FINAL DRAINAGE REPORT for OWL MARKETPLACE FILNG NO. 1

Falcon, Colorado

April 2024

Prepared for:

Meridian & Owl X, LLC

450 N McClintock Drive Chandler, AZ 85226 Contact: Brian Zurek (480)-313-2724

Prepared by:

Drexel, Barrell & Co.

3 South 7th Street Colorado Springs, CO 80905 Contact: Tim McConnell, P.E. (719) 260-0887

El Paso County File No. VR2321

TABLE OF CONTENTS

1.0	CERTIFICATION STATEMENTS	
2.0	PURPOSE	1
3.0	GENERAL SITE DESCRIPTION	1
4.0	DRAINAGE CRITERIA	3
5.0	EXISTING CLOMR ANALYSIS	3
6.0	EXISTING ONSITE CONDITION	4
7.0	PROPOSED CONDITION CLOMR ANALYSIS	5
8.0	PROPOSED ONSITE CONDITION	5
9.0	DETENTION & WATER QUALITY TREATMENT	7
10.0	FOUR-STEP PROCESS	7
11.0	DBPS ANALYSIS	8
12.0	OWNERSHIP AND MAINTENANCE1	1
13.0	DRAINAGE/BRIDGE FEES1	1
14.0	REIMBURSABLE COSTS1	1
15.0	COST ESTIMATE1	2
16.0	CONCLUSIONS1	2
17.0	REFERENCES1	3

APPENDICES

VICINITY MAP SOILS MAP FLOODPLAIN MAP HYDROLOGY CALCULATIONS HYDRAULIC CALCULATIONS REPORT EXCERPTS CLOMR APPROVAL DRAINAGE MAPS

FINAL DRAINAGE REPORT

for

OWL MARKETPLACE FILING NO. 1

Falcon, Colorado

1.0 CERTIFICATION STATEMENTS

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports, and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by envinegligent acts, errors or omission on my part in preparing this report.

Katherine G. Varnum, P.E. Colorado P.E. License No. 53459 For and on Behalf of Drexel, Barrell & Co.

DEVELOPER'S STATEMENT

I, the developer have read and will comply with all the requirements specified in this drainage report and plan.

Business Name:

Meridian & Owl X, LLC.

By:

6.17.2024

Date

June 15, 2024

Date

Address:

Brian Zurek 450 N McClintock Drive Chandler, AZ 85226

EL PASO COUNTY

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

For the County Engineer CONDITIONS:

Date

FINAL DRAINAGE REPORT

for OWL MARKETPLACE FILING NO. 1 Falcon, Colorado

2.0 PURPOSE

This report is prepared by Drexel, Barrel & Co in support of the Owl Marketplace Filing No. 1 project. The purpose of this report is to identify onsite and offsite drainage patterns, storm sewer, inlet locations, and areas tributary to the site, and to safely route developed storm water runoff to adequate outfall facilities.

3.0 GENERAL SITE DESCRIPTION

Location and Existing Site Conditions

The site is located at the southwest corner of Owl Place and Meridian Road at 11745 Owl Pl. Lot 15 Falcon Ranchettes – SE ¹/₄ of the SE ¹/₄ of Section 1, Township 13S, Range 65W of the 6th P.M., El Paso County, Colorado. 11685 Owl Place, Lot 14 Falcon Ranchettes is also being replatted as part of this development in order to provide for public right-of-way in alignment with that directly existing to the south and proposed to the north.

There is one small home on the 11745 Owl Place portion of the property as well as a few minor out buildings. The site is bounded to the south by the Falcon Marketplace development, to the east by Meridian Road, and to the north and west by large-lot residential Falcon Ranchettes Subdivision. The lots immediately adjacent have recently been rezoned to commercial service (CS) for future development. The existing house is served by well and septic, that are to be removed/abandoned in accordance with CDPHE regulations. There are no existing irrigation facilities on the project site. The house and outbuildings located on 11685 Owl Place will remain.

The site is approximately 9.6 acres in size and is currently generally covered by native grass and vegetation. The eastern portion of the site gently slopes from the northeast to the southwest corner of the site. The East Branch of the Middle Tributary of Upper Black Squirrel Creek currently discharges flows from the roadside ditch along Meridian Road to the north, southwest across the property before discharging into the sub-regional detention facility SR4 to the south. A CLOMR to contain the floodplain, within a 10'x6' concrete box culvert across this portion of the property has been approved by FEMA (Case No. 22-08-0669R, December 21, 2022). The western portion of the property (11685 Owl Place) generally slopes from north to south. The West Branch of the Middle Tributary of Upper Black Squirrel Creek currently discharges flow from northwest to southeast across the property. The aforementioned CLOMR does not affect this portion of the property, and the floodplain will remain until future development and subsequent CLOMR/LOMR applications occur.

Proposed Site Conditions

Owl Marketplace is a proposed commercial development replatted to provide for four individual pad sites, serviced by an adjacent collector roadway – Meridian Park Drive. As previously mentioned, the adjacent property will also be included in this replat solely to provide for public right-of-way in alignment with adjacent developments. Meridian Park Drive is proposed to be extended from the Eastonville roundabout on the Falcon Marketplace property to Owl Place where future extension to the Bent Grass subdivision will take place by others. Dedication of right-of-way for Meridian Park Drive is proposed to straddle the current property line, by agreement with the adjacent landowner.

<u>Soils</u>

According to the Soil Survey of El Paso County Area, Colorado, prepared by the U.S. Department of Agriculture Soil Conservation Service, the site is completely underlain by Columbine Gravelly Sandy Loam (Soil No. 19) All soils are type 'A' hydrologic soil group. See appendix for map.

<u>Climate</u>

This area of El Paso County can be described as the foothills, with total precipitation amounts typical of a semi-arid region. Winters are generally cold and dry, and summers relatively warm and dry. Precipitation ranges from 12 to 14 inches per year, with the majority of this moisture occurring in the spring and summer in the form of rainfall. Thunderstorms are common during the summer months.

Floodplain Statement

The effective floodplain, Zone A limits, for the Unnamed Tributary to Black Squirrel Creek (UTBSC), in the vicinity of the Owl Marketplace project, are defined on the FIRM for El Paso County, Colorado and Unincorporated Areas, Map Number 8041CO553G, Effective Date December 7, 2018.

A CLOMR to modify the effective floodplain was approved by FEMA, Case No. 22-08-0669R (December 21, 2022).

<u>Drainage Basin</u>

This property is located with the Falcon Drainage Basin, and was studied as part of the following basin planning studies and subsequent reports for neighboring developments.

Falcon Drainage Basin Planning Study, September 2015 (DPBS – Matrix)

Bent Grass MDDP Amendment & DBPS Amendment, September 2021 (DBPS Amendment – Galloway)

Request for Conditional Letter of Map Revision, Unnamed Tributary to Black Squirrel Creek, Falcon Owl Place, October 2022 (**CLOMR)** Request for Letter of Map Revision, Unnamed Tributary to Black Squirrel Creek, Falcon Marketplace, March 2021. **(LOMR)**

Final Drainage Report for Falcon Marketplace, November 2019

Final Drainage Report, Falcon Ranchettes Filing No. 1A Meridian Storage, October 2023.

Relevant excerpts from previous drainage studies and reports and included in the appendix, and further discussed below.

Geotechnical Recommendations

Geologic conditions identified for the property will be those associated with the potentially expansive soils, shallow bedrock, seasonally shallow groundwater, and the currently mapped floodplain. These conditions can be satisfactorily mitigated through proper engineering design and construction practices. Refer to the Soils and Geology Study for the property by Entech Engineering, Inc. June 2023 for more information.

4.0 DRAINAGE CRITERIA

This drainage analysis has been prepared in accordance with the current El Paso County Drainage Criteria Manual. Calculations were performed to determine runoff quantities during the 5-year and 100-year frequency storms for historic and developed conditions using the Rational Method as required for basins containing less than 100-acres.

Hydraflow was utilized to determine the hydraulic capacity of the proposed storm system and the MHFD UD-Inlet v.4.06 worksheet was utilized to size the proposed inlet structures.

5.0 EXISTING CLOMR ANALYSIS

The Middle Branch of the UTBSC is currently conveyed under Owl Place via two 36" CMP near the northeast corner of the site. The 2-36" CMP culverts are severely undersized and partially filled with sediment. The culverts only convey 86-95 cfs, depending on tailwater depth. The remaining flow (approximately 825-834 cfs) in the 100-year event overtops Owl Place. See excepts in the appendix.

Under existing and proposed conditions, the East Branch of the UTBSC leaving the Owl Marketplace site discharges to Pond SR4 on the Falcon Marketplace development to the south. The pond was designed for a 100-year discharge of 1,016 cfs, which includes both West and East branches of the UTBSC.

6.0 EXISTING ONSITE CONDITION

EXISTING						
BASIN	DP	Area (Ac.)	Q₅ (CFS)	Q ₁₀₀ (CFS)		
RMT064	X1		288.5	920.0		
OSE1	E1	1.26	0.9	3.1		
E2		1.95	0.5	3.7		
	E2	3.21	1.4	6.9		
E3	E3	2.34	0.6	4.4		
E4	E4	0.33	0.1	0.7		
MT060	X2		60.1	196.8		

Rational Method Existing Runoff Summary

Offsite flows reaching Owl Place from the roadside ditch along Meridian Road to the north are represented by **Design Point X1**. These flows are established by the DBPS (Matrix) and subsequent DBPS Amendment (Galloway) studies as DBPS Reach RMT064. The most recent CLOMR study determined rates of Q_5 =288.5. cfs and Q_{100} =920 cfs for this section. See further description below.

An offsite basin for adjacent Lot 14 Falcon Ranchettes has not been delineated on the existing conditions map, but excerpts from the Falcon DBPS (Matrix) and DBPS Amendment (Galloway) have been included in the appendix to establish the existing flows entering Pond SR4 at the south of the lot, at **Design Point X2**. These flows are represented by DBPS Reach MT060 and consist of rates of $Q_5=60.1$ cfs and $Q_{100}=196.8$ cfs.

Basin OSE1 represents an offsite 1.26-acre basins to the north of Owl Place. Runoff rates of $Q_5=0.9$ cfs and $Q_{100}=3.1$ cfs are generated by this basin, and generally travel to the south towards the low point in Owl Place (**Design Point E1**) before discharging on to the Owl Marketplace property.

Basin E2 represents a 1.95 acre basin on the north side of the Owl Marketplace property to the south of Owl Place. This basin contains the Upper Black Squirrel Creek Tributary and as such flow generated by this basin ($Q_5=0.5$ cfs and $Q_{100}=3.7$ cfs) combine with those from offsite basin OSE1 and travel towards the center of the basin before following the tributary and discharging out the southwest property line at **Design Point E2**.

Basin E3 represents 3.21-acres at the south of the Owl Marketplace property. Runoff rates of $Q_5=0.6$ cfs and $Q_{100}=4.4$ cfs are generated by this basin, and generally travel to the southwest towards the property corner at **Design Point E3** before discharging into the adjacent subregional pond SR4 on the Falcon Marketplace property.

Basin E4 covers 0.33-acres along Meridian Road at the eastern boundary of the Owl Marketplace property. Runoff rates of $Q_5=0.1$ cfs and $Q_{100}=0.7$ cfs are generated by this basin, and generally travel to the east and south towards Meridian Road and **Design Point E4**.

7.0 PROPOSED CONDITION CLOMR ANALYSIS

The Middle Branch of the UTBSC flows southwest across the property and is proposed to be contained within a 10'x6' box culvert that will discharge into the Subregional Pond SR4 recently constructed on the Falcon Marketplace property.

Pond SR4 was designed for a 100-year discharge of 1,016 cfs, which includes both West and Middle branches of the UTBSC. The 100-year water surface elevation upstream of the pond as shown in the LOMR is 6902.5 (NAVD88), or 6898.7 (NGVD29). The starting HGL for the box culvert analysis was conservatively placed at the top of pipe elevation of 6895.84 feet (NGVD29) for analyzing flows to the East branch only. However, an additional analysis was performed with a starting HGL of 6898.7, to evaluate the backwater effects from the pond.

The proposed box culvert will convey the entire 100-year event (920 cfs), as established by the Falcon DBPS with an HGL of 6911.31 at the proposed headwall upstream of Owl Place, which is more than one foot below Owl Place and contained within the existing and proposed channel upstream. Channel grading will be required for approximately 30 feet to tie into the existing creek profile upstream. The channel side slopes will be reduced from approximately 5.5H:1V to 1.8H:1V and protected with Type M grouted riprap. A proposed Type VI stilling basin and additional riprap slope protection is proposed at the outfall into Pond SR4. An extension of the existing trickle channel will provide connection to the existing low flow path through the facility.

8.0 PROPOSED ONSITE CONDITION

As noted in Section 6.0 of this report, offsite flows reaching Owl Place from the roadside ditch along Meridian Road to the north are represented by **Design Point X1**. These flows are established by the DBPS (Matrix) and subsequent DBPS Amendment (Galloway) studies as DBPS Reach RMT064 and consist of rates of $Q_5=288.5$. cfs and $Q_{100}=920$ cfs. As noted above in Section 7.0 a proposed public 10'x6' box culvert will convey the full 100-year event without overtopping Owl Place from this point to Pond SR4 to the south.

An offsite basin for adjacent Lot 14 Falcon Ranchettes has not been delineated on the developed conditions map, as no changes - beyond those already incorporated into the following developed condition analysis – are proposed for Lot 14. The lot will remain in its current residential condition and any further development of Lot 14 (or Lot 5 as replatted with Owl Marketplace) will require additional drainage analysis and possible CLOMR to remove portions of the lot from the remaining floodplain. Flows reaching Pond SR4 to the south will remain as described in the existing condition as **Design Point X2** (Q_5 =60.1 cfs and Q_{100} =196.8 cfs).

Basins A through D represent each of the 4 commercial pad sites within the Owl Marketplace property. For this initial stage of overlot development, each lot/pad site will be graded to direct flows towards its southwest corner, where runoff will be intercepted by a temporary sediment basins, before discharging into the proposed private 18" RCP storm sewer stubs provided to each lot. The storm sewer stubs will remain in place for use by the individual lot users.

Design Point 2 is located at the manhole where Basin B combines with Design Point DP1

(Basin A). Flows continue south from this manhole via proposed public 24" RCP storm sewer.

Design Point 3 is located at the manhole where Basin C combines with Design Point DP2. Flows continue south from this manhole via proposed public 24" RCP storm sewer.

	DEVELOPED							
BASIN	DP	Area (Ac.)	Q_5 (CFS)	Q ₁₀₀ (CFS)				
A	1	1.21	5.0	9.1				
В		0.69	2.8	5.2				
	2	1.89	7.7	14.1				
С		1.09	4.5	8.2				
	3	2.98	12.0	22.0				
D	4	1.11	4.6	8.4				
	5	0.00	0.6	1.5				
	6	0.00	1.0	2.1				
E		0.75	3.0	5.5				
	7	1.86	7.8	14.6				
F		0.54	2.4	4.3				
	8	0.54	3.4	6.4				
	9	5.38	22.1	40.9				
G	10	0.23	0.1	0.6				
Н	11	1.46	4.1	8.2				

Rational Method Runoff Summary

Design Point 4 is located at the proposed temporary sediment basin and subsequent private 18" RCP storm sewer stub for the southernmost basin D.

Due to the concurrent development to the north (Falcon Ranchettes Filing No. 1a – Meridian Storage), the flowrates entering this property from the north are based on those defined in the aforementioned report for Falcon Ranchettes Filing No. 1a, by Galloway & Co. See appendix for excerpts and further information. **Design Point 5** receives rates of $Q_5=0.6$ cfs and $Q_{100}=1.5$ cfs (identified as DP12 in Galloway report) and **Design Point 6** (identified as DP13 in the Galloway report) receives flows of $Q_5=1.0$ cfs and $Q_{100}=2.1$ cfs. These design points are located at the north end of Meridian Park Drive at Owl Place. These flows are inclusive of any bypass flow from the proposed upstream at-grade inlets, and are straight added to the downstream design points further described in this report.

Basin E covers 0.75-acres and includes Owl Place along the property boundary to the north, as well as the eastern half of the proposed Meridian Park Drive. Within the basin, flows will travel west along proposed curb and gutter on Owl Place, before combining with those flows from Design Point 5, turning south and traveling along the proposed easterly curb and gutter of Meridian Park Drive. Flows will be captured in their entirety by a proposed public 10' Type R sump inlet located at **Design Point 7.** Emergency overflow for this inlet is to the east behind the curb, and south to the existing inlet on Eastonville Road.

Basin F represents the western half of Meridian Park Drive and a small portion of the southwestern part of Owl Place. Runoff from this basin, which totals 0.54 acres in size, will combine with that from Design Point 6 and travel to the south along the westerly curb line of Meridian Park Drive towards a proposed low point and public 10' Type R sump inlet

located at **Design Point 8.** Emergency overflow for this inlet is to the west behind the curb.

Design Point 9 represents the piped flows captured by the proposed sump inlet at Design Point 8 and piped flows from Design Point 3 and Design Point 7. Flows continue to the south from this manhole via proposed public 30" RCP storm sewer. Flows will ultimately discharge into the easterly modified forebay of the existing Pond SR4 to the southwest.

Basin G is 0.23 acres located to the west of Meridian Park Drive. Flows within this basin will sheet flow overland towards **Design Point 10** and discharge directly into the subregional detention facility SR4 to the southwest.

Basin H covers 1.46 acres which contains the western side of Meridian Road and the area separating the site and roadway. Flows within this basin will sheet flow are contained within Meridian Road before continuing to the south via curb and gutter, and turning west on Eastonville Road to be captured by the existing curb inlet. This basin covers the entire area tributary to this existing inlet confirming that it has capacity for the additional developed flows.

No portion of the proposed area of disturbance (Basins A-H) will be treated for water quality prior to discharge into Pond SR4. As described below in section 9.0 below, Pond SR4 provides treatment for the upstream watershed through a modified outlet plate. All disturbed areas are ultimately tributary to Pond SR4.

9.0 DETENTION & WATER QUALITY TREATMENT

The existing subregional detention facility Pond SR4 to the southwest was designed to detain for the upstream watershed, and appears to be functioning as intended, therefore there is no detention requirement for the Owl Marketplace property. Pond SR4 also provides water quality treatment for the same watershed through a modified outlet structure with orifice plate designed to release the WQCV over a 40-hour period. See appendix for applicable sections of the Falcon Marketplace Final Drainage Report. Therefore no detention or water quality treatment is proposed for the Owl Marketplace property, as it is provided for immediately downstream.

Modifications will be made to Pond SR4 to allow for the incoming flow from the Owl Marketplace project to be received in a safe and controlled manner. The box culvert will discharge into a Type VI stilling basin before being discharged into a proposed short section of concrete trickle channel, which will then tie into the existing trickle channel. The site storm sewer will discharge directly into the existing forebay, modified with a new baffle.

Stilling basin, forebay and trickle channel calculations are included in the appendix.

10.0 FOUR-STEP PROCESS

This project conforms to the El Paso County Four Step Process. The process for this site focuses on reducing runoff volumes, accounting for water quality capture volume treatment (WQCV), stabilizing drainage ways and implementing long-term source controls.

- 1. **Employ Runoff Reduction Practices**: Proposed impervious areas on this site (roofs, asphalt/sidewalk) will sheet flow across landscaped ground as much as possible to slow runoff and increase time of concentration prior to being conveyed to the proposed public streets and storm sewer system. This will minimize directly connected impervious areas within the project site.
- 2. Implement BMP's that provide a Water Quality Capture Volume with slow release: Runoff from this project will be routed through the sub-regional detention facility Pond SR4 immediately to the southwest of the Owl Marketplace property. Water quality treatment is provided for the upstream watershed as described above.
- 3. **Stabilize Drainage Ways:** The existing tributary that bisects the site and subsequent floodplain will be modified by installing a 10'x6' box culvert to intercept the upstream flows and direct towards the existing sub-regional detention facility SR4 to the southwest.
- 4. **Implement Site Specific and Other Source Control BMP's**: Standard commercial source control will be utilized in order to minimize potential pollutants entering the storm system. Example source control measures consist of: indoor storage of household chemicals; and trash receptacles in common areas.

11.0 DBPS ANALYSIS

Falcon DPBS (Matrix)

The Falcon DBPS watershed establishes three major basins, including the "Middle Tributary" which covers this property. The unnamed tributary to Black Squirrel Creek (UTBSC) located in the "Middle Tributary" consists of an "East Branch" and "West Branch". The "East Branch" enters this property at the northeast corner, after passing through existing culverts at Owl Place. The "West Branch" is located on the adjacent property to the west. The two converge just north of the Falcon Marketplace site before discharging into existing sub-regional detention facility SR4. The Falcon DBPS identifies junctions north and south of the project site, JMT050 and JMT060. These are summarized below, and excerpts are provided in the appendix.

Future Land Use Condition - Peak Discharge							
Model Location	Physical Location	Branch	Proximity to Owl Place	Future Flow Q100 (cfs)			
JMT050	Bent Grass Meadows Drive & Meridian Road	East Branch	Upstream of site	850			
JMT060	Eastonville Road & Meridian Road	East and West Convergence	Downstream of site	1000			

The Falcon DBPS specifies reach improvements between junctions JMT050 and JMT060, specifically identified as reach RMT064. These improvements include a recommendation for small drop structures with toe protection.

Bent Grass DPBS Amendment (Galloway)

The Bent Grass DBPS Amendment addresses a drainage diversion took place as part of the Bent Grass Residential Filing No. 1 development, specifically the rerouting of the UTBSC West Tributary to the east towards the intersection of Meridian Road and Bent Grass Meadows Drive. As a result of this diversion, a new junction was created in the Middle Tributary – JMT060a. This junction is located just south of JMT050 from the Falcon DPBS (Matrix) and is summarized below.

	Future Land Use Condition - Peak Discharge						
Model Location	Physical Location	Branch	Proximity to Owl Place	Future Flow Q100 (cfs)			
JMT060a	Bent Grass Meadows Drive & Meridian Road	East Branch	Upstream of site	909.3			

The Bent Grass DBPS Amendment recommends a 15' wide bottom channel with 4:1 side slopes at 6.5' deep with a longitudinal slope of 0.30% for reach RMT064.

Falcon Ranchettes Filing No. 1a – Meridian Storage (Galloway)

The Falcon Ranchettes Filing No. 1a development located directly north of Owl Place, includes regrading a portion of the UTBSC East Branch along Meridian Road with small drop structures with toe protection. The channel has been designed for a 925-cfs design flow as specified in the Bent Grass DBPS Amendment.

The improvements are intended to be intercepted by the 10'x6' box culvert proposed with this development. Per discussions with the adjacent developer, construction is expected to run concurrently with the Owl Marketplace project and design has been coordinated accordingly.

Owl Place CLOMR Analysis

This Owl Marketplace development includes regrading and rerouting a portion of the UTBSC East Branch. The improvements intercept the existing creek immediately north of Owl Place and convey is via 10'x6' box culvert to the subregional detention facility SR4 directly to the south. The box culvert is designed to convey the full 100-year discharge.

The Falcon DBPS did not include a junction on the East Branch immediately upstream of the convergence at pond SR4. Therefore, the Owl Place CLOMR modified the HMS model to create a new junction located at the southern boundary of this development. This junction is summarized below.

Future Land Use Condition - Peak Discharge						
Model Location	Proximity to Owl Place	Future Flow Q100 (cfs)				
JMT051	Immediately upstream of Pond SR4	East Branch	Downstream of site	920		

As mentioned above, a Conditional Letter of Map Revision (CLOMR) was approved by FEMA (Case No. 22-08-0669R) on December 21, 2022.

Referenced portions of the CLOMR are included in the appendix.

DBPS Analysis conclusions

Per the Falcon DBPS, channel improvements are required to stabilize RMT064 of the UTBSC East Branch. The table below compares the proposed design flow against previous reports.

	Future Land Use Condition - Peak Discharge								
Model Location	Physical Location	Branch	Proximity to Owl Place	Future Flow Q100 (cfs)					
RMT064	North of Owl Place, South of Bent Grass Meadows Drive	East Branch	-	925					
JMT050 (Falcon DBPS)	Bent Grass Meadows Drive & Meridian Road	East Branch	Upstream of site	850					
JMT060a (Bent Grass Amendment)	Bent Grass Meadows Drive & Meridian Road	East Branch	Upstream of site	909.3					
JMT051 (Owl Place CLOMR)	Immediately upstream of Pond SR4	East Branch	Downstream of site	920					

Due to the added junctions (JMT060a and JMT051), no revisions to the existing HMS models are needed for identifying the proposed design flow for RMT064.

There are no proposed changes to the West Tributary proposed as part of this project. The property encumbered by this tributary and associated floodplain (Lot 14 Falcon Ranchettes – Lot 5, Owl Marketplace as replatted), will be required to undergo additional drainage analysis in the future at time of development.

12.0 OWNERSHIP AND MAINTENANCE

It is anticipated that all public drainage facilities are to be owned and maintained by El Paso County. All private drainage facilities are to be owned and maintained initially by CD Meridian & Owl X, LLC, until such time that the individual lots transfer ownership upon development.

13.0 DRAINAGE/BRIDGE FEES

The project lies within the Falcon Drainage Basin. The property is already platted, but since there will be an increase in impervious acreage payment of additional drainage fees shall be required. Lots 14 and 15 of Falcon Ranchettes were platted as 5-acre residential lots. The Falcon DBPS estimated that 3% of the lot acreage would be considered as impervious acreage. The difference between the existing 3% impervious coverage and the proposed is listed in the table below.

		Existing	Proposed	
Location	Acreage	5-acre residential (3% Impervious) Acres	Commercial area (95% Impervious) Acres	Additional Impervious Acres
Lot 15 (Lots 1-4 Replat)	4.61	0.15	4.23	4.08
Lot 14 (Lot 5 Replat)	5.00	0.15	4.00	3.85

The additional impervious acreage equates to 7.93-acres, and as such the following fees will be required at final plat recording.

2023 Drainage Fee

\$37,256 x 7.93 Impervious Acres = \$295,440.08

2023 Bridge Fee

\$5,118 x 7.93 Impervious Acres = \$40.585.74

14.0 REIMBURSABLE COSTS

The Falcon DBPS – Fee Development categorizes improvements into Developer Costs, County Costs, and Metro District Costs. Items identified as Developer Costs (those incurred by the Developer) are eligible for reimbursement. County Costs and Metro District Costs are not eligible for reimbursement. The applicable reach is classified in the DBPS as follows:

Reach/Feature	Reach Length (ft)	Improvement	Cost Category	Eligible for Reimbursement	Cost As Shown in Falcon DBPS
RMT064	3,358	Small Drop Structures w/Toe Protection	County	No	\$1,231,110 (\$366/LF)

The developer intends to amend the Falcon DBPS to allow for the costs of 1,020-LF of RMT064 to become reimbursable by the process outlined in County criteria.

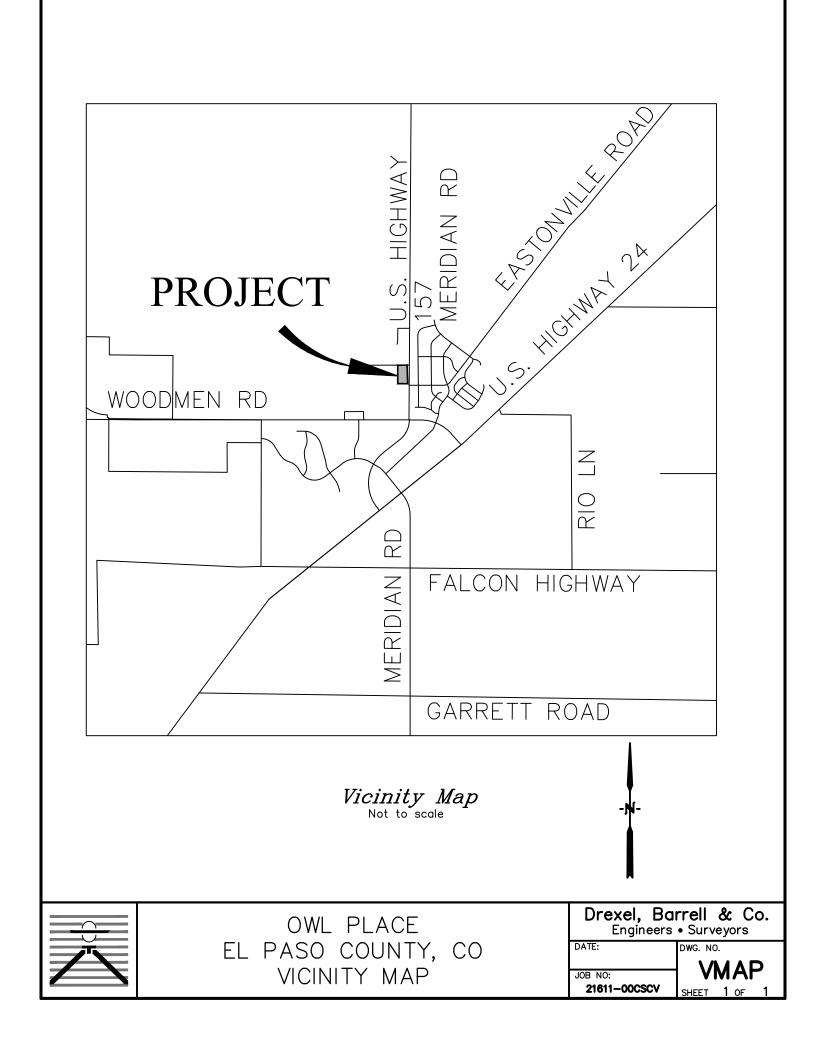
15.0 COST ESTIMATE

An Engineering Opinion of Probably Cost for all drainage improvements is provided below:

ITEM	QUANTITY	UNIT	UNIT COST	COST
REIMBURSABLE PL	JBLIC FACILITIE	S ESTIMA	TE	
10'X6' CONCRETE BOX CULVERT	1020	LF	\$ 1,000.00	\$ 1,020,000.00
10'X6' 45° BEND W/MH ACCESS	3	EA	\$ 12,500.00	\$ 37,500.00
10'X6' 45° BEND	2	EA	\$ 8,500.00	\$ 17,000.00
TYPE M GROUTED RIPRAP DROP WITH TOEWALL	135	CY	\$ 225.00	\$ 30,375.00
HEADWALL WITH HANDRAIL	1	EA	\$ 10,000.00	\$ 10,000.00
GUARD RAIL	75	LF	\$ 150.00	\$ 11,250.00
Improvements within Pond SR4				
TYPE VI STILLING BASIN	1	EA	\$ 15,000.00	\$ 15,000.00
CONCRETE TRICKLE CHANNEL EXTENSION	50	LF	\$ 35.00	\$ 1,750.00
REMOVE AND REPLACE EX. TYPE M GROUTED RIPRAP	1	LS	\$ 10,000.00	\$ 10,000.00
REIMBURSA	BLE PUBLIC DR	AINAGE F	ACILITIES TOTAL	\$ 1,152,875.00
NON-REIMBURSABLE	PRIVATE DRAII	VAGE FAC	TLITIES	
18" RCP STORM SEWER	152	LF	\$ 76.00	\$ 11,552.00
24" RCP STORM SEWER	417	LF	\$ 91.00	\$ 37,947.00
30" RCP STORM SEWER	126	LF	\$ 114.00	\$ 14,364.00
30"X45° RC BEND	1	EA	\$ 500.00	\$ 500.00
TYPE II STORM MANHOLE	4	EA	\$ 3,500.00	\$ 14,000.00
10' TYPE R CURB INLET	2	EA	\$ 5,500.00	\$ 11,000.00
FOREBAY BAFFLE MODIFICATIONS	1	LS	\$ 2,500.00	\$ 2,500.00
NON-REIMBURSAB	LE PRIVATE DR	AINAGE F	ACILITIES TOTAL	\$ 91,863.00

16.0 CONCLUSIONS

The Owl Marketplace Filing No. 1 Final Drainage Report has been prepared in accordance with El Paso County criteria. The downstream facilities are adequate to receive runoff from this development and are functioning as intended. The site runoff will not adversely affect the downstream and surrounding developments. This report is in general conformance with all previously prepared reports for this area.


After grading and the installation of the box culvert is complete, a LOMR will be submitted to FEMA to revise the FIRM map and remove the floodplain from the eastern portion of the site (Lots 1-4 Owl Marketplace, as replatted). The floodplain will remain on Lot 14 Falcon Ranchettes (Lot 5 Owl Marketplace as replatted) until such time that property develops and a separate CLOMR/LOMR process is completed.

17.0 REFERENCES

The sources of information used in the development of this study are listed below:

- 1. City of Colorado Springs/El Paso County Drainage Criteria Manual, May 2014.
- 2. Urban Storm Drainage Criteria Manuals, Urban Drainage and Flood Control District. June 2001, Revised April 2008.
- 3. Request for Conditional Letter of Map Revision, Unnamed Tributary to Black Squirrel Creek, Prepared by Drexel, Barrell & Co., October 25, 2022.
- 5. Natural Resources Conservation Service (NRCS) Web Soil Survey
- 7. EL Paso County Board Resolution No 15-042: El Paso County adoption of Chapter 6 and Section 3.2.1, Chapter 13 of the City of Colorado Springs Drainage Criteria Manual, May 2014.
- 8. Falcon Drainage Basin Planning Study. Prepared by Matrix Design Group, September 2015.
- 9. Final Drainage Report for Falcon Marketplace. Prepared by Drexel, Barrell & Co. November 2019.
- 10. El Paso County Engineering Criteria Manual , July 18, 2023.
- 11. MDDP & DBPS Amendment Bent Grass Development. Prepared by Galloway & Co. February 2021.

APPENDIX

	MAP L	EGEND)	MAP INFORMATION
Area of In	terest (AOI)	8	Spoil Area	The soil surveys that comprise your AOI were mapped at
	Area of Interest (AOI)	٥	Stony Spot	1:24,000.
Soils		۵	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
	Soil Map Unit Polygons	\$2	Wet Spot	
~	Soil Map Unit Lines	Δ	Other	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
	Soil Map Unit Points		Special Line Features	line placement. The maps do not show the small areas of
•	Point Features Blowout	Water Fea	atures	contrasting soils that could have been shown at a more detailed scale.
ອ	Borrow Pit	\sim	Streams and Canals	
×		Transpor	tation	Please rely on the bar scale on each map sheet for map
ж	Clay Spot	+++	Rails	measurements.
<u>ہ</u>	Closed Depression	~	Interstate Highways	Source of Map: Natural Resources Conservation Service
X	Gravel Pit	~	US Routes	Web Soil Survey URL:
000	Gravelly Spot	~	Major Roads	Coordinate System: Web Mercator (EPSG:3857)
٥	Landfill	\approx	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
A.	Lava Flow	Backgrou	Ind	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the
علله	Marsh or swamp	No.	Aerial Photography	Albers equal-area conic projection, should be used if more
衆	Mine or Quarry			accurate calculations of distance or area are required.
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as
0	Perennial Water			of the version date(s) listed below.
\sim	Rock Outcrop			Soil Survey Area: El Paso County Area, Colorado
+	Saline Spot			Survey Area Data: Version 20, Sep 2, 2022
0 0 0 0	Sandy Spot			Soil map units are labeled (as space allows) for map scales
-	Severely Eroded Spot			1:50,000 or larger.
0	Sinkhole			Date(s) aerial images were photographed: Sep 11, 2018—Oct
\$	Slide or Slip			20, 2018
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	5.2	100.0%
Totals for Area of Interest		5.2	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

19—Columbine gravelly sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 367p Elevation: 6,500 to 7,300 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 50 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Columbine and similar soils: 97 percent Minor components: 3 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Columbine

Setting

Landform: Fans, fan terraces, flood plains Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

A - 0 to 14 inches: gravelly sandy loam *C - 14 to 60 inches:* very gravelly loamy sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 2.5 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: R049XY214CO - Gravelly Foothill Hydric soil rating: No

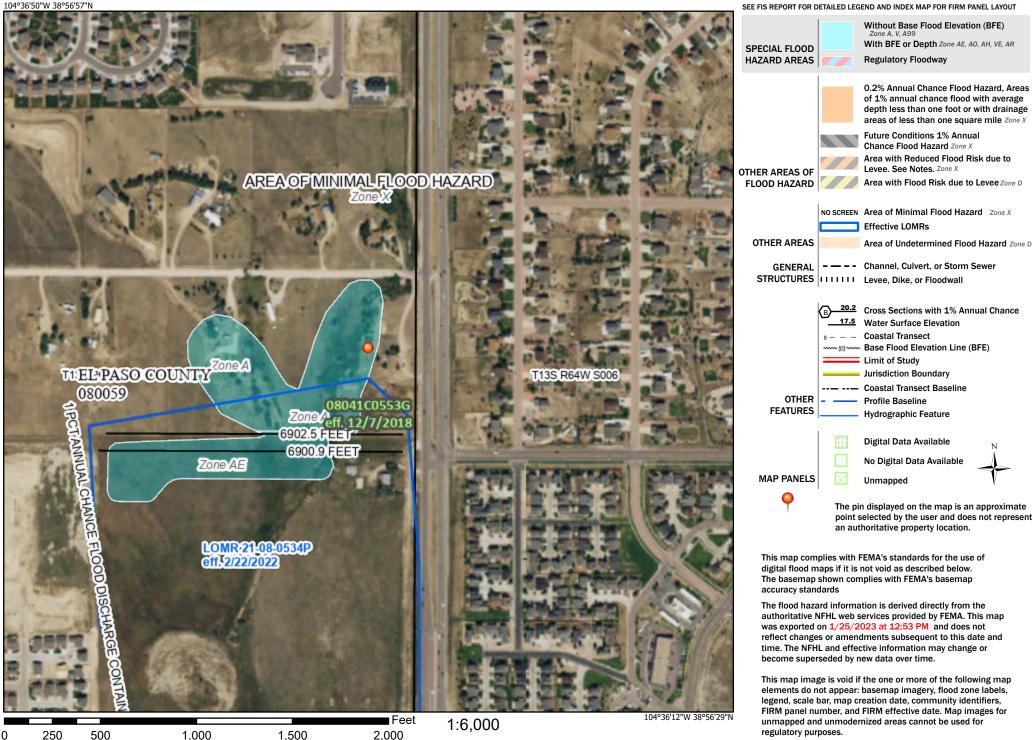
Minor Components

Fluvaquentic haplaquolls

Percent of map unit: 1 percent Landform: Swales Hydric soil rating: Yes

Other soils

Percent of map unit: 1 percent Hydric soil rating: No


Pleasant

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

PROJECT INFORMATION

PROJECT: PROJECT NO: DESIGN BY: REV. BY: AGENCY: REPORT TYPE: DATE: Owl Marketplace 21611-01CSCV KGV TDM El Paso County Final 3/11/2024

C2* C5* C10* C100* % IMPERV **Business - Commercial Area** 0.81 95 0.88 0.08 0.35 0 Pasture/Meadow/Lawn Streets - Gravel 0.90 0.96 100 0.90 0.96 100 Streets - Paved

*C-Values and Basin Imperviousness based on Table 6-6, City of Colorado Springs Drainage Criteria Manual

SUB-BASIN	SURFACE DESIGNATION	AREA	COM	% IMPERV			
		ACRE	C2	C5	C10	C100	
		EX	ISTING				
OSE1	Business - Commercial Area	0.00		0.81		0.88	95
	Pasture/Meadow/Lawn	0.94		0.08		0.35	0
	Streets - Gravel	0.20		0.90		0.96	100
	Streets - Paved	0.12		0.90		0.96	100
OSE1 TOTAL	WEIGHTED AVERAGE	1.26		0.20		0.41	16
E2	Business - Commercial Area	0.00		0.81		0.88	95
	Pasture/Meadow/Lawn	1.95		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
E2 TOTAL	WEIGHTED AVERAGE	1.95		0.08		0.35	0
E3	Business - Commercial Area	0.00		0.81		0.88	95
	Pasture/Meadow/Lawn	2.34		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
E3 TOTAL	WEIGHTED AVERAGE	2.34		0.08		0.35	0
E4	Business - Commercial Area	0.00		0.81		0.88	95
	Pasture/Meadow/Lawn	0.33		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
E4 TOTAL	WEIGHTED AVERAGE	0.33		0.08		0.35	0
		DEV	ELOPED				
A	Business - Commercial Area	1.21		0.81		0.88	95
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
A TOTAL	WEIGHTED AVERAGE	1.21		0.81		0.88	95
В	Business - Commercial Area	0.69		0.81		0.88	95
	Pasture/Meadow/Lawn	0.00		0.08		0.35	0
	Streets - Paved	0.00		0.90		0.96	100
B TOTAL	WEIGHTED AVERAGE	0.69		0.81		0.88	95

PROJECT INFORMATION

PROJECT: PROJECT NO: DESIGN BY: REV. BY: AGENCY: REPORT TYPE: DATE: Owl Marketplace 21611-01CSCV KGV TDM El Paso County Final 3/11/2024

Drexel, Barrell & Co.

	C2*	C5*	C10*	C100*	% IMPERV
Business - Commercial Area		0.81		0.88	95
Pasture/Meadow/Lawn		0.08		0.35	0
Streets - Gravel		0.90		0.96	100
Streets - Paved		0.90		0.96	100

*C-Values and Basin Imperviousness based on Table 6-6, City of Colorado Springs Drainage Criteria Manual

C-Values and Dasi	n Imperviousness based on Table 6-6, City of	Colorado Spring	s Dialilage Chiella	Initialitual	 	
C	Business - Commercial Area	1.09		0.81	0.88	95
	Pasture/Meadow/Lawn	0.00		0.08	0.35	0
	Streets - Paved	0.00		0.90	0.96	100
C TOTAL	WEIGHTED AVERAGE	1.09		0.81	0.88	95
D	Business - Commercial Area	1.11		0.81	0.88	95
	Pasture/Meadow/Lawn	0.00		0.08	0.35	0
	Streets - Paved	0.00		0.90	0.96	100
D TOTAL	WEIGHTED AVERAGE	1.11		0.81	0.88	95
E	Business - Commercial Area	0.20		0.81	0.88	95
	Pasture/Meadow/Lawn	0.00		0.08	0.35	0
	Streets - Paved	0.55		0.90	0.96	100
E TOTAL	WEIGHTED AVERAGE	0.75		0.88	0.94	99
F	Business - Commercial Area	0.12		0.81	0.88	95
	Pasture/Meadow/Lawn	0.00		0.08	0.35	0
	Streets - Paved	0.42		0.90	0.96	100
F TOTAL	WEIGHTED AVERAGE	0.54		0.88	0.94	99
G	Business - Commercial Area	0.00		0.81	0.88	95
	Pasture/Meadow/Lawn	0.23		0.08	0.35	0
	Streets - Paved	0.00		0.90	0.96	100
G TOTAL	WEIGHTED AVERAGE	0.23		0.08	0.35	0
Н	Business - Commercial Area	0.00		0.81	0.88	95
	Pasture/Meadow/Lawn	0.47		0.08	0.35	0
	Streets - Paved	0.99		0.90	0.96	100
H TOTAL	WEIGHTED AVERAGE	1.46		0.63	0.76	68

PROJECT INFORMATION

PROJECT:	Owl Marketplace
PROJECT NO:	21611-01CSCV
DESIGN BY:	KGV
REV. BY:	TDM
AGENCY:	El Paso County
REPORT TYPE:	Final
DATE:	3/11/2024

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

DEVELOPED TIME OF CONCENTRATION STANDARD FORM SF-2

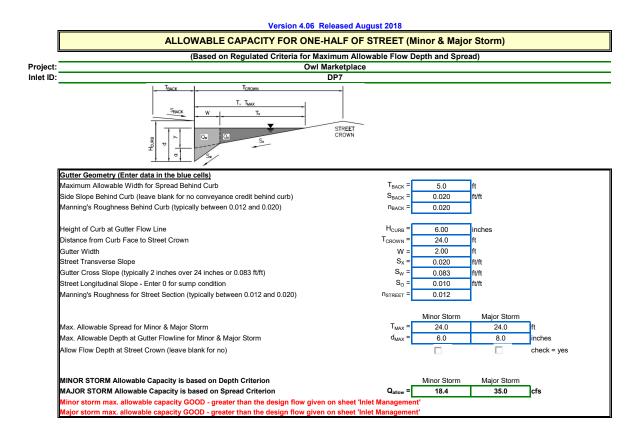
	SUB-BA				INITI		AND		TRA	/EL TIME		TIME O	F CONC.	FINAL
	DAT	A			TIME (t _i) (t _t) t _c					t _c	t _c			
BASIN	DESIGN PT:	C ₅	C ₁₀₀	AREA	LENGTH	SLOPE	ti	LENGTH	SLOPE	VEL.	t	COMP.	MINIMUM	
				Ac	Ft	%	Min	Ft	%	FPS	Min	t _c	t _c	Min
						EXIS	TING					-		
RMT064	X1						Fl	ow directly a	added					
OSE1	E1	0.20	0.41	1.26	100	3.0	11.7	150	1.0	1.5	1.7	13.3	5.0	13.3
E2		0.08	0.35	1.95	100	2.0	15.1	340	3.0	4.3	1.3	16.5	5.0	16.5
OS1+E2	E2	0.13	0.37	3.21	From	OSE1	13.3	350	3.0	4.3	1.4	14.7	5.0	14.7
E3	E3	0.08	0.35	2.34	100	2.0	15.1	410	3.0	4.3	1.6	16.7	5.0	16.7
E4	E4	0.08	0.35	0.33	50	2.0	10.7	550	2.0	3.8	2.4	13.1	5.0	13.1
MT060	X2							ow directly a	added					
						DEVEI	_OPED							
А	1	0.81	0.88	1.21	50	3.0	2.7	366	2.3	4.3	1.4	4.1	5.0	5.0
В		0.81	0.88	0.69	50	3.0	2.7	291	2.5	4.3	1.1	3.8	5.0	5.0
DP1+B	2	0.81	0.88	1.89	From	n DP1	5.0	110	1.4	11.3	0.2	5.2	5.0	5.2
С		0.81	0.88	1.09	50	3.0	2.7	318	2.5	4.3	1.2	3.9	5.0	5.0
DP2+C	3	0.81	0.88	2.98	From	n DP2	5.2	167	1.3	11.3	0.2	5.4	5.0	5.4
D	4	0.81	0.88	1.11	50	3.0	2.7	270	2.3	4.3	1.0	3.7	5.0	5.0
Offsite	5				Flow	directly add	ded from of	fsite basin -	- Falcon Ra	nchettes #1A	DP12			
Offsite 2	6				Flow	directly add	ded from of	fsite basin -	- Falcon Ra	nchettes #1A	DP13	-		
E		0.88	0.94	0.75	50	2.0	2.4	1043	2.0	3.8	4.6	6.9	5.0	6.9
DP4+DP5+E	7	0.84	0.90	1.86	-	Basin E	6.9					6.9	5.0	6.9
F		0.88	0.94	0.54	50	2.0	2.3	617	1.5	3.8	2.7	5.0	5.0	5.0
DP6+F	8	0.88	0.94	0.54		Basin F	5.0				0.0	5.0	5.0	5.0
DP3+DP7+DP8	9	0.83	0.89	5.38	From	n DP7	6.9	45	1.2	11.3	0.1	7.0	5.0	7.0
G	10	0.08	0.35	0.23	50	20.0	5.0	669	1.7	3.8	2.9	7.9	5.0	7.9
Н	11	0.63	0.76	1.46	50	3.4	4.1	909	2.2	3.8	4.0	8.1	5.0	8.1

PROJECT INFORMATION PROJECT: PROJECT NO: DESIGN BY: REV. BY: AGENCY: REPORT TYPE: DATE:

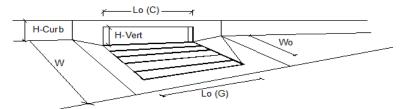
Owl Marketplace 21611-01CSCV KGV TDM El Paso County Final 3/11/2024

RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

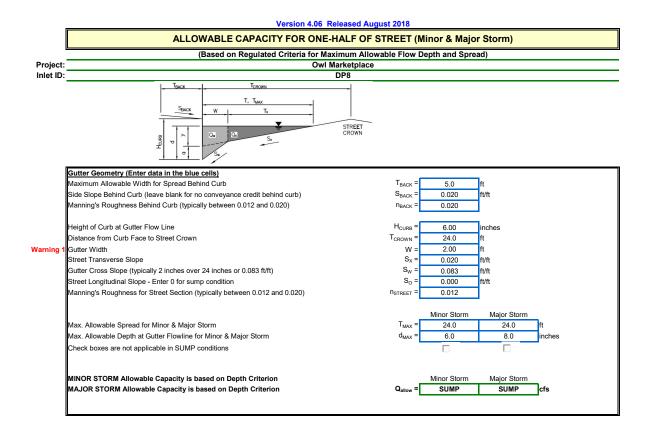
DEVELOPED	RUNOFF		5	YR STOR	Λ	P1=	1.50
		DIRECT RUNOFF					
BASIN (S)	DESIGN POINT	AREA (AC)	RUNOFF COEFF	t _c (MIN)	C * A	I (IN/HR)	Q (CFS)
	E	EXISTING					
RMT064	X1						288.5
OSE1	E1	1.26	0.20	13.3	0.25	3.60	0.9
E2		1.95	0.08	16.5	0.16	3.26	0.5
	E2	3.21	0.13	14.7	0.41	3.44	1.4
E3	E3	2.34	0.08	16.7	0.19	3.23	0.6
E4	E4	0.33	0.08	13.1	0.03	3.62	0.1
MT060	X2						60.1
	DE	VELOPE)				
A	1	1.21	0.81	5.0	0.98	5.09	5.0
В		0.69	0.81	5.0	0.56	5.09	2.8
	2	1.89	0.81	5.2	1.53	5.04	7.7
С		1.09	0.81	5.0	0.88	5.09	4.5
	3	2.98	0.81	5.4	2.41	4.98	12.0
D	4	1.11	0.81	5.0	0.90	5.09	4.6
	5						0.6
	6						1.0
E		0.75	0.88	6.9	0.66	4.63	3.0
	7	1.86	0.84	6.9	1.56	4.63	7.8
F		0.54	0.88	5.0	0.47	5.08	2.4
	8	0.54	0.88	5.0	0.47	5.08	3.4
	9	5.38	0.83	7.0	4.45	4.61	22.1
G	10	0.23	0.08	7.9	0.02	4.43	0.1
Н	11	1.46	0.63	8.1	0.93	4.39	4.1


PROJECT INFORMATION PROJECT: PROJECT NO: DESIGN BY: REV. BY: AGENCY: REPORT TYPE: DATE:

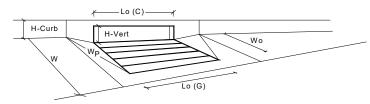
Owl Marketplace 21611-01CSCV KGV TDM El Paso County Final 3/11/2024


RATIONAL METHOD CALCULATIONS FOR STORM WATER RUNOFF

DEVELOPED	RUNOFF		100	YR STOR	N	P1=	2.52
				DIRECT RUNOF	F		
BASIN (S)	DESIGN POINT	AREA (AC)	RUNOFF COEFF	t _c (MIN)	C * A	I (IN/HR)	Q (CFS)
	E	EXISTING					
RMT064	X1						920.0
OSE1	E1	1.26	0.41	13.3	0.52	6.04	3.1
E2		1.95	0.35	16.5	0.68	5.47	3.7
	E2	3.21	0.37	14.7	1.20	5.78	6.9
E3	E3	2.34	0.35	16.7	0.82	5.43	4.4
E4	E4	0.33	0.35	13.1	0.12	6.08	0.7
MT060	X2						196.8
	DE	EVELOPE)				
A	1	1.21	0.88	5.0	1.06	8.55	9.1
В		0.69	0.88	5.0	0.60	8.55	5.2
	2	1.89	0.88	5.2	1.67	8.48	14.1
С		1.09	0.88	5.0	0.96	8.55	8.2
	3	2.98	0.88	5.4	2.62	8.37	22.0
D	4	1.11	0.88	5.0	0.98	8.55	8.4
	5						1.5
	6						2.1
E		0.75	0.94	6.9	0.71	7.77	5.5
	7	1.86	0.90	6.9	1.68	7.77	14.6
F		0.54	0.94	5.0	0.51	8.54	4.3
	8	0.54	0.94	5.0	0.51	8.54	6.4
	9	5.38	0.89	7.0	4.81	7.75	40.9
G	10	0.23	0.35	7.9	0.08	7.44	0.6
Н	11	1.46	0.76	8.1	1.11	7.38	8.2



INLET ON A CONTINUOUS GRADE

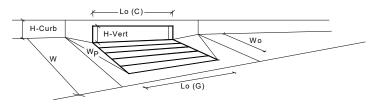


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	7
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W. =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Inlet Management)	Q ₀ =	7.8	14.6	cfs
Water Spread Width	т =	13.2	17.1	ft
Water Depth at Flowline (outside of local depression)	d =	4.7	5.6	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E., =	0.450	0.349	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	4.3	9.5	cfs
Discharge within the Gutter Section W	Q _w =	3.5	5.1	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.61	0.77	sq ft
Velocity within the Gutter Section W	V _W =	5.7	6.6	fps
Water Depth for Design Condition	d _{LOCAL} =	7.7	8.6	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	0.010112	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	-1	MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	٦
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R, =	N/A	N/A	
Actual Interception Capacity	Q_=	N/A	N/A	cfs
Carry-Over Flow = Q ₀ -Q _a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	0	MINOR	MAJOR	
Equivalent Slope S _e (based on grate carry-over)	S. =	0.105	0.086	ft/ft
Required Length L _T to Have 100% Interception	L _T =	17.91	27.06	ft
Under No-Clogging Condition	-1	MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	10.00	10.00	ft
		6.0	8.2	
Interception Capacity Under Clogging Condition	Q _i =	6.0 MINOR	8.2 MAJOR	cfs
	CurbCoef =	MINUR 1.25	MAJOR 1.25	-
Clogging Coefficient	CurbCoef = CurbClog =	1.25 0.06	0.06	-
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet Effective (Unclogged) Length		8.75	8.75	ft
Effective (Unclogged) Length Actual Interception Capacity	L _e = Q _a =	8.75 5.8	8.75 7.9	
			7.9 6.7	cfs cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	2.0	-	us
Summary	- -	MINOR	MAJOR	-
Total Inlet Interception Capacity	Q =	5.8	7.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	2.0	6.7	cfs
Capture Percentage = Q _a /Q _o =	C% =	74	54	%

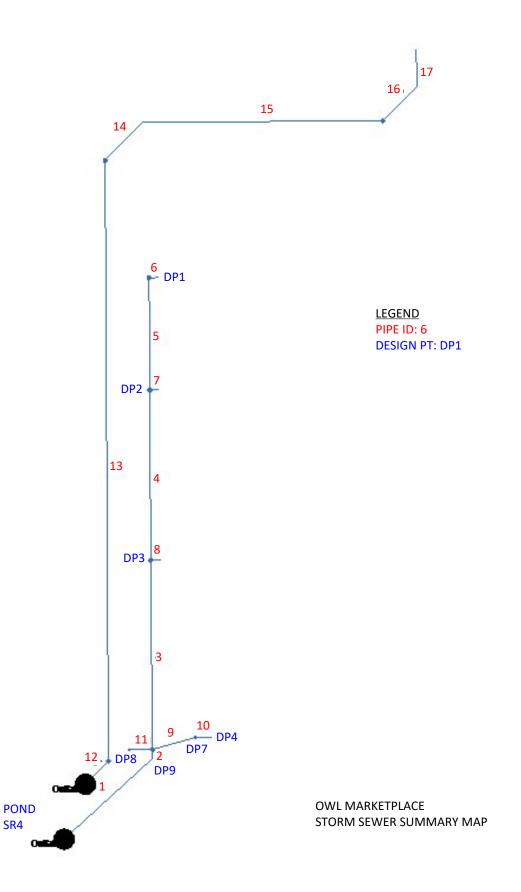


INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

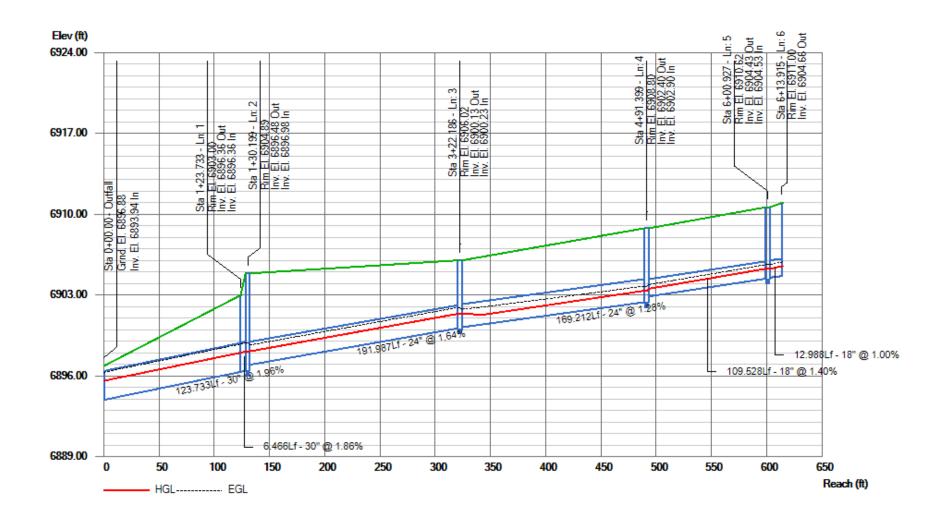


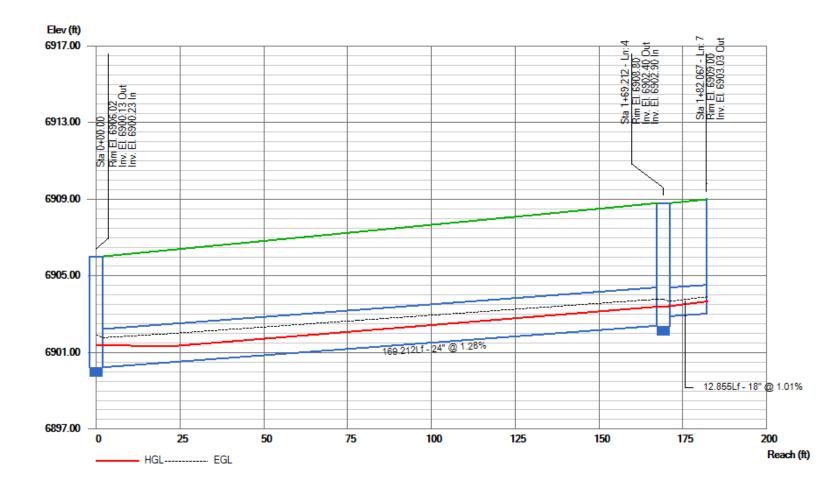
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	7.3	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.44	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.69	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	13.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.4	6.4	cfs

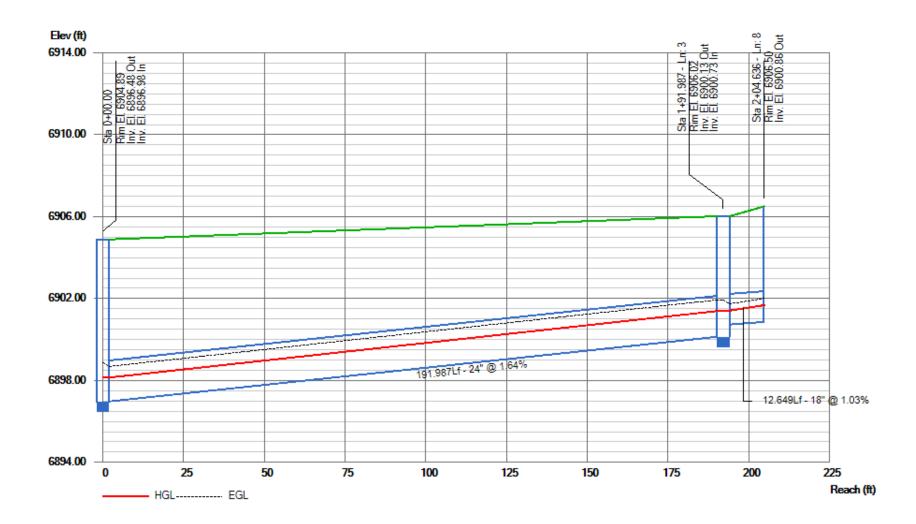


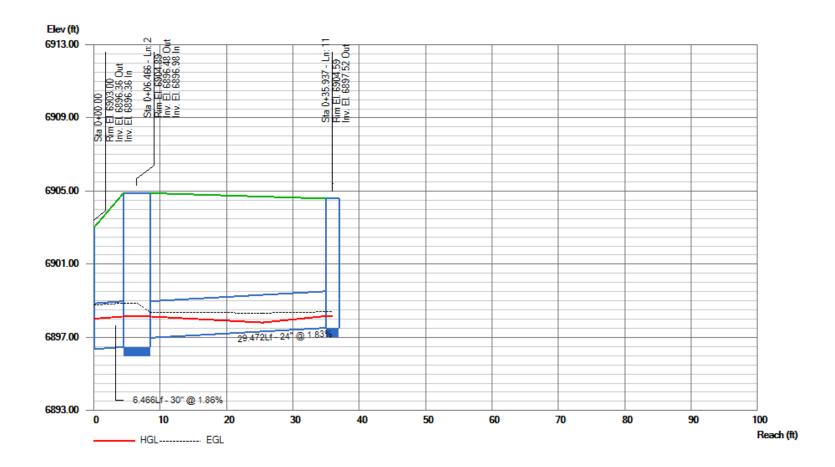
INLET IN A SUMP OR SAG LOCATION

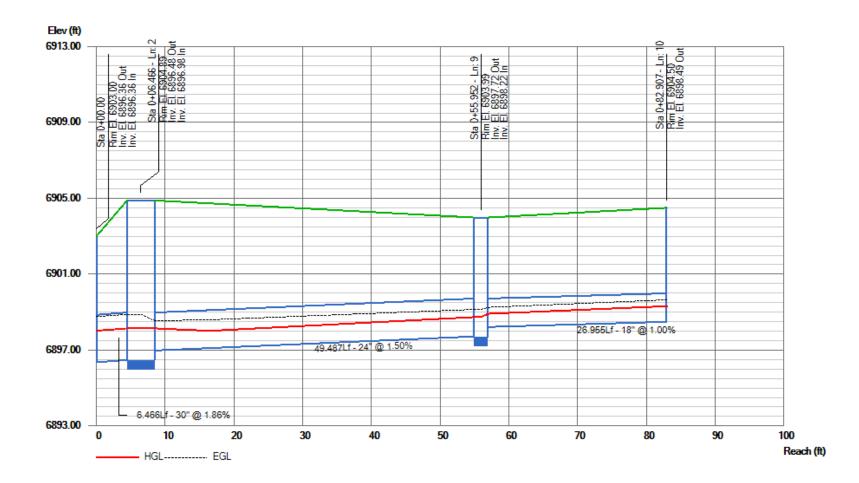
Version 4.06 Released August 2018

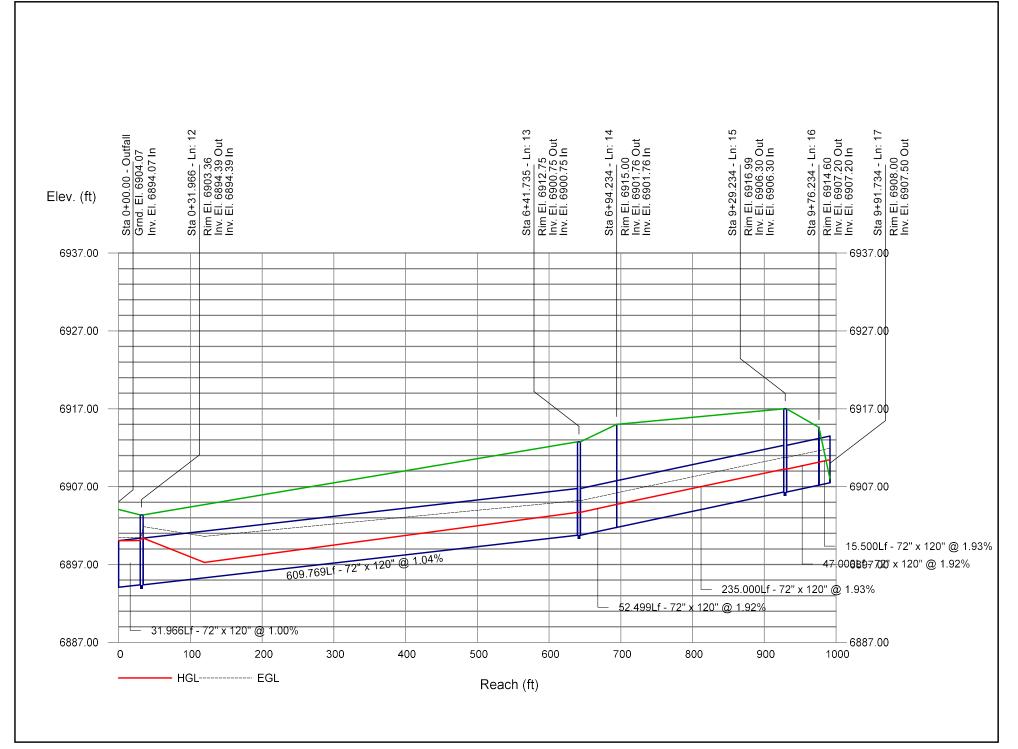


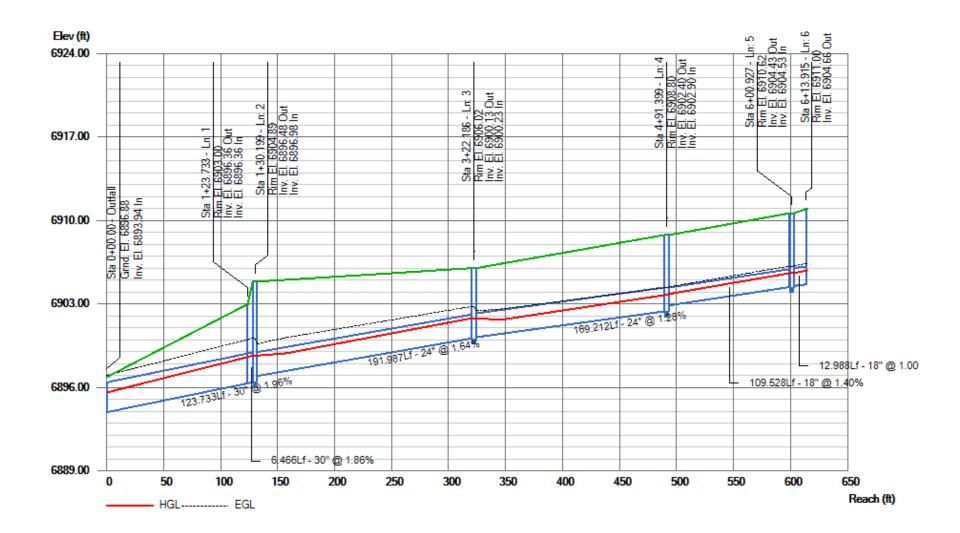

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	-
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	8.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
- Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	-4
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	16.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	6.1	14.9	cfs

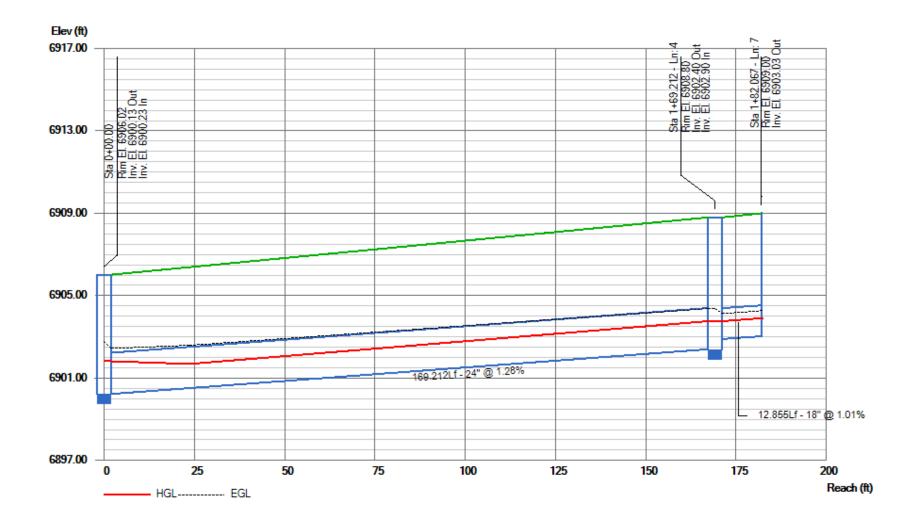


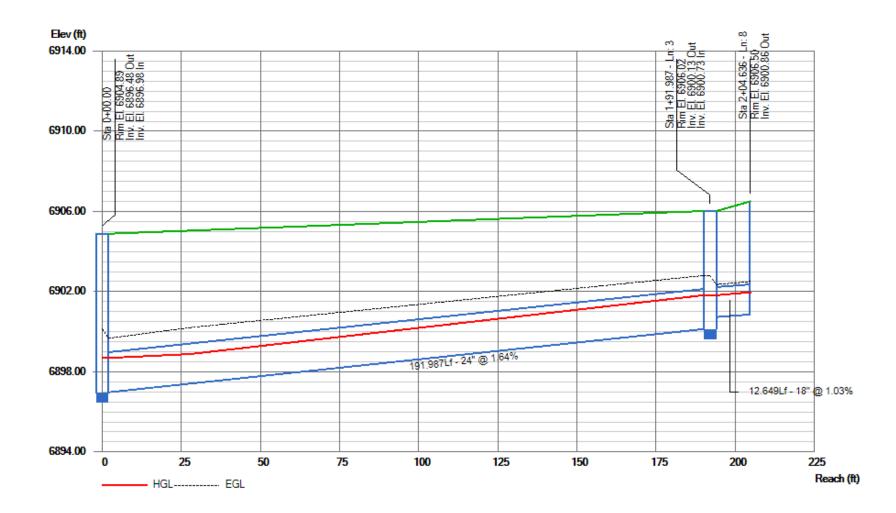

Hydraulic Grade Line Computations

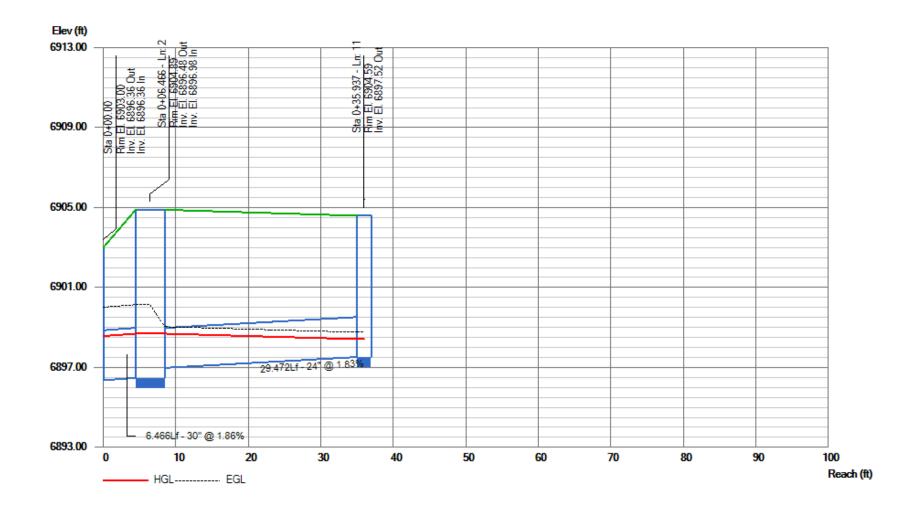

ine	Size	Q	Downstream					Len				Upstr	eam				1 1 1			Minor			
(1)	(in) (2)	(cfs) (3)	Invert elev (ft) (4)	HGL elev (ft) (5)	Depth (ft) (6)	Area (sqft) (7)	Vel (ft/s) (8)	Vel head (ft) (9)	EGL elev (ft) (10)	Sf (%) (11)	(ft) (12)	Invert elev (ft) (13)	HGL elev (ft) (14)	Depth (ft) (15)	Area (sqft) (16)	Vel (ft/s) (17)	Vel head (ft) (18)	EGL elev (ft) (19)	Sf (%) (20)	Ave Sf (%) (21)	Enrgy loss (ft) (22)	(K) (23)	loss (ft) (24)
1	30	23.90	6893.94	6895.59	1.65	3.44	6.95	0.74	6896.33	0.000	123.73	36896.36	6898.02	1.66**	3.47	6.89	0.74	6898.76	0.000	0.000	n/a	0.79	0.58
2	30	23.90	6896.36	6898.02	1.66*	3.47	6.89	0.74	6898.76	0.000	6.466	6896.48	6898.14	1.66**	3.47	6.89	0.74	6898.88	0.000	0.000	n/a	1.00	0.74
3	24	12.30	6896.98	6898.14	1.16	1.90	6.49	0.54	6898.69	0.000	191.98	76900.13	6901.39	1.26**	2.08	5.90	0.54	6901.93	0.000	0.000	n/a	1.00	0.54
4	24	7.80	6900.23	6901.39	1.16	1.56	4.13	0.39	6901.78	0.000	169.21	26902.40	6903.39 j	0.99**	1.56	5.01	0.39	6903.78	0.000	0.000	n/a	1.00	n/a
5	18	5.00	6902.90	6903.56	0.66*	0.75	6.64	0.35	6903.92	0.000	109.52	86904.43	6905.29	0.86**	1.05	4.78	0.35	6905.64	0.000	0.000	n/a	1.00	n/a
6	18	5.00	6904.53	6905.29	0.76	0.90	5.57	0.35	6905.64	0.000	12.988	6904.66	6905.52	0.86**	1.05	4.78	0.35	6905.87	0.000	0.000	n/a	1.00	n/a
7	18	2.80	6902.90	6903.43	0.53*	0.56	5.04	0.24	6903.67	0.000	12.855	6903.03	6903.67	0.63**	0.71	3.94	0.24	6903.91	0.000	0.000	n/a	1.00	0.24
8	18	4.50	6900.73	6901.41	0.68*	0.78	5.77	0.33	6901.74	0.000	12.649	6900.86	6901.67	0.81**	0.98	4.60	0.33	6902.00	0.000	0.000	n/a	1.00	0.33
9	24	8.20	6896.98	6898.14	1.16	1.61	4.32	0.40	6898.55	0.000	49.487	6897.72	6898.74 j	1.02**	1.61	5.10	0.40	6899.14	0.000	0.000	n/a	0.38	n/a
10	18	4.60	6898.22	6898.92	0.69*	0.80	5.75	0.33	6899.25	0.000	26.955	6898.49	6899.31	0.82**	0.99	4.63	0.33	6899.65	0.000	0.000	n/a	1.00	n/a
11	24	3.40	6896.98	6898.14	1.16	0.87	1.79	0.24	6898.38	0.000	29.472	6897.52	6898.16 j	0.64**	0.87	3.89	0.24	6898.40	0.000	0.000	n/a	1.00	n/a
12	72 120 B	288.5	6894.07	6900.07	6.00*	60.00	4.81	0.36	6900.43	0.076	31.966	6894.39	6900.08	5.69	56.91	5.07	0.40	6900.48	0.053	0.065	0.021	0.75	0.30
13	72 120 B	288.5	6894.39	6900.38	5.99	59.91	4.82	1.48	6901.86	0.000	609.76	96900.75	6903.71 j	2.95**	29.55	9.76	1.48	6905.19	0.000	0.000	n/a	0.75	n/a
14	72 120 B	288.5	6900.75	6903.71	2.95*	29.55	9.76	1.48	6905.19	0.000	52.499	6901.76	6904.71	2.95**	29.55	9.76	1.48	6906.20	0.000	0.000	n/a	0.75	n/a
15	72 120 B	288.5	6901.76	6904.71	2.95*	29.55	9.76	1.48	6906.20	0.000	235.00	06906.30	6909.25	2.95**	29.55	9.76	1.48	6910.74	0.000	0.000	n/a	0.75	n/a
16	72 120 B	288.5	6906.30	6909.25	2.95*	29.55	9.76	1.48	6910.74	0.000	47.000	6907.20	6910.16	2.95**	29.55	9.76	1.48	6911.64	0.000	0.000	n/a	0.75	n/a
17	72 120 B	288.5	6907.20	6910.16	2.95*	29.55	9.76	1.48	6911.64	0.000	15.500	6907.50	6910.46	2.95**	29.55	9.76	1.48	6911.94	0.000	0.000	n/a	1.00	n/a
Proje	ect File: C) DP 5-YR	REV3.stm											 N	umber o	f lines: 1	7		Rur	Date: t	5/23/202	4	

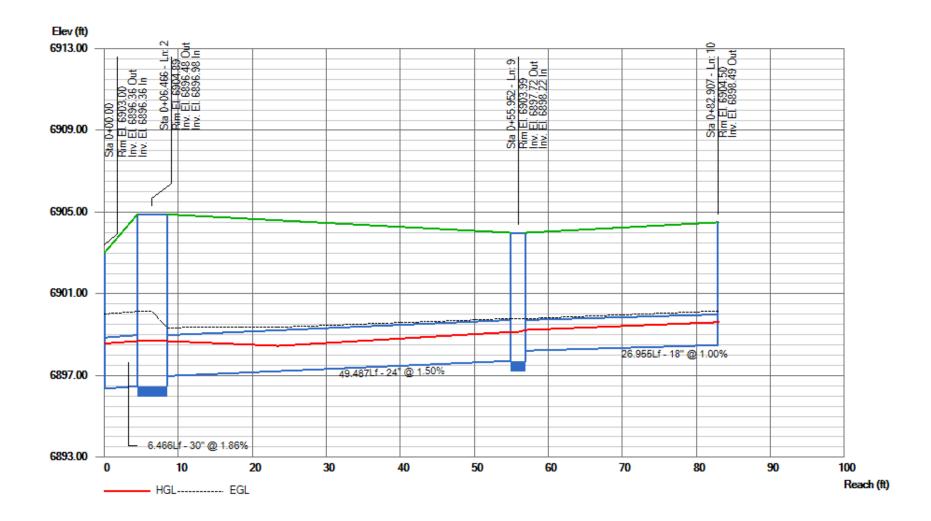


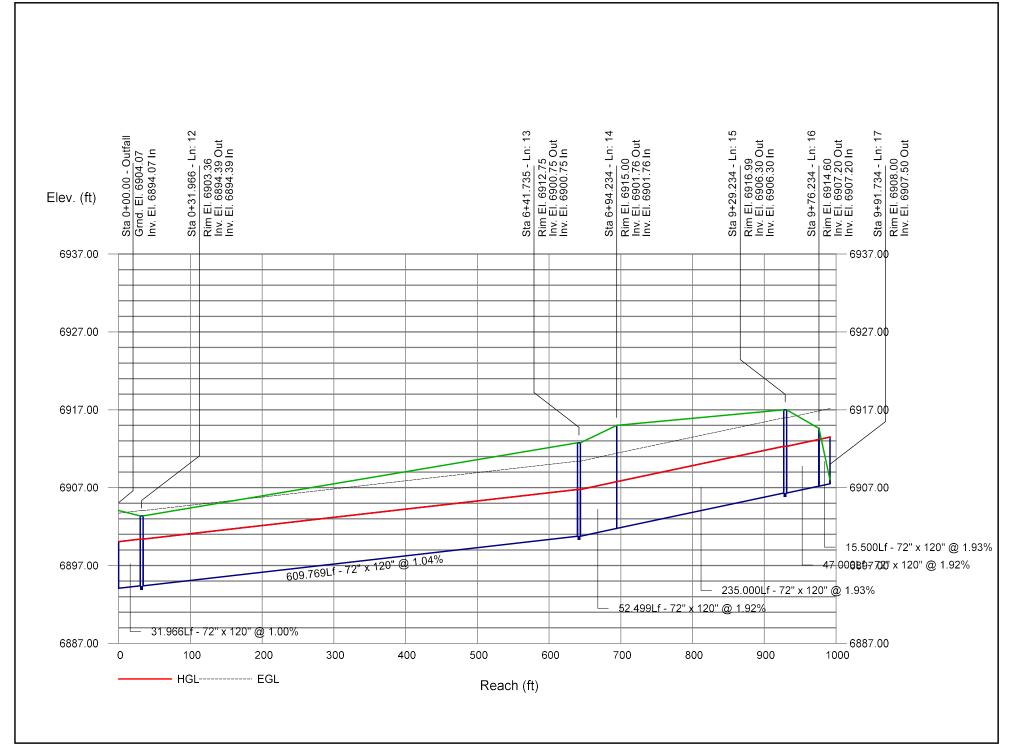







Hydraulic Grade Line Computations


ine	Size	Q	Q	Q	Q			D	ownstre	am				Len	Upstream							Chec	k		Minor
(1)	(in) (2)	(cfs) (3)	Invert elev (ft) (4)	HGL elev (ft) (5)	Depth (ft) (6)	Area (sqft) (7)	Vel (ft/s) (8)	Vel head (ft) (9)	EGL elev (ft) (10)	Sf (%) (11)	(ft) (12)	Invert elev (ft) (13)	HGL elev (ft) (14)	Depth (ft) (15)	Area (sqft) (16)	Vel (ft/s) (17)	Vel head (ft) (18)	EGL elev (ft) (19)	Sf (%) (20)	Ave Sf (%) (21)	Enrgy loss (ft) (22)	- coeff (K) (23)	loss (ft) (24)		
1	30	44.30	6893.94	6895.59	1.65	3.44	12.89	1.45	6897.04	0.000	123.73	36896.36	6898.57	2.21**	4.59	9.64	1.45	6900.02	0.000	0.000	n/a	0.79	n/a		
2	30	44.30	6896.36	6898.57	2.21*	4.59	9.64	1.45	6900.02	0.000	6.466	6896.48	6898.69	2.21**	4.59	9.64	1.45	6900.14	0.000	0.000	n/a	1.00	n/a		
3	24	22.50	6896.98	6898.69	1.71	2.83	7.86	0.98	6899.67	0.000	191.98	76900.13	6901.82 j	1.69**	2.83	7.95	0.98	6902.80	0.000	0.000	n/a	1.00	0.98		
4	24	14.30	6900.23	6901.82	1.59	2.28	5.34	0.61	6902.43	0.000	169.21	26902.40	6903.76 j	1.36**	2.28	6.28	0.61	6904.37	0.000	0.000	n/a	1.00	0.61		
5	18	9.10	6902.90	6903.85	0.95*	1.19	7.67	0.59	6904.45	0.000	109.52	86904.43	6905.60	1.17**	1.47	6.17	0.59	6906.19	0.000	0.000	n/a	1.00	0.59		
6	18	9.10	6904.53	6905.61	1.08*	1.36	6.70	0.59	6906.20	0.000	12.988	6904.66	6905.83	1.17**	1.47	6.17	0.59	6906.42	0.000	0.000	n/a	1.00	0.59		
7	18	5.20	6902.90	6903.76	0.86	1.05	4.95	0.36	6904.13	0.000	12.855	6903.03	6903.91	0.88**	1.07	4.84	0.36	6904.27	0.000	0.000	n/a	1.00	0.36		
8	18	8.20	6900.73	6901.82	1.09	1.38	5.96	0.53	6902.35	0.000	12.649	6900.86	6901.97	1.11**	1.40	5.86	0.53	6902.50	0.000	0.000	n/a	1.00	0.53		
9	24	15.40	6896.98	6898.69	1.71	2.37	5.38	0.65	6899.35	0.000	49.487	6897.72	6899.13 j	1.41**	2.37	6.49	0.65	6899.79	0.000	0.000	n/a	0.38	0.25		
10	18	8.40	6898.22	6899.23	1.01*	1.27	6.61	0.55	6899.78	0.000	26.955	6898.49	6899.61	1.12**	1.42	5.93	0.55	6900.16	0.000	0.000	n/a	1.00	0.55		
11	24	6.40	6896.98	6898.69	1.71	1.36	2.24	0.34	6899.04	0.000	29.472	6897.52	6898.42	0.90**	1.36	4.70	0.34	6898.76	0.000	0.000	n/a	1.00	0.34		
12	72 120 B	920.0	6894.07	6900.07	6.00*	60.00	15.33	3.66	6903.73	0.778	31.966	6894.39	6900.39	6.00**	60.00	15.33	3.66	6904.05	0.778	0.778	n/a	0.75	n/a		
13	72 120 B	920.0	6894.39	6900.39	6.00*	60.00	15.33	3.66	6904.05	0.778	609.76	96900.75	6906.75	6.00**	60.00	15.33	3.66	6910.41	0.778	0.778	n/a	0.75	n/a		
14	72 120 B	920.0	6900.75	6906.75	6.00*	60.00	15.33	3.66	6910.41	0.778	52.499	6901.76	6907.76	6.00**	60.00	15.33	3.66	6911.42	0.778	0.778	n/a	0.75	n/a		
15	72 120 B	920.0	6901.76	6907.76	6.00*	60.00	15.33	3.66	6911.42	0.778	235.00	06906.30	6912.30	6.00**	60.00	15.33	3.66	6915.96	0.778	0.778	n/a	0.75	n/a		
16	72 120 B	920.0	6906.30	6912.30	6.00*	60.00	15.33	3.66	6915.96	0.778	47.000	6907.20	6913.20	6.00**	60.00	15.33	3.66	6916.86	0.778	0.778	n/a	0.75	n/a		
17	72 120 B	920.0	6907.20	6913.20	6.00*	60.00	15.33	3.66	6916.86	0.778	15.500	6907.50	6913.50	6.00**	60.00	15.33	3.66	6917.16	0.778	0.778	n/a	1.00	n/a		
Proje	ect File: C)P 100-Y	/R REV3.s	l tm										 N	umber c	f lines: 1	7		Rur	Date:	5/23/202	4			



PROJECT INFORMATION

PROJECT:	Owl Marketplace
PROJECT NO:	21611-01CSCV
DESIGN BY:	KGV
REV. BY:	TDM
AGENCY:	El Paso County
REPORT TYPE:	Final
DATE:	9/28/2023

STILLING BASIN

mannings, n	0.013	
Culvert width, W	10	ft
Culvert height, H	6	ft
Culvert slope	1.00	%
Q ₁₀₀	920	cfs
Depth of flow	4.5	ft
Velocity	15.33	fps
Froude	1.28	
Reference MHFD	Figure 9-45 in a	ppendix
D	6.71	ft
W	20.22	ft
Н	15.17	ft
L	26.97	ft
а	10.11	ft
b	7.58	ft
С	10.11	ft
d	3.37	ft
е	1.69	ft
f	2.53	ft
t	1.69	ft

Drexel, Barrell & Co.

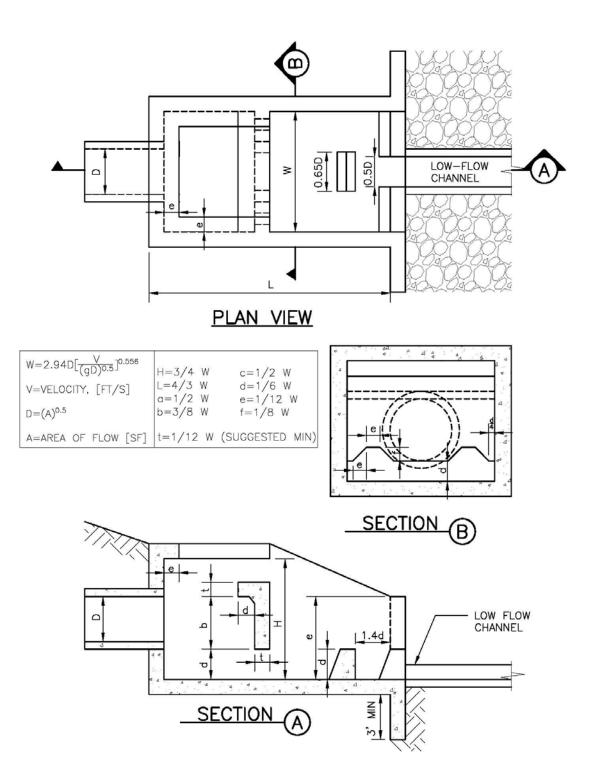
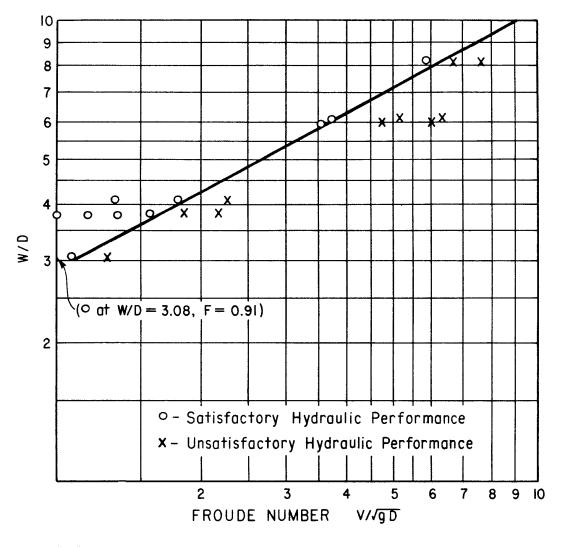
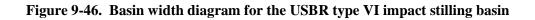



Figure 9-45. UDFCD modified USBR type VI impacts stilling basin (general design dimensions)



"W" is the inside width of the basin.

"D" represents the depth of flow entering the basin and is the square root of the flow area at the conduit outlet.

"v" is the velocity of the incoming flow.

The tailwater depth is uncontrolled.

STILLING BASIN FOREBAY VOLUME

FOREBAY RELEASE NOTCH WIDTH

Req'd V=3% x WQCV

WQCV= V= Actual V

Q=CLH^{3/2}

1.04 ac-ft 0.0312 ac-ft 0.0344 ac-ft

EXISTING POND SR4 EAST FOREBAY VOLUME

Req'd V=3% x WQCV

WQCV= V= Actual V

0.19	ac-ft	
0.0057	ac-ft	
0.0115	ac-ft	OK

48.6 cfs

0.97 cfs

2.6

EXISTING FOREBAY RELEASE NOTCH WIDTH

Q=CLH^{3/2}

L=

Q ₁₀₀ =	920 cfs
2% of Q=	18.40 cfs
C=	2.6
H (height of forebay wall)=	1.65 ft

L*=

3.34 ft 3 in min.

* L is dictated by the Type VI low impact basin design. This notch width will allow for 1.65' of ponding in the forebay - less than the 2.5' max for this size of tributary area. TRICKLE CHANNEL CAPACITY

Channel Slope	0.01 ft/ft	
Bottom Width	8 feet	
Curb height	6 inches	
Notch release capacity	18.40 cfs	
Flow capacity, Q	21.64 cfs	OK

Q ₁₀₀ =	
2% of Q=	
C=	
H (height of forebay wall)=	

1 ft 6" existing 4 in 3 in min.

Owl Marketplace + Falcon Marketplace Flows

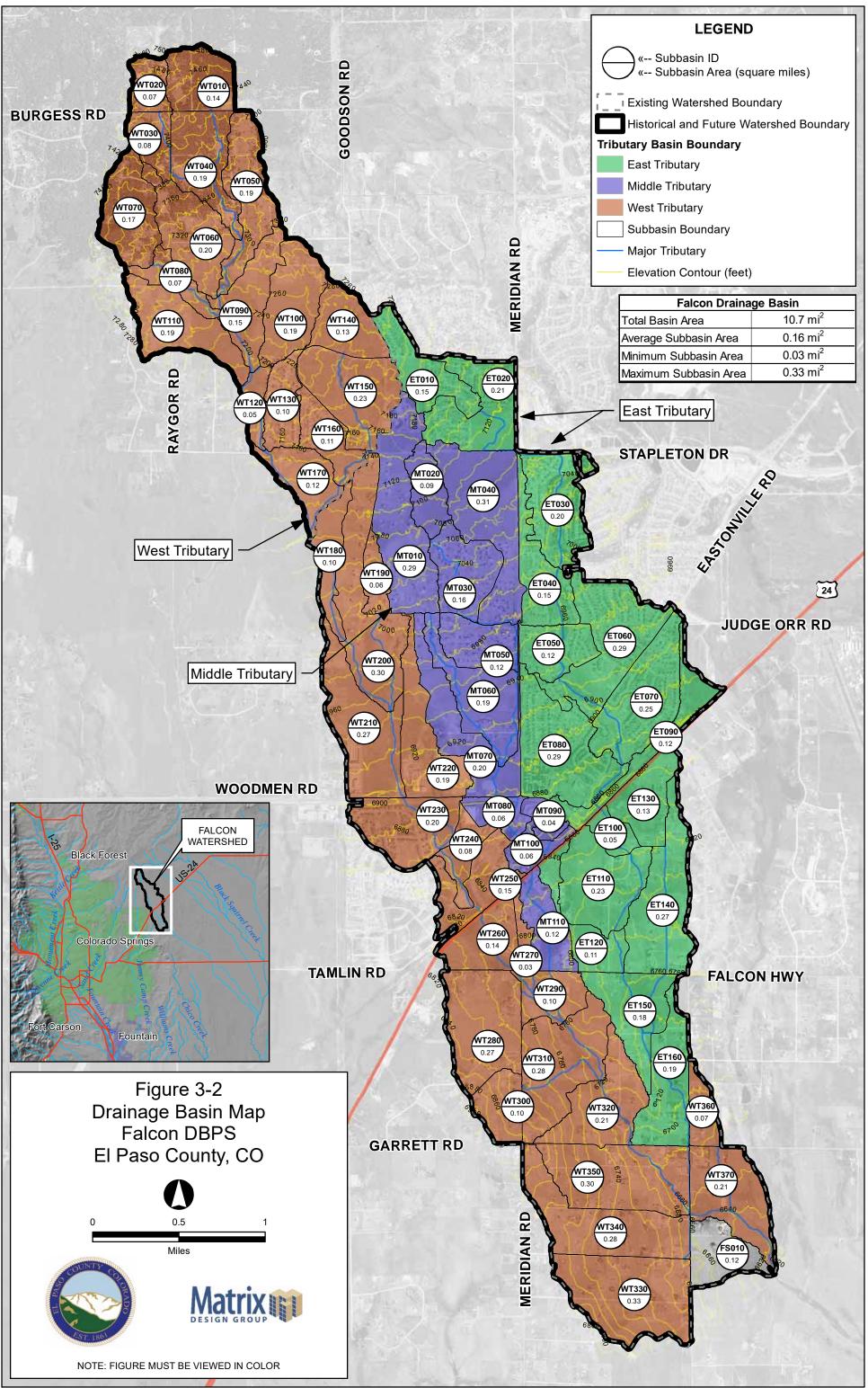
TRICKLE CHANNEL CAPACITY

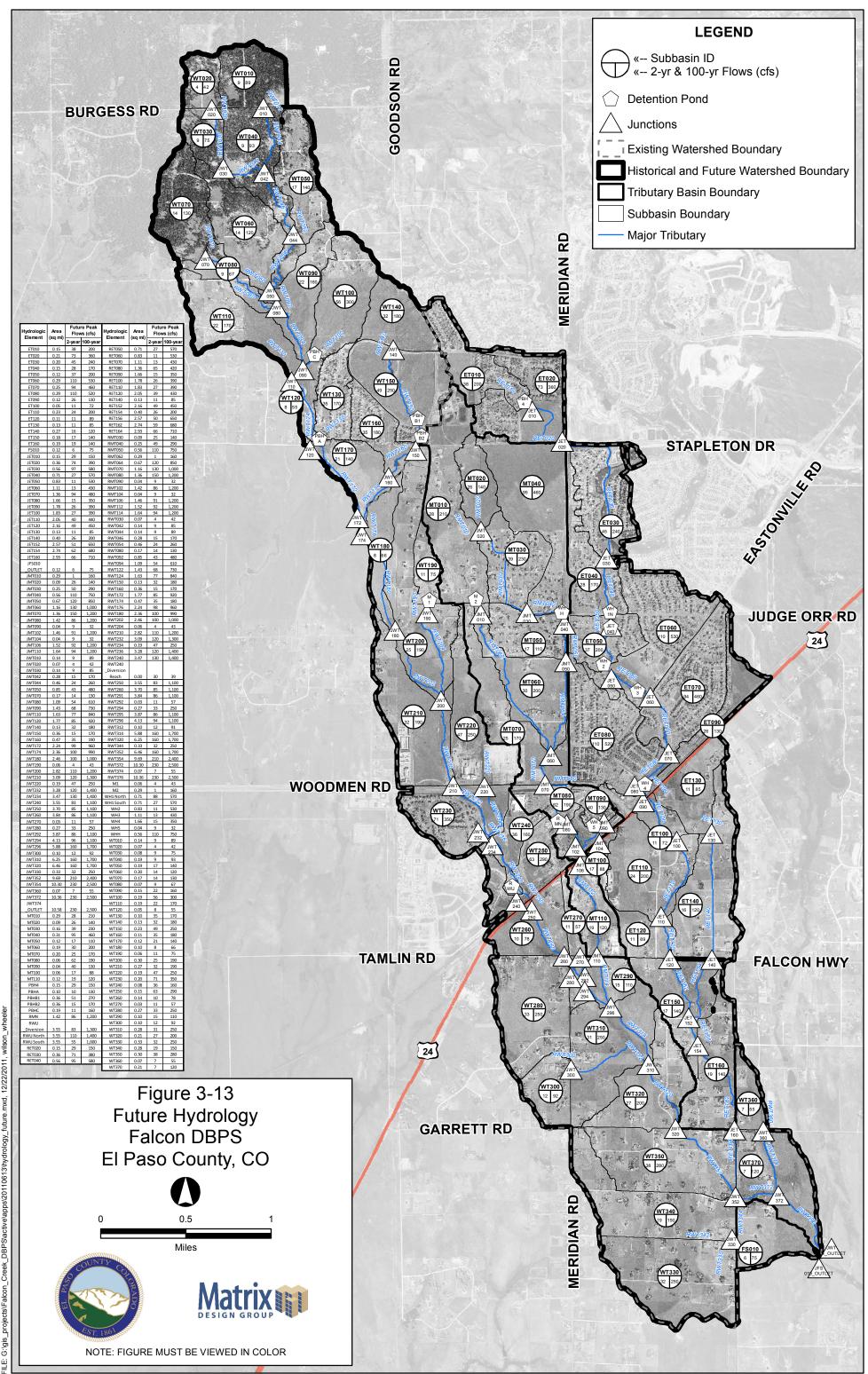
Channel Slope	0.005 ft/ft	
Bottom Width	6 feet	
Curb height	6 inches	
Notch release capacity x 2,	1.944281 cfs	
Flow capacity, Q	11.2 cfs	OK

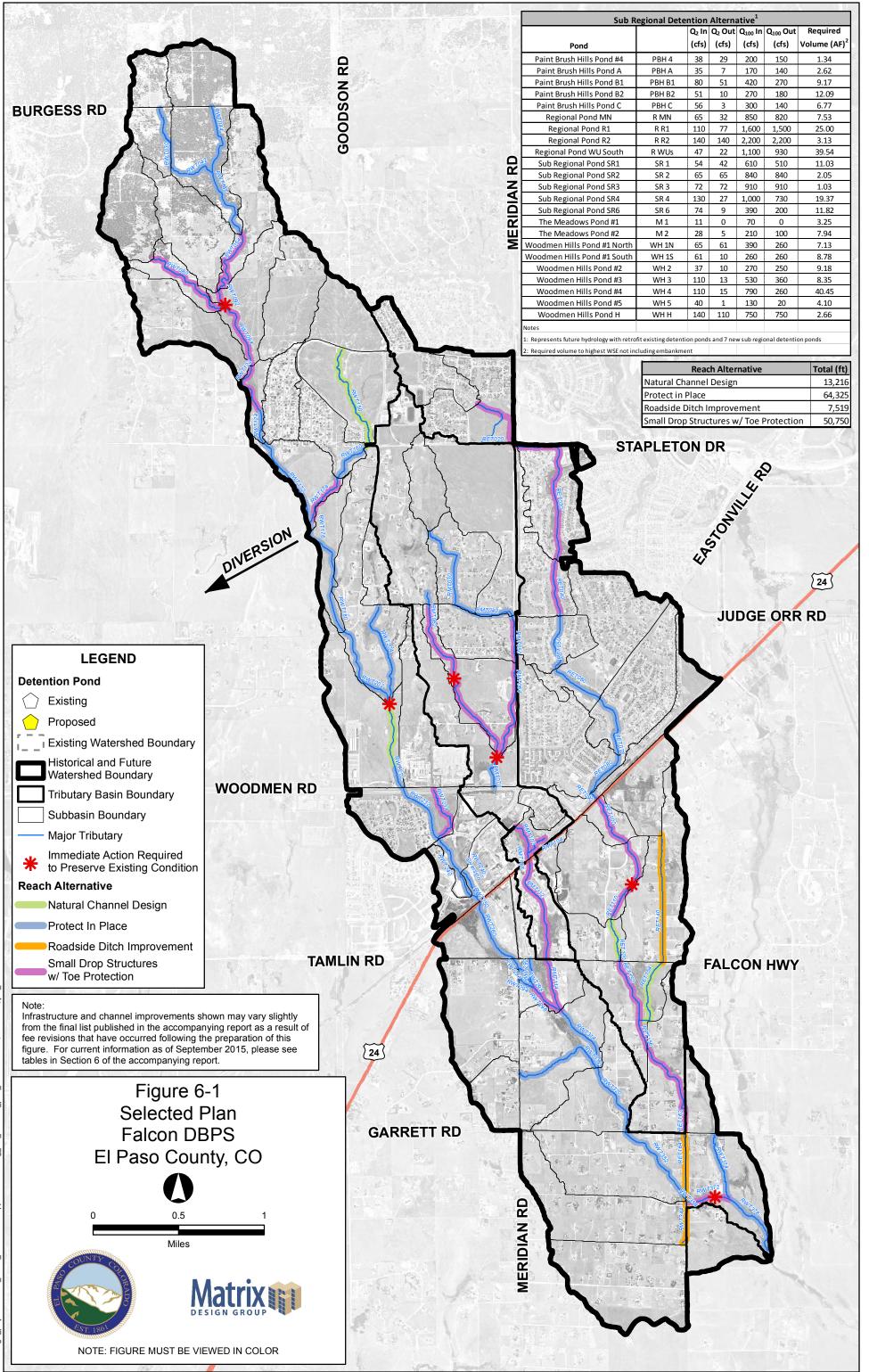
DBPS EXCERPTS

FALCON DRAINAGE BASIN PLANNING STUDY SELECTED PLAN REPORT **FINAL - SEPTEMBER 2015**

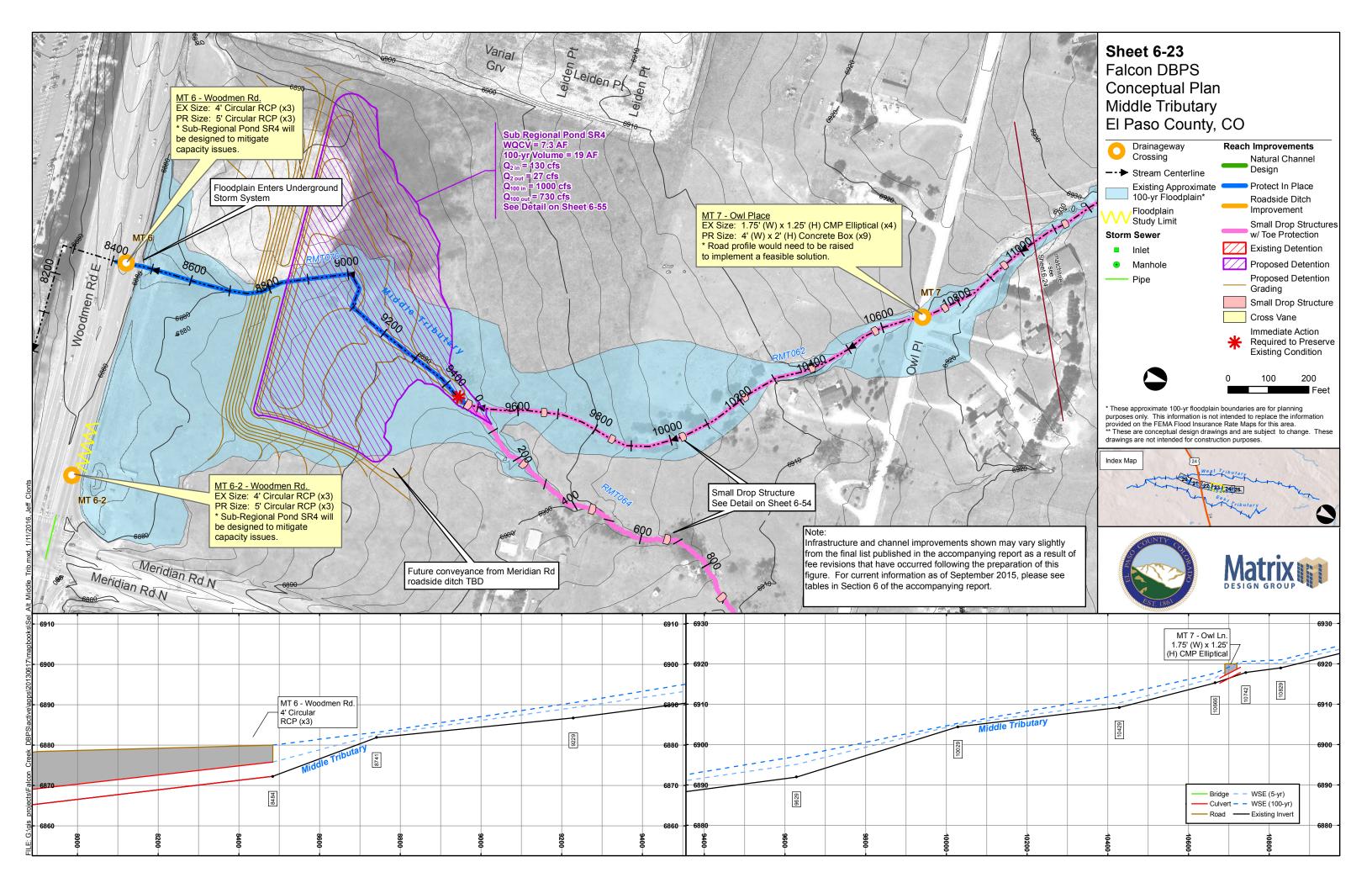
Prepared for:

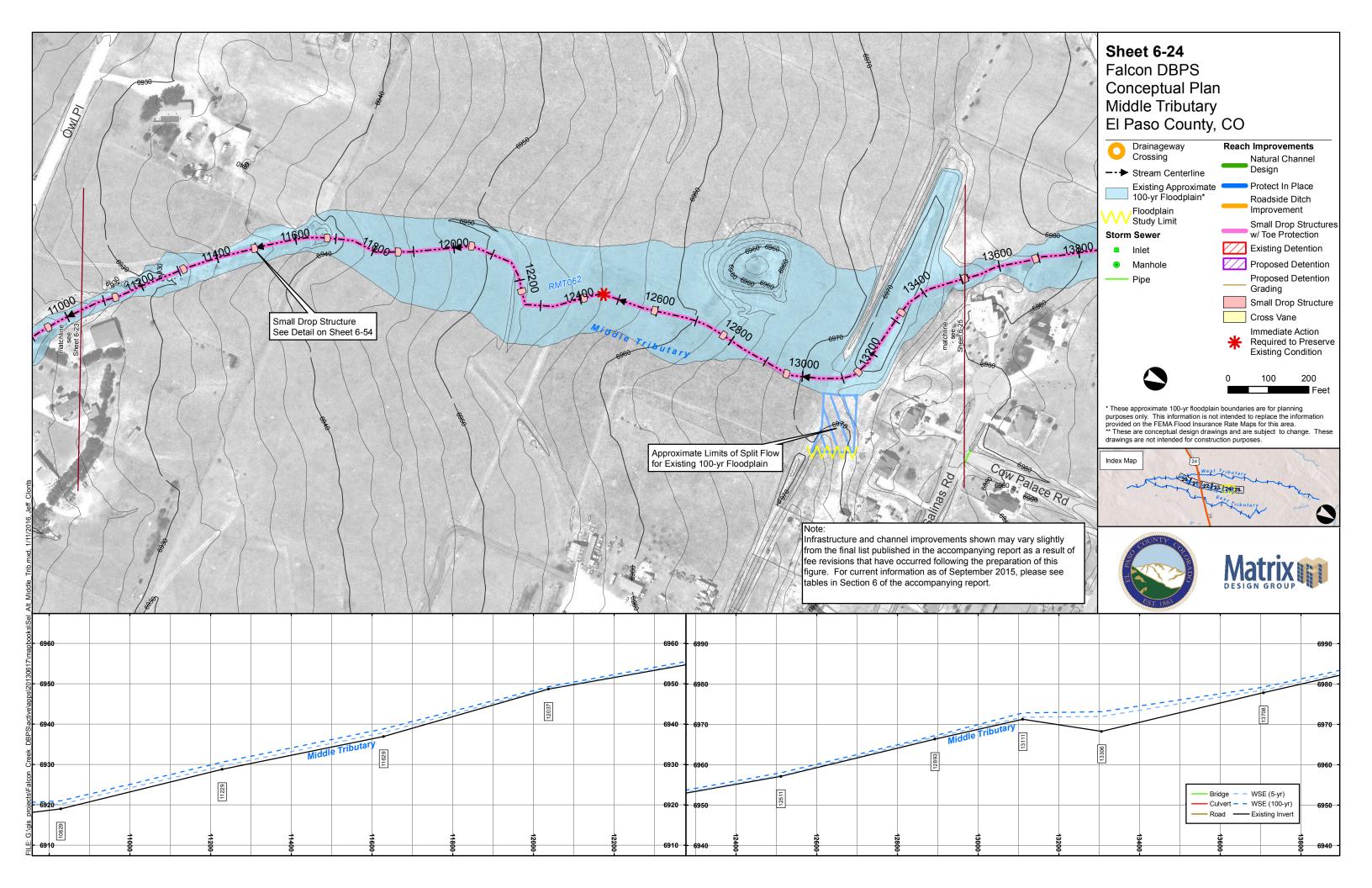

El Paso County Public Services Department 3275 Akers Drive Colorado Springs, CO 80922


Prepared By:



Matrix Design Group 2435 Research Parkway, Suite 300 Colorado Springs, CO 80920


Matrix Project No. 10.122.003



clonts

7.0 FEE DEVELOPMENT

7.1. Introduction

The objective of the fee development exercise was to determine the equitable share of drainage improvement costs that a developer is responsible for paying to El Paso County if they wish to plat a property. This fee is a function of the total cost for the selected plan outlined in Section 6 and will be used by the County to pay for drainage improvements that are necessary as a result of development. The product of this calculation is a unit fee (cost/impervious acre) that is a one-time charge to the developer based on the number of impervious acres within the platted property.

7.2. Developable Land

The Falcon Watershed has a total area of 6,847 acres. The entirety of the watershed is within the County with 1,969 acres unplatted, according to the GIS dataset received from the County. This dataset also includes unplatted areas that can't be developed because of specific land use designations. Table 7-1 provides a summary of land classifications in the Falcon Watershed. A complete summary of unplatted area land use is provided in Appendix E.

Table 7-1. Land Classification						
Classification	Area (acres)					
Platted	3,670					
Unplatted	1,969					
Other	1,208					
Total	6,847					

The projected impervious acreage within unplatted areas totals 645.58 acres. A summary of land classification within the Falcon Watershed is provided in Figure 7-3.

7.3. Fee Calculation & County Cost

The total cost for the Selected Plan was separated into a Development Fee, County Cost, Metropolitan District Cost, and Drainage and Bridge Funds. A description of how the aforementioned were defined is as follows:

- County Cost Drainage improvement costs that are the responsibility of the County as shown in Figure 7-1.
- Metropolitan District Cost Drainage improvement costs that are the responsibility of a metropolitan district as shown in Figure 7-2.
- Development Fee All drainage improvement costs that are directly associated with new development.
- Drainage and Bridge Funds The balance of drainage and bridge funds as of August 2015 was \$584,134 and \$510,777, respectively, with a liability of \$300,000 cost for this DBPS (an additional contract amendment increased the cost of this DBPS to \$339,088).

The anticipated reimbursements due for work completed in the Falcon Watershed are approximately equivalent to the available drainage and bridge funds. As a result, reimbursements were not included in

Falcon DBPS

the fee calculation. Drainage improvements that are required as a result of new development are listed in Appendix E.

The costs apportioned to County and metropolitan district drainage improvements are provided in Table 7-2 and Table 7-3. The bridge improvement fees shown in Table 7-2 and Table 7-3 were determined by classification of the crossing as either a bridge or a culvert. This classification was based on the DCM criteria.

Table 7-2.	County Cost
	A A A

Drainage Improvements	\$ 24,051,349
Bridge Improvements	\$ 2,887,437
Total Cost	\$ 26,938,786

Table	7-3.	Metropol
1 4010		nicer open

Drainage Improvements	\$ 3,972,407
Bridge Improvements	\$ 1,855,620
Total Cost	\$ 5,828,027

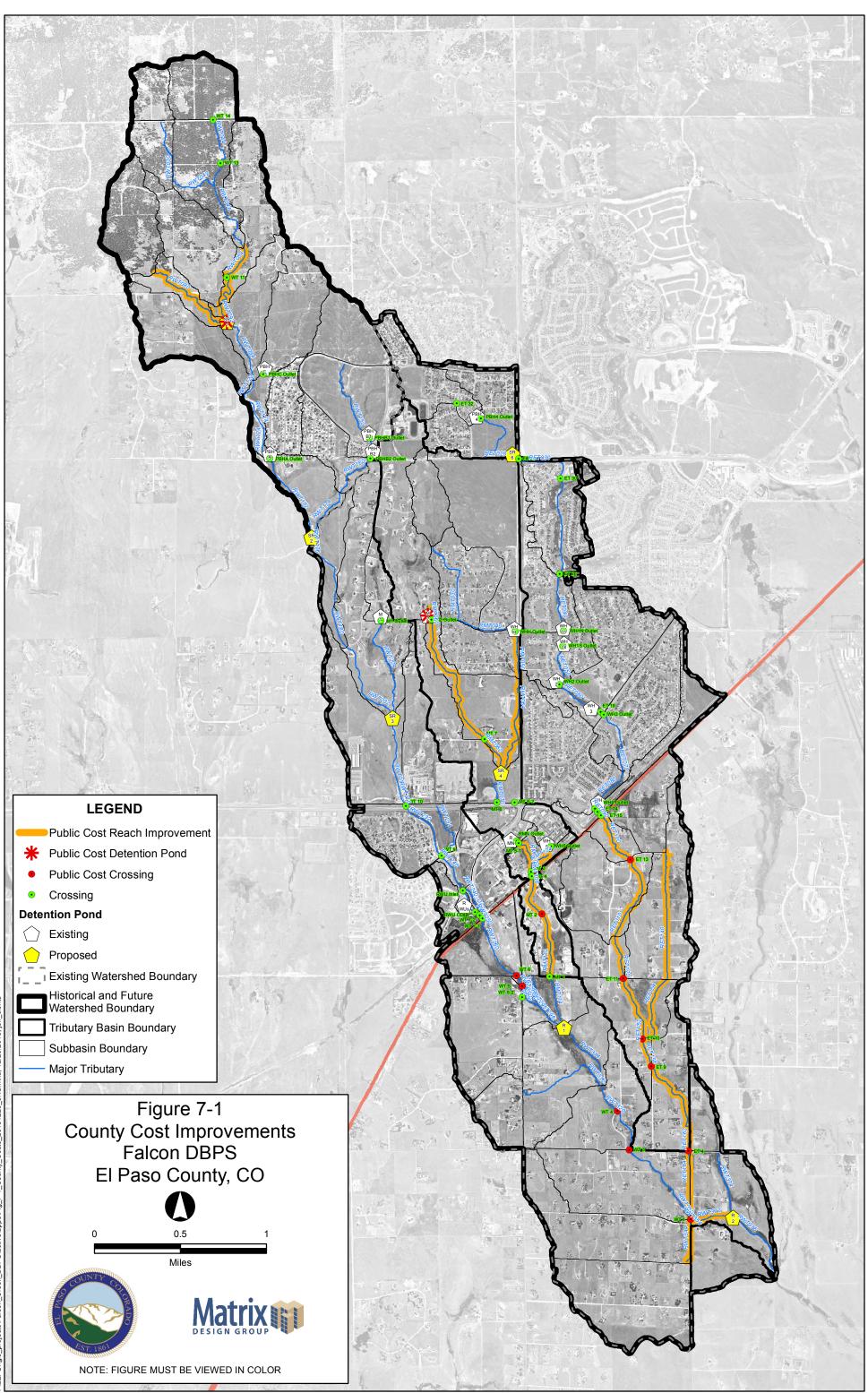

The development cost and corresponding fee calculations based on impervious acreage are provided in Table 7-4 and 7-5.

Table 7-4. Development Drainage Cost and Fee

Drainage Improvements	\$ 14,649,163
DBPS Cost	\$ 339,088
Total Cost	\$ 14,988,251
Drainage Fee (per imp. ac.)	\$ 23,217

Table 7-5. Development Bridge Cost and Fee		
Bridge Improvements	\$ 2,058,474	
Total Cost	\$ 2,058,474	
Bridge Fee (per imp. ac.)	\$ 3,189	

litan District Cost

Falcon DBPS

County Costs

			unty	Costs
		Drainage Fees		
Reach/Pond	each Length (ft)	Improvement		Cost
RWT344	1,379	Roadside Ditch Improvement	\$	167,006
RET140	4,052	Roadside Ditch Improvement	\$	295,91
RET164	2,072	Roadside Ditch Improvement	\$	132,703
RET100	1,791	Small Drop Structures w/Toe Protection	\$	1,342,12
RET110	2,751	Small Drop Structures w/Toe Protection	\$	1,055,51
RET152	2,030	Small Drop Structures w/Toe Protection	\$	1,081,390
RET120	1,379	Natural Channel Design	\$	72,798
RET162	3,256	Small Drop Structures w/Toe Protection	\$	656,460
RMT050	1,568	Small Drop Structures w/Toe Protection	\$	814,189
RMT062	5,688	Small Drop Structures w/Toe Protection	\$	2,381,127
RMT064	3,358	Small Drop Structures w/Toe Protection	\$	1,231,110
RMT112	3,372	Small Drop Structures w/Toe Protection	\$	1,276,142
RWT054	2,497	Small Drop Structures w/Toe Protection	\$	1,414,53
RWT080	3,494	Small Drop Structures w/Toe Protection	\$	2,345,153
RWT092	626	Small Drop Structures w/Toe Protection	\$	414,434
RWT372	1,377	Small Drop Structures w/Toe Protection	\$	947,22
RMT102	1,021	Small Drop Structures w/Toe Protection	\$	636,08
RMT104	874	Small Drop Structures w/Toe Protection	\$	186,34
RET154	2,357	Natural Channel Design	\$	468,92
RET156	942	Natural Channel Design	\$	73,72
WT 5	43	Crossing - Culvert	\$	8,65
ET 13	50	Crossing - Culvert	\$	113,99
ET 11	40	Crossing - Culvert	\$	84,34
ET 9	40	Crossing - Culvert	\$	84,10
ET 4	61	Crossing - Culvert	\$	106,06
Sub Regional Pond SR1		Detention Pond	\$	405,76
he Meadows Pond #2		Detention Pond	\$	20,00
		Subtotal		17,815,81
		Engineering/Construction Admin (15%)	\$	2,672,37
		Contingency (20%)		3,563,16
		Total	\$	24,051,34

Bridge Fees				
Reach/Pond	Reach Length (ft)	Improvement		Cost
WT 6	43	Crossing - Bridge	\$	249,775
WT 4	48	Crossing - Bridge	\$	528,324
WT 3	46	Crossing - Bridge	\$	218,292
WT 1	40	Crossing - Bridge	\$	636,648
MT 2	83	83 Crossing - Bridge		343,147
ET 10	44	Crossing - Bridge	\$	162,656
Subtotal			\$	2,138,842
Engineering/Construction Admin (15%)			\$	320,826
Contingency (20%)			\$	427,768
Total			\$	2,887,437

MDDP & DBPS AMENDMENT

BENT GRASS DEVELOPMENT

El Paso County, Colorado

PREPARED FOR: Challenger Communities, LLC 8605 Explorer Dr., Suite 250 Colorado Springs, CO 80920

PREPARED BY: Galloway & Company, Inc. 1155 Kelly Johnson Blvd., Suite 305 Colorado Springs, CO 80920

DATE: January 2021 Revised: March 2021 Revised: April 2021 Revised: June 2021 Revised: August 2021 Revised: September 2021

PUDSP-20-005

recommendations from the Falcon DBPS, when additional land is obtained to expand the ROW along the southbound portion of Meridian Road.

In the interim condition, it has been proposed to add a temporary lining to the existing channel to handle the excess velocities and depth associated with the DBPS flows and Bent Grass development re-routed flows. This analysis has been included in the Appendix.

The West Tributary Channel will be natural, vegetated facility, helping to ensure that the overall velocities will be reduced, flow depth will not exceed 5' and minimize any potential for scour. If needed, grade control structures may be designed as proposed in the DBPS to ensure these criteria are met.

3. Implement BMPs That Provide a Water Quality Capture Volume with Slow Release

This step utilizes formalized water quality capture volume to slow the release of runoff from the site. The WQCV will release in no less than 40 hours. On-site water quality control volume detention ponds will provide water quality treatment prior to the runoff being released into the channel. WQCV facilities will be designed as Extended Detention Basins.

The Falcon Meadows at Bent Grass development, west of Bent Grass Residential, Filing No. 1 and No. 2, will include several water quality ponds throughout the site to ensure flows will be treated prior to being released into the West Tributary Channel, running through the site. Only a small area, less than 1.0 acres will not be treated prior to releasing into the channel.

Currently, the existing Meridian Road roadside ditch, ultimately conveys runoff to the existing detention and water quality pond MN, as shown and discussed in the Falcon DBPS. The Falcon DBPS also shows a future detention and water quality pond SR-4 that is to receive flows from basin MT060 and discharge into basin MT070, ultimately routing to existing Pond MN. Flows from Bent Grass Meadows Drive are listed in basin MT060 but are being routed to the existing roadside ditch along Meridian Road, which is in basin MT070. The flows from the "School Site" and upstream basins will release into the east side of Pond SR-4 (west of Falcon Market Place). Pond SR-4 is currently under construction. The proposed improvements impact on the existing drainage basin and both Pond MN and Pond SR-4 are discussed later in the report.

4. Consider Need for Industrial and Commercial BMPs

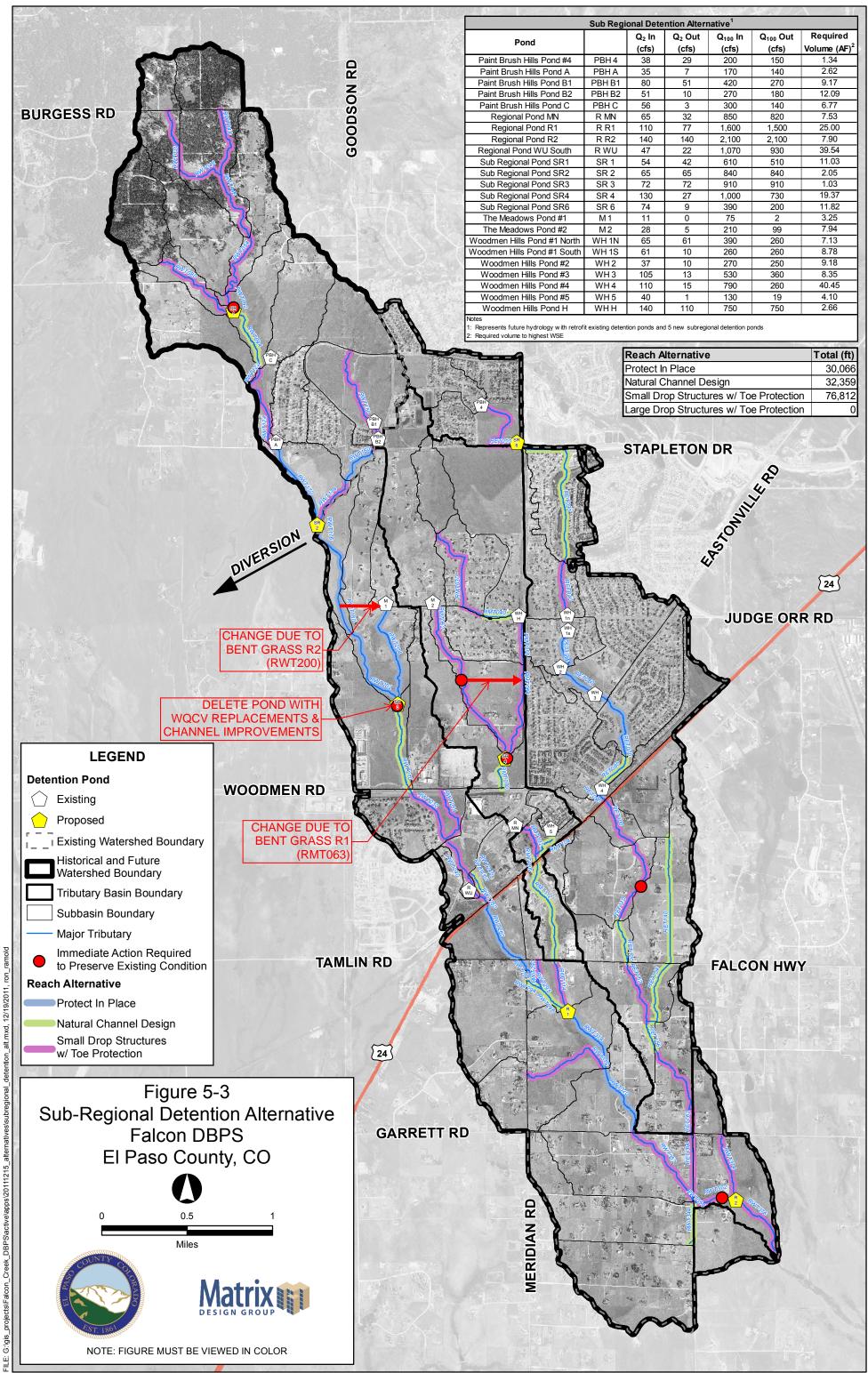
Source control BMPs for homeowners include the use of garages as the primary area where pollutants can be stored. The single-family detached homes provide garages which can act as storage areas. The proposed development does not include outdoor storage or the potential for introduction of contaminants to the Counties' MS4, thus no targeted source control BMPs are necessary. The biggest source control BMP is public education and discuss topics such as: pet waste, car washing, lawn care, fall leaves, and snow melt and deicer.

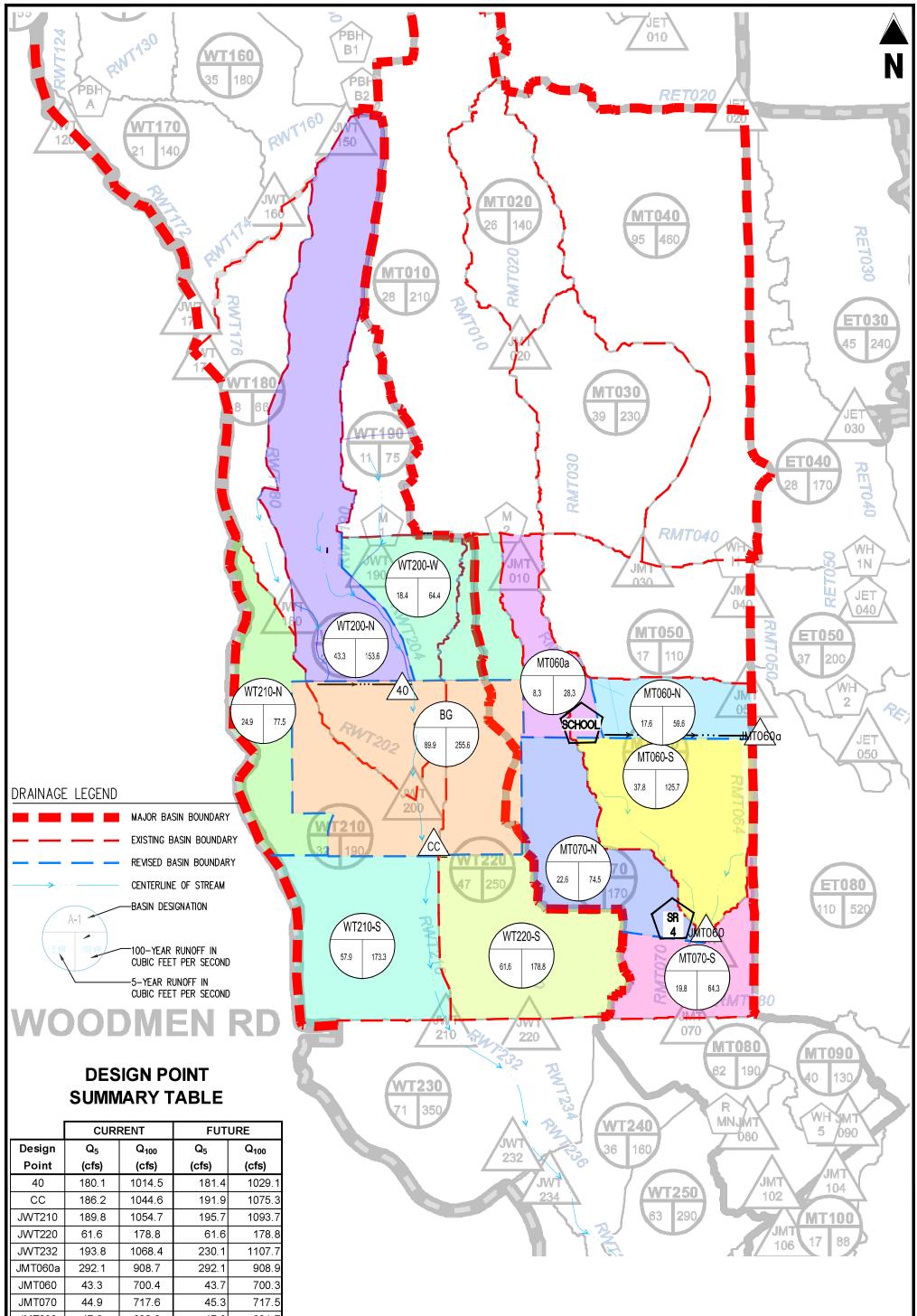
Bent Grass East Commercial Filing No. 1 contains commercial development. This area will need to consider the need for Industrial & Commercial BMPs. No industrial uses or outside storage is proposed for this area. Drainage will be routed through water quality ponds prior to leaving the site to minimize contaminants into the public system.

VII. Future Drainage Conditions

MIDDLE TRIBUTARY

Design Point 30 and Basins OS-25 and OS-26 are as described under Existing Drainage Conditions. However, Basins OS-25 and OS-26 now route through proposed "future" detention pond, on what's been previously referred to as the "School Site", north of Bent Grass Meadows Drive and just west of Bent Grass Filing No. 2. This "future" pond will replace the current sedimentation pond on the "School Site". Upon any additional development within the Middle Tributary area of the Bent Grass Development and north of Bent Grass Meadows Drive, this pond will need to be constructed to accommodate the re-routed flows from the Meadows Pond #2 at DP 30.


This future facility will need to provide 2.76 ac-ft of water quality, 6.26 ac-ft for EURV and 11.98 ac-ft for 100-year storage volume. Preliminary release rates for the 5 and 100-year storms are 3.8 cfs and 32.2 cfs. These flows were then routed to Bent Grass Meadows to the south. With the decrease in flows, flows will not overtop Bent Grass Meadows Drive and continue east to the future box culvert under Bent Grass Meadows Drive at DP BG20 (5-year flow=292.5 cfs, 100-year flow=909.3 cfs). Flows were still checked against street capacity on the north and south side of Bent Grass Meadows Drive, as it continues to the east. With the construction of the future pond, Bent Grass Meadows Drive will be able to adequately handle the flows and no additional storm infrastructure would need to be built to carry these future developed flows. Any area north of Bent Grass Meadows Drive that will develop in the future will need to provide its own on-site detention. Should future development not be able to release flows into Bent Grass Meadows Drive, a 42" RCP would be able to convey the flows of DP BG 15n (Q100=40.9 cfs, Q5=8.8 cfs) to the northwest corner of the Bent Grass Meadows Drive and Meridian Road intersection. Analysis for this culvert sizing has been included in the appendix.

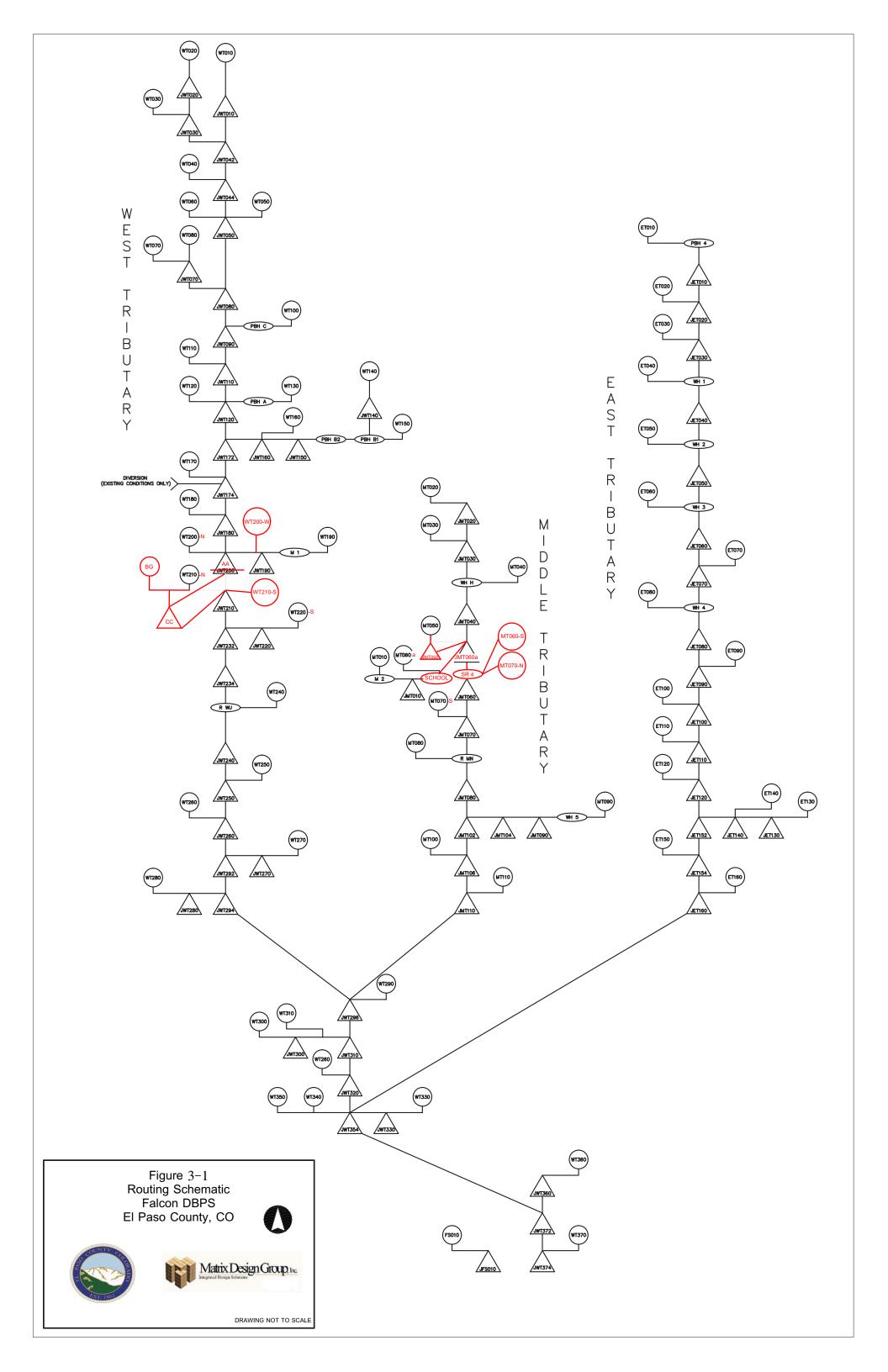

At the Bent Grass Meadows Drive/Meridian Road intersection, the elliptical rcp's will need to be replaced with a double 16' x 4' rcbc. The future roadside ditch will have a 15' wide bottom channel with 4:1 side slope, 6.5' deep and a longitudinal slope of 0.30%. This will result is a flow depth of 5.15' and velocity of 5.04 fps. This channel will direct flows to Owl Place where the existing twin cmp's will be replaced with a 20' x 4' rcbc or equivalent. This structure will need to be built when any development west of Meridian Road at the intersection of Owl Place happens. With future development, it is anticipated that the existing channel conveying flows to the south will be removed to accommodate the new development. The new channel will need to be a 35' wide bottom channel with 4:1 sides, 5' deep and a longitudinal slope of 0.30%. This will produce a flow depth of 3.7' and a velocity of 4.6 fps. If the channel option is not viable, twin 78" rcp's at a minimum 0.50% slope would be able to handle this future flow. Analysis for this design option has been included in the appendix.

Calculations are provided in Appendix C for the future culverts and roadside channel.

WEST TRIBUTARY

Offsite flows entering the west tributary location of Bent Grass have not changed from what was discussed under Current Conditions. Reach RWT202 at the northwest corner of the development has a 100-year flow of 1000 cfs and Reach RWT204 has a flow of 43 cfs. These were obtained from the DBPS by Matrix. The Flood Insurance Study (FIS) by FEMA does not have flows evaluated this far north. The have a flow of 1482 cfs beginning at RWT210. The 8 undeveloped on-site basins for Bent Grass West have been replaced with 17 developed basins. These basins are found in the Falcon Meadows for Bent Grass PDR. A summary of these basins is provided below and are part of the hydrology analysis provided in Appendix B.

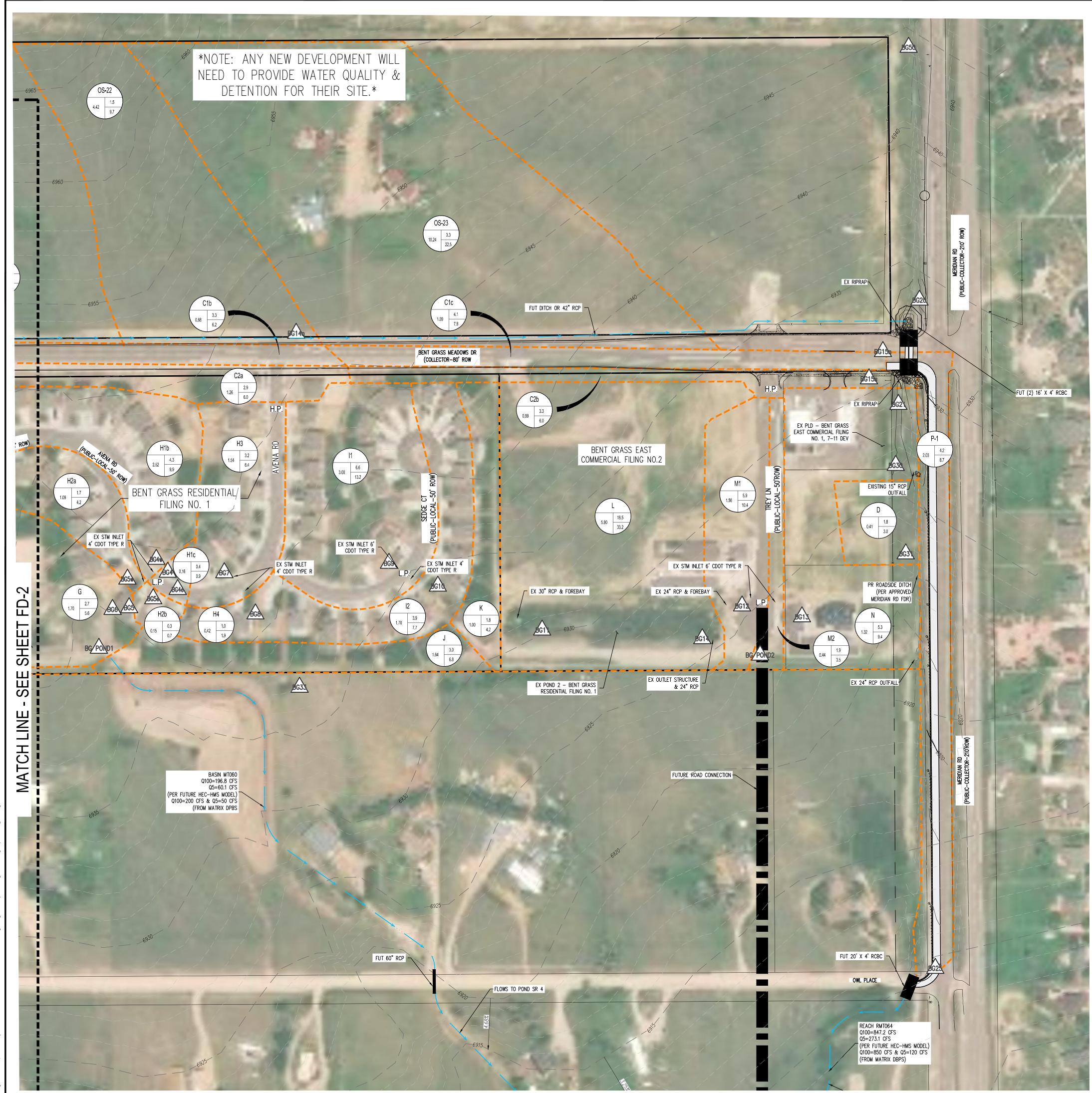
	CURRENT		FUT	URE
Design	Q_5	Q ₁₀₀	Q ₅	Q ₁₀₀
Point	(cfs)	(cfs)	(cfs)	(cfs)
40	180.1	1014.5	181.4	1029.1
CC	186.2	1044.6	191.9	1075.3
JWT210	189.8	1054.7	195.7	1093.7
JWT220	61.6	178.8	61.6	178.8
JWT232	193.8	1068.4	230.1	1107.7
JMT060a	292.1	908.7	292.1	908.9
JMT060	43.3	700.4	43.7	700.3
JMT070	44.9	717.6	45.3	717.5
JMT080	47.3	692.3	47.8	691.7


FALCON MEADOWS AT BENT GRASS MDDP

REVISED BASIN HYDROLOGY - HMS MODEL

Project No:	CLH0017
Drawn By:	CMD
Checked By:	GD
Date:	06/16/21

6162 S. Willow Drive, Suite 320 Greenwood Village, CO 80111 303 770 8884 • GallowayUS.com


MERIDIAN ROAD

Worksheet for Fut Channel - Pr 100 Yr Flow-MR

Manning Formula	
Normal Depth	
0.025	
	%
	ft/ft (H:V)
	ft/ft (H:V) ft
	ft ³ /s
323.00	11/5
5.15	ft
183.50	ft²
57.49	ft
3.19	ft
56.22	ft
3.58	ft
0.01368	ft/ft
5.04	ft/s
0.39	ft
5.55	ft
0.49	
Subcritical	
0.00	ft
0.00	ft
0	
0.00	ft
0.00	ft
Infinity	ft/s
Infinity	ft/s
5.15	ft
3.58	ft
0.30	%
	0.035 0.30 4.00 4.00 5.00 925.00 5.15 183.50 57.49 3.19 56.22 3.58 0.01368 5.04 0.01368 5.04 0.01368 5.04 0.39 5.55 0.49 Subcritical 0.00 0.00 0.00 0.00 0.00

Bentley Systems, Inc. Haestad Methods SolBeinthe@eritervMaster V8i (SELECTseries 1) [08.11.01.03]

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

er Homes Ind/CO, El Paso County-CLH00017-Bent Grass West PUD/3 Permit Const Docs/3.04 Grading-Drainage/3.04.2 Proposed Drainage/MDDP/Drainage Maps/CLH17.20_Fut Dr.dwg - Charlene Durham - 6/16/202

N 0 20 50 100 HEAT SCALE: 1"=100'			DMEN FRONTAG	BENT GRASS ME	ADOWS DR	MERIDIAN RD	Contraction of the second	N N	GailowayUS.com
			AGE LEGE 64 64	VICINITY ND 1"=2,0 85	PROPERTY L EXISTING MA EXISTING MIN PROPOSED/I PROPOSED/I BASIN BOUN FEMA EFFEC CENTERLINE BASIN DESIG 5-YEAR RUI	JNE JOR CONTOU NOR CONTOU FUTURE MAJO FUTURE MINC TUVE 100-YR OF STREAM OF STREAM NOFF IN CUB RUNOFF IN CUB	IR R DR CONTOUR	SECOND	COPYRIGHT THESE PLANS ARE AN INSTRUMENT OF SERVICE AND ARE THE PROPERTY OF GALLOWAY, AND MAY NOT BE DUPLICATED, DISCLOSED, OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF GALLOWAY. COPYRIGHTS AND INFRINGEMENTS WILL BE ENFORCED AND PROSECUTED.
Bas IL RWT RWT WT2 OS C2 D2 RWT H1 H2 H2 H2 H2 H2 H2 H2	(acres) 202 1574.40 204 38.40 200 192.00 -2 20.08 -3 10.62 25 18.74 26 5.81 5 6.37 22 4.42 23 10.24 a 0.48 b 0.88 c 1.09 a 0.56 b 0.68 c 1.20 d 2.79 a 1.26 b 0.99 a 1.00 b 0.41 a 0.40 b 0.41 a 0.40 b 0.15 a 1.00 b 0.15 a 1.02 b 0.41 a 0.40 b 0.41 a 1.00 5.90 1 <th>LE Q₅ (cfs) 220.0 7.0 52.0 9.0 4.7 6.3 1.9 3.2 1.5 3.3 1.8 3.3 4.1 1.6 2.0 3.2 6.7 2.9 3.3 1.8 1.0 1.0 4.3 0.4 1.7 0.3 2.6 2.7 3.2 1.0 6.6 3.9 3.0 1.8 1.85 5.9 1.9 3.0 1.8 1.85 5.9 1.9 3.0 1.8 1.85 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.3 1.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5</th> <th>Q100 (cfs) 1000.0 43.0 190.0 43.4 22.7 35.8 12.6 15.1 9.7 22.5 3.4 6.2 7.8 3.5 4.2 6.6 13.6 6.0 6.0 6.0 7.8 2.3 9.9 0.9 4.2 0.7 5.9 5.6 6.4 1.9 13.2 7.7 6.8 4.2 33.2 10.4 3.5 9.4 3.0 66.7 14.0 2.3 4.3 8.6 4.2 5.0 7.5 5.9 18.5</th> <th>DES SUMM Point 40 1 2 3 4 9 11 13 5 6 6 7 8 12 15 10 10 10A 14 14 14A AA BB 16 17 10 10A 14 14 14A AA BB 16 17 10 10A 14 14 14A 20 20 20A 20B 20 20A 20B 28 16 17 17 18 19 20 20 20A 20B 28 28 29 21 20 20A 20B 28 28 29 21 22 23 24 25 26 42 23 24 25 26 42 23 24 25 26 42 33 24 25 26 42 33 24 25 26 42 33 24 25 26 42 33 24 25 26 42 33 24 25 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 26 26 27 20 20 20 20 20 20 20 20 20 20 20 20 20</th> <th>DIRECTION C IGN PC ARY T/ Q5 (cfs) 278.1 3.1 4.3 5.9 8.3 1.1 6.0 7.6 10.9 4.1 2.9 20.0 4.6 20.9 2.3.9 6.0 33.0 12.2 270.3 269.5 16.6 10.6 13.5 9.5 1.3 18.4 21.3 8.6 12.2 270.3 18.4 21.3 18.4 21.3 18.4 21.3 18.4 21.3 18.4 21.3 18.4 21.3 10.5 12.2 2.70.3 18.4 21.3 18.4 21.3 10.5 12.2 2.1 3.3 8.6 12.2 2.1 3.3 8.6 12.2 2.1 3.8 1.1 268.2 2.1 5.8 6.5 4.9 4.9 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0</th> <th>Q100 Q100 (cfs) 1227.8 8.6 11.9 15.9 22.3 2.4 15.5 19.0 27.1 9.4 5.5 50.5 10.2 45.4 52.7 21.9 81.1 37.0 1188.7 1186.4 39.4 26.8 39.2 29.7 4.6 57.1 66.0 42.8 60.9 32.5 26.0 59.7 15.9 10.7 41.7 16.5 21.8 4.5 173.9 45.8 1183.4 63.5 67.4 64.8 34.5 33.2 3.6 0.0 0.0 <</th> <th>REV HMS Q5 (cfs) 181.4 1<th>FLOWS Q100 (cfs) 1029.1</th><th>MASTER DRAINAGE DEVELOPMENT PLAN MASTER DRAINAGE DEVELOPMENT PLAN FALCON MEADOWS AT BENT GRASS FOR FOR CHALLENGER COMMUNTIES, LLC BENT GRASS MEADOWS DRIVE & MERDIAN ROAD FOR Till Jacobie FOR CHALLENGER COMMUNTIES, LLC FOR FOR CHALLENGER COMMUNTIES, LLC FOR <t< th=""></t<></th></th>	LE Q₅ (cfs) 220.0 7.0 52.0 9.0 4.7 6.3 1.9 3.2 1.5 3.3 1.8 3.3 4.1 1.6 2.0 3.2 6.7 2.9 3.3 1.8 1.0 1.0 4.3 0.4 1.7 0.3 2.6 2.7 3.2 1.0 6.6 3.9 3.0 1.8 1.85 5.9 1.9 3.0 1.8 1.85 5.9 1.9 3.0 1.8 1.85 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.8 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.3 1.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.5 5.6 1.1 2.0 3.3 1.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	Q100 (cfs) 1000.0 43.0 190.0 43.4 22.7 35.8 12.6 15.1 9.7 22.5 3.4 6.2 7.8 3.5 4.2 6.6 13.6 6.0 6.0 6.0 7.8 2.3 9.9 0.9 4.2 0.7 5.9 5.6 6.4 1.9 13.2 7.7 6.8 4.2 33.2 10.4 3.5 9.4 3.0 66.7 14.0 2.3 4.3 8.6 4.2 5.0 7.5 5.9 18.5	DES SUMM Point 40 1 2 3 4 9 11 13 5 6 6 7 8 12 15 10 10 10A 14 14 14A AA BB 16 17 10 10A 14 14 14A AA BB 16 17 10 10A 14 14 14A 20 20 20A 20B 20 20A 20B 28 16 17 17 18 19 20 20 20A 20B 28 28 29 21 20 20A 20B 28 28 29 21 22 23 24 25 26 42 23 24 25 26 42 23 24 25 26 42 33 24 25 26 42 33 24 25 26 42 33 24 25 26 42 33 24 25 26 42 33 24 25 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 42 33 24 25 26 26 26 26 27 20 20 20 20 20 20 20 20 20 20 20 20 20	DIRECTION C IGN PC ARY T/ Q5 (cfs) 278.1 3.1 4.3 5.9 8.3 1.1 6.0 7.6 10.9 4.1 2.9 20.0 4.6 20.9 2.3.9 6.0 33.0 12.2 270.3 269.5 16.6 10.6 13.5 9.5 1.3 18.4 21.3 8.6 12.2 270.3 18.4 21.3 18.4 21.3 18.4 21.3 18.4 21.3 18.4 21.3 18.4 21.3 10.5 12.2 2.70.3 18.4 21.3 18.4 21.3 10.5 12.2 2.1 3.3 8.6 12.2 2.1 3.3 8.6 12.2 2.1 3.8 1.1 268.2 2.1 5.8 6.5 4.9 4.9 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Q100 Q100 (cfs) 1227.8 8.6 11.9 15.9 22.3 2.4 15.5 19.0 27.1 9.4 5.5 50.5 10.2 45.4 52.7 21.9 81.1 37.0 1188.7 1186.4 39.4 26.8 39.2 29.7 4.6 57.1 66.0 42.8 60.9 32.5 26.0 59.7 15.9 10.7 41.7 16.5 21.8 4.5 173.9 45.8 1183.4 63.5 67.4 64.8 34.5 33.2 3.6 0.0 0.0 <	REV HMS Q5 (cfs) 181.4 1 <th>FLOWS Q100 (cfs) 1029.1</th> <th>MASTER DRAINAGE DEVELOPMENT PLAN MASTER DRAINAGE DEVELOPMENT PLAN FALCON MEADOWS AT BENT GRASS FOR FOR CHALLENGER COMMUNTIES, LLC BENT GRASS MEADOWS DRIVE & MERDIAN ROAD FOR Till Jacobie FOR CHALLENGER COMMUNTIES, LLC FOR FOR CHALLENGER COMMUNTIES, LLC FOR <t< th=""></t<></th>	FLOWS Q100 (cfs) 1029.1	MASTER DRAINAGE DEVELOPMENT PLAN MASTER DRAINAGE DEVELOPMENT PLAN FALCON MEADOWS AT BENT GRASS FOR FOR CHALLENGER COMMUNTIES, LLC BENT GRASS MEADOWS DRIVE & MERDIAN ROAD FOR Till Jacobie FOR CHALLENGER COMMUNTIES, LLC FOR FOR CHALLENGER COMMUNTIES, LLC FOR FOR <t< th=""></t<>
G- H- I- AA B- B- CC CC CC CC CC CC CC CC CC CC CC CC CC	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.3 0.2 1.0 4.2 2.3 1.4 16.9 4.6 6.4 6.2 0.2 11.2 15.5 0.8 7.8 2.2 3.2 1.3 4.2	4.5 1.4 2.1 9.9 9.3 10.7 9.1 36.0 9.8 12.1 16.0 1.4 26.6 32.2 2.3 16.6 4.6 17.2 14.8 4.5 8.7	BG 5w BG 5 BG 3 BG 6 BG 14n BG 15n BG 20 BG 14s BG 15s BG 21 BG 32 BG 33 BG 7 BG 8 BG 9 BG 10 BG 11 BG 12 BG 13 BG 14 BG 15 BG 10 BG 11 BG 12 BG 33 BG 11 BG 31 BG 30 BG 31 BG 25	$\begin{array}{c} 1.7\\ 1.9\\ 16.2\\ 5.4\\ 0.3\\ 9.2\\ 8.8\\ 280.0\\ 292.5\\ 15.0\\ 16.8\\ 304.6\\ 2.6\\ 2.9\\ 3.1\\ 1.0\\ 6.5\\ 3.8\\ 13.5\\ 5.8\\ 7.0\\ 12.3\\ 42.2\\ 0.4\\ 3.0\\ 1.8\\ 252.0\\ \end{array}$	4.2 4.7 58.7 13.2 2.9 42.7 40.9 850.0 909.3 7.8 12.4 915.3 6.1 7.0 6.4 2.0 13.4 7.9 27.8 10.7 13.0 22.8 82.0 10.0 5.0 3.1 751.4			Project No: CLH000014.20- Drawn By: CMWJ Checked By: SMB- Date: OCTOBED 2010- FUTURE CONDITIONS DRAINAGE MA FUTURE CONDITIONS DRAINAGE MA

CLOMR REPORT

CLOMR-APP

Federal Emergency Management Agency

Washington, D.C. 20472

CONDITIONAL LETTER OF MAP REVISION COMMENT DOCUMENT

	COMMUNITY IN	FORMATION	PROP	OSED PROJECT DESCRIPTION	BASIS OF CONDITIONAL REQUEST
		I Paso County Colorado acorporated Areas)	CULVER FILL	Т	1D HYDRAULIC ANALYSIS UPDATED TOPOGRAPHIC DATA HYDROLOGIC ANALYSIS
	COMMUNITY NO.: 08005	9			
IDENTIFIER	Falcon Owl Place			IMATE LATITUDE AND LONGIT :: OTHER DATUM: NAD 83	UDE: 38.946, -104.609
	AFFECTED MA	AP PANELS			
TYPE: FIRM*	NO.: 08041C0553G	DATE: December 7, 2018	*FIRM - F	lood Insurance Rate Map	
		FLOODING	SOURCE AND REACH	DESCRIPTION	
Unnamed Tributary	/ to Black Squirrel Creek (Ea	ast Branch) – From approxim	nately 890 feet downstrea	m of Owl Place to just upstream of	of Owl Place
		PRO	POSED PROJECT DES	CRIPTION	
Flooding Source		Proposed Project		Location of Proposed Project	
Unnamed Tributary (East Branch)	y to Black Squirrel Creek	Two New 10' x 6' Box Culv	verts	From approximately 890 feet do Owl Place	wnstream of Owl Place to just upstream of
		SUMMARY	OF IMPACTS TO FLOOI) HAZARD DATA	
Flooding Source		Effective Flooding	Proposed Flooding	Increases Decrease	S
-	y to Black Squirrel Creek	Zone A	Contained	None Yes	
			COMMENT		
document is not a Insurance Prograr that the proposed ensuring that all p knowledge of loca inundation by the	final determination; it only n (NFIP) map. We review project meets the minimum ermits required by Federal I conditions and in the inte	provides our comment on f ed the submitted data and t n floodplain management c or State/Commonwealth la rest of safety, may set high pommonwealth, county, or co	the proposed project in r the data used to prepare riteria of the NFIP. You w have been received. er standards for constru-	elation to the flood hazard inform the effective flood hazard inform community is responsible for a State/Commonwealth, county, a ction in the Special Flood Hazar	or the project described above. This nation shown on the effective National Flood nation for your community and determined pproving all floodplain development and for nd community officials, based on their d Area (SFHA), the area subject to e floodplain management criteria, these
toll free at 1-877-33	36-2627 (1-877-FEMA MAP		e LOMC Clearinghouse,	3601 Eisenhower Avenue, Suite 5	IA Mapping and Insurance eXchange (FMIX) 500, Alexandria, VA 22304. Additional
		A.	filt		
		Patrick "Rick" F Sa	bibit P F Branch Chief		

Engineering Services Branch Federal Insurance and Mitigation Administration

Washington, D.C. 20472

CONDITIONAL LETTER OF MAP REVISION COMMENT DOCUMENT (CONTINUED)

COMMUNITY INFORMATION

To determine the changes in flood hazards that will be caused by the proposed project, we compared the hydraulic modeling reflecting the proposed project (referred to as the proposed conditions model) to the hydraulic modeling reflecting the existing conditions.

The table below shows the changes in the base flood water-surface elevations (WSELs).

Base Flood WSEL Comparison Table						
Flooding Source: Unnamed Tributary to		Base Flood WSEL	Location of maximum change			
Black Squirrel Creek (East Branch)		Change (feet)				
Proposed vs.	Maximum increase	None	Not Applicable			
Existing	Maximum decrease	None	Not Applicable			

NFIP regulations Subparagraph 60.3(b)(7) requires communities to ensure that the flood-carrying capacity within the altered or relocated portion of any watercourse is maintained. This provision is incorporated into your community's existing floodplain management ordinances; therefore, responsibility for maintenance of the altered or relocated watercourse, including any related appurtenances such as bridges, culverts, and other drainage structures, rests with your community. We may request that your community submit a description and schedule of maintenance activities necessary to ensure this requirement.

This comment is based on the flood data presently available. If you have any questions about this document, please contact the FEMA Mapping and Insurance eXchange (FMIX) toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304. Additional Information about the NFIP is available on the FEMA website at https://www.fema.gov/flood-insurance.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

Washington, D.C. 20472

CONDITIONAL LETTER OF MAP REVISION COMMENT DOCUMENT (CONTINUED)

COMMUNITY INFORMATION (CONTINUED)

DATA REQUIRED FOR FOLLOW-UP LOMR

Upon completion of the project, your community must submit the data listed below and request that we make a final determination on revising the effective FIRM. If the project is built as proposed and the data below are received, a revision to the FIRM would be warranted.

• Detailed application and certification forms must be used for requesting final revisions to the maps. Therefore, when the map revision request for the area covered by this letter is submitted, Form 1, entitled "Overview and Concurrence Form," must be included. A copy of this form may be accessed at https://www.fema.gov/flood-maps/change-your-flood-zone/paper-application-forms/mt-2.

• The detailed application and certification forms listed below may be required if as-built conditions differ from the proposed plans. If required, please submit new forms, which may be accessed at https://www.fema.gov/flood-maps/change-your-flood-zone/paper-application-forms/mt-2, or annotated copies of the previously submitted forms showing the revised information.

Form 2, entitled "Riverine Hydrology and Hydraulics Form." Hydraulic analyses for as-built conditions of the base flood must be submitted with Form 2.

Form 3, entitled "Riverine Structures Form."

• A certified topographic work map showing the revised and effective base floodplain boundaries. Please ensure that the revised information ties-in with the current effective information at the downstream and upstream ends of the revised reach.

• An annotated copy of the FIRM, at the scale of the effective FIRM, that shows the revised base floodplain boundary delineations shown on the submitted work map and how they tie-in to the base floodplain boundary delineations shown on the current effective FIRM at the downstream and upstream ends of the revised reach.

• As-built plans, certified by a registered Professional Engineer, of all proposed project elements.

This comment is based on the flood data presently available. If you have any questions about this document, please contact the FEMA Mapping and Insurance eXchange (FMIX) toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304. Additional Information about the NFIP is available on the FEMA website at https://www.fema.gov/flood-insurance.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

Washington, D.C. 20472

CONDITIONAL LETTER OF MAP REVISION COMMENT DOCUMENT (CONTINUED)

COMMUNITY INFORMATION (CONTINUED)

DATA REQUIRED FOR FOLLOW-UP LOMR (continued)

• FEMA's fee schedule for reviewing and processing requests for conditional and final modifications to published flood information and maps may be accessed at https://www.fema.gov/flood-maps/change-your-flood-zone/status/flood-map-related-fees. The fee at the time of the map revision submittal must be received before we can begin processing the request. Payment of this fee can be made through a check or money order, made payable in U.S. funds to the National Flood Insurance Program, or by credit card (Visa or MasterCard only). Please either forward the payment, along with the revision application, to the following address:

Colorado Water Conservation Board Attention: Floodplain Mapping Program Manager 1313 Sherman Street, Rm 718 Denver, CO 80203

or submit the LOMR using the Online LOMC portal at: https://hazards.fema.gov/femaportal/onlinelomc/signin

After receiving appropriate documentation to show that the project has been completed, FEMA will initiate a revision to the FIRM. Because the flood hazard information (i.e., base flood elevations, base flood depths, SFHAs, zone designations, and/or regulatory floodways) will change as a result of the project, a 90-day appeal period will be initiated for the revision, during which community officials and interested persons may appeal the revised flood hazard information based on scientific or technical data.

This comment is based on the flood data presently available. If you have any questions about this document, please contact the FEMA Mapping and Insurance eXchange (FMIX) toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304-6426. Additional Information about the NFIP is available on the FEMA website at https://www.fema.gov/flood-insurance.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

Washington, D.C. 20472

CONDITIONAL LETTER OF MAP REVISION COMMENT DOCUMENT (CONTINUED)

COMMUNITY INFORMATION (CONTINUED)

COMMUNITY REMINDERS

We have designated a Consultation Coordination Officer (CCO) to assist your community. The CCO will be the primary liaison between your community and FEMA. For information regarding your CCO, please contact:

Jeanine P. Petterson Director, Mitigation Division Federal Emergency Management Agency, Region VIII Denver Federal Center, Building 710 P.O. Box 25267 Denver, CO 80225-0267 (303) 235-4830

This comment is based on the flood data presently available. If you have any questions about this document, please contact the FEMA Mapping and Insurance eXchange (FMIX) toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMC Clearinghouse, 3601 Eisenhower Avenue, Suite 500, Alexandria, VA 22304. Additional Information about the NFIP is available on the FEMA website at https://www.fema.gov/flood-insurance.

Patrick "Rick" F. Sacbibit, P.E., Branch Chief Engineering Services Branch Federal Insurance and Mitigation Administration

3.0 HYDROLOGIC ANALYSIS

3.1 Falcon DBPS

The Falcon DBPS completed hydrologic analysis for the Falcon Basin Watershed, using HEC-HMS v3.5 software, for historical, existing, and future land use conditions by applying a 24-hour storm event with 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals and current drainage infrastructure. Chapter 3 and Appendix A of the Falcon DBPS include a detailed discussion of the hydrologic analysis. An electronic copy of the HEC-HMS model (File: Aug15_Working_Falcon_DBPS_S.hms) is also provided.

The Falcon DBPS identified Subregional Pond SR4 to be installed on the Falcon Marketplace property. Pond SR4 was constructed in early 2021 and the property floodplain mapping was updated in LOMR Case Number 21-08-0534P.

El Paso County requires regional drainage infrastructure to be sized for future land use conditions. Therefore, peak discharges with existing drainage infrastructure and future land use conditions near Owl Place are summarized in Table 3-1.

Model Location	Physical Location	Branch	Proximity to Owl Place	Q100 (cfs)
JMT050	Bent Grass Meadows Drive	Only East Branch	Upstream of Site	850
JMT060	Eastonville Road (Pond SR4 inflow)	Both East and West Branches	Downstream of Site	1,000

Table 3-1. Future Land Use Conditions Peak Discharges near Falcon Owl Place on
the Middle Tributary, Falcon DBPS

3.2 Falcon Owl Place

The Falcon DBPS HEC-HMS model with existing drainage infrastructure and future land use (Existing Conditions) was used as the basis for the Falcon Owl Place hydrologic analysis. The Existing Conditions model was replicated in HEC-HMS version 4.7.1, due to instabilities and runtime issues with the prior, outdated model version (3.5). The Existing model produced 100-year peak flows of 859 and 1,023 cfs upstream (JMT050) and downstream (JMT060) of the site, which are comparable to and more conservative than the 850 and 1,000 cfs in the DBPS. It should be noted that in Existing Conditions, JMT050 is on the East Branch of the Middle Tributary, whereas JMT060 includes flows from both the West and East Branches, immediately upstream of Pond SR4.

The Falcon watershed did not include a design point on the East Branch immediately upstream of Pond SR4. Therefore, it was necessary to modify the HMS model to obtain a design flow for Owl Place. In the Proposed Conditions basin model, the junction JMT051 was created on the East Branch of the UTBSC at the southern boundary of the Falcon Owl Place property, immediately upstream of Pond SR4.

The lag time and drainage area for Basin MT060 were reduced to 0.077 square miles and 17 minutes, respectively. The length and slope of Routing RMT060 were also updated. The NRCS soils for the proposed basin are Columbine gravelly sandy loam with a Hydrologic Soil Group (HSG) A. The basin is zoned for a combination of 5-acre residential, commercial, and planned unit development (PUD). The nearby PUD (Bent Grass Meadows) is residential with an average lot size of 0.22 acres. Based on TR-55 Table 2-2a, areas with 0.22-acre lots and HSG A have a Curve Number (CN) of 65. However, it is unknown how and when this area will develop in the future. For example, the Owl Place site is currently being rezoned from RR-5 to CS, which would increase the CN from 46 to 89. The future conditions CN of 66 used in the Falcon DBPS is a reasonable representation of the future development potential in the basin and was used in the proposed conditions model.

The hydrologic parameter calculations, base mapping, and select output from the HEC-HMS model is included in **Appendix 4**, and the model files (HEC-HMS file: Falcon_OwlCLOMR.hms) are provided. Proposed peak discharges used for the Falcon Owl Place development are summarized in Table 3-2.

Table 3-2. Proposed Peak Discharges at Falcon Owl Place (East Branch of the
UTBSC)

Recurrence Interval	Q100 (cfs)		
100-year	920		
5-year	288.5		

4.0 HYDRAULIC ANALYSIS

4.1 General

The effective FIRM identifies an approximate Zone A floodplain across the Falcon Owl Place property with no flood profiles, discharges, or BFE's defined. The Falcon Owl Place development includes filling and regrading the site and rerouting the East Branch of the UTBSC through a box culvert across the site.

4.2 Vertical Datum

The effective FIRM is on the North American Vertical Datum of 1988 (NAVD88). The ALTA survey completed for the site (Olsson, 2021) and the design and construction

drawings are on the National Geodetic Vertical Datum of 1929 (NGVD29). The Falcon DBPS and the hydraulic analysis for this CLOMR were both completed on the NGVD29. The difference between the NGVD29 and NAVD88 is 3.8 feet on the Falcon Owl Place.

4.3 Horizontal Datum

The field survey, design, construction drawings and hydraulic modeling for the Falcon Owl Place project were completed on the North American Datum of 1983 (NAD83), Colorado State Plane coordinate system, Central Zone.

4.4 Box Culvert Hydraulic Analysis

Under existing and proposed conditions, the East Branch of the UTBSC leaving the Falcon Owl Place site discharges to Pond SR4 on the Falcon Marketplace. The pond was designed for a 100-year discharge of 1,016 cfs, which includes both West and East branches of the UTBSC. The 100-year water surface elevation upstream of the pond as shown in the LOMR is 6902.5 (NAVD88), or 6898.7 (NGVD29). The starting HGL for the box culvert analysis was conservatively placed at the top of pipe elevation of 6895.84 feet (NGVD29) for analyzing flows to the East branch only. However, an additional analysis was performed with a starting HGL of 6898.7, to evaluate the backwater effects from the pond.

StormCAD was used to evaluate the hydraulic performance of the 10'x6' box culvert. The profile and output for the 100-year storm event is included in **Appendix 5**, and the model files are provided.

4.5 Existing and Proposed Owl Place Culverts

The East Branch of the UTBSC is currently conveyed under Owl Place via two 36" CMP near the northeast corner of the site. The HY-8 software was used to analyze the existing culverts for the 100-year storm event.

The 2-36" CMP culverts are severely undersized and partially filled with sediment as shown in the photo below. The culverts only convey 86-95 cfs, depending on tailwater depth. The remaining flow (approximately 825-834 cfs) in the 100-year event overtops Owl Place. The proposed box culvert will convey the entire 100-year event (920 cfs) with an HGL of 6911.31 at the proposed headwall upstream of Owl Place, which is more than one foot below Owl Place and contained within the existing and proposed channel upstream. Channel grading will be required for approximately 30 feet to tie into the existing creek profile upstream. The channel side slopes will be reduced from approximately 5.5H:1V to 1.8H:1V and protected with riprap.

The HY-8 output is included in Appendix 5 and the model file (Owl Place.hy8) is provided.

REQUEST FOR CONDITIONAL LETTER OF MAP REVISION UNNAMED TRIBUTARY TO BLACK SQUIRREL CREEK, FALCON OWL PLACE

Existing 2-36" CMP under Owl Place (Upstream Inlets)

5.0 NFIP REGULATION COMPLIANCE

5.1 Floodplain Work Map and Annotated FIRM

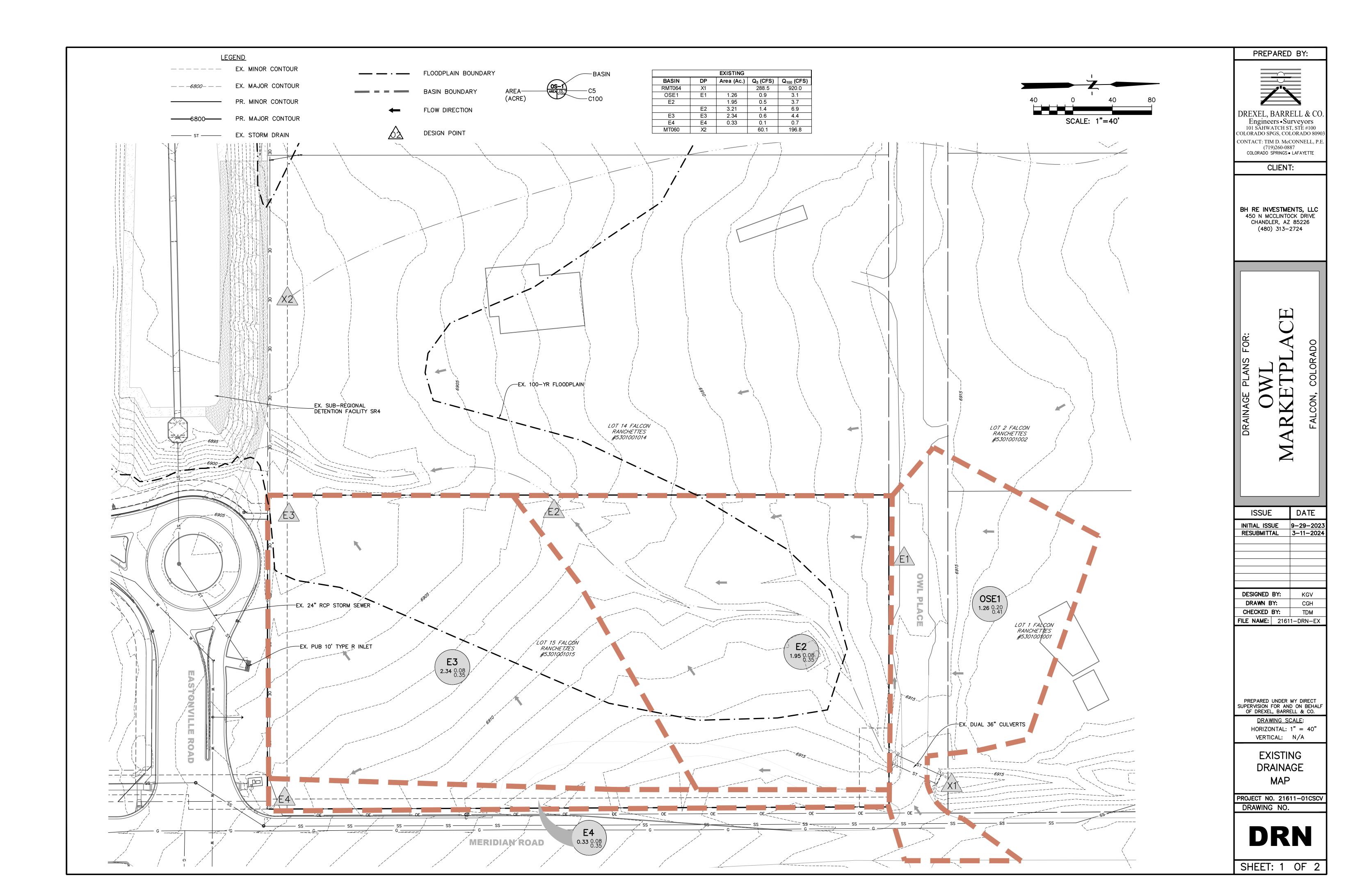
The effective Zone AE 100-year floodplain delineation for the UTBSC terminates at the boundary between the Falcon Marketplace and Falcon Owl Place properties and represents flows from both West and East branches. No changes are proposed to the Zone AE floodplain. The 100-year flood discharge for the East Branch is contained in the proposed culvert. Therefore, the Zone A floodplain for this branch has been removed, and the split between the Zone A floodplains for the West and East branches is denoted in the Annotated FIRM. The effective and proposed UTBSC floodplains are delineated on the Floodplain Work Map and Annotated FIRM in **Appendix 7**.

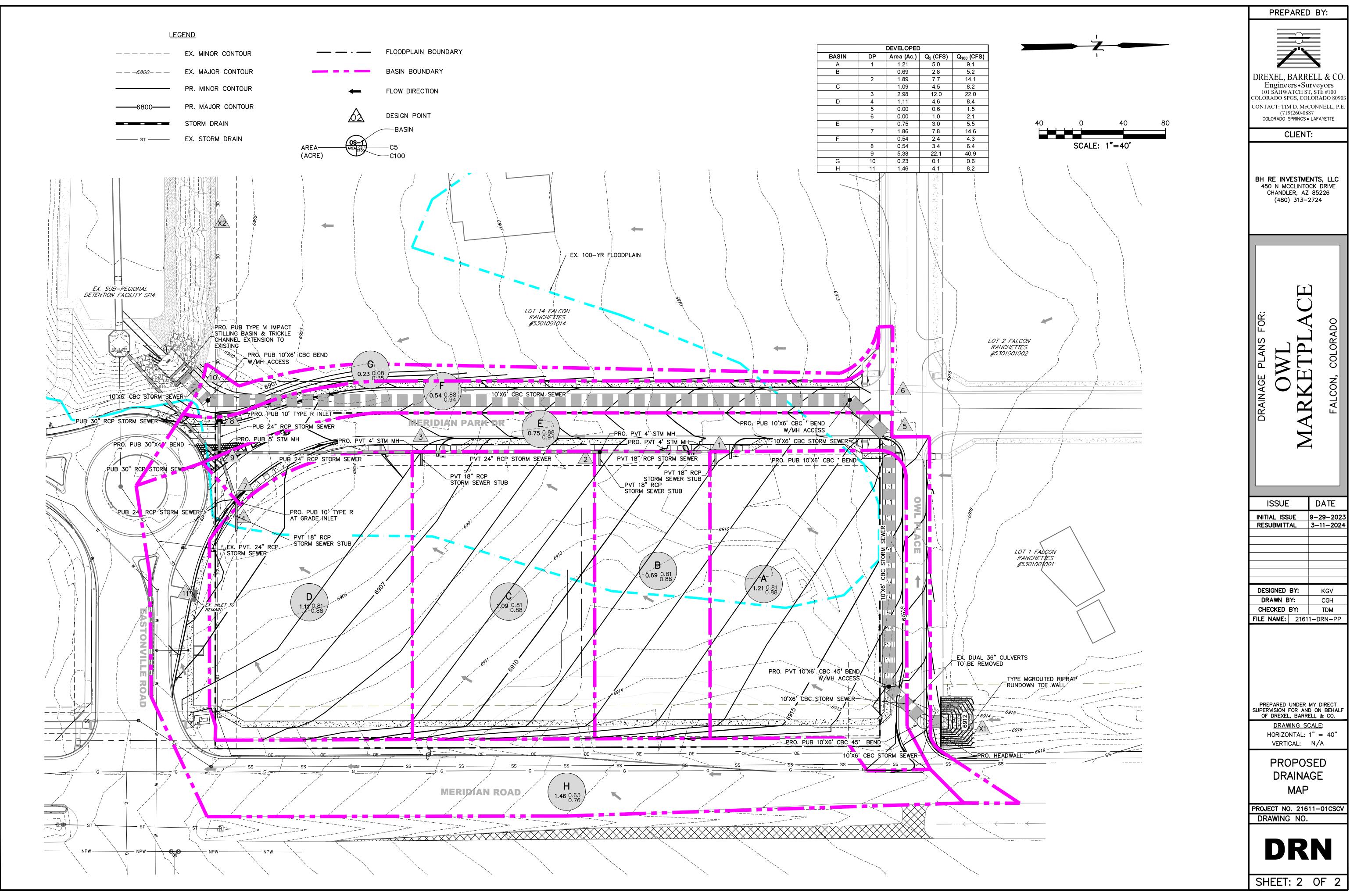
5.2 Forms and Notifications

The appropriate FEMA forms are located in **Appendix 6**. Modifications to 100-year floodplain elevations and delineations are limited to the Falcon Owl Place development. Furthermore, there are no proposed increases to the BFE's or floodplain extents. Therefore, individual legal notices are not required for this CLOMR submittal.

5.3 Compliance with Section 65.12

Although there are no increases to BFE's due to the proposed project, an alternatives evaluation was performed to evaluate options for closed conduit and open channel conveyance of the East Branch of the UTBSC. The alternatives evaluation can be provided upon request.


Furthermore, no structures are located in areas that would be impacted by the floodplain modifications proposed by this CLOMR.


5.4 Endangered Species Act (ESA)

ESA Compliance information is provided in **Appendix 8**.

6.0 CONCLUSIONS

The Falcon Owl Place development will relocate a portion of the East Branch of an Unnamed Tributary of Black Squirrel Creek (Middle Tributary). This report and supporting documentation are being submitted to FEMA for the purpose of requesting a CLOMR to conditionally change the floodplain in accordance with NFIP regulations.

