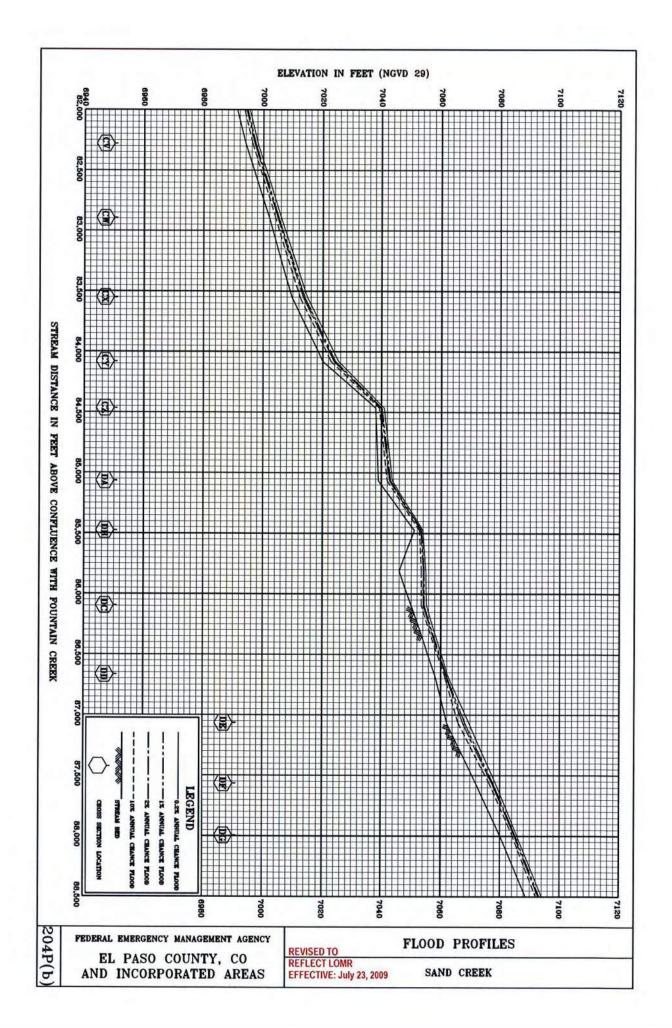
wid 1. Baycon

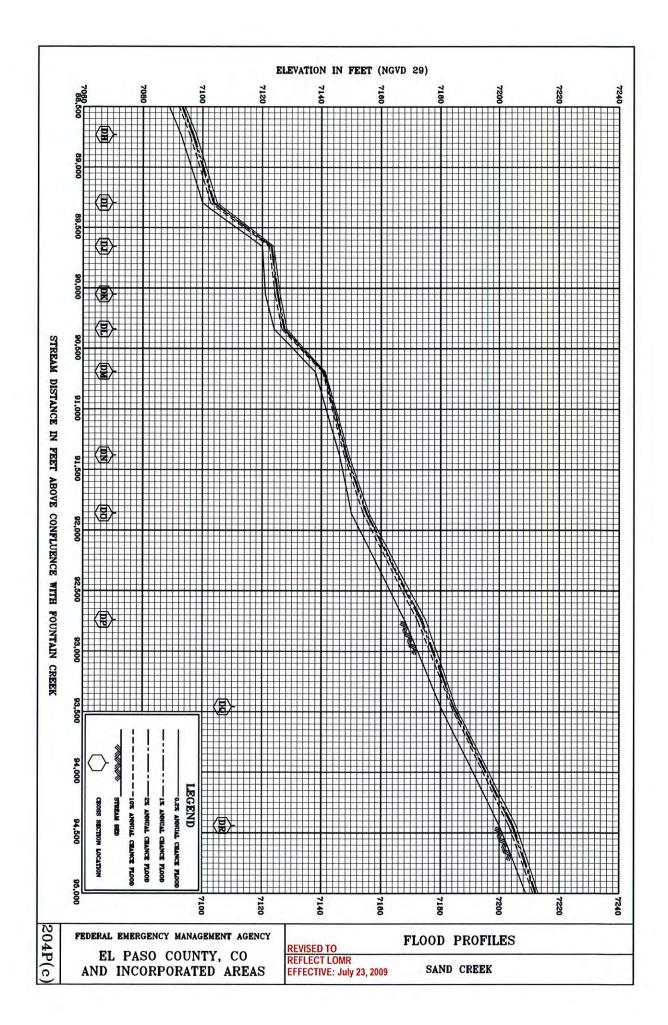

David N. Bascom, Program Specialist Engineering Management Branch Mitigation Directorate

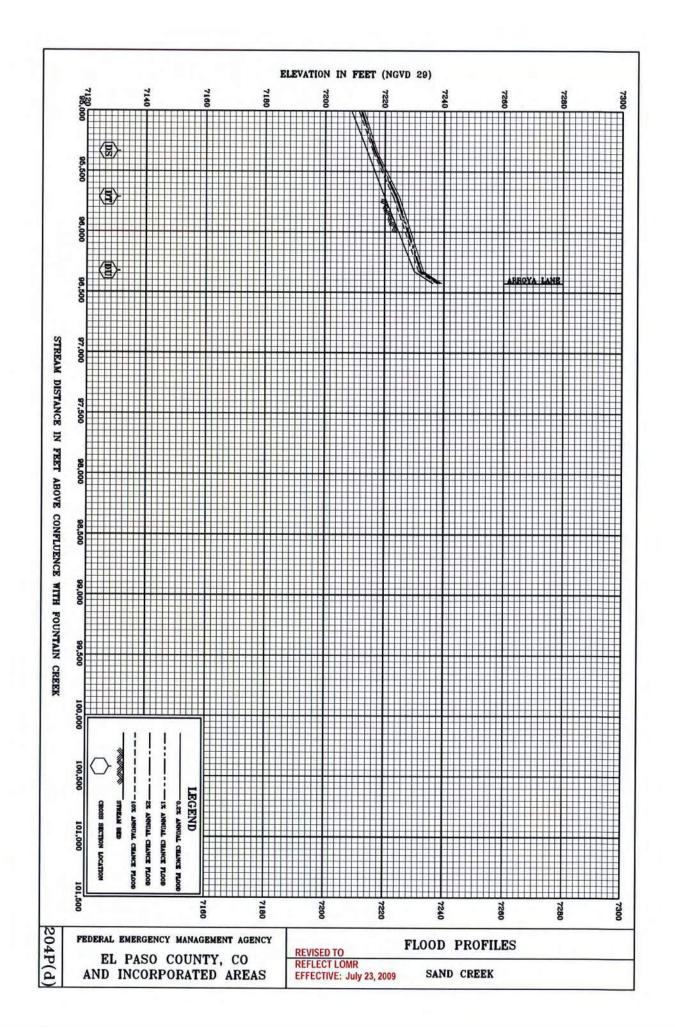
112553 10.3.1.08080541

102-I-A-C

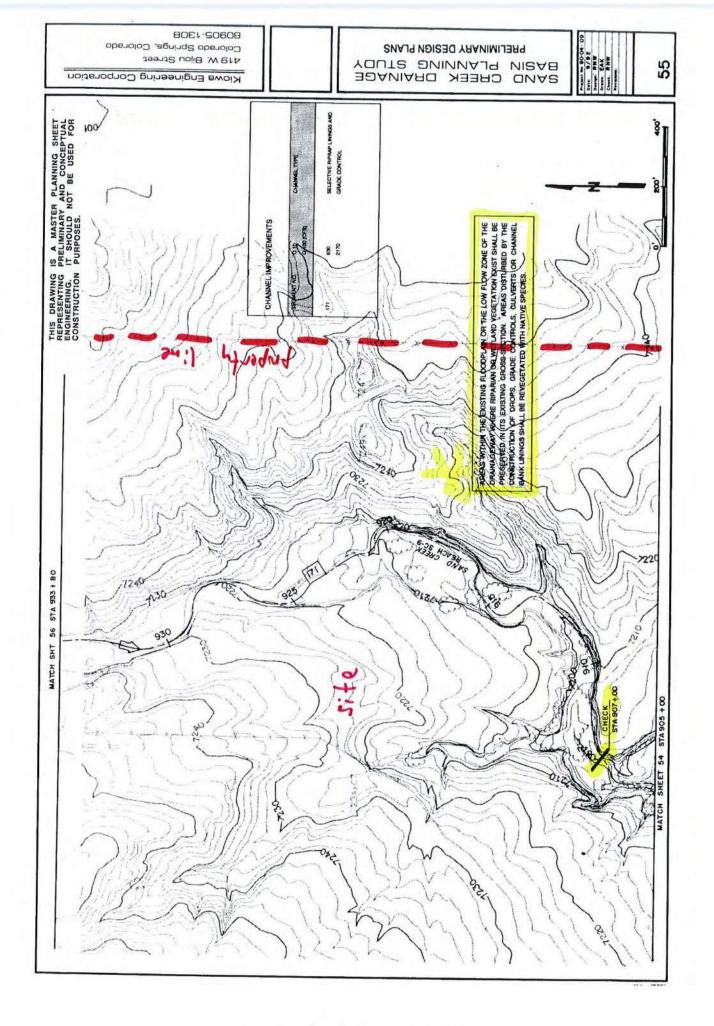

Page 3 of 4	Issue Date: March 6, 2009	Effective Date: July 23, 2009	Case No.: 08-08-0541P	LOMR-APP
Fage 5 01 4	1550e Date. March 0, 2009	Enective Date. Suly 23, 2009	Case No 00-00-0041P	LOWIK-AFF
	Fede	eral Emergency Mar Washington, D.C. 20	• • • •	7
		ETTER OF MAP REVISIO	N	
	DETERMI	NATION DOCUMENT (CO	NTINUED)	
	signated a Consultation Coordination unity and FEMA. For information re	Officer (CCO) to assist your communi garding your CCO, please contact:	ty. The CCO will be the primary	liaison between
	Federal	Ms. Jeanine D. Petterson Director, Mitigation Division Emergency Management Agency, Reg Denver Federal Center, Building 710 P.O. Box 25267 Denver, CO 80225-0267 (303) 235-4830	ion VIII	
STATUS O	F THE COMMUNITY NFIP MAI	PS		
LOMR at the		IRM and FIS report for your communit usly cited FIRM panel(s) and FIS repor- made by this LOMR at that time.		
any questions a	about this document, please contact the FEM	ilable. The enclosed documents provide addition AA Map Assistance Center toll free at 1-877-336 304. Additional Information about the NFIP is a Marich A. Bascom	5-2627 (1-877-FEMA MAP) or by letter ad	dressed to the
		David N. Bascom, Program Specialist Engineering Management Branch Mitigation Directorate	112552 10 2 4 00000544	10214.0
		1990 19 - E. S. S. 1993 - S. 19 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	112553 10.3.1.08080541	102-I-A-C


	Issue Date: N	March 6, 2009	Effective Date: July 23,	2009	Case No.: 08-08-0541P	LOMR-APP
	STAR BAR	Federa	al Emergency Washington,	U	ement Agenc	У
			TER OF MAP RE TION DOCUMEN		IUED)	
		PUBLIC	NOTIFICATION O	F REVISION		
		-	PUBLIC NOTIFICATI	ION		
FLOODI	NG SOURCE	LOCATION OF REFE		BFE (F	EET NGVD 29)	MAP PANEL
				EFFECTIVE	REVISED	NUMBER(S)
Sand Creek		Just upstream of Mustang		None	6,984	08041C0535 F
		Just downstream of Arroya	n Lane newspaper, a citizen may	None	7,238	08041C0535 F
LOCAL NEV	WSPAPER	Name: <i>El Paso Coun.</i> Dates: 03/18/09	ty News 03/25/09			




	FLUUDING S	SOURCE		FLOODWAY		M		5 EI	
	CROSS SECTION	DISTANCE ¹	WIDTH (Feet)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY FEET	NUT WITH WAY FLOODWAY FEET (NGVD)	INCREASE
	Sand Creek (cont'd)								
	CA	65,292	164	427	6.1	6,748.7	6,748.7	6,749.4	0.7
	CB	66,092	41	223	11.7	6,761.2	6,761.2	6,762.2	1.0
	SC	66,247	90	270	9.6	6,773.6		6,773.7	0.1
	8	67,647	50	218	11.9	782.		783	•
	CE	68,297	65	284	8.8	79	6,793.9	79	0.5
	CF	69,147	50	213	11.7	6,804.5	6,804.5	6,804.5	
	CG	70,157	50	213	11.7		-	815.	0.2
Revised	CH	70,577	205	4	7.2	, 82	6,823.9	6,824.5	0.6
-	CI	70,627	180	267	9.4	6,826.7	6,826.7	6,827.7	1.0
	CJ	70,727	210	340		6,831.1	6,831.1	6,831.1	0.0
LOMR	CK	70,807	195	334	7.5	332		6,832.5	0.0
-	IJ	71,162	06	255	9.8	88.	6,838.0	6,839.0	
Dec. 7,	CM	71,977	226	503	5.2	6,847.4	6,847.4	6,848.3	0.9
-	CN	73,052	174	328	7.9	6,861.1	6,861.1	6,861.2	0.1
1	CO	73,644	237	364	7.1	6,870.2	6,870.2	6,870.2	0.0
	CP	75,142	172	324	8.0	6,888.5	6,888.5	6,888.7	0.2
	çõ	76,161	109	283	9.2	6,903.5	6,903.5	6,903.7	0.2
Revised	CR	77,846	100	272	9.6	6,926.1	6,926.1	6,926.7	0.6
-	CS	79,187	117	287	9.1	6,944.1	6,944.1	6,944.1	0.0
1	CT	80,808	142	310	8.4	6,969.2	6,969.2	6,969.2	0.0
	CU	81,501	120	342	7.6	6,986.1	6,986.1	6,986.5	0.4
-	CV	82,281	124	295	8.8	6,997.4	6,997.4	6,997.4	0.0
	CW	82,897	64	237	11.0	7,005.3	7,005.3	7,006.1	0.8
-	Ŋ	83,517	90	266	9.8	7,013.9	7,013.9	7,013.9	0.0
-	CY	84,087	70	244	10.7		7,024.3	4	0.0
-	CZ	84,473	160	322	8.1	7,040.2	7,040.2	7,040.2	0.0
					REVISED TO	D T 0			
					REFLEC	REFLECT LOMR			
-	Feet Above Confl	Confluence With	Fountain	Creek	EFFECI	EFFECTIVE: July 23, 2009	600		
	FEDERAL EM	FEDERAL EMERGENCY MANAGEMENT AGENCY	EMENT AGE	VCY		H	FLOODWAY DATA	DATA	
		AND INCORPORATED AREAS	D AREAS				SAND CREEK	×	
5								×	

FLOODING SO	CROSS SECTION	Sand Creek	(cont'd)	DA	DB	DC	DD	DE	DF	DG	HD	DI	DJ	DK	DL	DM	DN	DO	DP	QQ	DR	DS	DT	DU		Feet Above Confluence	FEDERAL EMER	AND INCORPORATED AREAS
SOURCE	DISTANCE ¹			85,073	85,483	86,103	86,673	87,073	87,573	•	8	89,303	89,663	-	90,348	~	38	91,868	,74	-	,44	95,343	95,723	96,333		With	FEDERAL EMERGENCY MANAGEMENT AGENCY	
	WIDTH (FEET)			139	170	100	197	83	98	135	89	74	143	140	102	300	120	105	65	117	81	100	77	90		Fountain		
FLOODWAY	SECTION AREA (SQUARE FEET)			456	328	274	434	270	325	304	263	249	309	426	276	398	292	313	m	288	6	274	252	266	<u> </u>	Creek E	ICY	
	MEAN VELOCITY (FEET PER SECOND)			5.7	7.9	9.5	6.0	9.6	8.0	8.6	9.9	10.4	8.4	6.1	9.4	6.5	8.9	8.3	10.9	9.0	10.0	9.5	10.3	9.8	REFLECT LOMR	EFFECTIVE: July 23, 2009		
M	REGULATORY			7,043.0	7,053.4	7,054.4	7,061.7	7,068.2	7,077.7	085	7,096.9	7,104.1	7,123.2	7,125.1	7,127.6	7,141.0	7,148.5	155.	7,173.8	84.		7,216.8	7,224.2	7,232.5		/ 23, 2009	F	
BASE FI WATER SURFACE	WITHOUT FLOODWAY FEET			7,043.0	7,053.4	7,054.4	7,061.7	7,068.2	7.077.7	7,085.1	7,096.9	7,104.1	7,123.2	7,125.1	7,127.6	7,141.0	7,148.5	7,155.2	7,173.8	7,184.6	7,204.5	7,216.8	7,224.2	7,232.5			FLOODWAY DATA	
FLOOD CE ELEVATION	1 14 (9			7,043.1	7,053.5			068.	. 770	085.	.960	,104.	7,123.2	7,125.2	7,127.8	7,141.0	7,148.6	7,155.9	173.	7,184.6	204.	7,217.2	7,224.3	7,233.0			DATA	
7	INCREASE		ľ	0.1	0.1	•	0.3		•					0.1	0.2	0.0	•	0.7	0.0	0.0	0.1	0.4	0.1	0.5				



RECOMMENDATIONS PER SAND CREEK DBPS

.

19 19 1 F

VI. DEVELOPMENT OF ALTERNATIVES AND RECOMMENDED PLAN The concepts which are available for handling stormwater runoff within the Sand Creek basin have been presented and discussed in detail in the Sand Creek Drainage Basin Planning Study Development of Alternatives Report and the draft East Fork Sand Creek Drainage Basin Planning Study. The process of combining the various channel treatment options, detention schemes and roadway crossing structures into a contiguous plan for all of the reaches is presented in this chapter of the report. As a result of the evaluation of the flood control, environmental, open space, operations and maintenance, and implementation concerns within the Sand Creek basin, the following concepts were identified as having sufficient feasibility to warrant furture evaluation and review:

Channel Concepts: Floodplain Preservation Channelization, 10- or 100-year Selective Improvements Detention: Regional detention systems **Channel Concepts**: The channel concepts listed above have been evaluated with respect to the parameters listed in the previous chapter. A concept's feasibility depends upon its impact, positive or negative, upon the evaluation parameters. *The floodplain preservation* concept has been considered to be the same as the "*do-nothing*" alternative. The floodplain preservation concept would involve the regulation of the floodplain limits, generally as depicted on the effective City of Colorado Springs and El Paso County Flood Insurance Rate Maps. Regulation of the floodplain limits, generally as depicted on the effective City of Colorado Springs and El Paso County Flood Insurance Rate Maps. Regulation of the floodplain so that future encroachments are minimized and the floodprooffing of structures which are currently within the 100-year floodplain would presumably be the methods used to address the flood hazard concerns along Sand Creek. In the upper reaches of Sand Creek, the ownership or easements associated with the 100-year floodplain (or greater limits to allow for an erosion buffer zone) would be a primary issue in regards to implementation of such a concept. Detention in the upper reaches of the basin Sand Creek basin and in the East Fork Sand Creek basin will maintain the 100-year floodplain at existing limits within the lower reaches of Sand Creek. The "do-nothing" concept is feasible wherver

the existing drainageway improvements are of adequate capacity to convey flood flows. *Charmelization* would involve the lining of the Creek into a more confined flow area, and could be done for either the *100-year or 10-year* flood discharges. Several typical channel concepts have been presented. The primary bank lining material would probably be riprap. Grade control and/or drop structures would be required in a channelization concepts so that the flood velocities could be controlled to a level requiring medium to heavy riprap. Soli centent offers an alternative to riprap and concrete for the construction of drops or grade control structures. Revegetation would occur wherever the native vegetation was disturbed by the channel construction. Willows at the toe of the riprap banks would be a minimum replacement. *Selective linings* would involve the construction of grade controls, drop structures, bank linings, storm sever outlet control structures selectively sited to resist stream erosion or to reduce potential flooding damages. Areas of future concern such as at the outside bends of the creek, or at the outlets of bridges or culverts which will cross the drainageway would be subject to selective improvements.

Detention Concepts: The two general detention concepts evaluated were onsite versus regional detention. During the evaluation process, it was determined that the onsite detention concept has a low feasibility relative to a regional concept. This is because, (1) onsite detention has a unpredictable impact upon lowering peak discharges from urbanized areas to historic conditions (reference, Urbonas and Glidden, "Effect of Detention on Flows in Major Drainageways" ASCE Water Forum '81, 1981), (2) an onsite concept has little impact upon maintaining or enhancing water quality, (3) the number of onsite detention basins, their locations and size cannot be accurately determined in the undeveloped portions of the basin at this time, and (4) onsite detention would present a substantial maintenance responsibility to the jurisdictions involved. For these reasons the onsite detention concept was eliminated and regional detention basin concepts were developed. In the analysis of the channel concepts, regional detention facilities were assumed to be in place.

Channel Alternatives

Presented on Table VI-1 is a matrix of channel alternatives which were evaluated. All reaches of Sand Creek and the East Fork of Sand Creek had at least three alternatives analyzed. Presented on Tables VI-2 through VI-6 are comparative evaluations of the floodplain preservation (do-nothing), channelization and selective lining concepts, for the mainstem Sand Creek basin, by reach. The purpose of the evaluation process was to identify the relative advantages and disadvantages of each concept within each reach.

100-year peak discharge to levels. This will allow for the channel improvements to be constructed within the existing right-of way.

Reaches SC-5 and SC-6: A selective channel improvement concept has been recommended for these reaches. Detention in Reach SC-8 of the basin will maintain flows to historic peak discharge levels, however the low flows will increase in frequency and volume. For this reason it has been recommended to provide riprap channel linings and volume. For this reason it has been recommended to provide riprap controls. This will prevent the long-term degradation of the invert. A residual 100-year floodplain will remain and will offer opportunities for habitat replacement and open space preservation. Land adjacent to the drainageway is currently undeveloped or unplated at this time which makes the feasibility of implementing this concept greater in comparison to the urbanized reaches of the creek.

Reaches SC-7 and SC-8: A selective improvement concept involving the localized liming of channel banks and grade control construction has been recommended for these reaches. The feasibility of this concept stems from the fact that flows will be reduced because of detention. Numerous individual rural ownerships cross the drainageway, however no habitable structures lie within the 100-year floodplain. Because of this, the economic feasibility of channelization concepts is low. Non-structural measures can be used to limit encroachments into floodprone areas. Additionally, the City of Colorado Springs Comprehensive plan recommended that the floodplains be maintained as open space. Potential habitat disturbances can be avoided with a selective plan, or simply replaced as part of the particular construction activity which caused the disturbance.

Reach SC-9: A floodplain preservation concept has been recommended for this reason the reach. Little increase in urbanization is anticipated in this reach, and for this reason the existing drainageway is expected to remain stable. Localized improvements may be necessary to limit erosion caused by flow concentrations at culverts or storm sewers. Private ownership of the drainageway is anticipated to continue which lower the feasibility of channel concepts which require permanent right-of-ways or easements for construction and maintenance.

Reaches WF-1 through WF-3: A 100-year channel concept has been recommended for these reaches primarily because of the potential for flooding damages. Several roadway crossings are in need of replacement because of the flood hazard the constrictions create. Some open space enhancement potential exists for this concept since these reaches have been degraded visually by debris accumulation, bank sloughing and sedimentation. Little opportunity exists for widening the drainageway because the

Development of the Recommended Plan

Presented on Table VI-7 is a matrix representing the recommended plan for each major drainageway reach. The selection of a recommended channel treatment scheme has been based upon the qualitative and quantitative information presented in the Sand Creek Drainage Basin Planning Study Development of Alternatives report and the draft East Fork Sand Creek Drainage Basin Planning Study. Contained within the Technical Addendum to the Sand Creek Drainage Basin Planning Study Development of Alternatives report, is the alternative hydrologic, hydraulic and conceptual cost data used in the evaluation and comparison of each of the alternatives within the mainstern Sand Creek basin.

Discussion of Recommended Plan

The recommendation of a particular channel treatment or detention scheme has been based upon the qualitative and quantitative data presented. For each reach the flood hazard, environmental, cost, operations and maintenance and open space aspects of the drainageway were weighed for each alternative concept.

Reach SC-1: For this reach a 10-year channel section was recommended for further evaluation. With the implementation of regional detention in the upper basin, the 100-year floodplain will generally be confined within the existing banks, excepting at roadway crossings lacking 100-year capacity. It is recommended that a 10-year low flow channel be constructed within the invert of the existing channel through the construction of benches and sand bars. As urbanization continues towards the full development scenario, the base flow and annual flows will increase in volume and frequency. For this reason, the low flow area must be stabilized to protect the existing channel banks from underrnining and subsequent bank sloughing. The benched areas offer an opportunity for habitat replacement and enhancement. At some locations within this reach, a residual 100-year floodplain will remain which will have to be regulated. The residual 100-year floodplain offers some potential for open space preservation and enhancement. This is particularly true in the portion of the reach downstream of Hancock Expressway.

Reaches SC-2 through SC-4: A 100-year channel concept has been recommended primarily because of the potential for flooding damages which exists in these reaches. Habitat disturbed by the construction of channel linings and grade control structures could be replaced along the channel toes and on the overbanks. The replacement of the Waynoka Road crossing will reduce the potential for flood damages in areas adjacent to these roadways. The detention within the upper reaches will limit the

VII. PRELIMINARY DESIGN

The results of the preliminary design analysis are summarized in this section. The alternative improvements have been quantitatively and qualitatively evaluated, and presented to the City of Colorado Springs and other interested agencies and individuals. Field review of specific areas of concern have been conducted in order to refine the channel treatments suggested for use along Sand Creek, East Fork Sand Creek and their major tributaries. The preliminary plan for the recommended alternative is shown on the drawings contained at the rear of this report.

Criteria

The City of Colorado Springs, El Paso County Drainage Criteria Manual was used in the development of the typical sections and plans for the major drainageways within the Basin. The City/County manual was supplemented by various criteria manuals with more specific application. These were:

- "Design Guidelines and Criteria for Channels and Hydraulic Structures on Sandy Soils," prepared by Simons, Li & Associates, Inc., 1981.
- Urban Storm Drainage Criteria Manual, Volumes I, II, and III, prepared by the Urban Drainage and Flood Control District.

Various design plans for roadway and channel improvement projects, either proposed or already constructed were reviewed in order to prepare the preliminary design plans. Specifically, the project design plans for the Las Vegas Street and Galley Road bridge replacement projects were reviewed and the improvements incorporated in the preliminary design. The proposed Sand Creek Stabilization Project, AT&SF Railroad to Hancock Expressway and the proposed Sand Creek Stabilization Project at Fountain Boulevard design plans have been reviewed and incorporated into the preliminary design have been reviewed and incorporated into the preliminary design plan and profiles.

Hydrology

Presented on Table VII-1 is selected hydrologic data to be used for the sizing of major drainageway improvements within the Basin. Peak flow rates for the 10- and 100-year frequency incorporating and the selected detention alternatives for the Sand Creek and East Fork Sand Creek Basin are summarized for key points along the major drainageways.

Contained within the The technical addenda of this report contains a complete listing of peak discharges for all the sub-basins, stream segments and design points shown on Exhibit 1.

The sizing the drainageway improvements for the tributaries will need to be verified during the final design and layout of the proposed drainageway facilities. Land development activities may alter the location of design points along the tributaries, and therefore slight alteration in a sub-basin's length, slope and area may occur. The methods outlined in the City/County Drainage Criteria Manual should be applied during final design analysis. The rational method should be used to check the peak flow rates for all tributary drainageways and storm sewers draining areas less than 100 acres in size.

Channels

The recommended channel sections for each reach of drainageway has been outlined in Section VI of this report. In general, the banks of Sand Creek channel, from the confluence with Fountain Creek to the proposed Sand Creek Detention Basin No. 2 are to be lined, or in some cases relined, with ripra to either a 10-year or 100-year flow depth, as shown on the preliminary design plans. Above the Sand Creek Detention Basin No. 2, selectively located riprap bank protection such as at outside bends, at bridge or culvert outlets, and at confluences with side tubutaries have been recommended. In conjunction with the selective improvement measures, and the 10-year low flow concept, the 100-year floodplain should be preserved and regulated. Wherever existing bank linings were judged to be adequate, no improvements have been recommended at this time. For the West Fork Sand Creek, 100-year riprap bank linings have been recommended in order to address the 100-year flooding hazard which exists at numerous locations along the West Fork. The final design improvements shown in the Palmer Park Bridge Replacement project drawings have been incorporated into the preliminary design plans. In the uppermost reaches of the West Fork, a short segment of rectangular concrete channel has been recommended because of right-of-way constraints. For the Center Tributary of Sand Creek, 100-year riprap lined channels have been recommended from the confluence with East Fork to Platte Avenue. Above Platte Avenue, the existing concrete channels have adequate capacity except where the drainageway channel has yet to be improved. The final design plans for the US 24 Bypass Project, Phase II have been incorporated into the plans. As part of the bypass construction, it is proposed to line the Center Tributary using riprap. The location of the proposed roadway, new crossings, drops and channel as shown on the Phase II Bypass plans have been reflected on the preliminary design drawings.

For the East Fork Sand Creek drainageway, riprap lined channel banks have been recommended for the majority of the reaches. This is mainly because of the high level of development predicted for the basin in the area known as the Banning-Lewis Ranch development. Open space to accommodate the 100-year floodplains should be allowed for as the East Fork Sand Creek drainageways develop. This is consistent with the Banning-Lewis Ranch master development plan which was approved at the time of annexation of this property. Above Woodmen Road, selective channel lining improvements and grade control structures have been recommended.

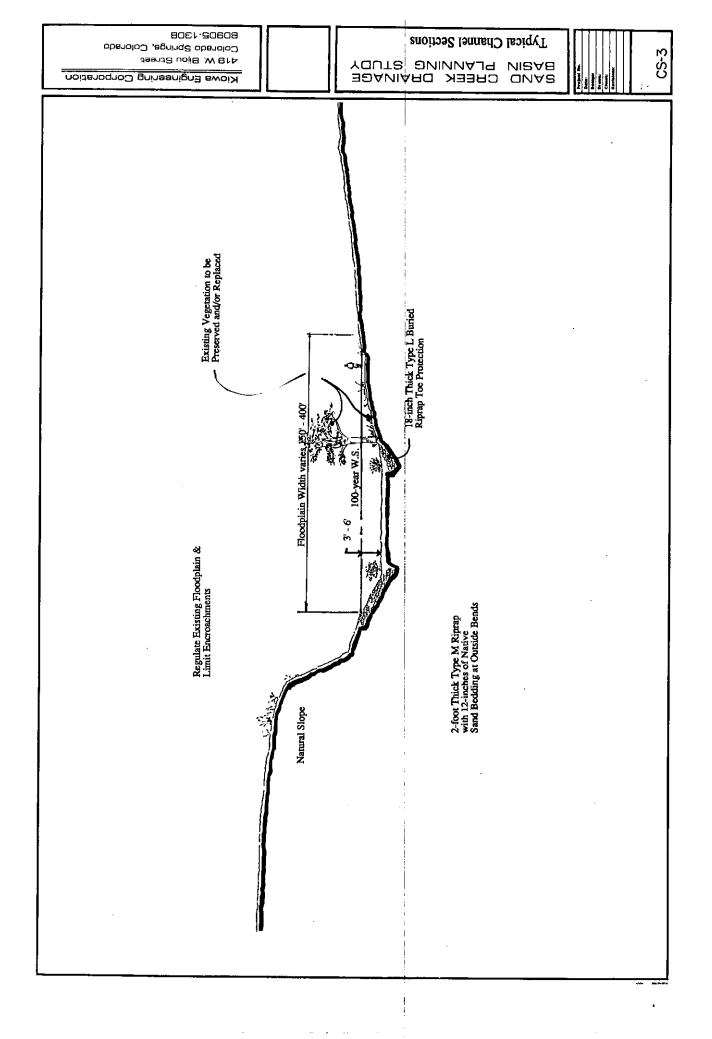
For the most part the side tributaries have been recommended to be lined with riprap, however there are some locations in the upper basin which have been proposed to be grasslined. The location of the side drainageways should be considered approximate and may very likely be modified in the future because of land development. The primary criteria used when sizing the proposed channel sections has been velocity. For all riprap lined channels, the average design velocity should be no greater than 9 feet per second. This criteria allows for the use of Type H riprap within the main flow area of the drainageway. For the case of a 10-year channel with an overall floodplain section, limiting the main channel velocity to 9 feet per second will result in overbank velocities in the five feet per second range. At this level of overbank velocity, native vegetation will be able to withstand the erosive forces which might result in a 100-year flow event. Velocities approaching 10 feet per second could occur at constrictions such as at roadway crossings and at culvert outlets.

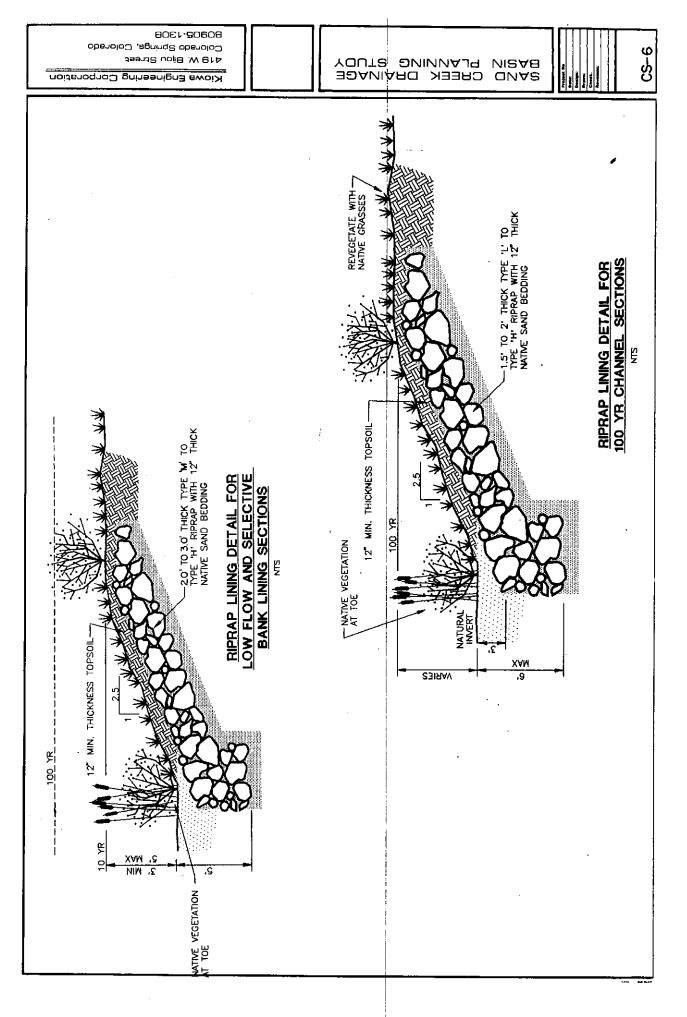
Drop Structures and Check Structures

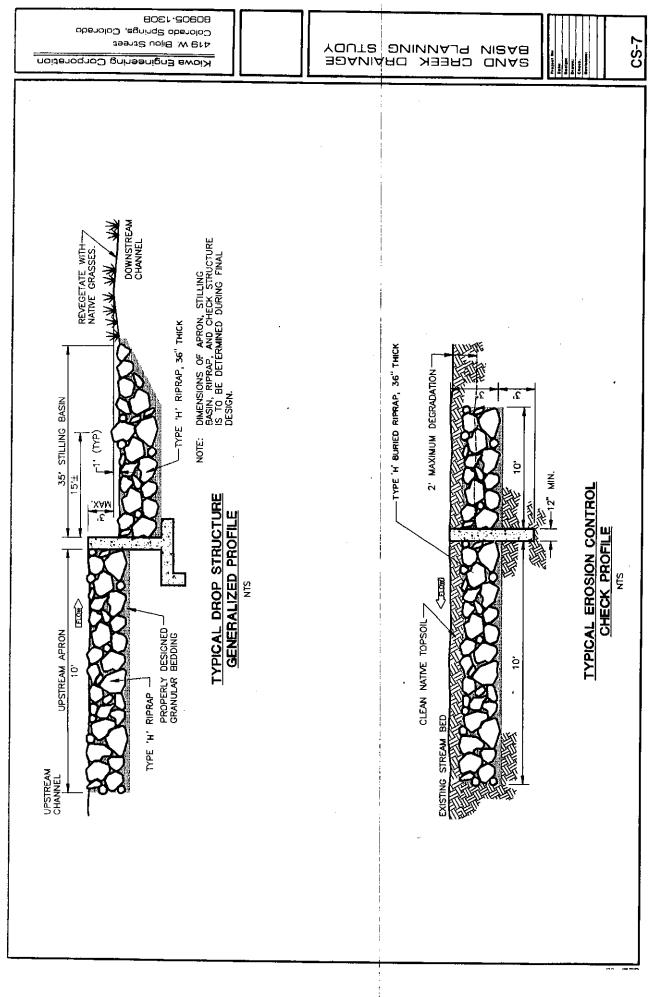
Drop and check structures have been sited along Sand Creek in order to slow the channel velocity to the recommended 7 feet per second, and to prevent localized and long-term stream degradation from affecting channel linings and overbanks. In the reaches to be selectively lined, drops and check structures will protect the native vegetation from the detrimental effects of stream invert headcutting. Several types of structures could be considered for the Sand Creek Basin. For channel bottom widths in excess of fifty feet, soil cement or sheet piling drops/checks are feasible. For channels narower than this, reinforced concrete structures are probably the best alternative. A maximum drop height of three feet is recommended. The methodology recommended for use when designing vertical structures is contained with volume II of the Urban Storm Drainage Criteria Manual.

Detention

The recommended plan calls for the construction of six regional detention basins within the Sand Creek basin, and six regional basins within the East Fork Sand Creek basin. The


purpose of the Sand Creek detention basins is to limit peak discharges at Powers Boulevard to existing development condition levels. The detention basins in the upper portions of the Sand Creek basin will keep the majority of the existing channel sections and bridges below Powers Boulevard with adequate flow capacity in the future development condition. The detention basins within the East Fork Sand Creek basin have been sized to maintain the flow outfalling from the Banning-Lewis Ranch property at existing levels. This in turn will help to reduce flow to the mainstem of Sand Creek Basin Nos. 2 and 6, and East Fork Sand Creek Basin Nos. 1, 2, and 3 will be classified as jurisdictional structures, and their design and operation would be subject to State Engineer's office criteria. Sand Creek basins number 1 and 3 should be edsigned to accommode the troadway embankments, and therefore classifying as incidental storage and not subject State Engineer's regulations.


At Stetson Hills Boulevard, the roadway embankment has created a 2 acre open water wetland which was identified during the environmental review of the basin. It is recommended that this wetland be preserved. Accordingly, an outlet control structure will have to be constructed to pass the 100-year discharge to the downstream channel without overtopping the roadway. No floodwater storage or routing has been accounted for in the hydrology modelling at this roadway for the selected detention plan.


For the East Fork Sand Creek detention basin numbers 2, and 3, the existing embankment and outlet structure act to maintain a permanent pool at this time. It is recommended that the design of these detention basins be directed at maintaining the permanent pool when the flood control storage is to be added. The existence of a permanent pool may enhance the water quality aspects of these basins, and offer the opportunity of open space development conducive with open water.

Water Ouality

Improvement of urban stormwater quality has become and important issue in drainage basin planning. Many pollutants are naturally associated with sediments that enter sensitive receiving waters. The pollutants are naturally occurring compounds that are carried to the drainageways in storm runoff. Other pollutants are the result of urbanization such as lawn chemicals, oil and grease, pet feces, lawn clippings and other items. Many pollutants can be limited by programs such as erosion control at construction sites, educational programs to inform the public as to the proper use of lawn chemicals, oil recycling programs and street sweeping programs. Even with these programs in place, erosion along the drainageways can generate large quantities of sediment that can settle out along the downstream channel bottorns.

:

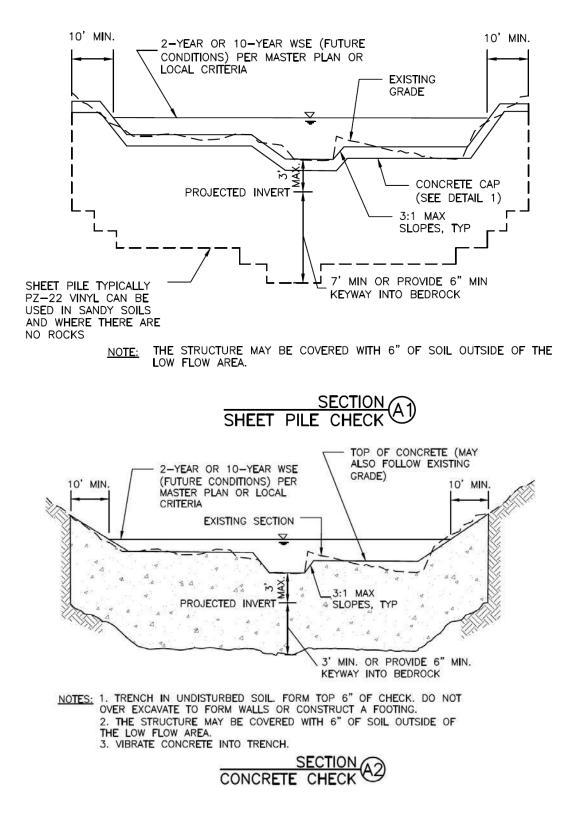


Figure 9-27. Check structure details (Part 2 of 3)

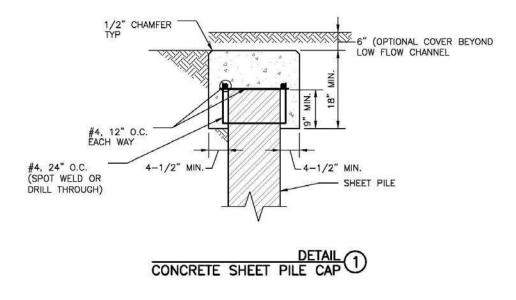


Figure 9-28. Check structure details (Part 3 of 3)

HYDROLOGIC CALCULATIONS

For Colorado Springs and much of the Fountain Creek watershed, the 1-hour depths are fairly uniform and are summarized in Table 6-2. Depending on the location of the project, rainfall depths may be calculated using the described method and the NOAA Atlas maps shown in Figures 6-6 through 6-17.

Return	1-Hour	6-Hour	24-Hour
Period	Depth	Depth	Depth
2	1.19	1.70	2.10
5	1.50	2.10	2.70
10	1.75	2.40	3.20
25	2.00	2.90	3.60
50	2.25	3.20	4.20
100	2.52	3.50	4.60
	Where Z=	6,840 ft/10)0

Table 6-2. Rainfall Depths for Colorado Springs

These depths can be applied to the design storms or converted to intensities (inches/hour) for the Rational Method as described below. However, as the basin area increases, it is unlikely that the reported point rainfalls will occur uniformly over the entire basin. To account for this characteristic of rain storms an adjustment factor, the Depth Area Reduction Factor (DARF) is applied. This adjustment to rainfall depth and its effect on design storms is also described below. The UDFCD UD-Rain spreadsheet, available on UDFCD's website, also provides tools to calculate point rainfall depths and Intensity-Duration-Frequency curves² and should produce similar depth calculation results.

2.2 Design Storms

Design storms are used as input into rainfall/runoff models and provide a representation of the typical temporal distribution of rainfall events when the creation or routing of runoff hydrographs is required. It has long been observed that rainstorms in the Front Range of Colorado tend to occur as either shortduration, high-intensity, localized, convective thunderstorms (cloud bursts) or longer-duration, lowerintensity, broader, frontal (general) storms. The significance of these two types of events is primarily determined by the size of the drainage basin being studied. Thunderstorms can create high rates of runoff within a relatively small area, quickly, but their influence may not be significant very far downstream. Frontal storms may not create high rates of runoff within smaller drainage basins due to their lower intensity, but tend to produce larger flood flows that can be hazardous over a broader area and extend further downstream.

• **Thunderstorms**: Based on the extensive evaluation of rain storms completed in the Carlton study (Carlton 2011), it was determined that typical thunderstorms have a duration of about 2 hours. The study evaluated over 300,000 storm cells using gage-adjusted NEXRAD data, collected over a 14-year period (1994 to 2008). Storms lasting longer than 3 hours were rarely found. Therefore, the results of the Carlton study have been used to define the shorter duration design storms.

To determine the temporal distribution of thunderstorms, 22 gage-adjusted NEXRAD storm cells were studied in detail. Through a process described in a technical memorandum prepared by the City of Colorado Springs (City of Colorado Springs 2012), the results of this analysis were interpreted and normalized to the 1-hour rainfall depth to create the distribution shown in Table 6-3 with a 5 minute time interval for drainage basins up to 1 square mile in size. This distribution represents the rainfall

Land Use or Surface	Percent						Runoff Co	efficients					
Characteristics	Impervious	2-γ	/ear	5-y	ear	10-1	year	25-1	year	50-1	ear	100-	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business										-			
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	<u>0.4</u> 5	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													-
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0,54	0.54	0.59	0.57	0.62	0.59	0,65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.30	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0:46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.62	0.55						
Heavy Areas	90	0.57	0.80	0.59	0.63	0.63 0.75	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Theory Acces	30	0.71	0.75	0.75	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	D.48	0.41	0.54
Railroad Yard Areas	40	0.23	D.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas						-							_
Historic Flow Analysis								_					
Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.38	0.31	0.43	0.35	0.51
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when		·					0.52	0.34	0.57	0.55	0.55	0.50	0.50
landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0,44	0.44	0.51	0.48	0.55	0.51	0.59
Streets	-												
Paved	100	0.89	0.89	0.90	0.00	0.07							
Gravel	80	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
		0.57	0.00	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

í

				Pre-Development CN				
Fully Developed Urban Areas (vegetation established) ¹	Treatment	Hydrologic Condition	%I	HSG A	HSG B	HSG C	HSG D	
Open space (lawns, parks, golf courses, cemeteries, etc.):								
Poor condition (grass cover < 50%)				68	79	86	89	
Fair condition (grass cover 50% to 75%)				49	69	79	84	
Good condition (grass cover > 75%)				39	61	74	80	
Impervious areas:								
Paved parking lots, roofs, driveways, etc. (excluding right-of-way				98	98	98	98	
Streets and roads:								
Paved; curbs and storm sewers (excluding right-of-way)				98	98	98	98	
Paved; open ditches (Including right-of-way)				83	89	92	93	
Gravel (including right-of-way)				76	85	89	91	
Dirt (including right-of-way)				72	82	87	89	
Western desert urban areas:				<u> </u>		05		
Natural desert landscaping (pervious areas only)			•	63	77	85	88	
Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders)				96	96	96	96	
Urban districts:								
Commercial and business			85	89	92	94	95	
Industrial Residential districts by average let size			72	81	88	91	93	
Residential districts by average lot size:					05			
1/8 acre or less (town houses) 1/4 acre			65	77	85	90	92	
1/3 acre			38 30	61	75	83	87	
1/2 acre			30 25	57	72	81	86	
1 acre			25	54 51	70 68	80 79	85 84	
2 acres			12	45	65	77	82	
24003		Hydrologic	12	40	0.5		02	
Developing Urban Areas ¹	Treatment ²	Condition ³	%1	HSG A	HSG B	HSG C	HSG D	
Newly graded areas (pervious areas only, no vegetation)				77	86	91	94	
Cultivated Agricultural Lands ¹	Treatment	Hydrologic	%I	HSG A	HSG B	HSG C	HSG D	
	0	Condition						
Fallow	Bare soil			77	86	91	94	
	Crop residue	Poor		76 74	85	90	93	
	cover (CR)	Good			83	88	90	
	Straight row	Poor			81 78	88	91	
	(SR)	<u>Good</u> Poor		71	78 80	85 87	89 90	
	SR + CR	Good	+	64	75	87	90 85	
		Poor		70	79	84	88	
	Contoured (C)	Good		65	75	82	86	
Row crops		Poor		69	78	83	87	
	C+CR	Good		64	74	81	85	
	Contoured &	Poor		66	74	80	82	
	terraced (C&T)	Good		62	71	78	81	
		Poor		65	73	79	81	
-	C&T+CR	Good		61	70	77	80	
	<u>~</u>	Poor		65	76	84	88	
	SR	Good		63	75	83	87	
	50 - 00	Poor		64	75	83	86	
	SR + CR	Good		60	72	80	84	
	с	Poor		63	74	82	85	
l Small grain		Good		61	73	81	84	
Auton Press	C + CR Poor	Poor		62	73	81	84	
		Good		60	72	80	83	
		Poor		61	72	79	82	
	C 9.T							
	C&T	Good		59	70	78	81	
	C&T C&T+ CR	Good Poor		59 60	70 71	78 78	81 81	

Table 6-10. NRCS Curve Numbers for Frontal Storms & Thunderstorms for Developed Conditions (ARCII)

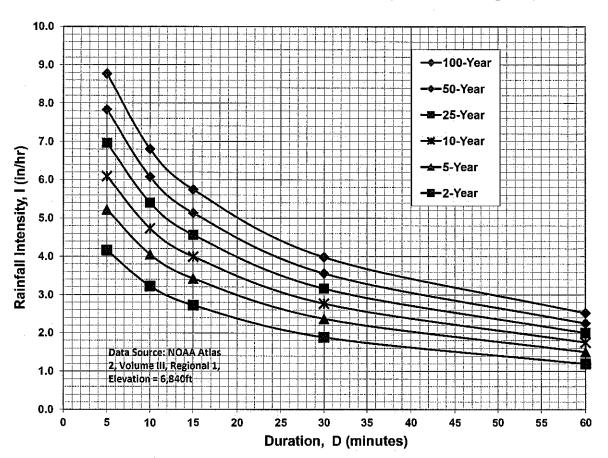


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations $I_{100} = -2.52 \ln(D) + 12.735$ $I_{50} = -2.25 \ln(D) + 11.375$ $I_{25} = -2.00 \ln(D) + 10.111$ $I_{10} = -1.75 \ln(D) + 8.847$ $I_5 = -1.50 \ln(D) + 7.583$ $I_2 = -1.19 \ln(D) + 6.035$ Note: Values calculated by
equations may not precisely
duplicate values read from figure.

EFFECTIVE IMPERVIOUSNESS - POND 2

Basin	Acreage	lmp.%
D1 (Fil. 1 Report)	1.1	90%
D2 (Fil. 1 Report)	2.2	60%
H (Fil. 1 Report)	2.0	25%
OS-3 (Fil. 1 Report)	2.5	30%
OS-4 (Fil. 1 Report)	3.1	25%
OS-12 (Fil. 1 Report)	15.0	10%
OS-13 (Fil. 1 Report)	1.4	20%
OS-14 (Fil. 1 Report)	9.1	20%
I (Fil. 1 Report)	3.7	30%
K (Fil. 1 Report)	1.5	30%
L (Fil. 1 Report)	7.3	30%
N (Fil. 1 Report)	2.1	30%
P (Fil. 1 Report)	2.7	30%
Q (Fil. 1 Report)	2.2	10%
OS-4	2.5	2%
OS-5	13.7	2%
OS-6	1.5	2%
OS-8	3.6	30%
J	5.9	30%
Ν	0.63	30%
0	2.8	30%
Р	1.0	30%
Q	1.9	30%
R	2.7	30%
S	6.6	30%
Т	1.0	30%
U	1.5	30%
Total	101.2	21.7%

EFFECTIVE IMPERVIOUSNESS - POND 3

Basin	Acreage	lmp.%
EX-7 OS-1 OS-2 A B C D	27.6 3.9 2.9 9.5 6.0 3.3 2.3	7.0% 15.1% 24.6% 15.2% 18.9% 23.0% 17.9%
E2	2.8	12.4%
Total	58.3	12.6%

JOB NUMBER: 1185.20 DATE: 09/17/21	JOB NAME:	RETREAT AT TIMBERRIDGE FILING NO. 2
DATE: 09/17/21	JOB NUMBER:	1185.20
	DATE:	09/17/21
CALCULATED BY: MAW	CALCULATED BY:	MAW

FINAL DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY

		IMF	PERVIOUS A	REA / STRE	ETS	LAN	IDSCAPE/DI	EVELOPED A	AREAS	١	VEIGHTED			WEIGHTED C	A	
BASIN	TOTAL AREA (AC)	AREA (AC)	C(2)	C(5)	C(100)	AREA (AC)	C(2)	C(5)	C(100)	C(2)	C(5)	C(100)	CA(2)	CA(5)	CA(100)	EFFECTIVE IMPERVIOUS (%)
EX-1	12.7	0.00	0.89	0.90	0.96	12.7	0.05	0.12	0.39	0.03	0.09	0.36	0.38	1.14	4.57	2.0%
EX-2	29.4	0.00	0.89	0.90	0.96	29.4	0.05	0.12	0.39	0.03	0.09	0.36	0.88	2.65	10.58	2.0%
EX-3	9.1	0.00	0.89	0.90	0.96	9.1	0.05	0.12	0.39	0.03	0.09	0.36	0.27	0.82	3.28	2.0%
EX-4	84.9	1.50	0.57	0.59	0.70	83.4	0.05	0.12	0.39	0.03	0.09	0.36	2.55	7.64	30.56	3.4%
EX-5	34.2	1.50	0.57	0.59	0.70	32.7	0.05	0.12	0.39	0.03	0.09	0.36	1.03	3.08	12.31	5.4%
EX-7	27.6	0.00	0.89	0.90	0.96	27.6	0.05	0.12	0.39	0.05	0.12	0.39	1.38	3.31	10.76	7.0%
OS-1	3.9	0.20	0.89	0.90	0.96	3.7	0.06	0.14	0.40	0.10	0.18	0.43	0.40	0.70	1.67	15.1%
OS-2	2.9	0.50	0.89	0.90	0.96	2.4	0.06	0.14	0.40	0.20	0.27	0.50	0.59	0.79	1.44	24.6%
OS-3	0.9	0.00	0.89	0.90	0.96	0.9	0.06	0.14	0.40	0.06	0.14	0.40	0.05	0.13	0.36	11.0%
OS-4	2.5	0.00	0.89	0.90	0.96	2.5	0.03	0.09	0.36	0.03	0.09	0.36	0.08	0.23	0.90	2.0%
OS-5	13.7	0.00	0.89	0.90	0.96	13.7	0.03	0.09	0.36	0.03	0.09	0.36	0.41	1.23	4.93	2.0%
OS-6	1.5	0.00	0.89	0.90	0.96	1.5	0.03	0.09	0.36	0.03	0.09	0.36	0.05	0.14	0.54	2.0%
OS-7	2.6	0.00	0.89	0.90	0.96	2.6	0.03	0.09	0.36	0.03	0.09	0.36	0.08	0.23	0.94	2.0%
OS-8	3.6	0.00	0.89	0.90	0.96	3.6	0.18	0.25	0.47	0.18	0.25	0.47	0.65	0.90	1.69	30.0%
OS-9	0.9	0.00	0.89	0.90	0.96	0.9	0.18	0.25	0.47	0.18	0.25	0.47	0.16	0.23	0.42	30.0%
		0.50	0.00	0.00	0.00	0.00		0.44	0.40	0.40	0.40	0.40			1.00	45.00/
<u>A</u>	9.5	0.50	0.89	0.90	0.96	9.00	0.06	0.14	0.40	0.10	0.18	0.43	0.99	1.71	4.08	15.2%
B C	6.0 3.3	0.60	0.89	0.90	0.96	5.40 2.80	0.06	0.14	0.40	0.14 0.19	0.22	0.46	0.86	1.30 0.84	2.74 1.60	18.9% 23.0%
 D	2.3	0.50	0.89	0.90	0.96	2.00	0.06	0.14	0.40	0.19	0.20	0.46	0.81	0.64	1.00	17.9%
 E1	7.1	0.20	0.89	0.90	0.90	6.65	0.00	0.14	0.40	0.13	0.21	0.43	0.30	1.34	3.09	16.0%
E2	2.8	0.45	0.89	0.90	0.96	2.75	0.00	0.14	0.40	0.07	0.15	0.44	0.00	0.43	1.15	12.4%
F	12.2	0.00	0.89	0.90	0.96	12.20	0.00	0.14	0.38	0.04	0.10	0.38	0.49	1.22	4.64	7.2%
G	1.4	0.60	0.89	0.90	0.96	0.80	0.06	0.14	0.40	0.42	0.47	0.64	0.58	0.65	0.90	55.7%
H1	0.5	0.15	0.89	0.90	0.96	0.37	0.15	0.22	0.46	0.36	0.42	0.60	0.19	0.22	0.31	47.3%
H2	0.5	0.15	0.89	0.90	0.96	0.32	0.15	0.22	0.46	0.39	0.44	0.62	0.18	0.21	0.29	49.1%
I	0.17	0.05	0.89	0.90	0.96	0.12	0.18	0.25	0.47	0.39	0.44	0.61	0.07	0.08	0.10	47.6%
J	5.90	0.70	0.89	0.90	0.96	5.20	0.18	0.25	0.47	0.26	0.33	0.53	1.56	1.93	3.12	37.1%
K	1.50	0.00	0.89	0.90	0.96	1.50	0.18	0.25	0.47	0.18	0.25	0.47	0.27	0.38	0.71	30.0%
L	0.53	0.00	0.89	0.90	0.96	0.53	0.18	0.25	0.47	0.18	0.25	0.47	0.10	0.13	0.25	30.0%
М	0.81	0.20	0.89	0.90	0.96	0.61	0.18	0.25	0.47	0.36	0.41	0.59	0.29	0.33	0.48	44.8%
N	0.63	0.15	0.89	0.90	0.96	0.48	0.18	0.25	0.47	0.35	0.40	0.59	0.22	0.26	0.37	44.3%
0	2.80	0.25	0.89	0.90	0.96	2.55	0.18	0.25	0.47	0.24	0.31	0.51	0.68	0.86	1.44	35.4%
P	1.00	0.25	0.89	0.90	0.96	0.75	0.18	0.25	0.47	0.36	0.41	0.59	0.36	0.41	0.59	45.0%
Q	1.90	0.00	0.89	0.90	0.96	1.90	0.06	0.14	0.40	0.06	0.14	0.40	0.11	0.27	0.76	30.0%
R	2.70	0.60	0.89	0.90	0.96	2.10	0.18	0.25	0.47	0.34	0.39	0.58	0.91	1.07	1.56	43.3%
S	6.60 1.00	0.90	0.89	0.90	0.96	5.70 0.70	0.18	0.25	0.47	0.28	0.34	0.54	1.83 0.28	2.24	3.54	38.2%
U	1.00	0.30	0.89	0.90	0.96	1.50	0.02	0.08	0.35 0.47	0.28	0.33	0.53 0.47	0.28	0.33	0.53	48.0% 30.0%
U V	2.10	0.00	0.89	0.90	0.96	2.10	0.18	0.25	0.47	0.18	0.25	0.47	0.27	0.38	0.71	30.0%
V	1.40	0.00	0.89	0.90	0.96	1.25	0.16	0.25	0.47	0.16	0.25	0.47	0.36	0.53	0.99	36.4%
٧V	1.40	0.10	0.09	0.90	0.90	1.20	0.10	0.20	0.47	0.20	0.32	0.02	0.30	0.40	0.73	50.4%

JOB NAME: **RETREAT AT TIMBERRIDGE FILING NO. 2** JOB NUMBER: 1185.20 DATE: 02/02/22 MAW

CALC'D BY:

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$

$$V = C_v S_w^{0.5}$$
 Tc=L/V

Type of Land Surface	С,
Heavy meadow	2.5
Tillage/field L	5
Riprap (not buried) $I_c = \frac{1}{180} + 10$	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY

		WEIGHTE	1				_	етре				Tc INTENSITY			r v	TOTAL FLOWS		
BASIN	CA(2)	CA(5)	CA(100)	C(5)	Length	LAND Height	Tc	Length	Slope	IANNEL Velocity		TOTAL	l(2)	l(5)	I(100)	Q(2)	Q(5)	Q(100)
					(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(in/hr)	(cfs)	(cfs)	(cfs)
EX-1	0.38	1.14	4.57	0.12	300	10	20.6	1000	2.0%	1.4	11.8	32.4	1.90	2.37	3.97	1	3	18
EX-2	0.88	2.65	10.58	0.12	300	10	20.6	800	2.0%	1.4	9.4	30.0	1.99	2.48	4.16	2	7	44
EX-3	0.27	0.82	3.28	0.12	300	9	21.3	200	2.0%	1.4	2.4	23.7	2.27	2.84	4.76	1	2	16
EX-4	2.55	7.64	30.56	0.12	300	12	19.4	2500	2.0%	1.4	29.5	48.9	1.41	1.75	2.93	4	13	90
EX-5	1.03	3.08	12.31	0.12	300	12	19.4	1200	3.0%	1.7	11.5	30.9	1.95	2.43	4.09	2	7	50
EX-7	1.38	3.31	10.76	0.12	300	12	19.4	1500	2.0%	1.0	25.3	44.6	1.51	1.88	3.16	2	6	34
0S-1	0.40	0.70	1.67	0.14	300	10.5	19.9					19.9	2.48	3.10	5.20	1	2	9
OS-2	0.59	0.79	1.44	0.14	300	8	21.7	100	2.0%	1.4	1.2	22.9	2.31	2.89	4.84	1	2	7
OS-3	0.05	0.13	0.36	0.14	300	12	19.0					19.0	2.53	3.17	5.32	0.1	0.4	2
OS-4	0.08	0.23	0.90	0.09	300	12	20.0					20.0	2.47	3.09	5.19	0.2	0.7	5
OS-5	0.41	1.23	4.93	0.09	300	12	20.0					20.0	2.47	3.09	5.19	1	4	26
OS-6	0.05	0.14	0.54	0.09	275	13	18.1					18.1	2.59	3.24	5.44	0.1	0.4	3
OS-7	0.08	0.23	0.94	0.09	250	16	15.6					15.6	2.76	3.46	5.81	0.2	0.8	5
OS-8	0.65	0.90	1.69	0.25	100	2	12.2	600	2.0%	2.8	3.5	15.7	2.75	3.45	5.79	2	3	10

JOB NAME: RETREAT AT TIMBERRIDGE FILING NO. 2 JOB NUMBER: 1185.20 DATE: 02/02/22

MAW

CALC'D BY:

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$

$$V = C_v S_w^{0.5}$$
 Tc=L/V

Type of Land Surface	С,
Heavy meadow	2.5
Tillage/field L	5
Riprap (not buried) $I_c = \frac{1}{180} + 10$	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY

		WEIGHTEI	ס		OVER	LAND		STRE	ET / CH	IANNEL	FLOW	Tc	1	NTENSI	Y	TOT	TAL FLO	OWS
BASIN	CA(2)	CA(5)	CA(100)	C(5)	Length <i>(ft)</i>	Height <i>(ft)</i>	Tc <i>(min)</i>	Length <i>(ft)</i>	Slope <i>(%)</i>	Velocity <i>(fps)</i>	Tc <i>(min)</i>	TOTAL (min)	l(2) <i>(in/hr)</i>	l(5) (in/hr)	l(100) (in/hr)	Q(2) (cfs)	Q(5) (cfs)	Q(100) (cfs)
OS-9	0.16	0.23	0.42	0.25	50	1	8.6	600	3.0%	3.5	2.9	11.5	3.13	3.92	6.58	0.5	0.9	3
		4.74	4.00			40.5	10.0	075	4.00/					0.00				
A	0.99	1.71	4.08	0.14	300	10.5	19.9	375	4.0%	2.0	3.1	23.0	2.30	2.88	4.84	2	5	20
В	0.86	1.30	2.74	0.14	230	15	14.2	450	2.0%	1.4	5.3	19.5	2.50	3.13	5.25	2	4	14
С	0.61	0.84	1.60	0.14	300	10	20.2					20.2	2.46	3.08	5.16	2	3	8
D	0.30	0.47	1.03	0.14	250	10	17.3					17.3	2.64	3.30	5.54	1	2	6
E1	0.80	1.34	3.09	0.14	300	12	19.0	300	2.0%	1.4	3.5	22.5	2.33	2.91	4.88	2	4	15
E2	0.21	0.43	1.15	0.14	300	7	22.7					22.7	2.32	2.90	4.87	0.5	1.2	6
F	0.49	1.22	4.64	0.10	300	9	21.8	600	1.5%	1.2	8.2	29.9	1.99	2.48	4.17	1	3	19
G	0.58	0.65	0.90	0.14	100	2	13.8					13.8	2.91	3.65	6.12	1.7	2.4	5
H1	0.19	0.22	0.31	0.22	100	4	10.1					10.1	3.29	4.12	6.92	0.6	0.9	2
H2	0.18	0.21	0.29	0.22	100	4	10.1					10.1	3.29	4.12	6.92	0.6	0.8	2
I	0.07	0.08	0.10	0.25	100	6	8.5					8.5	3.49	4.37	7.34	0.2	0.3	0.8
J	1.56	1.93	3.12	0.25	100	2	12.2	600	2.0%	2.8	3.5	15.7	2.75	3.45	5.79	4	7	18
K	0.27	0.38	0.71	0.25	100	3	10.7					10.7	3.22	4.03	6.77	1	2	5

JOB NAME: **RETREAT AT TIMBERRIDGE FILING NO. 2** JOB NUMBER: 1185.20 DATE: 02/02/22

MAW

CALC'D BY:

 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}} \qquad \qquad \mathcal{V} = C_v S_w^{0.5} \qquad \text{Tc=L/V}$

Type of Land Surface	C,
Heavy meadow	2.5
Tillage/field L	5
Riprap (not buried) [*] $I_c = \frac{1}{180} + 10 - \frac{1}{10}$	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY

		WEIGHTEI	D		OVER	LAND		STRE	ET / CH	ANNEL	FLOW	Tc	11	NTENSIT	ΓY	TOT	AL FLO	OWS
BASIN	CA(2)	CA(5)	CA(100)	C(5)	Length <i>(ft)</i>	Height <i>(ft)</i>	Tc (min)	Length <i>(ft)</i>	Slope <i>(%)</i>	Velocity (fps)	Tc (min)	TOTAL (min)	l(2) (in/hr)	l(5) (in/hr)	l(100) (in/hr)	Q(2) (cfs)	Q(5) (cfs)	Q(100) (cfs)
L	0.10	0.13	0.25	0.25	100	8	7.7					7.7	3.60	4.52	7.58	0.3	0.6	2
М	0.29	0.33	0.48	0.25	100	2	12.2	100	2.0%	2.8	0.6	12.8	3.00	3.76	6.31	0.9	1.2	3
Ν	0.22	0.26	0.37	0.25	100	2	12.2	80	2.0%	2.8	0.5	12.7	3.01	3.77	6.33	0.7	1.0	2
0	0.68	0.86	1.44	0.25	100	2	12.2	400	3.0%	3.5	1.9	14.1	2.88	3.61	6.06	2	3	9
Р	0.36	0.41	0.59	0.25	50	1	8.6	400	3.0%	3.5	1.9	10.6	3.23	4.05	6.80	1	2	4
Q	0.11	0.27	0.76	0.14	80	5	8.5					8.5	3.49	4.38	7.35	0.4	1.2	6
R	0.91	1.07	1.56	0.25	100	2	12.2	700	3.0%	3.5	3.4	15.6	2.77	3.46	5.82	3	4	9
S	1.83	2.24	3.54	0.25	50	1	8.6	1100	3.0%	3.5	5.3	13.9	2.90	3.63	6.10	5	8	22
Т	0.28	0.33	0.53	0.08	50	1	10.4	500	3.0%	3.5	2.4	12.8	3.00	3.76	6.32	0.8	1.2	3
U	0.27	0.38	0.71	0.25	80	5	7.5					7.5	3.64	4.56	7.66	1	2	5
V	0.38	0.53	0.99	0.25	90	1.8	11.6					11.6	3.12	3.91	6.56	1	2	6
W	0.36	0.45	0.73	0.25	100	3	10.7					10.7	3.22	4.03	6.77	1	2	5

JOB NAME:	RETREAT AT TIMBERRIDGE FILING NO. 2
JOB NUMBER:	1185.20
DATE:	02/02/22
CALCULATED BY:	MAW

FINAL DRAINAGE REPORT ~ SURFACE ROUTING SUMMARY

					Inten	sity	FI	ow	
Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	l(5)	l(100)	Q(5)	Q(100)	Inlet Size
EX-DP-5	EX-5, EX-7 (61.8 AC.)	6.39	23.08	44.6	1.88	3.16	12	73	
EX-DP-1	EX-1 (12.7 AC.)	1.14	4.57	32.4	2.37	3.97	3	18	
1	EX-7, OS-1, OS-2, B (40.4 AC.)	6.09	16.61	40.4	2.04	3.41	12	57	EX. DUAL 30" RCP CULVERTS
2	Basin A (9.5 AC.)	1.71	4.08	23.0	2.88	4.84	5	20	24" RCP CULVERT
3	DP-1, DP-2, Basin D (52.2 ac.)	8.28	21.72	40.9	2.02	3.38	17	74	42" RCP CULVERT
4	Basin C (3.3 AC.)	0.84	1.60	20.2	3.08	5.16	3	8	24" RCP CULVERT
5	POND 3 TOTAL INFLOW DP-3, DP-4, BASIN E2 (58.3 AC.)	9.55	24.47	43.4	1.93	3.23	18	79	POND 3
6	Basin G, Basin OS-9 (2.3 ac.)	0.88	1.32	13.8	3.65	6.12	3	8	Exist. 10' TYPE R A GRADE INLET
7	Basin OS-4, J and 70% of Basin OS-5 (18.0 ac.)	3.02	7.47	20.2	3.08	5.16	9	39	15' TYPE R SUMP
8	Basin N and 30% of Basin OS-5 (4.7 ac.)	0.62	1.85	20.2	3.08	5.16	2	10	10' TYPE R SUMP INLET
9	Basin OS-8, Q (5.5 ac.)	1.17	2.45	15.7	3.45	5.79	4	14	Exist. 10' TYPE R SUMP INLET
10	Basin OS-6, O (4.3 ac.)	1.00	1.98	18.1	3.24	5.44	3	11	10' TYPE R SUMP INLET
11	Basin P (1.0 ac.)	0.41	0.59	10.6	4.05	6.80	2	4	5' TYPE R SUMP INLET

Job Name:	RETREAT AT TIMBERRIDGE FILING NO. 2
JOB NUMBER:	1185.20
DATE:	02/02/22
CALCULATED BY:	MAW

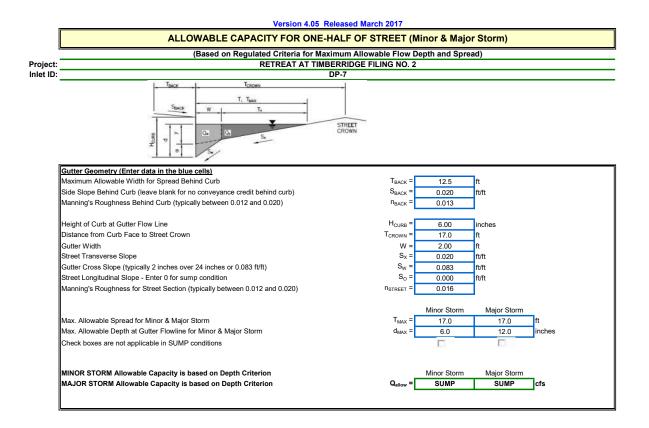
FINAL DRAINAGE REPORT ~ SURFACE ROUTING SUMMARY

					Intensity		Fl	ow	
Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	l(5)	l(100)	Q(5)	Q(100)	Inlet Size
12	Basin R (2.7 ac.)	1.07	1.56	15.6	3.46	5.82	4	9	10' TYPE R AT GRADE INLET
13	Basin S and Flow-by from Basin R (9.3 ac.)	2.25	3.93	16.1	3.42	5.74	8	23	15' TYPE R SUMP INLET
14	Basin T (1.0 ac.)	0.33	0.53	12.8	3.76	6.32	1		5' TYPE R SUMP INLET
15	Basin V, W and OS-7 (6.1 ac.)	1.21	2.65	15.6	3.46	5.81	4	15	TEMP. SEDIMENT BASIN

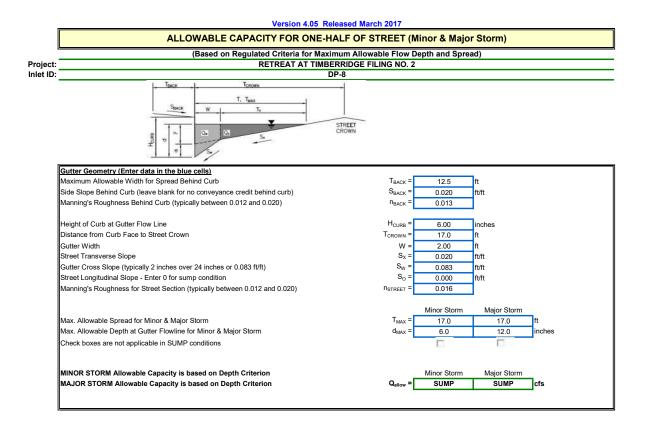

JOB NAME:	RETREAT AT TIMBERRIDGE FILING NO. 2
JOB NUMBER:	1185.20
DATE:	02/02/22
CALCULATED BY:	MAW

* PIPES ARE LISTED AT MAXIMUM SIZE REQUIRED TO ACCOMMODATE Q100 FLOWS AT MINIMUM GRADE. REFER TO INDIVIDUAL PIPE SHEETS FOR HYDRAULIC INFORMATION.

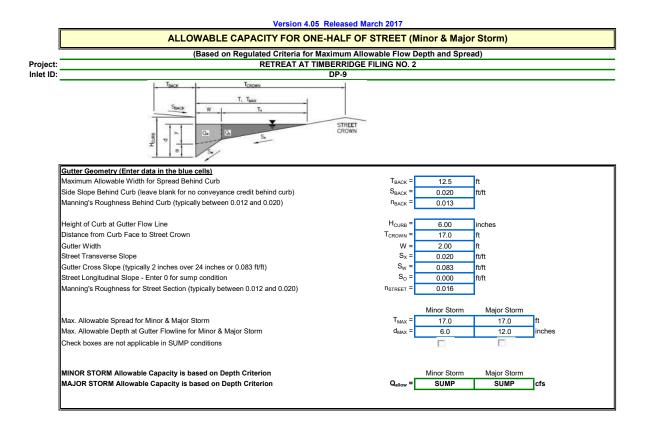
Flow Intensity Equivalent Equivalent Maximum Pipe Run **Contributing Basins** Q(5) Q(100) l(5) I(100) CA(5) CA(100) Tc Pipe Size* DP-3 8.28 21.72 1 40.9 2.02 3.38 17 74 42" RCP DP-4 2 0.84 1.60 20.2 3 8 24" RCP 3.08 5.16 PR-1, PR-2 3 23.32 40.9 18 79 42" RCP 9.12 2.02 3.38 DP-7 4 3.02 7.47 20.2 9 39 30" RCP 3.08 5.16 DP-8 5 0.62 1.85 20.2 3.08 2 10 24" RCP 5.16 6 PR-1, PR-2 3.64 9.32 36" RCP 20.8 3.03 11 47 5.09 DP-10 7 1.00 1.98 10.6 4 13 24" RCP 4.05 6.80 8 DP-11 0.41 0.59 13.8 2 4 18" RCP 3.65 6.12 9 PR-3, PR-4, PR-5 21.8 5.05 11.89 2.96 4.97 15 59 36" RCP 10 DP-12 Pickup 1.05 1.17 15.6 3.46 4 7 24" RCP 5.82 PR-6, PR-7 36" RCP 11 6.11 13.06 22.2 2.93 4.92 18 64 DP-13 12 3.93 8 23 30" RCP 2.25 16.1 3.42 5.74 DP-14 0.53 18" RCP 13 0.33 16.3 1 3 3.40 5.70 PR-9, PR-10 14 4.47 16.3 9 25 30" RCP 2.57 3.40 5.70 PR-8, PR-11 42" RCP 15 8.68 17.53 22.7 2.90 4.87 25 85


FINAL DRAINAGE REPORT ~ PIPE ROUTING SUMMARY

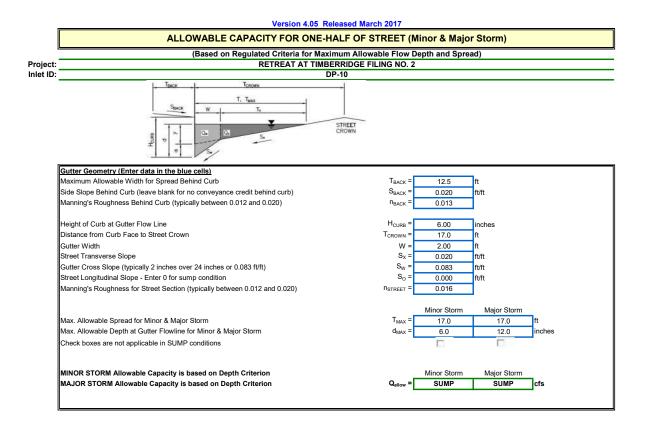
Classic Consulting 118520 CALCS-MSTR-WQCV 2017 - REV



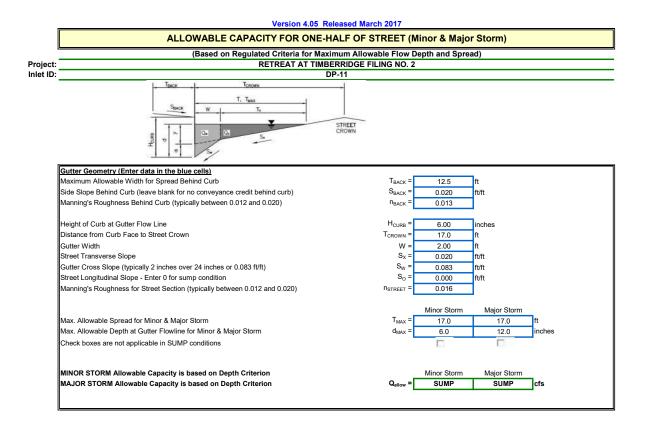
CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	3.0	6.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.7	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	79	%



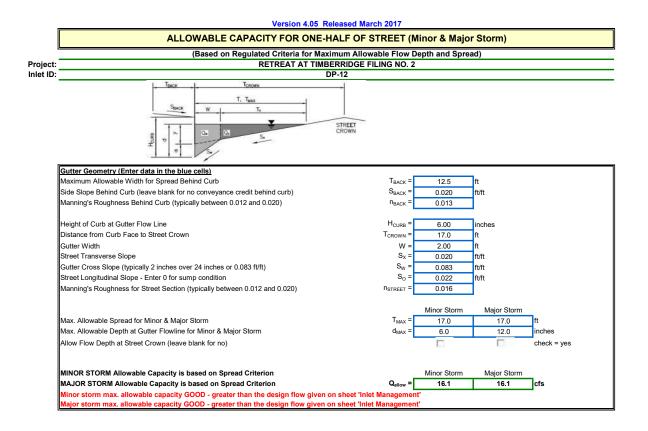
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	9.7	39.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	9.0	39.0	cfs

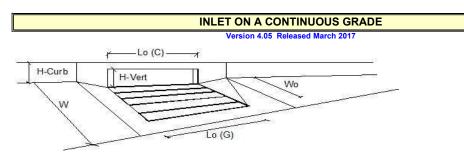


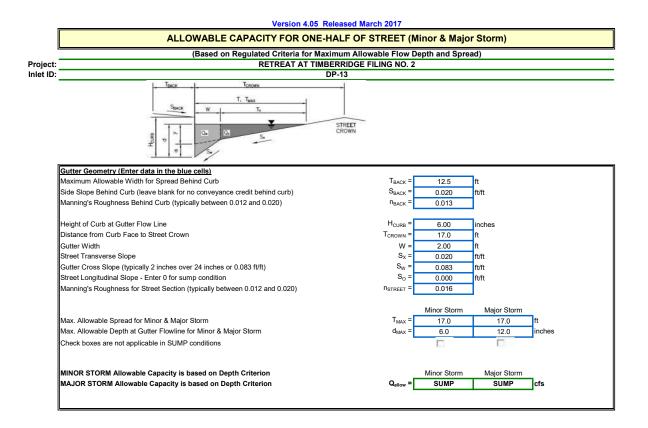
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	of Inlet Type R Curb Opening Type = CDOT Type R Curb Opening			
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	7
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	25.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.0	10.0	cfs



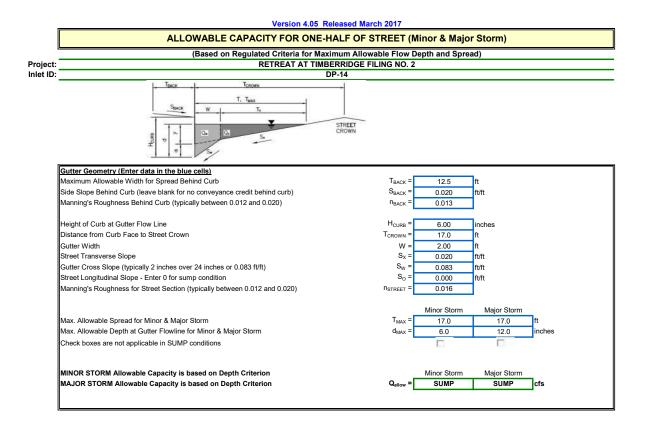
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type = CDOT Type R Curb Opening			
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	7
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	25.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.0	14.0	cfs




Design Information (Input)		MINOR	MAJOR	
Type of Inlet	of Inlet Type R Curb Opening Type = CDOT Type R Curb Opening			
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	-
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	25.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.0	11.0	cfs



Design Information (Input)		MINOR	MAJOR	
of Inlet Type R Curb Opening Type R Curb Opening Type R Curb Opening		Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	7
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.0	4.0	cfs



CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	4.0	6.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	2.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	99	75	%

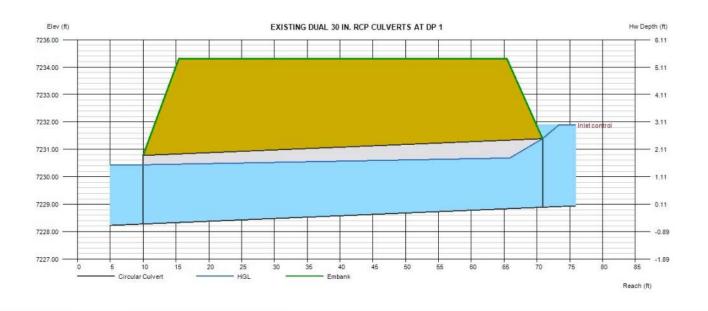
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	of Inlet Type R Curb Opening Type = CDOT Type R Curb Opening		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	-
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	9.7	39.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	8.0	24.3	cfs

CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	Type = CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	7
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.0	3.0	cfs

Culvert Report

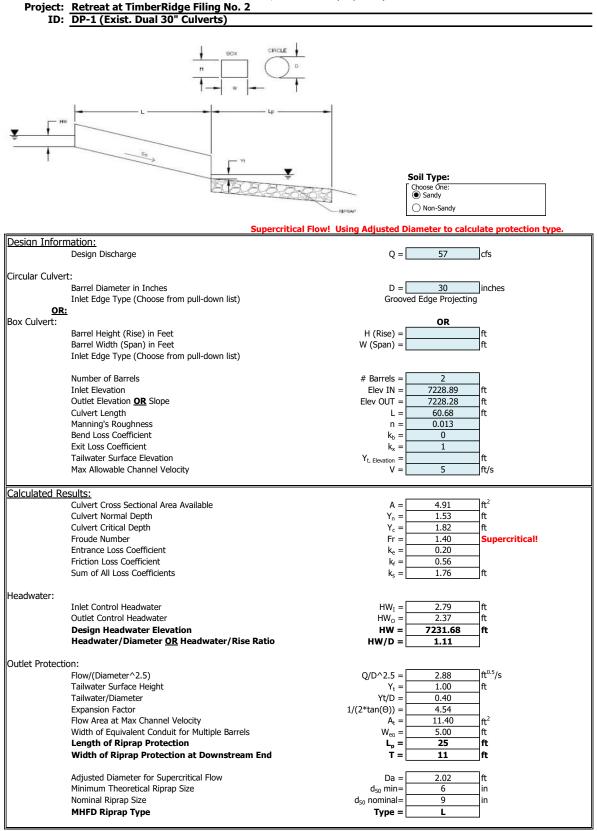
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Feb 4 2022


EXISTING DUAL 30 IN. RCP CULVERTS AT DP 1

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7228.28 = 60.86 = 1.00 = 7228.89 = 30.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 0.00 = 57.00 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 30.0	Qtotal (cfs)	= 57.00
No. Barrels	= 2	Qpipe (cfs)	= 57.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 6.32
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 7.45
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7230.44
		HGL Up (ft)	= 7230.71
Embankment		Hw Elev (ft)	= 7231.89
Top Elevation (ft)	= 7234.30	Hw/D (ft)	= 1.20

Т Top Width (ft) Crest Width (ft)


=	7234.30
=	50.00
=	50.00

		01100
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	6.32
Veloc Up (ft/s)	=	7.45
HGL Dn (ft)	=	7230.44
HGL Up (ft)	=	7230.71
Hw Elev (ft)	=	7231.89
Hw/D (ft)	=	1.20
Flow Regime	=	Inlet Control

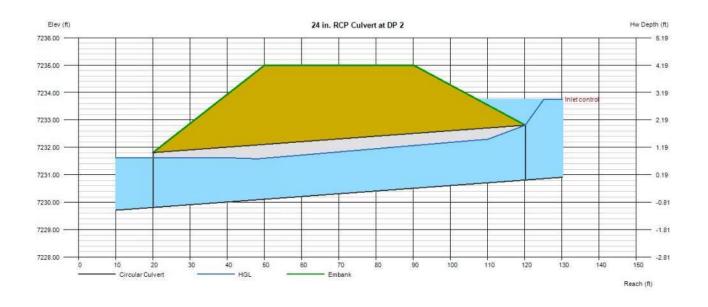
DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION

MHFD-Culvert, Version 4.00 (May 2020)

Culvert Report

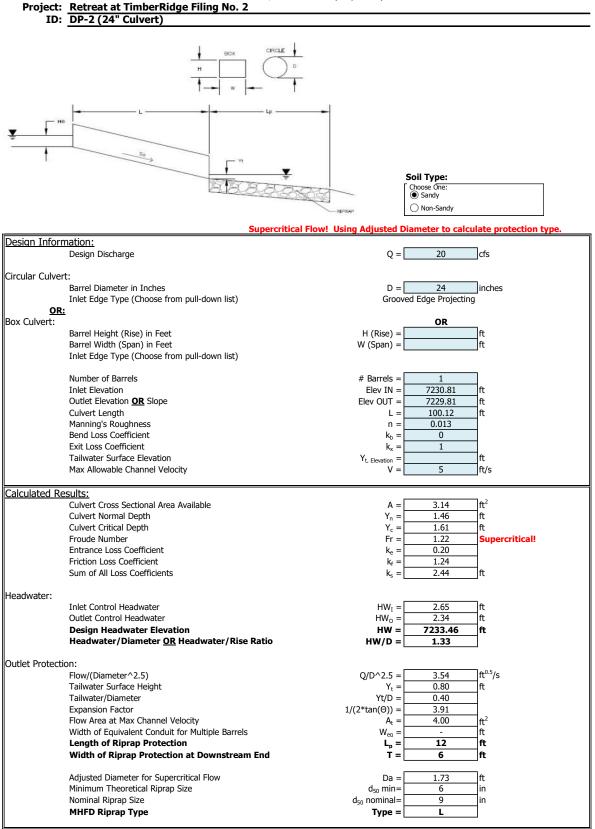
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Sep 17 2021


24 in. RCP Culvert at DP 2

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft)	= 7229.81 = 100.12 = 1.00 = 7230.81	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 0.00 = 20.00 = (dc+D)/2
Rise (in)	= 24.0		
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 20.00
No. Barrels	= 1	Qpipe (cfs)	= 20.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 6.71
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 7.40
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7231.61
		HGL Up (ft)	= 7232.42
Embankment		Hw Elev (ft)	= 7233.75
Top Elevation (ft)	= 7235.00	Hw/D (ft)	= 1.47

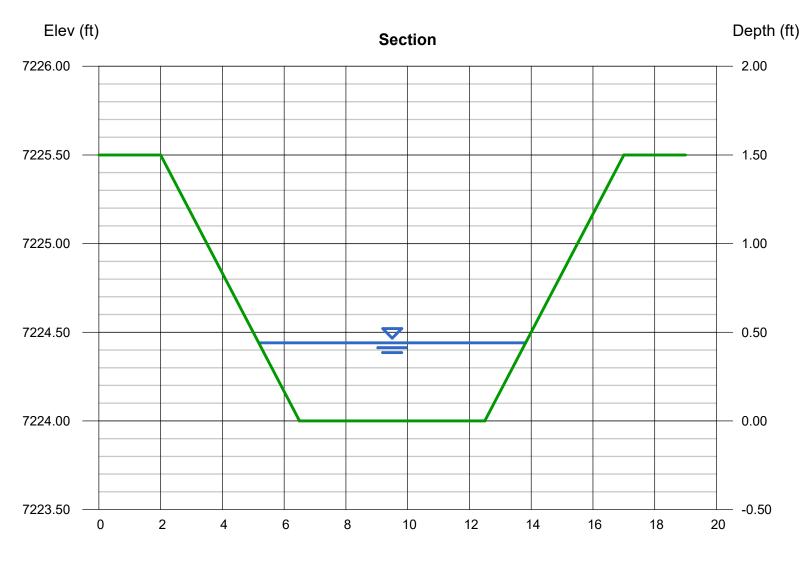
Top Elevation (ft) Top Width (ft) Crest Width (ft)


7235.00 = 40.00 = 50.00

	- 20.00
Qpipe (cfs)	= 20.00
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 6.71
Veloc Up (ft/s)	= 7.40
HGL Dn (ft)	= 7231.61
HGL Up (ft)	= 7232.42
Hw Elev (ft)	= 7233.75
Hw/D (ft)	= 1.47
Flow Regime	= Inlet Control

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION

MHFD-Culvert, Version 4.00 (May 2020)



Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Proposed Channel within Lot 7 - Outfall from 24 in. Culvert

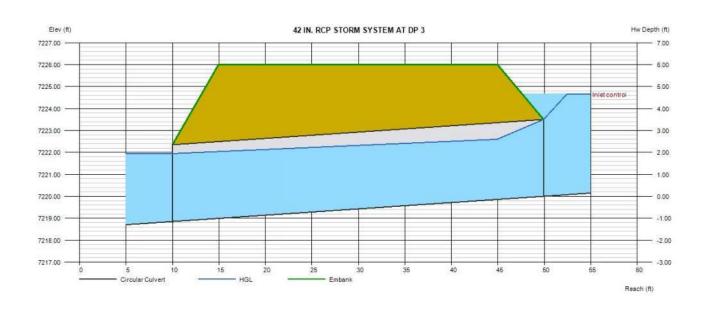
Trapezoidal		Highlighted	
Bottom Width (ft)	= 6.00	Depth (ft)	= 0.44
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 20.00
Total Depth (ft)	= 1.50	Area (sqft)	= 3.22
Invert Elev (ft)	= 7224.00	Velocity (ft/s)	= 6.21
Slope (%)	= 6.00	Wetted Perim (ft)	= 8.78
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.63
		Top Width (ft)	= 8.64
Calculations		EGL (ft)	= 1.04
Compute by:	Known Q		
Known Q (cfs)	= 20.00		

Reach (ft)

Culvert Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Sep 17 2021


42 IN. RCP STORM SYSTEM AT DP 3

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7218.85 = 39.91 = 2.88 = 7220.00 = 42.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 0.00 = 74.00 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 42.0	Qtotal (cfs)	= 74.00
No. Barrels	= 1	Qpipe (cfs)	= 74.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 8.22
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 9.32
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7221.95
		HGL Up (ft)	= 7222.69
Embankment		Hw Elev (ft)	= 7224.65
Top Elevation (ft)	= 7226.00	Hw/D (ft)	= 1.33
			_

Top Width (ft) Crest Width (ft)

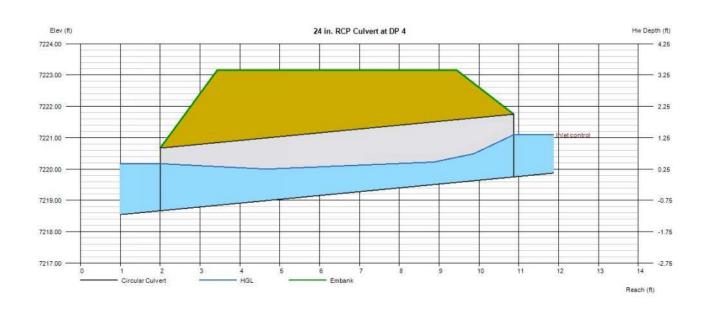
=	7226.00
=	30.00
=	50.00

Qtotal (cts)	= 74.00
Qpipe (cfs)	= 74.00
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 8.22
Veloc Up (ft/s)	= 9.32
HGL Dn (ft)	= 7221.95
HGL Up (ft)	= 7222.69
Hw Elev (ft)	= 7224.65
Hw/D (ft)	= 1.33
Flow Regime	= Inlet Control

Culvert Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Sep 17 2021

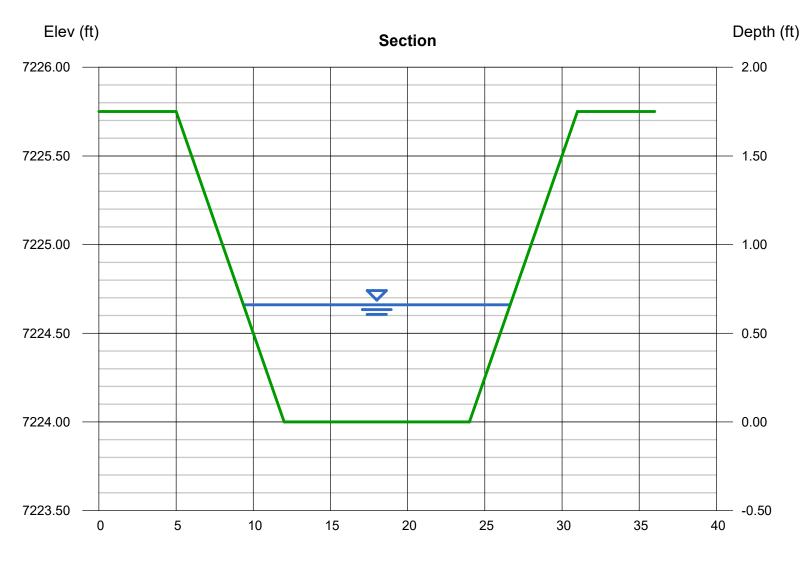

24 in. RCP Culvert at DP 4

Invert Elev Dn (ft)	= 7218.67	Calculations	
Pipe Length (ft)	= 8.87	Qmin (cfs)	= 0.00
Slope (%)	= 12.18	Qmax (cfs)	= 8.00
Invert Elev Up (ft)	= 7219.75	Tailwater Élev (ft)	= (dc+D)/2
Rise (in)	= 24.0		
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 8.00
No. Barrels	= 1	Qpipe (cfs)	= 8.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 3.16
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.06
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7220.17
		HGL Up (ft)	= 7220.76
Embankment		Hw Elev (ft)	= 7221.10
Top Elevation (ft)	= 7223.16	Hw/D (ft)	= 0.67

Elevation (It) rop Top Width (ft) Crest Width (ft)

=	7223.16
=	6.00
=	50.00

Qpipe (cfs)	= 8.00
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 3.16
Veloc Up (ft/s)	= 5.06
HGL Dn (ft)	= 7220.17
HGL Up (ft)	= 7220.76
Hw Elev (ft)	= 7221.10
Hw/D (ft)	= 0.67
Flow Regime	= Inlet Control



Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Proposed Channel within Lot 7 - North side of Falcon Nest Ct.

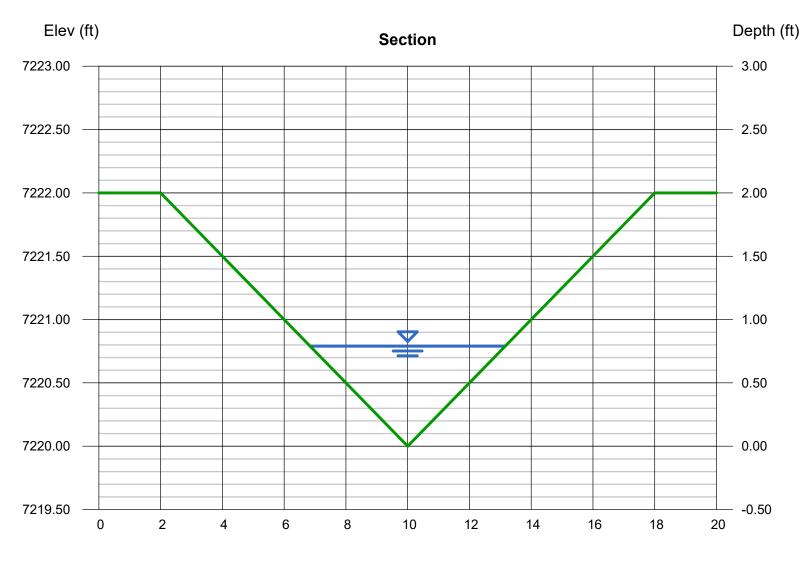
Trapezoidal		Highlighted	
Bottom Width (ft)	= 12.00	Depth (ft)	= 0.66
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 79.00
Total Depth (ft)	= 1.75	Area (sqft)	= 9.66
Invert Elev (ft)	= 7224.00	Velocity (ft/s)	= 8.18
Slope (%)	= 6.00	Wetted Perim (ft)	= 17.44
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.99
		Top Width (ft)	= 17.28
Calculations		EGL (ft)	= 1.70
Compute by:	Known Q		
Known Q (cfs)	= 79.00		

Reach (ft)

DITCH CALCUALTIONS

Proposed Channel within Lot 7 - North side of Falcon Nest Ct.

	Erosion Control Blanket (ECB)	Turf Reinforcement Mat (TRM)	Revegetation - Grass line
	(North American Green - SC150)	(North American Green - P300)	(Native Seed Mix)
Given:	(Temporary - 24 months)	(Permanent)	
Design Flow (cfs)	74.0	79.0	74.0
Permissible Shear (lbs/ft. ²)	2.0	8.0	0.1
Permissible Velocity (ft./sec.)	8.0	16.0	3.0
Safety Factor	1	1	1
Ditch Slope (Max.)	6.0%	6.0%	6.0%
Channel Section (18 in. depth	Trapezoidal -Ditch	Trapezoidal -Ditch	Trapezoidal -Ditch
12' wide bottom w/ 4:1 sides)			
Flow Area (ft. ²)	9.32	9.32	9.32
Wetted Perimeter (ft.)	17.28	17.28	17.28
Hydraulic Radius	0.95	0.95	0.95
Mannings n	0.035	0.030	0.030
Depth of Flow (max.)	1.0	1.0	0.5
Calculations:			
Shear Stress (lbs/ft. ²)	3.7	3.7	1.9
Velocity (ft./sec.)	7.9	8.5	7.9
Allowed Flow (cfs)	93.9	109.6	109.6


Channel Report

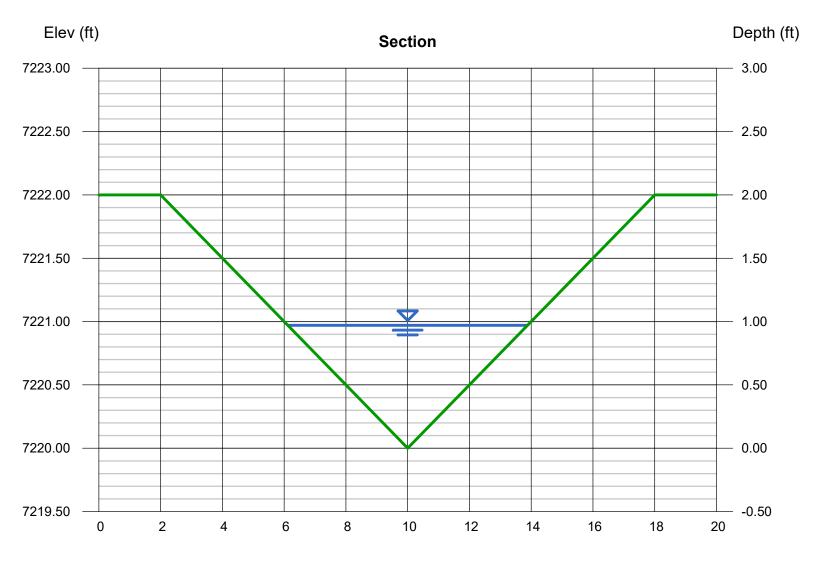
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Friday, Feb 4 2022

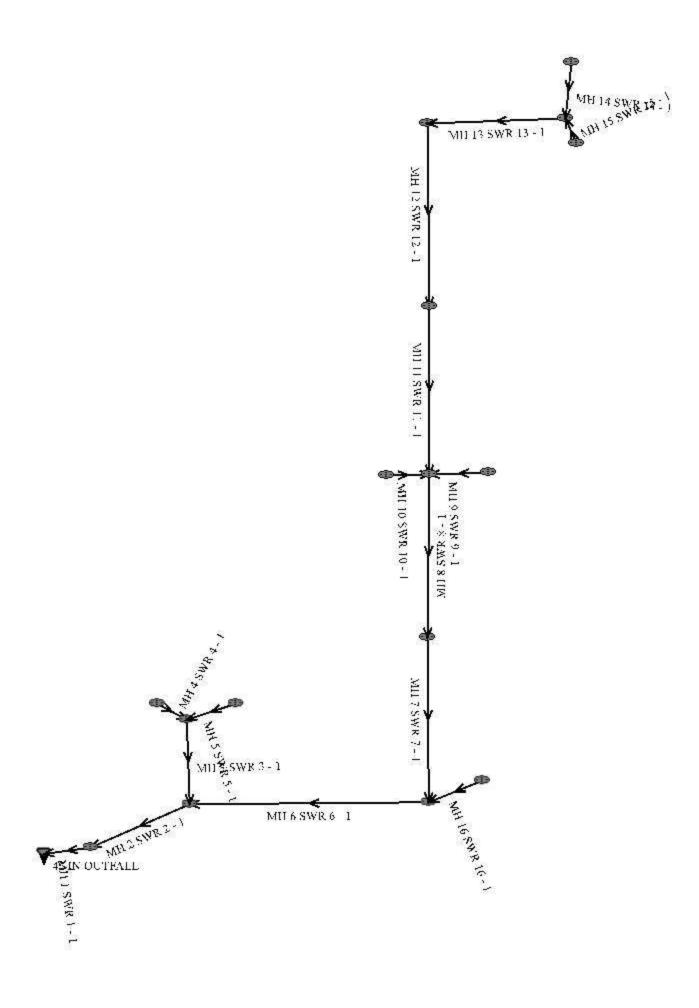
Natural Swale adjacent to Lots 43-54

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 4.00	Depth (ft)	= 0.79
Total Depth (ft)	= 2.00	Q (cfs)	= 11.00
		Area (sqft)	= 2.50
Invert Elev (ft)	= 7220.00	Velocity (ft/s)	= 4.41
Slope (%)	= 4.00	Wetted Perim (ft)	= 6.51
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.86
		Top Width (ft)	= 6.32
Calculations		EGL (ft)	= 1.09
Compute by:	Known Q		
Known Q (cfs)	= 11.00		

Reach (ft)


Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.


Natural Swale adjacent to Lots 54-60

Tria	ina	u	ar
			-

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 4.00	Depth (ft)	= 0.97
Total Depth (ft)	= 2.00	Q (cfs)	= 15.00
		Area (sqft)	= 3.76
Invert Elev (ft)	= 7220.00	Velocity (ft/s)	= 3.99
Slope (%)	= 2.50	Wetted Perim (ft)	= 8.00
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.98
		Top Width (ft)	= 7.76
Calculations		EGL (ft)	= 1.22
Compute by:	Known Q		
Known Q (cfs)	= 15.00		

Reach (ft)

42" RCP Storm System into Exist. Pond 2 HGL Calcs.

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100 Rainfall Calculation Method: Table

Time	Intensity
5	8.68
10	6.93
20	5.19
30	4.16
40	3.44
60	2.42
120	0.67

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 7168.30

Manhole Input Summary:

		Give	en Flow	Sub Basin Information								
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	Runoff	5yr Coefficient	Overland Length (ft)	Overland Slope (%)		Gutter Velocity (fps)		
42 IN OUTFALL	7166.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
MH 1 SWR 1 - 1	7173.70	85.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
MH 2 SWR 2 - 1	7185.90	85.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
MH 6 SWR 6 - 1	7200.24	64.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
MH 7 SWR 7 - 1	7213.98	59.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
MH 8 SWR 8 - 1	7217.86	59.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
MH 11 SWR 11 - 1	7222.82	47.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
MH 12 SWR 12 - 1	7227.77	47.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
MH 13 SWR 13 - 1	7227.05	47.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
MH 14 SWR 14 - 1	7227.30	39.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
MH 15 SWR 15 - 1	7227.30	10.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

MH 9 SWR 9 - 1	7218.18	13.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 10 SWR 10 - 1	7218.18	4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 16 SWR 16 - 1	7201.00	8.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 3 SWR 3 - 1	7185.51	25.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 5 SWR 5 - 1	7185.81	23.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 4 SWR 4 - 1	7185.81	3.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

		Local	l Contril	oution			Total De	sign Flow		
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
42 IN OUTFALL	0.00	0.00	0.00	0.00	0.00	926.95	0.09	0.05	85.00	Surface Water Present (Upstream)
MH 1 SWR 1 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	85.00	Surface Water Present (Downstream)
MH 2 SWR 2 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	85.00	
MH 6 SWR 6 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	64.00	
MH 7 SWR 7 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	59.00	
MH 8 SWR 8 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	59.00	
MH 11 SWR 11 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	47.00	

MH 12 SWR 12 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	47.00	
MH 13 SWR 13 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	47.00	
MH 14 SWR 14 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	39.00	
MH 15 SWR 15 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.00	
MH 9 SWR 9 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	13.00	
MH 10 SWR 10 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.00	
MH 16 SWR 16 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.00	
MH 3 SWR 3 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	25.00	
MH 5 SWR 5 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	23.00	
MH 4 SWR 4 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.00	

Sewer Input Summary:

		Ele	evation		Loss C	Coeffici	ents	Given Dimensions			
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)	
MH 1 SWR 1 - 1	28.00	7164.75	2.0	7165.31	0.013	0.03	1.00	CIRCULAR	42.00 in	42.00 in	
MH 2 SWR 2 - 1	104.10	7165.30	12.2	7178.00	0.013	0.08	1.00	CIRCULAR	42.00 in	42.00 in	
MH 6 SWR 6 - 1	364.39	7178.50	4.1	7193.40	0.013	0.08	1.00	CIRCULAR	36.00 in	36.00 in	
MH 7 SWR 7 - 1	515.53	7193.90	2.6	7207.41	0.013	1.32	1.00	CIRCULAR	36.00 in	36.00 in	
MH 8 SWR 8 - 1	349.50	7207.91	1.0	7211.40	0.013	0.05	1.00	CIRCULAR	36.00 in	36.00 in	
MH 11 SWR 11 - 1	200.72	7211.88	2.0	7215.89	0.013	0.05	1.00	CIRCULAR	36.00 in	36.00 in	
MH 12 SWR 12 - 1	303.78	7216.38	1.0	7219.42	0.013	0.05	1.00	CIRCULAR	36.00 in	36.00 in	
MH 13 SWR 13 - 1	82.55	7219.92	1.0	7220.75	0.013	1.32	1.00	CIRCULAR	36.00 in	36.00 in	
MH 14 SWR 14 - 1	26.28	7221.75	1.5	7222.14	0.013	1.06	0.00	CIRCULAR	30.00 in	30.00 in	
MH 15 SWR 15 - 1	4.82	7221.75	7.1	7222.09	0.013	0.83	0.00	CIRCULAR	24.00 in	24.00 in	
MH 9 SWR 9 - 1	26.17	7213.38	1.5	7213.77	0.013	1.32	0.00	CIRCULAR	24.00 in	24.00 in	
MH 10 SWR 10 - 1	4.17	7212.93	13.3	7213.48	0.013	1.32	0.00	CIRCULAR	18.00 in	18.00 in	
MH 16 SWR 16 - 1	48.28	7195.46	1.9	7196.37	0.013	0.08	0.00	CIRCULAR	24.00 in	24.00 in	
MH 3 SWR 3 - 1	41.27	7179.00	2.0	7179.83	0.013	0.83	0.00	CIRCULAR	36.00 in	36.00 in	
MH 5 SWR 5 - 1	25.52	7180.33	1.0	7180.59	0.013	0.83	0.00	CIRCULAR	30.00 in	30.00 in	
MH 4 SWR 4 - 1	6.86	7181.33	3.9	7181.60	0.013	0.63	0.00	CIRCULAR	18.00 in	18.00 in	

Exist. piping already approved and constructed with Filing 1 (Class IV Pipe used)

1

Sewer Flow Summary:

		l Flow pacity	Critic	al Flow	Normal Flow							
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Con	nment
MH 1 SWR 1 - 1	142.67	14.83	34.46	10.06	23.35	15.47	2.17	Supercritical Jump	85.00	3.88		
MH 2 SWR 2 - 1	352.36	36.62	34.46	10.06	14.05	30.14	5.75	Supercritical	85.00	0.00		ty is Too ligh
MH 6 SWR 6 - 1	135.24	19.13	30.83	9.93	17.43	18.87	3.13	Supercritical				ty is Too ligh
MH 7 SWR 7 - 1	108.26	15.32	29.80	9.43	18.95	15.65	2.46	Supercritical Jump	59.00	61.78		
MH 8 SWR 8 - 1	66.88	9.46	29.80	9.43	26.26	10.68	1.31	Supercritical	59.00	0.00		
MH 11 SWR 11 - 1	94.58	13.38	26.79	8.33	17.93	13.36	2.17	Supercritical	47.00	0.00		
MH 12 SWR 12 - 1	66.88	9.46	26.79	8.33	22.25	10.25	1.44	Supercritical	47.00	0.00		
MH 13 SWR 13 - 1	66.88	9.46	26.79	8.33	22.25	10.25	1.44	Supercritical Jump	47.00	5.06		
MH 14 SWR 14 - 1	50.37	10.26	25.28	8.84	19.82	11.33	1.66	Supercritical	39.00	0.00		
MH 15 SWR 15 - 1	60.44	19.24	13.58	5.46	6.60	14.23	4.00	Supercritical	10.00	0.00		

Road grade at 5% and cannot adjust storm slope enough to reduce velocity below 18 fps without excessive storm depth affecting utility services to adjacent lots Deviation Request submitted and Class IV Pipe proposed

MH 9 SWR 9 - 1	27.78	8.84	15.56	6.03	11.54	8.70	1.77	Supercritical	13.00	0.00	
MH 10 SWR 10 - 1	38.41	21.74	9.18	4.41	3.92	14.06	5.17	Supercritical	4.00	0.00	
MH 16 SWR 16 - 1	31.14	9.91	12.08	5.05	8.30	8.30	2.06	Supercritical		0.00	
MH 3 SWR 3 - 1	94.58	13.38	19.35	6.46	12.64	11.30	2.26	Supercritical Jump	25.00	22.07	
MH 5 SWR 5 - 1	41.13	8.38	19.58	6.78	16.04	8.61	1.47	Supercritical	23.00	0.00	
MH 4 SWR 4 - 1	20.90	11.82	7.90	4.02	4.61	8.40	2.83	Supercritical	3.00	0.00	

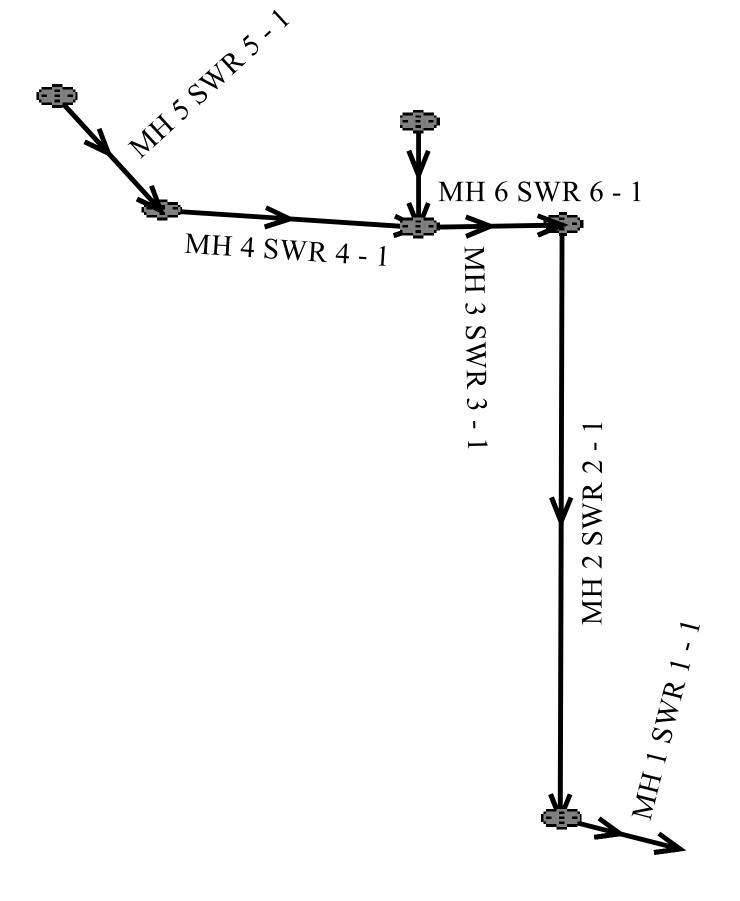
• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	Existing		Calculated		Used			
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment	
MH 1 SWR 1 - 1	85.00	CIRCULAR	42.00 in	42.00 in	36.00 in	36.00 in	42.00 in	42.00 in	9.62		
MH 2 SWR 2 - 1	85.00	CIRCULAR	42.00 in	42.00 in	27.00 in	27.00 in	42.00 in	42.00 in	9.62		
MH 6 SWR 6 - 1	64.00	CIRCULAR	36.00 in	36.00 in	30.00 in	30.00 in	36.00 in	36.00 in	7.07		

MH 7 SWR 7 - 1	59.00	CIRCULAR	36.00 in	36.00 in	30.00 in	30.00 in	36.00 in	36.00 in	7.07
MH 8 SWR 8 - 1	59.00	CIRCULAR	36.00 in	7.07					
MH 11 SWR 11 - 1	47.00	CIRCULAR	36.00 in	36.00 in	30.00 in	30.00 in	36.00 in	36.00 in	7.07
MH 12 SWR 12 - 1	47.00	CIRCULAR	36.00 in	36.00 in	33.00 in	33.00 in	36.00 in	36.00 in	7.07
MH 13 SWR 13 - 1	47.00	CIRCULAR	36.00 in	36.00 in	33.00 in	33.00 in	36.00 in	36.00 in	7.07
MH 14 SWR 14 - 1	39.00	CIRCULAR	30.00 in	4.91					
MH 15 SWR 15 - 1	10.00	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14
MH 9 SWR 9 - 1	13.00	CIRCULAR	24.00 in	24.00 in	21.00 in	21.00 in	24.00 in	24.00 in	3.14
MH 10 SWR 10 - 1	4.00	CIRCULAR	18.00 in	1.77					
MH 16 SWR 16 - 1	8.00	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14
MH 3 SWR 3 - 1	25.00	CIRCULAR	36.00 in	36.00 in	24.00 in	24.00 in	36.00 in	36.00 in	7.07
MH 5 SWR 5 - 1	23.00	CIRCULAR	30.00 in	30.00 in	27.00 in	27.00 in	30.00 in	30.00 in	4.91
MH 4 SWR 4 - 1	3.00	CIRCULAR	18.00 in	1.77					


- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 7168.30

	Invert l	Elev.		eam Manhole losses	HG	Ĺ	EGL			
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)	
MH 1 SWR 1 - 1	7164.75	7165.31	0.00	0.00	7168.30	7168.30	7169.51	0.25	7169.76	
MH 2 SWR 2 - 1	7165.30	7178.00	0.10	0.00	7168.40	7180.87	7180.58	1.87	7182.44	
MH 6 SWR 6 - 1	7178.50	7193.40	0.10	0.00	7180.97	7195.97	7185.48	12.02	7197.50	
MH 7 SWR 7 - 1	7193.90	7207.41	1.43	0.19	7198.04	7209.89	7199.12	12.15	7211.27	
MH 8 SWR 8 - 1	7207.91	7211.40	0.05	0.00	7210.09	7213.88	7211.86	3.40	7215.26	
MH 11 SWR 11 - 1	7211.88	7215.89	0.03	0.40	7214.31	7218.12	7216.14	3.06	7219.20	
MH 12 SWR 12 - 1	7216.38	7219.42	0.03	0.00	7218.24	7221.65	7219.87	2.86	7222.73	
MH 13 SWR 13 - 1	7219.92	7220.75	0.91	0.00	7222.95	7222.98	7223.64	0.42	7224.06	
MH 14 SWR 14 - 1	7221.75	7222.14	1.04	0.00	7224.02	7224.25	7225.40	0.07	7225.46	
MH 15 SWR 15 - 1	7221.75	7222.09	0.13	0.00	7223.11	7225.29	7225.44	0.00	7225.44	
MH 9 SWR 9 - 1	7213.38	7213.77	0.35	0.00	7214.30	7215.07	7215.62	0.02	7215.63	
MH 10 SWR 10 - 1	7212.93	7213.48	0.11	0.00	7213.99	7216.24	7216.32	0.00	7216.32	
MH 16 SWR 16 - 1	7195.46	7196.37	0.01	0.00	7196.08	7197.38	7197.51	0.26	7197.77	
MH 3 SWR 3 - 1	7179.00	7179.83	0.16	0.00	7182.41	7182.41	7182.60	0.04	7182.64	
MH 5 SWR 5 - 1	7180.33	7180.59	0.28	0.00	7182.69	7182.69	7183.05	0.07	7183.11	
MH 4 SWR 4 - 1	7181.33	7181.60	0.03	0.00	7182.44	7182.74	7182.81	0.00	7182.81	

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * V_fi ^ 2/(2*g)
 Lateral loss = V_fo ^ 2/(2*g)- Junction Loss K * V_fi ^ 2/(2*g).
 Friction loss is always Upstream EGL Downstream EGL.

42" Storm System Outfall to Pond 3 – 100 yr. HGL

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100 Rainfall Calculation Method: Table

Time	Intensity
5	8.68
10	6.93
20	5.19
30	4.16
40	3.44
60	2.42
120	0.67

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 7206.60

Manhole Input Summary:

Given Flow					Sub Basin Information							
Element Name	Ground Elevation (ft)	Total Known Flow (cfs)	Local Contribution (cfs)	Drainage Area (Ac.)	KUNOII	5yr Coefficient	Overland Length (ft)	Overland Slope (%)		Gutter Velocity (fps)		
42 IN OUTFALL TO POND 3	7166.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
MH 1 SWR 1 - 1	7210.13	79.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
MH 2 SWR 2 - 1	7216.19	79.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
MH 3 SWR 3 - 1	7223.16	79.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
MH 6 SWR 6 - 1	7223.16	8.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
MH 4 SWR 4 - 1	7226.04	74.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
MH 5 SWR 5 - 1	7224.50	74.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

Manhole Output Summary:

		Local	Contril	bution			Total De	sign Flow		
Element Name	Overland Time (min)	Gutter Time (min)	Basin Tc (min)	Intensity (in/hr)	Local Contrib (cfs)	Coeff. Area	Intensity (in/hr)	Manhole Tc (min)	Peak Flow (cfs)	Comment
42 IN OUTFALL TO POND 3	0.00	0.00	0.00	0.00	0.00	813.49	0.10	0.06	79.00	Surface Water Present (Upstream)
MH 1 SWR 1 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	79.00	Surface Water Present (Downstream)
MH 2 SWR 2 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	79.00	Surface Water Present (Upstream)
MH 3 SWR 3 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	79.00	Surface Water Present (Downstream)
MH 6 SWR 6 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.00	
MH 4 SWR 4 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	74.00	
MH 5 SWR 5 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	74.00	

Sewer Input Summary:

		Elevation			Loss Coefficients			Given Dimensions		
Element Name	Sewer Length (ft)	Downstream Invert (ft)	Slope (%)	Upstream Invert (ft)	Mannings n	Bend Loss	Lateral Loss	Cross Section	Rise (ft or in)	Span (ft or in)
MH 1 SWR 1 - 1	27.56	7203.00	1.0	7203.28	0.013	0.03	1.00	CIRCULAR	42.00 in	42.00 in
MH 2 SWR 2 - 1	444.75	7203.78	2.4	7214.52	0.013	0.73	1.00	CIRCULAR	42.00 in	42.00 in

MH 3 SWR 3 - 1	165.46	7215.02	1.0	7216.67	0.013	1.32	1.00	CIRCULAR	42.00 in	42.00 in
MH 6 SWR 6 - 1	8.87	7218.67	12.2	7219.75	0.013	1.32	0.00	CIRCULAR	24.00 in	24.00 in
MH 4 SWR 4 - 1	117.35	7217.17	1.0	7218.35	0.013	0.63	1.00	CIRCULAR	42.00 in	42.00 in
MH 5 SWR 5 - 1	39.91	7218.85	2.9	7220.00	0.013	0.05	1.00	CIRCULAR	42.00 in	42.00 in

Sewer Flow Summary:

	Full Flow	Full Flow Capacity		Critical Flow		Normal Flow					
Element Name	Flow (cfs)	Velocity (fps)	Depth (in)	Velocity (fps)	Depth (in)	Velocity (fps)	Froude Number	Flow Condition	Flow (cfs)	Surcharged Length (ft)	Comment
MH 1 SWR 1 - 1	100.88	10.49	33.33	9.65	27.98	11.60	1.42	Supercritical Jump	79.00	24.72	
MH 2 SWR 2 - 1	156.77	16.29	33.33	9.65	21.10	16.33	2.45	Supercritical Jump	79.00	13.10	
MH 3 SWR 3 - 1	100.88	10.49	33.33	9.65	27.98	11.60	1.42	Supercritical Jump	79.00	145.49	
MH 6 SWR 6 - 1	79.15	25.20	12.08	5.05	5.15	16.16	5.19	Supercritical	8.00	0.00	
MH 4 SWR 4 - 1	101.17	10.52	32.32	9.31	26.67	11.48	1.46	Supercritical Jump	74.00	29.05	
MH 5 SWR 5 - 1	171.24	17.80	32.32	9.31	19.30	17.15	2.72	Supercritical	74.00	0.00	

• A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).

• If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.

• If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	Existing		Calculated		Used		
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
MH 1 SWR 1 - 1	79.00	CIRCULAR	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	9.62	
MH 2 SWR 2 - 1	79.00	CIRCULAR	42.00 in	42.00 in	33.00 in	33.00 in	42.00 in	42.00 in	9.62	
MH 3 SWR 3 - 1	79.00	CIRCULAR	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	9.62	
MH 6 SWR 6 - 1	8.00	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
MH 4 SWR 4 - 1	74.00	CIRCULAR	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	42.00 in	9.62	
MH 5 SWR 5 - 1	74.00	CIRCULAR	42.00 in	42.00 in	33.00 in	33.00 in	42.00 in	42.00 in	9.62	

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 7206.60

	Invert Elev.		Downstream Manhole Losses		HGL		EGL		
Element Name	Downstream (ft)	Upstream (ft)	Bend Loss (ft)	Lateral Loss (ft)	Downstream (ft)	Upstream (ft)	Downstream (ft)	Friction Loss (ft)	Upstream (ft)
MH 1 SWR 1 - 1	7203.00	7203.28	0.00	0.00	7206.60	7206.75	7207.65	0.15	7207.80
MH 2 SWR 2 - 1	7203.78	7214.52	0.76	0.00	7207.52	7217.30	7208.56	10.18	7218.74
MH 3 SWR 3 - 1	7215.02	7216.67	1.38	0.00	7219.08	7219.88	7220.12	0.89	7221.02
MH 6 SWR 6 - 1	7218.67	7219.75	0.13	0.00	7220.02	7223.05	7223.15	0.00	7223.15
MH 4 SWR 4 - 1	7217.17	7218.35	0.58	0.13	7220.81	7221.04	7221.72	0.67	7222.39
MH 5 SWR 5 - 1	7218.85	7220.00	0.05	0.00	7221.09	7224.11	7225.03	0.00	7225.03

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- •
- Bend loss = Bend K * V_fi ^ 2/(2*g) Lateral loss = V_fo ^ 2/(2*g)- Junction Loss K * V_fi ^ 2/(2*g). •
- Friction loss is always Upstream EGL Downstream EGL.

Description

A sediment basin is a temporary pond built on a construction site to capture eroded or disturbed soil transported in storm runoff prior to discharge from the site. Sediment basins are designed to capture site runoff and slowly release it to allow time for settling of sediment prior to discharge. Sediment basins are often constructed in locations that will later be modified to serve as post-construction stormwater basins.

Appropriate Uses

Most large construction sites (typically greater than 2 acres) will require one or more sediment basins for effective

Photograph SB-1. Sediment basin at the toe of a slope. Photo courtesy of WWE.

management of construction site runoff. On linear construction projects, sediment basins may be impractical; instead, sediment traps or other combinations of BMPs may be more appropriate.

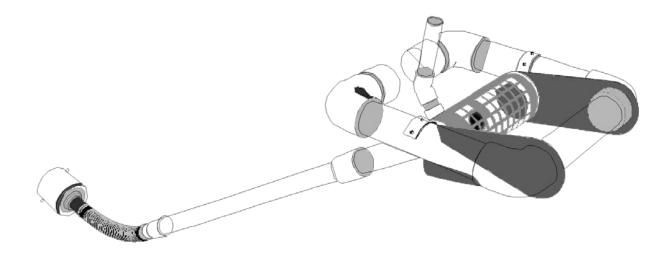
Sediment basins should not be used as stand-alone sediment controls. Erosion and other sediment controls should also be implemented upstream.

When feasible, the sediment basin should be installed in the same location where a permanent postconstruction detention pond will be located.

Design and Installation

The design procedure for a sediment basin includes these steps:

- Basin Storage Volume: Provide a storage volume of at least 3,600 cubic feet per acre of drainage area. To the extent practical, undisturbed and/or off-site areas should be diverted around sediment basins to prevent "clean" runoff from mixing with runoff from disturbed areas. For undisturbed areas (both on-site and off-site) that cannot be diverted around the sediment basin, provide a minimum of 500 ft³/acre of storage for undeveloped (but stable) off-site areas in addition to the 3,600 ft³/acre for disturbed areas. For stable, developed areas that cannot be diverted around the sediment basin, storage volume requirements are summarized in Table SB-1.
- Basin Geometry: Design basin with a minimum length-to-width ratio of 2:1 (L:W). If this cannot be achieved because of site space constraints, baffling may be required to extend the effective distance between the inflow point(s) and the outlet to minimize short-circuiting.
 Sediment Basins
- **Dam Embankment**: It is recommended that embankment slopes be 4:1 (H:V) or flatter and no steeper than 3:1 (H:V) in any location.


Sediment Basins							
Functions							
Erosion Control	No						
Sediment Control	Yes						
Site/Material Management	No						

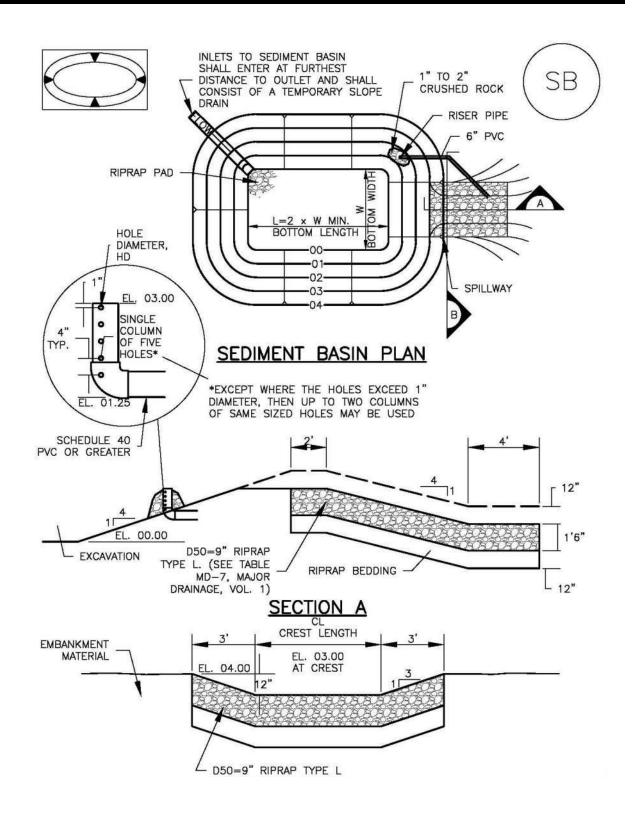
• **Inflow Structure**: For concentrated flow entering the basin, provide energy dissipation at the point of inflow.

Imperviousness (%)	Additional Storage Volume (ft ³) Per Acre of Tributary Area
Undeveloped	500
10	800
20	1230
30	1600
40	2030
50	2470
60	2980
70	3560
80	4360
90	5300
100	6460

Table SB-1. Additional Volume Requirements for Undisturbed and Developed Tributary Areas Draining through Sediment Basins

- **Outlet Works**: The outlet pipe shall extend through the embankment at a minimum slope of 0.5 percent. Outlet works can be designed using one of the following approaches:
 - **Riser Pipe (Simplified Detail):** Detail SB-1 provides a simplified design for basins treating no more than 15 acres.
 - **Orifice Plate or Riser Pipe**: Follow the design criteria for Full Spectrum Detention outlets in the EDB Fact Sheet provided in Chapter 4 of this manual for sizing of outlet perforations with an emptying time of approximately 72 hours. In lieu of the trash rack, pack uniformly sized 1¹/₂ to 2-inch gravel in front of the plate or surrounding the riser pipe. This gravel will need to be cleaned out frequently during the construction period as sediment accumulates within it. The gravel pack will need to be removed and disposed of following construction to reclaim the basin for use as a permanent detention facility. If the basin will be used as a permanent extended detention basin for the site, a trash rack will need to be installed once contributing drainage areas have been stabilized and the gravel pack and accumulated sediment have been removed.
 - Floating Skimmer: If a floating skimmer is used, install it using manufacturer's recommendations. Illustration SB-1 provides an illustration of a Faircloth Skimmer Floating OutletTM, one of the more commonly used floating skimmer outlets. A skimmer should be designed to release the design volume in no less than 48 hours. The use of a floating skimmer outlet can increase the sediment capture efficiency of a basin significantly. A floating outlet continually decants cleanest water off the surface of the pond and releases cleaner water than would discharge from a perforated riser pipe or plate.

Illustration SB-1. Outlet structure for a temporary sediment basin - Faircloth Skimmer Floating Outlet. Illustration courtesy of J. W. Faircloth & Sons, Inc., FairclothSkimmer.com.


- **Outlet Protection and Spillway:** Consider all flow paths for runoff leaving the basin, including protection at the typical point of discharge as well as overtopping.
 - **Outlet Protection:** Outlet protection should be provided where the velocity of flow will exceed the maximum permissible velocity of the material of the waterway into which discharge occurs. This may require the use of a riprap apron at the outlet location and/or other measures to keep the waterway from eroding.
 - **Emergency Spillway:** Provide a stabilized emergency overflow spillway for rainstorms that exceed the capacity of the sediment basin volume and its outlet. Protect basin embankments from erosion and overtopping. If the sediment basin will be converted to a permanent detention basin, design and construct the emergency spillway(s) as required for the permanent facility. If the sediment basin will not become a permanent detention basin, it may be possible to substitute a heavy polyvinyl membrane or properly bedded rock cover to line the spillway and downstream embankment, depending on the height, slope, and width of the embankments.

Maintenance and Removal

Maintenance activities include the following:

- Dredge sediment from the basin, as needed to maintain BMP effectiveness, typically when the design storage volume is no more than one-third filled with sediment.
- Inspect the sediment basin embankments for stability and seepage.
- Inspect the inlet and outlet of the basin, repair damage, and remove debris. Remove, clean and replace the gravel around the outlet on a regular basis to remove the accumulated sediment within it and keep the outlet functioning.
- Be aware that removal of a sediment basin may require dewatering and associated permit requirements.
- Do not remove a sediment basin until the upstream area has been stabilized with vegetation.

Final disposition of the sediment basin depends on whether the basin will be converted to a permanent post-construction stormwater basin or whether the basin area will be returned to grade. For basins being converted to permanent detention basins, remove accumulated sediment and reconfigure the basin and outlet to meet the requirements of the final design for the detention facility. If the sediment basin is not to be used as a permanent detention facility, fill the excavated area with soil and stabilize with vegetation.

TABLE SB-1. SI	ZING INFORMATION FO	OR STANDARD SEDIMENT	BASIN
Upstream Drainage Area (rounded to nearest acre), (ac)	Basin Bottom Width (W), (ft)	Spillway Crest Length (CL), (ft)	Hole Diameter (HD), (in)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	12 ½ 21 28 33 ½ 43 47 ¼ 51 55 58 ¼ 61 64 67 ½ 70 ½ 73 ¼	2 3 5 6 8 9 11 12 13 15 16 18 19 21 22	932 13/6 12 9%6 21/32 25/32 25/32 27/32 27/32 78 15/6 31/36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SEDIMENT BASIN INSTALLATION NOTES

- 1. SEE PLAN VIEW FOR:
 - -LOCATION OF SEDIMENT BASIN.

-TYPE OF BASIN (STANDARD BASIN OR NONSTANDARD BASIN).

-FOR STANDARD BASIN, BOTTOM WIDTH W, CREST LENGTH CL, AND HOLE DIAMETER, HD.

-FOR NONSTANDARD BASIN, SEE CONSTRUCTION DRAWINGS FOR DESIGN OF BASIN INCLUDING RISER HEIGHT H, NUMBER OF COLUMNS N, HOLE DIAMETER HD AND PIPE DIAMETER D.

2. FOR STANDARD BASIN, BOTTOM DIMENSION MAY BE MODIFIED AS LONG AS BOTTOM AREA IS NOT REDUCED.

3. SEDIMENT BASINS SHALL BE INSTALLED PRIOR TO ANY OTHER LAND-DISTURBING ACTIVITY THAT RELIES ON ON BASINS AS AS A STORMWATER CONTROL.

4. EMBANKMENT MATERIAL SHALL CONSIST OF SOIL FREE OF DEBRIS, ORGANIC MATERIAL, AND ROCKS OR CONCRETE GREATER THAN 3 INCHES AND SHALL HAVE A MINIMUM OF 15 PERCENT BY WEIGHT PASSING THE NO. 200 SIEVE.

5. EMBANKMENT MATERIAL SHALL BE COMPACTED TO AT LEAST 95 PERCENT OF MAXIMUM DENSITY IN ACCORDANCE WITH ASTM D698.

6. PIPE SCH 40 OR GREATER SHALL BE USED.

7. THE DETAILS SHOWN ON THESE SHEETS PERTAIN TO STANDARD SEDIMENT BASIN(S) FOR DRAINAGE AREAS LESS THAN 15 ACRES. SEE CONSTRUCTION DRAWINGS FOR EMBANKMENT, STORAGE VOLUME, SPILLWAY, OUTLET, AND OUTLET PROTECTION DETAILS FOR ANY SEDIMENT BASIN(S) THAT HAVE BEEN INDIVIDUALLY DESIGNED FOR DRAINAGE AREAS LARGER THAN 15 ACRES.

SEDIMENT BASIN MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. SEDIMENT ACCUMULATED IN BASIN SHALL BE REMOVED AS NEEDED TO MAINTAIN BMP EFFECTIVENESS, TYPICALLY WHEN SEDIMENT DEPTH REACHES ONE FOOT (I.E., TWO FEET BELOW THE SPILLWAY CREST).

5. SEDIMENT BASINS ARE TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND GRASS COVER IS ACCEPTED BY THE LOCAL JURISDICTION.

6. WHEN SEDIMENT BASINS ARE REMOVED, ALL DISTURBED AREAS SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED AS APPROVED BY LOCAL JURISDICTION.

(DETAILS ADAPTED FROM DOUGLAS COUNTY, COLORADO)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

Description

Sediment traps are formed by excavating an area or by placing an earthen embankment across a low area or drainage swale. Sediment traps are designed to capture drainage from disturbed areas less than one acre and allow settling of sediment.

Appropriate Uses

Sediment traps can be used in combination with other layers of erosion and sediment controls to trap sediment from small drainage areas (less than one

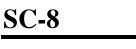
Photograph ST-1. Sediment traps are used to collect sediment-laden runoff from disturbed area. Photo courtesy of EPA Menu of BMPs.

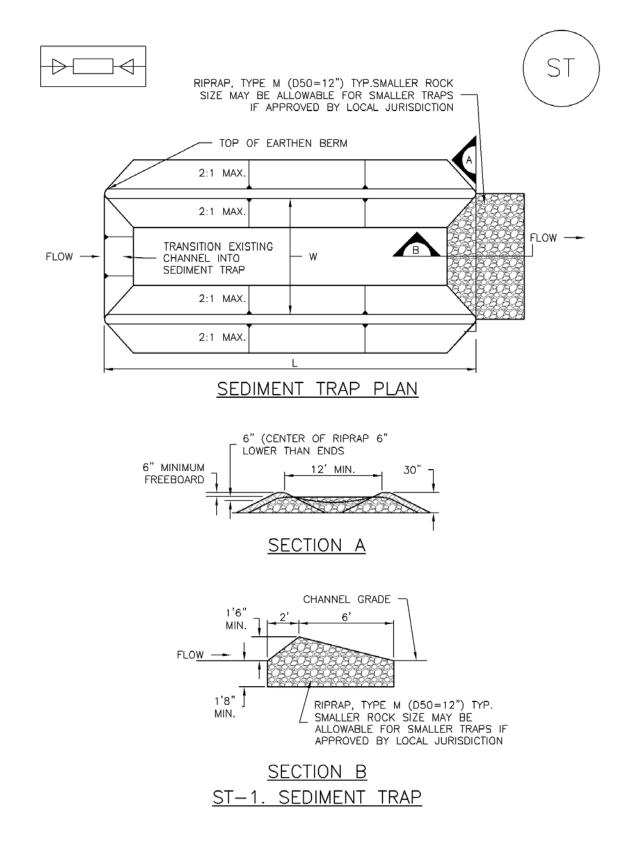
acre) or areas with localized high sediment loading. For example, sediment traps are often provided in conjunction with vehicle tracking controls and wheel wash facilities.

Design and Installation

A sediment trap consists of a small excavated basin with an earthen berm and a riprap outlet. The berm of the sediment trap may be constructed from the excavated material and must be compacted to 95 percent of the maximum density in accordance with ASTM D698. An overflow outlet must be provided at an elevation at least 6 inches below the top of the berm. See Detail ST-1 for additional design and installation information.

Maintenance and Removal


Inspect the sediment trap embankments for stability and seepage.


Remove accumulated sediment as needed to maintain the effectiveness of the sediment trap, typically when the sediment depth is approximately one-half the height of the outflow embankment.

Inspect the outlet for debris and damage. Repair damage to the outlet, and remove all obstructions.

A sediment trap should not be removed until the upstream area is sufficiently stabilized. Upon removal of the trap, the disturbed area should be covered with topsoil and stabilized.

Sediment Trap								
Functions								
Erosion Control	No							
Sediment Control	Yes							
Site/Material Management	No							

- 1. SEE PLAN VIEW FOR: -LOCATION, LENGTH AND WIDTH OF SEDIMENT TRAP.
- 2. ONLY USE FOR DRAINAGE AREAS LESS THAN 1 ACRE.

3. SEDIMENT TRAPS SHALL BE INSTALLED PRIOR TO ANY UPGRADIENT LAND-DISTURBING ACTIVITIES.

4. SEDIMENT TRAP BERM SHALL BE CONSTRUCTED FROM MATERIAL FROM EXCAVATION. THE BERM SHALL BE COMPACTED TO 95% OF THE MAXIMUM DENSITY IN ACCORDANCE WITH ASTM D698.

5. SEDIMENT TRAP OUTLET TO BE CONSTRUCTED OF RIPRAP, TYPE M (D50=12") TYP.SMALLER ROCK SIZE MAY BE ALLOWABLE FOR SMALLER TRAPS IF APPROVED BY LOCAL JURISDICTION.

6. THE TOP OF THE EARTHEN BERM SHALL BE A MINIMUM OF 6" HIGHER THAN THE TOP OF THE RIPRAP OUTLET STRUCTURE.

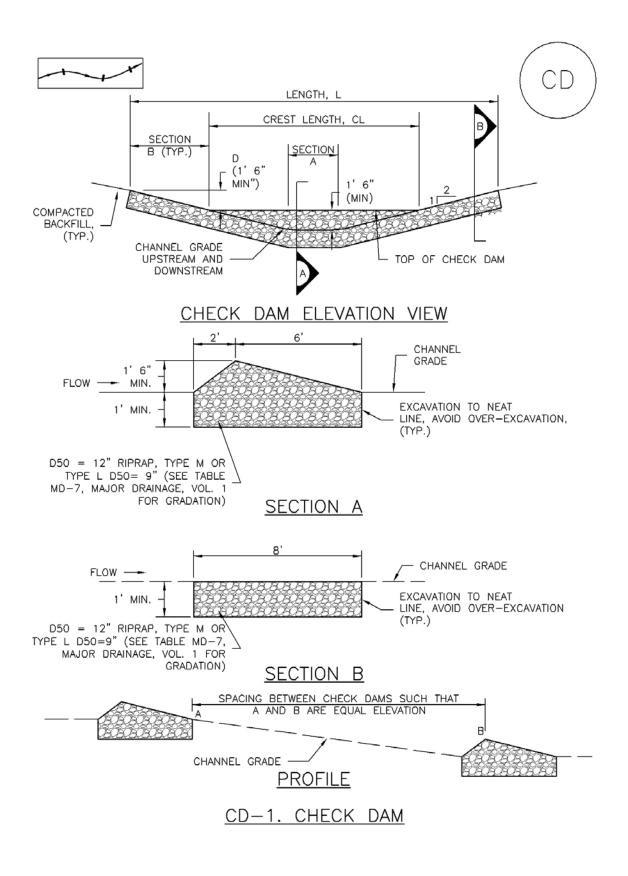
7. THE ENDS OF THE RIPRAP OUTLET STRUCTURE SHALL BE A MINIMUM OF 6" HIGHER THAN THE CENTER OF THE OUTLET STRUCTURE.

SEDIMENT TRAP MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.


4. REMOVE SEDIMENT ACCUMULATED IN TRAP AS NEEDED TO MAINTAIN THE FUNCTIONALITY OF THE BMP, TYPICALLY WHEN THE SEDIMENT DEPTH REACHES $\frac{1}{2}$ THE HEIGHT OF THE RIPRAP OUTLET.

5. SEDIMENT TRAPS SHALL REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND APPROVED BY THE LOCAL JURISDICTION.

6. WHEN SEDIMENT TRAPS ARE REMOVED, THE DISTURBED AREA SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED IN A MANNER APPROVED BY THE LOCAL JURISDICTION.

(DETAILS ADAPTED FROM DOUGLAS COUNTY, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

CHECK DAM INSTALLATION NOTES

1. SEE PLAN VIEW FOR:

- -LOCATION OF CHECK DAMS.
- -CHECK DAM TYPE (CHECK DAM OR REINFORCED CHECK DAM).
- -LENGTH (L), CREST LENGTH (CL), AND DEPTH (D).

2. CHECK DAMS INDICATED ON INITIAL SWMP SHALL BE INSTALLED AFTER CONSTRUCTION FENCE, BUT PRIOR TO ANY UPSTREAM LAND DISTURBING ACTIVITIES.

3. RIPRAP UTILIZED FOR CHECK DAMS SHOULD BE OF APPROPRIATE SIZE FOR THE APPLICATION. TYPICAL TYPES OF RIPRAP USED FOR CHECK DAMS ARE TYPE M (D50 12") OR TYPE L (D50 9").

4. RIPRAP PAD SHALL BE TRENCHED INTO THE GROUND A MINIMUM OF 1'.

5. THE ENDS OF THE CHECK DAM SHALL BE A MINIMUM OF 1' 6" HIGHER THAN THE CENTER OF THE CHECK DAM.

CHECK DAM MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

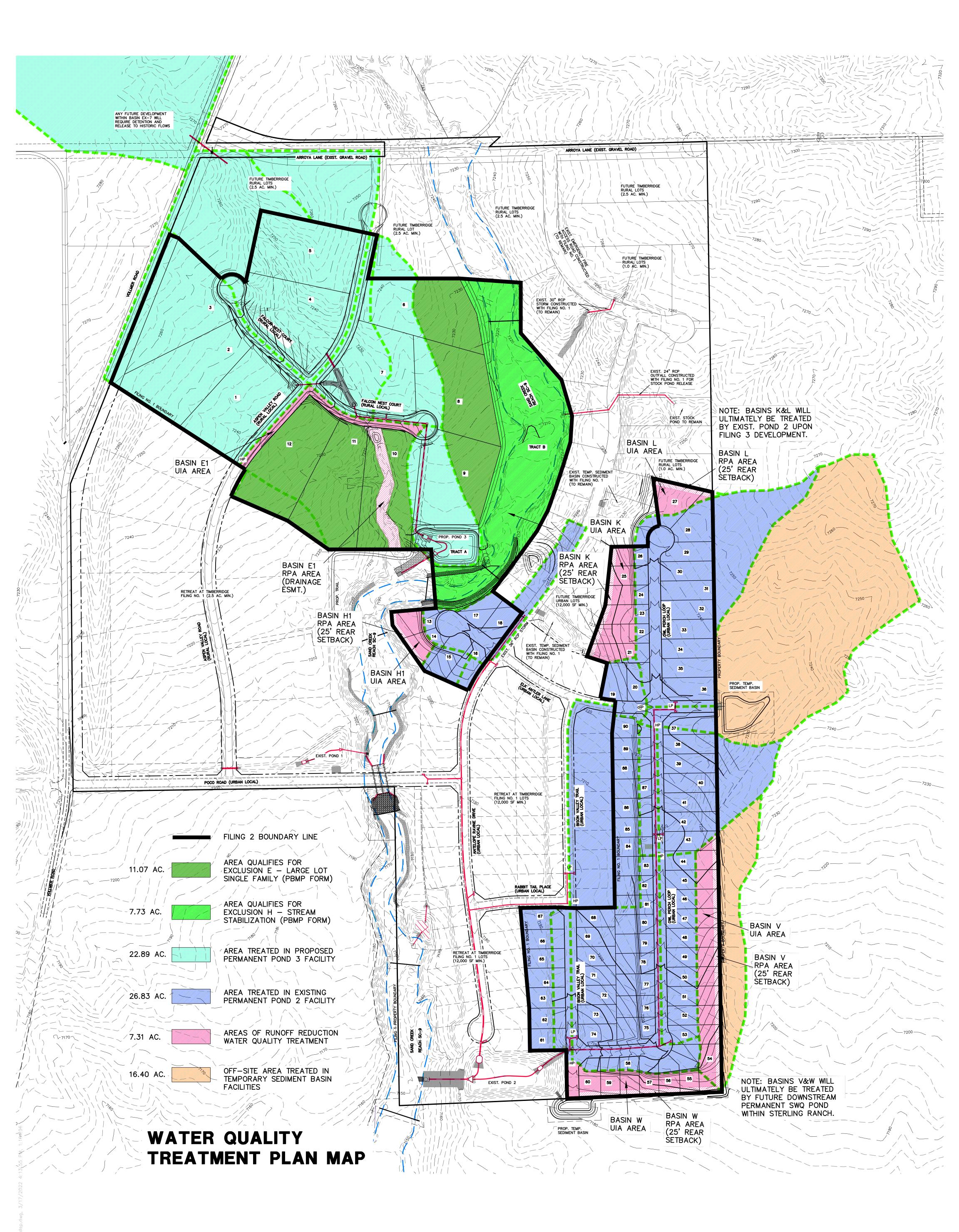
4. SEDIMENT ACCUMULATED UPSTREAM OF THE CHECK DAMS SHALL BE REMOVED WHEN THE SEDIMENT DEPTH IS WITHIN $\frac{1}{2}$ OF THE HEIGHT OF THE CREST.

5. CHECK DAMS ARE TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND APPROVED BY THE LOCAL JURISDICTION.

6. WHEN CHECK DAMS ARE REMOVED, EXCAVATIONS SHALL BE FILLED WITH SUITABLE COMPACTED BACKFILL. DISTURBED AREA SHALL BE SEEDED AND MULCHED AND COVERED WITH GEOTEXTILE OR OTHERWISE STABILIZED IN A MANNER APPROVED BY THE LOCAL JURISDICTION.

(DETAILS ADAPTED FROM DOUGLAS COUNTY, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.


STORMWATER QUALITY CALCULATIONS

	Design Procedure Form: I	Extended Detention Basin (EDB)						
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3						
Designer:	Marc A. Whorton, P.E.							
Company:	Classic Consulting							
Date:	March 16, 2022							
Project:	Retreat at TimberRidge Filing No. 2							
Location:	Pond 3							
1. Basin Storage ∖	folume							
A) Effective Imp	erviousness of Tributary Area, I _a	l _a = <u>12.6</u> %						
, ,	a's Imperviousness Ratio (i = l _a / 100)	i =						
C) Contributing	Watershed Area	Area = 58.300 ac						
D) For Watersh Runoff Prod	eds Outside of the Denver Region, Depth of Average ucing Storm	d ₆ = 0.42 in						
E) Design Cond (Select EUR	sept V when also designing for flood control)	Choose One O Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)						
	ne (WQCV) Based on 40-hour Drain Time .0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} =ac-ft						
Water Quali	leds Outside of the Denver Region, ty Capture Volume (WQCV) Design Volume _i = (d ₆ [*] (V _{DESIGN} /0.43))	V _{DESIGN OTHER} = 0.385 ac-ft						
	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft						
i) Percenta ii) Percenta	ogic Soil Groups of Tributary Watershed ge of Watershed consisting of Type A Soils ige of Watershed consisting of Type B Soils age of Watershed consisting of Type C/D Soils	$ \begin{array}{c} HSG_{A} = & 0 & \% \\ HSG_{B} = & 100 & \% \\ HSG_{CD} = & 0 & \% \end{array} $						
For HSG A For HSG B	n Runoff Volume (EURV) Design Volume EURV _A = 1.68 * $i^{1.26}$ EURV _n = 1.36 * $i^{1.08}$ D: EURV _{CID} = 1.20 * $i^{1.08}$	EURV _{DESIGN} = 0.705 ac-f t						
	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} =ac-ft						
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1						
3. Basin Side Slop	es							
A) Basin Maxim (Horizontal o	ium Side Slopes listance per unit vertical, 4:1 or flatter preferred)	Z = 4.00 ft / ft						
4. Inlet								
	ans of providing energy dissipation at concentrated							
inflow location								
5. Forebay								
A) Minimum Fo (V _{FMIN}	rebay Volume = 3% of the WQCV)	V _{FMIN} = ac-ft						
B) Actual Foreb	bay Volume	V _F = 0.012 ac-ft						
C) Forebay Dep (D _F		D _F = <u>18.0</u> in						
D) Forebay Disc	sharge							
i) Undetaine	ad 100-year Peak Discharge	Q ₁₀₀ = 79.00 cfs						
ii) Forebay (Q _F = 0.02	Discharge Design Flow 2 * Q ₁₀₀)	Q _F = cfs						
E) Forebay Disc	harge Design	Choose One						
		Berm With Pipe Flow too small for berm w/ pipe Wall with Rect. Notch Wall with V-Notch Weir						
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _p =in						
G) Rectangular	Notch Width	Calculated $W_N = 6.7$ in						

	Design Procedure Form:	Extended Detention Basin (EDB)						
Designer:	Marc A. Whorton, P.E.		Sheet 2 of 3					
Company:	Classic Consulting		-					
Date:	March 16, 2022		_					
Project:	Retreat at TimberRidge Filing No. 2		-					
Location:	Pond 3		-					
Location			_					
6. Trickle Channel		Choose One						
6. Thekie Channel		Concrete						
 A) Type of Trick 	kle Channel	◯ Soft Bottom	FOR A CONCRETE TRICKLE CHANNEL,					
			SLOPE SHOULD BE BETWEEN 0.004 AND 0.010 FT/FT.					
F) Slope of Tric	kle Channel	S = 0.0130 ft / ft						
7. Micropool and C	Dutlet Structure							
A) Depth of Mic	cropool (2.5-feet minimum)	D _M = <u>2.5</u> ft						
B) Surface Area	a of Micropool (10 ft² minimum)	A _M = 132 sq ft						
C) Outlet Type	· · · ·							
C) Outlet Type		Choose One	7					
		Orifice Plate						
		Other (Describe):						
	nension of Orifice Opening Based on Hydrograph Routing							
(Use UD-Detent	tion)	D _{orifice} = <u>1.25</u> inches	5					
E) Total Outlet A	Area	A _{ot} = <u>3.81</u> squar	e inches					
8. Initial Surcharge	e Volume							
 A) Depth of Initi 	ial Surcharge Volume	$D_{1S} = 6$ in						
	commended depth is 4 inches)							
B) Minimum Initi	ial Surcharge Volume	V _{IS} = 50 cu ft						
	lume of 0.3% of the WQCV)							
C) Initial Surcha	arge Provided Above Micropool	V _s = 66.0 cu ft						
C) Initial Carona								
9. Trash Rack								
A) Water Qualit	ty Screen Open Area: A _t = A _{ct} * 38.5*(e ^{-0.095D})	A _t = <u>130</u> squar	e inches					
B) Type of Soro	en (If specifying an alternative to the materials recommended	Aluminum Amico-Klemp SR Series with C	Cross Rods 2" O.C.					
	indicate "other" and enter the ratio of the total open are to the	Planning Planet Remp of Corres with C						
total screen are	for the material specified.)							
	Other (Y/N): N							
C) Ratio of Tota	Il Open Area to Total Area (only for type 'Other')	User Ratio =						
	Quality Screen Area (based on screen type)	A _{total} = 183 sq. in.						
	sign Volume (EURV or WQCV) design concept chosen under 1E)	H= <u>5</u> feet						
F) Height of Wa	tter Quality Screen (H _{TR})	H _{TR} = <u>88</u> inche	s					
	ter Quality Screen Opening (W _{opening})	W _{opening} = 12.0 inche	S VALUE LESS THAN RECOMMENDED MIN. WIDTH.					
	inches is recommended)		WIDTH HAS BEEN SET TO 12 INCHES.					

Designer: Marc A. Whorton, P.E. Company: Classic Consulting Date: March 16, 202 Project: Retreat at TimberRidge Filling No. 2 Location: Pond 3 10. Overflow Embankment		Design Procedure Form:	Extended Detention Basin (EDB)
A) Describe embankment protection for 100-year and greater overtopping:	Company: Date: Project:	Classic Consulting March 16, 2022 Retreat at TimberRidge Filing No. 2	Sheet 3 of
	A) Describe eB) Slope of C (Horizonta)	embankment protection for 100-year and greater overtopping: overflow Embankment	Choose One
Notes:	A) Describe S	Sediment Removal Procedures	

UD:30P (Values 307 March 2010) Bite: 1 of Design Consulting Designer;	Design Procedure Form: Runoff Reduction												
Compary: Classic Consulting Data: March 17:022 Project: Revel at TribuRR 108 PION 10:2 Location: Extend at TribuRR 108 PION 10:2 State: Project: Extend at TribuRR 108 PION 10:2 State: Project: Project: Project: Depting Project: Project: Project: Project: Depting Project: Project: Project: Project: Depting Project: Project: Project: Project: Project: Downstriaten Desting Project: Project: Project: Project: Project: Downstriaten Desting Project: Project: Project: Project: Project: Project: Downstriaten Desting Project: <													
Date: March 7, 2022 Project: Extent 7, 2022 Locator: EXEMPS NOT TRIBUTARY TO PERMANENT SWO PACE.ITY STEI INFORMATION (User Input In Blue Gells) WGCV Rained Deght 0.3 Deght of Average Rund Producting Bluen Age 0.3 Downstream Bluen Remote Producting Bluen Age 0.3 Downstream Bluen Remote Producting Bluen Age 0.40 New Region Remote Producting Bluen Age 0.40 New Region Remote Producting Bluen Age 0.40 Downstream Bluen Remote Producting Bluen Age 0.40 New Region Remote Producting Bluen Age 0.40 With Remote Remote Producting Bluen Age 0.40 <td></td> <td colspan="9"></td>													
Project: Resear at Timedrillage Filling No. 2 Station: BASINS NOT TIRBUTARY TO PERMANENT SWO FACILITY STEIN FROMMEND (User Input In Blue Colls) WCCV Reading Conf. Depth of Average Rund Froduing Storm. d ₁ = 0.23 inches Depth of Average Rund Froduing Storm. d ₂ = 0.42 inches Downissional Booth 0.42 Downissional Rund Froduing Storm. d ₂ = 0.45 0.42 Downissional Booth Basin H1 Basin H1 Downissional Booth Storm													
Lossion: LASING NOT TRIBUTARY TO PERMANENT SWG PACLITY STEINFORMATION (User Input in Blue Call) WCCV Ranning Brund for the Call Structure (Watersheets Outside of the Deriver Region, Figure 3-1 in USDCM Vol. 3) Another Transmission distribution of the Deriver Region, Figure 3-1 in USDCM Vol. 3) Another Transmission distribution of the Deriver Region, Figure 3-1 in USDCM Vol. 3) Dometrice of the Deriver Region, Figure 3-1 in USDCM Vol. 3) Dometrice of the Deriver Region, Figure 3-1 in USDCM Vol. 3) Dometrice of the Deriver Region, Figure 3-1 in USDCM Vol. 3) Dometrice of the Deriver Region, Figure 3-1 in USDCM Vol. 3) Dometrice of the Deriver Region, Figure 3-1 in USDCM Vol. 3) Dometrice of the Deriver Region, Figure 3-1 in USDCM Vol. 3) Dometrice of the Deriver Region, Figure 3-1 in USDCM Vol. 3) Dometrice of the Deriver Region Figure 3-1 in USDCM Vol. 3) Dometrice of the Deriver Region Figure 3-1 in USDCM Vol. 3) Dometrice of the Deriver Region Figure 3-1 in USDCM Vol. 3) Dometrice of the Deriver Region Figure 3-1 in USDCM Vol. 3) Dometrice of the Solution of the Solutin of the Solution of the Solutin of the Solution of the													
STEINFORMATION (User Input in Blue Cells) WCV Rainful Depth Dath of Average Rundf Producing Storm, 4, 2012 Average Rundf Producing Storm, 4, 2012 Dath of Average Rundf Producing Storm, 4, 2012 Average Rundf Producing Storm, 4, 2012 Dath of Average Rundf Producing Storm, 4, 2012 Downstaem Bbeen Basin HT Basin W Basin W Basin K Basin L Dath of Average Rundf Producing Storm, 4, 2012 Downstaem Bbeen Brain HT Basin W Basin W Basin K Basin L Data Mark Mark Mulk RPA UKRPA Downstaem Bbeen Provide Storm Average Storm													
WGCV Rambill DegN 0.33 Inche DepH of Arreps Period Photon Storm, 4, - 0.43 Inche (fiv Watersheids Outside of the Denver Region, Figure 3-1 in USOCM Vol. 3) Area Type UKRPA UKRPA <t< td=""><td colspan="10">Location: BASINS NOT TRIBUTARY TO PERMANENT SWQ FACILITY</td></t<>	Location: BASINS NOT TRIBUTARY TO PERMANENT SWQ FACILITY												
Area ID Basin K Basin K Basin K Basin K Basin L Image: Control of the state	WQCV Rainfall Depth 0.53 inches												
Area ID Basin K Basin K Basin K Basin L Image: Control of the c													
Downstream Design Point ID Downstream Berry Point ID Downstream Berry Point ID DCA Rf ¹ A C A C A C A C A C A C A C A C A C A C													
Downstream BMP Type None None </td <td></td>													
DCA MT <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
UA (http://www.com/actionality.com/acti													
SPA (ft) <t< td=""><td></td><td>28,800</td><td>17,675</td><td>46,890</td><td>59,560</td><td>52,250</td><td>16,480</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		28,800	17,675	46,890	59,560	52,250	16,480						
SPA (th) -<		26,200	5,060	14,420	20,200	11,800	6,240						
HSG B (%) 100% 100% 100% 100% 0 HSG C D (%) 0% 0% 0% 0% 0% 0													
HSG C/D (S) 0%	, ,												
Average Slope of RPA (th) 0.018 0.020 0.030 0.040 0.040 UARPA Interface Width (th 30.00 200.00 550.00 1000.00 450.00 200.00 0	• •												
UAR.RPA Interface Width (ft) 30.00 200.00 550.00 1000.00 450.00 200.00 CALCULATED RUNOFF RESULTS MARBID Basin E1 Basin H1 Basin V Basin K Basin L Image: Colspan="4">Colspan= 400CC Colspan="4">Colspan= 400C<													
CALCULATED RUNCTR RESULTS Marea (h ²) Basin VI Basin V Basin V<													
Area (D) Basin H1 Basin W Basin K	UIA:RPA Interface Width (ft)	30.00	200.00	550.00	1000.00	450.00	200.00						
UIA / Area 0.5236 0.7774 0.7648 0.7467 0.8158 0.7254 Image: Constraint of the state	Area ID	Basin E1											
Rundfr (in) Rundfr (it) 0.0 0.08 0.05 0.02 0.12 0.01 Image: Constraint of the state	L / W Ratio	16.00	0.57	0.20	0.08	0.32	0.57						
Runoff (th) Runoff Reduction (th) 0 145 253 138 659 11 Image: Control of Contrel of Control of Control of Control of Control of Conte	UIA / Area	0.5236	0.7774	0.7648	0.7467	0.8158	0.7254						
Runoff Reduction (th ¹) 1032 489 1427 1996 1213 580 Image: Calculated with the second withe second with the second with the second withe second	Runoff (in)	0.00	0.08	0.05	0.02	0.12	0.01						
CALCULATED WQCV RESULTS WQCV (ft) Basin E1 Basin H1 Basin V Basin K Basin L Image: Control of the state	Runoff (ft ³)												
Area ID Basin E1 Basin H1 Basin W Basin K Basin L Image: Constraint of the state of the	Runoff Reduction (ft ³)	1032	489	1427	1996	1213	580						
WQCV (ft) 1172 719 1908 2424 2126 671 Image: Constraint of the state of	CALCULATED WQCV R	ESULTS											
WQCV Reduction (ft ³) 1172 575 1655 2286 1467 660 Image: Constraint of the state of	Area ID	Basin E1	Basin H1	Basin W	Basin V	Basin K	Basin L						
WQCV Reduction (%) 100% 80% 87% 94% 69% 98% Image: constraint of the state of the st	WQCV (ft ³)	1172	719	1908	2424	2126	671						
Untreated WQCV (R ³) 0 145 253 138 659 11 Image: Constraint of the second se	WQCV Reduction (ft ³)	1172	575	1655	2286	1467	660						
CALCULATED DESIGN POINT RESULTS (sums results from all columns with the same Downstream Design Point ID CALCULATED DESIGN POINT RESULTS (sums results from all columns with the same Downstream Design Point ID DCIA (ft ²) 0 <t< td=""><td>WQCV Reduction (%)</td><td>100%</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	WQCV Reduction (%)	100%											
Downstream Design Point ID SC DP-15 Sed. Basin Image: Constraint of the second	Untreated WQCV (ft ³)	0	145	253	138	659	11						
Sc DP-15 Sed. Basin Image: Constraint of the second se	CALCULATED DESIGN	POINT RESU	LTS (sums r	esults from a	all columns v	with the same	e Downstrea	n Design Po	oint ID)				
UIA (ft ²) 46,475 106,450 68,730 Image: Constraint of the second													
RPA (ft ²) 31,260 34,620 18,040 Image: constraint of the second	DCIA (ft ²)	0	0	0									
SPA (ft ²) 0 <th< td=""><td>UIA (ft²)</td><td></td><td></td><td>68,730</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	UIA (ft ²)			68,730									
Total Area (ft ²) 77,735 141,070 86,770 Image: constraint of the state of the stat	RPA (ft ²)	31,260	34,620	18,040									
Total Impervious Area (ft ²) 46,475 106,450 68,730 Image: Constraint of the state	SPA (ft ²)	0		0									
WQCV (ft ³) 1,891 4,332 2,797 Image: Constraint of the second se													
WQCV Reduction (ft ³) 1,747 3,941 2,127 Image: Constraint of the second													
WQCV Reduction (%) 92% 91% 76% Image: Constraint of the second se													
Untreated WQCV (ft ³) 145 391 670 Image: Constraint of the second secon													
CALCULATED SITE RESULTS (sums results from all columns in worksheet) Total Area (ft ²) 305,575 Total Impervious Area (ft ²) Q21,655 WQCV (ft ³) WQCV Reduction (ft ³)													
Total Area (ft ²) 305,575 Total Impervious Area (ft ²) 221,655 WQCV (ft ³) 9,021 WQCV Reduction (ft ³) 7,815 WQCV Reduction (%) 87%													
Total Area (ft ²) 305,575 Total Impervious Area (ft ²) 221,655 WQCV (ft ³) 9,021 WQCV Reduction (ft ³) 7,815 WQCV Reduction (%) 87%	CALCULATED SITE RESULTS (sums results from all columns in worksheet)												
Total Impervious Area (ft ²) 221,655 WQCV (ft ³) 9,021 WQCV Reduction (ft ³) 7,815 WQCV Reduction (%) 87%		<u> </u>				· ·							
WQCV (ft ³) 9,021 WQCV Reduction (ft ³) 7,815 WQCV Reduction (%) 87%			1										
WQCV Reduction (ft ³) 7,815 WQCV Reduction (%) 87%			1										
WQCV Reduction (%) 87%			1										
			1										
	()												

DETENTION POND CALCULATIONS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

Project: <u>RETREAT AT TIMBERRIDGE FILING NO. 2</u>			
Basin ID: EXIST. POND 2			
	 Depth Increment =	1.00	ft
POR LAND ONLY CONTROL OF THE POOL	Stage - Storage	Stage (ft)	0

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	101.20	acres
Watershed Length =	4,000	ft
Watershed Length to Centroid =	2,000	ft
Watershed Slope =	0.032	ft/ft
Watershed Imperviousness =	21.70%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

	5		Optional User	0
Water Quality Capture Volume (WQCV) =	1.033	acre-feet		ac
Excess Urban Runoff Volume (EURV) =	2.196	acre-feet		ас
2-yr Runoff Volume (P1 = 1.19 in.) =	2.378	acre-feet	1.19	ind
5-yr Runoff Volume (P1 = 1.5 in.) =	4.231	acre-feet	1.50	ind
10-yr Runoff Volume (P1 = 1.75 in.) =	5.985	acre-feet	1.75	ind
25-yr Runoff Volume (P1 = 2 in.) =	8.800	acre-feet	2.00	in
50-yr Runoff Volume (P1 = 2.25 in.) =	10.837	acre-feet	2.25	in
100-yr Runoff Volume (P1 = 2.52 in.) =	13.643	acre-feet	2.52	in
500-yr Runoff Volume (P1 = 3.85 in.) =	25.127	acre-feet	3.85	in
Approximate 2-yr Detention Volume =	1.519	acre-feet		÷
Approximate 5-yr Detention Volume =	2.234	acre-feet		
Approximate 10-yr Detention Volume =	3.529	acre-feet		
Approximate 25-yr Detention Volume =	4.308	acre-feet		
Approximate 50-yr Detention Volume =	4.550	acre-feet		
Approximate 100-yr Detention Volume =	5.553	acre-feet		

Define Zones and Basin Geometry

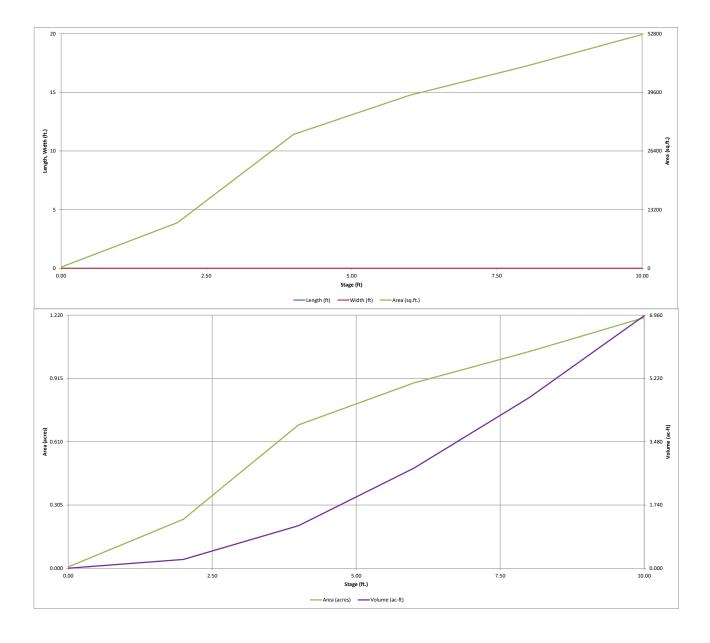
chine zones and basin deomedy		
Zone 1 Volume (WQCV) =	1.033	acre-feet
Zone 2 Volume (EURV - Zone 1) =	1.163	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	3.357	acre-feet
Total Detention Basin Volume =	5.553	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft

Area of Main Basin (A_{MAIN}) =

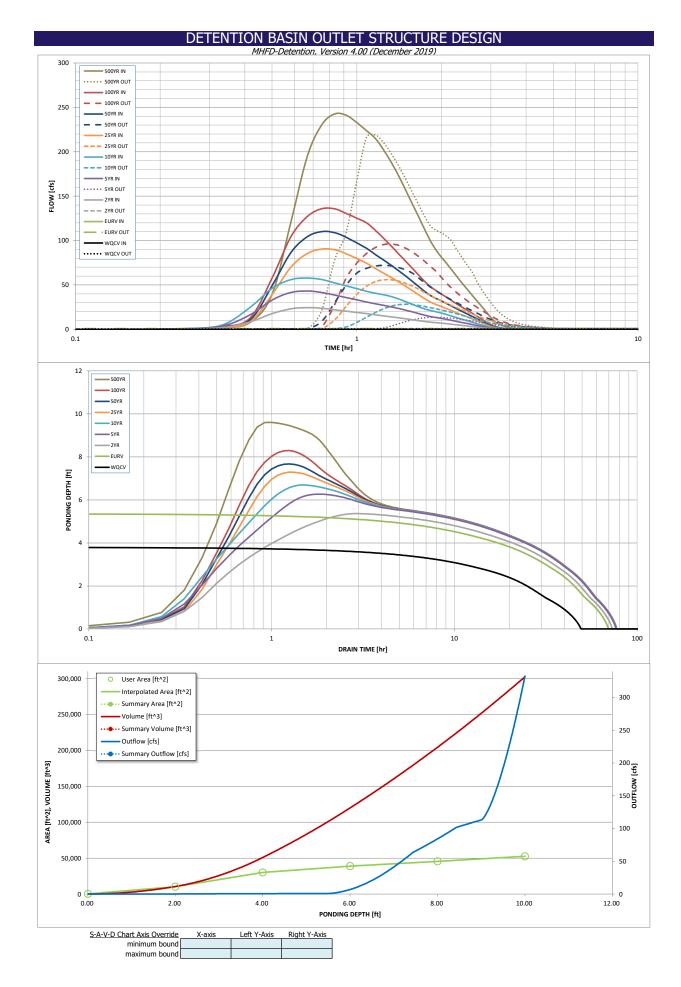
Calculated Total Basin Volume (V_{total}) = user

Volume of Main Basin (V_{MAIN}) =

user ft²


user ft³

acre-feet


		Depth Increment =	1.00	ft							
i)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
-,		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
		Top of Micropool		0.00				277	0.006		
		7162		2.00				10,268	0.236	10,545	0.242
		7264		4.00				30,108	0.691	50,921	1.169
		7166		6.00				38,919	0.893	119,948	2.754
		7168		8.00				45,498	1.044	204,365	4.692
		7170		10.00				52,628	1.208	302,491	6.944
					-						
al Use	r Overrides										
	acre-feet										
	acre-feet										
19	inches										
50	inches										
75	inches										
00	inches										
	-										
25	inches										
52	inches										
35	inches										
										-	

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

MHFD-Detention, Version 4.03 (May 2020)									
-	EXIST. POND 2	BERRIDGE FILING	NO. 2						
ZONE 3				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
VOLUME EURV WOCV			Zone 1 (WQCV)	3.80	1.033	Orifice Plate			
ZONE 1 AND 2	100-YEAR ORIFICE		Zone 2 (EURV)	5.36	1.163	Orifice Plate			
PERMANENT ORIFICES	Configuration (De	tention Dand)	Zone 3 (100-year)	8.80	3.357	Weir&Pipe (Restrict)			
	Configuration (Re			Total (all zones)	5.553				
User Input: Orifice at Underdrain Outlet (typicall	<u>y used to drain WC</u>	i	,	C)			Calculated Parame	eters for Underdrain	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =		inches	the filtration media	surface)		Irain Orifice Area = Orifice Centroid =		ft ² feet	
		linches			Underdrait			lieer	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically used	to drain WQCV and	d/or EURV in a sed	imentation BMP)		Calculated Parame	eters for Plate	
Invert of Lowest Orifice =		ft (relative to basir	bottom at Stage =	0 ft)	WQ Orifi	ce Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	5.50	+ `	bottom at Stage =	0 ft)		ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	16.50	inches				ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	linches			E	lliptical Slot Area =	N/A	ft ²	
User Input: Stage and Total Area of Each Orific	e Row (numbered f	rom lowest to high	est)						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	1.40	2.80	4.20					
Orifice Area (sq. inches)	3.00	4.00	4.00	4.00					
	Pow Q (antional)	Pour 10 (antional)	Pow 11 (antianal)	Pow 12 (antional)	Pour 12 (antion-1)	Pour 14 (antional)	Row 15 (optional)	Pow 16 (antion-1)	
Stage of Orifice Centroid (ft)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	KOW 15 (optional)	Row 16 (optional)	
Orifice Area (sq. inches)									
									-
User Input: Vertical Orifice (Circular or Rectange								eters for Vertical Ori	fice
	Not Selected	Not Selected					Not Selected	Not Selected	e.2
Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice =	N/A N/A	N/A N/A	ft (relative to basin ft (relative to basin	5	,	tical Orifice Area = Orifice Centroid =	N/A N/A	N/A N/A	ft ² feet
Vertical Orifice Diameter =	N/A	N/A	inches	bottom at Stage -	- o it) vertica		IN/A	INVA	leet
	,,,	,.	Interies						
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Rec	tangular/Trapezoid	al Weir (and No Ou	itlet Pipe)		Calculated Parame	eters for Overflow W	<u>/eir</u>
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	5.50	N/A	ft (relative to basin b	ottom at Stage = 0 f	, -	e Upper Edge, H _t =	6.50	N/A	feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	8.00	N/A N/A	feet H:V	G	ate Open Area / 10	eir Slope Length =	4.12	N/A N/A	feet
Horiz. Length of Weir Sides =	4.00	N/A	feet		verflow Grate Open	•	24.74	N/A N/A	ft ²
Overflow Grate Open Area % =	75%	N/A	%, grate open area		Overflow Grate Ope		12.37	N/A	ft ²
Debris Clogging % =	50%	N/A	%						•
User Input: Outlet Pipe w/ Flow Restriction Plate		1	ectangular Orifice)		<u>Ca</u>	Iculated Parameter			ate
Dopth to Invest of Outlet Ding -	Zone 3 Restrictor	Not Selected	ft (distance holes) he		0 0 0	utlat Orifica Area -	Zone 3 Restrictor	Not Selected	n 2
Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	1.00 42.00	N/A N/A	ft (distance below ba inches	isin bottom at Stage	,	utlet Orifice Area = t Orifice Centroid =	9.62 1.75	N/A N/A	ft ² feet
Restrictor Plate Height Above Pipe Invert =	42.00		inches	Half-Cent	ral Angle of Restric		3.14	N/A	radians
		1			j		-	,	
User Input: Emergency Spillway (Rectangular or	Trapezoidal)						Calculated Parame	eters for Spillway	
Spillway Invert Stage=		+ ·	bottom at Stage =	0 ft)		esign Flow Depth=	0.77	feet	
Spillway Crest Length =	65.00	feet			-	Fop of Freeboard =	10.77	feet	
Spillway End Slopes = Freeboard above Max Water Surface =		H:V feet				Fop of Freeboard = Fop of Freeboard =	1.21 6.94	acres acre-ft	
Fleeboard above Max Water Surface -	1.00	lieet			Dasiii Voluine at i		0.94		
	_								
Routed Hydrograph Results	1		HP hydrographs and	· · · · · · · · · · · · · · · · · · ·					
Design Storm Return Period = One-Hour Rainfall Depth (in) =	WQCV N/A	EURV N/A	2 Year 1.19	<u>5 Year</u> 1.50	10 Year 1.75	25 Year 2.00	50 Year 2.25	100 Year 2.52	500 Year 3.85
CUHP Runoff Volume (acre-ft) =	1.033	2.196	2.378	4.231	5.985	8.800	10.837	13.643	25.127
Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	N/A N/A	N/A N/A	2.378 9.1	4.231 25.4	5.985 39.2	8.800 71.6	10.837 90.0	13.643 115.0	25.127 215.1
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A N/A	N/A N/A	5.1	2J. T	33.2	/1.0	50.0	115.0	213.1
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.09	0.25	0.39	0.71	0.89	1.14	2.13
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	N/A 0.5	N/A 0.9	24.5 0.9	43.1 13.5	57.8 28.3	90.5 55.8	110.1 72.1	135.8 96.2	242.6 218.8
Ratio Peak Outflow to Predevelopment $Q =$	0.5 N/A	N/A	0.9 N/A	0.5	0.7	0.8	0.8	0.8	1.0
Structure Controlling Flow =	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Spillway
Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	N/A N/A	N/A N/A	N/A N/A	0.5 N/A	1.1 N/A	2.2 N/A	2.9 N/A	3.8 N/A	5.0 N/A
Time to Drain 97% of Inflow Volume (hours) =	43	59	62	59	56	52	49	46	35
Time to Drain 99% of Inflow Volume (hours) =	46	65	68	69	67	64	62	59	53
Maximum Ponding Depth (ft) = Area at Maximum Ponding Depth (acres) =	3.80 0.65	5.36 0.83	5.37 0.83	<u>6.27</u> 0.91	6.70 0.95	7.29	7.68	8.30 1.07	9.61 1.18
Maximum Volume Stored (acre-ft) =	1.035	2.203	2.203	2.988	3.388	3.969	4.351	4.998	6.468

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in			l in a separate pr	ogram.					
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.01	0.34
	0:15:00	0.00	0.00	0.43	0.71	0.88	0.60	0.78	0.73	1.68
	0:20:00	0.00	0.00	1.88	3.68	5.01	1.98	2.53	3.03	7.56
	0:25:00	0.00	0.00	8.30	16.23	24.40	8.18	10.13	12.46	39.19
	0:30:00	0.00	0.00	17.70	32.99	46.22	39.10	48.93	57.61	120.72
	0:35:00	0.00	0.00	23.11	41.58	56.04	69.97	86.40	104.22	194.66
	0:40:00	0.00	0.00	24.51	43.12	57.85	85.42	104.29	127.00	230.10
	0:45:00	0.00	0.00	23.78	41.51	56.11	90.49	110.08	135.80	242.56
	0:50:00	0.00	0.00	22.05	38.65	52.45	89.78	109.04	135.78	241.28 232.90
	1:00:00	0.00	0.00	20.40	35.83 33.24	48.94 45.82	85.26 79.79	103.71 97.41	130.68 125.23	232.90
	1:05:00	0.00	0.00	19.01	30.78	43.82	79.79	91.27	119.94	214.82
	1:10:00	0.00	0.00	16.40	28.78	40.68	68.45	84.18	111.34	201.40
	1:15:00	0.00	0.00	15.16	27.04	38.95	63.00	77.83	102.14	187.03
	1:20:00	0.00	0.00	14.00	25.21	36.76	57.94	71.71	93.19	171.66
	1:25:00	0.00	0.00	12.87	23.33	33.96	53.02	65.61	84.35	155.54
	1:30:00	0.00	0.00	11.76	21.43	30.96	48.11	59.52	76.03	140.15
	1:35:00	0.00	0.00	10.67	19.57	27.97	43.30	53.58	68.17	125.49
	1:40:00	0.00	0.00	9.62	17.57	25.12	38.59	47.76	60.57	111.46
	1:45:00	0.00	0.00	8.72	15.76	22.84	34.11	42.25	53.46	98.88
	1:50:00 1:55:00	0.00	0.00	8.07	14.40	21.20	30.55	37.94	47.84	89.11
	2:00:00	0.00	0.00	7.53	13.32	19.79	27.87 25.64	34.67 31.94	43.49 39.78	81.28 74.51
	2:05:00	0.00	0.00	6.41	12.33 11.28	18.34 16.74	23.42	29.17	36.17	67.74
	2:10:00	0.00	0.00	5.80	10.19	15.09	21.23	26.41	32.66	61.03
	2:15:00	0.00	0.00	5.20	9.13	13.49	19.13	23.78	29.34	54.67
	2:20:00	0.00	0.00	4.63	8.12	11.96	17.12	21.26	26.22	48.70
	2:25:00	0.00	0.00	4.10	7.15	10.52	15.21	18.87	23.33	43.16
	2:30:00	0.00	0.00	3.58	6.22	9.15	13.37	16.58	20.55	37.86
	2:35:00	0.00	0.00	3.08	5.32	7.85	11.58	14.35	17.82	32.72
	2:40:00	0.00	0.00	2.59	4.44	6.60	9.81	12.16	15.12	27.66
	2:45:00	0.00	0.00	2.11	3.59	5.38	8.08	10.02	12.46	22.67
	2:50:00 2:55:00	0.00	0.00	1.65	2.77	4.20	6.38	7.91	9.82	17.76
	3:00:00	0.00	0.00	1.21 0.86	2.00	3.10 2.36	4.71 3.17	5.84 3.94	7.24 4.90	13.10 9.30
	3:05:00	0.00	0.00	0.65	1.14	1.90	2.23	2.84	3.46	6.82
	3:10:00	0.00	0.00	0.53	0.93	1.56	1.62	2.10	2.51	5.08
	3:15:00	0.00	0.00	0.43	0.77	1.29	1.22	1.59	1.81	3.76
	3:20:00	0.00	0.00	0.36	0.63	1.06	0.92	1.21	1.30	2.77
	3:25:00	0.00	0.00	0.30	0.52	0.87	0.71	0.94	0.92	2.02
	3:30:00	0.00	0.00	0.24	0.42	0.69	0.55	0.72	0.64	1.44
	3:35:00	0.00	0.00	0.20	0.33	0.54	0.42	0.55	0.46	1.05
	3:40:00	0.00	0.00	0.16	0.26	0.42	0.33	0.43	0.37	0.81
	3:45:00	0.00	0.00	0.13	0.20	0.32	0.26	0.34	0.29	0.63
	3:50:00 3:55:00	0.00	0.00	0.10	0.15	0.25	0.20	0.26	0.23	0.50
	4:00:00	0.00	0.00	0.08	0.11 0.08	0.19 0.14	0.15	0.20	0.18	0.39 0.29
	4:05:00	0.00	0.00	0.06	0.08	0.14	0.12	0.15	0.14	0.29
	4:10:00	0.00	0.00	0.04	0.03	0.09	0.06	0.07	0.10	0.13
	4:15:00	0.00	0.00	0.02	0.02	0.03	0.03	0.04	0.04	0.08
	4:20:00	0.00	0.00	0.01	0.01	0.01	0.02	0.02	0.02	0.04
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.01 0.00	0.01 0.00	0.01 0.00	0.01 0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.03 (May 2020) Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on
							changes (e.g. ISV and Floor)
							Sheet 'Basin'.
							Also include the inverts of al
							outlets (e.g. vertical orifice,
							overflow grate, and spillway where applicable).
							where applicable).
							_
							_
							_
							_
							-
							-
							_
							-
							-
							1
							1
							1
							1
							1
							1
]
							1
]
							_
							_
							_
							_
							_
							_
							_
							-
							-
							-
							-
							-
							-
							1
]
							4
							4
							-
							1
							1
							4
							_
							1
							1
]
							4
							-
							-
							1
]
							4
							4
							-
						i	

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

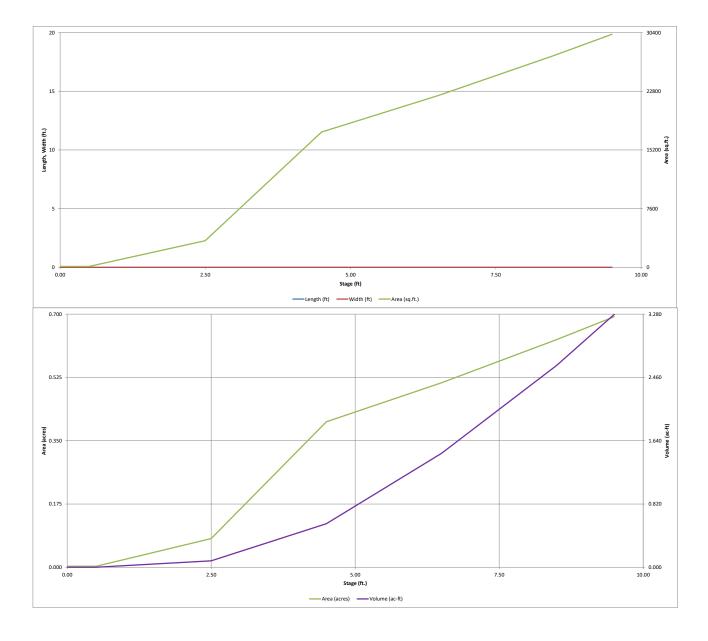
		Project: <u>RETR</u> asin ID: PONE		BERRIDGE FIL	ING NO. 2
	Ва	ISIN ID: PONL			
		ZONES			
		ZONE 2		-	
100-YH	- 1		-		
OLUME EURY WOCY		1			
T rate T woov					
1.1			1.	HATY-OOI-	
	7	ZONE 1 AND 2		ORIFICE	
OFEMANEN		ORIFICES			
POOL	Even	la Zana Canfi	auration (D	etention Pond	`

Watershed Information

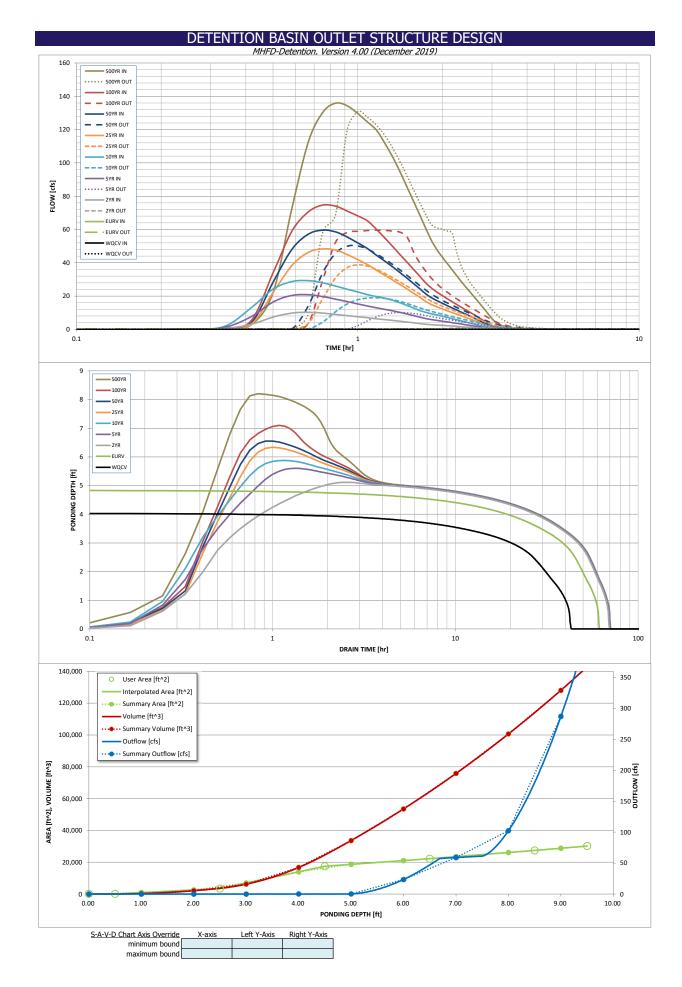
ceroned information		
Selected BMP Type =	EDB	
Watershed Area =	58.30	acres
Watershed Length =	3,400	ft
Watershed Length to Centroid =	1,500	ft
Watershed Slope =	0.050	ft/ft
Watershed Imperviousness =	12.60%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

	the embedded Colorado Urban Hydro	graph Procedu	ire.	Optional User	Ove
١	Vater Quality Capture Volume (WQCV) =	0.395	acre-feet		acre
	Excess Urban Runoff Volume (EURV) =	0.703	acre-feet		acre
	2-yr Runoff Volume (P1 = 1.19 in.) =	0.904	acre-feet	1.19	inch
	5-yr Runoff Volume (P1 = 1.5 in.) =	1.876	acre-feet	1.50	inch
	10-yr Runoff Volume (P1 = 1.75 in.) =	2.832	acre-feet	1.75	inch
	25-yr Runoff Volume (P1 = 2 in.) =	4.494	acre-feet	2.00	inch
	50-yr Runoff Volume (P1 = 2.25 in.) =	5.642	acre-feet	2.25	inch
	100-yr Runoff Volume (P1 = 2.52 in.) =	7.279	acre-feet	2.52	inch
	500-yr Runoff Volume (P1 = 3.85 in.) =	13.819	acre-feet	3.85	inch
	Approximate 2-yr Detention Volume =	0.460	acre-feet		
	Approximate 5-yr Detention Volume =	0.708	acre-feet		
	Approximate 10-yr Detention Volume =	1.336	acre-feet		
	Approximate 25-yr Detention Volume =	1.794	acre-feet		
	Approximate 50-yr Detention Volume =	1.887	acre-feet		
	Approximate 100-yr Detention Volume =	2.404	acre-feet		


Define Zones and Basin Geometry

chine zones and basin deomedy		
Zone 1 Volume (WQCV) =	0.395	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.309	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	1.700	acre-feet
Total Detention Basin Volume =	2.404	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth $(H_{total}) =$	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	
Initial Surcharge Area $(A_{ISV}) =$	user	ft 2
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet


concreteImage<	(ac-ft) 0.001 0.083 0.565	
7202 2.90 3.499 0.079 3.631 7206 6.50 17.51 0.402 24.611 7208 6.50 27.43 0.511 14.957 7209 5.90 27.43 0.531 14.957 7209 27.43 0.531 14.957 27.43 0.531 14.957 27.43 0.531 14.957 27.43 0.531 14.957 <	0.083	
7202 3,499 0.079 3,451 7206 6,50 17,51 0.402 24,611 7208 6,50 27,439 0.630 114,677 7209 5,50 27,439 0.630 114,677 7209 27,439 0.630 114,677 7209 27,439 0.630 114,677 7209 27,439 0.630 114,677 7209 27,439 0.630 114,677 7201 <	0.083	
72447.21-0.4022.48.16.4.27572082.28.30.5116.4.27572093.0.1970.693114.05772093.0.1970.693114.05772093.0.1970.693114.0577209		
720622,330.51164.30720827,930.331114.00772099.5027,930.331114.007720927,930.331114.01772091<	0.565	
72087.7.90.630110.0772099.00140.009.00140.0072091010101010.010.010.0010010010010010010010.0010.0010.0010110010010010010.0010.0010.0010.0010110110110110110110010010.00101101101101101101101101100101 <t< td=""><td></td></t<>		
7209 30,197 0.693 142,875	1.478	
Image: stype interpress:Image: stype in	2.618	
Number <td< th=""><th>3.280</th></td<>	3.280	
Image: styleImage: style		
Image: space		
Nervice IC <td></td>		
Image: styleImage: style </td <td></td>		
NerriesImage: space featImage: spac		
NerriseImage: space of the space		
DarticleImage<		
corretedImage		
core feet image		
whetherImageImageImageImageImageImageImageNotesImageImageImageImageImageImageImageImageNotesImageImageImageImageImageImageImageImageImageNotesImageImageImageImageImageImageImageImageImageImageNotesImageImageImageImageImageImageImageImageImageImageNotesImageImageImageImageImageImageImageImageImageImageNotesImageImageImageImageImageImageImageImageImageImageImageNotesImageImag		
nches		
ndes		
nchesImage <td></td>		
nchesImageImageImageImageImageImageImageImageImagenchesImageImageImageImageImageImageImageImageImagenchesImageImageImageImageImageImageImageImageImagenchesImageImageImageImageImageImageImageImageImagenchesImageImageImageImageImageImageImageImageImagenchesImageImageImageImageImageImageImageImageImagenchesImageImageImageImageImageImageImageImageImagenchesImageImageImageImageImageImageImageImageImagenchesImageImageImageImageImageImageImageImageImagenchesImageImageImageImageImageImageImageImageImagenchesImageImageImageImageImageImageImageImageImagenchesImageImageImageImageImageImageImageImageImagenchesImageImageImageImageImageImageImageImageImagenchesImageImageImageImageImageImage <td></td>		
ndnes		
ndesImage		
ndesImageI		
IndexInde		
Image <td< td=""><td><u> </u></td></td<>	<u> </u>	
Image: a set of the set of	L	
Image: sector of the sector		
Image: sector of the sector		
Image: sector of the sector		
Image: sector of the sector		
Image: sector of the sector		
Image: sector of the sector		
Image: sector of the sector		
Image: set of the		
Image: sector of the sector		
Image: set of the		
Image: set of the		
Image: set of the		
Image: sector of the sector		
Image: sector of the sector		
Image: set of the set of th		
Image: set of the set of th		
Image: set of the set of th		
Image: sector of the sector		
AntAn		
Image: set of the set of th		
Image: sector of the sector		
Image: sector of the sector		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td></td>		
1 1 <td></td>		
Image Image Image Image 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Image: sector of the sector		
Image: sector of the sector		
Area Area Area Area Area Area Area Area Area Area A		
Area Area Area Area Area Area Area Area Area Area <td></td>		
Image: sector of the sector		
Area Area Area Area Area Area		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14		
APP APP <td></td>		
APP APP <td></td>		
interm interm interm interm interm interm interm interm interm interm interm interm interm		
·i ·i< ·i ·i< ·i< ·i< ·i <th< td=""><td></td></th<>		
Area Area <th< td=""><td></td></th<>		
act act <td></td>		
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···		
··· ··· ··· ··· ··· ··· ···		
· · · · · · · · · · · · · · · · · · ·		
··· ··· <th td="" tr<="" ···<=""><td></td></th>	<td></td>	
And And And And And And And And And And And		
i i		
Image: set of the set		
··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···		

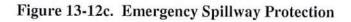
DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

-	Project: RETREAT AT TIMBERRIDGE FILING NO. 2								
	POND 3								
ZONE 3 ZONE 2 ZONE 1	_			Estimated	Estimated				
100-YR				Stage (ft)	Volume (ac-ft)	Outlet Type			
VOLUME EURY WOCY			Zone 1 (WQCV)	4.04	0.395	Orifice Plate			
	100-YEAR OBIFICE		Zone 2 (EURV)	4.84	0.309	Orifice Plate			
PERMANENT ZONE 1 AND 2 POOL			Zone 3 (100-year)	8.16	1.700	Weir&Pipe (Restrict)			
Example Zone	Configuration (Re	tention Pond)		Total (all zones)	2.404				
User Input: Orifice at Underdrain Outlet (typically	y used to drain WQ	CV in a Filtration Bl	<u>MP)</u>				Calculated Parame	ters for Underdrain	
Underdrain Orifice Invert Depth =	N/A	ft (distance below	the filtration media	surface)	Underd	rain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrain	Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orifice			-		,		Calculated Parame		
Invert of Lowest Orifice = Depth at top of Zone using Orifice Plate =	0.00 5.00		bottom at Stage = bottom at Stage =			ce Area per Row = ptical Half-Width =	N/A N/A	ft ² feet	
Orifice Plate: Orifice Vertical Spacing =	20.00	inches	i Dolloin al Slage -	01()		cal Slot Centroid =	N/A N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	inches				lliptical Slot Area =	N/A	ft ²	
office Place. Office Pared per Now -	14/7	Inches			-		14/7	lic	
User Input: Stage and Total Area of Each Orifice	e Row (numbered f	rom lowest to high	est)						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)]
Stage of Orifice Centroid (ft)	0.00	1.70	3.40						
Orifice Area (sq. inches)	1.23	1.29	1.29						
									1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
	-1)						Coloulate 1 D	+ ()/ ··· · · · · · · · · · · · · · · · · ·	6
User Input: Vertical Orifice (Circular or Rectangu		Not Colocted	1			1	Not Selected	ters for Vertical Ori	<u>fice</u>
Invert of Vertical Orifice =	Not Selected N/A	Not Selected N/A	ft (relative to basin	bottom at Ctago -	0.61) \/or	tical Orifice Area =	Not Selected N/A	Not Selected N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A N/A		ft (relative to basin	-		Orifice Centroid =	N/A	N/A N/A	feet
Vertical Orifice Diameter =	N/A		inches	- Doctorn at Stage	vertical		N/A	IN/A	lieer
	N/A	N/A	Inches						
User Input: Overflow Weir (Dropbox with Flat or	r Sloped Grate and	Outlet Pipe OR Rec	tangular/Trapezoid	al Weir (and No Ou	tlet Pipe)		Calculated Parame	ters for Overflow W	/eir
1	Zone 3 Weir	Not Selected	1				Zone 3 Weir	Not Selected	1
Overflow Weir Front Edge Height, Ho =	5.00								
			ft (relative to basin b	ottom at Stage = 0 f	t) Height of Grate	e Upper Edge, H _t =	6.00	N/A	feet
Overflow Weir Front Edge Length =	10.00	N/A	ft (relative to basin b feet	oottom at Stage = 0 f		e Upper Edge, H _t = eir Slope Length =			feet feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	10.00 4.00			-		eir Slope Length =	6.00	N/A	•
	4.00 4.00	N/A	feet	Gr	Overflow W	eir Slope Length = 0-yr Orifice Area =	6.00 4.12	N/A N/A	feet ft ²
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	4.00 4.00 75%	N/A N/A N/A N/A	feet H:V feet %, grate open area	Gr	Overflow W ate Open Area / 10	eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	6.00 4.12 6.30	N/A N/A N/A	feet
Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	4.00 4.00	N/A N/A N/A N/A	feet H:V feet	Gr	Overflow W ate Open Area / 10 verflow Grate Open	eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	6.00 4.12 6.30 30.92	N/A N/A N/A N/A	feet ft ²
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	4.00 4.00 75% 50%	N/A N/A N/A N/A N/A	feet H:V feet %, grate open area %	Gr	Overflow W ate Open Area / 10 verflow Grate Open verflow Grate Open	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	6.00 4.12 6.30 30.92 15.46	N/A N/A N/A N/A N/A	feet ft ² ft ²
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	4.00 4.00 75% 50% (Circular Orifice, R	N/A N/A N/A N/A N/A estrictor Plate, or R	feet H:V feet %, grate open area %	Gr	Overflow W ate Open Area / 10 verflow Grate Open verflow Grate Open	eir Slope Length = 0-yr Orifice Area = Area w/o Debris =	6.00 4.12 6.30 30.92 15.46	N/A N/A N/A N/A Flow Restriction Pl	feet ft ² ft ²
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate	4.00 4.00 75% 50% (Circular Orifice, R Zone 3 Restrictor	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected	feet H:V feet % grate open area % <u>tectangular Orifice)</u>	Gr Ov a/total area C	Overflow W ate Open Area / 10 verflow Grate Open verflow Grate Open <u>Ca</u>	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameters	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w/ Zone 3 Restrictor	N/A N/A N/A N/A N/A Flow Restriction PI Not Selected	feet ft ² ft ²
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe =	4.00 4.00 75% 50% (<u>Circular Orifice, R</u> Zone 3 Restrictor 0.50	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A	feet H:V feet %, grate open area % tectangular Orifice) ft (distance below ba	Gr Ov a/total area C	Overflow W ate Open Area / 10 erflow Grate Open verflow Grate Open <u>Ca</u> = 0 ft) Ou	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameters utlet Orifice Area =	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w/ Zone 3 Restrictor 4.91	N/A N/A N/A N/A Flow Restriction Pl Not Selected N/A	feet ft ² ft ² ft ²
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	4.00 4.00 75% 50% (Circular Orifice, R Zone 3 Restrictor 0.50 30.00	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A	feet H:V feet %, grate open area % tectangular Orifice) ft (distance below ba inches	Gr Ov a/total area C	Overflow W ate Open Area / 10 erflow Grate Open verflow Grate Open <u>Ca</u> = 0 ft) Or Outlet	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameters</u> utlet Orifice Area = : Orifice Centroid =	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25	N/A N/A N/A N/A N/A Flow Restriction Pl Not Selected N/A N/A	feet ft ² ft ² <u>ate</u> ft ² feet
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = <u>User Input: Outlet Pipe w/ Flow Restriction Plate</u> Depth to Invert of Outlet Pipe =	4.00 4.00 75% 50% (<u>Circular Orifice, R</u> Zone 3 Restrictor 0.50	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A	feet H:V feet %, grate open area % tectangular Orifice) ft (distance below ba	Gr Ov a/total area C	Overflow W ate Open Area / 10 erflow Grate Open verflow Grate Open <u>Ca</u> = 0 ft) Or Outlet	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameters utlet Orifice Area =	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w/ Zone 3 Restrictor 4.91	N/A N/A N/A N/A N/A Flow Restriction Pl Not Selected N/A N/A	feet ft ² ft ² ft ²
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	4.00 4.00 75% 50% (Circular Orifice, R Zone 3 Restrictor 0.50 30.00 30.00	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A	feet H:V feet %, grate open area % tectangular Orifice) ft (distance below ba inches	Gr Ov a/total area C	Overflow W ate Open Area / 10 erflow Grate Open verflow Grate Open <u>Ca</u> = 0 ft) Or Outlet	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameters</u> utlet Orifice Area = : Orifice Centroid =	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14	N/A N/A N/A N/A N/A Flow Restriction PI Not Selected N/A N/A N/A	feet ft ² ft ² <u>ate</u> ft ² feet
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or	4.00 4.00 75% 50% (Circular Orifice, R Zone 3 Restrictor 0.50 30.00 30.00 Trapezoidal)	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A	feet H:V feet %, grate open area % tectangular Orifice) ft (distance below ba inches	Gr Qv a/total area C Asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 rerflow Grate Open vverflow Grate Open <u>Ca</u> = 0 ft) Or Outlet ral Angle of Restrict	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameters utlet Orifice Area = 0 Orifice Centroid = tor Plate on Pipe =	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 <u>Calculated Parame</u>	N/A N/A N/A N/A N/A Flow Restriction PI Not Selected N/A N/A N/A	feet ft ² ft ² <u>ate</u> ft ² feet
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	4.00 4.00 75% 50% (Circular Orifice, R Zone 3 Restrictor 0.50 30.00 30.00	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A	feet H:V feet %, grate open area % ecctangular Orifice) ft (distance below ba inches inches	Gr Qv a/total area C Asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open <u>Ca</u> = 0 ft) Or Outlet ral Angle of Restrict Spillway Do	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameters</u> utlet Orifice Area = : Orifice Centroid =	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² <u>ate</u> ft ² feet
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	4.00 4.00 75% 50% Zone 3 Restrictor 0.50 30.00 30.00 Trapezoidal) 7.50 35.00	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basir	feet H:V feet %, grate open area % ecctangular Orifice) ft (distance below ba inches inches	Gr Qv a/total area C Asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open (<u>Ca</u> = 0 ft) Or Outlet ral Angle of Restrict Spillway Dr Stage at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = 0rifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard =	6.00 4.12 6.30 30.92 15.46 5 for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 <u>Calculated Parame</u> 0.76 9.26	N/A N/A N/A N/A N/A N/A Not Selected N/A N/A N/A N/A N/A ters for Spillway feet	feet ft ² ft ² <u>ate</u> ft ² feet
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	4.00 4.00 75% 50% Zone 3 Restrictor 0.50 30.00 30.00 Trapezoidal) 7.50	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet	feet H:V feet %, grate open area % ecctangular Orifice) ft (distance below ba inches inches	Gr Qv a/total area C Asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open (<u>Ca</u> = 0 ft) Or Outlet ral Angle of Restrict Spillway Dr Stage at T Basin Area at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = 0rifice Centroid = tor Plate on Pipe = esign Flow Depth=	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.76	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet	feet ft ² ft ² <u>ate</u> ft ² feet
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	4.00 4.00 75% 50% (Circular Orifice, R Zone 3 Restrictor 0.50 30.00 30.00 Trapezoidal) 7.50 35.00 4.00	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V	feet H:V feet %, grate open area % ecctangular Orifice) ft (distance below ba inches inches	Gr Qv a/total area C Asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open (<u>Ca</u> = 0 ft) Or Outlet ral Angle of Restrict Spillway Dr Stage at T Basin Area at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard =	6.00 4.12 6.30 30.92 15.46 5 for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.76 9.26 0.68	N/A N/A N/A N/A N/A N/A N/A N/A N/A tters for Spillway feet feet acres	feet ft ² ft ² <u>ate</u> ft ² feet
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	4.00 4.00 75% 50% Zone 3 Restrictor 0.50 30.00 30.00 Trapezoidal) 7.50 35.00 4.00 1.00	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet	feet H:V feet %, grate open area % tectangular Orifice) ft (distance below ba inches inches inches	Gr Ov a/total area C Asin bottom at Stage Half-Cent	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open (Ca Ca = 0 ft) Or Outlet ral Angle of Restrict Spillway Dr Stage at T Basin Area at T Basin Volume at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth = op of Freeboard = op of Freeboard = op of Freeboard =	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.76 9.26 0.68 3.12	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet ft ² ft ² ft ² feet radians
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results	4.00 4.00 75% 50% Zone 3 Restrictor 0.50 30.00 30.00 Trapezoidal) 7.50 35.00 4.00 1.00	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet	feet H:V feet %, grate open area % tectangular Orifice) ft (distance below ba inches inches n bottom at Stage =	Gr Ov a/total area C asin bottom at Stage Half-Cent = 0 ft)	Overflow W ate Open Area / 10 erflow Grate Open verflow Grate Open (<u>Ca</u> = 0 ft) Or Outlet ral Angle of Restrict Spillway Di Stage at T Basin Area at T Basin Volume at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = op of Freeboard =	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 <u>Calculated Parame</u> 0.76 9.26 0.68 3.12	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet ft ² ft ² ft ² feet radians
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Results Design Storm Return Period =	4.00 4.00 75% 50% Zone 3 Restrictor 0.50 30.00 Trapezoidal) 7.50 35.00 4.00 1.00	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet EURV	feet H:V feet %, grate open area % (ectangular Orifice) ft (distance below ba inches inches h bottom at Stage =	Gr Ov a/total area C Asin bottom at Stage Half-Cent 0 ft) <u>1 runoff volumes by</u> 5 Year	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open verflow Grate Open <u>Ca</u> = 0 ft) Or Outlet ral Angle of Restrict Spillway Dr Stage at T Basin Area at T Basin Volume at T <i>rentering new valu</i> 10 Year	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= iop of Freeboard = iop of Freeboard = i	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w// Zone 3 Restrictor 4.91 1.25 3.14 <u>Calculated Parame</u> 0.76 9.26 0.68 3.12	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² ft ² feet radians
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results	4.00 4.00 75% 50% Zone 3 Restrictor 0.50 30.00 30.00 Trapezoidal) 7.50 35.00 4.00 1.00	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet	feet H:V feet %, grate open area % tectangular Orifice) ft (distance below ba inches inches n bottom at Stage =	Gr Ov a/total area C asin bottom at Stage Half-Cent = 0 ft)	Overflow W ate Open Area / 10 erflow Grate Open verflow Grate Open (<u>Ca</u> = 0 ft) Or Outlet ral Angle of Restrict Spillway Di Stage at T Basin Area at T Basin Volume at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = op of Freeboard =	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 <u>Calculated Parame</u> 0.76 9.26 0.68 3.12	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet ft ² ft ² ft ² feet radians
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	4.00 4.00 75% 50% Zone 3 Restrictor 0.50 30.00 30.00 Trapezoidal) 7.50 35.00 4.00 1.00 The user can over WQCV N/A 0.395 N/A	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet H:V feet EURV N/A 0.703 N/A	feet H:V feet %, grate open area % tectangular Orifice) ft (distance below ba inches inches h bottom at Stage = <u>HP hydrographs and 2 Year</u> 1.19 0.904 0.904	Gr Ov a/total area C asin bottom at Stage Half-Cent : 0 ft) <u>5 Year 1.50 1.876 1.876</u>	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open verflow Grate Open (a can be can be can be can can be can be can be can compare the canonic comparison of the canonic compare compare the canonic compare the canonic compare compare the canonic compare the canonic compare compare the canonic compare the canonic compare the canonic compare compare the canonic compare the canonic com	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameters utlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = op of Freeboard = op of Freeboard = 2.000 4.494 4.494	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 <u>Calculated Parame</u> 0.76 9.26 0.68 3.12 drographs table (CC 50 Year 2.25 5.642 5.642 5.642	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² feet radians 500 Year 3.85 13.819 13.819
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	4.00 4.00 75% 50% Zone 3 Restrictor 0.50 30.00 Trapezoidal) 7.50 35.00 4.00 1.00 The user can over. WQCV N/A 0.395 N/A N/A	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet H:V feet EURV N/A 0.703 N/A N/A	feet H:V feet %, grate open area % tectangular Orifice) ft (distance below ba inches inches inches h bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> 1.19 0.304	Gr Ov a/total area C asin bottom at Stage Half-Cent c 0 ft) <u>5 Year 1.50 1.876</u>	Overflow W ate Open Area / 10 rerflow Grate Open werflow Grate Open verflow Grate Open c ca = 0 ft) Or Outlet ral Angle of Restrict Spillway Dr Stage at T Basin Area at T Basin Volume at T rentering new value 10 Year 1.75 2.832	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = 0rifice Centroid = tor Plate on Pipe = esign Flow Depth = op of Freeboard = 25 Year 2.00 4.494	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.76 9.26 0.68 3.12 drographs table (Co 50 Year 2.25 5.642	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Dumns W through / 100 Year 2.52 7.279	feet ft ² ft ² feet radians <u>4/F).</u> <u>500 Year</u> <u>3.85</u> 13.819
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = NetHour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	4.00 4.00 75% 50% Zone 3 Restrictor 0.50 30.00 <u>30.00</u> <u>Trapezoidal)</u> 7.50 35.00 4.00 1.00 <i>The user can over</i> WQCV N/A 0.395 N/A N/A	N/A N/A N/A N/A N/A N/A N/A Mot Selected N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A 0.703 N/A N/A N/A	feet H:V feet %, grate open area % (ectangular Orifice) ft (distance below ba inches inches h bottom at Stage = HP hydrographs and 2 Year 1.19 0.904 0.904 5.6	Gr Ov a/total area C asin bottom at Stage Half-Cent Half-Cent 0 ft) 5 Year 1.50 1.876 1.876 1.876 1.58	Overflow W ate Open Area / 10 erflow Grate Open verflow Grate Open verflow Grate Open (Ca = 0 ft) Or Outlet ral Angle of Restrict Spillway Dr Stage at T Basin Area at T Basin Area at T Basin Area at T Basin Area at T Basin Volume at T 1.75 2.832 2.832 2.832 24.0	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameters lculated Parameters ltet Orifice Area = orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = les in the Inflow Hype 25 Year 2.00 4.494 4.30	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.76 9.26 0.68 3.12 Calculated Parame 0.76 9.26 0.68 3.12	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² feet radians 500 Year 3.85 13.819 13.819 13.819
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reouted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	4.00 4.00 75% 50% Zone 3 Restrictor 0.50 30.00 Trapezoidal) 7.50 35.00 4.00 1.00 The user can over. WQCV N/A 0.395 N/A N/A	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet H:V feet EURV N/A 0.703 N/A N/A	feet H:V feet %, grate open area % tectangular Orifice) ft (distance below ba inches inches h bottom at Stage = <u>HP hydrographs and 2 Year</u> 1.19 0.904 0.904	Gr Ov a/total area C asin bottom at Stage Half-Cent : 0 ft) <u>5 Year 1.50 1.876 1.876</u>	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open verflow Grate Open (a can be can be can be can can be can be can be can compare the canonic comparison of the canonic compare compare the canonic compare the canonic compare compare the canonic compare the canonic compare compare the canonic compare the canonic compare the canonic compare compare the canonic compare the canonic com	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameters utlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = op of Freeboard = op of Freeboard = 2.000 4.494 4.494	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 <u>Calculated Parame</u> 0.76 9.26 0.68 3.12 drographs table (CC 50 Year 2.25 5.642 5.642 5.642	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² feet radians 500 Year 3.85 13.819 13.819
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reouted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) =	4.00 4.00 75% 50% Zone 3 Restrictor 0.50 30.00 Trapezoidal) 7.50 35.00 4.00 1.00 The user can over: WQCV N/A 0.395 N/A N/A N/A N/A N/A N/A 0.2	N/A	feet H:V feet %, grate open area % (ectangular Orifice) ft (distance below ba inches inches hottom at Stage = <u>HP hydrographs and 2 Year</u> 1.19 0.904 5.6 0.10 10.3 1.0	Gr Ov a/total area C asin bottom at Stage Half-Cent 0 ft) 5 Year 1.50 1.876 1.876 1.876 1.5.8 0.27 20.8 10.1	Overflow W ate Open Area / 10 erflow Grate Open verflow Grate Open verflow Grate Open (0 Callest Call	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameters utlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = op of Freeboard = iop of Freeboard = iop of Freeboard = 25 Year 2.00 4.494 4.494 4.3.0 0.74 48.3 38.7	6.00 4.12 6.30 30.92 15.46 5 for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.76 9.26 0.68 3.12 Calculated Parame 0.76 9.26 0.68 3.12 Chographs table (CC 50 Year 2.25 5.642 5.	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² feet radians
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	4.00 4.00 75% 50% Zone 3 Restrictor 0.50 30.00 <u>30.00</u> <u>7.50</u> 35.00 4.00 1.00 <i>The user can over</i> WQCV N/A 0.395 N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A fet (relative to basir feet H:V feet H:V feet <i>EURV</i> N/A 0.703 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V feet %, grate open area % tectangular Orifice) ft (distance below ba inches inches inches h bottom at Stage = <u>HP hydrographs and 2 Year 1.19 0.904 0.904 5.6 0.10 10.3 1.0 N/A</u>	Gr Ov a/total area C asin bottom at Stage Half-Cent asin bottom at Stage Half-Cent tarring 5 Year 1.50 1.876 1.876 1.876 1.58 0.27 20.8 10.1 0.6	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open verflow Grate Open (Canon Contemportant of the open stage at T Basin Area at T Basin Volume at T Basin Volume at T (Canon Contemportant (Canon Contemportant (Canon Contemportant) (Canon Contemport	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameters utlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = iop of Freeboard = 25 Year 2.00 4.494 4.494 4.3.0 0.74 48.3 38.7 0.9	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.76 9.26 0.68 3.12 Calculated Parame 0.76 0.68 3.12 Calculated Parame 0.76 9.26 0.68 3.12 Calculated Parame 0.76 0.68 3.12 Calculated Parame 0.76 0.68 3.12 Calculated Parame 0.76 0.68 3.12 Calculated Parame 0.76 0.68 0.50 0.68 0.50 0.68 0.50 0.64 0.50 0.64 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² feet radians
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow Q (cfs) = Structure Controlling Flow =	4.00 4.00 75% 50% Zone 3 Restrictor 0.50 30.00 30.00 Trapezoidal) 7.50 35.00 4.00 1.00 The user can over WQCV N/A 0.395 N/A N/A N/A N/A N/A N/A N/A Plate	N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet Fide the default CUI EURV N/A	feet H:V feet %, grate open area % (ectangular Orifice) ft (distance below ba inches inches hottom at Stage = 0 bottom at Stage = 2 Year 1.19 0.904 0.	Gr Ov a/total area C asin bottom at Stage Half-Cent : 0 ft) 1.876 1.876 1.876 1.876 1.876 1.876 1.876 1.876 1.876 1.876 1.0.1 0.6 Overflow Weir 1	Overflow W ate Open Area / 10 erflow Grate Open verflow Grate Open verflow Grate Open (ate open) (ate	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = h Area w/ Debris = lculated Parameters utlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = op of Freeboard = op of Freeboard = 25 Year 2.00 4.494 4.494 4.494 4.494 0.74 48.3 38.7 0.9 Overflow Weir 1	6.00 4.12 6.30 30.92 15.46 5 for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.76 9.26 0.68 3.12 Calculated Parame 0.76 0.68 3.12 Calculated Parame 0.76 0.68 3.12 Calculated Parame 0.76 0.68 3.12 Calculated Parame 0.76 0.68 3.12 Calculated Parame 0.76 0.68 3.12 Calculated Parame 0.76 0.68 3.12 Calculated Parame 0.76 0.68 3.12 Calculated Parame 0.76 0.68 3.12 Calculated Parame 0.76 0.68 3.12 Calculated Parame 0.76 0.68 5.642 5.642 5.642 0.93 5.9.6 5.01 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² feet feet radians 4/F). 500 Year 3.85 13.819 13.819 13.819 129.0 2.21 135.8 1.0 Spillway
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fps) =	4.00 4.00 75% 50% Zone 3 Restrictor 0.50 30.00 Trapezoidal) 7.50 35.00 4.00 1.00 The user can over WQCV N/A 0.395 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A fet (relative to basir feet H:V feet H:V feet <i>EURV</i> N/A 0.703 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V feet %, grate open area % (ectangular Orifice) ft (distance below ba inches inches hottom at Stage = hottom at Stage = 2 Year 1.19 0.904 5.6 0.10 10.3 1.0 N/A Overflow Weir 1 0.02	Gr Ov a/total area C hasin bottom at Stage Half-Cent 0 ft) 1.876 1.876 1.876 1.876 1.876 1.876 1.876 1.876 1.876 1.0.27 20.8 10.1 0.6 Overflow Weir 1 0.3	Overflow W ate Open Area / 10 erflow Grate Open verflow Grate Open verflow Grate Open verflow Grate Open attributed state of Restrict Spillway D Stage at T Basin Area at T Basin Area at T Basin Volume at T <i>entering new valu</i> 10 Year 1.75 2.832 2.832 24.0 0 0.8 0.41 29.3 19.0 0.8 0verflow Weir 1 0.6	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameters utlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = iop of Freeboard = 25 Year 2.00 4.494 4.494 4.3.0 0.74 48.3 38.7 0.9	6.00 4.12 6.30 30.92 15.46 5 for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.76 9.26 0.68 3.12 Calculated Parame 0.76 0.68 3.12 Calculated Parame 0.76 0.68 3.12 Calculated Parame 0.76 0.68 0.68 0.50 0.68 0.50 0.68 0.50 0.64 0.50 0.93 0.93 0.93 0.93 0.90 0.93 0.90 0.93 0.90 0.93 0.90 0.93 0.90 0.93 0.90 0.93 0.93	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² feet feet radians 4 <i>F).</i> 500 Year 3.85 13.819 13.81
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	4.00 4.00 75% 50% Zone 3 Restrictor 0.50 30.00 30.00 Trapezoidal) 7.50 35.00 4.00 1.00 The user can over WQCV N/A 0.395 N/A N/A N/A N/A N/A N/A N/A N/A N/A Plate N/A N/A 39	N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet ide the default CUI EURV N/A 0.703 N/A	feet H:V feet %, grate open area % tectangular Orifice) ft (distance below ba inches inches inches bottom at Stage = <u>HP hydrographs and 2 Year 1.19 0.904 0</u>	Gr Ox a/total area C asin bottom at Stage Half-Cent E 0 ft) 5 Year 1.50 1.876 1.875 5.7	Overflow W ate Open Area / 10 erflow Grate Open verflow Grate Open verflow Grate Open (0 Utlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T 0 Year 1.75 2.832	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = h Area w/ Debris = lculated Parameters utlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = op of Freeboard = iop of Freeboard = 25 Year 2.00 4.494 4.494 4.494 4.494 4.30 0.74 48.3 38.7 0.9 Overflow Weir 1 1.3 N/A 49	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.76 9.26 0.68 3.12 Calculated Parame 0.76 9.26 0.68 3.12 Chographs table (Co 50 Year 2.25 5.642 5.	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² feet radians 500 Year 3.85 13.819 13.829 13.82 13.83 13.819 13.819 13.819 13.819 13.829 13.83 13.8
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acreft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 99% of Inflow Volume (hours) =	4.00 4.00 75% 50% Zone 3 Restrictor 0.50 30.00 30.00 Trapezoidal) 7.50 35.00 4.00 1.00 7 <i>the User can over</i> WQCV N/A 0.395 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A N/A Et (relative to basin feet H:V feet EURV N/A O.703 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet H:V feet %, grate open area % tectangular Orifice) ft (distance below ba inches inches h bottom at Stage = h hydrographs and 2 Year 1.19 0.904 0.904 5.6 0.10 10.3 1.0 10.3 1.0 N/A Overflow Weir 1 0.02 N/A 62 66	Gr Ov a/total area C asin bottom at Stage Half-Cent E 0 ft) 1.876 1.876 1.876 1.876 1.876 1.876 1.876 1.876 1.876 1.876 1.67 20.8 10.1 0.6 Overflow Weir 1 0.3 N/A 57 64	Overflow W ate Open Area / 10 rerflow Grate Open verflow Grate Open verflow Grate Open verflow Grate Open and the open state of the open state of the open state of the open state of the open s	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = lculated Parameters utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = iop of Freeboard = 0 of Alter and Alter 25 Year 2.00 4.494 4.494 4.494 4.3.0 0.74 48.3 38.7 0.9 Overflow Weir 1 1.3 N/A 49 59	6.00 4.12 6.30 30.92 15.46 5 for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.76 9.26 0.68 3.12 drographs table (CC 50 Year 2.25 5.642 5.655 5.642 5.642 5.655 5.642 5.655 5.642 5.655 5.642 5.655 5.642 5.655 5.642 5.655 5.642 5.6555 5.655555555	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² feet ft ² feet radians 500 Year 3.85 13.819 13.819 129.0 2.21 135.8 1.0 Spillway 2.1 N/A 26 49
Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Unflow Q (cfs) = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	4.00 4.00 75% 50% Zone 3 Restrictor 0.50 30.00 30.00 Trapezoidal) 7.50 35.00 4.00 1.00 The user can over WQCV N/A 0.395 N/A N/A N/A N/A N/A N/A N/A N/A N/A Plate N/A N/A 39	N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basir feet H:V feet ide the default CUI EURV N/A 0.703 N/A	feet H:V feet %, grate open area % tectangular Orifice) ft (distance below ba inches inches inches h bottom at Stage = VP hydrographs and 2 Year 1.19 0.904	Gr Ox a/total area C asin bottom at Stage Half-Cent E 0 ft) 5 Year 1.50 1.876 1.875 5.7	Overflow W ate Open Area / 10 erflow Grate Open verflow Grate Open verflow Grate Open (0 Utlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T 0 Year 1.75 2.832	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = h Area w/ Debris = h Area w/ Debris = lculated Parameters utlet Orifice Area = Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = op of Freeboard = iop of Freeboard = 25 Year 2.00 4.494 4.494 4.494 4.494 4.30 0.74 48.3 38.7 0.9 Overflow Weir 1 1.3 N/A 49	6.00 4.12 6.30 30.92 15.46 s for Outlet Pipe w/ Zone 3 Restrictor 4.91 1.25 3.14 Calculated Parame 0.76 9.26 0.68 3.12 Calculated Parame 0.76 9.26 0.68 3.12 Chographs table (Co 50 Year 2.25 5.642 5.	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet ft ² ft ² feet radians 500 Year 3.85 13.819 13.829 2.21 13.828 1.00 500 Kear 1.00 500 Kear 1.00 500 500 Kear 1.00 500 Kear 1.00

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs


The strength of the state of the strength of the state of the strength of the	and the second second second states and the second state in the first second second second second second second	to show the state of the set of the second
The user can override the calculated inno	w nydrographs from this workbook with innow	hydrographs developed in a separate program.

	The user can o	verride the calcu	lated inflow hyd	rographs from t	his workbook wi	th inflow hydrog	raphs developed	l in a separate pr	ogram.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5100 11111	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08
	0:15:00	0.00	0.00	0.10	0.17	0.00	0.00	0.01	0.17	0.37
	0:20:00	0.00	0.00	0.41	1.01	1.58	0.43	0.50	0.67	2.55
	0:25:00	0.00	0.00	2.95	7.51	12.72	2.84	3.62	4.99	21.98
	0:30:00	0.00	0.00	7.42	16.44	24.17	22.06	28.28	33.86	72.66
	0:35:00	0.00	0.00	9.78	20.38	28.68	38.31	48.01	58.97	112.34
	0:40:00	0.00	0.00	10.28	20.85	29.25	46.22	57.17	70.48	130.16
	0:45:00	0.00	0.00	9.81	19.73	28.04	48.33	59.58	74.66	135.85
	0:50:00	0.00	0.00	8.97	18.17	26.01	47.63	58.62	74.00	134.31
	0:55:00 1:00:00	0.00	0.00	8.21	16.68	24.13	44.98	55.52	71.13	129.59
	1:05:00	0.00	0.00	7.56	15.30 14.00	22.42 20.83	41.90 38.93	51.98 48.54	68.13 65.17	124.56 119.60
	1:10:00	0.00	0.00	6.35	12.93	19.65	35.47	44.47	60.02	111.61
	1:15:00	0.00	0.00	5.82	12.02	18.70	32.44	40.91	54.77	103.41
	1:20:00	0.00	0.00	5.32	11.08	17.43	29.61	37.42	49.70	94.43
	1:25:00	0.00	0.00	4.83	10.12	15.90	26.90	34.01	44.80	85.24
	1:30:00	0.00	0.00	4.35	9.17	14.33	24.23	30.65	40.22	76.53
	1:35:00	0.00	0.00	3.88	8.23	12.76	21.63	27.37	35.86	68.18
	1:40:00	0.00	0.00	3.42	7.24	11.26	19.07	24.16	31.62	60.17
	1:45:00	0.00	0.00	3.04	6.41	10.14	16.62	21.10	27.63	53.05
	1:50:00	0.00	0.00	2.79	5.83	9.33	14.81	18.88	24.65	47.66
	1:55:00 2:00:00	0.00	0.00	2.57	5.36	8.62	13.41	17.14	22.30	43.29
	2:05:00	0.00	0.00	2.38	4.92 4.48	7.90 7.18	12.24 11.13	15.67 14.24	20.27 18.36	39.46 35.73
	2:10:00	0.00	0.00	1.96	4.40	6.46	10.09	14.24	16.56	32.17
	2:15:00	0.00	0.00	1.75	3.62	5.76	9.09	11.60	14.88	28.81
	2:20:00	0.00	0.00	1.56	3.20	5.09	8.13	10.36	13.29	25.66
	2:25:00	0.00	0.00	1.37	2.80	4.46	7.21	9.19	11.83	22.74
	2:30:00	0.00	0.00	1.18	2.41	3.84	6.31	8.04	10.39	19.91
	2:35:00	0.00	0.00	1.00	2.03	3.26	5.42	6.92	8.96	17.16
	2:40:00	0.00	0.00	0.82	1.66	2.69	4.54	5.81	7.55	14.42
	2:45:00	0.00	0.00	0.64	1.29	2.13	3.67	4.71	6.14	11.71
	2:50:00	0.00	0.00	0.47	0.93	1.58	2.81	3.61	4.74	9.03
	2:55:00	0.00	0.00	0.30	0.60	1.09	1.96	2.54	3.36	6.50
	3:00:00 3:05:00	0.00	0.00	0.19	0.40	0.80	1.23	1.63	2.20	4.51
	3:10:00	0.00	0.00	0.14	0.30	0.63	0.81	1.12 0.78	1.49 1.03	3.23 2.34
	3:15:00	0.00	0.00	0.09	0.24	0.31	0.35	0.78	0.69	1.67
	3:20:00	0.00	0.00	0.05	0.16	0.33	0.26	0.30	0.46	1.17
	3:25:00	0.00	0.00	0.06	0.12	0.26	0.19	0.29	0.29	0.80
	3:30:00	0.00	0.00	0.04	0.10	0.20	0.13	0.21	0.18	0.53
	3:35:00	0.00	0.00	0.04	0.07	0.15	0.10	0.15	0.11	0.36
	3:40:00	0.00	0.00	0.03	0.06	0.11	0.07	0.11	0.09	0.26
	3:45:00	0.00	0.00	0.02	0.04	0.08	0.05	0.08	0.07	0.20
	3:50:00	0.00	0.00	0.02	0.03	0.06	0.04	0.07	0.05	0.16
	3:55:00 4:00:00	0.00	0.00	0.01	0.02	0.04	0.03	0.05	0.04	0.12
	4:00:00	0.00	0.00	0.01	0.01	0.03	0.02	0.04	0.03	0.09
	4:05:00	0.00	0.00	0.01 0.00	0.01 0.01	0.02	0.02	0.03	0.02	0.06
	4:15:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.02
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MHFD-Detention, Version 4.03 (May 2020)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage	Area	Area	Volume	Volume	Total Outflow	
Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]	[cfs]	
	0.00	115	0.003	0	0.000	0.00	For best results, include the
	1.00	951	0.022	324	0.007	0.04	stages of all grade slope
	2.00	2,623	0.060	2,111	0.048	0.08	changes (e.g. ISV and Floor
	3.00	6,974	0.160	6,240	0.143	0.12	from the S-A-V table on
	4.00	14,005	0.322	16,730	0.384	0.18	Sheet 'Basin'.
	5.00	18,701	0.429	33,667	0.773	0.22	Also include the inverts of al
	6.00	21,062	0.484	53,549	1.229	23.55	outlets (e.g. vertical orifice,
	7.00	23,542	0.540	75,822	1.741	59.09	overflow grate, and spillway
	8.00	26,140	0.600	100,663	2.311	102.46	where applicable).
	9.00	28,818	0.662	128,122	2.941	287.24	
	5.00			-,			
							1
							1
							1
							1
							1
							7
							_
							_
							_
							_
							_
							_
							_
							-
				-			4
							4
							-
							-
							-
							-
							-
							-
							1
							_
							-
							-
							4
							4
				-			-
							1
]
]
							4
							4
						1	
							-

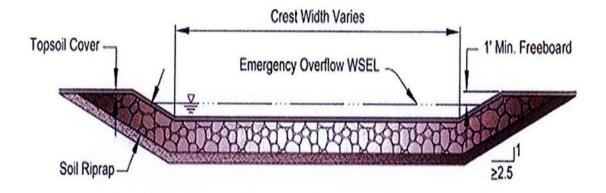
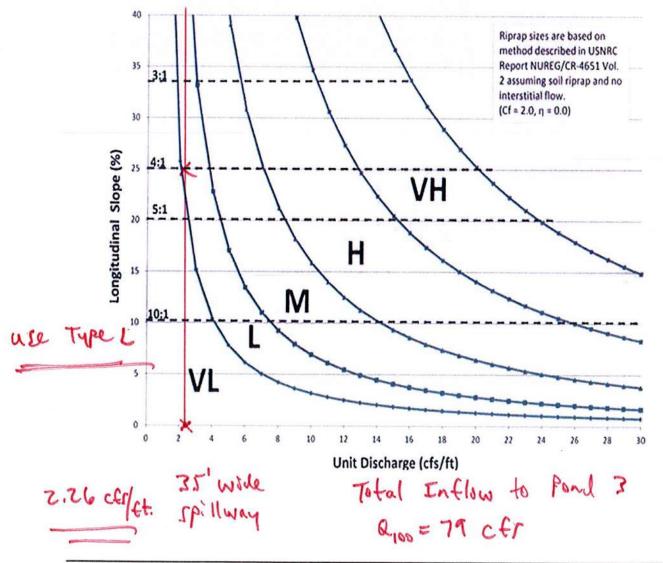
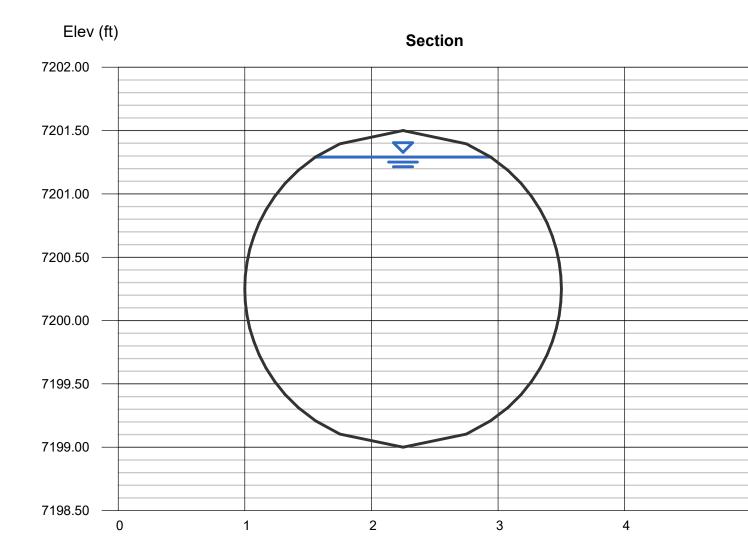



Figure 13-12d. Riprap Types for Emergency Spillway Protection



Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Pond 3 Outlet Pipe - 30 in. RCP

Circular		Highlighted	
Diameter (ft)	= 2.50	Depth (ft)	= 2.29
		Q (cfs)	= 59.60
		Area (sqft)	= 4.71
Invert Elev (ft)	= 7199.00	Velocity (ft/s)	= 12.65
Slope (%)	= 1.84	Wetted Perim (ft)	= 6.39
N-Value	= 0.013	Crit Depth, Yc (ft)	= 2.40
		Top Width (ft)	= 1.38
Calculations		EGL (ft)	= 4.78
Compute by:	Known Q		
Known Q (cfs)	= 59.60		

Sizing for Plunge Pool at Pond 3 Outlet Pipe

3.2.2 Low Tailwater Basin

The design of low tailwater riprap basins is necessary when the receiving channel may have little or no flow or tailwater at time when the pipe or culvert is in operation. Figure 9-37 provides a plan and profile view of a typical low tailwater riprap basin.

By providing a low tailwater basin at the end of a storm drain conduit or culvert, the kinetic energy of the discharge dissipates under controlled conditions without causing scour at the channel bottom.

Low tailwater is defined as being equal to or less than ¹/₃ of the height of the storm drain, that is:

$$y_t \leq \frac{D}{3}$$
 or $y_t \leq \frac{H}{3}$

Where:

 y_t = tailwater depth at design flow (feet)

D = diameter of circular pipe (feet)

H = height of rectangular pipe (feet)

Rock Size

The procedure for determining the required riprap size downstream of a conduit outlet is in Section 3.2.3.

After selecting the riprap size, the minimum thickness of the riprap layer, *T*, in feet, in the basin is defined as:

$$T = 2D_{50}$$
 Equation 9-15

Basin Geometry

Figure 9-37 includes a layout of a standard low tailwater riprap basin with the geometry parameters provided. The minimum length of the basin (L) and the width of the bottom of the basin (W1) are provided in a table at the bottom of Figure 9-37. All slopes in the low tailwater basin shall be 3(H):1(V), minimum.

Other Design Requirements

Extend riprap up the outlet embankment slope to the mid-pipe level, minimum. It is recommended that riprap that extends more than 1 foot above the outlet pipe invert be installed 6 inches below finished grade and buried with topsoil.

Provide pipe end treatment in the form of a pipe headwall or a flared-end section headwall. See Section 3.1 for options.

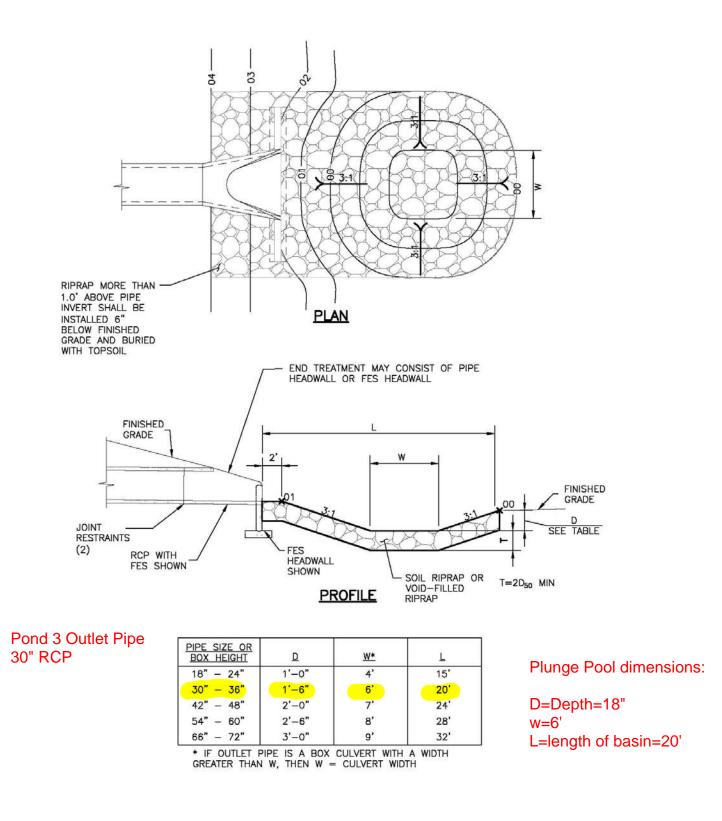


Figure 9-37. Low tailwater riprap basin

Rip-Rap sizing for Plunge Pool at Pond 3 Outlet Pipe

3.2.3 Rock Sizing for Riprap Apron and Low Tailwater Basin

Scour resulting from highly turbulent, rapidly decelerating flow is a common problem at conduit outlets. The following section summarizes the method for sizing riprap protection for both riprap aprons (Section 3.2.1) and low tailwater basins (Section 3.2.2).

Use Figure 9-38 to determine the required rock size for circular conduits and Figure 9-39 for rectangular conduits. Figure 9-38 is valid for $Q/D_c^{2.5}$ of 6.0 or less and Figure 9-39 is valid for $Q/WH^{1.5}$ of 8.0 or less. The parameters in these two figures are:

- 1. $Q/D^{1.5}$ or $Q/WH^{0.5}$ in which Q is the design discharge in cfs, D_c is the diameter of a circular conduit in feet, and W and H are the width and height of a rectangular conduit in feet.
- 2. Y_t/D_c or Y_t/H in which Y_t is the tailwater depth in feet, D_c is the diameter of a circular conduit in feet, and *H* is the height of a rectangular conduit in feet. In cases where Y_t is unknown or a hydraulic jump is suspected downstream of the outlet, use $Y_t/D_t = Y_t/H = 0.40$ when using Figures 9-38 and 9-39.
- 3. The riprap size requirements in Figures 9-38 and 9-39 are based on the non-dimensional parametric Equations 9-16 and 9-17 (Steven, Simons, and Watts 1971 and Smith 1975).

Circular culvert:

$$d_{50} = \frac{0.023Q}{Y_t^{1.2} D_c^{0.3}}$$
 Equation 9-16

Rectangular culvert:

$$d_{50} = \frac{0.014H^{0.5}Q}{Y_t W}$$
 Equation 9-17

These rock size requirements assume that the flow in the culvert is subcritical. It is possible to use Equations 9-16 and 9-17 when the flow in the culvert is supercritical (and less than full) if the value of D_c or H is modified for use in Figures 9-38 and 9-39. Note that rock sizes referenced in these figures are defined in the *Open Channels* chapter. Whenever the flow is supercritical in the culvert, substitute D_a for D_c and H_a for H, in which D_a is defined as:

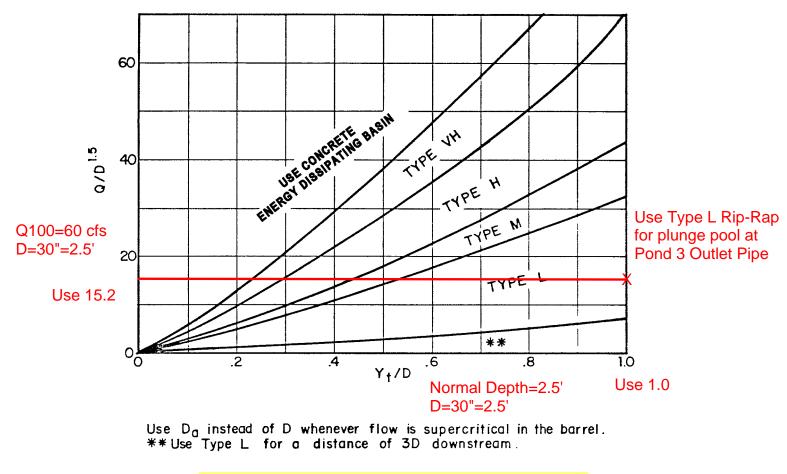
$$D_a = \frac{\left(D_c + Y_n\right)}{2}$$
 Equation 9-18

Where the maximum value of D_a shall not exceed D_c , and

Equation 9-19

$$H_a = \frac{\left(H + Y_n\right)}{2}$$

Where the maximum value of H_a shall not exceed H, and:


 D_a = parameter to use in place of D in Figure 9-38 when flow is supercritical (ft)

 D_c = diameter of circular culvert (ft)

 H_a = parameter to use in place of H in Figure 9-39 when flow is supercritical (ft)

H = height of rectangular culvert (ft)

 Y_n = normal depth of supercritical flow in the culvert (ft)

Rip-Rap sizing for Plunge Pool at Pond 3 Outlet Pipe

Figure 9-38. Riprap erosion protection at circular conduit outlet (valid for Q/D2.5 \leq 6.0)

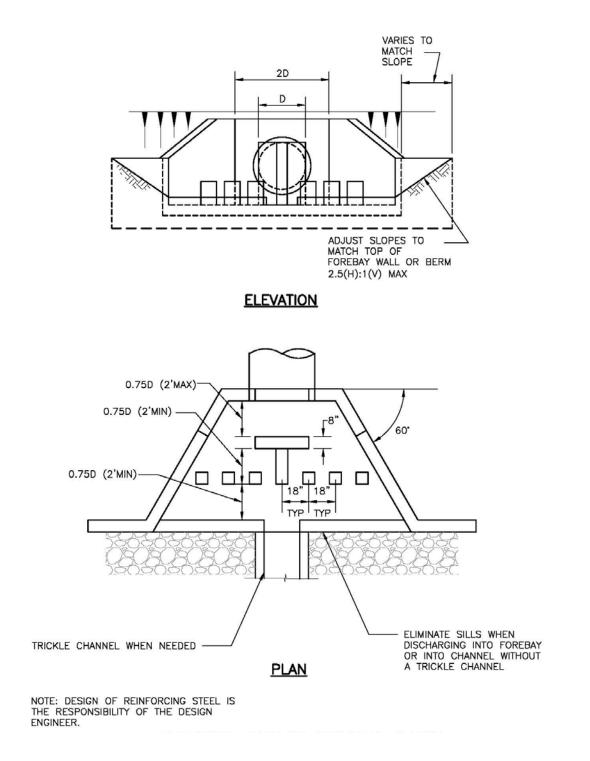
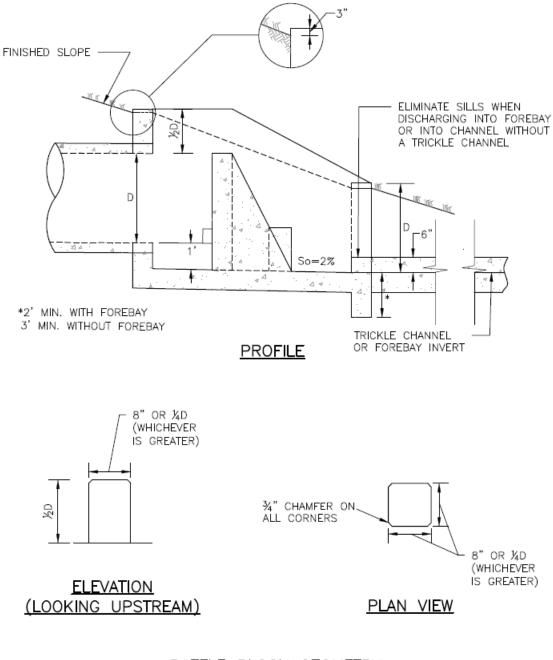
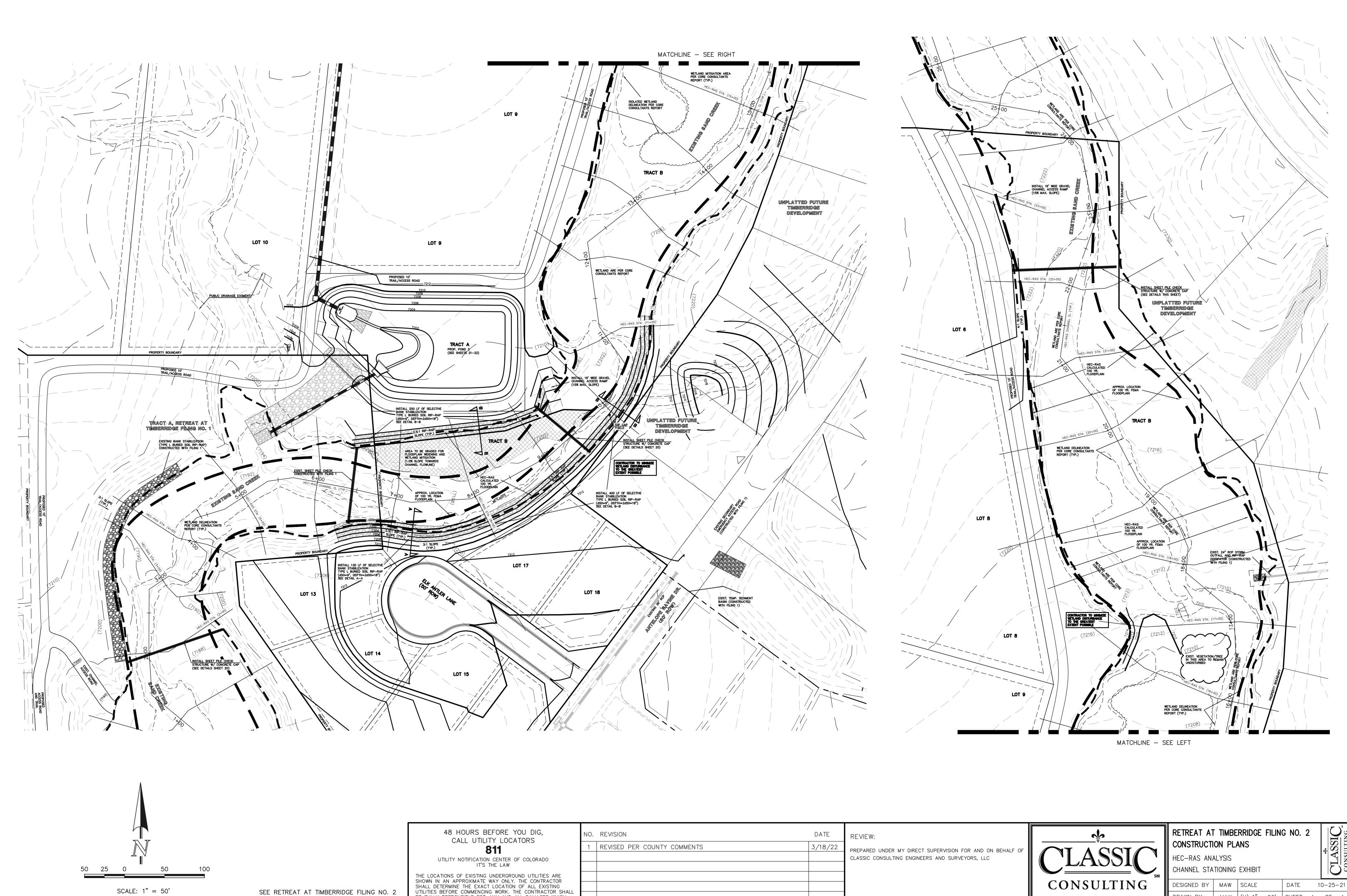
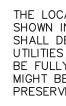


Figure 9-43. Modified impact stilling basin for conduits 18" to 48" in diameter (Part 1 of 2)


Figure 9-44. Modified impact stilling basin for conduits 18" to 48" in diameter (Part 2 of 2)

HEC-RAS CALCULATIONS

SEE RETREAT AT TIMBERRIDGE FILING NO. 2 GRADING AND EROSION CONTROL PLAN FOR EROSION CONTROL DETAILS.

48 HOURS BEFORE YOU DIG, CALL UTILITY LOCATORS	NO.	REVISION	DATE	REVIEW:
811	1	REVISED PER COUNTY COMMENTS	3/18/22	PREPARED UNDER MY DIRECT S
UTILITY NOTIFICATION CENTER OF COLORADO				CLASSIC CONSULTING ENGINEERS
CATIONS OF EXISTING UNDERGROUND UTILITIES ARE				
IN AN APPROXIMATE WAY ONLY. THE CONTRACTOR DETERMINE THE EXACT LOCATION OF ALL EXISTING				
S BEFORE COMMENCING WORK. THE CONTRACTOR SHALL LY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH BE CAUSED BY HIS FAILURE TO EXACTLY LOCATE AND				MARC A. WHORTON, COLORADO
EVE ANY AND ALL UNDERGROUND UTILITIES.				

0 P.E. #37155 DATE

619 N. Cascade Avenue, Suite 200 Colorado Springs, Colorado 80903

(719)785–0790

(719)785-0799(Fax)

MAW (H) 1"= 50' SHEET 1 OF 1 DRAWN BY (V) 1"= N/A JOB NO. 1185.20 CHECKED BY

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (AT ARROYA LN.)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (SOUTH OF ARROYA LN.)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 25+00)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 21+25)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 19+00)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 15+75)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 12+00)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 10+00)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 6+75)

SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 4+00)

TABLE 10-1

COMPOSITE ROUGHNESS COEFFICIENTS FOR UNLINED OPEN CHANNELS (Reference: Chow, Ven Te, 1959; Open-Channel Hydraulics)

.

n = ((n _o +	n ₁	+ n ₂	+ n ₃	+	n ₄)m	(10-2)
-------	-------------------	----------------	------------------	------------------	---	-------------------	--------

	Channel Conditions	<u>Value</u>
Material Type ⁿ o	Earth Fine Gravel Coarse Gravel	0.020 0.024 0.028
Degree of Irregularity ⁿ l	Smooth Minor Moderate Severe	0.000 0.005 0.010 0.020
Variation of Channel Cross Section ⁿ 2	Gradual Alternating Occasionally Alternating Frequently	0.000 0.005 0.010 - 0.015
Relative Effect of Obstructions n ₃	Negligible Minor Appreciable Severe	0.000 0.010 - 0.015 0.020 - 0.030 0.040 - 0.060
Vegetation ⁿ 4	Low Medium High Very High	0.005 - 0.010 0.010 - 0.025 0.025 - 0.050 0.050 - 0.100
Degree of Meandering ´ m	Minor Appreciable Severe	1.000 - 1.200 1.200 - 1.500 1.500

TABLE 10-2 (Continued)

TYPICAL ROUGHNESS COEFFICIENTS FOR OPEN CHANNELS

Type of Channel and Description	<u>Minimum</u>	<u>Normal</u>	<u>Maximum</u>
NATURAL STREAMS			
Minor streams (top width at flood stage 100 ft)			
a. Streams on plain			
 Clean, straight, full stage, no rifts or deep pools 	0.025	0.030	0.033
2. Same as above, but more stones and weeds	0.030	0.035	0.040
3. Clean, winding, some pools and shoals	0.033	0.040	0.045
4. Same as above, but some weeds and stones	0.035	0.045	0.050
5. Same as above, lower stages, more ineffective slopes and sections	0.040	0.048	0.055
6. Same as 4, but more stones	0.045	0.050	0.060
 Sluggish reaches, weedy, deep pools 	0.050	0.070	0.080
8. Very weedy reaches, deep pools, or floodways with heavy stand of timber and underbrush	0.075	0.100	0.150
LINED OR BUILT-UP CHANNELS			
a. Corrugated Metal	0.021	0.025	0.030
 b. Concrete Trowel finish Float finish Finished, with gravel on bottom Unfinished Gunite, good section Gunite, wavy section On good excavated rock On irregular excavated rock 	0.011 0.013 0.015 0.014 0.016 0.018 0.017 0.022	0.013 0.015 0.017 0.017 0.019 0.022 0.020 0.027	0.016 0.020 0.020 0.023

Table 3. Adjustment values for factors that affect roughness of flood plains

[Modified from Aldridge and Garrett, 1973, table 2]

Flood-plain co	onditions	<i>n</i> value adjustment	Example
1107 (1107)	Smooth	0.000	Compares to the smoothest, flattest flood plain attainable in a given bed material.
Degree of	Minor	0.001-0.005	Is a flood plain slightly irregular in shape. A few rises and dips or sloughs may be visible on the flood plain.
irregularity (n_1)	Moderate Severe	0.006-0.010 0.011-0.020	Has more rises and dips. Sloughs and hummocks may occur. Flood plain very irregular in shape. Many rises and dips or sloughs are visible. Irregular ground surfaces in pastureland and furrows perpendicular to the flow are also included.
Variation of flood-plain cross section (n_2)		0.0	Not applicable.
Effect of obstructions	Negligible	0.000-0.004	Few scattered obstructions, which include debris deposits, stumps, exposed roots, logs, or isolated boulders, occupy less than 5 percent of the cross-sectional area.
(<i>n</i> ₃)	Minor Appreciable	0.005-0.019 0.020-0.030	Obstructions occupy less than 15 percent of the cross-sectional area. Obstructions occupy from 15 to 50 percent of the cross-sectional area.
	Small	0.001-0.010	Dense growth of flexible turf grass, such as Bermuda, or weeds growing where the average depth of flow is at least two times the height of the vegetation, or supple tree seedlings such as willow, cottonwood, arrowweed, or saltcedar growing where the average depth of flow is at least three times the height of the vegetation.
	Medium	0.011-0.025	Turf grass growing where the average depth of flow is from one to two times the height of the vegetation, or moderately dense stemmy grass, weeds, or tree seedlings growing where the average depth of flow is from two to three times the height of the vegetation; brushy, moderately dense vegetation, similar to 1- to 2-year-old willow trees in the dormant season.
Amount of vegetation (n_4)	Large	0.025–0.050	Turf grass growing where the average depth of flow is about equal to the height of the vegetation, or 8- to 10-year-old willow or cottonwood trees intergrown with some weeds and brush (none of the vegetation in foliage) where the hydraulic radius exceeds 2 ft, or mature row crops such as small vegetables, or mature field crops where depth of flow is at least twice the height of the vegetation.
	Very large	0.050-0.100	Turf grass growing where the average depth of flow is less than half the height of the vegetation, or moderate to dense brush, or heavy stand of timber with few down trees and little undergrowth where depth of flow is below branches, or mature field crops where depth of flow is less than the height of the vegetation.
	Extreme	0.100-0.200	Dense bushy willow, mesquite, and saltcedar (all vegetation in full foliage), or heavy stand of timber, few down trees, depth of flow reaching branches.
Degree of meander (m)		1.0	Not applicable.

Chow (1959) presents a table showing minimum, normal, and maximum values of n for flood plains covered by pasture and crops. These values are helpful for comparing the roughness values of flood plains having similar vegetation.

Vegetation-Density Method

For a wooded flood plain, the vegetation-density method can be used as an alternative to the previous method for determining n values for flood plains. In a wooded flood plain, where the tree diameters can be measured, the vegetation density of the flood plain can be determined.

Determining the vegetation density is an effective way of relating plant height and density characteristics, as a function of depth of flow, to the flow resistance of vegetation. Application of the flow-resistance model presented below requires an estimate of the vegetation density as a function of depth of flow. The procedure requires a direct or indirect determination of vegetation density at a given depth. If the change in n value through a range in depth is required, then an estimation of vegetation density through that range is necessary.

Techniques for Determining Vegetation Density

Petryk and Bosmajian (1975) developed a method of analysis of the vegetation density to determine the rough_____

Retardance Class	Cover	Condition		
	Weeping lovegrass	Excellent stand, tall, average 30 in.		
A	Yellow bluestem Ischaemum	Excellent stand, tall, average 36 in.		
	Bermuda grass	Good stand, tall, average 12 in.		
	Native grass mixture (little bluestem, bluestem, blue gamma, and other long and short Midwest grasses	Good stand, unmowed		
	Weeping lovegrass	Good stand, tall, average 24 in.		
В	Lespedeza serica	Good stand, not woody, tall, average 19 in.		
	Alfalfa	Good stand uncut, average 11 in.		
	Weeping lovegrass	Good stand, unmowed, average 13 in.		
	Kudzu	Dense growth, uncut		
	Blue gamma	Good stand, uncut, average 13 in.		
	Crabgrass	Fair stand, uncut, avg. 10 in.		
	Bermuda grass	Good stand, mowed, average 6 in.		
	Common lespedeza	Good stand, uncut, average 11 in.		
С	Grass-legume mixture - summer (orchard grass, redtop Italian ryegrass, and common lespedeza)	Good stand, uncut, average 6 to 8 in.		
	Centipedegrass	Very dense cover, average 6 in.		
	Kentucky Bluegrass	Good stand, headed, 6 to 12 in.		
	Bermuda grass	Good stand, cut to 2.5 in. height		
	Common lespedeza	Excellent stand, uncut, average 4.5 in.		
	Buffalo Grass	Good stand, uncut, 3 t 6 in.		
D	Grass-legume mixture - fall (orchard grass, redtop Italian ryegrass, and common lespedeza)	Good stand, uncut, 3 to 5 in.		
	Lespedeza serica	After cutting to 2 in. height, good stand before cutting		
	Bermuda grass	Good stand, cut to average 1.5 in. height		
Ξ	Bermuda grass	Burned stubble		
Note: Covers cla iniform.	ssified have been tested in experimental cha	nnels. Covers were green and generally		

Classification of Vegetal Covers

SCS Retardance Class	Cn
Α	0.605
В	0.418
С	0.220
D	0.147
<u>Е</u> .	0.093

Composite Roughness

Culverts using different materials for portions of the perimeter such as embedded culverts or culverts with an invert liner should use a composite Manning's n value. A weighted n value based on the materials can be derived using the following equation:

$$n_c = \left[\frac{\Sigma(p_i n_i^{1.5})}{p}\right]^{0.67}$$

Where:

 n_c = Composite/weighted Manning's n. p_i = Wetted perimeter for the material, ft. n_i = Manning's n value for the material. p = Total wetted perimeter, ft.

750.1.4.1.2 Hydraulic Radius

The hydraulic radius is a characteristic depth of flow and is defined as the cross-sectional area of flow divided by the wetted perimeter of the channel. The hydraulic radius is computed as follows:

$$R = \frac{A}{P}$$

where:

 $\begin{aligned} R &= hydraulic radius, ft \\ A &= cross-sectional area of flow, ft^2 \\ P &= wetted perimeter of the channel cross section, ft \end{aligned}$

750.1.4.1.3 Slope

Table 8-8

Contra contra	Height at maturity		
Grass species	(ft)	(m)	
Cool-season grasses			
Creeping foxtail	3-4	0.9-1.2	
Crested wheatgrass	2-3	0.6-0.9	
Green needlegrass	3-4	0.9 - 1.2	
Russian wild rye	3-4	0.9–1.2	
Smooth bromegrass	3-4	0.9-1.2	
Tall fescue	3-4	0.9-1.2	
Tall wheatgrass		1.2 - 1.5	
Western wheatgrass	2–3	0.6-0.9	
Warm-season grasses			
Bermudagrass	3/42	0.2-0.6	
Big bluestem	4-6	1.2-1.8	
Blue grama	12	0.3-0.6	
Buffalograss	1/3-1	0.1-0.3	
Green spangletop	3-4	0.9 - 1.2	
Indiangrass	5-6	1.5 - 1.8	
Klein grass	3-4	0.9 - 1.2	
Little bluestem	3-4	0.9-1.2	
Plains bristlegrass	1–2	0.3-0.6	
Sand bluestem	56	1.5-1.8	
Sideoats grama	2-3	0.6-0.9	
Switchgrass	4–5	1.2-1.5	
Vine mesquitegrass	1-2	0.3–0.6	
Weeping lovegrass	3-4	0.9 - 1.2	
Old World bluestems			
Caucasian bluestem	4–5	1.2-1.5	
Ganada yellow bluestem	3-4	0.9 - 1.2	

Characteristics of selected grass species for

Table 8–9 Retardance curve index by SCS retardance class

SCS retardance class	Retardance curve index
A	10.0
В	7.64
С	5.60
D	4.44
Е	2.88

this table were obtained from a review of the available qualitative descriptions and stem counts reported by researchers studying channel resistance and stability.

Since cover conditions vary from year to year and season to season, it is recommended that an upper and lower bound be determined for C₁. The lower bound should be used in stability computations, and the upper bound should be used to determine channel capacity. Some practitioners find that the use of SCS retardance class (table 8–9) is a preferable approach.

The vegetal cover index, C_F, depends primarily on the density and uniformity of density in the immediate vicinity of the soil boundary. Because this parameter is associated with the prevention of local erosion damage which may lead to channel unraveling, the cover factor should represent the weakest area in a reach, rather than the average for the cover species. Recommended values for the cover factor are presented in table 8-10. Values in this table do not account for such considerations as maintenance practices or uniformity of soil fertility or moisture. Therefore, appropriate engineering judgment should be used in its application.

Table 8-10

Properties of grass channel linings values (apply to good uniform stands of each cover)

Cover factor (C _F)	Covers tested	Reference stem density (stems/ft ²)	Reference stem density (stems/m²)
0.90	Bermudagrass	500	5,380
	Centipede grass	500	5,380
0.87	Buffalograss	400	4,300
	Kentucky bluegrass	350	3,770
	Blue grama	350	3,770
0.75	Grass mixture	200	2,150
0.50	Weeping lovegrass	350	3,770
	Yellow bluestem	250	2,690
0.50	Alfalfa	500	5,380
	Lespedeza sericea	300	3,280
0.50	Common lespedeza	150	1,610
	Sudangrass	50	538

Multiply the stem densities given by 1/3, 2/3, 1, 4/3, and 5/3 for poor, fair, good, very good, and excellent covers, respectively. Reduce the C_{F} by 20% for fair stands and 50% for poor stands.

Threshold Channel Design

Part 654 National Engineering Handbook

Two soil parameters are required for application of effective stress concepts to the stability design of lined or unlined channels having an erodible soil boundary: soil grain roughness, n_s , and allowable effective stress, τ_a . When the effective stress approach is used, the soil parameters are the same for both lined and unlined channels with negligible bed-material sediment transport.

Soil grain roughness is defined as the roughness associated with particles or aggregates of a size that can be independently moved by the flow at incipient channel failure. For noncohesive soils, the soil grain roughness and effective shear stress are both a function of the D_{75} grain size. When D_{75} is greater than 1.3 millimeter, the soil is considered coarse grained. When D_{75} is less than 1.3 millimeter, the soil is considered fine grained. Fine-grained roughness is considered to have a constant value of 0.0156. Fine-grained effective shear stress is taken to have a constant value of 0.02 pound per square foot. Coarse-grained shear stress and roughness are given in figures 8–21 and 8–22.

A soil grain roughness of 0.0156 is assigned to all cohesive soils. The allowable effective stresses are a function of the unified soil classification system soil type, the plasticity index, and the void ratio. The basic allowable shear stress, τ_{ab} , is determined from the plasticity index and soil classification, and then adjusted by the void ratio correction factor, C_{e} , using the following equation:

$$\tau_a = \tau_{ab} C_e^2 \qquad (eq. 8-29)$$

The basic allowable effective stress can be determined from figure 8–23 and the void ratio correction factor from figure 8–24. These two figures were developed directly from the allowable velocity curves in AH 667. Stress partitioning (slope partitioning) is essential to application of figures 8–21 to 8–24, with or without vegetation (Temple et al. 1987).

(e) General design procedure

Use the basic shear stress equation to determine effective shear stress on the soil beneath the vegetation. Use any consistent units of measurement.

$$\tau_{e} = \gamma dS \left(1 - C_{F}\right) \left(\frac{n_{s}}{n}\right)^{2}$$

(eq. 8–30)

where:

- τ_e = effective shear stress exerted on the soil beneath vegetation (lb/ft² or N/m²)
- γ = specific weight of water (lb/ft³ or N/m³)
- S = energy slope, dimensionless
- $C_{\rm F}$ = vegetation cover factor (0 for unlined channel), dimensionless
- $n_{\rm s}$ = grain roughness of underlying soil, typically taken as dimensionless
- n = roughness coefficient of vegetation, typically taken as dimensionless

The flow depth is used instead of the hydraulic radius because this will result in the maximum local shear stress, rather than the average shear stress. The cover factor is a function of the grass and stem density. Roughness coefficients are standard Manning's roughness values; n_s can be determined from figure 8–22, n can be determined from figure 8–20) or from the following equation.

$$n_{R} = \exp\left\{C_{I}\left[0.0133\left(\ln R_{v}\right)^{2} - 0.0954\ln R_{v} + 0.297\right] - 4.16\right\}$$
(eq. 8-31)

where:

 $R_v = (VR/v) \ge 10^5$ (this dimensionless term reduces to VR for practical application in English units)

V = channel velocity (ft/s or m/s)

 $\mathbf{R} = \mathbf{hydraulic radius (ft or m)}$

Limited to $0.0025C_1^{2.5} < R_v < 36$

A reference value of Manning's resistance coefficient, n_{R} is applicable to vegetation established on relatively smoothly graded fine-grained soil.

If vegetated channel liner mats are used, manufacturer-supplied roughness coefficients for particular mats may be used in the equation.

Maximum allowable shear stress, τ_{va} , in pound per square foot is determined as a function of the retardance curve index, $C_{t'}$ Very little information is available for vegetal performance under very high stresses and this relation is believed to be conservative.

$$\tau_{va} = 0.75C_1$$
 (eq. 8–32)

8.1 Riprap Sizing

Procedures for sizing rock to be used in soil riprap, void-filled riprap, and riprap over bedding are the same.

8.1.1 Mild Slope Conditions

When subcritical flow conditions occur and/or slopes are mild (less than 2 percent), UDFCD recommends the following equation (Hughes, et al, 1983):

$$d_{50} \ge \left[\frac{VS^{0.17}}{4.5(G_s - 1)^{0.66}}\right]^2$$

Where:

V = mean channel velocity (ft/sec)

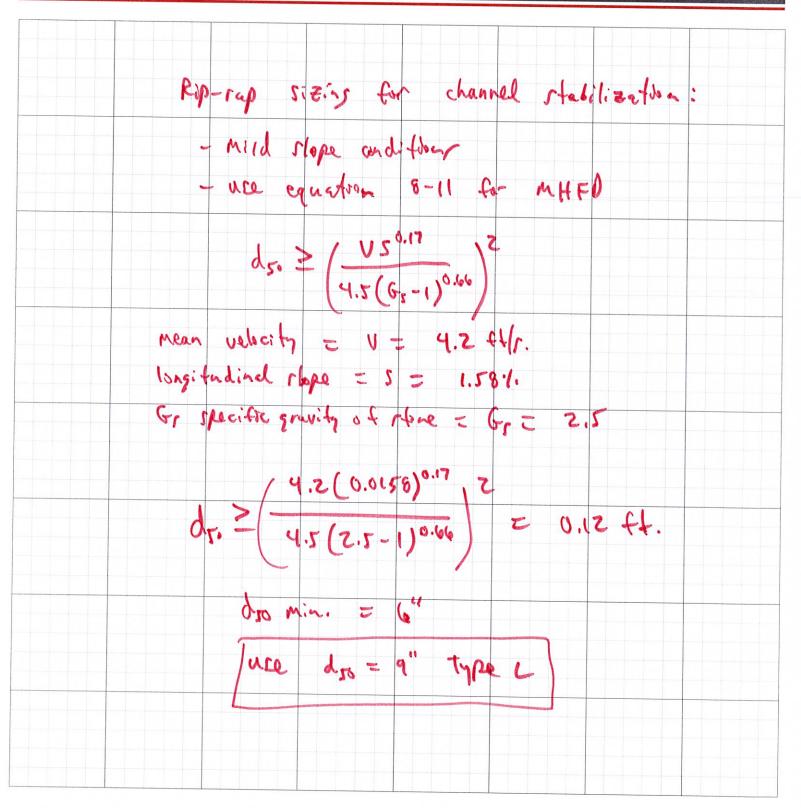
S = longitudinal channel slope (ft/ft)

 d_{50} = mean rock size (ft)

Gs = specific gravity of stone (minimum = 2.50, typically 2.5 to 2.7), Note: In this equation (Gs -1) considers the buoyancy of the water, in that the specific gravity of water is subtracted from the specific gravity of the rock.

Note that Equation 8-11 is applicable for sizing riprap for channel lining with a longitudinal slope of no more than 2%. This equation is not intended for use in sizing riprap for steep slopes (typically in excess of 2 percent), rundowns, or protection downstream of culverts. Information on rundowns is provided in Section 7.0 of the *Hydraulic Structures* chapter of the USDCM, and protection downstream of culverts is discussed in the *Culverts and Bridges* chapter. For channel slopes greater than 2% use one of the methods presented in 8.1.2.

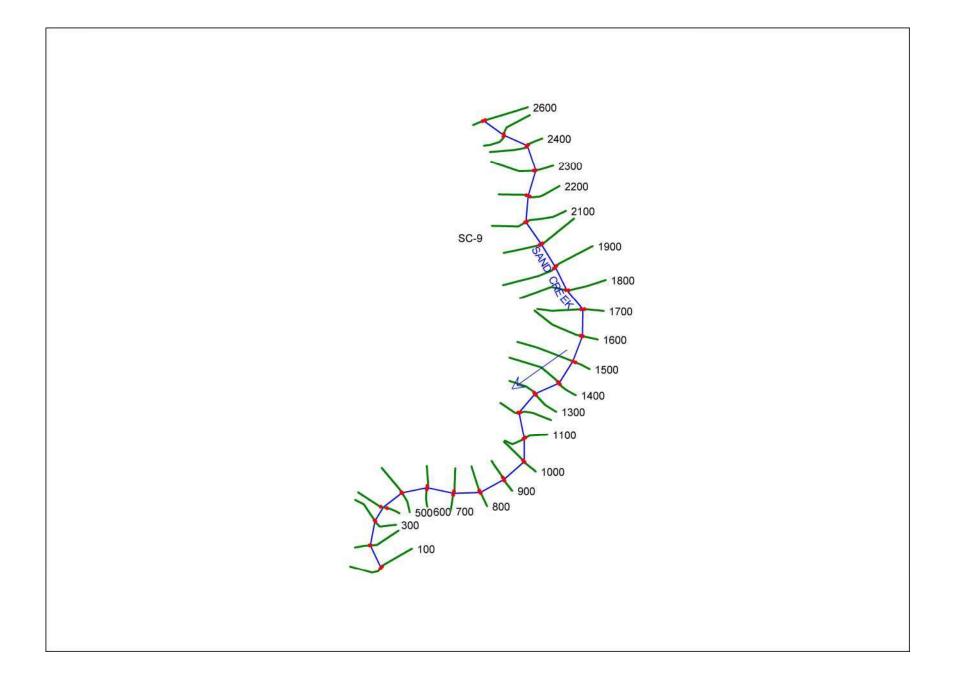
Rock size does not need to be increased for steeper channel side slopes, provided the side slopes are no steeper than 2.5H:1V (UDFCD 1982). Channel side slopes steeper than 2.5H:1V are not recommended because of stability, safety, and maintenance considerations. See Figure 8-34 for riprap placement specifications. At the upstream and downstream termination of a riprap lining, the thickness should be increased 50% for at least 3 feet to prevent undercutting.

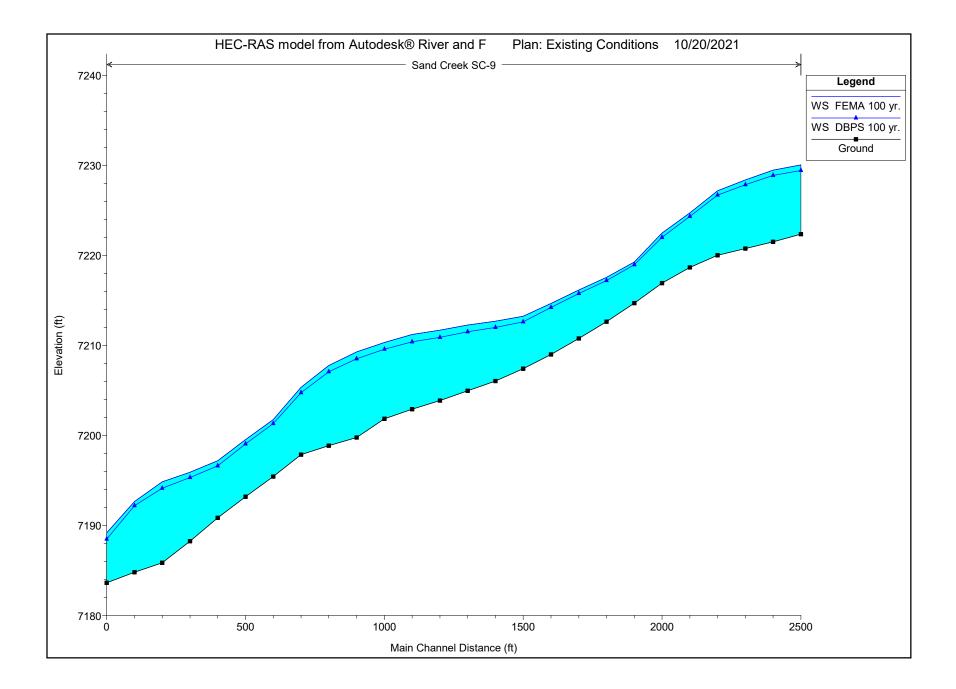

8.1.2 Steep Slope Conditions

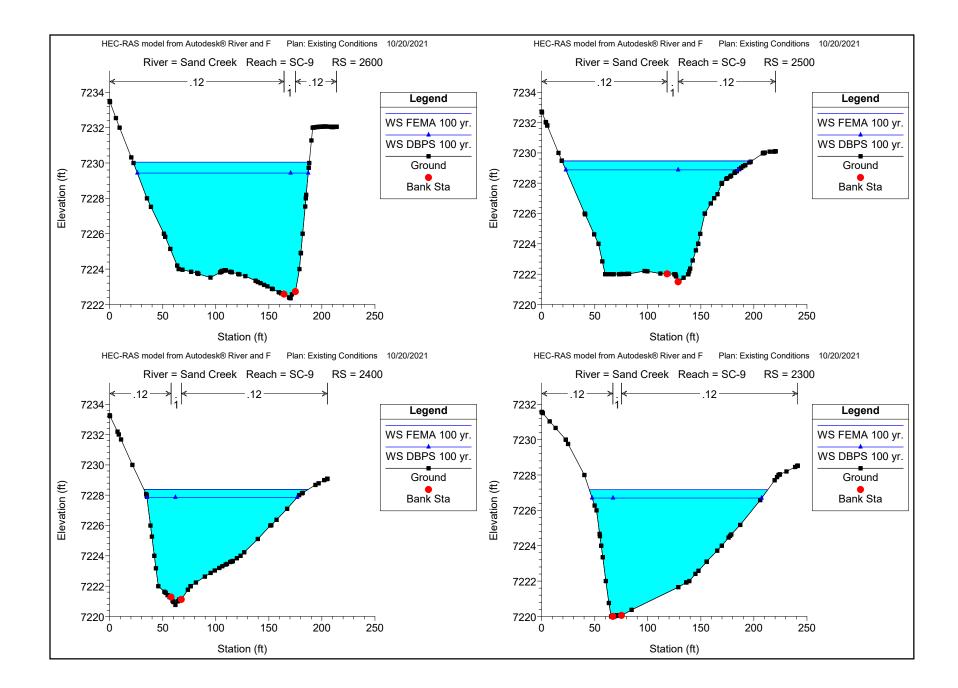
Steep slope rock sizing equations are used for applications where the slope is greater than 2 percent and/or flows are in the supercritical flow regime. The following rock sizing equations may be referred to for riprap design analysis on steep slopes:

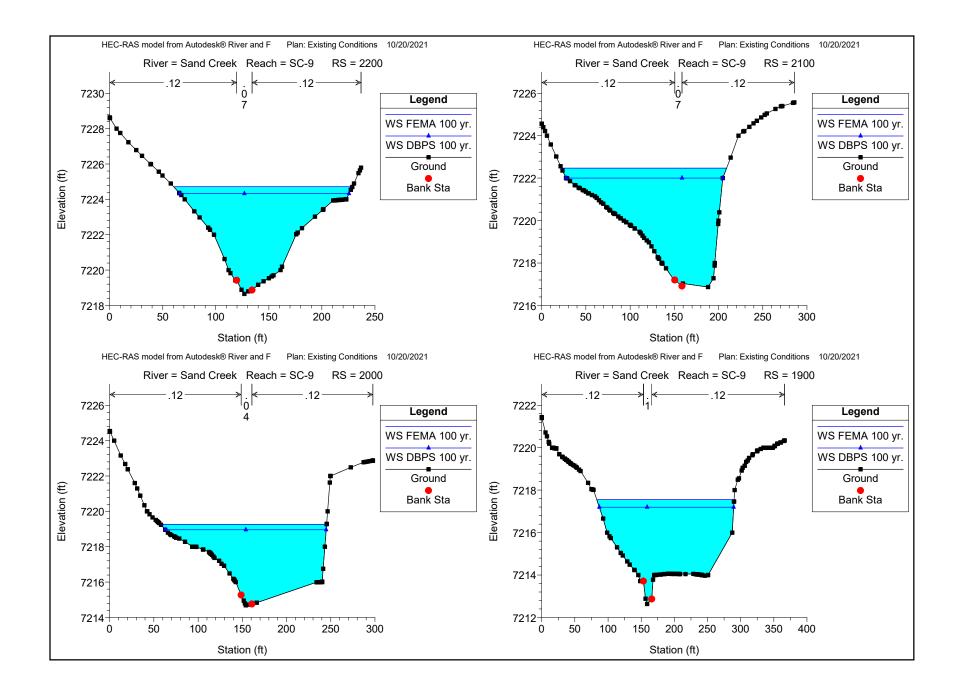
- CSU Equation, Development of Riprap Design Criteria by Riprap Testing in Flumes: Phase II (prepared by S.R. Abt, et al, Colorado State University, 1988). This method was developed for steep slopes from 2 to 20 percent.
- USDA- Agricultural Research Service Equations, *Design of Rock Chutes* (by K.M. Robinson, et al, USDA- ARS, 1998 Transactions of ASAE) and *An Excel Program to Design Rock Chutes for Grade*

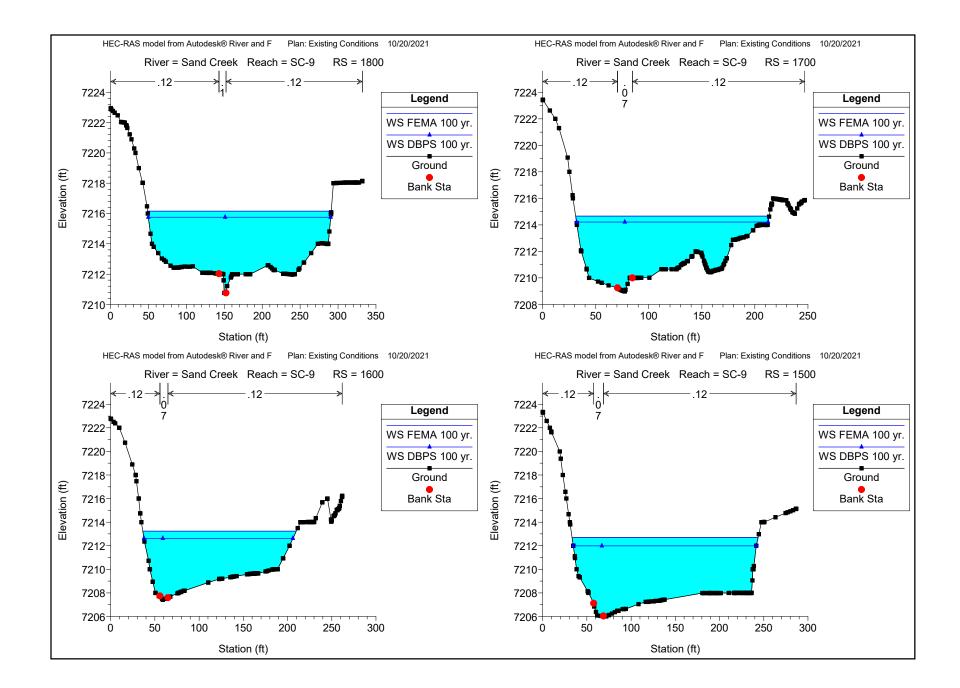
Equation 8-11

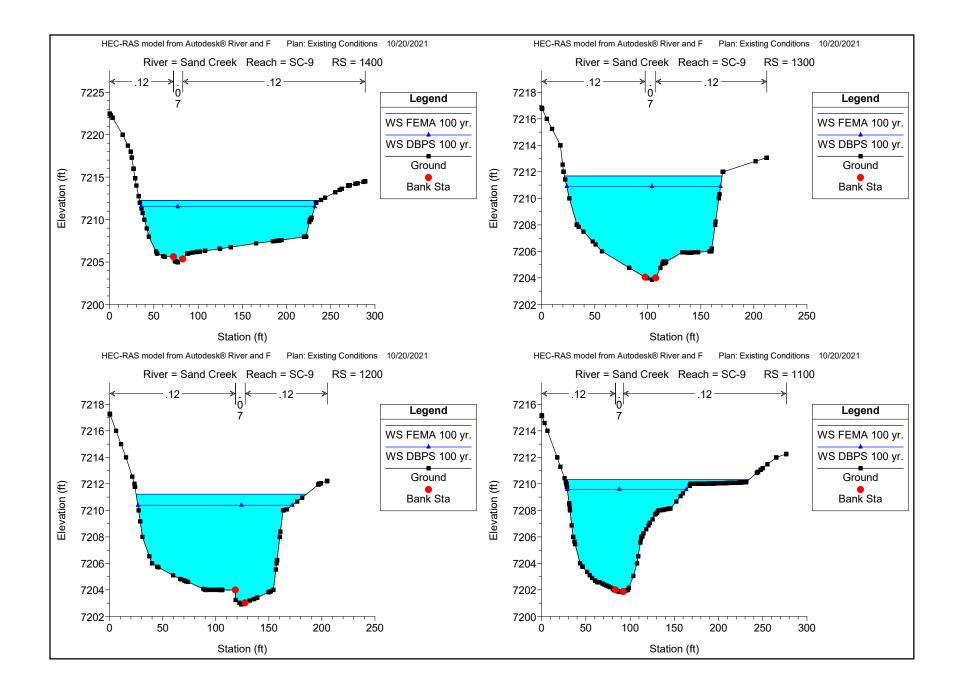

CLASSIC	Project: _ Date: _ Contact: _	TimberRidge 2 3/16/22	<u>NOTES</u> □ Telephone Record □ Note to the File
CONSULTING ENGINEERS & SURVEYORS 619 N. Cascade Avenue, Suite 200 Colorado Springs, CO 80903	Phone: _ By: _	MAW	 Job Information Meeting Minutes

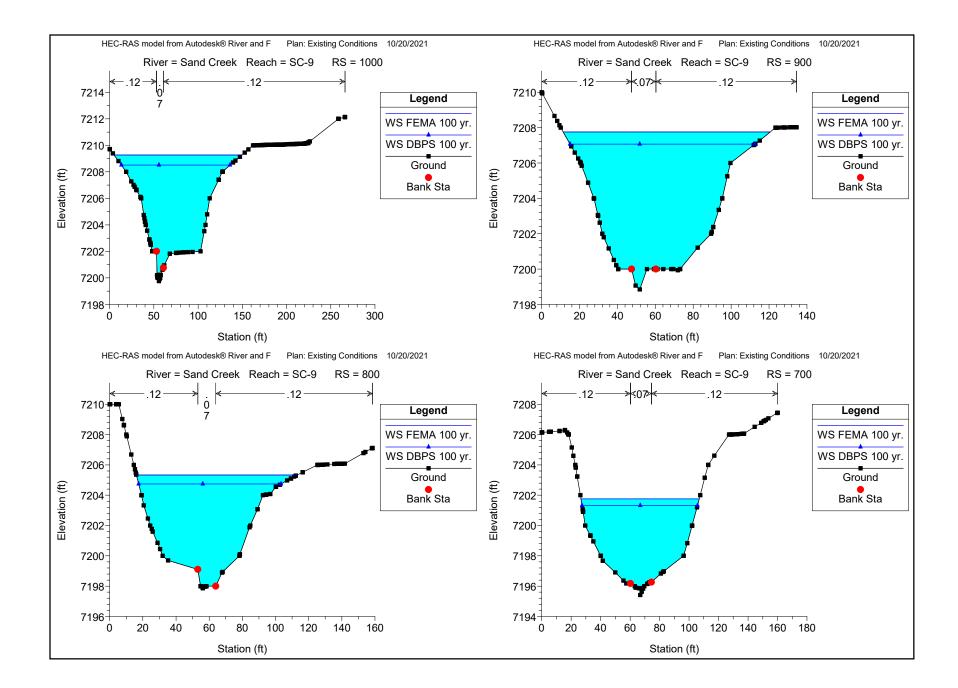


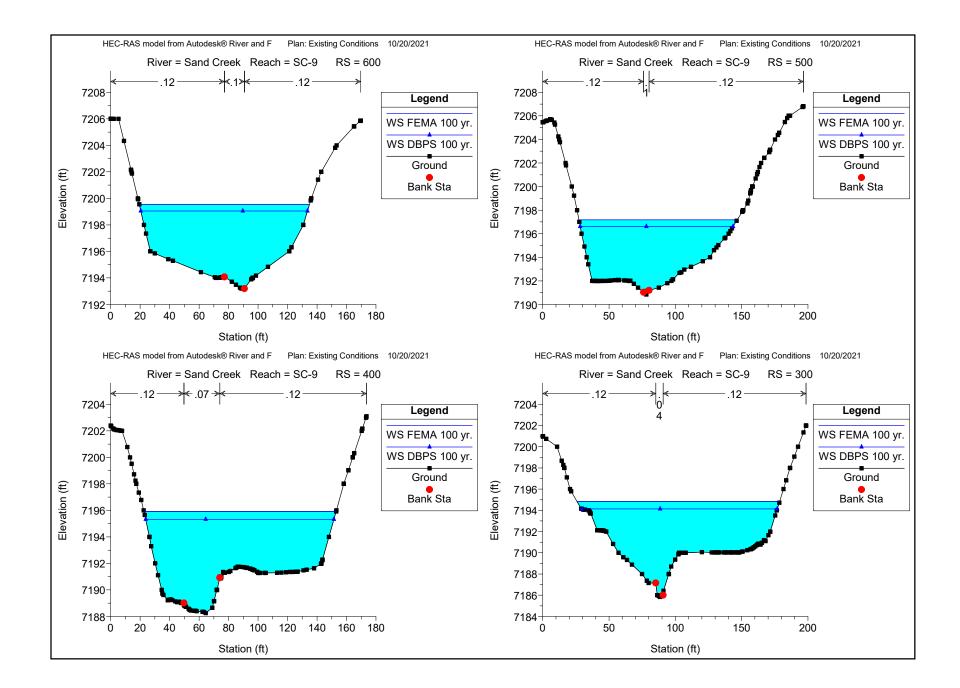

Ph: 719.785.0790 Fax: 719.785.0799

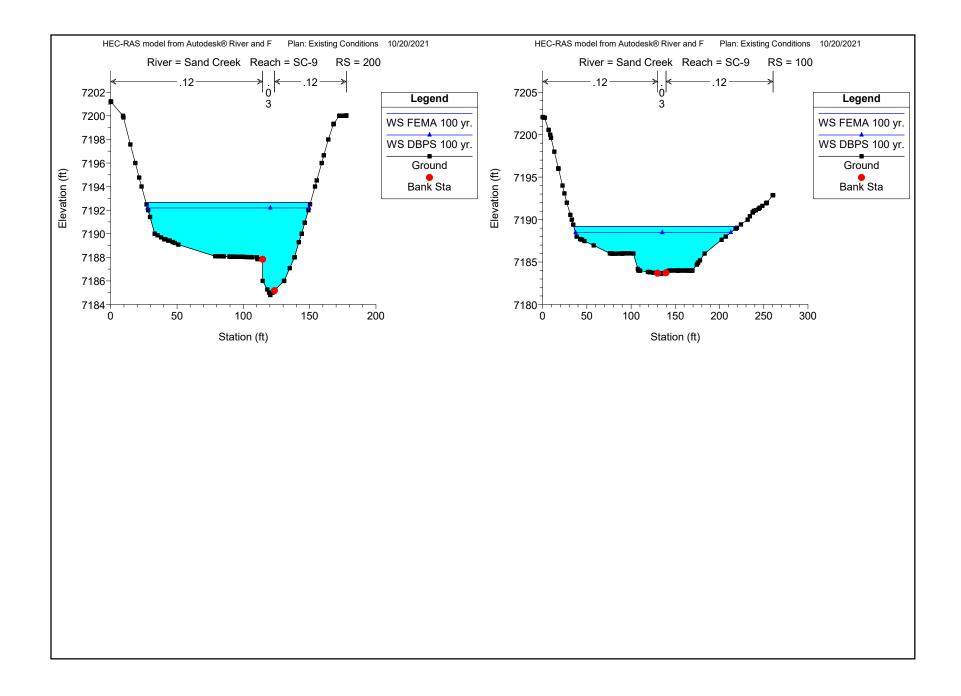

Innovative Design....Classic Results CCES

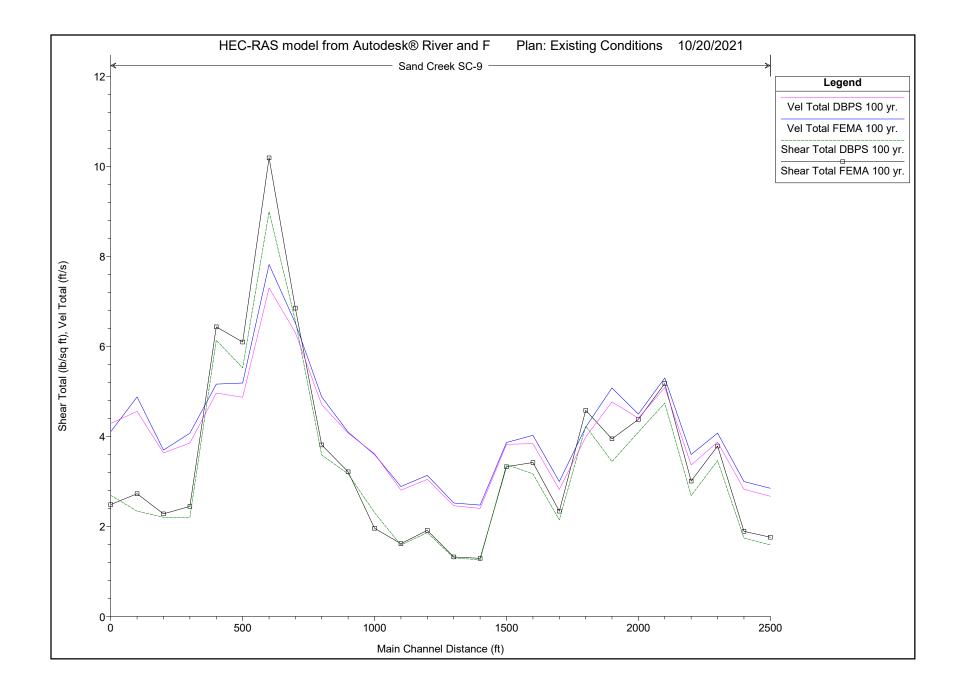

www.classicconsulting.net

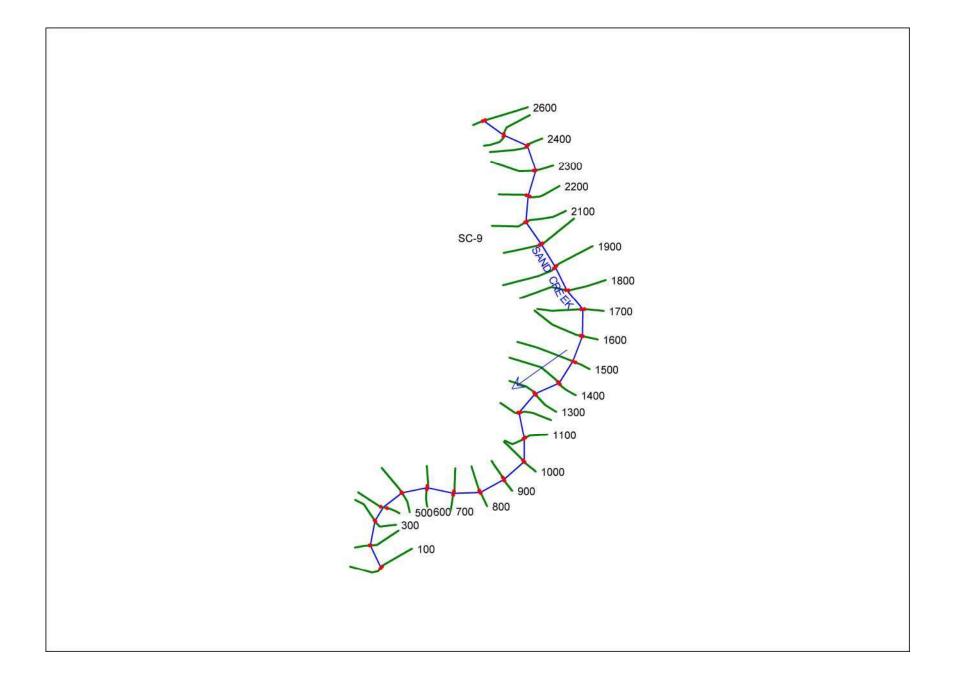


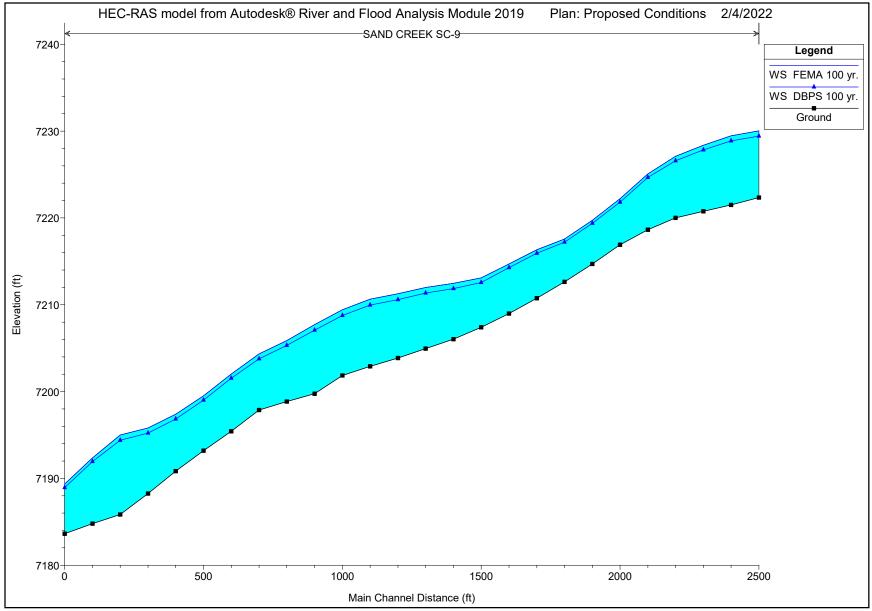


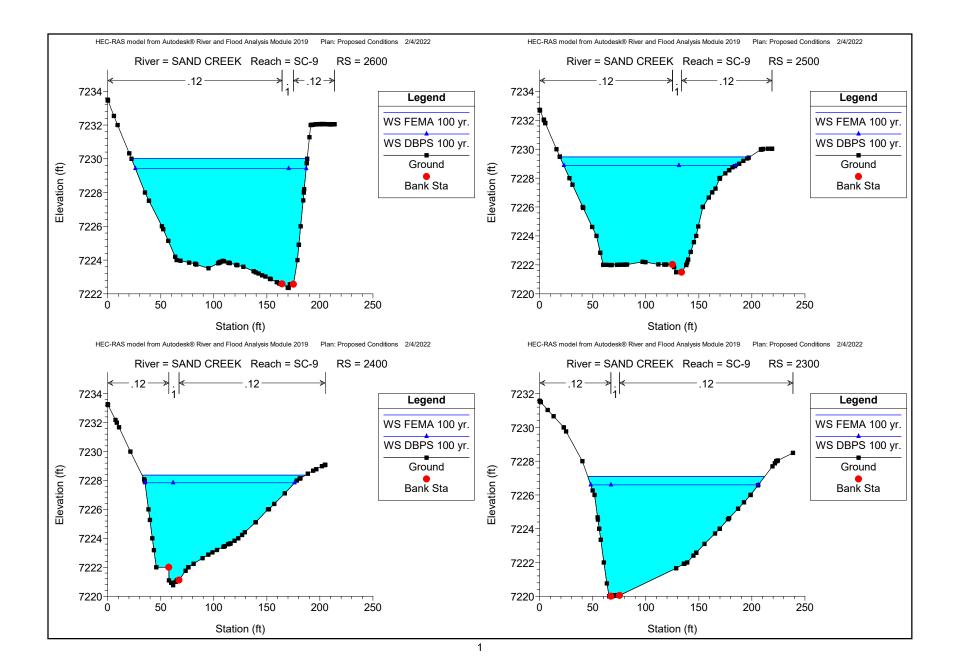


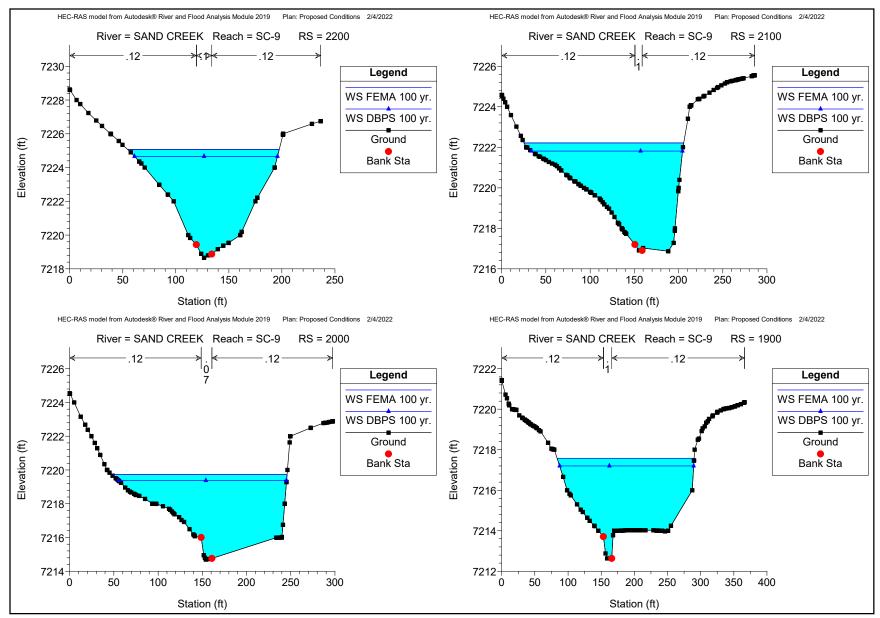


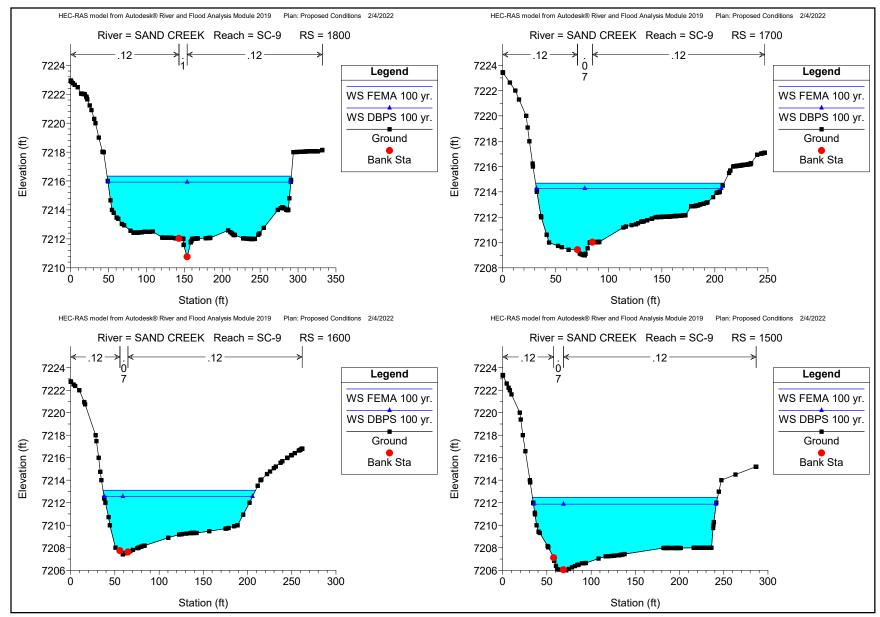


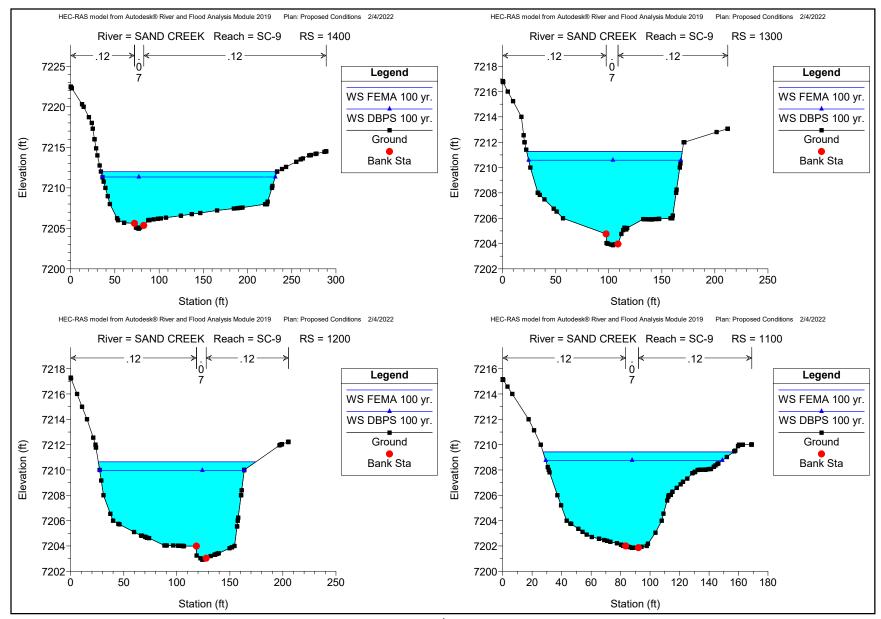

HEC-RAS P	lan: Ex. Cond.	River: Sand Creek	Reach: SC-9												
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	Max Chl Dpth	Hydr Radius	E.G. Elev	E.G. Slope	Vel Total	Shear Total	Flow Area	Top Width	Froude # XS
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(lb/sq ft)	(sq ft)	(ft)	ļ
SC-9	2600	FEMA 100 yr.	2600.00	7222.35	7230.04		7.69	5.42	7230.18	0.005197	2.85	1.76	913.30	165.94	
SC-9	2600	DBPS 100 yr.	2170.00	7222.35	7229.43		7.08	4.98	7229.55	0.005114	2.67	1.59	813.19	161.08	0.22
SC-9	2500	FEMA 100 yr.	2600.00	7221.49	7229.47		7.98	4.81	7229.63	0.006294	3.00	1.89	867.87	178.83	0.26
SC-9	2500	DBPS 100 yr.	2170.00	7221.49	7228.88		7.39	4.68	7229.02	0.005957	2.83	1.74	767.52	162.56	0.24
SC-9	2400	FEMA 100 yr.	2600.00	7220.76	7228.38		7.62	4.07	7228.69	0.014896	4.07	3.79	638.08	154.82	0.39
SC-9	2400	DBPS 100 yr.	2170.00	7220.76			7.09	3.91	7228.13		3.87	3.46	560.02	141.56	
SC-9	2300	FEMA 100 yr.	2600.00	7220.00	7227.17		7.17	4.26	7227.40	0.011310	3.60	3.01	722.83	168.17	0.33
SC-9	2300	DBPS 100 yr.	2170.00	7220.00	7226.70		6.70	4.00	7226.90	0.010742	3.36	2.68	645.48	159.81	0.31
															ļ
SC-9	2200	FEMA 100 yr.	2600.00	7218.65	7224.71		6.06	2.91	7225.65		5.30	5.18	490.82	168.37	0.80
SC-9	2200	DBPS 100 yr.	2170.00	7218.65	7224.32		5.67	2.67	7225.21	0.028458	5.08	4.74	426.97	159.51	0.81
SC-9	2100	EEMA 100 vm	2600.00	7216.91	7222.47		5.60	3.08	7222.96	0.022789	4.50	4.38	578.16	186.77	0.56
SC-9 SC-9	2100	FEMA 100 yr. DBPS 100 yr.	2170.00	7216.91	7222.47		5.60 5.13	2.76			4.30	4.30		177.30	0.56
30-9	2100	DBF3 100 yr.	2170.00	1210.91	1222.00		5.15	2.70	1222.49	0.023773	4.41	4.10	492.04	177.30	0.59
SC-9	2000	FEMA 100 yr.	2600.00	7214.69	7219.27	7219.25	4.58	2.71	7220.59	0.023302	5.07	3.95	512.34	187.76	0.98
SC-9	2000	DBPS 100 yr.	2170.00	7214.69	7218.96	7218.91	4.27	2.49	7220.13		4.77	3.44	455.40	181.96	
SC-9	1900	FEMA 100 yr.	2600.00	7212.63	7217.55		4.92	2.97	7217.86	0.024680	4.21	4.58	618.13	207.11	0.46
SC-9	1900	DBPS 100 yr.	2170.00	7212.63	7217.20		4.57	2.68	7217.48	0.025323	3.98	4.23	544.59	202.67	0.46
															ļ
SC-9	1800	FEMA 100 yr.	2600.00	7210.76			5.40	3.55	7216.30	0.010533	3.00	2.34	867.60	242.34	0.28
SC-9	1800	DBPS 100 yr.	2170.00	7210.76	7215.75		4.99	3.18	7215.88	0.010824	2.82	2.15	769.37	240.62	0.28
SC-9	1700	FEMA 100 yr.	2600.00	7208.98	7214.66		5.68	3.51	7215.03	0.015604	4.02	3.42	646.19	182.35	0.46
SC-9	1700	DBPS 100 yr.	2170.00	7208.98	7214.21		5.23	3.10	7210.00	0.016339	3.84	3.17	565.04	180.53	
			2110.00	1200.00			0.20	0.10		0.010000	0.01	0.11	000.01	100.00	0.10
SC-9	1600	FEMA 100 yr.	2600.00	7207.41	7213.24		5.83	3.85	7213.56	0.013840	3.86	3.33	673.00	173.53	0.41
SC-9	1600	DBPS 100 yr.	2170.00	7207.41	7212.62		5.21	3.35		0.016136	3.82	3.37	567.56	168.40	0.44
SC-9	1500	FEMA 100 yr.	2600.00	7206.04	7212.69		6.69	4.93	7212.81	0.004188	2.47	1.29	1051.22	210.36	
SC-9	1500	DBPS 100 yr.	2170.00	7206.04	7211.98		5.98	4.32	7212.10	0.004673	2.40	1.26	904.60	206.98	0.23
00.0	4.400	FENA 400 m	0000.00	7004.00	7040.00		7.00	5.00	7040.00	0.004044	0.50	4.00	4004.44	004.00	
SC-9 SC-9	1400 1400	FEMA 100 yr. DBPS 100 yr.	2600.00 2170.00	7204.96 7204.96	7212.26 7211.51		7.30 6.55	5.00 4.45	7212.39 7211.64		2.52 2.46	1.32 1.30	1031.11 882.00	204.28 196.51	0.23
30-9	1400	DBF3 100 yr.	2170.00	7204.90	7211.01		0.00	4.45	7211.04	0.004085	2.40	1.30	002.00	190.01	0.24
SC-9	1300	FEMA 100 yr.	2600.00	7203.87	7211.69		7.82	5.49	7211.90	0.005574	3.14	1.91	829.19	148.59	0.27
SC-9	1300	DBPS 100 yr.	2170.00	7203.87	7210.89		7.02	4.85	7211.00		3.05	1.86	712.30	144.96	
SC-9	1200	FEMA 100 yr.	2600.00	7202.91	7211.21		8.30	5.49	7211.39	0.004722	2.89	1.62	900.68	160.49	0.25
SC-9	1200	DBPS 100 yr.	2170.00	7202.91	7210.39		7.48	5.19	7210.55	0.004885	2.80	1.58	774.19	145.69	0.24
SC-9	1100	FEMA 100 yr.	2600.00	7201.85	7210.32		8.47	3.44	7210.73	0.009117	3.60	1.96	722.95	208.12	0.48
SC-9	1100	DBPS 100 yr.	2170.00	7201.85	7209.57		7.72	4.40	7209.91	0.008409	3.62	2.31	600.24	134.55	0.39
	4000	FENA 400		7 400	7000				7000				005 15		
SC-9	1000	FEMA 100 yr.	2600.00	7199.76	7209.27		9.51	4.28	7209.70	0.012015	4.09	3.21	635.18	144.59	0.44
SC-9	1000	DBPS 100 yr.	2170.00	7199.76	7208.51		8.75	4.21	7208.91	0.012048	4.07	3.17	532.92	122.92	0.43

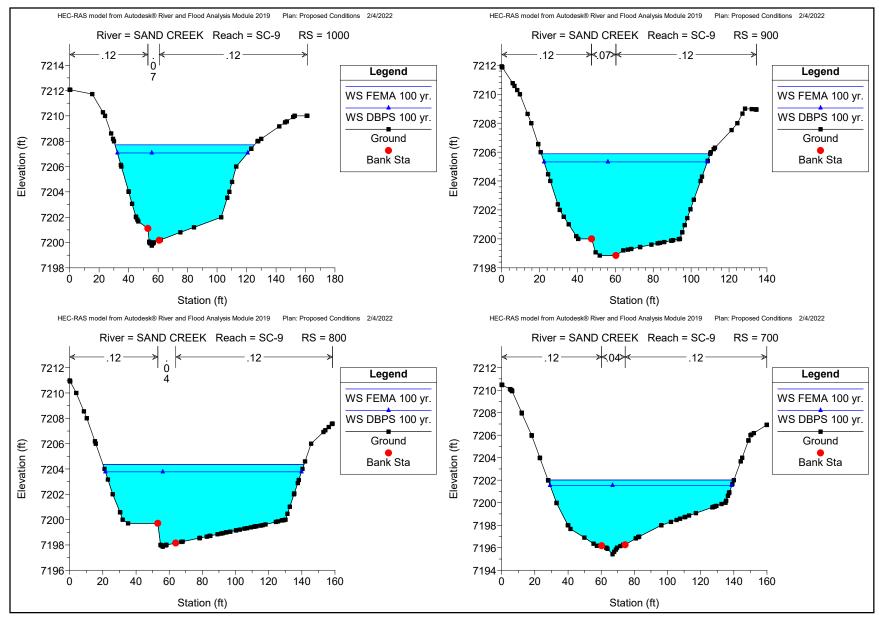

HEC-RAS Plan: Ex. Cond. River: Sand Creek Reach: SC-9

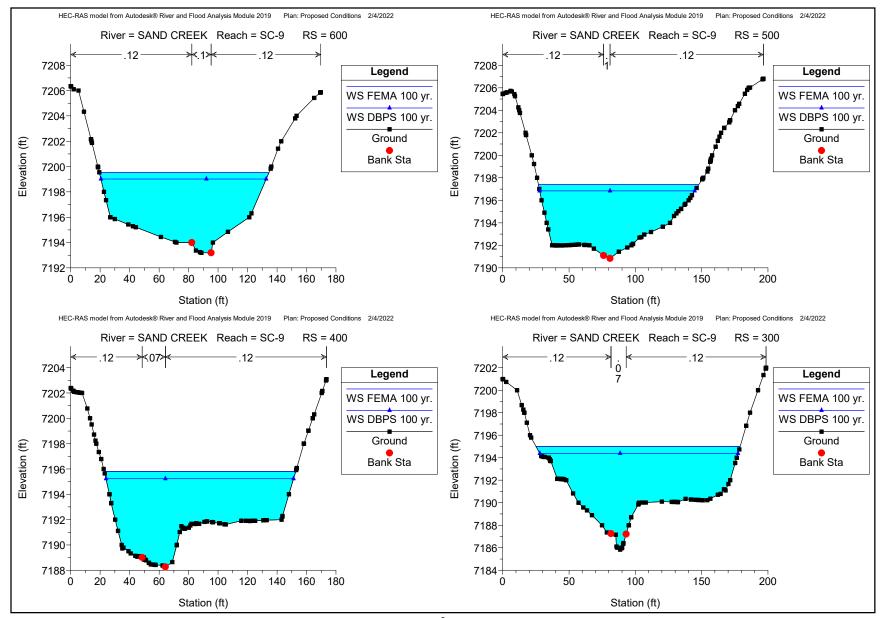

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	Max Chl Dpth	Hydr Radius	E.G. Elev	E.G. Slope	Vel Total	Shear Total	Flow Area	Top Width	Froude # XS
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(lb/sq ft)	(sq ft)	(ft)	
SC-9	900	FEMA 100 yr.	2600.00	7198.85	7207.76		8.91	4.77	7208.44	0.012804	4.88	3.81	533.05	109.31	0.53
SC-9	900	DBPS 100 yr.	2170.00	7198.85	7207.07		8.22	4.61	7207.67	0.012460	4.70	3.59	461.30	97.66	0.51
SC-9	800	FEMA 100 yr.	2600.00	7197.87	7205.34		7.47	4.02	7206.59	0.027271	6.52	6.85	398.94	97.06	0.78
SC-9	800	DBPS 100 yr.	2170.00	7197.87	7204.74		6.87	3.92	7205.86	0.026867	6.31	6.57	344.05	85.87	0.75
SC-9	700	FEMA 100 yr.	2600.00	7195.42	7201.76	7201.35	6.34	4.05	7203.28	0.040315	7.82	10.19	332.43	80.30	0.86
SC-9	700	DBPS 100 yr.	2170.00	7195.42	7201.31	7200.92	5.89	3.72	7202.65	0.038748	7.30	8.99	297.30	78.33	0.84
SC-9	600	FEMA 100 yr.	2600.00	7193.19	7199.53		6.34	4.29	7200.00	0.022766	5.18	6.09	501.48	115.45	0.46
SC-9	600	DBPS 100 yr.	2170.00	7193.19	7199.04		5.85	3.89	7199.46	0.022724	4.87	5.53	445.57	113.11	0.46
SC-9	500	FEMA 100 yr.	2600.00	7190.84	7197.18		6.34	4.16	7197.62	0.024773	5.16	6.43	503.76	119.34	0.46
SC-9	500	DBPS 100 yr.	2170.00	7190.84	7196.62		5.78	3.75	7197.03	0.026244	4.96	6.14	437.44	115.25	0.46
SC-9	400	FEMA 100 yr.	2600.00	7188.25	7195.91		7.66	4.78	7196.34	0.008189	4.07	2.45	638.96	130.44	0.42
SC-9	400	DBPS 100 yr.	2170.00	7188.25	7195.32		7.07	4.31	7195.72	0.008180	3.85	2.20	563.27	127.72	0.42
SC-9	300	FEMA 100 yr.	2600.00	7185.84	7194.84		9.00	4.52	7195.64	0.008073	3.70	2.28	703.58	152.77	0.59
SC-9	300	DBPS 100 yr.	2170.00	7185.84	7194.14		8.30	3.98	7194.97	0.008869	3.63	2.20	597.14	147.37	0.64
SC-9	200	FEMA 100 yr.	2600.00	7184.80	7192.65	7192.65	7.85	4.17	7194.62	0.010470	4.88	2.73	533.11	124.10	0.96
SC-9	200	DBPS 100 yr.	2170.00	7184.80	7192.19	7192.19	7.39	3.80	7193.95	0.009869	4.56	2.34	476.02	121.78	0.95
SC-9	100	FEMA 100 yr.	2600.00	7183.63	7189.18	7189.18	5.55	3.39	7190.74	0.011738	4.10	2.48	634.04	186.15	0.96
SC-9	100	DBPS 100 yr.	2170.00	7183.63	7188.47	7185.99	4.84	2.87	7190.25	0.015020	4.10	2.69	506.39	175.71	1.11

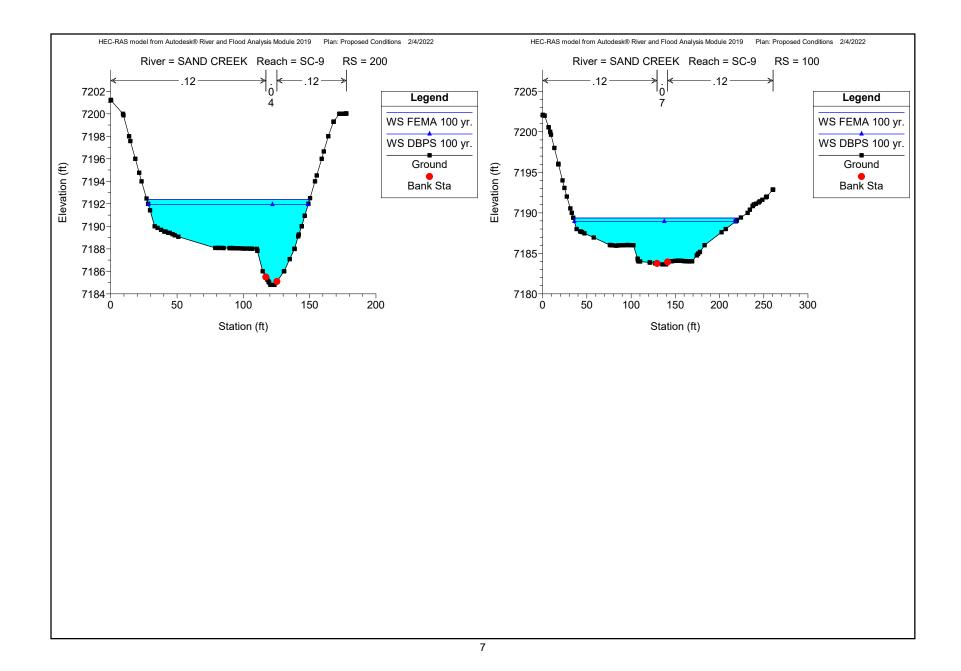

HEC-RAS Plan: Ex. Cond. River: Sand Creek Reach: SC-9 (Continued)

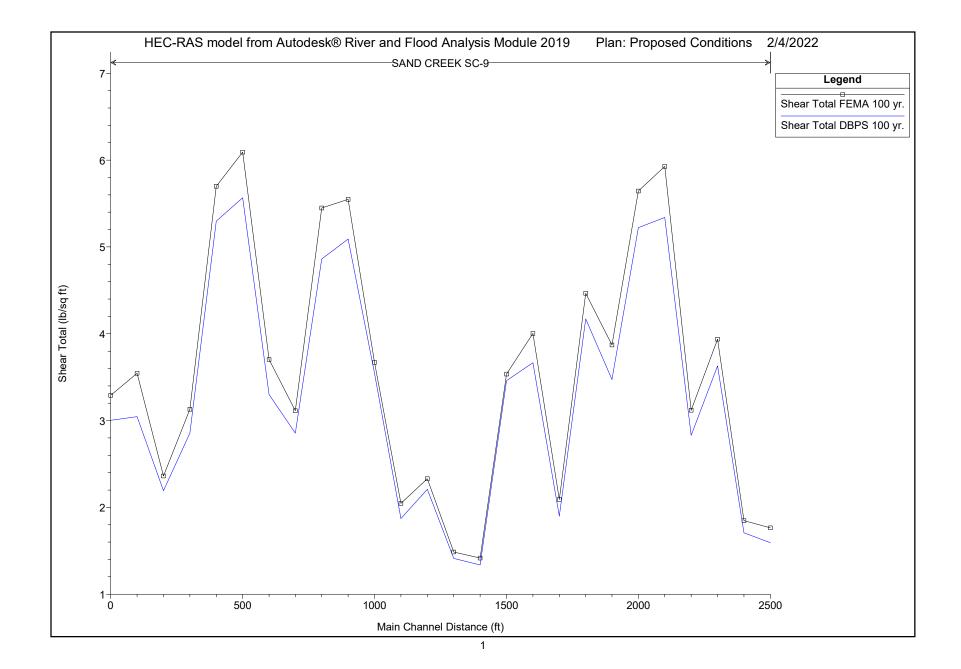


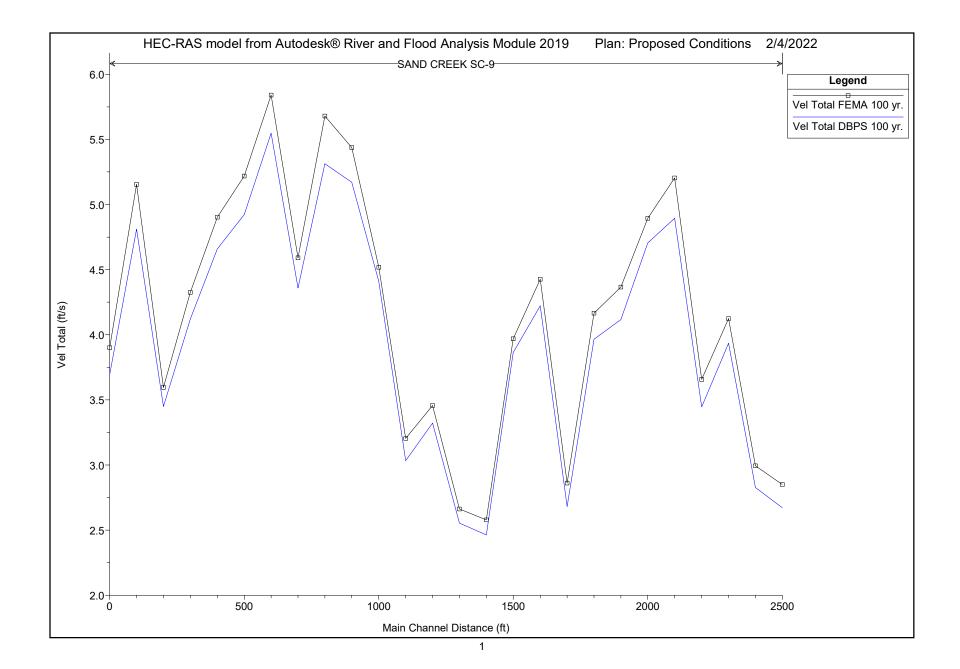











Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	Max Chl Dpth	Hydr Radius	E.G. Elev	E.G. Slope	Vel Total	Shear Total	Flow Area	Top Width	Froude # XS
riodon	- Turor old	110110	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(lb/sq ft)	(sq ft)	(ft)	110000 // //0
SC-9	2600	FEMA 100 yr.	2600.00	7222.35	7230.03	(11)	7.68	5.42	7230.17	0.005216	2.85	1.76	912.13	165.86	0.22
SC-9	2600	DBPS 100 yr.	2170.00	7222.35	7229.42		7.07	4.97	7229.54	0.005132	2.67	1.59	812.14	161.00	0.22
	2000		2.17 0.000	1222.000	1220112				1220.01	0.000102	2.01		012.11	101100	0.22
SC-9	2500	FEMA 100 yr.	2600.00	7221.49	7229.46		7.97	4.81	7229.62	0.006149	2.99	1.85	868.34	178.90	0.26
SC-9	2500	DBPS 100 yr.	2170.00	7221.49	7228.87		7.38	4.69	7229.01	0.005833	2.83	1.71	767.75	162.25	0.24
		Í Í													
SC-9	2400	FEMA 100 yr.	2600.00	7220.76	7228.37		7.61	4.02	7228.69	0.015678	4.12	3.94	630.50	154.16	0.39
SC-9	2400	DBPS 100 yr.	2170.00	7220.76	7227.84		7.08	3.84	7228.12	0.015132	3.93	3.63	551.52	141.06	0.38
SC-9	2300	FEMA 100 yr.	2600.00	7220.00	7227.09		7.09	4.22	7227.33	0.011823	3.66	3.12	710.81	166.69	0.33
SC-9	2300	DBPS 100 yr.	2170.00	7220.00	7226.59		6.59	3.95	7226.80	0.011472	3.45	2.83	629.83	157.86	0.32
SC-9	2200	FEMA 100 yr.	2600.00	7218.65	7225.07		6.42	3.48	7225.61	0.027276	5.20	5.93	499.67	142.79	0.56
SC-9	2200	DBPS 100 yr.	2170.00	7218.65	7224.66		6.01	3.28	7225.14	0.026113	4.89	5.34	443.36	134.70	0.54
															<u> </u>
SC-9	2100	FEMA 100 yr.	2600.00	7216.91	7222.21		5.34	2.92	7222.68	0.030918	4.89	5.64	531.22	180.50	0.56
SC-9	2100	DBPS 100 yr.	2170.00	7216.91	7221.82		4.95	2.68	7222.25	0.031233	4.71	5.22	461.14	171.07	0.57
SC-9	2000	FEMA 100 yr.	2600.00	7214.69	7219.73		5.03	2.98	7220.17	0.020831	4.37	3.87	595.52	198.58	0.54
SC-9	2000	DBPS 100 yr.	2170.00	7214.69	7219.37		4.68	2.75	7219.77	0.020197	4.12	3.47	527.09	189.99	0.53
															L
SC-9	1900	FEMA 100 yr.	2600.00	7212.63	7217.58		4.95	3.01	7217.88	0.023799	4.17	4.47	624.18	206.61	0.45
SC-9	1900	DBPS 100 yr.	2170.00	7212.63	7217.20		4.57	2.69	7217.48	0.024809	3.97	4.17	547.21	202.26	0.45
										/ -					
SC-9	1800	FEMA 100 yr.	2600.00	7210.76	7216.34		5.58	3.71	7216.47	0.009019	2.86	2.09	908.63	243.13	0.26
SC-9	1800	DBPS 100 yr.	2170.00	7210.76	7215.93		5.17	3.34	7216.05	0.009117	2.68	1.90	809.63	241.35	0.26
00.0	1700	FEMA 400	0000.00	7000.00	7044.00		5.74	0.00	7045.40	0.040504	4.40	4.00	507.45	477.55	0.55
SC-9 SC-9	1700 1700	FEMA 100 yr.	2600.00 2170.00	7208.98	7214.69		5.71	3.29 2.93	7215.18	0.019524	4.43	4.00	587.45 514.00	177.55	0.55
50-9	1700	DBPS 100 yr.	2170.00	7208.98	7214.27		5.29	2.93	7214.74	0.020045	4.22	3.07	514.00	174.36	0.56
SC-9	1600	FEMA 100 yr.	2600.00	7207.41	7213.11		5.69	3.77	7213.44	0.015008	3.97	3.53	655.12	172.43	0.42
SC-9 SC-9	1600	DBPS 100 yr.	2170.00	7207.41	7213.11		5.15	3.32	7213.44	0.015008	3.86	3.33	561.57	167.86	0.42
00-3	1000		2170.00	7207.41	7212.50		5.15	0.02	7212.00	0.010000	5.00	3.40	301.37	107.00	0.44
SC-9	1500	FEMA 100 yr.	2600.00	7206.04	7212.48		6.48	4.76	7212.61	0.004766	2.58	1.42	1008.13	209.34	0.23
SC-9	1500	DBPS 100 yr.	2170.00	7206.04	7212.40		5.87	4.22		0.005072	2.46	1.34	881.05	206.53	
SC-9	1400	FEMA 100 yr.	2600.00	7204.96	7211.99		7.03	4.86	7212.13	0.004897	2.66	1.49	976.83	199.08	0.24
SC-9	1400	DBPS 100 yr.	2170.00	7204.96	7211.34		6.38	4.31	7211.48	0.005256	2.55	1.41	849.45	195.59	0.25
		, í													
SC-9	1300	FEMA 100 yr.	2600.00	7203.87	7211.26		7.39	5.04	7211.52	0.007407	3.46	2.33	752.09	146.65	0.32
SC-9	1300	DBPS 100 yr.	2170.00	7203.87	7210.58		6.71	4.48	7210.83	0.007901	3.32	2.21	653.32	143.55	0.33
SC-9	1200	FEMA 100 yr.	2600.00	7202.91	7210.64		7.73	5.34	7210.85	0.006138	3.20	2.05	811.55	148.48	0.28
SC-9	1200	DBPS 100 yr.	2170.00	7202.91	7209.97		7.06	5.13	7210.15	0.005843	3.03	1.87	715.53	136.21	0.26
SC-9	1100	FEMA 100 yr.	2600.00	7201.85	7209.43		7.58	4.39	7209.95	0.013385	4.52	3.67	575.49	129.29	0.49
SC-9	1100	DBPS 100 yr.	2170.00	7201.85	7208.76		6.91	4.05	7209.26	0.014009	4.41	3.55	492.17	119.82	0.49

HEC-RAS Plan: Proposed Con River: SAND CREEK Reach: SC-9

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	Max Chl Dpth	Hydr Radius	E.G. Elev	E.G. Slope	Vel Total	Shear Total	Flow Area	Top Width	Froude # XS
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(lb/sq ft)	(sq ft)	(ft)	
SC-9	1000	FEMA 100 yr.	2600.00	7199.76	7207.72		7.96	4.91	7208.40	0.018085	5.44	5.55	478.22	94.69	0.52
SC-9	1000	DBPS 100 yr.	2170.00	7199.76	7207.08		7.32	4.61	7207.69	0.017687	5.17	5.09	419.69	88.56	0.51
SC-9	900	FEMA 100 yr.	2600.00	7198.85	7205.88		7.03	5.01	7206.64	0.017409	5.68	5.45	457.84	89.09	0.54
SC-9	900	DBPS 100 yr.	2170.00	7198.85	7205.32		6.47	4.63	7205.98	0.016810	5.31	4.86	408.42	86.16	0.53
SC-9	800	FEMA 100 yr.	2600.00	7197.87	7204.35		6.48	4.58	7205.27	0.010887	4.59	3.11	566.29	121.26	0.63
SC-9	800	DBPS 100 yr.	2170.00	7197.87	7203.78		5.91	4.13	7204.62	0.011068	4.36	2.86	497.86	118.32	
SC-9	700	FEMA 100 yr.	2600.00	7195.42	7202.02	7202.02	6.60	3.92	7203.92	0.015124	5.84	3.70	445.18	112.09	0.98
SC-9	700	DBPS 100 yr.	2170.00	7195.42	7201.54	7201.54	6.12	3.53	7203.27	0.014979	5.55	3.30	391.16	109.62	0.99
SC-9	600	FEMA 100 yr.	2600.00	7193.19	7199.52		6.33	4.27	7200.00	0.022874	5.22	6.09	498.27	115.09	0.47
SC-9	600	DBPS 100 yr.	2170.00	7193.19	7199.01		5.82	3.88	7199.44	0.022996	4.92	5.57	440.84	112.19	
SC-9	500	FEMA 100 yr.	2600.00	7190.84	7197.39		6.55	4.32	7197.79	0.021112	4.90	5.70	530.27	120.86	0.43
SC-9	500	DBPS 100 yr.	2170.00	7190.84	7196.85		6.00	3.93	7197.21	0.021590	4.66	5.30	465.67	116.89	0.43
SC-9	400	FEMA 100 yr.	2600.00	7188.26	7195.80		7.55	4.52	7196.31	0.011095	4.33	3.13	601.08	129.94	0.47
SC-9	400	DBPS 100 yr.	2170.00	7188.26	7195.23		6.97	4.05	7195.70	0.011300	4.12	2.86	526.67	127.30	0.48
SC-9	300	FEMA 100 yr.	2600.00	7185.84	7195.00		9.16	4.61	7195.35	0.008203	3.60	2.36	722.98	153.91	0.39
SC-9	300	DBPS 100 yr.	2170.00	7185.84	7194.39		8.55	4.13	7194.72	0.008492	3.45	2.19	629.13	149.48	0.40
SC-9	200	FEMA 100 yr.	2600.00	7184.80	7192.37	7192.37	7.57	4.04	7194.16	0.014070	5.15	3.55	504.40	122.72	0.93
SC-9	200	DBPS 100 yr.	2170.00	7184.80	7191.93	7191.93	7.13	3.68	7193.55	0.013257	4.81	3.04	451.01	120.51	0.93
SC-9	100	FEMA 100 yr.	2600.00	7183.63	7189.36	7187.84	5.73	3.51	7189.73	0.015012	3.90	3.29	666.60	188.93	0.46
SC-9	100	DBPS 100 yr.	2170.00	7183.63	7188.93	7185.98	5.30	3.20	7189.27	0.015018	3.69	3.00	587.34	182.54	0.46

HEC-RAS Plan: Proposed Con River: SAND CREEK Reach: SC-9 (Continued)

SECTION 404 PERMTTING WETLAND IMPACT MAP (CORE CONSULTANTS REPORT)

September 22, 2021

Loren Moreland Classic Homes 2138 Flying Horse Club Dr. Colorado Springs, CO 80921

RE: Filing 2- Retreat at Timber Ridge- Anticipated Wetland and Stream Mitigation

Dear Mr. Moreland:

At your request, CORE Consultants, Inc. (CORE) evaluated the proposed temporary and permanent impacts to Sand Creek and its' associated tributaries and wetland features for the Retreat at Timber Ridge-Filing 2 project. Based on the Filing 2 design files Classic Consulting (Classic) provided CORE on September 9, 2021 and follow up discussions with Marc Whorton (Classic) regarding the nature of the proposed impacts, CORE determined that 0.049 acres of permanent wetland impacts and 0.040 acres of temporary wetland impacts are proposed. Additionally, construction of Filing 2 will require 0.073 acres of permanent stream channel impacts and 0.009 acres of temporary stream channel impacts.

General Condition 23 of the 2021 Nationwide Permits issued by the United States Army Corps of Engineers (USACE) identifies the appropriate and practicable mitigation necessary to ensure that the individual and cumulative adverse environmental effects are no more than minimal. Per General Condition 23(c), compensatory mitigation at a minimum one-for-one ratio will be required for all wetland losses that exceed 1/10-acre (0.1 acres). Because Filing 2 of this project proposes less than 0.1 acres of permanent wetland impacts (wetland losses), we do not anticipate that the USACE will require compensatory mitigation for wetlands. Per General Condition 23(d), compensatory mitigation at a minimum one-for-one ratio will be required for all losses of stream bed that exceed 3/100-acre (0.03 acres) and require preconstruction notification. Because Filing 2 of this project proposes 0.073 acres of permanent stream impacts, we anticipate that the USACE will require compensatory mitigation for streams.

For stream mitigation, the USACE now requires applicants complete a Stream Quantification Tool to determine the amount of mitigation required based on the pre-construction functionality of the stream (reach hydrology and hydraulics, geomorphology, physicochemical, and biology). CORE is working with the USACE as well as WaterVation, PLLC to determine the mitigation required and develop a mitigation approach that satisfies the USACE's requirements for stream rehabilitation, enhancement, and/or preservation as deemed appropriate for this project area.

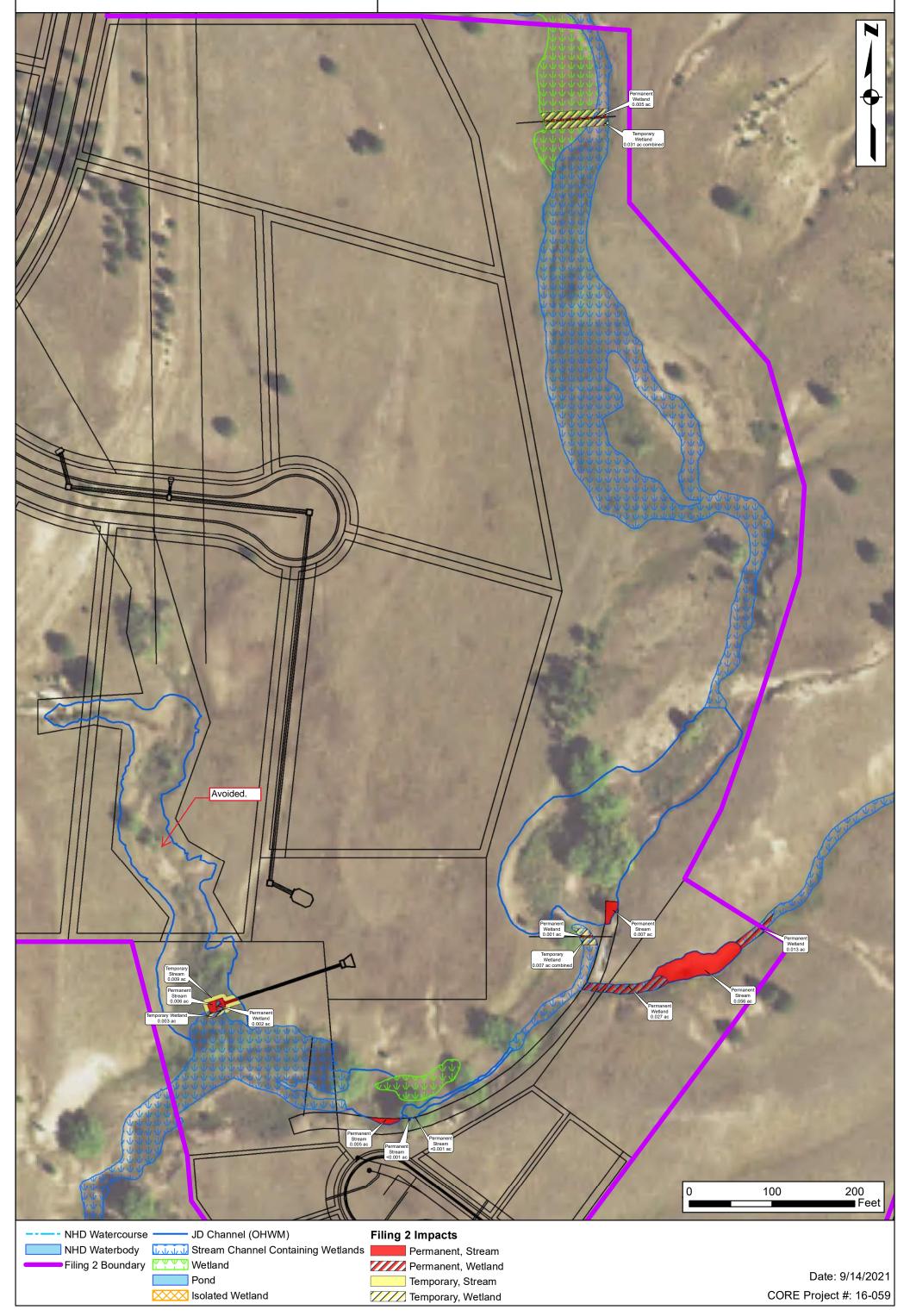
Sincerely, **CORE Consultants, Inc.**

atalie x

Natalie Graves Natural Resources Project Manager

Attachments- Filing 2- Proposed Impacts Map

3473 South Broadway Englewood, Colorado 80113 303.703.4444 LIVEYOURCORE.COM



LAND DEVELOPMENT ENERGY PUBLIC INFRASTRUCTURE 3473 S. BROADWAY ENGLEWOOD, CO 80113 303.703.4444

Retreat at Timber Ridge

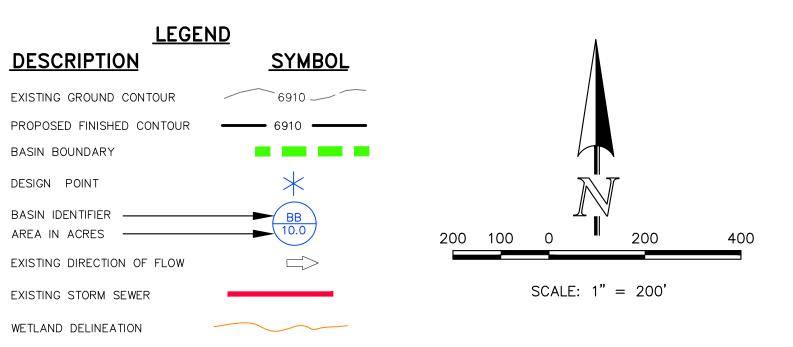
Filing 2 Wetland Impact Map

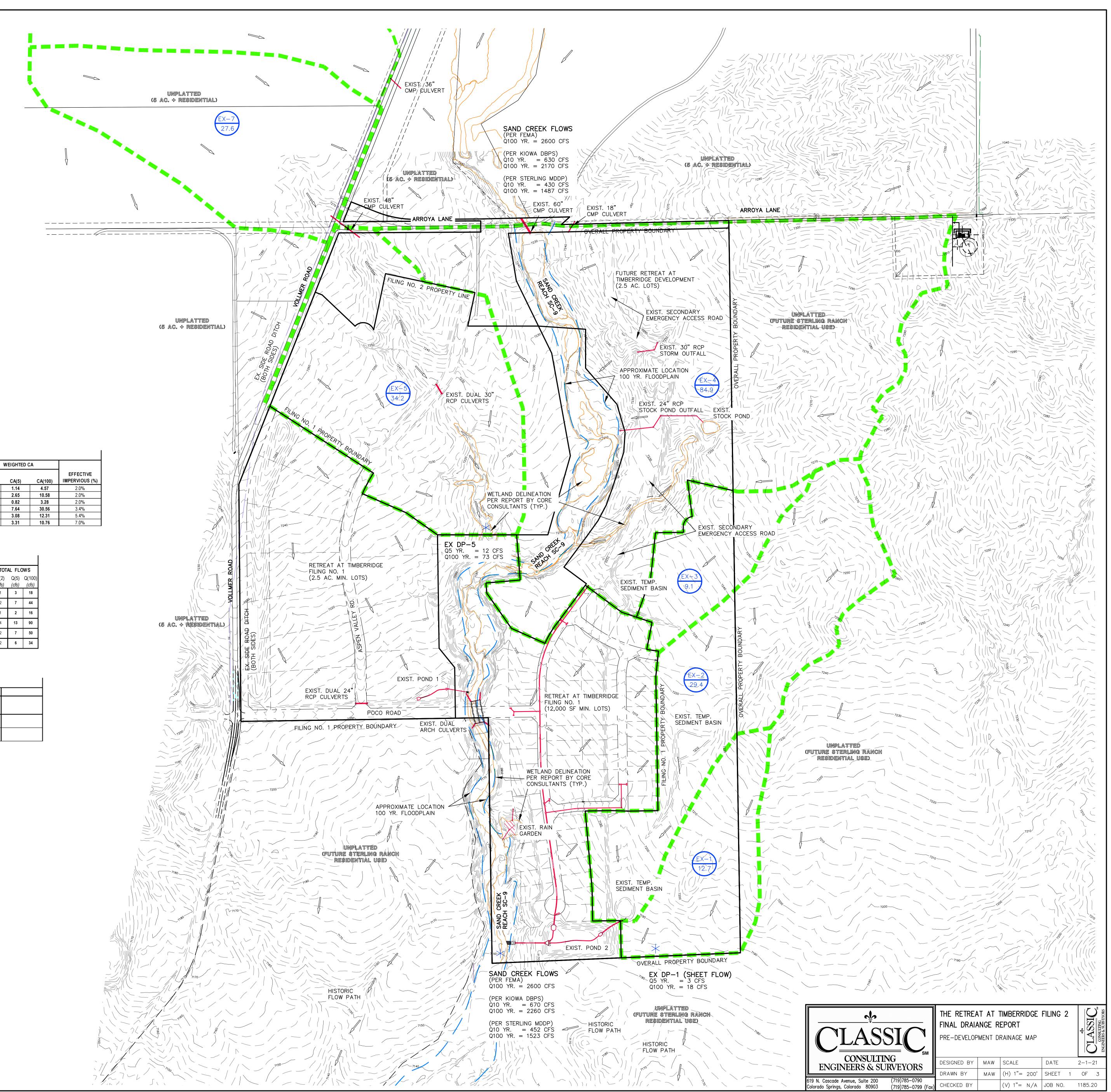
El Paso County, Colorado

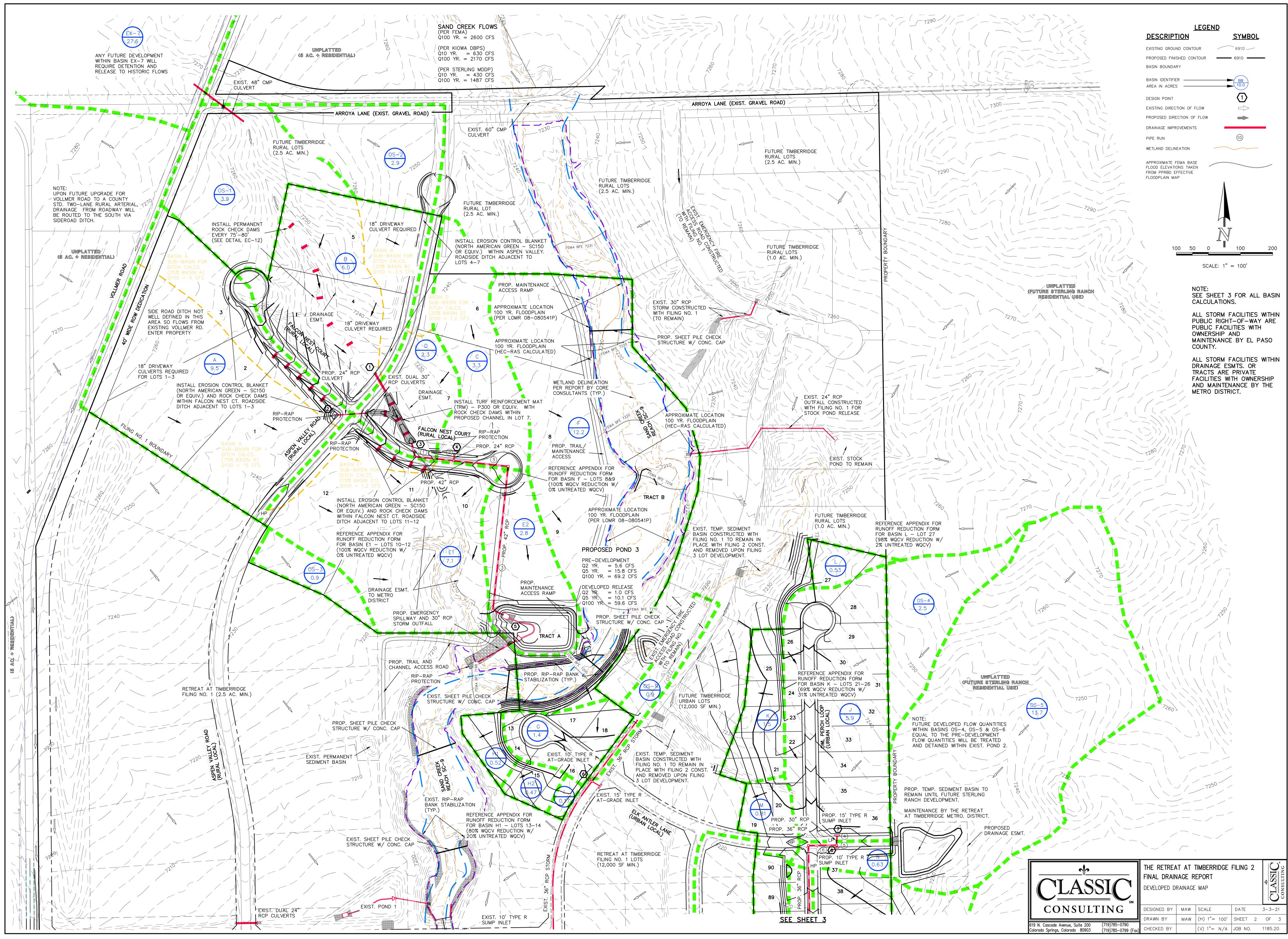
DRAINAGE MAPS

:

FINAL DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY

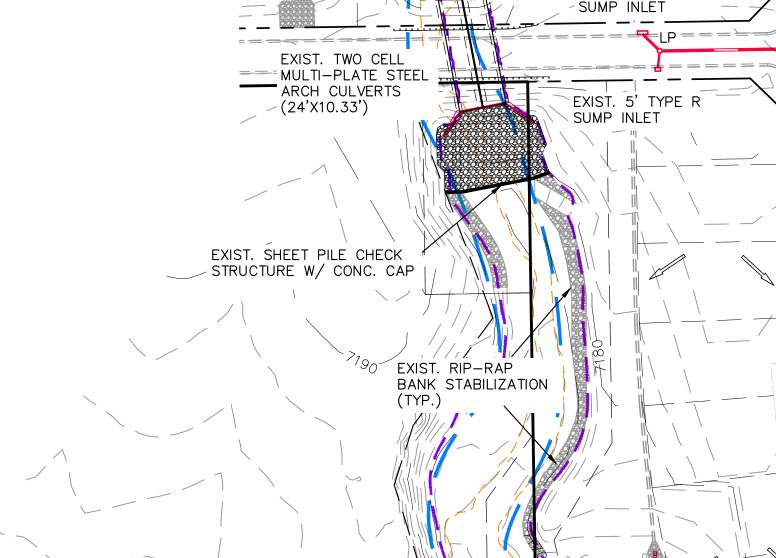

		IMP	ERVIOUS A	REA / STRE	ETS	LAN	DSCAPE/D	EVELOPED /	AREAS	V	VEIGHTED			WEIGHTED
	TOTAL													
BASIN	AREA (AC)	AREA (AC)	C(2)	C(5)	C(100)	AREA (AC)	C(2)	C(5)	C(100)	C(2)	C(5)	C(100)	CA(2)	CA(5)
EX-1	12.7	0.00	0.89	0.90	0.96	12.7	0.05	0.12	0.39	0.03	0.09	0.36	0.38	1.14
EX-2	29.4	0.00	0.89	0.90	0.96	29.4	0.05	0.12	0.39	0.03	0.09	0.36	0.88	2.65
EX-3	9.1	0.00	0.89	0.90	0.96	9.1	0.05	0.12	0.39	0.03	0.09	0.36	0.27	0.82
EX-4	84.9	1.50	0.57	0.59	0.70	83.4	0.05	0.12	0.39	0.03	0.09	0.36	2.55	7.64
EX-5	34.2	1.50	0.57	0.59	0.70	32.7	0.05	0.12	0.39	0.03	0.09	0.36	1.03	3.08
EX-7	27.6	0.00	0.89	0.90	0.96	27.6	0.05	0.12	0.39	0.05	0.12	0.39	1.38	3.31


FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY

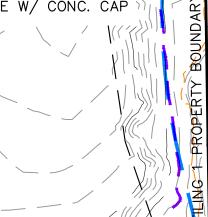

		WEIGHTEI	כ		OVER	LAND		STREE	et / Ch	IANNEL	FLOW	Тс	IN	ITENSI	ΓY	TOT	AL FLC	W
BASIN	CA(2)	CA(5)	CA(100)	C(5)	Length <i>(ft)</i>	Height <i>(ft)</i>	Tc (<i>min)</i>	Length <i>(ft)</i>	Slope (%)	Velocity (fps)	Tc (<i>min</i>)	TOTAL <i>(min)</i>	l(2) (in/hr)	l(5) (in/hr)	l(100) (in/hr)	Q(2) (cfs)	Q(5) <i>(cf</i> s)	Q(((
EX-1	0.38	1.14	4.57	0.12	300	10	20.6	1000	2.0%	1.4	11.8	32.4	1.90	2.37	3.97	1	3	
EX-2	0.88	2.65	10.58	0.12	300	10	20.6	800	2.0%	1.4	9.4	30.0	1.99	2.48	4.16	2	7	
EX-3	0.27	0.82	3.28	0.12	300	9	21.3	200	2.0%	1.4	2.4	23.7	2.27	2.84	4.76	1	2	
EX-4	2.55	7.64	30.56	0.12	300	12	19.4	2500	2.0%	1.4	29.5	48.9	1.41	1.75	2.93	4	13	
EX-5	1.03	3.08	12.31	0.12	300	12	19.4	1200	3.0%	1.7	11.5	30.9	1.95	2.43	4.09	2	7	
EX-7	1.38	3.31	10.76	0.12	300	12	19.4	1500	2.0%	1.0	25.3	44.6	1.51	1.88	3.16	2	6	

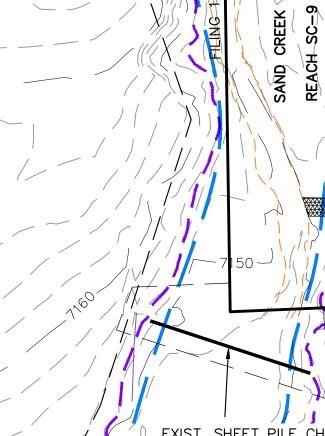
FINAL DRAINAGE REPORT ~ SURFACE ROUTING SUMMARY

					Inten	sity	Fl	ow	
Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	l(5)	I(100)	Q(5)	Q(100)	
EX DP-5	EX-5, EX-7	6.39	23.08	44.6	1.88	3.16	12	73	
EX DP-1	EX-1	1.14	4.57	32.4	2.37	3.97	3	18	

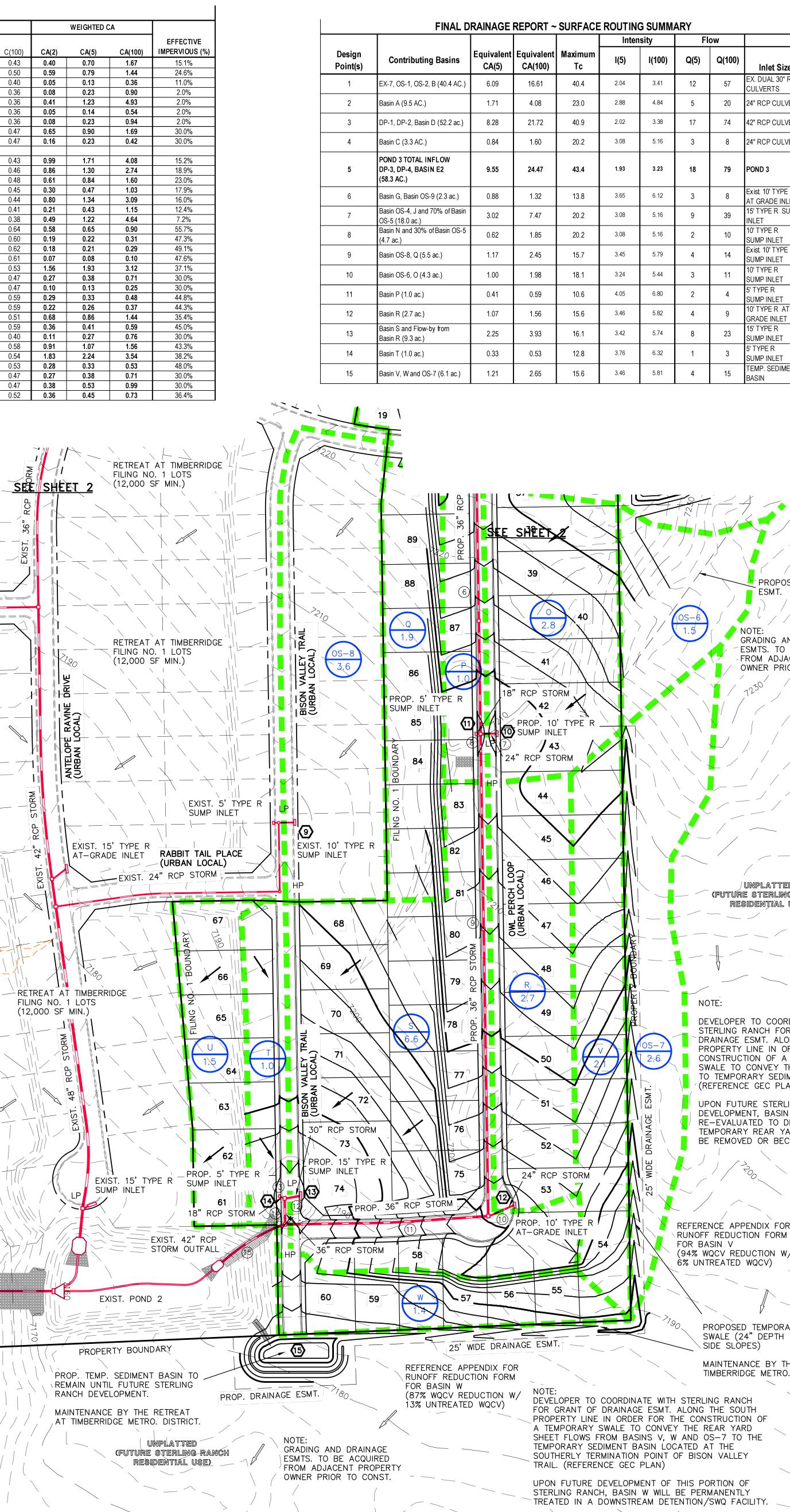



ED BY	MAW	SCALE	DATE	3-3-21
ΒY	MAW	(H) 1"= 100'	SHEET 2	OF 3
ED BY		(V) 1"= N/A	JOB NO.	1185.20


		IMPE	RVIOUS A	REA / STRE	ETS	LANI	DSCAPE/DI	EVELOPED A	AREAS	١	VEIGHTED			WEIGHTED	CA	
BASIN	TOTAL AREA (AC)	AREA (AC)	C(2)	C(5)	C(100)	AREA (AC)	C(2)	C(5)	C(100)	C(2)	C(5)	C(100)	CA(2)	CA(5)	CA(100)	
OS-1	3.9	0.20	0.89	0.90	0.96	3.7	0.06	0.14	0.40	0.10	0.18	0.43	0.40	0.70	1.67	Γ
OS-2	2.9	0.50	0.89	0.90	0.96	2.4	0.06	0.14	0.40	0.20	0.27	0.50	0.59	0.79	1.44	F
OS-3	0.9	0.00	0.89	0.90	0.96	0.9	0.06	0.14	0.40	0.06	0.14	0.40	0.05	0.13	0.36	F
OS-4	2.5	0.00	0.89	0.90	0.96	2.5	0.03	0.09	0.36	0.03	0.09	0.36	0.08	0.23	0.90	
OS-5	13.7	0.00	0.89	0.90	0.96	13.7	0.03	0.09	0.36	0.03	0.09	0.36	0.41	1.23	4.93	
OS-6	1.5	0.00	0.89	0.90	0.96	1.5	0.03	0.09	0.36	0.03	0.09	0.36	0.05	0.14	0.54	Γ
OS-7	2.6	0.00	0.89	0.90	0.96	2.6	0.03	0.09	0.36	0.03	0.09	0.36	0.08	0.23	0.94	
OS-8	3.6	0.00	0.89	0.90	0.96	3.6	0.18	0.25	0.47	0.18	0.25	0.47	0.65	0.90	1.69	
OS-9	0.9	0.00	0.89	0.90	0.96	0.9	0.18	0.25	0.47	0.18	0.25	0.47	0.16	0.23	0.42	F
Α	9.5	0.50	0.89	0.90	0.96	9.00	0.06	0.14	0.40	0.10	0.18	0.43	0.99	1.71	4.08	
В	6.0	0.60	0.89	0.90	0.96	5.40	0.06	0.14	0.40	0.14	0.22	0.46	0.86	1.30	2.74	
С	3.3	0.50	0.89	0.90	0.96	2.80	0.06	0.14	0.40	0.19	0.26	0.48	0.61	0.84	1.60	Γ
D	2.3	0.20	0.89	0.90	0.96	2.10	0.06	0.14	0.40	0.13	0.21	0.45	0.30	0.47	1.03	Γ
E1	7.1	0.45	0.89	0.90	0.96	6.65	0.06	0.14	0.40	0.11	0.19	0.44	0.80	1.34	3.09	
E2	2.8	0.05	0.89	0.90	0.96	2.75	0.06	0.14	0.40	0.07	0.15	0.41	0.21	0.43	1.15	
F	12.2	0.00	0.89	0.90	0.96	12.20	0.04	0.10	0.38	0.04	0.10	0.38	0.49	1.22	4.64	
G	1.4	0.60	0.89	0.90	0.96	0.80	0.06	0.14	0.40	0.42	0.47	0.64	0.58	0.65	0.90	Γ
H1	0.5	0.15	0.89	0.90	0.96	0.37	0.15	0.22	0.46	0.36	0.42	0.60	0.19	0.22	0.31	Γ
H2	0.5	0.15	0.89	0.90	0.96	0.32	0.15	0.22	0.46	0.39	0.44	0.62	0.18	0.21	0.29	
	0.17	0.05	0.89	0.90	0.96	0.12	0.18	0.25	0.47	0.39	0.44	0.61	0.07	0.08	0.10	
J	5.90	0.70	0.89	0.90	0.96	5.20	0.18	0.25	0.47	0.26	0.33	0.53	1.56	1.93	3.12	
Κ	1.50	0.00	0.89	0.90	0.96	1.50	0.18	0.25	0.47	0.18	0.25	0.47	0.27	0.38	0.71	
L	0.53	0.00	0.89	0.90	0.96	0.53	0.18	0.25	0.47	0.18	0.25	0.47	0.10	0.13	0.25	
М	0.81	0.20	0.89	0.90	0.96	0.61	0.18	0.25	0.47	0.36	0.41	0.59	0.29	0.33	0.48	
Ν	0.63	0.15	0.89	0.90	0.96	0.48	0.18	0.25	0.47	0.35	0.40	0.59	0.22	0.26	0.37	Γ
0	2.80	0.25	0.89	0.90	0.96	2.55	0.18	0.25	0.47	0.24	0.31	0.51	0.68	0.86	1.44	Γ
Р	1.00	0.25	0.89	0.90	0.96	0.75	0.18	0.25	0.47	0.36	0.41	0.59	0.36	0.41	0.59	Γ
Q	1.90	0.00	0.89	0.90	0.96	1.90	0.06	0.14	0.40	0.06	0.14	0.40	0.11	0.27	0.76	
R	2.70	0.60	0.89	0.90	0.96	2.10	0.18	0.25	0.47	0.34	0.39	0.58	0.91	1.07	1.56	Γ
S	6.60	0.90	0.89	0.90	0.96	5.70	0.18	0.25	0.47	0.28	0.34	0.54	1.83	2.24	3.54	Γ
Т	1.00	0.30	0.89	0.90	0.96	0.70	0.02	0.08	0.35	0.28	0.33	0.53	0.28	0.33	0.53	
U	1.50	0.00	0.89	0.90	0.96	1.50	0.18	0.25	0.47	0.18	0.25	0.47	0.27	0.38	0.71	
V	2.10	0.00	0.89	0.90	0.96	2.10	0.18	0.25	0.47	0.18	0.25	0.47	0.38	0.53	0.99	Γ
W	1.40	0.15	0.89	0.90	0.96	1.25	0.18	0.25	0.47	0.26	0.32	0.52	0.36	0.45	0.73	Γ



DI FUND I ____



EXIST. SHEET PILE CHECK STRUCTURE W/ CONC. CAP

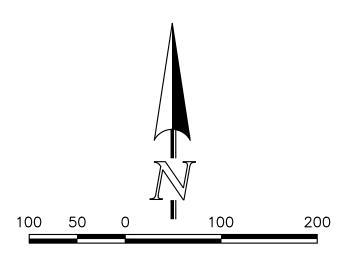
EXIST. 10' TYPE R

SUMP INLET

SUMP INLET

1 /

FI	ow	
)	Q(100)	Inlet Size
	57	EX. DUAL 30" RCP CULVERTS
	20	24" RCP CULVERT
	74	42" RCP CULVERT
	8	24" RCP CULVERT
	79	POND 3
	8	Exist 10' TYPE R AT GRADE INLET
	39	15' TYPE R SUMP INLET
	10	10' TYPE R SUMP INLET
	14	Exist. 10' TYPE R SUMP INLET
	11	10' TYPE R SUMP INLET
	4	5' TYPE R SUMP INLET
	9	10' TYPE R AT GRADE INLET
	23	15' TYPE R SUMP INLET
	3	5' TYPE R SUMP INLET
	15	TEMP. SEDIMENT BASIN


					Inten	sity	FI	ow	
Pipe Run	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	I(5)	l(100)	Q(5)	Q(100)	Pipe Size*
1	DP-3	8.28	21.72	40.9	2.02	3.38	17	74	42" RCP
2	DP-4	0.84	1.60	20.2	3.08	5.16	3	8	24" RCP
3	PR-1, PR-2	9.12	23.32	40.9	2.02	3.38	18	79	42" RCP
4	DP-7	3.02	7.47	20.2	3.08	5.16	9	39	30" RCP
5	DP-8	0.62	1.85	20.2	3.08	5.16	2	10	24" RCP
6	PR-1, PR-2	3.64	9.32	20.8	3.03	5.09	11	47	36" RCP
7	DP-10	1.00	1.98	10.6	4.05	6.80	4	13	24" RCP
8	DP-11	0.41	0.59	13.8	3.65	6.12	2	4	18" RCP
9	PR-3, PR-4, PR-5	5.05	11.89	21.8	2.96	4.97	15	59	36" RCP
10	DP-12 Pickup	1.05	1.17	15.6	3.46	5.82	4	7	24" RCP
11	PR-6, PR-7	6.11	13.06	22.2	2.93	4.92	18	64	36" RCP
12	DP-13	2.25	3.93	16.1	3.42	5.74	8	23	30" RCP
13	DP-14	0.33	0.53	16.3	3.40	5.70	1	3	18" RCP
14	PR-9, PR-10	2.57	4.47	16.3	3.40	5.70	9	25	30" RCP
15	PR-8, PR-11	8.68	17.53	22.7	2.90	4.87	25	85	42" RCP

			FIN	AL DF	RAINA	GE R	EPOR	RT ~ B	ASIN	RUNC)FF S	UMM	ARY		
		WEIGHTE	D		OVER	RLAND		STRE	et / Ch	ANNEL	FLOW	Тс	IN	NTENSI	TY
BASIN	CA(2)	CA(5)	CA(100)	C(5)	Length <i>(ft)</i>	Height <i>(ft)</i>	Tc (<i>min)</i>	Length <i>(ft)</i>	Slope <i>(%)</i>	Velocity (fps)	Тс <i>(min)</i>	TOTAL (min)	l(2) (in/hr)	l(5) (in/hr)	l(100) (in/hr)
OS-1	0.40	0.70	1.67	0.14	300	10.5	19.9					19.9	2.48	3.10	5.20
OS-2	0.59	0.79	1.44	0.14	300	8	21.7	100	2.0%	1.4	1.2	22.9	2.31	2.89	4.84
OS-3	0.05	0.13	0.36	0.14	300	12	19.0					19.0	2.53	3.17	5.32
OS-4	0.08	0.23	0.90	0.09	300	12	20.0					20.0	2.47	3.09	5.19
OS-5	0.41	1.23	4.93	0.09	300	12	20.0					20.0	2.47	3.09	5.19
OS-6	0.05	0.14	0.54	0.09	275	13	18.1					18.1	2.59	3.24	5.44
OS-7	0.08	0.23	0.94	0.09	250	16	15.6					15.6	2.76	3.46	5.81
OS-8	0.65	0.90	1.69	0.25	100	2	12.2	600	2.0%	2.8	3.5	15.7	2.75	3.45	5.79
OS-9	0.16	0.23	0.42	0.25	50	1	8.6	600	3.0%	3.5	2.9	11.5	3.13	3.92	6.58
A	0.99	1.71	4.08	0.14	300	10.5	19.9	375	4.0%	2.0	3.1	23.0	2.30	2.88	4.84
В	0.86	1.30	2.74	0.14	230	15	14.2	450	2.0%	1.4	5.3	19.5	2.50	3.13	5.25
С	0.61	0.84	1.60	0.14	300	10	20.2					20.2	2.46	3.08	5.16
D	0.30	0.47	1.03	0.14	250	10	17.3					17.3	2.64	3.30	5.54
E1	0.80	1.34	3.09	0.14	300	12	19.0	300	2.0%	1.4	3.5	22.5	2.33	2.91	4.88
E2	0.21	0.43	1.15	0.14	300	7	22.7					22.7	2.32	2.90	4.87
F	0.49	1.22	4.64	0.10	300	9	21.8	600	1.5%	1.2	8.2	29.9	1.99	2.48	4.17
G	0.58	0.65	0.90	0.14	100	2	13.8					13.8	2.91	3.65	6.12
H1	0.19	0.22	0.31	0.22	100	4	10.1					10.1	3.29	4.12	6.92
H2	0.18	0.21	0.29	0.22	100	4	10.1					10.1	3.29	4.12	6.92
I	0.07	0.08	0.10	0.25	100	6	8.5					8.5	3.49	4.37	7.34
J	1.56	1.93	3.12	0.25	100	2	12.2	600	2.0%	2.8	3.5	15.7	2.75	3.45	5.79
K	0.27	0.38	0.71	0.25	100	3	10.7					10.7	3.22	4.03	6.77
L	0.10	0.13	0.25	0.25	100	8	7.7					7.7	3.60	4.52	7.58
М	0.29	0.33	0.48	0.25	100	2	12.2	100	2.0%	2.8	0.6	12.8	3.00	3.76	6.31
Ν	0.22	0.26	0.37	0.25	100	2	12.2	80	2.0%	2.8	0.5	12.7	3.01	3.77	6.33
0	0.68	0.86	1.44	0.25	100	2	12.2	400	3.0%	3.5	1.9	14.1	2.88	3.61	6.06
Ρ	0.36	0.41	0.59	0.25	50	1	8.6	400	3.0%	3.5	1.9	10.6	3.23	4.05	6.80
Q	0.11	0.27	0.76	0.14	80	5	8.5					8.5	3.49	4.38	7.35
R	0.91	1.07	1.56	0.25	100	2	12.2	700	3.0%	3.5	3.4	15.6	2.77	3.46	5.82
S	1.83	2.24	3.54	0.25	50	1	8.6	1100	3.0%	3.5	5.3	13.9	2.90	3.63	6.10
Т	0.28	0.33	0.53	0.08	50	1	10.4	500	3.0%	3.5	2.4	12.8	3.00	3.76	6.32
U	0.27	0.38	0.71	0.25	80	5	7.5					7.5	3.64	4.56	7.66
V	0.38	0.53	0.99	0.25	90	1.8	11.6					11.6	3.12	3.91	6.56
W	0.36	0.45	0.73	0.25	100	3	10.7					10.7	3.22	4.03	6.77

NOTE:

ALL STORM FACILITIES WITHIN PUBLIC RIGHT-OF-WAY ARE PUBLIC FACILITIES WITH OWNERSHIP AND MAINTENANCE BY EL PASO COUNTY.

ALL STORM FACILITIES WITHIN DRAINAGE ESMTS. OR TRACTS ARE PRIVATE FACILITIES WITH OWNERSHIP AND MAINTENANCE BY THE METRO DISTRICT.

SCALE: 1" = 100'

<u>LEGEND</u> **DESCRIPTION**

EXISTING GROUND CONTOUR PROPOSED FINISHED CONTOUR -6910 -6910 BASIN BOUNDARY BASIN IDENTIFIER -----AREA IN ACRES -----DESIGN POINT

EXISTING DIRECTION OF FLOW

PROPOSED DIRECTION OF FLOW DRAINAGE IMPROVEMENTS

PIPE RUN

WETLAND DELINEATION

NOTE: GRADING AND DRAINAGE ESMTS. TO BE ACQUIRED FROM ADJACENT PROPERTY OWNER PRIOR TO CONST.

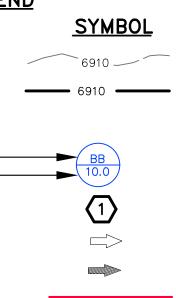
PROPOSED GRADING

ESMT.

/ UNPLATTED (FUTURE STERLING RANCH residential USE)

NOTE:

DEVELOPER TO COORDINATE WITH STERLING RANCH FOR GRANT OF DRAINAGE ESMT. ALONG THE EAST PROPERTY LINE IN ORDER FOR THE CONSTRUCTION OF A TEMPORARY SWALE TO CONVEY THE SHEET FLOWS TO TEMPORARY SEDIMENT BASIN. (REFERENCE GEC PLAN)


UPON FUTURE STERLING RANCH DEVELOPMENT, BASIN OS-7 MUST BE RE-EVALUATED TO DETERMINE IF THE TEMPORARY REAR YARD SWALE MAY BE REMOVED OR BECOME PERMANENT.

REFERENCE APPENDIX FOR RUNOFF REDUCTION FORM FOR BASIN V (94% WQCV REDUCTION W/ 6% UNTREATED WQCV)

> PROPOSED TEMPORARY NATURAL SWALE (24" DEPTH WITH 4:1 SIDE SLÓPES)

MAINTENANCE BY THE RETREAT AT TIMBERRIDGE METRO. DISTRICT.

TOTAL FLOWS					
Q(2)		Q(100)			
(cfs) 1	(cfs) 2	(cfs) 9			
1	2	7			
0.1	0.4	2			
0.1	0.7	5			
1	4	26			
0.1	0.4	3			
0.2	0.1	5			
2	3				
0.5	0.9	10 3			
0.0	0.3	3			
2	5	20			
2	4				
2	4	14			
		8			
1	2 4	6			
2		15			
0.5	1.2	6			
1	3	19			
1.7	2.4	5			
0.6	0.9	2			
0.6	0.8	2			
0.2	0.3	0.8			
4	7	18			
1	2	5			
0.3	0.6	2			
0.9	1.2	3			
0.7	1.0	2			
2	3	9			
1	2	4			
0.4	1.2	6			
3	4	9			
5	8	22			
0.8	1.2	3			
1	2	5			
1	2	6			
1	2	5			

RETREAT AT TIMBERRIDGE FILING 2	
DRAINAGE REPORT	
OPED DRAINAGE MAP	

÷	CLASSIC	CONSULTING
3—	3-21	1

				<u> </u>
NED BY	MAW	SCALE	DATE	3-3-21
NBY	MAW	(H) 1"= 100'	SHEET 3	OF 3
ED BY		(V) 1"= N/A	JOB NO.	1185.20