INNOVATIVE DESIGN. CLASSIC RESULTS.

Engineering Review

07/06/2021 8:29:48 PM dsdrice
JeffRice@elpasoco.com
(719) 520-7877

FINAL DRAINAGE REPORT FOR
 RETREAT AT TIMBERRIDGE FILING NO. 2

Prepared by:
CLASSIC CONSULTING
619 N. CASCADE AVE SUITE 200
COLORADO SPRINGS CO 80903
(719) 785-0790

Job No. 1185.20

PCD Project No. SF-21-XXX

Prepared for:
TIMBERRIDGE DEVELOPMENT GROUP, LLC
2138 FLYING HORSE CLUB DRIVE
COLORADO SPRINGS CO 80921
(719) 592-9333

(719) 785-0790)

FINAL DRAINAGE REPORT FOR

Retreat at TimberRidge Filing No. 2

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Marc A. Whorton Colorado P.E. \#37155
Date

OWNER'S/DEVELOPER'S STATEMENT:

I, the owner/developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name: TIMBERRIDGE DEVELOPMENT GROUP, LLC
By: \qquad

Title:

Address: $\quad \underline{2138}$ Flying Horse Club Drive
Colorado Springs, CO 80921

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

FINAL DRAINAGE REPORT FOR

Retreat at TimberRidge Filing No. 2

TABLE OF CONTENTS:

PURPOSE	Page	1
GENERAL DESCRIPTION	Page	1
EXISTING DRAINAGE CONDITIONS	Page	1
PROPOSED DRAINAGE CONDITIONS	Page	5
DETENTION/SWQ FACILITIES	Page	16
SAND CREEK CHANNEL IMPROVEMENTS	Page	16
DRAINAGE CRITERIA	Page	22
FLOODPLAIN STATEMENT	Page	24
DRAINAGE AND BRIDGE FEES	Page	24
SUMMARY	Page	26

APPENDICES

VICINITY MAP
SOILS MAP (WEB SOIL SURVEY)
F.E.M.A. MAP / LOMR (08-08-0541P)

RECOMMENDATIONS PER SAND CREEK DBPS
HYDROLOGIC / HYDRAULIC CALCULATIONS
STORMWATER QUALITY / DETENTION POND CALCULATIONS
HEC-RAS CALCULATIONS
DRAINAGE MAPS
SECTION 404 PERMITTING / WETLAND IMPACT MAP (CORE Consultants)

PURPOSE

The purpose of this Final Drainage Report is to address on-site and off-site drainage patterns and identify specific drainage improvements and facilities required to minimize impacts to the adjacent properties.

GENERAL DESCRIPTION

The Retreat at TimberRidge Filing No. 2 is 75.829-acre site located in portions sections 27 and 28, township 12 south, range 65 west of the sixth principal meridian. The site is bounded on the north by future development phases within the TimberRidge property, to the south, east and west by Sterling Ranch property (zoned for future urban development), TimberRidge Filing No. 1 and Vollmer Road. The site is in the upper portion of the Sand Creek Drainage Basin. Both large lot rural single family residential and urban single family residential are proposed in this Filing.

The average soil condition reflects Hydrologic Group " B " (Pring coarse sandy loam and Kettle gravelly loamy sand) as determined by the "Web Soil Survey of El Paso County Area," prepared by the Natural Resources Conservation Service (see map in Appendix).

EXISTING DRAINAGE CONDITIONS

The Retreat at TimberRidge Filing No. 2 property is located in the upper portion of the Sand Creek drainage basin on the south edge of Black Forest. Nearly the entire site, other than the Sand Creek corridor, is mainly covered with native grasses with few or no pine trees. The Sand Creek channel bisects the site in a north-south direction. A wetlands delineation was prepared by CORE Consultants, Inc., which included the entire TimberRidge property and submitted along with Filing No. 1. (See Appendix) This document reflects some wetlands throughout the Sand Creek channel. Any effect on these wetlands within jurisdictional waters will be described later in this report along with the appropriate permitting.

Portions of this site have been previously studied in the "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Engineering Corporation, March 1996. The portion of Sand Creek that traverses the site is defined as Reach SC-9 in the DBPS. 1000+ acres north of this property is tributary to this reach of the channel. (See Off-site Drainage Map in Appendix)

According to the DBPS, this reach of Sand Creek all contained within the channel has the following flow characteristics: $Q_{10}=630$ cfs $Q_{100}=2170$ cfs. However, the 100 yr. flow recognized by FEMA in the LOMR 08-08-0541P with effective date of July 23, 2009, equals nearly $Q_{100}=2600$ cfs. Also, Sterling Ranch has finalized their MDDP which includes modeling of this property as well as the large acreage north up to the top of the Sand Creek Basin. The MDDP proposes developed flows within Sand Creek that are significantly lower than both the DBPS and FEMA currently show. These flows are as follows: At Arroya Lane crossing $Q_{10}=430 \mathrm{cfs} Q_{100}=1487 \mathrm{cfs}$ and TimberRidge south property line $Q_{10}=452 \mathrm{cfs} Q_{100}=1523 \mathrm{cfs}$. Even with the County approval of the MDDP and these adjusted flows, a CLOMR/LOMR will be required to be prepared, submitted and approved by FEMA prior to utilizing these flows in any Final Drainage Reports within this development. Based on the anticipated 12-18 month timing of the CLOMR/LOMR process, this development will continue to utilize the much larger FEMA recognized flows for all proposed channel improvements through this property, including the culvert crossing at Poco Road. This is how Filing No. 1 was developed as well.

The majority of these off-site flows enter the property at the north end of the site conveying flows from the northwest (Black Forest area) and the off-site stock ponds to the north (both tributary to hundreds of acres of property in Black Forest). There are multiple existing culvert crossings of Vollmer Rd. just north of Arroya Lane to facilitate these historic flow patterns. The following are the few key culverts that directly feed the Sand Creek channel north of Arroya Lane: Approximately 1,000 feet north of Arroya Lane, an existing 36" CMP crosses Vollmer Road (Basin SC-1 on Off-site Drainage Map). A small basin and natural ravine just west of Vollmer feeds this facility. From a recent field visit, this small facility seems to be in good working condition, however, not labeled in the DBPS. Another 700 feet+ north along Vollmer a much larger basin exists west of the roadway. This off-site basin is approximately 350+ acres northwest of Vollmer Road (Basin SC-2 on Off-site Drainage Map). As shown within the DBPS, this existing crossing is a $60^{\prime \prime}$ CMP with some very dense and tall vegetation at both the entrance and exit of this facility. But, based on a recent field visit this facility seems to be in good working condition. The DBPS

depicts this facility and recommends an additional $60^{\prime \prime}$ CMP at this location. However, there are no signs of erosion or over topping the road at this location at this time based on the current development within the tributary area to this facility. Based on the existing surrounding topography and roadway configuration, the 100 yr . historic flows at this location would appear to spill over the roadway and continue in their historic drainage pattern downstream within the upper reach of Sand Creek.

The following descriptions represent the pre-development flow design points for the property excluding the major off-site flows within Sand Creek just described:

EX DP-1 ($\left.\mathbf{Q}_{\mathbf{2}}=\mathbf{1} \mathbf{~ c f s , ~} \mathbf{Q}_{\mathbf{5}}=\mathbf{3} \mathbf{~ c f s ,} \mathrm{Q}_{\mathbf{1 0 0}}=\mathbf{1 8} \mathbf{~ c f s}\right)$ consists of small portion of the property at the SE corner that currently sheet flows in a southwesterly direction. These pre-development flows travel off-site directly onto Sterling Ranch property prior to eventually entering the Sand Creek channel.

Basin EX-2 ($\left.Q_{2}=\mathbf{2 c f s}, Q_{5}=\mathbf{7 c f s}, Q_{100}=\mathbf{4 4} \mathbf{~ c f s}\right)$ consists of approximately 50% off-site and 50% on-site property. The off-site property is part of the future Sterling Ranch development and is conveyed in a southwesterly direction directly on-site via a natural ravine. Portions of the onsite property were graded along with Filing No. 1 to allow for this area to be captured in two temporary sediment basins and away from the Filing No. 1 lot development. These two facilities will be removed along with Filing No. 2 construction.

Basin EX-3 ($\left.Q_{2}=1 \mathrm{cfs}, \mathrm{Q}_{5}=\mathbf{2 c f s}, \mathrm{Q}_{100}=\mathbf{1 6} \mathrm{cfs}\right)$ consists of again both off-site and on-site property. These flows are conveyed in a southwesterly direction and captured in a graded ditch and routed towards another temporary sediment basin constructed with Filing No. 1. This facility will remain during Filing No. 2 construction as it captures undeveloped flows further north.

Page 3

Basin EX-4 ($\left.Q_{2}=\mathbf{4} \mathbf{c f s}, Q_{5}=13 \mathrm{cfs}, Q_{100}=\mathbf{9 0} \mathrm{cfs}\right)$ consists of the remaining portion of the yet undeveloped TimberRidge property along with off-site future Sterling Ranch property. This entire area sheet flows in a southwesterly direction towards Sand Creek. Along with the development of Filing No. 1 and the secondary emergency access road up to Arroya Lane, several storm system were installed to convey portions of these flows under the access road. The existing on-site stock pond will continue to remain as it captures much of the off-site tributary area.

EX DP-5 ($Q_{2}=\mathbf{3} \mathbf{~ c f s , ~} Q_{5}=\mathbf{1 1}$ cfs, $\left.Q_{100}=\mathbf{6 9} \mathbf{~ c f s}\right)$ consists of combined flows from basins EX-5 and EX-7. Basin EX-5 is the northwest portion of the TimberRidge property with some spruce trees and a very defined natural ravine that conveys flows in a southeast direction towards Sand Creek. Vollmer Road is the westerly boundary of this basin. Basin EX-7 ($Q_{2}=3 \mathrm{cfs} Q_{5}=8 \mathrm{cfs}, \mathrm{Q}_{100}=42$ cfs) consists of an off-site basin west of Vollmer Road (not a part of this development) that drains under Vollmer into the TimberRidge property via an existing 48" CMP culvert. These off-site flows enter Basin EX-5 and then travel within the on-site ravine towards Sand Creek. Dual 30" culverts were installed along with Filing No. 1 where the future road crosses this ravine. This condition will remain with the development of Filing 2 and these off-site flows will be accounted for in downstream design.

PROPOSED DRAINAGE CONDITIONS

Proposed development within the Retreat at TimberRidge Filing No. 2 will consist of a variety of different residential lot sizes ranging from 1.0-2.5 acre large rural lots to 12,000 SF min. urban lots. The rural lots will have paved streets and roadside ditches while the urban lots paved streets with County standard curb, gutter and sidewalk. Development of the urban lots proposed will consist of overlot grading for the planned roadways and lots. Development of rural lots proposed within the site will be limited to roadways and building pads, conserving the natural feature areas. Individual home sites on these lots are to be left generally in their natural condition with minimal disturbance to existing conditions per individual lot construction. Per the El Paso County

ECM, Section I.7.1.B.5, rural lots of 2.5 ac . and larger are not required to provide Water Quality Capture Volume (WQCV). However, based on the current County/Urban Drainage stormwater quality standards, a WQCV component is automatically built into the UD Detention spreadsheet utilized in the detention basin design. Thus, the proposed facilities within both the rural and urban portions of this development will provide WQCV along with an Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume with an outlet control device. Frequent and infrequent inflows are released at rates approximating undeveloped conditions. This concept provides some mitigation of increased runoff volume by releasing a portion of the increased runoff at a low rate over an extended period of time, up to 72 hours. This means that frequent storms, smaller than the 2-year event, will be reduced to very low flows near or below the sediment carrying threshold value for downstream drainage ways. Also, by incorporating an outlet structure that limits the 100-year runoff to the undeveloped condition rate, the discharge hydrograph for storms between the 2 year and the 100 -year event will approximate the hydrograph for the undeveloped conditions and will help effectively mitigate the effects of development. To the greatest extent possible, WQCV will be provided for all new roads and urban lots. The following describes howthis development proposes to handle both the off-site and on-site drainage conditions: Is this correct with areas draining offsite?

As mentioned previously, the majority of the off-site flows are already within the Sand Creek channel prior to entering the property. However, the few off-site basins that must travel through the proposed site development areas prior to entering Sand Creek have been accounted for.

The following represent the basins and design points west of Sand Creek:

Basins OS-1 ($\left.\mathrm{Q}_{2}=1 \mathrm{cfs} \mathrm{Q}_{5}=2 \mathrm{cfs}, \mathrm{Q}_{100}=9 \mathrm{cfs}\right)$ and $\mathrm{OS}-2\left(\mathrm{Q}_{2}=1 \mathrm{cfs} \mathrm{Q}_{5}=2 \mathrm{cfs}, \mathrm{Q}_{100}=7 \mathrm{cfs}\right)$ represent off-site flows from future TimberRidge development adjacent to Vollmer Rd. and Arroya Lane. These flows calculated as future development flows will continue to travel in a southerly direction within the existing natural ravine and enter Basin B. As mentioned

Page 5
previously, Basin Ex-7 ($\left.\mathrm{Q}_{2}=3 \mathrm{cfs} \mathrm{Q}_{5}=8 \mathrm{cfs}, \mathrm{Q}_{100}=42 \mathrm{cfs}\right)$ consists of the off-site basin west of Vollmer Road (not a part of this development) that drains under Vollmer into the TimberRidge property via an existing $48^{\prime \prime}$ CMP culvert. These flows are then combined with the flows from basins OS-1 and OS-2. Design Point $1\left(Q_{5}=\mathbf{1 2} \mathbf{c f s}, Q_{100}=\mathbf{5 7} \mathbf{c f s}\right)$ represents this combined total where the existing dual $30^{\prime \prime}$ RCP culverts crossing Aspen Valley Rd. will convey the flows under the road and towards Design Point 3. (See Appendix for culvert and rip-rap calculations) The natural ravine within lots 4 and 5 is contained within a drainage esmt. as shown on the drainage map and final plat.

Basin $D\left(Q_{2}=1 \mathrm{cfs} \mathrm{Q}_{5}=2 \mathrm{cfs}, \mathrm{Q}_{100}=6 \mathrm{cfs}\right)$ represents a portion of the proposed 2.5 ac . rural lots adjacent to Aspen Valley Road. Developed flows from this basin will continue to sheet flow in a southeasterly direction towards Design Point 3 and combine with the upstream flows. Design Point $3\left(Q_{5}=\mathbf{1 3} \mathbf{c f s}, Q_{100}=\mathbf{6 0} \mathbf{c f s}\right)$ represents this combined flow total where proposed dual 30 " RCP culverts will convey the developed flows under Falcon Nest Court towards Pond 3. (See Appendix for culvert and rip-rap calculations) The natural ravine within lot 7 is contained within a drainage esmt. as shown on the drainage map and final plat. Basin $C\left(Q_{2}=2 \mathrm{cfs} \mathrm{Q}_{5}=3 \mathrm{cfs}\right.$, $\mathrm{Q}_{100}=8 \mathrm{cfs}$) represents a portion of the proposed 2.5 ac . rural lots with developed flows that sheet flow in a southeasterly direction towards Design Point 4. At this location a proposed $24^{\prime \prime}$ RCP culvert will convey these flows under Falcon Nest Court and combine with the previously mentioned developed flows.

Design Point $2\left(Q_{5}=\mathbf{5 c f s}, Q_{100}=\mathbf{2 0} \mathbf{c f s}\right)$ represents developed flows from Basin A. At this location a proposed 24 " RCP culvert crossing Aspen Valley Rd. will convey the flows under the road into the side road ditch towards Pond 3. (See Appendix for culvert and rip-rap calculations) Basin $E\left(Q_{2}=2 \mathrm{cfs} \mathrm{Q}_{5}=5 \mathrm{cfs}, \mathrm{Q}_{100}=18 \mathrm{cfs}\right.$) represents a portion of the proposed 2.5 ac . rural lots that sheet flow in a southerly direction and combine with the upstream developed flows. Basin OS-3 ($\left.\mathrm{Q}_{2}=0.1 \mathrm{cfs} \mathrm{Q}_{5}=0.4 \mathrm{cfs}, \mathrm{Q}_{100}=2 \mathrm{cfs}\right)$ represents a small portion of the proposed lot 12 that continues to sheet flow towards Sand Creek as originally anticipated.

Abstract

See comment letter regarding Design Point 5 ($Q_{5}=\mathbf{2 0} \mathbf{c f s}, Q_{100}=\mathbf{8 3} \mathbf{c f s}$) represents the total developed flows entering the proposed Pond 3. A proposed full-spectrum EDB is proposed at this location to release less than the pre-development flows currently seen. The following describes the design of this facility. (See Appendix for MHFD-Detention pond design sheets):

Detention Pond 3 (Full Spectrum EDB - see multiple storm release data below)
 0.44 Ac.-ft. WQCV required

0.35 Ac.-ft. EURV required with 4:1 max. slopes

1.88 Ac.-ft. 100-yr. Storage

2.68 Ac.-ft. Total

Total In-flow:

$$
\begin{array}{lll}
Q_{2}=11.3 \mathrm{cfs}, & Q_{5}=22.7 \mathrm{cfs}, & Q_{100}=80.8 \mathrm{cfs} \\
Q_{2}=1.1 \mathrm{cfs}, & Q_{5}=11.1 \mathrm{cfs}, & Q_{100}=66.8 \mathrm{cfs} \\
Q_{2}=6.0 \mathrm{cfs}, & Q_{5}=16.9 \mathrm{cfs}, & Q_{100}=74.9 \mathrm{cfs}
\end{array}
$$

(Ownership and maintenance by the Retreat at TimberRidge Metro District)

At this proposed outfall location, the overall channel flows will not significantly change based on Detention Pond 3 release of $Q_{100}=66.8$ cfs which is less than the predevelopment flows at this location of $Q_{100}=74.9 \mathrm{cfs}$. (See Appendix for culvert outlet and rip-rap calculations)

The following represent the basins east of Sand Creek:
Design Point $6\left(Q_{5}=\mathbf{3 c f s}, Q_{100}=\mathbf{8 c s}\right)$ represents developed flows from on-site Basin $G\left(Q_{2}=\right.$ $\left.1.7 \mathrm{cfs} \mathrm{Q}_{5}=2.4 \mathrm{cfs}, \mathrm{Q}_{100}=5 \mathrm{cfs}\right)$ and off-site Basin OS-9 ($\mathrm{Q}_{2}=0.5 \mathrm{cfs} \mathrm{Q}_{5}=0.9 \mathrm{cfs}, \mathrm{Q}_{100}=3 \mathrm{cfs}$). These flows remain consistent with the previous Filing No. 1 report where an existing 10' Type R at-grade inlet was installed with Filing No. 1. This facility continues to intercept 100% of the 5 yr. and 79% of the 100 yr . developed flows. The flow-by that will continue down the west side of the street into Filing No. 1 remains consistent with the previous report and equals $\mathrm{Q}_{5}=0 \mathrm{cfs}$, $\mathrm{Q}_{100}=1.7 \mathrm{cfs}$. (See Appendix for calculations) Basins H 1 ($\mathrm{Q}_{2}=0.6 \mathrm{cfs} \mathrm{Q}_{5}=0.9 \mathrm{cfs}, \mathrm{Q}_{100}=2 \mathrm{cfs}$),

$\mathrm{H} 2\left(\mathrm{Q}_{2}=0.6 \mathrm{cfs} \mathrm{Q}_{5}=0.8 \mathrm{cfs}, \mathrm{Q}_{100}=2 \mathrm{cfs}\right)$ and $\mathrm{I}\left(\mathrm{Q}_{2}=0.2 \mathrm{cfs} \mathrm{Q}_{5}=0.3 \mathrm{cfs}, \mathrm{Q}_{100}=0.8 \mathrm{cfs}\right)$ represents the rear lots of proposed lots 13-16. As previously accounted for in the Filing No. 1 report, these developed flows will sheet flow directly off-site and into the open space tract in Filing No. 1.

Design Point $7\left(Q_{5}=9 \mathrm{cfs}, \mathrm{Q}_{100}=\mathbf{3 9} \mathbf{c f s}\right.$) represents developed flows from on-site Basin J ($\mathrm{Q}_{2}=4$ cfs $\left.Q_{5}=7 \mathrm{cfs}, \mathrm{Q}_{100}=18 \mathrm{cfs}\right)$, off-site Basin OS-4 ($\left.\mathrm{Q}_{2}=0.2 \mathrm{cfs} \mathrm{Q}_{5}=0.7 \mathrm{cfs}, \mathrm{Q}_{100}=5 \mathrm{cfs}\right)$ and a 70% portion of the anticipated future Sterling Ranch development within off-site Basin OS-5 ($\mathrm{Q}_{2}=1$ cfs $\left.Q_{5}=4 \mathrm{cfs}, Q_{100}=26 \mathrm{cfs}\right)$. These flows will combine and travel in a southerly direction to Design Point 7 where a proposed 15' Type R sump inlet will completely intercept both the 5 yr . and 100 yr. developed flows. The emergency overflow will be 12 " and then down the street to the west within Elk Antler Lane.

8 How will this flow get to the inlet - is gutter capacity adequate? If developed flow is detained to this value a pipe is needed. Design Point $\mathbf{8}\left(\mathrm{Q}_{5}=\mathbf{2 c f s}, \mathrm{Q}_{100}=\mathbf{1 0} \mathbf{c f s}\right)$ represents developed flows from on-site Basin $N\left(\mathrm{Q}_{2}=\right.$ $0.7 \mathrm{cfs} \mathrm{Q}_{5}=1 \mathrm{css} \mathrm{Q}_{100}=2 \mathrm{cfs}$) and a 30% portion of the anticipated future Sterling Ranch development within \&ff-site Basin OS-5 ($Q_{2}=1 \mathrm{cfs} \mathrm{Q}_{5}=4 \mathrm{cfs}, \mathrm{Q}_{100}=\mathrm{cfs}$). These flows will combine at Design Point 7 where a proposed 10' Type R sump inlet will completely intercept both the 5 yr . and 100 yr . developed flows. The emergency overflow will be $12^{\prime \prime}$ and then down the street to the west within Elk Antler Lane. However, prior to the development of this portion of the Sterling Ranch development, a temporary sediment basin is proposed off-site just east of Elk Antler Lane. This facility sizing is based on the 13.7 ac. off-site basin OS-5 and is shown on the grading and erosion control plan. Both the overflow spillway and outlet pipe will be routed into the proposed curb line of Elk Antler Lane. Appropriate temporary grading and drainage easements will be acquired from the adjacent property owner prior to construction.

Basin $K\left(Q_{2}=1 \mathrm{cfs} \mathrm{Q}_{5}=2 \mathrm{cfs}, \mathrm{Q}_{100}=5 \mathrm{cfs}\right)$ represents a portion of the rear yards of proposed lots 21-26. These developed flows will continue to sheet flow in a westerly direction towards a temporary sediment basin constructed with Filing No. 1. Basin $L\left(Q_{2}=0.3 \mathrm{cfs} Q_{5}=0.6 \mathrm{cfs}, Q_{100}=\right.$

permanent WQ is required

2 cfs) represents the rear yard of the proposed lot 27. These minpr developed flows will continue to sheet flow in a westerly direction towards another temporary sediment basin constructed with Filing No. 1. Basin $M\left(Q_{2}=0.9 \mathrm{cfs} \mathrm{Q}_{5}=1.2 \mathrm{cfs}, \mathrm{Q}_{100}=3 \mathrm{cfs}\right)$ represents the developed flows from proposed lots 19-20. These developed flows were accounted for in the Filing No. 1 report and will continue to sheet flow in a southwesterly direction directly into the north side of Elk Antler Lane. The existing downstream 15' Type R At-grade Inlet fwill continue to adequately collect these flows.

Design Point 9 ($\mathrm{Q}_{5}=\mathbf{4} \mathrm{cfs}, \mathrm{Q}_{100}=14 \mathrm{cfs}$) represents the developed flows from Basins OS-8 ($\mathrm{Q}_{2}=$ $\left.2 \mathrm{cfs} \mathrm{Q}_{5}=3 \mathrm{cfs}, \mathrm{Q}_{100}=10 \mathrm{cfs}\right)$ and $\mathrm{Q}\left(\mathrm{Q}_{2}=0.4 \mathrm{cfs} \mathrm{Q}_{5}=1.2 \mathrm{cfs}, \mathrm{Q}_{100}=6 \mathrm{cfs}\right)$. At this location, an existing 10^{\prime} Type R Sump Inlet was installed with Filing No. 1 to completely intercept both the 5 yr. and 100 yr. developed flows. These flows remain consistent with the Filing No. 1 report as anticipated as $Q_{5}=5 \mathrm{cfs}, \mathrm{Q}_{100}=15 \mathrm{cfs}$.

Design Point 10 ($\left.\mathbf{Q}_{5}=\mathbf{3} \mathbf{c f s}, \mathrm{Q}_{100}=\mathbf{1 1} \mathrm{cfs}\right)$ represents developed flows from Basins $\mathrm{O}\left(\mathrm{Q}_{2}=2 \mathrm{cfs}\right.$ $\left.\mathrm{Q}_{5}=3 \mathrm{cfs}, \mathrm{Q}_{100}=9 \mathrm{cfs}\right)$ and $\mathrm{OS}-6\left(\mathrm{Q}_{2}=0.1 \mathrm{cfs} \mathrm{Q}_{5}=0.4 \mathrm{cfs}, \mathrm{Q}_{100}=3 \mathrm{cfs}\right)$. These developed flows sheet flow in a southwesterly direction towards Design Point 10 where a proposed 10' Type R Sump Inlet will be installed to completely intercept both the 5 yr . and 100 yr . developed flows. The emergency overflow will be $12^{\prime \prime}$ and then south over the highpoint. It is planned with this report that with the future development of this portion of Sterling Ranch (Basin OS-6) developed flows equal to pre-development quantities are accounted for downstream in the existing on-site Pond 2. These future flows quantities will be treated and detained within Pond 2. Any developed flows above these quantities will need to be routed further downstream within the Sterling Ranch development.

Design Point $11\left(Q_{5}=\mathbf{2 c f s}, Q_{100}=\mathbf{4 c f s}\right)$ represents developed flows from Basin P. At this location, a proposed 5' Type R Sump Inlet will be installed to completely intercept both the 5 yr . and 100 yr . developed flows. The emergency overflow will be 12 " and then southerly over the highpoint. \longleftarrow of Owl Perch Loop

Design Point $12\left(Q_{5}=\mathbf{4 c f s}, Q_{100}=9 \mathrm{cfs}\right)$ represents the developed flows from Basin R. At this location, a proposed 10' Type R At-grade Inlet will be installed to intercept 99\% of the 5 yr . and 75% of the 100 yr . developed flows. The flow-by ($\mathrm{Q}_{5}=0 \mathrm{cfs}, \mathrm{Q}_{100}=2.3 \mathrm{cfs}$) will then continue down the street趡wards Design Point 13. (See Appendix for calculations)
 to the west

Design Point 13 ($\left.Q_{5}=\mathbf{8 c f s}, Q_{100}=\mathbf{2 3} \mathbf{c f s}\right)$ represents flows from Basin S and the flow-by from Basin R mentioned above. At this location, a proposed 15' Type R Sump Inlet will be installed to completely intercept both the 5 yr . and 100 yr . developed flows. The emergency overflow will be 12 " and then southerly over the highpoint $\leqslant \ldots$ of Bison Valley Trail? Why not into Pond 2 with a curb chase?

Design Point $14\left(Q_{5}=1 \mathrm{cfs}, \mathrm{Q}_{100}=3\right.$ efs) represents flows from Basin T. At this location, a proposed 5' Type R Sumplntet will be installed to completely intercept both the 5 yr . and 100 yr. developed flows. The emergency overflow will be 12 " and then southerly over the highpoint. ${ }^{\text {. }}$

Pipe Run $\mathbf{1 2}\left(Q_{5}=\mathbf{2 5} \mathbf{c f s}, Q_{100}=\mathbf{8 5} \mathbf{c f s}\right)$ represents the total developed flows entering the existing Pond 2 at the NE corner via the existing 42" RCP storm stub provided with Filing No. 1 construction. These flows are compared to the anticipated flows at this location in the Filing No. 1 report of $Q_{5}=19 \mathrm{cfs}, \mathrm{Q}_{100}=74 \mathrm{cfs}$. The existing Pond 2 continues to adequately provide detention and stormwater quality per County criteria with these additional flows.

Page 10

The following represents the existing Pond 2 with the minor adjusted developed flows: (See revised MHFD-Detention Pond Design Sheets in Appendix)

Existing Detention Pond 2 (Full Spectrum EDB - see multiple storm release data below) 1.03 Ac.-ft. WQCV required

1.16 Ac.-ft. EURV required with 4:1 max. slopes
3.36 Ac.-ft. 100-yr. Storage

5.55 Ac.-ft. Total

Total In-flow:	$Q_{2}=24.5 \mathrm{cfs}$,	$Q_{5}=43.1 \mathrm{cfs}$,
Pond Design Release:	$Q_{100}=135.8 \mathrm{cfs}$	
Pre-development Release:	$Q_{2}=0.9 \mathrm{cfs}$,	$Q_{5}=13.5 \mathrm{cfs}$,
$Q_{100}=96.2 \mathrm{cfs}$		
	$Q_{2}=9.1 \mathrm{cfs}$,	$Q_{5}=25.4 \mathrm{cfs}$,
$Q_{100}=115.0 \mathrm{cfs}$		

(Existing ownership and maintenance by the Retreat at TimberRidge Metro District)

Basin $U\left(Q_{2}=1 \mathrm{cfs} Q_{5}=2 \mathrm{cfs}, \mathrm{Q}_{100}=5 \mathrm{cfs}\right)$ represents a portion of the rear yards of proposed lots 61-67. These developed flows were accounted for in the previous report for Filing No. 1 and remain consistent with the anticipated flows at this location of ($Q_{5}=2 \mathrm{cfs}, Q_{100}=5 \mathrm{cfs}$). Basin $V\left(Q_{2}=1 \mathrm{cfs} Q_{5}=2 \mathrm{cfs}, Q_{100}=6 \mathrm{cfs}\right)$ represents the rear yards of the proposed lots 44-53. These developed flows will sheet flow in a southeasterly direction off-site. Based on the large lot depths and as noted on the drainage map, these lots are required to have all impervious area constructed within Basin R with no impervious area allowed within Basin V. Basin OS-7 (Q_{2} $=0.2 \mathrm{cfs} \mathrm{Q}_{5}=0.8 \mathrm{cfs}, \mathrm{Q}_{100}=5 \mathrm{cfs}$) represents an off-site basin within the future Sterling Ranch development that will continue to sheet flow in its historic drainage pattern. The TimberRidge development will coordinate with the Sterling Ranch property owner for the acquisition of appropriate temporary grading and drainage easements along the eastern property line to facility this interim drainage condition. Basin W ($\left.Q_{2}=1 \mathrm{cfs} Q_{5}=2 \mathrm{cfs}, \mathrm{Q}_{100}=5 \mathrm{cfs}\right)$ represents the rear yards of the proposed lots 54-6Q. While this basin exceeds the allowable 1.0 ac . of untreated developed area, we are coordinating with the Sterling Ranch property owner for the

And a permanent drainage easement(s)

acquisition of appropriate temporary grading and drainage easements along the soythern property line to facilitate a temporary sediment basin in this interim condition. Ultimately, this basin will be treated further downstream prior to entering Sand Creek. \swarrow

DETENTION / STORMWATER QUALITY FACILITES

As required, storm water quality measures will be utilized in order to reduce the amount of sediment, debris and pollutants that are allowed to enter Sand Creek. These features include but are not limited to Full Spectrum Detention Basins and temporary sediment basins. Site Planning and design techniques for the large lot, rural areas should help limit impervious area, minimize directly impervious area, lengthen time of travel and increase infiltration in order to decrease the rate and volume of stormwater runoff. Urban areas that require detention will provide a Water Quality Capture Volume (WQCV) and Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume that will release the more frequent storms at a slower rate to help minimize the effects of development of the property. The proposed detention/SWQ facilities are to be private facilities with ownership and maintenance by the TimberRidge Metropolitan District. After completion of construction and upon the Board of County Commissioners acceptance, the Sand Creek channel will be owned and maintained by the El Paso County along with all drainage facilities within the public Right of Way.

SAND CREEK CHANNEL IMPROVEMENTS

As stated in the Sand Creek DBPS, this Reach SC-9 is recommended as a floodplain preservation design concept. Given the fact of the current requirements for detention/SWQ facilities planned for the property with designed release at or below pre-development flows, the existing Sand Creek drainageway is expected to remain stable. Existing FEMA FIS channel velocities as found in the LOMR 08-080541P seem to exceed recommended allowable velocities. Although, based on the findings from the CORE Consultants, Inc. Impact Identification Report, no significant erosion or channel degradation through this property currently exists at this time. Specifically located grade control structures (See Appendix) were specified in the DBPS through this reach in

order to slow the cannel velocity to the DBPS recommended 7 feet per second and to prevent localized and long-term stream degradation affecting channel linings and overbanks. The allowable velocity and shear stress will vary depending upon the existing riparian vegetation/wetlands found within the channel and overbank floodplain terrace areas. A HECRAS hydraulic analysis for this portion of Reach SC-9 has been provided in order to determine the necessary channel improvements for the proposed Filing No. 2 development and future Filings. A separate wetland impact report along with the Section 404 permitting, prepared by CORE Consultants, has been developed based on these proposed channel improvements and submitted directly to the U.S. Army Corps of Engineers with necessary consult with U.S. Fish and Wildlife for their review and approval. This report and documentation can be found in the Appendix for El Paso County staff review.
update for this filing

HEC-RAS MODELING

HEC-RAS ver. 5.0.6 was used to perform a one-dimensional, steady flow hydraulic model of a portion of Reach SC-9 from Arroya Lane to approximately 650 feet downstream of the TimberRidge south property line. HEC-RAS was used to define the stream centerline, overbanks, cross-sections and manning's n values. The stream centerline follows the channel thalweg to define the reach network. Cross-section topography data was obtained by using the generated surface from the 2-ft. flown contours utilized for all site design. This data was then exported from AutoCAD containing three-dimensional coordinates for the stream centerline, crosssections, reach stations, overbank stations, reach lengths and imported into HEC-RAS. Two separate models defining the existing condition and proposed condition were prepared using the same centerline stationing. The proposed model included the introduction of the ineffective flow area for the culvert added for the Poco Road crossing. Different Manning's n values were applied across the various channel cross-sections to reflect the changes in vegetative cover within the channel and overbanks. The selected Manning's n values for the channel and overbanks were determined using Tables 10-1 and 10-2 from the DCM and Table 3 from the USGS Guide for

selecting Manning's Roughness Coefficients based on numerous site visits in an effort to photograph and document each cross-section. (See Appendix) The following table summarizes the selected Manning's n values:

Table $1 \quad$ Manning's n Values

Feature	Manning's n Value
Main Channel	$0.03-0.10$
Overbank Floodplain Terraces	$0.12-0.16$

Steady flow data was entered starting at Arroya Lane, channel station 55+32.95, with a flow change location at station 15+07.91 representing the Sand Creek DBPS segment change from 171 to 170. Steady flow data corresponding to recurrence intervals of 10 Yr . and 100 Yr . for the FEMA, DBPS and Sterling Ranch MDDP conditions was entered. The models were run in subcritical mode to evaluate hydraulic conditions. Boundary conditions for the entire reach were based on normal depth calculations for the upstream and downstream channel slopes. The following table summarizes the flows used in the models:

Table 2 Model Flow Values

Flood Event / Location	Flow Value (cfs)
Arroya Lane (Sta: 55+32.95)	
FEMA 100 Yr.	2600
DBPS 100 Yr.	2170
DBPS 10 Yr.	630
Sterling MDDP 100 Yr.	1487
Sterling MDDP 10 Yr.	430
DBPS Segment $\mathbf{1 7 0}$ (Sta: 15+07.91)	

FEMA 100 Yr.	2600
DBPS 100 Yr.	2260
DBPS 10 Yr.	670
Sterling MDDP 100 Yr.	1520
Sterling MDDP 10 Yr.	450

Per the approved DBPS, the anticipated developed flows just upstream of this project are $\mathrm{Q}_{10}=$ 630 cfs and $Q_{100}=2170 \mathrm{cfs}$ as depicted within DBPS segment no. 171. The anticipated developed flows exiting this property are $Q_{10}=670$ cfs and $Q_{100}=2260$ cfs as depicted within DBPS segment no. 170. As discussed earlier, the FEMA FIS flows appear to be significantly higher than both those presented in the DBPS and the Sterling Ranch MDDP. We understand that Sterling Ranch may be processing a CLOMR/LOMR in the near future, however, we have continued to utilize the significantly larger flows as determined by the FEMA FIS (2600 cfs) in the channel improvement designs. The proposed public roadway crossing of Sand Creek was constructed with Filing No. 1 and consisted of a two cell multi-plate steel single radius arch ($24^{\prime} \times 10.33^{\prime}$) with concrete headwalls to facilitate the conveyance of the 100 yr . flow.

Based on site visits during May and July of 2019, the entire Sand Creek drainage corridor through the Retreat at TimberRidge development was walked and photographed for documentation purposes and aide in the HEC-RAS modeling. (See Appendix) As discovered in the field and documented in the photos taken at each HES-RAS station, this reach of the Sand Creek channel appears very stable with no signs of erosion within the main channel or channel overbanks. This is mainly due to the significant vegetal cover throughout the reach. The classification of the vegetal cover seems to have a range from Retardance Class A-C as defined by HEC-15 chart (See Appendix) This type of vegetation retardance significantly increases the allowable shear stress within the channel while reducing the velocity. The following table defines the retardance level based on the vegetation class:

Table 3
Vegetal Retardance Curve Index by SCS Retardance Class

SCS Retardance Class	Retardance Curve Index
A	10.0
B	7.64
C	5.60
D	4.44
E	2.88

Based on this information, the maximum allowable sheer stress is found by the flowing equation:

$$
T=0.75 \text { Curve Index }
$$

Thus, the range of shear stress for this reach of Sand Creek equals $4.2-7.5\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$.

Referencing the HES-RAS model calculations in the Appendix shows that only a few stations showed shear stress exceeding this limit. (Sta: $33+34.27,20+83.66$ and $18+79.67$) All three of these stations were within the Filing 1 development area and with the proposed channel improvements and selective embankment lining, the shear stress at those locations will be reduced to the allowable range.

The proposed channel improvements within Filing No. 2 consist of two additional check structures located in the narrower portions of the creek. The DBPS only depicts one structure along this stretch of channel but the additional one is being planned to further limit degradation and help control the elevation of the channel invert. These check structures are designed to be sheet piling with a concrete cap per Urban Drainage Vol. 2 Figures 9-27 thru 9-28. The intent of these structures is to hold grade so if the stream wants to flatten its equilibrium slope, the incision is limited. Thus, the plan is for these structures to eventually become drop structures as dictated by future channel characteristics.

Page 16

The DBPS also recommended to provide selective rip-rap channel stabilization located at culvert crossings, pipe outlets and outside bends of the channel. Based on the mean channel slope and maximum allowable velocity of 7.0 fps , Type L Rip-Rap stabilization will be provided at select locations within Filing No. 2. (See Appendix for tables describing slope, velocity, shear, Froude No., etc.) The existing channel slope throughout this reach ranges from 0.6% to 7.3%. These steeper slopes seem to represent numerous areas with isolated shallow pools within the main channel which help support the growth of the wetlands. These isolated areas will remain with only minimal disturbance taking place at the locations of the proposed improvements (i.e. check structures and culvert crossing). Per the HEC-RAS model, the proposed channel velocities range from 2.7 ft ./sec. to 6.0 ft ./sec. All stations are within the allowable velocity of $7.0 \mathrm{ft} . / \mathrm{sec}$.

The HEC-RAS model calculations shows no stations with Froude No. over 1.0 for this stretch of the creek within Filing No. 2. Thus, the Froude No. at all stations remains less than 1.0, with subcritical flow characteristics.

Describe channel and pond maintenance access.

DRAINAGE CRITERIA

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014. Individual on-site developed basin design used for detention/SWQ basin sizing, inlet sizing and storm system routing was calculated using the Rational Method. Runoff Coefficients are based on the imperviousness of the particular land use and the hydrologic soil type in accordance with Table 6-6. The average rainfall intensity, by recurrence interval found in the Intensity-Duration-Frequency (IDF) curves in Figure 6-5. (See Appendix)

The City of Colorado Springs/EI Paso County DCM requires the Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls. The Four Step Process pertains to management of smaller, frequently occurring storm events, as opposed to larger storms for which drainage and flood control infrastructure are sized. Implementation of these four steps helps to achieve storm water permit requirements.

This site adheres to this Four Step Process as follows:

1. Employ Runoff Reduction Practices: Proposed rural lot impervious area (roof tops, patios, etc.) will sheet flow across lengthy landscape/natural areas within the large lots and proposed urban lot impervious areas (roof tops, patios, etc.) will sheet flow across landscaped yards and through open space areas to slow runoff and increase time of concentration prior to being conveyed to the proposed public streets or detention facilities. This will minimize directly connected impervious areas within the project site.
2. Stabilize Drainageways: After developed flows utilize the runoff reduction practices through the front and rear yards, developed flows will travel via roadside ditches in the large lot, rural portions of the development, curb and gutter within the public streets in the urban portions of the development and eventually public storm systems. These collected flows are then routed directly to multiple extended detention basins (fullspectrum facilities). Where developed flows are not able to be routed to public street, sheet flows will travel across landscaped rear yards and then through undeveloped property prior to entering Sand Creek. The Sand Creek channel corridor will be protected with various channel improvements as recommended in the Sand Creek DBPS and proposed with this Filing in order to reduce velocities to erosive levels.

Page 18
3. Provide Water Quality Capture Volume (WQCV): Runoff from this development will be treated through capture and slow release of the WQCV and excess urban runoff volume (EURV) in the proposed Full-Spectrum permanent Extended Detention Basins designed per current El Paso County drainage criteria.
4. Consider need for Industrial and Commercial BMPs: No industrial or commercial uses are proposed within this development. However, a site-specific storm water quality and erosion control plan and narrative has been submitted along with the grading and erosion control plan. Details such as site-specific sediment and erosion control construction BMP's as well as temporary and permanent BMP's were detailed in this plan and narrative to protect receiving waters. Multiple temporary BMP's are proposed based on specific phasing of the overall development. BMP's will be constructed and maintained as the development has been graded and erosion control methods employed.

FLOODPLAIN STATEMENT

Portions of this site are located within a floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Number 08041C 0535G with effective date of December 7, 2018 and the previously mentioned LOMR 08-08-0541P with an effective date of July 23, 2009. (See Appendix).

DRAINAGE AND BRIDGE FEES

This site lies entirely within the Sand Creek Drainage Basin boundaries.
The fees are calculated using the following impervious acreage method approved by El Paso County. The Retreat at TimberRidge Filing No. 2 has a total area of 75.83 acres with the following different land uses proposed:

8.09 Ac.	Sand Creek Drainage corridor (Tract C)
0.64 Ac.	Detention Facility (Tract B)
34.27 Ac.	2.5 Ac. lots (Rural Lots 1-12 incl. Tract A)
32.83 Ac.	1/3 Ac. lots (Urban Lots 13-90 with avg. size 15,575 SF)
75.83	Total

The percent imperviousness for this subdivision is calculated as follows:

Fees for Sand Creek Drainage Corridor

(Per El Paso County Percent Impervious Chart: 2\%)
8.09 Ac. x 2\% = 0.16 Impervious Ac.

Fees for Detention Facilities \& Park

(Per El Paso County Percent Impervious Chart: 7\%)
0.64 Ac. x 7\% = 0.04 Impervious Ac.

Fees for 2.5 Ac. lots

(Per El Paso County Percent Impervious Chart: 11\% with
25% fee reduction for 2.5 ac. lots planned) - Reduction for Drainage Fees only
34.27 Ac. $\times 11 \% \times 75 \%=2.83$ Impervious Ac. (Drainage Fees)
34.27 Ac. x 11\% = 3.77 Impervious Ac. (Bridge Fees)

Fees for 1/3 Ac. lots (Avg. lot size of 15,575 SF)
(Per El Paso County Percent Impervious Chart: 30\%)
32.83 Ac. x 30\% = 9.85 Impervious Ac.

Total Impervious Acreage:
 Total Impervious Acreage:

12.88 Imp. Ac. (Drainage Fees)
13.82 Imp. Ac. (Bridge Fees)

The following calculations are based on the 2021 Sand Creek drainage/bridge fees:

ESTIMATED FEE TOTALS:

Bridge Fees
$\$ 8,339.00 \times 13.82$ Impervious Ac. $=\$ \mathbf{1 1 5 , 2 4 4 . 9 8}$

Drainage Fees

\$20,387.00 x 12.88 Impervious Ac. $\underbrace{\text {. }}_{\underbrace{(262,584.56}}$

Per the ECM 3.10.5.a, this development requests a reduction of drainage fees based on the o site regional channel improvements for this stretch of Sand Creek Reach SC-9 as shown in the DBPS. The following facilities within the Sand Creek Drainage Basin seem to meet the criteria for this reduction: See comment letter		
Sand Creek Channel Improvements per DBPS	=	\$175,000
Proposed Sand Creek Channel Improvements:		
Sheet Pile Check Structure w/ Conc. Cap	\$45,000 EA $\times 2=$	\$ 90,000
Selective Bank Stabilization (Buried Rip-Rap)	\$100/LF x $535 \mathrm{LF}=$	\$ 53,500
Selective Bank Stabilization (Grading \& Reveg.)	=	\$ 80,000
Total	=	\$223,500
(Exact facility costs provided upon construction and acceptance by County. Anycredit may be used for future Filings) approved \qquad		

Classic Consulting Engineers \& Surveyors cannot and does not guarantee that the construction cost will not vary from these opinions of probable construction costs. These opinions represent our best judgment as design professionals familiar with the construction industry and this development in particular.

Page 21

SUMMARY

The proposed Retreat at TimberRidge Filing No. 2 is within the Sand Creek Drainage Basin. Recommendations are made within this report concerning necessary improvements that will be required as a result of development of this property. The points of storm water release from the proposed site are required to be at or below the calculated historic flow quantities. The development of the proposed site does not significantly impact any downstream facility or property to an extent greater than that which currently exists in the 'historic' conditions. All drainage facilities within this report were sized according to the Drainage Criteria Manuals and the full-spectrum storm water quality requirements.

PREPARED BY:

Classic Consulting Engineers \& Surveyors, LLC

Marc A. Whorton, P.E.
Project Manager
maw/118520/FDR Fil. 2.doc ENGINEERS \& SURVEYORS

REFERENCES

1. City of Colorado Springs/County of El Paso Drainage Criteria Manual as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.
2. "Urban Storm Drainage Criteria Manual Volume 1, 2 \& 3" Urban Drainage and Flood Control District, dated January 2016.
3. "Final Drainage Report for Forest Gate Subdivision" Law \& Mariotti Consultants, Inc. dated October 2004.
4. "Sand Creek Drainage Basin Planning Study," Kiowa Engineering Corporation, dated March 1996.
5. "Master Development Drainage Plan for The Retreat at TimberRidge", Classic Consulting, approved March 2018.
6. "Preliminary Drainage Report for The Retreat at TimberRidge Preliminary Plan - South of Arroya Lane", Classic Consulting, approved October 2018.
7. "2018 Sterling Ranch MDDP", M\&S Civil Consultants, Inc., June 2018
8. "Final Drainage Report for Retreat at Sand Creek Filing No. 1", Classic Consulting, approved November, 2020.
 ENGINEERS \& SURVEYORS

APPENDIX

VICINITY MAP

SOILS MAP (S.C.S SURVEY)

MAP LEGEND

Area of Interest (AOI)	
\square	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(0) Blowout

B Borrow Pit
䟿 Clay Spot
\diamond Closed Depression
Gravel Pit
\therefore Gravelly Spot
(8) Landfill
A. Lava Flow

Marsh or swamp
\% Mine or Quarry
(-) Miscellaneous Water

- Perennial Water
- Rock Outcrop
\uparrow Saline Spot
\therefore Sandy Spot
Severely Eroded Spot
- Sinkhole
() Slide or Slip

Ø6 Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 18, Jun 5, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 11, 2018—Oct 20, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol		Map Unit Name	Acres in AOI
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	21.7	Percent of AOI
40	Kettle gravelly loamy sand, 3 to 8 percent slopes	26.1	2.8%
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	51.7	3.4%
71	Pring coarse sandy loam, 3 to 8 percent slopes	667.8	6.7%
Totals for Area of Interest		$\mathbf{7 6 7 . 3}$	87.0%

El Paso County Area, Colorado

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit SettingNational map unit symbol: 369kElevation: 6,800 to 7,600 feetFarmland classification: Not prime farmland
Map Unit Composition
Pring and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects ofthe mapunit.
Description of Pring
Setting
Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Arkosic alluvium derived from sedimentary rock
Typical profile
A - 0 to 14 inches: coarse sandy loam
C-14 to 60 inches: gravelly sandy loam
Properties and qualities
Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High
(2.00 to $6.00 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 6.0 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: B
Ecological site: R048AY222CO
Hydric soil rating: No
Minor Components
Pleasant
Percent of map unit:
Landform: Depressions
Hydric soil rating: Yes

Other soils

Percent of map unit:
Hydric soil rating: No

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 18, Jun 5, 2020

F.E.M.A. MAP / LOMR (08-08-0541P)

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

COMMUNITY INFORMATION

APPLICABLE NFIP REGULATIONS/COMMUNITY OBLIGATION

We have made this determination pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93-234) and in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65. Pursuant to Section 1361 of the National Flood Insurance Act of 1968, as amended, communities participating in the NFIP are required to adopt and enforce floodplain management regulations that meet or exceed NFIP criteria. These criteria, including adoption of the FIS report and FIRM, and the modifications made by this LOMR, are the minimum requirements for continued NFIP participation and do not supersede more stringent State/Commonwealth or local requirements to which the regulations apply.

We provide the floodway designation to your community as a tool to regulate floodplain development. Therefore, the floodway revision we have described in this letter, while acceptable to us, must also be acceptable to your community and adopted by appropriate community action, as specified in Paragraph 60.3(d) of the NFIP regulations.

COMMUNITY REMINDERS

We based this determination on the 1-percent-annual-chance flood discharges computed in the FIS for your community without considering subsequent changes in watershed characteristics that could increase flood discharges. Future development of projects upstream could cause increased flood discharges, which could cause increased flood hazards. A comprehensive restudy of your community's flood hazards would consider the cumulative effects of development on flood discharges subsequent to the publication of the FIS report for your community and could, therefore, establish greater flood hazards in this area.

Your community must regulate all proposed floodplain development and ensure that permits required by Federal and/or State/Commonwealth law have been obtained. State/Commonwealth or community officials, based on knowledge of local conditions and in the interest of safety, may set higher standards for construction or may limit development in floodplain areas. If your State/Commonwealth or community has adopted more restrictive or comprehensive floodplain management criteria, those criteria take precedence over the minimum NFIP requirements.

We will not print and distribute this LOMR to primary users, such as local insurance agents or mortgage lenders; instead, the community will serve as a repository for the new data. We encourage you to disseminate the information in this LOMR by preparing a news release for publication in your community's newspaper that describes the revision and explains how your community will provide the data and help interpret the NFIP maps. In that way, interested persons, such as property owners, insurance agents, and mortgage lenders, can benefit from the information.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

David N. Bascom, Program Specialist

Federal Emergency Management Agency

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

We have designated a Consultation Coordination Officer (CCO) to assist your community. The CCO will be the primary liaison between your community and FEMA. For information regarding your CCO, please contact:

Ms. Jeanine D. Petterson
Director, Mitigation Division
Federal Emergency Management Agency, Region VIII
Denver Federal Center, Building 710
P.O. Box 25267
Denver, CO 80225-0267
(303) 235-4830

STATUS OF THE COMMUNITY NFIP MAPS

We will not physically revise and republish the FIRM and FIS report for your community to reflect the modifications made by this LOMR at this time. When changes to the previously cited FIRM panels) and FIS report warrant physical revision and republication in the future, we will incorporate the modifications made by this LOMR at that time.

Page 4 of 4	Issue Date: March 6, 2

Federal Emergency Management Agency

Washington, D.C. 20472

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

Within 90 days of the second publication in the local newspaper, a citizen may request that we reconsider this determination. Any request for reconsideration must be based on scientific or technical data. Therefore, this letter will be effective only after the 90 -day appeal period has elapsed and we have resolved any appeals that we receive during this appeal period. Until this LOMR is effective, the revised BEs presented in this LOMR may be changed.

A notice of changes will be published in the Federal Register. A short notice also will be published in your local newspaper on or about the dates listed below. Please refer to FEMA's website at https://www.floodmaps.fema.gov/fhm/Scripts/bfe_main.asp for a more detailed description of proposed BFE changes, which will be posted within a week of the date of this letter.

Name: El Paso County News
Dates: 03/18/09 03/25/09

David N. Bascom, Program Specialist

	FLOODING SOURCE		FLOODWAY			BASE FLOODATER SURFACE ELEVATION			
	CROSS SECTION	DISTANCE ${ }^{1}$	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY FEET	WITH FLOODWAY NGVD)	INCREASE
	Sand Creek (cont'd)				SECOND)				
	CA	65,292	164	427	6.1	6,748.7	6,748.7	6,749.4	0.7
	CB	66,092	41	223	11.7	6,761.2	6,761.2	6,762.2	1.0
	CC	66,247	90	270	9.6	6,773.6	6,773.6	6,773.7	0.1
	$C D$	67,647	50	218	11.9	6,782.6	6,782.6	6,783.3	0.7
	CE	68,297	65	284	8.8	6,793.9	6,793.9	6,794.4	0.5
	CF	69,147	50	213	11.7	6,804.5	6,804.5	6,804.5	0.0
	CG	70,157	50	213	11.7	6,815.1	6,815.1	6,815.3	0.2
Revised Data	CH	70,577	205	347	7.2	6,823.9	6,823.9	6,824.5	0.6
	CI	70,627	180	267	9.4	6,826.7	6,826.7	6,827.7	1.0
From	CJ	70,727	210	340	7.3	6,831.1	6,831.1	6,831.1	0.0
	CK	70,807	195	334	7.5	6,832.5	6,832.5	6,832.5	0.0
Dated Dec. 7,	CL	71,162	90	255	9.8	6,838.0	6,838.0	6,839.0	1.0
	CM	71,977	226	503	5.2	6,847.4	6,847.4	6,848.3	0.9
2005	CN	73,052	174	328	7.9	6,861.1	6,861.1	6,861.2	0.1
	CO	73,644	237	364	7.1	6,870.2	6,870.2	6,870.2	0.0
	CP	75,142	172	324	8.0	6,888.5	6,888.5	6,888.7	0.2
	CQ	76,161	109	283	9.2	6,903.5	6,903.5	6,903.7	0.2
Revised	CR	77,846	100	272	9.6	6,926.1	6,926.1	6,926.7	0.6
	CS	79,187	117	287	9.1	6,944.1	6,944.1	6,944.1	0.0
	CT	80,808	142	310	8.4	6,969.2	6,969.2	6,969.2	0.0
	CU	81,501	120	342	7.6	6,986.1	6,986.1	6,986.5	0.4
	CV	82,281	124	295	8.8	6,997.4	6,997.4	6,997.4	0.0
	CW	82,897	64	237	11.0	7,005.3	7,005.3	7,006.1	0.8
	CX	83,517	90	266	9.8	7,013.9	7,013.9	7,013.9	0.0
	CY	84,087	70	244	10.7	7,024.3	7,024.3	7,024.3	0.0
	CZ	84,473	160	322	8.1	7,040.2	7,040.2	7,040.2	0.0
${ }^{1}$ Feet Above Confluence With Fountain Creek					REFLECT LOMR EFFECTIVE: July 23, 2009				
$\begin{aligned} & -1 \\ & \text { B } \\ & \text { m } \\ & \text { m } \\ & \text { con } \end{aligned}$	FEDERAL EMERGENCY MANAGEMENT AGENCY EL PASO COUNTY, CO AND INCORPORATED AREAS				FLOODWAY DATA				
					SAND CREEK				

RECOMMENDATIONS PER SAND CREEK DBPS

the existing drainageway improvements are of adequate capacity to convey flood flows. Channelization would involve the lining of the Creek into a more confined flow area and could be done for either the 100 -year or 10 -year flood discharges. Several typical channel concepts have been presented. The primary bank lining material would probably be riprap. Grade control and/or drop structures would be required in a channelization
 heavy riprap. Soil cement offers an alternative to riprap and concrete for the construction of drops or grade control structures. Revegetation would occur wherever the native
 banks would be a minimum replacement. Selective linings would involve the construction of grade controls, drop structures, bank linings, storm sewer outlet control structures selectively sited to resist stream erosion or to reduce potential flooding damages. Areas of future concern such as at the outside bends of the creek, or at the outlets of bridges or culverts which will cross the drainageway would be subject to selective improvements.
Detention Concepts: The two general detention concepts evaluated were onsite versus regional detention. During the evaluation process, it was determined that the
 because, (1) onsite detention has a unpredictable impact upon lowering peak discharges from urbanized areas to historic conditions (reference, Urbonas and Glidden, "Effect of Detention on Flows in Major Drainageways" ASCE Water Forum '81, 1981), (2) an onsite concept has little impact upon maintaining or enhancing water quality, (3) the number of onsite detention basins, their locations and size cannot be accurately determined in the undeveloped portions of the basin at this time, and (4) onsite detention would present a substantial maintenance responsibility to the jurisdictions involved. For these reasons the onsite detention concept was eliminated and regional detention basin concepts were developed. In the analysis of the channel concepts, regional detention facilities were assumed to be in place.
Presented on Table VI-1 is a matrix of channel alternatives which were evaluated. All reaches of Sand Creek and the East Fork of Sand Creek had at least three alternatives analyzed. Presented on Tables VI-2 through VI-6 are comparative evaluations of the floodplain preservation (do-nothing), channelization and selective lining concepts, for the mainstem Sand Creek basin, by reach. The purpose of the evaluation process was to identify the relative advantages and disadvantages of each concept within each reach.

DEVELOPMENT OF ALTERNATIVES AND RECOMMENDED

plan

The concepts which are available for handling stormwater runoff within the Sand
Creek basin have been presented and discussed in detail in the Sand Creek Drainage Basin Planning Study Development of Alternatives Report and the draft East Fork Sand Creek Drainage Basin Planning Study. The process of combining the various channel treatment options, detention schemes and roadway crossing structures into a contiguous plan for all of the reaches is presented in this chapter of the report. As a result of the evaluation of the flood control, environmental, open space, operations and maintenance, and implementation concerns within the Sand Creek basin, the following concepts were identified as having sufficient feasibility to warrant furlher evaluation and review:

Floodplain Preservation Channelization, 10 -or 100 -year Selective Improvements
 Regional detention systems

 Channel Concepts: The channel concepts listed above have been evaluated with respect to the parameters listed in the previous chapter. A concept's feasibility depends upon its impact, positive or negative, upon the evaluation parameters. The floodplain preservation concept has been considered to be the same as the "do-nothing" alternative. The floodplain preservation concept would involve the regulation of the floodplain limits, generally as depicted on the effective City of Colorado Springs and El Paso County Flood Insurance Rate Maps. Regulation of the floodplain so that future encroachments are minimized and the floodproofing of structures which are currently within the 100 -year floodplain would presumably be the methods used to address the flood hazard concerns along Sand Creek. In the upper reaches of Sand Creek, the ownership or easements associated with the 100-year floodplain (or greater limits to allow for an erosion buffer zone) would be a primary issue in regards to implementation of such a concept. Detention in the upper reaches of the basin Sand Creek basin and in the East Fork Sand Creek basin will maintain the 100 -year floodplain at existing limits within the lower reaches of Sand Creek. The "do-nothing" concept is feasible whereverDevelorment of the Recommended Plan
Presented on Table VI-7 is a matrix representing the recommended plan for each major drainageway reach. The selection of a recommended channel treatment scheme

 in the evaluation and comparison of each of the alternatives within the mainstem Sand

Discussion of Recommended Plan

The recommendation of a particular channel treatment or detention scheme has
been based upon the qualitative and quantitative data presented. For each reach the flood hazard, environmental, cost, operations and maintenance and open space aspects of the drainageway were weighed for each alternative concept.
Reach SC-1: For this reach a 10 -year channel section was recommended for further evaluation. With the implementation of regional detention in the upper basin, the 100 -year floodplain will generally be confined within the existing banks, excepting at roadway crossings lacking 100 -year capacity. It is recommended that a 10 -year low flow channel be constructed within the invert of the existing channel through the construction of benches and sand bars. As urbanization continues towards the full development scenario, the base flow and annual flows will increase in volume and frequency. For this reason, the low flow area must be stabilized to protect the existing channel banks from undermining and subsequent bank sloughing. The benched areas offer an opportunity for habitat replacement and enhancement. At some locations within this reach, a residual лгГК-00I एппр! floodplain offers some potential for open space preservation and enhancement. This is particularly true in the portion of the reach downstream of Hancock Expressway.

 these reaches. Habitat disturbed by the construction of channel linings and grade control structures could be replaced along the channel toes and on the overbanks. The replacement of the Waynoka Road crossing will reduce the potential for flood damages in areas adjacent to these roadways. The detention within the upper reaches will limit the

100 -year peak discharge to levels. This will allow for the channel improvements to be constructed within the existing right-of way.

Reaches SC-5 and SC-6: A selective channel improvement concept has been recommended for these reaches. Detention in Reach SC-8 of the basin will maintain flows to historic peak discharge levels, however the low flows will increase in frequency and volume. For this reason it has been recommended to provide riprap channel linings at selective locations to at least the 10 -year water surface and install grade controls. This will prevent the long-term degradation of the invert. A residual 100 -year floodplain will remain and will offer opportunities for habitat replacement and open space preservation. Land adjacent to the drainageway is currently undeveloped or unplatted at this time which makes the feasibility of implementing this concept greater in comparison to the urbanized reaches of the creek.

Reaches SC-7 and SC-8: A selective improvement concept involving the localized lining of channel banks and grade control construction has been recommended for these reaches. The feasibility of this concept stems from the fact that flows will be reduced because of detention. Numerous individual rural ownerships cross the drainageway, however no habitable structures lie within the 100 -year floodplain. Because of this, the economic feasibility of channelization concepts is low. Nonstructural measures can be used to limit encroachments into floodprone areas. Additionally, the City of Colorado Springs Comprehensive plan recommends that the floodplains be maintained as open space. Potential habitat disturbances can be avoided with a selective plan, or simply replaced as part of the particular construction activity which caused the disturbance.

Reach SC-9: A floodplain preservation concept has been recommended for this reach. Little increase in urbanization is anticipated in this reach, and for this reason the existing drainageway is expected to remain stable. Localized improvements may be necessary to limit erosion caused by flow concentrations at culverts or storm sewers. Private ownership of the drainageway is anticipated to continue which lower the feasibility of channel concepts which require permanent right-of-ways or easements for construction and maintenance.

Reaches WF-1 through WF-3: A 100-year channel concept has been recommended for these reaches primarily because of the potential for flooding damages. Several roadway crossings are in need of replacement because of the flood hazard the constrictions create. Some open space enhancement potential exists for this concept since these reaches have been degraded visually by debris accumulation, bank sloughing and sedimentation. Little opportunity exists for widening the drainageway because the

PRELIMINARY DESIGN
 VII.

The results of the preliminary design analysis are summarized in this section. The alternative improvements have been quantitatively and qualitatively evaluated, and presented to the City of Colorado Springs and other interested agencies and individuals. Field review of specific areas of concem have been conducted in order to refine the channel treatments suggested for use along Sand Creek, East Fork Sand Creek and their major tributaries. The preliminary plan for the recommended altemative is shown on the drawings contained at the rear of this report.
$\frac{\text { Criteria }}{\text { The City }}$
The City of Colorado Springs, El Paso County Drainage Criteria Manual was used in the development of the typical sections and plans for the major drainageways within the Basin. The City/County manual was supplemented by various criteria manuals with more specific application. These were:

1. "Design Guidelines and Criteria for Channels and Hydraulic Structures on Sandy Soils,"
2. Urban Storm Drainage Criteria Manual, Volumes I, II, and III, prepared by the Urban Drainage and Flood Control District.
Various design plans for roadway and
Various design plans for roadway and channel improvement projects, either proposed or
already constructed were reviewed in order to prepare the preliminary design plans. Specifically, the project design plans for the Las Vegas Street and Galley Road bridge replacement projects were reviewed and the improvements incorporated in the preliminary design. The proposed Sand Creek Stabilization Project, AT\&SF Railroad to Hancock Expressway and the proposed Sand Creek Stabilization Project at Fountain Boulevard design plans have been reviewed and incorporated into the preliminary design plan and profiles.
Presented on Table VII-1 is selected hydrologic data to be used for the sizing of major drainageway improvements within the Basin. Peak flow rates for the 10 - and 100 -year frequency incorporating and the selected detention alternatives for the Sand Creek and East Fork Sand Creek Basin are summarized for key points along the major drainageways.
purpose of the Sand Creek detention basins is to limit peak discharges at Powers Boulevard to existing development condition levels. The detention basins in the upper portions of the Sand Creek basin will keep the majority of the existing channel sections and bridges below Powers Boulevard with adequate flow capacity in the future development condition. The detention
 from the Banning-Lewis Ranch property at existing levels. This in tum will help to reduce flow to the mainstem of Sand Creek. The detention basins have been designed to accommodate the 100 -year future condition volume without overtopping the overflow spillway. Sand Creek Basin
 structures, and their design and operation would be subject to State Engineer's office criteria. Sand Creek basins number 1 and 3 should be designed so as to take advantage of the adjacent roadway embankments, and therefore classifying as incidental storage and not subject State Engineer's regulations.

At Stetson Hills Boulevard, the roadway embankment has created a 2 acre open water wetland which was identified during the environmental review of the basin. It is recommended that this wetland be preserved. Accordingly, an outlet control structure will have to be constructed to pass the 100 -year discharge to the downstream channel without overtopping the roadway. No floodwater storage or routing has been accounted for in the hydrology modelling at this roadway for the selected detention plan.

For the East Fork Sand Creek detention basin numbers 2, and 3, the existing embankment and outlet structure act to maintain a permanent pool at this time. It is recommended that the design of these detention basins be directed at maintaining the permanent pool when the flood control storage is to be added. The existence of a permanent pool may enhance the water quality aspects of these basins, and offer the opportunity of open space development conducive with open water.

$\frac{\text { Water Quality }}{\text { Improvement o }}$

Improvement of urban stormwater quality has become and important issue in drainage
basin planning. Many pollutants are naturally associated with sediments that enter sensitive receiving waters. The pollutants are naturally occurring compounds that are carried to the drainageways in storm runoff. Other pollutants are the result of urbanization such as lawn chemicals, oil and grease, pet feces, lawn clippings and other items. Many pollutants can be limited by programs such as erosion control at construction sites, educational programs to inform the public as to the proper use of lawn chemicals, oil recycling programs and street sweeping programs. Even with these programs in place, erosion along the drainageways can generate large quantities of sediment that can settle out along the downstream channel bottoms.

For the East Fork Sand Creek drainageway, riprap lined channel banks have been recommended for the majority of the reaches. This is mainly because of the high level of development predicted for the basin in the area known as the Banning-Lewis Ranch development. Open space to accommodate the 100 -year floodplains should be allowed for as the East Fork Sand Creek drainageways develop. This is consistent with the Banning-Lewis Ranch master development plan which was approved at the time of annexation of this property. Above Woodmen Road, selective channel lining improvements and grade control structures have been recommended.

For the most part the side tributaries have been recommended to be lined with riprap, however there are some locations in the upper basin which have been proposed to be grasslined. The location of the side drainageways should be considered approximate and may very likely be modified in the future because of land development.

The primary criteria used when sizing the proposed channel sections has been velocity. For all riprap lined channels, the average design velocity should be no greater than 9 feet per second. This criteria allows for the use of Type H riprap within the main flow area of the drainageway. For the case of a 10 -year channel with an overall floodplain section, limiting the main channel velocity to 9 feet per second will result in overbank velocities in the five feet per second range. At this level of overbank velocity, native vegetation will be able to withstand the erosive forces which might result in a 100 -year flow event. Velocities approaching 10 feet per second could occur at constrictions such as at roadway crossings and at culvert outlets.

Drop Structures and Check Structures

Drop and check structures have been sited along Sand Creek in order to slow the channel velocity to the recommended 7 feet per second, and to prevent localized and long-term stream degradation from affecting channel linings and overbanks. In the reaches to be selectively lined, drops and check structures will protect the native vegetation from the detrimental effects of stream invert headcutting. Several types of structures could be considered for the Sand Creek Basin. For channel bottom widths in excess of fifty feet, soil cement or sheet piling drops/checks are feasible. For channels narrower than this, reinforced concrete structures are probably the best alternative. A maximum drop height of three feet is recommended. The methodology recommended for use when designing vertical structures is contained with Volume II of the Urban Storm Drainage Criteria Manual.

Detention

 the Sand Creek basin, and six regional basins within the East Fork Sand Creek basin. The

AND CRIBUTARY DRAINAGEWAY CONVEYANCE COST ESTIMATE
SAND CREEK, CENTER TRIBUTARY AND WEST FORK SAND CRE

NOTE: THE STRUCTURE MAY BE COVERED WITH 6" OF SOIL OUTSIDE OF THE LOW FLOW AREA.

SECTION

NOTES: 1. TRENCH IN UNDISTURBED SOIL. FORM TOP 6" OF CHECK. DO NOT OVER EXCAVATE TO FORM WALLS OR CONSTRUCT A FOOTING.
2. THE STRUCTURE MAY BE COVERED WITH $6^{\prime \prime}$ OF SOIL OUTSIDE OF THE LOW FLOW AREA.
3. VIBRATE CONCRETE INTO TRENCH.

Figure 9-27. Check structure details (Part 2 of 3)

Figure 9-28. Check structure details (Part 3 of 3)

HYDROLOGIC CALCULATIONS

For Colorado Springs and much of the Fountain Creek watershed, the 1-hour depths are fairly uniform and are summarized in Table 6-2. Depending on the location of the project, rainfall depths may be calculated using the described method and the NOAA Atlas maps shown in Figures 6-6 through 6-17.

Table 6-2. Rainfall Depths for Colorado Springs

Return Period	1-Hour Depth	6-Hour Depth	24 -Hour Depth
2	1.19	1.70	2.10
5	1.50	2.10	2.70
10	1.75	2.40	3.20
25	2.00	2.90	3.60
50	2.25	3.20	4.20
100	2.52	3.50	4.60
Where Z=6,840 ft/100			

These depths can be applied to the design storms or converted to intensities (inches/hour) for the Rational Method as described below. However, as the basin area increases, it is unlikely that the reported point rainfalls will occur uniformly over the entire basin. To account for this characteristic of rain storms an adjustment factor, the Depth Area Reduction Factor (DARF) is applied. This adjustment to rainfall depth and its effect on design storms is also described below. The UDFCD UD-Rain spreadsheet, available on UDFCD's website, also provides tools to calculate point rainfall depths and Intensity-Duration-Frequency curves 2 and should produce similar depth calculation results.

2.2 Design Storms

Design storms are used as input into rainfall/runoff models and provide a representation of the typical temporal distribution of rainfall events when the creation or routing of runoff hydrographs is required. It has long been observed that rainstorms in the Front Range of Colorado tend to occur as either shortduration, high-intensity, localized, convective thunderstorms (cloud bursts) or longer-duration, lowerintensity, broader, frontal (general) storms. The significance of these two types of events is primarily determined by the size of the drainage basin being studied. Thunderstorms can create high rates of runoff within a relatively small area, quickly, but their influence may not be significant very far downstream. Frontal storms may not create high rates of runoff within smaller drainage basins due to their lower intensity, but tend to produce larger flood flows that can be hazardous over a broader area and extend further downstream.

- Thunderstorms: Based on the extensive evaluation of rain storms completed in the Carlton study (Carlton 2011), it was determined that typical thunderstorms have a duration of about 2 hours. The study evaluated over 300,000 storm cells using gage-adjusted NEXRAD data, collected over a 14 year period (1994 to 2008). Storms lasting longer than 3 hours were rarely found. Therefore, the results of the Carlton study have been used to define the shorter duration design storms.

To determine the temporal distribution of thunderstorms, 22 gage-adjusted NEXRAD storm cells were studied in detail. Through a process described in a technical memorandum prepared by the City of Colorado Springs (City of Colorado Springs 2012), the results of this analysis were interpreted and normalized to the 1 -hour rainfall depth to create the distribution shown in Table $6-3$ with a 5 minute time interval for drainage basins up to 1 square mile in size. This distribution represents the rainfall

Table 6-6. Runoff Coefficients for Rational Method
(Source: UDFCD 2001)

Land Use or Surface Characteristics	Percent Impervious	Runoff Coefficients											
		2-year		5-year		10-year		25-year		50-year		100-year	
		HSG AKB	HSG C\&D	HSG A\&B	H5G CRA	HSGA\&B	H5G C8:D	HSG A\&B	HSG C\&D	HSG A\&B	HSG C\&D	HSG A\&B	HSG C8D
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
			.										
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis-Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
	-												.
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration $\left(t_{c}\right)$ consists of an initial time or overland flow time (t_{i}) plus the travel time $\left(t_{t}\right)$ in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time $\left(t_{i}\right)$ plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_{t}) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Table 6-10. NRCS Curve Numbers for Frontal Storms \& Thunderstorms for Developed Conditions (ARCII)

Fully Developed Urban Areas (vegetation established) ${ }^{\mathbf{1}}$	Treatment	Hydrologic Condition	\% 1	Pre-Development CN			
				HSG A	HSG B	HSG C	HSG D
Open space (lawns, parks, golf courses, cemeteries, etc.):							
Poor condition (grass cover $<50 \%$)	-----	-----	---	68	79	86	89
Fair condition (grass cover 50\% to 75\%)	----	---	---	49	69	79	84
Good condition (grass cover > 75\%)	\cdots	-----	---	39	61	74	80
Impervious areas:							
Paved parking lots, roofs, driveways, etc. (excluding right-of-way	-----	-----	\cdots	98	98	98	98
Streets and roads:							
Paved; curbs and storm sewers (excluding right-of-way)	.-...	-----	---	98	98	98	98
Paved; open ditches (Including right-of-way)	-----	-----	---	83	89	92	93
Gravel (including right-of-way)	-----	-----	---	76	85	89	91
Dirt (including right-of-way)	----	-----	\cdots	72	82	87	89
Western desert urban areas:							
Natural desert landscaping (pervious areas only)	-----	-	\cdots	63	77	85	88
Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2 -inch sand or gravel mulch and basin borders)	-----	-----	\cdots	96	96	96	96
Urban districts:							
Commercial and business	-----	-----	85	89	92	94	95
Industrial	-----	-----	72	81	88	91	93
Residential districts by average lot size:							
1/8 acre or less (town houses)	-	\cdots	65	77	85	90	92
1/4 acre	\cdots	-----	38	61	75	83	87
1/3 acre	---	-----	30	57	72	81	86
1/2 acre	-----	-----	25	54	70	80	85
1 acre	---	-----	20	51	68	79	84
2 acres	-----	-----	12	46	65	77	82
Developing Urban Areas ${ }^{1}$	Treatment ${ }^{2}$	Hydrologic Condition ${ }^{3}$	\% 1	HSG A	HSG B	HSG C	HSG D
Newly graded areas (pervious areas only, no vegetation)	--...	-----	---	77	86	91	94
Cultivated Agricultural Lands ${ }^{1}$	Treatment	Hydrologic Condition	\%1	HSG A	HSG B	HSG C	HSG D
Fallow	Bare soil	-....	\cdots	77	86	91	94
	Crop residue cover (CR)	Poor	---	76	85	90	93
		Good	---	74	83	88	90
Row crops	$\begin{aligned} & \text { Straight row } \\ & \text { (SR) } \\ & \hline \end{aligned}$	Poor	---	72	81	88	91
		Good	---	67	78	85	89
	SR + CR	Poor	---	71	80	87	90
		Good	---	64	75	82	85
	Contoured (C)	Poor	---	70	79	84	88
		Good	---	65	75	82	86
	C+CR	Poor	---	69	78	83	87
		Good	\cdots	64	74	81	85
	Contoured \& terraced (C\&T)	Poor	---	66	74	80	82
		Good	--..	62	71	78	81
	C\&T+CR	Poor	---	65	73	79	81
		Good	\cdots	61	70	77	80
Small grain	SR	Poor	---	65	76	84	88
		Good	\cdots	63	75	83	87
	SR + CR	Poor	---	64	75	83	86
		Good	---	60	72	80	84
	C	Poor	---	63	74	82	85
		Good	-	61	73	81	84
	C + CR Poor	Poor	---	62	73	81	84
		Good	\cdots	60	72	80	83
	C\&T	Poor	---	61	72	79	82
		Good	...	59	70	78	81
	C\&T + CR	Poor	---	60	71	78	81
		Good	---	58	69	77	80

Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$\mathrm{I}_{100}=\mathbf{- 2 . 5 2} \ln (\mathrm{D})+\mathbf{1 2 . 7 3 5}$
$\mathrm{I}_{50}=\mathbf{- 2 . 2 5} \ln (\mathrm{D})+\mathbf{1 1 . 3 7 5}$
$\mathrm{I}_{\mathbf{2 5}}=\mathbf{- 2 . 0 0} \ln (\mathrm{D})+10.111$
$\mathrm{I}_{\mathbf{1 0}}=\mathbf{- 1 . 7 5} \ln (\mathrm{D})+\mathbf{8 . 8 4 7}$
$\mathrm{I}_{\mathbf{5}}=\mathbf{- 1 . 5 0} \ln (\mathrm{D})+\mathbf{7 . 5 8 3}$
$\mathrm{I}_{\mathbf{2}}=\mathbf{- 1 . 1 9} \ln (\mathrm{D})+6.035$
Note: Values calculated by equations may not precisely duplicate values read from figure.

EFFECTIVE IMPERVIOUSNESS - POND 2

Basin	Acreage	Imp. $\%$
D1 (Fil. 1 Report)	1.1	90%
D2 (Fil. 1 Report)	2.2	60%
H (Fil. 1 Report)	2.0	25%
OS-3 (Fil. 1 Report)	2.5	30%
OS-4 (Fil. 1 Report)	3.1	25%
OS-12 (Fil. 1 Report)	15.0	10%
OS-13 (Fil. 1 Report)	1.4	20%
OS-14 (Fil. 1 Report)	9.1	20%
I (Fil. 1 Report)	3.7	30%
K (Fil. 1 Report)	1.5	30%
L (Fil. 1 Report)	7.3	30%
N (Fil. 1 Report)	2.1	30%
P (Fil. 1 Report)	2.7	30%
Q (Fil. 1 Report)	2.2	10%
OS-4	2.5	2%
OS-5	13.7	2%
OS-6	1.5	2%
OS-8	3.6	30%
J	5.9	30%
N	0.63	30%
O	2.8	30%
P	1.0	30%
Q	1.9	30%
R	2.7	30%
S	6.6	30%
T	1.0	30%
U	1.5	30%
Total	101.2	21.7%

EFFECTIVE IMPERVIOUSNESS - POND 3

Basin	Acreage	Imp.\%
EX-7	27.6	7.0%
OS-1	3.9	15.1%
OS-2	2.9	24.6%
A	9.5	15.2%
B	6.0	18.9%
C	3.3	23.0%
D	2.3	17.9%
E	8.5	15.6%
Total	$\mathbf{6 4 . 0}$	$\mathbf{1 3 . 0} \%$

CALCULATED BY: M

```
JOB NUMBER: 1185.20
JOB NUMBER: 1185.20
BR. K%.2Q
BR. K%.2Q

FINAL DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY




\begin{tabular}{|c|c|}
\hline JOB NAME: & RETREAT AT TIMBERRIDGE FILING NO. 2 \\
\hline JOB NUMBER: & 1185.20 \\
\hline DATE: & 03/17/21 \\
\hline CALCULATED BY: & MAW \\
\hline
\end{tabular}

FINAL DRAINAGE REPORT ~ SURFACE ROUTING SUMMARY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Design \\
Point(s)
\end{tabular}} & \multirow[b]{2}{*}{Contributing Basins} & \multirow[b]{2}{*}{Equivalent CA(5)} & \multirow[b]{2}{*}{Equivalent CA(100)} & \multirow[b]{2}{*}{Maximum Tc} & \multicolumn{2}{|c|}{Intensity} & \multicolumn{2}{|c|}{Flow} & \\
\hline & & & & & I(5) & I(100) & Q(5) & \(Q(100)\) & Inlet Size \\
\hline 1 & EX-7, OS-1, OS-2, B (40.4 AC.) & 6.09 & 16.61 & 40.4 & 2.04 & 3.41 & 12 & 57 & \[
\begin{aligned}
& \text { EX. DUAL 30" } \\
& \text { RCP CULVERTS }
\end{aligned}
\] \\
\hline 2 & Basin A (9.5 AC.) & 1.71 & 4.08 & 23.0 & 2.88 & 4.84 & 5 & 20 & 24" RCP CULVERT \\
\hline 3 & DP-1, Basin D (42.7 ac.) & 6.57 & 17.64 & 40.9 & 2.02 & 3.38 & 13 & 60 & DUAL 30" RCP CULVERTS \\
\hline 4 & Basin C (3.3 AC.) & 0.84 & 1.60 & 20.2 & 3.08 & 5.16 & 3 & 8 & \begin{tabular}{l}
\[
24 " \text { RCP }
\] \\
CULVERT
\end{tabular} \\
\hline 5 & POND 1 TOTAL INFLOW (64.0 AC.) & 10.69 & 27.00 & 46.4 & 1.83 & 3.07 & 20 & 83 & POND 1 \\
\hline 6 & Basin G, Basin OS-9 (2.3 ac.) & 0.88 & 1.32 & 13.8 & 3.65 & 6.12 & 3 & 8 & Exist. 10' TYPE R AT GRADE INLET \\
\hline 7 & Basin OS-4, J and 70\% of Basin OS-5 (18.0 ac.) & 3.02 & 7.47 & 20.2 & 3.08 & 5.16 & 9 & 39 & 15' TYPE R SUMP INLET \\
\hline 8 & \[
\begin{aligned}
& \text { Basin } \mathrm{N} \text { and } 30 \% \text { of Basin OS-5 } \\
& (4.7 \mathrm{ac} .)
\end{aligned}
\] & 0.62 & 1.85 & 20.2 & 3.08 & 5.16 & 2 & 10 & 10' TYPE R SUMP INLET \\
\hline 9 & Basin OS-8, Q (5.5 ac.) & 1.17 & 2.45 & 15.7 & 3.45 & 5.79 & 4 & 14 & Exist. 10' TYPE R SUMP INLET \\
\hline 10 & Basin OS-6, O (4.3 ac.) & 1.00 & 1.98 & 18.1 & 3.24 & 5.44 & 3 & 11 & 10' TYPE R SUMP INLET \\
\hline 11 & Basin P (1.0 ac.) & 0.41 & 0.59 & 10.6 & 4.05 & 6.80 & 2 & 4 & 5' TYPE R SUMP INLET \\
\hline 12 & Basin R (2.7 ac.) & 1.07 & 1.56 & 15.6 & 3.46 & 5.82 & 4 & 9 & 10' TYPE R AT GRADE INLET \\
\hline 13 & Basin S and Flow-by from Basin R (9.3 ac.) & 2.25 & 3.93 & 16.1 & 3.42 & 5.74 & 8 & 23 & 15' TYPE R SUMP INLET \\
\hline 14 & Basin T (1.0 ac.) & 0.33 & 0.53 & 12.8 & 3.76 & 6.32 & 1 & 3 & 5' TYPE R SUMP INLET \\
\hline 15 & Basin V and OS-7 (4.7 ac.) & 0.76 & 1.92 & 15.6 & 3.46 & 5.81 & 3 & 11 & REAR YARD SWALE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline JOB NAME: JOB NUMBER: DATE: CALCULATED BY: & \begin{tabular}{l}
\begin{tabular}{l} 
RETREAT AT TIMBERRID \\
\hline 1185.20 \\
\hline \(03 / 17 / 21\) \\
\hline MAW \\
\hline
\end{tabular} \\
PIPES ARE LISTED AT MAXIM REFER TO INDIVIDUAL PIPE \\
FIN
\end{tabular} & M SIZE REQUIR EETS FOR HYD & \begin{tabular}{l}
O. 2 \\
ED TO ACCOM RAULIC INFOR \\
E REPORT
\end{tabular} & \begin{tabular}{l}
MODATE Q100 MATION. \\
~ PIPE RO
\end{tabular} & \begin{tabular}{l}
WS AT \\
ING
\end{tabular} & \begin{tabular}{l}
MUM GR \\
MAR
\end{tabular} & & & \\
\hline & & & & & & & & & \\
\hline Pipe Run & Contributing Basins & \[
\begin{gathered}
\text { Equivalent } \\
\mathrm{CA}(5) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Equivalent } \\
\mathrm{CA}(100) \\
\hline
\end{gathered}
\] & Maximum Tc & I(5) & I(100) & \(Q(5)\) & Q(100) & Pipe Size* \\
\hline 1 & DP-7 & 3.02 & 7.47 & 20.2 & 3.08 & 5.16 & 9 & 39 & 30" RCP \\
\hline 2 & DP-8 & 0.62 & 1.85 & 20.2 & 3.08 & 5.16 & 2 & 10 & 24" RCP \\
\hline 3 & PR-1, PR-2 & 3.64 & 9.32 & 20.8 & 3.03 & 5.09 & 11 & 47 & \(36 " \mathrm{RCP}\) \\
\hline 4 & DP-10 & 1.00 & 1.98 & 10.6 & 4.05 & 6.80 & 4 & 13 & 24" RCP \\
\hline 5 & DP-11 & 0.41 & 0.59 & 13.8 & 3.65 & 6.12 & 2 & 4 & 18" RCP \\
\hline 6 & PR-3, PR-4, PR-5 & 5.05 & 11.89 & 21.8 & 2.96 & 4.97 & 15 & 59 & \(36 " \mathrm{RCP}\) \\
\hline 7 & DP-12 Pickup & 1.05 & 1.17 & 15.6 & 3.46 & 5.82 & 4 & 7 & 24" RCP \\
\hline 8 & PR-6, PR-7 & 6.11 & 13.06 & 22.2 & 2.93 & 4.92 & 18 & 64 & 36" RCP \\
\hline 9 & DP-13 & 2.25 & 3.93 & 16.1 & 3.42 & 5.74 & 8 & 23 & 30" RCP \\
\hline 10 & DP-14 & 0.33 & 0.53 & 16.3 & 3.40 & 5.70 & 1 & 3 & 18" RCP \\
\hline 11 & PR-9, PR-10 & 2.57 & 4.47 & 16.3 & 3.40 & 5.70 & 9 & 25 & 30" RCP \\
\hline 12 & PR-8, PR-11 & 8.68 & 17.53 & 22.7 & 2.90 & 4.87 & 25 & 85 & 42" RCP \\
\hline
\end{tabular}

Version 4.05 Released March 2017


INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017



Version 4.05 Released March 2017


INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

\begin{tabular}{|c|c|c|c|c|}
\hline Design Information (Input) \(\quad\) CDOT Type R Curb Opening & \multirow[b]{2}{*}{Type \(=\)} & MINOR & MAJOR & \multirow[b]{3}{*}{inches} \\
\hline Type of Inlet CDOT Type R Curb Opening * & & \multicolumn{2}{|l|}{CDOT Type R Curb Opening} & \\
\hline Local Depression (additional to continuous gutter depression 'a' from above) & \(\mathrm{a}_{\text {local }}=\) & 3.00 & 3.00 & \\
\hline Number of Unit Inlets (Grate or Curb Opening) & No = & 1 & 1 & \\
\hline Water Depth at Flowline (outside of local depression) & Ponding Depth \(=\) & 6.0 & 12.0 & inches \\
\hline Grate Information & & MINOR & MAJOR & \(\sqrt{ }\) Override Depths \\
\hline Length of a Unit Grate & \(\mathrm{L}_{0}(\mathrm{G})=\) & N/A & N/A & feet \\
\hline Width of a Unit Grate & \(\mathrm{W}_{0}=\) & N/A & N/A & feet \\
\hline Area Opening Ratio for a Grate (typical values 0.15-0.90) & \(\mathrm{A}_{\text {ratio }}=\) & N/A & N/A & \\
\hline Clogging Factor for a Single Grate (typical value 0.50-0.70) & \(\mathrm{C}_{\mathrm{f}}(\mathrm{G})=\) & N/A & N/A & \\
\hline Grate Weir Coefficient (typical value 2.15-3.60) & \(C_{w}(G)=\) & N/A & N/A & \\
\hline Grate Orifice Coefficient (typical value 0.60-0.80) & \(\mathrm{C}_{0}(\mathrm{G})=\) & N/A & N/A & \\
\hline Curb Opening Information & & MINOR & MAJOR & \\
\hline Length of a Unit Curb Opening & \(\mathrm{L}_{0}(\mathrm{C})=\) & 10.00 & 10.00 & feet \\
\hline Height of Vertical Curb Opening in Inches & \(\mathrm{H}_{\text {vert }}=\) & 6.00 & 6.00 & inches \\
\hline Height of Curb Orifice Throat in Inches & \(\mathrm{H}_{\text {throat }}=\) & 6.00 & 6.00 & inches \\
\hline Angle of Throat (see USDCM Figure ST-5) & Theta \(=\) & 63.40 & 63.40 & degrees \\
\hline Side Width for Depression Pan (typically the gutter width of 2 feet) & \(\mathrm{W}_{\mathrm{p}}=\) & 2.00 & 2.00 & feet \\
\hline Clogging Factor for a Single Curb Opening (typical value 0.10) & \(\mathrm{C}_{\mathrm{f}}(\mathrm{C})=\) & 0.10 & 0.10 & \\
\hline Curb Opening Weir Coefficient (typical value 2.3-3.7) & \(\mathrm{C}_{\mathrm{w}}(\mathrm{C})=\) & 3.60 & 3.60 & \\
\hline Curb Opening Orifice Coefficient (typical value 0.60-0.70) & \(\mathrm{C}_{0}(\mathrm{C})=\) & 0.67 & 0.67 & \\
\hline Low Head Performance Reduction (Calculated) & & MINOR & MAJOR & \\
\hline Depth for Grate Midwidth & \(\mathrm{d}_{\text {Grate }}=\) & N/A & N/A & ft \\
\hline Depth for Curb Opening Weir Equation & \(\mathrm{d}_{\text {Curb }}=\) & 0.33 & 0.83 & ft \\
\hline Combination Inlet Performance Reduction Factor for Long Inlets & \(\mathrm{RF}_{\text {combination }}=\) & 0.57 & 1.00 & \\
\hline Curb Opening Performance Reduction Factor for Long Inlets & \(R F_{\text {curb }}=\) & 0.93 & 1.00 & \\
\hline Grated Inlet Performance Reduction Factor for Long Inlets & \(\mathrm{RF}_{\text {Grate }}=\) & N/A & N/A & \\
\hline & & MINOR & MAJOR & \\
\hline Total Inlet Interception Capacity (assumes clogged condition) & \(\mathrm{Q}_{\mathrm{a}}=\) & 8.3 & 25.5 & cfs \\
\hline Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) & \(Q_{\text {Peak required }}=\) & 2.0 & 10.0 & cfs \\
\hline
\end{tabular}

Version 4.05 Released March 2017


INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

\begin{tabular}{|c|c|c|c|c|}
\hline Design Information (Input) CDOT Type R Curb Opening & & MINOR & MAJOR & \\
\hline Type of Inlet & Type = & CDOT Ty & Opening & \\
\hline Local Depression (additional to continuous gutter depression 'a' from above) & \(\mathrm{a}_{\text {local }}=\) & 3.00 & 3.00 & inches \\
\hline Number of Unit Inlets (Grate or Curb Opening) & No = & 1 & 1 & \\
\hline Water Depth at Flowline (outside of local depression) & Ponding Depth \(=\) & 6.0 & 12.0 & inches \\
\hline Grate Information & & MINOR & MAJOR & \(\sqrt{ }\) Override Depths \\
\hline Length of a Unit Grate & \(\mathrm{L}_{0}(\mathrm{G})=\) & N/A & N/A & feet \\
\hline Width of a Unit Grate & \(\mathrm{W}_{0}=\) & N/A & N/A & feet \\
\hline Area Opening Ratio for a Grate (typical values 0.15-0.90) & \(\mathrm{A}_{\text {ratio }}=\) & N/A & N/A & \\
\hline Clogging Factor for a Single Grate (typical value 0.50-0.70) & \(\mathrm{C}_{\mathrm{f}}(\mathrm{G})=\) & N/A & N/A & \\
\hline Grate Weir Coefficient (typical value 2.15-3.60) & \(C_{w}(G)=\) & N/A & N/A & \\
\hline Grate Orifice Coefficient (typical value 0.60-0.80) & \(\mathrm{C}_{0}(\mathrm{G})=\) & N/A & N/A & \\
\hline Curb Opening Information & & MINOR & MAJOR & \\
\hline Length of a Unit Curb Opening & \(\mathrm{L}_{0}(\mathrm{C})=\) & 10.00 & 10.00 & feet \\
\hline Height of Vertical Curb Opening in Inches & \(\mathrm{H}_{\text {vert }}=\) & 6.00 & 6.00 & inches \\
\hline Height of Curb Orifice Throat in Inches & \(\mathrm{H}_{\text {trroat }}=\) & 6.00 & 6.00 & inches \\
\hline Angle of Throat (see USDCM Figure ST-5) & Theta \(=\) & 63.40 & 63.40 & degrees \\
\hline Side Width for Depression Pan (typically the gutter width of 2 feet) & \(\mathrm{W}_{\mathrm{p}}=\) & 2.00 & 2.00 & feet \\
\hline Clogging Factor for a Single Curb Opening (typical value 0.10) & \(\mathrm{C}_{\mathrm{f}}(\mathrm{C})=\) & 0.10 & 0.10 & \\
\hline Curb Opening Weir Coefficient (typical value 2.3-3.7) & \(\mathrm{C}_{\mathrm{w}}(\mathrm{C})=\) & 3.60 & 3.60 & \\
\hline Curb Opening Orifice Coefficient (typical value 0.60-0.70) & \(\mathrm{C}_{0}(\mathrm{C})=\) & 0.67 & 0.67 & \\
\hline Low Head Performance Reduction (Calculated) & & MINOR & MAJOR & \\
\hline Depth for Grate Midwidth & \(\mathrm{d}_{\text {Grate }}=\) & N/A & N/A & ft \\
\hline Depth for Curb Opening Weir Equation & \(\mathrm{d}_{\text {Curb }}=\) & 0.33 & 0.83 & ft \\
\hline Combination Inlet Performance Reduction Factor for Long Inlets & \(\mathrm{RF}_{\text {combination }}=\) & 0.57 & 1.00 & \\
\hline Curb Opening Performance Reduction Factor for Long Inlets & \(R F_{\text {curb }}=\) & 0.93 & 1.00 & \\
\hline Grated Inlet Performance Reduction Factor for Long Inlets & \(R F_{\text {Grate }}=\) & N/A & N/A & \\
\hline & & MINOR & MAJOR & \\
\hline Total Inlet Interception Capacity (assumes clogged condition) & \(\mathrm{Q}_{\mathrm{a}}=\) & 8.3 & 25.5 & cfs \\
\hline Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) & \(Q_{\text {Peakrequired }}=\) & 4.0 & 14.0 & cfs \\
\hline
\end{tabular}

Version 4.05 Released March 2017


INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

\begin{tabular}{|c|c|c|c|c|}
\hline Design Information (Input) CDOT Type R Curb Opening & & MINOR & MAJOR & \\
\hline Type of Inlet & Type = & CDOT Ty & Opening & \\
\hline Local Depression (additional to continuous gutter depression 'a' from above) & \(\mathrm{a}_{\text {local }}=\) & 3.00 & 3.00 & inches \\
\hline Number of Unit Inlets (Grate or Curb Opening) & No = & 1 & 1 & \\
\hline Water Depth at Flowline (outside of local depression) & Ponding Depth \(=\) & 6.0 & 12.0 & inches \\
\hline Grate Information & & MINOR & MAJOR & \(\sqrt{ }\) Override Depths \\
\hline Length of a Unit Grate & \(\mathrm{L}_{0}(\mathrm{G})=\) & N/A & N/A & feet \\
\hline Width of a Unit Grate & \(\mathrm{W}_{0}=\) & N/A & N/A & feet \\
\hline Area Opening Ratio for a Grate (typical values 0.15-0.90) & \(\mathrm{A}_{\text {ratio }}=\) & N/A & N/A & \\
\hline Clogging Factor for a Single Grate (typical value 0.50-0.70) & \(\mathrm{C}_{\mathrm{f}}(\mathrm{G})=\) & N/A & N/A & \\
\hline Grate Weir Coefficient (typical value 2.15-3.60) & \(C_{w}(G)=\) & N/A & N/A & \\
\hline Grate Orifice Coefficient (typical value 0.60-0.80) & \(\mathrm{C}_{0}(\mathrm{G})=\) & N/A & N/A & \\
\hline Curb Opening Information & & MINOR & MAJOR & \\
\hline Length of a Unit Curb Opening & \(\mathrm{L}_{0}(\mathrm{C})=\) & 10.00 & 10.00 & feet \\
\hline Height of Vertical Curb Opening in Inches & \(\mathrm{H}_{\text {vert }}=\) & 6.00 & 6.00 & inches \\
\hline Height of Curb Orifice Throat in Inches & \(\mathrm{H}_{\text {trroat }}=\) & 6.00 & 6.00 & inches \\
\hline Angle of Throat (see USDCM Figure ST-5) & Theta \(=\) & 63.40 & 63.40 & degrees \\
\hline Side Width for Depression Pan (typically the gutter width of 2 feet) & \(\mathrm{W}_{\mathrm{p}}=\) & 2.00 & 2.00 & feet \\
\hline Clogging Factor for a Single Curb Opening (typical value 0.10) & \(\mathrm{C}_{\mathrm{f}}(\mathrm{C})=\) & 0.10 & 0.10 & \\
\hline Curb Opening Weir Coefficient (typical value 2.3-3.7) & \(\mathrm{C}_{\mathrm{w}}(\mathrm{C})=\) & 3.60 & 3.60 & \\
\hline Curb Opening Orifice Coefficient (typical value 0.60-0.70) & \(\mathrm{C}_{0}(\mathrm{C})=\) & 0.67 & 0.67 & \\
\hline Low Head Performance Reduction (Calculated) & & MINOR & MAJOR & \\
\hline Depth for Grate Midwidth & \(\mathrm{d}_{\text {Grate }}=\) & N/A & N/A & ft \\
\hline Depth for Curb Opening Weir Equation & \(\mathrm{d}_{\text {Curb }}=\) & 0.33 & 0.83 & ft \\
\hline Combination Inlet Performance Reduction Factor for Long Inlets & \(\mathrm{RF}_{\text {combination }}=\) & 0.57 & 1.00 & \\
\hline Curb Opening Performance Reduction Factor for Long Inlets & \(R F_{\text {curb }}=\) & 0.93 & 1.00 & \\
\hline Grated Inlet Performance Reduction Factor for Long Inlets & \(R F_{\text {Grate }}=\) & N/A & N/A & \\
\hline & & MINOR & MAJOR & \\
\hline Total Inlet Interception Capacity (assumes clogged condition) & \(\mathrm{Q}_{\mathrm{a}}=\) & 8.3 & 25.5 & cfs \\
\hline Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) & \(Q_{\text {Peakrequired }}=\) & 3.0 & 11.0 & cfs \\
\hline
\end{tabular}

Version 4.05 Released March 2017


INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

\begin{tabular}{|c|c|c|c|c|}
\hline Design Information (Input) \(\quad\) CDOT Type R Curb Opening & \multirow[b]{2}{*}{Type \(=\)} & MINOR & MAJOR & \multirow[b]{3}{*}{inches} \\
\hline Type of Inlet CDOT Type R Curb Opening * & & \multicolumn{2}{|l|}{CDOT Type R Curb Opening} & \\
\hline Local Depression (additional to continuous gutter depression 'a' from above) & \(\mathrm{a}_{\text {local }}=\) & 3.00 & 3.00 & \\
\hline Number of Unit Inlets (Grate or Curb Opening) & No = & 1 & 1 & \\
\hline Water Depth at Flowline (outside of local depression) & Ponding Depth \(=\) & 6.0 & 12.0 & inches \\
\hline Grate Information & & MINOR & MAJOR & \(\sqrt{ }\) Override Depths \\
\hline Length of a Unit Grate & \(\mathrm{L}_{0}(\mathrm{G})=\) & N/A & N/A & feet \\
\hline Width of a Unit Grate & \(\mathrm{W}_{0}=\) & N/A & N/A & feet \\
\hline Area Opening Ratio for a Grate (typical values 0.15-0.90) & \(\mathrm{A}_{\text {ratio }}=\) & N/A & N/A & \\
\hline Clogging Factor for a Single Grate (typical value 0.50-0.70) & \(\mathrm{C}_{\mathrm{f}}(\mathrm{G})=\) & N/A & N/A & \\
\hline Grate Weir Coefficient (typical value 2.15-3.60) & \(C_{w}(G)=\) & N/A & N/A & \\
\hline Grate Orifice Coefficient (typical value 0.60-0.80) & \(\mathrm{C}_{0}(\mathrm{G})=\) & N/A & N/A & \\
\hline Curb Opening Information & & MINOR & MAJOR & \\
\hline Length of a Unit Curb Opening & \(\mathrm{L}_{0}(\mathrm{C})=\) & 5.00 & 5.00 & feet \\
\hline Height of Vertical Curb Opening in Inches & \(\mathrm{H}_{\text {vert }}=\) & 6.00 & 6.00 & inches \\
\hline Height of Curb Orifice Throat in Inches & \(\mathrm{H}_{\text {throat }}=\) & 6.00 & 6.00 & inches \\
\hline Angle of Throat (see USDCM Figure ST-5) & Theta \(=\) & 63.40 & 63.40 & degrees \\
\hline Side Width for Depression Pan (typically the gutter width of 2 feet) & \(\mathrm{W}_{\mathrm{p}}=\) & 2.00 & 2.00 & feet \\
\hline Clogging Factor for a Single Curb Opening (typical value 0.10) & \(\mathrm{C}_{\mathrm{f}}(\mathrm{C})=\) & 0.10 & 0.10 & \\
\hline Curb Opening Weir Coefficient (typical value 2.3-3.7) & \(\mathrm{C}_{\mathrm{w}}(\mathrm{C})=\) & 3.60 & 3.60 & \\
\hline Curb Opening Orifice Coefficient (typical value 0.60-0.70) & \(\mathrm{C}_{0}(\mathrm{C})=\) & 0.67 & 0.67 & \\
\hline Low Head Performance Reduction (Calculated) & & MINOR & MAJOR & \\
\hline Depth for Grate Midwidth & \(\mathrm{d}_{\text {Grate }}=\) & N/A & N/A & ft \\
\hline Depth for Curb Opening Weir Equation & \(\mathrm{d}_{\text {Curb }}=\) & 0.33 & 0.83 & ft \\
\hline Combination Inlet Performance Reduction Factor for Long Inlets & \(\mathrm{RF}_{\text {combination }}=\) & 0.77 & 1.00 & \\
\hline Curb Opening Performance Reduction Factor for Long Inlets & \(R F_{\text {curb }}=\) & 1.00 & 1.00 & \\
\hline Grated Inlet Performance Reduction Factor for Long Inlets & \(\mathrm{RF}_{\text {Grate }}=\) & N/A & N/A & \\
\hline & & MINOR & MAJOR & \\
\hline Total Inlet Interception Capacity (assumes clogged condition) & \(\mathrm{Q}_{\mathrm{a}}=\) & 5.4 & 12.3 & cfs \\
\hline Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) & \(Q_{\text {Peak required }}=\) & 2.0 & 4.0 & cfs \\
\hline
\end{tabular}

Version 4.05 Released March 2017


INLET ON A CONTINUOUS GRADE
Version 4.05 Released March 2017

\begin{tabular}{|c|c|c|c|c|}
\hline Design Information (Input) & & \multicolumn{2}{|l|}{MINOR MAJOR} & \multirow{8}{*}{inches} \\
\hline \multirow[b]{2}{*}{Local Depression (additional to continuous gutter depression 'a')} & Type \(=\) & \multicolumn{2}{|l|}{CDOT Type R Curb Opening} & \\
\hline & \[
a_{\text {LOCAL }}=
\] & 3.0 & 3.0 & \\
\hline Total Number of Units in the Inlet (Grate or Curb Opening) & No = & 1 & 1 & \\
\hline Length of a Single Unit Inlet (Grate or Curb Opening) & \(\mathrm{L}_{0}=\) & 10.00 & 10.00 & \\
\hline Width of a Unit Grate (cannot be greater than W, Gutter Width) & \(\mathrm{W}_{0}=\) & N/A & N/A & \\
\hline Clogging Factor for a Single Unit Grate (typical min. value \(=0.5\) ) & \(\mathrm{C}_{\mathrm{f}} \mathrm{G}=\) & N/A & N/A & \\
\hline Clogging Factor for a Single Unit Curb Opening (typical min. value \(=0.1\) ) & \(\mathrm{C}_{\mathrm{f}}-\mathrm{C}=\) & 0.10 & 0.10 & \\
\hline Street Hydraulics: OK - Q < Allowable Street Capacity' & & MINOR & MAJOR & \\
\hline Total Inlet Interception Capacity & Q = & 4.0 & 6.7 & cfs \\
\hline Total Inlet Carry-Over Flow (flow bypassing inlet) & \(\mathrm{Q}_{\mathrm{b}}=\) & 0.0 & 2.3 & cfs \\
\hline Capture Percentage \(=\mathrm{Q}_{\mathrm{a}} / \mathbf{Q}_{0}=\) & C\% = & 99 & 75 & \% \\
\hline
\end{tabular}

Version 4.05 Released March 2017


INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

\begin{tabular}{|c|c|c|c|c|}
\hline Design Information (Input) \(\quad\) CDOT Type R Curb Opening & \multirow[b]{2}{*}{Type \(=\)} & MINOR & MAJOR & \multirow[b]{3}{*}{inches} \\
\hline Type of Inlet CDOT Type R Curb Opening * & & \multicolumn{2}{|l|}{CDOT Type R Curb Opening} & \\
\hline Local Depression (additional to continuous gutter depression 'a' from above) & \(\mathrm{a}_{\text {local }}=\) & 3.00 & 3.00 & \\
\hline Number of Unit Inlets (Grate or Curb Opening) & No = & 1 & 1 & \\
\hline Water Depth at Flowline (outside of local depression) & Ponding Depth \(=\) & 6.0 & 12.0 & inches \\
\hline Grate Information & & MINOR & MAJOR & \(\sqrt{ }\) Override Depths \\
\hline Length of a Unit Grate & \(\mathrm{L}_{0}(\mathrm{G})=\) & N/A & N/A & feet \\
\hline Width of a Unit Grate & \(\mathrm{W}_{0}=\) & N/A & N/A & feet \\
\hline Area Opening Ratio for a Grate (typical values 0.15-0.90) & \(\mathrm{A}_{\text {ratio }}=\) & N/A & N/A & \\
\hline Clogging Factor for a Single Grate (typical value 0.50-0.70) & \(\mathrm{C}_{\mathrm{f}}(\mathrm{G})=\) & N/A & N/A & \\
\hline Grate Weir Coefficient (typical value 2.15-3.60) & \(C_{w}(G)=\) & N/A & N/A & \\
\hline Grate Orifice Coefficient (typical value 0.60-0.80) & \(\mathrm{C}_{0}(\mathrm{G})=\) & N/A & N/A & \\
\hline Curb Opening Information & & MINOR & MAJOR & \\
\hline Length of a Unit Curb Opening & \(\mathrm{L}_{0}(\mathrm{C})=\) & 15.00 & 15.00 & feet \\
\hline Height of Vertical Curb Opening in Inches & \(\mathrm{H}_{\text {vert }}=\) & 6.00 & 6.00 & inches \\
\hline Height of Curb Orifice Throat in Inches & \(\mathrm{H}_{\text {throat }}=\) & 6.00 & 6.00 & inches \\
\hline Angle of Throat (see USDCM Figure ST-5) & Theta \(=\) & 63.40 & 63.40 & degrees \\
\hline Side Width for Depression Pan (typically the gutter width of 2 feet) & \(\mathrm{W}_{\mathrm{p}}=\) & 2.00 & 2.00 & feet \\
\hline Clogging Factor for a Single Curb Opening (typical value 0.10) & \(\mathrm{C}_{\mathrm{f}}(\mathrm{C})=\) & 0.10 & 0.10 & \\
\hline Curb Opening Weir Coefficient (typical value 2.3-3.7) & \(\mathrm{C}_{\mathrm{w}}(\mathrm{C})=\) & 3.60 & 3.60 & \\
\hline Curb Opening Orifice Coefficient (typical value 0.60-0.70) & \(\mathrm{C}_{0}(\mathrm{C})=\) & 0.67 & 0.67 & \\
\hline Low Head Performance Reduction (Calculated) & & MINOR & MAJOR & \\
\hline Depth for Grate Midwidth & \(\mathrm{d}_{\text {Grate }}=\) & N/A & N/A & ft \\
\hline Depth for Curb Opening Weir Equation & \(\mathrm{d}_{\text {Curb }}=\) & 0.33 & 0.83 & ft \\
\hline Combination Inlet Performance Reduction Factor for Long Inlets & \(\mathrm{RF}_{\text {combination }}=\) & 0.57 & 1.00 & \\
\hline Curb Opening Performance Reduction Factor for Long Inlets & \(R F_{\text {curb }}=\) & 0.79 & 1.00 & \\
\hline Grated Inlet Performance Reduction Factor for Long Inlets & \(\mathrm{RF}_{\text {Grate }}=\) & N/A & N/A & \\
\hline & & MINOR & MAJOR & \\
\hline Total Inlet Interception Capacity (assumes clogged condition) & \(\mathrm{Q}_{\mathrm{a}}=\) & 9.7 & 39.1 & cfs \\
\hline Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) & \(Q_{\text {Peak required }}=\) & 8.0 & 24.3 & cfs \\
\hline
\end{tabular}

Version 4.05 Released March 2017


INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

\begin{tabular}{|c|c|c|c|c|}
\hline Design Information (Input) \(\quad\) CDOT Type R Curb Openin & & MINOR & & \\
\hline Type of Inlet CDOT Type R Curb Opening * & Type = & CDOT Ty & Opening & \\
\hline Local Depression (additional to continuous gutter depression 'a' from above) & \(\mathrm{a}_{\text {local }}=\) & 3.00 & 3.00 & inches \\
\hline Number of Unit Inlets (Grate or Curb Opening) & No = & 1 & 1 & \\
\hline Water Depth at Flowline (outside of local depression) & Ponding Depth \(=\) & 6.0 & 12.0 & inches \\
\hline Grate Information & & MINOR & MAJOR & \(\sqrt{ }\) Override Depths \\
\hline Length of a Unit Grate & \(\mathrm{L}_{0}(\mathrm{G})=\) & N/A & N/A & feet \\
\hline Width of a Unit Grate & \(\mathrm{W}_{0}=\) & N/A & N/A & feet \\
\hline Area Opening Ratio for a Grate (typical values 0.15-0.90) & \(\mathrm{A}_{\text {ratio }}=\) & N/A & N/A & \\
\hline Clogging Factor for a Single Grate (typical value 0.50-0.70) & \(\mathrm{C}_{\mathrm{f}}(\mathrm{G})=\) & N/A & N/A & \\
\hline Grate Weir Coefficient (typical value 2.15-3.60) & \(C_{w}(G)=\) & N/A & N/A & \\
\hline Grate Orifice Coefficient (typical value 0.60-0.80) & \(\mathrm{C}_{0}(\mathrm{G})=\) & N/A & N/A & \\
\hline Curb Opening Information & & MINOR & MAJOR & \\
\hline Length of a Unit Curb Opening & \(\mathrm{L}_{0}(\mathrm{C})=\) & 5.00 & 5.00 & feet \\
\hline Height of Vertical Curb Opening in Inches & \(\mathrm{H}_{\text {vert }}=\) & 6.00 & 6.00 & inches \\
\hline Height of Curb Orifice Throat in Inches & \(\mathrm{H}_{\text {trroat }}=\) & 6.00 & 6.00 & inches \\
\hline Angle of Throat (see USDCM Figure ST-5) & Theta \(=\) & 63.40 & 63.40 & degrees \\
\hline Side Width for Depression Pan (typically the gutter width of 2 feet) & \(\mathrm{W}_{\mathrm{p}}=\) & 2.00 & 2.00 & feet \\
\hline Clogging Factor for a Single Curb Opening (typical value 0.10) & \(\mathrm{C}_{\mathrm{f}}(\mathrm{C})=\) & 0.10 & 0.10 & \\
\hline Curb Opening Weir Coefficient (typical value 2.3-3.7) & \(\mathrm{C}_{\mathrm{w}}(\mathrm{C})=\) & 3.60 & 3.60 & \\
\hline Curb Opening Orifice Coefficient (typical value 0.60-0.70) & \(\mathrm{C}_{0}(\mathrm{C})=\) & 0.67 & 0.67 & \\
\hline Low Head Performance Reduction (Calculated) & & MINOR & MAJOR & \\
\hline Depth for Grate Midwidth & \(\mathrm{d}_{\text {Grate }}=\) & N/A & N/A & ft \\
\hline Depth for Curb Opening Weir Equation & \(\mathrm{d}_{\text {Curb }}=\) & 0.33 & 0.83 & ft \\
\hline Combination Inlet Performance Reduction Factor for Long Inlets & \(\mathrm{RF}_{\text {combination }}=\) & 0.77 & 1.00 & \\
\hline Curb Opening Performance Reduction Factor for Long Inlets & \(R F_{\text {curb }}=\) & 1.00 & 1.00 & \\
\hline Grated Inlet Performance Reduction Factor for Long Inlets & \(R F_{\text {Grate }}=\) & N/A & N/A & \\
\hline & & MINOR & MAJOR & \\
\hline Total Inlet Interception Capacity (assumes clogged condition) & \(\mathrm{Q}_{\mathrm{a}}=\) & 5.4 & 12.3 & cfs \\
\hline Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK) & \(Q_{\text {Peakrequired }}=\) & 1.0 & 3.0 & cfs \\
\hline
\end{tabular}

\section*{Culvert Report}

\section*{DUAL 30 IN. RCP CULVERTS AT DP 1}

Invert Elev Dn (ft)
Pipe Length (ft)
Slope (\%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c, Y,k

\section*{Embankment}

Top Elevation (ft)
Top Width (ft)
Crest Width (ft)
\[
\begin{aligned}
& =7228.28 \\
& =60.68 \\
& =1.01 \\
& =7228.89 \\
& =30.0 \\
& =\text { Circular } \\
& =30.0 \\
& =2 \\
& =0.013 \\
& =\text { Circular Concrete } \\
& =\text { Square edge w/headwall (C) } \\
& =0.0098,2,0.0398,0.67,0.5
\end{aligned}
\]
\[
=7234.30
\]
\[
=50.00
\]
\[
=50.00
\]

\section*{Calculations}

Qmin (cfs) \(\quad=0.00\)
Qmax (cfs) \(\quad=55.00\)
Tailwater Elev (ft) \(=(\mathrm{dc}+\mathrm{D}) / 2\)
Highlighted
Qtotal (cfs) \(\quad=55.00\)
Qpipe (cfs) \(=55.00\)
Qovertop (cfs) \(\quad=0.00\)
Veloc Dn (ft/s)
\(=6.14\)
Veloc Up (ft/s) \(\quad=7.33\)
HGL Dn (ft) = 7230.42
HGL Up (ft)
= 7230.68
Hw Elev (ft)
\(\mathrm{Hw} / \mathrm{D}\) (ft)
Flow Regime
= 7231.81
\(=1.17\)
\(=\) Inlet Control


Project: Retreat at TimberRidge Filing No. 2
ID: DP-2 (24" Culvert)


Supercritical Flow! Using Adjusted Diameter to calculate protection type.


Project: Retreat at TimberRidge Filing No. 2
ID: DP-3 (Dual 30" Culverts)


Supercritical Flow! Using Adjusted Diameter to calculate protection type.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Design Information:} \\
\hline Design Discharge & Q & 60 & cfs \\
\hline \multicolumn{4}{|l|}{Circular Culvert:} \\
\hline Barrel Diameter in Inches & D & 30 & inches \\
\hline Inlet Edge Type (Choose from pull-down list) & Groov & dge Projec & \\
\hline \multicolumn{4}{|l|}{OR:} \\
\hline Box Culvert: & & OR & \\
\hline Barrel Height (Rise) in Feet & H (Rise) \(=\) & & ft \\
\hline Barrel Width (Span) in Feet & W (Span) \(=\) & & ft \\
\hline \multicolumn{3}{|l|}{Inlet Edge Type (Choose from pull-down list)} & \\
\hline \multirow[t]{2}{*}{Number of Barrels
Inlet Elevation} & \# Barrels = & 2 & \\
\hline & Elev IN = & 7221 & ft \\
\hline Outlet Elevation OR Slope & Elev OUT = & 7216.5 & ft \\
\hline Culvert Length & L = & 106.06 & ft \\
\hline Manning's Roughness & n & 0.013 & \\
\hline Bend Loss Coefficient & \(\mathrm{k}_{\mathrm{b}}=\) & 0 & \\
\hline Exit Loss Coefficient & \(\mathrm{k}_{\mathrm{x}}=\) & 1 & \\
\hline \multirow[t]{2}{*}{Max Allowable Channel Velocity} & \(\mathrm{Y}_{\mathrm{t} \text {, Elevation }}=\) & & ft \\
\hline & \(\mathrm{V}=\) & 5 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline \multicolumn{3}{|l|}{Calculated Results:} & \\
\hline Culvert Cross Sectional Area Available & \(\mathrm{A}=\) & 4.91 & \(\mathrm{ft}^{2}\) \\
\hline Culvert Normal Depth & \(\mathrm{Y}_{\mathrm{n}}=\) & 1.03 & ft \\
\hline Culvert Critical Depth & \(\mathrm{Y}_{\mathrm{c}}=\) & 1.87 & \multirow[t]{2}{*}{ft Supercritical!} \\
\hline Froude Number & \(\mathrm{Fr}=\) & 3.16 & \\
\hline Entrance Loss Coefficient & \(\mathrm{k}_{\mathrm{e}}=\) & 0.20 & \multirow[b]{3}{*}{ft} \\
\hline Friction Loss Coefficient & \(\mathrm{k}_{\mathrm{f}}=\) & 0.97 & \\
\hline Sum of All Loss Coefficients & \(\mathrm{k}_{\mathrm{s}}=\) & 2.17 & \\
\hline \multicolumn{4}{|l|}{Headwater:} \\
\hline Inlet Control Headwater & \(\mathrm{HW}_{\mathrm{I}}=\) & 2.86 & ft \\
\hline Outlet Control Headwater & \(\mathrm{HW}_{\mathrm{O}}=\) & N/A & ft \\
\hline Design Headwater Elevation & HW = & 7223.86 & ft \\
\hline Headwater/Diameter OR Headwater/Rise Ratio & HW/D = & 1.14 & \\
\hline Outlet Control Headwater Approximation & ate for Low Flo & Backwate & alculations Req \\
\hline \multicolumn{4}{|l|}{Outlet Protection:} \\
\hline Flow/(Diameter^2.5) & Q/D^2.5 \(=\) & 3.04 & \(\mathrm{ft}^{0.5} / \mathrm{s}\) \\
\hline \multirow[t]{2}{*}{Tailwater Surface Height Tailwater/Diameter} & \(Y_{t}=\) & 1.00 & \multirow[t]{2}{*}{} \\
\hline & Yt/D \(=\) & 0.40 & \\
\hline Expansion Factor & \(1 /(2 * \tan (\Theta))=\) & 4.35 & \multirow[b]{2}{*}{\(\mathrm{ft}^{2}\)} \\
\hline \multirow[t]{2}{*}{Flow Area at Max Channel Velocity
Width of Equivalent Conduit for Multiple Barrels} & \(\mathrm{A}_{\mathrm{t}}=\) & 12.00 & \\
\hline & \(\mathrm{W}_{\text {eq }}=\) & 5.00 & ft \\
\hline Length of Riprap Protection & \(L_{p}=\) & 25 & ft \\
\hline Width of Riprap Protection at Downstream End & T = & 11 & ft \\
\hline \multirow[t]{4}{*}{Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size Nominal Riprap Size MHFD Riprap Type} & \(\mathrm{Da}=\) & 1.76 & f \\
\hline & \(\mathrm{d}_{50} \mathrm{~min}=\) & 7 & in \\
\hline & \(\mathrm{d}_{50}\) nominal \(=\) & & in \\
\hline & Type = & L & \\
\hline
\end{tabular}

Project: Retreat at TimberRidge Filing No. 2
ID: DP-4 (24" RCP Culvert)


Supercritical Flow! Using Adjusted Diameter to calculate protection type.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Design Information:} \\
\hline Design Discharge & Q = & 8 & cfs \\
\hline \multicolumn{4}{|l|}{Circular Culvert:} \\
\hline Barrel Diameter in Inches & \(\mathrm{D}=\) & 24 & inches \\
\hline Inlet Edge Type (Choose from pull-down list) & Groov & dge Projec & \\
\hline \multicolumn{4}{|l|}{OR:} \\
\hline Box Culvert: & & OR & \\
\hline Barrel Height (Rise) in Feet & H (Rise) \(=\) & & ft \\
\hline Barrel Width (Span) in Feet & W (Span) \(=\) & & ft \\
\hline \multicolumn{3}{|l|}{Inlet Edge Type (Choose from pull-down list)} & \\
\hline \multirow[t]{2}{*}{Number of Barrels
Inlet Elevation} & \# Barrels = & 1 & \\
\hline & Elev IN = & 7220.5 & ft \\
\hline Outlet Elevation OR Slope & Elev OUT = & 7216.34 & ft \\
\hline Culvert Length & \(\mathrm{L}=\) & 86.89 & ft \\
\hline Manning's Roughness & \(\mathrm{n}=\) & 0.013 & \\
\hline Bend Loss Coefficient & \(\mathrm{k}_{\mathrm{b}}=\) & 0 & \\
\hline Exit Loss Coefficient & \(\mathrm{k}_{\mathrm{x}}=\) & 1 & \\
\hline \multirow[t]{2}{*}{Max Allowable Channel Velocity} & \(\mathrm{Y}_{\mathrm{t} \text {, Elevation }}=\) & & ft \\
\hline & \(\mathrm{V}=\) & 5 & \(\mathrm{ft} / \mathrm{s}\) \\
\hline \multicolumn{4}{|l|}{Calculated Results:} \\
\hline Culvert Cross Sectional Area Available & \(\mathrm{A}=\) & 3.14 & \(\mathrm{ft}^{2}\) \\
\hline Culvert Normal Depth & \(\mathrm{Y}_{\mathrm{n}}=\) & 0.54 & ft \\
\hline Culvert Critical Depth & \(\mathrm{Y}_{\mathrm{c}}=\) & 1.01 & ft \\
\hline Froude Number & \(\mathrm{Fr}=\) & 3.28 & Supercritical! \\
\hline Entrance Loss Coefficient & \(\mathrm{k}_{\mathrm{e}}=\) & 0.20 & \\
\hline Friction Loss Coefficient & \(\mathrm{k}_{\mathrm{f}}=\) & 1.07 & \\
\hline Sum of All Loss Coefficients & \(\mathrm{k}_{\mathrm{s}}=\) & 2.27 & ft \\
\hline \multicolumn{4}{|l|}{Headwater:} \\
\hline Inlet Control Headwater & \(\mathrm{HW}_{\mathrm{I}}=\) & 1.39 & ft \\
\hline Outlet Control Headwater & \(\mathrm{HW}_{\mathrm{O}}=\) & N/A & ft \\
\hline Design Headwater Elevation & HW = & N/A & ft \\
\hline Headwater/Diameter OR Headwater/Rise Ratio & HW/D = & N/A & \\
\hline Outlet Control Headwater Approximation & ate for Low Flo & Backwate & alculations Req \\
\hline \multicolumn{4}{|l|}{Outlet Protection:} \\
\hline Flow/(Diameter^2.5) & Q/D^2.5 = & 1.41 & \(\mathrm{ft}^{0.5} / \mathrm{s}\) \\
\hline Tailwater Surface Height & \(\mathrm{Y}_{\mathrm{t}}=\) & 0.80 & ft \\
\hline Tailwater/Diameter & \(\mathrm{Yt} / \mathrm{D}=\) & 0.40 & \\
\hline Expansion Factor & \(1 /(2 * \tan (\Theta))=\) & 6.30 & \\
\hline Flow Area at Max Channel Velocity & \(\mathrm{A}_{\mathrm{t}}=\) & 1.60 & \(\mathrm{ft}^{2}\) \\
\hline Width of Equivalent Conduit for Multiple Barrels & \(\mathrm{W}_{\text {eq }}=\) & - & ft \\
\hline \multirow[t]{2}{*}{Width of Riprap Protection at Downstream End} & \(L_{p}=\) & 6 & ft \\
\hline & T = & 3 & ft \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Adjusted Diameter for Supercritical Flow Minimum Theoretical Riprap Size Nominal Riprap Size \\
MHFD Riprap Type
\end{tabular}} & \(\mathrm{Da}=\) & 1.27 & ft \\
\hline & \(\mathrm{d}_{50} \mathrm{~min}=\) & 3 & in \\
\hline & \(\mathrm{d}_{50}\) nominal \(=\) & 6 & in \\
\hline & Type \(=\) & VL & \\
\hline
\end{tabular}

Cross Section for Channel into Pond 3
\begin{tabular}{lr}
\hline Project Description & \\
\hline Friction Method & \begin{tabular}{c} 
Manning \\
Formula \\
Solve For
\end{tabular} \\
\hline Normal Depth \\
\hline Input Data & \\
\hline Roughness Coefficient & 0.035 \\
Channel Slope & \(0.025 \mathrm{ft} / \mathrm{ft}\) \\
Normal Depth & 13.9 in \\
Left Side Slope & \(4.000 \mathrm{H}: \mathrm{V}\) \\
Right Side Slope & \(4.000 \mathrm{H}: \mathrm{V}\) \\
Bottom Width & 6.00 ft \\
Discharge & 71.00 cfs \\
\hline
\end{tabular}

\[
\mathrm{V}: 2{\underset{\mathrm{H}: 1}{ }}_{\mathrm{\Delta}: 1}
\]

Worksheet for Channel into Pond 3
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Project Description} \\
\hline Friction Method & Manning Formula \\
\hline Solve For & Normal Depth \\
\hline \multicolumn{2}{|l|}{Input Data} \\
\hline Roughness Coefficient & 0.035 \\
\hline Channel Slope & \(0.025 \mathrm{ft} / \mathrm{ft}\) \\
\hline Left Side Slope & \(4.000 \mathrm{H}: \mathrm{V}\) \\
\hline Right Side Slope & \(4.000 \mathrm{H}: \mathrm{V}\) \\
\hline Bottom Width & 6.00 ft \\
\hline Discharge & 71.00 cfs \\
\hline \multicolumn{2}{|l|}{Results} \\
\hline Normal Depth & 13.9 in \\
\hline Flow Area & \(12.3 \mathrm{ft}^{2}\) \\
\hline Wetted Perimeter & 15.6 ft \\
\hline Hydraulic Radius & 9.5 in \\
\hline Top Width & 15.28 ft \\
\hline Critical Depth & 14.9 in \\
\hline Critical Slope & \(0.019 \mathrm{ft} / \mathrm{ft}\) \\
\hline Velocity & \(5.75 \mathrm{ft} / \mathrm{s}\) \\
\hline Velocity Head & 0.51 ft \\
\hline Specific Energy & 1.67 ft \\
\hline Froude Number & 1.128 \\
\hline Flow Type & Supercritical \\
\hline \multicolumn{2}{|l|}{GVF Input Data} \\
\hline Downstream Depth & 0.0 in \\
\hline Length & 0.0 ft \\
\hline Number Of Steps & 0 \\
\hline \multicolumn{2}{|l|}{GVF Output Data} \\
\hline Upstream Depth & 0.0 in \\
\hline Profile Description & N/A \\
\hline Profile Headloss & 0.00 ft \\
\hline Downstream Velocity & Infinity ft/s \\
\hline Upstream Velocity & Infinity ft/s \\
\hline Normal Depth & 13.9 in \\
\hline Critical Depth & 14.9 in \\
\hline Channel Slope & \(0.025 \mathrm{ft} / \mathrm{ft}\) \\
\hline Critical Slope & \(0.019 \mathrm{ft} / \mathrm{ft}\) \\
\hline
\end{tabular}

Worksheet for Trickle Channel
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Project Description} \\
\hline Friction Method & Manning Formula \\
\hline Solve For & Discharge \\
\hline \multicolumn{2}{|l|}{Input Data} \\
\hline Roughness Coefficient & 0.013 \\
\hline Channel Slope & \(0.010 \mathrm{ft} / \mathrm{ft}\) \\
\hline Normal Depth & 4.0 in \\
\hline Bottom Width & 2.00 ft \\
\hline \multicolumn{2}{|l|}{Results} \\
\hline Discharge & 3.02 cfs \\
\hline Flow Area & \(0.7 \mathrm{ft}^{2}\) \\
\hline Wetted Perimeter & 2.7 ft \\
\hline Hydraulic Radius & 3.0 in \\
\hline Top Width & 2.00 ft \\
\hline Critical Depth & 5.0 in \\
\hline Critical Slope & \(0.005 \mathrm{ft} / \mathrm{ft}\) \\
\hline Velocity & \(4.54 \mathrm{ft} / \mathrm{s}\) \\
\hline Velocity Head & 0.32 ft \\
\hline Specific Energy & 0.65 ft \\
\hline Froude Number & 1.385 \\
\hline Flow Type & Supercritical \\
\hline \multicolumn{2}{|l|}{GVF Input Data} \\
\hline Downstream Depth & 0.0 in \\
\hline Length & 0.0 ft \\
\hline Number Of Steps & 0 \\
\hline \multicolumn{2}{|l|}{GVF Output Data} \\
\hline Upstream Depth & 0.0 in \\
\hline Profile Description & N/A \\
\hline Profile Headloss & 0.00 ft \\
\hline Downstream Velocity & Infinity ft/s \\
\hline Upstream Velocity & Infinity ft/s \\
\hline Normal Depth & 4.0 in \\
\hline Critical Depth & 5.0 in \\
\hline Channel Slope & \(0.010 \mathrm{ft} / \mathrm{ft}\) \\
\hline Critical Slope & \(0.005 \mathrm{ft} / \mathrm{ft}\) \\
\hline
\end{tabular}


\section*{42" RCP Storm System HGL Calcs.}

\section*{System Input Summary}

Rainfall Parameters
Rainfall Return Period: 100
Rainfall Calculation Method: Table
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Time } \\
\hline & Intensity \\
\hline \(\mathbf{5}\) & 8.68 \\
\hline \(\mathbf{1 0}\) & 6.93 \\
\hline \(\mathbf{2 0}\) & 5.19 \\
\hline \(\mathbf{3 0}\) & 4.16 \\
\hline \(\mathbf{4 0}\) & 3.44 \\
\hline \(\mathbf{6 0}\) & 2.42 \\
\hline \(\mathbf{1 2 0}\) & 0.67 \\
\hline
\end{tabular}

Rational Method Constraints
Minimum Urban Runoff Coeff.: 0.20
Maximum Rural Overland Len. (ft): 500
Maximum Urban Overland Len. (ft): 300
Used UDFCD Tc. Maximum: Yes
Sizer Constraints
Minimum Sewer Size (in): 18.00
Maximum Depth to Rise Ratio: 0.90
Maximum Flow Velocity (fps): 18.0
Minimum Flow Velocity (fps): 2.0
Backwater Calculations:
Tailwater Elevation (ft): 7168.30

\section*{Sewer Flow Summary:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Full Flow Capacity} & \multicolumn{2}{|l|}{Critical Flow} & \multicolumn{4}{|c|}{Normal Flow} & & & \\
\hline \begin{tabular}{l}
Eleme \\
nt \\
Name
\end{tabular} & Flow (cfs) & \[
\begin{gathered}
\text { Veloci } \\
\text { ty } \\
\text { (fps) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Dept } \\
& \text { h } \\
& \text { (in) }
\end{aligned}
\] & Veloci
ty
(fps) & \[
\begin{gathered}
\text { Dept } \\
\text { h } \\
\text { (in) }
\end{gathered}
\] & \[
\begin{gathered}
\text { Veloci } \\
\text { ty } \\
\text { (fps) }
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Froud } \\
\text { e } \\
\text { Numb } \\
\text { er }
\end{array}
\] & Flow Conditio n & \[
\begin{gathered}
\text { Flo } \\
\mathbf{w} \\
(\mathbf{c f s} \\
\underset{)}{ }
\end{gathered}
\] & \begin{tabular}{l}
Surcharg \\
ed \\
Length \\
(ft)
\end{tabular} & \[
\underset{\text { nt }}{\text { Comme }}
\] \\
\hline MH 1 SWR 1-1 & \[
\begin{gathered}
142 . \\
67
\end{gathered}
\] & 14.83 & \[
\begin{gathered}
34.4 \\
6
\end{gathered}
\] & 10.06 & \[
\begin{gathered}
23.3 \\
5
\end{gathered}
\] & 15.47 & 2.17 & \[
\begin{array}{|l}
\hline \text { Supercriti } \\
\text { cal } \\
\text { Jump } \\
\hline
\end{array}
\] & \[
\begin{gathered}
85.0 \\
0
\end{gathered}
\] & 3.88 & \\
\hline MH 2 SWR 2-1 & \[
\begin{gathered}
352 . \\
36
\end{gathered}
\] & 36.62 & \[
\begin{gathered}
34.4 \\
6
\end{gathered}
\] & 10.06 & \[
\begin{gathered}
14.0 \\
5
\end{gathered}
\] & 30.14 & 5.75 & Supercriti cal & \[
\begin{gathered}
85.0 \\
0
\end{gathered}
\] & 0.00 & Velocit y is Too High \\
\hline \begin{tabular}{l}
MH 6 \\
SWR \\
6-1
\end{tabular} & \[
\begin{gathered}
137 . \\
06
\end{gathered}
\] & 19.39 & \[
\begin{gathered}
30.8 \\
3
\end{gathered}
\] & 9.93 & \[
\begin{gathered}
17.3 \\
0
\end{gathered}
\] & 19.06 & 3.17 & Supercriti cal & \[
\begin{gathered}
64.0 \\
0
\end{gathered}
\] & 0.00 & Velocit y is Too High \\
\hline \begin{tabular}{l}
MH 7 \\
SWR \\
7-1
\end{tabular} & \[
\begin{gathered}
103 . \\
61
\end{gathered}
\] & 14.66 & \[
\begin{gathered}
29.8 \\
0
\end{gathered}
\] & 9.43 & \[
\begin{gathered}
19.4 \\
6
\end{gathered}
\] & 15.13 & 2.34 & \[
\begin{array}{|l}
\hline \text { Supercriti } \\
\text { cal } \\
\text { Jump } \\
\hline
\end{array}
\] & \[
\begin{gathered}
59.0 \\
0
\end{gathered}
\] & 64.17 & \\
\hline \[
\begin{gathered}
\text { MH } 8 \\
\text { SWR } \\
8-1
\end{gathered}
\] & \[
\begin{gathered}
66.8 \\
8
\end{gathered}
\] & 9.46 & \[
\begin{gathered}
29.8 \\
0
\end{gathered}
\] & 9.43 & \[
\begin{gathered}
26.2 \\
6
\end{gathered}
\] & 10.68 & 1.31 & Supercriti cal & \[
\begin{gathered}
59.0 \\
0
\end{gathered}
\] & 0.00 & \\
\hline MH 11 SWR 11-1 & \[
\begin{gathered}
99.2 \\
0
\end{gathered}
\] & 14.03 & \[
\begin{gathered}
26.7 \\
9
\end{gathered}
\] & 8.33 & \[
\begin{gathered}
17.4 \\
4
\end{gathered}
\] & 13.84 & 2.29 & Supercriti cal & \[
\begin{gathered}
47.0 \\
0
\end{gathered}
\] & 0.00 & \\
\hline MH 12 SWR 12-1 & \[
\begin{gathered}
66.8 \\
8
\end{gathered}
\] & 9.46 & \[
\begin{gathered}
26.7 \\
9
\end{gathered}
\] & 8.33 & \[
\begin{gathered}
22.2 \\
5
\end{gathered}
\] & 10.25 & 1.44 & Supercriti cal & \[
\begin{gathered}
47.0 \\
0
\end{gathered}
\] & 0.00 & \\
\hline MH 13 SWR 13-1 & \[
\begin{gathered}
66.8 \\
8
\end{gathered}
\] & 9.46 & \[
\begin{gathered}
26.7 \\
9
\end{gathered}
\] & 8.33 & \[
\begin{gathered}
22.2 \\
5
\end{gathered}
\] & 10.25 & 1.44 & \[
\begin{array}{|l|}
\hline \text { Supercriti } \\
\text { cal } \\
\text { Jump }
\end{array}
\] & \[
\begin{gathered}
47.0 \\
0
\end{gathered}
\] & 5.06 & \\
\hline MH 14 SWR 14-1 & \[
\begin{gathered}
41.1 \\
3
\end{gathered}
\] & 8.38 & \[
\begin{gathered}
25.2 \\
8
\end{gathered}
\] & 8.84 & \[
\begin{gathered}
23.3 \\
0
\end{gathered}
\] & 9.53 & 1.20 & \begin{tabular}{l}
Pressurize \\
d
\end{tabular} & \[
\begin{gathered}
39.0 \\
0
\end{gathered}
\] & 26.28 & \\
\hline MH 15 SWR 15-1 & \[
\begin{gathered}
60.4 \\
4
\end{gathered}
\] & 19.24 & \[
\begin{gathered}
13.5 \\
8
\end{gathered}
\] & 5.46 & 6.60 & 14.23 & 4.00 & Supercriti cal & \[
\begin{gathered}
10.0 \\
0
\end{gathered}
\] & 0.00 & \\
\hline \[
\begin{gathered}
\text { MH 9 } \\
\text { SWR } \\
9-1
\end{gathered}
\] & \[
\begin{gathered}
31.2 \\
7
\end{gathered}
\] & 9.95 & \[
\begin{gathered}
15.5 \\
6
\end{gathered}
\] & 6.03 & \[
\begin{gathered}
10.7 \\
9
\end{gathered}
\] & 9.49 & 2.02 & Pressurize
\[
\mathrm{d}
\] & \[
\begin{gathered}
13.0 \\
0
\end{gathered}
\] & 26.17 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MH 10 SWR 10-1 & \[
\begin{array}{|c}
38.4 \\
1
\end{array}
\] & 21.74 & 9.18 & 4.41 & 3.92 & 14.06 & 5.17 & Supercriti cal & 4.00 & 0.00 & \\
\hline MH 16 SWR 16-1 & \[
\begin{gathered}
31.2 \\
7
\end{gathered}
\] & 9.95 & \[
\begin{array}{|c}
11.2 \\
6
\end{array}
\] & 4.83 & 7.72 & 8.02 & 2.07 & \[
\begin{array}{|c}
\hline \text { Supercriti } \\
\text { cal } \\
\text { Jump } \\
\hline
\end{array}
\] & 7.00 & 29.76 & \\
\hline MH 3 SWR 3-1 & \[
\begin{gathered}
41.1 \\
3
\end{gathered}
\] & 8.38 & \[
\left\lvert\, \begin{gathered}
20.4 \\
4
\end{gathered}\right.
\] & 7.02 & \[
\begin{array}{|c}
16.8 \\
9
\end{array}
\] & 8.78 & 1.45 & \[
\begin{gathered}
\text { Pressurize } \\
d
\end{gathered}
\] & \[
\begin{gathered}
25.0 \\
0
\end{gathered}
\] & 41.27 & \\
\hline MH 5 SWR 5-1 & \[
\begin{gathered}
63.7 \\
1
\end{gathered}
\] & 12.98 & \[
\begin{array}{|c}
19.5 \\
8
\end{array}
\] & 6.78 & \[
\begin{array}{|c}
12.4 \\
6
\end{array}
\] & 11.93 & 2.38 & \[
\begin{array}{|c}
\hline \text { Supercriti } \\
\text { cal } \\
\text { Jump } \\
\hline
\end{array}
\] & \[
\begin{gathered}
23.0 \\
0
\end{gathered}
\] & 22.28 & \\
\hline MH 4 SWR 4-1 & \[
\begin{array}{|c}
34.6 \\
1
\end{array}
\] & 19.59 & 7.90 & 4.02 & 3.58 & 12.01 & 4.63 & \[
\begin{array}{|l}
\hline \text { Supercriti } \\
\text { cal } \\
\text { Jump }
\end{array}
\] & 3.00 & 5.18 & \\
\hline
\end{tabular}
- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

\section*{Grade Line Summary:}

Tailwater Elevation (ft): 7168.30
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Invert Elev.} & \multicolumn{2}{|l|}{Downstrea m Manhole Losses} & \multicolumn{2}{|l|}{HGL} & \multicolumn{3}{|c|}{EGL} \\
\hline Eleme nt Name & Downstre am (ft) & \begin{tabular}{l}
Upstrea m \\
(ft)
\end{tabular} & Ben
d
Los
s
(ft) & \[
\begin{aligned}
& \text { Later } \\
& \text { al } \\
& \text { Loss } \\
& \text { (ft) }
\end{aligned}
\] & \begin{tabular}{l}
Downstrea \\
m \\
(ft)
\end{tabular} & Upstrea m (ft) & \[
\begin{gathered}
\text { Downstrea } \\
\text { m } \\
\text { (ft) }
\end{gathered}
\] & Frictio
n
Loss
(ft) & Upstrea m (ft) \\
\hline MH 1 SWR 1 - 1 & 7164.75 & 7165.31 & 0.00 & 0.00 & 7168.30 & 7168.30 & 7169.51 & 0.25 & 7169.76 \\
\hline MH 2 SWR 2 - 1 & 7165.30 & 7178.00 & 0.10 & 0.00 & 7168.40 & 7180.87 & 7180.58 & 1.87 & 7182.44 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{c} 
MH 6 \\
SWR 6 \\
-1
\end{tabular} & 7178.66 & 7193.96 & 0.10 & 0.00 & 7180.97 & 7196.53 & 7185.74 & 12.32 & 7198.06 \\
\hline \begin{tabular}{c} 
MH 7 \\
SWR 7 \\
-1
\end{tabular} & 7194.56 & 7206.93 & 1.43 & 0.19 & 7198.60 & 7209.41 & 7199.68 & 11.11 & 7210.79 \\
\hline \begin{tabular}{c} 
MH 8 \\
SWR 8 \\
-1
\end{tabular} & 7207.43 & 7210.92 & 0.05 & 0.00 & 7209.61 & 7213.40 & 7211.38 & 3.40 & 7214.78 \\
\hline \begin{tabular}{l} 
MH 11 \\
SWR \\
\(11-1\)
\end{tabular} & 7211.47 & 7215.89 & 0.03 & 0.40 & 7213.83 & 7218.12 & 7215.90 & 3.30 & 7219.20 \\
\hline \begin{tabular}{l} 
MH 12 \\
SWR \\
\(12-1\)
\end{tabular} & 7216.38 & 7219.42 & 0.03 & 0.00 & 7218.24 & 7221.65 & 7219.87 & 2.86 & 7222.73 \\
\hline \begin{tabular}{l} 
MH 13 \\
SWR \\
13-1
\end{tabular} & 7219.92 & 7220.75 & 0.91 & 0.00 & 7222.95 & 7222.98 & 7223.64 & 0.42 & 7224.06 \\
\hline \begin{tabular}{l} 
MH 14 \\
SWR \\
\(14-1\)
\end{tabular} & 7221.25 & 7221.51 & 1.04 & 0.00 & 7224.12 & 7224.36 & 7225.10 & 0.24 & 7225.34 \\
\hline \begin{tabular}{l} 
MH 15 \\
SWR \\
\(15-1\)
\end{tabular} & 7221.75 & 7222.09 & 0.13 & 0.00 & 7223.11 & 7225.29 & 7225.44 & 0.00 & 7225.44 \\
\hline \begin{tabular}{l} 
MH 9 \\
SWR 9 \\
-1
\end{tabular} & 7212.42 & 7212.92 & 0.35 & 0.00 & 7214.87 & 7214.96 & 7215.14 & 0.09 & 7215.22 \\
\hline \begin{tabular}{l} 
MH 10 \\
SWR \\
\(10-1\)
\end{tabular} & 7212.93 & 7213.48 & 0.11 & 0.00 & 7213.51 & 7216.24 & 7216.32 & 0.00 & 7216.32 \\
\hline \begin{tabular}{l} 
MH 16 \\
SWR \\
\(16-1\)
\end{tabular} & 7195.45 & 7196.37 & 0.01 & 0.00 & 7197.99 & 7197.99 & 7198.07 & 0.03 & 7198.10 \\
\hline \begin{tabular}{l} 
MH 3 \\
SWR 3 \\
-1
\end{tabular} & 7179.01 & 7179.42 & 0.33 & 0.00 & 7182.38 & 7182.53 & 7182.78 & 0.15 & 7182.93 \\
\hline \begin{tabular}{l} 
MH 5 \\
SWR 5 \\
-1
\end{tabular} & 7179.91 & 7180.52 & 0.28 & 0.00 & 7182.87 & 7182.93 & 7183.21 & 0.07 & 7183.28 \\
\hline \begin{tabular}{l} 
MH 4 \\
SWR 4 \\
-1
\end{tabular} & 7180.86 & 7181.60 & 0.03 & 0.00 & 7182.91 & 7182.91 & 7182.96 & 0.01 & 7182.97 \\
\hline
\end{tabular}

\section*{Description}

A sediment basin is a temporary pond built on a construction site to capture eroded or disturbed soil transported in storm runoff prior to discharge from the site. Sediment basins are designed to capture site runoff and slowly release it to allow time for settling of sediment prior to discharge. Sediment basins are often constructed in locations that will later be modified to serve as post-construction stormwater basins.

\section*{Appropriate Uses}

Most large construction sites (typically greater than 2 acres) will require one or


Photograph SB-1. Sediment basin at the toe of a slope. Photo courtesy of WWE. more sediment basins for effective management of construction site runoff. On linear construction projects, sediment basins may be impractical; instead, sediment traps or other combinations of BMPs may be more appropriate.

Sediment basins should not be used as stand-alone sediment controls. Erosion and other sediment controls should also be implemented upstream.

When feasible, the sediment basin should be installed in the same location where a permanent postconstruction detention pond will be located.

\section*{Design and Installation}

The design procedure for a sediment basin includes these steps:
- Basin Storage Volume: Provide a storage volume of at least 3,600 cubic feet per acre of drainage area. To the extent practical, undisturbed and/or off-site areas should be diverted around sediment basins to prevent "clean" runoff from mixing with runoff from disturbed areas. For undisturbed areas (both on-site and off-site) that cannot be diverted around the sediment basin, provide a minimum of \(500 \mathrm{ft}^{3} /\) acre of storage for undeveloped (but stable) off-site areas in addition to the \(3,600 \mathrm{ft}^{3} / \mathrm{acre}\) for disturbed areas. For stable, developed areas that cannot be diverted around the sediment basin, storage volume requirements are summarized in Table SB-1.
- Basin Geometry: Design basin with a minimum length-to-width ratio of 2:1 (L:W). If this cannot be achieved because of site space constraints, baffling may be required to extend the effective distance between the inflow point(s) and the outlet to minimize short-circuiting.
- Dam Embankment: It is recommended that embankment slopes be \(4: 1(\mathrm{H}: \mathrm{V})\) or flatter and no steeper than 3:1 ( \(\mathrm{H}: \mathrm{V}\) ) in any location.
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Sediment Basins } \\
\hline Functions & \\
\hline Erosion Control & No \\
\hline Sediment Control & Yes \\
\hline Site/Material Management & No \\
\hline
\end{tabular}
- Inflow Structure: For concentrated flow entering the basin, provide energy dissipation at the point of inflow.

Table SB-1. Additional Volume Requirements for Undisturbed and Developed Tributary Areas Draining through Sediment Basins
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c|c|}
\hline Imperviousness (\%)
\end{tabular} & \begin{tabular}{c} 
Additional Storage Volume (ft \\
3 \\
Per Acre of Tributary Area
\end{tabular} \\
\hline Undeveloped & 500 \\
\hline 10 & 800 \\
\hline 20 & 1230 \\
\hline 30 & 1600 \\
\hline 40 & 2030 \\
\hline 50 & 2470 \\
\hline 60 & 2980 \\
\hline 70 & 3560 \\
\hline 80 & 4360 \\
\hline 90 & 5300 \\
\hline 100 & 6460 \\
\hline
\end{tabular}
- Outlet Works: The outlet pipe shall extend through the embankment at a minimum slope of 0.5 percent. Outlet works can be designed using one of the following approaches:
o Riser Pipe (Simplified Detail): Detail SB-1 provides a simplified design for basins treating no more than 15 acres.
o Orifice Plate or Riser Pipe: Follow the design criteria for Full Spectrum Detention outlets in the EDB Fact Sheet provided in Chapter 4 of this manual for sizing of outlet perforations with an emptying time of approximately 72 hours. In lieu of the trash rack, pack uniformly sized \(1 \frac{1}{2}\) - to 2-inch gravel in front of the plate or surrounding the riser pipe. This gravel will need to be cleaned out frequently during the construction period as sediment accumulates within it. The gravel pack will need to be removed and disposed of following construction to reclaim the basin for use as a permanent detention facility. If the basin will be used as a permanent extended detention basin for the site, a trash rack will need to be installed once contributing drainage areas have been stabilized and the gravel pack and accumulated sediment have been removed.
o Floating Skimmer: If a floating skimmer is used, install it using manufacturer's recommendations. Illustration SB-1 provides an illustration of a Faircloth Skimmer Floating Outlet \({ }^{\mathrm{TM}}\), one of the more commonly used floating skimmer outlets. A skimmer should be designed to release the design volume in no less than 48 hours. The use of a floating skimmer outlet can increase the sediment capture efficiency of a basin significantly. A floating outlet continually decants cleanest water off the surface of the pond and releases cleaner water than would discharge from a perforated riser pipe or plate.


Illustration SB-1. Outlet structure for a temporary sediment basin - Faircloth Skimmer Floating Outlet. Illustration courtesy of J. W. Faircloth \& Sons, Inc., FairclothSkimmer.com.
- Outlet Protection and Spillway: Consider all flow paths for runoff leaving the basin, including protection at the typical point of discharge as well as overtopping.
o Outlet Protection: Outlet protection should be provided where the velocity of flow will exceed the maximum permissible velocity of the material of the waterway into which discharge occurs. This may require the use of a riprap apron at the outlet location and/or other measures to keep the waterway from eroding.
o Emergency Spillway: Provide a stabilized emergency overflow spillway for rainstorms that exceed the capacity of the sediment basin volume and its outlet. Protect basin embankments from erosion and overtopping. If the sediment basin will be converted to a permanent detention basin, design and construct the emergency spillway(s) as required for the permanent facility. If the sediment basin will not become a permanent detention basin, it may be possible to substitute a heavy polyvinyl membrane or properly bedded rock cover to line the spillway and downstream embankment, depending on the height, slope, and width of the embankments.

\section*{Maintenance and Removal}

Maintenance activities include the following:
- Dredge sediment from the basin, as needed to maintain BMP effectiveness, typically when the design storage volume is no more than one-third filled with sediment.
- Inspect the sediment basin embankments for stability and seepage.
- Inspect the inlet and outlet of the basin, repair damage, and remove debris. Remove, clean and replace the gravel around the outlet on a regular basis to remove the accumulated sediment within it and keep the outlet functioning.
- Be aware that removal of a sediment basin may require dewatering and associated permit requirements.
- Do not remove a sediment basin until the upstream area has been stabilized with vegetation.

Final disposition of the sediment basin depends on whether the basin will be converted to a permanent post-construction stormwater basin or whether the basin area will be returned to grade. For basins being converted to permanent detention basins, remove accumulated sediment and reconfigure the basin and outlet to meet the requirements of the final design for the detention facility. If the sediment basin is not to be used as a permanent detention facility, fill the excavated area with soil and stabilize with vegetation.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ TABLE SB-1. SIZING INFORMATION FOR STANDARD SEDIMENT } \\
\hline \begin{tabular}{c} 
Upstream Drainage \\
Area (rounded to \\
nearest acre), (ac)
\end{tabular} & \begin{tabular}{c} 
Basin Bottom \\
(W), (ft)
\end{tabular} & \begin{tabular}{c} 
Width \\
Sength (CL), (ft)
\end{tabular} & \begin{tabular}{c} 
Hole \\
Liameter \\
(HD), (in)
\end{tabular} \\
\hline & \(121 / 2\) & & \\
1 & 21 & 2 & \(9 / 32\) \\
2 & 28 & 3 & \(13 / 16\) \\
3 & \(331 / 2\) & 5 & \(9 / 2\) \\
4 & \(381 / 2\) & 6 & \(9 / 6\) \\
5 & 43 & 8 & \(21 / 32\) \\
6 & \(471 / 4\) & 9 & \(21 / 32\) \\
7 & 51 & 11 & \(25 / 32\) \\
8 & 55 & 12 & \(27 / 32\) \\
9 & \(581 / 4\) & 13 & \(7 / 8\) \\
10 & 61 & 15 & \(15 / 16\) \\
11 & 64 & 16 & \(31 / 32\) \\
12 & \(701 / 2\) & 18 & 1 \\
13 & \(701 / 2\) & 19 & \(11 / 16\) \\
14 & \(731 / 4\) & 21 & \(11 / 8\) \\
15 & 22 & \(13 / 16\) \\
\hline
\end{tabular}

\section*{SEDIMENT BASIN INSTALLATION NOTES}
1. SEE PLAN VIEW FOR:
-LOCATION OF SEDIMENT BASIN.
-TYPE OF BASIN (STANDARD BASIN OR NONSTANDARD BASIN).
-FOR STANDARD BASIN, BOTTOM WIDTH W, CREST LENGTH CL, AND HOLE DIAMETER, HD.
-FOR NONSTANDARD BASIN, SEE CONSTRUCTION DRAWINGS FOR DESIGN OF BASIN INCLUDING RISER HEIGHT H, NUMEER OF COLUMNS N, HOLE DIAMETER HD AND PIPE DIAMETER D.
2. FOR STANDARD BASIN, BOTTOM DIMENSION MAY BE MODIFIED AS LONG AS BOTTOM AREA IS NOT REDUCED.
3. SEDIMENT BASINS SHALL BE INSTALLED PRIOR TO ANY OTHER LAND-DISTURBING ACTIVITY THAT RELIES ON ON BASINS AS AS A STORMWATER CONTROL.
4. EMBANKMENT MATERIAL SHALL CONSIST OF SOIL FREE OF DEBRIS, ORGANIC MATERIAL, AND ROCKS OR CONCRETE GREATER THAN 3 INCHES AND SHALL HAVE A MINIMUM OF 15 PERCENT BY WEIGHT PASSING THE NO. 200 SIEVE.
5. EMBANKMENT MATERIAL SHALL BE COMPACTED TO AT LEAST 95 PERCENT OF MAXIMUM DENSITY IN ACCORDANCE WITH ASTM D698.
6. PIPE SCH 40 OR GREATER SHALL BE USED.
7. THE DETAILS SHOWN ON THESE SHEETS PERTAIN TO STANDARD SEDIMENT BASIN(S) FOR DRAINAGE AREAS LESS THAN 15 ACRES. SEE CONSTRUCTION DRAWINGS FOR EMBANKMENT, STORAGE VOLUME, SPILLWAY, OUTLET, AND OUTLET PROTECTION DETAILS FOR any SEDIment basinc(s) That have been individually designed for drainage areas LARGER THAN 15 ACRES.

\section*{SEDIMENT BASIN MAINTENANCE NOTES}
1. INSPECT BMPS EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.
2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPS IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.
3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.
4. SEDIMENT ACCUMULATED IN BASIN SHALL BE REMOVED AS NEEDED TO MAINTAIN BMP EFFECTIVENESS, TYPICALLY WHEN SEDIMENT DEPTH REACHES ONE FOOT (I.E., TWO FEET BELOW THE SPILLWAY CREST).
5. SEDIMENT BASINS ARE TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND GRASS COVER IS ACCEPTED BY THE LOCAL JURISDICTION.
6. WHEN SEDIMENT BASINS ARE REMOVED, ALL DISTURBED AREAS SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED AS APPROVED BY LOCAL JURISDICTION.
(DETAILS ADAPTED FROM DOUGLAS COUNTY, COLORADO)
NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

\section*{STORMWATER QUALITY CALCULATIONS}


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Design Procedure Form: Extended Detention Basin (EDB)} \\
\hline \multirow[b]{6}{*}{\begin{tabular}{l}
Designer: \\
Company: \\
Date: \\
Project: \\
Location:
\end{tabular}} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Marc A. Whorton, P.E.}} & \multirow[t]{6}{*}{Sheet 3 of 3} \\
\hline & & & & \\
\hline & \multicolumn{3}{|l|}{Classic Consulting} & \\
\hline & \multicolumn{3}{|l|}{April 1, 2021} & \\
\hline & \multicolumn{3}{|l|}{Retreat at TimberRidge Filing No. 2} & \\
\hline & \multicolumn{3}{|l|}{Pond 3} & \\
\hline \multicolumn{5}{|l|}{10. Overflow Embankment} \\
\hline \multicolumn{4}{|l|}{A) Describe embankment protection for 100-year and greater overtopping:} & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
B) Slope of Overflow Embankment \\
(Horizontal distance per unit vertical, 4:1 or flatter preferred)
\end{tabular}} & \(\mathrm{Ze}=\square 4.00\) & \(\mathrm{ft} / \mathrm{ft}\) & \\
\hline 11. Vegetat & & [Choose One
Irrigated
Not Irrigated & & \\
\hline \multicolumn{5}{|l|}{12. Access} \\
\hline \multicolumn{4}{|c|}{Notes:} & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Design Procedure Form: Extended Detention Basin (EDB)} \\
\hline \multirow[b]{6}{*}{\begin{tabular}{l}
Designer: \\
Company: \\
Date: \\
Project: \\
Location:
\end{tabular}} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Marc A. Whorton, P.E.}} & \multirow[t]{6}{*}{Sheet 3 of 3} \\
\hline & & & & \\
\hline & \multicolumn{3}{|l|}{Classic Consulting} & \\
\hline & \multicolumn{3}{|l|}{April 1, 2021} & \\
\hline & \multicolumn{3}{|l|}{Retreat at TimberRidge Filing No. 2} & \\
\hline & \multicolumn{3}{|l|}{Pond 3} & \\
\hline \multicolumn{5}{|l|}{10. Overflow Embankment} \\
\hline \multicolumn{4}{|l|}{A) Describe embankment protection for 100-year and greater overtopping:} & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
B) Slope of Overflow Embankment \\
(Horizontal distance per unit vertical, 4:1 or flatter preferred)
\end{tabular}} & \(\mathrm{Ze}=\square 4.00\) & \(\mathrm{ft} / \mathrm{ft}\) & \\
\hline 11. Vegetat & & [Choose One
Irrigated
Not Irrigated & & \\
\hline \multicolumn{5}{|l|}{12. Access} \\
\hline \multicolumn{4}{|c|}{Notes:} & \\
\hline
\end{tabular}

\section*{DETENTION POND CALCULATIONS}

Project: RETREAT AT TIMBERRIDGE FILING No. 2




See comment letter regarding location of Pond 3. Pond 3 details will be reviewed following resolution of the pond location.

\section*{DETENTION BASIN OUTLET STRUCTURE DESIGN}

MHFD-Detention, Version 4.03 (May 2020)
Project: RETREAT AT TIMBERRIDGE FILING NO. 2
Basin ID: EXIST. POND 2

\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
Estimated \\
Stage (ft)
\end{tabular} & Estimated Volume (ac-ft) & Outlet Type \\
\hline Zone 1 (WQCV) & 3.80 & 1.033 & Orifice Plate \\
\hline Zone 2 (EURV) & 5.36 & 1.163 & Orifice Plate \\
\hline Zone 3 (100-year) & 8.80 & 3.357 & Weir\&Pipe (Restrict) \\
\hline & Total (all zones) & 5.553 & \\
\hline
\end{tabular}


User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Row 1 (required) & Row 2 (optional) & Row 3 (optional) & Row 4 (optional) & Row 5 (optional) & Row 6 (optional) & Row 7 (optional) & Row 8 (optional) \\
\hline Stage of Orifice Centroid (ft) & 0.00 & 1.40 & 2.80 & 4.20 & & & & \\
\hline Orifice Area (sq. inches) & 3.00 & 4.00 & 4.00 & 4.00 & & & & \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l|l|l|l|l|l|}
\cline { 2 - 8 } & Row 9 (optional) & Row 10 (optional) & Row 11 (optional) & Row 12 (optional) & Row 13 (optional) & Row 14 (optional) & Row 15 (optional) & Row 16 (optional) \\
\cline { 2 - 8 } & & & & & \\
\hline
\end{tabular}
User Input: Vertical Orifice (Circular or Rectangular)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{4}{*}{\begin{tabular}{l}
Invert of Vertical Orifice = \\
Depth at top of Zone using Vertical Orifice \(=\) Vertical Orifice Diameter \(=\)
\end{tabular}} & Not Selected & Not Selected & \multirow[b]{4}{*}{ft (relative to basin bottom at Stage \(=0 \mathrm{ft}\) ) ft (relative to basin bottom at Stage \(=0 \mathrm{ft}\) ) inches} \\
\hline & N/A & N/A & \\
\hline & N/A & N/A & \\
\hline & N/A & N/A & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{3}{|l|}{Calculated Parameters for Vertical Orifice} \\
\hline & Not Selected & Not Selected & \\
\hline Vertical Orifice Area \(=\) & N/A & N/A & \(\mathrm{ft}^{2}\) \\
\hline Vertical Orifice Centroid \(=\) & N/A & N/A & eet \\
\hline
\end{tabular}

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Input: Overflow Weir (Dropbox with Flat or & Grat & OR & tangular/Trapezoidal Weir (and No Outlet Pipe) & Iculated Par & s for Overflow & \\
\hline & Zone 3 Weir & Not Selected & & Zone 3 Weir & Not Selected & \\
\hline Overflow Weir Front Edge Height, \(\mathrm{Ho}=\) & 5.50 & N/A & ft (relative to basin bottom at Stage \(=0 \mathrm{ft}\) ) Height of Grate Upper Edge, \(\mathrm{H}_{\mathrm{t}}=\) & 6.50 & N/A & feet \\
\hline Overflow Weir Front Edge Length = & 8.00 & N/A & feet Overflow Weir Slope Length = & 4.12 & N/A & feet \\
\hline Overflow Weir Grate Slope = & 4.00 & N/A & H:V Grate Open Area / 100-yr Orifice Area = & 2.57 & N/A & \\
\hline Horiz. Length of Weir Sides \(=\) & 4.00 & N/A & feet Overflow Grate Open Area w/o Debris = & 24.74 & N/A & \(\mathrm{ft}^{2}\) \\
\hline Overflow Grate Open Area \% = & 75\% & N/A & \%, grate open area/total area Overflow Grate Open Area w/ Debris = & 12.37 & N/A & \(\mathrm{ft}^{2}\) \\
\hline Debris Clogging \% = & 50\% & N/A & & & & \\
\hline
\end{tabular}

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice)
Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=0}\)} & \multicolumn{9}{|l|}{The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).} \\
\hline & WQCV & EURV & 2 Year & 5 Year & 10 Year & 25 Year & 50 Year & 100 Year & 500 Year \\
\hline One-Hour Rainfall Depth (in) \(=\) & N/A & N/A & 1.19 & 1.50 & 1.75 & 2.00 & 2.25 & 2.52 & 3.85 \\
\hline CUHP Runoff Volume (acre-ft) = & 1.033 & 2.196 & 2.378 & 4.231 & 5.985 & 8.800 & 10.837 & 13.643 & 25.127 \\
\hline Inflow Hydrograph Volume (acre-ft) = & N/A & N/A & 2.378 & 4.231 & 5.985 & 8.800 & 10.837 & 13.643 & 25.127 \\
\hline CUHP Predevelopment Peak Q (cfs) = & N/A & N/A & 9.1 & 25.4 & 39.2 & 71.6 & 90.0 & 115.0 & 215.1 \\
\hline OPTIONAL Override Predevelopment Peak Q (cfs) \(=\) & N/A & N/A & & & & & & & \\
\hline Predevelopment Unit Peak Flow, q (cfs/acre) = & N/A & N/A & 0.09 & 0.25 & 0.39 & 0.71 & 0.89 & 1.14 & 2.13 \\
\hline Peak Inflow Q (cfs) = & N/A & N/A & 24.5 & 43.1 & 57.8 & 90.5 & 110.1 & 135.8 & 242.6 \\
\hline Peak Outflow Q (cfs) \(=\) & 0.5 & 0.9 & 0.9 & 13.5 & 28.3 & 55.8 & 72.1 & 96.2 & 218.8 \\
\hline Ratio Peak Outflow to Predevelopment \(\mathrm{Q}=\) & N/A & N/A & N/A & 0.5 & 0.7 & 0.8 & 0.8 & 0.8 & 1.0 \\
\hline Structure Controlling Flow = & Plate & Plate & Plate & Overflow Weir 1 & Spillway \\
\hline Max Velocity through Grate 1 (fps) = & N/A & N/A & N/A & 0.5 & 1.1 & 2.2 & 2.9 & 3.8 & 5.0 \\
\hline Max Velocity through Grate 2 (fps) \(=\) & N/A \\
\hline Time to Drain 97\% of Inflow Volume (hours) = & 43 & 59 & 62 & 59 & 56 & 52 & 49 & 46 & 35 \\
\hline Time to Drain 99\% of Inflow Volume (hours) = & 46 & 65 & 68 & 69 & 67 & 64 & 62 & 59 & 53 \\
\hline Maximum Ponding Depth (ft) = & 3.80 & 5.36 & 5.37 & 6.27 & 6.70 & 7.29 & 7.68 & 8.30 & 9.61 \\
\hline Area at Maximum Ponding Depth (acres) \(=\) & 0.65 & 0.83 & 0.83 & 0.91 & 0.95 & 0.99 & 1.02 & 1.07 & 1.18 \\
\hline Maximum Volume Stored (acre-ft) = & 1.035 & 2.203 & 2.203 & 2.988 & 3.388 & 3.969 & 4.351 & 4.998 & 6.468 \\
\hline
\end{tabular}




Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SOURCE & CUHP \\
\hline Time Interval & TIME & WQCV [cfs] & EURV [cfs] & 2 Year [cfs] & 5 Year [cfs] & 10 Year [cfs] & 25 Year [cfs] & 50 Year [cfs] & 100 Year [cfs] & 500 Year [cfs] \\
\hline 5.00 min & 0:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0:05:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0:10:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.05 & 0.01 & 0.34 \\
\hline & 0:15:00 & 0.00 & 0.00 & 0.43 & 0.71 & 0.88 & 0.60 & 0.78 & 0.73 & 1.68 \\
\hline & 0:20:00 & 0.00 & 0.00 & 1.88 & 3.68 & 5.01 & 1.98 & 2.53 & 3.03 & 7.56 \\
\hline & 0:25:00 & 0.00 & 0.00 & 8.30 & 16.23 & 24.40 & 8.18 & 10.13 & 12.46 & 39.19 \\
\hline & 0:30:00 & 0.00 & 0.00 & 17.70 & 32.99 & 46.22 & 39.10 & 48.93 & 57.61 & 120.72 \\
\hline & 0:35:00 & 0.00 & 0.00 & 23.11 & 41.58 & 56.04 & 69.97 & 86.40 & 104.22 & 194.66 \\
\hline & 0:40:00 & 0.00 & 0.00 & 24.51 & 43.12 & 57.85 & 85.42 & 104.29 & 127.00 & 230.10 \\
\hline & 0:45:00 & 0.00 & 0.00 & 23.78 & 41.51 & 56.11 & 90.49 & 110.08 & 135.80 & 242.56 \\
\hline & 0:50:00 & 0.00 & 0.00 & 22.05 & 38.65 & 52.45 & 89.78 & 109.04 & 135.78 & 241.28 \\
\hline & 0:55:00 & 0.00 & 0.00 & 20.40 & 35.83 & 48.94 & 85.26 & 103.71 & 130.68 & 232.90 \\
\hline & 1:00:00 & 0.00 & 0.00 & 19.01 & 33.24 & 45.82 & 79.79 & 97.41 & 125.23 & 223.76 \\
\hline & 1:05:00 & 0.00 & 0.00 & 17.71 & 30.78 & 42.88 & 74.48 & 91.27 & 119.94 & 214.82 \\
\hline & 1:10:00 & 0.00 & 0.00 & 16.40 & 28.78 & 40.68 & 68.45 & 84.18 & 111.34 & 201.40 \\
\hline & 1:15:00 & 0.00 & 0.00 & 15.16 & 27.04 & 38.95 & 63.00 & 77.83 & 102.14 & 187.03 \\
\hline & 1:20:00 & 0.00 & 0.00 & 14.00 & 25.21 & 36.76 & 57.94 & 71.71 & 93.19 & 171.66 \\
\hline & 1:25:00 & 0.00 & 0.00 & 12.87 & 23.33 & 33.96 & 53.02 & 65.61 & 84.35 & 155.54 \\
\hline & 1:30:00 & 0.00 & 0.00 & 11.76 & 21.43 & 30.96 & 48.11 & 59.52 & 76.03 & 140.15 \\
\hline & 1:35:00 & 0.00 & 0.00 & 10.67 & 19.57 & 27.97 & 43.30 & 53.58 & 68.17 & 125.49 \\
\hline & 1:40:00 & 0.00 & 0.00 & 9.62 & 17.57 & 25.12 & 38.59 & 47.76 & 60.57 & 111.46 \\
\hline & 1:45:00 & 0.00 & 0.00 & 8.72 & 15.76 & 22.84 & 34.11 & 42.25 & 53.46 & 98.88 \\
\hline & 1:50:00 & 0.00 & 0.00 & 8.07 & 14.40 & 21.20 & 30.55 & 37.94 & 47.84 & 89.11 \\
\hline & 1:55:00 & 0.00 & 0.00 & 7.53 & 13.32 & 19.79 & 27.87 & 34.67 & 43.49 & 81.28 \\
\hline & 2:00:00 & 0.00 & 0.00 & 7.00 & 12.33 & 18.34 & 25.64 & 31.94 & 39.78 & 74.51 \\
\hline & 2:05:00 & 0.00 & 0.00 & 6.41 & 11.28 & 16.74 & 23.42 & 29.17 & 36.17 & 67.74 \\
\hline & 2:10:00 & 0.00 & 0.00 & 5.80 & 10.19 & 15.09 & 21.23 & 26.41 & 32.66 & 61.03 \\
\hline & 2:15:00 & 0.00 & 0.00 & 5.20 & 9.13 & 13.49 & 19.13 & 23.78 & 29.34 & 54.67 \\
\hline & 2:20:00 & 0.00 & 0.00 & 4.63 & 8.12 & 11.96 & 17.12 & 21.26 & 26.22 & 48.70 \\
\hline & 2:25:00 & 0.00 & 0.00 & 4.10 & 7.15 & 10.52 & 15.21 & 18.87 & 23.33 & 43.16 \\
\hline & 2:30:00 & 0.00 & 0.00 & 3.58 & 6.22 & 9.15 & 13.37 & 16.58 & 20.55 & 37.86 \\
\hline & 2:35:00 & 0.00 & 0.00 & 3.08 & 5.32 & 7.85 & 11.58 & 14.35 & 17.82 & 32.72 \\
\hline & 2:40:00 & 0.00 & 0.00 & 2.59 & 4.44 & 6.60 & 9.81 & 12.16 & 15.12 & 27.66 \\
\hline & 2:45:00 & 0.00 & 0.00 & 2.11 & 3.59 & 5.38 & 8.08 & 10.02 & 12.46 & 22.67 \\
\hline & 2:50:00 & 0.00 & 0.00 & 1.65 & 2.77 & 4.20 & 6.38 & 7.91 & 9.82 & 17.76 \\
\hline & 2:55:00 & 0.00 & 0.00 & 1.21 & 2.00 & 3.10 & 4.71 & 5.84 & 7.24 & 13.10 \\
\hline & 3:00:00 & 0.00 & 0.00 & 0.86 & 1.46 & 2.36 & 3.17 & 3.94 & 4.90 & 9.30 \\
\hline & 3:05:00 & 0.00 & 0.00 & 0.65 & 1.14 & 1.90 & 2.23 & 2.84 & 3.46 & 6.82 \\
\hline & 3:10:00 & 0.00 & 0.00 & 0.53 & 0.93 & 1.56 & 1.62 & 2.10 & 2.51 & 5.08 \\
\hline & 3:15:00 & 0.00 & 0.00 & 0.43 & 0.77 & 1.29 & 1.22 & 1.59 & 1.81 & 3.76 \\
\hline & 3:20:00 & 0.00 & 0.00 & 0.36 & 0.63 & 1.06 & 0.92 & 1.21 & 1.30 & 2.77 \\
\hline & 3:25:00 & 0.00 & 0.00 & 0.30 & 0.52 & 0.87 & 0.71 & 0.94 & 0.92 & 2.02 \\
\hline & 3:30:00 & 0.00 & 0.00 & 0.24 & 0.42 & 0.69 & 0.55 & 0.72 & 0.64 & 1.44 \\
\hline & 3:35:00 & 0.00 & 0.00 & 0.20 & 0.33 & 0.54 & 0.42 & 0.55 & 0.46 & 1.05 \\
\hline & 3:40:00 & 0.00 & 0.00 & 0.16 & 0.26 & 0.42 & 0.33 & 0.43 & 0.37 & 0.81 \\
\hline & 3:45:00 & 0.00 & 0.00 & 0.13 & 0.20 & 0.32 & 0.26 & 0.34 & 0.29 & 0.63 \\
\hline & 3:50:00 & 0.00 & 0.00 & 0.10 & 0.15 & 0.25 & 0.20 & 0.26 & 0.23 & 0.50 \\
\hline & 3:55:00 & 0.00 & 0.00 & 0.08 & 0.11 & 0.19 & 0.15 & 0.20 & 0.18 & 0.39 \\
\hline & 4:00:00 & 0.00 & 0.00 & 0.06 & 0.08 & 0.14 & 0.12 & 0.15 & 0.14 & 0.29 \\
\hline & 4:05:00 & 0.00 & 0.00 & 0.04 & 0.05 & 0.09 & 0.08 & 0.11 & 0.10 & 0.20 \\
\hline & 4:10:00 & 0.00 & 0.00 & 0.03 & 0.03 & 0.06 & 0.06 & 0.07 & 0.06 & 0.13 \\
\hline & 4:15:00 & 0.00 & 0.00 & 0.02 & 0.02 & 0.03 & 0.03 & 0.04 & 0.04 & 0.08 \\
\hline & 4:20:00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.01 & 0.02 & 0.02 & 0.02 & 0.04 \\
\hline & 4:25:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.01 & 0.01 \\
\hline & 4:30:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:35:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:40:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:45:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:50:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:55:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:05:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:10:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:15:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:20:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:25:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:30:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:35:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:40:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:45:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:50:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:55:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 6:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}

\section*{DETENTION BASIN OUTLET STRUCTURE DESIGN}

MHFD-Detention, Version 4.03 (May 2020)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically, The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Stage - Storage Description & \begin{tabular}{l}
Stage \\
[ft]
\end{tabular} & Area
\[
\left[\mathrm{ft}^{2}\right]
\] & \begin{tabular}{l}
Area \\
[acres]
\end{tabular} & \begin{tabular}{l}
Volume \\
[ \(\mathrm{ft}^{3}\) ]
\end{tabular} & \begin{tabular}{l}
Volume \\
[ac-ft]
\end{tabular} & \[
\begin{gathered}
\hline \text { Total } \\
\text { Outflow } \\
\text { [cfs] } \\
\hline
\end{gathered}
\] & \\
\hline & & & & & & & \multirow[t]{5}{*}{For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \multirow[t]{4}{*}{Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\square\) & \(\square\) & \(\square\) & \(\square\) & - & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & & \\
\hline
\end{tabular}


Project: RETREAT AT TIMBERRIDGE FILING NO. 2

\section*{Basin ID: POND 3}




\section*{DETENTION BASIN OUTLET STRUCTURE DESIGN}

MHFD-Detention, Version 4.03 (May 2020)

\section*{Project: RETREAT AT TIMBERRIDGE FILING NO. 2}

Basin ID: POND 3

\begin{tabular}{rl} 
User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP) & \\
Underdrain Orifice Invert Depth \(=\) \\
Underdrain Orifice Diameter \(=\) & \\
\hline
\end{tabular}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Row 1 (required) & Row 2 (optional) & Row 3 (optional) & Row 4 (optional) & Row 5 (optional) & Row 6 (optional) & Row 7 (optional) & Row 8 (optional) \\
\hline Stage of Orifice Centroid (ft) & 0.00 & 1.50 & 3.00 & & & & & \\
\hline Orifice Area (sq. inches) & 1.86 & 1.86 & 1.86 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l|l|l|l|l|l|}
\cline { 2 - 8 } & Row 9 (optional) & Row 10 (optional) & Row 11 (optional) & Row 12 (optional) & Row 13 (optional) & Row 14 (optional) & Row 15 (optional) & Row 16 (optional) \\
\cline { 2 - 8 } & & & & & \\
\hline
\end{tabular}

User Input: Vertical Orifice (Circular or Rectangular)


Calculated Parameters for Vertical Orifice
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{alculated Parameters for Vertical Orifice} \\
\hline & Not Selected & Not Selected \\
\hline Vertical Orifice Area \(=\) & N/A & N/A \\
\hline Vertical Orifice Centroid \(=\) & N/A & N/A \\
\hline
\end{tabular}

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)
 Overflow Weir Front Edge Length = Overflow Weir Grate Slope \(=\) Horiz. Length of Weir Sides = Overflow Grate Open Area \(\%=\) Debris Clogging \% =
\begin{tabular}{|c|c|c|}
\hline Zone 3 Weir & Not Selected & \\
\hline 4.50 & N/A & ft (relative to basin bottom at Stage \\
\hline 8.00 & N/A & feet \\
\hline 4.00 & N/A & H:V \\
\hline 4.00 & N/A & feet \\
\hline 75\% & N/A & \%, grate open area/total area \\
\hline 50\% & N/A & \\
\hline
\end{tabular}
 ft) Height of Grate Upper Edge, \(\mathrm{H}_{\mathrm{t}}=\) Overflow Weir Slope Length \(=\)
Grate Open Area / 100-yr Orifice Area \(=\) Overflow Grate Open Area w/o Debris = Overflow Grate Open Area w/ Debris =
\begin{tabular}{l} 
Calculated Parameters for Overflow Weir \\
\begin{tabular}{|c|c|}
\hline Zone 3 Weir & Not Selected \\
& \\
\hline 5.50 & feet \\
\hline 4.12 & N/A \\
feet \\
\hline 5.04 & \(\mathrm{~N} / \mathrm{A}\) \\
\hline 24.74 & \(\mathrm{~N} / \mathrm{A}\) \\
\(\mathrm{ft}^{2}\) \\
\hline 12.37 & \(\mathrm{~N} / \mathrm{A}\) \\
\(\mathrm{ft}^{2}\)
\end{tabular} \\
\hline
\end{tabular}

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate
Jser Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice)
ft (distance below basin bottom at Stage \(=0 \mathrm{ft}\) ) inches inches

Half-Central Angl Outlet Orifice Centroid Outlet Orifice Centroid \(=\) Half-Central Angle of Restrictor Plate on Pipe \(=\)
\begin{tabular}{|c|c|}
\hline Zone 3 Restrictor & Not Selected \\
& \multicolumn{1}{c}{\(\mathrm{ft}^{2}\)} \\
\hline 4.91 & \(\mathrm{~N} / \mathrm{A}\) \\
\hline 1.25 & \(\mathrm{~N} / \mathrm{A}\) \\
\hline feet \\
\hline 3.14 & \(\mathrm{~N} / \mathrm{A}\) \\
\hline
\end{tabular} radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)




Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SOURCE & CUHP \\
\hline Time Interval & TIME & WQCV [cfs] & EURV [cfs] & 2 Year [cfs] & 5 Year [cfs] & 10 Year [cfs] & 25 Year [cfs] & 50 Year [cfs] & 100 Year [cfs] & 500 Year [cfs] \\
\hline 5.00 min & 0:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0:05:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 0:10:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.09 \\
\hline & 0:15:00 & 0.00 & 0.00 & 0.11 & 0.18 & 0.23 & 0.15 & 0.20 & 0.19 & 0.41 \\
\hline & 0:20:00 & 0.00 & 0.00 & 0.46 & 1.11 & 1.71 & 0.48 & 0.56 & 0.76 & 2.75 \\
\hline & 0:25:00 & 0.00 & 0.00 & 3.17 & 7.93 & 13.33 & 3.06 & 3.88 & 5.32 & 22.95 \\
\hline & 0:30:00 & 0.00 & 0.00 & 7.98 & 17.56 & 25.84 & 23.03 & 29.49 & 35.32 & 76.33 \\
\hline & 0:35:00 & 0.00 & 0.00 & 10.67 & 22.07 & 31.01 & 40.96 & 51.33 & 62.94 & 120.03 \\
\hline & 0:40:00 & 0.00 & 0.00 & 11.28 & 22.71 & 31.82 & 49.77 & 61.55 & 75.85 & 140.14 \\
\hline & 0:45:00 & 0.00 & 0.00 & 10.84 & 21.65 & 30.70 & 52.41 & 64.58 & 80.80 & 147.10 \\
\hline & 0:50:00 & 0.00 & 0.00 & 9.96 & 20.00 & 28.54 & 51.94 & 63.89 & 80.58 & 146.10 \\
\hline & 0:55:00 & 0.00 & 0.00 & 9.13 & 18.38 & 26.50 & 49.14 & 60.60 & 77.52 & 141.12 \\
\hline & 1:00:00 & 0.00 & 0.00 & 8.43 & 16.91 & 24.70 & 45.87 & 56.85 & 74.36 & 135.83 \\
\hline & 1:05:00 & 0.00 & 0.00 & 7.77 & 15.50 & 22.96 & 42.72 & 53.22 & 71.27 & 130.60 \\
\hline & 1:10:00 & 0.00 & 0.00 & 7.10 & 14.34 & 21.66 & 39.00 & 48.82 & 65.78 & 122.06 \\
\hline & 1:15:00 & 0.00 & 0.00 & 6.52 & 13.35 & 20.64 & 35.69 & 44.95 & 60.11 & 113.25 \\
\hline & 1:20:00 & 0.00 & 0.00 & 5.98 & 12.34 & 19.32 & 32.66 & 41.23 & 54.70 & 103.76 \\
\hline & 1:25:00 & 0.00 & 0.00 & 5.45 & 11.33 & 17.71 & 29.78 & 37.60 & 49.47 & 93.99 \\
\hline & 1:30:00 & 0.00 & 0.00 & 4.94 & 10.32 & 16.04 & 26.93 & 34.02 & 44.58 & 84.72 \\
\hline & 1:35:00 & 0.00 & 0.00 & 4.44 & 9.32 & 14.38 & 24.18 & 30.55 & 39.95 & 75.88 \\
\hline & 1:40:00 & 0.00 & 0.00 & 3.94 & 8.26 & 12.78 & 21.46 & 27.15 & 35.46 & 67.36 \\
\hline & 1:45:00 & 0.00 & 0.00 & 3.50 & 7.29 & 11.43 & 18.84 & 23.88 & 31.17 & 59.55 \\
\hline & 1:50:00 & 0.00 & 0.00 & 3.17 & 6.58 & 10.47 & 16.66 & 21.18 & 27.63 & 53.24 \\
\hline & 1:55:00 & 0.00 & 0.00 & 2.93 & 6.04 & 9.68 & 15.05 & 19.19 & 24.94 & 48.28 \\
\hline & 2:00:00 & 0.00 & 0.00 & 2.71 & 5.57 & 8.90 & 13.74 & 17.55 & 22.70 & 44.08 \\
\hline & 2:05:00 & 0.00 & 0.00 & 2.48 & 5.09 & 8.11 & 12.52 & 16.00 & 20.60 & 40.03 \\
\hline & 2:10:00 & 0.00 & 0.00 & 2.25 & 4.61 & 7.34 & 11.38 & 14.52 & 18.65 & 36.16 \\
\hline & 2:15:00 & 0.00 & 0.00 & 2.03 & 4.15 & 6.58 & 10.30 & 13.13 & 16.82 & 32.53 \\
\hline & 2:20:00 & 0.00 & 0.00 & 1.81 & 3.71 & 5.86 & 9.27 & 11.80 & 15.11 & 29.13 \\
\hline & 2:25:00 & 0.00 & 0.00 & 1.61 & 3.27 & 5.17 & 8.28 & 10.53 & 13.51 & 25.96 \\
\hline & 2:30:00 & 0.00 & 0.00 & 1.41 & 2.85 & 4.51 & 7.32 & 9.31 & 11.99 & 22.95 \\
\hline & 2:35:00 & 0.00 & 0.00 & 1.21 & 2.44 & 3.88 & 6.37 & 8.11 & 10.47 & 20.01 \\
\hline & 2:40:00 & 0.00 & 0.00 & 1.02 & 2.04 & 3.27 & 5.44 & 6.93 & 8.98 & 17.12 \\
\hline & 2:45:00 & 0.00 & 0.00 & 0.82 & 1.64 & 2.67 & 4.51 & 5.76 & 7.48 & 14.25 \\
\hline & 2:50:00 & 0.00 & 0.00 & 0.63 & 1.25 & 2.08 & 3.60 & 4.60 & 6.00 & 11.40 \\
\hline & 2:55:00 & 0.00 & 0.00 & 0.45 & 0.88 & 1.50 & 2.68 & 3.45 & 4.52 & 8.59 \\
\hline & 3:00:00 & 0.00 & 0.00 & 0.29 & 0.57 & 1.06 & 1.80 & 2.35 & 3.11 & 6.06 \\
\hline & 3:05:00 & 0.00 & 0.00 & 0.19 & 0.40 & 0.80 & 1.15 & 1.54 & 2.06 & 4.26 \\
\hline & 3:10:00 & 0.00 & 0.00 & 0.14 & 0.31 & 0.64 & 0.77 & 1.06 & 1.41 & 3.07 \\
\hline & 3:15:00 & 0.00 & 0.00 & 0.11 & 0.25 & 0.51 & 0.53 & 0.75 & 0.97 & 2.22 \\
\hline & 3:20:00 & 0.00 & 0.00 & 0.09 & 0.20 & 0.41 & 0.37 & 0.54 & 0.65 & 1.58 \\
\hline & 3:25:00 & 0.00 & 0.00 & 0.07 & 0.16 & 0.33 & 0.26 & 0.39 & 0.43 & 1.11 \\
\hline & 3:30:00 & 0.00 & 0.00 & 0.06 & 0.13 & 0.26 & 0.19 & 0.28 & 0.27 & 0.75 \\
\hline & 3:35:00 & 0.00 & 0.00 & 0.05 & 0.10 & 0.20 & 0.13 & 0.20 & 0.17 & 0.49 \\
\hline & 3:40:00 & 0.00 & 0.00 & 0.04 & 0.07 & 0.15 & 0.10 & 0.15 & 0.12 & 0.35 \\
\hline & 3:45:00 & 0.00 & 0.00 & 0.03 & 0.06 & 0.11 & 0.07 & 0.11 & 0.09 & 0.26 \\
\hline & 3:50:00 & 0.00 & 0.00 & 0.02 & 0.04 & 0.08 & 0.06 & 0.09 & 0.07 & 0.20 \\
\hline & 3:55:00 & 0.00 & 0.00 & 0.02 & 0.03 & 0.06 & 0.04 & 0.07 & 0.06 & 0.16 \\
\hline & 4:00:00 & 0.00 & 0.00 & 0.01 & 0.02 & 0.04 & 0.03 & 0.05 & 0.04 & 0.12 \\
\hline & 4:05:00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.03 & 0.02 & 0.04 & 0.03 & 0.09 \\
\hline & 4:10:00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.02 & 0.02 & 0.03 & 0.02 & 0.06 \\
\hline & 4:15:00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.01 & 0.02 & 0.01 & 0.04 \\
\hline & 4:20:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.01 & 0.01 & 0.02 \\
\hline & 4:25:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 \\
\hline & 4:30:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:35:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:40:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:45:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:50:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 4:55:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:05:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:10:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:15:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:20:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:25:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:30:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:35:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:40:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:45:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:50:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 5:55:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline & 6:00:00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}

\section*{DETENTION BASIN OUTLET STRUCTURE DESIGN}

MHFD-Detention, Version 4.03 (May 2020)
Summary Stage-Area-Volume-Discharge Relationship
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Stage - Storage Description & \begin{tabular}{l}
Stage \\
[ft]
\end{tabular} & Area
\[
\left[\mathrm{ft}^{2}\right]
\] & \begin{tabular}{l}
Area \\
[acres]
\end{tabular} & \begin{tabular}{l}
Volume \\
[ \(\mathrm{ft}^{3}\) ]
\end{tabular} & \begin{tabular}{l}
Volume \\
[ac-ft]
\end{tabular} & Total
Outflow [cfs] & \\
\hline & 0.00 & 115 & 0.003 & 0 & 0.000 & 0.00 & \multirow[t]{9}{*}{\begin{tabular}{l}
For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'. \\
Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).
\end{tabular}} \\
\hline & 1.00 & 2,577 & 0.059 & 730 & 0.017 & 0.06 & \\
\hline & 2.00 & 7,500 & 0.172 & 5,769 & 0.132 & 0.13 & \\
\hline & 3.00 & 11,770 & 0.270 & 15,567 & 0.357 & 0.18 & \\
\hline & 4.00 & 15,387 & 0.353 & 29,146 & 0.669 & 0.28 & \\
\hline & 5.00 & 18,910 & 0.434 & 46,318 & 1.063 & 6.38 & \\
\hline & 6.00 & 22,339 & 0.513 & 66,942 & 1.537 & 40.74 & \\
\hline & 7.00 & 26,165 & 0.601 & 91,095 & 2.091 & 81.76 & \\
\hline & 8.00 & 30,388 & 0.698 & 119,372 & 2.740 & 260.55 & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{HEC-RAS CALCULATIONS}


\section*{RETREAT AT TIMBERRIDGE FILING NO. 2}


SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 55+32.95)


\footnotetext{
SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 51+82.08)
}

\section*{RETREAT AT TIMBERRIDGE FILING NO. 2}


SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 49+03.69)


SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 47+12.26)

\section*{RETREAT AT TIMBERRIDGE FILING NO. 2}


SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 44+44.93)


\footnotetext{
SAND CREEK REACH 9 - LOOKING DOWNSTREAM
(HEC-RAS STA: 42+31.86)
}

\section*{RETREAT AT TIMBERRIDGE FILING NO. 2}


SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 39+15.99)


SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 37+08.56)

\section*{RETREAT AT TIMBERRIDGE FILING NO. 2}


SAND CREEK REACH 9 - LOOKING DOWNSTREAM (HEC-RAS STA: 35+40.59)

TABLE 10-1

COMPOEITE ROUGHNEBS COEFFICIENTS FOR UNLINED OPEN CHANNELS (Reference: Chow, ven Te, 1959; Open-channel hydraulics)
\[
\begin{equation*}
n=\left(n_{0}+n_{1}+n_{2}+n_{3}+n_{4}\right) m \tag{10-2}
\end{equation*}
\]


\title{
TYPICAL ROUGADESB COEFPICIENYS FOR OPEN CENNAELS
}

Type of Channel and Description

\section*{NATURAL STREAMS}
```

Minor streams (top width at flood
stage 100 ft)

```
a. Streams on plain
1. Clean, straight, full stage, 0.0250 .0300 .033 no rifts or deep pools
2. Same as above, but more
0.030
0.035
0.040 stones and weeds
3. Clean, winding, some pools and shoals
4. Same as above, but some weeds and stones
5. Same as above, lower stages,
0.040
0.048
0.055 more ineffective slopes and sections
\(\begin{array}{lllll}\text { 6. Same as 4, but more stones } & 0.045 & 0.050 & 0.060\end{array}\)
7. Sluggish reaches, weedy, \(0.050 \quad 0.070 \quad 0.080\) deep pools
\(\begin{array}{lllll}\text { 8. Very weedy reaches, deep } 0.075 & 0.100 & 0.150\end{array}\) pools, or floodways with heavy stand of timber and underbrush

LINED OR BUILT-UP CHANNELS
\begin{tabular}{lllll} 
a. Corrugated Metal & 0.021 & 0.025 & 0.030 \\
b. & 0.015 \\
Concrete & & & \\
1. Trowel finish & 0.011 & 0.013 & 0.015 \\
2. Float finish & 0.013 & 0.015 & 0.016 \\
3. Finished, with gravel on bottom & 0.015 & 0.017 & 0.020 \\
4. Unfinished & & 0.014 & 0.017 & 0.020 \\
5. Gunite, good section & 0.016 & 0.019 & 0.023 \\
6. Gunite, wavy section & 0.018 & 0.022 & 0.025 \\
7. On good excavated rock & 0.017 & 0.020 & \\
8. On irregular excavated rock & 0.022 & 0.027 &
\end{tabular}

Table 3. Adjustment values for factors that affect roughness of flood plains
[Modified from Aldridge and Garrett, 1973, table 2]
\begin{tabular}{llcl}
\hline \multicolumn{1}{c}{ Flood-plain conditions } & \(\begin{array}{c}n \text { value } \\
\text { adjustment }\end{array}\) & \(\begin{array}{c}\text { Example }\end{array}\) \\
\(\begin{array}{l}\text { Degree of } \\
\text { irregularity }\left(n_{1}\right)\end{array}\) & \(\begin{array}{l}\text { Moderate } \\
\text { Severe }\end{array}\) & \(\begin{array}{l}\text { Compares to the smoothest, flattest flood plain attainable in a given bed } \\
\text { material. }\end{array}\) \\
Is a flood plain slightly irregular in shape. A few rises and dips or sloughs \\
may be visible on the flood plain.
\end{tabular}\(]\)\begin{tabular}{l} 
Has more rises and dips. Sloughs and hummocks may occur. \\
Flood plain very irregular in shape. Many rises and dips or sloughs are visible. \\
Irregular ground surfaces in pastureland and furrows perpendicular to the \\
flow are also included.
\end{tabular}

Chow (1959) presents a table showing minimum, normal, and maximum values of \(n\) for flood plains covered by pasture and crops. These values are helpful for comparing the roughness values of flood plains having similar vegetation.

\section*{Vegetation-Density Method}

For a wooded flood plain, the vegetation-density method can be used as an alternative to the previous method for determining \(n\) values for flood plains. In a wooded flood plain, where the tree diameters can be measured, the vegetation density of the flood plain can be determined.

Determining the vegetation density is an effective way of relating plant height and density characteristics, as a function of depth of flow, to the flow resistance of vegetation. Application of the flow-resistance model presented below requires an estimate of the vegetation density as a function of depth of flow. The procedure requires a direct or indirect determination of vegetation density at a given depth. If the change in \(n\) value through a range in depth is required, then an estimation of vegetation density through that range is necessary.

\section*{Techniques for Determining Vegetation Density}

Petryk and Bosmajian (1975) developed a method of analysis of the vegetation density to determine the rough-

\section*{Classification of Vegetal Covers}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Retardance \\
Class
\end{tabular} & Cover & Condition \\
\hline \multirow{5}{*}{A} & Weeping lovegrass & Excellent stand, tall, average 30 in. \\
\hline & Yellow bluestem Ischaemum & Excellent stand, tall, average 36 in. \\
\hline & Bermuda grass & Good stand, tall, average 12 in . \\
\hline & Native grass mixture (little bluestem, bluestem, blue gamma, and other long and short Midwest grasses & Good stand, unmowed \\
\hline & Weeping lovegrass & Good stand, tall, average 24 in . \\
\hline \multirow[t]{5}{*}{B} & Lespedeza serica & Good stand, not woody, tall, average 19 in. \\
\hline & Alfalfa & Good stand uncut, average 11 in . \\
\hline & Weeping lovegrass & Good stand, unmowed, average 13 in . \\
\hline & Kudzu & Dense growth, uncut \\
\hline & Blue gamma & Good stand, uncut, average 13 in . \\
\hline \multirow{6}{*}{C} & Crabgrass & Fair stand, uncut, avg. 10 in . \\
\hline & Bermuda grass & Good stand, mowed, average 6 in. \\
\hline & Common lespedeza & Good stand, uncut, average 11 in . \\
\hline & Grass-legume mixture - summer (orchard grass, redtop Italian ryegrass, and common lespedeza) & Good stand, uncut, average 6 to 8 in . \\
\hline & Centipedegrass & Very dense cover, average 6 in. \\
\hline & Kentucky Bluegrass & Good stand, headed, 6 to 12 in . \\
\hline \multirow{5}{*}{D} & Bermuda grass & Good stand, cut to 2.5 in . height \\
\hline & Common lespedeza & Excellent stand, uncut, average 4.5 in . \\
\hline & Buffalo Grass & Good stand, uncut, 3 t 6 in . \\
\hline & Grass-legume mixture - fall (orchard grass, redtop Italian ryegrass, and common lespedeza) & Good stand, uncut, 3 to 5 in . \\
\hline & Lespedeza serica & After cutting to 2 in. height, good stand before cutting \\
\hline \multirow[t]{2}{*}{E} & Bermuda grass & Good stand, cut to average 1.5 in . height \\
\hline & Bermuda grass & Burned stubble \\
\hline
\end{tabular}

Note: Covers classified have been tested in experimental channels. Covers were green and generally uniform.

\section*{Source: HEC-15}
\begin{tabular}{c|c}
\begin{tabular}{c} 
Coefficients for Roughness of \\
Grass-Lined Channels
\end{tabular} \\
\begin{tabular}{c} 
SCS \\
Retardance \\
Class
\end{tabular} & \(\mathrm{C}_{\mathbf{n}}\) \\
A & 0.605 \\
\hline B & 0.418 \\
\hline C & 0.220 \\
\hline D & 0.147 \\
\hline E & 0.093 \\
\hline
\end{tabular}

Source: HEC-15

\section*{Composite Roughness}

Culverts using different materials for portions of the perimeter such as embedded culverts or culverts with an invert liner should use a composite Manning's \(n\) value. A weighted \(n\) value based on the materials can be derived using the following equation:
\(n_{c}=\left[\frac{\Sigma\left(p_{i} n_{i}^{1.5}\right)}{p}\right]^{0.67}\)
Where:
\(\mathrm{n}_{\mathrm{c}}=\) Composite/weighted Manning's n .
\(\mathrm{p}_{\mathrm{i}}=\) Wetted perimeter for the material, ft.
\(n_{i}=\) Manning's \(n\) value for the material.
\(\mathrm{p}=\) Total wetted perimeter, ft.

\subsection*{750.1.4.1.2 Hydraulic Radius}

The hydraulic radius is a characteristic depth of flow and is defined as the cross-sectional area of flow divided by the wetted perimeter of the channel. The hydraulic radius is computed as follows:
\(R=\frac{A}{P}\)
where:
\(\mathrm{R}=\) hydraulic radius, ft
\(\mathrm{A}=\) cross-sectional area of flow, \(\mathrm{ft}^{2}\)
\(\mathrm{P}=\) wetted perimeter of the channel cross section, ft

\subsection*{750.1.4.1.3 Slope}
\begin{tabular}{lll}
\(\overline{\text { Chapter } 8} \quad \overline{\text { Threshold Channel Design }}\) & \begin{tabular}{l} 
Part 654 \\
National Engineering Handbook
\end{tabular}
\end{tabular}

Table 8-8 Characteristics of selected grass species for use in channels and waterways
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Grass species} & \multicolumn{2}{|l|}{Height at maturity} \\
\hline & (ft) & (m) \\
\hline \multicolumn{3}{|l|}{Cool-season grasses} \\
\hline Creeping foxtail & 3-4 & 0.9-1.2 \\
\hline Crested wheatgrass & 2-3 & 0.6-0.9 \\
\hline Green needlegrass & 3-4 & 0.9-1.2 \\
\hline Russian wild rye & 3-4 & 0.9-1.2 \\
\hline Smooth bromegrass & 3-4 & 0.9-1.2 \\
\hline Tall fescue & 3-4 & 0.9-1.2 \\
\hline Tall wheatgrass & & 1.2-1.5 \\
\hline Western wheatgrass & 2-3 & 0.6-0.9 \\
\hline \multicolumn{3}{|l|}{Warm-season grasses} \\
\hline Bermudagrass & 3/4-2 & 0.2-0.6 \\
\hline Big bluestem & 4-6 & 1.2-1.8 \\
\hline Blue grama & 1-2 & 0.3-0.6 \\
\hline Buffalograss & 1/3-1 & 0.1-0.3 \\
\hline Green spangletop & 3-4 & 0.9-1.2 \\
\hline Indiangrass & 5-6 & 1.5-1.8 \\
\hline Klein grass & 3-4 & 0.9-1.2 \\
\hline Little bluestem & 3-4 & 0.9-1.2 \\
\hline Plains bristlegrass & 1-2 & 0.3-0.6 \\
\hline Sand bluestem & 5-6 & 1.5-1.8 \\
\hline Sideoats grama & 2-3 & 0.6-0.9 \\
\hline Switchgrass & 4-5 & 1.2-1.5 \\
\hline Vine mesquitegrass & 1-2 & 0.3-0.6 \\
\hline Weeping lovegrass & 3-4 & 0.9-1.2 \\
\hline \multicolumn{3}{|l|}{Old World bluestems} \\
\hline Caucasian bluestem & 4-5 & 1.2-1.5 \\
\hline Ganada yellow bluestem & \(3-4\) & 0.9-1.2 \\
\hline
\end{tabular}

Table 8-9 Retardance curve index by SCS retardance class
\begin{tabular}{ll}
\hline \begin{tabular}{l} 
SCS retardance \\
class
\end{tabular} & \begin{tabular}{l} 
Retardance curve \\
index
\end{tabular} \\
\hline A & 10.0 \\
B & 7.64 \\
C & 5.60 \\
D & 4.44 \\
E & 2.88 \\
\hline
\end{tabular}
this table were obtained from a review of the available qualitative descriptions and stem counts reported by researchers studying channel resistance and stability.

Since cover conditions vary from year to year and season to season, it is recommended that an upper and lower bound be determined for \(\mathrm{C}_{\mathrm{r}}\). The lower bound should be used in stability computations, and the upper bound should be used to determine channel capacity. Some practitioners find that the use of SCS retardance class (table 8-9) is a preferable approach.

The vegetal cover index, \(C_{F}\), depends primarily on the density and uniformity of density in the immediate vicinity of the soil boundary. Because this parameter is associated with the prevention of local erosion damage which may lead to channel unraveling, the cover factor should represent the weakest area in a reach, rather than the average for the cover species. Recommended values for the cover factor are presented in table 8-10. Values in this table do not account for such considerations as maintenance practices or uniformity of soil fertility or moisture. Therefore, appropriate engineering judgment should be used in its application.

Table 8-10 Properties of grass channel linings values (apply to good uniform stands of each cover)
\begin{tabular}{llll}
\hline \begin{tabular}{l} 
Cover factor \\
\(\left(\mathbf{C}_{\mathbf{F}}\right)\)
\end{tabular} & Covers tested & \begin{tabular}{l} 
Reference \\
stem \\
density \\
\(\left(\right.\) stems \(\left./ \mathrm{ft}^{2}\right)\)
\end{tabular} & \begin{tabular}{l} 
Reference \\
stem \\
density \\
\(\left(\right.\) stems \(\left./ \mathbf{m}^{2}\right)\)
\end{tabular} \\
\hline 0.90 & Bermudagrass & 500 & 5,380 \\
& Centipede grass & 500 & 5,380 \\
0.87 & Buffalograss & 400 & 4,300 \\
& Kentucky bluegrass & 350 & 3,770 \\
& Blue grama & 350 & 3,770 \\
0.75 & Grass mixture & 200 & 2,150 \\
0.50 & Weeping lovegrass & 350 & 3,770 \\
& Yellow bluestem & 250 & 2,690 \\
0.50 & Alfalfa & 500 & 5,380 \\
& Lespedeza sericea & 300 & 3,280 \\
0.50 & Common lespedeza & 150 & 1,610 \\
& Sudangrass & 50 & 538 \\
\hline
\end{tabular}

Multiply the stem densities given by \(1 / 3,2 / 3,1,4 / 3\), and \(5 / 3\) for poor, fair, good, very good, and excellent covers, respectively. Reduce the \(\mathrm{C}_{\mathrm{F}}\) by \(20 \%\) for fair stands and \(50 \%\) for poor stands.

Two soil parameters are required for application of effective stress concepts to the stability design of lined or unlined channels having an erodible soil boundary: soil grain roughness, \(n_{\mathrm{s}}\), and allowable effective stress, \(\tau_{\mathrm{a}}\). When the effective stress approach is used, the soil parameters are the same for both lined and unlined channels with negligible bed-material sediment transport.

Soil grain roughness is defined as the roughness associated with particles or aggregates of a size that can be independently moved by the flow at incipient channel failure. For noncohesive soils, the soil grain roughness and effective shear stress are both a function of the \(D_{75}\) grain size. When \(D_{75}\) is greater than 1.3 millimeter, the soil is considered coarse grained. When \(\mathrm{D}_{75}\) is less than 1.3 millimeter, the soil is considered fine grained. Fine-grained roughness is considered to have a constant value of 0.0156 . Fine-grained effective shear stress is taken to have a constant value of 0.02 pound per square foot. Coarse-grained shear stress and roughness are given in figures 8-21 and 8-22.

A soil grain roughness of 0.0156 is assigned to all cohesive soils. The allowable effective stresses are a function of the unified soil classification system soil type, the plasticity index, and the void ratio. The basic allowable shear stress, \(\tau_{a b}\), is determined from the plasticity index and soil classification, and then adjusted by the void ratio correction factor, \(\mathrm{C}_{\mathrm{e}}\), using the following equation:
\[
\begin{equation*}
\tau_{\mathrm{a}}=\tau_{\mathrm{ab}} \mathrm{C}_{\mathrm{e}}^{2} \tag{eq.8-29}
\end{equation*}
\]

The basic allowable effective stress can be determined from figure 8-23 and the void ratio correction factor from figure 8-24. These two figures were developed directly from the allowable velocity curves in AH 667. Stress partitioning (slope partitioning) is essential to application of figures 8-21 to 8-24, with or without vegetation (Temple et al. 1987).

\section*{(e) General design procedure}

Use the basic shear stress equation to determine effective shear stress on the soil beneath the vegetation. Use any consistent units of measurement.
\[
\begin{equation*}
\tau_{\mathrm{e}}=\gamma \mathrm{dS}\left(1-\mathrm{C}_{\mathrm{F}}\right)\left(\frac{n_{\mathrm{s}}}{n}\right)^{2} \tag{eq.8-30}
\end{equation*}
\]

\section*{where:}
\(\tau_{e}=\) effective shear stress exerted on the soil beneath vegetation ( \(\mathrm{lb} / \mathrm{ft}^{2}\) or \(\mathrm{N} / \mathrm{m}^{2}\) )
\(\gamma=\) specific weight of water \(\left(\mathrm{lb} / \mathrm{ft}^{3}\right.\) or \(\left.\mathrm{N} / \mathrm{m}^{3}\right)\)
d = maximum depth of flow in the cross section (ft or m)
\(\mathrm{S}=\) energy slope, dimensionless
\(C_{F}=\) vegetation cover factor ( 0 for unlined channel) , dimensionless
\(n_{\mathrm{s}}=\) grain roughness of underlying soil, typically taken as dimensionless
\(n\) = roughness coefficient of vegetation, typically taken as dimensionless

The flow depth is used instead of the hydraulic radius because this will result in the maximum local shear stress, rather than the average shear stress. The cover factor is a function of the grass and stem density. Roughness coefficients are standard Manning's roughness values; \(n_{\mathrm{s}}\) can be determined from figure 8-22, \(n\) can be determined from the old SCS curves (fig. 8-20) or from the following equation.
\[
\begin{equation*}
n_{R}=\exp \left\{C_{1}\left[0.0133\left(\ln R_{v}\right)^{2}-0.0954 \ln R_{v}+0.297\right]-4.16\right\} \tag{eq.8-31}
\end{equation*}
\]
where:
\(R_{v}=(V R / v) \times 10^{5}\) (this dimensionless term reduces to VR for practical application in English units)
\(\mathrm{V}=\) channel velocity ( \(\mathrm{ft} / \mathrm{s}\) or \(\mathrm{m} / \mathrm{s}\) )
\(\mathrm{R}=\) hydraulic radius (ft or m )
Limited to \(0.0025 \mathrm{C}_{1}^{2.5}<\mathrm{R}_{\mathrm{v}}<36\)
A reference value of Manning's resistance coefficient, \(n_{R}\) is applicable to vegetation established on relatively smoothly graded fine-grained soil.

If vegetated channel liner mats are used, manufactur-er-supplied roughness coefficients for particular mats may be used in the equation.

Maximum allowable shear stress, \(\tau_{\mathrm{va}}\), in pound per square foot is determined as a function of the retardance curve index, \(\mathrm{C}_{\mathrm{r}}\). Very little information is available for vegetal performance under very high stresses and this relation is believed to be conservative.




TIMBERRIDGE EXIST rev1 Plan: Plan \(03 \quad\) 2/12/2020
River \(=\) EX Channel Reach \(=\) Sand Creek CL RS \(=4903.69\)

\begin{tabular}{|c|}
\hline\(\frac{\text { Legend }}{\frac{\text { WS FEMA } 100 \mathrm{Yr} .}{\text { WS DBPS } 100 \mathrm{Yr} .}}\)\begin{tabular}{|c}
\(\frac{\text { WS Sterling MDDP } 10}{\text { WS DBPS } 10 \mathrm{Yr} .}\) \\
\(\frac{\text { Wround }}{\text { Wank Sta }}\)
\end{tabular} \\
\hline
\end{tabular}


TIMBERRIDGE EXIST rev1 Plan: Plan 03 2/12/2020
River \(=\) EX Channel Reach \(=\) Sand Creek CL \(\quad\) RS \(=4712.26\)








HEC-RAS Plan: EX Channel River: EX Channel Reach: Sand Creek CL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reach & River Sta & Profile & Q Total & Min Ch El & W.S. Elev & Crit W.S. & Max Chl Dpth & Hydr Radius & E.G. Elev & E.G. Slope & Vel Total & Shear Total & Flow Area & Top Width & Froude \# XS \\
\hline & & & (cfs) & (ft) & (ft) & (ft) & (ft) & (ft) & (ft) & (ft/ft) & (ft/s) & (lb/sq ft) & (sq ft) & (ft) & \\
\hline Sand Creek CL & 5532.95 & FEMA 100 Yr . & 2600 & 7231.08 & 7235.52 & 7234.05 & 4.68 & 3.62 & 7236.03 & 0.022518 & 4.63 & 5.09 & 561.42 & 154.26 & 0.53 \\
\hline Sand Creek CL & 5532.95 & DBPS 100 Yr . & 2170 & 7231.08 & 7235.07 & 7233.74 & 4.23 & 3.30 & 7235.53 & 0.022947 & 4.40 & 4.73 & 493.69 & 148.91 & 0.53 \\
\hline Sand Creek CL & 5532.95 & DBPS 10 Yr . & 630 & 7231.08 & 7233.06 & 7232.34 & 2.22 & 1.74 & 7233.25 & 0.023166 & 2.89 & 2.51 & 217.95 & 125.24 & 0.47 \\
\hline Sand Creek CL & 5532.95 & Sterling MDDP 10 & 1487 & 7231.08 & 7234.29 & 7233.20 & 3.45 & 2.72 & 7234.65 & 0.023415 & 3.91 & 3.98 & 380.63 & 139.25 & 0.51 \\
\hline Sand Creek CL & 5532.95 & Sterling MDDP 10 & 430 & 7231.08 & 7232.68 & 7232.07 & 1.84 & 1.41 & 7232.83 & 0.022799 & 2.51 & 2.01 & 171.34 & 121.05 & 0.46 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 5182.08 & FEMA 100 Yr . & 2600 & 7225.89 & 7231.60 & & 5.71 & 4.25 & 7232.06 & 0.018385 & 4.83 & 4.88 & 538.23 & 124.78 & 0.46 \\
\hline Sand Creek CL & 5182.08 & DBPS 100 Yr . & 2170 & 7225.89 & 7231.01 & & 5.12 & 3.90 & 7231.43 & 0.019231 & 4.65 & 4.68 & 466.74 & 118.05 & 0.46 \\
\hline Sand Creek CL & 5182.08 & DBPS 10 Yr . & 630 & 7225.89 & 7228.24 & & 2.35 & 2.06 & 7228.46 & 0.026081 & 3.45 & 3.36 & 182.78 & 87.91 & 0.46 \\
\hline Sand Creek CL & 5182.08 & Sterling MDDP 10 & 1487 & 7225.89 & 7229.95 & & 4.06 & 3.25 & 7230.29 & 0.021236 & 4.28 & 4.30 & 347.54 & 105.91 & 0.46 \\
\hline Sand Creek CL & 5182.08 & Sterling MDDP 10 & 430 & 7225.89 & 7227.75 & & 1.86 & 1.66 & 7227.92 & 0.027783 & 3.07 & 2.88 & 140.24 & 84.02 & 0.45 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 4903.69 & FEMA 100 Yr . & 2600 & 7221.98 & 7229.08 & & 7.11 & 5.44 & 7229.23 & 0.006455 & 3.11 & 2.19 & 834.70 & 150.79 & 0.24 \\
\hline Sand Creek CL & 4903.69 & DBPS 100 Yr . & 2170 & 7221.98 & 7228.48 & & 6.51 & 5.02 & 7228.62 & 0.006274 & 2.91 & 1.96 & 746.03 & 146.41 & 0.23 \\
\hline Sand Creek CL & 4903.69 & DBPS 10 Yr . & 630 & 7221.98 & 7225.44 & & 3.47 & 2.71 & 7225.49 & 0.005936 & 1.88 & 1.00 & 335.16 & 122.57 & 0.20 \\
\hline Sand Creek CL & 4903.69 & Sterling MDDP 10 & 1487 & 7221.98 & 7227.37 & & 5.40 & 4.20 & 7227.47 & 0.006024 & 2.53 & 1.58 & 587.29 & 138.03 & 0.22 \\
\hline Sand Creek CL & 4903.69 & Sterling MDDP 10 & 430 & 7221.98 & 7224.80 & & 2.83 & 2.20 & 7224.84 & 0.006110 & 1.66 & 0.84 & 258.95 & 116.82 & 0.20 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 4712.26 & FEMA 100 Yr . & 2600 & 7218.00 & 7224.69 & 7222.56 & 6.72 & 3.42 & 7225.02 & 0.022929 & 4.37 & 4.90 & 595.24 & 173.14 & 0.44 \\
\hline Sand Creek CL & 4712.26 & DBPS 100 Yr . & 2170 & 7218.00 & 7224.22 & 7222.15 & 6.25 & 3.28 & 7224.53 & 0.022188 & 4.18 & 4.55 & 518.63 & 157.21 & 0.43 \\
\hline Sand Creek CL & 4712.26 & DBPS 10 Yr . & 630 & 7218.00 & 7221.76 & 7220.18 & 3.79 & 2.30 & 7221.91 & 0.017028 & 2.93 & 2.44 & 214.93 & 92.93 & 0.36 \\
\hline Sand Creek CL & 4712.26 & Sterling MDDP 10 & 1487 & 7218.00 & 7223.37 & 7221.47 & 5.40 & 2.97 & 7223.62 & 0.020309 & 3.76 & 3.77 & 395.96 & 132.51 & 0.40 \\
\hline Sand Creek CL & 4712.26 & Sterling MDDP 10 & 430 & 7218.00 & 7221.22 & 7219.78 & 3.25 & 2.01 & 7221.33 & 0.015413 & 2.57 & 1.94 & 167.53 & 82.63 & 0.34 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 4444.93 & FEMA 100 Yr . & 2600 & 7213.88 & 7217.40 & & 3.56 & 2.63 & 7217.79 & 0.040891 & 4.87 & 6.70 & 534.32 & 202.97 & 0.54 \\
\hline Sand Creek CL & 4444.93 & DBPS 100 Yr . & 2170 & 7213.88 & 7217.11 & & 3.27 & 2.39 & 7217.45 & 0.040693 & 4.56 & 6.08 & 475.64 & 198.27 & 0.53 \\
\hline Sand Creek CL & 4444.93 & DBPS 10 Yr . & 630 & 7213.88 & 7215.68 & & 1.84 & 1.27 & 7215.82 & 0.041199 & 3.01 & 3.27 & 209.50 & 164.71 & 0.48 \\
\hline Sand Creek CL & 4444.93 & Sterling MDDP 10 & 1487 & 7213.88 & 7216.56 & & 2.72 & 1.95 & 7216.83 & 0.041676 & 4.02 & 5.07 & 369.61 & 189.52 & 0.52 \\
\hline Sand Creek CL & 4444.93 & Sterling MDDP 10 & 430 & 7213.88 & 7215.35 & & 1.50 & 1.05 & 7215.47 & 0.043935 & 2.73 & 2.88 & 157.50 & 149.90 & 0.48 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 4231.86 & FEMA 100 Yr . & 2600 & 7206.00 & 7213.03 & & 7.03 & 4.68 & 7213.17 & 0.006020 & 2.76 & 1.76 & 943.27 & 200.14 & 0.24 \\
\hline Sand Creek CL & 4231.86 & DBPS 100 Yr . & 2170 & 7206.00 & 7212.39 & & 6.39 & 4.11 & 7212.52 & 0.006641 & 2.66 & 1.70 & 815.20 & 196.97 & 0.25 \\
\hline Sand Creek CL & 4231.86 & DBPS 10 Yr . & 630 & 7206.00 & 7209.91 & & 3.91 & 1.87 & 7209.98 & 0.008532 & 1.84 & 1.00 & 342.68 & 182.71 & 0.29 \\
\hline Sand Creek CL & 4231.86 & Sterling MDDP 10 & 1487 & 7206.00 & 7211.38 & & 5.38 & 3.22 & 7211.49 & 0.007400 & 2.40 & 1.49 & 619.75 & 191.59 & 0.26 \\
\hline Sand Creek CL & 4231.86 & Sterling MDDP 10 & 430 & 7206.00 & 7209.47 & & 3.47 & 1.52 & 7209.54 & 0.008470 & 1.63 & 0.81 & 264.54 & 173.30 & 0.29 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 3915.99 & FEMA 100 Yr . & 2600 & 7203.98 & 7210.60 & & 6.63 & 5.34 & 7210.78 & 0.007035 & 3.26 & 2.35 & 798.22 & 146.52 & 0.26 \\
\hline Sand Creek CL & 3915.99 & DBPS 100 Yr . & 2170 & 7203.98 & 7209.86 & & 5.89 & 5.10 & 7210.03 & 0.006918 & 3.12 & 2.20 & 695.96 & 133.69 & 0.25 \\
\hline Sand Creek CL & 3915.99 & DBPS 10 Yr . & 630 & 7203.98 & 7206.76 & & 2.79 & 2.41 & 7206.84 & 0.008573 & 2.12 & 1.29 & 297.77 & 122.23 & 0.25 \\
\hline Sand Creek CL & 3915.99 & Sterling MDDP 10 & 1487 & 7203.98 & 7208.63 & & 4.66 & 4.05 & 7208.76 & 0.007497 & 2.79 & 1.90 & 533.48 & 129.49 & 0.25 \\
\hline Sand Creek CL & 3915.99 & Sterling MDDP 10 & 430 & 7203.98 & 7206.17 & & 2.20 & 1.88 & 7206.23 & 0.009588 & 1.90 & 1.12 & 226.66 & 119.89 & 0.25 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 3708.56 & FEMA 100 Yr . & 2600 & 7200.10 & 7207.58 & & 7.58 & 4.46 & 7208.29 & 0.025118 & 5.87 & 6.99 & 442.80 & 97.22 & 0.56 \\
\hline Sand Creek CL & 3708.56 & DBPS 100 Yr . & 2170 & 7200.10 & 7206.95 & & 6.95 & 4.30 & 7207.59 & 0.024758 & 5.65 & 6.64 & 384.15 & 87.35 & 0.54 \\
\hline Sand Creek CL & 3708.56 & DBPS 10 Yr . & 630 & 7200.10 & 7203.92 & & 3.91 & 2.65 & 7204.18 & 0.022000 & 3.75 & 3.63 & 168.13 & 62.56 & 0.45 \\
\hline Sand Creek CL & 3708.56 & Sterling MDDP 10 & 1487 & 7200.10 & 7205.77 & & 5.77 & 4.03 & 7206.26 & 0.023468 & 5.11 & 5.91 & 291.24 & 70.38 & 0.49 \\
\hline Sand Creek CL & 3708.56 & Sterling MDDP 10 & 430 & 7200.10 & 7203.44 & & 3.44 & 2.30 & 7203.63 & 0.018000 & 3.09 & 2.58 & 139.24 & 59.81 & 0.40 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 3540.59 & FEMA 100 Yr . & 2600 & 7193.71 & 7201.17 & & 7.54 & 5.28 & 7201.56 & 0.016232 & 4.87 & 5.35 & 534.27 & 98.51 & 0.38 \\
\hline Sand Creek CL & 3540.59 & DBPS 100 Yr . & 2170 & 7193.71 & 7200.52 & & 6.89 & 4.82 & 7200.87 & 0.016396 & 4.61 & 4.93 & 470.91 & 95.30 & 0.37 \\
\hline Sand Creek CL & 3540.59 & DBPS 10 Yr. & 630 & 7193.71 & 7197.39 & & 3.76 & 2.52 & 7197.56 & 0.017944 & 3.18 & 2.82 & 198.37 & 77.51 & 0.36 \\
\hline
\end{tabular}

\section*{This is next to Lot 13 - if the channel is anticipated to drop 5 ' in this location additional protection is needed.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reach & River Sta & Profile & Q Total & Min Ch El & W.S. Elev & Crit W.S. & Max Chl Dpth & Hydr Radius & E.G. Elev & E.G. Slope & Vel Toty & Shear Total & Flow Area & Top Width & Froude \# XS \\
\hline & & & (cfs) & (ft) & (ft) & (ft) & (ft) & (ft) & (ft) & (ft/ft) & (ft/s) & (lb/sq ft) & (sq ft) & (ft) & \\
\hline Sand Creek CL & 3540.59 & Sterling MDDP 10 & 1487 & 7193.71 & 7199.33 & & 5.70 & 3.95 & 7199.61 & 0.016974 & 4.12 & 4.19 & 360.69 & 89.33 & 0.37 \\
\hline Sand Creek CL & 3540.59 & Sterling MDDP 10 & 430 & 7193.71 & 7196.61 & & 2.98 & 1.92 & 7196.77 & 0.023749 & 3.08 & 2.85 & 139.68 & 71.70 & 0.41 \\
\hline & & & & & & & & & & & & , & & & \\
\hline Sand Creek CL & 3334.27 & FEMA 100 Yr . & 2600 & 7188.62 & 7193.49 & & 5.51 & 2.86 & 7194.42 & 0.073099 & 7.17 & 4107 & 362.87 & 124.31 & 0.80 \\
\hline Sand Creek CL & 3334.27 & DBPS 100 Yr . & 2170 & 7188.62 & 7193.30 & 7192.93 & 5.32 & 2.69 & 7194.05 & 0.062288 & 6.40 & 10.47 & 338.85 & 123.57 & 0.74 \\
\hline Sand Creek CL & 3334.27 & DBPS 10 Yr . & 630 & 7188.62 & 7191.99 & 7190.34 & 4.01 & 1.52 & 7192.26 & 0.028882 & 3.48 & 2.73 & 180.90 & 117.69 & 0.59 \\
\hline Sand Creek CL & 3334.27 & Sterling MDDP 10 & 1487 & 7188.62 & 7192.91 & 7191.64 & 4.93 & 2.34 & 7193.41 & 0.045393 & 5.11 & 6.64 & 291.05 & 122.07 & 0.65 \\
\hline Sand Creek CL & 3334.27 & Sterling MDDP 10 & 430 & 7188.62 & 7191.30 & & 3.32 & 2.48 & 7191.48 & 0.021255 & 3.35 & 3.29 & 128.21 & 50.30 & 0.37 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 3179.66 & FEMA 100 Yr . & 2600 & 7183.98 & 7189.19 & & 5.39 & 4.12 & 7189.37 & 0.006748 & 2.74 & 1.73 & 948.90 & 229.38 & 0.30 \\
\hline Sand Creek CL & 3179.66 & DBPS 100 Yr . & 2170 & 7183.98 & 7188.60 & & 4.80 & 3.57 & 7188.78 & 0.007669 & 2.67 & 1.71 & 813.47 & 226.82 & 0.32 \\
\hline Sand Creek CL & 3179.66 & DBPS 10 Yr . & 630 & 7183.98 & 7186.09 & & 2.29 & 1.62 & 7186.22 & 0.014340 & 2.17 & 1.45 & 290.92 & 179.91 & 0.40 \\
\hline Sand Creek CL & 3179.66 & Sterling MDDP 10 & 1487 & 7183.98 & 7187.59 & & 3.79 & 2.71 & 7187.76 & 0.009833 & 2.53 & 1.66 & 588.17 & 216.49 & 0.35 \\
\hline Sand Creek CL & 3179.66 & Sterling MDDP 10 & 430 & 7183.98 & 7185.63 & & 1.83 & 1.30 & 7185.75 & 0.016735 & 2.03 & 1.36 & 211.87 & 163.01 & 0.42 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 2960.1 & FEMA 100 Yr . & 2600 & 7177.99 & 7186.35 & 7184.86 & 8.36 & 5.44 & 7187.34 & 0.012352 & 4.82 & 4.20 & 539.23 & 95.90 & 0.59 \\
\hline Sand Creek CL & 2960.1 & DBPS 100 Yr . & 2170 & 7177.99 & 7185.67 & 7184.40 & 7.68 & 4.93 & 7186.58 & 0.012498 & 4.57 & 3.85 & 474.47 & 93.36 & 0.60 \\
\hline Sand Creek CL & 2960.1 & DBPS 10 Yr . & 630 & 7177.99 & 7182.47 & 7182.17 & 4.48 & 2.36 & 7183.11 & 0.013648 & 3.23 & 2.01 & 195.10 & 81.29 & 0.73 \\
\hline Sand Creek CL & 2960.1 & Sterling MDDP 10 & 1487 & 7177.99 & 7184.43 & 7183.56 & 6.44 & 3.98 & 7185.23 & 0.012904 & 4.11 & 3.21 & 362.09 & 88.65 & 0.63 \\
\hline Sand Creek CL & 2960.1 & Sterling MDDP 10 & 430 & 7177.99 & 7181.87 & 7181.32 & 3.88 & 1.91 & 7182.44 & 0.013267 & 2.92 & 1.58 & 147.46 & 76.10 & 0.77 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 2652.02 & FEMA 100 Yr . & 2600 & 7176.16 & 7183.16 & 7182.30 & 7.09 & 5.22 & 7184.74 & 0.023111 & 6.45 & 7.53 & 403.16 & 74.63 & 0.77 \\
\hline Sand Creek CL & 2652.02 & DBPS 100 Yr . & 2170 & 7176.16 & 7182.47 & 7181.65 & 6.40 & 4.70 & 7183.93 & 0.024025 & 6.16 & 7.06 & 352.38 & 72.79 & 0.78 \\
\hline Sand Creek CL & 2652.02 & DBPS 10 Yr . & 630 & 7176.16 & 7179.24 & 7178.95 & 3.17 & 2.37 & 7180.06 & 0.030771 & 4.53 & 4.56 & 139.00 & 57.91 & 0.82 \\
\hline Sand Creek CL & 2652.02 & Sterling MDDP 10 & 1487 & 7176.16 & 7181.25 & 7180.65 & 5.18 & 3.82 & 7182.47 & 0.025760 & 5.59 & 6.14 & 265.78 & 68.09 & 0.79 \\
\hline Sand Creek CL & 2652.02 & Sterling MDDP 10 & 430 & 7176.16 & 7178.61 & 7178.43 & 2.54 & 1.89 & 7179.31 & 0.034408 & 4.16 & 4.05 & 103.47 & 54.37 & 0.86 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 2416.82 & FEMA 100 Yr . & 2600 & 7171.94 & 7180.36 & 7178.02 & 8.55 & 6.07 & 7181.30 & 0.011436 & 4.97 & 4.33 & 523.13 & 83.01 & 0.54 \\
\hline Sand Creek CL & 2416.82 & DBPS 100 Yr . & 2170 & 7171.94 & 7179.62 & 7177.44 & 7.81 & 5.57 & 7180.45 & 0.011348 & 4.69 & 3.95 & 462.48 & 80.17 & 0.54 \\
\hline Sand Creek CL & 2416.82 & DBPS 10 Yr . & 630 & 7171.94 & 7176.05 & & 4.24 & 3.04 & 7176.43 & 0.010721 & 3.12 & 2.03 & 201.81 & 65.32 & 0.50 \\
\hline Sand Creek CL & 2416.82 & Sterling MDDP 10 & 1487 & 7171.94 & 7178.26 & 7176.44 & 6.45 & 4.63 & 7178.92 & 0.011294 & 4.17 & 3.26 & 356.97 & 74.99 & 0.53 \\
\hline Sand Creek CL & 2416.82 & Sterling MDDP 10 & 430 & 7171.94 & 7175.35 & & 3.54 & 2.52 & 7175.65 & 0.010263 & 2.73 & 1.61 & 157.59 & 61.66 & 0.48 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 2083.66 & FEMA 100 Yr . & 2600 & 7169.76 & 7176.69 & 7175.91 & 6.94 & 5.14 & 7178.44 & 0.025935 & 6.78 & 8.33 & 383.61 & 71.31 & 0.81 \\
\hline Sand Creek CL & 2083.66 & DBPS 100 Yr . & 2170 & 7169.76 & 7176.07 & 7175.37 & 6.32 & 4.71 & 7177.63 & 0.025755 & 6.38 & 7.57 & 340.07 & 69.34 & 0.80 \\
\hline Sand Creek CL & 2083.66 & DBPS 10 Yr . & 630 & 7169.76 & 7173.24 & 7172.78 & 3.49 & 2.55 & 7173.91 & 0.022028 & 4.02 & 3.51 & 156.72 & 60.20 & 0.72 \\
\hline Sand Creek CL & 2083.66 & Sterling MDDP 10 & 1487 & 7169.76 & 7175.04 & 7174.37 & 5.29 & 3.95 & 7176.21 & 0.023864 & 5.50 & 5.89 & 270.45 & 66.10 & 0.76 \\
\hline Sand Creek CL & 2083.66 & Sterling MDDP 10 & 430 & 7169.76 & 7172.64 & 7172.30 & 2.89 & 2.06 & 7173.19 & 0.022350 & 3.55 & 2.87 & 121.00 & 57.95 & 0.73 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 1879.67 & FEMA 100 Yr . & 2600 & 7165.97 & 7171.58 & & 5.62 & 4.11 & 7172.20 & 0.031597 & 5.84 & 8.10 & 445.17 & 106.68 & 0.54 \\
\hline Sand Creek CL & 1879.67 & DBPS 100 Yr . & 2170 & 7165.97 & 7171.26 & & 5.30 & 3.86 & 7171.76 & 0.027995 & 5.28 & 6.74 & 411.26 & 105.05 & 0.51 \\
\hline Sand Creek CL & 1879.67 & DBPS 10 Yr . & 630 & 7165.97 & 7169.15 & 7168.17 & 3.19 & 2.16 & 7169.34 & 0.020911 & 3.13 & 2.82 & 201.37 & 92.62 & 0.42 \\
\hline Sand Creek CL & 1879.67 & Sterling MDDP 10 & 1487 & 7165.97 & 7170.46 & & 4.50 & 3.22 & 7170.84 & 0.025939 & 4.52 & 5.22 & 329.27 & 100.99 & 0.48 \\
\hline Sand Creek CL & 1879.67 & Sterling MDDP 10 & 430 & 7165.97 & 7168.72 & 7167.81 & 2.76 & 1.82 & 7168.86 & 0.018628 & 2.65 & 2.11 & 162.36 & 88.70 & 0.39 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 1507.91 & FEMA 100 Yr . & 2600 & 7159.88 & 7164.63 & & 4.81 & 3.17 & 7164.87 & 0.017371 & 3.66 & 3.44 & 710.48 & 222.91 & 0.39 \\
\hline Sand Creek CL & 1507.91 & DBPS 100 Yr . & 2260 & 7159.88 & 7164.25 & & 4.43 & 2.85 & 7164.49 & 0.019124 & 3.60 & 3.41 & 627.63 & 218.99 & 0.41 \\
\hline Sand Creek CL & 1507.91 & DBPS 10 Yr . & 670 & 7159.88 & 7162.05 & & 2.23 & 1.66 & 7162.19 & 0.024465 & 2.81 & 2.54 & 238.69 & 143.21 & 0.41 \\
\hline Sand Creek CL & 1507.91 & Sterling MDDP 10 & 1520 & 7159.88 & 7163.40 & & 3.58 & 2.46 & 7163.60 & 0.020266 & 3.34 & 3.11 & 455.39 & 184.75 & 0.40 \\
\hline Sand Creek CL & 1507.91 & Sterling MDDP 10 & 450 & 7159.88 & 7161.47 & & 1.65 & 1.40 & 7161.59 & 0.028902 & 2.69 & 2.52 & 167.28 & 119.36 & 0.42 \\
\hline & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reach & River Sta & Profile & Q Total & Min Ch El & W.S. Elev & Crit W.S. & Max Chl Dpth & Hydr Radius & E.G. Elev & E.G. Slope & Vel Total & Shear Total & Flow Area & Top Width & Froude \# XS \\
\hline & & & (cfs) & (ft) & (ft) & (ft) & (ft) & (ft) & (ft) & (ft/ft) & (ft/s) & (lb/sq ft) & (sq ft) & (ft) & \\
\hline Sand Creek CL & 1145.05 & FEMA 100 Yr . & 2600 & 7153.95 & 7160.23 & 7159.42 & 6.28 & 3.31 & 7161.04 & 0.018058 & 4.12 & 3.73 & 631.41 & 188.80 & 0.70 \\
\hline Sand Creek CL & 1145.05 & DBPS 100 Yr . & 2260 & 7153.95 & 7159.81 & 7159.14 & 5.86 & 3.24 & 7160.55 & 0.017537 & 4.07 & 3.55 & 555.35 & 169.18 & 0.67 \\
\hline Sand Creek CL & 1145.05 & DBPS 10 Yr. & 670 & 7153.95 & 7157.71 & 7157.18 & 3.76 & 1.90 & 7158.17 & 0.014815 & 2.77 & 1.76 & 242.20 & 126.57 & 0.69 \\
\hline Sand Creek CL & 1145.05 & Sterling MDDP 10 & 1520 & 7153.95 & 7158.97 & 7158.47 & 5.02 & 2.72 & 7159.61 & 0.017078 & 3.61 & 2.90 & 420.68 & 153.10 & 0.68 \\
\hline Sand Creek CL & 1145.05 & Sterling MDDP 10 & 450 & 7153.95 & 7157.21 & & 3.26 & 1.66 & 7157.58 & 0.013177 & 2.46 & 1.37 & 183.29 & 109.31 & 0.66 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 902.8 & FEMA 100 Yr . & 2600 & 7149.98 & 7156.19 & 7154.92 & 6.23 & 3.64 & 7156.73 & 0.014044 & 3.77 & 3.19 & 690.52 & 188.81 & 0.55 \\
\hline Sand Creek CL & 902.8 & DBPS 100 Yr . & 2260 & 7149.98 & 7155.77 & 7154.68 & 5.81 & 3.47 & 7156.29 & 0.014165 & 3.67 & 3.07 & 615.10 & 176.13 & 0.54 \\
\hline Sand Creek CL & 902.8 & DBPS 10 Yr . & 670 & 7149.98 & 7153.41 & 7153.18 & 3.45 & 1.74 & 7153.84 & 0.017688 & 2.74 & 1.93 & 244.11 & 139.26 & 0.70 \\
\hline Sand Creek CL & 902.8 & Sterling MDDP 10 & 1520 & 7149.98 & 7154.82 & 7154.13 & 4.86 & 2.83 & 7155.28 & 0.015038 & 3.34 & 2.66 & 454.67 & 159.84 & 0.57 \\
\hline Sand Creek CL & 902.8 & Sterling MDDP 10 & 450 & 7149.98 & 7152.93 & 7151.96 & 2.97 & 1.36 & 7153.36 & 0.019136 & 2.51 & 1.62 & 179.05 & 131.17 & 0.79 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 520.2 & FEMA 100 Yr . & 2600 & 7147.90 & 7153.90 & & 6.02 & 4.22 & 7154.32 & 0.011080 & 3.69 & 2.92 & 703.76 & 165.62 & 0.44 \\
\hline Sand Creek CL & 520.2 & DBPS 100 Yr . & 2260 & 7147.90 & 7153.53 & & 5.65 & 4.03 & 7153.90 & 0.010740 & 3.51 & 2.70 & 643.44 & 158.55 & 0.43 \\
\hline Sand Creek CL & 520.2 & DBPS 10 Yr . & 670 & 7147.90 & 7151.16 & & 3.28 & 2.22 & 7151.34 & 0.009545 & 2.25 & 1.32 & 298.12 & 134.11 & 0.40 \\
\hline Sand Creek CL & 520.2 & Sterling MDDP 10 & 1520 & 7147.90 & 7152.61 & & 4.73 & 3.37 & 7152.89 & 0.010122 & 3.03 & 2.13 & 502.03 & 148.42 & 0.41 \\
\hline Sand Creek CL & 520.2 & Sterling MDDP 10 & 450 & 7147.90 & 7150.66 & & 2.77 & 1.79 & 7150.80 & 0.009331 & 1.94 & 1.04 & 231.62 & 129.32 & 0.40 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 250.3 & FEMA 100 Yr . & 2600 & 7145.93 & 7150.36 & 7148.66 & 4.44 & 3.22 & 7150.70 & 0.015312 & 3.54 & 3.07 & 735.42 & 228.27 & 0.46 \\
\hline Sand Creek CL & 250.3 & DBPS 100 Yr . & 2260 & 7145.93 & 7150.07 & 7148.42 & 4.16 & 3.03 & 7150.38 & 0.014997 & 3.36 & 2.84 & 671.63 & 221.45 & 0.45 \\
\hline Sand Creek CL & 250.3 & DBPS 10 Yr . & 670 & 7145.93 & 7148.11 & & 2.20 & 1.84 & 7148.24 & 0.013148 & 2.26 & 1.51 & 296.30 & 160.55 & 0.38 \\
\hline Sand Creek CL & 250.3 & Sterling MDDP 10 & 1520 & 7145.93 & 7149.32 & 7147.88 & 3.40 & 2.59 & 7149.55 & 0.014349 & 2.96 & 2.32 & 512.69 & 197.96 & 0.43 \\
\hline Sand Creek CL & 250.3 & Sterling MDDP 10 & 450 & 7145.93 & 7147.68 & & 1.76 & 1.52 & 7147.77 & 0.012772 & 1.96 & 1.21 & 229.25 & 150.37 & 0.36 \\
\hline & & & & & & & & & & & & & & & \\
\hline Sand Creek CL & 53.78 & FEMA 100 Yr . & 2600 & 7139.97 & 7144.87 & 7143.86 & 4.90 & 2.76 & 7145.22 & 0.016021 & 3.29 & 2.76 & 789.78 & 286.02 & 0.50 \\
\hline Sand Creek CL & 53.78 & DBPS 100 Yr . & 2260 & 7139.97 & 7144.62 & 7143.69 & 4.65 & 2.57 & 7144.95 & 0.016006 & 3.15 & 2.56 & 718.39 & 279.57 & 0.51 \\
\hline Sand Creek CL & 53.78 & DBPS 10 Yr . & 670 & 7139.97 & 7142.93 & 7142.58 & 2.96 & 1.45 & 7143.15 & 0.016007 & 2.19 & 1.45 & 305.31 & 210.61 & 0.56 \\
\hline Sand Creek CL & 53.78 & Sterling MDDP 10 & 1520 & 7139.97 & 7143.95 & 7143.24 & 3.98 & 2.16 & 7144.24 & 0.016020 & 2.81 & 2.16 & 541.68 & 250.80 & 0.51 \\
\hline Sand Creek CL & 53.78 & Sterling MDDP 10 & 450 & 7139.97 & 7142.56 & 7141.97 & 2.59 & 1.18 & 7142.77 & 0.016010 & 1.95 & 1.18 & 230.97 & 196.16 & 0.60 \\
\hline
\end{tabular}









\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reach & River Sta & Profile & Q Total & Min Ch El & W.S. Elev & Crit W.S. & Max Chl Dpth & Hydr Radius & E.G. Elev & E.G. Slope & Vel Total & Shear Total & Flow Area & Top Width & Froude \# XS \\
\hline & & & (cfs) & (ft) & (ft) & (ft) & (ft) & (ft) & (ft) & (ft/ft) & (ft/s) & (lb/sq ft) & (sq ft) & (ft) & \\
\hline CL-PR & 5532.95 & FEMA 100 Yr . & 2600 & 7230.84 & 7235.52 & 7234.26 & 4.68 & 3.61 & 7236.12 & 0.022532 & 4.65 & 5.08 & 559.31 & 154.07 & 0.57 \\
\hline CL-PR & 5532.95 & DBPS 100 Yr . & 2170 & 7230.84 & 7235.07 & 7233.95 & 4.23 & 3.29 & 7235.61 & 0.022905 & 4.41 & 4.71 & 491.77 & 148.65 & 0.57 \\
\hline CL-PR & 5532.95 & DBPS 10 Yr. & 630 & 7230.84 & 7233.06 & 7232.50 & 2.22 & 1.73 & 7233.31 & 0.023035 & 2.91 & 2.48 & 216.54 & 125.20 & 0.54 \\
\hline CL-PR & 5532.95 & Sterling MDDP 10 & 1487 & 7230.84 & 7234.29 & 7233.38 & 3.45 & 2.71 & 7234.72 & 0.023299 & 3.92 & 3.95 & 379.06 & 139.17 & 0.56 \\
\hline CL-PR & 5532.95 & Sterling MDDP 10 & 430 & 7230.84 & 7232.68 & 7232.24 & 1.84 & 1.40 & 7232.87 & 0.022857 & 2.53 & 2.00 & 169.66 & 120.97 & 0.53 \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 5182.08 & FEMA 100 Yr . & 2600 & 7225.96 & 7231.65 & & 5.70 & 4.27 & 7232.07 & 0.018615 & 4.79 & 4.96 & 542.74 & 125.32 & 0.44 \\
\hline CL-PR & 5182.08 & DBPS 100 Yr . & 2170 & 7225.96 & 7231.06 & & 5.11 & 3.92 & 7231.45 & 0.019462 & 4.61 & 4.76 & 470.87 & 118.58 & 0.44 \\
\hline CL-PR & 5182.08 & DBPS 10 Yr . & 630 & 7225.96 & 7228.29 & & 2.34 & 2.08 & 7228.49 & 0.026314 & 3.41 & 3.41 & 185.01 & 88.36 & 0.44 \\
\hline CL-PR & 5182.08 & Sterling MDDP 10 & 1487 & 7225.96 & 7229.99 & & 4.04 & 3.26 & 7230.32 & 0.021471 & 4.24 & 4.37 & 351.05 & 106.45 & 0.44 \\
\hline CL-PR & 5182.08 & Sterling MDDP 10 & 430 & 7225.96 & 7227.79 & & 1.84 & 1.68 & 7227.95 & 0.027798 & 3.02 & 2.92 & 142.22 & 84.05 & 0.43 \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 4903.69 & FEMA 100 Yr . & 2600 & 7222.00 & 7229.08 & & 7.08 & 5.44 & 7229.24 & 0.006504 & 3.12 & 2.21 & 834.06 & 150.85 & 0.24 \\
\hline CL-PR & 4903.69 & DBPS 100 Yr . & 2170 & 7222.00 & 7228.49 & & 6.48 & 5.01 & 7228.62 & 0.006323 & 2.91 & 1.98 & 745.50 & 146.47 & 0.23 \\
\hline CL-PR & 4903.69 & DBPS 10 Yr . & 630 & 7222.00 & 7225.44 & & 3.44 & 2.71 & 7225.50 & 0.005992 & 1.88 & 1.01 & 334.88 & 122.66 & 0.20 \\
\hline CL-PR & 4903.69 & Sterling MDDP 10 & 1487 & 7222.00 & 7227.37 & & 5.37 & 4.19 & 7227.47 & 0.006083 & 2.53 & 1.59 & 586.67 & 138.19 & 0.22 \\
\hline CL-PR & 4903.69 & Sterling MDDP 10 & 430 & 7222.00 & 7224.81 & & 2.81 & 2.20 & 7224.85 & 0.006187 & 1.66 & 0.85 & 258.54 & 116.93 & 0.20 \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 4712.26 & FEMA 100 Yr . & 2600 & 7217.98 & 7224.67 & 7222.49 & 6.69 & 3.43 & 7225.00 & 0.022684 & 4.36 & 4.86 & 596.20 & 172.82 & 0.44 \\
\hline CL-PR & 4712.26 & DBPS 100 Yr. & 2170 & 7217.98 & 7224.21 & 7222.08 & 6.23 & 3.29 & 7224.51 & 0.022022 & 4.17 & 4.52 & 520.04 & 157.47 & 0.43 \\
\hline CL-PR & 4712.26 & DBPS 10 Yr . & 630 & 7217.98 & 7221.75 & 7220.15 & 3.76 & 2.32 & 7221.89 & 0.016998 & 2.91 & 2.46 & 216.66 & 92.87 & 0.35 \\
\hline CL-PR & 4712.26 & Sterling MDDP 10 & 1487 & 7217.98 & 7223.35 & 7221.41 & 5.37 & 2.98 & 7223.60 & 0.020224 & 3.75 & 3.77 & 396.37 & 132.21 & 0.40 \\
\hline CL-PR & 4712.26 & Sterling MDDP 10 & 430 & 7217.98 & 7221.22 & 7219.76 & 3.24 & 2.03 & 7221.33 & 0.015199 & 2.52 & 1.93 & 170.41 & 83.30 & 0.33 \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 4444.93 & FEMA 100 Yr . & 2600 & 7213.93 & 7217.38 & & 3.45 & 2.59 & 7217.78 & 0.041470 & 4.92 & 6.71 & 528.48 & 203.56 & 0.56 \\
\hline CL-PR & 4444.93 & DBPS 100 Yr . & 2170 & 7213.93 & 7217.10 & & 3.17 & 2.37 & 7217.45 & 0.040993 & 4.61 & 6.07 & 470.76 & 198.02 & 0.54 \\
\hline CL-PR & 4444.93 & DBPS 10 Yr . & 630 & 7213.93 & 7215.68 & & 1.75 & 1.26 & 7215.83 & 0.040995 & 3.03 & 3.23 & 207.63 & 164.62 & 0.49 \\
\hline CL-PR & 4444.93 & Sterling MDDP 10 & 1487 & 7213.93 & 7216.56 & & 2.63 & 1.93 & 7216.83 & 0.041638 & 4.06 & 5.02 & 366.53 & 189.42 & 0.53 \\
\hline CL-PR & 4444.93 & Sterling MDDP 10 & 430 & 7213.93 & 7215.34 & & 1.41 & 1.04 & 7215.47 & 0.044949 & 2.78 & 2.90 & 154.49 & 149.20 & 0.50 \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 4231.86 & FEMA 100 Yr . & 2600 & 7206.00 & 7213.05 & & 7.05 & 4.68 & 7213.18 & 0.005951 & 2.75 & 1.74 & 944.92 & 200.18 & 0.24 \\
\hline CL-PR & 4231.86 & DBPS 100 Yr . & 2170 & 7206.00 & 7212.39 & & 6.39 & 4.11 & 7212.52 & 0.006602 & 2.66 & 1.69 & 815.09 & 196.97 & 0.25 \\
\hline CL-PR & 4231.86 & DBPS 10 Yr . & 630 & 7206.00 & 7209.91 & & 3.91 & 1.87 & 7209.99 & 0.008531 & 1.84 & 0.99 & 341.65 & 182.71 & 0.29 \\
\hline CL-PR & 4231.86 & Sterling MDDP 10 & 1487 & 7206.00 & 7211.38 & & 5.38 & 3.21 & 7211.49 & 0.007400 & 2.40 & 1.48 & 618.74 & 191.90 & 0.26 \\
\hline CL-PR & 4231.86 & Sterling MDDP 10 & 430 & 7206.00 & 7209.48 & & 3.48 & 1.52 & 7209.55 & 0.008382 & 1.63 & 0.80 & 264.61 & 173.44 & 0.30 \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 3915.99 & FEMA 100 Yr . & 2600 & 7203.99 & 7210.67 & & 6.67 & 5.37 & 7210.84 & 0.006819 & 3.22 & 2.28 & 807.78 & 147.59 & 0.25 \\
\hline CL-PR & 3915.99 & DBPS 100 Yr . & 2170 & 7203.99 & 7209.92 & & 5.93 & 5.14 & 7210.08 & 0.006714 & 3.09 & 2.16 & 702.67 & 133.86 & 0.25 \\
\hline CL-PR & 3915.99 & DBPS 10 Yr . & 630 & 7203.99 & 7206.76 & & 2.77 & 2.41 & 7206.84 & 0.008606 & 2.12 & 1.29 & 297.60 & 122.40 & 0.25 \\
\hline CL-PR & 3915.99 & Sterling MDDP 10 & 1487 & 7203.99 & 7208.64 & & 4.65 & 4.07 & 7208.77 & 0.007426 & 2.78 & 1.88 & 535.10 & 129.53 & 0.25 \\
\hline CL-PR & 3915.99 & Sterling MDDP 10 & 430 & 7203.99 & 7206.17 & & 2.17 & 1.87 & 7206.23 & 0.009769 & 1.91 & 1.14 & 225.47 & 119.97 & 0.26 \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 3708.56 & FEMA 100 Yr . & 2600 & 7200.00 & 7207.61 & & 7.61 & 4.48 & 7208.47 & 0.022675 & 5.84 & 6.34 & 445.42 & 97.38 & 0.61 \\
\hline CL-PR & 3708.56 & DBPS 100 Yr . & 2170 & 7200.00 & 7207.00 & & 7.00 & 4.31 & 7207.76 & 0.022077 & 5.59 & 5.94 & 388.08 & 88.02 & 0.59 \\
\hline CL-PR & 3708.56 & DBPS 10 Yr . & 630 & 7200.00 & 7203.76 & & 3.76 & 2.53 & 7204.15 & 0.022567 & 3.98 & 3.57 & 158.43 & 61.66 & 0.55 \\
\hline CL-PR & 3708.56 & Sterling MDDP 10 & 1487 & 7200.00 & 7205.80 & & 5.80 & 4.06 & 7206.39 & 0.020504 & 5.07 & 5.19 & 293.58 & 70.55 & 0.53 \\
\hline CL-PR & 3708.56 & Sterling MDDP 10 & 430 & 7200.00 & 7203.33 & & 3.33 & 2.21 & 7203.60 & 0.017709 & 3.25 & 2.44 & 132.37 & 59.09 & 0.49 \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 3540.56 & FEMA 100 Yr . & 2600 & 7193.66 & 7200.57 & & 6.91 & 4.85 & 7201.18 & 0.020761 & 5.47 & 6.29 & 474.94 & 95.52 & 0.49 \\
\hline CL-PR & 3540.56 & DBPS 100 Yr . & 2170 & 7193.66 & 7199.95 & & 6.29 & 4.40 & 7200.51 & 0.021210 & 5.21 & 5.83 & 416.82 & 92.51 & 0.50 \\
\hline CL-PR & 3540.56 & DBPS 10 Yr . & 630 & 7193.66 & 7197.31 & & 3.65 & 2.46 & 7197.55 & 0.017340 & 3.28 & 2.66 & 191.88 & 76.96 & 0.43 \\
\hline CL-PR & 3540.56 & Sterling MDDP 10 & 1487 & 7193.66 & 7198.86 & & 5.20 & 3.61 & 7199.31 & 0.021767 & 4.66 & 4.91 & 319.14 & 86.58 & 0.50 \\
\hline
\end{tabular}

How did the channel drop 5 feet? If this model is "future, post-erosion, it needs to
be labeled as such. Do the check

\section*{structures allow for 5 ' of erosion?}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reach & River Sta & Profile & Q Total & Min Ch El & W.S. & Crit W.S. & Max Chl Dpth & Hydr Radius & E.G. Elev & E.G. Slope & Vel Total & Shear Total & Flow Area & Top Width & Froude \# XS \\
\hline & & & (cfs) & (ft) & (ft) & (ft) & (ft) & (ft) & (ft) & (ft/ft) & (ft/s) & (lb/sq ft) & (sq ft) & (ft) & \\
\hline CL-PR & 3540.56 & Sterling MDDP 10 & 430 & 7193.66 & 196.50 & & 2.84 & 1.84 & 7196.75 & 0.024145 & 3.26 & 2.77 & 131.95 & 70.93 & 0.51 \\
\hline & & & & & , & & & & & & & & & & \\
\hline CL-PR & 3443.11 & FEMA 100 Yr . & 2600 & 7187.94 & 7194.51 & 7194.51 & 6.56 & 3.73 & 7196.07 & 0.021671 & 5.27 & 5.04 & 492.98 & 129.56 & 0.91 \\
\hline CL-PR & 3443.11 & DBPS 100 Yr . & 2170 & 7187.94 & 7194.15 & 7194.15 & 6.21 & 3.42 & 7195.54 & 0.020111 & 4.85 & 4.30 & 447.03 & 127.88 & 0.89 \\
\hline CL-PR & 3443.11 & DBPS 10 Yr . & 630 & 7187.94 & 7191.36 & 7190.82 & 3.42 & 2.37 & 7192.50 & 0.025903 & 4.74 & 3.84 & 132.80 & 54.41 & 0.96 \\
\hline CL-PR & 3443.11 & Sterling MDDP 10 & 1487 & 7187.94 & 7193.45 & 7193.45 & 5.51 & 2.83 & 7194.60 & 0.017805 & 4.14 & 3.14 & 359.38 & 124.76 & 0.89 \\
\hline CL-PR & 3443.11 & Sterling MDDP 10 & 430 & 7187.94 & 7190.91 & 7190.56 & 2.97 & 2.24 & 7191.62 & 0.019329 & 3.94 & 2.70 & 109.12 & 47.34 & 0.79 \\
\hline & & & &  & & & & & & & & & & & \\
\hline CL-PR & 3334.25 & FEMA 100 Yr . & 2600 & 7183/81 & 7189.32 & & 5.52 & 4.23 & 7189.51 & 0.005907 & 2.65 & 1.56 & 981.23 & 230.65 & 0.30 \\
\hline CL-PR & 3334.25 & DBPS 100 Yr . & 2170 & 7183.81 & 7188.66 & & 4.86 & 3.64 & 7188.85 & 0.006937 & 2.61 & 1.58 & 830.90 & 227.52 & 0.32 \\
\hline CL-PR & 3334.25 & DBPS 10 Yr . & 630 & 7183.81 & 7186.03 & & 2.23 & 1.57 & 7186.19 & 0.015218 & 2.24 & 1.50 & 280.91 & 178.27 & 0.45 \\
\hline CL-PR & 3334.25 & Sterling MDDP 10 & 1487 & 7183.81 & 7187.56 & & 3.76 & 2.68 & 7187.75 & 0.009702 & 2.55 & 1.62 & 582.77 & 217.08 & 0.38 \\
\hline CL-PR & 3334.25 & Sterling MDDP 10 & 430 & 7183.81 & 7185.57 & 7185.03 & 1.77 & 1.27 & 7185.72 & 0.017980 & 2.12 & 1.42 & 202.82 & 159.92 & 0.48 \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 3179.68 & FEMA 100 Yr . & 2600 & 7178.00 & 7186.71 & 7185.49 & 8.71 & 5.63 & 7187.94 & 0.007518 & 4.06 & 2.64 & 639.85 & 110.97 & 0.65 \\
\hline CL-PR & 3179.68 & DBPS 100 Yr . & 2170 & 7178.00 & 7185.75 & 7184.94 & 7.75 & 4.91 & 7187.04 & 0.008743 & 4.05 & 2.68 & 535.16 & 106.58 & 0.72 \\
\hline CL-PR & 3179.68 & DBPS 10 Yr. & 630 & 7178.00 & 7182.53 & 7182.53 & 4.53 & 2.33 & 7183.49 & 0.009626 & 2.92 & 1.40 & 215.73 & 91.59 & 0.91 \\
\hline CL-PR & 3179.68 & Sterling MDDP 10 & 1487 & 7178.00 & 7184.63 & 7184.05 & 6.63 & 4.06 & 7185.70 & 0.008282 & 3.55 & 2.10 & 418.93 & 101.39 & 0.72 \\
\hline CL-PR & 3179.68 & Sterling MDDP 10 & 430 & 7178.00 & 7181.91 & 7181.80 & 3.91 & 1.84 & 7182.82 & 0.009671 & 2.68 & 1.11 & 160.58 & 86.43 & 0.99 \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 2960.1 & FEMA 100 Yr. & 2600 & 7177.88 & 7183.81 & 7183.81 & 5.93 & 4.52 & 7186.24 & 0.015014 & 6.00 & 4.24 & 433.01 & 89.70 & 1.00 \\
\hline CL-PR & 2960.1 & DBPS 100 Yr . & 2170 & 7177.88 & 7183.62 & 7183.62 & 5.74 & 4.49 & 7185.43 & 0.011742 & 5.22 & 3.29 & 415.72 & 86.85 & 0.87 \\
\hline CL-PR & 2960.1 & DBPS 10 Yr . & 630 & 7177.88 & 7180.25 & 7180.25 & 2.37 & 2.07 & 7181.27 & 0.020692 & 4.06 & 2.68 & 155.15 & 73.90 & 0.99 \\
\hline CL-PR & 2960.1 & Sterling MDDP 10 & 1487 & 7177.88 & 7181.69 & 7181.69 & 3.81 & 3.37 & 7183.66 & 0.021780 & 5.67 & 4.58 & 262.04 & 74.31 & 1.06 \\
\hline CL-PR & 2960.1 & Sterling MDDP 10 & 430 & 7177.88 & 7179.69 & 7179.69 & 1.81 & 1.59 & 7180.56 & 0.024632 & 3.75 & 2.45 & 114.63 & 71.48 & 1.04 \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 2652.02 & & Culvert & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 2416.82 & FEMA 100 Yr. & 2600 & 7168.00 & 7178.03 & & 10.03 & 7.75 & 7178.46 & 0.001610 & 3.06 & 0.78 & 850.03 & 104.94 & 0.32 \\
\hline CL-PR & 2416.82 & DBPS 100 Yr . & 2170 & 7168.00 & 7177.34 & & 9.34 & 7.31 & 7177.69 & 0.001441 & 2.79 & 0.66 & 778.14 & 102.14 & 0.30 \\
\hline CL-PR & 2416.82 & DBPS 10 Yr . & 630 & 7168.00 & 7173.86 & & 5.86 & 4.92 & 7173.94 & 0.000608 & 1.41 & 0.19 & 447.31 & 88.13 & 0.18 \\
\hline CL-PR & 2416.82 & Sterling MDDP 10 & 1487 & 7168.00 & 7176.06 & & 8.06 & 6.46 & 7176.28 & 0.001131 & 2.29 & 0.46 & 650.59 & 96.97 & 0.26 \\
\hline CL-PR & 2416.82 & Sterling MDDP 10 & 430 & 7168.00 & 7173.14 & & 5.14 & 4.39 & 7173.19 & 0.000445 & 1.12 & 0.12 & 384.42 & 85.21 & 0.15 \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 2083.66 & FEMA 100 Yr. & 2600 & 7169.86 & 7176.67 & 7175.20 & 6.81 & 5.12 & 7177.75 & 0.018458 & 5.56 & 5.90 & 467.69 & 89.07 & 0.64 \\
\hline CL-PR & 2083.66 & DBPS 100 Yr . & 2170 & 7169.86 & 7176.09 & 7174.72 & 6.23 & 4.72 & 7177.04 & 0.017970 & 5.20 & 5.29 & 417.06 & 86.40 & 0.63 \\
\hline CL-PR & 2083.66 & DBPS 10 Yr. & 630 & 7169.86 & 7173.17 & 7172.49 & 3.31 & 2.49 & 7173.62 & 0.017534 & 3.42 & 2.72 & 183.97 & 73.27 & 0.59 \\
\hline CL-PR & 2083.66 & Sterling MDDP 10 & 1487 & 7169.86 & 7175.02 & 7173.85 & 5.16 & 3.93 & 7175.75 & 0.017320 & 4.55 & 4.25 & 327.03 & 81.60 & 0.60 \\
\hline CL-PR & 2083.66 & Sterling MDDP 10 & 430 & 7169.86 & 7172.54 & 7172.09 & 2.68 & 1.96 & 7172.93 & 0.019196 & 3.10 & 2.35 & 138.88 & 70.36 & 0.62 \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 1879.67 & FEMA 100 Yr . & 2600 & 7165.99 & 7171.19 & 7171.19 & 5.21 & 3.81 & 7172.98 & 0.028576 & 5.75 & 6.80 & 451.84 & 117.40 & 0.96 \\
\hline CL-PR & 1879.67 & DBPS 100 Yr . & 2170 & 7165.99 & 7170.77 & 7170.77 & 4.79 & 3.48 & 7172.37 & 0.028116 & 5.39 & 6.11 & 402.44 & 114.64 & 0.96 \\
\hline CL-PR & 1879.67 & DBPS 10 Yr . & 630 & 7165.99 & 7168.82 & 7168.76 & 2.84 & 1.90 & 7169.55 & 0.021750 & 3.29 & 2.58 & 191.77 & 100.63 & 0.88 \\
\hline CL-PR & 1879.67 & Sterling MDDP 10 & 1487 & 7165.99 & 7170.01 & 7170.01 & 4.03 & 2.87 & 7171.29 & 0.026838 & 4.68 & 4.82 & 317.64 & 109.73 & 0.94 \\
\hline CL-PR & 1879.67 & Sterling MDDP 10 & 430 & 7165.99 & 7168.47 & 7168.38 & 2.49 & 1.60 & 7169.02 & 0.018443 & 2.74 & 1.84 & 156.86 & 97.71 & 0.83 \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 1507.91 & FEMA 100 Yr. & 2600 & 7159.96 & 7164.39 & 7162.99 & 4.45 & 3.06 & 7164.73 & 0.016308 & 3.62 & 3.12 & 718.84 & 233.19 & 0.47 \\
\hline CL-PR & 1507.91 & DBPS 100 Yr . & 2260 & 7159.96 & 7164.01 & 7162.75 & 4.07 & 2.77 & 7164.36 & 0.017902 & 3.57 & 3.09 & 633.11 & 227.58 & 0.50 \\
\hline CL-PR & 1507.91 & DBPS 10 Yr . & 670 & 7159.96 & 7161.95 & 7161.23 & 2.01 & 1.78 & 7162.17 & 0.024174 & 2.99 & 2.68 & 224.05 & 125.58 & 0.50 \\
\hline CL-PR & 1507.91 & Sterling MDDP 10 & 1520 & 7159.96 & 7163.22 & 7162.20 & 3.28 & 2.22 & 7163.52 & 0.019435 & 3.30 & 2.69 & 460.79 & 206.84 & 0.51 \\
\hline CL-PR & 1507.91 & Sterling MDDP 10 & 450 & 7159.96 & 7161.46 & 7160.95 & 1.52 & 1.36 & 7161.65 & 0.029371 & 2.75 & 2.49 & 163.35 & 120.10 & 0.52 \\
\hline & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Reach & River Sta & Profile & Q Total & Min Ch El & W.S. Elev & Crit W.S. & Max Chl Dpth & Hydr Radius & E.G. Elev & E.G. Slope & Vel Total & Shear Total & Flow Area & Top Width & Froude \# XS \\
\hline & & & (cfs) & (ft) & (ft) & (ft) & (ft) & (ft) & (ft) & (ft/ft) & (ft/s) & ( \(\mathrm{lb} / \mathrm{sq} \mathrm{ft}\) ) & (sq ft) & (ft) & \\
\hline CL-PR & 1145.05 & FEMA 100 Yr . & 2600 & 7153.97 & 7160.24 & 7159.42 & 6.27 & 3.31 & 7161.05 & 0.017947 & 4.11 & 3.71 & 632.55 & 188.76 & 0.69 \\
\hline CL-PR & 1145.05 & DBPS 100 Yr . & 2260 & 7153.97 & 7159.81 & 7159.12 & 5.84 & 3.25 & 7160.55 & 0.017500 & 4.07 & 3.55 & 555.47 & 169.09 & 0.67 \\
\hline CL-PR & 1145.05 & DBPS 10 Yr. & 670 & 7153.97 & 7157.71 & 7157.23 & 3.74 & 1.89 & 7158.17 & 0.014848 & 2.76 & 1.75 & 242.44 & 127.39 & 0.69 \\
\hline CL-PR & 1145.05 & Sterling MDDP 10 & 1520 & 7153.97 & 7158.97 & 7158.47 & 5.00 & 2.72 & 7159.61 & 0.017020 & 3.61 & 2.89 & 420.96 & 153.05 & 0.68 \\
\hline CL-PR & 1145.05 & Sterling MDDP 10 & 450 & 7153.97 & 7157.22 & & 3.25 & 1.64 & 7157.59 & 0.013306 & 2.45 & 1.36 & 183.48 & 111.09 & 0.67 \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 902.8 & FEMA 100 Yr. & 2600 & 7149.99 & 7156.18 & 7154.92 & 6.20 & 3.63 & 7156.73 & 0.014153 & 3.77 & 3.20 & 689.09 & 188.94 & 0.55 \\
\hline CL-PR & 902.8 & DBPS 100 Yr . & 2260 & 7149.99 & 7155.77 & 7154.69 & 5.79 & 3.47 & 7156.29 & 0.014206 & 3.68 & 3.08 & 614.39 & 175.99 & 0.54 \\
\hline CL-PR & 902.8 & DBPS 10 Yr . & 670 & 7149.99 & 7153.42 & 7153.18 & 3.44 & 1.75 & 7153.84 & 0.017659 & 2.74 & 1.93 & 244.17 & 139.03 & 0.69 \\
\hline CL-PR & 902.8 & Sterling MDDP 10 & 1520 & 7149.99 & 7154.82 & 7154.13 & 4.84 & 2.83 & 7155.28 & 0.015070 & 3.35 & 2.66 & 454.21 & 159.68 & 0.57 \\
\hline CL-PR & 902.8 & Sterling MDDP 10 & 450 & 7149.99 & 7152.94 & 7152.85 & 2.96 & 1.36 & 7153.37 & 0.019105 & 2.51 & 1.62 & 179.34 & 131.19 & 0.79 \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 520.2 & FEMA 100 Yr . & 2600 & 7147.98 & 7153.90 & & 5.92 & 4.25 & 7154.31 & 0.011062 & 3.70 & 2.94 & 703.30 & 164.34 & 0.44 \\
\hline CL-PR & 520.2 & DBPS 100 Yr . & 2260 & 7147.98 & 7153.53 & & 5.55 & 4.04 & 7153.90 & 0.010733 & 3.51 & 2.71 & 643.97 & 158.44 & 0.42 \\
\hline CL-PR & 520.2 & DBPS 10 Yr . & 670 & 7147.98 & 7151.16 & & 3.18 & 2.22 & 7151.33 & 0.009612 & 2.25 & 1.33 & 297.97 & 134.05 & 0.39 \\
\hline CL-PR & 520.2 & Sterling MDDP 10 & 1520 & 7147.98 & 7152.61 & & 4.63 & 3.37 & 7152.89 & 0.010142 & 3.03 & 2.13 & 502.24 & 148.41 & 0.41 \\
\hline CL-PR & 520.2 & Sterling MDDP 10 & 450 & 7147.98 & 7150.66 & & 2.68 & 1.79 & 7150.80 & 0.009375 & 1.94 & 1.05 & 231.82 & 129.26 & 0.39 \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 250.3 & FEMA 100 Yr . & 2600 & 7145.95 & 7150.37 & 7148.65 & 4.45 & 3.22 & 7150.71 & 0.015150 & 3.52 & 3.05 & 738.50 & 228.86 & 0.46 \\
\hline CL-PR & 250.3 & DBPS 100 Yr . & 2260 & 7145.95 & 7150.08 & 7148.41 & 4.16 & 3.03 & 7150.39 & 0.014919 & 3.36 & 2.82 & 673.05 & 221.77 & 0.45 \\
\hline CL-PR & 250.3 & DBPS 10 Yr . & 670 & 7145.95 & 7148.12 & & 2.20 & 1.85 & 7148.24 & 0.012952 & 2.25 & 1.50 & 297.75 & 160.58 & 0.37 \\
\hline CL-PR & 250.3 & Sterling MDDP 10 & 1520 & 7145.95 & 7149.33 & 7147.88 & 3.41 & 2.59 & 7149.56 & 0.014206 & 2.95 & 2.30 & 514.46 & 198.14 & 0.42 \\
\hline CL-PR & 250.3 & Sterling MDDP 10 & 450 & 7145.95 & 7147.68 & & 1.76 & 1.53 & 7147.78 & 0.012593 & 1.95 & 1.20 & 230.66 & 150.96 & 0.35 \\
\hline & & & & & & & & & & & & & & & \\
\hline CL-PR & 53.78 & FEMA 100 Yr. & 2600 & 7139.68 & 7144.84 & 7143.96 & 5.16 & 2.74 & 7145.25 & 0.016008 & 3.33 & 2.74 & 781.65 & 284.79 & 0.55 \\
\hline CL-PR & 53.78 & DBPS 100 Yr . & 2260 & 7139.68 & 7144.58 & 7143.81 & 4.90 & 2.56 & 7144.97 & 0.016007 & 3.19 & 2.56 & 708.62 & 276.00 & 0.55 \\
\hline CL-PR & 53.78 & DBPS 10 Yr. & 670 & 7139.68 & 7142.89 & 7142.65 & 3.21 & 1.43 & 7143.19 & 0.016011 & 2.24 & 1.42 & 298.70 & 209.26 & 0.64 \\
\hline CL-PR & 53.78 & Sterling MDDP 10 & 1520 & 7139.68 & 7143.92 & 7143.35 & 4.24 & 2.14 & 7144.27 & 0.016001 & 2.85 & 2.14 & 534.10 & 249.07 & 0.57 \\
\hline CL-PR & 53.78 & Sterling MDDP 10 & 450 & 7139.68 & 7142.52 & 7142.40 & 2.84 & 1.15 & 7142.81 & 0.016008 & 2.01 & 1.15 & 224.09 & 193.76 & 0.70 \\
\hline
\end{tabular}

Please highlight the cross-sections within and adjacent to this plat.


\section*{DRAINAGE MAPS}

Move drainage plans to end of report pdf



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{} \\
\hline Dosign & Contibuturg Sasins & Equiven & Euivenen & maxmm &  &  & \[
\begin{array}{|c|}
\hline \text { agol }
\end{array}
\] & & \\
\hline &  & 89 & \({ }^{1861}\) & \({ }^{604}\) & \({ }^{20}\) & \({ }^{\text {an }}\) & 12 & 5 & \\
\hline 2 & sanatase） & 17 & \({ }_{40} 8\) & \({ }^{20}\) & \(2{ }^{20}\) & \({ }^{4 *}\) & 5 & \({ }^{20}\) & \\
\hline 3 &  & \({ }_{68} 8\) & \({ }^{184}\) & \({ }^{\text {m }}\) & 22 & \({ }^{38}\) & \({ }^{13}\) & \({ }^{\circ}\) & 为 \\
\hline 4 &  & \({ }^{04}\) & \({ }_{180}\) & \({ }^{202}\) & \({ }^{3 \infty}\) & 5 & 3 & － &  \\
\hline 5 &  & \({ }^{1008}\) & \({ }^{2700}\) & \({ }^{4} 4\) & \({ }^{100}\) & \({ }^{30}\) & \({ }^{20}\) & \({ }^{\circ}\) & \\
\hline ¢ & Bencisamosalasa & \({ }_{0} 0\) & \({ }_{132}\) & \({ }^{18}\) & \({ }^{36}\) & 0 & 3 & － & \\
\hline T & 4， & \({ }_{302}\) & \({ }_{7}^{74}\) & \({ }^{202}\) & \({ }_{36}\) & \％ & － & \({ }^{88}\) & 隹 \\
\hline － & mixambemes & 06 & \({ }^{185}\) & \({ }^{22}\) & \({ }^{30}\) & \％ & 2 & \({ }^{10}\) & \\
\hline ． &  & \({ }^{117}\) & \({ }^{245}\) & \({ }_{187}\) & \({ }^{36}\) & sin & \({ }^{4}\) & \({ }^{14}\) & ation \\
\hline 10 & Bancos． 0 （4asa） & 100 & \({ }_{188}\) & \({ }^{181}\) & \({ }^{34}\) & \({ }_{\text {su }}\) & 3 & ＂ & \\
\hline ＂ & senploax） & \({ }^{0.4}\) & 0.8 & \({ }^{106}\) & \({ }_{46}\) & \({ }^{\circ}\) & 2 & 4 & \\
\hline 12 & sempre7x） & 107 & \({ }_{156}\) & \({ }_{46} 8\) & \({ }^{36}\) & se & 4 & ， &  \\
\hline \({ }^{1}\) &  & \({ }^{225}\) & \({ }_{3}^{33}\) & \({ }_{6} 6\) & \({ }^{32}\) & st & \％ & \({ }^{23}\) &  \\
\hline \({ }^{\prime}\) & Eantilias） & \({ }^{038}\) & \({ }_{0} 08\) & \({ }^{128}\) & \({ }^{36}\) & \({ }^{\circ 1}\) & ， & 3 & \\
\hline \({ }^{15}\) &  & 0.6 & 13 & \({ }_{186}\) & \({ }^{36}\) & s90 & 3 & ＂ & Nemen \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline  & \multicolumn{4}{|l|}{THE RETREAT AT TIMBERRIDGE FILING 2 FINAL DRAINAGE REPORT developed drainage map} & 遏 \\
\hline ， & Discoue er & maw & sank & & \\
\hline & & maw & & & \\
\hline
\end{tabular}

\section*{SECTION 404 PERMTTING WETLAND IMPACT MAP (CORE CONSULTANTS REPORT)}

Update for Filing 2

COMPENSATORY MITIGATION PLAN

The Retreat at Timber Ridge Residential Development Filing No. 4 El Paso County, CO

\section*{Prepared for:}

Classic Communities
6385 Corporate Drive-Suite 101
Colorado Springs, CO 80919
Phone: 719-785-3270
Contact: Loren Moreland

Prepared by:
CORE Consultants, Inc.
1950 W. Littleton Boulevard, Suite 109
Littleton, CO 80120
Phone: 303-730-5979
Contact: Dan Maynard
CORE Project Number: 19-XXX

July 2019
TABLE OF CONTENTS
I. 0 INTRODUCTION ..... 2
2.0 SITE DESCRIPTION ..... 3
3.0 COMPENSATORY MITIGATION PLAN ..... 4
3.I Objectives ..... 4
3.2 Site Selection ..... 4
3.3 Mitigation Area Protection ..... 5
3.4 Baseline Information ..... 5
3.5 Mitigation Work Plan ..... 5
3.6 Mitigation Work Plan Schedule ..... 5
3.7 Operation and Maintenance ..... 6
3.8 Performance Standards and Monitoring Requirements ..... 6
4.0 LONG TERM MANAGEMENT PLAN ..... 10
4.I Adaptive Management Strategy. ..... 10
5.0 CONCLUSIONS AND RECOMMENDATIONS ..... II
REFERENCES ..... 12

\section*{TABLES}

Table 3-I. Impacted Wetlands locations
Table 3-2. El Paso County Noxious Weeds

\section*{APPENDICES}

APPENDIX I: SITE LOCATION MAP
APPENDIX II: COMPENSATORY WETLAND Mitigation PLan Map

\section*{I. 0 INTRODUCTION}

CORE Consultants, Inc. (CORE) was retained by Classic Communities (Applicant) to provide a compensatory mitigation plan for the proposed The Retreat at Timber Ridge Residential Development Filing No. I ("Project"). The Project encompasses approximately 68 acres of largely undisturbed land zoned for a planned unit development (PUD), located southeast of the intersection of Vollmer Road and Arroya Lane on portions of Sections 27 and 28 in Township 12 South, Range 65 West, and can be found on the U.S. Geological Survey (USGS) Falcon Northwest 7.5-minute quadrangle (Appendix I: Site Location Map). Coordinates of the approximate center of the Project are latitude \(38.980576^{\circ}\) North and longitude -I04. \(663569^{\circ}\) West.

The Project would consist of 70 single family lots, open space and trails, permanent access roads, utilities, stormwater detention ponds, and channel improvements to prevent long-term stream degradation. Permanent impacts to potentially jurisdictional wetlands totaling 0.44 acre and 691 linear feet would result from the development of the Project. Construction of the southernmost access road and associated culvert construction would result in 0.1 I acre and 2 I I linear feet of permanent impacts to Stream Channel Containing Wetlands (SCCW) 6. Construction of the southernmost detention pond would result in an additional 0.26 acre and 210 linear feet of permanent impacts to SCCW 6 (Appendix II: Compensatory Wetland Mitigation Plan Map). Construction of the northern access road would result in 0.07 acre and 270 linear feet of permanent impacts to SCCW 4 (Appendix II). Temporary impacts to potentially jurisdictional wetlands totaling 0.06 acre and 64 linear feet would result from the development of the four buried sheet pile check structures. This report presents the mitigation plan for the establishment and management of a wetland mitigation area on the Project site which would offset 0.44 acre of permanent loss to Waters of the U.S. (WOTUS) resulting from development of the Project.

\subsection*{2.0 SITE DESCRIPTION}

CORE conducted a formal wetland delineation on May 15 and 16, 2017 in accordance with the U.S. Army Corps of Engineers' (USACE) 1987 USACE Wetland Delineation Manual (USACE 1987) and the Western Mountains, Valleys, and Coasts Regional Supplement (Version 2.0) (USACE 20I0). The regulatory status of the wetlands and waters considered herein are assumed jurisdictional for the purpose of quantifying impacts to WOTUS.

The main channel of Sand Creek drains the Project in a southerly direction. Two eastern tributaries identified in NHD spatial data, and one unidentified western tributary are located in the proposed Project area (Appendix II). The majority of the main channel of Sand Creek and its associated tributaries were characterized as stream channels containing potentially jurisdictional persistent emergent (PEM) wetlands; short stretches of the main channel throughout the Project area were characterized as potentially jurisdictional stream channels lacking wetlands (Appendix II). Sand Creek and its tributaries flow to the Fountain Creek watershed approximately 20 miles downstream.

The Environmental Protection Agency (EPA) Section 303(d) list identifies stream segments that do not meet water quality standards. Selenium and \(E\). coli are listed as causes for impairment of Sand Creek within the Fountain watershed (EPA 2016). As such, primary needs for the watershed headwaters include mechanisms to reduce waste runoff into watercourses, as well as mechanisms to capture and uptake excess nutrients and waste. The mitigation proposed is anticipated to encourage the removal of excess nutrients and prevent additional nutrient runoff through the creation of wetlands. Creation of wetlands would improve local habitats and water quality. Improved water quality would be expected as a result of locating the mitigation wetlands upslope and upstream of the majority of the areas of wetland impacts within the Project area.

\subsection*{3.0 COMPENSATORY MITIGATION PLAN}

This compensatory mitigation plan was prepared to compensate for the loss of 0.44 acre of wetland habitat through the establishment of new emergent wetlands within the Project. Coordinates of the wetland areas to be impacted are shown in Table 3-I below, and depicted in Appendix II.

TABLE 3-I: LOCATIONS OF IMPACTED WETLANDS
\begin{tabular}{|c|c|c|c|}
\hline WOTUS ID' & LATITUDE & LONGITUDE & PERMANENT IMPACTS \\
\hline SCCW 4 & 38.979822 & \(-104.66045 I\) & 0.07 acre; 270 linear feet \\
\hline SCCW 6 & 38.976811 & -104.663614 & 0.11 acre; 211 linear feet \\
\hline SCCW 6 & 38.975046 & -104.662760 & 0.26 acre; 210 linear feet \\
\hline
\end{tabular}

IOnly the USACE can determine jurisdictional status

\section*{3.I Objectives}

Mitigation for 0.44 acre of permanent wetland loss would be located adjacent to the main channel of Sand Creek within the Project. Specifically, mitigation would involve the following:
- Creation of 0.44 acre of emergent, palustrine wetland habitat adjacent to and between the main channel of Sand Creek identified as JD Channel A and Isolated Wetland I (Proposed Mitigation B; Attachment II).
- Creation of stable upland buffers through soil amendments (as necessary), seedbed preparation and decompaction (as necessary), and appropriate native plant selection based on surrounding and existing native vegetation. Noxious weed control and management would be implemented as needed.

A total of 0.44 acre of emergent wetlands would be established within the Project and would offset the 0.44 acre of permanent wetland loss resulting from the construction of the Project.

\subsection*{3.2 Site Selection}

Completing the majority of mitigation near the site of impacts would ensure the mitigation directly offsets the on-site Project impacts. Moreover, on-site mitigation ensures that hydrologic and soil conditions are conducive to successful mitigation implementation. Hydrology for the mitigation area would be supplied in part by runoff from the proposed Project, and by contouring adjacent to the existing channel and upland within the proposed mitigation area to ensure sufficient saturation. The NRCS identifies Project area soils as hydric (NRCS 2014). Therefore, retention of on-site soils would further facilitate the establishment and longevity of the proposed mitigation area. Salvaged soils from impacted wetland areas on the Project site would be utilized to prepare the mitigation area.

The Proposed mitigation area would consist of one palustrine, persistent emergent, seasonally flooded wetland and upland buffer located between JD Channel A and Isolated Wetland I. The proposed location of the mitigation area would serve to connect the existing Isolated Wetland A with the main channel of Sand Creek (JD Channel A), thereby serving to increase filtration of additional stormwater runoff resulting from Project construction.

\subsection*{3.3 Mitigation Area Protection}

The mitigation area will be owned by the Applicant and authorized access would require permission from the Applicant. According to the USACE's Regional Compensatory Mitigation and Monitoring Guidelines for South Pacific Division (2015), the mitigation area requires protection of the site in the form of a deed restriction, easement or similar legally-binding document. A deed restriction would be prepared to provide for long-term protection of the mitigation area.

\subsection*{3.4 Baseline Information}

The Project would result in the permanent loss of 0.44 acre of wetland characterized as palustrine, emergent, persistent, and seasonally flooded (PEMIC). The proposed mitigation area would consist of 0.44 acre of wetland characterized as palustrine, emergent, persistent, and seasonally flooded (PEMIC) since the mitigation area would develop wetlands mirroring the surrounding wetland areas within and adjacent to Sand Creek (Appendix II). Wetland vegetation was dominant during the 2017 wetland delineation within the channel where impacts are proposed: vegetation consisted of Arctic rush (Juncus arcticus syn. J. balticus), Nebraska sedge (Carex nebrascensis), clustered field sedge (Carex praegracilis), and common spike rush (Eleocharis palustris).

\subsection*{3.5 Mitigation Work Plan}

The mitigation area would be created immediately adjacent to the main channel of Sand Creek (JD Channel A; Appendix II). Contouring of both the upland area associated with the proposed mitigation area and the proposed mitigation area itself would ensure that drainage patterns would direct sufficient hydrology to the mitigation area. Soil preparation and amendments, seeding, and installation of wetland plugs would create 0.44 acre of emergent wetland adjacent to the main channel of Sand Creek (Appendix II). Establishment of the wetland would augment water filtration capacity of anticipated runoff resulting from the proposed Project, and would support the Sand Creek watershed priority to reduce selenium and E. coli within the watershed.

Native wetland plant communities would be established within the mitigation area through seeding and the installation of wetland plugs. Newly seeded areas and plugs would be protected by erosion control mats. A CORE biologist would determine, upon a site assessment of the mitigation area, if transplanting of neighboring wetland plants would expedite the establishment of the proposed wetland mitigation area. Potential wetland plant populations that would be utilized for transplant include Arctic rush, Nebraska sedge, and clustered field sedge.

\subsection*{3.6 Mitigation Work Plan Schedule}

Mitigation work would begin immediately in conjunction with the commencement of construction activities and would be completed within three months of commencement. Project construction is anticipated to begin in fall of 2019. Construction is expected to be completed in summer or fall of 2020; restoration and mitigation installation measures would be completed by fall 2020. Primary mitigation measures and an estimated schedule of activities implementation are outlined below:
- Year I
- Grading, clearing, and other site preparation as needed for construction of the wetland mitigation site;
- Documentation of baseline conditions and seeding of mitigation area and uplands; installation of wetland plugs.
- Year 2
- Monitoring and management: set up monitoring locations and collect relevant data, control noxious weeds (if needed), and transplant wetland vegetation from existing onsite wetlands (if needed).
- Years 3, 4, and 5
- Site monitoring to determine whether performance standards are met and request concurrence from USACE;
- If standards are not met, continue monitoring and management until they are met.

\subsection*{3.7 Operation and Maintenance}

The Applicant would be responsible for monitoring the proposed mitigation area throughout the life of the Project. The Applicant, or an authorized representative for the Applicant familiar with wetland ecology would monitor the condition of the mitigation site and would make adjustments on an asneeded basis in accordance with USACE mitigation requirements and permit conditions.

\subsection*{3.8 Performance Standards and Monitoring Requirements}

Performance standards would be used to assess the success of mitigation measures implemented at the Project. Performance standards are required and must be met in order for mitigation activities to be approved by the USACE. However, performance standards may change based on the conditions included in the approved Section 404 permit to be issued for the Project. The mitigation area would be monitored for a period of five years, or until performance standards are met. If performance standards are met during the first year of monitoring, additional monitoring would not be required. Performance standards should be met by the end of the five-year monitoring period. If standards are not met within five years, additional monitoring and corrective action may be required at the request of the USACE.

The mitigation plan for The Retreat at Timber Ridge - Filing No. I would be determined successful and complete when the following standards of performance are met:
I. Wetland vegetation areas and buffers should have a vegetation cover of at least 85 percent, and the vegetation must be composed of at least 50 percent emergent wetland species (i.e., species rated facultative, facultative wetland, or obligate wetland plant species on the National Wetland Plant List (Lichvar et al. 2016) and at least 50 percent of dominant species shall be newly established. Mitigation areas (wetlands and buffers) will have no more than 20 percent non-native species coverage. Vegetation maintenance activities for locations not meeting these requirements may include transplanting the appropriate wetland species and eradication of non-native species if necessary.
2. Upland buffer establishment will be determined successful when ground cover of native species species rated upland, facultative upland, or facultative plants on the National Wetland Plant List (Lichvar et al. 2016) - is equal to or greater than 85 percent, with less than I-percent invasive species documented at each monitoring location. Vegetation maintenance activities for sample
locations not meeting ground cover requirements would include re-seeding or planting of the appropriate native species and eradication of invasive species if necessary.
3. Coverage of noxious weed species (Table 3-2: El Paso County Noxious Weeds) shall be 95 percent eradicated across all mitigation areas (wetlands and upland buffers) and maintained as such in perpetuity.
4. Documentation shall demonstrate consistent wetland hydrology during the growing season. Data shall indicate 14 or more consecutive days of flooding or ponding, or a water table 12 inches or less below the soil surface. Data must demonstrate the presence of wetland hydrology with \(50 \%\) or higher probability. Documentation of recorded data will be presented with photographs, moisture probe data, and/or the collection of multiple soil pit samples during the growing season.
5. Soil documentation and morphologic description should demonstrate the development of redoximorphic features or other hydric soil indicators over time, and progression toward hydric soil conditions. Documentation would include pre-and post-construction, and during the 3rd, 5th, and final years of wetland establishment and would be collected according to the Western Mountains, Valleys, and Coasts Regional Supplement (Version 2.0) (USACE 20IO) to the 1987 USACE Wetland Delineation Manual (USACE 1987).

TABLE 3-2: EI PASO COUNTY NOXIOUS WEEDS
\begin{tabular}{|c|c|}
\hline COMMON NAME & SCIENTIFIC NAME \\
\hline Bull Thistle & Cirsium vulgare \\
\hline Canada Thistle & Cirsium arvense \\
\hline Common Mullein & Verbascum thapsus \\
\hline Common Tansy & Tanacetum vulgare \\
\hline Common Teasel & Dipsacus fullonum \\
\hline Cutleaf Teasel & Dipsacus laciniatus \\
\hline Cypress Spurge & Euphorbia cyparissias \\
\hline Dalmation Toadflax & Linaria dalmatica \\
\hline Dalmation Toadflax & Linaria genistifolia \\
\hline Diffuse Knapweed & Centaurea diffusa \\
\hline Field Bindweed & Convulvulus arvensis \\
\hline Hoary Cress & Cardaria draba \\
\hline Houndstongue & Cynoglossum officinale \\
\hline Leafy Spurge & Euphorbia esula \\
\hline Mediterranean Sage & Salvia aethiopis \\
\hline Musk Thistle & Carduus nutans \\
\hline Myrtle Spurge & Euphorbia myrcinites \\
\hline Orange Hawkweed & Hieracium aurantiacum \\
\hline Perennial Pepperweed & Lepidium latifolium \\
\hline Plumeless Thistle & Carduus acanthoides \\
\hline Poison Hemlock & Conium maculatum \\
\hline Puncturevine & Tribulus terrestris \\
\hline Purple Loosestrife & Lythrum salicaria \\
\hline Redstem Filaree & Erodium cicutarium \\
\hline Russian Knapweed & Acroptilon repens \\
\hline Russian Olive & Elaeagnus angustifolia \\
\hline Salt Cedar & Tamarix chinensis \\
\hline Salt Cedar & Tamarix parviflora \\
\hline Salt Cedar & Tamarix ramosissima \\
\hline Scotch Thistle & Onopordum acanthium \\
\hline Spotted Knapwseed & Centaurea maculosa \\
\hline Sulfur Cinquefoil & Potentilla recta \\
\hline
\end{tabular}

Monitoring would be conducted during the growing season by qualified personnel experienced in wetland ecology and mitigation. Monitoring would occur for a minimum of five years postconstruction, unless conditions are met in prior years. Results of monitoring visits would be used to assess and modify maintenance and operations plans as appropriate and implement adaptive management strategies as necessary. Monitoring would entail annual site visits to assess progress in meeting performance standards, and to evaluate establishment, development, and maintenance of the mitigation area. The mitigation area would be monitored to ensure the establishment of desirable wetland characteristics. Standardized plots would be established to confirm the dominance of emergent wetland species at the wetland establishment location. A report detailing the results of each monitoring survey would be submitted to the USACE within two months of any site visit. The site would also be monitored incidentally while walking between sampling points. During incidental observations, areas of concern would be noted, including areas of erosion, significant areas of bare ground, and areas where invasive species have become established. Incidental observations would be included in the annual report and would be considered for maintenance and adaptive management.

Photo monitoring points would be established prior to construction to determine baseline conditions. Each monitoring report would include photos depicting baseline conditions, construction, and current state to demonstrate progress toward wetland establishment. A map would document the locations of sampling transects and photo monitoring points.

\subsection*{4.0 LONG TERM MANAGEMENT PLAN}

Funding for the management of the mitigation plan would be provided by the Applicant and the Applicant would be responsible for the monitoring and long-term management of the proposed mitigation area. Since the mitigation site would be located on the Applicant's property, access to the site could be controlled to protect the area. Periodic inspections would also be conducted by the Applicant or by the Applicant's authorized personnel to ensure that the desired site characteristics are maintained including maintaining proper hydrology through the mitigation area, controlling invasive plants (if any), and other maintenance as needed. If invasive species are detected during inspections, invasive species control measures would be implemented. Where invasive plants are limited, control methods would consist of removal by hand or mechanical methods. If invasive plants become established beyond a point of mechanical control, chemical control methods would be initiated. Appropriate herbicides would be selected based on target species and would be applied in accordance with manufacturer and invasive species control recommendations. Herbicide application would not occur when rain is forecasted, or during or immediately following precipitation events to prevent herbicides from running into sensitive water features. Invasive species control would be conducted in a manner that minimizes impacts to desirable species to the extent practicable. Where significant invasive species infestations have occurred, the area would be transplanted with local wetland plant sources, or re-seeded with desirable vegetation after control of invasives. Alternative methods of invasive species control would be utilized as appropriate based on target species. For example, prolonged flooding followed by heavy seeding has been documented to control Johnsongrass (Sorghum halepense). Wetland and transitional vegetation would be mowed on an as-needed basis. Signage may also be used along the boundaries of the proposed mitigation area identifying the area as such. If control of the development were to transfer from the Applicant to a different entity, that entity would become responsible for the maintenance and upkeep of the mitigation area.

The principal management concerns for the mitigation area are maintaining suitable hydrology to support wetland growth and the maintenance of vegetation, including the control of invasive and weedy species. Operation and maintenance activities would generally ensure compliance with the conditions of the USACE permit. Project area management needs would be assessed during monitoring sessions and on an as-needed basis. Operation and maintenance activities would be modified as appropriate in accordance with principles of adaptive management and based on observations during mitigation monitoring activities.

\section*{4.I Adaptive Management Strategy}

Management objectives and techniques may be modified in response to feedback such as monitoring results. Adaptive management is based on the idea that the collective general understanding of natural system is necessarily incomplete, and thus new information should be allowed to influence the potential re-evaluation of strategies for management.

Management techniques would be modified as appropriate to ensure performance standards are met, based on monitoring and incidental observations. Potential management modifications or corrective actions that may be taken to ensure standards are met include: alternative vegetation management, modification of hydrology, alternative control measures for invasive species, re-seeding or planting, stabilization of banks or other areas.

If the mitigation area should fail to meet performance standards, corrective action would be taken. If necessary, corrective action may be taken prior to the end of the five-year monitoring period.

\subsection*{5.0 CONCLUSIONS AND RECOMMENDATIONS}

In summary, the proposed Project, consisting of 70 single family lots, open space and trails, permanent access roads, utilities, stormwater detention ponds, and channel improvements to prevent long-term stream degradation, would result in 0.44 acre and 9 l linear feet of permanent impacts to the main channel of Sand Creek and its associated tributaries. On-site mitigation is planned that would offset 0.44 acre of wetland loss. Mitigation practices would comply with the 2008 Mitigation Rule (33 CFR 332Compensatory Mitigation for losses of aquatic resources) as specified by the USACE Albuquerque District Southern Colorado Regulatory Office.

\section*{REFERENCES}

Chapman, S.S., Griffith, G.E., Omernik, J.M., Price, A.B., Freeouf, J., and Schrupp, D.L., 2006, ECOREgions of Colorado. Reston, Virginia, U.S. Geological Survey (map scale I:I,200,000). ftp://ftp.epa.gov/wed/eCOREgions/co/co_front.pdf

Environmental Protection Agency (EPA). 2016. Watershed Assessment, Tracking, and Environmental Results System. https://ofmpub.epa.gov/waters I0/attains_watershed.control Accessed July 2019.

Lichvar, R.W., M. Butterwick, N.C. Melvin, and W.N. Kirchner. 2016. The National Wetland Plant List: 2016 Update of Wetland Ratings. Phytoneuron 2016-30: I-I7.

Natural Resources Conservation Service. 2014. List of Hydric Soils.
U.S. Army Corps of Engineers (USACE). I987. Wetlands Delineation Manual.
\(\qquad\) 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2).
\(\qquad\) . 2015. Final Regional Compensatory Mitigation and Monitoring Guidelines for South Pacific Division USACE. Albuquerque District.

Appendix I

\author{
Site location Map
}

Retreat at Timber Ridge


\section*{\(\square\) Filing 1 Boundary}

\section*{Appendix II}
```

