FINAL DRAINAGE REPORT FOR HOMESTEAD AT STERLING RANCH FILING NO. 2

EL PASO COUNTY, COLORADO

February 2019

Prepared for: SR Land, LLC 20 Boulder Crescent, Suite 210 Colorado Springs, CO 80903

Prepared by:

20 Boulder Crescent, Suite 110 Colorado Springs, CO 80903 (719) 955-5485

> Project #09-007 DSD Project # SF-19-004

Cursory comments only provided on this report. Full review requires the Sand Creek Channel Design Report to be completed and accepted prior to an adjacent development's drainage report full review.

FINAL DRAINAGE REPORT FOR **HOMESTEAD AT STERLING RANCH FILING NO. 2**

DRAINAGE PLAN STATEMENTS

ENGINEERS STATEMENT

The attached drainage plan and report was prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin.

I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Virgil A. Sanchez, P.E. #37160 For and on Behalf of M&S Civil Consultants, Inc

DEVELOPER'S STATEMENT

I, the developer have read and will comply with all the requirements specified in this drainage report and plan.

BY:______ James F Morley

TITLE:_____ DATE:

ADDRESS: SR Land, LLC 20 Boulder Crescent, Suite 210 Colorado Springs, CO 80903

EL PASO COUNTY'S STATEMENT

Filed in accordance with the requirements of El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

BY:_____ DATE:_____

Jennifer Irvine, P.E. County Engineer / ECM Administrator

FINAL DRAINAGE REPORT FOR HOMESTEAD AT STERLING RANCH FILING NO. 2

TABLE OF CONTENTS

PURPOSE	4
GENERAL LOCATION AND DESCRIPTION	4
SOILS	4
HYDROLOGIC CALCULATIONS	4
HYDRAULIC CALCULATIONS	5
FLOODPLAIN STATEMENT	5
DRAINAGE CRITERIA	5
FOUR STEP PROCESS	5
EXISTING DRAINAGE CONDITIONS	6
PROPOSED DRAINAGE CHARACTERISTICS	6
INTERIM CHANNEL IMPROVEMENTS	8
ULTIMATE CHANNEL IMPROVEMENTS	8
WATER QUALITY PROVISIONS	8
EROSION CONTROL	9
CONSTRUCTION COST OPINION	9
DRAINAGE & BRIDGE FEES	10
STERLING RANCH FIL. NO.1 - SIA	10
SUMMARY	10
REFERENCES	11

APPENDIX

Vicinity Map Soils Map FIRM Panel W/ Revised LOMR Hydrologic Calculations Hydraulic Calculations Drainage Map

FINAL DRAINAGE REPORT FOR HOMESTEAD AT STERLING RANCH FILING NO. 2

PURPOSE

This document is the Final Drainage Report for Homestead at Sterling Ranch Filing No. 2. This report was previously discussed, as a preliminary drainage report, in the "Master Development Drainage Report for Sterling Ranch Filing Nos. 1&2, and Final Drainage Report for Sterling Ranch Filing No.1" prepared by MS Civil Consultants, dated April 2017. The purpose of this document is to identify and analyze the on and offsite drainage patterns and to ensure that post development runoff is routed through the site safely and in a manner that satisfies the requirements set forth by the El Paso County Drainage Criteria Manual. The following report is an analysis of the drainage for Homestead at Sterling Ranch Filing No. 2, single family lots, onsite and offsite drainage.

GENERAL LOCATION AND DESCRIPTION

Homestead at Sterling Ranch Filing No. 2 is located in the SE ¹/₄ of the NW ¹/₄, the SW ¹/₄ of the NE ¹/₄, and the NW ¹/₄ of the NE ¹/₄ of Section 33, Township 12 South, Range 65 West of the 6th Principal Meridian, and the NE ¹/₄ of the SW ¹/₄ of Section 33, Township 12 South, Range 65 West of the 6th Principal Meridian within unincorporated El Paso County, Colorado. The site is bound on the south by an existing detention pond, to the north by Briargate Parkway and to the east by Sand Creek. Existing Dines Boulevard runs along the western site boundary. An existing residential development, Homestead at Sterling Ranch Filing No. 1, bounds the site to the west and a future commercial parcel bounds the site to the northwest. Sterling Ranch lies within the Sand Creek Drainage Basin. Flows from this site are tributary to Sand Creek.

Homestead at Sterling Ranch Filing No. 2 consists of 29.658 acres and is presently undeveloped. Vegetation is sparse, consisting of native grasses. Existing site terrain generally slopes from north to southwest at grade rates that vary between 2% and 6%.

Land use for Homestead at Sterling Ranch Filing No. 2 is currently listed as AG (Grazing Land). Improvements proposed for the site include paved streets, trails, a full spectrum detention pond, and utilities as normally constructed for a residential development.

SOILS

Soils for this project are delineated by the map in the appendix as Pring Coarse Sandy Loam (71) and is characterized as Hydrologic Soil Types "B". Soils in the study area are shown as mapped by S.C.S. in the "Soils Survey of El Paso County Area". Vegetation is sparse, consisting of native grasses and weeds.

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual and where applicable the Urban Storm Drainage Criteria Manual. The Rational Method was used to estimate stormwater runoff anticipated from design storms with 5-year and 100-year recurrence intervals.

HYDRAULIC CALCULATIONS

Hydraulic calculations were estimated using the Manning's Formula and the methods described in the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual. The relevant data sheets can be found in the "Master Development Drainage Report for Sterling Ranch Filing Nos. 1&2, and Final Drainage Report for Sterling Ranch Filing No.1" prepared by MS Civil Consultants, dated April 2017 and in the appendix of this report.

FLOODPLAIN STATEMENT

No portion of this site is within a designated F.E.M.A. floodplain as determined by the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel No. 08041C0535 F, effective date March 17, 1997 and revised to reflect LOMR, 08-08-0541P, dated July 23, 2009. An annotated FIRM Panel is included in the Appendix.

Call out updated FIRM Dec.7 2018

DRAINAGE CRITERIA

This drainage analysis has been prepared in accordance with the current City of Colorado Springs/El Paso County Drainage Criteria Manual, Volumes I & II, dated November 1991, including subsequent updates. El Paso County has also adopted Chapter 6 and Section 3.2.1 of Chapter 13 in the City of Colorado Springs & El Paso County Drainage Criteria Manual Volumes I and II, dated May 2014. (Appendix I of the El Paso County's Engineering Criteria Manual (ECM), 2008). In addition to the ECM, the Urban Storm Drainage Criteria Manuals, Volumes 1-3, published by the Urban Drainage and Flood Control District (Volumes 1 & 2 dated January 2016, Volume 3 dated November 2010 and updates. Calculations were performed to determine runoff quantities for the 5-year and 100-year frequency storms for developed conditions using the Rational Method.

FOUR STEP PROCESS

Step 1 Employ Runoff Reduction Practices. Roof drains will be directed to side yard swales and as possible to grass lined swales to aid in minimizing direct connection of impervious surfaces.

Step 2 Implement BMPs that provide a water quality capture volume with slow release. – An existing Full Spectrum Detention Facility (see Sterling Ranch Filing Nos. 1&2 MDDP, Pond 4) was planned and constructed to handle tributary flows for the southwest portion of the site. All remaining tributary areas from the site will be treated in a proposed temporary Full Spectrum Detention Facility, Interim Pond 1. Both ponds will incorporate water quality capture volumes that are intended to slowly drain in 40 hours and excess urban runoff volumes that are intended to drain within 72 hours.

Step 3 Stabilize streams. – With the full spectrum detention facilities in place, the runoff from the proposed residential development will be reduced to predevelopment conditions. The developed discharge from the site is less that existing and therefore is not anticipated to have negative effects on downstream drainageways. Provide information on the stabilization of Sand Creek.

Step 4 Consider need for Industrial and Commercial BMPs. – No industrial or commercial land uses are proposed with this development. The proposed residential development area will implement a Stormwater Management Plan (SWMP) incorporation proper housekeeping procedures. Onsite drainage will be routed through proposed private temporary Full Spectrum Detention Facility (FSD), Interim Pond 1, to minimize introduction of contaminates to the county's public drainage systems.

EXISTING DRAINAGE CONDITIONS

The Homestead at Sterling Ranch Filing No. 2 site consists of 29.658 acres and is situated west of the Sand Creek Watershed. This area was previously studied in the "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Corporation, revised March 1996. More recently the area was studied in the "Master Development Drainage Report for Sterling Ranch Filing Nos. 1&2, and Final Drainage Report for Sterling Ranch Filing No.1" prepared by MS Civil Consultants, dated April 2017 (henceforth referred to as "Sterling Ranch Filing Nos. 1&2 MDDP"). Homestead at Sterling Ranch Filing No. 2 and the surrounding areas, with the exception of the existing Barbarick Subdivision, have already been graded during the overlot of the subdivision. Please refer to the Sterling Ranch Filing Nos. 1&2 MDDP by MS Civil Consultants for information on historic conditions and overlot drainage patterns.

Provide an existing conditions drainage map/plan.

PROPOSED DRAINAGE CHARACTERISTICS

General Concept Drainage Discussion

The following is a description of the onsite basins, offsite bypass flows and the overall drainage characteristics for the development of Sterling Ranch Filing No. 2. The development of Sterling Ranch Filing No. 2 consists of residential streets and cul-de-sacs, proposed storm drainage improvements, and lots located within the filing boundary. The proposed development results in drainage patterns and flow values that are the same or less than those in the Sterling Ranch Filing Nos. 1&2 MDDP. Surface flow is designated as Design Points (DP). The following DPs and Basins were determined using the Rational Method since this method offers a more conservative approach to drainage. It should be noted that all calculations and drainage basins have been revised to reflect the new criteria updates by the El Paso County/City of Colorado Springs Drainage Criteria Manual. For comparison, the **asterisk (*)** symbol in the detailed drainage discussions below represents each Basin or Design Point as labeled in the Sterling Ranch Filing Nos. 1&2 MDDP. Asterisk symbols on the Proposed Drainage Map in the appendix also represent Basins, Design Points and Pipe Runs as presented in the Sterling Ranch Filing Nos. 1&2 MDDP.

Detailed Drainage Discussion (Design Points)

DP2*, 5.39 acres, consists of Basin B* planned residential lots and streets with runoff coefficients of 0.38 for the 5-year and 0.55 for the 100-year. Developed runoff of Q5=8.0 cfs and Q100=19.3 cfs has been calculated for DP2*. The surface runoff is routed via overlot grading and planned swales to two existing 15' CDOT Type R at-grade inlets. The flows are routed east via a 36" RCP to DP5.

DP3*, 2.92 acres, consists of Basin C* residential lots within Homestead at Sterling Ranch Filing No. 1, and streets with runoff coefficients of 0.38 for the 5-year and 0.55 for the 100-year. Developed runoff of Q5=4.2 cfs and Q100=10.1 cfs has been calculated for DP3*. The surface runoff is routed via overlot grading and proposed swales to an existing 5' CDOT type R sump inlet. The flows captured by the inlet are routed to existing Detention Pond 4.

DP4*, 9.36 acres, consists of Basin D* and Basin E* residential lots within Homestead at Sterling Ranch Filing No. 1 and streets with runoff coefficients of 0.38 for the 5-year and 0.55 for the 100-year and Basin F* (Dines Boulevard) with runoff coefficients of 0.90 for the 5-year and 0.96 for the 100-year. Developed runoff of Q5=16.1 cfs and Q100=36.7 cfs has been calculated for DP4. The surface runoff is routed via overlot grading and curb and gutter to DP4* which will be collected by a 15' CDOT type R at-grade inlet. The intercepted flow (Q5=13.3 cfs and Q100=20.0 cfs) will combine with flows from DP3* and be routed east via a 30" RCP (PR6*, Q5=16.8 cfs and Q100=29.4 cfs) to existing Detention Pond 4.

DP5*, 0.80 acres, consists of Basin G* residential lots with runoff coefficients of 0.22 for the 5-year and 0.46 for the 100-year, Basin H* existing Dines Boulevard, with runoff coefficients of 0.90 for the 5-year and 0.96 for the 100-year and flowby from Sterling Ranch Filing Nos. 1&2 MDDP DP4*. Developed runoff of Q5=4.2 and Q100=19.7 cfs has been calculated for DP5*. The surface runoff is routed via overlot grading and curb and gutter to DP5* which is collected by an existing 15' CDOT type R at-grade inlet. DP5* has an intercepted flow of (Q5=4.2 cfs and Q100=14.7 cfs) and of flowby of (Q5=0.0 cfs and Q100=5.0 cfs). Flowby from DP5* continues on to Sterling Ranch Filing Nos. 1&2 MDDP DP18*.

And ultimately to what Pond?

DP6*, 4.68 acres, consists of Sterling Ranch Filing Nos. 1&2 MDDP Basins J* and K* planned residential lots with runoff coefficients of 0.22 for the 5-year and 0.46 for the 100-year, Sterling Ranch Filing Nos. 1&2 MDDP Basin I* (Wheatland Drive) and Basin L* (Dines Boulevard) with runoff coefficients of 0.90 for the 5-year and 0.96 for the 100-year. Developed runoff of Q5=14.1 cfs and Q100=26.7cfs has been calculated for DP6*. The surface runoff is routed via overlot grading and curb and gutter to DP6* which is collected by an existing 15' CDOT type R at-grade inlet. DP6* has an intercepted flow of (Q5=12.1 cfs and Q100=17.2 cfs) and of flowby of (Q5=2.0 cfs and Q100=9.5 cfs). Flowby from DP6* continues on to Sterling Ranch Filing Nos. 1&2 MDDP DP1*.

And ultimately to what Pond?

DP7, 4.42 acres, consists of Basin P proposed residential lots with runoff coefficients of 0.38 for the 5-year and 0.55 for the 100-year. Developed runoff of Q5=5.7 and Q100=13.8 cfs has been calculated for DP7. Surface runoff is routed via overlot grading and curb and gutter to DP7 which is collected by a proposed 10' CDOT type R sump inlet. Flows captured by the proposed 10' CDOT type R sump inlet are routed to existing Detention Pond 4 by proposed RCP storm sewer.

DP8, 3.78, acres, consists of Basin Q proposed residential lots with runoff coefficients of 0.38 for the 5year and 0.55 for the 100-year. Developed runoff of Q5=4.9 and Q100=11.8 cfs has been calculated for DP8. Surface runoff is routed via overlot grading and curb and gutter to DP8 which is collected by a proposed 10' CDOT type R sump inlet. Flows captured by the proposed 10' CDOT type R sump inlet are routed to existing Detention Pond 4 by proposed RCP storm sewer.

DP9, acres, consists of Basin R proposed residential lots with runoff coefficients of 0.38 for the 5-year and 0.55 for the 100-year. Developed runoff of Q5=2.2 and Q100=5.4 cfs has been calculated for DP9. Surface runoff is routed via overlot grading and curb and gutter to DP9 which is collected by a proposed 5' CDOT type R sump inlet. Flows captured by the proposed 10' CDOT type R sump inlet combine with captured flows contributed from Design Points 7 & 8 and are routed to existing Detention Pond 4 by Pipe Run 4 (Q5=12.4 and Q100=30.1 cfs). Pipe Run 4 connects to existing Sterling Ranch Filing Nos. 1&2 MDDP Pipe Run 10* (Q5=12.5 and Q100=30.4 cfs) and is discharged into the forebay of existing Detention Pond 4. Flows contributed to the forebay of existing Detention Pond 4 are less than those anticipated by the MDDP, therefore having no detrimental hydraulic affects to existing Detention Pond 4.

therefore Pond 4 has the capacity for SWQ and Full Spectrum Detention for these flows. **DP10**, 9.14, acres, consists of Basin T proposed residential lots with runoff coefficients of 0.30 for the 5-year and 0.50 for the 100-year. Developed runoff of Q5=9.4 and Q100=15.6 cfs has been calculated for DP10. Surface runoff is routed via overlot grading and curb and gutter to DP10 which is collected by a proposed 15' CDOT type R at-grade inlet. DP10 has an intercepted flow of (Q5=9.1 cfs and Q100=12.7 cfs) and of flowby of (Q5=0.3 cfs and Q100=2.9 cfs). Flows captured by the proposed 15' CDOT type R at-grade inlet are routed southwest to the proposed full spectrum detention Pond 1 by proposed RCP storm sewer.

DP11, 1.48, acres, consists of Basin V1 proposed residential lots with runoff coefficients of 0.38 for the 5year and 0.55 for the 100-year. Developed runoff of Q5=1.9 and Q100=15.6 cfs has been calculated for DP11. Surface runoff is routed via overlot grading and curb and gutter to DP11 which is collected by a proposed 15' CDOT type R at-grade inlet. DP11 has an intercepted flow of (Q5=1.9 cfs and Q100=12.7 cfs) and of flowby of (Q5=0.0 cfs and Q100=2.9 cfs). Flows captured by the proposed 15' CDOT type R atgrade inlet are routed southwest to the proposed full spectrum detention Pond 1 by proposed RCP storm sewer.

DP12, 4.50, acres, consists of Basin U proposed residential lots with runoff coefficients of 0.38 for the 5year and 0.55 for the 100-year and flowby from DP10. Developed runoff of Q5=6.2 cfs and Q100=17.2 cfs has been calculated for DP12. Surface runoff is routed via overlot grading and curb and gutter to DP12 which is collected by a proposed 10' CDOT type R sump inlet. Flows captured by the proposed 10' CDOT type R sump inlet are routed to the proposed full spectrum detention Pond 1 by proposed RCP storm sewer.

DP13, 0.83, acres, consists of Basin V2 proposed residential lots with runoff coefficients of 0.38 for the 5year and 0.55 for the 100-year and flowby from DP11. Developed runoff of Q5=1.2 and Q100=5.9 cfs has been calculated for DP13. Surface runoff is routed via overlot grading and curb and gutter to DP13 which is collected by a proposed modified 5' length by 4.5' wide CDOT type R sump inlet.

DP14, 0.56, acres, consists of Basin W1 proposed full spectrum detention Pond 1 with runoff coefficients of 0.08 for the 5-year and 0.35 for the 100-year and contributed flow from PR9. Developed runoff of Q5=19.6 cfs and Q100=52.4 cfs has been calculated for DP14. All flows captured by inlets at Design Points DP10, DP11, DP12 and DP13 are routed by Pipe Run 9 (PR9, Q5=17.9 and Q100=47.1 cfs) to the forebay in Pond 1 and combine with surface runoff within Basin W1. An outlet structure with an orifice plate and restrictor plate regulates release rates and provides treatment to all flows tributary to DP14. See the Water Quality Provisions discussion in this report for more information on Pond 1.

Detailed Drainage Discussion (Drainage Basins)

Complete report to include the basins and design points not mentioned here. (the western 1/2 of this filing)

Basins X, Y and W1, 4.77 acres, consists of proposed residential backyard lots located along the east boundary of the site and outer edge of Pond 1 bank, with runoff coefficients of 0.22 and 0.08 for the 5-year and 0.46 and 0.35 for the 100-year. Developed combined runoff of Q5=2.3 cfs and Q100=8.0 cfs, Q5=2.0 cfs and Q100=7.1 cfs and Q5=0.2 cfs and Q100=1.7 cfs respectively has been calculated for the basins. Sheet flow produced within the residential backyard lots and outer edge of Pond 1 of Basins X, W1 and Y travels east towards Sand Creek.

No more than 1 acre can flow directly into Sand Creek without treatment. These areas need to be captured and treated.

INTERIM CHANNEL IMPROVEMENTS

Slope grading and intermittent channel bank lining has been proposed for portions of the developable areas adjacent to Sand Creek to protect the developed lots and prevent excessive erosion until the DBPS recommended Sand Creek Channel improvements are installed. The proposed slope grading is intended to reduce outer bank grades and bring uniformity to areas where significant rilling and destabilization has occurred. Interim proposed channel stabilization improvements includes placement of soil riprap and Turf reinforcement matting along embankment toes and along embankment slopes, both of which will function to retain soils and vegetation during heavy rains or larger flood flow events. All disturbed areas, not hardscaped will be re-vegetated with native species, as per El Paso County erosion control standards. Storm sewer outfalls into Sand Creek shall be protected by low-tailwater riprap basins. The outfall protection is shown on the accompanying drainage map in the appendix. Refer to the Homestead Filing No.2 Grading and Erosion Control Plans for riprap and turf reinforcement map placement and construction details.

ULTIMATE CHANNEL IMPROVEMENTS

Permanently installed check structures and rip-rap channel lining will need to be installed within Sand Creek Channel to handle the runoff from fully developed Sterling Ranch and up-gradient watershed in accordance with the Sand Creek DBPS. A discussion regarding the timing of these channel improvements is provided in a subsequent paragraph titled Sterling Ranch Filing No. 1 Subdivision Improvement agreement which follows the Construction Costs segment of this report.

WATER QUALITY PROVISIONS

The proposed temporary Full Spectrum Detention Facility, Interim Pond 1 functions as a water quality facility for runoff produced onsite from tributary Basins T, U, V1, V2 and W1. This water quality facility is designed to treat 0.247 ac-ft of water quality storage (WQCV), 0.701 ac-feet of excess urban runoff volume (EURV) and 1.283 ac-ft of 100-year storage. An emergency spillway, riprap stilling basin and trickle channel, outlet structure, and maintenance access road has been designed for Interim Pond 1. The pond is temporary in nature and designed to provide water quality during the interim period before ultimate channel improvements to Sand Creek have been completed. Upon ultimate channel improvements to Sand Creek, the pond shall be removed and runoff shall be routed south, via the proposed 36" RCP pipe extending from the proposed modified 5'x4.5' CDOT Type R sump inlet (see Design Point 13). A drainage easement will be provided to rout the 36" RCP to a permanent FSD facility for treatment.

The WQCV and EURV required for the site has been determined using the guidelines set forth in the City of Colorado Springs/El Paso County Drainage Criteria Manual - Volume II. Refer to the water quality facility sizing calculations located within the appendix of this report (see UD-Detention Worksheet in appendix).

EROSION CONTROL

It is the policy of the El Paso County that a grading and erosion control plan be submitted with the drainage report. EPC approved "Early Grading Plan for Sterling Ranch Phase I <u>Onsite</u> Grading & Erosion Control", November 18, 2015. And "Early Grading Plan for Sterling Ranch Phase I <u>Offsite</u> Grading & Erosion Control", December 3, 2015. Grading and Erosion control operations are currently underway (August 2016). Grading and Erosion Control will cease with the final development of the site in the next 12-36 months.

Update to current conditions.

CONSTRUCTION COST OPINION – HOMESTEAD AT STERLING RANCH FIL. NO. 2

Drainage Facilities:

Drainage improvements are planned with the development of Homestead at Sterling Ranch Filing No. 2. A majority of the construction costs have been accounted for in the "Master Development Drainage Report for Sterling Ranch Filing Nos. 1&2, and Final Drainage Report for Sterling Ranch Filing No.1" prepared by MS Civil Consultants, dated April 2017. Any additional improvements and costs are listed below.

The following list of drainage improvements are **Non-Reimbursable.** The Reimbursable facilities are outlined in the Sterling Ranch Filing No. 1 Final Drainage Report and Sterling Ranch MDDP. Refer to the MDDP for Sterling Ranch Cost and Fee Analysis Report (February 2019).

Item	Description	Quar	ntity	Unit C	ost	Cost
1.	18" RCP	168	LF	\$40	/LF	\$6,720.00
2.	24" RCP	54	LF	\$50	/LF	\$2,700.00
3.	30" RCP	998	LF	\$65	/LF	\$64,870.00
4.	36" RCP	8	LF	\$75	/LF	\$600.00
5.	42" RCP	699	LF	\$85	/LF	\$59,415.00

6.	18" FES	1	EA	\$325	/EA		\$325.00
8.	42" FES	1	EA	\$895	/EA		\$895.00
	5.0'x4.5' Mod. CDOT Type R Sump						
9.	Inlet	1	EA	\$4,000	/EA		\$4,000.00
10.	10' CDOT Type R Sump Inlet	4	EA	\$4,700	/EA		\$18,800.00
11.	15' CDOT Type R At-Grade Inlet	2	EA	\$6,000	/EA		\$12,000.00
12.	4.0' Type II MH	1	EA	\$3,500	/EA		\$3,500.00
13.	5.0' Type II MH	2	EA	\$4,000	/EA		\$8,000.00
14.	6.0' Type II MH	1	EA	\$4,500	/EA		\$4,500.00
17.	5.0'x6.0' MH	2	EA	\$6,500	/EA		\$13,000.00
18.	5.5'x5.5' MH	1	EA	\$6,500	/EA		\$6,500.00
19.	Headwall/Wingwall	1	EA	\$6,000	/EA		\$6,000.00
20.	Full Spectrum det. Interim Pond 1	1	EA	\$9,000	/EA		\$9,000.00
21.	FSD Pond 1 Outlet Structure (CMP)	1	EA	\$2,600	/EA		\$2,600.00
						Total \$	\$223,425.00

DRAINAGE & BRIDGE FEES – HOMESTEAD AT STERLING RANCH FIL. NO. 2

This site is within the Sand Creek Drainage Basin. The 2019 Drainage and Bridge Fees per El Paso County for the HOMESTEAD AT STERLING RANCH FILING NO. 2 site are as follows:

Per Homestead at St	erling Ranch Fil	ing No. 2 l	Plat –	Total Area		29.658 Acres
HOMESTEAD AT	STERLING RA	ANCH FI	LING	NO. 2 FEES:		
Drainage Fees:	29.658 x	46%	\$	18,940.00	=	\$ 258,392.36
Bridge Fees:	29.658 x	46%	\$	5,559.00	=	<u>\$ 75,839.66</u>
-						Total \$ 334,232.02

STERLING RANCH FILING NO. 1 - SUBDIVISION IMPROVEMENTS AGREEEMENT

Sterling Ranch Filing No. 1 final plat and SIA has been recorded, and addressed the following drainage improvements Not located/and located in the Sand Creek Channel. The following SIA paragraphs outlined drainage for Sterling Ranch in the following manner;

2. Drainage and Landscaping Tracts: Improvements on Tracts A, B, F, H, I, J, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, AA and CC as identified on the final plat of Filing No. 1 will be completed to the satisfaction of the County and District and, upon said completion, the improvements will be dedicated to and accepted by the District. Improvements on Tract D (Sand Creek) will be completed to the satisfaction of the County and upon said completion; the improvements will be dedicated to and accepted by the District storm drain facilities and structures not located on the foregoing tracts shall be determined as follows. All storm pipes shall be owned and maintained by the District except where located in County road rights of way (see Paragraph 5 below), in which case the County shall own and maintain the storm drain facilities and structures, including but not limited to, inlets and manholes. A typical cross section describing the ownership and maintenance responsibilities of drainage improvements within County rights of way is attached as <u>Exhibit C</u> hereto.

7. Timing of Construction and Acceptance:

a. **Drainage Improvements Not Located in Sand Creek Channel**: Except as set forth below in subsection 6.b. (drainage improvements located in Sand Creek Channel), all drainage improvements described in <u>Exhibit A</u> and

constructed within the Drainage and Landscaping Tracts identified in paragraph 2 above shall be completed by the Subdivider and District, meeting all applicable standards for preliminary acceptance, prior to the recording of the first replat of Tracts C, E, G, K or BB. In the event that a portion of the drainage improvements are not completed prior to the recording of the first replat, then prior to such recording collaterial sufficient in the opinion of the County to assure completion of the improvements must be posted by the Subdivider and a deadline by which such drainage improvements shall be completed shall be established by written agreement.

b. **Drainage Improvements Located in Sand Creek Channel (Tract D):** The District agrees that it will construct or cause the construction of all drainage improvements to be located in Tract D as well as future tracts within Sterling Ranch containing the Sand Creek Channel in accordance with the following:

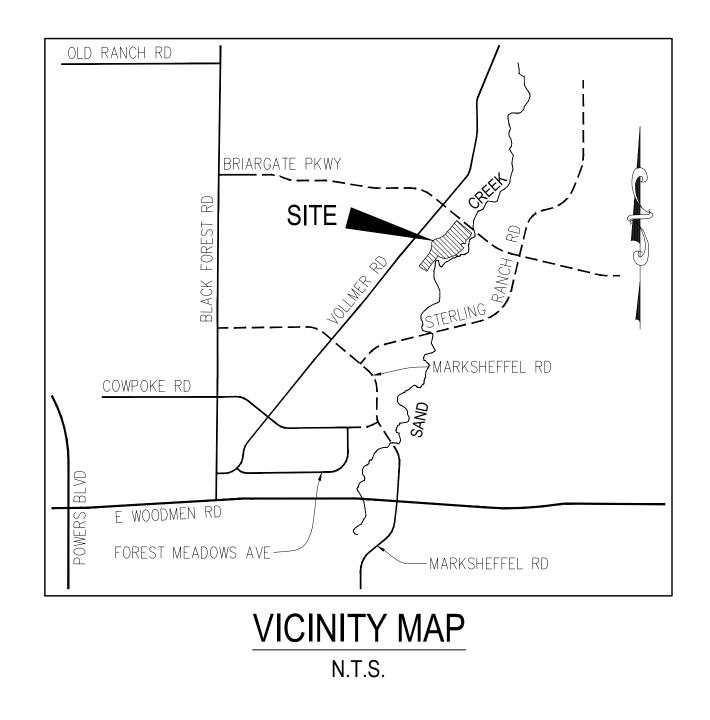
i. Bank stabilization of the Sand Creek channel shall be required prior to any replats or other final plats adjacent to the channel. The design and installation of said improvements shall be accomplished and guaranteed through the normal subdivision review and collateralization process.

- *ii.* Other drainage improvements in Tract D and future tracts containing the Sand Creek Channel, such as drop structures, check structures and similar stabilization or protection improvements, will be designed and constructed by the District with the final construction drawings to be approved by the County no later than the final platting of the 700th single family lot within the boundaries of the approved Sterling Ranch Sketch Plan and the completion of all said improvements no later than the 800th single family lot with the boundaries of the approved Sterling Ranch Sketch Plan.
- iii. In order to assure completion of the drainage improvements required in Subsection 6.b.ii above as well as a fair apportionment of the costs of said drainage improvements amongst adjacent Sterling Ranch subdividers, the District agrees to establish a Sand Creek Channel Drainage Fee to be paid into a District Escrow Fund by adjacent subdividers at the time of final platting. The amount of the fee shall be a minimum of One Thousand Dollars (\$1,000.00) per single family lot. The details of the proposed Sand Creek Channel Drainage Fee and the District Escrow Fund shall be agreed to by the parties in advance of the submittal of the first replat of or subdivision of the Master Pad Sites or other property located within Sterling Ranch.

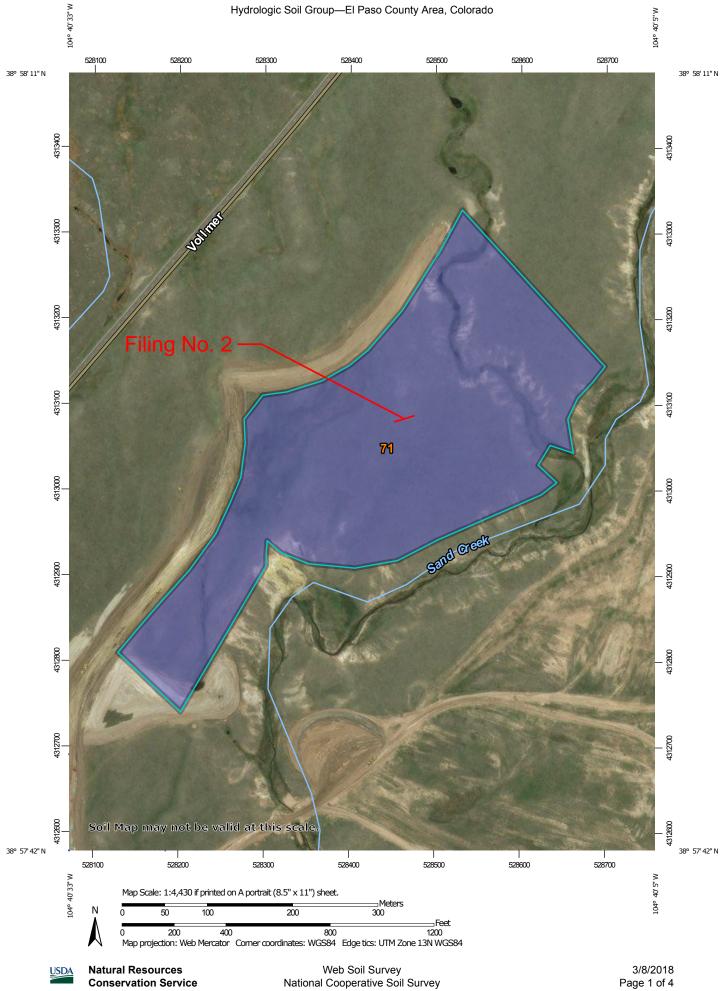
A full copy of the recorded SIA is located in the files of El Paso County and EPC Clerk and Recorders office under Reception No. 218714151

SUMMARY

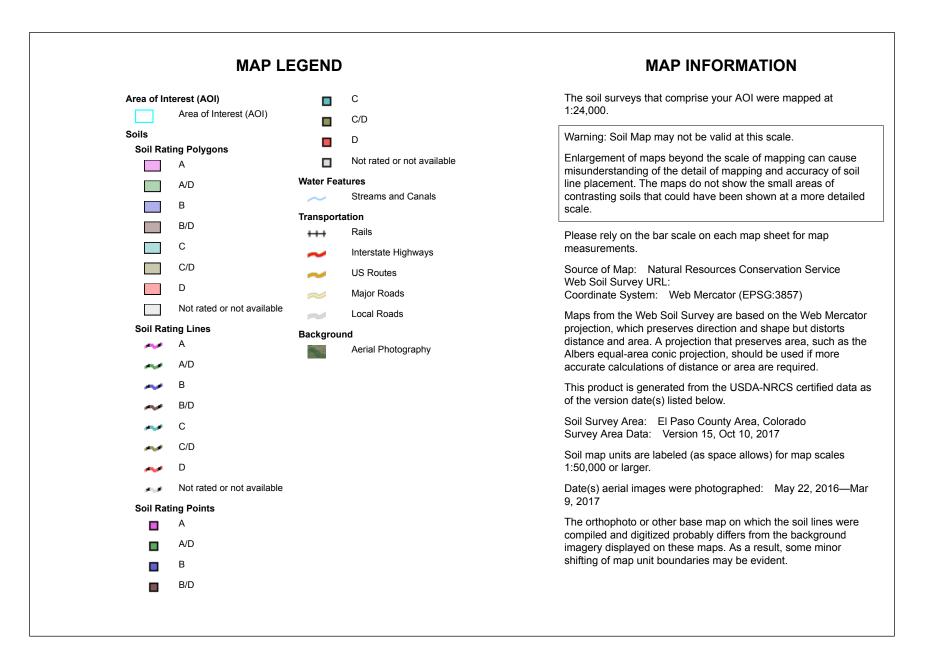
Development of this site will not adversely affect the surrounding development per this final drainage report with no negative impacts to the neighboring developments. The existing and proposed drainage facilities will adequately convey, detain and route runoff from tributary and onsite flows to the Sand Creek Drainage channel. Full Spectrum Detention and Water Quality Ponds will be used to discharge developed flows into Sand Creek per the Urban Drainage criteria flow rates, which are at or less than the historic flow. Care will be taken during construction to accommodate overland flow routes onsite and temporary drainage conditions. The development of the HOMESTEAD AT STERLING RANCH FILING NO. 2 project(s) shall not adversely affect adjacent or downstream property.


Provide how much of tract D this filing is adjacent to. Provide the number of lots this filing represents in the above SIA. Provide the amount of the adjacent proposed improvements that need to be assured for with this project.

REFERENCES


- 1.) "El Paso County and City of Colorado Springs Drainage Criteria Manual, Vol I & II".
- 2.) "Urban Storm Drainage Criteria Manuals, Volumes 1-3"
- 3.) NRSC Web Soil Survey Map for El Paso County. http://websoilsurvey.nrcs.usda.gov
- 4.) Flood Insurance Rate Map (FIRM), Federal Emergency Management Agency, Effective date March 17, 1997.
- 5.) "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Corporation, revised March 1996
- 6.) "Sterling Ranch-Phase 1 Offsite Grading, Early Grading & Erosion Control Plans", prepared by M&S Civil Consultants, Inc., dated November 2015
- 7.) "Sterling Ranch-Phase 1 Onsite Grading, Early Grading & Erosion Control Plans", prepared by M&S Civil Consultants, Inc., dated November 2015
- 8.) "Master Development Drainage Report for Sterling Ranch Filing Nos. 1&2 and Final Drainage Report for Sterling Ranch Filing No. 1", prepared by M&S Civil Consultants, Inc., dated April 2017

APPENDIX


VICINITY MAP

SOILS MAP

Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	29.0	100.0%
Totals for Area of Intere	st		29.0	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

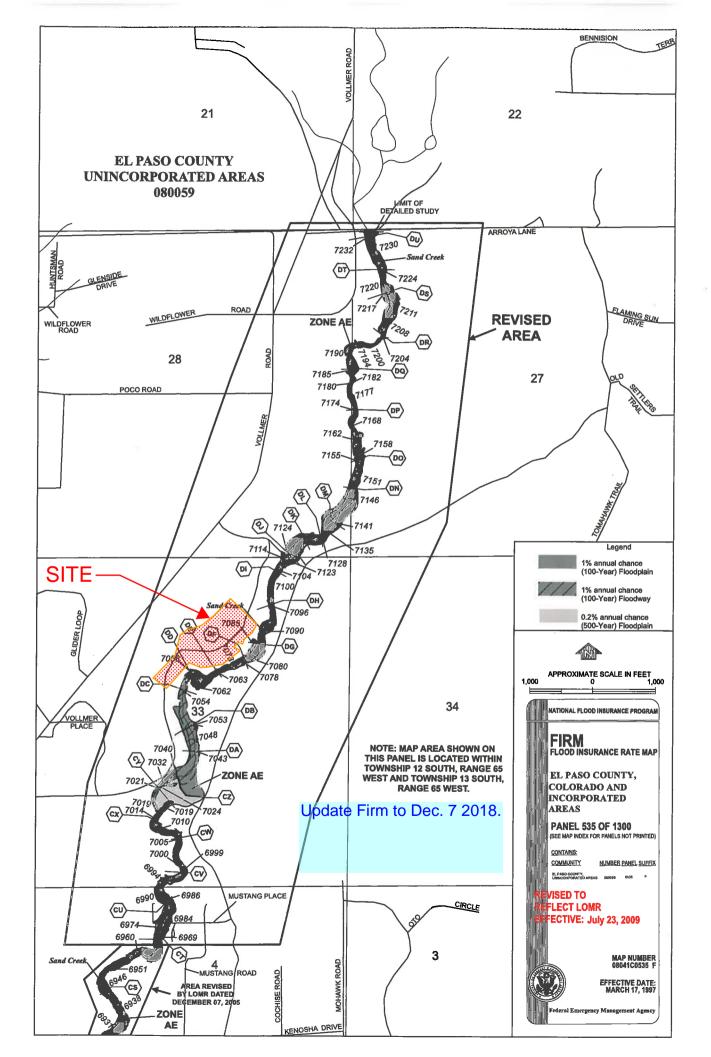
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

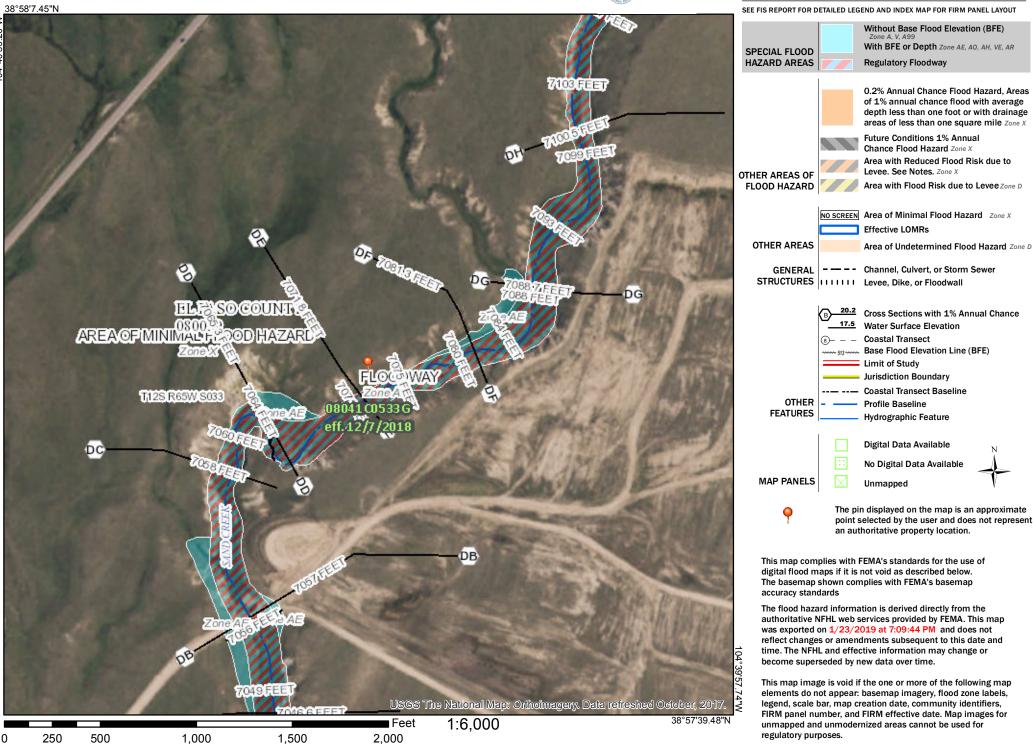
Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified Tie-break Rule: Higher


FIRM PANEL W/ REVISED LOMR

National Flood Hazard Layer FIRMette

Legend

Questions concerning the VERTCON process may be mailed to <u>NGS</u>

Latitude: 38.964784

Longitude: 104.67180

NGVD 29 height:

Datum shift(NAVD 88 minus NGVD 29): 1.196 meter

1.196 meters = 3.92 feet

NAVD88 - 3.92 feet = NGVD29

STORM 4 Outfall to Sand Creek Channel

Cross Section DE = 7071.8 NAVD88

7071.8 NAVD88 - 3.92 feet = 7067.88 NGVD29

HYDROLOGIC CALCULATIONS

HOMESTEAD AT STERLING RANCH FILING NO. 2 FINAL DRAINAGE REPORT

(Area Drainage Summary)

From Area Runoff Coefj	ficient Summa	ury			OVER	LAND		STRE	ET / CH	ANNEL F	TLOW	Time of T	Travel (T _t)	INTENS	SITY **	TOTAL	FLOWS
BASIN	AREA TOTAL	C ₅	C ₁₀₀	C ₅	Length	Height	T _C	Length	Slope	Velocity	T _t	TOTAL	CHECK	I ₅	I ₁₀₀	Q5	Q ₁₀₀
	(Acres)	From DCM	1 Table 5-1		(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
				-	Prop	osed Ar	ea Dra	inage S	Summa	ry		-					
ONSITE BASINS																	
J	0.43	0.22	0.46	0.22	90	1.8	12.0	0	2.0%	3.0	0.0	12.0	10.5	4.1	6.8	0.4	1.3
K	0.61	0.22	0.46	0.22	75	1.5	10.9	0	2.0%	3.0	0.0	10.9	10.4	4.1	6.8	0.5	1.9
Р	4.42	0.38	0.55	0.38	100	2	10.3	1100	2.5%	3.0	6.0	16.4	16.7	3.4	5.7	5.7	13.8
Q	3.78	0.38	0.55	0.38	100	2	10.3	1100	2.5%	3.0	6.0	16.4	16.7	3.4	5.7	4.9	11.8
R	1.57	0.38	0.55	0.38	100	2	10.3	450	1.6%	3.0	2.5	12.8	13.1	3.8	6.3	2.2	5.4
Т	9.14	0.30	0.50	0.30	100	2	11.5	942	2.1%	3.0	5.2	16.7	15.8	3.4	5.8	9.4	26.4
U	4.50	0.38	0.55	0.38	100	2	10.3	457	1.5%	3.0	2.5	12.9	13.1	3.8	6.3	6.4	15.6
V1	1.48	0.38	0.55	0.38	100	2	10.3	600	2.0%	3.0	3.3	13.6	13.9	3.7	6.2	2.1	5.0
V2	0.83	0.38	0.55	0.38	100	2	10.3	360	1.6%	3.0	2.0	12.3	12.6	3.8	6.4	1.2	2.9
W1	0.56	0.08	0.35	0.08	35	8	3.9	160	0.5%	2.3	1.2	5.1	11.1	5.2	8.7	0.2	1.7
W2	0.26	0.08	0.35	0.08	35	8	3.9	0	0.3%	2.3	0.0	5.0	10.2	5.2	8.7	0.1	0.8
X	2.24	0.22	0.46	0.22	80	6	7.3	0	2.5%	2.3	0.0	7.3	10.4	4.6	7.7	2.3	8.0
Y	1.97	0.22	0.46	0.22	77	6	7.1	0	2.5%	2.3	0.0	7.1	10.4	4.6	7.8	2.0	7.1
OFFSITE BASINS*																	
<i>B</i> *	5.39	0.38	0.55	0.38	60	1.2	8.0	1381	2.8%	3.0	7.6	16.3	18.0	3.4	5.7	8.0	19.3
<i>C</i> *	2.92	0.38	0.55	0.38	100	1.2	12.2	411	3.0%	3.0	2.3	14.5	12.8	3.8	6.3	4.2	10.1
D*	2.90	0.38	0.55	0.38	100	2	10.3	245	2.1%	3.0	1.3	11.7	11.9	3.9	6.5	4.3	10.4
E^*	5.34	0.38	0.55	0.38	100	2	10.3	61	3.3%	3.0	0.3	10.7	10.9	4.0	6.8	8.2	19.9
<i>F</i> *	1.12	0.90	0.96	0.90	10	0.2	0.9	1525	2.8%	3.0	8.4	9.3	18.5	4.2	7.1	4.3	7.7
<i>G</i> *	0.61	0.22	0.46	0.22	100	2	12.6	0	2.2%	3.0	0.0	12.6	10.6	4.0	6.8	0.5	1.9
<i>H</i> *	0.19	0.90	0.96	0.90	10	0.2	0.9	280	2.1%	3.0	1.5	5.0	11.6	5.2	8.7	0.9	1.6
<i>I*</i>	2.10	0.90	0.96	0.90	10	0.2	0.9	1082	2.5%	3.0	5.9	6.9	16.1	4.7	7.9	8.9	15.9
<i>L</i> *	1.54	0.90	0.96	0.90	10	0.2	0.9	1805	2.1%	3.0	9.9	10.8	20.1	4.0	6.7	5.6	10.0
<i>S</i> *	1.97	0.08	0.35	0.08	60	10	5.6	270	0.5%	2.3	2.0	7.6	11.8	4.5	7.6	0.7	5.3

* For detailed information on Desing Points, Basins, Flowby, or Pipe Runs see Sterling Ranch Filing Nos. 1&2 MDDP prepared by MS Civil Consultants, dated April 2017

** Intensity equations assume a minimum travel time of 5 minutes.

Calculated by:	ET/CMN
Date:	9/4/2018
Checked by:	VAS

	From Ann Donell Conflictent Co.		(1	Bas			ig St	umm	• /			Time of Terms 1 (T		SITY **	TOTAL	FLOWS	1
DESIGN POINT	From Area Runoff Coefficient Summary CONTRIBUTING BASINS	CA ₅	CA100	C,	OVE.	RLAND Height	Tc	PIPE Length	Slope	NNEL FLC Velocity	T _t	Time of Travel (T_t) TOTAL	INTEN Is	SITY ** I ₁₀₀	Q5	FLOWS Q ₁₀₀	COMMENTS
			01-100	~,	(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	-100 (in/hr)	(c.f.s.)	(c.f.s.)	COMMENTO
		Р	ROPOS	ED D	RAINA	IGE BA	SIN R	OUTIN	G SUM	<i>MARY</i>							
2*	B*	2.34	3.39									16.3	3.4	5.7	8.0	19.3	(2) EX. 15' AT-GRADE INLETS
3*	C*	1.11	1.61									12.8	3.8	6.3	4.2	10.1	EX. 6' SUMP INLET
4*	D*, E*, F*	4.14	5.61									11.7	3.9	6.5	16.1	36.7	EX. 15' AT-GRADE INLET
5*	G*, H*, FLOWBY DP4*	1.07	3.02									11.7	3.9	6.5	4.2	19.7	EX. 15' AT-GRADE INLET
6*	I*, J, K, L*	3.50	3.97									10.8	4.0	6.7	14.1	26.7	EX. 15' AT-GRADE INLET
7	Р	1.68	2.43									16.4	3.4	5.7	5.7	13.8	PROP. 10' SUMP INLET
8	Q	1.44	2.08									16.4	3.4	5.7	4.9	11.8	PROP. 10' SUMP INLET
9	R	0.60	0.86									12.8	3.8	6.3	2.2	5.4	PROP. 10' SUMP INLET
10	Т	2.74	2.69									15.8	3.4	5.8	9.4	15.6	PROP. 15' AT-GRADE INLET Total CA100=3.86 Split Between
11	V1	0.56	2.69									15.8	3.4	5.8	1.9	15.6	DP10 & DP11 For Crown Overflow PROP. 15' AT-GRADE INLET Total CA100=3.86 Split Between
12	U, FLOWBY DP10	1.80	2.98									15.8	3.4	5.8	6.2	17.2	DP10 & DP11 For Crown Overflow PROP. 10' SUMP INLET
13	V2, FLOWBY DP11	0.32	0.96									13.6	3.7	6.2	1.2	5.9	PROP. MODIFIED 5'x4.5' SUMP INLET
14	W1, PR9	5.35	8.52									13.6	3.7	6.2	19.6		CUMULATIVE DETENTION POND

HOMESTEAD AT STERLING RANCH FILING NO. 2 DRAINAGE CALCULATIONS

(Storm Sewer Routing Summary)

					In	tensity**	Fla)w	PIPE SIZE
PIPE RUN	Contributing Pipes/Design Points	Equivalent CA 5	Equivalent CA 100	Maximum T _C	Ι ₅	I 100	Q 5	Q 100	
1	DP7	1.68	2.43	16.4	3.4	5.7	5.7	13.8	24" RCP
2	DP8	1.44	2.08	16.4	3.4	5.7	4.9	11.8	18" RCP
3	PR1, PR2	3.12	4.51	16.4	3.4	5.7	10.6	25.7	24" RCP
4	DP9, PR3	3.71	5.37	17.0	3.3	5.6	12.4	30.1	30" RCP
5	DP10	2.64	2.20	15.8	3.4	5.8	9.1	12.7	18" RCP
6	DP11	0.55	2.20	15.8	3.4	5.8	1.9	12.7	18" RCP
7	PR5, PR6	3.19	4.39	16.0	3.4	5.7	10.9	25.3	30" RCP
8	DP12	1.80	2.98	15.8	3.4	5.8	6.2	17.2	24" RCP
9	DP13, PR7, PR8	5.31	8.33	16.6	3.4	5.7	17.9	47.1	42" RCP
10	UD-Detention v3.07						0.8	23.5	Outlet Structure & 18" CMP
11	Pipe Run continued from MDDP DP15	5* to Sand Creek	x. Flow values ar	e that of MDDI	Pipe Run	15* (PR15*).	42.1	76.8	42" RCP

* For detailed information on Desing Points, Basins, Flowby, or Pipe Runs see Sterling Ranch Filing Nos. 1&2 MDDP

prepared by MS Civil Consultants, dated April 2017

** Intensity equations assume a minimum travel time of 5 minutes.

DP - Design Point

EX - Existing Design Point

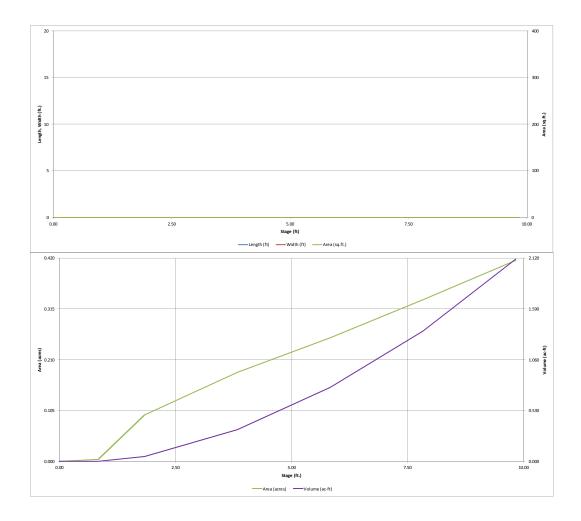
FB- Flow By from Design Point

INT- Intercepted Flow from Design Point

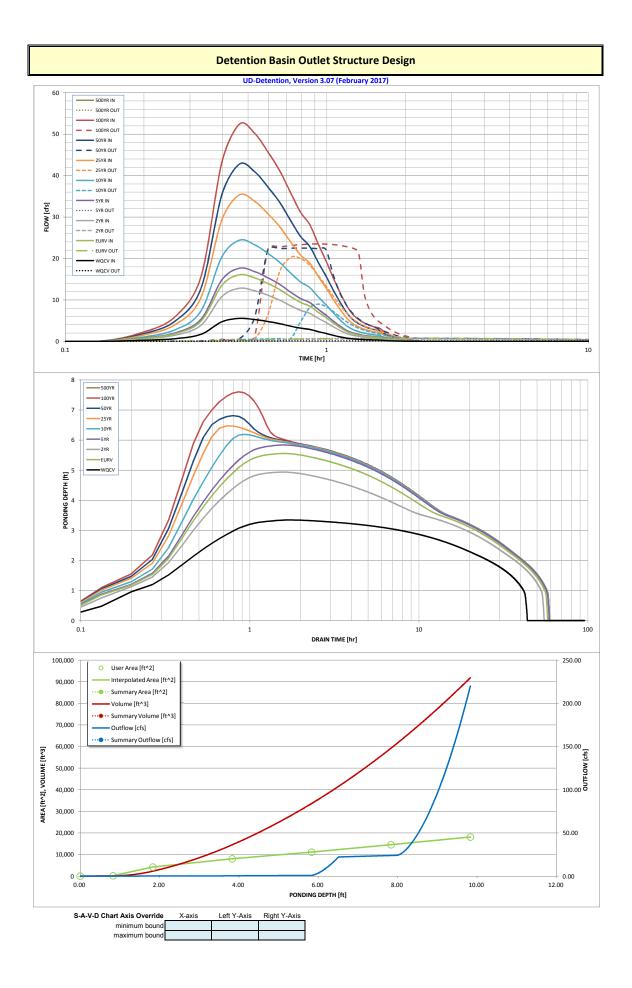
Calculated by: CMN Date: 9/4/2018 Checked by: VAS

HYDRAULIC CALCULATIONS

Weig	hted Percent	t Imperviou	sness of FSD Pond	1
Contributing Basins	Area (Acres)	<i>C</i> ₅	Impervious % (I)	(Acres)*(I)
Т	9.14	0.30	40	365.60
U	4.50	0.38	53	238.50
V1	1.48	0.38	53	78.44
V2	0.83	0.38	53	43.99
W1	0.56	0.08	2	1.12
Totals	16.51			727.65
Imperviousness of FSD Pond 1	44.1	%		


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

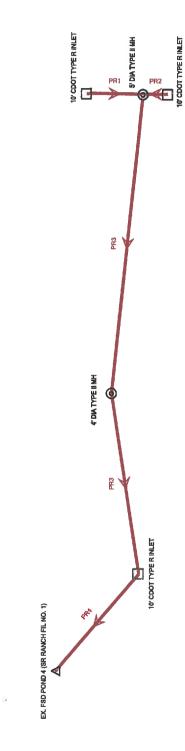
UD-Detention, Version 3.07 (February 2017)


UD-DC Project: <u>Homestead At Sterling Ranch Filings No. 2</u> Basin ID: <u>Pond 1, CMP Outlet Structure</u>

ZONE 3	2 ONE 1	_	~										
	14402	100-YE ORIFIC	AR EE	Depth Increment =		ft							
PERMANENT CONFO POOL Example Zone		tion (Reter	ntion Pond)	Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
				Description Top of Micropool	(ft)	Stage (ft) 0.00	(ft)	(ft)	(ft*2)	Area (ft [*] 2) 8	(acre) 0.000	(ft*3)	(ac-ft)
Required Volume Calculation Selected BMP Type =	EDB	1	Centroid 1stOrifice= 76.17	LF 7077		0.83				179	0.004	76	0.002
Watershed Area =	16.51	acres	Note: L / W Ratio < 1	7078		1.83				4,187	0.096	2,219	0.051
Watershed Length =	825	ft	L / W Ratio = 0.9	7080		3.83			-	8,006	0.184	14,455	0.332
Watershed Slope =	0.020	ft/ft		7082		5.83				11,107	0.255	33,568 59 204	0.771
Watershed Imperviousness = Percentage Hydrologic Soil Group A =	44.10% 0.0%	percent percent		7084		7.83 9.83				14,530 18,088	0.334	59,204 91,822	1.359 2.108
Percentage Hydrologic Soil Group B =	100.0%	percent		1000		0.00				10,000	0.410	UT,OLL	2.100
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			-		-	-	-				
Desired WQCV Drain Time =	40.0	hours											
Location for 1-hr Rainfall Depths = Water Quality Capture Volume (WQCV) =		acre-feet	Optional User Override										
Excess Urban Runoff Volume (EURV) =	0.202	acre-feet	1-hr Precipitation		-		-	-	-				
2-yr Runoff Volume (P1 = 1.19 in.) =	0.614	acre-feet	1.19 inches				-	-	-				
5-yr Runoff Volume (P1 = 1.5 in.) =	0.847	acre-feet	1.50 inches										
10-yr Runoff Volume (P1 = 1.75 in.) = 25-yr Runoff Volume (P1 = 2 in.) =	1.177	acre-feet acre-feet	1.75 inches 2.00 inches										
25-yr Runoff Volume (P1 = 2 in.) = 50-yr Runoff Volume (P1 = 2.25 in.) =	2.073	acre-teet acre-feet	2.00 inches 2.25 inches										
100-yr Runoff Volume (P1 = 2.52 in.) =	2.550	acre-feet	2.52 inches	-									
500-yr Runoff Volume (P1 = 0 in.) =	0.000	acre-feet	inches										
Approximate 2-yr Detention Volume =	0.574	acre-feet	·				-	-	-				
Approximate 5-yr Detention Volume =	0.795	acre-feet											
Approximate 10-yr Detention Volume = Approximate 25-yr Detention Volume =	1.075	acre-feet acre-feet											
Approximate 50-yr Detention Volume =	1.130	acre-feet					-	-	-				
Approximate 100-yr Detention Volume =	1.412	acre-feet											
		4							-				
Stage-Storage Calculation		T											
Zone 1 Volume (WQCV) = Zone 2 Volume (EURV - Zone 1) =	0.262	acre-feet											
Zone 2 Volume (EURV - Zone 1) = Zone 3 Volume (100-year - Zones 1 & 2) =	0.508	acre-feet acre-feet		-									
Total Detention Basin Volume =	1.412	acre-feet											
Initial Surcharge Volume (ISV) =	user	ft/3					-	-	-				
Initial Surcharge Depth (ISD) =	user	ft					-	-	-				
Total Available Detention Depth (H _{total}) =	user	ft							-				
Depth of Trickle Channel (H_{TC}) = Slope of Trickle Channel (S_{TC}) =	user	ft											
Slopes of Main Basin Sides (Smain) =		ft/ft H:V		-									
Basin Length-to-Width Ratio (R _{L/W}) =	user												
	r	-											
Initial Surcharge Area (A _{ISV}) =	user	ft′2											
Surcharge Volume Length (L _{ISV}) = Surcharge Volume Width (W _{ISV}) =	user	ft		-			-	-					
Depth of Basin Floor (H _{FLOOR}) =	user	π ft		-									
Length of Basin Floor (L _{FLOOR}) =	user	ft											
Width of Basin Floor (W _{FLOOR}) =	user	ft					-	-	-				
Area of Basin Floor (A _{FLOOR}) =	user	ft′2			-		-	-					
Volume of Basin Floor (V _{FLOOR}) = Depth of Main Basin (H _{MAIN}) =	user	ft/3											
Length of Main Basin (L _{MAIN}) =	user	ft					-	-	-				
Width of Main Basin (W _{MAIN}) =	user	ft											
Area of Main Basin (A _{MAIN}) =	user	ft′2					-	-	-				
Volume of Main Basin (V _{MAIN}) =	user	ft/3											
Calculated Total Basin Volume (V _{total}) =	user	acre-feet											
							-	-	-				
									-				
							-	-	-				
					-		-	-	-				
					-		-	-	-				
							-	-	-				
							-	-	-				

UD-Detention, Version 3.07 (February 2017)

		Dete	ntion Basin C	Outlet Struct	ure Design				
				rsion 3.07 (Februar	y 2017)				
	Homestead at Sterl		. 2						
ZONE 3	Pond 1, CMP Outle	t Structure							
ZONE 2 ZONE 1				Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
VOLUME EURY WOCY			Zone 1 (WQCV)	3.44	0.262	Orifice Plate	1		
	100-YEAI		Zone 2 (EURV)	5.83	0.508				
ZONE 1 AND 2 ORIFICES		n				Rectangular Orifice			
F ENIMALENT	Configuration (Re	tention Pond)	'one 3 (100-year)	7.99	0.642	Weir&Pipe (Restrict)			
User Input: Orifice at Underdrain Outlet (typically u					1.412	Total	ed Parameters for Un	dordroin	
Underdrain Orifice Invert Depth =	N/A		e filtration media sur	ace)	Unde	rdrain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches		,		in Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orifices of		(typically used to dra	in WQCV and/or EUR	V in a sedimentation	BMP)	Calcu	lated Parameters for	-	
Invert of Lowest Orifice =			oottom at Stage = 0 ft)			rifice Area per Row =	N/A	ft²	
Depth at top of Zone using Orifice Plate =	3.44		oottom at Stage = 0 ft)			lliptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =	N/A N/A	inches inches			Elli	ptical Slot Centroid =	N/A N/A	feet ft ²	
Office Plate. Office Alea per Kow -	IN/ A	inches				Elliptical Slot Area =	N/A	ii.	
User Input: Stage and Total Area of Each Orifice	Row (numbered from	m lowest to highest)						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)		1.10	2.20						
Orifice Area (sq. inches)	0.79	0.79	0.79						l
	Daw O (setting t	David Costi	David (197	Days 40 (cost)	Daw 40 (coll and	David 1 (coll	DavidS (coll	Daw 40 (see "	1
Stage of Orifice Centroid (ft)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Orifice Area (sq. inches)									1
									1
User Input: Vertical Orifice (Cir	cular or Rectangular)		_			Calculated	Parameters for Vert	tical Orifice	-
	Zone 2 Rectangular	Not Selected					Zone 2 Rectangular		
Invert of Vertical Orifice =	3.44	N/A	ft (relative to basin b			ertical Orifice Area =	0.08	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	5.83	N/A	ft (relative to basin b	ottom at Stage = 0 ft)	Verti	cal Orifice Centroid =	0.08	N/A	feet
Vertical Orifice Height = Vertical Orifice Width =	2.00	N/A	inches inches						
vertical office width -	5.50	l	inches						
User Input: Overflow Weir (Dropbox) and O	Grate (Flat or Sloped)					Calculated	Parameters for Ove	rflow Weir	
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	1
Overflow Weir Front Edge Height, Ho =	5.83	N/A					2011C D ITCH	NOT Selected	
- 1			ft (relative to basin bot	tom at Stage = 0 ft)	Height of Gr	ate Upper Edge, H _t =	5.83	N/A	feet
Overflow Weir Front Edge Length =	3.54	N/A	feet		Over Flow	Weir Slope Length =	5.83 3.54	N/A N/A	feet
Overflow Weir Front Edge Length = Overflow Weir Slope =	= <u>3.54</u> = 0.00	N/A N/A	feet H:V (enter zero for fl		Over Flow Grate Open Area /	Weir Slope Length = 100-yr Orifice Area =	5.83 3.54 6.87	N/A N/A N/A	feet should be <u>≥</u> 4
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	3.54 0.00 3.54	N/A N/A N/A	feet H:V (enter zero for fla feet	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	5.83 3.54 6.87 10.93	N/A N/A N/A N/A	feet should be ≥ 4 ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	= <u>3.54</u> = 0.00	N/A N/A	feet H:V (enter zero for fl	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	Weir Slope Length = 100-yr Orifice Area =	5.83 3.54 6.87	N/A N/A N/A	feet should be <u>≥</u> 4
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	3.54 0.00 3.54 87%	N/A N/A N/A N/A	feet H:V (enter zero for fla feet	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	5.83 3.54 6.87 10.93	N/A N/A N/A N/A	feet should be ≥ 4 ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	3.54 0.00 3.54 87% 50%	N/A N/A N/A N/A N/A	feet H:V (enter zero for fla feet %, grate open area/ta %	at grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	5.83 3.54 6.87 10.93 5.47	N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C	3.54 0.00 3.54 87% 50% ircular Orifice, Restric Zone 3 Restrictor	N/A N/A N/A N/A tor Plate, or Rectang Not Selected	feet H:V (enter zero for fl; feet %, grate open area/t % ular Orifice)	at grate) otal area	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor	N/A N/A N/A N/A Flow Restriction Plat Not Selected	feet should be ≥ 4 ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	= 3.54 0.00 = 3.54 = 87% 50% ircular Orifice, Restric Zone 3 Restrictor = 2.50	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A	feet H:V (enter zero for fli feet %, grate open area/t % ular Orifice) ft (distance below basi	at grate) otal area	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op (t)	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area =	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor 1.59	N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A	feet should be \geq 4 ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	= 3.54 = 0.00 = 3.54 = 87% = 50% ircular Orifice, Restrict Zone 3 Restrictor = 2.50 = 18.00	N/A N/A N/A N/A tor Plate, or Rectang Not Selected	feet H:V (enter zero for fl; feet %, grate open area/t % ular Orifice) ft (distance below basi inches	at grate) otal area n bottom at Stage = 0 l	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op t)	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68	N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A	feet should be \geq 4 ft ² ft ² ft ² ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	= 3.54 0.00 = 3.54 = 87% 50% ircular Orifice, Restric Zone 3 Restrictor = 2.50	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A	feet H:V (enter zero for fli feet %, grate open area/t % ular Orifice) ft (distance below basi	at grate) otal area n bottom at Stage = 0 l	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op (t)	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor 1.59	N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A	feet should be \geq 4 ft ² ft ² ft ² ft ²
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	3.54 0.00 3.54 87% 50% ircular Orifice, Restrictor 2.50 18.00 15.20	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	feet H:V (enter zero for fl; feet %, grate open area/t % ular Orifice) ft (distance below basi inches	at grate) otal area n bottom at Stage = 0 l	Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op (t)	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	3.54 0.00 3.54 87% 50% ircular Orifice, Restrictor 2.50 18.00 15.20	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	feet H:V (enter zero for fl; feet %, grate open area/t % ular Orifice) ft (distance below basi inches	at grate) otal area n bottom at Stage = 0 l	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan	= 3.54 = 0.00 = 3.54 = 87% = 50% ircular Orifice, Restrictor = 2.50 = 18.00 = 15.20 gular or Trapezoidal)	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A	feet H:V (enter zero for fi: feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 l	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33 ted Parameters for S 0.84 9.83	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	= 3.54 = 0.00 3.54 = 3.54 = 87% = 50% ircular Orifice, Restrictor = 2.50 = 18.00 = 18.00 = 15.20 gular or Trapezoidal) = 7.99 = 20.00 = 4.00	N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A t (relative to basin t feet H:V	feet H:V (enter zero for fi: feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 l	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33 ted Parameters for S 0.84	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length =	= 3.54 = 0.00 3.54 = 3.54 = 87% = 50% ircular Orifice, Restrictor = 2.50 = 18.00 = 18.00 = 15.20 gular or Trapezoidal) = 7.99 = 20.00 = 4.00	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin b feet	feet H:V (enter zero for fi: feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 l	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33 ted Parameters for S 0.84 9.83	N/A	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	= 3.54 = 0.00 = 3.54 = 87% = 50% ircular Orifice, Restrict Zone 3 Restrictor = 2.50 = 18.00 = 15.20 gular or Trapezoidal) = 7.99 = 20.00 = 4.00 = 1.00	N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A t (relative to basin t feet H:V	feet H:V (enter zero for fi: feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 l	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33 ted Parameters for S 0.84 9.83	N/A	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	= 3.54 = 0.00 = 3.54 = 87% = 50% ircular Orifice, Restrict Zone 3 Restrictor = 2.50 = 18.00 = 15.20 gular or Trapezoidal) = 7.99 = 20.00 = 4.00 = 1.00	N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A t (relative to basin t feet H:V	feet H:V (enter zero for fi: feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches	at grate) otal area n bottom at Stage = 0 l	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33 ted Parameters for S 0.84 9.83	N/A	feet should be ≥ 4 ft ² ft ² ft ² ft ² feet
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Entes Length = Spillway Entes Length = Spillway Entes Stages Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	3.54 0.00 3.54 87% 50% ircular Orifice, Restrictor 2.50 18.00 15.20 gular or Trapezoidal) 7.99 20.00 4.00 1.00 WQCV 0.53	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A N/A ft (relative to basin the feet H:V feet EURV 1.07	feet H:V (enter zero for fil feet %, grate open area/ti % ular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) <u>2 Year</u> 1.19	at grate) otal area n bottom at Stage = 0 I Half-t <u>5 Year</u> 1.50	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33 ted Parameters for S 0.84 9.83 0.42 50 Year 2.25	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet acres 100 Year 2.52	feet should be ≥ 4 ft ² ft ² fe feet radians <u>500 Year</u> 0.00
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Unvert Stages Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acreft) =	= 3.54 = 0.00 = 3.54 = 87% = 50% ircular Orifice, Restric Zone 3 Restrictor = 2.50 = 18.00 = 18.00 = 18.00 = 18.00 = 18.00 = 18.00 = 18.00 = 18.00 = 18.00 = 19.00 = 20.00 = 20.00 = 4.00 = 1.00 = 20.00 = 4.00 = 1.00	N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A tr (relative to basin the feet H:V feet EURV	feet H:V (enter zero for fil feet %, grate open area/ti % ular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year	at grate) otal area n bottom at Stage = 0 1 Half-4 S Year	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33 ted Parameters for S 0.84 9.83 0.42	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected Not Selected N/A N/A N/A N/A Spillway feet feet acres	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acreft) = OPTIONAL Override Runoff Volume (acreft) =	3.54 0.00 3.54 87% 50% ircular Orifice, Restrictor 2.50 18.00 15.20 gular or Trapezoidal) 2.00 4.00 1.00 0.00 0.00 0.00	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A N/A ft (relative to basin the feet H:V feet EURV 1.07	feet H:V (enter zero for fil feet %, grate open area/ti % ular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) <u>2 Year</u> 1.19	at grate) otal area n bottom at Stage = 0 I Half-t <u>5 Year</u> 1.50	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33 ted Parameters for S 0.84 9.83 0.42 50 Year 2.25 2.073	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet should be \geq 4 ft ² ft ² ft ² ft ² feet radians 500 Year 0.00 0.000
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest	a 3.54 0.00 3.54 87% 50% ircular Orifice, Restrict 2.50 18.00 15.20 gular or Trapezoidal) 7.99 20.00 4.00 1.00 WQCV 0.53 0.262 0.00	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin to feet H:V feet EURV 1.07 0.771 0.770 0.00	feet H:V (enter zero for fil feet %, grate open area/ti % ular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 1.19 0.614 0.613 0.02	st grate) otal area n bottom at Stage = 0 I Half-0 5 Year 1.50 0.847 0.846 0.03	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op () () () () ()) ()) ()) ()	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.710 1.709 0.86	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33 ted Parameters for S 0.84 9.83 0.42 50 Year 2.25	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A Spillway feet feet acres 100 Year 2.52 2.550 2.549 1.58	feet should be ≥ 4 ft ² ft ² fe ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stages Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) =	= 3.54 0.00 = 3.54 = 87% = 50% ircular Orifice, Restric Zone 3 Restrictor = 2.50 = 18.00 = 15.20 gular or Trapezoidal) = 7.99 = 20.00 = 4.00 = 0.53 = 0.262 = 0.00 = 0.0 = 0.0	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin the feet H:V feet 1.07 0.771 0.770 0.00 0.00	feet H:V (enter zero for fil feet %, grate open area/tu % ular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft) <u>2 Year</u> 1.19 0.614 <u>0.613</u> 0.02 0.3	st grate) otal area n bottom at Stage = 0 1 Half-1 5 Year 1.50 0.847 0.846 0.03 0.5	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Gr	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.710 1.709 0.86 14.2	5.83 3.54 6.87 10.93 5.47 Sofor Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33 ted Parameters for S 0.84 9.83 0.42 Sof Year 2.25 2.073 2.073 1.19 19.6	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A Spillway feet feet acres 100 Year 2.52 2.550 2.549 1.58 26.1	feet should be \geq 4 ft ² ft ² fee ft ² feet radians 500 Year 0.00 0.000 4N/A 0.00 0.00
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Riow, q (d'sfacre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) =	3.54 0.00 3.54 87% 50% ircular Orifice, Restric 2.50 18.00 15.20 gular or Trapezoidal) 7.99 20.00 4.00 0.262 0.262 0.262 0.00 5.5	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A ft (relative to basin the feet H:V feet 0.771 0.770 0.00 16.1	feet H:V (enter zero for file feet %, grate open area/tr % ular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 1.19 0.614 0.613 0.02 0.3 12.8	st grate) otal area n bottom at Stage = 0 1 Half-0 5 Year 1.50 0.847 0.846 0.03 0.5 17.6	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op () () () () () () () () ())) ())) ()) ()) ()) ())) ())) ())) ()) ()) ())) ()) ())) ())) ())) ()) ())) ())) ())) ()) ()))) ()))) ()))) ()))) ())))) ()))))))) ()	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.710 1.709 0.86 14.2 35.3	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33 ted Parameters for S 0.84 9.83 0.42 50 Year 2.25 2.073 1.19 1.9.6 42.7	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A Solution A A A A A B A B A B A B B B B B B B B	feet should be \geq 4 ft ² ft ² fe ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe W/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest Length = Spillway Ent Surgth	a 3.54 0.00 3.54 87% 50% ircular Orifice, Restrictor 2.50 18.00 15.20 gular or Trapezoidal) 7.99 20.00 4.00 1.00 WQCV 0.53 0.262 0.262 0.00 0.0 5.5 0.1	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A It (relative to basin the feet H:V feet H:V feet 0.770 0.770 0.00 16.1 0.7	feet H:V (enter zero for file feet %, grate open area/ti % ular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft) 2 Year 1.19 0.614 0.613 0.02 0.3 12.8 0.6	st grate) otal area n bottom at Stage = 0 1 Half-1 5 Year 1.50 0.847 0.846 0.03 0.5	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (Control of the open t) Control of the open Spillway Stage a Basin Area a 10 Year 1.75 1.177 0.27 4.5 24.4 9.0	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.710 0.86 14.2 35.3 20.3	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33 ted Parameters for S 0.84 9.83 0.42 50 Year 2.25 2.073 1.19 19.6 42.7 22.5	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A Spillway feet feet acres 100 Year 2.52 2.50 2.549 1.58 26.1 52.4 23.5	feet should be ≥ 4 ft ² ft ² fe fet radians #N/A #N/A #N/A
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert = Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) =	3.54 0.00 3.54 87% 50% ircular Orifice, Restric 2.50 18.00 15.20 gular or Trapezoidal) 7.99 20.00 4.00 0.262 0.262 0.262 0.00 5.5	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A ft (relative to basin the feet H:V feet 0.771 0.770 0.00 16.1	feet H:V (enter zero for fil feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches outtom at Stage = 0 ft) 2 Year 1.19 0.614 0.613 0.02 0.3 12.8	st grate) otal area n bottom at Stage = 0 1 Half-0 5 Year 1.50 0.847 0.846 0.03 0.5 17.6 0.8	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op () () () () () () () () ())) ())) ()) ()) ()) ())) ())) ())) ()) ()) ())) ()) ())) ())) ())) ()) ())) ())) ())) ()) ()))) ()))) ()))) ()))) ())))) ()))))))) ()	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 1.710 1.709 0.86 14.2 35.3	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33 ted Parameters for S 0.84 9.83 0.42 50 Year 2.25 2.073 1.19 1.9.6 42.7	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A Solution A A A A A B A B A B A B B B B B B B B	feet should be \geq 4 ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = Restrictor Plate Height Above Pipe Invert = Spillway (Rest Length = Spillway Crest Length = Spillway Ed Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = OPTIONAL Override Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfsacre) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	3.54 0.00 3.54 87% 50% ircular Orifice, Restrictor 2.50 18.00 15.20 gular or Trapezoidal) 7.99 20.00 4.00 1.00 0.262 0.262 0.262 0.262 0.262 0.262 0.262 0.11 N/A Plate N/A	N/A N/A N/A N/A N/A N/A N/A Cor Plate, or Rectang Not Selected N/A N/A ft (relative to basin t feet H:V feet EURV 1.07 0.771 0.771 0.770 0.00 0.0 16.1 0.7 N/A Vertical Orifice 1 N/A	feet H:V (enter zero for file feet %, grate open area/ti % ular Orifice) ft (distance below basi inches inches outtom at Stage = 0 ft) 2 Year 1.19 0.614 0.613 0.02 0.3 12.8 0.6 N/A Vertical Orifice 1 N/A	st grate) otal area n bottom at Stage = 0 1 Half-0 	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op () () () () () () () () () (Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = 25 Year 2.00 1.710 1.709 0.86 14.2 35.3 20.3 1.4 Overflow Grate 1 1.8	5.83 3.54 6.87 10.93 5.47 5.47 5 for Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33 ted Parameters for S 0.84 9.83 0.42 50 Year 2.25 2.073 1.19 19.6 42.7 22.5 1.1 Outlet Plate 1 2.0	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A Spillway feet feet acres 2.550 2.549 1.58 2.6.1 52.4 2.3.5 0.9 Outlet Plate 1 2.1	feet should be ≥ 4 ft ² ft ² fe ft ² feet radians #N/A #N/A #N/A #N/A #N/A #N/A
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe W/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest = Spillway (Spi = Predevelopment Unit Peak Flow, q (Cfs/acre) = Predevelopment Qerst = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	a 3.54 0.00 3.54 87% 50% ircular Orifice, Restrict 2.50 18.00 15.20 gular or Trapezoidal) 7.99 20.00 4.00 1.00 WQCV 0.53 0.262 0.00 5.5 0.1 N/A Plate N/A N/A	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin to feet H:V feet EURV 1.07 0.770 0.771 0.771 0.771 0.770 0.770 0.00 0.0	feet H:V (enter zero for file feet %, grate open area/tr % ular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year 1.19 0.614 0.614 0.613 0.02 0.3 12.8 0.6 N/A Vertical Orifice 1 N/A	st grate) otal area n bottom at Stage = 0 1 Half-0 Half-0 0.847 0.846 0.03 0.5 1.76 0.8 1.7 Overflow Grate 1 0.0 N/A	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op () () () () () () () () () (Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 1.709 0.86 14.2 35.3 20.3 1.4 Overflow Grate 1 1.8 N/A	5.83 3.54 6.87 10.93 5.47 5 or Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33 ted Parameters for S 0.84 9.83 0.42 50 Year 2.073 1.19 19.6 42.7 22.5 1.19 19.6 42.7 22.5 1.19 0.68 2.073 1.19 1.10 1.19 1.19 1.10 1.	N/A Spillway feet feet feet feet 1.58 26.1 52.4 23.5 0.9 Outlet Plate 1 N/A	feet should be ≥ 4 ft ² ft ² feet radians #N/A 0.00 0.00 mN/A #N/A #N/A #N/A #N/A #N/A
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Deak Outflow Q (cfs) = Peak Inflow Q (cfs) Peak Nufflow Q (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours)	3.54 0.00 3.54 87% 50% ircular Orifice, Restric 2.50 18.00 15.20 gular or Trapezoidal) 7.99 20.00 4.00 1.00 0.262 0.262 0.00 5.5 0.1 N/A Plate N/A 40	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A tr (relative to basin the feet H:V feet H:V 0.770 0.771 0.00 0.0 16.1 0.7 N/A Vertical Orifice 1 N/A 50	feet H:V (enter zero for fi feet %, grate open area/t % ular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year 1.19 0.613 0.02 0.3 12.8 0.6 N/A Vertical Orifice 1 N/A 48	at grate) otal area n bottom at Stage = 0 1 Half-0 5 Year 1.50 0.846 0.03 0.5 17.6 0.8 1.7 Overflow Grate 1 0.0 N/A 50	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Spillway Stage a Basin Area a Basin Area a Doverflow Grate 1 0.8 N/A 48	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 1.710 0.86 14.2 35.3 20.3 1.4 Overflow Grate 1 1.8 N/A 45	5.83 3.54 6.87 10.93 5.47 5 or Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33 ted Parameters for S 0.84 9.83 0.42 50 Year 2.25 2.073 2 .073 1 .19 19.6 42.7 22.5 1 .1 Outlet Plate 1 2.0 N/A 43	N/A N/A N/A N/A N/A N/A NA NA NA NA NA N/A Spillway feet feet acres 100 Year 2.52 2.550 2.549 1.58 26.1 52.4 23.5 0.9 Outlet Plate 1 2.1 N/A 40	feet should be ≥ 4 ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slodes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Crest Length = Spillway Crest = Spillway (Crest = Predevelopment Unit Peak Flow, q (Cfs/acre) = Predevelopment Qerts) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	a 3.54 0.00 3.54 87% 50% ircular Orifice, Restrict 2.50 18.00 15.20 gular or Trapezoidal) 7.99 20.00 4.00 1.00 WQCV 0.53 0.262 0.00 5.5 0.1 N/A Plate N/A N/A	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A N/A ft (relative to basin to feet H:V feet EURV 1.07 0.770 0.771 0.771 0.771 0.770 0.770 0.00 0.0	feet H:V (enter zero for file feet %, grate open area/tr % ular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft) 2 Year 1.19 0.614 0.614 0.613 0.02 0.3 12.8 0.6 N/A Vertical Orifice 1 N/A	st grate) otal area n bottom at Stage = 0 1 Half-0 Half-0 0.847 0.846 0.03 0.5 1.76 0.8 1.7 Overflow Grate 1 0.0 N/A	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op () () () () () () () () () (Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 1.709 0.86 14.2 35.3 20.3 1.4 Overflow Grate 1 1.8 N/A	5.83 3.54 6.87 10.93 5.47 5 or Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33 ted Parameters for S 0.84 9.83 0.42 50 Year 2.073 1.19 19.6 42.7 22.5 1.19 19.6 42.7 22.5 1.19 0.68 2.073 1.19 1.10 1.19 1.19 1.10 1.	N/A Spillway feet feet feet feet 1.58 26.1 52.4 23.5 0.9 Outlet Plate 1 N/A	feet should be ≥ 4 ft ² ft ² feet radians #N/A 0.00 0.00 #N/A #N/A #N/A #N/A #N/A #N/A
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Ed Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Rick, q (cfs/acre) = Predevelopment Deak Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Crate 2 (fps) = Time to Drain 99% of Inflow Volume (hours) =	 3.54 0.00 3.54 87% 50% cular Orifice, Restrict 2.50 18.00 15.20 gular or Trapezoidal) 7.99 20.00 4.00 1.00 0.262 0.263 0.264 0.264 0.264 0.265 0.265 0.265 0.265 0.265 0.265 0.265	N/A N/A N/A N/A N/A tor Plate, or Rectang Not Selected N/A Intervention ft (relative to basin the feet H:V feet 0.771 0.770 0.700 0.00 16.1 0.7 N/A Vertical Orifice 1 N/A 50 54	feet H:V (enter zero for file feet %, grate open area/tr % ular Orifice) ft (distance below basi inches inches outtom at Stage = 0 ft) 2 Year 1.19 0.614 0.613 0.02 0.3 12.8 0.6 N/A Vertical Orifice 1 N/A N/A N/A 48 52	st grate) otal area n bottom at Stage = 0 1 Half-4 5 Year 1.50 0.847 0.846 0.03 0.5 17.6 0.8 1.7 Overflow Grate 1 0.0 N/A 50 55	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate 1 0.75 1.175 1.175 0.27 4.5 2.4.4 9.0 2.0 Overflow Grate 1 0.8 N/A 48 54	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 1.710 1.709 0.86 1.42 35.3 20.3 1.4 Overflow Grate 1 1.8 N/A 45 53	5.83 3.54 6.87 10.93 5.47 s for Outlet Pipe w/ Zone 3 Restrictor 1.59 0.68 2.33 ted Parameters for S 0.84 9.83 0.42 50 Year 2.25 2.073 1.19 19.6 42.7 22.5 1.1 Outlet Plate 1 2.0 N/A 43 52	N/A N/A N/A N/A N/A N/A Not Selected N/A Selected feet feet acres 2.52 2.550 2.549 1.58 26.1 52.4 23.5 0.9 Outlet Plate 1 2.1 N/A 40 51	feet should be ≥ 4 ft ² ft ² feet radians


Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

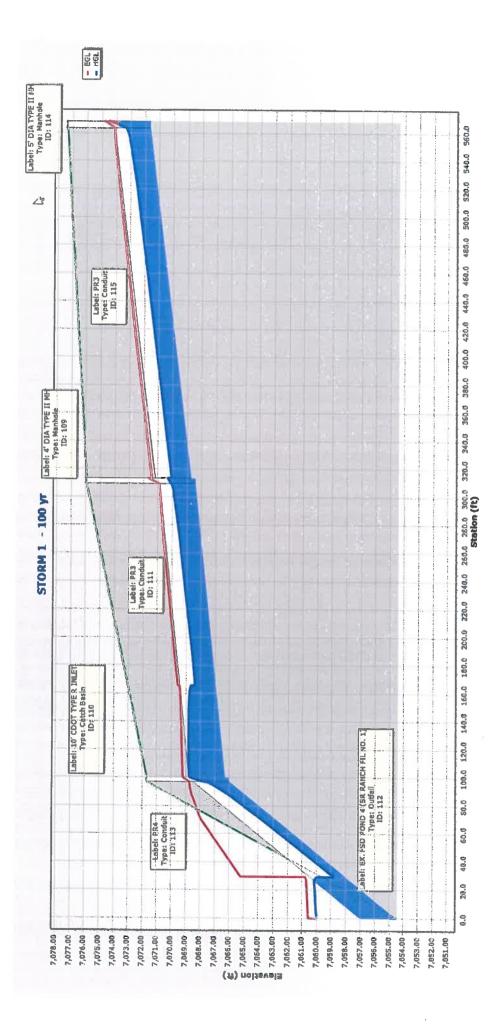
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	d in a separate p WORKBOOK	WORKBOOK	#N/A
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cf
3.97 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
0.07	0:03:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
Hydrograph	0:07:56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
Constant	0:11:55	0.25	0.71	0.57	0.78	1.07	1.53	1.83	2.23	#N/A
1.259	0:15:53	0.67	1.91	1.53	2.10	2.89	4.16	5.02	6.13	#N/A
	0:19:51	1.72	4.92	3.94	5.39	7.42	10.68	12.88	15.74	#N/A
	0:23:49	4.72	13.51	10.81	14.81	20.39	29.33	35.36	43.18	#N/A
	0:27:47 0:31:46	5.54 5.27	16.08 15.35	12.83 12.24	17.65 16.85	24.41 23.34	35.33	42.75 40.94	52.41 50.24	#N/A #N/A
	0:35:44	4.79	13.35	12.24	15.34	23.34	33.82 30.78	37.26	45.72	#N/A #N/A
	0:39:42	4.75	12.50	9.95	13.34	19.03	27.62	33.47	43.72	#N/A
	0:43:40	3.66	10.80	8.59	11.87	16.49	23.99	29.10	35.81	#N/A
	0:47:38	3.19	9.41	7.48	10.33	14.34	20.84	25.30	31.17	#N/A
	0:51:37	2.89	8.52	6.78	9.37	13.00	18.90	22.93	28.22	#N/A
	0:55:35	2.36	7.05	5.59	7.75	10.79	15.74	19.12	23.57	#N/A
	0:59:33	1.91	5.76	4.56	6.34	8.86	12.96	15.78	19.47	#N/A
	1:03:31 1:07:29	1.45	4.45	3.51	4.91	6.89	10.14	12.38	15.32	#N/A
	1:07:29	1.06 0.78	3.32	2.61	3.67	5.19	7.70 5.65	9.44 6.95	11.73 8.68	#N/A #N/A
	1:15:26	0.78	1.86	1.89	2.65	2.89	4.30	5.27	6.56	#N/A #N/A
	1:19:24	0.50	1.53	1.47	1.68	2.37	3.50	4.29	5.31	#N/A
	1:23:22	0.43	1.30	1.03	1.43	2.01	2.96	3.62	4.48	#N/A
Ľ	1:27:20	0.38	1.14	0.90	1.25	1.76	2.59	3.16	3.91	#N/A
	1:31:19	0.34	1.02	0.81	1.13	1.58	2.32	2.83	3.50	#N/A
	1:35:17	0.32	0.94	0.75	1.04	1.45	2.13	2.60	3.21	#N/A
	1:39:15	0.23	0.69	0.55	0.76	1.07	1.57	1.92	2.38	#N/A
	1:43:13	0.17	0.51	0.40	0.56	0.78	1.15	1.40	1.73	#N/A
	1:47:11 1:51:10	0.12	0.37	0.30	0.41	0.57	0.84	1.03	1.27 0.95	#N/A #N/A
	1:55:08	0.09	0.27	0.22	0.30	0.42	0.63	0.76	0.95	#N/A #N/A
	1:59:06	0.04	0.14	0.11	0.15	0.22	0.32	0.39	0.49	#N/A
	2:03:04	0.03	0.10	0.08	0.11	0.16	0.23	0.29	0.36	#N/A
	2:07:02	0.02	0.07	0.05	0.07	0.11	0.16	0.20	0.25	#N/A
	2:11:01	0.01	0.04	0.03	0.04	0.06	0.10	0.12	0.16	#N/A
	2:14:59	0.01	0.02	0.01	0.02	0.03	0.05	0.07	0.09	#N/A
	2:18:57	0.00	0.01	0.00	0.01	0.01	0.02	0.03	0.04	#N/A
	2:22:55	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	#N/A
	2:26:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	2:30:52 2:34:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	2:34:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	2:42:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	2:46:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	2:50:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	2:54:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	2:58:39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:02:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
F	3:06:35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
-	3:10:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
-	3:14:32 3:18:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
F	3:22:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
F	3:26:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
E	3:30:25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
ŀ	3:34:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:38:21 3:42:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
F	3:42:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
- - - -	3:50:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:54:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:58:12 4:02:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	4:02:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
F	4:10:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
F	4:14:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
-		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:18:03	0.00	0				0.00			
	4:18:03 4:22:01	0.00	0.00	0.00	0.00				0.00	#N/A
	4:18:03 4:22:01 4:25:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:18:03 4:22:01	0.00								
	4:18:03 4:22:01 4:25:59 4:29:58	0.00 0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A

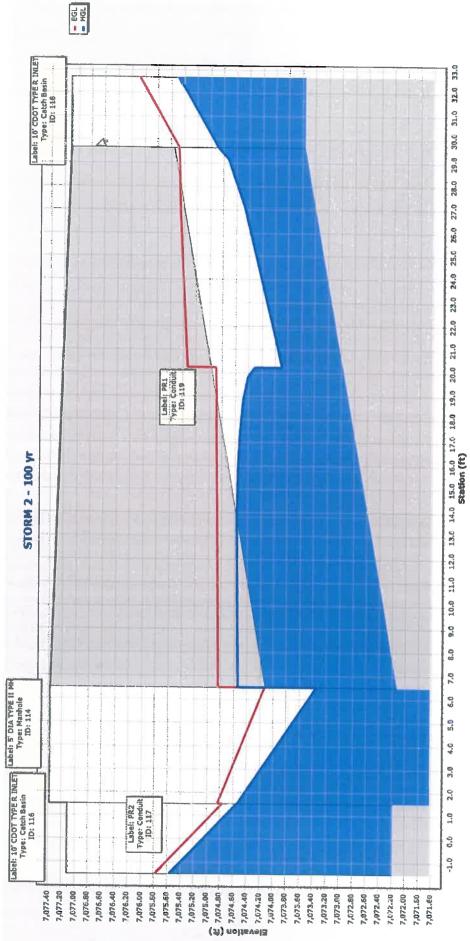
•

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Sulte 200 W Watertown, CT 06795 USA +1-203-755-1666

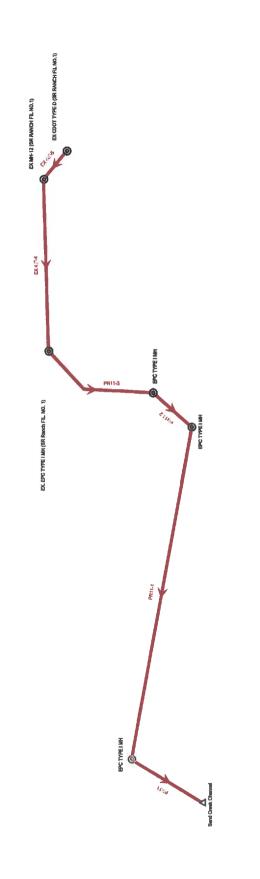
Storm 1, Storm 2.stsw 2/19/2019

Bentley StormCAD CONNECT Edition [10.01.01.04] Page 1 of 1


Depth (Critical)	(u)	1.73	1.87	1.73	1.23	1.34	Invert (Stop) (ft)	7,066.27	7,054.50	7,068.70	7,072.12	7,072.12
Depth (Normal)	(ft)	1.43	0.79	1.37	0.85	0.70	Invert (Start) (ft)	7,068.40	7,065.97	7,071.62	7,072.18	7,073.55
Froude Number	(Normal)	1.432	5.300	1.557	2.023	3.425	Elevation Ground (Start) (ft)	7,075.93	7,071.69	7,077.37	7,077.10	7,077.10
Flow / Capacity Length (Unified) Velocity	(ft/s)	8.82	22.71	9.31	3.76	13.97	Upstream Structure Headloss (ft)	0.21	0.93	1.19	1.02	0.61
Length (Unified)	(t)	213.1	98.7	254.1	3.2	27.2	Upstream Structure Headloss Coefficient	0.270	1.020	1.520	1.000	1.020
Flow / Capacity	(Design) (%)	62.7	21.5	58.4	37.9	26.6	Upstream Structure Velocity (In- Governing) (ft/s)	9.31	5.24	4.39	3.76	6.18
Flow	(cfs)	25.70	30.10	25.70	11.80	13.80	Upstream Structure Hydraulic Grade Line (In) (ft)	7,070.34	7,068.77	7,074.54	7,075.57	7,075.49
Rise	(ft)						Headloss (ft)	1.36	7.84	3.27	0.01	0.35
Upstream	Structure	4' DIA TYPE II MH	10' CDOT TYPE R INLET	5' DIA TYPE II MH	10' CDOT TYPE R INLET	10' CDOT TYPE R INLET	Hydraulic Grade Line (Out) (ft)	7,068.77	7,060.00	7,070.07	7,074.54	7,074.54
Label		PR3	PR4	PR3	PR2	PR1	Hydraulic Grade Line (In) (ft)	7,070.13	7,067.84	7,073.35	7,074.55	7,074.89


Conduit FlexTable: Table - 1 STRM 1&2

Storm 1, Storm 2.stsw 2/21/2019


Bentley StormCAD CONNECT Edition [10.01.01.04] Page 1 of 1

> Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Scenario: 100 yr Stew 3 then Ex42" SR1

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suita 200 W Watertown, CT 06795 USA +1-203-755-1666

Storm 3 incl fil 1 section.stsw 2/21/2019

Bentley StormCAD CONNECT Edition [10.01.01.04] Page 1 of 1


							IND		
Label	Upstream	Rise (ft)	How (cfs)	Flow / Capacity (Design) (%)	Length (Unified) (ft)	Velocity (ft/s)	Froude Number (Normal)	Depth (Normal) (ft)	Depth (Critical) (ft)
c + 60	EX. EPC TYPE I		00 75	ł –					
PK11-3	MH (SK Kanch FIL. NO. 1)		/6.80	/6.4	138.4	11.50	1.432	2.29	2.74
PR11-2	EPC TYPE I MH		76.80	47.5	50.8	16.58	2.541	1.70	2.74
PR11-1	EPC TYPE I MH		76.80	48.1	341.2	16.43	2.507	1.71	2.74
PR11	EPC TYPE I MH		76.80	23.9	155.1	27.41	5.244	1.16	2.74
	EX CDOT TYPE								
EX 42"-5	D (SR RANCH		76.80	58.8	110.4	14.12	1.992	1.93	2.74
	LIL INU.L)								
	EX MH-12 (SR			ļ	6 L 6		4		
EX 42"-4	KANCH FIL		/6.80	47.3	235.2	16.64	2.553	1.69	2.74
	(T'ON								
Hydraulic Grade Line (In)	Hydraulic Grade Line (Out)	Headloss (ft.)	Upstream Structure	Upstream Structure	Upstream Structure	Upstream Structure	Elevation Ground (Start)	Invert (Start) (ft)	Invert (Stop) (ft)
(¥)	(¥)		Hydraulic Grade	Velocity (In-	Headloss	Headloss	(£)		
			Line (In) (ft)	Governing) (ft/s)	Coefficient	(¥)			
7,084.23	7,082.43	1.80	7,084.61	9.24	0.270	0.38	7,088.97	7,081.49	7,080.11
7,082.05	7,080.82	1.23	7,082.43	11.32	0.270	0.38	7,086.56	7,079.31	7,078.00
7,080.44	7,072.98	7.46	7,080.82	9.24	0.270	0.38	7,085.36	7,077.70	7,069.11
7,071.55	7,056.70	14.85	7,072.98	7.98	1.020	1.43	7,077.40	7,068.81	7,053.00
7,092.81	7,091.03	1.78	7,095.29	9.50	1.770	2.48	7,095.00	7,090.07	7,088.21
7,090.65	7,084.61	6.04	7,091.03	9.24	0.270	0.38	7,094.77	7,087.91	7,081.79

Conduit FlexTable: Table - 1 STRM 3 INCL 42" SR1

Storm 3 incl fil 1 section.stsw 2/21/2019

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley StormCAD CONNECT Edition [10.01.01.04] Page 1 of 1

Bentley StormCAD CONNECT Edition [10.01.01.04] Page 1 of 1

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1668

Storm 4.stsw 2/19/2019

48" CMP Outlert Structure (FSD Pond 1)

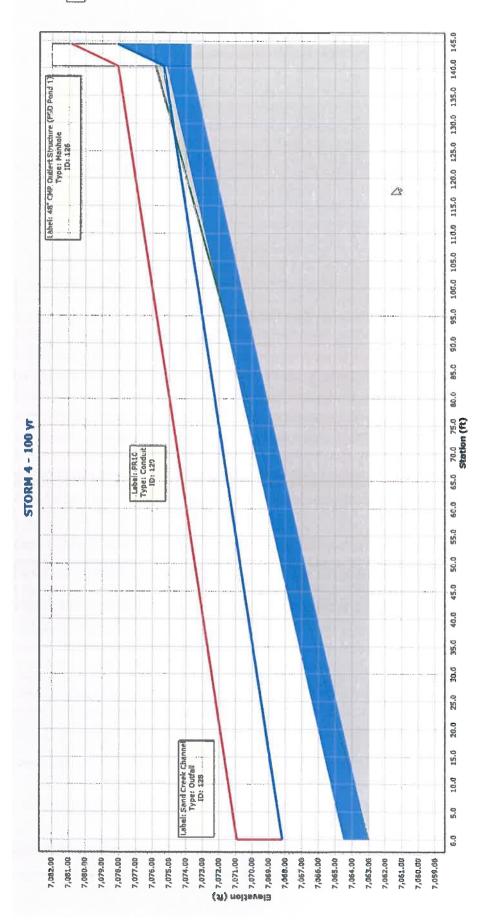
Scenario: 100 yr

7 W210

0 OL HA Z

Sand Creek Channel

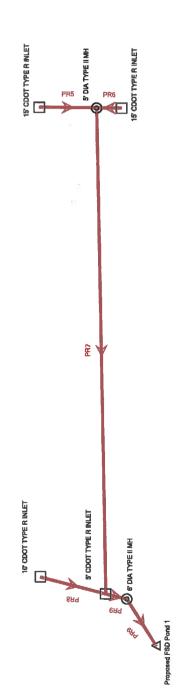
\$


Depth (Normal) (ft)	1.03	Elevation Ground (Start) (ft)	7,075.83		
Froude Number (Normal)	3.315	Upstream Structure Headloss (ft)	2.80		
Velocity (ft/s)	13.30	Upstream Structure Headloss Coefficient	1.020		
Length (Unified) (ft)	142.4	Upstream Structure Velocity (In- Governing) (ft/s)	13.30		
Flow / Capacity (Design) (%)	81.7	Upstream Structure Hydraulic Grade Line (In) (ft)	7,078.13		
Flow (cfs)	23.50	Headloss (ft)	7.13		
Rise (ft)		Hydraulic Grade Line (Out) (ft)	7,068.20		
Upstream Structure	48" CMP Outlert Structure (FSD Pond 1)	Hydraulic Grade Line (In) (ft)	7,075.33	Invert (Stop) (ft)	7,063.00
Label	PR10	Depth (Critical) (ft)	1.48	Invert (Start) (ft)	7,073.67

Conduit FlexTable: Table - 1 STRM 4

Bentley StormCAD CONNECT Edition [10.01.01.04] Page 1 of 1

> Bentley Systems, Inc. Haestad Methods Solution Center 27 Siernon Company Drive Sulte 200 W Watertown, CT 06795 USA +1-203-755-1666


Storm 4.stsw 2/19/2019

EGL

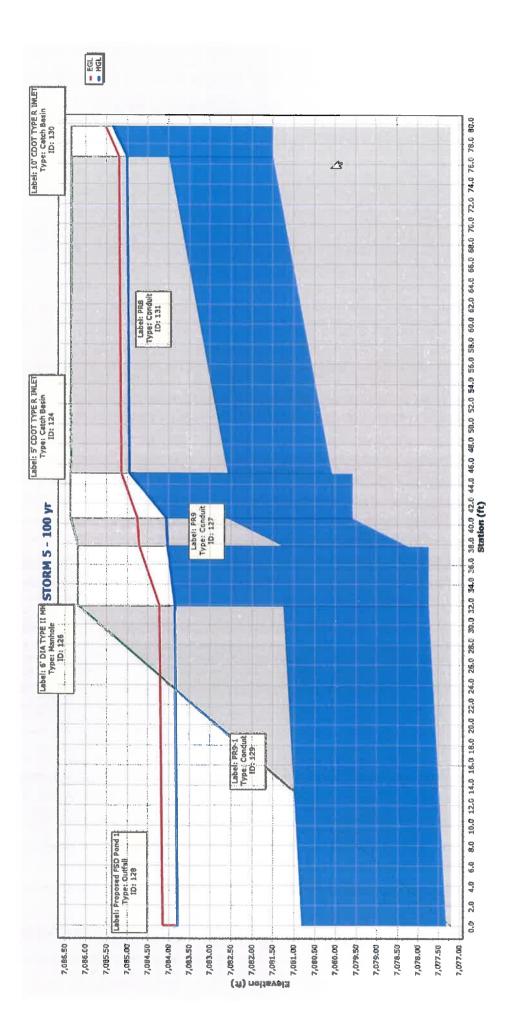
Scenario: 100 yr 578.M 5, 6, 7

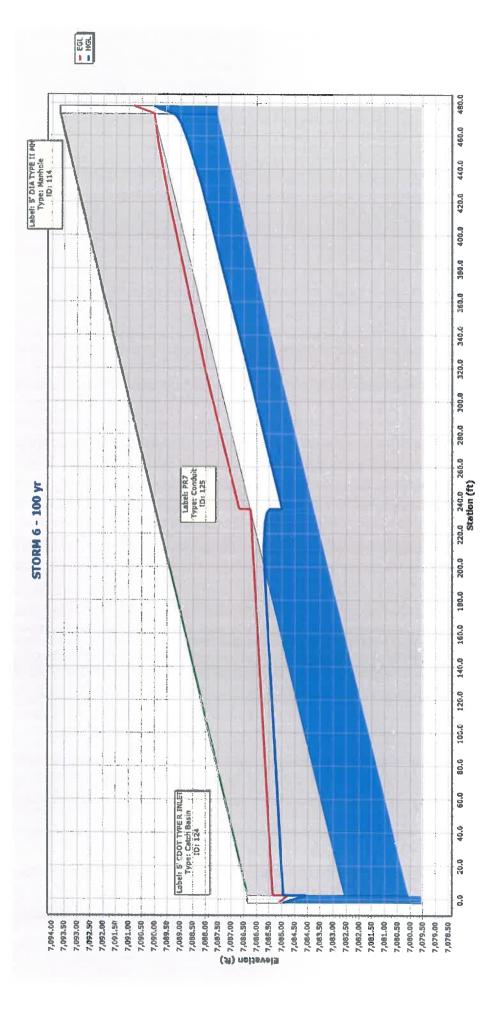
s^a

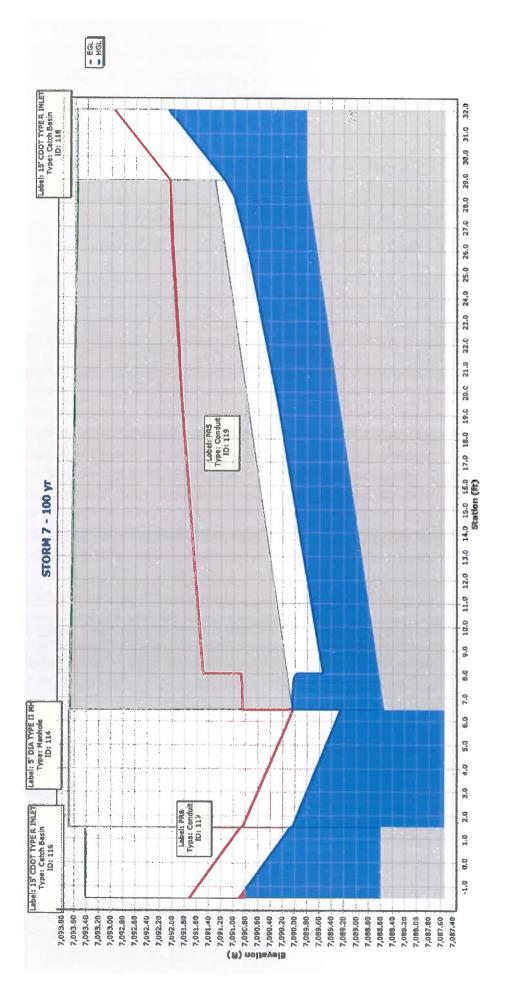
Bentley StormCAD CONNECT Edition [10.01.04] Page 1 of 1

> Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Storm 5, Storm 6, Storm 7.stsw 2/19/2019

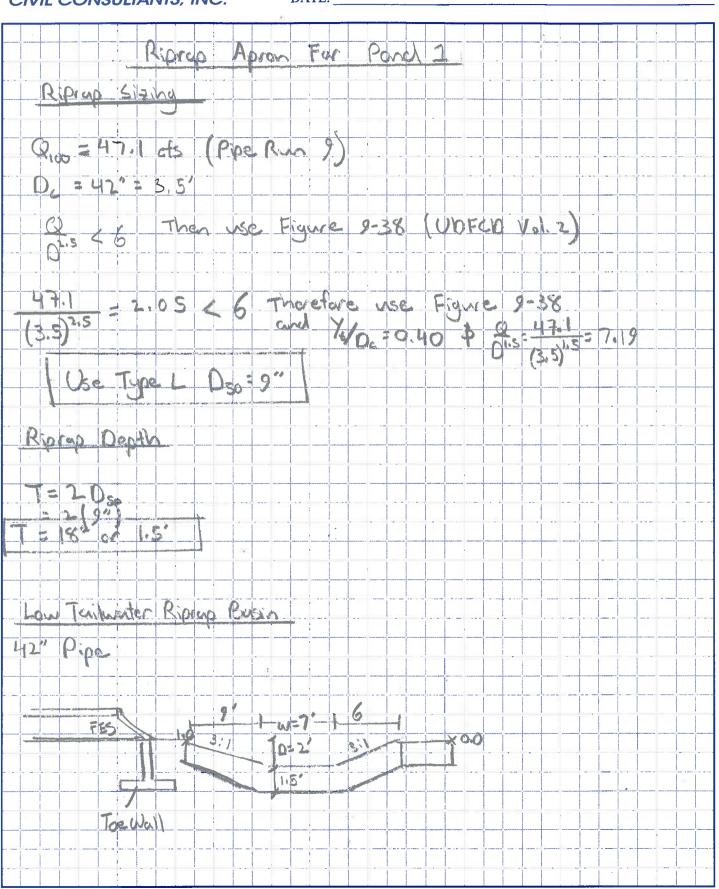

Label	Upstream Structure	Rise (ft)	Flow (cfs)	Flow / Capacity (Design) (%)	Length (Unified) (ft)	Velocity (ft/s)	Froude Number (Normal)	Depth (Normal) (ft)	Depth (Critical) (ft)
PR6	15' CDOT TYPE R INLET		12.70	85.5	2.5	7.19	1.674	1.07	1.34
PR5	15' CDOT TYPE R INLET		12.70	55.2	26.5	13.34	2.948	0.80	1.34
PR7	5' DIA TYPE II MH		25.30	49.2	475.5	10.43	1.867	1.24	1.71
PR9	5' CDOT TYPE R INLET		47.10	17.3	8.0	6.66	6.560	0.84	2.24
PR9-1	6' DIA TYPE II MH		47.10	42.6	34.9	4.90	1.755	1.60	2.14
PR8	10' CDOT TYPE R INLET		17.20	20.9	35.4	3.50	3.114	0.78	1.40
Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Headloss (ft)	Upstream Structure Hydraulic Grade Line (In) (ft)	Upstream Structure Velocity (In- Governing) (ft/s)	Upstream Structure Headloss Coefficient	Upstream Structure Headloss (ft)	Elevation Ground (Start) (ft)	Invert (Start) (ft)	Invert (Stop) (ft)
7,090.47	7,090.43	0.04	7,091.28	7.19	1.020	0.82	7,093.41	7,088.59	7,088.54
7,091.15	7,090.43	0.72	7,092.07	7.62	1.020	0.92	7,093.57	7,089.81	7,088.54
7,089.25	7,084.94	4.31	7,090.43	7.19	1.520	1.17	7,093.68	7,087.54	7,080.07
7,084.06	7,084.02	0.04	7,084.94	3.50	1.280	0.88	7,086.36	7,079.57	7,078.23
7,083.85	7,083.77	0.08	7,084.02	6.66	0.470	0.18	7,086.18	7,077.73	7,077.31
7,085.01	7,084.94	0.06	7,085.34	3.50	1.770	0.34	7,086.34	7,081.49	7,080.07

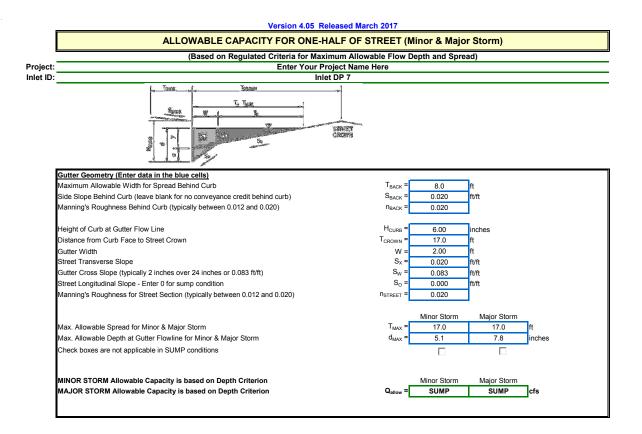

Conduit FlexTable: Table - 1 STRM 5,6,7

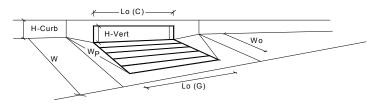

Storm 5, Storm 6, Storm 7.stsw 2/21/2019

Bentley StormCAD CONNECT Edition [10.01.04] Page 1 of 1

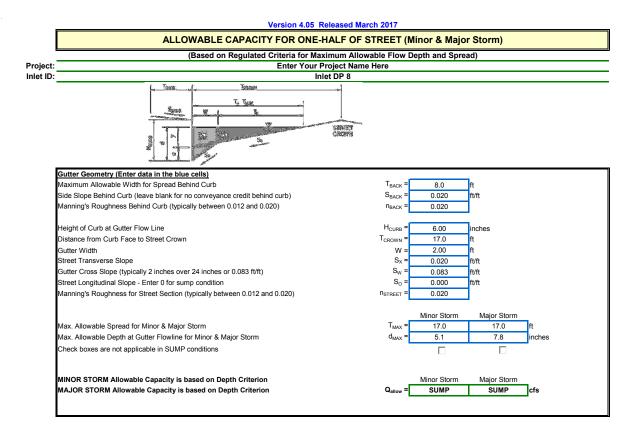
> Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

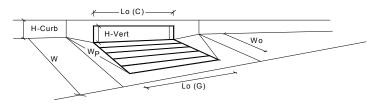

. .

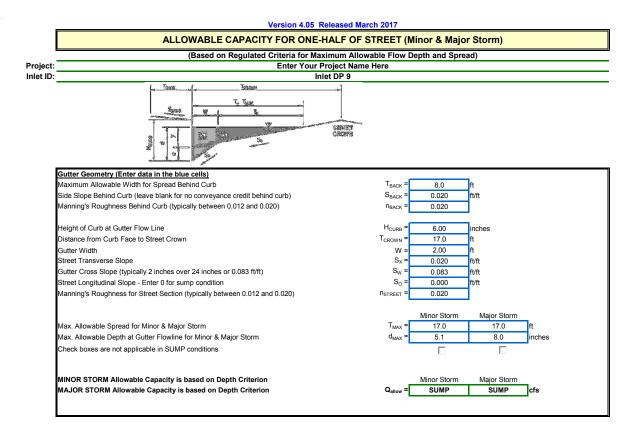


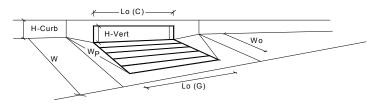


PROJECT: Homestead Filing No. 2

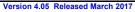

DATE:

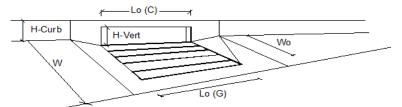




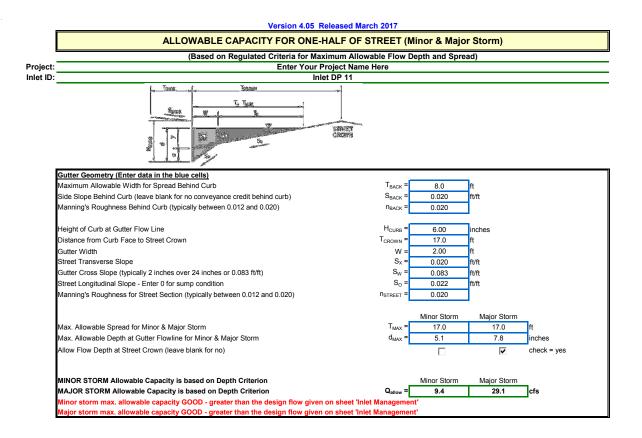

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.1	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L ₀ (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.26	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.48	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.88	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.7	18.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	5.7	13.8	cfs

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.1	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	L ₀ (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.26	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.48	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.88	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.7	18.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.9	11.8	cfs

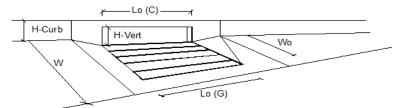




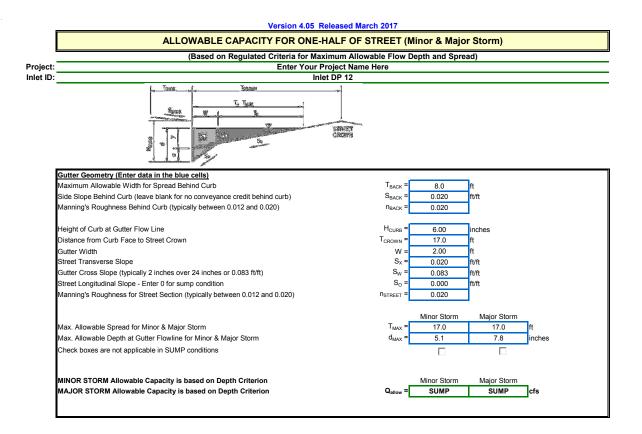
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.1	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.26	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.65	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.7	9.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.2	5.4	cfs

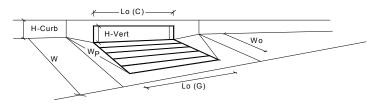


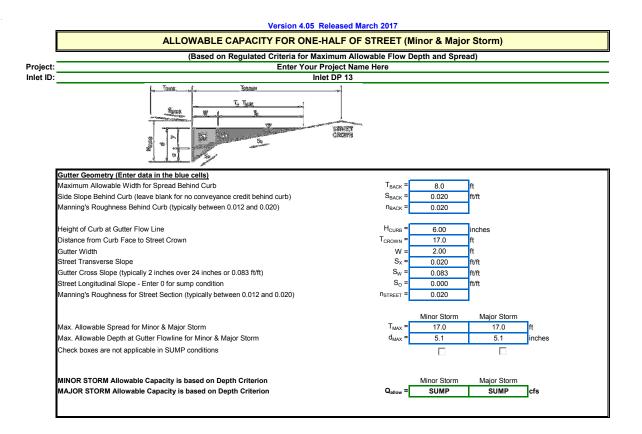
INLET ON A CONTINUOUS GRADE

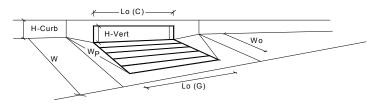


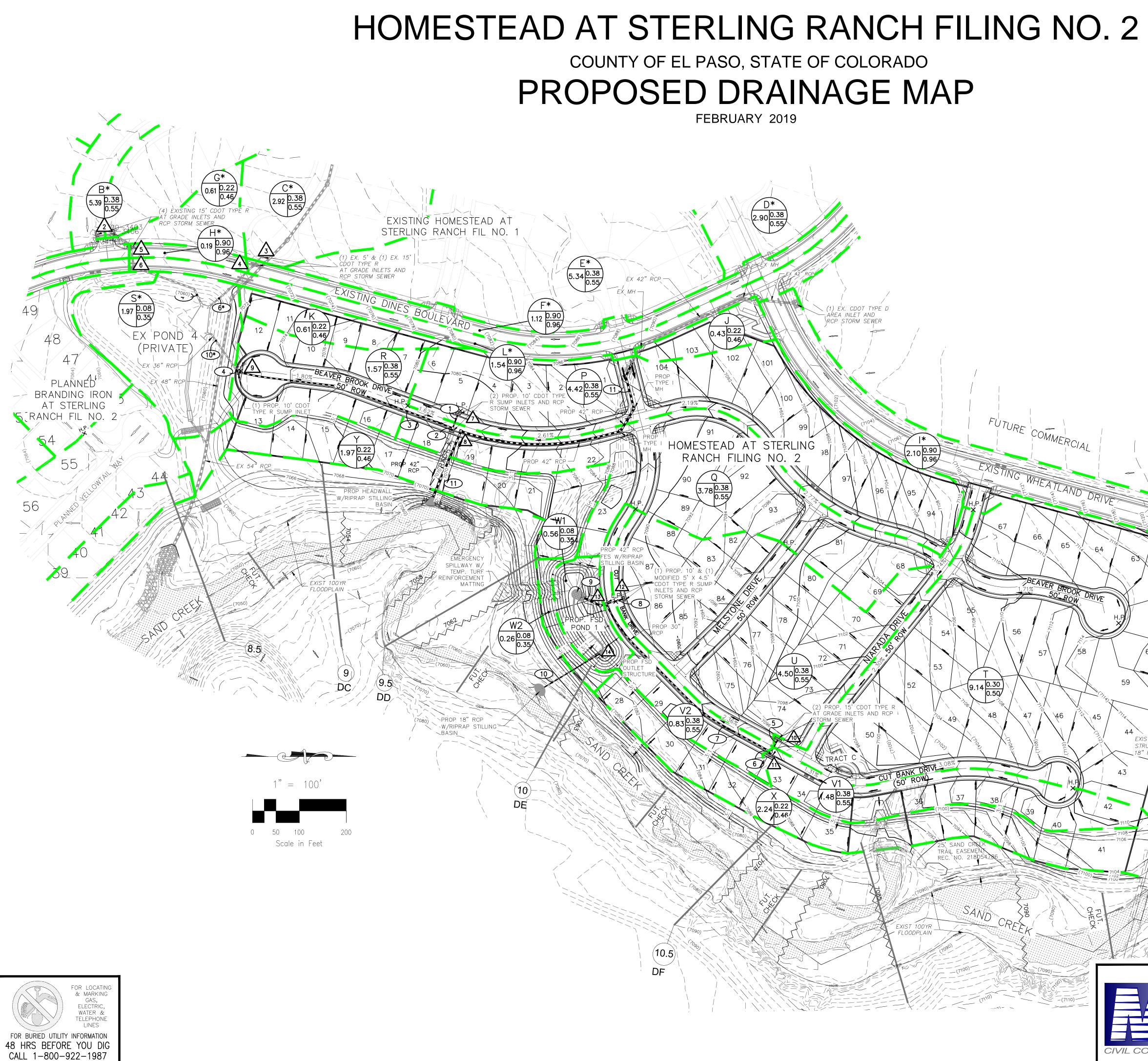
Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	w _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	9.1	12.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.3	2.9	cfs
Capture Percentage = Q _a /Q _o =	С% =	97	82	%




INLET ON A CONTINUOUS GRADE




Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	1.9	12.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	2.9	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	82	%


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.1	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	L ₀ (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.26	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.48	0.74	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.88	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.7	18.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	6.2	17.2	cfs

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.1	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L ₀ (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.26	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.65	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.7	9.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.2	5.9	cfs

DRAINAGE MAP

	LEGE	<u>IND</u>
ASIN	DESIGNATION ~	Z
	ACRES	25
	4	PIPE F
	6	SURFA

6	SURFACE
	BASIN BO
- (6920)— —	EXISTING
6920 ——	PROP CO
	HOMESTE
	PROPOSEI
	EXISTING
	CROSSPA

RUN REFERENCE

DESIGN POINT

OUNDARY

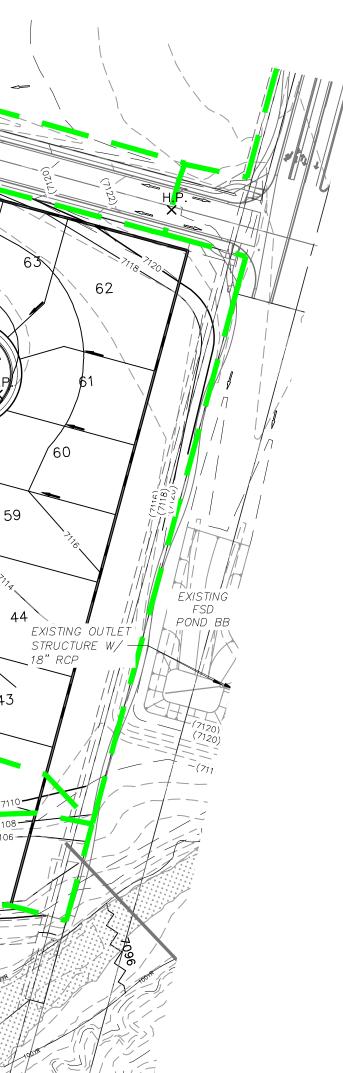
CONTOUR

ONTOUR

EAD FILING NOS. 2&3 BOUNDARY ED STORM SEWER PIPE

S STORM SEWER PIPE

INLET


EXISTING FLOW DIRECTION ARROW

PROPOSED FLOW DIRECTION ARROW

FLARED END SECTION

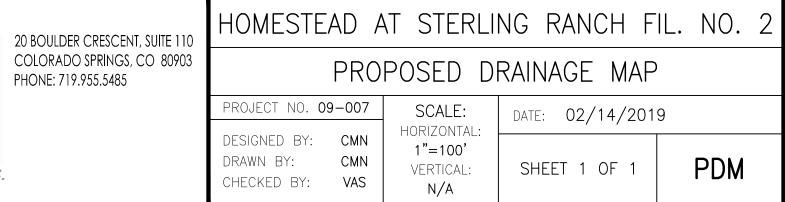
HIGH POINT

LOW POINT

STORM SEWER SUMMARY				
PIPE RUN	Q ₅	Q ₁₀₀	PIPE SIZE	CONTRIBUTING PIPES/DESIGN POINTS
1	5.7	13.8	18" RCP	DP7
2	4.9	11.8	18" RCP	DP8
3	10.6	25.7	24" RCP	PR1, PR2
4	12.4	30.1	30" RCP	DP9, PR3
5	9.1	12.7	18" RCP	DP10
6	1.9	12.7	18" RCP	DP11
7	10.9	25.3	30" RCP	PR5, PR6
8	6.2	17.2	24" RCP	DP12
9	17.9	47.1	42" RCP	DP13, PR7, PR8
10	0.8	23.5	18" CMP	OUTLET STRUC.
11	42.1	76.8	42" RCP	CONTINUED FROM MDDP DP15*
4*	21.8	42.1	36"RCP	SEE MDDP*
6*	16.8	29.4	30" RCP	SEE MDDP*
10*	12.5	30.4	30"RCP	SEE MDDP*

BASIN	BASIN SUMMARY			
BASIN	AREA (ACRES)	Q ₅	Q ₁₀₀	
	SITE BASINS	.0	100	
J	0.43	0.4	1.3	
К	0.61	0.5	1.9	
P	4.42	5.7	13.8	
Q	3.78	4.9	11.8	
R	1.57	2.2	5.4	
Т	9.14	9.4	26.4	
U	4.50	6.4	15.6	
V1	1.48	2.1	5.0	
V2	0.83	1.2	2.9	
W1	0.56	0.2	1.7	
W2	0.26	0.1	0.8	
Х	2.24	2.3	8.0	
Y	1.97	2.0	7.1	
OFF	OFFSITE BASINS*			
B*	5.39	8.0	19.3	
C*	2.92	4.2	10.1	
D*	2.90	4.3	10.4	
E*	5.34	8.2	19.9	
F*	1.12	4.3	7.7	
G*	0.61	0.5	1.9	
H*	0.19	0.9	1.6	
*	2.10	8.9	15.9	
L*	1.54	5.6	10.0	
S*	1.97	0.7	5.3	

FULL SPECTRUM DET INTERIM POND	
WQ VOLUME	0.247 AC-FT


WQ VOLUME	0.247 AC-FT
EURV VOLUME	0.701 AC-FT
100 YR STORAGE VOLUME	1.283 AC-FT
100 YR WATER SURFACE EL	7083.77
SPILLWAY CREST EL	7084.16
TOP OF EMBANKMENT EL	7086.00
SPILLWAY DESIGN FLOW DEPTH	0.84 FT

DESIGN POINT SUMMARY				
DESIGN POINT	Q 5	Q ₁₀₀	BASIN	STRUCTURE
2*	8.0	19.3	В*	(2) EX. 15' AT-GRADE INLETS
3*	4.2	10.1	C*	EX. 6' SUMP INLET
4*	16.1	36.7	D*, E*, F*	EX. 15' AT-GRADE INLET
5*	4.2	19.7	G*, H*, FLOWBY DP4*	EX. 15' AT-GRADE INLET
6*	14.1	26.7	I*, J*, K*, L*	EX. 15' AT-GRADE INLET
7	5.7	13.8	Р	PROP. 10' SUMP INLET
8	4.9	11.8	Q	PROP. 10' SUMP INLET
9	2.2	5.4	R	PROP. 5' SUMP INLET
10	9.4	15.6	Т	PROP. 15' AT-GRADE INLET
11	1.9	15.6	V1	PROP. 15' AT-GRADE INLET
12	6.2	17.2	U, FLOWBY DP10	PROP. 10' SUMP INLET
13	1.2	5.9	V2, FLOWBY DP11	PROP. 5' SUMP INLET
14	19.6	52.4	W1, PR9	CUMULATIVE DETENTION POND
* For detailed information on Desina Points. Basins. Flowby, or Pipe Runs see Sterlir				

* For detailed information on Desing Points, Basins, Flowby, or Pipe Runs see Sterling Ranch Filing Nos. 1&2 MDDP prepared by MS Civil Consultants, dated April 2017

Refer to Homestead at Sterling Ranch Filling No. 2 Grading and Erosion Control Plan for additional interim channel stabilization improvements.

All elevations provided on map are referenced in NGVD29

PHONE: 719.955.5485

CIVIL CONSULTANTS, INC.