ADDENDUM TO THE FINAL DRAINAGE REPORT
 FOR

HOMESTEAD AT STERLING RANCH FILING NO. 2

EPCD File No. SF-19-004

Prepared For:

SR Land, LLC
20 Boulder Crescent, Suite 210
Colorado Springs, CO 80903

August 18, 2020
Project No. 25188.00

Prepared By:
JR Engineering, LLC
5475 Tech Center Drive, Suite 235
Colorado Springs, CO 80919
719-593-2593

ADDENDUM TO THE FINAL DRAINAGE REPORT FOR HOMESTEAD AT STERLING RANCH FILING NO. 2

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Mike Bramlett, Colorado P.E. \# 32314
For and On Behalf of JR Engineering, LLC

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name: $\quad \underline{\text { SR Land, LLC }}$

By:

Title:
Address:
20 Boulder Crescent, Suite 210
Colorado Springs, CO 80903

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

Jennifer Irvine, P.E.
County Engineer/ ECM Administrator

Conditions:

ADDENDUM TO THE FINAL DRAINAGE REPORT FOR HOMESTEAD AT STERLING RANCH FILING NO. 2

Table of Contents

PURPOSE I
PROPSED DRAINAGE CHARACTERISTICS I
Detailed Drainage Discussion (Design Points)
Water Quality Provisions 2
Construction Cost opinion - homestead at sterling ranch fil. no. 2 3

REVISED APPENDIX MATERIALS

SF-3 Minor Basins X1, X2, W1, \& Y1
SF-3 Major Basins X1, X2, W1, \& Y1
MHFD Detention workbook Sand Filter 1
MHFD Detention workbook Sand Filter 2
Proposed basin map (limited to Basins X1, X2, W1, \& Y1)

ADDENDUM TO THE FINAL DRAINAGE REPORT FOR HOMESTEAD AT STERLING RANCH FILING NO. 2

PURPOSE

This document is an Addendum to the Final Drainage Report for Homestead at Sterling Ranch Filing No. 2. The purpose of this report is to update the approved "Final Drainage Report for Homestead at Sterling Ranch Filing No. 2". The scope of the updates included in this addendum are limited to proposed Basins W1, X1, X2, \& Y1. More specifically, this Addendum proposes to replace the proposed individual lot Sand Filters for lots 13-24, 28-35, and 36-41 with two common Sand Filters, one to serve basin X1, lots 36-41, and one to serve basins W1, X2, \& Y1, lots 13-24 \& 28-35.

The text below replaces the original corresponding text from the Final Drainage Report for Homestead at Sterling Ranch Filing No. 2. The revised sections of the original report are marked in the table of contents below, and also crossed out/highlighted in the attached original report. Crossed out text is replaced and highlighted text is modified or discussed further herein.

PROPSED DRAINAGE CHARACTERISTICS

Detailed Drainage Discussion (Design Points)

BASIN X1 (0.78 acres), consists of proposed residential backyards of lots 36-41 along the eastern boundary of the site with runoff coefficients of 0.22 for the 5 year and 0.46 for the 100 year. Runoff in this basin will be directed via backyard swales towards the rear of the lots where it will be collected in a 12 " Nyoplast Drain Basin w/ a 12" dome grate placed in the rear southwest corner of each lot. The 12" Nyoplast Drain Basins are sized to collect all flows (Q5 $=0.8 \mathrm{cfs}, \mathrm{Q} 100=2.8 \mathrm{cfs}$) in both the 5 and 100 year storms. Collected flows will then be piped to a proposed full-spectrum sand filter, with a 12 -hour drain time and a 4 " perforated underdrain. The treated flows from the sand filter will be discharged via an outlet structure to the adjacent Sand Creek.

BASIN X2 (1.04 acres), consists of proposed residential backyards of lots 28-35 along the southern boundary of the site with runoff coefficients of 0.22 for the 5 year and 0.46 for the 100 year. Runoff in this basin will be directed via backyard swales towards the rear of the lots where it will be collected in a 12 " Nyoplast Drain Basin w/ a 12" dome grate placed in the rear southwest corner of each lot (DP2). The 12" Nyoplast Drain Basins are sized to collect all flows (Q5 = $1.1 \mathrm{cfs}, \mathrm{Q} 100=$ 3.7 cfs) in both the 5 and 100 year storms. Collected flows will then be piped west via 12 " HDPE pipe following the rear lot lines towards DP3.1, where flows in the pipe combine with collected flows from Basin W1.

BASIN W1 (0.86 acres), consists of proposed residential backyards of lots 19-24 along the southeastern boundary of the site with runoff coefficients of 0.22 for the 5 year and 0.46 for the 100 year. Runoff in this basin will be directed via backyard swales towards the rear of the lots where it

ADDENDUM TO THE FINAL DRAINAGE REPORT FOR HOMESTEAD AT STERLING RANCH FILING NO. 2

will be collected in a 12" Nyoplast Drain Basin w/ a 12" dome grate placed in the rear corner of each lot (DP3). The 12" Nyoplast Drain Basins are sized to collect all flows (Q5 = $0.9 \mathrm{cfs}, \mathrm{Q} 100=3.1 \mathrm{cfs}$) in both the 5 and 100 year storms. Collected flows will then be piped southwest via 12" HDPE pipe following the rear lot lines towards DP3.1, where flows in the pipe combine with collected flows from Basin X2 (Q5 = $1.5 \mathrm{cfs}, \mathrm{Q} 100=5.5 \mathrm{cfs})$.

Flows in the pipe at DP3.1 are then piped to DP4.1 where they combine with collected flows from Basin Y1 (Q5 = 2.1 cfs, Q100 = 7.5 cfs).

BASIN Y1 (0.84 acres), consists of proposed residential backyards of lots 13-18 along the southeastern boundary of the site with runoff coefficients of 0.22 for the 5 year and 0.46 for the 100 year. Runoff in this basin will be directed via backyard swales towards the rear of the lots where it will be collected in a 12 " Nyoplast Drain Basin w/ a 12" dome grate placed in the rear corner of each lot (DP4). The 12" Nyoplast Drain Basins are sized to collect all flows (Q5 = $0.8 \mathrm{cfs}, \mathrm{Q} 100=3.0 \mathrm{cfs}$) in both the 5 and 100 year storms. Collected flows will then be piped southwest via 12 " HDPE pipe following the rear lot lines to a proposed full spectrum sand filter at DP4.1, where flows combine with collected flows from Basin X2 and W1 (Q5 = 2.1 cfs , Q100 $=7.5 \mathrm{cfs})$.

The basin characteristics, hydrologic parameters, runoff and rational calcs for Basins X1, X2, W1, and Y1 have remained consistent with the approved Final Drainage Report for Homestead at Sterling Ranch Filing No. 2. However, the routing of the basins has changed and therefore revised SF-3 forms are included in the appendix section of this report. A revised basin map, showing the changes within the above described basins is also attached to this report.

Water Quality Provisions

Runoff produced within the residential backyard lots, of Basin X1 will be conveyed in backyard swales, collected in drain basins and directed to a full-spectrum sand filter (sand filter 1). The treated flows will be collected by private storm sewer systems and discharged into the Sand Creek Channel. Sand filter basin 1 is designed to provide $0.01 \mathrm{ac}-\mathrm{ft}$ of water quality storage (WQCV), 0.025 ac -feet of excess urban runoff volume (EURV) and $0.03 \mathrm{ac}-\mathrm{ft}$ of 100-year storage for a total design volume of 0.065 ac- ft . Sand filter basin 1 was designed to have a 12 hour WQCV drain time and a peak outflow for the 100 year design storm of 0.3 cfs. The sand filter will outfall via an orifice controlled 12" HDPE pipe and FES directly to the adjacent Sand Creek channel. Sand filter basin 1 will also include a 4 " perforated underdrain system and emergency overflow spillway designed to pass the peak 100-yr flow rate with one foot of freeboard above the design water surface elevation. The peak discharge rate of the proposed sand filter is at or below the historic flows for the basin which it serves.

Runoff produced within the residential backyard lots, of Basins X2, W1, and Y1 will be conveyed in backyard swales, collected in drain basins and directed to a full-spectrum sand filter (sand filter 2). The treated flows will be collected by private storm sewer systems and discharged, ultimately, into

ADDENDUM TO THE FINAL DRAINAGE REPORT FOR HOMESTEAD AT STERLING RANCH FILING NO. 2

the Sand Creek Channel. The sand filter will outfall via an orifice controlled 12" HDPE pipe that is directly connected to the existing 60 " RCP storm sewer outfall pipe of existing "Pond 4 ".

Sand filter basin 2 is designed to provide 0.035 ac -ft of water quality storage (WQCV), 0.095 ac -feet of excess urban runoff volume (EURV) and 0.107 ac -ft of 100-year storage for a total design volume of 0.238 ac- ft . Sand filter basin 2 was designed to have a 12 hour WQCV drain time and a peak outflow for the 100 year design storm of 1.8 cfs . The sand filter will outfall via an orifice controlled $12 "$ HDPE pipe directly connected to the existing 60 " RCP pipe to the south that serves as the outfall to "Pond 4" constructed with Sterling Ranch Filing No. 1. Sand filter basin 2 will also include a 4" perforated underdrain system and emergency overflow spillway designed to pass the peak $100-\mathrm{yr}$ flow rate with one foot of freeboard above the design water surface elevation. The peak discharge rate of the proposed sand filter is at or below the historic flows for the basins which it serves.

Both proposed sand filters are contained within existing Tract D, of the Homestead at Sterling Ranch Filing No. 2 development. The proposed sand filter facilities are to be privately maintained by the Sterling Ranch Metropolitan District. Access to maintain these sand filter basins is from the regional trail along sand creek.

The proposed sand filters were sized using the MHFD Detention workbook and printouts are included in the Hydraulic Calculations section of this report.

CONSTRUCTION COST OPINION - HOMESTEAD AT STERLING RANCH FIL. NO. 2

Drainage improvements are planned with the development of Homestead at Sterling Ranch Filing No. 2. A majority of the construction costs have been accounted for in the "Master Development Drainage Report for Sterling Ranch Filing Nos. 1\&2, and Final Drainage Report for Sterling Ranch Filing No.1" prepared by MS Civil Consultants, dated April 2017. Any additional improvements and costs are listed below.

The following list of drainage improvements is Non-Reimbursable. The Reimbursable facilities are outlined in the Sterling Ranch Filing No. 1 Final Drainage Report and Sterling Ranch MDDP. Refer to the MDDP for Sterling Ranch Cost and Fee Analysis Report (February 2019).

ADDENDUM TO THE FINAL DRAINAGE REPORT FOR HOMESTEAD AT STERLING RANCH FILING NO. 2

Item	Description	Quantity Prev	Quantity Now	Unit		nit Cost	Cost
1	18" RCP	31	31 L		\$	40	\$ 1,240
2	24" RCP	127	127 L		\$	50	\$ 6,350
3	30" RCP	998	998 L	LF	\$	85	\$ 84,830
4	36" RCP	8		LF	\$	105	\$ 840
5	42" RCP	699	699	LF	\$	185	\$129,315
6	24" FES	1		EA	\$	750	\$ 750
8	42" FES	1		EA	\$	1,250	\$ 1,250
9	5.0'x4.5' CDOT Type R Sump Inlet	1		EA	\$	4,000	\$ 4,000
10	10^{\prime} CDOT Type R Sump Inlet	4		EA	\$	4,700	\$ 18,800
11	15' CDOT Type R At-Grade Inlet	2		EA	\$	6,000	\$ 12,000
12	4.0' Type II MH	1		EA	\$	3,500	\$ 3,500
13	5.0' Type II MH	2		EA	\$	4,000	\$ 8,000
14	6.0' Type II MH	1		EA	\$	4,500	\$ 4,500
17	5.0 'x6.0' MH	2		EA	\$	6,500	\$ 13,000
18	$5.5{ }^{\prime} \times 5.5{ }^{\text {M }} \mathrm{MH}$	1		EA	\$	6,500	\$ 6,500
19	Headwall/Wingwall	1		EA	\$	6,000	\$ 6,000
20	Full Spectrum Det. Pond 1	1		EA	\$	15,000	\$ 15,000
21	FSD Pond 1 Outlet Structure	1		EA	\$	12,600	\$ 12,600
22	Ind. Lot Sand filter	26		EA	\$	2,000	\$
23	18" Drain basin MH	27		EA	\$	1,000	\$
24	12" Storm pipe	1,658	2,433 L	LF	\$	26	\$ 63,258
25	12" Nyloplast Drain basin w/ 12" dome grate	0	28	EA	\$	1,000	\$ 28,000
26	Sand Filter Basin 1	0		LS	\$	4,000	\$ 4,000
27	Sand Filter Basin 2	0		LS	\$	6,000	\$ 6,000
28	12" FES	0		EA	\$	350	\$ 1,400
TOTAL							\$431,133

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision: Homestead at Sterling Ranch Filing No. 2
Location: Colorado Springs
Design Storm: $5-Y$ ear

Project Name: Homestead at Sterling Ranch Filing No. 2
Project No.: 2000-5188.
Calculated By: REB
Checked By:
Date: 8 8/18/20

		DIRECT RUNOFF							TOTAL RUNOFF				PIPE				TRAVEL TIME			
STREET					$\underset{\sim}{\underline{\underline{E}}}$	$\begin{aligned} & \frac{\ddot{4}}{4} \\ & \underset{4}{4} \end{aligned}$	$\stackrel{\bar{c}}{\bar{E}}$	$\frac{\sqrt[\pi]{4}}{0}$	$\underset{\substack{\text { E. } \\ \hline}}{ }$	$$	$\begin{aligned} & \bar{\Sigma} \\ & \vdots \\ & \equiv \end{aligned}$	$\frac{\frac{\pi}{4}}{0}$		$\begin{aligned} & \frac{\tilde{0}}{\pi} \\ & \underset{\sim}{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & 0 \\ & \stackrel{0}{0} \\ & \hline 0 \end{aligned}$				$\underset{y}{\underline{\underline{E}}}$	REMARKS
	1	X1	0.78	0.22	7.3	0.17	4.60	0.8					0.8	0.17	2.0	18	250	2.6	1.6	Runoff from Basin X1, collected by private 12" Nyoplast Drain Basins, Piped via 12" HDPE to pvt. Full-specrum sand filter @ DP1.1
	2	X2	1.04	0.22	7.3	0.23	4.60	1.1					1.1	0.23	2.0	12	950	3.1	5.1	Runoff from Basin X2, collected by private 12" Nyoplast Drain Basins, Piped via 12 " HDPE to DP3.1
	3	W1	0.86	0.22	7.3	0.19	4.60	0.9					0.9	0.19	2.0	12	250	2.8	1.5	Runoff from Basin W1, collected by private 12" Nyoplast Drain Basins, Piped via 12" HDPE to DP3.1
	3.1								13.9	0.42	3.64	1.5								Combined flow in private 12" HDPE pipe @ DP3.1, piped to private full-spectrum sand filter @ DP-4.1
	4	Y1	0.84	0.22	7.3	0.18	4.60	0.8					0.8	0.18	2.0	12	350	3.0	1.9	Runoff from Basin Y1, collected by private 12" Nyoplast Drain Basins, Piped via 12 " HDPE to DP4.1
	4.1								15.8	0.60	3.44	2.1								Combined flow in private 12" HDPE pipe @ DP4.1, inflow to proposed private full-spectrum sand filter

Notes:
Street and Pipe C*A values are determined by Q/i using the catchment's intensity value
All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision: Homestead at Sterling Ranch Filing No. 2 Location: Colorado Springs

Project Name: Homestead at Sterling Ranch Filing No. 2 Project No.: 2000-5188.
Calculated By: REB
Checked By:
cked By:
Date: $8 / 18 / 20$

Description	$\begin{aligned} & . \stackrel{\rightharpoonup}{0} \\ & 0 \\ & 0 \\ & \text { 呂 } \\ & 0.0 \end{aligned}$	DIRECT RUNOFF							TOTAL RUNOFF				PIPE				TRAVEL TIME			
					$\underset{\underbrace{}}{\underline{\underline{E}}}$	$$	$\underset{y}{\underline{E}}$	$\begin{aligned} & \frac{\pi}{\hat{4}} \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{\underline{y}} \\ & \substack{\underline{y} \\ \hline} \end{aligned}$	$$	$\begin{aligned} & \text { § } \\ & \underline{E} \end{aligned}$	$\frac{\frac{\pi}{4}}{0}$		$$	$\begin{aligned} & \text { ó } \\ & \stackrel{0}{0} \\ & \stackrel{0}{n} \end{aligned}$			$\begin{aligned} & \frac{\pi}{3} \\ & \frac{2}{4} \\ & \frac{2}{3} \\ & \frac{0}{0} \end{aligned}$	$\stackrel{\text { T }}{\substack{\text { E }}}$	REMARKS
	1	${ }^{\text {x1 }}$	0.78	0.46	7.3	0.36	7.72	2.8					2.8	0.36	1.5	12	250	3.2	1.3	Runoff rom Basin X1, collected by private 12"Nyoplast Drain Basins, Piped via 12" HDPE to pvt. Full-specrum sand filter @ DP1.1
	2	X2	1.04	0.46	7.3	0.48	7.72	3.7					3.7	0.48	1.5	12	950	3.5	4.5	
	3	W1	0.86	0.46	7.3	0.40	7.72	3.1					3.1	0.40	1.5	12	250	3.3	1.2	Runoff from Basin W1, collected by private 12" Nyoplast Drain Basins, Piped via 12" HDPE to DP3. 1
	3.1								13.1	0.88	6.26	5.5								Combined flow in private 12" HDPE pipe @ DP3.1, piped to private full-spectrum sand filter @ DP-4.1
	4	Y1	0.84	0.46	7.3	0.39	7.72	3.0		$\begin{array}{\|l\|l\|} \hline & \\ \hline 4.8 & 1.27 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 0.20 & 0.5 \\ \hline & . \\ \hline 5.94 & 7.5 \\ \hline \end{array}$		3.0	$\begin{aligned} & 0.399 \\ & \hline \end{aligned}$	1.5		350 3.3 1.8			Runoff from Basin Y1, collected by private 12" Nyoplast Drain Basins, Piped via 12" HDPE to DP4.1 Combined flow in private 12" HDPE pipe @ DP4.1, inflow to proposed private full-spectrum sand filter
	4.1												Combined flow in private 12" HDPE pipe @ DP4.1, inflow to proposed private full-spectrum sand filter							

A values are determined by of using the catchment's intensity value.
All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Watershed Information

$\begin{aligned} \text { Zone } 1 \text { Volume }(\text { WQCV }) & = \\ \text { Zone } 2 \text { Volume }(\text { EURV }- \text { Zone } 1) & = \end{aligned}$	0.010	acre-feet
	0.025	acre-feet
Zone 3 Volume (100 -year - Zones $1 \& 2$) $=$	0.030	et
Total Detention Basin Volume $=$	0.065	acre-feet
Initial Surcharge Volume (ISV) $=$	N/A	ft^{3}
Initial Surcharge Depth (ISD) $=$	N/A	f
Total Available Detention Depth ($\mathrm{H}_{\text {toatal }}$) $=$	user	ft
Depth of Trickle Channel ($\mathrm{H}_{\text {TC }}$) $=$	N/A	t
Slope of Trickle Channel ($\mathrm{S}_{\mathrm{T} \mathrm{C}}$) $=$	N/A	t/t
Slopes of Main Basin Sides ($\mathrm{S}_{\text {man }}$) $=$	user	$\mathrm{H}: \mathrm{V}$
Basin Length-to-Width Ratio ($\mathrm{R}_{\text {/ } / w)=}$	user	
Initial Surcharge Area (AIsV) $=$	user	t^{2}
Surcharge Volume Length (LISV) $=$	user	f
Surcharge Volume Width ($\mathrm{W}_{\text {ISV }}$) $=$	user	ft
Depth of Basin Floor (Hfloor) $=$	user	ft
Length of Basin Floor (Ltiook) $=$	user	ft
Width of Basin Floor ($\mathrm{W}_{\text {flook }}$) $=$	user	f
Area of Basin Floor (Afloor) $=$	user	tt^{2}
Volume of Basin Floor ($\mathrm{V}_{\text {FLoor }}$) $=$	user	t^{3}
Depth of Main Basin (HMain) =	user	ft
Length of Main Basin (LMaIN) =	user	ft
Width of Main Basin ($\mathrm{W}_{\text {MAIN }}$) $=$	user	ft
Area of Main Basin ($\mathrm{Mman}^{\text {m }}$) $=$	user	t^{2}
Volume of Main Basin ($\mathrm{V}_{\text {Matin }}$) $=$	user	t^{3}
Calculated Total Basin Volume ($\mathrm{V}_{\text {total }}$) $=$	user	acre-feet

DETENTION BASIN OUTLET STRUCTURE DESIGN

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	0:15:00	0.01	0.03	0.03	0.04	0.05	0.04	0.05	0.04	0.06
	0:20:00	0.03	0.09	0.10	0.13	0.16	0.09	0.11	0.12	0.16
	0:25:00	0.07	0.26	0.24	0.37	0.49	0.23	0.28	0.31	0.50
	0:30:00	0.10	0.37	0.34	0.52	0.65	0.70	0.84	0.96	1.31
	0:35:00	0.11	0.38	0.35	0.53	0.66	0.88	1.05	1.26	1.68
	0:40:00	0.10	0.36	0.34	0.50	0.63	0.94	1.12	1.33	1.76
	0:45:00	0.09	0.33	0.31	0.46	0.59	0.91	1.07	1.31	1.74
	0:50:00	0.09	0.31	0.29	0.43	0.55	0.88	1.04	1.26	1.67
	0:55:00	0.08	0.29	0.27	0.40	0.51	0.81	0.96	1.19	1.57
	1:00:00	0.08	0.27	0.25	0.37	0.48	0.75	0.89	1.12	1.49
	1:05:00	0.07	0.25	0.24	0.35	0.45	0.70	0.83	1.07	1.42
	1:10:00	0.07	0.23	0.21	0.32	0.42	0.63	0.76	0.97	1.29
	1:15:00	0.06	0.21	0.19	0.30	0.40	0.57	0.69	0.86	1.16
	1:20:00	0.05	0.19	0.18	0.27	0.36	0.51	0.61	0.75	1.01
	1:25:00	0.05	0.17	0.16	0.24	0.32	0.45	0.54	0.65	0.88
	1:30:00	0.05	0.16	0.15	0.23	0.30	0.40	0.48	0.58	0.77
	1:35:00	0.04	0.15	0.14	0.21	0.28	0.36	0.43	0.52	0.69
	1:40:00	0.04	0.14	0.13	0.20	0.26	0.33	0.39	0.46	0.62
	1:45:00	0.04	0.13	0.13	0.18	0.24	0.30	0.35	0.42	0.56
	1:50:00	0.04	0.12	0.12	0.17	0.22	0.27	0.32	0.38	0.51
	1:55:00	0.03	0.11	0.11	0.15	0.20	0.25	0.29	0.34	0.45
	2:00:00	0.03	0.10	0.10	0.14	0.18	0.22	0.26	0.30	0.40
	2:05:00	0.03	0.08	0.08	0.12	0.15	0.19	0.22	0.25	0.34
	2:10:00	0.02	0.07	0.07	0.09	0.12	0.15	0.18	0.21	0.28
	2:15:00	0.02	0.05	0.06	0.08	0.10	0.12	0.14	0.16	0.22
	2:20:00	0.01	0.04	0.04	0.06	0.08	0.09	0.11	0.13	0.17
	2:25:00	0.01	0.03	0.03	0.05	0.06	0.07	0.08	0.09	0.12
	2:30:00	0.01	0.03	0.03	0.04	0.05	0.05	0.06	0.07	0.09
	2:35:00	0.01	0.02	0.02	0.03	0.04	0.04	0.05	0.05	0.07
	2:40:00	0.01	0.02	0.02	0.03	0.03	0.03	0.04	0.04	0.06
	2:45:00	0.00	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.04
	2:50:00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	2:55:00	0.00	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02
	3:00:00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02
	3:05:00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	3:10:00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	3:15:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	3:20:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	$\begin{gathered} \text { Stage } \\ {[\mathrm{ft]}]} \end{gathered}$	$\begin{aligned} & \text { Area } \\ & {\left[\mathrm{ff}^{2}\right]} \end{aligned}$	$\begin{gathered} \hline \text { Area } \\ \text { [acres] } \end{gathered}$	$\begin{gathered} \hline \text { Volume } \\ {\left[\mathrm{ft}^{3}\right]} \end{gathered}$	Volume [ac-ft]	$\begin{gathered} \text { Total } \\ \text { Outflow } \\ \text { [ffs] } \end{gathered}$	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor)
							from the S-A-V table on Sheet 'Basin'.
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice,
							overflow grate, and spillway,
							where applicable).

\square

| |
| :--- | :--- |

\square	

Watershed Information

Selected BMP Type $=$	SF
Watershed Area =	2.74
Watershed Length $=$	750
Watershed Length to Centroid =	375
Watershed Slope =	0.020
Watershed Imperviousness =	45.00\%
Percentage Hydrologic Soil Group A =	0.0\%
Percentage Hydrologic Soil Group B =	100.0\%
Percentage Hydrologic Soil Groups $\mathrm{C} / \mathrm{D}=$	0.0\%
Target WQCV Drain Time $=$	12.0

DETENTION BASIN OUTLET STRUCTURE DESIGN

Project: Homestead at Sterling Ranch Filing No. $\mathbf{2}$.

Basin ID: Sand Filter - Basins Y1, W1, X2

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)				Calculated Parameters for Underd	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	2.10	ft (distance below the filtration media surface) inches	Underdrain Orifice Area = Underdrain Orifice Centroid =	0.0	$f_{\text {feet }}^{\mathrm{t}^{2}}$
	0.95			0.04	
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)			ed Parameters		
Invert of Lowest Orifice $=$	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) WQ Orifice Area per Row $=$ $\mathrm{ft}($ relative to basin bottom at Stage $=0 \mathrm{ft})$ Elliptical Half-Width Inches Elliptical Slot Centroid $=$ inches Elliptical Slot Area$=$		N/A	ft^{2}
Depth at top of Zone using Orifice Plate $=$	N/A			N/A	feet
Orifice Plate: Orifice Vertical Spacing =	N/A			N/A	feet
Orifice Plate: Orifice Area per Row $=$	N/A			N/A	ft^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	N/A							
Orifice Area (sq. inches)	N/A							

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)	N/A							
Orifice Area (sq. inches)	N/A							

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Calculated Parameters for Vertical Orifice			
	Zone 2 Circular	Zone 3 Circular		Vertical Orifice Area = Vertical Orifice Centroid =	Zone 2 Circular	Zone 3 Circular	${ }_{\text {feet }} \mathrm{ft}^{2}$
Invert of Vertical Orifice $=$	0.60	1.75			0.00	0.79	
Depth at top of Zone using Vertical Orifice $=$	1.73	2.62			0.03	0.50	

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area \% =	Not Selected	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) feet
	N/A	N/A	
	N/A	N/A	
	N/A	N/A	H:V
	N/A	N/A	feet
	N/A	N/A	\%, grate open area/total area
	N/A	N/A	\%

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

User Input: Emergency Spillway (Rectangular or Trapezoidal)

	Calculated Parameters for Spillway	
Spillway Design Flow Depth=	0.21	feet
Stage at Top of Freeboard =	4.00	feet
Basin Area at Top of Freeboard =	0.16	acres
Basin Volume at Top of Freeboard =	0.33	acre-ft

Routed Hydrograph Results	The user can over	the default CUH	drographs and rum	off volumes by en	ring new values in	e Inflow Hydrogr	s table (Columns	through AF).	
Design Storm Return Period $=$	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) $=$	0.035	0.131	0.124	0.181	0.232	0.302	0.358	0.429	0.574
Inflow Hydrograph Volume (acre-ft) $=$	0.035	0.131	0.124	0.181	0.232	0.302	0.358	0.429	0.574
CUHP Predevelopment Peak Q (cfs) =	0.0	0.0	0.2	0.6	0.9	1.7	2.1	2.7	3.8
OPTIONAL Override Predevelopment Peak Q (cfs) $=$	0.0	0.0							
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.08	0.22	0.34	0.61	0.77	0.99	1.38
Peak Inflow Q (cfs) $=$	0.4	1.5	1.4	2.1	2.7	3.7	4.4	5.2	6.9
Peak Outflow Q (cfs) $=$	0.0	0.1	0.1	0.1	0.2	0.7	1.1	1.8	2.8
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.1	0.2	0.4	0.5	0.7	0.7
Structure Controlling Flow $=$	Filtration Media	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 2	Vertical Orifice 2	Vertical Orifice 2	Vertical Orifice 2	N/A
Max Velocity through Grate $1(\mathrm{fps})=$	N/A								
Max Velocity through Grate $2(\mathrm{fps})=$	N/A								
Time to Drain 97\% of Inflow Volume (hours) $=$	12	36	34	45	51	51	50	50	48
Time to Drain 99% of Inflow Volume (hours) $=$	12	37	35	47	52	53	53	53	52
Maximum Ponding Depth (ft) =	0.33	1.23	1.17	1.62	1.94	2.20	2.35	2.53	2.75
Area at Maximum Ponding Depth (acres) $=$	0.09	0.12	0.11	0.13	0.14	0.15	0.15	0.16	0.16
Maximum Volume Stored (acre-ft) $=$	0.027	0.119	0.113	0.168	0.210	0.247	0.269	0.296	0.331

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.04
	0:15:00	0.03	0.14	0.12	0.19	0.23	0.16	0.20	0.19	0.28
	0:20:00	0.12	0.40	0.42	0.55	0.69	0.41	0.48	0.51	0.71
	0:25:00	0.29	1.12	1.01	1.55	2.05	1.00	1.19	1.33	2.06
	0:30:00	0.40	1.54	1.42	2.13	2.66	2.87	3.44	3.91	5.31
	0:35:00	0.41	1.54	1.44	2.13	2.64	3.56	4.23	5.04	6.70
	0:40:00	0.39	1.44	1.37	1.99	2.47	3.72	4.39	5.22	6.89
	0:45:00	0.35	1.32	1.24	1.82	2.28	3.53	4.17	5.08	6.70
	0:50:00	0.32	1.21	1.13	1.67	2.08	3.36	3.97	4.82	6.35
	0:55:00	0.29	1.11	1.04	1.53	1.92	3.05	3.60	4.47	5.90
	1:00:00	0.27	1.02	0.96	1.41	1.79	2.79	3.31	4.19	5.54
	1:05:00	0.25	0.93	0.88	1.29	1.65	2.56	3.04	3.94	5.21
	1:10:00	0.22	0.85	0.79	1.17	1.52	2.28	2.72	3.47	4.61
	1:15:00	0.20	0.76	0.70	1.05	1.40	2.02	2.40	3.02	4.03
	1:20:00	0.18	0.69	0.63	0.96	1.29	1.75	2.09	2.58	3.45
	1:25:00	0.17	0.64	0.59	0.89	1.18	1.56	1.86	2.25	3.02
	1:30:00	0.16	0.60	0.55	0.82	1.07	1.39	1.66	1.98	2.66
	1:35:00	0.15	0.55	0.51	0.77	0.98	1.25	1.48	1.76	2.35
	1:40:00	0.14	0.50	0.48	0.69	0.89	1.11	1.32	1.55	2.07
	1:45:00	0.13	0.45	0.45	0.62	0.81	0.99	1.17	1.36	1.82
	1:50:00	0.12	0.40	0.41	0.55	0.72	0.87	1.03	1.18	1.57
	1:55:00	0.10	0.35	0.36	0.48	0.64	0.76	0.89	1.01	1.34
	2:00:00	0.09	0.30	0.31	0.42	0.54	0.65	0.76	0.85	1.13
	2:05:00	0.07	0.24	0.24	0.33	0.43	0.50	0.59	0.65	0.87
	2:10:00	0.05	0.19	0.19	0.26	0.34	0.37	0.43	0.48	0.64
	2:15:00	0.04	0.15	0.15	0.21	0.28	0.29	0.33	0.36	0.49
	2:20:00	0.04	0.12	0.13	0.17	0.23	0.22	0.26	0.28	0.38
	2:25:00	0.03	0.10	0.10	0.14	0.19	0.18	0.21	0.21	0.29
	2:30:00	0.02	0.08	0.09	0.11	0.15	0.14	0.16	0.16	0.22
	2:35:00	0.02	0.07	0.07	0.09	0.12	0.11	0.13	0.12	0.17
	2:40:00	0.02	0.05	0.06	0.07	0.10	0.09	0.10	0.09	0.13
	2:45:00	0.01	0.04	0.05	0.06	0.08	0.07	0.08	0.07	0.09
	2:50:00	0.01	0.03	0.04	0.05	0.06	0.05	0.06	0.05	0.07
	2:55:00	0.01	0.03	0.03	0.04	0.05	0.04	0.05	0.04	0.06
	3:00:00	0.01	0.02	0.02	0.03	0.04	0.03	0.04	0.03	0.05
	3:05:00	0.01	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.04
	3:10:00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	3:15:00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.02
	3:20:00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	3:25:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN
 MHFD-Detention, Version 4.00 (December 2019)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	stage [ft]	$\begin{aligned} & \text { Area } \\ & {\left[\mathrm{ft}^{2}\right]} \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { [acres] } \end{gathered}$	Volume [ft ${ }^{3}$]	$\begin{aligned} & \hline \text { Volume } \\ & \text { [ac-ft] } \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { Outflow } \\ {[\mathrm{cfs}]} \end{gathered}$	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor)
							from the S-A-V table on
							neet 'Basin'.
							Also include the inverts of
							outlets (e.g. vertical orifice,
							overflow grate, and spillway,
							here applicable).

| \square |
| :--- | :--- |

| \square |
| :--- | :--- |
| \square |

| |
| :--- | :--- |

\square
\square

				-	,	
				-		
		\square	-	-	\square	

EMERGENCY SPILLWAY SECTION AND SPILLWAY CHANNEL

Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County)

FINAL DRAINAGE REPORT FOR HOMESTEAD AT STERLING RANCH FILING NO. 2

EL PASO COUNTY, COLORADO

March 2020

Prepared for:
SR Land, LLC
20 Boulder Crescent, Suite 210
Colorado Springs, CO 80903

Prepared by:

102 E. Pikes Peak, Suite 500
Colorado Springs, CO 80903
(719) 955-5485

Project \#09-007
SF-19-004

FINAL DRAINAGE REPORT FOR HOMESTEAD AT STERLING RANCH FILING NO. 2

DRAINAGE PLAN STATEMENTS

ENGINEERS STATEMENT

The attached drainage plan and report was prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

[^0]

DEVELOPER'S STATEMENT

I,thedeveloper havereadand will complywithalltherequirementsspecified in this drainagereportand plan.

ADDRESS: SR Land, LLC
20 Boulder Crescent, Suite 210
ColoradoSprings, CO80903

EL PASO COUNTY'S STATEMENT

Filedinaccordancewith the requirements of El Pasco County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

BY:
DATE: \qquad
Jennifer Irvine, P.E.
County Engineer / ECM Administrator

FINAL DRAINAGE REPORT FOR HOMESTEAD AT STERLING RANCH FILING NO. 2

TABLE OF CONTENTS

PURPOSE 4
GENERALLOCATIONANDDESCRIPTION 4
SOILS 4
HYDROLOGICCALCULATIONS 4
HYDRAULICCALCULATIONS 5
FLOODPLAINSTATEMENT 5
DRAINAGECRITERIA 5
FOUR STEP PROCESS 5
EXISTINGDRAINAGECONDITIONS 6
PROPOSEDDRAINAGECHARACTERISTICS 6
CHANNEL IMPROVEMENTS 9
WATER QUALITY PROVISIONS 9
EROSIONCONTROL 10
CONSTRUCTION COST OPINION 10
DRAINAGE \& BRIDGE FEES 11
STERLING RANCH FIL. NO. 1 - SIA 11
SUMMARY 12
REFERENCES 13

APPENDIX

VicinityMap
SoilsMap
FIRMPanelW/Revised LOMR
HydrologicCalculations
HydraulicCalculations
DrainageMaps

FINAL DRAINAGE REPORT FOR HOMESTEAD AT STERLING RANCH FILING NO. 2

PURPOSE

Additional language added in Addendum above

This document is the Final Drainage Report for Homestead at Sterling Ranch Filing No. 2. This report was previously discussed, as a preliminary drainage report, in the "Master Development Drainage Report for Sterling Ranch Filing Nos. 1\&2, and Final Drainage Report for Sterling Ranch Filing No.1" prepared by MS Civil Consultants, dated April 2017. The purpose of this document is to identify and analyze the on and offsite drainage patterns and to ensure that post development runoff is routed through the site safely and in a manner that satisfies the requirements set forth by the El Paso County Drainage Criteria Manual. The following report is an analysis of the drainage for Homestead at Sterling Ranch Filing No. 2, single family lots, onsite and offsite drainage.

GENERAL LOCATION AND DESCRIPTION

Homestead at Sterling Ranch Filing No. 2 is located in the SE $1 / 4$ of the NW $1 / 4$, the SW $1 / 4$ of the NE $1 / 4$, andthe NW $1 / 4$ of the NE $1 / 4$ of Section 33, Township 12 South, Range 65 West of the $6^{\text {th }}$ Principal Meridian, and the NE $1 / 4$ of the SW $1 / 4$ of Section 33, Township 12 South, Range 65 West of the $6^{\text {th }}$ Principal Meridianwithin unincorporated El Paso County, Colorado. The site is bound on the south by an existing detention pond, to the north by Briargate Parkway and to the east by Sand Creek. ExistingDines Boulevard runs along the western site boundary. An existing residential development, Homestead at Sterling Ranch Filing No. 1, bounds the site to the west and a future commercial parcel bounds the site to the northwest. Sterling Ranch lies within the Sand Creek Drainage Basin. Flows from this site are tributary to Sand Creek.

Homestead at Sterling Ranch Filing No. 2consists of 29.658 acresand ispresently undeveloped. Vegetation is sparse, consisting of native grasses. Existing site terrain generally slopes from north to southwest at grade rates that vary between 2% and 6%.

Land use for Homestead at Sterling Ranch Filing No. 2is currently listed as AG(Grazing
Land).Improvements proposed for the site include pavedstreets, trails, a full spectrum detention pond, and utilitiesas normally constructed for a residential development.

SOILS

Soils for this project are delineated by the map in the appendix as Pring Coarse Sandy Loam (71) and is characterized as Hydrologic Soil Types "B".Soils in the study area are shown as mapped by S.C.S. in the "Soils Survey of El Paso County Area". Vegetation is sparse, consisting of native grasses and weeds.

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual and where applicable the Urban Storm Drainage Criteria Manual. The Rational Method was used to estimate stormwater runoff anticipated from design storms with 5 -year and 100 -year recurrence intervals.

HYDRAULIC CALCULATIONS

Hydraulic calculations were estimated using the Manning's Formula and the methods described in the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual. The relevant data sheets can be found in the "Master Development Drainage Report for Sterling Ranch Filing Nos. 1\&2, and Final Drainage Report for Sterling Ranch Filing No.1" prepared by MS Civil Consultants, dated April 2017 and in the appendix of this report.

FLOODPLAIN STATEMENT

No portion of this site is within a designated F.E.M.A. floodplain as determined by the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel No. 08041C0533G, effective date December 7, 2018.An annotated FIRM Panel is included in the Appendix.

DRAINAGE CRITERIA

This drainage analysis has been prepared in accordance with the current City of Colorado Springs/El Paso County Drainage Criteria Manual, Volumes I \& II, dated November 1991, including subsequent updates. El Paso County has also adopted Chapter 6 and Section 3.2.1 of Chapter 13 in the City of Colorado Springs \& El Paso County Drainage Criteria Manual Volumes I and II, dated May 2014. (Appendix I of the El Paso County's Engineering Criteria Manual (ECM), 2008). In addition to the ECM, the Urban Storm Drainage Criteria Manuals, Volumes 1-3, published by the Urban Drainage and Flood Control District (Volumes $1 \& 2$ dated January 2016, Volume 3 dated November 2010 and updates. Calculations were performed to determine runoff quantities for the 5 -year and 100 -year frequency storms for developed conditions using the Rational Method.July 2019 ECM updated for MS4 permit.

FOUR STEP PROCESS

Step 1 Employ Runoff Reduction Practices. Roof drains will be directed to side yard swales and as possible to grass lined swales to aid in minimizing direct connection of impervious surfaces.

Step 2 Implement BMPs that provide a water quality capture volume with slow release. - An existing Full Spectrum Detention Facility (see Sterling Ranch Filing Nos. 1\&2 MDDP, Pond 4)was planned and constructed to handle tributary flows for the southwest portion of the site. All remaining tributary areas from the site will be treated in a proposed temporary Full Spectrum Detention Facility, Interim Pond 1. Both ponds will incorporate water quality capture volumes that are intended to slowly drain in 40 hours and excess urban runoff volumes that are intended to drain within 72 hours.

Step 3 Stabilize streams. - With the full spectrum detention facilities in place, the runoff from the proposed residential development will be reduced to predevelopment conditions. The developed discharge from the site is less that existing and therefore is not anticipated to have negative effects on downstream drainageways. Additionally, the Sand Creek Channel will be reinforced with selected areas of rip rap bank protection, vegetative slope stabilization, check structures and drop structures.

Step 4 Consider need for Industrial and Commercial BMPs. - No industrial or commercial land uses are proposed with this development. The proposed residential development area will implement a Stormwater Management Plan (SWMP) incorporation proper housekeeping procedures. Onsite drainage will be routed through proposedprivatetemporary Full Spectrum Detention Facility (FSD), Interim Pond 1, to minimize introduction of contaminates to the county's public drainage systems.

EXISTING DRAINAGE CONDITIONS

The Homestead at Sterling Ranch Filing No. 2 site consists of 29.658 acres and is situated west of the Sand Creek Watershed. This area was previously studied in the "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Corporation, revised March 1996. More recently the area was studied in the "Master Development Drainage Report for Sterling Ranch Filing Nos. 1\&2, and Final Drainage Report for Sterling Ranch Filing No.1" prepared by MS Civil Consultants, dated April 2017 (henceforth referred to as "Sterling Ranch Filing Nos. $1 \& 2$ MDDP").

See the Historic conditions map, the Homestead at Sterling Ranch Filing No. 2 site lies within the Basin EX-4 (Q5 $=71 \mathrm{cfs}, \mathrm{Q} 100=352 \mathrm{cfs})$ and is a 330 acre area of land located on the western portion of the site, including the Sand Creek channel. A portion of this basin extends off-site to the northwest of Vollmer Road, and at the time this map was created was undeveloped property. Runoff from the basin generally travels from north to south until it reaches the northern boundary of the site, being conveyed in the Sand Creek channel.Homestead at Sterling Ranch Filing No. 2 and the surrounding areas, with the exception of the existing Barbarick Subdivision; have already been graded during the overlot of the subdivision. Please refer to the Sterling Ranch Filing Nos. 1\&2 MDDP by MS Civil Consultants for information on existing conditions and overlot drainage patterns. A copy of the historic and existing conditions map has been provided in the appendix.

PROPOSED DRAINAGE CHARACTERISTICS

General Concept Drainage Discussion

The following is a description of the onsite basins, offsite bypass flows and the overall drainage characteristics for the development of Sterling Ranch Filing No. 2. The development ofSterling Ranch Filing No. 2consists of residential streets and cul-de-sacs, proposedstorm drainage improvements, and lots located within the filing boundary. The proposed development results in drainage patterns and flow values thatare the same or less thanthose in the Sterling Ranch Filing Nos. 1\&2 MDDP. Surface flow is designated as Design Points (DP). The following DPs and Basins were determined using the Rational Method since this method offers a more conservative approach to drainage.It should be noted that all calculations and drainage basins have been revised to reflect the new criteria updates by the El Paso County/City of Colorado Springs Drainage Criteria Manual. For comparison, the asterisk (*) symbol in the detailed drainage discussions below represents each Basin or Design Point as labeled in the Sterling Ranch Filing Nos. $1 \& 2$ MDDP.Asterisk symbols on the Proposed Drainage Map in the appendix also represent Basins, Design Points and Pipe Runs as presented in the Sterling Ranch Filing Nos. 1\&2 MDDP.

Detailed Drainage Discussion (Design Points)

DP2*, 5.39 acres, consists ofBasin B*planned residential lots and streets with runoff coefficients of 0.38 for the 5 -year and 0.55 for the 100 -year. Developed runoff of $\mathrm{Q} 5=8.0 \mathrm{cfs}$ and $\mathrm{Q} 100=19.3 \mathrm{cfs}$ has been calculated for DP2*. The surface runoff is routed via overlot grading and planned swales to two existing 15^{\prime} CDOT Type R at-grade inlets. The flows are routed east via a 36 " RCP to DP5.

DP3*, 2.92 acres, consists ofBasin C* residential lots within Homestead at Sterling Ranch Filing No. 1, and streets with runoff coefficients of 0.38 for the 5 -year and 0.55 for the 100 -year. Developed runoff of Q5 $=4.2 \mathrm{cfs}$ and $\mathrm{Q} 100=10.1 \mathrm{cfs}$ has been calculated for DP3*. The surface runoff is routed via overlot grading and proposed swales to an existing 5 ' CDOT type R sump inlet. The flows captured by the inlet are routed to existing Detention Pond 4.

DP4*, 9.36 acres, consists ofBasin D* and Basin E*residential lots within Homestead at Sterling Ranch Filing No. 1 and streets with runoff coefficients of 0.38 for the 5 -year and 0.55 for the 100 -year and BasinF* (Dines Boulevard) with runoff coefficients of 0.90 for the 5 -year and 0.96 for the 100 -year. Developed runoff of $\mathrm{Q} 5=16.1 \mathrm{cfs}$ and $\mathrm{Q} 100=36.7 \mathrm{cfs}$ has been calculated for DP4. The surface runoff is routed via overlot grading and curb and gutter to DP4* which will be collected by a 15 ' CDOT type R atgrade inlet. The intercepted flow (Q5=13.3 cfs and Q100=20.0 cfs) will combine with flows from DP3* and be routed east via a 30 " RCP (PR6*, Q5=16.8 cfs and Q100=29.4 cfs) to existing Detention Pond 4.
DP5* ${ }^{*} 0.80$ acres, consists ofBasin G* residential lots with runoff coefficients of 0.22 for the 5 -year and 0.46 for the 100 -year, Basin H^{*} existing Dines Boulevard, with runoff coefficients of 0.90 for the 5 -year and 0.96 for the 100 -year and flowby from Sterling Ranch Filing Nos. $1 \& 2$ MDDP DP4*. Developed runoff of Q5=4.2 and Q100 $=19.7 \mathrm{cfs}$ has been calculated for DP5*. The surface runoff is routed via overlot grading and curb and gutter to DP5* which is collected by an existing 15' CDOT type R at-grade inlet. DP5* has an intercepted flow of (Q5=4.2cfs and $\mathrm{Q} 100=14.7 \mathrm{cfs}$) and of flowby of (Q5 $=0.0 \mathrm{cfs}$ and Q100=5.0cfs). Flowby from DP5* continues on toPond FSD13, east of Dines Boulevard.See, Sterling Ranch Filing MDDP Proposed Hydrologic Conditions Map.

DP6*, 4.68 acres, consists ofSterling Ranch Filing Nos. 1\&2 MDDP Basins J* and K*planned residential lots with runoff coefficients of 0.22 for the 5 -year and 0.46 for the 100 -year, Sterling Ranch Filing Nos. $1 \& 2$ MDDP Basin I* (Wheatland Drive) and Basin L*(Dines Boulevard) with runoff coefficients of 0.90 for the 5 -year and 0.96 for the 100 -year. Developed runoff of $\mathrm{Q} 5=14.1 \mathrm{cfs}$ and $\mathrm{Q} 100=26.7 \mathrm{cfs}$ has been calculated for DP6*. The surface runoff is routed via overlot grading and curb and gutter to DP6* which is collected by an existing 15^{\prime} CDOT type R at-grade inlet. $\mathrm{DP6}^{*}$ has an intercepted flow of (Q5=12.1cfs and $\mathrm{Q} 100=17.2 \mathrm{cfs}$) and of flowby of (Q5 $=2.0 \mathrm{cfs}$ and $\mathrm{Q} 100=9.5 \mathrm{cfs}$). Flowby from DP6* continues on to Pond FSD13, east of Dines Boulevard. See, Sterling Ranch Filing MDDP Proposed Hydrologic Conditions Map.

DP7,4.42 acres, consists ofBasin Pproposed residential lots with runoff coefficients of 0.38 for the 5 -year and 0.55 for the 100 -year. Developed runoff of Q5 $=5.7$ and Q100 $=13.8 \mathrm{cfs}$ has been calculated for DP7. Surface runoff is routed via overlot grading and curb and gutter to DP7 which is collected by a proposed 10' CDOT type R sump inlet. Flows captured by the proposed 10' CDOT type R sump inlet are routed to existing Detention Pond 4 by proposed RCP storm sewer. The flows from DP7 were anticipated in the sizing of Pond 4 per the Sterling Ranch Filing No. 1 Final Drainage Report.

DP8,3.78, acres, consists ofBasin Qproposed residential lots with runoff coefficients of 0.38 for the 5 -year and 0.55 for the 100 -year. Developed runoff of Q5 $=4.9$ and $\mathrm{Q} 100=11.8 \mathrm{cfs}$ has been calculated for DP8. Surface runoff is routed via overlot grading and curb and gutter to DP8 which is collected by a proposed 10' CDOT type R sump inlet. Flows captured by the proposed 10' CDOT type R sump inlet are routed to existing Detention Pond 4 by proposed RCP storm sewer.The flows from DP8 were anticipated in the sizing of Pond 4 per the Sterling Ranch Filing No. 1 Final Drainage Report.

DP9, acres, consists ofBasin Rproposed residential lots with runoff coefficients of 0.38 for the 5 -year and 0.55 for the 100 -year. Developed runoff of Q5 $=2.2$ and $\mathrm{Q} 100=5.4 \mathrm{cfs}$ has been calculated for DP9. Surface runoff is routed via overlot grading and curb and gutter to DP9 which is collected by a proposed 5' CDOT type R sump inlet. Flows captured by the proposed 10^{\prime} CDOT type R sump inletcombine with capturedflows contributed from Design Points $7 \& 8$ and are routed to existing Detention Pond 4 by Pipe Run 4 (Q5 $=12.4$ and $\mathrm{Q} 100=30.1 \mathrm{cfs}$). Pipe Run 4 connects to existing Sterling Ranch Filing Nos. $1 \& 2$ MDDP Pipe Run 10* (Q5 $=12.5$ and $\mathrm{Q} 100=30.4 \mathrm{cfs}$) and is discharged into the forebay of existing Detention Pond 4. Flows contributed to the forebay of existing Pond 4 are approximately equal to those anticipated by the MDDP, therefore Pond 4 has the capacity for SWQ and Full Spectrum Detention for these flows.

DP10, 9.14, acres, consists ofBasin T proposed residential lots with runoff coefficients of 0.30 for the 5 year and 0.50 for the 100 -year. Developed runoff of $\mathrm{Q} 5=9.4$ and $\mathrm{Q} 100=15.6 \mathrm{cfs}$ has been calculated for

DP10. Surface runoff is routed via overlot grading and curb and gutter to DP10 which is collected by a proposed 15^{\prime} CDOT type R at-grade inlet. DP10 has an intercepted flow of (Q5=9.1 cfs and Q100=12.7cfs) and of flowby of (Q5=0.3cfs and $\mathrm{Q} 100=2.9 \mathrm{cfs}$). Flows captured by the proposed 15 ' CDOT type R at-grade inletare routed southwest to the proposed full spectrum detention Pond 1 by proposed RCP storm sewer.

DP11,1.48, acres, consists ofBasin V1proposed residential lots with runoff coefficients of 0.38 for the 5year and 0.55 for the 100-year. Developed runoff of Q5 $=1.9$ and $\mathrm{Q} 100=15.6 \mathrm{cfs}$ has been calculated for DP11. Surface runoff is routed via overlot grading and curb and gutter to DP11 which is collected by a proposed 15^{\prime} CDOT type R at-grade inlet. DP11 has an intercepted flow of (Q5 $=1.9 \mathrm{cfs}$ and $\mathrm{Q} 100=12.7 \mathrm{cfs}$) and of flowby of (Q5=0.0cfs and $\mathrm{Q} 100=2.9 \mathrm{cfs}$). Flows captured by the proposed 15 ' CDOT type R at-grade inlet are routed southwest to the proposed full spectrum detention Pond 1 by proposed RCP storm sewer.

DP12,4.50, acres, consists ofBasin Uproposed residential lots with runoff coefficients of 0.38 for the 5 -year and 0.55 for the 100 -year and flowby from DP10. Developed runoff of Q5 $=6.2 \mathrm{cfs}$ and $\mathrm{Q} 100=17.2 \mathrm{cfs}$ has been calculated for DP12. Surface runoff is routed via overlot grading and curb and gutter to DP12 which is collected by a proposed 10^{\prime} CDOT type R sump inlet. Flows captured by the proposed 10 ' CDOT type R sump inlet are routed to the proposed full spectrum detention Pond 1 by proposed RCP storm sewer.

DP13, 0.83 , acres, consists ofBasin V2proposed residential lots with runoff coefficients of 0.38 for the 5 year and 0.55 for the 100 -year and flowby from DP11. Developed runoff of Q5 $=1.2$ and $\mathrm{Q} 100=5.9 \mathrm{cfs}$ has been calculated for DP13. Surface runoff is routed via overlot grading and curb and gutter to DP13 which is collected by a proposed modified 5 ' length by 4.5 ' wide CDOT type R sump inlet.

DP14,0.56, acres, consists ofBasin W3proposed full spectrum detention Pond 1with runoff coefficients of 0.08 for the 5 -year and 0.35 for the 100 -year and contributed flow from pipe run 9 . Developed runoff of $\mathrm{Q} 5=19.6 \mathrm{cfs}$ and $\mathrm{Q} 100=52.4 \mathrm{cfs}$ has been calculated for DP14. All flows captured by inlets at Design Points DP10, DP11, DP12 and DP13 are routed by Pipe Run 9 (PR9, Q5=17.9 and Q100=47.1 cfs) to the forebay inPond 1 and combine withsurface runoff within Basin W1. An outlet structure with an orifice plate and restrictor plate regulates release rates and provides treatment to all flows tributary to DP14. See the Water Quality Provisions discussion in this report for more information on Pond 1.

Basins labeled on the Proposed Drainage Map marked with a "*", were previously analyzed and shown in the Final Drainage report for Sterling Ranch Filing No. 1. These basins are; B*, C*, D*, E*, F*, G*, H*, I*, L*, \& S*. They are shown on the Proposed Drainage Map for continuity. Basins K \& J additionally contribute to Design Points $3,4,5 \& 6$. Therefore, the inlets sizing at these design points has been verified.

Detailed Drainage Discussion (Drainage Basins)

Basins X1, X2,W1, and Y1 $(0.78,1.04,0.86$ and 0.084 acres respectively), consists of proposedresidential backyard lotslocated along the eastern boundary of the sitewith runoff coefficients of 0.22 for the 5 -year and 0.46 for the 100 -year.Developed runoff of $(\mathrm{Q} 5=0.8,1.1,0.2$, and 0.8 cfs and $\mathrm{Q} 100=2.8,3.7,1.7$, and 3.0 cfsrespectively has been calculated for the basins. Runoff produced within the residential backyard lots, of Basins X1, X2, W1 and Y1 will be conveyed in backyard swalesand as sheet flow to a Sand Filter Basinwithin each lot. The treated flows will be collected by private storm sewer systems and discharged into the Sand Creek Channel. A 20 ' wide typical drainage easement is provided within the lots to accommodate theBMP's. The facilities constructed are to be privately maintained by the Sterling Ranch metro district.

Basins X, W2, and Y ($0.22,0.26$, and 0.09 acres respectively), consists primarily of vegetated tracts and portion of residential backyards that will discharge as sheet flow to the Sand Creek Channel. The developed flow rates from Basins X, W2, and Y are $\mathrm{Q} 5=0.2,0.1,0.1 \mathrm{cfs}$ andQ100 $=0.8,0.8$, and 0.3 respectively. The total combined developed area being discharge to the channel is less than one acre. It
is not practicable to provide WQCV for these areas, as stated earlier in this paragraph, areas consists primarily of vegetated tracts with no development.

CHANNEL IMPROVEMENTS

Slope grading and intermittent channel bank lining has been proposed for portions of the developable areas adjacent to Sand Creek to protect the developed lots and prevent excessive erosion until the DBPS recommended Sand Creek Channel improvements are installed. The proposed slope grading is intended to reduce outer bankgrades and bring uniformity to areas where significant riling and destabilization has occurred. Proposed channel stabilization improvements includes placement of soil riprap and turf reinforcement matting along embankment toes and along embankment slopes, both of which will function to retain soils and vegetation during heavy rains or larger flood flow events. All disturbed areas, not hardscaped will be re-vegetated with native species grasses, per El Paso County erosion control standards. Storm sewer outfalls into Sand Creek shall be protected by low-tailwater riprap basins. The outfall protection is shown on the accompanying drainage map in the appendix. Refer to the Homestead Filing No. 2 Grading and Erosion Control Plans for riprap and turf reinforcement map placement and construction details.

Permanently installed check structures and rip-rap channel lining will be installed within Sand Creek Channel to handle the runoff from fully developed Sterling Ranch and up-gradient watershed in accordance with the Sand Creek DBPS. A discussion regarding the timing of these channel improvements is provided in a subsequent paragraph titled Sterling Ranch Filing No. 1 Subdivision Improvement agreement which follows the Construction Costs segment of this report. Financial Assurance shall be posted for the proposed Sand Creek Channel Improvements and Bank Stabilization (Slope Protection and grade control structures).

WATER QUALITY PROVISIONS

The proposed Full Spectrum Detention Facility, Pond 1functions to provide detention storage and water quality facilityfor runoff produced onsite from tributary Basins $\mathrm{T}, \mathrm{U}, \mathrm{V} 1, \mathrm{~V} 2$ and W 3 . This water quality facility is designed to treat $0.245 \mathrm{ac}-\mathrm{ft}$ of water quality storage (WQCV), 0.741 ac-feet of excess urban runoff volume (EURV) and 1.331 ac-ft of 100 -year storage. A rolled erosion control blanketed emergency spillway, concrete forebay, trickle channel and outlet structure, and gravel maintenance access road has been designed for Pond 1.

A 24 " RCP pipeextending from the proposed modified $6^{\prime} \times 2.9^{\prime}$ CDOT Type D sump inlet (see Design Point 13) will convey discharge from the pond to Sand Creek. Runoff discharged to Sand Creek is anticipated to reach peak flow rates of Q5 $=0.7 \mathrm{cfs}$ and $\mathrm{Q} 100=23.4 \mathrm{cfs}$. A soil riprap stilling basin has been provided at the termination of the pipe to arrest erosion.

Runoff produced within the residential backyard lots, of Basins X1, X2, W1 and Y1 will be conveyed in backyard swales and as sheet flow to a Sand Filter Basin within each lot. The treated flows will becollected by private storm sewer systems and discharged into the Sand Creek Channel. This water quality facility, for each Sand Filter Basin, is designed to treat 0.001 ac-ft of water quality storage (WQCV), 0.005 ac-feet of excess-urban runoff volume (EURV) and 0.014 ac-ft of 100 -year storage.A 20 ' wide typical drainage easement is provided within the lots to accommodate the BMP's. The facilities constructed are to be privately maintained by the Sterling Ranch Metropolitan District. Access to maintain these sand filter basins is from the regional trail along sand creek.

The WQCV and EURV required for the site has been determined using the guidelines set forth in the City of Colorado Springs/El Paso County Drainage Criteria Manual - Volume II. Refer to the water quality
facility sizing calculations located within the appendix of this report(see UD-Detention Worksheet in appendix).

As previously discussed, refer to Sterling Ranch Filing Nos. 1\&2 MDDP for additional information regarding existing FSD Pond 4. The previously approved FSD Pond was constructed with the Sterling Ranch Filing No. 1 construction drawings in 2018-2019.

EROSION CONTROL

It is the policy of the El Paso County that a grading and erosion control plan be submitted with the drainage report. EPC approved "Early Grading Plan for Sterling Ranch Phase I Onsite Grading \& Erosion Control", November 18, 2015. And "Early Grading Plan for Sterling Ranch Phase I Offsite Grading \& Erosion Control", December 3, 2015. Grading and Erosion control operations are currently underway (July 2019). Grading and Erosion Control will cease with the final development of the site in the next 6-12 months.

CONSTRUCTION COST OPINION - HOMESTEAD AT STERLING RANCH FIL. NO. 2

Drainage Facilities:
 Updated Cost Opinion included in Addendum above

Drainage improvements are planned with the development of Homestead at Sterling Ranch Filing No. 2. A majority of the construction costs have been accounted for in the "Master Development Drainage Report for Sterling Ranch Filing Nos. 1\&2, and Final Drainage Report for Sterling Ranch Filing No.1" prepared by MS Civil Consultants, dated April 2017. Any additional improvements and costs are listed below.

The following list of drainage improvements are Non-Reimbursable. The Reimbursable facilities are outlined in the Sterling Ranch Filing No. 1 Final Drainage Report and Sterling Ranch MDDP. Refer to the MDDP for Sterling Ranch Cost and Fee Analysis Report (February 2019).

Item Description	Quantity	Unit Cost	Cost
1. 18" RCP	31 LF	\$40 /LF	\$1,240.00
2. 24 " RCP	127 LF	\$50-LFF	\$6,350.00
3. 301 RCP	998 LF	\$85 /LF	\$84,830.00
4. $36^{\prime \prime} \mathrm{RCP}$	8 LF	\$105 /LF	\$840.00
5. $42^{\prime \prime} \mathrm{RCP}$	699 LF	\$185 /LF	\$129,315.00
6. $24 / 1$ FES	1 EA	\$750 /EA	\$750.00
8. $42 \prime \prime$ FES	1 EA	\$1,250 /EA	\$1,250.00
9. 5.0'x 4.5 ' CDOT Type R Sump Inlet	1 EA	\$4,000 /EA	\$4,000.00
10. 10' CDOT Type R Sump Inlet	4 EA	\$4,700 /EA	\$18,800.00
11. 15' CDOT Type R At-Grade Inlet	2 EA	\$6,000 /EA	\$12,000.00
12. 4.0' Type II MH	1 EA	\$3,500 /EA	\$3,500.00-
13. 5.0' Type II MH	2 EA	\$4,000 /EA	\$8,000.00-
14. 6.0' Type II MH	1 EA	\$4,500 /EA	\$4,500.00
17. $5.0{ }^{\prime} \times 6.0^{\prime} \mathrm{MH}$	2 EA	\$6,500 /EA	\$13,000.00
18. $5.5{ }^{\prime} \times 5.5{ }^{\prime} \mathrm{MH}$	1 EA	\$6,500 /EA	\$6,500.00
19. Headwall/Wingwall	1 EA	\$6,000 /EA	\$6,000.00
20. Full Spectrum Det. Pond 1	1 EA	\$15,000 /EA	\$15,000.00

21.	FSD Pond 1 Outlet Structure	1	EA	$\$ 12,600$	/EA	
22.	Ind. Lot Sand Filter Basins w/ $6 "$ Pipe	26	EA	$\$ 2,000$	/EA	$\$ 12,600.00$
23	$18^{\prime \prime}$ Drain Basin Manholes w/Lids	27	EA	$\$ 1,000$	/EA	$\$ 52,000.00$
24	$12^{\prime \prime}$ ADS Pipe	1,658		$\$ 26$	/LF	

The following list of drainage improvements are Reimbursable for the improvements to the Sand Creek Channel adjacent to Homestead at Sterling Ranch Filing No.2. The reimbursement is up to the amount as shown in the DBPS or as adjusted through the City/EPC Drainage Board.

Sand Creek Channel Improvements

Item	Description	Quantity		Unit Cost	Cost	
1.	Rip Rap Protection	390	Ton	$\$ 80$	/Ton	
2.	Drop/Check Structures	5	EA	$\$ 75,000$	/EA	$\$ 31,200.00$
3.	Slope Stabilization Blankets	7,435	SY	$\$ 6$	$/$ SY	$\$ 375,000.00$
						Total

DRAINAGE \& BRIDGE FEES - HOMESTEAD AT STERLING RANCH FIL. NO. 2

This site is within the Sand Creek Drainage Basin. The 2019 Drainageand BridgeFees per El Paso County for the HOMESTEAD AT STERLING RANCH FILING NO. 2site are as follows:

Per Homesteadat S	g Ranc		No. 2		Total Area		29.658	A	
HOMESTEAD A	TERLIN	G	CH F	LI	O. 2 FEES:				
Drainage Fees:	29.658	x	46\%	\$	18,940.00	=		\$	258,392.36
Bridge Fees:	29.658	x	46\%	\$	5,559.00	=			75,839.66
							Total		334,232.02

STERLING RANCH FILING NO. 1 - SUBDIVISION IMPROVEMENTS AGREEEMENT

Sterling Ranch Filing No. 1 final plat and SIA has been recorded, and addressed the following drainage improvements Not located/and located in the Sand Creek Channel. The following SIA paragraphs outlined drainage for Sterling Ranch in the following manner;
2. Drainage and Landscaping Tracts: Improvements on Tracts $A, B, F, H, I, J, L, M, N, O, P, Q, R, S, T, U, V, W$, $X, Y, Z, A A$ and CC as identified on the final plat of Filing No. 1 will be completed to the satisfaction of the County and District and, upon said completion, the improvements will be dedicated to and accepted by the District. Improvements on Tract D (Sand Creek) will be completed to the satisfaction of the County and upon said completion; the improvements will be dedicated to and accepted by the County. The ownership and maintenance of storm drain facilities and structures not located on the foregoing tracts shall be determined as follows. All storm pipes shall be owned and maintained by the District except where located in County road rights of way (see Paragraph 5 below), in which case the County shall own and maintain the storm drain facilities and structures, including but not limited to, inlets and manholes. A typical cross section describing the ownership and maintenance responsibilities of drainage improvements within County rights of way is attached as Exhibit C hereto.

7. Timing of Construction and Acceptance:

a. Drainage Improvements Not Located in Sand Creek Channel: Except as set forth below in subsection 6.b. (drainage improvements located in Sand Creek Channel), all drainage improvements described in Exhibit A and constructed within the Drainage and Landscaping Tracts identified in paragraph 2 above shall be completed by the

Subdivider and District, meeting all applicable standards for preliminary acceptance, prior to the recording of the first replat of Tracts C, E, G, K or $B B$. In the event that a portion of the drainage improvements are not completed prior to the recording of the first replat, then prior to such recording collaterial sufficient in the opinion of the County to assure completion of the improvements must be posted by the Subdivider and a deadline by which such drainage improvements shall be completed shall be established by written agreement.
b. Drainage Improvements Located in Sand Creek Channel (Tract D): The District agrees that it will construct or cause the construction of all drainage improvements to be located in Tract D as well as future tracts within Sterling Ranch containing the Sand Creek Channel in accordance with the following:
i. Bank stabilization of the Sand Creek channel shall be required prior to any replats or other final plats adjacent to the channel. The design and installation of said improvements shall be accomplished and guaranteed through the normal subdivision review and collateralization process.
ii. \quad Other drainage improvements in Tract D and future tracts containing the Sand Creek Channel, such as drop structures, check structures and similar stabilization or protection improvements, will be designed and constructed by the District with the final construction drawings to be approved by the County no later than the final platting of the $700^{\text {th }}$ single family lot within the boundaries of the approved Sterling Ranch Sketch Plan and the completion of all said improvements no later than the $800^{\text {th }}$ single family lot with the boundaries of the approved Sterling Ranch Sketch Plan.
iii. In order to assure completion of the drainage improvements required in Subsection 6.b.ii above as well as a fair apportionment of the costs of said drainage improvements amongst adjacent Sterling Ranch subdividers, the District agrees to establish a Sand Creek Channel Drainage Fee to be paid into a District Escrow Fund by adjacent subdividers at the time of final platting. The amount of the fee shall be a minimum of One Thousand Dollars (\$1,000.00) per single family lot. The details of the proposed Sand Creek Channel Drainage Fee and the District Escrow Fund shall be agreed to by the parties in advance of the submittal of the first replat of or subdivision of the Master Pad Sites or other property located within Sterling Ranch.

A full copy of the recorded SIA is located in the files of El Paso County and EPC Clerk and Recorders office under Reception No. 218714151

SUMMARY

Development of this site will not adversely affect the surrounding development per this final drainage report with no negative impactsto the neighboring developments. The existingand proposed drainage facilities will adequately convey, detain and route runoff fromtributary and onsite flows to the Sand Creek Drainage channel. Full Spectrum Detention and Water Quality Ponds will be used to discharge developed flows into Sand Creek per the Urban Drainage criteria flow rates, which are at or less than the historic flow. Care will be taken during construction to accommodate overland flow routes onsite and temporary drainage conditions. The development of the HOMESTEAD AT STERLING RANCH FILING NO. 2 project(s)shall not adversely affect adjacent or downstream property.

REFERENCES

1.) "El Paso County and City of Colorado Springs Drainage Criteria Manual, Vol I \& II".
2.) "Urban Storm Drainage Criteria Manuals, Volumes 1-3"
3.) NRSC Web Soil Survey Map for El Paso County. http://websoilsurvey.nrcs.usda.gov
4.) Flood Insurance Rate Map (FIRM), Federal Emergency Management Agency, Effective date December 7, 2018.
5.) "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Corporation, revised March 1996
6.) "Sterling Ranch-Phase 1 Offsite Grading, Early Grading \& Erosion Control Plans", prepared by M\&S Civil Consultants, Inc., dated November 2015
7.) "Sterling Ranch-Phase 1 Onsite Grading, Early Grading \& Erosion Control Plans", prepared by M\&S Civil Consultants, Inc., dated November 2015
8.) "Master Development Drainage Report for Sterling Ranch Filing Nos. 1\&2 and Final Drainage Report for Sterling Ranch Filing No. 1", prepared by M\&S Civil Consultants, Inc., dated April 2017
9.) "Sterling Ranch Filing Nos. $1 \& 2$ MDDP" prepared by MS Civil Consultants, Inc., dated October 2018.

APPENDIX

VICINITY MAP

VICINITY MAP
N.T.S.

SOILS MAP

MAP LEGEND

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 15, Oct 10, 2017
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: May 22, 2016-Mar 9, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
71	Pring coarse sandy loam, 3 to 8 percent slopes	B	29.0	100.0%
Totals for Area of Interest				

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

FIRM PANEL W/ REVISED LOMR

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

	Without Base Flood Elevation (BFE) Zone A, V, A99
SPECIAL FLOOD	With BFE or Depth Zone AE, AO, AH, VE, AR
HAZARD AREAS	\quadRegulatory Floodway

.2\% Annual Chance Flood Hazard, Area of 1\% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile zone X
Future Conditions 1\% Annual
Chance Flood Hazard Zone X
Area with Reduced Flood Risk due to evee. See Notes. Zone X
Area with Flood Risk due to Levee Zone D

No SCREEN Area of Minimal Flood Hazard Zone X \square Effective LOMRs
OTHER AREAS

- - - - Channel, Culvert, or Storm Sewer RUCTURES \qquad Levee, Dike, or Floodwall

B- $\mathbf{2 0 . 2}$ Cross Sections with 1\% Annual Chance
17.5 Water Surface Elevation
(8)- - - Coastal Transect
m 513 mm Base Flood Elevation Line (BFE)
Limit of Study
_Jurisdiction Boundary
--- --- Coastal Transect Baseline
OTHER FEATURES \qquad Profile Baseline
\qquad

MAP PANELS

\square	Digital Data Available
\square	No Digital Data Available
\square	Unmapped

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 1/23/2019 at 7:09:44 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FiRM panel number, and FirM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

Questions concerning the VERTCON process may be mailed to NGS

Latitude: 38.964784

Longitude: 104.67180

NGVD 29 height:

Datum shift(navD 88 minus ngvd 29): 1.196 meter
1.196 meters $=3.92$ feet

NAVD88-3.92 feet = NGVD29

STORM 4 Outfall to Sand Creek Channel

Cross Section DE $=7071.8$ NAVD88
7071.8 NAVD88-3.92 feet $=7067.88$ NGVD29

HYDROLOGIC CALCULATIONS

HOMESTEAD AT STERLING RANCH FILING NO. 2 FINAL DRAINAGE REPORT (Area Drainage Summary)

HOMESTEAD AT STERLING RANCH FILING NO. 2 FINAL DRAINAGE REPORT (Basin Routing Summary)																	
From Area Runoff Coeficient Summary				overland				PIPE / CHANNEL FLOW				$\begin{array}{\|c\|} \hline \hline \text { Time of Travel }\left(\boldsymbol{T}_{t}\right) \\ \hline \begin{array}{c} \text { TOTAL } \\ (\text { min }) \end{array} \\ \hline \end{array}$	INTENSITY **		TOTAL FLOWS		COMMENTS
design point	CONTRIBUTING basins	CA_{5}	CA_{100}	C_{5}	Length $(f t)$	Height (f)	$\begin{gathered} \mathrm{T}_{\mathrm{C}} \\ (\text { (min) }) \\ \hline \end{gathered}$	Length $(f i)$	$\begin{aligned} & \hline \text { Slope } \\ & (\%) \\ & \hline \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{t}} \\ (\text { min }) \end{gathered}$		$\begin{gathered} \mathbf{I}_{5} \\ (i n / h r) \end{gathered}$	$\begin{gathered} \mathrm{I}_{100} \\ (\mathrm{in} / h r) \end{gathered}$	$\begin{gathered} \mathbf{Q}_{5} \\ (\text { c.f.f. }) \end{gathered}$	$\begin{gathered} \begin{array}{c} \mathrm{Q}_{100} \\ \text { (c.f.s.) } \end{array} \\ \hline \end{gathered}$	
PROPOSED DRAINAGE BASIN ROUTING SUMMARY																	(2) EX. 15' AT-GRADE INLETS
2*	B*	2.34	3.39									16.3	3.4	5.7	8.0	19.3	
3*	C*	1.11	1.61									12.8	3.8	6.3	4.2	10.1	EX. 6' SUMP INLET
4*	$\mathrm{D}^{*}, \mathrm{E}^{*}, \mathrm{~F}^{*}$	4.14	5.61									11.7	3.9	6.5	16.1	36.7	EX. 15' AT-GRADE InLET
5*	G*, \mathbf{H}^{*}, FLOWBY DP4*	1.07	3.02									11.7	3.9	6.5	4.2	19.7	EX. 15' at-grade inlet
6*	I*, J, K, L*	3.50	3.97									10.8	4.0	6.7	14.1	26.7	EX. 15' at-grade inlet
7	P	1.68	2.43									16.4	3.4	5.7	5.7	13.8	PROP. 10' SUMP INLET
8	Q	1.44	2.08									16.4	3.4	5.7	4.9	11.8	PROP. 10 ' SUMP INLET
9	R	0.60	0.86									12.8	3.8	6.3	2.2	5.4	PROP. 10' SUMP INLET
10	T	2.74	2.69									15.8	3.4	5.8	9.4	15.6	PROP. 15' AT-GRADE INLET Total CA $100=3.86$ Split Between
11	V1	0.56	2.69									15.8	3.4	5.8	1.9	15.6	Prop. 15' At-GRADE Inlet
12	U, FLOWBY DP10	1.80	2.98									15.8	3.4	5.8	6.2	17.2	DP10 \& DP11 For Crown Overflow PROP. 10' SUMP INLET
13	V2, FLOWBY DP11	0.32	0.96									13.6	3.7	6.2	1.2	5.9	PROP. MODIFIED 5'x4.5' SUMP INLET
14	W3, PR9	5.35	${ }^{8.52}$									13.6	3.7	6.2	19.6	52.4	Cumulative DETENTION POND
* For detailed information on Desing Points, Basins, Flowby, or Pipe Runs see Sterling Ranch Filing Nos. 1\&2 MDDP prepared by MS Civil Consultants, dated April 2017 Calculated by: ET/CMN																	
${ }^{* *}$ Intensity equations assume a minimum travel time of 5 minutes.													Date: $1 / 14 / 2020$				

HOMESTEAD AT STERLING RANCH FILING NO. 2 DRAINAGE CALCULATIONS (Storm Sewer Routing Summary)

$\begin{gathered} \text { PIPE } \\ \text { RUN } \end{gathered}$	Contributing Pipes/Design Points	Equivalent CA ${ }_{5}$	Equivalent CA ${ }_{100}$	$\begin{gathered} \text { Maximum } \\ \boldsymbol{T}_{\boldsymbol{C}} \\ \hline \end{gathered}$	Intensity **				PIPE SIZE
					I_{5}	I_{100}	Q_{5}	Q_{100}	
1	DP7	1.68	2.43	16.4	3.4	5.7	5.7	13.8	24" RCP
2	DP8	1.44	2.08	16.4	3.4	5.7	4.9	11.8	18" RCP
3	PR1, PR2	3.12	4.51	16.4	3.4	5.7	10.6	25.7	24" RCP
4	DP9, PR3	3.71	5.37	17.0	3.3	5.6	12.4	30.1	30" RCP
5	DP10	2.64	2.20	15.8	3.4	5.8	9.1	12.7	18" RCP
6	DP11	0.55	2.20	15.8	3.4	5.8	1.9	12.7	18" RCP
7	PR5, PR6	3.19	4.39	16.0	3.4	5.7	10.9	25.3	30 " RCP
8	DP12	1.80	2.98	15.8	3.4	5.8	6.2	17.2	24" RCP
9	DP13, PR7, PR8	5.31	8.33	16.6	3.4	5.7	17.9	47.1	42" RCP
10	UD-Detention _v3.07						0.7	23.4	Outlet Structure \& 18" CMP
11	Pipe Run continued from MDDP DP15* to Sand Creek. Flow values are that of MDDP Pipe Run 15* (PR15*).						42.1	76.8	42" RCP
12	Lots 36-41						0.0	1.3	12" ADS
13	Lots 28-35						0.0	1.6	12" ADS
14	Lots 19-24						0.0	1.5	12" ADS
15	Lets 13-18						0.0	1.4	12" ADS

* For detailed information on Desing Points, Basins, Flowby, or Pipe Runs see Sterling Ranch Filing Nos. 1\&2 MDDP
prepared by MS Civil Consultants, dated April 2017
** Intensity equations assume a minimum travel time of 5 minutes.

DP - Design Point
EX - Existing Design Point

FB- Flow By from Design Point INT- Intercepted Flow from Design Point

Calculated by: CMN
Date: $1 / 14 / 2020$
Checked by: VAS

Updated SF-3 routing for Basins $\mathrm{X} 1, \mathrm{X} 2$, W1, \& Y 1 included in Addendum above.

Weighted Percent Imperviousness of FSD Pond 1				
Contributing Basins	Area (Acres)	C_{5}	Impervious \% (I)	(Acres)*(I)
T	9.14	0.30	40	365.60
U	4.50	0.38	53	238.50
V1	1.48	0.38	53	78.44
V2	0.83	0.38	53	43.99
W1	0.56	0.08	2	1.12
Totals	16.51			727.65
Imperviousness of FSD Pond 1	44.1	\%		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Detention Basin Outlet Structure Design

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.95	3.89					
Orifice Area (sq. inches)	1.19	1.19	1.19					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
	Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A	
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Vertical Orifice Diameter $=$	N/A	N/A	inches

Calculated Parameters for Vertical Orifice	
	Not Selected
Vertical Orifice Area $=$	Not Selected
N/A	N / A
ft^{2}	
Vertical Orifice Centroid	$=$N/A feet

Detention Basin Outlet Structure Design
 Outflow Hydrograph Workbook Filename:

Storm Inflow Hydrograph

UD-Detention, Version 3.07 (February 2017)
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

	SOURCE	workbook	\#N/A							
Time Interval	TIME	wacv [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
4.12 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	0:04:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
Hydrograph Constant	0:08:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	0:12:22	0.24	0.68	0.55	0.75	1.03	1.47	1.77	2.15	\#N/A
1.214	0:16:29	0.64	1.85	1.48	2.02	2.79	4.01	4.84	5.91	\#N/A
	0:20:36	1.65	4.74	3.79	5.20	7.16	10.30	12.42	15.18	\#N/A
	0:24:43	4.55	13.03	10.43	14.28	19.66	28.29	34.10	41.64	\#N/A
	0:28:50	5.34	15.51	12.37	17.02	23.54	34.08	41.22	50.54	\#N/A
	0:32:58	5.08	14.81	11.80	16.25	22.50	32.61	39.48	48.45	\#N/A
	0:37:05	4.62	13.48	10.75	14.80	20.49	29.69	35.94	44.09	\#N/A
	0:41:12	4.11	12.05	9.59	13.23	18.35	26.64	32.27	39.64	\#N/A
	0:45:19	3.53	10.41	8.28	11.44	15.90	23.13	28.07	34.53	\#N/A
	0:49:26	3.08	9.07	7.22	9.96	13.83	20.09	24.40	30.06	\#N/A
	0:53:34	2.79	8.22	6.54	9.03	12.54	18.22	22.11	27.22	\#N/A
	0:57:41	2.28	6.79	5.39	7.47	10.41	15.18	18.44	22.73	\#N/A
	1:01:48	1.84	5.56	4.40	6.12	8.55	12.50	15.21	18.77	\#N/A
	1:05:55	1.40	4.29	3.39	4.73	6.64	9.78	11.93	14.77	\#N/A
	1:10:02	1.02	3.21	2.52	3.54	5.01	7.43	9.10	11.31	\#N/A
	1:14:10	0.75	2.32	1.83	2.56	3.64	5.45	6.70	8.37	\#N/A
	1:18:17	0.59	1.79	1.42	1.97	2.79	4.15	5.08	6.32	\#N/A
	1:22:24	0.48	1.47	1.16	1.62	2.29	3.38	4.13	5.12	\#N/A
	1:26:31	0.41	1.25	0.99	1.38	1.94	2.86	3.49	4.32	\#N/A
	1:30:38	0.36	1.10	0.87	1.21	1.70	2.50	3.05	3.77	\#N/A
	1:34:46	0.33	0.99	0.78	1.09	1.52	2.24	2.73	3.38	\#N/A
	1:38:53	0.30	0.91	0.72	1.00	1.40	2.06	2.51	3.10	\#N/A
	1:43:00	0.22	0.67	0.53	0.73	1.03	1.52	1.85	2.29	\#N/A
	1:47:07	0.16	0.49	0.39	0.54	0.75	1.11	1.35	1.67	\#N/A
	1:51:14	0.12	0.36	0.28	0.40	0.55	0.81	0.99	1.23	\#N/A
	1:55:22	0.09	0.26	0.21	0.29	0.41	0.60	0.74	0.91	\#N/A
	1:59:29	0.06	0.19	0.15	0.21	0.30	0.44	0.53	0.66	\#N/A
	2:03:36	0.04	0.13	0.11	0.15	0.21	0.31	0.38	0.47	\#N/A
	2:07:43	0.03	0.10	0.08	0.11	0.15	0.23	0.28	0.34	\#N/A
	2:11:50	0.02	0.06	0.05	0.07	0.10	0.15	0.19	0.24	\#N/A
	2:15:58	0.01	0.04	0.03	0.04	0.06	0.10	0.12	0.15	\#N/A
	2:20:05	0.00	0.02	0.01	0.02	0.03	0.05	0.06	0.08	\#N/A
	2:24:12	0.00	0.01	0.00	0.01	0.01	0.02	0.03	0.04	\#N/A
	2:28:19	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	\#N/A
	2:32:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	2:36:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	2:40:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	2:44:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	2:48:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	2:53:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	2:57:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:01:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:05:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:09:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:13:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:17:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:21:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:26:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:30:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:34:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:38:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:42:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:46:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:50:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:54:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	3:58:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:03:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:07:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:11:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:15:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:19:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:23:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:27:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:31:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:36:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:40:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:44:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:48:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:52:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A
	4:56:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	\#N/A

\qquad

Mieropool Surface Anew
TIA IXA

$$
(0.441 \times 1651)
$$

$$
T A=7.3 \sim 8.0
$$

From mieropot sizing chart (SA)
Forabry Volume for FPD Pond
Trbatiorg Area $=16.51 \mathrm{AC}$
min. Forebuy Voume - 3.0\% of WOCV (UDFED F5, EDDB-4)
WQCV for FOD Pond $=0.262 \mathrm{Ac}-$ FA
Total Ushime Regä $=0.03(0.262) \frac{43560}{1 A C T}=342 c t$
Area $=283-7$ (wall) $=276$ sf

Sire notch in forebny to aecomidate 2% J) $100 y$.
(uDAD T-5 ED

$$
\begin{aligned}
& \text { ohe noten in rorevang to acomian } \quad \text { (u.pho T.5 EDPs) }
\end{aligned}
$$

using Ret Weir Egn $\quad Q=\frac{3.247 L \cdot H^{148}-0.566 \cdot L^{19}}{1+2 L^{1187}} H^{19}$ Solnc for $L=2.6^{\prime \prime} \quad 0=0.94$
use a 2.6^{n} notch

$$
\begin{aligned}
& 276 \times 125 h t=345>342 \\
& \text { (forebiy) (dypth) (volune) }
\end{aligned}
$$

\qquad
Ripresp Apron For Pond 1
$\frac{\text { Rppup Sizing }}{}$

$$
\begin{aligned}
& Q_{100}=47.1 \text { ats }(\text { Pipe Run } 9) \\
& D_{4}=42^{\prime \prime}=3.5^{\prime}
\end{aligned}
$$

$\frac{a}{A^{-2}}<6$ Than use Figure $9-38$ (UbFCD Val. 2)

$$
\begin{array}{r}
\frac{47.1}{(3.5)^{2.5}}=2.05<6 \text { Therefore use Figure } 9-38 \\
\text { and } Y / a_{c}=9.40 \text { \& } \frac{0.0}{0^{1.5}=\frac{47.1}{(3.5)^{1.5}}=7.19}
\end{array}
$$

Use Type L $D_{50}=g^{\prime \prime}$
Riprap Depth

$$
\begin{aligned}
& T=2 D_{s} \\
& T=18^{\circ} 0^{\circ}
\end{aligned}
$$

Low Rainwater Ripple Pusan.
$42^{2} \rho_{\text {ipo }}$

$\begin{array}{lr}\text { Scenario: } & \mathbf{1 0 0} \mathbf{y r} \\ \text { STRM } & 1 \dot{2} 2\end{array}$

Conduit FlexTable: Table - 1 STRM 182

Label	Upstream Structure	Rise (ft)	$\begin{aligned} & \hline \text { Flow } \\ & \text { (cfs) } \end{aligned}$	Flow / Capacity (Design) (\%)	Length (Unified) (ft)	Velocity (t / s)	Froude Number (Normal)	Depth (Normal) (ft)	Depth (Critical) (ft)
PR3	4' DIA TYPE II MH		25.70	62.7	213.1	8.82	1.432	1.43	1.73
PR4	10' CDOT TYPE R INLET		30.10	21.5	98.7	22.71	5.300	0.79	1.87
PR3	5' DIA TYPE II MH		25.70	58.4	254.1	9.31	1.557	1.37	1.73
PR2.	10' CDOT TYPE R INLET		11.80	37.9	3.2	3.76	2.023	0.85	1.23
PR1	10' CDOT TYPE R INLET		13.80	26.6	27.2	13.97	3.425	0.70	1.34
Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Headloss (f)	Upstream Structure Hydraulic Grade Line (In) (f)	Upstream Structure Velucity (In- Governing) (ft/s)	Upstream Structure Headloss Coefficient	Upstream Structure Headloss (f)	Elevation Ground (Start) (ft)	Invert (Start) (f)	Invert (Stop) (ft)
7,070.13	7,068.77	1.36	7,070.34	9.31	0.270	0.21	7,075.93	7,068.40	7,066.27
7,067.84	7,060.00	7.84	7,068.77	5.24	1.020	0.93	7,071.69	7,065.97	7,054.50
7,073.35	7,070.07	3.27	7,074.54	4.39	1.520	1.19	7,077.37	7,071.62	7,068.70
7,074.55	7,074.54	0.01	7,075.57	3.76	1.000	1.02	7,077.10	7,072.18	7,072.12
7,074.89	7,074.54	0.35	7,075.49	6.18	1.020	0.61	7,077.10	7,073.55	7,072.12

Conduit FlexTable: Table - 1 STRM 3 INCL 42" SR1

Label	Upstream Structure	Rise (ft)	$\begin{aligned} & \hline \text { Flow } \\ & \text { (cfs) } \end{aligned}$	Flow / Capacity (Design) (\%)	Length (Unified) (f)	Velocity (f / s)	Froude Number (Normal)	Depth (Normal) (ft)	Depth (Critical) (ft)
PR11-3	EX. EPC TYPE I MH (SR Ranch FIL. NO. 1)		76.80	76.4	138.4	11.50	1.432	2.29	2.74
PR11-2	EPC TYPE I MH		76.80	47.5	50.8	16.58	2.541	1.70	2.74
PR1.1-1	EPC TYPE I MH		76.80	48.1	341.2	16.43	2.507	1.71	2.74
PR11	EPC TYPE I MH		76.80	23.9	155.1	27.41	5.244	1.16	2.74
EX 42"-5	EX CDOT TYPE D (SR RANCH FIL NO.1)		76.80	58.8	110.4	14.12	1.992	1.93	2.74
EX 42"-4	EX MH-12 (SR RANCH FIL NO.1)		76.80	47.3	235.2	16.64	2.553	1.69	2.74
Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (f)	Headloss (ft)	Upstream Structure Hydraulic Grade Line (In) (t)	Upstream Structure Velocity (InGoverning) (t / s)	Upstream Structure Headloss Coefficient	Upstream Structure Headloss (ft)	Elevation Ground (Start) (f)	Invert (Start) (ft)	Invert (Stop) (t)
7,084.23	7,082.43	1.80	7,084.61	9.24	0.270	0.38	7,088.97	7,081.49	7,080.11
7,082.05	7,080.82	1.23	7,082.43	11.32	0.270	0.38	7,086.56	7,079.31	7,078.00
7,080.44	7,072.98	7.46	7,080.82	9.24	0.270	0.38	7,085.36	7,077.70	7,069.11
7,071.55	7,056.70	14.85	7,072.98	7.98	1.020	1.43	7,077.40	7,068.81	7,053.00
7,092.81	7,091.03	1.78	7,095.29	9.50	1.770	2.48	7,095.00	7,090.07	7,088.21
7,090.65	7,084.61	6.04	7,091.03	9.24	0.270	0.38	7,094.77	7,087.91	7,081.79

Conduit FlexTable: Table - 1 STRM 5,6,7

Label	Upstream Structure	Rise (ft)	$\begin{aligned} & \hline \text { Flow } \\ & \text { (cis) } \end{aligned}$	Flow/Capacity (Design) (\%)	Length (Unified) (ft)	Velocity (f / s)	Froude Number (Normal)	Depth (Normal) (ft)	Depth (Critical) (ft)
PR6	15' CDOT TYPE R INLET		12.70	85.5	2.5	7.19	1.674	1.07	1.34
PR5	15' CDOT TYPE R INLET		12.70	55.2	26.5	13.34	2.948	0.80	1.34
PR7	5' DIA TYPE II MH		25.30	49.2	475.5	10.43	1.867	1.24	1.71
PR9	5' CDOT TYPE R INLET		47.10	17.3	8.0	6.66	6.560	0.84	2.24
PR9-1	6' DIA TYPE II MH		47.10	42.6	34.9	4.90	1.755	1.60	2.14
PR8	10' CDOT TYPE R INLET		17.20	20.9	35.4	3.50	3.114	0.78	1.40
Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Headloss (ft)	Upstream Structure Hydraulic Grade Line (In) (ft)	Upstream Structure Velocity (InGoverning) (ft/s)	Upstream Structure Headloss Coefficient	Upstream Structure Headloss (ft)	Elevation Ground (Start) (ft)	Invert (Start) (ft)	Invert (Stop) (ft)
7,090.47	7,090.43	0.04	7,091.28	7.19	1.020	0.82	7,093.41	7,088.59	7,088.54
7,091.15	7,090.43	0.72	7,092.07	7.62	1.020	0.92	7,093.57	7,089.81	7,088.54
7,089.25	7,084.94	4.31	7,090.43	7.19	1.520	1.17	7,093.68	7,087.54	7,080.07
7,084.06	7,084.02	0.04	7,084.94	3.50	1.280	0.88	7,086.36	7,079.57	7,078.23
7,083.85	7,083.77	0.08	7,084.02	6.66	0.470	0.18	7,086.18	7,077.73	7,077.31
7,085.01	7,084.94	0.06	7,085.34	3.50	1.770	0.34	7,086.34	7,081.49	7,080.07

STRM 4 POND 1 OUTFALL INDEX MAP

Conduit FlexTable: STRM 4 POND 1 7-30-19

Label	ID	Upstream Structure	$\begin{aligned} & \text { Flow } \\ & \text { (cfs) } \end{aligned}$	Flow / Capacity (Design) (\%)	Length (Unified) (ft)	Velocity (ft / s)	Froude Number (Normal)	$\begin{aligned} & \hline \text { Depth (Normal) } \\ & \text { (ft) } \end{aligned}$	$\begin{aligned} & \hline \text { Depth (Critical) } \\ & \text { (ft) } \end{aligned}$	Energy Grade (ft) (ft)	Energy Grade Line (Out) (ft)	Hydraulic Grade Line (In) (ft)	$\begin{aligned} & \hline \text { Hydraulic Grade } \\ & \text { Line (Out) } \\ & \text { (ft) } \end{aligned}$	Headloss (ft)	Upstream Structure Hydraulic Grade Line (In) (ft)
PR10	129	Outlet Structure (FSD Pond 1)	23.50	40.3	78.2	17.56	3.772	0.88	1.72	7,078.68	7,074.39	7,077.64	7,069.91	7.73	7,079.20
Upstream Structure Velocity (InGoverning) (ft/s)	Upstream Structure Headloss Coefficient	Upstream Structure Headloss (ft)	Elevation Ground (Start) (ft)	Invert (Start) (ft)	IInvert (Stop) (ft)										
8.17	1.500	1.56	7,083.40	7,075.92	7,069.00										

Version 4.05 Released March 2017

	ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)				
Project: Inlet ID:	(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)				
	Enter Your Project Name Here				
	Inlet DP 7				
	Gutter Geometry (Enter data in the blue cells)				
	Maximum Allowable Width for Spread Behind Curb $\mathrm{T}_{\text {BACK }}$		8.0	ft/t	
	Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	$\mathrm{S}_{\text {BACK }}=$	0.020		
		$\mathrm{n}_{\text {BACK }}=$	0.020		
	Height of Curb at Gutter Flow Line	$\mathrm{H}_{\text {CURB }}=$	6.00	inches	
		$\mathrm{T}_{\text {crown }}=$	17.0		
	Gutter Width	W =	2.00	ft/ft	
	Street Transverse Slope	$\mathrm{S}_{\mathrm{x}}=$	0.020		
	Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ffftt)}$	$\mathrm{S}_{\mathrm{w}}=$	0.083	$\mathrm{fl}_{\text {fift }} \mathrm{ft/f}$	
	Street Longitudinal Slope - Enter 0 for sump condition	$\mathrm{S}_{\mathrm{o}}=$	0.000	ft/ft	
	Manning's Roughness for Street Section (typically between 0.012 and 0.020)	$n_{\text {Street }}=$	0.020		
			Minor Storm	Major Storm	
	Max. Allowable Spread for Minor \& Major Storm	$\mathrm{T}_{\text {max }}=$	17.0	17.0	$\left\lvert\, \begin{aligned} & \mathrm{ft} \\ & \mid \text { inches } \end{aligned}\right.$
	Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm	$\mathrm{d}_{\text {max }}=$	5.1	7.8	
	Check boxes are not applicable in SUMP conditions		Г 「		
	MINOR STORM Allowable Capacity is based on Depth Criterion		Minor Storm	Major Storm	
	MAJOR STORM Allowable Capacity is based on Depth Criterion	$Q_{\text {allow }}=$	SUMP	SUMP	

INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

Version 4.05 Released March 2017

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)				
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)				
Enter Your Project Name Here				
Inlet DP 8				
Gutter Geometry (Enter data in the blue cells)				
Maximum Allowable Width for Spread Behind Curb	$\mathrm{T}_{\text {BACK }}=$	8.0	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	$\mathrm{S}_{\text {BACK }}=$	0.020	t/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	$\mathrm{n}_{\text {BACK }}=$	0.020		
Height of Curb at Gutter Flow Line	$\mathrm{H}_{\text {Curb }}=$	6.00	nches	
Distance from Curb Face to Street Crown	$\mathrm{T}_{\text {crown }}=$	17.0	ft	
Gutter Width	w =	2.00	ft	
Street Transverse Slope	$S_{x}=$	0.020	/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ftfft)	$\mathrm{S}_{\mathrm{w}}=$	0.083	fft	
Street Longitudinal Slope - Enter 0 for sump condition	$\mathrm{S}_{\mathrm{o}}=$	0.000	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	$n_{\text {Street }}=$	0.020		
		Minor Storm	Major Storm	
Max. Allowable Spread for Minor \& Major Storm	$\mathrm{T}_{\text {max }}=$	17.0	17.0	ft
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm	$\mathrm{d}_{\text {max }}=$	5.1	7.8	inches
Check boxes are not applicable in SUMP conditions		Г	Г	
MINOR STORM Allowable Capacity is based on Depth Criterion		Minor Storm	Major Storm	
MAJOR STORM Allowable Capacity is based on Depth Criterion	$Q_{\text {allow }}=$	SUMP	SUMP	

INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

Version 4.05 Released March 2017

	ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)				
Project: Inlet ID:	(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)				
	Enter Your Project Name Here				
	Inlet DP 9				
	Gutter Geometry (Enter data in the blue cells)				
	Maximum Allowable Width for Spread Behind Curb $\quad \mathrm{T}_{\text {BACK }}=$		8.0	ft/t	
	Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	$\mathrm{S}_{\text {BACK }}=$	0.020		
		$\mathrm{n}_{\text {BACK }}=$	0.020		
	Height of Curb at Gutter Flow Line	$\mathrm{H}_{\text {CURB }}=$	6.00	$]_{\mathrm{ft}}$	
		$\mathrm{T}_{\text {crown }}=$	17.0		
	Distance from Curb Face to Street Crown Gutter Width	W =	2.00	ft/ft	
	Street Transverse Slope	$\mathrm{S}_{\mathrm{x}}=$	0.020		
	Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ffft)	$\mathrm{S}_{\mathrm{w}}=$	0.083	$\mathrm{f}_{\text {f/ft }}^{\text {fift }}$	
	Street Longitudinal Slope - Enter 0 for sump condition	$\mathrm{S}_{\mathrm{o}}=$	0.000	$\mathrm{ft/ft}$	
	Manning's Roughness for Street Section (typically between 0.012 and 0.020)	$n_{\text {Street }}=$	0.020		
			Minor Storm	Major Storm	
	Max. Allowable Spread for Minor \& Major Storm	$\mathrm{T}_{\text {max }}=$	17.0	17.0	$\left\lvert\, \begin{aligned} & \mathrm{ft} \\ & \mid \text { inches } \end{aligned}\right.$
	Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm	$\mathrm{d}_{\text {max }}=$	5.1	8.0	
	Check boxes are not applicable in SUMP conditions		Г Г		
	MINOR STORM Allowable Capacity is based on Depth Criterion		Minor Storm	Major Storm	
	MAJOR STORM Allowable Capacity is based on Depth Criterion	$Q_{\text {allow }}=$	SUMP	SUMP	

INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

Design Information (Input) \quad CDOT Type R Curb Opening	Type $=$	MINOR	MAJOR	
Type of Inlet		CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	5.1	7.8	
Grate Information		MINOR	MAJOR	\checkmark Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value $0.50-0.70$)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information	MINOR MAJOR			
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	inches feet
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.26	0.48	
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.65	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {curb }}=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)		MINOR	MAJOR	cfs
	$\mathrm{Q}_{\mathrm{a}}=$	3.7	9.0	
	$Q_{\text {peak required }}=$	2.2	5.4	

Version 4.05 Released March 2017

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input)	Type $=$	MINOR MAJOR		inches
Type of Inlet \quad CDOT Type R Curb Opening		CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCal }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{w}_{0}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\text {r }} \mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{Cr}_{\text {r }} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	9.1	12.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.3	2.9	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}=$	C\% =	97	82	\%

Version 4.05 Released March 2017

INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input)	MINOR MAJOR			inches
Type of Inlet Type = CDOT Type R Curb Opening				
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{\mathrm{o}}=$	15.00	15.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	C_{f}-G $=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{f}} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.9	12.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	2.9	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathbf{Q}_{0}=$	$\mathrm{C} \%=$	100	82	\%

Version 4.05 Released March 2017

INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

Version 4.05 Released March 2017

	ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)				
Project: Inlet ID:	(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)				
	Enter Your Project Name Here				
	Inlet DP 13				
	Gutter Geometry (Enter data in the blue cells)				
	Maximum Allowable Width for Spread Behind Curb $\mathrm{T}_{\text {BACK }}$		8.0	ft/t	
	Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	$\mathrm{S}_{\text {BACK }}=$	0.020		
		$\mathrm{n}_{\text {BACK }}=$	0.020		
	Height of Curb at Gutter Flow Line	$\mathrm{H}_{\text {CURB }}=$	6.00	$\int_{\mathrm{ft}}^{\text {inches }}$	
		$\mathrm{T}_{\text {crown }}=$	17.0		
	Gutter Width	w $=$	2.00	ft	
	Street Transverse Slope	$\mathrm{S}_{\mathrm{x}}=$	0.020	t/ft	
	Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ffftt)}$	$\mathrm{S}_{\mathrm{w}}=$	0.083		
	Street Longitudinal Slope - Enter 0 for sump condition	$\mathrm{S}_{\mathrm{o}}=$	0.000	ft/ft	
	Manning's Roughness for Street Section (typically between 0.012 and 0.020)	$n_{\text {Street }}=$	0.020		
			Minor Storm	Major Storm	
	Max. Allowable Spread for Minor \& Major Storm	$\mathrm{T}_{\text {max }}=$	17.0	17.0	$\left\lvert\, \begin{aligned} & \mathrm{ft} \\ & \mid \text { inches } \end{aligned}\right.$
	Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm	$\mathrm{d}_{\text {max }}=$	5.1	5.1	
	Check boxes are not applicable in SUMP conditions		$\Gamma \quad$ Г		
	MINOR STORM Allowable Capacity is based on Depth Criterion		Minor Storm	Major Storm	
	MAJOR STORM Allowable Capacity is based on Depth Criterion	$Q_{\text {allow }}=$	SUMP	SUMP	

INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

Design Information (Input) \quad CDOT Type R Curb Opening	Type $=$	MINOR	MAJOR	
Type of Inlet		CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	5.1	7.8	
Grate Information		MINOR	MAJOR	$\sqrt{ }$ Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value $0.50-0.70$)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information	MINOR MAJOR			
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches degrees feet
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	$\mathrm{ft}^{\mathrm{ft}}$
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.26	0.48	
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.65	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {curb }}=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)		MINOR	MAJOR	cfs
	$\mathrm{Q}_{\mathrm{a}}=$	3.7	9.0	
	$Q_{\text {peak required }}=$	1.2	5.9	

EDB AND SFB DETAILS

Figure SF-1. Sand Filter Plan and Sections

note:
anckifll not shown

Figure SF-2. Geomembrane Liner/Underdrain Penetration Detail

Figure SF-3. Geomembrane Liner/Concrete Connection Detail

Figure EDB-3. Extended Detention Basin (EDB) Plan and Profile

Additional Details are provided in BMP Fact Sheet T-12. This includes outlet structure details including orifice plates and trash racks.

HISTORIC, EXISTING AND PROPOSED DRAINAGE MAPS

[^0]: Virgil A. Sanchez, P.E. \#37160
 For and on Behalf of M\&S Civil Consultants, Inc

