FINAL DRAINAGE REPORT

for

FALCON FIRE STATION NO. 3 7030 OLD MERIDIAN ROAD, FALCON, CO 80831

Prepared for:

Falcon Fire Protection District 7030 Old Meridian Road Peyton, CO 80831

July 17, 2020 Revised September 18, 2020

Prepared by:

19 E. Willamette Ave. Colorado Springs, CO 80903 (719)-477-9429 www.jpsengr.com

JPS Project No. 042001 PCD Project No. PPR-20-024

FALCON FIRE STATION NO. 3 – 7030 OLD MERIDIAN ROAD FINAL DRAINAGE REPORT TABLE OF CONTENTS

		PAGE	<u>)</u>
	DRAINAGE S	STATEMENT	.i
I.	INTRODUCT	ION	1
II.	EXISTING DI	RAINAGE CONDITIONS	2
III.	PROPOSED I	DRAINAGE CONDITIONS	2
IV.	DRAINAGE I	PLANNING FOUR STEP PROCESS	3
V.	FLOODPLAI	N IMPACTS	4
VI.	STORMWAT	ER DETENTION AND WATER QUALITY	4
VII.	SUMMARY		5
		<u>APPENDICES</u>	
APPE	NDIX A NDIX B NDIX C	Hydrologic Calculations Hydraulic Calculations Detention Pond Calculations	
APPE	NDIX D Figure FIRM Sheet EX1 Sheet D1 Sheet C3.1	Figures Floodplain Map Existing Conditions Drainage Plan Developed Drainage Plan Detention Pond A Plan & Details	

DRAINAGE STATEMENT

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. The accept responsibility for liability caused by negligent acts, errors or omissions on my part in preparing this report.

John P. Schwab P.E. #29891

29891 5 10/27/2

Developer's Statement:

I, the developer have read and will comply with all of the requirements specified in this drainage report and plan.

By:

Chief Trent Harwig

Falcon Fire Protection District

7030 Old Meridian Road

Peyton, CO 80831

El Paso County's Statement

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2, and Engineering Criteria Manual as amended.

Jennifer Irvine, P.E.
County Engineer / ECM Administrator

County Engineer / ECM Administrator

County Engineer / ECM Administrator

APPROVED
Engineering Department

11/06/2020 7:48:05 AM

dsdnijkamp

Conditions:

EPC Planning & Community Development Department

Date

I. INTRODUCTION

A. Property Location and Description

The Falcon Fire Protection District is planning to construct a new Fire Station No. 3 on their existing fire station site at 7030 Old Meridian Road The property is a partially developed 5.4-acre unplatted site (El Paso County Assessor's Parcel No. 53124-00-015) located at the northwest corner of US Highway 24 (US24) and Meridian Road in the Falcon area of El Paso County, Colorado. The site is zoned Planned Unit Development (PUD), and the District has processed an Approval of Location and Subdivision Exemption in advance of the Site Development Plan for the proposed site improvements.

The property is currently described as Lot 1, Falcon Fire Protection District Station No. 3 Exemption Plat. The property is located in Section 7, Township 13S, Range 64W, and a portion of Section 12, Township 13S, Range 65W of the 6th P.M., El Paso County, Colorado.

The southeast boundary of the property adjoins US Highway the northeast boundary adjoins Old Meridian Road. Existing commercial development is located across Old Meridian Road to the northeast and also along the northwest boundary of the site. The southwest boundary of the site adjoins the currently undeveloped right-of-way for the future Meridian Road.

The proposed Site Development Plan consists of constructing a new 8,382 square-foot fire station, along with associated parking and site improvements. In conjunction with the new fire station building project, the existing fire station building in the northeast corner of the site will be remodeled to serve as an Administration Building. Access will continue to be provided by the existing private access drive connection to Old Meridian Road along the northeast property boundary.

B. Scope

In support of the Site Development Plan submittal to El Paso County, this report is intended to meet the requirements of a Final Drainage Report in accordance with El Paso County drainage criteria. This report will provide a summary of site drainage issues impacting the proposed development. The report will analyze impacts from upstream drainage patterns, site-specific developed drainage patterns, and impacts on downstream facilities. This report is based on the guidelines and criteria presented in the City of Colorado Springs and El Paso County "Drainage Criteria Manual."

C. References

City of Colorado Springs & El Paso County "Drainage Criteria Manual," revised November, 1991.

City of Colorado Springs "Drainage Criteria Manual, Volumes 1 and 2," revised May, 2014. C:\Users\John\Dropbox\jpsprojects\042001.falcon-fire-sta-3\admin\Drainage\Drg-Rpt-Falcon-FS-No-3-0920.docx

FEMA, Flood Insurance Rate Map (FIRM) Number 08041C0561G, December 7, 2018.

Matrix Design Group, "Falcon Drainage Basin Planning Study," September, 2015.

USDA/NRCS, "Custom Soil Resource Report for El Paso County Area, Colorado," May 22, 2020.

II. EXISTING DRAINAGE CONDITIONS

The existing site topography generally slopes downward to the southwest with grades in the range of 1-3 percent. According to the Soil Survey of El Paso County prepared by the Soil Conservation Service (SCS), on-site soils are comprised of Columbine gravelly sandy loam soils, and these well-drained soils are classified as hydrologic soils group "A" (see Appendix A).

As shown on the enclosed Existing Conditions Drainage Plan (Sheet EX1, Appendix D), the site has been delineated as a single on-site drainage basin, and the site is not impacted by any off-site drainage basins.

According to the 2015 "Falcon Drainage Basin Planning Study" (DBPS) by Matrix Design Group, this site is located between the West and Middle Tributary Channels of the Falcon Drainage Basin, and there are no DBPS improvements associated with this site.

The existing site has been delineated as Basin A, which generally sheet flows in a southerly direction across the site towards the southeast boundary of the property. The northeast part of existing Basin A is developed with the existing fire station building and associated parking and driveway areas. Existing flows from Basin A drain to Design Point #1, with peak flows calculated as $Q_5 = 2.8$ cfs and $Q_{100} = 11.4$ cfs. Hydrologic calculations are enclosed in Appendix A.

III. PROPOSED DRAINAGE CONDITIONS

As shown on the enclosed Drainage Plan (Figure D1, Appendix D), the site has been delineated as two on-site drainage basins. Developed flows have been calculated based on the impervious areas associated with the proposed building and parking improvements.

The developed area on the northeast side of the property (Basin A) will continue to drain southwesterly across the site to a proposed stormwater detention pond on the southwest side of the new fire station building. The proposed building pad will be graded with protective slopes to provide positive drainage away from the building.

Surface drainage swales and a private storm sewer system will be convey developed flows to the proposed extended detention basin (EDB) along the southwest boundary of

the site. Site grades will slope to storm inlets and curb openings at selected locations, collecting surface drainage and conveying stormwater to the proposed detention basin.

Private Storm Inlet A1 (5' Type R) will intercept surface drainage from the parking area along the northeast side of the new fire station building, and Private Storm Sewer A1 (18") will flow southwesterly to Inlet A2 (5' Type R) in the southwest corner of the parking area on the southwest side of the building. Private Storm Sewer A2 (18") will convey the combined flow westerly into Extended Detention Basin A.

Private Storm Inlet A3 (5' Type R) will intercept surface drainage from the parking area on the northwest side of the new fire station building, and Private Storm Sewer A3 (12") will flow southwesterly into Extended Detention Basin A.

Developed peak flows at Design Point #A are calculated as $Q_5 = 6.3$ cfs and $Q_{100} = 13.1$ cfs. After routing through Extended Detention Basin A, detained peak flows at Design Point #1 are calculated as $Q_5 = 0.1$ cfs and $Q_{100} = 0.7$ cfs (see Detention Pond Calculations in Appendix C). The proposed 12" discharge pipe from Detention Basin A will flow southeast into the existing grass-lined drainage swale along the northwest side of US Highway 24.

Basin B will remain as the undeveloped area on the southwest side of the property, which will continue to sheet flows towards the southeast boundary of the property. Developed flows from Basin B will continue to drain to Design Point #B, with peak flows calculated as $Q_5 = 0.8$ cfs and $Q_{100} = 5.8$ cfs.

Developed flows from Basins A and B combine at Design Point #1, with peak flows calculated as $Q_5 = 7.1$ cfs and $Q_{100} = 18.7$ cfs.

Hydrologic calculations for the site are detailed in the attached spreadsheets (Appendix A), and peak flows are identified on Figures EX1 and D1 (Appendix D).

The contractor will be required to implement standard best management practices for erosion control during construction.

IV. DRAINAGE PLANNING FOUR STEP PROCESS

El Paso County Drainage Criteria require drainage planning to include a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

As stated in ECM Appendix I.7., the Four Step Process is applicable to all new and redevelopment projects with construction activities that disturb 1 acre or greater or that disturb less than 1 acre but are part of a larger common plan of development. The Four Step Process has been implemented as follows in the planning of this project:

Step 1: Employ Runoff Reduction Practices

• Minimize Impacts: The proposed fire station facility is being constructed on a previously developed site, so this project will inherently minimize drainage impacts in comparison to development of a vacant site.

Step 2: Stabilize Drainageways

• There are no drainageways directly adjacent to this project site. Implementation of the proposed on-site drainage improvements and Detention Basin will minimize the downstream drainage impact from this site.

Step 3: Provide Water Quality Capture Volume (WQCV)

• EDB: The developed site will drain through a proposed Extended Detention Basin (EDB) along the southeast boundary of the property. Site drainage will be routed through the extended detention basin, which will capture and slowly release the WQCV over an extended release period.

Step 4: Consider Need for Industrial and Commercial BMPs

- No outside storage or industrial uses are proposed for this site.
- The project will implement a Stormwater Management Plan including proper housekeeping practices and spill containment procedures.
- On-site drainage will be routed through the Extended Detention Basin (EDB) to minimize introduction of contaminants to the County's public drainage system.

V. FLOODPLAIN IMPACTS

Floodplain limits in vicinity of this site are delineated in the applicable Flood Insurance Rate Map, FIRM Panel No. 08041C0561G dated December 7, 2018. As depicted in the FIRM exhibit enclosed in Appendix D, this site is not impacted by any delineated 100-year FEMA floodplains.

VI. STORMWATER DETENTION AND WATER QUALITY

The proposed drainage and grading plan for the site includes a private Extended Detention Basin (EDB) at the south boundary of the site. This facility has been designed to provide the required stormwater detention and water quality mitigation for this site in accordance with El Paso County drainage criteria. The required on-site detention volume has been calculated based on the developed impervious area of the site.

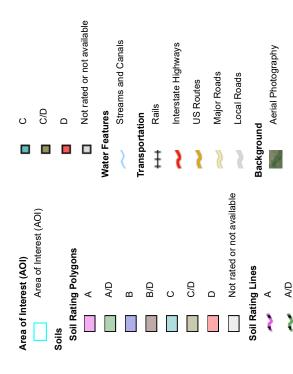
As detailed in the detention pond hydraulic calculations in Appendix C, the required 100-year Full-Spectrum Detention Volume has been calculated as 0.33 acre-feet. The proposed on-site Extended Detention Basin (EDB) A has been designed for a storage volume of 0.39 acre-feet, which meets the required full-spectrum detention volume, and the outlet structure has been designed to discharge well below the existing peak flow rates.

The proposed pond outlet structure has been designed using the UDFCD "UD-Detention" calculation spreadsheets, providing for a 40-hour release of the WQCV, and outlet structure sizing to maintain maximum allowable release rates from the pond. The EDB will have a grass-lined bottom to encourage infiltration of stormwater prior to discharging into the downstream public drainage system.

The proposed stormwater detention facility will be owned and maintained by the Fire District, and maintenance access will be provided from the adjacent parking lot.

According to the 2015 "Falcon Drainage Basin Planning Study" (DBPS) by Matrix Design Group, a future Regional Detention Pond R1 is planned at the downstream confluence of the West and Middle Tributary Channels.

VII. SUMMARY


The developed drainage patterns associated with the proposed Falcon Fire Station No. 3 project at the northwest corner of US24 and Old Meridian Road will remain consistent with existing conditions and the overall drainage plan for area. Developed flows from the site will drain through a proposed stormwater Detention Pond along the southeast boundary of the property prior to discharging to the existing downstream drainage system.

The proposed stormwater detention and water quality facilities have been designed to mitigate developed flow impacts and meet the County's stormwater detention and water quality requirements. Construction and proper maintenance of the proposed Extended Detention Basin, in conjunction with proper erosion control practices, will ensure that this developed site has no significant adverse drainage impact on downstream or surrounding areas.

APPENDIX A HYDROLOGIC CALCULATIONS

MAP LEGEND

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

contrasting soils that could have been shown at a more detailed Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of scale.

Please rely on the bar scale on each map sheet for map

Source of Map: Natural Resources Conservation Service measurements.

Coordinate System: Web Mercator (EPSG:3857)

Web Soil Survey URL:

Maps from the Web Soil Survey are based on the Web Mercator distance and area. A projection that preserves area, such as the projection, which preserves direction and shape but distorts Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 17, Sep 13, 2019 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Sep 8, 2018—May

Not rated or not available

B/D

ပ

Ш

C/D

Soil Rating Points

⋖

ΑD

B/D

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	4.8	100.0%
Totals for Area of Inter	est		4.8	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Chapter 6 Hydrology

Table 6-6. Runoff Coefficients for Rational Method

(Source: UDFCD 2001)

Land Harris Confess	B						Runoff Co	efficients					
Land Use or Surface Characteristics	Percent Impervious	2-у	ear	5-у	ear	10-	year	25-	/ear	50- _\	/ear	100-	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Hydrology Chapter 6

$$t_c = t_i + t_t \tag{Eq. 6-7}$$

Where:

 t_c = time of concentration (min)

 t_i = overland (initial) flow time (min)

 t_t = travel time in the ditch, channel, gutter, storm sewer, etc. (min)

3.2.1 Overland (Initial) Flow Time

The overland flow time, t_i , may be calculated using Equation 6-8.

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$
 (Eq. 6-8)

Where:

 t_i = overland (initial) flow time (min)

 C_5 = runoff coefficient for 5-year frequency (see Table 6-6)

L = length of overland flow (300 ft <u>maximum</u> for non-urban land uses, 100 ft <u>maximum</u> for urban land uses)

S = average basin slope (ft/ft)

Note that in some urban watersheds, the overland flow time may be very small because flows quickly concentrate and channelize.

3.2.2 Travel Time

For catchments with overland and channelized flow, the time of concentration needs to be considered in combination with the travel time, t_t , which is calculated using the hydraulic properties of the swale, ditch, or channel. For preliminary work, the overland travel time, t_t , can be estimated with the help of Figure 6-25 or Equation 6-9 (Guo 1999).

$$V = C_v S_w^{-0.5}$$
 (Eq. 6-9)

Where:

V = velocity (ft/s)

 C_v = conveyance coefficient (from Table 6-7)

 S_w = watercourse slope (ft/ft)

Chapter 6 Hydrology

Type of Land Surface	C_{v}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

Table 6-7. Conveyance Coefficient, C_{ν}

The travel time is calculated by dividing the flow distance (in feet) by the velocity calculated using Equation 6-9 and converting units to minutes.

The time of concentration (t_c) is then the sum of the overland flow time (t_i) and the travel time (t_t) per Equation 6-7.

3.2.3 First Design Point Time of Concentration in Urban Catchments

Using this procedure, the time of concentration at the first design point (typically the first inlet in the system) in an urbanized catchment should not exceed the time of concentration calculated using Equation 6-10. The first design point is defined as the point where runoff first enters the storm sewer system.

$$t_c = \frac{L}{180} + 10 \tag{Eq. 6-10}$$

Where:

 t_c = maximum time of concentration at the first design point in an urban watershed (min)

L = waterway length (ft)

Equation 6-10 was developed using the rainfall-runoff data collected in the Denver region and, in essence, represents regional "calibration" of the Rational Method. Normally, Equation 6-10 will result in a lesser time of concentration at the first design point and will govern in an urbanized watershed. For subsequent design points, the time of concentration is calculated by accumulating the travel times in downstream drainageway reaches.

3.2.4 Minimum Time of Concentration

If the calculations result in a t_c of less than 10 minutes for undeveloped conditions, it is recommended that a minimum value of 10 minutes be used. The minimum t_c for urbanized areas is 5 minutes.

3.2.5 Post-Development Time of Concentration

As Equation 6-8 indicates, the time of concentration is a function of the 5-year runoff coefficient for a drainage basin. Typically, higher levels of imperviousness (higher 5-year runoff coefficients) correspond to shorter times of concentration, and lower levels of imperviousness correspond to longer times of

^{*}For buried riprap, select C_v value based on type of vegetative cover.

Hydrology Chapter 6

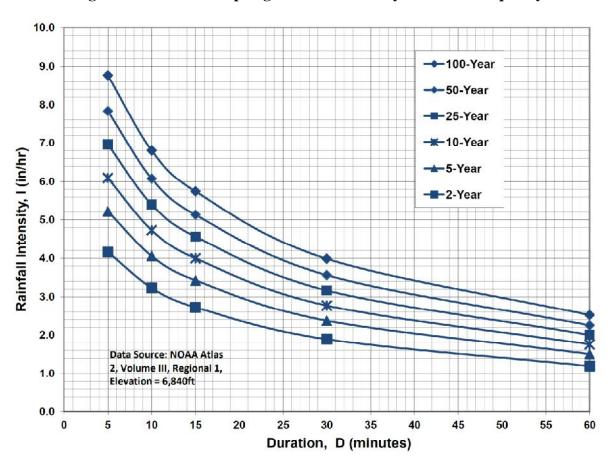


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations

$$I_{100} = -2.52 \ln(D) + 12.735$$

$$I_{50} = -2.25 \ln(D) + 11.375$$

$$I_{25} = -2.00 \ln(D) + 10.111$$

$$I_{10} = -1.75 \ln(D) + 8.847$$

$$I_5 = -1.50 \ln(D) + 7.583$$

$$I_2 = -1.19 \ln(D) + 6.035$$

Note: Values calculated by equations may not precisely duplicate values read from figure.

FALCON FIRE STATION NO. 3 COMPOSITE RUNOFF COEFFICIENTS

EXISTING CONDITIONS	SNOI										
5-YEAR C VALUES	, 0										
BASIN	TOTAL AREA (AC)	(AC)	SUB-AREA 1 DEVELOPMENT/ COVER	O	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	O	(AC)	SUB-AREA 3 DEVELOPMENT/ COVER	O	WEIGHTED C VALUE
₹	5.42	09:0	BUILDINGS/IMPERVIOUS	6.0	4.82	LANDSCAPED	0.08				0.171
100-YEAR C VALUES	ES										
BASIN	TOTAL AREA (AC)	(AC)	SUB-AREA 1 DEVELOPMENT/ COVER	O	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	O	(AC)	SUB-AREA 3 DEVELOPMENT/ COVER	O	WEIGHTED C VALUE
۷	5.42	09:0	BUILDINGS/IMPERVIOUS	96.0	4.82	LANDSCAPED	0.35				0.418
IMPERVIOUS AREAS	AS										
BASIN	TOTAL AREA (AC)	(AC)	SUB-AREA 1 DEVELOPMENT/ COVER	PERCENT IMPERVIOUS	AREA (AC)	SUB-AREA 2 DEVELOPMENT/ COVER	PERCENT IMPERVIOUS	(AC)	SUB-AREA 3 DEVELOPMENT/ COVER	PERCENT IMPERVIOUS	WEIGHTED % IMP
<	7	0		900	4 00	00004	c				04.070
¥	5.42	0.00	BUILDINGS/IIMPERVIOUS	100	4.62	LANDSCAPED	0				0/0.11

FALCON FIRE STATION NO. 3 COMPOSITE RUNOFF COEFFICIENTS

DEVELOPED CONDITIONS	DITIONS										
5-YEAR C VALUES	S										
Z U U	TOTAL AREA	Ó	SUB-AREA 1 DEVELOPMENT/ COVED	C	AREA	SUB-AREA 2 DEVELOPMENT/	C	()	SUB-AREA 3 DEVELOPMENT/	ر	WEIGHTED
NICKO	(DK)	(20)			(25)	200		(25)	200	כ	O VALOE
⋖	2.84	1.80	BUILDINGS/IMPERVIOUS	6.0	1.04	LANDSCAPED	0.08				0.600
В	2.58	2.58	MEADOW	0.08							0.080
100-YEAR C VALUES	JES										
200	TOTAL AREA	Ç	SUB-AREA 1 DEVELOPMENT/	(AREA	SUB-AREA 2 DEVELOPMENT/	(Ć	SUB-AREA 3 DEVELOPMENT/	(WEIGHTED
BASIN	(AC)	(AC)	COVER	ن	(AC)	COVER	ی	(AC)	COVER	ט	C VALUE
₹	2.84	1.80	BUILDINGS/IMPERVIOUS	0.96	1.04	LANDSCAPED	0.35				0.737
В	2.58	2.58	MEADOW	0.35							0.350
IMPERVIOUS AREAS	:AS										
Q d	TOTAL AREA	()	SUB-AREA 1 DEVELOPMENT/	PERCENT	AREA	SUB-AREA 2 DEVELOPMENT/	PERCENT	Ć	SUB-AREA 3 DEVELOPMENT/	PERCENT	WEIGHTED
NIGO		(QV)	N N N N N N N N N N N N N N N N N N N		9	2000		(20)) (C) (F)	INIT LIVE	JIMII OV
∀	2.84	1.80	BUILDINGS/IMPERVIOUS	100	1.04	LANDSCAPED	0				63.380
В	2.58	2.58	MEADOW	0.00							0.000

FALCON FIRE STATION NO. 3 RATIONAL METHOD

EXISTING CONDITIONS

		PEAK FLOW	'R Q5 ⁽⁶⁾ Q100 ⁽⁶⁾	(CFS)	 5 2.79 11.43	
		INTENSITY (5)	5-YR 100-YR	(IN/HR) (IN/HR)	3.01 5.05	
		TOTAL	Tc ⁽⁴⁾	(MIN)	21.1	
		TOTAL	Tc (4)	(NIN)	21.1	
			Tt (3)	Ñ N	4.1	
		SCS (2)	VELOCITY	(FT/S)	2.01	
	Channel flow		SLOPE	(FT/FT)	0.018	
	ี่อี	CHANNEL CONVEYANCE	LENGTH COEFFICIENT	ပ	15	
		CHANNEL	LENGTH	(FT)	200	
	Overland Flow	Flow	Tco (1)	(MIN)	17.0	
			SLOPE	(FT/FT)	0.010	
	0		LENGTH	(FT)	100	
		C	5-YEAR 100-YEAR LENGTH SLOPE		0.418	
			5-YEAR		0.171	
			AREA	(AC)	5.42	
2000			DESIGN	POINT	1	
			BASIN		A	

DEVELOPED CONDITIONS

DEVELOPED CONDITIONS																		
					Ó	Overland Flow	^		Cha	Channel flow								
			_	ن				CHANNEL	CHANNEL CONVEYANCE		SCS (2)		TOTAL	TOTAL	INTENSITY (5)	31TY (5)	PEAK FLOW	MO.
BASIN	DESIGN	7	5-YEAR	5-YEAR 100-YEAR LENGTH SLOPE Tco (1)	LENGTH	SLOPE	Tco ⁽¹⁾	LENGTH	LENGTH COEFFICIENT SLOPE	SLOPE	VELOCITY		Tc (4)	Tc (4) Tc (4)	5-YR	~	Q5 ₍₆₎	Q100 ⁽⁶⁾
	POINT	(AC)			(FT)	(FT/FT)	ΩIW)	(FT)	ပ	(FT/FT)	(FT/S)	(MIN)	(MIN)	(MIN)	(IN/HR)	(IN/HR)	\dashv	(CFS)
А	A	2.84	0.600	0.737	100	0.010	9.2	220	20	0.014	2.37	4.0	13.2	13.2	3.72	6.24	6.33	13.06
В	В	2.58	080'0	0.350	100	0.050	10.9	160	15	0.025	2.37	1.1	12.0	12.0	3.85	6.46	0.79	5.84
A,B	1	5.42	0.352	0.553									13.2	13.2	3.72	6.24	7.10	18.69

1) OVERLAND FLOW Too = (0.395*(1.1-RUNOFF COEFFICIENT)*(OVERLAND FLOW LENGTH*(0.5)/(SLOPE*(0.333))
2) SCS VELOCITY = C * ((SLOPE(FT/FT)*0.5)
C = 2.5 FOR HEAVY MEADOW

C = 5 FOR TILLAGE/FIELD
C = 7 FOR SHORT PASTURE AND LAWNS
C = 10 FOR NEARLY BARE GROUND
C = 15 FOR GRASSED WATERWAY
C = 20 FOR PAVED AREAS AND SHALLOW PAVED SWALES

3) MANNING'S CHANNEL TRAVEL TIME = L/V (WHEN CHANNEL VELOCITY IS KNOWN)

 $I_5 = -1.5 * ln(Tc) + 7.583$

4) Tc = Tco + Tt *** IF TOTAL TIME OF CONCENTRATION IS LESS THAN 5 MINUTES, THEN 5 MINUTES IS USED 5) INTENSITY BASED ON I-D-F EQUATIONS IN CITY OF COLORADO SPRINGS DRAINAGE CRITERIA MANUAL

 $I_{100} = -2.52 * In(Tc) + 12.735$

6) Q = CiA

APPENDIX B HYDRAULIC CALCULATIONS

JPS ENGINEERING

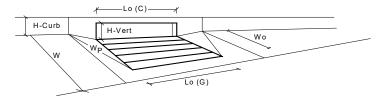
FALCON FIRE STATION NO. 3 STORM INLET SIZING SUMMARY

	BASIN F	LOW		INLET FLO	W				
INLET	DP	Q5 FLOW (CFS)	Q100 FLOW (CFS)	INLET FLOW % OF BASIN	Q5 FLOW (CFS)	Q100 FLOW (CFS)	INLET CONDITION / TYPE	INLET SIZE	INLET CAPACITY (CFS)
	ĺ								
A1	1	6.3	13.1	60	3.8	7.9	SUMP TYPE R	5'	8.9
A2	1	6.3	13.1	20	1.3	2.6	SUMP TYPE R	5'	8.9
A3	1	6.3	13.1	20	1.3	2.6	SUMP TYPE R	5'	8.9

Version 4.05 Released March 2017

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
FALCON FIRE STATION NO. 3 - INLET A1


Project: Inlet ID:

Inlet A1 STREET

Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} = 5.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 50.0 Gutter Width w : 2.00 Street Transverse Slope S_X = 0.010 ft/ft S_W Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} = 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 50.0 50.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP cfs

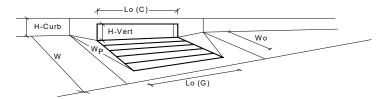
INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	7
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	0.99	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	8.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.8	7.9	cfs

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)
FALCON FIRE STATION NO. 3 - INLET A2 & A3
Inlet A2-A3


Project: Inlet ID:

Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb T_{BACK} = 5.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 Height of Curb at Gutter Flow Line H_{CURB} : 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 50.0 Gutter Width w : 2.00 Street Transverse Slope S_X = 0.010 ft/ft S_W Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition So 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} = 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 50.0 50.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 6.0 12.0 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP cfs

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	0.99	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	8.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.3	2.6	cfs

JPS ENGINEERING

FALCON FIRE STATION NO. 3 STORM SEWER SIZING SUMMARY

	PIPE FLOW			PIPE CAPACIT	Y	
PIPE	BASINS	Q5 FLOW (CFS)	Q100 FLOW (CFS)	SELECTED PIPE SIZE (IN)	MIN. PIPE SLOPE	FULL PIPE CAPACITY (CFS)
A1	A1	3.8	7.9	18	1.0%	10.5
A2	A1,A2	5.0	10.5	18	1.0%	10.5
A3	A3	1.3	2.6	12	1.0%	3.6

ASSUMPTIONS:

1. STORM DRAIN PIPE ASSUMED TO BE RCP OR HDPE

Hydraulic Analysis Report

Project Data

Project Title: Project - Falcon Fire Station No. 3

Designer: JPS

Project Date: Friday, July 17, 2020 Project Units: U.S. Customary Units

Notes:

Channel Analysis: SD-A1-A2

Notes:

Input Parameters

Channel Type: Circular Pipe Diameter: 1.5000 ft

Longitudinal Slope: 0.0100 ft/ft

Manning's n: 0.0130

Depth: 1.5000 ft

Result Parameters

Flow: 10.5043 cfs

Area of Flow: 1.7671 ft^2 Wetted Perimeter: 4.7124 ft Hydraulic Radius: 0.3750 ft Average Velocity: 5.9442 ft/s

Top Width: 0.0000 ft
Froude Number: 0.0000
Critical Depth: 1.2451 ft
Critical Velocity: 6.6989 ft/s
Critical Slope: 0.0098 ft/ft

Critical Top Width: 1.13 ft

Calculated Max Shear Stress: 0.9360 lb/ft^2 Calculated Avg Shear Stress: 0.2340 lb/ft^2

Channel Analysis: SD-A3

Notes:

Input Parameters

Channel Type: Circular Pipe Diameter: 1.0000 ft

Longitudinal Slope: 0.0100 ft/ft

Manning's n: 0.0130

Depth: 1.0000 ft

Result Parameters

Flow: 3.5628 cfs

Area of Flow: 0.7854 ft^2 Wetted Perimeter: 3.1416 ft Hydraulic Radius: 0.2500 ft Average Velocity: 4.5363 ft/s

Top Width: 0.0000 ft

Froude Number: 0.0000
Critical Depth: 0.8057 ft
Critical Velocity: 5.2542 ft/s
Critical Slope: 0.0103 ft/ft
Critical Top Width: 0.79 ft

Calculated Max Shear Stress: 0.6240 lb/ft^2 Calculated Avg Shear Stress: 0.1560 lb/ft^2

APPENDIX C DETENTION POND CALCULATIONS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

acre-feet acre-feet

inches

inches

inches

inches

inches

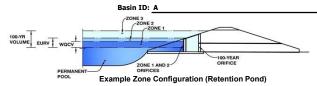
inches

inches

1.19

1.50

1.75


2.00

2.25

2.52

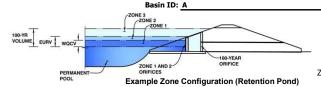
3.14

Project: FALCON FIRE STATION NO. 3

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	2.84	acres
Watershed Length =	670	ft
Watershed Length to Centroid =	300	ft
Watershed Slope =	0.013	ft/ft
Watershed Imperviousness =	63.40%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.


are embedded colorado orban mydro	grapirrioccaa	
Water Quality Capture Volume (WQCV) =	0.059	acre-feet
Excess Urban Runoff Volume (EURV) =	0.222	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.160	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.210	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.250	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.303	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.356	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	0.419	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	0.559	acre-feet
Approximate 2-yr Detention Volume =	0.144	acre-feet
Approximate 5-yr Detention Volume =	0.189	acre-feet
Approximate 10-yr Detention Volume =	0.228	acre-feet
Approximate 25-yr Detention Volume =	0.274	acre-feet
Approximate 50-yr Detention Volume =	0.303	acre-feet
Approximate 100-yr Detention Volume =	0.333	acre-feet

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.059	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.163	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.111	acre-feet
Total Detention Basin Volume =	0.333	acre-feet

Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)
Top of Micropool		0.00				10	0.000		
Bot EL=6828.0		1.00				3,766	0.086	1,888	0.043
		3.00				5,462	0.125	11,116	0.255
Spillway=6831.0		4.00				6,397	0.147	17,045	0.391
Top EL=6833.0		6.00				8,300	0.191	31,742	0.729
			-						
			-						
			-						
			-						

Deput Increment -		IL.							
Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
Top of Micropool		0.00			-	10	0.000		
Bot EL=6828.0		1.00				3,766	0.086	1,888	0.043
		3.00				5,462	0.125	11,116	0.255
Spillway=6831.0		4.00				6,397	0.147	17,045	0.391
Top EL=6833.0		6.00			-	8,300	0.191	31,742	0.729
	-				-				
					-				
					-				

	Estimated	Estimated	0.11.7
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	1.18	0.059	Orifice Plate
Zone 2 (EURV)	2.73	0.163	Orifice Plate
one 3 (100-year)	3.59	0.111	Weir&Pipe (Restrict)
	Total (all zones)	0.333	

<u>User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)</u>

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) N/A Underdrain Orifice Diameter = N/A inches

Project: FALCON FIRE STATION NO. 3

Calculated Parameters for Underdrain Underdrain Orifice Area N/A Underdrain Orifice Centroid = N/A feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice = ft (relative to basin bottom at Stage = 0 ft) 0.00 Depth at top of Zone using Orifice Plate = 2.73 ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = 10.90 inches Orifice Plate: Orifice Area per Row = 0.58 sq. inches (diameter = 7/8 inch)

BMP)	Calculated Parame	ters for Plate
WQ Orifice Area per Row =	4.028E-03	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

and Total Fried of Eden Office Now (numbered from lowest to highest)										
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)		
Stage of Orifice Centroid (ft)	0.00	0.91	1.82							
Orifice Area (sq. inches)	0.58	0.58	0.58							

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Diameter =	N/A	N/A	inches

Vertical Orifice Area = Vertical Orifice Centroid =

	Calculated Parameters for Vertical Orifice							
	Not Selected	Not Selected						
=	N/A	N/A	ft ²					
=	N/A	N/A	feet					

Input: Overflow Weir (Dropbox with Flat o	Calculated Parameters for Overflow Weir					
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	3.50	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	3.50	N/A	feet
Overflow Weir Front Edge Length =	5.00	N/A	feet Overflow Weir Slope Length =	2.50	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	78.25	N/A	
Horiz. Length of Weir Sides =	2.50	N/A	feet Overflow Grate Open Area w/o Debris =	8.75	N/A	ft ²
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area Overflow Grate Open Area w/ Debris =	4.38	N/A	ft ²
Dehris Clogging % -	50%	N/A	1%			

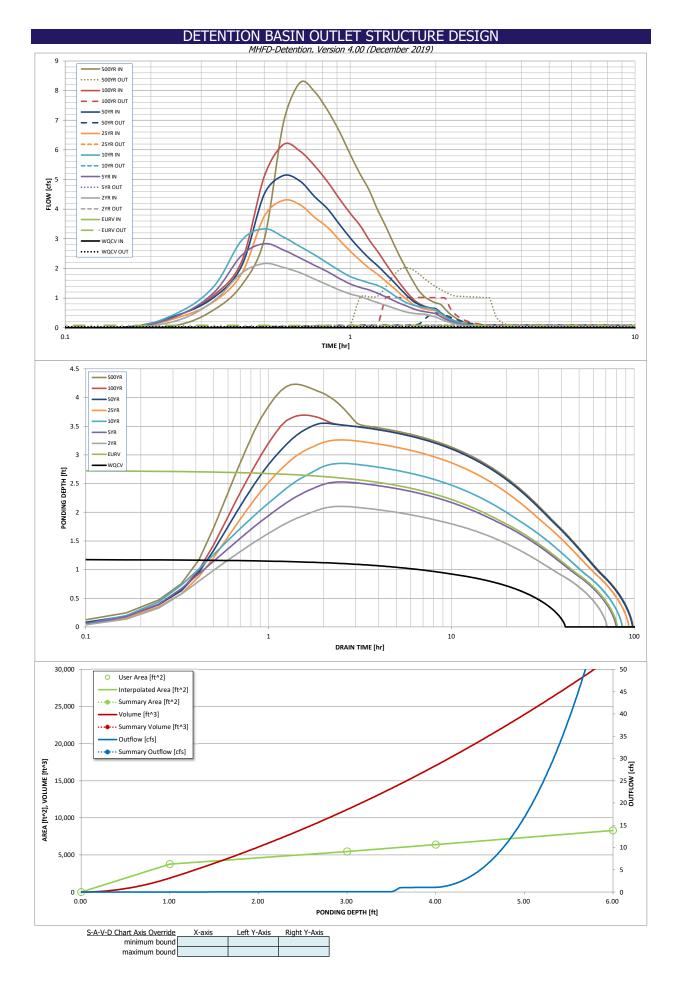
User Input: Outlet

er input: Outlet Pipe w/ Flow Restriction Plate (Circular Office, Restrictor Plate, or Rectangular Office)					s for Outlet Pipe w/	riow Restriction Pia	ale
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.11	N/A	ft ²
Outlet Pipe Diameter =	12.00	N/A	inches (Outlet Orifice Centroid =	0.12	N/A	feet
Restrictor Plate Height Above Pipe Invert =	2.40		inches Half-Central Angle of Re	estrictor Plate on Pipe =	0.93	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	4.00	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	2.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Calculated Parameters for Spillway


Spiliway Design Flow Deput=	0.63	reet
Stage at Top of Freeboard =	5.63	feet
Basin Area at Top of Freeboard =	0.18	acres
Basin Volume at Top of Freeboard =	0.66	acre-ft

Routed Hydrograph Results

Routed Tryal ograph Results	THE USER CUIT OVER	nuc the ucluut cort	ir nyurogrupno unc	a runon volunica by	critering new valu	es in the minor my	drographs table (co	numino vi uniougni	<i>")</i> .
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	
CUHP Runoff Volume (acre-ft) =	0.059	0.222	0.160	0.210	0.250	0.303	0.356	0.419	
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.160	0.210	0.250	0.303	0.356	0.419	
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.0	0.0	0.0	0.4	0.8	1.3	
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.01	0.02	0.14	0.28	0.46	
Peak Inflow Q (cfs) =	N/A	N/A	2.2	2.8	3.3	4.3	5.1	6.2	
Peak Outflow Q (cfs) =	0.0	0.1	0.1	0.1	0.1	0.1	0.5	1.0	
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	2.3	1.8	0.2	0.6	0.8	_
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Plate	Overflow Weir 1	Outlet Plate 1	
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	0.0	0.1	
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Time to Drain 97% of Inflow Volume (hours) =	39	72	64	71	76	82	85	84	
Time to Drain 99% of Inflow Volume (hours) =	41	77	68	76	82	89	92	92	
Maximum Ponding Depth (ft) =	1.18	2.73	2.10	2.53	2.85	3.26	3.55	3.70	
Area at Maximum Ponding Depth (acres) =	0.09	0.12	0.11	0.12	0.12	0.13	0.14	0.14	
Maximum Volumo Storod (acro-ft) =	0.050	0.222	0.150	0.107	0.237	0.280	0.327	0.347	

Note: While some ratios of Outflow to Predevelopment Q are higher than standard; the actual Outflows are negligible (0.1 cfs).

3.14 0.559 0.559 2.4 0.85 8.3 2.0 0.8 Spillway 0.1 N/A 91 4.23 0.15

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

								l in a separate pr		CLIHD
Time Interval	SOURCE TIME	CUHP WOOV [efe]	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval		WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]		25 Year [cfs]	50 Year [cfs]		500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00 0:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.09
	0:15:00	0.00	0.00	0.26 0.91	0.42 1.19	0.52 1.40	0.35 0.88	0.43 1.03	0.42 1.10	0.61 1.44
	0:25:00	0.00	0.00	1.85	2.45	2.95	1.83	2.09	2.25	2.99
	0:30:00	0.00	0.00	2.16	2.84	3.33	3.76	4.51	5.11	6.91
	0:35:00	0.00	0.00	2.03	2.62	3.06	4.30	5.13	6.18	8.27
	0:40:00	0.00	0.00	1.86	2.36	2.74	4.15	4.95	5.96	7.97
	0:45:00	0.00	0.00	1.64	2.10	2.46	3.73	4.43	5.47	7.33
	0:50:00	0.00	0.00	1.44	1.89	2.18	3.38	4.01	4.92	6.63
	0:55:00	0.00	0.00	1.27	1.66	1.93	2.96	3.50	4.36	5.86
	1:00:00	0.00	0.00	1.14	1.48	1.73	2.58	3.03	3.86	5.19
	1:05:00	0.00	0.00	1.05	1.36	1.60	2.27	2.65	3.45	4.64
	1:10:00	0.00	0.00	0.94	1.27	1.51	2.01	2.34	2.96	3.97
	1:15:00	0.00	0.00	0.84	1.16	1.42	1.80	2.09	2.57	3.42
	1:20:00 1:25:00	0.00	0.00	0.75	1.04	1.29	1.57	1.82	2.17	2.87
	1:30:00	0.00	0.00	0.67	0.92 0.81	1.11 0.96	1.36	1.57 1.31	1.80 1.48	2.38 1.94
	1:35:00	0.00	0.00	0.59 0.52	0.81	0.96	1.14 0.95	1.08	1.48	1.55
	1:40:00	0.00	0.00	0.32	0.73	0.76	0.79	0.89	0.95	1.22
	1:45:00	0.00	0.00	0.46	0.58	0.71	0.69	0.78	0.81	1.03
	1:50:00	0.00	0.00	0.45	0.54	0.68	0.63	0.71	0.72	0.91
	1:55:00	0.00	0.00	0.40	0.51	0.65	0.59	0.66	0.66	0.83
	2:00:00	0.00	0.00	0.36	0.47	0.60	0.56	0.63	0.62	0.78
	2:05:00	0.00	0.00	0.28	0.37	0.47	0.44	0.50	0.48	0.60
	2:10:00	0.00	0.00	0.22	0.29	0.37	0.34	0.38	0.36	0.45
	2:15:00	0.00	0.00	0.17	0.22	0.28	0.26	0.29	0.28	0.34
	2:20:00	0.00	0.00	0.13	0.17	0.21	0.20	0.22	0.21	0.26
	2:25:00 2:30:00	0.00	0.00	0.10	0.13	0.16	0.15	0.17	0.16	0.20
	2:35:00	0.00	0.00	0.08	0.10 0.07	0.12	0.11	0.13	0.12	0.15 0.11
	2:40:00	0.00	0.00	0.04	0.07	0.09	0.06	0.03	0.03	0.11
	2:45:00	0.00	0.00	0.03	0.04	0.05	0.05	0.05	0.05	0.06
	2:50:00	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.03	0.04
	2:55:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.02
	3:00:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00 3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Design Procedure Form: Extended Detention Basin (EDB)						
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3				
Designer:	signer: JPS					
Company:	<u>JPS</u>					
Date:	September 14, 2020 Falcon Fire Station No. 3					
Project:	Detention Basin A					
Location:	Determon Dasin A					
1 Pasin Storage \	/aluma					
1. Basin Storage \	volune					
A) Effective Imp	perviousness of Tributary Area, I _a	I _a = 63.4 %				
B) Tributary Are	ea's Imperviousness Ratio (i = I _a / 100)	i = 0.634				
C) Contributing	Watershed Area	Area = 2.840 ac				
	neds Outside of the Denver Region, Depth of Average ducing Storm	d ₆ = in				
		Choose One				
E) Design Cond (Select EUR)	cept V when also designing for flood control)	○ Water Quality Capture Volume (WQCV)				
,	,	Excess Urban Runoff Volume (EURV)				
	me (WQCV) Based on 40-hour Drain Time	V _{DESIGN} = 0.059 ac-ft				
(V _{DESIGN} = (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)					
	heds Outside of the Denver Region, ity Capture Volume (WQCV) Design Volume	V _{DESIGN OTHER} = ac-ft				
	ity Capture Volume (WQCV) Design Volume $R = (d_6*(V_{DESIGN}/0.43))$					
∐) Hear Input o	of Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN} user= ac-ft				
	ferent WQCV Design Volume is desired)	V DESIGN USER				
I) NRCS Hydro	ologic Soil Groups of Tributary Watershed					
i) Percenta	age of Watershed consisting of Type A Soils	HSG _A = 100 %				
	age of Watershed consisting of Type B Soils tage of Watershed consisting of Type C/D Soils	$\begin{array}{c c} \operatorname{HSG}_{B} = & 0 & \% \\ \operatorname{HSG}_{CD} = & 0 & \% \end{array}$				
J) Excess Urba For HSG A	an Runoff Volume (EURV) Design Volume : EURV _A = 1.68 * i ^{1.28}	EURV _{DESIGN} = 0.222 ac-f t				
For HSG B	: EURV _B = 1.36 * i ^{1.08}	2011 DESIGN				
For HSG C	/D: EURV _{C/D} = 1.20 * j ^{1.08}					
	of Excess Urban Runoff Volume (EURV) Design Volume	EURV _{DESIGN USER} = ac-f t				
(Only if a dif	fferent EURV Design Volume is desired)					
2 Basin Shane: L	ength to Width Ratio	L:W= 2.0 :1				
	to width ratio of at least 2:1 will improve TSS reduction.)	L . W 1				
3. Basin Side Slop	pes					
A) Basin Maxin	num Side Slopes	Z = 3.00 ft / ft				
	distance per unit vertical, 4:1 or flatter preferred)	DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE				
4. Inlet		Congrete Fershou				
A) Describe me	eans of providing energy dissipation at concentrated	Concrete Forebay				
inflow location						
5. Forebay						
A) Minimum Fo		V _{FMIN} = 0.001 ac-ft				
(V _{FMIN}	= 1% of the WQCV)					
B) Actual Foreb	bay Volume	V _F = 0.001 ac-ft				
C) Forebay Dep	oth					
(D _F		D _F = 12.0 in				
D) Forebay Disc	charge					
		0 = 12.10 afe				
i) Undetaine	ed 100-year Peak Discharge	Q ₁₀₀ = 13.10 cfs				
ii) Forebay (Q _F = 0.0	Discharge Design Flow	Q _F = 0.26 cfs				
E) Forebay Disc	charge Design	Choose One				
		Berm With Pipe Flow too small for berm w/ pipe Wall with Rect. Notch				
		Wall with V-Notch Weir				
F) Discharge Pi	ipe Size (minimum 8-inches)	Calculated D _P =in				
G) Rectangular	Notch Width	Calculated W _N = 3.3 in				

	Design Procedure Form: I	Extended Detention Basin (EDB)
Designer:	JPS	Sheet 2 of 3
Company:	JPS	
Date:	September 14, 2020	
Project:	Falcon Fire Station No. 3	
Location:	Detention Basin A	
6. Trickle Channel		Choose One O Concrete
A) Type of Trick	de Channel	◯ Soft Bottom
F) Slope of Trick	kle Channel	S = 0.0050 ft / ft
7. Micropool and O	Outlet Structure	
A) Depth of Micr	ropool (2.5-feet minimum)	D _M = 2.5 ft
B) Surface Area	a of Micropool (10 ft ² minimum)	A _M = 10 sq ft
C) Outlet Type		
		Choose One ● Orifice Plate
		Other (Describe):
	nension of Orifice Opening Based on Hydrograph Routing	
(Use UD-Detenti	ion)	D _{orifice} = 0.88 inches
E) Total Outlet A	Area	A _{ct} = 1.74 square inches
8. Initial Surcharge	Volume	
A) Depth of Initia	al Surcharge Volume	D _{IS} = 6 in
	commended depth is 4 inches)	
B) Minimum Initia	al Surcharge Volume	V _{IS} = cu ft
(Minimum volu	ume of 0.3% of the WQCV)	
C) Initial Surchar	rge Provided Above Micropool	V _s = 5.0 cu ft
9. Trash Rack		
A) Water Quality	y Screen Open Area: A _t = A _{ot} * 38.5*(e ^{-0.095D})	A _t = 62 square inches
	en (If specifying an alternative to the materials recommended	S.S. Well Screen with 60% Open Area
	indicate "other" and enter the ratio of the total open are to the for the material specified.)	
total screen are i	ioi tile material specified.)	
	Other (Y/N): N	
	Open Area to Total Area (only for type 'Other')	User Ratio =
,	Quality Screen Area (based on screen type)	A _{total} = 103 sq. in.
	ign Volume (EURV or WQCV) design concept chosen under 1E)	H=feet
F) Height of Wat	ter Quality Screen (H _{TR})	H _{TR} = 60.76 inches
	ter Quality Screen Opening (W _{opening}) inches is recommended)	W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES.
(

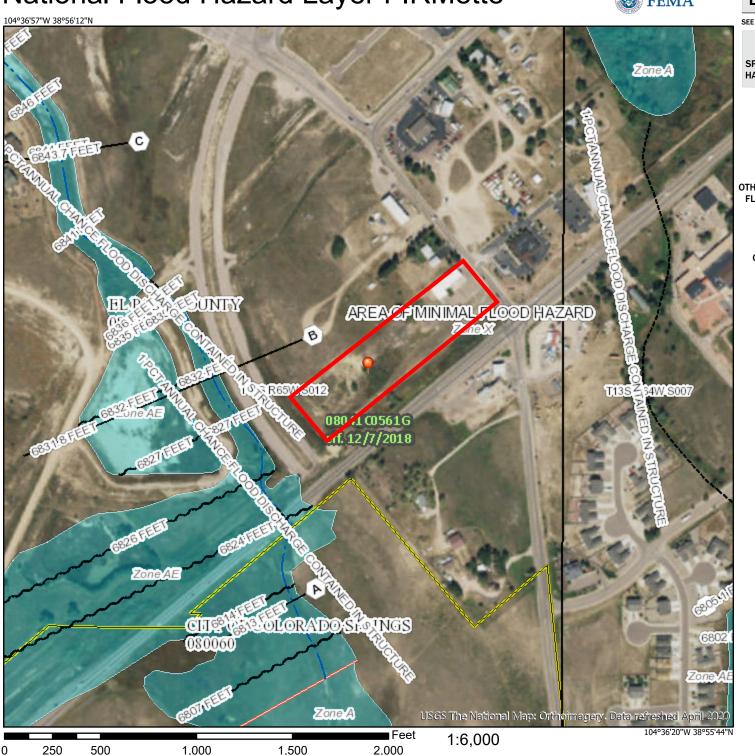
	Design Procedure Form:	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	JPS JPS September 14, 2020 Falcon Fire Station No. 3 Detention Basin A	Sheet 3 of 3
B) Slope of C	pankment pembankment protection for 100-year and greater overtopping: Overflow Embankment al distance per unit vertical, 4:1 or flatter preferred)	Buried Riprap Spillway Ze = 3.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
11. Vegetation		Choose One
12. Access A) Describe s	Sediment Removal Procedures	Periodic inspection and maintenance by property owner as required; Ramp provided for skid-loader access to pond bottom
Notes:		

APPENDIX D FIGURES

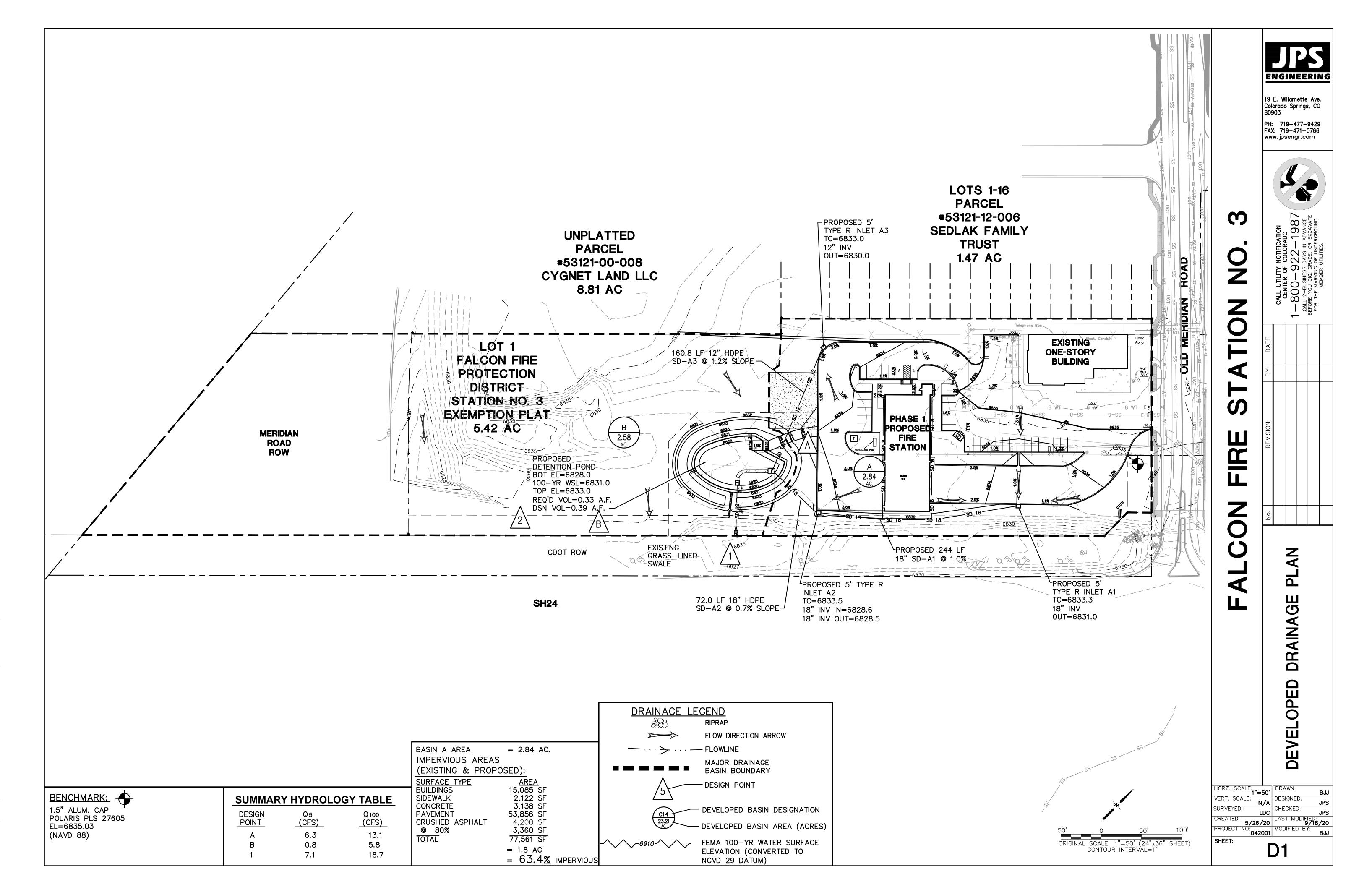
National Flood Hazard Layer FIRMette

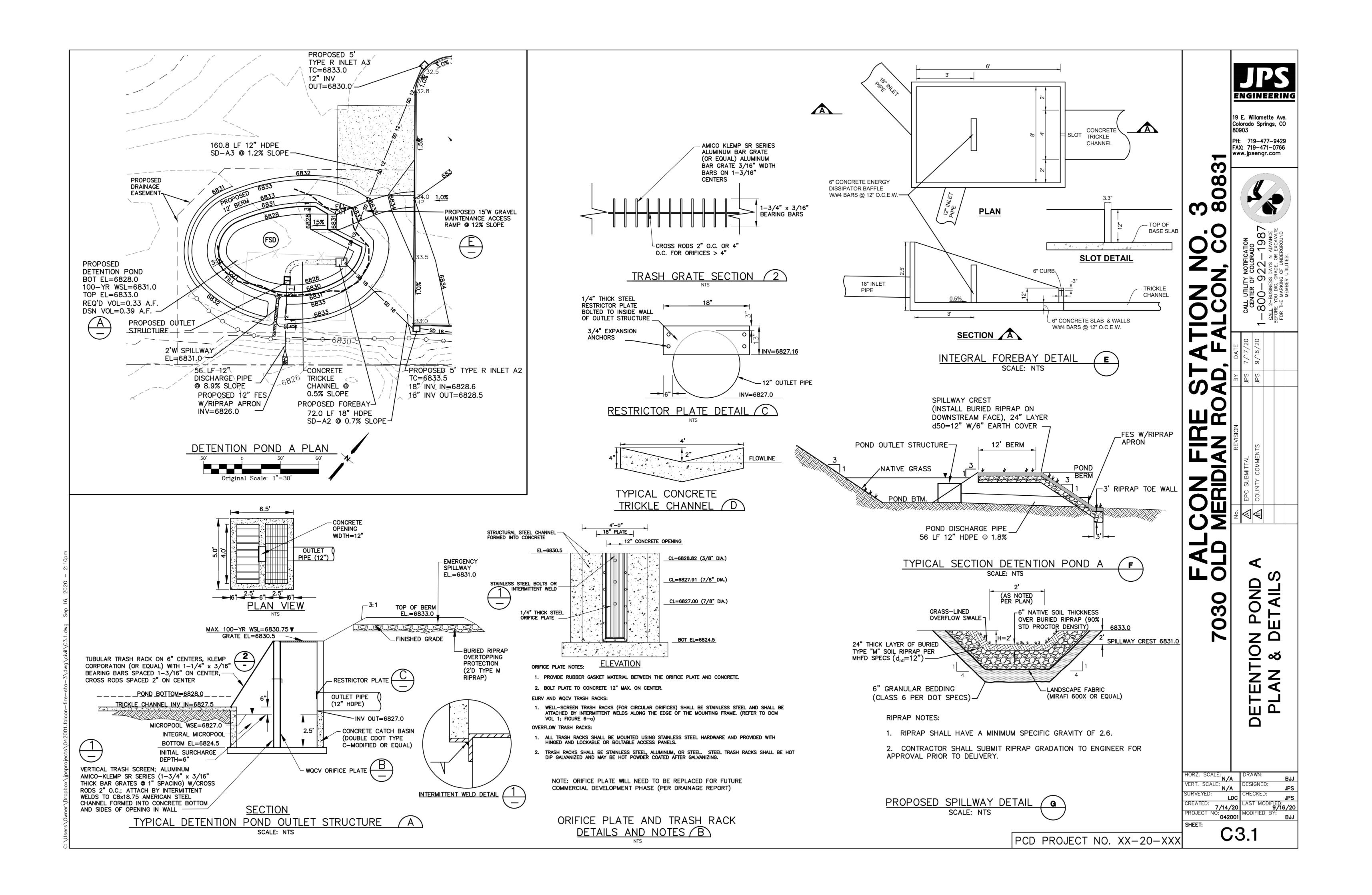
Legend SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD **HAZARD AREAS Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X **Future Conditions 1% Annual** Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D - - - Channel, Culvert, or Storm Sewer **GENERAL** STRUCTURES | LILLI Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation **Coastal Transect** ⊶⊷ 513⊶⊶ Base Flood Elevation Line (BFE) Limit of Study **Jurisdiction Boundary Coastal Transect Baseline** OTHER **Profile Baseline FEATURES** Hydrographic Feature Digital Data Available No Digital Data Available

MAP PANELS


The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards


The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 7/17/2020 at 4:15 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.


Unmapped

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

Jsers/Owner/Dropbox/jpsprojects/042001.falcon-fire-sta-3/dwg/civil/EX1.dwg

