

FINAL DRAINAGE LETTER FOR 14160 STONE EAGLE PLACE LOT 7 GLENEAGLE SUBDIVISION FILING NO. 2 EL PASO COUNTY GLEN EAGLE, COLORADO

JANUARY 2022

Prepared For: JAYDEN HOMES Colorado Springs, Colorado 719.535-9030

Prepared By:

TERRA NOVA ENGINEERING, INC. 721 S. 23RD STREET Colorado Springs, CO 80904 719.635.6422

TNE Job No. 2199.17

PCD File No.: CDR-21-019

FINAL DRAINAGE LETTER FOR 14160 STONE EAGLE PLACE LOT 7 GLENEAGLE SUBDIVISION FILING NO. 2 EL PASO COUNTY GLEN EAGLE, COLORADO TABLE OF CONTENTS

Engineer's Statement	Page 3
Purpose and Justification	Page 4
General Description	Page 5
Existing Drainage Conditions	Page 5
Proposed Drainage Conditions	Page 6
Hydrologic Calculations	Page 7
Hydraulic Calculations	Page 7
Water Quality	Page 7
Erosion Control	Page 7
Construction Cost Opinion	Page 8
Drainage Fees	Page 8
Maintenance	Page 8
Summary	Page 8
Bibliography	Page 9

APPENDICIES VICINITY MAP

HYDROLOGIC CALCULATIONS HYDRAULIC CALCUATIONS PREVIOUS DRAIANGE REPORT FOR SUBDIVISION DRAINAGE MAPS

FINAL DRAINAGE LETTER FOR 14160 STONE EAGLE PLACE LOT 7 GLENEAGLE SUBDIVISION FILING NO. 2 EL PASO COUNTY GLEN EAGLE, COLORADO

DESIGN ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. A accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

L Ducett, P.E. 32339 O'ONAL COMPANY On behalf of Terra Nova Engineering, Inc.

OWNER/DEVELOPER'S STATEMENT:

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

1/26/22 Date

Authorized Signature

Chris Palmer, Project Manager

Printed Name, Title

Construction by Genesis DBA: Jayden Home:

Business Name

P.O. Box 1982 Monument, CO 801:

Address

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E. County Engineer / ECM Administrator

Conditions:

APPROVED Engineering Department

02/04/2022 1:19:08 PM dsdnijkamp EPC Planning & Community Development Department

Date

FINAL DRAINAGE LETTER FOR 14160 STONE EAGLE PLACE LOT 7 GLENEAGLE SUBDIVISION FILING NO. 2 EL PASO COUNTY GLEN EAGLE, COLORADO

PURPOSE AND JUSTIFICATION

The purpose of this Final Drainage Letter is to identify and analyze the existing drainage patterns, determine existing runoff quantities, and analyze the effects of the proposed home construction on drainage patterns. This parcel has previously been platted and has previously been studied in:

"Final Drainage Report for Gleneagle Golf Course Infill Development Filing No. 2", dated May 2019, prepared by RESPEC.

GENERAL DESCRIPTION

This Final Drainage Report for "14160 STONE EAGLE PLACE LOT 7 GLENEAGLE SUBDIVISION FILING NO. 2", located at 14160 Stone Eagle Place, is an analysis of an approximately 24,291 sf drainage basin. The site is platted as Lot 7 Gleneagle Subdivision Filing No. 2. This report is being required as part of the GEC at the county engineer's discretion as the lot has over 500 cy of fill for the proposed single family home.

The site is in the southeast quarter of Section 6, Township 12 South, Range 67 West of the 6th Principal Meridian within El Paso County. The lot is bounded to the north by Lot 8 to the south by Lot 6 to the west by Stone Eagle Place and to the east by an existing tract with a concrete drainage pan.

The site lies within the Black Forest Drainage Basin, with storm runoff draining from the lot to a newly constructed water quality pond south of the site.

The site consists of Peyton Pring complex and Pring Course sandy loam (hydrologic group "B") per the USDA, NRCS web soil survey. See map in the appendix.

No portion of this site is in the FEMA Floodplain per the FIRM panel 08041C0287F dated March 17, 1997.

The study area consists of one single family lot that is partially developed with some grading and an existing foundation in place. Slopes range from 2% to 33% on the site.

EXISTING DRAINAGE CONDITIONS

Prior to placement of the existing foundation, the site drained to the west with three onsite basins and one offsite basin from the north. See attached Existing Drainage Map in the appendix.

There are three onsite existing drainage basins, and one that is offsite. See attached Existing Drainage Map (in appendix).

Basin OS-1 is 0.16 acres and drains to Design Point A along the north side of the site. This is flow from Lot 8. Basin OS-1 has flows of $Q_5 = 0.0$ cfs and $Q_{100} = 0.4$ cfs.

Basin EXA is 0.09 acres and drains to Design Point A along the north side of the site. Basin EXA has flows of $Q_5 = 0.0$ cfs and $Q_{100} = 0.2$ cfs. These flows combine with the flows from OS1 to produce combined flows of $Q_5 = 0.0$ cfs and $Q_{100} = 0.6$ cfs at Design Point D. From here flows flow to the existing concrete lined swale in Tract A then to the existing water quality pond south of the site.

Basin EXB is 0.31 acres and drains to Design Point B along the east side of the site. This is flow flows to Tract A and then south in the existing concrete lined swale to the existing water quality pond south of the site. Basin EXB has flows of $Q_5 = 0.1$ cfs and $Q_{100} = 0.7$ cfs.

Basin EXC is 0.08 acres and drains to Design Point C along the south side of the site. Basin EXC has flows of $Q_5 = 0.0$ cfs and $Q_{100} = 0.3$ cfs. Per the previously approve drainage report entitled "Final Drainage Report for Gleneagle Golf Course Infill Development Filing No. 2", dated May 2019, prepared by RESPEC. This area is part of Basin A2C2 and is to drain to the south onto Lot 6 and then into the proposed water quality pond at Design Poing 5 from the previous report (see

previous report in appendix.)

PROPOSED DRAINAGE CONDITIONS

In the proposed condition the site will drain primarily to the east and south east. All flow will be directed to the existing water quality pond south of the site. See attached Proposed Drainage Map in the appendix.

There are four onsite proposed drainage basins, and one that is offsite. See attached Proposed Drainage Map (in appendix).

Basin OS-1 is 0.16 acres and drains to Design Point 1 along the north side of the site. This is flow from Lot 8. Basin OS-1 has flows of $Q_5 = 0.4$ cfs and $Q_{100} = 0.8$ cfs.

Basin PRA is 0.09 acres and drains to Design Point 1 along the north side of the site. Basin PRA has flows of $Q_5 = 0.2$ cfs and $Q_{100} = 0.5$ cfs. These flows combine with the flows from OS1 to produce combined flows of $Q_5 = 0.6$ cfs and $Q_{100} = 1.3$ cfs at Design Point 5. These flows will flow in a proposed swale along the north property line. An existing 5' drainage easement is provided on each side of this lot line. Flows will reach a height of 0.41' in this swale spreading 1.25' either side of the property line. This is within the existing easement and will not cause any issues for either lot as long as the swale is properly vegetated. This swale will have a maximum velocity of 2.6 ft / sec and is not erosive. From here flows flow to the existing concrete lined swale in Tract A then to the existing water quality pond south of the site.

Basin PRB is 0.20 acres and drains to Design Point 4 along the east side of the site. This is flow flows to Tract A and then south in the existing concrete lined swale to the existing water quality pond south of the site. Basin PRB has flows of $Q_5 = 0.2$ cfs and $Q_{100} = 0.9$ cfs.

Basin PRC is 0.19 acres and drains to Design Point 2 along the south side of the site. Basin EXC has flows of $Q_5 = 0.4$ cfs and $Q_{100} = 1.1$ cfs. Per the previously approve drainage report entitled "Final Drainage Report for Gleneagle Golf Course Infill Development Filing No. 2", dated May

2019, prepared by RESPEC. This area is part of Basin A2C2 and is to drain to the south onto Lot 6 and then into the proposed water quality pond at Design Point 5 from the previous report (see previous report in appendix.)

Basin PRD is 0.08 acres and drains to Design Point 3 along the south side of the site. Basin PRD has flows of $Q_5 = 0.2$ cfs and $Q_{100} = 0.4$ cfs. Per the previously approve drainage report entitled "Final Drainage Report for Gleneagle Golf Course Infill Development Filing No. 2", dated May 2019, prepared by RESPEC. This area is part of Basin A2C2 and is to drain to the south onto Lot 6 and then into the proposed water quality pond at Design Point 5 from the previous report (see previous report in appendix.)

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the El Paso County Storm Drainage Design Criteria Manual - Volumes 1 & 2, latest editions. The Rational Method was used to estimate storm water runoff anticipated from design storms with 5-year and 100-year recurrence intervals. The Urban Drainage Criteria Manual was used to calculate the detention and water quality volume.

HYDRAULIC CALCULATIONS

The proposed grass swale at the north edge of the site will adequately convey flows to the west. This channel will have a depth of approximately 0.41' in the 100 year event and flows will not overtop beyond the existing 5' easement on each lot. Total width at the top of the flow is 2.5' wide total. See cross section on the Proposed Drainage Map in the appendix and the calculation in the appendix.

WATER QUALITY

As no changes to the existing drainage conditions are proposed, no water quality treatment or flood control detention is required for this lot. Offsite water quality has been provided for the subdivision south of this site.

EROSION CONTROL

See separate grading and erosion control plan submitted under separate cover. Typical single family lot erosion control measures of silt fence and revegetation are proposed.

CONSTRUCTION COST OPINION

Not applicable.

DRAINAGE FEES

This site has previously been platted, and the proposed Lot 1 is already developed. No fees are required.

MAINTENANCE

The homeowners will be required to maintain their portion of the drainage easement between the lots, the HOA will maintain the concrete swale behind the lots and the existing water quality pond. The owner will be required to revegetate the site and mow the slopes. In addition the proposed walls will need to be constructed per the grading plan and they will need to be maintained by the homeowner.

SUMMARY

Building a home on this site will not adversely affect the surrounding development. The existing and proposed drainage conditions were previously studied and planned for development. No major deviations from the existing, approved reports are noted. Proposed grading will generally follow the intent of the previously approved drainage report and the GEC on file with the county. Water quality is managed offsite per the previously approved plans and drainage report for Gleneagle Subdivision filing No. 2.

PREPARED BY: TERRA NOVA ENGINEERING, INC.

L Ducett, P.E. President

Jobs//219917/Drainage/219917 Drainage Letter.docx

BIBLIOGRAPHY

- El Paso County Drainage Criteria Manual-Volumes 1 & 2, latest edition
- El Paso County Board Resolution No 15-042 (Adoption of Chapter 6 and Section 3.2.1 Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014, Hydrology and Full Spectrum Detention)
- Final Drainage Report for Gleneagle Golf Course Residential Infill Development Filing No. 2 dated May 2019, prepared by RESPEC

Soil Survey of El Paso County Area, Colorado by USDA, NRCS.

VICINITY MAP

VICINITY MAP

HYDROLOGIC CALCULATIONS

14160 STONE EAGLE PLACE (Area Runoff Coefficient Summary)

STREET			TS / DEVE	LOPED	OVERLA	ND / UNDEV	WEIGHTED		
BASIN	TOTAL AREA (Acres)	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	C ₅	C ₁₀₀
OS1	0.16	0.00	0.45	0.59	0.16	0.08	0.35	0.08	0.35
EXA	0.09	0.00	0.20	0.44	0.09	0.08	0.35	0.08	0.35
EXB	0.31	0.00	0.30	0.50	0.31	0.08	0.35	0.08	0.35
EXC	0.08	0.00	0.12	0.39	0.08	0.08	0.35	0.08	0.35

EXISTING CONDITIONS

PROPOSED CONDITIONS

		STREE	TS / DEVE	LOPED	OVERLA	ND / UNDEW	WEIGHTED		
BASIN	TOTAL AREA (Acres)	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	C ₅	C ₁₀₀
OS1	0.16	0.08	0.90	0.96	0.08	0.08	0.35	0.49	0.66
PRA	0.09	0.03	0.90	0.96	0.06	0.08	0.35	0.35	0.55
PRB	0.20	0.04	0.90	0.96	0.16	0.08	0.35	0.24	0.47
PRC	0.19	0.09	0.90	0.96	0.10	0.08	0.35	0.47	0.64
PRD	0.08	0.03	0.90	0.96	0.05	0.08	0.35	0.39	0.58

Calculated by: LD Date: 12/17/2021 Checked by: LD

14160 STONE EAGLE PLACE AREA DRAINAGE SUMMARY

EXISTING CONDITIONS

		WEIG	HTED		OVER	LAND		STRE	ET / CH	ANNEL F	LOW	T _t	INTE	NSITY	TOTAL	FLOWS
BASIN	AREA TOTAL	C5	C ₁₀₀	C ₅	Length	Height	T _C	Length	Slope	Velocity	T _t	TOTAL	I ₅	I ₁₀₀	Q5	Q ₁₀₀
	(Acres)	• For Calcs See	Runoff Summary		(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
OS1	0.16	0.08	0.35	0.08	103	1.0	12.0	50	6.0%	3.7	0.2	12.0	3.8	6.5	0.0	0.4
EXA	0.09	0.08	0.35	0.08	103	1.0	12.0	40	6.0%	4.9	0.1	12.0	3.8	6.5	0.0	0.2
EXB	0.31	0.08	0.35	0.08	93	1.0	11.2	50	4.0%	1.0	0.8	11.0	3.9	6.8	0.1	0.7
EXC	0.08	0.08	0.35	0.08	32	1.0	5.1	15	6.0%	4.9	0.1	5.0	5.0	9.1	0.0	0.3

PROPOSED CONDITIONS

		WEIG	HTED		OVER	LAND		STRE	ET / CH	ANNEL F	LOW	T _t	INTEN	SITY	TOTAL	FLOWS
BASIN	AREA TOTAL	C ₅	C ₁₀₀	C ₅	Length	Height	T _c	Length	Slope	Velocity	T,	TOTAL	I ₅	I ₁₀₀	Q5	Q ₁₀₀
	(Acres)	For Calcs See	Runoff Summary		(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
OS1	0.16	0.49	0.66	0.49	103	1.0	7.2	0	6.0%	3.7	0.0	7.2	4.5	8.0	0.4	0.8
PRA	0.09	0.35	0.55	0.35	32	6.0	2.1	0	6.0%	4.9	0.0	5.0	5.0	9.1	0.2	0.5
PRB	0.20	0.24	0.47	0.24	61	10.0	3.2	0	4.0%	1.0	0.0	5.0	5.0	9.1	0.2	0.9
PRC	0.19	0.47	0.64	0.47	100	10.0	3.4	0	6.0%	4.9	0.0	5.0	5.0	9.1	0.4	1.1
PRD	0.08	0.39	0.58	0.39	34	12.0	1.6	0	6.0%	4.9	0.0	5.0	5.0	9.1	0.2	0.4

Calculated by:	ld
Date:	12/17/2021
Checked by:	LD

6:48 PM12/17/202111219917 FDR Calcs

14160 STONE EAGLE PLACE PROPOSED SURFACE ROUTING SUMMARY

			F	Flow			
Design Point(s)	Contributing Basins	Area Ac	Qs	Q 100			
5	OS 1 AND PRA	0.25	0.6	1.3			
D	EXA AND OS1	0.25	0.0	0.6			
			Calculated by:	LD			

Date: 12/17/2021

Checked by: LD

HYDRAULIC CALCULATIONS

	The open channel flow calculator									
Select Channel Type: Trapezoid ✔		F→T→ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	z1 trapezoid	z1 z2						
Depth from Q 🗸	Sele	ect unit system:	Feet(ft) V							
Channel slope: 0.1 ft/ft	Water	r depth(y): 0.41	ft	Bottom width(b) 0					
Flow velocity 2.557828 ft/s	LeftS	lope (Z1): 3	to 1 (H:V)	RightSlope (Z to 1 (H:V)	2): 3					
Flow discharge 1.3 ft^3/s	Input	n value 0.06	or select n							
Calculate!	Status	s: Calculation finis	hed	Reset						
Wetted perimeter 2.6	Flow	area 0.51	ft^2	Top width(T)	2.47					
Specific energy 0.51	Froud	le number 0.99		Flow status Subcritical flow	1					
Critical depth0.41	Critic	al slope 0.0942	ft/ft	Velocity head	0.1					

Copyright 2000 Dr. Xing Fang, Department of Civil Engineering, Lamar University.

PREVIOUS DRAINAGE REPORT FOR SUBDIVISION

FINAL DRAINAGE REPORT FOR GLENEAGLE GOLF COURSE RESIDENTIAL INFILL DEVELOPMENT FILING NO. 2

PREPARED BY

Michael A. Bartusek, P.E. RESPEC 3520 Austin Bluffs Parkway, Suite 102 Colorado Springs, CO 80918 719-266-5212

PREPARED FOR

G&S DEVELOPMENT, INC. 9800 Pyramid Court, No. 340 Englewood, CO 80112

May 22, 2019 Project Number 03524

VR-18-018

respec.com

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City/County for drainage reports, and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Michael A. Bartusek, P.E. #23329

DEVELOPER'S STATEMENT:

I, the Developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Ato, pras By:

Title: President

Address: G&S Development, Inc. 9800 Pyramid Court, Suite 340 Englewood, CO 80112

Filed in accordance with the El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

Jennifer Irvine P.E. County Engineer/	Approved by Elizabeth Nijkamp El Paso County Planning and Community Development on behalf of Jennifer Irvine, County Engineer, ECM Administrator 06/04/2019 2:00:32 PM
ECM Administrator	

Conditions:

FINAL DRAINAGE REPORT GLENEAGLE GOLF COURSE RESIDENTIAL INFILL DEVELOPMENT FILING NO. 2

GENERAL

The Gleneagle Subdivision Filing No. 2 consists of a total of 7.621 acres, of which 0.83 acre will be ROW which previously comprised the Gleneagle Golf Club. The area will be developed with 12 lots and a water quality/detention basin in the western part of the proposed subdivision. The project is located in northwestern El Paso County. It is situated in Sections 6, Township 12 South, Range 67 West of the 6th Principal Meridian, El Paso County, Colorado.

The proposed development was part of the Black Forest Drainage Basin Planning Study, prepared by Wilson and Company in May 1989. The study used storm intervals of ten and 100 years. Our study follows the current City/County Drainage Criteria Manual and uses the five-and 100-year storms.

SOILS

The Soil Conservation Service (NRCS) soil survey for El Paso County has identified three soil types in this study area. They are as follows:

Map Symbol No.	Soil Name	Hydrologic Soil Group
68	Peyton-Pring Complex	В
71	Pring Coarse Sandy Loam	В

FLOODPLAIN STATEMENT

None of the site is located within a 100 year floodplain as determined by FEMA on the Flood Insurance Rate Map (FIRM) Panel 08041 CO287F, dated March 17, 1997.

METHOD OF COMPUTATION

The methodology used for this report is in accordance with the *City/County Drainage Criteria Manual*. The Rational Method for computation of runoff was used for local basin design.

0	=	cia
v.	_	ua

Where	Q c i	Maximum rate of runoff in cubic feet per second Runoff coefficient representing drainage area characteristics Average rainfall intensity, in inches per hour, for the duration required for the runoff to become established
	а	 Drainage basin size in acres

WETLANDS

No identified wetlands occur within the project area according to the Natural Features and Wetland Report prepared by Ecosystem Services LLC in March 2016.

EXISTING PONDS

No existing ponds are located within the project area. There is a non-jurisdictional stormwater basin located within the western area of the site which is identified on the "Existing Conditions" drainage plan.

WATER QUALITY/DETENTION CONCEPTS

In accordance with current NPDES requirements, stormwater quality BMPs will be incorporated into the development of this project. Water quality facilities will be included in all proposed detention facilities. A water quality/detention basin will be built as part of this project. The new detention basin will be equipped with a 2.5' micro-pool per the DCM Volume 2.

EXISTING DRAINAGE CONDITIONS

As stated previously, the Gleneagle Subdivision Filing No. 2 encompasses approximately 7.62 acres. This study focuses on the development of the 12 lots in the southern part of this development.

This filing of the subdivision drains the southwest area of the Gleneagle Subdivision. This basin drains the area west of the large detention pond from Filing No. 1 and Huntington Beach Dr. and north of Gleneagle Dr.

The basin flows into an existing sump area before it drains overland through existing lots along Westchester Drive. **Basin A** has further been divided into several sub-basins.

Sub-Basin A1 drains the runoff from the homes on Gleneagle Drive just west of Huntington Beach Drive. It produces flows of 1.5 cfs for the five-year storm and 5.4 cfs for the 100-year storm. The runoff then flows into Sub-Basin A2. Some flows from this Sub-Basin enters the adjacent sub-basin through a roadside swale, while most just sheet flows from the street.

Sub-Basin A2 drains the area between the existing sump detention area and Westchester Drive. The mostly undeveloped area produces flows of 3.2 cfs for the fiveyear storm and 22.1 cfs for the 100-year storm. When combined with the flows from Sub-Basin 1 at **DP1** the resulting flows are 4.2 cfs and 25.7 cfs for the five- and 100-year storms, respectively. This runoff currently sheet flows through the existing lots 10 and 11, located mostly on lot 10. These flows continue to the existing ditches along Westchester Drive within Sub-Basin OS1. Calculations show that these flows will split with some flows continuing to the Westchester ditch and some flowing around the back of the house and onto lot 9.

Sub-Basin A3 is a very small area along Gleneagle Drive which sheet flows off of the street and then flows through a small ditch to Westchester Drive. This area produces flows of 1.4 cfs for the five-year storm and 3.9 cfs for the 100-year storm.

Sub-Basin OS1 drains the area southern south of the Westchester Drive culvert and north of the street. It produces flows of 6.9 cfs for the five-year storm and 21.8 cfs for the 100-year storm. These flows and flows from Sub-Basin A3 combine at **DP2** to produce flows of 6.7 cfs and 20.8 cfs for the five- and 100-year storms, respectively. These flows travel north to the existing 30-inch culvert.

Sub-Basin A4 drains the undeveloped area northwest of pond B. It produces flows of 0.3 cfs for the five-year storm and 2.3 cfs for the 100-year storm. These flows then travel along Westchester Drive into Sub-Basin OS2.

Sub-Basin OS2 drains a small area along Westchester Drive, producing flows of 1.3 cfs for the five-year storm and 4.3 cfs for the 100-year storm. These flows and flows from Sub-Basin A4 combine at **DP3** to produce flows of 1.5 cfs and 6.3 cfs for the five- and 100-year storms, respectively. These combined flows then travel south along the Westchester Drive ditch, joining with flows from DP3 at **DP4**. The total combined flows at DP4 are 8.0 cfs and 26.3 cfs for the five- and 100-year storms, respectively.

The combined, total runoff at the existing 30-inch CMP located under Westchester Drive (**DP5**) is 10.7 cfs for the five-year storm and 47.2 cfs for the 100-year storm.

The estimated runoff amounts produced for the project under existing conditions are shown in Table 1 below.

TABLE 1 – EX	ISTING CONDITIONS	
Sub-Basin	Q₅CFS	Q ₁₀₀ CFS
A1	1.5	5.4
A2	3.2	22.1
A3	1.4	3.9
A4	0.3	2.3
OS1	6.9	21.8
OS2	1.3	4.3
DP1(A1+A2)	4.2	25.7
DP2(A3+OS1)	6.7	20.8
DP3(A4+OS2)	1.5	6.3
DP4(DP2+DP3)	8.0	26.3
DP5(DP4+DP1)	10.7	47.2

DEVELOPED DRAINAGE CONDITIONS

A total of 12 lots are proposed within this portion of the previous golf course property. With the average lot size over one-half acre, the resultant increases in flows will be slight. However, a new detention facility will be used to keep flows below historic levels. New ditches and swales will also be added to further reduce the flows that currently flow toward the homes. As a result of the proposed detention basins and other drainage improvements no adverse impacts will result due to this project.

Sub-Basin A1 will remain unchanged and will produce flows of 1.5 cfs for the five-year storm and 5.4 cfs for the 100-year storm. These combined flows will then travel into Sub-Basin A2A.

Sub-Basin A2A will drain the area just west and south of existing Pond B. It will produce flows of 1.6 cfs for the five-year storm and 9.1 cfs for the 100-year storm event. These flows will travel in proposed Swale J. Flows from Sub-Basin A1 and A2A will combine at **DP1** and produce flows of 2.8 cfs and 13.5 cfs for the five- and 100-year storms, respectively.

Sub-Basin A2B1 will drain the area east of Stone Eagle Place. It will produce flows of 1.1 cfs for the five-year storm and 5.1 cfs for the 100-year storm. Flows from this sub-basin and DP1 will combine in a proposed swale at **DP2** to produce total flows of 3.7 cfs and 17.6 cfs for the five-and 100-year storms, respectively. These flows will be directed under Stone Eagle Place through a 24-inch RCP culvert.

Sub-Basin A2B2 will drain the east side of Stone Eagle Place. It will produce flows of 1.1 cfs for the five-year storm and 2.3 cfs for the 100-year storm. These flows will be intercepted at the low point of the street by a Denver Type 16 window inlet situated over the 24" RCP.

Sub-Basin A2C1 will drain the west side of Stone Eagle Place and be directed to a Denver Type 16 window inlet at the low point situated over the 24" RCP. It will produce flows of 1.4 cfs for the five-year storm and 2.9 cfs for the 100-year storm. Flows from this sub-basin will combine with the flows from Sub-Basin A2B2 and DP2 to produce a combined flow at **DP3** of 5.6 cfs and 21.4 cfs for the five- and 100-year storms, respectively.

Sub-Basin A2C2 will drain the area west of Stone Eagle Place and contains the proposed homes. It will produce flows of 1.3 cfs for the five-year storm and 4.2 cfs for the 100-year storm. Flows from this sub-basin and DP3 will combine at **DP4** to produce total flows of 6.6 cfs and 24.5 cfs for the five- and 100-year storms, respectively. These flows will then be directed into a new detention/water quality facility in Sub-Basin A2D.

Sub-Basin A2D will drain the back areas of the lots located along Stone Eagle Place and portions of the old golf course. It will produce flows of 1.7 cfs for the five-year storm and 9.7 cfs for the 100-year storm. These flows will travel through proposed Swale L with a 12" berm added where the swale makes a 90 degree bend. The combined, undetained flows at the new water quality/ detention basin C (**DP5**) will be 6.8 cfs and 28.9 cfs for the five- and 100-year storms, respectively. The outflow from this proposed detention basin will be 2.8 cfs and 18.0 cfs for the five- and 100-year storms, respectively. Flows from this detention basin will be directed to a proposed 24" private HDPE storm sewer which will be located within a private drainage easement on Lot 7. The easement will be owned and maintained by the Gleneagle Civic Association (GCA). In addition the detention overflow swale will also connect to this storm sewer which will discharge into an improved ditch along Westchester Drive by utilizing the Roadway and Utility Easement per Book 2767 Page 809 as a Public Drainage Easement for the 24" storm sewer. El Paso County will have access to this storm sewer through this easement.

Sub-Basin A3 is a very small area along Gleneagle Drive and flows through a small ditch to Westchester Drive in Sub-Basin OS4. This area produces flows of 1.4 cfs for the five-year storm and 3.9 cfs for the 100-year storm, which is less than existing conditions.

Sub-Basin OS1 drains the southern developed area of Westchester Drive. It produces flows of 4.5 cfs for the five-year storm and 15.1 cfs for the 100-year storm. These flows and flows from Sub-Basin A3 combine at **DP6** to produce flows of 4.8 cfs and 15.6 cfs for the five- and 100-year storms, respectively. These combined flows then travel north along the Westchester Drive ditch to the existing 30" CMP in Westchester Drive.

Sub-Basin A4 drains the undeveloped area northwest of Pond B. It produces flows of 0.3 cfs for the five-year storm and 2.3 cfs for the 100-year storm which flow toward the existing 30-inch CMP in Westchester Drive. These flows are less than existing conditions and travel along Westchester Drive into Sub-Basin OS2.

Sub-Basin OS2 drains the southern developed area of Westchester Drive and will remain unchanged, producing flows of 3.5 cfs for the five-year storm and 10.7 cfs for the 100-year storm. These flows and flows from Sub-Basin A4 combine at **DP7** to produce flows of 3.5 cfs and 12.0 cfs for the five- and 100-year storms, respectively. These combined flows then travel south along the Westchester Drive ditch to the existing 30" CMP in Westchester Drive. The combined flows at DP8 at the culvert will be 7.9 cfs and 26.1 cfs for the five- and 100-year storms, respectively.

TABLE 2 – DEVEL	OPED CONDITIONS	
Sub-Basin	Q₅CFS	Q ₁₀₀ CFS
OS1	4.5	15.1
OS2	3.5	10.7
A1	1.5	5.4
A2A	1.6	9.1
A2B	1.9	6.6
A2C	2.7	7.2
A2D	1.7	9.7
A3	1.4	3.9
A4	0.3	2.3
DP1 (A1+A2A)	2.8	13.5
DP2 (DP1+A2B)	4.4	18.8
DP3 (DP2+A2B)	6.2	23.3
DP4 (DP3+A4B)	7.0	28.9
DP5 (OS1+A3)	4.8	15.6
DP6 (DP4+DP5)	10.9	41.6
DP7 (OS2+A4)	3.5	12.0

Table 2 shows the estimated runoff produced for the project under developed conditions:

The water quality basin is designed in accordance with current NPDES requirements for extended detention basins. The basin will be constructed with a 2.5-foot permanent micro-pool. Design forms for these basins can be found in *Appendix B*. The design summary is below.

TABLE 3 –	WATER QI	UALITY DESIGN SUM	IMARY	
Location	Depth	Size (SF)	Depth (FT)	Size (SQ IN)
Sub-Basin A2D Detention Basin C	2.66	21,400	0,0.34,0.69	0.86,0.86,0.86

DETENTION BASIN

Developed flows from this project will be reduced to historic levels or below by using detention facilities. The *UDFCD Design for Full Spectrum Detention Basins* is used for the basin design.

	DE	TABLE 4 TENTION BASIN DE	TAILS	
Location	Size (AF)	Pipe Outlet	Outlet Structure	Riprap Weir Width
A2D	0.817	24"	Typical Outlet	13'
			Structure OS-2	

The above detention facility has been designed to reduce the total off-site flows to below historic levels. The facility will be maintained per the Private Detention/Stormwater Agreement, Rec No. 217097158.

PUBLIC DRAINAGE FACILITIES

Item	Unit	Quantity	Unit Cost	Total Cost
24" RCP FES	EA	2	\$700	\$ 1,400.00
24" RCP	LF	293.7	\$84	\$ 24,670.80
Denver Type 16 Inlet	EA	2	\$3270	\$6,540.00
Storm MH Type II	EA	3	\$4575	<u>\$13,725.00</u>
			Sub-Total	\$46,335.80
		15% Continger	ncy & Engineering	<u>\$ 6,950.37</u>
		-	TOTAL	\$53,286.17
PRIVATE DRAINAGE FACILITIES				
Item	Unit	Quantity	Unit Cost	Total Cost
Saddle S Headwall	EA	1	\$1,500	\$1,500.00
24" HDPE FES	EA	1	\$500	\$ 500.00
24" HDPE	LF	512	\$75	\$38,400.00
Type C Inlet	EA	1	\$3,270	\$ 3,270.00
Riprap, d50 from 6" to 12"	CY	17	\$98	\$ 1,666.00
Detention Outlet Structure	EA	1	\$8,000	\$ 5,000.00
Emergency Spillway	EA	1	\$1,500	<u>\$ 1,500.00</u>
			Sub-Total	\$51,360.00
		15% Continger	ncy & Engineering	<u>\$ 7,775.40</u>
		-	TOTAL	\$51,135.40

DRAINAGE BASIN FEES

Although the Gleneagle Golf Course Residential Infill Development Filing No. 2 was previously platted under the original subdivision as Tract G, drainage fees must be paid on the impervious acreage of the subdivision.

7.62 Developed Acres x 23% impervious = 1.75 acres

2019 Drainage Fee = \$18,350 per impervious acre x 1.75 = \$32,112.50

2019 Bridge Fee = \$500 per impervious acre x 1.75 = \$875.00

Drainage basin fees for this development will be provided at the existing current fee rate when the final drainage report is submitted at the time of platting.

CONCLUSION

The proposed development and subsequent lot developments follow the "four Step Process" as mandated by the EPA as follows:

Step 1: Employ runoff reduction practices

Runoff has been reduced by disconnecting impervious areas where possible, eliminating "unnecessary" impervious areas and encouraging infiltration into suitable soils.

• Impervious areas have been directed to earth swales to encourage infiltration.

• Gravel will be used in portions of the lots to reduce the impervious of the areas. <u>Step 2: Stabilize drainageways</u>

All drainageways, ditches and channels have been stabilized by the following methods:

• Tributaries have been left in their relatively natural state where possible.

- New drainageways and swales have been stabilized with either riprap or erosion control fabric depending on the erosion potential.
 - No new roadside ditches are proposed for the development.

Step 3: Provide water quality capture volume (WQCV)

The proposed development will disturb approximately 7.6 acres, a WQCV of 0.121 ac-ft will be provided.

Step 4: Consider need for industrial and commercial BMP's.

The development of this project will not affect sensitive waters.

The development of this site will have little impact on downstream properties once the EDB is constructed.

The development of this site will have little impact on downstream properties once the water quality/detention basins are constructed.

REFERENCES

- City of Colorado Springs and El Paso County (1994). *Drainage Criteria Manual Volume* 1 (DCM).
- 2. City of Colorado Springs and El Paso County (1994). *Drainage Criteria Manual Volume II* (DCM).
- 3. Soil Survey of El Paso County Area, Colorado by USDA, NRCS.
- 4. El Paso County (January 2006) Engineering Criteria Manual.
- 5. Urban Drainage and Flood Control District (June 2011). Urban Storm Drainage Criteria Manual, Volume 1-3.
- 6. Gleneagle Golf Course Residential Infill Development Preliminary/Final Drainage Report by Associated Design Professionals, Inc. dated July, 2017.

APPENDIX A

MAPS

National Flood Hazard Layer FIRMette

39*2'22.06"

restinger SOFE S

FT.

6762

F12S R

LITCOD HYZYRD

OF MINIMA

080059

Zd

S001

T12S R67

VINU03

The flood hazard information is derived directly from the The basemap shown complies with FEMA's basemap accuracy standards

authoritative NFHL web services provided by FEMA. This map reflect changes or amendments subsequent to this date and was exported on 2/22/2019 at 9:59:02 AM and does not time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

104°49'30.71"W

C

APPENDIX B

DESIGN CALCULATIONS

GLENEAGL	E DEVELOPI	MENT FILING	3 NO 2			
C FACTOR	CALCULATIC	N SHEET				
EXISTING	CONDITION	S				
RUNOFF C	OEFICIENT					
TYPE A/B	SOILS					
LAND USE			5 YR	100 YR		
TINTI DI 7			0.00			
CHDEFTC /	DETVES		0.00	0.35		
ROOFS			0.7	0.50		
			0.75	0.04		
		SURFACE C	ONDITION	AREAS		DC
AREA	AREA		PAVED	ROOFS	5	100
			STREETS			
DESIG.	(acre)	1	& DRIVES		YR	YR
A1**	1.66	1.31	0.13	0.22	0.23	0.46
A2**	13.26	13.04		0.22	0.09	0.36
A3	1.07	0.75	0.32		0.33	0.53
A4	1.00	1.00			0.08	0.35
OS1*	6.35	4.76	0.84	0.75	0.27	0.49
OS2*	1.30	0.99	0.14	0.17	0.25	0.48
* Avg Hous	e = 2500 sf					
** Avg Hou	se = 3200 sf					
DEVELOP		TONS		1		
RUNOFF	COEFICIEN	Г				
TYPE A/F	SOTLS	• 				
LAND USE			5 YR	100 YR		
	-					····
UNDEV	_	<u> </u>	0.08	0.35	· · · · · · · · · · · · · · · · · · ·	
STREETS	/DRIVES		0.9	0.96		
ROOFS			0.73	8 0.81	-	
Developed	l Conditions					
	TOTAL	SURFACE	CONDITION	AREAS	CALCULATI	EDC
AREA	AREA	UNDEV	PAVED	ROOFS	5	100
-			STREETS	5		
DESIG.	(acre)		& DRIVES	\$	YR	YR
A1**	1.60	3 1.31	0.1	3 0.2	2 0.23	0.46
A2A**	4.27	7 4.08	5 0.0	0 0.2	2 0.11	0.37

A2B1**	2.35	2.05	0.00	0.30	0.16	0.41
A2B2	0.43	0.15	0.28	0.00	0.61	0.75
A2C1	0.55	0.19	0.36	0.00	0.62	0.75
A2C2**	1.27	0.90	0.00	0.37	0.27	0.48
A2D**	4.39	4.17	0.00	0.22	0.11	0.37
A3	1.07	0.75	0.32	0.00	0.33	0.53
A4	1.00	1.00	0.00	0.00	0.08	0.35
OS1*	4.55	3.49	0.60	0.46	0.25	0.48
OS2*	3.10	2.26	0.38	0.46	0.28	0.49
* Avg House	e = 2500 sf	~~~~~			13.26	1.75
** Avg Hous	e = 3200 sf					
	Sub Area		Impervious /	Acreage		
A2A-A2D	7.62		0.64	1.11		
	Imperviousn	ess = (0.64+	·1.11)/7.62 =	0.23		

		THE EN INC NO	66																	
GLENEAGLE		V SHEET								_	_									
file:gleneagle	e li dr										_	+								
02/14/19							nietal Tri			ami Time			_			-	length	vol.	_	
				1			Slope			Slope	V T	TC	15	1100	95	010		> 		ATA CELE
AREA	AREA	C5	C100	AX CO	4 V MIN	L (11)		(mim)	L(II)	(%) (Į	lm) (sd	n) (mi	(1n/hr)	(in/hr)	(cfs)	(cfs)	(fæel)	(sdt)	n line	
DESIG.	(acre)	like)	fed nni V										_							
EXISTING CO	SNDITIONS								700	100	4 00 2	10 10	20 4.02	7.02	1.53	5.36			A	
A1	1-66	0.23	0.46	0.38	0.76	8	8.4	97.1	1750	4.00	2.00 11	25 23	74 2.6	4.63	3.17	22.12			¥	
A2	13.26	60.0	0.36	1.19	4.77	B	2	207	~~~~	221		23	.74 2.6	4,63	4.18	25.66			ā	-
DP1	14.92			1.58	3,5	41	2 00	6.27	200	4.00	2,00	.17 10	44 3.96	1 6.95	1.40	3.94	99	1.7	5.88 A:	
EA.	1.07	0.33	0.53	SED.	10.0		1955	10.27	9	4.00	2.00	1001	27 4.0	7.00	6.87	21.77				5
051	6.35	0.27	0.49	11.1	3 58	3			<u> </u>			16	32 3.24	5.65	6.69	20.79		1.05		2
DP2	7.42		0.75	800	0.35	20	3.50	8.92	00E	3.50	1.85 2	11 11	52 3.80	6,63	0.30	2.32		CQ'L	4 10 Revi	-
A4	6	0.08		2000	0.52		3.50	10.51	0	4.00	2.00	100,000	51 3.9	6.93	1.23	4.32			5 2	25
052	1.30	CZ 0	040	140	260							12	.52 3.6	6.41	1.49	629				70
DP3	Z.30			2.47	4.65							-16	32 32	3.65	nn;8	10.02		Ť	iā	22
DP4	376			4.05	10.19			-				5	74 2.6	4 03	4J-01	37.2				
DP5	24.54																			
	CONDITIONS												<u>,0 1</u>	CU ~	153	536			×	
DEVELOPEU	1 1 66	0.23	0.46	0.38	0.76	33	4.00	7.28	8	4.00	4.00	11 ZA2	-C C 400	5 7A	55.1	9.13			<u>A</u>	A I
204	4.97	0.11	0.37	0.47	1.58	\$	5.00	7.70	850	8	2,00	2 2	101	578	2.82	13.51			ā	1
001	5.93			0.85	2.34				050	50	4 74 8	2-10 1-1	43 3.0	5.31	1.14	5.12			R	281
A2B1	2.35	91.0	0.41	0.38	96.0	ŝ	2:00	55.0T	20	3,0	2		43 3.0	5.31	3.73	17.57	49	10.00	0.08 DI	22
DP2	8.26			1.23	3.31		00 6	200	JRD .	1.00	1.00	3.33 10	33 4.00	6.98	1.05	225			<u>ج</u>	282
A2B2	0.43	0.61	0.75	0.26	75.0	38	200	2010	1JRL	100	1.00	10 10	24 4.0	1 7.00	1.37	2.89			<u>x</u>	CI
AZCI	0.55	0.52	0.75	2.3	0.41	3	10.7	1210	3			18	51 3.0	5.30	5.56	21.43	100	10.00	0.17 DI	23
DP3	9.26			1.02	100	UF	0.5	6.76	250	1.00	1.00	11 10	.93 3.94	6.81	1.34	4.15			2 2	22
A2C2	1.27	0.27	0.48	t, t, c	4 45	3						18	.68 3.0	5.28	6.57	24.54	520	3.00		*
DP4	10.53		25.0	0.48	1.62	50	3.50	8.66	350	1.00	1.00	5.83 14	49 3.4	5.99	1.66	57.9	007	1 85		25
AZD	4.39			231	5.67							.	90 2.9	2.10	a /a	12.02	Eram Overfi	Mair 1	Tom HD-L	Del Calcs
0P5	13.65			0.96	3.59	Adjusted C	Factor for Di	etention Bas	in C			5	36 ⁷	01.0	7.60	20.01				
	60.51																	Ì		
Overllow Plp	s gniming s	logged outlet	structure	96.0	3.59				<u> </u>											
					2			6 37	200	4.00	2.00	117 10	44 3.9	3 6.95	1.40	3.94	600	1.70	5.88 A.	
A3	1.07	0.33	0.53	SE.U	10.0		350	10.51		4,00	2.00	100 10	151 3.9	6.93	4.51	15.13				51
osi	4.55	0.25	0.48	bl't	275							÷	32 3.2	5.65	4.82	15.55				
DP6	5.62		0.25	200	0.35	3	3.50	8.92	300	3.50	1.85	11 11	.62 3.8(6.63	0.30	2.32	in the second se	2		+
A4	1.00	0.05		0.0	1.52		3.50	10.14	0	4.00	2.00 (0.00 16	14 4.0	3 7.03	349	10.65				70
052	3.10	070	CH-2	560	1.87							₽	52 3.6	6.41	348	55°L1				
0P7	4.10			244	4.62							₩ 	32	8	7.P. 1	11-07				
DP8	216											_					-			
FORFRAYC	ALCULATIC	JNS	FOREBAY'N	VOTCH CAL	CULATION	S														
POL OF WON			2% OF 1001	RFLOW																
6.02 X 0.121	i = 0.0024 A	<u>= 105 CF</u>	0.02 X 28.9	= 0.58 CFS					+		_									
			$W = O/(D^{-1})$	5XC)																
			W=0.58/(1X	3.0)=0.19 F						-	_	_								

GLEREAGLE DEVELOT NILLY										Riprap		
DITCH CAPACITY CALCULATION SHEET					12	173 4	43 00 64	1 600	Tronda #	812e	A st	TW Et
Swale Location	Q5 CE8	Q100 CES	\$ \$	Brc	8		חזחת יר	077 -				
												ļ
	<u>.</u>	C 0		0.0	3:1	1' 2	1.0	а. 2 м	0.79		3.2	1.0
	7 . 1				1	¢	- - -	5	0.49	ECM	6.7	10.6
X	4.4	18.8	υ. υ	0.2	T : N	7.4	4				6	
	а с	5 61	1.5	0.0	3:1	1.5	<u>, 1</u>	ກຸ	0.81		'n	
	1			C L		5	0.6	6 - u	1.47	0.40	¢.4	9.7
Overflow Spillway M	6.8	28.9	0.0	0.0	1.0	2	,					
			-4 1.2.4.1 1.1	IC.1 Dimhr	7.= 40:3		Riprap Si	2 e				
			-7 1327 .7									
			0* LEFT Z	a 5:1, Righ	: Z= 2:1		DSO= { { { { VS	0.I./)/4	(T-G.Z) G.	7 //qq-n		
			2 472.1 *A	(= 6:1, Rìah)	Z= 3:3							
	1			10 Numbers	Froston C	antrol M	ats used	in lieu	of riprap			
Note: In ditches with low velc	CILIES &	TOMS DOC	MOTA 7017671									

a and the sum of the s

Gleneagle Filing 2	
Project	ć

By AJL Date 4/24/2019 Description Used UDFCD UD-SEWER 2009 computer program to calculate HGL for Q100 and Q5.

100-Year

			_	_	_		_	_	_	
Slope	0.019	0.015	0.026	0.026	0.027	0.025	0.027	0.027	0.073	
US HGL	6,783.38	6,785.96	6,787.70	6,788.76	6,790.22	6,793.05	6,794.00	6,797.66	6,799.51	
DS HGL	6,782.42	6,784.05	6,786.07	6,787.77	6,788.93	6,791.03	6,793.68	6,794.57	6,798.57	
Lateral Loss	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.44	
Bend Loss	0.03	0.51	0.08	0.03	0.13	0.54	0.4	0.44	0.03	
Horizontal Bend DS	56	53	15	4	22	55	46	49	0	
US INV	6,781.21	6,783.30	6,785.86	6,786.74	6,788.38	6,791.21	6,791.74	6,795.82	6797.67	
DS INV	6,781.00	6,781.21	6,783,30	6,785.86	6,786.84	6,788.38	6,791.21	6,791.84	6795.92	
LENGTH (FT)	11.0	138.0	96.8	33.6	56.7	111.5	19.5	147.0	23.9	
Manning's n	0.012	0.012	0.012	0.012	0.013	0.013	0.013	0.012	0.012	
Material	HDPE	HDPE	HDPE	HDPE	RCP	RCP	RCP	HDPE	HDPE	
DIA (IN)	24	24	24	24	24	24	24	24	24	
US STA	32.43	170.46	267.23	300.79	357.46	468.96	488.46	635.46	659.37	
DS STA	21.41	32.43	170.46	267.23	300.79	357.46	468.96	488.46	635,46	
0100	28.9	28.9	28.9	28.9	28.9	28.9	28.9	28.9	28.9	
Element	1-1	2-1	3-1	4-1	5-1	61	1-2	8-1	9-1	
										-

DIS STA US	S	STA	DIA (IN)	Material	Manning's n	LENGTH (FT)	DS INV	NNI SN	Horizontal Bend DS	Bend Loss	Lateral Loss	DS HGL	US HGL	Slope
21.41 3	m	2.43	24	HOPE	0.012	11.0	6,781.00	6,781.21	56	0.03	1.00	6,781.73	6,782.13	0.019
32.43 1	"	70.46	24	HDPE	0,012	138.0	6,781.21	6,783.30	53	0.51	0.00	6,782.17	6,784.22	0.015
70.46	1°	67.23	24	HDPE	0.012	96.8	6,783.30	6,785.86	15	0.08	0.00	6,784.23	6,786.78	0.026
67.23 3	I۳	00.79	24	HDPE	0.012	33.6	6,785.86	6,786.74	4	0.03	0.00	6,786.79	6,787.66	0.026
00.79	1	357.46	24	RCP	0.013	56.7	6,786.84	6,788.38	22	0.13	0.00	6,787.67	6,789.30	0.027
57.46		468.96	24	RCP	0.013	111.5	6,788.38	6,791.21	55	0.54	0.00	6,789.34	6,792.13	0.025
68.96		488.46	24	RCP	0.013	19.5	6,791.21	6,791.74	46	0.4	0.00	6,792.16	6,792.81	0.027
88,46		635.46	24	HDPE	0.012	147.0	6,791.84	6,795.82	49	0.44	0.00	6,792.85	6,796.74	0.027
35.46		659.37	24	HDPE	0.012	23.9	6795,92	6797.67	0	0.03	0.44	6,796.79	6,799.11	0.073

Gleneagle Filing No. 2 Spillway

100-Year

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100 Rainfall Calculation Method: Formula

One Hour Depth (in): Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 1.25

Manhole Input Summary:

		Giv	en Flow		S	Sub Basin	Inform	ation		
Elemen t Name	Groun d Elevati on (ft)	Total Kno wn Flow (cfs)	Local Contribut ion (cfs)	Draina ge Area (Ac.)	Runoff Coeffici ent	5yr Coeffici ent	Overla nd Length (ft)	Overla nd Slope (%)	Gutt er Leng th (ft)	Gutte r Veloci ty (fps)

OUTFA LL 1	6785.0 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 1 SWR 1 - 1	6785.0 0	28.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 2 SWR 2 - 1	6787.0 0	28.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 3 SWR 3 - 1	6790.0 0	28.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 4 SWR 4 - 1	6791.6 4	28.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 5 SWR 5 - 1	6792.7 5	28.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 6 SWR 6 - 1	6794.0 0	28.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 7 SWR 7 - 1	6795.5 4	28.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 8 SWR 8 - 1	6799.0 0	28.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 9 SWR 9 - 1	6804.0 0	28.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

		Contri		Total Design Flow						
Element Name	Overlan d Time (min)	Gutte r Time (min)	Basi n Tc (min)	Intensit y (in/hr)	Local Contri b (cfs)	Coeff Area	Intensit y (in/hr)	Manhol e Tc (min)	Pea k Flo w (cfs)	Comme nt
OUTFAL L 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

MH 1 SWR 1 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	28.9 0
MH 2 SWR 2 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	28.9 0
MH 3 SWR 3 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	28.9 0
MH 4 SWR 4 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	28.9 0
MH 5 SWR 5 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	28.9 0
MH 6 SWR 6 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	28.9
MH 7 SWR 7 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	28.9
MH 8 SWR 8 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	28.9
MH 9 SWR 9 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	28.9 0

Sewer Input Summary:

		Ele	vation	L	Loss C	oeffici	ents	Given Dimensions			
Elemen t Name	Sewer Lengt h (ft)	Downstrea m Invert (ft)	Downstrea m Invert (ft) Slop e (%) (ft) Upst m Invert (%)		Manning s n	Ben d Loss	Latera l Loss	Cross Section	Rise (ft or in)	Spa n (ft or in)	
MH 1 SWR 1 - 1	11.00	6781.00	1.9	6781.21	0.012	0.56	1.00	CIRCULA R	24.0 0 in	24.0 0 in	

MH 2 SWR 2 - 1	138.00	6781.21	1.5	6783.30	0.012	0.51	0.00	CIRCULA R	24.0 0 in	24.0 0 in
MH 3 SWR 3 - 1	96.80	6783.30	2.6	6785.86	0.012	0.08	0.00	CIRCULA R	24.0 0 in	24.0 0 in
MH 4 SWR 4 - 1	33.60	6785.87	2.6	6786.74	0.012	0.05	0.00	CIRCULA R	24.0 0 in	24.0 0 in
MH 5 SWR 5 - 1	56.70	6786.84	2.7	6788.38	0.013	0.13	0.00	CIRCULA R	24.0 0 in	24.0 0 in
MH 6 SWR 6 - 1	111.50	6788.38	2.5	6791.21	0.013	0.54	0.00	CIRCULA R	24.0 0 in	24.0 0 in
MH 7 SWR 7 - 1	19.50	6791.21	2.7	6791.74	0.013	0.40	0.00	CIRCULA R	24.0 0 in	24.0 0 in
MH 8 SWR 8 - 1	147.00	6791.84	2.7	6795.82	0.012	0.44	0.00	CIRCULA R	24.0 0 in	24.0 0 in
MH 9 SWR 9 - 1	23.90	6795.92	7.3	6797.67	0.012	0.05	0.44	CIRCULA R	24.0 0 in	24.0 0 in

Sewer Flow Summary:

	Full Ca _l	l Flow pacity	Cri F	tical low		Nor	mal Flov	W			
Eleme nt Name	Flo w (cfs)	Veloci ty (fps)	Dept h (in)	Veloci ty (fps)	Dept h (in)	Veloci ty (fps)	Froud e Numb er	Flow Conditio n	Flo w (cfs)	Surcharg ed Length (ft)	Comme nt
MH 1 SWR 1 - 1	33.8 7	10.78	22.1 3	9.54	17.0 5	12.11	1.86	Supercriti cal	28.9 0	0.00	
MH 2 SWR 2 - 1	30.2 4	9.63	22.1 3	9.54	18.7 8	10.96	1.53	Pressurize d	28.9 0	138.00	

MH 3 SWR 3 - 1	39.9 6	12.72	22.1 3	9.54	15.1 2	13.86	2.35	Supercriti cal Jump	28.9 0	60.95	
MH 4 SWR 4 - 1	39.6 2	12.61	22.1 3	9.54	15.2 1	13.76	2.32	Supercriti cal	28.9 0	0.00	
MH 5 SWR 5 - 1	37.3 8	11.90	22.1 3	9.54	15.8 4	13.14	2.15	Supercriti cal Jump	28.9 0	8.48	
MH 6 SWR 6 - 1	36.1 4	11.50	22.1 3	9.54	16.2 3	12.78	2.05	Supercriti cal Jump	28.9 0	71.48	
MH 7 SWR 7 - 1	37.2 7	11.86	22.1 3	9.54	15.8 8	13.10	2.14	Pressurize d	28.9 0	19.50	
MH 8 SWR 8 - 1	40.4 3	12.87	22.1 3	9.54	15.0 0	13.99	2.39	Supercriti cal Jump	28.9 0	55.47	
MH 9 SWR 9 - 1	66.4 9	21.17	22.1 3	9.54	11.0 6	20.42	4.27	Supercriti cal Jump	28.9 0	10.87	Velocity is Too High

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Existing		Calcu	lated	Used			
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
MH 1 SWR 1 - 1	28.90	CIRCULAR	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	3.14	
MH 2 SWR 2 - 1	28.90	CIRCULAR	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	3.14	
MH 3 SWR 3 - 1	28.90	CIRCULAR	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	3.14	

MH 4 SWR 4 - 1	28.90	CIRCULAR	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	3.14	
MH 5 SWR 5 - 1	28.90	CIRCULAR	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	3.14	
MH 6 SWR 6 - 1	28.90	CIRCULAR	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	3.14	
MH 7 SWR 7 - 1	28.90	CIRCULAR	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	3.14	
MH 8 SWR 8 - 1	28.90	CIRCULAR	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	24.00 in	3.14	
MH 9 SWR 9 - 1	28.90	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 1.25

	Invert]	Dow m M Lo	nstrea anhole sses	HG	L	EGL			
Eleme nt Name	Downstre am (ft)	Upstrea m (ft)	Ben d Los s (ft)	Later al Loss (ft)	Downstrea m (ft)	Upstrea m (ft)	Downstrea m (ft)	Frictio n Loss (ft)	Upstrea m (ft)
MH 1 SWR 1 - 1	6781.00	6781.21	0.00	0.00	6782.42	6783.38	6784.70	0.00	6784.70
MH 2 SWR 2 - 1	6781.21	6783.30	0.67	0.00	6784.05	6785.96	6785.37	1.91	6787.28
MH 3 SWR 3 - 1	6783.30	6785.86	0.11	0.00	6786.07	6787.70	6787.38	1.74	6789.12

									A REAL PROPERTY AND A REAL
MH 4 SWR 4 - 1	6785.87	6786.74	0.07	0.00	6787.77	6788.76	6790.08	0.00	6790.08
MH 5 SWR 5 - 1	6786.84	6788.38	0.17	0.00	6788.93	6790.22	6790.25	1.39	6791.64
MH 6 SWR 6 - 1	6788.38	6791.21	0.71	0.00	6791.03	6793.05	6792.35	2.12	6794.47
MH 7 SWR 7 - 1	6791.21	6791.74	0.53	0.00	6793.68	6794.00	6794.99	0.32	6795.31
MH 8 SWR 8 - 1	6791.84	6795.82	0.58	0.00	6794.57	6797.66	6795.89	3.19	6799.08
MH 9 SWR 9 - 1	6795.92	6797.67	0.07	0.74	6798.57	6799.51	6799.88	1.05	6800.93

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * $V_fi ^ 2/(2*g)$
- Lateral loss = $V_{fo} ^{2/(2*g)}$ Junction Loss K * $V_{fi} ^{2/(2*g)}$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:

The trench side slope is 1.0 ft/ft The minimum trench width is 2.00 ft

					Downstream			U	pstrear	n		
Eleme nt Name	Lengt h (ft)	Wa 11 (in)	Beddi ng (in)	Botto m Widt h (ft)	Top Widt h (ft)	Trenc h Depth (ft)	Cove r (ft)	Top Widt h (ft)	Trenc h Depth (ft)	Cove r (ft)	Volu me (cu. yd)	Comme nt
MH 1 SWR 1 - 1	11.00	3.00	4.00	5.50	7.00	4.58	1.75	6.58	4.37	1.54	10.21	Sewer Too Shallow

MH 2 SWR 2 - 1	138.0 0	3.00	4.00	5.50	6.58	4.37	1.54	6.40	4.28	1.45	122.93	Sewer Too Shallow
MH 3 SWR 3 - 1	96.80	3.00	4.00	5.50	6.40	4.28	1.45	7.28	4.72	1.89	90.58	Sewer Too Shallow
MH 4 SWR 4 - 1	33.60	3.00	4.00	5.50	7.27	4.72	1.88	8.80	5.48	2.65	37.09	Sewer Too Shallow
MH 5 SWR 5 - 1	56.70	3.00	4.00	5.50	8.60	5.38	2.55	7.74	4.95	2.12	63.53	
MH 6 SWR 6 - 1	111.5 0	3.00	4.00	5.50	7.74	4.95	2.12	5.50	3.37	0.54	91.02	Sewer Too Shallow
MH 7 SWR 7 - 1	19.50	3.00	4.00	5.50	0.00	3.37	0.54	6.60	4.38	1.55	14.44	Sewer Too Shallow
MH 8 SWR 8 - 1	147.0 0	3.00	4.00	5.50	6.40	4.28	1.45	5.50	3.76	0.93	107.10	Sewer Too Shallow
MH 9 SWR 9 - 1	23.90	3.00	4.00	5.50	0.00	3.66	0.83	11.66	6.91	4.08	27.92	Sewer Too Shallow

Total earth volume for sewer trenches = 565 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.

5-year

System Input Summary

Rainfall Parameters

Rainfall Return Period: 100 Rainfall Calculation Method: Formula

One Hour Depth (in): Rainfall Constant "A": 28.5 Rainfall Constant "B": 10 Rainfall Constant "C": 0.786

Rational Method Constraints

Minimum Urban Runoff Coeff.: 0.20 Maximum Rural Overland Len. (ft): 500 Maximum Urban Overland Len. (ft): 300 Used UDFCD Tc. Maximum: Yes

Sizer Constraints

Minimum Sewer Size (in): 18.00 Maximum Depth to Rise Ratio: 0.90 Maximum Flow Velocity (fps): 18.0 Minimum Flow Velocity (fps): 2.0

Backwater Calculations:

Tailwater Elevation (ft): 0.99

Manhole Input Summary:

		Giv	en Flow		5	Sub Basin	Inform	ation		
Elemen t Name	Groun d Elevati on (ft)	Total Kno wn Flow (cfs)	Local Contribut ion (cfs)	Draina ge Area (Ac.)	Runoff Coeffici ent	5yr Coeffici ent	Overla nd Length (ft)	Overla nd Slope (%)	Gutt er Leng th (ft)	Gutte r Veloci ty (fps)
OUTFA LL 1	6785.0 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MH 1 SWR 1 - 1	6785.0 0	6.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 2 SWR 2 - 1	6787.0 0	6.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 3 SWR 3 - 1	6790.0 0	6.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 4 SWR 4 - 1	6791.6 4	6.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 5 SWR 5 - 1	6792.7 5	6.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 6 SWR 6 - 1	6794.0 0	6.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 7 SWR 7 - 1	6795.5 4	6.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 8 SWR 8 - 1	6799.0 0	6.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MH 9 SWR 9 - 1	6804.0 0	6.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Manhole Output Summary:

		Local	Contri	bution]]	Fotal Des	ign Flow		
Element Name	Overlan d Time (min)	Gutte r Time (min)	Basi n Tc (min)	Intensit y (in/hr)	Local Contri b (cfs)	Coeff Area	Intensit y (in/hr)	Manhol e Tc (min)	Pea k Flo w (cfs)	Commen t
OUTFAL L 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

MH 1 SWR 1 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.80
MH 2 SWR 2 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.80
MH 3 SWR 3 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.80
MH 4 SWR 4 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.80
MH 5 SWR 5 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.80
MH 6 SWR 6 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.80
MH 7 SWR 7 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.80
MH 8 SWR 8 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.80
MH 9 SWR 9 - 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.80

Sewer Input Summary:

		Ele	vation		Loss C	oeffici	ients	Given Di	nensio	ons
Elemen t Name	Sewer Lengt h (ft)	Downstrea m Invert (ft)	Slop e (%)	Upstrea m Invert (ft)	Manning s n	Ben d Loss	Latera l Loss	Cross Section	Rise (ft or in)	Spa n (ft or in)
MH 1 SWR 1 - 1	11.00	6781.00	1.9	6781.21	0.012	0.56	1.00	CIRCULA R	24.0 0 in	24.0 0 in

MH 2 SWR 2 - 1	138.00	6781.21	1.5	6783.30	0.012	0.51	0.00	CIRCULA R	24.0 0 in	24.0 0 in
MH 3 SWR 3 - 1	96.80	6783.30	2.6	6785.86	0.012	0.08	0.00	CIRCULA R	24.0 0 in	24.0 0 in
MH 4 SWR 4 - 1	33.60	6785.86	2.6	6786.74	0.012	0.05	0.00	CIRCULA R	24.0 0 in	24.0 0 in
MH 5 SWR 5 - 1	56.70	6786.84	2.7	6788.38	0.013	0.13	0.00	CIRCULA R	24.0 0 in	24.0 0 in
MH 6 SWR 6 - 1	111.50	6788.38	2.5	6791.21	0.013	0.54	0.00	CIRCULA R	24.0 0 in	24.0 0 in
MH 7 SWR 7 - 1	19.50	6791.21	2.7	6791.74	0.013	0.40	0.00	CIRCULA R	24.0 0 in	24.0 0 in
MH 8 SWR 8 - 1	147.00	6791.84	2.7	6795.82	0.012	0.44	0.00	CIRCULA R	24.0 0 in	24.0 0 in
MH 9 SWR 9 - 1	23.90	6795.92	7.3	6797.67	0.012	0.05	0.44	CIRCULA R	24.0 0 in	24.0 0 in

Sewer Flow Summary:

	Ful Caj	l Flow pacity	Cri F	itical low		Nor	mal Flov	w			
Eleme nt Name	Flo w (cfs)	Veloci ty (fps)	Dept h (in)	Veloci ty (fps)	Dept h (in)	Veloci ty (fps)	Froud e Numb er	Flow Conditio n	Flo w (cfs)	Surcharg ed Length (ft)	Comme nt
MH 1 SWR 1 - 1	33.8 7	10.78	11.0 9	4.79	7.29	8.43	2.24	Supercriti cal	6.8 0	0.00	
MH 2 SWR 2 - 1	30.2 4	9.63	11.0 9	4.79	7.74	7.77	2.00	Supercriti cal	6.8 0	0.00	

MH 3 SWR 3 - 1	39.9 6	12.72	11.0 9	4.79	6.70	9.49	2.64	Supercriti cal	6.8 0	0.00	
MH 4 SWR 4 - 1	39.7 8	12.66	11.0 9	4.79	6.71	9.45	2.63	Supercriti cal	6.8 0	0.00	
MH 5 SWR 5 - 1	37.3 8	11.90	11.0 9	4.79	6.93	9.04	2.47	Supercriti cal	6.8 0	0.00	
MH 6 SWR 6 - 1	36.1 4	11.50	11.0 9	4.79	7.05	8.83	2.39	Supercriti cal	6.8 0	0.00	
MH 7 SWR 7 - 1	37.2 7	11.86	11.0 9	4.79	6.94	9.02	2.47	Supercriti cal	6.8 0	0.00	
MH 8 SWR 8 - 1	40.4 3	12.87	11.0 9	4.79	6.66	9.57	2.68	Supercriti cal	6.8 0	0.00	
MH 9 SWR 9 - 1	66.4 9	21.17	11.0 9	4.79	5.18	13.62	4.36	Supercriti cal	6.8 0	0.00	

- A Froude number of 0 indicates that pressured flow occurs (adverse slope or undersized pipe).
- If the sewer is not pressurized, full flow represents the maximum gravity flow in the sewer.
- If the sewer is pressurized, full flow represents the pressurized flow conditions.

Sewer Sizing Summary:

			Exis	ting	Calcu	lated		Used		
Element Name	Peak Flow (cfs)	Cross Section	Rise	Span	Rise	Span	Rise	Span	Area (ft^2)	Comment
MH 1 SWR 1 - 1	6.80	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
MH 2 SWR 2 - 1	6.80	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
MH 3 SWR 3 - 1	6.80	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	

MH 4 SWR 4 - 1	6.80	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
MH 5 SWR 5 - 1	6.80	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
MH 6 SWR 6 - 1	6.80	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
MH 7 SWR 7 - 1	6.80	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
MH 8 SWR 8 - 1	6.80	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	
MH 9 SWR 9 - 1	6.80	CIRCULAR	24.00 in	24.00 in	18.00 in	18.00 in	24.00 in	24.00 in	3.14	

- Calculated diameter was determined by sewer hydraulic capacity rounded up to the nearest commercially available size.
- Sewer sizes should not decrease downstream.
- All hydraulics where calculated using the 'Used' parameters.

Grade Line Summary:

Tailwater Elevation (ft): 0.99

	Invert Elev.		Downstrea m Manhole Losses		HG	L	EGL			
Eleme nt Name	Downstre am (ft)	Upstrea m (ft)	Ben d Los s (ft)	Later al Loss (ft)	Downstrea m (ft)	Upstrea m (ft)	Downstrea m (ft)	Frictio n Loss (ft)	Upstrea m (ft)	
MH 1 SWR 1 - 1	6781.00	6781.21	0.00	0.00	6781.73	6782.13	6782.41	0.08	6782.49	
MH 2 SWR 2 - 1	6781.21	6783.30	0.04	0.00	6782.17	6784.22	6782.79	1.79	6784.58	
MH 3 SWR 3 - 1	6783.30	6785.86	0.01	0.00	6784.23	6786.78	6785.26	1.89	6787.14	

MH 4 SWR 4 - 1	6785.86	6786.74	0.00	0.00	6786.79	6787.66	6787.81	0.21	6788.02
MH 5 SWR 5 - 1	6786.84	6788.38	0.01	0.00	6787.67	6789.30	6788.69	0.97	6789.66
MH 6 SWR 6 - 1	6788.38	6791.21	0.04	0.00	6789.34	6792.13	6790.18	2.31	6792.49
MH 7 SWR 7 - 1	6791.21	6791.74	0.03	0.00	6792.16	6792.81	6793.06	0.00	6793.06
MH 8 SWR 8 - 1	6791.84	6795.82	0.03	0.00	6792.85	6796.74	6793.82	3.28	6797.10
MH 9 SWR 9 - 1	6795.92	6797.67	0.00	0.04	6796.79	6799.11	6799.23	0.00	6799.23

- Bend and Lateral losses only apply when there is an outgoing sewer. The system outfall, sewer #0, is not considered a sewer.
- Bend loss = Bend K * $V_{fi} ^ 2/(2*g)$
- Lateral loss = $V_{fo} \wedge 2/(2*g)$ Junction Loss K * $V_{fi} \wedge 2/(2*g)$.
- Friction loss is always Upstream EGL Downstream EGL.

Excavation Estimate:

The trench side slope is 1.0 ft/ft The minimum trench width is 2.00 ft

					Downstream			Upstream				
Eleme nt Name	Lengt h (ft)	Wa ll (in)	Beddi ng (in)	Botto m Widt h (ft)	Top Widt h (ft)	Trenc h Depth (ft)	Cove r (ft)	Top Widt h (ft)	Trenc h Depth (ft)	Cove r (ft)	Volu me (cu. yd)	Comme nt
MH 1 SWR 1 - 1	11.00	3.00	4.00	5.50	7.00	4.58	1.75	6.58	4.37	1.54	10.21	Sewer Too Shallow

MH 2 SWR 2 - 1	138.0 0	3.00	4.00	5.50	6.58	4.37	1.54	6.40	4.28	1.45	122.93	Sewer Too Shallow
MH 3 SWR 3 - 1	96.80	3.00	4.00	5.50	6.40	4.28	1.45	7.28	4.72	1.89	90.58	Sewer Too Shallow
MH 4 SWR 4 - 1	33.60	3.00	4.00	5.50	7.28	4.72	1.89	8.80	5.48	2.65	37.12	Sewer Too Shallow
MH 5 SWR 5 - 1	56.70	3.00	4.00	5.50	8.60	5.38	2.55	7.74	4.95	2.12	63.53	
MH 6 SWR 6 - 1	111.5 0	3.00	4.00	5.50	7.74	4.95	2.12	5.50	3.37	0.54	91.02	Sewer Too Shallow
MH 7 SWR 7 - 1	19.50	3.00	4.00	5.50	0.00	3.37	0.54	6.60	4.38	1.55	14.44	Sewer Too Shallow
MH 8 SWR 8 - 1	147.0 0	3.00	4.00	5.50	6.40	4.28	1.45	5.50	3.76	0.93	107.10	Sewer Too Shallow
MH 9 SWR 9 - 1	23.90	3.00	4.00	5.50	0.00	3.66	0.83	11.66	6.91	4.08	27.92	Sewer Too Shallow

Total earth volume for sewer trenches = 565 cubic yards.

- The trench was estimated to have a bottom width equal to the outer pipe diameter plus 36 inches.
- If the calculated width of the trench bottom is less than the minimum acceptable width, the minimum acceptable width was used.
- The sewer wall thickness is equal to: (equivalent diameter in inches/12)+1 inches
- The sewer bedding thickness is equal to:
 - Four inches for pipes less than 33 inches.
 - Six inches for pipes less than 60 inches.
 - Eight inches for all larger sizes.

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Project 0	le ne ag le Gol	# Course R	eaidential Infill Project Fil 2										
Basin ID: D	et Basin C			in the second second									
		-											
would ever I woot													
Prove 1 av		ONFICE	e e	Depth Increment =	1238								
Example Zone Co	onfiguration	n (Retentio	on Pond)	Stage - Storage	Stage	Override	Length	Width	Aroa	Override	Area	Volume	Volume
Required Volume Calculation				Micropool	(9)	Stage (#) 0.00	- (9)	(1)	(1-2)	30	(ecre) 0.001	(1:3)	(ec-ft)
Selected BMP Type =	EDB	1		STOCKS HOUSE	-	0.50	-	-	-	4,785	0.109	1,151	0.020
Waters hod Area =	14.02	00706			-	1.00	-	-	-	9,525	0.219	4,678	0.107
Watershed Length =	1,450	*		Carrier Labor	-	1.50	-	-	-	19,050	0.437	11,725	0.299
Watershed Imperviousness =	15.90%	percent			-	2.50	-	-	-	20,200	0.405	32,170	0.404
Percentage Hydrologic Soll Group A =	0.0%	percent		1412	-	3.00	-	-	-	22,005	0.529	43,201	0.992
Percentage Hydrologic Soll Group II =	100.0%	percent		Constant States	-	3.50	-	-	-	23,870	0.548	64,835	1.250
Percentage Hydrologic Soil Groups C/D =	40.0	percent			-	4.00	-	-	-	25,075	0.578	67,971	1.540
Location for 1-hr Reinfall Depths = U	JOFCD Defau	A			-	5.00	-	-	-	27,485	0.631	83,351	2.143
Water Quality Capture Volume (WQCV) =	0.121	acre-feet	Optional User Override		-	6.50	-	-	-	28.000	0.659	107,305	2.405
Excess Urban Runoff Volume (EURV) =	0.231	acre-leet	1-hr Precipitation		-	ALC: NOTE	-	-	-				
5-yr Runoff Volume (P1 = 1.5 in.) =	0.431	ncre-feet	1.50 inches	THE OWNER OF THE OWNER	-	Ser and	-	-	-	Description of			
10-yr Runoll Volume (P1 = 1,75 in.) =	0.704	acro-feet	1.75 inches	a to see the re-	-	1109109	-	-	-	19.204			
25-yr Runoff Volume (P1 = 2 in.) =	1.186	scro-feet	2.00 inches		-	516.1	-	-	-	Contraction of the			
50-yr Runoff Volume (P1 = 2.52 in) = 100-yr Runoff Volume (P1 = 2.52 in) =	1.037	acro-feet	2.25 inches		-		-	-	-	-			
500-yr Runoll Volume (P1 = 3.01 in.) =	2.637	acro-feet	3.01 Inches	Sector States	-	12 2450.00	-	-	-	No.	-		
Approximate 2-yr Detention Volume =	0.161	acre-feet			-	Sector 1	-	-	-	1			
Approximate 5-yr Detention Volume =	0.354	acro-feet			-			-	-	CY MAR			
Approximate 25-yr Detention Volume =	0.452	acro-feet		Sector Sector Sector	-	1000-46.5	-	-	-	2.1.0.00			
Approximate 50-yr Detention Volume =	0.575	acre-feet		Carlo Star Cale and	-	Sector Labor	-	-	-				
Approximate 100-yr Detention Volume =	0.817	acre-feet			-	and the second	-	-	-	-			
Stage-Storage Calculation				And and a second	-	ALCO YOU		-	-	10000			
Zone 1 Volume (WQCV) =	0.121	acre-leet		Angel Constants	-	824488	-	-	-	12 Ser X			
Zone 2 Volume (EURV - Zone 1) =	0.110	acre-leet		Press and	-		-	-	-	10235430			
Zone 3 Volume (100-year - Zones 1 & 2) = Total Detention Basin Volume =	0.586	acre-feet		Contraction of the last	-		-	-	-	Bertrugs			
initial Surcharge Volume (ISV) =	Veer	8'3		Water States in the	-	31,5022	-	-	-	an an and		1	
Initial Surcharge Depth (ISD) =	UNOF	R			-	Alt Surgers	-	-	-	autorie.			
Total Available Detertion Depth (Herai) =	User	R		10 miles 1 and	-	SCHARDS	-	-	-	Contract of			
Slope of Trickle Channel (Sr) =	UBOR	R			-		-	-	-		-	-	
Slopes of Main Basin Sides (Smin) =	labor	HV		description (Service)	-	1000	-	-	-	ter an			
Basin Length-to-Width Ratio (R _{ive}) =	usor				-	A CONTRACT	-	-	-	(27)4346		-	
Initial Surr horms Arms (A) =	IBOY	7		-	-	A CONTRACTOR	-	-	-				
Surcharge Volume Length (Lev) =	user	h			-	11.15.9	-	-	-	1			
Surcharge Volume Width (W _{av}) =	user	n		1-2-2-2-1-5-1-5-1-5-1-5-	-	And the second	-	-	-	No. of the	1		
Depth of Basin Floor (H _{rubal}) =	user	8			-		-	-	-		-		
Width of Basin Floor (Wr.cos) =	user			in the best	-	and the second second	-	-	-	1993			
Area of Bas in Floor (Arupes) =	US-OF	#2		Real Contraction	- 1	Clause?	- 18	-	-	(The say	0		1
Volume of Bes in Floor (V _{Pubbe}) =	LISER	83		AND REPORT	-	1000	- 8	-	-	STATISTICS.			_
Depth of Main Basin (H _{MAR}) = Length of Main Basin (Luum) =	User	R			-		-	-	-				
Width of Main Bes in (WMAR) =	user	R		and the second second	-	and a large	-	-	-	Same of			
Area of Main Bosin (Anna) =	User	ft*2		A second second second	-	Contraction of the	-	-	-			-	
Calculated Total Bas in Volume (Versi) =	User	acre-loot			-	The share	-	-	-	Soleria a	8		-
		100			-	Supply Services	- 10		-				
				Contraction of the	-	diset in the	- 10	-	-	1.000		-	
				(1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		and the second second	-		-	1000		-	-
					-	C. Surgest Chart	-	-	-		0		
					-	Le block	-	-	-			-	-
					-	CONTRACTOR		-	-	Les routes			
					-		-	-	-	10000		-	
					-		-	-	-			-	
					-	1000	- 168		-		10	-	
					-		-	-	-			-	
				Martin Contractor	-		-	-	-	ALC: NO	10		
				E CARA	-	200.00	-	-	-		ide .		
					-		- 101	-	-			-	
					-	Carlos and		-	-		86- 16		
					-	These design	- 14.0	-	-	-			-
					- 12	1.1.1.1		-	-			-	-
					-		- 100	-	-	1000	-	-	-
				The loss of solar		Augustation	-		-	20/200		_	
					1 cm -	A CONSTRAINT	-	-	-	100			_
						· · ·	- 196	-	-				
					-	- Personal	-	-	-	Contraction of the		-	
							-		-	20000000			
				C. Second Contents	-	Station of	-	-	-	aniai S	-		_
					-	1000	-	-	-	AND DOLLARS		-	

Glenongio Basin C1 UD-Dotontion_v0.00.sism, Basin

		Deten	tion Basin O	utlet Structu	ire Design		18973		
Project: Basin ID:	Gleneagle Golf Cour	se Infill Project Fil 2							
20H 3 20H 3 70H 1				Stage (ft)	Tone Volume (ac ft)	Outlet Turne			
NOLUME BURY WOCY			Zone 1 (WQCV)	1.06	0.121	Orifice Plate			
	100-YEAR ORIFICE]	Zone 2 (EURV)	1.40	0.110	Orifice Plate			
PERMANENT OPERICES			Zone 3 (100-year)	2.66	0.586	Weir&Pipe (Restrict)			
Example Zone C	onfiguration (Rete	ention Pond)		l	0.817	Total		dardrain	
User input: Orifice at Underdrain Outlet (typically us Underdrain Orifice Invert Depth =	N/A	ft (distance below the	e filtration media sur	face)	Under	rdrain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrai	in Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orifices of	r Elliptical Slot Weir	(typically used to dra	in WQCV and/or EU	RV in a sedimentatio	on BMP)	Calcul	ated Parameters for	Plate	
Invert of Lowest Orifice =	0.00	ft (relative to basin b	ottom at Stage = 0 ft)	WQOr	ifice Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing =	1.03	ft (relative to basin b inches	ottom at Stage = 0 ft)	Ellic	liptical Half-Width = stical Slot Centroid =	N/A N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	inches				Elliptical Slot Area =	N/A	ft ²	
User Input: Stage and Total Area of Each Orifice R	ow (numbered from	lowest to highest)							
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	-
Stage of Untice Centroid (ft) Orifice Area (so. inches)	0.00	0.83	0.69					Service States	
							D 454 - 0 - 0	D	1
Stage of Orifice Centroid (ft)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (opponal)	0.000
Orifice Area (sq. inches)	Contraction and the second		A PROPERTY	Contraction of the second	Sales and the	and the second state	Section 20	S. MALLAR S.	1
User Input: Vertical Orifice (Circ	ular or Rectangular)					Calculated	Parameters for Ver	tical Orifice	1 4 4 m
User riput. Vertical of file (circ	Not Selected	Not Selected				Carculate	Not Selected	Not Selected]
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area = N/A N/A						ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = N/A N/A						
Venical Onlice Diameter =	N/A	I N/A	Incres						
User Input: Overflow Weir (Dropbox) and	Grate (Flat or Sloped)					-1-1	1	n	the second second
	Zone 3 Weir	Not Selected	1			Calculated	Zone 3 Weir	erflow Weir Not Selected	1
Overflow Weir Front Edge Height, Ho	Zone 3 Weir 1.03	Not Selected	ft (relative to basin b	ottom at Stage = 0 ft)	Height of G	Calculated	Zone 3 Weir 2.03	erflow Weir Not Selected N/A	feet
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length -	Zone 3 Weir 1.03 4.00	Not Selected N/A N/A	ft (relative to basin b feet	ottom at Stage = 0 ft)	Height of G Over Flov	Calculated irate Upper Edge, H _t = v Weir Slope Length =	Zone 3 Weir 2.03 4.12	erflow Weir Not Selected N/A N/A	feet feet
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz Length of Weir Sidos;	Zone 3 Weir 1.03 4.00 4.00 4.00	Not Selected N/A N/A N/A N/A	ft (relative to basin b feet H:V (enter zero for feet	ottom at Stage = 0 ft) flat grate)	Height of G Over Flov Grate Open Area , Overflow Grate Or	Calculated irate Upper Edge, H _t = v Weir Slope Length = / 100-yr Orifice Area = oen Area w/o Debris =	2003 2.03 4.12 18.80 11.54	erflow Weir Not Selected N/A N/A N/A N/A	feet feet should be≥4 42
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Slope : Horiz, Length of Weir Sides Overflow Grate Open Area % :	Zone 3 Weir 1.03 4.00 4.00 4.00 70%	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin b feet H:V (enter zero for feet %, grate open area,	ottom at Stage = 0 ft) flat grate) /total area	Height of G Over Flov Grate Open Area Overflow Grate Op Overflow Grate O	Calculate rate Upper Edge, H _t = v Weir Slope Length = / 100-yr Orifice Area = ben Area w/o Debris = Open Area w/ Debris =	Parameters for Own Zone 3 Weir 2.03 4.12 18.80 11.54 5.77	erflow Weir Not Selected N/A N/A N/A N/A N/A	feet feet should be≥4 ft ² ft ²
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Slope Horiz. Length of Weir Sides Overflow Grate Open Area % Debris Clogging %	Zone 3 Weir 1.03 4.00 4.00 70% 50%	Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin b feet H:V (enter zero for feet %, grate open area %	ottom at Stage = 0 ft) flat grate) /total area	Height of G Over Flov Grate Open Area , Overflow Grate Op Overflow Grate O	Calculates irate Upper Edge, H ₁ = w Weir Slope Length = / 100-yr Orifice Area = sen Area w/o Debris = Open Area w/ Debris =	Parameters for Ove Zone 3 Weir 2.03 4.12 18.80 11.54 5.77	erflow Weir Not Selected N/A N/A N/A N/A N/A	feet feet should be≥4 ft ² ft ²
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Slope = Horiz. Length of Weir Sides Overflow Grate Open Area % Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Zone 3 Weir 1.03 4.00 4.00 7.0% 5.0% Circular Orifice, Rest	Not Selected N/A N/A N/A N/A N/A N/A N/A r/A N/A rictor Plate, or Rectai	ft (relative to basin b feet H:V (enter zero for feet %, grate open area % mgular Orifice)	ottom at Stage = 0 ft) flat grate) /total area	Height of G Over Flov Grate Open Area , Overflow Grate Op Overflow Grate O	Calculated irate Upper Edge, H ₁ = v Weir Slope Length = / 100-yr Orifice Area = ben Area w/o Debris = Open Area w/ Debris = Calculated Paramete	d Parameters for Over Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 ers for Outlet Pipe w	erflow Weir N/A N/A N/A N/A N/A / Flow Restriction Pl	feet feet should be ≥ 4 ft ² ft ²
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (Zone 3 Weir 1.03 4.00 4.00 70% 50% Circular Orifice, Rest Zone 3 Restrictor	Not Selected N/A	ft (relative to basin b feet H:V (enter zero for feet %, grate open area % ngular Orifice)	ottom at Stage = 0 ft) flat grate) /total area	Height of G Over Flov Grate Open Area , Overflow Grate Op Overflow Grate O	Calculated irate Upper Edge, H ₁ = v Weir Slope Length = / 100-yr Orifice Area a ben Area w/o Debris = Open Area w/ Debris = Calculated Paramete	d Parameters for Over Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 ers for Outlet Pipe w Zone 3 Restrictor	erflow Weir N/A N/A N/A N/A N/A / Flow Restriction PI Not Selected	feet feet should be ≥ 4 ft ² ft ² ate
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % Debris Clogging % User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe	Zone 3 Weir 1.03 4.00 4.00 70% 50%	Not Selected N/A	ft (relative to basin b feet H:V (enter zero for feet %, grate open area % ngular Orifice) ft (distance below b	ottom at Stage = 0 ft) flat grate) /total area asin bottom at Stage =	Height of G Over Flow Grate Open Area , Overflow Grate Op Overflow Grate O Overflow Grate O	Calculated irate Upper Edge, H ₁ = w Weir Slope Length = 100-yr Orifice Area = ben Area w/o Debris = Den Area w/ Debris = Calculated Parameter Outlet Orifice Area	d Parameters for Over Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 ers for Outlet Pipe w Zone 3 Restrictor 0.61 0.20	erflow Weir N/A N/A N/A N/A N/A / Flow Restriction PI Not Selected N/A	feet feet should be ≥ 4 ft ² ft ² ate
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Slope = Horiz. Length of Weir Sides Overflow Grate Open Area % Debris Clogging % User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert	Zone 3 Weir 1.03 4.00 4.00 4.00 70% 50% Circular Orifice, Rest Zone 3 Restrictor 0.33 24.00 6.00	Not Selected N/A	ft (relative to basin b feet H:V (enter zero for feet %, grate open area % ngular Orifice) ft (distance below b inches inches	ottom at Stage = 0 ft) flat grate) /total area asin bottom at Stage = Half	Height of G Over Flov Grate Open Area J Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Out and State Of Res	Calculated irate Upper Edge, H ₁ = w Weir Slope Length = y 100-yr Orifice Area = ben Area w/o Debris = Den Area w/ Debris = Calculated Parameter Outlet Orifice Area = ittel Orifice Centroid strictor Plate on Pipe	d Parameters for Over Zone 3 Weir 2.03 4.12 11.54 5.77 ers for Outlet Pipe w. Zone 3 Restrictor 0.61 0.29 1.05	erflow Weir N/A N/A N/A N/A N/A / Flow Restriction Pl Not Selected N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ² ft ² ftet feet radians
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Slope = Horiz. Length of Weir Sides Overflow Grate Open Area % Debris Clogging % User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert	Zone 3 Weir 1.03 4.00 4.00 70% 50% Circular Orifice, Rest Zone 3 Restrictor 0.33 24.00 6.00	Not Selected N/A	ft (relative to basin b feet H:V (enter zero for feet %, grate open area % ngular Orifice) ft (distance below b inches	ottom at Stage = 0 ft) flat grate) /total area asin bottom at Stage = Half	Height of G Over Flov Grate Open Area J Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Ott	Calculated irate Upper Edge, H ₁ = v Weir Slope Length = v Weir Slope Length = v Holey of Orifice Area = ben Area w/O Debris = calculated Parameter Outlet Orifice Area = ittel Orifice Centroid strictor Plate on Pipe	Parameters for Own Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 ers for Outlet Pipe w Zone 3 Restrictor 0.61 0.29 1.05	erflow Weir N/A N/A N/A N/A N/A / Flow Restriction Pl Not Selected N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ² ft ² ft ² ft ² ft ² rate
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Stope = Horiz. Length of Weir Sides Overflow Grate Open Area % Debris Clogging % User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert User Input: Emergency Spillway (Rectaa	Zone 3 Weir 1.03 4.00 4.00 70% 50% Zone 3 Restrictor 0.33 24.00 6.00	Not Selected N/A	ft (relative to basin b feet H:V (enter zero for feet %, grate open area % ngular Orifice) ft (distance below b inches	ottom at Stage = 0 ft) flat grate) /total area asin bottom at Stage = Half	Height of G Over Flov Grate Open Area J Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Contral Angle of Res	Calculated irate Upper Edge, H ₁ = w Weir Slope Length = y 100-yr Orifice Area = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = titet Orifice Centroid strictor Plate on Pipe Calcu	Parameters for Over Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 ers for Outlet Pipe w Zone 3 Restrictor 0.61 0.29 1.05	erflow Weir N/A N/A N/A N/A N/A N/A / Flow Restriction PI Not Selected N/A N/A N/A Spillway feet	feet feet should be≥4 ft ² ft ² ft ² ft ² ft ² rate
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Front Edge Length Overflow Weir Sides Horiz. Length of Weir Sides Overflow Grate Open Area % Debris Clogging % User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert User Input: Emergency Spillway (Rectan Spillway Crest Length	Zone 3 Weir 1.03 4.00 4.00 70% 50% Circular Orifice, Rest Zone 3 Restrictor 0.33 24.00 6.00 Sugular or Trapezoida 2.70 13.00	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A It of Selected N/A N/A It ft (relative to basin feet	ft (relative to basin b feet H:V (enter zero for feet %, grate open area % ngular Orifice) ft (distance below b inches Inches	ottom at Stage = 0 ft) flat grate) /total area asin bottom at Stage = Half	Height of G Over Flov Grate Open Area , Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Spillwa Stage	Calculated irate Upper Edge, H ₁ = w Weir Slope Length = y 100-yr Orifice Area = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = ittet Orifice Centroid strictor Plate on Plae Calcu ay Design Flow Depth at Top of Freeboard	d Parameters for Over Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 ers for Outlet Pipe w Zone 3 Restrictor 0.61 0.29 1.05 lated Parameters for 0.87 4.57	erflow Weir N/A N/A N/A N/A N/A N/A / Flow Restriction Pi Not Selected N/A N/A N/A Spillway feet feet feet	feet feet should be≥4 ft ² ft ² ft ² ft ² ft ² radians
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length Overflow Weir Front Edge Length Overflow Weir Sides Horiz. Length of Weir Sides Overflow Grate Open Area % Debris Clogging % User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert User Input: Emergency Spillway (Rectan Spillway Crest Length Spillway End Slopes	Zone 3 Weir 1.03 4.00 4.00 70% 50%	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A It of Selected N/A	ft (relative to basin b feet H:V (enter zero for feet %, grate open area % ngular Orifice) ft (distance below b inches Inches	ottom at Stage = 0 ft) flat grate) /total area asin bottom at Stage = Half ft)	Height of G Over Flov Grate Open Area , Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Spillwa Stage Basin Area	Calculated irate Upper Edge, H ₁ = w Weir Slope Length = y 100-yr Orifice Area = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = ittet Orifice Centroid strictor Plate on Pipe Calcu ay Design Flow Depth at Top of Freeboard	d Parameters for Over Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 ers for Outlet Pipe w Zone 3 Restrictor 0.61 0.29 1.05 lated Parameters for 0.87 4.57 0.61	erflow Weir N/A N/A N/A N/A N/A N/A / Flow Restriction Pi Not Selected N/A N/A N/A Spillway feet feet feet acres	feet feet should be≥4 ft ² ft ² ft ² ft ² ft ² radians
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length - Overflow Weir Front Edge Length - Overflow Weir Slope - Horiz. Length of Weir Sides - Overflow Grate Open Area % - Debris Clogging % - User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert User Input: Emergency Spillway (Rectai Spillway Invert Stage Spillway Crest Length Spillway End Slopes Freeboard above Max Water Surface	Zone 3 Weir 1.03 4.00 4.00 50% Circular Orifice, Rest Zone 3 Restrictor 0.33 24.00 6.00 uplar or Trapezoida 2.70 13.00 4.00	Not Selected N/A	ft (relative to basin b feet H:V (enter zero for feet %, grate open area, % ngular Orifice) ft (distance below b inches Inches	ottom at Stage = D ft) flat grate) /total area asin bottom at Stage = Half	Height of G Over Flov Grate Open Area , Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Spillwa Stage Basin Area	Calculated irate Upper Edge, H ₁ = w Weir Slope Length = y 100-yr Orifice Area = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = tylet Orifice Centroid strictor Plate on Pipe Calcu ay Design Flow Depth at Top of Freeboard at Top of Freeboard	Parameters for Over Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 Zone 3 Restrictor 0.61 0.29 1.05 lated Parameters for 4.57 0.61	erflow Weir N/A N/A N/A N/A N/A Flow Restriction Pl Not Selected N/A N/A N/A Spillway feet feet acres	feet feet should be ≥ 4 ft ² ft ² ate ft ² feet radians
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length - Overflow Weir Front Edge Length - Overflow Weir Slope - Horiz. Length of Weir Sides - Overflow Grate Open Area % - Debris Clogging % - User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert User Input: Emergency Spillway (Rectai Spillway Invert Stage Spillway Crest Length Spillway End Slopes Freeboard above Max Water Surface	Zone 3 Weir 1.03 4.00 4.00 50% Circular Orifice, Rest Zone 3 Restrictor 0.33 24.00 6.00 Suparation of the second sec	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A rictor Plate, or Rectat Not Selected N/A	ft (relative to basin b feet H:V (enter zero for feet %, grate open area, % ngular Orifice) ft (distance below b inches Inches bottom at Stage = 0	ottom at Stage = D ft) flat grate) /total area asin bottom at Stage = Half ;ft}	Height of G Over Flov Grate Open Area , Overflow Grate Op Overflow Grate O Overflow Grate O Overflow Grate O Overflow Grate O Spillwa Stage Basin Area	Calculated irate Upper Edge, H ₁ = v Weir Slope Length = v Weir Slope Length = the Area w/o Debris = calculated Parameter Outlet Orifice Area = tylet Orifice Centroid strictor Plate on Pipe Calcu ay Design Flow Depth at Top of Freeboard at Top of Freeboard	d Parameters for Over Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 Zone 3 Restrictor 0.61 0.29 1.05 lated Parameters for 4.57 0.61	erflow Weir N/A N/A N/A N/A N/A Flow Restriction Pl Not Selected N/A N/A N/A Spillway feet feet acres	feet feet should be≥4 ft ² ft ² ate ft ² feet radians
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length - Overflow Weir Front Edge Length - Overflow Weir Slope - Horiz. Length of Weir Sides - Overflow Grate Open Area % - Debris Clogging % - User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert User Input: Emergency Spillway (Rectai Spillway Invert Stage Spillway Crest Length Spillway End Slopes Freeboard above Max Water Surface Routed Hydrograph Result Design Storm Return Period	Zone 3 Weir 1.03 4.00 4.00 50% Circular Orifice, Rest Zone 3 Restrictor 0.33 24.00 6.00 Superior Trapezoida 2.70 13.00 4.00 5.00 Superior Trapezoida 2.70 13.00 1.00 Superior Trapezoida 2.70 13.00 1.00 Superior Trapezoida 2.70 1.00 1	Not Selected N/A	ft (relative to basin b feet H:V (enter zero for feet %, grate open area, % ngular Orifice) ft (distance below b inches inches bottom at Stage = 0	ottom at Stage = D ft) flat grate) /total area asin bottom at Stage = Half ft)	Height of G Over Flov Grate Open Area J Overflow Grate Op Overflow Grate O Overflow Grate O Spillwa Stage Basin Area	Calculater irate Upper Edge, H ₁ = w Weir Slope Length = v Weir Slope Length = v 100-yr Orifice Area = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = ttlet Orifice Centroid strictor Plate on Pipe Calcu ay Design Flow Depth at Top of Freeboard at Top of Freeboard Calculated Parameter	d Parameters for Over Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 2.06 3 Restrictor 0.61 0.29 1.05	erflow Weir N/A N/A N/A N/A N/A / Flow Restriction PI Not Selected N/A N/A N/A Spillway feet feet feet acres	feet feet should be ≥ 4 ft ² ft ² ft ² ftet radians
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length - Overflow Weir Front Edge Length - Overflow Weir Slope - Horiz. Length of Weir Sides - Overflow Grate Open Area % - Debris Clogging % - User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert User Input: Emergency Spillway (Rectai Spillway Invert Stage Spillway Crest Length Spillway End Slopes Freeboard above Max Water Surface Routed Hydrograph Result Design Storm Return Period One-Hour Rainfall Depth (In) Caicuted Ruord Volume (apre-th)	Zone 3 Weir 1.03 4.00 4.00 4.00 50% Circular Orifice, Rest Zone 3 Restrictor 0.33 24.00 6.00 Superior Trapezoida 2.70 13.00 4.00 5.00 Superior Trapezoida 0.53 1.00 Superior Trapezoida 0.53 0.121	Not Selected N/A	ft (relative to basin b feet H:V (enter zero for feet %, grate open area, % ngular Orifice) ft (distance below b inches inches bottom at Stage = 0 2 Year 1.19 0.173	ottom at Stage = 0 ft) flat grate) /total area asin bottom at Stage = Half ft) <u>S Year</u> <u>1.50</u> 0.431	Height of G Over Flov Grate Open Area , Overflow Grate Op Overflow Grate O Overflow Grate O Spillwa Stage Basin Area	Calculated irate Upper Edge, H ₁ = v Weir Slope Length = v Weir Slope Length = the Area w/o Debris = calculated Parameter Outlet Orifice Area = tritet Orifice Centroid strictor Plate on Pipe Calcu ay Design Flow Depth at Top of Freeboard at Top of Freeboard 25 Year 2.00 1.186	d Parameters for Over Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 2.08 ars for Outlet Pipe w. Zone 3 Restrictor 0.61 0.29 1.05 1.0	erflow Weir N/A N/A N/A N/A N/A / Flow Restriction Pl Not Selected N/A N/A N/A Spillway feet feet acres	feet feet should be \geq 4 ft ² ft ² ft feet radians 500 Year 3.01 2.637
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length - Overflow Weir Front Edge Length - Overflow Weir Slope - Horiz. Length of Weir Sldes - Overflow Grate Open Area % - Debris Clogging % - User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert User Input: Emergency Spillway (Rectai Spillway Invert Stage Spillway Crest Length Spillway Ed Slopes Freeboard above Max Water Surface Routed Hydrograph Result Design Storm Return Period One-Hour Rainfal Depth (In) Calculated Ruroff Volume (acreft)	Zone 3 Weir 1.03 4.00 4.00 4.00 50% Circular Orifice, Rest Zone 3 Restrictor 0.33 24.00 6.00 supart or Trapezoida 2.70 13.00 4.00 1.00 S WQCV 0.53 0.121	Not Selected N/A	ft (relative to basin b feet H:V (enter zero for feet 5%, grate open area 5% ngular Orifice) ft (distance below b inches inches bottom at Stage = 0 2 Year 1.19 0.173	ottom at Stage = 0 ft) flat grate) /total area asin bottom at Stage = Half ft) 5 Year 1.50 0.431	Height of G Over Flov Grate Open Area J Overflow Grate Op Overflow Grate Of Overflow Grate Of Spillwa Stage Basin Area Overflow Grate Of Overflow Grate Overflow Grate Overflow Grate Overflow Grate Overflow Grate Overflow Grate O	Calculated irate Upper Edge, H ₁ = w Weir Slope Length = y 100-yr Orifice Area = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = tytet Orifice Centroid strictor Plate on Pipe Calculated Of Freeboard at Top of Freeboard at Top of Freeboard 25 Year 2.00 1.186	Parameters for Own Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 To a Restrictor 0.61 0.29 1.05 Iated Parameters for 0.87 4.57 0.61 50 Year 1.537	erflow Weir N/A N/A N/A N/A N/A N/A N/A / Flow Restriction PI Not Selected N/A N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 1.949	feet feet should be \geq 4 ft ² ft ² ft ² ft ² ft ² fteet radians
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length - Overflow Weir Front Edge Length - Overflow Weir Slope - Horiz. Length of Weir Sides - Overflow Grate Open Area % - Debris Clogging % - User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert User Input: Emergency Spillway (Rectai Spillway Invert Stage Spillway Invert Stage Spillway Crest Length Spillway End Slopes Freeboard above Max Water Surface Routed Hydrograph Result Design Storm Return Period One-Hour Rainfal Depth (In) Caiculated Ruroff Volume (acre-ft) Inflow Hydrograph Volume (acre-ft)	Zone 3 Weir 1.03 4.00 4.00 4.00 50% Circular Orifice, Rest Zone 3 Restrictor 0.33 24.00 6.00 Support Trapezoida 2.70 13.00 4.00 5.0% 5	Not Selected N/A	ft (relative to basin b feet H:V (enter zero for feet 5%, grate open area, 3% ngular Orifice) ft (distance below b inches inches bottom at Stage = 0 2 Year 1.19 0.173 0.172 0.01	ottom at Stage = 0 ft) flat grate) /total area asin bottom at Stage = Half ft) S Year 1.50 0.431 0.430 0.17	Height of G Over Flov Grate Open Area J Overflow Grate Op Overflow Grate Of Overflow Grate O Overflow Grate O Spillwa Stage Basin Area Overflow Grate O Overflow Grate O Overflo	Calculated irate Upper Edge, H ₁ = w Weir Slope Length = / 100-yr Orifice Area = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = tylet Orifice Centroid strictor Plate on Pipe Calcu ay Design Flow Depth at Top of Freeboard 25 Year 2.00 1.186 0.79	d Parameters for Over Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 2.05 1.05 1.05 1.537 50 Year 2.25 1.536 1.02	erflow Weir N/A N/A N/A N/A N/A N/A N/A / Flow Restriction Pi Not Selected N/A N/A N/A N/A Spillway feet feet feet acres 100 Year 1.549 1.30	feet feet should be ≥ 4 ft ² ft ² ft ² ftet radians 500 Year 3.01 2.637 2.635 1.84
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length - Overflow Weir Front Edge Length - Overflow Weir Slope - Horiz. Length of Weir Slodes Overflow Grate Open Area % - Debris Clogging % - User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert User Input: Emergency Spillway (Rectal Spillway Creat Length Spillway Toest Length Spillway End Slopes Freeboard above Max Water Surface Routed Hydrograph Result Design Storm Return Period One-Hour Rainfal Depth (In) Calculated Ruroff Volume (acreft) Inflow Hydrograph Volume (acreft) Inflow Hydrograph Volume (acreft) Predevelopment Unit Peak Row (cl53core) Predevelopment Paak Q (cl53)	Zone 3 Weir 1.03 4.00 4.00 4.00 70% 50% Circular Orifice, Rest Zone 3 Restrictor 0.33 24.00 6.00 sqular or Trapezoida 2.70 13.00 4.00 0.13.00 0.00 0.121 0.00 0.00	Not Selected N/A Not Selected N/A N/A Int (relative to basin feet H.V feet EURV 1.07 0.231 0.00 0.0	ft (relative to basin b feet H:V (enter zero for feet 5%, grate open area 5% ngular Orifice) ft (distance below b inches inches bottom at Stage = 0 2 Year 1.19 0.173 0.172 0.01	ottom at Stage = 0 ft) flat grate) /total area asin bottom at Stage = Half ft) 5 Year 1.50 0.431 0.430 0.17 2.5	Height of G Over Flov Grate Open Area J Overflow Grate Op Overflow Grate Op Overflow Grate O Overflow Grate O Spillwa Stage Basin Area Overflow Grate O Overflow Grate O Overflo	Calculated irate Upper Edge, H ₁ = w Weir Slope Length = / 100-yr Orifice Area = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = titlet Orifice Centroid strictor Plate on Pipe Calculated Orifice Centroid strictor Plate on Pipe Strictor Plate on Pipe Strictor Plate on Pipe Strictor Plate on Pipe Strictor Plate on Plate on Pipe Strictor Plate on Plate	d Parameters for Own Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 ers for Outlet Pipe w Zone 3 Restrictor 0.61 0.29 1.05 Nated Parameters for 0.87 4.57 0.61 50 Year 2.25 1.537 1.537 1.536 1.02 2.57	erflow Weir N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft ² ft ² ft ² ft ² ft ² ft ² fteet radians 500 Year 3.01 2.635 1.84 2.7.5
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length - Overflow Weir Front Edge Length - Overflow Weir Slope - Horiz. Length of Weir Sldes - Overflow Grate Open Area % - Debris Clogging % - User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert User Input: Emergency Spillway (Rectal Spillway Crest Length Spillway Toest Length Spillway End Slopes Freeboard above Max Water Surface Routed Hydrograph Result Design Storm Return Period One-Hour Rainfal Depth (In) Calculated Ruroff Volume (acreft) Inflow Hydrograph Volume (acreft) Predevelopment Unit Peak Row, q (cl/sacreft) Predevelopment Peak Q (cls) Peak Inflow Q (cls) Peak Inflow Q (cls) Peak Inflow Q (cls) Peak Inflow Q (cls)	Zone 3 Weir 1.03 4.00 4.00 4.00 50% Circular Orifice, Rest Zone 3 Restrictor 0.33 24.00 6.00 supart or Trapezoida 2.70 13.00 4.00 0.11	Not Selected N/A N/A <	ft (relative to basin b feet H:V (enter zero for feet 5%, grate open area 5% ngular Orifice) ft (distance below b inches inches bottom at Stage = 0 2 Year 1.19 0.173 0.173 0.172 0.01 0.2 3.5	ottom at Stage = 0 ft) flat grate) /total area asin bottom at Stage = Half ft) 5 Year 1.50 0.431 0.431 0.17 2.5 8.6 2.8	Height of G Over Flov Grate Open Area J Overflow Grate Op Overflow Grate Op Overflow Grate Of Overflow Grate Of Spillwa Stage Basin Area I O Year I 10 Year I 175 0.704 0.34 5.1 14.1 4.0	Calculated irate Upper Edge, H ₁ = w Weir Slope Length = / 100-yr Orifice Area = ben Area w/o Debris = calculated Parameter Calculated Parameter Outlet Orifice Area = ittet Orifice Centroid strictor Plate on Pipe Calcu ay Design Flow Depth at Top of Freeboard 25 Year 2.00 1.186 0.79 1.17 23.7 4.8	d Parameters for Own Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 ers for Outlet Pipe w Zone 3 Restrictor 0.61 0.29 1.05 lated Parameters for 0.87 4.57 0.61 50 Year 2.25 1.537 1.536 1.02 1.52 30.7 9.7	erflow Weir N/A N/A N/A N/A N/A N/A N/A / Flow Restriction PI Not Selected N/A N/A N/A N/A Spillway feet feet acres 1.00 Year 2.52 1.949 1.30 1.30 1.30 1.34 8.8 1.7.6	feet feet should be ≥ 4 ft ² ft ² ft ² ft ² ft ² fteet radians 500 Year 3.01 2.635 1.84 2.7.5 5.2.7 3.1.5
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length - Overflow Weir Front Edge Length - Overflow Weir Stope - Horiz. Length of Weir Stdes Overflow Grate Open Area % - Debris Clogging % - User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert User Input: Emergency Spillway (Rectar Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Design Storm Return Period One-Hour Rainfal Depth (In) Calculated Ruroff Volume (acreft) Inflow Hydrograph Volume (acreft) Predevelopment Unit Peak Rhow, q (cls/acreft) Predevelopment Unit Peak Now, q (cls/acreft) Peak Inflow Q (cls) Peak Inflow Q (cls) Peak Inflow Q (cls) Peak Inflow D Predevelopment C	Zone 3 Weir 1.03 4.00 4.00 4.00 50% Circular Orifice, Rest Zone 3 Restrictor 0.33 24.00 6.00 Supular or Trapezoida 2.70 13.00 4.00 0.53 0.121 0.00 2.4 0.00 1.00 Supular or Circular Orifice, Rest 2.70 13.00 4.00 0.00 0.121 0.01 1.01 1.02 0.00 1.0	Not Selected N/A Not Selected N/A N/A Inf (relative to basin feet H.V feet H.V 0.231 0.00 0.0 4.6 0.9 N/A	ft (relative to basin b feet H:V (enter zero for feet %, grate open area % ngular Orifice) ft (distance below b inches inches bottom at Stage = 0 2 Year 1.19 0.173 0.173 0.172 0.01 0.2 3.5 0.4	ottom at Stage = 0 ft) flat grate) /total area asin bottom at Stage = Half ft) 5 Year 1.50 0.431 0.17 2.5 8.6 2.8 1.1	Height of G Over Flov Grate Open Area J Overflow Grate Op Overflow Grate Op Overflow Grate Of Overflow Grate Of Overflow Grate Of Overflow Grate Of Overflow Grate Of Central Angle of Res Spillwa Stage Basin Area 10 Year 1.75 0.704 0.34 5.1 1.4.1 4.0 0.8	Calculated irate Upper Edge, H ₁ = w Weir Slope Length = / 100-yr Orifice Area = ben Area w/o Debris = calculated Parameter Calculated Parameter Outlet Orifice Centroid strictor Plate on Pipe Calculated Orifice Centroid strictor Plate on Pipe strictor P	d Parameters for Own Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 ers for Outlet Pipe w Zone 3 Restrictor 0.61 0.29 1.05 lated Parameters for 0.87 4.57 50 Year 2.25 1.537 1.536 1.02 1.52 30.7 9.7 0.6	erflow Weir N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft² ft² ft² ft² feet radians 2.635 1.84 27.5 31.5 1.1
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length - Overflow Weir Front Edge Length - Overflow Weir Slope - Horiz. Length of Weir Sldes - Overflow Grate Open Area % - Debris Clogging % - User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert User Input: Emergency Spillway (Rectar Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Design Storm Return Period One-Hour Rainfall Depth (In) Calculated Ruroff Volume (carc-ft) Inflow Hydrograph Volume (acre-ft) Inflow Hydrograph Volume (acre-ft) Predevelopment Unit Peak Rhow, q (cls/acre) Predevelopment Peak Q (cls) Peak Inflow Q (cls) Ratio Peak Outflow to Predevelopment C Structure Controlling Flow Max Velocity Woolk Graft - 1 (fte	Zone 3 Weir 1.03 4.00 4.00 4.00 50% Circular Orifice, Rest Zone 3 Restrictor 0.33 24.00 6.00 sular or Trapezoida 2.70 13.00 4.00 0.121 0.00 0.121 0.00 0.1 N/A	Not Selected N/A Not Selected N/A N/A If (relative to basin feet H.V feet H.V 0.231 0.00 0.0 0.9 N/A Overflow Grate: 0.06	ft (relative to basin b feet H:V (enter zero for feet 5%, grate open area 5% ngular Orifice) ft (distance below b inches inches bottom at Stage = 0 2 Year 1.19 0.173 0.173 0.172 0.01 0.2 3.5 0.4 N/A 1 Overflow Grate 0.02	ottom at Stage = 0 ft) flat grate) /total area asin bottom at Stage = Half ft) 5 Year 1.50 0.431 0.17 2.5 8.6 2.8 1.1 1 Overflow Grate 0.2	Height of G Over Flov Grate Open Area J Overflow Grate Op Overflow Grate Op Overflow Grate Of Overflow Grate Of Overflow Grate Of Overflow Grate Of Overflow Grate Of Central Angle of Res Spillwa Stage Basin Area Di Year 1.75 0.704 0.34 5.1 5.1 4.0 0.34	Calculated irate Upper Edge, H ₁ = w Weir Slope Length = / 100-yr Orifice Area = ben Area w/o Debris = calculated Parameter Calculated Parameter Outlet Orifice Area = ittet Orifice Centroid strictor Plate on Pipe Calcu ay Design Flow Depth at Top of Freeboard at Top of Freeboard 25 Year 2.00 1.186 0.79 11.7 23.7 4.8 0.4	d Parameters for Own Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 ers for Outlet Pipe w Zone 3 Restrictor 0.61 0.29 1.05 lated Parameters for 0.87 4.57 50 Year 2.25 1.537 1.536 1.02 1.536 1.02 9.7 0.6 \$0,7 0.6	erflow Weir N/A N/A N/A N/A N/A N/A N/A / Flow Restriction PI Not Selected N/A N/A N/A N/A Spillway feet feet feet 1.949 1.949 1.948 1.30 1.948 1.30 Spillway 0.4	feet feet should be ≥ 4 ft² ft² ft² fcet feet fc2 ft² fc2 ft² fc4 fc2 fc2
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length - Overflow Weir Front Edge Length - Overflow Weir Slope - Horiz. Length of Weir Slodes Overflow Grate Open Area % - Debris Clogging % - User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert User Input: Emergency Spillway (Rectar Spillway Invert Stage Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Design Storm Return Period One-Hour Rainfall Depth (In) Calculated Ruoff Volume (azre-ft) Inflow Hydrograph Volume (azre-ft) Predevelopment Unit Peak Riow, q(cls/ Peak Inflow Q(cls/ Peak Inflow Q(cls/ Peak Inflow Q(cls/ Peak Inflow Q(cls/ Ratio Peak Outflow to Predevelopment C Structure Controlling Flow Max Velocity through Grate 1 (fp Max Velocity through Grate 2 (fps	Zone 3 Weir 1.03 4.00 4.00 4.00 4.00 50% Circular Orifice, Rest Zone 3 Restrictor 0.33 24.00 6.00 sular or Trapezoida 2.70 13.00 4.00 0.121 0.00 0.121 0.00 0.1 N/A N/A N/A	Not Selected N/A Not Selected N/A N/A If (relative to basin feet H:V feet 0.231 0.00 0.0 4.6 0.9 N/A Overflow Grate 0.06 N/A	ft (relative to basin b feet H:V (enter zero for feet %, grate open area % ft (distance below b inches inches bottom at Stage = 0 2 Year 1.19 0.173 0.172 0.01 0.2 3.5 0.4 N/A 1 Overflow Grate 0.02 N/A	ottom at Stage = 0 ft) flat grate) /total area asin bottom at Stage = Half ft) 5 Year 1.50 0.431 0.431 0.431 0.431 0.431 0.431 0.17 2.5 8.6 2.8 1.1 1 Overflow Grate 0.2 N/A	Height of G Over Flov Grate Open Area J Overflow Grate Op Overflow Grate Op Overflow Grate Of Overflow Grate Of Overflow Grate Of Overflow Grate Of Overflow Grate Of Central Angle of Res Spillwa Stage Basin Area Basin Area D Year 1.75 0.704 0.703 0.34 5.1 1.4.1 4.0 0.8 1.0.12 (Piate 1 0.3 N/A	Calculated irate Upper Edge, H ₁ = w Weir Slope Length = / 100-yr Orifice Area = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = ittlet Orifice Centroid strictor Plate on Pipe Calculated Parameter Calculated Parame	d Parameters for Own Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 ers for Outlet Pipe w Zone 3 Restrictor 0.61 0.29 1.05 lated Parameters for 0.87 4.57 0.61 50 Year 2.25 1.537 1.536 1.02 1.536 1.02 30.7 9.7 0.6 Spillway 0.4 N/A N/A	erflow Weir N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft² ft² ft² ft² feet radians 2.637 2.635 1.84 27.5 3.1.5 1.11 Spillway 0.5 N/A
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length - Overflow Weir Front Edge Length - Overflow Weir Stope - Horiz. Length of Weir Sides - Overflow Grate Open Area % - Debris Clogging % - User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert User Input: Emergency Spillway (Rectar Spillway Invert Stage Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Design Storm Return Period One-Hour Rainfall Depth (In) Calculated Ruoff Volume (acre-ft) Inflow Hydrograph Volume (acre-ft) Predevelopment Unit Peak Row, c(cls/acre- Predevelopment Peak Q (cls) Peak Inflow Q (cls) Peak Inflow Q (cls) Ratio Peak Outflow to Predevelopment C Structure Controlling Flow Max Velocity through Grate 2 (fps Max Velocity through Grate 2 (fps Time to Drain 97% of Inflow Volume (nors- Time to Drain 97% of Inflow Volume (nors-	Zone 3 Weir 1.03 4.00 4.00 4.00 4.00 4.00 4.00 50% Circular Orifice, Rest Zone 3 Restrictor 0.33 24.00 6.00 sular or Trapezoida 2.70 13.00 4.00 0.121 0.00 0.121 0.00 0.121 N/A N/A N/A N/A N/A N/A	Not Selected N/A Not Selected N/A N/A N/A It (relative to basin feet EURV 1.07 0.231 0.00 0.0 4.6 0.9 N/A Overflow Grate 0.06 N/A 39 43	ft (relative to basin b feet H-V (lenter zero for feet %, grate open area, % Ingular Orifice) It (distance below b inches Inches bottom at Stage = 0 2 Year 1.19 0.173 0.172 0.01 0.2 3.5 0.4 N/A 1 Overflow Grate O.2 N/A 40 44	ottom at Stage = 0 ft) flat grate) /total area asin bottom at Stage = Half ft) 5 Year 1.50 0.431 0.431 0.431 0.431 0.431 0.17 2.5 8.6 2.8 1.1 1 Overflow Grate 0.2 N/A 35 42	Height of G Over Flow Grate Open Area J Overflow Grate Op Overflow Grate Op Overflow Grate Of Overflow Grate Of Overflow Grate Of Overflow Grate Of Overflow Grate Of Central Angle of Res Spillwa Stage Basin Area Spillwa Stage Basin Area Overflow Grate Of Spillwa Stage Basin Area Spillwa Stage Basin Area Overflow Grate Of Overflow Grate Of Spillwa Stage Basin Area Overflow Grate Of Overflow Grate Of Spillwa Stage Basin Area Overflow Grate Overflow Grate Overflow Grate Overflow Grate Overflow Grate Overflow Grate Overflow Stage Stage Spillwa Overflow Grate Overflow Grate Overflow Grate Overflow Stage Stage Overflow Grate Overflow Grate Overflow Stage Overflow Grate Overflow Stage Stage Overflow Grate Overflow Stage Stage Overflow Grate Overflow Stage Overflow Stage Overflow Grate Overflow Stage Overflow Stage Ove	Calculated irate Upper Edge, H ₁ = w Weir Slope Length = / 100-yr Orifice Area = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = ittlet Orifice Centroid strictor Plate on Pipe Calculated Parameter Calculated Parame	d Parameters for Own Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 ers for Outlet Pipe w Zone 3 Restrictor 0.61 0.29 1.05 lated Parameters for 0.87 4.57 0.61 0.29 1.05 lated Parameters for 0.87 2.55 1.537 1.536 1.02 1.536 1.02 30.7 9.7 0.6 Spillway 0.4 N/A N/A 23 35	erflow Weir N/A N/A N/A N/A N/A N/A N/A / Flow Restriction PI Not Selected N/A N/A N/A N/A Spillway feet feet feet acres 1.949 1.948 1.30 1.949 0.4 N/A Spillway 0.4 N/A	feet feet should be ≥ 4 ft² ft² ft² ft² feet radians 2.637 2.635 1.84 27.5 1.1 Spillway 0.5 N/A 15 30
Overflow Weir Front Edge Height, Ho Overflow Weir Front Edge Length - Overflow Weir Front Edge Length - Overflow Grate Open Area %: Overflow Grate Open Area %: Debris Clogging %: User Input: Outlet Pipe w/ Flow Restriction Plate (Depth to Invert of Outlet Pipe Outlet Pipe Diameter Restrictor Plate Height Above Pipe Invert User Input: Emergency Spillway (Rectar Spillway Invert Stage Spillway Crest Length Spillway Crest Length Spillway Crest Length Spillway Crest Length Design Storm Return Period One-Hour Rainfall Depth (In) Calculated Ruoff Volume (acre-ft) Inflow Hydrograph Volume (acre-ft) Predevelopment Unit Peak Flow, c(cls/acre- Predevelopment Peak Q (cls) Peak Inflow Q (cls) Peak Inflow Q (cls) Ratio Peak Outflow to Predevelopment C Structure Controlling Flow Max Velocity through Grate 2 (fps Time to Drain 97% of Inflow Volume (nous Time to Drain 97% of Inflow Volume (nous Structure Controlling Flow Max Velocity through Grate 2 (fps Time to Drain 97% of Inflow Volume (nous Time to Drain 97% of Inflow Volume (nous Structure Controlling Depth (in) Maximum Ponding Depth (in)	Zone 3 Weir 1.03 4.00 4.00 4.00 4.00 4.00 4.00 50% Circular Orifice, Rest Zone 3 Restrictor 0.33 24.00 6.00 sular or Trapezoida 2.70 13.00 4.00 0.121 0.00 0.121 0.00 0.01 N/A N/A N/A N/A 1.01	Not Selected N/A H.V feet EURV 1.07 0.231 0.00 0.0	ft (relative to basin b feet H-V (enter zero for feet %, grate open area, % inclar Orifice) ft (distance below b inches inches bottom at Stage = 0 2 Year 1.19 0.172 0.01 0.2 3.5 0.4 N/A 1 Overflow Grate 0.02 N/A 40 44 1.14	ottom at Stage = 0 ft) flat grate) /total area asin bottom at Stage = Half ft) 5 Year 1.50 0.431 0.431 0.431 0.431 0.431 0.17 2.5 8.6 2.8 1.1 1 Overflow Grate 0.2 N/A 35 42 1.48	Height of G Over Flow Grate Open Area J Overflow Grate Op Overflow Grate Op Overflow Grate Of Overflow Grate Of Overflow Grate Of Overflow Grate Of Overflow Grate Of Central Angle of Res Spillwa Stage Basin Area Spillwa Stage Basin Area Overflow Grate Of Spillwa Stage Basin Area Spillwa Stage Basin Area Overflow Grate Of Spillwa Stage Basin Area Overflow Grate Overflow Grate Overfl	Calculated irate Upper Edge, H ₁ = w Weir Slope Length = / 100-yr Orifice Area = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = ittlet Orifice Centroid strictor Plate on Pipe Calculated Parameter Calculated Parame	d Parameters for Own Zone 3 Weir 2.03 4.12 18.80 11.54 5.77 ers for Outlet Pipe w Zone 3 Restrictor 0.61 0.29 1.05 lated Parameters for 0.87 1.05 1.05 1.05 1.05 1.537 50 Year 2.25 1.537 1.536 1.02 1.536 1.02 1.536 1.02 30.7 9.7 0.6 Spillway 0.4 N/A 2.93	erflow Weir N/A N/A N/A N/A N/A N/A N/A N/A	feet feet should be ≥ 4 ft² ft² ft² ft² feet radians 2.637 2.635 1.84 27.5 1.1 Spillway 0.5 N/A 15 30 3.339

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOM
Time Interval	TIME	WOCV [cfs]	FURV [cfs]	2 Year icfs]	5 Year (cfs)	10 Year [cfs]	25 Year Icfs]	50 Year Icfs]	100 Year Icfs	500 Year left
F.F.F. min	0.00.00	inder feist	- conv [cis]	E rear (cis)	o real [cis]	To rear feist	es rear [cis]	So rear jeisj	100 rear (eis)	See rear les
5.55 min	0.05.22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:33	0.00	0.01	0.01	0.02	0.02	0.04	0.05	0.06	0.08
Hydrograph	0:11:06	0.14	0.27	0.20	0.48	0.75	1.21	1.52	1.86	2.39
0.000	0:22:12	0.34	1.76	1.32	2.21	1.85	3,03	3.86	4.81	0,35
0.900	0:27:45	2.34	1./6	2.32	3.21	3.11	31.02	10.58	33.30	17.20
- N	0.33.18	2.33	4.42	3.32	8.65	14.09	21.02	20.70	33.30	52 71
	0:38:51	2.44	3.00	3.40	7.30	12.00	20.38	36.66	33.85	46.15
	0:44:74	1.67	3.17	2.30	5.87	9.68	16.53	21.50	27 59	37.67
	0:49:57	1 30	2.51	186	4.71	7.76	13.34	17.29	22.07	30.11
	0:55:30	1.01	1.96	1.45	3.69	6.10	10.43	13.64	17.44	23.82
	1:01:03	0.80	1.55	1.15	2.92	4.84	8.27	10.81	13.81	18.84
	1:06:36	0.67	1.29	0.96	2.43	3.99	6.78	8.82	11.23	15.27
	1:12:09	0.47	0.91	0.68	1.73	2.86	4.91	6.43	8.24	11.31
	1:17:42	0.36	0.69	0.51	1.30	2.15	3.67	4.80	6.14	8.38
	1:23:15	0.24	0.47	0.35	0.90	1.49	2.57	3.37	4.32	5.94
	1:28:48	0.18	0.35	0.26	0.65	1.08	1.86	2.43	3.11	4.24
	1:34:21	0.14	0.27	0.20	0.51	0.84	1.44	1.88	2.40	3.28
	1:39:54	0.12	0.22	0.17	0.42	0.69	1.18	1.53	1.95	2.66
	1:45:27	0.10	0.20	0.15	0.38	0.62	1.04	1.35	1.72	2.33
	1:51:00	0.10	0.19	0.14	0.36	0.59	0.99	1.29	1.64	2.22
	1:56:33	0.10	0.19	0.14	0.35	0.58	0.97	1.26	1.60	2.17
	2:02:06	0.10	0.19	0.14	0.35	0.58	0.97	1.26	1.60	2.17
	2:07:39	0.10	0.19	0.14	0.35	0.58	0.97	1.26	1.60	2.17
	2:13:12	0.06	0.12	0.09	0.22	0.37	0.64	0.85	1.09	1.51
	2:18:45	0.03	0.07	0.05	0.13	0.22	0.38	0.50	0.64	0.89
	2:24:18	0.02	0.04	0.03	0.07	0.12	0.21	0.28	0.37	0.51
	2:29:51	0.01	0.02	0.02	0.04	0.07	0.12	0.15	0.20	0.28
	2:35:24	0.00	0.01	0.01	0.02	0.03	0.06	0.08	0.10	0.14
	2:40:57	0.00	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.04
	2:46:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:52:03	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:57:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:03:09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:08:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:14:15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:19:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:36:27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:42:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:47:33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:53:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:58:39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:04:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:09.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:01	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:31:5/	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:43:03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:48:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:54:09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:59:42	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00
	5:05:15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5-16-21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:21:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:27:27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:33:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:38:33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:44:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	6:00:45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	6:06:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	6:11:51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	6:17:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	6:22:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	6:34:03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	6:39:36	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.0

Detention Basin Outlet Structure Design

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

Stage - Storage	Stage	Area	Area	Volume	Volume	Outflow	
Description	[8]	[8+2]	[acres]	[k+3]	[ac-ft]	[ch]	
	a and the						For best results, include the
and the second second	and a sound						stages of all grade slope
	MARSON STREET						changes (e.g. ISV and Floor)
States and the	にたいたけの表						Sheet 'Basin'
	1124 12.3						
CONTRACTOR AND	12-24-24-24						Also include the inverts of al
	包里安息景 里						outlets (e.g. vertical orifice,
	C. T. O. C. D. D.						overflow grate, and spillway
	1.2.2.2.2.2.2						where applicable).
							-
Advertise and a state of the	Carlos Carlos						-
a second standard and	A CONTRACTOR OF A CONTRACTOR						-
	Contra Start						-
a sector sector as	CHARLES BEEN						1
2. 2. 1. 1. 1. 2. 2. 1. 9. F. A.	122-015-115						1
	No. Contraction						1
	ALC: LAN						
The second states	The splittle						1
命令的 的复数正式的现在分词	CONTRACTOR OF						4
Active and the second second							4
And the second second	10-24 A-3-5						-
A A A A A A A A A A A A A A A A A A A							-
							-
							-
A REAL PROPERTY OF THE REAL PROPERTY OF							-
							-
CONTRACTOR NOT							1
AND STATISTICS.	12.2. 开关。						-
	STRUCTURE ST		_				
	T ALL ALL ALL A						
	The second second		-				
	in the last						_
	122 22 23		_				4
AS & C. Current of			1				-
					-	-	-
							-
	Contraction last		-				-
Press and the second second					-		-
LI-STA ANISANDA ANISA	1 19 4 19 19 2						
		8					
	a and a second						
	T HE HORE					-	
SALE AND	e esterars						
	Contraction and and					-	_
Contraction of the	in and a second				_		_
					_		_
The first of the second shares	A DE DECTEMB					-	-
The search to be the search of	St. AND ST. ST.			-		-	-
New State Scheduly B	AT THE STORE	W		-			
	an and a set of the				_		_
						-	-
	a la starte						-
					-		-
	uty Caster Lin	A		-			-
	AL DALAS	14 C	-				
	100 100 100 100 100 100 100 100 100 100						_
	and the second s			-			-
	STREET, STR						-
	de l'entressa		-				
				-	-		_
			-	-	-		
	The second second			-	-		
Contractor Contractor	ale salarest			(s) + 1	/		

APPENDIX C

DESIGN CHARTS

.

Chapter 6

(Transient)

1.1977.042

ALC: NO.

Personal Street

Non-Mark

(The second seco

TANK AND

100-10-T-17-T-

execution.

() J

- - -

.

and Use of Surface	Percent						Runoff Co	effloents					
haracteristics	Impervious	2-y	ear	5-y	ear	10-1	169 1	25-1	631,	50- <u>1</u>	ear 1	100-	year
		HSG A&B	HSGC&D	HSG A&3	HSG C&D	HSGASB	HSG CED	HSG ALB	HSG C&D	HSG A&B	HSG C&D	HSG ASE	HSG C&D
usiness					I			j	<u> </u>				
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.8B	88.0	0.89
Neighborhood Areas	70	0.45	0.49	0.49	D.53	0,53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
tesidential							<u> </u>						l <u></u>
1/8 Acre or less	65	D.41	0.45	0.45	0.49	0.49	0.54	0,54	0,59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Atre	30	0.18	0.22	0.25	0.30	0,32	0.38	0.39	0.47	0.43	0,52	0,47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.35	0.37	0,45	0.41	0.51	0,46	0,56
lAcre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.65	0.65	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Comptanies		0.05	0.09	012	0.19	-020	0.79	630	0.40	034	046	039	0.57
Playerminds	13	0.07	0.13	0.16	0.23	0.74	0.91	032	0.47	037	0.49	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0,46	0.54	0.50	0.58
		<u> </u>					_						
Undeveloped Areas								<u> </u>				<u> </u>	
Estoric Flow Analysis Graenheits, Agriculture	2	0.03		0.09	015	0.17	0.26	0.26	0.38	1 021	240	035	051
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	D.03	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0,89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when	1				-	-					-		
landuse (s undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0,48	0,55	0,51	0.59
Stre et c		_					_						_
Paved	100	1 0 99		000	000	00		0.04	0.94		1 000	0.00	00
Gavel	100	057	0.63	0,50	1 0 43	0.54	0.52	0.64	070	20.0		0.90	0.2
Selector		0.57	1 460			1 0,65	0.00	. 0.66		, 0,54	<u>- </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·
Drive and Walks	100	0.89	0.89	0.90	0.90) 0.5	2 0.9	2 0.9	4 0.94	0.9	5 0.9	5 0.96	0.5
Roofs	90	0.7:	0.7	3 0.7.	3 0.75	i 0.7.	5 0.7	7 0.7	8 0,80	0,8	0.8	2 0.8	0.8
Lawns	0	0.0	2 0.0-	4 0.0	8 0.1	5 0.1	5 02	5 0.2	5 0.3	7 0.3	0 0.4	4 0.3	5 05

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

May 2014

Hydrology

Hydrology

A STREET

Same with

Constant of the local division of the local

25-4 PL-TET-V

A. THE A.

Name and

100 m

Constraint of

1960. J. 4307.WI

et o pathwaith

arres of

April 1 and 20

Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

6-52

MAB HJG MAB 11/26/18
SIGNED AWN ECKED TE
4WAY DR, 80918 CHI DA
JFFS PARM INGS, CO 8 55212
EC AUSTIN BLI 102 RADO SPF E (719) 266
RESPI 3520 / SUITE COLO COLO
STAMP
Know what's below. Call before you dig.
DWG NM. 03524-Dev-Fil2
LC 10 . 80903
 ates, Ll , Suite 5S, CO
 Associ eber St SPRINC
uman & 31 N W(RADO S
COLOF GL
EAGLE /ISION #2
GLENE
SNC
NG CC
EXISTI
DRAWING NUMBER:
C
SHEET 1

TABLE 1 – EXISTING CONDITIONS									
Sub-Basin	Q5CFS	Q100 CFS							
A1	1.5	5.4							
A2	3.2	22.1							
A3	1.4	3.9							
A4	0.3	2.3							
OS1	6.9	21.8							
OS2	1.3	4.3							
DP1(A1+A2)	4.2	25.7							
DP2(A3+OS1)	6.7	20.8							
DP3(A4+OS2)	1.5	6.3							
DP4(DP2+DP3)	8	26.3							
DP5(DP4+DP1)	10.7	47.2							

VAME: Z:/COLORADO SPRINGS OFFICE/03524-GLENEAGLE FIL 2\DWG\DRAINAGE\DEVELOPED CONDITIONS.DV

TABLE 2 – DEVELOPED CONDITIONS									
Sub-Basin	Q5CFS	Q100 CFS							
OS1	4.5	15.1							
OS2	3.5	10.7							
A1	1.5	5.4							
A2A	1.6	9.1							
A2B1	1.1	5.1							
A2B2	1.1	2.3							
A2C1	1.4	2.9							
A2C2	1.3	4.2							
A2D	1.7	9.7							
A3	1.4	3.9							
A4	0.3	2.3							
DP1 (A1+A2A)	2.8	13.5							
DP2 (DP1+A2B1)	3.7	17.6							
DP3 (DP2+A2B2+A2C1)	5.6	21.4							
DP4(DP3+A2C2)	6.6	24.5							
DP5 (DP4+A4B)	6.8	28.9							
DP6 (OS1+A3)	4.8	15.6							
DP7 (0S2+A4)	3.5	12							
DP8 (DP6+DP7)	7.9	26.1							

DRAINAGE MAPS

L DUCETT, P.E. COLORADO P.E. NO. 32339

12/17/2021

ATE ISSUED 12/17/2

SHEET NO. 1 OF 2

GRADING LEGEND

101
100
-
61.00 FG
· · ·
(61.00 EG)
61.00 BW
61.00 TW

EXISTING CONTOURS - MINOR
EXISTING CONTOURS - MAJOR
PROP CONTOURS - MINOR
PROP CONTOURS - MAJOR
PROPERTY LINE
PROP FLOW
EXISTING EASEMENT
PROP FINISHED GRADE
ADJACENT PROPERTY LINE
PROP ROCK BOULDER RETAINING WALL
EXISTING SETBACK
EXISTING (BUILDING) GRADE
FINISHED GRADE AT BOTTOM OF WALL
TOP OF WALL GRADE

THIS DESIGN WAS PREPARED UNDER MY DIRECT SUBERVISION FOR AND ON BEHALF OF TERRA NOVA ENOWEERING, UNC.

12/17/2021

L DUCETT, P.E. COLORADO P.E. NO. 32339

U SG, UNTIL DRAW BY TERR INC. \bigcirc HOMES JAYDEN "TN: LO. 6 7 \smile - \triangleleft rra Nova Engineerit (F S. K 721 COL(OFFI FAX: WWW. ACE Ч ច EA ш STON 14160 ESIGNED BY LD RAWN BY JF HECKED BY LD -SCALE AS SHOWN -SCALE NA OB NO. 2199.17 ATE ISSUED 12/17/,

HEET NO. 2 OF 2