Remove "preliminary and". This should just be a Final Drainage Report.

Reviewed by dsdgrimm 03/28/20194:12:27 PM

PRELIMINARY AND FINAL DRAINAGE PLAN AND REPORT

POENITSCH SUBDIVISION

EL PASO COUNTY


January 16, 2019

Prepared for

Tom Poenitsch and Christy Mullins

Oliver E. Watts, Consulting Engineer, Inc. Colorado Springs, Colorado

Address the Four Step Process (ECM Appendix I, Section I.7.2) and discuss why WQCV and detention are not required.

OLIVER E. WATTS, PE-LS

OLIVER E. WATTS, CONSULTING ENGINEER, INC. CIVIL ENGINEERING AND SURVEYING 614 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907 (719) 593-0173 fax (719) 265-9660 <u>olliewatts@aol.com</u> Celebrating over 39 years in business

January 16, 2019

El Paso County D.O.T. 2880 International Circle Colorado Springs, CO 80910

ATTN: Jennifer Powell

SUBJECT: Preliminary and Final Drainage Plan and Report Poenitsch Subdivision

Gentlemen

Transmitted herewith for your review and approval is the drainage plan and report for The Poenitsch Subdivision in El Paso County. This report will accompany the subdivision plat submittal.

Please contact me if I may provide any further information.

Oliver E. Watts, Consulting Engineer, Inc.

BY:

Oliver E. Watts, President

Encl:

Drainage Report 4 pages Computations, 12 pages FEMA Panel No. 08041C0320 G SCS Soils Map and 4 Interpretation Sheets Backup Information, 4 sheets Drainage Plan, Dwg 18-5184-08 Offsite Drainage Map, Dwg 18-5184-09 Poenitsch Subdivision Preliminary and Final Drainage Plan and Report

1. ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Oliver E. Watts, Consulting Engineer, Inc.

Oliver E. Watts Colo. PE-LS No. 9853

2. OWNERS / DEVELOPER'S STATEMENT:

I the owner / developer have read and will comply with all of the requirements specified in this drainage report and plan.

By: Tom Poenitsch P.O. Box 8202 Colorado Springs, CO 80933 (719) 200-5216

3. EL PASO COUNTY:

Filed in accordance with the requirements of the El Paso Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

Jennifer Irvine	
County Engineer / ECM Administrator	

date

Conditions:

4. LOCATION AND DESCRIPTION:

The Poenitsch Subdivision is an 18.858 acre subdivision located in the South half of the Southeast quarter of the Southeast quarter of Section 8, Township 12 South, Range 65 West of the 6th P.M., in El Paso County Colorado. It is zoned RR-5 and will be subdivided into three residential lots as shown on the enclosed drainage plan. The property is on the Northwest corner of Shoup Road and Herring Road.

acres. Please verify.

5. FLOOD PLAIN STATEMENT:

This subdivision is not within the limits of a flood plain or flood hazard area, according to FEMA map panel number 08041C0320 G, dated December 7, 2018, a copy of which is enclosed for reference.

6. METHOD AND CRITERIA:

The method used for all computations is that specified in the City-County Drainage Criteria Manual, using the rational method for areas of the size of the development. All computations are enclosed for reference and review.

The soils in the subdivision have been mapped by the local USDA/SCS office, and a soils map and interpretation sheets are enclosed for reference. All soils in this area are of hydrologic group "B".

7. DESCRIPTION OF RUNOFF:

A. Drainage Inflows. As shown on the enclosed offset drainage plan, three drainage basins will outfall into the subdivision. All basins consist of heavily forested areas typical of the Black Forest region of El Paso County that are now in a recovery state following the fire of five years ago. The runoff from each basin is contained by natural channels. Basin O-1 is 4400 feet in length and drops 150 feet in elevation, occupying 97.4 acres. It has a runoff of 11.7 cfs / 85.2 cfs (5-year / 100-year runoffs) into a 47 foot long 48" RCP culvert across Herring Road. It will contain the 100-year runoff with 0.73' of headwater as shown on the enclosed computations. Basin O-2 is 51.5 acres in size, 4500 feet long and outfalls into the northeast portion of the subdivision in a natural channel. Basin O-3 is 82.4 acres in size, 4100 feet long and outfalls into the north central portion of the subdivision in a natural channel.

B. Internal Routing. All of the natural channels within the subdivision are stable in configuration and more that adequate to contain the design runoff. Progressing downstream basin O-1 will combine with basin A and basin O-2 to create a total runoff of 18.8 cfs / 137 cfs at the channel junction shown on the drainage plan. This will combine with basin O-3 and basin B to create a total runoff of 29.3 cfs / 214 cfs at the next junction. This will combine with basin C for a total outfall from the subdivision of 30 cfs / 219 cfs on the west boundary near the northwest corner. Just downstream is a private roadway crossing with a 34' long 24" RCP culvert, which is totally inadequate to contain the 100-year runoff, but will contain the 5-year runoff at a headwater depth of 1.46 feet.

C: Proposed Structures. The County has determined that all access to the lots must be from Herring Road. Lot 3 can use the existing driveway on the east boundary; however lots 2 and 1 will access What is the 100-year runoff headwater depth?

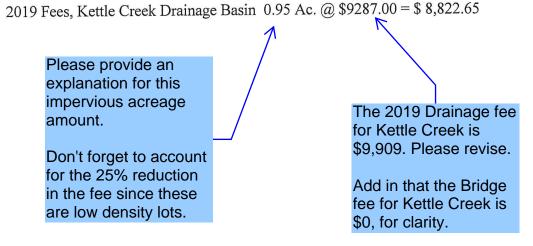
Include, "due to the road classification of Shoup Road."

Identify if there are any backwater effect to the development with the pipe being inadequate.

Poenitsch Subdivision Preliminary and Final Drainage Plan and Report Your culvert calculations need to determine how many pipes are necessary at each crossing.

the property via the access easement along the north boundary as shown on the drainage plan. A design of the grading and drainage for this access is shown. Three culverts will be required as s minimum, a 36", 48" and a 60" HDPE, with the design details shown on the plan. The roadway and culverts will be private and maintained by the homeoveners. Lots 1 and 2 may or may not need additional culverts crossing the main tributary, depending on the owners' desires.

8. COST ESTIMATE:


It appears that the drainage map shows only 26' of 18" HDPE pipe. Please clarify.

All facilities are private.

Item No.	Description	Quantity	Unit Cost	Cost
1	18" HDPE Culvert	94 LF	\$ 30.00	\$ 2820.00
2	36" HDPE Culvert	84 LF	50.00	4200.00
3	48" HDPE Culvert	68 LF	70.00	4760.00
4	60" HDPE Culvert	77 LF	80.00	6160.00
	Subtotal Construction Cost			\$17940.00
	1794.00			
	\$19734.00			

9. FEES:

The owner has obtained a permit for the joint driveway shown on the drainage plan in order to begin the clearing of burnt trees. We have added potential building sites in order to compute the total impervious acreage as follows:

5

Include the conveyance coefficient used to determine the velocities. It appears that you are using a Cv of 7 (short pasture and lawns). A Cv of 15 (Grassed Waterway) would be more appropriate for the drainageways.

Provide the developed condition calculations.

PERIOD	YR	100		100			100		100			100		100					PAGE 1	12
	ч 1	5		5			5		5			5		5						4 2
M	Qp CFS			85.5			45.1		72.1	K		72.1		214		219				R, INC.
FLOW	Qp CFS			11.7			6.2		9.9	K		6.6		29.3		30.0				GINEE
	<u></u>	0.35																		NG EN
U		0.08																		SULTI
DEV. TYPE	2	FOREST																		OLIVER E. WATTS, CONSULTING ENGINEER, INC.
SOIL		В																		E. WA
				2.5			2.5		2.5			2.5		2.5		2.5				IVEF
				1.5			1.5		1.5			1.5		1.5		1.5				10
T c MIN		18	+54	72	16	+54	70	+1.3	71.3	15	+45	60	+3.7	64	47	71				
Z	HEIGHT FT	16	134		26	140		28		28	153		10		7				ATA	٠
BASIN	LENGTH FT	300	+4100		300	+4200		+810		300	+3800		+290	V=1.3	+380	V=0.95			- BASIC D	ITS 8
EA	ACRES	A7.4	V=1.26		51.5	V=1.27		8.08	V=1.30	82.4	V=1.40		5.05	244.4	5.72	250.1			- NOITATION -	BY: O.E. WATTS DATE: 11-22-18
AREA	PLANIM READ	COGO			COGO			COGO		COGO			COGO		COGO				L COMPL	BY: DA
SUB		01			02			A	TOTAL	03			В	TOTAL	С	TOTAL			HYDROLOGICAL COMPUTATION – BASIC DATA	CH SUB.
MAJOR BASIN		BURGESS	CREEK	(KETTLE)															HYDR	PROJ: POENITCH SUB. RATIONAL METHOD

These values don't match what is shown in the narrative and in the drainage map. Please clarify and revise.

STREET AND STORM SEWER CALCULATIONS

Provide the culvert calculations for the proposed culvert crossings to show if the proposed sizings are adequate.

ON TOTAL STREET FLOW PIPE TYPE PUPE, CAN BANINOFF /CAPACITY 85.2 48" RCP CAP = 23 11.7/85.2 30.0/219 219 24" RCP CAP = 41 30.0/219 30 0K, hi=1.4 30.0/219 219 24" RCP CAP = 41 30.0/219 30 0K, hi=1.4 30.0/219 30 0K, hi=1.4 30.0/219 30 0K, hi=1.4 30.0/219 30 0K, hi=1.4						 			 	
LOCATION DISTANCE ELEVATION 01 01 2.68% 01 3.34% 01 3.34% 01 3.34% 01 3.34% 01 9 01 3.34% 01 3.34% 01 3.34% 01 3.34% 01 9 01 9 01 9 10 9 10 9 10 9 10 9 11 9 11 9 12 9 13 9 14 9 15 9 16 19 17 10 18 0.5 17 10	TYPE PIPE, CATCH BASIN & SLOPE %	48" RCP CAP = 235, ji=0.73	24" RCP CAP = 41.3 0'TOPS	OK, hi=1.46'						
LOCATION DISTANCE ELEVATION 01 01 2.68% 01 2.68% 01 3.34% 0UTFALL 3.34% 0UTFALL 3.34% 0UTFALL 3.34% 0 1 0 1 0 1 0 1 0 1 0 1 1 1	PIPE FLOW	85.2	219	30						 VG ENGIN SPRINGS, CO
LOCATION DISTANCE ELEVATION 01 01 2.68% 01 2.68% 01 3.34% 0UTFALL 3.34% 0UTFALL 3.34% 0UTFALL 3.34% 0 1 0 1 0 1 0 1 0 1 0 1 1 1	STREET FLOW / CAPACITY							×.		ATTS, CONSULTI N DRIVE COLORADO (
LOCATION DISTANCE 01 01 01 0 OUTFALL 0 0UTFALL 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 0 0 0 0 0 0 0 0 0 0	TOTAL RUNOFF	11.7/85.2	30.0/219							OLIVER E. W/ 614 ELKTON
LOCATION 01 01 01 01 0UTFALL 0UTFALL 0UTFALL 01 0UTFALL	ELEVATION & SLOPE	2.68%	3.34%							ATIONS WATTS vv 16. 2019
STREET LOCATION HERRING RD 01 PRIVATE 0UTFALL PRIVATE OUTFALL PRIVATE 0UTFALL STREET AND STORM SE PROJECT: POENITCH SUB.	DISTANCE							÷	2	WER CALCULATIONS BY: O.E. WATTS DATE: January 16, 2019
STREET HERRING RD PRIVATE PRIVATE STREET AN STREET AN	LOCATION	01	OUTFALL							ID STORM SE
	STREET	HERRING RD	PRIVATE				2			STREET AN PROJECT: PO

Worksheet for Irregular Section - A , λ

Project Description		
Flow Element:	Irregular Section	
Friction Method:	Manning Formula	
Solve For:	Normal Depth	
		an Chestrate
Input Data	0.04710	ft/ft
Channel Slope:	85.20	ft³/s
Discharge:	85.20	1170
Options		Real Providence
Current Roughness Weighted Metho	ImprovedLotters	
Open Channel Weighted Roughnes:	ImprovedLotters	
Closed Channel Weighted Roughne	Hortons	
Results	0.035	and shares
Roughness Coefficient:		ft
Water Surface Elevation:	74.76	n
Elevation Range:	74.00 to 80.00 ft	ft²
Flow Area:	12.70	
Wetted Perimeter:	20.44	ft
Top Width:	20.26	ft
Normal Depth:	0.76	ft
Critical Depth:	0.97	ft
Critical Slope:	0.01975	ft/ft
Velocity:	6.71	ft/s
Velocity Head:	0.70	ft
Specific Energy:	1.46	ft
Froude Number:	1.49	
Flow Type:	Supercritical	

Comment Doughnoon

Segment Rou	ughness	
Start Station	End Station	Roughness Coefficient
(-0+32, 80.00)	(0+40, 80.00)	0.035
Section Geor	netry	
Station	Elevation	
-0+32	80.00	
-0+21	78.00	

s that the flow channel supercritical. hannel tabilization nents or on for why 't necessary rative of the

3/12

Worksheet for Irregular Section - 🎗 - 🙏

Carlos May	
Station	Elevation
-0+14	76.00
-0+08	74.00
0+05	74.00
0+18	76.00
0+29	78.00
0+40	80.00

Worksheet for Irregular Section - 男. 乃

Project Description		
Flow Element:	Irregular Section	
Friction Method:	Manning Formula	
Solve For:	Normal Depth	
have the Data		Stand and
Input Data Channel Slope:	0.04710	ft/ft
	45.10	ft³/s
Discharge:	45.10	
Options		
Current Roughness Weighted Metho	ImprovedLotters	
Open Channel Weighted Roughnes:	ImprovedLotters	
Closed Channel Weighted Roughne	Hortons	
Results		
Roughness Coefficient:	0.035	
Water Surface Elevation:	66.32	ft
Elevation Range:	66.00 to 70.00 ft	
Flow Area:	11.04	ft²
Wetted Perimeter:	37.35	ft
Top Width:	37.30	ft
Normal Depth:	0.32	ft
Normal Depth.	0.52	
Critical Depth:	0.39	ft
		ft ft/ft
Critical Depth:	0.39	
Critical Depth: Critical Slope:	0.39 0.02540	ft/ft
Critical Depth: Critical Slope: Velocity:	0.39 0.02540 4.08	ft/ft ft/s

Flow Type:	Supercritical
Segment Roughness	

Start Station	End Station	Roughness Coefficient
(-0+35, 70.00)	(0+60, 70.00)	0.035

Section G	metry	
Station	Elevation	
-0+35	70.00	
-0+25	68.00	

6/12

Worksheet for Irregular Section - B - B

×

Station	Elevation
-0+16	66.00
0+15	66.00
0+45	68.00
0+60	70.00

Worksheet for Irregular Section - (t, c)

Project Description		
Flow Element:	Irregular Section	
Friction Method:	Manning Formula	
Solve For:	Normal Depth	
Input Data		
Channel Slope:	0.03390	ft/ft
Discharge:	137.00	ft³/s
Options		
Current Roughness Weighted Metho	ImprovedLotters	
Open Channel Weighted Roughnes:	ImprovedLotters	
Closed Channel Weighted Roughne	Hortons	
Results		
Roughness Coefficient:	0.035	
Water Surface Elevation:	52.19	ft
Elevation Range:	51.00 to 54.00 ft	
Flow Area:	24.05	ft²
Wetted Perimeter:	38.66	ft
Top Width:	38.57	ft
Normal Depth:	1.19	ft
Critical Depth:	1.32	ft
Critical Slope:	0.02019	ft/ft
Velocity:	5.70	ft/s
Velocity Head:	0.50	ft
Specific Energy:	1.70	ft
Froude Number:	1.27	
Flow Type:	Supercritical	

7/12

Segment Ro	ughness					See State	
Start Station	End Station	Roughness Coefficient					
(-0+60, 54.00)	(0+21, 54.00)	0.035	Radit,				

Section G	eometry	
Station	Elevation	
-0+60	54.00	
-0+22	52.00	

Worksheet for Irregular Section - $oldsymbol{c}$ - $oldsymbol{C}$

120

Worksheet for Irregular Section - 🜔 – 🖒

Project Description		
Flow Element:	Irregular Section	
Friction Method:	Manning Formula	
Solve For:	Normal Depth	
Input Data		
Channel Slope:	0.02470	ft/ft
Discharge:	72.10	ft³/s
Options		
Current Roughness Weighted Metho	ImprovedLotters	
Open Channel Weighted Roughnes:	ImprovedLotters	
Closed Channel Weighted Roughne	Hortons	
Results		
Roughness Coefficient:	0.035	
Water Surface Elevation:	48.74	ft
Elevation Range:	47.50 to 52.00 ft	
Flow Area:	12.78	ft²
Wetted Perimeter:	16.42	ft
Top Width:	16.17	ft
Normal Depth:	1.24	ft
Critical Depth:	1.31	ft
Critical Slope:	0.01937	ft/ft
Velocity:	5.64	ft/s
Velocity Head:	0.49	ft
Specific Energy:	1.73	ft
Froude Number:	1.12	
Flow Type:	Supercritical	

Segment Roughness

Section G	eometry	
Station	Elevation	
-0+28	52.00	
-0+13	50.00	

10/12

Worksheet for Irregular Section - D – P

Station	Elevation
-0+05	48.00
0+00	47.50
0+06	48.00
0+12	50.00
0+20	52.00

11/12

Worksheet for Irregular Section - E - F

		1000000000000000000000000000000000000
Project Description		
Flow Element:	Irregular Section	
Friction Method:	Manning Formula	
Solve For:	Normal Depth	
Innuit Data		
Input Data Channel Slope:	0.00000	ft/ft
Discharge:	219.00	ft³/s
Discharge.		
Options		
Current Roughness Weighted Metho	ImprovedLotters	
Open Channel Weighted Roughnes:	ImprovedLotters	
Closed Channel Weighted Roughne	Hortons	
Results		
Roughness Coefficient:	0.035	
Water Surface Elevation:	40.55	ft
Elevation Range:	38.60 to 44.00 ft	
Flow Area:	31.09	ft²
Wetted Perimeter:	28.66	ft
Top Width:	28.37	ft
Normal Depth:	1.95	ft
Critical Depth:	2.09	ft
Critical Slope:	0.01707	ft/ft
Velocity:	7.04	ft/s
Velocity Head:	0.77	ft
Specific Energy:	2.72	ft
Froude Number:	1.19	
Flow Type:	Supercritical	

The sub-state of the second state of the sub-state of the second state of the sub-state of the sub-state of the	
Segment Roughness	

Section Ge	eometry
Station	Elevation
0+34	44.00
-0+20	42.00

12/12


Worksheet for Irregular Section - E - E

Station	Elevation
-0+12	40.00
0+00	38.60
0+12	40.00
0+20	42.00
0+30	44.00

National Flood Hazard Layer FIRMette

EL PASO COUNTY AREA, COLORADO NO. 2

EL PASO COUNTY AREA, COLORADO

TABLE 16.--SOIL AND WATER FEATURES

[Absence of an entry indicates the feature is not a concern. See "flooding" in Glossary for definition of terms as "rare," "brief," and "very brief." The symbol > means greater than]

T		1	Flooding		Bedr	OCK	Potential
Soil name and map symbol	Hydro- logic	Frequency	Duration	Months	Depth	Hardness	frost action
	group				In		
Alamosa: 1	С	Frequent	Brief	May-Jun	>60		High.
Ascalon: 2, 3	В	None			>60		Moderate:
Badland: 4	D						
Bijou: 5, 6, 7	В	None			>60		Low.
Blakeland: 8	А	None			>60		Low.
¹ 9: Blakeland part-	A	None	,		>60		Low.
Fluvaquentic Haplaquolls part	D	Common	Very brief	Mar-Aug	>60		High.
Blendon: 10	В	None			>60		Moderate.
Bresser: 11, 12, 13	В	None			>60		Low.
Brussett: 14, 15	В	None			>60		Moderate.
Chaseville: 16, 17	A	None			>60		Low.
¹ 18: Chaseville part	A	None			>60		Low.
Midway part		None			10-20	Rippable	Moderate.
Columbine: 19	- A	None to rare			>60		Low.
Connerton: 120: Connerton part	- В	None			· >60		High.
Rock outcrop part	- D						
Cruckton: 21	- В	None			>60		Moderate
Cushman: 22, 23	- C	None			20-40	Rippable	Moderate
¹ 24: Cushman part	- c	None			20-40	Rippable	Moderate
Kutch part	1	None			20-40	Rippable	Moderate
Elbeth: 25, 26	- (B)) None			>60		Moderate
¹ 27: Elbeth part	В	None			>60		 Moderate

See footnote at end of table.

207

208

SOIL SURVEY

TABLE 16.--SOIL AND WATER FEATURES--Continued

	\bigcirc				Bedr	ock	1
Soil name and map symbol	Hydro- logic	Frequency	Flooding Duration	Months	Depth	Hardness	Potential frost action
Elbeth: Pring part	group B	None			<u>In</u> >60		Moderate.
Ellicott: 28	A	Frequent	Brief	Mar-Jun	>60		Low.
Fluvaquentic Haplaquolls: 29	B/D	Frequent	Brief	Mar-Jul	>60		High.
Fort Collins: 30, 31	В	None to rare			>60		Moderate.
Fortwingate: 132: Fortwingate part	с	None			20-40	Hard	Low.
Rock outcrop part	D						
Heldt: 33	С	None			>60		Moderate.
Holderness: 34, 35, 36	с	None			>60		Moderate.
Jarre: 37	В	None			>60		Moderate.
¹ 38: Jarre part	В	None			>60		Moderate.
Tecolote part	В	None			>60		Moderate.
Keith: 39	В	None			>60		High.
Kettle: 40, 41	В	None			>60		Moderate.
1 _{42:} Kettle part	В	 None			>60	·	Moderate.
Rock outerop part	D						
Kim: . 43	В	None			>60		Moderate.
Kutch: 44, 45	с	None	·		20-40	Rippable	Moderate.
Kutler: ¹ 46: Kutler part	С	None			20-40	Rippable	Low.
Broadmoor part-	1	None			20-40	Rippable	Low.
Rock outerop part	D						
Limon: 47	с	Occasional	Brief	May-Sep	>60		Moderate.
Louviers: 48	D	None			10-20	Rippable	Moderate.
49	D	 None			10-20	Rippable	Low.

See footnote at end of table.

EL PASO COUNTY AREA, COLORADO

TABLE 16.--SOIL AND WATER FEATURES--Continued

		1	Flooding		Be	drock	1
Soil name and map symbol	Hydro- logic group	Frequency	Duration	Months	Depth	Hardness	Potential frost action
Manvel: 50	С	None			<u>In</u> >60		High.
Manzanola: 51, 52, 53	с	None to rare			>60		Moderate.
Midway: 54	D	None			10-20	Rippable	Moderate.
Nederland: 55	В	None			>60		Moderate.
Nelson: ¹ 56: Nelson part	В	None			20-40	Rippable	Low.
					l		i.
Tassel part	D	None			10-20	Rippable	Low.
Neville: 57	В	None			>60		 High.
¹ 58: Neville part	В	None			>60		High.
Rednun part	С	None			>60		Moderate.
Nunn: 59	с	None	"		>60		Moderate.
Olney: 60, 61	В	None			>60		Moderate.
¹ 62: Olney part	В	None			>60		Moderate.
Vona part	В	None			>60		Moderate.
Paunsaugunt: ¹ 63: Paunsaugunt part Rock outcrop	D	None			10-20	Hard	Moderate.
part	Ď						
Penrose: 164: Penrose part	D	None			10-20	Rippable	Low.
Manvel part	C	None			1		1
Perrypark:	В				>60		High.
Peyton: 66, 67		None			>60		Moderate.
168, 169:	В				>60		Moderate.
Peyton part	(в)	None			>60		Moderate.
Pring part	B	None			>60		Moderate.
Pits, gravel: 70	A						
Pring: 71, 72	В	None			>60		Moderate.
Razor: 73, 74	с	None			20-40	Rippable	Moderate.

See footnote at end of table.

ā.

.....

209

ţ

EL PASO COUNTY AREA, COLORADO

TABLE 16.--SOIL AND WATER FEATURES--Continued

		1	Flooding		i Bed	rock	1
Soil name and map symbol	Hydro- logic group	Frequency	Duration	 Months 	Depth	Hardness	Potential frost action
Tomah: 192, 193: Tomah part	В	None			<u>In</u> >60		Moderate.
Crowfoot part	B	None			>60		Moderate.
Travessilla: 194: Travessilla part	D	None			6-20	Hard	Low.
Rock outcrop part	D			· · · · · · · · · · · · · · · · · · ·			
Truckton: 95, 96, 97	В	None			>60		Moderate.
¹ 98: Truckton part	B	None			>60		Moderate.
Blakeland part-	A	None			>60		Low.
¹ 99, ¹ 100: Truckton part	В	None			>60		Moderate.
Bresser part	В	None			>60		Low.
Ustic Torrifluvents: 101	В	Occasional	Very brief	Mar-Aug	>60		Moderate.
Valent: 102, 103	A	None			>60		Low.
Vona: 104, 105	В	None			>60		Moderate.
Wigton: 106	А	None			>60		Low.
Wiley: 107, 108	В	None			>60		Low.
Yoder: 109, 110	В	None			>60		Low.

¹This map unit is made up of two or more dominant kinds of soil. See map unit description for the composition and behavior characteristics of the map unit.

| |7 | [

Tte

al

$$t_{e} = t_{i} + t_{e} \tag{Eq. 6-7}$$

Where:

 t_c = time of concentration (min)

 t_i = overland (initial) flow time (min)

 t_t = travel time in the ditch, channel, gutter, storm sewer, etc. (min)

3.2.1 Overland (Initial) Flow Time

The overland flow time, t_i , may be calculated using Equation 6-8.

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$
(Eq. 6-8)

Where:

 $t_i = \text{overland (initial) flow time (min)}$

- C_5 = runoff coefficient for 5-year frequency (see Table 6-6)
- L = length of overland flow (300 ft <u>maximum</u> for non-urban land uses, 100 ft <u>maximum</u> for urban land uses)

S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_t , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_t , can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

$$V = C S^{0.5}$$

Where:

V = velocity (ft/s)

 $C_v = \text{conveyance coefficient (from Table 6-7)}$

 S_w = watercourse slope (ft/ft)

(Eq. 6-9)

Type of Land Surface	C_{ν}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7 -
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

Table 6-7.	Conveyance	Coefficient,	C_{ν}
------------	------------	--------------	-----------

For buried riprap, select C_v value based on type of vegetative cover.

The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration (t_c) is then the sum of the overland flow time (t_i) and the travel time (t_i) per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation 6-10. The first design point is defined as the point where runoff first enters the storm sewer system.

$$t_c = \frac{L}{180} + 10 \tag{Eq. 6-10}$$

Where:

 t_c = maximum time of concentration at the first design point in an urban watershed (min)

L =waterway length (ft)

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

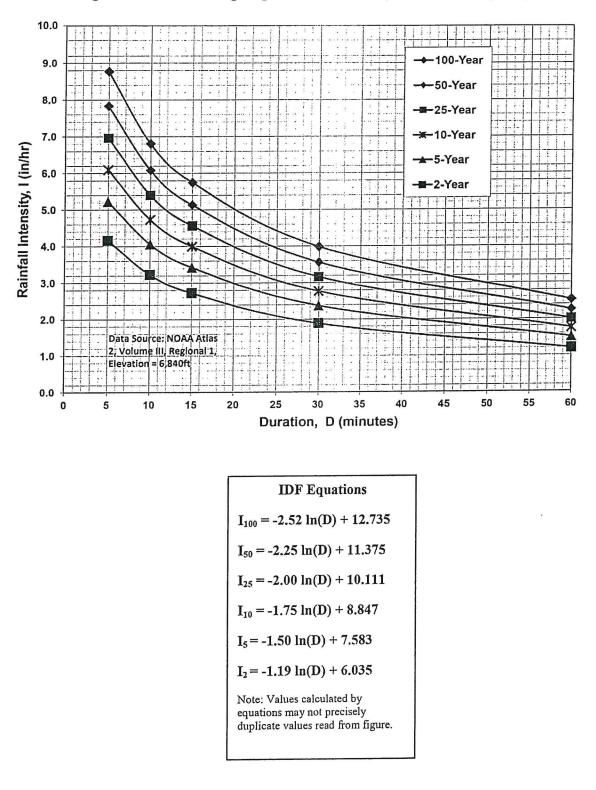
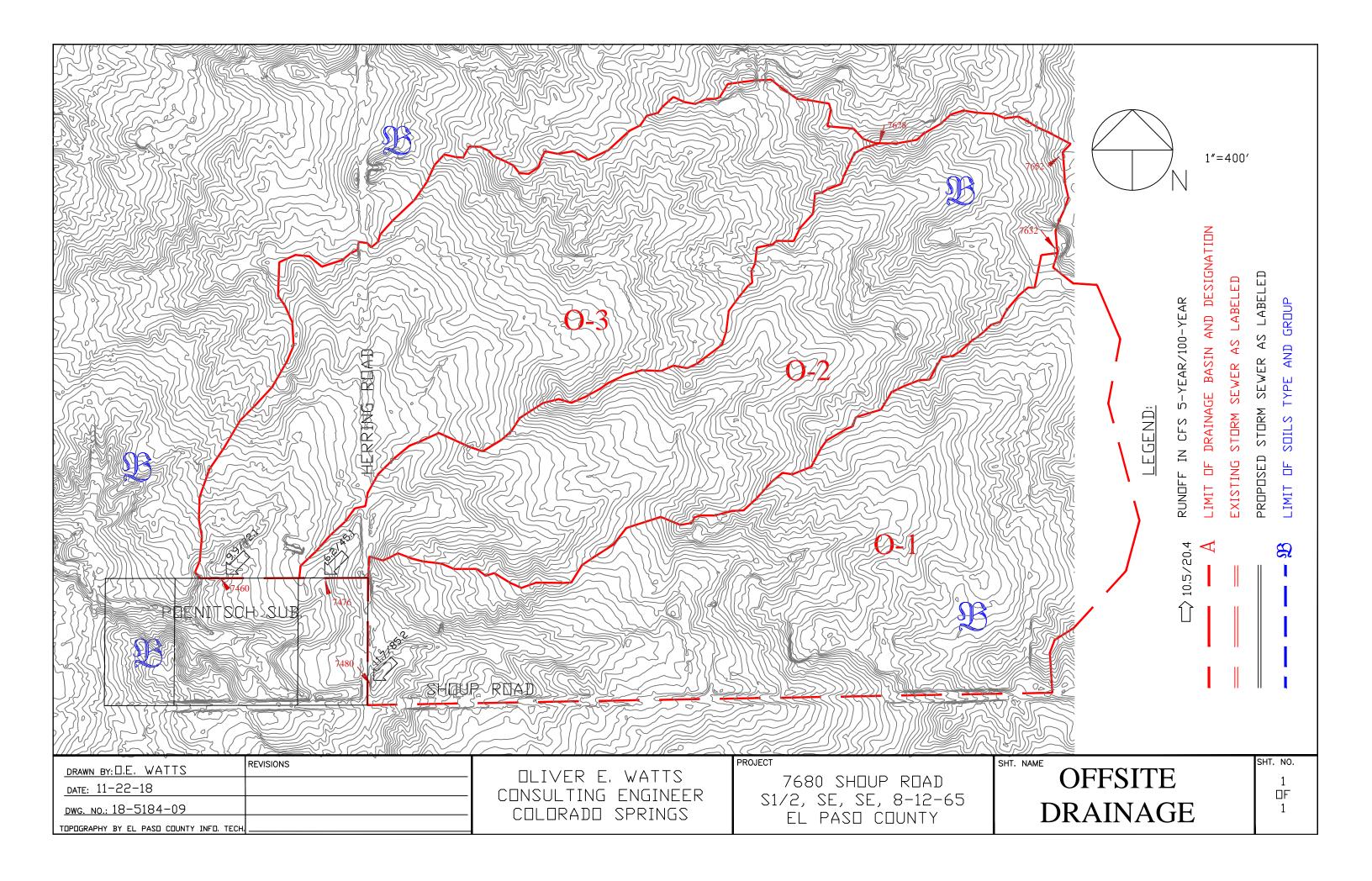
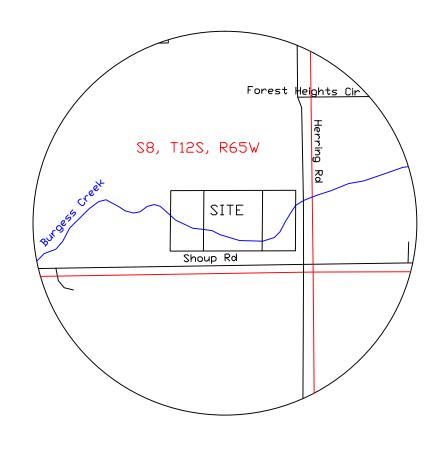
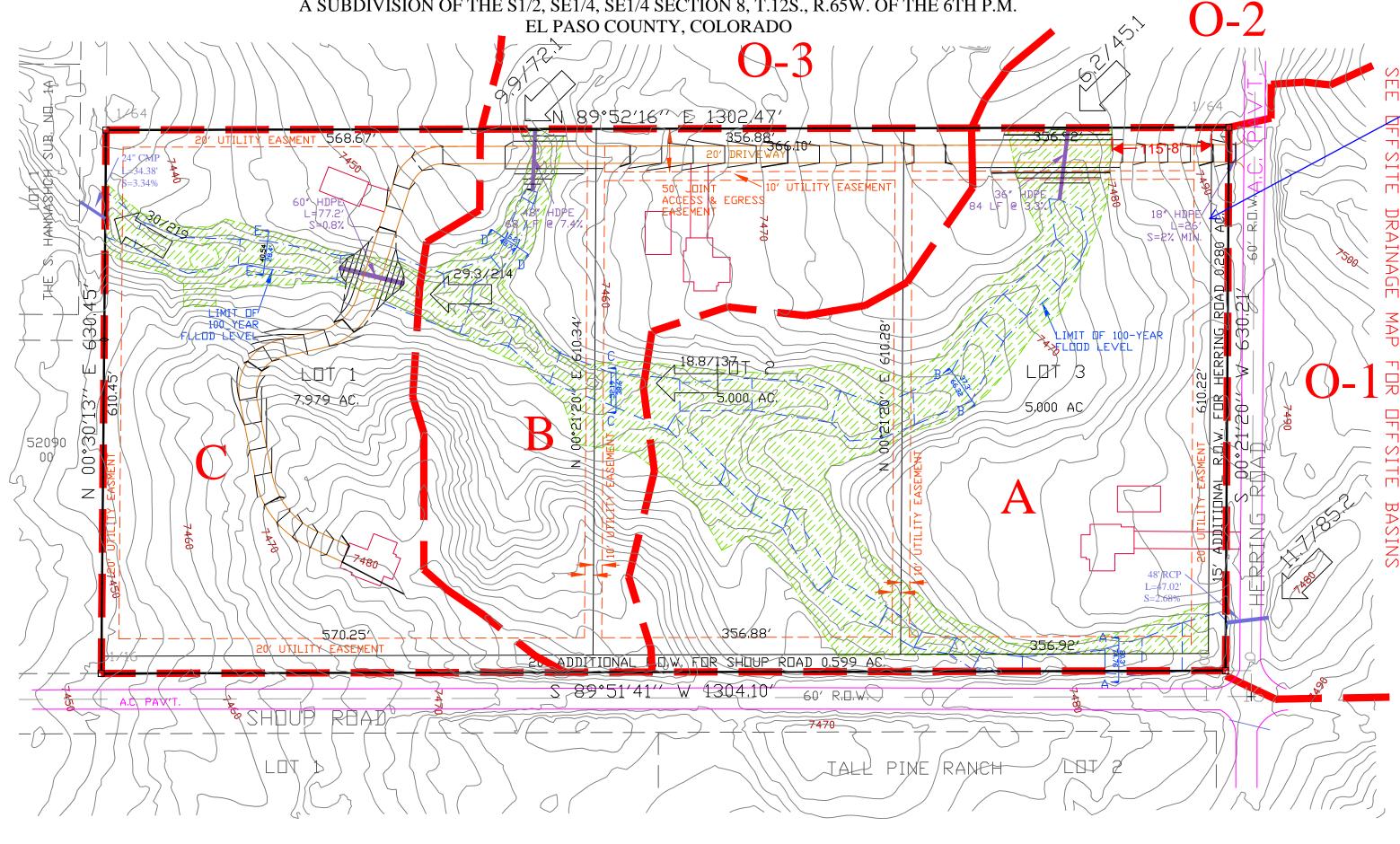


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency


		Runoff Coefficients											
Land Use or Surface Characteristics	Percent Impervious	2-y	ear	5-y	ear	10-1	year	25-1	year	50-	year	100-	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0,49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0,20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cerneteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

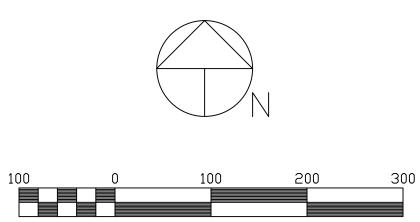

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

3.2 Time of Concentration


One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration consists of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

<u>VICINITY MAP</u> 1″=1000′

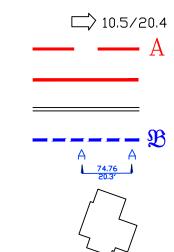


<u>Legal Description:</u> The South half of the Southeast quarter of the Southeast quarter of Section 8, Township 12 South, Range 65 West of the 6th P.M., County of El Paso, State of Colorado. And containing 18.86 acres

DRAINAGE PLAN POENITSCH SUBDIVISION

A SUBDIVISION OF THE S1/2, SE1/4, SE1/4 SECTION 8, T.12S., R.65W. OF THE 6TH P.M.

HPDE Pipe is not permitted for driveway culverts, per driveway access permit requirements. Please revise to show either CMP or reinforced concrete. Update accordingly in Cost Estimate.

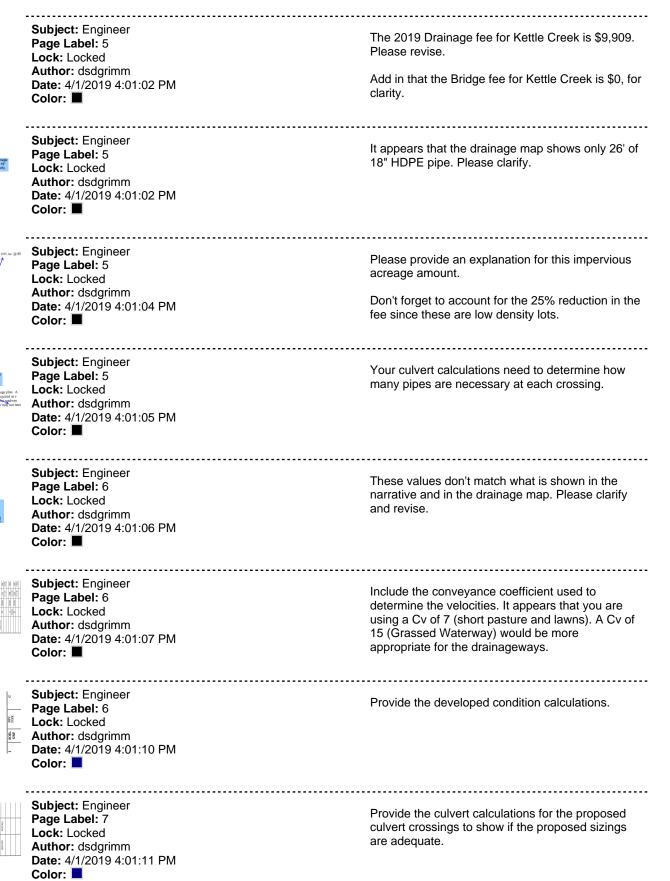


Scale 1" = 100' Contour Interval: 2' ELEV. DATUM: NGVD, 1929 ADJUSTMENT <u>LEGEND:</u>

□ FOUND #33649 AL. CAP ON e#5 REBAR

<u>LEGEND:</u>

10.5/20.4 RUNDFF IN CFS 5-YEAR/100-YEAR LIMIT OF DRAINAGE BASIN AND DESIGNATION EXISTING STORM SEWER AS LABELED PROPOSED STORM SEWER AS LABELED LIMIT OF SOILS TYPE AND GROUP CHANNEL SECTION VS ELEV. LIMIT OF 100-YEAR RUNDFF TYPICAL DWELLING FOR DRAINAGE FEE PURPOSES


> PREPARED_BY_IHE_DEFICE_DF:_ DLIVER E. WATTS PE-LS CONSULTING ENGINEER 614 ELKTON DRIVE COLORADO SPRINGS, CO 80907 (719) 593-0173 olliewatts@aol.com Celebrating over 39 years in business

OLIVER E. WATTS CONSULTING ENGINEER COLORADO SPRINGS 11-22-18 □EW 18-5184-08

Markup Summary

dsdgrimm (19)		
Add PCD File No. MS193	Subject: Engineer Page Label: 1 Lock: Locked Author: dsdgrimm Date: 4/1/2019 4:00:55 PM Color:	Add PCD File No. MS193
Remove "preliminary and". This should just be a Final Drainage Report. PRELIMINARY AI	Subject: Engineer Page Label: 1 Lock: Locked Author: dsdgrimm Date: 4/1/2019 4:00:56 PM Color:	Remove "preliminary and". This should just be a Final Drainage Report.
Calcado Address the Foor Step Process (ECM Agenetic), Saccisol 7.2) and Generatic, Saccisol 7.2) address why WOCV and Setember are not required.	Subject: Engineer Page Label: 1 Lock: Locked Author: dsdgrimm Date: 4/1/2019 4:00:57 PM Color:	Address the Four Step Process (ECM Appendix I, Section I.7.2) and discuss why WQCV and detention are not required.
Reviewed by consistent or no SRY AND FINAL AN AND REPORT	Subject: Reviewed By Page Label: 1 Lock: Locked Author: dsdgrimm Date: 4/1/2019 4:00:58 PM Color:	
1.46 feet. C: Proposed Structures. The County has dete Read. Lot 3 can use the existing driveway or Include, "due to the Include," due to the Shoup Road."	Subject: Engineer Page Label: 4 Lock: Locked Author: dsdgrimm Date: 4/1/2019 4:00:59 PM Color:	Include, "due to the road classification of Shoup Road."
A dramation of the strategies	Subject: Engineer Page Label: 4 Lock: Locked Author: dsdgrimm Date: 4/1/2019 4:00:59 PM Color:	What is the 100-year runoff headwater depth? Identify if there are any backwater effect to the development with the pipe being inadequate.
CRIFTION IN CONTROL AND AND ADDIVISION FORMATION TO ADDIVISION OF A DIVISION OF A DIVISIONAL ADDIVISION OF A DIVISIONAL ADDIVISIONAL AD	Subject: Engineer Page Label: 4 Lock: Locked Author: dsdgrimm Date: 4/1/2019 4:01:00 PM Color:	The assessor's shows that the parcel is 18.66 acres. Please verify.

Subject: Engineer Page Label: 8 Lock: Locked Author: dsdgrimm Date: 4/1/2019 4:01:12 PM Color:

Subject: Engineer Page Label: 29 Lock: Locked Author: dsdgrimm Date: 4/1/2019 4:01:13 PM Color: ■

It appears that the flow for each channel section is supercritical. Identify channel erosion stabilization improvements or justification for why they aren't necessary in the narrative of the report.

HPDE Pipe is not permitted for driveway culverts, per driveway access permit requirements. Please revise to show either CMP or reinforced concrete. Update accordingly in Cost Estimate.

.....

115'-8"

Any changes to the plat must be reflected here as well.

Subject: Length Measurement Page Label: 29 Lock: Locked Author: dsdgrimm Date: 4/1/2019 4:01:15 PM Color:

 0^{2}

Subject: Engineer Page Label: 29 Lock: Locked Author: dsdgrimm Date: 4/1/2019 4:01:16 PM Color: