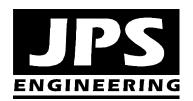
DRAINAGE LETTER REPORT

for

STRUTHERS RANCH POLARIS 847 STRUTHERS RANCH ROAD LOTS 1-2, STRUTHERS RANCH SUBDIVISION FILING NO. 4


Prepared for:

Hammers Construction, Inc.

1411 Woolsey Heights Colorado Springs, CO 80915

August 10, 2022 Revised October 21, 2022 Revised February 21, 2023 Revised April 7, 2023

Prepared by:

19 E. Willamette Ave. Colorado Springs, CO 80903 (719)-477-9429 www.jpsengr.com

JPS Project No. 032203 PCD Filing No. PPR2248

STRUTHERS RANCH POLARIS DRAINAGE LETTER REPORT TABLE OF CONTENTS

		PAGE	<u>3</u>
	DRAINAGE S	STATEMENT	i
I.	INTRODUCT	ION	1
II.	EXISTING / P	PROPOSED DRAINAGE CONDITIONS	2
III.	DRAINAGE F	PLANNING FOUR STEP PROCESS	5
IV.	FLOODPLAI	N IMPACTS	5
V.	STORMWAT	ER DETENTION AND WATER QUALITY	6
VI.	PUBLIC IMPI	ROVEMENTS / DRAINAGE BASIN FEES	7
VII.	SUMMARY		7
		<u>APPENDICES</u>	
APPEI APPEI APPEI	NDIX A NDIX B NDIX C NDIX D NDIX E	Excerpts from Subdivision Drainage Report Hydrologic Calculations Hydraulic Calculations Water Quality Pond Calculations Water Quality Pond Cost Estimate	
APPE	NDIX F Figure FIRM Sheet D1 Sheet D1.1	Figures Floodplain Map Struthers Ranch Subdivision - Developed Drainage Plan Struthers Ranch Polaris - Developed Drainage Plan	

DRAINAGE STATEMENT

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the Gounty for drainage reports and said report is in conformity with the master plan of the drainage basin. I according to the criteria established by the Gounty for drainage reports and said report is in conformity with the master plan of the drainage basin. I according to the criteria established by the Gounty for drainage reports and said report is in conformity with the master plan of the drainage basin. I according to the criteria established by the Gounty for drainage reports and said report is in conformity with the master plan of the drainage basin. I according to the criteria established by the Gounty for drainage reports and said report is in conformity with the master plan of the drainage basin. I according to the criteria established by the Gounty for drainage reports and said report is in conformity with the master plan of the drainage basin. I according to the criteria established by the Gounty for drainage reports and said report is in conformity with the master plan of the drainage basin. I according to the criteria established by the Gounty for drainage reports and said report is in conformity with the master plan of the drainage basin.

John P. Schwab, P.E. #29891

Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

By:

Hammers Construction, Inc.

1411 Woolsey Heights, Colorado Springs, CO 80915

El Paso County's Statement

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

Joshua Palmer, P.E.

County Engineer / ECM Administrator

Conditions:

Date

I. INTRODUCTION

A. Property Location and Description

Hammers Construction is planning to construct a new Polaris dealership on the vacant 2.94-acre property at the southeast corner of Struthers Road and Struthers Ranch Road in northern El Paso County, Colorado. The property is described as Lots 1 and 2, Struthers Ranch Subdivision Filing No. 4 (El Paso County Assessor's Parcel Numbers 71363-03-010 and 71363-03-011).

The project consists of a new 12,000 square-foot, single-story Polaris dealership building with associated parking and site improvements. The property is bounded by Struthers Road on the southwest side and Struthers Ranch Road on the northwest side. Struthers Road is a fully improved, asphalt-paved arterial public street, and Struthers Ranch Road is a fully improved local public street. Existing platted residential lots are located along the northeast boundary of the parcel (Struthers Ranch Filing No. 2). The south boundary of the site adjoins vacant commercial properties (Lots 3 and 4, Struthers Ranch Subdivision Filing No. 4).

The property is zoned Planned Unit Development (PUD), and the proposed site development is fully consistent with the existing zoning of the site. Access to the site will be provided by the existing private driveway connection to Struthers Ranch Road along the north boundary of Lot 1.

The site is located in the Black Forest Creek Drainage Basin, and surface drainage from this site sheet flows southwesterly to an existing public storm sewer system along the west boundary of the property, flowing to the existing Struthers Ranch stormwater detention pond on the west side of Struthers Road.

This report is intended to meet the requirements of a site-specific "Letter Type" drainage report in accordance with El Paso County subdivision drainage criteria.

B. Drainage Analysis Methods and Criteria

ITEM	DESCRIPTION	REFERENCE
Design Storm (initial/major)	5-year/100-year	CS/EPC DCM
Storm Runoff	Rational Method (Area<100acres)	CS/EPC DCM
Major Drainage Basin	Black Forest Creek	
Floodplain Impacts	Parcel is located outside any delineated	FIRM
	FEMA floodplains	
Existing Downstream	Existing storm sewer system on east side	
Facilities	of Struthers Road; Existing detention	
	pond on west side of Struthers Road	

1

CS/EPC DCM = City of Colorado Springs & El Paso County Drainage Criteria Manual

C. References

JPS Engineering, Inc., "Final Drainage Report for Struthers Ranch Filing No. 2," October 14, 2004 (approved by El Paso County 10/20/04).

JPS Engineering, Inc., "Drainage Letter Report for Struthers Ranch Subdivision Filing No. 4," February 22, 2006.

II. EXISTING / PROPOSED DRAINAGE CONDITIONS

Subdivision Drainage Report

Drainage planning for this site was previously master planned during original development of the Struthers Ranch Subdivision, as detailed in the "Final Drainage Report (FDR) for Struthers Ranch Filing No. 2" by JPS Engineering, dated October 14, 2004 (see excerpts in Appendix A). The project area at the southeast corner of Struthers Road and Struthers Ranch Road was identified as a future commercial development area in the original planning of the subdivision.

According to the original FDR, Basins D6A (3.0 acres) and D9A (3.18 acres) comprise the future commercial development areas on the south side of Struthers Ranch Road. The previously approved subdivision drainage planning assumed full commercial development within all of Basins D6A and D9A, with runoff coefficients of $C_5 = 0.90$ and $C_{100} = 0.90$, and impervious areas of 95 percent for the entirely of these basins. According to the Rational Method calculations in the original subdivision drainage report, developed peak flows from Basin D6A were calculated as $Q_5 = 14.0$ cfs and $Q_{100} = 24.3$ cfs, and peak flows from Basin D9A were calculated as $Q_5 = 14.9$ cfs and $Q_{100} = 25.8$ cfs (see Appendix A).

As shown on the enclosed Struthers Ranch Subdivision Drainage Plan (Figure D1, Appendix F), the proposed Polaris development site lies entirely within Basin D6A as delineated in the approved "Final Drainage Report for Struthers Ranch Filing No. 2." The site slopes downward to the southwest, with average grades of 1-4 percent. On-site soils are classified by SCS as type 71, "Pring" series coarse sandy loam soils. These soils have moderately rapid permeability and slow to medium surface runoff characteristics. The soils are classified as hydrologic soils group B.

Developed drainage from this commercial site will sheet flow southwesterly to the existing storm sewer system along the east side of Struthers Road. Flows combine at the existing grated inlet on the east side of Struthers Road, where double 48-inch culverts convey developed flows across Struthers Road and into the existing detention pond. The previously approved drainage report for Struthers Ranch Filing No. 2 assumed full commercial development for this basin, which is consistent with the proposed site development. The existing detention pond was sized to account for fully developed flows from this commercial area.

The impervious area for the proposed Struthers Ranch Polaris development (delineated as Basin A within this report, which correlates with Basin D6A in the FDR) amounts to approximately 69 percent of the site (as tabulated on Sh. D1.1 and Appendix B), which is well below the impervious area of 95 percent assumed for full commercial development in the previously approved subdivision drainage report (see Appendix A).

Based on the previous construction of drainage improvements for the Struthers Ranch Subdivision, no significant impact on downstream drainage facilities is anticipated from this site development and replat. Proper erosion control measures will be required for development of the site, including silt fence along property boundaries to minimize off-site transport of construction sediment.

Existing Drainage Conditions

As shown on the enclosed Drainage Plan (Figure D1.1, Appendix F), the site has been delineated as two on-site drainage basins. The project area (Lots 1-2, Struthers Ranch Filing No. 4) has been delineated as Basin A, and the future development area to the southeast (Lots 3-4, Struthers Ranch Filing No. 4) has been delineated as Basin B. The site is impacted by an off-site basin consisting of the rear sides of the adjoining single-family residential lots (platted as part of Struthers Ranch Filing No 2) along the southeast boundary of the site, which has been delineated as Basin OB1.

Existing drainage from Basin A sheet flows southwesterly across the property, with peak flows calculated as $Q_5 = 0.8$ cfs and $Q_{100} = 5.8$ cfs. Basin A flows to the existing ditch along the east side of Struthers Road, and the ditch flows are captured in the existing grated storm inlet identified as Design Point #1.

Existing drainage from off-site Basin OB1 (back sides of adjoining developed single-family residential lots along northeast boundary of project site) sheet flows southwesterly into Basin B, and Basin B flows southwesterly to the existing ditch along the east side of Struthers Road, ultimately flowing into the existing grated storm inlet at Design Point #1. Existing flows from Basins OB1 and B combine at Design Point #B1, with peak flows calculated as $Q_5 = 1.9$ cfs and $Q_{100} = 7.0$ cfs.

Existing flows from Basins A, OB1, and B combine at Design Point #1, with peak flows calculated as $Q_5 = 2.5$ cfs and $Q_{100} = 12.0$ cfs. A double 48-inch RCP storm sewer conveys the flow from the grated storm inlet southwesterly across Struthers Road into the existing regional Struthers Ranch Detention Pond.

Developed Drainage Plan

Developed flows have been calculated based on the impervious areas associated with the proposed building and parking improvements. Surface drainage swales and a private storm sewer system will convey developed flows to the proposed Water Quality Pond A along the west boundary of the site. Site grades will slope to storm inlets and curb openings at selected locations, collecting surface drainage and conveying stormwater to

Water Quality Pond A. The proposed building pad will be graded with protective slopes to provide positive drainage away from the building, and the curb, gutter, drainage swales, and private storm sewer system will convey developed flows southwesterly into Water Quality Pond A.

The proposed Polaris site development on Lots 1-2 has been delineated as Basin A, which drains by sheet flow and curb and gutter to the proposed Stormwater Quality Detention Basin along the west boundary of the site. Private Storm Inlet A1 (Type 16) will intercept surface drainage from the north side of the Polaris site, and Private Storm Sewer A1 (18") will convey this flow into the on-site Water Quality Pond A. The balance of the Polaris site will flow by drainage swales and curb and gutter into the south side of Water Quality Pond A.

Developed peak flows at Design Point A are calculated as $Q_5 = 8.9$ cfs and $Q_{100} = 17.7$ cfs. Basin A generally correlates with "Basin D6A" in the Final Drainage Report for Struthers Ranch Filing No. 2 ($Q_5 = 14.0$ cfs and $Q_{100} = 24.3$ cfs).

The future commercial site development areas to the south in Lots 3-4 have been delineated as Basin B, which will generally drain northwesterly by sheet flow and curb and gutter to a future private storm sewer via a proposed 18" HDPE pipe conveying developed flows into Water Quality Pond A. Developed peak flows at Design Point B are calculated as $Q_5 = 4.7$ cfs and $Q_{100} = 9.0$ cfs. Basin B generally correlates with "Basin D9A" in the Final Drainage Report for Struthers Ranch Filing No. 2 ($Q_5 = 14.9$ cfs and $Q_{100} = 25.8$ cfs). Developed flows from off-site Basin OB1 will continue to combine with Basin B at Design Point #B1, with peak flows calculated as $Q_5 = 5.9$ cfs and $Q_{100} = 12.2$ cfs.

The 18" HDPE discharge pipe from Water Quality Pond A (along with overflows from the pond spillway) will drain into the existing grated storm inlet along the east side of Struthers Road, and the existing double 48-inch RCP storm sewer will continue to convey the flow from the grated storm inlet southwesterly across Struthers Road into the existing regional Struthers Ranch Detention Pond ("Detention Pond 11" per Black Forest Creek DBPS).

Developed flows from Basins A, OB1, and B combine at Design Point #1, with peak flows calculated as $Q_5 = 11.9$ cfs and $Q_{100} = 24.2$ cfs. As detailed in Appendix B, for comparison with the original Subdivision FDR, the total flows from Basins D6A and D9A (equivalent to Design Point #1) have been calculated as $Q_5 = 23.2$ cfs and $Q_{100} = 38.9$ cfs (significantly higher than the current developed flow calculations). As such, the developed flows are well below the previously master planned developed flows entering the regional detention pond.

Hydrologic and hydraulic calculations for the site are detailed in the appendices (Appendix B and C), and peak flows are identified on Figure D1.1 (Appendix F).

III. DRAINAGE PLANNING FOUR STEP PROCESS

El Paso County Drainage Criteria require drainage planning to include a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

As stated in ECM Appendix I.7., the Four Step Process is applicable to all new and redevelopment projects with construction activities that disturb 1 acre or greater or that disturb less than 1 acre but are part of a larger common plan of development. The Four Step Process has been implemented as follows in the planning of this project:

Step 1: Employ Runoff Reduction Practices

• Extended Detention Basin: The majority of developed flows will be routed through the on-site detention basin, which will be grass-lined to encourage stormwater infiltration.

Step 2: Stabilize Drainageways

- There are no drainageways directly adjacent to this project site. Implementation of the on-site drainage improvements and detention basin will minimize downstream drainage impacts from this site.
- Drainage basin fees were previously paid during recording of the subdivision plat, and these fees provided the applicable cost contribution towards regional drainage improvements.

Step 3: Provide Water Quality Capture Volume (WQCV)

• EDB: The majority of the developed site will drain through an on-site Private Extended Detention Basin (EDB) along the west boundary of the property. The extended detention basin which will capture and slowly release the WQCV over an extended release period.

Step 4: Consider Need for Industrial and Commercial BMPs

- No industrial uses are proposed for this site.
- The commercial property owner will implement a Stormwater Management Plan including proper housekeeping practices and spill containment procedures.
- On-site drainage will be routed through the Extended Detention Basin (EDB) to minimize introduction of contaminants to the County's public drainage system.

IV. FLOODPLAIN IMPACTS

According to the FEMA floodplain map for this area, El Paso County FIRM Panel No. 08041C0287G, dated December 7, 2018, the site is located beyond the limits of any delineated floodplains.

V. STORMWATER DETENTION AND WATER QUALITY

Stormwater detention for this site is provided in the existing regional stormwater detention pond constructed during initial development of the Struthers Ranch Subdivision. The Struthers Ranch Homeowners Association is the owner of the existing Struthers Ranch Detention Pond located within Tract C, Struthers Ranch Filing No. 2. There currently appears to be a need for removal of excess vegetation within the pond to ensure proper operation of the detention facilities. The developer will need to coordinate with the HOA to ensure that the required maintenance is performed on the existing regional detention pond.

An on-site private Water Quality Pond will be constructed to meet stormwater quality improvements for this project site in accordance with current El Paso County drainage criteria.

As detailed in the detention pond calculations in Appendix D, the required Water Quality Capture Volume (WQCV) has been calculated as 0.13 acre-feet. The water quality capture volume has been calculated based on the actual impervious area of the proposed site development within Basin A (calculated as 69%), along with the typical single-family residential impervious area of 40% within the adjoining developed Basin OB1, and a conservative estimated impervious area of 95 percent for the anticipated future commercial development within Basin B (consistent with the original FDR).

The proposed Water Quality Basin has been designed utilizing the Denver Mile High Flood District's "MH-Detention_v4.05" software package. Calculations and details for the proposed Water Quality Basin are enclosed in Appendix D, and design parameters for the Water Quality Basin are summarized as follows:

Water Quality	Tributary Drainage	Tributary Area	Impervious	Min.	Design
Basin	Basin	(ac)	Percentage	WQCV (af)	Volume (af)
A	A,OB1,B	5.62	68.1	0.13	0.25

The proposed on-site Water Quality Pond A provides a storage volume of 0.25 acre-feet, which meets the required WQCV volume.

The proposed water quality pond will include concrete forebays, trickle channels, and an outlet structure with a water quality orifice plate to maintain discharges below the allowable release rates. The pond outlet structure has been designed for a 40-hour release of the WQCV, and outlet structure sizing to maintain maximum allowable release rates from the pond. The water quality pond will have a grass-lined bottom to encourage infiltration of stormwater prior to discharging into the downstream public drainage system.

The new on-site Water Quality Basin will be privately owned and maintained by the property owner, and maintenance access will be provided from the southwest parking lot.

VI. PUBLIC IMPROVEMENTS / DRAINAGE BASIN FEES

No public drainage improvements are required or proposed for this project. As detailed in Appendix E, the proposed private Water Quality Pond A has an estimated cost of approximately \$65,846.

The site lies completely within the Black Forest Creek Drainage Basin. Applicable drainage basin fees were paid at the time of original platting of Struthers Ranch Filing No. 2, so no drainage basin fees or bridge fees are applicable at this time.

VII. SUMMARY

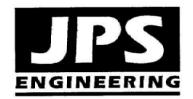
The developed drainage patterns for the proposed site development on Lots 1-2, Struthers Ranch Filing No. 4 will remain consistent with the established drainage plan for this subdivision. The grading and drainage plan for the proposed Polaris site development fully conforms to the approved drainage plan for Struthers Ranch Filings No. 2 and 4.

Developed flows from the site will drain through a Private Water Quality Pond at the southwest corner of the property prior to discharging to the existing downstream public drainage system. Stormwater detention is provided by the existing Struthers Ranch Detention Pond which was designed to accept fully developed flows from the commercial area encompassing this site (Lots 1-4, Struthers Ranch Filing No. 4). The proposed onsite Water Quality Pond will be constructed to meet current stormwater quality requirements. Construction and proper maintenance of the on-site drainage facilities and Extended Detention Basin, in conjunction with proper erosion control practices, will ensure that this developed site has no significant adverse drainage impact on downstream or surrounding areas.

APPENDIX A EXCERPTS FROM SUBDIVISION DRAINAGE REPORT

FINAL DRAINAGE REPORT

for


STRUTHERS RANCH FILING NO. 2

Prepared for:

WL Homes LLC 8610 Explorer Drive, Suite 300 Colorado Springs, CO 80920

November 6, 2003 Revised April 12, 2004 Revised May 7, 2004 Revised May 25, 2004 Revised September 3, 2004 Revised October 14, 2004

Prepared by:

19 E. Willamette Avenue Colorado Springs, CO 80903 (719)-477-9429 (719)-471-0766 FAX

JPS Project No. 080006

JF 15 2004

L. 2959

2. Developed Drainage Conditions

The developed drainage basins and projected flows are shown in Figure D1, and preliminary hydrologic calculations are enclosed in Appendix B. The developed site has been divided into five major basins (A-E) and five design points (DP1-DP5), as shown on the enclosed Drainage Plan (Sheets D1 and D1.02). Hydrologic flow schematics and calculations are enclosed in Appendix B.

Struthers Ranch Filing No. 2 is located within parts of Basins C-F at the northwest corner of the site. The majority of developed areas ultimately flow to the proposed detention pond at Design Point No. 4. The internal road gutters of sub-basins D1-D10 will be graded to drain southwesterly through the interior road system. Storm inlets will be constructed in the interior roads as required to intercept developed flows exceeding the allowable street capacity. Storm sewer outfalls will be extended to the proposed detention pond.

To minimize the impacts of developed drainage from Struthers Ranch, flows from Basins C, D, and F will be routed through the proposed detention pond. Off-site Basins OC1 and OD1 will combine with flows from on-site Sub-basins D1-D10, C, E2, E3, and F at the proposed detention pond (Design Point #4), with developed flows of $Q_5 = 66$ cfs and $Q_{100} = 191$ cfs (SCS Method). The detention pond will discharge historic flows to the existing swale at the southerly site boundary, flowing into the existing 48-inch culvert crossing I-25. The proposed 48-inch RCP discharge pipe from the detention pond will be released to a riprap apron, flowing to an existing stable grass-lined swale across a parcel owned by the U.S Air Force Academy, ultimately crossing I-25 through the existing 48-inch CMP culvert.

The proposed site layout will significantly reduce the amount of developed flow reaching the existing 3.5'x2' culvert (Structure #11) at the westerly site boundary (Design Point #3). Flows from Sub-basin E4 ($Q_5 = 1.9$ cfs and $Q_{100} = 3.7$ cfs) represent the westerly side of the proposed Struthers Road draining to the existing culvert crossing I-25.

Basin E1 represents the small developed area at the northwest corner of the site, draining to the existing 4'x4' box culvert at Design Point #5. The proposed grading scheme for the commercial area north of Struthers Ranch Road will direct the majority of developed flows into Basin C, ultimately flowing to the proposed detention pond. As a result, developed flow impacts to the Jackson Creek Basin at the northwest corner of the site will be minimized. Estimated developed peak flows of $Q_5 = 4.6$ cfs and $Q_{100} = 8.9$ cfs at Design Point #5 remain within the capacity of the existing culvert.

C. Comparison of Developed to Historic Discharges

Based on the hydrologic calculations in Appendix B, the total undetained developed flow from the site will exceed historic flow from the parcel. Projected increases in developed flows will be mitigated by routing flows through a proposed on-site stormwater detention pond. The comparison of developed to historic discharges at key design points is summarized as follows:

	H	istoric Fl	ow	Dev	eloped I	Flow	
Design Point 1 (SCS) 2 3 4 (SCS) 5	Area (ac)	Q ₅ (cfs)	Q ₁₀₀ (cfs)	Area (ac)	Q ₅ (cfs)	Q ₁₀₀ (cfs)	Comparison of Developed to Historic Flow (Q ₅ %/Q ₁₀₀ %)
1 (SCS)	1,266	473	1,281	1,274	464	1,263	98% / 99% (decrease)
2	15.1	9.3	22.4	1.4	1.7	3.6	18% / 16% (decrease)
3	16.0	9.9	24.0	0.6	1.9	3.7	19% / 15% (decrease)
4 (SCS)	133.6	50	148	155.4	66	191	132% / 129% (increase)
5	6.8	8	9.2	4.0	4.6	8.9	121% / 99% (increase)

D. Detention Ponds

The total developed storm runoff downstream of Struthers Ranch will be maintained at historic levels by routing flows through the proposed on-site detention pond located at the westerly boundary of the Struthers Ranch property (equivalent to "Detention Pond #11" as identified in the DBPS). The proposed detention facility will be sized to attenuate peak flows through the pond, based on the difference between outflow and inflow hydrographs. Flows from Basins C and D will be routed through the proposed detention pond at Design Point #4. The pond will be designed to "over-detain" to account for release of developed flows from Basins A and B, ensuring that the net discharge from the overall site will be maintained below historic levels.

As depicted on Sheet C1.02 (Appendix A), the proposed interim access connection from the I-25 Frontage Road to Struthers Road will bisect the pond, providing for a forebay at the upstream end of the pond. Once the interim access to the frontage road is abandoned, the maintenance access road will remain, and the forebay will continue to serve as a water quality enhancement feature. A detailed pond routing analysis utilizing the "Intelisolve Hydraflow" software package is enclosed in Appendix C1, resulting in the following pond design parameters:

Pond	Pond Inflow	Pond Outflow	Pond Volume
	$(Q_5/Q_{100}, cfs)$	$(Q_5 / Q_{100}, cfs)$	(ac-ft)
DP4 ("Pond #11")	35 / 191	19.3 / 138.4	4.7



TABLE 5-1
RECOMMENDED AVERAGE RUNOFF COEFFICIENTS AND PERCENT INPERVIOUS

*			,	"C"	
			FRE	DUENCY	
	PERCENT	1	0	10	
LAND USE OR	IMPERVIOUS	A&B*	C&D*	A&B*	C&D*
SURFACE CHARACTERISTICS	THEFT				
Business					0.00
Commercial Areas	95	(0.90)	0.90	0.90	0.90
Neighborhood Areas	70	0.75	0.75	0.80	0.80
Residential	65	0.60	0.70	0.70	0.80
1/8 Acre or less	40	0.50	0.60	0.60	0.70
1/4 Acre	30	0.40	0.50	0.55	0.60
1/3 Acre	25	0.35	0.45	0.45	0.55
1/2 Acre	20	0.30	0.40	0.40	0.50
1 Acre	20	0.30	0.40	0.40	3250
			7.2		
Industrial	80	0.70	0,70	0.80	0.80
Light Areas	90	0.80	0.80	0.90	0.90
Heavy Areas	,,				
	7	0.30	0.35	0.55	0.60
Parks and Cemeteries	13	0.30	0.35	0.60	0.65
Playgrounds	40	0.50	0.55	0.60	0.65
Railroad Yard Areas	•••				
Undeveloped Areas			27 20 52		
Historic Flow Analysis-	2	0.15	0.25	0.20	0.30
Greenbelts, Agricultural					
Pasture/Headow	0	(0.25)	0,10	Q.35)	0.45
Forest	0	0.10	2.15	0.15	0.20
	100	0.90	0.90	0.95	0.95
Exposed Rock Offsite Flow Analysis	45	0.55	0.60	0.65	0.70
(when land use not defin	ed)				
(Augu Taur Con man	•				
Streets		0.90	0.90	0.95	0.95
Paved	100	0.80	0.80	0.85	0.85
Gravel	80	0.80	0.50	0.05	
	100	0.90	0.90	0.95	0.95
Drive and Walks	90	0.90	0.90	0.95	0.95
Roofs		0.25	0.30	0.35	0.45
Lawns	0	0.23	0.30		

^{*} Hydrologic Soil Group

^{9/30/90}

STRUTHERS RANCH COMPOSITE RUNOFF COEFFICIENTS

DEVELOPED CONDITIONS

5-YEAR C VALUES

	TOTAL AREA	SOIL	and the same	SUB-AREA 1 DEVELOPMENT/		AREA	SUB-AREA 2 DEVELOPMENT/		1000000000000	SUB-AREA 3 DEVELOPMENT/		WEIGHTED
BASIN	(AC)	TYPE	(AC)	COVER	С	(AC)	COVER	С	(AC)	COVER	c	C VALUE
OA1	981	В	981	0.25-AC LOTS	0.5							0.500
OA2	240	В	240	0.25-AC LOTS	0.5							0.500
OA1,OA2	1221											0.500
B1	1.1	В	1.1	0.25-AC LOTS	0.5	8						0.500
A	38.5	В	38.5	OPEN SPACE	0.25							0.250
OA1,OA2,B1,A	1260.6											0.492
OB1	1.87	В	1.87	0.25-AC LOTS	0.5					+		0.500
B2	1.81	В	1.81	0.25-AC LOTS	0.5							0.500
B3	1.4	В	1.41	0.25-AC LOTS	0.5	7.11.0						0.500
B4	5.8	В	5.8	0.25-AC LOTS	0.5	1						0.500
OB1,B2-B4	10.9											0.500
B5	0.9	В	0.9	0.25-AC LOTS	0.5							0.500
OB1,B2-B5	11.8											0.500
B6	3.3	В	3.3	0.25-AC LOTS	0.5							0.500
OB1,B2-B6	15.1											0.500
OA1,OA2,A,B1-B6	1275.7											0.492
B7	0.83	В	0.83	0.25-AC LOTS	0.5		 					0.500
B8	0.52	В	0.52	0.25-AC LOTS	0.5							0.500
B7,B8	1.4											0.500
E4	0.6	В	0.34	PAVED	0.9	0.3	LANDSCAPE	0.25				0.618
OD1	98.57	В	98.57	5-AC LOTS	0.3		+					0.300
D1	0.46	В	0.46	MEADOW	0.25							0.250
OD1,D1	99.03											0.300

JPS ENGINEERING

OD2	6.26	В	6.26	5-AC LOTS	0.3				0.300
D1C	3.23	В	1.5	0.25-AC LOTS	0.5	1.7	OPEN SPACE	0.25	0.366
OD2,D1C	9.49								0.322
D1A	3.00	В	0.8	0.25-AC LOTS	0.5	2.2	PARK/OS	0.25	0.317
OD2,D1C,D1A	12.49								0.321
D1B	0.19	В	0.19	ROADWAY	0.9		1		0.900
OD1,D1,D1A,D1B	111.71		71						0.303
D4	0.12	В	0.12	ROADWAY	0.9				0.900
OD1,D1,D1A,D1B,D4	111.83								0.304
D5	0.11	В	0.11	ROADWAY	0.9				0.900
OD1,D1,D1A,D1B,D4,D5	111.94								0.304
D6	0.32	В	0.318	ROADWAY	0.9				0.900
OD1,D1,D1A,D1B,D4-D6	112.26								0.306
OC1	2.21	В	2.21	5-AC LOTS	0.3				0.300
D2	3.60	В	3.6	0.25-AC LOTS	0.5				0.500
OC1,D2	5.81		1.00						0.424
E2A	0.39	В	0.3	PAVED	0.9	0.1	LANDSCAPE	0.25	0.750
D3	1.55	В	1.55	0.25-AC LOTS	0.5				0.500
C	4.75	В	4.75	COMMERCIAL	0.9				0.900
D3,C	6.30								0.802
OD1,OC1,C,E2A,D1-D6	124.76								0.338
E2	0.52	В	0.4	PAVED	0.9	0.1	LANDSCAPE	0.25	0.750
D6A	3.00	В	3	COMMERCIAL	0.9				0.900
OD1,OC1,C,D1-D6A	128.28								0.350
D7A	3.48	В	3.48	0.25-AC LOTS	0.5				0.500
D7	6.05	В	6.05	0.25-AC LOTS	0.5				0.500
D7A,D7	9.53								0.500
D8	3.72	В	3.72	0.25-AC LOTS	0.5				0.500
D7A,D7,D8	13.25								0.500
D9	1.20	В	1.2	0.25-AC LOTS	0.5				0.500
D7A-D9	14.45								0.500
E3A	0.12	В	0.12	MEDIAN	0.25				0.250
D10	4.80	В	4.8	0.25-AC LOTS	0.5				0.500
D7A-D10,E3A	19.37								0.498
D9A	3.18	В	3.18	COMMERCIAL	0.9		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.900
D7A-D10,E3A	22.55		11 30561						0.555
E3	0.70	В	0.5	PAVED	0.9	0.2	LANDSCAPE	0.25	0.714
F	4.02	В	4.02	OPEN SPACE	0.25				0.250
OD1,C,D1-D10,E2-E3,F	155.55	В							0.379
OE1	2.47	В	2.47	5-AC LOTS	0.3		de energia		0.300
E1	1.5	В	1.5	COMMERCIAL	0.9				0.900
OE1,E1	4.0								0.527

STRUTHERS RANCH COMPOSITE RUNOFF COEFFICIENTS

DEVELOPED CONDITIONS

100-YEAR C VALUES

	TOTAL AREA	SOIL		SUB-AREA 1 DEVELOPMENT/		AREA	SUB-AREA 2 DEVELOPMENT/			SUB-AREA 3 DEVELOPMENT/		WEIGHTED
BASIN	(AC)	TYPE	(AC)	COVER	С	(AC)	COVER	С	(AC)	COVER	С	C VALUE
OA1	981	В	981	0.25-AC LOTS	0.6							0.600
OA2	240	В	240	0.25-AC LOTS	0.6							0.600
OA1,OA2	1221											0.600
B1	1.1	В	1.1	0.25-AC LOTS	0.6					1 (25) (10) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		0.600
A	38.5	В	38.5	OPEN SPACE	0.35	311111						0.350
OA1,OA2,B1,A	1260.6											0.592
OB1	1.87	В	1.87	0.25-AC LOTS	0.6							0.600
B2	1.81	В	1.81	0.25-AC LOTS	0.6							0.600
B3	1.4	В	1.41	0.25-AC LOTS	0.6							0.600
B4	5.8	В	5.8	0.25-AC LOTS	0.6							0.600
OB1,B2-B4	10.9											0.600
B5	0.9	В	0.9	0.25-AC LOTS	0.6							0.600
OB1,B2-B5	11.8											0.600
B6	3.3	В	3.3	0.25-AC LOTS	0.6							0.600
OB1,B2-B6	15.1											0.600
OA1,OA2,A,B1-B6	1275.7								-1007			0.592
B7	0.83	В	0.83	0.25-AC LOTS	0.6				* 1111			0.600
B8	0.52	В	0.52	0.25-AC LOTS	0.6							0.600
B7,B8	1.4											0.600
E4	0.6	В	0.34	PAVED	0.95	0.3	LANDSCAPE	0.35				0.690
OD1	98.57	В	98.57	5-AC LOTS	0.4							0.400
D1	0.46	В	0.46	MEADOW	0.35							0.350
OD1,D1	99.03											0.400

JPS ENGINEERING

OD2	6.26	В	6.26	5-AC LOTS	0.4				0.400
D1C	3.23	В	1.5	0.25-AC LOTS	0.6	1.7	OPEN SPACE	0.35	0.466
OD2,D1C	9.49								0.422
D1A	3.00	В	0.8	0.25-AC LOTS	0.6	2.2	PARK / OS	0.35	0.417
OD2,D1C,D1A	12.49								0.421
D1B	0.19	В	0.19	ROADWAY	0.95				0.950
OD1,D1,D1A,D1B	111.71								0.403
D4	0.12	В	0.12	ROADWAY	0.95				0.950
OD1,D1,D1A,D1B,D4	111.83								0.404
D5	0.11	В	0.11	ROADWAY	0.95				0.950
OD1,D1,D1A,D1B,D4,D5	111.94								0.404
D6	0.32	В	0.318	ROADWAY	0.95				0.950
OD1,D1,D1A,D1B,D4-D6	112.26								0.406
OC1	2.21	В	2.21	5-AC LOTS	0.4				0.400
D2	3.60	В	3.6	0.25-AC LOTS	0.6		1		0.600
OC1,D2	5.81								0.524
E2A	0.39	В	0.3	PAVED	0.95	0.1	LANDSCAPE	0.35	0.812
D3	1.55	В	1.55	0.25-AC LOTS	0.6				0.600
C	4.75	В	4.75	COMMERCIAL	0.9				0.900
D3,C	6.30								 0.826
OD1,OC1,C,E2A,D1-D6	124.76			1					0.434
E2	0.52	В	0.4	PAVED	0.95	0.1	LANDSCAPE	0.35	0.812
D6A	3.00	В	3	COMMERCIAL	0.9				0.900
OD1,OC1,C,D1-D6A	128.28								0.443
D7A	3.48	В	3.48	0.25-AC LOTS	0.6			\vdash	0.600
D7	6.05	В	6.05	0.25-AC LOTS	0.6				0.600
D7A,D7	9.53								0.600
D8	3.72	В	3.72	0.25-AC LOTS	0.6				0.600
D7A,D7,D8	13.25								0.600
D9	1.20	В	1.2	0.25-AC LOTS	0.6				0.600
D7A-D9	14.45								0.600
E3A	0.12	В	0.12	MEDIAN	0.35				0.350
D10	4.80	В	4.8	0.25-AC LOTS	0.6				0.600
D7A-D10,E3A	19.37	- Scoult By							0.598
D9A	3.18	В	3.18	COMMERCIAL	0.9	2411/44			0.900
D7A-D10,E3A	22.55								0.641
E3	0.70	В	0.5	PAVED	0.95	0.2	LANDSCAPE	0.35	0.779
F	4.02	В	4.02	OPEN SPACE	0.35				0.350
OD1,C,D1-D10,E2-E3,F	155.55	В				-			0.471
OE1	2.47	В	2.47	5-AC LOTS	0.4	to the second			 0.400
E1	1.5	В	1.5	COMMERCIAL	0.9				0.900
OE1,E1	4.0								0.589

STRUTHERS RANCH RATIONAL METHOD - DRAINAGE CALCULATIONS

DEVELOPED FLOWS

				С	OVERLAND			CHANNEL	CONVEYANCE		SCS ⁽²⁾		TOTAL	INTE	NSITY (5)	PEAK F	LOW
BASIN	DESIGN	AREA	5-YEAR	100-YEAR (7)	LENGTH	SLOPE	Tco (1)	LENGTH	COEFFICIENT	SLOPE	VELOCITY	Tt (3)	Tc (4)	5-YR	100-YR	Q5 ⁽⁶⁾	Q100 ⁽⁶⁾
	POINT	(AC)			(FT)	(%)	(MIN)	(FT)	K	(%)	(FT/S)	(MIN)	(MIN)	(IN/HR)	(IN/HR)	(CFS)	(CFS)
DA1		981.00	0.500	0.600	300	5.4	10.7	11900	1.50	5.4	3.49	56.9	67.6	1.50	2.65	735.75	1559.79
DA2		240.00	0.500	0.600	300	5.5	10.6	620	1.50	5.5	3.52	2.9	13.5	3.60	6.10	432.00	878.40
OA1.OA2	OA1	1221.00	0.500	0.600									67.6	1.50	2.65	915.75	1941.39
B1	B1	1.10	0.500	0.600	250	12.8	7.3	0				0.0	7.3	4.50	7.60	2.48	5.02
A		38.50	0.250	0.350	0		0.0	2730	1.50	3.2	2.68	17.0	17.0	3.20	5.50	30.80	74.11
OA1,OA2,B1,A		1260.60	0.492	0.592									84.5	1.50	2.65	930.32	1977.63
B2		1.81	0.500	0.600	150	5.3	7.6	450	2.00	4.9	4.43	1.7	9.3	4.10	7.10	3.71	7.71
B3		1.41	0.500	0.600	0		0.0	700	2.00	3	3.46	3.4	3,4	5.20	9.00	3.67	7.61
B4		5.89	0.500	0.600	0		0.0	1180	2.00	3.7	3.85	5.1	5.1	5.20	9.00	15.31	31.81
OB1,B2,B3,B4	B3	9.11	0.500	0.600									12.7	3.70	6.20	16.85	33.89
B5		0.90	0.500	0.600	0		0.0	1000	2.00	3.3	3.63	4.6	4.6	5.20	9.00	2.34	4.86
OB1,B2-B5	B5	10.01	0.500	0.600						557 (451)		-0.01	17.2	3.20	5.50	16.02	33.03
B6	B6	3.30	0.500	0.600	0		0.0	2100	2.00	3.7	3.85	9.1	9.1	4.10	7.10	6.77	14.06
OB1,B2-B6	B6A	13.31	0.500	0.600									17.2	3.20	5.50	21.30	43.92
B6A	B6B											-0.				41.80	84.40
OA1,OA2,A,B1-B6	11	1273.9	0.492	0.592									84.5	1.50	2.65	940.15	1998.51
B7		0.83	0.500	0.600	150	4.0	8.3	0			1	0.0	8.3	4.25	7.50	1.76	3.74
B8	200	0.52	0.500	0.600	850	5.5	17.8	0				0.0	17.8	3.10	5.20	0.81	1.62
B7,B8	2	1.35	0.500	0.600									26.2	2.50	4.40	1.69	3.56
E4	3	0.60	0.618	0.690	0		0.0	450	1.50	5.5	3.52	2.1	2.1	5.20	9.00	1.93	3.73
OD1		98.57	0.300	0.400	1000	10.0	21.2	3300	1.50	3.9	2.96	18.6	39.7	1.90	3.40	56.18	134.06
D1		0.46	0.250	0.350	0		0.0	180	1.50	2.5	2.37	1,3	1.3				
OD1,D1	D1	99.03	0.300	0.400									41.0	1.90	3.40	56.45	134.68
OD2		6.26	0.300	0.400	1000	3.5	30.0	0				0.0	30.0	2.35	4.10	4.41	10.27
D1C		3.23	0.366	0.466	0		0.0	700	2.00	3.4	3.69	3.2	3.2				
OD2,D1C	D1C	9.49	0.322	0.422									33.2	2.20	3.85	6.72	15.42
D1A		3.00	0.317	0.417	0		0.0	370	2.00	2.7	3.29	1.9	1.9				1 3 30 3 31
OD2,D1C,D1A	D1A	12.49	0.321	0.421									35.0	2.10	3.75	8.42	19.72
D1B	D1B	0.19	0.900	0.950	0		0.0	420	2.00	1.6	2.53	2.8	2.8	5.20	9.00	0.89	1.62
OD1,D1,D1A,D1B	D1A1	111.71	0.303	0.403									41.0	1.90	3.40	64.31	153.07
04	D4	0.12	0.900	0.950	0		0.0	700	2.00	1.56	2.50	4.7	4.7	5.20	9.00	0.56	1.03
OD1,D1,D1A,D1B,D4	D4A	111.83	0.304	0.404									45.7	1.75	3.20	64.87	154.09
D5	D5	0.11	0.900	0.950	0		0.0	250	2.00	3.27	3.62	1.2	1.2	5.20	9.00	0.51	0.94
OD1,D1,D1A,D1B,D4,D5	D5A	111.94	0.304	0.404						1500		S	46.8	1.70	3.15	65.39	155.03
D6	D6	0.32	0.900	0.950	0		0.0	480	2.00	4.44	4.21	1.9	1.9	5.20	9.00	1.49	2.72
OD1,D1,D1A,D1B,D4-D6	D6A1	112.26	0.306	0.406									48.7	1.70	3.00	66.88	157.75

				С	OVERLAND			CHANNEL	CONVEYANCE		SCS (2)	- 15	TOTAL	INTE	NSITY (5)	PEAK F	LOW
BASIN	DESIGN	AREA	5-YEAR	100-YEAR (7)	LENGTH	SLOPE	Tco (1)	LENGTH	COEFFICIENT	SLOPE	VELOCITY	Tt (3)	Tc (4)	5-YR	100-YR	Q5 ⁽⁶⁾	Q100 ⁽⁶
	POINT	(AC)			(FT)	(%)	(MIN)	(FT)	К	(%)	(FT/S)	(MIN)	(MIN)	(IN/HR)		(CFS)	(CFS)
OC1		2.21	0.300	0.400	550	3.3	22.7					0.0	22.7	2.70	4.70	1.79	4.15
D2		3.60	0.500	0.600	0		0.0	600	2.00	3.6	3.79	2.6	2.6				
OC1,D2	D2	5.81	0.424	0.524									25.3	2.60	4.50	6.40	13.70
E2A	E2A	0.39	0.750	0.812	0		0.0	300	1.50	4	3.00	1.7	1.7	5.20	9.00	1.52	2.85
D3		1.55	0.500	0.600	0		0.0	580	2.00	4.3	4.15	2.3	2.3	5.20	9.00	4.03	8.37
C		4.75	0.900	0.900	0		0,0	750	2.00	3.3	3.63	3.4	3.4	5.20	9.00	22.23	38.48
D3,C	С	6.30	0.802	0.826									5.8	5.00	8.50	25.26	44.23
OD1,OC1,E2A,C,D1-D6	C1	124.76	0.338	0.434									48.7	1.70	3.00	71.69	162.43
F2		0.52	0.750	0.812	0		0.0	300	1.50	4	3.00	1.7	1.7	5.20	9.00	2.03	3.80
D6A	D6A_	3.00	0.900	0.900	0		0.0	470	2.00	3.4	3.69	2.1	2.1	5.20	9.00	14.04	24.30
OD1,OC1,C,D1-D6A	D6A2	128.28	0.350	0.443									50.8	1.60	2.90	71.84	164.80
D7A	D7A	3.48	0.500	0.600	0		0.0	950	2.00	1.68	2.59	6.1	6.1	5.00	8.50	8.70	17.75
D7		6.05	0.500	0.600	0		0.0	1244	2.00	2.17	2.95	7.0	7.0	4.60	8.00	13.92	29.04
D7A,D7	D7	9.53	0.500	0.600									7.0	4.60	8.00	21.92	45.74
D8	D8	3.72	0.500	0.600	0		0.0	225	2.00	3.4	3.69	1.0	1.0	5.20	9.00	9.67	20.09
D7A-D8	D8A	13.25	0.500	0.600									8.1	4.40	7.50	29.15	59.63
D9	D9	1.20	0.500	0.600	0		0.0	210	2.00	3.4	3.69	0.9	0.9	5.20	9.00	3.12	6.48
D7A-D9	D9A	14.45	0.500	0.600									9.0	4.20	7.20	30.35	62.42
E3A	E3A	0.12	0.250	0.350	0		0.0	220	1.50	4.3	3.11	1.2	1.2	5.20	9.00	0.16	0.38
D10	D10	4.80	0.500	0.600	300	4.0	11.8	1820	2.00	3	3.46	8.8	20.5	2.95	5.05	7.08	14.54
D10A	D10A	0.23	0.500	0.600	0		0.0	200	1.50	0.5	1.06	3.1	3.1	5.20	9.00	0.60	1.24
D7A-D10,E3A	D10B	19.37	0.498	0.598									20.5	2.95	5.05	28.46	58.50
D9A		3.18	0.900	0.900	0		0.0	620	1.50	0.5	1.06	9.7	9.7	5.20	9.00	14.88	25.76
D7A-D10,E3A	D9B	22.55	0.555	0.641									30.3	2.30	4.05	28.79	58.54
E3	E3	0.70	0.714	0.779	0		0.0	620	1.50	8.0	1.34	7.7	7.7	4.40	7.50	2.20	4.09
F		4.02	0.250	0.350	0		0.0	570	1.50	1.0	1.50	6.3	6.3	5.00	8.50	5.03	11.96
OD1,OC1,C,D1-D10,E2-E3,F	4	155.55	0.379	0.471									50.8	1.60	2.90	94.32	212.4
DE1		2.47	0.300	0.400	850	2.8	29.8	0				0.0	29.8	2.35	4.10	1.74	4.05
E1		1.50	0.900	0.900	0		0.0	700	2.00	2.3	3.03	3.8	3.8	5.20	9.00	7.02	12.15
0E1,E1	5	3.97	0.527	0.589								1	33.6	2.20	3.80	4.60	8.89

¹⁾ OVERLAND FLOW Too = (1.87*(1.1-RUNOFF COEFFICIENT)*(OVERLAND FLOW LENGTH*(0.5)/(SLOPE*(0.333))

K = 0.70 FOR MEADOW / FOREST

K = 1.0 FOR BARE SOIL

K = 1.5 FOR GRASS CHANNEL

K = 2.0 FOR PAVEMENT

²⁾ SCS VELOCITY = K * ((SLOPE(%))*0.5)

³⁾ GUTTER/SWALE FLOW, TRAVEL TIME, Tt = (CHANNEL LENGTH/ SCS VELOCITY) / 60 SEC

⁴⁾ Tc = Tco + Tt

^{***} IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED

⁵⁾ INTENSITY BASED ON I-D-F CURVE IN EL PASO COUNTY DRAINAGE CRITERIA MANUAL

⁶⁾ Q = CiA

⁷⁾ WEIGHTED AVERAGE C VALUES FOR COMBINED BASINS

APPENDIX B HYDROLOGIC CALCULATIONS

Chapter 6 Hydrology

Table 6-6. Runoff Coefficients for Rational Method

(Source: UDFCD 2001)

Land Harris Confess	B						Runoff Co	efficients					
Land Use or Surface Characteristics	Percent Impervious	2-у	ear	5-у	ear	10-1	year	25-	/ear	50-year		100-	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.71	0.73	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.82	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_t) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Hydrology Chapter 6

$$t_c = t_i + t_t \tag{Eq. 6-7}$$

Where:

 t_c = time of concentration (min)

 t_i = overland (initial) flow time (min)

 t_t = travel time in the ditch, channel, gutter, storm sewer, etc. (min)

3.2.1 Overland (Initial) Flow Time

The overland flow time, t_i , may be calculated using Equation 6-8.

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$
 (Eq. 6-8)

Where:

 t_i = overland (initial) flow time (min)

 C_5 = runoff coefficient for 5-year frequency (see Table 6-6)

L = length of overland flow (300 ft <u>maximum</u> for non-urban land uses, 100 ft <u>maximum</u> for urban land uses)

S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_t , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_t , can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

$$V = C_v S_w^{-0.5}$$
 (Eq. 6-9)

Where:

V = velocity (ft/s)

 C_v = conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

Chapter 6 Hydrology

Type of Land Surface	C_{v}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

Table 6-7. Conveyance Coefficient, C_{ν}

The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration (t_c) is then the sum of the overland flow time (t_i) and the travel time (t_t) per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation 6-10. The first design point is defined as the point where runoff first enters the storm sewer system.

$$t_c = \frac{L}{180} + 10 \tag{Eq. 6-10}$$

Where:

 t_c = maximum time of concentration at the first design point in an urban watershed (min)

L = waterway length (ft)

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

^{*}For buried riprap, select C_v value based on type of vegetative cover.

Hydrology Chapter 6

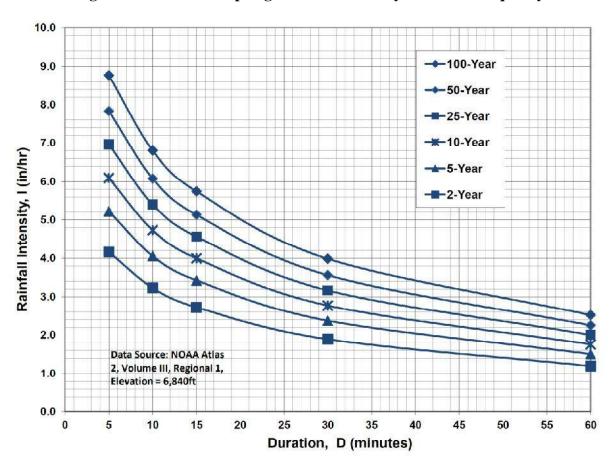


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations

$$I_{100} = -2.52 \ln(D) + 12.735$$

$$I_{50} = -2.25 \ln(D) + 11.375$$

$$I_{25} = -2.00 \ln(D) + 10.111$$

$$I_{10} = -1.75 \ln(D) + 8.847$$

$$I_5 = -1.50 \ln(D) + 7.583$$

$$I_2 = -1.19 \ln(D) + 6.035$$

Note: Values calculated by equations may not precisely duplicate values read from figure.

STRUTHERS RANCH POLARIS COMPOSITE RUNOFF COEFFICIENTS

EXISTING COND	ITIONS										
5-YEAR C VALUE	ES										
BASIN	TOTAL AREA (AC)	(AC)	SUB-AREA 1 DEVELOPMENT/ COVER	С	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	С	(AC)	SUB-AREA 3 DEVELOPMENT/ COVER	С	WEIGHTED C VALUE
Α	2.74	2.74	VACANT	0.08							0.080
OB1	1.47	1.47	SF RESIDENTIAL	0.3							0.300
В	1.41	1.41	VACANT	0.08							0.080
OB1,B	2.88										0.192
A,OB1,B	5.62										0.138
	-										
100-YEAR C VAL											
BASIN	TOTAL AREA (AC)	(AC)	SUB-AREA 1 DEVELOPMENT/ COVER	С	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	С	(AC)	SUB-AREA 3 DEVELOPMENT/ COVER	С	WEIGHTED C VALUE
		ì			 			` '	1		_
A	2.74	2.74	VACANT	0.35							0.350
OB1	1.47	1.47	SF RESIDENTIAL	0.5				1			0.500
В	1.41	1.41	VACANT	0.35							0.350
OB1,B	2.88										0.427
A,OB1,B	5.62				1			1			0.389
, ,											

RATL.STRUTHERS-POLARIS-1022

STRUTHERS RANCH POLARIS COMPOSITE RUNOFF COEFFICIENTS

	NDITIONS										
5-YEAR C VALU											
	TOTAL AREA		SUB-AREA 1 DEVELOPMENT/		AREA	SUB-AREA 2 DEVELOPMENT/			SUB-AREA 3 DEVELOPMENT/		WEIGHTE
BASIN	(AC)	(AC)	COVER	С	(AC)	COVER	С	(AC)	COVER	С	C VALUE
A	2.74	1.90	PAVED/IMPERVIOUS	0.9	0.84	LANDSCAPED	0.08		+		0.649
OB1	1.47	1.47	SF RESIDENTIAL	0.3							0.300
В	1.41	1.34	PAVED/IMPERVIOUS	0.9	0.07	LANDSCAPED	0.08				0.859
OB1,B	2.88										0.574
A,OB1,B	5.62										0.610
100-YEAR C VAL	.UES										
					-						
DACINI	TOTAL AREA	(AC)	SUB-AREA 1 DEVELOPMENT/	6	AREA	SUB-AREA 2 DEVELOPMENT/	6	(AC)	SUB-AREA 3 DEVELOPMENT/		
BASIN	_	(AC)	1	С	AREA (AC)	-	С	(AC)		С	WEIGHTEE C VALUE
BASIN A	AREA	(AC)	DEVELOPMENT/	C 0.96		DEVELOPMENT/	C 0.35	(AC)	DEVELOPMENT/	С	
	AREA (AC)	, ,	DEVELOPMENT/ COVER		(AC)	DEVELOPMENT/ COVER		(AC)	DEVELOPMENT/	С	C VALUE
A	AREA (AC)	1.90	DEVELOPMENT/ COVER PAVED/IMPERVIOUS	0.96	(AC)	DEVELOPMENT/ COVER		(AC)	DEVELOPMENT/	С	0.773
A OB1	AREA (AC) 2.74 1.47	1.90 1.47	DEVELOPMENT/ COVER PAVED/IMPERVIOUS SF RESIDENTIAL	0.96 0.5	(AC) 0.84	DEVELOPMENT/ COVER	0.35	(AC)	DEVELOPMENT/	С	0.773 0.500

RATL.STRUTHERS-POLARIS-1022

STRUTHERS RANCH POLARIS RATIONAL METHOD

EXISTING CONDITIONS

					0	verland Flo)W	Channel flow										
			(С				CHANNEL	CONVEYANCE		SCS (2)		TOTAL	TOTAL	INTEN	SITY (5)	PEAK F	LOW
BASIN	DESIGN POINT	AREA (AC)	5-YEAR	100-YEAR	LENGTH (FT)	SLOPE (FT/FT)	Tco ⁽¹⁾ (MIN)	LENGTH (FT)	COEFFICIENT C	SLOPE (FT/FT)	VELOCITY (FT/S)	Tt ⁽³⁾ (MIN)	Tc ⁽⁴⁾ (MIN)	Tc ⁽⁴⁾ (MIN)	5-YR (IN/HR)	100-YR (IN/HR)	Q5 ⁽⁶⁾ (CFS)	Q100 ⁽⁶⁾ (CFS)
A	Α	2.74	0.080	0.350	100	0.030	13.0	275	15	0.047	3.25	1.4	14.4	14.4	3.59	6.02	0.79	5.77
OB1	OB1	1.47	0.300	0.500	100	0.020	11.6					0.0	11.6	11.6	3.90	6.55	1.72	4.82
В	В	1.41	0.080	0.350	100	0.030	13.0	585	15	0.018	2.01	4.8	17.8	17.8	3.26	5.48	0.37	2.70
OB1,B	B1	2.88	0.192	0.427									16.5	16.5	3.38	5.67	1.87	6.98
Tt DP-B1 to DP1								225	15	0.036	2.85	1.3						
A,OB1,B	1	5.62	0.138	0.389									17.8	17.8	3.27	5.48	2.53	11.98

DEVELOPED CONDITIONS

					0	verland Flo)W		Cha	annel flow								
				С				CHANNEL	CONVEYANCE		SCS (2)		TOTAL	TOTAL	INTEN	SITY (5)	PEAK F	LOW
BASIN	DESIGN POINT	AREA (AC)	5-YEAR	100-YEAR	LENGTH (FT)	SLOPE (FT/FT)	Tco ⁽¹⁾ (MIN)	LENGTH (FT)	COEFFICIENT C	SLOPE (FT/FT)	VELOCITY (FT/S)	Tt ⁽³⁾ (MIN)	Tc ⁽⁴⁾ (MIN)	Tc ⁽⁴⁾ (MIN)	5-YR (IN/HR)	100-YR (IN/HR)	Q5 ⁽⁶⁾ (CFS)	Q100 ⁽⁶⁾ (CFS)
																		ĺ
A	Α	2.74	0.649	0.773	60	0.083	3.2	490	20	0.027	3.29	2.5	5.6	5.6	4.99	8.37	8.87	17.73
OB1	OB1	1.47	0.300	0.500	100	0.020	11.6					0.0	11.6	11.6	3.90	6.55	1.72	4.82
В	В	1.41	0.859	0.930	100	0.030	3.1	500	20	0.02	2.83	2.9	6.0	6.0	4.89	8.22	5.93	10.78
OB1,B	B1	2.88	0.574	0.710									14.6	14.6	3.56	5.98	5.89	12.24
Tt DP-B1 to DP1								225	20	0.036	3.79	1.0						
A,OB1,B	1	5.62	0.610	0.741									15.6	15.6	3.47	5.82	11.88	24.23

DEVELOPED CONDITIONS - COMPARISON WITH SUBDIVISION DRAINAGE REPORT ("FINAL DRAINAGE REPORT FOR STRUTHERS RANCH FILING NO. 2" BY JPS DATED 10/14/04)

					O	verland Flo	w	Channel flow										
			С					CHANNEL CONVEYANCE		SCS (2)		TOTAL TOTAL		INTENSITY (5)		PEAK FLOW		
BASIN	DESIGN	AREA	5-YEAR	100-YEAR	LENGTH	SLOPE	Tco (1)	LENGTH	COEFFICIENT	SLOPE	VELOCITY	Tt (3)	Tc (4)	Tc (4)	5-YR	100-YR	Q5 ⁽⁶⁾	Q100 ⁽⁶⁾
	POINT	(AC)			(FT)	(FT/FT)	(MIN)	(FT)	С	(FT/FT)	(FT/S)	(MIN)	(MIN)	(MIN)	(IN/HR)	(IN/HR)	(CFS)	(CFS)
D6A	D6A	3.00	0.900	0.900			0.0	300	15	0.04	3.00	1.7	1.7	5.0	5.17	8.68	13.96	23.43
D9A	D9A	3.18	0.900	0.900			0.0	620	15	0.005	1.06	9.7	9.7	9.7	4.17	7.00	11.93	20.03
D6A,D9A	1	6.18	0.900	0.900									9.7	9.7	4.17	7.00	23.18	38.92

- 1) OVERLAND FLOW Tco = (0.395*(1.1-RUNOFF COEFFICIENT)*(OVERLAND FLOW LENGTH^(0.5)/(SLOPE^(0.333))
- 2) SCS VELOCITY = C * ((SLOPE(FT/FT)^0.5)
 - C = 2.5 FOR HEAVY MEADOW
 - C = 5 FOR TILLAGE/FIELD
 - C = 7 FOR SHORT PASTURE AND LAWNS
 - C = 10 FOR NEARLY BARE GROUND
 - C = 15 FOR GRASSED WATERWAY

 - C = 20 FOR PAVED AREAS AND SHALLOW PAVED SWALES
- 3) MANNING'S CHANNEL TRAVEL TIME = L/V (WHEN CHANNEL VELOCITY IS KNOWN)
- 4) Tc = Tcc + Tt
 *** IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED
- 5) INTENSITY BASED ON I-D-F EQUATIONS IN CITY OF COLORADO SPRINGS DRAINAGE CRITERIA MANUAL

 $I_5 = -1.5 * ln(Tc) + 7.583$

I₁₀₀ = -2.52 * In(Tc) + 12.735

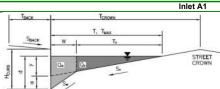
6) Q = CiA

APPENDIX C HYDRAULIC CALCULATIONS

JPS ENGINEERING

STRUTHERS RANCH POLARIS STORM INLET SIZING SUMMARY

	BASIN F	LOW		INLET FLOW						
		Q5	Q100	INLET	Q5	Q100		INLET		INLET
INLET	DP	FLOW (CFS)	FLOW (CFS)	FLOW % OF BASIN		FLOW (CFS)		CONDITION / TYPE	INLET SIZE (FT)	CAPACITY (CFS)
A1	Α	8.9	17.7	40	3.6	7.1		SUMP TYPE 16	SGL	8.7
					•					

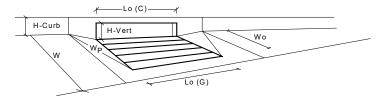

STORM-INLET-POLARIS-1022 10/21/2022

Version 4.05 Released March 2017

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Inlet ID: Struthers Ranch Polaris - Inlet A1



Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} = 2.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 50.0 Gutter Width w : 2.00 Street Transverse Slope S_X = 0.020 ft/ft S_W Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} = 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 50.0 50.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP

UD-Inlet_v4.05-Polaris-A1, Inlet A1 10/21/2022, 5:37 PM

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)	Denver No. 16 Combination		MINOR	MAJOR	
Type of Inlet	Denver No. 16 Combination	Type =	Denver No. 1	16 Combination	
Local Depression (additional to co	ontinuous gutter depression 'a' from above)	a _{local} =	2.00	2.00	inches
Number of Unit Inlets (Grate or C	urb Opening)	No =	1	1	
Water Depth at Flowline (outside	of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information			MINOR	MAJOR	Override Depths
Length of a Unit Grate		L ₀ (G) =	3.00	3.00	feet
Width of a Unit Grate		W _o =	1.73	1.73	feet
Area Opening Ratio for a Grate (t	ypical values 0.15-0.90)	A _{ratio} =	0.31	0.31	
Clogging Factor for a Single Grate	e (typical value 0.50 - 0.70)	C _f (G) =	0.50	0.50	
Grate Weir Coefficient (typical val	lue 2.15 - 3.60)	C _w (G) =	3.60	3.60	
Grate Orifice Coefficient (typical v	ralue 0.60 - 0.80)	C _o (G) =	0.60	0.60	
Curb Opening Information			MINOR	MAJOR	_
Length of a Unit Curb Opening		L ₀ (C) =	3.00	3.00	feet
Height of Vertical Curb Opening in	n Inches	H _{vert} =	6.50	6.50	inches
Height of Curb Orifice Throat in In	ches	H _{throat} =	5.25	5.25	inches
Angle of Throat (see USDCM Fig	ure ST-5)	Theta =	0.00	0.00	degrees
Side Width for Depression Pan (ty	pically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb	Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (ty	pical value 2.3-3.7)	C _w (C) =	3.70	3.70	
Curb Opening Orifice Coefficient	(typical value 0.60 - 0.70)	C _o (C) =	0.66	0.66	
Low Head Performance Reduct	ion (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth		d _{Grate} =	0.523	1.023	ft
Depth for Curb Opening Weir Equ	uation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance R	eduction Factor for Long Inlets	RF _{Combination} =	0.94	1.00	
Curb Opening Performance Redu	ction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reducti	on Factor for Long Inlets	RF _{Grate} =	0.94	1.00	
			MINOR	MAJOR	
Total Inlet Interception Ca	apacity (assumes clogged condition)) Q _a =	3.9	8.7	cfs
Inlet Capacity IS GOOD for Mine	or and Major Storms(>Q PEAK)	Q _{PEAK REQUIRED} =	3.6	7.1	cfs

UD-Inlet_v4.05-Polaris-A1, Inlet A1 10/21/2022, 5:37 PM

JPS ENGINEERING

STRUTHERS RANCH POLARIS STORM SEWER SIZING SUMMARY

	PIPE FLOW				PIPE CAPACITY						
PIPE	DESIGN POINT	Q5 FLOW (CFS)	Q100 FLOW (CFS)		PIPE SIZE	MIN. PIPE SLOPE	PIPE CAPACITY (CFS)				
A1	A1	3.6	7.1	_	18	1.0%	10.5				

ASSUMPTIONS:

1. STORM DRAIN PIPE ASSUMED TO BE RCP OR HDPE

STORM-INLET-POLARIS-1022 10/21/2022

Hydraulic Analysis Report

Project Data

Project Title: Project - Polaris

Designer: JPS

Project Date: Monday, June 13, 2022 Project Units: U.S. Customary Units

Notes:

Channel Analysis: SD-A1

Notes:

Input Parameters

Channel Type: Circular Pipe Diameter: 1.5000 ft

Longitudinal Slope: 0.0100 ft/ft

Manning's n: 0.0130

Depth: 1.5000 ft

Result Parameters

Flow: 10.5043 cfs

Area of Flow: 1.7671 ft^2 Wetted Perimeter: 4.7124 ft Hydraulic Radius: 0.3750 ft Average Velocity: 5.9442 ft/s

Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 1.2451 ft
Critical Velocity: 6.6989 ft/s
Critical Slope: 0.0098 ft/ft

Critical Top Width: 1.13 ft

Calculated Max Shear Stress: 0.9360 lb/ft^2 Calculated Avg Shear Stress: 0.2340 lb/ft^2

APPENDIX D WATER QUALITY POND CALCULATIONS

STRUTHERS RANCH POLARIS COMPOSITE IMPERVIOUS AREAS

IMPERVIOUS AREAS

INFERVIOUS ARE	70										
	TOTAL		SUB-AREA 1			SUB-AREA 2			SUB-AREA 3		
	AREA		DEVELOPMENT/	PERCENT	AREA	DEVELOPMENT/	PERCENT		DEVELOPMENT/	PERCENT	WEIGHTED
BASIN	(AC)	(AC)	COVER	IMPERVIOUS	(AC)	COVER	IMPERVIOUS	(AC)	COVER	IMPERVIOUS	% IMP
Α	2.74	1.90	PAVED/IMPERVIOUS	100	0.84	LANDSCAPED	0.00				69.343
OB1	1.47	1.47	SF RESIDENTIAL	40							40.000
В	1.41	1.34	PAVED/IMPERVIOUS	100	0.07	LANDSCAPED	0.00				95.000
OB1,B	2.88										66.927
A,OB1,B	5.62										68.105

RATL.STRUTHERS-POLARIS-1022

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

Stage (ft)

Override

Stage (ft

0.00

1.00

3.00

5.00

7.00

Width

(ft)

Length

(ft)

Area

(ft 2)

Override

rea (ft 2

10

1,433

2,456

3,626

4,500

Area

(acre)

0.000

0.033

0.056

0.083

0.103

Volume

721

4,610

10,692

18,818

Volume

(ac-ft)

0.017

0.106

0.245

0.432

Depth Increment =

Stage - Storage

Description

Top of Micropool

Bot EL=6752.0

EL=6756.0

Top EL=6758.0

Project: Struthers Ranch Polaris

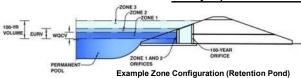
Example Zone Configuration (Retention Pond)

Watershed	Information

Selected BMP Type =	EDB	
Watershed Area =	5.62	acres
Watershed Length =	825	ft
Watershed Length to Centroid =	400	ft
Watershed Slope =	0.024	ft/ft
Watershed Imperviousness =	68.10%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

the embedded Colorado Urban Hydrograph Procedure.										
Water Quality Capture Volume (WQCV) =	0.125	acre-feet								
Excess Urban Runoff Volume (EURV) =	0.419	acre-feet								
2-yr Runoff Volume (P1 = 1.19 in.) =	0.370	acre-feet								
5-yr Runoff Volume (P1 = 1.5 in.) =	0.500	acre-feet								
10-yr Runoff Volume (P1 = 1.75 in.) =	0.611	acre-feet								
25-yr Runoff Volume (P1 = 2 in.) =	0.743	acre-feet								
50-yr Runoff Volume (P1 = 2.25 in.) =	0.859	acre-feet								
100-yr Runoff Volume (P1 = 2.52 in.) =	0.998	acre-feet								
500-yr Runoff Volume (P1 = 3.14 in.) =	1.293	acre-feet								
Approximate 2-yr Detention Volume =	0.327	acre-feet								
Approximate 5-yr Detention Volume =	0.436	acre-feet								
Approximate 10-yr Detention Volume =	0.553	acre-feet								
Approximate 25-yr Detention Volume =	0.595	acre-feet								
Approximate 50-yr Detention Volume =	0.619	acre-feet								
Approximate 100-yr Detention Volume =	0.665	acre-feet								

After providing required inputs above incl	After providing required inputs above including 1-hour rainfall								 	
depths, click 'Run CUHP' to generate runc	ff hydrograph	is using						-	 	
the embedded Colorado Urban Hydro	graph Procedu	ıre.	Optional Use	r Overrides					 	
Water Quality Capture Volume (WQCV) =	0.125	acre-feet		acre-feet				1	 -	
Excess Urban Runoff Volume (EURV) =	0.419	acre-feet		acre-feet		-		1	 -	
2-yr Runoff Volume (P1 = 1.19 in.) =	0.370	acre-feet	1.19	inches				-	 	
5-yr Runoff Volume (P1 = 1.5 in.) =	0.500	acre-feet	1.50	inches				-	 -	
10-yr Runoff Volume (P1 = 1.75 in.) =	0.611	acre-feet	1.75	inches					 	
25-yr Runoff Volume (P1 = 2 in.) =	0.743	acre-feet	2.00	inches					 	
50-yr Runoff Volume (P1 = 2.25 in.) =	0.859	acre-feet	2.25	inches					 	
100-yr Runoff Volume (P1 = 2.52 in.) =	0.998	acre-feet	2.52	inches					 	
500-yr Runoff Volume (P1 = 3.14 in.) =	1.293	acre-feet	3.14	inches					 	
Approximate 2-yr Detention Volume =	0.327	acre-feet		_					 	
Approximate 5-yr Detention Volume =	0.436	acre-feet							 	
Approximate 10-yr Detention Volume =	0.553	acre-feet						1	 -	
Approximate 25-yr Detention Volume =	0.595	acre-feet							 	
Approximate 50-yr Detention Volume =	0.619	acre-feet							 	
Approximate 100-yr Detention Volume =	0.665	acre-feet							 	
		_							 	
Define Zones and Basin Geometry		_						1	 -	
Zone 1 Volume (WQCV) =	0.125	acre-feet						1	 -	
Zone 2 Volume (User Defined - Zone 1) =	0.000	acre-feet	Total deten	tion		-		1	 -	
Select Zone 3 Storage Volume (Optional) =		acre-feet	volume is l					-	 -	
Total Detention Basin Volume =	0.125	acre-feet	100-year v	olume.				1	 -	


SEE COMPOSITE IMPERVIOUS AREA CALCULATIONS ON PRECEDING PAGE (...WATER QUALITY POND A IS DESIGNED FOR THE COMBINED FLOW FROM DEVELOPED BASINS A, OB1, AND B)

4/6/2023, 4:02 PM MHFD-Detention_v4-05-Polaris-0423, Basin

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.05 (January 2022)

Project: Struthers Ranch Polaris
Basin ID: Water Quality Pond A

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	3.33	0.125	Orifice Plate
Zone 2 (User)	3.33	0.000	Weir&Pipe (Restrict)
Zone 3			Not Utilized
	Total (all zones)	0.125	

User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP)

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface)

Underdrain Orifice Diameter = inches

Calculated Parameters for Underdrain

ft²

Underdrain Orifice Area = ft²

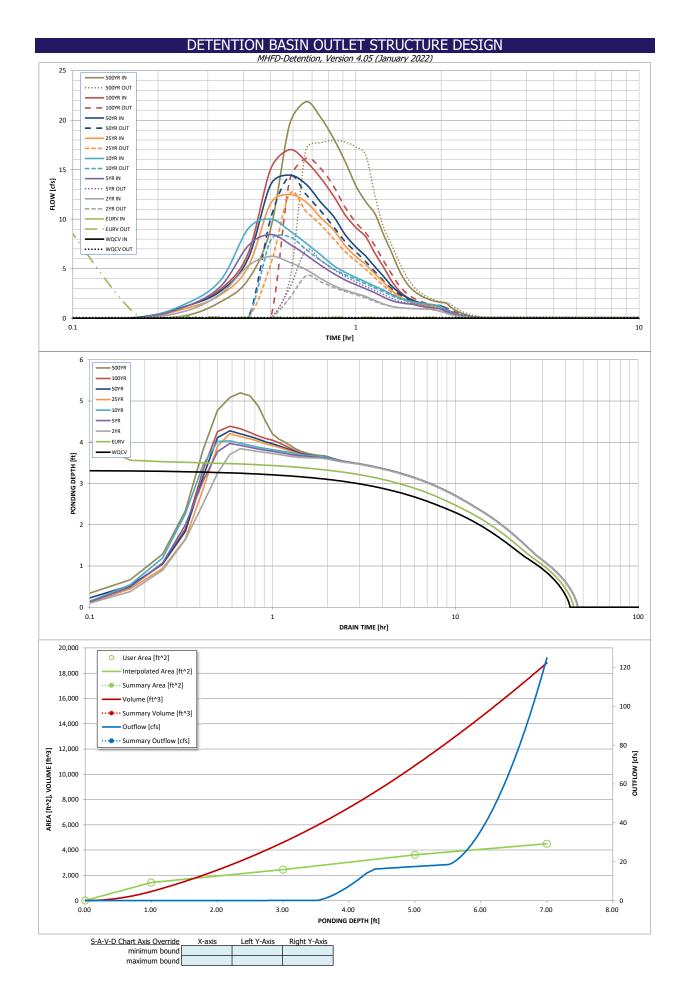
Underdrain Orifice Diameter = ffeet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate WQ Orifice Area per Row = Centroid of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) 4.028E-03 ft² Depth at top of Zone using Orifice Plate = 3.33 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet Orifice Plate: Orifice Vertical Spacing = Elliptical Slot Centroid = 14.40 inches N/A feet Elliptical Slot Area = ft2 Orifice Plate: Orifice Area per Row = 0.58 sq. inches (diameter = 7/8 inch) N/A

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.20	2.40					
Orifice Area (sq. inches)	0.58	0.58	0.58					

1								
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								


User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Not Selected Not Selected Not Selected Not Selected ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area ft² Invert of Vertical Orifice = N/A N/A N/A N/A Depth at top of Zone using Vertical Orifice = N/A N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = N/A N/A Vertical Orifice Diameter = N/A N/A inches

User Input: Overflow Weir (Dropbox with Flat o	User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe)										
	Zone 2 Weir	Not Selected		Zone 2 Weir	Not Selected						
Overflow Weir Front Edge Height, Ho =	3.50	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	3.50	N/A	feet					
Overflow Weir Front Edge Length =	4.00	N/A	feet Overflow Weir Slope Length =	2.50	N/A	feet					
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	3.94	N/A						
Horiz. Length of Weir Sides =	2.50	N/A	feet Overflow Grate Open Area w/o Debris =	6.96	N/A	ft ²					
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	3.48	N/A	ft ²					
Debris Clogging % =	50%	N/A	%								

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Zone 2 Restrictor Not Selected Zone 2 Restrictor Not Selected Depth to Invert of Outlet Pipe = 0.00 Outlet Orifice Area = N/A ft (distance below basin bottom at Stage = 0 ft) 1.77 N/A Outlet Pipe Diameter = 18.00 N/A inches Outlet Orifice Centroid = 0.75 N/A feet Restrictor Plate Height Above Pipe Invert = 18.00 inches Half-Central Angle of Restrictor Plate on Pipe = 3.14 N/A radians

User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 5.50 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.50 feet Spillway Crest Length = Stage at Top of Freeboard = 14.00 feet 7.00 feet Spillway End Slopes = 4.00 H:V Basin Area at Top of Freeboard 0.10 acres Freeboard above Max Water Surface = 1.00 feet Basin Volume at Top of Freeboard = 0.43 acre-ft

Routed Hydrograph Results	The user can over	ride the default CUI	HP hydrographs and	d runoff volumes by	entering new valu	es in the Inflow Hy	drographs table (Co	olumns W through .	AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.125	0.419	0.370	0.500	0.611	0.743	0.859	0.998	1.293
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.370	0.500	0.611	0.743	0.859	0.998	1.293
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.6	1.6	2.4	4.3	5.4	6.9	9.7
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.10	0.29	0.43	0.77	0.96	1.23	1.72
Peak Inflow Q (cfs) =	N/A	N/A	6.3	8.5	10.0	12.5	14.4	17.0	21.9
Peak Outflow Q (cfs) =	0.1	28.7	4.3	6.9	8.2	12.5	14.3	16.2	17.9
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	4.3	3.4	2.9	2.7	2.3	1.9
Structure Controlling Flow =	Plate	Spillway	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	3.01	0.60	1.0	1.2	1.8	2.0	2.3	2.6
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	35	36	34	32	29	28	26	23
Time to Drain 99% of Inflow Volume (hours) =	40	40	42	41	40	39	38	37	35
Maximum Ponding Depth (ft) =	3.33	6.88	3.84	3.97	4.03	4.21	4.28	4.39	5.20
Area at Maximum Ponding Depth (acres) =	0.06	0.10	0.07	0.07	0.07	0.07	0.07	0.07	0.09
Maximum Volume Stored (acre-ft) =	0.125	0.420	0.158	0.167	0.171	0.183	0.188	0.196	0.261

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

1	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
T T										
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]		25 Year [cfs]	50 Year [cfs]		500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.01	0.26
	0:15:00	0.00	0.00	0.72	1.18	1.45	0.98	1.21	1.19	1.67
	0:20:00 0:25:00	0.00	0.00	2.48	3.23	3.87	2.38	2.76	2.96	3.90
	0:30:00	0.00	0.00	5.30 6.26	7.33 8.45	9.05 10.02	5.20 11.61	6.06 13.52	6.57 15.09	9.09 19.59
	0:35:00	0.00	0.00	5.65	7.50	8.85	12.49	14.45	17.02	21.87
	0:40:00	0.00	0.00	4.92	6.40	7.56	11.73	13.53	15.83	20.30
	0:45:00	0.00	0.00	4.02	5.36	6.43	10.17	11.73	14.18	18.17
	0:50:00	0.00	0.00	3.31	4.52	5.33	8.93	10.29	12.36	15.82
	0:55:00	0.00	0.00	2.83	3.86	4.62	7.31	8.43	10.42	13.37
	1:00:00	0.00	0.00	2.50	3.38	4.12	6.23	7.20	9.16	11.76
	1:05:00	0.00	0.00	2.20	2.97	3.66	5.42	6.27	8.22	10.56
	1:10:00	0.00	0.00	1.80	2.57	3.23	4.48	5.19	6.57	8.48
	1:15:00	0.00	0.00	1.45	2.14	2.85	3.66	4.25	5.19	6.73
	1:20:00	0.00	0.00	1.21	1.78	2.43	2.85	3.30	3.82	4.95
	1:25:00	0.00	0.00	1.08	1.59	2.07	2.27	2.63	2.82	3.67
}	1:30:00 1:35:00	0.00	0.00	1.01	1.49	1.83	1.85	2.13	2.22	2.89
ŀ	1:40:00	0.00	0.00	0.98 0.96	1.41 1.26	1.67 1.55	1.58 1.40	1.82 1.61	1.85 1.60	2.41
ŀ	1:45:00	0.00	0.00	0.96	1.14	1.47	1.40	1.46	1.42	1.85
	1:50:00	0.00	0.00	0.93	1.06	1.41	1.21	1.37	1.30	1.70
	1:55:00	0.00	0.00	0.80	0.99	1.33	1.15	1.30	1.22	1.59
ļ	2:00:00	0.00	0.00	0.70	0.92	1.19	1.12	1.26	1.18	1.53
	2:05:00	0.00	0.00	0.51	0.67	0.86	0.81	0.91	0.86	1.11
	2:10:00	0.00	0.00	0.37	0.48	0.61	0.58	0.65	0.62	0.80
	2:15:00	0.00	0.00	0.26	0.34	0.43	0.41	0.46	0.44	0.57
	2:20:00	0.00	0.00	0.18	0.23	0.30	0.29	0.32	0.31	0.40
	2:25:00	0.00	0.00	0.12	0.15	0.20	0.20	0.22	0.21	0.27
	2:30:00	0.00	0.00	0.08	0.10	0.14	0.13	0.15	0.14	0.19
	2:35:00 2:40:00	0.00	0.00	0.05	0.07	0.09	0.09	0.10	0.09	0.12
	2:45:00	0.00	0.00	0.02 0.01	0.04	0.05	0.05 0.02	0.06 0.02	0.05	0.07
	2:50:00	0.00	0.00	0.00	0.02	0.02	0.02	0.02	0.02	0.03
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00 3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
}	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	4:45:00 4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
l	0.00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Design Procedure Form: Extended Detention Basin (EDB)								
		(Version 3.07, March 2018) Sheet 1 of 3						
Designer:	JPS							
Company:	JPS							
Date:	October 21, 2022 Struthers Ranch Polaris							
Project: Location:	Water Quality Pond A - Forebay A1							
Location:	Water Quality Folid A - Folebay A1							
Basin Storage V	olume							
A) Effective Imp	erviousness of Tributary Area, I _a	I _a = 69.3 %						
B) Tributary Are	a's Imperviousness Ratio (i = I _a / 100)	i = 0.693						
C) Contributing	Watershed Area	Area = 2.740 ac						
D) For Watersh Runoff Prod	eds Outside of the Denver Region, Depth of Average ucing Storm	d ₆ = in						
E) Design Cond (Select EUR)	sept / when also designing for flood control)	Choose One Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)						
	me (WQCV) Based on 40-hour Drain Time .0 * (0.91 * i ² - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.062 ac-ft						
Water Quali	eds Outside of the Denver Region, by Capture Volume (WQCV) Design Volume $= (d_e^*(V_{DESIGN}/0.43))$	V _{DESIGN OTHER} =ac-ft						
	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} = ac-ft						
i) Percenta ii) Percenta	ogic Soil Groups of Tributary Watershed ge of Watershed consisting of Type A Soils ge of Watershed consisting of Type B Soils age of Watershed consisting of Type C/D Soils	HSG _A = 0 % HSG _B = 100 % HSG _{C/D} = 0 %						
For HSG A: For HSG B:	n Runoff Volume (EURV) Design Volume EURV _A = $1.68 \cdot i^{1.28}$ EURV _B = $1.36 \cdot i^{1.08}$ D: EURV _{CID} = $1.20 \cdot i^{1.08}$	EURV _{DESIGN} = 0.209 ac-f t						
	Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} = ac-f t						
	ength to Width Ratio o width ratio of at least 2:1 will improve TSS reduction.)	L:W= 3.0 :1						
Basin Side Slop	98							
A) Basin Maxim		Z = 3.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE						
`	,	, , , , , , , , , , , , , , , , , , , ,						
4. Inlet		Concrete Forebay						
	ans of providing energy dissipation at concentrated	· ····						
inflow location	ons:							
5. Forebay								
A) Minimum Fo	rebay Volume	V _{FMIN} = 0.001 ac-ft						
(V _{FMIN}	=1% of the WQCV)							
B) Actual Foreb		V _F = 0.001 ac-ft						
C) Forebay Dep (D _F		D _F = 12.0 in						
D) Forebay Disc	harge							
i) Undetaine	nd 100-year Peak Discharge	Q ₁₀₀ = 17.70 cfs						
ii) Forebay (Q _F = 0.02	Discharge Design Flow 2 * Q ₁₀₀)	Q _F = 0.35 cfs						
E) Forebay Disc	harge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir						
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P = in						
G) Rectangular	Notch Width	Calculated W _N = 3.7 in						

	Design Procedure Form: I	Extended Detention Basin (EDB)
Designer:	JPS	Sheet 2 of 3
Company:	JPS	
Date:	October 21, 2022	
Project:	Struthers Ranch Polaris	
Location:	Water Quality Pond A - Forebay A1	
6. Trickle Channel		Choose One Concrete
A) Type of Trick	de Channel	○ Soft Bottom
,		
F) Slope of Tric	kle Channel	S = 0.0050 ft / ft
7. Micropool and C	Outlet Structure	
A) Depth of Mic	cropool (2.5-feet minimum)	D _M = 2.5 ft
B) Surface Area	a of Micropool (10 ft² minimum)	A _M = sq ft
C) Outlet Type		
		Choose One ● Orifice Plate
		Other (Describe):
D) Smallest Din	nension of Orifice Opening Based on Hydrograph Routing	
(Úse UD-Detent		D _{orifice} = 0.58 inches
E) Total Outlet A	Area	A _{ot} = 1.74 square inches
Initial Surcharge	Volume	
A) Depth of Initi	ial Surcharge Volume	D _{IS} = 6 in
	commended depth is 4 inches)	
B) Minimum Initi	al Surcharge Volume	V _{IS} = cu ft
	ume of 0.3% of the WQCV)	110
C) Initial Surcha	rge Provided Above Micropool	V _s = cu ft
, 		
9. Trash Rack		
A) Water Qualit	ty Screen Open Area: A _t = A _{ot} * 38.5*(e ^{-0.095D})	A _t = 63 square inches
	en (If specifying an alternative to the materials recommended	S.S. Well Screen with 60% Open Area
	indicate "other" and enter the ratio of the total open are to the for the material specified.)	
	· ,	
	Other (Y/N): N	
0.5		
	I Open Area to Total Area (only for type 'Other')	User Ratio =
,	Quality Screen Area (based on screen type)	A _{total} = 106 sq. in. H= 3.47 feet
	design concept chosen under 1E)	11- 3.41 Idet
F) Height of Wa	ter Quality Screen (H _{TR})	H _{TR} = 69.64 inches
	ter Quality Screen Opening (W _{opening}) inches is recommended)	W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.
(with ith light) of 12	mones is recommended)	THE IT HAS BEEN SET TO 12 INSTITUTES.

Design Procedure For	m: Extended Detention Basin (EDB)
JPS	Sheet 3 of 3
Water Quality Pond A - Forebay A1	
bankment embankment protection for 100-year and greater overtopping:	Buried Riprap Spillway
Overflow Embankment al distance per unit vertical, 4:1 or flatter preferred)	Ze = 4.00 ft / ft
	Choose One
Sediment Removal Procedures	Periodic inspection and removal as needed; Access ramp provided to pond bottom
-	
	JPS JPS October 21, 2022 Struthers Ranch Polaris Water Quality Pond A - Forebay A1 bankment embankment protection for 100-year and greater overtopping: Overflow Embankment al distance per unit vertical, 4:1 or flatter preferred)

Design Procedure Form: Extended Detention Basin (EDB)					
		(Version 3.07, March 2018) Sheet 1 of 3			
Designer:	JPS				
Company:	JPS				
Date: Project:	October 21, 2022 Struthers Ranch Polaris				
Location:	·				
Basin Storage Volume					
,	erviousness of Tributary Area, I _a	I _a = 66.9 %			
	a's Imperviousness Ratio (i = I _a / 100)	i =			
	Watershed Area	Area = 2.880 ac			
Runoff Prod	eds Outside of the Denver Region, Depth of Average ucing Storm	d ₆ = in			
E) Design Concept (Select EURV when also designing for flood control)		Choose One Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)			
	me (WQCV) Based on 40-hour Drain Time .0 * (0.91 * i³ - 1.19 * i² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.063 ac-ft			
Water Quali	eds Outside of the Denver Region, by Capture Volume (WQCV) Design Volume (WQCV) Design Volume $(\text{d}_e^*(\text{V}_{\text{DESIGN}}/0.43))$	V _{DESIGN OTHER} =ac-ft			
	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} = ac-ft			
i) Percenta ii) Percenta	ogic Soil Groups of Tributary Watershed ge of Watershed consisting of Type A Soils ge of Watershed consisting of Type B Soils age of Watershed consisting of Type C/D Soils	HSG _A =			
For HSG A: For HSG B:	n Runoff Volume (EURV) Design Volume EURV _A = 1.68 * $^{1.28}$ EURV _B = 1.36 * $^{1.08}$ D: EURV _{CID} = 1.20 * $^{1.08}$	EURV _{DESIGN} = ac-f t			
	Excess Urban Runoff Volume (EURV) Design Volume ferent EURV Design Volume is desired)	EURV _{DESIGN USER} = ac-f t			
	ength to Width Ratio o width ratio of at least 2:1 will improve TSS reduction.)	L:W= 3.0 :1			
Basin Side Slop	es				
A) Basin Maxim		Z = 3.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE			
4. Inlet					
		Concrete Forebay			
 A) Describe me inflow location 	ans of providing energy dissipation at concentrated ons:				
5. Forebay					
A) Minimum Fo	rebay Volume = 1% of the WQCV)	V _{FMIN} = 0.001 ac-ft			
B) Actual Foreb		V _F = 0.001 ac-ft			
C) Forebay Dep					
(D _F	= 12 inch maximum)	D _F = 12.0 in			
D) Forebay Disc	harge				
i) Undetaine	d 100-year Peak Discharge	Q ₁₀₀ = 12.20 cfs			
ii) Forebay (Q _F = 0.02	Discharge Design Flow 2 * Q ₁₀₀)	Q _F = 0.24 cfs			
E) Forebay Disc		Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir			
F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P =in			
G) Rectangular	Notch Width	Calculated W _N = 3.3 in			

	Design Procedure Form: I	Extended Detention Basin (EDB)
Designer:	JPS	Sheet 2 of 3
Company:	JPS	
Date:	October 21, 2022	
Project:	Struthers Ranch Polaris	
Location:	Water Quality Pond A - Forebay B1	
6. Trickle Channel		Choose One © Concrete
A) Type of Trick	do Channal	Soft Bottom
A) Type of Trickle Channel		Soil Bottom
F) Slope of Trick	kle Channel	S = 0.0050 ft / ft
7. Micropool and C	Outlet Structure	
A) Depth of Mic	ropool (2.5-feet minimum)	D _M = 2.5 ft
B) Surface Area	a of Micropool (10 ft² minimum)	A _M = sq ft
C) Outlet Type		
		Choose One
		Other (Describe):
		<u> </u>
	nension of Orifice Opening Based on Hydrograph Routing	
(Use UD-Detent	ion)	D _{orifice} = 0.58 inches
E) Total Outlet A	Area	A _{ct} = 1.74 square inches
8. Initial Surcharge	Volume	
A) Depth of Initia	al Surcharge Volume	D _{IS} = 6 in
	commended depth is 4 inches)	
B) Minimum Initia	al Surcharge Volume	V _{IS} = cu ft
	ume of 0.3% of the WQCV)	
C) Initial Surcha	rge Provided Above Micropool	V _s =cu ft
9. Trash Rack		
	y Screen Open Area: A _t = A _{ot} * 38.5*(e ^{-0.0950})	A _t = 63 square inches
	en (If specifying an alternative to the materials recommended	S.S. Well Screen with 60% Open Area
	indicate "other" and enter the ratio of the total open are to the	3.3. Well Scient with 00% Open Area
total screen are	for the material specified.)	
	Other (Y/N): N	
C) Ratio of Total	Open Area to Total Area (only for type 'Other')	User Ratio =
D) Total Water 0	Quality Screen Area (based on screen type)	A _{total} = 106 sq. in.
	ign Volume (EURV or WQCV) design concept chosen under 1E)	H= 3.47 feet
F) Height of Wat	ter Quality Screen (H _{TR})	H _{TR} = 69.64 inches
	ter Quality Screen Opening (W _{opening}) inches is recommended)	W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.

	Design i rocedure i omi	: Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	JPS JPS October 21, 2022 Struthers Ranch Polaris Water Quality Pond A - Forebay B1	Sheet 3 of 3
B) Slope of 0	bankment embankment protection for 100-year and greater overtopping: Dverflow Embankment al distance per unit vertical, 4:1 or flatter preferred)	Buried Riprap Spillway Ze = 4.00 ft / ft Choose One Irrigated
Access A) Describe Sediment Removal Procedures		Periodic inspection and removal as needed; Access ramp provided to pond bottom
Notes:		

APPENDIX E WATER QUALITY POND COST ESTIMATE

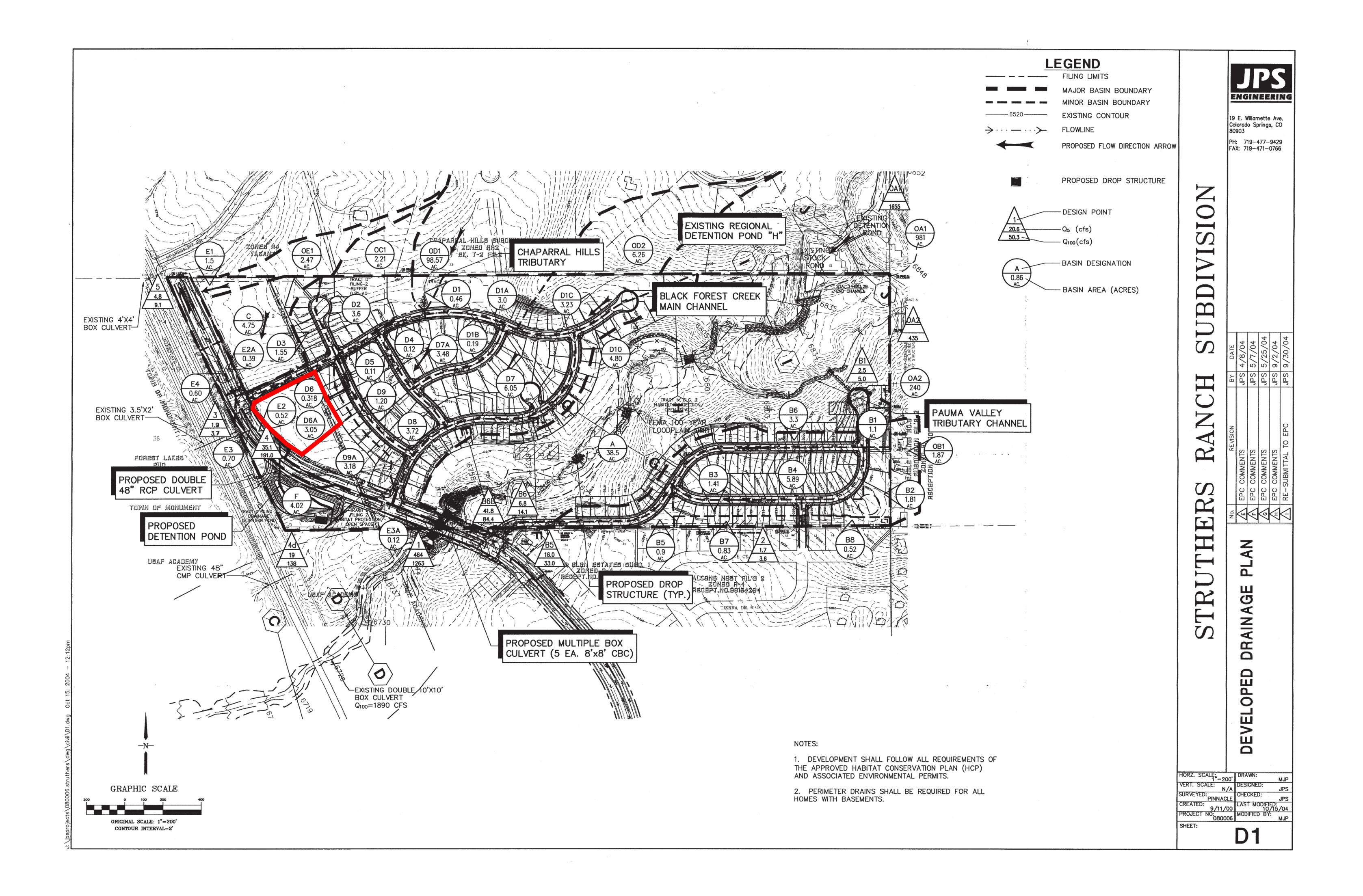
STRUTHERS RANCH POLARIS LOTS 1-2, STRUTHERS RANCH SUBDIVISION FILING NO. 4 ENGINEER'S COST ESTIMATE DRAINAGE IMPROVEMENTS - WATER QUALITY POND

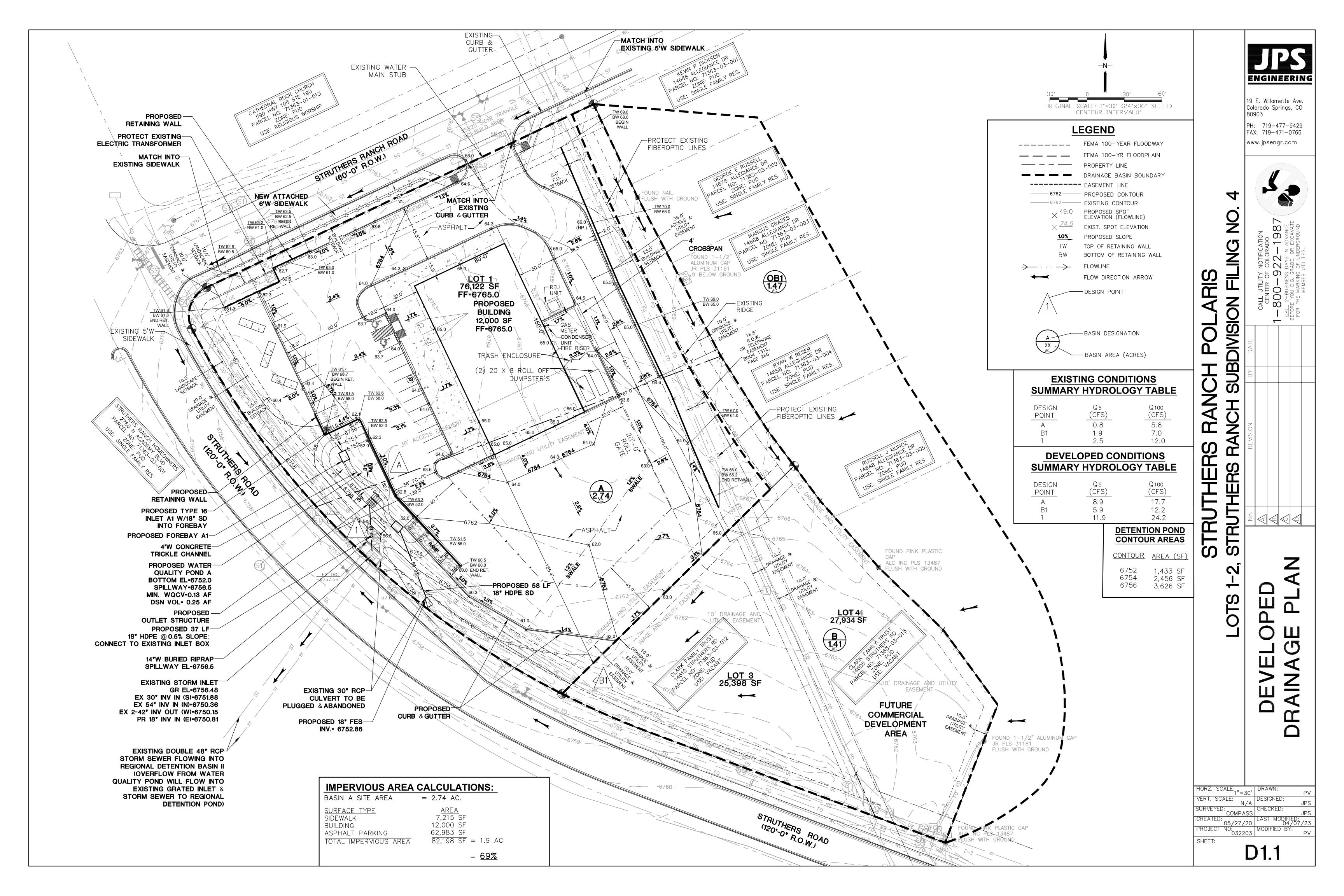
Item	Description	Quantity	Unit	Unit	Total
No.				Cost	Cost
				(\$\$\$)	(\$\$\$)
	PRIVATE DRAINAGE FACILITIES (NON-REIMBURSABLE)				
203	Detention Basin Earthwork	630	CY	\$22	\$13,860
301	Retaining Walls	1320	SF	\$25	\$33,000
301	Concrete Forebays (10'x8')	6.0	CY	\$300	\$1,800
301	Concrete Trickle Channels	1	LS	\$1,200	\$1,200
604	Detention Basin Outlet Structure / Buried Riprap Spillway	1	LS	\$10,000	\$10,000
	SUBTOTAL				\$59,860
	Engineering @ 10%				\$5,986
	TOTAL (NON-REIMBURSABLE)				\$65,846
	Note: This estimate does not include costs for street improvements and general civil of	costs (curb &	gutter, crossp	ans, etc.)	

The cost estimate submitted herein is based on time-honored practices within the construction industry. As such the engineer does not control the cost of labor, materials, equipment or a contractor's method of determining prices and competitive bidding practices or market conditions. The estimate represents our best judgement as design professionals using current information available at the time of the preparation. The engineer cannot guarantee that proposals, bids and/or construction costs will not vary from this cost estimate.

APPENDIX F FIGURES

1DWLRODO (DRRG-EDUGIDHU)51WWH





7KLVESFREDLH/ZWK)(()VWDQDJQ/IRU WKHXHR G.J.WIDO IORRGEBYLI LW LVQRW YR.GD/QH/RULEHGEHORZ 7KHED/HESWRZQFREDLH/ZWK(()()VED/HES DFX/JFXWDQDJJQ/

WHIORGKODUGLQRUBWLRQLVG-ULYHGGLUH-WO\IURWKH
DWWRULWDWLYH YZEVHUYLFHVSURYLG-GB 16 7KLV BS
20/HRUWHGRQ DW 30 DQG-GHVQRW
UHOH-W ROQH-VRU DRQF-DWVVXEVHIX-DW WRWKLVGDWHDQG
WLFI 7KHYDQG-HIH-FWLYHLQRUBWLRQB-HQQHRU
EHTRIVXS-UV-G-GB-Q-ZGDWDRYHUWLRI

74LV ESLEHLVYRLGLI WKHRCHRU RUHR WKHIROORZQIES HOHOWV GROW DSSHOU EDWESLEHU IORGGROHODEHOV OHING VROHEDU ESRUHDWLRQGDWH FRRQ.W\LG-QWLILHUV)\$550CHO QREU DGG)\$HIHWLYHGDWH DSLEHVIRU XDSSG-GDGXRG-HUQ.FGDUHV FDQRW EHXWGIRU UHVODWRUSUSKWI

