1845.00 Vollmer Substation Utility Yard Interior Cutoff Swale Drain Pipe Outfall
 $H_{a}=\frac{\left(H+Y_{n}\right)}{2} \begin{aligned} & \text { Riprap Sizing (pipe that drains into sand filter from yard) } \\ & \text { Max Pipe Q=0.5 cfs, 6" PVC pipe }\end{aligned}$

Where the maximum value of H_{a} shall not exceed H, and:
$D_{a}=$ parameter to use in place of D in Figure 9-38 when flow is supercritical (ft)
$D_{c}=$ diameter of circular culvert (ft)
$H_{a}=$ parameter to use in place of H in Figure 9-39 when flow is supercritical (ft)
$H=$ height of rectangular culvert (ft)
$Y_{n}=$ normal depth of supercritical flow in the culvert (ft)

Use D_{a} instead of D whenever flow is supercritical in the barrel. ** Use Type L for a distance of 3D downstream.
Result: Type L, D50=9" riprap
Note: Pipe outfall invert is 0.13 above top of sand.
Use: Single layer of Type L riprap below pipe, 2' wide $\times 3$ ' long.

Type VL = 6"
Type L = 9"
Type $\mathrm{M}=12^{\prime \prime}$
Type H = 18"
Type VH = 24"

Figure 9-38. Riprap erosion protection at circular conduit outlet (valid for $\mathbf{Q} / \mathbf{D} 2.5 \leq 6.0$)

MANNING'S EQUATION FOR PIPE FLOW

Project: Vollmer Substation	Location: Utility Yard Interior Cutoff Swale Drain Pipe Cap		
By: Dane Frank	Date:	$5 / 2 / 2023$	
Chk. By:	Date:	mdo version 12.8 .00	

