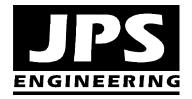
DRAINAGE LETTER REPORT

for


STRUTHERS RANCH POLARIS 847 STRUTHERS RANCH ROAD LOTS 1-2, STRUTHERS RANCH SUBDIVISION FILING NO. 4

Prepared for:

Hammers Construction, Inc. 1411 Woolsey Heights Colorado Springs, CO 80915

August 10, 2022 Revised October 21, 2022 Revised February 21, 2023

Prepared by:

19 E. Willamette Ave. Colorado Springs, CO 80903 (719)-477-9429 www.jpsengr.com

JPS Project No. 032203 PCD Filing No. PPR2248

STRUTHERS RANCH POLARIS DRAINAGE LETTER REPORT <u>TABLE OF CONTENTS</u>

	DRAINAGE STATEMENT	i
I.	INTRODUCTION	1
II.	EXISTING / PROPOSED DRAINAGE CONDITIONS	2
III.	DRAINAGE PLANNING FOUR STEP PROCESS	5
IV.	FLOODPLAIN IMPACTS	5
V.	STORMWATER DETENTION AND WATER QUALITY	6
VI.	PUBLIC IMPROVEMENTS / DRAINAGE BASIN FEES	7
VII.	SUMMARY	7

APPENDICES

APPENDIX A	Excerpts from Subdivision Drainage Report
APPENDIX B	Hydrologic Calculations
APPENDIX C	Hydraulic Calculations
APPENDIX D	Water Quality Pond Calculations
APPENDIX E	Water Quality Pond Cost Estimate

Figures
Floodplain Map
Struthers Ranch Subdivision - Developed Drainage Plan
Struthers Ranch Polaris - Developed Drainage Plan

DRAINAGE STATEMENT

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report.

John P. Schwab, P.E. #29891

Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

By:

Hammers Construction, Inc. 1411 Woolsey Heights, Colorado Springs, CO 80915

El Paso County's Statement

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

Joshua Palmer, P.E. County Engineer / ECM Administrator

Conditions:

Date

Date

I. INTRODUCTION

A. Property Location and Description

Hammers Construction is planning to construct a new Polaris dealership on the vacant 2.94acre property at the southeast corner of Struthers Road and Struthers Ranch Road in northern El Paso County, Colorado. The property is described as Lots 1 and 2, Struthers Ranch Subdivision Filing No. 4 (El Paso County Assessor's Parcel Numbers 71363-03-010 and 71363-03-011).

The project consists of a new 12,000 square-foot, single-story Polaris dealership building with associated parking and site improvements. The property is bounded by Struthers Road on the southwest side and Struthers Ranch Road on the northwest side. Struthers Road is a fully improved, asphalt-paved arterial public street, and Struthers Ranch Road is a fully improved local public street. Existing platted residential lots are located along the northeast boundary of the parcel (Struthers Ranch Filing No. 2). The south boundary of the site adjoins vacant commercial properties (Lots 3 and 4, Struthers Ranch Subdivision Filing No. 4).

The property is zoned Planned Unit Development (PUD), and the proposed site development is fully consistent with the existing zoning of the site. Access to the site will be provided by the existing private driveway connection to Struthers Ranch Road along the north boundary of Lot 1.

The site is located in the Black Forest Creek Drainage Basin, and surface drainage from this site sheet flows southwesterly to an existing public storm sewer system along the west boundary of the property, flowing to the existing Struthers Ranch stormwater detention pond on the west side of Struthers Road.

This report is intended to meet the requirements of a site-specific "Letter Type" drainage report in accordance with El Paso County subdivision drainage criteria.

ITEM	DESCRIPTION	REFERENCE
Design Storm (initial/major)	5-year/100-year	CS/EPC DCM
Storm Runoff	Rational Method (Area<100acres)	CS/EPC DCM
Major Drainage Basin	Black Forest Creek	
Floodplain Impacts	Parcel is located outside any delineated	FIRM
	FEMA floodplains	
Existing Downstream	Existing storm sewer system on east side	
Facilities	of Struthers Road; Existing detention	
	pond on west side of Struthers Road	

B. Drainage Analysis Methods and Criteria

CS/EPC DCM = City of Colorado Springs & El Paso County Drainage Criteria Manual

C. References

JPS Engineering, Inc., "Final Drainage Report for Struthers Ranch Filing No. 2," October 14, 2004 (approved by El Paso County 10/20/04).

JPS Engineering, Inc., "Drainage Letter Report for Struthers Ranch Subdivision Filing No. 4," February 22, 2006.

II. EXISTING / PROPOSED DRAINAGE CONDITIONS

Subdivision Drainage Report

Drainage planning for this site was previously master planned during original development of the Struthers Ranch Subdivision, as detailed in the "Final Drainage Report (FDR) for Struthers Ranch Filing No. 2" by JPS Engineering, dated October 14, 2004 (see excerpts in Appendix A). The project area at the southeast corner of Struthers Road and Struthers Ranch Road was identified as a future commercial development area in the original planning of the subdivision.

According to the original FDR, Basins D6A (3.0 acres) and D9A (3.18 acres) comprise the future commercial development areas on the south side of Struthers Ranch Road. The previously approved subdivision drainage planning assumed full commercial development within all of Basins D6A and D9A, with runoff coefficients of $C_5 = 0.90$ and $C_{100} = 0.90$, and impervious areas of 95 percent for the entirely of these basins. According to the Rational Method calculations in the original subdivision drainage report, developed peak flows from Basin D6A were calculated as $Q_5 = 14.0$ cfs and $Q_{100} =$ 24.3 cfs, and peak flows from Basin D9A were calculated as $Q_5 = 14.9$ cfs and $Q_{100} =$ 25.8 cfs (see Appendix A).

As shown on the enclosed Struthers Ranch Subdivision Drainage Plan (Figure D1, Appendix F), the proposed Polaris development site lies entirely within Basin D6A as delineated in the approved "Final Drainage Report for Struthers Ranch Filing No. 2." The site slopes downward to the southwest, with average grades of 1-4 percent. On-site soils are classified by SCS as type 71, "Pring" series coarse sandy loam soils. These soils have moderately rapid permeability and slow to medium surface runoff characteristics. The soils are classified as hydrologic soils group B.

Developed drainage from this commercial site will sheet flow southwesterly to the existing storm sewer system along the east side of Struthers Road. Flows combine at the existing grated inlet on the east side of Struthers Road, where double 48-inch culverts convey developed flows across Struthers Road and into the existing detention pond. The previously approved drainage report for Struthers Ranch Filing No. 2 assumed full commercial development for this basin, which is consistent with the proposed site development. The existing detention pond was sized to account for fully developed flows from this commercial area.

The impervious area for the proposed Struthers Ranch Polaris development (delineated as Basin A within this report, which correlates with Basin D6A in the FDR) amounts to approximately 69 percent of the site (as tabulated on Sh. D1.1 and Appendix B), which is well below the impervious area of 95 percent assumed for full commercial development in the previously approved subdivision drainage report (see Appendix A).

Based on the previous construction of drainage improvements for the Struthers Ranch Subdivision, no significant impact on downstream drainage facilities is anticipated from this site development and replat. Proper erosion control measures will be required for development of the site, including silt fence along property boundaries to minimize offsite transport of construction sediment.

Existing Drainage Conditions

As shown on the enclosed Drainage Plan (Figure D1.1, Appendix F), the site has been delineated as two on-site drainage basins. The project area (Lots 1-2, Struthers Ranch Filing No. 4) has been delineated as Basin A, and the future development area to the southeast (Lots 3-4, Struthers Ranch Filing No. 4) has been delineated as Basin B. The site is impacted by an off-site basin consisting of the rear sides of the adjoining single-family residential lots (platted as part of Struthers Ranch Filing No 2) along the southeast boundary of the site, which has been delineated as Basin OB1.

Existing drainage from Basin A sheet flows southwesterly across the property, with peak flows calculated as $Q_5 = 0.8$ cfs and $Q_{100} = 5.8$ cfs. Basin A flows to the existing ditch along the east side of Struthers Road, and the ditch flows are captured in the existing grated storm inlet identified as Design Point #1.

Existing drainage from off-site Basin OB1 (back sides of adjoining developed singlefamily residential lots along northeast boundary of project site) sheet flows southwesterly into Basin B, and Basin B flows southwesterly to the existing ditch along the east side of Struthers Road, ultimately flowing into the existing grated storm inlet at Design Point #1. Existing flows from Basins OB1 and B combine at Design Point #B1, with peak flows calculated as $Q_5 = 1.9$ cfs and $Q_{100} = 7.0$ cfs.

Existing flows from Basins A, OB1, and B combine at Design Point #1, with peak flows calculated as $Q_5 = 2.5$ cfs and $Q_{100} = 12.0$ cfs. A double 48-inch RCP storm sewer conveys the flow from the grated storm inlet southwesterly across Struthers Road into the existing regional Struthers Ranch Detention Pond.

Developed Drainage Plan

Developed flows have been calculated based on the impervious areas associated with the proposed building and parking improvements. Surface drainage swales and a private storm sewer system will convey developed flows to the proposed Water Quality Pond A along the west boundary of the site. Site grades will slope to storm inlets and curb openings at selected locations, collecting surface drainage and conveying stormwater to C:\Users\Owner\Dropbox\jpsprojects\032203.hammers-struthers\admin\drainage\Drg-Ltr-Struthers-Polaris-0223.docx

Water Quality Pond A. The proposed building pad will be graded with protective slopes to provide positive drainage away from the building, and the curb, gutter, drainage swales, and private storm sewer system will convey developed flows southwesterly into Water Quality Pond A.

The proposed Polaris site development on Lots 1-2 has been delineated as Basin A, which drains by sheet flow and curb and gutter to the proposed Stormwater Quality Detention Basin along the west boundary of the site. Private Storm Inlet A1 (Type 16) will intercept surface drainage from the north side of the Polaris site, and Private Storm Sewer A1 (18") will convey this flow into the on-site Water Quality Pond A. The balance of the Polaris site will flow by drainage swales and curb and gutter into the south side of Water Quality Pond A.

Developed peak flows at Design Point A are calculated as $Q_5 = 8.9$ cfs and $Q_{100} = 17.7$ cfs. Basin A generally correlates with "Basin D6A" in the Final Drainage Report for Struthers Ranch Filing No. 2 ($Q_5 = 14.0$ cfs and $Q_{100} = 24.3$ cfs).

The future commercial site development areas to the south in Lots 3-4 have been delineated as Basin B, which will generally drain northwesterly by sheet flow and curb and gutter to a future private storm sewer via a proposed 18" HDPE pipe conveying developed flows into Water Quality Pond A. Developed peak flows at Design Point B are calculated as $Q_5 = 4.7$ cfs and $Q_{100} = 9.0$ cfs. Basin B generally correlates with "Basin D9A" in the Final Drainage Report for Struthers Ranch Filing No. 2 ($Q_5 = 14.9$ cfs and $Q_{100} = 25.8$ cfs). Developed flows from off-site Basin OB1 will continue to combine with Basin B at Design Point #B1, with peak flows calculated as $Q_5 = 5.9$ cfs and $Q_{100} = 12.2$ cfs.

The 18" HDPE discharge pipe from Water Quality Pond A (along with overflows from the pond spillway) will drain into the existing grated storm inlet along the east side of Struthers Road, and the existing double 48-inch RCP storm sewer will continue to convey the flow from the grated storm inlet southwesterly across Struthers Road into the existing regional Struthers Ranch Detention Pond ("Detention Pond 11" per Black Forest Creek DBPS).

Developed flows from Basins A, OB1, and B combine at Design Point #1, with peak flows calculated as $Q_5 = 11.9$ cfs and $Q_{100} = 24.2$ cfs. As detailed in Appendix B, for comparison with the original Subdivision FDR, the total flows from Basins D6A and D9A (equivalent to Design Point #1) have been calculated as $Q_5 = 23.2$ cfs and $Q_{100} = 38.9$ cfs (significantly higher than the current developed flow calculations). As such, the developed flows are well below the previously master planned developed flows entering the regional detention pond.

Hydrologic and hydraulic calculations for the site are detailed in the appendices (Appendix B and C), and peak flows are identified on Figure D1.1 (Appendix F).

III. DRAINAGE PLANNING FOUR STEP PROCESS

El Paso County Drainage Criteria require drainage planning to include a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

As stated in ECM Appendix I.7., the Four Step Process is applicable to all new and redevelopment projects with construction activities that disturb 1 acre or greater or that disturb less than 1 acre but are part of a larger common plan of development. The Four Step Process has been implemented as follows in the planning of this project:

Step 1: Employ Runoff Reduction Practices

• Extended Detention Basin: The majority of developed flows will be routed through the on-site detention basin, which will be grass-lined to encourage stormwater infiltration.

Step 2: Stabilize Drainageways

- There are no drainageways directly adjacent to this project site. Implementation of the on-site drainage improvements and detention basin will minimize downstream drainage impacts from this site.
- Drainage basin fees were previously paid during recording of the subdivision plat, and these fees provided the applicable cost contribution towards regional drainage improvements.

Step 3: Provide Water Quality Capture Volume (WQCV)

• EDB: The majority of the developed site will drain through an on-site Private Extended Detention Basin (EDB) along the west boundary of the property. The extended detention basin which will capture and slowly release the WQCV over an extended release period.

Step 4: Consider Need for Industrial and Commercial BMPs

- No industrial uses are proposed for this site.
- The commercial property owner will implement a Stormwater Management Plan including proper housekeeping practices and spill containment procedures.
- On-site drainage will be routed through the Extended Detention Basin (EDB) to minimize introduction of contaminants to the County's public drainage system.

IV. FLOODPLAIN IMPACTS

According to the FEMA floodplain map for this area, El Paso County FIRM Panel No. 08041C0287G, dated December 7, 2018, the site is located beyond the limits of any delineated floodplains.

V. STORMWATER DETENTION AND WATER QUALITY

Stormwater detention for this site is provided in the existing regional stormwater detention pond constructed during initial development of the Struthers Ranch Subdivision. The Struthers Ranch Homeowners Association is the owner of the existing Struthers Ranch Detention Pond located within Tract C, Struthers Ranch Filing No. 2. There currently appears to be a need for removal of excess vegetation within the pond to ensure proper operation of the detention facilities. The developer will need to coordinate with the HOA to ensure that the required maintenance is performed on the existing regional detention pond.

An on-site private Water Quality Pond will be constructed to meet stormwater quality improvements for this project site in accordance with current El Paso County drainage criteria.

As detailed in the detention pond calculations in Appendix D, the required Water Quality Capture Volume (WQCV) has been calculated as 0.13 acre-feet. The water quality capture volume has been calculated based on the actual impervious area of the proposed site development within Basin A (calculated as 69%), along with the typical single-family residential impervious area of 40% within the adjoining developed Basin OB1, and a conservative estimated impervious area of 95 percent for the anticipated future commercial development within Basin B (consistent with the original FDR).

The proposed Water Quality Basin has been designed utilizing the Denver Mile High Flood District's "MH-Detention_v4.05" software package. Calculations and details for the proposed Water Quality Basin are enclosed in Appendix D, and design parameters for the Water Quality Basin are summarized as follows:

Water Quality Basin	Tributary Drainage Basin	Tributary Area (ac)	Impervious Percentage	Min. WQCV (af)	Design Volume (af)
А	A,OB1,B	5.62	68.1	0.13	0.22

The proposed on-site Water Quality Pond A provides a storage volume of 0.22 acre-feet, which meets the required WQCV volume.

The proposed water quality pond will include concrete forebays, trickle channels, and an outlet structure with a water quality orifice plate to maintain discharges below the allowable release rates. The pond outlet structure has been designed for a 40-hour release of the WQCV, and outlet structure sizing to maintain maximum allowable release rates from the pond. The water quality pond will have a grass-lined bottom to encourage infiltration of stormwater prior to discharging into the downstream public drainage system.

The new on-site Water Quality Basin will be privately owned and maintained by the property owner, and maintenance access will be provided from the southwest parking lot.

VI. PUBLIC IMPROVEMENTS / DRAINAGE BASIN FEES

No public drainage improvements are required or proposed for this project. As detailed in Appendix E, the proposed private Water Quality Pond A has an estimated cost of approximately \$65,846.

The site lies completely within the Black Forest Creek Drainage Basin. Applicable drainage basin fees were paid at the time of original platting of Struthers Ranch Filing No. 2, so no drainage basin fees or bridge fees are applicable at this time.

VII. SUMMARY

The developed drainage patterns for the proposed site development on Lots 1-2, Struthers Ranch Filing No. 4 will remain consistent with the established drainage plan for this subdivision. The grading and drainage plan for the proposed Polaris site development fully conforms to the approved drainage plan for Struthers Ranch Filings No. 2 and 4.

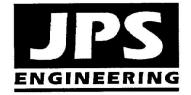
Developed flows from the site will drain through a Private Water Quality Pond at the southwest corner of the property prior to discharging to the existing downstream public drainage system. Stormwater detention is provided by the existing Struthers Ranch Detention Pond which was designed to accept fully developed flows from the commercial area encompassing this site (Lots 1-4, Struthers Ranch Filing No. 4). The proposed onsite Water Quality Pond will be constructed to meet current stormwater quality requirements. Construction and proper maintenance of the on-site drainage facilities and Extended Detention Basin, in conjunction with proper erosion control practices, will ensure that this developed site has no significant adverse drainage impact on downstream or surrounding areas.

APPENDIX A

EXCERPTS FROM SUBDIVISION DRAINAGE REPORT

FINAL DRAINAGE REPORT

for


STRUTHERS RANCH FILING NO. 2

Prepared for:

WL Homes LLC 8610 Explorer Drive, Suite 300 Colorado Springs, CO 80920

November 6, 2003 Revised April 12, 2004 Revised May 7, 2004 Revised May 25, 2004 Revised September 3, 2004 Revised October 14, 2004

Prepared by:

19 E. Willamette Avenue Colorado Springs, CO 80903 (719)-477-9429 (719)-471-0766 FAX

JPS Project No. 080006

15 2004

2. Developed Drainage Conditions

The developed drainage basins and projected flows are shown in Figure D1, and preliminary hydrologic calculations are enclosed in Appendix B. The developed site has been divided into five major basins (A-E) and five design points (DP1-DP5), as shown on the enclosed Drainage Plan (Sheets D1 and D1.02). Hydrologic flow schematics and calculations are enclosed in Appendix B.

Struthers Ranch Filing No. 2 is located within parts of Basins C-F at the northwest corner of the site. The majority of developed areas ultimately flow to the proposed detention pond at Design Point No. 4. The internal road gutters of sub-basins D1-D10 will be graded to drain southwesterly through the interior road system. Storm inlets will be constructed in the interior roads as required to intercept developed flows exceeding the allowable street capacity. Storm sewer outfalls will be extended to the proposed detention pond.

To minimize the impacts of developed drainage from Struthers Ranch, flows from Basins C, D, and F will be routed through the proposed detention pond. Off-site Basins OC1 and OD1 will combine with flows from on-site Sub-basins D1-D10, C, E2, E3, and F at the proposed detention pond (Design Point #4), with developed flows of $Q_5 = 66$ cfs and $Q_{100} = 191$ cfs (SCS Method). The detention pond will discharge historic flows to the existing swale at the southerly site boundary, flowing into the existing 48-inch culvert crossing I-25. The proposed 48-inch RCP discharge pipe from the detention pond will be released to a riprap apron, flowing to an existing stable grass-lined swale across a parcel owned by the U.S Air Force Academy, ultimately crossing I-25 through the existing 48-inch CMP culvert.

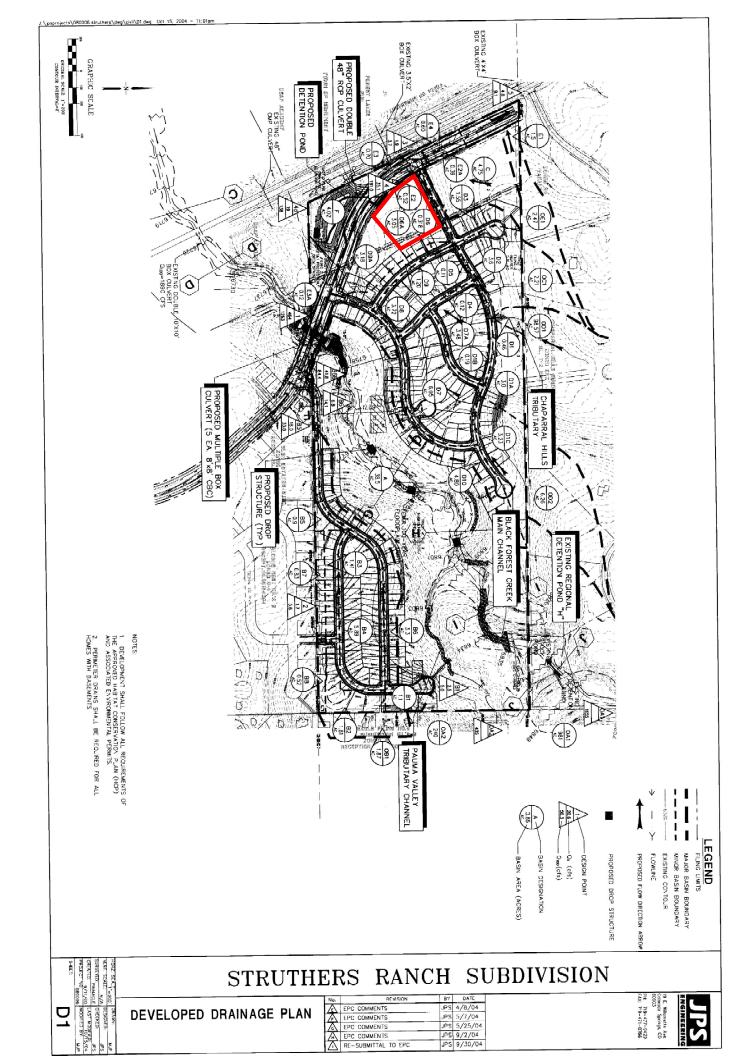
The proposed site layout will significantly reduce the amount of developed flow reaching the existing 3.5'x2' culvert (Structure #11) at the westerly site boundary (Design Point #3). Flows from Sub-basin E4 ($Q_5 = 1.9$ cfs and $Q_{100} = 3.7$ cfs) represent the westerly side of the proposed Struthers Road draining to the existing culvert crossing I-25.

Basin E1 represents the small developed area at the northwest corner of the site, draining to the existing 4'x4' box culvert at Design Point #5. The proposed grading scheme for the commercial area north of Struthers Ranch Road will direct the majority of developed flows into Basin C, ultimately flowing to the proposed detention pond. As a result, developed flow impacts to the Jackson Creek Basin at the northwest corner of the site will be minimized. Estimated developed peak flows of $Q_5 = 4.6$ cfs and $Q_{100} = 8.9$ cfs at Design Point #5 remain within the capacity of the existing culvert.

C. Comparison of Developed to Historic Discharges

Based on the hydrologic calculations in Appendix B, the total undetained developed flow from the site will exceed historic flow from the parcel. Projected increases in developed flows will be mitigated by routing flows through a proposed on-site stormwater detention pond. The comparison of developed to historic discharges at key design points is summarized as follows:

	H	istoric Fl	ow	Dev	eloped I	Flow	
Design Point	Area (ac)	Q5 (cfs)	Q100 (cfs)	Area (ac)	Q5 (cfs)	Q ₁₀₀ (cfs)	Comparison of Developed to Historic Flow (Q5%/Q100%)
Sardal e mai de ante de	inin manaziri Kisalan manaziri		l de la care				
1 (SCS)	1,266	473	1,281	1,274	464	1,263	98% / 99% (decrease)
2	15.1	9.3	22.4	1.4	1.7	3.6	18% / 16% (decrease)
3	16.0	9.9	24.0	0.6	1.9	3.7	19% / 15% (decrease)
4 (SCS)	133.6	50	148	155.4	66	191	132% / 129% (increase)
5	6.8	8	9.2	4.0	4.6	8.9	121% / 99% (increase)


D. Detention Ponds

The total developed storm runoff downstream of Struthers Ranch will be maintained at historic levels by routing flows through the proposed on-site detention pond located at the westerly boundary of the Struthers Ranch property (equivalent to "Detention Pond #11" as identified in the DBPS). The proposed detention facility will be sized to attenuate peak flows through the pond, based on the difference between outflow and inflow hydrographs. Flows from Basins C and D will be routed through the proposed detention pond at Design Point #4. The pond will be designed to "over-detain" to account for release of developed flows from Basins A and B, ensuring that the net discharge from the overall site will be maintained below historic levels.

As depicted on Sheet C1.02 (Appendix A), the proposed interim access connection from the I-25 Frontage Road to Struthers Road will bisect the pond, providing for a forebay at the upstream end of the pond. Once the interim access to the frontage road is abandoned, the maintenance access road will remain, and the forebay will continue to serve as a water quality enhancement feature. A detailed pond routing analysis utilizing the "Intelisolve Hydraflow" software package is enclosed in Appendix C1, resulting in the following pond design parameters:

Pond	Pond Inflow (Q ₅ / Q ₁₀₀ , cfs)	Pond Outflow $(Q_5 / Q_{100}, cfs)$	Pond Volume (ac-ft)
DP4 ("Pond #11")	35/191	19.3 / 138.4	4.7

J:\jpsprojects\080006.struthers\Admin\DrgReports\fdr2.struthers-e.doc

TABLE 5-1

RECONMENDED AVERAGE RUNOFF COEFFICIENTS AND PERCENT INPERVIOUS

				"C" DUENCY	
	PERCENT	1	0	10	0
LAND USE OR Surface Characteristics	IMPERVIOUS	A6B+	CED*	A6B*	C&D*
Busin ess	95	(0.90)	0.90	0.90	0.90
Commercial Areas	70	0.75	0.75	0.80	0.80
Neighborhood Areas	<i>,</i> 0	0.75	••••	••••	
Residential	65	0.60	0.70	0.70	0.80
1/8 Acre or less	40	0.50	0.60	0.60	0.70
1/4 Acre	30	0.40	0.50	0.55	0.60
1/3 Acre	25	0.35	0.45	0.45	0.55
1/2 Acre	20	0.30	0.40	0.40	0.50
1 Acre	20	0.50			
Industrial	80	0.70	0,70	0.80	0.80
Light Areas	90	0.80	0.80	0.90	0.90
Heavy Areas	90	0.00			
a the and Genetarias	7	0.30	0.35	0.55	0.60
Parks and Cemeteries	13	0.30	0.35	0.60	0.65
Playgrounds	40	0.50	0.55	0.60	0.65
Railroad Yard Areas				6	
Undeveloped Areas	2	0.15	0.25	0.20	0.30
Historic Flow Analysis-				\sim	
Greenbelts, Agricultural	0	0.25	0,10	0,35	0.45
Pasture/Neadow	ŏ	0.10	2.15	0.15	0.20
Forest	100	0.90	0.90	0.95	0.95
Exposed Rock	45	0.55	0.60	0.65	0.70
Offsite Flow Analysis (when land use not defin	ed)				
Streets				0.95	0.95
Paved	100	0.90	0.90	0.85	0.85
Gravel	80	0.80	0.80	0.00	0.05
During and Walks	100	0.90	0.90	0.95	0.95
Drive and Walks	90	0.90	0.90	0.95	0.95
Roofs	0	0.25	0.30	0.35	0.45
Lawns	-				

* Hydrologic Soil Group

9/30/90

5-8

(EPC-DCM)

STRUTHERS RANCH COMPOSITE RUNOFF COEFFICIENTS

DEVELOPED CONDITI	ONS											
5-YEAR C VALUES												
	TOTAL			SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		
	AREA	SOIL		DEVELOPMENT/		AREA	DEVELOPMENT/			DEVELOPMENT/		WEIGHTED
BASIN	(AC)	TYPE	(AC)	COVER	С	(AC)	COVER	С	(AC)	COVER	<u> </u>	C VALUE
OA1	981	B	981	0.25-AC LOTS	0.5							0.500
OA2	240	В	240	0.25-AC LOTS	0.5							0.500
OA1,OA2	1221											0.500
B1	1.1	B	1.1	0.25-AC LOTS	0.5							0.500
Α	38.5	В	38.5	OPEN SPACE	0.25							0.250
OA1,OA2,B1,A	1260.6											0.492
OB1	1.87	В	1.87	0.25-AC LOTS	0.5							0.500
B2	1.81	B	1.81	0.25-AC LOTS	0.5							0.500
B2 B3	1.4	B	1.41	0.25-AC LOTS	0.5							0.500
B4	5.8	B	5.8	0.25-AC LOTS	0.5	·					-	0.500
OB1,B2-B4	10.9					1						0.500
B5	0.9	В	0.9	0.25-AC LOTS	0.5							0.500
OB1.B2-B5	11.8											0.500
B6	3.3	В	3.3	0.25-AC LOTS	0.5							0.500
OB1,B2-B6	15.1											0.500
OA1,OA2,A,B1-B6	1275.7											0.492
B7	0.83	В	0.83	0.25-AC LOTS	0.5							0.500
B8	0.52	B	0.52	0.25-AC LOTS	0.5	1						0.500
B7,B8	1.4		0.02	0.20710 2010	0.0							0.500
E4	0.6	В	0.34	PAVED	0.9	0.3	LANDSCAPE	0.25				0.618
			0.07									
OD1	98.57	В	98.57	5-AC LOTS	0.3							0.300
D1	0.46	B	0.46	MEADOW	0.25						_	0.250
OD1,D1	99.03											0.300

OD2	6.26	В	6.26	5-AC LOTS	0.3				0.300
D1C	3.23	B	1.5	0.25-AC LOTS	0.5	1.7	OPEN SPACE	0.25	0.366
OD2,D1C	9.49								0.322
D1A	3.00	В	0.8	0.25-AC LOTS	0.5	2.2	PARK / OS	0.25	0.317
OD2,D1C,D1A	12.49								0.321
D1B	0.19	В	0.19	ROADWAY	0.9				0.900
OD1,D1,D1A,D1B	111.71								0.303
D4	0.12	В	0.12	ROADWAY	0.9				0.900
OD1,D1,D1A,D1B,D4	111.83								0.304
D5	0.11	В	0.11	ROADWAY	0.9				0.900
OD1,D1,D1A,D1B,D4,D5	111.94								0.304
D6	0.32	В	0.318	ROADWAY	0.9				0.900
OD1,D1,D1A,D1B,D4-D6	112.26								0.306
OC1	2.21	В	2.21	5-AC LOTS	0.3				0.300
D2	3.60	В	3.6	0.25-AC LOTS	0.5				 0.500
OC1,D2	5.81								0.424
E2A	0.39	В	0.3	PAVED	0.9	0.1	LANDSCAPE	0.25	0.750
D3	1.55	В	1.55	0.25-AC LOTS	0.5				0.500
С	4.75	В	4.75	COMMERCIAL	0.9				0.900
D3,C	6.30								0.802
OD1,OC1,C,E2A,D1-D6	124.76			1					0.338
E2	0.52	В	0.4	PAVED	0.9	0.1	LANDSCAPE	0.25	0.750
D6A	3.00	В	3	COMMERCIAL	0.9				0.900
OD1.OC1.C.D1-D6A	128.28								0.350
D7A	3.48	В	3.48	0.25-AC LOTS	0.5				0.500
D7	6.05	В	6.05	0.25-AC LOTS	0.5				0.500
D7A,D7	9.53								0.500
D8	3.72	В	3.72	0.25-AC LOTS	0.5				0.500
D7A,D7,D8	13.25								0.500
D9	1.20	В	1.2	0.25-AC LOTS	0.5				0.500
D7A-D9	14.45						a		0.500
E3A	0.12	В	0.12	MEDIAN	0.25				0.250
D10	4.80	В	4.8	0.25-AC LOTS	0.5				0.500
D7A-D10,E3A	19.37								0.498
D9A	3.18	В	3.18	COMMERCIAL	0.9				0.900
D7A-D10,E3A	22.55								0.555
E3	0.70	В	0.5	PAVED	0.9	0.2	LANDSCAPE	0.25	0.714
F	4.02	В	4.02	OPEN SPACE	0.25				0.250
OD1,C,D1-D10,E2-E3,F	155.55	В							 0.379
OE1	2.47	В	2.47	5-AC LOTS	0.3				 0.300
E1	1.5	B	1.5	COMMERCIAL	0.9				 0.900
OE1.E1	4.0					······			 0.527

STRUTHERS RANCH COMPOSITE RUNOFF COEFFICIENTS

DEVELOPED CONDITI	ONS						, <u></u> ,					_
100-YEAR C VALUES												
	TOTAL			SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		WEIGHTED
E LOUI	AREA	SOIL	(10)	DEVELOPMENT/		AREA	DEVELOPMENT/			DEVELOPMENT/	~	WEIGHTED
BASIN	(AC)	TYPE	(AC)	COVER	C	(AC)	COVER	С	(AC)	COVER	С	C VALUE
OA1	981	B	981	0.25-AC LOTS	0.6	 						0.600
OA2	240	В	240	0.25-AC LOTS	0.6	· · · · · · · · · · · · · · · · · · ·						0.600
OA1,OA2	1221									-		0.600
B1	1.1	B	1.1	0.25-AC LOTS	0.6	<u> </u>						0.600
Α	38.5	В	38.5	OPEN SPACE	0.35							0.350
OA1,OA2,B1,A	1260.6					<u> </u>						0.592
OB1	1.87	В	1.87	0.25-AC LOTS	0.6							0.600
B2	1.81	В	1.81	0.25-AC LOTS	0.6	1						0.600
B3	1.4	В	1.41	0.25-AC LOTS	0.6							0.600
B4	5.8	В	5.8	0.25-AC LOTS	0.6							0.600
OB1,B2-B4	10.9					1						0.600
B5	0.9	В	0.9	0.25-AC LOTS	0.6							0.600
OB1,B2-B5	11.8											0.600
B6	3.3	В	3.3	0.25-AC LOTS	0.6							0.600
OB1,B2-B6	15.1											0.600
OA1, OA2, A, B1-B6	1275.7											0.592
	0.83	В	0.02	A DE ACLOTO	0.6							0.600
B7	0.52	B	0.83	0.25-AC LOTS 0.25-AC LOTS	0.6							0.600
B8	1.4	В	0.52	0.25-AC LUIS	0.6	<u> </u>						0.600
B7,B8	1.4											0.800
E4	0.6	В	0.34	PAVED	0.95	0.3	LANDSCAPE	0.35				0.690
OD1	98.57	В	98.57	5-AC LOTS	0.4							0.400
D1	0.46	В	0.46	MEADOW	0.35							0.350
OD1,D1	99.03							According to 12				0.400

OD2	6.26	В	6.26	5-AC LOTS	0.4				 0.400
D1C	3.23	В	1.5	0.25-AC LOTS	0.6	1.7	OPEN SPACE	0.35	 0.466
OD2,D1C	9.49								0.422
D1A	3.00	В	0.8	0.25-AC LOTS	0.6	2.2	PARK / OS	0.35	0.417
OD2,D1C,D1A	12.49								0.421
D1B	0.19	В	0.19	ROADWAY	0.95				0.950
OD1,D1,D1A,D1B	111.71								0.403
D4	0.12	В	0.12	ROADWAY	0.95				0.950
OD1,D1,D1A,D1B,D4	111.83								0.404
D5	0.11	В	0.11	ROADWAY	0.95				0.950
OD1,D1,D1A,D1B,D4,D5	111.94								0.404
D6	0.32	В	0.318	ROADWAY	0.95				0.950
OD1,D1,D1A,D1B,D4-D6	112.26								0.406
OC1	2.21	В	2.21	5-AC LOTS	0.4				0.400
D2	3.60	В	3.6	0.25-AC LOTS	0.6				0.600
OC1,D2	5.81								0.524
E2A	0.39	В	0.3	PAVED	0.95	0.1	LANDSCAPE	0.35	0.812
D3	1.55	В	1.55	0.25-AC LOTS	0.6				0.600
с	4.75	В	4.75	COMMERCIAL	0.9				0.900
D3,C	6.30								0.826
OD1,OC1,C,E2A,D1-D6	124.76								0.434
E2	0.52	B	0.4	PAVED	0.95	0.1	LANDSCAPE	0.35	0.812
D6A	3.00	В	3	COMMERCIAL	0.9				0.900
OD1,OC1,C,D1-D6A	128.28								0.443
D7A	3.48	В	3.48	0.25-AC LOTS	0.6				0.600
D7	6.05	B	6.05	0.25-AC LOTS	0.6				0.600
D7A,D7	9.53								0.600
D8	3.72	В	3.72	0.25-AC LOTS	0.6				0.600
D7A,D7,D8	13.25								0.600
D9	1.20	В	1.2	0.25-AC LOTS	0.6				0.600
D7A-D9	14.45								0.600
E3A	0.12	В	0.12	MEDIAN	0.35				0.350
D10	4.80	В	4.8	0.25-AC LOTS	0.6				0.600
D7A-D10,E3A	19.37								0.598
D9A	3.18	В	3.18	COMMERCIAL	0.9				0.900
D7A-D10,E3A	22.55								0.641
E3	0.70	В	0.5	PAVED	0.95	0.2	LANDSCAPE	0.35	0.779
F	4.02	B	4.02	OPEN SPACE	0.35				0.350
OD1,C,D1-D10,E2-E3,F	155.55	В							 0.471
DE1	2.47	В	2.47	5-AC LOTS	0.4				 0.400
E1	1.5	В	1.5	COMMERCIAL	0.9			tt	0.900
OE1.E1	4.0	·	·····					t	 0.589

-

STRUTHERS RANCH RATIONAL METHOD - DRAINAGE CALCULATIONS

	DEVEL	OPED	FLOWS	
--	-------	------	-------	--

				С	OVERLAND			CHANNEL	CONVEYANCE	1 10 10 10	SCS ⁽²⁾		TOTAL	INTE	NSITY (5)	PEAK F	
BASIN	DESIGN	AREA	5-YEAR(7)	100-YEAR (7)	LENGTH	SLOPE	Tco (1)	LENGTH	COEFFICIENT	SLOPE	VELOCITY	Tt (3)	Tc (4)	5-YR	100-YR	Q5 ⁽⁶⁾	Q100 ⁽⁶⁾
	POINT	(AC)			(FT)	(%)	(MIN)	(FT)	к	(%)	(FT/S)	(MIN)	(MIN)	(IN/HR)	(IN/HR)	(CFS)	(CFS)
OA1		981.00	0.500	0.600	300	5.4	10.7	11900	1.50	5.4	3.49	56.9	67.6	1.50	2.65	735.75	1559.79
OA2		240.00	0.500	0.600	300	5.5	10.6	620	1.50	5.5	3.52	2.9	13.5	3.60	6.10	432.00	878.40
OA1,0A2	OA1	1221.00	0.500	0.600									67.6	1.50	2.65	915.75	1941.39
B1	B1	1.10	0.500	0.600	250	12.8	7.3	0				0.0	7.3	4.50	7.60	2.48	5.02
A		38.50	0.250	0.350	0		0.0	2730	1.50	3.2	2.68	17.0	17.0	3.20	5.50	30.80	74.11
OA1,0A2,B1,A		1260.60	0.492	0.592									84.5	1.50	2.65	930.32	1977.63
														ļ			
B2		1.81	0.500	0.600	150	5.3	7.6	450	2.00	4.9	4.43	1.7	9.3	4.10	7.10	3.71	7.71
83		1.41	0.500	0.600	0		0.0	700	2.00	3	3.46	3.4	3.4	5.20	9.00	3.67	7.61
84		5.89	0.500	0.600	0		0.0	1180	2.00	3.7	3.85	5,1	5.1	5.20	9.00	15.31	31.81
OB1,B2,B3,B4	B3	9.11	0.500	0.600									12.7	3.70	6.20	16.85	33.89
B5		0.90	0.500	0.600	0		0.0	1000	2.00	3.3	3.63	4.6	4.6	5.20	9.00	2.34	4.86
OB1,82-85	B5	10.01	0.500	0.600									17.2	3.20	5.50	16.02	33.03
B6	B6	3.30	0.500	0.600	0		0.0	2100	2.00	3.7	3.85	9.1	9.1	4.10	7.10	6.77	14.06
OB1,B2-B6	B6A	13.31	0.500	0.600									17.2	3.20	5.50	21.30	43.92
86A	B6B					1										41.80	84.40
OA1,OA2,A,B1-B6	1	1273.9	0.492	0.592									84.5	1.50	2.65	940.15	1998.51
													1				
B7		0.83	0.500	0.600	150	4.0	8.3	0				0.0	8.3	4.25	7.50	1.76	3.74
B8		0.52	0.500	0.600	850	5.5	17.8	0				0.0	17.8	3.10	5.20	0.81	1.62
B7,B8	2	1.35	0.500	0.600									26.2	2.50	4.40	1.69	3.56
E4	3	0.60	0.618	0.690	0		0.0	450	1.50	5.5	3.52	2.1	2.1	5.20	9.00	1.93	3.73
OD1		98.57	0.300	0.400	1000	10.0	21.2	3300	1.50	3.9	2.96	18.6	39.7	1.90	3.40	56.18	134.06
D1		0.46	0.250	0.350	0		0.0	180	1.50	2.5	2.37	1.3	1.3				
OD1,D1	D1	99.03	0.300	0.400		1							41.0	1.90	3.40	56.45	134.68
OD2		6.26	0.300	0.400	1000	3.5	30.0	0				0.0	30.0	2.35	4.10	4.41	10.27
D1C		3.23	0.366	0.466	0		0.0	700	2.00	3.4	3.69	3.2	3.2				
OD2,D1C	DIC	9.49	0.322	0.422	ļ								33.2	2.20	3.85	6.72	15.42
D1A		3.00	0.317	0.417	0		0.0	370	2.00	2.7	3.29	1.9	1.9				
OD2,D1C,D1A	D1A	12.49	0.321	0.421									35.0	2.10	3.75	8.42	19.72
D1B	D1B	0.19	0.900	0.950	0		0.0	420	2.00	1.6	2.53	2.8	2.8	5.20	9.00	0.89	1.62
OD1,D1,D1A,D1B	D1A1	111.71	0.303	0.403			L						41.0	1.90	3.40	64.31	153.07
D4	D4	0.12	0.900	0.950	0		0.0	700	2.00	1.56	2.50	4.7	4.7	5.20	9.00	0.56	1.03
OD1,D1,D1A,D1B,D4	D4A	111.83	0.304	0.404		1	1		ļ		-	L	45.7	1.75	3.20	64.87	154.09
DS	D5	0.11	0.900	0.950	0		0.0	250	2.00	3.27	3.62	1.2	1.2	5.20	9.00	0.51	0.94
OD1,D1,D1A,D1B,D4,D5	D5A	111.94	0.304	0.404									46.8	1.70	3.15	65.39	155.03
D6	D6	0.32	0.900	0.950	0		0.0	480	2.00	4.44	4.21	1.9	1.9	5.20	9.00	1.49	2.72
OD1,D1,D1A,D1B,D4-D6	D6A1	112.26	0.306	0.406									48.7	1.70	3.00	66.88	157.75

				С	OVERLAND			CHANNEL	CONVEYANCE		SCS ⁽²⁾	·	TOTAL	INTE	NSITY (5)	PEAK F	LOW
BASIN	DESIGN	AREA	5-YEAR	100-YEAR (7)	LENGTH	SLOPE	Tco (1)	LENGTH	COEFFICIENT	SLOPE	VELOCITY	Tt ⁽³⁾	Tc (4)	5-YR	100-YB	Q5 ⁽⁶⁾	Q100 ⁽⁶⁾
	POINT	(AC)			(FT)	(%)	(MIN)	(FT)	ĸ	(%)	(FT/S)	(MIN)	(MIN)	(IN/HR)	(IN/HR)	(CFS)	(CFS)
OC1		2.21	0.300	0.400	550	3.3	22.7					0.0	22.7	2.70	4.70	1.79	4.15
D2		3.60	0.500	0.600	0		0.0	600	2.00	3.6	3.79	2.6	2.6				
OC1.D2	D2	5.81	0.424	0.524									25.3	2.60	4.50	6.40	13.70
E2A	E2A	0.39	0.750	0.812	0		0.0	300	1.50	4	3.00	1.7	1.7	5.20	9.00	1.52	2.85
D3		1.55	0.500	0.600	0		0.0	580	2.00	4.3	4.15	2.3	2.3	5.20	9.00	4.03	8.37
C		4.75	0.900	0.900	0		0.0	750	2.00	3.3	3.63	3.4	3.4	5.20	9.00	22.23	38.48
D3,C	C	6.30	0.802	0.826									5.8	5.00	8.50	25.26	44.23
OD1,OC1,E2A,C,D1-D6	C1	124.76	0.338	0.434									48.7	1.70	3.00	71.69	162.43
E2		0.52	0.750	0.812	0		0.0	300	1.50	4	3.00	1.7	1.7	5.20	9.00	2.03	3.80
D6A	D6A	3.00	0.900	0.900	0		0.0	470	2.00	3.4	3.69	2.1	2.1	5.20	9.00	14.04	24.30
OD1,OC1,C,D1-D6A	D6A2	128.28	0.350	0.443									50.8	1.60	2.90	71.84	164.80
D7A	D7A	3.48	0.500	0.600	0		0.0	950	2.00	1.68	2.59	6.1	6.1	5.00	8.50	8.70	17.75
D7	- 0/6	6.05	0.500	0.600	0		0.0	1244	2.00	2.17	2.95	7.0	7.0	4.60	8.00	13.92	29.04
D7A.D7	D7	9.53	0.500	0.600			0.0	1617		2,17	2.00	1.0	7.0	4.60	8.00	21.92	45.74
DB	D8	3.72	0.500	0.600	0		0.0	225	2.00	3.4	3.69	1.0	1.0	5.20	9.00	9.67	20.09
D7A-D8	D8A	13.25	0.500	0.600						<u> </u>	0.00	1.0	8.1	4.40	7.50	29.15	59.63
D9	D9	1.20	0.500	0.600	0		0.0	210	2.00	3.4	3.69	0.9	0.9	5.20	9.00	3.12	6.48
D7A-D9	D9A	14.45	0.500	0.600									9.0	4.20	7.20	30.35	62.42
E3A	E3A	0.12	0.250	0.350	0		0.0	220	1.50	4.3	3.11	1.2	1.2	5.20	9.00	0.16	0.38
D10	D10	4.80	0.500	0.600	300	4.0	11.8	1820	2.00	3	3.46	8.8	20.5	2.95	5.05	7.08	14.54
D10A	D10A	0.23	0.500	0.600	0		0.0	200	1.50	0.5	1.06	3.1	3.1	5.20	9.00	0.60	1.24
D7A-D10,E3A	D10B	19.37	0.498	0.598									20.5	2.95	5.05	28.46	58.50
D9A		3.18	0.900	0.900	0		0.0	620	1.50	0.5	1.06	9.7	9.7	5.20	9.00	14.88	25.76
D7A-D10,E3A	D9B_	22.55	0.555	0.641									30.3	2.30	4.05	28.79	58.54
E3	E3	0.70	0.714	0.779	0		0.0	620	1.50	0.8	1.34	7.7	7.7	4.40	7.50	2.20	4.09
F		4.02	0.250	0.350	0		0.0	570	1.50	1.0	1.50	6.3	6.3	5.00	8.50	5.03	11.96
OD1.OC1.C,D1-D10,E2-E3,F	4	155.55	0.379	0.471									50.8	1.60	2.90	94.32	212.46
OE1		2.47	0.300	0.400	850	2.8	29.8	0		~ ~~		0.0	29.8	2.35	4.10	1.74	4.05
E1		1.50	0.900	0.900	000		0.0	700	2.00	2.3	3.03	3.8	3.8	5.20	9.00	7.02	12.15
OE1.E1	5	3.97	0.527	0.589	1			1		E.U	+		33.6	2.20	3.80	4.60	8.89
	المحمد تسميله		· ····		·	<u>ل</u>							00.0		1.0.00	4.00	0.00

1) OVERLAND FLOW Tco = (1.87*(1.1-RUNOFF COEFFICIENT)*(OVERLAND FLOW LENGTH^(0.5)/(SLOPE^(0.333)) 2) SCS VELOCITY = K * ((SLOPE(%))^0.5)

K = 0.70 FOR MEADOW / FOREST

K = 0.70 FOR MEADOW / FORES

K = 1.5 FOR GRASS CHANNEL

K = 2.0 FOR PAVEMENT

3) GUTTER/SWALE FLOW, TRAVEL TIME, Tt = (CHANNEL LENGTH/ SCS VELOCITY) / 60 SEC

4) Tc = Tco + Tt

*** IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED

5) INTENSITY BASED ON I-D-F CURVE IN EL PASO COUNTY DRAINAGE CRITERIA MANUAL

6) Q = CiA

7) WEIGHTED AVERAGE C VALUES FOR COMBINED BASINS

APPENDIX B

HYDROLOGIC CALCULATIONS

Land Use or Surface	Percent						Runoff Co	efficients					
Characteristics	Impervious	2-у	ear	5-y	rear	10-1	/ear	ץ-25	/ear	50-y	year	100-	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.05	0.03	0.12	0.13	0.20	0.25	0.30	0.40	0.34	0.48	0.35	0.52
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Linday allowed Average													
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Ctro etc.													
Streets Paved	100	0.89	0.89	0.90	0.00	0.92	0.92	0.94	0.04	0.05	0.05	0.96	0.06
Gravel	80	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Ulavel	00	0.57	0.00	0.59	0.05	0.05	0.00	0.00	0.70	0.00	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

$$t_c = t_i + t_t \tag{Eq. 6-7}$$

Where:

 t_c = time of concentration (min)

 t_i = overland (initial) flow time (min)

 t_t = travel time in the ditch, channel, gutter, storm sewer, etc. (min)

3.2.1 Overland (Initial) Flow Time

The overland flow time, t_i , may be calculated using Equation 6-8.

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$
(Eq. 6-8)

Where:

 t_i = overland (initial) flow time (min)

- C_5 = runoff coefficient for 5-year frequency (see Table 6-6)
- L = length of overland flow (300 ft maximum for non-urban land uses, 100 ft maximum for urban land uses)
- S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_t , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_t , can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

$$V = C_v S_w^{0.5}$$

Where:

V = velocity (ft/s)

 C_v = conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

(Eq. 6-9)

Type of Land Surface	C_{v}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried) [*]	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20
* For buried ripran select C value based on type of y	agetative cover

Table 6-7.	Conveyance	Coefficient, C_{ν}
-------------------	------------	------------------------

For buried riprap, select C_v value based on type of vegetative cover.

The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration (t_c) is then the sum of the overland flow time (t_i) and the travel time (t_i) per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation 6-10. The first design point is defined as the point where runoff first enters the storm sewer system.

$$t_c = \frac{L}{180} + 10 \tag{Eq. 6-10}$$

Where:

 t_c = maximum time of concentration at the first design point in an urban watershed (min)

L = waterway length (ft)

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

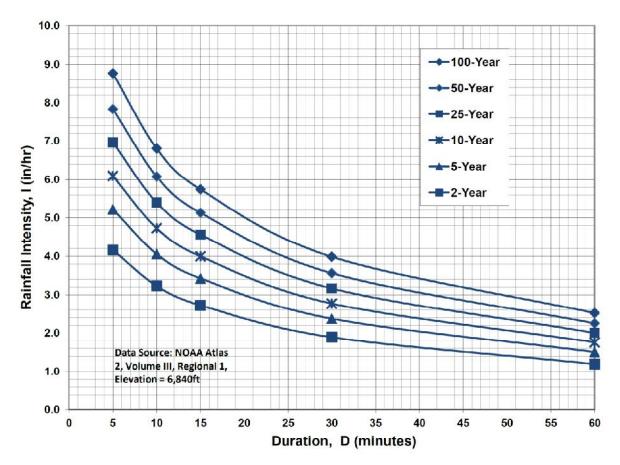


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$I_{100} = -2.52 \ln(D) + 12.735$
$I_{50} = -2.25 \ln(D) + 11.375$
$I_{25} = -2.00 \ln(D) + 10.111$
$I_{10} = -1.75 \ln(D) + 8.847$
$I_5 = -1.50 \ln(D) + 7.583$
$I_2 = -1.19 \ln(D) + 6.035$
Note: Values calculated by equations may not precisely duplicate values read from figure.

STRUTHERS RANCH POLARIS COMPOSITE RUNOFF COEFFICIENTS

5-YEAR C VALU	TOTAL		SUB-AREA 1		T	SUB-AREA 2		1	SUB-AREA 3		
	AREA		DEVELOPMENT/		AREA	DEVELOPMENT/			DEVELOPMENT/		WEIGHTED
BASIN	(AC)	(AC)	COVER	С	(AC)	COVER	С	(AC)	COVER	С	C VALUE
A	2.74	2.74	VACANT	0.08							0.080
OB1	1.47	1.47	SF RESIDENTIAL	0.3							0.300
В	1.41	1.41	VACANT	0.08							0.080
OB1,B	2.88										0.192
A,OB1,B	5.62										0.138
100-YEAR C VAL	UES TOTAL AREA	(AC)	SUB-AREA 1 DEVELOPMENT/ COVER	С	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	С	(AC)	SUB-AREA 3 DEVELOPMENT/ COVER	С	WEIGHTED C VALUE
	UES	(AC)	DEVELOPMENT/	С	AREA (AC)	DEVELOPMENT/	С	(AC)	DEVELOPMENT/	С	WEIGHTED
	UES TOTAL AREA	(AC) 2.74	DEVELOPMENT/	C 0.35		DEVELOPMENT/	С	(AC)	DEVELOPMENT/	С	WEIGHTED
	LUES TOTAL AREA (AC)		DEVELOPMENT/ COVER			DEVELOPMENT/	С	(AC)	DEVELOPMENT/	C	WEIGHTED C VALUE
BASIN	UES TOTAL AREA (AC) 2.74	2.74	DEVELOPMENT/ COVER VACANT	0.35		DEVELOPMENT/	С	(AC)	DEVELOPMENT/	C	WEIGHTED C VALUE 0.350
BASIN A OB1	UES TOTAL AREA (AC) 2.74 1.47	<u>2.74</u> 1.47	DEVELOPMENT/ COVER VACANT SF RESIDENTIAL	0.35 0.5		DEVELOPMENT/	С	(AC)	DEVELOPMENT/	C	WEIGHTED C VALUE 0.350 0.500

STRUTHERS RANCH POLARIS COMPOSITE RUNOFF COEFFICIENTS

	TOTAL		SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		
	AREA		DEVELOPMENT/		AREA	DEVELOPMENT/			DEVELOPMENT/		WEIGHTED
BASIN	(AC)	(AC)	COVER	С	(AC)	COVER	С	(AC)	COVER	С	C VALUE
A	2.74	1.90	PAVED/IMPERVIOUS	0.9	0.84	LANDSCAPED	0.08				0.649
OB1	1.47	1.47	SF RESIDENTIAL	0.3							0.300
В	1.41	1.34	PAVED/IMPERVIOUS	0.9	0.07	LANDSCAPED	0.08				0.859
OB1,B	2.88										0.574
A,OB1,B	5.62										0.610
100-YEAR C VAL											
	TOTAL AREA		SUB-AREA 1 DEVELOPMENT/	_	AREA	SUB-AREA 2 DEVELOPMENT/			SUB-AREA 3 DEVELOPMENT/		WEIGHTED
100-YEAR C VAL Basin	TOTAL	(AC)		C	AREA (AC)	-	C	(AC)		C	WEIGHTED C VALUE
	TOTAL AREA	(AC)	DEVELOPMENT/	C 0.96		DEVELOPMENT/	C 0.35	(AC)	DEVELOPMENT/	С	
	TOTAL AREA (AC)		DEVELOPMENT/ COVER		(AC)	DEVELOPMENT/ COVER		(AC)	DEVELOPMENT/	C	C VALUE
BASIN	TOTAL AREA (AC) 2.74	1.90	DEVELOPMENT/ COVER PAVED/IMPERVIOUS	0.96	(AC)	DEVELOPMENT/ COVER		(AC)	DEVELOPMENT/	C	C VALUE
BASIN	TOTAL AREA (AC) 2.74 1.47	1.90 1.47	DEVELOPMENT/ COVER PAVED/IMPERVIOUS SF RESIDENTIAL	0.96 0.5	(AC)	DEVELOPMENT/ COVER LANDSCAPED	0.35	(AC)	DEVELOPMENT/	C	C VALUE 0.773 0.500

EXISTING CONDITIONS

					Overland Flow Channel flow													
				с				CHANNEL	CONVEYANCE		SCS (2)		TOTAL	TOTAL	INTEN	SITY ⁽⁵⁾	PEAK F	LOW
BASIN	DESIGN POINT	AREA (AC)	5-YEAR	100-YEAR	LENGTH (FT)	SLOPE (FT/FT)	Tco ⁽¹⁾ (MIN)	LENGTH (FT)	COEFFICIENT C	SLOPE (FT/FT)	VELOCITY (FT/S)	Tt ⁽³⁾ (MIN)	Tc ⁽⁴⁾ (MIN)	Тс ⁽⁴⁾ (MIN)	5-YR (IN/HR)	100-YR (IN/HR)	Q5 ⁽⁶⁾ (CFS)	Q100 ⁽⁶⁾ (CFS)
A	A	2.74	0.080	0.350	100	0.030	13.0	275	15	0.047	3.25	1.4	14.4	14.4	3.59	6.02	0.79	5.77
OB1	OB1	1.47	0.300	0.500	100	0.020	11.6					0.0	11.6	11.6	3.90	6.55	1.72	4.82
В	В	1.41	0.080	0.350	100	0.030	13.0	585	15	0.018	2.01	4.8	17.8	17.8	3.26	5.48	0.37	2.70
OB1,B	B1	2.88	0.192	0.427									16.5	16.5	3.38	5.67	1.87	6.98
Tt DP-B1 to DP1								225	15	0.036	2.85	1.3						
A,OB1,B	1	5.62	0.138	0.389									17.8	17.8	3.27	5.48	2.53	11.98

DEVELOPED CONDITIONS

					0	verland Flo	w		Cha									
				с				CHANNEL	CONVEYANCE		SCS ⁽²⁾		TOTAL	TOTAL	INTEN	SITY ⁽⁵⁾	PEAK I	LOW
BASIN	DESIGN POINT	AREA (AC)	5-YEAR	100-YEAR	LENGTH (FT)	SLOPE (FT/FT)	Tco ⁽¹⁾ (MIN)	LENGTH (FT)	COEFFICIENT C	SLOPE (FT/FT)	VELOCITY (FT/S)	Tt ⁽³⁾ (MIN)	Tc ⁽⁴⁾ (MIN)	Tc ⁽⁴⁾ (MIN)	5-YR (IN/HR)	100-YR (IN/HR)	Q5 ⁽⁶⁾ (CFS)	Q100 ⁽⁶⁾ (CFS)
A	Α	2.74	0.649	0.773	60	0.083	3.2	490	20	0.027	3.29	2.5	5.6	5.6	4.99	8.37	8.87	17.73
OB1	OB1	1.47	0.300	0.500	100	0.020	11.6					0.0	11.6	11.6	3.90	6.55	1.72	4.82
В	В	1.41	0.859	0.930	100	0.030	3.1	500	20	0.02	2.83	2.9	6.0	6.0	4.89	8.22	5.93	10.78
OB1,B	B1	2.88	0.574	0.710									14.6	14.6	3.56	5.98	5.89	12.24
Tt DP-B1 to DP1								225	20	0.036	3.79	1.0						
A,OB1,B	1	5.62	0.610	0.741									15.6	15.6	3.47	5.82	11.88	24.23

DEVELOPED CONDITIONS - COMPARISON WITH SUBDIVISION DRAINAGE REPORT ("FINAL DRAINAGE REPORT FOR STRUTHERS RANCH FILING NO. 2" BY JPS DATED 10/14/04)

					0	verland Flo	w	Channel flow										
				c				CHANNEL	CONVEYANCE		SCS ⁽²⁾		TOTAL	TOTAL	INTEN	SITY ⁽⁵⁾	PEAK I	LOW
BASIN	DESIGN	AREA	5-YEAR	100-YEAR	LENGTH	SLOPE	Tco ⁽¹⁾	LENGTH	COEFFICIENT	SLOPE	VELOCITY	Tt (3)	Tc (4)	Tc (4)	5-YR	100-YR	Q5 ⁽⁶⁾	Q100 ⁽⁶⁾
	POINT	(AC)			(FT)	(FT/FT)	(MIN)	(FT)	C	(FT/FT)	(FT/S)	(MIN)	(MIN)	(MIN)	(IN/HR)	(IN/HR)	(CFS)	(CFS)
D6A	D6A	3.00	0.900	0.900			0.0	300	15	0.04	3.00	1.7	1.7	5.0	5.17	8.68	13.96	23.43
D9A	D9A	3.18	0.900	0.900			0.0	620	15	0.005	1.06	9.7	9.7	9.7	4.17	7.00	11.93	20.03
D6A,D9A	1	6.18	0.900	0.900									9.7	9.7	4.17	7.00	23.18	38.92

1) OVERLAND FLOW Tco = (0.395*(1.1-RUNOFF COEFFICIENT)*(OVERLAND FLOW LENGTH*(0.5)/(SLOPE*(0.333))

2) SCS VELOCITY = C * ((SLOPE(FT/FT)^0.5)

C = 2.5 FOR HEAVY MEADOW

C = 5 FOR TILLAGE/FIELD

C = 7 FOR SHORT PASTURE AND LAWNS

C = 10 FOR NEARLY BARE GROUND

C = 15 FOR GRASSED WATERWAY

C = 20 FOR PAVED AREAS AND SHALLOW PAVED SWALES

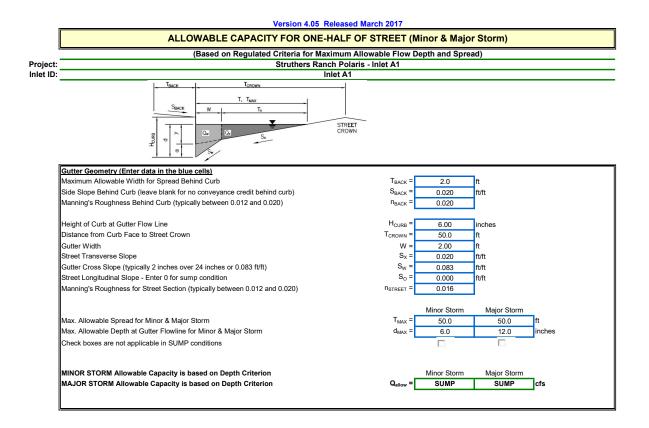
3) MANNING'S CHANNEL TRAVEL TIME = L/V (WHEN CHANNEL VELOCITY IS KNOWN)

4) TC = Tco + Tt *** IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED

5) INTENSITY BASED ON I-D-F EQUATIONS IN CITY OF COLORADO SPRINGS DRAINAGE CRITERIA MANUAL

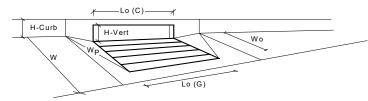
I₅ = -1.5 * ln(Tc) + 7.583

I₁₀₀ = -2.52 * In(Tc) + 12.735


6) Q = CiA

APPENDIX C

HYDRAULIC CALCULATIONS


STRUTHERS RANCH POLARIS STORM INLET SIZING SUMMARY

	BASIN FLOW			INLET FLOW						
		Q5	Q100		Q5	Q100	Π	INLET		INLET
		FLOW	FLOW	FLOW %	FLOW	FLOW	11	CONDITION /	INLET	CAPACITY
INLET	DP	(CFS)	(CFS)	OF BASIN	(CFS)	(CFS)		TYPE	SIZE (FT)	(CFS)
A1	A	8.9	17.7	40	3.6	7.1		SUMP TYPE 16	SGL	8.7
							Ш			

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	Denver No. 16	6 Combination	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	3.00	3.00	feet
Width of a Unit Grate	W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	0.50	0.50	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	3.60	3.60	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	0.60	0.60	7
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	7
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.66	0.66	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	0.523	1.023	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.94	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	0.94	1.00	_
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.9	8.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.6	7.1	cfs

STRUTHERS RANCH POLARIS STORM SEWER SIZING SUMMARY

		-	PIPE FLOW				
PIPE	DESIGN POINT	Q5 FLOW (CFS)	Q100 FLOW (CFS)	PIPE SIZE	MIN. PIPE SLOPE	PIPE CAPACITY (CFS)	
<u>م1</u>	A1	3.6	7.1	18	1.0%	10.5	
	DNS:					L	

Hydraulic Analysis Report

Project Data

Project Title:Project - PolarisDesigner:JPSProject Date:Monday, June 13, 2022Project Units:U.S. Customary UnitsNotes:

Channel Analysis: SD-A1

Notes:

Input Parameters

Channel Type: Circular Pipe Diameter: 1.5000 ft Longitudinal Slope: 0.0100 ft/ft Manning's n: 0.0130 Depth: 1.5000 ft

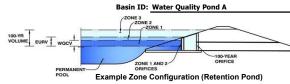
Result Parameters

Flow: 10.5043 cfs Area of Flow: 1.7671 ft² Wetted Perimeter: 4.7124 ft Hydraulic Radius: 0.3750 ft Average Velocity: 5.9442 ft/s Top Width: 0.0000 ft Froude Number: 0.0000 Critical Depth: 1.2451 ft Critical Velocity: 6.6989 ft/s Critical Slope: 0.0098 ft/ft Critical Top Width: 1.13 ft Calculated Max Shear Stress: 0.9360 lb/ft² Calculated Avg Shear Stress: 0.2340 lb/ft²

APPENDIX D

WATER QUALITY POND CALCULATIONS

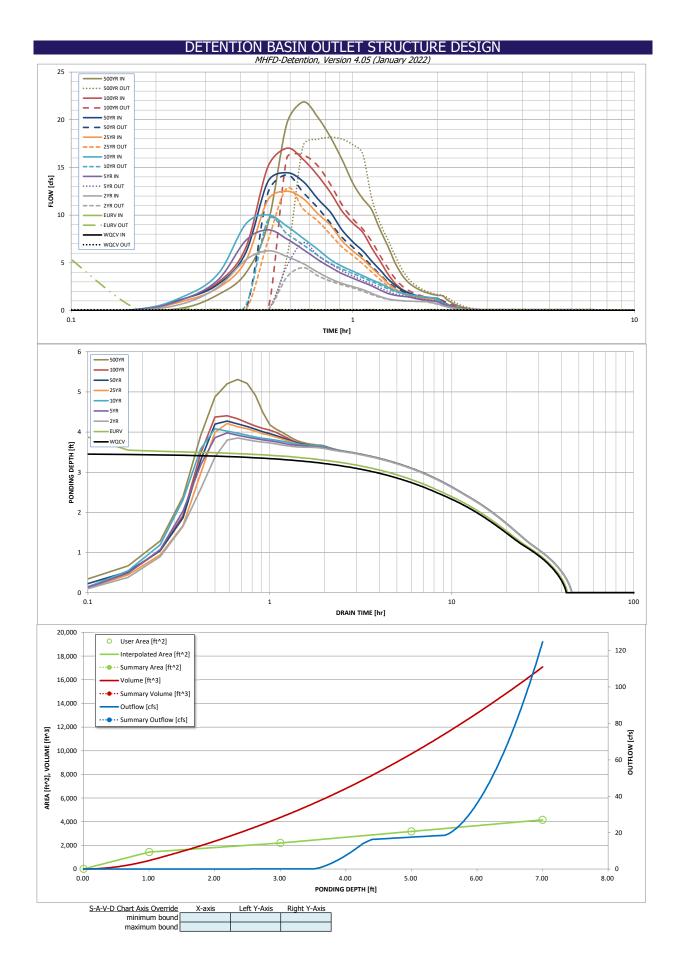
STRUTHERS RANCH POLARIS COMPOSITE IMPERVIOUS AREAS


IMPERVIOUS AREAS

IMPERVIOUS AR	EAS										
	TOTAL		SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		
	AREA		DEVELOPMENT/	PERCENT	AREA	DEVELOPMENT/	PERCENT		DEVELOPMENT/	PERCENT	WEIGHTED
BASIN	(AC)	(AC)	COVER	IMPERVIOUS	(AC)	COVER	IMPERVIOUS	(AC)	COVER	IMPERVIOUS	% IMP
A	2.74	1.90	PAVED/IMPERVIOUS	100	0.84	LANDSCAPED	0.00				69.343
OB1	1.47	1.47	SF RESIDENTIAL	40							40.000
В	1.41	1.34	PAVED/IMPERVIOUS	100	0.07	LANDSCAPED	0.00				95.000
OB1,B	2.88										66.927
A,OB1,B	5.62										68.105

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)



ZONE 1		100-YEAI ORIFICE	8		Depth Increment =		ft							
PERMANENT ORIFICE POOL Example Zone C	ES	on (Retentio	n Pond)		Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)
Watershed Information					Top of Micropool		0.00				10	0.000		
Selected BMP Type =	EDB]			Bot EL=6752.0		1.00				1,437	0.033	723	0.017
Watershed Area =	5.62	acres					3.00				2,201	0.051	4,361	0.100
Watershed Length =	825	ft			EL=6756.0		5.00				3,180	0.073	9,742	0.224
Watershed Length to Centroid =	400	ft			Top EL=6758.0		7.00				4,160	0.096	17,082	0.392
Watershed Slope =	0.024	ft/ft												
Watershed Imperviousness =	68.10%	percent												
Percentage Hydrologic Soil Group A =	0.0%	percent												
Percentage Hydrologic Soil Group B =	100.0%	percent												
Percentage Hydrologic Soil Groups C/D =	0.0%	percent												
Target WQCV Drain Time =	40.0	hours												
Location for 1-hr Rainfall Depths =	User Input	-												
After providing required inputs above inclu	uding 1-hour	rainfall												
depths, click 'Run CUHP' to generate runof														
the embedded Colorado Urban Hydrog	graph Procedu	ire.	Optional User	Overrides										
Water Quality Capture Volume (WQCV) =	0.125	acre-feet		acre-feet										
Excess Urban Runoff Volume (EURV) =	0.419	acre-feet		acre-feet										
2-yr Runoff Volume (P1 = 1.19 in.) =	0.370	acre-feet	1.19	inches										
5-yr Runoff Volume (P1 = 1.5 in.) =	0.500	acre-feet	1.50	inches										
10-yr Runoff Volume (P1 = 1.75 in.) =	0.611	acre-feet	1.75	inches										
25-yr Runoff Volume (P1 = 2 in.) =	0.743	acre-feet	2.00	inches										
50-yr Runoff Volume (P1 = 2.25 in.) =	0.859	acre-feet	2.25	inches										
100-yr Runoff Volume (P1 = 2.52 in.) =	0.998	acre-feet	2.52	inches										
500-yr Runoff Volume (P1 = 3.14 in.) =	1.293	acre-feet	3.14	inches										
Approximate 2-yr Detention Volume =	0.327	acre-feet	-	•										
Approximate 5-yr Detention Volume =	0.436	acre-feet												
Approximate 10-yr Detention Volume =	0.553	acre-feet												
Approximate 25-yr Detention Volume =	0.595	acre-feet												
Approximate 50-yr Detention Volume =	0.619	acre-feet												
Approximate 100-yr Detention Volume =	0.665	acre-feet												
-		-												
Define Zones and Basin Geometry														
Zone 1 Volume (WQCV) =	0.125	acre-feet												
Select Zone 2 Storage Volume (Optional) =		acre-feet	Total deten	tion volume										
Select Zone 3 Storage Volume (Optional) =		acre-feet	is less than											
Total Detention Basin Volume =	0.125	acre-feet	volume.											
E Contraction of the second		-								•				

SEE COMPOSITE IMPERVIOUS AREA CALCULATIONS ON PRECEDING PAGE (...WATER QUALITY POND A IS DESIGNED FOR THE COMBINED FLOW FROM DEVELOPED BASINS A, OB1, AND B)

	DE	ETENTION I	BASIN OUT	FLET STRU	CTURE DE	SIGN			
		MH		rsion 4.05 (Januar,		01011			
	Struthers Ranch P				-				
ZONE 3	Water Quality Por			Estimate d	Estimated				
ZONE 2 ZONE 1				Estimated	Estimated	Outlot Type			
			7 1 (11000)	Stage (ft)	Volume (ac-ft)	Outlet Type Orifice Plate	1		
T T Maca			Zone 1 (WQCV)		0.125				
ZONE 1 AND 2	100-YEAR ORIFICE		Zone 2 (User)	3.47	0.000	Weir&Pipe (Restrict)			
PERMANENT ORIFICES POOL Example Zone (Configuration (Ret	rention Pond)	Zone 3			Not Utilized			
•	•			Total (all zones)	0.125		<u></u>		
User Input: Orifice at Underdrain Outlet (typical	<u>y used to drain WQ</u>	ft (distance below		curface)	Undow	Irain Orifice Area =	Calculated Parame	ters for Underdrain	1
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =		inches		surface)		Orifice Centroid =		ft ² feet	
Underdrain Unite Diameter -		Inches			Underdrain			Jieet	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically used	to drain WOCV an	d/or EURV in a sed	imentation BMP)		Calculated Parame	ters for Plate	
Centroid of Lowest Orifice =	0.00	ft (relative to basin				ce Area per Row =	3.958E-03	ft ²	
Depth at top of Zone using Orifice Plate =	3.47	ft (relative to basin	bottom at Stage =	= 0 ft)		ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	13.88	inches <		hould be 11	1" if an a sing	cal Slot Controid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	0.57	sq. inches (diamete	er = 13/16 inch) SI	hould be 14.4 s shown belo	+ ir spacing	Sptica Stot Area =	N/A	ft ²	
				big impact o		ut			
User Input: Stage and Total Area of Each Orifice	· · · · · · · · · · · · · · · · · · ·		<u> </u>	ood to fix nor			D	D. 04	1
	Row 1 (required)	Row 2 (optional)		Row 4 (optional)	Row 5 (optional)	Row 6 (Optional)	Row 7 (optional)	Row 8 (optional)	-
Stage of Orifice Centroid (ft)	0.00	1.20	2.40						-
Orifice Area (sq. inches)	0.57	0.57	0.57						1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Orifice Centroid (ft)		Row 10 (optional)	Now II (optional)				Now 15 (optional)		
Orifice Area (sq. inches)									1
									-
User Input: Vertical Orifice (Circular or Rectange	ular <u>)</u>		_				Calculated Parame	ters for Vertical Or	fice
	Not Selected	Not Selected					Not Selected	Not Selected]
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basir	n bottom at Stage =	= 0 ft) Ver	tical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A		ft (relative to basir	n bottom at Stage =	= 0 ft) Vertica	Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
User Input: Overflow Weir (Drephov with Elet a	· Flonod Crato and	Outlot Dipo OR Doc	tangular/Trangzoid	lal Wair and No Out	lat Pipa)		Calculated Parama	tors for Overflow V	Voir
User Input: Overflow Weir (Dropbox with Flat o	· · · · · · · · · · · · · · · · · · ·	1	tangular/Trapezoid	lal Weir and No Out	let Pipe)			ters for Overflow V	Veir
	Zone 2 Weir	Not Selected				Numer Edge H. =	Zone 2 Weir	Not Selected]
Overflow Weir Front Edge Height, Ho =	Zone 2 Weir 3.50	Not Selected N/A	ft (relative to basin I	lal Weir and No Out	t) Height of Grate	e Upper Edge, H _t = /eir Slope Lenath =	Zone 2 Weir 3.50	Not Selected N/A	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Zone 2 Weir 3.50 4.00	Not Selected N/A N/A	ft (relative to basin I feet	bottom at Stage = 0 f	t) Height of Grate Overflow W	eir Slope Length =	Zone 2 Weir 3.50 2.50	Not Selected N/A N/A]
Overflow Weir Front Edge Height, Ho =	Zone 2 Weir 3.50	Not Selected N/A N/A N/A	ft (relative to basin I	bottom at Stage = 0 f Gr	t) Height of Grate	eir Slope Length = 0-yr Orifice Area =	Zone 2 Weir 3.50	Not Selected N/A	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	Zone 2 Weir 3.50 4.00 0.00	Not Selected N/A N/A N/A	ft (relative to basin I feet H:V	bottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W rate Open Area / 10	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris =	Zone 2 Weir 3.50 2.50 3.94	Not Selected N/A N/A N/A	feet feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	Zone 2 Weir 3.50 4.00 0.00 2.50	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin I feet H:V	bottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris =	Zone 2 Weir 3.50 2.50 3.94 6.96	Not Selected N/A N/A N/A N/A	feet feet ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin l feet H:V feet	bottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open	leir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48	Not Selected N/A N/A N/A N/A N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% (Circular Orifice, R	Not Selected N/A N/A N/A N/A N/A N/A Restrictor Plate, or R	ft (relative to basin l feet H:V feet %	bottom at Stage = 0 f Gr Ov C	t) Height of Grate Overflow W rate Open Area / 10 verflow Grate Open Overflow Grate Open	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris =	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction P	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% (Circular Orifice, R Zone 2 Restrictor	Not Selected N/A N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected	ft (relative to basin l feet H:V feet % <u>ectangular Orifice)</u>	bottom at Stage = 0 f Gr Ov C	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open	leir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameter	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor	Not Selected N/A N/A N/A N/A N/A Flow Restriction P Not Selected	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Restrictor 0.00	Not Selected N/A N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A	ft (relative to basin l feet H:V feet % <u>ectangular Orifice)</u> ft (distance below ba	bottom at Stage = 0 f Gr Ov C	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area =	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w// Zone 2 Restrictor 1.77	Not Selected N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A	feet feet ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Restrictor 0.00 18.00	Not Selected N/A N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A N/A	ft (relative to basin l feet H:V feet % <u>ectangular Orifice)</u> ft (distance below be inches	bottom at Stage = 0 f Gr Ov C asin bottom at Stage	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or Outlet	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = : Orifice Centroid =	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75	Not Selected N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Restrictor 0.00	Not Selected N/A N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A N/A	ft (relative to basin l feet H:V feet % <u>ectangular Orifice)</u> ft (distance below ba	bottom at Stage = 0 f Gr Ov C asin bottom at Stage	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = : Orifice Centroid =	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w// Zone 2 Restrictor 1.77	Not Selected N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A	feet feet ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% 2.00 2.00 2.00 2.00 2.00 18.00 18.00	Not Selected N/A N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A N/A	ft (relative to basin l feet H:V feet % <u>ectangular Orifice)</u> ft (distance below be inches	bottom at Stage = 0 f Gr Ov C asin bottom at Stage	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or Outlet	leir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = : Orifice Centroid =	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A N/A	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% (Circular Orifice, R Zone 2 Restrictor 0.00 18.00 18.00 Trapezoidal)	Not Selected N/A N/A N/A N/A N/A N/A N/A Not Selected N/A N/A	ft (relative to basin l feet H:V feet % ectangular Orifice) ft (distance below be inches inches	bottom at Stage = 0 f Gr Ov C asin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open <u>Ca</u> = 0 ft) O Outlet ral Angle of Restric	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe =	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u>	Not Selected N/A N/A N/A N/A N/A N/A N/A Kets for Spillway	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% (Circular Orifice, R Zone 2 Restrictor 0.00 18.00 18.00 Trapezoidal) 5.50	Not Selected N/A N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A N/A	ft (relative to basin l feet H:V feet % ectangular Orifice) ft (distance below be inches inches	bottom at Stage = 0 f Gr Ov C asin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open <u>Ca</u> = 0 ft) O Outlet ral Angle of Restric Spillway D	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth=	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50	Not Selected N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A N/A ters for Spillway feet	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% (Circular Orifice, R Zone 2 Restrictor 0.00 18.00 18.00 Trapezoidal)	Not Selected N/A N/A N/A N/A N/A N/A N/A Not Selected N/A N/A	ft (relative to basin l feet H:V feet % ectangular Orifice) ft (distance below be inches inches	bottom at Stage = 0 f Gr Ov C asin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O Uutlet ral Angle of Restric Spillway D Stage at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe =	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u>	Not Selected N/A N/A N/A N/A N/A N/A N/A Ketsriction P Not Selected N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% (Circular Orifice, R Zone 2 Restrictor 0.00 18.00 18.00 Trapezoidal) 5.50 14.00	Not Selected N/A N/A N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basin feet	ft (relative to basin l feet H:V feet % ectangular Orifice) ft (distance below be inches inches	bottom at Stage = 0 f Gr Ov C asin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Car Car Spillway D Stage at 1 Basin Area at 1	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard =	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 7.00	Not Selected N/A N/A N/A N/A N/A Selected N/A N/A N/A N/A ters for Spillway feet	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% C(circular Orifice, R Zone 2 Restrictor 0.00 18.00 18.00 Trapezoidal) 5.50 14.00 4.00	Not Selected N/A N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V	ft (relative to basin l feet H:V feet % ectangular Orifice) ft (distance below be inches inches	bottom at Stage = 0 f Gr Ov C asin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Car Car Spillway D Stage at 1 Basin Area at 1	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 <u>Calculated Parame</u> 0.50 7.00 0.10	Not Selected N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres	feet feet ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% (Circular Orifice, R Zone 2 Restrictor 0.00 18.00 18.00 Trapezoidal) 5.50 14.00 4.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A Not Selected N/A N/A ft (relative to basin feet H:V feet	ft (relative to basin I feet H:V feet % ectangular Orifice) ft (distance below ba inches inches hottom at Stage =	bottom at Stage = 0 f Gr Ov c asin bottom at Stage Half-Cent = 0 ft)	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Car Car Spillway D Stage at T Basin Area at T Basin Volume at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= "op of Freeboard = "op of Freeboard = "op of Freeboard =	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 7.00 0.10 0.39	Not Selected N/A N/A N/A N/A N/A N/A N/A CFlow Restriction P Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% (Circular Orifice, R Zone 2 Restrictor 0.00 18.00 18.00 Trapezoidal) 5.50 14.00 4.00 1.00 The user can over	Not Selected N/A N/A N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet ride the default CUH	ft (relative to basin I feet H:V feet % ectangular Orifice) ft (distance below basi inches inches bottom at Stage =	bottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft)	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Verflow Grate Open Ca = 0 ft) O Outlet ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Area at T	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = ilculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = tor Plate Depth =	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 S for Outlet Pipe W/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 7.00 0.10 0.39	Not Selected N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet feet ft ² ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% (Circular Orifice, R Zone 2 Restrictor 0.00 18.00 18.00 Trapezoidal) 5.50 14.00 4.00 1.00 The user can over WQCV N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet ride the default CUP EURV N/A	ft (relative to basin I feet H:V feet % ectangular Orifice) ft (distance below be inches inches bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> 1.19	bottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) <u>5 Year</u> 1.50	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Noerflow Grate Open Ca = 0 ft) Oi Outlet ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Volume at T U rentering new value 10 Year 1.75	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = n Area w/ Debris = elculated Parameter utlet Orifice Area = c Orifice Centroid = tor Plate on Pipe = esign Flow Depth = "op of Freeboard = "op of	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 7.00 0.10 0.39 drographs table (CC 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acres acre.ft blumns W through 100 Year 2.52	feet feet ft ² ft ² feet radians 500 Year 3.14
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acreft) =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% (Circular Orifice, R Zone 2 Restrictor 0.00 18.00 18.00 Trapezoidal) 5.50 14.00 4.00 1.00 The user can oven WQCV N/A 0.125	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet Fide the default CUP EURV N/A 0.419	ft (relative to basin l feet H:V feet % ectangular Orifice) ft (distance below be inches hottom at Stage = hottom at Stage = <u>4P hydrographs and</u> <u>2 Year</u> 1.19 0.370	bottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) <u>5 Year 1.50</u> 0.500	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Verflow Grate Open Ca = 0 ft) O Outlef ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Volume at T ventering new value 10 Year 1.75 0.611	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = ilculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= fop of Freeboard = fop of Freeboard = fop of Freeboard = fop of Freeboard = 25 Year 2.00 0.743	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 7.00 0.10 0.39 drographs table (CC 50 Year 2.25 0.859	Not Selected N/A N/A N/A N/A N/A N/A N/A M/A N/A ters for Spillway feet feet acres acre-ft DIUMINS W through . 100 Year 2.52 0.998	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% (Circular Orifice, R Zone 2 Restrictor 0.00 18.00 18.00 Trapezoidal) 5.50 14.00 4.00 1.00 The user can over WQCV N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet ride the default CUP EURV N/A	ft (relative to basin I feet H:V feet % ectangular Orifice) ft (distance below be inches inches bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> 1.19	bottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) <u>5 Year</u> 1.50	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Noerflow Grate Open Ca = 0 ft) O Uutlet ral Angle of Restric Spillway D Stage at 1 Basin Area at 1 Basin Volume at 1 (ventering new value 10 Year 1.75	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = n Area w/ Debris = elculated Parameter utlet Orifice Area = c Orifice Centroid = tor Plate on Pipe = esign Flow Depth = "op of Freeboard = "op of	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 7.00 0.10 0.39 drographs table (CC 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acres acre.ft blumns W through 100 Year 2.52	feet feet ft ² ft ² feet radians 500 Year 3.14
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = ILIP Predevelopment Peak Q (cfs) =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% (Circular Orifice, R Zone 2 Restrictor 0.00 18.00 18.00 Trapezoidal) 5.50 14.00 4.00 1.00 The user can oven WQCV N/A 0.125 N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A N/A It (relative to basin feet H:V feet Fide the default CU/ EURV N/A 0.419 N/A N/A N/A N/A	ft (relative to basin l feet H:V feet % ectangular Orifice) ft (distance below be inches inches bottom at Stage = <u>HP hydrographs and</u> <u>2 Year</u> <u>1.19</u> 0.370 0.370 0.6	bottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) <u>5 Year 1.50</u> 0.500 0.500 1.6	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Verflow Grate Open Verflow Grate Open Ca = 0 ft) O Outlet ral Angle of Restric Spillway D Stage at 1 Basin Area at 1 Basin Area at 1 Basin Area at 1 Basin Area at 1 O Year 1.75 0.611 0.611 2.4	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.743 0.743 4.3	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe <i>w</i> / Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 7.00 0.10 0.39 drographs table (CC 50 Year 2.25 0.859 0.859 5.4	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Dournes W through . 100 Year 2.52 0.998 0.998 6.9	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% 2.50 2.50 2.50 2.50 2.50 2.50 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 14.00 1.00 2.50 1.00 2.50 1.00 2.50 1.00 2.50 1.00 2.50 1.00 1.00 2.50 1.00 1.10 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A N/A N/A feet feet H:V feet CURV N/A 0.419 N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basin l feet H:V feet % ectangular Orifice) ft (distance below be inches hottom at Stage = <u>HP hydrographs an</u> 2 Year 1.19 0.370 0.370 0.370 0.6	bottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) <u>5 Year 1.50 0.500 0.500 1.6 0.29</u>	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Stage at T Basin Area at T Contemporation of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameter utlet Orifice Area = c Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 2.00 0.743 0.743 4.3 0.77	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 S for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 7.00 0.10 0.10 0.10 0.10 0.39 drographs table (Co 50 Year 2.25 0.859 0.859 5.4 0.96	Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft columns W through. 100 Year 2.52 0.998 6.9 1.23	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 1.293 1.293 9.7 1.72
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Meight Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Inflow Q (cfs) =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% (Circular Orifice, R Zone 2 Restrictor 0.00 18.00 18.00 Trapezoidal) 5.50 14.00 4.00 1.00 The user can oven WQCV N/A 0.125 N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A N/A It (relative to basin feet H:V feet Fide the default CU/ EURV N/A 0.419 N/A N/A N/A N/A	ft (relative to basin l feet H:V feet % ectangular Orifice) ft (distance below be inches hottom at Stage = http://www.stage.org/line bottom at Stage = 2 Year 1.19 0.370 0.370 0.6 	bottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) <u>5 Year 1.50</u> 0.500 0.500 1.6	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Nverflow Grate Open Dverflow Grate Open Car = 0 ft) O Outlet ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Volume at T Ventering new valu 10 Year 1.75 0.611 0.611 2.4 0.43 10.0	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = n Area w/ Debris = lculated Parameter utlet Orifice Area = : Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year 2.00 0.743 0.743 4.3	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe <i>w</i> / Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 7.00 0.10 0.39 drographs table (CC 50 Year 2.25 0.859 0.859 5.4	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A CELOW Restriction P Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft columns W through 100 Year 2.52 0.998 0.998 0.998 6.9 1.23 17.0	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs) arcres) Peak Inflow Q (cfs) = Peak Unflow Q (cfs) = Peak Unflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% 2.50 2.50 2.50 2.50 2.50 2.50 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 1.00 2.50 14.00 1.00 2.50 14.00 1.00 2.50 14.00 1.00 2.50 14.00 1.00 2.50 14.00 1.00 2.50 14.00 1.00 2.50 14.00 1.00 2.50 14.00 1.00 2.50 14.00 1.00 2.50 14.00 1.00 2.50 14.00 1.00 1.00 2.50 14.00 1.00 1.00 2.50 1.00 1.00 2.50 1.00 1.00 1.00 1.00 2.50 1.00 1.00 1.00 2.50 1.00 1	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A N/A N/A feet feet H:V feet Fide the default CUP N/A 0.419 N/A	ft (relative to basin l feet H:V feet % ectangular Orifice) ft (distance below be inches hottom at Stage = hottom at Stage = <u>HP hydrographs an</u> <u>2 Year</u> <u>1.19</u> 0.370 0.370 0.370 0.370 0.63 <u>0.10</u> 6.3 4.5 N/A	bottom at Stage = 0 f Gr Ov c asin bottom at Stage Half-Cent = 0 ft) <u>5 Year 1.50 0.500 0.500 1.6 0.29 8.5 7.1 4.4</u>	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Stage at T Basin Area at T Content of the stage at T Basin Area Area Area Area Area Area Area Area	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/o Debris = iculated Parameter utlet Orifice Area = c Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 2.00 0.743 0.743 4.3 0.77 12.5 12.8 3.0	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 S for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 7.00 0.10 0.10 0.39 drographs table (Co 50 Year 2.25 0.859 0.859 5.4 0.96 14.4 14.2 2.6	Not Selected N/A N/A N/A N/A N/A N/A N/A Construction P Not Selected N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft columns W through 1.23 1.7.0 16.3 2.3	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 1.293 1.293 9.7
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway End Slopes = Freeboard above Max Water Surface = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow C Predevelopment Q = Structure Controlling Flow =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% (Circular Orifice, R Zone 2 Restrictor 0.00 18.00 1.00	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A N/A N/A N/A I I I I I I I I I I I I I I I I I I I	ft (relative to basin I feet H:V feet % ectangular Orifice) ft (distance below be inches hottom at Stage = hottom at Stage = <u>4P hydrographs ann</u> <u>2 Year</u> 1.19 0.370 0.370 0.6 0.10 6.3 4.5 N/A Overflow Weir 1	bottom at Stage = 0 f Gr Ov c asin bottom at Stage Half-Cent = 0 ft) 0.500 1.6 0.29 8.5 7.1 4.4 Overflow Weir 1	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Nerflow Grate Open Dverflow Grate Open Ca = 0 ft) O Outlet ral Angle of Restric Spillway D Stage at 1 Basin Area at 1 Basin Volume at 1 0.611 0.611 2.4 0.611 2.4 0.5 3.9 Overflow Weir 1	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = n Area w/ Debris = liculated Parameter utlet Orifice Area = c Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = c.00 0.743 0.743 4.3 0.77 12.5 12.8 3.0 Overflow Weir 1	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 7.00 0.10 0.39 drographs table (CC 50 Year 2.25 0.859 5.4 0.96 14.4 14.2 2.6 Overflow Weir 1	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A CELOW Restriction P Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acres acre-ft 0/umns W through . 100 Year 2.52 0.998 0.998 6.9 1.23 17.0 16.3 2.3 Outlet Plate 1	feet feet ft ² ft ² ft ² feet radians 4 <i>F</i>). 500 Year 3.14 1.293 9.7 1.72 21.9 1.72 1.9 0.01tet Plate 1
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Restrictor 0.00 18.00 18.00 18.00 14.00 1.00 Trapezoidal) 5.50 14.00 4.00 1.00 The user can oven WQCV N/A 0.125 N/A N/A N/A Plate N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet Fide the default CU/r EURV N/A 0.419 N/A N/A N/A N/A N/A N/A N/A N/A N/A Overflow Weir 1 1.03	ft (relative to basin l feet H:V feet % ectangular Orifice) ft (distance below be inches hottom at Stage = hottom at Stage = <u>HP hydrographs and 2 Year 1.19 0.370 0.370 0.370 0.370 0.6 0.10 6.3 4.5 N/A Overflow Weir 1 0.62</u>	bottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) 0.500 0.500 1.6 0.500 1.6 0.500 1.6 0.500 1.6 0.29 8.5 7.1 4.4 Overflow Weir 1 1.0	t) Height of Grate Overflow Weir 1 ate Open Area / 10 verflow Grate Open Verflow Grate Open Ca = 0 ft) O Outlef ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Area at T Basin Area at T Basin Area at T Centering new value 10 Year 1.75 0.611 0.611 2.4 0.43 10.0 9.5 3.9 Overflow Weir 1 1.4	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = n Area w/ Debris = elulated Parameter utlet Orifice Area = corifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = op of Freeboard = con of Freeboa	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 7.00 0.10 0.39 drographs table (CC 50 Year 2.25 0.859 0.859 5.4 0.96 14.4 14.2 2.6 Overflow Weir 1 2.0	Not Selected N/A N/A N/A N/A N/A N/A N/A Yelow Restriction P Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 00 Year 2.52 0.998 0.998 6.9 1.23 17.0 16.3 2.3 Outlet Plate 1 2.3	feet feet ft ² ft ² ft ² feet radians <i>AF).</i> 500 Year 3.14 1.293 1.293 1.293 9.7 1. 72 21.9 18.2 1. 9 18.2 1. 9 0utlet Plate 1 2.6
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Neterour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow 4 (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (Incers) = Time to Drain 97% of Inflow Volume (Incers) = Time to Drain 97% of Inflow Volume (Incers) =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% (Circular Orifice, R Zone 2 Restrictor 0.00 18.00 1.00	Not Selected N/A	ft (relative to basin I feet H:V feet % ectangular Orifice) ft (distance below be inches hottom at Stage = hottom at Stage = <u>4P hydrographs ann</u> <u>2 Year</u> 1.19 0.370 0.6 0.10 6.3 4.5 N/A Overflow Weir 1 0.62 N/A 35	bottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft)	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Nerflow Grate Open Dverflow Grate Open Dverflow Grate Open Ca = 0 ft) O Outlet ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T 0.611 0.611 2.4 0.611 2.4 0.611 2.4 0.611 2.4 0.9.5 3.9 Overflow Weir 1 1.4 N/A 30	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = n Area w/ Debris = eiculated Parameter utlet Orifice Area = c Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = c 2.00 0.743 0.743 0.77 12.5 12.8 3.0 Overflow Weir 1 1.8 N/A 28	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 7.00 0.10 0.39 drographs table (CC 50 Year 2.25 0.859 5.4 0.859 5.4 0.96 14.4 14.2 2.6 Overflow Weir 1 2.0 N/A 26	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Contemport for the selected N/A N/A N/A N/A N/A N/A N/A N/A teers for Spillway feet feet acres acres acre-ft 100 Year 2.52 0.998 6.9 1.23 17.0 16.3 2.3 Outlet Plate 1 2.3 N/A 25	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 1.293 9.7 1.72 21.9 18.2 1.9 0.01tet Plate 1 2.6 N/A 21
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Nesults Design Storm Return Period = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre) Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% 2 (Circular Orifice, R Zone 2 Restrictor 0.00 18.00 18.00 18.00 18.00 14.00 4.00 1.00 7 <i>Trapezoidal</i>) 5.50 14.00 4.00 1.00 7 <i>Trapezoidal</i>) 7 <i>Trapezoidal</i>) 7 <i>Trapezoidal</i>) 7 <i>N/A</i> N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Restrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basin feet H:V feet Fide the default CU/ EURV N/A	ft (relative to basin I feet H:V feet % ectangular Orifice) ft (distance below be inches inches bottom at Stage = hottom at Stage = Vear 1.19 0.370 0.370 0.370 0.6 0.10 6.3 4.5 N/A Overflow Weir 1 0.62 N/A 35 41	bottom at Stage = 0 f Gr Ov C asin bottom at Stage Half-Cent = 0 ft)	t) Height of Grate Overflow Weir 1 ate Open Area / 10 verflow Grate Open Verflow Grate Open Verflow Grate Open Ca = 0 ft) O Outlef ral Angle of Restric Spillway D Stage at 1 Basin Area at 1 Basin Area at 1 Basin Area at 1 Basin Area at 1 Centering new value 10 Year 1.75 0.611 0.611 2.4 0.43 10.0 9.5 3.9 Overflow Weir 1 1.4 N/A 30 39	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = n Area w/ Debris = elculated Parameter utlet Orifice Area = c Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Con of Freeboard = C	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 7.00 0.10 0.39 drographs table (CC 50 Year 2.25 0.859 0.859 0.859 5.4 0.859 0.859 5.4 0.96 14.4 14.2 2.6 Overflow Weir 1 2.0 N/A 26 37	Not Selected N/A N/A N/A N/A N/A N/A N/A Yelow Restriction P Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 00 Year 2.52 0.998 6.9 1.23 17.0 16.3 2.3 N/A 25 36	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Neterour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow 4 (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (Incers) = Time to Drain 97% of Inflow Volume (Incers) = Time to Drain 97% of Inflow Volume (Incers) =	Zone 2 Weir 3.50 4.00 0.00 2.50 Type C Grate 50% (Circular Orifice, R Zone 2 Restrictor 0.00 18.00 1.00	Not Selected N/A	ft (relative to basin I feet H:V feet % ectangular Orifice) ft (distance below be inches hottom at Stage = hottom at Stage = <u>4P hydrographs ann</u> <u>2 Year</u> 1.19 0.370 0.6 0.10 6.3 4.5 N/A Overflow Weir 1 0.62 N/A 35	bottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft)	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Nerflow Grate Open Dverflow Grate Open Dverflow Grate Open Ca = 0 ft) O Outlet ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T 0.611 0.611 2.4 0.611 2.4 0.611 2.4 0.611 2.4 0.9.5 3.9 Overflow Weir 1 1.4 N/A 30	eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = n Area w/ Debris = eiculated Parameter utlet Orifice Area = c Orifice Centroid = tor Plate on Pipe = esign Flow Depth= op of Freeboard = op of Freeboard = op of Freeboard = c 2.00 0.743 0.743 0.77 12.5 12.8 3.0 Overflow Weir 1 1.8 N/A 28	Zone 2 Weir 3.50 2.50 3.94 6.96 3.48 s for Outlet Pipe w/ Zone 2 Restrictor 1.77 0.75 3.14 Calculated Parame 0.50 7.00 0.10 0.39 drographs table (CC 50 Year 2.25 0.859 5.4 0.859 5.4 0.96 14.4 14.2 2.6 Overflow Weir 1 2.0 N/A 26	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Contemport for the selected N/A N/A N/A N/A N/A N/A N/A N/A teers for Spillway feet feet acres acres acre-ft 100 Year 2.52 0.998 6.9 1.23 17.0 16.3 2.3 Outlet Plate 1 2.3 N/A 25	feet feet ft ² ft ² ft ² feet radians 500 Year 3.14 1.293 9.7 1.72 21.9 18.2 1.9 0.01tet Plate 1 2.6 N/A 21

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
me Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cf
.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.01	0.26
	0:15:00	0.00	0.00	0.72	1.18	1.45	0.98	1.21	1.19	1.67
	0:20:00	0.00	0.00	2.48	3.23	3.87	2.38	2.76	2.96	3.90
ļ	0:25:00	0.00	0.00	5.30	7.33	9.05	5.20	6.06	6.57	9.09
-	0:30:00	0.00	0.00	6.26	8.45	10.02	11.61	13.52	15.09	19.59
-	0:35:00	0.00	0.00	5.65	7.50	8.85	12.49	14.45	17.02	21.87
-	0:40:00	0.00	0.00	4.92	6.40	7.56	11.73	13.53	15.83	20.30
ŀ	0:45:00	0.00	0.00	4.02 3.31	5.36 4.52	6.43 5.33	10.17 8.93	11.73 10.29	14.18 12.36	18.17 15.82
ŀ	0:55:00	0.00	0.00	2.83	3.86	4.62	7.31	8.43	12.30	13.37
ŀ	1:00:00	0.00	0.00	2.50	3.38	4.12	6.23	7.20	9.16	11.76
F	1:05:00	0.00	0.00	2.20	2.97	3.66	5.42	6.27	8.22	10.56
F	1:10:00	0.00	0.00	1.80	2.57	3.23	4.48	5.19	6.57	8.48
ľ	1:15:00	0.00	0.00	1.45	2.14	2.85	3.66	4.25	5.19	6.73
[1:20:00	0.00	0.00	1.21	1.78	2.43	2.85	3.30	3.82	4.95
	1:25:00	0.00	0.00	1.08	1.59	2.07	2.27	2.63	2.82	3.67
	1:30:00	0.00	0.00	1.01	1.49	1.83	1.85	2.13	2.22	2.89
	1:35:00	0.00	0.00	0.98	1.41	1.67	1.58	1.82	1.85	2.41
-	1:40:00	0.00	0.00	0.96	1.26	1.55	1.40	1.61	1.60	2.08
-	1:45:00	0.00	0.00	0.94	1.14	1.47	1.29	1.46	1.42	1.85
-	1:50:00	0.00	0.00	0.93	1.06	1.41	1.21	1.37	1.30	1.70
-	1:55:00	0.00	0.00	0.80	0.99	1.33	1.15	1.30	1.22	1.59
ŀ	2:00:00 2:05:00	0.00	0.00	0.70	0.92	1.19	1.12	1.26	1.18	1.53
-	2:10:00	0.00	0.00	0.51	0.67	0.86	0.81	0.91 0.65	0.86	1.11 0.80
ŀ	2:15:00	0.00	0.00	0.37	0.48	0.61	0.38	0.65	0.62	0.80
	2:20:00	0.00	0.00	0.18	0.23	0.30	0.29	0.32	0.31	0.37
ŀ	2:25:00	0.00	0.00	0.12	0.15	0.20	0.20	0.22	0.21	0.27
ŀ	2:30:00	0.00	0.00	0.08	0.10	0.14	0.13	0.15	0.14	0.19
F	2:35:00	0.00	0.00	0.05	0.07	0.09	0.09	0.10	0.09	0.12
ſ	2:40:00	0.00	0.00	0.02	0.04	0.05	0.05	0.06	0.05	0.07
	2:45:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	3:20:00 3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
[4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Į	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:45:00 5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	JPS	
Company:	JPS	
Date:	October 21, 2022 Struthers Ranch Polaris	
Project: Location:	Water Quality Pond A - Forebay A1	
Location.		
1. Basin Storage V	/olume	
-		
	erviousness of Tributary Area, I _a	l _a = <u>69.3</u> %
B) Tributary Are	a's Imperviousness Ratio (i = $I_a/100$)	i = 0.693
C) Contributing	Watershed Area	Area = 2.740 ac
D) For Watersh	neds Outside of the Denver Region, Depth of Average	d ₆ =
Runoff Prod	ucing Storm	
E) Design Cond		Choose One Water Quality Capture Volume (WQCV)
(Select EUR)	V when also designing for flood control)	Excess Urban Runoff Volume (EURV)
	me (WQCV) Based on 40-hour Drain Time	V _{DESIGN} = 0.062 ac-ft
(V _{DESIGN} = (1	1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	
	neds Outside of the Denver Region,	V _{DESIGN OTHER} =ac-ft
	ty Capture Volume (WQCV) Design Volume _R = (d ₆ *(V _{DESIGN} /0.43))	
	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft
I) NRCS Hydrol	logic Soil Groups of Tributary Watershed	
i) Percenta	ge of Watershed consisting of Type A Soils	HSG _A =%
	age of Watershed consisting of Type B Soils age of Watershed consisting of Type C/D Soils	HSG _B = 100 % HSG _{CD} = 0 %
,		
For HSG A:	an Runoff Volume (EURV) Design Volume : EURV _A = 1.68 * i ^{1.28}	EURV _{DESIGN} = 0.209 ac-f t
For HSG B: For HSG C	: EURV _P = 1.36 * i ^{1.08} /D: EURV _{CID} = 1.20 * i ^{1.08}	
	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} =ac-ft
	ength to Width Ratio	L : W = 3.0 : 1
(A basin length i	to width ratio of at least 2:1 will improve TSS reduction.)	
3. Basin Side Slop	es	
A) Basin Maxim (Horizontal d	hum Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 3.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
4. Inlet		
A) Describe me	eans of providing energy dissipation at concentrated	Concrete Forebay
inflow location	ons:	
5. Forebay		
A) Minimum Fo		V _{FMIN} = 0.001 ac-ft
B) Actual Foreb	bay Volume	$V_{\rm F} = $ 0.001 ac-ft
C) Forebay Dep		
(D _F		$D_{\rm F} = 12.0$ in
D) Forebay Disc	charge	
i) Undetaine	ed 100-year Peak Discharge	Q ₁₀₀ = 17.70 cfs
ii) Forebay	Discharge Design Flow	$Q_F = 0.35$ cfs
(Q _F = 0.02		
E) Forebay Disc	charge Design	Choose One
		O Berm With Pipe Flow too small for berm w/ pipe
		Wall with Rect. Notch Wall with V-Notch Weir
F) Discharge Pij	pe Size (minimum 8-inches)	Calculated D _P =in
G) Rectangular	Notch Width	Calculated W _N = in

	Design Procedure Form: I	Extended Detention Basin (EDB)			
Designer:	JPS	Sheet 2 of 3			
Company:	JPS				
Date:	October 21, 2022				
Project:	Struthers Ranch Polaris				
Location:	Water Quality Pond A - Forebay A1				
6. Trickle Channel		Choose One Choose One Concrete			
A) Type of Trick	de Channel	Soft Bottom			
F) Slope of Tric	kle Channel	S = 0.0050 ft / ft			
7. Micropool and C	Dutlet Structure				
A) Depth of Mic	ropool (2.5-feet minimum)	D _M = ft			
B) Surface Area	a of Micropool (10 ft ² minimum)	A _M = sq ft			
C) Outlet Type					
		Choose One Orifice Plate			
		Other (Describe):			
D) Smallest Din	nension of Orifice Opening Based on Hydrograph Routing				
(Use UD-Detent		D _{orifice} = 0.58 inches			
E) Total Outlet A		A _{rt} = 1.74 square inches			
E) Total Outlet A	Nea	A _{ot} = <u>1.74</u> square inches			
8. Initial Surcharge	Volume				
 A) Dopth of Initi 	al Surcharge Volume	D _{IS} = 6 in			
	commended depth is 4 inches)				
D) Minimum Initi		V			
	al Surcharge Volume ume of 0.3% of the WQCV)	V _{IS} = cu ft			
C) Initial Surcha	rge Provided Above Micropool	V _s =cu ft			
9. Trash Rack					
A) Water Qualit	y Screen Open Area: $A_t = A_{ct} * 38.5*(e^{-0.095D})$	A _t = 63 square inches			
	en (If specifying an alternative to the materials recommended	S.S. Well Screen with 60% Open Area			
	ndicate "other" and enter the ratio of the total open are to the for the material specified.)				
	Other (Y/N): N				
	I Open Area to Total Area (only for type 'Other')	User Ratio =			
	Quality Screen Area (based on screen type)	A _{total} = <u>106</u> sq. in.			
	ign Volume (EURV or WQCV) lesign concept chosen under 1E)	H= <u>3.47</u> feet			
F) Height of Wa	ter Quality Screen (H _{TR})	H _{TR} = 69.64 inches			
	ter Quality Screen Opening (W _{opening})	W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH.			
(IVIINIMUM of 12	inches is recommended)	WIDTH HAS BEEN SET TO 12 INCHES.			

	Design Procedure For	m: Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	JPS JPS October 21, 2022 Struthers Ranch Polaris Water Quality Pond A - Forebay A1	Sheet 3 of 3
B) Slope of (bankment embankment protection for 100-year and greater overtopping: Overflow Embankment Ial distance per unit vertical, 4:1 or flatter preferred)	Buried Riprap Spillway Ze = 4.00 ft / ft Choose One ◯ Irrigated
12. Access A) Describe	Sediment Removal Procedures	Not Irrigated
, Notes:		Periodic inspection and removal as needed; Access ramp provided to pond bottom

	Design Procedure Form:	Extended Detention Basin (EDB)
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	JPS	
Company:	JPS	
Date:	October 21, 2022	
Project:	Struthers Ranch Polaris	
Location:	Water Quality Pond A - Forebay B1	
1. Basin Storage \	/olume	
A) Effective Imp	erviousness of Tributary Area, I _a	l _a = <u>66.9</u> %
B) Tributary Are	a's Imperviousness Ratio (i = I _a / 100)	i = 0.669
C) Contributing	Watershed Area	Area = 2.880 ac
	neds Outside of the Denver Region, Depth of Average lucing Storm	d ₆ = in
E) Design Con (Select EUR	cept V when also designing for flood control)	Choose One Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)
	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.063 ac-ft
Water Qual	neds Outside of the Denver Region, ity Capture Volume (WQCV) Design Volume $_{R} = (d_{6}^{*}(V_{DESIGN}/0.43))$	V _{DESIGN OTHER} =ac-ft
	of Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft
i) Percenta ii) Percenta	logic Soil Groups of Tributary Watershed ige of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils age of Watershed consisting of Type C/D Soils	HSG _A = % HSG _B = % HSG _{CD} = %
For HSG A For HSG B	an Runoff Volume (EURV) Design Volume : EURV _A = 1.68 * j ^{1.28} : EURV _A = 1.36 * j ^{1.08} /D: EURV _{CD} = 1.20 * j ^{1.08}	EURV _{DESIGN} =ac-f t
	f Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} =ac-ft
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1
3. Basin Side Slop	les	
A) Basin Maxin	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 3.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
4. Inlet		
4. IIIet		Concrete Forebay
 A) Describe me inflow location 	eans of providing energy dissipation at concentrated	
5. Forebay		
A) Minimum Fo		V _{FMIN} = ac-ft
	= <u>1%</u> of the WQCV)	
B) Actual Forel		V _F = 0.001 ac-ft
C) Forebay Dep (D _F		$D_F = 12.0$ in
D) Forebay Dis	charge	
i) Undetain	ed 100-year Peak Discharge	Q ₁₀₀ = 12.20 cfs
	Discharge Design Flow	Q _F = cfs
E) Forebay Disc		
		Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P =in
G) Rectangular	Notch Width	Calculated W _N =3.3 in

Designer: JPS Company: JPS Date: October 21, 2022 Project: Struthers Ranch Polaris Location: Water Quality Pond A - F 6. Trickle Channel A) Type of Trickle Channel	orebay B1	Choose One Choose One Choose One Choose One Choose One
Company: JPS Date: October 21, 2022 Project: Struthers Ranch Polaris Location: Water Quality Pond A - F 6. Trickle Channel	orebay B1	Concrete
Project: Struthers Ranch Polaris Location: Water Quality Pond A - F 6. Trickle Channel	orebay B1	Concrete
Location: Water Quality Pond A - F 6. Trickle Channel	orebay B1	Concrete
6. Trickle Channel	orebay B1	Concrete
		Concrete
		Concrete
A) Type of Trickle Channel		Soft Bottom
F) Slope of Trickle Channel		S = 0.0050 ft / ft
7. Micropool and Outlet Structure		
A) Depth of Micropool (2.5-feet minimum)		$D_{\rm M} = 2.5$ ft
B) Surface Area of Micropool (10 ft ² minimu	m)	A _M = sq ft
C) Outlet Type		
		Choose One Orifice Plate
		Other (Describe):
D) Smallest Dimension of Orifice Opening B	ased on Hydrograph Routing	
(Use UD-Detention)		D _{orifice} = 0.58 inches
E) Total Outlet Area		$A_{ct} = 1.74$ square inches
8. Initial Surcharge Volume		
 A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inche 		D _{IS} = <u>6</u> in
	3)	
 B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) 		V _{IS} = cu ft
C) Initial Surcharge Provided Above Micropo	ol	V _s =cu ft
9. Trash Rack		
A) Water Quality Screen Open Area: At = At	t * 38.5*(e ^{-0.095D})	A _t = 63 square inches
B) Type of Screen (If specifying an alternativ in the USDCM, indicate "other" and enter the total screen are for the material specified.)		S.S. Well Screen with 60% Open Area
Other (Y/N):	N	
C) Ratio of Total Open Area to Total Area (o	nly for type 'Other')	User Ratio =
D) Total Water Quality Screen Area (based o	on screen type)	A _{total} =sq. in.
E) Depth of Design Volume (EURV or WQC (Based on design concept chosen unde		H= 3.47 feet
F) Height of Water Quality Screen (H_{TR})		H _{TR} = 69.64 inches
G) Width of Water Quality Screen Opening ((Minimum of 12 inches is recommended)	W _{openina})	W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

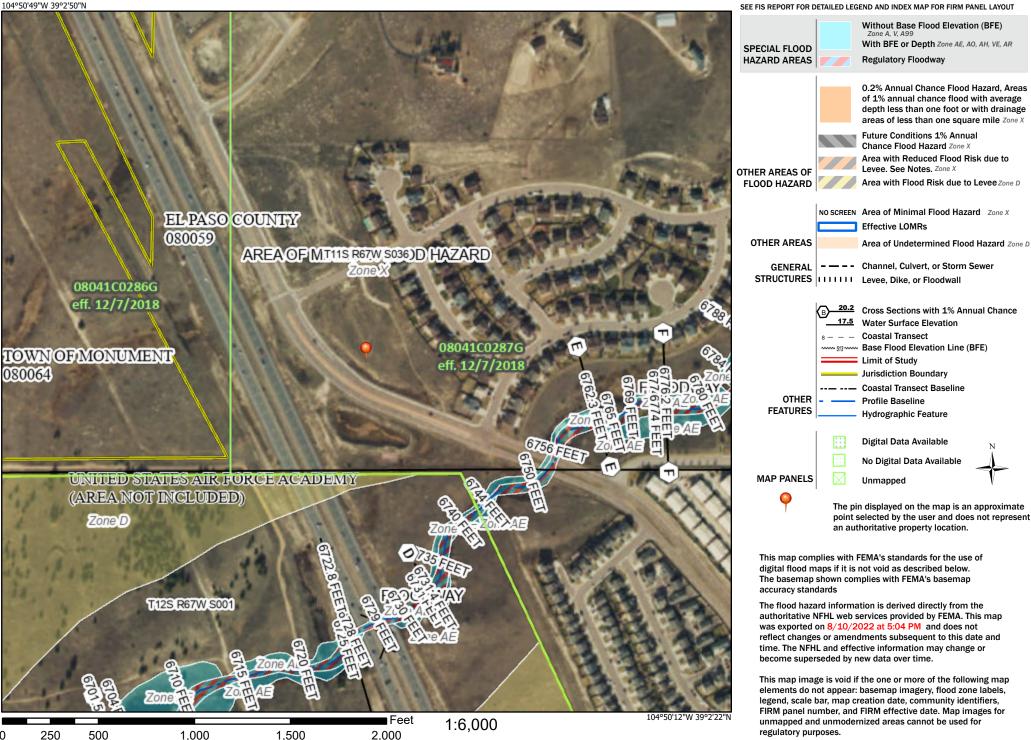
	Design Procedure For	m: Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	JPS JPS October 21, 2022 Struthers Ranch Polaris Water Quality Pond A - Forebay B1	Sheet 3 of 3
B) Slope of ((Horizont	bankment embankment protection for 100-year and greater overtopping: Overflow Embankment al distance per unit vertical, 4:1 or flatter preferred)	Buried Riprap Spillway Ze = 4.00 ft / ft
11. Vegetation		Irrigated Not Irrigated
12. Access A) Describe	Sediment Removal Procedures	Periodic inspection and removal as needed; Access ramp provided to pond bottom
Notes:		

APPENDIX E

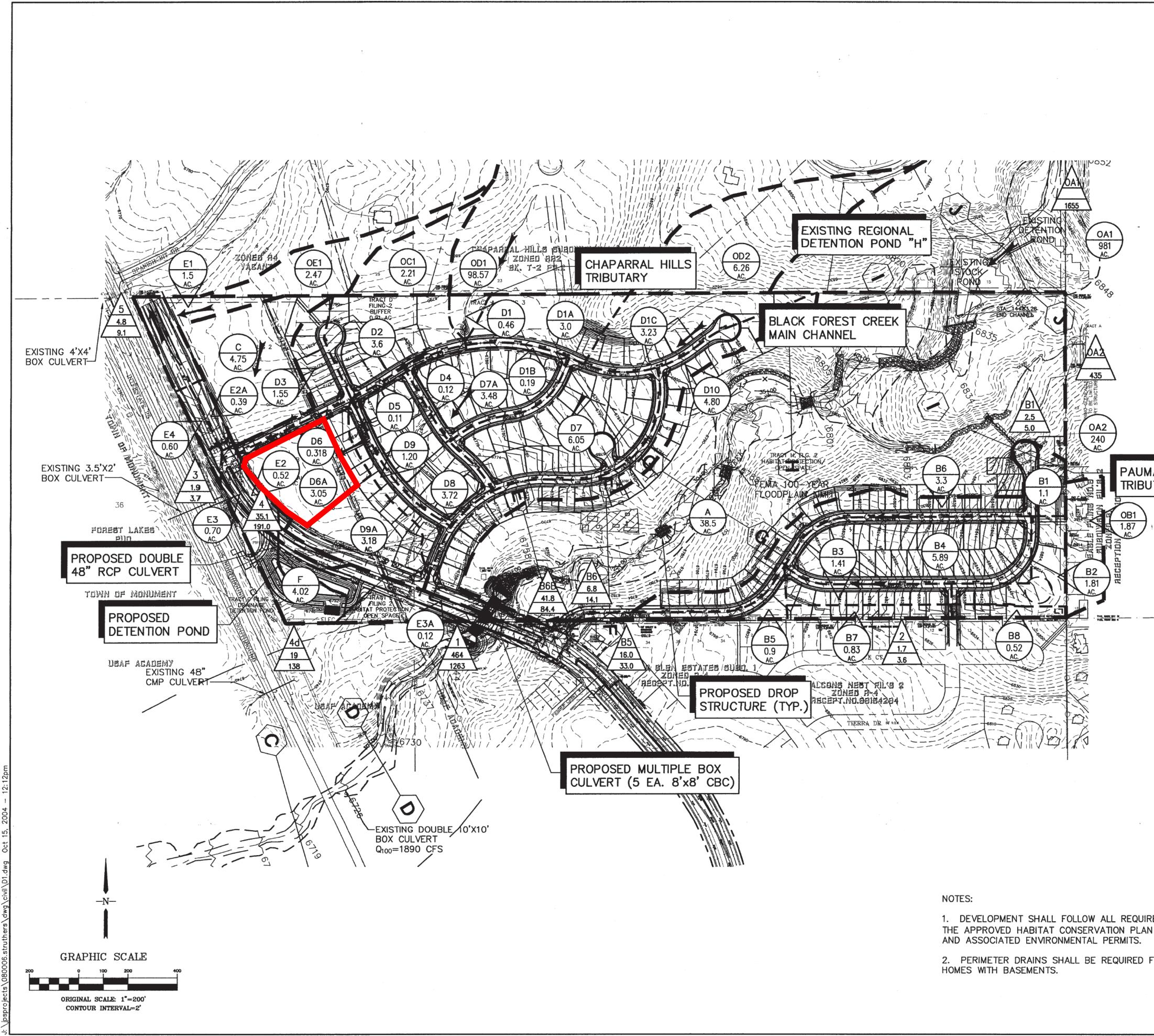
WATER QUALITY POND COST ESTIMATE

JPS ENGINEERING

	STRUTHERS RANCH POLARIS LOTS 1-2, STRUTHERS RANCH SUBDIVISION FILING NO. 4 ENGINEER'S COST ESTIMATE DRAINAGE IMPROVEMENTS - WATER QUALITY POND					
Item No.	Description	Quantity	Unit	Unit Cost (\$\$\$)	Total Cost (\$\$\$)	
	PRIVATE DRAINAGE FACILITIES (NON-REIMBURSABLE)					
203	Detention Basin Earthwork	630	CY	\$22	\$13,860	
301	Retaining Walls	1320	SF	\$25	\$33,000	
301	Concrete Forebays (10'x8')	6.0	CY	\$300	\$1,800	
301	Concrete Trickle Channels	1	LS	\$1,200	\$1,200	
604	Detention Basin Outlet Structure / Buried Riprap Spillway	1	LS	\$10,000	\$10,000	
	SUBTOTAL				\$59,860	
	Engineering @ 10%				\$5,986	
	TOTAL (NON-REIMBURSABLE)				\$65,846	
	Note: This estimate does not include costs for street improvements and general civil costs (curb & gutter, crosspans, etc.)					
the engin prices an as design	he cost estimate submitted herein is based on time-honored practices within the construction industry. As such ne engineer does not control the cost of labor, materials, equipment or a contractor's method of determining rices and competitive bidding practices or market conditions. The estimate represents our best judgement s design professionals using current information available at the time of the preparation. The engineer cannot uarantee that proposals, bids and/or construction costs will not vary from this cost estimate.					

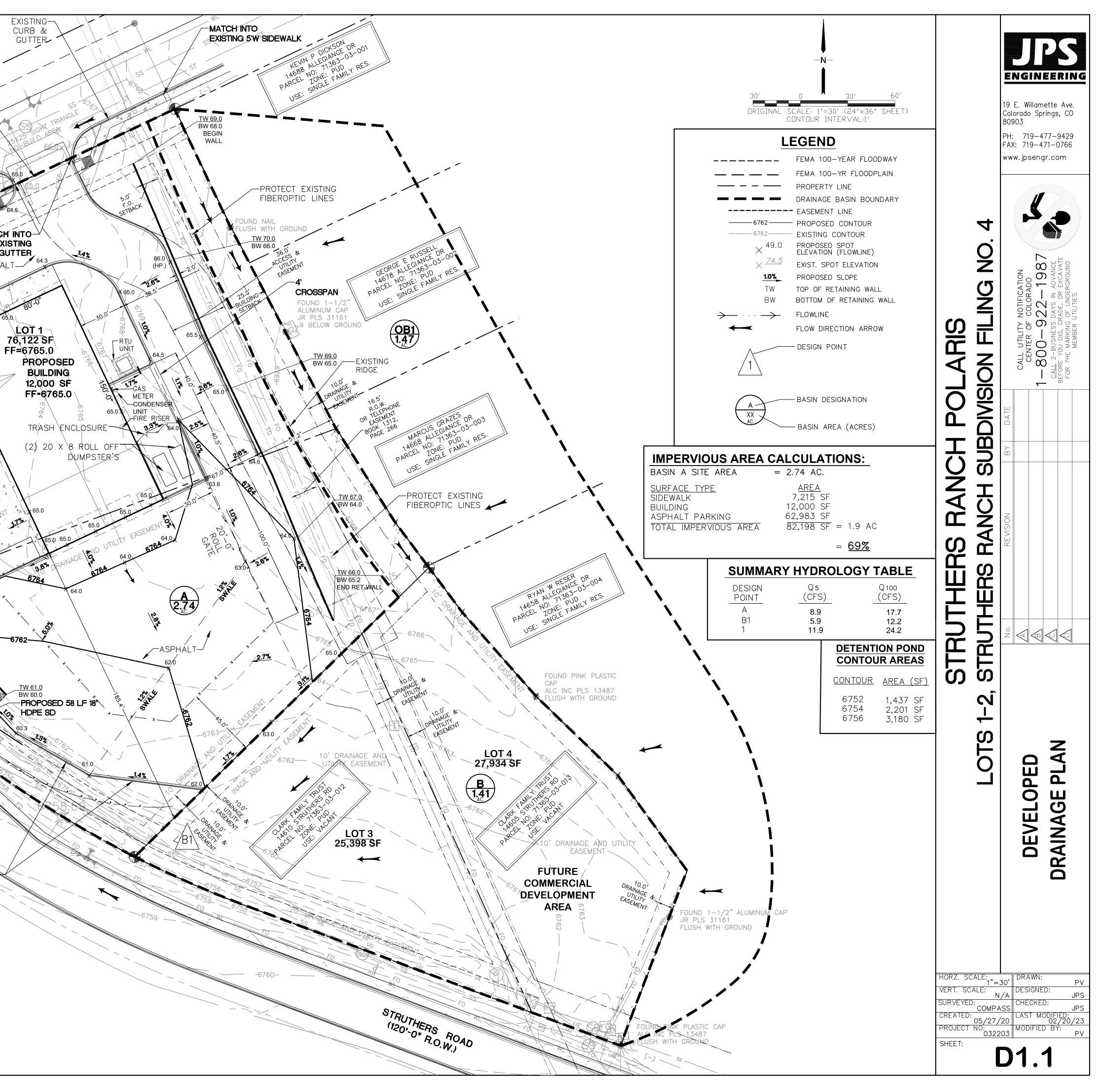

APPENDIX F

FIGURES


National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020


FOR ALL		HORZ. SCALE: 1 = 20 VERT. SCALE: N SURVEYED: PINNAC CREATED: 9/11/ PROJECT NO: 0800 SHEET:	/A JPS LE CHECKED: JPS
REMENTS OF			DEVELOPED
		LS I	D DRAINAGE
		STRUTH	AGE PLAN
-	:	ERS	No. EPC COMMENTS EPC COMMENTS EPC COMMENTS A EPC COMMENTS A RE-SUBMITTAL
IA VALLEY JTARY CHANNEL		RANCF	REVISION COMMENTS COMMENTS COMMENTS COMMENTS SUBMITTAL TO EPC
			BY DATE JPS 4/8/04 JPS 5/7/04 JPS 5/7/04 JPS 5/25/04 JPS 9/2/04 JPS 9/2/04
A 0.86 AC.	– BASIN AREA (ACRES)	SUBDI	
1 20.6 50.3	– DESIGN POINT – Q₅ (cfs) – Q100(cfs) – BASIN DESIGNATION	VISION	
	PROPOSED DROP STRUCTURE		
6520	EXISTING CONTOUR FLOWLINE PROPOSED FLOW DIRECTION ARROW		19 E. Willamette Ave. Colorado Springs, CO 80903 PH: 719-477-9429 FAX: 719-471-0766
	FILING LIMITS MAJOR BASIN BOUNDARY MINOR BASIN BOUNDARY		JPS ENGINEERING
	EGEND		

EXISTING WATER MAIN STUB **PROPOSED RETAINING WALL PROTECT EXISTING-**ELECTRIC TRANSFORMER STRUTHERS RANCH ROAD MATCH INTO-EXISTING SIDEWALK NEW ATTACHED MATCH INTO-6'W SIDEWALK TW 63.5 BW 62.5 TW 63.2 BW 61.0 RET-WALL CURB & GUTTER -ASPHALT_ 2.4% TW 62.3 BW 60.0 (EXISTING 5'W-SIDÉWALK TW 62.5 BW 52.0 <u>TW 61.3</u> 3.5% on & To PC 1, 10 TW 60. PROPOSED BW 58 RETAINING WALL TW 63.3 SW 52.0 PROPOSED TYPE 16-INLET A1 W/18" SD INTO FOREBAY PROPOSED FOREBAY A1-4'W CONCRETE TRICKLE CHANNEL PROPOSED WATER-QUALITY POND A **BOTTOM EL-6752.0** SPILLWAY**-**6756.5 MIN. WQCV=0.13 AF DSN VOL- 0.22 AF **PROPOSED** -OUTLET STRUCTURE PROPOSED 37 LF 18" HDPE @ 0.5% SLOPE; CONNECT TO EXISTING INLET BOX 14"W BURIED RIPRAP-SPILLWAY EL=6756.5 EXISTING STORM INLET GR EL=6756.48 EXISTING 30" RCP-EX 30" INV IN (S)=6751.88 CULVERT TO BE EX 54" INV IN (N)=6750.36 PLUGGED + ABANDONED PROPOSED[®] CURB & GUTTER EX 2-42" INV OUT (W)=6750.15 PR 18" INV IN (E)=6750.81 PROPOSED 18" FES INV.= 6752.86 EXISTING DOUBLE 48' RCP STORM SEWER FLOWING INTO REGIONAL DETENTION BASIN II (OVERFLOW FROM WATER QUALITY

POND WILL FLOW INTO EXISTING

GRATED INLET & STORM SEWER TO

REGIONAL DETENTION POND)

