DRAINAGE LETTER REPORT

for

STRUTHERS RANCH POLARIS
 847 STRUTHERS RANCH ROAD
 LOTS 1-2, STRUTHERS RANCH SUBDIVISION FILING NO. 4

Prepared for:
Hammers Construction, Inc.
1411 Woolsey Heights
Colorado Springs, CO 80915

August 10, 2022
Revised October 21, 2022

Prepared by:

19 E. Willamette Ave. Colorado Springs, CO 80903 (719)-477-9429 www.jpsengr.com

JPS Project No. 032203
PCD Filing No. PPR2248

STRUTHERS RANCH POLARIS DRAINAGE LETTER REPORT
 TABLE OF CONTENTS

PAGE
DRAINAGE STATEMENT ...
I. INTRODUCTION .. 1
II. EXISTING / PROPOSED DRAINAGE CONDITIONS .. 2
III. DRAINAGE PLANNING FOUR STEP PROCESS.. 4

V. STORMWATER DETENTION AND WATER QUALITY .. 5
VI. DRAINAGE BASIN FEES .. 6
VII. SUMMARY .. 6

APPENDICES

APPENDIX A Hydrologic Calculations
APPENDIX B Hydraulic Calculations
APPENDIX C Water Quality Pond Calculations
APPENDIX D Water Quality Pond Cost Estimate
APPENDIX E
Figures
Figure FIRM Floodplain Map
Sheet D1 Struthers Ranch Subdivision - Developed Drainage Plan
Sheet D1.1 Struthers Ranch Polaris - Developed Drainage Plan

DRAINAGE STATEMENT

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report.

John P. Schwab, P.E. \#29891

Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

By:

Date

Hammers Construction, Inc.
1411 Woolsey Heights, Colorado Springs, CO 80915

El Paso County's Statement

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

[^0]Conditions:

I. INTRODUCTION

A. Property Location and Description

Hammers Construction is planning to construct a new Polaris dealership on the vacant 2.94acre property at the southeast corner of Struthers Road and Struthers Ranch Road in northern El Paso County, Colorado. The property is described as Lots 1 and 2, Struthers Ranch Subdivision Filing No. 4 (El Paso County Assessor's Parcel Numbers 71363-03-010 and 71363-03-011).

The project consists of a new 12,000 square-foot, single-story Polaris dealership building with associated parking and site improvements. The property is bounded by Struthers Road on the southwest side and Struthers Ranch Road on the northwest side. Struthers Road is a fully improved, asphalt-paved arterial public street, and Struthers Ranch Road is a fully improved local public street. Existing platted residential lots are located along the northeast boundary of the parcel (Struthers Ranch Filing No. 2). The south boundary of the site adjoins vacant commercial properties (Lots 3 and 4, Struthers Ranch Subdivision Filing No. 4).

The property is zoned Planned Unit Development (PUD), and the proposed site development is fully consistent with the existing zoning of the site. Access to the site will be provided by the existing private driveway connection to Struthers Ranch Road along the north boundary of Lot 1 .

The site is located in the Black Forest Creek Drainage Basin, and surface drainage from this site sheet flows southwesterly to an existing public storm sewer system along the west boundary of the property, flowing to the existing Struthers Ranch stormwater detention pond on the west side of Struthers Road.

This report is intended to meet the requirements of a site-specific "Letter Type" drainage report in accordance with El Paso County subdivision drainage criteria.

B. Drainage Analysis Methods and Criteria

ITEM	DESCRIPTION	REFERENCE
Design Storm (initial/major)	5-year/100-year	CS/EPC DCM
Storm Runoff	Rational Method (Area<100acres)	CS/EPC DCM
Major Drainage Basin	Black Forest Creek	
Floodplain Impacts	Parcel is located outside any delineated FEMA floodplains	FIRM
Existing Downstream Facilities	Existing storm sewer system on east side of Struthers Road; Existing detention pond on west side of Struthers Road	

CS/EPC DCM = City of Colorado Springs \& El Paso County Drainage Criteria Manual

C. References

JPS Engineering, Inc., "Final Drainage Report for Struthers Ranch Filing No. 2," October 14, 2004 (approved by El Paso County 10/20/04).

JPS Engineering, Inc., "Drainage Letter Report for Struthers Ranch Subdivision Filing No. 4," February 22, 2006.

II. EXISTING / PROPOSED DRAINAGE CONDITIONS

Subdivision Drainage Report

As shown on the enclosed Struthers Ranch Subdivision Drainage Plan (Figure D1, Appendix E), the proposed Polaris development site lies entirely within Basin D6A as delineated in the approved "Final Drainage Report for Struthers Ranch Filing No. 2." The site slopes downward to the southwest, with average grades of 1-4 percent. On-site soils are classified by SCS as type 71, "Pring" series coarse sandy loam soils. These soils have moderately rapid permeability and slow to medium surface runoff characteristics. The soils are classified as hydrologic soils group B.

Developed drainage from this commercial site will sheet flow southwesterly to the existing storm sewer system along the east side of Struthers Road. Flows combine at the existing grated inlet on the east side of Struthers Road, where double 48-inch culverts convey developed flows across Struthers Road and into the existing detention pond. The previously approved drainage report for Struthers Ranch Filing No. 2 assumed full commercial development for this basin, which is consistent with the proposed site development. The existing detention pond was sized to account for fully developed flows from this commercial area.

According to the Rational Method calculations in the original subdivision drainage report, developed peak flows from Basin D6A were calculated as $\mathrm{Q}_{5}=14.0$ cfs and $\mathrm{Q}_{100}=$ 24.3 cfs. The impervious area for the proposed Struthers Ranch Polaris development amounts to approximately 69 percent of the site, which is well below the impervious area of 95 percent assumed for full commercial development in the previously approved subdivision drainage report.

Based on the previous construction of drainage improvements for the Struthers Ranch Subdivision, no significant impact on downstream drainage facilities is anticipated from this site development and replat. Proper erosion control measures will be required for development of the site, including silt fence along property boundaries to minimize offsite transport of construction sediment.

Existing Drainage Conditions

As shown on the enclosed Drainage Plan (Figure D1.1, Appendix E), the site has been delineated as two on-site drainage basins. The project area (Lots 1-2, Struthers Ranch

Filing No. 4) has been delineated as Basin A, and the future development area to the southeast (Lots 3-4, Struthers Ranch Filing No. 4) has been delineated as Basin B. The site is impacted by an off-site basin consisting of the rear sides of the adjoining singlefamily residential lots (platted as part of Struthers Ranch Filing No 2) along the southeast boundary of the site, which has been delineated as Basin OB1.

Existing drainage from Basin A sheet flows southwesterly across the property, with peak flows calculated as $\mathrm{Q}_{5}=0.8 \mathrm{cfs}$ and $\mathrm{Q}_{100}=5.8 \mathrm{cfs}$. Basin A flows to the existing ditch along the east side of Struthers Road, and the ditch flows are captured in the existing grated storm inlet identified as Design Point \#1.

Existing drainage from off-site Basin OB1 sheet flows southwesterly into Basin B, and Basin B flows southwesterly to the existing ditch along the east side of Struthers Road, ultimately flowing into the existing grated storm inlet at Design Point \#1. Existing flows from Basins OB1 and B combine at Design Point \#B1, with peak flows calculated as $\mathrm{Q}_{5}=$ 1.9 cfs and $\mathrm{Q}_{100}=7.0 \mathrm{cfs}$.

Existing flows from Basins A, OB1, and B combine at Design Point \#1, with peak flows calculated as $\mathrm{Q}_{5}=2.5 \mathrm{cfs}$ and $\mathrm{Q}_{100}=12.0 \mathrm{cfs}$. A double 48-inch RCP storm sewer conveys the flow from the grated storm inlet southwesterly across Struthers Road into the existing regional Struthers Ranch Detention Pond.

Unresolved comment:
 Developed Drainage Plan WQ Pond A or Detention Basin A or Detention Basin 11?

Developed flows have been calculated based on the impervious areas associated with the proposed building and parking improvements. Surface drainage swales and a private storm sewer systen will convey developed flows to the proposed Water Quality Pond A along the west boundary of the site. Site grades will slope to storm inlets and curb openings atselected locations, collecting surface drainage and conveying stormwater to the detention basin. The proposed building pad will be graded with protective slopes to provide positive drainage away from the building, and the curb, gutter, drainage swales, and private storm sewer system will convey developed flows southwesterly into Detention Basin A.

The proposed Polaris site development on Lots 1-2 has been delineated as Basin A, which drains by sheet flow and curb and gutter to the proposed Stormwater Quality Detention Basin along the west boundary of the site. Private Storm Inlet A1 (Type 16) will intercept surface drainage from the north side of the Polaris site, and Private Storm Sewer A1 (18") will convey this flow into the on-site Water Quality Pond A. The balance of the Polaris site will flow by drainage swales and curb and gutter into the south side of Water Quality Pond A.

Developed peak flows at Design Point A are calculated as $\mathrm{Q}_{5}=8.9 \mathrm{cfs}$ and $\mathrm{Q}_{100}=17.7$ cfs. Basin A generally correlates with "Basin D6A" in the Final Drainage Report for Struthers Ranch Filing No. $2\left(\mathrm{Q}_{5}=14.0 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=24.3 \mathrm{cfs}\right)$.

The future commercial site development areas to the south in Lots 3-4 have been delineated as Basin B, which will generally drain northwesterly by sheet flow and curb and gutter to a future private storm sewer via a proposed 18 " HDPE pipe conveying developed flows into Water Quality Pond A. Developed peak flows at Design Point B are calculated as $\mathrm{Q}_{5}=4.7 \mathrm{cfs}$ and $\mathrm{Q}_{100}=9.0 \mathrm{cfs}$. Basin B generally correlates with "Basin D9A" in the Final Drainage Report for Struthers Ranch Filing No. $2\left(\mathrm{Q}_{5}=14.9\right.$ cfs and $\left.\mathrm{Q}_{100}=25.8 \mathrm{cfs}\right)$. Developed flows from off-site Basin OB1 will continue to combine with Basin B at Design Point \#B1, with peak flows calculated as $\mathrm{Q}_{5}=5.9 \mathrm{cfs}$ and $\mathrm{Q}_{100}=$ 12.2 cfs .

Developed flows from Basins A, OB1, and B combine at Design Point \#1, with peak flows calculated as $\mathrm{Q}_{5}=11.9 \mathrm{cfs}$ and $\mathrm{Q}_{100}=24.2 \mathrm{cfs}$. The 18 " HDPE discharge pipe from Water Quality Pond A (along with overflows from the pond spillway) will flow into the existing grated storm inlet along the east side of Struthers Road, and the existing double 48 -inch RCP storm sewer will continue to convey the flow from the grated storm inlet southwesterly across Struthers Road into the existing regional Struthers Ranch Detention Pond ("Detention Pond 11" per Black Forest Creek DBPS).

Hydrologic and hydraulic calculations for the site are detailed in the appendices (Appendix A and B), and peak flows are identified on Figure D1.1 (Appendix E).

III. DRAINAGE PLANNING FOUR STEP PROCESS

El Paso County Drainage Criteria require drainage planning to include a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

As stated in ECM Appendix I.7., the Four Step Process is applicable to all new and redevelopment projects with construction activities that disturb 1 acre or greater or that disturb less than 1 acre but are part of a larger common plan of development. The Four Step Process has been implemented as follows in the planning of this project:

Step 1: Employ Runoff Reduction Practices

- Extended Detention Basin: The majority of developed flows will be routed through the on-site detention basin, which will be grass-lined to encourage stormwater infiltration.

Step 2: Stabilize Drainageways

- There are no drainageways directly adjacent to this project site. Implementation of the on-site drainage improvements and detention basin will minimize downstream drainage impacts from this site.
- Drainage basin fees were previously paid during recording of the subdivision plat, and these fees provided the applicable cost contribution towards regional drainage improvements.

Step 3: Provide Water Quality Capture Volume (WQCV)

- EDB: The majority of the developed site will drain through an on-site Private Extended Detention Basin (EDB) along the west boundary of the property. The extended detention basin which will capture and slowly release the WQCV over an extended release period.

Step 4: Consider Need for Industrial and Commercial BMPs

- No industrial uses are proposed for this site.
- The commercial property owner will implement a Stormwater Management Plan including proper housekeeping practices and spill containment procedures.
- On-site drainage will be routed through the Extended Detention Basin (EDB) to minimize introduction of contaminants to the County's public drainage system.

IV. FLOODPLAIN IMPACTS

According to the FEMA floodplain map for this area, El Paso County FIRM Panel No. 08041C0287G, dated December 7, 2018, the site is located beyond the limits of any delineated floodplains.

V. STORMWATER DETENTION AND WATER QUALITY

Stormwater detention for this site is provided in the existing stormwater detention pond constructed during initial development of the Struthers Ranch Subdivision. The Struthers Ranch Homeowners Association is the owner of the existing Struthers Ranch Detention Pond located within Tract C, Struthers Ranch Filing No. 2. There currently appears to be a need for removal of excess vegetation within the pond to ensure proper operation of the detention facilities. The developer will need to coordinate with the HOA to ensure that the required maintenance is performed on the existing regional detention pond.

An on-site private Water Quality Pond will be constructed to meet stormwater quality improvements in accordance with current El Paso County drainage criteria.

As detailed in the detention pond calculations in Appendix C, the required Water Quality Capture Volume (WQCV) has been calculated as 0.13 acre-feet. The water quality capture volume has been calculated based on the actual impervious area of the proposed site development within Basin A, along with an estimated impervious area of 95 percent for the anticipated future commercial development within Basin B. The proposed on-site Water Quality Pond A provides a storage volume of 0.22 acre-feet, which meets the required WQCV volume.

The proposed detention pond will include concrete forebays, trickle channels, and an outlet structure with a water quality orifice plate to maintain discharges below the allowable release rates. The pond outlet structure has been designed using the Mile High Flood District's "MH-Detention" calculation spreadsheets, providing for a 40-hour release of the WQCV, and outlet structure sizing to maintain maximum allowable release rates from the
pond. The Water Quality Pond will have a grass-lined bottom to encourage infiltration of stormwater prior to discharging into the downstream public drainage system.

The new on-site Stormwater Quality Detention Basin will be privately owned and maintained by the property owner, and maintenance access will be provided from the southwest parking lot.

VI. PUBLIC IMPROVEMENTS / DRAINAGE BASIN FEES

No public drainage improvements are required or proposed for this project. As detailed in Appendix D, the proposed private Water Quality Pond A has an estimated cost of approximately $\$ 65,846$.

The site lies completely within the Black Forest Creek Drainage Basin. Applicable drainage basin fees were paid at the time of original platting of Struthers Ranch Filing No. 2, so no drainage basin fees or bridge fees are applicable at this time.

VII. SUMMARY

The developed drainage patterns for the proposed site development on Lots 1-2, Struthers Ranch Filing No. 4 will remain consistent with the established drainage plan for this subdivision. The grading and drainage plan for the proposed Polaris site development fully conforms to the approved drainage plan for Struthers Ranch Filings No. 2 and 4.

Developed flows from the site will drain through a Private Water Quality Pond at the southwest corner of the property prior to discharging to the existing downstream public drainage system. Stormwater detention is provided by the existing Struthers Ranch Detention Pond which was designed to accept fully developed flows from the commercial area encompassing this site (Lots 1-4, Struthers Ranch Filing No. 4). The proposed onsite Water Quality Pond will be constructed to meet current stormwater quality requirements. Construction and proper maintenance of the on-site drainage facilities and Extended Detention Basin, in conjunction with proper erosion control practices, will ensure that this developed site has no significant adverse drainage impact on downstream or surrounding areas.

> Provide additional original drainage report contents for this page to have relevance. Include flows original drainage report planned on being produced by the site that is being reviewed right now. Show runoff coefficient values for these lots and planned impervious amounts if possible. As of now it has not been shown how this site will be in compliance with planned flows.

APPENDIX A

HYDROLOGIC CALCULATIONS

Table 6-6. Runoff Coefficients for Rational Method
(Source: UDFCD 2001)

Land Use or Surface Characteristics	Percent Impervious	Runoff Coefficients											
		2-year		5-year		10-year		25-year		50-year		100-year	
		HSG A\&B	HSG C\&D										
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis-Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration $\left(t_{c}\right)$ consists of an initial time or overland flow time $\left(t_{i}\right)$ plus the travel time $\left(t_{t}\right)$ in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time $\left(t_{i}\right)$ plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion $\left(t_{t}\right)$ of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

$$
\begin{equation*}
t_{c}=t_{i}+t_{t} \tag{Eq.6-7}
\end{equation*}
$$

Where:
$t_{c}=$ time of concentration (min)
$t_{i}=$ overland (initial) flow time (min)
$t_{t}=$ travel time in the ditch, channel, gutter, storm sewer, etc. (min)

3.2.1 Overland (Initial) Flow Time

The overland flow time, t_{i}, may be calculated using Equation 6-8.

$$
\begin{equation*}
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L}}{S^{0.33}} \tag{Eq.6-8}
\end{equation*}
$$

Where:
$t_{i}=$ overland (initial) flow time (min)
$C_{5}=$ runoff coefficient for 5-year frequency (see Table 6-6)
$L=$ length of overland flow ($300 \mathrm{ft} \underline{\text { maximum }}$ for non-urban land uses, $100 \mathrm{ft} \underline{\text { maximum }}$ for urban land uses)
$S=$ average basin slope ($\mathrm{ft} / \mathrm{ft}$)
Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_{t}, which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_{t}, can be estimated with the help of Figure 625 or Equation 6-9 (Guo 1999).

$$
\begin{equation*}
V=C_{v} S_{w}^{0.5} \tag{Eq.6-9}
\end{equation*}
$$

Where:
$V=$ velocity (ft / s)
$C_{v}=$ conveyance coefficient (from Table 6-7)
$S_{w}=$ watercourse slope ($\mathrm{ft} / \mathrm{ft}$)

Table 6-7. Conveyance Coefficient, C_{v}

Type of Land Surface	$\boldsymbol{C}_{\boldsymbol{v}}$
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)	
Short pasture and lawns	6.5
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

${ }^{*}$ For buried riprap, select C_{v} value based on type of vegetative cover.
The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration $\left(t_{c}\right)$ is then the sum of the overland flow time $\left(t_{i}\right)$ and the travel time $\left(t_{t}\right)$ per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation $6-10$. The first design point is defined as the point where runoff first enters the storm sewer system.

$$
\begin{equation*}
t_{c}=\frac{L}{180}+10 \tag{Eq.6-10}
\end{equation*}
$$

Where:

$$
\begin{aligned}
& t_{c}=\text { maximum time of concentration at the first design point in an urban watershed (min) } \\
& L=\text { waterway length }(\mathrm{ft})
\end{aligned}
$$

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_{c} of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_{c} for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations
$\mathbf{I}_{100}=\mathbf{- 2 . 5 2} \ln (D)+\mathbf{1 2 . 7 3 5}$
$\mathbf{I}_{50}=\mathbf{- 2 . 2 5} \ln (D)+\mathbf{1 1 . 3 7 5}$
$\mathbf{I}_{25}=\mathbf{- 2 . 0 0} \ln (D)+\mathbf{1 0 . 1 1 1}$
$\mathbf{I}_{\mathbf{1 0}}=\mathbf{- 1 . 7 5} \ln (D)+\mathbf{8 . 8 4 7}$
$\mathbf{I}_{\mathbf{5}}=\mathbf{- 1 . 5 0} \ln (\mathrm{D})+\mathbf{7 . 5 8 3}$
$\mathbf{I}_{\mathbf{2}}=\mathbf{- 1 . 1 9} \ln (\mathrm{D})+\mathbf{6 . 0 3 5}$
Note: Values calculated by
equations may not precisely
duplicate values read from figure.

5-YEAR C VALUES

BASIN

A
OB1
B
OB1,B
A,OB1,B

BASIN	TOTAL AREA (AC)	(AC)	SUB-AREA 1 DEVELOPMENT/ COVER	
A	2.74	2.74	VACANT	
OB1	1.47	1.47	SF RESIDENTIAL	
B	1.41	1.41	VACANT	
OB1,B	2.88			
A,OB1,B	5.62			

DEVELOPED CONDITIONS 5-YEAR C VALUES											
BASIN	TOTAL AREA (AC)	(AC)	SUB-AREA 1 DEVELOPMENT/ COVER	C	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	C	(AC)	SUB-AREA 3 DEVELOPMENT/ COVER	C	WEIGHTED C VALUE
A	2.74	1.90	PAVED/IMPERVIOUS	0.9	0.84	LANDSCAPED	0.08				0.649
OB1	1.47	1.47	SF RESIDENTIAL	0.3							0.300
B	1.41	1.34	PAVED/IMPERVIOUS	0.9	0.07	LANDSCAPED	0.08				0.859
OB1,B	2.88										0.574
A,OB1,B	5.62										0.610
100-YEAR C VALUES											
BASIN	TOTAL AREA (AC)	(AC)	SUB-AREA 1 DEVELOPMENT/ COVER	C	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	C	(AC)	SUB-AREA 3 DEVELOPMENT/ COVER	C	WEIGHTED C VALUE
A	2.74	1.90	PAVED/IMPERVIOUS	0.96	0.84	LANDSCAPED	0.35				0.773
OB1	1.47	1.47	SF RESIDENTIAL	0.5							0.500
B	1.41	1.34	PAVED/IMPERVIOUS	0.96	0.07	LANDSCAPED	0.35				0.930
OB1,B	2.88										0.710
A,OB1,B	5.62										0.741

STRUTHERS RANCH POLARIS
RATIONAL METHOD
RATIONAL METHOD
EXISTING CONDITIONS

					Overland Flow			Channel flow					TOTAL Tc ${ }^{(4)}$ (MIN)		INTENSITY ${ }^{(5)}$		PEAK FLOW	
BASIN	$\begin{array}{\|c\|} \hline \text { DESIGN } \\ \text { POINT } \\ \hline \end{array}$	AREA(AC)	C		$\begin{array}{\|c\|} \hline \text { LENGTH } \\ \hline \end{array}$	$\begin{aligned} & \text { SLOPE } \\ & \text { (FT/FT) } \end{aligned}$	$\begin{aligned} & \text { Tco }^{(1)} \\ & \text { (MIN) } \end{aligned}$	CHANNEL LENGTH (FT)	CONVEYANCE COEFFICIENT C	$\begin{aligned} & \text { SLOPE } \\ & \text { (FT/FT) } \end{aligned}$	SCS $^{(2)}$VELOCITY(FT/S)	$\mathrm{Tt}^{(3)}$ (MIN)						
			5-YEAR	100-YEAR											$\begin{gathered} 5-\mathrm{YR} \\ (\mathrm{IN} / \mathrm{HR}) \end{gathered}$	100-YR (IN/HR)	$\begin{aligned} & \text { Q5 }^{(6)} \\ & \text { (CFS) } \end{aligned}$	$\begin{gathered} \text { Q100 }^{(6)} \\ \text { (CFS) } \\ \hline \end{gathered}$
A	A	2.74	0.080	0.350	100	0.030	13.0	275	15	0.047	3.25	1.4	14.4	14.4	3.59	6.02	0.79	5.77
OB1	OB1	1.47	0.300	0.500	100	0.020	11.6					0.0	11.6	11.6	3.90	6.55	1.72	4.82
B	B	1.41	0.080	0.350	100	0.030	13.0	585	15	0.018	2.01	4.8	17.8	17.8	3.26	5.48	0.37	2.70
OB1,B	B1	2.88	0.192	0.427									16.5	16.5	3.38	5.67	1.87	6.98
Tt DP-B1 to DP1								225	15	0.036	2.85	1.3						
A,OB1, B	1	5.62	0.138	0.389									17.8	17.8	3.27	5.48	2.53	11.98

DEVELOPED CONDITIONS

1) $\operatorname{OVERLAND~FLOW~} \operatorname{Tco}=\left(0.395^{*}(1.1-\text { RUNOFF COEFFICIENT })^{*}(\right.$ OVERLAND FLOW LENGTH^(0.5$) /\left(\operatorname{SLOPE}^{\wedge}(0.333)\right)$
2) SCS VELOCITY = C * ((SLOPE(FT/FT)^0.5)
C $=5$ FOR TILLAGE/FIELD
$C=7$ FOR SHORT PASTURE AND
$C=10$ FOR NEARLY BARE GROUND
$\mathrm{C}=20$ FOR PAVED AREAS AND SHALLOW PAVED SWALES
3) MANNING'S CHANNEL TRAVEL TIME = L/V (WHEN CHANNEL VELOCITY IS KNOWN)
*** IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED
4) INTENSITY BASED ON I-D-F EQUATIONS IN CITY OF COLORADO SPRINGS DRAINAGE CRITERIA MANUAL
$\begin{aligned} & \mathrm{I}_{5}=-1.5 * \ln (\mathrm{Tc})+7.583 \\ & \mathrm{I}_{100}=-2.52 * \ln (\mathrm{Tc})+12.735 \\ & \text { 6) } \mathrm{Q}= \mathrm{CiA}\end{aligned}$

$$
\text { 6) } \mathrm{Q}=\mathrm{CiA}
$$

APPENDIX B

HYDRAULIC CALCULATIONS

STRUTHERS RANCH POLARIS

STORM INLET SIZING SUMMARY

	BASIN FLOW			INLET FLOW					
INLET	DP	$\begin{gathered} \hline \text { Q5 } \\ \text { FLOW } \\ \text { (CFS) } \\ \hline \end{gathered}$	Q100 FLOW (CFS)	INLET FLOW \% OF BASIN	$\begin{gathered} \hline \text { Q5 } \\ \text { FLOW } \\ \text { (CFS) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Q100 } \\ & \text { FLOW } \\ & \text { (CFS) } \\ & \hline \end{aligned}$	INLET CONDITION / TYPE	$\begin{array}{\|c\|} \hline \text { INLET } \\ \text { SIZE (FT) } \\ \hline \end{array}$	INLET CAPACITY (CFS)
A1	A	8.9	17.7	40	3.6	7.1	SUMP TYPE 16	SGL	8.7

INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

Design Information (Input) Denver No. 16 Combination		MINOR		
Type of Inlet ${ }^{\text {P }}$	Type =	Denver	bination	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	2.00	2.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Γ Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	3.00	3.00	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	1.73	1.73	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	0.31	0.31	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	0.50	0.50	
Grate Weir Coefficient (typical value 2.15-3.60)	$C_{w}(G)=$	3.60	3.60	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	0.60	0.60	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	3.00	3.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.50	6.50	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	5.25	5.25	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	0.00	0.00	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.70	3.70	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.66	0.66	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	0.523	1.023	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.94	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {curb }}=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	0.94	1.00	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	3.9	8.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {Peakrequired }}=$	3.6	7.1	cfs

STRUTHERS RANCH POLARIS STORM SEWER SIZING SUMMARY

	PIPE FLOW			PIPE CAPACITY		
PIPE	DESIGN POINT			$\begin{aligned} & \text { PIPE } \\ & \text { SIZE } \end{aligned}$		PIPE CAPACITY (CFS)
A1	A1	3.6	7.1	18	1.0\%	10.5

ASSUMPTIONS:

1. STORM DRAIN PIPE ASSUMED TO BE RCP OR HDPE

Hydraulic Analysis Report

Project Data

Project Title: Project - Polaris
Designer: JPS
Project Date: Monday, June 13, 2022
Project Units: U.S. Customary Units
Notes:

Channel Analysis: SD-A1

Notes:

Input Parameters

Channel Type: Circular
Pipe Diameter: 1.5000 ft
Longitudinal Slope: $0.0100 \mathrm{ft} / \mathrm{ft}$
Manning's n: 0.0130
Depth: 1.5000 ft

Result Parameters

Flow: 10.5043 cfs
Area of Flow: 1.7671 ft^2
Wetted Perimeter: 4.7124 ft
Hydraulic Radius: 0.3750 ft
Average Velocity: $5.9442 \mathrm{ft} / \mathrm{s}$
Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 1.2451 ft
Critical Velocity: $6.6989 \mathrm{ft} / \mathrm{s}$
Critical Slope: $0.0098 \mathrm{ft} / \mathrm{ft}$
Critical Top Width: 1.13 ft
Calculated Max Shear Stress: $0.9360 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$
Calculated Avg Shear Stress: $0.2340 \mathrm{lb} / \mathrm{ft}^{\wedge} 2$

APPENDIX C

WATER QUALITY POND CALCULATIONS

Project: Struthers Ranch Polaris
Basin ID: Water Quality Pond A

Unresolved. Provide the computation for the percent impervious similar to the first submittal. See snippet from the first submittal below. The pond sizing needs to account for sub-basin B buildout condition.
If Basin A is 69% and Basin B buildout is 95% impervious then the weighted \% imperviousness would be approximately 78%. Update the pond design so it's consistent with the report narrative.
Contact the review engineer to discuss.

[^1]
DETENTION BASIN OUTLET STRUCTURE DESIGN

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.20	2.40					
Orifice Area (sq. inches)	0.58	0.58	0.58					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches	Calculated Parameters for Vertical Orifice			
	Not Selected	Not Selected		Vertical Orifice Area $=$ Vertical Orifice Centroid =	Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A	ft^{2}
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A			N/A	N/A	feet
Vertical Orifice Diameter $=$	N/A	N/A					

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe)

Calculated Parameters for Overflow Weir		
Not Selected	Not Selected	
N/A	N/A	feet
N/A	N/A	feet
N/A	N/A	
N/A	N/A	ft^{2}
N/A	N/A	ft^{2}

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)
 Hatflet Orifice Centroid $=$ Half-Central Angle of Restrictor Plate on Pipe $=$

$\begin{aligned} \text { Outlet Orifice Area } & = \\ \text { Outlet Orifice Centroid } & = \\ \text { Restrictor Plate on Pipe } & =\end{aligned}$	Not Selected	Not Selected	ft^{2}
	N/A	N/A	
	N/A	N/A	feet
	N/A	N/A	dia

ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) Spillway Design Flow Depth= feet What happened? Why all "N/As" now wif年ge at Top of Freeboard = this submital? Complete the sectionsinger at Top of Freeboard = my comments from Review \#1.

Calculated Parameters for Spillway

0.50	feet
7.00	feet
0.10	acr
0.39	acre

Routed Hydrograph Results

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.01	0.26
	0:15:00	0.00	0.00	0.72	1.18	1.45	0.98	1.21	1.19	1.67
	0:20:00	0.00	0.00	2.48	3.23	3.87	2.38	2.76	2.96	3.90
	0:25:00	0.00	0.00	5.30	7.33	9.05	5.20	6.06	6.57	9.09
	0:30:00	0.00	0.00	6.26	8.45	10.02	11.61	13.52	15.09	19.59
	0:35:00	0.00	0.00	5.65	7.50	8.85	12.49	14.45	17.02	21.87
	0:40:00	0.00	0.00	4.92	6.40	7.56	11.73	13.53	15.83	20.30
	0:45:00	0.00	0.00	4.02	5.36	6.43	10.17	11.73	14.18	18.17
	0:50:00	0.00	0.00	3.31	4.52	5.33	8.93	10.29	12.36	15.82
	0:55:00	0.00	0.00	2.83	3.86	4.62	7.31	8.43	10.42	13.37
	1:00:00	0.00	0.00	2.50	3.38	4.12	6.23	7.20	9.16	11.76
	1:05:00	0.00	0.00	2.20	2.97	3.66	5.42	6.27	8.22	10.56
	1:10:00	0.00	0.00	1.80	2.57	3.23	4.48	5.19	6.57	8.48
	1:15:00	0.00	0.00	1.45	2.14	2.85	3.66	4.25	5.19	6.73
	1:20:00	0.00	0.00	1.21	1.78	2.43	2.85	3.30	3.82	4.95
	1:25:00	0.00	0.00	1.08	1.59	2.07	2.27	2.63	2.82	3.67
	1:30:00	0.00	0.00	1.01	1.49	1.83	1.85	2.13	2.22	2.89
	1:35:00	0.00	0.00	0.98	1.41	1.67	1.58	1.82	1.85	2.41
	1:40:00	0.00	0.00	0.96	1.26	1.55	1.40	1.61	1.60	2.08
	1:45:00	0.00	0.00	0.94	1.14	1.47	1.29	1.46	1.42	1.85
	1:50:00	0.00	0.00	0.93	1.06	1.41	1.21	1.37	1.30	1.70
	1:55:00	0.00	0.00	0.80	0.99	1.33	1.15	1.30	1.22	1.59
	2:00:00	0.00	0.00	0.70	0.92	1.19	1.12	1.26	1.18	1.53
	2:05:00	0.00	0.00	0.51	0.67	0.86	0.81	0.91	0.86	1.11
	2:10:00	0.00	0.00	0.37	0.48	0.61	0.58	0.65	0.62	0.80
	2:15:00	0.00	0.00	0.26	0.34	0.43	0.41	0.46	0.44	0.57
	2:20:00	0.00	0.00	0.18	0.23	0.30	0.29	0.32	0.31	0.40
	2:25:00	0.00	0.00	0.12	0.15	0.20	0.20	0.22	0.21	0.27
	2:30:00	0.00	0.00	0.08	0.10	0.14	0.13	0.15	0.14	0.19
	2:35:00	0.00	0.00	0.05	0.07	0.09	0.09	0.10	0.09	0.12
	2:40:00	0.00	0.00	0.02	0.04	0.05	0.05	0.06	0.05	0.07
	2:45:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

APPENDIX D
WATER QUALITY POND COST ESTIMATE

STRUTHERS RANCH POLARIS
 LOTS 1-2, STRUTHERS RANCH SUBDIVISION FILING NO. 4 ENGINEER'S COST ESTIMATE
 DRAINAGE IMPROVEMENTS - WATER QUALITY POND

APPENDIX E

FIGURES

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT
$\left.\begin{array}{l|l|l|}\hline \begin{array}{l|l}\text { SPECIAL FLOOD } \\ \text { HAZARD AREAS }\end{array} & \begin{array}{l}\text { Without Base Flood Elevation (BFE) } \\ \text { Zone A, } V \text {, A99 } \\ \text { With BFE or Depth Zone AE, AO, AH, VE, AR }\end{array} \\ \text { Regulatory Floodway }\end{array}\right]$

B- 20.2 Cross Sections with 1\% Annual Chance 17.5 Water Surface Elevation $\mathrm{mm}_{\text {513 }} \mathrm{mm}$ Base Flood Elevation Line (BFE) Limit of Study
_ Jurisdiction Boundary
--- --- Coastal Transect Baseline
OTHER FEATURES \qquad Profile Baseline
\qquad

MAP PANELS

\therefore Digital Data Available
 No Digital Data Available
 Unmapped

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 8/10/2022 at 5:04 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, IRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

Drainage Report - Final_V2.pdf Markup Summary

dsdlaforce (6)		
20	Subject: Image Page Label: 17 Author: dsdlaforce Date: 1/30/2023 8:12:44 AM Status: Color: Layer: Space:	
0	Subject: Image Page Label: 17 Author: dsdlaforce Date: 1/30/2023 8:12:44 AM Status: Color: Layer: Space:	
Enisuntimer	Subject: Group Page Label: 17 Author: dsdlaforce Date: 1/30/2023 8:15:03 AM Status: Color: Layer: Space:	
	Subject: Callout Page Label: 17 Author: dsdlaforce Date: 1/30/2023 8:31:23 AM Status: Color: Layer: Space:	Unresolved. Provide the computation for the percent impervious similar to the first submittal. See snippet from the first submittal below. The pond sizing needs to account for sub-basin B buildout condition. If Basin A is 69% and Basin B buildout is 95% impervious then the weighted \% imperviousness would be approximately 78%. Update the pond design so it's consistent with the report narrative. Contact the review engineer to discuss.
N/A 40 51 5.97 0.08 0.300	Subject: Highlight Page Label: 18 Author: dsdlaforce Date: 1/30/2023 8:39:28 AM Status: Color: Layer: Space:	
	Subject: Callout Page Label: 18 Author: dsdlaforce Date: 1/30/2023 8:40:05 AM Status: Color: Layer: Space:	To be reviewed on the resubmittal once overflow weir data is completed.

Glenn Reese - E	PC Stormwater (5)	
	Subject: SW - Textbox with Arrow Page Label: 4 Author: Glenn Reese - EPC Stormwater Date: 1/25/2023 4:37:37 PM Status: Color: Layer: Space:	Unresolved comment: WQ Pond A or Detention Basin A or Detention Basin 11?
	Subject: SW - Highlight Page Label: 4 Author: Glenn Reese - EPC Stormwater Date: 1/25/2023 4:37:46 PM Status: Color: Layer: Space:	Detention Basin A.
storm sewer system will along the west boundary openings at selected loce the detention basin. The provide positive drainag and private storm sewer Detention Rasin A	Subject: SW - Highlight Page Label: 4 Author: Glenn Reese - EPC Stormwater Date: 1/25/2023 4:37:51 PM Status: Color: Layer: Space:	detention basin.
	Subject: SW - Textbox with Arrow Page Label: 18 Author: Glenn Reese - EPC Stormwater Date: 1/25/2023 4:38:03 PM Status: Color: Layer: Space:	What happened? Why all "N/As" now with this submital? Complete these sections per my comments from Review \#1.
$\square 1 \mathrm{y}$ \square $=1$	Subject: SW - Rectangle Page Label: 18 Author: Glenn Reese - EPC Stormwater Date: 1/25/2023 4:38:34 PM Status: Color: Layer: Space:	
Ipackman (3)		
	Subject: Callout Page Label: 32 Author: lpackman Date: 1/24/2023 8:09:39 AM Status: Color: Layer: Space:	Unresolved. Label existing storm drain and identify if this is being removed and replaced by the 19" HDPE or capped.

[^0]: Joshua Palmer, P.E.
 Date
 County Engineer / ECM Administrator

[^1]: According to the Rational Method calculations in the original subdivision drainage report, developed peak flows from Basin D6A were calculated as $Q_{5}=14.0 \mathrm{cfs}$ and $\mathrm{Q}_{100}=$ 24.3 cfs . The impervious area for the proposed Struthers Ranch Polaris development amounts to approximately 69 percent of the site, which is well below the impervious area of 95 percent assumed for full commercial development in the previously approved subdivision drainage report.

 As detailed in the detention pond calculations in Appendix C, the required Water Quality Capture Volume (WQCV) has been calculated as 0.13 acre-feet. The water quality capture volume has been calculated based on the actual impervious area of the proposed site development within Basin A, along with an estimated impervious area of 95 percent for the anticipated future commercial development within Basin B. The proposed on-site Water Quality Pond A provides a storage volume of 0.22 acre-feet, which meets the required WQCV volume.

