

1. Detention Basin Emergency Spillway Width

A. Original approved plans call for a spillway length of 66 feet on plan sheet 18, Detail 0/19. The 66 -foot dimension was labeled incorrectly and should be 15 feet in accordance with the approved Drainage Report (see Exhibit 1).

2. Detention Basin Outlet Structure WQCV Well Screen

A. Original approved plans call for a stainless-steel wire well screen on plan sheet 17, Detail J/18.
B. A field change was made to an EPC approved "diamond" plate and is noted on the As Constructed Documents (see Exhibit 2).

3. Buried Riprap at $\mathbf{3 0}$-inch Detention Basin Outlet

A. Original approved plans call for "EXPOSED TYPE M SOIL RIPRAP FOR CHANNEL BOTTOM" on plan sheet 18, Detail D/19. The word "EXPOSED" is incorrect and should be eliminated. Soil riprap is buried and not exposed. Existing field condition is correct.

4. Emergency Spillway Runout is "Curved"

A. The emergency spillway runout was graded, as a field change, to direct emergency flows to the grass-lined swale from detention pond A. This condition is preferred over emergency flows sheet flowing across "level" ground, ultimately into the grass-lined swale approximately 230 feet downstream of the emergency spillway. This condition provides for better containment of the flows and is acceptable for this site.

5. 24-inch Culvert Pipes in Existing Channels Under the Gravel Trail

A. Analyses of the east and west grass-lined swales and 24-inch culverts under the gravel trail was completed.
B. Analysis of the east channel (flow from detention pond A) indicates that the installed 24inch PVC culvert under the gravel trail has enough capacity to pass 5 -year and 100-year detained flows from detention pond A. (see Exhibit 3). However, if the detention pond A outlet structure ever became 100 percent clogged (no discharge), emergency flows will overtop the emergency spillway and enter the grass-lined swale, then continue to flow to the 24 " PVC culvert under the gravel trail. In this condition the 24 -inch culvert will create a
backwater condition where flows will overtop the gravel trail at a depth of approximately $33 / 4$ inches (see Exhibit 4), which is an acceptable condition.
C. Analysis of the west channel (flow from 48 -inch RCP) indicates that the installed 24 -inch PVC culvert under the gravel trail does not have enough capacity to pass the 100-year flow from the upstream 48 -inch RCP (see Exhibit 5). The 24 -inch culvert will create a backwater condition where flows will overtop the west channel at a depth of approximately 6 inches (see Exhibit 6). It should be noted that this area will be inundated during a 100-year event, per FEMA Map No. 0804C0956G (see Exhibit 7), therefore lessening the erosion potential in the overtopping. This is an acceptable condition.

6. Installation of Emergency Spillway Cut-off Wall

A. The emergency spillway cut-off wall was installed per approved plan (see Exhibit 8).

7. Installation of Cut-off Walls at 48 -inch and $\mathbf{3 0}$-inch Pipe Outlets

A. According to the field representative for Widefield Investment Group, cut-off walls were installed in accordance with the approved plans.

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.85	1.71					
Orifice Area (sq. inches)	1.27	1.27	1.27					
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Calculated Parameters for Vertical Orifice			ft^{2}
	Not Selected	Not Selected		Vertical Orifice Area $=$ Vertical Orifice Centroid =	Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A	
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)		N/A	N/A	feet
Vertical Orifice Diameter $=$	N/A	N/A	inches				

EXHIBIT 2

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

MHFD-Culvert, Version 4.00 (May 2020)
Project: Glen At Widefield Filing 9
Pipe ID: East grass-IIned swale 24" culvert under gravel trail (100 yr detained flow)

Design Information (Input)			
Pipe Invert Slope	So =	0.0097	$\mathrm{ft} / \mathrm{ft}$
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	$\mathrm{D}=$	24.00	inches
Design discharge	$\mathrm{Q}=$	10.70	cfs
Full-Flow Capacity (Calculated)			
Full-flow area	Af $=$	3.14	sq ft
Full-flow wetted perimeter	$\mathrm{Pf}=$	6.28	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	22.34	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	2.26	radians
Flow area	An =	2.76	sq ft
Top width	$\mathrm{Tn}=$	1.54	ft
Wetted perimeter	$\mathrm{Pn}=$	4.53	ft
Flow depth	$\mathrm{Yn}=$	1.64	ft
Flow velocity	$\mathrm{Vn}=$	8.11	fps
Discharge	Qn =	22.34	cfs
Percent of Full Flow	Flow =	100.0\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.07	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c $=$	2.33	radians
Critical flow area	$\mathrm{Ac}=$	2.83	sq ft
Critical top width	Tc =	1.46	ft
Critical flow depth	Yc =	1.69	ft
Critical flow velocity	$\mathrm{Vc}=$	3.79	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	0.48	

East Grass-Lined Swale Wier Calculation for Over Topping of Gravel Trail (Detention Basin Outlet Structure and 24" Culvert 100\% Clogged)

Approximate Length of Wier	92.50 ft
Wier Elevation	69.00

Water Elevation	Head / Flow Depth, d	Weir Flow, Q
69.0	0.00 ft	0.0 cfs
69.1	0.10 ft	8.8 cfs
69.2	0.20 ft	24.8 cfs
69.3	0.31 ft	48.8 cfs

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

MHFD-Culvert, Version 4.00 (May 2020)
Project: Glen at Widefield Filing 9
Pipe ID: West grass-Ined swale $\mathbf{2 4 " c}^{\prime \prime}$ culvert under gravel trail

Design Information (Input)
Pipe Invert Slope
Pipe Manning's n-value
Pipe Diameter
Design discharge

So =	0.0018	$\mathrm{ft} / \mathrm{ft}$
$\mathrm{n}=$	0.0130	
$\mathrm{D}=$	24.00	inches
Q =	9.62	cfs

Full-Flow Capacity (Calculated)
Full-flow area
Full-flow wetted perimeter
Half Central Angle
Full-flow capacity

Af $=$	3.14	sq ft
Pf $=$	6.28	ft
Theta $=$	3.14	radians
Qf =	9.62	cfs

Calculation of Normal Flow Condition
Half Central Angle ($0<$ Theta<3.14)
Flow area
Top width
Wetted perimeter
Flow depth
Flow velocity
Discharge
Percent of Full Flow
Normal Depth Froude Number

Theta $=$	2.26	radians
$\mathrm{An}=$	2.75	sq ft
$\mathrm{Tn}=$	1.54	ft
$\mathrm{Pn}=$	4.53	ft
$\mathrm{Yn}=$	1.64	ft
$\mathrm{Vn}=$	3.49	fps
Qn =	9.62	cfs
Flow $=$	100.0\%	of full flow
$\mathrm{Fr}_{\mathrm{n}}=$	0.46	subcritical

Calculation of Critical Flow Condition
Half Central Angle ($0<$ Theta-c<3.14)
Critical flow area
Critical top width
Critical flow depth
Critical flow velocity
Critical Depth Froude Number

Theta-c =	1.68	radians
$\mathrm{Ac}=$	1.79	sq ft
$\mathrm{Tc}=$	1.99	ft
$\mathrm{Yc}=$	1.11	ft
$\mathrm{Vc}=$	5.38	fps
$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

West Grass-Lined Swale Wier Calculation for Over Topping of Channel

(100 year flows)

Water Elevation	Head / Flow Depth, d	Weir Flow, Q
70.10	0.10 ft	0.0 cfs
70.20	0.20 ft	29.5 cfs
70.30	0.30 ft	54.2 cfs
70.40	0.40 ft	83.5 cfs
70.50	0.50 ft	116.7 cfs
70.56	0.56 ft	137.7 cfs

EXHIBIT 6
$+1$

